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Quadratic Formula 

-b ± Vb2 - 4ac 
Ifax2 + bx + c = 0, then x = 2a 

Binomial Theorem 

(1) 
I1X 11(11-1)x2 

+,1/=1+-+ +". 
. I! 2! 

Products of Vectors 

Let e be the smaller of the two angles between a and b. 
Then 

1 j k 
a x b = -b x a = a,- ay az 

b, by bz 

~ I al' = 1 -
by 

azl_ I I a, 
bz b, 

azl + k I a, 
bz b, 

ayl 
by 

la X bl = ab sin e 

Trigonometric Identities 

sin CI' ± sin f3 = 2 sin ~(CI' ± (3) cos ~(CI' += (3) 

cos CI' + cos f3 = 2 cos !( CI' + (3) cos ~(CI' - (3) 

* See Appendix E for a more complete list. 

Factor Prefix 

1024 yotta 

1021 zetta 

1018 exa 
1015 pet a 

1012 tera 

109 giga 

106 mega 

103 kilo 

102 hecto 

101 deka 

Symbol 

Y 
Z 

E 

P 

T 

G 

M 

k 

h 

da 

Derivatives and Integrals 

d . 
-SlllX = COSX 
dx 

d . 
-cosx = -SlllX 
dx 

d -ex = eX 
dx 

J sin x dx = - cos x 

J cos,x dx = sin x 

J eX dx = eX 

Cramer's Rule 

Two simultaneous equations in unknowns x and)" 

have the solutions 

x= 

and 

y= 

Factor Prefix 

10-1 deci 
10-2 centi 
10-3 milli 
10--6 micro 
10-9 nano 
10-12 pico 
10-15 femto 
10-18 atto 
10-21 zepto 
10-24 yocto 

ICI bll 
Cl b2 

I:~ ~~I 

Symbol 

d 

c 

m 

fL 
n 

P 
f 

a 

z 

y 

Clbl - C2b l 

albl - alb 1 

*In all cases, the first syllable is accented, as in IHl-no-me-ter. 
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PREFACE 

Fun with a big challenge. That is how I have regarded physics since the day when Sharon, one of the 
students in a class I taught as a graduate student, suddenly demanded of me, "What has any of this 
got to do with my life?" Of course I immediately responded, "Sharon, this has everything to do with 
your life-this is physics." 

She asked me for an example. I thought and thought but could not come up with a single one. That 
night I began writing the book The Flying Circus of Physics (John Wiley & Sons Inc., 1975) for 
Sharon but also for me because I realized her complaint was mine. I had spent six years slugging my 
way through many dozens of physics textbooks that were carefully written with the best of pedagog­
ical plans, but there was something missing. Physics is the most interesting subject in the world 
because it is about how the world works, and yet the textbooks had been thoroughly wrung of any 
connection with the real world. The fun was missing. 

I have packed a lot of real-world physics into this HRW book, connecting it with the new edition 
of The Flying Circus of Physics. Much of the material comes from the HRW classes I teach, where I 
can judge from the faces and blunt comments what material and presentations work and what do 
not. The notes I make on my successes and failures there help form the basis of this book. My mes­
sage here is the same as I had with every student I've met since Sharon so long ago: "Yes, you can 
reason from basic physics concepts all the way to valid conclusions about the real world, and that 
understanding of the real world is where the fun is." 

I have many goals in writing this book but the overriding one is to provide instructors with tools 
by which they can teach students how to effectively read scientific material, identify fundamental 
concepts, reason through scientific questions, and solve quantitative problems. This process is not 
easy for either students or instructors. Indeed, the course associated with this book may be one of 
the most challenging of all the courses taken by a student. However, it can also be one of the most 
rewarding because it reveals the world's fundamental clockwork from which all scientific and engi­
neering applications spring. 

Many users of the eighth edition (both instructors and students) sent in comments and suggestions 
to improve the book.These improvements are now incorporated into the narrative and problems 
throughout the book. The publisher John Wiley & Sons and I regard the book as an ongoing project 
and encourage more input from users. You can send suggestions, corrections, and positive or negative 
comments to John Wiley & Sons or Jearl Walker (mail address: Physics Department, Cleveland State 
University, Cleveland, OH 44115 USA; or email address:physics@wiley.com; or the blog site at 

We may not be able to respond to all suggestions, but we keep and 
study each of them. 

NI 
= '" "';:';~ ~ Because today's students have a wide range of learning styles, I 

have produced a wide range of learning tools, both in this new edi­
tion and online in WileyPLUS: 

~ ,~ , funDamentals m PlIysics, ge , 
- ~ '" " ~'" ~'" " ~'" =~ = '" 7fiS _"':£ 1;"0 ~'" ~ ~ '""'0 

of one of the key figures in each chapter. 
Here in the book, those figures are flagged with the 

swirling icon. In the online chapter in WileyPLUS, a mouse click 
begins the animation. I have chosen the figures that are rich in 
information so that a student can see the physics in action and 
played out over a minute or two instead of just being flat on a 
printed page. Not only does this give life to the physics, but the ani­
mation can be repeated as many times as a student wants. 

I have made well over 1000 instructional 
videos, with more coming each semester. Students can 

watch me draw or type on the screen as they hear me talk about a 
solution, tutorial, sample problem, or review, very much as they 

y 

I 

xv 



xvi PREFACE 

Step .L1 I Concttpt - Evaluate quantltltu 

KEY IDEAS I 

would experience were they sitting next to me in my office 
while I worked out something on a notepad. An instruc­
tor's lectures and tutoring will always be the most valuable 
learning tools, but my videos are available 24 hours a day, 
7 days a week, and can be repeated indefinitely. 

Video tutorials on subjects in the chapters. I chose the 
subjects that challenge the students the most, the ones that 
my students scratch their heads about. 

Video reviews of high school 
math, such as basic algebraic manip­
ulations, trig functions, and simulta-
neous equations. Video ileview 

(1) We want the net force on particle 1 to be a certain value (zero). Thus, we choose 
particle 1 as our system. 

Video introductions to math, such as vector multiplication, that will be new 
to the students. m ~;~~d:~ ro~~~e~e~ fonr~ ohne~~~d:1~: b~O~e~~:th;Of:~~:~~e~~u~et~ pOa~d~$ 2 

end 3mustbe attract:ive, to counter the repulsiYeforce. 
(4) BeC/luse the net force on p/lrtic!e 1 i$ zero, the x component and the y component 

: of that net force must each be zero. 

GETIING STARTED I We need to consider each of the three forces ectino on particle 1. 
We start with the forC1J due to particle 4, Whet is the distance between particles 1 and ., 
Numbed .. 

Step 1,?- I Concept - Evaluate quantities 

What is the magnitude of the force on partide 1 due to particle 41 
Number:~-- ------- ---- -- ! Units L-_---

Step 1-.21 Concept - Ellilluate quantities 
........ -.---~ .. ----.--.. - ...... . 

wniciloftne vectors in fioure (1 or2) best snol'ls tne force onpartideldueto 
partide41 

0 2 

0 1 

step 1-,-4 I Concept - Ellilwate quantities 

What is the maonitude of the x component that force? 

Step U I Concept - Ellaluate quantities 

To counter tnllt x component, should the force on partide 1 due to partida 2 be 
leftwardorriohtwardl 

riohtward 

leftward 

Step g : Concept - Ellaluate quantities 

What is \he maoniruda of tnll force on partide 1 due to partida 21 

Numbllr;-- ---- ------: Units ~_-_--

Video presentations of every Sample Problem in the textbook chapters 
(both 8e and ge). My intent is to work out the physics, starting with the Key 
Ideas instead of just grabbing a formula. However, I also want to demonstrate 
how to read a sample problem, that is, how to read technical material to learn 
problem-solving procedures that can be transferred to other types of problems. 

Video solutions to 20% of the end-of chapter problems. The availability and 
timing of these solutions are controlled by the instructor. For example, they 
might be available after a homework deadline or a quiz. Each solution is not 
simply a plug-and-chug recipe. Rather I build a solution from the Key Ideas to 
the first step of reasoning and to a final solution. The student learns not just 
how to solve a particular problem but how to tackle any problem, even those 
that require physics courage. 

Video examples of how to read data from graphs (more than simply read­
ing off a number with no comprehension of the physics). 

I have written a large number of reading 
resources for WileyPLUS. 

Every sample problem in the textbook (both 8e and ge) is available online 
in both reading and video formats. 

Hundreds of additional sample problems. These are available as stand­
alone resources but (at the discretion of the instructor) they are also linked 
out of the homework problems. So, if a homework problem deals with, say, 
forces on a block on a ramp, a link to a related sample problem is provided. 
However, the sample problem is not just a replica of the homework problem 
and thus does not provide a solution that can be merely duplicated without 
comprehension. 

GO ThtOl'ials for 10% of the end-of-chapter homework problems. In 
mUltiple steps, I lead a student through a homework problem, starting 

with the Key Ideas and giving hints when wrong answers are submitted. 
However, I purposely leave the last step (for the final answer) to the student 

so that they are responsible at the end. Some online tutorial systems trap a student when wrong 
answers are given, which can generate a lot of frustration. My GO Thtorials are not traps, because at 
any step along the way, a student can return to the main problem. 

Hints on every end-of-chapter homework problem are available online (at the discretion of the 
instructor). I wrote these as true hints about the main ideas and the general procedure for a solution, 
not as recipes that provide an answer without any comprehension. 

I'll Both self-evaluations and instructor evaluations are available. 

Reading questions are available within each online section. I wrote these so that they do 
not require analysis or any deep understanding; rather they simply test whether a student has read the 
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section. When a student opens up a section, a randomly chosen read­
ing question (from a bank of questions) appears at the end. The 
instructor can decide whether the question is part of the grading for 
that section or whether it is just for the benefit of the student. 

Checkpoints are available within most sections. I wrote these so 
that they require analysis and decisions about the physics in the 
section. Answers to all checkpoints are in the back of the book. 

The figure shows a circular path taken by a particle. If 
the instantaneous velocity of the particle is 
11= (2 m/s)l - (2 m/s)j, through which quadrant is the 
particle moving at that instant if it is traveling (a) clock­
wise and (b) counterclockwise around the circle? For 
both cases, draw v on the figure. 

All end-of-chapter homework questions and problems in the book (and many more problems) 
are available in WileyPLUS. The instructor can construct a homework assignment and control 
how it is graded when the answers are submitted online. For example, the instructor controls the 
deadline for submission and how many attempts a student is allowed on an answer. The 
instructor also controls which, if any, learning aids are available with 
each homework problem. Such links can include hints, sample prob­
lems, in-chapter reading materials, video tutorials, video math 
reviews, and even video solutions (which can be made available to 
the students after, say, a homework deadline). 

Symbolic notation problems are available in every chapter and 
require algebraic answers. 

These have been produced by a number of instructors, to 
provide the experience of a computerized lab and lecture-room 
demonstrations. 

Many of the figures in the book have been modified to make the 
physics ideas more pronounced. 

At least one key figure per chapter has been greatly expanded so 
that its message is conveyed in steps. 

Flying Circus material has been incorporated into the text in several ways: Sample 
Problems, text examples, and end-of-chapter Problems. The purpose of this is two-fold: (1) 
make the subject more interesting and engaging, (2) show the student that the world around 
them can be examined and understood using the fundamental principles of physics. 

Links to The Flying Circus of Physics are shown throughout the text material and end-of­
chapter problems with a biplane icon. In the electronic version of this book, click­
ing on the icon takes you to the corresponding item in Flying Circus. The bibliography of 
Flying Circus (over 11 000 references to scientific and engineering journals) is located at 

are chosen to demonstrate how problems can be solved with reasoned solu­
tions rather than quick and simplistic plugging of numbers into an equation with no regard for what 
the equation means. 

in the sample problems focus a student on the basic concepts at the root of the solution 
to a problem. In effect, these key ideas say, "We start our solution by using this basic concept, a pro­
cedure that prepares us for solving many other problems. We don't start by grabbing an equation for 
a quick plug-and-chug, a procedure that prepares us for nothing." 

The narrative of every chapter begins with this question, and with an answer 
that pertains to the subject of the chapter. (A plumber once asked me, "What do you do for a liv­
ing?" I replied, "I teach physics." He thought for several minutes and then asked, "What is physics?" 
The plumber's career was entirely based on physics, yet he did not even know what physics is. Many 
students in introductory physics do not know what physics is but assume that it is irrelevant to their 
chosen career.) 
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H When worked-out solutions are provided either in print or elec-
tronically for certain of the odd-numbered problems, the statements for those problems include an 
icon to alert both student and instructor as to where the solutions are located. An icon guide is pro­
vided here and at the beginning of each set of problems 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
http;//www.wlley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Icoil Guillfl 

To accommodate the individual needs of instructors and students, the ninth edition of Fundamentals 
of Physics is available in a number of different versions. 

The RegulaI' Edition consists of Chapters 1 through 37 (ISBN 978-0-470-04472-8). 

The Extended Edition contains seven additional chapters on quantum physics and cosmology, 
Chapters 1-44 (ISBN 978-0-471-75801-3). 

Both editions are available as single, hardcover books, or in the following alternative versions: 

Volume 1- Chapters 1-20 (Mechanics and Thermodynamics), hardcover, ISBN 978-0-47004473-5 

Volume 2 - Chapters 21-44 (E&M, Optics, and Quantum Physics), hardcover, ISBN 978-0-470-04474-2 

by Sen-Ben Liao, Lawrence Livermore National Laboratory. 
This manual provides worked-out solutions for all problems found at the end of each chapter. 

http://www.wiley.com/college/hallida Y 

This resource contains lecture notes outlining the most important topics of 
each chapter; demonstration experiments; laboratory and computer projects; film and video 
sources; answers to all Questions, Exercises, Problems, and Checkpoints; and a correlation guide 
to the Questions, Exercises, and Problems in the previous edition. It also contains a complete list 
of all problems for which solutions are available to students (SSM,WWW, and ILW). 

by Sudipa Kirtley of The Rose Hulman Institute. These PowerPoint slides 
serve as a helpful starter pack for instructors, outlining key concepts and incorporating figures and 
equations from the text. 

by David Marx, Illinois State University. There 
are two sets of questions available: Reading Quiz questions and Interactive Lecture questions. The 
Reading Quiz questions are intended to be relatively straightforward for any student who reads 
the assigned material. The Interactive Lecture questions are intended for use in an interactive lec­
ture setting. 

by Andrew Duffy, Boston University. This is a collection of 50 interactive 
simulations (Java applets) that can be used for classroom demonstrations. 

UI>H'llI>I'ldl'!'Ilti'Ul<:: by David Maiullo, Rutgers University. This is a collection of digital 
videos of 80 standard physics demonstrations. They can be shown in class or accessed from the 
Student Companion site. There is an accompanying Instructor's Guide that includes "clicker" 
questions. 

The Test Bank includes more than 2200 multiple-choice questions. These items are also 
available in the Computerized Test Bank which provides full editing features to help you cus­
tomize tests (available in both IBM and Macintosh versions). The Computerized Test Bank is 
offered in both Diploma and Respondus. 

Instructor's Solutions Manual, in both MSWord and PDF files. 

All text illustrations, suitable for both classroom projection and printing. 



1\1 11 In addition to WileyPLUS, Fundamentals of Physics, ninth 
edition, also supports WebAssignPLUS and LON-CAPA, which are other programs that give 
instructors the ability to deliver and grade homework and quizzes online. WebAssign PLUS also 
offers students an online version of the text. 

The web site http://www.wiley.com/College/halliday was developed 
specifically for Fundamentals of Physics, ninth edition, and is designed to further assist students in the 
study of physics. It includes solutions to selected end-of-chapter problems (which are identified with a 
wwwicon in the text); self-quizzes; simulation exercises; tips on how to make best use of a programma­
ble calculator; and the Interactive LearningWare tutorials that are described below. 

U by Thomas Barrett of Ohio State University. The Student Study Guide 
consists of an overview of the chapter's important concepts, problem solving techniques and detailed 
examples. 

by Sen-Ben Liao, Lawrence Livermore National Laboratory. This 
manual provides students with complete worked-out solutions to 15 percent of the problems found 
at the end of each chapter within the text. The Student Solutions Manual for the ninth edition is writ­
ten using an innovative approach called TEAL which stands for Think, Express, Analyze, and Learn. 
This learning strategy was originally developed at the Massachusetts Institute of Technology and has 
proven to be an effective learning tool for students. These problems with TEAL solutions are indi­
cated with an SSM icon in the text. 

This software guides students through solutions to 200 of the end­
of-chapter problems. These problems are indicated with an ILW icon in the text. The solutions 
process is developed interactively, with appropriate feedback and access to error-specific help for the 
most common mistakes. 

A : Mastering Problem 
Solving by Thomas Barrett of Ohio State University. This brief paperback teaches the student how 
to approach problems more efficiently and effectively. The student will learn how to recognize com­
mon patterns in physics problems, break problems down into manageable steps, and apply appropri­
ate techniques. The book takes the student step by step through the solutions to numerous examples. 
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WHAJIS 
Science and engineering are based on measurements and comparisons. 

Thus, we need rules about how things are measured and compared, and we need 
experiments to establish the units for those measurements and comparisons. One 
purpose of physics (and engineering) is to design and conduct those experiments. 

For example, physicists strive to develop clocks of extreme accuracy so that 
any time or time interval can be precisely determined and compared. You may 
wonder whether such accuracy is actually needed or worth the effort. Here is 
one example of the worth: Without clocks of extreme accuracy, the Global 
Positioning System (GPS) that is now vital to worldwide navigation would be useless. 

Measuring Things 
We discover physics by learning how to measure the quantities involved in 
physics. Among these quantities are length, time, mass, temperature, pressure, 
and electric current. 

We measure each physical quantity in its own units, by comparison with a 
standard. The unit is a unique name we assign to measures of that quantity-for 
example, meter (m) for the quantity length. The standard corresponds to exactly 
1.0 unit of the quantity. As you will see, the standard for length, which corre­
sponds to exactly 1.0 m, is the distance traveled by light in a vacuum during a 
certain fraction of a second. We can define a unit and its standard in any way we 
care to. However, the important thing is to do so in such a way that scientists 
around the world will agree that our definitions are both sensible and practical. 

Once we have set up a standard-say, for length-we must work out proce­
dures by which any length whatever, be it the radius of a hydrogen atom, the 
wheelbase of a skateboard, or the distance to a star, can be expressed in terms of 
the standard. Rulers, which approximate our length standard, give us one such 
procedure for measuring length. However, many of our comparisons must be 
indirect. You cannot use a ruler, for example, to measure the radius of an atom 
or the distance to a star. 

There are so many physical quantities that it is a problem to organize them. 
Fortunately, they are not all independent; for example, speed is the ratio of a 
length to a time. Thus, what we do is pick out-by international agreement­
a small number of physical quantities, such as length and time, and assign standards 
to them alone. We then define all other physical quantities in terms of these base 
quantities and their standards (called base standards). Speed, for example, is de­
fined in terms of the base quantities length and time and their base standards. 

Base standards must be both accessible and invariable. If we define the 
length standard as the distance between one's nose and the index finger on an 
outstretched arm, we certainly have an accessible standard-but it will, of course, 
vary from person to person. The demand for precision in science and engineering 
pushes us to aim first for invariability. We then exert great effort to make dupli­
cates of the base standards that are accessible to those who need them. 
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Units for Three 51 Base Quantities 

Quantity 

Length 

Time 

Mass 

Unit Name 

meter 

second 

kilogram 

Unit Symbol 

m 

s 

kg 

The International System of Units 
In 1971, the 14th General Conference on Weights and Measures picked seven 
quantities as base quantities, thereby forming the basis of the International 
System of Units, abbreviated SI from its French name and popularly known as 
the metric system. Table 1-1 shows the units for the three base quantities­
length, mass, and time-that we use in the early chapters of this book. These 
units were defined to be on a "human scale." 

Many SI derived units are defined in terms of these base units. For example, 
the SI unit for power, called the watt (W), is defined in terms of the base units 
for mass, length, and time. Thus, as you will see in Chapter 7, 

1 watt = 1 W = 1 kg·m2/s3, (1-1) 

where the last collection of unit symbols is read as kilogram-meter squared per 
second cubed. 

To express the very large and very small quantities we often run into in 
physics, we use scientific notation, which employs powers of 10. In this notation, 

and 

3560000000 m = 3.56 X 109 m 

0.000000492 s = 4.92 X 10-7 s. 

(1-2) 

(1-3) 

Scientific notation on computers sometimes takes on an even briefer look, as in 
3.56 E9 and 4.92 E-7, where E stands for "exponent of ten." It is briefer still on 
some calculators, where E is replaced with an empty space. 

As a further convenience when dealing with very large or very small mea­
surements, we use the prefixes listed in Table 1-2. As you can see, each prefix 
represents a certain power of 10, to be used as a multiplication factor. Attaching 
a prefix to an SI unit has the effect of multiplying by the associated factor. Thus, 
we can express a particular electric power as 

1.27 X 109 watts = 1.27 gigawatts = 1.27 GW (1-4) 

or a particular time interval as 

2.35 X 10-9 s = 2.35 nanoseconds = 2.35 ns. (1-5) 

Some prefixes, as used in milliliter, centimeter, kilogram, and megabyte, are 
probably familiar to you. 

Prefixes for 51 Units 

Factor Prefixa Symbol Factor Prefixa Symbol 

1024 yotta- Y 10-1 deci- d 
1021 zetta- Z 10-2 ceoti- c 
1018 exa- E 10-3 milli- m 
1015 peta- P 10-6 micro- p, 

1012 tera- T 10-9 nano- n 

109 giga- G 10-12 pico- P 
106 mega- M 10-15 femto- f 

103 kilo- k 10-18 atto- a 

102 hecto- h 10-21 zepto- z 

101 deka- da 10-24 yocto- y 

"The most frequently used prefixes are shown in bold type. 



Changing Units 
We often need to change the units in which a physical quantity is expressed. 
We do so by a method called chain-link conversion. In this method, we multi­
ply the original measurement by a conversion factor (a ratio of units that is 
equal to unity). For example, because 1 min and 60 s are identical time inter­
vals, we have 

1 min =1 
60 s 

nd ~=1 a 1 min . 

Thus, the ratios (1 min)/(60 s) and (60 s)/(1 min) can be used as conversion 
factors. This is not the same as writing to = 1 or 60 = 1; each number and its unit 
must be treated together. 

Because multiplying any quantity by unity leaves the quantity unchanged, we 
can introduce conversion factors wherever we find them useful. In chain-link 
conversion, we use the factors to cancel unwanted units. For example, to convert 
2 min to seconds, we have 

2 min = (2 min)(I) = (2 ~i1r)( 160 ~ ) = 120 s. 
m.11 

(1-6) 

If you introduce a conversion factor in such a way that unwanted units do not 
cancel, invert the factor and try again. In conversions, the units obey the same 
algebraic rules as variables and numbers. 

Appendix D gives conversion factors between SI and other systems of units, 
including non-SI units still used in the United States. However, the conversion 
factors are written in the style of "1 min = 60 s" rather than as a ratio. So, you 
need to decide on the numerator and denominator in any needed ratio. 

length 
In 1792, the newborn Republic of France established a new system of weights 
and measures. Its cornerstone was the meter, defined to be one ten-millionth of 
the distance from the north pole to the equator. Later, for practical reasons, this 
Earth standard was abandoned and the meter came to be defined as the dis­
tance between two fine lines engraved near the ends of a platinum-iridium bar, 
the standard meter bar, which was kept at the International Bureau of Weights 
and Measures near Paris. Accurate copies of the bar were sent to standardizing 
laboratories throughout the world. These secondary standards were used to 
produce other, still more accessible standards, so that ultimately every measur­
ing device derived its authority from the standard meter bar through a compli­
cated chain of comparisons. 

Eventually, a standard more precise than the distance between two fine 
scratches on a metal bar was required. In 1960, a new standard for the meter, 
based on the wavelength of light, was adopted. Specifically, the standard for the 
meter was redefined to be 1 650 763.73 wavelengths of a particular orange-red 
light emitted by atoms of krypton-86 (a particular isotope, or type, of krypton) in 
a gas discharge tube that can be set up anywhere in the world. This awkward 
number of wavelengths was chosen so that the new standard would be close to 
the old meter-bar standard. 

By 1983, however, the demand for higher precision had reached such a 
point that even the krypton-86 standard could not meet it, and in that year a 
bold step was taken. The meter was redefined as the distance traveled by light 

LENGTH 3 
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in a specified time interval. In the words of the 17th General Conference on 
Weights and Measures: 

The meter is the length of the path traveled by light in a vacuum during a time interval 
of 11299 792 458 of a second. 

This time interval was chosen so that the speed of light c is exactly 

c = 299 792 458 mls. 

Measurements of the speed of light had become extremely precise, so it made sense 
to adopt the speed of light as a defined quantity and to use it to redefine the meter. 

Table 1-3 shows a wide range of lengths, from that of the universe (top line) 
to those of some very small objects. 

Some Approximate Lengths 

Measurement 

Distance to the first galaxies formed 

Distance to the Andromeda galaxy 

Distance to the nearby star Proxima Centauri 

Distance to Pluto 

Radius of Earth 

Height of Mt. Everest 

Thickness of this page 

Length of a typical virus 

Radius of a hydrogen atom 

Radius of a proton 

Estimating order of magnitude, ball of string 

Length in Meters 

2 X 1026 

2 X 1022 

4 X 1016 

6 X 1012 

6 X 106 

9 X 103 

1 X 10-4 

1 X 10-8 

5 X 10-11 

1 X 10-15 

The world's largest ball of string is about 2 m in radius. To 
the nearest order of magnitude, what is the total length L of 
the string in the ball? 

Then, with a cross-sectional area of d2 and a length L, the 
string occupies a total volume of 

V = (cross-sectional area)(1ength) = d2L. 

We could, of course, take the ball apart and measure the total 
length L, but that would take great effort and make the ball's 
builder most unhappy. Instead, because we want only the 
nearest order of magnitude, we can estimate any quantities re­
quired in the calculation. 

Calculations: Let us assume the ball is spherical with ra­
dius R = 2 m. The string in the ball is not closely packed 
(there are uncountable gaps between adjacent sections of 
string). To allow for these gaps, let us somewhat overesti­
mate the cross-sectional area of the string by assuming the 
cross section is square, with an edge length d = 4 mm. 

This is approximately equal to the volume of the ball, given 
by ~1TR3, which is about 4R3 because 1T is about 3. Thus, we 
have 

d2L = 4R3
, 

or 
4R3 4(2 m)3 

L = d2 = (4 X 1O-3m)2 

= 2 X 106 m = 106 m = 103 km. 
(Answer) 

(Note that you do not need a calculator for such a simplified 
calculation.) To the nearest order of magnitude, the ball 
contains about 1000 km of string! 

Additional examples, video, and practice available at WileyPLUS 



Time 
Time has two aspects. For civil and some scientific purposes, we want to know 
the time of day so that we can order events in sequence. In much scientific work, 
we want to know how long an event lasts. Thus, any time standard must be able 
to answer two questions: "When did it happen?" and "What is its duration?" 
Table 1-4 shows some time intervals. 

Some Approximate Time Intervals 

Measurement 

Lifetime of the proton (predicted) 

Age of the universe 

Age of the pyramid of Cheops 

Human life expectancy 

Length of a day 

Time between human heartbeats 

Lifetime of the muon 

Shortest lab light pulse 

Lifetime of the most unstable particle 

The Planck timea 

Time Interval in Seconds 

3 X 1040 

5 X 1017 

1 X 1011 

2 X 109 

9 X 104 

8 X 10-1 

2 X 10-6 

1 X 10-16 

1 X 10-23 

1 X 10-43 

"This is the earliest time after the big bang at which the laws of physics as we 
know them can be applied. 

Any phenomenon that repeats itself is a possible time standard. Earth's 
rotation, which determines the length of the day, has been used in this way for 
centuries; Fig. 1-1 shows one novel example of a watch based on that rotation. 
A quartz clock, in which a quartz ring is made to vibrate continuously, can be 
calibrated against Earth's rotation via astronomical observations and used to 
measure time intervals in the laboratory. However, the calibration cannot be 
carried out with the accuracy called for by modern scientific and engineering 
technology. 

To meet the need for a better time standard, atomic clocks have been devel­
oped. An atomic clock at the National Institute of Standards and Technology 

Fig. 1 -1 When the metric system was proposed in 
1792, the hour was redefined to provide a lO-hour 
day. The idea did not catch on. The maker of this 10-
hour watch wisely provided a small dial that kept 
conventional 12-hour time. Do the two dials indicate 
the same time? (Steven Pitkin) 

TIME 5 
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Fig. 1 -3 The international 1 kg standard 
of mass, a platinum - iridium cylinder 3.9 cm 
in height and in diameter. (Courtesy Bureau 
International des Po ids et Mesures, France) 

+4 

Fig. 1 -2 Variations in the length of the day over a 4-year period. Note that the entire 
vertical scale amounts to only 3 ms (= 0.003 s). 

(NIST) in Boulder, Colorado, is the standard for Coordinated Universal Time 
(UTe) in the United States. Its time signals are available by shortwave radio 
(stations WWV and WWVH) and by telephone (303-499-7111). Time signals 
(and related information) are also available from the United States Naval 
Observatory at website http:j jtycho.usllo,navy,miljtimc"html. (To set a clock 
extremely accurately at your particular location, you would have to account for 
the travel time required for these signals to reach you.) 

Figure 1-2 shows variations in the length of one day on Earth over a 4-year 
period, as determined by comparison with a cesium (atomic) clock. Because the 
variation displayed by Fig. 1-2 is seasonal and repetitious, we suspect the rota­
ting Earth when there is a difference between Earth and atom as timekeepers. 
The variation is due to tidal effects caused by the Moon and to large-scale winds. 

The 13th General Conference on Weights and Measures in 1967 adopted 
a standard second based on the cesium clock: 

One second is the time taken by 9192 631 770 oscillations of the light (of a speci­
fied wavelength) emitted by a cesium-133 atom. 

Atomic clocks are so consistent that, in principle, two cesium clocks would have to 
run for 6000 years before their readings would differ by more than 1 s. Even such 
accuracy pales in comparison with that of clocks currently being developed; their 
precision may be 1 part in 1018-that is, 1 sin 1 X 1018 s (which is about 3 X 1010 y). 

1 Mass 

The SI standard of mass is a platinum-iridium cylinder (Fig. 1-3) kept at the 
International Bureau of Weights and Measures near Paris and assigned, by 
international agreement, a mass of 1 kilogram. Accurate copies have been sent 
to standardizing laboratories in other countries, and the masses of other bodies 
can be determined by balancing them against a copy. Table 1-5 shows some 
masses expressed in kilograms, ranging over about 83 orders of magnitude. 

The U.S. copy of the standard kilogram is housed in a vault at NIST. It is 
removed, no more than once a year, for the purpose of checking duplicate 



copies that are used elsewhere. Since 1889, it has been taken to France twice for 
recomparison with the primary standard. 

The masses of atoms can be compared with one another more precisely than 
they can be compared with the standard kilogram. For this reason, we have 
a second mass standard. It is the carbon-12 atom, which, by international agree­
ment, has been assigned a mass of 12 atomic mass units (u). The relation 
between the two units is 

1 u = 1.660538 86 X 10-27 kg, (1-7) 

with an uncertainty of ±10 in the last two decimal places. Scientists can, with 
reasonable precision, experimentally determine the masses of other atoms 
relative to the mass of carbon-12. What we presently lack is a reliable means 
of extending that precision to more common units of mass, such as a kilo­
gram. 

As we shall discuss further in Chapter 14, density P (lowercase Greek letter rho) 
is the mass per unit volume: 

m 
P=y· (1-8) 

Densities are typically listed in kilograms per cubic meter or grams per cubic 
centimeter. The density of water (1.00 gram per cubic centimeter) is often used as 
a comparison. Fresh snow has about 10% of that density; platinum has a density 
that is about 21 times that of water. 

Density and liquefaction 

MASS 7 

Some Approximate Masses 

Mass in 
Object Kilograms 

Known universe 1 X 1053 

Our galaxy 2 X 1041 

Sun 2 X 1030 

Moon 7 X 1022 

Asteroid Eros 5 X 1015 

Small mountain 1 X 1012 

Ocean liner 7 X 107 

Elephant 5 X 103 

Grape 3 X 10-3 

Speck of dust 7 X 10-10 

Penicillin molecule 5 X 10-17 

Uranium atom 4 X 10-25 

Proton 2 X 10-27 

Electron 9 X 10-31 

A heavy object can sink into the ground during an earth­
quake if the shaking causes the ground to undergo liquefac­
tion, in which the soil grains experience little friction as they 
slide over one another. The ground is then effectively quick­
sand. The possibility of liquefaction in sandy ground can be 
predicted in terms of the void ratio e for a sample of the 
ground: 

The density of the sand Psand in a sample is the mass per unit 
volume-that is, the ratio of the total mass msand of the sand 
grains to the total volume Vtotal of the sample: 

e = VVOidS. 

V grains 
(1-9) 

Here, Vgrains is the total volume of the sand grains in the 
sample and Vvoids is the total volume between the grains 
(in the voids). If e exceeds a critical value of 0.80, 
liquefaction can occur during an earthquake. What is 
the corresponding sand density Psand? Solid silicon di­
oxide (the primary component of sand) has a density of 
PSiO, = 2.600 X 103 kg/m3. 

nlsand 
Psand =--y---. 

total 

Calculations: The total volume Vtotal of a sample is 

Vlolal = Vgrains + Vvoids. 

(1-10) 

Substituting for Vvoids from Eq. 1-9 and solving for Vgrains 

lead to 

V Vtolal 
grains =~. (1-11) 

(continues on the next page) 
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From Eq. 1-8, the total mass nlsand of the sand grains is the 
product of the density of silicon dioxide and the total vol­
ume of the sand grains: 

nlsand = PSiO,Vgrains' (1-12) 

Substituting this expression into Eq.1-10 and then substitut­
ing for Vgrains from Eq. 1-11 lead to 

PSiO, Vtotal PSiO, 
Psand=-V; -1+ =-1+ . 

total e e 
(1-13) 

Substituting PSiO, = 2.600 X 103 kg/m3 and the critical value 
of e = 0.80, we find that liquefaction occurs when the sand 
density is less than 

2.600 x 10
3 

kg/m3 = 1 4 103 k / 3 
Psand = 1.80 . X g m . 

(Answer) 

A building can sink several meters in such liquefaction. 

Additional examples, video, and practice available at WileyPLUS 

Measurement in Physics Physics is based on measurement 
of physical quantities. Certain physical quantities have been cho­
sen as base quantities (such as length, time, and mass); each has 
been defined in terms of a standard and given a unit of measure 
(such as meter, second, and kilogram). Other physical quantities 
are defined in terms of the base quantities and their standards 
and units. 

SI Units The unit system emphasized in this book is the 
International System of Units (SI). The three physical quantities 
displayed in Table 1-1 are used in the early chapters. Standards, 
which must be both accessible and invariable, have been estab­
lished for these base quantities by international agreement. These 
standards are used in all physical measurement, for both the base 
quantities and the quantities derived from them. Scientific nota­
tion and the prefixes of Table 1-2 are used to simplify measure­
ment notation. 

Changing Units Conversion of units may be performed by us­
ing chain-link conversions in which the original data are multiplied 

successively by conversion factors written as unity and the units 
are manipulated like algebraic quantities until only the desired 
units remain. 

Length The meter is defined as the distance traveled by light 
during a precisely specified time interval. 

Time The second is defined in terms of the oscillations of light 
emitted by an atomic (cesium-133) source. Accurate time signals 
are sent worldwide by radio signals keyed to atomic clocks in stan­
dardizing laboratories. 

Mass The kilogram is defined in terms of a platinum­
iridium standard mass kept near Paris. For measurements on an 
atomic scale, the atomic mass unit, defined in terms of the atom 
carbon-12, is usually used. 

Density The density P of a material is the mass per unit volume: 

m 
P=V' (1-8) 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

ILW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Length 
SSM Earth is approximately a sphere of radius 6.37 X 106 m. 

What are (a) its circumference in kilometers, (b) its surface area in 
square kilometers, and (c) its volume in cubic kilometers? 

A gry is an old English measure for length, defined as 1/10 of a 
line, where line is another old English measure for length, defined 
as 1/12 inch. A common measure for length in the publishing busi­
ness is a point, defined as 1172 inch. What is an area of 0.50 gry2 in 
points squared (points2)? 

The micrometer (1 /-Lm) is often called the micron. (a) How 
many microns make up 1.0 km? (b) What fraction of a centimeter 
equals 1.0 /-Lm? (c) How many microns are in 1.0 yd? 

Spacing in this book was generally done in units of points and 
picas: 12 points = 1 pica, and 6 picas = 1 inch. If a figure was mis­
placed in the page proofs by 0.80 cm, what was the misplacement 
in (a) picas and (b) points? 

WWW Horses are to race over a certain English meadow 
for a distance of 4.0 furlongs. What is the race distance in (a) rods 



and (b) chains? (1 furlong = 201.168 m, 1 rod = 5.0292 m, 
and 1 chain = 20.117 m.) 

You can easily convert common units and measures electron­
ically, but you still should be able to use a conversion table, such as 
those in Appendix D. Table 1-6 is part of a conversion table for a 
system of volume measures once common in Spain; a volume of 1 
fanega is equivalent to 55.501 dm3 (cubic decimeters). To complete 
the table, what numbers (to three significant figures) should be en­
tered in (a) the cahiz column, (b) the fanega column, (c) the cuar­
tilla column, and (d) the almude column, starting with the top 
blank? Express 7.00 almudes in (e) medios, (f) cahizes, and (g) cu­
bic centimeters (cm3). 

Problem 6 

cahiz fanega cuartilla almude medio 

1 cahiz = 1 12 48 144 288 
1 fanega = 1 4 12 24 
1 cuartilla = 1 3 6 
1 almude = 1 2 

1 medio = 1 

IlW Hydraulic engineers in the United States often use, as a 
unit of volume of water, the acre-foot, defined as the volume of wa­
ter that will cover 1 acre of land to a depth of 1 ft. A severe thun­
derstorm dumped 2.0 in. of rain in 30 min on a town of area 26 
km2• What volume of water, in acre-feet, fell on the town? 

Harvard Bridge, which connects MIT with its fraternities 
across the Charles River, has a length of 364.4 Smoots plus one ear. 
The unit of one Smoot is based on the length of Oliver Reed 
Smoot, Jr., class of 1962, who was carried or dragged length by 
length across the bridge so that other pledge members of the 
Lambda Chi Alpha fraternity could mark off (with paint) I-Smoot 
lengths along the bridge. The marks have been repainted biannu­
ally by fraternity pledges since the initial measurement, usually 
during times of traffic congestion so that the police cannot easily 
interfere. (Presumably, the police were originally upset because the 
Smoot is not an SI base unit, but these days they seem to have ac­
cepted the unit.) Figure 1-4 shows three parallel paths, measured in 
Smoots (S), Willies (W), and Zeldas (Z). What is the length of 50.0 
Smoots in (a) Willies and (b) Zeldas? 

Fig. 1 -4 Problem 8. 

Antarctica is roughly semicir­
cular, with a radius of 2000 km 
(Fig. 1-5). The average thickness of 
its ice cover is 3000 m. How many 
cubic centimeters of ice does 
Antarctica contain? (Ignore the cur­
vature of Earth.) 

~ 
3000m 

T 
Fig. 1-5 Problem 9. 

PROBLEMS 9 

Time 
-1 Until 1883, every city and town in the United States kept its 
own local time. Today, travelers reset their watches only when the 
time change equals 1.0 h. How far, on the average, must you travel 
in degrees of longitude between the time-zone boundaries at 
which your watch must be reset by 1.0 h? (Hint: Earth rotates 3600 

in about 24 h.) 

For about 10 years after the French Revolution, the French 
government attempted to base measures of time on multiples of 
ten: One week consisted of 10 days, one day consisted of 10 hours, 
one hour consisted of 100 minutes, and one minute consisted of 100 
seconds. What are the ratios of (a) the French decimal week to the 
standard week and (b) the French decimal second to the standard 
second? 

The fastest growing plant on record is a Hesperoyucca whip­
plei that grew 3.7 m in 14 days. What was its growth rate in micro­
meters per second? 

Three digital clocks A, B, and C run at different rates and 
do not have simultaneous readings of zero. Figure 1-6 shows simul­
taneous readings on pairs of the clocks for four occasions. (At the 
earliest occasion, for example, Breads 25.0 sand C reads 92.0 s.) If 
two events are 600 s apart on clock A, how far apart are they on 
(a) clock B and (b) clock C? (c) When clock A reads 400 s, what 
does clock B read? (d) When clock C reads 15.0 s, what does clock 
B read? (Assume negative readings for prezero times.) 

--~··----~--~----""---B (s) 

Fig. 1 -6 Problem 13. 

A lecture period (50 min) is close to 1 microcentury. (a) How 
long is a micro century in minutes? (b) Using 

d'f" ( actual - approximation) 1 0 percentage 1 terence = I 0 , 
actua 

find the percentage difference from the approximation. 

A fortnight is a charming English measure of time equal to 
2.0 weeks (the word is a contraction of "fourteen nights"). That is a 
nice amount of time in pleasant company but perhaps a painful 
string of microseconds in unpleasant company. How many mi­
croseconds are in a fortnight? 

Time standards are now based on atomic clocks. A promising 
second standard is based on pulsars, which are rotating neutron 
stars (highly compact stars consisting only of neutrons). Some ro­
tate at a rate that is highly stable, sending out a radio beacon that 
sweeps briefly across Earth once with each rotation, like a light­
house beacon. Pulsar PSR 1937+21 is an example; it rotates once 
every 1.557 806 448 872 75 :I:: 3 ms, where the trailing :1::3 indicates 
the uncertainty in the last decimal place (it does not mean :1::3 ms). 
(a) How many rotations does PSR 1937+21 make in 7.00 days? 
(b) How much time does the pulsar take to rotate exactly one mil­
lion times and (c) what is the associated uncertainty? 

Five clocks are being tested in a laboratory. Exactly at 
noon, as determined by the WWV time signal, on successive days 
of a week the clocks read as in the following table. Rank the five 
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clocks according to their relative value as good timekeepers, best 
to worst. Justify your choice. 

Clock Sun. Mon. Thes. Wed. Thurs. Fri. Sat. 

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14 

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03 

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33 

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17 

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12 

Because Earth's rotation is gradually slowing, the length of 
each day increases: The day at the end of 1.0 century is 1.0 ms 
longer than the day at the start of the century. In 20 centuries, what 
is the total of the daily increases in time? 

Suppose that, while lying on a beach near the equator 
watching the Sun set over a calm ocean, you start a stopwatch just 
as the top of the Sun disappears. You then stand, elevating your 
eyes by a height H = 1.70 m, and stop the watch when the top of 
the Sun again disappears. If the elapsed time is t = 11.1 s, what is 
the radius r of Earth? 

Mass 
The record for the largest glass bottle was set in 1992 by a 

team in Millville, New Jersey-they blew a bottle with a volume of 
193 U.S. fluid gallons. (a) How much short of 1.0 million cubic cen­
timeters is that? (b) If the bottle were filled with water at the 
leisurely rate of 1.8 g/min, how long would the filling take? Water 
has a density of 1000 kg/m3. 

Earth has a mass of 5.98 X 1024 kg. The average mass of the 
atoms that make up Earth is 40 u. How many atoms are there in 
Earth? 

Gold, which has a density of 19.32 g/cm3, is the most ductile 
metal and can be pressed into a thin leaf or drawn out into a long 
fiber. (a) If a sample of gold, with a mass of 27.63 g, is pressed into a 
leaf of 1.000 fLm thickness, what is the area of the leaf? (b) If, 
instead, the gold is drawn out into a cylindrical fiber of radius 2.500 
fLm, what is the length of the fiber? 

SSM (a) Assuming that water has a density of exactly 1 g/cm3, 
find the mass of one cubic meter of water in kilograms. (b) Suppose 
that it takes 10.0 h to drain a container of 5700 m3 of water. What is 
the "mass flow rate," in kilograms per second, of water from the 
container? 

Grains of fine California beach sand are approximately 
spheres with an average radius of 50 fLm and are made of silicon 
dioxide, which has a density of 2600 kg/m3. What mass of sand grains 
would have a total surface area (the total area of all the individual 
spheres) equal to the surface area of a cube 1.00 m on an edge? 

During heavy rain, a section of a mountainside mea­
suring 2.5 km horizontally, 0.80 km up along the slope, and 2.0 m 
deep slips into a valley in a mud slide. Assume that the mud ends 
up uniformly distributed over a surface area of the valley measur­
ing 0040 km X 0040 km and that mud has a density of 1900 kg/m3. 
What is the mass of the mud sitting above a 4.0 m2 area of the val­
ley floor? 

One cubic centimeter of a typical cumulus cloud contains 50 
to 500 water drops, which have a typical radius of 10 fLm. For that 

range, give the lower value and the higher value, respectively, for 
the following. (a) How many cubic meters of water are in a cylin­
drical cumulus cloud of height 3.0 km and radius 1.0 km? (b) How 
many l-liter pop bottles would that water fill? (c) Water has a den­
sity of 1000 kg/m3. How much mass does the water in the cloud 
have? 

Iron has a density of 7.87 g/cm3, and the mass of an iron 
atom is 9.27 X 10-26 kg. If the atoms are spherical and tightly 
packed, (a) what is the volume of an iron atom and (b) what is the 
distance between the centers of adjacent atoms? 

A mole of atoms is 6.02 X 1023 atoms. To the nearest order 
of magnitude, how many moles of atoms are in a large domestic 
cat? The masses of a hydrogen atom, an oxygen atom, and a carbon 
atom are 1.0 u, 16 u, and 12 u, respectively. (Hint: Cats are some­
times known to kill a mole.) 

On a spending spree in Malaysia, you buy an ox with 
a weight of 28.9 piculs in the local unit of weights: 1 picul = 

100 gins, 1 gin = 16 tahils, 1 tahil = 10 chees, and 1 chee = 

10 hoons. The weight of 1 hoon corresponds to a mass of 0.3779 g. 
When you arrange to ship the ox home to your astonished family, 
how much mass in kilograms must you declare on the shipping 
manifest? (Hint: Set up multiple chain-link conversions.) 

Water is poured into a container that has a small leak. 
The mass 111 of the water is given as a function of time t by 
m = 5.00fl·8 - 3.00t + 20.00, with t 2: 0, 111 in grams, and t in sec­
onds. (a) At what time is the water mass greatest, and (b) what is 
that greatest mass? In kilograms per minute, what is the rate of 
mass change at (c) t = 2.00 sand (d) t = 5.00 s? 

A vertical container with base area measuring 14.0 cm by 
17.0 cm is being filled with identical pieces of candy, each with a 
volume of 50.0 mm3 and a mass of 0.0200 g. Assume that the vol­
ume of the empty spaces between the candies is negligible. If the 
height of the candies in the container increases at the rate of 0.250 
cm/s, at what rate (kilograms per minute) does the mass of the can­
dies in the container increase? 

Additional Problems 
In the United States, a doll house has the scale of 1: 12 of a 

real house (that is, each length of the doll house is fz that of the real 
house) and a miniature house (a doll house to fit within a doll 
house) has the scale of 1: 144 of a real house. Suppose a real house 
(Fig. 1-7) has a front length of 20 m, a depth of 12 m, a height of 6.0 
m, and a standard sloped roof (vertical triangular faces on the 
ends) of height 3.0 m. In cubic meters, what are the volumes of the 
corresponding (a) doll house and (b) miniature house? 

T 
3.0m 

t 
6.0m 

1 
1~12m---1 

Fig. 1-7 Problem 32. 



SSM A ton is a measure of volume frequently used in ship­
ping, but that use requires some care because there are at 
least three types of tons: A displacement ton is equal to 7 barrels 
bulk, a freight tOI1 is equal to 8 barrels bulk, and a register ton is 
equal to 20 barrels bulle A barrel bulk is another measure of vol­
ume: 1 barrel bulk = 0.1415 m3. Suppose you spot a shipping order 
for "73 tons" of M&M candies, and you are certain that the client 
who sent the order intended "ton" to refer to volume (instead of 
weight or mass, as discussed in Chapter 5). If the client actually 
meant displacement tons, how many extra U.S. bushels of the can­
dies will you erroneously ship if you interpret the order as (a) 73 
freight tons and (b) 73 register tons? (1 m3 = 28.378 U.S. bushels.) 

Two types of barrel units were in use in the 1920s in the 
United States. The apple barrel had a legally set volume of 7056 cu­
bic inches; the cranberry barrel, 5826 cubic inches. If a merchant 
sells 20 cranberry barrels of goods to a customer who thinks he is 
receiving apple barrels, what is the discrepancy in the shipment 
volume in liters? 

An old English children's rhyme states, "Little Miss Muffet 
sat on a tuffet, eating her curds and whey, when along came a spi­
der who sat down beside her. ... "The spider sat down not because 
of the curds and whey but because Miss Muffet had a stash of 11 
tuffets of dried flies. The volume measure of a tuffet is given by 
1 tuffet = 2 pecks = 0.50 Imperial bushel, where 1 Imperial bush­
el = 36.3687 liters (L). What was Miss Muffet's stash in (a) pecks, 
(b) Imperial bushels, and (c) liters? 

Table 1-7 shows some old measures of liquid volume. To com­
plete the table, what numbers (to three significant figures) should 
be entered in (a) the wey column, (b) the chaldron column, (c) the 
bag column, (d) the pottle column, and (e) the gill column, starting 
with the top blank? (f) The volume of 1 bag is equal to 0.1091 m3

• If 
an old story has a witch cooking up some vile liquid in a cauldron 
of volume 1.5 chaldrons, what is the volume in cubic meters? 

Problem 36 

wey 

1 wey = 1 

1 chaldron = 

1 bag = 
1 pottle = 

1 gill = 

chaldron bag pottle gill 

10/9 40/3 640 120 240 

A typical sugar cube has an edge length of 1 cm. If you had a 
cubical box that contained a mole of sugar cubes, what would its 
edge length be? (One mole = 6.02 X 1023 units.) 

An old manuscript reveals that a landowner in the time 
of King Arthur held 3.00 acres of plowed land plus a live­
stock area of 25.0 perches by 4.00 perches. What was the total area 
in (a) the old unit of roods and (b) the more modern unit of square 
meters? Here, 1 acre is an area of 40 perches by 4 perches, 1 rood is 
an area of 40 perches by 1 perch, and 1 perch is the length 16.5 ft. 

A tourist purchases a car in England and ships it home to 
the United States. The car sticker advertised that the car's fuel con­
sumption was at the rate of 40 miles per gallon on the open road. 

PROBLEMS 11 

The tourist does not realize that the u.K. gallon differs from the 
U.S. gallon: 

1 u.K. gallon = 4.5460900 liters 
1 U.S. gallon = 3.785 4118liters. 

For a trip of 750 miles (in the United States), how many gallons of 
fuel does (a) the mistaken tourist believe she needs and (b) the car 
actually require? 

Using conversions and data in the chapter, determine 
the number of hydrogen atoms required to obtain 1.0 kg of 
hydrogen. A hydrogen atom has a mass of 1.0 U. 

SSM A cord is a volume of cut wood equal to a stack 8 ft 
long, 4 ft wide, and 4 ft high. How many cords are in 1.0 m3? 

One molecule of water (H20) contains two atoms of hydrogen 
and one atom of oxygen. A hydrogen atom has a mass of 1.0 u and an 
atom of oxygen has a mass of 16 u, approximately. (a) What is the 
mass in kilograms of one molecule of water? (b) How many mole­
cules of water are in the world's oceans, which have an estimated total 
mass of 1.4 X 1021 kg? 

A person on a diet might lose 2.3 kg per week. Express the 
mass loss rate in milligrams per second, as if the dieter could sense 
the second-by-second loss. 

What mass of water fell on the town in Problem 7? Water has 
a density of 1.0 X 103 kg/m3• 

(a) A unit of time sometimes used in microscopic physics is 
the shake. One shake equals 10-8 s. Are there more shakes in a sec­
ond than there are seconds in a year? (b) Humans have existed for 
about 106 years, whereas the universe is about 1010 years old. If the 
age of the universe is defined as 1 "universe day," where a universe 
day consists of "universe seconds" as a normal day consists of nor­
mal seconds, how many universe seconds have humans existed? 

A unit of area often used in measuring land areas is the 
hectare, defined as 104 m2. An open-pit coal mine consumes 
75 hectares of land, down to a depth of 26 m, each year. What vol­
ume of earth, in cubic kilometers, is removed in this time? 

An astronomical unit (AU) is the average distance 
between Earth and the Sun, approximately 1.50 X 108 km. The 
speed of light is about 3.0 X 108 m/s. Express the speed of light in 
astronomical units per minute. 

ll1e common Eastern mole, a mammal, typically has a mass of 
75 g, which corresponds to about 7.5 moles of atoms. (A mole of 
atoms is 6.02 X 1023 atoms.) In atomic mass units (u), what is the 
average mass of the atoms in the common Eastern mole? 

A traditional unit of length in Japan is the ken (1 ken = 

1.97 m). What are the ratios of (a) square kens to square meters 
and (b) cubic kens to cubic meters? What is the volume of a cylin­
drical water tank of height 5.50 kens and radius 3.00 kens in (c) cu­
bic kens and (d) cubic meters? 

You receive orders to sail due east for 24.5 mi to put your sal­
vage ship directly over a sunken pirate ship. However, when your 
divers probe the ocean floor at that location and find no evidence 
of a ship, you radio back to your source of information, only to dis­
cover that the sailing distance was supposed to be 24.5 nautical 
miles, not regular miles. Use the Length table in Appendix D to 
calculate how far horizontally you are from the pirate ship in 
kilometers. 



12 MEASUREMENT 

The cubit is an ancient unit of length based on the distance 
between the elbow and the tip of the middle finger of the mea­
surer. Assume that the distance ranged from 43 to 53 cm, and sup­
pose that ancient drawings indicate that a cylindrical pillar was to 
have a length of 9 cubits and a diameter of 2 cubits. For the stated 
range, what are the lower value and the upper value, respectively, 
for (a) the cylinder's length in meters, (b) the cylinder's length in 
millimeters, and (c) the cylinder's volume in cubic meters? 

As a contrast between the old and the modern and between 
the large and the small, consider the following: In old rural 
England 1 hide (between 100 and 120 acres) was the area of land 
needed to sustain one family with a single plough for one year. (An 
area of 1 acre is equal to 4047 m2.) Also, 1 wapentake was the area 
of land needed by 100 such families. In quantum physics, the cross­
sectional area of a nucleus (defined in terms of the chance of a par­
ticle hitting and being absorbed by it) is measured in units of barns, 
where 1 barn is 1 X 10-28 m2. (In nuclear physics jargon, if a nu­
cleus is "large," then shooting a particle at it is like shooting a bul-

let at a barn door, which can hardly be missed.) What is the ratio of 
25 wapentakes to 11 barns? 

An astronomical unit 
(AU) is equal to the average 
distance from Earth to the 
Sun, about 92.9 X 106 mi. A 
parsec (pc) is the distance at 
which a length of 1 AU would 
subtend an angle of exactly 1 
second of arc (Fig. 1-8). A 

1 pc 

An angle of 
exactly 1 second 

lAU 

Fig. 1 -8 Problem 53. 

light-year (ly) is the distance that light, traveling through a vacuum 
with a speed of 186 000 mils, would cover in 1.0 year. Express the 
Earth-Sun distance in (a) parsecs and (b) light-years. 

The description for a certain brand of house paint claims a 
coverage of 460 ft2/gal. (a) Express this quantity in square meters 
per liter. (b) Express this quantity in an SI unit (see Appendices A 
and D). (c) What is the inverse of the original quantity, and 
(d) what is its physical significance? 



One purpose of physics is to study the motion of objects-how fast they 
move, for example, and how far they move in a given amount of time. NASCAR 
engineers are fanatical about this aspect of physics as they determine the 
performance of their cars before and during a race. Geologists use this physics to 
measure tectonic-plate motion as they attempt to predict earthquakes. Medical 
researchers need this physics to map the blood flow through a patient when diag­
nosing a partially closed artery, and motorists use it to determine how they might 
slow sufficiently when their radar detector sounds a warning. There are countless 
other examples. In this chapter, we study the basic physics of motion where the 
object (race car, tectonic plate, blood cell, or any other object) moves along a sin­
gle axis. Such motion is called one-dimensional motion. 

Motion 
The world, and everything in it, moves. Even seemingly stationary things, such as 
a roadway, move with Earth's rotation, Earth's orbit around the Sun, the Sun's or­
bit around the center of the Milky Way galaxy, and that galaxy's migration relative 
to other galaxies. The classification and comparison of motions (called kinematics) 
is often challenging. What exactly do you measure, and how do you compare? 

Before we attempt an answer, we shall examine some general properties of 
motion that is restricted in three ways. 

1. The motion is along a straight line only. The line may be vertical, horizontal, or 
slanted, but it must be straight. 

2. Forces (pushes and pulls) cause motion but will not be discussed until Chapter 
5. In this chapter we discuss only the motion itself and changes in the motion. 
Does the moving object speed up, slow down, stop, or reverse direction? If the 
motion does change, how is time involved in the change? 

3. The moving object is either a particle (by which we mean a point-like object 
such as an electron) or an object that moves like a particle (such that every 
portion moves in the same direction and at the same rate). A stiff pig slipping 
down a straight playground slide might be considered to be moving like a par­
ticle; however, a tumbling tumbleweed would not. 

Position and Displacement 
To locate an object means to find its position relative to some reference point, of­
ten the origin (or zero point) of an axis such as the x axis in Fig. 2-1. The positive 
direction of the axis is in the direction of increasing numbers (coordinates), which 
is to the right in Fig. 2-1. The opposite is the negative direction. 

CHA.PTE R 

Positive direction 

direction 
-'-_"------'_-L_..l.-_'------'--I X (m) 
-3 -2 -1 0 2 3 

origin~ 
Fig. 2-1 Position is determined on an 
axis that is marked in units of length (here 
meters) and that extends indefinitely in op­
posite directions. The axis name, here x, is 
always on the positive side of the origin. 
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For example, a particle might be located at x = 5 m, which means it is 5 m in 
the positive direction from the origin. If it were at x = - 5 m, it would be just as 
far from the origin but in the opposite direction. On the axis, a coordinate of 
- 5 m is less than a coordinate of -1 m, and both coordinates are less than a 
coordinate of + 5 m. A plus sign for a coordinate need not be shown, but a minus 
sign must always be shown. 

A change from position Xl to position X2 is called a displacement ~x, where 

(2-1) 

(The symbol ~, the Greek uppercase delta, represents a change in a quantity, and 
it means the final value of that quantity minus the initial value.) When numbers 
are inserted for the position values Xl and X2 in Eq. 2-1, a displacement in the 
positive direction (to the right in Fig. 2-1) always comes out positive, and a dis­
placement in the opposite direction (left in the figure) always comes out negative. 
For example, if the particle moves from Xl = 5 m to X2 = 12 m, then the displace­
ment is ~x = (12 m) - (5 m) = +7 m. The positive result indicates that the mo­
tion is in the positive direction. If, instead, the particle moves from Xl = 5 m to 
X2 = 1 m, then ~x = (1 m) - (5 m) = -4 m. The negative result indicates that 
the motion is in the negative direction. 

The actual number of meters covered for a trip is irrelevant; displacement in­
volves only the original and final positions. For example, if the particle moves 
from X = 5 m out to X = 200 m and then back to X = 5 m, the displacement from 
start to finish is ~x = (5 m) (5 m) = O. 

A plus sign for a displacement need not be shown, but a minus sign must 
always be shown. If we ignore the sign (and thus the direction) of a displacement, 
we are left with the magnitude (or absolute value) of the displacement. For exam­
ple, a displacement of ~x = -4 m has a magnitude of 4 m. 

Displacement is an example of a vector quantity, which is a quantity that has 
both a direction and a magnitude. We explore vectors more fully in Chapter 3 (in 
fact, some of you may have already read that chapter), but here all we need is the 
idea that displacement has two features: (1) Its magnitude is the distance (such as 
the number of meters) between the original and final positions. (2) Its direction, 
from an original position to a final position, can be represented by a plus sign or a 
minus sign if the motion is along a single axis. 

What follows is the first of many checkpoints you will see in this book. Each 
consists of one or more questions whose answers require some reasoning or a 
mental calculation, and each gives you a quick check of your understanding 
of a point just discussed. The answers are listed in the back of the book. 

CHECKPOINT 1 

Here are three pairs of initial and final positions, respectively, along an x axis. Which 
pairs give a negative displacement: (a) -3 m, +5 m; (b) -3 m, -7 m; (c) 7 m, -3 m? 

Velocity and Average <LRUL"'HU 

A compact way to describe position is with a graph of position X plotted as a func­
tion of time t-a graph of x(t). (The notation x(t) represents a function X of t, not 
the product x times t.) As a simple example, Fig. 2-2 shows the position function 
x(t) for a stationary armadillo (which we treat as a particle) over a 7 s time inter­
val. The animal's position stays at X = -2 m. 

Figure 2-3 is more interesting, because it involves motion. The armadillo is 
apparently first noticed at t = 0 when it is at the position x = -5 m. It moves 
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Fig. 2-2 The graph of 
x(t) for an armadillo that 
is stationary at x = -2 m. 
The value of x is -2m for 
all times t. 

This is a graph 

of position x ~ 
versus time t 
for a stationar0 l 
object. J ~ 

x(m) 

I--+---::+----+-+---+--I-----i I (s) 

1 __ ,.~l =~ 
Same POSI'tl'O: __ ~~,Z~_'_-_,,_ ~<t-----~t~+-!-~~r-1 I J __ r(l)! 
for any time. 

toward x = 0, passes through that point at t = 3 s, and then moves on to increas­
ingly larger positive values of x. Figure 2-3 also depicts the straight-line motion of 
the armadillo (at three times) and is something like what you would see. The 
graph in Fig. 2-3 is more abstract and quite unlike what you would see, but it is 
richer in information. It also reveals how fast the armadillo moves. 

Actually, several quantities are associated with the phrase "how fast." One of 
them is the average velocity vavg, which is the ratio of the displacement Ax that oc­
curs during a particular time interval At to that interval: 

Ax X2 - Xl 
V =--= 

avg At t2 - tl . 
(2-2) 

The notation means that the position is x J at time tJ and then X2 at time t2• A com­
mon unit for vavg is the meter per second (m/s). You may see other units in the 
problems, but they are always in the form of length/time. 

On a graph of x versus t, vavg is the slope of the straight line that connects two 
particular points on the x(t) curve: one is the point that corresponds to X2 and t2, 

and the other is the point that corresponds to Xl and tl . Like displacement, vavg 

has both magnitude and direction (it is another vector quantity). Its magnitude is 
the magnitude of the line's slope. A positive vavg (and slope) tells us that the line 
slants upward to the right; a negative vavg (and slope) tells us that the line slants 
downward to the right. The average velocity vavg always has the same sign as the 
displacement Ax because At in Eq. 2-2 is always positive. 

x(m) 

This is a graph At x = 2 m when t = 4 s. 
r--+--- Plotted here. of position x _________ t 

versus time t ~l 1 
for a moving 

4 

3-

2 --,-' -'------'-----'---'---'-, ----''-'_ (I:) 
-5 0 2 

object. 

It is at position x = -5 m 
when time t = 0 s. 

o I---+----!----OO---+-----\I (s) 

-1--

-2 
-3 

That data is plotted here. -----' 

""""c' =L' -----','----'-----'--:':-' -'---':'-x (m) -5 0 2 
Os 

At x = 0 m when t = 3 s. 
Plotted here. 

-5 
3s 

Fig. 2-3 The graph of x(t) for a moving armadillo. The path associated with the graph is also 
shown, at three times. 

4s 

(m) 
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Fig. 2-4 Calculation of the 
average velocity between t = 1 s 
and t = 4 s as the slope of the line 
that connects the points on the 
x(t) curve representing those times. 

This is a graph 
of position x 
versus time t. 

To find average velocity, 
first draw a straight line, 
start to end, and then 
find the slope of the 
line. 

x(m) 

4 

3 

2 

Tju--I--
vavg = slope of this line 

o 
-11----1--,--

-2 

Start of interval---k==" 

End of inten'al 

This vertical distance is how Jar 
it moved, start to end: 
~x=2m-(-4m)=6m 

This horizontal distance is how long 
it took, start to end: 
~t=4s-ls=3s 

Figure 2-4 shows how to find vavg in Fig. 2-3 for the time interval t = 1 s to t = 4 s. 
We draw the straight line that connects the point on the position curve at the be­
ginning of the interval and the point on the curve at the end of the interval. Then 
we find the slope I1x//J..t of the straight line. For the given time interval, the aver­
age velocity is 

6m 
vavg = ~ = 2m/s. 

Average speed Savg is a different way of describing "how fast" a particle 
moves. Whereas the average velocity involves the particle's displacement LU, the 
average speed involves the total distance covered (for example, the number of 
meters moved), independent of direction; that is, 

Savg = 
total distance 

I1t 
(2-3) 

Because average speed does not include direction, it lacks any algebraic sign. 
Sometimes Savg is the same (except for the absence of a sign) as vavg• However, the 
two can be quite different. 

Average velocity, beat-up pickup truck 

You drive a beat-up pickup truck along a straight road for 
804 km at 70 kmlh, at which point the truck runs out of gaso­
line and stops. Over the next 30 min, you walk another 2.0 km 
farther along the road to a gasoline station. 

Calculation: From Eq. 2-1, we have 

I1x = X2 - Xl = lOA km - 0 = lOA km. (Answer) 

Thus, your overall displacement is lOA km in the positive 
direction of the X axis. 

(a) What is your overall displacement from the beginning 
of your drive to your arrival at the station? 

Assume, for convenience, that you move in the positive di­
rection of an x axis, from a first position of Xl = 0 to a second 
position of X2 at the station. That second position must be at 
X2 = 804 km + 2.0 km = lOA km. Then your displacement Ax 
along the X axis is the second position minus the first position. 

(b) What is the time interval /J..t from the beginning of your 
drive to your arrival at the station? 

We already know the walking time interval I1twlk (= 0.50 h), 
but we lack the driving time interval I1tdr' However, we 
know that for the drive the displacement I1xdr is 804 km and 
the average velocity Vavg,dr is 70 km/h. Thus, this average 



velocity is the ratio of the displacement for the drive to the 
time interval for the drive. 

Calculations: We first write 

AXdr 
Vavg,dr =~. .u.tdr 

Rearranging and substituting data then give us 

A _ AXdr _ 8.4 km 
.u.tdr - -- - = 0.12 h. 

vavg,dr 70 km/h 

So, At = Atdr + Atwlk 

= 0.12 h + 0.50 h = 0.62 h. (Answer) 

(c) What is your average velocity v avg from the beginning of 
your drive to your arrival at the station? Find it both numer­
ically and graphically. 

From Eq. 2-2 we know that vavg for the entire trip is the ratio 
of the displacement of 10.4 km for the entire trip to the time in­
terval of 0.62 hfo!' the entire trip. 

Calculation: Here we find 

Ax 
vavg = At = 

10.4km 
0.62h 

= 16.8 km/h = 17 kmlh. (Answer) 

To find vavg graphically, first we graph the function x(t) as 
shown in Fig. 2-5, where the beginning and arrival points on 
the graph are the origin and the point labeled as "Station." 
Your average velocity is the slope of the straight line connect­
ing those points; that is, vavg is the ratio of the rise (Ax = 10.4 
km) to the run (At = 0.62 h), which gives us v avg = 16.8 kmlh. 

(d) Suppose that to pump the gasoline, pay for it, and walk 
back to the truck takes you another 45 min. What is your 
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average speed from the beginning of your drive to your 
return to the truck with the gasoline? 

Your average speed is the ratio of the total distance you 
move to the total time interval you take to make that move. 

Calculation: The total distance is 8.4 km + 2.0 km + 2.0 
km = 12.4 km. The total time interval is 0.12 h + 0.50 h + 
0.75 h = 1.37 h. Thus, Eq. 2-3 gives us 

x 

12 

10 

g 8 
\:: 
0 
'l:l .u; 
0 

Po< 

12.4 km = 9 1 k Ih 
Savg = 1.37 h . m. (Answer) 

Driving ends, walking starts. 

Station Slope of this 
Y!!~~~r/t+=t===+- line gives 

average 
velocity. 

'---I--+- How far: 
/-+------J-Cy<'---J----}---_·-+-·--l-';----f-------i Ilx = 10.4 km 

0.2 0.4 
Time (h) 

0.6 

How long: 
M =0.62 h 

Fig. 2-5 The lines marked "Driving" and "Walking" are 
the position -- time plots for the driving and walking stages. 
(The plot for the walking stage assumes a constant rate of 
walking.) The slope of the straight line joining the origin 
and the point labeled "Station" is the average velocity for 
the trip, from the beginning to the station. 

Additional examples, video, and practice available at WileyPLUS 

Instantaneous Velocity and Speed 
You have now seen two ways to describe how fast something moves: average 
velocity and average speed, both of which are measured over a time interval At. 
However, the phrase "how fast" more commonly refers to how fast a particle is 
moving at a given instant-its instantaneous velocity (or simply velocity) v. 

The velocity at any instant is obtained from the average velocity by shrinking 
the time interval At closer and closer to O. As M dwindles, the average velocity ap­
proaches a limiting value, which is the velocity at that instant: 

v = lim Ax = dx. 
At-> 0 At dt 

(2-4) 
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Note that v is the rate at which position x is changing with time at a given instant; 
that is, v is the derivative of x with respect to t. Also note that v at any instant is 
the slope of the position-time curve at the point representing that instant. 
Velocity is another vector quantity and thus has an associated direction. 

Speed is the magnitude of velocity; that is, speed is velocity that has been 
stripped of any indication of direction, either in words or via an algebraic sign. 
(Caution: Speed and average speed can be quite different.) A velocity of +5 mls 
and one of - 5 mls both have an associated speed of 5 m/s. The speedometer in a 
car measures speed, not velocity (it cannot determine the direction). 

CHECKPOINT 2 

The following equations give the position x(t) of a particle in four situations (in each 
equation, x is in meters, t is in seconds, and t> 0); (1) x = 3( - 2; (2) x = -4(2 - 2; 
(3) x = 21t2; and (4) x = -2. (a) In which situation is the velocity v of the particle con­
stant? (b) In which is v in the negative x direction? 

Velocity and slope of x versus t, elevator cab 

Figure 2-6a is an x(t) plot for an elevator cab that is initially 
stationary, then moves upward (which we take to be the pos­
itive direction of x), and then stops. Plot vet). 

move and then later slows to a stop, v varies as indicated in 
the intervals 1 s to 3 sand 8 s to 9 s. Thus, Fig. 2-6b is the 
required plot. (Figure 2-6c is considered in Section 2-6.) 

We can find the velocity at any time from the slope of the 
x(t) curve at that time. 

Calculations: The slope of x(t), and so also the velocity, is 
zero in the intervals from 0 to 1 s and from 9 s on, so then 
the cab is stationary. During the interval be, the slope is con­
stant and nonzero, so then the cab moves with constant veloc­
ity. We calculate the slope of x(t) then as 

~x 24m - 4.0m 
~t = v = 8.0 s _ 3.0 s = +4.0 mls. (2-5) 

The plus sign indicates that the cab is moving in the positive 
x direction. These intervals (where v = 0 and v = 4 m/s) are 
plotted in Fig. 2-6b. In addition, as the cab initially begins to 

Given a vet) graph such as Fig. 2-6b, we could "work 
backward" to produce the shape of the associated x(t) graph 
(Fig. 2-6a). However, we would not know the actual values 
for x at various times, because the vet) graph indicates only 
changes in x. To find such a change in x during any interval, 
we must, in the language of calculus, calculate the area 
"under the curve" on the vet) graph for that interval. For 
example, during the interval 3 s to 8 s in which the cab has a 
velocity of 4.0 mis, the change in x is 

~x = (4.0 mls)(8.0 s - 3.0 s) = +20 m. (2-6) 

(This area is positive because the vet) curve is above the 
t axis.) Figure 2-6a shows that x does indeed increase by 20 
m in that interval. However, Fig. 2-6b does not tell us the 
values of x at the beginning and end of the interval. For that, 
we need additional information, such as the value of x at 
some instant. 

Acceleration 
When a particle's velocity changes, the particle is said to undergo acceleration (or 
to accelerate). For motion along an axis, the average acceleration aavg over a time 
interval Mis 

~v 

~t ' 
(2-7) 

where the particle has velocity VI at time tl and then velocity V2 at time f2• The 
instantaneous acceleration (or simply acceleration) is 

dv 
a = dt' (2-8) 



Fig.2-6 (a) The x(t) curve for an eleva­
tor cab that moves upward along an x axis. 
(b) The v(t) curve for the cab. Note that it is 
the derivative of the x(t) curve (v = dxldt). 
(c) The a(t) curve for the cab. It is the deriv­
ative of the v(t) curve (a = dvldt). The stick 
figures along the bottom suggest how a pas­
senger's body might feel during the 
accelerations. 
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d 

9 

Slopes on the x versus t graph 
are the values on the v versus t graph. 

8 9 

Slopes on the v versus t graph 
are the values on the a versus t graph. 

A A What you would feel. 

Additional examples, video, and practice available at WileyPLUS 

In words, the acceleration of a particle at any instant is the rate at which its velocity 
is changing at that instant. Graphically, the acceleration at any point is the slope of 
the curve of vet) at that point. We can combine Eq. 2-8 with Eq. 2-4 to wlite 

dv d (dX) d2x 
a = dt = dt dt = dt 2 ' 

(2-9) 

In words, the acceleration of a particle at any instant is the second derivative of 
its position x(t) with respect to time. 

A common unit of acceleration is the meter per second per second: m/( s . s) 
or m/s2

• Other units are in the form of length/(time· time) or length/time2. 

Acceleration has both magnitude and direction (it is yet another vector quan­
tity). Its algebraic sign represents its direction on an axis just as for displacement 
and velocity; that is, acceleration with a positive value is in the positive direction 
of an axis, and acceleration with a negative value is in the negative direction. 
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Fig. 2-7 Colonel 1. P. Stapp in a rocket 
sled as it is brought up to high speed (accel­
eration out of the page) and then very 
rapidly braked (acceleration into the page). 
(Courtesy u.s. Air Force) 

Figure 2-6 gives plots of the position, velocity, and acceleration of an elevator 
moving up a shaft. Compare the aCt) curve with the vet) curve-each point on the 
aCt) curve shows the derivative (slope) of the vet) curve at the corresponding time. 
When v is constant (at either 0 or 4 mls), the derivative is zero and so also is the ac­
celeration. When the cab first begins to move, the vet) curve has a positive derivative 
(the slope is positive), which means that aCt) is positive. When the cab slows to a stop, 
the derivative and slope of the vet) curve are negative; that is, aCt) is negative. 

Next compare the slopes of the vet) curve during the two acceleration peri­
ods. The slope associated with the cab's slowing down (commonly called "decel­
eration") is steeper because the cab stops in half the time it took to get up to 
speed. The steeper slope means that the magnitude of the deceleration is larger 
than that of the acceleration, as indicated in Fig. 2-6c. 

The sensations you would feel while riding in the cab of Fig. 2-6 are indicated 
by the sketched figures at the bottom. When the cab first accelerates, you feel as 
though you are pressed downward; when later the cab is braked to a stop, you 
seem to be stretched upward. In between, you feel nothing special. In other 
words, your body reacts to accelerations (it is an accelerometer) but not to 
velocities (it is not a speedometer). When you are in a car traveling at 90 km/h or 
an airplane traveling at 900 km/h, you have no bodily awareness of the motion. 
However, if the car or plane quickly changes velocity, you may become keenly 
aware of the change, perhaps even frightened by it. Part of the thrill of an amuse­
ment park ride is due to the quick changes of velocity that you undergo (you pay 
for the accelerations, not for the speed). A more extreme example is shown in the 
photographs of Fig. 2-7, which were taken while a rocket sled was rapidly acceler­
ated along a track and then rapidly braked to a stop. 

Large accelerations are sometimes expressed in terms of g units, with 

19 = 9.8 m/s2 (g unit). (2-10) 

(As we shall discuss in Section 2-9, g is the magnitude of the acceleration of a 
falling object near Earth's surface.) On a roller coaster, you may experience brief 
accelerations up to 3g, which is (3)(9.8 m/s2), or about 29 m/s2, more than enough 
to justify the cost of the ride. 

In common language, the sign of an acceleration has a nonscientific meaning: 
positive acceleration means that the speed of an object is increasing, and negative 
acceleration means that the speed is decreasing (the object is decelerating). 
In this book, however, the sign of an acceleration indicates a direction, not 
whether an object's speed is increasing or decreasing. For example, if a car with 
an initial velocity v = -25 m/s is braked to a stop in 5.0 s, then aavg = +5.0 m/s2• 

The acceleration is positive, but the car's speed has decreased. The reason is the 
difference in signs: the direction of the acceleration is opposite that of the velocity. 

Here then is the proper way to interpret the signs: 

If the signs of the velocity and acceleration of a particle are the same, the speed of the 
particle increases. If the signs are opposite, the speed decreases. 
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CHECKPOINT 3 

A wombat moves along an x axis. What is the sign of its acceleration if it is moving 
(a) in the positive direction with increasing speed, (b) in the positive direction with de­
creasing speed, (c) in the negative direction with increasing speed, and (d) in the nega­
tive direction with decreasing speed? 

Acceleration and dvldt 

A particle's position on the x axis of Fig. 2-1 is given by 

x = 4 27t + t3
, 

with x in meters and t in seconds. 

(a) Because position x depends on time t, the particle must 
be moving. Find the particle's velocity function vet) and ac­
celeration function aCt). 

(1) To get the velocity function vet), we differentiate the po­
sition function x(t) with respect to time. (2) To get the accel­
eration function a(t), we differentiate the velocity function 
vet) with respect to time. 

Calculations: Differentiating the position function, we find 

v = -27 + 3t2, (Answer) 

with v in meters per second. Differentiating the velocity 
function then gives us 

a = +6t, 

with a in meters per second squared. 

(b) Is there ever a time when v = O? 

Calculation: Setting vet) = 0 yields 

0= -27 + 3t2, 

(Answer) 

which has the solution 

t = ±3 s. (Answer) 

Thus, the velocity is zero both 3 s before and 3 s after the 
clock reads O. 

(c) Describe the particle's motion for t 2:: O. 

Reasoning: We need to examine the expressions for x(t), 
vet), and aCt). 

At t = 0, the particle is at x(O) = +4 m and is moving 
with a velocity of v(O) = -27 m/s-that is, in the negative 
direction of the x axis. Its acceleration is a(O) = 0 because just 
then the particle's velocity is not changing. 

For 0 < t < 3 s, the particle still has a negative velocity, so 
it continues to move in the negative direction. However, its 
acceleration is no longer 0 but is increasing and positive. 
Because the signs of the velocity and the acceleration are 
opposite, the particle must be slowing. 

Indeed, we already know that it stops momentarily at 
t = 3 s. Just then the particle is as far to the left of the origin 
in Fig. 2-1 as it will ever get. Substituting t = 3 s into the 
expression for x(t), we find that the particle's position just then 
is x = -50 m. Its acceleration is still positive. 

For t > 3 s, the particle moves to the right on the axis. 
Its acceleration remains positive and grows progressively 
larger in magnitude. The velocity is now positive, and it too 
grows progressively larger in magnitude. 

Additional examples, video, and practice available at WileyPLUS 



22 MOTION ALONG A STRAIGHT LINE 

Fig. 2-8 (a) The position x(t) of a particle 
moving with constant acceleration. (b) Its 
velocity vet), given at each point by the 
slope of the curve ofx(t). (c) Its (constant) 
acceleration, equal to the (constant) slope 
of the curve of vet). 

Constant Acceleration: A Special 
In many types of motion, the acceleration is either constant or approximately so. 
For example, you might accelerate a car at an approximately constant rate when 
a traffic light turns from red to green. Then graphs of your position, velocity, and 
acceleration would resemble those in Fig. 2-S. (Note that aCt) in Fig. 2-Sc is con­
stant, which requires that vet) in Fig. 2-Sb have a constant slope.) Later when you 
brake the car to a stop, the acceleration (or deceleration in common language) 
might also be approximately constant. 

Such cases are so common that a special set of equations has been derived 
for dealing with them. One approach to the derivation of these equations is given 
in this section. A second approach is given in the next section. Throughout both 
sections and later when you work on the homework problems, keep in mind that 
these equations are valid only for constant acceleration (or situations in which you 
can approximate the acceleration as being constant). 

When the acceleration is constant, the average acceleration and instantaneous ac­
celeration are equal and we can write Eq. 2-7, with some changes in notation, as 

v - Vo 
a = aavg = t - 0 . 

Here Va is the velocity at time t = 0 and v is the velocity at any later time t. We can 
recast this equation as 

v = Vo + at. (2-11) 

As a check, note that this equation reduces to v = Va for t = 0, as it must. As a fur­
ther check, take the derivative of Eq. 2-11. Doing so yields dv/dt = a, which is the 
definition of a. Figure 2-Sb shows a plot of Eq. 2-11, the vet) function; the function 
is linear and thus the plot is a straight line. 

In a similar manner, we can rewrite Eq. 2-2 (with a few changes in notation) as 

o 

v 

1::1 a 

o I 1--
<r: o 

x - Xo 
vavg = t - 0 

(a) 

(b) 

a(t) 

Slope = 0 

(r) 

Slopes of the position 
graph are plotted on 
the velocity graph. 

Slope of the velocity 
graph is plotted on the 
acceleration graph. 
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and then as 
(2-12) 

in which Xo is the position of the particle at t = 0 and vavg is the average velocity 
between t = 0 and a later time t. 

For the linear velocity function in Eq. 2-11, the average velocity over any time 
interval (say, from t = 0 to a later time t) is the average of the velocity at the be­
ginning of the interval (= vo) and the velocity at the end of the interval (= v). For 
the interval from t = 0 to the later time t then, the average velocity is 

vavg = ~(vo + v). (2-13) 

Substituting the right side of Eq. 2-11 for v yields, after a little rearrangement, 

vavg = Vo + ~at. (2-14) 

Finally, substituting Eq. 2-14 into Eq. 2-12 yields 

(2-15) 

As a check, note that putting t = 0 yields x = xo, as it must. As a further check, 
taking the derivative of Eq. 2-15 yields Eq. 2-11, again as it must. Figure 2-8a 
shows a plot of Eq. 2-15; the function is quadratic and thus the plot is curved. 

Equations 2-11 and 2-15 are the basic equations for constant acceleration; they 
can be used to solve any constant acceleration problem in this book. However, we 
can derive other equations that might prove useful in certain specific situations. 
First, note that as many as five quantities can possibly be involved in any problem 
about constant acceleration-namely, x - Xo, v, t, a, and Vo. Usually, one of these 
quantities is not involved in the problem, either as a given or as an unknown. We are 
then presented with three of the remaining quantities and asked to find the fourth. 

Equations 2-11 and 2-15 each contain four of these quantities, but not the 
same four. In Eq. 2-11, the "missing ingredient" is the displacement x - Xo. In Eq. 
2-15, it is the velocity v. These two equations can also be combined in three ways 
to yield three additional equations, each of which involves a different "missing 
variable." First, we can eliminate t to obtain 

v2 = vB + 2a(x - xo)' (2-16) 

This equation is useful if we do not know t and are not required to find it. Second, 
we can eliminate the acceleration a between Eqs. 2-11 and 2-15 to produce an 
equation in which a does not appear: 

x - Xo = ~(vo + v)t. (2-17) 

Finally, we can eliminate Va, obtaining 

x - Xo = vt - ~at2. (2-18) 

Note the subtle difference between this equation and Eq. 2-15. One involves the 
initial velocity Va; the other involves the velocity v at time t. 

Table 2-1 lists the basic constant acceleration equations (Eqs. 2-11 and 2-15) 
as well as the specialized equations that we have derived. To solve a simple con­
stant acceleration problem, you can usually use an equation from this list (if you 
have the list with you). Choose an equation for which the only unknown variable 
is the variable requested in the problem. A simpler plan is to remember only Eqs. 
2-11 and 2-15, and then solve them as simultaneous equations whenever needed. 

CHECKPOINT 4 

The following equations give the position x(t) of a particle in four situations: (1) x = 
3t 4; (2) x = -5t3 + 4t2 + 6; (3) x = 21t2 - 41t; (4) x = 5t2 - 3. To which of these 
situations do the equations of Table 2-1 apply? 

Equations for Motion with Constant 
Acceleration" 

Equation Missing 
Number Equation Quantity 

2-11 v = Vo + at x -Xo 
2-15 x - Xo = vot + ~a!2 v 
2-16 v2 = V5 + 2a(x - xo) 
2-17 x - Xo = ~(vo + v)t a 
2-18 x - Xo = vt - ~at2 Vo 

"Make sure that the acceleration is indeed 
constant before using the equations in this table. 
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Constant acceleration, graph of v versus x 

Figure 2-9 gives a particle's velocity v versus its position as it 
moves along an x axis with constant acceleration. What is its 
velocity at position x = O? 

two such pairs: (1) v = 8 m/s and x = 20 m, and (2) v = 0 and 
x = 70 m. For example, we can write Eq. 2-16 as 

(8 m/s)Z = v5 + 2a(20 m - 0). (2-19) 

However, we know neither Va nor a. 

We can use the constant-acceleration equations; in particu­
lar, we can use Eq. 2-16 (v2 = V5 + 2a(x - xa)), which relates 
velocity and position. 

Second try: Instead of directly involving the requested 
variable, let's use Eq. 2-16 with the two pairs of known data, 
identifying Va = 8 m/s and Xa = 20 m as the first pair and 
v = 0 m/s and x = 70 m as the second pair. Then we can write 

First try: Normally we want to use an equation that includes 
the requested variable. In Eq. 2-16, we can identify Xa as 0 and 
Va as being the requested variable. Then we can identify a sec­
ond pair of values as being v and x. From the graph, we have 

(0 m/s)Z = (8 m/s)2 + 2a(70 m - 20 m), 

which gives us a = -0.64 m/s2• Substituting this value into 
Eq. 2-19 and solving for Va (the velocity associated with the 
position of x = 0), we find 

x(m) 

The velocity is 8 mls when 
the position is 20 m. 

The velocity is 0 when the 
position is 70 m. 

Va = 9.5 m/s. (Answer) 

Fig. 2-9 Velocity versus position. 

Comment: Some problems involve an equation that in­
cludes the requested variable. A more challenging problem 
requires you to first use an equation that does not include 
the requested variable but that gives you a value needed to 
find it. Sometimes that procedure takes physics courage be­
cause it is so indirect. However, if you build your solving 
skills by solving lots of problems, the procedure gradually 
requires less courage and may even become obvious. 
Solving problems of any kind, whether physics or social, re­
quires practice. 

Additional examples, video, and practice available at WileyPLUS 

Another Look at Constant Acceleration* 
The first two equations in Table 2-1 are the basic equations from which the others 
are derived. Those two can be obtained by integration of the acceleration with 
the condition that a is constant. To find Eq. 2-11, we rewrite the definition of ac­
celeration (Eq. 2-8) as 

dv = a dt. 

We next write the indefinite integral (or antiderivative) of both sides: 

J dv = Ja dt. 

Since acceleration a is a constant, it can be taken outside the integration. We obtain 

or V = at + C. (2-20) 

To evaluate the constant of integration C, we let t = 0, at which time V = Va. 
Substituting these values into Eq. 2-20 (which must hold for all values of t, 

*This section is intended for students who have had integral calculus. 



including t = 0) yields 
Vo = (a)(O) + C = C. 

Substituting this into Eq. 2-20 gives us Eq. 2-11. 
To derive Eq. 2-15, we rewrite the definition of velocity (Eq. 2-4) as 

dx = v dt 

and then take the indefinite integral of both sides to obtain 

J dx = J vdt. 

Next, we substitute for v with Eq. 2-11: 

J dx = J(vo + at) dt. 

Since Vo is a constant, as is the acceleration a, this can be rewritten as 

Integration now yields 
J dx = Vo J dt + a J t dt. 

x = v t + ! at2 + C' o 2 , (2-21) 

where C' is another constant of integration. At time t = 0, we have x = Xo. 

Substituting these values in Eq. 2-21 yields Xo = C'. Replacing C' with Xo in Eq. 
2-21 gives us Eq. 2-15. 

Free·Fali Acceleration 
If you tossed an object either up or down and could somehow eliminate the 
effects of air on its flight, you would find that the object accelerates downward at 
a certain constant rate. That rate is called the free-fall acceleration, and its magni­
tude is represented by g. The acceleration is independent of the object's charac­
teristics, such as mass, density, or shape; it is the same for all objects. 

Two examples of free-fall acceleration are shown in Fig. 2-10, which is a series 
of stroboscopic photos of a feather and an apple. As these objects fall, they 
accelerate downward-both at the same rate g. Thus, their speeds increase at the 
same rate, and they fall together. 

The value of g varies slightly with latitude and with elevation. At sea level in 
Earth's midlatitudes the value is 9.8 m/s2 (or 32 ft/s2), which is what you should 
use as an exact number for the problems in this book unless otherwise noted. 

The equations of motion in Table 2-1 for constant acceleration also apply to 
free fall near Earth's surface; that is, they apply to an object in vertical flight, 
either up or down, when the effects of the air can be neglected. However, note 
that for free fall: (1) The directions of motion are now along a vertical y axis 
instead of the x axis, with the positive direction of y upward. (This is important 
for later chapters when combined horizontal and vertical motions are examined.) 
(2) The free-fall acceleration is negative- that is, downward on the y axis, toward 
Earth's center-and so it has the value -g in the equations. 

The free-fall acceleration near Earth's surface is a = -g = -9.8 mls2, and the 
magnitude of the acceleration is g = 9.8 mls2• Do not substitute -9.8 mls2 for g. 

Suppose you toss a tomato directly upward with an initial (positive) velocity Vo 

and then catch it when it returns to the release level. During its free-fall flight (from 
just after its release to just before it is caught), the equations of Table 2-1 apply to its 

FREE·FALl ACCELERATION 25 

Fig. 2-10 A feather and an apple free 
fall in vacuum at the same magnitude of ac­
celeration g. The acceleration increases the 
distance between successive images. In the 
absence of air, the feather and apple fall to­
gether. (Jim SugariCorbis Images) 
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motion. The acceleration is always a = -g = -9.8 m/s2, negative and thus down­
ward. The velocity, however, changes, as indicated by Eqs. 2-11 and 2-16: during the 
ascent, the magnitude of the positive velocity decreases, until it momentarily be­
comes zero. Because the tomato has then stopped, it is at its maximum height. 
During the descent, the magnitude of the (now negative) velocity increases. 

,,"CHECKPOINT 5 

(a) If you toss a ball straight up, what is the sign of the ball's displacement for the as­
cent, from the release point to the highest point? (b) What is it for the descent, from the 
highest point back to the release point? ( c) What is the ball's acceleration at its highest 
point? 

Time for full up-down flight, baseball toss 

In Fig. 2-11, a pitcher tosses a baseball up along a y axis, with 
an initial speed of 12 m/s. 

those four variables. This yields 

v - Vo 0 - 12 m/s 
(a) How long does the ball take to reach its maximum 
height? 

(1) Once the ball leaves the pitcher and before it returns to 
his hand, its acceleration is the free-fall acceleration a = -g. 
Because this is constant, Table 2-1 applies to the motion. (2) 
The velocity v at the maximum height must be O. 

Calculation: Knowing v, a, and the initial velocity 
Vo = 12 mis, and seeking t, we solve Eq. 2-11, which contains 

Fig. 2-1 1 A pitcher tosses a 
baseball straight up into the air. 
The equations of free fall apply 
for rising as well as for falling 
objects, provided any effects 
from the air can be neglected. 

Ball~ y 

v=Oat~ 
highest point I : 

I 
I 
I 
I 
I 
I 
I 
I 
I 

• During ascent, ~ 
a=-g, I 
speed decreases, 
and velocity 
becomes less 
positive 

During 
descent, 
a=-g, 
speed 
increases, 
and velocity 
becomes 
more 
negative 

y=O 

t = a = -9.8 m/s2 = 1.2 s. (Answer) 

(b) What is the ball's maximum height above its release 
point? 

Calculation: We can take the ball's release point to be 
Yo = O. We can then write Eq. 2-16 in y notation, set y - Yo = 
y and v = 0 (at the maximum height), and solve for y. We 
get 

v2 - vij 0 - (12 m/s)2 
y = 2a = 2(-9.8 m/s2) = 7.3 m. (Answer) 

(c) How long does the ball take to reach a point 5.0 m above 
its release point? 

Calculations: We know vo, a = -g, and displacement y -
Yo = 5.0 m, and we want t, so we choose Eq. 2-15. Rewriting 
it for y and setting Yo = 0 give us 

y = vot - !gt2
, 

or 5.0 m = (12 m/s)t - @(9.8 m/s2)t2• 

If we temporarily omit the units (having noted that they are 
consistent), we can rewrite this as 

4.9t2 - 12t + 5.0 = O. 

Solving this quadratic equation for t yields 

t = 0.53 sand t = 1.9 s. (Answer) 

There are two such times! This is not really surprising 
because the ball passes twice through y = 5.0 m, once on the 
way up and once on the way down. 

Additional examples, video, and practice available at WileyPLUS 
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1 Graphical Integration in Motion Analysis 
When we have a graph of an object's acceleration versus time, we can integrate 
on the graph to find the object's velocity at any given time. Because acceleration 
a is defined in terms of velocity as a = dvldt, the Fundamental Theorem of 
Calculus tells us that 

ill 

VI - Vo = a dt. 
10 

(2-22) 

The right side of the equation is a definite integral (it gives a numerical result 
rather than a function), Vo is the velocity at time to, and VI is the velocity at later time 
tl. The definite integral can be evaluated from an a(t) graph, such as in Fig. 2-12a. In 
particular, 

(Il a dt = (area bet:veen a~celeration curve). (2-23) 1 and tIme aXIS, from to to tl 

If a unit of acceleration is 1 m/s2 and a unit of time is 1 s, then the corre­
sponding unit of area on the graph is 

(1 m/s2)(1 s) = 1 mis, 

which is (properly) a unit of velocity. When the acceleration curve is above the 
time axis, the area is positive; when the curve is below the time axis, the area is 
negative. 

Similarly, because velocity V is defined in terms of the position x as V = dxldt, 
then 

ill 

Xl - Xo = V dt, 
10 

(2-24) 

where Xo is the position at time to and Xl is the position at time tl. The definite 
integral on the right side of Eq. 2-24 can be evaluated from a v(t) graph, like that 
shown in Fig. 2-12b. In particular, 

ill _ (area between velocity curve) 
V dt - d . . f . 

10 an tIme aXIS, rom to to tl (2-25) 

If the unit of velocity is 1 m/s and the unit of time is 1 s, then the corre­
sponding unit of area on the graph is 

(1 m/s)(1 s) = 1 m, 

which is (properly) a unit of position and displacement. Whether this area is posi­
tive or negative is determined as described for the a(t) curve of Fig. 2-12a. 

Fig. 2-12 The area between a plotted 
curve and the horizontal time axis, from 
time to to time tl> is indicated for (a) a graph 
of acceleration a versus t and (b) a graph of 
velocity v versus t. 

v 

(b) 

(a) 

This area gives the 
change in velocity. 

This area gives the 
change in position. 
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Graphical integration a versus t, whiplash injury 

"Whiplash injury" commonly occurs in a rear-end collision 
where a front car is hit from behind by a second car. In the 
1970s, researchers concluded that the injury was due to the 
occupant's head being whipped back over the top of the seat 
as the car was slammed forward. As a result of this finding, 
head restraints were built into cars, yet neck injuries in rear­
end collisions continued to occur. 

In a recent test to study neck injury in rear-end collisions, 
a volunteer was strapped to a seat that was then moved 
abruptly to simulate a collision by a rear car moving at 
10.5 kmlh. Figure 2-13a gives the accelerations of the volun­
teer's torso and head during the collision, which began at time 
t = O. The torso acceleration was delayed by 40 ms because 
during that time interval the seat back had to compress 
against the volunteer. The head acceleration was delayed by 
an additional 70 ms. What was the torso speed when the head 
began to accelerate? 

We can calculate the torso speed at any time by finding an 
area on the torso aCt) graph. 

Calculations: We know that the initial torso speed is va = 0 
at time to = 0, at the start of the "collision." We want the 
torso speed V1 at time t1 = 110 ms, which is when the head 
begins to accelerate. 
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(a) 
a 

Combining Eqs. 2-22 and 2-23, we can write 

_ _ (area between acceleration curve) 
V1 Va - and time axis, from to to t1 . 

(2-26) 

For convenience, let us separate the area into three regions 
(Fig. 2-13b). From 0 to 40 ms, region A has no area: 

areaA = O. 

From 40 ms to 100 ms, region B has the shape of a triangle, 
with area 

areaB = !(0.060 s)(50 m/s2) = 1.5 m/s. 

From 100 ms to 110 ms,region C has the shape of a rectan­
gle, with area 

areac = (0.010 s)(50 m/s2) = 0.50 m/s. 

Substituting these values and va = 0 into Eq. 2-26 gives us 

V1 - 0 = 0 + 1.5 mls + 0.50 mIs, 

or V1 = 2.0 mls = 7.2 km/h. (Answer) 

Comments: When the head is just starting to move forward, 
the torso already has a speed of 7.2 kmlh. Researchers argue 
that it is this difference in speeds during the early stage of a 
rear-end collision that injures the neck. The backward whip­
ping of the head happens later and could, especially if there is 
no head restraint, increase the injury. 
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The total area gives the 
change in velocity. 

(b) 

Fig. 2-13 (a) The a(t) curve of the torso and head of a volunteer in a 
simulation of a rear-end collision. (b) Breaking up the region between the 
plotted curve and the time axis to calculate the area. 

Additional examples, video, and practice available at WileyPLUS 



Position The position x of a particle on an x axis locates the 
particle with respect to the origin, or zero point, of the axis. The 
position is either positive or negative, according to which side of 
the origin the particle is on, or zero if the particle is at the ori­
gin. The positive direction on an axis is the direction of increas­
ing positive numbers; the opposite direction is the negative 
direction on the axis. 

Displacement The displacement Llx of a particle is the change 
in its position: 

(2-1) 

Displacement is a vector quantity. It is positive if the particle has 
moved in the positive direction of the x axis and negative if the 
particle has moved in the negative direction. 

Average Velocity When a particle has moved from position Xl 

to position X2 during a time intervall1t = t2 - tl> its average velocity 
during that interval is 

(2-2) 

The algebraic sign of vavg indicates the direction of motion (vavg is a 
vector quantity). Average velocity does not depend on the actual 
distance a particle moves, but instead depends on its original and 
final positions. 

On a graph of X versus t, the average velocity for a time interval 
I1t is the slope of the straight line connecting the points on the curve 
tha t represent the two ends of the interval. 

Average Speed The average speed Savg of a particle during a 
time intervall1t depends on the total distance the particle moves in 
that time interval: 

Savg = 
total distance 

I1t 
(2-3) 

Instantaneous Velocity The instantaneous velocity (or sim­
ply velocity) v of a moving particle is 

v= lim ~=~ 
tH --> 0 At dt ' 

Figure 2-14 gives the velocity of 
a particle moving on an x axis. What 
are (a) the initial and (b) the final di­
rections of travel? (c) Does the par­
ticle stop momentarily? (d) Is the ac­
celeration positive or negative? (e) 
Is it constant or vmying? 

(2-4) 

v 

Figure 2-15 gives the accelera­
tion aCt) of a Chihuahua as it chases Fig. 2-14 Question 1. 

QUESTIONS 29 

where Llx and I1t are defined by Eq. 2-2. The instantaneous velocity 
(at a particular time) may be found as the slope (at that particular 
time) of the graph of x versus t. Speed is the magnitude of instanta­
neous velocity. 

Average Acceleration Average acceleration is the ratio of a 
change in velocity Av to the time intervall1t in which the change 
occurs: 

(2-7) 

The algebraic sign indicates the direction of aavg. 

Instantaneous Acceleration Instantaneous acceleration (or 
simply acceleration) a is the first time derivative of velocity vet) 
and the second time derivative of position x(t): 

(2-8,2-9) 

On a graph of v versus t, the acceleration a at any time t is the slope 
of the curve at the point that represents t. 

Constant Acceleration The five equations in Table 2-1 
describe the motion of a particle with constant acceleration: 

v = Vo + at, 

x - Xo = vot + ~at2, 

v2 = V6 + 2a(x - xo), 

x - Xo = !( Vo + v)t, 

x - Xo = vt - ~at2. 

These are not valid when the acceleration is not constant. 

(2-11) 

(2-15) 

(2-16) 

(2-17) 

(2-18) 

Free-Fall Acceleration An important example of straight­
line motion with constant acceleration is that of an object rising or 
falling freely near Earth's surface. The constant acceleration equa­
tions describe this motion, but we make two changes in notation: 
(1) we refer the motion to the vertical y axis with +y vertically up; 
(2) we replace a with -g, where g is the magnitude of the free-fall 
acceleration. Near Earth's surface,g = 9.8 mls2 (= 32 ftls2). 

a 

c I DIE IFI G I H 

Fig. 2-15 Question 2. 
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a German shepherd along an axis. In 
which of the time periods indicated 
does the Chihuahua move at con­
stant speed? 

Figure 2-16 shows four paths 
along which objects move from a 
starting point to a final point, all in 
the same time interval. The paths 

2 

pass over a grid of equally spaced Fig. 2-16 Question 3. 
straight lines. Rank the paths ac-
cording to (a) the average velocity 
of the objects and (b) the average 
speed of the objects, greatest first. x 

Figure 2-17 is a graph of a patti- I
f

-

cle's position along an x axis versus 
time. (a) At time t = 0, what is the I---+---j~+---\.---+----it (s) 

sign of the particle's position? Is 
the particle's velocity positive, neg­
ative, or 0 at (b) t = 1 s, (c) t = 2 s, 
and (d) t = 3 s? (e) How many 
times does the particle go through 
the point x = O? Fig. 2-17 Question 4. 

Figure 2-18 gives the velocity of 
a particle moving along an axis. 
Point 1 is at the highest point on the 
curve; point 4 is at the lowest point; 
and points 2 and 6 are at the same 
height. What is the direction of 
travel at (a) time t = 0 and (b) point 
4? (c) At which of the six numbered 
points does the particle reverse its 
direction of travel? (d) Rank the six 
points according to the magnitude 
of the acceleration, greatest first. 

)I 

Fig. 2-18 Question 5. 

At t = 0, a particle moving along )I 

an x axis is at position Xo = -20 m. 
The signs of the particle's initial veloc-
ity Vo (at time to) and constant acceler­
ation a are, respectively, for four situa­

A 

tions:(l) +,+;(2) +,-;(3) -,+;(4) O~-~---­
-, -. In which situations will the par­
ticle (a) stop momentarily, (b) pass 
through the origin, and (c) never pass 
through the origin? 

Hanging over the railing of a 
bridge, you drop an egg (no initial ve­
locity) as you throw a second egg 
downward. Which curves in Fig. 2-19 Fig.2-19 Question 7. 
give the velocity v(t) for (a) the 
dropped egg and (b) the thrown egg? (Curves 
A and B are parallel; so are C, D, and E; so are 
Fand G.) 

The following equations give the velocity 
v(t) of a particle in four situations: (a) v = 3; 
(b) v=4t2 +2t-6; (c) v =3t-4; (d) v= 
5t2 - 3. To which of these situations do the 
equations of Table 2-1 apply? 

In Fig. 2-20, a cream tangerine is thrown 
directly upward past three evenly spaced 
windows of equal heights. Rank the windows 
according to (a) the average speed of 
the cream tangerine while passing them, (b) 
the time the cream tangerine takes to pass 
them, ( c) the magnitude of the acceleration 
of the cream tangerine while passing them, 
and (d) the change Ll v in the speed of the 
cream tangerine during the passage, greatest 
first. 

Fig. 2-20 
Question 9. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

1IIIW1III Worked-out solution is at 

H,W Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Average Velocity and Average Speed 
During a hard sneeze, your eyes might shut for 0.50 s. If you 

are driving a car at 90 km/h during such a sneeze, how far does the 
car move during that time? 

Compute your average velocity in the following two cases: (a) 
You walk 73.2 m at a speed of 1.22 mls and then run 73.2 m at a 
speed of 3.05 mls along a straight track. (b) You walk for 1.00 min 
at a speed of 1.22 m/s and then run for 1.00 min at 3.05 m/s along a 
straight track. (c) Graph x versus t for both cases and indicate how 
the average velocity is found on the graph. 

55M 1111111111\1 An automobile travels on a straight road for 40 
km at 30 km/h.1t then continues in the same direction for another 
40 km at 60 km/h. (a) What is the average velocity of the car during 
the full 80 km trip? (Assume that it moves in the positive x direc-

tion.) (b) What is the average speed? (c) Graph x versus t and indi­
cate how the average velocity is found on the graph. 

A car travels up a hill at a constant speed of 40 kmlh and re­
turns down the hill at a constant speed of 60 km/h. Calculate the 
average speed for the round trip. 

The position of an object moving along an x axis is given 
by x = 3t - 4t2 + (3, where x is in meters and t in seconds. Find the 
position of the object at the following values of (: (a) 1 s, (b) 2 s, ( c) 
3 s, and (d) 4 s. (e) What is the object's displacement between ( = 0 
and ( = 4 s? (f) What is its average velocity for the time interval 
from t = 2 s to ( = 4 s? (g) Graph x versus t for 0 ::0; ( ::0; 4 s and in­
dicate how the answer for (f) can be found on the graph. 

The 1992 world speed record for a bicycle (human-powered 
vehicle) was set by Chris Huber. His time through the measured 



200 m stretch was a sizzling 6.509 s, at which he commented, 
"Cogito ergo zoom!" (I think, therefore I go fast!). In 2001, Sam 
Whittingham beat Huber's record by 19.0 km/h. What was 
Whittingham's time through the 200 m? 

Two trains, each having a speed of 30 km/h, are headed at 
each other on the same straight track. A bird that can fly 60 km/h 
flies off the front of one train when they are 60 km apart and heads 
directly for the other train. On reaching the other train, the bird 
flies directly back to the first train, and so forth. (We have no idea 
why a bird would behave in this way.) What is the total distance the 
bird travels before the trains collide? 

Panic escape. Figure 2-21 shows a general situation 
in which a stream of people attempt to escape through an exit door 
that turns out to be locked. The people move toward the door at 
speed Vs = 3.50 mis, are each d = 0.25 m in depth, and are separated 
by L = 1.75 m. The arrangement in Fig. 2-21 occurs at time t = O. (a) 
At what average rate does the layer of people at the door increase? 
(b) At what time does the layer's depth reach 5.0m? (The answers 
reveal how quickly such a situation becomes dangerous.) 

I~L~I I-L~I I~L~I 

-I dl- -I dl- -I dl-
Locked 
door 

Fig. 2-21 Problem 8. 

IlW In 1 km races, runner 1 on track 1 (with time 2 min, 27.95 
s) appears to be faster than runner 2 on track 2 (2 min, 28.15 s). 
However, length Lz of track 2 might be slightly greater than length 
LI of track 1. How large can L z - LI be for us still to conclude that 
runner 1 is faster? 

o To set a speed record in a measured (straight-line) 
distance d, a race car must be driven first in one direction (in time 
tl ) and then in the opposite direction (in time tz). (a) To eliminate 
the effects of the wind and obtain the car's speed vein a windless 
situation, should we find the average of dltl and dltz (method 1) or 
should we divide d by the average of tl and tz? (b) What is the frac­
tional difference in the two methods when a steady wind blows 
along the car's route and the ratio of the wind speed vII' to the car's 
speed v cis 0.0240? 

You are to drive to an interview in another town, at a dis­
tance of 300 km on an expressway. The interview is at 11: 15 A.M. 

You plan to drive at 100 kmlh, so you leave at 8:00 A.M. to allow 
some extra time. You drive at that speed for the first 100 km, but 
then construction work forces you to slow to 40 km/h for 40 km. 
What would be the least speed needed for the rest of the trip to ar­
rive in time for the interview? 

Traffic shock wave. An abrupt slowdown in concen­
trated traffic can travel as a pulse, termed a shock wave, along the 
line of cars, either downstream (in the traffic direction) or up­
stream, or it can be stationary. Figure 2-22 shows a uniformly 
spaced line of cars moving at speed v = 25.0 mls toward a uni­
formly spaced line of slow cars moving at speed Vs = 5.00 m/s. 
Assume that each faster car adds length L = 12.0 m (car length 
plus buffer zone) to the line of slow cars when it joins the line, and 
assume it slows abruptly at the last instant. (a) For what separation 
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distance d between the faster cars does the shock wave remain sta­
tionary? If the separation is twice that amount, what are the (b) 
speed and (c) direction (upstream or downstream) of the shock 
wave? 

\-<--L_+_ d----+--L_+_ d----+--L-I-<--L-I-<--L-I 

~-\m~_-IBJ 
Car Buffer v, 

Fig. 2-22 Problem 12. 

IlW You drive on Interstate 10 from San Antonio to 
Houston, half the time at 55 km/h and the other half at 90 km/h. 
On the way back you travel half the distance at 55 km/h and the 
other half at 90 kmlh. What is your average speed (a) from San 
Antonio to Houston, (b) from Houston back to San Antonio, and 
( c) for the entire trip? (d) What is your average velocity for the en­
tire trip? (e) Sketch x versus t for (a), assuming the motion is all in 
the positive x direction. Indicate how the average velocity can be 
found on the sketch. 

Instantaneous Velocity and Speed 
An electron moving along the x axis has a position given 

by x = 16te-t m, where t is in seconds. How far is the electron from 
the origin when it momentarily stops? 

(a) If a particle's position is given by x = 4 - 12t + 3tZ 

(where t is in seconds and x is in meters), what is its velocity at 
t = 1 s? (b) Is it moving in the positive or negative direction of x 
just then? (c) What is its speed just then? (d) Is the speed 
increasing or decreasing just then? (Try answering the next two 
questions without further calculation.) (e) Is there ever an instant 
when the velocity is zero? If so, give the time t; if not, answer no. (f) 
Is there a time after t = 3 s when the particle is moving in the nega­
tive direction of x? If so, give the time t; if not, answer no. 

The position function x(t) of a particle moving along an x axis 
is x = 4.0 - 6.0tZ, with x in meters and t in seconds. (a) At what 
time and (b) where does the particle (momentarily) stop? At what 
(c) negative time and (d) positive time does the particle pass 
through the origin? (e) Graph x versus t for the range - 5 s to + 5 s. 
(f) To shift the curve rightward on the graph, should we include the 
term +20t or the term -20t in x(t)? (g) Does that inclusion in­
crease or decrease the value of x at which the particle momentarily 
stops? 

The position of a particle moving along the x axis is given in 
centimeters by x = 9.75 + 1.50t3, where t is in seconds. Calculate 
(a) the average velocity during the time interval t = 2.00 s to t = 

3.00 s; (b) the instantaneous velocity at t = 2.00 s; (c) the instanta­
neous velocity at t = 3.00 s; (d) the instantaneous velocity at t = 

2.50 s; and (e) the instantaneous velocity when the particle is mid­
way between its positions at t = 2.00 sand t = 3.00 s. (f) Graph x 
versus t and indicate your answers graphically. 

Acceleration 
The position of a particle moving along an x axis is given by 

x = 12tZ - 2t3, where x is in meters and t is in seconds. Detelmine 
(a) the position, (b) the velocity, and (c) the acceleration of the 
particle at t = 3.0 s. (d) What is the maximum positive coordinate 
reached by the particle and (e) at what time is it reached? (f) What 
is the maximum positive velocity reached by the particle and (g) at 
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what time is it reached? (h) What is the acceleration of the particle 
at the instant the particle is not moving (other than at t = O)? 
(i) Determine the average velocity of the particle between t = 0 
and t = 3 s. 

SSM At a certain time a particle had a speed of 18 mls in 
the positive x direction, and 2.4 s later its speed was 30 mls in the 
opposite direction. What is the average acceleration of the particle 
during this 2.4 s interval? 

(a) If the position of a particle is given by x = 20t - 5t3, 

where x is in meters and t is in seconds, when, if ever, is the parti­
cle's velocity zero? (b) When is its acceleration a zero? (c) For 
what time range (positive or negative) is a negative? (d) Positive? 
(e) Graph x(t), vet), and aCt). 

From t = 0 to t = 5.00 min, a man stands still, and from 
t = 5.00 min to t = 10.0 min, he walks briskly in a straight line at a 
constant speed of 2.20 m/s. What are (a) his average velocity vavg 

and (b) his average acceleration aavg in the time interval 2.00 min to 
8.00 min? What are (c) vavg and (d) aavg in the time interval 3.00 min 
to 9.00 min? (e) Sketch x versus t and v versus t, and indicate how 
the answers to (a) through (d) can be obtained from the graphs. 

The position of a particle moving along the x axis depends 
on the time according to the equation x = et2 - bt3 , where x is in 
meters and t in seconds. What are the units of (a) constant e and (b) 
constant b? Let their numerical values be 3.0 and 2.0, respectively. 
(c) At what time does the particle reach its maximum positive x po­
sition? From t = 0.0 s to t = 4.0 s, (d) what distance does the parti­
cle move and (e) what is its displacement? Find its velocity at times 
(f) 1.0 s, (g) 2.0 s, (h) 3.0 s, and (i) 4.0 s. Find its acceleration at 
times U) 1.0 s, (k) 2.0 s, (1) 3.0 s, and (m) 4.0 s. 

Constant Acceleration: A Special Case 
SSM An electron with an initial velocity Vo = 1.50 X 105 mls 

enters a region of length L = 1.00 
cm where it is electrically acceler­
ated (Fig. 2-23). It emerges with 
v = 5.70 X 106 m/s. What is its ac­
celeration, assumed constant? 

Catapulting mush­
rooms. Certain mushrooms launch 
their spores by a catapult mecha­
nism.As water condenses from the 
air onto a spore that is attached to 
the mushroom, a drop grows on 
one side of the spore and a film 

Nonaccelerating Accelerating 
region region 

I-L-I 
electron 

'--Path Of---I- --I 
Fig. 2-23 Problem 23. 

grows on the other side. The spore is bent over by the drop's 
weight, but when the film reaches the drop, the drop's water sud­
denly spreads into the film and the spore springs upward so rapidly 
that it is slung off into the air. Typically, the spore reaches a speed 
of 1.6 mls in a 5.0 p,m launch; its speed is then reduced to zero in 
1.0 mm by the air. Using that data and assuming constant accelera­
tions, find the acceleration in terms of g during (a) the launch and 
(b) the speed reduction. 

An electric vehicle starts from rest and accelerates at a rate 
of 2.0 mls2 in a straight line until it reaches a speed of 20 mls. The 
vehicle then slows at a constant rate of 1.0 mls2 until it stops. (a) 
How much time elapses from start to stop? (b) How far does the 
vehicle travel from start to stop? 

A muon (an elementary particle) enters a region with a 
speed of 5.00 X 106 mls and then is slowed at the rate of 1.25 X 

1014 m/s2• (a) How far does the muon take to stop? (b) Graph x 
versus t and v versus t for the muon. 

An electron has a constant acceleration of +3.2 mls2
• At a 

certain instant its velocity is +9.6 m/s. What is its velocity (a) 2.5 s 
earlier and (b) 2.5 slater? 

On a dry road, a car with good tires may be able to brake with a 
constant deceleration of 4.92 mls2• (a) How long does such a car, ini­
tially traveling at 24.6 mis, take to stop? (b) How far does it travel in 
this time? (c) Graph x versus t and v versus tfor the deceleration. 

IlW A certain elevator cab has a total run of 190 m and a max­
imum speed of 305 mlmin, and it accelerates from rest and then 
back to rest at 1.22 m/s2• (a) How far does the cab move while ac­
celerating to full speed from rest? (b) How long does it take to 
make the nonstop 190 m run, starting and ending at rest? 

The brakes on your car can slow you at a rate of 5.2 mls2
• (a) 

If you are going 137 kmlh and suddenly see a state trooper, what is 
the minimum time in which you can get your car under the 90 
kmlh speed limit? (The answer reveals the futility of braking to 
keep your high speed from being detected with a radar or laser 
gun.) (b) Graph x versus t and v versus t for such a slowing. 

SSM Suppose a rocket ship in deep space moves with con­
stant acceleration equal to 9.8 mls2, which gives the illusion of nor­
mal gravity during the flight. (a) If it starts from rest, how long will 
it take to acquire a speed one-tenth that of light, which travels at 
3.0 X 108 m/s? (b) How far will it travel in so doing? 

A world's land speed record was set by Colonel John 
P. Stapp when in March 1954 he rode a rocket-propelled sled that 
moved along a track at 1020 kmlh. He and the sled were brought to 
a stop in 1.4 s. (See Fig. 2-7.) In terms of g, what acceleration did he 
experience while stopping? 

SSM ILW A car traveling 56.0 kmlh is 24.0 m from a barrier 
when the driver slams on the brakes. The car hits the barrier 2.00 s 
later. (a) What is the magnitude of the car's constant acceleration 
before impact? (b) How fast is the car traveling at impact? 

In Fig. 2-24, a red car and a green car, identical except for the 
color, move toward each other in adjacent lanes and parallel to an x 
axis. At time t = 0, the red car is at Xr = 0 and the green car is at Xg = 

220 m. If the red car has a constant velocity of 20 kmlh, the cars pass 
each other at x = 44.5 m, and if it has a constant velocity of 40 kmlh, 
they pass each other at x = 76.6 m. What are (a) the initial velocity 
and (b) the constant acceleration of the green car? 

Fig.2-24 Problems 34 and 35. 

Figure 2-24 shows a red car 
and a green car that move toward 
each other. Figure 2-25 is a graph of 
their motion, showing the positions :§: 
XgO = 270 m and XrO = -35.0 m at ){ 
time t = O. The green car has a con­
stant speed of 20.0 mls and the red 
car begins from rest. What is the ac- I (s) 

celeration magnitude of the red car? Fig. 2-25 Problem 35. 



A car moves along an x axis through a distance of 900 m, 
starting at rest (at x = 0) and ending at rest (at x = 900 m). 
Through the first ~ of that distance, its acceleration is +2.25 m/s2. 
Through the rest of that distance, its acceleration is -0.750 mls2

• 

What are (a) its travel time through the 900 m and (b) its maxi­
mum speed? (c) Graph position x, velocity v, and acceleration a 
versus time tfor the trip. 

Figure 2-26 depicts the motion x (m) 

of a particle moving along an x axis 
with a constant acceleration. The fig- x" 
ure's vertical scaling is set by Xs = 6.0 
m.What are the (a) magnitude and (b) 
direction of the particle's acceleration? 

(a) If the maximum acceleration 
that is tolerable for passengers in a 0 ,t (s) 

subway train is 1.34 m/s2 and subway I 
stations are located 806 m apart, what 
is the maximum speed a subway train Fig.2-26 Problem 37. 
can attain between stations? (b) What is 
the travel time between stations? (c) If a subway train stops for 20 s 
at each station, what is the maximum average speed of the train, from 
one start-up to the next? (d) Graph x, v, and a versus tfor the interval 
from one start-up to the next. 

Cars A and B move in the same direction in adjacent lanes. The 
position x of car A is given in Fig. 2-27, from time t = 0 to t = 7.0 s. The 
figure's vertical scaling is set by Xs = 32.0 m. At t = 0, car B is at x = 0, 
with a velocity of 12 mls and a negative constant acceleration an. (a) 
What must an be such that the cars are (momentarily) side by side 
(momentarily at the same value of x) at t = 4.0 s? (b) For that value of 
an, how many times are the cars side by side? (c) Sketch the position x 
of car B versus time t on Fig. 2-27. How many times will the cars be side 
by side if the magnitude of acceleration an is (d) more than and (e) less 
than the answer to part (a)? 

o 2 3 4 5 6 7 
t (s) 

Fig. 2-27 Problem 39. 

You are driving toward a traffic signal when it turns 
yellow. Your speed is the legal speed limit of Va = 55 km/h; your 
best deceleration rate has the magnitude a = 5.18 m/s2. Your best 
reaction time to begin braking is T = 0.75 s. To avoid having the 
front of your car enter the intersection after the light turns red, 
should you brake to a stop or continue to move at 55 km/h if the 
distance to the intersection and the duration of the yellow light are 
(a) 40 m and 2.8 s, and (b) 32 m and 1.8 s? Give an answer of 
brake, continue, either (if either strategy works), or neither (if nei­
ther strategy works and the yellow duration is inappropriate). 

As two trains move along a track, their conductors suddenly 
notice that they are headed toward each other. Figure 2-28 gives their 
velocities V as functions of time t as the conductors slow the trains. 
The figure's vertical scaling is set by Vs = 40.0 mls. The slowing 

processes begin when the trains 
are 200 m apart. What is their 
separation when both trains have 
stopped? 

You are arguing over a 
cell phone while trailing an 
unmarked police car by 25 m; 
both your car and the police 
car are traveling at 110 km/h. 
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Fig. 2-28 Problem 41. 

Your argument diverts your attention from the police car for 2.0 s 
(long enough for you to look at the phone and yell, "1 won't do 
that!"). At the beginning of that 2.0 s, the police officer begins 
braking suddenly at 5.0 mls2. (a) What is the separation between 
the two cars when your attention finally returns? Suppose that you 
take another 0040 s to realize your danger and begin braking. (b) If 
you too brake at 5.0 m/s2, what is your speed when you hit the po­
lice car? 

When a high-speed passenger train traveling at 
161 km/h rounds a bend, the engineer is shocked to see that a 
locomotive has improperly entered onto the track from a siding 
and is a distance D = 676 m ahead (Fig. 2-29). The locomotive is 
moving at 29.0 km/h. The engineer of the high-speed train immedi­
ately applies the brakes. (a) What must be the magnitude of the re­
sulting constant deceleration if a collision is to be just avoided? (b) 
Assume that the engineer is at x = 0 when, at t = 0, he first spots 
the locomotive. Sketch x(t) curves for the locomotive and high­
speed train for the cases in which a collision is just avoided and is 
not quite avoided. . 

High-speed 
train 

Fig. 2-29 Problem 43. 

Free-Fall Acceleration 
When startled, an armadillo will leap upward. Suppose it 

rises 0.544 m in the first 0.200 s. (a) What is its initial speed as it 
leaves the ground? (b) What is its speed at the height of 0.544 m? 
(c) How much higher does it go? 

SSM www (a) With what speed must a ball be thrown verti­
cally from ground level to rise to a maximum height of 50 m? 
(b) How long will it be in the air? (c) Sketch graphs of y, v, and a 
versus t for the ball. On the first two graphs, indicate the time at 
which 50 m is reached. 

Raindrops fall 1700 m from a cloud to the ground. (a) If they 
were not slowed by air resistance, how fast would the drops be 
moving when they struck the ground? (b) Would it be safe to walk 
outside during a rainstorm? 

At a construction site a pipe wrench struck the ground 
with a speed of 24 m/s. (a) From what height was it inadvertently 
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dropped? (b) How long was it falling? (c) Sketch graphs of y, v, 
and a versus tfor the wrench. 

A hoodlum throws a stone vertically downward with an ini­
tial speed of 12.0 mls from the roof of a building, 30.0 m above the 
ground. (a) How long does it take the stone to reach the ground? 
(b) What is the speed of the stone at impact? 

SSM A hot-air balloon is ascending at the rate of 12 m/s and 
is 80 m above the ground when a package is dropped over the side. 
(a) How long does the package take to reach the ground? (b) With 
what speed does it hit the ground? 

At time t = 0, apple 1 is dropped from a bridge onto a road­
way beneath the bridge; somewhat later, apple 2 is thrown down 
from the same height. Figure 2-30 gives the vertical positions y of 
the apples versus t during the falling, until both apples have hit the 
roadway. The scaling is set by ts = 2.0 s. With approximately what 
speed is apple 2 thrown down? 

···r'r.~r 
I I ~, 
.•.. "~, 

" ' 
! ,I 

o 
Fig. 2-30 Problem 50. 

As a runaway scientific bal- v 
loon ascends at 19.6 mis, one of its 
instrument packages breaks free of a 

, 
!, 
! , 

ts 

harness and free-falls. Figure 2-31 0 t (s) 

gives the vertical velocity of the 
package versus time, from before it 
breaks free to when it reaches the 
ground. (a) What maximum height 
above the break-free point does it Fig. 2-31 Problem 51. 
rise? (b) How high is the break-free 
point above the ground? 

A bolt is dropped from a bridge under construction, 
falling 90 m to the valley below the bridge. (a) In how much time 
does it pass through the last 20% of its fall? What is its speed (b) 
when it begins that last 20% of its fall and (c) when it reaches the 
valley beneath the bridge? 

SSM ILW A key falls from a bridge that is 45 m above the 
water. It falls directly into a model boat, moving with constant 
velocity, that is 12 m from the point of impact when the key is re­
leased. What is the speed of the boat? 

A stone is dropped into a river from a bridge 43.9 ill above 
the water. Another stone is thrown vertically down 1.00 s after the 
first is dropped. The stones strike the water at the same time. (a) 
What is the initial speed of the second stone? (b) Plot velocity ver­
sus time on a graph for each stone, taking zero time as the instant 
the first stone is released. 

SSM A ball of moist clay falls 15.0 m to the ground. It is 
in contact with the ground for 20.0 ms before stopping. (a) What is 
the magnitude of the average acceleration of the ball during the time 
it is in contact with the ground? (Treat the ball as a particle.) (b) Is the 
average acceleration up or down? 

Figure 2-32 shows the speed v versus height y of a ball 
tossed directly upward, along a y axis. Distance d is 0.40 m.The 
speed at height YA is VA' The speed at height YB is ~VA' What is 
speed VA? 
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Fig. 2-32 Problem 56. 

To test the quality of a tennis ball, you drop it onto the floor 
from a height of 4.00 m. It rebounds to a height of 2.00 m. If the ball 
is in contact with the floor for 12.0 ms, (a) what is the magnitude of 
its average acceleration during that contact and (b) is the average 
acceleration up or down? 

An object falls a distance h from rest. If it travels 0.50h in 
the last 1.00 s, find (a) the time and (b) the height of its fall. (c) 
Explain the physically unacceptable solution of the quadratic 
equation in t that you obtain. 

Water drips from the nozzle of a shower onto the floor 200 
cm below. The drops fall at regular (equal) intervals of time, the 
first drop striking the floor at the instant the fourth drop begins to 
fall. When the first drop strikes the floor, how far below the nozzle 
are the (a) second and (b) third drops? 

A rock is thrown vertically upward from ground level at time 
t = O. At t = 1.5 s it passes the top of a tall tower, and 1.0 s later it 
reaches its maximum height. What is the height of the tower? 

A steel ball is dropped from a building's roof and passes 
a window, taking 0.125 s to fall from the top to the bottom of the 
window, a distance of 1.20 m. It then falls to a sidewalk and 
bounces back past the window, moving from bottom to top in 0.125 
s. Assume that the upward flight is an exact reverse of the fall. The 
time the ball spends below the bottom of the window is 2.00 s. How 
tall is the building? 

A basketball player grabbing a rebound jumps 
76.0 cm vertically. How much total time (ascent and descent) does 
the player spend (a) in the top 15.0 cm of this jump and (b) in the 
bottom 15.0 cm? Do your results explain why such players seem to 
hang in the air at the top of a jump? 

A drowsy cat spots a flow­
erpot that sails first up and then down 
past an open window. The pot is in 
view for a total of 0.50 s, and the top- :§: 
to-bottom height of the window 
is 2.00 m. How high above the window 
top does the flowerpot go? 

A ball is shot vertically up­
ward from the sUliace of another 
planet. A plot of Y versus t for the ball t (s) 

is shown in Fig. 2-33, where Y is the Fig. 2-33 Problem 64. 



height of the ball above its starting point and t = 0 at the instant 
the ball is shot. The figure's vertical scaling is set by y" = 30.0 m. 
What are the magnitudes of (a) the free-fall acceleration on the 
planet and (b) the initial velocity of the ball? 

Graphical Integration in Motion Analysis 
Figure 2-13a gives the acceleration of a volunteer's 

head and torso during a rear-end collision. At maximum head ac­
celeration, what is the speed of (a) the head and (b) the torso? 

In a forward punch in karate, the fist begins at rest at 
the waist and is brought rapidly forward until the arm is fully ex­
tended. The speed v(t) of the fist is given in Fig. 2-34 for someone 
skilled in karate. The vertical scaling is set by Vs 8.0 mls. How far 
has the fist moved at (a) time t = 50 ms and (b) when the speed of 
the fist is maximum? 

t(ms) 

Fig. 2-34 Problem 66. 

When a soccer ball is kicked toward a player and the player 
deflects the ball by "heading" it, the acceleration of the head dur­
ing the collision can be significant. Figure 2-35 gives the measured 
acceleration a(t) of a soccer player's head for a bare head and a 
helmeted head, starting from rest. The scaling on the vertical axis is 
set by as = 200 m/s2• At time t = 7.0 ms, what is the difference in 
the speed acquired by the bare head and the speed acquired by the 
helmeted head? 

t (ms) 

Fig.2-35 Problem 67. 

A salamander of the genus Hydromantes captures 
prey by launching its tongue 
as a projectile: The skeletal 
part of the tongue is shot for­
ward, unfolding the rest of 
the tongue, until the outer 
portion lands on the prey, 
sticking to it. Figure 2-36 
shows the acceleration mag­
nitude a versus time t for the 
acceleration phase of the 

a2 --------

o 10 20 30 
I (ms) 

Fig. 2-36 Problem 68. 
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launch in a typical situation. The indicated accelerations are a2 = 400 
mls2 and al = 100 mls2• What is the outward speed of the tongue at 
the end of the acceleration 
phase? 

IlW How far does the run­
ner whose velocity - time graph is 
shown in Fig. 2-37 travel in 16 s? 
The figure's vertical scaling is set 
by v" = 8.0 mls. 

Two particles move 
along an x axis. The position of 
particle 1 is given by x = 6.00t2 
+ 3.00t + 2.00 (in meters and 
seconds); the acceleration of 

I' s 

o 4 
t (s) 

Fig. 2-37 Problem 69. 

particle 2 is given by a = -8.00t (in meters per second squared and 
seconds) and, at t = 0, its velocity is 20 m/s. When the velocities of 
the particles match, what is their velocity? 

Additional Problems 
In an arcade video game, a spot is programmed to move 

across the screen according to x = 9.00t - 0.750t3
, where x is dis­

tance in centimeters measured from the left edge of the screen and 
t is time in seconds. When the spot reaches a screen edge, at either 
x = 0 or x = 15.0 cm, t is reset to 0 and the spot starts moving again 
according to x(t). (a) At what time after starting is the spot instan­
taneously at rest? (b) At what value of x does this occur? (c) What 
is the spot's acceleration (including sign) when this occurs? (d) Is it 
moving right or left just prior to coming to rest? (e) Just after? (f) 
At what time t > 0 does it first reach an edge of the screen? 

A rock is shot vertically upward from the edge of the top of a 
tall bUilding. The rock reaches its maximum height above the top 
of the building 1.60 s after being shot. Then, after barely missing 
the edge of the building as it falls downward, the rock strikes the 
ground 6.00 s after it is launched. In SI units: (a) with what upward 
velocity is the rock shot, (b) what maximum height above the top of 
the building is reached by the rock, and (c) how tall is the building? 

At the instant the traffic light turns green, an automobile 
starts with a constant acceleration a of2.2 m/s2• At the same instant 
a truck, traveling with a constant speed of 9.5 mis, overtakes and 
passes the automobile. (a) How far beyond the traffic signal will 
the automobile overtake the truck? (b) How fast will the automo­
bile be traveling at that instant? 

A pilot flies horizontally at 1300 km/h, at height h = 35 m 
above initially level ground. However, at time t = 0, the pilot be­
gins to fly over ground sloping upward at angle 
() = 4.3 0 (Fig. 2-38). If the pilot does not change the airplane's 
heading, at what time t does the plane strike the ground? 

Fig. 2-38 Problem 74. 

To stop a car, first you require a certain reaction time to begin 
braking; then the car slows at a constant rate. Suppose that the to­
tal distance moved by your car during these two phases is 56.7 m 
when its initial speed is 80.5 km/h, and 24.4 m when its initial speed 
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is 48.3 kmlh. What are (a) your reaction time and (b) the magni­
tude of the acceleration? 

Figure 2-39 shows part of a street where traffic flow is to 
be controlled to allow a platoon of cars to move smoothly along 
the street. Suppose that the platoon leaders have just reached in­
tersection 2, where the green appeared when they were distance d 
from the intersection. They continue to travel at a certain speed vp 
(the speed limit) to reach intersection 3, where the green appears 
when they are distance d from it. The intersections are separated 
by distances D 23 and D 12• (a) What should be the time delay of the 
onset of green at intersection 3 relative to that at intersection 2 to 
keep the platoon moving smoothly? 

Suppose, instead, that the platoon had been stopped by a red 
light at intersection 1. When the green comes on there, the leaders 
require a certain time t,. to respond to the change and an additional 
time to accelerate at some rate a to the cruising speed vp' (b) If the 
green at intersection 2 is to appear when the leaders are distance d 
from that intersection, how long after the light at intersection 1 
turns green should the light at intersection 2 turn green? 

m 
fft 

~ aNEW.Y )) 

1 2 3 

r-D12--t'I~' D23--j 

Fig. 2-39 Problem 76. 

SSM A hot rod can accelerate from 0 to 60 kmlh in 5.4 s. 
(a) What is its average acceleration, in m/s2

, during this time? (b) 
How far will it travel during the 5.4 s, assuming its acceleration is 
constant? (c) From rest, how much time would it require to go a 
distance of 0.25 km if its acceleration could be maintained at the 
value in (a)? 

A red train traveling at 72 kmlh and a green train traveling at 
144 kmlh are headed toward each other along a straight, level 
track. When they are 950 m apart, each engineer sees the other's 
train and applies the brakes. The brakes slow each train at the rate 
of 1.0 mls2• Is there a collision? If so, answer yes and give the speed 
of the red train and the speed of the green train at impact, respec­
tively. If not, answer no and give the separation between the trains 
when they stop. 

At time t = 0, a rock 
climber accidentally allows a 
piton to fall freely from a high 
point on the rock wall to the val- '" 
ley below him. Then, after a 
short delay, his climbing partner, 
who is 10 m higher on the wall, 
throws a piton downward. The 0 2 3 

positions y of the pitons versus t t (s) 

dming the falling are given in Fig.2-40 Problem 79. 
Fig. 2-40. With what speed is the 
second piton thrown? 

A train started from rest and moved with constant accelera­
tion. At one time it was traveling 30 mis, and 160 m farther on it 
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time re-

quired to travel the 160 m mentioned, (c) the time required to at­
tain the speed of 30 mis, and (d) the distance moved from rest to 
the time the train had a speed of 30 mls. (e) Graph x versus t and v 
versus t for the train, from rest. 

A particle's acceleration along an x axis is a = 5.0t, with t 
in seconds and a in meters per second squared. At t = 2.0 s, its ve­
locity is + 17 mls. What is its velocity at t = 4.0 s? 

Figure 2-41 gives the acceleration a versus time t for a patti­
cle moving along an x axis. The a-axis scale is set by as = 12.0 mls2• 

At t = -2.0 s, the particle's velocity is 7.0 m/s. What is its velocity 
att = 6.0 s? 

Fig. 2-41 Problem 82. 

Figure 2-42 shows a simple device for measuring your 
reaction time. It consists of a cardboard strip marked with a scale 
and two large dots. A friend holds the strip vertically, with thumb 
and forefinger at the dot on the right in Fig. 2-42. You then posi­
tion your thumb and forefinger at the other dot (on the left in 
Fig. 2-42), being careful not to touch the strip. Your friend re­
leases the strip, and you try to pinch it as soon as possible after 
you see it begin to fall. The mark at the place where you pinch the 
strip gives your reaction time. (a) How far from the lower dot 
should you place the 50.0 ms mark? How much higher should 
you place the marks for (b) 100, ( c) 150, (d) 200, and (e) 250 ms? 
(For example, should the 100 ms marker be 2 times as far from 
the dot as the 50 ms marker? If so, give an answer of 2 times. Can 
you find any pattern in the answers?) 

Fig. 2-42 Problem 83. 

A rocket-driven sled running on a straight, level track is 
used to investigate the effects of large accelerations on humans. 
One such sled can attain a speed of 1600 kmlh in 1.8 s, starting 
from rest. Find (a) the acceleration (assumed constant) in terms of 
g and (b) the distance traveled. 

A mining cart is pulled up a hill at 20 kmlh and then pulled 
back down the hill at 35 kmlh through its original level. (The time 
required for the cart's reversal at the top of its climb is negligible.) 
What is the average speed of the cart for its round trip, from its 
original level back to its original level? 

A motorcyclist who is moving along an x axis directed to­
ward the east has an acceleration given by a = (6.1 - 1.2t) m/s2 



for 0 :S t :S 6.0 s. At t = 0, the velocity and position of the cyclist 
are 2.7 mls and 7.3 m. (a) What is the maximum speed achieved 
by the cyclist? (b) What total distance does the cyclist travel be­
tween t = 0 and 6.0 s? 

When the legal speed limit for the New York Thruway 
was increased from 55 milh to 65 milh, how much time was saved 
by a motorist who drove the 700 km between the Buffalo entrance 
and the New York City exit at the legal speed limit? 

A car moving with constant acceleration covered the distance 
between two points 60.0 m apart in 6.00 s. Its speed as it passed the 
second point was 15.0 m/s. (a) What was the speed at the first 
point? (b) What was the magnitude of the acceleration? (c) At 
what prior distance from the first point was the car at rest? (d) 
Graph x versus t and v versus t for the car, from rest (t = 0). 

A certain juggler usually tosses balls vertically to 
a height H. To what height must they be tossed if they are to spend 
twice as much time in the air? 

A particle starts from the ori-
gin at t = 0 and moves along the 
positive x axis. A graph of the veloc- ~ 

ity of the particle as a function of the g 
time is shown in Fig. 2-43; the v-axis '" 
scale is set by Vs = 4.0 mls. (a) What 
is the coordinate of the particle at 
t = 5.0 s? (b) What is the velocity of 

o 2 3 4 5 
t (s) 

the particle at t = 5.0 s? (c) What is 
Fig. 2-43 Problem 90. 

the acceleration of the particle at 

6 

t = 5.0 s? (d) What is the average velocity of the particle between 
t = 1.0 sand t = 5.0 s? (e) What is the average acceleration of the 
particle between t = 1.0 sand t = 5.0 s? 

A rock is dropped from a 100-m-high cliff. How long does it 
take to fall (a) the first 50 m and (b) the second 50 m? 

Two subway stops are separated by 1100 m. If a subway train 
accelerates at + 1.2 mls2 from rest through the first half of the dis­
tance and decelerates at -1.2 m/s2 through the second half, what 
are (a) its travel time and (b) its maximum speed? ( c) Graph x, v, 
and a versus t for the trip. 

A stone is thrown vertically upward. On its way up it passes 
point A with speed v, and point B, 3.00 m higher than A, with 
speed lv. Calculate (a) the speed v and (b) the maximum height 
reached by the stone above point B. 

A rock is dropped (from rest) from the top of a 60-m-tall 
building. How far above the ground is the rock 1.2 s before it 
reaches the ground? 

An iceboat has a constant velocity toward the east when 
a sudden gust of wind causes the iceboat to have a constant accel­
eration toward the east for a period of 3.0 s. A plot of x versus tis 
shown in Fig. 2-44, where t = 0 is taken to be the instant the wind 
starts to blow and the positive x axis is toward the east. (a) What is 
the acceleration of the iceboat during the 3.0 s interval? (b) What 
is the velocity of the iceboat at the end of the 3.0 s interval? (c) If 
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the acceleration remains constant for an additional 3.0 s, how far 
does the iceboat travel during this second 3.0 s interval? 

30 -

25 

20-
g 15 
~ 

1.5 
t (s) 

2 

Fig. 2-44 Problem 95. 

2.5 3 

A lead ball is dropped in a lake from a diving board 5.20 m 
above the water. It hits the water with a certain velocity and then 
sinks to the bottom with this same constant velocity. It reaches the 
bottom 4.80 s after it is dropped. (a) How deep is the lake? What 
are the (b) magnitude and (c) direction (up or down) of the aver­
age velocity of the ball for the entire fall? Suppose that all the wa­
ter is drained from the lake. The ball is now thrown from the diving 
board so that it again reaches the bottom in 4.80 s. What are the (d) 
magnitude and (e) direction of the initial velocity of the ball? 

The single cable supporting an unoccupied construction ele­
vator breaks when the elevator is at rest at the top of a 120-m-high 
building. (a) With what speed does the elevator strike the ground? 
(b) How long is it falling? (c) What is its speed when it passes the 
halfway point on the way down? (d) How long has it been falling 
when it passes the halfway point? 

Two diamonds begin a free fall from rest from the same 
height, 1.0 s apart. How long after the first diamond begins to fall 
will the two diamonds be 10 m apart? 

A ball is thrown vertically downward from the top of a 36.6-
m-tall building. The ball passes the top of a window that is 12.2 m 
above the ground 2.00 s after being thrown. What is the speed of 
the ball as it passes the top of the window? 

1 A parachutist bails out and freely falls 50 m. Then the para­
chute opens, and thereafter she decelerates at 2.0 mls2• She reaches 
the ground with a speed of 3.0 mls. (a) How long is the parachutist 
in the air? (b) At what height does the fall begin? 

A ball is thrown down vertically with an initial speed of Va 

from a height of h. (a) What is its speed just before it strikes the 
ground? (b) How long does the ball take to reach the ground? 
What would be the answers to (c) part a and (d) part b if the ball 
were thrown upward from the same height and with the same ini­
tial speed? Before solving any equations, decide whether the an­
swers to (c) and (d) should be greater than, less than, or the same 
as in (a) and (b). 

The sport with the fastest moving ball is jai alai, where mea­
sured speeds have reached 303 kmlh. If a professional jai alai player 
faces a ball at that speed and involuntarily blinks, he blacks out the 
scene for 100 ms. How far does the ball move during the blackout? 
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(a) 

(b) 

Fig. 3-1 (a) All three arrows have the 
same magnitude and direction and thus 
represent the same displacement. (b) All 
three paths connecting the two points cor­
respond to the same displacement vector. 

H IS H 
Physics deals with a great many quantities that have both size and direc­

tion, and it needs a special mathematical language-the language of vectors-to 
describe those quantities. This language is also used in engineering, the other 
sciences, and even in common speech. If you have ever given directions such as 
"Go five blocks down this street and then hang a left," you have used the language 
of vectors. In fact, navigation of any sort is based on vectors, but physics and engi­
neering also need vectors in special ways to explain phenomena involving rotation 
and magnetic forces, which we get to in later chapters. In this chapter, we focus on 
the basic language of vectors. 

Vectors and Scalars 
A particle moving along a straight line can move in only two directions. We can 
take its motion to be positive in one of these directions and negative in the other. 
For a particle moving in three dimensions, however, a plus sign or minus sign is no 
longer enough to indicate a direction. Instead, we must use a vecto/: 

A vector has magnitude as well as direction, and vectors follow certain 
(vector) rules of combination, which we examine in this chapter. A vector 
quantity is a quantity that has both a magnitude and a direction and thus can be 
represented with a vector. Some physical quantities that are vector quantities are 
displacement, velocity, and acceleration. You will see many more throughout this 
book, so learning the rules of vector combination now will help you greatly in 
later chapters. 

Not all physical quantities involve a direction. Temperature, pressure, energy, 
mass, and time, for example, do not "point" in the spatial sense. We call such 
quantities scalars, and we deal with them by the rules of ordinary algebra. A sin­
gle value, with a sign (as in a temperature of -40°F), specifies a scalar. 

The simplest vector quantity is displacement, or change of position. A vec­
tor that represents a displacement is called, reasonably, a displacement vector. 
(Similarly, we have velocity vectors and acceleration vectors.) If a particle 
changes its position by moving from A to B in Fig. 3-1a, we say that it undergoes 
a displacement from A to B, which we represent with an arrow pointing from A 
to B. The arrow specifies the vector graphically. To distinguish vector symbols 
from other kinds of arrows in this book, we use the outline of a triangle as the 
arrowhead. 

In Fig. 3-1a, the arrows from A to B, from A'to B ' , and from A" to B" have 
the same magnitude and direction. Thus, they specify identical displacement vec­
tors and represent the same change of position for the particle. A vector can be 
shifted without changing its value ~fits length and direction are not changed. 

The displacement vector tells us nothing about the actual path that the parti­
cle takes. In Fig. 3-1b, for example, all three paths connecting points A and B cor­
respond to the same displacement vector, that of Fig. 3-1a. Displacement vectors 
represent only the overall effect of the motion, not the motion itself. 
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Adding Vectors Geometrically 
Suppose that, as in the vector diagram of Fig. 3-2a, a particle moves from A to B 
and then later from B to e. We can represent its overall displacement (no matter 
what its actual path) with two successive displacement vectors, AB and Be. 
The net displacement of these two displacements is a single displacement from A 
to e. We call AC the vector sum (or resultant) of the vectors AB and Be. This 
sum is not the usual algebraic sum. 

In Fig. 3-2b, we redraw the vectors of Fig. 3-2a and relabel them in the way 
that we shall use from now on, namely, with an arrow over an italic symbol, as 
in a. If we want to indicate only the magnitude of the vector (a quantity that lacks 
a sign 01' direction), we shall use the italic symbol, as in a, b, and s. (You can use 
just a handwritten symbol.) A symbol with an overhead arrow always implies 
both properties of a vector, magnitude and direction. 

We can represent the relation among the three vectors in Fig. 3-2b with the 
vector equation 

s = a + b, (3-1) 

which says that the vector s is the vector sum of vectors a and b. The symbol + in 
Eq. 3-1 and the words "sum" and "add" have different meanings for vectors than 
they do in the usual algebra because they involve both magnitude and direction. 

Figure 3-2 suggests a procedure for adding two-dimensional vectors a and b 
geometrically. (1) On paper, sketch vector a to some convenient scale and at the 
proper angle. (2) Sketch vector b to the same scale, with its tail at the head of vec­
tor a, again at the proper angle. (3) The vector sum s is the vector that extends 
from the tail of a to the head of b. 

Vector addition, defined in this way, has two important properties. First, the 
order of addition does not matter. Adding a to b gives the same result as adding 
b to a (Fig. 3-3); that is, 

(commutative law). (3-2) 

Second, when there are more than two vectors, we can group them in any order 
as we add them. Thus, if we want to add vectors a, b, and C, we can add a and b 
first and then add their vector sum to C. We can also add band c first and then 
add that sum to a. We get the same result either way, as shown in Fig. 3-4. That is, 

(a + b) + c = a + (b + c) (associative law). (3-3) 

The vector b is a vector with the same magnitude as b but the opposite 
direction (see Fig. 3-5). Adding the two vectors in Fig. 3-5 would yield 

b + (-b) = o. 

You get the same vector 
result for any order of 
adding the vectors. 

Fig. 3-4 TIle three vectors a, b, and c can be grouped in any way as they are added; see 
Eq.3-3. 

B 

(a) 

____________ To add a and b, 
!.. _ draw them 

b head to tail. 

is the 
resulting vector, 
from tail of a 
to head of b. 

Fig. 3-2 (a) AC is the vector sum of the 
vectors AB and Be. (b) The same vectors 
relabeled. 

You get the same vector 
result for either order of 
adding vectors. 

Fig. 3-3 The two vectors a and b can be 
added in either order; see Eq. 3-2. 

Fig. 3-5 The vectors band - b have the 
same magnitude and opposite directions. 
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Thus, adding - b has the effect of subtracting b. We use this property to define 
the difference between two vectors: let d = a-b. Then 

(a) 
d = a - b = a + (-b) (vector subtraction); (3-4) 

Note head-to-tail 
""14'"'''''''' for 

that is, we find the difference vector d by adding the vector - b to the vector a. 
Figure 3-6 shows how this is done geometrically. 

--> 
d= 

As in the usual algebra, we can move a term that includes a vector symbol 
from one side of a vector equation to the other, but we must change its sign. 
For example, if we are given Eq. 3-4 and need to solve for a, we can rearrange the 
equation as 

d + b = a or a = d + b. 
(b) 

Fig.3-6 (a)Vectorsa,b,and-b.(b)To 
subtract vector b from vector a, add vector 

b to vector a. 

Remember that, although we have used displacement vectors here, the rules 
for addition and subtraction hold for vectors of all kinds, whether they represent 
velocities, accelerations, or any other vector quantity. However, we can add 
only vectors of the same kind. For example, we can add two displacements, or two 
velocities, but adding a displacement and a velocity makes no sense. In the arith­
metic of scalars, that would be like trying to add 21 sand 12 m. 

CHECKPOINT 1 

The magnitudes of displacements a and bare 3 m and 4 m, respectively, and 
c = a + b. Considering various orientations ofa and b, what is (a) the maximum pos­
sible magnitude for c and (b) the minimum possible magnitude? 

Adding vectors in a drawing, orienteering 

In an orienteering class, you have the goal of moving as far 
(straight-line distance) from base camp as possible by mak­
ing three straight-line moves. You may use the following 
displacements in any order: (a) 71,2.0 km due east (directly 
toward the east); (b) b, 2.0 km 30° north of east (at an angle 
of 30° toward the north from due east); (c) c, 1.0 km due 
west. Alternatively, you may substitute either - b for b or 
- c for c. What is the greatest distance you can be from base 
camp at the end of the third displacement? 

Reasoning: Using a convenient scale, we draw vectors a, b, 
c, -b, and -c as in Fig. 3-7a. We then mentally slide the 
vectors over the page, connecting three of them at a time in 
head-to-tail arrangements to find their vector sum d. The 
tail of the first vector represents base camp. The head of the 
third vector represents the point at which you stop. The vec­
tor sum d extends from the tail of the first vector to the head 
of the third vector. Its magnitude d is your distance from 
base camp. 

We find that distance d is greatest for a head-to-tail 
arrangement of vectors a, b, and -c. They can be in any 
order, because their vector sum is the same for any order. 

Scale ofkm 
I 

012 

(a) 

--> --> 
a -c 

This is the vector result 
for adding those three 
vectors in any order. 

(b) 

Fig. 3-7 (a) Displacement vectors; three are to be used. (b) Your 
distance from base camp is greatest if you undergo displacements 
a, b, and - c, in any order. 

The order shown in Fig. 3-7 b is for the vector sum 
-> -> -> (-» d = b + a + -c. 

Using the scale given in Fig. 3-7a, we measure the length d of 
this vector sum, finding 

d = 4.8 m. (Answer) 

Additional examples, video, and practice available at WileyPLUS 



Components of Vectors 
Adding vectors geometrically can be tedious. A neater and easier technique 
involves algebra but requires that the vectors be placed on a rectangular coordi­
nate system. The x and y axes are usually drawn in the plane of the page, as shown 
in Fig. 3-8a. The z axis comes directly out of the page at the origin; we ignore it for 
now and deal only with two-dimensional vectors. 

A component of a vector is the projection of the vector on an axis. In Fig. 
3-8a, for example, a, is the component of vector a on (or along) the x axis and ay 
is the component along the y axis. To find the projection of a vector along an axis, 
we draw perpendicular lines from the two ends of the vector to the axis, as shown. 
The projection of a vector on an x axis is its x component, and similarly the pro­
jection on the y axis is the y component. The process of finding the components of 
a vector is called resolving the vector. 

A component of a vector has the same direction (along an axis) as the vector. 
In Fig. 3-8, a, and ay are both positive because a extends in the positive direction 
of both axes. (Note the small arrowheads on the components, to indicate their di­
rection.) If we were to reverse vector a, then both components would be negative 
and their arrowheads would point toward negative x and y. Resolving vector b in 
Fig. 3-9 yields a positive component b,and a negative component by. 

In general, a vector has three components, although for the case of Fig. 3-8a 
the component along the z axis is zero. As Figs. 3-8a and b show, if you shift a vec­
tor without changing its direction, its components do not change. 

)' 

This is the y component 
of the vector. 

I 

)' 

Lt; __ L" ~~~" 

T~~: is the x compone~: 
of the vector. 

The components and the 
(c) vector form a right triangle. 

Fig. 3-8 (a) The components a, and ay of vector a. (b) The components are unchanged if the 
vector is shifted, as long as the magnitude and orientation are maintained. (c) The components 
form the legs of a right triangle whose hypotenuse is the magnitude of the vector. 

We can find the components of a in Fig. 3-8a geometrically from the right tri­
angle there: 

ax = a cos e and ay = a sin e, (3-5) 

where e is the angle that the vector a makes with the positive direction of the 
x axis, and a is the magnitude of a. Figure 3-8c shows that a and its x and y com­
ponents form a right triangle. It also shows how we can reconstruct a vector from 
its components: we arrange those components head to tail. Then we complete a 
right triangle with the vector forming the hypotenuse, from the tail of one com­
ponent to the head of the other component. 

Once a vector has been resolved into its components along a set of axes, the 
components themselves can be used in place of the vector. For example, a in 
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Fig. 3-9 The component of b on the x 
axis is positive, and that on the y axis is 
negative. 
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Fig. 3-8a is given (completely determined) by a and e. It can also be given by its 
components at and ay. Both pairs of values contain the same information. If we 
know a vector in component notation (at and ay) and want it in magnitude-angle 
notation (a and e), we can use the equations 

to transform it. 

ay 
tan e =­

at 
(3-6) 

In the more general three-dimensional case, we need a magnitude and two 
angles (say, a, e, and ¢) or three components (an ay, and az) to specify a vector. 

CHECKPOINT 2 

In the figure, which of the indicated methods for combining the x and y components 
of vector a are proper to determine that vector? 

y 

(a) 

)' 

---,.-x 

(d) 

Finding components, airplane flight 

A small airplane leaves an airport on an overcast day and is 
later sighted 215 km away, in a direction making an angle of 
22° east of due north. How far east and north is the airplane 
from the airport when sighted? 

We are given the magnitude (215 km) and the angle (22° 
east of due north) of a vector and need to find the compo­
nents of the vector. 

(b) 

(e) 

y y 

(c) 

)' y 

-r"1---"--,j-- X 

100 
Distance (km) 

(J) 

Calculations: We draw an xy coordinate system with the 
positive direction of x due east and that of y due north (Fig. 
3-10). For convenience, the origin is placed at the airport. 
The airplane's displacement d points from the origin to 
where the airplane is sighted. 

Fig. 3-10 A plane takes off from an airport at the origin and is 
later sighted at P. 



To find the components of d, we use Eq. 3-5 with e = 

68° (= 90° - 22°): 

dx = d cos e = (215 km)( cos 68°) 

= 81 km (Answer) 
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dy = d sin e = (215 km)(sin 68°) 

= 199 km = 2.0 X 102 km. (Answer) 

Thus, the airplane is 81 km east and 2.0 X 102 km north of 
the airport. 

Angles, trig functions, and inverse trig functions 

Angles-Degrees and Radians Angles that are 
measured relative to the positive direction of the x axis are positive 
if they are measured in the counterclockwise direction and nega­
tive if measured clockwise. For example, 210° and -150° are the 
same angle. 

Angles may be measured in degrees or radians (rad). To relate 
the two measures, recall that a full circle is 360° and 27Trad. To con­
vert, say, 40° to radians, write 

° 27Trad _ . 
40 ~ - 0.70rad. 

Trig Functions You need to know the definitions 
of the common trigonometric functions-sine, cosine, and tan­
gent-because they are part of the language of science and engi­
neering. They are given in Fig. 3-11 in a form that does not depend 
on how the triangle is labeled. 

You should also be able to sketch how the trig functions vary 
with angle, as in Fig. 3-12, in order to be able to judge whether a 
calculator result is reasonable. Even knowing the signs of the func­
tions in the various quadrants can be of help. 

sin e = leg opposite e 
hypotenuse 

cos e = leg adjacent to e 
hypotenuse 

tan e = leg opposite e 
leg acljacent to e 

Fig. 3-11 A triangle used to define the trigonometric functions. 
See also Appendix E. 

Inverse Trig Functions When the inverse trig 
functions sin-I, COS-I, and tan-I are taken on a calculator, you must 
consider the reasonableness of the answer you get, because there is 
usually another possible answer that the calculator does not give. 
The range of operation for a calculator in taking each inverse trig 
function is indicated in Fig. 3-12. As an example, sin-I 0.5 has asso­
ciated angles of 30° (which is displayed by the calculator, since 30° 
falls within its range of operation) and 150°. To see both values, 
draw a horizontal line through 0.5 in Fig. 3-12a and note where it 
cuts the sine curve. How do you distinguish a correct answer? It is 
the one that seems more reasonable for the given situation. 

Measuring Vector Angles The equations for 
cos 8 and sin 8 in Eq. 3-5 and for tan 8 in Eq. 3-6 are valid only if 

the angle is measured from the positive direction of the x axis. If it 
is measured relative to some other direction, then the trig func­
tions in Eq. 3-5 may have to be interchanged and the ratio in Eq. 
3-6 may have to be inverted. A safer method is to convert the angle 
to one measured from the positive direction of the x axis. 

-900 

.... L 
I 
i 
i 

+2 

(c) 

360 0 

r 

[ 

! 
; 

Fig.3-12 Three useful curves to remember. A calculator's range 
of operation for taking inverse trig functions is indicated by the 
darker portions of the colored curves. 

Additional examples, video, and practice available at WileyPLUS 
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The unit vectors point 
along axes. 

y 

Fig. 3-13 Unit vectors i, J, and k define 
the directions of a right-handed coordinate 
system. 

This is the y vector 
component. 

)' 

1------- I 

o 

I 
I 
I 
I 
I 
I 

- --1 
I I 

T:::'",he xveelo, 
(a) component. 

(JJ, I b3 e 0, h-- X 

\I->~,,,, 
r---------~"" 

(b) 

Fig.3-14 (a) The vector components of 
vector 7i. (b) The vector components 
of vector b. 

Unit Vectors 
A unit vector is a vector that has a magnitude of exactly 1 and points in a particu­
lar direction. It lacks both dimension and unit. Its sole purpose is to point-that 
is, to specify a direction. The unit vectors in the positive directions of the x, y, and 
z axes are labeled 1, J, and k, where the hat ~ is used instead of an overhead arrow 
as for other vectors (Fig. 3-13). The arrangement of axes in Fig. 3-13 is said to be a 
right-handed coordinate system. The system remains right-handed if it is rotated 
rigidly. We use such coordinate systems exclusively in this book. 

Unit vectors are very useful for expressing other vectors; for example, we can 
express a and b of Figs. 3-8 and 3-9 as 

and 

a = a3 + ayJ 

b = b) + b;J 

(3-7) 

(3-8) 

These two equations are illustrated in Fig. 3-14. The quantities a) and ayJ are vec­
tors, called the vector components of a. The quantities a, and ay are scalars, called 
the scalar components ofa (or, as before, simply its components). 

Adding Vectors by Components 
Using a sketch, we can add vectors geometrically. On a vector-capable calculator, 
we can add them directly on the screen. A third way to add vectors is to combine 
their components axis by axis, which is the way we examine here. 

To start, consider the statement 

r = a + b, (3-9) 

which says that the vector r is the same as the vector (a + b). Thus, each 
component of r must be the same as the corresponding component of (a + b): 

rx = a, + b, (3-10) 

ry = ay + by (3-11) 

rz = az + bz. (3-12) 

In other words, two vectors must be equal if their correspondin~ components are 
equal. Equations 3-9 to 3-12 tell us that to add vectors a and b, we must (1) re­
solve the vectors into their scalar components; (2) combine these scalar compo­
nents, axis by axis, to get the components of the sum r; and (3) combine 
the components of r to get r itself. We have a choice in step 3. We can express r 
in unit-vector notation or in magnitude-angle notation. 

This procedure for adding vectors by components also applies to vector 
subtractions. Recall that a subtraction such as d = a --- b can be rewritten as an 
addition d = a + (---b). To subtract, we add a and ---b by components, to get 

dx = a, --- bn dy = ay --- by, and dz = az --- bz, 

where d = d,3 + d) + dzk. (3-13) 

CHECKPOINT 3 

(a) In the figure here, what are the signs of the x com­
ponents of ~ an1 a;? (~ What are the signs of the y 
components of d1 and dz? (c) What are the signs of 
the x and y components of ~ + a;? 

~----------------X 
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Adding vectors, unit-vector components 

Figure 3-15a shows the following three vectors: 

a = (4.2 m)i - (1.5 m)), 

b = (-1.6 m)l + (2.9 m»), 

and c = (-3.7 m»). 

What is their vector sum r which is also shown? 

To add these vectors, 
I-----r-"--r---'r--~I- find their net x component 

r----l-"--i----i--\+II- and their net y component. 

(b) 

Then arrange the net 
components head to tail. 

This is the result of the addition. 

Fig. 3-15 Vector r is the vector sum of the other three vectors. 

We can add the three vectors by components, axis by axis, 
and then combine the components to write the vector 
sumr. 

Calculations: For the x axis, we add the x components of 71, 
~ ~ ~ 
b, and c, to get the x component of the vector sum r: 

rx = at + bx + Ct 

= 4.2 m - 1.6 m + 0 = 2.6 m. 

Similarly, for the y axis, 

ry = ay + by + cy 
= -1.5 m + 2.9 m - 3.7 m = -2.3 m. 

We then combine these components of r to write the vector 
in unit-vector notation: 

r = (2.6 m)i - (2.3 m»), (Answer) 

where (2.6 m)i is the vector component ofr along the x axis 
and - (2.3 m)] is that along the y axis. Figure 3-15b shows 
one way to arrange these vector components to form r. 
(Can you sketch the other way?) 

We can also answer the question by giving the magnitude 
and an angle for r. From Eq. 3-6, the magnitude is 

r = V(2.6 m)2 + (-2.3 m)2 = 3.5 m 

and the angle (measured from the +x direction) is 

e = tan- 1 ( -2.3m) = -41°, 
2.6m 

where the minus sign means clockwise. 

(Answer) 

(Answer) 

Adding vectors by components, desert ant 

The desert ant Cataglyphis fortis lives in the plains of the 
Sahara desert. When one of the ants forages for food, it 
travels from its home nest along a haphazard search path, 
over flat, featureless sand that contains no landmarks. Yet, 
when the ant decides to return home, it turns and then runs 
directly home. According to experiments, the ant keeps 
track of its movements along a mental coordinate system. 
When it wants to return to its home nest, it effectively sums 
its displacements along the axes of the system to calculate a 
vector that points directly home. As an example of the cal­
culation, let's consider an ant making five runs of 6.0 cm 
each on an xy coordinate system, in the directions shown in 

Fig. 3-16a, starting from home. At the end of the fifth run, 
what are the magnitude and angle of the ant's net displace­
ment vector dnet , and what are those of the homeward vec­
tor dhome that extends from the ant's final position back 
to home? In a real situation, such vector calculations might 
involve thousands of such runs. 

(1) To find the net displacement dnet , we need to sum the 
five individual displacement vectors: 

dnet = d1 + d2 + d3 + d4 + ds. 
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(2) We evaluate this sum for the x components alone, 

dnct,x = dlt + d 2t + d 3x + d 4x + d 5.n (3-14) 

and for the y components alone, 

dnet,y = d 1y + d 2y + d 3y + d 4y + d 5y' (3-15) 

(3) We construct dnet from its x and y components. 

Calculations: To evaluate Eq. 3-14, we apply the x part of 
Eq. 3-5 to each run: 

d1x = (6.0 cm) cos 0° = +6.0 cm 
d2t = (6.0 cm) cos 150° = -5.2 cm 
d3x = (6.0 cm) cos 180° = -6.0 cm 
d4x = (6.0 cm) cos(-1200) = -3.0cm 
d5x = (6.0 cm) cos 90° = O. 

Equation 3-14 then gives us 

dnet,x= +6.0 cm + (-5.2 cm) + (-6.0 cm) 
+ (-3.0cm) + 0 

= -8.2 cm. 

Similarly, we evaluate the individual y components of the 
five runs using the y part of Eq. 3-5. The results are shown in 
Table 3-1. Substituting the results into Eq. 3-15 then gives us 

dnet,y = +3.8 cm. 

Run d t (em) dy (em) 

1 +6.0 0 
2 -5.2 +3.0 
3 -6.0 0 
4 -3.0 -5.2 

5 0 +6.0 

net -8.2 +3.8 

Vector dnet and its x and y components are shown in 
Fig. 3-16b. To find the magnitude and angle of dnet from its 
components, we use Eq. 3-6. The magnitude is 

d net = v' d~et,x + d~et,y 
= v'( -8.2 cm)2 + (3.8 cm)2 = 9.0 cm. 

To find the angle (measured from the positive direction of 
x), we take an inverse tangent: 

e = tan-1 (dnet,y ) (3-16) 
doet,x 

= tan- 1 ( 3.8 cm ) = -24.860. 
-8.2 cm 

To add these vectors, 
find their net x component 
and their net y component. 

(a) 

Then arrange the net 
components head to tail. 

This is the result of the 
addition. 

y 

x x 
8.2 em 

Home 

(b) (c) 

Fig. 3-1 ~ (a) A search -path of ~ve runs. (b) The x and y compo­
nents of d net. (c) Vector dhorne pomts the way to the home nest. 

Caution: Taking an inverse tangent on a calculator may not 
give the correct answer. The answer -24.86° indicates that 
the direction ofdnet is in the fourth quadrant of our xy coor­
dinate system. However, when we construct the vector from 
its components (Fig. 3-16b), we see that the direction of d net 

is in the second quadrant. Thus, we must "fix" the calcula­
tor's answer by adding 180°: 

(3-17) 

Thus, the ant's displacement d net has magnitude and angle 

d net = 9.0 cm at 155°. (Answer) 

Vector d
h 

directed from the ant to its home has the 
ome ---+ 

same magnitude as d net but the opposite direction 
(Fig. 3-16c). We already have the angle (-24.86° = -25°) 
for the direction opposite d net . Thus, d

home 
has magnitude 

and angle 

dhome = 9.0 cm at -25°. (Answer) 

A desert ant traveling more than 500 m from its home will 
actually make thousands of individual runs. Yet, it some­
how knows how to calculate d

h 
(without studying this 

ome 
chapter). 

Additional examples, video, and practice available at WileyPLUS 



Vectors and the Laws of Physics 
So far, in every figure that includes a coordinate system, the x and y axes are par­
allel to the edges of the book page. Thus, when a vector a is included, its compo­
nents a" and ay are also parallel to the edges (as in Fig. 3-17a). The only reason for 
that orientation of the axes is that it looks "proper"; there is no deeper reason. 
We could, instead, rotate the axes (but not the vector a) through an angle cp as in 
Fig. 3-17 b, in which case the components would have new values, call them a~ and 
a;,. Since there are an infinite number of choices of cp, there are an infinite number 
of different pairs of components for 71. 

Which then is the "right" pair of components? The answer is that they are all 
equally valid because each pair (with its axes) just gives us a different way of de­
scribing the same vector a; all produce the same magnitude and direction for the 
vector. In Fig. 3-17 we have 

a = Va~ + a;' = Va? + a? (3-18) 
and 

(J = (J' + cp. (3-19) 

The point is that we have great freedom in choosing a coordinate system, 
because the relations among vectors do not depend on the location of the ori­
gin or on the orientation of the axes. This is also true of the relations of 
physics; they are all independent of the choice of coordinate system. Add to 
that the simplicity and richness of the language of vectors and you can see why 
the laws of physics are almost always presented in that language: one equation, 
like Eq. 3-9, can represent three (or even more) relations, like Eqs. 3-10, 3-11, 
and 3-12. 

Fig.3-17 (a) The vector a 
and its components. (b) The 
same vector, with the axes of 
the coordinate system rotated 
through an angle cP. 

Multiplying Vectors* 

(a) 

Rotating the axes 
changes the components 
but not the vector. 

)' 

x' 

,"""-----'----x 

(b) 

There are three ways in which vectors can be multiplied, but none is exactly like 
the usual algebraic multiplication. As you read this section, keep in mind that a 
vector-capable calculator will help you multiply vectors only if you understand 
the basic rules of that multiplication. 

If we multiply a vector a by a scalar s, we get a new vector. Its magnitude is 
the product of the magnitude of a and the absolute value of s. Its direction is the 

*This material will not be employed until later (Chapter 7 for scalar products and Chapter 11 for vec­
tor products), and so your instructor may wish to postpone assignment of this section. 
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direction of a if s is positive but the opposite direction if s is negative. To divide a 
by s, we multiply a by lis. 

There are two ways to multiply a vector by a vector: one way produces a scalar 
(called the scalar product), and the other produces a new vector (called the vector 
product). (Students commonly confuse the two ways.) 

The scalar product of the vectors a and b in Fig. 3-18a is written as a' band 
defined to be 

--?--? 

a . b = ab cos ¢, (3-20) 

where a is the magnitude of a, b is the magnitude of b, and ¢ is the angle between 
a and b (or, more properly, between the directions of a and b). There are actually 
two such angles: ¢ and 3600 

- ¢. Either can be used in Eq. 3-20, because their 
cosines are the same. 

Note that there are only scalars on the right side of Eq. 3-20 (including the 
value of cos ¢). Thus a' b on the left side represents a scalar quantity. Because of 
the notation, a' b is also known as the dot product and is spoken as "a dot b." 

A dot product can be regarded as the product of two quantities: (1) the mag­
nitude of one of the vectors and (2) the scalar component of the second vector 
along the direction of the first vector. For example, in Fig. 3-18b, a has a scalar 
component a cos ¢ along the direction of b; note that a perpendicular dropped 
from the head of a onto b determines that component. Similarly, b has a scalar 
component b cos ¢ along the direction ofa. 

If the angle ¢ between two vectors is 00, the component of one vector along the 
other is maximum, and so also is the dot product of the vectors. If, instead, ¢ is 900

, the 
component of one vector along the other is zero, and so is the dot product. 

Equation 3-20 can be rewritten as follows to emphasize the components: 

a· b = (a cos ¢)(b) = (a)(b cos ¢). (3-21) 

Fig.3-18 (a) Two vectors a 
and E, with an angle ¢ between 
them. (b) Each vector has a 
component along the direction 
of the other vector. 

Component of b 
along direction Of, ./ 

ais bcos cp /'<" 
Multiplying these gives 'I, "" 

\ ' 
the dot product. ,,' 

Or multiplying these 
gives the dot product. 

Component ofa 

along direction of 

bis a cos cp 
(b) 
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The commutative law applies to a scalar product, so we can write 

a·b = b·a. 
When two vectors are in unit-vector notation, we write their dot product as 

a· b = (a) + ay] + aJ). (b) + byJ + bJ), (3-22) 

which we can expand according to the distributive law: Each vector component 
of the first vector is to be dotted with each vector component of the second vec­
tor. By doing so, we can show that 

(3-23) 

"'CHECKPOINT 4 

Vectors C and 15 have magnitudes of 3 units and 4 units, respectively. What is the 
angle between the directions of C and 15 if C' 15 equals (a) zero, (b) 12 units, and 
(c) -12 units? 

Angle between two vectors using dot products 

What is the angle <p between a = 3.01 - 4.0J and b = 
- 2.01 + 3.0k? (Caution: Although many of the following steps 
can be bypassed with a vector-capable calculator, you will learn 
more about scalar products if, at least here, you use these steps.) 

ing the vectors in unit-vector notation and using the distrib­
utivelaw: 

The angle between the directions of two vectors is included 
in the definition of their scalar product (Eq. 3-20): 

-> -> ( a . b = ab cos <p. 3-24) 

Calculations: In Eq. 3-24, a is the magnitude of a, or 

a = \13.0 2 + (-4.0)2 = 5.00, (3-25) 

and b is the magnitude of b, or 

b = Y( -2.0)2 + 3.0 2 = 3.61. (3-26) 

We can separately evaluate the left side of Eq. 3-24 by writ-

a' b = (3.01 - 4.0J) . (-2.01 + 3.0k) 

= (3.01)· (-2.01) + (3.01)· (3.0k) 

+ (-4.0J)· (-2.01) + (-4.0])' (3.0k). 

We next apply Eq. 3-20 to each term in this last expression. 
The angle between the unit vectors in the first term (1 and 1) is 
0°, and in the other terms it is 90°. We then have 

a' b = -(6.0)(1) + (9.0)(0) + (8.0)(0) - (12)(0) 
= -6.0. 

Substituting this result and the results of Eqs. 3-25 and 3-26 
into Eq. 3-24 yields 

-6.0 = (5.00)(3.61) cos <p, 

so ..J.. - -1 -6.0 = 1090 = 1100. 
'f' - cos (5.00)(3.61) (Answer) 

Additional examples. video, and practice available at WileyPLUS 

The vector product of a and b, written a x b, produces a third vector c whose 
magnitude is 

c = ab sin <p, (3-27) 

where <p is the smaller of the two angles between a and b. (You must use the 
smaller of the two angles between the vectors because sin <p and sin(360° - <p) 
differ in algebraic sign.) Because of the notation, a x b is also known as the cross 
product, and in speech it is "a cross b." 
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If a and h are parallel or antiparallel, a x h = o. The magnitude of aX h, which 
can be written as la x hi, is maximum when a and h are perpendicular to each other. 

The direction of e is perpendicular to the plane that contains a and b. Figure 
3-19a shows how to determine the direction of e = a x b with what is known as 
a right-hand rule. Place the vectors a and b tail to tail without altering their ori­
entations, and imagine a line that is perpendicular to their plane where they 
meet. Pretend to place your right hand around that line in such a way that your 
fingers would sweep a into b through the smaller angle between them. Your out­
stretched thumb points in the direction ofe. 

The order of the vector multiplication is important. In Fig. 3-19b, we are 
determining the direction of e'= b x a, so the fingers are placed to sweep b into 
a through the smaller angle. The thumb ends up in the opposite direction from 

(a) 

(b) 

Fig.3-19 Illustration of the right-hand rule for vector products. (a) Sweep vector a into 
vector h with the fingers of your right hand. Your outstretched thumb shows the direction 
of vector C = a x h. (b) Showing that h x a is the reverse of a X h. 



previously, and so it must be thatc' = - c; that is, 

~ ---7 ~---+) b x a = -(a X b . (3-28) 

In other words, the commutative law does not apply to a vector product. 
In unit-vector notation, we write 

a x b = (a3 + ay] + a)() x (b) + by] + b)(), (3-29) 

which can be expanded according to the distributive law; that is, each component 
of the first vector is to be crossed with each component of the second vector. The 
cross products of unit vectors are given in Appendix E (see "Products of 
Vectors"). For example, in the expansion ofEq. 3-29, we have 

a3 X b) = a,bJI x 1) = 0, 

because the two unit vectors 1 and 1 are parallel and thus have a zero cross prod­
uct. Similarly, we have 

a3 x by] = a,by(1 x ]) = a,byk. 

In the last step we used Eq. 3-27 to evaluate the magnitude of 1 x J as unity. 
(These vectors 1 and] each have a magnitude of unity, and the angle between 
them is 90°.) Also, we used the right-hand rule to get the direction of 1 x ] as 
being in the positive direction of the z axis (thUS in the direction of k). 

Continuing to expand Eq. 3-29, you can show that 

a x b = (ayb z - byaz)1 + (azb, - bAJ] + (a,by - bxay)k. (3-30) 

A determinant (Appendix E) or a vector-capable calculator can also be used. 
To check whether any xyz coordinate system is a right-handed coordinate 

system, use the right-hand rule for the cross product 1 x ] = k with that system. If 
your fingers sweep 1 (positive direction of x) into] (positive direction of y) with 
the outstretched thumb pointing in the positive direction of z (not the negative 
direction), then the system is right-handed. 

CHECKPOINT 5 

Vectors C and D have magnitudes of 3 units and 4 units, respectively. What is the angle 
between the directions of C and D if the magnitude of the vector product C X D is (a) 
zero and (b) 12 units? 

Cross product, right-hand rule 

In Fig. 3-20, vector a lies in the xy plane, has a magnitude of 
18 units and points in a direction 250° from the positive di­
rection of the x axis. Also, vector b has a magnitude of 
12 units and points in the positive direction of the z axis. What 
is the vector product c = a x b? 
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Sweep ainto E. 

)' 

This is the resulting 
vector, perpendicular to 
both aand 5. When we have two vectors in magnitude-angle notation, we 

find the magnitude of their cross product with Eq. 3-27 and 
the direction of their cross product with the right-hand rule 
of Fig. 3-19. 

Fig. 3-20 Vector c (in the xy plane) is the vector (or cross) 
product of vectors 7i and b. 
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Calculations: For the magnitude we write 

c = ab sin ¢ = (18)(12)(sin 90°) = 216. (Answer) 

To determine the direction in Fig. 3-20, imagine placing the 
fingers of your r~ht hand around a line perpendicular to the 
plane of a and b (the line on which e is shown) such that 
your fingers sweep a into b. Your outstretched thumb then 

gives the direction ofe. Thus, as shown in the figure, e lies in 
the xy plane. Because its direction is perpendicular to the 
direction of a (a cross product always gives a perpendicular 
vector), it is at an angle of 

(Answer) 

from the positive direction of the x axis. 

Cross product, unit-vector notation 
~ A A ~ A A ~~--? 

If a = 3i - 4j and b = -2i + 3k, what is c = a X b? 

When two vectors are in unit-vector notation, we can find 
their cross product by using the distributive law. 

Calculations: Here we write 

e = (3i - 4) X (-2i + 3k) 

= 3i X (-2i) + 3i X 3k + (-4)) X (-2i) 

+ (-4}) X 3k. 

We next evaluate each term with Eq. 3-27, finding the 
direction with the right-hand rule. For the first term here, 
the angle ¢ between the two vectors being crossed is O. For 
the other terms, ¢ is 90°. We find 

e = -6(0) + 9(-j) + 8(-k) - 12i 

= -12i - 9) - 8 k. (Answer) 

This vector e is perpendicular to both a and b, a fact you 
can check by showing that e' a = 0 and e· b = 0; that is, 
there is no component of e along the direction of either 
aor b. 

Additional examples, video, and practice available at WileyPLUS 

Scalars and Vectors Scalars, such as temperature, have mag­
nitude only. They are specified by a number with a unit (100C) and 
obey the rules of arithmetic and ordinary algebra. Vectors, such as 
displacement, have both magnitude and direction (5 m, north) and 
obey the rules of vector algebra. 

Adding Vectors Geometrically Two vectors a and b may be 
added geometrically by drawing them to a common scale and plac­
ing them head to tail. The vector connecting the tail of the first to 
the head of the second is the vector sum s. To subtract b from a, 
reverse the direction of b to get - b; then add - b to a. Vector ad­
dition is commutative and obeys the associative law. 

Components of a Vector The (scalar) components a r and ay 
of any two-dimensional vector a along the coordinate axes are 
found by dropping perpendicular lines from the ends ofa onto the 
coordinate axes. The components are given by 

at = a cos Band ay = a sin B, (3-5) 

where B is the angle between the positive direction of the x axis 
and the direction of a. The algebraic sign of a component indicates 

its direction along the associated axis. Given its components, we 
can find the magnitude and orientation of the vector a with 

a = ~ and tan B = .!!L. (3-6) 
x y at 

Unit-Vector Notation Unit vectors 1, J, and k have magnitudes 
of unity and are directed in the positive directions of the x, y, and z 
axes, respectively, in a right-handed coordinate system. We can 
write a vector a in terms of unit vectors as 

(3-7) 

in which a), ayJ, and azk are the vector components ofa and an ay, 
and az are its scalar components. 

Adding Vectors in Component Form To add vectors in 
component form, we use the rules 

r t = at + bt ry = ay + by rz = az + bz. (3-10 to 3-12) 

Here a and b are the vectors to be added, and 7 is the vector sum. 
Note that we add components axis by axis. 



Product of a Scalar and a Vector The product of a scalar s 
and a vector v is a new vector whose magnitude is sv and whose di­
rection is the same as that of \1 if s is positive, and opposite that of 
v if s is negative. To divide \1 by s, multiply \1 by lis. 

The Scalar Product The scalar (or dot) pI'oduct of two 
vectors a and b is written a . b and is the scalar quantity given by 

a' b = ab cos cP, (3-20) 

in which cP is the angle between the directions of a and b. A scalar 
product is the product of the magnitude of one vector and the 
scalar component of the second vector along the direction of the 
first vector. In unit-vector notation, 

a· b = (a) + ay] + aJ)· (b) + by] + bJ), (3-22) 

Can the sum of the magnitudes of two vectors ever be equal to 
the magnitude of the sum of the same two vectors? If no, why not? If 
yes, when? 

The two vectors shown in Fig. 3-21 lie in an xy plane. What are the 
signs of the x and y components, respectively, of (a) ~ + Ch, (b) 
~ - Ch,and (c) Ch - ~? 

Fig. 3-21 Question 2. 

Being part of the "Gators," the University of Florida golfing 
team must play on a putting green with an alligator pit. Figure 3-22 
shows an overhead view of one putting challenge of the team; an 
xy coordinate system is superimposed. Team members must putt 
from the origin to the hole, which is at xy coordinates (8 m, 12 m), 
but they can putt the golf ball using only one or more of the follow­
ing displacements, one or more times: 

-a: = (8 m)i + (6 m)], Ch = (6 m)], C4 = (8 m)i. 

The pit is at coordinates (8 m, 6 m). If a team member putts the ball 

y 

Fig. 3-22 Question 3. 
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which may be expanded according to the distributive law. Note 
thata'b = b·a. 

The Vector Product The vector (or cross) product of two vec­
tors a and b is written a x b and is a vector e whose magnitude cis 
given by 

c = ab sin cP, (3-27) 

in which cP is the smaller of the angles between the directions of a 
and b. The direction of e is perpendicular to the plane 
defined by a and b and is given by a right-hand rule, as shown in 
Fig. 3-19. Note that a x b = -(b x a). In unit-vector notation, 

a x b = (a) + ay] + aJ) X (bJ + by] + bJ), (3-29) 

which we may expand with the distributive law. 

into or through the pit, the member is automatically transferred to 
Florida State University, the arch rival. What sequence of displace­
ments should a team member use to avoid the pit? 

Equation 3-2 shows that the addition of two vectors a and b is 
commutative. Does that mean subtraction is commutative, so that 
a - b = b -a? 

Which of the arrangements of axes in Fig. 3-23 can be labeled 
"right-handed coordinate system"? As usual, each axis label indi­
cates the positive side of the axis. 

z 

x-----7I''---- x-----7/''----

y 
y 

(a) (b) 

x 

z-----7/''---- ---,f---y 

y 

(d) (e) 

Fig. 3-23 Question 5. 

Describe two vectors a and b such that 

(a) a + b = e and a + b = c; 

(b) a + b = a - b; 
(c) a + b = e and a2 + b2 = c2• 

x 

y-----7/''----

z 

(c) 

z 

---7I'---y 

x 

(j) 

If d = a + b + (-e), does (a) a + (-d) = e + (-b), (b) a = 

(-b) + d + e,and (c)e + (-d) = a + b? 

Ifa·b = a·e,mustb equale? 

If F = q(\1 x E) and \1 is perpendicular to 13, then what is the 
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direction of 13 in the three situations shown in Fig. 3-24 when con­
stant q is (a) positive and (b) negative? 

(1) (2) (3) 

Fig. 3-24 Question 9. 

Figure 3-25 shows vector A and 
four other vectors that have the same 
magnitude but differ in orientation. 
(a) Which of those other four vectors 
have the same dot product with A? (b) 
Which have a negative dot product 
with A? 

--> 
A 

c 
~ 

E 

Fig. 3-25 Question 10. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
http://www.wlley.com/coilege/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Components of Vectors 
What are (a) the x component and (b) the y component of a 

vector a in the xy plane if its direction is 250° counterclockwise from 
the positive direction of the x axis and its magnitude is 7.3 m? 

A displacement vector -,: in the xy y 
plane is 15 m long and directed at angle 
8 = 30° in Fig. 3-26. Determine (a) the x 
component and (b) the y component of the "'--'------ x 
vector. 

Fig. 3-26 
The x component of vector A is Problem 2. 

-25.0 m and the y component is +40.0 m. 
(a) What is the magnitude of A? (b) What is the angle between the 
direction of A and the positive direction of x? 

Express the following angles in radians: (a) 20.0°, (b) 50.0°, (c) 
100°. Convert the following angles to degrees: (d) 0.330 rad, (e) 
2.10 rad, (f) 7.70 rad. 

A ship sets out to sail to a point 120 km due north. An unex­
pected storm blows the ship to a point 100 km due east of its start­
ing point. (a) How far and (b) in 
what direction must it now sail to 
reach its original destination? 

In Fig. 3-27, a heavy piece of 
machinery is raised by sliding it a 
distance d = 12.5 m along a plank 
oriented at angle 8 = 20.0° to the 
horizontal. How far is it moved (a) 
vertically and (b) horizontally? 

A room has di-

Fig. 3-27 Problem 6. 

mensions 3.00 m (height) X 3.70 m X 4.30 m. A fly starting at one 
corner flies around, ending up at the diagonally opposite corner. (a) 
What is the magnitude of its displacement? (b) Could the length of 
its path be less than this magnitude? (c) Greater? (d) Equal? (e) 
Choose a suitable coordinate system and express the components 
of the displacement vector in that system in unit-vector notation. 
(f) If the fly walks, what is the length of the shortest path? (Hint: 
This can be answered without calculus. The room is like a box. 
Unfold its walls to flatten them into a plane.) 

Adding Vectors by Components 
A person walks in the following pattern: 3.1 km north, then 2.4 

km west, and finally 5.2 km south. (a) Sketch the vector diagram 
that represents this motion. (b) How far and (c) in what direction 
would a bird fly in a straight line from the same starting point to 
the same final point? 

Two vectors are given by 

a = (4.0 m)i - (3.0 m)] + (1.0 m)k 

and b = (-1.0 m)i + (1.0 m)] + (4.0 m)k. 

In unit-vector notation, find (a) a + b, (b) a - b, and (c) a third 
vector c such that a - b + c = O. 

Find the (a) x, (b) y, and (c) z components of the sum -,: of 
the displacements c and d whose components in meters are 
c,' = 7.4,cy = -3.8,cz = -6.1;d, = 4.4,dy = -2.0,dz = 3.3. 

(a) In unit-vector notation, what is the sum a + b if 
a = (4.0 m)i + (3.0 m)] and b = (-13.0 m)i + (7.0 m)]? What 
are the (b) magnitude and (c) direction ofa + b? 

A car is driven east for a distance of 50 km, then north for 30 
km, and then in a direction 30° east of north for 25 km. Sketch the 
vector diagram and determine (a) the magnitude and (b) the angle 
of the car's total displacement from its starting point. 

A person desires to reach a point that is 3.40 km from her 
present location and in a direction that is 35.0° north of east. 
However, she must travel along streets that are oriented either 
north-south or east-west. What is the minimum distance she 
could travel to reach her destination? 

You are to make four straight-line moves over a flat desert 
floor, starting at the origin of an xy coordinate system and ending 
at the xy coordinates (-140 m, 30 m). The x component and y com­
ponent of your moves are the following, respectively, in meters: (20 
and 60), then (b, and -70), then (-20 and cy ), then (-60 and -70). 
What are (a) component b, and (b) component c,,? What are (c) 
the magnitude and (d) the angle (relative to the positive direction 
of the x axis) of the overall displacement? 

ILW The two vectors a and b in Fig. 3-28 have 
equal magnitudes of 10.0 m and the angles are 81 = 30° and 82 = 



105°. Find the (a) x and (b) Y com- Y 
ponents of their vector sum r, (c) 
the magnitude of 1, and (d) the an­
gle 1 makes with the positive direc­
tion of the x axis. 

For the displacement vectors 
a = (3.0 m)i + (4.0 m)J and b = 

(5.0 m)i + (-2.0 m)], give a + bin 
(a) unit-vector notation, and as (b) a ""---'-_______ x 
magnitude and (c) an angle (rela- 0 
tive to i). Now give b - a in (d) Fig.3-28 Problem 15. 
unit-vector notation, and as (e) a 
magnitude and (f) an angle. 

IlW Three vectors a, b, and c each have a magnitude of 
50 m and lie in an xy plane. Their directions relative to the positive 
direction of the x axis are 30°, 195°, and 315°, respectively. What are 
(a) the magnitude and (b) the angle of the vector 7i + b + c, and 
(c) the magnitude and (d) the angle of a - b + c? What are the 
(e) magnitude and (f) angle of a fourth vector d such that 
(a + b) - (c + d) = O? 

In the sum A + B = C, vector A has a magnitude of 12.0 m 
and is angled 40.0° counterclockwise from the +x direction, and vec­
tor C has a magnitude of 15.0 m and is angled 20.0° counterclock­
wise from the -x direction. What are (a) the magnitude and (b) the 
angle (relative to +x) ofB? 

In a game of lawn chess, where pieces are moved between the 
centers of squares that are each 1.00 m on edge, a knight is moved 
in the following way: (1) two squares forward, one square right­
ward; (2) two squares leftward, one square forward; (3) two 
squares forward, one square leftward. What are (a) the magnitude 
and (b) the angle (relative to "forward") of the knight's overall dis­
placement for the series of three moves? 

An explorer is caught in a white out (in which the 
snowfall is so thick that the ground cannot be distinguished from 
the sky) while returning to base camp. He was supposed to travel 
due north for 5.6 km, but when the snow clears, he discovers that 
he actually traveled 7.8 km at 50° north of due east. (a) How far 
and (b) in what direction must he now travel to reach base camp? 

An ant, crazed by the Sun on a hot Texas afternoon, darts 
over an xy plane scratched in the dirt. The x and y components of four 
consecutive darts are the following, all in centimeters: (30.0, 40.0), 
(bt , -70.0), (-20.0, cy), (-80.0, -70.0). The overall displacement of 
the four darts has the xy components (-140, -20.0). What are (a) b t 

and (b) cy? What are the ( c) magnitude and (d) angle (relative to the 
positive direction of the x axis) of the overall displacement? 

(a) What is the sum of the following four vectors in unit­
vector notation? For that sum, what are (b) the magnitude, (c) the 
angle in degrees, and (d) the angle in radians? 

If: 6.00 m at +0.900 rad 

G: 4.00 m at + 1.20 rad 

F: 5.00 mat -75.0° 

H: 6.00 mat -210° 

If B is added to C = 3.01 + 4.0J, the result is a vector in the 
positive direction of the y axis, with a magnitude equal to that of C. 
What is the magnitude of B? 

Vector A, which is directed along an x axis, is to be added to 
vector B, which has a magnitude of 7.0 m. The sum is a third vector 
that is directed along the y axis, with a magnitude that is 3.0 times 
that of A. What is that magnitude of A? 
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Oasis B is 25 km due east of oasis A. Starting from oasis 
A, a camel walks 24 km in a direction 15° south of east and then 
walks 8.0 km due north. How far is the camel then from oasis B? 

What is the sum of the following four vectors in (a) unit-vec­
tor notation, and as (b) a magnitude and ( c) an angle? 

A = (2.00 m)i + (3.00 m)J B: 4.00 m, at +65.0° 

C = (-4.00 m)i + (-6.00 m)J 13: 5.00 m, at -235° 

If dl + d2 = 5d3, dl - d2 = 3d3, and d3 = 2i + 4], then 
what are, in unit-vector notation, (a) dl and (b) d2? 

Two beetles run across fiat sand, starting at the same point. 
Beetle 1 runs 0.50 m due east, then 0.80 m at 30° north of due east. 
Beetle 2 also makes two runs; the first is 1.6 m at 40° east of due 
north. What must be (a) the magnitude and (b) the direction of its 
second run if it is to end up at the new location of beetle I? 

Typical backyard ants often create a network of 
chemical trails for guidance. Extending outward from the nest, a 
trail branches (bifurcates) repeatedly, with 60° between the 
branches. If a roaming ant chances upon a trail, it can tell the way 
to the nest at any branch point: If it is moving away from the nest, it 
has two choices of path requiring a small turn in its travel direc­
tion, either 30° leftward or 30° rightward. If it is moving toward the 
nest, it has only one such choice. Figure 3-29 shows a typical ant 
trail, with lettered straight sections of 2.0 cm length and symmetric 
bifurcation of 60°. Path v is parallel to the y axis. What are the (a) 
magnitUde and (b) angle (relative to the positive direction of the 
superimposed x axis) of an ant's displacement from the nest (find it 
in the figure) if the ant enters the trail at point A? What are the (c) 
magnitUde and (d) angle if it enters at point B? 

Fig. 3-29 

Problem 29. 

Here are two vectors: 

L, 

III 

10 

a = (4.0 m)1 - (3.0 m)J and b = (6.0 m)i + (8.0 m)]. 

What are (a) the magnitude and (b) the angle (relative to i) of 7i? 
What are (c) the magnitUde and (d) the angle ofb? What are (e) the 
magnitude and (f) the angle of a + b; z· 

~) the magnitude and (h) the angle of 
b a; and (i) the magnitUde and (j) 
the angle ofa - b? (k) What is the an­
gle between the directions of b - a 
anda-b? 

a 

/--+---7----y 
{/ 

x 
In Fig. 3-30, a cube of edge 

length a sits with one corner at the ori- Fig. 3-30 Problem 31. 
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gin of an xyz coordinate system. A body diagonal is a line that ex­
tends from one corner to another through the center. In unit-vec­
tor notation, what is the body diagonal that extends from the cor­
ner at (a) coordinates (0, 0, 0), (b) coordinates (a, 0, 0), (c) 
coordinates (0, a, 0), and (d) coordinates (a, a, O)? (e) Determine 
the angles that the body diagonals make with the adjacent edges. 
(f) Determine the length of the body diagonals in terms of a. 

Vectors and the Laws of Physics 
In Fig. 3-31, a vector a with a magnitude of 17.0 m is 

directed at angle e = 56.00 counterclockwise from the +x axis. 
What are the components (a) ax and (b) ay of the vector? A sec­
ond coordinate system is inclined by angle e' = 18.00 with respect 
to the first. What are the components (c) a.~ and (d) a; in this 
primed coordinate system? 

y 

x' 

~--~~--~-----x 

e' 
Fig. 3-31 Problem 32. 

Multiplying Vectors 
For the vectors in Fig. 3-32, with 

a = 4, b = 3, and c = 5, what are (a) the 
magnitUde and (b) the direction of 
a x b, (c) the magnitude and (d) the di­
rection of a x c, and (e) the magnitude 
and (f) the direction of b x c? (The z 
axis is not shown.) 

Two vectors are presented as 

Fig. 3-32 

Problems 33 and 54. 

a = 3.01 + 5.0] and b = 2.01 + 4.0. 
Find (a) a x b, (b) a' b, (c) (a + b)· b, and (d) the component of 
a along the direction of b. (Hint: For (d), consider Eq. 3-20 and 
Fig. 3-18.) 

Two vectors, rand s, lie in the xy plane. Their magnitudes are 
4.50 and 7.30 units, respectively, and their directions are 3200 and 
85.00, respectively, as measured counterclockwise from the positive 
x axis. What are the values of (a) r· sand (b) r x s? 

If dl = 31 - 2J + 4k and d2 = -sf + 2] - k, then what is 
(dl + ( 2)' (d1 x 4(2)? 

Three vectors are given by a = 3.01 + 3.0J - 2.0k, 
b = -1.01 - 4.0J + 2.0k, and c = 2.01 + 2.0J + 1.0k. Find (a) 
a'(b x c),(b)a·(b + c), and (c)a x (b + c). 

For the following three vectors, what is 3C' (2A x B)? 

A = 2.001 + 3.00J - 4.00k 

13 = - 3.001 + 4.00J + 2.00k C = 7.001 - 8.00J 

Vector A has a m~n1ude of 6.00 units, vector 13 has a mag­
nitude of 7.00 units, and A· B has a value of 14.0. What is the angle 
between the directions of A and 13? 

Displacement d1 is in the yz plane 63.00 from the positive di­
rection of the y axis, has a positive z component, and has a magni­
tude of 4.50 m. Displacement d2 is in the xz plane 30.00 from the 
positive direction of the x axis, has a positive z component, and has 
magnitude 1.40 m. What are (a) d1 • d2, (b) dl x d2, and (c) the an­
gle between d 1 and d 2? 

SSM IlW WWW Use the definition of scalar product, 
a· b = ab cos e, and the fact that a· b = arb, + ayby + alb, to cal­
culate the angle between the two vectors given by a = 3.01 + 
3.0] + 3.0k and b = 2.01 + 1.0J + 3.0k. 

In a meeting of mimes, mime 1 goes through a displacement 
d1 = (4.0 m)l + (5.0 m)J and mime 2 goes through a displacement 
d.:2; = (.:3.0-->m)1 + (4.0 m)]. What are (aL d1 x d2, (b) d1 • d2, (c) 
(d1 + d2)· db and (d) the component of d l along the direction of 
d2? (Hint: For (d), see Eq. 3-20 and Fig. 3-18.) 

SSM ILW The three vectors 
in Fig. 3-33 have magnitudes a =3.00 
m, b = 4.00 m, and c = 10.0 m and 
angle e = 30.00. What are (a) the x 
component and (b) the y compo­
nent of a; (c) the x component and 
(d) the y component of b; and (e) 
the x component and (f) the y com­
ponent of c? If c = pa + qb, what 
are the values of (g) p and (h) q? Fig. 3-33 Problem 43. 

In the product F = qv x 13, take q = 2, 

v = 2.01 + 4.0J + 6.0k and F = 4.01 - 20J + 12k. 

What then is 13 in unit-vector notation if B, = By? 

Additional Problems 

Vectors A and 13 lie in an 
xy plane. A has magnitude 
8.00 and angle 1300; 13 has 
components Br = -7.72 and 
B, = -9.20. (a) What is 
5] . 13? What is 4A x 313 in 
(b) unit-vector notation and x 

z 

~-------+----r--;--y 

/ 

/ 
/ 

/ 

(c) magnitude-angle notation . 
with spherical coordinates (see Fig. 3-34 Problem 45. 

Fig. 3-34)? (d) What is the an- --> --> 
gle between the directions of A and 4A x 3B? (Hint: Think a bit 
before you resort to a calculation.) What is A + 3.00k in (e) unit­
vector notation and (f) magnitude-angle notation with spherical 
coordinates? 

Vector a has a magnitude of 5.0 m and is directed east. Vector 
b has a magnitude of 4.0 m and is directed 350 west of due north. 
What are (a) the magnitude and (b) the direction ofa + b? What 
are (c) the magnitude and (d) the direction of b - a? (e) Draw a 
vector diagram for each combination. 

Vectors A and 13 lie in an xy plane. A has magnitude 8.00 
and angle 1300; 13 has components B, = -7.72 and By = -9.20. 
What are the angles between the negative direction of the y axis 
and (a) the direction of A, (b) the direction of the product 
A x 13, and (c) the direction of A x (13 + 3.00k)? 

Two vectors a and b have the components, in meters, a, = 3.2, 
ay = 1.6, b,. = 010, by = 4.5. (a) Find the angle between the direc­
tions of a and b. There are two vectors in the xy plane that are 



perpendicular to a and have a magnitude of 5.0 m. One, vector e, 
has a positive x component and the other, vector d, a negative x 
component. What are (b) the x component and (c) the y compo­
nent of vector e, and (d) the x component and (e) the y component 
of vector d? 

SSM A sailboat sets out from the U.S. side of Lake Erie for a 
point on the Canadian side, 90.0 km due north. The sailor, how­
ever, ends up 50.0 km due east of the starting point. (a) How far 
and (b) in what direction must the sailor now sail to reach the orig­
inal destination? 

Vector d1 is in the negative direction of a y axis, and vector d2 

is in the positive direction of an x axis. What are the directions of 
0) ~2/4 and (bl d11,-4)? What .are the.ma~nitudes of products (c) 
d1 • d2 and (d) d 1 • (d2 /4)? What IS the dlfectlOn of the vector result­
ing from (e) d1 X d2 and (f) d2 X d1? What is the magnitude of the 
vector product in (g) part (e) and (h) part (f)? What are the (i) 
magnitude and U) direction ofd1 X (d2/4)? 

Rock faults are ruptures along which opposite faces of rock 
have slid past each other. In Fig. 3-35, points A and B coincided be­
fore the ro~ the foreground slid down to the right. The net dis­
placemeni4B is along the plane of the fault. The horizo~ compo­
nent of AB is the strike-slip AC. The component of AB that is 
directed down the plane of the fault ~he dip-slip AD. (a) What is the 
magnitude of the net displacement AB if the strike-slip is 22.0 m and 
the dip-slip is 17.0 m? (b) If the plane of the fault is inclined at ~e 
cjJ = 52.0° to the horizontal, what is the vertical component of AB ? 

Dip-slip 

Fig.3-35 Problem 51. 

Here are three displacements, each measured in meters: 
= 4.01 + 5.0J - 6.0k, d2 = -1.01 + 2.0J + 3.0k, and d 3 = 

4.01 + 3.0J + 2.0k. (a) What is r = d1 - d2 + d3? (b) What is the 
angle between r and the positive z axis? (c) What is the compo­
nent ofd! along the direction ofd2? (d) What is the component of 
d j that is perpendicular to the direction of d2 and in the plane of d! 
and d2? (Hint: For (c), consider Eq. 3-20 and Fig. 3-18; for (d), con­
sider Eq. 3-27.) 

A vector a of magnitude 10 units and another vector b 
of magnitude 6.0 units differ in directions by 60°. Find (a) the 
scalar product of the two vectors and (b) the magnitude of the vec­
tor product a x b. 

For the vectors in Fig. 3-32, with a = 4, b = 3, and c = 5, calcu­
late (a) a· b,(b) a' e,and (c) b· e. 

A particle undergoes three successive displacements in a 
plane, as follows: db 4.00 m southwest; then d2, 5.00 m east; and 
finally d3, 6.00 m in a direction 60.0° north of east. Choose a coor­
dinate system with the y axis pointing north and the x axis pointing 
east. What are (a) the x component and (b) the y component of 
d1? What are (c) the x component and (d) the y component of 
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d2? What are (e) the x component and (f) the y component of d3? 
Next, consider the net displacement of the particle for the three 
successive displacements. What are (g) the x component, (h) the y 
component, (i) the magnitude, and (j) the direction of the net dis­
placement? If the particle is to return directly to the starting point, 
(k) how far and (I) in what direction should it move? 

Find the sum of the following four vectors in (a) unit-vector 
notation, and as (b) a magnitude and (c) an angle relative to + x. 

P: 10.0 m, at 25.0° counterclockwise from +x 

Q: 12.0 m, at 10.0° counterclockwise from +y 

R: 8.00 m, at 20.0° clockwise from -y 

S: 9.00 m, at 40.0° counterclockwise from -y 

SSM If B is added to.II, the result is 6.01 + 1.0]. If B is subtracted 
from.II, the result is -4.01 + 7.0]. What is the magnitude of .II? 

A vector d has a magnitude of 2.5 m and points north. What 
are (a) the magnitude and (b) the direction of 4.0d? What are (c) 
the magnitude and (d) the direction of - 3.0d? 

.II has the magnitude 12.0 m and is angled 60.0° counterclock­
wise from the positive direction of the x axis of an xy coordinate sys­
tem. Also, B = (12.0 m)1 + (8.00 m)J on that same coordinate sys­
tem. We now rotate the system counterclockwise about the origin by 
20.0° to form anx'y' system. On this new system, what are (a).II and 
(b) B, both in unit-vector notation? 

If a - b = 2e, a + b = 4e, and e = 31 + 4J, then what are 
(a) a and (b) b? 

(a) In unit-vector notation, what is r = a - b + e if 
a = 5.01 + 4.0] - 6.0k, b = -2.01 + 2.0] + 3.01<:, and e = 4.01 + 
3.0] + 2.0k? (b) Calculate the angle between r and the positive z 
axis. (c) What is the component ofa along the direction ofb? (d) 
What is the component of a perpendicular to the direction of b but 
in the plane of a and b? (Hint: For (c), see Eq. 3-20 and Fig. 3-18; 
for (d), see Eq. 3-27.) 

A golfer takes three putts to get the ball into the hole. The 
first putt displaces the ball 3.66 m north, the second 1.83 m south­
east, and the third 0.91 m southwest. What are (a) the magnitude 
and (b) the direction of the displacement needed to get the ball 
into the hole on the first putt? 

Here are three vectors in meters: 

d1 = -3.01 + 3.0J + 2.0k 

d2 = -2.01 - 4.0] + 2.0k 

d3 = 2.01 + 3.0] + loOk. 

What results from (a) d1 • (d2 + ( 3), (b) d j ' (d2 x ( 3), and 
(c) d1 X (d2 + ( 3)? 

Consider two displacements, one of magnitude 3 m and an­
other of magnitude 4 m. Show how the displacement vectors may 
be combined to get a resultant displacement of magnitude (a) 7 m, 
(b) 1 m, and ( c) 5 m. 

A protester carries his sign of protest, starting from the origin of 
an xyz coordinate system, with the xy plane horizontal. He moves 40 
m in the negative direction of the x axis, then 20 m along a perpendic­
ular path to his left, and then 25 m up a water tower. (a) In unit-vector 
notation, what is the displacement of the sign from start to end? (b) 
The sign then falls to the foot of the tower. What is the magnitude of 
the displacement of the sign from start to this new end? 
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To locate the 
particle, this 

,-----is how far 

parallel to z. 

This is how far 

r; parallel to y. 

y 

This is how far 
parallel to x. 

(2 m)] 

--'''---77\. (-3 

Fig. 4-1 The position vector 1 for a parti­
cle is the vector sum of its vector components. 

WHATIS 
In this chapter we continue looking at the aspect of physics that analyzes 

motion, but now the motion can be in two or three dimensions. For example, med­
ical researchers and aeronautical engineers might concentrate on the physics of 
the two- and three-dimensional turns taken by fighter pilots in dogfights because a 
modern high-performance jet can take a tight turn so quickly that the pilot 
immediately loses consciousness. A sports engineer might focus on the physics of 
basketball. For example, in a free throw (where a player gets an uncontested shot 
at the basket from about 4.3 m), a player might employ the overhand push shot, in 
which the ball is pushed away from about shoulder height and then released. Or 
the player might use an underhand loop shot, in which the ball is brought upward 
from about the belt-line level and released. The first technique is the overwhelm­
ing choice among professional players, but the legendary Rick Barry set the 
record for free-throw shooting with the underhand technique. 

Motion in three dimensions is not easy to understand. For example, you are 
probably good at driving a car along a freeway (one-dimensional motion) but 
would probably have a difficult time in landing an airplane on a runway (three­
dimensional motion) without a lot of training. 

In our study of two- and three-dimensional motion, we start with position 
and displacement. 

Position and Displacement 
One general way of locating a particle (or particle-like object) is with a position 
vector 1, which is a vector that extends from a reference point (usually the ori­
gin) to the particle. In the unit-vector notation of Section 3-5, -; can be written 

1 = xi + YI + zk, (4-1) 

where xi, yj, and z k are the vector components of 1 and the coefficients x, y, and 
z are its scalar components. 

The coefficients x, y, and z give the particle's location along the coordinate 
axes and relative to the origin; that is, the particle has the rectangular coordinates 
(x, y, z). For instance, Fig. 4-1 shows a particle with position vector 

-; = (-3 m)i + (2 m)] + (5 m)k 

and rectangular coordinates (-3 m, 2 m, 5 m). Along the x axis the particle is 3 m 
from the origin, in the -i direction. Along the y axis it is 2 m from the origin, in 
the +] direction. Along the z axis it is 5 m from the origin, in the + k direction. 
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As a particle moves, its position vector changes in such a way that the vector 
always extends to the particle from the reference point (the origin). If the posi­
tion vector changes-say, from 71 to 72 during a certain time interval-then the 
particle's displacement ~ 7 during that time interval is 

(4-2) 

Using the unit-vector notation of Eg. 4-1, we can rewrite this displacement as 

~7 = (x2i + Y2J + z2k) - (xli + YlJ + zlk) 

or as (4-3) 

where coordinates (Xl> Yl> ZI) correspond to position vector 71 and coordinates 
(X2' Y2, Z2) correspond to position vector 72, We can also rewrite the displacement 
by substituting ~x for (X2 - XI)' ~Y for (Y2 - Yl), and ~z for (Z2 - ZI): 

~7 = ~xi + ~YJ + ~zk. (4-4) 

Two-dimensional position vector, rabbit run 

A rabbit runs across a parking lot on which a set of 
coordinate axes has, strangely enough, been drawn. The co­
ordinates (meters) of the rabbit's position as functions of 
time t (seconds) are given by 

X = -0.31t2 + 7.2t + 28 

and Y = 0.22t2 - 9.1t + 30. 

(4-5) 

(4-6) 

(a) At t = 15 s, what is the rabbit's position vector 7 in unit­
vector notation and in magnitude-angle notation? 

The X and Y coordinates of the rabbit's position, as given by 
Egs. 4-5 and 4-6, are the scalar components of the rabbit's 
position vector 7. 

Calculations: We can write 

7(t) = x(t)i + y(t)}. (4-7) 

(We write 7(t) rather than 7 because the components are 
functions of t, and thus 7 is also.) 

At t = 15 s, the scalar components are 

X = (-0.31)(15)2 + (7.2)(15) + 28 = 66 m 

and Y = (0.22)(15)2 - (9.1)(15) + 30 = -57 m, 

so r = (66 m)i - (57 m»), (Answer) 

which is drawn in Fig. 4-2a. To get the magnitude and angle 
ofr, we use Eg. 3-6: 

r = y'''-x2-+-y-2 = V(66 m)2 + (-57 m)2 

= 87m, 

and e = tan-I - = tan-I = -41°. Y (-57 m) 
X 66m 

(Answer) 

(Answer) 

Fig. 4-2 

(a) A rabbit's 
position vector r 
at time t = 15 s. 
The scalar com­
ponents ofr are 
shown along the 
axes. (b) The (b) 

rabbit's path and 
its position at six 
values of t. 

is the y component. 

y 

40 

20 . 

--+-+--+--+-+-->;-+'--1--+--1 x (m) o 

-20 

-40 

is the path with 
various times indicated. 
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Check: Although e = 139° has the same tangent as -41°, 
the components of position vector r indicate that the de­
sired angle is 139° - 180° = -4P. 

Graphing: We have located the rabbit at one instant, but to 
see its path we need a graph. So we repeat part (a) for sev­
eral values of t and then plot the results. Figure 4-2b shows 
the plots for six values of t and the path connecting them. 
We can also plot Eqs. 4-5 and 4-6 on a calculator. (b) Graph the rabbit's path for t = 0 to t = 25 s. 

Additional examples, video, and practice available at WileyPLUS 

)' 

As the particle moves, 
the position vector 
must change. 

Tangent 

This is the 

~Iacement. 

Path 
o""----------x 

Fig. 4-3 The displacement 6.7 of a parti­
cle during a time interval M, from position 
1 with position vector 71 at time f1 to posi­
tion 2 with position vector 72 at time f2• The 
tangent to the particle's path at position 1 is 
shown. 

Average Velocity and Instantaneous Velocity 
If a particle moves from one point to another, we might need to know how fast it 
moves. Just as in Chapter 2, we can define two quantities that deal with "how 
fast": average velocity and instantaneous velocity. However, here we must con­
sider these quantities as vectors and use vector notation. 

If a particle moves through a displacement A r in a time interval At, then its 
average velocity vavg is 

or 

. displacement 
average velocIty = .. I ' 

tIme mterva 

~ Ar 
vavg =-;;:t. (4-8) 

This tells us that the direction of vavg (the vector on the left side of Eq. 4-8) must 
be the same as that of the displacement Ar (the vector on the right side). Using 
Eq. 4-4, we can write Eq. 4-8 in vector components as 

v
avg 

= Axi + AYJ + Azk = Ax i + Ay ~ + Az k. 
At At At J At 

(4-9) 

For example, if a particle moves through displacement (12 m)i + (3.0 m)k in 2.0 
s, then its average velocity during that move is 

~ Ar (12 m)i + (3.0 m)k ~ A 

vavg = ~ = = (6.0 m/s)I + (1.5 m/s)k. 
ut 2.0 s 

That is, the average velocity (a vector quantity) has a component of 6.0 m/s along 
the x axis and a component of 1.5 m/s along the z axis. 

When we speak of the velocity of a particle, we usually mean the particle's in­
stantaneous velocity vat some instant. This v is the value that vavg approaches in 
the limit as we shrink the time interval At to 0 about that instant. Using the lan­
guage of calculus, we may write v as the derivative 

~ dr 
v =Tt. (4-10) 

Figure 4-3 shows the path of a particle that is restricted to the xy plane. As 
the particle travels to the right along the curve, its position vector sweeps to the 
right. During time interval At, the position vector changes from rl to r2 and the 
particle's displacement is A r. 

To find the instantaneous velocity of the particle at, say, instant t1 (when the 
particle is at position 1), we shrink interval At to 0 about t1• Three things happen 
as we do so. (1) Position vector r2 in Fig. 4-3 moves toward rl so that A r shrinks 
toward zero. (2) The direction of ArlAt (and thus of vavg ) approaches the 
direction of the line tangent to the particle's path at position 1. (3) The average 
velocity vavg approaches the instantaneous velocity vat t1• 
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In the limit as t::..t ----;> 0, we have vavg ----;> v and, most important here, 
vavg takes on the direction of the tangent line. Thus, v has that direction as well: 

The direction of the instantaneous velocity v of a particle is always tangent to the 
particle's path at the particle's position. 

The result is the same in three dimensions: v is always tangent to the particle's path. 
To write Eq. 4-10 in unit-vector form, we substitute for r from Eq. 4-1: 

---> d A A A dx A dy A dz A 

V = Tt(xi + yj + zk) = Tti + Ttj + Tt k . 

This equation can be simplified somewhat by writing it as 

where the scalar components ofv are 

dx dy 
Vx = dt' Vy = Tt, 

dz 
and Vz = dt' 

(4-11) 

(4-12) 

For example, dx/dt is the scalar component of v along the x axis. Thus, we can find 
the scalar components of v by differentiating the scalar components of r. 

Figure 4-4 shows a velocity vector v and its scalar x and y components. 
Note that v is tangent to the particle's path at the particle's position. Caution: 
When a position vector is drawn, as in Figs. 4-1 through 4-3, it is an arrow that 
extends from one point (a "here") to another point (a "there"). However, 
when a velocity vector is drawn, as in Fig. 4-4, it does not extend from one 
point to another. Rather, it shows the instantaneous direction of travel of a 
particle at the tail, and its length (representing the velocity magnitude) can be 
drawn to any scale. 

The velocity vector is always 
tangent to the path. 

)' 

Tangent \ 

Path 

These are the x and y 
components of the vector 
at this instant. 

Fig. 4-4 The velocity v of a 
particle, along with the scalar 
components ofv. o'-----------x 

CHECKPOINT 1 

The figure shows a circular path taken by a particle. If 
the instantaneous velocity of the particle is 
v = (2 m/s)i - (2 m/s)), through which quadrant is the 
particle moving at that instant if it is traveling (a) clock­
wise and (b) counterclockwise around the circle? For 
both cases, draw v on the figure. 

)' 

----+--4--4r------X 
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Two-dimensional velocity, rabbit run 

For the rabbit in the preceding Sample Problem, find the ve­
locity v at time t = 15 s. 

v = Yv; + v; = Y(-2.1m/s)2 + (-2.5m/s)2 

We can find v by taking derivatives of the components of 
the rabbit's position vector. 

Calculations: Applying the v, part of Eq. 4-12 to 
Eq. 4-5, we find the x component ofv to be 

_dx_d 2 
Vx - dt - dt (-0.31t + 7.2t + 28) 

= -0.62t + 7.2. (4-13) 

At t = 15 s, this gives Vt = -2.1 m/s. Similarly, applying the 
Vy part ofEq. 4-12 to Eq. 4-6, we find 

_ dy _ d (2 ) 
Vy - dt - dt 0.22t - 9.1t + 30 

= 0.44t - 9.1. (4-14) 

At t = 15 s, this gives Vy = -2.5 m/s. Equation 4-11 then 
yields 

v = (-2.1 m/s)i + (-2.5 m/s)j, (Answer) 

which is shown in Fig. 4-5, tangent to the rabbit's path and in 
the direction the rabbit is running at t = 15 s. 

To get the magnitude and angle of v, either we use a 
vector-capable calculator or we follow Eq. 3-6 to write 

= 3.3 m/s (Answer) 

and -I vy -I ( -2.5 m/s) 8 = tan - = tan 
v, -2.1 m/s 

= tan-I 1.19 = -130°. 

y 

40 

20 -:----1---1 

-20 

-40 

-60 ---"--_~_c---+ 
--r-4M'~_~--£ 

These are the x and y 
components of the vector 
at this instant. 

Fig. 4-5 The rabbit's velocity vat t = 15 s. 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 

Average Acceleration and Instantaneous Acceleration 
When a particle's velocity changes from VI to V2 in a time intervall1t, its average 
acceleration Gavg during I1t is 

or 

average change in velocity 
acceleration time interval 

-> 
aavg = 

Av 
At . ( 4-15) 

If we shrink I1t to zero about some instant, then in the limit Gavg approaches the 
instantaneous acceleration (or acceleration) G at that instant; that is, 

-> dv 
a =Tt. ( 4-16) 

If the velocity changes in either magnitude or direction (or both), the particle 
must have an acceleration. 
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We can write Eq. 4-16 in unit-vector form by substituting Eq. 4-11 for v to obtain 

-> d ~ ~ A 

a = dt (Vx1 + VyJ + vzk) 

dv, ~ dvy ~ dv z A 

=-1+-J +-k. 
dt dt dt 

We can rewrite this as 

where the scalar components of a are 

dvx a =--
x dt ' 

(4-17) 

(4-18) 

To find the scalar components of a, we differentiate the scalar components of v. 
Figure 4-6 shows an acceleration vector a and its scalar components for a 

particle moving in two dimensions. Caution: When an acceleration vector is 
drawn, as in Fig. 4-6, it does not extend from one position to another. Rather, it 
shows the direction of acceleration for a particle located at its tail, and its length 
(representing the acceleration magnitude) can be drawn to any scale. 

CHECKPOINT 2 

Here are four descriptions of the position (in meters) of a puck as it moves in an xy plane: 

(1) x = -3t2 + 4t - 2 and y = 6t2 - 4t (3) r = 2t21 - (4t + 3)] 

(2) x = -3t3 - 4t and y = -5t2 + 6 (4) r = (4(3 - 2t)1 + 3] 

Are the x and y acceleration components constant? Is acceleration a constant? 

Two-dimensional acceleration, rabbit run 

These are the x and y 
components of the vector 

Y at this instant. 

0'----------.>: 

Fig. 4-6 The acceleration a of a particle 
and the scalar components of a. 

For the rabbit in the preceding two Sample Problems, find 
the acceleration a at time t = 15 s. 

a = (-0.62 m/s2)i + (0.44 m/s2)], (Answer) 

which is superimposed on the rabbit's path in Fig. 4-7. 

We can find a by taking derivatives of the rabbit's velocity 
components. 

Calculations: Applying the ax part of Eq. 4-18 to Eq. 4-13, 
we find the x component of a to be 

_ dvx _ d ( ) _ 2 a, - dt - dt -0.62t + 7.2 - -0.62 mls . 

Similarly, applying the ay part of Eq. 4-18 to Eq. 4-14 yields 
the y component as 

dvy _ d _ 2 
ay = dt - dt (0.44t - 9.1) - 0.44 mls . 

We see that the acceleration does not vary with time (it is a 
constant) because the time variable t does not appear in the 
expression for either acceleration component. Equation 4-17 
then yields 

Fig. 4-7 The acceler­
ation a of the rabbit at 
t = 15 s. The rabbit 
happens to have this 
same acceleration at 
all points on its path. 

These are the x and y 
components of the vector 
at this instant. 
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To get the magnitude and angle of a, either we use a 
vector-capable calculator or we follow Eq. 3-6. For the mag­
nitude we have 

tor, indicates that a is directed to the right and downward 
in Fig. 4-7. Yet, we know from the components that a must 
be directed to the left and upward. To find the other angle 
that has the same tangent as - 35° but is not displayed on a 
calculator, we add 180°: 

a = v' a; + a~ = v' (-0.62 m/s2)2 + (0.44 m/s2)2 

= 0.76 m/s2. (Answer) 
(Answer) For the angle we have 

l ay ( 0.44 m/s2 ) 
(J = tan- - = tan-1 2 = -35°. 

ax -0.62m/s 

This is consistent with the components ofa because it gives 
a vector that is to the left and upward. Note that a has the 
same magnitude and direction throughout the rabbit's run 
because the acceleration is constant. However, this angle, which is the one displayed on a calcula-

Additional examples, video, and practice available at WileyPLUS 

Fig. 4-8 A stroboscopic photograph of a 
yellow tennis ball bouncing off a hard sur­
face. Between impacts, the ball has projec­
tile motion. Source: Richard Megna/ 
Fundamental Photographs. 

Projectile Motion 
We next consider a special case of two-dimensional motion: A particle moves in a 
vertical plane with some initial velocity Vo but its acceleration is always the free­
fall acceleration g, which is downward. Such a particle is called a projectile (mean­
ing that it is projected or launched), and its motion is called projectile motion. A 
projectile might be a tennis ball (Fig. 4-8) or baseball in flight, but it is not an air­
plane or a duck in flight. Many sports (from golf and football to lacrosse and rac­
quetball) involve the projectile motion of a ball, and much effort is spent in trying 
to control that motion for an advantage. For example, the racquetball player who 
discovered the Z-shot in the 1970s easily won his games because the ball's peculiar 
flight to the rear of the court always perplexed his opponents. 

Our goal here is to analyze projectile motion using the tools for two­
dimensional motion described in Sections 4-2 through 4-4 and making the 
assumption that air has no effect on the projectile. Figure 4-9, which is analyzed in 
the next section, shows the path followed by a projectile when the air has no 
effect. The projectile is launched with an initial velocity Vo that can be written as 

(4-19) 

The components VOx and VOy can then be found if we know the angle (Jo between Vo 

and the positive x direction: 

VOx = Vo cos (Jo and VOy = Vo sin (Jo. (4-20) 

During its two-dimensional motion, the projectile's position vector 1 and velocity 
vector v change continuously, but its acceleration vector a is constant and always 
directed vertically downward. The projectile has no horizontal acceleration. 

Projectile motion, like that in Figs. 4-8 and 4-9, looks complicated, but we 
have the following simplifying feature (known from experiment): 

In projectile motion, the horizontal motion and the vertical motion are independent 
of each other; that is, neither motion affects the other. 

This feature allows us to break up a problem involving two-dimensional motion 
into two separate and easier one-dimensional problems, one for the horizontal 
motion (with zero acceleration) and one for the vertical motion (with constant 
downward acceleration). Here are two experiments that show that the horizontal 
motion and the vertical motion are independent. 
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Fig. 4-9 The projectile motion of an object launched into the 
air at the origin of a coordinate system and with launch velocity 
Vo at angle Bo. The motion is a combination of vertical motion 
(constant acceleration) and horizontal motion (constant veloc­
ity), as shown by the velocity components . 

Y Vertical motion + Horizontal motion • y Projectile motion 
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Fig. 4-10 One ball is released from rest 
at the same instant that another ball is shot 
horizontally to the right. Their vertical mo­
tions are identical. Source: Richard Megna/ 
Fundamental Photographs. 

Figure 4-10 is a stroboscopic photograph of two golf balls, one simply released 
and the other shot horizontally by a spring. The golf balls have the same vertical 
motion, both falling through the same vertical distance in the same interval of 
time. The fact that one ball is moving horizontally while it is falling has no effect on 
its vertical motion; that is, the horizontal and vertical motions are independent of 
each other. 

Figure 4-11 shows a demonstration that has enlivened many a physics lecture. It 
involves a blowgun 0, using a ball as a projectile. The target is a can suspended 
from a magnet M, and the tube of the blowgun is aimed directly at the can. The 
experiment is arranged so that the magnet releases the can just as the ball leaves 
the blowgun. 

If g (the magnitude of the free-fall acceleration) were zero, the ball would 
follow the straight-line path shown in Fig. 4-11 and the can would float in place 
after the magnet released it. The ball would certainly hit the can. 

However, g is not zero, but the ball still hits the can! As Fig. 4-11 shows, 
during the time of flight of the ball, both ball and can fall the same distance h 
from their zero-g locations. The harder the demonstrator blows, the greater is the 
ball's initial speed, the shorter the flight time, and the smaller the value of h. 

CHECKPOINT 3 

At a certain instant, a fly ball has velocity v = 2si - 4.9] (the x axis is horizontal, the y 
axis is upward, and v is in meters per second). Has the ball passed its highest point? 

Fig. 4-11 The projectile ball always hits the 
falling can. Each falls a distance h from where it 
would be were there no free-fall acceleration. 

Projectile Motion Analyzed 

The ball and the can fall 
the same distance h. 

Now we are ready to analyze projectile motion, horizontally and vertically. 

Because there is no acceleration in the horizontal direction, the horizontal 
component v, of the projectile's velocity remains unchanged from its initial value 
vox throughout the motion, as demonstrated in Fig. 4-12. At any time t, the projec-



Fig. 4-12 The vertical component of this 
skateboarder's velocity is changing but not the 
horizontal component, which matches the skate­
board's velocity. As a result, the skateboard stays 
underneath him, allowing him to land on it. 
Source: Jamie Budge/ Liaison/Getty Images, Inc. 
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tile's horizontal displacement x - Xu from an initial position Xu is given by Eq. 
2-15 with a = 0, which we write as 

X - Xo = voxt. 

Because VOx = Vo cos 80, this becomes 

X - Xo = (va cos 80)t. (4-21 ) 

The vertical motion is the motion we discussed in Section 2-9 for a particle in free 
fall. Most important is that the acceleration is constant. Thus, the equations of 
Table 2-1 apply, provided we substitute - g for a and switch to y notation. Then, 
for example, Eq. 2-15 becomes 

- 1 t2 Y - Yo - Vol - 7B 
_ ( . ) 1 2 
- Va sm 80 t - zgt , (4-22) 

where the initial vertical velocity component VOy is replaced with the equivalent 
Va sin 80 , Similarly, Eqs. 2-11 and 2-16 become 

Vy = va sin 80 - gt 

and 

(4-23) 

(4-24) 

As is illustrated in Fig. 4-9 and Eq. 4-23, the vertical velocity component be­
haves just as for a ball thrown vertically upward. It is directed upward initially, 
and its magnitude steadily decreases to zero, which marks the maximum height of 
the path. The vertical velocity component then reverses direction, and its magni­
tude becomes larger with time. 

We can find the equation of the projectile's path (its trajectory) by eliminating 
time t between Eqs. 4-21 and 4-22. Solving Eq. 4-21 for t and substituting into 
Eq. 4-22, we obtain, after a little rearrangement, 

gx2 

y = (tan 80)x - 2( 8 )2 
Vo cos U 

(trajectory). ( 4-25) 
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Fig. 4-13 (I) The path of a fly ball calcu­
lated by taking air resistance into account. 
(II) The path the ball would follow in a vac­
uum, calculated by the methods of this 
chapter. See Table 4-1 for corresponding 
data. (Adapted from "The Trajectory of 
a Fly Ball," by Peter 1. Brancazio, The 
Physics Teachel; January 1985.) 

Two Fly Ballsa 

Path I Path II 
(Air) (Vacuum) 

Range 98.5 m 177 m 
Maximum 

height 53.0m 76.8m 
Time 

of flight 6.6 s 7.9 s 

aSee Fig. 4-13. The launch angle is 60° and the 
launch speed is 44.7 m/s. 

This is the equation of the path shown in Fig. 4-9. In deriving it, for simplicity we 
let Xo = 0 and Yo = 0 in Eqs. 4-21 and 4-22, respectively. Because g, eo, and Vo are 
constants, Eq. 4-25 is of the form y = ax + bx2, in which a and b are constants. 
This is the equation of a parabola, so the path is parabolic. 

The horizontal range R of the projectile is the horizontal distance the projectile 
has traveled when it returns to its initial height (the height at which it is 
launched). To find range R, let us put x - Xo = R in Eq. 4-21 and y - Yo = 0 in Eq. 
4-22, obtaining 

R = (vo cos eo)t 

and o = (vo sin eo)t - ~gt2. 

Eliminating t between these two equations yields 

2V5 . 
R = -- sm eo cos eo. 

g 

Using the identity sin 2eo = 2 sin eo cos eo (see Appendix E), we obtain 

V5 . 
R = -sm2eo' 

g 
(4-26) 

Caution.' This equation does not give the horizontal distance traveled by a projec­
tile when the final height is not the launch height. 

Note that R in Eq. 4-26 has its maximum value when sin 2eo = 1, which 
corresponds to 2eo = 90° or eo = 45°. 

The horizontal range R is maximum for a launch angle of 45°. 

However, when the launch and landing heights differ, as in shot put, hammer 
throw, and basketball, a launch angle of 45° does not yield the maximum horizon­
tal distance. 

We have assumed that the air through which the projectile moves has no effect 
on its motion. However, in many situations, the disagreement between our calcu­
lations and the actual motion of the projectile can be large because the air resists 
(opposes) the motion. Figure 4-13, for example, shows two paths for a fly ball that 
leaves the bat at an angle of 60° with the horizontal and an initial speed of 44.7 
m/s. Path I (the baseball player's fly ball) is a calculated path that approximates 
normal conditions of play, in air. Path II (the physics professor's fly ball) is the 
path the ball would follow in a vacuum. 

CHECKPOINT 4 

A fly ball is hit to the outfield. During its flight (ignore the effects of the air), what hap­
pens to its (a) horizontal and (b) vertical components of velocity? What are the ( c) hor­
izontal and (d) vertical components of its acceleration during ascent, during descent, 
and at the topmost point of its flight? 
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Projectile dropped from airplane 

In Fig. 4-14, a rescue plane flies at 198 km/h (= 55.0 m/s) and 
constant height h = 500 m toward a point directly over a 
victim, where a rescue capsule is to land. 

(a) What should be the angle ¢; of the pilot's line of sight to 
the victim when the capsule release is made? 

Once released, the capsule is a projectile, so its horizontal 
and vertical motions can be considered separately (we need 
not consider the actual curved path of the capsule). 

Calculations: In Fig. 4-14, we see that ¢; is given by 

X 
A-. = tan-1-
'P h' (4-27) 

where x is the horizontal coordinate of the victim (and of 
the capsule when it hits the water) and h 500 m. We 
should be able to find x with Eq. 4-21: 

x - Xo = (vo cos (Jo)t. (4-28) 

Here we know that Xo = 0 because the origin is placed at 
the point of release. Because the capsule is released and 
not shot from the plane, its initial velocity Vo is equal to 
the plane's velocity. Thus, we know also that the initial ve­
locity has magnitude Vo = 55.0 m/s and angle (Jo = 0° 
(measured relative to the positive direction of the x axis). 
However, we do not know the time t the capsule takes to 
move from the plane to the victim. 

Fig. 4-14 A plane drops a rescue capsule while moving at con­
stant velocity in level flight. While falling, the capsule remains un­
der the plane. 

To find t, we next consider the vertical motion and 
specifically Eq. 4-22: 

_( . ll) 12 Y - Yo - Vo sm Vo t - "2gt . (4-29) 

Here the vertical displacement y - Yo of the capsule is 
-500 m (the negative value indicates that the capsule 
moves downward). So, 

-500 m = (55.0 m/s) (sin OO)t - ~(9.8 m/S2)t2. (4-30) 

Solving for t, we find t = 10.1 s. Using that value in Eq. 4-28 
yields 

or 

x - 0 = (55.0 m/s)(cos 0°)(10.1 s), 

x = 555.5 m. 

Then Eq. 4-27 gives us 

_ -1 555.5 m 
¢; - tan 500 m 

(4-31) 

(Answer) 

(b) As the capsule reaches the water, what is its velocity v in 
unit-vector notation and in magnitude-angle notation? 

(1) The horizontal and vertical components of the capsule's 
velocity are independent. (2) Component v, does not 
change from its initial value vox = Vo cos (Jo because there is 
no horizontal acceleration. (3) Component Vy changes from 
its initial value VOy = Vo sin (Jo because there is a vertical 
acceleration. 

Calculations: When the capsule reaches the water, 

v, = Vo cos (Jo = (55.0 m/s)(cos 0°) = 55.0 m/s. 

Using Eq. 4-23 and the capsule's time of fall t = 10.1 s, we 
also find that when the capsule reaches the water, 

Vy = Vo sin (Jo - gt 

= (55.0 m/s) (sin 0°) - (9.8 m/s2)(10.1 s) 

= -99.0 m/s. 

Thus, at the water 

v = (55.0 m/s)i - (99.0 m/s)]. 

(4-32) 

(Answer) 

Using Eq. 3-6 as a guide, we find that the magnitUde and the 
angle of v are 

v = 113 m/s and (J = -60.9°. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Cannonball to pirate ship 

Figure 4-15 shows a pirate ship 560 m from a fort defending 
a harbor entrance. A defense cannon, located at sea level, 
fires balls at initial speed Vo = 82 m/s. 

Calculations: We can relate the launch angle 80 to the 
range R with Eq. 4-26 which, after rearrangement, gives 

1 . 1 gR 1. 1 (9.8 m/s2)(560 m) 
(a) At what angle 80 from the horizontal must a ball be fixed 
to hit the ship? 

8 = -Slll- -- = -SIn-
o 2 V5 2 (82 m/s)2 

= ~ sin-l 0.816. (4-33) 

(1) A fired cannonball is a projectile. We want an equation 
that relates the launch angle 80 to the ball's horizontal dis­
placement as it moves from cannon to ship. (2) Because the 
cannon and the ship are at the same height, the horizontal 
displacement is the range. 

One solution of sin-1 (54.7°) is displayed by a calculator; we 
subtract it from 180° to get the other solution (125.3°). Thus, 
Eq. 4-33 gives us 

and (Answer) 

(b) What is the maximum range of the cannonballs? 
y 

I+-------R = 560 

Fig. 4-15 A pirate ship under fire. 

Either launch angle 
gives a hit. Calculations: We have seen that maximum range corre­

sponds to an elevation angle 80 of 45°. Thus, 

_ V5 . 2 _ (82 m/s)2 . (2 450) R - - SIll 80 - I 2 SIll X 
g 9.8 m s 

= 686 m = 690 m. (Answer) 

As the pirate ship sails away, the two elevation angles at 
which the ship can be hit draw together, eventually merging 
at 80 = 45° when the ship is 690 m away. Beyond that dis­
tance the ship is safe. However, the cannonballs could go 
farther if the cannon were higher. 

Additional examples, video, and practice available at WileyPLUS 

Uniform Circular Motion 
A particle is in uniform circular motion if it travels around a circle or a circular 
arc at constant (uniform) speed. Although the speed does not vary, the particle is 
accelerating because the velocity changes in direction. 

Figure 4-16 shows the relationship between the velocity and acceleration 
vectors at various stages during uniform circular motion. Both vectors have 
constant magnitude, but their directions change continuously. The velocity is 
always directed tangent to the circle in the direction of motion. The acceleration 
is always directed radially inward. Because of this, the acceleration associated 
with uniform circular motion is called a centripetal (meaning "center seeking") 
acceleration. As we prove next, the magnitude of this acceleration a is 

v2 

a=­
r 

(centripetal acceleration), 

where r is the radius of the circle and v is the speed of the particle. 

( 4-34) 

In addition, during this acceleration at constant speed, the particle travels the 
circumference of the circle (a distance of 217r) in time 

217r 
T=­

v 
(period). ( 4-35) 
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The acceleration vector 
always points toward the 
center. 

The velocity 

Fig. 4-16 Velocity and acceleration vec­
tors for uniform circular motion. 

vector is always 
tangent to the path. 

T is called the period of revolution, or simply the period, of the motion. It is, in 
general, the time for a particle to go around a closed path exactly once. 

To find the magnitude and direction of the acceleration for uniform circular 
motion, we consider Fig. 4-17. In Fig. 4-17a, particle p moves at constant speed 
v around a circle of radius r. At the instant shown,p has coordinates xp and yp' 

Recall from Section 4-3 that the velocity v of a moving particle is always tan­
gent to the particle's path at the particle's position. In Fig. 4-17a, that means v is 
perpendicular to a radius r drawn to the particle's position. Then the angle (J that v 
makes with a vertical at p equals the angle (J that radius r makes with the x axis. 

The scalar components of v are shown in Fig. 4-17 b. With them, we can write 
the velocity v as 

v = v) + vyJ = (-v sin (J)i + (v cos (J)J. (4-36) 

Now, using the right triangle in Fig. 4-17 a, we can replace sin (J with Yplr and 
cos (J with xplr to write 

v = (- v~p)i + (v;p )J. (4-37) 

To find the acceleration a of particle p, we must take the time derivative of this 
equation. Noting that speed v and radius r do not change with time, we obtain 

y 

(a) 

---'> _ dv _ ( v dYp )-:- (v dXp)-:­a - - - ---- 1 + - -- J. 
elt r dt r dt 

y 

)----;--x -~--------~------~,-x 

(b) 

(4-38) 

(e) 

Fig. 4-17 Particle p moves in counterclockwise uniform circular motion. (a) Its position 
and velocity v at a certain instant. (b) Velocity v. (c) Acceleration a. 

y 
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Now note that the rate dYp/dt at which Yp changes is equal to the velocity 
component vy. Similarly, dXp/dt = v" and, again from Fig. 4-17b, we see that Vr = 

- v sin e and Vy = v cos e. Making these substitutions in Eq. 4-38, we find 

--> (V2 ) ~ ( v
2 

. )~ a = ----;:- cos e 1 + --,-. sm e J. ( 4-39) 

This vector and its components are shown in Fig. 4-17c. Following Eq. 3-6, we find 

v2 v2 v2 
a = Va2 + a2 = - V(cos e)2 + (sin e)2 = - VI =-, 

• y r r r 

as we wanted to prove. To orient a, we find the angle cp shown in Fig. 4-17c: 

ay -(v2/r) sin e 
tan cp = - = (2/ ) = tan e. a r - v r cos e 

Thus, cp = e, which means that a is directed along the radius r of Fig. 4-17a, 
toward the circle's center, as we wanted to prove. 

CHECKPOINT 5 

An object moves at constant speed along a circular path in a horizontal xy plane, with 
the center at the origin. When the object is at x = -2 m, its velocity is -(4 m/s)]. Give 
the object's (a) velocity and (b) acceleration at y = 2 m. 

Top gun pilots in turns 

"Top gun" pilots have long worried about taking a turn too 
tightly. As a pilot's body undergoes centripetal acceleration, 
with the head toward the center of curvature, the blood 
pressure in the brain decreases, leading to loss of brain 
function. 

There are several warning signs. When the centripetal 
acceleration is 2g or 3g, the pilot feels heavy. At about 4g, 
the pilot's vision switches to black and white and narrows to 
"tunnel vision." If that acceleration is sustained or in­
creased, vision ceases and, soon after, the pilot is uncon­
scious-a condition known as g-LOC for "g-induced loss of 
consciousness." 

What is the magnitude of the acceleration, in g units, of 
a pilot whose aircraft enters a horizontal circular turn with a 
velocity of Vi = (400]' + 500J) m/s and 24.0 s later leaves the 
turn with a velocity ofvt = (-400]' - 500)) m/s? 

We assume the turn is made with uniform circular mo­
tion. Then the pilot's acceleration is centripetal and has 
magnitude a given by Eq. 4-34 (a = v2/R), where R is the cir-

cle's radius. Also, the time required to complete a full circle 
is the period given by Eq. 4-35 (T = 27TR/v). 

Calculations: Because we do not know radius R, let's solve 
Eq. 4-35 for R and substitute into Eq. 4-34. We find 

27TV 
a=--

T' 

Speed v here is the (constant) magnitude of the velocity 
during the turning. Let's substitute the components of the 
initial velocity into Eq. 3-6: 

v = V(400 rnlS)2 + (500 rnlsf = 640.31 m/s. 

To find the period T of the motion, first note that the final 
velocity is the reverse of the initial velocity. This means the 
aircraft leaves on the opposite side of the circle from the ini­
tial point and must have completed half a circle in the given 
24.0 s. Thus a full circle would have taken T = 48.0 s. 
Substituting these values into our equation for a, we find 

271(640.31 m/s) 
a = = 83.81 m/s2 = 8.6g. 

48.0 s 
(Answer) 

Additional examples, video, and practice available at W,JeyPLUS 
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Relative Motion in One Dimension 
Suppose you see a duck flying north at 30 km/h. To another duck flying alongside, 
the first duck seems to be stationary. In other words, the velocity of a particle de­
pends on the reference frame of whoever is observing or measuring the velocity. 
For our purposes, a reference frame is the physical object to which we attach our 
coordinate system. In everyday life, that object is the ground. For example, the 
speed listed on a speeding ticket is always measured relative to the ground. The 
speed relative to the police officer would be different if the officer were moving 
while making the speed measurement. 

Suppose that Alex (at the origin of frame A in Fig. 4-18) is parked by the side 
of a highway, watching car P (the "particle") speed past. Barbara (at the origin of 
frame B) is driving along the highway at constant speed and is also watching car 
P. Suppose that they both measure the position of the car at a given moment. 
From Fig. 4-18 we see that 

(4-40) 

The equation is read: "The coordinate XpA of P as measured by A is equal to the 
coordinate XpB of P as measured by B plus the coordinate XBA of B as measured 
by A." Note how this reading is supported by the sequence of the SUbscripts. 

Taking the time derivative of Eq. 4-40, we obtain 

d d d 
dt (XpA) = dt (XPB) + dt (XBA)' 

Thus, the velocity components are related by 

(4-41) 

This equation is read: "The velocity VpA of P as measured by A is equal to the 
velocity VpB of P as measured by B plus the velocity VBA of B as measured by A." 
The term v BA is the velocity of frame B relative to frame A. 

Here we consider only frames that move at constant velocity relative to each 
other. In our example, this means that Barbara (frame B) drives always at con­
stant velocity VBA relative to Alex (frame A). Car P (the moving particle), how­
ever, can change speed and direction (that is, it can accelerate). 

To relate an acceleration of P as measured by Barbara and by Alex, we take 
the time derivative ofEq. 4-41: 

d d d 
dt (VPA) = dt (VPB) + dt (VBA)' 

Because VBA is constant, the last term is zero and we have 

(4-42) 

In other words, 

Observers on different frames of reference that move at constant velocity relative to 
each other will measure the same acceleration for a moving particle. 

Fig.4-18 Alex (frame A) and Barbara (frame 
B) watch car P, as both Band P move at different 
velocities along the common x axis of the two 
frames. At the instant shown, x BA is the coordi­
nate of B in the A frame. Also,P is at coordinate 
XpB in the B frame and coordinatexPA = XPB + 
X BA in the A frame. 

)' 

Frame A 

)' 

Frame B moves past 
frame A while both 
observe P. 

Frame B 

p 
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Relative motion, one dimensional, Alex and Barbara 

In Fig. 4-18, suppose that Barbara's velocity relative to Alex 
is a constant VBA = 52 km/h and car P is moving in the nega­
tive direction of the x axis. 

(a) If Alex measures a constant VpA = -78 km/h for car P, 
what velocity VpB will Barbara measure? 

We can attach a frame of reference A to Alex and a frame of 
reference B to Barbara. Because the frames move at constant 
velocity relative to each other along one axis, we can use 
Eq.4-41 (VPA = VpB + VBA) to relate VPB to VpA and VBA' 

Calculation: We find 

-78 km/h = v PB + 52 km/h. 

Thus, VpB = -130 km/h. (Answer) 

Comment: If car P were connected to Barbara's car by a 
cord wound on a spool, the cord would be unwinding at 
a speed of 130 km/h as the two cars separated. 

(b) If car P brakes to a stop relative to Alex (and thus rela­
tive to the ground) in time t = 10 s at constant acceleration, 
what is its acceleration apA relative to Alex? 

To calculate the acceleration of car P relative to Alex, we 
must use the car's velocities relative to Alex. Because the 

acceleration is constant, we can use Eq. 2-11 (v = Vo + at) to 
relate the acceleration to the initial and final velocities of P. 

Calculation: The initial velocity of P relative to Alex is 
VpA = -78 km/h and the final velocity is O. Thus, the acceler­
ation relative to Alex is 

v - Vo o - (-78 km/h) 1 m/s 
10 s 3.6 km/h 

(Answer) 

(c) What is the acceleration apB of car P relative to Barbara 
during the braking? 

To calculate the acceleration of car P relative to Barbara, we 
must use the car's velocities relative to Barbara. 

Calculation: We know the initial velocity of P relative to 
Barbara from part (a) (VPB = -130 km/h). The final velocity of 
P relative to Barbara is -52 kmlh (this is the velocity of the 
stopped car relative to the moving Barbara). Thus, 

v - Va 

t 
-52km/h - (-130km/h) 

10 s 

1 m/s 
3.6 km/h 

(Answer) 

Comment: We should have foreseen this result: Because 
Alex and Barbara have a constant relative velocity, they 
must measure the same acceleration for the car. 

Additional examples, video, and practice available at WileyPLUS 

)' 

Frame A 

Fig.4-19 Frame B has the constant two­
dimensional velocity v BA relative to frame 
A. The position vector of B relative to A is 
7 BA' The position vectors of particle Pare 
7 PA relative to A and 7 PB relative to B. 

Relative Motion in Two Dimensions 
Our two observers are again watching a moving particle P from the origins of refer­
ence frames A and B, while B moves at a constant velocity V BA relative to A. (The 
corresponding axes of these two frames remain parallel.) Figure 4-19 shows a cer­
tain instant during the motion. At that instant, the position vector of the origin of B 
relative to the origin of A is r BA- Also, the position vectors of particle Pare r PA rela­
tive to the origin of A and r PB relative to the origin of B. From the arrangement of 
heads and tails of those three position vectors, we can relate the vectors with 

(4-43) 

By taking the time derivative of this equation, we can relate the velocities v PA 

and v PB of particle P relative to our observers: 

(4-44) 
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By taking the time derivative of this relation, we can relate the accelerations a PA 

and a PB of the particle P relative to our observers. However, note that because 
v BA is constant, its time derivative is zero. Thus, we get 

---> ---> 
apA = apB' ( 4-45) 

As for one-dimensional motion, we have the following rule: Observers on differ­
ent frames of reference that move at constant velocity relative to each other will 
measure the same acceleration for a moving particle. 

Relative motion, two dimensional, airplanes 

In Fig. 4-20a, a plane moves due east while the pilot points 
the plane somewhat south of east, toward a steady wind that 
blows to the northeast. The plane has velocity v PW relative 
to the wind, with an airspeed (speed relative to the wind) 
of 215 km/h, directed at angle {} south of east. The wind 
has velocity VWG relative to the ground with speed 65.0 
km/h, directed 20.0° east of north. What is the magnitude of 
the velocity v PG of the plane relative to the ground, and 
what is {}? 

The situation is like the one in Fig. 4-19. Here the moving par­
ticle P is the plane, frame A is attached to the ground (call it 
G), and frame B is "attached" to the wind (call it W). We need 
a vector diagram like Fig. 4-19 but with three velocity vectors. 

Calculations: First we construct a sentence that relates the 
three vectors shown in Fig. 4-20b: 

velocity of plane _ velocity of plane velocity of wind 
relative to ground - relative to wind + relative to ground. 

(PO) (PW) (WO) 

This relation is written in vector notation as 

(4-46) 

We need to resolve the vectors into components on the co­
ordinate system of Fig. 4-20b and then solve Eq. 4-46 axis by 
axis. For the y components, we find 

vPG,y = VPTY,y + VWG,y 

or 0 = (215 km/h) sin {} + (65.0 km/h)(cos 20.0°). 

Solving for {} gives us 

{} = sin- 1 (65.0 km/h)(cos 20.0°) 
215 km/h 

= 16'so. (Answer) 

Similarly, for the x components we find 

V PG,.t = V PW,x + VWG,x' 

Here, because v PG is parallel to the x axis, the component 
vPG,x is equal to the magnitude VpG' Substituting this nota­
tion and the value {} = 16,SO, we find 

VPG = (215 km/h)(cos 16.5°) + (65.0 km/h)(sin 20.0°) 

= 228 km/h. 

This is the plane's 
orientation. 

(Answer) 

This is the plane's actual 
direction of travel. 

(a) 

if 

This is the wind 
direction. 

~.,,~ 

" Vwc 

The actual direction 
is the vector sum of 
the other two vectors 
(head-to-tail arrangement). 

(b) 

Fig. 4-20 A plane flying in a wind. 

Additional examples, video, and practice available at WileyPLUS 
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Position Vector The location of a particle relative to the ori­
gin of a coordinate system is given by a position vector 1, which in 
unit-vector notation is 

1 = xi + YJ + zk. (4-1) 

Here xi, yf, and z k are the vector components of position vector 1, 
and x, y, and z are its scalar components (as well as the coordinates 
of the particle). A position vector is described either by a magni­
tude and one or two angles for orientation, or by its vector or 
scalar components. 

Displacement If a particle moves so that its position vector 
changes from 11 to 1 2, the particle's displacement ,11 is 

The displacement can also be written as 

,11 = (X2 - xI)i + (Y2 - YI)J + (Z2 zl)k 

= Axi + AYJ + Azk. 

(4-2) 

(4-3) 

(4-4) 

Average Velocity and Instantaneous Velocity If a parti­
cle undergoes a displacement ,11 in time interval At, its average ve­
locity vavg for that time interval is 

(4-8) 

As At in Eq. 4-8 is shrunk to 0, vavg reaches a limit called either the 
velocity or the instantaneous velocity v: 

---> dr 
v =Tt, 

which can be rewritten in unit-vector notation as 

(4-10) 

(4-11) 

where v, = dx/dt, Vy = dy/dt, and Vz = dz/dt. The instantaneous 
velocity v of a particle is always directed along the tangent to the 
particle's path at the particle's position. 

Average Acceleration and Instantaneous Acceleration 
If a particle's velocity changes from VI to v2 in time interval At, its 
average acceleration during At is 

AV 
At' (4-15) 

As At in Eq. 4-15 is shrunk to 0, aavg reaches a limiting value called 
either the acceleration or the instantaneous acceleration a: 

In unit-vector notation, 

---> dv 
a =Tt. 

a = a3 + aA + azk, 

(4-16) 

(4-17) 

Projectile Motion Projectile motion is the motion of a parti­
cle that is launched with an initial velocity vo. During its flight, the 
particle's horizontal acceleration is zero and its vertical accelera­
tion is the free-fall acceleration - g. (Upward is taken to be a posi­
tive direction.) If Vo is expressed as a magnitude (the speed vo) 
and an angle ()o (measured from the horizontal), the particle's 
equations of motion along the horizontal x axis and vertical Y axis 
are 

x Xo = (vo cos ()o)t, 

Y - Yo = (vo sin 1J0)t - ~gt2, 

Vy = vosin ()o - gt, 

v; = (vo sin 1J0)2 2g(y - Yo). 

(4-21) 

(4-22) 

(4-23) 

( 4-24) 

The trajectory (path) of a particle in projectile motion is parabolic 
and is given by 

gx2 

Y = (tan 1J0)x - -----"--:-
2( Vo cos 1J0)2 ' 

(4-25) 

if Xo and Yo of Eqs. 4-21 to 4-24 are zero. The particle's horizontal 
range R, which is the horizontal distance from the launch point to 
the point at which the particle returns to the launch height, is 

VB . 
R = --sm21J0' 

g 
( 4-26) 

Uniform Circular Motion If a particle travels along a circle 
or circular arc of radius r at constant speed v, it is said to be in 
uniform circular motion and has an acceleration a of constant 
magnitude 

v2 

a=-. 
r 

(4-34) 

The direction ofa is toward the center of the circle or circular arc, 
and a is said to be centripetal. The time for the particle to complete 
a circle is 

271'1' 
T=-. 

v 
(4-35) 

T is called the period of revolution, or simply the period, of the 
motion. 

Relative Motion When two frames of reference A and Bare 
moving relative to each other at constant velocity, the velocity of a 
particle P as measured by an observer in frame A usually differs 
from that measured from frame B. The two measured velocities are 
related by 

(4-44) 

where v BA is the velocity of B with respect to A. Both observers 
measure the same acceleration for the particle: 

apA = apB' (4-45) 



Figure 4-21 shows the path taken 
by a skunk foraging for trash food, 
from initial point i. The skunk took the 
same time T to go from each labeled 
point to the next along its path. Rank 
points n, b, and c according to the mag­
nitude of the average velocity of the 
skunk to reach them from initial point 
i, greatest first. Fig. 4-21 Question l. 

Figure 4-22 shows the initial position i and the final positionfof 
a particle. What are the (a) initial position vector ri and (b) final 
position vector rj, both in unit-vector notation? (c) What is the x 
component of displacement 11 r? 

y 

3m 

~--~----~----x 

4m 

5m 

Fig. 4-22 Question 2. 

When Paris was shelled from 100 km away with the WWI 
long-range artillery piece "Big Bertha," the shells were fired at an 
angle greater than 45° to give them a greater range, possibly even 
twice as long as at 45°. Does that result mean that the air density at 
high altitudes increases with altitude or decreases? 

You are to launch a rocket, from just above the ground, with 
one of the following initial velocity vectors: (1) VA = 20i + 70), (2) 
VA = -201 + 70], (3) VA = 20i - 70], (4) VA = -201 - 70). In your 
coordinate system, x runs along level ground and y increases upward. 
(a) Rank the vectors according to the launch speed of the projectile, 
greatest first. (b) Rank the vectors according to the time of flight of the 
projectile, greatest first. 

Figure 4-23 shows three situations in which identical projectiles 
are launched (at the same level) at identical initial speeds and an­
gles. The projectiles do not land on the same terrain, however. 
Rank the situations according to the final speeds of the projectiles 
just before they land, greatest first. 

(a) (b) (c) 

Fig. 4-23 Question 5. 

The only good use of a fruitcake is in catapult practice. Curve 1 
in Fig. 4-24 gives the height y of a catapulted fruitcake versus the 
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angle (J between its velocity vector and )' 
its acceleration vector during flight. (a) 
Which of the lettered points on that 
curve corresponds to the landing of the 
fruitcake on the ground? (b) Curve 2 is 

A B 

a similar plot for the same launch speed 
but for a different launch angle. Does 
the fruitcake now land farther away or 
closGr tf) the launch point? 

An airplane flying horizontally at 
Fig. 4-24 Question 6. 

a constant speed of 350 km/h over level ground releases a bundle 
of food supplies. Ignore the effect of the air on the bundle. What 
are the bundle's initial (a) vertical and (b) horizontal components 
of velocity? (c) What is its horizontal component of velocity just 
before hitting the ground? (d) If the airplane's speed were, instead, 
450 km/h, would the time of fall be longer, shorter, or the same? 

In Fig. 4-25, a cream tangerine is thrown up past windows 1,2, 
and 3, which are identical in size and regularly spaced vertically. 
Rank those three windows according to (a) the time the cream tan­
gerine takes to pass them and (b) the average speed of the cream 
tangerine during the passage, greatest first. 

The cream tangerine then moves down past windows 4, 5, and 
6, which are identical in size and irregularly spaced horizontally. 
Rank those three windows according to ( c) the time the cream tan­
gerine takes to pass them and (d) the average speed of the cream 
tangerine during the passage, greatest first. 

Fig. 4-25 Question 8. 

Figure 4-26 shows three paths 
for a football kicked from ground 
level. Ignoring the effects of air, 
rank the paths according to (a) time 
of flight, (b) initial vertical velocity 
component, ( c) initial horizontal 
velocity component, and (d) initial 
speed, greatest first. 

A ball is shot from ground level 
over level ground at a certain initial 
speed. Figure 4-27 gives the range R 
of the ball versus its launch angle (Jo. 

Rank the three lettered points on 
the plot according to (a) the total 
flight time of the ball and (b) the 

Fig. 4-26 Question 9. 

~------------~eo 

Fig. 4-27 Question 10. 



78 MOTION IN TWO AND THREE DIMENSIONS 

baIl's speed at maximum height, great­
est first. 

Figure 4-28 shows four tracks (ei­
ther half- or quarter-circles) that can be 
taken by a train, which moves at a con­
stant speed. Rank the tracks according 
to the magnitude of a train's accelera­
tion on the curved portion, greatest 
first. 

In Fig. 4-29, particle P is in uni­
form circular motion, centered on the 
origin of an xy coordinate system. (a) 

t 
Fig. 4-28 Question 11. 

At what values of Bis the vertical com­
ponent ry of the position vector greatest 
in magnitude? (b) At what values of Bis 
the vertical component Vy of the parti­
cle's velocity greatest in magnitude? (c) 
At what values of B is the vertical com­
ponent ay of the particle's acceleration 
greatest in magnitude? 

(a) Is it possible to be accelerating 

y 

--+--+--'-'''-+--x 

while traveling at constant speed? Is it Fig. 4-29 Question 12. 
possible to round a curve with (b) zero 
acceleration and ( c) a constant magnitude of acceleration? 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

S5 M Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/coliege/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Position and Displacement 
The position vector for an electron is 1 = (5.0 m)l -

(3.0 m)J + (2.0 m)k. (a) Find the magnitude of 1. (b) Sketch the 
vector on a right-handed coordinate system. 

A watermelon seed has the following coordinates: x = -5.0 m, 
y = 8.0 m, and z = 0 m. Find its position vector (a) in unit-vector no­
tation and as (b) a magnitude and (c) an angle relative to the positive 
direction of the x axis. (d) Sketch the vector on a right-handed coor­
dinate system. If the seed is moved to the xyz coordinates (3.00 m, 
Om,O m), what is its displacement (e) in unit-vector notation and as 
(f) a magnitude and (g) an angle relative to the positive x direction? 

A positron undergoes a displacement 111 = 2.01 - 3.0J + 6.0k, 
ending with the position vector 1 = 3.0J - 4.0k, in meters. What 
was the positron's initial position vector? 

The minute hand of a wall clock measures 10 cm from its tip to 
the axis about which it rotates. The magnitude and angle of the dis­
placement vector of the tip are to be determined for three time inter­
vals. What are the (a) magnitude and (b) angle from a quarter after 
the hour to half past, the ( c) magnitude and (d) angle for the next half 
hour, and the (e) magnitude and (f) angle for the hour after that? 

Average Velocity and Instantaneous Velocity 
SSM A train at a constant 60.0 km/h moves east for 40.0 min, 

then in a direction 50.00 east of due north for 20.0 min, and then 
west for 50.0 min. What are the (a) magnitude and (b) angle of its 
average velocity during this trip? 

An electron's position is given by 1 = 3.00t1 -
4.006 + 2.00k, with t in seconds and 1 in meters. (a) In unit-vector 
notation, what is the electron's velocity vet)? At t = 2.00 s, what is 
v (b) in unit-vector notation and as (c) a magnitude and (d) an an­
gle relative to the positive direction of the x axis? 

An ion's position vector is initially 1 = 5.0; - 6.0J + 2.0k, 
and 10 s later it is 1 = -2.01 + 8.0J - 2.0k, all in meters. In unit­
vector notation, what is its vavg during the 10 s? 

A plane flies 483 km east from city A to city B in 45.0 min and 
then 966 km south from city B to city C in 1.50 h. For the total trip, 

what are the (a) magnitude and (b) direction of the plane's dis­
placement, the (c) magnitude and (d) direction of its average ve­
locity, and (e) its average speed? 

Figure 4-30 gives the )' (111) 

path of a squirrel moving 50 

about on level ground, from 
point A (at time t = 0), to 
points B (at t = 5.00 min), C 25 
(at t = 10.0 min), and finally 
D (at t = 15.0 min). Consider 
the average velocities of the 

a I-H--'-i--i--+--,-++-+-i x (111) 

squirrel from point A to each 
of the other three points. Of -25 
them, what are the (a) magni­
tude and (b) angle of the one 
with the least magnitude and -50 

the (c) magnitude and (d) an­
gle of the one with the great­
est magnitude? 

Fig. 4-30 Problem 9. 

t (s) 

The position vector 
1 = 5.00t1 + (et + ft2)J lo­
cates a particle as a function 
of time t. Vector -, is in me­
ters, t is in seconds, and fac­
tors e and t are constants. 
Figure 4-31 gives the angle B 
of the particle's direction of 
travel as a function of t (B is 
measured from the positive x 
direction). What are (a) e 
and (b) t, including units? 

Fig. 4-31 Problem 10. 

Average Acceleration and Instantaneous 
Acceleration 

The position 1 of a particle moving in an xy plane is given 
by = (2.00t3 5.00t)1 + (6.00 - 7.00t4)]' with 1 in meters and t 
in seconds. In unit-vector notation, calculate (a) 1, (b) v, and (c) a 



for t = 2.00 s. (d) What is the angle between the positive direction 
of the x axis and a line tangent to the particle's path at t = 2.00 s? 

At one instant a bicyclist is 40.0 m due east of a park's flag­
pole, going due south with a speed of 10.0 m/s. Then 30.0 s later, the 
cyclist is 40.0 m due north of the flagpole, going due east with a 
speed of 10.0 mls. For the cyclist in this 30.0 s interval, what are the 
(a) magnitude and (b) direction of the displacement, the (c) magni­
tude and (d) direction of the average velocity, and the (e) magni­
tude and (f) direction of the average acceleration? 

SSM A particle moves so that its position (in meters) as 
a function of time (in seconds) is r = 1 + 46 + tk. Write expres­
sions for (a) its velocity and (b) its acceleration as functions of time. 

A proton initially has ~ v = 4.,91 - 2.0] + 3.0k and then 
4.0 s later has v = -2.0i - 2.0j + 5.0k (in meters per second). For 
that 4.0 s, what are (a) the proton's average acceleration aavg in unit­
vector notation, (b) the magnitude ofaavg, and (c) the angle between 
a avg and the positive direction of the x axis? 

SSM ILW A particle leaves the origin with an initial veloc­
ity v = (3.00i) m/s and a constant acceleration a = (-1.001 -
0.500J) mls2. When it reaches its maximum x coordinate, what are 
its (a) velocity and (b) position vector? 

The velocity v of a particle moving in the xy plane is 
given by v = (6.0t - 4.0t2)1 + 8.0f, with v in meters per second 
and t ( > 0) in seconds. (a) What is the acceleration when t = 3.0 
s? (b) When (if ever) is the acceleration zero? (c) When (if ever) is 
the velocity zero? (d) When (if ever) does the speed equal 10 mls? 

A cart is propelled over an xy plane with acceleration compo­
nents at = 4.0 m/s2 and ay = -2.0 m/s2• Its initial velocity has com­
ponents VOx = 8.0 m/s and VOy = 12 m/s. In unit-vector notation, what 
is the velocity of the cart when it reaches its greatest y coordinate? 

A moderate wind accelerates a pebble over a horizontal xy 
plane with a constant acceleration a = (5.00 mls2)1 + (7.00 m/s2)]. 
At time t = 0, the velocity is (4.00 m/s)L What are the (a) magni­
tude and (b) angle of its velocity when it has been displaced by 12.0 
m parallel to the x axis? 

The acceleration of a particle moving only on a horizontal 
xy plane is given by a = 3ti + 4t], where a is in meters per second­
squared and t is in seconds. At t = 0, the position vector 
r = (20.0 m)i + (40.0 m)] locates the particle, which then has the 
velocity vector v = (5.00m/s)i + (2.00m/s)].Att = 4.00s,whatare 
(a) its position vector in unit-vector notation and (b) the angle be­
tween its direction of travel and the 
positive direction of the x axis? y 

In Fig. 4-32, particle A moves 
along the line y = 30 m with a con­
stant velocity v of magnitude 3.0 
mls and parallel to the x axis. At the 
instant particle A passes the y axis, 
particle B leaves the origin with a 
zero initial speed and a constant 
acceleration a of magnitude 0.40 B 

m/s2• What angle (J between a and 

J v A .~ 

the positive direction of the y axis 
would result in a collision? 

Projectile Motion Analyzed 

e 

~----------------x 

Fig. 4-32 Problem 20. 

dart is thrown horizontally with an initial speed of 
10 m/s toward point P, the bull's-eye on a dart board. It hits at 
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point Q on the rim, vertically below P, 0.19 s later. (a) What is the 
distance PQ? (b) How far away from the dart board is the dart 
released? 

A small ball rolls horizontally off the edge of a tabletop that 
is 1.20 m high. It strikes the floor at a point 1.52 m horizontally 
from the table edge. (a) How long is the ball in the air? (b) What is 
its speed at the instant it leaves the table? 

A projectile is fired horizontally from a gun that is 
45.0 m above flat ground, emerging from the gun with a speed of 
250 m/s. (a) How long does the projectile remain in the air? (b) At 
what horizontal distance from the firing point does it strike the 
ground? (c) What is the magnitude of the vertical component of its 
velocity as it strikes the ground? 

In the 1991 World Track and Field Championships in 
Tokyo, Mike Powell jumped 8.95 m, breaking by a fullS cm the 23-
year long-jump record set by Bob Beamon. Assume that Powell's 
speed on takeoff was 9.5 mls (about equal to that of a sprinter) and 
that g = 9.80 mls2 in Tokyo. How much less was Powell's range 
than the maximum possible range for a particle launched at the 
same speed? 

The current world-record motorcycle jump is 77.0 m, set 
by Jason Renie. Assume that he left the take-off ramp at 12.0° to the 
hOlizontal and that the take-off and landing heights are the same. 
Neglecting air drag, determine his take-off speed. 

A stone is catapulted at time t = 0, with an initial velocity of 
magnitude 20.0 mls and at an angle of 40.0° above the horizontal. 
What are the magnitudes of the (a) horizontal and (b) vertical 
components of its displacement from the catapult site at t = 1.10 
s? Repeat for the (c) horizontal and (d) vertical components at 
t = 1.80 s, and for the (e) horizontal and (f) vertical components at 
t = 5.00 s. 

IlW A certain airplane has a 
speed of 290.0 kmlh and is diving at 
an angle of (J = 30.0° below the hor­
izontal when the pilot releases a 
radar decoy (Fig. 4-33). The hori­
zontal distance between the release 
point and the point where the decoy 
strikes the ground is d = 700 m. (a) 
How long is the decoy in the air? (b) 
How high was the release point? 

In Fig. 4-34, a stone is pro- Fig.4-33 Problem 27. 
jected at a cliff of height h 
with an initial speed of 42.0 mls directed at angle (Jo = 60.0° above 
the horizontal. The stone strikes at A, 5.50 s after launching. Find 
(a) the height h of the cliff, (b) the speed of the stone just before 
impact at A, and (c) the maximum height H reached above the 
ground. 

Fig. 4-34 Problem 28. 
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A projectile's launch speed is five times its speed at maxi­
mum height. Find launch angle 80, 

A soccer ball is kicked from the ground with an initial 
speed of 19.5 mls at an upward angle of 45°. A player 55 m away in 
the direction of the kick starts running to meet the ball at that in­
stant. What must be his average speed if he is to meet the ball just 
before it hits the ground? 

In a jump spike, a volleyball player slams the ball from 
overhead and toward the opposite floor. Controlling the angle of the 
spike is difficult. Suppose a ball is spiked from a height of 2.30 m 
with an initial speed of 20.0 mls at a downward angle of 18.00°. How 
much farther on the opposite floor would it have landed if the down­
ward angle were, instead, 8.000? 

You throw a ball toward a 
wall at speed 25.0 mls and at angle 
80 = 40.0° above the horizontal (Fig. 
4-35). The wall is distance d = 22.0 
m from the release point of the ball. 
(a) How far above the release point 
does the ball hit the wall? What are 
the (b) horizontal and (c) vertical 

I~-----d------~. 

Fig. 4-35 Problem 32. 

components of its velocity as it hits the wall? (d) When it hits, has it 
passed the highest point on its trajectory? 

SSM A plane, diving with constant speed at an angle of 
53.0° with the vertical, releases a projectile at an altitude of 730 m. 
The projectile hits the ground 5.00 s after release. (a) What is the 
speed of the plane? (b) How far does the projectile travel horizon­
tally during its flight? What are the (c) horizontal and (d) vertical 
components of its velocity just before striking the ground? 

A trebuchet was a hurling machine built to attack the 
walls of a castle under siege. A large stone could be hurled against a 
wall to break apart the wall. The machine was not placed near the 
wall because then arrows could reach it from the castle wall. Instead, 
it was positioned so that the stone hit the wall during the second half 
of its flight. Suppose a stone is launched with a speed of Vo = 28.0 mls 
and at an angle of 80 = 40.0°. What is the speed of the stone if it hits 
the wall (a) just as it reaches the top of its parabolic path and (b) 
when it has descended to half that height? (c) As a percentage, how 
much faster is it moving in part (b) than in part (a)? 

SSM A rifle that shoots bullets at 460 mls is to be aimed at 
a target 45.7 m away. If the center of the target is level with the ri­
fle, how high above the target must the rifle barrel be pointed so 
that the bullet hits dead center? 

During a tennis match, a player serves the ball at 
23.6 mis, with the center of the ball leaving the racquet horizon­
tally 2.37 m above the court surface. The net is 12 m away and 0.90 
m high. When the ball reaches the net, (a) does the ball clear it and 
(b) what is the distance between the center of the ball and the top 
of the net? Suppose that, instead, the ball is served as before but 
now it leaves the racquet at 5.00° below the horizontal. When the 
ball reaches the net, (c) does the ball clear it and (d) what now is 
the distance between the center of the ball and the top of the net? 

SSM www A lowly high diver pushes off horizontally with 
a speed of 2.00 mls from the platform edge 10.0 m above the sur­
face of the water. (a) At what horizontal distance from the edge is 
the diver 0.800 s after pushing off? (b) At what vertical distance 
above the surface of the water is the diver just then? (c) At what 
horizontal distance from the edge does the diver strike the water? 

A golf ball is struck at 
ground level. The speed of 
the golf ball as a function of v; 

the time is shown in Fig. 4-36, ]: 
where t = 0 at the instant the '" 
ball is struck. The scaling on 
the vertical axis is set by 
Va = 19 mls and Vh = 31 mls. 
(a) How far does the golf 
ball travel horizontally be­
fore returning to ground 

Vao 

Fig. 4-36 Problem 38. 

level? (b) What is the maximum height above ground level at­
tained by the ball? 

In Fig. 4-37, a ball is thrown leftward from the left edge of the 
roof, at height h above the ground. The ball hits the ground 1.50 s 
later, at distance d = 25.0 m from the building and at angle 8 = 60.0° 
with the horizontal. (a) Find h. 
(Hint: One way is to reverse 
the motion, as if on video.) 
What are the (b) magnitude 
and (c) angle relative to the 
horizontal of the velocity at 
which the ball is thrown? (d) 
Is the angle above or below 
the horizontal? 

Fig.4-37 Problem 39. 

Suppose that a shot putter can put a shot at the world­
class speed Vo = 15.00 mls and at a height of2.l60 m. What horizontal 
distance would the shot travel if the launch angle 80 is (a) 45.00° and 
(b) 42.000? The answers indicate that the angle of 45°, which maxi­
mizes the range of projectile motion, does not maximize the horizon­
tal distance when the launch and landing are at different heights. 

Upon spotting 
an insect on a twig overhanging 
water, an archer fish squirts water 
drops at the insect to knock it into 
the water (Fig. 4-38). Although the 
fish sees the insect along a straight­
line path at angle ¢ and distance d, 
a drop must be launched at a differ­
ent angle 80 if its parabolic path is 
to intersect the insect. If ¢ = 36.0° 

/ 
/ 
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Fig. 4-38 Problem 41. 

and d = 0.900 m, what launch angle 80 is required for the drop to be 
at the top of the parabolic path when it reaches the insect? 

In 1939 or 1940, Emanuel Zacchini took his human­
cannonball act to an extreme: After being shot from a cannon, he 
soared over three Ferris wheels and into a net (Fig. 4-39). Assume that 

~-----------------R----------------~ 

Fig. 4-39 Problem 42. 



he is launched with a speed of 26.5 mls and at an angle of 53.0°. 
(a) Treating him as a particle, calculate his clearance over the first 
wheel. (b) If he reached maximum height over the middle wheel, 
by how much did he clear it? (c) How far from the cannon should 
the net's center have been positioned (neglect air drag)? 

ILW A ball is shot from the ground into the air. At a height 
of 9.1 m, its velocity is v = (7.6i + 6.1]) mis, with i horizontal and] 
upward. (a) To what maximum height does the ball rise? (b) What 
total horizontal distance does the ball travel? What are the (c) 
magnitude and (d) angle (below the horizontal) of the ball's veloc­
ity just before it hits the ground? 

A baseball leaves a pitcher's hand horizontally at a speed of 
161 kmlh. The distance to the batter is 18.3 m. (a) How long does 
the ball take to travel the first half of that distance? (b) The second 
half? (c) How far does the ball fall freely during the first half? (d) 
During the second half? (e) Why aren't the quantities in (c) and 
(d) equal? 

In Fig. 4-40, a ball is 
launched with a velocity of 
magnitude 10.0 mis, at an angle Ball 

of 50.0° to the horizontal. The 
launch point is at the base of a 
ramp of horizontal length d1 = Fig. 4-40 Problem 45. 
6.00 m and height d2 = 3.60 m. 
A plateau is located at the top of the ramp. (a) Does the ball land 
on the ramp or the plateau? When it lands, what are the (b) magni­
tude and (c) angle of its displacement from the launch point? 

In basketball, hang is an illusion in which a player 
seems to weaken the gravitational acceleration while in midair. 
The illusion depends much on a skilled player's ability to rapidly 
shift the ball between hands during the flight, but it might also be 
supported by the longer horizontal distance the player travels in the 
upper part of the jump than in the lower part. If a player jumps with 
an initial speed of Vo = 7.00 mls at an angle of 80 = 35.0°, what per­
cent of the jump's range does the player spend in the upper half of 
the jump (between maximum height and half maximum height)? 

SSM WWW A batter hits a pitched ball when the center of 
the ball is 1.22 m above the ground. The ball leaves the bat at an 
angle of 45° with the ground. With that launch, the ball should have 
a horizontal range (returning to the launch level) of 107 m. (a) 
Does the ball clear a 7.32-m-high fence that is 97.5 m horizontally 
from the launch point? (b) At the fence, what is the distance be­
tween the fence top and the ball center? 

In Fig. 4-41, a ball is 
thrown up onto a roof, landing 
4.00 s later at height h = 20.0 
m above the release level. The 
ball's path just before landing 
is angled at 8 = 60.0° with the 
roof. (a) Find the horizontal 
distance d it travels. (See the 
hint to Problem 39.) What are 
the (b) magnitude and (c) an-
gle (relative to the horizontal) Fig. 4-41 Problem 48. 
of the ball's initial velocity? 

SSM A football kicker can give the ball an initial speed of 
25 m/s. What are the (a) least and (b) greatest elevation angles at 
which he can kick the ball to score a field goal from a point 50 m in 
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front of goalposts whose horizontal bar is 3.44 m above the 
ground? 

Two seconds after being projected from ground level, a 
projectile is displaced 40 m horizontally and 53 m vertically above 
its launch point. What are the (a) horizontal and (b) vertical com­
ponents of the initial velocity of the projectile? (c) At the instant 
the projectile achieves its maximum height above ground level, 
how far is it displaced horizontally from the launch point? 

A skilled skier knows to jump upward before reach­
ing a downward slope. Consider a jump in which the launch speed 
is Vo = 10 mis, the launch angle is 80 = 9.0°, the initial course is ap­
proximately flat, and the steeper track has a slope of 11.3°. Figure 
4-42a shows a prejump that allows the skier to land on the top por­
tion of the steeper track. Figure 4-42b shows a jump at the edge of 
the steeper track. In Fig. 4-42a, the skier lands at approximately the 
launch level. (a) In the landing, what is the angle ¢ between the 
skier's path and the slope? In Fig. 4-42b, (b) how far below the 
launch level does the skier land and (c) what is ¢? (The greater fall 
and greater ¢ can result in loss of control in the landing.) 

(a) (b) 

Fig. 4-42 Problem 51. 

A ball is to be shot from level ground toward a wall at dis­
tance x (Fig. 4-43a). Figure 4-43b shows the y component v)' of the 
ball's velocity just as it would reach the wall, as a function of that 
distance x. The scaling is set by v)'s = 5.0 mls and Xs = 20 m.What is 
the launch angle? 

(a) 

Fig. 4-43 Problem 52. 

x(m) 

(b) 

In Fig. 4-44, a baseball is hit at a height h = 1.00 m and then 
caught at the same height. It travels alongside a wall, moving up 
past the top of the wall 1.00 s after it is hit and then down past the 
top of the wall 4.00 s later, at distance D = 50.0 m farther along the 
wall. (a) What horizontal distance is traveled by the ball from hit to 
catch? What are the (b) magnitude and (c) angle (relative to the 
horizontal) of the ball's velocity just after being hit? (d) How high 
is the wall? 

Fig. 4-44 Problem 53. 
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A ball is to be shot from level 
ground with a certain speed. Figure 
4-45 shows the range R it will have ~ 
versus the launch angle Bo. The value 
of Bo determines the flight time; let 
tmax represent the maximum flight 
time. What is the least speed the ball 
will have during its flight if Bo is cho-

o 

sen such that the flight time is 
0.500tmax? Fig. 4-45 Problem 54. 

SSM A ball rolls horizontally off the top of a stairway with 
a speed of 1.52 m/s. The steps are 20.3 cm high and 20.3 cm wide. 
Which step does the ball hit first? 

Uniform Circular Motion 
An Earth satellite moves in a circular orbit 640 km above 

Earth's surface with a period of 98.0 min. What are the (a) speed 
and (b) magnitude of the centripetal acceleration of the satellite? 

A carnival merry-go-round rotates about a vertical axis at a 
constant rate. A man standing on the edge has a constant speed of 
3.66 mis and a centripetal acceleration a of magnitude 1.83 m/s2• 

Position vector 1 locates him relative to the rotation axis. (a) What 
is the magnitude of 1? What is the direction of 1 when a is di­
rected (b) due east and (c) due south? 

A rotating fan completes 1200 revolutions every minute. 
Consider the tip of a blade, at a radius of 0.15 m. (a) Through what 
distance does the tip move in one revolution? What are (b) the 
tip's speed and (c) the magnitude of its acceleration? (d) What is 
the period of the motion? 

IlW A woman rides a carnival Ferris wheel at radius 15 m, 
completing five turns about its horizontal axis every minute. What 
are (a) the period of the motion, the (b) magnitude and (c) direc­
tion of her centripetal acceleration at the highest point, and the (d) 
magnitude and (e) direction of her centripetal acceleration at the 
lowest point? 

A centripetal-acceleration addict rides in uniform circular 
motion with period T = 2.0 s and radius r = 3.00 m. At tl his accel­
eration is a = (6.00 m/s2)i + (-4.00 mis2)]. At that instant, what 
arethevaluesof(a)v·aand(b)1 x a? 

When a large star becomes a supernova, its core may be com­
pressed so tightly that it becomes a neutron stm; with a radius of 
about 20 km (about the size of the San Francisco area). If a neutron 
star rotates once every second, (a) what is the speed of a particle on 
the star's equator and (b) what is the magnitude of the particle's cen­
tripetal acceleration? (c) If the neutron star rotates faster, do the an­
swers to (a) and (b) increase, decrease, or remain the same? 

What is the magnitude of the acceleration of a sprinter run­
ning at 10 m/s when rounding a turn of radius 25 m? 

At tl = 2.00 s, the acceleration of a particle in counter­
clockwise circular motion is (6.00 m/s2)1 + (4.00 m/s2)]. It moves at 
constant speed. At time t2 = 5.00 s, the particle's acceleration is 
(4.00 mis2)i + (-6.00 m/s2)]. What is the radius of the path taken 
by the particle if t2 - tl is less than one period? 

A particle moves horizontally in uniform circular 
motion, over a horizontal xy plane. At one instant, it moves 
through the point at coordinates (4.00 m, 4.00 m) with a velocity of 
-5.001 m/s and an acceleration of +12.5J mis2. What are the (a) x 
and (b) Y coordinates of the center of the circular path? 

A purse at radius 2.00 m and a wallet at radius 3.00 m travel 
in uniform circular motion on the floor of a merry-go-round as the 
ride turns. They are on the same radial line. At one instant, the ac­
celeration of the purse is (2.00 mis2)1 + (4.00 m/s2)]. At that instant 
and in unit-vector notation, what is the acceleration of the wallet? 

A particle moves along a circular path over a horizontal xy 
coordinate system, at constant speed. At time t) = 4.00 s, it is at point 
(5.00 m, 6.00 m) with velocity (3.00 mis)J and acceleration in the 
positive x direction. At time t2 = 10.0 s, it has velocity ( - 3.00 mis)1 
and acceleration in the positive y direction. What are the (a) x and 
(b) y coordinates of the center of the circular path if t2 - tl is less 
than one period? 

SSM www A boy whirls a stone in a horizontal circle of 
radius 1.5 m and at height 2.0 m above level ground. The string 
breaks, and the stone flies off horizontally and strikes the ground af­
ter traveling a horizontal distance of 10 m. What is the magnitude of 
the centripetal acceleration of the stone during the circular motion? 

A cat rides a merry-go-round turning with uniform cir­
cular motion. At time tl = 2.00 s, the cat's velocity is VI = 

(3.00 m/s)i + (4.00 m/s)], measured on a horizontal xy coordinate 
system. At t2 = 5.00 s, the cat's velocity is V2 = (-3.00 mis)i + 
(-4.00 m/s)]. What are (a) the magnitude of the cat's centripetal 
acceleration and (b) the cat's average acceleration during the time 
interval t2 - t1> which is less than one period? 

Relative Motion in One Dimension 
A cameraman on a pickup truck is traveling westward at 20 

km/h while he records a cheetah that is moving westward 30 km/h 
faster than the truck. Suddenly, the cheetah stops, turns, and then 
runs at 45 kmih eastward, as measured by a suddenly nervous crew 
member who stands alongside the cheetah's path. The change in the 
animal's velocity takes 2.0 s. What are the (a) magnitude and (b) di­
rection of the animal's acceleration according to the cameraman and 
the (c) magnitude and (d) direction according to the nervous crew 
member? 

A boat is traveling upstream in the positive direction of an x 
axis at 14 kmih with respect to the water of a river. The water is 
flowing at 9.0 kmih with respect to the ground. What are the (a) 
magnitude and (b) direction of the boat's velocity with respect to 
the ground? A child on the boat walks from front to rear at 6.0 
km/h with respect to the boat. What are the (c) magnitude and (d) 
direction of the child's velocity with respect to the ground? 

A suspicious-looking man runs as fast as he can along a 
moving sidewalk from one end to the other, taking 2.50 s. Then se­
curity agents appear, and the man runs as fast as he can back along 
the sidewalk to his starting point, taking 10.0 s. What is the ratio of 
the man's running speed to the sidewalk's speed? 

Relative Motion in Two Dimensions 
A rugby player runs with the ball directly toward his 

opponent's goal, along the positive direction of an x axis. He can 
legally pass the ball to a teammate as long as the ball's velocity 
relative to the field does not have a positive x component. 
Suppose the player runs at speed 4.0 m/s relative to the field while 
he passes the ball with velocity V BP relative to himself. If v BP has 
magnitude 6.0 mis, what is the smallest angle it can have for the 
pass to be legal? 

Two highways intersect as shown in Fig. 4-46. At the instant 
shown, a police car P is distance dp = 800 m from the intersection 



and moving at speed Vp = 80 km/h. Motorist M is distance dM = 600 
m from the intersection and moving at speed vM = 60 kmlh. (a) In 
unit-vector notation, what is the velocity of the motorist with respect 
to the police car? (b) For the instant shown in Fig. 4-46, what is the 
angle between the velocity found in (a) and the line of sight between 
the two cars? (c) If the cars maintain their velocities, do the answers 
to (a) and (b) change as the cars move nearer the intersection? 

y 

Vp 
~--~----------------~~~----x 

Fig. 4-46 Problem 73. 

After flying for 15 min in a wind blowing 42 kmlh at an angle 
of 20° south of east, an airplane pilot is over a town that is 55 km 
due north of the starting point. What is the speed of the airplane 
relative to the air? 

SSM A train travels due south at 30 mls (relative to the 
ground) in a rain that is blown toward the south by the wind. The 
path of each raindrop makes an angle of 70° with the vertical, as 
measured by an observer stationary on the ground. An observer on 
the train, however, sees the drops fall perfectly vertically. 
Determine the speed of the raindrops relative to the ground. 

A light plane attains an airspeed of 500 km/h. The pilot sets 
out for a destination 800 km due north but discovers that the plane 
must be headed 20.0° east of due north to fly there directly. The 
plane arrives in 2.00 h. What were the (a) magnitude and (b) direc­
tion of the wind velocity? 

Snow is falling vertically at a constant speed of 8.0 m/s. 
At what angle from the vertical do the snowflakes appear to be 
falling as viewed by the driver of a car traveling on a straight, level 
road with a speed of 50 kmlh? 

In the overhead view of 
Fig. 4-47, Jeeps P and Brace 
along straight lines, across flat 
terrain, and past stationmy bor­
der guard A. Relative to the 
guard, B travels at a constant 
speed of 20.0 mis, at the angle 
O2 = 30.0°. Relative to the guard, 
P has accelerated from rest at a 
constant rate of 0.400 mls2 at the 

p 

A 

B 

angle OJ = 60.0°. At a certain Fig. 4-47 Problem 78. 
time during the acceleration, P 
has a speed of 40.0 mls.At that time, what are the (a) magnitude and 
(b) direction of the velocity of P relative to B and the (c) magnitude 
and (d) direction of the acceleration of P relative to B? 

PROBLEMS 83 

SSM IlW Two ships, A and B, leave port at the same time. 
Ship A travels northwest at 24 knots, and ship B travels at 28 knots 
in a direction 40° west of south. (1 knot = 1 nautical mile per hour; 
see Appendix D.) What are the (a) magnitude and (b) direction of 
the velocity of ship A relative to B? (c) After what time will the 
ships be 160 nautical miles apart? (d) What will be the bearing of B 
(the direction of B's position) relative to A at that time? 

A 200-m-wide river flows due east at a uniform speed of 
2.0 m/s. A boat with a speed of 8.0 mls relative to the water leaves 
the south bank pointed in a direction 30° west of north. What are 
the (a) magnitude and (b) direction of the boat's velocity relative 
to the ground? (c) How long does the boat take to cross the 
river? 

Ship A is located 4.0 km north and 2.5 km east of ship B. 
Ship A has a velocity of 22 kmlh toward the south, and ship B has a 
velocity of 40 kmlh in a direction 37° north of east. (a) What is the 
velocity of A relative to B in unit-vector notation with i toward the 
east? (b) Write an expression (in terms of i and J) for the position 
of A relative to B as a function of t, where t = 0 when the ships are 
in the positions described above. (c) At what time is the separation 
between the ships least? (d) What is that least separation? 

A 200-m-wide river has a uniform flow speed of 1.1 mls 
through a jungle and toward the east. An explorer wishes to leave a 
small clearing on the south bank and cross the river in a powerboat 
that moves at a constant speed of 4.0 mls with respect to the water. 
There is a clearing on the north bank 82 m upstream from a point 
directly opposite the clearing on the south bank. (a) In what direc­
tion must the boat be pointed in order to travel in a straight line 
and land in the clearing on the north bank? (b) How long will the 
boat take to cross the river and land in the clearing? 

Additional Problems 
A woman who can row a boat at 6.4 kmlh in still water faces a 

long, straight river with a width of 6.4 km and a current of 3.2 kmlh. 
Let i point directly across the river and J point directly down­
stream. If she rows in a straight line to a point directly opposite her 
starting position, (a) at what angle to i must she point the boat and 
(b) how long will she take? (c) How long will she take if, instead, 
she rows 3.2 km down the river and then back to her starting 
point? (d) How long if she rows 3.2 km lip the river and then back 
to her starting point? (e) At what angle to i should she point the 
boat if she wants to cross the river in the shortest possible time? (f) 
How long is that shortest time? 

In Fig. 4-48a, a sled moves in the negative x direction at con­
stant speed Vs while a ball of ice is shot from the sled with a veloc­
ity Vo = vo) + Voy] relative to the sled. When the ball lands, its 

1 .' £ Ball 
'" i _____ Sled 

L-------------------x 
(a) 

Fig. 4-48 Problem 84. 

Vs (m/s) 

(b) 
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horizontal displacement t.Xbg relative to the ground (from its 
launch position to its landing position) is measured. Figure 4-48b 
gives t.Xbg as a function of VS' Assume the ball lands at approxi­
mately its launch height. What are the values of (a) VOx and (b) 
va}'? The ball's displacement t.Xbs relative to the sled can also be 
measured. Assume that the sled's velocity is not changed when 
the ball is shot. What is t.Xbs when Vs is ( c) 5.0 mls and (d) 15 mJs? 

You are kidnapped by political-science majors (who are upset 
because you told them political science is not a real science). 
Although blindfolded, you can tell the speed of their car (by the 
whine of the engine), the time of travel (by mentally counting off 
seconds), and the direction of travel (by turns along the rectangu­
lar street system). From these clues, you know that you are taken 
along the following course: 50 kmJh for 2.0 min, turn 90° to the 
right, 20 kmJh for 4.0 min, turn 90° to the right, 20 kmlh for 60 s, 
turn 90° to the left, 50 kmJh for 60 s, turn 90° to the right, 20 kmlh 
for 2.0 min, turn 90° to the left, 50 kmJh for 30 s. At that point, (a) 
how far are you from your starting point, and (b) in what direction 
relative to your initial direction of travel are you? 

In Fig. 4-49, a radar station detects an airplane approaching di­
rectly from the east. At first observation, the airplane is at distance 
d, = 360 m from the station and at angle 0, = 40° above the hori­
zon. The airplane is tracked through an angular change t.o = 123° 
in the vertical east-west plane; its distance is then dz = 790 m. Find 
the (a) magnitude and (b) direction of the airplane's displacement 
during this period. 

Airplane 
__ -~oo'_c-

Fig. 4-49 Problem 86. 

SSM A baseball is hit at ground level. The ball reaches its 
maximum height above ground level 3.0 s after being hit. Then 2.5 
s after reaching its maximum height, the ball barely clears a fence 
that is 97.5 m from where it was hit. Assume the ground is level. (a) 
What maximum height above ground level is reached by the ball? 
(b) How high is the fence? (c) How far beyond the fence does the 
ball strike the ground? 

Long flights at mid latitudes in the Northern Hemisphere en­
counter the jet stream, an eastward airflow that can affect a plane'S 
speed relative to Earth's surface. If a pilot maintains a certain 
speed relative to the air (the plane's airspeed), the speed relative to 
the surface (the plane's ground speed) is more when the flight is in 
the direction of the jet stream and less when the flight is opposite 
the jet stream. Suppose a round-trip flight is scheduled between 
two cities separated by 4000 km, with the outgoing flight in the di­
rection of the jet stream and the return flight opposite it. The air­
line computer advises an airspeed of 1000 kmlh, for which the dif­
ference in flight times for the outgoing and return flights is 70.0 
min. What jet-stream speed is the computer using? 

A particle starts from the origin at t = 0 with a velocity 
of 8.0J mls and moves in the xy plane with constant acceleration 

(4.01 + 2.0J) mJsz. When the particle's x coordinate is 29 m, what 
are its (a) y coordinate and (b) speed? 

At what initial speed 
must the basketball player 
in Fig. 4-50 throw the ball, at 
angle 00 = 55° above the 
horizontal, to make the foul 
shot? The horizontal dis­
tances are d, = 1.0 ft and dz 
= 14 ft, and the heights are 
h, = 7.0 ft and hz = 10 ft. 

During volcanic erup­
tions, chunks of solid rock 
can be blasted out of the vol-
cano; these projectiles are 

Fig. 4-50 Problem 90. 

called volcanic bombs. Figure 4-51 shows a cross section of Mt. 
Fuji, in Japan. (a) At what initial speed would a bomb have to be 
ejected, at angle 00 = 35° to the horizontal, from the vent at A in 
order to fall at the foot of the volcano at B, at vertical distance h = 

3.30 km and horizontal distance d = 9.40 km? Ignore, for the mo­
ment, the effects of air on the bomb's travel. (b) What would be the 
time of flight? (c) Would the effect of the air increase or decrease 
your answer in (a)? 

d B 

Fig. 4-51 Problem 91. 

An astronaut is rotated in a horizontal centrifuge at a radius 
of 5.0 m. (a) What is the astronaut's speed if the centripetal accel­
eration has a magnitude of 7.0g? (b) How many revolutions per 
minute are required to produce this acceleration? (c) What is the 
period of the motion? 

SSM Oasis A is 90 km due west of oasis B. A desert camel 
leaves A and takes 50 h to walk 75 km at 37° north of due east. 
Next it takes 35 h to walk 65 km due south. Then it rests for 5.0 h. 
What are the (a) magnitude and (b) direction of the camel's dis­
placement relative to A at the resting point? From the time the 
camel leaves A until the end of the rest period, what are the (c) 
magnitude and (d) direction of its average velocity and (e) its aver­
age speed? The camel's last drink was at A; it must be at B no more 
than 120 h later for its next drink. If it is to reach B just in time, what 
must be the (f) magnitude and (g) direction of its average velocity 
after the rest period? 

Curtain of death. A large metallic asteroid strikes Earth 
and quickly digs a crater into the rocky material below ground 
level by launching rocks upward and outward. The following table 
gives five pairs of launch speeds and angles (from the horizontal) 
for such rocks, based on a model of crater formation. (Other rocks, 
with intermediate speeds and angles, are also launched.) Suppose 
that you are at x = 20 km when the asteroid strikes the ground at 



time t = 0 and position x = 0 (Fig. 4-52). (a) At t = 20 s, what are 
the x and y coordinates of the rocks headed in your direction from 
launches A through E? (b) Plot these coordinates and then sketch 
a curve through the points to include rocks with intermediate 
launch speeds and angles. The curve should indicate what you 
would see as you look up into the approaching rocks and what di­
nosaurs must have seen during asteroid strikes long ago. 

Launch Speed (m/s) Angle (degrees) 

A 520 14.0 

B 630 16.0 

C 750 18.0 

D 870 20.0 

E 1000 22.0 

)' 

Fig. 4-52 Problem 94. 

Figure 4-53 shows the straight path of a paI'ti­
cle across an xy coordinate system as the particle is 
accelerated from rest during time interval ~tl' The ac­
celeration is constant. The xy coordinates for point A 
are (4.00 m, 6.00 m); those for point Bare (12.0 m, 
18.0 m). (a) What is the ratio ayla, of the acceleration 
components? (b) What are the coordinates of the 
particle if the motion is continued for another inter­
val equal to MI? 

)L£' / 
dA 

x 

Fig. 4-53 

Problem 95. 

For women's volleyball the top of the net is 2.24 m above the 
floor and the court measures 9.0 m by 9.0 m on each side of the net. 
Using a jump serve, a player strikes the ball at a point that is 3.0 m 
above the floor and a horizontal distance of 8.0 m from the net. If 
the initial velocity of the ball is horizontal, (a) what minimum mag­
nitude must it have if the ball is to clear the net and (b) what maxi­
mum magnitude can it have if the ball is to strike the floor inside 
the back line on the other side of the net? 

SSM A rifle is aimed horizontally at a target 30 m away. The 
bullet hits the target 1.9 cm below the aiming point. What are (a) the 
bullet's time of flight and (b) its speed as it emerges from the rifle? 

A particle is in uniform circular motion about the origin of an 
xy coordinate system, moving clockwise with a period of 7.00 s. At 
one instant, its position vector (measured from the origin) is 
r = (2.00 m)i - (3.00 m)]. At that instant, what is its velocity in 
unit-vector notation? 

In Fig. 4-54, a lump of wet putty 
moves in uniform circular motion as 
it rides at a radius of 20.0 cm on the 
rim of a wheel rotating counter­
clockwise with a period of 5.00 ms. 
The lump then happens to fly off the 
rim at the 5 o'clock position (as if on 
a clock face). It leaves the rim at a 

Wh~el 
f(:-----±-

Putty 11 

Fig. 4-54 Problem 99. 
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height of h = 1.20 m from the floor and at a distance d = 2.50 m 
from a wall. At what height on the wall does the lump hit? 

An iceboat sails across the surface of a frozen lake with con­
stant acceleration produced by the wind. At a certain instant the 
boat's velocity is (6.301 - 8.42J) mls. Three seconds later, because 
of a wind shift, the boat is instantaneously at rest. What is its aver­
age acceleration for this 3.00 s interval? 

In Fig. 4-55, a ball is shot di­
rectly upward from the ground with 
an initial speed of Va = 7.00 m/s. 
Simultaneously, a construction ele­
vator cab begins to move upward 
from the ground with a constant 
speed of Vc = 3.00 m/s. What maxi- Fig.4-55 Problem 101. 
mum height does the ball reach rela-
tive to (a) the ground and (b) the cab floor? At what rate does the 
speed of the ball change relative to (c) the ground and (d) the cab 
floor? 

A magnetic field can force a charged particle to move in a 
circular path. Suppose that an electron moving in a circle experi­
ences a radial acceleration of magnitude 3.0 X 1014 mls2 in a partic­
ular magnetic field. (a) What is the speed of the electron if the ra­
dius of its circular path is 15 cm? (b) What is the period of the 
motion? 

In 3.50 h, a balloon drifts 21.5 km north, 9.70 km east, and 
2.88 km upward from its release point on the ground. Find (a) the 
magnitude of its average velocity and (b) the angle its average ve­
locity makes with the horizontal. 

A ball is thrown horizontally from a height of 20 m and hits 
the ground with a speed that is three times its initial speed. What is 
the initial speed? 

A projectile is launched with an initial speed of 30 mls at an 
angle of 60° above the horizontal. What are the (a) magnitude and 
(b) angle of its velocity 2.0 s after launch, and (c) is the angle above 
or below the hOlizontal? What are the (d) magnitude and (e) angle 
of its velocity 5.0 s after launch, and (f) is the angle above or below 
the horizontal? 

TIle position vector for a proto,? is )nitially r = 

5.01 - 6.0J + 2.0k and then later is r = -2.0i + 6.0j + 2.0k, all in 
meters. (a) What is the proton's displacement vector, and (b) to 
what plane is that vector parallel? 

A particle P travels with con­
stant speed on a circle of radius r = 
3.00 m (Fig. 4-56) and completes one 
revolution in 20.0 s. The particle 
passes through 0 at time t = O. State 
the following vectors in magnitude­
angle notation (angle relative to the 
positive direction of x). With respect 
to 0, find the particle's position vec­
tor at the times t of (a) 5.00 s, (b) 
7.50 s, and (c) 10.0 s. 

(d) For the 5.00 s interval from 
the end of the fifth second to the end 

y 
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Fig.4-56 Problem 107. 

of the tenth second, find the particle's displacement. For that inter­
val, find (e) its average velocity and its velocity at the (f) beginning 
and (g) end. Next, find the acceleration at the (h) beginning and (i) 
end of that interval. 



86 MOTION IN TWO AND THREE DIMENSIONS 

The fast French train known as the TGV (Train a Grande 
Vitesse) has a scheduled average speed of 216 km/h. (a) If the train 
goes around a curve at that speed and the magnitude of the accel­
eration experienced by the passengers is to be limited to 0.050g, 
what is the smallest radius of curvature for the track that can be 
tolerated? (b) At what speed must the train go around a curve with 
a 1.00 km radius to be at the acceleration limit? 

O!~ (a) If an electron is projected horizontally with a speed of 
3.0 X 106 mis, how far will it fall in traversing 1.0 m of horizontal 
distance? (b) Does the answer increase or decrease if the initial 
speed is increased? 

A person walks up a stalled 15-m-Iong escalator in 90 s. 
When standing on the same escalator, now moving, the person is 
carried up in 60 s. How much time would it take that person to 
walk up the moving escalator? Does the answer depend on the 
length of the escalator? 

(a) What is the magnitude of the centripetal acceleration of 
an object on Earth's equator due to the rotation of Earth? (b) 
What would Earth's rotation period have to be for objects on the 
equator to have a centripetal acceleration of magnitude 9.8 m/s2? 

The range of a projectile depends not only on Vo and ()o 

but also on the value g of the free-fall acceleration, which varies 
from place to place. In 1936, Jesse Owens established a world's 
running broad jump record of 8.09 m at the Olympic Games at 
Berlin (where g = 9.8128 m/s2). Assuming the same values of Vo 

and ()o, by how much would his record have differed if he had com­
peted instead in 1956 at Melbourne (where g = 9.7999 mls2)? 

1 Figure 4-57 shows the path )' 
taken by a drunk skunk over level 
ground, from initial point i to final 
point f The angles are ()i = 30.00

, 

()2 = 50.00
, and ()3 = 80.00

, and the 
distances are di = 5.00 m, d2 = 8.00 
m, and d3 = 12.0 m. What are the (a) 
magnitude and (b) angle of the 
skunk's displacement from i to f? 

The position vector 7 of a 
particle moving in the xy plane is 
7 = 2ti + 2 sin[ (7T/4 rad/s )t]], with 

----I---~---''--'---x 

7 in meters and t in seconds. (a) Fig.4-57 Problem 113. 
Calculate the x and y components 
of the particle's position at t = 0,1.0,2.0,3.0, and 4.0 s and sketch 
the particle's path in the xy plane for the interval 0 :::; t :::; 4.0 s. 

(b) Calculate the components of the particle's velocity at t = 1.0, 
2.0, and 3.0 s. Show that the velocity is tangent to the path of the 
particle and in the direction the particle is moving at each time by 
drawing the velocity vectors on the plot of the particle's path in 
part (a). (c) Calculate the components of the particle's accelera­
tion at t = 1.0,2.0, and 3.0 s. 

An electron having an initial horizontal velocity of magni­
tude 1.00 X 109 cm/s travels into the region between two horizon­
tal metal plates that are electrically charged. In that region, the 
electron travels a horizontal distance of 2.00 cm and has a constant 
downward acceleration of magnitude 1.00 X 1017 cm/s2 due to the 
charged plates. Find (a) the time the electron takes to travel the 
2.00 cm, (b) the vertical distance it travels during that time, and the 
magnitudes of its (c) horizontal and (d) vertical velocity compo­
nents as it emerges from the region. 

An elevator without a ceiling is ascending with a constant 
speed of 10 m/s. A boy on the elevator shoots a ball directly up­
ward, from a height of 2.0 m above the elevator floor, just as the el­
evator floor is 28 m above the ground. The initial speed of the ball 
with respect to the elevator is 20 m/s. (a) What maximum height 
above the ground does the ball reach? (b) How long does the ball 
take to return to the elevator floor? 

A football player punts the football so that it will have a 
"hang time" (time of flight) of 4.5 s and land 46 m away. If the ball 
leaves the player's foot 150 cm above the ground, what must be the 
(a) magnitude and (b) angle (relative to the horizontal) of the 
ball's initial velocity? 

An airport terminal has a moving sidewalk to speed passen­
gers through a long corridor. Larry does not use the moving side­
walk; he takes 150 s to walk through the corridor. Curly, who sim­
ply stands on the moving sidewalk, covers the same distance in 70 s. 
Moe boards the sidewalk and walks along it. How long does Moe 
take to move through the corridor? Assume that Larry and Moe 
walk at the same speed. 

A wooden boxcar is moving along a straight railroad track at 
speed Vi' A sniper fires a bullet (initial speed V2) at it from a high­
powered rifle. The bullet passes through both lengthwise walls of 
the car, its entrance and exit holes being exactly opposite each 
other as viewed from within the car. From what direction, relative 
to the track, is the bullet fired? Assume that the bullet is not de­
flected upon entering the car, but that its speed decreases by 20%. 
Take Vi = 85 kmlh and V2 = 650 mls. (Why don't you need to 
know the width of the boxcar?) 



We have seen that part of physics is a study of motion, including accelera­
tions, which are changes in velocities. Physics is also a study of what can cause an 
object to accelerate. That cause is a force, which is, loosely speaking, a push or 
pull on the object. The force is said to act on the object to change its velocity. For 
example, when a dragster accelerates, a force from the track acts on the rear tires 
to cause the dragster's acceleration. When a defensive guard knocks down a 
quarterback, a force from the guard acts on the quarterback to cause the quarter­
back's backward acceleration. When a car slams into a telephone pole, a force on 
the car from the pole causes the car to stop. Science, engineering, legal, and med­
ical journals are filled with articles about forces on objects, including people. 

Newtonian Mechanics 
The relation between a force and the acceleration it causes was first understood 
by Isaac Newton (1642-1727) and is the subject of this chapter. The study of that 
relation, as Newton presented it, is called Newtonian mechanics. We shall focus 
on its three primary laws of motion. 

Newtonian mechanics does not apply to all situations. If the speeds of the 
interacting bodies are very large-an appreciable fraction of the speed of 
light-we must replace Newtonian mechanics with Einstein's special theory of 
relativity, which holds at any speed, including those near the speed of light. If 
the interacting bodies are on the scale of atomic structure (for example, they 
might be electrons in an atom), we must replace Newtonian mechanics with 
quantum mechanics. Physicists now view Newtonian mechanics as a special 
case of these two more comprehensive theories. Still, it is a very important spe­
cial case because it applies to the motion of objects ranging in size from the 
very small (almost on the scale of atomic structure) to astronomical (galaxies 
and clusters of galaxies). 

Newton's First law 
Before Newton formulated his mechanics, it was thought that some influence, 
a "force," was needed to keep a body moving at constant velocity. Similarly, a 
body was thought to be in its "natural state" when it was at rest. For a body to 
move with constant velocity, it seemingly had to be propelled in some way, by 
a push or a pull. Otherwise, it would "naturally" stop moving. 

These ideas were reasonable. If you send a puck sliding across a wooden 
floor, it does indeed slow and then stop. If you want to make it move across the 
floor with constant velocity, you have to continuously pull or push it. 

I 
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Fig. 5-1 A force F on the standard kilo­
gram gives that body an acceleration a. 

Send a puck sliding over the ice of a skating rink, however, and it goes a 
lot farther. You can imagine longer and more slippery surfaces, over which the 
puck would slide farther and farther. In the limit you can think of a long, ex­
tremely slippery surface (said to be a frictionless smface), over which the 
puck would hardly slow. (We can in fact come close to this situation by send­
ing a puck sliding over a horizontal air table, across which it moves on a film 
of air.) 

From these observations, we can conclude that a body will keep moving with 
constant velocity if no force acts on it. That leads us to the first of Newton's three 
laws of motion: 

Newton's First Law: If no force acts on a body, the body's velocity cannot change; 
that is, the body cannot accelerate. 

In other words, if the body is at rest, it stays at rest. If it is moving, it continues to 
move with the same velocity (same magnitude and same direction). 

Force 
We now wish to define the unit of force. We know that a force can cause the 
acceleration of a body. Thus, we shall define the unit of force in terms of the 
acceleration that a force gives to a standard reference body, which we take to 
be the standard kilogram of Fig. 1-3. This body has been assigned, exactly and 
by definition, a mass of 1 kg. 

We put the standard body on a horizontal frictionless table and pull the body 
to the right (Fig. 5-1) so that, by trial and error, it eventually experiences a mea­
sured acceleration of 1 m/s2

• We then declare, as a matter of definition, that the 
force we are exerting on the standard body has a magnitude of 1 newton 
(abbreviated N). 

We can exert a 2 N force on our standard body by pulling it so that its 
measured acceleration is 2 m/s2

, and so on. Thus in general, if our standard body 
of 1 kg mass has an acceleration of magnitude a, we know that a force F must be 
acting on it and that the magnitUde of the force (in newtons) is equal to the mag­
nitude of the acceleration (in meters per second per second). 

Thus, a force is measured by the acceleration it produces. However, accelera­
tion is a vector quantity, with both magnitude and direction. Is force also a vector 
quantity? We can easily assign a direction to a force (just assign the direction of 
the acceleration), but that is not sufficient. We must prove by experiment that 
forces are vector quantities. Actually, that has been done: forces are indeed vector 
quantities; they have magnitudes and directions, and they combine according to 
the vector rules of Chapter 3. 

This means that when two or more forces act on a body, we can find their net 
force, or resultant force, by adding the individual forces vectorially. A single force 
that has the magnitUde and direction of the net force has the same effect on the 
body as all the individual forces together. This fact is called the principle of super­
position for forces. The world would be quite strange if, for example, you and a 
friend were to pull on the standard body in the same direction, each with a force 
of 1 N, and yet somehow the net pull was 14 N. 

In this book, forces are most often represented with a vector symbol such as 
F, and a net force is represented with the vector symbolluet. As with other vectors, 
a force or a net force can have components along coordinate axes. When forces act 
only along a single axis, they are single-component forces. Then we can drop the 



overhead arrows on the force symbols and just use signs to indicate the directions 
of the forces along that axis. 

Instead of the wording used in Section 5-3, the more proper statement of 
Newton's First Law is in terms of a netforce: 

Newton's First Law: If no net force acts on a body (Poel = 0), the body's velocity 
cannot change; that is, the body cannot accelerate. 

There may be multiple forces acting on a body, but if their net force is zero, the 
body cannot accelerate. 

Newton's first law is not true in all reference frames, but we can always find 
reference frames in which it (as well as the rest of Newtonian mechanics) is 
true. Such special frames are referred to as inertial reference frames, or simply 
inertial frames. 

An inertial reference frame is one in which Newton's laws hold. 

For example, we can assume that the ground is an inertial frame provided we can 
neglect Earth's astronomical motions (such as its rotation). 

That assumption works well if, say, a puck is sent sliding along a short strip of 
frictionless ice-we would find that the puck's motion obeys Newton's laws. 
However, suppose the puck is sent sliding along a long ice strip extending from 
the north pole (Fig. 5-2a). If we view the puck from a stationary frame in space, 
the puck moves south along a simple straight line because Earth's rotation 
around the north pole merely slides the ice beneath the puck. However, if we 
view the puck from a point on the ground so that we rotate with Earth, the puck's 
path is not a simple straight line. Because the eastward speed of the ground be­
neath the puck is greater the farther south the puck slides, from our ground­
based view the puck appears to be deflected westward (Fig. 5-2b). However, this 
apparent deflection is caused not by a force as required by Newton's laws but by 
the fact that we see the puck from a rotating frame. In this situation, the ground is 
a noninertial frame. 

In this book we usually assume that the ground is an inertial frame and 
that measured forces and accelerations are from this frame. If measurements 

(a) (b) 

Earth's rotation 
causes an 
apparent deflection. 

Fig. 5-2 (a) The path of a puck sliding from the north pole as seen from a stationary 
point in space. Earth rotates to the east. (b) The path of the puck as seen from the ground. 
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are made in, say, an elevator that is accelerating relative to the ground, then 
the measurements are being made in a noninertial frame and the results can be 
surprising. 

ECKPOINT 1 

Which of the figure's six arrangements correctly show the vector addition of forces PI 
and P2 to yield the third vector, which is meant to represent their net force Foet? 

F,G F,G L];, 
(a) F2 (b) F2 (e) F2 

(d) 

7,17 
(e) 

;,lZJ 
(J) 

7,lZJ 
-> 

F2 F2 

Mass 
Everyday experience tells us that a given force produces different magnitudes of 
acceleration for different bodies. Put a baseball and a bowling ball on the floor 
and give both the same sharp kick. Even if you don't actually do this, you know 
the result: The baseball receives a noticeably larger acceleration than the bowling 
ball. The two accelerations differ because the mass of the baseball differs from 
the mass of the bowling ball-but what, exactly, is mass? 

We can explain how to measure mass by imagining a series of experiments in 
an inertial frame. In the first experiment we exert a force on a standard body, 
whose mass n70 is defined to be 1.0 kg. Suppose that the standard body acceler­
ates at 1.0 m/s2• We can then say the force on that body is 1.0 N. 

We next apply that same force (we would need some way of being certain it 
is the same force) to a second body, body X, whose mass is not known. Suppose 
we find that this body X accelerates at 0.25 m/s2

• We know that a less massive 
baseball receives a greater acceleration than a more massive bowling ball when 
the same force (kick) is applied to both. Let us then make the following conjec­
ture: The ratio of the masses of two bodies is equal to the inverse of the ratio of 
their accelerations when the same force is applied to both. For body X and the 
standard body, this tells us that 

Solving for n7x yields 

ao 1.0 m/s2 

n7x = n70 - = (1.0 kg) 025 I 2 = 4.0 kg. 
ax . m s 

Our conjecture will be useful, of course, only if it continues to hold when 
we change the applied force to other values. For example, if we apply an 8.0 N force 
to the standard body, we obtain an acceleration of 8.0 m/s2

• When the 8.0 N force is 



applied to body X, we obtain an acceleration of 2.0 m/s2
. Our conjecture then 

gives us 

au 8.0m/s2 

I11X = 1110 - = (1.0 kg) 20 /2 = 4.0 kg, 
ax . m s 

consistent with our first experiment. Many experiments yielding similar results 
indicate that our conjecture provides a consistent and reliable means of assigning 
a mass to any given body. 

Our measurement experiments indicate that mass is an intrinsic characteristic 
of a body-that is, a characteristic that automatically comes with the existence of 
the body. They also indicate that mass is a scalar quantity. However, the nagging 
question remains: What, exactly, is mass? 

Since the word l11ass is used in everyday English, we should have some in­
tuitive understanding of it, maybe something that we can physically sense. Is it 
a body's size, weight, or density? The answer is no, although those characteris­
tics are sometimes confused with mass. We can say only that the l11ass of a body 
is the characteristic that relates a force on the body to the resulting acceleration. 
Mass has no more familiar definition; you can have a physical sensation of mass 
only when you try to accelerate a body, as in the kicking of a baseball or a bowl­
ing ball. 

Newton's Second law 
All the definitions, experiments, and observations we have discussed so far can be 
summarized in one neat statement: 

Newton's Second Law: The net force on a body is equal to the product of the body's 
mass and its acceleration. 

In equation form, 

(Newlon's second law). (5-1) 

This equation is simple, but we must use it cautiously. First, we must be 
certain about which body we are applying it to. Then F;,et must be the vector sum 
of all the forces that act on that body. Only forces that act on that body are to be 
included in the vector sum, not forces acting on other bodies that might be 
involved in the given situation. For example, if you are in a rugby scrum, the net 
force on you is the vector sum of all the pushes and pulls on your body. It does 
not include any push or pull on another player from you or from anyone else. 
Every time you work a force problem, your first step is to clearly state the body to 
which you are applying Newton's law. 

Like other vector equations, Eq. 5-1 is equivalent to three component equa­
tions, one for each axis of an xyz coordinate system: 

(5-2) 

Each of these equations relates the net force component along an axis to the 
acceleration along that same axis. For example, the first equation tells us that 
the sum of all the force components along the x axis causes the x component a, 
of the body's acceleration, but causes no acceleration in the y and z directions. 
Turned around, the acceleration component a\ is caused only by the sum of the 
force components along the x axis. In general, 
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The acceleration component along a given axis is caused only by the sum of the force 
components along that same axis, and not by force components along any other axis. 

Equation 5-1 tells us that if the net force on a body is zero, the body's 
acceleration a = O. If the body is at rest, it stays at rest; if it is moving, it continues 
to move at constant velocity. In such cases, any forces on the body balance one 
another, and both the forces and the body are said to be in equilibrium. 
Commonly, the forces are also said to cancel one another, but the term "cancel" is 
tricky. It does not mean that the forces cease to exist (canceling forces is not like 
canceling dinner reservations). The forces still act on the body. 

For SI units, Eq. 5-1 tells us that 

1 N = (1 kg)(1 m/s2) = 1 kg· m/s2. (5-3) 

Some force units in other systems of units are given in Table 5-1 and Appendix D. 

Units in Newton's Second Law (Eqs. 5-1 and 5-2) 

System Force Mass Acceleration 

SI newton (N) kilogram (kg) m/s2 

CGsa dyne gram (g) cm/s2 

Britishb pound (lb) slug ftls2 

a1 dyne 1 g' cm/s2. 

b1lb = 1 slug· ft/S2. 

To solve problems with Newton's second law, we often draw a free-body 
diagram in which the only body shown is the one for which we are summing 
forces. A sketch of the body itself is preferred by some teachers but, to save space 
in these chapters, we shall usually represent the body with a dot. Also, each force 
on the body is drawn as a vector arrow with its tail on the body. A coordinate sys­
tem is usually included, and the acceleration of the body is sometimes shown with 
a vector arrow (labeled as an acceleration). 

A system consists of one or more bodies, and any force on the bodies inside 
the system from bodies outside the system is called an external force. If the bod­
ies making up a system are rigidly connected to one another, we can treat the sys­
tem as one composite body, and the net force Pnet on it is the vector sum of all 
external forces. (We do not include internal forces- that is, forces between two 
bodies inside the system.) For example, a connected railroad engine and car form 
a system. If, say, a tow line pulls on the front of the engine, the force due to the 
tow line acts on the whole engine-car system. Just as for a single body, we can re­
late the net external force on a system to its acceleration with Newton's second 
law, Pnet = m a, where m is the total mass of the system. 

CHECKPOINT 2 

The figure here shows two horizontal forces acting on a block on a frictionless floor. If a 
third horizontal force F3 also acts on the block, 
what are the magnitude and direction of F3 when 
the block is (a) stationary and (b) moving to the 
left with a constant speed of 5 rnls? 
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One- and two-dimensional forces, puck 

Parts A, B, and C of Fig. 5-3 show three situations in which 
one or two forces act on a puck that moves over frictionless 
ice along an x axis, in one-dimensional motion. The puck's 
mass is m = 0.20 kg. Forces ft and P2 are directed along the 
axis and have magnitudes Fl = 4.0 Nand F2 = 2.0 N. Force 
IS is directed at angle (J = 30° and has magnitude F3 == 1.0 
N. In each situation, what is the acceleration of the puck? 

In each situation we can relate the acceleration a to the net 
force Fnet acting on the puck with Newton's second law, 
F net = rna. However, because the motion is along only the x 

A 

The horizontal force 
causes a horizontal 
acceleration. 

(a) 

.cPuck iii This is a free-body 
p---x diagram. 

(b) 

B 

These forces compete. 
Their net force causes 
a horizontal acceleration. 

(c) 

This is a free-body 
diagram. 

(d) 

C 

Only the horizontal 
component of Fs 
competes with F;. 

(e) 

-F2 This is a free-body 
-<1 ~e :<: 

F3 
diagram. 

(j) 

Fig. 5-3 In three situations, forces act on a puck that moves 
along an x axis. Free-body diagrams are also shown. 

axis, we can simplify each situation by writing the second 
law for x components only: 

Fnet,x = max· (5-4) 

The free-body diagrams for the three situations are also 
given in Fig. 5-3, with the puck represented by a dot. 

Situation A: For Fig. 5-3b, where only one horizontal force 
acts, Eq. 5-4 gives us 

Fl = max, 

which, with given data, yields 

a ==.!!.l. = 4.0 N = 20 m/s2. 
x m 0.20 kg 

(Answer) 

The positive answer indicates that the acceleration is in the 
positive direction of the x axis. 

Situation B: In Fig. 5-3d, two horizontal forces act on the 
puck, Pi in the positive direction of x and P2 in the negative 
direction. Now Eq. 5-4 gives us 

Fl - F2 = ma.n 

which, with given data, yields 

ax == 4.0 N - 2.0 N = 10 m/s2• 

0.20 kg 
(Answer) 

Thus, the net force accelerates the puck in the positive direc­
tion of the x axis. 

Situation C: In Fig. 5-3[, force P3 is not directed along the 
direction ~ the puck's acceleration; only x component F3,.t 

is. (Force F3 is two-dimensional but the motion is only one­
dimensional.) Thus, we write Eq. 5-4 as 

(5-5) 

From the figure, we see that F3,x = F3 cos e. Solving for the 
acceleration and substituting for F3,:( yield 

(1.0 N)(cos 30°) - 2.0 N == -5.7 m/s2. 
0.20 kg 

(Answer) 

Thus, the net force accelerates the puck in the negative di­
rection of the x axis. 

Additional examples, video, and practice available at WileyPLUS 
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Two-dimensional forces, cookie tin 

In the overhead view of Fig. 5-4a, a 2.0 kg cookie tin is accel­
erated at 3.0 m/s2 in the direction shown by G, over a fric­
tionless horizontal surface. The acceleration is caused by 
three horizontal forces, only two of which are shown: PI of 
magnitude 10 Nand P2 of magnitude 20 N. What is the third 
force P3 in unit-vector notation and in magnitude-angle 
notation? 

The net force Fnet on the tin is the sum of the three forces 
and is related to the acceleration G via Newton's second law 
(Fnet = mG).Thus, 

(5-6) 

which gives us 

(5-7) 

Calculations: Because this is a two-dimensional problem, 
we cannot find F3 merely by substituting the magnitudes 
for the vector quantities on the r~ht side of Eq. 5-7. Instead, 
we must vectorially add ma, -F I (the reverse of F 1)' and 
- F2 (the reverse of F 2), as shown in Fig. 5-4b. This addition 
can be done directly on a vector-capable calculator because 
we know both magnitude and angle for all three vectors. 
However, here we shall evaluate the right side of Eq. 5-7 in 
terms of components, first along the x axis and then along 
the y axis. 

)' 

-> 

x components: Along the x axis we have 

F3,x = mat - FI,x - F2,x 

= mea cos 50°) - FI cos( -150°) - F2 cos 90°. 

Then, substituting known data, we find 

F3,x = (2.0 kg)(3.0 m/s2) cos 50° - (10 N) cos( -150°) 

(20 N) cos 90° 

= 12.5 N. 

y components: Similarly, along the y axis we find 

F3,y = may - Fl,y - F2,y 

= mea sin 50°) - FI sine -150°) - F2 sin 90° 

= (2.0 kg)(3.0 mls2) sin 50° - (10 N) sine -150°) 

- (20 N) sin 90° 

= -lOA N. 

Vector: In unit-vector notation, we can write 

~ = F3,xi + F3,y] = (12.5 N)i - (lOA N)] 

= (13 N)i - (10 N)]. (Answer) 

We can now use a vector-capable calculator to get the mag­
nitude and the angle of F3 • We can also use Eq. 3-6 to obtain 
the magnitude and the angle (from the positive direction of 
the x axis) as 

F3 = YFL + FL = 16N 

and (Answer) 

These are two F2 

of the three 
horizontal force 
vectors. 

This is the reSUlting 
horizontal acceleration 
vector. 

We draw the product 
)' of mass and acceleration 

as a vector. 

(a) (b) 

-----!i,------+-- x 

Then we can add the three 
vectors to find the missing 
third force vector. 

Fig. 5-4 (a) An overhead view of two of three horizontal forces that act on a cookie tin, 
resulting in acceleration a.IS is not shown. (b) An arrangement of vectors 111 a, - J;, and 
- F2 to find force F3• 

Additional examples, Video, and practice available at WileyPLUS 



Some Particular Forces 

A gravitational force ~ on a body is a certain type of pull that is directed toward 
a second body. In these early chapters, we do not discuss the nature of this force 
and usually consider situations in which the second body is Earth. Thus, when we 
speak of the gravitational force ~ on a body, we usually mean a force that pulls 
on it directly toward the center of Earth - that is, directly down toward the 
ground. We shall assume that the ground is an inertial frame. 

Suppose a body of mass m is in free fall with the free-fall acceleration of 
magnitude g. Then, if we neglect the effects of the air, the only force acting on the 
body is the gravitational force ~. We can relate this downward force and 
downward acceleration with Newton's second law (F = ma). We place a vertical 
y axis along the body's path, with the positive direction upward. For this axis, 
Newton's second law can be written in the form Fuet,y = may, which, in our 
situation, becomes 

-Fg = m(-g) 

or Fg = mg. (5-8) 

In words, the magnitude of the gravitational force is equal to the product mg. 
This same gravitational force, with the same magnitude, still acts on the body 

even when the body is not in free fall but is, say, at rest on a pool table or moving 
across the table. (For the gravitational force to disappear, Earth would have to 
disappear. ) 

We can write Newton's second law for the gravitational force in these vector 
forms: 

(5-9) 

where J is the unit vector that points upward along a y axis, directly away from the 
ground, and g is the free-fall acceleration (written as a vector), directed downward. 

The weight W of a body is the magnitude of the net force required to prevent the 
body from falling freely, as measured by someone on the ground. For example, to 
keep a ball at rest in your hand while you stand on the ground, you must provide 
an upward force to balance the gravitational force on the ball from Earth. 
Suppose the magnitude of the gravitational force is 2.0 N. Then the magnitude of 
your upward force must be 2.0 N, and thus the weight W of the ball is 2.0 N. We 
also say that the ball weighs 2.0 N and speak about the ball weighing 2.0 N. 

A ball with a weight of 3.0 N would require a greater force from you­
namely, a 3.0 N force-to keep it at rest. The reason is that the gravitational force 
you must balance has a greater magnitude-namely, 3.0 N. We say that this sec­
ond ball is heavier than the first ball. 

Now let us generalize the situation. Consider a body that has an acceleration 
a of zero relative to the ground, which we again assume to be an inertial frame. 
Two forces act on the body: a downward gravitational force ~ and a balancing 
upward force of magnitude W. We can write Newton's second law for a vertical y 
axis, with the positive direction upward, as 

In our situation, this becomes 

W - Fg = m(O) (5-10) 
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~R= mIii 
Fig. 5-5 An equal-arm balance. When 
the device is in balance, the gravitational 
force ~L on the body being weighed (on 
the left pan) and the total gravitational 
force ~R on the reference bodies (on the 
right pan) are equal. Thus, the mass mL of 
the body being weighed is equal to the total 
mass mR of the reference bodies. 

Scale marked 
in either 
weight or 
mass units 

Fig. 5-6 A spring scale. The reading is 
proportional to the weight of the object on 
the pan, and the scale gives that weight if 
marked in weight units. If, instead, it is 
marked in mass units, the reading is the 
object's weight only if the value of g at the 
location where the scale is being used is 
the same as the value of g at the location 
where the scale was calibrated. 

or (weight, with ground as inertial frame). (5-11) 

This equation tells us (assuming the ground is an inertial frame) that 

The weight Waf a body is equal to the magnitude Fg of the gravitational force on the 
body. 

Substituting mg for Fg from Eq. 5-8, we find 

W=mg (weight), (5-12) 

which relates a body's weight to its mass. 
To weigh a body means to measure its weight. One way to do this is to place 

the body on one of the pans of an equal-arm balance (Fig. 5-5) and then place ref­
erence bodies (whose masses are known) on the other pan until we strike a bal­
ance (so that the gravitational forces on the two sides match). The masses on the 
pans then match, and we know the mass of the body. If we know the value of g for 
the location of the balance, we can also find the weight of the body with Eq. 5-12. 

We can also weigh a body with a spring scale (Fig. 5-6). The body stretches 
a spring, moving a pointer along a scale that has been calibrated and marked in 
either mass or weight units. (Most bathroom scales in the United States work this 
way and are marked in the force unit pounds.) If the scale is marked in 
mass units, it is accurate only where the value of g is the same as where the scale 
was calibrated. 

The weight of a body must be measured when the body is not accelerating 
vertically relative to the ground. For example, you can measure your weight on a 
scale in your bathroom or on a fast train. However, if you repeat the measure­
ment with the scale in an accelerating elevator, the reading differs from your 
weight because of the acceleration. Such a measurement is called an apparent 
weight. 

Caution: A body's weight is not its mass. Weight is the magnitude of a force 
and is related to mass by Eq. 5-12. If you move a body to a point where the value 
of g is different, the body's mass (an intrinsic property) is not different but the 
weight is. For example, the weight of a bowling ball having a mass of 7.2 kg is 71 N 
on Earth but only 12 N on the Moon. The mass is the same on Earth and Moon, 
but the free-fall acceleration on the Moon is only 1.6 m/s2• 

If you stand on a mattress, Earth pulls you downward, but you remain stationary. 
The reason is that the mattress, because it deforms downward due to you, pushes 
up on you. Similarly, if you stand on a floor, it deforms (it is compressed, bent, or 
buckled ever so slightly) and pushes up on you. Even a seemingly rigid concrete 
floor does this (if it is not sitting directly on the ground, enough people on the 
floor could break it). 

The push on you from the mattress or floor is a normal force J{. The name 
comes from the mathematical term normal, meaning perpendicular: The force on 
you from, say, the floor is perpendicular to the floor. 

When a body presses against a surface, the surface (even a seemingly rigid 
one) deforms and pushes on the body with a normal force FN that is perpendicular to 
the surface. 



The normal force 
is the force on 
the block from the 
supporting table. 

The gravitational 
force on the block 
is due to Earth's 
downward pull. 

Normal force ~v 

Block 

(a) 

)' 

(b) 

Block 

The forces 
balance. 

Fig.5-7 (a) A block resting on a table experiences a normal force ~ perpendicular to 
the tabletop. (b) The free-body diagram for the block. 

Figure 5-7a shows an example. A block of mass m presses down on a table, 
deforming it somewhat because of the gravitat.!?nal force ~ on the block. The 
table pushes up on the block with normal force FN . The free-body diagram for the 
block is given in Fig. 5-7h. Forces ~ and FN are the only two forces on the block 
and they are both vertical. Thus, for the block we can write Newton's second law 
for a positive-upward y axis (Fnet•y = may) as 

FN - Fg = may. 

From Eq. 5-8, we substitute mg for Fg, finding 

FN - mg = may. 

Then the magnitude of the normal force is 

FN = mg + may = m(g + ay) (5-13) 

for any vertical acceleration ay of the table and block (they might be in an accel­
erating elevator). If the table and block are not accelerating relative to the 
ground, then ay = 0 and Eq. 5-13 yields 

(5-14) 

JiCHECKPOINT 3 

In Fig. 5-7, is the magnitude of the normal force i{ greater than, less than, or equal to 
mg if the block and table are in an elevator moving upward (a) at constant speed and 
(b) at increasing speed? 

If we either slide or attempt to slide a body over a surface, the motion is resisted 
by a bonding between the body and the surface. (We discuss this bonding more in 
the next chapter.) The resistance is considered to be a single force 1, called either 
the frictional force or simply friction. This force is directed along the surface, op­
posite the direction of the intended motion (Fig. 5-8). Sometimes, to simplify a sit­
uation, friction is assumed to be negligible (the surface is frictionless). 

When a cord (or a rope, cable, or other such object) is attached to a body and 
pulled taut, the cord pulls on the body with a force f directed away from the 
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of 

Fig. 5-8 A frictional force ? opposes the 
attempted slide of a body over a surface. 
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Fig. 5-9 (a) The cord, pulled taut, is 
under tension. If its mass is negligible, 
the cord pulls on the body and the hand 
with force T, even if the cord runs 
around a massless, frictionless pulley as 
in (b) and (c). 

(a) 

B C 

(b) The force on B 

due to C has the same 
magnitude as the 
force on C due to B. 

Fig. 5-10 (q) Book B leans against crate 
C. (b) Forces FBC (the force on the book 
from the crate) and FCB (the force on the 
crate from the book) have the same magni­
tude and are opposite in direction. 

(a) 

The forces at the two ends of 
the cord are equal in magnitude. 

~ 

T 

(b) 

~ 

T 

1-' 
~ \ 
l" 

~ r, 
T 

~ 
'--, 

(c) 

body and along the cord (Fig. 5-9a). The force is often called a tension force 
because the cord is said to be in a state of tension (or to be under tension), which 
means that it is being pulled taut. The tension in the cord is the magnitude T of the 
force on the body. For example, if the force on the body from the cord has magni­
tude T = 50 N, the tension in the cord is 50 N. 

A cord is often said to be massless (meaning its mass is negligible compared 
to the body's mass) and unstretchable. The cord then exists only as a connection 
between two bodies. It pulls on both bodies with the same force magnitude T, 
even if the bodies and the cord are accelerating and even if the cord runs around 
a massless, frictionless pulley (Figs. 5-9b and c). Such a pulley has negligible mass 
compared to the bodies and negligible friction on its axle opposing its rotation. If 
the cord wraps halfway around a pulley, as in Fig. 5-9c, the net force on the pulley 
from the cord has the magnitude 2T. 

CHECKPOINT 4 

The suspended body in Fig. 5-9c weighs 75 N. Is T equal to, greater than, or less than 75 
N when the body is moving upward (a) at constant speed, (b) at increasing speed, and 
(c) at decreasing speed? 

Newton's Third law 
Two bodies are said to interact when they push or pull on each other-that is, 
when a force acts on each body due to the other body. For example, suppose you 
position a book B so it leans against a crate C (Fig. 5-10a). Then the book and 
crate interact: There is a horizontal force FBc on the book from the crate (or due 
to the crate) and a horizontal force FCB on the crate from the book (or due to the 
book). This pair of forces is shown in Fig. 5-10b. Newton's third law states that 

Newton's Third Law: When two bodies interact, the forces on the bodies from each 
other are always equal in magnitude and opposite in direction. 

For the book and crate, we can write this law as the scalar relation 

F BC = FCB (equal magnitudes) 

or as the vector relation 

FBc = -FcB (equal magnitudes and opposite directions), (5-15) 

where the minus sign means that these two forces are in opposite directions. We 
can call the forces between two interacting bodies a third-law force pair. When 
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These forces 
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to be balanced. 
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Fig. 5-11 (a) A cantaloupe lies on a table that stands on Earth. (b) The forces on 
the cantaloupe are FeT and FeE' (c) The third-law force pair for the cantaloupe-Earth 
interaction. (d) The third-law force pair for the cantaloupe-table interaction. 

any two bodies interact in any situation, a third-law force pair is present. The 
book and crate in Fig. 5-10a are stationary, but the third law would still hold if 
they were moving and even if they were accelerating. 

As another example, let us find the third-law force pairs involving the can­
taloupe in Fig. 5-11a, which lies on a table that stands on Earth. The cantaloupe 
interacts with the table and with Earth (this time, there are three bodies whose 
interactions we must sort out). 

Let's first focus on the forces acting on the cantaloupe (Fig. 5-11b). Force 
FCT is the normal force on the cantaloupe from the table, and force FCE is the 
gravitational force on the cantaloupe due to Earth. Are they a third-law force 
pair? No, because they are forces on a single body, the cantaloupe, and not on 
two interacting bodies. 

To find a third-law pair, we must focus not on the cantaloupe but on the 
interaction between the cantaloupe and one other body. In the cantaloupe­
Earth interaction (Fig. 5-11c), Earth pulls on the cantaloupe with a gravitational 
force FCE and the cantaloupe pulls on Earth with a gravitational force FEc. Are 
these forces a third-law force pair? Yes, because they are forces on two interact­
ing bodies, the force on each due to the other. Thus, by Newton's third law, 

(cantaloupe - Earth interaction). 

Next, in the cantaloupe-table interaction, the force on the cantaloupe from 
the table is FCT and, conversely, the force on the table from the cantaloupe is FTc 
(Fig. 5-11d). These forces are also a third-law force pair, and so 

(cantaloupe-table interaction). 

CHECKPOINT 5 

Suppose that the cantaloupe and table of Fig. 5-11 are in an elevator cab that begins to 
accelerate upward. (a) Do the magnitudes of FTc and FCT increase, decrease, or stay the 
same? (b) Are those two forces still equal in magnitUde and opposite in direction? ( c) 
Do the magnitudes of FCE and FEc increase, decrease, or stay the same? (d) Are those two 
forces still equal in magnitude and opposite in direction? 

NEWTON'S THIRD LAW 99 

These are 
third-law force 
pairs. 

(d) 

So are these. 
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Applying Newton's laws 
The rest of this chapter consists of sample problems. You should pore over 
them, learning their procedures for attacking a problem. Especially important is 
knowing how to translate a sketch of a situation into a free-body diagram with 
appropriate axes, so that Newton's laws can be applied. 

Block on table, block hanging 

Figure 5-12 shows a block S (the sliding block) with mass 
M = 3.3 kg. The block is free to move along a horizontal 
frictionless surface and connected, by a cord that wraps over 
a frictionless pulley, to a second block H (the hanging 
block), with mass m = 2.1 kg. The cord and pulley have neg­
ligible masses compared to the blocks (they are "massless"). 
The hanging block H falls as the sliding block S accelerates 
to the right. Find (a) the acceleration of block S, (b) the ac­
celeration of block H, and ( c) the tension in the cord. 

Q What is this problem all about? 

You are given two bodies-sliding block and hanging 
block - but must also consider Earth, which pulls on both 
bodies. (Without Earth, nothing would happen here.) A to­
tal of five forces act on the blocks, as shown in Fig. 5-13: 

1. The cord pulls to the right on sliding block S with a force 
of magnitude T. 

2. The cord pulls upward on hanging block H with a force 
of the same magnitude T. This upward force keeps block 
H from falling freely. 

3. Earth pulls down on block S with the gravitational force 
~s, which has a magnitude equal to Mg. 

4. Earth pulls down on block H with the gravitational force 
~H' which has a magnitude equal to mg. 

5. The table pushes up on block S with a normal force FN • 

Sliding 
block S 

Hanging 
blockH 

Fig. 5-12 A block S of mass M is connected to a block H of mass 
m by a cord that wraps over a pulley. 

Fig. 5-13 The forces 
acting on the two 
blocks of Fig. 5-12. 

There is another thing you should note. We assume that 
the cord does not stretch, so that if block H falls 1 mm in a 
certain time, block S moves 1 mm to the right in that same 
time. This means that the blocks move together and their 
accelerations have the same magnitude a. 

Q How do I classify this problem? Should it suggest a par­
ticular law of physics to me? 

Yes. Forces, masses, and accelerations are involved, and 
they should suggest Newton's second law of motion, Fnet = 
mao That is our starting Key Idea. 

Q If I apply Newton's second law to this problem, to which 
body should I apply it? 

We focus on two bodies, the sliding block and the hanging 
block. Although they are extended objects (they are not 
points), we can still treat each block as a particle because 
every part of it moves in exactly the same way. A second Key 
Idea is to apply Newton's second law separately to each block. 

Q What about the pulley? 

We cannot represent the pulley as a particle because 
different parts of it move in different ways. When we discuss 
rotation, we shall deal with pulleys in detail. Meanwhile, we 
eliminate the pulley from consideration by assuming its 
mass to be negligible compared with the masses of the two 
blocks. Its only function is to change the cord's orientation. 

Q OK. Now how do I apply Fnet = ma to the sliding block? 

Represent block S as a particle of mass M and draw all 
the forces that act on it, as in Fig. 5-14a. This is the block's 
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Fig.5-14 (a) A free-body diagram for block S of Fig. 5-12. 
(b) A free-body diagram for block H of Fig. 5-12. 

free-body diagram. Next, draw a set of axes. It makes sense 
to draw the x axis parallel to the table, in the direction in 
which the block moves. 

Q I,hanks, but you still haven't told me how to apply 
F net = ma to the sliding block. All you've done is explain 
how to draw a free-body diagram. 

You are right, and here's the third Key Idea: The 
expression F net = Ma is a vector equation, so we can write 
it as three component equations: 

Fnet,x = Mat Fnet,y = May Fnet,z = Maz (5-16) 

in which Fnet,.n Fnet,y, and Fnet,z are the components of the net 
force along the three axes. Now we apply each component 
equation to its corresponding direction. Because block S 
does not accelerate vertically, Fnet,y = May becomes 

FN - Fgs = 0 or FN = Fgs. (5-17) 

Thus in the y direction, the magnitude of the normal force is 
equal to the magnitude of the gravitational force. 

No force acts in the z direction, which is perpendicular 
to the page. 

In the x direction, there is only one force component, 
which is T. Thus, Fnel, x = Mat becomes 

T=Ma. (5-18) 

This equation contains two unknowns, T and a; so we cannot 
yet solve it. Recall, however, that we have not said anything 
about the hanging block. 

Q I agree. How do I apply Fnet = ma to the hanging block? 

We apply it just as we did for block S: Draw a free-body 
diagram for block H, as in Fig. 5-14b. Then apply Fnet = ma 
in component form. This time, because the acceleration is 
along the y axis, we use the y part of Eq. 5-16 (Fnet,y = may) 
to write 

(5-19) 
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We can now substitute mg for FgH and -a for ay (negative 
because block H accelerates in the negative direction of the 
y axis). We find 

T - mg = -ma. (5-20) 

Now note that Eqs. 5-18 and 5-20 are simultaneous equa­
tions with the same two unknowns, T and a. Subtracting 
these equations eliminates T. Then solving for a yields 

m 
a = M + mg· 

Substituting this result into Eq. 5-18 yields 

(5-21) 

T= Mm 
M+m g. (5-22) 

Putting in the numbers gives, for these two quantities, 

and 

m 2.1 kg 2) 
a = M + m g = 3.3 kg + 2.1 kg (9.8 mls 

= 3.8 m/s2 

Mm 
T= g= 

M+m 

=13N. 

(Answer) 

(3.3 kg)(2.1 kg) (9.8 m/s2) 

3.3 kg + 2.1 kg 

(Answer) 

Q The problem is now solved, right? 

That's a fair question, but the problem is not really fin­
ished until we have examined the results to see whether they 
make sense. (If you made these calculations on the job, 
wouldn't you want to see whether they made sense before 
you turned them in?) 

Look first at Eq. 5-21. Note that it is dimensionally 
correct and that the acceleration a will always be less than g. 
This is as it must be, because the hanging block is not in free 
fall. The cord pulls upward on it. 

Look now at Eq. 5-22, which we can rewrite in the form 

M 
T = M mg. (5-23) 

+m 

In this form, it is easier to see that this equation is also 
dimensionally correct, because both T and mg have dimen­
sions of forces. Equation 5-23 also lets us see that the tension 
in the cord is always less than mg, and thus is always less 
than the gravitational force on the hanging block. That is 
a comforting thought because, if T were greater than mg, 
the hanging block would accelerate upward. 

We can also check the results by studying special cases, 
in which we can guess what the answers must be. A simple 
example is to put g = 0, as if the experiment were carried 
out in interstellar space. We know that in that case, the 
blocks would not move from rest, there would be no forces 
on the ends of the cord, and so there would be no tension in 
the cord. Do the formulas predict this? Yes, they do. If you 
put g = 0 in Eqs. 5-21 and 5-22, you find a = 0 and T = O. 
Two more special cases you might try are M = 0 and m ~ 00. 

Additional examples, video, and practice available at WileyPLUS 
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Cord accelerates block up a ramp 

In Fig. 5-15a, a cord pulls on a box of sea biscuits up along a 
frictionless plane inclined at e = 30°. The box has mass m = 
5.00 kg, and the force from the cord has magnitude T = 25.0 
N. What is the box's acceleration component a along the in­
clined plane? 

The acceleration along the plane is set by the force compo­
nents along the plane (not by force components perpendicular 
to the plane), as expressed by Newton's second law (Eq. 5-1). 

Calculation: For convenience, we draw a coordinate sys­
tem and a free-body diagram as shown in Fig. 5-15b. The 
positive direction of the x axis is up the plane. Force T 
from the cord is up the plane and has magnitude T = 25.0 
N. The gravitational force Fg is downward and has magni­
tude mg = (5.00 kg)(9.8 m/s2) = 49.0 N. More important, its 

component along the plane is down the plane and has mag­
nitude mg sin e as indicated in Fig. 5-15g. (To see why that 
trig function is involved, we go through the steps of Figs. 
5-15c to h to relate the given angle to the force compo­
nents.) To indicate the direction, we can write the 
down-the-plane component as -mg sin e. The normal force 
FN is perpendicular to the plane (Fig. 5-15i) and thus does 
not determine acceleration along the plane. 

From Fig. 5-15h, we write Newton's second law (F;,et = 

m71) for motion along the x axis as 

T - mgsin e = mao 

Substituting data and solving for a, we find 

a = 0.100 m/s2, 

(5-24) 

(Answer) 

where the positive result indicates that the box accelerates 
up the plane. 

y 
\ 

Normal force 

/x 
Fig.5-15 (a) A box is pulled up a plane by a cord. 
(b) The three forces acting on the box: the cord's 
force ~ the gravitational force ~, and the normal 
force F N' (c )-(i) Finding the force components along 
the plane and perpendicular to it. 

The box accelerates. 

This is a right 
triangle. 90° - 0/ 

(c) 

o mgcos 0 
mg 
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Gravitational 
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b
(use cos 0) 

Hypotenuse 
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Opposite leg 
(f) (use sin 0) 

These forces 
merely balance. 

x 

mgcos 0 
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Reading a force graph 

Figure 5-16a shows the general arrangement in which two 
forces are applied to a 4.00 kg block on a frictionless floor, 
but only force FI is indicated. That force has a fixed magni­
tude but can be applied at an adjustable angle e to the posi­
tive direction of the x axis. Force Fz is horizontal and fixed in 
both magnitude and angle. Figure 5-16b gives the horizontal 
acceleration ax of the block for any given value of e from 0° 
to 90°. What is the value of ax for e = 180°? 

(1) The horizontal acceleration ax depends on the net hori­
zontal force Fnel,." as given by Newton's second law. (2) The 
net horizontal force is the sum of the horizontal compo­
nents of forces FI and Fz. 

Calculations: The x component of Fz is Fz because the 
vector is horizontal. The x component of FI is Fl cos e. Using 
these expressions and a mass m of 4.00 kg, we can write 
Newton's second law (Fnel = ma) for motion along the x 
axis as 

FI cos e + Fz = 4.00ax' (5-25) 

From this equation we see that when e = 90°, FI cos () 
is zero and Fz = 4.00ax• From the graph we see that the cor­
responding acceleration is 0.50 m/sz. Thus, Fz = 2.00 Nand 
Fz must be in the positive direction of the x axis. 

3 

(a) 

When F; is horizontal, 
the acceleration is 
3.0 m/s2 . 

e 
(b) 

90° 

When F; is vertical, 
the acceleration is 
0.50 m/s2 . 

Fig.5-16 (a) One of the two forces applied to a block is shown. 
Its angle e can be varied. (b) The block's acceleration component 
ax versus e. 

From Eq. 5-25, we find that when () = 0°, 

FI cos 0° + 2.00 = 4.00ax• (5-26) 

From the graph we see that the corresponding acceleration 
is 3.0 m/s2• From Eq. 5-26, we then find that FI = 10 N. 

Substituting FI = 10 N, Fz = 2.00 N, and () = 180° into 
Eq. 5-25 leads to 

ax = -2.00 m/s2• (Answer) 

Forces within an elevator cab 

In Fig. 5-17 a, a passenger of mass m = 72.2 kg stands on 
a platform scale in an elevator cab. We are concerned with 
the scale readings when the cab is stationary and when it is 
moving up or down. 

(a) Find a general solution for the scale reading, whatever 
the vertical motion of the cab. 

(1) The reading is equal to the magnitude of the normal force 
FN on the passenger from the scale. The only other force act­
ing on the passenger is the gravitational force Fg, as shown in 
the free-body diagram of Fig. 5-17b. (2) We can relate the 
forces on the passenger to his acceleration a by using 
Newton's second law (Fnel = ma). However, recall that we 
can use this law only in an inertial frame. If the cab acceler­
ates, then it is not an inertial frame. So we choose the ground 

(a) 

y 

Lpassenger 

These forces 
~ compete. 
Fg Their net force 

causes a vertical 
acceleration. ( b) 

Fig. 5-17 (a) A passenger stands on a platform scale that in­
dicates either his weight or his apparent weight. (b) The free­
body diagram for the passenger, showing the normal force EN 
on him from the scale and the gravitational force l{. 
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to be our inertial frame and make any measure of the passen­
ger's acceleration relative to it. 

Calculations: Because the two forces on the passenger 
and his acceleration are all directed vertically, along the y 
axis in Fig. 5-17b, we can use Newton's second law written 
for y components (Fnet,y = may) to get 

FN - Fg = ma 

or FN= Fg + mao (5-27) 

This tells us that the scale reading, which is equal to FN, 

depends on the vertical acceleration. Substituting mg for Fg 
gives us 

FN = meg + a) (Answer) (5-28) 

for any choice of acceleration a. 

(b) What does the scale read if the cab is stationary or 
moving upward at a constant 0.50 m/s? 

For any constant velocity (zero or otherwise), the accelera­
tion a of the passenger is zero. 

Calculation: Substituting this and other known values into 
Eq. 5-28, we find 

FN = (72.2 kg)(9.8 m/s2 + 0) = 708 N. 
(Answer) 

This is the weight of the passenger and is equal to the mag­
nitude Fg of the gravitational force on him. 

(c) What does the scale read if the cab accelerates upward 
at 3.20 m/s2 and downward at 3.20 rn/s2? 

Calculations: For a = 3.20 m/s2, Eq. 5-28 gives 

FN = (72.2 kg)(9.8 m/s2 + 3.20 m/s2) 

= 939 N, (Answer) 

and for a = -3.20 m/s2, it gives 

FN = (72.2 kg)(9.8 m/s2 - 3.20 m/s2) 

= 477 N. (Answer) 

For an upward acceleration (either the cab's upward speed 
is increasing or its downward speed is decreasing), the scale 
reading is greater than the passenger's weight. That reading 
is a measurement of an apparent weight, because it is made 
in a noninertial frame. For a downward acceleration (either 
decreasing upward speed or increasing downward speed), 
the scale reading is less than the passenger's weight. 

(d) During the upward acceleration in part (c), what is the 
magnitude Fnet of the net force on the passenger, and what is 
the magnitude ap,cab of !lis acceleration as measured in the 
frame of the cab? Does Fnet = ma p,cab? 

Calculation: The magnitude Fg of the gravitational force 
on the passenger does not depend on the motion of the pas­
senger or the cab; so, from part (b), Fg is 708 N. From part ( c), 
the magnitude FN of the normal force on the passenger during 
the upward acceleration is the 939 N reading on the scale. Thus, 
the net force on the passenger is 

Fnet = FN - Fg = 939 N -708 N = 231 N, (Answer) 

during the upward acceleration. However, his acceleration 
ap,cab relative to the frame of the cab is zero. Thus, in the non­
inertial frame of the accelerating cab, Fnet is not equal to 
map,cab, and Newton's second law does not hold. 

Acceleration of block pushing on block 

In Fig. 5-18a, a constant horizontal force Papp of magnitude 
20 N is applied to block A of mass m A = 4.0 kg, which 
pushes against block B of mass mB = 6.0 kg. The blocks 
slide over a frictionless surface, along an x axis. 

(a) What is the acceleration of the blocks? 

Serious Error: Because force Papp is applied directly 
to block A, we use Newton's second law to relate that 
force to the acceleration a of block A. Because the motion 
is along the x axis, we use that law for x components 
(Fnet,x = maJ, writing it as 

Fapp = mAa. 

However, this is seriously wrong because Papp is not the 

only horizontal force acting on block A. There is also the 
force ~B from block B (Fig. 5-18b). 

Dead-End Solution: Let us now include force ~B by writ­
ing, again for the x axis, 

Fapp - FAB = mAa. 

(We use the minus sign to include the direction of ~B') 
Because FAB is a second unknown, we cannot solve this 
equation for a. 

Successful Solution: Because of the direction in which 
force Papp is applied, the two blocks form a rigidly connected 
system. We can relate the net force on the system to the accel-



(a) 

(b) 

(c) 

This force causes the 
acceleration of the full 
two-block system. 

These are the two forces 
acting on just block A. 
Their net force causes 
its acceleration. 

This is the only force 
causing the acceleration 
of block B. 

Fig. 5-18 (a) A constant horizontal force F.1PP is applied to block 
A, which pushes against block B. (b) Two horizontal forces act on 
block A. (c) Only one horizontal force acts on block B. 

eration of the system with Newton's second law. Here, once 
again for the x axis, we can write that law as 

Fapp = (mA + mB)a, 

where now we properly apply Fapp to the system with 
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total mass mA + mB' Solving for a and substituting known 
values, we find 

20N 
------ = 2.0 m/s2. 
4.0 kg + 6.0 kg 

(Answer) 

Thus, the acceleration of the system and of each block is 
in the positive direction of the x axis and has the magnitude 
2.0 m/s2

• 

(b) What is the (horizontal) force FBA on block B from 
block A (Fig. 5-18c)? 

We can relate the net force on block B to the block's accel­
eration with Newton's second law. 

Calculation: Here we can write that law, still for compo­
nents along the x axis, as 

FBA = mBa, 

which, with known values, gives 

FBA = (6.0 kg)(2.0 m/s2
) = 12 N. (Answer) 

Thus, force FBA is in the positive direction of the x axis and 
has a magnitude of 12 N. 

Additional examples, video, and practice available at WileyPLUS 

Newtonian Mechanics The velocity of an object can change 
(the object can accelerate) when the object is acted on by one or 
more forces (pushes or pulls) from other objects. Newtonian me­
chanics relates accelerations and forces. 

Force Forces are vector quantities. Their magnitudes are de­
fined in terms of the acceleration they would give the standard 
kilogram. A force that accelerates that standard body by exactly 1 
m/s2 is defined to have a magnitude of 1 N. The direction of a force 
is the direction of the acceleration it causes. Forces are combined 
according to the rules of vector algebra. The net force on a body is 
the vector sum of all the forces acting on the body. 

Newton's First Law If there is no net force on a body, the 
body remains at rest if it is initially at rest or moves in a straight 
line at constant speed if it is in motion. 

Inertial Reference Frames Reference frames in which 
Newtonian mechanics holds are called inertial reference frames or in­
ertial frames. Reference frames in which Newtonian mechanics does 
not hold are called non inertial reference frames or noninertial frames. 

Mass The mass of a body is the characteristic of that body that 

relates the body's acceleration to the net force causing the acceler­
ation. Masses are scalar quantities. 

Newton's Second Law The net force F;,et on a body with 
mass m is related to the body's acceleration a by 

F;,et = ma, (5-1) 

which may be written in the component versions 

Fnet,x = mat Fnet,y = may and Fnet,z = maz' (5-2) 

The second law indicates that in SI units 

1 N = 1 kg· m/s2• (5-3) 

A free-body diagram is a stripped-down diagram in which only 
one body is considered. That body is represented by either a sketch 
or a dot. The external forces on the body are drawn, and a coordi­
nate system is superimposed, oriented so as to simplify the solution. 

Some Particular Forces A gravitational force Fg on a body 
is a pull by another body. In most situations in this book, the other 
body is Earth or some other astronomical body. For Earth, the 
force is directed down toward the ground, which is assumed to be 
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an inertial frame. With that assumption, the magnitude of Fg is 

Fg = mg, (5-8) 

where m is the body's mass and g is the magnitude of the free-fall 
accelera tion. 

The weight W of a body is the magnitude of the upward force 
needed to balance the gravitational force on the body. A body's 
weight is related to the body's mass by 

W=mg. (5-12) 

A normal force FN is the force on a body from a surface 
against which the body presses. The normal force is always perpen­
dicular to the surface. 

A frictional force 1 is the force on a body when the body 

Figure 5-19 gives the free-body diagram for four situations in 
which an object is pulled by several forces across a frictionless 
floor, as seen from overhead. In which situations does the object's 
acceleration a have (a) an x component and (b) a y component? 
(c) In each situation, give the direction of a by naming either a 
quadrant or a direction along an axis. (This can be done with a few 
mental calculations.) 

y y 

7N 
6N 

3N 2N 3N 
x x 

2N 5N 2N 

4N 4N 

(1) (2) 

)' y 

6N 

3N 
5N 

2N 
3N 

x x 
4N 5N 

3N 
4N 4N 

5N 

(3) (4) 

Fig.5-19 Question 1. 

Two horizontal forces, 

FI = (3 N)i (4 N)] and F2 = -(1 N)i - (2 N)] 

pull a banana split across a frictionless lunch counter. Without us­
ing a calculator, determine which of the vectors in the free-body di-

slides or attempts to slide along a surface. The force is always par­
allel to the surface and directed so as to oppose the sliding. On a 
frictionless sUljace, the frictional force is negligible. 

When a cord is under tension, each end of the cord pulls on a 
body. The pull is directed along the cord, away from the point of at­
tachment to the body. For a massless cord (a cord with negligible 
mass), the pulls at both ends of the cord have the same magnitude 
T, even if the cord runs around a massless, frictionless pulley (a pul­
ley with negligible mass and negligible friction on its axle to op­
pose its rotation). 

Newton's Third Law If a force FBC acts on body B due to body 
C, then there is a force FCB on body C due to body B: 

l{c = -FCB' 

agram of Fig. 5-20 best represent (a) 
PI and (b) F2• What is the net-force 
component along (c) the x axis and 
(d) the y axis? Into which quadrants 
do (e) the net-force vector and (f) 
the split's acceleration vector point? 

In Fig. 5-21, forces PI and F2 are 
applied to a lunch box as it slides at 
constant velocity over a frictionless 
floor. We are to decrease angle () 
without changing the magnitude of 
PI' For constant velocity, should we 
increase, decrease, or maintain the 
magnitude of F2? 

At time t = 0, constant F begins to 
act on a rock moving through deep 
space in the +x direction. (a) For time 
t > 0, which are possible functions 
x(t) for the rock's position: (1) 
x = 4t - 3, (2) x = -4t2 + 6t - 3, 
(3) x = 4t2 + 6t - 3? (b) For which 
function is F directed opposite the 
rock's initial direction of motion? 

--------~---------x 

Fig. 5-20 Question 2. 

Fig. 5-21 Question 3. 

Figure 5-22 shows overhead views of four situations in which 
forces act on a block that lies on a frictionless floor. If the force 

(1) (2) 

(4) 

Fig. 5-22 Question 5. 



magnitudes are chosen properly, in which situations is it possible 
that the block is (a) stationary and (b) moving with a constant 
velocity? 

Figure 5-23 shows the same breadbox in four situations where 
horizontal forces are applied. Rank the situations according to the 
magnitude of the box's acceleration, greatest first. 

(a) (b) 

(c) (d) 

Fig. 5-23 Question 6. 

July 17, 1981, Kansas City: The newly opened Hyatt 
Regency is packed with people listening and dancing to a band 
playing favorites from the 1940s. Many of the people are crowded 
onto the walkways that hang like bridges across the wide atrium. 
Suddenly two of the walkways collapse, falling onto the merrymak­
ers on the main floor. 

111e walkways were suspended one above another on vertical 
rods and held in place by nuts threaded onto the rods. In the origi­
nal design, only two long rods were to be used, each extending 
through all three walkways (Fig. 5-24a). If each walkway and the 
merrymakers on it have a combined mass of M, what is the total 
mass supported by the threads and two nuts on (a) the lowest 
walkway and (b) the highest walkway? 

Threading nuts on a rod is impossible except at the ends, so 
the design was changed: Instead, six rods were used, each connect­
ing two walkways (Fig. 5-24b). What now is the total mass sup­
ported by the threads and two nuts on (c) the lowest walkway, (d) 
the upper side of the highest walkway, and (e) the lower side of the 
highest walkway? It was this design that failed. 

"- Nuts 

(a) (b) 

Fig. 5-24 Question 7. 

Figure 5-25 gives three graphs of velocity component vlt) and 
three graphs of velocity component vit). The graphs are not to 
scale. Which v,(t) graph and which vy(t) graph best correspond to 
each of the four situations in Question 1 and Fig. 5-19? 

QUESTIONS 107 

"x 

(a) (b) (c) 

(d) (e) (f) 

Fig. 5-25 Question 8. 

Figure 5-26 shows a train of four blocks being pulled across a 
frictionless floor ~ force F. What total mass is accelerated to the 
right by (a) force F, (b) cord 3, and (c) cord 1? (d) Rank the blocks 
according to their accelerations, greatest first. (e) Rank the cords 
according to their tension, greatest first. 

Fig. 5-26 Question 9. 

Figure 5-27 shows three 
blocks being pushed across a fric­
tionless floor by horizontal force 
F. What total mass is accelerated 
to the right by (a) force F, (b) 
force F21 on block 2 from block 1, 
and (c) force F32 on block 3 from 
block 2? (d) Rank the blocks ac-

10 kg 

3 

Fig.5-27 Question 10. 

cording to their acceleration magnitudes, greatest first. (e) Rank 
forces F, F2b and F32 according to magnitude, greatest first. 

A vertical force F is applied to a block of mass /1l that lies on 
a floor. What happens to the magnitude of the normal force FN on 
the block from the floor as magnitude F is increased from zero if 
force F is (a) downward and (b) upward? 

Figure 5-28 shows four choices for the direction of a force of 
magnitude F to be applied to a block 
on an inclined plane. The directions 
are either horizontal or vertical. 
(For choice b, the force is not enough 
to lift the block off the plane.) Rank 
the choices according to the magni­
tude of the normal force acting on 
the block from the plane, greatest 
first. 

b 

30" d 

Fig. 5-28 Question 12. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Newton's Second law 
Only two horizontal forces act on a 3.0 kg body that can move 

over a frictionless floor. One force is 9.0 N, acting due east, and the 
other is 8.0 N, acting 62° north of west. What is the magnitude of 
the body's acceleration? 

Two horizontal forces act on a 2.0 kg chopping block that can 
slide over a frictionless kitchen counter, which lies in an xy plane. 
One force is FI = (3.0 N)i + (4.0 N)]. Find the acceleration of the 
chopping block in unit-vector notation when the other force is (a) 
F2 = (-3.0 N)i + (-4.0 N)], (b) F2 = (-3.0 N)i + (4.0 N)], and 
(c) F2 = (3.0 N)i + (-4.0 N)]. 

If the 1 kg standard body has an acceleration of 2.00 m/s2 at 
20.0° to the positive direction of an x axis, what are (a) the x com­
ponent and (b) the y component of the net force acting on the 
body, and (c) what is the net force in unit-vector notation? 

While two forces act on it, a par­
ticle is to move at the constant veloc­
ity v = (3 mls)i - (4 mls)]. One of 
the forces is ~ = (2 N)i + ( -6 N)]. 
What is the other force? 

Three astronauts, propelled 
by jet backpacks, push and guide a 
120 kg asteroid toward a processing 
dock, exerting the forces shown in 
Fig. 5-29, with FI = 32 N, F2 = 55 N, 
F3 = 41 N, 81 = 30°, and 83 = 60°. 
What is the asteroid's acceleration (a) 
in unit-vector notation and as (b) a 
magnitude and ( c) a direction relative 
to the positive direction of the x axis? 

In a two-dimensional tug-of­
war, Alex, Betty, and Charles pull 
horizontally on an automobile tire 
at the angles shown in the overhead 
view of Fig. 5-30. The tire remains 
stationary in spite of the three pulls. 
Alex pulls with force ~ of magni­
tude 220 N, and Charles pulls with 
force Fc of magnitude 170 N. Note 
that the direction of Fc is not given. 
What is the magnitude of Betty's 
force Fs? 

There are two forces on 
the 2.00 kg box in the overhead view 
of Fig. 5-31, but only one is shown. 
For FI = 20.0 N, a = 12.0 mls2, and 
8 = 30.0°, find the second force (a) in 
unit -vector notation and as (b) a 
magnitude and (c) an angle relative 
to the positive direction of the x axis. 

y 

x 

Fig. 5-29 Problem 5. 

137" Betty 

Fig. 5-30 Problem 6. 

y 

--i--?--+-/>--x 

~ 

a 

Fig. 5-31 Problem 7. 

A 2.00 kg object is subjected to three forces that give it an accel­
eration a = -(8.00 mls2)i + (6.00 mls2)J, If two of the three forces 
are ~ = (30.0 N)i + (16.0 N)] and lS = -(12.0 N)i + (8.00 N)I, 
find the third force. 

A 0.340 kg particle moves in an xy plane according 
to x(t) = -15.00 + 2.00t - 4.00t3 and yet) = 25.00 + 7.00t - 9.00t2, 

with x and y in meters and t in seconds. At t = 0.700 s, what are (a) 
the magnitude and (b) the angle (relative to the positive direction 
of the x axis) of the net force on the particle, and (c) what is the an­
gle of the particle's direction of travel? 

A 0.150 kg particle moves along an x axis according 
to x(t) = -13.00 + 2.00t + 4.00t2 

- 3.00t3 , with x in meters and tin 
seconds. In unit-vector notation, what is the net force acting on the 
particle at t = 3.40 s? 

A 2.0 kg particle moves along an x axis, being propelled by a 
variable force directed along that axis. Its position is given by x = 

3.0 m + (4.0 mls)t + ct2 - (2.0 m/s3)t3
, with x in meters and tin 

seconds. The factor c is a constant. At t = 3.0 s, the force on the par­
ticle has a magnitUde of 36 N and is in the negative direction of the 
axis. What is c? 

Two horizontal forces FI and F2 act on a 4.0 kg disk that 
slides over frictionless ice, on 
which an xy coordinate system l'x 

is laid out. Force FI is in the 
positive direction of the x axis 2 
and has a magnitude of 7.0 N. 
Force F2 has a magnitUde of 9.0 f----f---7tc---If-----I t (s) 

N. Figure 5-32 gives the x com- -2 
ponent v¥ of the velocity of the 
disk as a function of time t dur- -4 

ing the sliding. What is the an- Fig. 5-32 Problem 12. 
gle between the constant direc-
tions of forces FI and F2 ? 

Some Particular Forces 
Figure 5-33 shows an arrangement in which four disks are sus­

pended by cords. The longer, top cord loops 
over a frictionless pulley and pulls with a 
force of magnitude 98 N on the wall to which 
it is attached. The tensions in the three 
shorter cords are TI = 58.8 N, T2 = 49.0 N, 
and T3 = 9.8 N. What are the masses of (a) 
disk A, (b) disk B, (c) disk C, and (d) disk D? TI 

A block with a weight of 3.0 N is at 
rest on a horizontal surface. A 1.0 N upward 
force is applied to the block by means of an 
attached vertical string. What are the (a) 
magnitude and (b) direction of the force of 
the block on the horizontal surface? 

(a) An 11.0 kg salami is sup­
ported by a cord that runs to a spring scale, 

Fig. 5-33 

Problem 13. 



which is supported by a cord hung from the ceiling (Fig. 5-34a). 
What is the reading on the scale, which is marked in weight units? 
(b) In Fig. 5-34b the salami is supported by a cord that runs around 
a pulley and to a scale. The opposite end of the scale is attached by 
a cord to a wall. What is the reading on the scale? (c) In Fig. 5-34c 
the wall has been replaced with a second 11.0 kg salami, and the 
assembly is stationary. What is the reading on the scale? 

(a) 

Spring 
scale 

~ 

, .. 
'i 

Spring scale 

(b) 

Spring scale 
=--
~ 

I, 

(c) 

Fig. 5-34 Problem 15. 

Some insects can walk below 
a thin rod (such as a twig) by hang-
ing from it. Suppose that such an in- ~~~t 
sect has mass m and hangs from a 
horizontal rod as shown in Fig. 5-35, 
with angle () = 40°. Its six legs are all 

~ 

i 
' -

under the same tension, and the leg 
sections nearest the body are hori- Fig. 5-35 Problem 16. 
zontal. (a) What is the ratio of the 
tension in each tibia (forepart of a leg) to the insect's weight? (b) If 
the insect straightens out its legs somewhat, does the tension in each 
tibia increase, decrease, or stay the same? 

Applying Newton's Laws 
SSM WWW In Fig. 5-36, 

let the mass of the block be 8.5 
kg and the angle () be 30°. Find 
(a) the tension in the cord and 
(b) the normal force acting on 
the block. (c) If the cord is cut, 
find the magnitude of the result­
ing acceleration of the block. 

In April 1974, John 
Massis of Belgium managed to 
move two passenger railroad Fig.5-36 Problem 17. 
cars. He did so by clamping his 
teeth down on a bit that was attached to the cars with a rope and 
then leaning backward while pressing his feet against the railway 
ties. The cars together weighed 700 kN (about 80 tons). Assume 
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that he pulled with a constant force that was 2.5 times his body 
weight, at an upward angle () of 30° from the horizontal. His mass 
was 80 kg, and he moved the cars by 1.0 m. Neglecting any retard­
ing force from the wheel rotation, find the speed of the cars at the 
end of the pull. 

SSM A 500 kg rocket sled can be accelerated at a constant 
rate from rest to 1600 km/h in 1.8 s. What is the magnitude of the 
required net force? 

A car traveling at 53 km/h hits a bridge abutment. A passen­
ger in the car moves forward a distance of 65 cm (with respect to 
the rend) while being brought to rest by an inflated air bag. What 
magnitude of force (assumed constant) acts on the passenger's up­
per torso, which has a mass of 41 kg? 

A constant horizontal force Fa pushes a 2.00 kg FedEx pack­
age across a frictionless floor on which an xy coordinate system has 
been drawn. Figure 5-37 gives the package's x and y velocity com­
ponents versus time t. What are the (a) magnitude and (b) direc­
tion of Fa? 

Vx (m/s) 
-----

10 

5 

o 2 

o 1--~-___1-----+---____l t (s) 

-5 

-101---"-" 

Fig. 5-37 Problem 21. 

A customer sits in an amusement park ride in which 
the compartment is to be pulled downward in the negative direc­
tion of a y axis with an acceleration magnitude of 1.24g, with g = 

9.80 mls2• A 0.567 g coin rests on the customer's knee. Once the 
motion begins and in unit-vector notation, what is the coin's accel­
eration relative to (a) the ground and (b) the customer? (c) How 
long does the coin take to reach the compartment ceiling, 2.20 m 
above the knee? In unit-vector notation, what are (d) the actual 
force on the coin and (e) the apparent force according to the cus­
tomer's measure of the coin's acceleration? 

Tarzan, who weighs 820 N, swings from a cliff at the end of a 
20.0 m vine that hangs from a high tree limb and initially makes an 
angle of 22.0° with the vertical. Assume that an x axis extends hori­
zontally away from the cliff edge and a y axis extends upward. 
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Immediately after Tarzan steps off the cliff, the tension in the vine 
is 760 N. Just then, what are (a) the force on him from the vine in 
unit-vector notation and the net force on him (b) in unit-vector no­
tation and as (c) a magnitude and (d) an angle relative to the posi­
tive direction of the x axis? What are the (e) magnitude and (f) an­
gle of Tarzan's acceleration just then? 

There are two horizontal 
forces on the 2.0 kg box in the over­
head view of Fig. 5-38 but only one 
(of magnitude FI = 20 N) is shown. Fig. 5-38 Problem 24. 
The box moves along the x axis. For 
each of the following values for the acceleration a, of the box, find the 
second force in unit-vector notation: (a) 10 m/s2, (b) 20 m/s2, (c) 0, 
(d) -10 mls2, and (e) -20 mls2• 

Sunjal11l11ing. A "sun yacht" is a spacecraft with a large sail 
that is pushed by sunlight. Although such a push is tiny in everyday 
circumstances, it can be large enough to send the spacecraft out­
ward from the Sun on a cost-free but slow trip. Suppose that the 
spacecraft has a mass of 900 kg and receives a push of 20 N. (a) 
What is the magnitude of the resulting acceleration? If the craft 
starts from rest, (b) how far will it travel in 1 day and (c) how fast 
will it then be moving? 

The tension at which a fishing line snaps is commonly called the 
line's "strength." What minimum strength is needed for a line that is to 
stop a salmon of weight 85 N in 11 cm if the fish is initially drifting at 
2.8 mls? Assume a constant deceleration. 

SSM An electron with a speed of 1.2 X 107 mls moves hori­
zontally into a region where a constant vertical force of 4.5 X 
10-16 N acts on it. The mass of the electron is 9.11 X 10-31 kg. 
Determine the vertical distance the electron is deflected during the 
time it has moved 30 mm horizontally. 

A car that weighs 1.30 X 104 N is initially moving at 
40 km/h when the brakes are applied and the car is brought to a 
stop in 15 m. Assuming the force that stops the car is constant, 
find (a) the magnitude of that force and (b) the time required for 
the change in speed. If the initial speed is doubled, and the car ex­
periences the same force during the braking, by what factors are 
(c) the stopping distance and (d) the stopping time multiplied? 
(There could be a lesson here about the danger of driving at high 
speeds.) 

A firefighter who weighs 712 N slides down a vertical pole 
with an acceleration of 3.00 m/s2, directed downward. What are 
the (a) magnitude and (b) direction (up or down) of the vertical 
force on the firefighter from the pole and the (c) magnitude and 
(d) direction of the vertical force on the pole from the firefighter? 

The high-speed winds around a tornado can drive pro­
jectiles into trees, building walls, and even metal traffic signs. In a 
laboratory simulation, a standard wood toothpick was shot by 
pneumatic gun into an oak branch. The toothpick's mass was 0.13 
g, its speed before entering the branch was 220 mis, and its pene­
tration depth was 15 mm. If its speed was decreased at a uniform 
rate, what was the magnitude of the force of the branch on the 
toothpick? 

SSM WWW A block is projected up a frictionless inclined 
plane with initial speed Vo = 3.50 m/s. The angle of incline is 
() = 32.00

• (a) How far up the plane does the block go? (b) How 
long does it take to get there? (c) What is its speed when it gets 
back to the bottom? 

Figure 5-39 shows an overhead 
view of a 0.0250 kg lemon half and 
two of the three horizontal forces that 
act on it as it is on a frictionless table. 
Force ~ has a magnitude of 6.00 N 
and is at (}j = 30.00

• Force IS has a 
magnitude of 7.00 N and is at (}2 = 

30.00
• In unit-vector notation, what is 

)' 

)-----.\' 

the third force if the lemon half (a) Fig.5-39 Problem 32. 
is stationary, (b) has the constant ve-
locity v = (13.01 - 14.0]) mis, and (c) has the varying velocity v = 

(13.0ti 14.0tD mls2
, where tis time? 

An elevator cab and its load have a combined mass of 1600 
kg. Find the tension in the supporting cable when the cab, origi­
nally moving downward at 12 mis, is brought to rest with constant 
acceleration in a distance of 42 m. 

In Fig. 5-40, a crate of mass 111 = 100 kg is pushed at con­
stant speed up a frictionless ramo 

-4 III «() = 30.00
) by a horizontal force F. 

What are the magnitudes of (a) F 
and (b) the force on the crate from 
the ramp? 

The velocity of a 3.00 kg par­
ticle is given by v = (8.00ti + 3.00t2J) 
mis, with time t in seconds. At the in­
stant the net force on the particle 
has a magnitude of 35.0 N, what are 

Fig. 5-40 Problem 34. 

the direction (relative to the positive direction of the x axis) of (a) 
the net force and (b) the particle's direction of travel? 

Holding on to a towrope moving parallel to a frictionless ski 
slope, a 50 kg skier is pulled up the slope, which is at an angle of 
8.00 with the horizontal. What is the magnitude Frope of the force on 
the skier from the rope when (a) the magnitude v of the skier's ve­
locity is constant at 2.0 m/s and (b) v = 2.0 m/s as v increases at a 
rate of 0.10 m/s2? 

A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a 
frozen lake, 15 m apart but connected by a rope of negligible mass. 
The girl exerts a horizontal 5.2 N force on the rope. What are the ac­
celeration magnitudes of (a) the sled and (b) the girl? (c) How far 
from the girl's initial position do they meet? 

A 40 kg skier skis directly down a frictionless slope angled 
at 100 to the horizontal. Assume the skier moves in the negative di­
rection of an x axis along the slope. A wind force with component 
Fr acts on the skier. What is F, if the magnitude of the skier's veloc­
ity is (a) constant, (b) increasing at a rate of 1.0 mls2, and (c) in­
creasing at a rate of2.0 mls2? 

IlW A sphere of mass 3.0 X 10-4 kg is suspended from 
a cord. A steady horizontal 
breeze pushes the sphere so Vx (m/s) 

that the cord makes a con- 4 

stant angle of 370 with the 
vertical. Find (a) the push 
magnitude and (b) the ten­
sion in the cord. 

A dated box of dates, 
of mass 5.00 kg, is sent sliding 
up a frictionless ramp at an 
angle of () to the horizontal. 

2 

-2 

-4 

f----+--t-----"'...-t-----i------l t (s) 
o 

Fig. 5-41 Problem 40. 



Figure 5-41 gives, as a function of time t, the component vr of the box's 
velocity along an x axis that extends directly up the ramp. What is the 
magnitude of the normal force on the box from the ramp? 

Using a rope that will snap if the tension in it exceeds 387 N, 
you need to lower a bundle of old roofing material weighing 449 N 
from a point 6.1 m above the ground. (a) What magnitude of the bun­
dle's acceleration will put the rope on the verge of snapping? (b) At 
that acceleration, with what speed would the bundle hit the ground? 

In earlier days, horses pulled barges down canals in the 
manner shown in Fig. 5-42. Suppose the horse pulls on the rope 
with a force of 7900 N at an angle of 8 = 18° to the direction of 
motion of the barge, which is headed straight along the positive 
direction of an x axis. The mass of the barge is 9500 kg, and the 
magnitude of its acceleration is 0.12 m/s2• What are the (a) magni­
tude and (b) direction (relative to positive x) of the force on the 
barge from the water? 

Fig. 5-42 Problem 42. 

SSM In Fig. 5-43, a chain consisting of five 
links, each of mass 0.100 kg, is lifted vertically 
with constant acceleration of magnitude a = 2.50 
m/s2• Find the magnitudes of (a) the force on link 
1 from link 2, (b) the force on link 2 from link 3, 
(c) the force on link 3 from link 4, and (d) the 
force on link 4 from link 5. Then find the magni­
tudes of (e) the force F on the top link from the 
person lifting the chain and (f) the net force accel­
erating each link. 

5 

4 

3 

2 

A lamp hangs vertically from a cord in a de-
Fig. 5-43 

scending elevator that decelerates at 2.4 mls2
• (a) If Problem 43. 

the tension in the cord is 89 N, what is the lamp's 
mass? (b) What is the cord's tension when the elevator ascends with 
an upward acceleration of 2.4 m/s2? 

An elevator cab that weighs 27.8 kN moves upward. What is 
the tension in the cable if the cab's speed is (a) increasing at a rate 
of 1.22 mls2 and (b) decreasing at a rate of 1.22 mls2? 

An elevator cab is pulled upward by a cable. The cab and its 
single occupant have a combined mass of 2000 kg. When that occu­
pant drops a coin, its acceleration relative to the cab is 8.00 m/s2 

downward. What is the tension in the cable? 

The Zacchini family was renowned for their human­
cannonball act in which a family member was shot from a cannon 
using either elastic bands or compressed air. In one version of the 
act, Emanuel Zacchini was shot over three Ferris wheels to land in 
a net at the same height as the open end of the cannon and at a 
range of 69 m. He was propelled inside the barrel for 5.2 m and 
launched at an angle of 53°. If his mass was 85 kg and he underwent 
constant acceleration inside the barrel, what was the magnitude of 
the force propelling him? (Hint: Treat the launch as though it were 
along a ramp at 53°. Neglect air drag.) 

In Fig. 5-44, elevator cabs A and B are connected by 
a short cable and can be pulled upward or lowered by the cable 
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above cab A. Cab A has mass 1700 kg; cab B has mass 
1300 kg. A 12.0 kg box of catnip lies on the floor of 
cab A. The tension in the cable connecting the cabs is 
1.91 X 104 N. What is the magnitude of the normal 
force on the box from the floor? 

In Fig. 5-45, a block of mass m = 5.00 kg is 
pulled along a horizontal frictionless floor by a cord 
that exerts a force of magnitude F = 12.0 N at an an­
gle 8 = 25.0°. (a) What is the magnitude of the 
block's acceleration? (b) The force magnitude F is 
slowly increased. What is its value just before the 
block is lifted (completely) off the floor? (c) What is 
the magnitude of the block's acceleration just before 
it is lifted (completely) off the floor? 

Fig. 5-45 

Problems 49 and 60. 

In Fig. 5-46, three ballot 
boxes are connected by cords, one of 
which wraps over a pulley having 
negligible friction on its axle and 
negligible mass. The three masses are 

A 

B 

Fig. 5-44 

Problem 48. 

B 

C 

mA = 30.0 kg, mB = 40.0 kg, and Fig. 5-46 Problem 50. 
me = 10.0 kg. When the assembly is 
released from rest, (a) what is the tension in the 
cord connecting Band C, and (b) how far does A 
move in the first 0.250 s (assuming it does not reach 
the pulley)? 

Figure 5-47 shows two blocks connected 
by a cord (of negligible mass) that passes over a fric­
tionless pulley (also of negligible mass). The 
arrangement is known as Atwoods l11achine. One 
block has mass m1 = 1.30 kg; the other has mass m2 = 

2.80 kg. What are (a) the magnitude of the blocks' ac­
celeration and (b) the tension in the cord? 

An 85 kg man lowers himself to the ground 
from a height of 10.0 m by holding onto a rope that 
runs over a frictionless pulley to a 65 kg sandbag. 
With what speed does the man hit the ground if he 
started from rest? 

Fig. 5-47 

Problems 51 
and 65. 

In Fig. 5-48, three connected blocks are pulled to the right on 
a horizontal frictionless table by a force of magnitude 73 = 65.0 N. 
If 1111 = 12.0 kg, /112 = 24.0 kg, and 1113 = 31.0 kg, calculate (a) the 
magnitude of the system's acceleration, (b) the tension Tb and ( c) 
the tension T2• 

Fig. 5-48 Problem 53. 
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Figure 5-49 shows four penguins that are being playfully 
pulled along very slippery (frictionless) ice by a curator. The masses 
of three penguins and the tension in two of the cords are 111] = 12 kg, 
1113 = 15 kg, 1114 = 20 kg, T2 = 111 N, and T4 = 222 N. Find the pen­
guin mass 1112 that is not given. 

Fig. 5-49 Problem 54. 

SSM ILW WWW Two blocks are in 
contact on a frictionless table. A horizon­
tal force is applied to the larger block, as 
shown in Fig. 5-50. (a) If 1111 = 2.3 kg, 
1112 = 1.2 kg, and F = 3.2 N, find the mag­
nitude of the force between the two 
blocks. (b) Show that if a force of the same 
magnitude F is applied to the smaller 

Fig. 5-50 

Problem 55. 

block but in the opposite direction, the magnitude of the force be­
tween the blocks is 2.1 N, which is not the same value calculated in 
(a). (c) Explain the difference. 

In Fig. 5-51a, a constant horizontal force 1;, is applied to 
block A, which pushes against block B with a 20.0 N force directed 
horizontally to the right. In Fig. 5-51b, the same force 1;, is applied 
to block B; now block A pushes on block B with a 10.0 N force 
directed horizontally to the left. The blocks have a combined mass 
of 12.0 kg. What are the magnitudes of (a) their acceleration in 
Fig. 5-51a and (b) force 1;,? 

A B B A 

(0 ~) 

Fig. 5-51 Problem 56. 

ILW A block of mass 111] = 3.70 
kg on a frictionless plane inclined at 
angle fJ = 30.0° is connected by a 
cord over a massless, frictionless 
pulley to a second block of mass 
1112 = 2.30 kg (Fig. 5-52). What are 
(a) the magnitude of the accelera- Fig.5-52 Problem 57. 
tion of each block, (b) the direction 
of the acceleration of the hanging block, and (c) the tension in the 
cord? 

Figure 5-53 shows a man sitting in a bosun's chair that dan­
gles from a massless rope, which runs over a massless, frictionless 
pulley and back down to the man's hand. The combined mass of 
man and chair is 95.0 kg. With what force magnitude must the man 
pull on the rope if he is to rise (a) with a constant velocity and (b) 
with an upward acceleration of 1.30 mls2? (Hint: A free-body dia­
gram can really help.) If the rope on the right extends to the 

ground and is pulled by a co­
worker, with what force magnitude 
must the co-worker pull for the 
man to rise (c) with a constant ve­
locity and (d) with an upward ac­
celeration of 1.30 m/s2? What is the 
magnitude of the force on the ceil­
ing from the pulley system in (e) 
part a, (f) part b, (g) part c, and (h) 
part d? 

SSM A 10 kg monkey climbs 
up a massless rope that runs over a 
frictionless tree limb and back 
down to a 15 kg package on the 
ground (Fig. 5-54). (a) What is the 
magnitude of the least acceleration 
the monkey must have if it is to lift 
the package off the ground? If, after 
the package has been lifted, the 
monkey stops its climb and holds 
onto the rope, what are the (b) mag­
nitude and (c) direction of the mon­
key's acceleration and (d) the ten­
sion in the rope? 

Figure 5-45 shows a 5.00 kg 
block being pulled along a friction­
less floor by a cord that applies a 
force of constant magnitude 20.0 N 
but with an angle fJ(t) that varies 
with time. When angle fJ = 25.0°, at 
what rate is the acceleration of the 
block changing if (a) fJ(t) = 

(2.00 X 10-2 deg/s)t and (b) fJ(t) = 
-(2.00 X 10-2 deg/s)t? (Hint: The 
angle should be in radians.) 

Fig. 5-53 Problem 58. 

Fig. 5-54 Problem 59. 

SSM ItW A hot-air balloon of mass M is descending vertically 
with downward acceleration of magnitude a. How much mass (ballast) 
must be thrown out to give the balloon an upward acceleration of mag­
nitude a? Assume that the upward force from the air (the lift) does not 
change because of the decrease in mass. 

In shot putting, many athletes elect to launch the shot at 
an angle that is smaller than the theoretical one (about 42°) at which 
the distance of a projected ball at the same speed and height is greatest. 
One reason has to do with the speed the athlete can give the shot dur­
ing the acceleration phase of the throw. Assume that a 7.260 kg shot is 
accelerated along a straight path of length 1.650 m by a constant ap­
plied force of magnitude 380.0 N, starting with an initial speed of 2.500 
mls (due to the athlete's preliminary motion). What is the shot's speed 
at the end of the acceleration phase if the angle between the path and 
the horizontal is (a) 30.00° and (b) 42.000? (Hint: Treat the motion as 
though it were along a ramp at the given angle.) (c) By what per­
cent is the launch speed decreased if the athlete increases the angle 
from 30.00° to 42.000? 

Figure 5-55 gives, as a function of time t, the force compo­
nent Fr that acts on a 3.00 kg ice block that can move only along 
the x axis. At t = 0, the block is moving in the positive direction of 
the axis, with a speed of 3.0 mls. What are its (a) speed and (b) direc­
tion of travel at t = 11 s? 



Fig. 5-55 Problem 63. 

Figure 5-56 shows a box of mass /112 = 1.0 kg on a friction­
less plane inclined at angle 8 = 30°. It is connected by a cord of 
negligible mass to a box of mass 1111 = 3.0 kg on a horizontal fric­
tionless surface. The pulley is frictionless and massless. (a) If the 
magnitude of horizontal force F is 2.3 N, what is the tension in the 
connecting cord? (b) What is the largest value the magnitude of F 
may have without the cord becoming slack? 

Fig. 5-56 Problem 64. 

Figure 5-47 shows Atwood's l11achine, in which two contain­
ers are connected by a cord (of negligible mass) passing over a fric­
tionless pulley (also of negligible mass). At time t = 0, container 1 
has mass 1.30 kg and container 2 has mass 2.80 kg, but container 1 is 
losing mass (through a leak) at the constant rate of 0.200 kg/so At 
what rate is the acceleration magnitude of the containers changing 
at (a) t = 0 and (b) t = 3.00 s? ( c) When does the acceleration reach 
its maximum value? 

Figure 5-57 shows a section 
of a cable-car system. The maxi­
mum permissible mass of each car 
with occupants is 2800 kg. The cars, 
riding on a support cable, are 
pulled by a second cable attached 
to the support tower on each car. 
Assume that the cables are taut 
and inclined at angle 8 = 35°. 
What is the difference in tension 
between adjacent sections of pull 
cable if the cars are at the maxi­
mum permissible mass and are be­
ing accelerated up the incline at 
0.81 m/s2? 

Figure 5-58 shows three 
blocks attached by cords that loop 
over frictionless pulleys. Block B 
lies on a frictionless table; the 
masses are I11A = 6.00 kg, 1118 = 8.00 
kg, and l11e = 10.0 kg. When the 
blocks are released, what is the 
tension in the cord at the right? 

Fig. 5-57 Problem 66. 

B 

Fig.5-58 Problem 67. 
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A shot putter launches a 7.260 kg shot by pushing it 
along a straight line of length 1.650 m and at an angle of 34.10° 
from the horizontal, accelerating the shot to the launch speed 
from its initial speed of 2.500 m/s (which is due to the athlete's 
preliminary motion). The shot leaves the hand at a height of 2.110 
m and at an angle of 34.10°, and it lands at a horizontal distance of 
15.90 m. What is the magnitude of the athlete's average force on 
the shot during the acceleration phase? (Hint: Treat the motion 
during the acceleration phase as though it were along a ramp at 
the given angle.) 

Additional Problems 
In Fig. 5-59,4.0 kg block A and 6.0 kg block B are connected by 

a string of negligible mass. Force ~ = (12 N)i acts on block A; force 
Fs = (24 N)i acts on block B. What is the tension in the string? 

Fig. 5-59 Problem 69. 

An 80 kg man drops to a concrete patio from a window 
0.50 m above the patio. He neglects to bend his knees on landing, tak­
ing 2.0 cm to stop. (a) What is his average acceleration from when his 
feet first touch the patio to when he stops? (b) What is the magnitude 
of the average stopping force exerted on him by the patio? 

SSM Figure 5-60 shows a 
box of dirty money (mass 
/111 = 3.0 kg) on a frictionless 
plane inclined at angle 81 = 

30°. The box is connected via a 
cord of negligible mass to a box 81 
of laundered money (mass 
/112 = 2.0 kg) on a frictionless Fig. 5-60 Problem 71. 
plane inclined at angle 82 = 

60°. The pulley is frictionless and has negligible mass. What is the 
tension in the cord? 

Three forces act on a particle that moves with unchanging ve­
locity~v = (2 m/s)i (~m/s)]. Two?f the for~es are F; =~ (2 N)i + 
(3 N)j + (-2 N)k and F2 = (-5 N)i + (8 N)j + (-2 N)k. What is 
the third force? 

SSM In Fig. 5-61, a tin of antioxidants (1111 = 1.0 kg) on a fric­
tionless inclined surface is connected 
to a tin of corned beef (1112 = 2.0 kg). 
The pulley is massless and friction­
less. An upward force of magnitude 
F = 6.0 N acts on the corned beef 
tin, which has a downward accelera­
tion of 5.5 m/s2• What are (a) the ten­
sion in the connecting cord and (b) 
angle f3? 

The only two forces acting on a 
body have magnitudes of 20 Nand 
35 N and directions that differ by 
80°. The resulting acceleration has a 
magnitude of 20 m/s2• What is the 
mass of the body? Fig. 5-61 Problem 73. 
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Figure 5-62 is an overhead 
view of a 12 kg tire that is to be 
pulled by three horizontal ropes. 
One rope's force (F1 = 50 N) is in­
dicated. The forces from the other 
ropes are to be oriented such that 
the tire's acceleration magnitude a is 
least. What is that least a if (a) F2 = 

30 N, F3 = 20 N; (b) F2 = 30 N, F3 = 

10 N;and (c) F2 = F3 = 30 N? 

A block of mass M is pulled 
along a horizontal frictionless sur­
face by a rope of mass In, as shown 

Fig. 5-62 Problem 75. 

in Fig. 5-63. A horizontal force J! Fig. 5-63 Problem 76. 
acts on one end of the rope. (a) 
Show that the rope must sag, even if only by an imperceptible 
amount. Then, assuming that the sag is negligible, find (b) the ac­
celeration of rope and block, (c) the force on the block from the 
rope, and (d) the tension in the rope at its midpoint. 

SSM A worker drags a crate across a factory floor by pulling 
on a rope tied to the crate. The worker exerts a force of magnitUde 
F = 450 N on the rope, which is inclined at an upward angle 8 = 

38° to the horizontal, and the floor exerts a horizontal force of 
magnitUde f = 125 N that opposes the motion. Calculate the mag­
nitude of the acceleration of the crate if (a) its mass is 310 kg and 
(b) its weight is 310 N. 

In Fig. 5-64, a force J! of mag­
nitude 12 N is applied to a FedEx 
box of mass 1112 = 1.0 kg. The force 
is directed up a plane tilted by 8 = 

37°. The box is connected by a cord 
to a UPS box of mass m1 = 3.0 kg Fig. 5-64 Problem 78. 
on the floor. The floor, plane, and 
pulley are frictionless, and the masses of the pulley and cord are 
negligible. What is the tension in the cord? 

A certain particle has a weight of 22 N at a point where 
g = 9.8 m/s2• What are its (a) weight and (b) mass at a point where 
g = 4.9 rnJs2? What are its (c) weight and (d) mass if it is moved to 
a point in space where g = O? 

An 80 kg person is parachuting and experiencing a down­
ward acceleration of 2.5 m/s2. The mass of the parachute is 
5.0 kg. (a) What is the upward force on the open parachute from 
the air? (b) What is the downward force on the parachute from 
the person? 

A spaceship lifts off vertically from the Moon, where g = 1.6 
rnJs2

. If the ship has an upward acceleration of 1.0 rnJs2 as it lifts off, 
what is the magnitUde of the force exerted by the ship on its pilot, 
who weighs 735 N on Earth? 

In the overhead view of Fig. 
5-65, five forces pull on a box of 
mass /11 = 4.0 kg. The force magni­
tudes are F1 = 11 N, F2 = 17 N, 
F3 = 3.0 N, F4 = 14 N, and Fs = 5.0 
N, and angle 84 is 30°. Find the box's 
acceleration (a) in unit-vector nota­
tion and as (b) a magnitude and ( c) 
an angle relative to the positive di­
rection of the x axis. 

y 

Fig. 5-65 Problem 82. 

SSM A certain force gives an object of mass 1111 an accelera­
tion of 12.0 rnJs2 and an object of mass /112 an acceleration of 3.30 
m/s2. What acceleration would the force give to an object of mass 
(a) 1112 - 1111 and (b) 1112 + 1111? 

You pull a short refrigerator with a constant force J! across a 
greased (frictionless) floor, either with J! horizontal (case 1) or 
with J! tilted upward at an angle 8 (case 2). (a) What is the ratio of 
the refrigerator's speed in case 2 to its speed in case 1 if you pull 
for a certain time t? (b) What is this ratio if you pull for a certain 
distance d? 

A 52 kg circus performer is to slide down a rope that will 
break if the tension exceeds 425 N. (a) What happens if the per­
former hangs stationary on the rope? (b) At what magnitude of ac­
celeration does the performer just avoid breaking the rope? 

Compute the weight of a 75 kg space ranger (a) on Earth, (b) 
on Mars, where g = 3.7 m/s2, and (c) in interplanetary space, where 
g = O. (d) What is the ranger's mass at each location? 

An object is hung from a spring balance attached to the ceil­
ing of an elevator cab. The balance reads 65 N when the cab is 
standing still. What is the reading when the cab is moving upward 
(a) with a constant speed of 7.6 rnJs and (b) with a speed of 7.6 m/s 
while decelerating at a rate of 2.4 rnJs2? 

Imagine a landing craft approaching the surface of Callisto, 
one of Jupiter's moons. If the engine provides an upward force 
(thrust) of 3260 N, the craft descends at constant speed; if the en­
gine provides only 2200 N, the craft accelerates downward at 0.39 
m/s2• (a) What is the weight of the landing craft in the vicinity of 
Callisto's surface? (b) What is the mass of the craft? (c) What is the 
magnitUde of the free-fall acceleration near the surface of 
Callisto? 

A 1400 kg jet engine is fastened to the fuselage of a passenger 
jet by just three bolts (this is the usual practice). Assume that each 
bolt supports one-third of the load. (a) Calculate the force on each 
bolt as the plane waits in line for clearance to take off. (b) During 
flight, the plane encounters turbulence, which suddenly imparts an 
upward vertical acceleration of 2.6 rnJs2 to the plane. Calculate the 
force on each bolt now. 

An interstellar ship has a mass of 1.20 X 106 kg and is initially at 
rest relative to a star system. (a) What constant acceleration is needed 
to bring the ship up to a speed of O.lOe (where e is the speed of light, 
3.0 X 108 rnJs) relative to the star system in 3.0 days? (b) What is that 
acceleration in g units? (c) What force is required for the accelera­
tion? (d) If the engines are shut down when 0.10e is reached (the 
speed then remains constant), how long does the ship take (start to 
finish) to journey 5.0 light-months, the distance that light travels in 5.0 
months? 

SSM A motorcycle and 60.0 kg rider accelerate at 3.0 rnJs2 up 
a ramp inclined 10° above the horizontal. What are the magnitudes 
of (a) the net force on the rider and (b) the force on the rider from 
the motorcycle? 

Compute the initial upward acceleration of a rocket of mass 
1.3 X 104 kg if the initial upward force produced by its engine (the 
thrust) is 2.6 X 105 N. Do not neglect the gravitational force on the 
rocket. 

SSM Figure 5-66a shows a mobile hanging from a ceiling; it 
consists of two metal pieces (1111 = 3.5 kg and 1n2 = 4.5 kg) that 
are strung together by cords of negligible mass. What is the tension 



in (a) the bottom cord and (b) the top cord? Figure 5-66b shows a 
mobile consisting of three metal pieces. Two of the masses are 
1113 = 4.8 kg and 1115 = 5.5 kg. The tension in the top cord is 199 N. 
What is the tension in (c) the lowest cord and (d) the middle cord? 

(a) (b) 

Fig. 5-66 Problem 93. 

For sport, a 12 kg armadillo runs onto a large pond of level, 
frictionless ice. The armadillo's initial velocity is 5.0 mls along the 
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positive direction of an x axis. Take its initial position on the ice as 
being the origin. It slips over the ice while being pushed by a wind 
with a force of 17 N in the positive direction of the y axis. In unit-vec­
tor notation, what are the animal's (a) velocity and (b) position vec­
tor when it has slid for 3.0 s? 

Suppose that in Fig. 5-12, the masses of the blocks are 2.0 kg 
and 4.0 kg. (a) Which mass should the hanging block have if the 
magnitude of the acceleration is to be as large as possible? What 
then are (b) the magnitude of the acceleration and (c) the tension 
in the cord? 

A nucleus that captures a stray neutron must bring the neu­
tron to a stop within the diameter of the nucleus by means of the 
strong force. That force, which "glues" the nucleus together, is ap­
proximately zero outside the nucleus. Suppose that a stray neutron 
with an initial speed of 1.4 X 107 m/s is just barely captured by a 
nucleus with diameter d = 1.0 X 10-14 m. Assuming the strong 
force on the neutron is constant, find the magnitude of that force. 
The neutron's mass is 1.67 X 10-27 kg. 
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WHAT IS PH ICS? 
In this chapter we focus on the physics of three common types of force: 

frictional force, drag force, and centripetal force. An engineer preparing a car for 
the Indianapolis 500 must consider all three types. Frictional forces acting on the 
tires are crucial to the car's acceleration out of the pit and out of a curve (if the 
car hits an oil slick, the friction is lost and so is the car). Drag forces acting on the 
car from the passing air must be minimized or else the car will consume too much 
fuel and have to pit too early (even one 14 s pit stop can cost a driver the race). 
Centripetal forces are crucial in the turns (if there is insufficient centripetal force, 
the car slides into the wall). We start our discussion with frictional forces. 

Friction 
Frictional forces are unavoidable in our daily lives. If we were not able to counteract 
them, they would stop every moving object and bring to a halt every rotating shaft. 
About 20% of the gasoline used in an automobile is needed to counteract friction in 
the engine and in the drive train. On the other hand, if friction were totally absent, 
we could not get an automobile to go anywhere, and we could not walk or ride a bi­
cycle. We could not hold a pencil, and, if we could, it would not write. Nails and 
screws would be useless, woven cloth would fall apart, and knots would untie. 

Here we deal with the frictional forces that exist between dry solid surfaces, 
either stationary relative to each other or moving across each other at slow 
speeds. Consider three simple thought experiments: 

1. Send a book sliding across a long horizontal counter. As expected, the book 
slows and then stops. This means the book must have an acceleration parallel 
to the counter surface, in the direction opposite the book's velocity. From 
Newton's second law, then, a force must act on the book parallel to the counter 
surface, in the direction opposite its velocity. That force is a frictional force. 

2. Push horizontally on the book to make it travel at constant velocity along the 
counter. Can the force from you be the only horizontal force on the book? 
No, because then the book would accelerate. From Newton's second law, there 
must be a second force, directed opposite your force but with the same magni­
tude, so that the two forces balance. That second force is a frictional force, 
directed parallel to the counter. 

3. Push horizontally on a heavy crate. The crate does not move. From Newton's 
second law, a second force must also be acting on the crate to counteract your 
force. Moreover, this second force must be directed opposite your force and 
have the same magnitude as your force, so that the two forces balance. That 
second force is a frictional force. Push even harder. The crate still does not 
move. Apparently the frictional force can change in magnitude so that the two 



forces still balance. Now push with all your strength. The crate begins to slide. 
Evidently, there is a maximum magnitude of the frictional force. When you 
exceed that maximum magnitude, the crate slides. 

Figure 6-1 shows a similar situation. In Fig. 6-1a, a block rests on a tabletop, 
with the gravitational force Fg balanced by a normal force FN . In Fig. 6-1b, you 
exert a force F on the block, attempting to pull it to the left. In response, a 

There is no attempt 
at sliding. Thus, 
no friction and 
no motion. 

Force F attempts 
sliding but is balanced 
by the frictional force. 
No motion. 

Force F is now 
stronger but is still 
balanced by the 
frictional force. 
No motion. 

Force F is now even 
stronger but is still 
balanced by the 
frictional force. 
No motion. 

Finally, the applied force 

(d) 
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Frictional force = 0 

Frictional force = F 

Frictional force = F 

Frictional force = F 

has overwhelmed the Weak kinetic 

Fig. 6-1 (a) The forces on a 
stationary block. (b-d) An external 
force F, applied to the block, is 
balanced by a static frictional force 1s. 
As F is increased,fs also increases, un­
tilf~ reaches a certain maximum value. 
(e) TIle block then "breaks away," ac­
celerating suddenly in the direction of 
F. (f) If the block is now to move 
with constant velocity, F must be 
reduced from the maximum value it 
had just before the block broke away. 
(g) Some experimental results for the 
sequence (a) through (t). 

static frictional force. frictional force 
Block slides and 
accelerates. (e) 

To maintain the speed, 
weaken force F to match 
the weak frictional force. 

Static frictional force 
can only match growing 
applied force. 

(j) 

Same weak kinetic 
frictional force 

Breakaway 

Time 

Kinetic frictional force 
has only one value 
(no matching). 
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frictional force l is directed to the right, exactly balancing your force. The force 
7, is called the s'tatic frictional force. The block does not move. 

Figures 6-1c and 6-1d show that as you increase the magnitude of your 
applied force, the magnitude of the static frictional force l also increases and 
the block remains at rest. When the applied force reaches a certain magnitude, 
however, the block "breaks away" from its intimate contact with the tabletop and 
accelerates leftward (Fig. 6-1e). The frictional force that then opposes the motion 
is called the kinetic frictional force 1/(' 

Usually, the magnitude of the kinetic frictional force, which acts when there 
is motion, is less than the maximum magnitude of the static frictional force, which 
acts when there is no motion. Thus, if you wish the block to move across the sur­
face with a constant speed, you must usually decrease the magnitude of the 
applied force once the block begins to move, as in Fig. 6-1f As an example, 
Fig. 6-1g shows the results of an experiment in which the force on a block was 
slowly increased until breakaway occurred. Note the reduced force needed to 
keep the block moving at constant speed after breakaway. 

A frictional force is, in essence, the vector sum of many forces acting between 
the surface atoms of one body and those of another body. If two highly polished 
and carefully cleaned metal surfaces are brought together in a very good vacuum 
(to keep them clean), they cannot be made to slide over each other. Because the 
surfaces are so smooth, many atoms of one surface contact many atoms of the 
other surface, and the surfaces cold-weld together instantly, forming a single 
piece of metal. If a machinist's specially polished gage blocks are brought 
together in air, there is less atom-to-atom contact, but the blocks stick firmly to 
each other and can be separated only by means of a wrenching motion. Usually, 
however, this much atom-to-atom contact is not possible. Even a highly polished 
metal surface is far from being fiat on the atomic scale. Moreover, the surfaces 
of everyday objects have layers of oxides and other contaminants that reduce 
cold-welding. 

When two ordinary surfaces are placed together, only the high points touch 
each other. (It is like having the Alps of Switzerland turned over and placed down 
on the Alps of Austria.) The actual microscopic area of contact is much less than 
the apparent macroscopic contact area, perhaps by a factor of 104• Nonetheless, 
many contact points do cold-weld together. These welds produce static friction 
when an applied force attempts to slide the surfaces relative to each other. 

If the applied force is great enough to pull one surface across the other, there 
is first a tearing of welds (at breakaway) and then a continuous re-forming and 
tearing of welds as movement occurs and chance contacts are made (Fig. 6-2). 
The kinetic frictional force h that opposes the motion is the vector sum of the 
forces at those many chance contacts. 

If the two surfaces are pressed together harder, many more points cold­
weld. Now getting the surfaces to slide relative to each other requires a greater 
applied force: The static frictional force l has a greater maximum value. Once 

Fig.6-2 The mechanism of sliding friction. (a) 
The upper surface is sliding to the right over the 
lower surface in this enlarged view. (b) A detail, 
showing two spots where cold-welding has oc­
CUlTed. Force is required to break the welds and 
maintain the motion. 

(a) 

(b) 



the surfaces are sliding, there are many more points of momentary cold-welding, 
so the kinetic frictional force tk also has a greater magnitude. 

Often, the sliding motion of one surface over another is "jerky" because the 
two surfaces alternately stick together and then slip. Such repetitive stick-and­
slip can produce squeaking or squealing, as when tires skid on dry pavement, 
fingernails scratch along a chalkboard, or a rusty hinge is opened. It can also 
produce beautiful and captivating sounds, as in music when a bow is drawn 
properly across a violin string. 

Properties of Friction 
Experiment shows that when a dry and unlubricated body presses against a sur­
face in the same condition and a force F attempts to slide the body along the sur­
face, the resulting frictional force has three properties: 

Property 1. If the body does not move, then the static frictional force land 
the component of F that is parallel to the surface balance each other. They 
are equal in magnitude, and l is directed opposite that component of F. 

Property 2. The magnitude of l has a maximum value Is,max that is given by 

(6-1) 

where /-Ls is the coefficient of static friction and F N is the magnitude of the 
normal force on the body from the surface. If the magnitude of the compo­
nent of F that is parallel to the surface exceeds f"max, then the body begins to 
slide along the surface. 

Property 3. If the body begins to slide along the surface, the magnitude of the 
frictional force rapidly decreases to a value A given by 

(6-2) 

where /-Lk is the coefficient of kinetic friction. Thereafter, during the sliding, a ki­
netic frictional force h with magnitude given by Eq. 6-2 opposes the motion. 

The magnitude F N of the normal force appears in properties 2 and 3 as a 
measure of how firmly the body presses against the surface. If the body presses 
harder, then, by Newton's third law, FN is greater. Properties 1 and 2 are worded 
in terms of a single applied force F, but they also hold for the net force of several 
applied forces acting on the body. Equations 6-1 and 6-2 are not vector equations; 
the direction of Is or "K is always parallel to the surface and opposed to the at­
tempted sliding, a~d the normal force FN is perpendicular to the surface. 

The coefficients /-Ls and /-Lk are dimensionless and must be determined experi­
mentally. Their values depend on certain properties of both the body and the 
surface; hence, they are usually referred to with the preposition "between," as in 
"the value of /-Ls between an egg and a Teflon-coated skillet is 0.04, but that between 
rock-climbing shoes and rock is as much as 1.2." We assume that the value of /-Lk 
does not depend on the speed at which the body slides along the surface. 

CHECKPOINT 1 

A block lies on a floor. (a) What is the magnitude of the frictional force on it from the 
floor? (b) If a horizontal force of 5 N is now applied to the block, but the block does not 
move, wha t is the magnitude of the frictional force on it? ( c) If the maximum value Is,max 

of the static frictional force on the block is 10 N, will the block move if the magnitude of 
the horizontally applied force is 8 N? (d) If it is 12 N? (e) What is the magnitude of the 
frictional force in part (c)? 

PROPERTIES OF FRICTION 119 
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Kinetic friction, constant acceleration, locked wheels 

If a car's wheels are "locked" (kept from rolling) during 
emergency braking, the car slides along the road. Ripped-off 
bits of tire and small melted sections of road form the "skid 
marks" that reveal that cold-welding occurred during the 
slide. The record for the longest skid marks on a public road 
was reportedly set in 1960 by a Jaguar on the M1 highway in 
England (Fig. 6-3a)-the marks were 290 m long! Assuming 
that f-Lk = 0.60 and the car's acceleration was constant dur­
ing the braking, how fast was the car going when the wheels 
became locked? 

(1) Because the acceleration a is assumed constant, we can 
use the constant-acceleration equations of Table 2-1 to find 
the car's initial speed Vo' (2) If we neglect the effects of the 
air on the car, acceleration a was due only to a kinetic fric­
tional force 7k on the car from the road, directed opposite 
the direction of the car's motion, assumed to be in the posi­
tive direction of an x axis (Fig. 6-3b). We can relate this force 
to the acceleration by writing Newton's second law for x 
components (Fnel,x = max) as 

-fk = ma, (6-3) 

where m is the car's mass. The minus sign indicates the di­
rection of the kinetic frictional force. 

Calculations: From Eq. 6-2, the frictional force has the 
magnitude fk = f-LkFN, where FN is the magnitude of the nor­
mal force on the car from the road. Because the car is not 
accelerating vertically, we know from F~. 6-3b and 
Newton's second law that the magnitude of FN is equal to 
the magnitude of the gravitational force Fg on the car, 
which is mg. Thus, F N = mg. 

Now solving Eq. 6-3 for a and substitutingfk = f-LkFN = 

f-Lkmg for fk yield 

a= A __ f-Lkmg __ 1/ g 
- - rk' 

m m 
(6-4) 

(a) 

(b) 

Fig. 6-3 (a) A car sliding to the right and finally stopping after a 
displacement of 290 m. (b) A free-body diagram for the car. 

where the minus sign indicates that the acceleration is in the 
negative direction of the x axis, opposite the direction of the 
velocity. Next, let's use Eq. 2-16, 

v2 = V& + 2a(x - xo), (6-5) 

from the constant-acceleration equations of Chapter 2. We 
know that the displacement x - Xo was 290 m and assume 
that the final speed v was O. Substituting for a from Eq. 6-4 
and solving for Vo give 

Vo = yr-2-f-Lk-g-(X---x-o) (6-6) 

= Y(2)(0.60)(9.8 m/s2)(290 m) 

= 58 m/s = 210 km/h. (Answer) 

We assumed that v = 0 at the far end of the skid marks. 
Actually, the marks ended only because the Jaguar left the 
road after 290 m. So Vo was at least 210 km/h. 

Friction, applied force at an angle 

In Fig. 6-4a, a block of mass m = 3.0 kg slides along a floor 
while a force F of magnitude 12.0 N is applied to it at an up­
ward angle e. The coefficient of kinetic friction between the 
block and the floor is f-Lk = 0040. We can vary e from 0 to 90° 
(the block remains on the floor). What e gives the maximum 
value of the block's acceleration magnitude a? 

Because the block is moving, a kinetic frictional force acts 
on it. The magnitude is given by Eq. 6-2 Uk = f-LkFN, where 
F N is the normal force). The direction is opposite the motion 
(the friction opposes the sliding). 



Calculating FN: Because we need the magnitude ik of the 
frictional force, we first must calculate the magnitude F N of 
the normal force. Figure 6-4b is a free-body diagram show­
ing the forces along the vertical y axis. The normal force is 
upward, the gravitational force t; with magnitude mg is 
downward, and (note) the vertical component Fy of the ap­
plied force is upward. That component is shown in Fig. 6-4c, 
where we can see that Fy = F sin e. We can write Newton's 
second law (fuel = ma) for those forces along the y axis as 

FN + Fsin e - mg = m(O), (6-7) 

where we substituted zero for the acceleration along the y 
axis (the block does not even move along that axis). Thus, 

FN = mg - Fsin e. (6-8) 

Calculating acceleration a: Figure 6-4d is a free-body di­
agram for motion along the x axis. The horizontal compo­
nent F'.t of the applied force is rightward; from Fig. 6-4c, we 
see that F t = F cos e. The frictional force has magnitude ik 
(= fJ-kFN) and is leftward. Writing Newton's second law for 
motion along the x axis gives us 

F cos e - fJ-kF N = mao (6-9) 

Substituting for F N from Eq. 6-8 and solving for a lead to 

F (F . ) a = --;;; cos e - fJ-k g - --;;; sm e . (6-10) 
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Finding a maximum: To find the value of () that maximizes 
a, we take the derivative of a with respect to e and set the 
result equal to zero: 

da F. F 
-d = --sm e + ILk-COS e = O. e m m 

(6-11) 

Rearranging and using the identity (sin e)/(cos () = tan e 
give us 

tan e = fJ-k' (6-12) 

Solving for e and substituting the given fJ-k = 0040, we find 
that the acceleration will be maximum if 

() = tan-1 fJ-k 

= 21.8° = 22°. 

(6-13) 

(Answer) 

Comment: As we increase e from 0, the acceleration 
tends to change in two opposing ways. First, more of the 
applied force F is upward, relieving the normal force. The 
decrease in the normal force causes a decrease in the fric­
tional force, which opposes the block's motion. Thus, with 
the increase in e, the block's acceleration tends to increase. 
However, second, the increase in e also decreases the hori­
zontal component of F, and so the block's acceleration 
tends to decrease. These opposing tendencies produce a 
maximum acceleration at () = 22°. 

This applied force 
accelerates block 
and helps support it. 

These vertical forces 
balance. 

Fig. 6-4 (a) A force is applied to a moving 
block. (b) The vertical forces. ( c) The components 
of the applied force. (d) The horizontal forces and 
acceleration. 

The applied force 
has these components. 

(c) (d) 

Additional examples, video, and practice available at WileyPLUS 

The Drag Force and Terminal Speed 
A fluid is anything that can flow-generally either a gas or a liquid. When there is 
a relative velocity between a fluid and a body (either because the body moves 
through the fluid or because the fluid moves past the body), the body experiences 
a drag force J5 that opposes the relative motion and points in the direction in 
which the fluid flows relative to the body. 

Here we examine only cases in which air is the fluid, the body is blunt (like 
a baseball) rather than slender (like a javelin), and the relative motion is fast 
enough so that the air becomes turbulent (breaks up into swirls) behind the body. 

These two horizontal 
forces determine the 
acceleration. 
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Fig. 6-5 This skier crouches in an "egg 
position" so as to minimize her effective 
cross-sectional area and thus minimize the 
air drag acting on her. (Karl-Josef 
HildenbrandldpalLandov LLC) 

As the eat's speed 
increases, the upward 
drag force increases 
until it balances the 
gravitational force. 

(a) 

Falling 
body 

-> 
D 

(b) 

-> 
D 

(c) 

Fig. 6-6 The forces that act on a body 
falling through air: (a) the body when it has 
just begun to fall and (b) the free-body dia­
gram a little later, after a drag force has 
developed. ( c) The drag force has increased 
until it balances the gravitational force on 
the body. The body now falls at its constant 
terminal speed. 

Some Terminal Speeds in Air 

Object 

Shot (from shot put) 
Sky diver (typical) 
Baseball 
Tennis ball 
Basketball 
Ping-Pong ball 
Raindrop (radius = 1.5 mm) 
Parachutist (typical) 

Terminal Speed (m/s) 

145 
60 
42 
31 
20 

9 
7 
5 

95% Distancea (m) 

2500 
430 
210 
115 
47 
10 
6 
3 

"This is the distance through which the body must fall from rest to reach 95% of its terminal speed. 

Source: Adapted from Peter J. Brancazio, Sport Science, 1984, Simon & Schuster, New York. 

In such cases, the magnitude of the drag force Jj is related to the relative speed v 
by an experimentally determined drag coefficient C according to 

D = lCp>Av2 
2 ' 

(6-14) 

where p is the air density (mass per volume) and A is the effective cross-sectional 
area of the body (the area of a cross section taken perpendicular to the velocity 
v). The drag coefficient C (typical values range from 0.4 to 1.0) is not truly a 
constant for a given body because if v varies significantly, the value of C can vary 
as well. Here, we ignore such complications. 

Downhill speed skiers know well that drag depends on A and v2• To reach 
high speeds a skier must reduce D as much as possible by, for example, riding the 
skis in the "egg position" (Fig. 6-5) to minimize A. 

When a blunt body falls from rest through air, the drag force Jj is directed 
upward; its magnitude gradually increases from zero as the speed of the body 
increases. This upward force Jj opposes the downward gravitational force Fg on 
the body. We can relate these forces to the body's acceleration by writing 
Newton's second law for a vertical y axis (Fnel,y = may) as 

D - Fg = rna, (6-15) 

where m is the mass of the body. As suggested in Fig. 6-6, if the body falls long 
enough, D eventually equals Fg• From Eq. 6-15, this means that a = 0, and so the 
body's speed no longer increases. The body then falls at a constant speed, called 
the terminal speed Vt. 

To find Vt , we set a = 0 in Eq. 6-15 and substitute for D from Eq. 6-14, obtaining 

~CpAv~ - Fg = 0, 

which gives -J~ Vt - CpA' (6-16) 

Table 6-1 gives values of Vt for some common objects. 
According to calculations* based on Eq. 6-14, a cat must fall about six floors 

to reach terminal speed. Until it does so, Fg > D and the cat accelerates down­
ward because of the net downward force. Recall from Chapter 2 that your body is 
an accelerometer, not a speedometer. Because the cat also senses the accelera­
tion, it is frightened and keeps its feet underneath its body, its head tucked 
in, and its spine bent upward, making A small, Vt large, and injury likely. 

*w. 0. Whitney and C. J. Mehlhaff, "High-Rise Syndrome in Cats." The Journal of the American 
Veterinary Medical Association, 1987. 
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However, if the cat does reach Vr during a longer fall, the acceleration vanishes 
and the cat relaxes somewhat, stretching its legs and neck horizontally outward and 
straightening its spine (it then resembles a flying squirrel). These actions increase 
area A and thus also, by Eq. 6-14, the drag D. The cat begins to slow because now 
D > Fg (the net force is upward), until a new, smaller Vr is reached. The decrease 
in Vr reduces the possibility of serious injury on landing. Just before the end of the 
fall, when it sees it is nearing the ground, the cat pulls its legs back beneath its 
body to prepare for the landing. 

Humans often fall from great heights for the fun of skydiving. However, in 
April 1987, during a jump, sky diver Gregory Robertson noticed that fellow sky 
diver Debbie Williams had been knocked unconscious in a collision with a third 
sky diver and was unable to open her parachute. Robertson, who was well above 
Williams at the time and who had not yet opened his parachute for the 4 km 
plunge, reoriented his body head-down so as to minimize A and maximize his 
downward speed. Reaching an estimated Vr of 320 km/h, he caught up with 
Williams and then went into a horizontal "spread eagle" (as in Fig. 6-7) to 
increase D so that he could grab her. He opened her parachute and then, after 
releasing her, his own, a scant 10 s before impact. Williams received extensive 
internal injuries due to her lack of control on landing but survived. 

Fig.6-7 Sky divers in a horizontal 
"spread eagle" maximize air drag. (Steve 
Fitchett/Taxi/Getty Images) 

Terminal speed of falling raindrop 

A raindrop with radius R = 1.5 mm falls from a cloud that is 
at height h = 1200 m above the ground. The drag coefficient 
C for the drop is 0.60. Assume that the drop is spherical 
throughout its fall. The density of water p", is 1000 kg/m3, 
and the density of air Pa is 1.2 kg/m3. 

(a) As Table 6-1 indicates, the raindrop reaches terminal speed 
after falling just a few meters. What is the terminal speed? 

The drop reaches a terminal speed V t when the gravitational 
force on it is balanced by the air drag force on it, so its accel­
eration is zero. We could then apply Newton's second law 
and the drag force equation to find vr, but Eq. 6-16 does all 
that for us. 

Calculations: To use Eq. 6-16, we need the drop's effective 
cross-sectional area A and the magnitude Fg of the gravita­
tional force. Because the drop is spherical, A is the area of a 
circle (1TR2) that has the same radius as the sphere. To find 
Fg, we use three facts: (1) Fg = mg, where m is the drop's 
mass; (2) the (spherical) drop's volume is V = 11TR3; and (3) 
the density of the water in the drop is the mass per volume, 
or Pw = m / V. Thus, we find 

Fg = Vp",g = 11TR3p",g. 

We next substitute this, the expression for A, and the given data 
into Eq. 6-16. Being careful to distinguish between the air den-

sity Pa and the water density p"" we obtain 

v = ~ 2Fg = 81TR3p",g = ~ 8Rpwg 
r CPa A 3 CPa 1TR2 3 Cpa 

(8)(1.5 X 10-3 m)(1000 kg/m3)(9.8 m/s2) 
(3)(0.60)(1.2 kg/m3) 

= 7.4 m/s = 27 km/h. (Answer) 

Note that the height of the cloud does not enter into the 
calculation. 

(b) What would be the drop's speed just before impact if 
there were no drag force? 

With no drag force to reduce the drop's speed during the fall, 
the drop would fall with the constant free-fall acceleration g, 
so the constant-acceleration equations of Table 2-1 apply. 

Calculation: Because we know the acceleration is g, the 
initial velocity Vo is 0, and the displacement x - Xo is -h, we 
use Eq. 2-16 to find v: 

v = V2ih = V(2)(9.8 m/s2)(1200 m) 

= 153 m/s = 550 km/h. (Answer) 

Had he known this, Shakespeare would scarcely have writ­
ten, "it droppeth as the gentle rain from heaven, upon the 
place beneath." In fact, the speed is close to that of a bullet 
from a large-caliber handgun! 

Additional examples, video, and practice available at WileyPLUS 
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Uniform Circular Motion 
From Section 4-7, recall that when a body moves in a circle (or a circular arc) at 
constant speed v, it is said to be in uniform circular motion. Also recall that the 
body has a centripetal acceleration (directed toward the center of the circle) of 
constant magnitude given by 

v2 

a=-
R 

where R is the radius of the circle. 

(centripetal acceleration), 

Let us examine two examples of uniform circular motion: 

(6-17) 

1. Rounding a curve in a car. You are sitting in the center of the rear seat of a car 
moving at a constant high speed along a flat road. When the driver suddenly 
turns left, rounding a corner in a circular arc, you slide across the seat toward 
the right and then jam against the car wall for the rest of the turn. What is 
going on? 

While the car moves in the circular arc, it is in uniform circular motion; 
that is, it has an acceleration that is directed toward the center of the circle. 
By Newton's second law, a force must cause this acceleration. Moreover, the 
force must also be directed toward the center of the circle. Thus, it is a cen­
tripetal force, where the adjective indicates the direction. In this example, the 
centripetal force is a frictional force on the tires from the road; it makes the 
turn possible. 

If you are to move in uniform circular motion along with the car, there 
must also be a centripetal force on you. However, apparently the frictional 
force on you from the seat was not great enough to make you go in a circle 
with the car. Thus, the seat slid beneath you, until the right wall of the car 
jammed into you. Then its push on you provided the needed centripetal force 
on you, and you joined the car's uniform circular motion. 

2. Orbiting Earth. This time you are a passenger in the space shuttle Atlantis. As 
it and you orbit Earth, you float through your cabin. What is going on? 

Both you and the shuttle are in uniform circular motion and have acceler­
ations directed toward the center of the circle. Again by Newton's second law, 
centripetal forces must cause these accelerations. This time the centripetal 
forces are gravitational pulls (the pull on you and the pull on the shuttle) ex­
erted by Earth and directed radially inward, toward the center of Earth. 

In both car and shuttle you are in uniform circular motion, acted on by a cen­
tripetal force-yet your sensations in the two situations are quite different. In 
the car, jammed up against the wall, you are aware of being compressed by the 
wall. In the orbiting shuttle, however, you are floating around with no sensation 
of any force acting on you. Why this difference? 

The difference is due to the nature of the two centripetal forces. In the car, 
the centripetal force is the push on the part of your body touching the car wall. 
You can sense the compression on that part of your body. In the shuttle, the 
centripetal force is Earth's gravitational pull on every atom of your body. Thus, 
there is no compression (or pull) on anyone part of your body and no sensation 
of a force acting on you. (The sensation is said to be one of "weightlessness," but 
that description is tricky. The pull on you by Earth has certainly not disappeared 
and, in fact, is only a little less than it would be with you on the ground.) 

Another example of a centripetal force is shown in Fig. 6-8. There a hockey 
puck moves around in a circle at constant speed v while tied to a string looped 
around a central peg. This time the centripetal force is the radially inward pull on 
the puck from the string. Without that force, the puck would slide off in a straight 
line instead of moving in a circle. 



The puck moves 
in uniform 
circular motion 
only because 
of a toward-the­
center force. 
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Fig. 6-8 An overhead view of a hockey puck moving with constant speed v in a circular 
path of radius R on a horizontal frictionless surface. The centripetal force on the puck is T, 
the pull from the string, directed inward along the radial axis r extending through the puck. 

Note again that a centripetal force is not a new kind of force. The name merely 
indicates the direction of the force. It can, in fact, be a frictional force, a gravitational 
force, the force from a car wall or a string, or any other force. For any situation: 

A centripetal force accelerates a body by changing the direction of the body's 
velocity without changing the body's speed. 

From Newton's second law and Eq. 6-17 (a = v2IR), we can write the magnitude 
F of a centripetal force (or a net centripetal force) as 

y2 
F=m­

R 
(magnitude of centripetal force). (6-18) 

Because the speed y here is constant, the magnitudes of the acceleration and the 
force are also constant. 

However, the directions of the centripetal acceleration and force are not con­
stant; they vary continuously so as to always point toward the center of the circle. 
For this reason, the force and acceleration vectors are sometimes drawn along a 
radial axis r that moves with the body and always extends from the center of the 
circle to the body, as in Fig. 6-8. The positive direction of the axis is radially out­
ward, but the acceleration and force vectors point radially inward. 

CHECKPOINT 2 

When you ride in a Ferris wheel aLconstant speed, what are the directions of your ac­
celeration a and the normal force FN on you (from the always upright seat) as you pass 
through (a) the highest point and (b) the lowest point ofthe ride? 

Vertical circular loop, Diavolo 

In a 1901 circus performance, AHo "Dare Devil" Diavolo 
introduced the stunt of riding a bicycle in a loop-the-Ioop 
(Fig. 6-9a). Assuming that the loop is a circle with radius 
R = 2.7 m, what is the least speed y that Diavolo and his 
bicycle could have at the top of the loop to remain in con­
tact with it there? 

We can assume that Diavolo and his bicycle travel through 
the top of the loop as a single particle in uniform circular 
motion. Thus, at the top, the acceleration a of this particle 
must have the m~gnitude a = y21R given by Eq. 6-17 and be 
directed downward, toward the center of the circular loop. 
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The normal force ~ 
F;v 

is from the 
overhead loop. 

(a) 

y 

(b) 

Diavolo 
and bicycle 

Ii The net force 
provides the 
toward-the-center 
acceleration. 

Fig. 6-9 (a) Contemporary advertisement for Diavolo and 
(b) free-body diagram for the performer at the top of the loop. 
(Photograph in part a reproduced with permission o/Circus 
World Museum) 

Calculations: The forces on the particle when it is at the 
top of the loop are shown in the free-body diagram of Fig 6-
9b. The gravitatio~l force ~ is downward along a y axis; so is 
the normal force F N on the particle from the loop; so also is 
the centripetal acceleration of the particle. Thus, Newton's 
second law for y components (Fnet,y = may) gives us 

-FN - Fg = me-a) 

and -FN - mg = m( - ~} (6-19) 

If the particle has the least speed v needed to remain in 
contact, then it is on the verge of losing contact with the loop 
(falling away from the loop), which means that FN = 0 at the 
top of the loop (the particle and loop touch but without any 
normal force). Substituting 0 for FNin Eq. 6-19, solving for v, 
and then substituting known values give us 

v = ViR = V(9.8 mls2) (2.7 m) 

= 5.1 mls. (Answer) 

Comments: Diavolo made certain that his speed at the top 
of the loop was greater than 5.1 mls so that he did not lose 
contact with the loop and fall away from it. Note that this 
speed requirement is independent of the mass of Diavolo 
and his bicycle. Had he feasted on, say, pierogies before his 
performance, he still would have had to exceed only 5.1 mls 
to maintain contact as he passed through the top of the loop. 

Car in flat circular turn 

Upside-down racing: A modern race car is designed so 
that the passing air pushes down on it, allowing the car to 
travel much faster through a flat turn in a Grand Prix without 
friction failing. This downward push is called negative lift. Can 
a race car have so much negative lift that it could be driven up­
side down on a long ceiling, as done fictionally by a sedan in 
the first Men in Black movie? 

Figure 6-lOa represents a Grand Prix race car of mass 
m = 600 kg as it travels on a flat track in a circular arc of 
radius R = 100 m. Because of the shape of the car and the 
wings on it, the passing air exerts a negative lift FL down­
ward on the car. The coefficient of static friction between 
the tires and the track is 0.75. (Assume that the forces on the 
four tires are identical.) 

(a) If the car is on the verge of sliding out of the turn when 
its speed is 28.6 mis, what is the magnitude of the negative 
lift FL acting downward on the car? 

1. A centripetal force must act on the car because the car 
is moving around a circular arc; that force must be 
directed toward the center of curvature of the arc (here, 
that is horizontally). 

2. The only horizontal force acting on the car is a frictional 
force on the tires from the road. So the required cen­
tripetal force is a frictional force. 

3. Because the car is not sliding, the frictional force must 
be a static frictional force 1s (Fig. 6-10a). 

4. Because the car is on the verge of sliding, the magnitude 
Is is equal to the maximum value Is max = J-tsF N, where F N 

is the magnitude of the normal f~rce FN acting on the 
car from the track. 

Radial calculations: The frictional force 1s is shown in the 
free-body diagram of Fig. 6-10b. It is in the negative direc-



tion of a radial axis r that always extends from the center of 
curvature through the car as the car moves. The force pro­
duces a centripetal acceleration of magnitude v21R. We can 
relate the force and acceleration by writing Newton's sec­
ond law for components along the r axis (Fnet,r = mar) as 

-Is = m (- ~ ). (6-20) 

SUbstitutingls,max = ,usFN for Is leads us to 

,usFN = m ( ~ ). (6-21) 

Vertical calculations: Next, let's consider the vertical 
forces on the car. The normal force FN is directed up, in the 
positive direction of the y axis in Fig. 6-10b. The gravita­
tional force i{ = mg and the negative lift FL are directed 
down. The acceleration of the car along the y axis is zero. 
Thus we can write Newton's second law for components 
along the y axis (Fnet,y = may) as 

FN - mg - FL = 0, 

or (6-22) 

Combining results: Now we can combine our results along 
the two axes by substituting Eq. 6-22 for F N in Eq. 6-21. Doing 
so and then solving for FL lead to 

FL=m(~-g) 
,usR 

( 
(28.6 m/s? 

= (600 kg) (0.75)(100 m) 

= 663.7 N = 660 N. 

- 9.8 m/s2
) 

(Answer) 

UN I FORM CI RCU LAR MOTION 127 

(b) The magnitude FL of the negative lift on a car depends 
on the square of the car's speed v 2, just as the drag force 
does (Eq. 6-14). Thus, the negative lift on the car here is 
greater when the car travels faster, as it does on a straight 
section of track. What is the magnitude of the negative lift 
for a speed of 90 m/s? 

Calculations: Thus we can write a ratio of the negative lift 
F L,90 at v = 90 mls to our result for the negative lift FLat v = 
28.6 mls as 

(90 m/s)2 
(28.6 mlS)2 . 

Substituting our known negative lift of FL = 663.7 Nand 
solving for F L,90 give us 

F L,90 = 6572 N = 6600 N. (Answer) 

Upside-down racing: The gravitational force is, of course, 
the force to beat if there is a chance of racing upside down: 

Fg = mg = (600 kg)(9.8 m/s2) 

= 5880N. 

With the car upside down, the negative lift is an upward 
force of 6600 N, which exceeds the downward 5880 N. Thus, 
the car could run on a long ceiling provided that it moves at 
about 90 mls (= 324 kmlh = 201 mi/h). However, moving 
that fast while right side up on a horizontal track is danger­
ous enough, so you are not likely to see upside-down racing 
except in the movies. 

Friction: toward the 
center 

The toward-the­
center force is 
the frictional force. 

( a) 

y Normal force: 

l' 
FN helps support car 

Center Car 
'f---<r~-tII-r 

Track-level view (b) 

of the forces 

Gravitational force: 
Fg pulls car downward 

FL 

Negative lift: presses 
car downward 

Fig. 6-10 (a) A race car moves around a flat curved track at constant speed v. The frictional 
force 1s provides the necessary centripetal force along a radial axis 1: (b) A free-body diagram (not 
to scale) for the car, in the vertical plane containing r. 

Additional examples, video, and practice available at WileyPLUS 
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Car in banked circular turn 

Curved portions of highways are always banked (tilted) to 
prevent cars from sliding off the highway. When a highway 
is dry, the frictional force between the tires and the road 
surface may be enough to prevent sliding. When the high­
way is wet, however, the frictional force may be negligible, 
and banking is then essential. Figure 6-11a represents a car 
of mass m as it moves at a constant speed v of 20 m/s 
around a banked circular track of radius R = 190 m. (It is a 
normal car, rather than a race car, which means any verti­
cal force from the passing air is negligible.) If the frictional 
force from the track is negligible, what bank angle e pre­
vents sliding? 

Here the track is banked so as to tilt the normal force FN on 
the car toward the center of the circle (Fig. 6-11b). Thus, FN 
now has a centripetal component of magnitude FNn directed 
inward along a radial axis r. We want to find the value of the 
bank angle e such that this centripetal component keeps the 
car on the circular track without need of friction. 

Radial calculation: As Fig. 6-11b shows (and as you 
should verify), the angle that force FN makes with the ver­
tical is equal to the bank angle e of the track. Thus, the ra­
dial component FNr is equal to FN sin e. We can now write 
Newton's second law for components along the r axis 
(Fnet,r = mar) as 

The toward-the­
center force is due 
to the tilted track. 

(6-23) 

We cannot solve this equation for the value of e because it 
also contains the unknowns FN and m. 

Vertical calculations: We next consider the forces and 
acceleration along the y axis in Fig. 6-11b. The vertical com­
ponent of th~ normal force is FNy = FN cos e, the gravita­
tional force Fg on the car has the magnitude mg, and the ac­
celeration of the car along the y axis is zero. Thus we can 
write Newton's second law for components along the y axis 
(Fnet,y = may) as 

FNCOS e - mg = m(O), 

from which 

FNCOS e = mg. (6-24) 

Combining results: Equation 6-24 also contains the 
unknowns FN and m, but note that dividing Eq. 6-23 by 
Eq. 6-24 neatly eliminates both those unknowns. Doing so, 
replacing (sin e)/( cos e) with tan e, and solving for e then 
yield 

v 2 

e = tan-1 -­
gR 

_ -1 (20 m/s)2 
- tan (9.8 m/s2)(190 m) (Answer) 

y 

Tilted normal force 
supports car and 
provides the toward­
the-center force. 

"..---1' 

Track-level view 
of the forces 

The gravitational force 
pulls car downward. 

(a) ( b) 

Fig. 6-11 (a) A car moves around a curved banked road at constant speed v. The bank angle is exaggerated for cIatity. (b)Afree-bodydia­
gram for the car, assuming that friction between tires and road is zero and that the car lacks negative lift. The radially inward component F Nr of the 
nonnal force (along radial axis r) provides the necessary centripetal force and radial acceleration. 

Additional examples, video, and practice available at WileyPLUS 



Friction When a force j! tends to slide a body along a surface, a 
frictional force from the surface acts on the body. The frictional force 
is parallel to the surface and directed so as to oppose the sliding. It is 
due to bonding between the body and the surface. 

If the body does not slide, the frictional force is a static fric­
tional force l. If there is sliding, the frictional force is a kinetic 
fiictional force l. 
1. If a body does not move, the static frictional force l and the 

component of j! parallel to the surface are equal in magnitude, 
and l is directed opposite that component. If the component 
increases, Is also increases. 

2. The magnitUde of l has a maximum value Is.max given by 

(6-1) 

where ILs is the coefficient of static friction and F N is the magni­
tude of the normal force. If the component of j! parallel to the 
surface exceeds Is.max, the body slides on the surface. 

3. If the body begins to slide on the surface, the magnitUde of the 
frictional force rapidly decreases to a constant value fk given 
by 

!k = ILkFN, (6-2) 

where ILk is the coefficient of kinetic friction. 

Drag Force When there is relative motion between air (or 
some other fluid) and a body, the body experiences a drag force J5 
that opposes the relative motion and points in the direction in 
which the fluid flows relative to the body. The magnitude of J5 is 

In Fig. 6-12, if the box is stationary and the angle IJ between the hor­
izontal and force F is increased somewhat, do the following quantities 
increase, decrease, or remain the same: (a) Fr; (b)fs; (c) FN; (d)Is.max? (e) 
If, instead, the box is sliding and IJ is increased, does the magnitude of 
the frictional force on the box increase, decrease, or remain the same? 

Fig. 6-12 Question 1. 

Repeat Question 1 for force F angled upward instead of down­
ward as drawn. 

In Fig. 6-13, horizontal force Fl of magnitUde 10 N is applied to 
a box on a floor, but the box does not slide. Then, as the magnitUde 
of vertical force F2 is increased from zero, do the following quanti­
ties increase, decrease, or stay the same: (a) the magnitUde of the 
frictional force 1s on the box; (b) the magnitude of the normal 
force FN on the box from the floor; (c) the maximum value Is.max of 
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related to the relative speed v by an experimentally determined 
drag coefficient C according to 

(6-14) 

where p is the fluid density (mass per unit volume) and A is the ef­
fective cross-sectional area of the body (the area of a cross section 
taken perpendicular to the relative velocity v). 

Terminal Speed When a blunt object has fallen far enough 
through air, the magnitudes of the drag force J5 and the gravita­
tional force l{ on the body become equal. The body then falls at a 
constant terminal speed VI given by 

f2F; 
VI = 'VcpA"' (6-16) 

Uniform Circular Motion If a particle moves in a circle or a 
circular arc of radius R at constant speed v, the particle is said to be 
in uniform circular motion. It then has a centripetal acceleration a 
with magnitude given by 

(6-17) 

This acceleration is due to a net centripetal force on the particle, 
with magnitude given by 

mv 2 

F= R' (6-18) 

where 111 is the particle's mass. The vector quantities a and F are di­
rected toward the center of curvature of the particle's path. 

the magnitude of the static frictional force on the box? (d) Does 
the box eventually slide? 

Fig. 6-13 Question 3. 

In three experiments, three different horizontal forces are ap­
plied to the same block lying on the same countertop. The force 
magnitudes are Fl = 12 N, F2 = 8 N, and F3 = 4 N. In each experi­
ment, the block remains stationary in spite of the applied force. 
Rank the forces according to (a) the magnitude Is of the static fric­
tional force on the block from the countertop and (b) the maximum 
value Is,max of that force, greatest first. 

If you press an apple crate against a wall so hard that the crate 
cannot slide down the wall, what is the direction of (a) the static 
frictional force 1s on the crate from the wall and (b) the normal 
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force PN on the crate from the wall? If you 
increase your push, what happens to (c) Is, 
(d) FN , and (e) fs,rnax? 

In Fig, 6-14, a block of mass m is held sta-
tionary on a ramp by the frictional force on 
it from the ramp, A force P, directed up the 
ramp, is then applied to the block and gradu­

Fig. 6-14 

Question 6, 

ally increased in magnitude from zero, During the increase, what 
happens to the direction and magnitude of the frictional force on 
the block? 

Reconsider Question 6 but with the force P now directed 
down the ramp, As the magnitude of P is increased from zero, 
what happens to the direction and magnitude of the frictional 
force on the block? 

In Fig, 6-15, a horizontal force of 100 N is to be applied to a 10 
kg slab that is initially stationary on a frictionless floor, to accel­
erate the slab, A 10 kg block lies on top of the slab; the coefficient 
of friction fL between the block and the slab is not known, and the 
block might slip, (a) Considering that possibility, what is the pos-

Fig. 6-15 Question 8, 

sible range of values for the magnitude of the slab's acceleration 
aslab? (Hint: You don't need written calculations; just consider ex­
treme values for fL.) (b) What is the possible range for the magni­
tude ablock ofthe block's acceleration? 

Figure 6-16 shows the path of a 
park ride that travels at constant 
speed through five circular arcs of 
radii Ro, 2Ro, and 3Ro. Rank the arcs 
according to the magnitude of the 
centripetal force on a rider traveling Fig. 6-16 Question 9. 
in the arcs, greatest first. 

In 1987, as a Halloween stunt, two sky divers passed a 
pumpkin back and forth between them while they were in free fall 
just west of Chicago. The stunt was great fun until the last sky diver 
with the pumpkin opened his parachute. The pumpkin broke free 
from his grip, plummeted about 0.5 km, ripped through the roof of 
a house, slammed into the kitchen floor, and splattered all over the 
newly remodeled kitchen. From the sky diver's viewpoint and from 
the pumpkin's viewpoint, why did the sky diver lose control of the 
pumpkin? 

A person riding a Ferris wheel moves through positions at (1) 
the top, (2) the bottom, and (3) midheight. If the wheel rotates at a 
constant rate, rank these three positions according to (a) the mag­
nitude of the person's centripetal acceleration, (b) the magnitude 
of the net centripetal force on the person, and (c) the magnitude of 
the normal force on the person, greatest first. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty i lW Interactive solution is at 
http://www.wi/ey.com/college/hal/iday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Properties of Friction 
The floor of a railroad flatcar is loaded with loose crates hav­

ing a coefficient of static friction of 0.25 with the floor. If the train is 
initially moving at a speed of 48 kmlh, in how short a distance can 
the train be stopped at constant acceleration without causing the 
crates to slide over the floor? 

In a pickup game of dorm shuffleboard, students crazed by fi­
nal exams use a broom to propel a calculus book along the dorm 
hallway. If the 3.5 kg book is pushed from rest through a distance 
of 0.90 m by the horizontal 25 N force from the broom and then 
has a speed of 1.60 mis, what is the coefficient of kinetic friction be­
tween the book and floor? 

SSM WWW A bedroom bureau with a mass of 45 kg, includ-
ing drawers and clothing, rests on the floor. (a) If the coefficient of 
static friction between the bureau and the floor is 0.45, what is the 
magnitude of the minimum horizontal force that a person must ap­
ply to start the bureau moving? (b) If the drawers and clothing, 
with 17 kg mass, are removed before the bureau is pushed, what is 
the new minimum magnitude? 

A slide-loving pig slides down a certain 35° slide in twice the 
time it would take to slide down a frictionless 35° slide. What is the 
coefficient of kinetic friction between the pig and the slide? 

A 2.5 kg block is initially at rest on a horizontal surface. A 
horizontal force P of magnitude 6.0 N and a vertical force Pare 
then applied to the block (Fig. 6-17). The coefficients of friction for 
the block and surface are fLs = 0.40 and fLk = 0.25. Determine the 
magnitude of the frictional force acting on the block if the magni­
tude of Pis (a) 8.0 N, (b) 10 N, and (c) 12 N. 

Fig. 6-1 7 Problem 5. 

A baseball player with mass 111 = 79 kg, sliding into second 
base, is retarded by a frictional force of magnitude 470 N. What is 



the coefficient of kinetic friction J-Lk between the player and the 
ground? 

IlW A person pushes horizontally with a force of 220 N 
on a 55 kg crate to move it across a level floor. The coefficient of ki­
netic friction is 0.35. What is the magnitude of (a) the frictional 
force and (b) the crate's acceleration? 

The mysterious sliding stones. Along the remote 
Racetrack Playa in Death Valley, California, stones sometimes 
gouge out prominent trails in the desert floor, as if the stones 
had been migrating (Fig. 6-18). For years curiosity mounted 
about why the stones moved. One explanation was that strong 
winds during occasional rainstorms would drag the rough stones 
over ground softened by rain. When the desert dried out, the 
trails behind the stones were hard-baked in place. According to 
measurements, the coefficient of kinetic friction between the 
stones and the wet playa ground is about 0.80. What horizontal 
force must act on a 20 kg stone (a typical mass) to maintain the 
stone's motion once a gust has started it moving? (Story contin­
ues with Problem 37.) 

Fig. 6-18 Problem 8. What moved the stone? (Jerry Schad/ 
Photo Researchers) 

A 3.5 kg block is pushed 
along a horizontal floor by a force 
jl of magnitude 15 N at an angle 
0= 40° with the horizontal 
(Fig. 6-19). The coefficient of ki­
netic friction between the block 
and the floor is 0.25. Calculate the 
magnitudes of (a) the frictional 
force on the block from the floor 
and (b) the block's acceleration. 

Figure 6-20 shows an initially 
stationary block of mass m on a 
floor. A force of magnitude 
0.500mg is then applied at upward 
angle 0 = 20°. What is the magni­
tude of the acceleration of the 

y 

Lx 

Fig. 6-19 

Problems 9 and 32. 

Fig. 6-20 Problem 10. 

block across the floor if the friction coefficients are (a) J-Ls = 0.600 
and J-Lk = 0.500 and (b) J-Ls = 0.400 and J-Lk = 0.300? 
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SSM A 68 kg crate is dragged across a floor by pulling on 
a rope attached to the crate and inclined 15° above the horizontal. 
(a) If the coefficient of static friction is 0.50, what minimum force 
magnitude is required from the rope to start the crate moving? (b) 
If J-Lk = 0.35, what is the magnitude of the initial acceleration of the 
crate? 

In about 1915, Henry Sincosky of Philadelphia suspended 
himself from a rafter by gripping the rafter with the thumb of each 
hand on one side and the fingers on the opposite 
side (Fig. 6-21). Sincosky's mass was 79 kg. If the 
coefficient of static friction between hand and 
rafter was 0.70, what was the least magnitude of 
the normal force on the rafter from each thumb or 
opposite fingers? (After suspending himself, 
Sincosky chinned himself on the rafter and then 
moved hand-over-hand along the rafter. If you do 
not think Sincosky's grip was remarkable, try to 
repeat his stunt.) 

A worker pushes horizontally on a 35 kg 
crate with a force of magnitude 110 N. The coeffi­
cient of static friction between the crate and the 
floor is 0.37. (a) What is the value of fs,max under 
the circumstances? (b) Does the crate move? 
(c) What is the frictional force on the crate from 
the floor? (d) Suppose, next, that a second worker 
pulls directly upward on the crate to help out. 
What is the least vertical pull that will allow the Fig. 6-21 

first worker's 110 N push to move the crate? (e) If, Problem 12. 
instead, the second worker pulls horizontally to 
help out, what is the least pull that will get the crate moving? 

Figure 6-22 shows the cross section of a road cut into the side 
of a mountain. The solid line AA' represents a weak bedding plane 
along which sliding is possible. Block B directly above the highway 
is separated from uphill rock by a large crack (called a joint), so 
that only friction between the block and the bedding plane pre­
vents sliding. The mass of the block is 1.8 X 107 kg, the dip angle e 
of the bedding plane is 24°, and the coefficient of static friction be­
tween block and plane is 0,63. (a) Show that the block will not slide 
under these circumstances. (b) Next, water seeps into the joint and 
expands upon freezing, exerting on the block a force jl parallel to 
AA'. What minimum value of force magnitude Fwill trigger a slide 
down the plane? 

A 

Fig. 6-22 Problem 14. 

The coefficient of static friction between Teflon and scram­
bled eggs is about 0.04. What is the smallest angle from the hori­
zontal that will cause the eggs to slide across the bottom of a 
Teflon-coated skillet? 
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A loaded penguin sled weighing 80 N rests on a plane in­
clined at angle () = 20° to the horizontal (Fig. 6-23). Between the 
sled and the plane, the coefficient of static friction is 0.25, and the 
coefficient of kinetic friction is 0.15. (a) What is the least magni­
tude of the force f, parallel to the plane, that will prevent the sled 
from slipping down the plane? (b) What is the minimum magni­
tude F that will start the sled moving up the plane? (c) What 
value of F is required to move the sled up the plane at constant 
velocity? 

e 

Fig. 6-23 Problems 16 and 22. 

In Fig. 6-24, a force P acts on a block weighing 45 N. The 
block is initially at rest on a plane inclined at angle () = 15° to the 
horizontal. The positive direction of the x axis is up the plane. The 
coefficients of friction between block and plane are fLs = 0.50 and 
fLk = 0.34. In unit-vector notation, what is the frictional force on 
the block from the plane when P is (a) (-5.0 N)i, (b) (-8.0 N)i, 
and (c)( -15 N)i? 

Fig.6-24 Problem 17. 

You testify as an expert witness in a case involving an acci­
dent in which car A slid into the rear of car B, which was stopped at 
a red light along a road headed down a hill (Fig. 6-25). You find 
that the slope of the hill is () = 12.0°, that the cars were separated 
by distance d = 24.0 m when the driver of car A put the car into a 
slide (it lacked any automatic anti-brake-lock system), and that the 
speed of car A at the onset of braking was Vo = 18.0 mls. With what 
speed did car A hit car B if the coefficient of kinetic friction was (a) 
0.60 (dry road surface) and (b) 0.10 (road surface covered with wet 
leaves)? 

Fig. 6-25 Problem 18. 

A 12 N horizontal force F 
pushes a block weighing 5.0 N 
against a vertical wall (Fig. 6-26). The 
coefficient of static friction between 
the wall and the block is 0.60, and 
the coefficient of kinetic friction is 
0.40. Assume that the block is not Fig. 6-26 Problem 19. 

moving initially. (a) Will the block move? (b) In unit-vector nota­
tion, what is the force on the block from the wall? 

In Fig. 6-27, a box of Cheerios (mass me = 1.0 kg) and a 
box ofWheaties (mass mw = 3.0 kg) are accelerated across a hori­
zontal surface by a horizontal force F applied to the Cheerios box. 
The magnitude of the frictional force on the Cheerios box is 2.0 N, 
and the magnitude of the frictional force on the Wheaties box is 4.0 
N. If the magnitude of F is 12 N, what is the magnitude of the force 
on the Wheaties box from the Cheerios box? 

Fig. 6-27 Problem 20. 

An initially stationary box of sand is to be pulled across a 
floor by means of a cable in which the tension should not 
exceed 1100 N. The coefficient of static friction between the box 
and the floor is 0.35. (a) What should be the angle between the 
cable and the horizontal in order to pull the greatest possible 
amount of sand, and (b) what is the weight of the sand and box 
in that situation? 

In Fig. 6-23, a sled is held on an inclined plane by a cord 
pulling directly up the plane. The sled is to be on the verge of mov­
ing up the plane. In Fig. 6-28, the magnitude F required of the 
cord's force on the sled is plotted versus a range of values for the 
coefficient of static friction fLs between sled and plane: Fi = 2.0 N, 
F2 = 5.0 N, and f.L2 = 0.50.At what angle ()is the plane inclined? 
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Fig. 6-28 Problem 22. 

When the three blocks in Fig. 
6-29 are released from rest, they ac­
celerate with a magnitude of 0.500 
mls2. Block 1 has mass M, block 2 
has 2M, and block 3 has 2M. What is 
the coefficient of kinetic friction be­
tween block 2 and the table? 

A 4.10 kg block is pushed 
along a floor by a constant applied 
force that is horizontal and has a 
magnitUde of 40.0 N. Figure 6-30 on 

"­gives the block's speed v versus S 
time t as the block moves along an x "­
axis on the floor. The scale of the fig­
ure's vertical axis is set by Vs = 5.0 
m/s. What is the coefficient of 
kinetic friction between the block 
and the floor? 

3 

Fig. 6-29 Problem 23. 

v s 

o 0.5 
t (s) 

1.0 

Fig. 6-30 Problem 24. 



S5M www Block B in Fig. 
6-31 weighs 711 N. The coefficient of 
static friction between block and 
table is 0.25; angle (J is 30°; assume 
that the cord between B and the 
knot is horizontal. Find the maxi­
mum weight of block A for which 
the system will be stationary. 

Figure 6-32 shows three 
crates being pushed over a concrete 
floor by a horizontal force F of 
magnitude 440 N. The masses of the 
crates are 111) = 30.0 kg, 1112 = 10.0 
kg, and 1113 = 20.0 kg. The coeffi­
cient of kinetic friction between the 
floor and each of the crates is 0.700. 
(a) Wha t is the magnitude F32 of the 
force on crate 3 from crate 2? (b) If 
the crates then slide onto a polished 
floor, where the coefficient of kinetic 
friction is less than 0.700, is magni­
tude F32 more than, less than, or the 
same as it was when the coefficient 
wasO.700? 

Body A in Fig. 6-33 weighs 
102 N, and body B weighs 32 N. The 
coefficients of friction between A 
and the incline are JLs = 0.56 and 
JLk = 0.25. Angle (J is 40°. Let the 
positive direction of an x axis be up 
the incline. In unit-vector notation, 
what is the acceleration of A if A is 

Fig. 6-31 Problem 25. 

Fig. 6-32 Problem 26. 

Frictionless, 
massless pulley 

Fig. 6-33 
Problems 27 and 28. 

initially (a) at rest, (b) moving up the incline, and (c) moving 
down the incline? 

In Fig. 6-33, two blocks are connected over a pulley. The 
mass of block A is 10 kg, and the coefficient of kinetic friction be­
tween A and the incline is 0.20. Angle (J of the incline is 30°. Block 
A slides down the incline at constant speed. What is the mass of 
blockB? 

In Fig. 6-34, blocks A and B have weights of 44 Nand 22 N, 
respectively. (a) Determine the minimum weight of block C to 
keep A from sliding if JLs between A and the table is 0.20. (b) Block 
C suddenly is lifted off A. What is the acceleration of block A if JLk 

between A and the table is 0.15? 

Fig. 6-34 Problem 29. 

A toy chest and its contents have a combined weight of 180 
N. The coefficient of static friction between toy chest and floor is 
0.42. The child in Fig. 6-35 attempts to move the chest across the 
floor by pulling on an attached rope. (a) If (Jis 42°, what is the mag-
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nitude of the force F that the child must exert on the rope to put 
the chest on the verge of moving? (b) Write an expression for the 
magnitude F required to put the chest on the verge of moving as a 
function of the angle (J. Determine (c) the value of (J for which F is 
a minimum and (d) that minimum magnitude. 

Fig. 6-35 Problem 30. 

Tho blocks, of weights 3.6 Nand 7.2 N, are connected 
by a massless string and slide down a 30° inclined plane. The coeffi­
cient of kinetic friction between the lighter block and the plane is 
0.10, and the coefficient between the heavier block and the plane is 
0.20. Assuming that the lighter block leads, find (a) the magnitude 
of the acceleration of the blocks and (b) the tension in the taut 
string. 

A block is pushed across a floor by a constant force that 
is applied at downward angle (J (Fig. 6-19). Figure 6-36 gives the ac­
celeration magnitude Q versus a range of values for the coefficient 
of kinetic friction JLk between block and floor: Q) = 3.0 mls2

, JLk2 = 

0.20, and JLk3 = 0.40. What is the value of ()? 

a 

1----~;;:_----+J1" 
o J1h3 

Fig. 6-36 Problem 32. 

A 1000 kg boat is traveling at 90 km/h when its engine 
is shut off. The magnitude of the frictional force 7k between boat 
and water is proportional to the speed v of the boat: fk = 70v, 
where v is in meters per second and fk is in newtons. Find the time 
required for the boat to slow to 45 km/h. 

In Fig. 6-37, a slab of mass 111) = 40 kg rests on a friction­
less floor, and a block of mass 1112 = 10 kg rests on top of the slab. 
Between block and slab, the coefficient of static friction is 0.60, and 
the coefficient of kinetic friction is 0.40. A horizontal force F of 
magnitude 100 N begins to pull directly on the block, as shown. In 
unit-vector notation, what are the reSUlting accelerations of (a) the 
block and (b) the slab? 

x 

Fig. 6-37 Problem 34. 
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IlW The two blocks (m = 16 kg and M = 88 kg) in Fig. 6-38 
are not attached to each other. The co­
efficient of static friction between the 
blocks is fLs = 0.38, but the surface 
beneath the larger block is friction­
less. What is the minimum magnitude 
of the horizontal force F required to 
keep the smaller block from slipping 
down the larger block? 

111 

Fig. 6-38 Problem 35. 

The Drag Force and Terminal Speed 
The terminal speed of a sky diver is 160 km/h in the spread­

eagle position and 310 km/h in the nosedive position. Assuming 
that the diver's drag coefficient C does not change from one posi­
tion to the other, find the ratio of the effective cross-sectional area 
A in the slower position to that in the faster position. 

Continuation of Problem 8. Now assume that Eq. 6-14 
gives the magnitude of the air drag force on the typical 20 kg stone, 
which presents to the wind a vertical cross-sectional area of 0.040 
m2 and has a drag coefficient C of 0.80. Take the air density to be 
1.21 kg/m3, and the coefficient of kinetic friction to be 0.80. (a) In 
kilometers per hour, what wind speed V along the ground is 
needed to maintain the stone's motion once it has started moving? 
Because winds along the ground are retarded by the ground, the 
wind speeds reported for storms are often measured at a height of 
10 m. Assume wind speeds are 2.00 times those along the ground. 
(b) For your answer to (a), what wind speed would be reported for 
the storm? (c) Is that value reasonable for a high-speed wind in a 
storm? (Story continues with Problem 65.) 

Assume Eq. 6-14 gives the drag force on a pilot plus ejection 
seat just after they are ejected from a plane traveling horizontally 
at 1300 km/h. Assume also that the mass of the seat is equal to the 
mass of the pilot and that the drag coefficient is that of a sky diver. 
Making a reasonable guess of the pilot's mass and using the ap­
propriate VI value from Table 6-1, estimate the magnitudes of (a) 
the drag force on the pilot + seat and (b) their horizontal deceler­
ation (in terms of g), both just after ejection. (The result of (a) 
should indicate an engineering requirement: The seat must in­
clude a protective barrier to deflect the initial wind blast away 
from the pilot's head.) 

Calculate the ratio of the drag force on a jet flying at 1000 
km/h at an altitude of 10 km to the drag force on a prop-driven 
transport flying at half that speed and altitude. The density of air is 
0.38 kg/m3 at 10 km and 0.67 kg/m3 at 5.0 km. Assume that the air­
planes have the same effective cross-sectional area and drag coeffi­
cient C. 

In downhill speed skiing a skier is retarded by both the 
air drag force on the body and the kinetic frictional force on the 
skis. (a) Suppose the slope angle is () = 40.0°, the snow is dry snow 
with a coefficient of kinetic friction fLk = 0.0400, the mass of the 
skier and equipment is 111 = 85.0 kg, the cross-sectional area of the 
(tucked) skier is A = 1.30 m2 , the drag coefficient is C = 0.150, and 
the air density is 1.20 kg/m3. (a) What is the terminal speed? (b) If a 
skier can vary C by a slight amount dC by adjusting, say, the hand 
positions, what is the corresponding variation in the terminal 
speed? 

Uniform Circular Motion 
A cat dozes on a stationary merry-go-round, at a radius of 5.4 

m from the center of the ride. Then the operator turns on the ride 

and brings it up to its proper turning rate of one complete rotation 
every 6.0 s. What is the least coefficient of static friction between 
the cat and the merry-go-round that will allow the cat to stay in 
place, without sliding? 

Suppose the coefficient of static friction between the road 
and the tires on a car is 0.60 and the car has no negative lift. What 
speed will put the car on the verge of sliding as it rounds a level 
curve of 30.5 m radius? 

ILW What is the smallest radius of an unbanked (flat) track 
around which a bicyclist can travel if her speed is 29 km/h and the 
fLs between tires and track is 0.32? 

During an Olympic bobsled run, the Jamaican team makes a 
turn of radius 7.6 m at a speed of 96.6 km/h. What is their accelera­
tion in terms of g? 

SSM IlW A student of weight 667 N rides a steadily 
rotating Ferris wheel (the student sits upright). At the highest 
point, the magnitude of the normal force FN on the student from 
the seat is 556 N. (a) Does the student feel "light" or "heavy" 
there? (b) What is the magnitude of ~v at the lowest point? If the 
wheel's speed is doubled, what is the magnitude FN at the (c) high­
est and (d) lowest point? 

A police officer in hot pursuit drives her car through a circular 
turn of radius 300 m with a constant speed of 80.0 km/h. Her mass is 
55.0 kg. What are (a) the magnitude and (b) the angle (relative to ver­
tical) of the net force of the officer on the car seat? (Hint: Consider 
both horizontal and vertical forces.) 

A circular-motion addict of mass 80 kg rides a Ferris 
wheel around in a vertical circle of radius 10 m at a constant speed 
of 6.1 m/s. (a) What is the period of the motion? What is the mag­
nitude of the normal force on the addict from the seat when both 
go through (b) the highest point of the circular path and ( c) the 
lowest point? 

A roller-coaster car has a mass of 1200 kg when fully 
loaded with passengers. As the car passes over the top of a circu­
lar hill of radius 18 m, its speed is not changing. At the top of the 
hill, what are the (a) magnitude FN and (b) direction (up or 
down) of the normal force on the car from the track if the car's 
speed is V = 11 m/s? What are (c) FN and (d) the direction if v = 

14 m/s? 

In Fig. 6-39, a car is driven at constant speed over a circular 
hill and then into a circular valley with the same radius. At the top 
of the hill, the normal force on the driver from the car seat is O. The 
driver's mass is 70.0 kg. What is the magnitude of the normal force 
on the driver from the seat when the car passes through the bottom 
of the valley? 
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Fig.6-39 Problem 49. 

An 85.0 kg passenger is made to move along a circular path 
ofradius r = 3.50 m in uniform circular motion. (a) Figure 6-40a is 
a plot of the required magnitude F of the net centripetal force for a 
range of possible values of the passenger's speed v. What is the 



plot's slope at v = 8.30 mls? (b) Figure 6-40b is a plot of F for a 
range of possible values of T, the period of the motion. What is the 
plot's slope at T = 2.50 s? 

F F 

1....=""""--------)1 L---------------T 
(a) (b) 

Fig. 6-40 Problem 50. 

SSM WWW An airplane is flying in a horizontal circle at a 
speed of 480 kmlh (Fig. 6-41). If its wings are tilted at angle () = 40° 
to the horizontal, what is the radius of the circle in which the plane is 
flying? Assume that the required force is provided entirely by an 
"aerodynamic lift" that is perpendicular to the wing surface. 

Fig. 6-41 Problem 51. 

An amusement park ride consists of a car moving in a 
vertical circle on the end of a rigid boom of negligible mass. The 
combined weight of the car and riders is 5.0 kN, and the circle's ra­
dius is 10 m.At the top of the circle, what are the (a) magnitude Fa 
and (b) direction (up or down) of the force on the car from the 
boom if the car's speed is v = 5.0 mls? What are (c) Fa and (d) the 
direction if v = 12 m/s? 

An old streetcar rounds a flat corner of radius 9.1 m, at 16 
kmlh. What angle with the vertical will be made by the loosely 
hanging hand straps? 

In designing circular rides for amusement parks, 
mechanical engineers must consider how small variations in cer­
tain parameters can alter the net force on a passenger. Consider a 
passenger of mass 111 riding around a horizontal circle of radius l' at 
speed v. What is the variation dFin the net force magnitude for (a) 
a variation dr in the radius with v held constant, (b) a variation dv 
in the speed with l' held constant, and (c) a variation dT in the pe­
riod with l' held constant? 

A bolt is threaded onto one end of a thin horizontal rod, and 
the rod is then rotated horizontally about its other end. An engi­
neer monitors the motion by flashing a strobe lamp onto the rod 
and bolt, adjusting the strobe rate until the bolt appears to be in the 
same eight places during each full rotation of the rod (Fig. 6-42). The 

strobe rate is 2000 flashes per second; 
the bolt has mass 30 g and is at radius 
3.5 cm. What is the magnitude of the 
force on the bolt from the rod? 

A banked circular highway 
curve is designed for traffic moving 
at 60 kmlh. The radius of the curve is 
200 m. Traffic is moving along the 
highway at 40 kmlh on a rainy day. 
What is the minimum coefficient of 
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Bolt 

Strobed 
positions 

Fig. 6-42 Problem 55. 

friction between tires and road that will allow cars to take the turn 
without sliding off the road? (Assume the cars do not have nega­
tive lift.) 

A puck of mass 111 = 1.50 
kg slides in a circle of radius 
l' = 20.0 cm on a frictionless table 
while attached to a hanging cylinder 
of mass M = 2.50 kg by means of a 
cord that extends through a hole in 
the table (Fig. 6-43). What speed 
keeps the cylinder at rest? 

Brake or tum? Figure 
6-44 depicts an overhead view of a 
car's path as the car travels toward a 
wall. Assume that the driver begins 
to brake the car when the distance 
to the wall is d = 107 m, and take 
the car's mass as 111 = 1400 kg, its 
initial speed as Vo = 35 mis, and the 
coefficient of static friction as ILs = 

0.50. Assume that the car's weight is 
distributed evenly on the four 
wheels, even during braking. (a) 
What magnitude of static friction is 
needed (between tires and road) to 
stop the car just as it reaches the 
wall? (b) What is the maximum pos­
sible static friction is, max? (c) If the 

Car 

Fig. 6-43 

Problem 57. 

Fig. 6-44 

Problem 58. 

coefficient of kinetic friction between the (sliding) tires and the 
road is ILk = 0.40, at what speed will the car hit the wall? To avoid 
the crash, a driver could elect to turn the car so that it just barely 
misses the wall, as shown in the figure. (d) What magnitude of fric­
tional force would be required to keep the car in a circular path of 
radius d and at the given speed vo, so that the car moves in a quar­
ter circle and then parallel to the wall? (e) Is the required force 
less thanfs.max so that a circular path 
is possible? 

SSM IlW In Fig. 6-45, a 1.34 
kg ball is connected by means of two 
massless strings, each of length L = 

1.70 m, to a vertical, rotating rod. 
The strings are tied to the rod with 
separation d = 1.70 m and are taut. 
The tension in the upper string is 
35 N. What are the (a) tension in the 
lower string, (b) magnitude of the 
net force Fnet on the ball, and (c) 
speed of the ball? (d) What is the di­
rection of Fnet? Fig. 6-45 Problem 59. 
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Additional Problems 

In Fig. 6-46, a box of ant aunts (total mass m1 = 1.65 kg) and 
a box of ant uncles (total mass m2 = 3.30 kg) slide down an in­
clined plane while attached by a 
massless rod parallel to the plane. 
The angle of incline is 8 = 30.0°. 
The coefficient of kinetic friction 
between the aunt box and the in­
cline is f.Ll = 0.226; that between 
the uncle box and the incline is 
Jk2 = 0.113. Compute (a) the ten­
sion in the rod and (b) the magni-
tude of the common acceleration Fig. 6-46 Problem 60. 
of the two boxes. (c) How would 
the answers to (a) and (b) change if the uncles trailed the aunts? 

SSM A block of mass m( = 4.0 
kg is put on top of a block of mass 
mb = 5.0 kg. To cause the top block 
to slip on the bottom one while the 
bottom one is held fixed, a horizon­
tal force of at least 12 N must be ap­
plied to the top block. The assembly 
of blocks is now placed on a hori­

Fig. 6-47 Problem 61. 

zontal, frictionless table (Fig. 6-47). Find the magnitudes of (a) the 
maximum horizontal force F that can be applied to the lower block 
so that the blocks will move together and (b) the resulting acceler­
ation of the blocks. 

A 5.00 kg stone is rubbed across the horizontal ceiling of a 
cave passageway (Fig. 6-48). If the coefficient of kinetic friction is 
0.65 and the force applied to the stone is angled at 8 = 70.0°, what 
must the magnitUde of the force be for the stone to move at constant 
velocity? 

Fig. 6-48 Problem 62. 

In Fig. 6-49, a 49 kg rock climber is climbing a "chim­
ney." The coefficient of static friction between her shoes and the 

Fig. 6-49 Problem 63. 

rock is 1.2; between her back and the rock is 0.80. She has reduced 
her push against the rock until her back and her shoes are on the 
verge of slipping. (a) Draw a free-body diagram of her. (b) What is 
the magnitude of her push against the rock? (c) What fraction of 
her weight is supported by the frictional force on her shoes? 

A high-speed railway car goes around a flat, horizontal circle 
of radius 470 m at a constant speed. The magnitudes of the hori­
zontal and vertical components of the force of the car on a 51.0 kg 
passenger are 210 Nand 500 N,respectively. (a) What is the magni­
tude of the net force (of all the forces) on the passenger? (b) What 
is the speed of the car? 

Continuation of Problems 8 and 37. Another explana­
tion is that the stones move only when the water dumped on the 
playa during a storm freezes into a large, thin sheet of ice. The 
stones are trapped in place in the ice. Then, as air flows across 
the ice during a wind, the air-drag forces on the ice and stones 
move them both, with the stones gouging out the trails. The magni­
tude of the air-drag force on this horizontal "ice sail" is given by 
Dice = 4CicepAicev2, where Cice is the drag coefficient (2.0 X 10-3), P 
is the air density (1.21 kg/m3), Aice is the horizontal area of the ice, 
and v is the wind speed along the ice. 

Assume the following: The ice sheet measures 400 m by 500 m 
by 4.0 mm and has a coefficient of kinetic friction of 0.10 with the 
ground and a density of 917 kg/m3. Also assume that 100 stones 
identical to the one in Problem 8 are trapped in the ice. To main­
tain the motion of the sheet, what are the required wind speeds (a) 
near the sheet and (b) at a height of 10 m? (c) Are these reason­
able values for high-speed winds in a storm? 

In Fig. 6-50, block 1 of mass m1 = 2.0 kg and block 2 of 
mass m2 = 3.0 kg are connected by a string of negligible mass and 
are initially held in place. Block 2 is on a frictionless surface tilted 
at 8 = 30°. The coefficient of kinetic friction between block 1 and 
the horizontal surface is 0.25. The pulley has negligible mass and 
friction. Once they are released, the blocks move. What then is the 
tension in the string? 

Fig. 6-50 Problem 66. 

In Fig. 6-51, a crate slides down an inclined right-angled 
trough. The coefficient of kinetic friction between the crate and the 
trough is f.Lk' What is the acceleration of the crate in terms of f.Lk> 8, 
andg? 

90° 

Fig. 6-51 Problem 67. 

Engineering a highway curve. If a car goes through a curve too 
fast, the car tends to slide out of the curve. For a banked curve with 



friction, a frictional force acts on a fast car to oppose the tendency 
to slide out of the curve; the force is directed down the bank (in the 
direction water would drain). Consider a circular curve of radius 
R = 200 m and bank angle 0, where the coefficient of static friction 
between tires and pavement is fLs' A car (without negative lift) is 
driven around the curve as shown in Fig. 6-11. (a) Find an expres­
sion for the car speed Vrnax that puts the car on the verge of sliding 
out. (b) On the same graph, plot Vrnax versus angle o for the range 0° 
to 50°, first for fLO' = 0.60 (dry pavement) and then for 
fLO' = 0.050 (wet or icy pavement). In kilometers per hour, evaluate 
vrnax for a bank angle of 0 = 10° and for (c) fLs = 0.60 and (d) fLO' = 
0.050. (Now you can see why accidents occur in highway curves 
when icy conditions are not obvious to drivers, who tend to drive at 
normal speeds.) 

A student, crazed by final exams, uses a force P of magnitude 
80 N and angle 0 = 70° to push a 5.0 kg block across the ceiling of 
his room (Fig. 6-52). If the coefficient of kinetic friction between the 
block and the ceiling is 0.40, what is the magnitude of the block's ac­
celeration? 

Fig. 6-52 Problem 69. 

Figure 6-53 shows a conical pendulum, in which the bob (the 
small object at the lower end of the 
cord) moves in a horizontal circle 
at constant speed. (The cord 
sweeps out a cone as the bob ro­
tates.) The bob has a mass of 0.040 
kg, the string has length L = 0.90 m 
and negligible mass, and the bob 
follows a circular path of circumfer­
ence 0.94 m. What are (a) the ten­
sion in the string and (b) the period 
of the motion? 

An 8.00 kg block of steel is at 
rest on a horizontal table. The co­
efficient of static friction between 
the block and the table is 0.450. A 
force is to be applied to the block. 
To three significant figures, what is 
the magnitude of that applied force 
if it puts the block on the verge of 
sliding when the force is directed 
(a) horizontally, (b) upward at 

r 

Fig. 6-53 Problem 70. 

60.0° from the horizontal, and (c) downward at 60.0° from the 
horizontal? 

A box of canned goods slides down a ramp from street level 
into the basement of a grocery store with acceleration 0.75 mls2 di­
rected down the ramp. The ramp makes an angle of 40° with the 
horizontal. What is the coefficient of kinetic friction between the 
box and the ramp? 

In Fig. 6-54, the coefficient of kinetic friction between the 
block and inclined plane is 0.20, and angle Ois 60°. What are the (a) 
magnitude a and (b) direction (up or down the plane) of the 
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block's acceleration if the block is sliding down the 
plane? What are (c) a and (d) the direction if the 
block is sent sliding up the plane? 

A 110 g hockey puck sent sliding over ice is 
stopped in 15 m by the frictional force on it from 
the ice. (a) If its initial speed is 6.0 mis, what is the 
magnitude of the frictional force? (b) What is the 
coefficient of friction between the puck and the ice? 

Fig. 6-54 

Problem 73. 

A locomotive accelerates a 25-car train along a level track. 
Every car has a mass of 5.0 X 104 kg and is subject to a frictional 
force f = 250v, where the speed v is in meters per second and the 
force f is in newtons. At the instant when the speed of the train is 30 
km/h, the magnitude of its acceleration is 0.20 m/s2• (a) What is the 
tension in the coupling between the first car and the locomotive? 
(b) If this tension is equal to the maximum force the locomotive 
can exert on the train, what is the steepest grade up which the loco­
motive can pull the train at 30 km/h? 

A house is built on the top of a hill with a nearby slope at angle 
0= 45° (Fig. 6-55). An engineering study indicates that the slope an­
gle should be reduced because the top layers of soil along the slope 
might slip past the lower layers. If the coefficient of static friction be­
tween two such layers is 0.5, what is the least angle ¢ through which 
the present slope should be reduced to prevent slippage? 

New slope 

Original slope 

Fig. 6-55 Problem 76. 

What is the terminal speed of a 6.00 kg spherical ball that has 
a radius of 3.00 cm and a drag coefficient of 1.60? The density of 
the air through which the ball falls is 1.20 kg/m3. 

A student wants to determine the coefficients of static fric­
tion and kinetic friction between a box and a plank. She places 
the box on the plank and gradually raises one end of the plank. 
When the angle of inclination with the horizontal reaches 30°, the 
box starts to slip, and it then slides 2.5 m down the plank in 4.0 s 
at constant acceleration. What are (a) the coefficient of static fric­
tion and (b) the coefficient of kinetic friction between the box 
and the plank? 

55 M Block A in Fig. 6-56 has mass m A = 4.0 kg, and block B has 
mass Inn = 2.0 kg. The coefficient of kinetic friction between block B 

Frictionless, 
massless pulley 

Fig. 6-56 Problem 79. 
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and the horizontal plane is ILk = 0.50. The inclined plane is frictionless 
and at angle B = 30°. The pulley serves only to change the direction 
of the cord connecting the blocks. The cord has negligible mass. 
Find (a) the tension in the cord and (b) the magnitude of the accel­
eration of the blocks. 

Calculate the magnitude of the drag force on a missile 53 cm 
in diameter cruising at 250 mls at low altitude, where the density of 
air is 1.2 kg/m3. Assume C = 0.75. 

SSM A bicyclist travels in a circle of radius 25.0 m at a con­
stant speed of 9.00 mls. The bicycle-rider mass is 85.0 kg. Calculate 
the magnitudes of (a) the force of friction on the bicycle from the 
road and (b) the net force on the bicycle from the road. 

In Fig. 6-57, a stuntman drives a car (without negative lift) 
over the top of a hill, the cross section of which can be 
approximated by a circle of radius R = 250 m. What is the greatest 
speed at which he can drive without the car leaving the road at the 
top of the hill? 

Fig. 6-57 Problem 82. 

You must push a crate across a floor to a docking bay. The 
crate weighs 165 N. The coefficient of static friction between crate 
and floor is 0.510, and the coefficient of kinetic friction is 0.32. Your 
force on the crate is directed horizontally. (a) What magnitude of 
your push puts the crate on the verge of sliding? (b) With what 
magnitude must you then push to keep the crate moving at a con­
stant velocity? (c) If, instead, you then push with the same magni­
tude as the answer to (a), what is the magnitude of the crate's ac­
celeration? 

In Fig. 6-58, force F is applied to a crate of mass 111 on a floor 
where the coefficient of static friction between crate and floor is 
ILs' Angle B is initially 0° but is gradually increased so that the 
force vector rotates clockwise in the figure. During the rotation, 
the magnitude F of the force is continuously adjusted so that the 
crate is always on the verge of sliding. For ILs = 0.70, (a) plot the 
ratio Fll11g versus Band (b) determine the angle Binf at which the 
ratio approaches an infinite value. (c) Does lubricating the floor 
increase or decrease Binf, or is the value unchanged? (d) What is Binf 

for ILs = 0.60? 

Fig. 6-58 Problem 84. 

In the early afternoon, a car is parked on a street that runs 
down a steep hill, at an angle of 35.0° relative to the horizontal. Just 
then the coefficient of static friction between the tires and the 
street surface is 0.725. Later, after nightfall, a sleet storm hits the 

area, and the coefficient decreases due to both the ice and a chemi­
cal change in the road surface because of the temperature de­
crease. By what percentage must the coefficient decrease if the car 
is to be in danger of sliding down the street? 

A sling-thrower puts a stone (0.250 kg) in the sling's 
pouch (0.010 kg) and then begins to make the stone and pouch 
move in a vertical circle of radius 0.650 m. The cord between the 
pouch and the person's hand has negligible mass and will break 
when the tension in the cord is 33.0 N or more. Suppose the sling­
thrower could gradually increase the speed of the stone. (a) Will 
the breaking occur at the lowest point of the circle or at the highest 
point? (b) At what speed of the stone will that breaking occur? 

SSM A car weighing 10.7 kN and traveling at 13.4 mls without 
negative lift attempts to round an unbanked curve with a radius of 
61.0 m. (a) What magnitude of the frictional force on the tires is re­
quired to keep the car on its circular path? (b) If the coefficient of 
static friction between the tires and the road is 0.350, is the attempt 
at taking the curve successful? 

In Fig. 6-59, block 1 of mass 1711 = 2.0 kg and block 2 of mass 
1712 = 1.0 kg are connected by a string of negligible mass. Block 2 is 
pushed by force F of magnitude 20 N and angle B = 35°. The coef­
ficient of kinetic friction between each block and the horizontal 
surface is 0.20. What is the tension in the string? 

Fig. 6-59 Problem 88. 

SSM A filing cabinet weighing 556 N rests on the floor. The 
coefficient of static friction between it and the floor is 0.68, and the 
coefficient of kinetic friction is 0.56. In four different attempts to 
move it, it is pushed with horizontal forces of magnitudes (a) 222 
N, (b) 334 N, (c) 445 N, and (d) 556 N. For each attempt, calculate 
the magnitude of the frictional force on it from the floor. (The cabi­
net is initially at rest.) (e) In which of the attempts does the cabinet 
move? 

In Fig. 6-60, a block weighing 22 N is held at 
rest against a vertical wall by a horizontal force F 
of magnitude 60 N. The coefficient of static friction 
between the wall and the block is 0.55, and the co­
efficient of kinetic friction between them is 0.38. In 
six experiments, a second force P is applied to the 
block and directed parallel to the wall with these 
magnitudes and directions: (a) 34 N, up, (b) 12 N, 

Fig. 6-60 
up, (c) 48 N, up, (d) 62 N, up, (e) 10 N, down, and (f) Problem 90. 
18 N, down. In each experiment, what is the magni-
tude of the frictional force on the block? In which 
does the block move (g) up the wall and (h) down the wall? (i) In 
which is the frictional force directed down the wall? 

A block slides with constant velocity down an inclined 
plane that has slope angle O. The block is then projected up the 
same plane with an initial speed Vo. (a) How far up the plane will it 
move before coming to rest? (b) After the block comes to rest, 
will it slide down the plane again? Give an argument to back your 
answer. 



A circular curve of highway is designed for traffic moving at 
60 km/h. Assume the traffic consists of cars without negative lift. 
(a) If the radius of the curve is 150 m, what is the correct angle of 
banking of the road? (b) If the curve were not banked, what would 
be the minimum coefficient of friction between tires and road that 
would keep traffic from skidding out of the turn when traveling at 
60 km/h? 

A 1.5 kg box is initially at rest on a horizontal surface when at t = 

o a horizontal force F = (1.8t)i N (with t in seconds) is applied to the 
box. The acceleration of the box as a function of time t is given by 
a = 0 for 0 :S t:S 2.8 s and a = (l.2t - 2.4)i m/s2 for t> 2.8 s. (a) 
What is the coefficient of static friction between the box and the sur­
face? (b) What is the coefficient of kinetic friction between the box 
and the suliace? 

A child weighing 140 N sits at rest at the top of a playground 
slide that makes an angle of 25° with the horizontal. The child keeps 
from sliding by holding onto the sides of the slide. After letting go 
of the sides, the child has a constant acceleration of 0.86 m/s2 (down 
the slide, of course). (a) What is the coefficient of kinetic friction be­
tween the child and the slide? (b) What maximum and minimum 
values for the coefficient of static friction between the child and the 
slide are consistent with the infor-
mation given here? 

In Fig. 6-61 a fastidious worker 
pushes directly alon] the handle of 
a mop with a force F. The handle is 
at an angle 0 with the vertical, and 
f.Ls and f.Lk are the coefficients of sta­
tic and kinetic friction between the 
head of the mop and the floor. 
Ignore the mass of the handle and 
assume that all the mop's mass 111 is Fig. 6-61 Problem 95. 
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in its head. (a) If the mop head moves along the floor with a con­
stant velocity, then what is F? (b) Show that if 0 is less than a cer­
tain value 00, then F (still directed along the handle) is unable to 
move the mop head. Find 00, 

A child places a picnic basket on the outer rim of a merry-go­
round that has a radius of 4.6 m and revolves once every 30 s. (a) 
What is the speed of a point on that rim? (b) What is the lowest 
value of the coefficient of static friction between basket and merry­
go-round that allows the basket to stay on the ride? 

SSM A warehouse worker exerts a constant horizontal force 
of magnitude 85 N on a 40 kg box that is initially at rest on the hor­
izontal floor of the warehouse. When the box has moved a distance 
of 1.4 m, its speed is 1.0 m/s. What is the coefficient of kinetic fric­
tion between the box and the floor? 

In Fig. 6-62, a 5.0 kg block is sent sliding up a plane inclined at 
0= 37° while a horizontal force F of magnitude 50 N acts on it. 
The coefficient of kinetic friction between block and plane is 0.30. 
What are the (a) magnitude and (b) direction (up or down the 
plane) of the block's acceleration? The block's initial speed is 4.0 
m/s. (c) How far up the plane does the block go? (d) When it 
reaches its highest point, does it remain at rest or slide back down 
the plane? 

(} 

Fig. 6-62 Problem 98. 
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Work 
If you accelerate an object to a greater speed by applying a force to the object, 
you increase the kinetic energy /( ( = ~ mv2) of the object. Similarly, if you decel­
erate the object to a lesser speed by applying a force, you decrease the kinetic 
energy of the object. We account for these changes in kinetic energy by saying 
that your force has transferred energy to the object from yourself or from the 
object to yourself. In such a transfer of energy via a force, work W is said to be 
done on the object by the force. More formally, we define work as follows: 

Work W is energy transferred to or from an object by means of a force acting on 
the object. Energy transferred to the object is positive work, and energy transferred 
from the object is negative work. 

"Work," then, is transferred energy; "doing work" is the act of transferring the 
energy. Work has the same units as energy and is a scalar quantity. 

The term transfer can be misleading. It does not mean that anything material 
flows into or out of the object; that is, the transfer is not like a flow of water. 
Rather, it is like the electronic transfer of money between two bank accounts: 
The number in one account goes up while the number in the other account goes 
down, with nothing material passing between the two accounts. 

Note that we are not concerned here with the common meaning of the word 
"work," which implies that any physical or mental labor is work. For example, if 
you push hard against a wall, you tire because of the continuously repeated mus­
cle contractions that are required, and you are, in the common sense, working. 
However, such effort does not cause an energy transfer to or from the wall and 
thus is not work done on the wall as defined here. 

To avoid confusion in this chapter, we shall use the symbol W only for work 
and shall represent a weight with its equivalent mg. 

Work and Kinetic Energy 

Let us find an expression for work by considering a bead that can slide along 
a frictionless wire that is stretched along a horizontal x axis (Fig. 7-2). A constant 
force F, directed at an angle cjJ to the wire, accelerates the bead along the wire. 
We can relate the force and the acceleration with Newton's second law, written 
for components along the x axis: 

(7-3) 

where m is the bead's mass. As the bead moves through a displacement d, the 
force changes the bead's velocity from an initial value Va to some other value V. 
Because the force is constant, we know that the acceleration is also constant. 
Thus, we can use Eq. 2-16 to write, for components along the x axis, 

(7-4) 

Solving this equation for an substituting into Eq. 7-3, and rearranging then give us 

(7-5) 

The first term on the left side of the equation is the kinetic energy /(f of the bead 
at the end of the displacement d, and the second term is the kinetic energy /(; of 
the bead at the start of the displacement. Thus, the left side of Eq. 7-5 tells us 
the kinetic energy has been changed by the force, and the right side tells us the 
change is equal to F,d. Therefore, the work W done on the bead by the force 
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(the energy transfer due to the force) is 

W= F,d. (7-6) 

If we know values for F, and d, we can use this equation to calculate the work W 
done on the bead by the force. 

To calculate the work a force does on an object as the object moves through some 
displacement, we use only the force component along the object's displacement. The 
force component perpendicular to the displacement does zero work. 

From Fig. 7-2, we see that we can write F, as F cos cp, where cp is the angle 
between the directions of the displacement d and the force P. Thus, 

W= Fdcos cp (work done by a constant force). (7-7) 

Because the right side of this equation is equivalent to the scalar (dot) product 
p. d, we can also write 

(work done by a constant force), (7-8) 

where F is the magnitude of P. (You may wish to review the discussion of scalar 
products in Section 3-8.) Equation 7-8 is especially useful for calculating the work 
when P and d are given in unit-vector notation. 

This component 
does no work. 

~net;c ene~ F 

~
smal/ initial This force does positive work 

on the bead, increasing speed 
and kinetic energy. 

Ki ~~~ ___ ~ __ '\' 

~vo Bead~ 
This component 
does work. 

~ 

F 

~ Fig. 7-2 A constant force F directed at 
angle 4> to the displacement d of a bead on a 
wire accelerates the bead along the wire, 
changing the velocity of the bead from Vo to V. 
A "kinetic energy gauge" indicates the result­
ing change in the kinetic energy of the bead, 
from the value Ki to the value Kf . 

Larger final I c
r 
~ F 

kinetic energy K~--:-

~v 

Displacement d 

Cautions: There are two restrictions to using Eqs. 7-6 through 7-8 to calculate 
work done on an object by a force. First, the force must be a constant force; that 
is, it must not change in magnitude or direction as the object moves. (Later, we 
shall discuss what to do with a variable force that changes in magnitude.) Second, 
the object must be particle-like. This means that the object must be rigid; all parts 
of it must move together, in the same direction. In this chapter we consider only 
particle-like objects, such as the bed and its occupant being pushed in Fig. 7-3. 

Signs for work. The work done on an object by a force can be either positive 
work or negative work. For example, if angle cp in Eq. 7-7 is less than 90°, then cos cp is 
positive and thus so is the work. If cp is greater than 90° (up to 180°), then cos cp is 

Fig. 7-3 A contestant in a bed race. We 
can approximate the bed and its occupant 
as being a particle for the purpose of calcu­
lating the work done on them by the force 
applied by the student. 
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negative and thus so is the work. (Can you see that the work is zero when cp = 90°?) 
These results lead to a simple rule. To find the sign of the work done by a force, con­
sider the force vector component that is parallel to the displacement: 

A force does positive work when it has a vector component in the same direction 
as the displacement, and it does negative work when it has a vector component in the 
opposite direction. It does zero work when it has no such vector component. 

Units for work. Work has the SI unit of the joule, the same as kinetic energy. 
However, from Eqs. 7-6 and 7-7 we can see that an equivalent unit is the newton­
meter (N' m). The corresponding unit in the British system is the foot-pound 
(ft ·lb). Extending Eq. 7-2, we have 

1 J = 1 kg· m2/s2 = 1 N· m = 0.738 ft . lb. (7-9) 

Net work done by several forces. When two or more forces act on an object, 
the net work done on the object is the sum of the works done by the individual 
forces. We can calculate the net work in two ways. (1) We can find the work 
done by each force and then sum those works. (2) Alternatively, we can first 
find the net force F;,et of those forces. Then we can use Eq. 7-7, substituting the 
magnitude Fnet for F and also the angle between the directions of F;,et and d 
for cp. Similarly, we can use Eq. 7-8 with F;,et substituted for F. 

Equation 7-5 relates the change in kinetic energy of the bead (from an initial 
Ki = !mv5 to a later K[ = !mv2) to the work W (= F,d) done on the bead. For 
such particle-like objects, we can generalize that equation. Let AK be the change 
in the kinetic energy of the object, and let W be the net work done on it. Then 

AK = K[ - Ki = W, (7-10) 
which says that 

(
change in the kinetic) = (net work done on) 
energy of a particle the particle . 

We can also write 

K[=Ki+ W, 
which says that 

(
kinetic energy after) ( kinetic energy ) (the net ) 
the net work is done = before the net work + work done . 

(7-11) 

These statements are known traditionally as the work-kinetic energy theorem 
for particles. They hold for both positive and negative work: If the net work done 
on a particle is positive, then the particle's kinetic energy increases by the amount 
of the work. If the net work done is negative, then the particle's kinetic energy 
decreases by the amount of the work. 

For example, if the kinetic energy of a particle is initially 5 J and there is a 
net transfer of 2 J to the particle (positive net work), the final kinetic energy is 
7 J. If, instead, there is a net transfer of 2 J from the particle (negative net work), 
the final kinetic energy is 3 J. 

CHECKPOINT 1 

A particle moves along an x axis. Does the kinetic energy of the particle increase, de­
crease, or remain the same if the particle's velocity changes (a) from -3 mls to -2 mls 
and (b) from -2 mls to 2 mls? (c) In each situation, is the work done on the particle 
positive, negative, or zero? 
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Work done by two constant forces, industrial spies 

Figure 7-4a shows two industrial spies sliding an initially 
stationary 225 kg floor safe a displacement d of magnitude 
8.50 m, straight toward their truck. The push PI of spy 001 is 
12.0 N, directed at an angle of 30.0° downward from the hor­
izontal; the pull IS, of spy 002 is 10.0 N, directed at 40.0° 
above the horizontal. The magnitudes and directions of 
these forces do not change as the safe moves, and the floor 
and safe make frictionless contact. 

(a) What is the net work done on the safe by forces FI and 
IS during the displacement d? 

(1) The net work W done on the safe by the two forces is the 
sum of the works they do individually. (2) Because we can 
treat the safe as a particle and the forces are constant in 
both magnitude and direction, we can use either Eq. 7-7 
(W = Fd cos ¢) or Eq. 7-8 (W = F· d) to calculate those 
works. Since we know the magnitudes and directions of the 
forces, we choose Eq. 7-7. 

Calculations: From Eq. 7-7 and the free-body diagram for 
the safe in Fig. 7-4b, the work done by FI is 

WI = Fld cos ¢I = (12.0 N)(8.50 m)(cos 30.0°) 

= 88.33 J, 

and the work done by F2 is 
W2 = F2d cos 4>z = (10.0 N)(8.50 m)(cos 40.0°) 

= 65.11 J. 

Thus, the net work W is 

W = WI + W2 = 88.33 J + 65.11 J 

= 153.4 J = 153 J. (Answer) 

During the 8.50 m displacement, therefore, the spies trans­
fer 153 J of energy to the kinetic energy of the safe. 

Fig. 7-4 (a) Two spies move a floor safe through a 
displacement d. (b) A free-body diagram for the safe. 

(b) During the displacement, what ~ the work Wg done on 
the safe by the gravitational force Fg and wha!}s the work 
WN done on the safe by the normal force FN from the 
floor? 

Because these forces are constant in both magnitude and di­
rection, we can find the work they do withEq. 7-7. 

Calculations: Thus, with mg as the magnitude of the gravi­
tational force, we write 

and 

Wg = mgd cos 90° = mgd(O) = 0 

WN = FNd cos 90° = FNd(O) = O. 

(Answer) 

(Answer) 

We should have known this result. Because these forces are 
perpendicular to the displacement of the safe, they do zero 
work on the safe and do not transfer any energy to or from it. 

(c) The safe is initially stationary. What is its speed vfat the 
end of the 8.50 m displacement? 

The speed of the safe changes because its kinetic energy is 
changed when energy is transferred to it by FI and Fz. 
Calculations: We relate the speed to the work done by 
combining Eqs. 7-10 and 7-1: 

W -K v_I 2 I 2 - f - 1 .... i - zmvf - Zmvi' 

The initial speed Vi is zero, and we now know that the work 
done is 153.4 J. Solving for vf and then substituting known 
data, we find that 

Vf= )2: = 

= 1.17 m/s. 

Spy 002 

(a) 

2(153.4 J) 
225 kg 

Only force components 
parallel to the displacement 
do work. 

Safe 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Work done by a constant force in unit-vector notation 

During a storm, a crate of crepe is sliding across a slick, 
oily parking lot through a displacement d = (-3.0 m)i 
while a steady wind pushes against the crate with a force 
p = (2.0 N)i + (-6.0 N)j. The situation and coordinate 
axes are shown in Fig. 7-5. 

(a) How much work does this force do on the crate during 
the displacement? 

Because we can treat the crate as a particle and because the 
wind force is constant ("steady") in both magnitUde and direc­
tion during the displacement, we can use either Eq. 7-7 (W = 

Fd cos ¢) or Eq. 7-8 (W = p. d) to calculate the work. Since 
we know P and d in unit-vector notation, we choose Eq. 7-8. 

Calculations: We write 

W = p. d = [(2.0 N)i + (-6.0 N)J]· [( -3.0 m)i]. 

Of the possible unit-vector dot products, only i· i, j . j, and 
k' k are nonzero (see Appendix E). Here we obtain 

W = (2.0 N)( -3.0 m)i.i + (-6.0 N)( -3.0 m)}' i 
= (-6.0 J)(l) + 0 = -6.01. (Answer) 

Fig. 7-5 Force F 
slows a crate during 
displacement d. 

The parallel force component does 
negative work, slowing the crate. 

y 

Thus, the force does a negative 6.0 J of work on the crate, trans­
ferring 6.0 J of energy from the kinetic energy of the crate. 

(b) If the crate has a kinetic energy of 10 J at the beginning 
of displacement d, what is its kinetic energy at the end of d? 

Because the force does negative work on the crate, it re­
duces the crate's kinetic energy. 

Calculation: Using the work-kinetic energy theorem in 
the form of Eq. 7-11, we have 

Kf = K; + W = 10 J + (-6.0 J) = 4.01. (Answer) 

Less kinetic energy means that the crate has been slowed. 

Additional examples, video, and practice available at WileyPLUS 
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work, decreasing speed 
and kinetic energy. 

\4 K, 

Fig. 7-6 Because the gravitational force 
l{ acts on it, a particle-like tomato of mass 
m thrown upward slows from velocity Vo to 
velocity v during displacement d. A kinetic 
energy gauge indicates the resulting change 
in the kinetic energy of the tomato, from 
Kj(= !mvfi) to Kf (= ~mv2). 

Work Done by the Gravitational Force 
We next examine the work done on an object by the gravitational force acting on 
it. Figure 7-6 shows a particle-like tomato of mass m that is thrown upward with 
initial speed Va and thus with initial kinetic energy K; = ~ mv6. As the tomato 
rises, it is slowed by a gravitational force ~; that is, the tomato's kinetic energy 
decreases because ~ does work on the tomato as it rises. Because we can treat 
the tomato as a particle, we can use Eq. 7-7 (W = Fd cos ¢) to express the work 
done during a displacement d. For the force magnitUde F, we use mg as the mag­
nitude of l{. Thus, the work Wg done by the gravitational force l{ is 

Wg = mgdcos¢ (work done by gravitationalforce). (7-12) 

For a rising object, force l{ is directed opposite the displacement d, as indi­
cated in Fig. 7-6. Thus, ¢ = 180° and 

Wg = mgd cos 180° = mgd( -1) = -mgd. (7-13) 

The minus sign tells us that during the object's rise, the gravitational force acting 
on the object transfers energy in the amount mgd from the kinetic energy of the 
object. This is consistent with the slowing of the object as it rises. 

After the object has reached its maximum height and is falling back down, 
the angle ¢ between force Fg and displacement d is zero. Thus, 

Wg = mgd cos 0° = mgd( + 1) = +mgd. (7-14) 
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The plus sign tells us that the gravitational force now transfers energy in the amount 
mgd to the kinetic energy of the object. This is consistent with the speeding up of the 
object as it falls. (Actually, as we shall see in Chapter 8, energy transfers associated 
with lifting and lowering an object involve the full object-Earth system.) 

Now suppose we lift a particle-like object by applying a vertical force F to it. 
During the upward displacement, our applied force does positive work Wa on the 
object while the gravitational force does negative work Wg on it. Our applied 
force tends to transfer energy to the object while the gravitational force tends to 
transfer energy from it. By Eq. 7-10, the change ilK in the kinetic energy of the 
object due to these two energy transfers is 

(7-15) 

in which Kf is the kinetic energy at the end of the displacement and Ki is that at 
the start of the displacement. This equation also applies if we lower the object, 
but then the gravitational force tends to transfer energy to the object while our 
force tends to transfer energy from it. 

In one common situation, the object is stationary before and after the lift­
for example, when you lift a book from the floor to a shelf. Then Kf and Ki are 
both zero, and Eq. 7-15 reduces to 

Wa + Wg = 0 

or (7-16) 

Note that we get the same result if Kf and Ki are not zero but are still equal. 
Either way, the result means that the work done by the applied force is the nega­
tive of the work done by the gravitational force; that is, the applied force transfers 
the same amount of energy to the object as the gravitational force transfers from 
the object. Using Eq. 7-12, we can rewrite Eq. 7-16 as 

Wa = -mgd cos ¢ (work done in lifting and lowering;1(t = 1(;), (7-17) 

with ¢ being the angle between F; and d. If the displacement is vertically upward 
(Fig. 7-7a), then ¢ = 1800 and the work done by the applied force equals mgd. 
If the displacement is vertically downward (Fig. 7-7b), then ¢ = 00 and the work 
done by the applied force equals -mgd. 

Equations 7-16 and 7-17 apply to any situation in which an object is lifted or 
lowered, with the object stationary before and after the lift. They are independent 
of the magnitude of the force used. For example, if you lift a mug from the floor to 
over your head, your force on the mug varies considerably during the lift. Still, 
because the mug is stationary before and after the lift, the work your force does 
on the mug is given by Eqs. 7-16 and 7-17, where, in Eq. 7-17, mg is the weight of 
the mug and d is the distance you lift it. 

Upward 
displacement 

Does 
positive 
work 

Does 
negative 
work 

Does 
positive 
work 

Fig_ 7-7 (a) An applied force F lifts 
an object. The object's displacement d 
makes an angle ¢ = 1800 with the 
gravitational force F; on the object. 
The applied force does positive work 
on the object. (b) An applied force F 
lowers an object. The displacement d 
of the object makes an angle ¢ = 00 

with the gravitational force ~.The 
applied force does negative work on 
the object. 

Object Does 
negative 
work 

-d 
Downward 
displacement 

(a) (b) 
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Work done on an accelerating elevator cab 

An elevator cab of mass m = 500 kg is descending with speed 
Vi = 4.0 mls when its supporting cable begins to slip, allowing 
it to fall with constant acceleration a = gl5 (Fig.7-8a). 

(a) During the fall through a distance d = 12 m, what is the 
work Wg done on the cab by the gravitational force ~? 

We can treat the cab as a particle and thus use Eq. 7-12 
(Wg = mgd cos ¢) to find the work Wg. 

Calculation: From Fig. 7-8b, we see that the angle between 
the directions of Fg and the cab's displacement d is 00

• 

Then, from Eq. 7 -12, we find 

Wg = mgd cos 00 = (500 kg)(9.8 m/s2)(12 m)(l) 

= 5.88 X 104 J = 59 kJ. (Answer) 

(b) During the 12 m fall, what is the work W T done on the 
cab by the upward pull T of the elevator cable? 

(1) We can calculate work WTwithEq. 7-7 (W = Fd cos ¢) if 
we first find an expression for the magnitude T of the cable's 
pull. (2) We can find that expression by writing Newton's 
second law for components along the y axis in Fig. 7-8b 
(Fnet,y = may). 

Calculations: We get 

T - Fg = ma. (7-18) 

Solving for T, substituting mg for Fg, and then substituting 
the result in Eq. 7-7, we obtain 

WT = Td cos ¢ = m(a + g)d cos ¢. (7-19) 

Next, substituting -g15 for the (downward) acceleration a 
and then 1800 for the angle ¢ between the directions of 

-> -> forces T and mg, we find 

WT = m( -; + g) d cos ¢ = : mgd cos ¢ 

4 
= 5 (500 kg)(9.8 m/s2)(12 m) cos 1800 

= -4.70 X 104 J = -47 kJ. (Answer) 

Caution: Note that WT is not simply the negative of Wg • 

The reason is that, because the cab accelerates during the 

fall, its speed changes during the fall, and thus its kinetic 
energy also changes. Therefore, Eq. 7-16 (which assumes 
that the initial and final kinetic energies are equal) does 
not apply here. 

( c) What is the net work W done on the cab during the fall? 

Calculation: The net work is the sum of the works done by 
the forces acting on the cab: 

W = Wg + WT = 5.88 X 104 J - 4.70 X 104 J 

= 1.18 X 104 J = 12 kJ. (Answer) 

(d) What is the cab's kinetic energy at the end of the 12 m 
fall? 

The kinetic energy changes because of the net work done on 
the cab, according to Eq. 7-11 (Kf = Ki + W). 

Calculation: From Eq. 7-1, we can write the kinetic energy 
at the start of the fall as Ki = !mvT. We can then write Eq. 
7-11 as 

Kf = Ki + W = !mvT + W 

= !(500 kg)(4.0 m/s)2 + 1.18 X 104 J 

= 1.58 X 104 J = 16 kJ. (Answer) 

-> 
a 

(a) 

Elevator 
cable 

Cab 

-> 
d 

(b) 

Does 
negative 
work 

Does 
positive 
work 

Fig. 7-8 An elevator cab, descending with speed Vi' suddenly 
begins to accelerate downward. (a) It moves through a displacement 
d with constant acceleration a = 71/5. (b) A free-body diagram for 
the cab, displacement included. 

Additional examples, video, and practice available at WileyPLUS 
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7 Work Done by a Spring Force 
We next want to examine the work done on a particle-like object by a particular 
type of variable force-namely, a spring force, the force from a spring. Many 
forces in nature have the same mathematical form as the spring force. Thus, by 
examining this one force, you can gain an understanding of many others. 

Figure 7-9a shows a spring in its relaxed state-that is, neither compressed nor 
extended. One end is fixed, and a particle-like object-a block, say-is attached 
to the other, free end. If we stretch the spring by pulling the block to the right as 
in Fig. 7-9b, the spting pulls on the block toward the left. (Because a spring 
force acts to restore the relaxed state, it is sometimes said to be a restoring force.) 
If we compress the spring by pushing the block to the left as in Fig. 7-9c, the 
spring now pushes on the block toward the right. 

To a good approximation for many springs, the force F, from a spring is pro­
pOl·tional to the displacement d of the free end from its position when the spring 
is in the relaxed state. The spring force is given by 

(Hooke's law), (7-20) 

which is known as Hooke's law after Robert Hooke, an English scientist of the 
late 1600s. The minus sign in Eq. 7-20 indicates that the direction of the spring 
force is always opposite the direction of the displacement of the spring's free end. 
The constant k is called the spring constant (or force constant) and is a measure 
of the stiffness of the spring. The larger k is, the stiffer the spring; that is, the larger 
k is, the stronger the spring's pull or push for a given displacement. The SI unit for 
k is the newton per meter. 

In Fig. 7-9 an x axis has been placed parallel to the length of the spring, with 
the origin (x = 0) at the position of the free end when the spring is in its relaxed 
state. For this common arrangement, we can write Eq. 7-20 as 

F., = -kx (Hooke's law), (7-21) 

where we have changed the subscript. If x is positive (the spring is stretched 
toward the right on the x axis), then F, is negative (it is a pull toward the left). If 
x is negative (the spring is compressed toward the left), then F, is positive (it is a 
push toward the right). Note that a spring force is a variable force because it is a 
function of x, the position of the free end. Thus F,. can be symbolized as F(x).Also 
note that Hooke's law is a linear relationship between F, and x. 

To find the work done by the spring force as the block in Fig. 7-9a moves, let us 
make two simplifying assumptions about the spring. (1) It is massless; that is, its 
mass is negligible relative to the block's mass. (2) It is an ideal spring; that is, it 
obeys Hooke's law exactly. Let us also assume that the contact between the block 
and the floor is frictionless and that the block is particle-like. 

We give the block a rightward jerk to get it moving and then leave it alone. 
As the block moves rightward, the spring force F,. does work on the block, 
decreasing the kinetic energy and slowing the block. However, we cannot find 
this work by using Eq. 7-7 (W = Fd cos ¢) because that equation assumes a con­
stant force. The spring force is a variable force. 

To find the work done by the spring, we use calculus. Let the block's initial 
position be Xi and its later position xf' Then divide the distance between those two 

x=o Block 
attached 
to spring 

------------~I----------x 
o 

(a) 

(b) 

(c) 

x negative 
~ positive 

Fig.7-9 (a) A spring in its relaxed state. 
The origin of an x axis has been placed at 
the end of the spring that is attached to a 
block. (b) The block is displaced by d, and 
the spring is stretched by a positive amount 
x. Note the restoring force ~ exerted by the 
spring. (c) The spring is compressed by a 
negative amount x. Again, note the restor­
ingforce. 
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positions into many segments, each of tiny length Llx. Label these segments, start­
ing from X;, as segments 1, 2, and so on. As the block moves through a segment, 
the spring force hardly varies because the segment is so short that X hardly varies. 
Thus, we can approximate the force magnitude as being constant within the seg­
ment. Label these magnitudes as Fd in segment 1, F(2 in segment 2, and so on. 

With the force now constant in each segment, we can find the work done 
within each segment by using Eq. 7-7. Here ¢ = 180°, and so cos ¢ = -1. Then 
the work done is - FrJ Llx in segment 1, -Fr2 Llx in segment 2, and so on. The net 
work Ws done by the spring, from Xi to xf' is the sum of all these works: 

Ws = L -F'j Llx, (7-22) 

where j labels the segments. In the limit as Llx goes to zero, Eq. 7-22 becomes 

lX! 
Ws = . -Frdx. 

·'i 

From Eq. 7-21, the force magnitude Fr is kx. Thus, substitution leads to 

l
X! lX! 

W, = Xi - kx dx = - k Xi X dx 

Multiplied out, this yields 

W _ 11 2112 
s - 'iKXi - 'iKxf (work by a spring force). 

(7-23) 

(7-24) 

(7-25) 

This work Ws done by the spring force can have a positive or negative value, 
depending on whether the net transfer of energy is to or from the block as the 
block moves from Xi to xf' Caution: The final position xf appears in the second 
term on the right side of Eq. 7-25. Therefore, Eq. 7-25 tells us: 

Work Ws is positive if the block ends up closer to the relaxed position (x = 0) than 
it was initially. It is negative if the block ends up farther away from x = O. It is zero if 
the block ends up at the same distance from x = O. 

If Xi = 0 and if we call the final position x, then Eq. 7-25 becomes 

(work by a spring force). (7-26) 

Now suppose that we displace the block along the X axis while continuing to apply a 
force ~ to it. During the displacement, our applied force does work W" on the block 
while the spring force does work Ws' By Eq. 7-10, the change LlK in the kinetic en­
ergy of the block due to these two energy transfers is 

(7-27) 

in which Kf is the kinetic energy at the end of the displacement and J( is that at 
the start of the displacement. If the block is stationary before and after the dis­
placement, then Kfand Ki are both zero and Eq. 7-27 reduces to 

(7-28) 
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If a block that is attached to a spring is stationary before and after a displacement, 
then the work done on it by the applied force displacing it is the negative of the work 
done on it by the spring force. 

Caution: If the block is not stationary before and after the displacement, then this 
statement is not true. 

CHECKPOINT 2 

For three situations, the initial and final positions, respectively, along the x axis for the 
block in Fig. 7-9 are (a) - 3 cm,2 cm; (b) 2 cm, 3 cm; and ( c) -2 cm, 2 cm. In each situa­
tion, is the work done by the spring force on the block positive, negative, or zero? 

Work done by spring to change kinetic energy 

In Fig. 7-10, a cumin canister of mass m = 0040 kg slides 
across a horizontal frictionless counter with speed v = 0.50 
m/s. It then runs into and compresses a spring of spring con­
stant k = 750 N/m. When the canister is momentarily 
stopped by the spring, by what distance d is the spring 
compressed? 

The spring force does 
negative work, decreasing 
speed and kinetic energy. 

r- d ------l 
Stop First touch 

1. The work Ws done on the canister by the spring force is 
related to the requested distance d by Eq. 7-26 (Ws = 
-! kx2

), with d replacing x. 

Fig. 7-10 A canister of mass m moves at velocity v toward a 
spring that has spring constant k. 

2. The work Ws is also related to the kinetic energy of the 
canister by Eq. 7-10 (K, - K; = W). 

Substituting according to the third key idea gives us this 
expression 

0- !mv2 = -!kd 2
• 3. The canister's kinetic energy has an initial value of K = 

! mv2 and a value of zero when the canister is momentar­
ily at rest. 

Simplifying, solving for d, and substituting known data then 

Calculations: Putting the first two of these ideas together, 
we write the work-kinetic energy theorem for the canister 
as 

give us 

d = v.Jf = (0.50m/s) 

= 1.2 X 10-2 m = 1.2 cm. 

0040 kg 
750N/m 

Additional examples, video, and practice available at WileyPLUS 

Work Done by a General Variable Force 

Let us return to the situation of Fig. 7-2 but now consider the force to be in the 
positive direction of the x axis and the force magnitude to vary with position x. 
Thus, as the bead (particle) moves, the magnitude F(x) of the force doing work on 
it changes. Only the magnitude of this variable force changes, not its direction, 
and the magnitude at any position does not change with time. 

(Answer) 
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Fig. 7-11 (a) A one-dimensional force 
F(x) plotted against the displacement X of 
a particle on which it acts. The particle 
moves from Xi toxf. (b) Same as (a) but 
with the area under the curve divided into 
narrow strips. ( c) Same as (b) but with the 
area divided into narrower strips. (d) The 
limiting case. The work done by the force is 
given by Eq. 7-32 and is represented by the 
shaded area between the curve and the x 
axis and between Xi and xf' 

F(x) 

Work is equal to the 
area under the curve. 

We can approximate 
that area with the area 
of these strips. 

F(x) 

~~----------7.--x 

(a) (b) 

We can do better with 
more, narrower strips. 

For the best, take the 
limit of strip widths 
going to zero. 

~~----------~--x 

( c) (d) 

Figure 7 -lla shows a plot of such a one-dimensional variable force. We want an 
expression for the work done on the particle by this force as the particle moves from 
an initial point Xi to a final point xf' Howeve!i we cannot use Eq. 7-7 (W = Fd cos 1» 
because it applies only for a constant force F. Here, again, we shall use calculus. We 
divide the area under the curve of Fig. 7 -lla into a number of narrow strips of width 
Llx (Fig. 7-11b). We choose Llx small enough to permit us to take the force F(x) as 
being reasonably constant over that interval. We let Fj,avg be the average value of 
F(x) within the jth interval. Then in Fig. 7-11b,Fj,avg is the height ofthe jth strip. 

With Fj,avg considered constant, the increment (small amount) of work Ll Wj 
done by the force in the jth interval is now approximately given by Eq. 7-7 and is 

Ll Wj = Fj,avg Llx. (7-29) 

In Fig. 7-11b, Ll Wj is then equal to the area of the jth rectangular, shaded strip. 
To approximate the total work W done by the force as the particle moves 

from Xi to xf' we add the areas of all the strips between Xi and xfin Fig. 7-11b: 

W = ~ Ll ~ = ~ Fj,avg Llx. (7-30) 

Equation 7-30 is an approximation because the broken "skyline" formed by the tops 
of the rectangular strips in Fig. 7-11b only approximates the actual curve of F(x). 

We can make the approximation better by reducing the strip width Llx and 
using more strips (Fig. 7-11c). In the limit, we let the strip width approach zero; 
the number of strips then becomes infinitely large and we have, as an exact result, 

W = lim ~Fj,avg Llx. (7-31) 
ilx ---> 0 

This limit is exactly what we mean by the integral of the function F(x) between 
the limits Xi and xf' Thus, Eq. 7-31 becomes 

L
Xf 

W = x; F(x) dx (work: variable force). (7-32) 

If we know the function F(x) , we can substitute it into Eq. 7-32, introduce the 
proper limits of integration, carry out the integration, and thus find the work. 
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(Appendix E contains a list of common integrals.) Geometrically, the work is 
equal to the area between the F(x) curve and the x axis, between the limits Xi and 
xr (shaded in Fig. 7-11d). 

Consider now a particle that is acted on by a three-dimensional force 

F = F) + FyJ + FJ, (7-33) 

in which the components F" Fy, and Fz can depend on the position of the particle; 
that is, they can be functions of that position. However, we make three simplifica­
tions: F.~ may depend on x but not on Y or z, Fy may depend on Y but not on x or z, 
and Fz may depend on z but not on x or y. Now let the particle move through an in­
cremental displacement 

dr = dxi + dYJ + dzk. (7-34) 

The increment of work dW done on the particle by F during the displacement dr 
is, by Eq. 7-8, 

dW = F· dr = 1'; dx + F; dy + F; dz. (7-35) 

The work W done by F while the particle moves from an initial position ri having 
coordinates (X;'Yi' Zi) to a final position rrhaving coordinates (xr,Yr, zr) is then 

Lr
l 

LXI fYI iZI 
W = dW = Fx dx + Fy dy + Fz dz. 

~ ~ ~ 4 
(7-36) 

If F has only an x component, then the y and z terms in Eq. 7-36 are zero and the 
equation reduces to Eq. 7-32. 

Equation 7-32 gives the work done by a variable force on a particle in a one­
dimensional situation. Let us now make certain that the work is equal to the 
change in kinetic energy, as the work - kinetic energy theorem states. 

Consider a particle of mass m, moving along an x axis and acted on by a net 
force F(x) that is directed along that axis. The work done on the particle by this 
force as the particle moves from position Xi to position xr is given by Eq. 7-32 as 

(XI IXI 
W = )x; F(x) dx = x, ma dx, (7-37) 

in which we use Newton's second law to replace F(x) with ma. We can write the 
quantity ma dx in Eq. 7 -37 as 

dv 
ma dx = m dt dx. (7-38) 

From the chain rule of calculus, we have 

dv dv dx dv 
dt = dx dt = dx v, (7-39) 

and Eq. 7-38 becomes 
dv 

madx = m dx vdx = mvdv. (7-40) 

Substituting Eq. 7-40 into Eq. 7-37 yields 

W = LI mv dv = m LI v dv 

= !mvj- !mvr. (7-41) 

Note that when we change the variable from x to v we are required to express the 
limits on the integral in terms of the new variable. Note also that because the 
mass m is a constant, we are able to move it outside the integral. 
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Recognizing the terms on the right side of Eq. 7-41 as kinetic energies allows 
us to write this equation as 

W= KI - Ki = 11K, 

which is the work - kinetic energy theorem. 

Work calculated by graphical integration 

In an epidural procedure, as used in childbirth, a surgeon or 
an anesthetist must run a needle through the skin on the pa­
tient's back, through various tissue layers and into a narrow 
region called the epidural space that lies within the spinal 
canal surrounding the spinal cord. The needle is intended to 
deliver an anesthetic fluid. This tricky procedure requires 
much practice so that the doctor knows when the needle has 
reached the epidural space and not overshot it, a mistake 
that could result in serious complications. 

The feel a doctor has for the needle's penetration is the 
variable force that must be applied to advance the needle 
through the tissues. Figure 7-12a is a graph of the force mag­
nitude F versus displacement x of the needle tip in a typical 
epidural procedure. (The line segments have been straight­
ened somewhat from the original data.) As x increases from 
0, the skin resists the needle, but at x = 8.0 mm the force is 
finally great enough to pierce the skin, and then the re­
quired force decreases. Similarly, the needle finally pierces 
the interspinous ligament at x = 18 mm and the relatively 
tough ligamentum flavum at x = 30 mm. The needle then 
enters the epidural space (where it is to deliver the anes­
thetic fluid), and the force drops sharply. A new doctor must 
learn this pattern of force versus displacement to recognize 
when to stop pushing on the needle. (This is the pattern 
to be programmed into a virtual-reality simulation of an 
epidural procedure.) How much work W is done by the 
force exerted on the needle to get the needle to the epidural 
space atx = 30 mm? 

x (mm) 

(a) 

(1) We can calculate the work W done by a variable force 
F(x) by integrating the force versus position x. Equation 
7-32 tells us that 

w = ff F(x) dx. 

We want the work done by the force during the displace­
ment from Xi = 0 to xI = 0.030 m. (2) We can evaluate the 
integral by finding the area under the curve on the graph of 
Fig.7-12a. 

_ (area between force curve) W- . and x aXIS, from x i to x I . 

Calculations: Because our graph consists of straight-line 
segments, we can find the area by splitting the region below 
the curve into rectangular and triangular regions, as shown 
in Fig. 7-12b. For example, the area in triangular region A is 

area A = 1(0.0080 m)(12 N) = 0.048 N . m = 0.048 J. 

Once we've calculated the areas for all the labeled regions 
in Fig. 7-12b, we find that the total work is 

W = (sum of the areas of regions A through K) 

= 0.048 + 0.024 + 0.012 + 0.036 + 0.009 + 0.001 

+ 0.016 + 0.048 + 0.016 + 0.004 + 0.024 

= 0.238 J. (Answer) 

x (mm) 

(b) 

Fig. 7-12 (a) The force magnitude Fversus the displacement x of the needle in an epidural procedure. (b) Breaking up the 
region between the plotted curve and the displacement axis to calculate the area. 

Additional examples. video. and practice available at WileyPLUS 
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Work, two-dimensional integration 

Force F = (3x2 N)i + (4 N)J, with x in meters, acts on a 
particle, changing only the kinetic energy of the particle. 
How much work is done on the particle as it moves from co­
ordinates (2 m, 3 m) to (3 m, 0 m)? Does the speed of the 
particle increase, decrease, or remain the same? 

Calculation: We set up two integrals, one along each axis: 

The force is a variable force because its x component de­
pends on the value of x. Thus, we cannot use Eqs. 7-7 and 7-8 
to find the work done. Instead, we must use Eq. 7-36 to inte­
grate the force. 

W = 133x2 dx + LO 4 dy = 313 

x2 dx + 4Lo dy 

= 3[~X3H + 4[y]~ = [33 23] + 4[0 - 3] 

= 7.0 J. (Answer) 

The positive result means that energy is transferred to the 
particle by force F. Thus, the kinetic energy of the particle 
increases and, because J( = !mv2 , its speed must also 
increase. If the work had come out negative, the kinetic 
energy and speed would have decreased. 

Additional examples, video, and practice available at WileyPLUS 

Power 
The time rate at which work is done by a force is said to be the power due to the 
force. If a force does an amount of work W in an amount of time M, the avel'3ge 
power due to the force during that time interval is 

W 
Pavg = Tt (average power). (7-42) 

The instantaneous power P is the instantaneous time rate of doing work, which 
we can write as 

P= dW 
dt 

(instantaneous power). (7-43) 

Suppose we know the work Wet) done by a force as a function of time. Then to 
get the instantaneous power P at, say, time t = 3.0 s during the work, we would 
first take the time derivative of Wet) and then evaluate the result for t = 3.0 s. 

The SI unit of power is the joule per second. This unit is used so often that it has a 
special name, the watt (W), after James Watt, who greatly improved the rate at which 
steam engines could do work. In the British system, the unit of power is the foot­
pound per second. Often the horsepower is used. These are related by 

1 watt = 1 W = 1 J/s = 0.738 ft . Ibis 

and 1 horsepower = 1 hp = 550 ft . Ibis = 746 W. 

(7-44) 

(7-45) 

Inspection of Eq. 7-42 shows that work can be expressed as power multiplied 
by time, as in the common unit kilowatt-hour. Thus, 

1 kilowatt-hour = 1 kW· h = (103 W)(3600 s) 

= 3.60 X 106 J = 3.60 MJ. (7-46) 

Perhaps because they appear on our utility bills, the watt and the kilowatt-hour 
have become identified as electrical units. They can be used equally well as units 
for other examples of power and energy. Thus, if you pick up a book from the 
floor and put it on a tabletop, you are free to report the work that you have done 
as, say, 4 X 10-6 kW . h (or more conveniently as 4 m W . h). 
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We can also express the rate at which a force does work on a particle (or 
particle-like object) in terms of that force and the particle's velocity. For a par­
ticle that is moving along a straight line (say, an x axis) and is acted on by a 
constant force F directed at some angle ¢ to that line, Eq. 7-43 becomes 

or 

P 
_ dW _ F cos ¢ dx _ (!!!..) 
- dt - dt - F cos ¢ dt ' 

P = Fvcos ¢. (7-47) 

Reorganizing the right side of Eq. 7-47 as the dot product F· v, we may also write 
the equation as 

P = F· v (instantaneous power). (7-48) Fig.7-13 The power due to the truck's 
applied force on the trailing load is the 
rate at which that force does work on the 
load. (REGLAIN FREDERIC/Gamma­
Presse, Inc.) 

For example, the truck in Fig. 7 -13 exerts a force F on the trailing load, which 
has velocity v at some instant. The instantaneous power due to F is the rate at 
which F does work on the load at that instant and is given by Eqs. 7-47 and 7-48. 
Saying that this power is "the power of the truck" is often acceptable, but keep in 
mind what is meant: Power is the rate at which the applied force does work. 

CHECKPOINT 3 

A block moves with uniform circular motion because a cord tied to the block is an­
chored at the center of a circle. Is the power due to the force on the block from the cord 
positive, negative, or zero? 

Power, force, and velocity 

Figure 7-14 shows constant forces F 1 and F 2 acting on a box 
as the box slides rightward across a frictionless floor. Force F 1 

is horizontal, with magnitude 2.0 N; force F 2 is angled upward 
by 60° to the floor and has magnitude 4.0 N. The speed v of 
the box at a certain instant is 3.0 mls. What is the power due 
to each force acting on the box at that instant, and what is the 
net power? Is the net power changing at that instant? 

We want an instantaneous power, not an average power 
over a time period. Also, we know the box's velocity (rather 
than the work done on it). 

Calculation: We use Eq. 7-47 for each force. For force FI> 
at angle ¢I = 180° to velocity v, we have 

PI = FIv cos ¢I = (2.0 N)(3.0 mls) cos 180° 

= -6.0 W. (Answer) 

This negative result tells us that force FI is transferring en­
ergy from the box at the rate of 6.0 J/s. 

For force F2 , at angle ¢2 = 60° to velocity v, we have 

P2 = F2v cos ¢2 = (4.0 N)(3.0 m/s) cos 60° 

= 6.0 W. (Answer) 

Negative power. 
{This force is 
removing energy.} 

Frictionless 

Positive power. 
{This force is 
supplying energy.} 

Fig. 7-14 Tho forces PI and P2 act on a box that slides rightward 
across a frictionless floor. The velocity of the box is v. 

This positive result tells us that force F2 is transferring en­
ergy to the box at the rate of 6.0 J/s. 

The net power is the sum of the individual powers: 

= -6.0W + 6.0W = 0, (Answer) 

which tells us that the net rate of transfer of energy to 
or from the box is zero. Thus, the kinetic energy (K = ~ mv2) 

of the box is not changing, and so the speed of the box will 
remain at 3.0 m/s. With neither the forces FI and F2 nor the 
velocity v changing, we see from Eq. 7-48 that PI and P2 are 
constant and thus so is Pnel • 

Additional examples, video, and practice available at WileyPLUS 



Kinetic Energy The kinetic energy K associated with the mo­
tion of a particle of mass m and speed v, where v is well below the 
speed of light, is 

(kinetic energy). (7-1) 

Work Work W is energy transferred to or from an object via a 
force acting on the object. Energy transferred to the object is posi­
tive work, and from the object, negative work. 

Work Done by a Constant Force The work done on a par­
ticle by a constant force P during displacement d is 

W = Fdcos cp = P·d (work, constant force), (7-7,7-8) 

in which cp is the constant angle between the directions of P and d. 
Only the component of P that is along the displacement d can do 
work on the object. When two or more forces act on an object, 
their net work is the sum of the individual works done by the 
forces, which is also equal to the work that would be done on the 
object by the net force fuel of those forces. 

Work and Kinetic Energy For a particle, a change tlK in the 
kinetic energy equals the net work W done on the particle: 

tlK = Kf - K; = W (work-kinetic energy theorem), (7-10) 

in which K; is the initial kinetic energy of the particle and Kf is the ki­
netic energy after the work is done. Equation 7-10 rearranged gives us 

Kf = K; + W. (7-11) 

Work Done by the Gravi!.ational Force The work Wg 
done by the gravitational force Fg on a particle-like object of mass 
m as the object moves through a displacement d is given by 

Wg = mgd cos cp, (7-12) 

in which cp is the angle between ~ and d. 

Work Done in Lifting and Lowering an Object The work 
Wa done by an applied force as a particle-like object is either lifted 
or lowered is related to the work Wg done by the gravitational 
force and the change tlK in the object's kinetic energy by 

tlK = Kf - K; = Wa + Wg • (7-15) 

If Kf = K;, then Eq. 7-15 reduces to 

Wa = - Wg, (7-16) 

which tells us that the applied force transfers as much energy to the 
object as the gravitational force transfers from it. 

Spring Force The force ~ from a spring is 

~= -kd (Hooke's law), (7-20) 

Rank the following velocities according to the kinetic energy a 
particle will have with each velocity, greatest first: (a) v == 4i + 3], 
(b) v = -4i + 3], (c) v = -3i + 4], (d) v = 3i - 4], (e) v = 5i, 
and (f) v = 5 mls at 30° to the horizontal. 

Figure 7-15a shows two horizontal forces that act on a block 
that is sliding to the right across a frictionless floor. Figure 7-15b 
shows three plots of the block's kinetic energy K versus time t. 
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where d is the displacement of the spring's free end from its posi­
tion when the spring is in its relaxed state (neither compressed nor 
extended), and k is the spring constant (a measure of the spring's 
stiffness). If an x axis lies along the spring, with the origin at the lo­
cation of the spring's free end when the spring is in its relaxed 
state, Eq. 7-20 can be written as 

F" = -kx (Hooke's law). (7-21) 

A spring force is thus a variable force: It varies with the 
displacement of the spring's free end. 

Work Done by a Spring Force If an object is attached to 
the spring's free end, the work Ws done on the object by the spring 
force when the object is moved from an initial position x; to a final 
position xf is 

W - 1 1.2 1 k 2 (7 25) s - 2.,(Xi - 2. xf' -

Ifx; = 0 andxf = x, thenEq. 7-25 becomes 

(7-26) 

Work Done by a Variable Force When the force P on a parti­
cle-like object depends on the position of the object, the work done by 
P on the object while the object moves from an initial position ri with 
coordinates (Xi> y;, Zi) to a final position rf with coordinates (xf' Yf' zf) 
must be found by integrating the force. If we assume that component 
F, may depend on x but not on y or z, component Fy may depend on y 
but not on x or Z, and component Fz may depend on Z but not on x or 
y, then the work is 

f~ f» f~ W = F,dx + Fydy + Fzdz. 
x/ Yi Zj 

If F has only an x component, then Eq. 7-36 reduces to 

W = f'F(X) dx. 

(7-36) 

(7-32) 

Power The power due to a force is the rate at which that force 
does work on an object. If the force does work W during a time inter­
val M, the average power due to the force over that time interval is 

W 
Pavg = Tt· (7-42) 

Instantaneous power is the instantaneous rate of doing work: 

P= dW 
dt . (7-43) 

For a force F at an angle cp to the direction of travel of the instan­
taneous velocity V, the instantaneous power is 

Fig. 7-15 

Question 2. (a) 

P = Fv cos cp = p. v. (7-47,7-48) 

(b) 
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Which of the plots best corresponds to the following three situ­
ations: (a) FI = F2, (b) FI > F2, (c) FI < F2? 

Is positive or negative work done by a constant force F on a 
particle during a straight-line displacement d if (a) the angle be­
tween F and d is 30°; (b) the angle is 100°; (c) F = 2i - 3J and 
d = -4i? 

In three situations, a briefly applied horizontal force changes 
the velocity of a hockey puck that slides over frictionless ice. The 
overhead views of Fig. 7-16 indicate, for each situation, the puck's 
initial speed Vi> its final speed vI' and the directions of the corre­
sponding velocity vectors. Rank the situations according to the 
work done on the puck by the applied force, most positive first and 
most negative last. 

)' 

t-------x 

(a) 

)' 

v;=4m/s 
HI\lIll-f>---- x 

'/=3m/s 

(b) 

Fig. 7-16 Question 4. 

1 ~1m;., 

~ 
(c) 

Figure 7-17 shows four graphs (drawn to the same scale) of the 
x component Fr of a variable force (directed along an x axis) versus 
the position x of a particle on which the force acts. Rank the graphs 
according to the work done by the force on the particle from x = 0 
to x = Xl, from most positive work first to most negative work last. 

t---'\:-----r- x 

F;. 

t--------'\--r'- x 

-FI -----­
(b) 

-FI 
(d) 

Ir----I-~x 

Fig. 7-17 Question 5. 

Figure 7-18 gives the X com­
ponent Fr of a force that can act 
on a particle. If the particle be­
gins at rest at X = 0, what is its 
coordinate when it has (a) its 
greatest kinetic energy, (b) its 
greatest speed, and (c) zero 
speed? (d) What is the particle's 
direction of travel after it 
reaches X = 6 m? Fig.7-18 Question 6. 

In Fig. 7-19, a greased pig has a choice of three frictionless slides 
along which to slide to the ground. Rank the slides according to how 
much work the gravitational force does on the pig during the descent, 
greatest first. 

Fig.7-19 Question 7. 

Figure 7-20a shows four situations in which a horizontal force acts 
on the same block, which is initially at rest. The force magnitUdes are 
F2 = F4 = 2Fl = 2F3• The horizontal component Vr of the block's ve­
locity is shown in Fig. 7-20b for the four situations. (a) Which plot in 
Fig.7-20b best corresponds to which force in Fig. 7-20a? (b) Which 
plot in Fig. 7-20c (for kinetic energy J( versus time t) best corre­
sponds to which plot in Fig. 7-20b? 

----------------------x 
(a) 

A 
K 

B 

G 
H 

(b) (c) 

Fig. 7-20 Question 8. 

Spring A is stiffer than spring B (kA > k8)' The spring force of 
which spring does more work if the springs are compressed (a) the 
same distance and (b) by the same applied force? 

A glob of slime is launched or dropped from the edge of a 
cliff. Which of the graphs in Fig. 7-21 could possibly show how the 
kinetic energy of the glob changes during its flight? 

K K 

(a) (b) (c) (d) 

K 

~, 
(e) (j) (g) (II) 

Fig. 7-21 Question 10. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Kinetic Energy 
SSM A proton (mass m = 1.67 X 10-27 kg) is being acceler­

ated along a straight line at 3.6 X 1015 rnIs2 in a machine. If the pro­
ton has an initial speed of 2.4 X 107 mls and travels 3.5 cm, what 
then is (a) its speed and (b) the increase in its kinetic energy? 

If a Saturn V rocket with an Apollo spacecraft attached had a 
combined mass of 2.9 X 105 kg and reached a speed of 11.2 krnls, 
how much kinetic energy would it then have? 

On August 10, 1972, a large meteorite skipped across the 
atmosphere above the western United States and western Canada, 
much like a stone skipped across water. The accompanying fireball 
was so bright that it could be seen in the daytime sky and was 
brighter than the usual meteorite traiL The meteorite's mass was 
about 4 X 106 kg; its speed was about 15 krnls. Had it entered the 
atmosphere vertically, it would have hit Earth's surface with about 
the same speed. (a) Calculate the meteorite's loss of kinetic energy 
(in joules) that would have been associated with the vertical impact. 
(b) Express the energy as a multiple of the explosive energy of 
1 megaton of TNT, which is 4.2 X 1015 J. (c) The energy associated 
with the atomic bomb explosion over Hiroshima was equivalent to 13 
kilotons of TNT. To how many Hiroshima bombs would the mete­
orite impact have been equivalent? 

A bead with mass 1.8 X 10-2 kg is moving along a wire in 
the positive direction of an x axis. Beginning at time t = 0, when 
the bead passes through x = 0 with speed 12 mis, a constant force 
acts on the bead. Figure 7-22 indicates the bead's position at 
these four times: to = 0, t1 = 1.0 s, t2 = 2.0 s, and t3 = 3.0 s. The 
bead momentarily stops at t = 3.0 s. What is the kinetic energy of 
the bead at t = 10 s? 

° 5 10 15 20 
x(m) 

Fig.7-22 Problem 4. 

A father racing his son has half the kinetic energy of the son, 
who has half the mass of the father. The father speeds up by 1.0 rnIs 
and then has the same kinetic energy as the son. What are the origi­
nal speeds of (a) the fa ther and (b) the son? 

A force F. is applied to a bead as 
the bead is moved along a straight wire 
through displacement +5.0 cm. The 
magnitude of F. is set at a certain value, 
but the angle ¢ between F. and the 
bead's displacement can be chosen. 
Figure 7-23 gives the work W done by Fa 
on the bead for a range of ¢ values; Wo = 

25 J. How much work is done by F. if ¢ is 
(a) 64° and (b) 147°? 

° 
Fig. 7-23 Problem 6. 

Work and Kinetic Energy 
A 3.0 kg body is at rest on a frictionless horizontal air track 

when a constant horizontal force F acting in the positive direction 
of an x axis along the track is applied to the body. A stroboscopic 
graph of the position of the body as it slides to the right is shown in 
Fig. 7-24. The force F is applied to the body at t = 0, and the graph 
records the position of the body at 0.50 s intervals. How much 
work is done on the body by the applied force F between t = 0 and 
t = 2.0 s? 

(;/:0.5 s y;-l.OS 
I I I I ° 0.2 

~1.5s 
I~II 

0.4 0.6 
x(m) 

Fig.7-24 Problem 7. 

2.0S~ 
I I 
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A ice block floating in a river is pushed through a displacement 
d = (15 m)i - (12 m)J alon] a straight A embankmt;nt by rushing 
water, which exerts a force F = (210 N)i - (150 N)j on the block. 
How much work does the force do on the block during the dis­
placement? 

The only force acting on a 2.0 kg canister that is moving in an 
xy plane has a magnitude of 5.0 N. The canister initially has a veloc­
ity of 4.0 mls in the positive x direction and some time later has a 
velocity of 6.0 rnIs in the positive y direction. How much work is 
done on the canister by the 5.0 N force during this time? 

A coin slides over a frictionless plane and across an xy 
coordinate system from the origin to a point with xy coordinates 
(3.0 m, 4.0 m) while a constant force acts on it. The force has mag­
nitude 2.0 N and is directed at a counterclockwise angle of 100° 
from the positive direction of the x axis. How much work is done 
by the force on the coin during the displacement? 

A 12.0 N force with a fixed orientation does work on a 
particle as the particle moves through the three-dimensional dis­
placement d = (2.001 - 4.00J + 3.00k) m. What is the angle be­
tween the force and the displacement if the change in the particle's 
kinetic energy is (a) +30.0 J and (b) - 30.0 J? 

A can of bolts and nuts is pushed 2.00 m along an x axis by a 
broom along the greasy (frictionless) floor of a car repair shop in a 
version of shuffleboard. Figure 7-25 gives the work W done on the 

x(m) 

Fig.7-25 Problem 12. 
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can by the constant horizontal force from the broom, versus the 
can's position x. The scale of the figure's vertical axis is set by Ws = 
6.0 J. (a) What is the magnitude of that force? (b) If the can had an 
initial kinetic energy of 3.00 J, moving in the positive direction of 
the x axis, what is its kinetic energy at the end of the 2.00 m? 

A luge and its rider, with a total mass of 85 kg, emerge from 
a downhill track onto a horizontal straight track with an initial 
speed of 37 m/s. If a force slows them to a stop at a constant rate of 
2.0m/s2, (a) what magnitude Fis required for the force, (b) what 
distance d do they travel while slowing, and (c) what work W is 
done on them by the force? What are (d) F, (e) d, and (f) W if they, 
instead, slow at 4.0 m/s2? 

Figure 7-26 shows an overhead view of three horizontal 
forces acting on a cargo canister that was initially stationary but 
now moves across a frictionless fioor. The force magnitudes are 
F1 = 3.00 N, F2 = 4.00 N, and F3 = 10.0 N, and the indicated angles 
are O2 = 50.0° and 03 = 35.0°. What is the net work done on the can­
ister by the three forces during the first 4.00 m of displacement? 

Fig.7-26 Problem 14. 

Figure 7-27 shows three forces applied to a trunk that 
moves leftward by 3.00 m over a frictionless fioor. The force magni­
tudes are F1 = 5.00 N, F2 = 9.00 N, and F3 = 3.00 N, and the indi­
cated angle is 0 = 60.0°. During the displacement, (a) what is the net 
work done on the trunk by the three forces and (b) does the kinetic 
energy of the trunk increase or decrease? 

Fig. 7-27 Problem 15. 

An 8.0 kg object is moving in the positive direction of an 
x axis. When it passes through x = 0, a constant force directed 
along the axis begins to act on it. Figure 7-28 gives its kinetic en-

K(J) 

L-_____ ~""!:'d_ X (m) 
o 5 

Fig. 7-28 Problem 16. 

ergy K versus position x as it moves from x = 0 to x = 5.0 m; Ko = 

30.0 J. The force continues to act. What is v when the object moves 
back through x = -3.0m? 

Work Done by the Gravitational Force 
A helicopter lifts a 72 kg astronaut 15 m verti­

cally from the ocean by means of a cable. The acceleration of the 
astronaut is gilD. How much work is done on the astronaut by 
(a) the force from the helicopter and (b) the gravitational force on 
her? Just before she reaches the helicopter, what are her (c) kinetic 
energy and (d) speed? 

(a) In 1975 the roof of Montreal's Velodrome, with 
a weight of 360 kN, was lifted by lD cm so that it could be centered. 
How much work was done on the roof by the forces making the 
lift? (b) In 1960 a Tampa, Florida, mother reportedly raised one 
end of a car that had fallen onto her son when a jack failed. If her 
panic lift effectively raised 4000 N (about ~ of the car's weight) by 
5.0 cm, how much work did her force do on the car? 

In Fig. 7-29, a block of ice slides down a frictionless ramp 
at angle 0 = 50° while an ice worker pulls on the block (via a 
rope) with a force 1, that has a magnitude of 50 N and is directed 
up the ramp. As the block slides through distance d = 0.50 m along 
the ramp, its kinetic energy increases by 80 J. How much greater 
would its kinetic energy have been if the rope had not been at­
tached to the block? 

Fig. 7-29 Problem 19. 

A block is sent up a frictionless ramp along which an x axis 
extends upward. Figure 7-30 gives the kinetic energy of the block 
as a function of position x; the scale of the figure's vertical axis is 
set by Ks = 40.0 J. If the block's initial speed is 4.00 mis, what is the 
normal force on the block? 

o 1 
x(m) 

Fig. 7-30 Problem 20. 

SSM A cord is used to vertically lower an initially stationary 
block of mass M at a constant downward acceleration of g/4. When 
the block has fallen a distance d, find (a) the work done by the 
cord's force on the block, (b) the work done by the gravitational 
force on the block, (c) the kinetic energy of the block, and (d) the 
speed of the block. 

A cave rescue team lifts an injured spelunker directly up­
ward and out of a sinkhole by means of a motor-driven cable. The 



lift is performed in three stages, each requiring a vertical distance 
of 10.0 m: (a) the initially stationary spelunker is accelerated to a 
speed of 5.00 mls; (b) he is then lifted at the constant speed of 5.00 
m/s; (c) finally he is decelerated to zero speed. How much work is 
done on the 80.0 kg rescuee by the force lifting him during each 
stage? 

In Fig. 7-31, a constant force," of magnitude 82.0 N is applied 
to a 3.00 kg shoe box at angle ¢ = 53.00

, causing the box to move up 
a frictionless ramp at constant speed. How much work is done on the 
box by '" when the box has moved through vertical distance h = 

0.150 m? 

Fig. 7-31 Problem 23. 

In Fig. 7-32, a horizontal force," of magnitude 20.0 N is 
applied to a 3.00 kg psychology book as the book slides a distance 
d = 0.500 m up a frictionless ramp at angle () = 30.00

• (a) During 
the displacement, what is the net work done on the book by,", the 
gravitational force on the book, and the normal force on the book? 
(b) If the book has zero kinetic energy at the start of the displace­
ment, what is its speed at the end of the displacement? 

Fig. 7-32 Problem 24. 

In Fig. 7-33, a 0.250 kg block of cheese 
lies on the floor of a 900 kg elevator cab that is be­
ing pulled upward by a cable through distance d, = 

2.40 m and then through distance d2 = 10.5 m. (a) 
Through d" if the normal force on the block from 
the floor has constant magnitude FN = 3.00 N, how 
much work is done on the cab by the force from the 
cable? (b) Through d2, if the work done on the cab 
by the (constant) force from the cable is 92.61 kJ, 
what is the magnitude of F N? 

Work Done by a Spring Force 

Fig. 7-33 

Problem 25. 

In Fig. 7-9, we must apply a force of magnitude 80 N to hold the 
block stationary at x = -2.0 cm. From that position, we then slowly 
move the block so that our force does +4.0 J of work on the 
spring-block system; the block is then again stationary. What is the 
block's position? (Hint:There are two answers.) 

A spring and block are in the arrangement of Fig. 7-9. When the 
block is pulled out to x = +4.0 cm, we must apply a force of magnitUde 
360 N to hold it there. We pull the block to x = 11 cm and then release 
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it. How much work does the spring do on the block as the block 
moves from Xi = +5.0 cm to (a)x = +3.0 cm, (b)x = -3.0 cm,(c)x = 
-5.0cm,and(d)x = -9.0cm? 

During spring semester at MIT, residents of the parallel 
buildings of the East Campus dorms battle one another with 
large catapults that are made with surgical hose mounted on 
a window frame. A balloon filled with dyed water is placed in 
a pouch attached to the hose, which is then stretched through the 
width of the room. Assume that the stretching of the hose obeys 
Hooke's law with a spring constant of 100 N/m. If the hose is 
stretched by 5.00 m and then released, how much work does the 
force from the hose do on the balloon in the pouch by the time 
the hose reaches its relaxed length? 

In the arrangement of Fig. 7-9, we gradually pull the block 
from x = 0 to x = +3.0 cm, where it is stationary. Figure 7-34 gives 
the work that our force does on the block. The scale of the figure'S 
vertical axis is set by Ws = 1.0 1. We then pull the block out to x = 

+5.0 cm and release it from rest. How much work does the spring 
do on the block when the block moves from Xi = +5.0 cm to (a) 
x= +4.0cm,(b)x= -2.0cm,and(c)x= -5.0cm? 

l¥, ,--------,--

o 
x(cm) 

Fig. 7-34 Problem 29. 

In Fig. 7-9a, a block of mass m lies on a horizontal 
frictionless surface and is attached to one end of a horizontal 
spring (spring constant k) whose other end is fixed. The block is ini­
tially at rest at the position where the spring is unstretched (x = 0) 
when a constant horizontal force F in the positive direction of the 
x axis is applied to it. A plot of the resulting kinetic energy of the 
block versus its position x is shown in Fig. 7-35. The scale of the fig­
ure's vertical axis is set by [(s = 4.01. (a) What is the magnitude of 
F? (b) What is the value of k? 

(~ 
o 0.5 1 1.5 2 

x(m) 

Fig. 7-35 Problem 30. 

The only force acting on a 2.0 kg body as it 
moves along a positive x axis has an x component F, = -6x N, 
with x in meters. The velocity at x = 3.0 m is 8.0 m/s. (a) What is the 
velocity of the body at x = 4.0 m? (b) At what positive value of x 
will the body have a velocity of 5.0 m/s? 
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Figure 7-36 gives spring force Fr versus position x for the 
spring-block arrangement of Fig. 7-9. The scale is set by Fs = 160.0 
N. We release the block at x = 12 cm. How much work does 
the spring do on the block when the block moves from Xi = +8.0 
cm to (a) x = +5.0 cm, (b) x = -5.0 cm, (c) x = -8.0 cm, and (d) 
x = -1O.0cm? 

-+--+-----"'k----t--+x (em) 

Fig. 7-36 Problem 32. 

The block in Fig. 7-9a lies on a horizontal frictionless sur­
face, and the spring constant is 50 N/m. Initially, the spring is at its 
relaxed length and the block is stationary at position x = O. Then 
an applied force with a constant magnitude of 3.0 N pulls the block 
in the positive direction of the x axis, stretching the spring until the 
block stops. When that stopping point is reached, what are (a) the 
position of the block, (b) the work that has been done on the block 
by the applied force, and (c) the work that has been done on the 
block by the spring force? During the block's displacement, what 
are (d) the block's position when its kinetic energy is maximum 
and (e) the value of that maximum kinetic energy? 

Work Done by a General Variable Force 
IlW A 10 kg brick moves along an x axis. Its acceleration as a 

function of its position is shown in Fig. 7-37. The scale of the figure's 
vertical axis is set by as = 20.0 rn/s2• What is the net work per­
formed on the brick by the force causing the acceleration as the 
brick moves from x = 0 to x = 8.0 m? 

x (m) 

Fig. 7-37 Problem 34. 

SSM WWW The force on a particle is directed along an x axis 
and given by F = Fo(xlxo - 1). Find the work done by the force in 
moving the particle from x = 0 to 
x = 2xo by (a) plotting F(x) and 
measuring the work from the 2S 
graph and (b) integratingF(x). o 

-F L--L_-'-------'-_-'---' 
'0 2 4 6 8 

Position (m) 

A 5.0 kg block moves in a 
straight line on a horizontal fric­
tionless surface under the influ­
ence of a force that varies with 
position as shown in Fig. 7-38. Fig. 7-38 Problem 36. 

The scale of the figure's vertical axis is set by Fs = 10.0 N. How 
much work is done by the force as the block moves from the origin 
tox = 8.0 m? 

Figure 7-39 gives the acceleration of a 2.00 kg particle as an 
applied force F" moves it from rest along an x axis from x = 0 to 
x = 9.0 m. The scale of the figure's vertical axis is set by as = 6.0 
rn/s2• How much work has the force done on the particle when the 
particle reaches (a) x = 4.0m, (b) x = 7.0m, and (c) x = 9.0m? 
What is the particle's speed and direction of travel when it reaches 
(d) x = 4.0 m, (e) x = 7.0 m, and (f) x = 9.0 m? 

~ 
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Fig.7-39 Problem 37. 

A 1.5 kg block is initially at rest on a horizontal frictionless sur­
face when a horizontal force along an x axis is applied to the block. 
The force is given by F(x) = (2.5 - x2)i N, where x is in meters and 
the initial position of the block is x = O. (a) What is the kinetic energy 
of the block as it passes through x = 2.0 m? (b) What is the maximum 
kinetic energy of the block between x = 0 and x = 2.0 m? 

A force F = (ex - 3.00X2)i acts on a particle as the parti­
cle moves along an x axis, with F in newtons, x in meters, and e a 
constant. At x = 0, the particle's kinetic energy is 20.0 J; at x = 3.00 
m, it is 11.0 1. Find e. 

A can of sardines is made to move along an x axis from x = 

0.25 m to x = 1.25 m by a force with a magnitude given by F = 

exp( -4x2), with x in meters and F in newtons. (Here exp is the ex­
ponential function.) How much work is done on the can by the 
force? 

A single force acts on a 3.0 kg particle-like object whose po­
sition is given by x = 3.0t - 4.0t2 + 1.0t3, with x in meters and tin 
seconds. Find the work done on the object by the force from t = 0 
to t = 4.0 s. 

Figure 7-40 shows a cord attached to a cart that can slide 
along a frictionless horizontal rail aligned along an x axis. The left 
end of the cord is pulled over a pulley, of negligible mass and fric­
tion and at cord height h = 1.20 m, so the cart slides from Xl = 3.00 
m to X2 = 1.00 m. During the move, the tension in the cord is a con­
stant 25.0 N. What is the change in the kinetic energy of the cart 
during the move? 

Fig.7-40 Problem 42. 



Power 
A force of 5.0 N acts on a 15 kg body initially at rest. 

Compute the work done by the force in (a) the first, (b) the second, 
and (c) the third seconds and (d) the instantaneous power due to 
the force at the end of the third second. 

A skier is pulled by a towrope up a frictionless ski slope that 
makes an angle of 12° with the horizontal. The rope moves parallel 
to the slope with a constant speed of 1.0 m/s. The force of the rope 
does 900 J of work on the skier as the skier moves a distance of 8.0 
m up the incline. (a) If the rope moved with a constant speed of 2.0 
mis, how much work would the force of the rope do on the skier as 
the skier moved a distance of 8.0 m up the incline? At what rate is 
the force of the rope doing work on the skier when the rope moves 
with a speed of (b) 1.0 mls and (c) 2.0 m/s? 

floW A 100 kg block is pulled at a constant speed of 5.0 
mls across a horizontal floor by an applied force of 122 N directed 
37° above the horizontal. What is the rate at which the force does 
work on the block? 

The loaded cab of an elevator has a mass of 3.0 X 103 kg and 
moves 210 m up the shaft in 23 s at constant speed. At what aver­
age rate does the force from the cable do work on the cab? 

A machine carries a 4.0 kg package from an initial position 
of d; = (0.50 m)i + (0.75 m)] + (0.20 m)k at t = 0 to a final posi­
tion of df = (7.50 m)i + (12.0 m)] + (7.20 m)k at t = 12 s. The 
constant force applied by the machine on the package is 
F = (2.00 N)i + (4.00 N)] + (6.00 N)k. For that displacement, 
find (a) the work done on the package by the machine's force and 
(b) the average power of the machine's force on the package. 

A 0.30 kg ladle sliding on a horizontal frictionless surface is 
attached to one end of a horizontal spring (k = 500 N/m) whose 
other end is fixed. The ladle has a kinetic energy of 10 J as it passes 
through its equilibrium position (the point at which the spring 
force is zero). (a) At what rate is the spring doing work on the la­
dle as the ladle passes through its equilibrium position? (b) At 
what rate is the spring doing work on the ladle when the spring is 
compressed 0.10 m and the ladle is moving away from the equilib­
rium position? 

SSM A fully loaded, slow-moving freight elevator has a cab 
with a total mass of 1200 kg, which is required to travel upward 54 
m in 3.0 min, starting and ending at rest. The elevator's counter­
weight has a mass of only 950 kg, and so the elevator motor must 
help. What average power is required of the force the motor exerts 
on the cab via the cable? 

l,a) At a cel!ain instant; a particle-~ke object is acted on by a 
force F = (4.0 N)i (2.0 N)j + (9.0 N)k while the object's veloc­
ity is v = -(2.0 m/s)i + (4.0 m/s)k. What is the instantaneous rate 
at which the force does work on the object? (b) At some other 
time, the velocity consists of only a y component. If the force is un­
changed and the instantaneous power is -12 W, what is the veloc­
ity of the object? 

A force F = (3.00 N)i + (7.00 N)] + (7.00 N)k acts on a 
2.00 kg mobile object that moves from an initial position of 
d; = (3.00 m)i - (2.00 m)] + (5.00 m)k to a final position of 
df = -(5.00 m)i + (4.00 m)] + (7.00 m)k in 4.00 s. Find (a) the 
work done on the object by the force in the 4.00 s interval, (b) the 
average power due to the force during that interval, and (c) the an­
gle between vectors d; and df . 
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A funny car accelerates from rest through a measured track 
distance in time Twith the engine operating at a constant power P. 
If the track crew can increase the engine power by a differential 
amount dP, what is the change in the time required for the run? 

Additional Problems 
Figure 7-41 shows a cold package of hot dogs sliding right­

ward across a frictionless floor through a distance d = 20.0 cm 
while three forces act on the package. Two of them are horizontal 
and have the magnitudes FI = 5.00 Nand Fz = 1.00 N; the third is 
angled down by () = 60.0° and has the magnitude F3 = 4.00 N. (a) 
For the 20.0 cm displacement, what is the net work done on the 
package by the three applied forces, the gravitational force on the 
package, and the normal force on the package? (b) If the package 
has a mass of 2.0 kg and an initial kinetic energy of 0, what is its 
speed at the end of the displacement? 

Fig. 7-41 Problem 53. 

The only force acting on a 2.0 F, (N) 

kg body as the body moves along an F, 

x axis varies as shown in Fig. 7-42. 
The scale of the figure's vertical axis 

5 
1-"*---+-+--+----" x (m) 

I 

is set by Fs = 4.0 N. The velocity of the 
body at x = 0 is 4.0 mls. (a) What is -F, 

the kinetic energy of the body at x = 
Fig. 7-42 Problem 54. 

3.0 m? (b) At what value of x will the 
body have a kinetic energy of 8.0 J? 
(c) What is the maximum kinetic energy of the body between x = 0 
and x = 5.0m? 

SSM A horse pulls a cart with a force of 40 lb at an angle of 30° 
above the horizontal and moves along at a speed of 6.0 milh. (a) How 
much work does the force do in 10 min? (b) What is the average 
power (in horsepower) of the force? 

An initially stationary 2.0 kg object accelerates horizontally 
and uniformly to a speed of 10 mls in 3.0 s. (a) In that 3.0 s interval, 
how much work is done on the object by the force accelerating it? 
What is the instantaneous power due to that force (b) at the end of 
the interval and (c) at the end of the first half of the interval? 

A 230 kg crate hangs from the end of a rope of length L = 12.0 m. 
You push horizontally on the crate with a 
varying force F to move it distance d = r 
4.00 m to the side (Fig. 7-43). (a) What is 
the magnitude of F when the crate is 
in this final position? During the crate's L 

displacement, what are (b) the total 
work done on it, (c) the work done 
by the gravitational force on the crate, 
and (d) the work done by the pull on 
the crate from the rope? (e) Knowing F 

that the crate is motionless before and 
after its displacement, use the answers to 
(b), (c), and (d) to find the work your Fig.7-43 Problem 57. 
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force F does on the crate. (f) Why is the work of your force not 
equal to the product of the horizontal displacement and the an­
swerto (a)? 

To pull a 50 kg crate across a horizontal frictionless floor, a 
worker applies a force of 210 N, directed 20° above the horizontal. 
As the crate moves 3.0 m, what work is done on the crate by (a) the 
worker's force, (b) the gravitational force on the crate, and (c) the 
normal force on the crate from the floor? (d) What is the total 
work done on the crate? 

An explosion at ground level leaves a crater with a di­
ameter that is proportional to the energy of the explosion raised 
to the 1 power; an explosion of 1 megaton of TNT leaves a crater 
with a 1 km diameter. Below Lake Huron in Michigan there ap­
pears to be an ancient impact crater with a 50 km diameter. What 
was the kinetic energy associated with that impact, in terms of (a) 
megatons of TNT (1 megaton yields 4.2 X 1015 J) and (b) 
Hiroshima bomb equivalents (13 kilotons of TNT each)? 
(Ancient meteorite or comet impacts may have significantly al­
tered Earth's climate and contributed to the extinction of the di­
nosaurs and other life-forms.) 

A frightened child is restrained by her mother as the child slides 
down a frictionless playground slide. If the force on the child from the 
mother is 100 N up the slide, the child's kinetic energy increases by 30 J 
as she moves down the slide a distance of 1.8 m. (a) How much work is 
done on the child by the gravitational force during the 1.8 m descent? 
(b) If the child is not restrained by her mother, how much will the 
child's kinetic energy increase as she comes down the slide that same 
distance of 1.8 m? 

How much work is done by a force F = (2x N)i + (3 N)], 
with x in meters, that moves a particle from a position 7; = 

(2 m)i + (3 m)] to a position rf = -(4 m)i - (3 m)]? 

A 250 g block is dropped onto a relaxed ver- ! 
tical spring that has a spring constant of Ie = 2.5 
N/cm (Fig. 7-44). The block becomes attached to the 
spring and compresses the spring 12 cm before mo­
mentarily stopping. While the spring is being com­
pressed, what work is done on the block by (a) the 
gravitational force on it and (b) the spring force? (c) 
What is the speed of the block just before it hits the 
spring? (Assume that friction is negligible.) (d) If Fig. 7-44 

the speed at impact is doubled, what is the maxi- Problem 62. 
mum compression of the spring? 

SSM To push a 25.0 kg crate up a frictionless incline, angled at 
25.0° to the horizontal, a worker exerts a force of 209 N parallel to 
the incline. As the crate slides 1.50 m, how much work is done on 
the crate by (a) the worker's applied force, (b) the gravitational 
force on the crate, and (c) the normal force exerted by the incline 
on the crate? (d) What is the total work done on the crate? 

Boxes are transported from one location to another in a ware­
house by means of a conveyor belt that moves with a constant 
speed of 0.50 mls. At a certain location the conveyor belt moves for 
2.0 m up an incline that makes an angle of 10° with the horizontal, 
then for 2.0 m horizontally, and finally for 2.0 m down an incline 
that makes an angle of 10° with the horizontal. Assume that a 2.0 kg 
box rides on the belt without slipping. At what rate is the force of 
the conveyor belt doing work on the box as the box moves (a) up 
the 10° incline, (b) horizontally, and (c) down the 10° incline? 

In Fig. 7-45, a cord runs around two massless, frictionless pul­
leys. A canister with mass m = 20 kg hangs from one pulley, and 
you exert a force F on the free end of the cord. (a) What must be 
the magnitude of F if you are to lift the canister at a constant 
speed? (b) To lift the canister by 2.0 cm, how far must you pull the 
free end of the cord? During that lift, what is the work done on the 
canister by ( c) your force (via the cord) and (d) the gravitational 
force? (Hint: When a cord loops around a pulley as shown, it pulls 
on the pulley with a net force that is twice the tension in the cord.) 

111 

Fig. 7-45 Problem 65. 

If a car of mass 1200 kg is moving along a highway at 
120 km/h, what is the car's kinetic energy as determined by some­
one standing alongside the highway? 

A spring with a pointer attached is hanging next to a 
scale marked in millimeters. Three different packages are hung 
from the spring, in turn, as shown in Fig. 7-46. (a) Which mark on 
the scale will the pointer indicate when no package is hung from 
the spring? (b) What is the weight W of the third package? 

-r"''--H 30 

~--t---I40 

-f--t---I 60 w 
1l0N 

240N 

Fig. 7-46 Problem 67. 

An iceboat is at rest on a frictionless frozen lake when a sudden 
wind exerts a constant force of 200 N, toward the east, on the boat. 
Due to the angle of the sail, the wind causes the boat to slide in a 
straight line for a distance of 8.0 m in a direction 20° north of east. 
What is the kinetic energy of the iceboat at the end of that 8.0 m? 

If a ski lift raises 100 passengers averaging 660 N in weight to 
a height of 150 m in 60.0 s, at constant speed, what average power 
is required of the force making the lift? 



A force F = (4.0 N)i + c] acts on a particle as the particle 
goes through displacement d = (3.0 m); - (2.0 m)]. (Other forces 
also act on the particle.) What is c if the work done on the particle 
by force F is (a) 0, (b) 17 J, and (c) -18 J? 

A constant force of magnitude 10 N makes an angle of 150° 
(measured counterclockwise) with the positive x direction as it acts 
on a 2.0 kg object moving in an xy plane. How much work is done 
on the object by the force as the object moves from the origin to 
the point having position vector (2.0 m)i - (4.0 m))? 

In Fig. 7-47a, a 2.0 N force is applied to a 4.0 kg block at a 
downward angle (J as the block moves rightward through 1.0 m 
across a frictionless floor. Find an expression for the speed vf of the 
block at the end of that distance if the block's initial velocity is (a) 
o and (b) 1.0 mls to the right. (c) The situation in Fig. 7-47 b is simi­
lar in that the block is initially moving at 1.0 mls to the right, but 
now the 2.0 N force is directed downward to the left. Find an ex­
pression for the speed vf of the block at the end of the 1.0 m dis­
tance. (d) Graph all three expressions for vfversus downward an­
gle (Jfor (J = 0° to (J = 90°. Interpret the graphs. 

- -

(a) (b) 

Fig.7-47 Problem 72. 

A force F in the positive direction of an x axis acts on an ob­
ject moving along the axis. If the magnitude of the force is F = 

10e-x/2.o N, with x in meters, find the work done by F as the object 
moves from x = 0 to x = 2.0 m by (a) plotting F(x) and estimating 
the area under the curve and (b) integrating to find the work ana­
lytically. 

A particle moves along a straight path through displacement 
d = (8 m); + C) while force F = (2 N)i - (4 N)) acts on it. (Other 
forces also act on the particle.) What is the value of c if the work 
done by F on the particle is (a) zero, (b) positive, and (c) negative? 

An elevator cab has a mass of 4500 kg and can carry 
a maximum load of 1800 kg. If the cab is moving upward at full 
load at 3.80 mis, what power is required of the force moving the 
cab to maintain that speed? 

A 45 kg block of ice slides down a frictionless incline 1.5 m 
long and 0.91 m high. A worker pushes up against the ice, parallel 
to the incline, so that the block slides down at constant speed. (a) 
Find the magnitude of the worker's force. How much work is done 
on the block by (b) the worker's force, (c) the gravitational force 
on the block, (d) the normal force on the block from the surface of 
the incline, and (e) the net force on the block? 

As a particle moves along an x axis, a force in the positive direc­
tion of the axis acts on it. Figure 7-48 shows the magnitude F of the 
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force versus position x of the particle. The curve is given by F = alx2, 

with a = 9.0 N . m2• Find the work done on the particle by the force 
as the particle moves from x = 1.0 m to x = 3.0 m by (a) estimating 
the work from the graph and (b) integrating the force function. 
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Fig.7-48 Problem 77. 
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18 A CD case slides along a floor in the positive direction of an x 
axis while an applied force F. acts on the case. The force is directed 
along the x axis and has the x component Fax = 9x - 3x2, with x in 
meters and Fax in newtons. The case starts at rest at the position 
x = 0, and it moves until it is again at rest. (a) Plot the work F. does 
on the case as a function of x. (b) At what position is the work max­
imum, and (c) what is that maximum value? (d) At what position 
has the work decreased to zero? (e) At what position is the case 
again at rest? 

A 2.0 kg lunchbox is sent sliding over a frictionless 
surface, in the positive direction of an x axis along the surface. 
Beginning at time t = 0, a steady wind pushes on the lunchbox in the 
negative direction of the x axis. Figure 7-49 shows the position x of 
the lunchbox as a function of time t as the wind pushes on the lunch­
box. From the graph, estimate the kinetic energy of the lunchbox at 
(a) t = 1.0 sand (b) t = 5.0 s. ( c) How much work does the force 
from the wind do on the lunchbox from t = 1.0 s to t = 5.0 s? 
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Fig.7-49 Problem 79. 

Numerical integration. A breadbox is made to move along an 
x axis from x = 0.15 m to x = 1.20 m by a force with a magnitude 
given by F = exp( _2X2) , with x in meters and F in newtons. (Here 
exp is the exponential function.) How much work is done on the 
breadbox by the force? 
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WH cs 
One job of physics is to identify the different types of energy in the 

world, especially those that are of common importance. One general type of en­
ergy is potential energy U. Technically, potential energy is energy that can be as­
sociated with the configuration (arrangement) of a system of objects that exert 
forces on one another. 

This is a pretty formal definition of something that is actually familiar to you. 
An example might help better than the definition: A bungee-cord jumper plunges 
from a staging platform (Fig. 8-1). The system of objects consists of Earth and the 
jumper. The force between the objects is the gravitational force. The configuration 
of the system changes (the separation between the jumper and Earth decreases­
that is, of course, the thrill of the jump). We can account for the jumper's motion 
and increase in kinetic energy by defining a gravitational potential energy U. This 

Fig. 8-1 The kinetic energy of a bungee­
cord jumper increases during the free fall, 
and then the cord begins to stretch, slowing 
the jumper. (KOFUJIWARAlamalla imagesl 
Getty Images News alld Sport Services) 
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is the energy associated with the state of separation between two objects that at­
tract each other by the gravitational force, here the jumper and Earth. 

When the jumper begins to stretch the bungee cord near the end of the 
plunge, the system of objects consists of the cord and the jumper. The force 
between the objects is an elastic (spring-like) force. The configuration of the sys­
tem changes (the cord stretches). We can account for the jumper's decrease in 
kinetic energy and the cord's increase in length by defining an elastic potential 
energy U. This is the energy associated with the state of compression or extension 
of an elastic object, here the bungee cord. 

Physics determines how the potential energy of a system can be calculated so 
that energy might be stored or put to use. For example, before any particular 
bungee-cord jumper takes the plunge, someone (probably a mechanical engi­
neer) must determine the correct cord to be used by calculating the gravitational 
and elastic potential energies that can be expected. Then the jump is only thrilling 
and not fatal. 

Work and Potential Energy 
In Chapter 7 we discussed the relation between work and a change in kinetic energy. 
Here we discuss the relation between work and a change in potential energy. 

Let us throw a tomato upward (Fig. 8-2). We already know that as the tomato 
rises, the work Wg done on the tomato by the gravitational force is negative 
because the force transfers energy from the kinetic energy of the tomato. We can 
now finish the story by saying that this energy is transferred by the gravitational 
force to the gravitational potential energy of the tomato-Earth system. 

The tomato slows, stops, and then begins to fall back down because of the 
gravitational force. During the fall, the transfer is reversed: The work Wg done on 
the tomato by the gravitational force is now positive- that force transfers energy 
from the gravitational potential energy of the tomato-Earth system to the 
kinetic energy of the tomato. 

For either rise or fall, the change /J..U in gravitational potential energy is 
defined as being equal to the negative of the work done on the tomato by the 
gravitational force. Using the general symbol W for work, we write this as 

/J..U=-W. (8-1) 

This equation also applies to a block-spring system, as in Fig. 8-3. If we 
abruptly shove the block to send it moving rightward, the spring force acts left­
ward and thus does negative work on the block, transferring energy from the 
kinetic energy of the block to the elastic potential energy of the spring-block 
system. The block slows and eventually stops, and then begins to move leftward 
because the spring force is still leftward. The transfer of energy is then 
reversed-it is from potential energy of the spring-block system to kinetic 
energy of the block. 

Let us list the key elements of the two situations we just discussed: 

1. The system consists of two or more objects. 

2. Aforce acts between a particle-like object (tomato or block) in the system and 
the rest of the system. 

3. When the system configuration changes, the force does work (call it Wi) on the 
particle-like object, transferring energy between the kinetic energy K of the 
object and some other type of energy of the system. 

Negative 
work done 
by the 
gravitational 
force 

Positive 
work done 
by the 
gravitational 
force 

Fig. 8-2 A tomato is thrown upward. 
As it rises, the gravitational force does 
negative work on it, decreasing its kinetic 
energy. As the tomato descends, the gravi­
tational force does positive work on it, 
increasing its kinetic energy. 

-
x 

o 
(a) 

---
x 

o 
(b) 

Fig. 8-3 A block, attached to a spring 
and initially at rest at x = 0, is set in motion 
toward the right. (a) As the block moves 
rightward (as indicated by the arrow), the 
spring force does negative work on it. (b) 
Then, as the block moves back toward x = 

0, the spring force does positive work on it. 
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4. When the configuration change is reversed, the force reverses the energy 
transfer, doing work W2 in the process. 

In a situation in which Wi = - W2 is always true, the other type of energy is 
a potential energy and the force is said to be a conservative force. As you might 
suspect, the gravitational force and the spring force are both conservative (since 
otherwise we could not have spoken of gravitational potential energy and elastic 
potential energy, as we did previously). 

A force that is not conservative is called a nonconservative force. The kinetic 
frictional force and drag force are nonconservative. For an example, let us send 
a block sliding across a floor that is not frictionless. During the sliding, a kinetic 
frictional force from the floor slows the block by transferring energy from its ki­
netic energy to a type of energy called thermal energy (which has to do with the 
random motions of atoms and molecules). We know from experiment that this 
energy transfer cannot be reversed (thermal energy cannot be transferred back 
to kinetic energy of the block by the kinetic frictional force). Thus, although we 
have a system (made up of the block and the floor), a force that acts between 
parts of the system, and a transfer of energy by the force, the force is not conserv­
ative. Therefore, thermal energy is not a potential energy. 

When only conservative forces act on a particle-like object, we can greatly 
simplify otherwise difficult problems involving motion of the object. The next sec­
tion, in which we develop a test for identifying conservative forces, provides one 
means for simplifying such problems. 

Path Independence of Conservative Forces 
The primary test for determining whether a force is conservative or nonconserva­
tive is this: Let the force act on a particle that moves along any closed path, begin­
ning at some initial position and eventually returning to that position (so that the 
particle makes a round trip beginning and ending at the initial position). The 
force is conservative only if the total energy it transfers to and from the particle 
during the round trip along this and any other closed path is zero. In other words: 

The net work done by a conservative force on a particle moving around any closed 
path is zero. 

We know from experiment that the gravitational force passes this closed­
path test. An example is the tossed tomato of Fig. 8-2. The tomato leaves the 
launch point with speed Vo and kinetic energy ~ mv5. The gravitational force acting 
on the tomato slows it, stops it, and then causes it to fall back down. When the 
tomato returns to the launch point, it again has speed Vo and kinetic energy 
~ mv5. Thus, the gravitational force transfers as much energy from the tomato 
during the ascent as it transfers to the tomato during the descent back to the 
launch point. The net work done on the tomato by the gravitational force during 
the round trip is zero. 

An important result of the closed-path test is that: 

The work done by a conservative force on a particle moving between two points does 
not depend on the path taken by the particle. 

For example, suppose that a particle moves from point a to point b in Fig. 8-4a 
along either path 1 or path 2. If only a conservative force acts on the particle, then 
the work done on the particle is the same along the two paths. In symbols, we can 



Fig.8-4 (a) As a conservative force 
acts on it, a particle can move from 
point a to point b along either path 1 
or path 2. (b) The particle moves in a 
round trip, from point a to point b 
along path 1 and then back to point a 
along path 2. 

write this result as 

l)e~ b I~~e 

a~ 2 

(a) 

(b) 
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The force is conservative. 
Any choice of path between 
the points gives the same 
amount of work. 

And a round trip gives 
a total work of zero. 

(8-2) 

where the subscript ab indicates the initial and final points, respectively, and the 
subscripts 1 and 2 indicate the path. 

This result is powerful because it allows us to simplify difficult problems 
when only a conservative force is involved. Suppose you need to calculate the 
work done by a conservative force along a given path between two points, and 
the calculation is difficult or even impossible without additional information. 
You can find the work by substituting some other path between those two points 
for which the calculation is easier and possible. 

Figure 8-4b shows an arbitrary round trip for a particle that is acted upon by a single 
force. The particle moves from an initial point a to point b along path 1 and then 
back to point a along path 2. The force does work on the particle as the particle 
moves along each path. Without worrying about where positive work is done and 
where negative work is done, let us just represent the work done from a to b along 
path 1 as Wab,l and the work done from b back to a along path 2 as W ba,2' If the force 
is conservative, then the net work done during the round trip must be zero: 

W ab ,1 + W ba ,2 = 0, 
and thus 

(8-3) 

In words, the work done along the outward path must be the negative of the work 
done along the path back. 

Let us now consider the work Wab ,2 done on the particle by the force when 
the particle moves from a to b along path 2, as indicated in Fig. 8-4a. If the force is 
conservative, that work is the negative of Wba ,2: 

W ab ,2 = - W ba ,2' 

Substituting W llb ,2 for - Wbll ,2 in Eq. 8-3, we obtain 

W ab ,1 = W ab ,2, 

which is what we set out to prove. 

CHECKPOINT 1 

The figure shows three paths connecting points a C 
and h. A single force F does the indicated work 
on a particle moving along each path in the 
indicated direction. On the basis of this informa-
tion, is force F conservative? 

(8-4) 

~ 60 J 
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Equivalent paths for calculating work, slippery cheese 

Figure 8-Sa shows a 2.0 kg block of slippery cheese that slides 
along a frictionless track from point a to point b. The cheese 
travels through a total distance of 2.0 m along the track, and a 
net vertical distance of 0.80 m. How much work is done on the 
cheese by the gravitational force during the slide? 

tions of the gravitational force l{ and the displacement d 
varies along the track in an unknown way. (Even if we did 
know the shape of the track and could calculate cp along it, the 
calculation could be very difficult.) (2) Because l{is a conser­
vative force, we can find the work by choosing some other 
path between a and b-one that makes the calculation easy. 

(1) We cannot calculate the work by using Eq. 7-12 (Wg = 
mgd cos cp). The reason is that the angle cp between the direc-

Calculations: Let us choose the dashed path in Fig. 8-Sb; it 
consists of two straight segments. Along the horizontal seg­
ment, the angle cp is a constant 900

• Even though we do not 
know the displacement along that horizontal segment,Eq. 7-12 
tells us that the work W" done there is The gravitational force is conservative. 

Any choice of path between the points 
gives the same amount of work. W" = mgd cos 900 = O. 

:~---------l 
a 

I 
b b 

(a) (b) 

Along the vertical segment, the displacement d is 0.80 m 
and, with l{ and d both downward, the angle cp is a constant 
00

• Thus, Eq. 7-12 gives us, for the work WI' done along the 
vertical part of the dashed path, 

Wv = mgd cos 00 

= (2.0 kg)(9.8 m/s2
) (0.80 m)(l) = lS.7 1. 

The total work done on the cheese by l{ as the cheese 
moves from point a to point b along the dashed path is then 

Fig.8-5 (a) A block of cheese slides along a frictionless track from 
point a to point b. (b) Finding the work done on the cheese by the 
gravitational force is easier along the dashed path than along the ac­
tual path taken by the cheese; the result is the same for both paths. 

W = W/z + WI' = 0 + lS.7 J = 161. (Answer) 

This is also the work done as the cheese slides along the 
track from a to b. 

Additional examples, Video, and practice available at WileyPLUS 

Determining Potential Energy Values 
Here we find equations that give the value of the two types of potential energy 
discussed in this chapter: gravitational potential energy and elastic potential 
energy. However, first we must find a general relation between a conservative 
force and the associated potential energy. 

Consider a particle-like object that is part of a system in which a conservative 
force F acts. When that force does work Won the object, the change IlU in 
the potential energy associated with the system is the negative of the work done. 
We wrote this fact as Eq. 8-1 (IlU = - W). For the most general case, in which the 
force may vary with position, we may write the work Was in Eq. 7-32: 

W = ff F(x) dx. (8-S) 

This equation gives the work done by the force when the object moves from 
point Xi to point xf' changing the configuration of the system. (Because the force 
is conservative, the work is the same for all paths between those two points.) 

Substituting Eq. 8-S into Eq. 8-1, we find that the change in potential energy 
due to the change in configuration is, in general notation, 

IlU = - ff F(x) dx. (8-6) 
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We first consider a particle with mass m moving vertically along a y axis (the 
positive direction is upward). As the particle moves from point Yi to point Yf' the 
gravitational force Fg does work on it. To find the corresponding change in the 
gravitational potential energy of the particle-Earth system, we use Eq. 8-6 with 
two changes: (1) We integrate along the y axis instead of the x axis, because the 
gravitational force acts vertically. (2) We substitute -mg for the force symbol F, 
because Fg has the magnitude mg and is directed down the y axis. We then have 

l
Y! lY! r JY

! 
11V = - Y; (-mg) dy = mg Y; dy = mgLY y/ 

which yields 

I1V = mg(Yf - Yi) = mg l1y. (8-7) 

Only changes I1V in gravitational potential energy (or any other type of 
potential energy) are physically meaningful. However, to simplify a calculation or 
a discussion, we sometimes would like to say that a certain gravitational potential 
value V is associated with a certain particle-Earth system when the particle is at 
a certain height y. To do so, we rewrite Eq. 8-7 as 

V - Vi = mg(y - Yi)' (8-8) 

Then we take Vi to be the gravitational potential energy of the system when it is 
in a reference configmation in which the particle is at a reference point Yi' 
Usually we take Vi = 0 and Yi = O. Doing this changes Eq. 8-8 to 

V(y) = mgy (gravitational potential energy). (8-9) 

This equation tells us: 

The gravitational potential energy associated with a particle-Earth system depends 
only on the vertical position y (or height) of the particle relative to the reference posi­
tion y = 0, not on the horizontal position. 

We next consider the block-spring system shown in Fig. 8-3, with the block 
moving on the end of a spring of spring constant k. As the block moves from 
point Xi to point xf' the spring force F, = - kx does work on the block. To find the 
corresponding change in the elastic potential energy of the block-spring system, 
we substitute - lex for F(x) in Eq. 8-6. We then have 

J
X! JX! [ JX! 11V = - . (-kx) dx = k . x dx = ~k x2

, 

~ ~ ~ 

or I1V = ~kxl- ~kXT. (8-10) 

To associate a potential energy value V with the block at position x, we 
choose the reference configuration to be when the spring is at its relaxed length 
and the block is at Xi = O. Then the elastic potential energy Vi is 0, and Eq. 8-10 
becomes 

V - 0 = ~kX2 - 0, 
which gives us 

(elastic potential energy). (8-11) 
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~CHECKPOINT 2 

A particle is to move 
along an x axis from Fj Fj .----~_. 

x = 0 to Xl while 
a conservative force, Xj 

directed along the X 

axis, acts on the parti-
cle. The figure shows (1) (2) (3) -Fj 

three situations in 
which the x component of that force varies with x. The force has the same maximum mag­
nitude F j in all three situations. Rank the situations according to the change in the associ­
ated potential energy during the particle's motion, most positive first. 

Choosing reference level for gravitational potential energy, sloth 

A 2.0 kg sloth hangs 5.0 m above the ground (Fig. 8-6). 

(a) What is the gravitational potential energy U of the 
sloth - Earth system if we take the reference point y = 0 to be 
(1) at the ground, (2) at a balcony floor that is 3.0 m above 
the ground, (3) at the limb, and (4) 1.0 m above the limb? 
Take the gravitational potential energy to be zero at y = O. 

Once we have chosen the reference point for y = 0, we can 
calculate the gravitational potential energy U of the system 
relative to that reference point with Eq. 8-9. 

Calculations: For choice (1) the sloth is at y = 5.0 m, and 

U = mgy = (2.0 kg)(9.8 m/s2)(S.0 m) 

= 98 J. 

For the other choices, the values of U are 

(2) U = mgy = mg(2.0 m) = 39 J, 
(3) U = mgy = mg(O) = 0 J, 
(4) U = mgy = mg( -1.0 m) 

= -19.6 J = -20 J. 

(Answer) 

(Answer) 

(b) The sloth drops to the ground. For each choice of refer­
ence point, what is the change t:..U in the potential energy of 
the sloth - Earth system due to the fall? 

The change in potential energy does not depend on the 
choice of the reference point for y = 0; instead, it depends 
on the change in height t:..y. 

6 3 

5 2 

o 

o -3 

(1) 

Fig. 8-6 Four choices of reference point y = O. Each y axis is 
marked in units of meters. The choice affects the value of the po­
tential energy U of the sloth - Earth system. However, it does not 
affect the change Ll U in potential energy of the system if the sloth 
moves by, say, falling. 

Calculation: For all four situations, we have the same t:..y = 
-5.0 m.Thus,for (1) to (4),Eq. 8-7 tells us that 

t:..U = mg t:..y = (2.0 kg)(9.8 m/s2) ( -5.0 m) 

= -98 J. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Conservation of Mechanical Energy 
The mechanical energy Emec of a system is the sum of its potential energy U and 
the kinetic energy K of the objects within it: 

Emec = K + U (mechanical energy). (8-12) 

In this section, we examine what happens to this mechanical energy when only 
conservative forces cause energy transfers within the system-that is, when 
frictional and drag forces do not act on the objects in the system. Also, we shall 
assume that the system is isolated from its environment; that is, no external force 
from an object outside the system causes energy changes inside the system. 

When a conservative force does work Won an object within the system, that 
force transfers energy between kinetic energy K of the object and potential 
energy U of the system. From Eq. 7-10, the change t:.K in kinetic energy is 

t:.K= W 

and from Eq. 8-1, the change t:.U in potential energy is 

t:.U = -W. 

Combining Eqs. 8-13 and 8-14, we find that 

t:.K = -t:.u. 

(8-13) 

(8-14) 

(8-15) 

In words, one of these energies increases exactly as much as the other decreases. 
We can rewrite Eq. 8-15 as 

(8-16) 

where the subscripts refer to two different instants and thus to two different 
arrangements of the objects in the system. Rearranging Eq. 8-16 yields 

(conservation of mechanical energy). 

In words, this equation says: 

(
the sum of K and U for) ( the sum of K and U for ) 

any state of a system = any other state of the system ' 

(8-17) 

when the system is isolated and only conservative forces act on the objects in the 
system. In other words: 

In an isolated system where only conservative forces cause energy changes, the 
kinetic energy and potential energy can change, but their sum, the mechanical energy 
Emec of the system, cannot change. 

This result is called the principle of conservation of mechanical energy. (Now you 
can see where conservative forces got their name.) With the aid of Eq. 8-15, we 
can write this principle in one more form, as 

t:.Emec = t:.K + t:.U = 0. (8-18) 

The principle of conservation of mechanical energy allows us to solve prob­
lems that would be quite difficult to solve using only Newton's laws: 

When the mechanical energy of a system is conserved, we can relate the sum of kinetic 
energy and potential energy at one instant to that at another instant without considering 
the intermediate motion and without finding the work done by the forces involved. 

In olden days, a person would be tossed 
via a blanket to be able to see farther 
over the flat terrain. Nowadays, it is done 
just for fun. During the ascent of the per­
son in the photograph, energy is trans­
ferred from kinetic energy to gravita­
tional potential energy. The maximum 
height is reached when that transfer is 
complete. Then the transfer is reversed 
during the fall. (©APlWide World Photos) 
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Fig. 8-7 A pendulum, with its mass con­
centrated in a bob at the lower end, swings 
back and forth. One full cycle of the motion 
is shown. During the cycle the values of the 
potential and kinetic energies of the pendu­
lum-Earth system vary as the bob rises 
and falls, but the mechanical energy Ernee of 
the system remains constant. The energy 
Ernee can be described as continuously shift­
ing between the kinetic and potential 
forms. In stages (a) and (e), all the energy is 
kinetic energy. The bob then has its greatest 
speed and is at its lowest point. In stages (c) 
and (g), all the energy is potential energy. 
The bob then has zero speed and is at its 
highest point. In stages (b), (d), (f), and 
(11), half the energy is kinetic energy and 
half is potential energy. If the swinging in­
volved a frictional force at the point where 
the pendulum is attached to the ceiling, or a 
drag force due to the air, then Emee would 
not be conserved, and eventually the pen­
dulum would stop. 

U K 

(g) 

U K 
(11) 

U K 

(j) 

V:::::: +Vmax 

'/1 All kinetic energy .. 

~.~ ~T···· I v 

U K 

(a) 

The total energy 
does not change 
(it is conserved). 

V:::: -"max 

U K 

(b) 

~ 
]I 

All potential 
energy 

J/ 
]I 

U K 
(d) 

All kinetic energy 

U K 
(e) 

U K 
(c) 

Figure 8-7 shows an example in which the principle of conservation of 
mechanical energy can be applied: As a pendulum swings, the energy of the 
pendulum - Earth system is transferred back and forth between kinetic energy K 
and gravitational potential energy U, with the sum K + U being constant. If we 
know the gravitational potential energy when the pendulum bob is at its highest 
point (Fig. 8-7c), Eq. 8-17 gives us the kinetic energy of the bob at the lowest 
point (Fig. 8-7e). 

For example, let us choose the lowest point as the reference point, with the 
gravitational potential energy U2 = O. Suppose then that the potential energy at 
the highest point is VI = 20 J relative to the reference point. Because the 
bob momentarily stops at its highest point, the kinetic energy there is Kl = O. 
Putting these values into Eq. 8-17 gives us the kinetic energy K2 at the lowest 
point: 

K2 + 0 = 0 + 20J or K2 = 20 J. 

Note that we get this result without considering the motion between the highest 
and lowest points (such as in Fig. 8-7d) and without finding the work done by any 
forces involved in the motion. 



CHECKPOINT 3 

A lfI-
I 
I 
I 
I 
I 
I 
I ..J _____ _ 

BIB 

The figure shows four 
situations-one in which 
an initially stationary 
block is dropped and 
three in which the block 
is allowed to slide down 
frictionless ramps. (a) 
Rank the situations ac-

(1) 
cording to the kinetic 

(2) 
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(3) (4) 

energy of the block at point B, greatest first. (b) Rank them according to the speed of 
the block at point B, greatest first. 

Conservation of mechanical energy, water slide 

In Fig. 8-8, a child of mass m is released from rest at the top 
of a water slide, at height h = 8.5 m above the bottom of the 
slide. Assuming that the slide is frictionless because of the 
water on it, find the child's speed at the bottom of the slide. 

(1) We cannot find her speed at the bottom by using her ac­
celeration along the slide as we might have in earlier chap­
ters because we do not know the slope (angle) of the slide. 
However, because that speed is related to her kinetic en­
ergy, perhaps we can use the principle of conservation of 
mechanical energy to get the speed. Then we would not 
need to know the slope. (2) Mechanical energy is conserved 
in a system if the system is isolated and if only conservative 
forces cause energy transfers within it. Let's check. 

Forces: Two forces act on the child. The gravitational 
force, a conservative force, does work on her. The normal 
force on her from the slide does no work because its direc­
tion at any point during the descent is always perpendicular 
to the direction in which the child moves. 

The total mechao;cal _ / 
energy at the top I 

is equal to the total II 

althe bottom. \_-'-'-___ _ 

Fig. 8-8 A child slides down a water slide as she descends a height h. 

System: Because the only force doing work on the child 
is the gravitational force, we choose the child-Earth system 
as our system, which we can take to be isolated. 

Thus, we have only a conservative force doing work in 
an isolated system, so we can use the principle of conserva­
tion of mechanical energy. 

Calculations: Let the mechanical energy be Emec,! when 
the child is at the top of the slide and Emec,b when she is at 
the bottom. Then the conservation principle tells us 

Emec,b = Emec,t· 

To show both kinds of mechanical energy, we have 

Kb + Ub = Kt + Ut , 

or 

Dividing by m and rearranging yield 

vt = v¥ + 2g(Yt - Yb)' 

Putting Vt = 0 and Yt - Yb = h leads to 

Vb = V2gh = \1(2)(9.8 m/s2)(8.5 m) 

= 13 m/s. 

(8-19) 

(8-20) 

(Answer) 

This is the same speed that the child would reach if she fell 
8.5 m vertically. On an actual slide, some frictional forces 
would act and the child would not be moving quite so fast. 

Comments: Although this problem is hard to solve directly 
with Newton's laws, using conservation of mechanical en­
ergy makes the solution much easier. However, if we were 
asked to find the time taken for the child to reach the bot­
tom of the slide, energy methods would be of no use; we 
would need to know the shape of the slide, and we would 
have a difficult problem. 

Additional examples, video, and practice available at WileyPLUS 
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Reading a Potential Energy Curve 
Once again we consider a particle that is part of a system in which a conserva­
tive force acts. This time suppose that the particle is constrained to move along 
an x axis while the conservative force does work on it. We can learn a lot about 
the motion of the particle from a plot of the system's potential energy U(x). 
However, before we discuss such plots, we need one more relationship. 

Equation 8-6 tells us how to find the change I1U in potential energy between two 
points in a one-dimensional situation if we know the force F(x). Now we want to 
go the other way; that is, we know the potential energy function U(x) and want 
to find the force. 

For one-dimensional motion, the work W done by a force that acts on a parti­
cle as the particle moves through a distance I1x is F(x) I1x. We can then write 
Eq.8-1 as 

I1U(x) = -W= -F(x)l1x. 

Solving for F(x) and passing to the differential limit yield 

F(x) = _ dU(x) 
dx 

which is the relation we sought. 

(one-dimensional motion), 

(8-21) 

(8-22) 

We can check this result by putting U(x) = !kx2
, which is the elastic poten­

tial energy function for a spring force. Equation 8-22 then yields, as expected, 
F(x) = -kx, which is Hooke's law. Similarly, we can substitute U(x) = mgx, 
which is the gravitational potential energy function for a particle-Earth system, 
with a particle of mass m at height x above Earth's surface. Equation 8-22 then 
yields F = -mg, which is the gravitational force on the particle. 

Figure 8-9a is a plot of a potential energy function U(x) for a system in which a 
particle is in one-dimensional motion while a conservative force F(x) does work 
on it. We can easily find F(x) by (graphically) taking the slope of the U(x) curve at 
various points. (Equation 8-22 tells us that F(x) is the negative of the slope of the 
U(x) curve.) Figure 8-9b is a plot of F(x) found in this way. 

In the absence of a nonconservative force, the mechanical energy E of a system 
has a constant value given by 

U(x) + K(x) = Emw (8-23) 

Here K(x) is the kinetic energy function of a particle in the system (this K(x) 
gives the kinetic energy as a function of the particle's location x). We may 
rewrite Eq. 8-23 as 

K(x) = Emec - U(x). (8-24) 

Suppose that Emec (which has a constant value, remember) happens to be 5.0 1. It 
would be represented in Fig. 8-9c by a horizontal line that runs through the value 
5.0 J on the energy axis. (It is, in fact, shown there.) 



(a) 

(c) 

(e) 

U(J) 

This is a plot of the potential 
U(x) energy U versus position x. 

6 

5 

4 

3 

2 

1 

x 
·\'5 

U (J), Emee (J) The flat line shows a given value of 
the total mechanical energy Emee. 

U (J), En,ee (J) 

6 

5 

4 

3 

2 

U(x) 

Emee = 5.0 J 

At this position, K is zero (a turning point). 
The particle cannot go farther to the left. 

At this position, K is greatest and 
the particle is moving the fastest. 
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(b) 

(d) 

(j) 

Force is equal to the negative of 
the slope of the U{x) plot. 

F (N) Strong force, +x direction 

+ 

I X 
x5 

Mild force, -x direction 

U (1), Emee (1) The difference between the total energy 
and the potential energy is the 

U(x) kinetic energy K. 

Emee = 5.0 J 

U (1), Emee (1) For either of these three choices for Emee, 

the particle is trapped (cannot escape 
left or right). 

6 

5 

4 

3 

2 

L-____ L-~~ __ ~ __ ~ ____ L_ __________ x 

Fig. 8-9 (a) A plot of U(x), the potential energy function of a system containing a 
particle confined to move along an x axis. There is no friction, so mechanical energy is 
conserved. (b) A plot of the force F(x) acting on the particle, derived from the potential 
energy plot by taking its slope at various points. (c)-(e) How to determine the kinetic en­
ergy. (f) The U(x) plot of (a) with three possible values of Emec shown. 
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Equation 8-24 and Fig. 8-9d tell us how to determine the kinetic energy K for 
any location x of the particle: On the U(x) curve, find U for that location x and 
then subtract U from Ernec. In Fig. 8-ge for example, if the particle is at any point 
to the right of xs, then K = 1.01. The value of K is greatest (5.0 J) when the parti­
cle is at X2 and least (0 J) when the particle is at Xl' 

Since K can never be negative (because v2 is always positive), the particle can 
never move to the left of Xl, where Ernec - U is negative. Instead, as the particle 
moves toward Xl from X2, K decreases (the particle slows) until K = 0 at Xl (the 
particle stops there). 

Note that when the particle reaches Xl> the force on the particle, given by 
Eq. 8-22, is positive (because the slope dUldx is negative). This means that the par­
ticle does not remain at Xl but instead begins to move to the right, opposite its ear­
lier motion. Hence Xl is a turning point, a place where K = 0 (because U = E) and 
the particle changes direction. There is no turning point (where K = 0) on the right 
side of the graph. When the particle heads to the right, it will continue indefinitely. 

Figure 8-9/ shows three different values for Ernec superposed on the plot of the 
potential energy function U(x) of Fig. 8-9a. Let us see how they change the situa­
tion. If Ernec = 4.0 J (purple line), the turning point shifts from Xl to a point 
between Xl and X2' Also, at any point to the right of xs, the system's mechanical 
energy is equal to its potential energy; thus, the particle has no kinetic energy and 
(by Eq. 8-22) no force acts on it, and so it must be stationary. A particle at such a 
position is said to be in neutral equilibrium. (A marble placed on a horizontal 
tabletop is in that state.) 

If Ernec = 3.0 J (pink line), there are two turning points: One is between 
Xl and X2, and the other is between X4 and Xs. In addition, X3 is a point at which 
K = O. If the particle is located exactly there, the force on it is also zero, and the 
particle remains stationary. However, if it is displaced even slightly in either 
direction, a nonzero force pushes it farther in the same direction, and the particle 
continues to move. A particle at such a position is said to be in unstable equilib­
rium. (A marble balanced on top of a bowling ball is an example.) 

Next consider the particle's behavior if Ernec = 1.0 J (green line). If we place 
it at X4, it is stuck there. It cannot move left or right on its own because to do so 
would require a negative kinetic energy. If we push it slightly left or right, 
a restoring force appears that moves it back to X4' A particle at such a position 
is said to be in stable equilibrium. (A marble placed at the bottom of a 
hemispherical bowl is an example.) If we place the particle in the cup-like poten­
tial well centered at X2, it is between two turning points. It can still move 
somewhat, but only partway to Xl or X3' 

CHECKPOINT 4 

The figure gives the potential energy function U(x) for a system in which a particle is in 
one-dimensional motion. (a) Rank regions AB, BC, and CD according to the magni­
tude of the force on the particle, greatest first. (b) What is the direction of the force 
when the particle is in region AB? 
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Reading a potential energy graph 

A 2.00 kg particle moves along an x axis in one-dimensional 
motion while a conservative force along that axis acts on it. 
The potential energy Vex) associated with the force is plot­
ted in Fig. 8-10a. That is, if the particle were placed at any 
position between x = 0 and x = 7.00 m, it would have the 
plotted value of V. At x = 6.5 m, the particle has velocity 
va = (-4.00 m/s)i. 

(a) From Fig. 8-10a, determine the particle's speed at 
x[ = 4.5 m. 

(1) The particle's kinetic energy is given by Eq. 7-1 
(K = !mv2). (2) Because only a conservative force acts on 
the particle, the mechanical energy Emee ( = K + U) is con­
served as the particle moves. (3) Therefore, on a plot of Vex) 
such as Fig. 8-10a, the kinetic energy is equal to the differ­
ence between Emee and V. 

Calculations: At x = 6.5 m, the particle has kinetic energy 

Ko = ~mv6 = ~(2.00 kg)( 4.00 m/s? 

= 16.0 J. 

Because the potential energy there is V = 0, the mechanical 
energy is 

Emee = Ko + Va = 16.0J + 0 = 16.0J. 

This value for Emee is plotted as a horizontal line in Fig. 
8-10a. From that figure we see that at x = 4.5 m, the poten­
tial energy is V[ = 7.0 J. The kinetic energy K[ is the differ­
ence between Emee and V[: 

K[ = Emee - VI = 16.0J - 7.0J = 9.0J. 

Because K 1 = ! mvI, we find 

v[ = 3.0 m/s. (Answer) 

(b) Where is the particle's turning point located? 

The turning point is where the force momentarily stops and 
then reverses the particle's motion. That is, it is where the 
particle momentarily has V = 0 and thus K = O. 

Calculations: Because K is the difference between 
Emee and V, we want the point in Fig. 8-10a where the plot of 
V rises to meet the horizontal line of Emec> as shown in Fig. 
8-10b. Because the plot of V is a straight line in Fig. 8-10b, 
we can draw nested right triangles as shown and then write 

20 

16 

7 

o 1 

U(J) 
20 

4 
x(m) 

(a) 

-x(m) 
4 

i+--d----i 

(b) 

Kinetic energy is the difference 
between the total energy and 
the potential energy. 

The kinetic energy is zero 
at the turning point (the 
particle speed is zero). 

Fig. 8-10 (a) A plot of potential energy U versus positionx. (b) 
A section of the plot used to find where the particle turns around. 

the proportionality of distances 

16 - 7.0 

d 

20 - 7.0 
4.0 - 1.0' 

which gives us d = 2.08 m. Thus, the turning point is at 

x = 4.0 m - d = 1.9 m. (Answer) 

(c) Evaluate the force acting on the particle when it is in the 
region 1.9 m < x < 4.0 m. 

The force is given by Eq. 8-22 (F(x) = -dV(x)ldx). The 
equation states that the force is equal to the negative of the 
slope on a graph of Vex). 

Calculations: For the graph of Fig. 8-10b, we see that for 
the range 1.0 ill < X < 4.0 m the force is 

F= 20J -7.0J = 43 . N. 
1.0m 4.0m 

(Answer) 

Thus, the force has magnitude 4.3 N and is in the positive di­
rection of the x axis. This result is consistent with the fact 
that the initially leftward-moving particle is stopped by the 
force and then sent rightward. 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 8-11 (a) Positive work W done on 
an arbitrary system means a transfer of 
energy to the system. (b) Negative work 
W means a transfer of energy from the 
system. 

Your lifting force 
transfers energy to 
kinetic energy and 
potential energy. 

/ Ball-Earth 
.... _----- _ ...... system 

", " 
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Fig. 8-12 Positive work W is done on a 
system of a bowling ball and Earth, causing 
a change !J.Emec in the mechanical energy of 
the system, a change !J.K in the ball's kinetic 
energy, and a change !J. U in the system's 
gravitational potential energy. 

Work Done on a System by an External Force 
In Chapter 7, we defined work as being energy transferred to or from an object 
by means of a force acting on the object. We can now extend that definition to an 
external force acting on a system of objects. 

Work is energy transferred to or from a system by means of an external force acting 
on that system. 

Figure 8-lla represents positive work (a transfer of energy to a system), and 
Fig. 8-llb represents negative work (a transfer of energy from a system). When 
more than one force acts on a system, their net work is the energy transferred to 
or from the system. 

These transfers are like transfers of money to and from a bank account. If a 
system consists of a single particle or particle-like object, as in Chapter 7, the 
work done on the system by a force can change only the kinetic energy of the 
system. The energy statement for such transfers is the work-kinetic energy theo­
rem of Eq. 7-10 (!::..K = W); that is, a single particle has only one energy account, 
called kinetic energy. External forces can transfer energy into or out of that 
account. If a system is more complicated, however, an external force can change 
other forms of energy (such as potential energy); that is, a more complicated 
system can have multiple energy accounts. 

Let us find energy statements for such systems by examining two basic situa­
tions, one that does not involve friction and one that does. 

To compete in a bowling-balI-hurling contest, you first squat and cup your hands 
under the ball on the floor. Then you rapidly straighten up while also pulling your 
hands up sharply, launching the ball upward at about face level. During your 
upward motion, your applied force on the ball obviously does work; that is, it is an 
external force that transfers energy, but to what system? 

To answer, we check to see which energies change. There is a change !::..K in 
the ball's kinetic energy and, because the ball and Earth become more sepa­
rated, there is a change !::..U in the gravitational potential energy of the 
ball-Earth system. To include both changes, we need to consider the ball-Earth 
system. Then your force is an external force doing work on that system, and the 
work is 

W= !::..K+ !::..U, (8-25) 

or (work done on system, no friction involved), (8-26) 

where !::..Emec is the change in the mechanical energy of the system. These two 
equations, which are represented in Fig. 8-12, are equivalent energy statements 
for work done on a system by an external force when friction is not involved. 

We next consider the example in Fig. 8-13a. A constant horizontal force F pulls a 
block along an x axis and through a displacement of magnitude d, increasing the 
block's velocity from Va to V. During the motion, a constant kinetic frictional 
force tk from the floor acts on the block. Let us first choose the block as our 
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The applied force supplies energy. 
The frictional force transfers some 
of it to thermal energy. 

So, the work done by the applied 
force goes into kinetic energy 
and also thermal energy. 

£ Block-floor 

~ ////~/_--- -_~,s?:tem 

'------V / Mmec " W I .. I 
" ij;'::;;:;:~'?·:;<!;:;:;'·:"J:l;' 
'~_ Mth // ----------

(a) (b) 

Fig. 8-13 (a) A block is pulled across a floor by force F while a kinetic frictional 
force "l opposes the motion. The block has velocity Vo at the start of a displacement d and 
velocity v at the end of the displacement. (b) Positive work W is done on the block - floor 
system by force F, resulting in a change b.Emec in the block's mechanical energy and a 
change b.Eth in the thermal energy of the block and floor. 

system and apply Newton's second law to it. We can write that law for compo­
nents along the x axis (Fnet,x = maJ as 

F - fk = ma. (8-27) 

Because the forces are constant, the acceleration 71 is also constant. Thus, we can 
use Eq. 2-16 to write 

V2 = V6 + 2ad. 

Solving this equation for a, substituting the result into Eq. 8-27, and rearranging 
then give us 

Fd = ~mv2 - ~mv6 + Ad 

or, because ~ mv2 - ~ mV6 = !:::..K for the block, 

Fd =!:::..K + fkd. 

(8-28) 

(8-29) 

In a more general situation (say, one in which the block is moving up a ramp), there 
can be a change in potential energy. To include such a possible change, we general­
ize Eq. 8-29 by writing 

(8-30) 

By experiment we find that the block and the portion of the floor along 
which it slides become warmer as the block slides. As we shall discuss in 
Chapter 18, the temperature of an object is related to the object's thermal energy 
Eth (the energy associated with the random motion of the atoms and molecules in 
the object). Here, the thermal energy of the block and floor increases because 
(1) there is friction between them and (2) there is sliding. Recall that friction is 
due to the cold-welding between two surfaces. As the block slides over the floor, 
the sliding causes repeated tearing and re-forming of the welds between the 
block and the floor, which makes the block and floor warmer. Thus, the sliding 
increases their thermal energy E th . 

Through experiment, we find that the increase !:::..Eth in thermal energy is 
equal to the product of the magnitudes fk and d: 

(increase in thermal energy by sliding). (8-31) 

Thus, we can rewrite Eq. 8-30 as 

Fd = !:::..Emec + !:::..Eth . (8-32) 

Fd is the work W done by the external force F (the energy transfelTed by the 
force), but on which system is the work done (where are the energy transfers made)? 



182 POTENTIAL ENERGY AND CONSERVATION OF ENERGY 

To answer, we check to see which energies change. The block's mechanical energy 
changes, and the thermal energies of the block and floor also change. Therefore, the 
work done by force F is done on the block - floor system. That work is 

(work done on system, friction involved). (8-33) 

This equation, which is represented in Fig. 8-13b, is the energy statement for the 
work done on a system by an external force when friction is involved. 

CHECKPOINT 5 

In three trials, a block is pushed by a horizontal applied force across a floor that is not 
frictionless, as in Fig. 8-13a. The magnitudes F of the applied force and the results of the 
pushing on the block's speed are given in the table. In all three trials, the block is 
pushed through the same distance d. Rank the three trials according to the change in 
the thermal energy of the block and floor that occurs in that distance d, greatest first. 

Trial 

a 
b 
c 

F 

S.ON 
7.0N 

8.0N 

Result on Block's Speed 

decreases 

remains constant 

increases 

Work, friction, change in thermal energy, cabbage heads 

A food shipper pushes a wood crate of cabbage heads (total 
mass m = 14 kg) across a concrete floor with a constant 
horizontal force F of magnitude 40 N. In a straight-line dis­
placement of magnitude d = 0.50 m, the speed of the crate 
decreases from Vo = 0.60 m/s to v = 0.20 m/s. 

(a) How much work is done by force F, and on what system 
does it do the work? 

Because the applied force F is constant, we can calculate 
the work it does by using Eq. 7-7 (W = Fd cos ¢). 

Calculation: Substituting given data, including the fact that 
force F and displacement d are in the same direction, we 
find 

W = Fd cos ¢ = (40 N)(O.SO m) cos 0° 

= 20 J. (Answer) 

Reasoning: We can determine the system on which the 
work is done to see which energies change. Because the 
crate's speed changes, there is certainly a change 11I( in 
the crate's kinetic energy. Is there friction between the floor 
and the crate, and thus a change in thermal energy? Note 
that F and the crate's velocity have the same direction. 

Thus, if there is no friction, then F should be accelerating 
the crate to a greater speed. However, the crate is slowing, so 
there must be friction and a change I1Eth in thermal energy 
of the crate and the floor. Therefore, the system on which 
the work is done is the crate-floor system, because both en­
ergy changes occur in that system. 

(b) What is the increase I1Eth in the thermal energy of the 
crate and floor? 

We can relate I1Eth to the work W done by F with the energy 
statement of Eq. 8-33 for a system that involves friction: 

(8-34) 

Calculations: We know the value of W from (a). The 
change I1Emee in the crate's mechanical energy is just the 
change in its kinetic energy because no potential energy 
changes occur, so we have 

AE - A 1/ _ 1 2 1 2 
L1 mee - L11\' - zmv - zmvo. 

Substituting this into Eq. 8-34 and solving for I1Eth , we find 

I1Eth = W - (4mv2 - 4mv6) = W - 4m(v2 - V6) 
= 20 J 4(14 kg)[(0.20 m/s)2 - (0.60 m/s)2] 

= 22.2 J = 22 J. (Answer) 

Additional examples, Video, and practice available at WileyPLUS 
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Conservation of Energy 
We now have discussed several situations in which energy is transferred to or 
from objects and systems, much like money is transferred between accounts. 
In each situation we assume that the energy that was involved could always be 
accounted for; that is, energy could not magically appear or disappear. In more 
formal language, we assumed (correctly) that energy obeys a law called the law of 
conservation of energy, which is concerned with the total energy E of a system. 
That total is the sum of the system's mechanical energy, thermal energy, and any 
type of internal energy in addition to thermal energy. (We have not yet discussed 
other types of internal energy.) The law states that 

The total energy E of a system can change only by amounts of energy that are 
transferred to or from the system. 

The only type of energy transfer that we have considered is work W done on a 
system. Thus, for us at this point, this law states that 

(8-35) 

where I1Emec is any change in the mechanical energy of the system, I1Eth is any 
change in the thermal energy of the system, and I1Eint is any change in any 
other type of internal energy of the system. Included in I1Emec are changes 11K in 
kinetic energy and changes 11 U in potential energy (elastic, gravitational, or any 
other type we might find). 

This law of conservation of energy is not something we have derived from 
basic physics principles. Rather, it is a law based on countless experiments. 
Scientists and engineers have never found an exception to it. 

If a system is isolated from its environment, there can be no energy transfers to or 
from it. For that case, the law of conservation of energy states: 

The total energy E of an isolated system cannot change. 

Many energy transfers may be going on within an isolated system - between, 
say, kinetic energy and a potential energy or between kinetic energy and ther­
mal energy. However, the total of all the types of energy in the system cannot 
change. 

We can use the rock climber in Fig. 8-14 as an example, approximating 
him, his gear, and Earth as an isolated system. As he rappels down the rock 
face, changing the configuration of the system, he needs to control the transfer 
of energy from the gravitational potential energy of the system. (That energy 
cannot just disappear.) Some of it is transferred to his kinetic energy. 
However, he obviously does not want very much transferred to that type or he 
will be moving too quickly, so he has wrapped the rope around metal rings to 
produce friction between the rope and the rings as he moves down. The sliding 
of the rings on the rope then transfers the gravitational potential energy of the 
system to thermal energy of the rings and rope in a way that he can control. 
The total energy of the climber-gear-Earth system (the total of its gravita­
tional potential energy, kinetic energy, and thermal energy) does not change 
during his descent. 

Fig. 8-14 To descend, the rock 
climber must transfer energy from the 
gravitational potential energy of a sys­
tem consisting of him, his gear, and 
Earth. He has wrapped the rope around 
metal rings so that the rope rubs against 
the rings. This allows most of the trans­
ferred energy to go to the thermal en­
ergy of the rope and rings rather than to 
his kinetic energy. (Tyler StablefordlThe 
Image Banld Getty Images) 
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For an isolated system, the law of conservation of energy can be written in 
two ways. First, by setting W = 0 in Eq. 8-35, we get 

(isolated system). (8-36) 

We can also let !::..Emec = Emec,2 - Emec,I> where the subscripts 1 and 2 refer to two 
different instants-say, before and after a certain process has occurred. Then Eq. 
8-36 becomes 

(8-37) 

Equation 8-37 tells us: 

In an isolated system, we can relate the total energy at one instant to the total energy 
at another instant without considering the energies at intermediate times. 

This fact can be a very powerful tool in solving problems about isolated systems 
when you need to relate energies of a system before and after a certain process 
occurs in the system. 

In Section 8-5, we discussed a special situation for isolated systems­
namely, the situation in which nonconservative forces (such as a kinetic fric­
tional force) do not act within them. In that special situation, !::..Eth and !::..Eint are 
both zero, and so Eq. 8-37 reduces to Eq. 8-18. In other words, the mechanical 
energy of an isolated system is conserved when nonconservative forces do not 
act in it. 

An external force can change the kinetic energy or potential energy of an object 
without doing work on the object-that is, without transferring energy to the 
object. Instead, the force is responsible for transfers of energy from one type to 
another inside the object. 

Figure 8-15 shows an example. An initially stationary ice-skater pushes away 
from a railing and then slides over the ice (Figs. 8-15a and b). Her kinetic energy 
increases because of an external force F on her from the rail. However, that force 
does not transfer energy from the rail to her. Thus, the force does no work on 

Ice 

(a) 

Her push on the rail causes 
a transfer of internal energy 
to kinetic energy. 

(b) 

-------------------x 
(c) 

Fig.8-15 (a) As a skater pushes herself away from a railing, the force on her from 
the railing is F. (b) After the skater leaves the railing, she has velocity V. (c) External 
force F acts on the skater, at angle 1> with a horizontal x axis. When the skater goes 
through displacement d, her velocity is changed from Vo (= 0) to 11 by the horizontal 
component of F. 



Fig. 8-16 A vehicle accelerates to the right us­
ing four-wheel drive. The road exerts four fric­
tional forces (two of them shown) on the bottom 
surfaces of the tires. Taken together, these four 
forces make up the net external force F acting on 
the car. 

her. Rather, her kinetic energy increases as a result of internal transfers from the 
biochemical energy in her muscles. 

Figure 8-16 shows another example. An engine increases the speed of a car 
with four-wheel drive (all four wheels are made to turn by the engine). During 
the acceleration, the engine causes the tires to push backward on the road sur­
face. This push produces frictional forces 1 that act on each tire in the forward 
direction. The net external force F from the road, which is the sum of these fric­
tional forces, accelerates the car, increasing its kinetic energy. However, F does 
not transfer energy from the road to the car and so does no work on the car. 
Rather, the car's kinetic energy increases as a result of internal transfers from the 
energy stored in the fuel. 

In situations like these two, we can sometimes relate the external force F on 
an object to the change in the object's mechanical energy if we can simplify the 
situation. Consider the ice-skater example. During her push through distance din 
Fig. 8-15c, we can simplify by assuming that the acceleration is constant, her 
speed changing from Vo = 0 to v. (That is, we assume F has constant magnitude F 
and angle cp.) After the push, we can simplify the skater as being a particle and 
neglect the fact that the exertions of her muscles have increased the thermal 
energy in her muscles and changed other physiological features. Then we can 
apply Eq. 7-5 G mv2 

- ~ mV5 = l\d) to write 

K - Ko = (Fcos cp)d, 

or b..K = Fd cos cpo (8-38) 

If the situation also involves a change in the elevation of an object, we can 
include the change b..U in gravitational potential energy by writing 

b..U + b..K = Fd cos cpo (8-39) 

The force on the right side of this equation does no work on the object but is still 
responsible for the changes in energy shown on the left side. 

Now that you have seen how energy can be transferred from one type to another, 
we can expand the definition of power given in Section 7-9. There power is 
defined as the rate at which work is done by a force. In a more general sense, 
power P is the rate at which energy is transferred by a force from one type to 
another. If an amount of energy b..E is transferred in an amount of time b..t, the 
average power due to the force is 

Similarly, the instant an eons power due to the force is 

dE 
P=dt". 

(8-40) 

(8-41) 
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Energy, friction, spring, and tamales 

In Fig. 8-17, a 2.0 kg package of tamales slides along a floor 
with speed VI = 4.0 mls. It then runs into and compresses a 
spring, until the package momentarily stops. Its path to the 
initially relaxed spring is frictionless, but as it compresses 
the spring, a kinetic frictional force from the floor, of mag­
nitude 15 N, acts on the package. If k = 10 000 N/m, by what 
distance d is the spring compressed when the package stops? 

We need to examine all the forces and then to determine 
whether we have an isolated system or a system on which an 
external force is doing work. 

Forces: The normal force on the package from the floor 
does no work on the package because the direction of this 
force is always perpendicular to the direction of the package's 
displacement. For the same reason, the gravitational force on 
the package does no work. As the spring is compressed, 
however, a spring force does work on the package, transfer­
ring energy to elastic potential energy of the spring. The 
spring force also pushes against a rigid wall. Because there is 
friction between the package and the floor, the sliding of 
the package across the floor increases their thermal energies. 

System: The package-spring-floor-wall system in­
cludes all these forces and energy transfers in one isolated 
system. Therefore, because the system is isolated, its total 
energy cannot change. We can then apply the law of conser­
vation of energy in the form of Eq. 8-37 to the system: 

(8-42) 

Calculations: In Eq. 8-42, let subscript 1 correspond to 
the initial state of the sliding package and subscript 2 corre­
spond to the state in which the package is momentarily 
stopped and the spring is compressed by distance d. For 
both states the mechanical energy of the system is the sum 

Package 

~ Friction ~I-' ---Frictionless ---~ 

Stop First touch 

During the rubbing, kinetic energy 
is transferred to potential energy 
and thermal energy. 

Fig.8-17 A package slides across a frictionless floor with 
velocity 111 toward a spring of spring constant k. When the 
package reaches the spring, a frictional force from the floor 
acts on the package. 

of the package's kinetic energy (K = 4mv2
) and the spring's 

potential energy (U = 4kxZ). For state 1, U = 0 (because the 
spring is not compressed), and the package's speed is VI' 

Thus, we have 

E rnec,! = Kl + U1 = 4mvI + O. 

For state 2, K = 0 (because the package is stopped), and the 
compression distance is d. Therefore, we have 

Ernec,z = Kz + Uz = 0 + 4kdz. 

Finally, by Eq. 8-31, we can substitute Ad for the change 
AEth in the thermal energy of the package and the floor. We 
can now rewrite Eq. 8-42 as 

1, dZ - 1 Z f'd 'if( - 'i mv l - Jk . 

Rearranging and substituting known data give us 

5000dZ + 15d - 16 = O. 

Solving this quadratic equation yields 

d = 0.055 m = 5.5 cm. (Answer) 

Additional examples, video, and practice available at WileyPLUS 

Conservative Forces A force is a conservative force if the net 
work it does on a particle moving around any closed path, from an 
initial point and then back to that point, is zero. Equivalently, a 
force is conservative if the net work it does on a particle moving 
between two points does not depend on the path taken by the par­
ticle. The gravitational force and the spring force are conservative 
forces; the kinetic frictional force is a Ilollconservative force. 

Potential Energy A potential energy is energy that is associated 
with the configuration of a system in which a conservative force acts. 
When the conservative force does work Won a particle within the sys­
tetp, the change flU in the potential energy of the system is 

flU= -W. (8-1) 

If the particle moves from point Xi to point XI' the change in the po­
tential energy of the system is 

flU = - ffp(X) dx. (8-6) 

Gravitational Potential Energy The potential energy asso­
ciated with a system consisting of Earth and a nearby particle is 
gravitational potential enel·gy. If the particle moves from height Yi 



to height Yf, the change in the gravitational potential energy of the 
particle - Earth system is 

(8-7) 

If the reference point of the particle is set as Yi = 0 and the corre­
sponding gravitational potential energy of the system is set as Vi = 
0, then the gravitational potential energy V when the particle is at 
any height Y is 

V(y) = mgy. (8-9) 

Elastic Potential Energy Elastic potential energy is the energy 
associated with the state of compression or extension of an elastic ob­
ject. For a spring that exerts a spling force F = - kx when its free end 
has displacement x, the elastic potential energy is 

(8-11) 

The reference configUl'ation has the spring at its relaxed length, at 
which x = 0 and V = O. 

Mechanical Energy The mechanical energy Emee of a system 
is the sum of its kinetic energy K and potential energy V: 

Emee = K + U. (8-12) 

An isolated system is one in which no external force causes energy 
changes. If only conservative forces do work within an isolated sys­
tem, then the mechanical energy Emee of the system cannot change. 
This principle of conservation of mechanical energy is written as 

(8-17) 

in which the subscripts refer to different instants during an energy 
transfer process. This conservation principle can also be written as 

I1Emee = 11K + I1V = O. (8-18) 

Potential Energy Curves If we know the potential energy 
function Vex) for a system in which a one-dimensional force F(x) 
acts on a particle, we can find the force as 

F( ) = _ dV(x) 
x dx . (8-22) 

If Vex) is given on a graph, then at any value of x, the force F(x) is 
the negative of the slope of the curve there and the kinetic energy 
of the particle is given by 

K(x) = Emee - U(x), (8-24) 

where Emee is the mechanical energy of the system. A turning point 

In Fig. 8-18, a horizontally moving block can take three friction­
less routes, differing only in elevation, to reach the dashed finish line. 

Finish line 

(3) 

Fig. 8-18 Question 1. 
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is a point x at which the particle reverses its motion (there, K = 0). 
The particle is in equilibrium at points where the slope of the Vex) 
curve is zero (there, F(x) = 0). 

Work Done on a System by an External Force Work W 
is energy transferred to or from a system by means of an external 
force acting on the system. When more than one force acts on a sys­
tem, their net work is the transferred energy. When friction is not in­
volved, the work done on the system and the change I1Emee in the me­
chanical energy of the system are equal: 

W = I1Emee = 11K + 11 U. (8-26,8-25) 

When a kinetic frictional force acts within the system, then the 
thermal energy EtI! of the system changes. (This energy is associ­
ated with the random motion of atoms and molecules in the sys­
tem.) The work done on the system is then 

(8-33) 

The change I1Eth is related to the magnitude fk of the frictional 
force and the magnitude d of the displacement caused by the ex­
ternal force by 

(8-31) 

Conservation of Energy The total energy E of a system (the 
sum of its mechanical energy and its internal energies, including ther­
mal energy) can change only by amounts of energy that are trans­
ferred to or from the system. This experimental fact is known as the 
law of conservation of energy. If work W is done on the system, then 

W = I1E = I1Emee + I1Eth + I1Eint . 

If the system is isolated (W = 0), this gives 

I1Emee + I1Eth + I1Eint = 0 

and 

where the subscripts 1 and 2 refer to two different instants. 

(8-35) 

(8-36) 

(8-37) 

Power The power due to a force is the rate at which that force 
transfers energy. If an amount of energy I1E is transferred by 
a force in an amount of time /1(, the average power of the force is 

The instantaneous power due to a force is 

P = dE 
dt . 

(8-40) 

(8-41) 

Rank the routes according to (a) the speed of the block at the finish 
line and (b) the travel time of the block to the finish line, greatest first. 

Figure 8-19 gives the potential energy function of a particle. 

Fig. 8-19 

Question 2. 

8 

1 
OL---L-'----__ --'-_--'-_~_"-_ _L____'_ __ x 

A B c E 
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(a) Rank regions AB, BC, CD, and DE according to the magni­
tude of the force on the particle, greatest first. What value must 
the mechanical energy Emee of the particle not exceed if the par­
ticle is to be (b) trapped in the potential well at the left, ( c) 
trapped in the potential well at the right, and (d) able to move 
between the two potential wells but not to the right of point H? 
For the situation of (d), in which of regions BC, DE, and FC will 
the particle have (e) the greatest kinetic energy and (f) the least 

~~? ~ 

Figure 8-20 shows one direct path 
and four indirect paths from point i to 
point f Along the direct path and 
three of the indirect paths, only a con­
servative force Fe acts on a certain ob­
ject. Along the fourth indirect path, 
both Fe and a nonconservative force Fig. 8-20 Question 3. 
Foe act on the object. The change 
AEmee in the object's mechanical energy (in joules) in going from i to f 
is indicated along each straight-line segment of the indirect paths. 
What is AEmee (a) from i to falong the direct path and (b) due to Foe 
along the one path where it acts? 

In Fig. 8-21, a small, initially stationary block is released on a 
frictionless ramp at a height of 3.0 m. Hill heights along the ramp 
are as shown. The hills have identical circular tops, and the block does 
not fly off any hill. (a) Which hill is the first the block cannot cross? (b) 
What does the block do after failing to cross that hill? On which hilltop 
is (c) the centripetal acceleration of the block greatest and (d) the nor­
mal force on the block least? 

3.5m 

(4) -I 
3.0m 

~ 0.5m 

(1) 

Fig. 8-21 Question 4. 

In Fig. 8-22, a block slides from A to C along a frictionless 
ramp, and then it passes through horizontal region CD, where a 
frictional force acts on it. Is the block's kinetic energy increasing, 
decreasing, or constant in (a) region AB, (b) region BC, and (c) re­
gion CD? (d) Is the block's mechanical energy increasing, decreas­
ing, or constant in those regions? 

A 

'!;$~4§:~:blfi!<~~~~,:t4~$i\{.M$f~~Jjj~ 
C D 

B 

Fig. 8-22 Question 5. 

In Fig. 8-23a, you pull upward on a rope that is attached to a cylin­
der on a vertical rod. Because the cylinder fits tightly on the rod, the 
cylinder slides along the rod with considerable friction. Your force 

does work W = + 100 J on the cylinder-rod-Earth system (Fig. 
8-23b). An "energy statement" for the system is shown in Fig. 8-23c: 
the kinetic energy K increases by 50 J, and the gravitational potential 
energy Ug increases by 20 J. The only other change in energy within 
the system is for the thermal energy Eth. What is the change AEth? 

(a) 

~/Work W 
\ 

\ 
I \ 
I I System 
I I 
I I 
I I 
I I 
,Earth / 
--~ 

(b) 

Fig. 8-23 Question 6. 

W=+100J"jt 

System's energies: 

/:,.K= +50J 

/:"Ug = +20 J 

/:,.Eth = ? 

(c) 

The arrangement shown in Fig. 
8-24 is similar to that in Question 6. 
Here you pull downward on the rope 
that is attached to the cylinder, which 
fits tightly on the rod. Also, as the 
cylinder descends, it pulls on a block 
via a second rope, and the block 
slides over a lab table. Again consider 
the cylinder - rod - Earth system, sim­
ilar to that shown in Fig. 8-23b. Your 
work on the system is 200 J. The sys­
tem does work of 60 J on the block. 

Block 

Rope 

Within the system, the kinetic energy 
Fig.8-24 Question 7. 

increases by 130 J and the gravitational potential energy decreases by 
20 J. (a) Draw an "energy statement" for the system, as in Fig. 8-23c. 
(b) What is the change in the thermal energy within the system? 

In Fig. 8-25, a block slides along a track that descends through 
distance h. The track is frictionless except for the lower section. 
There the block slides to a stop in a certain distance D because of 
friction. (a) If we decrease h, will the block now slide to a stop in a 
distance that is greater than, less than, or equal to D? (b) If, in­
stead, we increase the mass of the block, will the stopping distance 
now be greater than, less than, or equal to D? 

Fig. 8-25 

Question 8. 

-
t 
h 

1 
Figure 8-26 shows three situations involving a plane that is not 

frictionless and a block sliding along the plane. The block begins 
with the same speed in all three situations and slides until the ki­
netic frictional force has stopped it. Rank the situations according 
to the increase in thermal energy due to the sliding, greatest first. 

(1) (2) 

Fig.8-26 Question 9. 

(3) 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halHday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Determining Potential Energy Values 
What is the spring constant of a spring that stores 25 J of 

elastic potential energy when compressed by 7.5 cm? 

In Fig. 8-27, a single frictionless roller-coaster car of mass 
m = 825 kg tops the first hill with speed Vo = 17.0 m/s at height 
h = 42.0 m. How much work does the gravitational force do on the 
carfrom that point to (a) point A, (b) point B, and (c) point C? If the 
gravitational potential energy of the car-Earth system is taken to be 
zero at C, what is its value when the car is at (d) Band (e) A? (f) If 
mass m were doubled, would the change in the gravitational potential 
energy of the system between points A and B increase, decrease, or 
remain the same? 

Fig. 8-27 Problems 2 and 9. 

You drop a 2.00 kg book to a 
friend who stands on the ground at dis­
tance D = 10.0 m below. If your friend's 
outstretched hands are at distance d = 

1.50 m above the ground (Fig. 8-28), (a) 
how much work Wg does the gravita­
tional force do on the book as it drops 
to her hands? (b) What is the change 
I1V in the gravitational potential energy 
of the book-Earth system during the 
drop? If the gravitational potential en­
ergy V of that system is taken to be zero 
at ground level, what is V (c) when the 
book is released and (d) when it reaches 
her hands? Now take V to be 100 J at 
ground level and again find (e) Wg, (f) 
11 V, (g) Vat the release point, and (h) V 
at her hands. 

--1 
D 

Fig. 8-28 

Problems 3 and 10. 

Figure 8-29 shows a ball with mass m = 0.341 kg attached to 
the end of a thin rod with length L = 0.452 m and negligible mass. 
The other end of the rod is pivoted so that the ball can move in a 
vertical circle. The rod is held horizontally as shown and then given 
enough of a downward push to cause the ball to swing down and 
around and just reach the vertically up position, with zero speed 
there. How much work is done on the ball by the gravitational 
force from the initial point to (a) the lowest point, (b) the highest 
point, and (c) the point on the right level with the initial point? If 
the gravitational potential energy of the ball-Earth system is 

taken to be zero at the initial point, what is it 
when the ball reaches (d) the lowest point, (e) 
the highest point, and (f) the point on 
the right level with the initial point? (g) 
Suppose the rod were pushed harder so that 
the ball passed through the highest point with 
a nonzero speed. Would I1Vg from the lowest 
point to the highest point then be greater 
than, less than, or the same as it was when the 
ball stopped at the highest point? 

SSM In Fig. 8-30, a 2.00 g ice flake is re-

Fig. 8-29 

Problems 4 
and 14. 

leased from the edge of a hemispherical bowl whose radius r is 22.0 
cm. The flake-bowl contact is frictionless. (a) How much work is 
done on the flake by the gravitational force during the flake's 
descent to the bottom of the bowl? (b) What is the change in the 
potential energy of the flake-Earth system during that descent? 
( c) If that potential energy is taken to be zero at the bottom of the 
bowl, what is its value when the flake is released? (d) If, instead, 
the potential energy is taken to be zero at the release point, what is 
its value when the flake reaches the bottom of the bowl? (e) If the 
mass of the flake were doubled, would the magnitudes of the an­
swers to (a) through (d) increase, decrease, or remain the same? 

Ice 
flake 

Fig. 8-30 Problems 5 and 11. 

In Fig. 8-31, a small block of 
mass m = 0.032 kg can slide along 
the frictionless loop-the-loop, with 
loop radius R = 12 cm. The block is 
released from rest at point P, at 
height h = 5.0R above the bottom of 
the loop. How much work does the 
gravitational force do on the block 
as the block travels from point P to 
(a) point Q and (b) the top of the 
loop? If the gravitational potential 
energy of the block - Earth system is 
taken to be zero at the bottom of the 

Fig. 8-31 Problems 6 
and 17. 

loop, what is that potential energy when the block is (c) at point P, 
(d) at point Q, and (e) at the top of the loop? (f) If, instead of 
merely being released, the block is given some initial speed down­
ward along the track, do the answers to (a) through (e) increase, 
decrease, or remain the same? 
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Figure 8-32 shows a thin rod, of length L = 2.00 m and negli­
gible mass, that can pivot about one end to rotate in a vertical cir­
cle. A ball of mass 111 = 5.00 kg is attached to the other end. The 
rod is pulled aside to angle 00 = 30.00 and released with initial ve­
locity Vo = O. As the ball descends to its lowest point, (a) how 
much work does the gravitational force do on it and (b) what is the 
change in the gravitational potential energy of the ball-Earth sys­
tem? (c) If the gravitational potential energy is taken to be zero at 
the lowest point, what is its value just as the 
ball is released? (d) Do the magnitudes of the 
answers to (a) through (c) increase, decrease, 

80 or remain the same if angle 00 is increased? 

A 1.50 kg snowball is fired from a cliff 
12.5 m high. The snowball's initial velocity is 
14.0 mis, directed 41.00 above the horizontal. 
(a) How much work is done on the snowball 
by the gravitational force during its flight to 
the flat ground below the cliff? (b) What is 
the change in the gravitational potential en-
ergy of the snowball-Earth system during 
the flight? (c) If that gravitational potential 
energy is taken to be zero at the height of 
the cliff, what is its value when the snowball 
reaches the ground? 

Conservation of Mechanical Energy 

Fig. 8-32 

Problems 7,18, 
and 21. 

III 

In Problem 2, what is the speed of the car at (a) point A, 
(b) point B, and (c) point C? (d) How high will the car go on the 
last hill, which is too high for it to cross? (e) If we substitute a sec­
ond car with twice the mass, what then are the answers to (a) 
through (d)? 

(a) In Problem 3, what is the speed of the book when it 
reaches the hands? (b) If we substituted a second book with twice 
the mass, what would its speed be? (c) If, instead, the book were 
thrown down, would the answer to (a) increase, decrease, or re­
main the same? 

www (a) In Problem 5, what is the speed of the flake 
when it reaches the bottom of the bowl? (b) If we substituted a sec­
ond flake with twice the mass, what would its speed be? (c) If, 
instead, we gave the flake an initial downward speed along the 
bowl, would the answer to (a) increase, decrease, or remain the 
same? 

(a) In Problem 8, using energy techniques rather than the 
techniques of Chapter 4, find the speed of the snowball as it 
reaches the ground below the cliff. What is that speed (b) if the 
launch angle is changed to 41.0 0 below the horizontal and (c) if the 
mass is changed to 2.50 kg? 

SSM A 5.0 g marble is fired vertically upward using a spring 
gun. The spring must be compressed 8.0 cm if the marble is to just 
reach a target 20 m above the marble's position on the compressed 
spring. (a) What is the change I:!.Ug in the gravitational potential en­
ergy of the marble - Earth system during the 20 m ascent? (b) 
What is the change I:!. Us in the elastic potential energy of the spring 
during its launch of the marble? (c) What is the spring constant of 
the spring? 

(a) In Problem 4, what initial speed must be given the ball so 
that it reaches the vertically upward position with zero speed? What 
then is its speed at (b) the lowest point and (c) the point on the right 
at which the ball is level with the initial point? (d) If the ball's mass 

were doubled, would the answers to (a) through (c) increase, de­
crease, or remain the same? 

SSM In Fig. 8-33, a runaway truck with failed brakes is mov­
ing downgrade at 130 kmlh just before the driver steers the truck 
up a frictionless emergency escape ramp with an inclination of 0 = 
150. The truck's mass is 1.2 X 104 kg. (a) What minimum length L 
must the ramp have if the truck is to stop (momentarily) along it? 
(Assume the truck is a particle, and justify that assumption.) Does 
the minimum length L increase, decrease, or remain the same if (b) 
the truck's mass is decreased and (c) its speed is decreased? 

Fig. 8-33 Problem 15. 

A 700 g block is released from rest at height 110 above a ver­
tical spring with spring constant k = 400 N/m and negligible mass. 
The block sticks to the spring and momentarily stops after com­
pressing the spring 19.0 cm. How much work is done (a) by the 
block on the spring and (b) by the spring on the block? (c) What is 
the value of 110? (d) If the block were released from height 2.00110 
above the spring, what would be the maximum compression of the 
spring? 

In Problem 6, what are the magnitudes of (a) the horizontal 
component and (b) the vertical component of the net force acting 
on the block at point Q? (c) At what height 11 should the block be 
released from rest so that it is on the verge of losing contact with 
the track at the top of the loop? (On the verge of losing contact 
means that the normal force on the block from the track has just 
then become zero.) (d) Graph the magnitude of the normal force on 
the block at the top of the loop versus initial height h, for the range 
h = Otol1 = 6R. 

(a) In Problem 7, what is the speed of the ball at the lowest 
point? (b) Does the speed increase, decrease, or remain the same if 
the mass is increased? 

Figure 8-34 shows an 8.00 kg stone 
at rest on a spring. The spring is compressed 
10.0 cm by the stone. (a) What is the spring 
constant? (b) The stone is pushed down an 
additional 30.0 cm and released. What is the 
elastic potential energy of the compressed 
spring just before that release? (c) What is 
the change in the gravitational potential en­

Fig. 8-34 

Problem 19. 

ergy of the stone-Earth system when the stone moves from the re­
lease point to its maximum height? (d) What is that maximum height, 
measured from the release point? 

A pendulum consists of a 2.0 kg stone swinging on a 4.0 m 
string of negligible mass. The stone has a speed of 8.0 m/s when it 
passes its lowest point. (a) What is the speed when the string is at 
600 to the vertical? (b) What is the greatest angle with the vertical 
that the string will reach during the stone's motion? (c) If the poten­
tial energy of the pendulum - Earth system is taken to be zero at the 
stone's lowest point, what is the total mechanical energy of the 
system? 



Figure 8-32 shows a pendulum of length L = 1.25 m. Its bob 
(which effectively has all the mass) has speed Vo when the cord makes 
an angle lJo = 40.0° with the vertical. (a) What is the speed of the bob 
when it is in its lowest position if Vo = 8.00 mls? What is the least 
value that Vo can have if the pendulum is to swing down and then up 
(b) to a horizontal position, and (c) to a vertical position with the 
cord remaining straight? (d) Do the answers to (b) and (c) increase, 
decrease, or remain the same if lJo is increased by a few degrees? 

A 60 kg skier starts from rest at height H = 20 m 
above the end of a ski-jump ramp (Fig. 8-35) and leaves the ramp 
at angle IJ = 28°. Neglect the effects of air resistance and assume 
the ramp is frictionless. (a) What is the maximum height h of his 
jump above the end of the ramp? (b) If he increased his weight by 
putting on a backpack, would h then be greater, less, or the same? 

H J __________ _ 
Fig. 8-35 Problem 22. 

IlW The string in Fig. 8-36 is L = 120 cm long, has a ball 
attached to one end, and is fixed at its other end. The distance d 
from the fixed end to a fixed peg at point P is 75.0 cm. When the 
initially stationary ball is released with the string horizontal as 
shown, it will swing along the dashed arc. What is its speed when it 
reaches (a) its lowest point and (b) its highest point after the string 
catches on the peg? 

1-1----L-----'j 
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Fig. 8-36 Problems 23 and 70. 

A block of mass m = 2.0 kg is dropped 
from height h = 40 cm onto a spring of spring 
constant k = 1960 N/m (Fig. 8-37). Find the maxi­
mum distance the spring is compressed. 

At t = 0 a 1.0 kg ball is thrown from a tall 
tower with 11 = (18 mls)1 + (24 m/s»). What is flU 
of the ball-Earth system between t = 0 and t = 

6.0 s (still free fall)? 

A conservative force F = (6.0x - 12)1 N, 
where x is in meters, acts on a particle moving 
along an x axis. The potential energy U associated 
with this force is assigned a value of 27 J at x = O. 
(a) Write an expression for U as a function of x, 

h 

_1 

Fig. 8-37 

Problem 24. 

PROBLEMS 191 

with U in joules and x in meters. (b) What is the maximum positive 
potential energy? At what (c) negative value and (d) positive value 
of x is the potential energy equal to zero? 

Tarzan, who weighs 688 N, swings from a cliff at the end of a 
vine 18 m long (Fig. 8-38). From the top of the cliff to the bottom of 
the swing, he descends by 3.2 m. The vine will break if the force on 
it exceeds 950 N. (a) Does the vine break? (b) If no, what is the 
greatest force on it during the swing? If yes, at what angle with the 
vertical does it break? 

Fig.8-38 Problem 27. 

Figure 8-39a applies to the spring in a cork gun (Fig. 8-39b); 
it shows the spring force as a function of the stretch or compression 
of the spring. The spring is compressed by 5.5 cm and used to pro­
pel a 3.8 g cork from the gun. (a) What is the speed of the cork if it 
is released as the spring passes through its relaxed position? (b) 
Suppose, instead, that the cork sticks to the spring and stretches it 
1.5 cm before separation occurs. What now is the speed of the cork 
at the time of release? 

(a) 

Compressed Cork 
spring 

~~_llI-x o 
(b) 

Fig. 8-39 Problem 28, 

SSM WWW In Fig. 8-40, a block of mass m = 12 kg is re­
leased from rest on a frictionless incline of angle IJ = 30°. Below 
the block is a spring that can be compressed 2.0 cm by a force of 
270 N. The block momentarily stops when it compresses the spring 
by 5.5 cm. (a) How far does the block move down the incline from 
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its rest position to this stopping point? (b) What is the speed of the 
block just as it touches the spring? 

Fig. 8-40 Problems 29 and 35. 

A 2.0 kg breadbox on a frictionless incline of angle () = 

40° is connected, by a cord that runs over a pulley, to a light spring 
of spring constant k = 120 N/m, as shown in Fig. 8-41. The box is 
released from rest when the spring is unstretched. Assume that the 
pulley is massless and frictionless. (a) What is the speed of the box 
when it has moved 10 cm down the incline? (b) How far down the 
incline from its point of release does the box slide before momen­
tarily stopping, and what are the (c) magnitude and (d) direction 
(up or down the incline) ofthe box's acceleration at the instant the 
box momentarily stops? 

Fig. 8-41 Problem 30. 

ILW A block with mass 
m = 2.00 kg is placed against a 
spring on a frictionless incline 
with angle () = 30.0° (Fig. 8-42). 
(The block is not attached to the 
spring.) The spring, with spring 
constant k = 19.6 N/cm, is com-
pressed 20.0 cm and then re- Fig. 8-42 Problem 31. 
leased. (a) What is the elastic po-
tential energy of the compressed spring? (b) What is the change 
in the gravitational potential energy of the block - Earth system 
as the block moves from the release point to its highest point on 
the incline? (c) How far along the incline is the highest point from 
the release point? 

In Fig. 8-43, a chain is held on a frictionless table with one­
fourth of its length hanging over the edge. If the chain has length 

Fig. 8-43 Problem 32. 

L = 28 cm and mass m = 0.012 kg, how much work is required to 
pull the hanging part back onto the table? 

In Fig. 8-44, a spring with k = 170 N/m is at the top of a 
frictionless incline of angle () = 37.0°. The lower end of the incline is 
distance D = 1.00 m from the end of the spring, which is at its re­
laxed length. A 2.00 kg canister is pushed against the spring until the 
spring is compressed 0.200 m and released from rest. (a) What is the 
speed of the canister at the instant the spring returns to its relaxed 
length (which is when the canister loses contact with the spring)? (b) 
What is the speed of the canister when it reaches the lower end of 
the incline? 

Fig. 8-44 Problem 33. 

A boy is initially seated on the top of a hemispherical ice 
mound of radius R = 13.8 m. He begins to slide down the ice, with 
a negligible initial speed (Fig. 8-45). Approximate the ice as being 
frictionless. At what height does the boy lose contact with the ice? 

Fig. 8-45 Problem 34. 

In Fig. 8-40, a block of mass m = 3.20 kg slides from rest a 
distance d down a frictionless incline at angle () = 30.0° where it 
runs into a spring of spring constant 431 N/m. When the block mo­
mentarily stops, it has compressed the spring by 21.0 cm. What are 
(a) distance d and (b) the distance between the point of the first 
block-spring contact and the point where the block's speed is 
greatest? 

Two children are playing a game in which they try to hit 
a small box on the floor with a marble fired from a spring-loaded 
gun that is mounted on a table. The target box is horizontal dis­
tance D = 2.20 m from the edge of the table; see Fig. 8-46. Bobby 

Fig. 8-46 Problem 36. 



compresses the spring 1.10 cm, but the center of the marble falls 
27.0 cm short of the center of the box. How far should Rhoda com­
press the spring to score a direct hit? Assume that neither the 
spring nor the ball encounters friction in the gun. 

A uniform cord of length 25 cm and mass 15 g is initially 
stuck to a ceiling. Later, it hangs vertically from the ceiling with only 
one end still stuck. What is the change in the gravitational potential 
energy of the cord with this change in orientation? (Hint: Consider a 
differential slice of the cord and then use integral calculus.) 

Reading a Potential Energy Curve 
Figure 8-47 shows a plot of potential energy U versus posi­

tion x of a 0.200 kg particle that can travel only along an x axis un­
der the influence of a conservative force. The graph has these val­
ues: UA = 9.00 J, Uc = 20.00 J, and UD = 24.00 J. The particle is 
released at the point where U forms a "potential hill" of "height" 
UB = 12.00 J, with kinetic energy 4.00 1. What is the speed of the 
particle at (a) x = 3.5 m and (b) x = 6.5 m? What is the position of 
the turning point on (c) the right side and (d) the left side? 

Fig. 8-47 Problem 38. 

Figure 8-48 shows a plot of potential energy U versus po­
sition x of a 0.90 kg particle that can travel only along an x axis. 
(Nonconservative forces are not involved.) Three values are 
UA = 15.0 J, UB = 35.0 J, and Uc = 45.01. The particle is released 
at x = 4.5 m with an initial speed of 7.0 mis, headed in the negative 
x direction. (a) If the particle can reach x = 1.0 m, what is its speed 
there, and if it cannot, what is its turning point? What are the (b) 
magnitude and (c) direction of the force on the particle as it begins 
to move to the left of x = 4.0 m? Suppose, instead, the particle is 
headed in the positive x direction when it is released at x = 4.5 m 
at speed 7.0 mls. (d) If the particle can reach x = 7.0 m, what is its 
speed there, and if it cannot, what is its turning point? What are the 
(e) magnitude and (f) direction of the force on the particle as it be­
gins to move to the right ofx = 5.0 m? 

Fig. 8-48 Problem 39. 
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The potential energy of a diatomic molecule (a two-atom 
system like H2 or 02) is given by 

A B 
U=---

1'12 ,.6' 

where ris the separation of the two atoms of the molecule and A 
and B are positive constants. This potential energy is associated 
with the force that binds the two atoms together. (a) Find the equilib­
rium separation- that is, the distance between the atoms at which the 
force on each atom is zero. Is the force repulsive (the atoms are 
pushed apart) or attractive (they are pulled together) if their separa­
tion is (b) smaller and ( c) larger than the equilibrium separation? 

A single conservative force F(x) acts on a 1.0 kg particle 
that moves along an x axis. The potential energy U(x) associated 
with F(x) is given by 

U(x) = -4x e-xl4 J, 

where x is in meters. At x = 5.0 m the particle has a kinetic energy 
of 2.0 1. (a) What is the mechanical energy of the system? (b) Make 
a plot of U(x) as a function of x for 0 :S X :S 10 m, and on the same 
graph draw the line that represents the mechanical energy of the 
system. Use part (b) to determine (c) the least value of x the parti­
cle can reach and (d) the greatest value of x the particle can reach. 
Use part (b) to determine (e) the maximum kinetic energy of the 
particle and (f) the value of x at which it occurs. (g) Determine an 
expression in newtons and meters for F(x) as a function of x. (h) 
For what (finite) value of x does F(x) = O? 

Work Done on a System by an External Force 
A worker pushed a 27 kg block 9.2 m along a level floor at con­

stant speed with a force directed 32° below the horizontal. If the coef­
ficient of kinetic friction between block and floor was 0.20, what were 
(a) the work done by the worker's force and (b) the increase in ther­
mal energy of the block - floor system? 

A collie drags its bed box across a floor by applying a hori­
zontal force of 8.0 N. The kinetic frictional force acting on the box 
has magnitude 5.0 N. As the box is dragged through 0.70 m along 
the way, what are (a) the work done by the collie's applied force 
and (b) the increase in thermal energy of the bed and floor? 

A horizontal force of magnitude 35.0 N pushes a block of mass 
4.00 kg across a floor where the coefficient of kinetic friction is 0.600. 
(a) How much work is done by that applied force on the block-floor 
system when the block slides through a displacement of 3.00 m across 
the floor? (b) During that displacement, the thermal energy of the 
block increases by 40.0 1. What is the increase in thermal energy of 
the floor? (c) What is the increase in the kinetic energy of the block? 

SSM A rope is used to pull a 3.57 kg block at constant speed 
4.06 m along a horizontal floor. The force on the block from the 
rope is 7.68 N and directed 15.0° above the horizontal. What are 
(a) the work done by the rope's force, (b) the increase in thermal 
energy of the block-floor system, and (c) the coefficient of kinetic 
friction between the block and floor? 

Conservation of Energy 
An outfielder throws a baseball with an initial speed of 81.8 

mi/h. Just before an infielder catches the ball at the same level, the 
ball's speed is 110 ft/s. In foot-pounds, by how much is the mechan­
ical energy of the ball-Earth system reduced because of air drag? 
(The weight of a baseball is 9.0 oz.) 
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A 75 g Frisbee is thrown from a point 1.1 m above the ground 
with a speed of 12 m/s. When it has reached a height of 2.1 m, its 
speed is 10.5 m/s. What was the reduction in Emec of the 
Frisbee-Earth system because of air drag? 

In Fig. 8-49, a block slides down an incline. As it moves from 
point A to point B, which are 5.0 m apart, force F acts on the 
block, with magnitude 2.0 N and directed down the incline. The 
magnitude of the frictional force acting on the block is 10 N. If the 
kinetic energy of the block increases by 35 J between A and B, how 
much work is done on the block by the gravitational force as the 
block moves from A to B? 

Fig. 8-49 Problems 48 and 71. 

SSM IlW A 25 kg bear slides, from rest, 12 m down a lodge­
pole pine tree, moving with a speed of 5.6 mls just before hitting 
the ground. (a) What change occurs in the gravitational potential 
energy of the bear-Earth system during the slide? (b) What is the 
kinetic energy of the bear just before hitting the ground? (c) What 
is the average frictional force that acts on the sliding bear? 

A 60 kg skier leaves the end of a ski-jump ramp with a 
velocity of 24 mls directed 25° above the horizontal. Suppose that 
as a result of air drag the skier returns to the ground with a speed of 
22 mis, landing 14 m vertically below the end of the ramp. From the 
launch to the return to the ground, by how much is the mechanical 
energy of the skier-Earth system reduced because of air drag? 

During a rockslide, a 520 kg rock slides from rest down a hill­
side that is 500 m long and 300 m high. The coefficient of kinetic 
friction between the rock and the hill surface is 0.25. (a) If the grav­
itational potential energy U of the rock - Earth system is zero at 
the bottom of the hill, what is the value of U just before the slide? 
(b) How much energy is transferred to thermal energy during the 
slide? (c) What is the kinetic energy of the rock as it reaches the 
bottom of the hill? (d) What is its speed then? 

A large fake cookie sliding on a horizontal surface is at­
tached to one end of a horizontal spring with spring constant k = 

400 N/m; the other end of the spring is fixed in place. The cookie 
has a kinetic energy of 20.0 J as it passes through the spring's equi­
librium position. As the cookie slides, a frictional force of magni­
tude 10.0 N acts on it. (a) How far will the cookie slide from the 
equilibrium position before coming momentarily to rest? (b) What 
will be the kinetic energy of the cookie as it slides back through the 
equilibrium position? 

In Fig. 8-50, a 3.5 kg block is accelerated from rest by a 
compressed spring of spring constant 640 N/m. The block leaves 

r---- No friction 

Fig. 8-50 Problem 53. 

the spring at the spring's relaxed length and then travels over a 
horizontal floor with a coefficient of kinetic friction ILk = 0.25. The 
frictional force stops the block in distance D = 7.8 m. What are (a) 
the increase in the thermal energy of the block - floor system, (b) 
the maximum kinetic energy of the block, and (c) the original com­
pression distance of the spring? 

A child whose weight is 267 N slides down a 6.1 m play­
ground slide that makes an angle of 20° with the horizontal. The 
coefficient of kinetic friction between slide and child is 0.10. (a) 
How much energy is transferred to thermal energy? (b) If she 
starts at the top with a speed of 0.457 mis, what is her speed at the 
bottom? 

ILW In Fig. 8-51, a block of mass In = 2.5 kg slides head on 
into a spring of spring constant k = 320 N/m. When the block 
stops, it has compressed the spring by 7.5 cm. The coefficient of ki­
netic friction between block and floor is 0.25. While the block is in 
contact with the spring and being brought to rest, what are (a) the 
work done by the spring force and (b) the increase in thermal en­
ergy of the block-floor system? (c) What is the block's speed just 
as it reaches the spring? 

I 
o 

Fig. 8-51 Problem 55. 

You push a 2.0 kg block against a horizontal spring, com­
pressing the spring by 15 cm. Then you release the block, and the 
spring sends it sliding across a tabletop. It stops 75 cm from where 
you released it. The spring constant is 200 N/m. What is the 
block - table coefficient of kinetic friction? 

In Fig. 8-52, a block slides along a track from one level to 
a higher level after passing through an intermediate valley. The 
track is frictionless until the block reaches the higher level. There a 
frictional force stops the block in a distance d. The block's initial 
speed Vo is 6.0 mis, the height difference h is 1.1 m, and ILk is 0.60. 
Findd. 

/1=0 

Fig. 8-52 Problem 57. 

A cookie jar is moving up a 40° incline. At a point 55 cm 
from the bottom of the incline (measured along the incline), the jar 
has a speed of 1.4 m/s. The coefficient of kinetic friction between 
jar and incline is 0.15. (a) How much farther up the incline will the 
jar move? (b) How fast will it be going when it has slid back to the 
bottom of the incline? (c) Do the answers to (a) and (b) increase, 
decrease, or remain the same if we decrease the coefficient of ki­
netic friction (but do not change the given speed or location)? 

A stone with a weight of 5.29 N is launched vertically from 
ground level with an initial speed of 20.0 mis, and the air drag on it 



is 0.265 N throughout the flight. What are (a) the maximum height 
reached by the stone and (b) its speed just before it hits the 
ground? 

A 4.0 kg bundle starts up a 30° incline with 128 J of kinetic 
energy. How far will it slide up the incline if the coefficient of ki­
netic friction between bundle and incline is 0.30? 

When a click beetle is upside down on its back, it 
jumps upward by suddenly arching its back, transfel1'ing energy 
stored in a muscle to mechanical energy. This launching mecha­
nism produces an audible click, giving the beetle its name. 
Videotape of a certain click-beetle jump shows that a beetle of 
mass 111 = 4.0 X 10-6 kg moved directly upward by 0.77 mm during 
the launch and then to a maximum height of h = 0.30 m. During 
the launch, what are the average magnitudes of (a) the external 
force on the beetle's back from the floor and (b) the acceleration 
of the beetle in terms of g? 

In Fig. 8-53, a block slides along a path that is without fric­
tion until the block reaches the section of length L = 0.75 m, which 
begins at height h = 2.0 m on a ramp of angle () = 30°. In that sec­
tion, the coefficient of kinetic friction is 0040. The block passes 
through point A with a speed of 8.0 mls. If the block can reach point 
B (where the friction ends), what is its speed there, and if it cannot, 
what is its greatest height above A? 

Fig. 8-53 Problem 62. 

The cable of the 1800 kg elevator cab in Fig. 8-54 snaps 
when the cab is at rest at the first floor, where the cab bottom is a 
distance d = 3.7 m above a spring of spring constant Ie = 0.15 
MN/m. A safety device clamps the cab 
against guide rails so that a constant fric­
tional force of 404 kN opposes the cab's 
motion. (a) Find the speed of the cab just 
before it hits the spring. (b) Find the maxi­
mum distance x that the spring is com­
pressed (the frictional force still acts dur­
ing this compression). (c) Find the 
distance that the cab will bounce back up 
the shaft. (d) Using conservation of en­
ergy, find the approximate total distance 
that the cab will move before coming to 
rest. (Assume that the frictional force on 
the cab is negligible when the cab is sta­
tionary.) 

Fig. 8-54 

Problem 63. 

In Fig. 8-55, a block is released from rest at height d = 40 
cm and slides down a frictionless ramp and onto a first plateau, 
which has length d and where the coefficient of kinetic friction is 
0.50. If the block is still moving, it then slides down a second fric­
tionless ramp through height d/2 and onto a lower plateau, which 
has length d/2 and where the coefficient of kinetic friction is again 
0.50. If the block is still moving, it then slides up a frictionless ramp 
until it (momentarily) stops. Where does the block stop? If its final 
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stop is on a plateau, state which one and give the distance L from 
the left edge of that plateau. If the block reaches the ramp, give the 
height H above the lower plateau where it momentarily stops. 

"d/2'1 
Fig. 8-55 Problem 64. 

A particle can slide along a track with elevated ends and a 
flat central part, as shown in Fig. 8-56. The flat part has length L = 

40 cm. The curved portions of the track are frictionless, but for the 
flat part the coefficient of kinetic friction is fhk = 0.20. The particle 
is released from rest at point A, which is at height h = Ll2. How far 
from the left edge of the flat part does the particle finally stop? 

Fig. 8-56 Problem 65. 

Additional Problems 
A 3.2 kg sloth hangs 3.0 m above the ground. (a) What is the 

gravita tional potential energy of the sloth - Earth system if we take 
the reference point y = 0 to be at the ground? If the sloth drops to 
the ground and air drag on it is assumed to be negligible, what are 
the (b) kinetic energy and (c) speed of the sloth just before it 
reaches the ground? 

SSM A spring (Ie = 200 N/m) is fixed at the top of a friction­
less plane inclined at angle () = 40° (Fig. 8-57). A 1.0 kg block is 
projected up the plane, from an initial position that is distance 
d = 0.60 m from the end of the relaxed spring, with an initial kinetic 
energy of 161. (a) What is the kinetic energy of the block at the in­
stant it has compressed the spring 0.20 m? (b) With what kinetic en­
ergy must the block be projected up the plane if it is to stop momen­
tarily when it has compressed the spring by 0040 m? 

Fig. 8-57 Problem 67. 

From the edge of a cliff, a 0.55 kg projectile is launched with 
an initial kinetic energy of 15501. The projectile's maximum up­
ward displacement from the launch point is +140 m. What are the 
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(a) horizontal and (b) vertical components of its launch velocity? 
(c) At the instant the vertical component of its velocity is 65 mis, 
what is its vertical displacement from the launch point? 

In Fig. 8-58, the pulley has negligible mass, and both it 
and the inclined plane are frictionless. Block A has a mass of 1.0 
kg, block B has a mass of 2.0 kg, and angle (J is 30°. If the blocks are 
released from rest with the connecting cord taut, what is their total 
kinetic energy when block B has fallen 25 cm? 

Fig.8-58 Problem 69. 

In Fig. 8-36, the string is L = 120 cm long, has a ball attached 
to one end, and is fixed at its other end. A fixed peg is at point P. 
Released from rest, the ball swings down until the string catches on 
the peg; then the ball swings up, around the peg. If the ball is to 
swing completely around the peg, what value must distance d ex­
ceed? (Hint: The ball must still be moving at the top of its swing. 
Do you see why?) 

SSM In Fig. 8-49, a block is sent sliding down a frictionless 
ramp. Its speeds at points A and Bare 2.00 mls and 2.60 mis, re­
spectively. Next, it is again sent sliding down the ramp, but this time 
its speed at point A is 4.00 m/s. What then is its speed at point B? 

Two snowy peaks are at heights H = 850 m and h = 750 m 
above the valley between them. A ski run extends between the 
peaks, with a total length of 3.2 km and an average slope of (J = 30° 
(Fig. 8-59). (a) A skier starts from rest at the top of the higher peak. 
At what speed will he arrive at the top of the lower peak if he 
coasts without using ski poles? Ignore friction. (b) Approximately 
what coefficient of kinetic friction between snow and skis would 
make him stop just at the top of the lower peak? 
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Fig. 8-59 Problem 72. 

SSM The temperature of a 
plastic cube is monitored while the 
cube is pushed 3.0 m across a floor 
at constant speed by a horizontal 
force of 15 N. The thermal energy of 
the cube increases by 20 1. What is 
the increase in the thermal energy 
of the floor along which the cube 
slides? 

A skier weighing 600 N goes 
over a frictionless circular hill of ra­
dius R = 20 m (Fig. 8-60). Assume 
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Fig.8-60 Problem 74. 

that the effects of air resistance on the skier are negligible. As she 
comes up the hill, her speed is 8.0 mls at point B, at angle (J = 20°. 
(a) What is her speed at the hilltop (point A) if she coasts without 
using her poles? (b) What minimum speed can she have at Band 
still coast to the hilltop? ( c) Do the answers to these two ques­
tions increase, decrease, or remain the same if the skier weighs 
700 N instead of 600 N? 

SSM To form a pendulum, a 0.092 kg ball is attached to one 
end of a rod of length 0.62 m and negligible mass, and the other 
end of the rod is mounted on a pivot. The rod is rotated until it is 
straight up, and then it is released from rest so that it swings down 
around the pivot. When the ball reaches its lowest point, what are 
(a) its speed and (b) the tension in the rod? Next, the rod is rotated 
until it is horizontal, and then it is again released from rest. ( c) At 
what angle from the vertical does the tension in the rod equal the 
weight of the ball? (d) If the mass of the ball is increased, does the 
answer to (c) increase, decrease, or remain the same? 

We move a particle along an x axis, first outward from x = 1.0 
m to x = 4.0 m and then back to x = 1.0 m, while an external force 
acts on it. That force is directed along the x axis, and its x compo­
nent can have different values for the outward trip and for the re­
turn trip. Here are the values (in newtons) for four situations, 
where x is in meters: 

Outward Inward 

(a) +3.0 -3.0 

(b) +5.0 +5.0 

(c) +2.0x -2.0x 

(d) +3.0x2 +3.0x2 

Find the net work done on the particle by the external force for the 
round trip for each of the four situations. (e) For which, if any, is the 
external force conservative? 

SSM A conservative force F(x) acts on a 2.0 kg particle that 
moves along an x axis. The potential energy U(x) associated with 
F(x) is graphed in Fig. 8-61. When the particle is at x = 2.0 m, its 
velocity is -1.5 mls. What are the (a) magnitude and (b) direction 
of F(x) at this position? Between what positions on the (c) left and 
(d) right does the particle move? (e) What is the particle's speed at 
x = 7.0m? 
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At a certain factory, 300 kg crates are dropped vertically from 
a packing machine onto a conveyor belt moving at 1.20 mls (Fig. 
8-62). (A motor maintains the belt's constant speed.) The coeffi­
cient of kinetic friction between the belt and each crate is 00400. 
After a short time, slipping between the belt and the crate ceases, 
and the crate then moves along with the belt. For the period of 
time during which the crate is being brought to rest relative to the 
belt, calculate, for a coordinate system at rest in the factory, (a) the 
kinetic energy supplied to the crate, (b) the magnitude of the ki­
netic frictional force acting on the crate, and (c) the energy sup­
plied by the motor. (d) Explain why answers (a) and (c) differ. 

Fig. 8-62 Problem 78. 

A 1500 kg car begins sliding down a 5.00 inclined road 
with a speed of 30 km/h. The engine is turned off, and the only 
forces acting on the car are a net frictional force from the road and 
the gravitational force. After the car has traveled 50 m along the 
road, its speed is 40 km/h. (a) How much is the mechanical energy 
of the car reduced because of the net frictional force? (b) What is 
the magnitude of that net frictional force? 

In Fig. 8-63, a 1400 kg block of granite is pulled up an incline 
at a constant speed of 1.34 mls by a cable and winch. The indicated 
distances are d1 = 40 m and d2 = 30 m. The coefficient of kinetic 
friction between the block and the incline is 0040. What is the 
power due to the force applied to the block by the cable? 

Fig. 8-63 Problem 80. 

A particle can move along only an x axis, where conservative 
forces act on it (Fig. 8-64 and the following table). The particle is 
released at x = 5.00 m with a kinetic energy of K = 14.0 J and a 
potential energy of U = O. If its motion is in the negative direction 
of the x axis, what are its (a) K and (b) U at x = 2.00 m and its (c) 
K and (d) U at x = O? If its motion is in the positive direction of 
the x axis, what are its (e) K and (f) U at x = 11.0 m, its (g) K and 
(h) U at x = 12.0 m, and its (i) K and (j) U at x = 13.0 m? (k) Plot 
U(x) versus x for the range x = 0 to x = 13.0 m. 

--~-L __ IL-~~ __ L-~~ __ LI~L-~I __ ~-L~ __ x(m) 
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Fig. 8-64 Problems 81 and 82. 
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Next, the particle is released from rest at x = O. What are (I) its 
kinetic energy at x = 5.0 m and (m) the maximum positive position 
Xmax it reaches? (n) What does the particle do after it reaches xmax? 

Range 

Ot02.00 m 
2.00 m to 3.00 m 
3.00 m to 8.00 m 

8.00 m to 11.0 m 

11.0 m to 12.0 m 

12.0 m to 15.0 m 

Force 

F1 = +(3.00 N)i 
F2 = +(5.00 N)i 
F=O 

F3 = -(4.00 N)i 

F4 = -(1.00 N)i 

F=O 

For the arrangement of forces in Problem 81, a 2.00 kg parti­
cle is released at x = 5.00 m with an initial velocity of 3045 mls in 
the negative direction of the x axis. (a) If the particle can reach 
x = 0 m, what is its speed there, and if it cannot, what is its turning 
point? Suppose, instead, the particle is headed in the positive x di­
rection when it is released at x = 5.00 m at speed 3045 mls. (b) If 
the particle can reach x = 13.0 m, what is its speed there, and if it 
cannot, what is its turning point? 

A 15 kg block is accelerated at 2.0 mls2 along a horizon­
tal frictionless surface, with the speed increasing from 10 mls to 30 
m/s. What are (a) the change in the block's mechanical energy and 
(b) the average rate at which energy is transferred to the block? 
What is the instantaneous rate of that transfer when the block's 
speed is (c) 10 mls and (d) 30 mls? 

84 A certain spring is found not to conform to Hooke's law. The 
force (in newtons) it exerts when stretched a distance x (in meters) 
is found to have magnitude 52.8x + 38Ax2 in the direction oppos­
ing the stretch. (a) Compute the work required to stretch the 
spring from x = 0.500 m to x = 1.00 m. (b) With one end of the 
spring fixed, a particle of mass 2.17 kg is attached to the other end 
of the spring when it is stretched by an amount x = 1.00 m. If the 
particle is then released from rest, what is its speed at the instant 
the stretch in the spring is x = 0.500 m? (c) Is the force exerted by 
the spring conservative or nonconservative? Explain. 

Each second, 1200 m3 of water passes over a waterfall 100 
m high. Three-fourths of the kinetic energy gained by the water in 
falling is transferred to electrical energy by a hydroelectric genera­
tor. At what rate does the generator produce electrical energy? (The 
mass of 1 m3 of water is 1000 kg.) 

In Fig. 8-65, a small block is sent through point A with a 
speed of 7.0 m/s. Its path is without friction until it reaches the sec­
tion of length L = 12 m, where the coefficient of kinetic friction is 
0.70. The indicated heights are 171 = 6.0 m and 172 = 2.0 m. What 
are the speeds ofthe block at (a) point Band (b) point C? (c) Does 

Fig. 8-65 Problem 86. 
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the block reach point D? If so, what is its speed there; if not, how far 
through the section of friction does it travel? 

A massless rigid rod of length L has a ball of mass m 
attached to one end (Fig. 8-66). The other end is pivoted in such a 
way that the ball will move in a vertical circle. First, assume that 
there is no friction at the pivot. The system is launched downward 
from the horizontal position A with initial speed 1'0' The ball just 
barely reaches point D and then stops. (a) Derive an expression for 
1'0 in terms of L, 111, and g. (b) What is the tension in the rod when 
the ball passes through B? (c) A little grit is placed on the pivot to 
increase the friction there. Then the ball just barely reaches C 
when launched from A with the same speed as before. What is the 
decrease in the mechanical energy during this motion? (d) What is 
the decrease in the mechanical energy by the time the ball finally 
comes to rest at B after several oscillations? 
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Fig. 8-66 Problem 87. 

A 1.50 kg water balloon is shot straight up with an initial 
speed of 3.00 m/s. (a) What is the kinetic energy of the balloon just 
as it is launched? (b) How much work does the gravitational force 
do on the balloon during the balloon's full ascent? (c) What is the 
change in the gravitational potential energy of the balloon - Earth 
system during the full ascent? (d) If the gravitational potential en­
ergy is taken to be zero at the launch point, what is its value when 
the balloon reaches its maximum height? (e) If, instead, the gravi­
tational potential energy is taken to be zero at the maximum 
height, what is its value at the launch point? (f) What is the maxi­
mum height? 

A 2.50 kg beverage can is thrown directly downward from a 
height of 4.00 m, with an initial speed of 3.00 m/s. The air drag on 
the can is negligible. What is the kinetic energy of the can (a) as it 
reaches the ground at the end of its fall and (b) when it is halfway 
to the ground? What are (c) the kinetic energy of the can and (d) 
the gravitational potential energy of the can - Earth system 0.200 s 
before the can reaches the ground? For the latter, take the refer­
ence point y = 0 to be at the ground. 

A constant horizontal force moves a 50 kg trunk 6.0 m up a 
30° incline at constant speed. The coefficient of kinetic friction be­
tween the trunk and the incline is 0.20. What are (a) the work done 
by the applied force and (b) the increase in the thermal energy of 
the trunk and incline? 

Two blocks, of masses M = 2.0 kg and 2M, are connected to a 
spring of spring constant k = 200 N/m that has one end fixed, as 
shown in Fig. 8-67. The horizontal surface and the pulley are fric­
tionless, and the pulley has negligible mass. The blocks are released 
from rest with the spring relaxed. (a) What is the combined kinetic 
energy of the two blocks when the hanging block has fallen 0.090 
m? (b) What is the kinetic energy of the hanging block when it has 

fallen that 0.090 m? (c) What maximum distance does the hanging 
block fall before momentarily stopping? 

Fig. 8-67 Problem 91. 

A volcanic ash flow is moving across horizontal ground when 
it encounters a 10° upslope. The front of the flow then travels 920 
m up the slope before stopping. Assume that the gases entrapped 
in the flow lift the flow and thus make the frictional force from the 
ground negligible; assume also that the mechanical energy of the 
front of the flow is conserved. What was the initial speed of the 
front of the flow? 

A playground slide is in the form of an arc of a circle that has 
a radius of 12 m. The maximum height of the slide is h = 4.0 m, and 
the ground is tangent to the circle (Fig. 8-68). A 25 kg child starts 
from rest at the top of the slide and has a speed of 6.2 mls at the 
bottom. (a) What is the length of the slide? (b) What average fric­
tional force acts on the child over this distance? If, instead of the 
ground, a vertical line through the top of the slide is tangent to the 
circle, what are (c) the length of the slide and (d) the average fric­
tional force on the child? 

Fig. 8-68 Problem 93. 

The luxury liner Queen Elizabeth 2 has a diesel-electric power 
plant with a maximum power of 92 MW at a cruising speed of 32.5 
knots. What forward force is exerted on the ship at this speed? 
(1 knot = 1.852 km/h.) 

A factory worker accidentally releases a 180 kg crate that was 
being held at rest at the top of a ramp that is 3.7 m long and in­
clined at 39° to the horizontal. The coefficient of kinetic friction be­
tween the crate and the ramp, and between the crate and the hori­
zontal factory floor, is 0.28. (a) How fast is the crate moving as it 
reaches the bottom of the ramp? (b) How far will it subsequently 
slide across the floor? (Assume that the crate's kinetic energy does 
not change as it moves from the ramp onto the floor.) (c) Do the 
answers to (a) and (b) increase, decrease, or remain the same if we 
halve the mass of the crate? 

If a 70 kg baseball player steals home by sliding into the plate 
with an initial speed of 10 mls just as he hits the ground, (a) what is 
the decrease in the player's kinetic energy and (b) what is the in­
crease in the thermal energy of his body and the ground along 
which he slides? 



A 0.50 kg banana is thrown directly upward with an initial 
speed of 4.00 mls and reaches a maximum height of 0.80 m. What 
change does air drag cause in the mechanical energy of the ba­
nana - Earth system during the ascent? 

A metal tool is sharpened by being held against the rim of a 
wheel on a grinding machine by a force of 180 N. The frictional 
forces between the rim and the tool grind off small pieces of the 
tool. The wheel has a radius of 20.0 cm and rotates at 2.50 rev/s. 
The coefficient of kinetic friction between the wheel and the tool is 
0.320. At what rate is energy being transferred from the motor dri­
ving the wheel to the thermal energy of the wheel and tool and to 
the kinetic energy of the material thrown from the tool? 

A swimmer moves through the water at an average speed of 
0.22 m/s. The average drag force is 110 N. What average power is 
required of the swimmer? 

An automobile with passengers has weight 16 400 N and is 
moving at 113 kmlh when the driver brakes, sliding to a stop. The 
frictional force on the wheels from the road has a magnitude of 
8230 N. Find the stopping distance. 

A 0.63 kg ball thrown directly upward with an initial speed 
of 14 mls reaches a maximum height of 8.1 m. What is the change 
in the mechanical energy of the ball-Earth system during the as­
cent of the ball to that maximum height? 

1 The summit of Mount Everest is 8850 m above sea level. (a) 
How much energy would a 90 kg climber expend against the gravi­
tational force on him in climbing to the summit from sea level? (b) 
How many candy bars, at 1.25 MJ per bar, would supply an energy 
equivalent to this? Your answer should suggest that work done 
against the gravitational force is a very small part of the energy ex­
pended in climbing a mountain. 

A sprinter who weighs 670 N runs the first 7.0 m of a race in 
1.6 s, starting from rest and accelerating uniformly. What are the 
sprinter's (a) speed and (b) kinetic energy at the end of the 1.6 s? 
(c) What average power does the sprinter generate during the 1.6 s 
interval? 

A 20 kg object is acted on by a conservative force given by 
F = -3.0x - 5.0x2, with F in newtons and x in meters. Take the 
potential energy associated with the force to be zero when the 
object is at x = O. (a) What is the potential energy of the system 
associated with the force when the object is at x = 2.0 m? (b) If 
the object has a velocity of 4.0 mls in the negative direction of the 
x axis when it is at x = 5.0 m, what is its speed when it passes 
through the origin? (c) What are the answers to (a) and (b) if the 
potential energy of the system is taken to be -8.0 J when the ob­
ject is at x = O? 

A machine pulls a 40 kg trunk 2.0 m up a 40° ramp at con­
stant velocity, with the machine's force on the trunk directed paral­
lel to the ramp. The coefficient of kinetic friction between the 
trunk and the ramp is 0040. What are (a) the work done on the 
trunk by the machine's force and (b) the increase in thermal en­
ergy of the trunk and the ramp? 

The spring in the muzzle of a child's spring gun has a spring 
constant of 700 N/m. To shoot a ball from the gun, first the spring is 
compressed and then the ball is placed on it. The gun's trigger then 
releases the spring, which pushes the ball through the muzzle. The 
ball leaves the spring just as it leaves the outer end of the muzzle. 
When the gun is inclined upward by 30° to the horizontal, a 57 g ball 
is shot to a maximum height of 1.83 m above the gun's muzzle. 
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Assume air drag on the ball is negligible. (a) At what speed does 
the spring launch the ball? (b) Assuming that friction on the ball 
within the gun can be neglected, find the spring's initial compres­
sion distance. 

The only force acting on a particle is conservative force F. If 
the particle is at point A, the potential energy of the system associ­
ated with F and the particle is 40 J. If the particle moves from point 
A to point B, the work done on the particle by F is +25 J. What is 
the potential energy of the system with the particle at B? 

'1 In 1981, Daniel Goodwin climbed 443 m up the exterior of 
the Sears Building in Chicago using suction cups and metal clips. 
(a) Approximate his mass and then compute how much energy he 
had to transfer from biomechanical (internal) energy to the gravi­
tational potential energy of the Earth-Goodwin system to lift 
himself to that height. (b) How much energy would he have had to 
transfer if he had, instead, taken the stairs inside the building (to 
the same height)? 

A 60.0 kg circus performer slides 4.00 m down a pole to the 
circus floor, starting from rest. What is the kinetic energy of the 
performer as she reaches the floor if the frictional force on her 
from the pole (a) is negligible (she will be hurt) and (b) has a mag­
nitude of 500 N? 

A 5.0 kg block is projected at 5.0 mls up a plane that is 
inclined at 30° with the horizontal. How far up along the 
plane does the block go (a) if the plane is frictionless and (b) if the 
coefficient of kinetic friction between the block and the plane is 
OAO? (c) In the latter case, what is the increase in thermal energy 
of block and plane during the block's ascent? (d) If the block then 
slides back down against the frictional force, what is the block's 
speed when it reaches the original projection point? 

A 9040 kg projectile is fired vertically upward. Air drag de­
creases the mechanical energy of the projectile-Earth system by 
68.0 kJ during the projectile's ascent. How much higher would the 
projectile have gone were air drag negligible? 

"I A 70.0 kg man jumping from a window lands in an elevated 
fire rescue net 11.0 m below the window. He momentarily stops 
when he has stretched the net by 1.50 m. Assuming that mechani­
cal energy is conserved during this process and that the net func­
tions like an ideal spring, find the elastic potential energy of the net 
when it is stretched by 1.50 m. 

A 30 g bullet moving a horizontal velocity of 500 mls comes 
to a stop 12 cm within a solid wall. (a) What is the change in the 
bullet's mechanical energy? (b) What is the magnitude of the aver­
age force from the wall stopping it? 

A 1500 kg car starts from rest on a horizontal road and gains 
a speed of 72 kmlh in 30 s. (a) What is its kinetic energy at the end 
of the 30 s? (b) What is the average power required of the car dur­
ing the 30 s interval? (c) What is the instantaneous power at the 
end of the 30 s interval, assuming that the acceleration is constant? 

A 1.50 kg snowball is shot upward at an angle of 34.0° to the 
horizontal with an initial speed of 20.0 mls. (a) What is its initial ki­
netic energy? (b) By how much does the gravitational potential en­
ergy of the snowball-Earth system change as the snowball moves 
from the launch point to the point of maximum height? (c) What is 
that maximum height? 

A 68 kg sky diver falls at a constant terminal speed of 59 mls. 
(a) At what rate is the gravitational potential energy of the 
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Earth -sky diver system being reduced? (b) At what rate is the sys­
tem's mechanical energy being reduced? 

A 20 kg block on a horizontal surface is attached to a hori­
zontal spring of spring constant k = 4.0 kN/m. The block is pulled 
to the right so that the spring is stretched 10 cm beyond its relaxed 
length, and the block is then released from rest. The frictional force 
between the sliding block and the surface has a magnitude of SO N. 
(a) What is the kinetic energy of the block when it has moved 2.0 
cm from its point of release? (b) What is the kinetic energy of the 
block when it first slides back through the point at which the spring 
is relaxed? (c) What is the maximum kinetic energy attained by the 
block as it slides from its point of release to the point at which the 
spring is relaxed? 

Resistance to the motion of an automobile consists of road 
friction, which is almost independent of speed, and air drag, which 
is proportional to speed-squared. For a certain car with a weight of 
12 000 N, the total resistant force F is given by F = 300 + l.Sv2, 

with F in newtons and v in meters per second. Calculate the power 
(in horsepower) required to accelerate the car at 0.92 m/s2 when 
the speed is SO km/h. 

SSM A 50 g ball is thrown from a window with an initial 
velocity of S.O m/s at an angle of 30° above the horizontal. Using 
energy methods, determine (a) the kinetic energy of the ball at the 

top of its flight and (b) its speed when it is 3.0 m below the window. 
Does the answer to (b) depend on either (c) the mass of the ball or 
(d) the initial angle? 

A spring with a spring constant of 3200 Nlm is initially 
stretched until the elastic potential energy of the spring is 1.44 J. 
(U = 0 for the relaxed spring.) What is /). U if the initial stretch is 
changed to (a) a stretch of 2.0 cm, (b) a compression of 2.0 cm, and 
( c) a compression of 4.0 cm? 

A locomotive with a power capability of 1.5 MW can 
accelerate a train from a speed of 10 m/s to 25 mls in 6.0 min. (a) 
Calculate the mass of the train. Find (b) the speed of the train and 
( c) the force accelerating the train as functions of time (in seconds) 
during the 6.0 min interval. (d) Find the distance moved by the 
train during the interval. 

SSM A 0.42 kg shuffleboard disk is initially at rest when a 
player uses a cue to increase its speed to 4.2 m/s at constant accel­
eration. The acceleration takes place over a 2.0 m distance, at the 
end of which the cue loses contact with the disk. Then the disk 
slides an additional 12 m before stopping. Assume that the shuffle­
board court is level and that the force of friction on the disk is con­
stant. What is the increase in the thermal energy of the disk-court 
system (a) for that additional 12 m and (b) for the entire 14 m dis­
tance? (c) How much work is done on the disk by the cue? 



Every mechanical engineer hired as an expert witness to reconstruct a 
traffic accident uses physics. Every trainer who coaches a ballerina on how to 
leap uses physics. Indeed, analyzing complicated motion of any sort requires sim­
plification via an understanding of physics. In this chapter we discuss how the 
complicated motion of a system of objects, such as a car or a ballerina, can be 
simplified if we determine a special point of the system - the center of mass of 
that system. 

Here is a quick example. If you toss a ball into the air without much spin on the 
ball (Fig. 9-1a), its motion is simple-it follows a parabolic path, as we discussed in 
Chapter 4, and the ball can be treated as a particle. If, instead, you flip a baseball bat 
into the air (Fig. 9-1b), its motion is more complicated. Because every part of the bat 
moves differently, along paths of many different shapes, you cannot represent the 
bat as a particle. Instead, it is a system of particles each of which follows its own path 
through the air. However, the bat has one special point-the center of mass-that 
does move in a simple parabolic path. The other parts of the bat move around the 
center of mass. (To locate the center of mass, balance the bat on an outstretched fin­
ger; the point is above your finger, on the bat's central axis.) 

You cannot make a career of flipping baseball bats into the air, but you can 
make a career of advising long-jumpers or dancers on how to leap properly into 
the air while either moving their arms and legs or rotating their torso. Your 
starting point would be the person's center of mass because of its simple motion. 

The Center of Mass 
We define the center of mass (com) of a system of particles (such as a person) in 
order to predict the possible motion of the system. 

The center of mass of a system of particles is the point that moves as though (1) all of the 
system's mass were concentrated there and (2) all external forces were applied there. 

In this section we discuss how to determine where the center of mass of a system 
of particles is located. We start with a system of only a few particles, and then we 
consider a system of a great many particles (a solid body, such as a baseball bat). 
Later in the chapter, we discuss how the center of mass of a system moves when 
external forces act on the system. 

(a) 

(b) 

Fig. 9-1 (a) A ball tossed into the air 
follows a parabolic path. (b) The center 
of mass (black dot) of a baseball bat 
flipped into the air follows a parabolic 
path, but all other points of the bat fol­
low more complicated curved paths. 
(a: Richard Megna/Fundamental 

Photographs) 

I 
I 
I 
I 

I 
I 
I 
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Figure 9-2a shows two particles of masses ml and mz separated by distance d. We have 
arbitrarily chosen the origin of an x axis to coincide with the particle of mass mI' We 
define the position of the center of mass (com) of this two-particle system to be 

mz 
Xcom = d. 

ml + mz 
(9-1) 

Suppose, as an example, that mz = 0. Then there is only one particle, of mass mh 
and the center of mass must lie at the position of that particle; Eq. 9-1 dutifully reduces 
to Xcom = 0. If ml = 0, there is again only one particle (of mass mz), and we have, as we 
expect, Xcom = d. If ml = mz, the center of mass should be halfway between the two 
particles; Eq. 9-1 reduces to Xcom = !d, again as we expect. Finally, Eq. 9-1 tells us that 
if neither ml nor mz is zero, Xcom can have only values that lie between zero and d; that 
is, the center of mass must lie somewhere between the two particles. 

Figure 9-2b shows a more generalized situation, in which the coordinate sys­
tem has been shifted leftward. The position of the center of mass is now defined 

as 
mlxl + mzxz 

Xcom = 
ml + mz 

(9-2) 

Note that if we put Xl = 0, then Xz becomes d and Eq. 9-2 reduces to Eq. 9-1, as 
it must. Note also that in spite of the shift of the coordinate system, the center 
of mass is still the same distance from each particle. 

We can rewrite Eq. 9-2 as 

(9-3) 

in which M is the total mass of the system. (Here, M = ml + mz.) We can extend 
this equation to a more general situation in which n particles are strung out along 
the X axis. Then the total mass is M = ml + mz + ... + mIll and the location of the 
center of mass is 

(9-4) 

The SUbscript i is an index that takes on all integer values from 1 to n. 

)I:'~ This is the center of mass 
of the two-particle system. 

/J!l Xcom ~x 

r-d~ 

y 

/----- X
COIll -------1'1 

rill ~ c, 1112 

--1---------'--" f- d ,":m ~- x 

(a) 

A2~ 
(b) 

Shifting the axis 
does not change 
the relative position 
of the com. 

Fig.9-2 (a) Two particles of masses ml and m2 are separated by distance d. The dot 
labeled com shows the position of the center of mass, calculated from Eq. 9-1. (b) The 
same as (a) except that the origin is located farther from the particles. The position of the 
center of mass is calculated from Eq. 9-2. The location of the center of mass with respect to 
the particles is the same in both cases. 



If the particles are distributed in three dimensions, the center of mass must 
be identified by three coordinates. By extension of Eq. 9-4, they are 

1 11 

Yearn = -M L miYi, 
i~l 

1 11 

Zeom = -M L miZi' 
i~l 

(9-5) 

We can also define the center of mass with the language of vectors. First 
recall that the position of a particle at coordinates Xi' Yi' and Zi is given by a posi­
tion vector: 

(9-6) 

Here the index identifies the particle, and i, J, and k are unit vectors pointing, 
respectively, in the positive direction of the X, y, and Z axes. Similarly, the position 
of the center of mass of a system of particles is given by a position vector: 

(9-7) 

The three scalar equations of Eq. 9-5 can now be replaced by a single vector 
equation, 

1 II 

Yearn = -M L mli, 
i~l 

(9-8) 

where again M is the total mass of the system. You can check that this equation 
is correct by substituting Eqs. 9-6 and 9-7 into it, and then separating out the X, 

y, and Z components. The scalar relations ofEq. 9-5 result. 

An ordinary object, such as a baseball bat, contains so many particles (atoms) 
that we can best treat it as a continuous distribution of matter. The "particles" 
then become differential mass elements dm, the sums of Eq. 9-5 become inte­
grals, and the coordinates of the center of mass are defined as 

Xeom = ! I X dm, Yearn = ! I Y dm, Zeom = ! I Z dm, (9-9) 

where M is now the mass of the object. 
Evaluating these integrals for most common objects (such as a television set or 

a moose) would be difficult, so here we consider only uniform objects. Such objects 
have uniform density, or mass per unit volume; that is, the density p (Greek letter 
rho) is the same for any given element of an object as for the whole object. From Eq. 
1-8, we can write 

dm M 
p= dV =Y' (9-10) 

where dV is the volume occupied by a mass element dm, and V is the total vol­
ume of the object. Substituting dm = (MIV) dV from Eq. 9-10 into Eq. 9-9 gives 

Xeom = ~ I X dV, Yearn = ~ I Y dV, Zeom = ~ I Z dV. (9-11) 

You can bypass one or more of these integrals if an object has a point, a line, 
or a plane of symmetry. The center of mass of such an object then lies at that 
point, on that line, or in that plane. For example, the center of mass of a uniform 
sphere (which has a point of symmetry) is at the center of the sphere (which is 
the point of symmetry). The center of mass of a uniform cone (whose axis is a 
line of symmetry) lies on the axis of the cone. The center of mass of a banana 
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(which has a plane of symmetry that splits it into two equal parts) lies somewhere in 
the plane of simmetry. 

The center of mass of an object need not lie within the object. There is no 
dough at the com of a doughnut, and no iron at the com of a horseshoe. 

com of plate with missing piece 

Figure 9-3a shows a uniform metal plate P of radius 2R from 
which a disk of radius R has been stamped out (removed) in 
an assembly line. The disk is shown in Fig. 9-3b. Using the xy 
coordinate system shown, locate the center of mass camp of 
the remaining plate. 

(1) Let us roughly locate the center of plate P by using sym­
metry. We note that the plate is symmetric about the x axis 
(we get the portion below that axis by rotating the upper 
portion about the axis). Thus, camp must be on the x axis. 
The plate (with the disk removed) is not symmetric about 
the y axis. However, because there is somewhat more mass 
on the right of the y axis, camp must be somewhat to the 
right of that axis. Thus, the location of camp should be 
roughly as indicated in Fig. 9-3a. Our job here is to find the 
actual value of that location. 

(2) Plate P is an extended solid body, so in principle we 
can use Eqs. 9-11 to find the actual coordinates of the center 
of mass of plate P. Here we are simply looking for the xy co­
ordinates of the center of mass because the plate is thin and 
uniform. If it had any appreciable thickness, we would just 
say that the center of mass is midway across the thickness. 
Still, even neglecting the width, using Eqs. 9-11 would be 
challenging because we would need a function for the shape 
of the plate with its hole, and then we would need to inte­
grate the function in two dimensions. 

(3) Here is a much easier way: In working with centers 
of mass, we can assume that the mass of a uniform object (as 
we have here) is concentrated in a particle at the object's 
center of mass. Thus we can treat the object as a particle and 
avoid any two-dimensional integration. 

Calculations: First, put the stamped-out disk (call it disk 
S) back into place (Fig. 9-3c) to form the original composite 
plate (call it plate C). Because of its circular symmetry, the 
center of mass cams for disk S is at the center of S, at x = 

- R (as shown). Similarly, the center of mass come for com­
posite plate C is at the center of C, at the origin (as shown). 
We then have the following: 

Center Location 
Plate of Mass of com Mass 

p camp Xp =? mp 
S corns Xs= -R ms 
C come Xc = 0 mc= ms + mp 

Assume that mass ms of disk S is concentrated in a parti­
cle at Xs = - R, and mass mp is concentrated in a particle 
at Xp (Fig. 9-3d). Next treat these two particles as a two­
particle system, using Eq. 9-2 to find their center of mass 
Xs+p. We get 

msxs + mpxp 
Xs+p = 

ms+ mp 
(9-12) 

Next note that the combination of disk S and plate P is 
composite plate C. Thus, the position Xs+p of coms+p must 
coincide with the position Xc of come, which is at the origin; so 
Xs+p = Xc = O. Substituting this into Eq. 9-12 and solving for 
xp,weget 

ms 
Xp = -Xs--' 

mp 
(9-13) 

We can relate these masses to the face areas of Sand P by 
noting that 

mass = density X volume 
= density X thickness X area. 

ms densitys thicknesss areas 
--= X x--
mp densityp thicknessp areap' 

Then 

Because the plate is uniform, the densities and thicknesses 
are equal; we are left with 

ms areas areas 
areap areac - areas 

'TTR2 1 
'TT(2R)2 - 'TTR2 3 . 

Substituting this and Xs = - R into Eq. 9-13, we have 

xp = ~R. (Answer) 

Ffrus Additional examples, video, and practice available at WileyPLUS 



Fig.9-3 (a) Plate Pis a metal plate of 
radius 2R, with a circular hole of radius R. 
The center of mass of P is at point compo 
(b) Disk S. (e) Disk S has been put back 
into place to form a composite plate C. 
The center of mass cams of disk S and the 
center of mass come of plate C are shown. 
(d) The center of mass coms+p ofthe com­
bination of Sand P coincides with como 
which is at x = O. 

(a) 

DiskS 

co~s 

(b) 

(c) 
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y 

2R 

cornp 
I 
I 

: Plate p 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Y I 
I 
I 
I 
I 
I 
I 
I 
I 

Composite plate 
--+~- C=S+p 

cornel 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 

x 

x 

Assume the plate's 
mass is concentrated 
as a particle at the 
plate's center of mass. 

Here too, assume the 
mass is concentrated 
as a particle at the 
center of mass. 

Here too. 

Here are those 
three particles. 

(d) -----... ~_>-------- x 
corns 

Disk particleJ 
come comp l L p,"," PMU'" 

The com of the composite 
plate is the same as the 
com of the two pieces. 
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com of three particles 

Three particles of masses ml = 1.2 kg, m2 = 2.5 kg, and 
m3 = 3.4 kg form an equilateral triangle of edge length 
a = 140 cm. Where is the center of mass of this system? 

origin and the x axis coincides with one of the triangle's 
sides (Fig. 9-4). The three particles then have the following 
coordinates: 

Particle Mass (kg) x (em) y (em) 

We are dealing with particles instead of an extended solid 
body, so we can use Eq. 9-5 to locate their center of mass. 
The particles are in the plane of the equilateral triangle, so 
we need only the first two equations. 

1 
2 

3 

1.2 

2.5 
3.4 

o 
140 
70 

o 
o 

120 

Calculations: We can simplify the calculations by choosing 
the x and Y axes so that one of the particles is located at the 

The total mass M of the system is 7.1 kg. 
From Eq. 9-5, the coordinates of the center of mass are 

_ ~ ~ _ mlxl + m2x2 + m3x3 
This is the position 
vector r;,om for the 
com (it points from 

Xeom - M .~ mixi - M 
1=1 

_ (1.2 kg)(O) + (2.5 kg)(140 cm) + (3.4 kg)(70 cm) 
7.1 kg to the com). 

= 83cm (Answer) 

1 ~ mIYI + m2Y2 + m3Y3 
and Yeom = -M ~ miYi = M 

i=1 

_ (1.2 kg)(O) + (2.5 kg)(O) + (3.4 kg)(120 cm) 
7.1 kg 

= 58 cm. (Answer) 

Fig. 9-4 Three particles form an equilateral triangle of edge 
length a. The center of mass is located by the position vector -';'om' 

In Fig. 9-4, the center of mass is located by the position vec­
tor feom' which has components Xeom and Yeom' 

~s Additional examples, Video, and practice available at WileyPLUS 

)' _CHECKPOINT 1 

-j---j----I- x 

The figure shows a uniform square plate from which four identical squares at the cor­
ners will be removed. (a) Where is the center of mass of the plate originally? Where is it 
after the removal of (b) square 1; ( c) squares 1 and 2; (d) squares 1 and 3; (e) squares 1, 
2, and 3; (f) all four squares? Answer in terms of quadrants, axes, or points (without cal­
culation, of course). 

Newton's Second law for a System of Particles 
Now that we know how to locate the center of mass of a system of particles, we 
discuss how external forces can move a center of mass. Let us start with a simple 
system of two billiard balls. 

If you roll a cue ball at a second billiard ball that is at rest, you expect that the 
two-ball system will continue to have some forward motion after impact. You 
would be surprised, for example, if both balls came back toward you or if both 
moved to the right or to the left. 

What continues to move forward, its steady motion completely unaffected by 
the collision, is the center of mass of the two-ball system. If you focus on this 
point-which is always halfway between these bodies because they have identi-
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cal masses-you can easily convince yourself by trial at a billiard table that this is 
so. No matter whether the collision is glancing, head-on, or somewhere in 
between, the center of mass continues to move forward, as if the collision had 
never occurred. Let us look into this center-of-mass motion in more detail. 

To do so, we replace the pair of billiard balls with an assemblage of n particles 
of (possibly) different masses. We are interested not in the individual motions of 
these particles but only in the motion of the center of mass of the assemblage. 
Although the center of mass is just a point, it moves like a particle whose mass is 
equal to the total mass of the system; we can assign a position, a velocity, and an ac­
celeration to it. We state (and shall prove next) that the vector equation that gov­
erns the motion of the center of mass of such a system of particles is 

~et = Macorn (system ofpartic1es). (9-14) 

This equation is Newton's second law for the motion of the center of mass of 
a system of particles. Note that its form is the same as the form of the equation 
(Fuet = ma) for the motion of a single particle. However, the three quantities that 
appear in Eq. 9-14 must be evaluated with some care: 

1. Fnet is the net force of all external forces that act on the system. Forces on one 
part of the system from another part of the system (internal forces) are not in­
cluded in Eq. 9-14. 

2. M is the total mass of the system. We assume that no mass enters or leaves the 
system as it moves, so that M remains constant. The system is said to be closed. 

3. acorn is the acceleration of the center of mass of the system. Equation 9-14 gives 
no information about the acceleration of any other point of the system. 

Equation 9-14 is equivalent to three equations involving the components of 
Fnet and acorn along the three coordinate axes. These equations are 

Fnet,x = Macorn,x Fnet,y = Macorn,y Fnet,z = Macorn,z' (9-15) 

Now we can go back and examine the behavior of the billiard balls. Once 
the cue ball has begun to roll, no net external force acts on the (two-ball) system. 
Thus, because Fnet = 0, Eq. 9-14 tells us that acorn = 0 also. Because accelera­
tion is the rate of change of velocity, we conclude that the velocity of the center of 
mass of the system of two balls does not change. When the two balls collide, the 
forces that come into play are internal forces, on one ball from the other. Such forces 
do not contribute to the net force Fnet> which remains zero. Thus, the center of mass 
of the system, which was moving forward before the collision, must continue to 
move forward after the collision, with the same speed and in the same direction. 

Equation 9-14 applies not only to a system of particles but also to a solid 
body, such as the bat of Fig. 9-1h. In that case, M in Eq. 9-14 is the mass of the bat 
and F;let is the gravitational force on the bat. Equation 9-14 then tells us that 
acorn = g. In other words, the center of mass of the bat moves as if the bat were a 
single particle of mass M, with force Fg acting on it. 

Figure 9-5 shows another interesting case. Suppose that at a fireworks display, a 
rocket is launched on a parabolic path. At a certain point, it explodes into frag­
ments. If the explosion had not occurred, the rocket would have continued along 
the trajectory shown in the figure. The forces of the explosion are internal to the 
system (at first the system is just the rocket, and later it is its fragments); that is, they 
are forces onyarts of the system from other parts. If we ignore air drag, the net ex­
ternal force Fnet acting on the system is the gravitational force on the system, re­
gardless of whether the rocket explodes. Thus, from Eq. 9-14, the acceleration acorn 

of the center of mass of the fragments (while they are in flight) remains equal to g. 
This means that the center of mass of the fragments follows the same parabolic tra­
jectory that the rocket would have followed had it not exploded. 

The internal forces of the 
explosion cannot change 
the path of the com. 

Fig. 9-5 A fireworks rocket explodes in 
flight. In the absence of air drag, the center 
of mass of the fragments would continue to 
follow the original parabolic path, until 
fragments began to hit the ground. 
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Fig. 9-6 A grand 
jete. (Adapted from 
The Physics of 
Dance, by Kenneth 
Laws, Schirmer 
Books, 1984.) 
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Path of head 

of mass 

When a ballet dancer leaps across the stage in a grand jete, she raises her arms 
and stretches her legs out horizontally as soon as her feet leave the stage (Fig. 9-6). 
These actions shift her center of mass upward through her body. Although the shift­
ing center of mass faithfully follows a parabolic path across the stage, its movement 
relative to the body decreases the height that is attained by her head and torso, rel­
ative to that of a normal jump. The result is that the head and torso follow a nearly 
horizontal path, giving an illusion that the dancer is fioating.-:Y':t~ 

Now let us prove this important equation. From Eq. 9-8 we have, for a system of n 
particles, 

(9-16) 

in which M is the system's total mass and ~om is the vector locating the position of 
the system's center of mass. 

Differentiating Eq. 9-16 with respect to time gives 

(9-17) 

Here Vi (= drj/dt) is the velocity of the ith particle, and veom (= dreom/dt) is the 
velocity of the center of mass. 

Differentiating Eq. 9-17 with respect to time leads to 

(9-18) 

Here c( (= dv/dt) is the acceleration of the ith particle, and acorn (= dVeom /dt) is 
the acceleration of the center of mass. Although the center of mass is just a geo­
metrical point, it has a position, a velocity, and an acceleration, as if it were a particle. 

From Newton's second law, m/c4 is equal to the resultant force ~ that acts on 
the ith particle. Thus, we can rewrite Eq. 9-18 as 

Maeom = IS + IS. + IS + . . . + 1". (9-19) 

Among the forces that contribute to the right side of Eq. 9-19 will be forces that 
the particles of the system exert on each other (internal forces) and forces 
exerted on the particles from outside the system (external forces). By Newton's 
third law, the internal forces form third-law force pairs and cancel out in the sum 
that appears on the right side of Eq. 9-19. What remains is the vector sum of 
all the external forces that act on the system. Equation 9-19 then reduces to 
Eq. 9-14, the relation that we set out to prove. 
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CHECKPOINT 2 

Two skaters on frictionless ice hold opposite ends of a pole of negligible mass. An axis 
runs along it, with the origin at the center of mass of the two-skater system. One skater, 
Fred, weighs twice as much as the other skater, Ethel. Where do the skaters meet if (a) 
Fred pulls hand over hand along the pole so as to draw himself to Ethel, (b) Ethel pulls 
hand over hand to draw herself to Fred, and (c) both skaters pull hand over hand? 

Motion of the com of three particles 

The three particles in Fig. 9-7 a are initially at rest. Each 
experiences an external force due to bodies outside the 
three-particle system. The directions are indicated, and the 
magnitudes are FI = 6.0 N, F2 = 12 N, and F3 = 14 N. What 
is the acceleration of the center of mass of the system, and in 
what direction does it move? 

The position of the center of mass is marked by a dot in the 
figure. We can treat the center of mass as if it were a real parti­
cle, with a mass equal to the system's total mass M = 16 kg. 

The com of the system 
will move as if all the 
mass were there and 
the net force acted there. 

Fig.9-7 (a) Three particles, initially at rest in the positions 
shown, are acted on by the external forces shown. The center of 
mass (com) of the system is marked. (b) The forces are now trans­
ferred to the center of mass of the system, which behaves like a 
particle with a mass M equal to the total mass of the system. The 
net external force Fnet and the acceleration acorn of the center of 
mass are shown. 

We can also treat the three external forces as if they act at the 
center of mass (Fig. 9-7b). 

Calculations: We can now apply Newton's second law 
(P net = rna) to the center of mass, writing 

Fnet = Macom (9-20) 

or 
~ ~ ~ --)0 

FI + F2 + F3 = Ma com 

so (9-21) 

Equation 9-20 tells us that the acceleration acom of the 
center of mass is in the same direction as the net external force 
~et on the system (Fig. 9-7b). Because the particles are ini­
tially at rest, the center of mass must also be at rest. As the 
center of mass then begins to accelerate, it must move off in 
the common direction of a com and ~et. 

We can evaluate the right side of Eq. 9-21 directly on 
a vector-capable calculator, or we can rewrite Eq. 9-21 in 
component form, find the components of acom, and then find 
acom' Along the x axis, we have 

Fix + F2x + F3x 

M 

-6.0 N + (12 N) cos 45° + 14 N = 1.03 m/s2• 

16 kg 

Along the y axis, we have 

Fly + F2y + F3y 
acom,y = M 

o + (12 N) sin 45° + 0 = 0.530 m/s2• 

16 kg 

From these components, we find that a com has the magnitude 

acom = V(acom,x)2 + (acom,y)2 

= 1.16 m/s2 = 1.2 m/s2 (Answer) 
and the angle (from the positive direction of the x axis) 

e = tan- I acom,y = 27°. 
acom,x 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 



210 CHA R 9 CENTER OF MASS AN D LI N EAR MOM ENTU M 

Linear Momentum 
In this section, we discuss only a single particle instead of a system of particles, in 
order to define two important quantities. Then in Section 9-5, we extend those de­
finitions to systems of many particles. 

The first definition concerns a familiar word-momentum-that has several 
meanings in everyday language but only a single precise meaning in physics and 
engineering. The linear momentum of a particle is a vector quantity p that is 
defined as 

p = mv (linear momentum of a particle), (9-22) 

in which m is the mass of the particle and v is its velocity. (The adjective linear is 
often dropped, but it serves to distinguish p from angular momentum, which is in­
troduced in Chapter 11 and which is associated with rotation.) Since m is always a 
positive scalar quantity, Eq. 9-22 tells us that p and v have the same direction. 
From Eq. 9-22, the SI unit for momentum is the kilogram-meter per second 
(kg· mls). 

Newton expressed his second law of motion in terms of momentum: 

The time rate of change of the momentum of a particle is equal to the net force 
acting on the particle and is in the direction of that force. 

In equation form this becomes 

-> dp 
Fnet = dt' (9-23) 

In words, Eq. 9-23 says that the net external force F;\et on a particle changes the 
particle's linear momentum p. Conversely, the linear momentum can be 
changed only by a net external force. If there is no net external force, p cannot 
change. As we shall see in Section 9-7, this last fact can be an extremely power­
ful tool in solving problems. 

Manipulating Eq. 9-23 by substituting for p from Eq. 9-22 gives, for constant 
massm, 

-> dp d dTl 
Fnet = dt = dt (mTl) = m dt = ma. 

Thus, the relations Fnet = dp/dt and Fnet = ma are equivalent expressions of 
N ewton's second law of motion for a particle. 

"'CHECKPOINT 3 

The figure gives the magnitude p of the linear momentum versus time t for a particle mov­
ing along an axis. A force directed along the axis acts on the particle. (a) Rank the four re­
gions indicated according to the magnitUde of the force, greatest first. (b) In which region 
is the particle slowing? 

4 
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The linear Momentum of a System of Particles 
Let's extend the definition of linear momentum to a system of particles. Consider 
a system of n particles, each with its own mass, velocity, and linear momentum. 
The particles may interact with each other, and external forces may act on them. 
The system as a whole has a total linear momentum P, which is defined to be the 
vector sum of the individual particles' linear momenta. Thus, 

P = P1 + P2 + P3 + ... + Pn 
= mivi + m2v 2 + m3v 3 + ... + mllvn' 

If we compare this equation with Eq. 9-17, we see that 

(9-24) 

(linear momentum, system of particles), (9-25) 

which is another way to define the linear momentum of a system of particles: 

The linear momentum of a system of particles is equal to the product of the total 
mass M of the system and the velocity of the center of mass. 

If we take the time derivative of Eq. 9-25, we find 

dP _ dVcorn - M-" 
dt - M dt - acorn' (9-26) 

Comparing Eqs. 9-14 and 9-26 allows us to write Newton's second law for a sys­
tem of particles in the equivalent form 

(system of particles), (9-27) 

where Fnet is the net external force acting on the system. This equation is the gen­
eralization of the single-particle equation Fnet = dp/dt to a system of many 
particles. In words, the equation says that the net external force Fnet on a system 
of particles changes the linear momentum P of the system. Conversely, the linear 
momentum can be changed only by a net external force. If there is no net exter­
nal force, P cannot change. 

Collision and Impulse 
The momentum p of any particle-like body cannot change unless a net 
external force changes it. For example, we could push on the body to change its 
momentum. More dramatically, we could arrange for the body to collide with a 
baseball bat. In such a collision (or crash), the external force on the body is brief, 
has large magnitude, and suddenly changes the body's momentum. Collisions oc­
cur commonly in our world, but before we get to them, we need to consider a sim­
ple collision in which a moving particle-like body (a projectile) collides with some 
other body (a target). 

Let the projectile be a ball and the target be a bat. The collision is brief, and the ball 
experiences a force that is great enough to slow, stop, or even reverse its motion. 
Figure 9-8 depicts the collision at one instant. The ball experiences a force F(t) that 

The collision of a ball with a bat collapses 
part of the ball. (Photo by Harold E. 
Edgerton. ©The Harold and Esther 
Edgerton Family Trust, courtesy of Palm 
Press, Inc.) 

Fig. 9-8 Force F(t) acts on a ball 
as the ball and a bat collide. 
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F 

F 

Favg 

The impulse in the collision 
is equal to the area under 
the curve. 

I 

~ 
I----At----I·I 

I 
ti 

I· 

(a) 

The average force gives 
the same area under the 
curve. 

J 

I 

~ 
At ·1 

(b) 

Fig.9-9 (a) The curve shows themagni­
tude of the time-varying force F(t) that acts 
on the ball in the collision of Fig. 9-8. The 
area under the curve is equal to the magni­
tude of the impulse 1 on the ball in the colli­
sion. (b) The height of the rectangle repre­
sents the average force Favg acting on the ball 
over the time interval /:"t. The area within the 
rectangle is equal to the area under the curve 
in (a) and thus is also equal to the magnitude 
of the impulse 1 in the collision. 

varies during the collision and changes the linear momentum P of the ball. That 
change is related to the force by Newton's second law written in the form F = dp/dt. 
Thus, in time interval dt, the change in the ball's momentum is 

dp = F(t) dt. (9-28) 

We can find the net change in the ball's momentum due to the collision if we inte­
grate both sides of Eq. 9-28 from a time ti just before the collision to a time tl just 
after the collision: 

(9-29) 

The left side of this equation gives us the change in momentum: lit - Pi = ~. 
The right side, which is a measure of both the magnitude and the duration of the 
collision force, is called the impulse 1 of the collision: 

-> (If--> 
J = JI, F(t) dt (impulse defined). (9-30) 

Thus, the change in an object's momentum is equal to the impulse on the object: 

Ap = 1 (linear momentum-impulse theorem). (9-31) 

This expression can also be written in the vector form 
~ ~ --> 
PI - Pi = J (9-32) 

and in such component forms as 

(9-33) 

ilf 

Pt, - Pix = F., dt. 
Ii 

and (9-34) 

If we have a function for F(t), we can evaluate 1 (and thus the change in 
momentum) by integrating the function. If we have a plot of F versus time t, we 
can evaluate 1 by finding the area between the curve and the t axis, such as in Fig. 
9-9a. In many situations we do not know how the force varies with time but we do 
know the average magnitude Favg of the force and the duration At (= tl - ti ) of 
the collision. Then we can write the magnitude of the impulse as 

J = Favg 11t. (9-35) 

The average force is plotted versus time as in Fig. 9-9b. The area under that curve 
is equal to the area under the curve for the actual force F(t) in Fig. 9-9a because 
both areas are equal to impulse magnitude J. 

Instead of the ball, we could have focused on the bat in Fig. 9-8. At any 
instant, Newton's third law tells us that the force on the bat has the same 
magnitude but the opposite direction as the force on the ball. From Eq. 9-30, this 
means that the impulse on the bat has the same magnitude but the opposite 
direction as the impulse on the ball. 

CHECKPOINT 4 
A paratrooper whose chute fails to open lands in snow; he is hurt slightly. Had he landed 
on bare ground, the stopping time would have been 10 times shorter and the collision 
lethal. Does the presence of the snow increase, decrease, or leave unchanged the values 
of (a) the paratrooper's change in momentum, (b) the impulse stopping the paratrooper, 
and (c) the force stopping the paratrooper?:t~ 



Now let's consider the force on a body when it undergoes a series of identical, re­
peated collisions. For example, as a prank, we might adjust one of those machines 
that fire tennis balls to fire them at a rapid rate directly at a wall. Each collision 
would produce a force on the wall, but that is not the force we are seeking. We 
want the average force Favg on the wall during the bombardment-that is, the av­
erage force during a large number of collisions. 

In Fig. 9-10, a steady stream of projectile bodies, with identical mass m and 
linear momenta mv, moves along an x axis and collides with a target body that is 
fixed in place. Let n be the number of projectiles that collide in a time interval lit. 
Because the motion is along only the x axis, we can use the components of the 
momenta along that axis. Thus, each projectile has initial momentum mv and 
undergoes a change lip in linear momentum because of the collision. The total 
change in linear momentum for n projectiles during interval lit is n lip. The 
resulting impulse 1 on the target during lit is along the x axis and has the same 
magnitude of n lip but is in the opposite direction. We can write this relation in 
component form as 

J = -n lip, (9-36) 

where the minus sign indicates that J and lip have opposite directions. 
By rearranging Eq. 9-35 and substituting Eq. 9-36, we find the average force 

Favg acting on the target during the collisions: 

J n n 
Favg = ~ = -~lip = -~ m liv. (9-37) 

This equation gives us Favg in terms of n/Iit, the rate at which the projectiles 
collide with the target, and liv, the change in the velocity of those projectiles. 

If the projectiles stop upon impact, then in Eq. 9-37 we can substitute, for liv, 

liv = vI - Vi = 0 - v = -v, (9-38) 

where Vi (= v) and vI (= 0) are the velocities before and after the collision, 
respectively. If, instead, the projectiles bounce (rebound) directly backward from 
the target with no change in speed, then vI = -v and we can substitute 

liv = vI - Vi = -v - v = -2v. (9-39) 

In time interval lit, an amount of mass lim = nm collides with the target. 
With this result, we can rewrite Eq. 9-37 as 

lim 
Favg = --;;r liv. (9-40) 

This equation gives the average force Favg in terms of lim/lit, the rate at which 
mass collides with the target. Here again we can substitute for liv from Eq. 9-38 
or 9-39 depending on what the projectiles do. 

CHECKPOINT 5 

The figure shows an overhead view of a ball bounc­
ing from a vertical wall without any change in its 
speed. Consider the change 11[1 in the ball's linear 
momentum. (a) Is I1px positive, negative, or zero? 
(b) Is I1py positive, negative, or zero? (c) What is the 
direction of 11[1? 
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Fig. 9-10 A steady stream of projectiles, 
with identical linear momenta, collides with 
a target, which is fixed in place. The average 
force Favg on the target is to the right and 
has a magnitude that depends on the rate at 
which the projectiles collide with the target 
or, equivalently, the rate at which mass col­
lides with the target. 
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Two-dimensional impulse, race car-wall collision 

Race car-wall collision. Figure 9-11a is an overhead view of 
the path taken by a race car driver as his car collides with the 
racetrack wall. Just before the collision, he is traveling at 
speed Vi = 70 mls along a straight line at 30° from the wall. 
Just after the collision, he is traveling at speed Vt = 50 mls 
along a straight line at 10° from the wall. His mass m is 80 kg. 

(a) What is the impulse 1 on the driver due to the collision? 

We can treat the driver as a particle-like body and thus apply 
the physics of this section. However, we cannot calculate 7 di­
rectly from Eq. 9-30 because we do not know anything about 
the force F(t) on the driver during the collision. That is, we do 
not have a function of F(t) or a plot for it and thus cannot 
integrate to find 1. However, we can find 1 from the change in 
the driver's linear momentum P via Eq. 9-32 (1 = Pt - Pi)' 

Calculations: Figure 9-11b shows the driver's momentum Pi 
before the collision (at angle 30° from the positive x direc­
tion) and his momentumPtafter the collision (at angle -10°). 
From Eqs. 9-32 and 9-22 (p = mv), we can write 

(9-41) 

We could evaluate the right side of this equation directly on 
a vector-capable calculator because we know m is 80 kg, vf 
is 50 mls at -10°, and Vi is 70 mls at 30°. Instead, here we 
evaluate Eq. 9-41 in component form. 

x component: Along the x axis we have 

I, = m(vfx - Vix) 

= (80 kg)[(50 m/s) cos( -10°) - (70 m/s) cos 30°] 

= -910kg·m/s. 

y component: Along the y axis, 

Iy = m(vfy - Viy) 

= (80 kg)[(50 m/s) sine -10°) - (70 m/s) sin 30°] 

= - 3495 kg . mls = - 3500 kg . m/s. 

Impulse: The impulse is then 

1 = (-9101 - 3500)) kg· mis, (Answer) 

which means the impulse magnitude is 

I = ~n + I; = 3616 kg· mls = 3600 kg· m/s. 

The angle of 1 is given by 1, 
e = tan-1 -)-

Ix' 
(Answer) 

which a calculator evaluates as 75.4°. Recall that the physi­
cally correct result of an inverse tangent might be the 
displayed answer plus 180°. We can tell which is correct here 
by drawing the components of 1 (Fig. 9-11c). We find that e 
is actually 75.4° + 180° = 255.4°, which we can write as 

e = -105°. (Answer) 

(b) The collision lasts for 14 ms. What is the magnitude of 
the average force on the driver during the collision? 

From Eq. 9-35 (I = Favg M), the magnitude Favg of the aver­
age force is the ratio of the impulse magnitude I to the dura­
tion M of the collision. 

Calculations: We have 
I 3616kg·m/s 

Favg = t:i 0.014 s 

= 2.583 X 105 N = 2.6 X 105 N. (Answer) 

Using F = ma with m = 80 kg, you can show that the magni­
tude of the driver's average acceleration during the collision 
is about 3.22 X 103 m/s2 = 329g, which is fatal. 

Surviving: Mechanical engineers attempt to reduce the 
chances of a fatality by designing and building racetrack 
walls with more "give," so that a collision lasts longer. For 
example, if the collision here lasted 10 times longer and the 
other data remained the same, the magnitudes of the aver­
age force and average acceleration would be 10 times less 
and probably survivable. 

Fig. 9-11 (a) Overhead 
view of the path taken by a 
race car and its driver as the 
car slams into the racetrack 
wall. (b) The initial momen­
tum Pi and final momen­
tum Pr o!.the driver. (c) The 
impulse J on the driver 
during the collision. 

The collision The impulse on the car 
is equal to the change 
in the momentum. ~hoa~;~:u~~ I y 

I Wall 

I 

(a) (b) (c) 

Additional examples, video, and practice available at WileyPLUS 
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Conservation of Linear Momentum 
Suppose that the net external force Fnet (and thus the net impulse 1) acting on a 
system of particles is zero (the system is isolated) and that no particles leave or 
enter the system (the system is closed). Putting Fnet = 0 in Eq. 9-27 then yields 
iPJdt = O,or 

P = constant (closed, isolated system). (9-42) 

In words, 

If no net external force acts on a system of particles, the total linear momentum P of 
the system cannot change. 

This result is called the law of conservation of linear momentum. It can also be 
written as 

(closed, isolated system). 

In words, this equation says that, for a closed, isolated system, 

(
total linear momentum) = (total linear momentum) 

at some initial time ti at some later time tf . 

(9-43) 

Caution: Momentum should not be confused with energy. In the sample prob­
lems of this section, momentum is conserved but energy is definitely not. 

Equations 9-42 and 9-43 are vector equations and, as such, each is equivalent 
to three equations corresponding to the conservation of linear momentum in 
three mutually perpendicular directions as in, say, an xyz coordinate system. 
Depending on the forces acting on a system, linear momentum might be 
conserved in one or two directions but not in all directions. However, 

If the component of the net external force on a closed system is zero along an axis, then 
the component of the linear momentum of the system along that axis cannot change. 

As an example, suppose that you toss a grapefruit across a room. During its 
flight, the only external force acting on the grapefruit (which we take as the 
system) is the gravitational force Fg, which is directed vertically downward. Thus, 
the vertical component of the linear momentum of the grapefruit changes, 
but since no horizontal external force acts on the grapefruit, the horizontal 
component of the linear momentum cannot change. 

Note that we focus on the external forces acting on a closed system. 
Although internal forces can change the linear momentum of portions of the sys­
tem, they cannot change the total linear momentum of the entire system. 

The sample problems in this section involve explosions that are either one­
dimensional (meaning that the motions before and after the explosion are along 
a single axis) or two-dimensional (meaning that they are in a plane containing 
two axes). In the following sections we consider collisions. 

"'CHECKPOINT 6 

An initially stationary device lying on a frictionless floor explodes into two pieces, 
which then slide across the floor. One piece slides in the positive direction of an x axis. 
(a) What is the sum of the momenta of the two pieces after the explosion? (b) Can the 
second piece move at an angle to the x axis? ( c) What is the direction of the momentum 
of the second piece? 
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One-dimensional explosion, relative velocity, space hauler 

One-dimensional explosion: Figure 9-12a shows a space hauler 
and cargo module, of total mass M, traveling along an x axis in 
deep space. They have an initial velocity Vi of magnitude 2100 
kmlh relative to the Sun. With a small explosion, the hauler 
ejects the cargo module, of mass 0.20M (Fig. 9-12b). The hauler 
then travels 500 kmIh faster than the module along the x axis; 
that is, the relative speed vrel between the hauler and the mod­
ule is 500 kmlh. What then is the velocity V HS of the hauler rela­
tive to the Sun? 

Because the hauler-module system is closed and isolated, 
its total linear momentum is conserved; that is, 

The explosive separation 
can change the momentum 
of the parts but not the 
momentum of the system. 

O.20M O.80M 

(9-44) 

-------x ------------x 
(a) (b) 

Fig.9-12 (a) A space hauler, with a cargo module, moving at 
initial velocity Vi' (b) The hauler has ejected the cargo module. 
Now the velocities relative to the Sun are VMS for the module and 
v HS for the hauler. 

where the SUbscripts i and f refer to values before and after 
the ejection, respectively. 

Calculations: Because the motion is along a single axis, we 
can write momenta and velocities in terms of their x compo­
nents, using a sign to indicate direction. Before the ejection, 
we have 

P;=Mv;. (9-45) 

Let VMS be the velocity of the ejected module relative to the 
Sun. The total linear momentum of the system after the ejec­
tionis then 

Pf = (0.20M)VMS + (0.80M)VHS, (9-46) 

where the first term on the right is the linear momentum of the 
module and the second term is that of the hauler. 

We do not know the velocity VMS of the module relative 
to the Sun, but we can relate it to the known velocities with 

(

velocity Of) (velocity Of) ( velocity of ) 
hauler relative = hauler relative + module relative . 

to Sun to module to Sun 

In symbols, this gives us 

VHS = vrel + VMS (9-47) 
or 

Substituting this expression for VMS into Eq. 9-46, and then 
substituting Eqs. 9-45 and 9-46 into Eq. 9-44, we find 

MVi = 0.20M(VHS - Vrel) + 0.80MvHS, 

which gives us 

VHS = Vi + 0.20vreh 

or VHS = 2100 km/h + (0.20)(500 km/h) 

= 2200 km/h. (Answer) 

Two-dimensional explosion, momentum, coconut 

TWo-dimensional explosion: A firecracker placed inside a 
coconut of mass M, initially at rest on a frictionless floor, 
blows the coconut into three pieces that slide across the floor. 
An overhead view is shown in Fig. 9-13a. Piece C, with mass 
O.30M,has final speed vfc = 5.0 m/s. 

(a) What is the speed of piece B, with mass 0.20M? 

First we need to see whether linear momentum is con­
served. We note that (1) the coconut and its pieces form a 
closed system, (2) the explosion forces are internal to that 

system, and (3) no net external force acts on the system. 
Therefore, the linear momentum of the system is conserved. 

Calculations: To get started, we superimpose an xy coordi­
nate system as shown in Fig. 9-13b, with the negative direction 
of the x axis coinciding with the direction ofvfA' The x axis is at 
80° with the direction of vfC and 50° with the direction of VfB' 

Linear momentum is conserved separately along each 
axis. Let's use the y axis and write 

Pi), = P fy' (9-48) 

where subscript i refers to the initial value (before the explo­
sion), and subscript y refers to the y component of Pi or Pf . 
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Then, with vfC = 5.0 mis, we have The component Piy of the initial linear momentum is 
zero, because the coconut is initially at rest. To get an ex­
pression for P fy, we find the y component of the final linear 
momentum of each piece, using the y-component version of 
Eq. 9-22 (Py = mvy): 

0= 0 - 0.20MvfB sin 500 + (0.30M)(5.0 m/s) sin BO°, 

from which we find 

PfA,y = 0, 
VfB = 9.64 m/s = 9.6 m/s. 

(b) What is the speed of piece A? 

(Answer) 

PfB,y = -0.20MvfB,y = -0.20MvfB sin 500, 

PfC,y = 0.30MvfC,y = 0.30Mvfc sin BO°. 

(Note that PfA,y = 0 because of our choice of axes.) 
Equation 9-4B can now be written as 

Calculations: Because linear momentum is also conserved 
along the x axis, we have 

(9-49) 

Piy = Pfy = PfA,y + PfB,y + PfC,y· 

The explosive separation 
can change the momentum 
of the parts but not the 
momentum of the system. 

where Pix = 0 because the coconut is initially at rest. To 
get Pin we find the x components of the final momenta, 
using the fact that piece A must have a mass of 0.50M 
(= M - 0.20M - 0.30M): 

PfA,x = -0.50MvfA, 

PfB,x = 0.20MvfB,x = 0.20MvfB cos SOD, 

PfC,X = 0.30MvfC,x = 0.30MvfC cos BO°. 

Equation 9-49 can now be written as 

Pix = Pix = PfA,x + PfB,x + PfC,x' 

x 
Then, with vfC = 5.0 m/s and VfB = 9.64 mis, we have 

0= -0.50MvfA + 0.20M(9.64 m/s) cos 500 

(a) (b) 

Fig. 9-13 Three pieces of an exploded coconut move off in three 
directions along a frictionless floor. (a) An overhead view of the 
event. (b) The same with a two-dimensional axis system imposed. 

from which we find 

+ 0.30M(5.0 m/s) cos BO°, 

VfA = 3.0 m/s. (Answer) 

:~s Additional examples, video, and practice available at WileyPLUS 

Momentum and Kinetic Energy in Collisions 
In Section 9-6, we considered the collision of two particle-like bodies but focused 
on only one of the bodies at a time. For the next several sections we switch our fo­
cus to the system itself, with the assumption that the system is closed and isolated. 
In Section 9-7, we discussed a rule about such a system: The total linear momen­
tum P of the system cannot change because there is no net external force to 
change it. This is a very powerful rule because it can allow us to determine the re­
sults of a collision without knowing the details of the collision (such as how much 
damage is done). 

We shall also be interested in the total kinetic energy of a system of two col­
liding bodies. If that total happens to be unchanged by the collision, then the 
kinetic energy of the system is conserved (it is the same before and after the 
collision). Such a collision is called an elastic collision. In everyday collisions of 
common bodies, such as two cars or a ball and a bat, some energy is always trans­
ferred from kinetic energy to other forms of energy, such as thermal energy or en­
ergy of sound. Thus, the kinetic energy of the system is not conserved. Such a col­
lision is called an inelastic collision. 

However, in some situations, we can approximate a collision of common bod­
ies as elastic. Suppose that you drop a Superball onto a hard floor. If the collision 
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Here is the generic setup 
for an inelastic collision. 

Body 1 Body 2 

Before 
-----L;~--------0~------x 

ml 11"2 

Fig. 9-14 Bodies 1 and 2 move along an 
x axis, before and after they have an inelas­
tic collision. 

In a completely inelastic 
collision, the bodies 
stick together. 

Before \~!i ~ 0 
-----" ;_. ----s 

ml m2 
Projectile Target 

Mter -i 

x 

--------------.. ); ).--x 

ml + m2 

Fig. 9-15 A completely inelastic 
collision between two bodies. Before the 
collision, the body with mass m2 is at rest 
and the body with mass ml moves directly 
toward it. After the collision, the stuck­
together bodies move with the same 
velocity V. 

between the ball and floor (or Earth) were elastic, the ball would lose no kinetic 
energy because of the collision and would rebound to its original height. 
However, the actual rebound height is somewhat short, showing that at least 
some kinetic energy is lost in the collision and thus that the collision is somewhat 
inelastic. Still, we might choose to neglect that small loss of kinetic energy to ap­
proximate the collision as elastic. 

The inelastic collision of two bodies always involves a loss in the kinetic 
energy of the system. The greatest loss occurs if the bodies stick together, in 
which case the collision is called a completely inelastic collision. The collision of a 
baseball and a bat is inelastic. However, the collision of a wet putty ball and a bat 
is completely inelastic because the putty sticks to the bat. 

Inelastic Collisions in One Dimension 

Figure 9-14 shows two bodies just before and just after they have a one­
dimensional collision. The velocities before the collision (subscript i) and after 
the collision (subscript!) are indicated. The two bodies form our system, which is 
closed and isolated. We can write the law of conservation of linear momentum for 
this two-body system as 

(
total momentum Pi) _ (total momentum PI) 
before the collision - after the collision ' 

which we can symbolize as 

Pli + PZi = Plf + Pz! (conservation of linear momentum). (9-50) 

Because the motion is one-dimensional, we can drop the overhead arrows for 
vectors and use only components along the axis, indicating direction with a sign. 
Thus, from p = mv, we can rewrite Eq. 9-50 as 

(9-51) 

If we know values for, say, the masses, the initial velocities, and one of the final ve­
locities, we can find the other final velocity with Eq. 9-51. 

Figure 9-15 shows two bodies before and after they have a completely inelastic 
collision (meaning they stick together). The body with mass m2 happens to be ini­
tially at rest (V2i = 0). We can refer to that body as the target and to the incoming 
body as the projectile. After the collision, the stuck-together bodies move with 
velocity V. For this situation, we can rewrite Eq. 9-51 as 

mlvli = (ml + m2)V (9-52) 

or (9-53) 

If we know values for, say, the masses and the initial velocity Vii of the projectile, 
we can find the final velocity V with Eq. 9-53. Note that V must be less than Vii be­
cause the mass ratio m/(ml + mz) must be less than unity. 

In a closed, isolated system, the velocity \lcom of the center of mass of the system 
cannot be changed by a collision because, with the system isolated, there is no net 



Fig.9-16 Some freeze­
frames of the two-body system 
in Fig. 9-15, which undergoes a 
completely inelastic collision. 
The system's center of mass is 
shown in each freeze-frame. The 
velocity vcom of the center of 
mass is unaffected by the colli­
sion. Because the bodies stick 
together after the collision, their 
common velocity V must be 
equal to vcom • 

Here is the 
incoming projectile. 
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The com of the two 
bodies is between 
them and moves at a 
constant velocity. 

----------~---+---------x 

J;;= 0 

1112 
\ Here is the Y stationary target. 

\ 
\ 

The com moves at the 
same velocity even after 
the bodies stick together. 

l
r1l11 + m2 

®-t> 
\ 
\ 

I \ v-~\' r--com 
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external force to change it. To get an expression for vcom, let us return to the two­
body system and one-dimensional collision of Fig. 9-14. From Eq. 9-25 
(p = Mvcom ), we can relate vcom to the total linear momentum P of that two­
body system by writing 

(9-54) 

The total linear momentum P is conserved during the collision; so it is given by 
either side of Eq. 9-50. Let us use the left side to write 

---> ---> ---> ( ) P = Pli + P2i' 9-55 

Substituting this expression for Pin Eq. 9-54 and solving for vcom give us 

Pii + P2i 
ml + m2 

(9-56) 

The right side of this equation is a constant, and vcom has that same constant value 
before and after the collision. 

For example, Fig. 9-16 shows, in a series of freeze-frames, the motion of the 
center of mass for the completely inelastic collision of Fig. 9-15. Body 2 is the tar­
get, and its initial linear momentum in Eq. 9-56 is P2i = mZv2i = O. Body 1 is 
the projectile, and its initial linear momentum in Eq. 9-56 is PIi = mlvIi' Note 
that as the series of freeze-frames progresses to and then beyond the collision, 
the center of mass moves at a constant velocity to the right. After the 
collision, the common final speed V of the bodies is equal to vcom because then 
the center of mass travels with the stuck -together bodies. 

CHECKPOINT 7 

Body 1 and body 2 are in a completely inelastic one-dimensional collision. What is their 
final momentum if their initial momenta are, respectively, (a) 10 kg . mls and 0; (b) 10 
kg·m/s and 4 kg· m/s; (c) 10 kg· mls and -4 kg· mls? 
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Conservation of momentum, ballistic pendulum 

The ballistic pendulum was used to measure the speeds of 
bullets before electronic timing devices were developed. The 
version shown in Fig. 9-17 consists of a large block of wood of 
mass M = 5.4 kg, hanging from two long cords. A bullet of 
mass m = 9.5 g is fired into the block, coming quickly to rest. 
The block + bullet then swing upward, their center of mass 
rising a vertical distance h = 6.3 cm before the pendulum 
comes momentarily to rest at the end of its arc. What is the 
speed of the bullet just prior to the collision? 

We can see that the bullet's speed v must determine the rise 
height h. However, we cannot use the conservation of mechani­
cal energy to relate these two quantities because surely energy 
is transferred from mechanical energy to other forms (such as 
thermal energy and energy to break apart the wood) as the bul­
let penetrates the block. Nevertheless, we can split this compli­
cated motion into two steps that we can separately analyze: (1) 
the bullet-block collision and (2) the bullet-block rise, during 
which mechanical energy is conserved. 

Reasoning step 1: Because the collision within the bul­
let-block system is so brief, we can make two important 
assumptions: (1) During the collision, the gravitational 
force on the block and the force on the block from the 
cords are still balanced. Thus, during the collision, the net 
external impulse on the bullet-block system is zero. 
Therefore, the system is isolated and its total linear momen­
tum is conserved: 

(
total momentum) ( total momentum) 

before the collision - after the collision' (9-57) 

(2) The collision is one-dimensional in the sense that the di­
rection of the bullet and block just after the collision is in the 
bullet's original direction of motion. 

Because the collision is one-dimensional, the block is 
initially at rest, and the bullet sticks in the block, we use Eq. 
9-53 to express the conservation of linear momentum. 
Replacing the symbols there with the corresponding sym­
bols here, we have 

m 
V=---M- v. 

m+ 
(9-58) 

Reasoning step 2: As the bullet and block now swing up 
together, the mechanical energy of the bullet - block - Earth 
system is conserved: 

(
mechanical energy) = (mechanical energy). (9-59) 

at bottom at top 

(This mechanical energy is not changed by the force of the 
cords on the block, because that force is always directed per­
pendicular to the block's direction of travel.) Let's take the 
block's initial level as our reference level of zero gravita­
tional potential energy. Then conservation of mechanical en­
ergy means that the system's kinetic energy at the start of the 
swing must equal its gravitational potential energy at the 
highest point of the swing. Because the speed of the bul­
let and block at the start of the swing is the speed V 
immediately after the collision, we may write this con­
servation as 

~(m + M)V2 = (m + M)gh. (9-60) 

Combining steps: Substituting for V from Eq. 9-58 leads 
to 

m+M .~ 
v = v2gh 

m 
(9-61) 

= 630m/s. (Answer) 

The ballistic pendulum is a kind of "transformer," exchang­
ing the high speed of a light object (the bullet) for the low­
and thus more easily measurable-speed of a massive ob­
ject (the block). 

There are two events here. 
The bullet collides with the 
block. Then the bullet-block 
system swings upward by 
height h. 

Fig. 9-17 A ballistic pendulum, used to measure the speeds of 
bullets. 

Additional examples, video, and practice available at WileyPLUS 
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1 0 Elastic Collisions in One Dimension 
As we discussed in Section 9-8, everyday collisions are inelastic but we can 
approximate some of them as being elastic; that is, we can approximate that the 
total kinetic energy of the colliding bodies is conserved and is not transferred to 
other forms of energy: 

(
total kinetic energy) = (total kinetic energy) (9-62) 
before the collision after the collision . 

This does not mean that the kinetic energy of each colliding body cannot change. 
Rather, it means this: 

In an elastic collision, the kinetic energy of each colliding body may change, but 
the total kinetic energy of the system does not change. 

For example, the collision of a cue ball with an object ball in a game of pool 
can be approximated as being an elastic collision. If the collision is head-on 
(the cue ball heads directly toward the object ball), the kinetic energy of the cue 
ball can be transferred almost entirely to the object ball. (Still, the fact that the 
collision makes a sound means that at least a little of the kinetic energy is trans­
ferred to the energy of the sound.) 

Figure 9-18 shows two bodies before and after they have a one-dimensional colli­
sion, like a head-on collision between pool balls. A projectile body of mass ml 

and initial velocity Vli moves toward a target body of mass m2 that is initially at 
rest (V2i = 0). Let's assume that this two-body system is closed and isolated. Then 
the net linear momentum of the system is conserved, and from Eq. 9-51 we can 
write that conservation as 

mlvli = mlvlf + m2v2[ (linear momentum). (9-63) 

If the collision is also elastic, then the total kinetic energy is conserved and we 
can write that conservation as 

(kinetic energy). (9-64) 

In each of these equations, the subscript i identifies the initial velocities and the 
subscript f the final velocities of the bodies. If we know the masses of the bodies 
and if we also know Vli, the initial velocity of body 1, the only unknown quantities 
are vlf and V2[, the final velocities of the two bodies. With two equations at our dis­
posal, we should be able to find these two unknowns. 

To do so, we rewrite Eq. 9-63 as 

(9-65) 
and Eq. 9-64 as* 

ml(Vli - vlf)(Vli + vlf) = m2v~[, (9-66) 

After dividing Eq. 9-66 by Eq. 9-65 and doing some more algebra, we obtain 

(9-67) 

and (9-68) 

*In this step, we use the identity a2 - b2 = (a - b )(a + b). It reduces the amount of algebra needed to 
solve the simultaneous equations Eqs. 9-65 and 9-66. 

Before 

Here is the generic setup 
for an elastic collision with 
a stationary target. 

V2i=O 
- "---" ·-------x 
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Projectile 

After 
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Target 

-> 
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--t> 
------""":~-:. :--- X 
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Fig.9-18 Body 1 moves along anx axis 
before having an elastic collision with body 
2, which is initially at rest. Both bodies 
move along that axis after the collision. 
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Here is the generic setup 
for an elastic collision with 
a moving target. 

Ill] 11/2 

Fig. 9-19 Tho bodies headed for a one-
dimensional elastic collision. 

We note from Eq. 9-68 that v2f is always positive (the initially stationary target 
body with mass m2 always moves forward). From Eq. 9-67 we see that v]fmay be 
of either sign (the projectile body with mass mj moves forward if ml > m2 but re­
bounds if mj < m2)' 

Let us look at a few special situations. 

1. Equal masses If ml = m2, Eqs. 9-67 and 9-68 reduce to 

vlf = 0 and v2f = VIi> 

which we might call a pool player's result. It predicts that after a head-on colli­
sion of bodies with equal masses, body 1 (initially moving) stops dead in its 
tracks and body 2 (initially at rest) takes off with the initial speed of body 1. In 
head-on collisions, bodies of equal mass simply exchange velocities. This is 
true even if body 2 is not initially at rest. 

2. A massive target In Fig. 9-18, a massive target means that m2 ~ mj' For 
example, we might fire a golf ball at a stationary cannonball. Equations 9-67 
and 9-68 then reduce to ( ) 

2m] 
vlf = -Vli and v2f = -- Vli' (9-69) 

m2 

This tells us that body 1 (the golf ball) simply bounces back along its incom­
ing path, its speed essentially unchanged. Initially stationary body 2 (the 
cannonball) moves forward at a low speed, because the quantity in paren­
theses in Eq. 9-69 is much less than unity. All this is what we should expect. 

3. A massive projectile This is the opposite case; that is, mj ~ m2' This time, we fire 
a cannonball at a stationary golf ball. Equations 9-67 and 9-68 reduce to 

vlf = Vli and v2f = 2VIi' (9-70) 

Equation 9-70 tells us that body 1 (the cannonball) simply keeps on going, 
scarcely slowed by the collision. Body 2 (the golf ball) charges ahead at twice 
the speed of the cannonball. 

You may wonder: Why twice the speed? Recall the collision described by 
Eq. 9-69, in which the velocity of the incident light body (the golf ball) 
changed from +V to -v, a velocity change of 2v. The same change in velocity 
(but now from zero to 2v) occurs in this example also. 

Now that we have examined the elastic collision of a projectile and a stationary 
target, let us examine the situation in which both bodies are moving before they 
undergo an elastic collision. 

For the situation of Fig. 9-19, the conservation of linear momentum is written as 

mlvli + m2v2i = m]vjf + m2v2f' 

and the conservation of kinetic energy is written as 

I 2+1 2_] 2+ j 2 
2m l v li 2m 2v2i - 2mjVlf 2m2V2f' 

(9-71) 

(9-72) 

To solve these simultaneous equations for vlf and v2f' we first rewrite Eq. 9-71 as 

mj(Vji - vlf) = -m2(v2i - v2f)' (9-73) 
and Eq. 9-72 as 

(9-74) 

After dividing Eq. 9-74 by Eq. 9-73 and doing some more algebra, we obtain 

ml - m2 2m2 
Vlf = 

m] + m2 
VIi + 

m] + 1n2 
V2i (9-75) 

2lnj m2 - In] 
and v2f = Vii + V2i' (9-76) 

ml + 1n2 In] + 1n2 
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Note that the assignment of subscripts 1 and 2 to the bodies is arbitrary. If we ex­
change those subscripts in Fig. 9-19 and in Eqs. 9-75 and 9-76, we end up with the 
same set of equations. Note also that if we set V2i = 0, body 2 becomes a 
stationary target as in Fig. 9-18, and Eqs. 9-75 and 9-76 reduce to Eqs. 9-67 and 
9-68, respectively. 

CHECKPOINT 8 

What is the final linear momentum of the target in Fig. 9-18 if the initial linear momen­
tum of the projectile is 6 kg· mls and the final linear momentum of the projectile is (a) 2 
kg· mls and (b) -2 kg . m/s? ( c) What is the final kinetic energy of the target if the ini­
tial and final kinetic energies of the projectile are, respectively, 5 J and 2 J? 

Elastic collision, two pendulums 

Two metal spheres, suspended by vertical cords, initially just 
touch, as shown in Fig. 9-20. Sphere 1, with mass 
mi = 30 g, is pulled to the left to height hI = 8.0 cm, and 
then released from rest. After swinging down, it undergoes 
an elastic collision with sphere 2, whose mass m2 = 75 g. 
What is the velocity vlfof sphere 1 just after the collision? 

brief, we can assume that the two-sphere system is closed and 
isolated. This means that the total linear momentum of the sys­
tem is conserved. 

We can split this complicated motion into two steps that we 
can analyze separately: (1) the descent of sphere 1 (in which 
mechanical energy is conserved) and (2) the two-sphere col­
lision (in which momentum is also conserved). 

Step 1: As sphere 1 swings down, the mechanical energy of 
the sphere-Earth system is conserved. (The mechanical en­
ergy is not changed by the force of the cord on sphere 1 be­
cause that force is always directed perpendicular to the 
sphere's direction of travel.) 

Calculation: Let's take the lowest level as our reference 
level of zero gravitational potential energy. Then the kinetic 
energy of sphere 1 at the lowest level must equal the gravi­
tational potential energy of the system when sphere 1 is at 
height hI' Thus, 

!mIVIi = mlghh 

which we solve for the speed Vli of sphere 1 just before the 
collision: 

Vli = ~ = V(2)(9.8 m/s2)(0.080 m) 

= 1.252 m/s. 

Step 2: Here we can make two assumptions in addition to 
the assumption that the collision is elastic. First, we can as­
sume that the collision is one-dimensional because the motions 
of the spheres are approximately horizontal from just before 
the collision to just after it. Second, because the collision is so 

Calculation: Thus, we can use Eq. 9-67 to find the velocity of 
sphere 1 just after the collision: 

mi - m2 
Vl' 

ml + m2 I 

0.030 kg - 0.075 kg (1.252 m/s) 
0.030 kg + 0.075 kg 

= -0.537 mls = -0.54 m/s. (Answer) 

The minus sign tells us that sphere 1 moves to the left just 
after the collision. 

Ball 1 swings down and 
collides with ball 2, which 
then swings upward. If the 
collision is elastic, no 
mechanical energy is lost. 

Fig. 9-20 Two metal spheres suspended by cords just touch 
when they are at rest. Sphere 1, with mass mh is pulled to the left to 
height hl and then released. 

Additional examples, video, and practice available at WileyPLUS 
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A glancing collision 
that conserves 
both momentum and 
kinetic energy. 

y 

r-r-'---x 

\ 

Fig. 9-21 An elastic collision between 
two bodies in which the collision is not 
head-on. The body with mass n12 (the tar­
get) is initially at rest. 

11 Collisions in Two Dimensions 
When two bodies collide, the impulse between them determines the directions in 
which they then travel. In particular, when the collision is not head-on, the bodies 
do not end up traveling along their initial axis. For such two-dimensional colli­
sions in a closed, isolated system, the total linear momentum must still be con­
served: 

(9-77) 

If the collision is also elastic (a special case), then the total kinetic energy is also 
conserved: 

(9-78) 

Equation 9-77 is often more useful for analyzing a two-dimensional collision 
if we write it in terms of components on an xy coordinate system. For example, 
Fig. 9-21 shows a glancing collision (it is not head-on) between a projectile body and a 
target body initially at rest. The impulses between the bodies have sent the bodies off 
at angles (Jl and (J2 to the x axis, along which the projectile initially traveled. In this situ­
ation we would rewrite Eq. 9-77 for components along the x axis as 

(9-79) 

and along the y axis as 

o = -mlvlf sin 81 + m2v2! sin 82, (9-80) 

We can also write Eq. 9-78 (for the special case of an elastic collision) in terms of 
speeds: 

(kinetic energy). (9-81) 

Equations 9-79 to 9-81 contain seven variables: two masses, ml and m2; three 
speeds, Vii' VI!, and V2!; and two angles, (Jl and (J2' If we know any four of these 
quantities, we can solve the three equations for the remaining three quantities. 

CHECKPOINT 9 

In Fig. 9-21, suppose that the projectile has an initial momentum of 6 kg· mis, a final x 
component of momentum of 4 kg . mis, and a final y component of momentum of - 3 
kg· m/s. For the target, what then are (a) the final x component of momentum and (b) 
the final y component of momentum? 

1 Systems with Varying Mass: A Rocket 
In the systems we have dealt with so far, we have assumed that the total mass of 
the system remains constant. Sometimes, as in a rocket, it does not. Most of the 
mass of a rocket on its launching pad is fuel, all of which will eventually be 
burned and ejected from the nozzle of the rocket engine. 

We handle the variation of the mass of the rocket as the rocket accelerates by 
applying Newton's second law, not to the rocket alone but to the rocket and its 
ejected combustion products taken together. The mass of this system does not 
change as the rocket accelerates. 

Assume that we are at rest relative to an inertial reference frame, watching a 
rocket accelerate through deep space with no gravitational or atmospheric drag 
forces acting on it. For this one-dimensional motion, let M be the mass of the 
rocket and V its velocity at an arbitrary time t (see Fig. 9-22a). 



(a) 

/ System boundary 

The ejection of mass from 
the rocket's rear increases 
the rocket's speed. 

12 SYSTEMS WITH VARYI NG MASS: A ROCKET 225 

/ System boundary 

------------------------x (b) ------------------------x 

Fig. 9-22 (a) An accelerating rocket of mass M at time t, as seen from an inertial 
reference frame. (b) The same but at time t + dt. The exhaust products released during 
interval dt are shown. 

Figure 9-22b shows how things stand a time interval dt later. The rocket now 
has velocity v + dv and mass M + dM, where the change in mass dM is a negative 
quantity. The exhaust products released by the rocket during interval dt have 
mass - dM and velocity U relative to our inertial reference frame. 

Our system consists of the rocket and the exhaust products released during 
interval dt. The system is closed and isolated, so the linear momentum of the sys­
tem must be conserved during dt; that is, 

Pi = Pf , (9-82) 

where the subscripts i and f indicate the values at the beginning and end of time 
interval dt. We can rewrite Eq. 9-82 as 

Mv = -dM U + (M + dM)(v + dv), (9-83) 

where the first term on the right is the linear momentum of the exhaust products 
released during interval dt and the second term is the linear momentum of the 
rocket at the end of interval dt. 

We can simplify Eq. 9-83 by using the relative speed Vrel between the rocket and 
the exhaust products, which is related to the velocities relative to the frame with 

(
velocity of rOCket) = ( velocity of rocket) (velocity of prOducts) 
relative to frame relative to products + relative to frame . 

In symbols, this means 

or 

(v + dv) = Vrel + U, 

U = v + dv - Vrel' 

Substituting this result for U into Eq. 9-83 yields, with a little algebra, 

-dMvrel = M dv. 

Dividing each side by dt gives us 

dM dv 
-TtVrel = M dt' 

(9-84) 

(9-85) 

(9-86) 

We replace dMldt (the rate at which the rocket loses mass) by - R, where R is the 
(positive) mass rate of fuel consumption, and we recognize that dvldt is the accel­
eration of the rocket. With these changes, Eq. 9-86 becomes 

RVrel = Ma (first rocket equation). (9-87) 

Equation 9-87 holds for the values at any given instant. 
Note the left side of Eq. 9-87 has the dimensions of force (kg/s· m/s = 

kg·m/s2 = N) and depends only on design characteristics of the rocket engine­
namely, the rate R at which it consumes fuel mass and the speed Vrel with which 
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that mass is ejected relative to the rocket. We call this term RVrel the thrust of the 
rocket engine and represent it with T. Newton's second law emerges clearly if we 
write Eq. 9-87 as T = Ma, in which a is the acceleration of the rocket at the time 
that its mass is M. 

How will the velocity of a rocket change as it consumes its fuel? From Eq. 9-85 
we have 

Integrating leads to 

dM 
dv = -VreI M ' 

in which Mi is the initial mass of the rocket and Mf its final mass. Evaluating the 
integrals then gives 

(second rocket equation) (9-88) 

for the increase in the speed of the rocket during the change in mass from Mi to 
Mf . (The symbol "In" in Eq. 9-88 means the natural logarithm.) We see here the 
advantage of multistage rockets, in which Mf is reduced by discarding successive 
stages when their fuel is depleted. An ideal rocket would reach its destination 
with only its payload remaining. 

Rocket engine, thrust, acceleration 

A rocket whose initial mass Mi is 850 kg consumes fuel at 
the rate R = 2.3 kg/so The speed Vrel of the exhaust gases rel­
ative to the rocket engine is 2800 m/s. What thrust does the 
rocket engine provide? 

rocket's mass. However, M decreases and a increases as fuel 
is consumed. Because we want the initial value of a here, we 
must use the intial value Mi of the mass. 

Thrust T is equal to the product of the fuel consumption 
rate R and the relative speed Vrel at which exhaust gases are 
expelled, as given by Eq. 9-87. 

Calculation: Here we find 

T = RVrel = (2.3 kg/s)(2800 mls) 

= 6440 N = 6400 N. 

(b) What is the initial acceleration of the rocket? 

(Answer) 

We can relate the thrust T of a rocket to the magnitude a of 
the resulting acceleration with T = Ma, where M is the 

Calculation: We find 

T 6440N_ 2 
a = ~ = 850kg - 7.6m/s. (Answer) 

To be launched from Earth's surface, a rocket must have 
an initial acceleration greater than g = 9.8 m/s2. That is, it 
must be greater than the gravitational acceleration at the 
surface. Put another way, the thrust T of the rocket engine 
must exceed the initial gravitational force on the rocket, 
which here has the magnitude Mig, which gives us 

(850 kg)(9.8 m/s2) = 8330 N. 

Because the acceleration or thrust requirement is not met 
(here T = 6400 N), our rocket could not be launched from 
Earth's surface by itself; it would require another, more 
powerful, rocket. 

;~s Additional examples, video, and practice available at WileyPLUS 



Center of Mass The center of mass of a system of n particles is 
defined to be the point whose coordinates are given by 

or 

where M is the total mass of the system. 

1 II 

Zcom = -M 2: l11i Zi, 
i~) 

(9-5) 

(9-8) 

Newton's Second law for a System of Particles The 
motion of the center of mass of any system of particles is governed 
by Newton's second law for a system ofparticies, which is 

Fnet = Ma com' (9-14) 

Here Fnet is the net force of all the external forces acting on the sys­
tem, M is the total mass of the system, and acorn is the acceleration 
of the system's center of mass. 

linear Momentum and Newton's Second law For a sin­
gle particle, we define a quantity P called its linear momentum as 

p=mv, (9-22) 

and can write Newton's second law in terms of this momentum: 

~ dp 
Fnet = dt' (9-23) 

For a system of particles these relations become 

P = MVcom and (9-25,9-27) 

Collision and Impulse Applying Newton's second law in 
momentum form to a particle-like body involved in a collision 
leads to the impulse-linear momentum theorem: 

(9-31,9-32) 

where PI Pi = SjJ is the change in the body's linear 
momentum, and 7 is the impulse due to the force F(t) exerted on 
the body by the other body in the collision: 

~ flt-> 
J = I; F(t) dt. (9-30) 

If Favg is the average magnitude of F(t) during the collision and /:::,,( 
is the duration of the collision, then for one-dimensional motion 

J = Favg/:::,,(. (9-35) 

When a steady stream of bodies, each with mass m and speed v, col­
lides with a body whose position is fixed, the average force on the 
fixed body is 

(9-37) 

where n//:::,,( is the rate at which the bodies collide with the fixed 
body, and Llv is the change in velocity of each colliding body. This 
average force can also be written as 

Llm 
Favg = ---;:;;- Llv, (9-40) 
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where Llml Llt is the rate at which mass collides with the fixed body. In 
Eqs. 9-37 and 9-40, Ll v = - v if the bodies stop upon impact and Ll v = 
-2v if they bounce directly backward with no change in their speed. 

Conservation of linear Momentum If a system is isolated 
so that no net external force acts on it, the linear momentum P of 
the system remains constant: 

P = constant (closed, isolated system). (9-42) 

This can also be written as 

(closed, isolated system), (9-43) 

where the subscripts refer to the values of P at some initial time and 
at a later time. Equations 9-42 and 9-43 are equivalent statements of 
the law of conservation of linear momentum. 

Inelastic Collision in One Dimension In an inelastic col­
lision of two bodies, the kinetic energy of the two-body system is 
not conserved. If the system is closed and isolated, the total linear 
momentum of the system must be conserved, which we can write in 
vector form as 

(9-50) 

where subscripts i and f refer to values just before and just after the 
collision, respectively. 

If the motion of the bodies is along a single axis, the collision is 
one-dimensional and we can write Eq. 9-50 in terms of velocity 
components along that axis: 

(9-51) 

If the bodies stick together, the collision is a completely 
inelastic collision and the bodies have the same final velocity V 
(because they are stuck together). 

Motion of the Center of Mass The center of mass of a 
closed, isolated system of two colliding bodies is not affected by a 
collision. In particular, the velocity vcom of the center of mass can­
not be changed by the collision. 

Elastic Collisions in One Dimension An elastic collision 
is a special type of collision in which the kinetic energy of a system 
of colliding bodies is conserved. If the system is closed and iso­
lated, its linear momentum is also conserved. For a one-dimen­
sional collision in which body 2 is a target and body 1 is an incom­
ing projectile, conservation of kinetic energy and linear 
momentum yield the following expressions for the velocities im­
mediately after the collision: 

m) - 1112 
(9-67) vlf = 

ml + 1112 
Vii 

and 
2111) 

(9-68) v21 = 
111) + 1112 

Vii' 

Collisions in Two Dimensions If two bodies collide and 
their motion is not along a single axis (the collision is not head-on), 
the collision is two-dimensional. If the two-body system is closed 
and isolated, the law of conservation of momentum applies to the 
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collision and can be written as 

(9-77) 

In component form, the law gives two equations that describe the 
collision (one equation for each of the two dimensions). If the col­
lision is also elastic (a special case), the conservation of kinetic en­
ergy during the collision gives a third equation: 

(9-78) 

Variable-Mass Systems In the absence of external forces a 

1 Figure 9-23 shows an overhead 
view of three particles on which ex­
ternal forces act. The magnitudes 
and directions of the forces on two of 
the particles are indicated. What are 
the magnitude and direction of the 
force acting on the third particle if 
the center of mass of the three-parti­
cle system is (a) stationary, (b) mov­

<\--41 
5N 

Y 

3 • 
--------~r--------x 

-...p. 
2 3 N 

Fig. 9-23 Question 1. 

ing at a constant velocity rightward, and (c) accelerating rightward? 

Figure 9-24 shows an overhead view of four particles of equal mass 
sliding over a frictionless surface at constant velocity. The directions of 
the velocities are indicated; their magnitudes are equal. Consider pair­
ing the particles. Which pairs form a system with a center of mass that 
(a) is stationary, (b) is stationary and at the origin, and (c) passes 
through the origin? 

y(m) 

a b 
---<1-4 

--~---+--~---r--+--x(m) 
-4 -2 

I 
I -2 

c .. ~>---

2 4 
I 
I 

--<~d 

Fig. 9-24 Question 2. 

Consider a box that explodes into two pieces while moving with 
a constant positive velocity along an x axis. If one piece, with mass 
mb ends up with positive velocity Vi, then the second piece, with 
mass m2, could end up with (a) a positive velocity Vi (Fig. 9-25a), (b) 
a negative velocity Vi (Fig. 9-25b), or (c) zero velocity (Fig. 9-25c). 
Rank those three possible results for the second piece according to 
the corresponding magnitude of Vi, greatest first. 

(a) (b) (c) 

Fig. 9-25 Question 3. 

Figure 9-26 shows graphs of force magnitude versus time for a 
body involved in a collision. Rank the graphs according to the 
magnitude of the impulse on the body, greatest first. 

rocket accelerates at an instantaneous rate given by 

RVrel = Ma (first rocket equation), (9-87) 

in which M is the rocket's instantaneous mass (including 
unexpended fuel), R is the fuel consumption rate, and Vrel is the fuel's 
exhaust speed relative to the rocket. The term RVrel is the thrust of 
the rocket engine. For a rocket with constant Rand Vreb whose speed 
changes from Vi to Vi when its mass changes from Mi to Mi , 

(second rocket equation). (9-88) 

F F F 

2F"~, 4F"L, 21\'--___ =-__ t 

610 310 1210 

(a) (b) (c) 

Fig. 9-26 Question 4. 

The free-body diagrams in Fig. 9-27 give, from overhead views, 
the horizontal forces acting on three boxes of chocolates as the 
boxes move over a frictionless confectioner's counter. For each box, 
is its linear momentum conserved along the x axis and the y axis? 

Y 
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Fig. 9-27 Question 5. 

6 Figure 9-28 shows four groups of three or four identical parti­
cles that move parallel to either the x axis or the y axis, at identical 
speeds. Rank the groups according to center-of-mass speed, great­
est first. 
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Fig. 9-28 Question 6. 



7 A block slides along a frictionless floor and into a stationary 
second block with the same mass. Figure 9-29 shows four choices 
for a graph of the kinetic energies K of the blocks. (a) Determine 
which represent physically impossible situations. Of the others, 
which best represents (b) an elastic collision and (c) an inelastic 
collision? 
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(d) 

Fig. 9-29 Question 7. 

8 Figure 9-30 shows a snapshot of block 1 as it slides along an x axis 
on a frictionless floor, before it undergoes an elastic collision with sta­
tionary block 2. The figure also shows three possible positions of the 
center of mass (com) of the two-block system at the time of the snap­
shot. (Point B is halfway between the centers of the two blocks.) Is 
block 1 stationary, moving forward, or moving backward after the col­
lision if the com is located in the snapshot at (a)A, (b) B,and (c) C? 

Fig. 9-30 Question 8. 

Two bodies have undergone an elastic one-dimensional colli­
sion along an x axis. Figure 9-31 is a graph of position versus time 
for those bodies and for their center of mass. (a) Were both bodies 
initially moving, or was one initially stationary? Which line segment 
corresponds to the motion of the center of mass (b) before the colli­
sion and (c) after the collision? (d) Is the mass of the body that was 
moving faster before the collision greater than, less than, or equal to 
that ofthe other body? 

x 
4 

6 

Fig. 9-31 Question 9. 

Figure 9-32: A block on a horizontal floor is initially either sta­
tionary, sliding in the positive direction of an x axis, or sliding in the 
negative direction of that axis. Then the block explodes into two 
pieces that slide along the x axis. Assume the block and the two 
pieces form a closed, isolated system. Six choices for a graph of the 
momenta of the block and the pieces are given, all versus time t. 
Determine which choices represent physically impossible situa­
tions and explain why. 

(a) 

(d) 
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Fig. 9-32 Question 10. 
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11 Block 1 with mass mj slides along an x axis across a frictionless 
floor and then undergoes an elastic collision with a stationary block 2 
with mass Inz. Figure 9-33 shows a plot of position x versus time t of 
block 1 until the collision occurs at position Xc and time tC' In which of 
the lettered regions on the graph will the plot be continued (after the 
collision) if (a) mj < mz and (b) mj > mz? (c) Along which of the num­
bered dashed lines will the plot be continued if mj = mz? 

x 
1 

! A 

Fig.9-33 Question 11. 

Figure 9-34 shows four graphs of position versus time for two 
bodies and their center of mass. The two bodies form a closed, isolated 
system and undergo a completely inelastic, one-dimensional collision 
on an x axis. In graph 1, are (a) the two bodies and (b) the center of 
mass moving in the positive or negative direction of the x axis? (c) 
Which graphs correspond to a physically impossible situation? 
Explain. 

(1) (2) 

(3) (4) 

Fig. 9-34 Question 12. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Center of Mass 
A 2.00 kg particle has the xy coordinates (-1.20 m, 0.500 m), 

and a 4.00 kg particle has the xy coordinates (0.600 m, -0.750 m). 
Both lie on a horizontal plane. At what (a) x and (b) y coordinates 
must you place a 3.00 kg particle such that the center of mass of the 
three-particle system has the coordinates (-0.500 m, -0.700 m)? 

Figure 9-35 shows a three­
particle system, with masses mj = 

3.0 kg, m2 = 4.0 kg, and m3 = 8.0 
kg. The scales on the axes are set 
by Xs = 2.0 m and Ys = 2.0 m. 
What are (a) the x coordinate and 
(b) the y coordinate of the sys­
tem's center of mass? (c) If m3 is 
gradually increased, does the cen­
ter of mass of the system shift to­

y(m) 

Ys 

1111 

~-!;;'lt-/ ---~t-;s------j! x (m) 

Fig. 9-35 Problem 2. 

ward or away from that particle, or does it remain stationary? 

Figure 9-36 shows a slab with dimensions d j = 11.0 cm, 
d2 = 2.80 cm, and d3 = 13.0 cm. Half the slab consists of alu­
minum (density = 2.70 g/cm3) and half consists of iron (density = 
7.85 g/cm3). What are (a) the x coordinate, (b) the y coordinate, and 
(c) the z coordinate of the slab's center of mass? 

'~~------y 

Fig. 9-36 Problem 3. 

In Fig. 9-37, three uniform thin rods, each of length L = 22 
cm, form an inverted U. The vertical rods each have a mass of 14 g; 
the horizontal rod has a mass of 42 g. What are (a) the x coordinate 
and (b) the y coordinate of the system's center of mass? 

Fig. 9-37 Problem 4. 

What are (a) the x coordinate and (b) the y coordinate of the 
center of mass for the uniform plate shown in Fig. 9-38 if L = 5.0 cm? 

Fig. 9-38 Problem 5. 

··6 Figure 9-39 shows a cubical box that has been constructed 
from uniform metal plate of negligible thickness. The box is open 
at the top and has edge length L = 40 cm. Find (a) the x coordi­
nate, (b) the y coordinate, and (c) the z coordinate of the center of 
mass of the box. 

Fig. 9-39 Problem 6. 

IlW In the ammonia (NH3) molecule of Fig. 9-40, three 
hydrogen (H) atoms form an equilateral triangle, with the center 
of the triangle at distance d = 9.40 X 10-11 m from each hydrogen 
atom. The nitrogen (N) atom is at the apex of a pyramid, with the 
three hydrogen atoms forming the base. The nitrogen-to-hydrogen 
atomic mass ratio is 13.9, and the nitrogen-to-hydrogen distance is 
L = 10.14 X 10-11 m. What are the (a) x and (b) y coordinates of 
the molecule's center of mass? 
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Fig. 9-40 Problem 7. 

I 



A uniform soda can of mass 0.140 kg 
is 12.0 cm tall and filled with 0.354 kg of 
soda (Fig. 9-41). Then small holes are 
drilled in the top and bottom (with negligi­
ble loss of metal) to drain the soda. What is 
the height h of the com of the can and con­
tents (a) initially and (b) after the can loses 
all the soda? (c) What happens to h as the 
soda drains out? (d) If x is the height of the 
remaining soda at any given instant, find x Fig. 9-41 Problem 8. 
when the com reaches its lowest point. 

9-3 Newton's Second Law for a System of Particles 
IlW A stone is dropped at t = O. A second stone, with twice the 

mass of the first, is dropped from the same point at 
t = 100 ms. (a) How far below the release point is the center of 
mass of the two stones at t = 300 ms? (Neither stone has yet 
reached the ground.) (b) How fast is the center of mass of the two­
stone system moving at that time? 

o A 1000 kg automobile is at rest at a traffic signal. At the 
instant the light turns green, the automobile starts to move with a 
constant acceleration of 4.0 m/s2• At the same instant a 2000 kg 
truck, traveling at a constant speed of 8.0 mis, overtakes and passes 
the automobile. (a) How far is the com of the automobile-truck 
system from the traffic light at t = 3.0 s? (b) What is the speed of 
the com then? 

·11 A big olive (m = 0.50 kg) lies at the origin of an xy 
coordinate system, and a big Brazil nut (M = 1.5 kg) lies at the 
point (1.0, 2.0) m. At t = 0, a force Fo = (2.oi + 3.0j) N begins to 
act on the olive, and a force 1" = (-3.oi - 2.0j) N begins to act on 
the nut. In unit-vector notation, what is the displacement of the 
center of mass of the olive-nut system at t = 4.0 s, with respect to 
its position at t = O? 

·12 Tho skaters, one with mass 65 kg and the other with mass 40 
kg, stand on an ice rink holding a pole of length 10 m and negligi­
ble mass. Starting from the ends of the pole, the skaters pull them­
selves along the pole until they meet. How far does the 40 kg 
skater move? 

SSM A shell is shot with an initial velocity Vo of 20 mis, at an 
angle of 80 = 60° with the horizontal. At the top of the trajectory, the 
shell explodes into two fragments of equal mass (Fig. 9-42). One 
fragment, whose speed immediately after the explosion is zero, falls 
vertically. How far from the gun does the other fragment land, as­
suming that the terrain is level and that air drag is negligible? 

Explosion 

Lt-
Fig. 9-42 Problem 13. 

In Figure 9-43, two particles are launched from the origin of 
the coordinate system at time t = O. Particle 1 of mass In! = 5.00 g is 
shot directly along the x axis on a frictionless floor, with constant 
speed 10.0 m/s. Particle 2 of mass 1n2 = 3.00 g is shot with a velocity 
of magnitude 20.0 mis, at an upward angle such that it always stays 

directly above particle 1. (a) What is the 
maximum height Hmax reached by the 
com of the two-particle system? In 
unit-vector notation, what are the (b) 
velocity and (c) acceleration of the 
com when the com reaches Hmax? 

Figure 9-44 shows an arrange-
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~l=-'~~~~~x 
Fig. 9-43 Problem 14. 

ment with an air track, in which a cart is connected by a cord to a 
hanging block. The cart has mass In! = 0.600 kg, and its center is ini­
tially at xy coordinates (-0.500 m, 0 m); the block has mass 
1n2 =0.400 kg, and its center is initially at xy coordinates 
(0, -0.100 m). The mass of the cord and pulley are negligible. The cart 
is released from rest, and both cart and block move until the cart hits 
the pUlley. The friction between the cart and the air track and be­
tween the pulley and its axle is negligible. (a) In unit-vector notation, 
what is the acceleration of the center of mass of the cart-block sys­
tem? (b) What is the velocity of the com as a function of time t? (c) 
Sketch the path taken by the com. (d) If the path is curved, determine 
whether it bulges upward to the right or downward to the left, and if 
it is straight, find the angle between it and the x axis. 

Fig. 9-44 Problem 15. 

-16 Ricardo, of mass 80 kg, and Carmelita, who is lighter, are en­
joying Lake Merced at dusk in a 30 kg canoe. When the canoe is at 
rest in the placid water, they exchange seats, which are 3.0 m apart 
and symmetrically located with respect to the canoe's center. If the 
canoe moves 40 cm horizontally relative to a pier post, what is 
Carmelita's mass? 

""·17 In Fig. 9-45a, a 4.5 kg dog 
stands on an 18 kg flatboat at dis­
tance D = 6.1 m from the shore. It 
walks 2.4 m along the boat toward 
shore and then stops. Assuming no 
friction between the boat and the wa­
ter, find how far the dog is then from 
the shore. (Hint: See Fig. 9-45b.) 

9·5 The Linear Momentum 
of a System of Particles 
·18 A 0.70 kg ball moving hori-

(a) 

Dog's displacement dd 
~- ), 

~ 
Boat's displacement db 

(b) 

zontally at 5.0 mls strikes a vertical Fig.9-45 Problem 17. 
wall and rebounds with speed 2.0 
mfs. What is the magnitude of the change in its linear momentum? 

\) IlW A 2100 kg truck traveling north at 41 kmfh turns east and 
accelerates to 51 kmfh. (a) What is the change in the truck's kinetic 
energy? What are the (b) magnitude and (c) direction of the 
change in its momentum? 

At time t = 0, a ball is struck at ground level and sent 
over level ground. The momentum p versus t during the flight is 
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given by Fig. 9-46 (Po = 6.0 kg· mls 
and PI = 4.0 kg·m/s). At what ini­
tial angle is the ball launched? (Hint: 
find a solution that does not require 
you to read the time of the low point 
of the plot.) 

··21 A 0.30 kg softball has a veloc­
ity of 15 mls at an angle of 350 below 
the horizontal just before making 
contact with the bat. What is the mag­
nitude of the change in momentum of 

Po 

2 3 
t (8) 

4 

Fig. 9-46 Problem 20. 

5 

the ball while in contact with the bat if the ball leaves with a velocity of 
(a) 20 mis, vertically downward, and (b) 20 mis, horizontally back to­
ward the pitcher? 

··22 Figure 9-47 gives an overhead 
view of the path taken by a 0.165 kg 
cue ball as it bounces from a rail of a 
pool table. The ball's initial speed is 
2.00 mis, and the angle 01 is 30.00

• 

The bounce reverses the y compo­
nent of the ball's velocity but does 
not alter the x component. What are 
( a) angle O2 and (b) the change in the 
ball's linear momentum in unit-vec­
tor notation? (The fact that the ball 
rolls is irrelevant to the problem.) 

Collision and Impulse 

Fig. 9-47 Problem 22. 

Until his seventies, Henri LaMothe (Fig. 9-48) excited 
audiences by belly-flopping from a height of 12 minto 30 cm of 

Fig. 9-48 Problem 23. Belly-flopping into 30 cm of water. 
(George Long/ Sports Illllstrated/©Time, Inc.) 

water. Assuming that he stops just as he reaches the bottom of the 
water and estimating his mass, find the magnitude of the impulse 
on him from the water. 

In February 1955, a paratrooper fell 370 m from an air­
plane without being able to open his chute but happened to land in 
snow, suffering only minor injuries. Assume that his speed at im­
pact was 56 mls (terminal speed), that his mass (including gear) 
was 85 kg, and that the magnitude of the force on him from the 
snow was at the survivable limit of 1.2 X 105 N. What are (a) the 
minimum depth of snow that would have stopped him safely and 
(b) the magnitude of the impulse on him from the snow? 

A 1.2 kg ball drops vertically onto a floor, hitting with a 
speed of 25 m/s. It rebounds with an initial speed of 10 m/s. (a) 
What impulse acts on the ball during the contact? (b) If the ball is 
in contact with the floor for 0.020 s, what is the magnitude of the 
average force on the floor from the ball? 

·26 In a common but dangerous prank, a chair is pulled away as a 
person is moving downward to sit on it, causing the victim to land 
hard on the floor. Suppose the victim falls by 0.50 m, the mass that 
moves downward is 70 kg, and the collision on the floor lasts 0.082 
s. What are the magnitudes of the (a) impulse and (b) average 
force acting on the victim from the floor during the collision? 

·27 SSM A force in the negative direction of an x axis is applied 
for 27 ms to a 0.40 kg ball initially moving at 14 mls in the positive 
direction of the axis. The force varies in magnitude, and the im­
pulse has magnitude 32.4 N . s. What are the ball's (a) speed and (b) 
direction of travel just after the force is applied? What are (c) the 
average magnitude of the force and (d) the direction of the im­
pulse on the ball? 

·28 In tae-kwon-do, a hand is slammed down onto a target 
at a speed of 13 mls and comes to a stop during the 5.0 ms collision. 
Assume that during the impact the hand is independent of the arm 
and has a mass of 0.70 kg. What are the magnitUdes of the (a) im­
pulse and (b) average force on the hand from the target? 

·29 Suppose a gangster sprays Superman's chest with 3 g bullets at 
the rate of 100 bulletslmin, and the speed of each bullet is 500 m/s. 
Suppose too that the bullets rebound straight back with no change 
in speed. What is the magnitude of the average force on 
Superman's chest? 

"30 Two average forces. A steady stream of 0.250 kg snowballs is 
shot perpendicularly into a wall at a speed of 4.00 mls. Each ball 
sticks to the wall. Figure 9-49 gives the magnitUde F of the force on 
the wall as a function of time t for two of the snowball impacts. 
Impacts occur with a repetition time interval I1tT = 50.0 ms, last a 
duration time intervall1td = 10 ms, and produce isosceles triangles 
on the graph, with each impact reaching a force maximum Froax = 
200 N. During each impact, what are the magnitudes of (a) the im­
pulse and (b) the average force on the wall? (c) During a time in-
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Fig. 9-49 Problem 30. 



terval of many impacts, what is the magnitude of the average force 
on the wall? 

··31 Jumping up before the elevator hits. After the cable 
snaps and the safety system fails, an elevator cab free-falls from a 
height of 36 m. During the collision at the bottom of the elevator 
shaft, a 90 kg passenger is stopped in 5.0 ms. (Assume that neither 
the passenger nor the cab rebounds.) What are the magnitudes of 
the (a) impulse and (b) average force on the passenger during the 
collision? If the passenger were to jump upward with a speed of 7.0 
mls relative to the cab floor just before the cab hits the bottom of 
the shaft, what are the magnitudes of the (c) impulse and (d) aver­
age force (assuming the same stopping time)? 

A 5.0 kg toy car can move 
along an x axis; Fig. 9-50 gives F, of 
the force acting on the car, which 
begins at rest at time t = O. The 
scale on the F, axis is set by 
F;s = 5.0 N. In unit-vector nota­
tion, what is Ii at (a) t = 4.0 sand 
(b) t = 7.0 S, and (c) what is V at 
t = 9.0 s? 

Figure 9-51 shows a 
0.300 kg baseball just before and 
just after it collides with a bat. Just 

f-t-+-+-+-I--\-+---I--i---1 t (s) 

Fig. 9-50 Problem 32. 

before, the ball has velocity VI of magnitude 12.0 mls and angle 01 = 
35.0°. Just after, it is traveling directly upward with velocity V2 of mag­
nitude 10.0 mls. The duration of 
the collision is 2.00 ms. What are 
the (a) magnitude and (b) direc­
tion (relative to the positive 
direction of the x axis) of the im­
pulse on the ball from the bat? 
What are the (c) magnitude and 
(d) direction of the average force 
on the ball from the bat? Fig. 9-51 Problem 33. 

Basilisk lizards can run across the top of a water sur­
face (Fig. 9-52). With each step, a lizard first slaps its foot against 
the water and then pushes it down into the water rapidly enough to 
form an air cavity around the top of the foot. To avoid having to 
pull the foot back up against water drag in order to complete the 
step, the lizard withdraws the foot before water can flow into the 

Fig. 9-52 Problem 34. Lizard running across water. (Stephen 
Dalton/Photo Researchers) 
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air cavity. If the lizard is not to sink, the average upward impulse 
on the lizard during this full action of slap, downward push, and 
withdrawal must match the downward impulse due to the gravita­
tional force. Suppose the mass of a basilisk lizard is 90.0 g, the mass 
of each foot is 3.00 g, the speed of a foot as it slaps the water is 1.50 
mis, and the time for a single step is 0.600 s. (a) What is the magni­
tude of the impulse on the lizard during the slap? (Assume this im­
pulse is directly upward.) (b) During the 0.600 s duration of a step, 
what is the downward impulse on the lizard due to the gravita­
tional force? (c) Which action, the slap or the push, provides the 
primary support for the lizard, or are they approximately equal in 
their support? 

Figure 9-53 shows an approximate plot of force magnitude 
F versus time t during the collision of a 58 g Superb all with a wall. 
The initial velocity of the ball is 34 mls perpendicular to the wall; the 
ball rebounds directly back with approximately the same speed, also 
perpendicular to the wall. What is Fma" the maximum magnitude of 
the force on the ball from the wall during the collision? 

t(ms) 

Fig. 9-53 Problem 35. 

A 0.25 kg puck is initially stationary on an ice surface with 
negligible friction. At time t = 0, a horizontal force begins to 
move the puck. The force is given by F = (12.0 - 3.00t2)i, with F 
in newtons and t in seconds, and it acts until its magnitude is 
zero. (a) What is the magnitude of the impulse on the puck from 
the force between t = 0.500 sand t = 1.25 s? (b) What is the 
change in momentum of the puck between t = 0 and the instant 
at which F = O? 

SSM A soccer player kicks a soccer ball of mass 0.45 kg that 
is initially at rest. The foot of the player is in contact with the ball 
for 3.0 X 10-3 s, and the force of the kick is given by 

F(t) = [(6.0 X 106)t - (2.0 X 109)t2] N 

for 0 :S t:S 3.0 X 10-3 s, where t is in seconds. Find the magnitudes 
of (a) the impulse on the ball due to the kick, (b) the average force 
on the ball from the player's foot during the period of contact, (c) 
the maximum force on the ball from the player's foot during the pe­
riod of contact, and (d) the ball's velocity immediately after it 
loses contact with the player's foot. 

In the overhead view of Fig. 9-54, a 300 g ball with a speed v of 
6.0 mls strikes a wall at an angle 0 of 30° and then rebounds with the 

Fig. 9-54 Problem 38. 



234 CHA CENTER OF MASS AND LINEAR MOMENTUM 

same speed and angle. It is in contact with the wall for 10 ms. In unit­
vector notation, what are (a) the impulse on the ball from the wall and 
(b) the average force on the wall from the ball? 

9·1 Conservation of Linear Momentum 
SSM A 91 kg man lying on a surface of negligible friction 

shoves a 68 g stone away from himself, giving it a speed of 4.0 mls. 
What speed does the man acquire as a result? 

·40 A space vehicle is traveling at 4300 kmJh relative to Earth when 
the exhausted rocket motor (mass 4m) is disengaged and sent back­
ward with a speed of 82 kmlh relative to the command module (mass 
m). What is the speed of the command module relative to Earth just 
after the separation? 

·'41 Figure 9-55 shows a two-ended "rocket" that is initially sta­
tionary on a frictionless floor, with its center at the origin of an x 
axis. The rocket consists of a central block C (of mass M = 6.00 kg) 
and blocks Land R (each of mass m = 2.00 kg) on the left and 
right sides. Small explosions can shoot either of the side blocks 
away from block C and along the x axis. Here is the sequence: (1) 
At time t = 0, block L is shot to the left with a speed of 3.00 mls rel­
ative to the velocity that the explosion gives the rest of the rocket. 
(2) Next, at time t = 0.80 s, block R is shot to the right with a speed 
of 3.00 mls relative to the velocity that block C then has. At t = 

2.80 s, what are (a) the velocity of block C and (b) the position of 
its center? 

c 

--------+----------x 

Fig. 9-55 Problem 41. 

An object, with mass m and speed v relative to an observer, 
explodes into two pieces, one three times as massive as the other; 
the explosion takes place in deep space. The less massive piece 
stops relative to the observer. How much kinetic energy is added 
to the system during the explosion, as measured in the observer's 
reference frame? 

In the Olympiad of 708 B.C., some athletes competing in 
the standing long jump used handheld weights called halteres to 
lengthen their jumps (Fig. 9-56). The weights were swung up in front 
just before liftoff and then swung down and thrown backward dur­
ing the flight. Suppose a modern 78 kg long jumper similarly uses 
two 5.50 kg halteres, throwing them horizontally to the rear at his 
maximum height such that their horizontal velocity is zero rela­
tive to the ground. Let his liftoff velocity be v = (9.51 + 4.0J) mls 

Fig. 9-56 Problem 43. (Reunion des Musees Nationaux/Art 
Resource) 

with or without the halteres, and assume that he lands at the liftoff 
level. What distance would the use of the halteres add to his range? 

"44 In Fig. 9-57, a stationary block explodes into two pieces L 
and R that slide across a frictionless floor and then into regions with 
friction, where they stop. Piece L, with a mass of 2.0 kg, encounters a 
coefficient of kinetic friction Ih = 0040 and slides to a stop in distance 
dL = 0.15 m. Piece R encounters a coefficient of kinetic friction /LR = 
0.50 and slides to a stop in distance dR = 0.25 m. What was the mass 
of the block? 

Fig. 9-57 Problem 44. 

SSM www A 20.0 kg body is moving through space in the 
positive direction of an x axis with a speed of 200 mls when, due 
to an internal explosion, it breaks into three parts. One part, with a 
mass of 10.0 kg, moves away from the point of explosion with 
a speed of 100 mls in the positive y direction. A second part, with a 
mass of 4.00 kg, moves in the negative x direction with a speed of 
500 m/s. (a) In unit-vector notation, what is the velocity of the third 
part? (b) How much energy is released in the explosion? Ignore ef­
fects due to the gravitational force. 

··46 A 4.0 kg mess kit sliding on a frictionless surface explodes 
into two 2.0 kg parts: 3.0 mis, due north, and 5.0 mis, 30° north of 
east. What is the original speed of the mess kit? 

A vessel at rest at the origin of an xy coordinate system ex­
plodes into three pieces. Just after the explosion, one piece, of mass 
m, moves with velocity (-30 m/s) 1 and a second piece, also of mass 
m, moves with velocity (-30 m/s)}. The third piece has mass 3m. 
Just after the explosion, what are the (a) magnitude and (b) direc­
tion of the velocity of the third piece? 

~ Particle A and particle B are held together with a com­
pressed spring between them. When they are released, the spring 
pushes them apart, and they then fly off in opposite directions, free of 
the spring. The mass of A is 2.00 times the mass of B, and the energy 
stored in the spring was 60 1. Assume that the spring has negligible 
mass and that all its stored energy is transferred to the particles. 
Once that transfer is complete, what are the kinetic energies of (a) 
particle A and (b) particle B? 

g.g Inelastic Collisions in One Dimension 
-49 A bullet of mass 10 g strikes a ballistic pendulum of mass 
2.0 kg. The center of mass of the pendulum rises a vertical distance 
of 12 cm. Assuming that the bullet remains embedded in the pen­
dulum, calculate the bullet's initial speed. 

A 5.20 g bullet moving at 672 mls strikes a 700 g wooden 
block at rest on a frictionless surface. The bullet emerges, traveling 
in the same direction with its speed reduced to 428 mls. (a) What is 
the resulting speed of the block? (b) What is the speed of the bul­
let-block center of mass? 

In Fig. 9-58a, a 3.50 g bullet is fired horizontally at two 
blocks at rest on a frictionless table. The bullet passes through 
block 1 (mass 1.20 kg) and embeds itself in block 2 (mass 1.80 kg). 
The blocks end up with speeds VI = 0.630 mls and V2 = 1.40 mls 
(Fig. 9-58b). Neglecting the material removed from block 1 by the 



bullet, find the speed of the bullet as it (a) leaves and (b) enters 
block 1. 

(a) 

~ V2 

(b) 

Fig. 9-58 Problem 51. 

In Fig. 9-59, a 10 g bullet moving directly upward at 1000 
mls strikes and passes through the center of mass of a 5.0 kg block 
initially at rest. The bullet emerges from the block moving directly 
upward at 400 m/s. To what maximum height does the block then 
rise above its initial position? 

Fig. 9-59 Problem 52. 

In Anchorage, collisions of a vehicle with a moose are so 
common that they are referred to with the abbreviation MVC. 
Suppose a 1000 kg car slides into a stationary 500 kg moose on a 
very slippery road, with the moose being thrown through the wind­
shield (a common MVC result). (a) What percent of the original 
kinetic energy is lost in the collision to other forms of energy? A 
similar danger occurs in Saudi Arabia because of camel-vehicle 
collisions (CVC). (b) What percent of the original kinetic energy is 
lost if the car hits a 300 kg camel? (c) Generally, does the percent 
loss increase or decrease if the animal mass decreases? 

A completely inelastic collision occurs between two balls of 
wet putty that move directly toward each other along a vertical 
axis. Just before the collision, one ball, of mass 3.0 kg, is moving up­
ward at 20 mls and the other ball, of mass 2.0 kg, is moving down­
ward at 12 m/s. How high do the combined two balls of putty rise 
above the collision point? (Neglect air drag.) 

II.W A 5.0 kg block with a speed of 3.0 mls collides with a 10 
kg block that has a speed of 2.0 mls in the same direction. After the 
collision, the 10 kg block travels in the original direction with a 
speed of 2.5 m/s. (a) What is the velocity of the 5.0 kg block imme­
diately after the collision? (b) By how much does the total kinetic 
energy of the system of two blocks change because of the colli­
sion? (c) Suppose, instead, that the 10 kg block ends up with a 
speed of 4.0 mls. What then is the change in the total kinetic en­
ergy? (d) Account for the result you obtained in (c). 

In the "before" part of Fig. 9-60, car A (mass 1100 kg) is 
stopped at a traffic light when it is rear-ended by car B (mass 1400 
kg). Both cars then slide with locked wheels until the frictional 
force from the slick road (with a low ILk of 0.13) stops them, at dis-
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tances dA = 8.2 m and dB = 6.1 m. What are the speeds of (a) car A 
and (b) car B at the start of the sliding, just after the collision? (c) 
Assuming that linear momentum is conserved during the collision, 
find the speed of car B just before the collision. (d) Explain why 
this assumption may be invalid. 

Fig. 9-60 Problem 56. 

In Fig. 9-61, a ball of mass m = 60 g is shot with speed 
Vi = 22 mls into the barrel of a spring gun of mass M = 240 g ini­
tially at rest on a frictionless surface. The ball sticks in the barrel at 
the point of maximum compression of the spring. Assume that the 
increase in thermal energy due to friction between the ball and the 
barrel is negligible. (a) What is the speed of the spring gun after the 
ball stops in the barrel? (b) What fraction of the initial kinetic en­
ergy of the ball is stored in the spring? 

Fig. 9-61 Problem 57. 

In Fig. 9-62, block 2 (mass 1.0 kg) is at rest on a frictionless 
surface and touching the end of an unstretched spring of spring 
constant 200 N/m. The other end of the spring is fixed to a wall. 
Block 1 (mass 2.0 kg), traveling at speed Vj = 4.0 mis, collides with 
block 2, and the two blocks stick together. When the blocks mo­
mentarily stop, by what distance is the spring compressed? 

Fig. 9-62 Problem 58. 

II.W In Fig. 9-63, block 1 (mass 2.0 kg) is moving rightward 
at 10 mls and block 2 (mass 5.0 kg) is moving rightward at 3.0 mls. 
The surface is frictionless, and a spring with a spring constant of 
1120 Nlm is fixed to block 2. When the blocks collide, the compres­
sion of the spring is maximum at the instant the blocks have the 
same velocity. Find the maximum compression. 

Fig. 9-63 Problem 59. 

Elastic Collisions in One Dimension 
In Fig. 9-64, block A (mass 1.6 kg) slides into block B (mass 2.4 

kg), along a frictionless surface. The directions of three velocities be­
fore (i) and after (f) the collision are indicated; the corresponding 
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speeds are v Ai = 5.5 mis, VBi = 2.5 
mis, and VB! = 4.9 m/s. What are the 
( a) speed and (b) direction (left or 
right) of velocity VA/ (c) Is the col­
lision elastic? 

SSM A cart with mass 340 g 
moving on a frictionless linear air 
track at an initial speed of 1.2 mls 
undergoes an elastic collision with 
an initially stationary cart of un­ Fig. 9-64 Problem 60. 

known mass. After the collision, the first cart continues in its origi­
nal direction at 0.66 mls. (a) What is the mass of the second cart? 
(b) What is its speed after impact? ( c) What is the speed of the two­
cart center of mass? 

Two titanium spheres approach each other head-on with the 
same speed and collide elastically. After the collision, one of the 
spheres, whose mass is 300 g, remains at rest. (a) What is the mass 
of the other sphere? (b) What is the speed of the two-sphere center 
of mass if the initial speed of each sphere is 2.00 mls? 

Block 1 of mass mj slides along a frictionless floor and into a 
one-dimensional elastic collision with stationary block 2 of mass 
m2 = 3mj. Prior to the collision, the center of mass of the two­
block system had a speed of 3.00 mls. Afterward, what are the 
speeds of (a) the center of mass and (b) block 2? 

A steel ball of mass 0.500 kg 
is fastened to a cord that is 70.0 cm long 
and fixed at the far end. The ball is then 
released when the cord is horizontal 
(Fig. 9-65). At the bottom of its path, 
the ball strikes a 2.50 kg steel block ini­
tially at rest on a frictionless surface. 
The collision is elastic. Find (a) the 
speed of the ball and (b) the speed of 
the block, both just after the collision. 

Fig. 9-65 Problem 64. 

SSM A body of mass 2.0 kg makes an elastic collision with 
another body at rest and continues to move in the original 
direction but with one-fourth of its original speed. (a) What is the 
mass of the other body? (b) What is the speed of the two-body cen­
ter of mass if the initial speed of the 2.0 kg body was 4.0 mls? 

Block 1, with mass ml and speed 4.0 mis, slides along an x 
axis on a frictionless floor and then undergoes a one-dimensional 
elastic collision with stationary block 2, with mass m2 = 0.40mj. The 
two blocks then slide into a region where the coefficient of kinetic 
friction is 0.50; there they stop. How far into that region do (a) 
block 1 and (b) block 2 slide? 

In Fig. 9-66, particle 1 of mass ml = 0.30 kg slides rightward 
along an x axis on a frictionless floor with a speed of 2.0 mls. When 
it reaches x = 0, it undergoes a one-dimensional elastic collision 
with stationary particle 2 of mass m2 = 0.40 kg. When particle 2 
then reaches a wall at Xw = 70 cm, it bounces from the wall with no 
loss of speed. At what position on the x axis does particle 2 then 
collide with particle 1 ? 

I I .'.:(cm) 
o Xli' 

Fig.9-66 Problem 67. 

·'68 In Fig. 9-67, block 1 of mass ml slides from rest along a 
frictionless ramp from height h = 2.50 m and then collides with 
stationary block 2, which has mass m2 = 2.00ml' After the collision, 
block 2 slides into a region where the coefficient of kinetic friction 
J.Lk is 0.500 and comes to a stop in distance d within that region. 
What is the value of distance d if the collision is (a) elastic and (b) 
completely inelastic? 

I 
h 

t 
Frictionless 

2 

Fig. 9-67 Problem 68. 

"·69 A small ball of mass m 
is aligned above a larger ball of 
mass M = 0.63 kg (with a slight sep-
aration, as with the baseball and bas­
ketball of Fig. 9-68a), and the two are 
dropped simultaneously from a 
height of h = 1.8 m. (Assume the ra­
dius of each ball is negligible relative 
to h.) (a) If the larger ball rebounds 
elastically from the floor and then 
the small ball rebounds elastically 
from the larger ball, what value of m 
results in the larger ball stopping 
when it collides with the small ball? 
(b) What height does the small ball 
then reach (Fig. 9-68b)? 

;~d>llil 
~. ~ ! Basketball y~ 

Zp[ 
(a) Before (b) Mter 

Fig. 9-68 Problem 69. 

"·70 In Fig. 9-69, puck 1 of mass mj = 0.20 kg is sent sliding 
across a frictionless lab bench, to undergo a one-dimensional elas­
tic collision with stationary puck 2. Puck 2 then slides off the bench 
and lands a distance d from the base of the bench. Puck 1 rebounds 
from the collision and slides off the opposite edge of the bench, 
landing a distance 2d from the base of the bench. What is the mass 
of puck 2? (Hint: Be careful with signs.) 

r-- 2d-1 r-d-1 
Fig. 9-69 Problem 70. 

~H 1 Collisions in Two Dimensions 
ILW In Fig. 9-21, projectile particle 1 is an alpha particle and 

target particle 2 is an oxygen nucleus. The alpha particle is scat­
tered at angle 0l = 64.00 and the oxygen nucleus recoils with speed 
1.20 X 105 mls and at angle O2 = 51.00

• In atomic mass units, the 
mass of the alpha particle is 4.00 u and the mass of the oxygen nu­
cleus is 16.0 u. What are the (a) final and (b) initial speeds of the al­
pha particle? 

Ball B, moving in the positive direction of an x axis at speed 
v, collides with stationary ball A at the origin. A and B have differ­
ent masses. After the collision, B moves in the negative direction of 
the y axis at speed v12. (a) In what direction does A move? (b) 



Show that the speed of A cannot be determined from the given in­
formation. 

After a completely inelastic collision, two objects of the 
same mass and same initial speed move away together at half their 
initial speed. Find the angle between the initial velocities of the 
objects. 

Two 2.0 kg bodies, A and B, collide. The velocities before the 
collision are VA = (lsi + 30j) mls and VB = (-lOi + 5.0j) mls. 
After the collision, VA = (-5.oi + 20j)mls. What are (a) the final 
velocity of Band (b) the change in the total kinetic energy (includ­
ing sign)? 

··75 A projectile proton with a speed of 500 mls collides elasti­
cally with a target proton initially at rest. The two protons then 
move along perpendicular paths, with the projectile path at 60° 
from the original direction. After the collision, what are the speeds 
of (a) the target proton and (b) the projectile proton? 

~H 2 Systems with Varying Mass: A Rocket 
·16 A 6090 kg space probe moving nose-first toward Jupiter at 
105 mls relative to the Sun fires its rocket engine, ejecting 80.0 kg 
of exhaust at a speed of 253 mls relative to the space probe. What is 
the final velocity of the probe? 

SSM In Fig. 9-70, two long barges are moving in the same 
direction in still water, one with a speed of 10 km/h and the other 
with a speed of 20 kmlh. While they are passing each other, coal is 
shoveled from the slower to the faster one at a rate of 1000 kg/min. 
How much additional force must be provided by the driving en­
gines of (a) the faster barge and (b) the slower barge if neither is to 
change speed? Assume that the shoveling is always perfectly side­
ways and that the frictional forces between the barges and the water 
do not depend on the mass of the barges. 

Fig.9-70 Problem 77. 

Consider a rocket that is in deep space and at rest relative to 
an inertial reference frame. The rocket's engine is to be fired for a 
certain interval. What must be the rocket's mass ratio (ratio of ini­
tial to final mass) over that interval if the rocket's original speed 
relative to the inertial frame is to be equal to (a) the exhaust speed 
(speed of the exhaust products relative to the rocket) and (b) 2.0 
times the exhaust speed? 

SSM IlW A rocket that is in deep space and initially at rest 
relative to an inertial reference frame has a mass of 2.55 X 105 kg, 

PROBLEMS 237 

of which 1.81 X 105 kg is fuel. The rocket engine is then fired for 
250 s while fuel is consumed at the rate of 480 kg/so The speed of 
the exhaust products relative to the rocket is 3.27 km/s. (a) What is 
the rocket's thrust? After the 250 s firing, what are (b) the mass 
and ( c) the speed of the rocket? 

Additional Problems 
An object is tracked by a radar station and determined to have 

a position vector given by r = (3500 - 160t)i + 2700J + 300k, 
with r in meters and t in seconds. The radar station's x axis points 
east, its y axis north, and its z axis vertically up. If the object is a 
250 kg meteorological missile, what are (a) its linear momentum, 
(b) its direction of motion, and (c) the net force on it? 

The last stage of a rocket, which is traveling at a speed of 7600 
mis, consists of two parts that are clamped together: a rocket case 
with a mass of 290.0 kg and a payload capsule with a mass of 150.0 
kg. When the clamp is released, a compressed spring causes the two 
parts to separate with a relative speed of 910.0 m/s. What are the 
speeds of (a) the rocket case and (b) the payload after they have 
separated? Assume that all velocities are along the same line. Find 
the total kinetic energy of the two parts ( c) before and (d) after 
they separate. (e) Account for the difference. 

32 Pancake collapse of a tall building. In the section of a 
tall building shown in Fig. 9-71a, the infrastructure of any given 
floor K must support the weight Wof all higher floors. Normally 
the infrastructure is constructed with a safety factor s so that it can 
withstand an even greater downward force of sW. If, however, the 
support columns between K and L suddenly collapse and allow the 
higher floors to free-fall together onto floor K (Fig. 9-71b), the 
force in the collision can exceed s Wand, after a brief pause, cause 
K to collapse onto floor J, which collapses on floor J, and so on un­
til the ground is reached. Assume that the floors are separated by 
d = 4.0 m and have the same mass. Also assume that when the 
floors above K free-fall onto K, the collision lasts 1.5 ms. Under 
these simplified conditions, what value must the safety factor s ex­
ceed to prevent pancake collapse of the building? 

(a) 

N 

M 

L 

K 

J 

(b) 

Fig. 9-71 Problem 82. 

"Relative" is an important word. In Fig. 9-72, block L of mass 
mL = 1.00 kg and block R of mass mR = 0.500 kg are held in place 
with a compressed spring between them. When the blocks are re­
leased, the spring sends them sliding across a frictionless floor. 
(The spring has negligible mass and falls to the floor after the 

Fig.9-72 Problem 83. 
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blocks leave it.) (a) If the spring gives block L a release speed of 
1.20 mfs relative to the floor, how far does block R travel in the next 
0.800 s? (b) If, instead, the spring gives block L a release speed of 
1.20 mfs relative to the velocity that the spring gives block R, how 
far does block R travel in the next 0.800 s? 

I 
4 1 

I 

Figure 9-73 shows an overhead 
view of two particles sliding at constant 
velocity over a frictionless surface. The 
particles have the same mass and the 
same initial speed v = 4.00 mis, and 
they collide where their paths intersect. 
An x axis is arranged to bisect the angle 
between their incoming paths, such that 
8 = 40.0°. The region to the right of the 
collision is divided into four lettered 

Fig. 9-73 Problem 84. 

sections by the x axis and four numbered dashed lines. In what re­
gion or along what line do the particles travel if the collision is (a) 
completely inelastic, (b) elastic, and (c) inelastic? What are their fi­
nal speeds if the collision is (d) completely inelastic and (e) elastic? 

85 Speed deal11plijier. In Fig. 9-74, block 1 of mass 1111 

slides along an x axis on a frictionless floor at speed 4.00 m/s. Then 
it undergoes a one-dimensional elastic collision with stationary 
block 2 of mass 1112 = 2.001111' Next, block 2 undergoes a one-di­
mensional elastic collision with stationary block 3 of mass 1113 = 
2.001112' (a) What then is the speed of block 3? Are (b) the speed, 
( c) the kinetic energy, and (d) the momentum of block 3 greater 
than, less than, or the same as the initial values for block 1 ? 

Fig.9-74 Problem 85. 

Speed al11plijiel: In Fig. 9-75, block 1 of mass 1111 slides 
along an x axis on a frictionless floor with a speed of VIi = 4.00 mfs. 
Then it undergoes a one-dimensional elastic collision with station­
ary block 2 of mass 1112 = 0.500mj. Next, block 2 undergoes a one­
dimensional elastic collision with stationary block 3 of mass 1113 = 
0.500m2' (a) What then is the speed of block 3? Are (b) the speed, 
(c) the kinetic energy, and (d) the momentum of block 3 greater 
than, less than, or the same as the initial values for block 1 ? 

Fig.9-75 Problem 86. 

A ball having a mass of 150 g strikes a wall with a speed of 5.2 
mfs and rebounds with only 50% of its initial kinetic energy. (a) What 
is the speed of the ball immediately after rebounding? (b) What is the 
magnitude of the impulse on the wall from the ball? ( c) If the ball is 
in contact with the wall for 7.6 ms, what is the magnitUde of the aver­
age force on the ball from the wall during this time interval? 

A spacecraft is separated into two parts by detonating the ex­
plosive bolts that hold them together. The masses of the parts are 
1200 kg and 1800 kg; the magnitude of the impulse on each part 
from the bolts is 300 N . s. With what relative speed do the two 
parts separate because of the detonation? 

SSM A 1400 kg car moving at 5.3 mfs is initially traveling north 
along the positive direction of a y axis. After completing a 90° right-

hand turn in 4.6 s, the inattentive operator drives into a tree, which 
stops the car in 350 ms. In unit-vector notation, what is the impulse 
on the car (a) due to the turn and (b) due to the collision? What is 
the magnitude of the average force that acts on the car (c) during 
the turn and (d) during the collision? (e) What is the direction of 
the average force during the turn? 

IlW A certain radioactive (parent) nucleus transforms to a dif­
ferent (daughter) nucleus by emitting an electron and a neutrino. 
The parent nucleus was at rest at the origin of an xy coordinate sys­
tem. The electron moves away from the origin with linear momen­
tum (-1.2 X 10-22 kg· mfs )1; the neutrino moves away from the 
origin with linear momentum (-6.4 X 10-23 kg· m/s)]. What are 
the (a) magnitude and (b) direction of the linear momentum of the 
daughter nucleus? (c) If the daughter nucleus has a mass of 5.8 X 
10-26 kg, what is its kinetic energy? 

A 75 kg man rides on a 39 kg cart moving at a velocity of 2.3 mfs. 
He jumps off with zero horizontal velocity relative to the ground. 
What is the resulting change in the cart's velocity, including sign? 

Two blocks of masses 1.0 kg and 3.0 kg are connected by a 
spring and rest on a frictionless surface. They are given velocities 
toward each other such that the 1.0 kg block travels initially at 1.7 
mls toward the center of mass, which remains at rest. What is the 
initial speed of the other block? 

SSM A railroad freight car of mass 3.18 X 104 kg collides 
with a stationary caboose car. They couple together, and 27.0% of 
the initial kinetic energy is transferred to thermal energy, sound, 
vibrations, and so on. Find the mass of the caboose. 

An old Chrysler with mass 2400 kg is moving along a straight 
stretch of road at 80 kmfh. It is followed by a Ford with mass 1600 
kg moving at 60 km/h. How fast is the center of mass of the two 
cars moving? 

SSM In the arrangement of Fig. 9-21, billiard ball 1 moving at a 
speed of 2.2 mfs undergoes a glancing collision with identical bil­
liard ball 2 that is at rest. After the collision, ball 2 moves at speed 
1.1 mfs, at an angle of 82 = 60°. What are (a) the magnitude and (b) 
the direction of the velocity of ball 1 after the collision? ( c) Do the 
given data suggest the collision is elastic or inelastic? 

A rocket is moving away from the solar system at a speed of 
6.0 X 103 m/s. It fires its engine, which ejects exhaust with a speed 
of 3.0 X 103 mls relative to the rocket. The mass of the rocket at 
this time is 4.0 X 104 kg, and its acceleration is 2.0 mfs2. (a) What is 
the thrust of the engine? (b) At what rate, in kilograms per second, 
is exhaust ejected during the firing? 

The three balls in the overhead view of Fig. 9-76 are identical. 
Balls 2 and 3 touch each other and are aligned perpendicular to the 
path of ball 1. The velocity of ball 1 has magnitude Va = 10 mfs and 
is directed at the contact point of balls 1 and 2. After the collision, 
what are the (a) speed and (b) direction of the velocity of ball 2, 
the (c) speed and (d) direction of the velocity of ball 3, and the (e) 
speed and (f) direction of the velocity of ball I? (Hint: With fric­
tion absent, each impulse is directed along the line connecting the 
centers of the colliding balls, normal to the colliding surfaces.) 

2 

3 

Fig.9-76 Problem 97. 



A 0.15 kg ball hits a wall with a velocity of (5.00 mls)i + (6.50 
m/s)] + (4.00 mls)k. It rebounds from the wall with a velocity of 
(2.00 m/s)i + (3.50 mls)] + (-3.20 m/s)k. What are (a) the change 
in the ball's momentum, (b) the impulse on the ball, and (c) the im­
pulse on the wall? 

In Fig. 9-77, two identical containers of sugar 
are connected by a cord that passes over a friction­
less pulley. The cord and pulley have negligible 
mass, each container and its sugar together have a 
mass of 500 g, the centers of the containers are 
separated by 50 mm, and the containers are held 
fixed at the same height. What is the horizontal 
distance between the center of container 1 and the 

2 

center of mass of the two-container system (a) ini- Fig. 9-77 

tially and (b) after 20 g of sugar is transferred from Problem 99. 
container 1 to container 2? After the transfer and 
after the containers are released, (c) in what direction and (d) at 
what acceleration magnitude does the center of mass move? 

100 In a game of pool, the cue ball strikes another ball of the 
same mass and initially at rest. After the collision, the cue ball 
moves at 3.50 mls along a line making an angle of 22.0° with the cue 
ball's original direction of motion, and the second ball has a speed 
of 2.00 mls. Find (a) the angle between the direction of motion of 
the second ball and the original direction of motion of the cue ball 
and (b) the original speed of the cue ball. (c) Is kinetic energy (of 
the centers of mass, don't consider the rotation) conserved? 

In Fig. 9-78, a 3.2 kg box of running shoes slides on a hori­
zontal frictionless table and collides with a 2.0 kg box of ballet slip­
pers initially at rest on the edge of the table, at height h = 0040 m. 
The speed of the 3.2 kg box is 3.0 mls just before the collision. If 
the two boxes stick together because of packing tape on their sides, 
what is their kinetic energy just before they strike the floor? 

Fig. 9-78 Problem 101. 

102 In Fig. 9-79, an 80 kg man is on a lad­
der hanging from a balloon that has a total 
mass of 320 kg (including the basket passen- , 
ger). The balloon is initially stationary rei a- ! 

tive to the ground. If the man on the ladder 
begins to climb at 2.5 mls relative to the lad­
der, (a) in what direction and (b) at what 
speed does the balloon move? (c) If the man 
then stops climbing, what is the speed of the 
balloon? 

In Fig. 9-80, block 1 of mass /111 = 6.6 
kg is at rest on a long frictionless table that 
is up against a wall. Block 2 of mass /112 is 
placed between block 1 and the wall and 
sent sliding to the left, toward block 1, with 
constant speed V2i' Find the value of 1112 for 
which both blocks move with the same 

Fig. 9-79 

Problem 102. 
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velocity after block 2 has collided once with block 1 and once with 
the wall. Assume all collisions are elastic (the collision with the 
wall does not change the speed of block 2). 

Fig. 9-80 Problem 103. 

104 The script for an action movie calls for a small race car (of 
mass 1500 kg and length 3.0 m) to accelerate along a flattop boat 
( of mass 4000 kg and length 14 m), from one end of the boat to the 
other, where the car will then jump the gap between the boat and a 
somewhat lower dock. You are the technical advisor for the movie. 
The boat will initially touch the dock, as in Fig. 9-81; the boat can 
slide through the water without significant resistance; both the car 
and the boat can be approximated as uniform in their mass distrib­
ution. Determine what the width of the gap will be just as the car is 
about to make the jump. 

Dock7 Boat) 

~ I!Il U 
Fig. 9-81 Problem 104. 

SSM A 3.0 kg object moving at 8.0 mls in the positive direc­
tion of an x axis has a one-dimensional elastic collision with an ob­
ject of mass M, initially at rest. After the collision the object of 
mass M has a velocity of 6.0 mls in the positive direction of the 
axis. Wha t is mass M? 

A 2140 kg railroad flatcar, which can move with negligible 
friction, is motionless next to a platform. A 242 kg sumo wrestler 
runs at 5.3 mls along the platform (parallel to the track) and then 
jumps onto the flatcar. What is the speed of the flatcar if he then (a) 
stands on it, (b) runs at 5.3 mls relative to it in his original direc­
tion, and (c) turns and runs at 5.3 mls relative to the flatcar oppo­
site his original direction? 

SSM A 6100 kg rocket is set for vertical firing from the 
ground. If the exhaust speed is 1200 mis, how much gas must be 
ejected each second if the thrust (a) is to equal the magnitude of 
the gravitational force on the rocket and (b) is to give the rocket an 
initial upward acceleration of 21 m/s2? 

A 500.0 kg module is attached to a 400.0 kg shuttle craft, 
which moves at 1000 mls relative to the stationary main spaceship. 
Then a small explosion sends the module backward with speed 
100.0 mls relative to the new speed of the shuttle craft. As mea­
sured by someone on the main spaceship, by what fraction did the 
kinetic energy of the module and shuttle craft increase because of 
the explosion? 

SSM (a) How far is the center of mass of the Earth-Moon 
system from the center of Earth? (Appendix C gives the masses of 
Earth and the Moon and the distance between the two.) (b) What 
percentage of Earth's radius is that distance? 

A 140 g ball with speed 7.8 mls strikes a wall perpendicularly 
and rebounds in the opposite direction with the same speed. The 
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collision lasts 3.80 ms. What are the magnitudes of the (a) impulse 
and (b) average force on the wall from the ball? 

11 SSM A rocket sled with a mass of 2900 kg moves at 250 mls 
on a set of rails. At a certain point, a scoop on the sled dips into a 
trough of water located between the tracks and scoops water into 
an empty tank on the sled. By applying the principle of conserva­
tion of linear momentum, determine the speed of the sled after 920 
kg of water has been scooped up. Ignore any retarding force on the 
scoop. 

11 SSM A pellet gun fires ten 2.0 g pellets per second with a 
speed of 500 mls. The pellets are stopped by a rigid wall. What are 
(a) the magnitude of the momentum of each pellet, (b) the kinetic 
energy of each pellet, and (c) the magnitude of the average force 
on the wall from the stream of pellets? (d) If each pellet is in con­
tact with the wall for 0.60 ms, what is the magnitude of the average 
force on the wall from each pellet during contact? (e) Why is this 
average force so different from the average force calculated in (c)? 

113 A railroad car moves under a grain elevator at a constant 
speed of 3.20 m/s. Grain drops into the car at the rate of 540 
kg/min. What is the magnitude of the force needed to keep the car 
moving at constant speed if friction is negligible? 

1 Figure 9-82 shows a uniform square plate of edge length 
6d = 6.0 m from which a square piece of edge length 2d has been 
removed. What are (a) the x coordinate and (b) the y coordinate of 
the center of mass of the remaining piece? 

y 

T 
3d 

~~----~++~-----x 

3d 

1 
~3d 

Fig. 9-82 Problem 114. 

15 SSM At time t = 0, force PI = (-4.00i + 5.00]) N acts on an 
initially stationary particle of mass 2.00 X 10-3 kg and force 
P2 = (2.00i - 4.00J) N acts on an initially stationary particle of 
mass 4.00 X 10-3 kg. From time t = 0 to t = 2.00 ms, what are the 
(a) magnitude and (b) angle (relative to the positive direction of 
the x axis) of the displacement of the center of mass of the two­
particle system? (c) What is the kinetic energy of the center of 
mass at t = 2.00 ms? 

11 Two particles P and Q are released from rest 1.0 m apart. P has 
a mass of 0.10 kg, and Q a mass of 0.30 kg. P and Q attract each other 
with a constant force of 1.0 X 10-2 N. No external forces act on the 

system. (a) What is the speed of the center of mass of P and Q when 
the separation is 0.50 m? (b) At what distance from P's original posi­
tion do the particles collide? 

117 A collision occurs between a 2.00 kg particle traveling with 
velocity VI = (-4.00 mls)i + (-5.00 m/s)J and a 4.00 kg particle 
traveling with velocity V2 = (6.00 m/s)i +( -2.00 mls)]. The colli­
sion connects the two particles. What then is their velocity in (a) 
unit -vector notation and as a (b) magnitude and (c) angle? 

11 In the two-sphere arrangement of Fig. 9-20, assume that 
sphere 1 has a mass of 50 g and an initial height of hI = 9.0 cm, and 
that sphere 2 has a mass of 85 g. After sphere 1 is released and col­
lides elastically with sphere 2, what height is reached by (a) sphere 
1 and (b) sphere 2? After the next (elastic) collision, what height is 
reached by (c) sphere 1 and (d) sphere 2? (Hint: Do not use 
rounded-off values.) 

11 In Fig. 9-83, block 1 slides along an x axis on a frictionless 
floor with a speed of 0.75 m/s. When it reaches stationary block 2, 
the two blocks undergo an elastic collision. The following table 
gives the mass and length of the (uniform) blocks and also the lo­
cations of their centers at time t = O. Where is the center of mass of 
the two-block system located (a) at t = 0, (b) when the two blocks 
first touch, and ( c) at t = 4.0 s? 

Block 

1 
2 

Mass (kg) Length (cm) 

0.25 
0.50 

-1.50 m 

5.0 
6.0 

o 
Fig. 9-83 Problem 119. 

Center at t = 0 

x = -1.50 m 
x=O 

A body is traveling at 2.0 mls along the positive direction of 
an x axis; no net force acts on the body. An internal explosion sepa­
rates the body into two parts, each of 4.0 kg, and increases the total 
kinetic energy by 16 J. The forward part continues to move in the 
original direction of motion. What are the speeds of (a) the rear 
part and (b) the forward part? 

121 An electron undergoes a one-dimensional elastic collision 
with an initially stationary hydrogen atom. What percentage of the 
electron's initial kinetic energy is transferred to kinetic energy of 
the hydrogen atom? (The mass of the hydrogen atom is 1840 times 
the mass of the electron.) 

122 A man (weighing 915 N) stands on a long railroad flatcar 
(weighing 2415 N) as it rolls at 18.2 mls in the positive direction of 
an x axis, with negligible friction. Then the man runs along the flat­
car in the negative x direction at 4.00 mls relative to the flatcar. 
What is the resulting increase in the speed of the flatcar? 



As we have discussed, one focus of physics is motion. 
However, so far we have examined only the motion of translation, in 
which an object moves along a straight or curved line, as in Fig. lO-la. 
We now turn to the motion of rotation, in which an object turns about an 
axis, as in Fig.lO-lb. 

You see rotation in nearly every machine, you use it every time you 
open a beverage can with a pull tab, and you pay to experience it every 
time you go to an amusement park. Rotation is the key to many fun ac­
tivities, such as hitting a long drive in golf (the ball needs to rotate in or­
der for the air to keep it aloft longer) and throwing a curveball in base­
ball (the ball needs to rotate in order for the air to push it left or right). 
Rotation is also the key to more serious matters, such as metal failure in 
aging airplanes. 

We begin our discussion of rotation by defining the variables for the 
motion, just as we did for translation in Chapter 2. As we shall see, the 
variables for rotation are analogous to those for one-dimensional mo­
tion and, as in Chapter 2, an important special situation is where the ac­
celeration (here the rotational acceleration) is constant. We shall also 
see that Newton's second law can be written for rotational motion, but 
we must use a new quantity called torque instead of just force. Work and (a) 
the work-kinetic energy theorem can also be applied to rotational mo-
tion, but we must use a new quantity called rotational inertia instead of 
just mass. In short, much of what we have discussed so far can be applied 
to rotational motion with, perhaps, a few changes. 

1 The Rotational Variables 
We wish to examine the rotation of a rigid body about a fixed axis. A 
rigid body is a body that can rotate with all its parts locked together and 
without any change in its shape. A fixed axis means that the rotation oc­
curs about an axis that does not move. Thus, we shall not examine an ob­
ject like the Sun, because the parts of the Sun (a ball of gas) are not locked 
together. We also shall not examine an object like a bowling ball rolling 
along a lane, because the ball rotates about a moving axis (the ball's mo­
tion is a mixture of rotation and translation). 

Fig. 10-1 Figure skater Sasha Cohen in motion of (a) pure translation 
in a fixed direction and (b) pure rotation about a vertical axis. (a: Mike 
Segar/Reuters/Landov LLC; b: Elsa/Getty Images, Inc.) (b) 
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/Body 

)' 

This line is part 
of the body and 
perpendicular to 
the rotation axis. 

-:71"'0"----- x 

Fig. 1 0-2 A rigid body of arbitrary shape 
in pure rotation about the z axis of a coordi­
nate system. The position of the reference 
line with respect to the rigid body is arbitrary, 
but it is perpendicular to the rotation axis. It 
is fixed in the body and rotates with the body. 

Rotation 
axis 

The body has rotated 
counterclockwise 

)' by angle (). This is the 
positive direction. 

This dot means that 
the rotation axis is 
out toward you. 

Fig. 10-3 The rotating rigid body of Fig. 
10-2 in cross section, viewed from above. 
The plane of the cross section is perpendic­
ular to the rotation axis, which now extends 
out of the page, toward you. In this position 
of the body, the reference line makes an an­
gle Bwith thex axis. 

Figure 10-2 shows a rigid body of arbitrary shape in rotation about a fixed 
axis, called the axis of rotation or the rotation axis. In pure rotation (angular 
motion), every point of the body moves in a circle whose center lies on the axis of 
rotation, and every point moves through the same angle during a particular time 
interval. In pure translation (linear motion), every point of the body moves in a 
straight line, and every point moves through the same linear distance during a 
particular time interval. 

We deal now-one at a time-with the angular equivalents of the linear 
quantities position, displacement, velocity, and acceleration. 

Figure 10-2 shows a reference line, fixed in the body, perpendicular to the rotation 
axis and rotating with the body. The angular position of this line is the angle of 
the line relative to a fixed direction, which we take as the zero angular position. 
In Fig. 10-3, the angular position (J is measured relative to the positive direction of 
the x axis. From geometry, we know that (Jis given by 

s 
(J =-

r 
(radian measure). (10-1) 

Here s is the length of a circular arc that extends from the x axis (the zero angular 
position) to the reference line, and r is the radius of the circle. 

An angle defined in this way is measured in radians (rad) rather than in 
revolutions (rev) or degrees. The radian, being the ratio of two lengths, is a 
pure number and thus has no dimension. Because the circumference of a circle of 
radius r is 2m, there are 21Tradians in a complete circle: 

and thus 

21Tr 
1 rev = 360° = -- = 21T rad, 

r 

1 rad = 57.3° = 0.159 rev. 

(10-2) 

(10-3) 

We do not reset (J to zero with each complete rotation of the reference line about 
the rotation axis. If the reference line completes two revolutions from the zero 
angular position, then the angular position (J of the line is 0 = 41Trad. 

For pure translation along an x axis, we can know all there is to know about a 
moving body if we know x(t), its position as a function of time. Similarly, for pure 
rotation, we can know all there is to know about a rotating body if we know OCt), 
the angular position of the body's reference line as a function of time. 

If the body of Fig. 10-3 rotates about the rotation axis as in Fig. 10-4, changing the 
angular position of the reference line from (Jj to 02> the body undergoes an 
angular displacement t::..0 given by 

(10-4) 

This definition of angular displacement holds not only for the rigid body as a 
whole but also for every particle within that body. 

If a body is in translational motion along an x axis, its displacement t::..x is 
either positive or negative, depending on whether the body is moving in the 
positive or negative direction of the axis. Similarly, the angular displacement t::..0 
of a rotating body is either positive or negative, according to the following rule: 

An angular displacement in the counterclockwise direction is positive, and one in the 
clockwise direction is negative. 
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The phrase "clocks are negative" can help you remember this rule (they certainly 
are negative when their alarms sound off early in the morning). 

CHECKPOINT 1 

A disk can rotate about its central axis like a merry-go-round. Which of the following 
pairs of values for its initial and final angular positions, respectively, give a negative an­
gular displacement: (a) -3 rad, +5 rad, (b) -3 rad, -7 rad, (c)7 rad, -3 rad? 

Suppose that our rotating body is at angular position 8j at time tl and at 
angular position 82 at time t2 as in Fig. 10-4. We define the average angular veloc­
ity of the body in the time intervall1t from tj to t2 to be 

(10-5) 

where A 8 is the angular displacement during At (w is the lowercase omega). 
The (instantaneous) angular velocity w, with which we shall be most con­

cerned, is the limit of the ratio in Eq.l0-5 as I1t approaches zero. Thus, 

w = lim A8 = de. 
M->O At dt 

(10-6) 

If we know e(t), we can find the angular velocity w by differentiation. 
Equations 10-5 and 10-6 hold not only for the rotating rigid body as a whole 

but also for every particle of that body because the particles are all locked 
together. The unit of angular velocity is commonly the radian per second (rad/s) 
or the revolution per second (rev/s). Another measure of angular velocity was 
used during at least the first three decades of rock: Music was produced by vinyl 
(phonograph) records that were played on turntables at "33~ rpm" or "45 rpm," 
meaning at 33~ rev/min or 45 rev/min. 

If a particle moves in translation along an x axis, its linear velocity v is either posi­
tive or negative, depending on its direction along the axis. Similarly, the angular veloc­
ity w of a rotating rigid body is either positive or negative, depending on whether the 
body is rotating counterclockwise (positive) or clockwise (negative). ("Clocks are neg­
ative" still works.) The magnitude of an angular velocity is called the angular speed, 
which is also represented with w. 

If the angular velocity of a rotating body is not constant, then the body has an an­
gular acceleration. Let W2 and Wj be its angular velocities at times t2 and t j, 
respectively. The average angular acceleration of the rotating body in the interval 
from tl to t2 is defined as 

D,.w 

11t' 
(10-7) 

in which Aw is the change in the angular velocity that occurs during the time 
intervall1t. The (instantaneous) angular acceleration a, with which we shall be 
most concerned, is the limit of this quantity as At approaches zero. Thus, 

a = lim Aw = dw. 
M->O At dt 

(10-8) 

Equations 10-7 and 10-8 also hold for every particle of that body. The unit of 
angular acceleration is commonly the radian per second-squared (rad/s2) or the 
revolution per second-squared (rev/s2). 

y 
Reference line 

Rotation axis 

This change in 
the angle is 
the angular 
displacement 
of the body 
during this time 
change. 

Fig. 1 0-4 The reference line of the rigid 
body of Figs. 10-2 and 10-3 is at angular po­
sition 01 at time tl and at angular position Oz 
at a later time t2• The quantity ~ 0 (= Oz - (1) 

is the angular displacement that occurs dur­
ingtheintervalM(= t2 - tl).Thebodyit­
self is not shown. 
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Angular velocity derived from angular position 

The disk in Fig. 1O-5a is rotating about its central axis like a 
merry-go-round. The angular position O(t) of a reference 
line on the disk is given by 

0= -1.00 - 0.600t + 0.250t2, (10-9) 

with t in seconds, 0 in radians, and the zero angular position 
as indicated in the figure. 

(a) Graph the angular position of the disk versus time 
from t = -3.0 s to t = 5.4 s. Sketch the disk and its angular 
position reference line at t = -2.0 s, 0 s, and 4.0 s, and 
when the curve crosses the taxis. 

The angular position of the disk is the angular position 
O(t) of its reference line, which is given by Eq.l0-9 as a func­
tion of time t. So we graph Eq. 10-9; the result is shown in 
Fig.l0-5b. 

IRotation axis 

0
' . Reference 

line , 
--Zero 

. angular 
, position 
I 

(a) 
The angular position 

e(rad) 

Calculations: To sketch the disk and its reference line at a 
particular time, we need to determine 0 for that time. To do 
so, we substitute the time into Eq.l0-9. For t = -2.0 s, we get 

() = -1.00 - (0.600)(-2.0) + (0.250)(-2.0)2 

360° 
= 1.2 rad = 1.2 rad d = 69°. 

21Tra 

This means that at t = -2.0 s the reference line on the disk 
is rotated counterclockwise from the zero position by 
1.2 rad = 69° (counterclockwise because 0 is positive). 
Sketch 1 in Fig. 10-5b shows this position of the reference 
line. 

Similarly, for t = 0, we find 0 = -1.00 rad = - 57°, which 
means that the reference line is rotated clockwise from the 
zero angular position by 1.0 rad, or 57°, as shown in sketch 3. 
For t = 4.0 s, we find 0 = 0.60 rad = 34° (sketch 5). Drawing 
sketches for when the curve crosses the t axis is easy, because 

This is a plot of the angle 
of the disk versus time. 

of the disk is the angle 
between these two lines. -2 0 2 4 

6·-
i 

(1) 

At t = -2 s, the disk 
is at a positive 
(counterclockwise) 
angle. So, a positive 
e value is plotted. 

C7-. 
i 

(2) 

Now, the disk is 
at a zero angle. 

(b) 

d>.-
i 

(3) 

Now, it is at a 
negative (clockwise) 
angle. So, a negative 
e value is plotted. 

C7-- 0-.-
i i 

(4) (5) 

It has reversed Now, it is 
its rotation and back at a 
is again at a positive 
zero angle. angle. 

Fig. 10-5 (a) A rotating disk. (b) A plot of the disk's angular position O(t). Five sketches indicate 
the angular position of the reference line on the disk for five points on the curve. (c) A plot of the 
disk's angular velocity w(t). Positive values of w correspond to counterclockwise rotation, and nega­
tive values to clockwise rotation. 



then 0 = 0 and the reference line is momentarily aligned 
with the zero angular position (sketches 2 and 4). 

(b) At what time tmin does O(t) reach the minimum 
value shown in Fig.l0-5b? What is that minimum value? 

To find the extreme value (here the minimum) of a function, 
we take the first derivative of the function and set the result 
to zero. 

Calculations: The first derivative of OCt) is 

dO 
dt = -0.600 + 0.500t. (10-10) 

Setting this to zero and solving for t give us the time at 
which O(t) is minimum: 

tmin = 1.20 s. (Answer) 

This is a plot of the angular 
(0 (rad/s) velocity of the disk versus time. 
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(e) 

The angular velocity is 
initially negative and slowing, 
then momentarily zero during 
reversal, and then positive and 
increasing. 

6 
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To get the minimum value of 0, we next substitute tmin into 
Eq. 10-9, finding 

0= -1.36 rad = -77.9°. (Answer) 

This minimum of O(t) (the bottom of the curve in Fig. 10-5b) 
corresponds to the maximum clockwise rotation of the disk 
from the zero angular position, somewhat more than is 
shown in sketch 3. 

( c) Graph the angular velocity w of the disk versus time from 
t = -3.0 s to t = 6.0 s. Sketch the disk and indicate the direc­
tion of turning and the sign of watt = -2.0 s,4.0 s, and tmin' 

From Eq. 10-6, the angular velocity w is equal to dO/dt as 
given in Eq. 10-10. So, we have 

w = -0.600 + 0.500t. (10-11) 

The graph of this function wet) is shown in Fig.l0-5c. 

Calculations: To sketch the disk at t = -2.0 s, we substi­
tute that value into Eq. 10-11, obtaining 

w = -1.6 rad/s. (Answer) 

The minus sign here tells us that at t = -2.0 s, the disk is 
turning clockwise (the left-hand sketch in Fig. 10-5c). 

Substituting t = 4.0 s into Eq. 10-11 gives us 

w = 1.4 rad/s. (Answer) 

The implied plus sign tells us that now the disk is turning 
counterclockwise C the right-hand sketch in Fig.l0-5c). 

For tmill' we already know that dO/dt = O. So, we must 
also have w = O. That is, the disk momentarily stops when 
the reference line reaches the minimum value of 0 in Fig. 
10-5b, as suggested by the center sketch in Fig.l0-5c. On the 
graph, this momentary stop is the zero point where the plot 
changes from the negative clockwise motion to the positive 
counterclockwise motion. 

Cd) Use the results in parts (a) through (c) to describe the 
motion of the disk from t = - 3.0 s to t = 6.0 S. 

Description: When we first observe the disk at t = -3.0 s, it 
has a positive angular position and is turning clockwise but 
slowing. It stops at angular position 0 = -1.36 rad and then 
begins to turn counterclockwise, with its angular position 
eventually becoming positive again. 

Additional examples, video, and practice 
available at WileyPLUS 
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Angular velocity derived from angular acceleration 

A child's top is spun with angular acceleration To evaluate the constant of integration C, we note that w = 5 
rad/s at t = O. Substituting these values in our expression for 
wyields 

a = 5t3 - 4t, 

with t in seconds and a in radians per second-squared. At 
t = 0, the top has angular velocity 5 rad/s, and a reference 
line on it is at angular position (j = 2 rad. 

5 rad/s = 0 - 0 + C, 

so C = 5 rad/s. Then 

(a) Obtain an expression for the angular velocity wet) of the 
top. That is, find an expression that explicitly indicates how the 
angular velocity depends on time. (We can tell that there is 
such a dependence because the top is undergoing an angular 
acceleration, which means that its angular velocity is changing.) 

w = ~t4 - 2t2 + 5. (Answer) 

(b) Obtain an expression for the angular position (j(t) of the 
top. 

By definition, aCt) is the derivative of wet) with respect to 
time. Thus, we can find wet) by integrating aCt) with respect 
to time. 

By definition, wet) is the derivative of (j(t) with respect to 
time. Therefore, we can find (j(t) by integrating wet) with 
respect to time. 

Calculations: Since Eq. 10-6 tells us that 

Calculations: Equation 10-8 tells us 

dw = a dt, 

so 

From this we find 

we can write 
d(j = wdt, 

() = f w dt = f (~t4 - 2t2 + 5) dt 

w = f (5t3 - 4t) dt = ~t4 - ~t2 + C. 

(Answer) 

where C' has been evaluated by noting that (j = 2 rad at t = O. 

Additional examples, video, and practice available at WileyPLUS 

1 Are Angular Quantities Vectors? 
We can describe the position, velocity, and acceleration of a single particle by 
means of vectors. If the particle is confined to a straight line, however, we do not 
really need vector notation. Such a particle has only two directions available to it, 
and we can indicate these directions with plus and minus signs. 

In the same way, a rigid body rotating about a fixed axis can rotate only 
clockwise or counterclockwise as seen along the axis, and again we can select 
between the two directions by means of plus and minus signs. The question arises: 
"Can we treat the angular displacement, velocity, and acceleration of 
a rotating body as vectors?" The answer is a qualified "yes" (see the caution 
below, in connection with angular displacements). 

Consider the angular velocity. Figure 10-6a shows a vinyl record rotating on a 
turntable. The record has a constant angular speed w (= 33~ rev/min) in the 
clockwise direction. We can represent its angular velocity as a vector w pointing 
along the axis of rotation, as in Fig. 10-6b. Here's how: We choose the length of 
this vector according to some convenient scale, for example, with 1 cm corre­
sponding to 10 rev/min. Then we establish a direction for the vector w by using a 
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z 
Axis 

This right-hand rule 
establishes the 
direction of the 
angular velocity 
vector. 

(a) 

z 
Axis 

(b) 

z 
Axis 

(c) 

Fig. 1 0-6 (a) A record rotating about a vertical axis that coincides with the axis of the 
spindle. (b) The angular velocity of the rotating record can be represented by the vector w, 
lying along the axis and pointing down, as shown. (c) We establish the direction of the an­
gular velocity vector as downward by using a right-hand rule. When the fingers of the right 
hand curl around the record and point the way it is moving, the extended thumb points in 
the direction of w. 

right-hand rule, as Fig. 10-6c shows: Curl your right hand about the rotating 
record, your fingers pointing in the direction of rotation. Your extended thumb 
will then point in the direction of the angular velocity vector. If the record were 
to rotate in the opposite sense, the right-hand rule would tell you that the angular 
velocity vector then points in the opposite direction. 

It is not easy to get used to representing angular quantities as vectors. We in­
stinctively expect that something should be moving along the direction of a vec­
tor. That is not the case here. Instead, something (the rigid body) is rotating 
around the direction of the vector. In the world of pure rotation, a vector defines 
an axis of rotation, not a direction in which something moves. Nonetheless, the 
vector also defines the motion. Furthermore, it obeys all the rules for vector 
manipulation discussed in Chapter 3. The angular acceleration (} is another 
vector, and it too obeys those rules. 

In this chapter we consider only rotations that are about a fixed axis. For such 
situations, we need not consider vectors-we can represent angular velocity with 
wand angular acceleration with lX, and we can indicate direction with an implied 
plus sign for counterclockwise or an explicit minus sign for clockwise. 

N ow for the caution: Angular displacements (unless they are very small) can­
not be treated as vectors. Why not? We can certainly give them both magnitude 
and direction, as we did for the angular velocity vector in Fig. 10-6. However, to 
be represented as a vector, a quantity must also obey the rules of vector addition, 
one of which says that if you add two vectors, the order in which you add them 
does not matter. Angular displacements fail this test. 

Figure 10-7 gives an example. An initially horizontal book is given two 90° 
angular displacements, first in the order of Fig. 1O-7a and then in the order of 
Fig. 1O-7b. Although the two angular displacements are identical, their order is 
not, and the book ends up with different orientations. Here's another example. 
Hold your right arm downward, palm toward your thigh. Keeping your wrist 
rigid, (1) lift the arm forward until it is horizontal, (2) move it horizontally until it 
points toward the right, and (3) then bring it down to your side. Your palm faces 
forward. If you start over, but reverse the steps, which way does your palm end up 
facing? From either example, we must conclude that the addition of two angular 
displacements depends on their order and they cannot be vectors. 

J 
~Jt7"'J' ~, 
z z The order of th 

rotations make 

x 

z 

x 

(a) 

z 

z 
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(b) 

a big differenc 
in the result. 

Fig. 10-7 (a) From its initial position, at 
the top, the book is given two successive 
90° rotations, first about the (horizontal) x 
axis and then about the (vertical) y axis. (b) 
The book is given the same rotations, but in 
the reverse order. 
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1 Rotation with Constant Angular Acceleration 
In pure translation, motion with a constant linear acceleration (for example, that 
of a falling body) is an important special case. In Table 2-1, we displayed a series 
of equations that hold for such motion. 

In pure rotation, the case of constant angular acceleration is also important, 
and a parallel set of equations holds for this case also. We shall not derive them 
here, but simply write them from the corresponding linear equations, substituting 
equivalent angular quantities for the linear ones. This is done in Table 10-1, which 
lists both sets of equations (Eqs. 2-11 and 2-15 to 2-1B; 10-12 to 10-16). 

Recall that Eqs. 2-11 and 2-15 are basic equations for constant linear accelera­
tion - the other equations in the Linear list can be derived from them. Similarly, Eqs. 
10-12 and 10-13 are the basic equations for constant angular acceleration, and the 
other equations in the Angular list can be derived from them. To solve a simple prob­
lem involving constant angular acceleration, you can usually use an equation from 
the Angular list (if you have the list). Choose an equation for which the only un­
known variable will be the variable requested in the problem. A better plan is to re­
member only Eqs. 10-12 and 10-13, and then solve them as simultaneous equations 
whenever needed. 

""CHECKPOINT 2 

In four situations, a rotating body has angular position 8(t) given by (a) 8 = 3t - 4, 
(b) 8 = - 5t3 + 4t2 + 6, ( c) 8 = 21t2 - 41t, and (d) 8 = 5t2 - 3. To which situations do 
the angular equations of Table 10-1 apply? 

Equations of Motion for Constant Linear Acceleration and for Constant Angular Acceleration 

Equation Linear Missing Angular Equation 
Number Equation Variable Equation Number 

(2-11) v = Vo + at x -xo 8- 80 w=wo+o:t (10-12) 

(2-15) x - Xo = vot + 4at2 v w () - (}o = wot + 40:t2 (10-13) 

(2-16) v2 = VB + 2a(x - xo) w2 = WB + 20:«(} - (}o) (10-14) 

(2-17) x Xo = !(vo + v)t a 0: () - (}o = !(wo + w)t (10-15) 

(2-18) x - Xo = vt - !at2 Vo Wo () - (}o = wt - !o:t2 (10-16) 

Constant angular acceleration, grindstone 

A grindstone (Fig.l0-B) rotates at constant angular acceler­
ation a = 0.35 rad/s2• At time t = 0, it has an angular veloc­
ity of UJo = -4.6 rad/s and a reference line on it is horizon­
tal, at the angular position {)o = O. 

tion equations of Table 10-1. We choose Eq.l0-13, 

() - {)o = wot + ~at2, 

because the only unknown variable it contains is the desired 
time t. 

(a) At what time after t = 0 is the reference line at the an­
gular position () = 5.0 rev? 

The angular acceleration is constant, so we can use the rota-

Calculations: Substituting known values and setting 
{)o = 0 and () = 5.0 rev = 1017'rad give us 

1017' rad = (-4.6 rad/s)t + ~ (0.35 rad/s2)t2• 

(We converted 5.0 rev to 1017' rad to keep the units consis-
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tent.) Solving this quadratic equation for t, we find 

t = 32 s. (Answer) 

Now notice something a bit strange. We first see the wheel 
when it is rotating in the negative diretion and through the 
() = 0 orientation. Yet, we just found out that 32 s later it is at 
the positive orientation of () = 5.0 rev. What happened in 
that time interval so that it could be at a positive orientation? 

(b) Describe the grindstone's rotation between t = 0 and 
t = 32 s. 

Description: The wheel is initially rotating in the negative 
(clockwise) direction with angular velocity Wo = -4.6 rad/s, 
but its angular acceleration a is positive. This initial opposi­
tion of the signs of angular velocity and angular accelera­
tion means that the wheel slows in its rotation in the nega­
tive direction, stops, and then reverses to rotate in the 
positive direction. After the reference line comes back 
through its initial orientation of () = 0, the wheel turns an 
additional 5.0 rev by time t = 32 s. 

(c) At what time t does the grindstone momentarily stop? 

Calculation: We again go to the table of equations for con­
stant angular acceleration, and again we need an equation 

We measure rotation by using 
this reference line. 
Clockwise = negative 
Counterclockwise = positive 

..;::.,,;.....=orr-'-I- _____ Zero angular 
position 

Fig. 10-8 A grindstone. At t = 0 the reference line (which we 
imagine to be marked on the stone) is horizontal. 

that contains only the desired unknown variable t. However, 
now the equation must also contain the variable w, so that we 
can set it to 0 and then solve for the corresponding time t. We 
choose Eq. 10-12, which yields 

w - Wo t = ---"- o - (-4.6 rad/s) = 13 s. 
0.35 rad/s2 (Answer) 

Constant angular acceleration, riding a Rotor 

While you are operating a Rotor (a large, vertical, rotating 
cylinder found in amusement parks), you spot a passenger 
in acute distress and decrease the angular velocity of the 
cylinder from 3.40 rad/s to 2.00 rad/s in 20.0 rev, at constant 
angular acceleration. (The passenger is obviously more of a 
"translation person" than a "rotation person.") 

(a) What is the constant angular acceleration during this 
decrease in angular speed? 

Because the cylinder's angular acceleration is constant, we 
can relate it to the angular velocity and angular displace­
ment via the basic equations for constant angular accelera­
tion (Eqs.l0-12 and 10-13). 

Calculations: The initial angular velocity is Wo = 3.40 
rad/s, the angular displacement is () - ()o = 20.0 rev, and the 
angular velocity at the end of that displacement is w = 2.00 
rad/s. But we do not know the angular acceleration a and 
time t, which are in both basic equations. 

To eliminate the unknown t, we use Eq. 10-12 to write 
w - Wo 

t = , 
a 

which we then substitute into Eq.lO-13 to write 

() - ()o = wo( w ~ Wo ) + ! a( w ~ Wo r 
Solving for a, substituting known data, and converting 20 
rev to 125.7 rad, we find 

w2 - w5 (2.00 rad/s)2 - (3.40 rad/s)2 
a= = 

2( () - ()o) 2(125.7 rad) 

= -0.0301 rad/s2. (Answer) 

(b) How much time did the speed decrease take? 

Calculation: Now that we know a, we can use Eq. 10-12 to 
solve for t: 

w-w 
t = 0 

a 
= 46.5 s. 

2.00 rad/s - 3.40 rad/s 
-0.0301 rad/s2 

(Answer) 

Additional examples, Video, and practice available at WileyPLUS 
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1 Relating the linear and Angular Variables 
In Section 4-7, we discussed uniform circular motion, in which a particle travels at 
constant linear speed v along a circle and around an axis of rotation. When a rigid 
body, such as a merry-go-round, rotates around an axis, each particle in the body 
moves in its own circle around that axis. Since the body is rigid, all the particles 
make one revolution in the same amount of time; that is, they all have the same 
angular speed w. 

However, the farther a particle is from the axis, the greater the circumference 
of its circle is, and so the faster its linear speed v must be. You can notice this on a 
merry-go-round. You turn with the same angular speed w regardless of your dis­
tance from the center, but your linear speed v increases noticeably if you move to 
the outside edge of the merry-go-round. 

We often need to relate the linear variables s, v, and a for a particular point in 
a rotating body to the angular variables e, w, and a for that body. The two sets of 
variables are related by r, the perpendicular distance of the point from the 
rotation axis. This perpendicular distance is the distance between the point and 
the rotation axis, measured along a perpendicular to the axis. It is also the radius r 
of the circle traveled by the point around the axis of rotation. 

If a reference line on a rigid body rotates through an angle e, a point within the 
body at a position r from the rotation axis moves a distance s along a circular are, 
where s is given by Eq.10-1: 

s = ()r (radian measure). (10-17) 

This is the first of our linear-angular relations. Caution.' The angle ehere must be 
measured in radians because Eq.10-17 is itself the definition of angular measure 
in radians. 

Differentiating Eq.10-17 with respect to time-with r held constant-leads to 

ds de 
dt = Tt r. 

However, ds/dt is the linear speed (the magnitude of the linear velocity) of the 
point in question, and de/dt is the angular speed w of the rotating body. So 

v = wr (radian measure). (10-18) 

Caution: The angular speed w must be expressed in radian measure. 
Equation 10-18 tells us that since all points within the rigid body have the 

same angular speed w, points with greater radius r have greater linear speed v. 
Figure 10-9a reminds us that the linear velocity is always tangent to the circular 
path of the point in question. 

If the angular speed w of the rigid body is constant, then Eq. 10-18 tells us 
that the linear speed v of any point within it is also constant. Thus, each point 
within the body undergoes uniform circular motion. The period of revolution T 
for the motion of each point and for the rigid body itself is given by Eq. 4-35: 

21Tr 
T = -. (10-19) 

v 

This equation tells us that the time for one revolution is the distance 21T1' traveled 
in one revolution divided by the speed at which that distance is traveled. 
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Fig. 10-9 The rotating rigid body 
of Fig. 10-2, shown in cross section 
viewed from above. Every point of 
the body (such as P) moves in a cir­
cle around the rotation axis. (a) The 
linear velocity v of every point is 
tangent to the circle in which the 
point moves. (b) The linear acceler­
ation 7l of the point has (in general) 
two components: tangential at and 
radial ar • 

Circle 
traveled by P 

)' 

(a) 

The velocity vector is 
always tangent to this 
circle around the 
rotation axis. 

Substituting for v from Eq. 10-18 and canceling r, we find also that 

T = 271' (radian measure). 
w 

(10-20) 

This equivalent equation says that the time for one revolution is the angular dis­
tance 271' rad traveled in one revolution divided by the angular speed (or rate) at 
which that angle is traveled. 

Differentiating Eq. 10-18 with respect to time-again with r held constant­
leads to 

(10-21) 

Here we run up against a complication. In Eq. 10-21, dv/dt represents only the 
part of the linear acceleration that is responsible for changes in the magnitude v 
of the linear velocity v. Like V, that part of the linear acceleration is tangent to 
the path of the point in question. We call it the tangential component at of the lin­
ear acceleration of the point, and we Wlite 

(radian measure), (10-22) 

where a = dw/dt. Caution: The angular acceleration a in Eq. 10-22 must be 
expressed in radian measure. 

In addition, as Eq. 4-34 tells us, a particle (or point) moving in a circular path 
has a radial component of linear acceleration, ar = v2/r (directed radially inward), 
that is responsible for changes in the direction of the linear velocity v. By substi­
tuting for v from Eq.10-18, we can write this component as 

v2 

a =-= uh 
r r (10-23) (radian measure). 

Thus, as Fig. 1O-9b shows, the linear acceleration of a point on a rotating rigid 
body has, in general, two components. The radially inward component a,. (given 
by Eq. 10-23) is present whenever the angular velocity of the body is not zero. 
The tangential component at (given by Eq. 10-22) is present whenever the angu­
lar acceleration is not zero. 

The acceleration always 
has a radial (centripetal) 

y component and may have 
a tangential component. 

--r-----~L------+-x 

(b) 
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CHECKPOINT 3 

A cockroach rides the rim of a rotating merry-go-round. If the angular speed of this 
system (merry-go-round + cockroach) is constant, does the cockroach have (a) radial 
acceleration and (b) tangential acceleration? If w is decreasing, does the cockroach 
have (c) radial acceleration and (d) tangential acceleration? 

linear and angular variables, roller coaster speedup 

In spite of the extreme care taken in engineering a roller 
coaster, an unlucky few of the millions of people who ride 
roller coasters each year end up with a medical condition 
called roller-coaster headache. Symptoms, which might not 
appear for several days, include vertigo and headache, both 
severe enough to require medical treatment. 

Let's investigate the probable cause by designing the 
track for our own induction roller coaster (which can be ac­
celerated by magnetic forces even on a horizontal track). To 
create an initial thrill, we want each passenger to leave the 
loading point with acceleration g along the horizontal track. 
To increase the thrill, we also want that first section of track 
to form a circular arc (Fig. 10-10), so that the passenger also 
experiences a centripetal acceleration. As the passenger 
accelerates along the arc, the magnitude of this centripetal 
acceleration increases alarmingly. When the magnitude a of 
the net acceleration reaches 4g at some point P and angle ()p 

along the arc, we want the passenger then to move in a 
straight line, along a tangent to the arc. 

(a) What angle ()p should the arc subtend so that a is 4g at 
pointP? 

(1) At any given time, the passenger's net acceleration a is 
the vector sum of the tangential acceleration at along the 
track and the radial acceleration ar toward the arc's center 
of curvature (as in Fig. 10-9b). (2) The value of ar at any 
given time depends on the angular speed w according to Eq. 
10-23 (ar = w2r, where r is the radius of the circular arc). (3) 
An angular acceleration ll' around the arc is associated with 
the tangential acceleration at along the track according to 
Eq.l0-22 (at = exr). (4) Because at and r are constant, so is 
ll' and thus we can use the constant angular-acceleration 
equations. 

Calculations: Because we are trying to determine a value 
for angular position (), let's choose Eq. 10-14 from among 
the constant angular-acceleration equations: 

(10-24) 

For the angular acceleration ll', we substitute from Eq. 10-22: 

(10-25) 

Along here, the 
passenger has 
both tangential 
and radial 

p accelerations. 
~.. ., •• ¢,?",.~"'?""""""'" ~ 
,,?""'"" \ <"'~ " \ e \ 

«---1 
Along here, the Lo~ding 
passenger has pomt 

only tangential 
acceleration. 

Fig. 10-10 An overhead view of a horizontal track for a roller 
coaster. The track begins as a circular arc at the loading point and 
then, at point P, continues along a tangent to the arc. 

We also substitute Wo = 0 and {}o = 0, and we find 

2 2at {} 
w =--

r 
(10-26) 

Substituting this result for w2 into 

ar = w2r (10-27) 

gives a relation between the radial acceleration, the tangen­
tial acceleration, and the angular position (): 

(10-28) 

Because at and ar are perpendicular vectors, their sum has 
the magnitude 

a = Va; + a;. (10-29) 

Substituting for ar from Eq.1O-28 and solving for ()lead to 

~
2 

{}=! -2-1. 
at 

(10-30) 

When a reaches the design value of 4g, angle () is the angle 
()p we want. Substituting a = 4g, () = ()p, and at = g into Eq. 
10-30, we find 

(}p = !) (~t - 1 = 1.94rad = 111°. (Answer) 

(b) What is the magnitude a of the passenger's net accelera­
tion at point P and after point P? 



Reasoning: At P, a has the design value of 4g. Just after Pis 
reached, the passenger moves in a straight line and no longer 
has centripetal acceleration. Thus, the passenger has only the 
acceleration magnitude g along the track. Hence, 

a = 4g at P and a = g after P. (Answer) 

Roller-coaster headache can occur when a passenger's 
head undergoes an abrupt change in acceleration, with the 
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acceleration magnitude large before or after the change. 
The reason is that the change can cause the brain to move 
relative to the skull, tearing the veins that bridge the brain 
and skull. Our design to increase the acceleration from g to 
4g along the path to P might harm the passenger, but the 
abrupt change in acceleration as the passenger passes 
through point P is more likely to cause roller-coaster 
headache. 

Additional examples, video, and practice available at WileyPLUS 

1 Kinetic Energy of Rotation 
The rapidly rotating blade of a table saw certainly has kinetic energy due to that 
rotation. How can we express the energy? We cannot apply the familiar formula 
K = ~mv2 to the saw as a whole because that would give us the kinetic energy 
only of the saw's center of mass, which is zero. 

Instead, we shall treat the table saw (and any other rotating rigid body) as a 
collection of particles with different speeds. We can then add up the kinetic 
energies of all the particles to find the kinetic energy of the body as a whole. 
In this way we obtain, for the kinetic energy of a rotating body, 

K -1 2+1 2+12+ - 2m1v1 2m2v2 2m3v3 
_ " 1 2 
- £.i 2m iv i> (10-31) 

in which mi is the mass of the ith particle and Vi is its speed. The sum is taken over 
all the particles in the body. 

The problem with Eq. 10-31 is that Vi is not the same for all particles. We solve 
this problem by substituting for V from Eq.10-18 (v = wr), so that we have 

K = 2: ~mi( wrY = ~ (2: m/f )w2
, (10-32) 

in which w is the same for all particles. 
The quantity in parentheses on the right side of Eq. 10-32 tells us how 

the mass of the rotating body is distributed about its axis of rotation. We call that 
quantity the rotational inertia (or moment of inertia) Iof the body with respect to 
the axis of rotation. It is a constant for a particular rigid body and a particular rota­
tion axis. (That axis must always be specified if the value of I is to be meaningful.) 

We may now write 

1 = 2: m;yf (rotationalinertia) (10-33) 

and substitute into Eq.1O-32, obtaining 

(radian measure) (10-34) 

as the expression we seek. Because we have used the relation v = wr in deriving 
Eq. 10-34, w must be expressed in radian measure. The SI unit for I is the 
kilogram-square meter (kg· m2). 

Equation 10-34, which gives the kinetic energy of a rigid body in pure rotation, 
is the angular equivalent of the formula K = ~ MV~om' which gives the kinetic energy 
of a rigid body in pure translation. In both formulas there is a factor of ~. Where 
mass M appears in one equation, 1 (which involves both mass and its distribution) 
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Rod is easy to rotate 
this way. 

axis 

(b) 

Harder this way. 

Fig. 10-11 A long rod is much easier to 
rotate about (a) its central (longitudinal) 
axis than about (b) an axis through its 
center and perpendicular to its length. The 
reason for the difference is that the mass is 
distributed closer to the rotation axis in (a) 
than in (b). 

appears in the other. Finally, each equation contains as a factor the square of a 
speed-translational or rotational as appropriate. The kinetic energies of transla­
tion and of rotation are not different kinds of energy. They are both kinetic energy, 
expressed in ways that are appropriate to the motion at hand. 

We noted previously that the rotational inertia of a rotating body involves 
not only its mass but also how that mass is distributed. Here is an example that 
you can literally feel. Rotate a long, fairly heavy rod (a pole, a length of lumber, 
or something similar), first around its central (longitudinal) axis (Fig.10-11a) and 
then around an axis perpendicular to the rod and through the center (Fig. 10-
lIb). Both rotations involve the very same mass, but the first rotation is much 
easier than the second. The reason is that the mass is distributed much closer to 
the rotation axis in the first rotation. As a result, the rotational inertia of the rod is 
much smaller in Fig.10-11a than in Fig.lO-11b. In general, smaller rotational iner­
tia means easier rotation. 

CHECKPOINT 4 

The figure shows three small spheres that rotate 
about a vertical axis. The perpendicular distance be­
tween the axis and the center of each sphere is given. 
Rank the three spheres according to their rotational 
inertia about that axis, greatest first. 

Rotation 
axis 

1 Calculating the Rotational Inertia 

1m 
36 kg 

2m 
/---'-'---{II 9 kg 

3m 

4kg 

If a rigid body consists of a few particles, we can calculate its rotational inertia 
about a given rotation axis with Eq. 10-33 (1 = 2:: mirT); that is, we can find the 
product mr2 for each particle and then sum the products. (Recall that r is the per­
pendicular distance a particle is from the given rotation axis.) 

If a rigid body consists of a great many adjacent particles (it is continuous, 
like a Frisbee), using Eq. 10-33 would require a computer. Thus, instead, we 
replace the sum in Eq. 10-33 with an integral and define the rotational inertia of 
the body as 

1= J r 2 dm (rotational inertia, continuous body). (10-35) 

Table 10-2 gives the results of such integration for nine common body shapes and 
the indicated axes of rotation. 

Suppose we want to find the rotational inertia 1 of a body of mass M about a 
given axis. In principle, we can always find 1 with the integration of Eq. 10-35. 
However, there is a shortcut if we happen to already know the rotational inertia 
1eorn of the body about a parallel axis that extends through the body's center of 
mass. Let h be the perpendicular distance between the given axis and the axis 
through the center of mass (remember these two axes must be parallel). Then the 
rotational inertia 1 about the given axis is 

(parallel-axis theorem). (10-36) 

This equation is known as the parallel-axis theorem. We shall now prove it. 

Let 0 be the center of mass of the arbitrarily shaped body shown in cross section 
in Fig. 10-12. Place the origin of the coordinates at 0. Consider an axis through 0 
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Some Rotational Inertias 

about 
central axis 

(a) 

Solid cylinder 
(or disk) about 

central diameter 

(d) 

-- ---~ --,- --- ---- - ----------
Axis 

Thin 

--------r... spherical shell ..•. I about any 
2R diameter 

d 
(g) 

I = tM(Rr + R~) 

Axis 

Axis 

Annular cylinder 
(or ring) about 

central axis 

(b) 

Thin rod about 
axis through center 

perpendicular to 
length 

(e) 

Hoop about any 
diameter 

(h) 

perpendicular to the plane of the figure, and another axis through point P parallel 
to the first axis. Let the x and y coordinates of P be a and b. 

Let dm be a mass element with the general coordinates x and y. The rota­
tional inertia of the body about the axis through P is then, from Eq.10-35, 

1= J r2 dm = J [(x - a)2 + (y - b)2] dm, 

which we can rearrange as 

1= J (x2 + y2) dm - 2a J x dm - 2b J y dm + J (a2 + b2) dm. (10-37) 

From the definition of the center of mass (Eq. 9-9), the middle two integrals of 
Eq. 10-37 give the coordinates of the center of mass (multiplied by a constant) 
and thus must each be zero. Because x2 + y2 is equal to R2, where R is the dis­
tance from 0 to dm, the first integral is simply Icom' the rotational inertia of the 
body about an axis through its center of mass. Inspection of Fig. 10-12 shows that 
the last term in Eq. 10-37 is Mh2, where M is the body's total mass. Thus, 
Eq. 10-37 reduces to Eq. 10-36, which is the relation that we set out to prove. 

CHECKPOINT 5 

The figure shows a book-like object (one side is 
longer than the other) and four choices of rotation 
axes, all perpendicular to the face of the 
object. Rank the choices according to the rotational 
inertia of the object about the axis, greatest first. 

(1) (2) (3) (4) 

Axis 

y--
" Solid cylinder 

.,+1, (or disk) about 

y 

r 

cen tral axis 

(el 

Solid sphere 
about any 
diameter 

2R 

1 
(f) 

Slab about 
perpendicular 
axis through 

center 

(i) 

We need to relate the 
rotational inertia around 
the axis at P to that around 
the axis at the com. 

dm 

Rotation axis 
through P 

h 
b 

Rotation axis 
through 

center of mass 

Fig. 10·12 A rigid body in cross section, 
with its center of mass at O. The parallel-axis 
theorem (Eq.l0-36) relates the rotational in­
ertia of the body about an axis through 0 to 
that about a parallel axis through a point 
such as P, a distance h from the body's center 
of mass. Both axes are perpendicular to the 
plane of the figure. 
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Rotational inertia of a two-particle system 

Figure 10-13a shows a rigid body consisting of two particles of 
mass m connected by a rod of length L and negligible mass. 

(a) What is the rotational inertia loom about an axis through the 
center of mass, perpendicular to the rod as shown? 

Because we have only two particles with mass, we can find 
the body's rotational inertia leom by using Eq. 10-33 rather 
than by integration. 

Calculations: For the two particles, each at perpendicular 
distance! L from the rotation axis, we have 

] = ~ mirT = (m)(!L)2 + (m)(!L)2 

=!mU. (Answer) 

(b) What is the rotational inertia] of the body about an axis 
through the left end of the rod and parallel to the first axis 
(Fig.10-13b)? 

This situation is simple enough that we can find I using 
either of two techniques. The first is similar to the one used in 
part (a). The other, more powerful one is to apply the paral­
lel-axis theorem. 

First technique: We calculate] as in part (a),except here the 
perpendicular distance ri is zero for the particle on the left and 

Rotation axis 
through 

center of mass 

com m 

-tL---j 
(a) 

Here the rotation axis is through the com. 

Rotation axis through 
end of rod 

com 

1------ L ----+1·1 
(b) 

Here it has been shifted from the com 
without changing the orientation. We 
can use the parallel-axis theorem. 

Fig. 10-13 A rigid body consisting of two particles of mass m 
joined by a rod of negligible mass. 

L for the particle on the right. Now Eq. 10-33 gives us 

1= m(0)2 + mU = mL2. (Answer) 

Second technique: Because we already know leom about 
an axis through the center of mass and because the axis here 
is parallel to that "com axis," we can apply the parallel-axis 
theorem (Eq.10-36). We find 

1=1 + Mh2 = !mU + (2m)(!L)2 com 2 2 

= mU. (Answer) 

Rotational inertia of a uniform rod, integration 

Figure 10-14 shows a thin, uniform rod of mass M and length 
L, on an x axis with the origin at the rod's center. 

(a) What is the rotational inertia of the rod about the 
perpendicular rotation axis through the center? 

(1) Because the rod is uniform, its center of mass is at its cen­
ter. Therefore, we are looking for leom. (2) Because the rod is 
a continuous object, we must use the integral of Eq.10-35, 

I = f,.2 dm, (10-38) 

to find the rotational inertia. 

Calculations: We want to integrate with respect to coordi-

nate x (not mass m as indicated in the integral), so we must 
relate the mass dm of an element of the rod to its length dx 
along the rod. (Such an element is shown in Fig. 10-14.) 
Because the rod is uniform, the ratio of mass to length is the 
same for all the elements and for the rod as a whole. Thus, 
we can write 

element's mass dm 
element's length dx 

M 
or dm = Tdx. 

rod'smassM 
rod's length L 

We can now substitute this result for dm and x for ,. in 
Eq. 10-38. Then we integrate from end to end of the rod 
(from x = - L/2 to x = L/2) to include all the elements. 
We find 
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1= x2 -dx lX=+Ll2 (M) 
x=-Ll2 L 

= ~ [X3J+L12 = ~ [(~)3 _ (_~)3 ] 
3L -Ll2 3L 2 2 

=lML2 12 • (Answer) 

This agrees with the result given in Table 10-2e. 

(b) What is the rod's rotational inertia I about a new 
rotation axis that is perpendicular to the rod and through 
the left end? 

We can find I by shifting the origin of the x axis to the left end 
ofthe rod and then integrating from x = Otox = L.However, 

here we shall use a more powerful (and easier) technique by 
applying the parallel-axis theorem (Eq. 10-36), in which we 
shift the rotation axis without changing its orientation. 

Calculations: If we place the axis at the rod's end so that it 
is parallel to the axis through the center of mass, then we 
can use the parallel-axis theorem (Eq. 10-36). We know 
from part (a) thatIcom is tzMU. From Fig. 10-14, the perpen­
dicular distance h between the new rotation axis and the 
center of mass is! L. Equation 10-36 then gives us 

1= leom + Mh2 = tz ML2 + (M)(i L)2 

= ~ ML2. (Answer) 

Actually, this result holds for any axis through the left 
or right end that is perpendicular to the rod, whether it is 
parallel to the axis shown in Fig. 10-14 or not. 

Rotation 
axis 

This is the full rod. 
We want its rotational 
inertia. 

}rcom jM_x 

~----t-----f·I~. ;--~ 

L x=--
2 

Leftmost 

Rotation 

First, pick any tiny element 
and write its rotational 

axis inertia as x2 dm. 

I ~~ 
z ~ -x 
-x---j dm 

Rotation 
axis 

1 

Then, using integration, add up 
the rotational inertias for al/ of 
the elements, from leftmost to 
rightmost. 

x =1:.. . 2 

x 

Rightmost 

Fig. 10-14 A uniform rod oflength L and mass M. An element of 
mass dm and length dx is represented. 

~fus Additional examples, video, and practice available at WileyPLUS 
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Rotational kinetic energy, spin test explosion 

Large machine components that undergo prolonged, high­
speed rotation are first examined for the possibility of fail­
ure in a spin test system. In this system, a component is spun 
up (brought up to high speed) while inside a cylindrical 
arrangement of lead bricks and containment liner, all within 
a steel shell that is closed by a lid clamped into place. If the 
rotation causes the component to shatter, the soft lead 
bricks are supposed to catch the pieces for later analysis. 

In 1985, Test Devices, Inc. (www.testdevices.com) was spin 
testing a sample of a solid steel rotor (a disk) of mass M = 272 
kg and radius R = 38.0 cm. When the sample reached an an­
gular speed w of 14 000 rev/min, the test engineers heard a 
dull thump from the test system, which was located one floor 
down and one room over from them. Investigating, they found 
that lead bricks had been thrown out in the hallway leading to 
the test room, a door to the room had been hurled into the ad­
jacent parking lot, one lead brick had shot from the test site 
through the wall of a neighbor's kitchen, the structural beams 
of the test building had been damaged, the concrete floor be­
neath the spin chamber had been shoved downward by about 
0.5 cm, and the 900 kg lid had been blown upward through the 
ceiling and had then crashed back onto the test equipment 
(Fig. 10-15). The exploding pieces had not penetrated the 
room of the test engineers only by luck. 

How much energy was released in the explosion of the 
rotor? 

The released energy was equal to the rotational kinetic en­
ergy K of the rotor just as it reached the angular speed of 
14000 rev/min. 

Fig. 10-15 Some ofthe destruction caused by the explosion of a 
rapidly rotating steel disk. (Courtesy Test Devices, Inc.) 

Calculations: We can find K with Eq.l0-34 (K = llw2) , but 
first we need an expression for the rotational inertia I. 
Because the rotor was a disk that rotated like a merry­
go-round, 1 is given by the expression in Table 10-2c 
(I = l MR2). Thus, we have 

1 = l MR2 = l (272 kg)(0.38 m)2 = 19.64 kg· m2. 

The angular speed of the rotor was 

w = (14000 rev/min)(21Trad/reV)( 16~~n ) 
= 1.466 X 103 rad/s. 

Now we can use Eq.l0-34 to write 

K = l/ui = l(19.64kg·m2)(1.466 X 103 rad/s)2 

= 2.1 X 107 J. (Answer) 

Being near this explosion was quite dangerous. 

)fW's Additional examples. video. and practice available at WileyPLUS 

Torque 
A doorknob is located as far as possible from the door's hinge line for a good rea­
son. If you want to open a heavy door, you must certainly apply a force; that 
alone, however, is not enough. Where you apply that force and in what direction 
you push are also important. If you apply your force nearer to the hinge line than 
the knob, or at any angle other than 90° to the plane of the door, you must use 
a greater force to move the door than if you apply the force at the knob and per­
pendicular to the door's plane. 

Figure 10-16a shows a cross section of a body that is free to rotate about an 
axis passing through 0 and perpendicular to the cross section. A force F is 
applied at point P, whose position relative to 0 is defined by a position vector r. 
The directions of vectors F and r make an angle cp with each other. (For simplic­
ity, we consider only forces that have no component parallel to the rotation axis; 
thus, F is in the plane of the page.) 



To determine how F results in a rotation of the body around the rotation 
axis, we resolve F into two components (Fig. 10-16b). One component, called the 
radial component P,., points along r. This component does not cause rotation, 
because it acts along a line that extends through 0. (If you pull on a door par­
allel to the plane of the door, you do not rotate the door.) The other compo­
nent of F, called the tangential component PI' is perpendicular to r and has 
magnitude PI = P sin cp. This component does cause rotation. (If you pull on a 
door perpendicular to its plane, you can rotate the door.) 

The ability of F to rotate the body depends not only on the magnitude of its 
tangential component PI' but also on just how far from 0 the force is applied. To 
include both these factors, we define a quantity called torque 'T as the product of 
the two factors and write it as 

'T = (r)(Psin cp). 

Two equivalent ways of computing the torque are 

'T = (r)(Psin cp) = rPI 

and 'T = (r sin cp)(P) = r1-P, 

(10-39) 

(10-40) 

(10-41) 

where r 1- is the perpendicular distance between the rotation axis at 0 and an 
extended line running through the vector F (Fig. 10-16c). This extended line is 
called the line of action of F, and r.l is called the moment arm of F. Figure 10-16b 
shows that we can describe r, the magnitude of r, as being the moment arm of the 
force component PI' 

Torque, which comes from the Latin word meaning "to twist," may be loosely 
identified as the turning or twisting action of the force F. When you apply a force 
to an object-such as a screwdriver or torque wrench-with the purpose of turn­
ing that object, you are applying a torque. The SI unit of torque is the newton­
meter (N' m). Caution: The newton-meter is also the unit of work. Torque and 
work, however, are quite different quantities and must not be confused. Work is 
often expressed in joules (1 J = 1 N . m), but torque never is. 

In the next chapter we shall discuss torque in a general way as being a vector 
quantity. Here, however, because we consider only rotation around a single axis, 
we do not need vector notation. Instead, a torque has either a positive or negative 
value depending on the direction of rotation it would give a body initially at rest: 
If the body would rotate counterclockwise, the torque is positive. If the object 
would rotate clockwise, the torque is negative. (The phrase "clocks are negative" 
from Section 10-2 still works.) 

Torques obey the superposition principle that we discussed in Chapter 5 for 
forces: When several torques act on a body, the net torque (or resultant torque) is 
the sum of the individual torques. The symbol for net torque is 'Tnet . 

CHECKPOINT 6 

The figure shows an overhead view of a meter stick that can pivot about the dot at the 
position marked 20 (for 20 cm). All five forces on the stick are horizontal and have the 
same magnitude. Rank the forces according to the magnitude of the torque they pro­
duce, greatest first. 

Pivot point 
o 20 40 100 

10 TORQUE 

The torque due to this force 
causes rotation around this 
axis (which extends out 
toward you). 

(a) 

But actually only the tangential 
component of the force causes 
the rotation. 

(b) 

259 

Line of 
action ofF 

You calculate the same torque 
by using this moment arm 
distance and the full force 
magnitude. 

(c) 

Fig. 1 0-1 6 (a) A force F acts on a rigid 
body, with a rotation axis perpendicular to 
the page. The torque can be found with 
(a) angle ¢, (b) tangential force compo­
nent Ft, or (c) moment arm r 1-' 
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The torque due to the tangential 
component of the force causes 
an angular acceleration around 
the rotation axis. 

y 

Fr 

--*-~---------------x 

Fig. 10-1 7 A simple rigid body, free to 
rotate about an axis through 0, consists of 
a particle of mass m fastened to the end of 
a rod of length r and negligible mass. An 
applied force F causes the body to rotate. 

1 Newton's Second Law for Rotation 
A torque can cause rotation of a rigid body, as when you use a torque to rotate 
a door. Here we want to relate the net torque 'Tuet on a rigid body to the angular 
acceleration a that torque causes about a rotation axis. We do so by analogy with 
Newton's second law (Fuet = ma) for the acceleration a of a body of mass m due 
to a net force Fuet along a coordinate axis. We replace Fuet with 'Tuet, m with I, and a 
with a in radian measure, writing 

'Tuet = Ia (Newton'S second law for rotation). (10-42) 

1 
We prove Eq.l0-42 by first considering the simple situation shown in Fig. 10-17. 
The rigid body there consists of a particle of mass m on one end of a massless rod 
of length r. The rod can move only by rotating about its other end, around a rota­
tion axis (an axle) that is perpendicular to the plane of the page. Thus, the particle 
can move onlY in a circular path that has the rotation axis at its center. 

A force F acts on the particle. However, because the particle can move only along 
the circular path, only the tangential component Ft of the force (the component that is 
tangent to the circular path) can accelerate the particle along the path. We can relate Ft 

to the particle's tangential acceleration at along the path with Newton's second law, 
writing 

Ft=mat· 

The torque acting on the particle is, from Eq. 10-40, 

'T = Ftr = matr. 

From Eq.l0-22 (at = ar) we can write this as 

'T = m(ar)r = (mr 2)a. (10-43) 

The quantity in parentheses on the right is the rotational inertia of the particle 
about the rotation axis (see Eq. 10-33, but here we have only a single particle). 
Thus, using I for the rotational inertia, Eq. 10-43 reduces to 

7'= Ia (radian measure). (10-44) 

For the situation in which more than one force is applied to the particle, we 
can generalize Eq.l0-44 as 

'Tuet = Ia (radian measure), (10-45) 

which we set out to prove. We can extend this equation to any rigid body rotating 
about a fixed axis, because any such body can always be analyzed as an assembly 
of single particles. 

CHECKPOINT 7 

The figure shows an overhead view of a meter stick that can pivot about the point indi­
cated, which is to the left of the stick's midpoint. Tho horizontal forces, Fi and 1;., are 
applied to the stick. Only Fi is shown. Force 1;. is perpendicular to the stick and is ap­
plied at the right end. If the stick is not to turn, (a) what should be the direction of F;, 
and (b) should Fz be greater than, less than, or equal to FI? 
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Newton's 2nd law, rotation, torque, disk 

Figure 10-18a shows a uniform disk, with mass M = 2.5 kg 
and radius R = 20 cm, mounted on a fixed horizontal axle. 
A block with mass m = 1.2 kg hangs from a massless cord that 
is wrapped around the rim of the disk. Find the acceleration of 
the falling block, the angular acceleration of the disk, and the 
tension in the cord. The cord does not slip, and there is no fric­
tion at the axle. 

(1) Taking the block as a system, we can relate its acceleration a 
to the forces acting on it with Newton's second law (Fnet = ma). 
(2) Taking the disk as a system, we can relate its angular accel­
eration a to the torque acting on it with Newton's second 
law for rotation (Tnet = Ia). (3) To combine the motions of 
block and disk, we use the fact that the linear acceleration a 
of the block and the (tangential) linear acceleration at of the 
disk rim are equal. 

Forces on block: The forces are shown in the block's free­
body diagram in Fig. 10-18b: The force from the cord is T, 
and the gravitational force is Fg, of magnitude mg. We can 
now write Newton's second law for components along a ver­
tical y axis (Fnet,y = may) as 

T - mg = mao (10-46) 

However, we cannot solve this equation for a because it also 
contains the unknown T. 

Torque on disk: Previously, when we got stuck on the y 
axis, we switched to the x axis. Here, we switch to the rota­
tion of the disk. To calculate the torques and the rotational 
inertia I, we take the rotation axis to be perpendicular to the 
disk and through its center, at point 0 in Fig.10-18e. 

The torques are then given by Eq. 10-40 (T = rFt). The 
gravitational force on the disk and the force on the disk 
from the axle both act at the center of the disk and thus at 
distance r = 0, so their torques are zero. The force T on the 
disk due to the cord acts at distance r = R and is tangent to 
the rim of the disk. Therefore, its torque is - RT, negative 
because the torque rotates the disk clockwise from rest. 
From Table 10-2e, the rotational inertia I of the disk is ~MR2. 
Thus we can write Tne! = Ill' as 

(10-47) 

This equation seems useless because it has two 
unknowns, a and T, neither of which is the desired a. 
However, mustering physics courage, we can make it useful 

The torque due to the 

~ 
cord's pull on the rim 

o -> causes an angular 
T 

acceleration of the disk. 

(c) I 
I 

Y I These two forces 
-> determine the block's 
T 

(linear) acceleration. m 

Fg 
We need to relate 
those two 

(a) (b) accelerations. 

Fig. 10-18 (a) The falling block causes the disk to rotate. (b) A 
free-body diagram for the block. ( c) An incomplete free-body dia­
gram for the disk. 

with this fact: Because the cord does not slip, the linear ac­
celeration a of the block and the (tangential) linear 
acceleration at of the rim of the disk are equal. Then, by 
Eq. 10-22 (at = ar) we see that here a = aiR. Substituting 
this in Eq. 10-47 yields 

(10-48) 

Combining results: Combining Eqs. 10-46 and 10-48 leads 
to 

2m _ _ 2 (2)(1.2 kg) 
a - g M + 2m - (9.8 m/s) 2.5 kg + (2)(1.2 kg) 

= -4.8 m/s2. (Answer) 
We then use Eq. 10-48 to find T: 

T = -~Ma = -~(2.5 kg)(-4.8 m/s2) 

= 6.0 N. (Answer) 

As we should expect, acceleration a of the falling block is less 
than g, and tension T in the cord (= 6.0 N) is less than the 
gravitational force on the hanging block (= mg = 11.8 N). 
We see also that a and T depend on the mass of the disk but 
not on its radius. As a check, we note that the formulas de­
rived above predict a = - g and T = 0 for the case of a 
massless disk (M = 0). This is what we would expect; the 
block simply falls as a free body. From Eq.l0-22, the angular 
acceleration of the disk is 

a -4.8 m/s2 

a = - = ---- = -24rad/s2. 
R 0.20m 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 
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1 10 Work and Rotational Kinetic Energy 
As we discussed in Chapter 7, when a force F causes a rigid body of mass In to ac­
celerate along a coordinate axis, the force does work W on the body. Thus, the 
body's kinetic energy (K = ~lnV2) can change. Suppose it is the only energy of the 
body that changes. Then we relate the change b.K in kinetic energy to the work W 
with the work-kinetic energy theorem (Eq. 7-10), writing 

(work - kinetic energy theorem). (10-49) 

For motion confined to an x axis, we can calculate the work with Eq. 7-32, 

W = J:! F dx (work, one-dimensional motion). (10-50) 

This reduces to W = Fd when F is constant and the body's displacement is d. 
The rate at which the work is done is the power, which we can find with Eqs. 7-43 
and 7-48, 

dW 
p = -- = Fv 

dt 
(power, one-dimensional motion). (10-51) 

Now let us consider a rotational situation that is similar. When a torque 
accelerates a rigid body in rotation about a fixed axis, the torque does work W 
on the body. Therefore, the body's rotational kinetic energy (K = ~Iw2) can 
change. Suppose that it is the only energy of the body that changes. Then we 
can still relate the change b.K in kinetic energy to the work W with the 
work-kinetic energy theorem, except now the kinetic energy is a rotational ki­
netic energy: 

(work-kinetic energy theorem). (10-52) 

Here, I is the rotational inertia of the body about the fixed axis and Wj and wf are 
the angular speeds of the body before and after the work is done, respectively. 

Also, we can calculate the work with a rotational equivalent of Eq. 10-50, 

IB! 
W= 'TdO 

B; 
(work, rotation about fixed axis), (10-53) 

where 'T is the torque doing the work W, and OJ and Of are the body's angular 
positions before and after the work is done, respectively. When 'T is constant, 
Eq.10-53 reduces to 

(work, constant torque). (10-54) 

The rate at which the work is done is the power, which we can find with the rota­
tional equivalent of Eq. 10-51, 

dW 
p = -- = 'TW 

dt 
(power, rotation about fixed axis). (10-55) 

Table 10-3 summarizes the equations that apply to the rotation of a rigid body 
about a fixed axis and the corresponding equations for translational motion. 

Let us again consider the situation of Fig. 10-17, in which force F rotates a rigid 
body consisting of a single particle of mass In fastened to the end of a massless 
rod. During the rotation, force F does work on the body. Let us assume that the 
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Some Corresponding Relations for Translational and Rotational Motion 

Pure Translation (Fixed Direction) Pure Rotation (Fixed Axis) 

Position x Angular position () 

Velocity v = dxldt Angular velocity w = d()ldt 

Acceleration a = dvldt Angular acceleration a = dwldt 

Mass m Rotational inertia I 

Newton's second law F net = ma Newton's second law rnet = Ia 

Work W=J Fdx Work W= J rde 

Kinetic energy K = ~mv2 Kinetic energy K = ~Iw2 

Power (constant force) P=Fv Power (constant torque) P= rw 

Work - kinetic energy theorem W=AK Work - kinetic energy theorem W=AK 

only energy of the body that is changed by F is the kinetic energy. Then we can 
apply the work - kinetic energy theorem of Eq. 10-49: 

D..K = Kt - K; = W. (10-56) 

UsingK = !mv2 and Eq.l0-18 (v = wr), we can rewrite Eq.l0-56 as 

D..K = ~mr2wJ - !mr 2wT = W. (10-57) 

From Eq. 10-33, the rotational inertia for this one-particle body is 1= mr2. 
Substituting this into Eq. 10-57 yields 

D..K = ~IwJ - UWT = W, 

which is Eq.l0-52. We derived it for a rigid body with one particle, but it holds for 
any rigid body rotated about a fixed axis. 

We next relate the work W done on the body in Fig. 10-17 to the torque l' 
on the body due to force F. When the particle moves a distance ds along its 
circular path, only the tangential component Pr of the force accelerates the parti­
cle along the path. Therefore, only PI does work on the particle. We write that 
work dW as Pr ds. However, we can replace ds with r dB, where de is the angle 
through which the particle moves. Thus we have 

(10-58) 

From Eq. 10-40, we see that the product Frr is equal to the torque 1', so we can 
rewrite Eq. 10-58 as 

dW = 1'dO. 

The work done during a finite angular displacement from 0; to Otis then 

W = for rde, 
Of 

(10-59) 

which is Eq. 10-53. It holds for any rigid body rotating about a fixed axis. 
Equation 10-54 comes directly from Eq.l0-53. 

We can find the power P for rotational motion from Eq.1O-59: 

dW de 
p = -- = l' - = 1'W 

dt dt ' 
which is Eq.l0-55. 
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Work, rotational kinetic energy, torque, disk 

Let the disk in Fig. 10-18 start from rest at time t = 0 and 
also let the tension in the massless cord be 6.0 N and the an­
gular acceleration of the disk be -24 rad/s2. What is its rota­
tional kinetic energy K at t = 2.5 s? 

We can find K with Eq. 10-34 (K = ~IuJ2). We already know 
that I = ~MR2, but we do not yet know {J) at t = 2.5 s. 
However, because the angular acceleration a has the con­
stant value of -24 rad/s2, we can apply the equations for 
constant angular acceleration in Table 10-1. 

Calculations: Because we want {J) and know a and % (= 0), 
we use Eq.l0-12: 

(V = (VO + at = 0 + at = at. 

Substituting {J) = at and I = ~ MR2 into Eq.1O-34, we find 

K = ~I(V2 = ~(~MR2)(at)2 = ~M(Rat)2 
= ~(2.5 kg)[(0.20 m)( -24 rad/s2)(2.5 s)F 

= 90J. (Answer) 

We can also get this answer by finding the disk's kinetic 
energy from the work done on the disk. 

Calculations: First, we relate the change in the kinetic 
energy of the disk to the net work W done on the disk, using 
the work - kinetic energy theorem of Eq. 10-52 (Kf - Ki = W). 
With K substituted for Kf and 0 for Ki, we get 

K = Ki + W = 0 + W = W. (10-60) 

Next we want to find the work W. We can relate W to 
the torques acting on the disk with Eq. 10-53 or 10-54. The 
only torque causing angular acceleration and doing work is 
the torque due to force T on the disk from the cord, which is 
equal to - TR. Because a is constant, this torque also must 
be constant. Thus, we can use Eq.l0-54 to write 

(10-61) 

Because a is constant, we can use Eq. 10-13 to find 
Of - 0i' With (Vi = 0, we have 

o - e· = (V·t + !at2 = 0 + !at2 = !at2 
f I I 2 2 2. 

Now we substitute this into Eq. 10-61 and then substitute the 
result into Eq. 10-60. Inserting the given values T = 6.0 N 
and a = -24 rad/s2, we have 

K = W = - TR( ef - ei) = - TR(~(Xt2) = -~TR(Xt2 

= -~(6.0 N)(0.20 m)( -24 rad/s2)(2.5 S)2 

= 90J. (Answer) 

~s Additional examples, video, and practice available at WileyPLUS 

Angular Position To describe the rotation of a rigid body about 
a fixed axis, called the rotation axis, we assume a reference line is 
fixed in the body, perpendicular to that axis and rotating with the 
body. We measure the angular position B of this line relative to a fixed 
direction. When B is measured in radians, 

s 
()=­,. (radian measure), (10-1) 

where s is the arc length of a circular path of radius,. and angle B. 
Radian measure is related to angle measure in revolutions and de­
grees by 

1 rev = 3600 = 27T rad. (10-2) 

Angular Displacement A body that rotates about a rotation 
axis, changing its angular position from Br to Bz, undergoes an angu­
lar displacement 

(10-4) 

where LlBis positive for counterclockwise rotation and negative for 
clockwise rotation. 

Angular Velocity and Speed If a body rotates through an 
angular displacement LlBin a time interval Llt,its average angular 
velocity wavg is 

M 
wavg = ---;;:to 

The (instantaneous) angular velocity W of the body is 

dB 
w=Tt· 

(10-5) 

(10-6) 

Both wavg and ware vectors, with directions given by the right-hand 
rule of Fig. 10-6. They are positive for counterclockwise rotation 
and negative for clockwise rotation. The magnitude of the body's 
angular velocity is the angular speed. 



Angular Acceleration If the angular velocity of a body 
changes from w[ to W:2 in a time interval M = t2 - tJ, the average 
angular acceleration aavg of the body is 

W2 - w[ tlw 
aavg = t2 - t[ tlt . (10-7) 

The (instantaneous) angular acceleration a of the body is 

dw 
a = dt' (10-8) 

Both aavg and a are vectors. 

The Kinematic Equations for Constant Angular Accel­
eration Constant angular acceleration (a = constant) is an im­
portant special case of rotational motion. The appropriate kine­
matic equations, given in Table 10-1, are 

w = Wo + at, 

e - eo = wot + ~at2, 

w2 = w5 + 2a(e - eo), 

e - eo = hwo + w)t, 

e - eo = wt - !at2. 

(10-12) 

(10-13) 

(10-14) 

(10-15) 

(10-16) 

Linear and Angular Variables Related A point in a rigid 
rotating body, at a perpendicular distance r from the rotation axis, 
moves in a circle with radius r. If the body rotates through an angle e, 
the point moves along an arc with length s given by 

s = er (radian measure), (10-17) 

where eis in radians. 
The linear velocity v of the point is tangent to the circle; the 

point's linear speed v is given by 

v = wr (radian measure), (10-18) 

where w is the angular speed (in radians per second) of the body. 
The linear acceleration a of the point has both tangential and 

radial components. The tangential component is 

(radian measure), (10-22) 

where a is the magnitude of the angular acceleration (in radians 
per second-squared) of the body. The radial component of a is 

(radian measure). (10-23) 

If the point moves in uniform circular motion, the period T of 
the motion for the point and the body is 

T = 21fr = ~ 
v w 

(radian measure). (10-19,10-20) 

Rotational Kinetic Energy and Rotational Inertia The 
kinetic energy K of a rigid body rotating about a fixed axis is 
given by 

(radian measure), 

in which 1 is the rotational inertia of the body, defined as 

1 = 2: m,.rf 

(10-34) 

(10-33) 
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for a system of discrete particles and defined as 

1 = f r2 dm (10-35) 

for a body with continuously distributed mass. The rand I"i in these 
expressions represent the perpendicular distance from the axis of 
rotation to each mass element in the body, and the integration is car­
ried out over the entire body so as to include every mass element. 

The Parallel-Axis Theorem The parallel-axis theorem relates 
the rotational inertia 1 of a body about any axis to that of the same 
body about a parallel axis through the center of mass: 

(10-36) 

Here h is the perpendicular distance between the two axes, and 
leom is the rotational inertia of the body about the axis through the 
com. We can describe h as being the distance the actual rotation 
axis has been shifted from the rotation axis through the com. 

Torque Torque is a turning or twisting action on a body about a 
rotation axis due to a force F. If F is exerted at a point given by 
the position vector 7 relative to the axis, then the magnitude of the 
torque is 

'T = rF; = rJF = rF sin cp, (10-40,10-41,10-39) 

where FI is the component of F perpendicular to 7 and cp is the 
angle between 7 and F. The quantity r.L is the perpendicular dis­
tance between the rotation axis and an extended line running 
through the F vector. This line is called the line of action of F, 
and r.L is called the moment arm of F. Similarly, r is the moment 
arm of Fl' 

The SI unit of torque is the newton-meter (N . m). A torque 'T 

is positive if it tends to rotate a body at rest counterclockwise and 
negative if it tends to rotate the body clockwise. 

Newton's Second Law in Angular Form The rotational 
analog of Newton's second law is 

'Tnet = la, (10-45) 

where 'Tnet is the net torque acting on a particle or rigid body, 1 is the ro­
tational inertia of the particle or body about the rotation axis, and a is 
the resulting angular acceleration about that axis. 

Work and Rotational Kinetic Energy The equations used 
for calculating work and power in rotational motion correspond to 
equations used for translational motion and are 

and 
dW 

P=Tt= 'TW. 

When 'Tis constant, Eq. 10-53 reduces to 

(10-53) 

(10-55) 

(10-54) 

The form of the work-kinetic energy theorem used for rotating 
bodies is 

(10-52) 
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OJ 

k-+-\ 
a b c d 

1 Figure 10-19 is a graph of the an­
gular velocity versus time for a disk 
rotating like a merry-go-round. For a 
point on the disk rim, rank the in­
stants a, b, c, and d according to the 
magnitude of the (a) tangential and 
(b) radial acceleration, greatest first. 

Fig. 10-19 Question 1. 

Figure 10-20 shows plots of an­
gular position B versus time t for 
three cases in which a disk is rotated 
like a merry-go-round. In each case, 
the rotation direction changes at a 
certain angular position Beilange' (a) 
For each case, determine whether 

8 

Behange is clockwise or counterclock- _9001----'----'----)·· -, 

wise from B = 0, or whether it is at 
B = O. For each case, determine Fig. 10-20 Question 2. 
(b) whether OJ is zero before, after, 
or at t = 0 and (c) whether a' is positive, negative, or zero. 

A force is applied to the rim of a disk that can rotate like a 
merry-go-round, so as to change its angular velocity. Its initial and 
final angular velocities, respectively, for four situations are: (a) -2 
rad/s, 5 rad/s; (b) 2 rad/s, 5 rad/s; ( c) - 2 rad/s, - 5 rad/s; and (d) 2 
rad/s, -5 rad/s. Rank the situations according to the work done by 
the torque due to the force, greatest first. 

Figure 10-21b is a graph of the angular position of the rotating 
disk of Fig. 1O-21a. Is the angular velocity of the disk positive, nega­
tive, or zero at (a) t = 1 s, (b) t = 2 s, and (c) t = 3 s? (d) Is the an­
gular acceleration positive or negative? 

! Rotation axis 
8 (rad) 

--l---+---,'--:\---t (s) 

(a) (b) 

Fig. 10-21 Question 4. 

In Fig. 10-22, two forces FI and fz act on a disk that turns about 
its center like a merry-go-round. The forces maintain the indicated 
angles during the rotation, which is counterclockwise and at a con­
stant rate. However, we are to decrease the angle B of FI without 
changing the magnitude of Fl' (a) To keep the angular speed con­
stant, should we increase, decrease, or maintain the magnitude of 

Fig. 10-22 Question 5. 

fz? Do forces (b) FI and (c) fz tend 
to rotate the disk clockwise or coun­
terclockwise? 

In the overhead view of Fig. 10-23, 
five forces of the same magnitude act 
on a strange merry-go-round; it is a 
square that can rotate about point P, 
at rnidlength along one of the edges. 
Rank the forces according to the 
magnitude of the torque they create 
about point P, greatest first. 

p 

Fig. 1 0-23 Question 6. 

Figure 1O-24a is an overhead view of a horizontal bar that can 
pivot; two horizontal forces act on the bar, but it is stationary. If the 
angle between the bar and fz is now decreased from 90° and the 
bar is still not to turn, should F2 be made larger, made smaller, or 
left the same? 

tPi 
= Pivot pOint?? Pivot point 

(a) (b) 

Fig. 1 0-24 Questions 7 and 8. 

8 Figure 1O-24b shows an overhead view of a horizontal bar that 
is rotated about the pivot point by two horizontal forces, FI and fz, 
with fz at angle if; to the bar. Rank the following values of if; accord­
ing to the magnitude of the angular acceleration of the bar, greatest 
first: 90°,70°, and 110°. 

Figure 10-25 shows a uniform metal plate that 
had been square before 25% of it was snipped off. 
Three lettered points are indicated. Rank them 
according to the rotational inertia of the plate 
around a perpendicular axis through them, great­
est first. 

Figure 10-26 shows three flat disks (of the same 

a[jj7:

lc 

......•.. ...... 
b .. ;;.~ 

I 

iJ __ ~c 
Fig. 10-25 

Question 9. 

radius) that can rotate about their centers like merry-go-rounds. Each 
disk consists of the same two materials, one denser than the other 
(density is mass per unit volume). In disks 1 and 3, the denser material 
forms the outer half of the disk area. In disk 2, it forms the inner half 
of the disk area. Forces with identical magnitudes are applied tangen­
tially to the disk, either at the outer edge or at the interface of the two 
materials, as shown. Rank the disks according to (a) the torque about 
the disk center, (b) the rotational inertia about the disk center, and (c) 
the angular acceleration of the disk, greatest first. 

~ 

F 

Denser 

Disk 1 

Fig. 10-26 Question 10. 

Denser 

Disk 3 

~ 

F 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

1 The Rotational Variables 
A good baseball pitcher can throw a baseball toward home 

plate at 85 mi/h with a spin of 1800 rev/min. How many revolutions 
does the baseball make on its way to home plate? For simplicity, 
assume that the 60 ft path is a straight line. 

What is the angular speed of (a) the second hand, (b) the 
minute hand, and (c) the hour hand of a smoothly running analog 
watch? Answer in radians per second. 

When a slice of buttered toast is accidentally pushed 
over the edge of a counter, it rotates as it falls. If the distance to the 
floor is 76 cm and for rotation less than 1 rev, what are the (a) 
smallest and (b) largest angular speeds that cause the toast to hit 
and then topple to be butter-side down? 

The angular position of a point on a rotating wheel is given by 
0= 2.0 + 4.0(2 + 2.0t3, where 0 is in radians and (is in seconds. At 
t = 0, what are (a) the point's angular position and (b) its angular 
velocity? (c) What is its angular velocity at ( = 4.0 s? (d) Calculate 
its angular acceleration at ( = 2.0 s. (e) Is its angular acceleration 
constant? 

IlW A diver makes 2.5 revolutions on the way from a 10-m­
high platform to the water. Assuming zero initial vertical velocity, 
find the average angular velocity during the dive. 

The angular position of a point on the rim of a rotating wheel is 
given by 0 = 4.0t - 3.0(2 + t3, where 0 is in radians and (is in seconds. 
What are the angular velocities at (a) (= 2.0 s and (b) (= 4.0 s? (c) 
What is the average angular acceleration for the time interval that 
begins at ( = 2.0 s and ends at (= 4.0 s? What are the instanta­
neous angular accelerations at (d) the beginning and (e) the end of 
this time interval? 

The wheel in Fig. 10-27 has 
eight equally spaced spokes and a 
radius of 30 cm. It is mounted on a 
fixed axle and is spinning at 2.5 
rev/so You want to shoot a 20-cm­
long arrow parallel to this axle and 
through the wheel without hitting 
any of the spokes. Assume that the Fig. 10-27 Problem 7. 
arrow and the spokes are very thin. 
(a) What minimum speed must the arrow have? (b) Does it matter 
where between the axle and rim of the wheel you aim? If so, what 
is the best location? 

The angular acceleration of a wheel is a = 6.0r - 4.0(2, with 
a in radians per second-squared and t in seconds. At time ( = 0, the 
wheel has an angular velocity of +2.0 rad/s and an angular posi­
tion of + 1.0 rad. Write expressions for (a) the angular velocity 
(rad/s) and (b) the angular position (rad) as functions of time (s). 

Rotation with Constant Angular Acceleration 
A drum rotates around its central axis at an angular velocity of 

12.60 rad/s. If the drum then slows at a constant rate of 4.20 rad/s2, 
(a) how much time does it take and (b) through what angle does it 
rotate in coming to rest? 

Starting from rest, a disk rotates about its central axis with 
constant angular acceleration. In 5.0 s, it rotates 25 rad. During 
that time, what are the magnitudes of (a) the angular acceleration 
and (b) the average angular velocity? (c) What is the instantaneous 
angular velocity of the disk at the end of the 5.0 s? (d) With the an­
gular acceleration unchanged, through what additional angle will 
the disk turn during the next 5.0 s? 

A disk, initially rotating at 120 rad/s, is slowed down 
with a constant angular acceleration of magnitude 4.0 rad/s2. (a) 
How much time does the disk take to stop? (b) Through what an­
gle does the disk rotate during that time? 

The angular speed of an automobile engine is increased at a 
constant rate from 1200 rev/min to 3000 rev/min in 12 s. (a) What is 
its angular acceleration in revolutions per minute-squared? (b) How 
many revolutions does the engine make during this 12 s interval? 

IlW A flywheel turns through 40 rev as it slows from an 
angular speed of 1.5 rad/s to a stop. (a) Assuming a constant angu­
lar acceleration, find the time for it to come to rest. (b) What is its 
angular acceleration? (c) How much time is required for it to com­
plete the first 20 of the 40 revolutions? 

A disk rotates about its central axis starting from rest and 
accelerates with constant angular acceleration. At one time it is ro­
tating at 10 rev/s; 60 revolutions later, its angular speed is 15 rev/so 
Calculate (a) the angular acceleration, (b) the time required to 
complete the 60 revolutions, (c) the time required to reach the 10 
rev/s angular speed, and (d) the number of revolutions from rest 
until the time the disk reaches the 10 rev/s angular speed. 

SSM A wheel has a constant angular acceleration of 
3.0 rad/s2. During a certain 4.0 s interval, it turns through an angle 
of 120 rad. Assuming that the wheel started from rest, how long 
has it been in motion at the start of this 4.0 s interval? 

A merry-go-round rotates from rest with an angular acceler­
ation of 1.50 rad/s2. How long does it take to rotate through (a) the 
first 2.00 rev and (b) the next 2.00 rev? 

At t = 0, a flywheel has an angular velocity of 4.7 rad/s, a 
constant angular acceleration of -0.25 rad/s2, and a reference line 
at 00 = O. (a) Through what maximum angle Omax will the reference 
line turn in the positive direction? What are the (b) first and (c) 
second times the reference line will be at 0 = ~Omax? At what (d) 
negative time and (e) positive time will the reference line be at 
o = 10.5 rad? (f) Graph 0 versus (, and indicate the answers to (a) 
through (e) on the graph. 

Relating the Linear and Angular Variables 
If an airplane propeller rotates at 2000 rev/min while the air­

plane flies at a speed of 480 km/h relative to the ground, what is the 
linear speed of a point on the tip of the propeller, at radius 1.5 m, 
as seen by (a) the pilot and (b) an observer on the ground? The 
plane'S velocity is parallel to the propeller's axis of rotation. 

What are the magnitudes of (a) the angular velocity, (b) the ra­
dial acceleration, and (c) the tangential acceleration of a spaceship 
taking a circular turn of radius 3220 km at a speed of 29 000 kmlh? 
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~20 An object rotates about a fixed axis, and the angular position 
of a reference line on the object is given byB = OAOe2t, where Bis in 
radians and t is in seconds. Consider a point on the object that is 4.0 
cm from the axis of rotation. At t = 0, what are the magnitudes of 
the point's (a) tangential component of acceleration and (b) radial 
component of acceleration? 

Between 1911 and 1990, the top of the leaning bell 
tower at Pisa, Italy, moved toward the south at an average rate of 
1.2 mm/y. The tower is 55 m tall. In radians per second, what is the 
average angular speed of the tower's top about its base? 

An astronaut is being tested in a centrifuge. The centrifuge 
has a radius of 10 m and, in starting, rotates according to 17 = 0.30t2, 
where t is in seconds and 17 is in radians. When t = 5.0 s, what are 
the magnitudes of the astronaut's (a) angular velocity, (b) linear 
velocity, (c) tangential acceleration, and (d) radial acceleration? 

$23 SSM WWW A flywheel with a diameter of 1.20 m is rotating 
at an angular speed of 200 rev/min. (a) What is the angular speed 
of the flywheel in radians per second? (b) What is the linear speed 
of a point on the rim of the flywheel? (c) What constant angular ac­
celeration (in revolutions per minute-squared) will increase the 
wheel's angular speed to 1000 rev/min in 60.0 s? (d) How many 
revolutions does the wheel make during that 60.0 s? 

024 A vinyl record is played by rotating the record so that an ap­
proximately circular groove in the vinyl slides under a stylus. 
Bumps in the groove run into the stylus, causing it to oscillate. The 
equipment converts those oscillations to electrical signals and then 
to sound. Suppose that a record turns at the rate of 33~ rev/min, the 
groove being played is at a radius of 10.0 cm, and the bumps in the 
groove are uniformly separated by 1.75 mm. At what rate (hits per 
second) do the bumps hit the stylus? 

"25 SSM (a) What is the angular speed w about the polar axis of 
a point on Earth's surface at latitude 40° N? (Earth rotates about 
that axis.) (b) What is the linear speed v of the point? What are (c) 
wand (d) v for a point at the equator? 

The flywheel of a steam engine runs with a constant angular 
velocity of 150 rev/min. When steam is shut off, the friction of the 
bearings and of the air stops the wheel in 2.2 h. (a) What is the con­
stant angular acceleration, in revolutions per minute-squared, of 
the wheel during the slowdown? (b) How many revolutions does 
the wheel make before stopping? (c) At the instant the flywheel is 
turning at 75 rev/min, what is the tangential component of the lin­
ear acceleration of a flywheel particle that is 50 cm from the axis of 
rotation? (d) What is the magnitude of the net linear acceleration of 
the particle in (c)? 

A record turntable is rotating at 33~ rev/min. A watermelon 
seed is on the turntable 6.0 cm from the axis of rotation. (a) 
Calculate the acceleration of the seed, assuming that it does not 
slip. (b) What is the minimum value of the coefficient of static fric­
tion between the seed and the turntable if the seed is not to slip? 
(c) Suppose that the turntable achieves its angular speed by start­
ing from rest and undergoing a constant angular acceleration for 
0.25 s. Calculate the minimum coefficient of static friction required 
for the seed not to slip during the 
acceleration period. 

In Fig. 10-28, wheel A of ra­
dius rA = 10 cm is coupled by belt 
B to wheel C of radius rc = 25 cm. 
The angular speed of wheel A is in-
creased from rest at a constant rate Fig. 10-28 Problem 28. 

of 1.6 rad/s2• Find the time needed for wheel C to reach an angular 
speed of 100 rev/min, assuming the belt does not slip. (Hint: If the 
belt does not slip, the linear speeds at the two rims must be equal.) 

An early method of measuring the speed of light makes use 
of a rotating slotted wheel. A beam of light passes through one of 
the slots at the outside edge of the wheel, as in Fig. 10-29 , travels to a 
distant mirror, and returns to the wheel just in time to pass through 
the next slot in the wheel. One such slotted wheel has a radius of 5.0 
cm and 500 slots around its edge. Measurements taken when the 
mirror is L = 500 m from the wheel indicate a speed of light of 
3.0 X 105 km/s. (a) What is the (constant) angular speed of the 
wheel? (b) What is the linear speed of a point on the edge of the 
wheel? 

Light 
source 

Rotating 
slotted wheel 

Fig. 10-29 Problem 29. 

Mirror 
perpendicular 
to light beam 

.030 A gyroscope flywheel of radius 2.83 cm is accelerated from 
rest at 14.2 rad/s2 until its angular speed is 2760 rev/min. (a) What 
is the tangential acceleration of a point on the rim of the flywheel 
during this spin-up process? (b) What is the radial acceleration of 
this point when the flywheel is spinning at full speed? (c) Through 
what distance does a point on the rim move during the spin-up? 

'·31 ~ A disk, with a radius of 0.25 m, is to be rotated like a 
merry-go-round through 800 rad, starting from rest, gaining angu­
lar speed at the constant rate aj through the first 400 rad and 
then losing angular speed at the constant rate -aj until it is again 
at rest. The magnitude of the centripetal acceleration of any por­
tion of the disk is not to exceed 400 m/s2• (a) What is the least 
time required for the rotation? (b) What is the corresponding 
value of aj? 

A pulsar is a rapidly rotating neutron star that emits a radio 
beam the way a lighthouse emits a light beam. We receive a radio 
pulse for each rotation of the star. The period T of rotation is found 
by measuring the time between pulses. The pulsar in the Crab neb­
ula has a period of rotation of T = 0.033 s that is increasing at the 
rate of 1.26 X 10-5 sly. (a) What is the pulsar's angular acceleration 
a? (b) If a is constant, how many years from now will the pulsar 
stop rotating? (c) The pulsar originated in a supernova explosion 
seen in the year 1054. Assuming constant a, find the initial T. 

Kinetic Energy of Rotation 
SSM Calculate the rotational inertia of a wheel that has a ki­

netic energy of 24 400 J when rotating at 602 rev/min. 



Figure 10-30 gives angular speed versus time for a thin rod 
that rotates around one end. The scale on the w axis is set by 
Ws = 6.0 rad/s. (a) What is the magnitude of the rod's angular ac­
celeration? (b) At t = 4.0 s, the rod has a rotational kinetic energy 
of 1.60 J. What is its kinetic energy at t = O? 

U) (rad/s) 

/ 
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Fig. 10-30 Problem 34. 

Calculating the Rotational Inertia 
SSM Two uniform solid cylinders, each rotating about its cen­

tral (longitudinal) axis at 235 rad/s, have the same mass of 1.25 kg 
but differ in radius. What is the rotational kinetic energy of (a) the 
smaller cylinder, of radius 0.25 m, and (b) the larger cylinder, of 
radius 0.75 m? 

Figure 10-31a shows a disk that can rotate about an axis at a 
radial distance h from the center of the disk. Figure 10-31b gives 
the rotational inertia I of the disk about the axis as a function of 
that distance h, from the center out to the edge of the disk. The 
scale on the I axis is set by IA = 0.050 kg' m2 and IB = 0.150 kg· m2• 

What is the mass of the disk? 

Axis j 
/ 

/ 
"'s / 

/ 
/ 

./ "-- -"--- 0.1 0.2 
h (m) 

(a) (b) 

Fig. 10-31 Problem 36. 

SSM Calculate the rotational inertia of a meter stick, with 
mass 0.56 kg, about an axis perpendicular to the stick and located 
at the 20 cm mark. (Treat the stick as a thin rod.) 

Figure 10-32 shows three 0.0100 kg particles that have been 
glued to a rod of length L = 6.00 cm and negligible mass. The as­
sembly can rotate around a perpendicular axis through point ° at 
the left end. If we remove one particle (that is, 33% of the mass), 
by what percentage does the rotational inertia of the assembly 

11-' --L----I·I 

Fig. 1 0-32 Problems 38 and 62. 
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around the rotation axis decrease when that removed particle is 
(a) the innermost one and (b) the outermost one? 

Trucks can be run on energy stored in a rotating flywheel, 
with an electric motor getting the flywheel up to its top speed of 
2001T rad/s. One such flywheel is a solid, uniform cylinder with a 
mass of 500 kg and a radius of 1.0 m. (a) What is the kinetic energy 
of the flywheel after charging? (b) If the truck uses an average 
power of 8.0 kW, for how many minutes can it operate between 
chargings? 

"40 Figure 10-33 shows an arrangement of 15 identical disks that 
have been glued together in a rod-like shape of length L = 1.0000 m 
and (total) mass M = 100.0 mg. The disk arrangement can rotate 
about a perpendicular axis through its central disk at point 0. (a) 
What is the rotational inertia of the arrangement about that axis? 
(b) If we approximated the arrangement as being a uniform rod of 
mass M and length L, what percentage error would we make in us­
ing the formula in Table 10-2e to calculate the rotational inertia? 

II-·-------L---------~·I 

o 
Fig. 1 0-33 Problem 40. 

In Fig. 10-34, two particles, 
each with mass m = 0.85 kg, are fas­
tened to each other, and to a rota­
tion axis at 0, by two thin rods, each 
with length d = 5.6 cm and mass 
M = 1.2 kg. The combination ro­
tates around the rotation axis with 
the angular speed w = 0.30 rad/s. 
Measured about 0, what are the 
combination's (a) rotational inertia 
and (b) kinetic energy? 

yi 
L o 
Fig. 10-34 Problem41. 

The masses and coordinates of four particles are as follows: 
50 g, x = 2.0 cm, Y = 2.0 cm; 25 g, x = 0, Y = 4.0 cm; 25 g, x = - 3.0 
cm,Y = -3.0 cm; 30 g,x = -2.0 cm,Y = 4.0 cm. What are the rota­
tional inertias of this collection about the (a) x, (b) Y, and (c) z 
axes? (d) Suppose the answers to (a) 
and (b) are A and B, respectively. Rotation 

Then what is the answer to (c) in axis 

terms of A and B? ~ 
c 

SSM WWW The uniform solid T 
block in Fig. 10-35 has mass 0.172 kg 
and edge lengths a = 3.5 cm, b = 8.4 
cm, and c = 1.4 cm. Calculate its ro­
tational inertia about an axis 
through one corner and perpendicu­
lar to the large faces. 

Fig. 10-35 Problem 43. 

Four identical particles of mass 0.50 kg each are placed at 
the vertices of a 2.0 m X 2.0 m square and held there by four mass­
less rods, which form the sides of the square. What is the rotational 
inertia of this rigid body about an axis that (a) passes through the 
midpoints of opposite sides and lies in the plane of the square, (b) 
passes through the midpoint of one of the sides and is perpendicu­
lar to the plane of the square, and (c) lies in the plane of the square 
and passes through two diagonally opposite particles? 
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Torque 
ILW The body in Fig. 10-36 is pivoted at 0, and two 

forces act on it as shown. If 
'1 = 1.30 m, r2 = 2.15 m, F j = 

4.20 N, F2 = 4.90 N, OJ = 75.0°, 
and O2 = 60.0°, what is the net 
torque about the pivot? 

The body in Fig. 10-37 is 
Fig. 10-36 Problem 45. 

pivoted at O. Three forces act on it: FA = 10 N at point A, 8.0 m 
from 0; FB = 16 Nat B, 4.0 m from 0; and Fe = 19 Nat C, 3.0 m 
from O. What is the net torque about O? 

Fig. 10-37 Problem 46. 

SSM A small ball of mass 0.75 kg is attached to one end of a 
1.25-m-Iong massless rod, and the other end of the rod is hung from a 
pivot. When the resulting pendulum is 30° from the vertical, what is 
the magnitude of the gravitational torque calculated about the pivot? 

·48 The length of a bicycle pedal arm is 0.152 m, and a downward 
force of 111 N is applied to the pedal by the rider. What is the mag­
nitude of the torque about the pedal arm's pivot when the arm is at 
angle (a) 30°, (b) 90°, and (c) 180° with the vertical? 

Newton's Second Law for Rotation 
SSM ILW During the launch from a board, a diver's angular 

speed about her center of mass changes from zero to 6.20 rad/s in 
220 ms. Her rotational inertia about her center of mass is 12.0 
kg· m2

• During the launch, what are the magnitudes of (a) her aver­
age angular acceleration and (b) the average external torque on 
her from the board? 

-50 If a 32.0 N . m torque on a wheel causes angular acceleration 
25.0 rad/s2, what is the wheel's rotational inertia? 

In Fig. 10-38, block 1 has mass 
n11 = 460 g, block 2 has mass /112 = 500 g, 
and the pulley, which is mounted on a 
horizontal axle with negligible friction, 
has radius R = 5.00 cm. When released 
from rest, block 2 falls 75.0 cm in 5.00 s 
without the cord slipping on the pulley. 
(a) What is the magnitude of the acceler- IIlj 1112 

ation of the blocks? What are (b) ten- Fig. 10-38 

sion T2 and (c) tension Ii? (d) What is Problems 51 and 83. 
the magnitude of the pulley's angular ac-
celeration? (e) What is its rotational inertia? 

In Fig. 10-39, a cylinder having a mass of2.0 kg can rotate 
about its central axis through point O. Forces are applied as shown: 
F j = 6.0 N, F2 = 4.0 N, F3 = 2.0 N, and F4 = 5.0 N. Also, r = 5.0 cm 
and R = 12 cm. Find the (a) magnitude and (b) direction of the an­
gular acceleration of the cylinder. (During the rotation, the forces 
maintain their same angles relative to the cylinder.) 

Fig. 1 0-39 Problem 52. 

Figure 10-40 shows a 
uniform disk that can rotate 
around its center like a merry-go­
round. The disk has a radius of 
2.00 cm and a mass of 20.0 grams 
and is initially at rest. Starting at 
time t = 0, two forces are to be ap-

Fig. 1 0-40 Problem 53. 

plied tangentially to the rim as indicated, so that at time t = 1.25 s 
the disk has an angular velocity of 250 rad/s counterclockwise. 
Force ~ has a magnitude of 0.100 N. What is magnitude F2? 

In a judo foot-sweep 
move, you sweep your opponent's 
left foot out from under him while 
pulling on his gi (uniform) toward 
that side. As a result, your oppo­
nent rotates around his right foot 
and onto the mat. Figure 10-41 
shows a simplified diagram of 
your opponent as you face him, 
with his left foot swept out. The 
rotational axis is throughyoint O. 
The gravitational force Fg on him 
effectively acts at his center of 
mass, which is a horizontal dis­
tance d = 28 cm from point O. 
His mass is 70 kg, and his rota­
tional inertia about point 0 is 65 
kg· m2

• What is the magnitUde of 
his initial angular acceleration 
about point 0 if your pull Fa on his 

Fig. 10-41 

h 

Problem 54. 

gi is (a) negligible and (b) horizontal with a magnitude of 300 Nand 
applied at height h = 1.4 m? 

In Fig. 10-42a, an irregularly shaped 
plastic plate with uniform thickness and den­
sity (mass per unit volume) is to be rotated 
around an axle that is perpendicular to the 
plate face and through point O. The rota­
tional inertia of the plate about that axle is 
measured with the following method. A cir­
cular disk of mass 0.500 kg and radius 2.00 
cm is glued to the plate, with its center 
aligned with point 0 (Fig. 10-42b). A string is 
wrapped around the edge of the disk the way 
a string is wrapped around a top. Then the 
string is pulled for 5.00 s. As a result, the disk 

!;;<:Plate 

Axle-W 

(a) 

DiSk~ 

~-
(b) 

Fig. 10-42 

Problem 55. 



and plate are rotated by a constant force of 00400 N that is applied 
by the string tangentially to the edge of the disk. The resulting an­
gular speed is 114 rad/s. What is the rotational inertia of the plate 
about the axle? 

Figure 10-43 shows rLl-'+<I'~~- L;. ---->-1'1 
particles 1 and 2, each of •• I==T===========-e 
mass m, attached to the ends 1 Ai 2 
of a rigid massless rod of 
length Ll + L 2, with Ll = 20 

Fig. 1 0-43 Problem 56. 

cm and L2 = 80 cm. The rod is held horizontally on the fulcrum 
and then released. What are the magnitudes of the initial accelera­
tions of (a) particle 1 and (b) particle 2? 

A pulley, with a rotational inertia of 1.0 X 10-3 kg· m2 about its 
axle and a radius of 10 cm, is acted on by a force applied tangentially 
at its rim. The force magnitude varies in time as F = 0.50t + 0.30t2, 
with F in newtons and t in seconds. The pulley is initially at rest. At 
t = 3.0 s what are its (a) angular acceleration and (b) angular speed? 

Work and Rotational Kinetic Energy 
(a) If R = 12 cm, M = 400 g, and m = 50 g in Fig. 10-18, find 

the speed of the block after it has descended 50 cm starting from 
rest. Solve the problem using energy conservation principles. (b) 
Repeat (a) withR = 5.0 cm. 

An automobile crankshaft transfers energy from the engine 
to the axle at the rate of 100 hp (= 74.6 kW) when rotating at a 
speed of 1800 rev/min. What torque (in newton-meters) does the 
crankshaft deliver? 

A thin rod of length 0.75 m and mass 0042 kg is suspended 
freely from one end. It is pulled to one side and then allowed to swing 
like a pendulum, passing through its lowest position with angular 
speed 4.0 rad/s. Neglecting friction and air resistance, find (a) the 
rod's kinetic energy at its lowest position and (b) how far above that 
position the center of mass rises. 

A 32.0 kg wheel, essentially a thin hoop with radius 1.20 m, is 
rotating at 280 rev/min. It must be brought to a stop in 15.0 S. (a) 
How much work must be done to stop it? (b) What is the required 
average power? 

In Fig. 10-32, three 0.0100 kg particles have been glued to a 
rod of length L = 6.00 cm and negligible mass and can rotate 
around a perpendicular axis through point 0 at one end. How 
much work is required to change the rotational rate (a) from 0 to 
20.0 rad/s, (b) from 20.0 rad/s to 40.0 rad/s, and ( c) from 40.0 rad/s to 
60.0 rad/s? (d) What is the slope of a plot of the assembly's kinetic 
energy (in joules) versus the square of its rotation rate (in radians­
squared per second-squared)? 

SSM IlW A meter stick is held vertically with one end on 
the floor and is then allowed to fall. Find the speed of the other end 
just before it hits the floor, assuming that the end on the floor does 
not slip. (Hint: Consider the stick to be a thin rod and use the con­
servation of energy principle.) 

A uniform cylinder of radius 10 cm and mass 20 kg is 
mounted so as to rotate freely about a horizontal axis that is paral­
lel to and 5.0 cm from the central longitudinal axis of the cylinder. 
(a) What is the rotational inertia of the cylinder about the axis of 
rotation? (b) If the cylinder is released from rest with its central 
longitudinal axis at the same height as the axis about which the 
cylinder rotates, what is the angular speed of the cylinder as it 
passes through its lowest position? 

PROBLEMS 271 

A tall, cylindrical chimney falls over when its base is 
ruptured. Treat the chimney as a thin rod of length 55.0 m. At the in­
stant it makes an angle of 35.0° with the vertical as it falls, what are 
(a) the radial acceleration of the top, and (b) the tangential acceler­
ation of the top. (Hint: Use energy considerations, not a torque.) (c) 
At what angle 0 is the tangential acceleration equal to g? 

A uniform spherical shell of mass M = 4.5 kg and radius 
R = 8.5 cm can rotate about a vertical axis on frictionless bearings 
(Fig. 10-44). A massless cord passes around the equator of the shell, 
over a pulley of rotational inertia 1 = 3.0 X 10-3 kg . m2 and radius 
r = 5.0 cm, and is attached to a small object of mass m = 0.60 kg. 
There is no friction on the pulley's axle; the cord does not slip on 
the pUlley. What is the speed of the object when it has fallen 82 cm 
after being released from rest? Use energy considerations. 

Fig. 1 0-44 Problem 66. 

Figure 10-45 shows a rigid 
assembly of a thin hoop (of mass m 
and radius R = 0.150 m) and a thin 
radial rod (of mass m and length L = 

2.00R). The assembly is upright, but if 
we give it a slight nudge, it will rotate 
around a horizontal axis in the plane 
of the rod and hoop, through the 

Hoop 

Rod 

Rotation -----
axis 

lower end of the rod. Assuming that Fig. 10-45 Problem 67. 
the energy given to the assembly in 
such a nudge is negligible, what would be the assembly's angular 
speed about the rotation axis when it passes through the upside­
down (inverted) orientation? 

Additional Problems 
Two uniform solid spheres have the same mass of 1.65 kg, but 

one has a radius of 0.226 m and the other has a radius of 0.854 m. 
Each can rotate about an axis through its center. (a) What is the 
magnitude r of the torque required to bring the smaller sphere 
from rest to an angular speed of 317 rad/s in 15.5 s? (b) What is the 
magnitude F of the force that must be applied tangentially at the 
sphere's equator to give that torque? What are the corresponding 
values of (c) rand (d) Ffor the larger sphere? 

In Fig. 10-46, a small disk of radius 
r = 2.00 cm has been glued to the edge 
of a larger disk of radius R = 4.00 cm so 
that the disks lie in the same plane. The 
disks can be rotated around a perpen­
dicular axis through point 0 at the cen­
ter of the larger disk. The disks both 
have a uniform density (mass per unit Fig. 10-46 Problem 69. 
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volume) of 1.40 X 103 kg/m3 and a uniform thickness of 5.00 mm. 
What is the rotational inertia of the two-disk assembly about the 
rotation axis through O? 

70 A wheel, starting from rest, rotates with a constant angular ac­
celeration of 2.00 rad/s2. During a certain 3.00 s interval, it turns 
through 90.0 rad. (a) What is the angular velocity of the wheel at 
the start of the 3.00 s interval? (b) How long has the wheel been 
turning before the start of the 3.00 s interval? 

SSM In Fig. 10-47, two 6.20 kg 
blocks are connected by a massless 
string over a pulley of radius 2.40 
cm and rotational inertia 7.40 X 

10-4 kg· m2• The string does not slip 
on the pulley; it is not known 
whether there is friction between 
the table and the sliding block; the Fig. 10-47 Problem 71. 
pulley's axis is frictionless. When 
this system is released from rest, the pulley turns through 0.650 rad 
in 91.0 ms and the acceleration of the blocks is constant. What are 
(a) the magnitude of the pulley's angular acceleration, (b) the mag­
nitude of either block's acceleration, (c) string tension TJ, and (d) 
string tension T2? 

Attached to each end of a thin steel rod of length 1.20 m and 
mass 6.40 kg is a small ball of mass 1.06 kg. The rod is constrained 
to rotate in a horizontal plane about a vertical axis through its mid­
point. At a certain instant, it is rotating at 39.0 rev/so Because of 
friction, it slows to a stop in 32.0 S. Assuming a constant retarding 
torque due to friction, compute (a) the angular acceleration, (b) 
the retarding torque, (c) the total energy transferred from mechan­
ical energy to thermal energy by friction, and (d) the number of 
revolutions rotated during the 32.0 S. (e) Now suppose that the re­
tarding torque is known not to be constant. If any of the quantities 
(a), (b), ( c), and (d) can still be computed without additional infor­
mation, give its value. 

A uniform helicopter rotor blade is 7.80 m long, has a mass of 
110 kg, and is attached to the rotor axle by a single bolt. (a) What is 
the magnitude of the force on the bolt from the axle when the ro­
tor is turning at 320 rev/min? (Hint: For this calculation the blade 
can be considered to be a point mass at its center of mass. Why?) 
(b) Calculate the torque that must be applied to the rotor to bring 
it to full speed from rest in 6.70 S. Ignore air resistance. (The blade 
cannot be considered to be a point mass for this calculation. Why 
not? Assume the mass distribution of a uniform thin rod.) (c) How 
much work does the torque do on the blade in order for the blade 
to reach a speed of 320 rev/min? 

Racing disks. Figure 10-48 
shows two disks that can rotate 
about their centers like a merry-go­
round. At time t = 0, the reference 
lines of the two disks have the same Disk A DiskB 

orientation. Disk A is already rotat- Fig. 10-48 Problem 74. 
ing, with a constant angular velocity 
of 9.5 rad/s. Disk B has been stationary but now begins to rotate at 
a constant angular acceleration of 2.2 rad/s2• (a) At what time twill 
the reference lines of the two disks momentarily have the same an­
gular displacement B? (b) Will that time t be the first time since t = 
o that the reference lines are momentarily aligned? 

A high-wire walker always attempts to keep his center 
of mass over the wire (or rope). He normally carries a long, heavy 

pole to help: If he leans, say, to his right (his com moves to the 
right) and is in danger of rotating around the wire, he moves the 
pole to his left (its com moves to the left) to slow the rotation and 
allow himself time to adjust his balance. Assume that the walker 
has a mass of 70.0 kg and a rotational inertia of 15.0 kg· m2 about 
the wire. What is the magnitUde of his angular acceleration about 
the wire if his com is 5.0 cm to the right of the wire and (a) he car­
ries no pole and (b) the 14.0 kg pole he carries has its com 10 cm to 
the left of the wire? 

Starting from rest at t = 0, a wheel undergoes a constant an­
gular acceleration. When t = 2.0 s, the angular velocity of the 
wheel is 5.0 rad/s. The acceleration continues until t = 20 s, when it 
abruptly ceases. Through what angle does the wheel rotate in the 
interval t = 0 to t = 40 s? 

SSM A record turntable rotating at 33~ rev/min slows down 
and stops in 30 s after the motor is turned off. (a) Find its (con­
stant) angular acceleration in revolutions per minute-squared. (b) 
How many revolutions does it make in this time? 

A rigid body is made of 
three identical thin rods, each with 
length L = 0.600 m, fastened to­
gether in the form of a letter H (Fig. 
10-49). The body is free to rotate 
about a horizontal axis that runs Fig. 10-49 Problem 78. 
along the length of one of the legs 
of the H. The body is allowed to fall from rest from a position in 
which the plane of the H is horizontal. What is the angular speed of 
the body when the plane of the H is vertical? 

SSM (a) Show that the rotational inertia of a solid cylinder of 
mass M and radius R about its central axis is equal to the rotational 
inertia of a thin hoop of mass M and radius RlVz about its central 
axis. (b) Show that the rotational inertia I of any given body of 
mass M about any given axis is equal to the rotational inertia of an 
equivalent hoop about that axis, if the hoop has the same mass M 
and a radius k given by 

k=f{;. 
The radius k of the equivalent hoop is called the radius of gyration 
of the given body. 

A disk rotates at constant angular acceleration, from angular 
position 81 = 10.0 rad to angular position 82 = 70.0 rad in 6.00 S. Its 
angular velocity at 82 is 15.0 rad/s. (a) What was its angular velocity 
at 81? (b) What is the angular acceleration? (c) At what angular po­
sition was the disk initially at rest? (d) Graph 8 versus time t and an­
gular speed w versus t for the disk, from the beginning of the motion 
(let t = 0 then). 

The thin uniform rod in Fig. 10-50 has 
length 2.0 m and can pivot about a horizontal, 
frictionless pin through one end. It is released 
from rest at angle 8 = 40° above the horizon­
tal. Use the principle of conservation of energy 
to determine the angular speed of the rod as it 
passes through the horizontal position. 

George Washington Gale Ferris, Jr., 
a civil engineering graduate from Rensselaer 
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Fig. 10-50 
Problem 81. 

Polytechnic Institute, built the original Ferris wheel for the 1893 
World's Columbian Exposition in Chicago. The wheel, an astound­
ing engineering construction at the time, carried 36 wooden cars, 



each holding up to 60 passengers, around a circle 76 m in diameter. 
The cars were loaded 6 at a time, and once all 36 cars were full, the 
wheel made a complete rotation at constant angular speed in 
about 2 min. Estimate the amount of work that was required of the 
machinery to rotate the passengers alone. 

In Fig. 10-38, two blocks, of mass ml = 400 g and m2 = 600 g, 
are connected by a massless cord that is wrapped around a uniform 
disk of mass M = 500 g and radius R = 12.0 cm. The disk can ro­
tate without friction about a fixed horizontal axis through its cen­
ter; the cord cannot slip on the disk. The system is released from 
rest. Find (a) the magnitude of the acceleration of the blocks, (b) 
the tension T j in the cord at the left, and (c) the tension T2 in the 
cord at the right. 

At 7: 14 A.M. on June 30, 1908, a huge explosion occurred 
above remote central Siberia, at latitude 61° N and longitude 102° 
E; the fireball thus created was the brightest flash seen by anyone 
before nuclear weapons. The Tunguska Event, which according to 
one chance witness "covered an enormous part of the sky," was 
probably the explosion of a stony asteroid about 140 m wide. (a) 
Considering only Earth's rotation, determine how much later the 
asteroid would have had to arrive to put the explosion above 
Helsinki at longitude 25° E. This would have obliterated the city. 
(b) If the asteroid had, instead, been a metallic asteroid, it could 
have reached Earth's surface. How much later would such an 
asteroid have had to anive to put the impact in the Atlantic Ocean 
at longitude 20° W? (The resulting tsunamis would have wiped out 
coastal civilization on both sides of the Atlantic.) 

A golf ball is launched at an angle of 20° to the horizontal, 
with a speed of 60 m/s and a rotation rate of 90 rad/s. Neglecting 
air drag, determine the number of revolutions the ball makes by 
the time it reaches maximum height. 

Figure 10-51 shows a flat construction of 
two circular rings that have a common center and 
are held together by three rods of negligible mass. 
The construction, which is initially at rest, can ro­
tate around the common center (like a merry-go-

Fig. 10-51 
round), where another rod of negligible mass lies. Problem 86. 
The mass, inner radius, and outer radius of the 
rings are given in the following table. A tangential force of magni­
tude 12.0 N is applied to the outer edge of the outer ring for 0.300 s. 
What is the change in the angular speed of the construction during 
that time interval? 

Ring Mass (kg) 

1 0.120 
2 0.240 

Inner Radius (m) 

0.0160 
0.0900 

Outer Radius (m) 

0.0450 
0.1400 

In Fig. 10-52, a wheel of radius 0.20 m is mounted on a fric­
tionless horizontal axle. A massless cord is wrapped around the 
wheel and attached to a 2.0 kg box that slides on a frictionless sur­
face inclined at angle (J = 20° with the horizontal. The box acceler­
ates down the surface at 2.0 m/s2. What is the rotational inertia of 
the wheel about the axle? 

e 
Fig. 10-52 Problem 87. 
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A thin spherical shell has a radius of 1.90 m. An applied 
torque of 960 N . m gives the shell an angular acceleration of 6.20 
rad/s2 about an axis through the center of the shell. What are (a) 
the rotational inertia of the shell about that axis and (b) the mass 
of the shell? 

89 A bicyclist of mass 70 kg puts all his mass on each downward­
moving pedal as he pedals up a steep road. Take the diameter of 
the circle in which the pedals rotate to be 0040 m, and determine 
the magnitude of the maximum torque he exerts about the rota­
tion axis of the pedals. 

90 The flywheel of an engine is rotating at 25.0 rad/s. When the 
engine is turned off, the flywheel slows at a constant rate and stops 
in 20.0 s. Calculate (a) the angular acceleration of the flywheel, 
(b) the angle through which the flywheel rotates in stopping, and 
( c) the number of revolutions made by the flywheel in stopping. 

SSM In Fig. 10-18a, a wheel of radius 0.20 m is mounted on a 
frictionless horizontal axis. The rotational inertia of the wheel 
about the axis is 0040 kg· m2. A massless cord wrapped around the 
wheel's circumference is attached to a 6.0 kg box. The system is re­
leased from rest. When the box has a kinetic energy of 6.0 J, what 
are (a) the wheel's rotational kinetic energy and (b) the distance 
the box has fallen? 

Our Sun is 2.3 X 104 ly (light-years) from the center of our 
Milky Way galaxy and is moving in a circle around that center at a 
speed of 250 krn/s. (a) How long does it take the Sun to make one 
revolution about the galactic center? (b) How many revolutions has 
the Sun completed since it was formed about 4.5 X 109 years ago? 

SSM A wheel of radius 0.20 m 
is mounted on a frictionless horizon­
tal axis. The rotational inertia of the 
wheel about the axis is 0.050 kg . m2. 
A massless cord wrapped around 

Fig. 10-53 Problem 93. 
the wheel is attached to a 2.0 kg 
block that slides on a horizontal frictionless surface. If a horizontal 
force of magnitude P = 3.0 N is applied to the block as shown in 
Fig. 10-53, what is the magnitude of the angular acceleration of the 
wheel? Assume the cord does not slip on the wheel. 

94 A car starts from rest and moves around a circular track of 
radius 30.0 m. Its speed increases at the constant rate of 0.500 
m/s2. (a) What is the magnitude of its net linear acceleration 15.0 s 
later? (b) What angle does this net acceleration vector make with 
the car's velocity at this time? 

The rigid body shown in Fig. 
10-54 consists of three particles 
connected by massless rods. It is to be 
rotated about an axis perpendicular 
to its plane through point P. If M = 
0040 kg, a = 30 cm, and b = 50 cm, 
how much work is required to take 
the body from rest to an angular 
speed of 5.0 rad/s? 

a 

2M 

M 

a 
p 2M 

Beverage engineering. The pull Fig. 10-54 Problem 95. 
tab was a major advance in the engi-
neering design of beverage containers. The tab pivots on a central 
bolt in the can's top. When you pull upward on one end of the tab, 
the other end presses downward on a portion of the can's top that 
has been scored. If you pull upward with a 10 N force, approxi­
mately what is the magnitude of the force applied to the scored 
section? (You will need to examine a can with a pull tab.) 
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Figure 10-55 shows a propeller blade 
that rotates at 2000 rev/min about a per­
pendicular axis at point B. Point A is at the 
outer tip of the blade, at radial distance 
1.50 m. (a) What is the difference in the 
magnitudes a of the centripetal accelera­

Fig. 10-55 

Problem 97. 

tion of point A and of a point at radial distance 0.150 m? (b) Find 
the slope of a plot of a versus radial distance along the blade. 

A yo-yo-shaped device 
mounted on a horizontal fric­
tionless axis is used to lift a 30 
kg box as shown in Fig. 10-56. 
The outer radius R of the de­
vice is 0.50 m, and the radius r 
of the hub is 0.20 m. When a 
constant horizontal force Papp 

of magnitude 140 N is applied 
to a rope wrapped around the 
outside of the device, the box, 
which is suspended from a 
rope wrapped around the hub, 
has an upward acceleration of 
magnitude 0.80 mfs2. What is 

'L/-~"lU mount 

Fig. 10-56 Problem 98. 

the rotational inertia of the device about its axis of rotation? 

A small ball with mass 1.30 kg is mounted on one end of a rod 
0.780 m long and of negligible mass. The system rotates in a hori­
zontal circle about the other end of the rod at 5010 rev/min. (a) 
Calculate the rotational inertia of the system about the axis of ro­
tation. (b) There is an air drag of 2.30 X 10-2 N on the ball, di­
rected opposite its motion. What torque must be applied to the sys­
tem to keep it rotating at constant speed? 

Tho thin rods (each of mass 
0.20 kg) are joined together to form 
a rigid body as shown in Fig. 10-57. 
One of the rods has length L1 = 0040 
m, and the other has length L2 = 
0.50 m. What is the rotational iner­
tia of this rigid body about (a) an 
axis that is perpendicular to the 
plane of the paper and passes 
through the center of the shorter 1_ 1 __1_ 1 __ I 

,--- -2 L1 -------r- -2 L1----, 
rod and (b) an axis that is perpen-
dicular to the plane of the paper Fig. 10-57 Problem 100. 
and passes through the center of 
the longer rod? 

In Fig. 10-58, four pul-
leys are connected by two 
belts. Pulley A (radius 15 cm) 
is the drive pulley, and it ro­
tates at 10 rad/s. Pulley B (ra­
dius 10 cm) is connected by 
belt 1 to pulley A. Pulley B' 
(radius 5 cm) is concentric with 
pulley B and is rigidly attached 
to it. Pulley C (radius 25 cm) is 
connected by belt 2 to pulley B'. 
Calculate (a) the linear speed 
of a point on belt 1, (b) the an-

A 

Fig. 10-58 Problem 101. 

gular speed of pulley B, (c) the angular speed of pulley B', (d) the 
linear speed of a point on belt 2, and (e) the angular speed of pulley 
C. (Hint: If the belt between two pulleys does not slip, the linear 
speeds at the rims of the two pulleys must be equal.) 

The rigid object shown in Fig. 10-59 consists of three balls 
and three connecting rods, with M = 1.6 kg, L = 0.60 m, and 
() = 30°. The balls may be treated as particles, and the connecting 
rods have negligible mass. Determine the rotational kinetic energy 
of the object if it has an angular speed of 1.2 rad/s about (a) an axis 
that passes through point P and is perpendicular to the plane of the 
figure and (b) an axis that passes through point P, is perpendicular 
to the rod of length 2L, and lies in the plane of the figure. 

2M 

c~: p :~ .. ' ... ': .... l ~~~~~~2~L~~~~~y~ 

2M 

Fig. 10-59 Problem 102. 

103 In Fig. 10-60, a thin uniform rod (mass 3.0 kg, length 4.0 m) 
rotates freely about a horizontal axis A that is perpendicular to the 
rod and passes through a point at distance d = 1.0 m from the end 
of the rod. The kinetic energy of the rod as it passes through the 
vertical position is 20 J. (a) What is the rotational inertia of the rod 
about axis A ? (b) What is the (linear) speed of the end B of the rod 
as the rod passes through the vertical position? (c) At what angle B 
will the rod momentarily stop in its upward swing? 

-t 
d 

~ 

Fig. 10-60 Problem 103. 

Four particles, each of mass, 
0.20 kg, are placed at the vertices of 
a square with sides of length 0.50 m. 
The particles are connected by rods 
of negligible mass. This rigid body 
can rotate in a vertical plane about 
a horizontal axis A that passes 
through one of the particles. The 
body is released from rest with rod 
AB horizontal (Fig. 10-61). (a) What 
is the rotational inertia of the body Fig. 10-61 Problem 104. 
about axis A? (b) What is the angu-
lar speed of the body about axis A when rod AB swings through 
the vertical position? 
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As we discussed in Chapter 10, physics includes the study of rotation. 
Arguably, the most important application of that physics is in the rolling motion 
of wheels and wheel-like objects. This applied physics has long been used. For ex­
ample, when the prehistoric people of Easter Island moved their gigantic stone 
statues from the quarry and across the island, they dragged them over logs acting 
as rollers. Much later, when settlers moved westward across America in the 1800s, 
they rolled their possessions first by wagon and then later by train. Today, like it 
or not, the world is filled with cars, trucks, motorcycles, bicycles, and other rolling 
vehicles. 

The physics and engineering of rolling have been around for so long that you 
might think no fresh ideas remain to be developed. However, skateboards and in­
line skates were invented and engineered fairly recently, to become huge finan­
cial successes. Street luge is now catching on, and the self-righting Segway (Fig. 
11-1) may change the way people move around in large cities. Applying the 
physics of rolling can still lead to surprises and rewards. Our starting point in 
exploring that physics is to simplify rolling motion. 

11 Rolling as Translation and Rotation Combined 
Here we consider only objects that roll smoothly along a surface; that is, the objects 
roll without slipping or bouncing on the surface. Figure 11-2 shows how complicated 
smooth rolling motion can be: Although the center of the object moves in a straight 
line parallel to the surface, a point on the rim certainly does not. However, we can 
study this motion by treating it as a combination of translation of the center of mass 
and rotation of the rest of the object around that center. 

Fig. 11-2 A time-exposure photograph of a rolling disk. Small lights have been at­
tached to the disk, one at its center and one at its edge. The latter traces out a curve called 
a cycloid. (Richard Megna/Fundamental Photographs) 

Fig. 11 -1 The self-righting Segway 
Human Transporter. (Justin Sullivan/Getty 
Images News and Sport Services) 
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Fig. 11 -3 The center of mass 0 of a 
rolling wheel moves a distance s at veloc­
ity vcom while the wheel rotates through 
angle O. The point P at which the wheel 
makes contact with the surface over which 
the wheel rolls also moves a distance s. 

Fig. 11-5 A photograph of a rolling bi­
cycle wheel. The spokes near the wheel's 
top are more blurred than those near the 
bottom because the top ones are moving 
faster, as Fig. 11-4c shows. (Courtesy Alice 
Halliday) 

To see how we do this, pretend you are standing on a sidewalk watching the 
bicycle wheel of Fig. 11-3 as it rolls along a street. As shown, you see the center of 
mass 0 of the wheel move forward at constant speed Vcom' The point P on the 
street where the wheel makes contact with the street surface also moves forward 
at speed Vcom' so that P always remains directly below O. 

During a time interval t, you see both 0 and P move forward by a distance s. The 
bicycle rider sees the wheel rotate through an angle 0 about the center of the wheel, 
with the point of the wheel that was touching the street at the beginning of t moving 
through arc length s. Equation 10-17 relates the arc length s to the rotation angle 0: 

s = OR, (11-1) 

where R is the radius of the wheel. The linear speed v com of the center of the 
wheel (the center of mass of this uniform wheel) is ds/dt. The angular speed wof 
the wheel about its center is dO/dt. Thus, differentiating Eq. 11-1 with respect to 
time (with R held constant) gives us 

Vcom = wR (smooth rolling motion). (11-2) 

( a) Pure rotation ( b) Pure translation ( c) Rolling motion 
~ ~ 

V = vearn 

v = -veam + V:om = 0 

Fig. 11 -4 Rolling motion of a wheel as a combination of purely rotational motion and 
purely translational motion. (a) The purely rotational motion: All points on the wheel move 
with the same angular speed w. Points on the outside edge of the wheel all move with the 
same linear speed v = vcom.The linear velocities poftwo such points,at top (T) and bottom 
(P) ofthe wheel, are shown. (b) The purely translational motion: All points on the wheel 
move to the right with the same linear velocity Pcom' (c) The rolling motion of the wheel is the 
combination of (a) and (b). 

Figure 11-4 shows that the rolling motion of a wheel is a combination of 
purely translational and purely rotational motions. Figure 11-4a shows the purely 
rotational motion (as if the rotation axis through the center were stationary): 
Every point on the wheel rotates about the center with angular speed w. (This is 
the type of motion we considered in Chapter 10.) Every point on the outside 
edge of the wheel has linear speed v com given by Eq. 11-2. Figure 11-4b shows the 
purely translational motion (as if the wheel did not rotate at all): Every point on 
the wheel moves to the right with speed v com' 

The combination of Figs. 11-4a and 11-4b yields the actual rolling motion of 
the wheel, Fig. 11-4c. Note that in this combination of motions, the portion of the 
wheel at the bottom (at point P) is stationary and the portion at the top (at point 
T) is moving at speed 2vcom, faster than any other portion of the wheel. These re­
sults are demonstrated in Fig. 11-5, which is a time exposure of a rolling bicycle 
wheel. You can tell that the wheel is moving faster near its top than near its bot­
tom because the spokes are more blurred at the top than at the bottom. 

The motion of any round body rolling smoothly over a surface can be separated 
into purely rotational and purely translational motions, as in Figs. 11-4a and 11-4b. 

Figure 11-6 suggests another way to look at the rolling motion of a wheel­
namely, as pure rotation about an axis that always extends through the point 
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where the wheel contacts the street as the wheel moves. We consider the rolling 
motion to be pure rotation about an axis passing through point P in Fig. 11-4c and 
perpendicular to the plane of the figure. The vectors in Fig. 11-6 then represent 
the instantaneous velocities of points on the rolling wheel. 

Question: What angular speed about this new axis will a stationary observer as­
sign to a rolling bicycle wheel? 
Answer: The same w that the rider assigns to the wheel as she or he observes it 
in pure rotation about an axis through its center of mass. 

To verify this answer, let us use it to calculate the linear speed of the top of the 
rolling wheel from the point of view of a stationary observer. If we call the 
wheel's radius R, the top is a distance 2R from the axis through P in Fig. 11-6, so 
the linear speed at the top should be (using Eq.11-2) 

v top = (w)(2R) = 2(wR) = 2vcom, 

in exact agreement with Fig. 11-4c. You can similarly verify the linear speeds 
shown for the portions of the wheel at points 0 and P in Fig. 11-4c. 

CHECKPOINT 1 

The rear wheel on a clown's bicycle has twice the radius of the front wheel. (a) When 
the bicycle is moving, is the linear speed at the very top of the rear wheel greater than, 
less than, or the same as that of the very top ofthe front wheel? (b) Is the angular speed 
ofthe rear wheel greater than, less than, or the same as that of the front wheel? 

11 The Kinetic Energy of Rolling 
Let us now calculate the kinetic energy of the rolling wheel as measured by the 
stationary observer. If we view the rolling as pure rotation about an axis through 
P in Fig. 11-6, then from Eq. 10-34 we have 

K - 11 2 -"2 pW, (11-3) 

in which w is the angular speed of the wheel and Ip is the rotational inertia of the 
wheel about the axis through P. From the parallel-axis theorem of Eq. 10-36 
(I = lcom + Mh2), we have 

(11-4) 

in which M is the mass of the wheel, lcom is its rotational inertia about an axis 
through its center of mass, and R (the wheel's radius) is the perpendicular 
distance h. Substituting Eq.11-4 into Eq.11-3, we obtain 

K = ~.z;,omw2 + ~MR2W2, 
and using the relation Vcom = wR (Eq. 11-2) yields 

K - 11 2 + 1M 2 -"2comw "2 Vcom' (11-5) 

We can interpret the term ~.z;,omw2 as the kinetic energy associated with the 
rotation of the wheel about an axis through its center of mass (Fig. 11-4a), and the 
term ~Mv~om as the kinetic energy associated with the translational motion of the 
wheel's center of mass (Fig. 11-4b). Thus, we have the following rule: 

A rolling object has two types of kinetic energy: a rotational kinetic energy(~.z;,omw2) 
due to its rotation about its center of mass and a translational kinetic energy 
(~Mv~om) due to translation of its center of mass .. 

Rotation axis at P 

Fig. 11 -6 Rolling can be viewed 
as pure rotation, with angular speed w, 
about an axis that always extends through 
P. The vectors show the instantaneous lin­
ear velocities of selected points on the 
rolling wheel. You can obtain the vectors by 
combining the translational and rotational 
motions as in Fig. 11-4. 



278 CHA 11 ROLLI NG, TORQU E, AN DANG U LAR MOM ENTU M 

Fig. 11 -7 A wheel rolls horizontally 
without sliding while accelerating with lin­
ear acceleration acorn' A static frictional 
force 7s acts on the wheel at P, opposing its 
tendency to slide. 

1 The Forces of Rolling 

If a wheel rolls at constant speed, as in Fig. 11-3, it has no tendency to slide at the 
point of contact P, and thus no frictional force acts there. However, if a net force 
acts on the rolling wheel to speed it up or to slow it, then that net force causes ac­
celeration acorn of the center of mass along the direction of travel. It also causes 
the wheel to rotate faster or slower, which means it causes an angular 
acceleration a. These accelerations tend to make the wheel slide at P. Thus, a fric­
tional force must act on the wheel at P to oppose that tendency. 

If the wheel does not slide, the force is a static frictional force ls and the 
motion is smooth rolling. We can then relate the magnitudes of the linear acceler­
ation acorn and the angular acceleration a by differentiating Eq. 11-2 with respect 
to time (with R held constant). On the left side, dVcomldt is acorn, and on the right 
side dwldt is a. So, for smooth rolling we have 

acorn = aR (smooth rolling motion). (11-6) 

If the wheel does slide when the net force acts on it, the frictional force that 
acts at P in Fig. 11-3 is a kinetic frictional force 7k' The motion then is not smooth 
rolling, and Eq.11-6 does not apply to the motion. In this chapter we discuss only 
smooth rolling motion. 

Figure 11-7 shows an example in which a wheel is being made to rotate faster 
while rolling to the right along a fiat surface, as on a bicycle at the start of a race. 
The faster rotation tends to make the bottom of the wheel slide to the left at 
point P. A frictional force at P, directed to the right, opposes this tendency to 
slide. If the wheel does not slide, that frictional force is a static frictional force ls 
(as shown), the motion is smooth rolling, and Eq. 11-6 applies to the motion. 
(Without friction, bicycle races would be stationary and very boring.) 

If the wheel in Fig. 11-7 were made to rotate slower, as on a slowing bicy­
cle, we would change the figure in two ways: The directions of the center-of­
mass acceleration acorn and the frictional force ls at point P would now be to 
the left. 

Figure 11-8 shows a round uniform body of mass M and radius R rolling smoothly 
down a ramp at angle e, along an x axis. We want to find an expression for the body's 
acceleration acom,x down the ramp. We do this by using Newton's second law in both 
its linear version (Fnet = Ma) and its angular version (Tnet = fa). 

We start by drawing the forces on the body as shown in Fig. 11-8: 

1. The gravitational force I{ on the body is directed downward. The tail of the 
vector is placed at the center of mass of the body. The component along the 
ramp is Fg sin e, which is equal to Mg sin e. 

2. A normal force FN is perpendicular to the ramp. It acts at the point of 
contact P, but in Fig. 11-8 the vector has been shifted along its direction until 
its tail is at the body's center of mass. 

3. A static frictional force ls acts at the point of contact P and is directed up 
the ramp. (Do you see why? If the body were to slide at P, it would slide down the 
ramp. Thus, the frictional force opposing the sliding must be up the ramp.) 

We can write Newton's second law for components along the x axis in Fig. 11-8 
(Fnet., = mat) as 

fs - Mg sin e = Macom,x' (11-7) 



Forces "Fg sin e and ~ 
determine the linear 
acceleration down 
the ramp. 

Forces FN and Fg cos e 
merely balance. 

The torque due to ~ 
determines the 
angular acceleration 
around the com. 

1: -g 

11 

Fig. 11 -8 A round unifojm body of radius ~ rolls down a ramp. The forces that act on it 
are the gravitational forc~fg, a normal force FN , and a frictional force 7s pointing up the 
ramp. (For clarity, vector F N has been shifted in the direction it points until its tail is at the 
center of the body.) 

This equation contains two unknowns,is and acorn,x' (We should not assume that is 
is at its maximum value is,rnax' All we know is that the value of fs is just right for 
the body to roll smoothly down the ramp, without sliding.) 

We now wish to apply Newton's second law in angular form to the body's ro­
tation about its center of mass. First, we shall use Eq. 10-41 (T = r.l F) to write the 
torques on the body about that point. The frictional force 1s has moment arm R 
and thus produces a torque Rfs, which is positive because it tends to rotate the 
body counterclockwise in Fig. 11-8. Forces l{ and PN have zero moment arms 
about the center of mass and thus produce zero torques. So we can write the an­
gular form of Newton's second law (Tne! = la) about an axis through the body's 
center of mass as 

Rfs = leoma. (11-8) 

This equation contains two unknowns,!s and a. 
Because the body is rolling smoothly, we can use Eq. 11-6 (acorn = aR) to relate 

the unknowns aCOrn,t and a. But we must be cautious because here aCOrn,t is negative 
(in the negative direction of the x axis) and a is positive (counterclockwise). Thus 
we substitute -acornjR for ain Eq.11-8. Then, solving for is> we obtain 

aCOffi,x 
is = -Icorn~' 

Substituting the right side of Eq.11-9 for is in Eq. 11-7, we then find 

g sin e 
acorn,x = - 1 + I / MR2 . 

com 

(11-9) 

(11-10) 

We can use this equation to find the linear acceleration acorn,t of any body rolling 
along an incline of angle () with the horizontal. 

CHECKPOINT 2 

Disks A and B are identical and roll across a floor with equal speeds. Then disk A rolls 
up an incline, reaching a maximum height h, and disk B moves up an incline that is iden­
tical except that it is frictionless. Is the maximum height reached by disk B greater than, 
less than, or equal to h? 

THE FORCES OF ROLLING 279 
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Ball rolling down a ramp 

A uniform ball, of mass M = 6.00 kg and radius R, rolls 
smoothly from rest down a ramp at angle e = 30.0° (Fig. 11-8). 

(a) The ball descends a vertical height h = 1.20 m to reach the 
bottom of the ramp. What is its speed at the bottom? 

The mechanical energy E of the ball-Earth system is con­
served as the ball rolls down the ramp. The reason is that the 
only force doing work on the ball is the gravitational force, a 
conservative force. The normal force on the ball from the 
ramp does zero work because it is perpendicular to the 
ball's path. The frictional force on the ball from the ramp 
does not transfer any energy to thermal energy because the 
ball does not slide (it rolls smoothly). 

Therefore, we can write the conservation of mechanical 
energy (Ef = Ei) as 

(11-11) 

where subscripts f and i refer to the final values (at the bottom) 
and initial values ( at rest), respectively. The gravitational poten­
tial energy is initially Ui = Mgh (where M is the ball's mass) 
and finally Uf = O. The kinetic energy is initially Ki = O. For the 
final kinetic energy Kf, we need an additional idea: Because the 
ball rolls, the kinetic energy involves both translation and rota­
tion, so we include them both by using the right side ofEq.11-5. 

Calculations: Substituting into Eq. 11-11 gives us 

(11-12) 

where learn is the ball's rotational inertia about an axis 
through its center of mass, v com is the requested speed at the 
bottom, and (J) is the angular speed there. 

Because the ball rolls smoothly, we can use Eq. 11-2 to 
substitute vcornlR for (J) to reduce the unknowns in Eq.11-12. 

Doing so, substituting ~MR2 for learn (from Table 1O-2j), and 
then solving for v com give us 

Vcorn = Y(1f-)gh = Y (1f-)(9.8 m/s2)(1.20 m) 

= 4.10m/s. (Answer) 

Note that the answer does not depend on M or R. 

(b) What are the magnitude and direction of the frictional 
force on the ball as it rolls down the ramp? 

Because the ball rolls smoothly, Eq. 11-9 gives the frictional 
force on the ball. 

Calculations: Before we can use Eq. 11-9, we need the 
ball's acceleration acorn,x from Eq. 11-10: 

gsin e g sin e 
1 + ?:.MR2IMR2 

5 

(9.8 m/s2) sin 30.0° = -350 I 2 
1 

2 • m s. 
+5 

Note that we needed neither mass M nor radius R to find 
acorn.,' Thus, any size ball with any uniform mass would have 
this acceleration down a 30.0° ramp, provided the ball rolls 
smoothly. 

We can now solve Eq. 11-9 as 

f = - T acorn,x = -?:.MR2 acorn,x = -?:.M 
s 100m R2 5 R2 5 acorn,x 

= -~( 6.00 kg) ( - 3.50 m/s2) = 8.40 N. (Answer) 

Note that we needed mass M but not radius R. Thus, the 
frictional force on any 6.00 kg ball rolling smoothly down 
a 30.00 ramp would be 8.40 N regardless of the ball's ra­
dius but would be larger for a larger mass. 

Additional examples, video, and practice available at WileyPLUS 

'11 The Yo .. Yo 
A yo-yo is a physics lab that you can fit in your pocket. If a yo-yo rolls down its 
string for a distance h, it loses potential energy in amount mgh but gains kinetic 
energy in both translational (~Mv~orn) and rotational (~lcorn{J)2) forms. As it climbs 
back up, it loses kinetic energy and regains potential energy. 

In a modern yo-yo, the string is not tied to the axle but is looped around it. 
When the yo-yo "hits" the bottom of its string, an upward force on the axle from 
the string stops the descent. The yo-yo then spins, axle inside loop, with only 
rotational kinetic energy. The yo-yo keeps spinning ("sleeping") until you "wake 
it" by jerking on the string, causing the string to catch on the axle and the yo-yo to 
climb back up. The rotational kinetic energy of the yo-yo at the bottom of its 



string (and thus the sleeping time) can be considerably increased by throwing the 
yo-yo downward so that it starts down the string with initial speeds Vcom and (U in­
stead of rolling down from rest. 

To find an expression for the linear acceleration acom of a yo-yo rolling down 
a string, we could use Newton's second law just as we did for the body rolling 
down a ramp in Fig. 11-8. The analysis is the same except for the following: 

1. Instead of rolling down a ramp at angle e with the horizontal, the yo-yo rolls 
down a string at angle e = 900 with the horizontal. 

2. Instead of rolling on its outer surface at radius R, the yo-yo rolls on an axle of 
radius Ro (Fig. 11-9a). 

3. Instead of being slowed by frictional force 1., the yo-yo is slowed by the force 
T on it from the string (Fig. 11-9b). 

The analysis would again lead us to Eq. 11-10. Therefore, let us just change the 
notation in Eq.11-10 and set e = 900 to write the linear acceleration as 

= - g 
acom 1 + I IMR2' 

com 0 
(11-13) 

where lcom is the yo-yo's rotational inertia about its center and M is its mass. A yo­
yo has the same downward acceleration when it is climbing back up. 

11 Torque Revisited 
In Chapter 10 we defined torque T for a rigid body that can rotate around a fixed 
axis, with each particle in the body forced to move in a path that is a circle cen­
tered on that axis. We now expand the definition of torque to apply it to an indi­
vidual particle that moves along any path relative to a fixed point (rather than a 
fixed axis). The path need no longer be a circle, and we must write the torque as a 
vector 1 that may have any direction. 

Figure l1-lOa shows such a particle at point A in an xy plane. A single force 
F in that plane acts on the particle, and the particle's position relative to the ori­
gin 0 is given by position vector r. The torque 1 acting on the particle relative to 
the fixed point 0 is a vector quantity defined as 

1=rXF (torque defined). (11-14) 

We can evaluate the vector (or cross) product in this definition of 1 by using 
the rules for such products given in Section 3-8. To find the direction of 1, we slide 

z z 

Cross -; into F. 
Torque -; is in the r (= rx FJ 
positive z direction. 

x x 

Fig. 11 -10 Defining torque. (a) A force F, lying in an xy plane, acts on a particle at 
point A. (b) This force produces a torque T (= r X F) on the particle with respect to 
the origin O. By the right -hand rule for vector (cross) products, the torque vector points 
in the positive direction of z. Its magnitude is given by I'F1- in (b) and by 1'1-Fin (c). 
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-> 
T 

F: g 

(a) (b) 

Fig. 11-9 (a) A yo-yo, shown in cross 
section. The string, of assumed negligible 
thickness, is wound around an axle of ra­
dius Ro. (b) A free-body diagram for the 
falling yo-yo. Only the axle is shown. 

x 

(c) 
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the vector F (without changing its direction) until its tail is at the origin 0, so that 
the two vectors in the vector product are tail to tail as in Fig. 11-10b. We 
then use the right-hand rule for vector products in Fig. 3-19a, sweeping the fingers 
of the right hand from r (the first vector in the product) into F (the second vector). 
The outstretched right thumb then gives the direction ofr. In Fig. 11-10b, the direc­
tion of r is in the positive direction of the z axis. 

To determine the magnitude of r, we apply the general result of Eq. 3-27 
(c=absin¢),finding 7=rFsin¢, (11-15) 

where ¢ is the smaller angle between the directions of rand F when the vectors 
are tail to tail. From Fig. 11-10b, we see that Eq.11-15 can be rewritten as 

7 = rF.l' (11-16) 

Torque on a particle due to a force 

In Fig. ll-11a, three forces, each of magnitude 2.0 N, act on a 
particle. The particle is in the xz plane at point A given by 
position vector r, where r = 3.0 m and () = 30°. Force FI is 
parallel to the x axis, force Fz is parallel to the z axis, and 
force F3 is parallel to the y axis. What is the torque, about the 
origin 0, due to each force? 

vector (or cross) products, with magnitudes given by Eq.11-15 
(7 = rF sin ¢) and directions given by the right-hand rule for 
vector products. 

Calculations: Because we want the torques with respect to 
the origin 0, the vector r required for each cross product is 
the given position vector. To determine the angle ¢ between 
the direction of r and the direction of each force, we shift 
the force vectors of Fig. ll-l1a, each in turn, so that their 
tails are at the origin. Figures ll-l1b, c, and d, which are di­
rect views of the xz plane, show the shifted force vectors FI , 

Because the three force vectors do not lie in a plane, we cannot 
evaluate their torques as in Chapter 10. Instead, we must use 

(a) 

x 

/ 
/ 

/ 

z 

Fig. 11-11 (a) A particle at point A is 
acted on by three forces, each parallel to a 
coordinate axis. The angle 4> (used in find­
ing torque) is shown (b) for F,. and (c) for 
F2• (d) Torque 73 is perpendicular to both 
rand F3 (force F3 is directed into the 
plane of the figure). (e) The torques (rela­
tive to the origin 0) acting on the particle. 

z 

(b) 

(c) 

z 

-+ -> 
Cross r into Fl' 

Torque ~ is into the 
figure (negative y). 

z 

-+ -> 
Cross r into F2. 

Torque is is out of 
the figure (positive y). 

z 

z 
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where F.l (= F sin 4» is the component of F perpendicular to r. From Fig. 11-10c, 
we see that Eq. 11-15 can also be rewritten as 

7'= r.lF, (11-17) 

where r.l (= r sin 4» is the moment arm of F (the perpendicular distance 
between 0 and the line of action of F). 

CHECKPOINT 3 

The position vector r of a particle points along the positive direction of a z axis. If 
the torque on the particle is (a) zero, (b) in the negative direction of x, and (c) in the 
negative direction of y, in what direction is the force causing the torque? 

F2, and F3 , respectively. (Note how much easier the angles 
between the force vectors and the position vector are to 
see.) In Fig. 11-l1d, the angle between the directions of r 
and F3 is 90° and the symbol ® means F3 is directed into the 
page. If it were directed out of the page, it would be repre­
sented with the symbol O. 

Now, applying Eq. 11-15 for each force, we find the mag­
nitudes of the torques to be 

7'1 = rF1 sin 4>1 = (3.0 m)(2.0 N)(sin 150°) = 3.0 N . m, 

7'2 = rF2 sin 4>2 = (3.0 m)(2.0 N)(sin 120°) = 5.2 N . m, 

(d) 

z 

(e) 

z 

These are the three torques 
acting on the particle, each 
measured about the origin O. 

and 7'3 = rF3 sin 4>3 = (3.0 m)(2.0 N)(sin 90°) 

= 6.0N·m. (Answer) 

To find the directions of these torques, we use the right­
hand rule, placing the fingers of the right hand so as to 
rotate r into F through the smaller of the two angles 
between their directions. The thumb points in the direction of 
the torque. Thus 71 is directed into the page in Fig. 11-l1h; 72 
is directed out of the page in Fig. 11-l1c; and 73 is 
directed as shown in Fig. 11-l1d. All three torque vectors are 
shown in Fig. 11-l1e. 

z 

x ------"''Jf----

Cross r into K 
Torque r; is 
in the xz plane. 

z 

x ---'-,---''Jf----

Additional examples, video, and practice available at WileyPLUS 
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z 

7(= rXf> 

(a) 

z 

(b) 

Fig. 11-12 Defining angular momen­
tum. A particle passing through point A has 
linear momentum p (= m '\1), with the vec­
tor If lying in an xy plane. The particle has 
angular momentum 7! (= r X p) with re­
spect to the origin O. By the right-hand 
rule, the angular momentum vector points 
in the positive direction of z. (a) The mag­
nitude of 7! is given by e = rp.1 = rmv.1' 
(b) The magnitude of 7! is also given by 
e = r.1p = r.1mv. 

1 1 Angular Momentum 
Recall that the concept of linear momentum If and the principle of conservation 
of linear momentum are extremely powerful tools. They allow us to predict 
the outcome of, say, a collision of two cars without knowing the details of the col­
lision. Here we begin a discussion of the angular counterpart of If, winding up in 
Section 11-11 with the angular counterpart of the conservation principle. 

Figure 11-12 shows a particle of mass m with linear momentum p (= m v) as 
it passes through point A in an xy plane. The angular momentum 7 of this parti­
cle with respect to the origin 0 is a vector quantity defined as 

7l ~ ~ (->-» 1,=rxp=mrXv (angular momentum defined), (11-18) 

where r is the position vector of the particle with respect to O. As the particle 
moves relative to 0 in the direction of its momentum If (= mv), position vector 
r rotates around O. Note carefully that to have angular momentum about 0, the 
particle does not itself have to rotate around O. Comparison of Eqs. 11-14 and 11-18 
shows that angular momentum bears the same relation to linear momentum that 
torque does to force. The SI unit of angular momentum is the kilogram­
meter-squared per second (kg· m2/s), equivalent to the joule-second (J. s). 

To find the direction of the angular momentum vector 7 in Fig. 11-12, we 
slide the vector If until its tail is at the origin O. Then we use the right-hand rule 
for vector products, sweeping the fingers from r into If. The outstretched thumb 
then shows that the direction of 7 is in the positive direction of the z axis in Fig. 11-12. 
This positive direction is consistent with the counterclockwise rotation of position 
vector r about the z axis, as the particle moves. (A negative direction of 7 would be 
consistent with a clockwise rotation of r about the z axis.) 

To find the magnitude of 7, we use the general result of Eq. 3-27 to write 

e = rmv sin 4>, (11-19) 

where 4> is the smaller angle between r and If when these two vectors are tail 
to tail. From Fig. 11-12a, we see that Eq. 11-19 can be rewritten as 

e = rp.1 = rmv.l, (11-20) 

where P.l is the component of If perpendicular to r and V.l is the component 
of v perpendicular to r. From Fig. 11-12b, we see that Eq. 11-19 can also be 
rewritten as 

(11-21) 

where r.l is the perpendicular distance between 0 and the extension of If. 
Note two features here: (1) angular momentum has meaning only with re­

spect to a specified origin and (2) its direction is always perpendicular to the 
plane formed by the position and linear momentum vectors r and If. 

CHECKPOINT 4 

In part a of the figure, particles 
1 and 2 move around point 0 
in circles with radii 2 m and 4 
m. In part b, particles 3 and 
4 travel along straight lines at 
perpendicular distances of 4 m 
and 2 m from point O. Particle 
5 moves directly away from O. 

(a) 

--~-------------
3 

o. - - - - ----I>- --
5 

------------~---
4 

(b) 

All five particles have the same mass and the same constant speed. (a) Rank the parti­
cles according to the magnitudes of their angular momentum about point 0, greatest 
first. (b) Which particles have negative angular momentum about point O? 
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Angular momentum of a two-particle system 

Fig. 11 -13 Two particles 
pass near point O. 
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Figure 11-13 shows an overhead view of two particles moving 
at constant momentum along horizontal paths. Particle 1, with 
momentum magnitude P1 = 5.0 kg . mis, has position vector r\ 
and will pass 2.0 m from point O. Particle 2, with momentum 
magnitude P2 = 2.0 kg . mis, has position vector r2 and will pass 
4.0 m from point O. What are the magnitude and direction of 
the net angular momentum r about point 0 of the two­
particle system? 

r1 around 0 as particle 1 moves. Thus, the angular momen­
tum vector for particle 1 is 

e1 = +10kg·m2/s. 

Similarly, the magnitude of 72 is 
e2 = r12P2 =: (4.0 m)(2.0 kg'm/s) 

= 8.0kg·m2/s, 

To find r, we can first find the individual angular momenta 
71 and 72 and then add them. To evaluate their magnitudes, 
we can use anyone of Eqs. 11-18 through 11-21. However, 
Eq.11-21 is easiest, because we are given the perpendicular 
distances ra (= 2.0 m) and rn (= 4.0 m) and the momen­
tum magnitudes P1 and P2' 

Calculations: For particle 1, Eq. 11-21 yields 

e1 = rUP1 = (2.0 m)(S.O kg 'm/s) 

and the vector product 1'2 x P2 is into the page, which is the 
negative direction, consistent with the clockwise rotation of 
r2 around 0 as particle 2 moves. Thus, the angular momen­
tum vector for particle 2 is 

e2 = -8.0 kg·m2/s. 

= 10 kg· m 2/s. 

To find the direction of vector~, we use Eq. 11-18 and the 
right-hand rule for vector products. For ~ X P1, the vector 
product is out of the page, perpendicular to the plane of Fig. 
11-13. This is the positive direction, consistent with the 
counterclockwise rotation of the particle's position vector 

The net angular momentum for the two-particle system is 

L = e1 + e2 = +10 kg·m2/s + (-8.0 kg·m2/s) 

= +2.0 kg· m 2/s. (Answer) 

The plus sign means that the system's net angular momen­
tum about point 0 is out of the page. 

'~s Additional examples, video, and practice available at WileyPLUS 

11 Newton's Second Law in Angular Form 
Newton's second law written in the form 

-7 dp 
Fnet = dt (single particle) (11-22) 

expresses the close relation between force and linear momentum for a single par­
ticle. We have seen enough of the parallelism between linear and angular quanti­
ties to be pretty sure that there is also a close relation between torque and angu­
lar momentum. Guided by Eq. 11-22, we can even guess that it must be 

(single particle). (11-23) 

Equation 11-23 is indeed an angular form of Newton's second law for a single 
particle: 

The (vector) sum of all the torques acting on a particle is equal to the time rate of 
change of the angular momentum of that particle. 
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Equation 11-23 has no meaning unless the torques T and the angular momentum 
C are defined with respect to the same point, usually the origin of the coordinate 
system being used. 

11 
We start with Eq. 11-18, the definition of the angular momentum of a particle: 

C = mer X v), 
where r is the position vector of the particle and v is the velocity of the particle. 
Differentiating* each side with respect to time tyields 

dC (---> d-V dr ---» 
Tt=m r xTt+Tt x v. (11-24) 

However, dVidt is the acceleration a of the particle, and drldt is its velocity v. 
Thus, we can rewrite Eq.11-24 as 

dl (_ _ _ _) 
Tt=mrxa+vxv. 

Now v x v = 0 (the vector product of any vector with itself is zero because the 
angle between the two vectors is necessarily zero). Thus, the last term of this ex­
pression is eliminated and we then have 

dl (_ _) _ _ 
Tt = m r X a = r X ma. 

We now use Newton's second law (Fnet = ma) to replace ma with its equal, the 
vector sum of the forces that act on the particle, obtaining 

dl _ _ "'(_ _) 
Tt = r x Pnet = ,L.; r X P . (11-25) 

Here the symbol L: indicates that we must sum the vector products r x F for all 
the forces. However, from Eq.11-14, we know that each one of those vector prod­
ucts is the torque associated with one of the forces. Therefore, Eq. 11-25 tells us 
that 

dl 
Tnet = Tt· 

This is Eq.11-23, the relation that we set out to prove. 

CHECKPOINT 5 

The figure shows the position vector r of a particle at a certain instant, and four choices 
for the direction of a force that is to accelerate the particle. All four choices lie in the xy 
plane. (a) Rank the choices according to the magnitude of the time rate of change (deldt) 
they produce in the angular momentum of the particle about point 0, greatest first. (b) 
Which choice results in a negative rate of change about O? 

)' 

--.::;o~---x 

*In differentiating a vector product, be sure not to change the order of the two quantities (here 7 and 
v) that form that product. (See Eq. 3-28.) 
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Torque, time derivative of angular momentum, penguin fall 

In Fig. 11-14, a penguin of mass m falls from rest at point A, 
a horizontal distance D from the origin 0 of an xyz coordi­
nate system. (The positive direction of the z axis is directly 
outward from the plane of the figure.) 

(a) What is the angular momentum C of the falling penguin 
about O? 

We can treat the penguin as a particle, and thus its angular 
momentum C is given by Eq. 11-18 (7 = 7 X p), where 7 
is the penguin's position vector (extending from 0 to the 
penguin) and p is the penguin's linear momentum. (The 
penguin has angular momentum about 0 even though it 
moves in a straight line, because vector r rotates about 0 
as the penguin falls.) 

Calculations: To find the magnitude of C, we can use any 
one of the scalar equations derived from Eq. 11-18-
namely, Eqs. 11-19 through 11-21. However, Eq. 11-21 
(e = r 1. mv) is easiest because the perpendicular distance r.l 
between 0 and an extension of vector p is the given dis­
tance D. The speed of an object that has fallen from rest for 
a time t is v = gt. We can now write Eq. 11-21 in terms of 
given quantities as 

e = r1.mv = Dmgt. (Answer) 

To find the direction of C, we use the right-hand rule 
for the vector product 7 X pin Eq. 11-18. Mentally shift 
p until its tail is at the origin, and then use the fingers of 
your right hand to rotate 7 into p through the smaller an­
gle between the two vectors. Your outstretched thumb 
then points into the plane of the figure, indicating that the 
product 7 X P and thus also C are directed into that 
plane, in the negative direction of the z axis. We represent 
e with an encircled cross @ at O. The vector C changes 
with time in magnitude only; its direction remains un­
changed. 

(b) About the origin 0, what is the torque Ton the pen­
guin due to the gravitational force Fg? 

(1) The torque is given by Eg. 11-14 (7 = 7 X F), where 
now the force is Fg• (2) Force ~ causes a torque on the pen­
guin, even though the penguin moves in a straight line, 
because 7 rotates about 0 as the penguin moves. 

y 

Fig. 11 -14 A penguin falls vertically from point A. The torque 
T and the angular momentum 7! of the falling penguin with respect 
to the origin 0 are directed into the plane of the figure at O. 

Calculations: To find the magnitude ofT, we can use any 
one of the scalar equations derived from Eq. 11-14-
namely, Eqs. 11-15 through 11-17. However, Eq. 11-17 
( T = r 1.F) is easiest because the perpendicular distance r.l 
between 0 and the line of action of ~ is the given dista~e D. 
So, substituting D and using mg for the magnitude of Fg, we 
can writeEq.11-17 as 

T= DFg = Dmg. (Answer) 

Using the right-hand rule for the vector product r X F in 
Eq. 11-14, we find that the direction of '1 is the negative 
direction of the z axis, the same as C. 

The results we obtained in parts (a) and (b) must be 
consistent with Newton's second law in the angular form of 
Eq.11-23 ('1net = dCldt). To check the magnitudes we got, we 
write Eq. 11-23 in component form for the z axis and then 
substitute our result e = Dmgt. We find 

de 
T=-= 

dt 
d(Dmgt) _ D 

dt - mg, 

which is the magnitude we found for '1. To check the 
directions, we note that Eq. 11-23 tells us that '1 and dCldt 
must have the same direction. So '1 and C must also have 
the same direction, which is what we found. 

Additional examples, video, and practice available at WileyPLUS 
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11 The Angular Momentum of a System of Particles 
Now we turn our attention to the angular momentum of a system of particles with 
respect to an origin. The total angular momentum L of the system is the (vector) 
sum of the angular momenta C of the individual particles (here with label i): 

(11-26) 

With time, the angular momenta of individual particles may change because 
of interactions between the particles or with the outside. We can find the resulting 
change in L by taking the time derivative of Eq. 11-26. Thus, 

dL 11 it. -=2:-1
• 

dt ;=1 dt 
(11-27) 

From Eq. 11-23, we see that dC;ldt is equal to the net torque Tnet,; on the ith 
particle. We can rewrite Eq. 11-27 as 

dL 11 

-dt = ,2: Tnet,;' 
1=1 

(11-28) 

That is, the rate of change of the system's angular momentum L is equal to the 
vector sum of the torques on its individual particles. Those torques include inter­
nal torques (due to forces between the particles) and external torques (due to 
forces on the particles from bodies external to the system). However, the forces 
between the particles always come in third-law force pairs so their torques sum to 
zero. Thus, the only torques that can change the total angular momentum L of 
the system are the external torques acting on the system. 

Let Tnet represent the net external torque, the vector sum of all external 
torques on all particles in the system. Then we can write Eq. 11-28 as 

(system of particles), (11-29) 

which is Newton's second law in angular form. It says: 

The net external torque Tnet acting on a system of particles is equal to the time rate of 
change of the system's total angular momentum L. 

Equation 11-29 is analogous to Fnet = dPldt (Eq. 9-27) but requires extra 
caution: Torques and the system's angular momentum must be measured relative 
to the same origin. If the center of mass of the system is not accelerating relative 
to an inertial frame, that origin can be any point. However, if it is accelerating, 
then it must be the origin. For example, consider a wheel as the system of parti­
cles. If it is rotating about an axis that is fixed relative to the ground, then the ori­
gin for applying Eq. 11-29 can be any point that is stationary relative to the 
ground. However, if it is rotating about an axis that is accelerating (such as when 
it rolls down a ramp), then the origin can be only at its center of mass. 

11" 10 The Angular Momentum of a Rigid Body 
Rotating About a Fixed Axis 
We next evaluate the angular momentum of a system of particles that form a rigid 
body that rotates about a fixed axis. Figure 11-15a shows such a body. The fixed axis 
of rotation is a z axis, and the body rotates about it with constant angular speed w. 
We wish to find the angular momentum of the body about that axis. 
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We can find the angular momentum by summing the z components of the an­
gular momenta of the mass elements in the body. In Fig. 11-15a, a typical mass el­
ement, of mass Ami' moves around the z axis in a circular path. The position of 
the mass element is located relative to the origin 0 by position vector rio The 
radius of the mass element's circular path is I'l.i, the perpendicular distance 
between the element and the z axis. 

The magnitude of the angular momentum 1i of this mass element, with 
respect to 0, is given by Eq. 11-19: 

€i = (1' i)(pi)(sin 90°) = (1' i)(Ami Vi), 

where Pi and Vi are the linear momentum and linear speed of the mass element, 
and 90° is the angle between ri and Pi' The angular momentum vector 1i for the 
mass element in Fig. 11-15a is shown in Fig. 11-15b; its direction must be perpen­
dicular to those of ri and Pi' 

We are interested in the component of 1i that is parallel to the rotation axis, 
here the z axis. That z component is 

€iz = €i sin e = (I'i sin e)(Ami Vi) = I'l.i Ami Vi' 

The z component of the angular momentum for the rotating rigid body as a 
whole is found by adding up the contributions of all the mass elements that make 
up the body. Thus, because V = Wl'l.' we may write 

n n n 

L z = ~ €iz = ~ Ami Vil'l.i = ~ Ami( Wl'l. i) 1'1. i 
i=l i=l i=l 

(11-30) 

We can remove W from the summation here because it has the same value for all 
points of the rotating rigid body. 

The quantity 2, Ami 1'1; in Eq. 11-30 is the rotational inertia I of the body 
about the fixed axis (see Eq.10-33). Thus Eq.11-30 reduces to 

L=Iw (rigid body, fixed axis). (11-31) 

We have dropped the subscript z, but you must remember that the angular 
momentum defined by Eq. 11-31 is the angular momentum about the rotation 
axis. Also, I in that equation is the rotational inertia about that same axis. 

Table 11-1, which supplements Table 10-3, extends our list of corresponding 
linear and angular relations. 

More Corresponding Variables and Relations for Translational 
and Rotational Motiona 

Translational 

Force 
Linear momentum 

Linear momentumb 

Linear momentumb 

Newton's second lawb 

Conservation law" 

aSee also Table 10-3. 

P 
P (= 2:p;) 
p= MVcom 

-> £p 
Fnet = dt 
P = a constant 

"For systems of particles, including rigid bodies. 

Rotational 

Torque 
Angular momentum 

Angular momentumb 

Angular momentumC 

Newton's second lawb 

Conservation law" 

CFor a rigid body about a fixed axis, with L being the component along that axis. 
dFor a closed, isolated system. 

T (= 7 X F) 
C (= 7 x p) 
L (= 2:CJ 
L =/w 

dL 
Tnet = dt 
L = a constant 

x 

(a) 

----;;'=-----y 

x 

(b) 

Fig. 11-15 (a) A rigid body rotates 
about a z axis with angular speed W. A mass 
element of mass D.m; within the body 
moves about the z axis in a circle with ra­
dius 1'1.;' The mass element has linear mo­
mentum Pi> and it is located relative to the 
origin 0 by position vector 7;. Here the 
mass element is shown when fl.; is parallel to 
the x axis. (b) The angular momentum Ci, 

with respect to 0, of the mass element in (a). 
The z component e;z is also shown. 
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CHECKPOINT 6 

In the figure, a disk, a Disk 

hoop, and a solid sphere 
are made to spin about F 
fixed central axes (like a 
top) by means of strings wrapped around them, with the strings producing the same 
constant tangential force F on all three objects. The three objects have the same mass 
and radius, and they are initially stationary. Rank the objects according to (a) their an­
gular momentum about their central axes and (b) their angular speed, greatest first, 
when the strings have been pulled for a certain time t. 

1 ·11 Conservation of Angular Momentum 
So far we have discussed two powerful conservation laws, the conservation of 
energy and the conservation of linear momentum. Now we meet a third law of 
this type, involving the conservation of angular momentum. We start from 
Eq. 11-29 (Tnet = iDdt), which is Newton's second law in angular form. If no 
net external torque acts on the system, this equation becomes dLldt = 0, or 

L = a constant (isolated system). (11-32) 

This result, called the law of conservation of angular momentum, can also be 
written as 

or 

(
net angul~r .~Oln.entum) = (net angular mo~entum) 

at some InItIal tIme t i at some later tIme t f ' 

(isolated system). (11-33) 

Equations 11-32 and 11-33 tell us: 

If the net external torque acting on a system is zero, the angular momentum r of the 
system remains constant, no matter what changes take place within the system. 

Equations 11-32 and 11-33 are vector equations; as such, they are equivalent 
to three component equations corresponding to the conservation of angular mo­
mentum in three mutually perpendicular directions. Depending on the torques 
acting on a system, the angular momentum of the system might be conserved in 
only one or two directions but not in all directions: 

If the component of the net external torque on a system along a certain axis is zero, 
then the component of the angular momentum of the system along that axis cannot 
change, no matter what changes take place within the system. 

We can apply this law to the isolated body in Fig. 11-15, which rotates around 
the z axis. Suppose that the initially rigid body somehow redistributes its mass 
relative to that rotation axis, changing its rotational inertia about that axis. 
Equations 11-32 and 11-33 state that the angular momentum of the body cannot 
change. Substituting Eq. 11-31 (for the angular momentum along the rotational 
axis) into Eq. 11-33, we write this conservation law as 

Iiwi = Ifwf. (11-34) 

Here the subscripts refer to the values of the rotational inertia I and angular 
speed W before and after the redistribution of mass. 

Like the other two conservation laws that we have discussed, Eqs. 11-32 and 
11-33 hold beyond the limitations of Newtonian mechanics. They hold for parti-
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cles whose speeds approach that of light (where the theory of special relativity 
reigns), and they remain true in the world of subatomic particles (where quantum 
physics reigns). No exceptions to the law of conservation of angular momentum 
have ever been found. 

We now discuss four examples involving this law. 

1. Tile spinning volunteer Figure 11-16 shows a student seated on a stool that 
can rotate freely about a vertical axis. The student, who has been set into 
rotation at a modest initial angular speed W;, holds two dumbbells in his 
outstretched hands. His angular momentum vector r lies along the vertical ro­
tation axis, pointing upward. 

The instructor now asks the student to pull in his arms; this action reduces 
his rotational inertia from its initial value Ii to a smaller value If because he 
moves mass closer to the rotation axis. His rate of rotation increases markedly, 
from Wi to wl'The student can then slow down by extending his arms once more, 
moving the dumbbells outward. 

No net external torque acts on the system consisting of the student, stool, 
and dumbbells. Thus, the angular momentum of that system about the rotation 
axis must remain constant, no matter how the student maneuvers the dumb­
bells. In Fig. 11-16a, the student's angular speed Wi is relatively low and his ro­
tational inertia Ii is relatively high. According to Eq. 11-34, his angular speed 
in Fig. 11-16b must be greater to compensate for the decreased If. 

2. Tile springboard diver Figure 11-17 shows a diver doing a forward one-and­
a-half-somersault dive. As you should expect, her center of mass follows a par­
abolic path. She leaves the springboard with a definite angular momentum r 
about an axis through her center of mass, represented by a vector pointing 
into the plane of Fig. 11-17, perpendicular to the page. When she is in the air, 
no net external torque acts on her about her center of mass, so her angular 
momentum about her center of mass cannot change. By pulling her arms and 
legs into the closed tuck position, she can considerably reduce her rotational 
inertia about the same axis and thus, according to Eq. 11-34, considerably 
increase her angular speed. Pulling out of the tuck position (into the open lay­
out position) at the end of the dive increases her rotational inertia and thus 
slows her rotation rate so she can enter the water with little splash. Even in a 
more complicated dive involving both twisting and somersaulting, the angular 
momentum of the diver must be conserved, in both magnitude and direction, 
throughout the dive.:tJ~~ 

3. Long jump When an athlete takes off from the ground in a running long 
jump, the forces on the launching foot give the athlete an angular momentum 
with a forward rotation around a horizontal axis. Such rotation would not allow 

Fig. 11 -1 7 The diver's angular 
momentum r is constant throughout the dive, 
being represented by the tail ® of an arrow that 
is perpendicular to the plane of the figure. Note 
also that her center of mass (see the dots) fol­
lows a parabolic path. 

Her angular momentum 
is fixed but she can still 
control her spin rate. 

Ii 

Rotation axis 

(a) 

(b) 

Fig. 11-16 (a) The student has a rela­
tively large rotational inertia about the ro­
tation axis and a relatively small angular 
speed. (b) By decreasing his rotational in­
ertia, the student automatically increases 
his angular speed. The angular momentum 
r of the rotating system remains un­
changed. 
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(a) 

fJ 

(b) 

Fig. 11-19 (a) Initial phase of a tour 
jete: large rotational inertia and small an­
gular speed. (b) Later phase: smaller rota­
tional inertia and larger angular speed. 

Fig. 11 -1 8 Windmill motion of the arms during a long jump helps maintain body orien­
tation for a proper landing. 

the jumper to land properly: In the landing, the legs should be together and ex­
tended forward at an angle so that the heels mark the sand at the greatest dis­
tance. Once airborne, the angular momentum cannot change (it is conserved) 
because no external torque acts to change it. However, the jumper can shift 
most of the angular momentum to the arms by rotating them in windmill fash­
ion (Fig. 11-18). Then the body remains upright and in the proper orientation 
for landing. 

4. Tour jete In a tour jete, a ballet performer leaps with a small twisting motion 
on the floor with one foot while holding the other leg perpendicular to the body 
(Fig. 11-19a). The angular speed is so small that it may not be perceptible to the 
audience. As the performer ascends, the outstretched leg is brought down and 
the other leg is brought up, with both ending up at angle () to the body (Fig. 
11-19b). The motion is graceful, but it also serves to increase the rotation be­
cause bringing in the initially outstretched leg decreases the performer's rota­
tional inertia. Since no external torque acts on the airborne performer, the an­
gular momentum cannot change. Thus, with a decrease in rotational inertia, the 
angular speed must increase. When the jump is well executed, the performer 
seems to suddenly begin to spin and rotates 1800 before the initial leg orienta­
tions are reversed in preparation for the landing. Once a leg is again out­
stretched, the rotation seems to vanish. 

CHECKPOINT 7 

A rhinoceros beetle rides the rim of a small disk that rotates like a merry-go-round. If 
the beetle crawls toward the center of the disk, do the following (each relative to the 
central axis) increase, decrease, or remain the same for the beetle-disk system: (a) 
rotational inertia, (b) angular momentum, and ( c) angular speed? 

Conservation of angular momentum, rotating wheel demo 

Figure 11-20a shows a student, again sitting on a stool that 
can rotate freely about a vertical axis. The student, initially 
at rest, is holding a bicycle wheel whose rim is loaded with 
lead and whose rotational inertia IIVI! about its central axis is 
1.2 kg· m2

• (The rim contains lead in order to make the 
value of Iwh substantial.) The wheel is rotating at an angular 
speed WIVI! of 3.9 rev/s; as seen from overhead, the rotation is 
counterclockwise. The axis of the wheel is vertical, and the 
angular momentum LIVI! of the wheel points vertically up­
ward. The student now inverts the wheel (Fig. 11-20b) so 

that, as seen from overhead, it is rotating clockwise. Its angu­
lar momentum is now -LlV/l' The inversion results in the stu­
dent, the stool, and the wheel's center rotating together as a 
composite rigid body about the stool's rotation axis, with ro­
tational inertia Ib = 6.8 kg· m2. (The fact that the wheel is 
also rotating about its center does not affect the mass distrib­
ution of this composite body; thus, Ib has the same value 
whether or not the wheel rotates.) With what angular speed 
Wb and in what direction does the composite body rotate af­
ter the inversion of the wheel? 
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(a) 

Initial 

(c) 

+ 

!-z"" 
Final 

(b) 

The student now has 
angular momentum, 
and the net of these 
two vectors equals 
the initial vector. 

Fig. 11 -20 (a) A student holds a bicycle wheel rotating around 
a vertical axis. (b) The student inverts the wheel, setting himself 
into rotation. (c) The net angular momentum of the system must 
remain the same in spite of the inversion. 

1. The angular speed Wb we seek is related to the final angu­
lar momentum Lb of the composite body about the stool's 
rotation axis by Eq.11-31 (L = 1w). 

2. The initial angular speed WlI'h of the wheel is related to the 
angular momentum LlI'h of the wheel's rotation about its 
center by the same equation. 

3. The vector addition of Lb and Lwh gives the total angular 
momentum Ltot of the system of the student, stool, and 
wheel. 

4. As the wheel is inverted, no net external torque acts on 
that system to change Ltot about any vertical axis. 
(Torques due to forces between the student and the 
wheel as the student inverts the wheel are internal to the 
system.) So, the system's total angular momentum is con­
served about any vertical axis. 

Calculations: The conservation of Ltot is represented with 
vectors in Fig. 11-20e. We can also write this conservation in 
terms of components along a vertical axis as 

(11-35) 

where i and f refer to the initial state (before inversion of 
the wheel) and the final state (after inversion). Because 
inversion of the wheel inverted the angular momentum 
vector of the wheel's rotation, we substitute - LlI'h,i for LlI'h,!, 

Then, if we set Lb,i = 0 (because the student, the stool, and 
the wheel's center were initially at rest), Eq.11-35 yields 

Lb,f = 2LII'h,i' 

Using Eq. 11-31, we next substitute 1bwb for Lb,f and Il1'hwwh 
for LII'h,i and solve for Wb, finding 

21\1'h 
wb=T WlI'h 

(2)(1.2 kg· m2)(3.9 rev/s) 
-'-'--'---"'---'--'---=-2---'- = 1.4 rev/so (Answer) 

6.8kg·m 

This positive result tells us that the student rotates counter­
clockwise about the stool axis as seen from overhead. If the 
student wishes to stop rotating, he has only to invert the 
wheel once more. 

Conservation of angular momentum, cockroach on disk 

In Fig. 11-21, a cockroach with mass m rides on a disk of mass 
6.00m and radius R. The disk rotates like a merry-go-round 
around its central axis at angular speed Wi = 1.50 rad/s. The 
cockroach is initially at radius r = 0.800R, but then it crawls 
out to the rim of the disk. Treat the cockroach as a particle. 
What then is the angular speed? 

(1) The cockroach's crawl changes the mass distribution (and 
thus the rotational inertia) of the cockroach-disk system. 
(2) The angular momentum of the system does not change 
because there is no external torque to change it. (The forces 

R 

Rotation axis 

Fig. 11 -21 A cockroach rides at radius r on a disk rotating like 
a merry-go-round. 

and torques due to the cockroach's crawl are internal to the 
system.) (3) The magnitude of the angular momentum of a 
rigid body or a particle is given by Eq.11-31 (L = 1w). 
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Calculations: We want to find the final angular speed. Our 
key is to equate the final angular momentum Lf to the initial 
angular momentum Li> because both involve angular speed. 
They also involve rotational inertia 1. So, let's start by finding 
the rotational inertia of the system of cockroach and disk 
before and after the crawl. 

lof = mR2. (11-38) 

So, the cockroach-disk system initially has the rotational 
inertia 

(11-39) 

and finally has the rotational inertia 

The rotational inertia of a disk rotating about its central 
axis is given by Table 10-2c as ~MR2. Substituting 6.00m for 
the mass M, our disk here has rotational inertia 

fd = 3.00mR2. (11-36) 

(We don't have values for m and R, but we shall continue 
with physics courage.) 

From Eq. 10-33, we know that the rotational inertia of 
the cockroach (a particle) is equal to mr2. Substituting the 
cockroach's initial radius (r = 0.800R) and final radius 
(r = R), we find that its initial rotational inertia about the 
rotation axis is 

(11-37) 

and its final rotational inertia about the rotation axis is 

It = fd + lof = 4.00mR2. (11-40) 

Next, we use Eq. 11-31 (L = fw) to write the fact that 
the system's final angular momentum Lf is equal to the sys­
tem's initial angular momentum L i: 

Itwf = !;Wi 

or 4.00mR2wf = 3.64mR2(1.50 rad/s). 

After canceling the unknowns m and R, we come to 

Wf = 1.37 rad/s. (Answer) 

Note that the angular speed decreased because part of the 
mass moved outward from the rotation axis, thus increasing 
the rotational inertia of the system. 

~s Additional examples, video, and practice available at WileyPLUS 

11-1 2 Precession of a Gyroscope 
A simple gyroscope consists of a wheel fixed to a shaft and free to spin about the 
axis of the shaft. If one end of the shaft of a nonspinning gyroscope is placed on a 
support as in Fig. 11-22a and the gyroscope is released, the gyroscope falls by ro­
tating downward about the tip of the support. Since the fall involves rotation, it is 
governed by Newton's second law in angular form, which is given by Eq. 11-29: 

(11-41) 

This equation tells us that the torque causing the downward rotation (the fall) 
changes the angular momentum r of the gyroscope from its initial value of zero. 
The torque T is due to the gravitational force Mg acting at the gyroscope's center 
of mass, which we take to be at the center of the wheel. The moment arm relative to 
the support tip, located at 0 in Fig. 11-22a, is r. The magnitude of T is 

'T = Mgr sin 90° = Mgr (11-42) 

(because the angle between Mg and r is 90°), and its direction is as shown in Fig. 
11-22a. 

A rapidly spinning gyroscope behaves differently. Assume it is released with 
the shaft angled slightly upward. It first rotates slightly downward but then, while 
it is still spinning about its shaft, it begins to rotate horizontally about a vertical 
axis through support point 0 in a motion called precession. 

Why does the spinning gyroscope stay aloft instead of falling over like the non­
spinning gyroscope? The clue is that when the spinning gyroscope is released, the 
torque due to Mg must change not an initial angular momentum of zero but rather 
some already existing nonzero angular momentum due to the spin. 

To see how this nonzero initial angular momentum leads to precession, we 
first consider the angular momentum r of the gyroscope due to its spin. To 



simplify the situation, we assume the spin rate is so rapid that the angular 
momentum due to precession is negligible relative to L. We also assume the shaft 
is horizontal when precession begins, as in Fig. 11-22b. The magnitude of L is 
given byEq.11-31: 

L = Jw, (11-43) 

where J is the rotational moment of the gyroscope about its shaft and w is the an­
gular speed at which the wheel spins about the shaft. The vector L points along 
the shaft, as in Fig. 11-22b. Since L is parallel to r, torque T must be 
perpendicular to L. 

According to Eq.11-41, torque T causes an incremental change dL in the an­
gular momentum of the gyroscope in an incremental time interval dt; that is, 

dL = T dt. (11-44) 

However, for a rapidly spinning gyroscope, the magnitude of L is fixed by Eq. 
11-43. Thus the torque can change only the direction of L, not its magnitude. 

From Eq. 11-44 we see that the direction of dL is in the direction of T, per­
pendicular to L. The only way that L can be changed in the direction of T 
without the magnitude L being changed is for L to rotate around the z axis as 
shown in Fig. 11-22c. L maintains its magnitude, the head of the L vector follows 
a circular path, and T is always tangent to that path. Since L must always 
point along the shaft, the shaft must rotate about the z axis in the direction of T. 
Thus we have precession. Because the spinning gyroscope must obey Newton's 
law in angular form in response to any change in its initial angular momentum, it 
must precess instead of merely toppling over. 

We can find the precession rate a by first using Eqs. 11-44 and 11-42 to get 
the magnitude of dL: 

dL = rdt = Mgr dt. (11-45) 

As L changes by an incremental amount in an incremental time interval dt, the 
shaft and L precess around the z axis through incremental angle d¢. (In Fig. 
11-22c, angle d¢ is exaggerated for clarity.) With the aid of Eqs. 11-43 and 11-45, 
we find that d¢ is given by 

d 
_ dL _ Mgrdt 

¢ - L - Jw . 

Dividing this expression by dt and setting the rate a = d¢ldt, we obtain 

a= Mgr 
Jw 

(precession rate). (11-46) 

This result is valid under the assumption that the spin rate w is rapid. Note that a 
decreases as w is increased. Note also that there would be no precession if the 
gravitational force Mg did not act on the gyroscope, but because J is a function of 
M, mass cancels from Eq. 11-46; thus a is independent of the mass. 

Equation 11-46 also applies if the shaft of a spinning gyroscope is at an angle 
to the horizontal. It holds as well for a spinning top, which is essentially a spinning 
gyroscope at an angle to the horizontal.:;'~~ 
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Fi9. 11-22 (a) A nonspinning gyro­
scope falls by rotating in an xz plane be­
cause of torque T. (b) A rapidly spinning 
gyroscope, with angular momentum f, pre­
cesses around the z axis. Its precessional 
motion is in the xy plane. (c) The change 
dLldt in angular momentum leads to a ro­
tation of L about 0. 

Rolling Bodies For a wheel of radius R rolling smoothly, 

vcom = wR, (11-2) 

wheel about this point is the same as the angular speed of the 
wheel about its center. The rolling wheel has kinetic energy 

where v com is the linear speed of the wheel's center of mass and w is 
the angular speed of the wheel about its center. The wheel may 
also be viewed as rotating instantaneously about the point P of the 
"road" that is in contact with the wheel. The angular speed of the 

(11-5) 

where lcom is the rotational moment of the wheel about its center 
of mass and M is the mass of the wheel. If the wheel is being accel-
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erated but is still rolling smoothly, the acceleration of the center of 
mass acorn is related to the angular acceleration a about the center 
with 

acorn = aR. (11-6) 

If the wheel rolls smoothly down a ramp of angle (), its acceleration 
along an x axis extending up the ramp is 

gsin () 
a = - (11-10) 

corn, x 1 + fcorn /MR2 . 

Torque as a Vector In three dimensions, torque T is a vector 
quantity defined relative to a fixed point (usually an origin); it is 

T= 7 x F, (11-14) 

where F is a force applied to a particle and 7 is a position vector 
locating the particle relative to the fixed point. The magnitude of T 
is given by 

T = rFsin cp = rF~ = r~F, (11-15,11-16,11-17) 

where cp is the angle between F and 7, F~ is the component of F 
perpendicular to 7, and r~ is the moment arm of F. The direction 
of T is given by the right-hand rule. 

Angular Momentum of a Particle The angular momentum 
7! of a particle with linear momentum p, mass 111, and linear veloc­
ity v is a vector quantity defined relative to a fixed point (usually 
an origin) as 

7! = 7 X P = m(7 x v). 

The magnitude of 7! is given by 

e = rmv sin cp 
= rp~ = rmv~ 

= r~p = r~nlV, 

(11-18) 

(11-19) 
(11-20) 
(11-21) 

where cp is the angle between 7 and 1, p ~ and v ~ are the compo­
nents of p and v perpendicular to 7, and r ~ is the perpendicular 
distance between the fixed point and the extension of p. The direc­
tion of 7! is given by the right-hand rule for cross products. 

Newton's Second Law in Angular Form Newton's second 

Figure 11-23 shows three pmti-
cles of the same mass and the same 
constant speed moving as indi­
cated by the velocity vectors. 
Points a, b, c, and d form a square, 
with point e at the center. Rank the 
points according to the magnitude 
of the net angular momentum of 
the three-particle system when 
measured about the points, great­
est first. 

a 

• e 

b 

Fig. 11 -23 Question 1. 

Figure 11-24 shows two particles A and Bat xyz coordinates 
(1 m, 1 m, 0) and (1 m, 0, 1 m). Acting on each particle are three 

law for a particle can be written in angular form as 

de 
Tnet = Tt, (11-23) 

where Tnet is the net torque acting on the particle and 7! is the an­
gular momentum of the particle. 

Angular Momentum of a System of Particles The angu­
lar momentum L of a system of particles is the vector sum of the 
angular momenta of the individual particles: 

~ ~ ---'l> ~ 11---'l> 

L = e1 + e2 + ... + ell = 2: ei• (11-26) 

The time rate of change of this angular momentum is equal to the 
net external torque on the system (the vector sum of the torques 
due to interactions of the particles of the system with particles ex­
ternal to the system): 

Tnet = ~7 (system of particles). (11-29) 

Angular Momentum of a Rigid Body For a rigid body 
rotating about a fixed axis, the component of its angular 
momentum parallel to the rotation axis is 

L =Iw (rigid body, fixed axis). (11-31) 

Conservation of Angular Momentum The angular mo­
mentum L of a system remains constant if the net external torque 
acting on the system is zero: 

L = a constant (isolated system) 

or Li = Lf (isolated system). 

This is the law of conservation of angular momentum. 

(11-32) 

(11-33) 

Precession of a Gyroscope A spinning gyroscope can pre­
cess about a vertical axis through its support at the rate 

D= Mgr 
Iw ' 

(11-46) 

where M is the gyroscope's mass, r is the moment arm, I is the rota­
tional inertia, and w is the spin rate. 

numbered forces, all of the same 
magnitude and each directed par­
allel to an axis. (a) Which of the 
forces produce a torque about the 
origin that is directed parallel 
to y? (b) Rank the forces accord­
ing to the magnitudes of the 
torques they produce on the par­
ticles about the origin, greatest 
first. 

What happens to the initially 
stationary yo-yo in Fig. 11-25 if 

z 

Fig. 11 -24 Question 2. 

you pull it via its string with (a) force F2 (the line of action passes 



through the point of contact on the 
table, as indicated), (b) force PI (the 
line of action passes above the point 
of contact), and (c) force P3 (the line 
of action passes to the right of the 
point of contact)? 

The position vector 7 of a particle 
relative to a certain point has a mag­
nitude of 3 m, and the force P on the 
particle has a magnitude of 4 N. What 
is the angle between the directions of 
7 and P if the magnitude of the asso­
ciated torque equals (a) zero and (b) 
12N·m? 

In Fig. 11-26, three forces of the 
same magnitude are applied to a par­
ticle at the origin (PI acts directly into 
the plane of the figure). Rank the 
forces according to the magnitudes of 
the torques they create about (a) 
point P lo (b) point P2, and (c) point 
P3, greatest first. 

Fig. 11 -25 Question 3. 

y 

Fig. 11 -26 Question 5. 

The angular momenta e(t) of a particle in four situations are 
(1) e = 3t + 4; (2) e = -6t2; (3) e = 2; (4) e = 41t. In which situa­
tion is the net torque on the particle (a) zero, (b) positive and con­
stant, (c) negative and increasing in magnitude (t> 0), and (d) 
negative and decreasing in magnitude (t > O)? 

A rhinoceros beetle rides the rim of a horizontal disk rotating 
counterclockwise like a merry-go-round. If the beetle then walks 
along the rim in the direction of the rotation, will the magnitudes 
of the following quantities (each measured about the rotation axis) 
increase, decrease, or remain the same (the disk is still rotating in 
the counterclockwise direction): (a) the angular momentum of the 
beetle-disk system, (b) the angular momentum and angular veloc­
ity of the beetle, and (c) the angular momentum and angular velocity 
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of the disk? (d) What are your answers if the beetle walks in the di­
rection opposite the rotation? 

Figure 11-27 shows an overhead 
view of a rectangular slab that can 
spin like a merry-go-round about its 3 ~'T---+--rl,.j.-.!7-
center at O. Also shown are seven 
paths along which wads of bubble 
gum can be thrown (all with the Fig. 11 -27 Question 8. 
same speed and mass) to stick onto 
the stationary slab. (a) Rank the paths according to the angular 
speed that the slab (and gum) will have after the gum sticks, great­
est first. (b) For which paths will the angular momentum of the slab 
(and gum) about 0 be negative from the view of Fig. 11-27? 

9 Figure 11-28 gives the angular mo­
mentum magnitude L of a wheel versus 
time t. Rank the four lettered time inter­
vals according to the magnitude of the 
torque acting on the wheel, greatest first. 

o Figure 11-29 shows a particle 
moving at constant velocity 11 and five 
points with their xy coordinates. Rank 

Fig. 11-28 

Question 9. 

the points according to the magnitude of the angular momentum 
of the particle measured about them, greatest first. 

y 

a 
(-3,1) ... ------

co (1, 3) 

e 
-'"'0;---.----------------0(9,1) 

-------j---------------.-.: 

b 
(-1, -2) 0 

do (4, -1) 

Fig. 11 -29 Question 10. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at f1yingcircusofphysics.com 

Rolling as Translation and Rotation Combined 
A car travels at 80 kmlh on a level road in the positive direction 

of an x axis. Each tire has a diameter of 66 cm. Relative to a woman 
riding in the car and in unit-vector notation, what are the velocity 11 
at the (a) center, (b) top, and (c) bottom of the tire and the magni­
tude a of the acceleration at the (d) center, (e) top, and (f) bottom 
of each tire? Relative to a hitchhiker sitting next to the road and in 
unit-vector notation, what are the velocity 11 at the (g) center, 
(h) top, and (i) bottom of the tire and the magnitude a of the 
acceleration at the (j) center, (k) top, and (1) bottom of each tire? 

An automobile traveling at 80.0 km/h has tires of 75.0 cm di­
ameter. (a) What is the angular speed of the tires about their axles? 
(b) If the car is brought to a stop uniformly in 30.0 complete turns 

of the tires (without skidding), what is the magnitude of the angu­
lar acceleration of the wheels? (c) How far does the car move dur­
ing the braking? 

11 -4 The Forces of Rolling 
SSM A 140 kg hoop rolls along a horizontal floor so that the 

hoop's center of mass has a speed of 0.150 mls. How much work 
must be done on the hoop to stop it? 

A uniform solid sphere rolls down an incline. (a) What must be 
the incline angle if the linear acceleration of the center of the 
sphere is to have a magnitude of 0.10g? (b) If a frictionless block 
were to slide down the incline at that angle, would its acceleration 
magnitude be more than, less than, or equal to 0.10g? Why? 
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H.W A 1000 kg car has four 10 kg wheels. When the car is mov­
ing, what fraction of its total kinetic energy is due to rotation of the 
wheels about their axles? Assume that the wheels have the same 
rotational inertia as uniform disks of the same mass and size. Why 
do you not need to know the radius of the wheels? 

··6 Figure 11-30 gives the 
speed v versus time t for a 
0.500 kg object of radius 6.00 
cm that rolls smoothly down ';6 

'" a 30° ramp. The scale on the ve- E. 
locity axis is set by Vs = 4.0 mls. '" 
What is the rotational inertia of 
the object? 

··1 IlW In Fig. 11-31, a solid 
cylinder of radius 10 cm and 
mass 12 kg starts from rest and 
rolls without slipping a distance 
L = 6.0 m down a roof that is in­
clined at the angle 8 = 30°. 
(a) What is the angular speed of 
the cylinder about its center as it 
leaves the roof? (b) The roof's 
edge is at height H = 5.0 m. How 
far horizontally from the roof's 
edge does the cylinder hit the 
level ground? 

o 0.8 

Fig. 11 -30 Problem 6. 

Fig. 11-31 Problem 7. 

Figure 11-32 shows the po­
tential energy U(x) of a solid ball 
that can roll along an x axis. The 
scale on the U axis is set by Us = 
100 1. The ball is uniform, rolls 
smoothly, and has a mass of 0.400 
kg. It is released at x = 7.0 m 
headed in the negative direction 
of the x axis with a mechanical 
energy of 75 1. (a) If the ball can 
reach x = 0 m, what is its speed 
there, and if it cannot, what is its 
turning point? Suppose, instead, 
it is headed in the positive direc­
tion of the x axis when it is re­
leased at x = 7.0 m with 75 1. (b) 

U(J) 
U s 

... 
I I 

If the ball can reach x = 13 m, 
what is its speed there, and if it 
cannot, what is its turning point? 

In Fig. 11-33, a solid 
ball rolls smoothly from rest 
(starting at height H = 6.0 m) 
until it leaves the horizontal sec­
tion at the end of the track, at 
height h = 2.0 m. How far hori­
zontally from point A does the 
ball hit the floor? 

f-I~ ~ 1-'" I~ 

I ]j 
I I~ , ~. I I 

f-I--~~~ 
~. 

1/ 
1--1-- J I LJ 

I 
o 2 4 6 8 10 12 14 

x(m) 

Fig. 11 -32 Problem 8. 

Fig. 11 -33 Problem 9. 

·"1 I) A hollow sphere of radius 0.15 m, with rotational inertia 
I = 0.040 kg· m2 about a line through its center of mass, rolls 
without slipping up a surface inclined at 30° to the horizontal. At 
a certain initial position, the sphere's total kinetic energy is 201. 
(a) How much of this initial kinetic energy is rotational? (b) 
What is the speed of the center of mass of the sphere at the initial 

position? When the sphere has moved 1.0 m up the incline from its 
initial position, what are (c) its total kinetic energy and (d) the speed 
of its center of mass? 

1 In Fig. 11-34, a constant hor­
izontal force F.pp of magnitude 10 
N is applied to a wheel of mass 10 
kg and radius 0.30 m. The wheel 
rolls smoothly on the horizontal 
surface, and the acceleration of its 
center of mass has magnitude 
0.60 mls2• (a) In unit-vector nota­
tion, what is the frictional force on 

F,.pp 

Fig. 11 -34 Problem 11. 

the wheel? (b) What is the rotational inertia of the wheel about the 
rotation axis through its center of mass? 

In Fig. 11-35, a solid brass ball of mass 0.280 g will roll 
smoothly along a loop-the-Ioop track when released from rest 
along the straight section. The cir-
cular loop has radius R = 14.0 cm, 
and the ball has radius r <l1 R. (a) 
What is h if the ball is on the verge 
of leaving the track when it h 

reaches the top of the loop? If the 
ball is released at height h = 

6.00R, what are the (b) magnitude 
and (c) direction of the horizontal 
force component acting on the Fig. 11 -35 Problem 12. 

ball at point Q? 

Nonuniform ball. In Fig. 
11-36, a ball of mass M and radius 
R rolls smoothly from rest down a 
ramp and onto a circular loop of 
radius 0.48 m. The initial height of 
the ball is h = 0.36 m. At the loop Fig. 11 -36 Problem 13. 
bottom, the magnitude of the nor-
mal force on the ball is 2.00Mg. The ball consists of an outer spheri­
cal shell (of a certain uniform density) that is glued to a central 
sphere (of a different uniform density). The rotational inertia of 
the ball can be expressed in the general form 1= {3MR2, but {3 is 
not 0.4 as it is for a ball of uniform density. Determine {3. 

···14 In Fig. 11-37, a small, solid, uniform ball is to be shot 
from point P so that it rolls smoothly along a horizontal path, up 
along a ramp, and onto a plateau. Then it leaves the plateau hori­
zontally to land on a game board, at a horizontal distance d from 
the right edge of the plateau. The vertical heights are hI = 5.00 cm 
and h2 = 1.60 cm. With what speed must the ball be shot at point P 
for it to land at d = 6.00 cm? 

Fig. 11-37 Problem 14. 

A bowler throws a bowling ball of radius R = 11 cm 
along a lane. The ball (Fig. 11-38) slides on the lane with initial 
speed vcom,o = 8.5 mls and initial angular speed Wo = O. The coeffi­
cient of kinetic friction between the ball and the lane is 0.21. The 



kinetic frictional force 7k acting on 
the ball causes a linear acceleration 
of the ball while producing a 
torque that causes an angular ac- x 

celeration of the ball. When speed Fig. 11 -38 Problem IS. 
Vcom has decreased enough and an-
gular speed w has increased enough, the ball stops sliding and then 
rolls smoothly. (a) What then is Vcom in terms of w? During the slid­
ing, what are the baH's (b) linear acceleration and (c) angular ac­
celeration? (d) How long does the ball slide? (e) How far does the 
ball slide? (f) What is the linear speed of the ball when smooth 
rolling begins? 

'''Hi Nonuniform cylindrical object. In Fig. 11-39, a cylindrical 
object of mass M and radius R rolls smoothly from rest down a 
ramp and onto a horizontal section. From there it rolls off the ramp 
and onto the floor, landing a horizontal distance d = 0.506 m from 
the end of the ramp. The initial height of the object is H = 0.90 m; 
the end of the ramp is at height h = 0.10 m. The object consists of 
an outer cylindrical shell (of a certain uniform density) that is 
glued to a central cylinder (of a different uniform density). The ro­
tational inertia of the object can be expressed in the general form 
1= {3MR2, but {3 is not 0.5 as it is for a cylinder of uniform density. 
Determine {3. 

H 

1 
T r-d-j 

Fig. 11 -39 Problem 16. 

11 The Yo-Yo 
·17 SSM A yo-yo has a rotational inertia of 9S0 g' cm2 

and a mass of 120 g. Its axle radius is 3.2 mm, and its string is 
120 cm long. The yo-yo rolls from rest down to the end of the 
string. (a) What is the magnitude of its linear acceleration? (b) 
How long does it take to reach the end of the string? As it reaches 
the end of the string, what are its ( c) linear speed, (d) translational 
kinetic energy, (e) rotational kinetic energy, and (f) angular 
speed? 

IS In 1980, over San Francisco Bay, a large yo-yo was 
released from a crane. The 116 kg yo-yo consisted of two uniform 
disks of radius 32 cm connected by an axle of radius 3.2 cm. What 
was the magnitude of the acceleration of the yo-yo during (a) its 
fall and (b) its rise? (c) What was the tension in the cord on which 
it rolled? (d) Was that tension near the cord's limit of S2 kN? 
Suppose you build a scaled-up version of the yo-yo (same shape 
and materials but larger). (e) Will the magnitude of your yo-yo's 
acceleration as it falls be greater than, less than, or the same as that 
of the San Francisco yo-yo? (f) How about the tension in the 
cord? 

11 Torque ReviSited 
\:I In unit-vector notation, what is the net torque about the ori­

gin on a flea located at coordinates (0, -4.0 m, S.O m) when forces 
Pi = (3.0 N)k and P2 = (-2.0 N)} act on the flea? 

A plum is located at coordinates (-2.0 m, 0, 4.0 m). In unit-
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vector notation, what is the torque about the origin on the plum if 
that torque is due to a force P whose only component is (a) Ft = 

6.0 N,(b) Fx = -6.0 N, (c) Fz = 6.0 N,and (d) Fz = -6.0 N? 

-21 In unit-vector notation, what is the torque about the origin on a 
particle located at coordinates (0, -4.0 m, 3.0 m) if that torque is due 
to (a) force Pi with components Fix = 2.0 N, Fly = Flz = 0, and (b) 

force P2 with components F2t = 0, F2y = 2.0 N, F2z = 4.0 N? 

"22 A particle moves through an xyz coordinate system while 
a force acts on the particle. When the particle has the position 
vector r = (2.00 m)i - (3.00 m)] + (2.00 m)k, the force is given by 
P = F) + (7.00 N)} - (6.00 N)k and the corresponding torque 
about the origin is T = (4.00 N . m)i +(2.00 N . m)} - (1.00 N . m)k. 
Determine Ft. 

"23 Force P = (2.0 N)i - (3.0 N)k acts on a pebble with posi­
tion vector r = (0.50 m)} - (2.0 m)k relative to the origin. In unit­
vector notation, what is the resulting torque on the pebble about 
(a) the origin and (b) the point (2.0 m, 0, -3.0 m)? 

In unit-vector notation, what is the torque about the origin 
on a jar ofjalapefio peppers located at coordinates (3.0 m, -2.0 m, 
4.0m) due to (a) force Pi = (3.0N)i - (4.0N)] + (S.ON)k, (b) 
force P2 = (-3.0 N)i - (4.0 N)] - (S.O N)k, and (c) the vector sum 
of Pi and P2? (d) Repeat part (c) for the torque about the point 
with coordinates (3.0 m, 2.0 m, 4.0 m). 

·'25 SSM Force P = (-8.0 N)i + (6.0 N)] acts on a particle with 
position vector r = (3.0 m)i + (4.0 m»). What are (a) the torque 
on the particle about the origin, in unit-vector notation, and (b) the 
angle between the directions of rand P? 

11·1 Angular Momentum 
·26 At the instant of Fig. 11-40, a 2.0 kg 
particle P has a position vector r of magni­
tude 3.0 m and angle 81 = 4So and a veloc­
ity vector v of magnitude 4.0 mls and angle 
82 = 30°. Force F, of magnitude 2.0 Nand 
angle 83 = 30°, acts on P. All three vectors 
lie in the xy plane. About the origin, what 
are the (a) magnitude and (b) direction of 
the angular momentum of P and the (c) 
magnitude and (d) direction of the torque 
acting on P? 

y 

f£.--'-----x 

Fig. 11-40 

Problem 26. 

·21 SSM At one instant, force P = 4.0} N acts on a 0.25 kg object 
that has position vector r = (2.oi - 2.0k) m and velocity vector 
v = (-s.oi + S.Ok) m/s. About the origin and in unit-vector nota­
tion, what are (a) the object's angular momentum and (b) the 
torque acting on the object? 

'28 A 2.0 kg particle-like object moves in a plane with velocity 
components Vx = 30 mls and Vy = 60 mls as it passes through the 
point with (x, y) coordinates of (3.0, -4.0) m. Just then, in unit­
vector notation, what is its angular momentum relative to (a) the 
origin and (b) the point located at 
(-2.0, -2.0) m? 

In the instant of Fig. 11-41, 
two particles move in an xy plane. 
Particle PI has mass 6.S kg and 
speed VI = 2.2 mis, and it is at dis­
tance dl = loS m from point O. 
Particle P2 has mass 3.1 kg and speed 
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V2 = 3.6 mis, and it is at distance d2 = 2.8 m from point O. What are 
the (a) magnitude and (b) direction of the net angular momentum of 
the two particles about O? 

At the instant the displacement of a 2.00 kg object relative 
to the origin is d = (2.00 m)i + (4;00 m)] - (3.QO m)k, its veloc­
ity is v = -(6.00 rnIs)i + (3.00 rnIs)j + (3.00 rnIs)k and it is subject 
to a force F = (6.00 N)i (8.00 N)] +(4.00 N)k. Find (a) the accel­
eration of the object, (b) the angular momentum of the object about 
the origin, (c) the torque about the origin acting on the object, and (d) 
the angle between the velocity of the ob­
ject and the force acting on the object. 

In Fig. 11-42, a 0.400 kg baIl is 
shot directly upward at initial speed 
40.0 m/s. What is its angular momen­
tum about P, 2.00 m horizontaIly from Fig. 11-42 Problem 31. 
the launch point, when the baIl is (a) at 
maximum height and (b) halfway back to the ground? What is the 
torque on the baIl about P due to the gravitational force when the 
baIl is ( c) at maximum height and (d) halfway back to the ground? 

11 Newton's Second Law in Angular Form 
A particle is acted on by two torques about the origin: 71 has 

a magnitude of 2.0 N . m and is directed in the positive direction of 
the x axis, and 72 has a magnitude of 4.0 N . m and is 
directed in the negative direction of the y axis. In unit-vector nota­
tion, find dCldt, where C is the angular momentum of the particle 
about the origin. 

SSM IlW WWW At time t = 0, a 3.0 kg particle with velocity 
v = (5.0 rnIs)i - (6.0 rnIs)] is atx = 3.0 m,y = 8.0 m. It is pulled by 
a 7.0 N force ill the negative x direction. About the origin, what are (a) 
the particle's angular momentum, (b) the torque actillg on the parti­
cle, and ( c) the rate at which the angular momentum is changing? 

A particle is to move in an xy plane, clockwise around the 
origin as seen from the positive side of the z axis. In unit-vector no­
tation, what torque acts on the particle if the magnitude of its an­
gular momentum about the origin is (a) 4.0 kg· m2/s, (b) 4.0t2 

kg· m2/s, (c) 4.0 Vi. kg· m2/s, and (d) 4.01(2 kg . m2/s? 

At time (, the vector 7 = 4.0t2; (2.0t + 6.0(2)J gives the 
position of a 3.0 kg particle relative to the origin of an xy coordinate 
system (7 is in meters and t is in seconds). (a) Find an expression for 
the torque acting on the particle relative to the origin. (b) Is the 
magnitude of the particle's angular momentum relative to the origin 
increasing, decreasing, or unchanging? 

1·10 The Angular Momentum of a Rigid Body 
Rotating About a Fixed Axis 

Figure 11-43 shows three rotating, uniform disks that are 
coupled by belts. One belt runs around the rims of disks A and C. 
Another belt runs around a central hub on disk A and the rim of 
disk B. The belts move smoothly without slippage on the rims and 
hub. Disk A has radius R; its hub has radius 0.5000R; disk B has ra­
dius 0.2500R; and disk C has radius 2.000R. Disks Band C have the 

(C$t2CCJ 
A C 

Fig. 11 -43 Problem 36. 

same density (mass per unit volume) and thickness. What is the ra­
tio of the magnitUde of the angular momentum of disk C to that of 
diskB? 

In Fig. 11-44, three parti­
cles of mass m = 23 g are fastened 
to three rods of length d = 12 cm 
and negligible mass. The rigid as­
sembly rotates around point 0 at 
the angular speed (J) = 0.85 rad/s. 

1ll 

About 0, what are (a) the rota- Fig. 11-44 Problem 37. 
tional inertia of the assembly, (b) 
the magnitUde of the angular momentum of the middle particle, 
and (c) the magnitude of the angular momentum of the asssembly? 

A sanding disk with rotational inertia 1.2 X 10-3 kg· m2 is at­
tached to an electric driII whose motor delivers a torque 
of magnitude 16 N . m about the central axis of the disk. 
About that axis and with the torque applied for 33 ms, what is the 
magnitude of the (a) angular momentum and (b) angular velocity 
of the disk? 

SSM The angular momentum of a flywheel having a rota­
tional inertia of 0.140 kg· m2 about its central axis decreases from 
3.00 to 0.800 kg· m2/s in 1.50 s. (a) What is the magnitude of the av­
erage torque acting on the flywheel about its central axis during 
this period? (b) Assuming a constant angular acceleration, through 
what angle does the flywheel turn? (c) How much work is done on 
the wheel? (d) What is the average power of the flywheel? 

A disk with a rotational inertia of 7.00 kg· m2 rotates like a 
merry-go-round while undergoing a variable torque given by 
T = (5.00 + 2.00t) N· m. At time ( = 1.00 s, its angular momentum 
is 5.00 kg· m2/s. What is its angular momentum at t = 3.00 s? 

Figure 11-45 shows a rigid 
structure consistillg of a circular hoop 
of radius R and mass m, and a square 
made of four thin bars, each of length 
R and mass m. The rigid structure ro­
tates at a constant speed about a ver­
tical axis, with a period of rotation of 
2.5 s. Assuming R = 0.50 m and m = 

2.0 kg, calculate (a) the structure's ro­
tational inertia about the axis of rota­
tion and (b) its angular momentum 
about that axis. 

T 
R 

--.L 

Fig. 11-45 Problem 41. 

Figure 11-46 gives the torque T that acts on an initially sta­
tionary disk that can rotate about its center like a merry-go-round. 

r(N'm) -----r 

Fig. 11 -46 Problem 42. 



The scale on the 7 axis is set by 7s = 4.0 N . m. What is the angular 
momentum of the disk about the rotation axis at times (a) t = 7.0 s 
and (b) t = 20 s? 

Conservation of Angular Momentum 
In Fig. 11-47, two skaters, each 

of mass 50 kg, approach each other 
along parallel paths separated by 3.0 
m. They have opposite velocities of 
1.4 mls each. One skater carries one 
end of a long pole of negligible mass, 
and the other skater grabs the other Fig. 11-47 Problem 43. 
end as she passes. The skaters then 
rotate around the center of the pole. Assume that the friction 
between skates and ice is negligible. What are (a) the radius of the 
circle, (b) the angular speed of the skaters, and (c) the kinetic energy 
of the two-skater system? Next, the skaters pull along the pole until 
they are separated by 1.0 m. What then are (d) their angular speed 
and (e) the kinetic energy of the system? (f) What provided the en­
ergy for the increased kinetic energy? 

A Texas cockroach of mass 0.17 kg runs counterclockwise 
around the rim of a lazy Susan (a circular disk mounted on a verti­
cal axle) that has radius 15 cm, rotational inertia 5.0 X 10-3 kg· m2, 

and frictionless bearings. The cockroach's speed (relative to the 
ground) is 2.0 mis, and the lazy Susan turns clockwise with angular 
speed Wo = 2.8 rad/s. The cockroach finds a bread crumb on the rim 
and, of course, stops. (a) What is the angular speed of the lazy 
Susan after the cockroach stops? (b) Is mechanical energy con­
served as it stops? 

SSM WWW A man stands on a platform that is rotating 
(without friction) with an angular speed of 1.2 rev/s; his arms are 
outstretched and he holds a brick in each hand. The rotational iner­
tia of the system consisting of the man, bricks, and platform about 
the central vertical axis of the platform is 6.0 kg· m2• If by moving 
the bricks the man decreases the rotational inertia of the system to 
2.0 kg· m2, what are (a) the resulting angular speed of the platform 
and (b) the ratio of the new kinetic energy of the system to the 
original kinetic energy? (c) What source provided the added 
kinetic energy? 

The rotational inertia of a collapsing spinning star drops to ~ 
its initial value. What is the ratio of the new rotational kinetic en­
ergy to the initial rotational kinetic energy? 

SSM A track is mounted on a 
large wheel that is free to turn with 
negligible friction about a vertical 
axis (Fig. 11-48). A toy train of mass 
111 is placed on the track and, with Fig. 11 -48 Problem 47. 
the system initially at rest, the 
train's electrical power is turned on. The train reaches speed 0.15 
mls with respect to the track. What is the angular speed of the wheel 
if its mass is 1.1111 and its radius is 
0.43 m? (Treat the wheel as a hoop, 
and neglect the mass of the spokes 
and hub.) 

A Texas cockroach first rides 
at the center of a circular disk that 
rotates freely like a merry-go­
round without external torques. 

o 
Radial distance 

The cockroach then walks out to Fig. 11 -49 Problem 48. 

R 
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the edge of the disk, at radius R. Figure 11-49 gives the angular 
speed W of the cockroach-disk system during the walk. The scale 
on the W axis is set by Wa = 5.0 rad/s and Wb = 6.0 rad/s. When the 
cockroach is on the edge at radius R, what is the ratio of the bug's 
rotational inertia to that of the disk, both calculated about the ro­
tation axis? 

-49 Tho disks are mounted (like a merry-go-round) on low-fric­
tion bearings on the same axle and can be brought together so that 
they couple and rotate as one unit. The first disk, with rotational in­
ertia 3.30 kg· m2 about its central axis, is set spinning counterclock­
wise at 450 rev/min. The second disk, with rotational inertia 6.60 
kg· m2 about its central axis, is set spinning counterclockwise at 900 
rev/min. They then couple together. (a) What is their angular speed 
after coupling? If instead the second disk is set spinning clockwise 
at 900 rev/min, what are their (b) angular speed and (c) direction 
of rotation after they couple together? 

-50 The rotor of an electric motor has rotational inertia Im = 
2.0 X 10-3 kg· m2 about its central axis. The motor is used to 
change the orientation of the space probe in which it is mounted. 
The motor axis is mounted along the central axis of the probe; the 
probe has rotational inertia Ip = 12 kg . m2 about this axis. 
Calculate the number of revolutions of the rotor required to turn 
the probe through 30° about its central axis. 

-S1 SSM IlW A wheel is rotating freely at angular speed 800 
rev/min on a shaft whose rotational inertia is negligible. A second 
wheel, initially at rest and with twice the rotational inertia of the 
first, is suddenly coupled to the same shaft. (a) What is the angular 
speed of the resultant combination of the shaft and two wheels? 
(b) What fraction of the original rotational kinetic energy is lost? 

A cockroach of mass /11 lies on the rim of a uniform disk 
of mass 4.00/11 that can rotate freely about its center like a merry­
go-round. Initially the cockroach and disk rotate together with an 
angular velocity of 0.260 rad/s. Then the cockroach walks halfway 
to the center of the disk. (a) What then is the angular velocity of 
the cockroach-disk system? (b) What is the ratio K/Ko of the new 
kinetic energy of the system to its initial kinetic energy? (c) What 
accounts for the change in the ki­
netic energy? 

A uniform thin rod of 
length 0.500 m and mass 4.00 kg can 
rotate in a horizontal plane about a 
vertical axis through its center. The 
rod is at rest when a 3.00 g bullet 

Axis 

traveling in the rotation plane is fired Fig. 11 -50 Problem 53. 
into one end of the rod. As viewed 
from above, the bullet's path makes angle () = 60.0° with the rod (Fig. 
11-50). If the bullet lodges in the rod and the angular velocity of the 
rod is 10 rad/s immediately after the collision, what is the bullet's 
speed just before impact? 

Figure 11-51 shows an 
overhead view of a ring that can ro- \ 
tate about its center like a merry- \ 
go-round. Its outer radius R2 is 0.800 
m, its inner radius R1 is R2/2.00, its 
mass M is 8.00 kg, and the mass of 
the crossbars at its center is neg­
ligible. It initially rotates at an angu-
lar speed of 8.00 rad/s with a cat of Fig. 11-51 Problem 54. 
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mass m = M/4.00 on its outer edge, at radius R z. By how much does 
the cat increase the kinetic energy of the cat-ring system if the cat 
crawls to the inner edge, at radius R J? 

A horizontal vinyl record of mass 0.10 kg and radius 0.10 m 
rotates freely about a vertical axis through its center with an angu­
lar speed of 4.7 rad/s. The rotational inertia of the record about its 
axis of rotation is 5.0 X 10-4 kg . mZ. A wad of wet putty of mass 
0.020 kg drops vertically onto the record from above and sticks to 
the edge of the record. What is the angular speed of the record im­
mediately after the putty sticks to it? 

In a long jump, an athlete leaves the ground with an 
initial angular momentum that tends to rotate her body forward, 
threatening to ruin her landing. To counter this tendency, she ro­
tates her outstretched arms to "take up" the angular momentum 
(Fig. 11-18). In 0.700 s, one arm sweeps through 0.500 rev and the 
other arm sweeps through 1.000 rev. Treat each arm as a thin rod of 
mass 4.0 kg and length 0.60 m, rotating around one end. In the ath­
lete's reference frame, what is the magnitude of the total angular 
momentum of the arms around the common rotation axis through 
the shoulders? 

··51 A uniform disk of mass 10m and radius 3.0r can rotate freely 
about its fixed center like a merry-go-round. A smaller uniform 
disk of mass m and radius r lies on top of the larger disk, concentric 
with it. Initially the two disks rotate together with an angular ve­
locity of 20 rad/s. Then a slight disturbance causes the smaller disk 
to slide outward across the larger disk, until the outer edge of the 
smaller disk catches on the outer edge of the larger disk. Afterward, 
the two disks again rotate together (without further sliding). (a) What 
then is their angular velocity about the center of the larger disk? (b) 
What is the ratio K/Ko of the new kinetic energy of the two-disk sys­
tem to the system's initial kinetic energy? 

A horizontal platform in the shape of a circular disk rotates 
on a frictionless bearing about a vertical axle through the center of 
the disk. The platform has a mass of 150 kg, a radius of 2.0 m, and a 
rotational inertia of 300 kg . mZ about the axis of rotation. A 60 kg 
student walks slowly from the rim of the platform toward the cen­
ter. If the angular speed of the system is 1.5 rad/s when the student 
starts at the rim, what is the angular speed when she is 0.50 m from 
the center? 

Figure 11-52 is an overhead 
view of a thin uniform rod of length 
0.800 m and mass M rotating horizon­
tally at angular speed 20.0 rad/s about 

. 
Rota~onJ 

axIS 

an axis through its center. A particle Fig. 11 -52 Problem 59. 
of mass M/3.00 initially attached to 

t 
! 

one end is ejected from the rod and travels along a path that is per­
pendicular to the rod at the instant of ejection. If the particle's speed 
vp is 6.00 mls greater than the speed of 
the rod end just after ejection, what is 
the value of v p ? 

In Fig. 11-53, a 1.0 g bullet is 
fired into a 0.50 kg block attached to 
the end of a 0.60 m nonuniform rod of 
mass 0.50 kg. The block-rod-bullet 
system then rotates in the plane of the 
figure, about a fixed axis at A. The ro­
tational inertia of the rod alone about 
that axis at A is 0.060 kg· mZ. Treat the Bullet 

Block 

block as a particle. (a) What then is Fig. 11-53 Problem 60. 

the rotational inertia of the block-rod-bullet system about point 
A? (b) If the angular speed of the system about A just after impact 
is 4.5 rad/s, what is the bullet's speed just before impact? 

"61 The uniform rod (length 0.60 
m, mass 1.0 kg) in Fig. 11-54 rotates 
in the plane of the figure about an 
axis through one end, with a rota­
tional inertia of 0.12 kg· mZ. As the 
rod swings through its lowest posi-
tion, it collides with a 0.20 kg putty 
wad that sticks to the end of the rod. 
If the rod's angular speed just before ---4. : 
collision is 2.4 rad/s, what is the angu- . I 
lar speed of the rod-putty system 

Rotation axis 

Rod 

immediately after collision? Fig. 11-54 Problem 61. 

···62 During a jump to his 
partner, an aerialist is to make a quadruple somersault lasting a 
time t = 1.87 s. For the first and last quarter-revolution, he is in the 
extended orientation shown in Fig. 11-55, with rotational inertia 
11 = 19.9 kg·m2 around his center of mass (the dot). During the 
rest of the flight he is in a tight tuck, with rotational inertia 1z = 

3.93 kg· mZ. What must be his angular speed Wz around his center 
of mass during the tuck? 

Catch 

Fig. 11 -55 Problem 62. 

In Fig. 11-56, a 30 kg 
child stands on the edge of a sta­
tionary merry-go-round of radius 
2.0 m. The rotational inertia of the 
merry-go-round about its rotation 
axis is 150 kg· m2• The child catches 
a ball of mass 1.0 kg thrown by a 
friend. Just before the ball is caught, 
it has a horizontal velocity 11 of mag-

• 
I 
I 
I 
I 
I 

I~ : , 1>-1 
I 

Child 

nitude 12 mis, at angle if; = 37° with Fig. 11 -56 Problem 63. 
a line tangent to the outer edge of 
the merry-go-round, as shown. What is the angular speed of the 
merry-go-round just after the ball is caught? 

A ballerina begins a tour jete (Fig. 11-19a) with an­
gular speed Wi and a rotational inertia consisting of two parts: 
~eg = 1.44 kg· mZfor her leg extended outward at angle (J = 90.0° 
to her body and .4runk = 0.660 kg· mZ for the rest of her body (pri-



marily her trunk). Near her maximum height she holds both legs 
at angle e = 30.0° to her body and has angular speed wf (Fig. 11-
19b). Assuming that ftrunk has not changed, what is the ratio Wf/Wi? 

WWW Tho 2.00 kg 
balls are attached to the ends of a 
thin rod of length 50.0 cm and negli­
gible mass. The rod is free to rotate in 
a vertical plane without friction 
about a horizontal axis through its 

R ... ota~on\ 
axiS 

(). 

Putty wad 

center. With the rod initially horizon- Fig. 11 -57 Problem 65. 
tal (Fig. 11-57), a 50.0 g wad of wet 
putty drops onto one of the balls, hitting it with a speed of 3.00 mls 
and then sticking to it. (a) What is the angular speed of the system 
just after the putty wad hits? (b) What is the ratio of the kinetic en­
ergy of the system after the collision to that of the putty wad just 
before? (c) Through what angle will the system rotate before it 
momentarily stops? 

···66 In Fig. 11-58, a small 50 g 
block slides down a frictionless sur­
face through height h = 20 cm and 
then sticks to a uniform rod of mass 
100 g and length 40 cm. The rod piv­
ots about point 0 through angle ebe­
fore momentarily stopping. Find e. 
···61 Figure 11-59 is an overhead 
view of a thin uniform rod of length 

o 

0.600 m and mass M rotating hori- Fig. 11 -58 Problem 66. 
zontally at 80.0 rad/s counterclock-
wise about an axis through its center. A particle of mass M/3.00 and 
traveling horizontally at speed 40.0 m/s hits the rod and sticks. The 
particle's path is perpendicular to the rod at the instant of the hit, 
at a distance d from the rod's center. (a) At what value of d are rod 
and particle stationary after the hit? (b) In which direction do rod 
and particle rotate if d is greater than this value? 

, . Rotation axis" 
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Fig. 11-59 Problem 67. 

sec. 11·12 Precession of a Gyroscope 

1 

··68 A top spins at 30 rev/s about an axis that makes an angle of 
30° with the vertical. The mass of the top is 0.50 kg, its rotational in­
ertia about its central axis is 5.0 X 10-4 kg· m2, and its center of 
mass is 4.0 cm from the pivot point. If the spin is clockwise from an 
overhead view, what are the (a) precession rate and (b) direction of 
the precession as viewed from overhead? 

··69 A certain gyroscope consists of a uniform disk with a 50 cm 
radius mounted at the center of an axle that is 11 cm long and of 
negligible mass. The axle is horizontal and supported at one end. If 
the disk is spinning around the axle at 1000 rev/min, what is the 
precession rate? 
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Additional Problems 
10 A uniform solid ball rolls smoothly along a floor, then up a 
ramp inclined at 15.0°. It momentarily stops when it has rolled 1.50 
m along the ramp. What was its initial speed? 

In Fig. 11-60, a constant -> 
-> Fapp 

horizontal force Papp of magnitude 
12 N is applied to a uniform solid line 
cylinder by fishing line wrapped 
around the cylinder. The mass of the 
cylinder is 10 kg, its radius is 0.10 m, x 

and the cylinder rolls smoothly Fig. 11 -60 Problem 71. 
on the horizontal surface. (a) What 
is the magnitude of the acceleration of the center of mass of the 
cylinder? (b) What is the magnitude of the angular acceleration of 
the cylinder about the center of mass? (c) In unit-vector notation, 
what is the frictional force acting on the cylinder? 

12 A thin-walled pipe rolls along the floor. What is the ratio of its 
translational kinetic energy to its rotational kinetic energy about 
the central axis parallel to its length? 

13 SSM A 3.0 kg toy car moves along an x axis with a velocity 
given by v = -2.0t3i mis, with t in seconds. For t > 0, what are (a) 
the angular momentum L of the car and (b) the torque T on the 
car, both calculated about the origin? What are (c) L and (d) T 
about the point (2.0 m, 5.0 m, O)? What are (e) L and (f) T about 
the point (2.0 m, - 5.0 m, O)? 

74 A wheel rotates clockwise about its central axis with an angu­
lar momentum of 600 kg· m2/s. At time t = 0, a torque of magni­
tude 50 N . m is applied to the wheel to reverse the rotation. At 
what time t is the angular speed zero? 

15 In a playground, there is a small merry-go-round of 
radius 1.20 m and mass 180 kg. Its radius of gyration (see Problem 
79 of Chapter 10) is 91.0 cm. A child of mass 44.0 kg runs at a speed 
of 3.00 mls along a path that is tangent to the rim of the initially 
stationary merry-go-round and then jumps on. Neglect friction be­
tween the bearings and the shaft of the merry-go-round. Calculate 
(a) the rotational inertia of the merry-go-round about its axis of 
rotation, (b) the magnitude of the angular momentum of the run­
ning child about the axis of rotation of the merry-go-round, and (c) 
the angular speed of the merry-go-round and child after the child 
has jumped onto the merry-go-round. 

76 A uniform block of granite in the shape of a book has face di­
mensions of 20 cm and 15 cm and a thickness of 1.2 cm. The density 
(mass per unit volume) of granite is 2.64 g/cm3. The block rotates 
around an axis that is perpendicular to its face and halfway be­
tween its center and a corner. Its angular momentum about that 
axis is 0.104 kg· m2/s. What is its rotational kinetic energy about 
that axis? 

11 Tho particles, each of mass 2.90 X 10-4 kg and speed 
5.46 mis, travel in opposite directions along parallel lines separated 
by 4.20 cm. (a) What is the magnitude L of the angular momentum 
of the two-particle system around a point midway between the two 
lines? (b) Does the value of L change if the point about which it is 
calculated is not midway between the lines? If the direction of 
travel for one of the particles is reversed, what would be (c) the an­
swer to part (a) and (d) the answer to part (b)? 

18 A wheel of radius 0.250 m, which is moving initially at 43.0 
mis, rolls to a stop in 225 m. Calculate the magnitudes of (a) its lin-
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ear acceleration and (b) its angular acceleration. (c) The wheel's 
rotational inertia is 0.155 kg· m2 about its central axis. Calculate 
the magnitude of the torque about the central axis due to friction 
on the wheel. 

Wheels A and B in Fig. 11-61 
are connected by a belt that does not 
slip. The radius of B is 3.00 times the 
radius of A. What would be the ratio 
of the rotational inertias lA/Is if the 
two wheels had (a) the same angular Fig. 11-61 Problem 79. 
momentum about their central axes 
and (b) the same rotational kinetic energy? 

80 A 2.50 kg particle that is moving horizontally over a floor with 
velocity (-3.00 m/s)] undergoes a completely inelastic collision 
with a 4.00 kg particle that is moving horizontally over the floor 
with velocity (4.50 m/s)i. The collision occurs at xy coordinates 
(-0.500 m, -0.100 m). After the collision and in unit-vector nota­
tion, what is the angular momentum of the stuck-together particles 
with respect to the origin? 

SSM A uniform wheel of mass 10.0 kg and radius 0.400 m is 
mounted rigidly on a massless axle through its center (Fig. 11-62). 
The radius of the axle is 0.200 m, and the rotational inertia of the 
wheel-axle combination about its central axis is 0.600 kg· m2• The 
wheel is initially at rest at the top of a surface that is inclined at an­
gle B = 30.0° with the horizontal; the axle rests on the surface while 
the wheel extends into a groove in the surface without touching 
the surface. Once released, the axle rolls down along the surface 
smoothly and without slipping. When the wheel-axle combination 
has moved down the surface by 2.00 m, what are (a) its rotational 
kinetic energy and (b) its translational kinetic energy? 

Fig. 11 -62 Problem 81. 

82 A uniform rod rotates in a horizontal plane about a vertical 
axis through one end. The rod is 6.00 m long, weighs 10.0 N, and ro­
tates at 240 rev/min. Calculate (a) its rotational inertia about the 
axis of rotation and (b) the magnitude of its angular momentum 
about that axis. 

A solid sphere of weight 36.0 N rolls up an incline at an angle 
of 30.0°. At the bottom of the incline the center of mass of the 
sphere has a translational speed of 4.90 m/s. (a) What is the kinetic 
energy of the sphere at the bottom of the incline? (b) How far does 
the sphere travel up along the incline? (c) Does the answer to (b) 
depend on the sphere's mass? 

Suppose that the yo-yo in Problem 17, instead of 
rolling from rest, is thrown so that its initial speed down the string 
is 1.3 m/s. (a) How long does the yo-yo take to reach the end of the 
string? As it reaches the end of the string, what are its (b) total ki-

netic energy, (c) linear speed, (d) translational kinetic energy, (e) 
angular speed, and (f) rotational kinetic energy? 

85 A girl of mass M stands on the rim of a frictionless merry-go­
round of radius R and rotational inertia I that is not moving. She 
throws a rock of mass m horizontally in a direction that is tangent 
to the outer edge of the merry-go-round. The speed of the rock, 
relative to the ground, is v. Afterward, what are (a) the angular 
speed of the merry-go-round and (b) the linear speed of the girl? 

At time t = 0, a 2.0 kg particle has the position vector 
r = (4.0 m)i - (2.0 m)] relative to the origin. Its velocity is 
given by It = (-6.0t2 m/s)i for t:2: 0 in seconds. About the origin, 
what are (a) the particle's angular momentum land (b) the torque 
T acting on the particle, both in unit-vector notation and for t> O? 
About the point (-2.0m, -3.0m, 0), what are (c) l and (d) T 
for t > O? 
81 If Earth's polar ice caps fully melted and the water returned 
to the oceans, the oceans would be deeper by about 30 m. What ef­
fect would this have on Earth's rotation? Make an estimate of the 
resulting change in the length of the day. 

A 1200 kg airplane is flying in a straight line at 80 mis, 
1.3 km above the ground. What is the magnitude of its angular mo­
mentum with respect to a point on the ground directly under the 
path of the plane? 

With axle and spokes of negligible mass and a thin rim, a cer­
tain bicycle wheel has a radius of 0.350 m and weighs 37.0 N; it can 
turn on its axle with negligible friction. A man holds the wheel 
above his head with the axle vertical while he stands on a turntable 
that is free to rotate without friction; the wheel rotates clockwise, as 
seen from above, with an angular speed of 57.7rad/s, and the 
turntable is initially at rest. The rotational inertia of wheel + man + 
turntable about the common axis of rotation is 2.10 kg . m2• The 
man's free hand suddenly stops the rotation of the wheel (relative 
to the turntable). Determine the resulting (a) angular speed and 
(b) direction of rotation of the system. 

For an 84 kg person standing at the equator, what is the mag­
nitude of the angular momentum about Earth's center due to 
Earth's rotation? 

A small solid sphere with radius 0.25 cm and mass 0.56 g rolls 
without slipping on the inside of a large fixed hemisphere with ra­
dius 15 cm and a vertical axis of symmetry. The sphere starts at the 
top from rest. (a) What is its kinetic energy at the bottom? (b) 
What fraction of its kinetic energy at the bottom is associated with 
rotation about an axis through its com? (c) What is the magnitude 
of the normal force on the hemisphere from the sphere when the 
sphere reaches the bottom? 

An automobile has a total mass of 1700 kg. It accelerates from 
rest to 40 km/h in 10 s. Assume each wheel is a uniform 32 kg disk. 
Find, for the end of the 10 s interval, (a) the rotational kinetic 
energy of each wheel about its axle, (b) the total kinetic energy of 
each wheel, and (c) the total kinetic energy of the automobile. 

A body of radius R and mass m is rolling smoothly with speed 
v on a horizontal surface. It then rolls up a hill to a maximum 
height h. (a) If h = 3v2/4g, what is the body's rotational inertia 
about the rotational axis through its center of mass? (b) What 
might the body be? 



I 

Human constructions are supposed to be stable in spite of the forces that act 
on them. A building, for example, should be stable in spite of the gravitational force 
and wind forces on it, and a bridge should be stable in spite of the gravitational force 
pulling it downward and the repeated jolting it receives from cars and trucks. 

One focus of physics is on what allows an object to be stable in spite of any 
forces acting on it. In this chapter we examine the two main aspects of stability: 
the equilibrium of the forces and torques acting on rigid objects and the elasticity 
of nonrigid objects, a property that governs how such objects can deform. When 
this physics is done correctly, it is the subject of countless articles in physics and 
engineering journals; when it is done incorrectly, it is the subject of countless 
articles in newspapers and legal journals. 

i Equilibrium 
Consider these objects: (1) a book resting on a table, (2) a hockey puck sliding 
with constant velocity across a frictionless surface, (3) the rotating blades of a 
ceiling fan, and (4) the wheel of a bicycle that is traveling along a straight path at 
constant speed. For each of these four objects, 

1. The linear momentum P of its center of mass is constant. 

2. Its angular momentum l about its center of mass, or about any other point, is 
also constant. 

We say that such objects are in equilibrium. The two requirements for 
equilibrium are then 

P = a constant and l = a constant. (12-1) 

Our concern in this chapter is with situations in which the constants in 
Eq. 12-1 are zero; that is, we are concerned largely with objects that are not mov­
ing in any way-either in translation or in rotation-in the reference frame 
from which we observe them. Such objects are in static equilibrium. Of the four 
objects mentioned at the beginning of this section, only one-the book resting 
on the table-is in static equilibrium. 

The balancing rock of Fig. 12-1 is another example of an object that, for the 
present at least, is in static equilibrium. It shares this property with countless 
other structures, such as cathedrals, houses, filing cabinets, and taco stands, that 
remain stationary over time. 

As we discussed in Section 8-6, if a body returns to a state of static equilib­
rium after having been displaced from that state by a force, the body is said to be 
in stable static equilibrium. A marble placed at the bottom of a hemispherical 

CAAPT>ER 

Fig. 12-1 A balancing rock. Although its 
perch seems precarious, the rock is in static 
equilibrium. (Symon LobsanglPhotisl 
Jupiter Images Corp.) 

I 
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I 
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I 
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Fig. 12-2 (a) A domino balanced on one 
edge, with its center of mass vertically above 
that edge. The gravitational force ~ on the 
domino is directed through the supporting 
edge. (b) If the domino is rotated even slightly 
from the balanced orientation, then Fg causes 
a torque that increases the rotation. (c) A 
domino upright on a narrow side is 
somewhat more stable than the domino in 
(a). (d) A square block is even more stable. 

Fig. 12-3 A construction worker bal­
anced on a steel beam is in static equilibrium 
but is more stable parallel to the beam than 
perpendicular to it. 
(Robert BrennerlPhotoEdit) 

To tip the block, the center of mass must 
pass over the supporting edge. 

com 

I 
Supporting 
edge 

(a) (b) (e) (d) 

bowl is an example. However, if a small force can displace the body and end the 
equilibrium, the body is in unstable static equilibrium. 

For example, suppose we balance a domino with the domino's center of mass 
vertically above the supporting edge, as in Fig. 12-2a. The torque about the sup­
porting edge due J:,o the gravitational force l{ on the domino is zero because the 
line of action of Fg is through that edge. Thus, the domino is in equilibrium. Of 
course, even a slight force on it due to some chance disturbance ends the equi­
librium. As the line of action of l{ moves to one side of the supporting edge (as in 
Fig. 12-2b), the torque due to l{ increases the rotation of the domino. Therefore, 
the domino in Fig. 12-2a is in unstable static equilibrium. 

The domino in Fig. 12-2c is not quite as unstable. To topple this domino, 
a force would have to rotate it through and then beyond the balance position of 
Fig. 12-2a, in which the center of mass is above a supporting edge. A slight force 
will not topple this domino, but a vigorous flick of the finger against the domino 
certainly will. (If we arrange a chain of such upright dominos, a finger flick against 
the first can cause the whole chain to fall.) 

The child's square block in Fig. 12-2d is even more stable because its center 
of mass would have to be moved even farther to get it to pass above a supporting 
edge. A flick of the finger may not topple the block. (This is why you never see a 
chain of toppling square blocks.) The worker in Fig. 12-3 is like both the domino 
and the square block: Parallel to the beam, his stance is wide and he is stable; 
perpendicular to the beam, his stance is narrow and he is unstable (and at the 
mercy of a chance gust of wind). 

The analysis of static equilibrium is very important in engineering practice. The 
design engineer must isolate and identify all the external forces and torques that 
may act on a structure and, by good design and wise choice of materials, ensure that 
the structure will remain stable under these loads. Such analysis is necessary to en­
sure, for example, that bridges do not collapse under their traffic and wind loads and 
that the landing gear of aircraft will function after the shock of rough landings. 

1 The Requirements of Equilibrium 
The translational motion of a body is governed by Newton's second law in its 
linear momentum form, given by Eq. 9-27 as 

-> £p 
Fnet = dt' (12-2) 

If the body is in translational equilibrium-that is, if P is a constant-then 
dPldt = 0 and we must have 

l{et = 0 (balance of forces). (12-3) 
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The rotational motion of a body is governed by Newton's second law in its 
angular momentum form, given by Eq.11-29 as 

dL 
Tnel = dr' (12-4) 

If the body is in rotational equilibrium - that is, if L is a constant - then dL! dt = 0 
and we must have 

(balance of torques). (12-5) 

Thus, the two requirements for a body to be in equilibrium are as follows: 

1. The vector sum of all the external forces that act on the body must be zero. 

2. The vector sum of all external torques that act on the body, measured about any 
possible point, must also be zero. 

These requirements obviously hold for static equilibrium. They also hold for the 
more general equilibrium in which P and L are constant but not zero. 

Equations 12-3 and 12-5, as vector equations, are each equivalent to three 
independent component equations, one for each direction of the coordinate axes: 

Balance of Balance of 
forces 

Fnel", = 0 
Fnel•y = 0 

F;let,z = 0 

torques 

Tnet", = 0 
Tnel,y = 0 
Tnet,z = 0 

(12-6) 

We shall simplify matters by considering only situations in which the forces that act 
on the body lie in the xy plane. This means that the only torques that can act on the 
body must tend to cause rotation around an axis parallel to the z axis. With this assump­
tion, we eliminate one force equation and two torque equations from Eqs.12-6, leaving 

Fnet,x = 0 (balance of forces), (12-7) 

Fnet,y = 0 (balance of forces), (12-8) 

Tnel,z = 0 (balance of torques). (12-9) 

Here, Tllel,Z is the net torque that the external forces produce either about the 
z axis or about any axis parallel to it. 

A hockey puck sliding at constant velocity over ice satisfies Eqs. 12-7, 12-8, and 
12-9 and is thus in e-suilibrium but not in static equilibrium. For static equilibrium, the 
linear momentum P of the puck must be not only constant but also zero; the puck 
must be at rest on the ice. Thus, there is another requirement for static equilibrium: 

3. The linear momentum P of the body must be zero. 

CHECKPOINT 1 

The figure gives six overhead views of a uniform rod on which two or more forces act 
perpendicularly to the rod. If the magnitudes of the forces are adjusted properly (but kept 
nonzero), in which situations can the rod be in static equilibrium? 

(a) (b) (e) (d) (e) (f) 
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Fig.12-4 (a)Anelementofmassm;in 
an extended body. The gravitational force 
l{; on the element has moment arm X; about 
the origin 0 of the coordinate system. (b) 
The gravitational force l{ on a body is said 
to act at the center of gravity (cog) of the 
body. Here l{ has moment armxcog about 
origin O. 

The Center of Gravity 
The gravitational force on an extended body is the vector sum of the gravita­
tional forces acting on the individual elements (the atoms) of the body. Instead of 
considering all those individual elements, we can say that 

The gravitational force Fg on a body effectively acts at a single point, called the 
center of gravity (cog) of the body. 

Here the word "effectively" means that if the forces on the individual elements were 
somehow turned off and force ~ at the center of gravity were turned on, the net 
force and the net torque (about any point) acting on the body would not change. 

Until now, we have assumed that the gravitational force ~ acts at the center 
of mass (com) of the body. This is equivalent to assuming that the center of grav­
ity is at the center of mass. Recall that, for a body of mass M, the force l{ is equal 
to Mg, where g is the acceleration that the force would produce if the body were 
to fall freely. In the proof that follows, we show that 

If g is the same for all elements of a body, then the body's center of gravity (cog) is 
coincident with the body's center of mass (com). 

This is approximately true for everyday objects because g varies only a little 
along Earth's surface and decreases in magnitude only slightly with altitude. 
Thus, for objects like a mouse or a moose, we have been justified in assuming that 
the gravitational force acts at the center of mass. After the following proof, we 
shall resume that assumption. 

First, we consider the individual elements of the body. Figure 12-4a shows an 
extended body, of mass M, and one of its elements, of mass mi' A gravitational 
force ~i acts on each such element and is equal to migi' The subscript on gi means 
gi is the gravitational acceleration at the location of the element i (it can be differ­
ent for other elements). 

In Fig. 12-4a, each force ~i produces a torque 7i on the element about the origin 
0, with moment arm Xi' Using Eq.1O-41 (7 = r.lF), we can write torque 7i as 

(12-10) 

The net torque on all the elements of the body is then 

(12-11) 

Next, we consider the body as a whole. Figure 12-4b shows the gravitational force 
~ acting at the body's center of gravity. This force produces a torque 7 on the body 

)' )' 

\ 
: 

; o'--'+---:"~':':-\'i-- X I-....<'t-~-=;::---- X 
(0 Xcog' Line of 
'Moment action 

arnl anTI 
(a) (b) 
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about 0, with moment armxcog.Again usingEq.10-41, we can write this torque as 

(12-12) 

The gr~vitational force J{ on the body is equal to the sum of the gravitational 
forces F'gi on all its elements, so we can substitute 'iFgi for Fg in Eq. 12-12 to write 

(12-13) 

Now recall that the torque due to force J{ acting at the center of gravity 
is equal to the net torque due to all the forces J{i acting on all the elements of 
the body. (That is how we defined the center of gravity.) Thus, Tin Eq. 12-13 is 
equal to Tnet in Eq.12-11. Putting those two equations together, we can write 

Xcog 2,Fgi = 2,xiFgi' 

Substituting n7igi for Fgi gives us 

(12-14) 

Now here is a key idea: If the accelerations gi at all the locations of the elements 
are the same, we can cancel gi from this equation to write 

(12-15) 

The sum 'in7i of the masses of all the elements is the mass M of the body. 
Therefore, we can rewrite Eq. 12-15 as 

(12-16) 

The right side of this equation gives the coordinate Xcom of the body's center of 
mass (Eq. 9-4). We now have what we sought to prove: 

Xcog = X com' (12-17) 

Some Examples of Static Equilibrium 
In this section we examine several sample problems involving static equilibrium. 
In each, we select a system of one or more objects to which we apply the equa­
tions of equilibrium (Eqs.12-7, 12-8, and 12-9). The forces involved in the equilib­
rium are all in the xy plane, which means that the torques involved are parallel to 
the z axis. Thus, in applying Eq. 12-9, the balance of torques, we select an axis 
parallel to the z axis about which to calculate the torques. Although Eq. 12-9 is 
satisfied for any such choice of axis, you will see that certain choices simplify the 
application of Eq. 12-9 by eliminating one or more unknown force terms. 

CHECKPOINT 2 

The figure gives an overhead view of a uniform rod in static equilibrium. (a) Can you 
find the magnitudes of unknown forces Fi and Fz by balancing the forces? (b) If you 
wish to find the magnitude of force Fz by using a balance of torques equation, where 
should you place a rotation axis to eliminate Fi from the equation? (c) The magnitude 
of Fz turns out to be 65 N. What then is the magnitude of l{? 

20N 1~'~--4d---~-
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Balancing a leaning ladder 

In Fig. 12-5a, a ladder of length L = 12 m and mass m = 45 
kg leans against a slick wall (that is, there is no friction be­
tween the ladder and the wall). The ladder's upper end is at 
height h = 9.3 m above the pavement on which the lower 
end is supported (the pavement is not frictionless). The 
ladder's center of mass is L/3 from the lower end, along the 
length of the ladder. A firefighter of mass M = 72 kg climbs 
the ladder until her center of mass is L/2 from the lower 
end. What then are the magnitudes of the forces on the lad­
der from the wall and the pavement? 

First, we choose our system as being the firefighter and lad­
der, together, and then we draw the free-body diagram of 
Fig. 12-5b to show the forces acting on the system. Because 
the system is in static equilibrium, the balancing equations 
for both forces and torques (Eqs. 12-7 through 12-9) can be 
applied to it. 

Calculations: In Fig. 12-5b, the firefighter is represented 
with a dot within the boundary of the ladder. The gravita­
tional force on her is represented with its equivalent expres­
sion Mg, and that vector has been shifted along its line of 
action (the line extending through the force vector), so that 
its tail is on the dot. (The shift does not alter a torque due to 
Mg about any axis perpendicular to the figure. Thus, the 
shift does not affect the torque balancing equation that we 
shall be using.) 

The only force on the ladder from the wall is the hori­
zontal force l{, (there cannot be a frictional force along a 
frictionless wall, so there is no vertical force on the ladder 
from the wall). The force l}, on the ladder from the pave­
ment has two components: a horizontal component l},x that 
is a static frictional force and a vertical component l},y that is 
a normal force. 

To apply the balancing equations, let's start with the 
torque balancing of Eq. 12-9 ('Tnet,z = 0). To choose an axis 
about which to calculate the torques, note that we have 
unknown force~ CF.v and l},) at the two ends of the ladder. To 
eliminate, say, F;, from the calculation, we place the axis at 
point 0, perpendicular to the figure (Fig. 12-5b). We also 
place the origin of an xy coordinate system at O. We can find 
torques about 0 with any of Eqs. 10-39 through 10-41, but 
Eq. 10-41 ('T = I' ~F) is easiest to use here. Making a wise 
choice about the placement of the origin can make our torque 
calculation much easier. 

To find the moment arm r~ of the horizontal force Fw 
from the wall, we draw a line of action through that vector 
(it is the horizontal dashed line shown in Fig. 12-5c). Then 
r~ is the perpendicular distance between 0 and the line of 
action. In Fig. 12-5c, r~ extends along the y axis and is 
equal to the height h. We similarly draw lines of action for 
the gravitational force vectors Mg and mg and see that 
their moment arms extend along the x axis. For the dis­
tance a shown in Fig. 12-5a, the moment arms are a/2 (the 
firefighter is halfway up the ladder) and a/3 (the ladder's 
center of mass is one-third of the way up the ladder), re­
spectively. The moment arms for ~'x and Fpy are zero be­
cause the origin is located at the point where both of those 
forces act. 

Now, with torques written in the form I' ~F, the balancing 
equation 'Tnet,z = 0 becomes 

(h)(FII') + (a/2)(Mg) + (a/3)(mg) 

+ (O)(Fp.\) + (O)(Fpy) = O. (12-18) 

(Recall our rule: A positive torque corresponds to 
counterclockwise rotation and a negative torque corre­
sponds to clockwise rotation.) 

Using the Pythagorean theorem for the right triangle 
made by the ladder in Fig. 11-5a, we find that 

a = v'L 2 - h2 = 7.58 m. 

Then Eq.12-18 gives us 

F = ga(M/2 + m/3) 
II' h 

(9.8 m/s2)(7.58 m)(72/2 kg + 45/3 kg) 

9.3m 

= 407N=410N. (Answer) 

Now we need to use the force balancing equations and 
Fig. 12-5d. The equation Fnet,x = 0 gives us 

F", - Fpx = 0, 

so Fpx = Fw = 410N. (Answer) 

The equation Fnet,y = 0 gives us 

Fpy - Mg - mg = 0, 

so Fpy = (M + m)g = (72 kg + 45 kg)(9.8 m/s2) 

= 1146.6 N = 1100 N. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 12-5 (a) A firefighter climbs halfway up a 
ladder that is leaning against a frictionless wall. 
The pavement beneath the ladder is not friction-
less. (b) A free-body diagram, showing the forces 
that act on the firefighter + ladder system. The ori-
gin 0 of a coordinate system is placed at the point 
of application of the unknown force J}, (whose 
vector components J},x and it)' are shown). (c) 
Calculating the torques. (d) Balancing the forces. 
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Balancing a leaning boom 

Figure 12-6a shows a safe (mass M = 430 kg) hanging by a 
rope (negligible mass) from a boom (a = 1.9 m and b = 2.5 
m) that consists of a uniform hinged beam (m = 85 kg) and 
horizontal cable (negligible mass). 

(a) What is the tension Te in the cable? In other words, what 
is the magnitude of the force Te on the beam from the cable? 

The system here is the beam alone, and the forces on it are 
shown in the free-body diagram of Fig. 12-6b. The force 
from the cable is Te. The gravitational force on the beam 
acts at the beam's center of mass (at the beam's center) and 
is represented by its equivalent mg. The vertical component 
of the force on the beam from the hinge is F", and the hori­
zontal component of the force from the hinge is ~,. The 
force from the rope supporting the safe is T,.. Because beam, 
rope, and safe are stationary, the magnitude of T,. is equal to 

the weight of the safe: Tr = Mg. We place the origin 0 of an 
xy coordinate system at the hinge. Because the system is in 
static equilibrium, the balancing equations apply to it. 

Calculations: Let us start with Eq. 12-9 (Tnet,z = 0). Note 
that we are asked for the magnitude of force Te and not of 
forces ~, and F" acting at the hinge, at point O. To eliminate 
~, and F" from the torque calculation, we should calculate 
torques about an axis that is perpendicular to the figure at 
point O. Then ~, and F" will have moment arms of zero. The 
lines of action for Te, T,., and mg are dashed in Fig. 12-6b. 
The corresponding moment arms are a, b, and b/2. 

Writing torques in the form of r~ F and using our rule about 
signs for torques, the balancing equation Tnet,z = 0 becomes 

(a)(T,J - (b)(T,') - (!b)(mg) = o. 
Substituting Mg for Tr and solving for Te, we find that 

T = gb(M + !m) 
e a 

(9.8 m/s2)(2.5 m)(430 kg + 85/2 kg) 

1.9m 

(12-19) 

= 6093 N = 6100 N. (Answer) 

(b) Find the magnitude F of the net force on the beam from 
the hinge. 

Now we want the horizontal component Fh and vertical 
component Fv so that we can combine them to get the mag-

Fig. 12-6 (a) b 'I A heavy safe is 
hung from a --r-

boom consisting 
of a horizontal 
steel cable and a 
uniform beam. a 
(b) A free-body 

1 diagram for the 
beam. 

(a) 

y ~ 
- ----------~~--~--~ 

Here is the 
wise choice of 
rotation axis. 

r,. 

(b) 
o~--~~--~~----------+---x 

Fh 

nitude F of the net force. Because we know Tel we apply the 
force balancing equations to the beam. 

Calculations: For the horizontal balance, we write 
Fnet,x = 0 as 

and so Fh = Te = 6093 N. 

For the vertical balance, we write Fnet,y = 0 as 

Fv mg - Tr = O. 

Substituting Mg for Tr and solving for Fv, we find that 

Fv = (m + M)g = (85 kg + 430 kg)(9.8 m/s2) 

= 5047N. 

From the Pythagorean theorem, we now have 

F = VF2 + F2 
" v 

(12-20) 

= V(6093 N)2 + (5047 N)2 = 7900 N. (Answer) 

Note that Fis substantially greater than either the combined 
weights of the safe and the beam, 5000 N, or the tension in 
the horizontal wire, 6100 N. 

~s Additional examples, video, and practice available at WileyPLUS 
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Balancing a horizantal beam 

In Fig. 12-7a, a uniform beam, of length L and mass 
m = 1.8 kg, is at rest on two scales. A uniform block, with 
mass M = 2.7 kg, is at rest on the beam, with its center a dis­
tance LI4 from the beam's left end. What do the scales read? 

The first steps in the solution of any problem about static equi­
librium are these: Clearly define the system to be analyzed and 
then draw a free-body diagram of it, indicating all the forces 
on the system. Here, let us choose the system as the beam and 
block taken together. Then the forces on the system are shown 
in the free-body diagram of Fig. 12-7b. (Choosing the system 
takes experience, and often there can be more than one good 
choice.) Because the system is in static equilibrium, we can 
apply the balance of forces equations (Eqs. 12-7 and 12-8) 
and the balance of torques equation (Eq. 12-9) to it. 

Calculations: The normal forces on the beam from the 
scales are P, on the left and F,. on the right. The scale readings 
that we want are equal to the magnitudes of those forces. The 

1 

1 

System~ 

: (a) 

y 
1 

1 

1 

1 
1 

1 

1 

1 

1 

1 

1 1 

a---+I _~L----i 
1 2 1 

L L 1 1 
,.--------4~ 1 

The vertical forces balance 
but that is not enough. 

1 1 

~~~~~~~~~~~~--x 
Block~ "'-- Beam 

l{.beam = /11g 

l{,blork = Mg 
(b) 

We must also balance 
torques, with a wise 
choice of rotation axis. 

Fig. 12-7 (a) A beam of mass m supports a block of mass 
M. (b) A free-body diagram, showing the forces that act on the 
system beam + block. 

gravitational force J{,beam on the beam acts at the beam's cen­
ter of mass and is equal to mg. Similarly, the gravitational 
force J{,h/ock on the block acts at the block's center of mass and 
is equal to Mg. However, to simplify Fig, 12-7b, the block is 
represented by a dot within the boundary of the beam 
and J{b'ock is drawn with its tail on that dot. (This shift of 
the ve~tor I{,Izl9Ck along its line of action does not alter the 
torque due to Fg,b'ock about any axis perpendicular to the figure,) 

The forces have no x components, so Eq. 12-7 
(Fnet,x = 0) provides no information. For the y components, 
Eq.12-8 (Fnet,y = 0) gives us 

F, + Fr - Mg - mg = O. (12-21) 

This equation contains two unknowns, the forces F, and 
Fn so we also need to use Eq. 12-9, the balance of torques 
equation. We can apply it to any rotation axis perpendicular 
to the plane of Fig. 12-7. Let us choose a rotation axis 
through the left end of the beam. We shall also use our gen­
eral rule for assigning signs to torques: If a torque would 
cause an initially stationary body to rotate clockwise about 
the rotation axis, the torque is negative. If the rotation 
would be counterclockwise, the torque is positive. Finally, 
we shall write the torques in the form r 1. F, where the mo­
ment arm r 1. is 0 for PI, Ll4 for Mg, Ll2 for mg, and L for 1, .. 

We now can write the balancing equation (Tnet,z = 0) as 

(O)(F,) - (Ll4)(Mg) - (Ll2)(mg) + (L)(Fr) = 0, 
which gives us 

1M 1 F,. = 4' g + zmg 

= ~(2.7 kg)(9,8 m/s2) + !(1.8 kg)(9.8 m/s2) 

= 15.44 N = 15 N. (Answer) 

Now, solving Eq. 12-21 for F, and substituting this result, we 
find 

F,=(M+m)g-Fr 

= (2.7 kg + 1.8 kg)(9.8 m/s2) - 15.44 N 

= 28.66 N = 29 N. (Answer) 

Notice the strategy in the solution: When we wrote an equa­
tion for the balance of force components, we got stuck with two 
unknowns. If we had written an equation for the balance of 
torques around some arbitrary axis, we would have again got­
ten stuck with those two unknowns. However, because we 
chose the axis to pass throu,&h the point of application of one of 
the unknown forces, here F" we did not get stuck. Our choice 
neatly eliminated that force from the torque equation, allowing 
us to solve for the other unknown force magnitude Fr. Then we 
returned to the equation for the balance of force components 
to find the remaining unknown force magnitude. 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 12-8 The table is an indeterminate 
structure. The four forces on the table legs 
differ from one another in magnitude and 
cannot be found from the laws of static 
equilibrium alone. 

1 Indeterminate Structures 
For the problems of this chapter, we have only three independent equations at 
our disposal, usually two balance of forces equations and one balance of torques 
equation about a given rotation axis. Thus, if a problem has more than three 
unknowns, we cannot solve it. 

Consider an unsymmetrically loaded car. What are the forces-all dif­
ferent-on the four tires? Again, we cannot find them because we have only 
three independent equations. Similarly, we can solve an equilibrium problem for 
a table with three legs but not for one with four legs. Problems like these, in which 
there are more unknowns than equations, are called indeterminate. 

Yet solutions to indeterminate problems exist in the real world. If you rest 
the tires of the car on four platform scales, each scale will register a definite read­
ing, the sum of the readings being the weight of the car. What is eluding us in our 
efforts to find the individual forces by solving equations? 

The problem is that we have assumed-without making a great point of 
it- that the bodies to which we apply the equations of static equilibrium are 
perfectly rigid. By this we mean that they do not deform when forces are ap­
plied to them. Strictly, there are no such bodies. The tires of the car, for ex­
ample, deform easily under load until the car settles into a position of static 
equilibrium. 

We have all had experience with a wobbly restaurant table, which we usually 
level by putting folded paper under one of the legs. If a big enough elephant sat 
on such a table, however, you may be sure that if the table did not collapse, it 
would deform just like the tires of a car. Its legs would all touch the floor, 
the forces acting upward on the table legs would all assume definite (and differ­
ent) values as in Fig. 12-8, and the table would no longer wobble. Of course, we 
(and the elephant) would be thrown out onto the street but, in principle, how do 
we find the individual values of those forces acting on the legs in this or similar 
situations where there is deformation? 

To solve such indeterminate equilibrium problems, we must supplement 
equilibrium equations with some knowledge of elasticity, the branch of physics 
and engineering that describes how real bodies deform when forces are applied 
to them. The next section provides an introduction to this subject. 

_CHECKPOINT 3 

A horizontal uniform bar of weight 10 N is to hang from a ceiling by two wires that 
exert upward forces F; and Pz on the bar. The figure shows four arrangements for the 
wires. Which arrangements, if any, are indeterminate (so that we cannot solve for nu­
merical values of.Fi and Pz)? 

I 
I 

~ ~ 

Pi I 
~ F] F2 d~d 

10 N ION 

(a) (b) 

~ F ~ 

1; F] 2 F] 

10 N JON 

(c) (d) 



1 Elasticity 
When a large number of atoms come together to form a metallic solid, such as an 
iron nail, they settle into equilibrium positions in a three-dimensional lattice, a 
repetitive arrangement in which each atom is a well-defined equilibrium distance 
from its nearest neighbors. The atoms are held together by interatomic forces 
that are modeled as tiny springs in Fig. 12-9. The lattice is remarkably rigid, which 
is another way of saying that the "interatomic springs" are extremely stiff. It is for 
this reason that we perceive many ordinary objects, such as metal ladders, tables, and 
spoons, as perfectly rigid. Of course, some ordinary objects, such as garden hoses or 
rubber gloves, do not strike us as rigid at all. The atoms that make up these objects 
do not form a rigid lattice like that of Fig. 12-9 but are aligned in long, flexible molec­
ular chains, each chain being only loosely bound to its neighbors. 

All real "rigid" bodies are to some extent elastic, which means that we can 
change their dimensions slightly by pulling, pushing, twisting, or compressing 
them. To get a feeling for the orders of magnitude involved, consider a vertical 
steel rod 1 m long and 1 cm in diameter attached to a factory ceiling. If you hang 
a subcompact car from the free end of such a rod, the rod will stretch but only by 
about 0.5 mm, or 0.05%. Furthermore, the rod will return to its original length 
when the car is removed. 

If you hang two cars from the rod, the rod will be permanently stretched and 
will not recover its original length when you remove the load. If you hang three 
cars from the rod, the rod will break. Just before rupture, the elongation of the 
rod will be less than 0.2%. Although deformations of this size seem small, they 
are important in engineering practice. (Whether a wing under load will stay on an 
airplane is obviously important.) 

Figure 12-10 shows three ways in which a solid might change its dimensions 
when forces act on it. In Fig. 12-10a, a cylinder is stretched. In Fig. 12-10b, a cylin­
der is deformed by a force perpendicular to its long axis, much as we might 
deform a pack of cards or a book. In Fig. 12-10c, a solid object placed in a fluid 
under high pressure is compressed uniformly on all sides. What the three defor­
mation types have in common is that a stI'ess, or deforming force per unit area, 
produces a strain, or unit deformation. In Fig. 12-10, tensile stress (associated with 
stretching) is illustrated in (a), shearing stress in (b), and hydraulic stress in (c). 

The stresses and the strains take different forms in the three situations of 
Fig. 12-10, but-over the range of engineering usefulness-stress and strain are 
proportional to each other. The constant of proportionality is called a modulus of 
elasticity, so that 

stress = modulus X strain. (12-22) 

r~ 
~ 

F 

T" 
fl.L L 

L 

1 1 
!F 

(a) (b) 

Fig. 12-10 (a) A cylinder subject to tensile stress stretches by an amount 6.L. (b) A 
cylinder subject to shearing stress deforms by an amount I:!..x, somewhat like a pack of 
playing cards would. (c) A solid sphere subject to uniform hydraulic stress from a fluid 
shrinks in volume by an amount 6. V. All the deformations shown are greatly exaggerated. 

1 . ELASTICITY 315 

Fig. 12-9 The atoms of a metallic 
solid are distributed on a repetitive 
three-dimensional lattice. The 
springs represent interatomic forces. 

" 

(c) 
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Ultimate f--~~~~~R_l-"lp_tl_lr_e-----,:> 
h .~~ strengt /" 

/ 
Yield 
strength 

~ :s 

'~"'-~~~~_/ 
I· Range of permanent -I 

deformation 

Linear (elastic) range 

o Strain (f::..L/L) 

Fig. 12-12 A stress-strain curve for a 
steel test specimen such as that of Fig. 12-11. 
The specimen deforms permanently when 
the stress is equal to the yield strength of 
the specimen's material. It ruptures when 
the stress is equal to the ultimate strength of 
the material. 

Fig. 12-13 A strain gage of overall di­
mensions 9.8 mm by 4.6 mm. The gage is 
fastened with adhesive to the object 
whose strain is to be measured; it experi­
ences the same strain as the object. The 
electrical resistance of the gage varies 
with the strain, permitting strains up to 
3% to be measured. (Courtesy Vishay 
Micro-Measurements Group, Raleigh, NC) 

Fig. 12-11 A test specimen used to determine a stress-strain curve such as that of Fig. 12-
12. The change 6.L that occurs in a certain length L is measured in a tensile stress-strain test. 

In a standard test of tensile properties, the tensile stress on a test cylinder 
(like that in Fig. 12-11) is slowly increased from zero to the point at which the 
cylinder fractures, and the strain is carefully measured and plotted. The result is a 
graph of stress versus strain like that in Fig. 12-12. For a substantial range of 
applied stresses, the stress-strain relation is linear, and the specimen recovers its 
original dimensions when the stress is removed; it is here that Eq. 12-22 applies. If 
the stress is increased beyond the yield strength Sy of the specimen, the specimen 
becomes permanently deformed. If the stress continues to increase, the specimen 
eventually ruptures, at a stress called the ultimate strength Su' 

For simple tension or compression, the stress on the object is defined as FIA, 
where F is the magnitude of the force applied perpendicularly to an area A on the 
object. The strain, or unit deformation, is then the dimensionless quantity t:.L1 L, 
the fractional (or sometimes percentage) change in a length of the specimen. If the 
specimen is a long rod and the stress does not exceed the yield strength, then not 
only the entire rod but also every section of it experiences the same strain when a 
given stress is applied. Because the strain is dimensionless, the modulus in Eq. 
12-22 has the same dimensions as the stress-namely, force per unit area. 

The modulus for tensile and compressive stresses is called the Young's modulus 
and is represented in engineering practice by the symbol E. Equation 12-22 becomes 

£=E t:.L 
A L . (12-23) 

The strain t:.LI L in a specimen can often be measured conveniently with a strain 
gage (Fig. 12-13), which can be attached directly to operating machinery with an 
adhesive. Its electrical properties are dependent on the strain it undergoes. 

Although the Young's modulus for an object may be almost the same for tension 
and compression, the object's ultimate strength may well be different for the two types 
of stress. Concrete, for example, is very strong in compression but is so weak in tension 
that it is almost never used in that manner. Table 12-1 shows the Young's modulus and 
other elastic properties for some materials of engineeling interest. 

In the case of shearing, the stress is also a force per unit area, but the force vector 
lies in the plane of the area rather than perpendicular to it. The strain is the 
dimensionless ratio t:.xIL, with the quantities defined as shown in Fig. 12-10b. The 
corresponding modulus, which is given the symbol G in engineering practice, is 
called the shear modulus. For shearing, Eq.12-22 is written as 

£=G t:.x 
A L' 

(12-24) 

Shearing stresses playa critical role in the buckling of shafts that rotate 
under load and in bone fractures caused by bending. 

In Fig. 12-lOc, the stress is the fluid pressure p on the object, and, as you will see in 
Chapter 14, pressure is a force per unit area. The strain is t:. VI V, where V is the 
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Some Elastic Properties of Selected Materials of Engineering Interest 

Young's Ultimate Yield 
Density p Modulus E Strength S" Strength S" 

Material (kg/m3) (109 N/m2) (106 N/m2) (106 N/m2) 

Steel" 7860 200 400 250 
Aluminum 2710 70 110 95 
Glass 2190 65 50" 
ConcreteC 2320 30 40b 

Woodd 525 13 50b 
Bone 1900 9b nob 
Polystyrene 1050 3 48 

"Structural steel (ASTM-A36). bIn compression. 
'High strength dDouglas fir. 

original volume of the specimen and ~ V is the absolute value of the change in vol­
ume. The corresponding modulus, with symbol B, is called the bulk modulus of the 
material. The object is said to be under hydraulic compression, and the pressure 
can be called the hydraulic stress. For this situation, we write Eq. 12-22 as 

~V 
p=B­V· 

(12-25) 

The bulk modulus is 2.2 X 109 N/m2 for water and 1.6 X 1011 N/m2 for 
steel. The pressure at the bottom of the Pacific Ocean, at its average depth 
of about 4000 m, is 4.0 X 107 N/m2• The fractional compression ~ VIV of a volume 
of water due to this pressure is 1.8%; that for a steel object is only about 0.025%. 
In general, solids-with their rigid atomic lattices-are less compressible than 
liquids, in which the atoms or molecules are less tightly coupled to their 
neighbors. 

Stress and strain of elongated rod 

F F 6.2 X 104 N One end of a steel rod of radius R = 9.5 mm and length 
L = 81 cm is held in a vise. A force of magnitude 
F = 62 kN is then applied perpendicularly to the end face 
(uniformly across the area) at the other end, pulling di­
rectly away from the vise. What are the stress on the rod 
and the elongation ~L and strain of the rod? 

stress = - = -- = -------:---::-
A 1TR2 (1T)(9.5 X 10-3 m)2 

(1) Because the force is perpendicular to the end face and 
uniform, the stress is the ratio of the magnitude F of the 
force to the area A. The ratio is the left side of Eq. 12 -23. 
(2) The elongation ~L is related to the stress and Young's 
modulus E by Eq. 12-23 (FIA = E ~L/L). (3) Strain is the 
ratio of the elongation to the initial length L. 

Calculations: To find the stress, we write 

(Answer) 

The yield strength for structural steel is 2.5 X 108 N/m2, so 
this rod is dangerously close to its yield strength. 

We find the value of Young's modulus for steel in Table 
12 -1. Then from Eq.12 -23 we find the elongation: 

~L = (FIA)L = (2.2 X 108 N/m2)(0.81 m) 
E 2.0 X 1011 N/m2 

= 8.9 X 10-4 m = 0.89 mm. (Answer) 

For the strain, we have 

~L 8.9 X 10-4 m 

L 0.81 m 

= 1.1 X 10-3 = 0.11 %. (Answer) 

~rus Additional examples, video, and practice available at WileyPLUS 
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Balancing a wobbly table 

A table has three legs that are 1.00 m in length and a fourth 
leg that is longer by d = 0.50 mm, so that the table wobbles 
slightly. A steel cylinder with mass M = 290 kg is placed on 
the table (which has a mass much less than M) so that all 
four legs are compressed but unbuckled and the table is 
level but no longer wobbles. The legs are wooden cylinders 
with cross-sectional area A = 1.0 cm2; Young's modulus is 
E = 1.3 X 1010 N/m2

• What are the magnitudes of the forces 
on the legs from the floor? 

We take the table plus steel cylinder as our system. The situ­
ation is like that in Fig. 12-8, except now we have a steel 
cylinder on the table. If the tabletop remains level, the legs 
must be compressed in the following ways: Each of the short 
legs must be compressed by the same amount (call it I1L3) 

and thus by the same force of magnitude F3• The single long 
leg must be compressed by a larger amount I1L4 and thus by 
a force with a larger magnitude F4. In other words, for a 
level tabletop, we must have 

(12-26) 

From Eq. 12-23, we can relate a change in length to the 
force causing the change with I1L = FLlAE, where L is the 
original length of a leg. We can use this relation to replace I1L4 
and I1L3 in Eq. 12-26. However, note that we can approximate 
the original length L as being the same for all four legs. 

Calculations: Making those replacements and that approxi­
mation gives us 

F4L = F:,L + d 
AE AE . 

(12-27) 

We cannot solve this equation because it has two unknowns, 
F4 andF3· 

To get a second equation containing F4 and F3, we can 
use a vertical y axis and then write the balance of vertical 
forces (Fnet•y = 0) as 

3F3 + F4 - Mg = 0, (12-28) 

where Mg is equal to the magnitude of the gravitational force 
on the system. (Three legs have force 13 on them.) To solve 
the simultaneous equations 12-27 and 12-28 for, say, F3, we 
first use Eq. 12-28 to find that F4 = Mg - 3F3• Substituting 
that into Eq.12-27 then yields, after some algebra, 

R _ Mg _ dAE 
3 - 4 4L 

(290 kg)(9.8 m/s2) 

4 
(5.0 X 10-4 m)(10- 4 m2)(1.3 X 1010 N/m2) 

(4)(1.00 m) 

= 548 N = 5.5 X 102 N. (Answer) 

From Eq. 12-28 we then find 

F4 = Mg - 3F3 = (290 kg)(9.8 m/s2) - 3(548 N) 

= 1.2 kN. (Answer) 

You can show that to reach their equilibrium configuration, 
the three short legs are each compressed by 0.42 mm and 
the single long leg by 0.92 mm. 

Additional examples, video, and practice available at WileyPLUS 

Static Equilibrium A rigid body at rest is said to be in static 
equilibrium. For such a body, the vector sum of the external forces 
acting on it is zero: 

(balance of forces). (12-3) 

If all the forces lie in the xy plane, this vector equation is equiva­
lent to two component equations: 

Foet,x = 0 and F net,.\' = 0 (balance of forces). (12-7,12-8) 

Static equilibrium also implies that the vector sum of the external 
torques acting on the body about any point is zero, or 

Toet = 0 (balance of torques). ( 12-5) 

If the forces lie in the xy plane, all torque vectors are parallel to the 

z axis, and Eq. 12-5 is equivalent to the single component equation 

Toet,z = 0 (balance of torques). (12-9) 

Center of Gravity The gravitational force acts individually on 
each element of a body. The net effect of all individual actions may 
be found by imagining an equivalent total gravitational force l{ 
acting at the cente.· of gravity. If the gravitational acceleration g is 
the same for all the elements of the body, the center of gravity is at 
the center of mass. 

Elastic Moduli Three elastic moduli are used to describe the 
elastic behavior (deformations) of objects as they respond to 
forces that act on them. The strain (fractional change in length) is 
linearly related to the applied stress (force per unit area) by the 



proper modulus, according to the general relation 

stress = modulus X strain. (12-22) 

Tension and Compression When an object is under tension 
or compression, Eq. 12-22 is written as 

F !!.L 
it = E L' (12-23) 

where !!.LlL is the tensile or compressive strain of the object, F is 
the magnitude of the applied force F causing the strain, A is the 
cross-sectional area over which F is applied (perpendicular to A, 
as in Fig. 12-10a), and E is the Young's modulus for the object. The 
stress is FIA. 

Shearing When an object is under a shearing stress, Eq.12-22 is 
written as 

Figure 12-14 shows three situations in which the same 
horizontal rod is supported by a hinge on a wall at one end and a 
cord at its other end. Without written calculation, rank the situa­
tions according to the magnitudes of (a) the force on the rod from 
the cord, (b) the vertical force on the rod from the hinge, and ( c) 
the horizontal force on the rod from the hinge, greatest first. 

I 

<j 
(1) (2) 

Fig. 12-14 Question 1. 

In Fig. 12-15, a rigid beam is at­
tached to two posts that are fas­
tened to a floor. A small but heavy 
safe is placed at the six positions in­
dicated, in turn. Assume that the 

1 

(3) 

2 3 4 5 6 

mass of the beam is negligible com- Fig. 12-15 Question 2. 
pared to that of the safe. (a) Rank 
the positions according to the force on post A due to the safe, 
greatest compression first, greatest tension last, and indicate 
where, if anywhere, the force is zero. (b) Rank them according to 
the force on post B. 

Figure 12-16 shows four overhead views of rotating uniform 
disks that are sliding across a frictionless floor. Three forces, of 

(a) (b) (c) (d) 

Fig. 12-16 Question 3. 
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(12-24) 

where !!.xlL is the shearing strain of the object, !!.X is the 
displacement of one end of the object in the direction of the ap­
plied force F (as in Fig. 12-10b), and G is the shear modulus of the 
object. The stress is FIA. 

Hydraulic Stress When an object undergoes hydralllic com­
pression due to a stress exerted by a surrounding fluid, Eq. 12-22 is 
written as !!. V 

p = B V' (12-25) 

where p is the pressure (hydraulic stress) on the object due to the 
fluid, !!. VIV (the strain) is the absolute value of the fractional 
change in the object's volume due to that pressure, and B is the 
bulk modulus of the object. 

magnitude F, 2F, or 3F, act on each disk, either at the rim, at the 
center, or halfway between rim and center. The force vectors rotate 
along with the disks, and, in the "snapshots" of Fig. 12-16, point left 
or right. Which disks are in equilibrium? 

A ladder leans against a frictionless wall but is prevented from 
faIling because of friction between it and the ground. Suppose you 
shift the base of the ladder toward the wall. Determine whether 
the following become larger, smaller, or stay the same (in magni­
tude): (a) the normal force on the ladder from the ground, (b) the 
force on the ladder from the walI, (c) the static frictional force on 
the ladder from the ground, and (d) the maximum value t,max of 
the static frictional force. 

Figure 12-17 shows a mobile of toy penguins hanging from a 
ceiling. Each crossbar is horizontal, has negligible mass, and ex­
tends three times as far to the right of the wire supporting it as to 
the left. Penguin 1 has mass 111\ = 48 kg. What are the masses of 
(a) penguin 2, (b) penguin 3, and ( c) penguin 4? 

Fig. 12-17 Question 5. 

Figure 12-18 shows an overhead 
view of a uniform stick on which 
four forces act. Suppose we choose a 
rotation axis through point 0, calcu­
late the torques about that axis due 
to the forces, and find that these Fig. 12-18 Question 6. 
torques balance. Will the torques 
balance if, instead, the rotation axis is chosen to be at (a) point A (on 
the stick), (b) point B (on line with the stick), or (c) point C (off to 
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one side of the stick)? (d) Suppose, instead, that we find that the 
torques about point 0 do not balance. Is there another point about 
which the torques will balance? 

In Fig. 12-19, a stationary 5 kg rod AC 
is held against a wall by a rope and friction 
between rod and wall. The uniform rod is 1 
m long, and angle () = 30°. (a) If you are to 
find the magnitude of the force f on the rod 
from the rope with a single equation, at what 
labeled point should a rotation axis be 
placed? With that choice of axis and coun­
terclockwise torques positive, what is the 
sign of (b) the torque Til' due to the rod's 
weight and (c) the torque Tr due to 
the pull on the rod by the rope? (d) 
Is the magnitude of T,. greater than, 
less than, or equal to the magnitude 
OfT",? 

Three pinatas hang from the 
(stationary) assembly of massless 
pulleys and cords seen in Fig. 12-
20. One long cord runs from the 
ceiling at the right to the lower pul­
ley at the left, looping halfway 
around all the pulleys. Several 

Fig. 12-19 
Question 7. 

shorter cords suspend pulleys from Fig. 1 2-20 Question 8. 

the ceiling or pinatas from the pulleys. The weights (in newtons) of 
two pinatas are given. (a) What is the weight of the third pinata? 
(Hint: A cord that loops halfway around a pulley pulls on the pul­
ley with a net force that is twice the tension in the cord.) (b) What 
is the tension in the short cord labeled with T? 

In Fig. 12-21, a vertical rod is 
hinged at its lower end and attached 
to a cable at its upper end. A hori­
zontal force Fa is to be applied to 
the rod as shown. If the point at 
which the force is applied is moved 
up the rod, does the tension in the 
cable increase, decrease, or remain 
the same? 

/ 
/ 

Fig. 12-21 Question 9. 

Figure 12-22 shows a horizontal block that is suspended by 
two wires, A and B, which are identical except for their original 
lengths. The center of mass of the block is closer to wire B than to 
wire A. (a) Measuring torques about the block's center of mass, 
state whether the magnitude of 
the torque due to wire A is greater 
than, less than, or equal to the 
magnitUde of the torque due to 
wire B. (b) Which wire exerts more 
force on the block? (c) If the wires 
are now equal in length, which one 
was originally shorter (before the 

P'; 

A B 

.com 

< 

block was suspended) ? Fig. 12-22 Question 10. 

III 
Tutoring problem available (at instructor's discretion) in Wi/eyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Center of Gravity 
@1 Because g varies so little over the extent of 
most structures, any structure's center of grav­
ity effectively coincides with its center of mass. 
Here is a fictitious example where g varies 
more significantly. Figure 12-23 shows an array 
of six particles, each with mass m, fixed to the 
edge of a rigid structure of negligible mass. The 
distance between adjacent particles along the 
edge is 2.00 m. The following table gives the 
value of g (m/s2) at each particle's location. 

)' 

3.",...,,--_4 

2 5 

1 6 x 

Fig. 12-23 

Problem 1. 

Using the coordinate system shown, find (a) the x coordinate Xeom 

and (b) the Y coordinate Yeom of the center of mass of the six-parti­
cle system. Then find (c) the x coordinate Xeog and (d) the Y coordi­
nate Yeog of the center of gravity of the six-particle system. 

Particle 

1 

2 
3 

g 

8.00 

7.80 

7.60 

Particle 

4 

5 

6 

g 

7.40 

7.60 

7.80 

Some Examples of Static Equilibrium 
An automobile with a mass of 1360 kg has 3.05 m between the 

front and rear axles. Its center of gravity is located 1.78 m behind 
the front axle. With the automobile on level ground, determine the 
magnitude of the force from the ground on (a) each front wheel 
(assuming equal forces on the front wheels) and (b) each rear 
wheel (assuming equal forces on the rear wheels). 

SSM WWW In Fig. 12-24, a uniform sphere 
of mass m = 0.85 kg and radius r = 4.2 cm is 
held in place by a massless rope attached to a 
frictionless wall a distance L = 8.0 cm above 
the center of the sphere. Find (a) the tension in 
the rope and (b) the force on the sphere from 
the wall. 

I 
L 

L 
An archer's bow is drawn at its midpoint 

until the tension in the string is equal to the 
force exerted by the archer. What is the angle I~ r~1 
between the two halves of the string? 

IlW A rope of negligible mass is stretched 
horizontally between two supports that are 3.44 

Fig. 12-24 

Problem 3. 

m apart. When an object of weight 3160 N is hung at the center of 



the rope, the rope is observed to sag by 35.0 cm. What is the ten­
sion in the rope? 

A scaffold of mass 60 kg and length 5.0 m is supported in a 
horizontal position by a vertical cable at each end. A window 
washer of mass 80 kg stands at a point 1.5 m from one end. What is 
the tension in (a) the nearer cable and (b) the farther cable? 

A 75 kg window cleaner uses a 10 kg ladder that is 5.0 m long. 
He places one end on the ground 2.5 m from a wall, rests the upper 
end against a cracked window, and climbs the ladder. He is 3.0 m up 
along the ladder when the window breaks. Neglect friction between 
the ladder and window and assume that the base of the ladder does 
not slip. When the window is on the verge of breaking, what are (a) 
the magnitude of the force on the window from the ladder, (b) the 
magnitude of the force on the ladder from the ground, and ( c) the 
angle (relative to the horizontal) of that force on the ladder? 

A physics Brady Bunch, whose weights in newtons are 
indicated in Fig. 12-25, is balanced on a seesaw. What is the number 
of the person who causes the largest torque about the rotation axis 
atflllerlln1 f directed (a) out of the page and (b) into the page? 

2 3 4 5 6 7 8 

220 330 440 560 440 330 220 newtons 
I I I I I 1 

432 o 2 3 4 meters 

Fig. 12-25 Problem 8. 

SSM A meter stick balances horizontally on a knife-edge 
at the 50.0 cm mark. With two 5.00 g coins stacked over the 12.0 
cm mark, the stick is found to balance at the 45.5 cm mark. What is 
the mass of the meter stick? 

The system in Fig. 12-26 is 
in equilibrium, with the string in the 
center exactly horizontal. Block A 
weighs 40 N, block B weighs 50 N, 
and angle ¢ is 35°. Find (a) tension 
T j , (b) tension T2, (c) tension T3 , 

and (d) angle O. 

SSM Figure 12-27 shows a 
diver of weight 580 N standing at Fig. 12-26 Problem 10. 
the end of a diving board with a 
length of L = 4.5 m and negligible 
mass. The board is fixed to two 
pedestals (supports) that are sepa­
rated by distance d = 1.5 m. Of the 
forces acting on the board, what are 
the (a) magnitude and (b) direction 
(up or down) of the force from the 
left pedestal and the (c) magnitude 
and (d) direction (up or down) of 
the force from the right pedestal? Fig. 12-27 Problem 11. 
(e) Which pedestal (left or right) is 
being stretched, and (f) which pedestal is being compressed? 
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In Fig. 12-28, trying to get his car out of mud, a man ties one 
end of a rope around the front bumper and the other end tightly 
around a utility pole 18 m away. He then pushes sideways on the 
rope at its midpoint with a force of 550 N, displacing the center of 
the rope 0.30 m, but the car barely moves. What is the magnitude of 
the force on the car from the rope? (The rope stretches somewhat.) 

t1 
lX~~~ 

Fig. 12-28 Problem 12. 

Figure 12-29 shows the 
anatomical structures in the 
lower leg and foot that are in­
volved in standing on tiptoe, 
with the heel raised slightly off 
the floor so that the foot effec-

~ Calf muscle 

" 

~ Lower leg bones 

tively contacts the floor only at °B 

point P. Assume distance a = \ "A 

;h~ ;;s~~~:~:i:h~ : ~~o;~'r::';~b~ip· / ,'7 

Of the forces acting on the 
foot, what are the (a) magni- Fig. 12-29 Problem 13. 
tude and (b) direction (up or 
down) of the force at point A from the calf muscle and the (c) mag­
nitude and (d) direction (up or down) of the force at point B from 
the lower leg bones? 

scaffo~, ~;~~n1~~~.0~ !o:~~o~~~~ ~ll§.w~~~Ji~l 
form mass 50.0 kg, is suspended Fig. 12-30 Problem 14. 
from a building by two cables. The 
scaffold has dozens of paint cans stacked on it at various points. 
The total mass of the paint cans is 75.0 kg. The tension in the ca­
ble at the right is 722 N. How far horizontally from that cable is 
the center of mass of the system of paint cans? 

IlW Forces Flo F2, and F3 act on the structure of Fig. 12-31, 
shown in an overhead view. We wish to put the structure in equilib­
rium by applying a fourth force, at a point such as P. The fourth 
force has vector components ~, and Fv. We are given that a = 2.0 m, 
b = 3.0 m,e = 1.0 m,Fj = 20 N,F2 = 10 N, and F3 = 5.0 N. Find (a) 
F",(b) Fv,and (c) d. 

y 

I. ~ ~_I Ie-+- b~ a~ 

o 1',,: 

~d ~: 11j 
1 3 

Fig. 12-31 Problem 15. 

A uniform cubical crate is 0.750 m on each side and weighs 
500 N. It rests on a floor with one edge against a very small, fixed 
obstruction. At what least height above the floor must a horizontal 
force of magnitude 350 N be applied to the crate to tip it? 
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In Fig. 12-32, a uniform beam 
of weight 500 N and length 3.0 m is 
suspended horizontally. On the left it 
is hinged to a wall; on the right it is 
supported by a cable bolted to the 
wall at distance D above the beam. 
The least tension that will snap the 
cable is 1200 N. (a) What value of D 
corresponds to that tension? (b) To 
prevent the cable from snapping, 
should D be increased or decreased 
from that value? 

::I In Fig. 12-33, horizontal 
scaffold 2, with uniform mass 

,Cable 

" 

Fig. 12-32 Problem 17. 

i'=rr====::::'====ir=='J11 T = ? 

II p 2 

1112 = 30.0 kg and length L2 = 2.00 I-r7TdI L2 171 
m, hangs from horizontal scaffold .. ~ ---4 
1, with uniform mass /111 = 50.0 Fig. 12-33 Problem 18. 
kg. A 20.0 kg box of nails lies on 
scaffold 2, centered at distance d = 0.500 m from the left end. 
What is the tension T in the cable indicated? 

-1 To crack a certain nut in a 
nutcracker, forces with mag­
nitudes of at least 40 N must act on 
its shell from both sides. For the 
nutcracker of Fig. 12-34, with dis­
tances L = 12 cm and d = 2.6 cm, 
what are the force components F~ 
(perpendicular to the handles) 
corresponding to that 40 N? ~ 

\F~ 
A bowler holds a bowling ball 

(M = 7.2 kg) in the palm of his hand Fig. 12-34 Problem 19. 
(Fig. 12-35). His upper arm is verti-
cal; his lower arm (1.8 kg) is horizontal. What is the magnitude of (a) 
the force of the biceps muscle on the lower arm and (b) the force be­
tween the bony structures at the elbow contact point? 

Biceps 

\ 
Elbow / 

contact 
point 

Fig. 12-35 Problem 20. 

ILW The system in Fig. 12-36 
is in equilibrium. A concrete block 
of mass 225 kg hangs from the end 
of the uniform strut of mass 45.0 kg. 
For angles 4> = 30.00 and f) = 45.0°, 
find (a) the tension T in the cable 
and the (b) horizontal and (c) verti­
cal components of the force on the 
strut from the hinge. Fig. 12-36 Problem 21. 

In Fig. 12-37, a 55 
kg rock climber is in a lie-back climb 
along a fissure, with hands pulling on 
one side of the fissure and feet 
pressed against the opposite side. 
The fissure has width w = 0.20 m, 
and the center of mass of the climber 
is a horizontal distance d = 0.40 m 
from the fissure. The coefficient of 
static friction between hands and 

T 
11 

1 
rock is ILl = 0.40, and between boots Fig. 12-37 Problem 22. 
and rock it is fL2 = 1.2. (a) What is the 
least horizontal pull by the hands and push by the feet that 
will keep the climber stable? (b) For the horizontal pull of 
(a), what must be the vertical distance h between hands and feet? 
If the climber encounters wet rock, so that ILl and fL2 are reduced, 
what happens to (c) the answer to (a) and (d) the answer to (b)? 

In Fig. 12-38, one end of a uni­
form beam of weight 222 N is hinged 
to a wall; the other end is supported 
by a wire that makes angles f) = 30.0° 
with both wall and beam. Find (a) the 
tension in the wire and the (b) hori­
zontal and (c) vertical components of 
the force of the hinge on the beam. 

In Fig. 12-39, a 
climber with a weight of 533.8 N is 
held by a belay rope connected to her 
climbing harness and belay device; 
the force of the rope on her has a line Fig. 12-38 Problem 23. 
of action through her center of mass. 
The indicated angles are f) = 40.0° 
and 4> = 30.0°. If her feet are on the verge of sliding on the vertical 
wall, what is the coefficient of static friction between her climbing 
shoes and the wall? 

Fig. 12-39 Problem 24. 

SSM WWW In Fig. 12-40, 
what magnitude of (constant) force 
F applied horizontally at the axle of 
the wheel is necessary to raise the 
wheel over an obstacle of height 
h = 3.00 cm? The wheel's radius is 
r = 6.00 cm, and its mass is 111 = 

0.800 kg. Fig. 12-40 Problem 25. 



In Fig. 12-41, a 
climber leans out against a vertical ice 
wall that has negligible friction. 
Distance a is 0.914 m and distance L is 
2.10 m. His center of mass is distance 
d = 0.940 m from the feet-ground 
contact point. If he is on the verge of 
sliding, what is the coefficient of static 
friction between feet and ground? 

In Fig. 12-42, a 15 kg block is 

)' 

.. ~ ,\, \> con~~:;~ ..... \0-. d 

\ 

held in place via a pulley system. The Fig. 12-41 Problem 26. 
person's upper arm is vertical; the 
forearm is at angle () = 30° with the horizontal. Forearm and hand 
together have a mass of 2.0 kg, with a center of mass at distance 
d j = 15 cm from the contact point of the forearm bone and the 
upper-arm bone (humerus). The triceps muscle pulls vertically up­
ward on the forearm at distance d2 = 2.5 cm behind that contact 
point. Distance d3 is 35 cm. What are the (a) magnitude and (b) di­
rection (up or down) of the force on the forearm from the triceps 
muscle and the (c) magnitude and (d) direction (up or down) of 
the force on the forearm from the humerus? 

Fig. 12-42 Problem 27. 

In Fig. 12-43, suppose the 
length L of the uniform bar is 3.00 m 
and its weight is 200 N. Also, let the 
block's weight W = 300 N and the 
angle () = 30.0°. The wire can with­
stand a maximum tension of 500 N. 
(a) What is the maximum possible 
distance x before the wire breaks? A 

With the block placed at this maxi­
mum x, what are the (b) horizontal 
and (c) vertical components of the 
force on the bar from the hinge at A? 

A door has a height of 2.1 m 

Fig. 12-43 

Problems 28 and 34. 

along a y axis that extends vertically upward and a width of 0.91 m 
along an x axis that extends outward from the hinged edge of the 
door. A hinge 0.30 m from the top and a hinge 0.30 m from the bot­
tom each support half the door's mass, which is 27 kg. In unit-vector 
notation, what are the forces on the door at (a) the top hinge and 
(b) the bottom hinge? 

In Fig. 12-44, a 50.0 kg uniform square sign, of edge length L = 
2.00 m, is hung from a horizontal rod of length d" = 3.00 m and 
negligible mass. A cable is attached to the end of the rod and to a 
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point on the wall at distance d" = 
4.00 m above the point where the rod 
is hinged to the wall. (a) What is the 
tension in the cable? What are the 
(b) magnitude and (c) direction (left 
or right) of the horizontal compo­
nent of the force on the rod from the 
wall, and the (d) magnitude and 
(e) direction (up or down) of the ver­
tical component of this force? 

In Fig. 12-45, a nonuniform 
bar is suspended at rest in a horizontal 
position by two massless cords. One 
cord makes the angle () = 36.9° with 
the vertical; the other makes the angle 
¢ = 53.1° with the vertical. If the 

Cable 

Fig. 12-44 

Problem 30. 

length L of the bar is 6.10 m, compute the distance x from the left 
end of the bar to its center of mass. 

e 
I~L---1 

-----.1 x ~ conl 

Fig. 12-45 Problem 31. 

In Fig. 12-46, the driver of a car on a horizontal road makes 
an emergency stop by applying the brakes so that all four wheels 
lock and skid along the road. The coefficient of kinetic friction be­
tween tires and road is 0.40. The separation between the front and 
rear axles is L = 4.2 m, and the center of mass of the car is located 
at distance d = 1.8 m behind the front axle and distance h = 0.75 m 
above the road. The car weighs 11 kN. Find the magnitude of (a) 
the braking acceleration of the car, (b) the normal force on each 
rear wheel, (c) the normal force on each front wheel, (d) the brak­
ing force on each rear wheel, and (e) the braking force on each 
front wheel. (Hint: Although the car is not in translational equilib­
rium, it is in rotational equilibrium.) 

Fig. 12-46 Problem 32. 

Figure 12-47a shows a vertical uniform beam of length L 
that is hinged at its lower end. A horizontal force ~ is applied to 
the beam at distance y from the lower end. The beam remains 
vertical because of a cable attached at the upper end, at angle () 
with the horizontal. Figure 12-47 b gives the tension T in the cable 
as a function of the position of the applied force given as a fraction 
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yl L of the beam length. The scale of the T axis is set by T, = 600 N. 
Figure 12-47c gives the magnitude F" of the horizontal force on the 
beam from the hinge, also as a function of yiL. Evaluate (a) angle () 
and (b) the magnitude of ~. 

(a) 

240 

~ 
c:J; 120 

o 

(b) (r) 

Fig. 12-47 Problem 33. 

In Fig. 12-43, a thin horizontal bar AB of negligible weight 
and length L is hinged to a vertical wall at A and supported at B 
by a thin wire BC that makes an angle () with the horizontal. A 
block of weight W can be moved anywhere along the bar; its posi­
tion is defined by the distance x from the wall to its center of 
mass. As a function of x, find (a) the tension in the wire, and the 
(b) horizontal and (c) vertical components of the force on the bar 
from the hinge a t A. 

SSM WWW A cubical box is filled 
with sand and weighs 890 N. We wish to "roll" 
the box by pushing horizontally on one of the 
upper edges. (a) What minimum force is re­
quired? (b) What minimum coefficient of sta­
tic friction between box and floor is required? 
(c) If there is a more efficient way to roll the 
hox, find the smallest possible force that 
would have to be applied directly to the box 
to roll it. (Hint: At the onset of tipping, where 
is the normal force located?) 

Figure 12-48 shows a 70 kg 
climher hanging by only the crimp hold of 
one hand on the edge of a shallow horizontal 
ledge in a rock wall. (The fingers are pressed 
down to gain purchase.) Her feet touch the 
rock wall at distance H = 2.0 m directly be­
low her crimped fingers but do not provide 
any support. Her center of mass is distance 
a = 0.20 m from the wall. Assume that the 
force from the ledge supporting her fingers is 

Fig. 12-48 

Problem 36. 

equally shared by the four fingers. What are the values of the (a) 
horizontal component F" and (b) vertical component F" of the 
force on each fingertip? 

In Fig. 12-49, a uniform plank, with a length L of 6.10 m and a 
weight of 445 N, rests on the ground and against a frictionless roller 

at the top of a wall of height h = 3.05 
m. The plank remains in equilibrium 
for any value of ():::: 70° but slips if 
() < 70°. Find the coefficient of static 
friction between the plank and the 
ground. 

In Fig. 12-50, uniform beams A 
and B are attached to a wall with 
hinges and loosely bolted together 
(there is no torque of one on the 
other). Beam A has length LA = 

2.40 m and mass 54.0 kg; beam B Fig. 12-49 Problem 37. 
has mass 68.0 kg. The two hinge 
points are separated by distance d = 1.80 m. In unit-vector nota­
tion, what is the force on (a) beam A due to its hinge, (b) beam A 
due to the bolt, (c) beam B due to its hinge, and (d) beam B due 
to the bolt? 

Fig. 12-50 Problem 38. 

For the stepladder shown in 
Fig. 12-51, sides AC and CE are each 
2.44 m long and hinged at C. Bar BD is 
a tie-rod 0.762 m long, halfway up. A 
man weighing 854 N climbs l.80 m 
along the ladder. Assuming that the 
floor is frictionless and neglecting the 
mass of the ladder, find (a) the tension 
in the tie-rod and the magnitudes of 
the forces on the ladder from the floor 
at (b) A and (c) E. (Hint: Isolate parts 
of the ladder in applying the equilib­
rium conditions.) 

Figure 12-52a shows a horizon- it E 

tal uniform beam of mass I11b and 
length L that is supported on the left by Fig. 12-51 Problem 39. 
a hinge attached to a wall and on the 

0.2 0.4 0.6 0.8 

x/L 

(a) (b) 

Fig. 12-52 Problem 40. 



right by a cable at angle o with the horizontal. A package of mass Il1p is 
positioned on the beam at a distance x from the left end. 111e total 
mass is I11b + I11p = 61.22 kg. Figure 12-52b gives the tension T in the 
cable as a function of the package's position given as a fraction xlL of 
the beam length. The scale of the T axis is set by Ta = 500 Nand 
Tb 700 N. Evaluate (a) angle 0, (b) mass I11b, and (c) mass I11p. 

A crate, in the form of a cube with edge lengths of 1.2 m, 
contains a piece of machinery; the center of mass of the crate and 
its contents is located 0.30 m above the crate's geometrical center. 
The crate rests on a ramp that makes an angle 0 with the horizon­
tal. As 0 is increased from zero, an angle will be reached at which 
the crate will either tip over or start to slide down the ramp. If the 
coefficient of static friction /Ls between ramp and crate is 0.60, (a) 
does the crate tip or slide and (b) at what angle 0 does this occur? 
If /Ls = 0.70, (c) does the crate tip or slide and (d) at what angle 0 
does this occur? (Hint: At the onset of tipping, where is the normal 
force located?) 

In Fig.12-5 and the associated sample problem, let the coef­
ficient of static friction /Ls between the ladder and the pavement be 
0.53. How far (in percent) up the ladder must the firefighter go to 
put the ladder on the verge of sliding? 

Elasticity 
SSM IlW A horizontal aluminum rod 4.8 cm in diameter 

projects 5.3 cm from a wall. A 1200 kg object is suspended from 
the end of the rod. The shear modulus of aluminum is 3.0 X 
1010 N/m2• Neglecting the rod's mass, find (a) the shear stress on the 
rod and (b) the vertical deflection of the end of the rod. 

Figure 12-53 shows the 
stress-strain curve for a material. ~S 

"­
The scale of the stress axis is set by !-
s = 300, in units of 106 N/m2• What ;3 
are (a) the Young's modulus and (b) '" 
the approximate yield strength for ~ 

[fJ 

this material? 
Strain In Fig. 12-54, a lead brick 

rests horizontally on cylinders A and 
B. The areas of the top faces of the 
cylinders are related by AA = 2AB; 

the Young's moduli of the cylinders 
are related by EA = 2EB• The cylin­
ders had identical lengths before 
the brick was placed on them. What 
fraction of the brick's mass is sup­
ported (a) by cylinder A and (b) by 
cylinder B? The horizontal dis­
tances between the center of mass 
of the brick and the centerlines of 
the cylinders are dA for cylinder 

Fig. 12-53 Problem 44. 

A and dB for cylinder B. (c) What is 
the ratio dA/dB? 

Figure 12-55 shows an 
approximate plot of stress versus 
strain for a spider-web thread, out 
to the point of breaking at a strain 
of 2.00. The vertical axis scale is set 
by values a = 0.12 GN/m2, b = 0.30 
GN/m2, and c = 0.80 GN/m2. 

Assume that the thread has an ini-

A B 

Fig. 12-54 Problem 45. 

~ b 
[fJ {/ 

o 
Strain 

Fig. 12-55 Problem 46. 
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tiallength of 0.80 cm, an initial cross-sectional area of 8.0 X 10- 12 

m2, and (during stretching) a constant volume. Assume also that 
when the single thread snares a flying insect, the insect's kinetic 
energy is transferred to the stretching of the thread. (a) HilI\' 
much kinetic energy would put the thread on the verge of break 
ing? What is the kinetic energy of (b) a fruit fly of mass 6.00 mg 
and speed 1.70 mls and (c) a bumble bee of mass 0.388 g and 
speed 0.420 m/s? Would (d) the fruit fly and (e) the bumhle bee 
break the thread? 

A tunnel of length L = 150 m, height H = 7.2 m, and width 
5.8 m (with a flat roof) is to be constructed at distance d = 60 m be­
neath the ground. (See Fig. 12-56.) The tunnel roof is to be sup­
ported entirely by square steel columns, each with a cross-sectional 
area of 960 cm2• The mass of 1.0 cm3 of the ground material is 2.8 g. 
(a) What is the total weight of the ground material the columns 111lLiL 

support? (b) How many columns are needed to keep the compre:;­
sive stress on each column at one-half its ultimate strength? 

~1'--------L-------4 
-, 

d 

H 

l J 
T 

Fig. 12-56 Problem 47. 

Figure 12-57 shows the 
stress versus strain plot for an alu­
minum wire that is stretched by a 
machine pulling in opposite direc­
tions at the two ends of the wire. 
The scale of the stress axis is set by 
s = 7.0, in units of 107 N/m2• The 
wire has an initial length of 0.800 m 
and an initial cross-sectional area 
of 2.00 X 10-6 m2. How much work 
does the force from the machine do 
on the wire to produce a strain of 
1.00 X 1O-3? 

In Fig. 12-58, a 103 kg uni­
form log hangs by two steel wires, A 
and B, both of radius 1.20 mm. 
Initially, wire A was 2.50 m long 
and 2.00 mm shorter than wire B. 
The log is now horizontal. What are 
the magnitudes of the forces on it 
from (a) wire A and (b) wire B? (c) 
What is the ratio dAlds? 

Figure 12-59 rep­
resents an insect caught at the mid­
point of a spider-web thread. The 
thread breaks under a stress of 
8.20 X 108 N/m2 and a strain of 2.00. 

o 1.0 
Strain (10-3 ) 

Fig. 12-57 Problem 48. 

Fig. 12-58 Problem 49. 

Fig. 12-59 Problem 50. 
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Initially, it was horizontal and had a length of 2.00 cm and a cross­
sectional area of 8.00 X 10-12 m2• As the thread was stretched 
under the weight of the insect, its volume remained constant. If 
the weight of the insect puts the thread on the verge of breaking, 
what is the insect's mass? (A spider's web is built to break if a po­
tentially harmful insect, such as a bumble bee, becomes snared in 
the web.) 

Figure 12-60 is an overhead view of a rigid rod that turns 
about a vertical axle until the identical rubber stoppers A and B 
are forced against rigid walls at distances I'A = 7.0 cm and I'B = 4.0 cm 
from the axle. Initially the stoppers touch the walls without being 
compressed. Then force F of magnitude 220 N is applied per­
pendicular to the rod at a distance R = 5.0 cm from the axle. 
Find the magnitude of the force compressing (a) stopper A and 
(b) stopper B. 

~I·---IA --------I. I 
I 
I 

Fig. 12-60 Problem 51. 

Additional Problems 
After a fall, a 95 kg rock climber finds himself dangling from 

the end of a rope that had been 15 m long and 9.6 mrn in diameter 
but has stretched by 2.8 cm. For the rope, calculate (a) the strain, 
(b) the stress, and (c) the Young's modulus. 

SSM In Fig. 12-61, a rectangular 
slab of slate rests on a bedrock sur­
face inclined at angle e = 26°. The 
slab has length L = 43 m, thickness 
T = 2.5 m, and width W = 12 m, and 
1.0 cm3 of it has a mass of 3.2 g. The 
coefficient of static friction between 
slab and bedrock is 0.39. (a) Fig. 12-61 Problem 53. 
Calculate the component of the 
gravitational force on the slab parallel to the bedrock surface. (b) 
Calculate the magnitude of the static frictional force on the slab. 
By comparing (a) and (b), you can see that the slab is in danger of 
sliding. This is prevented only by chance protrusions of bedrock. 
(c) To stabilize the slab, bolts are to be driven perpendicular to the 
bedrock surface (two bolts are shown). If each bolt has a cross­
sectional area of 6.4 cm2 and will snap under a shearing stress of 
3.6 X 108 N/m2, what is the minimum number of bolts needed? 
Assume that the bolts do not affect the normal force. 

A uniform ladder whose length is 5.0 m and whose weight is 
400 N leans against a frictionless vertical wall. The coefficient of 
static friction between the level ground and the foot of the ladder 
is 0.46. What is the greatest distance the foot of the ladder can be 
placed from the base of the wall without the ladder immediately 
slipping? 

SSM In Fig. 12-62, block A (mass 10 kg) is in equilibrium, 
but it would slip if block B (mass 5.0 kg) were any heavier. For 

angle e = 30°, what is the coeffi-
cient of static friction between 
block A and the surface below it? 

Figure 12-63a shows a uniform 
ramp between two buildings that al­
lows for motion between the build­
ings due to strong winds. At its left 
end, it is hinged to the building wall; 
at its right end, it has a roller that 

A 

can roll along the building wall. B 
There is no vertical force on the 
roller from the building, only a 
horizontal force with magnitude 
F". The horizontal distance be- Fig. 12-62 Problem 55. 
tween the buildings is D = 4.00 m. 
The rise of the ramp is h = 0.490 m. A man walks across the ramp 
from the left. Figure 12-63b gives F" as a function of the horizontal 
distance x of the man from the building at the left. The scale of the 
F" axis is set by a = 20 kN and b = 25 kN. What are the masses of 
(a) the ramp and (b) the man? 

D 
~x~ 

ft· 
~ 

(a) 

~ 
111 ~ 

X (111) 

(b) 

Fig. 12-63 Problem 56. 

In Fig. 12-64, a 10 kg sphere is 
supported on a frictionless plane in­
clined at angle e = 45° from the 
horizontal. Angle ¢ is 25°. Calculate 
the tension in the cable. 

In Fig. 12-65a, a uniform 40.0 kg 
beam is centered over two rollers. 
Vertical lines across the beam mark 
off equal lengths. Two of the lines are 
centered over the rollers; a 10.0 kg 
package of tamales is centered over 
roller B. What are the magnitudes of 
the forces on the beam from (a) 
roller A and (b) roller B? The beam 
is then rolled to the left until the 
right-hand end is centered over 
roller B (Fig. 12-65b). What now are 
the magnitudes of the forces on the 
beam from (c) roller A and (d) 
roller B? Next, the beam is rolled 

Fig. 12-64 Problem 57. 

(a) 

(b) 

to the right. Assume that it has a Fig. 12-65 Problem 58. 
length of 0.800 m. (e) What hori-
zontal distance between the package and roller B puts the beam on 
the verge of losing contact with roller A? 



SSM In Fig. 12-66, an 817 kg 
construction bucket is suspended by 
a cable A that is attached at 0 to 
two other cables Band C, making 
angles 81 = 51.0° and 82 = 66.0° 
with the horizontal. Find the ten- )1 

sions in (a) cable A, (b) cable B, and 
(c) cable C. (Hint: To avoid solving 
two equations in two unknowns, 
position the axes as shown in the 
figure.) 

In Fig. 12-67, a package of mass 
m hangs from a short cord that is 
tied to the wall via cord 1 and to the 
ceiling via cord 2. Cord 1 is at angle 
¢ = 40° with the horizontal; cord 2 is 
at angle 8. (a) For what value of 8 is 
the tension in cord 2 minimized? (b) 
In terms of mg, what is the minimum 
tension in cord 2? 

IlW The force F in Fig. 12-68 
keeps the 6.40 kg block and the 
pulleys in equilibrium. The pulleys 

x 

/ 

Fig. 12-66 Problem 59. 

have negligible mass and friction. Fig. 12-67 Problem 60. 
Calculate the tension T in the up-
per cable. (Hint: When a cable 
wraps halfway around a pulley as here, the 
magnitude of its net force on the pulley is 
twice the tension in the cable.) 

A mine elevator is supported by a single 
steel cable 2.5 cm in diameter. The total mass 
of the elevator cage and occupants is 670 kg. 
By how much does the cable stretch when 
the elevator hangs by (a) 12 m of cable and 
(b) 362 m of cable? (Neglect the mass of the 
cable.) 

Four bricks of length L, identical 
and uniform, are stacked on top of one an­
other (Fig. 12-69) in such a way that part of 
each extends beyond the one beneath. Find, in 
terms of L, the maximum values of (a) ab (b) 

Fig. 12-68 

Problem 61. 

a2, ( c) a3, (d) a4, and (e) h, such that the stack is in equilibrium. 

Fig. 12-69 Problem 63. 

~ 

F 

In Fig. 12-70, two identical, uniform, and frictionless spheres, 
each of mass 111, rest in a rigid rectangular container. A line con­
necting their centers is at 45° to the horizontal. Find the magni-

tudes of the forces on the spheres 
from (a) the bottom ofthe container, 
(b) the left side of the container, 
(c) the right side of the container, 
and (d) each other. (Hint: The force 
of one sphere on the other is directed 
along the center-center line.) 

In Fig. 12-71, a uniform beam 
with a weight of 60 N and a length of 
3.2 m is hinged at its lower end, and a 
horizontal force F of magnitude 50 
N acts at its upper end. The beam is 
held vertical by a cable that makes 
angle 8 = 25° with the ground and is 
attached to the beam at height h = 

2.0 m. What are (a) the tension in the 
cable and (b) the force on the beam 
from the hinge in unit-vector nota­
tion? 

A uniform beam is 5.0 m long 
and has a mass of 53 kg. In Fig. 12-72, 
the beam is supported in a horizontal 
position by a hinge and a cable, with 
angle 8 = 60°. In unit-vector notation, 
what is the force on the beam from the 
hinge? 
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Fig. 12-70 Problem 64. 

~ 

F 

Fig. 12-71 Problem 65. 

Fig. 12-72 Problem 66. 

A solid copper cube has an edge length of 85.5 cm. How much 
stress must be applied to the cube to reduce the edge length to 85.0 
cm? The bulk modulus of copper is 1.4 X 1011 N/m2• 

A construction worker attempts to lift a uniform beam off the 
floor and raise it to a vertical position. The beam is 2.50 m long and 
weighs 500 N. At a certain instant the worker holds the beam mo­
mentarily at rest with one end at distance d = 1.50 m above the 
floor, as shown in Fig. 12-73, by exerting a force P on the beam, 
perpendicular to the beam. (a) What is the magnitude P? (b) 
What is the magnitude of the (net) force of the floor on the 
beam? (c) What is the minimum value the coefficient of static 
friction between beam and floor can have in order for the beam 
not to slip at this instant? 

Fig.12-73 Problem 68. 
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SSM In Fig. 12-74, a uniform rod of mass ~' 
111 is hinged to a building at its lower end, while 
its upper end is held in place by a rope at­
tached to the wall. If angle Bj = 60°, what value 
must angle B2 have so that the tension in the 
rope is equal to 111g/2? 

A 73 kg man stands on a level bridge of 
length L. He is at distance Ll4 from one end. The 
bridge is uniform and weighs 2.7 kN. What are 
the magnitudes of the vertical forces on the 

Fig. 12-74 

Problem 69. 

bridge from its supports at (a) the end farther from him and (b) the 
nearer end? 

SSM A uniform cube of side length 8.0 em rests on a hori­
zontal floor. The coefficient of static friction between cube and 
floor is p.,. A horizontal pull P is applied perpendicular to one of 
the vertical faces of the cube, at a distance 7.0 em above the floor 
on the vertical midline of the cube face. The magnitude of P is 
gradually increased. During that increase, for what values of p., will 
the cube eventually (a) begin to slide and (b) begin to tip? (Hint: 
At the onset of tipping, where is the normal force located?) 

The system in Fig. 12-75 is in equilibrium. The angles are Bj = 60° 
and B2 = 20°, and the ball has mass M = 2.0 kg. What is the tension 
in (a) string ab and (b) string be? 

a 

Fig. 12-75 Problem 72. 

SSM A uniform ladder is 10 m long and weighs 200 N. In 
Fig. 12-76, the ladder leans against a vertical, frictionless wall at 
height h = 8.0 m above the ground. A horizontal force F is 
applied to the ladder at distance d = 2.0 m from its base 
(measured along the ladder). (a) If force magnitUde F = 50 N, 
what is the force of the ground on the ladder, in unit-vector nota­
tion? (b) If F = 150 N, what is the force of the ground on the lad­
der, also in unit-vector notation? (c) Suppose the coefficient of 

y 

L.\. 
11 

Fig. 12-76 Problem 73. 

static friction between the ladder and the ground is 0.38; for what 
minimum value of the force magnitude F will the base of the lad­
der just barely start to move toward the wall? 

A pan balance is made up of a rigid, massless rod with a hang­
ing pan attached at each end. The rod is supported at and free to 
rotate about a point not at its center. It is balanced by unequal 
masses placed in the two pans. When an unknown mass 111 is placed 
in the left pan, it is balanced by a mass 1111 placed in the right pan; 
when the mass 111 is placed in the right pan, it is balanced by a mass 
1112 in the left pan. Show that 111 = Y11111112' 

The rigid square frame in Fig. 

T T 

12-77 consists of the four side bars 
AB, BC, CD, and DA plus two di­
agonal bars AC and BD, which pass 
each other freely at E. By means of 
the turnbuckle G, bar AB is put un­
der tension, as if its ends were 
subject to horizontal, outward 
forces T of magnitude 535 N. (a) 
Which of the other bars are in ten- Fig. 12-77 Problem 75. 

sion? What are the magnitudes of 
(b) the forces causing the tension in those bars and (c) the forces 
causing compression in the other bars? (Hint: Symmetry consider­
ations can lead to considerable simplification in this problem.) 

A gymnast with mass 46.0 kg 
stands on the end of a uniform bal­
ance beam as shown in Fig. 12-78. 
The beam is 5.00 m long and has a 
mass of 250 kg (excluding the mass 
of the two supports). Each support is 
0.540 m from its end of the beam. In 
unit-vector notation, what are the 
forces on the beam due to (a) sup-
port 1 and (b) support 2? Fig. 12-78 Problem 76. 

Figure 12-79 shows a 300 kg cylinder 
Three steel wires support the 
cylinder from a ceiling. Wires 1 
and 3 are attached at the ends of 
the cylinder, and wire 2 is at­
tached at the center. The wires 
each have a cross-sectional area 

that is horizontal. 

rCeiling 

of 2.00 X 10-6 m2• Initially (be- Fig. 12-79 Problem 77. 
fore the cylinder was put in place) 
wires 1 and 3 were 2.0000 m long 
and wire 2 was 6.00 mm longer 
than that. Now (with the cylinder 
in place) all three wires have been Cable 

stretched. What is the tension in 
(a) wire 1 and (b) wire 2? 

In Fig. 12-80, a uniform beam 
of length 12.0 m is supported by a 
horizontal cable and a hinge at an­
gle B = 50.0°. The tension in the ca­
ble is 400 N. In unit-vector nota­
tion, what are (a) the gravitational 
force on the beam and (b) the force 
on the beam from the hinge? 

y 

Lx 

Fig. 12-80 Problem 78. 



Four bricks of length L, identical and uniform, are 
stacked on a table in two ways, as shown in Fig. 12-81 (compare 
with Problem 63). We seek to maximize the overhang distance h in 
both arrangements. Find the optimum distances at. a2, bj, and b2, 

and calculate h for the two arrangements. 

(a) 

(b) 

Fig. 12-81 Problem 79. 

A cylindrical aluminum rod, with an initial length of 0.8000 
m and radius 1000.0 pm, is clamped in place at one end and then 
stretched by a machine pulling parallel to its length at its other 
end. Assuming that the rod's density (mass per unit volume) 
does not change, find the force magnitude that is required of the 
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machine to decrease the radius to 999.9 /Lm. (The yield strength 
is not exceeded.) 

A beam of length L is carried by three men, one man at one 
end and the other two supporting the beam between them on a 
crosspiece placed so that the load of the beam is equally divided 
among the three men. How far from the beam's free end is the 
crosspiece placed? (Neglect the mass of the crosspiece.) 

If the (square) beam in Fig. 12-6a and the associated sample 
problem is of Douglas fir, what must be its thickness to keep the 
compressive stress on it to k of its ultimate strength? 

Figure 12-82 shows a stationary arrangement of two crayon 
boxes and three cords. Box A has a mass of 11.0 kg and is on a 
ramp at angle e = 30.0°; box B has a mass of 7.00 kg and hangs on 
a cord. The cord connected to box A is parallel to the ramp, which 
is frictionless. (a) What is the tension in the upper cord, and (b) 
what angle does that cord make with the horizontal? 

LAT 
n~ 
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Fig. 12-82 Problem 83. 
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One of the long-standing goals of physics is to understand the gravita­
tional force-the force that holds you to Earth, holds the Moon in orbit around 
Earth, and holds Earth in orbit around the Sun. It also reaches out through the 
whole of our Milky Way galaxy, holding together the billions and billions of stars 
in the Galaxy and the countless molecules and dust particles between stars. We 
are located somewhat near the edge of this disk-shaped collection of stars and 
other matter, 2.6 X 104 light-years (2.5 X 1020 m) from the galactic center, around 
which we slowly revolve. 

The gravitational force also reaches across intergalactic space, holding 
together the Local Group of galaxies, which includes, in addition to the Milky 
Way, the Andromeda Galaxy (Fig. 13-1) at a distance of 2.3 X 106 light-years 
away from Earth, plus several closer dwarf galaxies, such as the Large Magellanic 
Cloud. The Local Group is part of the Local Supercluster of galaxies that is being 
drawn by the gravitational force toward an exceptionally massive region of space 
called the Great Attractor. This region appears to be about 3.0 X 108 light-years 
from Earth, on the opposite side of the Milky Way. And the gravitational force is 
even more far-reaching because it attempts to hold together the entire universe, 
which is expanding. 

This force is also responsible for some of the most mysterious structures in 
the universe: black holes. When a star considerably larger than our Sun burns out, 
the gravitational force between all its particles can cause the star to collapse in on 
itself and thereby to form a black hole. The gravitational force at the surface of 
such a collapsed star is so strong that neither particles nor light can escape from 
the surface (thus the term "black hole"). Any star coming too near a black hole 
can be ripped apart by the strong gravitational force and pulled into the hole. 
Enough captures like this yields a supermassive black hole. Such mysterious mon­
sters appear to be common in the universe. 

Although the gravitational force is still not fully understood, the starting 
point in our understanding of it lies in the law of gravitation of Isaac Newton. 

Newton's Law of Gravitation 
Physicists like to study seemingly unrelated phenomena to show that a relation­
ship can be found if the phenomena are examined closely enough. This search for 
unification has been going on for centuries. In 1665, the 23-year-old Isaac Newton 
made a basic contribution to physics when he showed that the force that holds 
the Moon in its orbit is the same force that makes an apple fall. We take this 
knowledge so much for granted now that it is not easy for us to comprehend the 
ancient belief that the motions of earthbound bodies and heavenly bodies were 
different in kind and were governed by different laws. 

Newton concluded not only that Earth attracts both apples and the Moon 
but also that every body in the universe attracts every other body; this tendency 
of bodies to move toward one another is called gravitation. Newton's conclusion 
takes a little getting used to, because the familiar attraction of Earth for earth-
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Fig. 13-1 The Andromeda 
Galaxy. Located 2.3 X 106 light­
years from us, and faintly visible 
to the naked eye, it is very similar 
to our home galaxy, the Milky 
Way. (Courtesy NASA) 

bound bodies is so great that it overwhelms the attraction that earthbound bodies 
have for each other. For example, Earth attracts an apple with a force magnitude 
of about 0.8 N. You also attract a nearby apple (and it attracts you), but the force 
of attraction has less magnitude than the weight of a speck of dust. 

Newton proposed a force law that we call Newton's law of gravitation: Every 
particle attracts any other particle with a gravitational force of magnitude 

(Newton's law of gravitation). (13-1) 

Here 1111 and 1112 are the masses of the particles, r is the distance between them, 
and G is the gravitational constant, with a value that is now known to be 

G = 6.67 X 10-11 N· m2/kg2 

= 6.67 X 10-11 m3/kg· S2. (13-2) 

In Fig. 13-2a, F is the gravitational force acting on particle 1 (mass 1111) due to 
particle 2 (mass 1112)' The force is directed toward particle 2 and is said to be an 
attractive force because particle 1 is attracted toward particle 2. The magnitude 
of the force is given by Eq. 13-1. 

(a) 

This is the pull on 
particle 1 due to 
particle 2. 

/ 
/ 

/ 

Draw the vector 
with its tail on 
particle 1 to show 
the pulling. 

(b) 

. r 

(e) 

A unit vector 
points along 
the radial axis. 

Fig.13-2 (a)Thegravi­
tational force F on patti­
cle 1 due to particle 2 is an 
attractive force because 

2 r particle 1 is attracted to 
particle 2. (b) Force F is 
directed along a radial 
coordinate axis r extend­
ing from particle 1 
through particle 2. (c) F is 
in the direction of a unit 
vector r along the /' axis. 



332 GRAVITATION 

Fig. 13-3 The apple pulls up on 
Earth just as hard as Earth pulls 
down on the apple. 

We can describe F as being in the positive direction of an r axis extending 
radially from particle 1 through particle 2 (Fig. 13-2b). We can also describe F by 
using a radial unit vector r (a dimensionless vector of magnitude 1) that is 
directed away from particle 1 along the r axis (Fig. 13-2c). From Eq. 13-1, the 
force on particle 1 is then 

--> m 11712 A 

F = G--
2
-r. 

r 
(13-3) 

The gravitational force on particle 2 due to particle 1 has the same magnitude 
as the force on particle 1 but the opposite direction. These two forces form a 
third-law force pair, and we can speak of the gravitational force between the two 
particles as having a magnitude given by Eq. 13-1. This force between two parti­
cles is not altered by other objects, even if they are located between the particles. 
Put another way, no object can shield either particle from the gravitational force 
due to the other particle. 

The strength of the gravitational force-that is, how strongly two particles 
with given masses at a given separation attract each other-depends on the 
value of the gravitational constant G. If G-by some miracle-were suddenly 
multiplied by a factor of 10, you would be crushed to the floor by Earth's attrac­
tion. If G were divided by this factor, Earth's attraction would be so weak that 
you could jump over a building. 

Although Newton's law of gravitation applies strictly to particles, we can also 
apply it to real objects as long as the sizes of the objects are small relative to the dis­
tance between them. The Moon and Earth are far enough apart so that, to a good 
approximation, we can treat them both as particles-but what about an apple and 
Earth? From the point of view of the apple, the broad and level Earth, stretching 
out to the horizon beneath the apple, certainly does not look like a particle. 

Newton solved the apple-Earth problem by proving an important theorem 
called the shell theorem: 

A uniform spherical shell of matter attracts a particle that is outside the shell as if all 
the shell's mass were concentrated at its center. 

Earth can be thought of as a nest of such shells, one within another and each shell 
attracting a particle outside Earth's surface as if the mass of that shell were at the 
center of the shell. Thus, from the apple's point of view, Earth does behave like 
a particle, one that is located at the center of Earth and has a mass equal to that 
of Earth. 

Suppose that, as in Fig. 13-3, Earth pulls down on an apple with a force of 
magnitude 0.80 N. The apple must then pull up on Earth with a force of magni­
tude 0.80 N, which we take to act at the center of Earth. Although the forces are 
matched in magnitude, they produce different accelerations when the apple is 
released. The acceleration of the apple is about 9.8 m/s2, the familiar acceleration 
of a falling body near Earth's surface. The acceleration of Earth, however, 
measured in a reference frame attached to the center of mass of the apple-Earth 
system, is only about 1 X 10-25 m/s2• 

CHECKPOINT 1 

A particle is to be placed, in turn, outside four objects, each of mass 111: (1) a large uni­
form solid sphere, (2) a large uniform spherical shell, (3) a small uniform solid sphere, 
and (4) a small uniform shell. In each situation, the distance between the particle and 
the center of the object is d. Rank the objects according to the magnitude of the gravi­
tational force they exert on the particle, greatest first. 
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'1 Gravitation and the Principle of Superposition 
Given a group of particles, we find the net (or resultant) gravitational force on 
anyone of them from the others by using the principle of superposition. This is a 
general principle that says a net effect is the sum of the individual effects, Here, 
the principle means that we first compute the individual gravitational forces that 
act on our selected particle due to each of the other particles, We then find the net 
force by adding these forces vectorially, as usual. 

For n interacting particles, we can write the principle of superposition for the 
gravitational forces on particle 1 as 

(13-4) 

Hen::_l\net is the net force on particle 1 due to the other particles and, for exam­
ple, F13 is the force on particle 1 from particle 3, We can express this equation 
more compactly as a vector sum: 

(13-5) 

What about the gravitational force on a particle from a real (extended) 
object? This force is found by dividing the object into parts small enough to 
treat as particles and then using Eq, 13-5 to find the vector sum of the forces on 
the particle from all the parts. In the limiting case, we can divide the extended 
object into differential parts each of mass dm and each producing a differential 
force dF on the particle, In this limit, the sum of Eq. 13-5 becomes an integral 
and we have 

--> f-> Fl = dF, (13-6) 

in which the integral is taken over the entire extended object and we drop the 
subscript "net." If the extended object is a uniform sphere or a spherical shell, we 
can avoid the integration of Eq. 13-6 by assuming that the object's mass is 
concentrated at the object's center and using Eq. 13-1. 

_CHECKPOINT 2 

The figure shows four arrangements of three particles of equal masses, (a) Rank the 
arrangements according to the magnitude of the net gravitational force on the 
particle labeled 111, greatest first. (b) In arrangement 2, is the direction of the net force 
closer to the line of length d or to the line of length D? 

~~1 l III " @ 

111 III 

(1) (2) 

.. d <II 
D 

01 dl JJ! 

(3) (4) 
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Net gravitational force, 20, 3 particles 

Figure 13-4a shows an arrangement of three particles, parti­
cle 1 of mass ml = 6.0 kg and particles 2 and 3 of mass m2 = 

m3 = 4.0 kg, and distance a = 2.0 cm. What is the net gravi­
tational force l\net on particle 1 due to the other particles? 

(1) Because we have particles, the magnitude of the gravita­
tional force on particle 1 due to either of the other particles is 
given by Eq. 13-1 (F = Gmlm2/r-). (2) The direction of either 
gravitational force on particle 1 is toward the particle responsi­
ble for it. (3) Because the forces are not along a single axis, we 
cannot simply add or subtract their magnitudes or their compo­
nents to get the net force. Instead, we must add them as vectors. 

Calculations: From Eq.13-1, the magnitude of the force F12 
on particle 1 from particle 2 is 

(6.67 X 10-11 m3/kg· s2)(6.0 kg)( 4.0 kg) 

(0.020 m)Z 

= 4.00 X 10-6 N. 

(13-7) 

Similarly, the magnitude of force F13 on particle 1 from 
particle 3 is 

(6.67 X 10-11 m3/kg·sZ)(6.0 kg)(4.0 kg) 

(0.040 m)2 

= 1.00 X 10-6 N . 

(13-8) 

Force F 12 is directed in the positive direction of the y axis 
(Fig. 13-4b) and has only the y component F12• Similarly, F 13 

is directed in the negative direction of the x axis and has 
only the x component - F13 (Fig. 13-4c). 

To find the net force F l,net on particle 1, we must add the 
two forces as vectors (Figs. 13-4d and e). We can do so on a 
vector-capable calculator. However, here we note that - F13 

and F12 are actually the x and y components of F1,net. 

Therefore, we can use Eq. 3-6 to find first the magnitude and 
then the direction of Fl,net. The magnitude is 

Fl,net = V (FlZ)2 + (-Fl3)Z 

= V (4.00 X 10-6 N)2 + (-1.00 X 10-6 N)2 

= 4.1 X 10-6 N. (Answer) 

Relative to the positive direction of the x axis, Eq. 3-6 gives 
the direction of F1,net as 

_ -1 Fl2 _ -1 4.00 X 1O-
6

N = -760. 
() - tan _ Fl3 - tan -1.00 X 10-6 N 

Is this a reasonable direction (Fig. 13-4j)? No, because the 
direction of Fl net must be between the directions of F12 and 
F13• Recall fro'm Chapter 3 that a calculator displays only 
one of the two possible answers to a tan-1 function. We find 
the other answer by adding 180°: 

(Answer) 

which is a reasonable direction for l\nct (Fig. 13-4g). 

. ~ 
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Variation of 8 g with Altitude 

Altitude ag Altitude 
(km) (m/s2) Example 

Mean Earth 
0 9.83 surface 
8.8 9.80 Mt. Everest 

Highest crewed 
36.6 9.71 balloon 

Space shuttle 
400 8.70 orbit 

Communications 
35700 0.225 satellite 

Gravitation Near Earth's Surface 
Let us assume that Earth is a uniform sphere of mass M. The magnitude of the 
gravitational force from Earth on a particle of mass m, located outside Earth a 
distance r from Earth's center, is then given by Eq. 13-1 as 

F = G Mm (13-9) 
r2 

If the particle is released, it will fall toward the center of Earth, as a result of the 
gravitational force F, with an acceleration we shall call the gravitational accelel'a­
tion ago Newton's second law tells us that magnitudes F and ag are related by 

F = mag. (13-10) 

Now, substituting F from Eq.13-9 into Eq. 13-10 and solving for ag, we find 

(13-11) 

Table 13-1 shows values of ag computed for various altitudes above Earth's 
surface. Notice ag is significant even at 400 km. 
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We want the forces 
(pulls) on particle 1, 
not the forces on 
the other particles. 

--':,"'}. 

11/;3 2a 

------\lid!I---x 
nil 

(d) 

This is one way to 
show the net force 
on particle 1. Note 
the head-to-tail 
arrangement. 

(a) 

y This is the force y This is the force )' 

I (pull) on particle 1 ~ (pull) on particle 1 
due to particle 2. 

FI2 
due to particle 3. -'-1112 

a 

X X X 
111] 1111 ~3 Ill] 

(b) (c) 

y )' )' 

li,nel 

-----'<:!--li.---x ---+--.---x ---+--'----x 
1'13 c; I-m] 

(e) 

This is another way, 
also a head-to-tail 
arrangement. 

\ _760 

\ 
\ 

(f) 

A calculator's inverse 
tangent can give this 
for the angle. 

(g) 

\ 
\ 
\ 
\ 

But this is the 
correct angle. 

Fig. 13-4 (a) An arrangement oftbree particles. The force on particle 1 due to (b) particle 2 and (c) 
particle 3. (d) - (g) Ways to combine the forces to get the net force magnitude and orientation. 
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Since Section 5-4, we have assumed that Earth is an inertial frame by neglect­
ing its rotation. This simplification has allowed us to assume that the free-fall 
acceleration g of a particle is the same as the particle's gravitational acceleration 
(which we now call ag). Furthermore, we assumed that g has the constant value 
9.8 m/s2 any place on Earth's surface. However, any g value measured at a given 
location will differ from the ag value calculated with Eq. 13-11 for that location 
for three reasons: (1) Earth's mass is not distributed uniformly, (2) Earth is not a 
perfect sphere, and (3) Earth rotates. Moreover, because g differs from ag, the 
same three reasons mean that the measured weight mg of a particle differs from 
the magnitude of the gravitational force on the particle as given by Eq. 13-9. Let 
us now examine those reasons. Distance Ihl111 center (lOti m) 

7 

1. Earth's mass is not uniformly distributed. The density (mass per unit volume) 
of Earth varies radially as shown in Fig. 13-5, and the density of the crust 
(outer section) varies from region to region over Earth's surface. Thus, g varies 
from region to region over the surface. 

2. Earth is not a sphere. Earth is approximately an ellipsoid, flattened at the 
poles and bulging at the equator. Its equatorial radius (from its center point 
out to the equateI') is greater than its polar radius (from its center point out 

Fig. 13-5 The density of Earth as 
a function of distance from the cen­
ter. The limits of the solid inner core, 
the largely liquid outer core, and the 
solid mantle are shown, but the crust 
of Earth is too thin to show clearly 
on this plot. 
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Two forces act 
on this crate. 

The normal force 
is upward. 

r 

Crate~, 

The gravitational 
force is downward. 
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(a) 

--> 

F;v 

~ 

mag 

(b) 

'--. 
"-

"-
" " \ 

The net 
force is 
toward 

\ 
\ 
\ 
\ 
I 
I 
I 

the center. 
So, the 
crate's 
acceleration 
is too. 

Fig. 13-6 (a) A crate sitting on a scale at 
Earth's equator, as seen by an observer 
positioned on Earth's rotation axis at some 
point above the north pole. (b) A free-body 
diagram for the crate, with a radial r axis ex­
tending from Earth's center. The gravita­
tional force on the crate is represented with 
its equivalent mag. The normal force on the 
crate from the scale is FN. Because of 
Earth's rotation, the crate has a centripetal 
acceleration a that is directed toward 
Earth's center. 

to either north or south pole) by 21 km. Thus, a point at the poles is closer to 
the dense core of Earth than is a point on the equator. This is one reason the 
free-fall acceleration g increases if you were to measure it while moving at sea 
level from the equator toward the north or south pole. As you move, you are 
actually getting closer to the center of Earth and thus, by Newton's law of 
gravitation, g increases. 

3. Earth is rotating. The rotation axis runs through the north and south poles 
of Earth. An object located on Earth's surface anywhere except at those 
poles must rotate in a circle about the rotation axis and thus must have a 
centripetal acceleration directed toward the center of the circle. This cen­
tripetal acceleration requires a centripetal net force that is also directed to­
ward that center. 

To see how Earth's rotation causes g to differ from ag, let us analyze a simple 
situation in which a crate of mass m is on a scale at the equator. Figure 13-6a 
shows this situation as viewed from a point in space above the north pole. 

Figure 13-6b, a free-body diagram for the crate, shows the two forces on 
the crate, both acting along a radial r axis that extends from Earth's center. The 
normal force FN on the crate from the scale is directed outward, in the positive 
direction of the r axis. The gravitational force, represented with its equivalent 
mag, is directed inward. Because it travels in a circle about the center of Earth 
as Earth turns, the crate has a centripetal acceleration a directed toward 
Earth's center. From Eq. 10-23 (al' = u}r), we know this acceleration is equal 
to u}R, where w is Earth's angular speed and R is the circle's radius (approxi­
mately Earth's radius). Thus, we can write Newton's second law for forces 
along the r axis (Fnet,r = mal') as 

(13-12) 

The magnitude FN of the normal force is equal to the weight mg read on the scale. 
With mg substituted for F N, Eq. 13-12 gives us 

which says 

(
meaSured) ( magnitude of ) ( mass times ) 

weight = gravitational force - centripetal acceleration . 

(13-13) 

Thus, the measured weight is less than the magnitude of the gravitational force 
on the crate, because of Earth's rotation. 

To find a corresponding expression for g and ag, we cancel m from Eq. 13-13 
to write 

which says 
g = ag - ulR, 

(
free-fall) (gravitational) ( centriPetal) 

acceleration = acceleration - acceleration' 

(13-14) 

Thus, the measured free-fall acceleration is less than the gravitational accelera­
tion because of Earth's rotation. 

The difference between accelerations g and ag is equal to w2R and is greatest 
on the equator (for one reason, the radius of the circle traveled by the crate is 
greatest there). To find the difference, we can use Eq. 10-5 (w = /:::dJ/ Ilt) and 
Earth's radius R = 6.37 X 106 m. For one rotation of Earth, e is 27T rad and the 
time period Ilt is about 24 h. Using these values (and converting hours to sec­
onds), we find that g is less than ag by only about 0.034 m/s2 (small compared to 
9.8 m/s2). Therefore, neglecting the difference in accelerations g and ag is often 
justified. Similarly, neglecting the difference between weight and the magnitude 
of the gravitational force is also often justified. 
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Difference in acceleration at head and feet 

(a) An astronaut whose height h is 1.70 m floats "feet down" 
in an orbiting space shuttle at distance r = 6.77 X 106 m away 
from the center of Earth. What is the difference between the 
gravitational acceleration at her feet and at her head? 

We can approximate Earth as a uniform sphere of mass ME. 
Then, from Eq.13-11, the gravitational acceleration at any dis­
tance r from the center of Earth is 

GME ag =----2--. (13-15) 
r 

We might simply apply this equation twice, first with r = 
6.77 X 106 m for the location of the feet and then with 
r = 6.77 X 106 m + 1.70 m for the location of the head. 
However, a calculator may give us the same value for ag twice, 
and thus a difference of zero, because h is so much smaller 
than r. Here's a more promising approach: Because we have 
a differential change dr in r between the astronaut's feet and 
head, we should differentiate Eq.13-15 with respect to r. 

Calculations: The differentiation gives us 
GME dag = -2----

3
-- dr, (13-16) 

r 
where dag is the differential change in the gravitational 
acceleration due to the differential change dr in r. For the 
astronaut, dr = hand r = 6.77 X 106 m. Substituting data 
into Eq.13-16, we find 

da = -2 (6.67 x 10-11 m3/kg· s2)(5.98 X 1024 kg) (1.70 m) 
g (6.77 X 106 m? 

= -4.37 X 10-6 m/s2, (Answer) 

where the ME value is taken from Appendix C. This result 
means that the gravitational acceleration of the astronaut's 
feet toward Earth is slightly greater than the gravitational 
acceleration of her head toward Earth. This difference in 
acceleration (often called a tidal effect) tends to stretch her 
body, but the difference is so small that she would never even 
sense the stretching, much less suffer pain from it. 

(b) If the astronaut is now "feet down" at the same or­
bital radius r = 6.77 X 106 m about a black hole of mass 
M" = 1.99 X 1031 kg (10 times our Sun's mass), what is the 
difference between the gravitational acceleration at her 
feet and at her head? The black hole has a mathematical 
surface (event horizon) of radius R" = 2.95 X 104 m. 
Nothing, not even light, can escape from that surface or 
anywhere inside it. Note that the astronaut is well outside 
the surface (at r = 229R,,). 

Calculations: We again have a differential change dr in r 
between the astronaut's feet and head, so we can again use 
Eq. 13-16. However, now we substitute M" = 1.99 X 1031 kg 
for ME. We find 

(6.67 X 10-11 m3/kg· s2)(1.99 X 1031 kg) 
dag = -2 (6.77 X 106 m)3 (1.70 m) 

= -14.5 m/s2• (Answer) 

This means that the gravitational acceleration of the astro­
naut's feet toward the black hole is noticeably larger than 
that of her head. The resulting tendency to stretch her body 
would be bearable but quite painful. If she drifted closer 
to the black hole, the stretching tendency would increase 
drastically. 

/\N~ P l U S Additional examples, video, and practice available at WileyPLUS 

Gravitation Inside Earth 
Newton's shell theorem can also be applied to a situation in which a particle is 
located inside a uniform shell, to show the following: 

A uniform shell of matter exerts no net gravitational force on a particle located 
inside it. 

Caution: This statement does not mean that the gravitational forces on the parti­
cle from the various elements of the shell magically disappear. Rather, it means 
that the sum of the force vectors on the particle from all the elements is zero. 

If Earth's mass were uniformly distributed, the gravitational force acting on a par­
ticle would be a maximum at Earth's surface and would decrease as the particle 
moved outward, away from the planet. If the particle were to move inward, perhaps 



338 H GRAVITATION 

down a deep mine shaft, the gravitational force would change for two reasons. (1) It 
would tend to increase because the particle would be moving closer to the center of 
Earth. (2) It would tend to decrease because the thickening shell of material lying out­
side the particle's radial position would not exert any net force on the particle. 

For a uniform Earth, the second influence would prevail and the force on the 
particle would steadily decrease to zero as the particle approached the center of 
Earth. However, for the real (nonuniform) Earth, the force on the particle actu­
ally increases as the particle begins to descend. The force reaches a maximum at 
a certain depth and then decreases as the particle descends farther. 

Tunnel through Earth's center, gravitation 

In Pole to Pole, an early science fiction story by George 
Griffith, three explorers attempt to travel by capsule 
through a naturally formed (and, of course, fictional) tunnel 
directly from the south pole to the north pole (Fig. 13-7). 
According to the story, as the capsule approaches Earth's 
center, the gravitational force on the explorers becomes 
alarmingly large and then, exactly at the center, it suddenly 
but only momentarily disappears. Then the capsule travels 
through the second half of the tunnel, to the north pole. 

Check Griffith's description by finding the gravitational 
force on the capsule of mass m when it reaches a distance r 
from Earth's center. Assume that Earth is a sphere of uniform 
density P (mass per unit volume). 

Newton's shell theorem gives us three ideas: 

1. When the capsule is at radius r from Earth's center, the 
portion of Earth that lies outside a sphere of radius r does 
not produce a net gravitational force on the capsule. 

2. The portion of Earth that lies inside that sphere does 
produce a net gravitational force on the capSUle. 

3. We can treat the mass Mins of that inside portion of Earth 
as being the mass of a particle located at Earth's center. 

Calculations: All three ideas tell us that we can write Eq. 
13-1, for the magnitude of the gravitational force on the 
capsule, as 

GmMins F= 2 • 
r 

(13-17) 

To write the mass Mins in terms of the radius r, we note 
that the volume Vins containing this mass is ~nr3. Also, be­
cause we're assuming an Earth of uniform density, the density 
Pins = Min/V ins is Earth's density p. Thus, we have 

41Tr3 

Mins = p Yins = P -3-' (13-18) 

Then, after substituting this expression into Eq. 13-17 and 

canceling, we have 

F = 41TGmp 
3 r. (Answer) (13-19) 

This equation tells us that the force magnitude F depends 
linearly on the capsule's distance r from Earth's center. 
Thus, as r decreases, F also decreases (opposite of Griffith's 
description), until it is zero at Earth's center. At least 
Griffith got the zero-at-the-center detail correct. 

Equation 13-19 can also be written in terms of the force 
vector F and the capsule's position vector r along a radial 
axis extending from Earth's center. Let K represent the col­
lection of constants 41TGmpI3. Then, Eq.13-19 becomes 

F= -Kr , (13-20) 

in which we have inserted a minus sign to indicate that F 
and r have opposite directions. Equation 13-20 has the form 
of Hooke's law (Eq. 7-20, F = -kd). Thus, under the ideal­
ized conditions of the story, the capsule would oscillate like 
a block on a spring, with the center of the oscillation at 
Earth's center. After the capsule had fallen from the south 
pole to Earth's center, it would travel from the center to the 
north pole (as Griffith said) and then back again, repeating 
the cycle forever. 

Fig. 1 3-7 A capsule of mass m falls from rest through a tunnel 
that connects Earth's south and north poles. When the capsule is at 
distance r from Earth's center, the portion of Earth's mass that is 
contained in a sphere of that radius is Mins' 

Additional examples, video, and practice available at WileyPLUS 
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'1 Gravitational Potential Energy 
In Section 8-4, we discussed the gravitational potential energy of a particle­
Earth system. We were careful to keep the particle near Earth's surface, so that 
we could regard the gravitational force as constant. We then chose some reference 
configuration of the system as having a gravitational potential energy of zero. 
Often, in this configuration the particle was on Earth's surface. For particles not 
on Earth's surface, the gravitational potential energy decreased when the separa­
tion between the particle and Earth decreased. 

Here, we broaden our view and consider the gravitational potential energy U 
of two particles, of masses m and M, separated by a distance r. We again choose a 
reference configuration with U equal to zero. However, to simplify the equations, 
the separation distance rin the reference configuration is now large enough to be 
approximated as infinite. As before, the gravitational potential energy decreases 
when the separation decreases. Since U = 0 for I' = 00, the potential energy is neg­
ative for any finite separation and becomes progressively more negative as the 
particles move closer together. 

With these facts in mind and as we shall justify next, we take the gravitational 
potential energy of the two-particle system to be 

GMm 
U= ----

I' 
(gravitational potential energy). (13-21) 

Note that U(r) approaches zero as I' approaches infinity and that for any finite 
value of 1', the value of U(r) is negative. 

The potential energy given by Eq. 13-21 is a property of the system of two 
particles rather than of either particle alone. There is no way to divide this energy 
and say that so much belongs to one particle and so much to the other. However, 
if M ~ m, as is true for Earth (mass M) and a baseball (mass m), we often speak 
of "the potential energy of the baseball." We can get away with this because, 
when a baseball moves in the vicinity of Earth, changes in the potential energy of 
the baseball-Earth system appear almost entirely as changes in the kinetic 
energy of the baseball, since changes in the kinetic energy of Earth are too small 
to be measured. Similarly, in Section 13-8 we shall speak of "the potential energy 
of an artificial satellite" orbiting Earth, because the satellite's mass is so much 
smaller than Earth's mass. When we speak of the potential energy of bodies of 
comparable mass, however, we have to be careful to treat them as a system. 

If our system contains more than two particles, we consider each pair of 
particles in turn, calculate the gravitational potential energy of that pair with 
Eq. 13-21 as if the other particles were not there, and then algebraically sum the 
results. Applying Eq. 13-21 to each of the three pairs of Fig. 13-8, for example, 
gives the potential energy of the system as 

( 
Gmlm2 Gmlm3 Gm2i113) 

U=- + + . 
1'12 1'13 1'23 

(13-22) 

Let us shoot a baseball directly away from Earth along the path in Fig. 13-9. We 
want to find an expression for the gravitational potential energy U of the ball at 
point P along its path, at radial distance R from Earth's center. To do so, we first 
find the work W done on the ball by the gravitational force as the ball travels 
from point P to a great (infinite) distance from Earth. Because the gravitational 
force F(r) is a variable force (its magnitude depends on 1'), we must use the tech­
niques of Section 7-8 to find the work. In vector notation, we can write 

f
oo 

-> -> 
W = R F(r)·dr. (13-23) 

Here too. 

Fig. 13-8 A system consisting of three 
particles. The gravitational potential energy 
of the system is the sum of the gravitational 
potential energies of all three pairs of 
particles. 

r 

Work is done 
as the baseball 

F moves upward. 

p 

I 
R 

1 

Fig. 13-9 A baseball is shot directly 
away from Earth, through point P at radial 
distance R from Earth's center. The gravi­
tational force F on the ball and a differen­
tial displacement vector d? are shown, both 
directed along a radial r axis. 
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Actual path 
from A to G 
is irrelevant. 

. (Earth 
, ) 

Fig. 13-10 Near Earth, a baseball is 
moved from point A to point G along a 
path consisting of radial lengths and circu­
lar arcs. 

The integral contains the scalar (or dot) product of the force F(r) and the differential 
displacement vector dr along the ball's path. We can expand that product as 

F(r)· dr = F(r) dr cos cp, (13-24) 

where cp is the angle between the directions of F(r) and dr. When we substitute 
1800 for cp and Eq.13-1 for F(r), Eq.13-24 becomes 

--> --> G Mm 
F(r) . d r = - dr, r2 

where M is Earth's mass and m is the mass of the ball. 
Substituting this into Eq. 13-23 and integrating give us 

l'" 1 [ GMm 1'" W=-GMm R -;Idr= r R 

GMm 
=0---= 

R 
GMm 

R 
(13-25) 

where W is the work required to move the ball from point P (at distance R) to 
infinity. Equation 8-1 (/1V = - W) tells us that we can also write that work in terms 
of potential energies as 

V=-w. 

Because the potential energy Voo at infinity is zero, V is the potential energy at P, 
and W is given by Eq. 13-25, this equation becomes 

GMm 
V=W=- R 

Switching R to r gives us Eq.13-21, which we set out to prove. 

In Fig. 13-10, we move a baseball from point A to point G along a path consisting 
of three radial lengths and three circular arcs (centered on Earth). We are inter­
ested in the total work W done by Earth's gravitational force F on the ball as it 
moves from A to G. The work done along each circular arc is zero, because the 
direction of F is perpendicular to the arc at every point. Thus, W is the sum of 
only the works done by F along the three radial lengths. 

Now, suppose we mentally shrink the arcs to zero. We would then be moving 
the ball directly from A to G along a single radial length. Does that change W? 
No. Because no work was done along the arcs, eliminating them does not change 
the work. The path taken from A to G now is clearly different, but the work done 
by F is the same. 

We discussed such a result in a general way in Section 8-3. Here is the point: 
The gravitational force is a conservative force. Thus, the work done by the grav­
itational force on a particle moving from an initial point i to a final point! is 
independent of the path taken between the points. From Eq. 8-1, the change /1V 
in the gravitational potential energy from point i to point! is given by 

(13-26) 

Since the work W done by a conservative force is independent of the actual path 
taken, the change /1V in gravitational potential energy is also independent of the 
path taken . 

In the proof of Eq. 13-21, we derived the potential energy function VCr) from the 
force function F(r). We should be able to go the other way-that is, to start from 
the potential energy function and derive the force function. Guided by Eq. 8-22 
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(F(x) = -dU(x)/dx), we can write 

F- _ dU __ ~(_ GMm) 
d1' d1' l' 

GMm 
1'2 

(13-27) 

This is Newton's law of gravitation (Eq. 13-1). The minus sign indicates that the 
force on mass m points radially inward, toward mass M. 

If you fire a projectile upward, usually it will slow, stop momentarily, and return 
to Earth. There is, however, a certain minimum initial speed that will cause it to 
move upward forever, theoretically coming to rest only at infinity. This minimum 
initial speed is called the (Earth) escape speed. 

Consider a projectile of mass m, leaving the surface of a planet (or some 
other astronomical body or system) with escape speed v. The projectile has a 
kinetic energy K given by ~mv2 and a potential energy U given by Eq. 13-21: 

GMm 
U= - R ' 

in which M is the mass of the planet and R is its radius. 
When the projectile reaches infinity, it stops and thus has no kinetic energy. It 

also has no potential energy because an infinite separation between two bodies is 
our zero-potential-energy configuration. Its total energy at infinity is therefore 
zero. From the principle of conservation of energy, its total energy at the planet's 
surface must also have been zero, and so 

This yields 

K + U = l mv2 + - --- = 0 ( 
GMm) 

2 R' 

_~2GM v- -R-' (13-28) 

Note that v does not depend on the direction in which a projectile is fired 
from a planet. However, attaining that speed is easier if the projectile is fired in 
the direction the launch site is moving as the planet rotates about its axis. For 
example, rockets are launched eastward at Cape Canaveral to take advantage of 
the Cape's eastward speed of 1500 km/h due to Earth's rotation. 

Equation 13-28 can be applied to find the escape speed of a projectile from 
any astronomical body, provided we substitute the mass of the body for M and 
the radius of the body for R. Table 13-2 shows some escape speeds. 

Some Escape Speeds 

Body Mass (kg) Radius (m) Escape Speed (km/s) 

Ceresa 1.17 X 1021 3.8 X 105 0.64 
Earth's moona 7.36 X 1022 1.74 X 106 2.38 
Earth 5.98 X 1024 6.37 X 106 11.2 
Jupiter 1.90 X 1027 7.15 X 107 59.5 
Sun 1.99 X 1030 6.96 X 108 618 
Sirius Bb 2 X 1030 1 X 107 5200 
Neutron stare 2 X 1030 1 X 104 2 X 105 

"The most massive of the asteroids. 
I, A white dWalf(a star in a final stage of evolution) that is a companion of the blight star Sirius. 
'The collapsed core of a star that remains after that star has exploded in a supernova event. 

CHECKPOINT 3 

You move a ball of mass m away from a 
sphere of mass M. (a) Does the gravita­
tional potential energy of the system of 
ball and sphere increase or decrease? 
(b) Is positive work or negative work 
done by the gravitational force between 
the ball and the sphere? 
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Asteroid falling from space, mechanical energy 

An asteroid, headed directly toward Earth, has a speed of 
12 km/s relative to the planet when the asteroid is 10 Earth 
radii from Earth's center. Neglecting the effects of Earth's 
atmosphere on the asteroid, find the asteroid's speed vf 
when it reaches Earth's surface. 

Because we are to neglect the effects of the atmosphere on 
the asteroid, the mechanical energy of the asteroid - Earth 
system is conserved during the fall. Thus, the final mechani­
cal energy (when the asteroid reaches Earth's surface) is 
equal to the initial mechanical energy. With kinetic energy K 
and gravitational potential energy V, we can write this as 

Kf + Vf = Ki + Vi' (13-29) 

Also, if we assume the system is isolated, the system's 
linear momentum must be conserved during the fall. 
Therefore, the momentum change of the asteroid and that of 
Earth must be equal in magnitude and opposite in sign. 
However, because Earth's mass is so much greater than the 
asteroid's mass, the change in Earth's speed is negligible 
relative to the change in the asteroid's speed. So, the change 
in Earth's kinetic energy is also negligible. Thus, we can 
assume that the kinetic energies in Eq. 13-29 are those of the 
asteroid alone. 

Calculations: Let m represent the asteroid's mass and M 
represent Earth's mass (5.98 X 1024 kg). The asteroid is ini­
tially at distance lORE and finally at distance RE, where RE is 

Earth's radius (6.37 X 106 m). Substituting Eq. 13-21 for V 
and ~mv2 for K, we rewrite Eq.13-29 as 

1 2 GMm _ 1 2 GMm 
zmvf - --- - zl11Vi - OR . 

RE 1 E 

Rearranging and substituting known values, we find 

2GM ( 1 ) vl=vT+~ 1 W 
= (12 X 103 m/s)2 

2(6.67 X 10- 11 m3/kg· s2)(5.98 X 1024 kg) 
+ 6.37 X 106 m 0.9 

= 2.567 X 108 m2/s2, 

and 
Vf = 1.60 X 104 m/s = 16 km/s. (Answer) 

At this speed, the asteroid would not have to be par­
ticularly large to do considerable damage at impact. If it 
were only 5 m across, the impact could release about as 
much energy as the nuclear explosion at Hiroshima. 
Alarmingly, about 500 million asteroids of this size are 
near Earth's orbit, and in 1994 one of them apparently 
penetrated Earth's atmosphere and exploded 20 km 
above the South Pacific (setting off nuclear-explosion 
warnings on six military satellites). The impact of an aster­
oid 500 m across (there may be a million of them 
near Earth's orbit) could end modern civilization and 
almost eliminate humans worldwide. 

~~rus Additional examples, video, and practice available at WileyPLUS 

Fig. 13-11 The path seen from Earth for 
the planet Mars as it moved against a back­
ground of the constellation Capricorn dur­
ing 1971. The planet's position on four days 
is marked. Both Mars and Earth are moving 
in orbits around the Sun so that we see the 
position of Mars relative to us; this relative 
motion sometimes results in an apparent 
loop in the path of Mars. 

1 Planets and Satellites: Kepler's laws 
The motions of the planets, as they seemingly wander against the background of the 
stars, have been a puzzle since the dawn of history. The "loop-the-loop" motion of 
Mars, shown in Fig. 13-11, was particularly baffling. Johannes Kepler (1571-1630), af­
ter a lifetime of study, worked out the empirical laws that govern these motions. 
Tycho Brahe (1546-1601), the last of the great astronomers to make observations 
without the help of a telescope, compiled the extensive data from which Kepler was 
able to derive the three laws of planetary motion that now bear Kepler's name. Later, 
Newton (1642-1727) showed that his law of gravitation leads to Kepler's laws. 

In this section we discuss each of Kepler's three laws. Although here we 
apply the laws to planets orbiting the Sun, they hold equally well for satellites, 
either natural or artificial, orbiting Earth or any other massive central body. 

1. THE LAW OF ORBITS: All planets move in elliptical orbits, with the Sun at one focus. 

Figure 13-12 shows a planet of mass 111 moving in such an orbit around the Sun, 
whose mass is M. We assume that M? 111, so that the center of mass of the 
planet-Sun system is approximately at the center of the Sun. 
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The orbit in Fig. 13-12 is described by giving its semimajor axis a and its 
eccentricity e, the latter defined so that ea is the distance from the center of the 
ellipse to either focus For F'. An eccentricity of zero corresponds to a circle, in 
which the two foci merge to a single central point. The eccentricities of the plane­
tary orbits are not large; so if the orbits are drawn to scale, they look circular. The 
eccentricity of the ellipse of Fig. 13-12, which has been exaggerated for clarity, is 
0.74. The eccentricity of Earth's orbit is only 0.0167. 

2. THE LAW OF AREAS: A line that connects a planet to the Sun sweeps out equal 
areas in the plane of the planet's orbit in equal time intervals; that is, the rate dAidt at 
which it sweeps out area A is constant. 

Qualitatively, this second law tells us that the planet will move most slowly when 
it is farthest from the Sun and most rapidly when it is nearest to the Sun. As it 
turns out, Kepler's second law is totally equivalent to the law of conservation of 
angular momentum. Let us prove it. 

The area of the shaded wedge in Fig. 13-13a closely approximates the area swept 
out in time D.t by a line connecting the Sun and the planet, which are separated by dis­
tance r. The area M of the wedge is approximately the area of a triangle with base 
r!:le and height r. Since the area of a triangle is one-half of the base times the height, 
!:lA = ~ 1'2 !:le. This expression for !:lA becomes more exact as D.t (hence !:le) ap­
proaches zero. The instantaneous rate at which area is being swept out is then 

dA 1 2 de 1 2 ( ) dt = 21' dt = 21' w, 13-30 

in which w is the angular speed of the rotating line connecting Sun and planet. 
Figure 13-13b shows the linear momentum p of the planet, along with the radial 

and perpendicular components of p. From Eq.11-20 (L = rp -L), the magnitude of 
the angular momentum l of the planet about the Sun is given by the product of l' 
and p -L, the component of p perpendicular to r. Here, for a planet of mass m, 

L = rp -L = (r)(mv -L) = (r)(mwr) 

(13-31) 

where we have replaced v -L with its equivalent WI' (Eq. 10-18). Eliminating r2w 
between Eqs. 13-30 and 13-31 leads to 

dA 

dt 

L 
2m . (13-32) 

If dA/dt is constant, as Kepler said it is, then Eq. 13-32 means that L must also be 
constant-angular momentum is conserved. Kepler's second law is indeed 
equivalent to the law of conservation of angular momentum. 

Fig. 13-13 (a) In time M, the line r con­
necting the planet to the Sun moves through 
an angle ~ e, sweeping out an area ~A 
(shaded). (b) The linear momentum p ofthe 
planet and the components of p. 

The planet sweeps 
out this area. 
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Fig. 13-12 A planet of mass m moving 
in an elliptical orbit around the Sun. The 
Sun, of mass M, is at one focus F of the el­
lipse. The other focus is F' , which is located 
in empty space. Each focus is a distance ea 
from the ellipse's center, with e being the 
eccentricity of the ellipse. The semimajor 
axis a of the ellipse, the perihelion (nearest 
the Sun) distance Rp , and the aphelion (far­
thest from the Sun) distance Ra are also 
shown. 

These are the two 
momentum components. 
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Fig. 13-14 A planet of mass m moving 
around the Sun in a circular orbit of radius r. 

Kepler's Law of Periods for the Solar 
System 

Semimajor T21a3 

Axis Period (10-34 

Planet a (lOlOm) T(y) y2/m3) 

Mercury 5.79 0.241 2.99 
Venus 10.8 0.615 3.00 
Earth 15.0 1.00 2.96 
Mars 22.8 1.88 2.98 
Jupiter 77.8 11.9 3.01 
Saturn 143 29.5 2.98 
Uranus 287 84.0 2.98 
Neptune 450 165 2.99 
Pluto 590 248 2.99 

3. THE LAW OF PERIODS: The square of the period of any planet is proportional 
to the cube of the semimajor axis of its orbit. 

To see this, consider the circular orbit of Fig. 13-14, with radius r (the radius of 
a circle is equivalent to the semimajor axis of an ellipse). Applying Newton's 
second law (F = ma) to the orbiting planet in Fig. 13-14 yields 

GMm 
--2 - = (m)(w2r). 

r 
(13-33) 

Here we have substituted from Eq. 13-1 for the force magnitude F and used Eq. 10-
23 to substitute w2r for the centripetal acceleration. If we now use Eq. 10-20 to re­
place w with 27TIT, where T is the period of the motion, we obtain Kepler's third law: 

T2 = (~: )1'3 (law of periods). (13-34) 

The quantity in parentheses is a constant that depends only on the mass M of the 
central body about which the planet orbits. 

Equation 13-34 holds also for elliptical orbits, provided we replace r with a, 
the semimajor axis of the ellipse. This law predicts that the ratio T21a3 has essen­
tially the same value for every planetary orbit around a given massive body. Table 
13-3 shows how well it holds for the orbits of the planets of the solar system. 

_CHECKPOINT 4 

Satellite 1 is in a certain circular orbit around a planet, while satellite 2 is in a larger 
circular orbit. Which satellite has (a) the longer period and (b) the greater speed? 

Kepler's law of periods, Comet Halley 

Comet Halley orbits the Sun with a period of 76 years and, in 
1986, had a distance of closest approach to the Sun, its peri­
helion distance Rp , of 8.9 X 1010 m. Table 13-3 shows that this 
is between the orbits of Mercury and Venus. 

Ra = 2a - Rp 

= (2)(2.7 X 1012 m) - 8.9 X 1010 m 

= 5.3 X 1012 m. (Answer) 

(a) What is the comet's farthest distance from the Sun, 
which is called its aphelion distance Ra? 

From Fig. 13-12, we see that Ra + Rp = 2a, where a is the semi­
major axis of the orbit. Thus, we can find Ra if we first find a. 
We can relate a to the given period via the law of periods (Eq. 
13-34) if we simply substitute the semimajor axis a for r. 

Calculations: Making that substitution and then solving 
for a, we have 

= ( GMT2 )113 
a 47T 2 • (13-35) 

If we substitute the mass M of the Sun, 1.99 X 1030 kg, and 
the period T of the comet, 76 years or 2.4 X 109 s, into Eq. 
13-35, we find that a = 2.7 X 1012 m. Now we have 

Table 13-3 shows that this is a little less than the semimajor 
axis of the orbit of Pluto. Thus, the comet does not get far­
ther from the Sun than Pluto. 

(b) What is the eccentricity e of the orbit of comet Halley? 

We can relate e, a, and Rp via Fig. 13-12, in which we see that 
ea = a - Rp. 

Calculation: We have 

e = a - Rp = 1 _ Rp 
a a 

(13-36) 

= 1 _ 8.9 X 10
10 

m = 0 7 
2.7 X 1012m .9 . (Answer) 

This tells us that, with an eccentricity approaching unity, this 
orbit must be a long thin ellipse. 

Additional examples, video, and practice available at WileyPLUS 
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Satellites: Orbits and Energy 
As a satellite orbits Earth in an elliptical path, both its speed, which fixes its 
kinetic energy K, and its distance from the center of Earth, which fixes its gravita­
tional potential energy U, fluctuate with fixed periods. However, the mechanical 
energy E of the satellite remains constant. (Since the satellite's mass is so much 
smaller than Earth's mass, we assign U and E for the Earth-satellite system to 
the satellite alone.) 

The potential energy of the system is given by Eq. 13-21: 

U= _ GMm 
r 

(with U = 0 for infinite separation). Here r is the radius of the satellite's orbit, 
assumed for the time being to be circular, and M and m are the masses of Earth 
and the satellite, respectively. 

To find the kinetic energy of a satellite in a circular orbit, we write Newton's 
second law (F = ma) as 

=m-, 
r 

(13-37) 

where v2/r is the centripetal acceleration of the satellite. Then, from Eq. 13-37, the 
kinetic energy is 

K = !mv2 = GMm 
2 2r ' 

which shows us that for a satellite in a circular orbit, 

U 
K=--

2 
(circular orbit). 

The total mechanical energy of the orbiting satellite is 

or 

GMm 
E=K+ U=--

2r 
GMm 

r 

E= 
GMm 

2r 
(circular orbit). 

(13-38) 

(13-39) 

(13-40) 

This tells us that for a satellite in a circular orbit, the total energy E is the negative of 
the kinetic energy K: 

E= -K (circular orbit). (13-41) 

For a satellite in an elliptical orbit of semimajor axis a, we can substitute a for r in 
Eq. 13-40 to find the mechanical energy: 

GMm 
E= ----

2a 
(elliptical orbit). (13-42) 

Equation 13-42 tells us that the total energy of an orbiting satellite depends 
only on the semimajor axis of its orbit and not on its eccentricity e. For example, 
four orbits with the same semimajor axis are shown in Fig. 13-1S; the same satel­
lite would have the same total mechanical energy E in all four orbits. Figure 13-16 
shows the variation of K, U, and E with r for a satellite moving in a circular orbit 
about a massive central body. 

Fig. 13-16 The variation of kinetic energy K, potential energy U, and total energy E 
with radius r for a satellite in a circular orbit. For any value of r, the values of U and E are 
negative, the value ofK is positive, and E = -K.As r---'> 00, all three energy curves 
approach a value of zero. 

Fig. 13-15 Four orbits with different ec­
centricities e about an object of mass M. All 
four orbits have the same semimajor axis a 
and thus correspond to the same total me­
chanical energy E. 

This is a plot of a 
satellite's energies 
versus orbit radius. 

Energy 

U(r) 

The kinetic energy 
is positive. 

The potential energy 
and total energy 
are negative. 
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CHECKPOINT 5 

In the figure here, a space shuttle is initially in a circular orbit of radius I' about Earth. 
At point P, the pilot briefly fires a forward-pointing thruster to decrease the shuttle's 
kinetic energy K and mechanical energy E. (a) Which of the dashed elliptical orbits 
shown in the figure will the shuttle then take? (b) Is the orbital period T of the shut­
tle (the time to return to P) then greater than, less than, or the same as in the circular 
orbit? 
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Mechanical energy of orbiting bowling ball 

A playful astronaut releases a bowling ball, of mass m = 

7.20 kg, into circular orbit about Earth at an altitude h of 
350km. 

(a) What is the mechanical energy E of the ball in its 
orbit? 

We can get E from the orbital energy, given by Eq. 13-40 
(E = -GMmI2r), if we first find the orbital radius r. (It is 
not simply the given altitude.) 

Calculations: The orbital radius must be 

r = R + h = 6370 km + 350 km = 6.72 X 106 m, 

in which R is the radius of Earth. Then, from Eq. 13-40, the 
mechanical energy is 

E = _ GMm 
21' 

(6.67 X 10-11 N· m2/kg 2)(5.98 X 1024 kg)(7.20 kg) 
(2)(6.72 x 106 m) 

= -2.14 X 108 J = -214 MJ. (Answer) 

(b) What is the mechanical energy Eo of the ball on the 
launchpad at Cape Canaveral (before it, the astronaut, and 
the spacecraft are launched)? From there to the orbit, what 
is the change I1E in the ball's mechanical energy? 

On the launchpad, the ball is not in orbit and thus Eq. 13-40 
does not apply. Instead, we must find Eo = /(0 + Uo, where 
/(0 is the ball's kinetic energy and Uo is the gravitational po­
tential energy of the ball-Earth system. 

Calculations: To find Uo, we use Eq. 13-21 to write 

u. __ GMm 
0- R 

(6.67 X 10-11 N· m2/kg 2)(5.98 X 1024 kg)(7.20 kg) 
6.37 X 106 m 

= -4.51 X 108 J = -451 MJ. 

The kinetic energy /(0 of the ball is due to the ball's motion 
with Earth's rotation. You can show that /(0 is less than 1 MJ, 
which is negligible relative to Uo. Thus, the mechanical en­
ergy of the ball on the launchpad is 

Eo = /(0 + Uo = 0 - 451 MJ = -451 MJ. (Answer) 

The increase in the mechanical energy of the ball from 
launchpad to orbit is 

I1E = E Eo = (-214 MJ) - (-451 MJ) 

= 237 MJ. (Answer) 

This is worth a few dollars at your utility company. 
Obviously the high cost of placing objects into orbit is not 
due to their required mechanical energy. 

p'fus Additional examples, video, and practice available at WileyPLUS 
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Einstein and Gravitation 

Albert Einstein once said: "I was ... in the patent office at Bern when all of a 
sudden a thought occurred to me: 'If a person falls freely, he will not feel his 
own weight.' I was startled. This simple thought made a deep impression on me. 
lt impelled me toward a theory of gravitation." 

Thus Einstein tells us how he began to form his general theory of relativity. 
The fundamental postulate of this theory about gravitation (the gravitating of 
objects toward each other) is called the principle of equivalence, which says that 
gravitation and acceleration are equivalent. If a physicist were locked up in a 
small box as in Fig. 13-17, he would not be able to tell whether the box was at 
rest on Earth (and subject only to Earth's gravitational force), as in Fig. 13-17a, 
or accelerating through interstellar space at 9.8 m/s2 (and subject only to the 
force producing that acceleration), as in Fig. 13-17b. In both situations he would 
feel the same and would read the same value for his weight on a scale. Moreover, 
if he watched an object fall past him, the object would have the same acceleration 
relative to him in both situations. 

We have thus far explained gravitation as due to a force between masses. Einstein 
showed that, instead, gravitation is due to a curvature of space that is caused by 
the masses. (As is discussed later in this book, space and time are entangled, so 
the curvature of which Einstein spoke is really a curvature of spacetime, the 
combined four dimensions of our universe.) 

Picturing how space (such as vacuum) can have curvature is difficult. An 
analogy might help: Suppose that from orbit we watch a race in which two boats 
begin on Earth's equator with a separation of 20 km and head due south (Fig. 
13-18a). To the sailors, the boats travel along fiat, parallel paths. However, with 
time the boats draw together until, nearer the south pole, they touch. The sailors 
in the boats can interpret this drawing together in terms of a force acting on the 
boats. Looking on from space, however, we can see that the boats draw together 
simply because of the curvature of Earth's surface. We can see this because we 
are viewing the race from "outside" that sUliace. 

N 

(a) (b) 

Fig. 13-17 (0) A physicist in a box resting 
on Earth sees a cantaloupe falling with 
acceleration 0 = 9.8 m/s2. (b) If he and the 
box accelerate in deep space at 9.8 m/s2, the 
cantaloupe has the same acceleration rela­
tive to him. It is not possible, by doing 
experiments within the box, for the physicist 
to tell which situation he is in. For example, 
the platform scale on which he stands reads 
the same weight in both situations. 

Curved space 
near Earth 

Parallel paths 

(a) s (b) s 

Flat space 
far from 
Earth 

(c) 

Fig. 13-18 (0) Two objects moving along lines of longitude toward the south pole 
converge because of the curvature of Earth's surface. (b) Two objects falling freely near 
Earth move along lines that converge toward the center of Earth because of the curvature 
of space near Earth. ( c) Far from Earth (and other masses), space is flat and parallel paths 
remain parallel. Close to Earth, the parallel paths begin to converge because space is 
curved by Earth's mass. 

Earth 
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Figure 13-18b shows a similar race: Two horizontally separated apples are 
dropped from the same height above Earth. Although the apples may appear to 
travel along parallel paths, they actually move toward each other because they 
both fall toward Earth's center. We can interpret the motion of the apples in 
terms of the gravitational force on the apples from Earth. We can also interpret 
the motion in terms of a curvature of the space near Earth, a curvature due to the 
presence of Earth's mass. This time we cannot see the curvature because we 
cannot get "outside" the curved space, as we got "outside" the curved Earth in 
the boat example. However, we can depict the curvature with a drawing like Fig. 
13-18c; there the apples would move along a surface that curves toward Earth 
because of Earth's mass. 

When light passes near Earth, the path of the light bends slightly because of 
the curvature of space there, an effect called gravitational lensing. When light 
passes a more massive structure, like a galaxy or a black hole having large mass, 
its path can be bent more. If such a massive structure is between us and a quasar 
(an extremely bright, extremely distant source of light), the light from the quasar 
can bend around the massive structure and toward us (Fig. 13-19a). Then, because 
the light seems to be coming to us from a number of slightly different directions 
in the sky, we see the same quasar in all those different directions. In some situa­
tions, the quasars we see blend together to form a giant luminous arc, which is 
called an Einstein ring (Fig. 13-19b). 

Should we attribute gravitation to the curvature of spacetime due to the 
presence of masses or to a force between masses? Or should we attribute it to 
the actions of a type of fundamental particle called a graviton, as conjectured in 
some modern physics theories? Although our theories about gravitation have 
been enormously successful in describing everything from falling apples to plane­
tary and stellar motions, we still do not fully understand it on either the cosmo­
logical scale or the quantum physics scale. 

(a) 

Paths of light 
from quasar 

Apparent 
quasar directions 

Galaxy or 
large black hole 

Final paths 

(b) 

Fig. 13-19 (a) Light from a distant quasar follows curved paths around a galaxy or 
a large black hole because the mass of the galaxy or black hole has curved the adjacent 
space. If the light is detected, it appears to have originated along the backward extensions 
of the final paths (dashed lines). (b) The Einstein ring known as MGl131+0456 on the 
computer screen of a telescope. The source of the light (actually, radio waves, which are 
a form of invisible light) is far behind the large, unseen galaxy that produces the ring; 
a portion of the source appears as the two bright spots seen along the ring. (Courtesy 
National Radio Astronomy Obsel1!atory) 



The Law of Gravitation Any particle in the universe attracts 
any other pm·ticle with a gravitational fOl'ce whose magnitude is 

F= G 11111112 ,.2 (Newton's law of gravitation), (13-1 ) 

where 1111 and 1112 are the masses of the particles, r is their separation, 
and G (= 6.67 X 10-II N . m2/kg2) is the gravitational constant. 

Gravitational Behavior of Uniform Spherical Shells 
The gravitational force between extended bodies is found by 
adding (integrating) the individual forces on individual particles 
within the bodies. However, if either of the bodies is a uniform 
spherical shell or a spherically symmetric solid, the net gravita­
tional force it exerts on an external object may be computed as if 
all the mass of the shell or body were located at its center. 

Superposition Gravitational forces obey the principle of su­
perposition; that is, if n particles interact, the net force FI,net on a 
particle labeled particle 1 is the sum of the forces on it from all the 
other particles taken one at a time: 

(13-5) 

in which the sum is a vector sum of the forces FJi on particle 
1 from particles 2, 3, ... , n. The gravitational force FI on a 
particle from an extended body is found by dividing the body into 
units of differential mass dl11, each of which produces a differential 
force dF on the particle, and then integrating to find the sum of 
those forces: 

~ f ~ F; = dF. (13-6) 

Gravitational Acceleration The gravitational acceleration ag 

of a particle (of mass 111) is due solely to the gravitational force acting 
on it. When the particle is at distance l' from the center of a uniform, 
spherical body of mass M, the magnitude F of the gravitational force 
on the particle is given by Eq, 13-1. Thus, by Newton's second law, 

F = mag, (13-10) 
which gives 

(13-11) 

Free-Fall Acceleration and Weight Because Earth's mass 
is not distributed uniformly, because the planet is not perfectly 
spherical, and because it rotates, the actual free-fall acceleration g 
of a particle near Earth differs slightly from the gravitational accel­
eration ag , and the particle's weight (equal to I11g) differs from the 
magnitude of the gravitational force on it (Eq.13-1). 

Gravitation Within a Spherical Shell A uniform shell of 
matter exerts no net gravitational force on a particle located inside 
it This means that if a particle is located inside a uniform solid 
sphere at distance r from its center, the gravitational force exerted 
on the particle is due only to the mass Mins that lies inside a sphere 
of radius 1', This mass is given by 

41T1· 3 

Mins = P -3-' (13-18) 

where p is the density of the sphere. 
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Gravitational Potential Energy The gravitational potential 
energy U(r) of a system of two particles, with masses M and m and 
separated by a distance 1', is the negative of the work that would be 
done by the gravitational force of either particle acting on the other 
if the separation between the particles were changed from infinite 
(very large) to I', This energy is 

U = _ GMm 
(gravitational potential energy). 

l' 
(13-21) 

Potential Energy of a System If a system contains more 
than two particles, its total gravitational potential energy U is the 
sum of terms representing the potential energies of all the pairs. As 
an example, for three particles, of masses 1111,1112, and 1113, 

U = _ ( G111 11112 + GI111 1113 + GI1121113), 
/'12 r13 '23 

(13-22) 

Escape Speed An object will escape the gravitational pull of 
an astronomical body of mass M and radius R (that is, it will reach 
an infinite distance) if the object's speed near the body's surface is 
at least equal to the escape speed, given by 

v = ) 2~M . (13-28) 

Kepler's Laws The motion of satellites, both natural and artifi­
cial, is governed by these laws: 

1. The law of orbits. All planets move in elliptical orbits with the 
Sun at one focus. 

2. The law of areas. A line joining any planet to the Sun sweeps 
out equal areas in equal time intervals. (This statement is equiv­
alent to conservation of angular momentum.) 

3. The law of periods. The square of the period T of any planet is 
proportional to the cube of the semimajor axis a of its orbit For 
circular orbits with radius r, 

(law of periods), (13-34) 

where M is the mass of the attracting body - the Sun in the case 
of the solar system. For elliptical planetary orbits, the semi­
major axis a is substituted for r. 

Energy in Planetary Motion When a planet or satellite with 
mass 111 moves in a circular orbit with radius 1', its potential energy 
U and kinetic energy K are given by 

U = - GMl11 and K = GMm. (13-21,13-38) 
r 21' 

The mechanical energy E = K + U is then 

E = _ GMI11 
2r . 

For an elliptical orbit of semimajor axis a, 

E = _ GMI11 
2a . 

(13-40) 

(13-42) 

Einstein's View of Gravitation Einstein pointed out that gravi­
tation and acceleration are equivalent. This principle of equivalence 
led him to a theory of gravitation (the general theory ofrelativity) that 
explains gravitational effects in terms of a curvature of space. 
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In Fig. 13-20, a central particle of 211;[ __ ----~~-----.4Al 
mass M is surrounded by a square ar- M 

ray of other particles, separated by ei- 7M 5kI 

ther distance d or distance dl2 along 
3M • the perimeter of the square. What are kI 

the magnitude and direction of the 5M 7M 
net gravitational force on the central M 
particle due to the other particles? 4M 

Figure 13-21 shows three Fig. 13-20 Question 1. 
arrangements of the same identical 
particles, with three of them placed 
on a circle of radius 0.20 m and the 
fourth one placed at the center of the 
circle. (a) Rank the arrangements ac­
cording to the magnitude of the net 
gravitational force on the central par­
ticle due to the other three particles, 
greatest first. (b) Rank them accord­
ing to the gravitational potential en-
ergy of the four-particle system, least 
negative first. 

In Fig. 13-22, a central particle is 
surrounded by two circular rings of 
particles, at radii rand R, with R > r. 
All the particles have mass 111. What 
are the magnitude and direction of 
the net gravitational force on the 
central particle due to the particles 
in the rings? 

cc 
(a) 

Fig. 13-21 

(b) 

• I 
I 

(c) 

Question 2. 

In Fig. 13-23, two particles, of Fig. 13-22 Question 3. 
masses 111 and 2111, are fixed in place 
on an axis. (a) Where on the axis can 
a third particle of mass 3111 be placed 
(other than at infinity) so that the net 
gravitational force on it from the first 
two particles is zero: to the left of the 
first two particles, to their right, be-

111 2111 

Fig. 13-23 Question 4. 

tween them but closer to the more massive particle, or between 
them but closer to the less massive particle? (b) Does the answer 
change if the third particle has, instead, a mass of 16m? (c) Is there a 
point off the axis (other than infinity) at which the net force on the 
third particle would be zero? 

Figure 13-24 shows three situations involving a point particle P 
with mass 111 and a spherical shell with a uniformly distributed 
mass M. The radii of the shells are given. Rank the situations ac-

--<>---~-----T---

P I 
d 

__ L _ 

(a) 

p P 
------------1@-

- --;;\ -,,-',,\') - - - - - - -­
R\ / 

(b) (c) 

Fig. 13-24 Question 5. 

cording to the magnitude of the gravitational force on particle P 
due to the shell, greatest first. 

In Fig. 13-25, three particles are 
fixed in place. The mass of B is 
greater than the mass of C. Can a 
fourth particle (particle D) be placed 
somewhere so that the net gravita­
tional force on particle A from pat'ti­
cles B, C, and D is zero? If so, in 
which quadrant should it be placed 
and which axis should it be near? 

Rank the four systems of equal­
mass particles shown in Checkpoint 2 

)' 

______ .A~----~_C--x 

d 
d--! 

~B 
Fig. 1 3-25 Question 6. 

according to the absolute value of the gravitational potential energy 
of the system, greatest first. 

Figure 13-26 gives the gravitational acceleration ag for four planets 
as a function of the radial distance r from the center of the planet, start­
ing at the sUlface of the planet (at radius Rj ,R2, R3, or R4)' Plots 1 and 2 
coincide for r ;::: R2; plots 3 and 4 coincide for r ;::: R4• Rank the four plan­
ets according to (a) mass and (b) mass per unit volume, greatest first. 

Fig. 13-26 Question 8. 

Figure 13-27 shows three parti­
cles initially fixed in place, with B 
and C identical and positioned sym­
metrically about the y axis, at dis­
tance d from A. (a) In what direction 
is the net gravitational force Fnet on 
A? (b) If we move C directly away 
from the origin, does Fnel change in 
direction? If so, how and what is the 
limit of the change? 

o Figure 13-28 shows six paths by 
which a rocket orbiting a moon might 
move from point a to point b. Rank the 
paths according to (a) the correspond­
ing change in the gravitational poten­
tial energy of the rocket-moon system 
and (b) the net work done on the 
rocket by the gravitational force from 
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Fig. 13-27 Question 9. 

5 

6 

the moon, greatest first. 
. Fig. 13-28 Question 10. 

Figure 13-29 shows three UnI-

form spherical planets that are identical in size and mass. The peri­
ods of rotation T for the planets are given, and six lettered points 



are indicated-three points are on the equators of the planets and 
three points are on the north poles. Rank the points according to 
the value of the free-fall acceleration g at them, greatest first. 

16 h 24 h 48 h 

a 

Fig. 13-29 Question 11. 
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In Fig. 13-30, a particle of mass m (which is not shown) is to 
be moved from an infinite distance to one of the three possible 
locations a, b, and c. Two other particles, of masses m and 2m, are 
already fixed in place on the axis, as shown. Rank the three pos­
sible locations according to the work done by the net gravita­
tional force on the moving particle due to the fixed particles, 
greatest first. 

• 
a 2111 b 111 

Fig. 13-30 Question 12. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Newton's Law of Gravitation 
ILW A mass M is split into two parts, m and M - m, which are 

then separated by a certain distance. What ratio mlM maximizes 
the magnitude of the gravitational force between the parts? 

Moon effect. Some people believe that the Moon con­
trols their activities. If the Moon moves from being directly on the 
opposite side of Earth from you to being directly overhead, by 
what percent does (a) the Moon's gravitational pull on you 
increase and (b) your weight (as measured on a scale) decrease? 
Assume that the Earth - Moon (center-to-center) distance is 
3.82 X 108 m and Earth's radius is 6.37 X 106 m. 

SSM What must the separation be between a 5.2 kg particle 
and a 2.4 kg particle for their gravitational attraction to have 
a magnitude of2.3 X 10-12 N? 

The Sun and Earth each exert a gravitational force on the 
Moon. What is the ratio FsunlFEarth of these two forces? (The aver­
age Sun - Moon distance is equal to the Sun - Earth distance.) 

Gravitation and the Principle of Superposition 

Miniature black holes. Left over from the big-bang beginning 
of the universe, tiny black holes might still wander through the uni­
verse. If one with a mass of 1 X 1011 kg (and 1111 

a radius of only 1 X 10-16 m) reached 
Earth, at what distance from your head 
would its gravitational pull on you match 
that of Earth's? 

In Fig. 13-31, a square of edge length 
20.0 cm is formed by four spheres of masses 
/111 = 5.00 g, m2 = 3.00 g, m3 = 1.00 g, and 
m4 = 5.00 g. In unit-vector notation, what is 
the net gravitational force from them on a 
central sphere with mass m5 = 2.50 g? 

y 

I 

;-----(j, 

1113 1114 

Fig. 13-31 

Problem 6. 

One dimension. In Fig. 13-32, two point particles are fixed on 
an x axis separated by distance d. Particle A has mass I11A and par-

ticle B has mass 3.00I11A' A third particle C, of 
mass 75.0mA' is to be placed on the x axis and 
near particles A and B. In terms of distance d, 
at what x coordinate should C be placed so 
that the net gravitational force on particle A 
from particles Band C is zero? 

In Fig. 13-33, three 5.00 kg spheres are lo­

Fig. 13-32 

Problem 7. 

cated at distances d1 = 0.300 m and d2 = 0.400 m. What are the (a) 
magnitude and (b) direction (relative to the positive direction of the 
x axis) of the net gravitational force on sphere B due to spheres A 
andC? 

d2 

Fig. 13-33 Problem 8. 

SSM WWW We want to position a space probe along a line 
that extends directly toward the Sun in order to monitor solar flares. 
How far from Earth's center is the point on the line where the Sun's 
gravitational pull on the probe balances Earth's pull? 

Til'O dimensions. In Fig. 13-
34, three point particles are fixed in 
place in an xy plane. Particle A has 
mass mA, particle B has mass 2.00I11A, 
and particle C has mass 3.00I11A' A 
fourth particle D, with mass 4.00I11A' is 
to be placed near the other three par­
ticles. In terms of distance d, at what 
(a) x coordinate and (b) y coordinate Fig. 13-34 Problem 10. 



352 GRAVITATION 

should particle D be placed so that the net gravitational force on 
particle A from particles B, C, and D is zero? 

0$1 As seen in Fig. 13-35, two 
spheres of mass m and a third sphere 
of mass M form an equilateral trian-
gle, and a fourth sphere of mass m4 is 
at the center of the triangle. The net 
gravitational force on that central 
sphere from the three other spheres is 
zero. (a) What is M in terms of m? (b) 
If we double the value of m4, what 
then is the magnitude of the net gravi- 111 

tational force on the central sphere? 

In Fig. 13-36a, particle A is fixed 

11,1[ 

Fig. 13-35 

Problem 11. 

111 

in place at x = -0.20 m on the x axis and particle B, with a mass 
of 1.0 kg, is fixed in place at the origin. Particle C (not shown) 
can be moved along the x axis, between particle B and x = 00. 

Figure 13-36b shows the x component Fnet.x of the net gravita­
tional force on particle B due to particles A and C, as a function 
of position x of particle C. The plot actually extends to the right, 
approaching an asymptote of -4.17 X 10-10 N as x - 00. What 
are the masses of (a) particle A and (b) particle C? 

(a) 

O~-1--~.--b--~ 

o 

x(m) 

(b) 

Fig. 1 3-36 Problem 12. 

Figure 13-37 shows a spheri­
cal hollow inside a lead sphere of 
radius R = 4.00 cm; the surface of 
the hollow passes through the cen­
ter of the sphere and "touches" the 
right side of the sphere. The mass 

/II 

of the sphere before hollowing Fig. 13-37 Problem 13. 
was M = 2.95 kg. With what gravi-
tational force does the hollowed-out lead sphere attract a small 
sphere of mass m = 0.431 kg that lies at a distance d = 9.00 cm 
from the center of the lead sphere, on the straight line connect­
ing the centers of the spheres and of the hollow? 

~ Three point particles are 
fixed in position in an xy plane. Tho 
of them, particle A of mass 6.00 g 
and particle B of mass 12.0 g, are 
shown in Fig. 13-38, with a separation 
of dAB = 0.500 m at angle () = 30°. 
Particle C, with mass 8.00 g, is not 
shown. The net gravitational force 
acting on particle A due to particles 
Band Cis 2.77 X 10-14 N at an an-

y 

B 

e 
-------L--~----x 

A 

Fig. 1 3-38 Problem 14. 

gle of -163.8° from the positive direction of the x axis. What are 
(a) the x coordinate and (b) the y coordinate of particle C? 

Three dimensions. Three point particles are fixed in place in 
an xyz coordinate system. Particle A, at the origin, has mass mAo 

Particle B, at xyz coordinates (2.00d, l.OOd, 2.00d), has mass 
2.00I11A, and particle C, at coordinates (-1.00d, 2.00d, - 3.00d), has 
mass 3.00I11A' A fourth particle D, with mass 4.00I11A, is to be placed 
near the other particles. In terms of distance d, at what (a) x, (b) y, 
and (c) z coordinate should D be placed so that the net gravita­
tional force on A from B, C, and D is zero? 

In Fig. 13-39, a particle of mass ml = 0.67 kg is a distance 
d = 23 cm from one end of a uniform rod with length L = 3.0 m 
and mass M = 5.0 kg. What is the magnitude of the gravitational 
force Fan the particle from the rod? 

/--ryd/ll 
-11~dr 

r- d -I' L -I 
Fig. 13-39 Problem 16. 

Gravitation Near Earth's Surface 
(a) What will an object weigh on the Moon's surface if it 

weighs 100 N on Earth's surface? (b) How many Earth radii must 
this same object be from the center of Earth if it is to weigh the 
same as it does on the Moon? 

Mountain pull. A large mountain can slightly affect 
the direction of "down" as determined by a plumb line. Assume 
that we can model a mountain as a sphere of radius R = 2.00 km 
and density (mass per unit volume) 2.6 X 103 kg/m3. Assume also 
that we hang a 0.50 m plumb line at a distance of 3R from the 
sphere'S center and such that the sphere pulls horizontally on the 
lower end. How far would the lower end move toward the sphere? 

SSM At what altitude above Earth's surface would the 
gravitational acceleration be 4.9 m/s2? 

Mile-high bllilding. In 1956, Frank Lloyd Wright proposed 
the construction of a mile-high building in Chicago. Suppose the 
building had been constructed. Ignoring Earth's rotation, find the 
change in your weight if you were to ride an elevator from the 
street level, where you weigh 600 N, to the top of the building. 

IlW Certain neutron stars (extremely dense stars) are 
believed to be rotating at about 1 rev/s. If such a star has a radius of 
20 km, what must be its minimum mass so that material on its sur­
face remains in place during the rapid rotation? 

The radius R" and mass M" of a black hole are related by 
R" = 2GM,,Ic2

, where c is the speed of light. Assume that the gravi­
tational acceleration ag of an object at a distance ro = 1.00lR" from 
the center of a black hole is given by Eq. 13-11 (it is, for large black 
holes). (a) In terms of M",find ag at roo (b) Does ag at ro increase or de­
crease as M" increases? (c) What is ag at to for a very large black hole 
whose mass is 1.55 X 1012 times the solar mass of 1.99 X 1030 kg? (d) 
If an astronaut of height 1.70 m is at to with her feet down, what is the 
difference in gravitational acceleration between her head and feet? 
(e) Is the tendency to stretch the astronaut severe? 

One model for a certain planet has a core of radius Rand 
mass M surrounded by an outer shell of inner radius R, outer ra­
dius 2R, and mass 4M. If M = 4.1 X 1024 kg and R = 6.0 X 106 m, 
what is the gravitational acceleration of a particle at points (a) R 
and (b) 3R from the center of the planet? 



1 Gravitation Inside Earth 
Two concentric spherical shells 

with uniformly distributed masses 
Ml and M2 are situated as shown in 
Fig. 13-40. Find the magnitude of the 
net gravitational force on a particle 
of mass m, due to the shells, when the 
particle is located at radial distance 
(a) a, (b) b, and (c) c. 

A solid uniform sphere has a 
M2 

mass of 1.0 X 104 kg and a radius of Fig. 13-40 Problem 24. 
1.0 m. What is the magnitude of the 
gravitational force due to the sphere on a particle of mass m lo­
cated at a distance of (a) 1.5 m and (b) 0.50 m from the center of 
the sphere? (c) Write a general expression for the magnitude of 
the gravitational force on the particle at a distance r oS 1.0 m from 
the center of the sphere. 

Consider a pulsar, a collapsed star of extremely high density, 
with a mass M equal to that of the Sun (1.98 X 1030 kg), a radius R 
of only 12 km, and a rotational period T of 0.041 s. By what per­
centage does the free-fall acceleration g differ from the gravita­
tional acceleration ag at the equator of this spherical star? 

Figure 13-41 shows, not to scale, a cross section through the 
interior of Earth. Rather than being uniform throughout, Earth is 
divided into three zones: an outer crust, a mantle, and an inner 
core. The dimensions of these zones and the masses contained 
within them are shown on the figure. Earth has a total mass of 
5.98 X 1024 kg and a radius of 6370 km. Ignore rotation and assume 
that Earth is spherical. (a) Calculate ag at the surface. (b) Suppose 
that a bore hole (the Moho/e) is driven to the crust-mantle inter­
face at a depth of 25.0 km; what would be the value of ag at the bot­
tom of the hole? (c) Suppose that Earth were a uniform sphere 
with the same total mass and size. What would be the value of ag at 
a depth of 25.0 km? (Precise measurements of ag are sensitive 
probes of the interior structure of Earth, although results can be 
clouded by local variations in mass distribution.) 

Core, 1.93 x 1024 kg 

Mantle, 4.01 x 1024 kg 

Crust, 3.94 x 1022 kg 

Fig. 13-41 Problem 27. 

Assume a planet is a uniform sphere of radius R that 
(somehow) has a narrow radial tunnel through its center 
(Fig. 13-7). Also assume we can position an apple anywhere 
along the tunnel or outside the sphere. Let FR be the magnitude 
of the gravitational force on the apple when it is located at the 
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planet's surface. How far from the surface is there a point where 
the magnitude is iFR if we move the apple (a) away from the 
planet and (b) into the tunnel? 

Gravitational Potential Energy 
Figure 13-42 gives the potential energy function U(r) of a 

projectile, plotted outward from the surface of a planet of radius 
Rs. What least kinetic energy is required of a projectile launched at 
the surface if the projectile is to "escape" the planet? 

R, 
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Fig. 13-42 Problems 29 

and 34. 

In Problem 1, what ratio 111/M gives the least gravitational 
potential energy for the system? 

SSM The mean diameters of Mars and Earth are 6.9 X 103 km 
and 1.3 X 104 km, respectively. The mass of Mars is 0.11 times 
Earth's mass. (a) What is the ratio of the mean density (mass per 
unit volume) of Mars to that of Earth? (b) What is the value of the 
gravitational acceleration on Mars? (c) What is the escape speed 
on Mars? 

(a) What is the gravitational potential energy of the two-par­
ticle system in Problem 3? If you triple the separation between the 
particles, how much work is done (b) by the gravitational force be­
tween the particles and ( c) by you? 

What multiple of the energy needed to escape from Earth gives 
the energy needed to escape from (a) the Moon and (b) Jupiter? 

Figure 13-42 gives the potential energy function U(r) of a 
projectile, plotted outward from the surface of a planet of radius 
Rs. If the projectile is launched radially outward from the surface 
with a mechanical energy of -2.0 X 109 J, what are (a) its kinetic 
energy at radius r = 1.25Rs and (b) its tllrning point (see Section 
8-6) in terms of Rs? 

Figure 13-43 shows four particles, 
each of mass 20.0 g, that form a square with an 
edge length of d = 0.600 m. If d is reduced to 
0.200 m, what is the change in the gravitational 
potential energy of the four-particle system? 

Zero, a hypothetical planet, has a 
mass of 5.0 X 1023 kg, a radius of 3.0 X 106 m, 
and no atmosphere. A 10 kg space probe is to 

Fig. 13-43 

Problem 35. 

be launched vertically from its surface. (a) If the probe is launched 
with an initial energy of 5.0 X 107 J, what will be its kinetic energy 
when it is 4.0 X 106 m from the center of Zero? (b) If the probe is 
to achieve a maximum distance of 8.0 X 106 m from the center of 
Zero, with what initial kinetic energy must it be launched from the 
surface of Zero? 
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The three spheres in Fig. 13-44, with masses mA = 80 g, 
mB = 10 g, and me = 20 g, have their centers on a common line, 
with L = 12 cm and d = 4.0 cm. You move sphere B along the line 
until its center-to-center separation from C is d = 4.0 cm. How 
much work is done on sphere B (a) by you and (b) by the net gravi­
tational force on B due to spheres A and C? 

A 

Fig. 13-44 Problem 37. 

In deep space, sphere A of mass 20 kg is located at the origin 
of an x axis and sphere B of mass 10 kg is located on the axis at x = 

0.80 m. Sphere B is released from rest while sphere A is held at the 
origin. (a) What is the gravitational potential energy of the two­
sphere system just as B is released? (b) What is the kinetic energy 
of B when it has moved 0.20 m toward A? 

SSM (a) What is the escape speed on a spherical asteroid 
whose radius is 500 km and whose gravitational acceleration at the 
surface is 3.0 mls2? (b) How far from the surface will a particle go if 
it leaves the asteroid's surface with a radial speed of 1000 m/s? (c) 
With what speed will an object hit the asteroid if it is dropped from 
1000 km above the surface? 

A projectile is shot directly away from Earth's surface. 
Neglect the rotation of Earth. What multiple of Earth's radius RE 
gives the radial distance a projectile reaches if (a) its initial speed is 
0.500 of the escape speed from Earth and (b) its initial kinetic en­
ergy is 0.500 of the kinetic energy required to escape Earth? (c) 
What is the least initial mechanical energy required at launch if the 
projectile is to escape Earth? 

SSM 1\\10 neutron stars are separated by a distance of 
1.0 X 1010 m. They each have a mass of 1.0 X 1030 kg and a radius 
of 1.0 X 105 m. They are initially at rest with respect to each other. 
As measured from that rest frame, how fast are they moving when 
(a) their separation has decreased to one-half its initial value and 
(b) they are about to collide? 

Figure 13-45a shows a particle A that can be moved 
along a y axis from an infinite distance to the origin. That origin lies 
at the midpoint between particles Band C, which have identical 
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Fig. 13-45 Problem 42. 

masses, and the y axis is a perpendicular bisector between them. 
Distance D is 0.3057 m. Figure l3A5b shows the potential energy 
U of the three-particle system as a function of the position of parti­
cle A along the y axis. The curve actually extends rightward and ap­
proaches an asymptote of -2.7 X 10-11 J as y -.> 00. What are the 
masses of (a) particles Band C and (b) particle A? 

1 Planets and Satellites: Kepler's Laws 
(a) What linear speed must an Earth satellite have to be in a 

circular orbit at an altitude of 160 km above Earth's surface? (b) 
What is the period of revolution? 

A satellite is put in a circular orbit about Earth with a radius 
equal to one-half the radius of the Moon's orbit. What is its period 
of revolution in lunar months? (A lunar month is the period of rev­
olution of the Moon.) 

The Martian satellite Phobos travels in an approximately cir­
cular orbit of radius 9.4 X 106 m with a period of 7 h 39 min. 
Calculate the mass of Mars from this information. 

The first known collision between space debris and a func­
tioning satellite occurred in 1996: At an altitude of 700 km, a year­
old French spy satellite was hit by a piece of an Ariane rocket. A 
stabilizing boom on the satellite was demolished, and the satellite 
was sent spinning out of control. Just before the collision and in 
kilometers per hour, what was the speed of the rocket piece rela­
tive to the satellite if both were in circular orbits and the collision 
was (a) head-on and (b) along perpendicular paths? 

SSM WWW The Sun, which is 2.2 X 1020 m from the center 
of the Milky Way galaxy, revolves around that center once every 
2.5 X 108 years. Assuming each star in the Galaxy has a mass equal 
to the Sun's mass of 2.0 X 1030 kg, the stars are distributed uni­
formly in a sphere about the galactic center, and the Sun is at the 
edge of that sphere, estimate the number of stars in the Galaxy. 

-48 The mean distance of Mars from the Sun is 1.52 times that of 
Earth from the Sun. From Kepler's law of periods, calculate the 
number of years required for Mars to make one revolution around 
the Sun; compare your answer with the value given in Appendix C. 

A comet that was seen in April 574 by Chinese astronomers 
on a day known by them as the Woo Woo day was spotted again in 
May 1994. Assume the time between observations is the period of 
the Woo Woo day comet and take its eccentricity as 0.11. What are 
(a) the semimajor axis of the comet's orbit and (b) its greatest dis­
tance from the Sun in terms of the mean orbital radius Rp of Pluto? 

An orbiting satellite stays over a certain spot on the 
equator of (rotating) Earth. What is the altitude of the orbit (called 
a geosynchronous orbit)? 

SSM A satellite, moving in an elliptical orbit, is 360 km 
above Earth's surface at its farthest point and 180 km above at its 
closest point. Calculate (a) the semimajor axis and (b) the 
eccentricity of the orbit. 

The Sun's center is at one focus of Earth's orbit. How far 
from this focus is the other focus, (a) in meters and (b) in terms of 
the solar radius, 6.96 X 108 m? The eccentricity is 0.0167, and the 
semimajor axis is 1.50 X 1011 m. 

A 20 kg satellite has a circular orbit with a period of 2.4 h 
and a radius of 8.0 X 106 m around a planet of unknown mass. If 
the magnitude of the gravitational acceleration on the surface of 
the planet is 8.0 m/s2, what is the radius of the planet? 



Hunting a black hole. Observations of the light from a certain 
star indicate that it is part of a binary (two-star) system. This visible 
star has orbital speed v = 270 kmis, orbital period T = 1.70 days, 
and approximate mass 1111 = 6M" where M, is the Sun's mass, 
1.99 X 1030 kg. Assume that the visible star and its companion star, 
which is dark and unseen, are both in circular orbits (Fig. 13-46). 
What multiple of Ms gives the approximate mass 1112 of the dark 
star? 
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Fig. 1 3-46 Problem 54. 

In 1610, Galileo used his telescope to discover four promi­
nent moons around Jupiter. Their mean orbital radii a and periods 
T are as follows: 

Name a (108 m) T(days) 

10 4.22 1.77 
Europa 6.71 3.55 
Ganymede 10.7 7.16 
Callisto 18.8 16.7 

(a) Plot log a (y axis) against log T (x axis) and show that you get a 
straight line. (b) Measure the slope of the line and compare it with 
the value that you expect from Kepler's third law. (c) Find the mass 
of Jupiter from the intercept of this line with the y axis. 

In 1993 the spacecraft Cali/eo sent home an image (Fig. 
13-47) of asteroid 243 Ida and a tiny orbiting moon (now known as 
Dactyl), the first confirmed example of an asteroid-moon system. 
In the image, the moon, which is 1.5 km wide, is 100 km from the 
center of the asteroid, which is 55 km long. The shape of the 
moon's orbit is not well known; assume it is circular with a period 

Fig. 13-47 Problem 56.A tiny moon (at right) orbits 
asteroid 243 Ida. (Courtesy NASA) 
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of27 h. (a) What is the mass of the asteroid? (b) The volume of the 
asteroid, measured from the Cali/eo images, is 14100 km3. What is 
the density (mass per unit volume) of the asteroid? 

IlW In a certain binary-star system, each star has the same 
mass as our Sun, and they revolve about their center of mass. The 
distance between them is the same as the distance between Earth 
and the Sun. What is their period of revolution in years? 

The presence of an unseen planet orbiting a distant star can 
sometimes be inferred from the motion of the star as we see it. As 
the star and planet orbit the center of mass of the star-planet sys­
tem, the star moves toward and away from us with what is called 
the line of sight velocity, a motion that can be detected. Figure 
13-48 shows a graph of the line of sight velocity versus time for the 
star 14 Herculis. The star's mass is believed to be 0.90 of the mass 
of our Sun. Assume that only one planet orbits the star and that 
our view is along the plane of the orbit. Then approximate (a) the 
planet's mass in terms of Jupiter's mass 111J and (b) the planet's or­
bital radius in terms of Earth's orbital radius rEo 
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Fig. 13-48 Problem 58. 

Three identical stars of mass M form an equilateral triangle 
that rotates around the triangle'S center as the stars move in a com­
mon circle about that center. The triangle has edge length L. What 
is the speed of the stars? 

1 Satellites: Orbits and Energy 
In Fig. 13A9, two satellites,A and B, 

both of mass m = 125 kg, move in the 
same circular orbit of radius r = 7.87 X 
106 m around Earth but in opposite senses 
of rotation and therefore on a collision 
course. (a) Find the total mechanical en­
ergy EA + EE of the two satellites + 
Earth system before the collision. (b) If 
the collision is completely inelastic so that 
the wreckage remains as one piece of tan­
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Fig. 13-49 

Problem 60. 

gled material (mass = 2111), find the total mechanical energy immedi­
ately after the collision. (c) Just after the collision, is the wreck­
age falling directly toward Earth's center or orbiting around Earth? 

(a) At what height above Earth's surface is the energy re­
quired to lift a satellite to that height equal to the kinetic energy 
required for the satellite to be in orbit at that height? (b) For 
greater heights, which is greater, the energy for lifting or the kinetic 
energy for orbiting? 

Two Earth satellites, A and B, each of mass 111, are to be 
launched into circular orbits about Earth's center. Satellite A is to 
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orhit at an altitude of 6370 km. Satellite B is to orbit at an altitude 
of 19110 km. The radius of Earth R£ is 6370 km. (a) What is the ra­
tio of the potential energy of satellite B to that of satellite A, in or­
hit? (b) What is the ratio of the kinetic energy of satellite B to that 
of satellite A, in orbit? (c) Which satellite has the greater total en­
ergy if each has a mass of 14.6 kg? (d) By how much? 

SSM WWW An asteroid, whose mass is 2.0 X 10-4 times 
the mass of Earth, revolves in a circular orbit around the Sun at a 
distance that is twice Earth's distance from the Sun. (a) Calculate 
the period of revolution of the asteroid in years. (b) What is the ra­
tio of the kinetic energy of the asteroid to the kinetic energy of 
Earth? 

A satellite orbits a planet of unknown mass in a circle of ra­
dius 2.0 X 107 m. The magnitude of the gravitational force on the 
satellite from the planet is F = 80 N. (a) What is the kinetic energy 
of the satellite in this orbit? (b) What would Fbe if the orbit radius 
were increased to 3.0 X 107 m? 

A satellite is in a circular Earth orbit of radius r. The area A 
enclosed by the orbit depends on ,.2 because A = 7T/.2. Determine 
how the following properties of the satellite depend on r: (a) pe­
riod. (b) kinetic energy, (c) angular momentum, and (d) speed. 

One way to attack a satellite in Earth orbit is to launch a 
swarm of pellets in the same orbit as the satellite but in the oppo­
site direction. Suppose a satellite in a circular orbit 500 km above 
Earth's surface collides with a pellet having mass 4.0 g. (a) What is 
the kinetic energy of the pellet in the reference frame of the satel­
lite just before the collision? (b) What is the ratio of this kinetic en­
ergy to the kinetic energy of a 4.0 g bullet from a modem army rifle 
with a muzzle speed of 950 m/s? 

What are (a) the speed and (b) the period of a 220 kg satel­
lite in an approximately circular orbit 640 km above the surface of 
Earth? Suppose the satellite loses mechanical energy at the aver­
age rate of 1.4 X 105 J per orbital revolution. Adopting the reason­
able approximation that the satellite's orbit becomes a "circle of 
slowly diminishing radius," determine the satellite's ( c) altitude, (d) 
speed, and (e) period at the end of its 1500th revolution. (f) What 
is the magnitude of the average retarding force on the satellite? Is 
angular momentum around Earth's center conserved for (g) the 
satellite and (h) the satellite-Earth system (assuming that system 
is isolated)? 

~ Two small spaceships, each with mass 111 = 2000 kg, are 
in the cii'cular Earth orbit of Fig. 13-50, at an altitude h of 400 km. 
Igor, the commander of one of the 
ships, arrives at any fixed point in 
the orbit 90 s ahead of Picard, the 
commander of the other ship. What 
are the (a) period To and (b) speed 
1'0 of the ships? At point P in Fig. 
13-50, Picard fires an instantaneous 
burst in the forward direction, re­
ducing his ship's speed by 1.00%. 
After this burst, he follows the el-
liptical orbit shown dashed in the Fig. 13-50 Problem 68. 
figure. What are the (c) kinetic en-
ergy and (d) potential energy of his ship immediately after the 
burst? In Picard's new elliptical orbit, what are (e) the total energy 
E, (f) the semimajor axis a, and (g) the orbital period T? (h) How 
much earlier than Igor will Picard return to P? 

Einstein and Gravitation 
In Fig. 13-17 b, the scale on which the 60 kg physicist stands 

reads 220 N. How long will the cantaloupe take to reach the floor if 
the physicist drops it (from rest relative to himself) at a height of 
2.1 m above the floor? 

Additional Problems 
The radius R" of a black hole is the radius of a mathematical 

sphere, called the event horizon, that is centered on the black hole. 
Information from events inside the event horizon cannot reach the 
outside world. According to Einstein's general theory of relativity, 
R" = 2GM/c2, where M is the mass of the black hole and c is the 
speed of light. 

Suppose that you wish to study a black hole near it, at a radial 
distance of 50R". However, you do not want the difference in gravi­
tational acceleration between your feet and your head to exceed 
10 m/s2 when you are feet down (or head down) toward the black 
hole. (a) As a multiple of our Sun's mass Ms, approximately what is 
the limit to the mass of the black hole you can tolerate at the given 
radial distance? (You need to estimate your height.) (b) Is the limit 
an upper limit (you can tolerate smaller masses) or a lower limit 
(you can tolerate larger masses)? 

Several planets (Jupiter, Saturn, 
Uranus) are encircled by rings, perhaps 
composed of material that failed to form 
a satellite. In addition, many galaxies 
contain ring-like structures. Consider a 
homogeneous thin ring of mass M and 
outer radius R (Fig. 13-51). (a) What 
gravitational attraction does it exert on a 
particle of mass 111 located on the ring's 
central axis a distance x from the ring 
center? (b) Suppose the particle falls 

Fig. 13-51 

Problem 71. 

from rest as a result of the attraction of the ring of matter. What is 
the speed with which it passes through the center of the ring? 

A typical neutron star may have a mass equal to that of the 
Sun but a radius of only 10 kill. (a) What is the gravitational accelera­
tion at the surface of such a star? (b) How fast would an object be 
moving if it fell from rest through a distance of 1.0 m on such a star? 
(Assume the star does not rotate.) 

Figure 13-52 is a graph of the kinetic energy K of an asteroid 
versus its distance r from Earth's center, as the asteroid falls di­
rectly in toward that center. (a) What is the (approximate) mass of 
the asteroid? (b) What is its speed at r = 1.945 X 107 m? 

3 

lL-~~~~ __ ~~-L-L-L~~~~~~~~ 
1.75 1.85 1. 95 

r (107 111) 

Fig. 13-52 Problem 73. 



The mysterious visitor that appears in the enchanting 
story The Little Prince was said to come from a planet that "was 
scarcely any larger than a house!" Assume that the mass per unit 
volume of the planet is about that of Earth and that the planet 
does not appreciably spin. Approximate (a) the free-fall accelera­
tion on the planet's surface and (b) the escape speed from the 
planet. 

IlW The masses and coordinates of three spheres are as 
follows: 20 kg, x = 0.50 m, y = 1.0 m; 40 kg, x = -1.0 m, y = -1.0 m; 
60 kg, x = 0 m, y = -0.50 m. What is the magnitude of the gravita­
tional force on a 20 kg sphere located at the origin due to these 
three spheres? 

SSM A very early, simple satellite consisted of an inflated 
spherical aluminum balloon 30 m in diameter and of mass 
20 kg. Suppose a meteor having a mass of 7.0 kg passes within 3.0 m 
of the surface of the satellite. What is the magnitude of the gravita­
tional force on the meteor from the satellite at the closest approach? 

Four uniform spheres, with masses 111 A = 40 kg, m B = 35 kg, 
111e = 200 kg, and mD = 50 kg, have (x, y) coordinates of (0, 50 cm), 
(0,0), (-80 cm, 0), and (40 cm, 0), respectively. In unit-vector nota­
tion, what is the net gravitational force on sphere B due to the 
other spheres? 

(a) In Problem 77, remove sphere A and calculate the gravi­
tational potential energy of the remaining three-particle system. 
(b) If A is then put back in place, is the potential energy of the 
four-particle system more or less than that of the system in (a)? 
(c) In (a), is the work done by you to remove A positive or nega­
tive? (d) In (b), is the work done by you to replace A positive or 
negative? 

SSM A certain triple-star system 
consists of two stars, each of mass m, re­
volving in the same circular orbit of ra­
dius r around a central star of mass M 
(Fig. 13-53). The two orbiting stars are al­
ways at opposite ends of a diameter of 
the orbit. Derive an expression for the 
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period of revolution of the stars. Fig. 13-53 

The fastest possible rate of rotation of Problem 79. 
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a planet is that for which the gravitational force on material at the equa­
tor just barely provides the centripetal force needed for the rotation. 
(Why?) (a) Show that the corresponding shortest period of rotation 
is 

T=)37r 
Gp' 

where p is the uniform density (mass per unit volume) of the spher­
ical planet. (b) Calculate the rotation period assuming a density of 
3.0 g/cm3, typical of many planets, satellites, and asteroids. No as­
tronomical object has ever been found to be spinning with a period 
shorter than that determined by this analysis. 

SSM In a double-star system, two stars of mass 3.0 X 1030 

kg each rotate about the system's center of mass at radius 1.0 X 
1011 m. (a) What is their common angular speed? (b) If a 
meteoroid passes through the system's center of mass perpendic­
ular to their orbital plane, what minimum speed must it have at 
the center of mass if it is to escape to "infinity" from the two-star 
system? 
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A satellite is in elliptical orbit with a period of 8.00 X 104 s 
about a planet of mass 7.00 X 1024 kg. At aphelion, at radius 4.5 X 

107 m, the satellite's angular speed is 7.158 X 10-5 rad/s. What is its 
angular speed at perihelion? 

SSM In a shuttle craft of mass 111 = 3000 kg, Captain Janewav 
orbits a planet of mass M = 9.50 X 1025 kg, in a circular orbit of ra~ 
dius r = 4.20 X 107 m. What are (a) the period of the orbit and (b) 
the speed of the shuttle craft? Janeway briefly fires a forward­
pointing thruster, reducing her speed by 2.00%. Just then, what are 
(c) the speed, (d) the kinetic energy, (e) the gravitational potential 
energy, and (f) the mechanical energy of the shuttle craft? (g) 
What is the semimajor axis of the elliptical orbit now taken by the 
craft? (h) What is the difference between the period of the original 
circular orbit and that of the new elliptical orbit? (i) Which orbit 
has the smaller period? 

A uniform solid sphere of radius R produces a gravitation;:]1 
acceleration of ag on its surface. At what distance from the sphere's 
center are there points (a) inside and (b) outside the sphere where 
the gravitational acceleration is ag /3? 

ILW A projectile is fired vertically from Earth's surface with 
an initial speed of 10 km/s. Neglecting air drag, how far above the 
surface of Earth will it go? 

An object lying on Earth's equator is accelerated (a) toward the 
center of Earth because Earth rotates, (b) toward the Sun because 
Earth revolves around the Sun in an almost circular orbit, and (c) 
toward the center of our galaxy because the Sun moves around the 
galactic center. For the latter, the period is 2.5 X lOR Y and the ra­
dius is 2.2 X 1020 m. Calculate these three accelerations as multi­
ples of g = 9.8 m/s2• 

(a) If the legendary apple of Newton could be released from 
rest at a height of 2 m from the surface of a neutron star with a 
mass 1.5 times that of our Sun and a radius of 20 km, what would be 
the apple's speed when it reached the surface of the star? (b) If the 
apple could rest on the surface of the star, what would be the approx­
imate difference between the gravitational acceleration at the top 
and at the bottom of the apple? (Choose a reasonable size for an ap­
ple; the answer indicates that an apple would never survive near a 
neutron star.) 

With what speed would mail pass through the center of Earth 
if falling in a tunnel through the center? 

SSM The orbit of Earth around the Sun is almost circular: The 
closest and farthest distances are 1.47 X 108 km and 1.52 X lOB km 
respectively. Determine the corresponding variations in (a) total 
energy, (b) gravitational potential energy, ( c) kinetic energy, and 
(d) orbital speed. (Hint: Use conservation of energy and conserva­
tion of angular momentum.) 

A 50 kg satellite circles planet Cruton every 6.0 h. The magni­
tude of the gravitational force exerted on the satellite by Cruton is 
80 N. (a) What is the radius of the orbit? (b) What is the kinetic en­
ergy of the satellite? (c) What is the mass of planet Cruton? 

We watch two identical astronomical bodies A and B, each of 
mass m, fall toward each other from rest because of the gravita­
tional force on each from the other. Their initial center-to-center 
separation is Ri• Assume that we are in an inertial reference frame 
that is stationary with respect to the center of mass of this two­
body system. Use the principle of conservation of mechanical 
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Fig. 14-1 (a) A fluid-filled vessel con­
taining a small pressure sensor, shown in 
(b). The pressure is measured by the rela­
tive position of the movable piston in the 
sensor. 

Some Densities 

Material or Object 

Interstellar space 

Best laboratory vacuum 
Air: 200 e and 1 atm pressure 

200 e and 50 atm 
Styrofoam 
Ice 
Water: 200 e and 1 atm 

200 e and 50 atm 
Seawater: 200 e and 1 atm 
Whole blood 

To find the density p of a fluid at any point, we isolate a small volume element ~ V 
around that point and measure the mass ~m of the fluid contained within that 
element. The density is then 

~m 
p= ~V' (14-1) 

In theory, the density at any point in a fluid is the limit of this ratio as the volume 
element ~ Vat that point is made smaller and smaller. In practice, we assume that a 
fluid sample is large relative to atomic dimensions and thus is "smooth" (with uni­
form density), rather than "lumpy" with atoms. This assumption allows us to write 
Eq.14-1 as m 

p=-
V 

(uniform density), 

where m and V are the mass and volume of the sample. 

(14-2) 

Density is a scalar property; its SI unit is the kilogram per cubic meter. 
Table 14-1 shows the densities of some substances and the average densities of 
some objects. Note that the density of a gas (see Air in the table) varies consid­
erably with pressure, but the density of a liquid (see Water) does not; that is, 
gases are readily compressible but liquids are not. 

Let a small pressure-sensing device be suspended inside a fluid-filled vessel, as in 
Fig. 14-1a. The sensor (Fig. 14-1b) consists of a piston of surface area M riding in 
a close-fitting cylinder and resting against a spring. A readout arrangement allows us 
to record the amount by which the (calibrated) spring is compressed by the sur­
rounding fluid, thus indicating the magnitude ~F of the force that acts normal to the 
piston. We define the pressure on the piston from the fluid as 

~F 
p= M' (14-3) 

In theory, the pressure at any point in the fluid is the limit of this ratio as the surface 
area M of the piston, centered on that point, is made smaller and smaller. However, 
if the force is uniform over a flat area A, we can write Eq.14-3 as 

F 
p=-

A 
(pressure of uniform force on flat area), (14-4) 

where F is the magnitude of the normal force on area A. (When we say a force is 

Density (kg/m3) Material or Object Density (kg/m3) 

10-20 
Iron 7.9 X 103 

10-17 
Mercury (the metal, not the planet) 13.6 X 103 

1.21 Earth: average 5.5 X 103 
60.5 core 9.5 X 103 
1 X 102 crust 2.8 X 103 

0.917 X 103 Sun: average 1.4 X 103 

0.998 X 103 core 1.6 X 105 

1.000 X 103 White dwarf star (core) 1010 

1.024 X 103 Uranium nucleus 3 X 1017 

1.060 X 103 Neutron star (core) 1018 
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Some Pressures 

Center of the Sun 
Center of Earth 
Highest sustained laboratory pressure 
Deepest ocean trench (bottom) 
Spike heels on a dance floor 

Pressure (Pa) 

2 X 1016 

4 X 1011 

1.5 X 1010 

1.1 X 108 

106 

Automobile tirea 

Atmosphere at sea level 
Normal blood systolic pressurea,b 

Best laboratory vacuum 

"Pressure in excess of atmospheric pressure. bEquivalent to 120 torr on the physician's pressure gauge. 

uniform over an area, we mean that the force is evenly distributed over every 
point of the area.) 

We find by experiment that at a given point in a fluid at rest, the pressure p 
defined by Eq. 14-4 has the same value no matter how the pressure sensor is 
oriented. Pressure is a scalar, having no directional properties. It is true that 
the force acting on the piston of our pressure sensor is a vector quantity, but 
Eq.14-4 involves only the magnitude ofthat force, a scalar quantity. 

The SI unit of pressure is the newton per square meter, which is given a special 
name, the pascal (Pa). In metric countries, tire pressure gauges are calibrated in 
kilopascals. The pascal is related to some other common (non-SI) pressure units as 
follows: 

1 atm = 1.01 X 105 Pa = 760 torr = 14.7 Ib/in.2• 

The atmosphere (atm) is, as the name suggests, the approximate average pressure 
of the atmosphere at sea level. The torr (named for Evangelista Torricelli, who 
invented the mercury barometer in 1674) was formerly called the millimeter of 
mercury (mm Hg). The pound per square inch is often abbreviated psi. Table 14-2 
shows some pressures. 

Atmospheric pressure and force 

Pressure (Pa) 

2 X 105 

1.0 X 105 

1.6 X 104 

10-12 

A living room has floor dimensions of 3.5 m and 4.2 m and a 
height of 2.4 m. 

(a) What does the air in the room weigh when the air pres­
sure is 1.0 atm? 

(b) What is the magnitude of the atmosphere's downward 
force on the top of your head, which we take to have an area 
ofO.040m2? 

(1) The air's weight is equal to mg, where m is its mass. 
(2) Mass m is related to the air density p and the air volume 
VbyEq.14-2 (p = mlV). 

Calculation: Putting the two ideas together and taking the 
density of air at 1.0 atm from Table 14-1, we find 

mg = (pV)g 

= (1.21 kg/m3)(3.5 m X 4.2 m X 2.4 m)(9.8 m/s2) 

= 418 N = 420 N. (Answer) 

This is the weight of about 110 cans of Pepsi. 

When the fluid pressure p on a surface of area A is uniform, 
the fluid force on the surface can be obtained from Eq. 14-4 
(p = FIA). 

Calculation: Although air pressure varies daily, we can 
approximate that p = 1.0 atm. Then Eq. 14-4 gives 

F = pA = (1.0 atm)( 1.01 :'0 ~~:lm2 )(0.040 m2) 

= 4.0 X 103 N. (Answer) 

This large force is equal to the weight of the air column from 
the top of your head to the top of the atmosphere. 

~ws Additional examples, video, and practice available at WileyPLUS 
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Fig. 14-2 (a) A 
tank of water in which 
a sample of water is 
contained in an imagi­
nary cylinder of hori­
zontal base area A. 
(b) - (d) Force F; acts 
at the top surface of 
the cylinder; force F; 
acts at the bottom 
surface of the cylin­
der; the gravitational 
force on the water in 
the cylinder is repre­
sented by mg. (e) A 
free-body diagram of 
the water sample. 

R14 FLUIDS 

1 Fluids at Rest 
Figure 14-2a shows a tank of water-or other liquid-open to the atmosphere. 
As every diver knows, the pressure increases with depth below the air-water 
interface. The diver's depth gauge, in fact, is a pressure sensor much like that of 
Fig. 14-1b. As every mountaineer knows, the pressure decreases with altitude as 
one ascends into the atmosphere. The pressures encountered by the diver and the 
mountaineer are usually called hydrostatic pressures, because they are due to flu­
ids that are static (at rest). Here we want to find an expression for hydrostatic 
pressure as a function of depth or altitude. 

Let us look first at the increase in pressure with depth below the water's 
surface. We set up a vertical y axis in the tank, with its origin at the air-water 
interface and the positive direction upward. We next consider a water sample 
contained in an imaginary right circular cylinder of horizontal base (or face) area 
A, such that Yl and Y2 (both of which are negative numbers) are the depths below 
the surface of the upper and lower cylinder faces, respectively. 

Figure 14-2e shows a free-body diagram for the water in the cylinder. The water is 
in static equilibrium; that is, it is stationary and the forces on it balance. Three forces 
act on it vertically: Force F" acts at the top surface of the cylinder and is due to the 
water above the cylinder (Fig. 14-2b ). Similarly, force IS. acts at the bottom surface of 
the cylinder and is due to the water just below the cylinder (Fig. 14-2c). The gravita­
tional force on the water in the cylinder is represented by mg, where m is the mass 

Three forces act on 
this sample of water. 

This downward force is 
due to the water pressure 
pushing on the top surface. 

Air 

Water 
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This upward force is due to 
the water pressure pushing 
on the bottom surface. 
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of the water in the cylinder (Fig. 14-2d). The balance of these forces is written as 

(14-5) 

We want to transform Eq. 14-5 into an equation involving pressures. From 
Eq.14-4, we know that 

(14-6) 

The mass m of the water in the cylinder is, from Eq. 14-2, m = pV, where the 
cylinder's volume V is the product of its face area A and its height YI - Yz. Thus, 
m is equal to pA(YI - Y2)' Substituting this and Eq.14-6 into Eq.14-5, we find 

P2A = PIA + pAg(YI - h) 

or P2 = PI + pg(YI - Y2)' (14-7) 

This equation can be used to find pressure both in a liquid (as a function of 
depth) and in the atmosphere (as a function of altitude or height). For the former, 
suppose we seek the pressure P at a depth h below the liquid surface. Then we 
choose level 1 to be the surface, level 2 to be a distance h below it (as in Fig. 14-3), 
and Po to represent the atmospheric pressure on the surface. We then substitute 

YI = 0, PI = Po and Y2 = -11, P2 = P 

into Eq.14-7, which becomes 

P = Po + pgh (pressure at depth h). (14-8) 

Note that the pressure at a given depth in the liquid depends on that depth but 
not on any horizontal dimension. 

pressure at a point in a fluid in static equilibrium depends on the depth of that 
point but not on any horizontal dimension of the fluid or its container. 

Thus, Eq. 14-8 holds no matter what the shape of the container. If the bottom 
surface of the container is at depth 11, then Eq. 14-8 gives the pressure P there. 

In Eq.14-8,p is said to be the total pressure, or absolute pressure, at level 2. 
To see why, note in Fig. 14-3 that the pressure P at level 2 consists of two contribu­
tions: (1) Po, the pressure due to the atmosphere, which bears down on the liquid, 
and (2) pgl1, the pressure due to the liquid above level 2, which bears down on 
level 2. In general, the difference between an absolute pressure and an atmos­
pheric pressure is called the gauge pressure. (The name comes from the use of a 
gauge to measure this difference in pressures.) For the situation of Fig. 14-3, the 
gauge pressure is pgh. 

Equation 14-7 also holds above the liquid surface: It gives the atmospheric pres­
sure at a given distance above level 1 in terms of the atmospheric pressure P I at level 1 
(assuming that the atmospheric density is uniform over that distance). For example, to 
find the atmospheric pressure at a distance d above level 1 in Fig. 14-3, we substitute 

Yl = 0, PI = Po and Y2 = d, P2 = p. 

Then with p = Pain we obtain 

CHECKPOINT 1 

The figure shows four 
containers of olive oil. 
Rank them according 
to the pressure at depth 
h, greatest first. 

P = Po - Pairgd. 

(a) (b) (c) (d) 
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Air fJo 

Liquidt 

h 

pl _____ Level 2 

Fig. 14-3 The pressure p increases 
with depth h below the liquid surface 
according to Eq.14-8. 
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Gauge pressure on a scuba diver 

A novice scuba diver practicing in a swimming pool takes 
enough air from his tank to fully expand his lungs before 
abandoning the tank at depth L and swimming to the sur­
face. He ignores instructions and fails to exhale during his 
ascent. When he reaches the surface, the difference between 
the external pressure on him and the air pressure in his 
lungs is 9.3 kPa. From what depth does he start? What po­
tentially lethal danger does he face? 

The pressure at depth h in a liquid of density p is given by 
Eq. 14-8 (p = Po + pgh) , where the gauge pressure pgh is 
added to the atmospheric pressure Po. 

Calculations: Here, when the diver fills his lungs at 
depth L, the external pressure on him (and thus the air 
pressure within his lungs) is greater than normal and 
given by Eq. 14-8 as 

P = Po + pgL, 

where Po is atmospheric pressure and p is the water's density 

(998 kg/m3, from Table 14-1). As he ascends, the external 
pressure on him decreases, until it is atmospheric pressure 
Po at the surface. His blood pressure also decreases, until it is 
normal. However, because he does not exhale, the air pres­
sure in his lungs remains at the value it had at depth L. 
At the surface, the pressure difference between the higher 
pressure in his lungs and the lower pressure on his chest is 

Ap = P - Po = pgL, 

from which we find 

L _ Ap _ 9300 Pa 
- pg - (998 kg/m3)(9.8 m/s2) 

= 0.95 m. (Answer) 

This is not deep! Yet, the pressure difference of 9.3 kPa 
(about 9% of atmospheric pressure) is sufficient to rupture 
the diver's lungs and force air from them into the depressur­
ized blood, which then carries the air to the heart, killing the 
diver. If the diver follows instructions and gradually exhales 
as he ascends, he allows the pressure in his lungs to equalize 
with the external pressure, and then there is no danger. 

Balancing of pressure in aU-tube 

The U-tube in Fig. 14-4 contains two liquids in static equilib­
rium: Water of density Pw (= 998 kg/m3) is in the right arm, 
and oil of unknown density Px is in the left. Measurement 
gives 1= 135 mm and d = 12.3 mm. What is the density of 
the oil? 

(1) The pressure Pint at the level of the oil-water interface in 
the left arm depends on the density Px and height of the oil 
above the interface. (2) The water in the right arm at the 
same level must be at the same pressure Pint. The reason is 
that, because the water is in static equilibrium, pressures at 
points in the water at the same level must be the same even if 
the points are separated horizontally. 

Calculations: In the right arm, the interface is a distance I be­
low the free surface of the watel; and we have, from Eq.14-8, 

Pint = Po + p",gl (right arm). 

In the left arm, the interface is a distance I + d below the free 
surface of the oil, and we have, again from Eq.14-8, 

Pint = Po + p,g(l + d) (left arm). 

This much oil 
balances ... 

Oil 

Water 

Interface 

T 

t-
l 

1 
... this much 
water. 

Fig. 14-4 The oil in the left arm stands higher than the water in 
the right arm because the oil is less dense than the water. Both fluid 
columns produce the same pressure Pint at the level of the interface. 

Equating these two expressions and solving for the un­
known density yield 

_ I _ 3 135 mm 
Px - Pw I + d - (998 kg/m) 135 mm + 12.3 mm 

= 915 kg/m3. (Answer) 

Note that the answer does not depend on the atmospheric 
pressure Po or the free-fall acceleration g. 

Additional examples, video, and practice available at WileyPLUS 



Measuring Pressure 

Figure 14-5a shows a very basic mercury barometel; a device used to measure the 
pressure of the atmosphere. The long glass tube is filled with mercury and 
inverted with its open end in a dish of mercury, as the figure shows. The space 
above the mercury column contains only mercury vapor, whose pressure is so 
small at ordinary temperatures that it can be neglected. 

We can use Eq. 14-7 to find the atmospheric pressure Po in terms of the 
height h of the mercury column. We choose level 1 of Fig. 14-2 to be that of the 
air-mercury interface and level 2 to be that of the top of the mercury column, as 
labeled in Fig. 14-5a. We then substitute 

YI = 0, PI = Po and Y2 = h, P2 = 0 

into Eq. 14-7, finding that 
Po = pgh, 

where p is the density of the mercury. 

Fig. 14-5 (a) A mer­
cury barometer. (b) 
Another mercury barome­
ter. The distance h is the 
same in both cases. 

y 

Level 2 

(a) 

(14-9) 

r 

(b) 

For a given pressure, the height h of the mercury column does not depend on 
the cross-sectional area of the vertical tube. The fanciful mercury barometer of 
Fig. 14-5b gives the same reading as that of Fig. 14-5a; all that counts is the vertical 
distance h between the mercury levels. 

Equation 14-9 shows that, for a given pressure, the height of the column of 
mercury depends on the value of g at the location of the barometer and on the 
density of mercury, which varies with temperature. The height of the column (in 
millimeters) is numerically equal to the pressure (in torr) only if the barometer is 
at a place where g has its accepted standard value of 9.80665 m/s2 and the 
temperature of the mercury is ODe. If these conditions do not prevail (and they 
rarely do), small corrections must be made before the height of the mercury 
column can be transformed into a pressure. 

An open-tube manometer (Fig. 14-6) measures the gauge pressure P g of a gas. It consists 
of a U-tube containing a liquid, with one end of the tube connected to the vessel whose 
gauge pressure we wish to measure and the other end open to the atmosphere. We can 
use Eq.14-7 to find the gauge pressure in terms of the height h shown in Fig. 14-6. Let us 
choose levels 1 and 2 as shown in Fig. 14-6. We then substitute 

Y1 = 0, PI = Po and Y2 = -h, P2 = P 
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-Levell 

II 

Level 2 

Manometer 

Fig. 14-6 An open-tube manome­
ter, connected to measure the gauge 
pressure of the gas in the tank on the 
left. The right arm of the U-tube is 
open to the atmosphere. 
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PeX! 

--+-.------11-----'---P 

Fig.14-7 Lead shot (small balls of lead) 
loaded onto the piston create a pressure 
Pext at the top of the enclosed (incompress­
ible) liquid. If Pext is increased, by adding 
more lead shot, the pressure increases by 
the same amount at all points within the 
liquid. 

A small input 
force produces ... 

... a large output 
force. 

Output ~ 

Oil 

Fig. 1 4-8 A hydraulic arrangement that 
can be used to magnify a force F;. The work 
done is, however, not magnified and is the 
same for both the input and output forces. 

into Eq.14-7,finding that 
P g = P - Po = pgh, (14-10) 

where p is the density of the liquid in the tube. The gauge pressure Pg is directly 
proportional to h. 

The gauge pressure can be positive or negative, depending on whether 
P > Po or P < Po. In inflated tires or the human circulatory system, the (absolute) 
pressure is greater than atmospheric pressure, so the gauge pressure is a positive 
quantity, sometimes called the overpressure. If you suck on a straw to pull fluid up 
the straw, the (absolute) pressure in your lungs is actually less than atmospheric 
pressure. The gauge pressure in your lungs is then a negative quantity. 

Pascal's Principle 
When you squeeze one end of a tube to get toothpaste out the other end, you are 
watching Pascal's principle in action. This principle is also the basis for the 
Heimlich maneuver, in which a sharp pressure increase properly applied to the 
abdomen is transmitted to the throat, forcefully ejecting food lodged there. 
The principle was first stated clearly in 1652 by Blaise Pascal (for whom the unit 
of pressure is named): 

A change in the pressure applied to an enclosed incompressible fluid is transmitted 
undiminished to every portion of the fluid and to the walls of its container. 

Consider the case in which the incompressible fluid is a liquid contained in a tall 
cylinder, as in Fig. 14-7. The cylinder is fitted with a piston on which a container of 
lead shot rests. The atmosphere, container, and shot exert pressure Pext on the pis­
ton and thus on the liquid. The pressure P at any point P in the liquid is then 

P = Pext + pgh. (14-11) 

Let us add a little more lead shot to the container to increase Pext by an amount 
Apext. The quantities p, g, and h in Eq. 14-11 are unchanged, so the pressure 
change at P is 

(14-12) 

This pressure change is independent of h, so it must hold for all points within the 
liquid, as Pascal's principle states . 

Figure 14-8 shows how Pascal's principle can be made the basis of a hydraulic 
lever. In operation, let an external force of magnitude Fi be directed downward 
on the left-hand (or input) piston, whose surface area is Ai' An incompressible 
liquid in the device then produces an upward force of magnitude Fo on the right­
hand (or output) piston, whose surface area is Ao. To keep the system in equilib­
rium, there must be a downward force of magnitude Fo on the output piston from 
an external load (not shown). The force l{ applied on the left and the downward 
force Fa from the load on the right produce a change Ap in the pressure of the liq­
uid that is given by 

so 

A -~- Fa 
P-A.- A ' 

I a 

(14-13) 



Equation 14-13 shows that the output force Fa on the load must be greater than 
the input force Fi if Ao > Ai, as is the case in Fig. 14-8. 

If we move the input piston downward a distance di, the output piston moves 
upward a distance dOl such that the same volume V of the incompressible liquid is 
displaced at both pistons. Then 

which we can write as 

(14-14) 

This shows that, if Ao > Ai (as in Fig. 14-8), the output piston moves a smaller 
distance than the input piston moves. 

From Eqs. 14-13 and 14-14 we can write the output work as 

( Aa)( Ai) W = F"da = F{ Ai di Aa = F{dil (14-15) 

which shows that the work W done on the input piston by the applied force is 
equal to the work W done by the output piston in lifting the load placed on it. 

The advantage of a hydraulic lever is this: 

With a hydraulic lever, a given force applied over a given distance can be 
transformed to a greater force applied over a smaller distance. 

The product of force and distance remains unchanged so that the same work is 
done. However, there is often tremendous advantage in being able to exert the 
larger force. Most of us, for example, cannot lift an automobile directly but can 
with a hydraulic jack, even though we have to pump the handle farther than 
the automobile rises and in a series of small strokes. 

1 17 Archimedes' Principle 
Figure 14-9 shows a student in a swimming pool, manipulating a very thin plastic 
sack (of negligible mass) that is filled with water. She finds that the sack and its 
contained water are in static equilibrium, tending neither to rise nor to sink. 
The downward gravitational force F; on the contained water must be balanced 
by a net upward force from the water surrounding the sack. 

This net upward force is a buoyant force Fb• It exists because the pressure in 
the surrounding water increases with depth below the surface. Thus, the pressure 
near the bottom of the sack is greater than the pressure near the top, which means 
the forces on the sack due to this pressure are greater in magnitude near the bot-

Fig. 1 4-9 A thin-walled plastic sack of water is in 
static equilibrium in the pool. The gravitational force 
on the sack must be balanced by a net upward force 
on it from the surrounding water. 

The upward buoyant 
force on this sack of 
water equals the 
weight of the water. 
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Fig.14-10 (a) The water surrounding the 
hole in the water produces a net upward 
buoyant force on whatever fills the hole. (b) 
For a stone of the same volume as the hole, 
the gravitational force exceeds the buoyant 
force in magnitude. (c) For a lump of wood 
of the same volume, the gravitational force 
is less than the buoyant force in magnitude. 

(a) 

t 

~ 

Fl, 
(b) Stone 

(c) 

The buoyant force is due 
to the pressure of the 
surrounding water. 

The net force is downward, 
so the stone accelerates 
downward. 

The net force is upward, 
so the wood accelerates 
upward. 

tom of the sack than near the top. Some of the forces are represented in Fig. 14-lOa, 
where the space occupied by the sack has been left empty. Note that the force vec­
tors drawn near the bottom of that space (with upward components) have longer 
lengths than those drawn near the top of the sack (with downward components). If 
we vectorially add all the forces on the sack from the water, the horizontal compo­
nents cancel and the vertical components add to yield the upward buoyant force Fb 
on the sack. (Force Fb is shown to the right of the pool in Fig. 14-lOa.) 

Because the sack of water is in static equilibrium, the magnitude of Fb is 
equal to the magnitude mfg of the gravitational force 1ft on the sack of water: 
Fb = mfg. (Subscript f refers to fluid, here the water.) In words, the magnitude of 
the buoyant force is equal to the weight of the water in the sack. 

In Fig. 14-10b, we have replaced the sack of water with a stone that exactly 
fills the hole in Fig. 14-10a. The stone is said to displace the water, meaning that 
the stone occupies space that would otherwise be occupied by water. We have 
changed nothing about the shape of the hole, so the forces at the hole's surface 
must be the same as when the water-filled sack was in place. Thus, the same 
upward buoyant force that acted on the water-filled sack now acts on the stone; 
that is, the magnitude Fb of the buoyant force is equal to mfg, the weight of the 
water displaced by the stone. 

Unlike the water-filled sack, the stone is not in static equilibrium. The down­
ward gravitational force Fg on the stone is greater in magnitude than the upward 
buoyant force, as is shown in the free-body diagram in Fig. 14-10b. The stone thus 
accelerates downward, sinking to the bottom of the pool. 

Let us next exactly fill the hole in Fig. 14-lOa with a block of lightweight 
wood, as in Fig. 14-10c. Again, nothing has changed about the forces at the hole's 
surface, so the magnitude Fb of the buoyant force is still equal to mfg, the weight 
of the displaced water. Like the stone, the block is not in static equilibrium. 



However, this time the gravitational force 19 is lesser in magnitude than the 
buoyant force (as shown to the right of the pool), and so the block accelerates 
upward, rising to the top surface of the water. 

Our results with the sack, stone, and block apply to all fluids and are summarized 
in Archimedes' principle: 

When a body is fully or partially submerged in a fluid, a buoyant force J{ from the 
surrounding fluid acts on the body. The force is directed upward and has a magnitude 
equal to the weight mfg of the fluid that has been displaced by the body. 

The buoyant force on a body in a fluid has the magnitude 

(buoyant force ), (14-16) 

where mfis the mass of the fluid that is displaced by the body. 

When we release a block of lightweight wood just above the water in a pool, the 
block moves into the water because the gravitational force on it pulls it down­
ward. As the block displaces more and more water, the magnitude Pb of the 
upward buoyant force acting on it increases. Eventually, Pb is large enough to 
equal the magnitude Pg of the downward gravitational force on the block, and the 
block comes to rest. The block is then in static equilibrium and is said to be floating 
in the water. In general, 

When a body floats in a fluid, the magnitude Fb of the buoyant force on the body is 
equal to the magnitude Fg of the gravitational force on the body. 

We can write this statement as 

(floating). (14-17) 

From Eq. 14-16, we know that Pb = mfg. Thus, 

When a body floats in a fluid, the magnitude Fg of the gravitational force on the body 
is equal to the weight mfg of the fluid that has been displaced by the body. 

We can write this statement as 

(floating). (14-18) 

In other words, a floating body displaces its own weight of fluid. 

If we place a stone on a scale that is calibrated to measure weight, then the 
reading on the scale is the stone's weight. However, if we do this underwater, 
the upward buoyant force on the stone from the water decreases the reading. 
That reading is then an apparent weight. In general, an apparent weight is related 
to the actual weight of a body and the buoyant force on the body by 

(
apparent) (actual) (magnitUde Of) 
weight = weight - buoyant force ' 

which we can write as 

weightapp = weight - Pb (apparent weight). (14-19) 
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_CHECKPOINT 2 

A penguin floats first in a fluid of density 
Po, then in a fluid of density O.95po, and 
then in a fluid of density l.1po. (a) Rank 
the densities according to the magnitude 
of the buoyant force on the penguin, 
greatest first. (b) Rank the densities ac­
cording to the amount of fluid displaced 
by the penguin, greatest first. 

If, in some test of strength, you had to lift a heavy stone, you could do it more 
easily with the stone underwater. Then your applied force would need to exceed 
only the stone's apparent weight, not its larger actual weight, because the upward 
buoyant force would help you lift the stone. 

The magnitude of the buoyant force on a floating body is equal to the body's 
weight. Equation 14-19 thus tells us that a floating body has an apparent weight 
of zero-the body would produce a reading of zero on a scale. (When astronauts 
prepare to perform a complex task in space, they practice the task floating under­
water, where their apparent weight is zero as it is in space.) 

Floating, buoyancy, and density 

In Fig. 14-11, a block of density P = 800 kg/m3 floats face 
down in a fluid of density Pf = 1200 kg/m3. The block has 
heightH = 6.0 cm. 

(a) By what depth h is the block submerged? 

(1) Floating requires that the upward buoyant force on the 
block match the downward gravitational force on the block. 
(2) The buoyant force is equal to the weight mfg of the fluid 
displaced by the submerged portion of the block. 

Calculations: From Eq. 14-16, we know that the buoyant 
force has the magnitude Fh = mfg, where mf is the mass of 
the fluid displaced by the block's submerged volume Vf. 
From Eq.14-2 (p = m/V), we know that the mass of the dis­
placed fluid is mf = pfVf. We don't know Vf but if we sym­
bolize the block's face length as L and its width as W, then 
from Fig. 14-11 we see that the submerged volume must be 
Vf = L Who If we now combine our three expressions, we 
find that the upward buoyant force has magnitude 

(14-20) 

Similarly, we can write the magnitude Fg of the gravita­
tional force on the block, first in terms of the block's mass 

Floating means 
that the buoyant 
force matches the 
gravitational force. 

Fig. 14-11 Block of height H floats in a fluid, to a depth of h. 

m, then in terms of the block's density P and (full) volume V, 
and then in terms of the block's dimensions L, W, and H 
(the full height): 

Fg = mg = pVg = PfLWHg. (14-21) 

The floating block is stationary. Thus, writing Newton's 
second law for components along a vertical y axis with the 
positive direction upward (Poet,), = may), we have 

Fh - Fg = m(O), 

or from Eqs.14-20 and 14-21, 

PfL Whg - pL WHg = 0, 

which gives us 

P 800 kg/m3 
h = Pf H = 1200 kg/m3 (6.0 cm) 

= 4.0cm. (Answer) 

(b) If the block is held fully submerged and then released, 
what is the magnitude of its acceleration? 

Calculations: The gravitational force on the block is the same 
but now, with the block fully submerged, the volume of the dis­
placed water is V = L WHo (The full height of the block is 
used.) This means that the value of Fh is now larger, and the 
block will no longer be stationary but will accelerate upward. 
Now Newton's second law yields 

Fh - Fg = ma, 

or PfL WHg - pL WHg = pL WHa, 

where we inserted pL WH for the mass m of the block. Solv­
ing for a leads to 

a = ( Ppf 1) = ( 1200 kg/m3 
g 800 kg/m3 

1) (9.8 m/s2) 

(Answer) 

~ws Additional examples, video, and practice available at WileyPLUS 



1 Ideal fluids in Motion 
The motion of real fluids is very complicated and not yet fully understood. 
Instead, we shall discuss the motion of an ideal fluid, which is simpler to handle 
mathematically and yet provides useful results. Here are four assumptions that 
we make about our ideal fluid; they all are concerned with flow: 

1. Steady flow In steady (or laminar) flow, the velocity of the moving fluid at any 
fixed point does not change with time. The gentle flow of water near the center of 
a quiet stream is steady; the flow in a chain of rapids is not. Figure 14-12 shows a 
transition from steady flow to nonsteady (or nonlaminar or turbulent) flow for a 
rising stream of smoke. The speed of the smoke particles increases as they rise 
and, at a certain critical speed, the flow changes from steady to nonsteady. 

2. Incompressible flow We assume, as for fluids at rest, that our ideal fluid is 
incompressible; that is, its density has a constant, uniform value. 

3. Nonviscolls flow Roughly speaking, the viscosity of a fluid is a measure of how 
resistive the fluid is to flow. For example, thick honey is more resistive to flow 
than water, and so honey is said to be more viscous than water. Viscosity is the 
fluid analog of friction between solids; both are mechanisms by which the kinetic 
energy of moving objects can be transferred to thermal energy. In the absence of 
friction, a block could glide at constant speed along a horizontal surface. In the 
same way, an object moving through a nonviscous fluid would experience no vis­
cous drag force- that is, no resistive force due to viscosity; it could move at con­
stant speed through the fluid. The British scientist Lord Rayleigh noted that in an 
ideal fluid a ship's propeller would not work, but, on the other hand, in an ideal 
fluid a ship (once set into motion) would not need a propeller! 

4. Irrotational flow Although it need not concern us further, we also assume 
that the flow is irrotational. To test for this property, let a tiny grain of dust 
move with the fluid. Although this test body may (or may not) move in a circu­
lar path, in irrotational flow the test body will not rotate about an axis through 
its own center of mass. For a loose analogy, the motion of a Ferris wheel is ro­
tational; that of its passengers is irrotational. 

We can make the flow of a fluid visible by adding a tracer. This might be 
a dye injected into many points across a liquid stream (Fig. 14-13) or smoke parti­
cles added to a gas flow (Fig. 14-12). Each bit of a tracer follows a streamline, 
which is the path that a tiny element of the fluid would take as the fluid flows. 
Recall from Chapter 4 that the velocity of a particle is always tangent to the 
path taken by the particle. Here the particle is the fluid element, and its velocity 
v is always tangent to a streamline (Fig. 14-14). For this reason, two streamlines 
can never intersect; if they did, then an element arriving at their intersection 
would have two different velocities simultaneously -an impossibility. 

Fig. 14-13 The steady 
flow of a fluid around a 
cylinder, as revealed by a 
dye tracer that was injected 
into the fluid upstream of 
the cylinder. (Courtesy D.H. 
Peregrine, University of 
Bristol) 
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Fig. 14-12 At a certain point, the 
rising flow of smoke and heated gas 
changes from steady to turbulent. 
(Will McIntyre/Photo Researchers) 

element 

Fig. 14-14 A fluid element traces 
out a streamline as it moves. The ve­
locity vector of the element is tan­
gent to the streamline at every point. 



372 H FLUIDS 

Fig. 14-15 Fluid flows from left to 
right at a steady rate through a tube seg­
ment of length L. The fluid's speed is VI at 
the left side and V2 at the right side. The 
tube's cross-sectional area is A I at the left 
side and A2 at the right side. From time tin 
(a) to time t + ~tin (b), the amount of 
fluid shown in purple enters at the left side 
and the equal amount of fluid shown in 
green emerges at the right side. 

I V 
e~ 

(a) Time t 

v e_ 

4-: ,-- ~X-----I' I 

(b) Time t+~t 

Fig. 14-16 Fluid flows at a constant 
speed V through a tube. (a) At time t, fluid 
element e is about to pass the dashed line. 
(b) At time t + M, element e is a distance 
~x = v M from the dashed line. 

The volume 
flow per 
second here 
must match ... 

... the volume flow 
per second here. 

Fig. 1 4-1 7 A tube of flow is defined by 
the streamlines that form the boundary of 
the tube. The volume flow rate must be the 
same for all cross sections of the tube of flow. 

1 

The volume flow per 
second here must 
match ... 

f-I· ---L-----I· 1 

- -I"'""""'---~ 
I I 
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\ \ 
\ 
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AI 
(a) Time I 

I· L-------i· 1 
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(b) Time t+M per second here. 

The Equation of Continuity 
You may have noticed that you can increase the speed of the water emerging 
from a garden hose by partially closing the hose opening with your thumb. 
Apparently the speed v of the water depends on the cross-sectional area A 
through which the water flows. 

Here we wish to derive an expression that relates v and A for the steady flow 
of an ideal fluid through a tube with varying cross section, like that in Fig. 14-15. 
The flow there is toward the right, and the tube segment shown (part of a longer 
tube) has length L. The fluid has speeds VI at the left end of the segment and V2 at 
the right end. The tube has cross-sectional areas Al at the left end and A2 at the 
right end. Suppose that in a time interval At a volume Ll V of fluid enters the tube 
segment at its left end (that volume is colored purple in Fig. 14-15). Then, because 
the fluid is incompressible, an identical volume Ll V must emerge from the right 
end of the segment (it is colored green in Fig. 14-15). 

We can use this common volume Ll V to relate the speeds and areas. To do so, 
we first consider Fig. 14-16, which shows a side view of a tube of uniform cross-sec­
tional area A. In Fig. 14-16a, a fluid element e is about to pass through the dashed 
line drawn across the tube width. The element's speed is v, so during a time interval 
Llt, the element moves along the tube a distance Llx = v Llt. The volume Ll V of fluid 
that has passed through the dashed line in that time interval At is 

Ll V = A Llx = Av At. (14-22) 

Applying Eq. 14-22 to both the left and right ends of the tube segment in 
Fig. 14-15, we have 

or (equation of continuity). (14-23) 

This relation between speed and cross-sectional area is called the equation of 
continuity for the flow of an ideal fluid. It tells us that the flow speed increases 
when we decrease the cross-sectional area through which the fluid flows. 

Equation 14-23 applies not only to an actual tube but also to any so-called 
tube offlow, or imaginary tube whose boundary consists of streamlines. Such a 
tube acts like a real tube because no fluid element can cross a streamline; thus, all 
the fluid within a tube of flow must remain within its boundary. Figure 14-17 
shows a tube of flow in which the cross-sectional area increases from area A I to 
area A2 along the flow direction. From Eq. 14-23 we know that, with the increase 
in area, the speed must decrease, as is indicated by the greater spacing between 
streamlines at the right in Fig. 14-17. Similarly, you can see that in Fig. 14-13 the 
speed of the flow is greatest just above and just below the cylinder. 
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We can rewrite Eq.14-23 as 

Rv = Av = a constant (volume flow rate, equation of continuity), (14-24) 

in which Rv is the volume flow rate of the fluid (volume past a given point per 
unit time). Its SI unit is the cubic meter per second (m3/s). If the density p of the 
fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow 
rate Rill (mass per unit time): 

Rill = pRv = pAv = a constant (mass flow rate). (14-25) 

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25 
says that the mass that flows into the tube segment of Fig. 14-15 each second must 
be equal to the mass that flows out of that segment each second. 

CHECKPOINT 3 

The figure shows a pipe and gives the volume flow rate (in cm3/s) and the di­
rection of flow for all but one section. What are the volume flow rate and the 
direction of flow for that section? 

A water stream narrows as it falls 

Figure 14-18 shows how the stream of water emerging from 
a faucet "necks down" as it falls. This change in the horizontal 
cross-sectional area is characteristic of any laminar (non­
turbulant) falling stream because the gravitational force 
increases the speed of the stream. Here the indicated 
cross-sectional areas are Ao = 1.2 cm2 and A = 0.35 cm2• 

The two levels are separated by a vertical distance h = 45 illill. 
What is the volume flow rate from the tap? 

The volume flow rate through the higher cross section must 
be the same as that through the lower cross section. 

T 
II 

1 

The volume flow per 
second here must 
match ... 

A ... the volume flow 
per second here. 

Fig. 14-18 As water falls from a tap, its speed 
increases. Because the volume flow rate must be 
the same at all horizontal cross sections of the 
stream, the stream must "neck down" (narrow). 

Calculations: From Eg. 14-24, we have 

Aovo = Av, (14-26) 

where Vo and v are the water speeds at the levels correspond­
ing to Ao and A. From Eg. 2-16 we can also write, because the 
water is falling freely with acceleration g, 

v2 = vij + 2gh. (14-27) 

Eliminating v between Egs. 14-26 and 14-27 and solving for 
vo, we obtain 

Vo = 

(2)(9.8 m/s2)(0.045 m)(0.35 cm2)2 
(1.2 cm2)2 - (0.35 cm2)2 

= 0.286 m/s = 28.6 cm/s. 

From Eg. 14-24, the volume flow rate R v is then 

Rv = Aovo = (1.2 cm2)(28.6 cm/s) 

= 34 cm3/s. (Answer) 

Additional examples, video, and practice available at Wi!eyPLUS 
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Fig. 14-19 Fluid flows at a steady rate 
through a length L of a tube, from the input 
end at the left to the output end at the right. 
From time tin (a) to time t + I1t in (b), the 
amount of fluid shown in purple enters the 
input end and the equal amount shown in 
green emerges from the output end. 

1 Bernoulli's Equation 
Figure 14-19 represents a tube through which an ideal fluid is flowing at a steady 
rate. In a time interval M, suppose that a volume of fluid .1 V, colored purple in 
Fig. 14-19, enters the tube at the left (or input) end and an identical volume, 
colored green in Fig. 14-19, emerges at the right (or output) end. The emerging 
volume must be the same as the entering volume because the fluid is incompress­
ible, with an assumed constant density p. 

Let YI> VI> and PI be the elevation, speed, and pressure of the fluid entering at 
the left, and Y2, V2, and P2 be the corresponding quantities for the fluid emerging 
at the right. By applying the principle of conservation of energy to the fluid, we 
shall show that these quantities are related by 

(14-28) 

In general, the term !pv2 is called the fluid's kinetic energy density (kinetic energy 
per unit volume). We can also write Eq.14-28 as 

P + !pv2 + pgy = a constant (Bernoulli's equation). (14-29) 

Equations 14-28 and 14-29 are equivalent forms of Bemonlli's equation, 
after Daniel Bernoulli, who studied fluid flow in the 1700s. * Like the equation of 
continuity (Eq. 14-24), Bernoulli's equation is not a new principle but simply 
the reformulation of a familiar principle in a form more suitable to fluid 
mechanics. As a check, let us apply Bernoulli's equation to fluids at rest, by 
putting VI = V2 = 0 in Eq.14-28. The result is 

P2 = PI + pg(YI - Yz), 

which is Eq.14-7. 
A major prediction of Bernoulli's equation emerges if we take Y to be a 

constant (y = 0, say) so that the fluid does not change elevation as it flows. 
Equation 14-28 then becomes 

+ 1 2_ +1 2 
PI zPVI - P2 zPV2' (14-30) 

which tells us that: 

If the speed of a fluid element increases as the element travels along a horizontal 
streamline, the pressure of the fluid must decrease, and conversely. 

Put another way, where the streamlines are relatively close together (where the 
velocity is relatively great), the pressure is relatively low, and conversely. 

The link between a change in speed and a change in pressure makes sense if 
you consider a fluid element that travels through a tube of various widths. Recall 
that the element's speed in the narrower regions is fast and its speed in the wider 
regions is slow. By Newton's second law, forces (or pressures) must cause the 
changes in speed (the accelerations). When the element nears a narrow region, 
the higher pressure behind it accelerates it so that it then has a greater speed in 
the narrow region. When it nears a wide region, the higher pressure ahead of it 
decelerates it so that it then has a lesser speed in the wide region. 

Bernoulli's equation is strictly valid only to the extent that the fluid is ideal. If 
viscous forces are present, thermal energy will be involved. We take no account 
of this in the derivation that follows. 

*For irrotational flow (which we assume), the constant in Eq.14-29 has the same value for all 
points within the tube of flow; the points do not have to lie along the same streamline. Similarly, 
the points 1 and 2 in Eq. 14-28 can lie anywhere within the tube of flow. 
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Let us take as our system the entire volume of the (ideal) fluid shown in 
Fig. 14-19. We shall apply the principle of conservation of energy to this system as 
it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid 
lying between the two vertical planes separated by a distance L in Fig. 14-19 does 
not change its properties during this process; we need be concerned only with 
changes that take place at the input and output ends. 

First, we apply energy conservation in the form of the work - kinetic energy 
theorem, 

W= 6.K, (14-31) 

which tells us that the change in the kinetic energy of our system must equal the 
net work done on the system. The change in kinetic energy results from the 
change in speed between the ends of the tube and is 

6.K = ~6.m v~ - ~6.117 VI 
= ~p 6. V(v~ - vI), (14-32) 

in which 6.117 (= p 6. V) is the mass of the fluid that enters at the input end and 
leaves at the output end during a small time interval6.t. 

The work done on the system arises from two sources. The work Wg done by 
the gravitational force (6.117 g) on the fluid of mass 6.117 during the vertical lift of 
the mass from the input level to the output level is 

Wg = -6.117 g(Y2 - YI) 

= - pg 6. V(Y2 - YI)' (14-33) 

This work is negative because the upward displacement and the downward gravi­
tational force have opposite directions. 

Work must also be done on the system (at the input end) to push the entering 
fluid into the tube and by the system (at the output end) to push forward the fluid 
that is located ahead of the emerging fluid. In general, the work done by a force 
of magnitude F, acting on a fluid sample contained in a tube of area A to move 
the fluid through a distance 6.x, is 

F 6.x = (pA)(6.x) = peA 6.x) = P 6. V. 

The work done on the system is then PI 6. V, and the work done by the system 
is - P2 6. V. Their sum Wp is 

Wp = -P2 6. V + PI 6. V 

= -(P2 - PI) 6. V. 

The work-kinetic energy theorem ofEq.14-31 now becomes 

W = Wg + Wp = 6.K. 

Substituting from Eqs. 14-32,14-33, and 14-34 yields 

- pg 6. V(Y2 - YI) - 6. V(P2 - PI) = ~p 6. V( v~ - vI). 

(14-34) 

This, after a slight rearrangement, matches Eq.14-28, which we set out to prove. 

CHECKPOINT 4 

Water flows smoothly through the 
pipe shown in the figure, descending 
in the process. Rank the four num­
bered sections of pipe according to 
(a) the volume flow rate Rv through 
them, (b) the flow speed v through 
them, and (c) the water pressure p 
within them, greatest first. 

I 1 I --­Flow 

I 2 I 

I 3 
I 

I 4 I 
I I 
I I 
I I 
I I 

-' 
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Bernoulli principle of fluid through a narrowing pipe 

Ethanol of density p = 791 kg/m3 flows smoothly through a 
horizontal pipe that tapers (as in Fig. 14-15) in cross-sec­
tional area from Al = 1.20 X 10-3 m2 to A2 = AI/2. The 
pressure difference between the wide and narrow sections 
of pipe is 4120 Pa. What is the volume flow rate Rv of the 
ethanol? 

(1) Because the fluid flowing through the wide section of 
pipe must entirely pass through the narrow section, the vol­
ume flow rate R v must be the same in the two sections. Thus, 
from Eq.14-24, 

(14-35) 

However, with two unknown speeds, we cannot evaluate 
this equation for Rv. (2) Because the flow is smooth, we can 
apply Bernoulli's equation. From Eq.14-28, we can write 

+ 1 2+ _ +1 2+ PI ZPVI pgy - P2 ZPV2 pgy, (14-36) 

where subscripts 1 and 2 refer to the wide and narrow 
sections of pipe, respectively, and y is their common eleva­
tion. This equation hardly seems to help because it does not 
contain the desired Rv and it contains the unknown speeds 
VI and V2' 

Calculations: There is a neat way to make Eq. 14-36 work 
for us: First, we can use Eq. 14-35 and the fact that A2 = AI/2 

to write 

(14-37) 

Then we can substitute these expressions into Eq. 14-36 to 
eliminate the unknown speeds and introduce the desired vol­
ume flow rate. Doing this and solving for R v yield 

R = A j2(pI - P2) 
v I -V 3p . (14-38) 

We still have a decision to make: We know that the pres­
sure difference between the two sections is 4120 Pa, but 
does that mean that PI - P2 is 4120 Pa or -4120 Pa? We 
could guess the former is true, or otherwise the square root 
in Eq. 14-38 would give us an imaginary number. Instead of 
guessing, however, let's try some reasoning. From Eq. 14-35 
we see that speed V2 in the narrow section (small A 2) must 
be greater than speed VI in the wider section (larger AI)' 
Recall that if the speed of a fluid increases as the fluid trav­
els along a horizontal path (as here), the pressure of the 
fluid must decrease. Thus,PI is greater than P2, and PI - P2 = 
4120 Pa. Inserting this and known data into Eq. 14-38 gives 

= 2.24 X 10-3 m3/s. 

(2)(4120 Pa) 
(3)(791 kg/m3) 

(Answer) 

Bernoulli principle for a leaky water tank 

In the old West, a desperado fires a bullet into an open water 
tank (Fig. 14-20), creating a hole a distance h below the water 
surface. What is the speed V of the water exiting the tank? 

(1) This situation is essentially that of water moving 
(downward) with speed Vo through a wide pipe (the tank) 
of cross-sectional area A and then moving (horizontally) 
with speed V through a narrow pipe (the hole) of cross­
sectional area a. (2) Because the water flowing through the 
wide pipe must entirely pass through the narrow pipe, the vol­
ume flow rate Rv must be the same in the two "pipes." (3) We 
can also relate v to Vo (and to h) through Bernoulli's equation 
(Eq.14-28). 

Fig. 14-20 Water pours 
through a hole in a water 
tank, at a distance h below 
the water surface. The 
pressure at the water 
surface and at the hole is 
atmospheric pressure Po. 



Calculations: From Eq.14-24, 

Rv = av = Avo 

a 
Va = A V ' and thus 

Because a ~ A, we see that Va ~ v. To apply Bernoulli's equa­
tion, we take the level of the hole as our reference level for 
measuring elevations (and thus gravitational potential en­
ergy). Noting that the pressure at the top of the tank and at 
the bullet hole is the atmospheric pressure Po (because both 
places are exposed to the atmosphere), we write Eq. 14-28 as 

Po + !PV5 + pgh = Po + ~pV2 + pg(O). (14-39) 
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(Here the top of the tank is represented by the left side of 
the equation and the hole by the right side. The zero on the 
right indicates that the hole is at our reference level.) 
Before we solve Eq. 14-39 for v, we can use our result that 
Vo ~ V to simplify it: We assume that V5, and thus the term 
~PV5 in Eq. 14-39, is negligible relative to the other terms, 
and we drop it. Solving the remaining equation for V then 
yields 

V = V2gJi. (Answer) 

This is the same speed that an object would have when 
falling a height h from rest. 

Additional examples, video, and practice available at WileyPLUS 

Density The density p of any material is defined as the material's 
mass per unit volume: 

I:!.m 
p = I:!.V· (14-1 ) 

Usually, where a material sample is much larger than atomic 
dimensions, we can write Eq.14-1 as 

m 
P=V' (14-2) 

Fluid Pressure A fluid is a substance that can flow; it conforms 
to the boundaries of its container because it cannot withstand shear­
ing stress. It can, however, exert a force perpendicular to its surface. 
That force is described in terms of pressure p: 

I:!.F 
p = I:!.A' (14-3) 

in which I:!.F is the force acting on a surface element of area LlA. If the 
force is uniform over a flat area, Eq.14-3 can be written as 

F 
p = A' (14-4) 

The force resulting from fluid pressure at a particular point in a 
fluid has the same magnitude in all directions. Gauge pressure is the 
difference between the actual pressure (or absolute pressure) at a 
point and the atmospheric pressure. 

Pressure Variation with Height and Depth Pressure in a 
fluid at rest varies with vertical position y. For y measured positive 
upward, 

P2 = PI + pg(Yl Yz). (14-7) 

The pressure in a fluid is the same for all points at the same level. If 
h is the depth of a fluid sample below some reference level at which 
the pressure is Po, Eq.14-7 becomes 

p = Po + pgh, 

where p is the pressure in the sample. 

(14-8) 

Pascal's Principle A change in the pressure applied to an en­
closed fluid is transmitted undiminished to every portion of the 
fluid and to the walls of the containing vessel. 

Archimedes' Principle When a body is fully or partially sub­
merged in a fluid, a buoyant force Fb from the surrounding fluid acts on 
the body. The force is directed upward and has a magnitude given by 

Fb = mfg, (14-16) 

where mf is the mass of the fluid that has been displaced by the 
body (that is, the fluid that has been pushed out of the way by the 
body). 

When a body floats in a fluid, the magnitude Fb of the 
(upward) buoyant force on the body is equal to the magnitude Fg 
of the (downward) gravitational force on the body. The apparent 
weight of a body on which a buoyant force acts is related to its ac­
tual weight by 

weightapp = weight - Fb• (14-19) 

Flow of Ideal Fluids An ideal fluid is incompressible and 
lacks viscosity, and its flow is steady and irrotational. A streamline 
is the path followed by an individual fluid particle. A tube offlow is 
a bundle of streamlines. The flow within any tube of flow obeys the 
equation of continuity: 

Rv = Av = a constant, (14-24) 

in which Rv is the volume flow rate, A is the cross-sectional area of 
the tube of flow at any point, and v is the speed of the fluid at that 
point. The mass flow rate Rill is 

Rill = pRj! = pAy = a constant. (14-25) 

Bernoulli's Equation Applying the principle of conservation 
of mechanical energy to the flow of an ideal fluid leads to 
Bel'lloulli's equation: 

p + ~pV2 + pgy = a constant (14-29) 

along any tube of flow. 
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We fully submerge an irregular 3 kg lump of material in a cer­
tain fluid. The fluid that would have been in the space now occu­
pied by the lump has a mass of 2 kg. (a) When we release the lump, 
does it move upward, move downward, or remain in place? (b) If 
we next fully submerge the lump in a less dense fluid and again re­
lease it, what does it do? 

Figure 14-21 shows four situations in which a red liquid and a 
gray liquid are in a U-tube. In one situation the liquids cannot be in 
static equilibrium. (a) Which situation is that? (b) For the other 
three situations, assume static equilibrium. For each, is the density 
of the red liquid greater than, less than, or equal to the density of 
the gray liquid? 

(1) (2) (3) (4) 

Fig. 14-21 Question 2. 

A boat with an anchor on board floats in a swimming 
pool that is somewhat wider than the boat. Does the pool water 
level move up, move down, or remain the same if the anchor is (a) 
dropped into the water or (b) thrown onto the surrounding 
ground? (c) Does the water level in 
the pool move upward, move down­
ward, or remain the same if, instead, 
a cork is dropped from the boat a~ 
into the water, where it floats? 

Figure 14-22 shows a tank filled 
with water. Five horizontal floors ' 
and ceilings are indicated; all have b ~ 
the same area and are located at 
distances L, 2L, or 3L below the 
top of the tank. Rank them accord-
ing to the force on them due to the Fig. 14-22 Question 4. 
water, greatest first. 

The teapot effect. Water poured slowly from a teapot 
spout can double back under the spout for a considerable dis­
tance before detaching and falling. (The water layer is held 
against the underside of the spout by atmospheric pressure.) In 
Fig. 14-23, in the water layer inside 
the spout, point a is at the top of 
the layer and point b is at the bot­
tom of the layer; in the water layer 
outside the spout, point c is at the 
top of the layer and point d is at 
the bottom of the layer. Rank flow 
those four points according to the 
gauge pressure in the water there, 
most positive first. 

Fig. 14-23 QuestionS. 

Figure 14-24 shows three identical open-top containers filled to 

the brim with water; toy ducks float in two of them. Rank the contain­
ers and contents according to their weight, greatest first. 

(a) (b) (c) 

Fig. 14-24 Question 6. 

Figure 14-2S shows four arrangements of pipes through which 
water flows smoothly toward the right. The radii of the pipe sec­
tions are indicated. In which arrangements is the net work done on 
a unit volume of water moving from the leftmost section to the 
rightmost section (a) zero, (b) positive, and (c) negative? 

2.00R R 

(1) 

2.00R 3.00R 2.00R 

2.00R R 

(3) 

3.00R R 

Fig. 14-25 Question 7. 

A rectangular block is pushed H~pp 

facedown into three liquids, in turn. 
The apparent weight Wapp of the 
block versus depth h in the three liq­
uids is plotted in Fig. 14-26. Rank 
the liquids according to their weight 
per unit volume, greatest first. 

Water flows smoothly in a hori­

(2) 

3.00R 

(4) 

R 

R 

c 

zontal pipe. Figure 14-27 shows the Fig. 14-26 Question 8. 
kinetic energy J( of a water element 
as it moves along an x axis that runs along the pipe. Rank the three let­
tered sections of the pipe according to the pipe radius, greatest first. 

Fig. 14-27 

We have three containers 
with different liquids. The gauge 
pressure Pg versus depth h is plot­
ted in Fig. 14-28 for the liquids. In 
each container, we will fully sub­
merge a rigid plastic bead. Rank 
the plots according to the magni­
tude of the buoyant force on the 
bead, greatest first. 

Question 9. 

""-----------11 

Fig. 14-28 Question 10. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
hUp:llwww.wiley.com/college/haliiday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Density and Pressure 
·1 ILW A fish maintains its depth in fresh water by adjusting the 
air content of porous bone or air sacs to make its average density 
the same as that of the water. Suppose that with its air sacs col­
lapsed, a fish has a density of 1.08 g/cm3. To what fraction of its ex­
panded body volume must the fish inflate the air sacs to reduce its 
density to that of water? 

A partially evacuated airtight container has a tight-fitting lid 
of surface area 77 m2 and negligible mass. If the force required to 
remove the lid is 480 N and the atmospheric pressure is 1.0 X 105 

Pa, what is the internal air pressure? 

SSM Find the pressure increase in the fluid in a syringe when 
a nurse applies a force of 42 N to the syringe's circular piston, 
which has a radius of 1.1 cm. 

Three liquids that will not mix are poured into a cylindrical con­
tainer. The volumes and densities of the liquids are 0.50 L, 2.6 g/cm3; 
0.25 L, 1.0 g/cm3; and 0.40 L, 0.80 g/cm3. What is the force on the bot­
tom of the container due to these liquids? One liter = 1 L = 1000 
cm3. (Ignore the contribution due to the atmosphere.) 

SSM An office window has dimensions 3.4 m by 2.1 m. As a 
result of the passage of a storm, the outside air pressure drops to 
0.96 atm, but inside the pressure is held at 1.0 atm. What net force 
pushes out on the window? 

You inflate the front tires on your car to 28 psi. Later, you 
measure your blood pressure, obtaining a reading of 120/80, the 
readings being in mm Hg. In metric countries (which is to say, most 
of the world), these pressures are customarily reported in kilopas­
cals (kPa). In kilopascals, what are (a) your tire pressure and (b) 
your blood pressure? 

In 1654 Otto von Guericke, inventor of the air pump, gave a 
demonstration before the noblemen of the Holy Roman Empire in 
which two teams of eight horses 
could not pull apart two evacuated 
brass hemispheres. (a) Assuming 
the hemispheres have (strong) thin 
walls, so that R in Fig. 14-29 may be 
considered both the inside and out-
side radius, show that the force F 
required to pull apart the hemi- Fig. 14-29 Problem 7. 
spheres has magnitude F = 1TR2 D.p, 
where D.p is the difference between the pressures outside and in­
side the sphere. (b) Taking R as 30 cm, the inside pressure as 0.10 
atm, and the outside pressure as 1.00 atm, find the force magnitude 
the teams of horses would have had to exert to pull apart the hemi­
spheres. (c) Explain why one team of horses could have proved the 
point just as well if the hemispheres were attached to a sturdy wall. 

Fluids at Rest 
The bends during/fight. Anyone who scuba dives is ad­

vised not to fly within the next 24 h because the air mixture for div-

ing can introduce nitrogen to the bloodstream. Without allowing 
the nitrogen to come out of solution slowly, any sudden air-pres­
sure reduction (such as during airplane ascent) can result in the ni­
trogen forming bubbles in the blood, creating the bends, which can 
be painful and even fatal. Military special operation forces are es­
pecially at risk. What is the change in pressure on such a special-op 
soldier who must scuba dive at a depth of 20 m in seawater one day 
and parachute at an altitude of 7.6 km the next day? Assume that 
the average air density within the altitude range is 0.87 kg/m3. 

Blood pressure in Argentinosaurus. (a) If this long­
necked, gigantic sauropod had a head height of 21 m and a heart 
height of 9.0 m, what (hydrostatic) gauge pressure in its blood was 
required at the heart such that the blood pressure at the brain was 
80 torr (just enough to perfuse the brain with blood)? Assume the 
blood had a density of 1.06 X 103 kg/m3. (b) What was the blood 
pressure (in torr or mm Hg) at the feet? 

The plastic tube in Fig. 14-30 has a 
cross-sectional area of 5.00 cm2. The tube is 
filled with water until the short arm (of 
length d = 0.800 m) is full. Then the short 
arm is sealed and more water is gradually 
poured into the long arm. If the seal will pop 
off when the force on it exceeds 9.80 N, what 
total height of water in the long arm will put 
the seal on the verge of popping? 

Fig. 14-30 

Problems 10 
and 81. 

Giraffe bending to drink. In a giraffe with its head 2.0 m 
above its heart, and its heart 2.0 m above its feet, the (hydrostatic) 
gauge pressure in the blood at its heart is 250 torr. Assume that the 
giraffe stands upright and the blood density is 1.06 X 103 kg/m3. In 
torr (or mm Hg), find the (gauge) blood pressure (a) at the brain 
(the pressure is enough to perfuse the brain with blood, to keep the 
giraffe from fainting) and (b) at the feet (the pressure must be 
countered by tight-fitting skin acting like a pressure stocking). (c) 
If the giraffe were to lower its head to drink from a pond without 
splaying its legs and moving slowly, what would be the increase in 
the blood pressure in the brain? (Such action would probably be 
lethal.) 

The maximum depth dOl ax that a diver can snorkel is 
set by the density of the water and the fact that human lungs can 
function against a maximum pressure difference (between inside 
and outside the chest cavity) of 0.050 atm. What is the difference in 
dOl ax for fresh water and the water of the Dead Sea (the saltiest nat­
ural water in the world, with a density of 1.5 X 103 kg/m3)? 

At a depth of 10.9 km, the Challenger Deep in the Marianas 
Trench of the Pacific Ocean is the deepest site in any ocean. Yet, in 
1960, Donald Walsh and Jacques Piccard reached the Challenger 
Deep in the bathyscaph Trieste. Assuming that seawater has a uni­
form density of 1024 kg/m3, approximate the hydrostatic pressure 
(in atmospheres) that the Trieste had to withstand. (Even a slight 
defect in the Trieste structure would have been disastrous.) 
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Calculate the hydrostatic difference in blood pressure be­
tween the brain and the foot in a person of height 1.83 m. The den­
sity of blood is 1.06 X 103 kg/m3. 

What gauge pressure must a machine produce in order to suck 
mud of density 1800 kg/m3 up a tube by a height of 1.5 m? 

-1 Snorkeling by humans 
and elephants. When a person 
snorkels, the lungs are connected 
directly to the atmosphere through 
the snorkel tube and thus are at at­
mospheric pressure. In atmo­
spheres, what is the difference D.p 
between this internal air pressure 
and the water pressure against the Fig. 14-31 Problem 16. 
body if the length of the snorkel 
tube is (a) 20 cm (standard situation) and (b) 4.0 m (probably lethal 
situation)? In the latter, the pressure difference causes blood vessels 
on the walls of the lungs to rupture, releasing blood into the lungs. As 
depicted in Fig. 14-31, an elephant can safely snorkel through its trunk 
while swimming with its lungs 4.0 m below the water surface because 
the membrane around its lungs contains connective tissue that holds 
and protects the blood vessels, preventing rupturing. 

SSM Crew members attempt to escape from a dam-
aged submarine 100 m below the surface. What force must be applied 
to a pop-out hatch, which is 1.2 m by 0.60 m, to push it out at that 
depth? Assume that the density of the ocean water is 1024 kg/m3 and 
the internal air pressure is at 1.00 atm. 

In Fig. 14-32, an open tube of length 
L = 1.8 m and cross-sectional area A = 4.6 
cm2 is fixed to the top of a cylindrical barrel 
of diameter D = 1.2 m and height H = 1.8 
m. The barrel and tube are filled with wa­
ter (to the top of the tube). Calculate the ra­
tio of the hydrostatic force on the bottom of 
the barrel to the gravitational force on the 
water contained in the barrel. Why is that 
ratio not equal to 1.0? (You need not con­
sider the atmospheric pressure.) 

A large aquarium of height 5.00 
m is filled with fresh water to a depth of 2.00 
m. One wall of the aquarium consists of 
thick plastic 8.00 m wide. By how much does 
the total force on that wall increase if the 
aquarium is next filled to a depth of 4.00 m? 

The L..-shaped tank shown in Fig. 14-
33 is filled with water and is open at the 
top. If d = 5.0 m, what is the force due to 
the water (a) on face A and (b) on face B? 

SSM Two identical cylindrical ves­
sels with their bases at the same level each 
contain a liquid of density 1.30 X 103 

kg/m3. The area of each base is 4.00 cm2, 

but in one vessel the liquid height is 0.854 
m and in the other it is 1.560 m. Find the 
work done by the gravitational force in 
equalizing the levels when the two vessels 
are connected. 

L 

Fig. 14-32 

Problem 18. 

2d 

Fig. 14-33 

Problem 20. 

1 
H 

J 

g-LOC in dogfights. When a pilot takes a tight turn at 
high speed in a modern fighter airplane, the blood pressure at the brain 
level decreases, blood no longer perfuses the brain, and the blood in 
the brain drains. If the heart maintains the (hydrostatic) gauge pressure 
in the aorta at 120 torr (or mm Hg) when the pilot undergoes a hori­
zontal centripetal acceleration of 4g, what is the blood pressure (in 
torr) at the brain, 30 cm radially inward from the heart? The perfu­
sion in the brain is small enough that the vision switches to black 
and white and narrows to "tunnel vision" and the pilot can un­
dergo g-LOC ("g-induced loss of consciousness"). Blood density is 
1.06 X 103 kg/m3. 

In analyzing certain geologi­
cal features, it is often appropriate 
to assume that the pressure at some 
horizontal level of compensation, 
deep inside Earth, is the same over 
a large region and is equal to the 
pressure due to the gravitational 
force on the overlying material. 
Thus, the pressure on the level of 
compensation is given by the fluid 
pressure formula. This model re­
quires, for one thing, that moun­
tains have roots of continental 
rock extending into the denser 

({ 

Fig. 14-34 Problem 23. 

mantle (Fig. 14-34). Consider a mountain of height H = 6.0 km 
on a continent of thickness T = 32 km. The continental rock has 
a density of 2.9 g/cm3, and beneath this rock the mantle has a 
density of 3.3 g/cm3. Calculate the depth D of the root. (Hint: Set 
the pressure at points a and b equal; the depth y of the level of 
compensation will cancel out.) 

In Fig. 14-35, water 
stands at depth D = 35.0 m be­
hind the vertical upstream face 
of a dam of width W = 314 m. 
Find (a) the net horizontal force 
on the dam from the gauge pres­
sure of the water and (b) the net 
torque due to that force about a Fig. 14-35 Problem 24. 
horizontal line through 0 paral-
lel to the (long) width of the dam. This torque tends to rotate the 
dam around that line, which would cause the dam to fail. (c) Find 
the moment arm of the torque. 

Measuring Pressure 
In one observation, the column in a mercury barometer (as is 

shown in Fig. 14-5a) has a measured height h of 740.35 mm. The 
temperature is -5.0°C, at which temperature the density of mer­
cury p is 1.3608 X 104 kg/m3. The free-fall acceleration g at the site 
of the barometer is 9.7835 rn/s2• What is the atmospheric pressure 
at that site in pascals and in torr (which is the common unit for 
barometer readings)? 

To suck lemonade of density 1000 kg/m3 up a straw to a maxi­
mum height of 4.0 cm, what minimum gauge pressure (in atmos­
pheres) must you produce in your lungs? 

SSM What would be the height of the atmosphere if the 
air density (a) were uniform and (b) decreased linearly to zero 
with height? Assume that at sea level the air pressure is 1.0 atm 
and the air density is 1.3 kg/m3. 



Pascal's Principle 
A piston of cross-sectional 

area a is used in a hydraulic press to 
exert a small force of magnitude f 
on the enclosed liquid. A connect­
ing pipe leads to a larger piston of 
cross-sectional area A (Fig. 14-36). 
(a) What force magnitude Fwill the 
larger piston sustain without mov­
ing? (b) If the piston diameters are 
3.80 cm and 53.0 cm, what force 

(/ 

Fig. 14-36 
Problem 28. 

F 

magnitude on the small piston will balance a 20.0 kN force on the 
large piston? 

In Fig. 14-37, a spring of 
spring constant 3.00 X 104 N/m is 
between a rigid beam and the out­
put piston of a hydraulic lever. An 
empty container with negligible 
mass sits on the input piston. The 
input piston has area Ai, and the 

Beamu Container 

Spring"=l£ 

output piston has area 18.0Ai· Fig. 14-37 Problem 29. 
Initially the spring is at its rest 
length. How many kilograms of sand must be (slowly) poured into 
the container to compress the spring by 5.00 cm? 

Archimedes' Principle 
A 5.00 kg object is released from rest while fully submerged 

in a liquid. The liquid displaced by the submerged object has a 
mass of 3.00 kg. How far and in what direction does the object 
move in 0.200 s, assuming that it moves freely and that the drag 
force on it from the liquid is negligible? 

SSM A block of wood floats in fresh water with two-thirds 
of its volume V submerged and in oil with 0.90V submerged. Find 
the density of (a) the wood and (b) the oil. 

In Fig. 14-38, a cube of edge 
length L = 0.600 m and mass 450 
kg is suspended by a rope in an 
open tank of liquid of density 1030 
kg/m3. Find (a) the magnitude of 
the total downward force on the 
top of the cube from the liquid and 
the atmosphere, assuming atmo­
spheric pressure is 1.00 atm, (b) the 

T 
L 

-~ 

magnitude of the total upward Fig. 14-38 Problem 32. 

force on the bottom of the cube, and (c) the tension in the rope. (d) 
Calculate the magnitude of the buoyant force on the cube using 
Archimedes' principle. What relation exists among all these quan­
tities? 

SSM An iron anchor of density 7870 kg/m3 appears 200 N 
lighter in water than in air. (a) What is the volume of the anchor? 
(b) How much does it weigh in air? 

A boat floating in fresh water displaces water weighing 35.6 
kN. (a) What is the weight of the water this boat displaces when 
floating in salt water of density 1.10 X 103 kg/m3? (b) What is the 
difference between the volume of fresh water displaced and the 
volume of salt water displaced? 

Three children, each of weight 356 N, make a log raft by lash­
ing together logs of diameter 0.30 m and length 1.80 m. How many 
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logs will be needed to keep them afloat in fresh water? Take the 
density of the logs to be 800 kg/m3. 

In Fig. 14-39a, a rectangular block is gradually pushed 
facedown into a liquid. The block has height d; on the bottom and 
top the face area is A = 5.67 cm2• Figure 14-39b gives the apparent 
weight Wapp of the block as a function of the depth h of its lower 
face. The scale on the vertical axis is set by W, = 0.20 N. What is the 
density of the liquid? 

w, 
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(a) (b) 

Fig. 14-39 Problem 36. 

IlW A hollow spherical iron shell floats almost completely 
submerged in water. The outer diameter is 60.0 cm, and the density 
of iron is 7.87 g/cm3. Find the inner diameter. 

A small solid ball is re­
leased from rest while fully sub­
merged in a liquid and then its ki- ~ 

netic energy is measured when it has ~ 

moved 4.0 cm in the liquid. Figure 
14-40 gives the results after many 
liquids are used: The kinetic energy 
K is plotted versus the liquid density 

o 2 

Plig, and Ks = 1.60 J sets the scale on Fig. 14-40 Problem 38. 
the vertical axis. What are (a) the 
density and (b) the volume of the ball? 

3 

SSM WWW A hollow sphere of inner radius 8.0 cm and 
outer radius 9.0 cm floats half-submerged in a liquid of density 800 
kg/m3. (a) What is the mass ofthe sphere? (b) Calculate the density of 
the material of which the sphere is made. 

Lurking alligators. An 
alligator waits for prey by floating 
with only the top of its head exposed, 
so that the prey cannot easily see it. 
One way it can adjust the extent of Fig. 14-41 Problem 40. 
sinking is by controlling the size of its 
lungs. Another way may be by swallowing stones (gastrolithes) that 
then reside in the stomach. Figure 14-41 shows a highly simplified 
model (a "rhombohedron gater") of mass 130 kg that roams with 
its head partially exposed. The top head surface has area 0.20 m2. If 
the alligator were to swallow stones with a total mass of 1.0% of its 
body mass (a typical amount),how far would it sink? 

What fraction of the volume of an iceberg (density 917 
kg/m3) would be visible if the iceberg floats (a) in the ocean 
(salt water, density 1024 kg/m3) and (b) in a river (fresh water, 
density 1000 kg/m3)? (When salt water freezes to form ice, the 
salt is excluded. So, an iceberg could provide fresh water to a 
community.) 
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A flotation device is in the shape of a right cylinder, with a 
height of 0.500 m and a face area of 4.00 m2 on top and bottom, 
and its density is 00400 times that of fresh water. It is initially held 
fully submerged in fresh water, with its top face at the water sur­
face. 111en it is allowed to ascend gradually until it begins to float. 
How much work does the buoyant force do on the device during 
the ascent? 

When researchers find a rea­
sonably complete fossil of a di­
nosaur, they can determine the mass 
and weight of the living dinosaur 
with a scale model sculpted from 
plastic and based on the dimensions 
of the fossil bones. The scale of the 
model is 1120; that is, lengths are 1/20 Fig. 14-42 Problem 43. 
actual length, areas are (1/20)2 ac-
tual areas, and volumes are (1120)3 actual volumes. First, the model 
is suspended from one arm of a balance and weights are added to 
the other arm until equilibrium is reached. Then the model is fully 
submerged in water and enough weights are removed from the 
second arm to reestablish equilibrium (Fig. 14-42). For a model of a 
particular T. rex fossil, 637.76 g had to be removed to reestablish 
equilibrium. What was the volume of (a) the model and (b) the ac­
tual T. rex? (c) If the density of T. rex was approximately the 
density of water, what was its mass? 

A block of wood has a mass of 3.67 kg and a density of 
600 kg/m3. It is to be loaded with lead (1.14 X 104 kg/m3) so that it 
will float in water with 0.900 of its volume submerged. What mass 
of lead is needed if the lead is attached to (a) the top of the wood 
and (b) the bottom of the wood? 

An iron casting containing a number of cavities weighs 6000 
N in air and 4000 N in water. What is the total volume of all the 
cavities in the casting? The density of iron (that is, a sample with no 
cavities) is 7.87 g/cm3

• 

Suppose that you release a small ball from rest at a depth 
of 0.600 m below the smiace in a pool of water. If the density of the 
ball is 0.300 that of water and if the drag force on the ball from the 
water is negligible, how high above the water surface will the ball 
shoot as it emerges from the water? (Neglect any transfer of energy 
to the splashing and waves produced by the emerging ball.) 

The volume of air space in the passenger compartment of an 
1800 kg car is 5.00 m3• The volume of the motor and front wheels is 
0.750 m3, and the volume of the rear wheels, gas tank, and trunk is 
0.800 m3; water cannot enter these two regions. The car rolls into a 
lake. (a) At first, no water enters the passenger compartment. How 
much of the car, in cubic meters, is below the water surface with the 
car floating (Fig. 14-43)? (b) As water slowly enters, the car sinks. 
How many cubic meters of water are in the car as it disappears 
below the water surface? (The car, with a heavy load in the trunk, 
remains horizontal.) 

Fig. 14-43 Problem 47. 

Figure 14-44 shows an iron ball 
suspended by thread of negligible mass from 
an upright cylinder that floats partially sub­
merged in water. The cylinder has a height of 
6.00 cm, a face area of 12.0 cm2 on the top and 
bottom, and a density of 0.30 g/cm3, and 2.00 cm 
of its height is above the water sUliace. What is 
the radius of the iron ball? 

The Equation of Continuity 

Fig. 14-44 

Problem 48. 

Canal effect. Figure 14-45 shows an anchored barge that 
extends across a canal by distance 
d = 30 m and into the water by dis­
tance b = 12 m. The canal has a 
width D = 55 m, a water depth 
H = 14 m, and a uniform water­
flow speed Vi = 1.5 m/s. Assume 
that the flow around the barge is 
uniform. As the water passes the 
bow, the water level undergoes a 
dramatic dip known as the canal ef­
fect. If the dip has depth h = 0.80 m, 
what is the water speed alongside Fig. 14-45 Problem 49. 
the boat through the vertical cross 
sections at (a) point a and (b) point b? The erosion due to the 
speed increase is a common concern to hydraulic engineers. 

Figure 14-46 shows two sections of an old pipe system that runs 
through a hill, with distances dA = dB = 30 m and D = 110 m. On 
each side of the hill, the pipe radius is 2.00 cm. However, the radius of 
the pipe inside the hill is no longer known. To determine it, hydraulic 
engineers first establish that water flows through the left and right 
sections at 2.50 mls. Then they release a dye in the water at point A 
and find that it takes 88.8 s to reach point B. What is the average ra­
dius of the pipe within the hill? 

" .. /~ 
~ -~- ~ 

Fig. 14-46 Problem 50. 

SSM A garden hose with an internal diameter of 1.9 cm is 
connected to a (stationary) lawn sprinkler that consists merely of a 
container with 24 holes, each 0.13 cm in diameter. If the water in 
the hose has a speed of 0.91 mis, at what speed does it leave the 
sprinkler holes? 

Two streams merge to form a river. One stream has a width 
of 8.2 m, depth of 304 m, and current speed of 2.3 m/s. The other 
stream is 6.8 m wide and 3.2 m deep, and flows at 2.6 m/s. If the 
river has width 10.5 m and speed 2.9 mis, what is its depth? 

SSM Water is pumped steadily out of a flooded basement at 
a speed of 5.0 mls through a uniform hose of radius 1.0 cm. The 
hose passes out through a window 3.0 m above the waterline. What 
is the power of the pump? 

The water flowing through a 1.9 cm (inside diameter) pipe 
flows out through three 1.3 cm pipes. (a) If the flow rates in the 
three smaller pipes are 26, 19, and 11 Llmin, what is the flow rate in 
the 1.9 cm pipe? (b) What is the ratio of the speed in the 1.9 cm pipe 
to that in the pipe carrying 26 Llmin? 



14·1 Bernoulli's Equation 
How much work is done by pressure in forcing 1.4 m3 of 

water through a pipe having an internal diameter of 13 mm if the 
difference in pressure at the two ends of the pipe is 1.0 atm? 

Suppose that two tanks, 1 and 2, each with a large opening at 
the top, contain different liquids. A small hole is made in the side of 
each tank at the same depth h below the liquid surface, but the 
hole in tank 1 has half the cross-sectional area of the hole in tank 2. 
(a) What is the ratio p/ P2 of the densities of the liquids if the mass 
flow rate is the same for the two holes? (b) What is the ratio 
RVIIRv2 ofthe volume flow rates from the two tanks? (c) At one in­
stant, the liquid in tank 1 is 12.0 cm above the hole. If the tanks are 
to have equal volume flow rates, what height above the hole must 
the liquid in tank 2 be just then? 

SSM A cylindrical tank with a large diameter is filled 
with water to a depth D = 0.30 m. A hole of cross-sectional area 
A = 6.5 cm2 in the bottom of the tank allows water to drain out. 
(a) What is the rate at which water flows out, in cubic meters per 
second? (b) At what distance below the bottom of the tank is the 
cross-sectional area of the stream equal to one-half the area of 
the hole? 

The intake in Fig. 14-47 has 
cross-sectional area of 0.74 m2 and 
water flow at 0.40 m/s. At the outlet, 
distance D = 180 m below the in­
take, the cross-sectional area is 
smaller than at the intake and the 
water flows out at 9.5 mls into 
equipment. What is the pressure dif- Fig. 14-47 Problem 58. 
ference between inlet and outlet? 

SSM Water is moving with a speed of 5.0 mls through a pipe 
with a cross-sectional area of 4.0 cm2. The water graduall descends 
10 m as the pipe cross-sectional area increases to 8.0 cm2

• (a) What 
is the speed at the lower level? (b) If the pressure at the upper 
level is 1.5 X 105 Pa, what is the pressure at the lower level? 

Models of torpedoes are sometimes tested in a horizontal 
pipe of flowing water, much as a wind tunnel is used to test model 
airplanes. Consider a circular pipe of internal diameter 25.0 cm and 
a torpedo model aligned along the long axis of the pipe. The model 
has a 5.00 cm diameter and is to be tested with water flowing past it 
at 2.50 mls. (a) With what speed must the water flow in the part of 
the pipe that is unconstricted by the model? (b) What will the pres­
sure difference be between the constricted and unconstricted parts 
of the pipe? 

IlW A water pipe having a 2.5 cm inside diameter carries 
water into the basement of a house at a speed of 0.90 mls and a 
pressure of 170 kPa. If the pipe tapers to 1.2 cm and rises to the 
second floor 7.6 m above the input point, what are the (a) speed 
and (b) water pressure at the second floor? 

A pitot tube (Fig. 14-48) is used to determine the air­
speed of an airplane. It consists of an outer tube with a number of 
small holes B (four are shown) that allow air into the tube; that 
tube is connected to one arm of a U-tube. The other arm of the U­
tube is connected to hole A at the front end of the device, which 
points in the direction the plane is headed. At A the air becomes 
stagnant so that v A = O. At B, however, the speed of the air pre­
sumably equals the airspeed v of the plane. (a) Use Bernoulli's 
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equation to show that 

v =) 2pgh, 
Pair 

where p is the density of the liquid in the U-tube and h is the differ­
ence in the liquid levels in that tube. (b) Suppose that the tube con­
tains alcohol and the level difference h is 26.0 cm. What is the 
plane's speed relative to the air? The density of the air is 1.03 kg/m3 
and that of alcohol is 810 kg/m3. 

Air 

Hole 

Liquid 

Fig. 14-48 Problems 62 and 63. 

A pitot tube (see Problem 62) on a high-altitude aircraft 
measures a differential pressure of 180 Pa. What is the aircraft's 
airspeed if the density of the air is 0.031 kg/m3? 

In Fig. 14-49, water flows 
through a horizontal pipe and then 
out into the atmosphere at a speed 
VI = 15 m/s. The diameters of the 
left and right sections of the pipe are Fig. 14-49 Problem 64. 
5.0 cm and 3.0 cm. (a) What volume 
of water flows into the atmosphere 
during a 10 min period? In the left section of the pipe, what are (b) 
the speed V2 and (c) the gauge pressure? 

SSM www A venturi meter is used to measure the flow 
speed of a fluid in a pipe. The meter is connected between two 
sections of the pipe (Fig. 14-50); the cross-sectional area A of the 
entrance and exit of the meter matches the pipe's cross-sectional 
area. Between the entrance and exit, the fluid flows from the 
pipe with speed V and then through a narrow "throat" of cross-

Meter 
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t~lf~A .... 
\"/""'~R' .... 
Pipe 
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Fig. 14-50 Problems 65 and 66. 
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sectional area a with speed v. A manometer connects the wider 
portion of the meter to the narrower portion. The change in the 
fluid's speed is accompanied by a change D.p in the fluid's pressure, 
which causes a height difference h of the liquid in the two arms of 
the manometer. (Here D.p means pressure in the throat minus pres­
sure in the pipe.) (a) By applying Bernoulli's equation and the 
equation of continuity to points 1 and 2 in Fig. 14-50, show that 

v = I 2a
2 

D.p 
\j p(a2 - A2) , 

where p is the density of the fluid. (b) Suppose that the fluid is fresh 
water, that the cross-sectional areas are 64 cm2 in the pipe and 32 
cm2 in the throat, and that the pressure is 55 kPa in the pipe and 41 
kPa in the throat. What is the rate of water flow in cubic meters per 
second? 

Consider the venturi tube of Problem 65 and Fig. 
14-50 without the manometer. Let A equal 5a. Suppose the pres­
sure PI at A is 2.0 atm. Compute the values of (a) the speed Vat A 
and (b) the speed v at a that make the pressure P2 at a equal to 
zero. (c) Compute the corresponding volume flow rate if the diam­
eter at A is 5.0 cm. The phenomenon that occurs at a when P2 falls 
to nearly zero is known as cavitation. The water vaporizes into 
small bubbles. 

IlW In Fig. 14-51, the fresh 
water behind a reservoir dam has 
depth D = 15 m. A horizontal pipe 
4.0 cm in diameter passes through 
the dam at depth d = 6.0 m. A plug 
secures the pipe opening. (a) Find the 
magnitude of the frictional force be­
tween plug and pipe wall. (b) The 
plug is removed. What water volume 
exits the pipe in 3.0 h? 

Fresh water flows hori­
zontally from pipe section 1 of 
cross-sectional area A I into pipe 
section 2 of cross-sectional area 
A 2• Figure 14-52 gives a plot of the 
pressure difference P2 - PI versus 
the inverse area squared Aj2 that 
would be expected for a volume 
flow rate of a certain value if the 
water flow were laminar under all 
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Fig. 14-51 Problem 67. 

Fig. 14-52 Problem 68. 

circumstances. The scale on the vertical axis is set by D.ps = 300 
kN/m2

• For the conditions of the figure, what are the values of (a) 
A2 and (b) the volume flow rate? 

A liquid of density 900 kg/m3 flows through a horizontal pipe 
that has a cross-sectional area of 1.90 X 10-2 m2 in region A and a 
cross-sectional area of 9.50 X 10 - 2 m2 in region B. The pressure differ­
ence between the two regions is 7.20 X 103 Pa. What are (a) the vol­
ume flow rate and (b) the mass flow rate? 

In Fig. 14-53, water flows steadily from the left pipe section 

R 

Fig. 14-53 Problem 70. 

(radius'l = 2.00R), through the middle section (radius R), and into the 
right section (radius '3 = 3.00R). The speed of the water in the middle 
section is 0.500 m/s. What is the net work done on 0.400 m3 of the water 
as it moves from the left section to the right section? 

I • h 
L 
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Figure 14-54 shows a 
stream of water flowing through 
a hole at depth h = 10 cm in a 
tank holding water to height H = 

40 cm. (a) At what distance x 
does the stream strike the floor? 
(b) At what depth should a sec­
ond hole be made to give the 
same value of x? (c) At what 
depth should a hole be made to Fig. 14-54 Problem 71. 
maximize x? 

A very simplified schematic of the rain drainage system for a 
home is shown in Fig. 14-55. Rain falling on the slanted roof runs off 
into gutters around the roof edge; it then drains through downspouts 
(only one is shown) into a main drainage pipe M below the basement, 
which carries the water to an even larger pipe below the street. In Fig. 
14-55, a floor drain in the basement is also connected to drainage pipe 
M. Suppose the following apply: 

1. the downspouts have height hI = 11 m, 

2. the floor drain has height h2 = 1.2 m, 

3. pipe M has radius 3.0 cm, 

4. the house has side width w = 30 m and front length L = 60 m, 

5. all the water striking the roof goes through pipe M, 

6. the initial speed of the water in a downspout is negligible, 

7. the wind speed is negligible (the rain falls vertically). 

At what rainfall rate, in centimeters per hour, will water from pipe 
M reach the height of the floor drain and threaten to flood the 
basement? 
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Fig. 14-55 Problem 72. 

Additional Problems 
About one-third of the body of a person floating in the 

Dead Sea will be above the waterline. Assuming that the human 
body density is 0.98 g/cm3, find the density of the water in the 
Dead Sea. (Why is it so much greater than 1.0 g/cm3?) 

A simple open U-tube contains mercury. When 11.2 cm of wa­
ter is poured into the right arm of the tube, how high above its ini­
tiallevel does the mercury rise in the left arm? 

If a bubble in sparkling water accelerates upward at the 
rate of 0.225 m/s2 and has a radius of 0.500 mm, what is its mass? 
Assume that the drag force on the bubble is negligible. 



Suppose that your body has a uniform density of 0.95 
times that of water. (a) If you float in a swimming pool, what frac­
tion of your body's volume is above the water surface? 

Quicksand is a fluid produced when water is forced up into 
sand, moving the sand grains away from one another so they are no 
longer locked together by friction. Pools of quicksand can form when 
water drains underground from hills into valleys where there are 
sand pockets. (b) If you float in a deep pool of quicksand that has a 
density 1.6 times that of water, what fraction of your body's volume is 
above the quicksand surface? (c) In particular, are you submerged 
enough to be unable to breathe? 

A glass ball of radius 2.00 cm sits at the bottom of a container 
of milk that has a density of 1.03 g/cm3. The normal force on the 
ball from the container's lower surface has magnitude 9.48 X 10-2 N. 
What is the mass of the ball? 

Caught in an avalanche, a skier is fully submerged in 
flowing snow of density 96 kg/m3. Assume that the average density 
of the skier, clothing, and skiing equipment is 1020 kg/m3. What 
percentage of the gravitational force on the skier is offset by the 
buoyant force from the snow? 

An object hangs from a spring balance. The balance registers 
30 N in air, 20 N when this object is immersed in water, and 24 N 
when the object is immersed in another liquid of unknown den­
sity. What is the density of that other liquid? 

In an experiment, a rectangular block with height h is allowed 
to float in four separate liquids. In the first liquid, which is water, it 
floats fully submerged. In liquids A, B, and C, it floats with heights 
h/2, 2h/3, and h/4 above the liquid surface, respectively. What are 
the relative densities (the densities relative to that of water) of (a) 
A, (b) B, and (c) C? 

SSM Figure 14-30 shows a modified U-tube: the right arm is 
shorter than the left arm. The open end of the right arm is height 
d = 10.0 cm above the laboratory bench. The radius throughout 
the tube is 1.50 cm. Water is gradually poured into the open end of 
the left arm until the water begins to flow out the open end of the 
right arm. Then a liquid of density 0.80 g/cm3 is gradually added to 
the left arm until its height in that arm is 8.0 cm (it does not mix 
with the water). How much water flows out of the right arm? 

What is the acceleration of a rising hot-air balloon if the ratio 
of the air density outside the balloon to that inside is 1.39? Neglect 
the mass of the balloon fabric and the basket. 
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Figure 14-56 shows a siphon, which is a device for 
removing liquid from a container. Tube ABC must initially be filled, 
but once this has been done, liquid will flow through the tube until 
the liquid surface in the container is level with the tube opening at 
A. The liquid has density 1000 kg/m3 and negligible viscosity. The 
distances shown are hi = 25 cm, d = 12 cm, and h2 = 40 cm. (a) With 
what speed does the liquid emerge from the tube at C? (b) If the at­
mospheric pressure is 1.0 X 105 Pa, what is the pressure in the liquid 
at the topmost point B? (c) Theoretically, what is the greatest possi­
ble height h, that a siphon can lift water? 

B 

A 

c 

Fig. 14-56 Problem 83. 

When you cough, you expel air at high speed through 
the trachea and upper bronchi so that the air will remove excess 
mucus lining the pathway. You produce the high speed by this pro­
cedure: You breathe in a large amount of air, trap it by closing the 
glottis (the narrow opening in the larynx), increase the air pressure 
by contracting the lungs, partially collapse the trachea and upper 
bronchi to narrow the pathway, and then expel the air through the 
pathway by suddenly reopening the glottis. Assume that during the 
expulsion the volume flow rate is 7.0 X 10-3 m3/s. What multiple of 
the speed of sound Vs (= 343 m/s) is the airspeed through the tra­
chea if the trachea diameter (a) remains its normal value of 14 mm 
and (b) contracts to 5.2 mm? 

A tin can has a total volume of 1200 cm3 and a mass of 130 g. 
How many grams of lead shot of density 11.4 g/cm3 could it carry 
without sinking in water? 
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Our world is filled with oscillations in which objects move back and 
forth repeatedly. Many oscillations are merely amusing or annoying, but many 
others are dangerous or financially important. Here are a few examples: When a 
bat hits a baseball, the bat may oscillate enough to sting the batter's hands or 
even to break apart. When wind blows past a power line, the line may oscillate 
("gallop" in electrical engineering terms) so severely that it rips apart, shutting 
off the power supply to a community. When an airplane is in flight, the turbulence 
of the air flowing past the wings makes them oscillate, eventually leading to metal 
fatigue and even failure. When a train travels around a curve, its wheels oscillate 
horizontally ("hunt" in mechanical engineering terms) as they are forced to turn 
in new directions (you can hear the oscillations). 

When an earthquake occurs near a city, buildings may be set oscillating so 
severely that they are shaken apart. When an arrow is shot from a bow, the feathers 
at the end of the arrow manage to snake around the bow staff without hitting it be­
cause the arrow oscillates. When a coin drops into a metal collection plate, the coin 
oscillates with such a familiar ring that the coin's denomination can be determined 
from the sound. When a rodeo cowboy rides a bull, the cowboy oscillates wildly as 
the bull jumps and turns (at least the cowboy hopes to be oscillating). 

The study and control of oscillations are two of the primary goals of both 
physics and engineering. In this chapter we discuss a basic type of oscillation 
called simple harmonic motion. 

1 Simple Harmonic Motion 
Figure 15-1a shows a sequence of "snapshots" of a simple oscillating system, a par­
ticle moving repeatedly back and forth about the origin of an x axis. In this section 
we simply describe the motion. Later, we shall discuss how to attain such motion. 

One important property of oscillatory motion is its frequency, or number of 
oscillations that are completed each second. The symbol for frequency is j, and its 
SI unit is the hedz (abbreviated Hz), where 

1 hertz = 1 Hz = 1 oscillation per second = 1 S-l. (15-1) 

Related to the frequency is the period T of the motion, which is the time for one 
complete oscillation (or cycle); that is, 

1 T=y. (15-2) 

Any motion that repeats itself at regular intervals is called periodic motion 
or harmonic motion. We are interested here in motion that repeats itself in a 
particular way - namely, like that in Fig. 15-1a. For such motion the displacement 



A particle oscillates left 
and right in simple 
harmonic motion. 
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Fig. 15-1 (a)Asequenceof 
"snapshots" (taken at equal time 
intervals) showing the position of 
a particle as it oscillates back and 
forth about the origin of an x axis, 
between the limits + Xm and - Xm• 

(b) The vector arrows are scaled 
to indicate the speed of the parti­
cle. The speed is maximum when 
the particle is at the origin and 
zero when it is at ::'::xm . If the time 
t is chosen to be zero when the 
particle is at +X,," then the parti­
cle returns to +xm at t = T, where 
T is the period of the motion. The 
motion is then repea ted. (c) 
Rotating the figure reveals the 
motion forms a cosine function of 
time, as shown in (d). (e) The 
speed (the slope) changes. (c) 

X}I/ 

o +X1I/ 

Rotating the figure reveals 
that the motion forms a 
cosine function. 

0- --

-Xm - --

o 

x of the particle from the origin is given as a function of time by 

x(t) = x l1l cos( wt + cp) (displacement), 

T 

SIMPLE HARMONIC MOTION 387 

The speed 
is zero at the 
extreme points. 

The speed is greatest 
at the midpoint. 

(b) 
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(e) 

(15-3) 

1 
_---'---______ ----'--I ___ ----"-<v <Ft:: ~ 

o +Xm 

This is a graph of the motion, 
with the period T indicated. 

The speed is zero at 
extreme points. 

o i---->"--------,,f---- Time (I) 

The speed is greatest 
at x= O. 

in which x ll1 , w, and cp are constants. This motion is called simple hal'monic motion 
(SHM), a term that means the periodic motion is a sinusoidal function of time. 
Equation 15-3, in which the sinusoidal function is a cosine function, is graphed in 
Fig. 15-1d. (We get that graph by rotating Fig. 15-1a counterclockwise by 90°.) 
The quantities that determine the shape of the graph are displayed in Fig. 15-2 
with their names. We now shall define those quantities. 
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Displacemnt 
at time t 

~ Ph~se~ 
X(t) = XIIlCOS(OJt+¢) 

Nl1PC~~ ! 
Angular Phase 
frequency constant 

or phase 
angle 

Fig. 15-2 A handy reference to the 
quantities in Eq.15-3 for simple harmonic 
motion. 

Fig. 15-3 In all three cases, the blue 
curve is obtained from Eq.15-3 with cp = O. 
(a) The red curve differs from the blue 
curve only in that the red-curve amplitude 
X~1l is greater (the red-curve extremes of 
displacement are higher and lower). (b) 
The red curve differs from the blue curve 
only in that the red-curve period is T' = TI2 
(the red curve is compressed horizontally). 
(c) TIle red curve differs from the blue 
curve only in that for the red curve cp = 

-7T/4 rad rather than zero (the negative 
value of cp shifts the red curve to the right). 

The quantity XIII' called the amplitude of the motion, is a positive constant 
whose value depends on how the motion was started. The subscript 111 stands for 
maximum because the amplitude is the magnitude of the maximum displacement 
of the particle in either direction. The cosine function in Eq. 15-3 varies between 
the limits ±1; so the displacement x(t) varies between the limits ±xlll • 

The time-varying quantity (wt + 4» in Eq. 15-3 is called the phase of the 
motion, and the constant 4> is called the phase constant (or phase angle). The 
value of 4> depends on the displacement and velocity of the particle at time t = O. 
For the x(t) plots of Fig. 15-3a, the phase constant 4> is zero. 

To interpret the constant w, called the angular frequency of the motion, we 
first note that the displacement x(t) must return to its initial value after one 
period T of the motion; that is, x(t) must equal x(t + T) for all t. To simplify this 
analysis, let us put 4> = 0 in Eq. 15-3. From that equation we then can write 

XIII cos wt = X/11 cos w(t + T). (15-4) 

The cosine function first repeats itself when its argument (the phase) has 
increased by 27r rad; so Eq. 15-4 gives us 

w(t + T) = wt + 27r 

or wT = 27r. 

The amplitudes are different, 
but the frequency and 
period are the same. 

x 

;:: X 'III 

OJ Xm 
S 
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-x '/II 

(a) 

The amplitudes are the 
same, but the frequencies 

x 
and periods are different. 

... 
Q 

.\'11/ OJ 
S 
OJ 

0 u 
oj 

-a 
en 

0 -.\"/1/ 

(b) 

This negative value 

x shifts the cosine 
curve rightward. 
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,\'11/ 

" S 
OJ 

0 U 
oj 

~ 
0 -XII/ 

This zero gives a 
(r) regular cosine curve. 
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Thus, from Eq.15-2 the angular frequency is 

21T w= y= 2n!. (15-5) 

The SI unit of angular frequency is the radian per second. (To be consistent, 
then, cp must be in radians.) Figure 15-3 compares x(t) for two simple harmonic 
motions that differ either in amplitude, in period (and thus in frequency and 
angular frequency), or in phase constant. 

JfCHECKPOINT 1 

A particle undergoing simple harmonic oscillation of period T (like that in Fig. 15-1) is 
at -xm at time t = 0. Is it at -XIII' at +X,," at 0, between -XIII and 0, or between ° and 
+xm when (a) t = 2.00T, (b) t = 3.50T, and (c) t = 5.25T? 

By differentiating Eq. 15-3, we can find an expression for the velocity of a particle 
moving with simple harmonic motion; that is, 

dx(t) d 
vet) = -d - = -d [Xm cos(wt + cp)] 

t t 

or vet) = -WXI/l sin(wt + cp) (velocity). (15-6) 

Figure 15-4a is a plot of Eq. 15-3 with cp = O. Figure 15-4b shows Eq. 15-6, 
also with cp = O. Analogous to the amplitude Xm in Eq. 15-3, the positive 
quantity WXI/l in Eq.15-6 is called the velocity amplitude vl1l • As you can see in 
Fig. 15-4b, the velocity of the oscillating particle varies between the limits 
±vl/l = ± wXI/l' Note also in that figure that the curve of vet) is shifted (to the 
left) from the curve of x(t) by one-quarter period; when the magnitude of the 
displacement is greatest (that is, xU) = xm ), the magnitude of the velocity is 
least (that is, vet) = 0). When the magnitude of the displacement is least (that 
is, zero), the magnitude of the velocity is greatest (that is, V I1l = wx",). 

~ 
v 
S v 
u 

.!:l 
~ 
6 

~ 
'0 
0 

~ 

x 
+Xm Extreme 

0 
values 
here 
mean ... 

V 
+(OXm zero 

0 
values 
here 

-WXm and ... 

Knowing the velocity vct) for simple harmonic motion, we can find an expres­
sion for the acceleration of the oscillating particle by differentiating once 
more. Thus, we have, from Eq. 15-6, 

o +W2xlll 
0 

a 

extreme 'p 
cO 
I-< 

0 I values v v 
dv(t) d . 

~ 2. -< -OJ "//I 
here. 

aCt) = ----;tt = dt [-wx lIl sm(wt + cp)] 

or aCt) = - W2XIIl cos( wt + cp) (acceleration). (15-7) 

Figure 15-4c is a plot of Eq.15-7 for the case cp = O. The positive quantity ufXI/l in Eq. 
15-7 is called the acceleration amplitude al/l; that is, the acceleration of the particle 
varies between the limits ±alll = ±w2xlIP as Fig. 15-4c shows. Note also that the accel­
eration curve aCt) is shifted (to the left) by ~ Trelative to the velocity curve vet). 

We can combine Eqs.15-3 and 15-7 to yield 

aCt) = -w2x(t), (15-8) 

which is the hallmark of simple harmonic motion: 

In SHM, the acceleration is proportional to the displacement but opposite in sign, 
and the two quantities are related by the square of the angular frequency. 

(c) 

Fig. 15-4 (a) The displacement x(t) of a 
particle oscillating in SHM with phase an­
gle cjJ equal to zero. The period T marks one 
complete oscillation. (b) The velocity vet) 
of the particle. (c) The acceleration aCt) of 
the particle. 
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x 

Fig. 1 5-5 A linear simple harmonic os­
cillator. The surface is frictionless. Like the 
particle of Fig. 15-1, the block moves in sim­
ple harmonic motion once it has been ei­
ther pulled or pushed away from the x = 0 
position and released. Its displacement is 
then given by Eq.15-3. 

Thus, as Fig. IS-4 shows, when the displacement has its greatest positive value, the 
acceleration has its greatest negative value, and conversely. When the displace­
ment is zero, the acceleration is also zero. 

1 The Force Law for Simple Harmonic Motion 
Once we know how the acceleration of a particle varies with time, we can use 
Newton's second law to learn what force must act on the particle to give it that 
acceleration. If we combine Newton's second law and Eq. IS-8, we find, for sim­
ple harmonic motion, 

F = ma = -(mui)x. (IS-9) 

This result-a restoring force that is proportional to the displacement but oppo­
site in sign-is familiar. It is Hooke's law, 

F= -lex, 

for a spring, the spring constant here being 

k = mw2• 

(IS-lO) 

(1S-11) 

We can in fact take Eq.lS-l0 as an alternative definition of simple harmonic 
motion. It says: 

Simple harmonic motion is the motion executed by a particle subject to a force that is 
proportional to the displacement of the particle but opposite in sign. 

The block-spring system of Fig. IS-S forms a lineal' simple hal'monic 
oscillatol' (linear oscillator, for short), where "linear" indicates that F is pro­
portional to x rather than to some other power of x. The angular frequency w of 
the simple harmonic motion of the block is related to the spring constant k and 
the mass m of the block by Eq.lS-11, which yields 

w=ff (angular frequency). (IS-12) 

By combining Eqs. IS-S and IS-12, we can write, for the pel'iod of the linear 
oscillator of Fig.lS-S, 

T = 27T rm 'iT (period). (1S-13) 

Equations IS-12 and IS-13 tell us that a large angular frequency (and thus a small 
period) goes with a stiff spring (large k) and a light block (small m). 

Every oscillating system, be it a diving board or a violin string, has some 
element of "springiness" and some element of "inertia" or mass, and thus resem­
bles a linear oscillator. In the linear oscillator of Fig. IS-S, these elements are 
located in separate parts of the system: The springiness is entirely in the spring, 
which we assume to be massless, and the inertia is entirely in the block, which we 
assume to be rigid. In a violin string, however, the two elements are both within 
the string, as you will see in Chapter 16. 

2 

Which of the following relationships between the force F on a particle and the particle's 
position x implies simple harmonic oscillation: (a) F = -5x, (b) F = -400x2

, 

(c) F = lOx, (d) F = 3x2? 
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Block-spring SHM, amplitude, acceleration, phase constant 

A block whose mass m is 680 g is fastened to a spring whose 
spring constant k is 65 N/m. The block is pulled a distance 
x = 11 cm from its equilibrium position at x = 0 on a fric­
tionless surface and released from rest at t = O. 

(a) What are the angular frequency, the frequency, and the 
period of the resulting motion? 

The block-spring system forms a linear simple harmonic 
oscillator, with the block undergoing SHM. 

Calculations: The angular frequency is given by Eq. 15-12: 

W=ff= 65N/m 
0.68 kg = 9.78 rad/s 

= 9.8 rad/s. (Answer) 

The frequency follows from Eq. 15-5, which yields 

f = ~ = 9.78 rad/s = 1.56 Hz = 1.6 Hz. (Answer) 
27r 27r rad 

The period follows from Eq. 15-2, which yields 

1 1 
T - 7 - 1.56 Hz = 0.64 s = 640 ms. (Answer) 

(b) What is the amplitude of the oscillation? 

With no friction involved, the mechanical energy of the spring­
block system is conserved. 

Reasoning: The block is released from rest 11 cm from 
its eqUilibrium position, with zero kinetic energy and the 
elastic potential energy of the system at a maximum. Thus, 
the block will have zero kinetic energy whenever it is 
again 11 cm from its equilibrium position, which means it 
will never be farther than 11 cm from that position. Its 
maximum displacement is 11 cm: 

x lll = 11 cm. (Answer) 

(c) What is the maximum speed vm of the oscillating block, 
and where is the block when it has this speed? 

The maximum speed VIII is the velocity amplitude WXIII in Eq.15-6. 

Calculation: Thus, we have 

VI11 = wXIII = (9.78 rad/s)(O.l1 m) 

= 1.1 m/s. (Answer) 

This maximum speed occurs when the oscillating block is rush­
ing through the origin; compare Figs. 15-4a and 15-4b, where 
you can see that the speed is a maximum whenever x = O. 

(d) What is the magnitude am of the maximum acceleration 
of the block? 

The magnitude am of the maximum acceleration is the accel­
eration amplitude w2xl11 in Eq. 15-7. 

Calculation: So, we have 

am = w2xm = (9.78 rad/s)2(0.11 m) 

= 11 m/s2• (Answer) 

This maximum acceleration occurs when the block is at the 
ends of its path. At those points, the force acting on the 
block has its maximum magnitude; compare Figs. 15-4a and 
15-4c, where you can see that the magnitudes of the dis­
placement and acceleration are maximum at the same times. 

(e) What is the phase constant cp for the motion? 

Calculations: Equation 15-3 gives the displacement of the 
block as a function of time. We know that at time t = 0, 
the block is located at x = Xm. Substituting these initial 
conditions, as they are called, into Eq. 15-3 and canceling Xm 

give us 
1 = cos cpo 

Taking the inverse cosine then yields 

cp = 0 rad. 

(15-14) 

(Answer) 

(Any angle that is an integer mUltiple of 27r rad also satisfies 
Eq.15-14; we chose the smallest angle.) 

(f) What is the displacement function x(t) for the 
spring - block system? 

Calculation: The function x(t) is given in general form by 
Eq. 15-3. Substituting known quantities into that equation 
gives us 

x(t) = xm cos(wt + cp) 
= (0.11 m) cos[(9.8 rad/s)t + 0] 

= 0.11 cos(9.8t), 

where x is in meters and t is in seconds. 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Finding SHM phase constant from displacement and velocity 

At t = 0, the displacement x(O) of the block in a linear oscil­
lator like that of Fig. 15-5 is -8.50 cm. (Read x(O) as "x at 
time zero.") The block's velocity v(O) then is -0.920 mis, 
and its acceleration a(O) is +47.0 m/s2• 

(a) What is the angular frequency w of this system? 

With the block in SHM, Eqs. 15-3, 15-6, and 15-7 give its dis­
placement, velocity, and acceleration, respectively, and each 
contains w. 

Calculations: Let's substitute t = 0 into each to see 
whether we can solve anyone of them for w. We find 

x(O) = X Il1 cos <p, 
v(O) = wx", sin <p, 

and a(O) = w2x", cos <p. 

(15-15) 

(15-16) 

(15-17) 

In Eq. 15-15, w has disappeared. In Eqs. 15-16 and 15-17, we 
know values for the left sides, but we do not know Xm and <p. 
However, if we divide Eq. 15-17 by Eq. 15-15, we neatly elim­
inate both XIIl and <p and can then solve for was 

_) _ a(O) _ 
w - x(O)-

= 23.5 rad/s. 

47.0 m/s2 

-0.0850m 

(Answer) 

(b) What are the phase constant <p and amplitude x ll1 ? 

Calculations: We know wand want <p and xl1l • If we divide 
Eq. 15-16 by Eq. 15-15, we eliminate one of those unknowns 
and reduce the other to a single trig function: 

v(O) 
x(O) 

-wx",sin <p ----"'----'--- = - w tan <p. 
XmCOS <p 

Solving for tan <p, we find 

v(~ -Q~Omh 

tan <p = - wx(O) = - (23.5 rad/s)( -0.0850 m) 

= -0.461. 

This equation has two solutions: 

<p = -25° and <p = 180° + (-25°) = 155°. 

Normally only the first solution here is displayed by a calcu­
lator, but it may not be the physically possible solution. To 
choose the proper solution, we test them both by using them 
to compute values for the amplitude xm• From Eq.15-15, we 
find that if <p = -25°, then 

x(O) -0.0850 m 
Xm = cos <p = cos( -250) = -0.094 m. 

We find similarly that if <p = 155°, then Xm = 0.094 m. 
Because the amplitude of SHM must be a positive constant, 
the correct phase constant and amplitude here are 

<p = 155° and Xm = 0.094 m = 9.4 cm. (Answer) 

Additional examples, video, and practice available at WileyPLUS 

Energy in Simple Harmonic Motion 
In Chapter 8 we saw that the energy of a linear oscillator transfers back and forth 
between kinetic energy and potential energy, while the sum of the two-the 
mechanical energy E of the oscillator-remains constant. We now consider this 
situation quantitatively. 

The potential energy of a linear oscillator like that of Fig. 15-5 is associated 
entirely with the spring. Its value depends on how much the spring is stretched or 
compressed - that is, on x(t). We can use Eqs. 8-11 and 15-3 to find 

(15-18) 

Caution: A function written in the form cos2 A (as here) means (cos A)2 and is not 
the same as one written cos A 2, which means cos(A 2). 

The kinetic energy of the system of Fig. 15-5 is associated entirely with the 
block. Its value depends on how fast the block is moving- that is, on vet). We can 
use Eq. 15-6 to find 

(15-19) 
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K(t) 

T/2 T 

(a) As time changes, the 

energy shifts between 
the two types, but the 
total is constant. 

Fig. 15-6 (a) Potential energy 
V(t) , kinetic energy K(t), and me­
chanical energy E as functions of 
time t for a linear harmonic oscilla­
tor. Note that all energies are posi­
tive and that the potential energy 
and the kinetic energy peak twice 
during every period. (b) Potential 
energy V(x) , kinetic energy K(x), 
and mechanical energy E as func­
tions of position x for a linear har­
monic oscillator with amplitude xl1l • 

For x = 0 the energy is all kinetic, 
and for x = ±xl1l it is all potential. 

E--r-----:""":::-'---...,--

U(x) 

o +XI/I 

(b) 
As position changes, the 
energy shifts between 
the two types, but the 
total is constant. 

If we use Eq.15-12 to substitute kim for ui, we can write Eq.15-19 as 

K(t) = ~mv2 = ~kX~, sin2(wt + cjJ). 

The mechanical energy follows from Eqs. 15-18 and 15-20 and is 

E=U+K 
= ~kX;', cos2( wt + cjJ) + ~kx;" sin2( wt + cjJ) 

For any angle ex, 

cos2 ex + sin2 ex = 1. 

Thus, the quantity in the square brackets above is unity and we have 

E = U + K = ~kx~,. 

(15-20) 

(15-21) 

The mechanical energy of a linear oscillator is indeed constant and independent 
of time. The potential energy and kinetic energy of a linear oscillator are shown 
as functions of time t in Fig. 15-6a, and they are shown as functions of displace­
mentx in Fig. 15-6b. 

You might now understand why an oscillating system normally contains an 
element of springiness and an element of inertia: The former stores its potential 
energy and the latter stores its kinetic energy. 

_CHECKPOINT 3 

In Fig. 15-5, the block has a kinetic energy of 3 J and the spring has an elastic potential 
energy of2 J when the block is at x = +2.0 cm. (a) What is the kinetic energy when the 
block is at x = O? What is the elastic potential energy when the block is at (b) x = -2.0 
cm and (c) x = - xl1l? 
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SHM potential energy, kinetic energy, mass dampers 

Many tall buildings have mass dampers, which are anti-sway 
devices to prevent them from oscillating in a wind. The de­
vice might be a block oscillating at the end of a spring and 
on a lubricated track. If the building sways, say, eastward, 
the block also moves eastward but delayed enough so that 
when it finally moves, the building is then moving back west­
ward. Thus, the motion of the oscillator is out of step with 
the motion of the building. 

Suppose the block has mass m = 2.72 X 105 kg and is 
designed to oscillate at frequency f = 10.0 Hz and with am­
plitude XI11 = 20.0 cm. 

(a) What is the total mechanical energy E of the 
spring - block system? 

The mechanical energy E (the sum of the kinetic energy 
K = !mv2 of the block and the potential energy U = !kX2 of 
the spring) is constant throughout the motion of the oscillator. 
Thus, we can evaluate E at any point during the motion. 

Calculations: Because we are given amplitude Xm of the 
oscillations, let's evaluate E when the block is at position 
x = XII" where it has velocity v = O. However, to evaluate U 

at that point, we first need to find the spring constant k. 
From Eq. lS-12 (w = '\I'k;;) and Eq. lS-S (w = 27Tt), we find 

k = mw2 = m(2nf)2 

= (2.72 X 105 kg)(27T)2(10.0 Hz)2 

= 1.073 X 109 N/m. 

We can now evaluate E as 

E = K + U = !mv2 + !kx2 2 2 

= 0 + !(1.073 X 109 N/m)(0.20 m)2 

= 2.147 X 107 J = 2.1 X 107 J. (Answer) 

(b) What is the block's speed as it passes through the equi­
librium point? 

Calculations: We want the speed at X = 0, where the 
potential energy is U = !kx2 = 0 and the mechanical energy 
is entirely kinetic energy. So, we can write 

E = K + U = !mv2 + !kx2 2 2 

2.147 X 107 J = !(2.72 X 105 kg)v2 + 0, 

or v = 12.6m/s. (Answer) 

Because E is entirely kinetic energy, this is the maximum 
speed vll1 • 

~:llis Additional examples, Video, and practice available at WileyPLUS 

end 

Suspension wire 

Fig. 15-7 A torsion pendulum is an an­
gular version of a linear simple harmonic 
oscillator. The disk oscillates in a horizontal 
plane; the reference line oscillates with an­
gular amplitude (Jill' The twist in the suspen­
sion wire stores potential energy as a spring 
does and provides the restoring torque. 

An Angular Simple Harmonic Oscillator 
Figure lS-7 shows an angular version of a simple harmonic oscillator; the element 
of springiness or elasticity is associated with the twisting of a suspension wire 
rather than the extension and compression of a spring as we previously had. The 
device is called a torsion pendulum, with torsion referring to the twisting. 

If we rotate the disk in Fig. lS-7 by some angular displacement e from its rest 
position (where the reference line is at e = 0) and release it, it will oscillate about 
that position in angular simple harmonic motion. Rotating the disk through an 
angle Bin either direction introduces a restoring torque given by 

(lS-22) 

Here K (Greek kappa) is a constant, called the torsion constant, that depends on 
the length, diameter, and material of the suspension wire. 

Comparison of Eq. lS-22 with Eq. 15-10 leads us to suspect that Eq. lS-22 is 
the angular form of Hooke's law, and that we can transform Eq. lS-13, which 
gives the period of linear SHM, into an equation for the period of angular SHM: 
We replace the spring constant k in Eq. lS-13 with its equivalent, the constant 
K of Eq. lS-22, and we replace the mass m in Eq. lS-13 with its equivalent, the 
rotational inertia I of the oscillating disk. These replacements lead to 

T = 27T {T (torsion pendulum). \j---; (lS-23) 
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Angular simple harmonic oscillator, rotational inertia, period 

(7; 
1'a = 21T \j--; and 

Figure 15-8a shows a thin rod whose length L is 12.4 cm and 
whose mass m is 135 g, suspended at its midpoint from a long 
wire. Its period Ta of angular SHM is measured to be 2.53 s. 
An irregularly shaped object, which we call object X, is then 
hung from the same wire, as in Fig. 15-8b, and its period Tb is 
found to be 4.76 s. What is the rotational inertia of object X 
about its suspension axis? 

The constant K, which is a property of the wire, is the same for 
both figures; only the periods and the rotational inertias differ. 

Let us square each of these equations, divide the second 
by the first, and solve the resulting equation for h. The result is 

L = 1 Tl; = (1 73 X 10-4 kg.m2) (4.76 S)2 
b a TlI' (2.53 S)2 

The rotational inertia of either the rod or object X is related 
to the measured period by Eq. 15-23. 

= 6.12 X 10-4 kg· m2. (Answer) 

Calculations: In Table 10-2e, the rotational inertia of a thin 
rod about a perpendicular axis through its midpoint is given as 
AmL2. Thus, we have, for the rod in Fig. 15-8a, 

Suspensi~n I 
Wlre 

[ 

fa = AmL2 = (A)(0.135 kg)(0.124 m)2 

= 1.73 X 10-4 kg· m2. 

... ~ .... ROd 
Fig. 1 5-8 Two torsion 
pendulums, consisting of (a) a 
wire and a rod and (b) the 
same wire and an irregularly 
shaped object. 

1--1· -L-I 
Now let us write Eq. 15-23 twice, once for the rod and once 
for object X: (a) (b) Object X 

Additional examples, video, and practice available at WileyPLUS 

Pendulums 
We turn now to a class of simple harmonic oscillators in which the springiness is 
associated with the gravitational force rather than with the elastic properties of 
a twisted wire or a compressed or stretched spring. 

If an apple swings on a long thread, does it have simple harmonic motion? If so, 
what is the period T? To answer, we consider a simple pendulum, which consists 
of a particle of mass m (called the bob of the pendulum) suspended from one end 
of an unstretchable, massless string of length L that is fixed at the other end, as in 
Fig. 15-9a. The bob is free to swing back and forth in the plane of the page, to the 
left and right of a vertical line through the pendulum'S pivot point. 

The forces acting on the bob are the force T from the string and the gravita­
tional force Fg, as sh~wn in Fig. 15-9b, where the string makes an angle () with the 
vertical. We resolve Fg into a radial component Fg cos () and a component Fg sin () 
that is tangent to the path taken by the bob. This tangential component produces 
a restoring torque about the pendulum's pivot point because the component 
always acts opposite the displacement of the bob so as to bring the bob back 
toward its central location. That location is called the equilibrium position «() = 0) 
because the pendulum would be at rest there were it not swinging. 

Fig. 15-9 (a) A simple pendulum. (b) The forces acting on the bob are the gravitational 
force Fg and the force T from the string. The tangential component Fg sin e of the gravi­
tational force is a restoring force that tends to bring the pendulum back to its central position. 

, 

Pivot : 
point : L 

I 
I 
I 
I 
I 
I 
I 

~ 
I 
I 

This 
component 
brings the 
bob back 
to center. 

(a) 

(b) 

\ 

11/ 

1
5Fg cos () 

() This 
\ component 

-,/ merely 

FK pulls on 
the string. 
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From Eq.10-41 (T = r.lF), we can write this restoring torque as 

T = - L(Fg sin e), (15-24) 

where the minus sign indicates that the torque acts to reduce e and L is the moment 
arm of the force component Fg sin e about the pivot point. Substituting Eq. 15-24 
into Eq.1O-44 (T = la) and then substituting mg as the magnitude of Fg, we obtain 

- L(mg sin e) = la, (15-25) 

where I is the pendulum's rotational inertia about the pivot point and a is its 
angular acceleration about that point. 

We can simplify Eq. 15-25 if we assume the angle e is small, for then we 
can approximate sin e with e (expressed in radian measure). (As an example, 
if e = 5.00° = 0.0873 rad, then sin e = 0.0872, a difference of only about 0.1 %.) 
With that approximation and some rearranging, we then have 

mgL 
a = -- e (15-26) I . 

This equation is the angular equivalent of Eq. 15-8, the hallmark of SHM. It tells us 
that the angular acceleration a of the pendulum is proportional to the angular 
displacement e but opposite in sign. Thus, as the pendulum bob moves to the 
right, as in Fig. 15-9a, its acceleration to the left increases until the bob stops and 
begins moving to the left. Then, when it is to the left of the equilibrium position, 
its acceleration to the right tends to return it to the right, and so on, as it swings 
back and forth in SHM. More precisely, the motion of a simple pendulum swing­
ing through only small angles is approximately SHM. We can state this 
restriction to small angles another way: The angula .. amplitude em of the motion 
(the maximum angle of swing) must be small. 

Comparing Eqs. 15-26 and 15-8, we see that the angular frequency of the 
pendulum is w = YmgLlI. Next, if we substitute this expression for w into 
Eq. 15-5 (w = 27TIT) , we see that the period of the pendulum may be written as 

T = 27T) I . (15-27) 
mgL 

All the mass of a simple pendulum is concentrated in the mass m of the particle­
like bob, which is at radius L from the pivot point. Thus, we can use Eq. 10-33 
(I = mr2) to write 1= mU for the rotational inertia of the pendulum. 
Substituting this into Eq. 15-27 and simplifying then yield 

T = 27T-/f (simple pendulum, small amplitude). (15-28) 

We assume small-angle swinging in this chapter. 

A real pendulum, usually called a physical pendulum, can have a complicated 
distribution of mass. Does it also undergo SHM? If so, what is its period? 

Figure 15-10 shows an arbitrary physical pendulum displaced to one side by 
angle e. The gravitational force Fg acts at its center of mass C, at a distance h from 
the pivot point O. Comparison of Figs. 15-10 and 15-9b reveals only one 
important difference between an arbitrary physical pendulum and a simple 
pendulum. For a physical pendulum the restoring component Fg sin e of the grav­
itational force has a moment arm of distance h about the pivot point, rather than 
of string length L. In all other respects, an analysis of the physical pendulum 
would duplicate our analysis of the simple pendulum up through Eq. 15-27. 
Again (for small em), we would find that the motion is approximately SHM. 



Fig. 15-10 A physical 
pendulum. The restoring 
torque is hFg sin e. When 
e = 0, center of mass C 
hangs directly below pivot 
point O. 

This component brings the 
pendulum back to center. 

If we replace L with h in Eq. 15-27, we can write the period as 

T = 2n~ m~h (physical pendulum, small amplitude). (15-29) 

As with the simple pendulum, 1 is the rotational inertia of the pendulum about O. 
However, now 1 is not simply mL2 (it depends on the shape of the physical pen­
dulum), but it is still proportional to m. 

A physical pendulum will not swing if it pivots at its center of mass. 
Formally, this corresponds to putting h = 0 in Eq. 15-29. That equation then pre­
dicts T ~ 00, which implies that such a pendulum will never complete one swing. 

Corresponding to any physical pendulum that oscillates about a given pivot 
point 0 with period T is a simple pendulum of length Lo with the same period T. 
We can find La with Eq. 15-28. The point along the physical pendulum at distance 
La from point 0 is called the center of oscillation of the physical pendulum for the 
given suspension point. 

We can use a physical pendulum to measure the free-fall acceleration g at a par­
ticular location on Earth's surface. (Countless thousands of such measurements 
have been made during geophysical prospecting.) 

To analyze a simple case, take the pendulum to be a uniform rod of length L, 
suspended from one end. For such a pendulum, h in Eq. 15-29, the distance 
between the pivot point and the center of mass, is 1L. Table 10-2e tells us that the 
rotational inertia of this pendulum about a perpendicular axis through its center 
of mass is f2I11U. From the parallel-axis theorem of Eq. 10-36 (1 = 1eom + Mh 2), 

we then find that the rotational inertia about a perpendicular axis through one 
end of the rod is 

1 = 1eom + I11h2 = f2mL2 + m(~L)2 = ~111L2. (15-30) 

If we put h = ~L and 1 = ~mU in Eq.15-29 and solve for g, we find 

8n2L 
g=~. (15-31) 

Thus, by measuring L and the period T, we can find the value of g at the pendu­
lum's location. (If precise measurements are to be made, a number of refinements 
are needed, such as swinging the pendulum in an evacuated chamber.) 

CHECKPOINT 4 

Three physical pendulums, of masses 1110, 21110, and 31110' have the same shape and size 
and are suspended at the same point. Rank the masses according to the periods of the 
pendulums, greatest first. 

1 s PENDULUMS 397 
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Physical pendulum, period and length 

In Fig. 15-11a, a meter stick swings about a pivot point at 
one end, at distance h from the stick's center of mass. 

o 

r (a) What is the period of oscillation T? 

The stick is not a simple pendulum because its mass is not 
concentrated in a bob at the end opposite the pivot point­
so the stick is a physical pendulum. 

Calculations: The period for a physical pendulum is given 
by Eq. 15-29, for which we need the rotational inertia Iof 
the stick about the pivot point. We can treat the stick as a 
uniform rod of length L and mass m. Then Eq. 15-30 tells us 
that I = ~mU, and the distance h in Eq. 15-29 is iL. 
Substituting these quantities into Eq.15-29, we find 

T = 21TJ m~h = 21TJ !;~) 
= 21TJ 2L 

3g 

(15-32) 

(15-33) 

(2)(1.00 m) 
= 21T ()( 2) = 1.64 s. (Answer) 

3 9.8 m/s 

Note the result is independent of the pendulum's mass m. 

(b) What is the distance La between the pivot point 0 of 
the stick and the center of oscillation of the stick? 

I~ 

Jl 
(a) (b) 

Fig. 15-11 (a) A meter stick suspended from one end as a physi­
cal pendulum. (b) A simple pendulum whose length Lo is chosen so 
that the periods of the two pendulums are equal. Point P on the 
pendulum of (a) marks the center of oscillation. 

physical pendulum (the stick) of Fig. 15-11a. Setting Eqs. 
15-28 and 15-33 equal yields 

fLo {2L 
T = 21T\jg = 21T\j3g' 

You can see by inspection that 

La =~L 

= @(100 cm) = 66.7 cm. 

(15-34) 

(15-35) 

(Answer) 

In Fig. 15-11a, point P marks this distance from suspension 
point 0. Thus, point P is the stick's center of oscillation for 

Calculations: We want the length La of the simple pendu- the given suspension point. Point P would be different for a 
lum (drawn in Fig. 15-11b) that has the same period as the different suspension choice. 

iEils Additional examples, video, and practice available at WileyPLUS 

Simple Harmonic Motion 
and Uniform Circular Motion 

In 1610, Galileo, using his newly constructed telescope, discovered the four prin­
cipal moons of Jupiter. Over weeks of observation, each moon seemed to him to 
be moving back and forth relative to the planet in what today we would call 
simple harmonic motion; the disk of the planet was the midpoint of the motion. 
The record of Galileo's observations, written in his own hand, is still available. 
A. P. French of MIT used Galileo's data to work out the position of the moon 
Callisto relative to Jupiter. In the results shown in Fig. 15-12, the circles are based 
on Galileo's observations and the curve is a best fit to the data. The curve strongly 
suggests Eq. 15-3, the displacement function for SHM. A period of about 
16.8 days can be measured from the plot. 

Actually, Callisto moves with essentially constant speed in an essentially 
circular orbit around Jupiter. Its true motion - far from being simple har-
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Fig. 15-12 The angle between Jupiter and its moon Callisto as seen from Earth. The 
circles are based on Galileo's 1610 measurements. The curve is a best fit, strongly suggesting 
simple harmonic motion. At Jupiter's mean distance from Earth, 10 minutes of arc corresponds 
to about 2 X 106 km. (Adapted from A. P. French,Newtonian Mechanics, W. W. Norton & 
Company,NewYork,1971,p.288.) 

monic-is uniform circular motion. What Galileo saw-and what you can see 
with a good pair of binoculars and a little patience-is the projection of this uni­
form circular motion on a line in the plane of the motion. We are led by Galileo's 
remarkable observations to the conclusion that simple harmonic motion is 
uniform circular motion viewed edge-on. In more formal language: 

Simple harmonic motion is the projection of uniform circular motion on a diameter 
of the circle in which the circular motion occurs. 

Figure 15-13a gives an example. It shows a reference particle pi moving in 
uniform circular motion with (constant) angular speed w in a reference circle. The 
radius Xlll of the circle is the magnitude of the particle's position vector. At any 
time t, the angular position of the particle is wt + ¢, where ¢ is its angular posi­
tion at t = O. 

The projection of particle pi onto the x axis is a point P, which we take to be 
a second particle. The projection of the position vector of particle pi onto the 
x axis gives the location x(t) of P. Thus, we find 

x(t) = Xm cos( wt + ¢), (15-36) 

which is precisely Eq. 15-3. Our conclusion is COITect. If reference particle pi 
moves in uniform circular motion, its projection particle P moves in simple 
harmonic motion along a diameter of the circle. 

Figure 15-13b shows the velocity 11 of the reference particle. From Eq. 10-18 
(v = wr), the magnitude of the velocity vector is wxl11 ;its projection on the x axis is 

v(t) = -wXm sin(wt + ¢), (15-37) 

which is exactly Eq. 15-6. The minus sign appears because the velocity component 
of P in Fig. 15-13b is directed to the left, in the negative direction of x. 

Figure 15-13c shows the radial acceleration a of the reference particle. From 
Eq. 10-23 (ar = w2r), the magnitude of the radial acceleration vector is w2XI11; its 
proj ection on the x axis is 

aCt) = -W2XI11 cos(wt + ¢), (15-38) 

which is exactly Eq.15-7. Thus, whether we look at the displacement, the velocity, 
or the acceleration, the projection of uniform circular motion is indeed simple 
harmonic motion. 

y 

(a) 

(b) 

y 

(c) 

P' is a particle 
moving in a circle. 

x 

P is a projection 
moving in SHM. 

This relates the 
velocities of 
P and P'. 

This relates the 
accelerations of 
Pand P'. 

Fig.15-13 (a)AreferenceparticleP' 
moving with uniform circular motion in a 
reference circle of radius XIII' Its projection P 
on the x axis executes simple harmonic mo­
tion. (b) The projection of the velocity v of 
the reference particle is the velocity of 
SHM. (c) The projection of the radial accel­
eration a of the reference particle is the ac­
celeration of SHM. 
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x ~-T-~ Rigid support 

Vane 

Damping, b 

Fig. 15-14 An idealized damped simple 
harmonic oscillator. A vane immersed in a 
liquid exerts a damping force on the block 
as the block oscillates parallel to the x axis. 

1 Damped Simple Harmonic Motion 
A pendulum will swing only briefly underwater, because the water exerts on the 
pendulum a drag force that quickly eliminates the motion. A pendulum swinging 
in air does better, but still the motion dies out eventually, because the air exerts 
a drag force on the pendulum (and friction acts at its support point), transferring 
energy from the pendulum'S motion. 

When the motion of an oscillator is reduced by an external force, the oscil­
lator and its motion are said to be damped. An idealized example of a damped 
oscillator is shown in Fig. 15-14, where a block with mass m oscillates vertically on 
a spring with spring constant k. From the block, a rod extends to a vane (both 
assumed massless) that is submerged in a liquid. As the vane moves up and down, 
the liquid exerts an inhibiting drag force on it and thus on the entire oscillating 
system. With time, the mechanical energy of the block-spring system decreases, 
as energy is transferred to thermal energy of the liquid and vane. 

Let us assume the liquid exerts a damping force Fd that is proportional to the 
velocity 11 of the vane and block (an assumption that is accurate if the vane 
moves slowly). Then,for components along the x axis in Fig. 15-14, we have 

F" = -bv, (15-39) 

where b is a damping constant that depends on the characteristics of both the 
vane and the liquid and has the SI unit of kilogram per second. The minus sign 
indicates that Fd opposes the motion. 

The force on the block from the spring is Fs = - kx. Let us assume that the 
gravitational force on the block is negligible relative to Fd and Fs. Then we can 
write Newton's second law for components along the x axis (Fnet,x = mar> as 

-bv - kx = mao (15-40) 

Substituting dxldt for v and d 2xldt2 for a and rearranging give us the differential 
equation d 2x dx 

m dt2 + b dt + kx = O. (15-41) 

The solution of this equation is 

x(t) = xm e-btl2m cos( Wi t + 4», (15-42) 

where Xm is the amplitude and Wi is the angular frequency of the damped oscilla­
tor. This angular frequency is given by 

(15-43) 

If b = 0 (there is no damping), then Eq. 15-43 reduces to Eq. 15-12 (w = \fklm) 
for the angular frequency of an undamped oscillator, and Eq. 15-42 reduces to 
Eq. 15-3 for the displacement of an undamped oscillator. If the damping constant 
is small but not zero (so that b ~ v'kriz), then Wi = W. 

We can regard Eq. 15-42 as a cosine function whose amplitude, which is 
Xm e-bI/2m, gradually decreases with time, as Fig. 15-15 suggests. For an undamped 
oscillator, the mechanical energy is constant and is given by Eq. 15-21 (E = ~kX~,), 
If the oscillator is damped, the mechanical energy is not constant but decreases 
with time. If the damping is small, we can find E(t) by replacing Xm in Eq. 15-21 
with XIII e-bI/2m, the amplitude of the damped oscillations. By doing so, we find that 

E(t) = l/u2 e- b11m 
2 111 , (15-44) 

which tells us that, like the amplitude, the mechanical energy decreases exponen­
tially with time. 
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Fig. 15-15 The dis­
placement functionx(t) 
for the damped oscilla­
tor of Fig. 15-14. The 
amplitude, which is 

K-+-H--l:-'c'+-l--J--I-'I-E"H--IrH--H-H--H:--H-+-I-++H--I-'rI--H- t (8) 

XIII e-bI/2m, decreases 
exponentially with time. 

CHECKPOINT 5 

Here are three sets of values for the spring constant, damping constant, and mass for the 
damped oscillator of Fig. 15-14. Rank the sets according to the time required for the 
mechanical energy to decrease to one-fourth of its initial value, greatest first. 

Set 1 

Set2 

Set3 

2ko 

ko 
3ko 

bo 
6bo 
3bo 

Damped harmonic oscillator, time to decay, energy 

For the damped oscillator of Fig. 15-14, m = 250 g, k = 
85 N/m, and b = 70 g/s. 

(a) What is the period of the motion? 

Because b <{ {km = 4.6 kg/s, the period is approximately 
that of the undamped oscillator. 

Calculation: From Eq.15-13, we then have 

T = 21T Jf = 21T ~;2~~ = 0.34 s. (Answer) 

(b) How long does it take for the amplitude of the damped 
oscillations to drop to half its initial value? 

The amplitude at time t is displayed in Eq. 15-42 as xm e-btI2111. 

Calculations: The amplitude has the value XIIl at t = O. 
Thus, we must find the value of t for which 

x e-btl2m = lx 
111 2 mo 

Canceling xm and taking the natural logarithm of the equa­
tion that remains, we have In! on the right side and 

In(e-btI2111) = -btl2m 

on the left side. Thus, 

-2m lnl 
t = 2 

b 

= 5.0s. 

-(2)(0.25 kg)(1n !) 
0.070 kg Is 

(Answer) 

Because T = 0.34 s, this is about 15 periods of oscillation. 

(c) How long does it take for the mechanical energy to drop 
to one-half its initial value? 

From Eq. 15-44, the mechanical energy at time t is !kX~1 e-btll1l • 

Calculations: The mechanical energy has the value 
!kx;1l at t = O. Thus, we must find the value of t for which 

1/cx2 e-btll1I = 1(lkx2) 2 II! 22 Ill' 

If we divide both sides of this equation by !kX~1 and solve for 
t as we did above, we find 

-m In! -(0.25 kg)(1n !) 
t = b = 0.070 kg/s = 2.5 s. (Answer) 

This is exactly half the time we calculated in (b), or about 
7.5 periods of oscillation. Figure 15-15 was drawn to illus­
trate this sample problem. 

Additional examples, video, and practice available at WileyPLUS 
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! b,h 5Q g/s 
(leasq 
damping) 

b= 70 g/s 

0.6 0.8 1.0 1.2 1.4 
(f)d/(f) 

Fig. 15-16 The displacement amplitude 
Xill of a forced oscillator varies as the angu­
lar frequency (f)d of the driving force is var­
ied. The curves here correspond to three 
values of the damping constant b. 

Fig. 15-17 In 1985, buildings of inter­
mediate height collapsed in Mexico City as 
a result of an earthquake far from the city. 
Taller and shorter buildings remained 
standing. (John T. Barr/Getty Images News 
and Sport Services) 

1 Forced Oscillations and Resonance 
A person swinging in a swing without anyone pushing it is an example of free 
oscillation. However, if someone pushes the swing periodically, the swing has 
forced, or driven, oscillations. Two angular frequencies are associated with a sys­
tem undergoing driven oscillations: (1) the natural angular frequency w of the 
system, which is the angular frequency at which it would oscillate if it were 
suddenly disturbed and then left to oscillate freely, and (2) the angular frequency 
Wd of the external driving force causing the driven oscillations.II1t:"t;P:: 

We can use Fig. 15-14 to represent an idealized forced simple harmonic oscil­
lator if we allow the structure marked "rigid support" to move up and down at 
a variable angular frequency Wd' Such a forced oscillator oscillates at the angular 
frequency Wd of the driving force, and its displacement x(t) is given by 

x(t) = Xm cos(w"t + 4», (15-45) 

where XIl1 is the amplitude of the oscillations. 
How large the displacement amplitude xm is depends on a complicated 

function of w" and w. The velocity amplitude Vm of the oscillations is easier to 
describe: it is greatest when 

(resonance ), (15-46) 

a condition called resonance. Equation 15-46 is also approximately the condition 
at which the displacement amplitude XIII of the oscillations is greatest. Thus, if you 
push a swing at its natural angular frequency, the displacement and velocity 
amplitudes will increase to large values, a fact that children learn quickly by trial 
and error. If you push at other angular frequencies, either higher or lower, the 
displacement and velocity amplitudes will be smaller. 

Figure 15-16 shows how the displacement amplitude of an oscillator depends 
on the angular frequency w" of the driving force, for three values of the damping 
coefficient b. Note that for all three the amplitude is approximately greatest when 
w,,/w = 1 (the resonance condition of Eq. 15-46). The curves of Fig. 15-16 show 
that less damping gives a taller and narrower resonance peak. 

All mechanical structures have one or more natural angular frequencies, and 
if a structure is subjected to a strong external driving force that matches one of 
these angular frequencies, the resulting oscillations of the structure may rupture 
it. Thus, for example, aircraft designers must make sure that none of the natural 
angular frequencies at which a wing can oscillate matches the angular frequency 
of the engines in flight. A wing that flaps violently at certain engine speeds would 
obviously be dangerous. 

Resonance appears to be one reason buildings in Mexico City collapsed in 
September 1985 when a major earthquake (8.1 on the Richter scale) occurred 
on the western coast of Mexico. The seismic waves from the earthquake should 
have been too weak to cause extensive damage when they reached Mexico 
City about 400 km away. However, Mexico City is largely built on an ancient 
lake bed, where the soil is still soft with water. Although the amplitude of the 
seismic waves was small in the firmer ground en route to Mexico City, their 
amplitude substantially increased in the loose soil of the city. Acceleration am­
plitudes of the waves were as much as 0.20g, and the angular frequency was 
(surprisingly) concentrated around 3 rad/s. Not only was the ground severely 
oscillated, but many intermediate-height buildings had resonant angular fre­
quencies of about 3 rad/s. Most of those buildings collapsed during the shaking 
(Fig. 15-17), while shorter buildings (with higher resonant angular frequen­
cies) and taller buildings (with lower resonant angular frequencies) remained 
standing. 



Frequency The frequency f of periodic, or oscillatory, motion is 
the number of oscillations per second. In the SI system, it is mea­
sured in hertz: 

1 hertz = 1 Hz = 1 oscillation per second = 1 S-I. (15-1 ) 

Period The period T is the time required for one complete oscil­
lation, or cycle. It is related to the frequency by 

1 
T=T (15-2) 

Simple Harmonic Motion In simple harmonic motion 
(SHM), the displacement x(t) of a particle from its equilibrium po­
sition is described by the equation 

x = XIll cos(wt + ¢) ( displacement), (15-3) 

in which XI11 is the amplitude of the displacement, wt + ¢ is the phase 
of the motion, and ¢ is the phase constant. The angular frequency w is 
related to the period and frequency of the motion by 

27T 
W = - = 27Tf 

T 
(angular frequency). (15-5) 

Differentiating Eq. 15-3 leads to equations for the particle's SHM 
velocity and acceleration as functions of time: 

v = -wxlllsin(wt + ¢) (velocity) (15-6) 

and a = -w2xm cos(wt + ¢) (acceleration). (15-7) 

In Eq. 15-6, the positive quantity WXIll is the velocity amplitude Vm 

of the motion. In Eq. 15-7, the positive quantity w2XIll is the acceler­
ation amplitude am of the motion. 

The Linear Oscillator A particle with mass m that moves un­
der the influence of a Hooke's law restoring force given by F = 
-kx exhibits simple harmonic motion with 

and 

w= fk '1-;;; (angular frequency) 

T = 27T rm 'IT (period). 

(15-12) 

(15-13) 

Such a system is called a linear simple harmonic oscillator. 

Energy A particle in simple harmonic motion has, at any time, 
kinetic energy K = imv2 and potential energy V = ikx2• If no fric­
tion is present, the mechanical energy E = K + V remains con­
stant even though K and V change. 

Which of the following describe ¢ for the SHM of Fig. 15-18a: 

(a) -7T < ¢ < -7T/2, 

(b) 7T < ¢ < 37T/2, 

(c) -37T/2 < ¢ < -7T? 

The velocity vet) of a particle undergoing SHM is graphed in 
Fig. I5-18b. Is the particle momentarily stationary, headed toward 
-x"" or headed toward +xlll at (a) point A on the graph and (b) 
point E? Is the particle at -XIII' at +XIII , at 0, between -XIII and 0, or 
between 0 and + XIII when its velocity is represented by (c) point A 

QUESTIONS 403 

Pendulums Examples of devices that undergo simple 
harmonic motion are the torsion pendulum of Fig. 15-7, the simple 
pendulum of Fig. 15-9, and the physical pendulum of Fig. 15-10. 
Their periods of oscillation for small oscillations are, respectively, 

T= 27T~ (torsion pendulum), (15-23) 

T = 27Tvug (simple pendulum), (15-28) 

T = 27T VIImgh (physical pendulum). (15-29) 

Simple Harmonic Motion and Uniform Circular Motion 
Simple harmonic motion is the projection of uniform circular mo­
tion onto the diameter of the circle in which the circular motion oc­
curs. Figure 15-13 shows that all parameters of circular motion (posi­
tion, velocity, and acceleration) project to the corresponding values 
for simple harmonic motion. 

Damped Harmonic Motion The mechanical energy E in 
a real oscillating system decreases during the oscillations because 
external forces, such as a drag force, inhibit the oscillations and 
transfer mechanical energy to thermal energy. The real oscillator 
and its motion are then said to be damped. If the damping force is 
given by Fd = -bv, where j7 is the velocity of the oscillator and b 
is a damping constant, then the displacement of the oscillator is 
given by 

X(t) = Xm e-btl21ll cos( Wi t + ¢), (15-42) 

where Wi, the angular frequency of the damped oscillator, is given 
by 

Wi = 
k 

(15-43) 
m 

If the damping constant is small (b ~ Ykiii), then Wi = w, where w is 
the angular frequency of the undamped oscillator. For small b, the 
mechanical energy E of the oscillator is given by 

(15-44) 

Forced Oscillations and Resonance If an external 
driving force with angular frequency Wd acts on an oscillating sys­
tem with natural angular frequency w, the system oscillates with 
angular frequency Wd' The velocity amplitude VIII of the system is 
greatest when 

(15-46) 

a condition called resonance. The amplitude Xm of the system is 
(approximately) greatest under the same condition. 

and (d) point E? Is the speed of the particle increasing or decreas­
ing at (e) point A and (f) pointE? 

Fig. 15-18 Questions 1 and 2. 
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The acceleration a(t) of a parti­
cle undergoing SHM is graphed in 
Fig. 15-19. (a) Which of the labeled 
points corresponds to the particle at 
-xlll? (b) At point 4, is the velocity 
of the particle positive, negative, or 
zero? (c) At point 5, is the particle 
at -XIIl , at +xl/l' at 0, between -XIIl 

and 0, or between 0 and + x lIl? 

({ 

\3 
\4 8,' 

\ 1/ \, /7 
5 "\., l 

e<" 
6 

Fig. 15-19 Question 3. 

Which of the following relationships between the acceleration 
a and the displacement x of a particle involve SHM: (a) a = 0.5x, 
(b) a = 400X2,(C) a = -20x,(d) a = -3x2? 

You are to complete Fig. 15-20a 
so that it is a plot of velocity v versus 
time t for the spring - block oscillator 
that is shown in Fig. 15-20b for t = O. 
(a) In Fig. 15-20a, at which lettered 
point or in what region between the 
points should the (vertical) v axis in­
tersect the t axis? (For example, 
should it intersect at point A, or 
maybe in the region between points 
A and B?) (b) If the block's velocity 
is given by v = -Vm sine wt + ¢), what 
is the value of ¢? Make it positive, 
and if you cannot specify the value 
(such as +1T12 rad), then give a range 
of values (such as between 0 and 1T12). 

I) You are to complete Fig. 15-21a 
so that it is a plot of acceleration a 
versus time t for the spring - block 
oscillator that is shown in Fig. 15-
21b for t = O. (a) In Fig. 15-21a, at 
which lettered point or in what re­
gion between the points should the 
(vertical) a axis intersect the taxis? 
(For example, should it intersect at 
point A, or maybe in the region be­
tween points A and B?) (b) If the 
block's acceleration is given by a = 

~, ABC D E 

(a) 

t= 0 

-I---+I--+--x 
o 

(b) 

Fig. 15-20 Question 5. 

(a) 

t= 0 

--1----~I----~--x 

o 
(b) 

-am cos(wt + ¢), what is the value Fig. 15-21 Question 6. 
of ¢? Make it positive, and if you 
cannot specify the value (such as +1T12 rad), then give a range of 
values (such as between 0 and 1T12). 

Figure 15-22 shows the x(t) curves for three experiments involving 
a particular spring-box system oscillating in SHM. Rank the curves 
according to (a) the system's angular frequency, (b) the spring's poten­
tial energy at time t = 0, (c) the box's kinetic energy at t = 0, (d) the 
box's speed at t = 0, and 
(e) the box's maximum 
kinetic energy, greatest 
first. 

Figure 15-23 shows 
plots of the kinetic en­
ergy [( versus position 
x for three harmonic 
oscillators that have 
the same mass. Rank 
the plots according to Fig. 15-22 Question 7. 

(a) the corresponding spring con­
stant and (b) the corresponding pe­
riod of the oscillator, greatest first. 

Figure 15-24 shows three physical 
pendulums consisting of identical uni­
form spheres of the same mass that 
are rigidly connected by identical rods 
of negligible mass. Each pendulum is 
vertical and can pivot about suspen­
sion point 0. Rank the pendulums ac­
cording to their period of oscillation, 
greatest first. 

You are to build the oscillation 

K 

ff:----..L.----'!Ix 

Fig. 1 5-23 Question 8. 

o • 

transfer device shown in Fig. 15-25. It • 0 • 0 
consists of two spring - block systems 
hanging from a flexible rod. When 
the spring of system 1 is stretched 
and then released, the resulting SHM (a) (b) (e) 

of system 1 at frequency /1 oscillates Fig. 15-24 Question 9. 
the rod. The rod then exerts a driving 
force on system 2, at the same frequency A You can choose from four 
springs with spring constants k of 1600, 1500, 1400, and 1200 N/m, and 
four blocks with masses m of 800, 500, 400, and 200 kg. Mentally de­
termine which spring should go with which block in each of the two 
systems to maximize the amplitude of oscillations in system 2. 

1 ~lt!~ 
System 1 System 2 

Fig. 15-25 Question 10. 

In Fig. 15-26, a spring-block 
system is put into SHM in two ex­
periments. In the first, the block is 
pulled from the equilibrium posi­
tion through a displacement d 1 and 
then released. In the second, it is Fig. 15-26 Question 11. 
pulled from the equilibrium posi-
tion through a greater displacement d2 and then released. Are the 
(a) amplitude, (b) period, (c) frequency, (d) maximum kinetic en­
ergy, and (e) maximum potential energy in the second experiment 
greater than, less than, or the same as those in the first experiment? 

Figure 15-27 gives, for three situations, the displacements x(t) 
of a pair of simple harmonic oscillators (A and B) that are identical 
except for phase. For each pair, what phase shift (in radians and in 
degrees) is needed to shift the curve for A to coincide with the 
curve for B? Of the many possible answers, choose the shift with 
the smallest absolute magnitude. 

(a) (b) (e) 

Fig. 15-27 Question 12. 



PROBLEMS 405 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty I LW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Force Law for Simple Harmonic Motion 

An object undergoing simple harmonic motion takes 0.25 s to 
travel from one point of zero velocity to the next such point. The 
distance between those points is 36 cm. Calculate the (a) period, 
(b) frequency, and (c) amplitude of the motion. 

A 0.12 kg body undergoes simple harmonic motion of ampli­
tude 8.5 cm and period 0.20 s. (a) What is the magnitude of the 
maximum force acting on it? (b) If the oscillations are produced by 
a spring, what is the spring constant? 

What is the maximum acceleration of a platform that 
oscillates at amplitude 2.20 cm and frequency 6.60 Hz? 

An automobile can be considered to be mounted on four 
identical springs as far as vertical oscillations are concerned. The 
springs of a certain car are adjusted so that the oscillations have a 
frequency of 3.00 Hz. (a) What is the spring constant of each spring 
if the mass of the car is 1450 kg and the mass is evenly distributed 
over the springs? (b) What will be the oscillation frequency if five 
passengers, averaging 73.0 kg each, ride in the car with an even dis­
tribution of mass? 

SSM In an electric shaver, the blade moves back and forth 
over a distance of 2.0 mm in simple harmonic motion, with fre­
quency 120Hz. Find (a) the amplitude, (b) the maximum blade 
speed, and (c) the magnitude of the maximum blade acceleration. 

A particle with a mass of 1.00 X 10-20 kg is oscillating with 
simple harmonic motion with a period of 1.00 X 10-5 s and a maxi­
mum speed of 1.00 X 103 m/s. Calculate (a) the angular frequency 
and (b) the maximum displacement of the particle. 

SSM A loudspeaker produces a musical sound by means of the 
oscillation of a diaphragm whose amplitude is limited to 1.00 /Lm. 

(a) At what frequency is the magni­
tude a of the diaphragm's accelera­
tion equal to g? (b) For greater fre­
quencies, is a greater than or less 
thang? 

What is the phase constant for 
the harmonic oscillator with the po­
sition function x(t) given in Fig. 15-
28 if the position function has the 

x (cm) 
X,f 

form x = XIII cos(wt + ¢)? The ver- P bl 8 
Fig. 15-28 ro em . tical axis scale is set by Xs = 6.0 cm. 

The function X = (6.0 m) COS[(31T rad/s)t + 1T/3 rad] gives the 
simple harmonic motion of a body. At t = 2.0 s, what are the (a) 
displacement, (b) velocity, (c) acceleration, and (d) phase of the 
motion? Also, what are the (e) frequency and (f) period of the 
motion? 

An oscillating block -spring system takes 0.75 s to begin re­
peating its motion. Find (a) the period, (b) the frequency in hertz, 
and (c) the angular frequency in radians per second. 

In Fig. 15-29, two identical 
springs of spring constant 7580 N/m 
are attached to a block of mass 0.245 
kg. What is the frequency of oscilla­
tion on the frictionless floor? 

What is the phase constant 
for the harmonic oscillator with 
the velocity function vet) given in 
Fig. 15-30 if the position function x(t) 
has the form x = XIII cos(wt + ¢)? 
The vertical axis scale is set by Vs = 

4.0 cm/s. 

58M An oscillator consists of 

Fig. 15-29 

Problems 11 and 21. 

l' (cm/s) 

a block of mass 0.500 kg connected Fig. 15-30 Problem 12. 
to a spring. When set into oscillation 
with amplitude 35.0 cm, the oscillator repeats its motion every 
0.500 s. Find the (a) period, (b) frequency, (c) angular frequency, 
(d) spring constant, (e) maximum speed, and (f) magnitude of the 
maximum force on the block from the spring. 

A simple harmonic oscillator consists of a block of mass 2.00 
kg attached to a spring of spring constant 100 N/m. When t = 1.00 
s, the position and velocity of the block are x = 0.129 m and v = 

3.415 m/s. (a) What is the amplitude of the oscillations? What were 
the (b) position and (c) velocity of the block at t = 0 s? 

S8M Two particles oscillate in simple harmonic motion 
along a common straight-line segment of length A. Each parti­
cle has a period of 1.5 s, but they differ in phase by 1T/6 rad. 
(a) How far apart are they (in terms of A) 0.50 s after the lag­
ging particle leaves one end of the pa th? (b) Are they then mov­
ing in the same direction, toward each other, or away from each 
other? 

43 Two particles execute simple harmonic motion of the same 
amplitude and frequency along close parallel lines. They pass each 
other moving in opposite directions each time their displacement 
is half their amplitude. What is their phase difference? 

ILW An oscillator consists of a block attached to a spring 
(k = 400 N/m). At some time t, the position (measured from the 
system's equilibrium location), velocity, and acceleration of the 
block are x = 0.100 m, v = -13.6 mis, and a = -123 m/s2

• Calcul­
ate (a) the frequency of oscillation, (b) the mass of the block, and 
(c) the amplitude of the motion. 

At a certain harbor, the tides cause the ocean surface to 
rise and fall a distance d (from highest level to lowest level) in sim­
ple harmonic motion, with a period of 12.5 h. How long does it take 
for the water to fall a distance 0.250d from its highest level? 

A block rides on a piston that is moving vertically with 
simple harmonic motion. (a) If the SHM has period 1.0 s, at what 
amplitude of motion will the block and piston separate? (b) If 
the piston has an amplitude of 5.0 cm, what is the maximum 
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frequency for which the block 
and piston will be in contact 
continuously? 

Figure 15-31a is a par­
tial graph of the position func­
tion x(t) for a simple harmonic 
oscillator with an angular 
frequency of 1.20 rad/s; Fig. 15-
31b is a partial graph of the cor­
responding velocity function 
vet). The vertical axis scales are 
set by Xs = 5.0 cm and Vs = 5.0 
cm/s. What is the phase constant 
of the SHM if the position func-
tion x(t) is in the general form 
x = XI/1 cos(wt + cfJ)? 

IlW In Fig. 15-29, two 
springs are attached to a block 
that can oscillate over a friction­
less floor. If the left spring is 
removed, the block oscillates at 

x(cm) 

(a) 

)I (cm/s) 
- - Vs 

(b) 

Fig. 15-31 Problem 20. 

a frequency of 30 Hz. If, instead, the spring on the right is removed, 
the block oscillates at a frequency of 45 Hz. At what frequency 
does the block oscillate with both springs attached? 

Figure 15-32 shows block 1 of mass 0.200 kg sliding to 
the right over a frictionless elevated surface at a speed of 
8.00 m/s. The block undergoes an elastic collision with stationary 
block 2, which is attached to a spring of spring constant 1208.5 
N/m. (Assume that the spring does not affect the collision.) After 
the collision, block 2 oscillates in SHM with a period of 0.140 s, 
and block 1 slides off the opposite end of the elevated surface, 
landing a distance d from the base of that surface after falling 
height h 4.90 m. What is the value of d? 

Fig. 15-32 Problem 22. 

SSM WWW A block is on a horizontal surface (a shake 
table) that is moving back and forth horizontally with simple har­
monic motion of frequency 2.0 Hz. The coefficient of static friction 
between block and surface is 0.50. How great can the amplitude of 
the SHM be if the block is not to slip along the surface? 

In Fig. 15-33, two springs 

are joined and connected to a ~. In. . Ii Ii 
block of mass 0.245 kg that is set . 
oscilla ting over a frictionless floor. 
The springs each have spring con-
stant k = 6430 N/m. What is the Fig. 15-33 Problem 24. 
frequency of the oscillations? 

In Fig. 15-34, a block weighing 14.0 N, which can slide 
without friction on an incline at angle () = 40.0°, is connected to 
the top of the incline by a massless spring of un stretched length 
0.450 m and spring constant 120 N/m. (a) How far from the top of 

the incline is the block's equilibrium point? (b) If the block is 
pulled slightly down the incline and released, what is the period of 
the resulting oscillations? 

8 

Fig. 15-34 Problem 25. 

In Fig. 15-35, two blocks (m = 1.8 kg and M = 10 kg) 
and a spring (k = 200 N/m) are arranged on a horizontal, 
frictionless surface. The coefficient of static friction between the 
two blocks is 0.40. What amplitude of simple harmonic motion of 
the spring-blocks system puts the smaller block on the verge of 
slipping over the larger block? 

Fig. 15-35 Problem 26. 

Energy in Simple Harmonic Motion 
When the displacement in SHM is one-half the ampli­

tude XI/1' what fraction of the total energy is (a) kinetic energy and 
(b) potential energy? (c) At what displacement, in terms of the am­
plitude, is the energy of the sys-
tem half kinetic energy and half 
potential energy? 

Figure 15-36 gives the 
one-dimensional potential en­
ergy well for a 2.0 kg particle 
(the function U(x) has the form 
bx 2 and the vertical axis scale is 
set by Us = 2.0 J). (a) If the par­
ticle passes through the equilib- -20 

rium position with a velocity of 
85 cm/s, will it be turned back be­
fore it reaches x = 15 cm? (b) If 

-10 o 10 20 

X (em) 

Fig. 15-36 Problem 28. 

yes, at what position, and if no, what is the speed of the particle at 
x = 15 cm? 

SSM Find the mechanical energy of a block-spring system 
having a spring constant of 1.3 N/cm and an oscillation amplitude 
of 2.4 cm. 

An oscillating block-spring system has a mechanical energy 
of 1.00 J, an amplitude of 10.0 cm, and a maximum speed of 1.20 
m/s. Find (a) the spring constant, (b) the mass of the block, and (c) 
the frequency of oscillation. 

ILW A 5.00 kg object on a horizontal frictionless surface is at­
tached to a spring with k = 1000 N/m. The object is displaced from 
equilibrium 50.0 cm horizontally and given an initial velocity of 



10.0 m/s back toward the equilibrium position. What are (a) the 
motion's frequency, (b) the initial potential energy of the 
block-spring system, (c) the initial kinetic energy, and (d) the mo­
tion's amplitude? 

Figure 15-37 shows the kinetic energy K of a simple harmonic os­
cillator versus its position x. The vertical axis scale is set by Ks = 4.0 1. 
What is the spring constant? 

K(J) 

-12 -8 -4 0 4 8 12 

x(cm) 

Fig. 15-37 Problem 32. 

A block of mass M = 5.4 kg, at rest on a horizontal 
frictionless table, is attached to a rigid support by a spring of con­
stant Ie = 6000 N/m. A bullet of mass m = 9.5 g and velocity v of 
magnitude 630 m/s strikes and is embedded in the block (Fig. 15-38). 
Assuming the compression of the spring is negligible until the bul­
let is embedded, determine (a) the 
speed of the block immediately af­
ter the collision and (b) the ampli­
tude of the resulting simple har­
monic motion. 

v 

- I .. ;;~} 

~ In Fig. 15-39, block 2 of Fig. 15-38 Problem 33. 
mass 2.0 kg oscillates on the end of 
a spring in SHM with a period of 20 
ms. The block's position is given by 
x = (1.0 cm) cos( wt + 1T/2). Block 1 
of mass 4.0 kg slides toward block 2 
with a velocity of magnitude 6.0 Fig. 15-39 Problem 34. 
mis, directed along the spring's 
length. The two blocks undergo a completely inelastic collision at 
time t = 5.0 ms. (The duration of the collision is much less than the 
period of motion.) What is the amplitude of the SHM after the 
collision? 

A 10 g particle undergoes SHM with an amplitude of 2.0 
mm, a maximum acceleration of magnitude 8.0 X 103 m/s2, and an 
unknown phase constant cpo What are (a) the period of the motion, 
(b) the maximum speed of the particle, and (c) the total mechani­
cal energy of the oscillator? What is the magnitude of the force on 
the particle when the particle is at (d) its maximum displacement 
and (e) half its maximum displacement? 

If the phase angle for a block-spring system in SHM is 1T/6 
rad and the block's position is given by x = XIII cos(wt + cp), what is 
the ratio of the kinetic energy to the potential energy at time t = O? 

A massless spring hangs from the ceiling with a small object 
attached to its lower end. The object is initially held at rest in a po­
sition Yi such that the spring is at its rest length. The object is then 
released from Yi and oscillates up and down, with its lowest posi­
tion being 10 cm below Yi' (a) What is the frequency of the oscilla­
tion? (b) What is the speed of the object when it is 8.0 cm below 
the initial position? (c) An object of mass 300 g is attached to the 
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first object, after which the system oscillates with half the original 
frequency. What is the mass of the first object? (d) How far below 
Yi is the new equilibrium (rest) position with both objects attached 
to the spring? 

An Angular Simple Harmonic Oscillator 
A 95 kg solid sphere with a 15 cm radius is suspended by a 

vertical wire. A torque of 0.20 N· m is required to rotate the sphere 
through an angle of 0.85 rad and then maintain that orientation. 
What is the period of the oscillations that result when the sphere is 
then released? 

SSM WWW The balance wheel of an old-fashioned watch 
oscillates with angular amplitude 1Trad and period 0.500 s. Find (a) 
the maximum angular speed of the wheel, (b) the angular speed at 
displacement 1T/2 rad, and (c) the magnitude of the angular 
acceleration at displacement 1T/4 rad. 

Pendulums 
H.W A physical pendulum consists of a meter stick that is piv­

oted at a small hole drilled through the stick a distance d from the 50 
cm mark. The period of oscillation is 2.5 s. Find d. 

SSM In Fig. 15-40, the pendulum consists of a uniform disk 
with radius r = 10.0 cm and mass 500 g attached to a uniform rod 
with length L = 500 mm and mass 270 g. (a) Calculate the rota­
tional inertia of the pendulum about the pivot point. (b) What is 
the distance between the pivot point and the center of mass of the 
pendulum? (c) Calculate the period of oscillation. 

Fig. 15-40 Problem 41. 

Suppose that a simple pendulum consists of a small 60.0 g 
bob at the end of a cord of negligible mass. If the angle (J between 
the cord and the vertical is given by 

(J= (0.0800rad)cos[(4.43rad/s)t+ cp], 

what are (a) the pendulum's length and (b) its maximum kinetic 
energy? 

(a) If the physical pendulum of Fig. 15-11 and the associated 
sample problem is inverted and suspended at point P, what is its 
period of oscillation? (b) Is the period now 
greater than, less than, or equal to its previous A 

value? 

A physical pendulum consists of two 
meter-long sticks joined together as shown in 
Fig. 15-41. What is the pendulum's period of 
oscillation about a pin inserted through point 
A at the center of the horizontal stick? 

Fig. 15-41 

Problem 44. 
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A performer seated on a trapeze is swinging back and 
forth with a period of 8.85 s. If she stands up, thus raising the center 
of mass of the trapeze + pe/former system by 35.0 cm, what will be 
the new period of the system? Treat trapeze + pe/former as a sim­
ple pendulum. 

A physical pendulum has a center of oscillation at distance 
2L/3 from its point of suspension. Show that the distance be­
tween the point of suspension and the center of oscillation for a 
physical pendulum of any form is IImh, where I and h have the 
meanings assigned to them in Eq. 15-29 and m is the mass of the 
pendulum. 

In Fig. 15-42, a physical pendulum 
consists of a uniform solid disk (of radius 
R = 2.35 cm) supported in a vertical plane 
by a pivot located a distance d = 1.75 cm 
from the center of the disk. The disk is dis-
placed by a small angle and released. 
What is the period of the resulting simple 
harmonic motion? 

A rectangular block, with face 

Pivot-

Fig. 15-42 

Problem 47. 

lengths a = 35 cm and b = 45 cm, is to be suspended on a thin hori­
zontal rod running through a narrow hole in the block. The block is 
then to be set swinging about the rod like a pendulum, through 
small angles so that it is in SHM. Figure 15-43 shows one possible 
position of the hole, at distance r from the block's center, along a 
line connecting the center with a corner. (a) Plot the period of the 
pendulum versus distance r along that line such that the minimum 
in the curve is apparent. (b) For what value of r does that minimum 
occur? There is actually a line of points around the block's center 
for which the period of swinging has the same minimum value. (c) 
What shape does that line make? 

a 

T 
l' 

1 
b 

Fig. 1 5-43 Problem 48. 

The angle of the pendulum of Fig. 15-9b is given by 8 = 

8//1 cos[(4,44 rad/s)t + <PJ. If at t = 0, 8 = 0.040 rad and d8/dt = 

-0.200 rad/s, what are (a) the phase constant <p and (b) the maxi­
mum angle 8//1? (Hint: Don't confuse the rate d8/dt at which 8 
changes with the w of the SHM.) 

A thin uniform rod (mass = 0.50 kg) swings about an 
axis that passes through one end of the rod and is perpendicu­
lar to the plane of the swing. The rod swings with a period of 1.5 
s and an angular amplitude of 10°. (a) What is the length of the 
rod? (b) What is the maximum kinetic energy of the rod as it 
swings? 

In Fig. 15-44, a stick of length L = 1.85 m oscillates as a 
physical pendulum. (a) What value of distance x between the 

stick's center of mass and its pivot point 0 gives the least period? 
(b) What is that least period? 

Fig. 15-44 Problem 51. 

The 3.00 kg cube in Fig. 15-45 has edge 
lengths d = 6.00 cm and is mounted on an axle 
through its center. A spring (k = 1200 N/m) con­
nects the cube's upper corner to a rigid wall. 
Initially the spring is at its rest length. If the cube 
is rotated 3° and released, what is the period of 
the resulting SHM? 

SSM IlW In the overhead view of Fig. 
15-46, a long uniform rod of mass 0.600 kg is free 

~ 
V 

Fig. 15-45 

Problem 52. 

to rotate in a horizontal plane about a vertical axis through its center. 
A spring with force constant k = 1850 N/m is connected horizontally 
between one end of the rod and a fixed wall. When the rod is in equi­
librium, it is parallel to the wall. What is the period of the small oscil­
lations that result when the rod is rotated slightly and released? 

h~fIJII//IJIJ~~: ~ Rotation axis 

Fig. 15-46 Problem 53. 

In Fig. 15-47a, a metal plate is mounted on an axle 
through its center of mass. A spring with k = 2000 N/m connects a 
wall with a point on the rim a distance r = 2.5 cm from the center 
of mass. Initially the spring is at its rest length. If the plate is ro­
tated by 7° and released, it rotates about the axle in SHM, with its 
angular position given by Fig. 15-47b. The horizontal axis scale is 
set by ts = 20 ms. What is the rotational inertia of the plate about its 
center of mass? 

1 
~'1t3j r 

• T 

(a) 

8 (deg) 
8~------

4 

o 1-::
0
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-4 

-8 

(b) 

Fig. 15-47 Problem 54. 



A pendulum is formed by pivoting a long thin rod about a 
point on the rod. In a series of experiments, the period is measured 
as a function of the distance x between the pivot point and the 
rod's center. (a) If the rod's length is L = 2.20 m and its mass is 
m = 22.1 g, what is the minimum period? (b) If x is chosen to mini­
mize the period and then L is increased, does the period increase, 
decrease, or remain the same? (c) If, instead, m is increased with­
out L increasing, does the period increase, decrease, or remain the 
same? 

In Fig. 15-48, a 2.50 kg disk of diameter D = 42.0 cm is sup­
ported by a rod of length L = 76.0 cm and negligible mass that is 
pivoted at its end. (a) With the massless torsion spring uncon­
nected, what is the period of oscillation? (b) With the torsion 
spring connected, the rod is vertical at equilibrium. What is the tor­
sion constant of the spring if the period of oscillation has been de­
creased by 0.500 s? 

L 

-~ 
Fig. 1 5-48 Problem 56. 

Damped Simple Harmonic Motion 
The amplitude of a lightly damped oscillator decreases by 

3.0% during each cycle. What percentage of the mechanical energy 
of the oscillator is lost in each cycle? 

In a damped oscillator with m = 250 g, k = 85 N/m, and b = 
70 gIs, what is the ratio of the amplitude of the damped oscillations 
to the initial amplitude at the end of20 cycles? 

SSM www In Fig. 15-14, the block has a mass of 1.50 kg 
and the spring constant is 8.00 N/m. The damping force is given 
by -b(dxldt), where b = 230 g/s. The block is pulled down 12.0 cm 
and released. (a) Calculate the time required for the amplitude of 
the resulting oscillations to fall to one-third of its initial value. (b) 
How many oscillations are made by the block in this time? 

The suspension system of a 2000 kg automobile "sags" 10 
cm when the chassis is placed on it. Also, the oscillation 
amplitude decreases by 50% each cycle. Estimate the values of 
(a) the spring constant k and (b) the damping constant b for the 
spring and shock absorber system of one wheel, assuming each 
wheel supports 500 kg. 

Forced Oscillations and Resonance 
For Eq.15-45, suppose the amplitude XIII is given by 

P'1l 
xm = [ 2( 2 2)2 + b2 2]1/2' m Wd - W Wd 

where Fill is the (constant) amplitude of the external oscillating 
force exerted on the spring by the rigid support in Fig. 15-14. At 
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resonance, what are the (a) amplitude and (b) velocity amplitude 
of the oscillating object? 

Hanging from a horizontal beam are nine simple pendulums 
of the following lengths: (a) 0.10, (b) 0.30, (c) 0040, (d) 0.80, (e) 1.2, 
(f) 2.8, (g) 3.5, (h) 5.0, and (i) 6.2 m. Suppose the beam undergoes 
horizontal oscillations with angular frequencies in the range from 
2.00 rad/s to 4.00 rad/s. Which of the pendulums will be (strongly) 
set in motion? 

A 1000 kg car carrying four 82 kg people travels over a 
"washboard" dirt road with corrugations 4.0 m apart. The car 
bounces with maximum amplitude when its speed is 16 km/h. 
When the car stops, and the people get out, by how much does the 
car body rise on its suspension? 

Additional Problems 
Although California is known for earthquakes, it has 

large regions dotted with precariously balanced rocks that would 
be easily toppled by even a mild earthquake. The rocks have 
stood this way for thousands of years, suggesting that major 
earthquakes have not occurred in those regions during that time. 
If an earthquake were to put such a rock into sinusoidal oscilla­
tion (parallel to the ground) with a frequency of 2.2 Hz, an oscil­
lation amplitude of 1.0 cm would cause the rock to topple. What 
would be the magnitUde of the maximum acceleration of the os­
cillation, in terms of g? 

A loudspeaker diaphragm is oscillating in simple harmonic 
motion with a frequency of 440 Hz and a maximum displacement 
of 0.75 mm. What are the (a) angular frequency, (b) maximum 
speed, and (c) magnitude of the maximum acceleration? 

A uniform spring with k = 8600 N/m is cut into pieces 1 and 2 
of unstretched lengths LI = 7.0 cm and L2 = 10 cm. What are (a) 
kl and (b) k2? A block attached to the original spring as in Fig. 15-5 
oscillates at 200 Hz. What is the oscillation frequency of the block 
attached to (c) piece 1 and (d) piece 2? 

In Fig. 15-49, three 10000 kg ore cars are held at rest on a 
mine railway using a cable that is parallel to the rails, which are in­
clined at angle (} = 30°. The cable stretches 15 cm just before the 
coupling between the two lower cars breaks, detaching the lowest 
car. Assuming that the cable obeys Hooke's law, find the (a) fre­
quency and (b) amplitude of the resulting oscillations of the re­
maining two cars. 

Fig. 15-49 Problem 67. 

A 2.00 kg block hangs from a spring. A 300 g body hung be­
low the block stretches the spring 2.00 cm farther. (a) What is the 
spring constant? (b) If the 300 g body is removed and the block is 
set into oscillation, find the period of the motion. 



410 CHA OSCILLATIONS 

SSM The piston in the cylinder head of a locomotive has a 
stroke (twice the amplitude) of 0.76 m. If the piston moves with 
simple harmonic motion with an angular frequency of 180 rev/min, 
what is its maximum speed? 

A wheel is free to rotate about 
its fixed axle. A spring is attached to 
one of its spokes a distance r from the 
axle, as shown in Fig. 15-50. (a) 
Assuming that the wheel is a hoop of 
mass m and radius R, what is the an­
gular frequency lV of small oscilla­
tions of this system in terms of 111, R, 
/', and the spring constant Ie? What is Fig. 1 5-50 Problem 70. 
lV if (b) r = Rand ( c) /' = O? 

A 50.0 g stone is attached to the bottom of a vertical spring 
and set vibrating. If the maximum speed of the stone is 15.0 cm/s 
and the period is 0.500 s, find the (a) spring constant of the spring, 
(b) amplitude of the motion, and (c) frequency of oscillation. 

A uniform circular disk whose radius R is 12.6 cm is suspended 
as a physical pendulum from a point on its rim. (a) What is its pe­
riod? (b) At what radial distance r < R is there a pivot point that 
gives the same period? 

SSM A vertical spring stretches 9.6 cm when a 1.3 kg block 
is hung from its end. (a) Calculate the spring constant. This block 
is then displaced an additional 5.0 cm downward and released 
from rest. Find the (b) period, (c) frequency, (d) amplitude, and 
(e) maximum speed of the resulting SHM. 

A massless spring with spring constant 19 N/m hangs 
vertically. A body of mass 0.20 kg is attached to its free end and 
then released. Assume that the spring was unstretched before the 
body was released. Find (a) how far below the initial position the 
body descends, and the (b) frequency and (c) amplitude of the re­
sulting SHM. 

A 4.00 kg block is suspended from a spring with k = 500 N/m. 
A 50.0 g bullet is fired into the block from directly below with a 
speed of 150 m/s and becomes embedded in the block. (a) Find the 
amplitude of the resulting SHM. (b) What percentage of the origi­
nal kinetic energy of the bullet is transferred to mechanical energy 
of the oscillator? 

A 55.0 g block oscillates in SHM on the end of a spring with 
k = 1500 N/m according to x = Xm COS(lVt + cp). How long does 
the block take to move from position +0.800xl/1 to (a) position 
+0.600xl/1 and (b) position -0.800xl/1? 

Figure 15-51 gives the position of a 20 g block oscillating 
in SHM on the end of a spring. The horizontal axis scale is set 

(------h-----\:---1----/----+----''- t (ms) 

Fig. 15-51 Problems 77 and 78. 

by ts = 40.0 ms. What are (a) the maximum kinetic energy of the 
block and (b) the number of times per second that maximum is 
reached? (Hint: Measuring a slope will probably not be very ac­
curate. Find another approach.) 

Figure 15-51 gives the position x(t) of a block oscillating in SHM 
on the end of a spring (ts = 40.0 ms). What are (a) the speed and (b) the 
magnitude of the radial acceleration of a particle in the corresponding 
uniform circular motion? 

Figure 15-52 shows the kinetic 
energy /( of a simple pendulum versus 
its angle e from the verticaL The verti­
cal axis scale is set by /(s = 10.0 mJ. 
The pendulum bob has mass 0.200 kg. 
What is the length of the pendulum? 

-100 -50 
A block is in SHM on the end 

K(mJ) 

o 
e (mrad) 

50 100 

of a spring, with position given by 
( A..) f 15 d Fig. 15-52 Problem 79. x = X IIl cos lVt + 'I' . I cp = 71: ra , 

then at t = 0 what percentage of the 
total mechanical energy is potential energy? 

A simple harmonic oscillator consists of a 0.50 kg block at­
tached to a spring. The block slides back and forth along a straight 
line on a frictionless surface with equilibrium point x = O. At t = 0 
the block is at x = 0 and moving in the positive x direction. A graph 
of the magnitude of the net force F on the block as a function of its 
position is shown in Fig. 15-53. The vertical scale is set by Fs = 75.0 N. 
What are (a) the amplitude and (b) the period of the motion, (c) the 
magnitude of the maximum acceleration, and (d) the maximum ki­
netic energy? 

F(N) 

---- Fs 

0.30 
----.J'----__ ~:----_,_ X (m) 
-0.30 I 

-Fs 
I 

Fig. 15-53 Problem 81. 

A simple pendulum of length 20 cm and mass 5.0 g is 
suspended in a race car traveling with constant speed 70 m/s 
around a circle of radius 50 m. If the pendulum undergoes small 
oscillations in a radial direction about its equilibrium position, 
what is the frequency of oscillation? 

The scale of a spring balance that reads from 0 to 15.0 kg is 
12.0 cm long. A package suspended from the balance is found to 
oscillate vertically with a frequency of 2.00 Hz. (a) What is the 
spring constant? (b) How much does the package weigh? 

A 0.10 kg block oscillates back and forth along a straight line 
on a frictionless horizontal surface. Its displacement from the ori­
gin is given by 

x = (10 cm) cos[(10 rad/s)t + 71:/2 rad]. 

(a) What is the oscillation frequency? (b) What is the maxi­
mum speed acquired by the block? (c) At what value of x does 
this occur? (d) What is the magnitude of the maximum accel­
eration of the block? (e) At what value of x does this occur? 
(f) What force, applied to the block by the spring, results in the 
given oscillation? 



The end point of a spring oscillates with a period of 2.0 s when 
a block with mass 111 is attached to it. When this mass is increased 
by 2.0 kg, the period is found to be 3.0 s. Find m. 

The tip of one prong of a tuning fork undergoes SHM of fre­
quency 1000 Hz and amplitude 0.40 mm. For this tip, what is the 
magnitude of the (a) maximum acceleration, (b) maximum veloc­
ity, (c) acceleration at tip displacement 0.20 mm, and (d) velocity at 
tip displacement 0.20 mm? 

A fiat uniform circular disk has a mass of 3.00 kg and a radius 
of 70.0 cm. It is suspended in a horizontal plane by a vertical wire at­
tached to its center. If the disk is rotated 2.50 rad about the wire, a 
torque of 0.0600 N . m is required to maintain that orientation. 
Calculate (a) the rotational inertia of the disk about the wire, (b) the 
torsion constant, and (c) the angular frequency of this torsion pendu­
lum when it is set oscillating. 

A block weighing 20 N oscillates at one end of a vertical 
spring for which k = 100 N/m; the other end of the spring is at­
tached to a ceiling. At a certain instant the spring is stretched 0.30 
m beyond its relaxed length (the length when no object is at­
tached) and the block has zero velocity. (a) What is the net force on 
the block at this instant? What are the (b) amplitude and (c) period 
of the resulting simple harmonic motion? (d) What is the maxi­
mum kinetic energy of the block as it oscillates? 

A 3.0 kg particle is in simple harmonic motion in one 
dimension and moves according to the equation 

x = (5.0 m) cos[( 7T/3 rad/s)t - 7T/4 rad], 

with t in seconds. (a) At what value of x is the potential energy of the 
particle equal to half the total energy? (b) How long does the parti­
cle take to move to this position x from the equilibrium position? 

A particle executes linear SHM with frequency 0.25 Hz about 
the point x = O. At t = 0, it has displacement x = 0.37 cm and zero 
velocity. For the motion, determine the (a) period, (b) angular fre­
quency, (c) amplitude, (d) displacement xU), (e) velocity vet), (f) 
maximum speed, (g) magnitude of the maximum acceleration, (h) 
displacement at t = 3.0 s, and (i) speed at t = 3.0 s. 

SSM What is the frequency of a simple pendulum 2.0 m long 
(a) in a room, (b) in an elevator accelerating upward at a rate of 2.0 
m/s2, and (c) in free fall? 

A grandfather clock has a pen­
dulum that consists of a thin brass disk 
of radius r = 15.00 cm and mass 1.000 
kg that is attached to a long thin rod of 
negligible mass. The pendulum swings 
freely about an axis perpendicular to 
the rod and through the end of the rod 
opposite the disk, as shown in Fig. 
15-54. If the pendulum is to have a pe­
riod of 2.000 s for small oscillations at a 
place where g = 9.800 m/s2, what must 
be the rod length L to the nearest 
tenth of a millimeter? 

Rotation 
axis 

A 4.00 kg block hangs from a Fig. 1 5-54 Problem 92. 
spring, extending it 16.0 cm from its 
unstretched position. (a) What is the spring constant? (b) The 
block is removed, and a 0.500 kg body is hung from the same 
spring. If the spring is then stretched and released, what is its pe­
riod of oscillation? . 
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What is the phase constant for SMH with aCt) given in Fig. 
15-55 if the position function x(t) has the form x = XIII cos( wt + ¢) 
and as = 4.0 m/s2? 

Fig. 15-55 Problem 94. 

An engineer has an odd-shaped 10 kg object and needs to find 
its rotational inertia about an axis through its center of mass. The 
object is supported on a wire stretched along the desired axis. The 
wire has a torsion constant f( = 0.50 N . m. If this torsion pendulum 
oscillates through 20 cycles in 50 s, what is the rotational inertia 
of the object? 

A spider can tell when its web has captured, say, a fly 
because the fly's thrashing causes the web threads to oscillate. A 
spider can even determine the size of the fly by the frequency of 
the oscillations. Assume that a fly oscillates on the capture 
thread on which it is caught like a block on a spring. What is the 
ratio of oscillation frequency for a fly with mass /1l to a fly with 
mass 2.5m? 

A torsion pendulum consists of a metal disk with a wire run­
ning through its center and soldered in place. The wire is 
mounted vertically on clamps and pulled taut. Figure 15-56a gives 
the magnitude T of the torque needed to rotate the disk about its 
center (and thus twist the wire) versus the rotation angle e. The 
vertical axis scale is set by Ts = 4.0 X 10-3 N . m. The disk is ro­
tated to e = 0.200 rad and then released. Figure 15-56b shows the 
resulting oscillation in terms of angular position e versus time t. 
The horizontal axis scale is set by ts = 0.40 s. (a) What is the rota­
tional inertia of the disk about its center? (b) What is the maxi­
mum angular speed de/dt of the disk? (Caution: Do not confuse 
the (constant) angular frequency of the SHM with the (varying) 
angular speed of the rotating disk, even though they usually have 
the same symbol w. Hint: The potential energy U of a torsion pen­
dulum is equal to ~f(e2, analogous to U = ~kX2 for a spring.) 

l-> 0 0.10 

8 (rad) 

(a) 

(b) 

0.20 

Fig. 15-56 Problem 97. 
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When a 20 N can is hung from the bottom of a vertical spring, it 
causes the spring to stretch 20 cm. (a) What is the spring constant? (b) 
This spring is now placed horizontally on a frictionless table. One end 
of it is held fixed, and the other end is attached to a 5.0 N can. The can is 
then moved (stretching the spring) and released from rest. What is the 
period of the resulting oscillation? 

For a simple pendulum, find the angular amplitUde (Jm at 
which the restoring torque required for simple harmonic motion 
deviates from the actual restoring torque by 1.0%. (See 
"Trigonometric Expansions" in Appendix E.) 

In Fig. 15-57, a solid cylinder 
attached to a horizontal spring (k = 
3.00 N/m) rolls without slipping 
along a horizontal surface. If the 
system is released from rest when 
the spring is stretched by 0.250 m, Fig. 15-57 Problem 100. 

find (a) the translational kinetic en-
ergy and (b) the rotational kinetic energy of the cylinder as it 
passes through the equilibrium position. (c) Show that under these 
conditions the cylinder's center of mass executes simple harmonic 
motion with period 

T=2 ~3M 
7r 2k' 

where M is the cylinder mass. (Hint: Find the time derivative of the 
total mechanical energy.) 

SSM A 1.2 kg block sliding on a horizontal frictionless sur­
face is attached to a horizontal spring with k = 480 N/m. Let x be 
the displacement of the block from the position at which the spring 
is unstretched. At t = 0 the block passes through x = 0 with a 
speed of 5.2 m/s in the positive x direction. What are the (a) fre­
quency and (b) amplitude of the block's motion? (c) Write an ex­
pression for x as a function of time. 

A simple harmonic oscillator consists of an 0.80 kg block at­
tached to a spring (k = 200 N/m). The block slides on a horizontal 
frictionless surface about the equilibrium point x = 0 with a total 
mechanical energy of 4.01. (a) What is the amplitude of the oscilla­
tion? (b) How many oscillations does the block complete in 10 s? 
(c) What is the maximum kinetic energy attained by the block? (d) 
What is the speed of the block at x = 0.15 m? 

1 A block sliding on a horizontal frictionless surface is 

attached to a horizontal spring with a spring constant of 600 N/m. 
The block executes SHM about its equilibrium position with a pe­
riod of 0.40 s and an amplitude of 0.20 m. As the block slides 
through its equilibrium position, a 0.50 kg putty wad is dropped 
vertically onto the block. If the putty wad sticks to the block, deter­
mine (a) the new period of the motion and (b) the new amplitude 
of the motion. 

A damped harmonic oscillator consists of a block (m = 2.00 
kg), a spring (k = 10.0 N/m), and a damping force (F = -bv). 
Initially, it oscillates with an amplitude of 25.0 cm; because of the 
damping, the amplitude falls to three-fourths of this initial value at 
the completion of four oscillations. (a) What is the value of b? (b) 
How much energy has been "lost" during these four oscillations? 

A block weighing 10.0 N is attached to the lower end of a 
vertical spring (k = 200.0 N/m), the other end of which is attached 
to a ceiling. The block oscillates vertically and has a kinetic energy 
of 2.00 J as it passes through the point at which the spring is un­
stretched. (a) What is the period of the oscillation? (b) Use the law 
of conservation of energy to determine the maximum distance the 
block moves both above and below the point at which the spring is 
unstretched. (These are not necessarily the same.) (c) What is the 
amplitude of the oscillation? (d) What is the maximum kinetic 
energy of the block as it oscillates? 

A simple harmonic oscilla­
tor consists of a block attached to 
a spring with k = 200 N/m. The 
block slides on a frictionless sur-

v (m/s) 

2n 
t, 

face, with equilibrium point x = 0 I"-----"<:-------,f--- t (s) 

and amplitude 0.20 m. A graph of -2n 
the block's velocity v as a func-
tion of time t is shown in Fig. Fig. 15-58 Problem 106. 
15-58. The horizontal scale is set 
by ts= 0.20 s. What are (a) the period of the SHM, (b) the block's 
mass, (c) its displacement at t = 0, (d) its acceleration at t = 0.10 s, 
and (e) its maximum kinetic energy? 

The vibration frequencies of atoms in solids at normal tem­
peratures are of the order of 1013 Hz. Imagine the atoms to be con­
nected to one another by springs. Suppose that a single silver atom in 
a solid vibrates with this frequency and that all the other atoms are 
at rest. Compute the effective spring constant. One mole of silver 
(6.02 X 1023 atoms) has a mass of 108 g. 



One of the primary subjects of physics is waves. To see how important 
waves are in the modern world, just consider the music industry. Every piece of 
music you hear, from some retro-punk band playing in a campus dive to the most 
eloquent concerto playing on the Web, depends on performers producing waves 
and your detecting those waves. In between production and detection, the infor­
mation carried by the waves might need to be transmitted (as in a live perfor­
mance on the Web) or recorded and then reproduced (as with CDs, DVDs, or the 
other devices currently being developed in engineering labs worldwide). The 
financial importance of controlling music waves is staggering, and the rewards to 
engineers who develop new control techniques can be rich. 

This chapter focuses on waves traveling along a stretched string, such as on 
a guitar. The next chapter focuses on sound waves, such as those produced by 
a guitar string being played. Before we do all this, though, our first job is to clas­
sify the countless waves of the everyday world into basic types. 

1 Types of Waves 
Waves are of three main types: 

1. Mechanical waves. These waves are most familiar because we encounter 
them almost constantly; common examples include water waves, sound waves, 
and seismic waves. All these waves have two central features: They are gov­
erned by Newton's laws, and they can exist only within a material medium, 
such as water, air, and rock. 

2. Electromagnetic waves. These waves are less familiar, but you use them 
constantly; common examples include visible and ultraviolet light, radio and 
television waves, microwaves, x rays, and radar waves. These waves require no 
material medium to exist. Light waves from stars, for example, travel through 
the vacuum of space to reach us. All electromagnetic waves travel through a 
vacuum at the same speed c = 299792458 m/s. 

3. Matter waves. Although these waves are commonly used in modern tech­
nology, they are probably very unfamiliar to you. These waves are associated 
with electrons, protons, and other fundamental particles, and even atoms and 
molecules. Because we commonly think of these particles as constituting mat­
ter, such waves are called matter waves. 

Much of what we discuss in this chapter applies to waves of all kinds. 
However, for specific examples we shall refer to mechanical waves. 

Transverse and Longitudinal Waves 
A wave sent along a stretched, taut string is the simplest mechanical wave. If you 
give one end of a stretched string a single up-and-down jerk, a wave in the form 
of a single pulse travels along the string. This pulse and its motion can occur 
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Pulse 
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(a) 

)' 
Sinusoidal 

.\' 

(b) 

Fig. 16-1 (a) A single pulse is sent along 
a stretched string. A typical string element 
(marked with a dot) moves up once and 
then down as the pulse passes. The ele­
ment's motion is perpendicular to the 
wave's direction of travel, so the pulse is a 
transverse wave. (b) A sinusoidal wave is 
sent along the string. A typical string ele­
ment moves up and down continuously as 
the wave passes. This too is a transverse 
wave. 

Fig. 16-2 A sound wave is set up in an 
air-filled pipe by moving a piston back and 
forth. Because the oscillations of an ele­
ment of the air (represented by the dot) are 
parallel to the direction in which the wave 
travels, the wave is a /ongitlldina/wave. 

because the string is under tension. When you pull your end of the string upward, 
it begins to pull upward on the adjacent section of the string via tension between 
the two sections. As the adjacent section moves upward, it begins to pull the next 
section upward, and so on. Meanwhile, you have pulled down on your end of the 
string. As each section moves upward in turn, it begins to be pulled back down­
ward by neighboring sections that are already on the way down. The net result is 
that a distortion in the string's shape (a pulse, as in Fig. 16-1a) moves along the 
string at some velocity v. 

If you move your hand up and down in continuous simple harmonic motion, 
a continuous wave travels along the string at velocity v. Because the motion of 
your hand is a sinusoidal function of time, the wave has a sinusoidal shape at any 
given instant, as in Fig. 16-1b; that is, the wave has the shape of a sine curve or 
a cosine curve. 

We consider here only an "ideal" string, in which no friction-like forces within 
the string cause the wave to die out as it travels along the string. In addition, we as­
sume that the string is so long that we need not consider a wave rebounding from 
the far end. 

One way to study the waves of Fig. 16-1 is to monitor the wave forms (shapes 
of the waves) as they move to the right. Alternatively, we could monitor the 
motion of an element of the string as the element oscillates up and down while a 
wave passes through it. We would find that the displacement of every such oscillat­
ing string element is perpendicular to the direction of travel of the wave, as 
indicated in Fig. 16-1b. This motion is said to be transverse, and the wave is said to 
be a transverse wave. 

Figure 16-2 shows how a sound wave can be produced by a piston in a long, 
air-filled pipe. If you suddenly move the piston rightward and then leftward, you 
can send a pulse of sound along the pipe. The rightward motion of the piston 
moves the elements of air next to it rightward, changing the air pressure there. 
The increased air pressure then pushes rightward on the elements of air some­
what farther along the pipe. Moving the piston leftward reduces the air pressure 
next to it. As a result, first the elements nearest the piston and then farther 
elements move leftward. Thus, the motion of the air and the change in air pres­
sure travel rightward along the pipe as a pulse. 

If you push and pull on the piston in simple harmonic motion, as is being 
done in Fig. 16-2, a sinusoidal wave travels along the pipe. Because the motion of 
the elements of air is parallel to the direction of the wave's travel, the motion 
is said to be longitudinal, and the wave is said to be a longitudinal wave. In this 
chapter we focus on transverse waves, and string waves in particular; in Chapter 
17 we focus on longitudinal waves, and sound waves in particular. 

Both a transverse wave and a longitudinal wave are said to be traveling 
waves because they both travel from one point to another, as from one end of the 
string to the other end in Fig. 16-1 and from one end of the pipe to the other end 
in Fig. 16-2. Note that it is the wave that moves from end to end, not the material 
(string or air) through which the wave moves. 

Wavelength and Frequency 
To completely describe a wave on a string (and the motion of any element along 
its length), we need a function that gives the shape of the wave. This means that 
we need a relation in the form 

y = h(x, t), (16-1) 

in which y is the transverse displacement of any string element as a function h of 
the time t and the position x of the element along the string. In general, a sinu-
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soidal shape like the wave in Fig. 16-1b can be described with h being either a sine 
or cosine function; both give the same general shape for the wave. In this chapter 
we use the sine function. 

Imagine a sinusoidal wave like that of Fig. 16-1b traveling in the positive 
direction of an x axis. As the wave sweeps through succeeding elements (that is, 
very short sections) of the string, the elements oscillate parallel to the Y axis. At 
time t, the displacement y of the element located at position x is given by 

y(x, t) = Ym sin(kx - wt). (16-2) 

Because this equation is written in terms of position x, it can be used to find the 
displacements of all the elements of the string as a function of time. Thus, it can 
tell us the shape of the wave at any given time and how that shape changes as the 
wave moves along the string. 

The names of the quantities in Eq. 16-2 are displayed in Fig. 16-3 and de­
fined next. Before we discuss them, however, let us examine Fig. 16-4, which 
shows five "snapshots" of a sinusoidal wave traveling in the positive direction 
of an x axis. The movement of the wave is indicated by the rightward progress 
of the short arrow pointing to a high point of the wave. From snapshot to snap­
shot, the short arrow moves to the right with the wave shape, but the string 
moves only parallel to the y axis. To see that, let us follow the motion of the red­
dyed string element at x = O. In the first snapshot (Fig. 16-4a), this element is at 
displacement y = O. In the next snapshot, it is at its extreme downward dis­
placement because a valley (or extreme low point) of the wave is passing 
through it. It then moves back up through y = O. In the fourth snapshot, it is at 
its extreme upward displacement because a peak (or extreme high point) of the 
wave is passing through it. In the fifth snapshot, it is again at y = 0, having com­
pleted one full oscillation. 

The amplitude Ylll of a wave, such as that in Fig. 16-4 , is the magnitude of the 
maximum displacement of the elements from their equilibrium positions as the 
wave passes through them. (The subscript m stands for maximum.) Because YIIl is 
a magnitude, it is always a positive quantity, even if it is measured downward 
instead of upward as drawn in Fig. 16-4a. 

The phase of the wave is the argument kx - wt of the sine in Eq. 16-2. As the 
wave sweeps through a string element at a particular position x, the phase 
changes linearly with time t. This means that the sine also changes, oscillating 
between + 1 and -1. Its extreme positive value ( + 1) corresponds to a peak of the 
wave moving through the element; at that instant the value of Y at position x is Ym' 
Its extreme negative value (-1) corresponds to a valley of the wave moving 
through the element; at that instant the value of Y at position x is -Ym' Thus, the 
sine function and the time-dependent phase of a wave correspond to the oscilla­
tion of a string element, and the amplitude of the wave determines the extremes 
of the element's displacement. 

The wavelength A of a wave is the distance (parallel to the direction of the wave's 
travel) between repetitions of the shape of the wave (or wave shape). A typical 
wavelength is marked in Fig. 16-4a, which is a snapshot of the wave at time t = O. 
At that time, Eq. 16-2 gives, for the description of the wave shape, 

y(x, 0) = YIIl sin kx. (16-3) 

r\llJpiitudc Oscillating 

Displacemellt \ IeI'm 

~ \J ,j:iJ;ISt> J 
y(,\',1) ),,,, sill (11.\'" 0) I) 

Angular .... /] lll" 
wave nunlber ~ llne 

Position AJlgnJaI' 
frequency 

Fig. 1 6-3 The names of the quantities in 
Eq.16-2, for a transverse sinusoidal wave. 

Watch this spot in this 
series of snapshots. 

(b) 

(c) 

(d) 

Fig. 16-4 Five "snapshots" of a string 
wave traveling in the positive direction of 
an x axis. The amplitude YIIl is indicated. A 
typical wavelength '\, measured from an ar­
bitrary position Xl, is also indicated. 
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This is a graph, 
not a snapshot. 

~V\ .. / i PT}J' 
Fig. 16-5 A graph of the displacement 
of the string element at x = 0 as a function 
of time, as the sinusoidal wave of Fig. 16-4 
passes through the element. The amplitude 
YIIl is indicated. A typical period T, mea­
sured from an arbitrary time tl> is also 
indicated. 

By definition, the displacement Y is the same at both ends of this wave­
length-that is, atx = Xl andx = Xl + A.ThUS, by Eq.16-3, 

YI1I sin kXI = YIIl sin k(xj + A) 

= YIIl sin(kxI + kA). (16-4) 

A sine function begins to repeat itself when its angle (or argument) is increased 
by 21Trad, so in Eq.16-4 we must have kA = 27T, or 

k = 21T 
A 

(angular wave number). (16-5) 

We call k the angular wave number of the wave; its SI unit is the radian per meter, 
or the inverse meter. (Note that the symbol k here does not represent a spring 
constant as previously.) 

Notice that the wave in Fig. 16-4 moves to the right by ~A from one snapshot 
to the next. Thus, by the fifth snapshot, it has moved to the right by lA. 

Figure 16-5 shows a graph of the displacement Y of Eq. 16-2 versus time t at a 
certain position along the string, taken to be X = O. If you were to monitor the 
string, you would see that the single element of the string at that position moves 
up and down in simple harmonic motion given by Eq. 16-2 with X = 0: 

yeO, t) = YIIl sine - wt) 

= -YIIl sin wt (X = 0). (16-6) 

Here we have made use of the fact that sine -a) = -sin a, where a is any angle. 
Figure 16-5 is a graph of this equation, with displacement plotted versus time; it 
does not show the shape of the wave. 

We define the period of oscillation T of a wave to be the time any string 
element takes to move through One full oscillation. A typical period is marked On 
the graph of Fig. 16-5. Applying Eq. 16-6 to both ends of this time interval and 
equating the results yield 

-YIIl sin wtj = -Ym sin W(tl + T) 

= -Ym sin(wtj + wT). 

This can be true only if wT = 21T, or if 

21T 
W = T (angular frequency). 

(16-7) 

(16-8) 

We call w the angular frequency of the wave; its SI unit is the radian per second. 
Look back at the five snapshots of a traveling wave in Fig. 16-4. The time 

between snapshots is ~ T. Thus, by the fifth snapshot, every string element has 
made One full oscillation. 

The frequency f of a wave is defined as liT and is related to the angular 
frequency w by 

1 w 
f = - = -2 (frequency). T 1T 

(16-9) 

Like the frequency of simple harmonic motion in Chapter 15, this frequency fis a 
number of oscillations per unit time-here, the number made by a string element 
as the wave moves through it. As in Chapter 15,fis usually measured in hertz or 
its multiples, such as kilohertz. 
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CHECKPOINT 1 

The figure is a composite of three snapshots, each of a 
wave traveling along a particular string. The phases 
for the waves are given by (a) 2x - 4t, (b) 4x - 8t, 
and (c) 8x - 16t. Which phase corresponds to which 
wave in the figure? 

When a sinusoidal traveling wave is given by the wave function of Eq. 16-2, the 
wave near x = 0 looks like Fig. 16-6a when t = O. Note that at x = 0, the displace­
ment is Y = 0 and the slope is at its maximum positive value. We can generalize 
Eq.16-2 by inserting a phase constant 1> in the wave function: 

Y = Ym sin(kx - wt + 1». (16-10) 

The value of 1> can be chosen so that the function gives some other displacement 
and slope at x = 0 when t = O. For example, a choice of 1> = + 7T/5 rad gives the 
displacement and slope shown in Fig. 16-6b when t = O. The wave is still sinu­
soidal with the same values of Ym' k, and w, but it is now shifted from what you see 
in Fig. 16-6a (where 1> = 0). 

The Speed of a Traveling Wave 
Figure 16-7 shows two snapshots of the wave ofEq. 16-2, taken a small time inter­
val At apart. The wave is traveling in the positive direction of x (to the right in 
Fig. 16-7), the entire wave pattern moving a distance ilx in that direction during 
the interval ilt. The ratio ilx/ ilt (or, in the differential limit, dx/dt) is the wave 
speed v. How can we find its value? 

As the wave in Fig. 16-7 moves, each point of the moving wave form, such as 
point A marked on a peak, retains its displacement y. (Points on the string do not 
retain their displacement, but points on the wave form do.) If point A retains its 
displacement as it moves, the phase in Eq. 16-2 giving it that displacement must 
remain a constant: 

kx - wt = a constant. (16-11) 

Note that although this argument is constant, both x and t are changing. In fact, 
as t increases, x must also, to keep the argument constant. This confirms that the 
wave pattern is moving in the positive direction of x. 

or 

To find the wave speed v, we take the derivative ofEq.16-11, getting 

dx 
k- - w = 0 

dt 

(16-12) 

Using Eq. 16-5 (k = 27T/ A) and Eq. 16-8 (w = 27T/T), we can rewrite the wave 
speed as 

w A 
v = k = T = Af (wave speed). (16-13) 

The equation v = AfT tells us that the wave speed is one wavelength per period; 
the wave moves a distance of one wavelength in one period of oscillation. 

Equation 16-2 describes a wave moving in the positive direction of x. We can 
find the equation of a wave traveling in the opposite direction by replacing t in 

/"~O"\\'\ f,fr\. .," 
:.----tiLX 

\ OJ \ II 
\\o~"/ \\,/' 

(b) 

Fig. 16-6 A sinusoidal traveling wave at 
t = 0 with a phase constant ¢ of (a) 0 and 
(b) ?TIS rad. 

Fig. 1 6-7 Two snapshots of the wave of 
Fig. 16-4, at time t = 0 and then at time t = 
M.As the wave moves to the right at veloc­
ity 11, the entire curve shifts a distance Llx 
during Llt. Point A "rides" with the wave 
form, but the string elements move only up 
and down. 
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Eq.16-2 with -t. This corresponds to the condition 

kx + wt = a constant, (16-14) 

which (compare Eq.16-11) requires that x decrease with time. Thus, a wave trav­
eling in the negative direction of x is described by the equation 

y(x, t) = Ym sin(kx + wt). (16-15) 

If you analyze the wave of Eq. 16-15 as we have just done for the wave of 
Eq.16-2, you will find for its velocity 

dx 

dt 

w 
(16-16) 

The minus sign (compare Eq. 16-12) verifies that the wave is indeed moving in 
the negative direction of x and justifies our switching the sign of the time variable. 

Consider now a wave of arbitrary shape, given by 

y(x, t) = h(kx ± wt), (16-17) 

where h represents any function, the sine function being one possibility. Our 
previous analysis shows that all waves in which the variables x and tenter 
into the combination kx ± wt are traveling waves. Furthermore, all traveling 
waves must be of the form of Eq. 16-17. Thus, y(x, t) = Vax + bt represents a 
possible (though perhaps physically a little bizarre) traveling wave. The function 
y(x, t) = sin(ax2 - bt), on the other hand, does not represent a traveling wave. 

CHECKPOINT 2 

Here are the equations of three waves: 
(1) y(x, t) = 2 sin( 4x - 2t), (2) y(x, t) = sin(3x - 4t), (3) y(x, t) = 2 sin(3x - 3t). 
Rank the waves according to their (a) wave speed and (b) maximum speed perpendicu­
lar to the wave's direction of travel (the transverse speed), greatest first. 

Transverse wave, amplitude, wavelength, period, velocity 

A wave traveling along a string is described by 

y(x, t) = 0.00327 sin(72.1x - 2.72t), (16-18) 

in which the numerical constants are in SI units (0.00327 m, 
72.1 rad/m, and 2.72 rad/s). 

(a) What is the amplitude of this wave? 

Equation 16-18 is of the same fOlm as Eq.16-2, 

y = YIIl sin(kx wt), (16-19) 

so we have a sinusoidal wave. By comparing the two equa­
tions, we can find the amplitUde. 

Calculation: We see that 

YIIl = 0.00327 m = 3.27 mm. (Answer) 

(b) What are the wavelength, period, and frequency of 
this wave? 

Calculations: By comparing Eqs. 16-18 and 16-19, we see 
that the angular wave number and angular frequency are 

k = 72.1 rad/m and w = 2.72 rad/s. 

We then relate wavelength A to k via Eq.16-5: 

21T 21Trad 
A = k = 72.1 rad/m 

= 0.0871 m = 8.71 cm. (Answer) 

Next, we relate T to w with Eq.16-8: 

21T 21Trad 
T = - = == 2.31 s, 

w 2.72 rad/s 
(Answer) 

and from Eq.16-9 we have 

1 1 
f = T = 2.31 s = 0.433 Hz. (Answer) 

(c) What is the velocity of this wave? 



Calculation: The speed of the wave is given by Eq. 16-13: 

w 2.72 rad/s 
v = - = = 0.0377 m/s 

k 72.1 rad/m 

= 3.77 cm/s. (Answer) 

Because the phase in Eq.16-18 contains the position variable x, 
the wave is moving along the x axis. Also, because the wave 
equation is written in the form of Eq. 16-2, the minus sign in 
front of the wt term indicates that the wave is moving in the pos­
itive direction of the x axis. (Note that the quantities calculated 
in (b) and (c) are independent of the amplitude of the wave.) 

(d) What is the displacement y of the string at x = 22.5 cm 
and t = 18.9 s? 
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Calculation: Equation 16-18 gives the displacement as a 
function of position x and time t. Substituting the given val­
ues into the equation yields 

y = 0.00327 sin(72.1 X 0.225 - 2.72 X 18.9) 

= (0.00327 m) sine -35.1855 rad) 

= (0.00327 m)(0.588) 

= 0.00192 m = 1.92 mm. (Answer) 

Thus, the displacement is positive. (Be sure to change your 
calculator mode to radians before evaluating the sine. Also, 
note that we do not round off the sine's argument before evalu­
ating the sine. Also note that both terms in the argument are 
properly in radians, a dimensionless quantity.) 

Transverse wave, transverse velocity, transverse acceleration 

In the preceding sample problem, we showed that at t = 18.9 
s the transverse displacement y of the element of the string at 
x = 22.5 cm due to the wave of Eq.16-18 is 1.92 mm. 

(a) What is u, the transverse velocity of the same element of 
the string, at that time? (This velocity, which is associated 
with the transverse oscillation of an element of the string, is 
in the y direction. Do not confuse it with v, the constant ve­
locity at which the wave form travels along the x axis.) 

The transverse velocity u is the rate at which the displacement 
y of the element is changing. In general, that displacement is 
given by 

y(x, t) = Ym sin(kx - wt). (16-20) 

For an element at a certain location x, we find the rate of 
change of y by taking the derivative of Eq. 16-20 with re­
spect to t while treating x as a constant. A derivative taken 
while one (or more) of the variables is treated as a constant 
is called a partial derivative and is represented by the symbol 
Max rather than d/dx. 

Calculations: Here we have 

ay 
u = - = -wYm cos(kx - wt). at (16-21) 

Next, substituting numerical values from the preceding sam­
ple problem, we obtain 

u = (-2.72 rad/s)(3.27 mm) cos( -35.1855 rad) 

= 7.20 mm/s. (Answer) 

Thus, at t = 18.9 s, the element of the string at x = 22.5 cm is 
moving in the positive direction of Y with a speed of 7.20 mm/s. 

(b) What is the transverse acceleration ay of the same ele­
ment at that time? 

The transverse acceleration ay is the rate at which the trans­
verse velocity of the element is changing. 

Calculations: From Eq. 16-21, again treating x as a 
constant but allowing t to vary, we find 

_ au _ 2 . (1 ) ay - - - - W YI11 SIll I(X - wt . at 
Comparison with Eq.16-20 shows that we can write this as 

ay = -wZy. 

We see that the transverse acceleration of an oscillating string 
element is proportional to its transverse displacement but 
opposite in sign. This is completely consistent with the action 
of the element itself-namely, that it is moving transversely 
in simple harmonic motion. Substituting numerical values 
yields 

ay = -(2.72 rad/s)2(1.92 mm) 

= -14.2 mm/s2. (Answer) 

Thus, at t = 18.9 s, the element of string at x = 22.5 cm is 
displaced from its equilibrium position by 1.92 mm in the 
positive y direction and has an acceleration of magnitude 
14.2 mm/s2 in the negative y direction. 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 1 6-8 A symmetrical pulse, 
viewed from a reference frame in 
which the pulse is stationary and the 
string appears to move right to left 
with speed v. We find speed v by 
applying Newton's second law to a 
string element of length tll, located at 
the top of the pUlse. 

1 Wave Speed on a Stretched String 
The speed of a wave is related to the wave's wavelength and frequency by Eq. 
16-13, but it is set by the properties of the medium. If a wave is to travel through 
a medium such as water, air, steel, or a stretched string, it must cause the particles 
of that medium to oscillate as it passes, which requires both mass (for kinetic en­
ergy) and elasticity (for potential energy). Thus, the mass and elasticity determine 
how fast the wave can travel. Here, we find the wave speed through a medium in 
terms of these properties in two ways. 

In dimensional analysis we carefully examine the dimensions of all the physical 
quantities that enter into a given situation to determine the quantities they pro­
duce. In this case, we examine mass and elasticity to find a speed v, which has the 
dimension of length divided by time, or LT- 1• 

For the mass, we use the mass of a string element, which is the mass m of the 
string divided by the length l of the string. We call this ratio the linear density fJ., of 
the string. Thus, fJ., = m/l,its dimension being mass divided by length,ML -I. 

You cannot send a wave along a string unless the string is under tension, 
which means that it has been stretched and pulled taut by forces at its two ends. 
The tension Tin the string is equal to the common magnitude of those two forces. 
As a wave travels along the string, it displaces elements of the string by causing 
additional stretching, with adjacent sections of string pulling on each other 
because of the tension. Thus, we can associate the tension in the string with the 
stretching (elasticity) of the string. The tension and the stretching forces it pro­
duces have the dimension of a force-namely,MLT-2 (from F = ma). 

We need to combine fJ., (dimension ML -I) and 7 (dimension MLT-2) to get v 
(dimension LT-I). A little juggling of various combinations suggests 

v=cH, (16-22) 

in which C is a dimensionless constant that cannot be determined with dimen­
sional analysis. In our second approach to determining wave speed, you will see 
that Eq.16-22 is indeed correct and that C = 1. 

Instead of the sinusoidal wave of Fig. 16-1b, let us consider a single symmetrical 
pulse such as that of Fig. 16-8, moving from left to right along a string with speed v. 
For convenience, we choose a reference frame in which the pulse remains station­
ary; that is, we run along with the pulse, keeping it constantly in view. In this frame, 
the string appears to move past us, from right to left in Fig. 16-8, with speed v. 

Consider a small string element of length Al within the pulse, an element that 
forms an arc of a circle of radius Rand subtending an angle 2(} at the center of that 
circle. A force T with a magnitude equal to the tension in the string pulls tangen­
tially on this element at each end. The horizontal components of these forces cancel, 
but the vertical components add to form a radial restoring force F. In magnitude, 

F = 2(7 sin (}) = 7(28) = 7 ~ (force ), (16-23) 

where we have approximated sin () as () for the small angles () in Fig. 16-8. From 
that figure, we have also used 2(} = AI/R. The mass of the element is given by 

Am = fJ.,AI (mass), (16-24) 

where fJ., is the string's linear density. 
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At the moment shown in Fig. 16-8, the string element !J.l is moving in an arc of a 
circle. Thus, it has a centripetal acceleration toward the center of that circle, given by 

v2 

a=-
R 

(acceleration). (16-25) 

Equations 16-23, 16-24, and 16-25 contain the elements of Newton's second 
law. Combining them in the form 

force = mass X acceleration 

gives 

Solving this equation for the speed v yields 

v = H (speed), (16-26) 

in exact agreement with Eq. 16-22 if the constant C in that equation is given the 
value unity. Equation 16-26 gives the speed of the pulse in Fig. 16-8 and the speed 
of any other wave on the same string under the same tension. 

Equation 16-26 tells us: 

The speed of a wave along a stretched ideal string depends only on the tension and 
linear density of the string and not on the frequency of the wave. 

The frequency of the wave is fixed entirely by whatever generates the wave (for 
example, the person in Fig. 16-1b). The wavelength of the wave is then fixed by 
Eq. 16-13 in the form A = v~f. 

CHECKPOINT 3 

You send a traveling wave along a particular string by oscillating one end. If you 
increase the frequency of the oscillations, do (a) the speed of the wave and (b) the 
wavelength of the wave increase, decrease, or remain the same? If, instead, you increase 
the tension in the string, do (c) the speed of the wave and (d) the wavelength of the 
wave increase, decrease, or remain the same? 

Energy and Power of a Wave Traveling 
Along a String 

When we set up a wave on a stretched string, we provide energy for the motion of 
the string. As the wave moves away from us, it transports that energy as both 
kinetic energy and elastic potential energy. Let us consider each form in turn. 

A string element of mass dm, oscillating transversely in simple harmonic motion 
as the wave passes through it, has kinetic energy associated with its transverse 
velocity U. When the element is rushing through its y = 0 position (element b in 
Fig. 16-9), its transverse velocity-and thus its kinetic energy-is a maximum. 
When the element is at its extreme position y = YIIl (as is element a), its trans­
verse velocity-and thus its kinetic energy-is zero. 

To send a sinusoidal wave along a previously straight string, the wave must neces­
sarily stretch the string. As a string element of length dx oscillates transversely, its 
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Fig. 16-9 A snapshot of a traveling wave 
on a string at time t = O. String element a is 
at displacement y = Ym' and string element t 
is at displacement y = O. The kinetic energy 
of the string element at each position de­
pends on the transverse velocity of the ele­
ment. The potential energy depends on the 
amount by which the string element is 
stretched as the wave passes through it. 



422 16 WAVES-I 

length must increase and decrease in a periodic way if the string element is to fit 
the sinusoidal wave form. Elastic potential energy is associated with these length 
changes, just as for a spring. 

When the string element is at its Y = YIII position (element a in Fig. 16-9), its 
length has its normal undisturbed value dx, so its elastic potential energy is zero. 
However, when the element is rushing through its Y = 0 position, it has maximum 
stretch and thus maximum elastic potential energy. 

The oscillating string element thus has both its maximum kinetic energy and its 
maximum elastic potential energy at Y = O. In the snapshot of Fig. 16-9, the 
regions of the string at maximum displacement have no energy, and the regions at 
zero displacement have maximum energy. As the wave travels along the string, 
forces due to the tension in the string continuously do work to transfer energy 
from regions with energy to regions with no energy. 

Suppose we set up a wave on a string stretched along a horizontal x axis so 
that Eq. 16-2 describes the string's displacement. We might send a wave along the 
string by continuously oscillating one end of the string, as in Fig. 16-1b. In doing 
so, we continuously provide energy for the motion and stretching of the string­
as the string sections oscillate perpendicularly to the x axis, they have kinetic 
energy and elastic potential energy. As the wave moves into sections that were 
previously at rest, energy is transferred into those new sections. Thus, we say that 
the wave transports the energy along the string. 

The kinetic energy dK associated with a string element of mass dm is given by 

dK = ~ dm u2, (16-27) 

where u is the transverse speed of the oscillating string element. To find u, we 
differentiate Eq. 16-2 with respect to time while holding x constant: 

ay 
u = - = -WYIII cos(kx - wt). at 

Using this relation and putting dm = f.L dx, we rewrite Eq.16-27 as 

dK = ~(f.Ldx)(-wYI,YCOS2(kx - wt). 

(16-28) 

(16-29) 

Dividing Eq. 16-29 by dt gives the rate at which kinetic energy passes through 
a string element, and thus the rate at which kinetic energy is carried along by the 
wave. The ratio dxldt that then appears on the right of Eq. 16-29 is the wave speed 
v, so we obtain 

dK 
-- = Illvw2y2 cos2(kx - wt) dt 21"" III • 

(16-30) 

The average rate at which kinetic energy is transported is 

( 
dK ) _ I 2 2 [2 )] -- - 'if.Lvw Y/II cos (kx - wt avg 
dt avg 

- 1 V ~7)12 - 4f.L u.r /II' (16-31) 

Here we have taken the average over an integer number of wavelengths and 
have used the fact that the average value of the square of a cosine function over 
an integer number of periods is ~. 

Elastic potential energy is also carried along with the wave, and at the same 
average rate given by Eq. 16-31. Although we shall not examine the proof, you 



should recall that, in an oscillating system such as a pendulum or a spring - block 
system, the average kinetic energy and the average potential energy are equal. 

The average power, which is the average rate at which energy of both kinds 
is transmitted by the wave, is then 

P.wg = 2 ( ddJ() (16-32) 
t avg 

or, from Eq. 16-31, 

P _ 1? 2 
avg - 'ifLVlfYm (average power). (16-33) 

The factors fL and v in this equation depend on the material and tension of the 
string. The factors wand YII1 depend on the process that generates the wave. The de­
pendence of the average power of a wave on the square of its amplitude and also on 
the square of its angular frequency is a general result, true for waves of all types. 

Average power of a transverse wave 

1 ·8 TH E WAVE EQUATION 423 

A string has linear density fL = 525 g/m and is under tension 
r = 45 N. We send a sinusoidal wave with frequency f = 120 Hz 
and amplitude Ym = 8.5 mm along the string. At what average 
rate does the wave transport energy? 

gular frequency wand wave speed v. From Eq.16-9, 

w = 271f = (21T)(120 Hz) = 754 rad/s. 

From Eq.16-26 we have 

rr 1,----4~5 N=----
v = \j -; = \j 0.525 kg/m = 9.26 mls. 

The average rate of energy transport is the average power 
Pavg as given by Eq.16-33. 

Equation 16-33 then yields 

P _ 1 .? 2 
avg - 'ifLVlfYI1l 

= (D(0.525 kg/m)(9.26 m/s) (754 rad/s)2(0.0085 m)2 

Calculations: To use Eq. 16-33, we first must calculate an- = 100 W. (Answer) 

~s Additional examples, video, and practice available at WileyPLUS 

1 The Wave Equation 
As a wave passes through any element on a stretched string, the element moves 
perpendicularly to the wave's direction of travel. By applying Newton's second 
law to the element's motion, we can derive a general differential equation, called 
the wave equation, that governs the travel of waves of any type. 

Figure 16-lOa shows a snapshot of a string element of mass dm and length e 
as a wave travels along a string of linear density fL that is stretched along a hori­
zontal x axis. Let us assume that the wave amplitude is small so that the element 
can be tilted only slightly from the x axis as the wave passes. The force F2 on the 
right end of the element has a magnitude equal to tension r in the string and is 
directed slightly upward. The force FI on the left end of the element also has 
a magnitude equal to the tension r but is directed slightly downward. Because of 
the slight curvature of the element, these two forces produce a net force that 
causes the element to have an upward acceleration a y. Newton's second law writ­
ten for Y components (Fnet•y = may) gives us 

F 2y - Fly = dm ay . (16-34) 

Let's analyze this equation in parts. 
Mass. The element's mass dm can be written in terms of the string's linear 

density fL and the element's length e as dm = fLe. Because the element can have 

y 

L-----~------~-----x 

(a) 

y 

(b) ~-------------------x 

Fig.16-10 (a) A string element as a sinu­
soidal transverse wave travels on a stretched 
string. Forces FI and F2 act at the left and 
right ends, producing acceleration a having a 
vertical component a)" (b) The force at the el­
ement's right end is directed along a tangent 
to the element's right side. 
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only a slight tilt, e = dx (Fig. 16-10a) and we have the approximation 

dm = f-Ldx. (16-35) 

Acceleration. The acceleration ay in Eq. 16-34 is the second derivative of the dis­
placement y with respect to time: 

(16-36) 

Forces. Figure 16-10b shows that F2 is tangent to the string at the right end of 
the string element. Thus we can relate the components of the force to the string 
slope S2 at the right end as 

We can also relate the components to the magnitude F2 (= 7) with 

F2 = ~Fix + Fiy 

or 7 = ~Fix + Fiy' 

(16-37) 

(16-38) 

However, because we assume that the element is only slightly tilted, F2y ~ F2r and 
therefore we can rewrite Eq.16-38 as 

7= F2r• 

Substituting this into Eq. 16-37 and solving for F2y yield 

F2y = 7S2' 

Similar analysis at the left end of the string element gives us 

Fly = 7Sl' 

(16-39) 

(16-40) 

(16-41) 

We can now substitute Eqs. 16-35, 16-36, 16-40, and 16-41 into Eq. 16-34 to write 

d2y 
7S2 - 7Sl = (f-L dx) dt2 ' 

or (16-42) 

Because the string element is short, slopes S2 and Sl differ by only a differential 
amount dS, where S is the slope at any point: 

dy 
S = dx' (16-43) 

First replacing S2 Sl in Eq. 16-42 with dS and then using Eq. 16-43 to substitute 
dy/dx for S, we find 

dS 

dx 7 dt2 ' 

d(dy/dx) ..!:!:..- d2y 
dx 7 dt2 ' 

and 
a2y ..!:!:..- a2y 

(16-44) 
ax2 

7 at2 . 

In the last step, we switched to the notation of partial derivatives because on the 
left we differentiate only with respect to x and on the right we differentiate only 
with respect to t. Finally, substituting from Eq.16-26 (v = V7Ji1,), we find 

(wave equation). (16-45) 

This is the general differential equation that governs the travel of waves of all types. 
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1 The Principle of Superposition for Waves 
It often happens that two or more waves pass simultaneously through the same 
region. When we listen to a concert, for example, sound waves from many instru­
ments fall simultaneously on our eardrums. The electrons in the antennas of our 
radio and television receivers are set in motion by the net effect of many electro­
magnetic waves from many different broadcasting centers. The water of a lake or 
harbor may be churned up by waves in the wakes of many boats. 

Suppose that two waves travel simultaneously along the same stretched 
string. Let Yl(X, t) and Y2(X, t) be the displacements that the string would expe­
rience if each wave traveled alone. The displacement of the string when the waves 
overlap is then the algebraic sum 

y'(x, t) = Yl(X, t) + Y2(X, t). (16-46) 

This summation of displacements along the string means that 

Overlapping waves algebraically add to produce a resultant wave (or net wave). 

This is another example of the principle of snperposition, which says that when sev­
eral effects occur simultaneously, their net effect is the sum of the individual effects. 

Figure 16-11 shows a sequence of snapshots of two pulses traveling in oppo­
site directions on the same stretched string. When the pulses overlap, the resul­
tant pulse is their sum. Moreover, 

Overlapping waves do not in any way alter the travel of each other. 

1 Interference of Waves 
Suppose we send two sinusoidal waves of the same wavelength and amplitude in 
the same direction along a stretched string. The superposition principle applies. 
What resultant wave does it predict for the string? 

The resultant wave depends on the extent to which the waves are in phase (in 
step) with respect to each other-that is, how much one wave form is shifted 
from the other wave form. If the waves are exactly in phase (so that the peaks 
and valleys of one are exactly aligned with those of the other), they combine to 
double the displacement of either wave acting alone. If they are exactly out of phase 
(the peaks of one are exactly aligned with the valleys of the other), they combine to 
cancel everywhere, and the string remains straight. We call this phenomenon of 
combining waves interference, and the waves are said to interfere. (These terms 
refer only to the wave displacements; the travel of the waves is unaffected.) 

Let one wave traveling along a stretched string be given by 

Yl(X, t) = YIIl sin(kx - wt) 

and another, shifted from the first, by 

heX, t) = YIIl sin(kx - wt + cp). 

(16-47) 

(16-48) 

These waves have the same angular frequency w (and thus the same frequency f), 
the same angular wave number k (and thus the same wavelength A), and the same 
amplitude YIIl' They both travel in the positive direction of the x axis, with the 
same speed, given by Eq. 16-26. They differ only by a constant angle cp, the phase 
constant. These waves are said to be out of phase by cp or to have a phase differ­
ence of cp, or one wave is said to be phase-shifted from the other by cpo 

When two waves overlap, 
we see the resultant wave, 

-- the individual waves. 

--

Fig. 16-11 A series of snapshots that 
show two pulses traveling in opposite 
directions along a stretched string. The 
superposition principle applies as the 
pulses move through each other. 
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Displacement 
,--------'-----

y'(x,t) ~ ,[2YIII cos +r,bl,:,in(hx--- WI +!ir,b~ 

lvlagllitude 
gives 

amplitude 

Oscillating 
term 

Fig. 16-12 The resultant wave of 
Eq, 16-51, due to the interference of two 
sinusoidal transverse waves, is also a sinu­
soidal transverse wave, with an amplitude 
and an oscillating term. 

From the principle of superposition (Eq, 16-46), the resultant wave is the 
algebraic sum of the two interfering waves and has displacement 

y'(x, t) = Yl(X, t) + Ylx, t) 

= Ym sin(kx - wt) + Ym sin(kx - w{ + ¢), (16-49) 

In Appendix E we see that we can write the sum of the sines of two angles Q' and f3 as 

sin Q' + sin f3 = 2 sin!( Q' + f3) cos!( Q' - f3). (16-50) 

Applying this relation to Eq.16-49Ieads to 

y'(x, t) = [2Ym cos !¢1 sin(kx - wt + !¢). (16-51) 

As Fig. 16-12 shows, the resultant wave is also a sinusoidal wave traveling in the 
direction of increasing x. It is the only wave you would actually see on the string 
(you would not see the two interfering waves of Eqs.16-47 and 16-48). 

If two sinusoidal waves of the same amplitude and wavelength travel in the same 
direction along a stretched string, they interfere to produce a resultant sinusoidal wave 
traveling in that direction. 

The resultant wave differs from the interfering waves in two respects: (1) its phase 
constant is !¢, and (2) its amplitude Y;1l is the magnitude of the quantity in the brack­
ets in Eq.16-51: 

(amplitude ). (16-52) 

If ¢ = 0 rad (or 0°), the two interfering waves are exactly in phase, as in Fig. 
16-13a. Then Eq.16-51 reduces to 

y' (x, t) = 2Ym sin(kx - wt) (¢ = 0). (16-53) 

Being exactly in phase, Being exactly out of This is an intermediate 
the waves produce a phase, they produce situation, with an 
large resultant wave. a flat string. intermediate result. 

y y )' -- --
x 

r,b ~TC rad r,b~tTC rad 

(a) (b) (c) 

Y )' )' --
x 

(d) (e) (j) 

Fig. 16-13 Two identical sinusoidal waves,Yl(x, t) and yz(x, t), travel along a string 
in the positive direction of an x axis. They interfere to give a resultant wave y' (x, t). 
The resultant wave is what is actually seen on the string. The phase difference ¢ between 
the two interfering waves is (a) 0 rad or 0°, (b) 7T rad or 1800

, and ( c) ~7T rad or 120°. 
The corresponding resultant waves are shown in (d), (e), and (f). 
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This resultant wave is plotted in Fig. 16-13d. Note from both that figure and 
Eq.16-53 that the amplitude of the resultant wave is twice the amplitude of either 
interfering wave. That is the greatest amplitude the resultant wave can have, 
because the cosine term in Eqs. 16-51 and 16-52 has its greatest value (unity) 
when ¢ = O. Interference that produces the greatest possible amplitude is called 
fully constructive intelference. 

If ¢ = 1T rad (or 180°), the interfering waves are exactly out of phase as in 
Fig. 16-13b. Then cos ~¢ becomes cos 1T12 = 0, and the amplitude of the resultant 
wave as given by Eq. 16-52 is zero. We then have, for all values of x and t, 

y'(x, t) = 0 (¢ = 1Trad). (16-54) 

The resultant wave is plotted in Fig. 16-13e. Although we sent two waves along 
the string, we see no motion of the string. This type of interference is called fully 
destructive intelference. 

Because a sinusoidal wave repeats its shape every 21T rad, a phase difference 
of ¢ = 21T rad (or 360°) corresponds to a shift of one wave relative to the other 
wave by a distance equivalent to one wavelength. Thus, phase differences can be 
described in terms of wavelengths as well as angles. For example, in Fig. 16-13b 
the waves may be said to be 0.50 wavelength out of phase. Table 16-1 shows some 
other examples of phase differences and the interference they produce. Note that 
when interference is neither fully constructive nor fully destructive, it is called 
intermediate intelference. The amplitude of the resultant wave is then interme­
diate between 0 and 2YI1l' For example, from Table 16-1, if the interfering waves 
have a phase difference of 120° (¢ = ~1T rad = 0.33 wavelength), then the resul­
tant wave has an amplitude of YIII' the same as that of the interfering waves 
(see Figs. 16-13c and!). 

Two waves with the same wavelength are in phase if their phase difference 
is zero or any integer number of wavelengths. Thus, the integer part of any phase 
difference expressed in wavelengths may be discarded. For example, a phase dif­
ference of 0040 wavelength (an intermediate interference, close to fully destruc­
tive interference) is equivalent in every way to one of 2040 wavelengths, and so 
the simpler of the two numbers can be used in computations. 

Phase Difference and Resulting Interference Typesa 

Phase Difference, in Amplitude 
of Resultant 

Degrees Radians Wavelengths Wave 

0 0 0 2y", 
120 2 

:J7T 0.33 y", 
180 7T 0.50 0 

240 4 
37T 0.67 y", 

360 27T 1.00 2y", 

865 15.1 2.40 0.60Ym 

Type of 
Interference 

Fully constructive 

In termedia te 

Fully destructive 

Intermediate 

Fully constructive 

Intermediate 

"The phase difference is between two otherwise identical waves, with amplitude ),,,,, moving in the 
same direction. 

CHECKPOINT 4 

Here are four possible phase differences between two identical waves, expressed in 
wavelengths: 0.20, 0.45, 0.60, and 0.80. Rank them according to the amplitude of the 
resultant wave, greatest first. 
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Interference of two waves, same direction, same amplitude 

Two identical sinusoidal waves, moving in the same 
direction along a stretched string, interfere with each other. 
The amplitude YIIl of each wave is 9.8 mm, and the phase dif­
ference cp between them is 100°. 

(b) What phase difference, in radians and wavelengths, will 
give the resultant wave an amplitude of 4.9 mm? 

Calculations: Now we are given Y;11 and seek cp. From Eq. 
16-52, 

(a) What is the amplitude Y;n of the resultant wave due to the 
interference, and what is the type of this interference? 

we now have 

Y;n = 12YIIl cos ~cpl, 

4.9 mm = (2)(9.8 mm) cos ~cp, 

These are identical sinusoidal waves traveling in the same 
direction along a string, so they interfere to produce a sinu­
soidal traveling wave. 

which gives us (with a calculator in the radian mode) 

_ -I 4.9mm 
cp - 2 cos (2)(9.8 mm) 

Calculations: Because they are identical, the waves have 
the same amplitude. Thus, the amplitude Y;II of the resultant 
wave is given by Eq. 16-52: 

= ±2.636rad = ±2.6 rad. (Answer) 

There are two solutions because we can obtain the same re­
sultant wave by letting the first wave lead (travel ahead of) 
or lag (travel behind) the second wave by 2.6 rad. In wave­
lengths, the phase difference is 

Y;11 = 12YIIl cos ~cpl = 1(2)(9.8 mm) cos(1000/2)1 

= 13 mm. (Answer) 

We can tell that the interference is intermediate in two ways. 
The phase difference is between 0 and 180°, and, correspond­
ingly, the amplitude Y;n is between 0 and 2YI11 (= 19.6 mm). 

cp ±2.636 rad 
21T rad/wavelength 21T rad/wavelength 

= ±0.42 wavelength. (Answer) 

~rus Additional examples, video, and practice available at WileyPLUS 

Phasors 
We can represent a string wave (or any other type of wave) vectorially with a 
phasor. In essence, a phasor is a vector that has a magnitude equal to the ampli­
tude of the wave and that rotates around an origin; the angular speed of the 
phasor is equal to the angular frequency w of the wave. For example, the wave 

YI(X, t) = YIIl! sin(kx - wt) (16-55) 

is represented by the phasor shown in Figs. 16-14a to d. The magnitude of the 
phasor is the amplitude YIIl! of the wave. As the phasor rotates around the origin 
at angular speed w, its projection YI on the vertical axis varies sinusoidally, from a 
maximum of Yml through zero to a minimum of -YIII! and then back to YIIl!' This 
variation corresponds to the sinusoidal variation in the displacement YI of any 
point along the string as the wave passes through that point. 

When two waves travel along the same string in the same direction, we can 
represent them and their resultant wave in a phasor diagram. The phasors in Fig. 
16-14e represent the wave of Eq. 16-55 and a second wave given by 

yzCx, t) = YIII2 sin(kx - wt + cp). (16-56) 

This second wave is phase-shifted from the first wave by phase constant cp. 
Because the phasors rotate at the same angular speed w, the angle between the 
two phasors is always cp. If cp is a positive quantity, then the phasor for wave 2 lags 
the phasor for wave 1 as they rotate, as drawn in Fig. 16-14e. If cp is a negative 
quantity, then the phasor for wave 2 leads the phasor for wave 1. 
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)'1 

This projection matches this 
displacement of the dot as 
the wave moves through it. 

y 

------

Zero projection, 
zero displacement 

y 

------

~~-r----------- x ----__._----------- x 

(a) 

Maximum negative projection 

)' 

------
----\--------j----------+--x 

)'1 )'1 = )'1//1 

(c) 

'f I -------------------- -

(b) 

(d) 

The next crest is about to 
move through the dot 

)' 

This is a snapshot of the 
two phasors for two waves. 

Adding the two phasors as vectors 
gives the resultant phasor of the 
resultant wave. 

These are the 
projections of 
the two phasors. )'1 

(e) 

Wave 2, delayed 
by rp radians 

Wave 1 

This is the 
projection of 
the resultant 
phasor. 

(j) 

Fig. 16-14 (a)-(d) A phasor of magnitude YIII' rotating about an origin at angular speed wrepre­
sents a sinusoidal wave. The phasor's projection y, on the vertical axis represents the displacement 
of a point through which the wave passes. (e) A second phasor, also of angular speed w but of mag­
nitude YIII2 and rotating at a constant angle cp from the first phasor, represents a second wave, with a 
phase constant cpo (f) The resultant wave is represented by the vector sum Y;l1 of the two phasors. 
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Because waves Yl and Y2 have the same angular wave number k and angular 
frequency w, we know from Eqs. 16-51 and 16-52 that their resultant is of the form 

y'(x, t) = Y;lI sin(kx wt + (3), (16-57) 

where Y;lI is the amplitude of the resultant wave and [3 is its phase constant. To 
find the values of Y;n and [3, we would have to sum the two combining waves, as 
we did to obtain Eq. 16-51. To do this on a phasor diagram, we vectorially add the 
two phasors at any instant during their rotation, as in Fig. 16-14fwhere phasor YI1l2 
has been shifted to the head of phasor Y11l1' The magnitude of the vector sum 
equals the amplitude Y;lI in Eq.16-57. The angle between the vector sum and the 
ph as or for Yl equals the phase constant [3 in Eq. 16-57. 

Note that, in contrast to the method of Section 16-10: 

We can use phasors to combine waves even if their amplitudes are different. 

Interference of two waves, same direction, phasors, any amplitudes 

Two sinusoidal waves Yl (x, t) and yzCx, t) have the same wave­
length and travel together in the same direction along a 
string. Their amplitudes are YI1l1 = 4.0 mm and YI1l2 = 3.0 mm, 
and their phase constants are 0 and 1T/3 rad, respectively. 
What are the amplitude Y;11 and phase constant [3 of the resul­
tant wave? Write the resultant wave in the form of Eq.16-57. 

(1) The two waves have a number of properties in common: 
Because they travel along the same string, they must have 
the same speed v, as set by the tension and linear density of 
the string according to Eq. 16-26. With the same wavelength 
A, they have the same angular wave number k (= 21T/A). 
Also, with the same wave number k and speed v, they must 
have the same angular frequency w (= kv). 

(2) The waves (call them waves 1 and 2) can be repre­
sented by phasors rotating at the same angular speed w about 
an origin. Because the phase constant for wave 2 is greater than 
that for wave 1 by 1T/3, phasor 2 must lag phasor 1 by 1T/3 rad in 
their clockwise rotation, as shown in Fig. 16-15a. The resultant 
wave due to the interference of waves 1 and 2 can then be rep­
resented by a phasor that is the vector sum of phasors 1 and 2. 

Calculations: To simplify the vector summation, we drew 
phasors 1 and 2 in Fig. 16-15a at the instant when phasor 1 
lies along the horizontal axis. We then drew lagging phasor 
2 at positive angle 1T/3 rad. In Fig. 16-15b we shifted pha­
sor 2 so its tail is at the head of phasor 1. Then we can 
draw the phasor Y;n of the resultant wave from the tail of 
phasor 1 to the head of phasor 2. The phase constant [3 is 
the angle phasor Y;lI makes with phasor 1. 

To find values for Y;lI and [3, we can sum phasors 1 and 2 
as vectors on a calculator. Here we shall sum them by com­
ponents. For the horizontal components we have 

(a) 

Add the phasors 
as vectors. 

(b) 

Fig. 16-15 (a) Tho phasors of magnitudes YIIl! and YIIl2 and with 
phase difference 1T/3. (b) Vector addition of these phasors at any in­
stant during their rotation gives the magnitude Y;1l of the phasor for 
the resultant wave. 

Y;nh = YI1l1 cos 0 + Ym2 cos 1T/3 

= 4.0 mm + (3.0 mm) cos 1T/3 = 5.50 mm. 

For the vertical components we have 

Y;IlV = Yml sin 0 + Ym2 sin 1T/3 

= 0 + (3.0 mm) sin 1T/3 = 2.60 mm. 

Thus, the resultant wave has an amplitude of 

y;" = Y(5.50 mm)2 + (2.60 mm)2 

= 6.1 mm 
and a phase constant of 

1 2.60mm 
f3 = tan- 5.50 mm = 0.44 rad. 

(Answer) 

(Answer) 

From Fig. 16-15b, phase constant [3 is a positive angle rela­
tive to phasor 1. Thus, the resultant wave lags wave 1 in their 
travel by phase constant [3 = +0.44 rad. From Eq.16-57, we 
can write the resultant wave as 

y'(x, t) = (6.1 mm) sin(kx - wt + 0.44rad). (Answer) 

Additional examples, video, and practice available at WileyPLUS 



1 1 Standing Waves 
In Section 16-10, we discussed two sinusoidal waves of the same wavelength and 
amplitude traveling in the same direction along a stretched string. What if they 
travel in opposite directions? We can again find the resultant wave by applying 
the superposition principle. 

As the waves move through each other, 
some points never move and some move 
the most. 

t ~ 0 

Fig. 16-16 (a) Five snapshots of a wave traveling to the left, at the times tindicated below 
part (c) (Tis the period of oscillation). (b) Five snapshots of a wave identical to that in (a) but 
traveling to the right, at the same times t. (c) Corresponding snapshots for the superposition of 
the two waves on the same string. At t = 0, ~ T, and T, fully constructive interference occurs 
because ofthe alignment of peaks with peaks and valleys with valleys. At t = ~Tand~T,fully 
destructive interference occurs because of the alignment of peaks with valleys. Some points 
(the nodes, marked with dots) never oscillate; some points (the antinodes) oscillate the most. 

Figure 16-16 suggests the situation graphically. It shows the two combin­
ing waves, one traveling to the left in Fig. 16-16a, the other to the right in 
Fig. 16-16b. Figure 16-16c shows their sum, obtained by applying the superposi­
tion principle graphically. The outstanding feature of the resultant wave is that 
there are places along the string, called nodes, where the string never moves. Four 
such nodes are marked by dots in Fig. 16-16c. Halfway between adjacent nodes are 
antinodes, where the amplitUde of the resultant wave is a maximum. Wave patterns 
such as that of Fig. 16-16c are called standing waves because the wave patterns do 
not move left or right; the locations of the maxima and minima do not change. 

If two sinusoidal waves of the same amplitude and wavelength travel in opposite 
directions along a stretched string, their interference with each other produces a 
standing wave. 

To analyze a standing wave, we represent the two combining waves with the 
equations 

and 

heX, t) = Ym sin(kx - Nt) 

yz(X, t) = YIIl sin(kx + Nt). 

The principle of superposition gives, for the combined wave, 

y'(x, t) = Yl(X, t) + YZ(X, t) = YIIl sin(kx - Nt) + Ym sin(kx + Nt). 

Applying the trigonometric relation of Eq. 16-50 leads to Fig. 16-17 and 

(16-58) 

(16-59) 

Y' (x, t) = [2YIIl sin kx] cos Nt. (16-60) 
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Displace"lt'1l1 
~ 

y'(xJ) ,in kxlcos 
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Fig. 16-17 The resultant wave of Eq. 

16-60 is a standing wave and is due to the 
interference of two sinusoidal waves of the 
same amplitude and wavelength that travel 
in opposite directions. 
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There are two ways a 
pulse can reflect from 
the end of a string. 

(b) 

Fig. 16-18 (a) A pulse incident from the 
right is reflected at the left end of the string, 
which is tied to a wall. Note that the re­
flected pulse is inverted from the incident 
pulse. (b) Here the left end of the string is 
tied to a ring that can slide without friction 
up and down the rod. Now the pulse is not 
inverted by the reflection. 

CHECKPOINT 5 

Two waves with the same amplitude 
and wavelength interfere in three dif­
ferent situations to produce resultant 
waves with the following equations: 

(1) y'(x, t) = 4 sin(5x - 4t) 

(2) y'(x, t) = 4 sin(5x) cos(4t) 

(3) y' (x, t) = 4 sin(5x + 4t) 

In which situation are the two combin­
ing waves traveling (a) toward positive 
x, (b) toward negative x, and (c) in op­
posite directions? 

This equation does not describe a traveling wave because it is not of the form of 
Eq. 16-17. Instead, it describes a standing wave. 

The quantity 2Ym sin kx in the brackets of Eq. 16-60 can be viewed as the 
amplitude of oscillation of the string element that is located at position x. 
However, since an amplitude is always positive and sin kx can be negative, we 
take the absolute value of the quantity 2YIIl sin kx to be the amplitude at x. 

In a traveling sinusoidal wave, the amplitude of the wave is the same for all 
string elements. That is not true for a standing wave, in which the amplitude varies 
with position. In the standing wave of Eq. 16-60, for example, the amplitude is 
zero for values of kx that give sin kx = 0. Those values are 

kx = n11', for n = 0,1,2, .... (16-61) 

Substituting k = 211'1 A in this equation and rearranging, we get 

forn = 0,1,2, ... (nodes), (16-62) 

as the positions of zero amplitude-the nodes-for the standing wave of 
Eq.16-60. Note that adjacent nodes are separated by A12, half a wavelength. 

The amplitude of the standing wave of Eq. 16-60 has a maximum value of 
2Ym' which occurs for values of kx that give I sin kx I = 1. Those values are 

1 1 3 5 
f(X = 211', 211', 211', ... 

forn = 0,1,2, .... (16-63) 

Substituting k = 211'1 A in Eq.16-63 and rearranging, we get 

x = (n + ~) ~ , for n = 0,1,2, . . . (antinodes), (16-64) 

as the positions of maximum amplitude-the antinodes-of the standing wave 
of Eq. 16-60. The antinodes are separated by AI2 and are located halfway 
between pairs of nodes. 

We can set up a standing wave in a stretched string by allowing a traveling wave 
to be reflected from the far end of the string so that the wave travels back 
through itself. The incident (original) wave and the reflected wave can then be 
described by Eqs. 16-58 and 16-59, respectively, and they can combine to form a 
pattern of standing waves. 

In Fig. 16-18, we use a single pulse to show how such reflections take place. 
In Fig. 16-18a, the string is fixed at its left end. When the pulse arrives at that 
end, it exerts an upward force on the support (the wall). By Newton's third law, 
the support exerts an opposite force of equal magnitude on the string. This sec­
ond force generates a pulse at the support, which travels back along the string in 
the direction opposite that of the incident pulse. In a "hard" reflection of this 
kind, there must be a node at the support because the string is fixed there. The 
reflected and incident pulses must have opposite signs, so as to cancel each other 
at that point. 

In Fig. 16-18b, the left end of the string is fastened to a light ring that is 
free to slide without friction along a rod. When the incident pulse arrives, the 
ring moves up the rod. As the ring moves, it pulls on the string, stretching the 
string and producing a reflected pulse with the same sign and amplitude as the 
incident pulse. Thus, in such a "soft" reflection, the incident and reflected 
pulses reinforce each other, creating an antinode at the end of the string; the 
maximum displacement of the ring is twice the amplitude of either of these 
two pulses. 
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1 1 Standing Waves and Resonance 
Consider a string, such as a guitar string, that is stretched between two clamps. 
Suppose we send a continuous sinusoidal wave of a certain frequency along the 
string, say, toward the right. When the wave reaches the right end, it reflects and 
begins to travel back to the left. That left-going wave then overlaps the wave that 
is still traveling to the right. When the left-going wave reaches the left end, it 
reflects again and the newly reflected wave begins to travel to the right, over­
lapping the left-going and right-going waves. In short, we very soon have many 
overlapping traveling waves, which interfere with one another. 

For certain frequencies, the interference produces a standing wave pattern 
(or oscillation mode) with nodes and large antinodes like those in Fig. 16-19. 
Such a standing wave is said to be produced at resonance, and the string is said 
to resonate at these certain frequencies, called resonant frequencies. If the 
string is oscillated at some frequency other than a resonant frequency, a stand­
ing wave is not set up. Then the interference of the right-going and left-going 
traveling waves results in only small (perhaps imperceptible) oscillations of 
the string. 

Fig. 16-19 Stroboscopic photographs reveal (imperfect) standing wave patterns on a 
string being made to oscillate by an oscillator at the left end. The patterns occur at certain 
frequencies of oscillation. (Richard Megna/Fundamental Photographs) 

Let a string be stretched between two clamps separated by a fixed dis­
tance L. To find expressions for the resonant frequencies of the string, we 
note that a node must exist at each of its ends, because each end is fixed and 
cannot oscillate. The simplest pattern that meets this key requirement is that 
in Fig. 16-20a, which shows the string at both its extreme displacements (one 
solid and one dashed, together forming a single "loop"). There is only one 
antinode, which is at the center of the string. Note that half a wavelength 
spans the length L, which we take to be the string's length. Thus, for this pat­
tern, A/2 = L. This condition tells us that if the left-going and right-going trav­
eling waves are to set up this pattern by their interference, they must have the 
wavelength A = 2L. 

A second simple pattern meeting the requirement of nodes at the fixed ends 
is shown in Fig. 16-20b. This pattern has three nodes and two antinodes and is said 

First harmonic Second harmonic 

Fig. 16-20 A string, stretched between two clamps, is made to oscillate in standing 
wave patterns. (a) The simplest possible pattern consists of one loop, which refers to the 
composite shape formed by the string in its extreme displacements (the solid and dashed 
lines). (b) The next simplest pattern has two loops. (c) The next has three loops. 

(c) 
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Fig. 1 6-21 One of many possible stand­
ing wave patterns for a kettledrum head, 
made visible by dark powder sprinkled on 
the drumhead. As the head is set into oscil­
lation at a single frequency by a mechani­
cal oscillator at the upper left of the photo­
graph, the powder collects at the nodes, 
which are circles and straight lines in this 
two-dimensional example. (Courtesy 
Thomas D. Rossing, Northern Illinois 
University) 

to be a two-loop pattern. For the left-going and right-going waves to set it up, 
they must have a wavelength A = L. A third pattern is shown in Fig. 16-20c. It has 
four nodes, three antinodes, and three loops, and the wavelength is A = ~L. We could 
continue this progression by drawing increasingly more complicated patterns. In 
each step of the progression, the pattern would have one more node and one 
more antinode than the preceding step, and an additional Al2 would be fitted into 
the distance L. 

Thus, a standing wave can be set up on a string of length L by a wave with a 
wavelength equal to one of the values 

2L 
A=--, 

n 
for n = 1, 2, 3, .... (16-65) 

The resonant frequencies that correspond to these wavelengths follow from 
Eq.16-13: 

for n = 1,2, 3, .... (16-66) 

Here v is the speed of traveling waves on the string. 
Equation 16-66 tells us that the resonant frequencies are integer multiples of 

the lowest resonant frequency,! = v/2L, which corresponds to n = 1. The oscilla­
tion mode with that lowest frequency is called the fundamental mode or the first 
harmonic. The second harmonic is the oscillation mode with n = 2, the third har­
monic is that with n = 3, and so on. The frequencies associated with these modes 
are often labeled f1> f2' f3, and so on. The collection of all possible oscillation 
modes is called the harmonic series, and n is called the harmonic number of the 
nth harmonic. 

For a given string under a given tension, each resonant frequency corre­
sponds to a particular oscillation pattern. Thus, if the frequency is in the audi­
ble range, you can hear the shape of the string. Resonance can also occur in 
two dimensions (such as on the surface of the kettledrum in Fig. 16-21) and in 
three dimensions (such as in the wind-induced swaying and twisting of a tall 
building). 

"'CHECKPOINT 6 

In the following series of resonant frequencies, one frequency (lower than 400 Hz) is 
missing: 150,225,300,375 Hz. (a) What is the missing frequency? (b) What is the fre­
quency of the seventh harmonic? 

Resonance of transverse waves, standing waves, harmonics 

Figure 16-22 shows a pattern of resonant oscillation of a 
string of mass m = 2.500 g and length L = 0.800 m and that is 
under tension T = 325.0 N. What is the wavelength A of the 
transverse waves producing the standing-wave pattern, and 
what is the harmonic number n? What is the frequency f of 
the transverse waves and of the oscillations of the moving 
string elements? What is the maximum magnitude of the 
transverse velocity UIl1 of the element oscillating at coordinate 
x = 0.180 m (note the x axis in the figure)? At what point 

8.00 mm I rj;!:---~-----,*--~:::-----;tcr (m) 

Fig. 16-22 Resonant oscillation of a string under tension. 

during the element's oscillation is the transverse velocity 
maximum? 



(1) The traverse waves that produce a standing-wave pat­
tern must have a wavelength such that an integer number n 
of half-wavelengths fit into the length L of the string. (2) 
The frequency of those waves and of the oscillations of the 
string elements is given by Eq. 16-66 (f = nv/2L). (3) The dis­
placement of a string element as a function of position x and 
time t is given by Eq. 16-60: 

y'(x, t) = [2Ym sin lex] cos wt. (16-67) 

Wavelength and harmonic number: In Fig. 16-22, the 
solid line, which is effectively a snapshot (or freeze frame) of 
the oscillations, reveals that 2 full wavelengths fit into the 
length L = 0.800 m of the string. Thus, we have 

or 

2A = L, 

L 
A=2' 

= 0.800 m = 0.400 m. 
2 

(16-68) 

(Answer) 

By counting the number of loops (or half-wavelengths) in 
Fig. 16-22, we see that the harmonic number is 

n = 4. (Answer) 

We reach the same conclusion by comparing Eqs. 16-68 and 
16-65 (A = 2L1n). Thus, the string is oscillating in its fourth 
harmonic. 

Frequency: We can get the frequency f of the transverse 
waves from Eq. 16-13 (v = At) if we first find the speed v of the 
waves. That speed is given by Eq. 16-26, but we must substitute 
miL for the unknown linear density fL. We obtain 

v=H=~=~~ 
(325 N)(0.800 m) = 322.49 m/s. 
2.50 X 10-3 kg 

After rearranging Eq. 16-13, we write 

v 322.49 mls 
f= A = 0.400m 

= 806.2 Hz = 806 Hz. (Answer) 

Note that we get the same answer by substituting into Eq. 
16-66: 

v 322.49 mls 
f= n 2L = 4 2(0.800m) 

= 806 Hz. (Answer) 
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Now note that this 806 Hz is not only the frequency of the 
waves producing the fourth harmonic but also it is said to be 
the fourth harmonic, as in the statement, "The fourth har­
monic of this oscillating string is 806 Hz." It is also the fre­
quency of the string elements as they oscillate vertically in 
the figure in simple harmonic motion, just as a block on a 
vertical spring would oscillate in simple harmonic motion. 
Finally, it is also the frequency of the sound you would hear 
from the string as the oscillating string elements periodically 
push against the air, sending out sound waves. 

Transverse velocity: The displacement Y I of the string ele­
ment located at coordinate x is given by Eq. 16-67 as a func­
tion of time t. The term cos wt contains the dependence on 
time and thus provides the "motion" of the standing wave. 
The term 2YIIl sin lex sets the extent of the motion-that is, 
the amplitude. The greatest amplitude occurs at an anti­
node, where sin lex is + 1 or -1 and thus the greatest ampli­
tude is 2YIIl' From Fig. 16-22, we see that 2y", = 4.00 mm, 
which tells us that y", = 2.00 mm. 

We want the transverse velocity-the velocity of a 
string element parallel to the y axis. To find it, we take the 
time derivative ofEq.16-67: 

a I a 
u(x, t) = ~ = - [(2Ym sin lex) cos wt] at at 

= [-2Ymw sin lex] sin wt. (16-69) 

Here the term sin wt provides the variation with time and 
the term -2Ymw sin lex provides the extent of that varia­
tion. We want the absolute magnitude of that extent: 

Um = 1 -2Ymw sin kx I. 

To evaluate this for the element at x = 0.180 m, we first note 
that YI/1 = 2.00 mm, k = 271'/A = 271'/(0.400 m), and w = 
27Tf = 271'(806.2 Hz). Then the maximum speed of the ele­
ment at x = 0.180 m is 

U I11 = 1-2(2.00 X 10-3 m)(271')(806.2 Hz) 

X sin( 271' (0.180 m)) 1 
0.400m 

= 6.26 m/s. (Answer) 

To determine when the string element has this maximum 
speed, we could investigate Eq. 16-69. However, a little 
thought can save a lot of work. The element is undergoing sim­
ple harmonic motion and must come to a momentary stop at 
its extreme upward position and extreme downward position. 
It has the greatest speed as it zips through the midpoint of its 
oscillation,just as a block does in a block -spring oscillator. 

Additional examples, video, and practice available at WileyPLUS 
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Transverse and Longitudinal Waves Mechanical waves 
can exist only in material media and are governed by Newton's 
laws. Transverse mechanical waves, like those on a stretched string, 
are waves in which the particles of the medium oscillate perpendic­
ular to the wave's direction of travel. Waves in which the particles 
of the medium oscillate parallel to the wave's direction of travel 
are longitudinal waves. 

Sinusoidal Waves A sinusoidal wave moving in the positive 
direction of an x axis has the mathematical form 

y(x, t) = YIII sin(kx - wt), (16-2) 

where YIII is the amplitude of the wave, k is the angulal' wave num­
ber, w is the angular frequency, and kx - wt is the phase. The wave­
length.A is related to k by 

k=~ 
.A' (16-5) 

The period T and frequency f of the wave are related to w by 

w 1 
2; =f= T' (16-9) 

Finally, the wave speed v is related to these other parameters by 

w .A 
v=T=T=.Af. (16-13) 

Equation of a Traveling Wave Any function of the form 

y(x, t) = h(kx ± wt) (16-17) 

can represent a traveling wave with a wave speed given by Eq.16-13 
and a wave shape given by the mathematical form of h. The plus sign 
denotes a wave traveling in the negative direction of the x axis, and 
the minus sign a wave traveling in the positive direction. 

Wave Speed on Stretched String The speed of a wave on 
a stretched string is set by properties of the string. The speed on a 
string with tension T and linear density f.L is 

v=[f. (16-26) 

Power The average power of, or average rate at which energy is 
transmitted by, a sinusoidal wave on a stretched string is given by 

(16-33) 

The following four waves are sent along strings with the same 
linear densities (x is in meters and t is in seconds). Rank the waves 
according to (a) their wave speed and (b) the tension in the strings 
along which they travel, greatest first: 
(1) Yl = (3 mm) sin(x - 3t), (3) )'3 = (1 mm) sin(4x - t), 
(2) Yz = (6 mm) sin(2x - t), (4) Y4 = (2 mm) sin(x - 2t). 

Superposition of Waves When two or more waves traverse 
the same medium, the displacement of any particle of the medium 
is the sum of the displacements that the individual waves would 
give it. 

Interference of Waves Two sinusoidal waves on the same 
string exhibit interference, adding or canceling according to the prin­
ciple of superposition. If the two are traveling in the same direction 
and have the same amplitude Ym and frequency (hence the same 
wavelength) but differ in phase by a phase constant 4>, the result is a 
single wave with this same frequency: 

y'(x, t) = [2YIII cost4>J sin(kx - wt + t4». (16-51) 

If 4> = 0, the waves are exactly in phase and their interference is 
fully constructive; if 4> = 7T rad, they are exactly out of phase and 
their interference is fully destructive. 

Phasors A wave y(x, t) can be represented with a phasor. This 
is a vector that has a magnitude equal to the amplitude Ym of the 
wave and that rotates about an origin with an angular speed equal 
to the angular frequency w of the wave. The projection of the rotat­
ing phasor on a vertical axis gives the displacement Y of a point 
along the wave's travel. 

Standing Waves The interference of two identical sinusoidal 
waves moving in opposite directions produces standing waves. For 
a string with fixed ends, the standing wave is given by 

y'(x, t) = [2Ym sin kxl cos wt. (16-60) 

Standing waves are characterized by fixed locations of zero dis­
placement called nodes and fixed locations of maximum displace­
ment called antinodes. 

Resonance Standing waves on a string can be set up by 
reflection of traveling waves from the ends of the string. If an end is 
fixed, it must be the position of a node. This limits the frequencies 
at which standing waves will occur on a given string. Each possible 
frequency is a resonant frequency, and the corresponding standing 
wave pattern is an oscillation mode. For a stretched string of length 
L with fixed ends, the resonant frequencies are 

forn=1,2,3, .... (16-66) 

The oscillation mode corresponding to n = 1 is called the funda­
mental mode or the first harmonic; the mode corresponding to n = 

2 is the second harmonic; and so on. 

In Fig. 16-23, wave 1 consists of a rectangular peak of height 4 
units and width d, and a rectangular valley of depth 2 units and 
width d. The wave travels rightward along an x axis. Choices 2, 3, 
and 4 are similar waves, with the same heights, depths, and widths, 
that will travel leftward along that axis and through wave 1. Right­
going wave 1 and one of the left-going waves will interfere as they 



pass through each other. With which left-going wave will the 
interference give, for an instant, (a) the deepest valley, (b) a flat line, 
and (c) a flat peak 2d wide? 

(1) (2) 

(3) (4) 

Fig. 1 6-23 Question 2. 

Figure 16-24a gives a snapshot of a wave traveling in the direc­
tion of positive x along a string under tension. Four string elements 
are indicated by the lettered points. For each of those elements, de­
termine whether, at the instant of the snapshot, the element is 
moving upward or downward or is momentarily at rest. (Hint: 
Imagine the wave as it moves through the four string elements, as if 
you were watching a video of the wave as it traveled rightward.) 

Figure 16-24b gives the displacement of a string element 
located at, say, x = 0 as a function of time. At the lettered times, is the 
element moving upward or downward or is it momentarily at rest? 

(a) (b) 

Fig. 16-24 Question 3. 

Figure 16-25 shows three waves that are separately sent along a 
string that is stretched under a certain tension along an x axis. 
Rank the waves according to their (a) wavelengths, (b) speeds, and 
(c) angular frequencies, greatest first. 

)' 

~----~----~------x 

Fig. 1 6-25 Question 4. 

If you start with two sinusoidal waves of the same amplitude 
traveling in phase on a string and then somehow phase-shift one of 
them by 5.4 wavelengths, what type of interference will 
occur on the string? 

The amplitudes and phase differences for four pairs of 
waves of equal wavelengths are (a) 2 mm, 6 mm, and 7Trad; (b) 
3 mm, 5 mm, and 7Trad; (c) 7 mm, 9 mm, and 7Trad; (d) 2 mm, 2 
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mrn, and 0 rad. Each pair travels in the same direction along the 
same string. Without written calculation, rank the four pairs ac­
cording to the amplitude of their resultant wave, greatest first. 
(Hint: Construct phasor diagrams.) 

A sinusoidal wave is sent along a cord under tension, transport­
ing energy at the average rate of Pavg,l' Two waves, identical to that 
first one, are then to be sent along the cord with a phase difference 
¢ of either 0, 0.2 wavelength, or 0.5 wavelength. (a) With only men­
tal calculation, rank those choices of ¢ according to the average 
rate at which the waves will transport energy, greatest first. (b) For 
the first choice of ¢, what is the average rate in terms of Pavg,l? 

(a) If a standing wave on a string is given by 

y'(t) = (3 mm) sin(5x) cos(4t), 

is there a node or an antinode of the oscillations of the string at 
x = O? (b) If the standing wave is given by 

y'(t) = (3 mm) sin(5x + 7T/2) cos(4t), 

is there a node or an antinode at x = O? 

9 Strings A and B have identical lengths and linear densities, but 
string B is under greater tension than string A. Figure 16-26 shows 
four situations, (a) through (d), in which standing wave patterns 
exist on the two strings. In which situations is there the possibility 
that strings A and B are oscillating at the same resonant frequency? 

(a) 

(b) 

(c) 

(d) 

Fig. 16-26 Question 9. 

If you set up the seventh harmonic on a string, (a) how many 
nodes are present, and (b) is there a node, antinode, or some inter­
mediate state at the midpoint? If you next set up the sixth harmonic, 
(c) is its resonant wavelength longer or shorter than that for the sev­
enth harmonic, and (d) is the resonant frequency higher or lower? 

Figure 16-27 shows phasor diagrams for three situations in 
which two waves travel along the same string. All six waves have 
the same amplitude. Rank the situations according to the ampli­
tude of the net wave on the string, greatest first. 

(a) (b) (c) 

Fig. 16-27 Question 11. 
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~ Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Speed of a Traveling Wave 
·1 If a wave y(x, t) = (6.0 mm) sin(kx + (600 rad/s)t + ¢) travels 
along a string, how much time does any given point on the string 
take to move between displacements Y = + 2.0 mm and y = 

-2.0mm? 

A human wave. During 
sporting events within large, densely 
packed stadiums, spectators will 
send a wave (or pulse) around the 
stadium (Fig. 16-28). As the wave 
reaches a group of spectators, they 
stand with a cheer and then sit. At 
any instant, the width w of the wave 

Fig. 1 6-28 Problem 2. 

is the distance from the leading edge (people are just about to stand) 
to the trailing edge (people have just sat down). Suppose a human 
wave travels a distance of 853 seats around a stadium in 39 s, with 
spectators requiring about 1.8 s to respond to the wave's passage by 
standing and then sitting. What are (a) the wave speed v (in seats per 
second) and (b) width w (in number of seats)? 

A wave has an angular frequency of 110 radls and a wave­
length of 1.80 m. Calculate (a) the angular wave number and (b) 
the speed of the wave. 

A sand scorpion can de­
tect the motion of a nearby beetle 
(its prey) by the waves the motion 
sends along the sand surface (Fig. 
16-29). The waves are of two types: 
transverse waves traveling at 
v, = 50 mls and longitudinal waves 
traveling at VI = 150 m/s. If a sud­
den motion sends out such waves, a 
scorpion can tell the distance of the 
beetle from the difference /::"t in the 
arrival times of the waves at its leg 
nearest the beetle. If /::"t = 4.0 ms, 
what is the beetle's distance? 

A sinusoidal wave travels along Fig. 16-29 Problem 4. 
a string. The time for a particular 
point to move from maximum displacement to zero is 0.170 s. What 
are the (a) period and (b) frequency? (c) The wavelength is 1.40 m; 
what is the wave speed? 

~ A sinusoidal wave trav­
els along a string under tension. 
Figure 16-30 gives the slopes 
along the string at time t = O. The 
scale of the x axis is set by Xs = 

0.80 m. What is the amplitude of 
the wave? 

Hi---t-+-+++-+---1 .\' (m) 

Fig. 1 6-30 Problem 6. 

A transverse sinusoidal wave is moving along a string in the 
positive direction of an x axis with a speed of 80 m/s. At t = 0, the 

string particle at x = 0 has a transverse displacement of 4.0 cm 
from its equilibrium position and is not moving. The maximum 
transverse speed of the string particle at x = 0 is 16 mls. (a) What is 
the frequency of the wave? (b) What is the wavelength of the 
wave? If y(x, t) = YIIl sin(kx ± wt + ¢) is the form of the wave 
equation, what are (c) YIIl' (d) k, (e) w, (f) ¢, and (g) the correct 
choice of sign in front of w? 

~ Figure 16-31 shows the 
transverse velocity II versus time t of 
the point on a string at x = 0, as a 
wave passes through it. The scale on 
the vertical axis is set by Us = 4.0 m/s. 
The wave has the form y(x, t) = 

YIIl sin(kx - wt + ¢). What is ¢? 
(Caution: A calculator does not always 

11 (m/s) 

Fig 16 31 Problem 8. give the proper inverse trig function, .-
so check your answer by substituting it 
and an assumed value of w into y(x, t) and then plotting the function.) 

A sinusoidal wave moving along a string is shown twice in 
Fig. 16-32, as crest A travels in the positive direction of an x axis 
by distance d = 6.0 cm in 4.0 ms. The tick marks along the axis 
are separated by 10 cm; height H = 6.00 mm. If the wave equa­
tion is of the form y(x, t) = YIll sin(kx ± wt), what are (a) YIIl' (b) 
k, (c) w, and (d) the correct choice of sign in front of w? 

~ 

T 
H x 

1 
Fig. 16-32 Problem 9. 

The equation of a transverse wave traveling along a very 
long string is Y = 6.0 sin(0.0207TX + 4.0771), where x and yare ex­
pressed in centimeters and t is in seconds. Determine (a) the ampli­
tude, (b) the wavelength, (c) the frequency, (d) the speed, (e) the 
direction of propagation of the wave, and (f) the maximum trans­
verse speed of a particle in the string. (g) What is the transverse dis­
placement at x = 3.5 cm when t = 0.26 s? 

A sinusoidal transverse 
wave of wavelength 20 cm travels 
along a string in the positive direc­
tion of an x axis. The displacement Y 
of the string particle at x = 0 is given 

y(cm) 

YS~t(S) 
-)'" I 

in Fig. 16-33 as a function of time t. Fig. 16-33 Problem 11. 
The scale of the vertical axis is set 
by Ys = 4.0 cm. The wave equation is to be in the form y(x, t) = 



YIIl sin(kx ::':: wt + cp). (a) Att = 0, is a plot of Y versus x in the shape 
of a positive sine function or a negative sine function? What are (b) 
YIIl' (c) Ie, (d) w, (e) cp, (f) the sign in front of w, and (g) the speed of 
the wave? (h) What is the transverse velocity of the particle at x = 0 
when t = 5.0 s? 

The function y(x, t) = (15.0 cm) cos( 1TX - 15771), with x in 
meters and t in seconds, describes a wave on a taut string. What is 
the transverse speed for a point on the string at an instant when 
that point has the displacement Y = + 12.0 cm? 

II.W A sinusoidal wave of frequency 500 Hz has a speed of 
350 m/s. (a) How far apart are two points that differ in phase by 1T/3 
rad? (b) What is the phase difference between two displacements 
at a certain point at times 1.00 ms apart? 

Wave Speed on a Stretched String 
The equation of a transverse wave on a string is 

Y = (2.0 mm) sin[(20 m-1)x - (600 S-l)t]. 

The tension in the string is 15 N. (a) What is the wave speed? (b) 
Find the linear density of this string in grams per meter. 

SSM WWW A stretched string has a mass per unit length of 
5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string 
has an amplitude of 0.12 mm and a frequency of 100 Hz and is 
traveling in the negative direction of an x axis. If the wave equation 
is of the form y(x, t) = YIIl sin(kx ::':: wt), what are (a) Y,m (b) Ie, (c) w, 
and (d) the correct choice of sign in front of w? 

·1 The speed of a transverse wave on a string is 170 m/s when 
the string tension is 120 N. To what value must the tension be 
changed to raise the wave speed to 180 rnfs? 

The linear density of a string is 1.6 X 10-4 kg/m. A transverse 
wave on the string is described by the equation 

Y = (0.021 m) sin[(2.0 m-1)x + (30 S-l)t]. 

What are (a) the wave speed and (b) the tension in the string? 

·18 The heaviest and lightest strings on a certain violin have lin­
ear densities of 3.0 and 0.29 g/m. What is the ratio of the diameter 
of the heaviest string to that of the lightest string, assuming that the 
strings are of the same material? 

SSM What is the speed of a transverse wave in a rope of 
length 2.00 m and mass 60.0 g under a tension of 500 N? 

The tension in a wire clamped at both ends is doubled with­
out appreciably changing the wire's length between the clamps. 
What is the ratio of the new to the old wave speed for transverse 
waves traveling along this wire? 

IlW A 100 g wire is held under a tension of 250 N with one 
end at x = 0 and the other at x = 10.0 m. At time t = 0, pulse 1 is 
sent along the wire from the end at x = 10.0 m. At time t = 30.0 
ms, pulse 2 is sent along the wire from the end at x = O. At what po­
sition x do the pulses begin to meet? 

A sinusoidal wave is traveling on a string with speed 40 cm/s. 
The displacement of the particles of the string at x = 10 cm varies 
with time according to Y = (5.0 cm) sin[1.0 - (4.0 S-l)t]. The linear 
density of the string is 4.0 g/cm. What are (a) the frequency and (b) 
the wavelength of the wave? If the wave equation is of the form 
y(x, t) = YI11 sin(kx ::':: wt), what are (c) YIIl' (d) k, (e) w, and (f) the 
correct choice of sign in front of w? (g) What is the tension in the 
string? 
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SSM ILW A sinusoidal trans- y (em) 

verse wave is traveling along a string 
in the negative direction of an x axis. 
Figure 16-34 shows a plot of the dis­
placement as a function of position 
at time t = 0; the scale of the Y axis is 
set by Ys = 4.0 cm. The string tension is 
3.6 N, and its linear density is 25 g/m. 
Find the (a) amplitude, (b) wave­
length, (c) wave speed, and (d) pe­

_J 
-j 

x (em) 
riod of the wave. (e) Find the maxi­
mum transverse speed of a particle Fig. 16-34 Problem 23. 

in the string. If the wave is of the 
form y(x, t) = YIIl sin(kx ::':: wt + cp), 
what are (f) Ie, (g) w, (h) cp, and (i) 
the correct choice of sign in front 
of w? 

In Fig. 16-35a, string 1 has a 
linear density of 3.00 g/m, and string 
2 has a linear density of 5.00 g/m. 
They are under tension due to the 
hanging block of mass M = 500 g. 
Calculate the wave speed on (a) 
string 1 and (b) string 2. (Hint: When 
a string loops halfway around a pul­
ley, it pulls on the pulley with a net 
force that is twice the tension in the 
string.) Next the block is divided 
into two blocks (with Ml + Mz = M) 
and the apparatus is rearranged as 
shown in Fig. 16-35b. Find (c) M j and 
(d) Mz such that the wave speeds in 
the two strings are equal. 

(a) 

(b) 

A uniform rope of mass m Fig. 16-35 Problem 24. 
and length L hangs from a ceiling. 
(a) Show that the speed of a transverse wave on the rope is a func­
tion of Y, the distance from the lower end, and is given by v = vgy. 
(b) Show that the time a transverse wave takes to travel the length 
of the rope is given by t = 2 VUii. 

Energy and Power of a Wave Traveling 
Along a String 

A string along which waves can travel is 2.70 m long and has 
a mass of 260 g. The tension in the string is 36.0 N. What must be 
the frequency of traveling waves of amplitude 7.70 mm for the av­
erage power to be 85.0 W? 

A sinusoidal wave is sent along a string with a linear 
density of 2.0 g/m. As it travels, the kinetic energies of 
the mass elements along the string vary. Figure 16-36a gives the 

~ ~ 
{J {J 

K 
"'l 

K 
"'l 

0 0.1 0.2 

x(m) t(ms) 

(a) (b) 

Fig. 16-36 Problem 27. 
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rate dKldt at which kinetic energy passes through the string ele­
ments at a particular instant, plotted as a function of distance x 
along the string. Figure 16-36b is similar except that it gives the 
rate at which kinetic energy passes through a particular mass ele­
ment (at a particular location), plotted as a function of time t. For 
both figures, the scale on the vertical (rate) axis is set by Rs = 10 W. 
What is the amplitude of the wave? 

The Wave Equation 
Use the wave equation to find the speed of a wave given by 

y(x, t) = (3.00 mm) sin[( 4.00 m-I)x - (7.00 S-I)t]. 

Use the wave equation to find the speed of a wave given by 

y(x, t) = (2.00 mm)[(20 m-I)x - (4.0 S-I)t]O.5. 

Use the wave equation to find the speed of a wave given in 
terms of the general function hex, t): 

y(x, t) = (4.00 mm) h[(30 m-I)x + (6.0 S-I)t]. 

6-10 Interference of Waves 
SSM Two identical traveling waves, moving in the same di­

rection, are out of phase by 1T12 rad. What is the amplitude of the 
resultant wave in terms of the common amplitude Ym of the two 
combining waves? 

What phase difference between two identical traveling 
waves, moving in the same direction along a stretched string, re­
sults in the combined wave having an amplitude 1.50 times that of 
the common amplitude of the two combining waves? Express 
your answer in (a) degrees, (b) radians, and (c) wavelengths. 

r 
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Two sinusoidal waves with 
the same amplitude of 9.00 mm and 
the same wavelength travel together 
along a string that is stretched along 
an x axis. Their resultant wave is 
shown twice in Fig. 16-37, as valley 
A travels in the negative direction 
of the x axis by distance d = 56.0 cm 
in 8.0 ms. The tick marks along the 
axis are separated by 10 cm, and Fig. 16-37 Problem 33. 
height His 8.0 mm. Let the equation 
for one wave be of the form y(x, t) = YIIl sin(kx ± wt + 4>1)' where 
4>1 = 0 and you must choose the correct sign in front of w. For the 
equation for the other wave, what are (a) YIIl' (b) k, (c) w, (d) 4>2> 
and (e) the sign in front of w? 

A sinusoidal wave of angular frequency 1200 rad/s and 
amplitude 3.00 mm is sent along a cord with linear density 2.00 
g/m and tension 1200 N. (a) What is the average rate at which en­
ergy is transported by the wave to the opposite end of the cord? 
(b) If, simultaneously, an identical wave travels along an adjacent, 
identical cord, what is the total average rate at which energy is 
transported to the opposite ends of the two cords by the waves? 
If, instead, those two waves are sent along the same cord simulta­
neously, what is the total average rate at which they transport 
energy when their phase difference is (c) 0, (d) O.41Trad, and (e) 
1Trad? 

Phasors 
Two sinusoidal waves of the same frequency travel in 

the same direction along a string. If YlIll = 3.0 cm, YIIl2 = 4.0 cm, 
4>1 = 0, and ¢2 = 1T12 rad, what is the amplitude of the resultant wave? 

Four waves are to be sent along the same string, in the same 
direction: 

YI (x, t) = (4.00 mm) sin(21Tx - 4001Tt) 

Y2(X, t) = (4.00 mm) sin(21Tx - 4001Tt + 0.71T) 

Y3(X, t) = (4.00 mm) sin(21Tx - 4001Tt + 1T) 

Y4(X, t) = (4.00 mm) sin(21Tx - 4001Tt + 1.71T). 

What is the amplitude of the resultant wave? 

These two waves travel along the same string: 

Yl (x, t) = (4.60 mm) sin(21Tx - 4001Tt) 

heX, t) = (5.60 mm) sin(21Tx - 4001Tt + 0.801Trad). 

What are (a) the amplitude and (b) the phase angle (relative to 
wave 1) of the resultant wave? (c) If a third wave of amplitude 5.00 
mm is also to be sent along the string in the same direction as the 
first two waves, what should be its phase angle in order to maxi­
mize the amplitude of the new resultant wave? 

Two sinusoidal waves of the same frequency are to be sent 
in the same direction along a taut string. One wave has an ampli­
tude of 5.0 mm, the other 8.0 mm. (a) What phase difference 4>l be­
tween the two waves results in the smallest amplitude of the resul­
tant wave? (b) What is that smallest amplitude? (c) What phase 
difference 4>2 results in the largest amplitude of the resultant 
wave? (d) What is that largest amplitude? (e) What is the resultant 
amplitude if the phase angle is (4)1 - ¢2)/2? 

Two sinusoidal waves of the same period, with amplitudes of 
5.0 and 7.0 mm, travel in the same direction along a stretched 
string; they produce a resultant wave with an amplitude of 9.0 mm. 
The phase constant of the 5.0 mm wave is O. What is the phase con­
stant of the 7.0 mm wave? 

Standing Waves and Resonance 
Two sinusoidal waves with identical wavelengths and 

amplitudes travel in opposite directions along a string with a speed 
of 10 cm/s. If the time interval between instants when the string is 
flat is 0.50 s, what is the wavelength of the waves? 

SSM A string fixed at both ends is 8.40 m long and has a 
mass of 0.120 kg. It is subjected to a tension of 96.0 N and set oscil­
lating. (a) What is the speed of the waves on the string? (b) What is 
the longest possible wavelength for a standing wave? (c) Give the 
frequency of that wave. 

A string under tension Ti oscillates in the third harmonic at fre­
quency /3, and the waves on the string have wavelength A3• If the ten­
sion is increased to T! = 47) and the string is again made to oscillate in 
the third harmonic, what then are (a) the frequency of oscillation in 
terms of /3 and (b) the wavelength of the waves in terms of A3? 

SSM WWW What are (a) the lowest frequency, (b) the sec­
ond lowest frequency, and (c) the third lowest frequency for stand­
ing waves on a wire that is 10.0 m long, has a mass of 100 g, and is 
stretched under a tension of 250 N? 

A 125 cm length of string has mass 2.00 g and tension 7.00 N. 
(a) What is the wave speed for this string? (b) What is the lowest 
resonant frequency of this string? 

SSM IlW A string that is stretched between fixed supports 
separated by 75.0 cm has resonant frequencies of 420 and 315 Hz, 
with no intermediate resonant frequencies. What are (a) the lowest 
resonant frequency and (b) the wave speed? 



-46 String A is stretched between two clamps separated by dis­
tance L. String B, with the same linear density and under the same 
tension as string A, is stretched between two clamps separated by 
distance 4L. Consider the first eight harmonics of string B. For 
which of these eight harmonics of B (if any) does the frequency 
match the frequency of (a) A's first harmonic, (b) A's second har­
monic, and (c) A's third harmonic? 

One of the harmonic frequencies for a particular string under 
tension is 325 Hz. The next higher harmonic frequency is 390 Hz. 
What harmonic frequency is next higher after the harmonic fre­
quency 195 Hz? 

If a transmission line in a cold climate collects ice, the 
increased diameter tends to cause vortex formation in a passing 
wind. The air pressure variations in the vortexes tend to cause the 
line to oscillate (gallop), especially if the frequency of the varia­
tions matches a resonant frequency of the line. In long lines, the 
resonant frequencies are so close that almost any wind speed can 
set up a resonant mode vigorous enough to pull down support tow­
ers or cause the line to short out with an adjacent line. If a transmis­
sion line has a length of 347 m, a linear density of 3.35 kglm, and a 
tension of 65.2 MN, what are (a) the frequency of the fundamental 
mode and (b) the frequency difference between successive modes? 

IlW A nylon guitar string has a 
linear density of 7.20 g/m and is under 
a tension of 150 N. The fixed supports 
are distance D = 90.0 cm apart. The 
string is oscillating in the standing Fig. 16-38 Problem 49. 
wave pattern shown in Fig. 16-38. Calculate the (a) speed, (b) wave­
length, and (c) frequency of the traveling waves whose superposition 
gives this standing wave. 

For a certain transverse standing wave on a long string, an 
antinode is at x = 0 and an adjacent node is at x = 0.10 m. The 
displacement yet) of the string parti-
cle at x = 0 is shown in Fig. 16-39, 
where the scale of the y axis is set by 
Ys = 4.0 cm. When t = 0.50 s, what is S 
the displacement of the string particle ~ 

at (a) x = 0.20 m and (b) x = 0.30 m? "" 
What is the transverse velocity of the 
string particle at x = 0.20 m at ( c) t = 

Ys 

0.50 s and (d) t = 1.0 s? (e) Sketch Fig. 1 6-39 Problem 50. 
the standing wave at t = 0.50 s for 
the range x = 0 to x = 0.40 m. 

SSM www Two waves are generated on a string of length 3.0 
m to produce a three-loop standing wave with an amplitude of 1.0 cm. 
The wave speed is 100 m/s. Let the equation for one of the waves be of 
the form y(x, t) = YIIl sin(kx + wt). In the equation for the other wave, 
what are (a) YIII' (b) k, (c) w, and (d) the sign in front of w? 

A rope, under a tension of 200 N and fixed at both ends, os­
cillates in a second-harmonic standing wave pattern. The displace­
ment of the rope is given by 

Y = (0.10 m)(sin m:12) sin 121Tt, 

where x = 0 at one end of the rope, x is in meters, and t is in sec­
onds. What are (a) the length of the rope, (b) the speed of the 
waves on the rope, and (c) the mass of the rope? (d) If the rope os­
cillates in a third-harmonic standing wave pattern, what will be the 
period of oscillation? 
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A string oscillates according to the equation 

Y' = (0.50 cm) sin[ ( ; cm-1)x J cOS[(401TS-1)t]. 

What are the (a) amplitude and (b) speed of the two waves 
(identical except for direction of travel) whose superposition 
gives this oscillation? (c) What is the distance between nodes? 
(d) What is the transverse speed of a particle of the string at the 
position x = 1.5 cm when t = ~ s? 

Two sinusoidal waves with the same amplitude and wave­
length travel through each other along a string that is stretched along 
an x axis. Their resultant wave is shown twice in Fig. 16-40, as the anti­
node A travels from an ex-
treme upward displacement to 
an extreme downward dis­
placement in 6.0 ms. The tick 
marks along the axis are sepa­
rated by 10 cm; height H is 
1.80 cm. Let the equation for 
one of the two waves be of the 
form y(x, t) = YIIl sin(kx + wt). 
In the equation for the other 
wave, what are (a) YIIl' (b) k, (c) 
w, and (d) the sign in front of w? 

T 
H 

1 
Fig. 16-40 Problem 54. 

The following two waves are sent in opposite directions on a 
horizontal string so as to create a standing wave in a vertical plane: 

Yl(X, t) = (6.00 mm) sin(4.00m: - 4001Tf) 

Yz(x, t) = (6.00 mm) sin(4.00m: + 4001Tf), 

with x in meters and t in seconds. An antinode is located at point A. 
In the time interval that point takes to move from maximum up­
ward displacement to maximum downward displacement, how far 
does each wave move along the string? 

A standing wave pattern on a string is described by 

y(x, t) = 0.040 (sin 51Tx)(cos 401Tt), 

where x and yare in meters and t is in seconds. For x 2: 0, what is 
the location of the node with the (a) smallest, (b) second small­
est, and ( c) third smallest value of x? (d) What is the period of the 
oscillatory motion of any (nonnode) point? What are the (e) 
speed and (f) amplitude of the two traveling waves that interfere 
to produce this wave? For t 2: 0, what are the (g) first, (h) second, 
and (i) third time that all points on the string have zero trans­
verse velocity? 

A generator at one end of a very long string creates a wave 
given by 

1T 
Y = (6.0 cm) cos 2 [(2.00 m-1)x + (8.00 S-l)t], 

and a generator at the other end creates the wave 

Y = (6.0 cm) cos ; [(2.00 m-1)x - (8.00 S-l)t]. 

Calculate the (a) frequency, (b) wavelength, and (c) speed of each 
wave. For x 2: 0, what is the location of the node having the (d) 
smallest, (e) second smallest, and (f) third smallest value of x? For 
x 2: 0, what is the location of the antinode having the (g) smallest, 
(h) second smallest, and (i) third smallest value of x? 
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In Fig. 16-41, a string, tied to a sinusoidal oscillator at P 
and running over a support at Q, is stretched by a block of mass m. 
Separation L = 1.20 m, linear density f.L = 1.6 glm, and the oscillator 
frequency f = 120 Hz. The amplitude of the motion at P is small 
enough for that point to be considered a node. A node also exists at 
Q. (a) What mass m allows the oscillator to set up the fourth har­
monic on the string? (b) What standing wave mode, if any, can be 
set up if m = 1.00 kg? 

Fig. 16-41 Problems 58 and 60. 

In Fig. 16-42, an aluminum wire, of length Ll = 60.0 cm, 
cross-sectional area 1.00 X 10-2 cm2, and density 2.60 g/cm3, is 
joined to a steel wire, of density 7.80 g/cm3 and the same cross-sec­
tional area. The compound wire, loaded with a block of mass m = 

10.0 kg, is arranged so that the distance L2 from the joint to the 
supporting pulley is 86.6 cm. Transverse waves are set up on the 
wire by an external source of variable frequency; a node is located 
at the pUlley. (a) Find the lowest frequency that generates a stand­
ing wave having the joint as one of the nodes. (b) How many nodes 
are observed at this frequency? 

Fig. 16-42 Problem 59. 

In Fig. 16-41, a string, tied to a sinusoidal oscillator at P 
and running over a support at Q, is stretched by a block of mass m. 
The separation L between P and Q is 1.20 m, and the frequency f 
of the oscillator is fixed at 120 Hz. The amplitude of the motion at 
P is small enough for that point to be considered a node. A node 
also exists at Q. A standing wave appears when the mass of the 
hanging block is 286.1 g or 447.0 g, but not for any intermediate 
mass. What is the linear density of the string? 

Additional Problems 
In an experiment on standing waves, a string 90 cm long is at­

tached to the prong of an electrically driven tuning fork that oscil­
lates perpendicular to the length of the string at a frequency of 60 
Hz. The mass of the string is 0.044 kg. What tension must the string 
be under (weights are attached to the other end) if it is to oscillate 
in four loops? 

A sinusoidal transverse wave traveling in the positive 
direction of an x axis has an amplitude of 2.0 cm, a wavelength of 
10 cm, and a frequency of 400 Hz. If the wave equation is of the 
form y(x, t) = Ym sin(kx ± wt), what are (a) Ym' (b) k, (c) w, and (d) 
the correct choice of sign in front of w? What are (e) the maximum 
transverse speed of a point on the cord and (f) the speed of the 
wave? 

A wave has a speed of 240 mls and a wavelength of 3.2 ill. What 
are the (a) frequency and (b) period of the wave? 

The equation of a transverse wave traveling along a string is 

Y = 0.15 sin(0.79x - 13t), 

in which x and yare in meters and t is in seconds. (a) What is the dis­
placement Y at x = 2.3 m, t = 0.16 s? A second wave is to be added 
to the first wave to produce standing waves on the string. If the wave 
equation for the second wave is of the form y(x, t) = Yill sin(kx ± 
wt), what are (b) YIIl> (c) k, (d) w, and (e) the correct choice of sign in 
front of w for this second wave? (f) What is the displacement of the 
resultant standing wave at x = 2.3 m, t = 0.16 s? 

The equation of a transverse wave traveling along a string is 

Y = (2.0 mm) sin[(20 m-l)x - (600 S-l)t]. 

Find the (a) amplitude, (b) frequency, (c) velocity (including 
sign), and (d) wavelength of the wave. (e) Find the maximum 
transverse speed of a particle in the string. 

Figure 16-43 shows the dis­
placement Y versus time t of the 
point on a string at x = 0, as a 
wave passes through that point. 
The scale of the Y axis is set by 
Ys = 6.0 mrn. The wave is given 
by y(x, t) = YIIl sin(la: - wt + ¢). 
What is ¢? (Caution: A calculator 
does not always give the proper 

y(mm) 

~, 
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Fig. 16-43 Problem 66. 

inverse trig function, so check your answer by substituting it and an 
assumed value of winto y(x, t) and then plotting the function.) 

Two sinusoidal waves, identical except for phase, travel in 
the same direction along a string, producing the net wave 
y' (x, t) = (3.0 mm) sin(20x - 4.0t + 0.820 rad), with x in meters 
and t in seconds. What are (a) the wavelength A of the two waves, 
(b) the phase difference between them, and (c) their amplitude Ym? 

A single pulse, given by h(x - 5.0t), is shown in Fig. 16-44 for 
t = O. The scale of the vertical axis 
is set by hs = 2. Here x is in 
centimeters and t is in seconds. " 

~ 
What are the (a) speed and (b) di-

x 
rection of travel of the pulse? (c) 
Plot h(x - 5t) as a function of x for 
t = 2 s. (d) Plot h(x - 5t) as a func­
tion of t for x = 10 cm. 

Fig. 1 6-44 Problem 68. 

SSM Three sinusoidal waves of the same frequency travel 
along a string in the positive direction of an x axis. Their 
amplitudes are Yl> y1/2, and y1/3, and their phase constants 
are 0, 7T/2, and 7T, respectively. What are the (a) amplitude and 
(b) phase constant of the resultant wave? (c) Plot the wave form of 
the resultant wave at t = 0, and discuss its behavior as t increases. 

Figure 16-45 shows 
transverse acceleration ay versus 
time t of the point on a string at 
x = 0, as a wave in the form of 
y(x, t) = Ym sin(kx - wt + ¢) 
passes through that point. The 
scale of the vertical axis is set 
by as = 400 mls2• What is ¢? 
(Caution: A calculator does not Fig. 1 6-45 Problem 70. 



always give the proper inverse trig function, so check your answer by 
substituting it and an assumed value of w into y(x, t) and then plotting 
the function.) 

A transverse sinusoidal wave is generated at one end of a long, 
horizontal string by a bar that moves up and down through a distance 
of 1.00 cm. The motion is continuous and is repeated regularly 120 
times per second. The string has linear density 120 glm and is kept un­
der a tension of 90.0 N. Find the maximum value of (a) the transverse 
speed It and (b) the transverse component of the tension 7. 

(c) Show that the two maximum values calculated above 
occur at the same phase values for the wave. What is the transverse 
displacement Y of the string at these phases? (d) What is the maxi­
mum rate of energy transfer along the string? (e) What is the trans­
verse displacement Y when this maximum transfer occurs? (f) 
What is the minimum rate of energy transfer along the string? (g) 
What is the transverse displacement Y when this minimum transfer 
occurs? 

Two sinusoidal 120 Hz 
waves, of the same frequency and 
amplitude, are to be sent in the 
positive direction of an x axis 
that is directed along a cord un­
der tension. The waves can be 

s 

)" s 
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sent in phase, or they can be Shift distance (cm) 

phase-shifted. Figure 16-46 shows Fig. 16-46 Problem 72. 
the amplitude y' of the resulting 
wave versus the distance of the shift (how far one wave is shifted 
from the other wave). The scale of the vertical axis is set by 
y~ = 6.0 mm. If the equations for the two waves are of the form 
y(x, t) = Ym sin(kx ± wt), what are (a) YII/' (b) k, (c) w, and (d) the 
correct choice of sign in front of w? 

At time t = 0 and at position x = 0 m along a string, a travel­
ing sinusoidal wave with an angular frequency of 440 rad/s has dis­
placement Y = +4.5 mm and transverse velocity u = -0.75 m/s. If 
the wave has the general form y(x, t) = YII/ sin(kx - wt + ¢), what 
is phase constant ¢? 

Energy is transmitted at rate PI by a wave of frequency fl on a 
string under tension 71' What is the new energy transmission rate P2 

in terms of PI (a) if the tension is increased to 72 = 471 and (b) if, in­
stead, the frequency is decreased to 12 = fIl2? 

(a) What is the fastest transverse wave that can be sent along 
a steel wire? For safety reasons, the maximum tensile stress to 
which steel wires should be subjected is 7.00 X 108 N/m2• The den­
sity of steel is 7800 kg/m3. (b) Does your answer depend on the di­
ameter of the wire? 

A standing wave results from the sum of two transverse trav­
eling waves given by 

YI = 0.050 cos( 1TX 41Tt) 

and Y2 = 0.050 cos( 1TX + 4171), 

where x, YI> and Y2 are in meters and t is in seconds. (a) What is the 
smallest positive value of x that corresponds to a node? Beginning 
at t = 0, what is the value of the (b) first, (c) second, and (d) third 
time the particle at x = 0 has zero velocity? 

SSM The type of rubber band used inside some baseballs and 
golf balls obeys Hooke's law over a wide range of elongation of the 
band. A segment of this material has an unstretched length e and a 
mass m. When a force Fis applied, the band stretches an additional 
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length ile. (a) What is the speed (in terms of m, ile, and the spring 
constant k) of transverse waves on this stretched rubber band? (b) 
Using your answer to (a), show that the time required for a trans­
verse pulse to travel the length of the rubber band is proportional 
to l/ill if M <{ e and is constant if M ~ e. 

The speed of electromagnetic waves (which include visible 
light, radio, and x rays) in vacuum is 3.0 X 108 m/s. (a) Wavelengths 
of visible light waves range from about 400 nm in the violet to 
about 700 nm in the red. What is the range of frequencies of these 
waves? (b) The range of frequencies for shortwave radio (for ex­
ample, FM radio and VHF television) is 1.5 to 300 MHz. What is 
the corresponding wavelength range? (c) X-ray wavelengths range 
from about 5.0 nm to about 1.0 X 10-2 nm. What is the frequency 
range for x rays? 

SSM ALSO m wire has a mass of 8.70 g and is under a ten­
sion of 120 N. The wire is held rigidly at both ends and set into 
oscillation. (a) What is the speed of waves on the wire? What is the 
wavelength of the waves that produce (b) one-loop and (c) two­
loop standing waves? What is the frequency of the waves that pro­
duce (d) one-loop and (e) two-loop standing waves? 

When played in a certain manner, the lowest resonant fre­
quency of a certain violin string is concert A (440 Hz). What is the 
frequency of the (a) second and (b) third harmonic of the string? 

A sinusoidal transverse wave traveling in the negative 
direction of an x axis has an amplitude of 1.00 cm, a frequency of 
550 Hz, and a speed of 330 mls. If the wave equation is of the form 
y(x, t) = Ym sin(kx ± wt), what are (a) YII/' (b) w, (c) k, and (d) the 
correct choice of sign in front of w? 

Two sinusoidal waves of the same wavelength travel in the same 
direction along a stretched string. For wave 1, YII/ = 3.0 mm and ¢ = 

0; for wave 2, Ym = 5.0 mm and ¢ = 70°. What are the (a) amplitude 
and (b) phase constant of the resultant wave? 

SSM A sinusoidal transverse wave of amplitude Ym and 
wavelength ;\ travels on a stretched cord. (a) Find the ratio of 
the maximum particle speed (the speed with which a single particle 
in the cord moves transverse to the wave) to the wave speed. (b) 
Does this ratio depend on the material of which the cord is made? 

Oscillation of a 600 Hz tuning fork sets up standing waves in a 
string clamped at both ends. The wave speed for the string is 400 
mls. The standing wave has four loops and an amplitude of 2.0 mm. 
(a) What is the length of the string? (b) Write an equation for the 
displacement of the string as a function of position and time. 

A 120 cm length of string is stretched between fixed supports. 
What are the (a) longest, (b) second longest, and (c) third longest 
wavelength for waves traveling on the string if standing waves are to 
be set up? (d) Sketch those standing waves. 

(a) Write an equation describing a sinusoidal transverse wave 
traveling on a cord in the positive direction of a y axis with an an­
gular wave number of 60 cm- I , a period of 0.20 s, and an amplitude 
of 3.0 mm. Take the transverse direction to be the z direction. (b) 
What is the maximum transverse speed of a point on the cord? 

A wave on a string is described by 

y(x, t) = 15.0 sine 1Tx/8 - 4171), 

where x and yare in centimeters and t is in seconds. (a) What is 
the transverse speed for a point on the string at x = 6.00 cm 
when t = 0.250 s? (b) What is the maximum transverse speed of 
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any point on the string? (c) What is the magnitude of the trans­
verse acceleration for a point on the string at x = 6.00 cm when t = 
0.250 s? (d) What is the magnitude of the maximum transverse ac­
celeration for any point on the string? 

Body armor. When a high-speed projectile such as a 
bullet or bomb fragment strikes modern body armor, the fabric of 
the armor stops the projectile and prevents penetration by quickly 
spreading the projectile's energy over a large area. This spreading 
is done by longitudinal and transverse pulses that move radially 
from the impact point, where the projectile pushes a cone-shaped 
dent into the fabric. The longitudinal pulse, racing along the fibers 
of the fabric at speed VI ahead of the denting, causes the fibers to 
thin and stretch, with material flowing radially inward into the 
dent. One such radial fiber is shown in Fig. 16-47a. Part of the pro­
jectile's energy goes into this motion and stretching. The transverse 
pulse, moving at a slower speed VI' is due to the denting. As the 
projectile increases the dent's depth, the dent increases in radius, 
causing the material in the fibers to move in the same direction as the 
projectile (perpendicular to the transverse pulse's direction of 
travel). The rest of the projectile's energy goes into this motion. All 
the energy that does not eventually go into permanently deforming 
the fibers ends up as thermal energy. 

Figure 16-47b is a graph of speed V versus time t for a bullet of 
mass 10.2 g fired from a .38 Special revolver directly into body ar­
mor. The scales of the vertical and horizontal axes are set by Vs = 

300 mls and ts = 40.0 f.LS. Take VI = 2000 mis, and assume that the 
half-angle (J of the conical dent is 60°. At the end of the collision, 
what are the radii of (a) the thinned region and (b) the dent (as­
suming that the person wearing the armor remains stationary)? 

Radius reached 
by longitudinal 

pulse 7 -
(a) 

t (j.1s) 

(b) 

Fig. 16-47 Problem 88. 

Two waves are described by 

Yl = 0.30 sin[ 7T(5x 200)t] 

and Y2 = 0.30 sin[ 7T(5x - 200t) + 1T/3], 

where Yb Yz, and x are in meters and t is in seconds. When these two 
waves are combined, a traveling wave is produced. What are the 
(a) amplitude, (b) wave speed, and (c) wavelength of that traveling 
wave? 

A certain transverse sinu­
soidal wave of wavelength 20 cm 
is moving in the positive direc­
tion of an x axis. The transverse 
velocity of the particle at x = 0 
as a function of time is shown in Fig. 1 6-48 Problem 90. 
Fig. 16-48, where the scale of the 
vertical axis is set by Us = 5.0 cm/s. What are the (a) wave speed, 
(b) amplitude, and (c) frequency? (d) Sketch the wave between 
x = 0 and x = 20 cm at t = 2.0 s. 

SSM In a demonstration, a 1.2 kg horizontal rope is fixed in 
place at its two ends (x = 0 and x = 2.0 m) and made to oscil­
late up and down in the fundamental mode, at frequency 5.0 Hz. 
At t = 0, the point at x = 1.0 m has zero displacement and is 
moving upward in the positive direction of a Y axis with a trans­
verse velocity of 5.0 m/s. What are (a) the amplitude of the mo­
tion of that point and (b) the tension in the rope? (c) Write the 
standing wave equation for the fundamental mode. 

Two waves, 

Yl = (2.50 mm) sin[(25.1 rad/m)x - (440 rad/s)t] 

and Y2 = (1.50 mm) sin[(25.1 rad/m)x + (440 rad/s)t], 

travel along a stretched string. (a) Plot the resultant wave as 
a function of t for x = 0, A/8, Al4, 3A18, and A12, where A is the 
wavelength. The graphs should extend from t = 0 to a little over 
one period. (b) The resultant wave is the superposition of a stand­
ing wave and a traveling wave. In which direction does the travel­
ing wave move? (c) How can you change the original waves so 
the resultant wave is the superposition of standing and traveling 
waves with the same amplitudes as before but with the traveling 
wave moving in the opposite direction? Next, use your graphs to 
find the place at which the oscillation amplitUde is (d) maximum 
and (e) minimum. (f) How is the maximum amplitude related to 
the amplitudes of the original two waves? (g) How is the mini­
mum amplitude related to the amplitudes of the original two 
waves? 

A traveling wave on a string is described by 

Y = 2.0 sin[ 21T( O.~O + ~~) J 
where x and yare in centimeters and t is in seconds. (a) For t = 0, plot Y 
as a function ofx for 0::; x::; 160 cm. (b) Repeat (a) for t = 0.05 sand 
t = 0.10 s. From your graphs, determine (c) the wave speed and (d) the 
direction in which the wave is traveling. 



-II 

The physics of sound waves is the basis of countless studies in the research 
journals of many fields. Here are just a few examples. Some physiologists are 
concerned with how speech is produced, how speech impairment might be 
corrected, how hearing loss can be alleviated, and even how snoring is produced. 
Some acoustic engineers are concerned with improving the acoustics of cathedrals 
and concert halls, with reducing noise near freeways and road construction, and with 
reproducing music by speaker systems. Some aviation engineers are concerned with 
the shock waves produced by supersonic aircraft and the aircraft noise produced in 
communities near an airport. Some medical researchers are concerned with how 
noises produced by the heart and lungs can signal a medical problem in a patient. 
Some paleontologists are concerned with how a dinosaur's fossil might reveal the di­
nosaur's vocalizations. Some military engineers are concerned with how the sounds 
of sniper fire might allow a soldier to pinpoint the sniper's location, and, on the gen­
tler side, some biologists are concerned with how a cat purrs. 

To begin our discussion of the physics of sound, we must first answer the 
question "What are sound waves?" 

Sound Waves 
As we saw in Chapter 16, mechanical waves are waves that require a material 
medium to exist. There are two types of mechanical waves: Transverse waves 
involve oscillations perpendicular to the direction in which the wave travels; 
longitudinal waves involve oscillations parallel to the direction of wave travel. 

In this book, a sound wave is defined roughly as any longitudinal wave. 
Seismic prospecting teams use such waves to probe Earth's crust for oil. Ships 
carry sound-ranging gear (sonar) to detect underwater obstacles. Submarines 
use sound waves to stalk other submarines, largely by listening for the charac­
teristic noises produced by the propulsion system. Figure 17-1 suggests how 

Fig. 17-1 A loggerhead turtle is 
being checked with ultrasound (which 
has a frequency above your hearing 
range); an image of its interior is being 
produced on a monitor off to the right. 
(Mauro Fermariello/SPLIPhoto 
Researchers) 
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Fig. 17-2 A sound wave travels from a 
point source S through a three-dimensional 
medium. The wavefronts form spheres cen­
tered on S; the rays are radial to S. The 
short, double-headed arrows indicate that 
elements of the medium oscillate parallel 
to the rays. 

sound waves can be used to explore the soft tissues of an animal or human body. 
In this chapter we shall focus on sound waves that travel through the air and that 
are audible to people. 

Figure 17-2 illustrates several ideas that we shall use in our discussions. 
Point S represents a tiny sound source, called a point source, that emits sound 
waves in all directions. The wave/rants and rays indicate the direction of travel 
and the spread of the sound waves. Wavefronts are surfaces over which the 
oscillations due to the sound wave have the same value; such surfaces are repre­
sented by whole or partial circles in a two-dimensional drawing for a point 
source. Rays are directed lines perpendicular to the wavefronts that indicate the 
direction of travel of the wavefronts. The short double arrows superimposed on 
the rays of Fig. 17-2 indicate that the longitudinal oscillations of the air are 
parallel to the rays. 

Near a point source like that of Fig. 17-2, the wavefronts are spherical and 
spread out in three dimensions, and there the waves are said to be spherical. As 
the wavefronts move outward and their radii become larger, their curvature 
decreases. Far from the source, we approximate the wavefronts as planes (or lines 
on two-dimensional drawings), and the waves are said to be planar. 

1 The Speed of Sound 
The speed of any mechanical wave, transverse or longitudinal, depends on both an 
inertial property of the medium (to store kinetic energy) and an elastic property of 
the medium (to store potential energy). Thus, we can generalize Eq. 16-26, which 
gives the speed of a transverse wave along a stretched string, by writing 

v = r:: = elastic property (17 -1) 
\j ----; inertial property' 

where (for transverse waves) T is the tension in the string and fL is the string's 
linear density. If the medium is air and the wave is longitudinal, we can guess 
that the inertial property, corresponding to fL, is the volume density p of air. 
What shall we put for the elastic property? 

In a stretched string, potential energy is associated with the periodic stretching 
of the string elements as the wave passes through them. As a sound wave passes 
through air, potential energy is associated with periodic compressions and expan­
sions of small volume elements of the air. The property that determines the extent 
to which an element of a medium changes in volume when the pressure (force per 
unit area) on it changes is the bulk modulus B, defined (from Eq.12-25) as 

!J.p 
B = - !J.V/v (definition of bulk modulus). (17-2) 

Here !J. V/V is the fractional change in volume produced by a change in pressure 
!J.p. As explained in Section 14-3, the SI unit for pressure is the newton per square 
meter, which is given a special name, the pascal (Pa). From Eq. 17-2 we see that 
the unit for B is also the pascal. The signs of !J.p and !J. V are always 
opposite: When we increase the pressure on an element (!J.p is positive), its vol­
ume decreases (!J.Vis negative). We include a minus sign in Eq.17-2 so that B is 
always a positive quantity. Now substituting B for T and p for fL in Eq. 17-1 yields 

v=F; (speed of sound) (17-3) 

as the speed of sound in a medium with bulk modulus B and density p. Table 17-1 
lists the speed of sound in various media. 
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The density of water is almost 1000 times greater than the density of air. 
If this were the only relevant factor, we would expect from Eq. 17-3 that the 
speed of sound in water would be considerably less than the speed of sound in air. 
However, Table 17-1 shows us that the reverse is true. We conclude (again from Eq. 
17-3) that the bulk modulus of water must be more than 1000 times greater than that 
of air. This is indeed the case. Water is much more incompressible than air, which 
(see Eq.17-2) is another way of saying that its bulk modulus is much greater. 

We now derive Eq. 17-3 by direct application of Newton's laws. Let a single 
pulse in which air is compressed travel (from right to left) with speed v through 
the air in a long tube, like that in Fig. 16-2. Let us run along with the pulse at 
that speed, so that the pulse appears to stand still in our reference frame. Figure 
17-3a shows the situation as it is viewed from that frame. The pulse is standing 
still, and air is moving at speed v through it from left to right. 

Let the pressure of the undisturbed air be p and the pressure inside the 
pulse be p + !:lp, where!:lp is positive due to the compression. Consider an element 
of air of thickness !:lx and face area A, moving toward the pulse at speed v. As this 
element enters the pulse, the leading face of the element encounters a region of 
higher pressure, which slows the element to speed v + !:lv, in which !:lv is negative. 
This slowing is complete when the rear face of the element reaches the pulse, which 
requires time interval 

!:It = !:lx (17-4) 
v 

Let us apply Newton's second law to the element. During !:It, the average 
force on the element's trailing face is pA toward the right, and the average force 
on the leading face is (p + !:lp)A toward the left (Fig. 17-3b). Therefore, the 
average net force on the element during !:It is 

F = pA - (p + !:lp)A 

= -!:lpA (net force). (17-5) 

The minus sign indicates that the net force on the air element is directed to the 
left in Fig. 17-3b. The volume of the element is A !:lx, so with the aid of Eq. 17-4, 
we can write its mass as 

!:lm = p!:lV = pA!:lx = pAv!:lt 

The average acceleration of the element during !:It is 

Fig.17-3 Acompression 
pulse is sent from right to left 
down a long air-filled tube. 
The reference frame of the 
figure is chosen so that the 
pulse is at rest and the air 
moves from left to right. (a) 
An element of air of width Llx 
moves toward the pulse with 
speed v. (b) The leading face 
of the element enters the 
pulse. The forces acting on the 
leading and trailing faces (due 
to air pressure) are shown. 

!:lv 
a =--

!:It 
( acceleration). 

(mass). (17-6) 

(17-7) 

(a) 

The Speed of Sound" 

Medium Speed (m/s) 

Gases 

Air (O°C) 331 

Air (20°C) 343 

Helium 965 

Hydrogen 1284 

Liquids 

Water (O°C) 1402 

Water (20°C) 1482 

Seawaterb 1522 

Solids 

Aluminum 6420 

Steel 5941 

Granite 6000 

a At O°C and 1 atm pressure, except 
where noted. 

bAt 20°C and 3.5 % salinity. 
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The quantity V in Eq. 17-15 is the volume of the element, given by 

V= A Lix. (17-16) 

The quantity LiV in Eq. 17-15 is the change in volume that occurs when the 
element is displaced. This volume change comes about because the displace­
ments of the two faces of the element are not quite the same, differing by some 
amount Lis. Thus, we can write the change in volume as 

LiV = A Lis. (17-17) 

Substituting Eqs.17-16 and 17-17 into Eq.17-15 and passing to the differen­
tiallimit yield 

Lis as 
Lip = -B Lix = -Ba;' (17-18) 

The symbols a indicate that the derivative in Eq. 17-18 is a partial derivative, 
which tells us how S changes with x when the time t is fixed. From Eq. 17-12 we 
then have, treating t as a constant, 

~ = ~ [smcos(kx - wt)] = -ksmsin(kx - wt). ax ax (17-19) 

Substituting this quantity for the partial derivative in Eq. 17-18 yields 

Lip = Bksm sin(kx - wt). 

This tells us that the pressure varies as a sinusoidal function of time and that the 
amplitude of the variation is equal to the terms in front of the sine function. 
Setting Lipm = Bksnl> this yields Eq.17-13, which we set out to prove. 

Using Eq.17-3, we can now write 

LiPm = (Bk)sm = (v2pk)sm· 

Equation 17-14, which we also wanted to prove, follows at once if we substitute 
wlv for k from Eq. 16-12. 

Pressure amplitude, displacement amplitude 

The maximum pressure amplitude LiPIII that the human ear 
can tolerate in loud sounds is about 28 Pa (which is very 
much less than the normal air pressure of about 
105 Pa). What is the displacement amplitude Sm for such a 
sound in air of density p = 1.21 kg/m3, at a frequency of 1000 
Hz and a speed of 343 m/s? 

Substituting known data then gives us 

28Pa 
S = ---------:-------

m (343 m/s)(1.21 kg/m3)(21T)(1000 Hz) 

= 1.1 X 10-5 m = 11 ;.tm. (Answer) 

That is only about one-seventh the thickness of a book page. 
Obviously, the displacement amplitude of even the loudest 
sound that the ear can tolerate is very small. Temporary ex­
posure to such loud sound produces temporary hearing loss, 
probably due to a decrease in blood supply to the inner ear. 
Prolonged exposure produces permanent damage. 

The displacement amplitude Sm of a sound wave is related 
to the pressure amplitude LiPm of the wave according to 
Eq.17-14. 

Calculations: Solving that equation for Sm yields 

tlpm LiPm 
Sill = vpw = Vp(21Tf)' 

The pressure amplitude LiPm for the faintest detectable 
sound at 1000 Hz is 2.8 X 10-5 Pa. Proceeding as above 
leads to Sill = 1.1 X 10-11 m or 11 pm, which is about one­
tenth the radius of a typical atom. The ear is indeed a sensi­
tive detector of sound waves. 

~ros Additional examples, video, and practice available at WileyPLUS 



1 Interference 
Like transverse waves, sound waves can undergo interference. Let us consider, 
in particular, the interference between two identical sound waves traveling in 
the same direction. Figure 17-7 a shows how we can set up such a situation: Two 
point sources Sl and S2 emit sound waves that are in phase and of identical 
wavelength ..\. Thus, the sources themselves are said to be in phase; that is, as the 
waves emerge from the sources, their displacements are always identical. We are 
interested in the waves that then travel through point P in Fig. 17-7 a. We assume 
that the distance to P is much greater than the distance between the sources so 
that we can approximate the waves as traveling in the same direction at P. 

If the waves traveled along paths with identical lengths to reach point P, 
they would be in phase there. As with transverse waves, this means that they 
would undergo fully constructive interference there. However, in Fig. 17-7 a, path 
L2 traveled by the wave from S2 is longer than path Ll traveled by the wave from 
Sl' The difference in path lengths means that the waves may not be in 
phase at point P. In other words, their phase difference cp at P depends on their 
path length difference!::.L = IL2 - Lll. 

To relate phase difference cp to path length difference !::.L, we recall (from 
Section 16-4) that a phase difference of 21rrad corresponds to one wavelength. Thus, 
we can write the proportion 

cp !::.L 
(17-20) 

21T ..\ ' 
from which 

!::.L 
cp = T 21T. (17-21) 

Fully constructive interference occurs when cp is zero, 21T, or any integer multiple 
of21T. We can write this condition as 

for m = 0,1,2, ... (fully constructive interference). (17-22) 

From Eq.17-21, this occurs when the ratio !::.LI..\ is 

!::.L 
-,.\- = 0,1,2, ... (fully constructive interference). (17-23) 

For example, if the path length difference!::'L = IL2 - Ljl in Fig. 17-7a is equal to 2,,\, 
then !::.LI"\ = 2 and the waves undergo fully constructive interference at point P (Fig. 
17-7b). The interference is fully constructive because the wave from S2 is phase­
shifted relative to the wave from S 1 by 2..\, putting the two waves exactly in phase at P. 

Fully destructive interference occurs when cp is an odd multiple of 1T: 

cp = (2m + 1)1T, form = 0,1,2, ... (fully destructive interference). (17-24) 

From Eq.17-21, this occurs when the ratio !::.LI..\ is 

!::.L T = 0.5,1.5,2.5, ... (fully destructive interference). (17-25) 

For example, if the path length difference !::.L = IL2 - Lli in Fig. 17-7a is equal to 
2.5..\, then !::.LI..\ = 2.5 and the waves undergo fully destructive interference at 
point P (Fig. 17-7c). The interference is fully destructive because the wave from 
S2 is phase-shifted relative to the wave from Sl by 2.5 wavelengths, which puts the 
two waves exactly out a/phase at P. 

Of course, two waves could produce intermediate interference as, say, when 
!::.LI..\ = 1.2. This would be closer to fully constructive interference (!::.LI..\ = 1.0) 
than to fully destructive interference (!::.LI..\ = 1.5). 

S1 
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The interference at P 
depends on the difference 
in the path lengths to reach P. 

(a) 

0vp 

If the difference is equal to, 
say, 2.0A, then the waves 
arrive exactly in phase. This 
is how transverse waves 
would look. 

(b) 

(jOp 
If the difference is equal to, 
say, 2.5A, then the waves 
arrive exactly out of phase. 
This is how transverse 
waves would look. 

(c) 

Fig.17-7 (a) Two point sources SI and S2 
emit spherical sound waves in phase. The 
rays indicate that the waves pass through a 
common point P. The waves (represented 
with transverse waves) arrive at P (b) exactly 
in phase and (c) exactly out of phase. 
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Interference points along a big circle 

In Fig. 17-8a, two point sources S] and S2> which are in phase 
and separated by distance D = 1.5A, emit identical sound 
waves of wavelength A. 

(a) What is the path length difference of the waves from SI 
and S2 at point PI> which lies on the perpendicular bisector 
of distance D, at a distance greater than D from the sources 
(Fig.17-8b)? (That is, what is the difference in the distance 
from source SI to point PI and the distance from source S2 
to PI?) What type of interference occurs at PI? 

Reasoning: Because the waves travel identical distances to 
reach Pj, their path length difference is 

t:.L = O. (Answer) 
From Eq. 17-23, this means that the waves undergo fully 
constructive interference at PI because they start in phase at 
the sources and reach PI in phase. 

(b) What are the path length difference and type of inter­
ference at point P2 in Fig. 17-8c? 

Reasoning: The wave from SI travels the extra distance D 
(= l.5A) to reach P2• Thus, the path length difference is 

t:.L = 1.5A. (Answer) 

From Eq.17-25, this means that the waves are exactly out of 
phase at P2 and undergo fully destructive interference there. 

(c) Figure 17-8d shows a circle with a radius much greater 

than D, centered on the midpoint between sources S] and S2' 
What is the number of points N around this circle at which 
the interference is fully constructive? (That is, at how many 
points do the waves arrive exactly in phase?) 

Reasoning: Imagine that, starting at point a, we move 
clockwise along the circle to point d. As we move to point 
d, the path length difference t:.L increases and so the type 
of interference changes. From (a), we know that the path 
length difference is t:.L = OA at point a. From (b), we 
know that t:.L = 1.5A at point d. Thus, there must be one 
point along the circle between a and d at which t:.L = A, 
as indicated in Fig. 17-8e. From Eq. 17-23, fully construc­
tive interference occurs at that point. Also, there can be 
no other point along the way from point a to point d at 
which fully constructive interference occurs, because 
there is no other integer than 1 between 0 at point a and 
1.5 at point d. 

We can now use symmetry to locate the other points 
of interference along the rest of the circle (Fig. 17 -8f). 
Symmetry about line cd gives us point b, at which t:.L = OA. 
(That point is on the perpendicular bisector of distance D, 
just like point a, and thus the path length difference from 
the sources to point b must be zero.) Also, there are three 
more points at which t:.L = A. In all (Fig. 17-8g) we have 

N = 6. (Answer) 

irlts Additional examples, video, and practice available at WileyPLUS 

Intensity and Sound Level 
If you have ever tried to sleep while someone played loud music nearby, you are 
well aware that there is more to sound than frequency, wavelength, and speed. 
There is also intensity. The intensity 1 of a sound wave at a surface is the average 
rate per unit area at which energy is transferred by the wave through or onto the 
surface. We can write this as 

P 
I=A' (17-26) 

where P is the time rate of energy transfer (the power) of the sound wave and 
A is the area of the surface intercepting the sound. As we shall derive shortly, the 
intensity 1 is related to the displacement amplitude Sm of the sound wave by 

1 -1 2 2 - zpVW Sm' (17-27) 

How intensity varies with distance from a real sound source is often complex. 
Some real sources (like loudspeakers) may transmit sound only in particular 
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The difference in these 

SI SI 
path lengths equals O. 
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Thus, the waves arrive exactly 
in phase and undergo fully 
constructive interference. 

(a) (b) 

SI T The difference in these 
D path lengths is 0, 1 which equals 1.5..1,. 

(e) 
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Thus, the waves arrive 
exactly out of phase 
and undergo fully 

P2 destructive interference. 
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We find six points 
of fully constructive 
interference. 

Maximum phase 
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(e) 

The difference 
in these path 
lengths 
equals 1.0..1,. 

Thus, the waves arrive exactly 
in phase and undergo fully 
constructive interference. 
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Zero 
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Fig. 17-8 (a) Two point sources Sl and S2,separated by distance D,emit spherical sound waves in phase. (b ) The waves travel equal 
distances to reach point Pl' (c) Point P2 is on the line extending through Sl and S2' (d) We move around a large circle. (e) Another point of 
fully constructive interference. (j) Using symmetry to determine other points. (g) The six points of fully constructive interference. 

directions, and the environment usually produces echoes (reflected sound 
waves) that overlap the direct sound waves. In some situations, however, we 
can ignore echoes and assume that the sound source is a point source that 
emits the sound isotropically-that is, with equal intensity in all directions. 
The wavefronts spreading from such an isotropic point source S at a particular 
instant are shown in Fig. 17-9. 

Let us assume that the mechanical energy of the sound waves is conserved 
as they spread from this source. Let us also center an imaginary sphere of radius 
r on the source, as shown in Fig. 17-9. All the energy emitted by the source 
must pass through the surface of the sphere. Thus, the time rate at which energy 
is transferred through the surface by the sound waves must equal the time rate 
at which energy is emitted by the source (that is, the power P, of the source). 
From Eq.17-26, the intensity I at the sphere must then be 

(17-28) 

where 4m,2 is the area of the sphere. Equation 17-28 tells us that the intensity of 
sound from an isotropic point source decreases with the square of the distance r 
from the source. 

Fig. 17-9 A point source S emits 
sound waves uniformly in all 
directions. The waves pass through 
an imaginary sphere of radius r that 
is centered on S. 
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Sound can cause the wall of a drinking glass 
to oscillate. If the sound produces a 
standing wave of oscillations and if the 
intensity of the sound is large enough, the 
glass will shatter. (Ben Rose/The Image 
Bank/Getty Images) 

Some Sound Levels (dB) 
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The figure indicates three small patches 1,2, and 3 that lie 
on the surfaces of two imaginary spheres; the spheres are 
centered on an isotropic point source S of sound. The 
rates at which energy is transmitted through the three 
patches by the sound waves are equal. Rank the patches 
according to (a) the intensity of the sound on them and 
(b) their area, greatest first. 

The displacement amplitude at the human ear ranges from about 10-5 m for 
the loudest tolerable sound to about 10-11 m for the faintest detectable sound, 
a ratio of 106• From Eq. 17-27 we see that the intensity of a sound varies as the 
square of its amplitude, so the ratio of intensities at these two limits of the hu­
man auditory system is 1012• Humans can hear over an enormous range of 
in tensi ties. 

We deal with such an enormous range of values by using logarithms. 
Consider the relation 

y = logx, 

in which x and yare variables. It is a property of this equation that if we multiply 
x by 10, then y increases by 1. To see this, we write 

y' = log(10x) = log 10 + logx = 1 + y. 

Similarly, if we multiply x by 1012,y increases by only 12. 
Thus, instead of speaking of the intensity 1 of a sound wave, it is much more 

convenient to speak of its sound level {3, defined as 

1 
f3 = (10 dB) log-. 

10 
(17-29) 

Here dB is the abbreviation for decibel, the unit of sound level, a name that was 
chosen to recognize the work of Alexander Graham Bell. 10 in Eq. 17-29 is a 
standard reference intensity (= 10- 12 W/m2), chosen because it is near the lower 
limit of the human range of hearing. For 1 = 10, Eq. 17-29 gives {3 = 10 log 1 = 0, 
so our standard reference level corresponds to zero decibels. Then {3 increases 
by 10 dB every time the sound intensity increases by an order of magnitude (a fac­
tor of 10). Thus, {3 = 40 corresponds to an intensity that is 104 times the standard 
reference level. Table 17 -2 lists the sound levels for a variety of environments. 

Consider, in Fig. 17-4a, a thin slice of air of thickness dx, area A, and mass dm, 
oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The 
kinetic energy dK of the slice of air is 

dK = ~dm v;. (17-30) 

Here Vs is not the speed of the wave but the speed of the oscillating element of air, 
obtained from Eq. 17-12 as 

as 
Vs = at = WSm sin(kx - wt). 

Using this relation and putting dm = pA dx allow us to rewrite Eq.17-30 as 

dK = ~(pA dx)(-wsnY sin2(kx - wt). (17-31) 
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Dividing Eq. 17-31 by dt gives the rate at which kinetic energy moves along with 
the wave. As we saw in Chapter 16 for transverse waves, dxldt is the wave speed 
v,sowe have 

dK _ 1 .. 7. 2 . 2() () dt - zpAvw-s m sm lex - wt . 17-32 

The average rate at which kinetic energy is transported is 

( 
dK ) _ 1 2 2 [ . 2( )] -d - zpAvw Sill sm lex - wt avg 

t avg 

= ~pAVW2S~,. (17-33) 

To obtain this equation, we have used the fact that the average value of the 
square of a sine (or a cosine) function over one full oscillation is!. 

We assume that potential energy is carried along with the wave at this same 
average rate. The wave intensity I, which is the average rate per unit area at 
which energy of both kinds is transmitted by the wave, is then, from Eq. 17-33, 

_ 2(dKldt)avg _ 1 2 2 
I - A - zpvw Sill> 

which is Eq. 17-27, the equation we set out to derive. 

Intensity change with distance, cylindrical sound wave 

An electric spark jumps along a straight line of length 
L = 10 m, emitting a pulse of sound that travels radially 
outward from the spark. (The spark is said to be a line 
source of sound.) The power of this acoustic emission is 
Ps = 1.6 X 104 W. 

(a) What is the intensity I of the sound when it reaches a 
distance r = 12 m from the spark? 

(1) Let us center an imaginary cylinder of radius r = 12 m 
and length L = 10 m (open at both ends) on the spark, as 
shown in Fig. 17-10. Then the intensity I at the cylindrical 
surface is the ratio PIA, where P is the time rate at which 
sound energy passes through the surface and A is the sur­
face area. (2) We assume that the principle of conservation 
of energy applies to the sound energy. This means that the 
rate P at which energy is transferred through the cylinder 
must equal the rate Ps at which energy is emitted by the 
source. 

Fig. 17-10 A spark along a 
straight line of length L emits 
sound waves radially outward. The 
waves pass through an imaginary 
cylinder of radius r and length L 
that is centered on the spark. 

Spark 

r 
L 

L 

Calculations: Putting these ideas together and noting that the 
area ofthe cylindrical surface isA = 2nrL, we have 

I=~=~ 
A 21TrL· 

(17-34) 

This tells us that the intensity of the sound from a line source 
decreases with distance r (and not with the square of distance 
r as for a point source). Substituting the given data, we find 

1= 1.6X104 W 
21T(12 m)(l0 m) 

= 21.2 W/m2 = 21 W/m2. (Answer) 

(b) At what time rate Pd is sound energy intercepted by an 
acoustic detector of area Ad = 2.0 cm2, aimed at the spark 
and located a distance r = 12 m from the spark? 

Calculations: We know that the intensity of sound at the 
detector is the ratio of the energy transfer rate Pd there to 
the detector's area Ad: 

I =~. (17-35) 
Ad 

We can imagine that the detector lies on the cylindrical 
surface of (a). Then the sound intensity at the detector is the 
intensity I (= 21.2 W/m2) at the cylindrical surface. Solving 
Eq.17-35 for Pd gives us 

Pd = (21.2 W/m2)(2.0 X 10-4 m2) = 4.2 mW. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Decibels, sound level, change in intensity 

Many veteran rockers suffer from acute hearing damage 
because of the high sound levels they endured for years 
while playing music near loudspeakers or listening to mu­
sic on headphones. Some, like Ted Nugent, can no longer 
hear in a damaged ear. Others, like Peter Townshend of the 
Who, have a continuous ringing sensation (tinnitus). 
Recently, many rockers, such as Lars Ulrich of Metallica 
(Fig. 17-11), began wearing special earplugs to protect 
their hearing during performances. If an earplug decreases 
the sound level of the sound waves by 20 dB, what is the ra­
tio of the final intensity If of the waves to their initial in­
tensity Ii? 

For both the final and initial waves, the sound level {3 is 
related to the intensity by the definition of sound level in 
Eq.17-29. 

Calculations: For the final waves we have 

L 
{3f = (10 dB) log £, 

and for the initial waves we have 

I 
{3i = (10 dB) logt. 

The difference in the sound levels is 

{3f - {3i = (10 dB) (log t -log ~). 
Using the identity 

a e ad 
log- -log- = 10g-

b d be' 

we can rewrite Eq. 17-36 as 

It {3f - {3i = (10 dB) 10gT' 
I 

(17-36) 

(17-37) 

Rearranging and then substituting the given decrease in 
sound level as {3f - {3i = - 20 dB, we find 

Fig. 1 7.1 1 Lars Ulrich of Metallica is an advocate for the orga­
nization HEAR (Hearing Education and Awareness for Rockers), 
which warns about the damage high sound levels can have on 
hearing. (Tim MosenfelderlGetty Images News and Sport Services) 

log It = {3f - {3i - 20 dB = _ 2 0 
~ 10 dB 10 dB .. 

We next take the antilog of the far left and far right sides of 
this equation. (Although the antilog 10-2.0 can be evaluated 
mentally, you could use a calculator by keying in 10A-2.0 or 
using the loY key.) We find 

L 
;, = log-l (-2.0) = 0.010. 

I 

(Answer) 

Thus, the earplug reduces the intensity of the sound waves 
to 0.010 of their initial intensity, which is a decrease of two 
orders of magnitude. 

i&s Additional examples, video, and practice available at WileyPLUS 

1 Sources of Musical Sound 
Musical sounds can be set up by oscillating strings (guitar, piano, violin), mem­
branes (kettledrum, snare drum), air columns (flute, oboe, pipe organ, and the 
digeridoo of Fig. 17-12), wooden blocks or steel bars (marimba, xylophone), and 
many other oscillating bodies. Most common instruments involve more than a 
single oscillating part. 
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Recall from Chapter 16 that standing waves can be set up on a stretched 
string that is fixed at both ends. They arise because waves traveling along the 
string are reflected back onto the string at each end. If the wavelength of the 
waves is suitably matched to the length of the string, the superposition of 
waves traveling in opposite directions produces a standing wave pattern (or 
oscillation mode). The wavelength required of the waves for such a match is one 
that corresponds to a resonant frequency of the string. The advantage of setting 
up standing waves is that the string then oscillates with a large, sustained ampli­
tude, pushing back and forth against the surrounding air and thus generating a 
noticeable sound wave with the same frequency as the oscillations of the string. 
This production of sound is of obvious importance to, say, a guitarist. 

We can set up standing waves of sound in an air-filled pipe in a similar way. As 
sound waves travel through the air in the pipe, they are reflected at each end and 
travel back through the pipe. (The reflection occurs even if an end is open, but the 
reflection is not as complete as when the end is closed.) If the wavelength of the 
sound waves is suitably matched to the length of the pipe, the superposition of 
waves traveling in opposite directions through the pipe sets up a standing wave pat­
tern. The wavelength required of the sound waves for such a match is one that cor­
responds to a resonant frequency of the pipe. The advantage of such a standing 
wave is that the air in the pipe oscillates with a large, sustained amplitude, emitting 
at any open end a sound wave that has the same frequency as the oscillations in the 
pipe. This emission of sound is of obvious importance to, say, an organist. 

Many other aspects of standing sound wave patterns are similar to those of 
string waves: The closed end of a pipe is like the fixed end of a string in that 
there must be a node (zero displacement) there, and the open end of a pipe is 
like the end of a string attached to a freely moving ring, as in Fig. 16-18b, in that 
there must be an antinode there. (Actually, the antinode for the open end of a 
pipe is located slightly beyond the end, but we shall not dwell on that detail.) 

Antinodes (maximum oscillation) 
occur at the open ends. 

t t 
I, L -I 
~~' :" .. ~.'~ ).,~2L 
~-f1"':'i'1t" ~."'~\1"tti"J,~ 

(a) A N A 

(b) First harmonic 

Fig. 1 7-1 3 (a) The simplest standing wave pattern of displacement for (longitudinal) 
sound waves in a pipe with both ends open has an antinode (A) across each end and a 
node (N) across the middle. (The longitudinal displacements represented by the double 
arrows are greatly exaggerated.) (b) The corresponding standing wave pattern for 
(transverse) string waves. 

The simplest standing wave pattern that can be set up in a pipe with two open 
ends is shown in Fig. 17-13a. There is an antinode across each open end, as 
required. There is also a node across the middle of the pipe. An easier way of 
representing this standing longitudinal sound wave is shown in Fig. 17 -13b - by 
drawing it as a standing transverse string wave. 

The standing wave pattern of Fig. 17-13a is called the fundamental mode or 
first harmonic. For it to be set up, the sound waves in a pipe of length L must 
have a wavelength given by L = Al2, so that A = 2L. Several more standing 
sound wave patterns for a pipe with two open ends are shown in Fig. 17-14a 
using string wave representations. The second harmonic requires sound waves of 
wavelength A = L, the third harmonic requires wavelength A = 2L/3, and so on. 

Fig. 17-12 The air column within a 
digeridoo ("a pipe") oscillates when the 
instrument is played. (A/amy Images) 

n~2 

Second 

n~3 

Third 

n~4 

n~l 
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(a) 

)., ~ 2L/2 ~ L 

)., ~ 2L/3 
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Two open ends­
any harmonic 
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n ~ 3 ,""",~=""""c.....::"'"",,= )., ~ 4L/3 
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n~5 

Fifth 

n~7 

Seventh 

~~~:;;;;;:; 

(b) 

)., ~ 4L/5 

)., ~ 4L/7 

One open end­
only odd harmonic 

Fig. 17-14 Standing wave patterns for 
string waves superimposed on pipes to rep­
resent standing sound wave patterns in the 
pipes. (a) With both ends of the pipe open, 
any harmonic can be set up in the pipe. (b) 
With only one end open, only odd harmon­
ics can be set up. 
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Fig. 17-15 The saxophone and violin 
families, showing the relations between in­
strument length and frequency range. The 
frequency range of each instrument is indi­
cated by a horizontal bar along a frequency 
scale suggested by the keyboard at the bot­
tom; the frequency increases toward the 
right. 

-Time 

Fig. 17-16 The wave forms pro­
duced by (a) a flute and (b) an oboe 
when played at the same note, with 
the same first harmonic frequency. 

(a) 

(b) 

More generally, the resonant frequencies for a pipe of length L with two 
open ends correspond to the wavelengths 

2L 
A = -, for n = 1,2,3, ... , (17-38) 

n 
where n is called the harmonic number. Letting v be the speed of sound, we 
write the resonant frequencies for a pipe with two open ends as 

forn=1,2,3, ... (pipe, two open ends). (17-39) 

Figure 17-14b shows (using string wave representations) some of the 
standing sound wave patterns that can be set up in a pipe with only one 
open end. As required, across the open end there is an antinode and across 
the closed end there is a node. The simplest pattern requires sound waves 
having a wavelength given by L = A/4, so that A = 4L. The next simplest 
pattern requires a wavelength given by L = 3A14, so that A = 4L/3, and 
so on. 

More generally, the resonant frequencies for a pipe of length L with 
only one open end correspond to the wavelengths 

A= 4L, forn=1,3,5, ... , (17-40) 
n 

in which the harmonic number n must be an odd number. The resonant frequen­
cies are then given by 

for n = 1, 3, 5, ... (pipe, one open end). (17-41) 

Note again that only odd harmonics can exist in a pipe with one open end. For 
example, the second harmonic, with n = 2, cannot be set up in such a pipe. 
Note also that for such a pipe the adjective in a phrase such as "the third har­
monic" still refers to the harmonic number n (and not to, say, the third possible 
harmonic). Finally note that Eqs. 17-38 and 17-39 for two open ends contain 
the number 2 and any integer value of n, but Eqs. 17-40 and 17-41 for one open 
end contain the number 4 and only odd values of n. 

The length of a musical instrument reflects the range of frequencies over which 
the instrument is designed to function, and smaller length implies higher frequen­
cies. Figure 17-15, for example, shows the saxophone and violin families, with their 
frequency ranges suggested by the piano keyboard. Note that, for every instru­
ment, there is overlap with its higher- and lower-frequency neighbors. 

In any oscillating system that gives rise to a musical sound, whether it is a 
violin string or the air in an organ pipe, the fundamental and one or more of 
the higher harmonics are usually generated simultaneously. Thus, you hear 
them together-that is, superimposed as a net wave. When different instru­
ments are played at the same note, they produce the same fundamental fre­
quency but different intensities for the higher harmonics. For example, the 
fourth harmonic of middle C might be relatively loud on one instrument and 
relatively quiet or even missing on another. Thus, because different instru­
ments produce different net waves, they sound different to you even when 
they are played at the same note. That would be the case for the two net 
waves shown in Fig. 17-16, which were produced at the same note by different 
instruments. 

CHECKPOINT :3 

Pipe A, with length L, and pipe B, with length 2L, both have two open ends. Which 
harmonic of pipe B has the same frequency as the fundamental of pipe A? 
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Sound resonance in double-open pipe and single-open pipe 

Weak background noises from a room set up the fundamen­
tal standing wave in a cardboard tube of length L = 67.0 cm 
with two open ends. Assume that the speed of sound in the 
air within the tube is 343 m/s. 

(a) What frequency do you hear from the tube? 

With both pipe ends open, we have a symmetric situation in 
which the standing wave has an antinode at each end of the 
tube. The standing wave pattern (in string wave style) is that 
of Fig. 17-13b. 

Calculation: The frequency is given by Eq. 17-39 with 
n = 1 for the fundamental mode: 

f = nv = (1)(343 m/s) = 56 
2L 2(0.670 m) 2 Hz. 

(Answer) 

If the background noises set up any higher harmonics, such 
as the second harmonic, you also hear frequencies that are 

integer multiples of 256 Hz. (Thus, the lowest frequency is 
this fundamental frequency of 256 Hz.) 

(b) If you jam your ear against one end of the tube, what 
fundamental frequency do you hear from the tube? 

With your ear effectively closing one end of the tube, we 
have an asymmetric situation-an antinode still exists at 
the open end, but a node is now at the other (closed) end. 
The standing wave pattern is the top one in Fig. 17-14b. 

Calculation: The frequency is given by Eq. 17-41 with 
n = 1 for the fundamental mode: 

f = nv = (1)(343 m/s) = 128 Hz. 
4L 4(0.670 m) 

(Answer) 

If the background noises set up any higher harmonics, they 
will be odd multiples of 128 Hz. That means that the frequency 
of 256 Hz (which is an even multiple) cannot now occur. 

Additional examples, video, and practice available at WileyPLUS 

1 Beats 
If we listen, a few minutes apart, to two sounds whose frequencies are, say, 552 
and 564 Hz, most of us cannot tell one from the other. However, if the sounds 
reach our ears simultaneously, what we hear is a sound whose frequency is 
558 Hz, the average of the two combining frequencies. We also hear a striking 
variation in the intensity of this sound-it increases and decreases in slow, 
wavering beats that repeat at a frequency of 12 Hz, the difference between the 
two combining frequencies. Figure 17-17 shows this beat phenomenon. 

Let the time-dependent variations of the displacements due to two sound 
waves of equal amplitude Sm be 

and (17-42) 

where Wi > ~. From the superposition principle, the resultant displacement is 

S = Sl + S2 = sm(cos wIt + cos w2t). 

Using the trigonometric identity (see Appendix E) 

cos a + cos f3 = 2 cos[!(a - f3)] cos[!(a + f3)] 

allows us to write the resultant displacement as 

S = 2sm cosW Wi - (2)t] cosW Wi + (2)t]. 
If we write 

we can then write Eq. 17-43 as 

S(t) = [2sm cos w't] cos wt. 

(17-43) 

(17-44) 

(17-45) 

(a) 

(b) 

(c) 

-Time 

Fig. 17-17 (a, b) The pressure variations 
6.p of two sound waves as they would be 
detected separately. The frequencies of the 
waves are nearly equal. (c) The resultant 
pressure variation if the two waves are de­
tected simultaneously. 
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We now assume that the angular frequencies WI and W2 of the combining 
waves are almost equal, which means that W ~ w' in Eq. 17-44. We can then 
regard Eq. 17-45 as a cosine function whose angular frequency is wand whose 
amplitude (which is not constant but varies with angular frequency w') is the 
absolute value of the quantity in the brackets. 

A maximum amplitude will occur whenever cos w't in Eq. 17-45 has the 
value +1 or -1, which happens twice in each repetition of the cosine function. 
Because cos w't has angular frequency w', the angular frequency %eat at which 
beats occur is %eat = 2w'. Then, with the aid ofEq.17-44, we can write 

Wbeat = 2w' = (2)(~)( WI - (2) = WI - W2' 

Because w = 21Tf, we can recast this as 

fbeat = fl - f2 (beat frequency). (17-46) 

Musicians use the beat phenomenon in tuning instruments. If an instru­
ment is sounded against a standard frequency (for example, the note called 
"concert A" played on an orchestra's first oboe) and tuned until the beat disap­
pears, the instrument is in tune with that standard. In musical Vienna, concert A 
(440 Hz) is available as a telephone service for the city's many musicians. 

Beat frequencies and penguins finding one another 

When an emperor penguin returns from a search for food, 
how can it find its mate among the thousands of penguins 
huddled together for warmth in the harsh Antarctic 
weather? It is not by sight, because penguins all look alike, 
even to a penguin. 

The answer lies in the way penguins vocalize. Most birds 
vocalize by using only one side of their two-sided vocal or­
gan, called the syrinx. Emperor penguins, however, vocalize 
by using both sides simultaneously. Each side sets up 
acoustic standing waves in the bird's throat and mouth, 
much like in a pipe with two open ends. Suppose that the 
frequency of the first harmonic produced by side A is fAI = 
432 Hz and the frequency of the first harmonic produced by 
side B is fBI = 371 Hz. What is the beat frequency between 
those two first-harmonic frequencies and between the two 
second-harmonic frequencies? 

The beat frequency between two frequencies is their differ­
ence, as given by Eq. 17-46 (fbeat = fl - f2)' 

Calculations: For the two first-harmonic frequencies fAI 
and fBl> the beat frequency is 

fbeat,1 = fAI fBi = 432 Hz - 371 Hz 

= 61 Hz. (Answer) 

Because the standing waves in the penguin are effec­
tively in a pipe with two open ends, the resonant frequencies 
are given by Eq. 17-39 (f= nv/2L), in which L is the 
(unknown) length of the effective pipe. The first-harmonic 
frequency is f1 = v/2L, and the second-harmonic frequency 
is f2 = 2v/2L. Comparing these two frequencies, we see that, 
in general, 

f2 =2!J, 

For the penguin, the second harmonic of side A has 
frequency fA2 = 2fAI and the second harmonic of side B has 
frequency fB2 = 2fBl' Using Eq. 17-46 with frequencies fA2 
and fB2' we find that the corresponding beat frequency asso­
ciated with the second harmonics is 

fbeat,2 = fA2 fEZ = 2fAl - 2fBl 

= 2(432 Hz) - 2(371 Hz) 

= 122Hz. (Answer) 

Experiments indicate that penguins can perceive such large 
beat frequencies (humans cannot hear a beat frequency any 
higher than about 12 Hz). Thus, a penguin's cry can be rich 
with different harmonics and different beat frequencies, al­
lowing the voice to be recognized even among the voices of 
thousands of other, closely huddled penguins. 

Additional examples, video, and practice available at WifeyPLUS 



The Doppler Effect 
A police car is parked by the side of the highway, sounding its 1000 Hz siren. If you 
are also parked by the highway, you will hear that same frequency. However, if there 
is relative motion between you and the police car, either toward or away from each 
other, you will hear a different frequency. For example, if you are driving toward the 
police car at 120 km/h (about 75 milh) , you will hear a higher frequency (1096 Hz, an 
increase of 96 Hz). If you are driving away from the police car at that same speed,you 
will hear a lower frequency (904 Hz, a decrease of 96 Hz). 

These motion-related frequency changes are examples of the Doppler effect. 
The effect was proposed (although not fully worked out) in 1842 by Austrian 
physicist Johann Christian Doppler. It was tested experimentally in 1845 by 
Buys Ballot in Holland, "using a locomotive drawing an open car with several 
trumpeters." 

The Doppler effect holds not only for sound waves but also for electromag­
netic waves, including microwaves, radio waves, and visible light. Here, however, 
we shall consider only sound waves, and we shall take as a reference frame the 
body of air through which these waves travel. This means that we shall measure 
the speeds of a source S of sound waves and a detector D of those waves relative 
to that body of ail: (Unless otherwise stated, the body of air is stationary relative 
to the ground, so the speeds can also be measured relative to the ground.) We 
shall assume that Sand D move either directly toward or directly away from 
each other, at speeds less than the speed of sound. 

If either the detector or the source is moving, or both are moving, the emit­
ted frequency f and the detected frequency f' are related by 

v ± VD 

f f = f (general Doppler effect), 
V ± Vs 

(17-47) 

where v is the speed of sound through the air, VD is the detector's speed relative 
to the air, and Vs is the source's speed relative to the air. The choice of plus or 
minus signs is set by this rule: 

When the motion of detector or source is toward the other, the sign on its speed must 
give an upward shift in frequency. When the motion of detector or source is away from 
the other, the sign on its speed must give a downward shift in frequency. 

In short, toward means shift up, and away means shift down. 
Here are some examples of the rule. If the detector moves toward the 

source, use the plus sign in the numerator of Eq. 17-47 to get a shift up in the 
frequency. If it moves away, use the minus sign in the numerator to get a shift 
down. If it is stationary, substitute 0 for VD' If the source moves toward the 
detector, use the minus sign in the denominator of Eq. 17-47 to get a shift up in 
the frequency. If it moves away, use the plus sign in the denominator to get 
a shift down. If the source is stationary, substitute 0 for Vs. 

Next, we derive equations for the Doppler effect for the following two 
specific situations and then derive Eq.17-47 for the general situation. 

1. When the detector moves relative to the air and the source is stationary relative 
to the air, the motion changes the frequency at which the detector intercepts 
wavefronts and thus changes the detected frequency of the sound wave. 

2. When the source moves relative to the air and the detector is stationary 
relative to the air, the motion changes the wavelength of the sound wave and 
thus changes the detected frequency (recall that frequency is related to 
wavelength). 

1 • TH E DOPPLER EFFECT 461 
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I---vt 

(b) 

Fig.17-19 The wavefronts of Fig. 
17-18, assumed planar, (a) reach and 
(b) pass a stationary detector D; they 
move a distance vt to the right in 
time t. 

(a) 

Fig. 17-20 Wavefronts traveling 
to the right (a) reach and (b) pass de­
tector D, which moves in the opposite 
direction. In time t, the wavefronts 
move a distance vt to the right and D 
moves a distance v Dt to the left. 

Fig. 17-18 A stationary source of 
sound S emits spherical wavefronts, 
shown one wavelength apart, that ex­
pand outward at speed v. A sound 
detector D, represented by an ear, 
moves with velocity 11 D toward the 
source. The detector senses a higher 
frequency because of its motion. 

~ 

v 

Shift up: The detector 
moves toward the source. 

In Fig. 17-18, a detector D (represented by an ear) is moving at speed VD toward 
a stationary source S that emits spherical wavefronts, of wavelength A and 
frequency f, moving at the speed v of sound in air. The wavefronts are drawn one 
wavelength apart. The frequency detected by detector D is the rate at which D 
intercepts wavefronts (or individual wavelengths). If D were stationary, that rate 
would be f, but since D is moving into the wavefronts, the rate of interception is 
greater, and thus the detected frequency f' is greater thanf 

Let us for the moment consider the situation in which D is stationary (Fig. 
17-19). In time t, the wavefronts move to the right a distance vt. The number of 
wavelengths in that distance vt is the number of wavelengths intercepted by D 
in time t, and that number is vtl A. The rate at which D intercepts wavelengths, 
which is the frequency f detected by D, is 

f= VtlA =~. 
t A 

(17-48) 

In this situation, with D stationary, there is no Doppler effect-the frequency 
detected by D is the frequency emitted by S. 

Now let us again consider the situation in which D moves in the direction 
opposite the wavefront velocity (Fig. 17-20). In time t, the wavefronts move to 
the right a distance vt as previously, but now D moves to the left a distance v Dt. 
Thus, in this time t, the distance moved by the wavefronts relative to D is vt + 
v Dt. The number of wavelengths in this relative distance vt + v Dt is the number 
of wavelengths intercepted by D in time t and is (vt + vDt)/A. The rate at which 
D intercepts wavelengths in this situation is the frequency f', given by 

f' = (vt + vDt)/A = v + VD. 
t A 

From Eq.17-48, we have A = vlf Then Eq.17-49 becomes 

f' = v + VD = f v + VD. 
vlf v 

Note that in Eq.17-50,f' > funless VD = 0 (the detector is stationary). 

(17-49) 

(17-50) 

Similarly, we can find the frequency detected by D if D moves away from 
the source. In this situation, the wavefronts move a distance vt - vDt relative to 
D in time t, and f' is given by f' = f_V __ V-,DO- (17-51) 

v 

InEq.17-51, f' < funless VD = O.We can summarize Eqs.17-50 and 17-51 with 

f' = f v ± VD 
v 

(detector moving, source stationary). (17-52) 



Let detector D be stationary with respect to the body of air, and let 
source S move toward D at speed Vs (Fig. 17-21). The motion of S 
changes the wavelength of the sound waves it emits and thus the fre­
quency detected by D. 

To see this change, let T (= lit) be the time between the emission of 
any pair of successive wavefronts WI and W2• During T, wavefront WI 
moves a distance vT and the source moves a distance vsT. At the end of T, 
wavefront W2 is emitted. In the direction in which S moves, the distance 
between WI and W2, which is the wavelength A' of the waves moving in 
that direction, is vT - vsT. If D detects those waves, it detects frequency f' 
given by 

v v 
f' = 7 = vT - vsT 

v 
vlf - vslf 

v 
= f v - Vs 

Note thatf' must be greater thanfunless Vs = O. 

(17-53) 

In the direction opposite that taken by S, the wavelength A' of the waves is 
again the distance between successive waves but now that distance is vT + vsT. If 
D detects those waves, it detects frequency f' given by 

f ' -f v 
v + Vs 

(17-54) 

Now f' must be less thanfunless Vs = O. 
We can summarize Eqs.17-53 and 17-54 with 

f ' -f v 
v ± Vs 

(source moving, detector stationary). (17-55) 

We can now derive the general Doppler effect equation by replacing fin Eq. 
17-55 (the source frequency) withf' of Eq. 17-52 (the frequency associated with 
motion of the detector). That simple replacement gives us Eq.17-47 for the gen­
eral Doppler effect. 

That general equation holds not only when both detector and source 
are moving but also in the two specific situations we just discussed. For the situa­
tion in which the detector is moving and the source is stationary, substitution of 
Vs = 0 into Eq. 17-47 gives us Eq. 17-52, which we previously found. For the 
situation in which the source is moving and the detector is stationary, substitu­
tion of VD = 0 into Eq. 17-47 gives us Eq. 17-55, which we previously found. 
Thus, Eq. 17-47 is the equation to remember. 

CHECKPOINT 4 

The figure indicates the directions of 
motion of a sound source and a de­
tector for six situations in stationary 
air. For each situation, is the detected 
frequency greater than or less than 
the emitted frequency, or can't we tell 
without more information about the 
actual speeds? 

Source 

(a) -----> 

(b)~ 

(c) ------> 

Detector 

·0 speed 

·0 speed 

Source Detector 

(d) ~ <-­

(e) -----> <-­

(f) ~ -----> 
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Shift up: The source moves 
toward the detector. 

Fig. 17-21 A detector D is stationary, 
and a source S is moving toward it at 
speed V.I" Wavefront Wj was emitted 
when the source was at Sj, wavefront W7 

when it was at S7' At the moment de­
picted, the source is at S. The detector 
senses a higher frequency because the 
moving source, chasing its own wave­
fronts, emits a reduced wavelength ;\' 
in the direction of its motion. 
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Double Doppler shift in the echoes used by bats 

Bats navigate and search out prey by emitting, and then 
detecting reflections of, ultrasonic waves, which are 
sound waves with frequencies greater than can be heard 
by a human. Suppose a bat emits ultrasound at fre­
quency tbe = 82.52 kHz while flying with velocity 
l1, = (9.00 m/s)i as it chases a moth that flies with veloc­
ity 11,11 = (8.00 m/s)i. What frequency tmd does the moth 
detect? What frequency tbd does the bat detect in the 
returning echo from the moth? 

The frequency is shifted by the relative motion of the bat and 
moth. Because they move along a single axis, the shifted fre­
quency is given by Eq. 17-47 for the general Doppler effect. 
Motion toward tends to shift the frequency up, and motion away 
tends to shift the frequency down. 

Detection by moth: The general Doppler equation is 

f' = t v ± VD. 

v ± Vs 
(17-56) 

Here, the detected frequency f' that we want to find is the 
frequency tmd detected by the moth. On the right side of 
the equation, the emitted frequency t is the bat's emission 
frequency tbe = 82.52 kHz, the speed of sound is 
v = 343 mis, the speed v D of the detector is the moth's speed 
Vm = 8.00 mis, and the speed Vs of the source is the bat's 
speed Vb = 9.00 m/s. 

These substitutions into Eq. 17 -56 are easy to make. 
However, the decisions about the plus and minus signs can 
be tricky. Think in terms of toward and away. We have the 
speed of the moth (the detector) in the numerator of Eq. 

Bat to Moth 

Detector Source 

moth bat 
speed VD = VI1l speed Vs = Vb 

away toward 
shift down shift up 
numerator denominator 

minus minus 

17 -56. The moth moves away from the bat, which tends to 
lower the detected frequency. Because the speed is in the 
numerator, we choose the minus sign to meet that tendency 
(the numerator becomes smaller). These reasoning steps 
are shown in Table 17 -3. 

We have the speed of the bat in the denominator of Eq. 
17 -56. The bat moves toward the moth, which tends to in­
crease the detected frequency. Because the speed is in the 
denominator, we choose the minus sign to meet that ten­
dency (the denominator becomes smaller). 

With these substitutions and decisions, we have 

343 mls - 8.00 mls 
= (82.52 kHz) 343 mls - 9.00 mls 

= 82.767 kHz = 82.8 kHz. (Answer) 

Detection of echo by bat: In the echo back to the bat, the 
moth acts as a source of sound, emitting at the frequency tmd 
we just calculated. So now the moth is the source (moving 
away) and the bat is the detector (moving toward). The rea­
soning steps are shown in Table 17 -3. To find the frequency 
tbd detecredby the bat, we write Eq.17 -56 as 

V + Vb 
fbd = tmd + v VIII 

343 mls + 9.00 mls 
= (82.767 kHz) 343 mls + 8.00 mls 

= 83.00 kHz"" -83.0 kHz. (Answer) 

Some moths evade bats by "jamming" the detection system 
with ultrasonic clicks. 

Echo Back to Bat 

Detector Source 

bat moth 

speed VD = Vb speed Vs = VI1l 

toward away 
shift up shift down 

numerator denominator 

plus plus 

.• ~ 
PLUS Additional examples, video, and practice available at WileyPLUS 



1 • SUPERSONIC SPEEDS, SHOCK WAVES 

-----------7--r_~-7--r_~------~._·~~x 

(a) (b) 

Fig. 17-22 (a) A source of sound Smoves at speed vsequal to the speed of sound and thus 
as fast as the wavefronts it generates. (b) A source S moves at speed Vs faster than the speed of 
sound and thus faster than the wave fronts. When the source was at position SI it generated 
wavefront Wb and at position S6 it generated W6• All the spherical wavefronts expand at the 
speed of sound v and bunch along the surface of a cone called the Mach cone, forming a shock 
wave. The surface of the cone has half-angle 8 and is tangent to all the wavefronts. 

1 Supersonic Speeds, Shock Waves 
If a source is moving toward a stationary detector at a speed equal to the speed 
of sound--that is, if Vs = v--Eqs. 17-47 and 17-55 predict that the detected fre­
quency f' will be infinitely great. This means that the source is moving so fast 
that it keeps pace with its own spherical wavefronts, as Fig. 17 -22a suggests. 
What happens when the speed of the source exceeds the speed of sound? 

For such supersonic speeds, Eqs. 17-47 and 17-55 no longer apply. Figure 
17 -22b depicts the spherical wavefronts that originated at various positions of the 
source. The radius of any wavefront in this figure is vt, where v is the speed 
of sound and t is the time that has elapsed since the source emitted that wave­
front. Note that all the wavefronts bunch along a V-shaped envelope in the 
two-dimensional drawing of Fig. 17-22b. The wavefronts actually extend in 
three dimensions, and the bunching actually forms a cone called the Mach cone. 
A shock wave is said to exist along the surface of this cone, because the bunch­
ing of wavefronts causes an abrupt rise and fall of air pressure as the surface 
passes through any point. From Fig. 17-22b, we see that the half-angle () of the 
cone, called the Mach cone angle, is given by 

. vt v 
sm () = --- =-

vst Vs 
(Mach cone angle). (17-57) 

The ratio vslv is called the Mach numbel: When you hear that a particular plane 
has flown at Mach 2.3, it means that its speed was 2.3 times the speed of sound in the 
air through which the plane was flying. The shock wave generated by a supersonic 
aircraft (Fig. 17-23) or projectile produces a burst of sound, called a sonic boom, in 
which the air pressure first suddenly increases and then suddenly decreases below 
normal before returning to normal. Part of the sound that is heard when a rifle is 
fired is the sonic boom produced by the bullet. A sonic boom can also be heard from 
a long bullwhip when it is snapped quickly: Near the end of the whip's motion, its tip 
is moving faster than sound and produces a small sonic boom --the crack of the 
whip. 

Fig. 17-23 Shock waves produced by the wings of a Navy FA 18 jet. The shock waves 
are visible because the sudden decrease in air pressure in them caused water molecules in the 
air to condense, forming a fog. (US. Navy photo by Ensign John Gay) 

465 
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Sound Waves Sound waves are longitudinal mechanical waves 
that can travel through solids, liquids, or gases. The speed v of a 
sound wave in a medium having bulk modulus B and density pis 

v=P; (speed of sound). (17-3) 

In air at 20°C, the speed of sound is 343 mls. 
A sound wave causes a longitudinal displacement s of a mass 

element in a medium as given by 

s = Sm cos(kx - wt), (17-12) 

where Sill is the displacement amplitude (maximum displacement) 
from equilibrium, k = 27TI A, and w = 27Tf, A and f being the wave­
length and frequency, respectively, of the sound wave. The sound 
wave also causes a pressure change t:.p of the medium from the 
equilibrium pressure: 

t:.p = t:.PIll sin(kx - wt), 

where the pressure amplitude is 

t:.pm = (vpw)sm. 

(17-13) 

(17-14) 

Interference The interference of two sound waves with identi­
cal wavelengths passing through a common point depends on their 
phase difference cP there. If the sound waves were emitted in phase 
and are traveling in approximately the same direction, cP is given by 

t:.L 
'" = -27T 
'f' A ' (17-21) 

where t:.L is their path length difference (the difference in the dis­
tances traveled by the waves to reach the common point). Fully 
constructive interference occurs when cP is an integer multiple of 
27T, 

for 111 = 0,1,2, ... , (17-22) 

and, equivalently, when t:.L is related to wavelength A by 

t:.L T = 0,1,2,.... (17-23) 

Fully destructive interference occurs when cP is an odd mUltiple of 
7T, 

cP = (2111 + 1)7T, for 111 = 0,1,2, ... , 

and, equivalently, when t:.L is related to A by 

t:.L T = 0.5,1.5,2.5, .... 

(17-24) 

(17-25) 

Sound Intensity The intensity I of a sound wave at a surface is 
the average rate per unit area at which energy is transferred by the 
wave through or onto the surface: 

P 
1=­

A' 
(17-26) 

where P is the time rate of energy transfer (power) of the sound 
wave and A is the area of the surface intercepting the sound. The 
intensity I is related to the displacement amplitude Sm of the sound 
wave by 

(17-27) 

The intensity at a distance r from a point source that emits sound 
waves of power Ps is 

(17-28) 

Sound Level in Decibels The sound level f3 in decibels (dB) 
is defined as 

I 
f3 = (10 dB) log 10' (17-29) 

where 10 (= 10-]2 W/m2) is a reference intensity level to which all 
intensities are compared. For every factor-of-lO increase in inten­
sity, 10 dB is added to the sound level. 

Standing Wave Patterns in Pipes Standing sound wave 
patterns can be set up in pipes. A pipe open at both ends will res­
onate at frequencies 

f= ~ = nv 
A 2L 

n=1,2,3, ... , (17-39) 

where v is the speed of sound in the air in the pipe. For a pipe closed 
at one end and open at the other, the resonant frequencies are 

n = 1,3,5, .... (17-41) 

Beats Beats arise when two waves having slightly different fre­
quencies,!] and f2, are detected together. The beat frequency is 

(17-46) 

The Doppler Effect The Doppler effect is a change in the ob­
served frequency of a wave when the source or the detector moves 
relative to the transmitting medium (such as air). For sound the ob­
served frequency /' is given in terms of the source frequency f by 

/'= (general Doppler effect), (17-47) 

where VD is the speed of the detector relative to the medium, Vs is 
that of the source, and v is the speed of sound in the medium. The 
signs are chosen such that /' tends to be greater for motion toward 
and less for motion away. 

Shock Wave If the speed of a source relative to the medium 
exceeds the speed of sound in the medium, the Doppler equation 
no longer applies. In such a case, shock waves result. The half-angle 
8 of the Mach cone is given by 

sin 8 = ~ 
Vs 

(Mach cone angle). (17-57) 



In a first expeliment, a sinusoidal sound wave is sent through a 
long tube of air, transporting energy at the average rate of Pavg,I' In 
a second experiment, two other sound waves, identical to the first 
one, are to be sent simultaneously through the tube with a phase 
difference ¢ of either 0, 0.2 wavelength, or 0.5 wavelength between 
the waves. (a) With only mental calculation, rank those choices of 
¢ according to the average rate at which the waves will transport 
energy, greatest first. (b) For the first choice of ¢, what is the aver­
age rate in terms of P avg,l? 

In Fig. 17-24, two point sources SI and Sz, wIDch are in phase, 
emit identical sound waves of wavelength 2.0 m. In terms of wave­
lengths, what is the phase difference between the waves arriving at 
point P if (a) L j = 38 m and L2 = 34 m, and (b) L j = 39 m and 
L2 = 36 m? (c) Assuming that the source separation is much 
smaller than Ll and L 2, what type of interference occurs at P in sit­
uations (a) and (b)? 

~-
Fig. 17-24 Question 2. 

In Fig, 17-25, three long tubes (A, 
B, and C) are filled with different 
gases under different pressures. The 
ratio of the bulk modulus to the den­
sity is indicated for each gas in terms 
of a basic value Bo/Po. Each tube has 
a piston at its left end that can send a 
sound pulse through the tube (as in 
Fig, 16-2). The three pulses are sent si­
multaneously. Rank the tubes 
according to the time of arrival of the 
pulses at the open right ends of the 
tubes, earliest first. 

4 The sixth harmonic is set up in a 

:~L--:-L~: 
I I I 

pipe. (a) How many open ends does Fig. 17-25 Question 3. 
the pipe have (it has at least one)? (b) 
Is there a node, antinode, or some intermediate state at the midpoint? 

In Fig. 17-26, pipe A is made to oscillate in its third harmonic by 
a small internal sound source. Sound emitted at the right end hap­
pens to resonate four nearby pipes, each with only one open end 
(they are not drawn to scale). Pipe B oscillates in its lowest har­
monic, pipe C in its second lowest harmonic, pipe D in its third low­
est harmonic, and pipe E in its fourth lowest harmonic, Without 

-A- l)) 

__ ------'I B 

__ ------'I c 

__ ------'I D 

___ --'IE 

Fig. 17-26 Question 5. 
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computation, rank all five pipes according to their length, greatest 
first. (Hint: Draw the standing waves to scale and then draw the 
pipes to scale.) 

Pipe A has length L and one open end. Pipe B has length 2L 
and two open ends. Which harmonics of pipe B have a frequency 
that matches a resonant frequency of pipe A? 

Figure 17-27 shows a moving sound source S that emits at a certain 
frequency, and four stationary sound detectors. Rank the detectors 
according to the frequency of the sound they detect from the 
source, greatest first. 

3, 
I -4 
I .... ------e----- -- -to-

2 S 1 

Fig. 1 7-27 Question 7. 

A friend rides, in turn, the rims of three fast merry-go-rounds 
while holding a sound source that emits isotropically at a certain 
frequency, You stand far from each merry-go-round. The frequency 
you hear for each of your friend's three rides varies as the merry-go­
round rotates. The variations in frequency for the three rides are 
given by the three curves in Fig. 17-28. Rank the curves according to 
(a) the linear speed v of the sound source, (b) the angular speeds IJ) of 
the merry-go-rounds, and (c) the radii r of the merry-go-rounds, 
greatest fil'st. 

J 

Fig. 17-28 Question 8. 

For a particular tube, here are four of the six harmonic 
frequencies below 1000 Hz: 300, 600, 750, and 900 Hz. What two 
frequencies are missing from the list? 

Figure 17-29 shows a stretched stJing of length L and pipes a, 
b, c, and d of lengths L, 2L, Ll2, and Ll2, respectively. The string's 
tension is adjusted until the speed of waves on the string equals the 
speed of sound waves in the air. The fundamental mode of oscilla­
tion is then set up on the string. In which pipe will the sound pro­
duced by the string cause resonance, and what oscillation mode 
will that sound set up? 

b 

!I-----

II 
I' 

a d 

Fig. 17-29 Question 10. 



468 c WAVES-II 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
htlp:llwww.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Where needed in the problems, use 

speed of sound in air = 343 mls 

and density of air = 1.21 kg/m3 

unless otherwise specified. 

The Speed of Sound 
Two spectators at a soccer game in Montjuic Stadium see, and 

a moment later hear, the ball being kicked on the playing field. The 
time delay for spectator A is 0.23 s, and for spectator B it is 0.12 s. 
Sight lines from the two spectators to the player kicking the ball 
meet at an angle of 900

• How far are (a) spectator A and (b) specta­
tor B from the player? (c) How far are the spectators from each 
other? 

What is the bulk modulus of oxygen if 32.0 g of oxygen occupies 
22.4 L and the speed of sound in the oxygen is 317 m/s? 

When the door of the Chapel of the Mausoleum in 
Hamilton, Scotland, is slammed shut, the last echo heard by some­
one standing just inside the door reportedly comes 15 s later. (a) If 
that echo were due to a single reflection off a wall opposite the 
door, how far from the door would that wall be? (b) If, instead, the 
wall is 25.7 m away, how many reflections (back and forth) corre­
spond to the last echo? 

A column of soldiers, marching at 120 paces per minute, keep 
in step with the beat of a drummer at the head of the column. The 
soldiers in the rear end of the column are striding forward with the 
left foot when the drummer is advancing with the right foot What is 
the approximate length of the column? 

SSM IlW Earthquakes generate sound waves inside Earth. 
Unlike a gas, Earth can experience both transverse (S) and longitu­
dinal (P) sound waves. Typically, the speed of S waves is about 4.5 
kmls, and that of P waves 8.0 km/s. A seismograph records P and S 
waves from an earthquake. The first P waves arrive 3.0 min before 
the first S waves. If the waves travel in a straight line, how far away 
does the earthquake occur? 

A man strikes one end of a thin rod with a hammer. 
The speed of sound in the rod is 15 times the speed of sound in air. 
A woman, at the other end with her ear close to the rod, hears the 
sound of the blow twice with a 0.12 s interval between; one sound 
comes through the rod and the other comes through the air along­
side the rod. If the speed of sound in air is 343 mis, what is the 
length of the rod? 

SSM WWW A stone is dropped into a well. The splash is 
heard 3.00 s later. What is the depth of the well? 

Hot chocolate effect. Tap a metal spoon inside a mug of 
water and note the frequency.~ you hear. Then add a spoonful of 
powder (say, chocolate mix or instant coffee) and tap again as you 
stir the powder. The frequency you hear has a lower value f, be­
cause the tiny air bubbles released by the powder change the wa­
ter's bulk modulus. As the bubbles reach the water surface and dis-

appear, the frequency gradually shifts back to its initial value. 
During the effect, the bubbles don't appreciably change the water's 
density or volume or the sound's wavelength. Rather, they change 
the value of dV/dp-that is, the differential change in volume due 
to the differential change in the pressure caused by the sound wave 
in the water. If//fi = 0.333, what is the ratio (dV/dp )j(dVldp );? 

Traveling Sound Waves 
If the form of a sound wave traveling through air is 

sex, t) = (6.0 nm) cos(kx + (3000 rad/s)t + ¢), 

how much time does any given air molecule along the path take to 
move betweendisplacementss = +2.0 nmands = -2.0 nm? 

Underwater illusion. One clue used by your brain to 
determine the direction of a source 
of sound is the time delay I1t be­
tween the arrival of the sound at 
the ear closer to the source and the 
arrival at the farther ear. Assume 
that the source is distant so that a 
wavefront from it is approximately 
planar when it reaches you, and let 
D represent the separation between Fig. 1 7-30 Problem 10. 
your ears. (a) If the source is lo-
cated at angle 8 in front of you (Fig. 17-30), what is t:.t in terms of D 
and the speed of sound v in air? (b) If you are submerged in water 
and the sound source is directly to your right, what is t:.t in terms of 
D and the speed of sound v", in water? (c) Based on the time-delay 
clue, your brain interprets the submerged sound to arrive at an 
angle 8 from the forward direction. Evaluate 8 for fresh water at 
20°e. 

1 SSM Diagnostic ultrasound of frequency 4.50 MHz is used to 
examine tumors in soft tissue. (a) What is the wavelength in air of 
such a sound wave? (b) If the speed of sound in tissue is 1500 mis, 
what is the wavelength of this wave in tissue? 

The pressure in a traveling sound wave is given by the 
equation 

t:.p = (1.50 Pa) sin 1T[(0.900 m-1)x - (315 S-l)t]. 

Find the (a) pressure amplitude, (b) frequency, (c) wavelength, and 
(d) speed of the wave. 

A sound wave of the form s = Sill cos(kx - wt + ¢) travels 
at 343 mls through air in a long horizontal tube. At one instant, 
air molecule A at x = 2.000 m is at its maximum positive dis­
placement of 6.00 nm and air molecule B at x = 2.070 m is at a 
positive displacement of 2.00 nm. All the molecules between A 
and B are at intermediate displacements. What is the frequency 
of the wave? 

Figure 17-31 shows the output from a pressure monitor 
mounted at a point along the path taken by a sound wave 
of a single frequency traveling at 343 mls through air with a 
uniform density of 1.21 kg/m3. The vertical axis scale is set by 



/:"ps = 4.0 mPa. If the displace­
ment function of the wave is 
sex, t) = Sill cos(kx - wt), what 
are (a) Sill' (b) Ie, and (c) w? The 
air is then cooled so that its den­
sity is 1.35 kg/m3 and the speed 
of a sound wave through it is 320 
m/s. The sound source again 
emits the sound wave at the 
same frequency and same pres­
sure amplitude. What now are 
(d) Sill' (e) Ie, and (f) w? 

f:..jJ (mPa) 

t(ms) 

Fig. 17-31 Problem 14. 

A handclap on stage in an amphitheater sends out 
sound waves that scatter from terraces of width w = 0.75 m (Fig. 
17-32). The sound returns to the stage as a periodic series of pulses, 
one from each terrace; the parade of pulses sounds like a played 
note. (a) Assuming that all the rays in Fig. 17-32 are horizontal, find 
the frequency at which the pulses return (that is, the frequency of 
the perceived note). (b) If the width w of the terraces were smaller, 
would the frequency be higher or lower? 

Fig. 17-32 Problem 15. 

Interference 
Tho sound waves, from two different sources with the same 

frequency, 540 Hz, travel in the same direction at 330 m/s. The 
sources are in phase. What is the phase difference of the waves at a 
point that is 4.40 m from one source and 4.00 m from the other? 

IlW Two loud speakers are located 3.35 m apart on an 
outdoor stage. A listener is 18.3 m from one and 19.5 m from the 
other. During the sound check, a signal generator drives the two 
speakers in phase with the same amplitude and frequency. The trans­
mitted frequency is swept through the audible range (20 Hz to 20 
kHz). (a) What is the lowest frequency fmin,! that gives minimum sig­
nal (destructive interference) at the listener's location? By what 
number must fmin,! be multiplied to get (b) the second lowest fre­
quency fmin,2 that gives minimum signal and (c) the third lowest 
frequency fmin,3 that gives minimum signal? (d) What is the lowest fre­
quency fmax,! that gives maximum 
signal (constructive interference) at r-L-1 
the listener's location? By what A p 
number must fmax,! be multiplied to .-
get (e) the second lowest frequency L 

fmax,2 that gives maximum signal and B . - _1_ 
(f) the third lowest frequency fmax,3 

that gives maximum signal? 

In Fig, 17-33, sound 
waves A and B, both of wavelength 
A, are initially in phase and travel- Fig. 17-33 Problem 18. 
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ing rightward, as indicated by the two rays. Wave A is reflected from 
four surfaces but ends up traveling in its original direction. Wave B 
ends in that direction after reflecting from two surfaces. Let distance 
L in the figure be expressed as a multiple q of A: L = qA. What are 
the (a) smallest and (b) second smallest values of q that put A and B 
exactly out of phase with each other after the reflections? 

Figure 17-34 shows two !Ill !Ill 
S) l_ D _----1 S2 

isotropic point sources of sound, S! r-- - l 
and S2' The sources emit waves in 
phase at wavelength 0.50 m; they 
are separated by D = 1.75 m, If we 

Fig. 17-34 

Problems 19 and 105. 

move a sound detector along a large circle centered at the midpoint 
between the sources, at how many points do waves arrive at the de­
tector (a) exactly in phase and (b) exactly out of phase? 

Figure 17-35 shows four isotropic point sources of sound 
that are uniformly spaced on an x axis. The sources emit sound at 
the same wavelength A and same amplitude Sm' and they emit in 
phase. A point P is shown on the x axis. Assume that as the sound 
waves travel to P, the decrease in their amplitude is negligible. 
What multiple of Sill is the amplitude of the net wave at P if dis­
tance d in the figure is (a) A/4, (b) Al2, and (c) A7 

Fig. 17-35 Problem 20. 

SSM In Fig. 17-36, two speak­
ers separated by distance d! = 2.00 
m are in phase. Assume the ampli­
tudes of the sound waves from the 
speakers are approximately the 
same at the listener's ear at distance 
d2 = 3.75 m directly in front of one 
speaker. Consider the full audible 

p 

Speakers 

Listener 

range for normal hearing, 20 Hz to Fig. 17-36 Problem 21. 
20 kHz. (a) What is the lowest 
frequency fmin,! that gives minimum signal (destructive interfer­
ence) at the listener's ear? By what number must fmin I be multi­
plied to get (b) the second lowest frequency fmin,2 that 'gives mini­
mum signal and (c) the third lowest frequency fmin,3 that gives 
minimum signal? (d) What is the lowest frequency fmaxl that gives 
maximum signal (constructive interference) at the list'ener's ear? 
By what number must fmax,) be multiplied to get (e) the second 
lowest frequency fmax,2 that gives maximum signal and (f) the third 
lowest frequency fmax,3 that gives maximum signal? 

In Fig. 17-37, sound with a 40.0 cm wavelength travels right­
ward from a source and through a tube that consists of a straight por­
tion and a half-circle. Part of the sound wave travels through the 
half-circle and then rejoins the rest of the wave, which goes directly 
through the straight portion. This rejoining results in interference. 
What is the smallest radius /' that results in an intensity minimum 
at the detector? 

Source Detector 

Fig. 17-37 Problem 22. 
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)' Figure 17-38 shows two 
point sources SI and S2 that emit 
sound of wavelength A = 2.00 m. 
The emissions are isotropic and in -.--+-S-'I ______ -p-x 

phase, and the separation between I 
d 

the sources is d = 16.0 m. At any ~ 
point P on the x axis, the wave from S2 

S) and the wave from S2 interfere. 
When P is very far away (x = 00), 
what are (a) the phase difference Fig.17-38 Problem 23. 
between the arriving waves from 
S) and S2 and (b) the type of interference they produce? Now 
move point P along the x axis toward SI' (c) Does the phase dif­
ference between the waves increase or decrease? At what dis­
tance x do the waves have a phase difference of (d) 0.50.1, (e) 
1.00.1, and (f) 1.50A? 

Intensity and Sound Level 
Suppose that the sound level of a conversation is initially at 

an angry 70 dB and then drops to a soothing 50 dB. Assuming that 
the frequency of the sound is 500 Hz, determine the (a) initial and 
(b) final sound intensities and the (c) initial and (d) final sound 
wave amplitudes. 

A sound wave of frequency 300 Hz has an intensity of 1.00 
fhW/m2• What is the amplitude of the air oscillations caused by this 
wave? 

A 1.0 W point source emits sound waves isotropically. 
Assuming that the energy of the waves is conserved, find the intensity 
(a) 1.0 m from the source and (b) 2.5 m from the source. 

SSM WWW A certain sound source is increased in sound 
level by 30.0 dB. By what multiple is (a) its intensity increased and 
(b) its pressure amplitude increased? 

Two sounds differ in sound level by 1.00 dB. What is the ratio 
of the greater intensity to the smaller intensity? 

SSM A source emits sound waves isotropically. The intensity of 
the waves 2.50 m from the source is 1.91 X 10-4 W/m2. Assuming that 
the energy of the waves is conserved, find the power of the source. 

The source of a sound wave has a power of 1.00 fh W. If it is a 
point source, (a) what is the intensity 3.00 m away and (b) what is 
the sound level in decibels at that distance? 

When you "crack" a knuckle, you suddenly widen 
the knuckle cavity, allowing more volume for the synovial fluid in­
side it and causing a gas bubble suddenly to appear in the fluid. The 
sudden production of the bubble, called "cavitation," produces a 
sound pulse-the cracking sound. Assume that the sound is trans­
mitted uniformly in all directions and that it fully passes from the 
knuckle interior to the outside. If the pulse has a sound level of 62 
dB at your ear, estimate the rate at which energy is produced by 
the cavitation. 

Approximately a third of people with normal hearing 
have ears that continuously emit a low-intensity sound outward 
through the ear canal. A person with such spontaneous otoacollstic 
emission is rarely aware of the sound, except perhaps in a noise­
free environment, but occasionally the emission is loud enough to 
be heard by someone else nearby. In one observation, the sound 
wave had a frequency of 1665 Hz and a pressure amplitude of 
1.13 X 10-3 Pa. What were (a) the displacement amplitude and (b) 
the intensity of the wave emitted by the ear? 

Male Rana catesbeiana bullfrogs are known for their 
loud mating call. The call is emitted not by the frog's mouth but by 
its eardrums, which lie on the surface of the head. And, surprisingly, 
the sound has nothing to do with the frog's inflated throat. If the 
emitted sound has a frequency of 260 Hz and a sound level of 85 dB 
(near the eardrum), what is the amplitude of the eardrum's oscilla­
tion? The air density is 1.21 kg/m3. 

Two atmospheric sound sources A and B emit isotropi­
cally at constant power. The sound levels f3 of their emissions are 
plotted in Fig. 17-39 versus the radial distance r from the sources. 
The vertical axis scale is set by f31 = 85.0 dB and f32 = 65.0 dB. 
What are (a) the ratio of the larger power to the smaller power and 
(b) the sound level difference at r = 10 m? 

r(m) 

Fig. 17-39 Problem 34. 

A point source emits 30.0 W of sound isotropically.A small mi­
crophone intercepts the sound in an area of 0.750 cm2, 200 m from 
the source. Calculate (a) the sound intensity there and (b) the power 
intercepted by the microphone. 

Party hearing. As the number of people at a party in­
creases, you must raise your voice for a listener to hear you against 
the background noise of the other partygoers. However, once you 
reach the level of yelling, the only way you can be heard is if you 
move closer to your listener, into the listener's "personal space." 
Model the situation by replacing you with an isotropic point source 
of fixed power P and replacing your listener with a point that ab­
sorbs part of your sound waves. These points are initially separated 
by ri = 1.20 m. If the background noise increases by D.f3 = 5 dB, the 
sound level at your listener must also increase. What separation rf is 
then required? 

A sound source sends a sinusoidal sound wave of angular 
frequency 3000 rad/s and amplitude 12.0 nm through a tube of air. 
The internal radius of the tube is 2.00 cm. (a) What is the average 
rate at which energy (the sum of the kinetic and potential ener­
gies) is transported to the opposite end of the tube? (b) If, simulta­
neously, an identical wave travels along an adjacent, identical tube, 
what is the total average rate at which energy is transported to the 
opposite ends of the two tubes by the waves? If, instead, those two 
waves are sent along the same tube simultaneously, what is the to­
tal average rate at which they transport energy when their phase 
difference is (c) 0, (d) 0.401rrad, and (e) 1Trad? 

Sources of Musical Sound 
The water level in a vertical glass tube 1.00 m long can be ad­

justed to any position in the tube. A tuning fork vibrating at 686 Hz 
is held just over the open top end of the tube, to set up a standing 
wave of sound in the air-filled top portion of the tube. (That air-



filled top portion acts as a tube with one end closed and the other 
end open.) (a) For how many different positions of the water level 
will sound from the fork set up resonance in the tube's air-filled 
portion, which acts as a pipe with one end closed (by the water) 
and the other end open? What are the (b) least and (c) second least 
water heights in the tube for resonance to occur? 

SSM IlW (a) Find the speed of waves on a violin string of 
mass 800 mg and length 22.0 cm if the fundamental frequency is 
920 Hz. (b) What is the tension in the string? For the fundamental, 
what is the wavelength of (c) the waves on the string and (d) the 
sound waves emitted by the string? 

Organ pipe A, with both ends open, has a fundamental fre­
quency of 300 Hz. The third harmonic of organ pipe B, with one 
end open, has the same frequency as the second harmonic of pipe 
A. How long are (a) pipe A and (b) pipe B? 

A violin string 15.0 cm long and fixed at both ends oscillates 
in its n = 1 mode. The speed of waves on the string is 250 mis, and 
the speed of sound in air is 348 m/s. What are the (a) frequency and 
(b) wavelength of the emitted sound wave? 

A sound wave in a fluid medium is reflected at a barrier so 
that a standing wave is formed. The distance between nodes is 3.8 
cm, and the speed of propagation is 1500 m/s. Find the frequency of 
the sound wave. 

SSM In Fig. 17-40, S is a small loudspeaker 
driven by an audio oscillator with a frequency 
that is varied from 1000 Hz to 2000 Hz, and D is a 
cylindrical pipe with two open ends and a length 
of 45.7 cm. The speed of sound in the air-filled 
pipe is 344 mls. (a) At how many frequencies 
does the sound from the loudspeaker set up reso­
nance in the pipe? What are the (b) lowest and 
(c) second lowest frequencies at which resonance 
occurs? 

Fig. 17-40 

Problem 43. 

The crest of a Parasaurolophus dinosaur skull con­
tains a nasal passage in the shape of a long, bent tube open at both 
ends. The dinosaur may have used the passage to produce sound by 
setting up the fundamental mode in it. (a) If the nasal passage in a 
certain Parasaul'Olophus fossil is 2.0 m long, what frequency would 
have been produced? (b) If that dinosaur could be recreated (as in 
Jurassic Park), would a person with a hearing range of 60 Hz to 20 
kHz be able to hear that fundamental mode and, if so, would the 
sound be high or low frequency? Fossil skulls that contain shorter 
nasal passages are thought to be those of the female 
Parasaurolophus. (c) Would that make the female's fundamental 
frequency higher or lower than the male's? 

In pipe A, the ratio of a particular harmonic frequency to the 
next lower harmonic frequency is 1.2. In pipe B, the ratio of a par­
ticular harmonic frequency to the next lower harmonic frequency 
is 1.4. How many open ends are in (a) pipe A and (b) pipe B? 

Pipe A, which is 1.20 m long and open at both ends, 
oscillates at its third lowest harmonic frequency. It is filled with air 
for which the speed of sound is 343 m/s. Pipe B, which is closed at 
one end, oscillates at its second lowest harmonic frequency. This 
frequency of B happens to match the frequency of A. An x axis ex­
tends along the interior of B, with x = 0 at the closed end. (a) How 
many nodes are along that axis? What are the (b) smallest and (c) 
second smallest value of x locating those nodes? (d) What is the 
fundamental frequency of B? 

PROBLEMS 471 

A well with vertical sides and water at the bottom resonates 
at 7.00 Hz and at no lower frequency. (The air-filled portion of the 
well acts as a tube with one closed end and one open end.) The air 
in the well has a density of 1.10 kg/m3 and a bulk modulus of 
1.33 X 105 Pa. How far down in the well is the water surface? 

··48 One of the harmonic frequencies of tube A with two open 
ends is 325 Hz. The next-highest harmonic frequency is 390 Hz. (a) 
What harmonic frequency is next highest after the harmonic 
frequency 195 Hz? (b) What is the number of this next-highest 
harmonic? 

One of the harmonic frequencies of tube B with only one 
open end is 1080 Hz. The next-highest harmonic frequency is 1320 
Hz. (c) What harmonic frequency is next highest after the har­
monic frequency 600 Hz? (d) What is the number of this next-high­
est harmonic? 

SSM A violin string 30.0 cm long with linear density 
0.650 glm is placed near a loudspeaker that is fed by an audio oscil­
lator of variable frequency. It is found that the string is set into os­
cillation only at the frequencies 880 and 1320 Hz as the frequency 
of the oscillator is varied over the range 500-1500 Hz. What is the 
tension in the string? 

A tube 1.20 m long is closed at one end. A stretched 
wire is placed near the open end. The wire is 0.330 m long and has a 
mass of 9.60 g. It is fixed at both ends and oscillates in its funda­
mental mode. By resonance, it sets the air column in the tube into 
oscillation at that column's fundamental frequency. Find (a) that 
frequency and (b) the tension in the wire. 

Beats 
The A string of a violin is a little too tightly stretched. Beats 

at 4.00 per second are heard when the string is sounded together 
with a tuning fork that is oscillating accurately at concert A (440 
Hz). What is the period of the violin string oscillation? 

A tuning fork of unknown frequency makes 3.00 beats per 
second with a standard fork of frequency 384 Hz. The beat fre­
quency decreases when a small piece of wax is put on a prong of 
the first fork. What is the frequency of this fork? 

SSM Two identical piano wires have a fundamental fre­
quency of 600 Hz when kept under the same tension. What frac­
tional increase in the tension of one wire will lead to the occur­
rence of 6.0 beatsls when both wires oscillate simultaneously? 

You have five tuning forks that oscillate at close but differ­
ent frequencies. What are the (a) maximum and (b) minimum 
number of different beat frequencies you can produce by sounding 
the forks two at a time, depending on how the frequencies differ? 

The Doppler Effect 
IlW A whistle of frequency 540 Hz moves in a circle of 

radius 60.0 cm at an angular speed of 15.0 rad/s. What are the (a) 
lowest and (b) highest frequencies heard by a listener a long dis­
tance away, at rest with respect to the center of the circle? 

An ambulance with a siren emitting a whine at 1600 Hz over­
takes and passes a cyclist pedaling a bike at 2.44 mls. After being 
passed, the cyclist hears a frequency of 1590 Hz. How fast is the 
ambulance moving? 

A state trooper chases a speeder along a straight road; both 
vehicles move at 160 kmlh. The siren on the trooper's vehicle pro­
duces sound at a frequency of 500 Hz. What is the Doppler shift in 
the frequency heard by the speeder? 
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A sound source A and a reflecting surface B move directly 
toward each other. Relative to the air, the speed of source A is 29.9 
mis, the speed of surface B is 65.8 mis, and the speed of sound is 
329 m/s. The source emits waves at frequency 1200 Hz as measured 
in the source frame. In the reflector frame, what are the (a) fre­
quency and (b) wavelength of the arriving sound waves? In the 
source frame, what are the (c) frequency and (d) wavelength of the 
sound waves reflected back to the source? 

In Fig. 17-41, a French submarine and a US. submarine 
move toward each other during maneuvers in motionless water in 
the North Atlantic. The French sub moves at speed VF = 50.00 
kmlh, and the US. sub at Vus = 70.00 km/h. The French sub sends 
out a sonar signal (sound wave in water) at 1.000 X 103 Hz. Sonar 
waves travel at 5470 km/h. (a) What is the signal's frequency as de­
tected by the US. sub? (b) What frequency is detected by the 
French sub in the signal reflected back to it by the US. sub? 

1111~lllllllllrlllJII 
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Fig. 17-41 Problem 59. 

A stationary motion detector sends sound waves of frequency 
0.150 MHz toward a truck approaching at a speed of 45.0 mls. What is 
the frequency of the waves reflected back to the detector? 

A bat is flitting about in a cave, navigating via ultra­
sonic bleeps. Assume that the sound emission frequency of the bat 
is 39 000 Hz. During one fast swoop directly toward a flat wall sur­
face, the bat is moving at 0.025 times the speed of sound in air. 
What frequency does the bat hear reflected off the wall? 

Figure 17-42 shows 1[:::== 
four tubes with lengths 1.0 m 2::::::::::::== 
or 2.0 m, with one or two [===== 

31 open ends as drawn. The 
third harmonic is set up in 4 ===== 

0--
D 

each tube, and some of the Fig. 17-42 Problem 62. 
sound that escapes from 
them is detected by detector D, which moves directly away from 
the tubes. In terms of the speed of sound v, what speed must the 
detector have such that the detected frequency of the sound from 
(a) tube 1, (b) tube 2, (c) tube 3, and (d) tube 4 is equal to the 
tube's fundamental frequency? 

ILW An acoustic burglar alarm consists of a source emitting 
waves of frequency 28.0 kHz. What is the beat frequency between 
the source waves and the waves reflected from an intruder walking 
at an average speed of 0.950 m/s directly away from the alarm? 

A stationary detector measures the frequency of a sound 
source that first moves at constant velocity directly toward the de­
tector and then (after passing the detector) directly away from it. 
The emitted frequency is f. During the approach the detected fre­
quency is f~pp and during the recession it is f~ec' If (f~pp - f~ec)lf = 
0.500, what is the ratio vslv of the speed of the source to the speed 
of sound? 

A 2000 Hz siren and a civil defense official are both at 
rest with respect to the ground. What frequency does the official 
hear if the wind is blowing at 12 m/s (a) from source to official and 
(b) from official to source? 

Two trains are traveling toward each other at 30.5 m/s rela­
tive to the ground. One train is blowing a whistle at 500 Hz. (a) 
What frequency is heard on the other train in still air? (b) What fre­
quency is heard on the other train if the wind is blowing at 30.5 mls 
toward the whistle and away from the listener? (c) What frequency 
is heard if the wind direction is reversed? 

SSM WWW A girl is sitting near the open window of a 
train that is moving at a velocity of 10.00 m/s to the east. The girl's 
uncle stands near the tracks and watches the train move away. The 
locomotive whistle emits sound at frequency 500.0 Hz. The air is 
still. (a) What frequency does the uncle hear? (b) What frequency 
does the girl hear? A wind begins to blow from the east at 10.00 
mls. (c) What frequency does the uncle now hear? (d) What fre­
quency does the girl now hear? 

Supersonic Speeds, Shock Waves 
The shock wave off the cockpit of the FA 18 in Fig. 17-23 has 

an angle of about 60°. The airplane was traveling at about 1350 km/h 
when the photograph was taken. Approximately what was the speed 
of sound at the airplane's altitude? 

SSM A jet plane passes over you at a height of 5000 
m and a speed of Mach 1.5. (a) Find the Mach cone angle (the 
sound speed is 331 mls). (b) How long after the jet passes directly 
overhead does the shock wave reach you? 

A plane flies at 1.25 times the speed of sound. Its sonic boom 
reaches a man on the ground 1.00 min after the plane passes di­
rectly overhead. What is the altitude of the plane? Assume the 
speed of sound to be 330 m/s. 

Additional Problems 
At a distance of 10 km, a 100 Hz horn, assumed to be an 

isotropic point source, is barely audible. At what distance would it 
begin to cause pain? 

A bullet is fired with a speed of 685 m/s. Find the angle made 
by the shock cone with the line of motion of the bullet. 

A sperm whale (Fig. 17-43a) vocalizes by producing a 
series of clicks. Actually, the whale makes only a single sound near 
the front of its head to start the series. Part of that sound then 
emerges from the head into the water to become the first click of 
the series. The rest of the sound travels backward through the sper-

Distal 
sac 
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1.0 ms 

Spermaceti sac 

Fig. 17-43 Problem 73. 

Frontal 
sac 



maceti sac (a body of fat), reflects from the frontal sac (an air 
layer), and then travels forward through the spermaceti sac. When 
it reaches the distal sac (another air layer) at the front of the head, 
some of the sound escapes into the water to form the second click, 
and the rest is sent back through the spermaceti sac (and ends up 
forming later clicks). 

Figure 17 -43b shows a strip-chart recording of a series of clicks. 
A unit time interval of 1.0 ms is indicated on the chart. Assuming that 
the speed of sound in the spermaceti sac is 1372 mis, find the length of 
the spermaceti sac. From such a calculation, marine scientists esti­
mate the length of a whale from its click series. 

The average density of Earth's crust 10 km beneath the conti­
nents is 2.7 g/cm3• The speed of longitudinal seismic waves at that 
depth, found by timing their arrival from distant earthquakes, is 5.4 
km/s. Use this information to find the bulk modulus of Earth's 
crust at that depth. For comparison, the bulk modulus of steel is 
about 16 X 1010 Pa. 

A certain loudspeaker system emits sound isotropically with a 
frequency of 2000 Hz and an intensity of 0.960 mW/m2 at a dis­
tance of 6.10 m. Assume that there are no reflections. (a) What is 
the intensity at 30.0 m? At 6.10 m, what are (b) the displacement 
amplitude and (c) the pressure amplitude? 

Find the ratios (greater to smaller) of the (a) intensities, (b) 
pressure amplitudes, and (c) particle displacement amplitudes for 
two sounds whose sound levels differ by 37 dB. 

In Fig. 17-44, sound waves A and B, both of wavelength A, are 
initially in phase and traveling right- A 
ward, as indicated by the two rays. __ --"I-.. 
Wave A is reflected from four sur-
faces but ends up traveling in its 
original direction. What multiple of 
wavelength A is the smallest value of 
distance L in the figure that puts A 
and B exactly out of phase with 
each other after the reflections? B 

r 
L 
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L 

A trumpet player on a moving Fig. 17-44 Problem 77. 
railroad flatcar moves toward a sec-
ond trumpet player standing alongside the track while both play 
a 440 Hz note. The sound waves heard by a stationary observer be­
tween the two players have a beat frequency of 4.0 beats/s. What is 
the flatcar's speed? 

In Fig. 17-45, sound of wavelength 0.850 m is emitted 
isotropically by point source S. Sound ray 1 extends directly to 
detector D, at distance L = 10.0 m. Sound ray 2 extends to D via a 
reflection (effectively, a "bouncing") of the sound at a flat surface. 
That reflection occurs on a perpendicular bisector to the SD line, at 
distance d from the line. Assume that the reflection shifts the sound 
wave by 0.500A. For what least value of d (other than zero) do the 
direct sound and the reflected sound arrive at D (a) exactly out of 
phase and (b) exactly in phase? 

s 
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Fig. 17-45 Problem 79. 
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A detector initially moves at constant velocity directly 
toward a stationalY sound source and then (after passing it) directly 
from it. The emitted frequency is f During the approach the detected 
frequency is f~pp and during the recession it is f;ec' If the frequencies 
are related by (f~pp - f;ec)lf = 0.500, what is the ratio v Dlv of the 
speed of the detector to the speed of sound? 

SSM (a) If two sound waves, one in air and one in (fresh) 
water, are equal in intensity and angular frequency, what is the ra­
tio of the pressure amplitude of the wave in water to that of the 
wave in air? Assume the water and the air are at 20°e. (See Table 
14-1.) (b) If the pressure amplitudes are equal instead, what is the 
ratio of the intensities of the waves? 

A continuous sinusoidal longitudinal wave is sent along a very 
long coiled spring from an attached oscillating source. The wave 
travels in the negative direction of an x axis; the source frequency 
is 25 Hz; at any instant the distance between successive points of 
maximum expansion in the spring is 24 cm; the maximum longitu­
dinal displacement of a spring particle is 0.30 cm; and the particle 
at x = 0 has zero displacement at time t = O. If the wave is written 
in the form sex, t) = Sm cos(kx ± wt), what are (a) Sm' (b) k, (c) w, 
(d) the wave speed, and (e) the correct choice of sign in front of w? 

SSM Ultrasound, which con­
sists of sound waves with fre­
quencies above the human audible 
range, can be used to produce an 
image of the interior of a human 
body. Moreover, ultrasound can be 
used to measure the speed of the 

Incident 
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blood in the body; it does so by 
Fig. 17-46 Problem 83. 

comparing the frequency of the 
ultrasound sent into the body with the frequency of the ultrasound 
reflected back to the body's surface by the blood. As the blood 
pulses, this detected frequency varies. 

Suppose that an ultrasound image of the arm of a patient shows 
an artery that is angled at () = 20° to the ultrasound's line of travel 
(Fig. 17-46). Suppose also that the frequency of the ultrasound re­
flected by the blood in the artery is increased by a maximum of 5495 
Hz from the original ultrasound frequency of 5.000 000 MHz. (a) In 
Fig. 17-46, is the direction of the blood flow rightward or leftward? 
(b) The speed of sound in the human arm is 1540 m/s. What is 
the maximum speed of the blood? (Hint: The Doppler effect is 
caused by the component of the blood's velocity along the ultra­
sound's direction of travel.) (c) If angle (}were greater, would the re­
flected frequency be greater or less? 

The speed of sound in a certain metal is vm• One end of a 
long pipe of that metal of length L is struck a hard blow. 
A listener at the other end hears two sounds, one from the wave 
that travels along the pipe's metal wall and the other from the 
wave that travels through the air inside the pipe. (a) If v is the 
speed of sound in air, what is the time intervall:::.t between the ar­
rivals of the two sounds at the listener's ear? (b) If I:::.t = 1.00 sand 
the metal is steel, what is the length L? 

An avalanche of sand along some rare desert sand 
dunes can produce a booming that is loud enough to be heard 10 
km away. The booming apparently results from a periodic oscilla­
tion of the sliding layer of sand-the layer's thickness expands 
and contracts. If the emitted frequency is 90 Hz, what are (a) the 
period of the thickness oscillation and (b) the wavelength of the 
sound? 
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A sound source moves along an x axis, between detectors A 
and B. The wavelength of the sound detected at A is 0.500 that of 
the sound detected at B. What is the ratio vJv of the speed of the 
source to the speed of sound? 

SSM A siren emitting a sound of frequency 1000 Hz moves 
away from you toward the face of a cliff at a speed of 10 m/s. Take 
the speed of sound in air as 330 m/s. (a) What is the frequency of 
the sound you hear coming directly from the siren? (b) What is the 
frequency of the sound you hear reflected off the cliff? (c) What is 
the beat frequency between the two sounds? Is it perceptible (less 
than 20 Hz)? 

At a certain point, two waves produce pressure variations given 
by LlPI = LlPIIl sin wt and Llpz = LlPIIl sin(wt - ¢).At this point, what is 
the ratio LlPrILlPIIl' where LlPr is the pressure amplitude of the resul­
tant wave, if ¢is (a) 0, (b) '1T12, (c) '1T13, and (d) '1T14? 

Two sound waves with an amplitude of 12 nm and a wave­
length of 35 cm travel in the same direction through a long tube, 
with a phase difference of '1T13 rad. What are the (a) amplitude and 
(b) wavelength of the net sound wave produced by their interfer­
ence? If, instead, the sound waves travel through the tube in oppo­
site directions, what are the (c) amplitude and (d) wavelength of 
the net wave? 

A sinusoidal sound wave moves at 343 mls through air in the 
positive direction of an x axis. At one instant, air molecule A is at 
its maximum displacement in the negative direction of the axis 
while air molecule B is at its equilibrium position. The separation 
between those molecules is 15.0 cm, and the molecules between A 
and B have intermediate displacements in the negative direction of 
the axis. (a) What is the frequency of the sound wave? 

In a similar arrangement, for a different sinusoidal sound 
wave, air molecule C is at its maximum displacement in the posi­
tive direction while molecule D is at its maximum displacement in 
the negative direction. The separation between the molecules is 
again 15.0 cm, and the molecules between C and D have intermedi­
ate displacements. (b) What is the frequency of the sound wave? 

Two identical tuning forks can oscillate at 440 Hz. A person is 
located somewhere on the line between them. Calculate the beat 
frequency as measured by this individual if (a) she is standing still 
and the tuning forks move in the same direction along the line at 
3.00 mis, and (b) the tuning forks are stationary and the listener 
moves along the line at 3.00 m/s. 

You can estimate your distance from a lightning stroke by 
counting the seconds between the flash you see and the thunder 
you later hear. By what integer should you divide the number of 
seconds to get the distance in kilometers? 

SSM Figure 17-47 shows an air-filled, acoustic interferometer, 
used to demonstrate the interference of sound waves. Sound source 
S is an oscillating diaphragm; D is a sound detector, such as the ear 
or a microphone. Path SBD can be varied in length, but path SAD is 
fixed. At D, the sound wave coming along path SBD interferes with 
that coming along path SAD. In one 
demonstration, the sound intensity 
at D has a minimum value of 100 
units at one position of the movable 
arm and continuously climbs to a 
maximum value of 900 units when 
that arm is shifted by 1.65 cm. Find 
(a) the frequency of the sound emit- Fig. 17-47 Problem 93. 

ted by the source and (b) the ratio of the amplitude at D of the 
SAD wave to that of the SBD wave. (c) How can it happen that 
these waves have different amplitudes, considering that they origi­
nate at the same source? 

On July 10, 1996, a granite block broke away from a wall in 
Yosemite Valley and, as it began to slide down the wall, was 
launched into projectile motion. Seismic waves produced by its im­
pact with the ground triggered seismographs as far away as 200 
km. Later measurements indicated that the block had a mass be­
tween 7.3 X 107 kg and 1.7 X 108 kg and that it landed 500 m verti­
cally below the launch point and 30 m horizontally from it. (The 
launch angle is not known.) (a) Estimate the block's kinetic energy 
just before it landed. 

Consider two types of seismic waves that spread from the im­
pact point-a hemispherical body wave traveled through the 
ground in an expanding hemisphere and a cylindrical swjace wave 
traveled along the ground in an expanding shallow vertical cylin­
der (Fig. 17-48). Assume that the impact lasted 0.50 s, the vertical 
cylinder had a depth d of 5.0 m, and each wave type received 20% 
of the energy the block had just before impact. Neglecting any me­
chanical energy loss the waves experienced as they traveled, deter­
mine the intensities of (b) the body wave and (c) the surface wave 
when they reached a seismograph 200 km away. (d) On the basis of 
these results, which wave is more easily detected on a distant 
seismograph? 

Cylindrical 

T 

Hemispherical wave 

Fig. 17-48 Problem 94. 

SSM The sound intensity is 0.0080 W/mz at a distance of 10 m 
from an isotropic point source of sound. (a) What is the power of the 
source? (b) What is the sound intensity 5.0m from the source? (c) 
What is the sound level 10 m from the source? 

Four sound waves are to be sent through the same tube of air, 
in the same direction: 

SI(X, t) = (9.00 nm) cos(2m - 700'1Tt) 

sz(x, t) = (9.00 nm) cos(2m - 700'1Tt + 0.7'1T) 

S3(X, t) = (9.00 nm) cos(2m - 700'1Tt + '1T) 

S4(X, t) = (9.00 nm) cos(2m - 700'1Tt + 1.7 '1T). 

What is the amplitude of the resultant wave? (Hint: Use a phasor 
diagram to simplify the problem.) 

Straight line AB connects two point sources that are 5.00 m 
apart, emit 300 Hz sound waves of the same amplitude, and emit 
exactly out of phase. (a) What is the shortest distance between the 
midpoint of AB and a point on AB where the interfering waves 
cause maximum oscillation of the air molecules? What are the (b) 
second and (c) third shortest distances? 

A point source that is stationary on an x axis emits a sinusoidal 



sound wave at a frequency of 686 Hz and speed 343 m/s. The wave 
travels radially outward from the source, causing air molecules to 
oscillate radially inward and outward. Let us define a wavefront as 
a line that connects points where the air molecules have the maxi­
mum, radially outward displacement. At any given instant, the 
wavefronts are concentric circles that are centered on the source. 
(a) Along x, what is the adjacent wavefront separation? Next, the 
source moves along x at a speed of 110 m/s. Along x, what are the 
wavefront separations (b) in front of and (c) behind the source? 

You are standing at a distance D from an isotropic point source 
of sound. You walk 50.0 m toward the source and observe that the 
intensity of the sound has doubled. Calculate the distance D. 

1 Pipe A has only one open end; pipe B is four times as long and 
has two open ends. Of the lowest 10 harmonic numbers n B of pipe B, 
what are the (a) smallest, (b) second smallest, and (c) third smallest 
values at which a harmonic frequency of B matches one of the har­
monic frequencies of A ? 

1 A pipe 0.60 m long and closed at one end is filled with an un­
known gas. The third lowest harmonic frequency for the pipe is 750 
Hz. (a) What is the speed of sound in the unknown gas? (b) What is 
the fundamental frequency for this pipe when it is filled with the 
unknown gas? 

1 A sound wave travels out uniformly in all directions from a 
point source. (a) Justify the following expression for the displace-
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ment s of the transmitting medium at any distance I' from the 
source: 

s = ~ sin k(r - vt), 
r 

where b is a constant. Consider the speed, direction of propaga­
tion, periodicity, and intensity of the wave. (b) What is the dimen­
sion of the constant b? 

A police car is chasing a speeding Porsche 911. Assume that 
the Porsche's maximum speed is 80.0 mls and the police car's is 
54.0 m/s. At the moment both cars reach their maximum speed, 
what frequency will the Porsche driver hear if the frequency of the 
police car's siren is 440 Hz? Take the speed of sound in air to be 
340 m/s. 

1 Suppose a spherical loudspeaker emits sound isotropically at 
10 W into a room with completely absorbent walls, floor, and ceiling 
(an anechoic chamber). (a) What is the intensity of the sound at dis­
tance d = 3.0 m from the center of the source? (b) What is the ratio 
of the wave amplitude at d = 4.0 m to that at d = 3.0 m? 

In Fig. 17-34, S 1 and S2 are two isotropic point sources of 
sound. They emit waves in phase at wavelength 0.50 m; they are 
separated by D = 1.60 m. If we move a sound detector along a 
large circle centered at the midpoint between the sources, at how 
many points do waves arrive at the detector (a) exactly in phase 
and (b) exactly out of phase? 



476 

10-2 

- Universe just after 
beginning 

_ Highest laboratory 
temperature 

- Center of the Sun 

~ Surface of the Sun 

~ Tungsten melts 
- '<Vater freezes 

- Universe today 
- Boiling helium-3 

10-9 - Record low temperature 

Fig. 18-1 Some temperatures on 
the Kelvin scale. Temperature T = 0 
corresponds to 10-00 and cannot be 
plotted on this logarithmic scale. 

I 

WHATlSPH1SlCS? . 
One of the principal branches of physics and engineering is 

thermodynamics, which is the study and application of the thermal energy (often 
called the internal energy) of systems. One of the central concepts of thermody­
namics is temperature, which we begin to explore in the next section. Since 
childhood, you have been developing a working knowledge of thermal energy 
and temperature. For example, you know to be cautious with hot foods and hot 
stoves and to store perishable foods in cool or cold compartments. You also know 
how to control the temperature inside home and car, and how to protect yourself 
from wind chill and heat stroke. 

Examples of how thermodynamics figures into everyday engineering and 
science are countless. Automobile engineers are concerned with the heating of a 
car engine, such as during a NASCAR race. Food engineers are concerned both 
with the proper heating of foods, such as pizzas being microwaved, and with the 
proper cooling of foods, such as TV dinners being quickly frozen at a processing 
plant. Geologists are concerned with the transfer of thermal energy in an El Nino 
event and in the gradual warming of ice expanses in the Arctic and Antarctic. 
Agricultural engineers are concerned with the weather conditions that determine 
whether the agriculture of a country thrives or vanishes. Medical engineers are 
concerned with how a patient's temperature might distinguish between a benign 
viral infection and a cancerous growth. 

The starting point in our discussion of thermodynamics is the concept of 
temperature and how it is measured. 

Temperature 
Temperature is one of the seven SI base quantities. Physicists measure tempera­
ture on the Kelvin scale, which is marked in units called kelvins. Although the 
temperature of a body apparently has no upper limit, it does have a lower limit; 
this limiting low temperature is taken as the zero of the Kelvin temperature scale. 
Room temperature is about 290 kelvins, or 290 K as we write it, above this 
absolute zero. Figure 18-1 shows a wide range of temperatures. 
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When the universe began 13.7 billion years ago, its temperature was about 1039 K. 
As the universe expanded it cooled, and it has now reached an average temperature of 
about 3 K. We on Earth are a little warmer than that because we happen to live near a 
star. Without our Sun, we too would be at 3 K (or,rather, we could not exist). 

1 The Zeroth law of Thermodynamics 
The properties of many bodies change as we alter their temperature, perhaps by 
moving them from a refrigerator to a warm oven. To give a few examples: As 
their temperature increases, the volume of a liquid increases, a metal rod grows a 
little longer, and the electrical resistance of a wire increases, as does the pressure 
exerted by a confined gas. We can use anyone of these properties as the basis of 
an instrument that will help us pin down the concept of temperature. 

Figure 18-2 shows such an instrument. Any resourceful engineer could design 
and construct it, using anyone of the properties listed above. The instrument is 
fitted with a digital readout display and has the following properties: If you heat it 
(say, with a Bunsen burner), the displayed number starts to increase; if you then 
put it into a refrigerator, the displayed number starts to decrease. The instrument 
is not calibrated in any way, and the numbers have (as yet) no physical meaning. 
The device is a thermoscope but not (as yet) a thermometer. 

Suppose that, as in Fig. 18-3a, we put the thermoscope (which we shall call 
body T) into intimate contact with another body (body A). The entire system is 
confined within a thick-walled insulating box. The numbers displayed by the 
thermoscope roll by until, eventually, they come to rest (let us say the reading is 
"137.04") and no further change takes place. In fact, we suppose that every 
measurable property of body T and of body A has assumed a stable, unchanging 
value. Then we say that the two bodies are in thermal equilibrium with each other. 
Even though the displayed readings for body T have not been calibrated, we 
conclude that bodies Tand A must be at the same (unknown) temperature. 

Suppose that we next put body Tinto intimate contact with body B (Fig. 18-3b) 
and find that the two bodies come to thermal equilibrium at the same reading o/the 
thermoscope. Then bodies T and B must be at the same (still unknown) tempera­
ture. If we now put bodies A and B into intimate contact (Fig. 18-3c), are they im­
mediately in thermal equilibrium with each other? Experimentally, we find that 
they are. 

The experimental fact shown in Fig. 18-3 is summed up in the zel'oth law of 
thel'modynamics: 

If bodies A and B are each in thermal equilibrium with a third body T, then A and B 
are in thermal equilibrium with each other. 

In less formal language, the message of the zeroth law is: "Every body has a 
property called tempemtUl'e. When two bodies are in thermal equilibrium, their 
temperatures are equal. And vice versa." We can now make our thermoscope 
(the third body T) into a thermometer, confident that its readings will have 
physical meaning. All we have to do is calibrate it. 

We use the zeroth law constantly in the laboratory. If we want to know whether 
the liquids in two beakers are at the same temperature, we measure the tempera­
ture of each with a thermometer. We do not need to bring the two liquids into 
intimate contact and observe whether they are or are not in thermal equilibrium. 

The zeroth law, which has been called a logical afterthought, came to light 
only in the 1930s, long after the first and second laws of thermodynamics had 
been discovered and numbered. Because the concept of temperature is funda­
mental to those two laws, the law that establishes temperature as a valid concept 
should have the lowest number-hence the zero. 

Thermally sensitive 
element 

Fig. 1 8-2 A thelmoscope. The numbers 
increase when the device is heated and 
decrease when it is cooled. The thermally 
sensitive element could be-among many 
possibilities-a coil of wire whose electrical 
resistance is measured and displayed. 

Fig. 1 8-3 (a) Body T (a thermoscope) 
and body A are in thermal equilibrium. 
(Body S is a thermally insulating screen.) 
(b) Body T and body B are also in thermal 
equilibrium, at the same reading of the 
thermoscope. (c) If (a) and (b) are true, the 
zeroth law of thermodynamics states that 
body A and body B are also in thermal 
equilibrium. 
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Gas 
thermometer 
bulb 

Water 

Fig. 18-4 A triple-point cell, in which 
solid ice, liquid water, and water vapor co­
exist in thermal equilibrium. By interna­
tional agreement, the temperature of this 
mixture has been defined to be 273.16 K. 
The bulb of a constant-volume gas ther­
mometer is shown inserted into the well of 
the cell. 

Fig. 18-5 A constant-volume gas ther­
mometer, its bulb immersed in a liquid 
whose temperature Tis to be measured. 

1 Measuring Temperature 
Here we first define and measure temperatures on the Kelvin scale. Then we 
calibrate a thermoscope so as to make it a thermometer. 

To set up a temperature scale, we pick some reproducible thermal phenomenon 
and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that 
is, we select a standard fixed point and give it a standard fixed-point temperature. 
We could, for example, select the freezing point or the boiling point of water but, 
for technical reasons, we select instead the triple point of water. 

Liquid water, solid ice, and water vapor (gaseous water) can coexist, in 
thermal equilibrium, at only one set of values of pressure and temperature. 
Figure 18-4 shows a triple-point cell, in which this so-called triple point of water 
can be achieved in the laboratory. By international agreement, the triple point of 
water has been assigned a value of 273.16 K as the standard fixed-point 
temperature for the calibration of thermometers; that is, 

T3 = 273.16 K (triple-point temperature), (18-1) 

in which the subscript 3 means "triple point." This agreement also sets the size of 
the kelvin as 11273.16 of the difference between the triple-point temperature of 
water and absolute zero. 

Note that we do not use a degree mark in reporting Kelvin temperatures. 
It is 300 K (not 3000 K), and it is read "300 kelvins" (not "300 degrees Kelvin"). 
The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK. No distinction in nomen­
clature is made between Kelvin temperatures and temperature differences, so 
we can write, "the boiling point of sulfur is 717.8 K" and "the temperature of this 
water bath was raised by 8.5 K." 

The standard thermometer, against which all other thermometers are calibrated, 
is based on the pressure of a gas in a fixed volume. Figure 18-5 shows such a 
constant-volume gas thermometer; it consists of a gas-filled bulb connected by a 
tube to a mercury manometer. By raising and lowering reservoir R, the mercury 
level in the left arm of the U-tube can always be brought to the zero of the scale 
to keep the gas volume constant (variations in the gas volume can affect tem­
perature measurements). 

The temperature of any body in thermal contact with the bulb (such as the 
liquid surrounding the bulb in Fig. 18-5) is then defined to be 

T= Cp, (18-2) 

in which p is the pressure exerted by the gas and C is a constant. From Eq. 14-10, 
the pressure p is 

p = Po - pgh, (18-3) 

in which Po is the atmospheric pressure, p is the density of the mercury in the 
manometer, and h is the measured difference between the mercury levels in the 
two arms of the tube. * (The minus sign is used in Eq. 18-3 because pressure p is 
measured above the level at which the pressure is Po.) 

*For pressure units, we shall use units introduced in Section 14-3. The SI unit for pressure is the newton per 
square meter, which is called the pascal (Pa). TIle pascal is related to other common pressure units by 

1 atm = 1.01 X 105 Pa = 760 torr = 14.7Ib/in.2, 
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100 120 

Fig. 18-6 Temperatures measured by a constant-volume gas thermometer, with its bulb 
immersed in boiling water. For temperature calculations using Eq.18-5, pressure P3 was 
measured at the triple point of water. Three different gases in the thermometer bulb 
gave generally different results at different gas pressures, but as the amount of gas was 
decreased (decreasingp3)' all three curves converged to 373.125 K. 

If we next put the bulb in a triple-point cell (Fig. 18-4), the temperature now 
being measured is 

(18-4) 

in which P3 is the gas pressure now. Eliminating C between Eqs. 18-2 and 18-4 
gives us the temperature as 

T = ~(:3) = (273.16 K) (:3) (provisional) . (18-5) 

We still have a problem with this thermometer. If we use it to measure, say, 
the boiling point of water, we find that different gases in the bulb give slightly 
different results. However, as we use smaller and smaller amounts of gas to fill 
the bulb, the readings converge nicely to a single temperature, no matter what 
gas we use. Figure 18-6 shows this convergence for three gases. 

Thus the recipe for measuring a temperature with a gas thermometer is 

T = (273.16 K) ( lim L). 
gas-->O P3 

(18-6) 

The recipe instructs us to measure an unknown temperature T as follows: Fill 
the thermometer bulb with an arbitrary amount of any gas (for example, nitro­
gen) and measure P3 (using a triple-point cell) and P, the gas pressure at the 
temperature being measured. (Keep the gas volume the same.) Calculate the 
ratio plp3' Then repeat both measurements with a smaller amount of gas in the 
bulb, and again calculate this ratio. Continue this way, using smaller and smaller 
amounts of gas, until you can extrapolate to the ratio plp3 that you would find if 
there were approximately no gas in the bulb. Calculate the temperature T by 
substituting that extrapolated ratio into Eq. 18-6. (The temperature is called the 
ideal gas temperature. ) 

The Celsius and Fahrenheit Scales 
So far, we have discussed only the Kelvin scale, used in basic scientific work. In 
nearly all countries of the world, the Celsius scale (formerly called the centigrade 
scale) is the scale of choice for popular and commercial use and much scientific 
use. Celsius temperatures are measured in degrees, and the Celsius degree has 
the same size as the kelvin. However, the zero of the Celsius scale is shifted to a 
more convenient value than absolute zero. If Tc represents a Celsius temperature 



480 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS 

Absolute 0 K 
zero 

Fig. 18-7 The Kelvin, Celsius, and 
Fahrenheit temperature scales compared. 

Some Corresponding Temperatures 

Temperature °C of 

Boiling point of water" 100 212 
Normal body temperature 37.0 98.6 
Accepted comfort level 20 68 
Freezing point of water" 0 32 
Zero of Fahrenheit scale = -18 0 
Scales coincide -40 -40 

"Strictly, the boiling point of water on the Celsius scale is 99.975°C, 
and the freezing point is O.OO°e. Thus, there is slightly less than 100 Co 
between those two points. 

and T a Kelvin temperature, then 

Tc = T - 273.15°. (18-7) 

In expressing temperatures on the Celsius scale, the degree symbol is commonly 
used. Thus, we write 2a.aaoC for a Celsius reading but 293.15 K for a Kelvin 
reading. 

The Fahrenheit scale, used in the United States, employs a smaller degree than 
the Celsius scale and a different zero of temperature. You can easily verify both 
these differences by examining an ordinary room thermometer on which both scales 
are marked. The relation between the Celsius and Fahrenheit scales is 

(18-8) 

where TF is Fahrenheit temperature. Converting between these two scales can be 
done easily by remembering a few corresponding points, such as the freezing and 
boiling points of water (Table 18-1). Figure 18-7 compares the Kelvin, Celsius, 
and Fahrenheit scales. 

We use the letters C and F to distinguish measurements and degrees on the 
two scales. Thus, 

means that ao on the Celsius scale measures the same temperature as 32° on the 
Fahrenheit scale, whereas 

means that a temperature difference of 5 Celsius degrees (note the degree sym­
bol appears after C) is equivalent to a temperature difference of 9 Fahrenheit 
degrees. 

CHECKPOINT 1 

The figure here shows three linear temperature scales with the freezing and boiling 
points of water indicated. (a) Rank the degrees on these scales by size, greatest first. (b) 
Rank the following temperatures, highest first: 500 X, 500 W, and 50°y' 

700x 120oW-H-- 90"Y Boiling point 

-20oX 30oW-H-- O"Y Freezing point 
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Conversion between two temperature scales 

Suppose you come across old scientific notes that 
describe a temperature scale called Z on which the boiling 
point of water is 65.00Z and the freezing point is -14.00Z. 
To what temperature on the Fahrenheit scale would a tem­
perature of T = -98.00Z correspond? Assume that the Z 
scale is linear; that is, the size of a Z degree is the same 
everywhere on the Z scale. 

A conversion factor between two (linear) temperature 
scales can be calculated by using two known (benchmark) 
temperatures, such as the boiling and freezing points of wa­
ter. The number of degrees between the known tempera­
tures on one scale is equivalent to the number of degrees 
between them on the other scale. 

Calculations: We begin by relating the given temperature 
T to either known temperature on the Z scale. Since T = 
-98.00Z is closer to the freezing point (-14.00Z) than to 
the boiling point (65.00Z), we use the freezing point. 
Then we note that the T we seek is below this point by 
-14.00Z - (-98.00Z) = 84.0 ZO the (Fig. 18-8). (Read this 
difference as "84.0 Z degrees.") 

Next, we set up a conversion factor between the Z and 
Fahrenheit scales to convert this difference. To do so, we use 
both known temperatures on the Z scale and the corre-

65.00ZT 
79.0 ZO 

-14.00Z + 
84.0 ZO 

Z 

T= -98.0oZ -.-L • 

Boil 

Freeze 

F 

T 212°F 

180 FO 
I 

---.L 320F 

• - T=? 

Fig. 1 S-S An unknown temperature scale compared with the 
Fahrenheit temperature scale. 

sponding temperatures on the Fahrenheit scale. On the Z 
scale, the difference between the boiling and freezing points 
is 65.00Z - (-14.00Z) = 79.0 Zoo On the Fahrenheit scale, it 
is 212°F - 32.0°F = 180 FO. Thus, a temperature difference of 
79.0 ZO is equivalent to a temperature difference of 180 FO 
(Fig. 18-8), and we can use the ratio (180 FO)/(79.0 ZO) as our 
conversion factor. 

Now, since T is below the freezing point by 84.0 ZO, it 
must also be below the freezing point by 

( 
0) 180 FO ° 

84.0 Z 79.0 ZO = 191 F . 

Because the freezing point is at 32.0°F, this means that 

(Answer) 

,~s Additional examples, video, and practice available at WileyPLUS 

Thermal Expansion 
You can often loosen a tight metaljar lid by holding it under a stream of hot water. 
Both the metal of the lid and the glass of the jar expand as the hot water adds en­
ergy to their atoms. (With the added energy, the atoms can move a bit farther from 
one another than usual, against the spring-like interatomic forces that hold every 
solid together.) However, because the atoms in the metal move farther apart than 
those in the glass, the lid expands more than the jar and thus is loosened. 

Such thermal ex.pansion of materials with an increase in temperature must be 
anticipated in many common situations. When a bridge is subject to large 
seasonal changes in temperature, for example, sections of the bridge are 
separated by expansion slots so that the sections have room to expand on hot 
days without the bridge buckling. When a dental cavity is filled, the filling mater­
ial must have the same thermal expansion properties as the surrounding tooth; 
otherwise, consuming cold ice cream and then hot coffee would be very painful. 
When the Concorde aircraft (Fig. 18-9) was built, the design had to allow for the 
thermal expansion of the fuselage during supersonic flight because of frictional 
heating by the passing air. 

The thermal expansion properties of some materials can be put to common 
use. Thermometers and thermostats may be based on the differences in expansion 

Fig. 1S-9 When a Concorde flew faster 
than the speed of sound, thermal expansion 
due to the rubbing by passing air increased 
the aircraft's length by about 12.5 cm. (The 
temperature increased to about 128°C at the 
aircraft nose and about 90°C at the tail, and 
cabin windows were noticeably warm to the 
touch.) (Hugh Thomas/BWP Media/Getty 
Images News and Sport Services) 
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T= To 

(a) 

T > To 

(b) 

Different amounts of 
expansion or contraction 
can produce bending. 

Fig. 1 8-1 0 (a) A bimetal strip, 
consisting of a strip of brass and a strip of 
steel welded together, at temperature To. 
(b) The strip bends as shown at tempera­
tures above this reference temperature. 
Below the reference temperature the strip 
bends the other way. Many thermostats 
operate on this principle, making and 
breaking an electrical contact as the 
temperature rises and falls. 
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Fig. 18-11 The same steel ruler at two dif­
ferent temperatures. When it expands, the 
scale, the numbers, the thickness, and the di­
ameters of the circle and circular hole are all 
increased by the same factor. (The expansion 
has been exaggerated for clarity.) 

Some Coefficients of linear Expansiona 

Substance Q' (1O-6/CO) Substance Q' (1O-6/CO) 

Ice (at DoC) 51 Steel 11 
Lead 29 Glass (ordinary) 9 
Aluminum 23 Glass (Pyrex) 3.2 
Brass 19 Diamond 1.2 
Copper 17 Invarb 0.7 
Concrete 12 Fused quartz 0.5 

"Room temperature values except for the listing for ice. 

bThis alloy was designed to have a low coefficient of expansion. The word is a 
shortened form of "invariable." 

between the components of a bimetal strip (Fig. 18-10). Also, the familiar liquid-in­
glass thermometers are based on the fact that liquids such as mercury and alcohol 
expand to a different (greater) extent than their glass containers. 

If the temperature of a metal rod of length L is raised by an amount !::.T, its length 
is found to increase by an amount 

!::.L = La!::.T, (18-9) 

in which a is a constant called the coefficient of linear expansion. The coefficient a 
has the unit "per degree" or "per kelvin" and depends on the material. Although a 
varies somewhat with temperature, for most practical purposes it can be taken as 
constant for a particular material. Table 18-2 shows some coefficients of linear ex­
pansion. Note that the unit Co there could be replaced with the unit K. 

The thermal expansion of a solid is like photographic enlargement except it 
is in three dimensions. Figure 18-11b shows the (exaggerated) thermal expansion 
of a steel ruler. Equation 18-9 applies to every linear dimension of the ruler, 
including its edge, thickness, diagonals, and the diameters of the circle etched on 
it and the circular hole cut in it. If the disk cut from that hole originally fits snugly 
in the hole, it will continue to fit snugly if it undergoes the same temperature 
increase as the ruler. 

If all dimensions of a solid expand with temperature, the volume of that solid 
must also expand. For liquids, volume expansion is the only meaningful expan­
sion parameter. If the temperature of a solid or liquid whose volume is V is 
increased by an amount !::.T, the increase in volume is found to be 

!::.V = V{3!::.T, (18-10) 

where {3 is the coefficient of volnme expansion of the solid or liquid. The coef­
ficients of volume expansion and linear expansion for a solid are related by 

{3 = 3a. (18-11) 

The most common liquid, water, does not behave like other liquids. Above 
about 4°C, water expands as the temperature rises, as we would expect. Between 
o and about 4°C, however, water contracts with increasing temperature. Thus, at 
about 4°C, the density of water passes through a maximum. At all other tempera­
tures, the density of water is less than this maximum value. 
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This behavior of water is the reason lakes freeze from the top down rather than 
from the bottom up. As water on the surface is cooled from, say, 10°C toward the 
freezing point, it becomes denser ("heavier") than lower water and sinks to the 
bottom. Below 4°C, however, further cooling makes the water then on the surface 
less dense ("lighter") than the lower water, so it stays on the surface until it freezes. 
Thus the surface freezes while the lower water is still liquid. If lakes froze from the 
bottom up, the ice so formed would tend not to melt completely during the sum­
mer, because it would be insulated by the water above. After a few years, many 
bodies of open water in the temperate zones of Earth would be frozen solid all year 
round-and aquatic life could not exist. 

CHECKPOINT 2 

The figure here shows four rectangular 
metal plates, with sides of L, 2L, or 3L. They 
are all made of the same material, and their 
temperature is to be increased by the same 
amount. Rank the plates according to the ex­
pected increase in (a) their vertical heights 
and (b) their areas, greatest first. 

D 
(1) (2) (3) (4) 

Thermal expansion of a volume 

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of 
diesel fuel. He encountered cold weather on the way to 
Payson, Utah, where the temperature was 23.0 K lower than 
in Las Vegas, and where he delivered his entire load. How 
many liters did he deliver? The coefficient of volume expan­
sion for diesel fuel is 9.50 X 1O-4/co, and the coefficient of 
linear expansion for his steel truck tank is 11 X 1O-6/co. 

volume of the fuel did also, as given by Eq. 18-10 (~V == 
Vf3~T). 

Calculations: We find 

~ V= (37000 L)(9.50 X 1O-4/CO)( -23.0 K) = -808 L. 

Thus, the amount delivered was 

Vde1 = V + ~ V = 37 000 L - 808 L 

= 36190 L. (Answer) 

The volume of the diesel fuel depends directly on the tem­
perature. Thus, because the temperature decreased, the 

Note that the thermal expansion of the steel tank has 
nothing to do with the problem. Question: Who paid for the 
"missing" diesel fuel? 

Additional examples, video, and practice available at WileyPLUS 

1 Temperature and Heat 
If you take a can of cola from the refrigerator and leave it on the kitchen table, its 
temperature will rise-rapidly at first but then more slowly-until the tempera­
ture of the cola equals that of the room (the two are then in thermal equilibrium). 
In the same way, the temperature of a cup of hot coffee, left sitting on the table, 
will fall until it also reaches room temperature. 

In generalizing this situation, we describe the cola or the coffee as a system 
(with temperature Ts) and the relevant parts of the kitchen as the environment 
(with temperature T E) of that system. Our observation is that if Ts is not equal to 
T E, then Ts will change (T E can also change some) until the two temperatures are 
equal and thus thermal equilibrium is reached. 

Such a change in temperature is due to a change in the thermal energy of the 
system because of a transfer of energy between the system and the system's 
environment. (Recall that thermal energy is an internal energy that consists of the 
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Fig. 18-12 If the temperature of a 
system exceeds that of its environment as 
in (a), heat Q is lost by the system to the 
environment until thermal equilibrium (b) 
is established. (c) If the temperature of the 
system is below that of the environment, 
heat is absorbed by the system until thermal 
equilibrium is established. 

kinetic and potential energies associated with the random motions of the atoms, 
molecules, and other microscopic bodies within an object.) The transferred energy 
is called heat and is symbolized Q. Heat is positive when energy is transferred to a 
system's thermal energy from its environment (we say that heat is absorbed by the 
system). Heat is negative when energy is transferred from a system's thermal en­
ergy to its environment (we say that heat is released or lost by the system). 

This transfer of energy is shown in Fig. 18-12. In the situation of Fig. 18-12a, 
in which Ts > T E, energy is transferred from the system to the environment, so 
Q is negative. In Fig. 18-12b, in which Ts = TE, there is no such transfer, Q is 
zero, and heat is neither released nor absorbed. In Fig. 18-12c, in which Ts < TE, 

the transfer is to the system from the environment; so Q is positive. 
We are led then to this definition of heat: 

Heat is the energy transferred between a system and its environment because of 
a temperature difference that exists between them. 

Recall that energy can also be transferred between a system and its environ­
ment as work W via a force acting on a system. Heat and work, unlike tempera­
ture, pressure, and volume, are not intrinsic properties of a system. They have 
meaning only as they describe the transfer of energy into or out of a system. 
Similarly, the phrase "a $600 transfer" has meaning if it describes the transfer to 
or from an account, not what is in the account, because the account holds money, 
not a transfer. Here, it is proper to say: "During the last 3 min, 15 J of heat was 
transferred to the system from its environment" or "During the last minute, 12 J 
of work was done on the system by its environment." It is meaningless to say: 
"This system contains 450 J of heat" or "This system contains 385 J of work." 

Before scientists realized that heat is transferred energy, heat was measured 
in terms of its ability to raise the temperature of water. Thus, the calorie (cal) was 
defined as the amount of heat that would raise the temperature of 1 g of water 
from 14.5°C to 15.SOC. In the British system, the corresponding unit of heat was 

The system has a 
higher temperature, 
so ... 

(a) 

The system has the 
same temperature, 
so ... 

(b) 

The system has a 
lower temperature, 
so ... 

(c) 

Environment 

Ts>1E 

Environment 

7's=1E 

Environment 

Q<O 

Q=O 

Q>O 

... it loses 
energy as heat. 

... no energy 
is transferred 
as heat. 

... it gains 
energy as 
heat. 
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the British thelmal unit (Btu), defined as the amount of heat that would raise the 
temperature of lIb of water from 63°F to 64°P' 

In 1948, the scientific community decided that since heat (like work) is 
transferred energy, the SI unit for heat should be the one we use for energy­
namely, the joule. The calorie is now defined to be 4.1868 J (exactly), with no refer­
ence to the heating of water. (The "calorie" used in nutrition, sometimes called the 
Calorie (Cal), is really a kilocalorie.) The relations among the various heat units are 

1 cal = 3.968 X 10-3 Btu = 4.1868 J. (18-12) 

1 The Absorption of Heat by Solids and Liquids 

The heat capacity C of an object is the proportionality constant between the heat 
Q that the object absorbs or loses and the resulting temperature change AT of 
the object; that is, 

(18-13) 

in which Ti and Tf are the initial and final temperatures of the object. Heat 
capacity C has the unit of energy per degree or energy per kelvin. The heat 
capacity C of, say, a marble slab used in a bun warmer might be 179 caliCo, which 
we can also write as 179 callK or as 749 J/K. 

The word "capacity" in this context is really misleading in that it suggests analogy 
with the capacity of a bucket to hold water. That analogy is false, and you should not 
think of the object as "containing" heat or being limited in its ability to absorb heat. 
Heat transfer can proceed without limit as long as the necessary temperature differ­
ence is maintained. The object may, of course, melt or vaporize during the process. 

Two objects made of the same material-say, marble-will have heat capacities 
proportional to their masses. It is therefore convenient to define a "heat capacity 
per unit mass" or specific heat c that refers not to an object but to a unit mass of 
the material of which the object is made. Equation 18-13 then becomes 

(18-14) 

Through experiment we would find that although the heat capacity of a particular 
marble slab might be 179 caliCO (or 749 J/K), the specific heat of marble itself 
(in that slab or in any other marble object) is 0.21 cal/g· Co (or 880 J/kg· K). 

From the way the calorie and the British thermal unit were initially defined, 
the specific heat of water is 

c = 1 cal/g' Co = 1 Btu/lb' FO = 4186.8 J/kg' K. (18-15) 

Table 18-3 shows the specific heats of some substances at room temperature. 
Note that the value for water is relatively high. The specific heat of any substance 
actually depends somewhat on temperature, but the values in Table 18-3 apply 
reasonably well in a range of temperatures near room temperature. 

In many instances the most convenient unit for specifying the amount of a 
substance is the mole (mol), where 

1 mol = 6.02 X 1023 elementary units 

Some Specific Heats and Molar Specific 
Heats at Room Temperature 

Molar 
Specific 

Specific Heat Heat 

cal J J 
Substance g'K kg·K mol·K 

Elemental 
Solids 

Lead 0.0305 128 26.5 

Tungsten 0.0321 134 24.8 

Silver 0.0564 236 25.5 

Copper 0.0923 386 24.5 

Aluminum 0.215 900 24.4 

Other Solids 

Brass 0.092 380 

Granite 0.19 790 

Glass 0.20 840 

Ice (-10°e) 0.530 2220 

Liqllids 

Mercury 0.033 140 

Ethyl 
alcohol 0.58 2430 

Seawater 0.93 3900 

Water 1.00 4187 

CHECKPOINT 3 

A certain amount of heat Q will warm 1 
g of material A by 3 Co and 1 g of mate­
rial B by 4 Co. Which material has the 
greater specific heat? 
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of any substance. Thus 1 mol of aluminum means 6.02 X 1023 atoms (the atom is 
the elementary unit), and 1 mol of aluminum oxide means 6.02 X 10 23 molecules 
(the molecule is the elementary unit of the compound). 

When quantities are expressed in moles, specific heats must also involve 
moles (rather than a mass unit); they are then called molar specific heats. Table 
18-3 shows the values for some elemental solids (each consisting of a single 
element) at room temperature. 

In determining and then using the specific heat of any substance, we need to 
know the conditions under which energy is transferred as heat. For solids and 
liquids, we usually assume that the sample is under constant pressure (usually 
atmospheric) during the transfer. It is also conceivable that the sample is held at 
constant volume while the heat is absorbed. This means that thermal expansion 
of the sample is prevented by applying external pressure. For solids and liquids, 
this is very hard to arrange experimentally, but the effect can be calculated, and it 
turns out that the specific heats under constant pressure and constant volume for 
any solid or liquid differ usually by no more than a few percent. Gases, as you will 
see, have quite different values for their specific heats under constant-pressure 
conditions and under constant-volume conditions. 

When energy is absorbed as heat by a solid or liquid, the temperature of the sample 
does not necessarily rise. Instead, the sample may change from one phase, or state, 
to another. Matter can exist in three common states: In the solid state, the mole­
cules of a sample are locked into a fairly rigid structure by their mutual attraction. 
In the liquid state, the molecules have more energy and move about more. They 
may form brief clusters, but the sample does not have a rigid structure and can flow 
or settle into a container. In the gas, or vapOl; state, the molecules have even more 
energy, are free of one another, and can fill up the full volume of a container. 

To melt a solid means to change it from the solid state to the liquid state. The 
process requires energy because the molecules of the solid must be freed from their 
rigid structure. Melting an ice cube to form liquid water is a common example. To 
freeze a liquid to form a solid is the reverse of melting and requires that energy be 
removed from the liquid, so that the molecules can settle into a rigid structure. 

To vaporize a liquid means to change it from the liquid state to the vapor 
(gas) state. This process, like melting, requires energy because the molecules must 
be freed from their clusters. Boiling liquid water to transfer it to water vapor (or 
steam - a gas of individual water molecules) is a common example. Condensing a 
gas to form a liquid is the reverse of vaporizing; it requires that energy be 
removed from the gas, so that the molecules can cluster instead of flying away 
from one another. 

The amount of energy per unit mass that must be transferred as heat when a 
sample completely undergoes a phase change is called the heat of transformation 
L. Thus, when a sample of mass m completely undergoes a phase change, the total 
energy transferred is 

Q=Lm. (18-16) 

When the phase change is from liquid to gas (then the sample must absorb heat) 
or from gas to liquid (then the sample must release heat), the heat of transfor­
mation is called the heat of vaporization Lv. For water at its normal boiling or 
condensation temperature, 

Lv = 539 cal/g = 40.7 kJ/mol = 2256 kJ/kg. (18-17) 
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When the phase change is from solid to liquid (then the sample must absorb heat) 
or from liquid to solid (then the sample must release heat), the heat of transforma­
tion is called the heat offusion L F• For water at its normal freezing or melting tem­
perature, 

LF = 79.5 callg = 6.01 kl/mol = 333 kllkg. (18-18) 

Table 18-4 shows the heats of transformation for some substances. 

Some Heats of Transformation 

Melting Boiling 

Substance Melting Point (K) Heat of Fusion LF (kJ/kg) Boiling Point (K) Heat of Vaporization Lv (kIlkg) 

Hydrogen 14.0 58.0 20.3 455 
Oxygen 54.8 13.9 90.2 213 
Mercury 234 11.4 630 296 
Water 273 333 373 2256 
Lead 601 23.2 2017 858 
Silver 1235 105 2323 2336 
Copper 1356 207 2868 4730 

Hot slug in water, coming to equilibrium 

A copper slug whose mass me is 75 g is heated in a laboratory 
oven to a temperature T of 312°e. The slug is then dropped 
into a glass beaker containing a mass mw = 220 g of water. 
The heat capacity Cb of the beaker is 45 callK. The initial 
temperature T; of the water and the beaker is 12°e. Assuming 
that the slug, beaker, and water are an isolated system and the 
water does not vaporize, find the final temperature Tf of the 
system at thermal equilibrium. 

(1) Because the system is isolated, the system's total energy 
cannot change and only internal transfers of thermal energy 
can occur. (2) Because nothing in the system undergoes a 
phase change, the thermal energy transfers can only change 
the temperatures. 

Calculations: To relate the transfers to the temperature 
changes, we can use Eqs. 18-13 and 18-14 to write 

for the water: QIV = cy,mw(Tf - Ti ); 

for the beaker: Qb = Cb(Tf - Ti); 

for the copper: Qe = ce111e(Tf - T). 

(18-19) 

(18-20) 

(18-21) 

Because the total energy of the system cannot change, the 
sum of these three energy transfers is zero: 

(18-22) 

Substituting Eqs. 18-19 through 18-21 into Eq. 18-22 yields 

(18-23) 

Temperatures are contained in Eq.18-23 only as differences. 
Thus, because the differences on the Celsius and Kelvin 
scales are identical, we can use either of those scales in this 
equation. Solving it for Tf , we obtain 

'T' _ cemeT + CbI'; + cw111wI'; 
1f -

Cw1111V + Cb + Ce111e 

Using Celsius temperatures and taking values for Ce and Cw 
from Table 18-3, we find the numerator to be 

(0.0923 callg· K)(75 g)(312°C) + (45 caI/K)(12°C) 

+ (1.00 cal/g . K)(220 g) (12°C) = 5339.8 cal, 

and the denominator to be 

(1.00 cal/g' K)(220 g) + 45 callK 

+ (0.0923 cal/g' K)(75 g) = 271.9 calICo. 

We then have 

5339.8 cal ° 
If = 271.9 caliCO = 19.6°C = 20 C. (Answer) 

From the given data you can show that 

QIV = 1670 cal, Qb = 342 cal, Qe = -2020 cal. 

Apart from rounding errors, the algebraic sum of these 
three heat transfers is indeed zero, as Eq.18-22 requires. 

Ws Additional examples, video, and practice available at WileyPLUS 
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Heat to change temperature and state 

(a) How much heat must be absorbed by ice of mass m = 

no g at -lOoC to take it to the liquid state at 15°C? 

The heating process is accomplished in three steps: (1) The 
ice cannot melt at a temperature below the freezing point­
so initially, any energy transferred to the ice as heat can only 
increase the temperature of the ice, until O°C is reached. (2) 
The temperature then cannot increase until all the ice 
melts-so any energy transferred to the ice as heat now can 
only change ice to liquid water, until all the ice melts. (3) 
Now the energy transferred to the liquid water as heat can 
only increase the temperature of the liquid water. 

Warming the ice: The heat Ql needed to increase the tem­
perature of the ice from the initial value Ti = -lOoC to a fi­
nal value Tf = O°C (so that the ice can then melt) is given by 
Eq.18-14 (Q = cm !::..T). Using the specific heat of ice Cice in 
Table 18-3 gives us 

QI = cicem(Tf - Ti ) 

= (2220 J/kg' K)(O.nO kg)[O°C - (-100C)] 

= 15984 J = 15.98 kI 

Melting the ice: The heat Q2 needed to melt all the ice is 
given by Eq. 18-16 (Q = Lm). Here L is the heat of fusion 
L p, with the value given in Eq.18-18 and Table 18-4. We find 

Q2 = Lpm = (333 kJ/kg)(O.no kg) = 239.8 kI 

Warming the liquid: The heat Q3 needed to increase the 
temperature of the water from the initial value Ti = O°C to 
the final value Tf = 15°C is given by Eq.18-14 (with the spe­
cific heat of liquid water CJig): 

Q3 = cjjqm(Tf - TJ 
= (4186.8 J/kg' K)(0.720 kg)(15°C - O°C) 

= 45 217 J = 45.22 kI 

Total: The total required heat Qtot is the sum of the 
amounts required in the three steps: 

Qtot = Ql + Q2 + Q3 

= 15.98 kJ + 239.8 kJ + 45.22 kJ 

= 300 kJ. (Answer) 

Note that the heat required to melt the ice is much greater 
than the heat required to raise the temperature of either the 
ice or the liquid water. 

(b) If we supply the ice with a total energy of only 210 kJ (as 
heat), what are the final state and temperature of the water? 

From step 1, we know that 15.98 kJ is needed to raise the 
temperature of the ice to the melting point. The remaining 
heat Qrem is then 210 kJ - 15.98 kJ, or about 194 kI From 
step 2, we can see that this amount of heat is insufficient to 
melt all the ice. Because the melting of the ice is incomplete, 
we must end up with a mixture of ice and liquid; the temper­
ature of the mixture must be the freezing point, O°C, 

Calculations: We can find the mass m of ice that is melted by 
the available energy Qrem by usingEq.18-16 with Lp: 

Qrem 194 kJ 
m = --y;;- = 333 kJ/kg = 0.583 kg = 580 g. 

Thus, the mass of the ice that remains is no g - 580 g, or 
140 g, and we have 

580 g water and 140 g ice, at O°C, (Answer) 

frus Additional examples, video, and practice available at WileyPLUS 

"1 A Closer look at Heat and Work 
Here we look in some detail at how energy can be transferred as heat and work 
between a system and its environment. Let us take as our system a gas confined 
to a cylinder with a movable piston, as in Fig. 18-13. The upward force on the pis­
ton due to the pressure of the confined gas is equal to the weight of lead shot 
loaded onto the top of the piston. The walls of the cylinder are made of insulating 
material that does not allow any transfer of energy as heat. The bottom of the 
cylinder rests on a reservoir for thermal energy, a thermal reservoir (perhaps a hot 
plate) whose temperature Tyou can control by turning a knob. 

The system (the gas) starts from an initial state i, described by a pressure Pi' 
a volume Vi' and a temperature Ti. You want to change the system to a final state 
/, described by a pressure Pr, a volume Vf' and a temperature Tf' The procedure by 
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which you change the system from its initial state to its final state is called a ther­
modynamic process. During such a process, energy may be transferred into the 
system from the thermal reservoir (positive heat) or vice versa (negative heat). 
Also, work can be done by the system to raise the loaded piston (positive work) 
or lower it (negative work). We assume that all such changes occur slowly, with 
the result that the system is always in (approximate) thermal equilibrium (that is, 
every part of the system is always in thermal equilibrium with every other part). 

Suppose that you remove a few lead shot from the piston of Fig. 18-13, allowing 
the gas to push the piston and remaining shot upward through a differential dis­
placement ds with an upward force F. Since the displacement is tiny, we can as­
sume that F is constant during the displacement. Then F has a magnitude that is 
equal to pA, where p is the pressure of the gas and A is the face area of the piston. 
The differential work dW done by the gas during the displacement is 

dW = F· ds = (pA)(ds) = p(A ds) 

=pdV, (18-24) 

in which dV is the differential change in the volume of the gas due to the move­
ment of the piston. When you have removed enough shot to allow the gas to 
change its volume from Vi to VI' the total work done by the gas is 

W = J dW = J:I p dV. 
1 

(18-25) 

During the volume change, the pressure and temperature may also change. To 
evaluate Eq. 18-25 directly, we would need to know how pressure varies with vol­
ume for the actual process by which the system changes from state i to state f. 

There are actually many ways to take the gas from state i to state f. One way is 
shown in Fig. 18-14a, which is a plot of the pressure of the gas versus its volume and 

The gas does work 
on this piston. 

We control the heat transfer 
by adjusting the temperature. 

Fig. 18-13 A gas is confined to a cylin­
der with a movable piston. Heat Q can be 
added to or withdrawn from the gas by reg­
ulating the temperature T of the adjustable 
thermal reservoir. Work W can be done by 
the gas by raising or lowering the piston. 

It still goes from ito f, It still goes from ito f, 
Gas moves from ito f, but now it does more but now it does less 
doing positive work. work. work. 

Fig. 18-14 (a) The 
shaded area represents the 
work W done by a system 

1:: 
<l) <l) 

i I-; I-; 

as it goes from an initial ;:l ~ ;:l 
V> V> 
V> 

krocess 
V> 

state i to a final state f. <l) 1:: <l) 
I-; I-; 

Work W is positive be-
A< A< A< 

I ' 
cause the system's volume I -~I 

increases. (b) W is still pos-
I W>O I 

itive, but now greater. (c) (a) 0 Volume (b) 0 Volume (e) 0 Volumc 

W is still positive, but now 
smaller. (d) W can be even 

Cycling clockwise smaller (path icdf) or 
larger (path ighf). (e) Here We can control how Moving from f to i, yields a positive net 

the system goes from state much work it does. it does negative work. work. 

fto state i as the gas is g h 
compressed to less volume 
by an external force. The 
work W done by the sys- <l) <l) <l) 

I-; I-; I-; 

tern is now negative. (f) ;:l ;:l ;:l 
V> V> V> 
V> V> V> 

>0 The net work Wnet done by 
<l) <l) <l) 

A':: 
I-; I-; 

A< A< 
the system during a cam-

I plete cycle is represented 
by the shaded area. c d 

(d) 0 Volume (e) 0 Volume (f) 0 Volumc 
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which is called a p-V diagram. In Fig. 18-14a, the curve indicates that the pressure de­
creases as the volume increases. The integral in Eq.18-25 (and thus the work W done 
by the gas) is represented by the shaded area under the curve between points i and f 
Regardless of what exactly we do to take the gas along the curve, that work is posi­
tive, due to the fact that the gas increases its volume by forcing the piston upward. 

Another way to get from state i to state fis shown in Fig. 18-14b. There the 
change takes place in two steps-the first from state i to state a, and the second 
from state a to state f 

Step ia of this process is carried out at constant pressure, which means that 
you leave undisturbed the lead shot that ride on top of the piston in Fig. 18-13. 
You cause the volume to increase (from Vi to Vf) by slowly turning up the tem­
perature control knob, raising the temperature of the gas to some higher value 
Ta. (Increasing the temperature increases the force from the gas on the piston, 
moving it upward.) During this step, positive work is done by the expanding gas 
(to lift the loaded piston) and heat is absorbed by the system from the thermal 
reservoir (in response to the arbitrarily small temperature differences that you 
create as you turn up the temperature). This heat is positive because it is added to 
the system. 

Step af of the process of Fig. 18-14b is carried out at constant volume, so you 
must wedge the piston, preventing it from moving. Then as you use the control 
knob to decrease the temperature, you find that the pressure drops from p a to its fi­
nal value Pf' During this step, heat is lost by the system to the thermal reservoir. 

For the overall process iaf, the work W, which is positive and is carried out 
only during step ia, is represented by the shaded area under the curve. Energy is 
transferred as heat during both steps ia and af, with a net energy transfer Q. 

Figure 18-14c shows a process in which the previous two steps are carried out 
in reverse order. The work W in this case is smaller than for Fig. 18-14b, as is the 
net heat absorbed. Figure 18-14d suggests that you can make the work done by 
the gas as small as you want (by following a path like icdf) or as large as you want 
(by following a path like ighf). 

To sum up: A system can be taken from a given initial state to a given final 
state by an infinite number of processes. Heat mayor may not be involved, and in 
general, the work Wand the heat Q will have different values for different 
processes. We say that heat and work are path-dependent quantities. 

Figure 18-14e shows an example in which negative work is done by a system 
as some external force compresses the system, reducing its volume. The absolute 
value of the work done is still equal to the area beneath the curve, but because 
the gas is compressed, the work done by the gas is negative. 

Figure 18-14fshows a thermodynamic cycle in which the system is taken from 
some initial state i to some other state f and then back to i. The net work done by 
the system during the cycle is the sum of the positive work done during the 
expansion and the negative work done during the compression. In Fig. 18-14f, the 
net work is positive because the area under the expansion curve (i to f) is greater 
than the area under the compression curve (fto i). 

CHECKPOINT 4 

The p-V diagram here shows six curved paths p 
(connected by vertical paths) that can be fol-
lowed by a gas. Which two of the curved paths b 

should be part of a closed cycle (those curved 
paths plus connecting vertical paths) if the net d 

work done by the gas during the cycle is to be at 
its maximum positive value? f 

a 

'-------------1' 
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The First law of Thermodynamics 
You have just seen that when a system changes from a given initial state to a 
given final state, both the work Wand the heat Q depend on the nature of the 
process. Experimentally, however, we find a surprising thing. The quantity Q - W 
is the same for all processes. It depends only on the initial and final states and 
does not depend at all on how the system gets from one to the other. All other 
combinations of Q and W, including Q alone, W alone, Q + W, and Q - 2W, are 
path dependent; only the quantity Q - W is not. 

The quantity Q - W must represent a change in some intrinsic property of 
the system. We call this property the internal energy Eint and we write 

(first law). (18-26) 

Equation 18-26 is the first law of thermodynamics. If the thermodynamic system 
undergoes only a differential change, we can write the first law as* 

dEint = dQ - dW (first law). (18-27) 

The internal energy Eint of a system tends to increase if energy is added as heat Q and 
tends to decrease if energy is lost as work W done by the system. 

In Chapter 8, we discussed the principle of energy conservation as it ap­
plies to isolated systems-that is, to systems in which no energy enters or 
leaves the system. The first law of thermodynamics is an extension of that prin­
ciple to systems that are not isolated. In such cases, energy may be transferred 
into or out of the system as either work W or heat Q. In our statement of the 
first law of thermodynamics above, we assume that there are no changes in the 
kinetic energy or the potential energy of the system as a whole; that is, I:lf( = 
I:lU= O. 

Before this chapter, the term work and the symbol W always meant the work 
done on a system. However, starting with Eq. 18-24 and continuing through the 
next two chapters about thermodynamics, we focus on the work done by a sys­
tem, such as the gas in Fig. 18-13. 

The work done on a system is always the negative of the work done by the 
system, so if we rewrite Eq. 18-26 in terms of the work Won done on the system, 
we have I:lEint = Q + Won. This tells us the following: The internal energy of a 
system tends to increase if heat is absorbed by the system or if positive work is 
done on the system. Conversely, the internal energy tends to decrease if heat is 
lost by the system or if negative work is done on the system. 

HECKPOINT 5 

The figure here shows four paths on a p-V diagram 
along which a gas can be taken from state i to state f 
Rank the paths according to (a) the change I:lEint in 
the internal energy of the gas, (b) the work W done 
by the gas, and (c) the magnitude of the energy trans­
ferred as heat Q between the gas and its environ­
ment, greatest first. 

p 

'----------v 

*Here dQ and dW, unlike dEint , are not true differentials; that is, there are no such functions as 
Q(p, V) and W(p, V) that depend only on the state of the system. The quantities dQ and dW are 
called inexact differentials and are usually represented by the symbols dQ and dW, For our 
purposes, we can treat them simply as infinitesimally small energy transfers. 
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We slowly remove lead 
shot, allowing an expansion 
without any heat transfer. 

Fig. 18-15 An adiabatic expansion can 
be carried out by slowly removing lead shot 
from the top of the piston. Adding lead 
shot reverses the process at any stage. 

Insulation 

Fig. 18-16 The initial stage of a 
free-expansion process. After the 
stopcock is opened, the gas fills both 
chambers and eventually reaches an 
equilibrium state. 

Some Special Cases of the First law 
of Thermodynamics 

Here are four thermodynamic processes as summarized in Table 18-5. 

1. Adiabatic processes. An adiabatic process is one that occurs so rapidly or occurs in 
a system that is so well insulated that no transfer of energy as heat occurs between 
the system and its environment. Putting Q = 0 in the first law (Eq.18-26) yields 

(adiabatic process). (18-28) 

This tells us that if work is done by the system (that is, if W is positive), the 
internal energy of the system decreases by the amount of work. Conversely, if 
work is done on the system (that is, if W is negative), the internal energy of the 
system increases by that amount. 

Figure 18-15 shows an idealized adiabatic process. Heat cannot enter or 
leave the system because of the insulation. Thus, the only way energy can be 
transferred between the system and its environment is by work. If we remove 
shot from the piston and allow the gas to expand, the work done by the system 
(the gas) is positive and the internal energy of the gas decreases. If, instead, we 
add shot and compress the gas, the work done by the system is negative and 
the internal energy of the gas increases. 

2. Constant-volume processes. If the volume of a system (such as a gas) is held con­
stant, that system can do no work. Putting W = 0 in the first law (Eq.18-26) yields 

(constant-volume process). (18-29) 

Thus, if heat is absorbed by a system (that is, if Q is positive), the internal 
energy of the system increases. Conversely, if heat is lost during the process 
(that is, if Q is negative), the internal energy of the system must decrease. 

3. Cyclical processes. There are processes in which, after certain interchanges of 
heat and work, the system is restored to its initial state. In that case, no intrinsic 
property of the system-including its internal energy-can possibly change. 
Putting AEint = 0 in the first law (Eq.18-26) yields 

Q=W (cyclical process). (18-30) 

Thus, the net work done during the process must exactly equal the net amount 
of energy transferred as heat; the store of internal energy of the system 
remains unchanged. Cyclical processes form a closed loop on a p-V plot, as 
shown in Fig. 18-14f We discuss such processes in detail in Chapter 20. 

4. Free expansions. These are adiabatic processes in which no transfer of heat 
occurs between the system and its environment and no work is done on or by 
the system. Thus, Q = W = 0, and the first law requires that 

(free expansion). (18-31) 

Figure 18-16 shows how such an expansion can be carried out. A gas, which is 

The First Law of Thermodynamics: Four Special Cases 

The Law: IiEint = Q W (Eq. 18-26) 

Process Restriction Consequence 

Adiabatic Q 0 IiEint = -W 

Constant volume W=O IiEint = Q 

Closed cycle IiEint = 0 Q=W 

Free expansion Q= W=O IiEint = 0 
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in thermal equilibrium within itself, is initially confined by a closed stopcock 
to one half of an insulated double chamber; the other half is evacuated. The 
stopcock is opened, and the gas expands freely to fill both halves of the 
chamber. No heat is transferred to or from the gas because of the insulation. 
No work is done by the gas because it rushes into a vacuum and thus does 
not meet any pressure. 

_CHECKPOINTS 

For one complete cycle as shown in the 
p-V diagram here, are (a) tlEint for the 
gas and (b) the net energy transferred 
as heat Q positive, negative, or zero? 

A free expansion differs from all other processes we have considered 
because it cannot be done slowly and in a controlled way. As a result, at any 
given instant during the sudden expansion, the gas is not in thermal equilib­
rium and its pressure is not uniform. Thus, although we can plot the initial and 
final states on a p-V diagram, we cannot plot the expansion itself. i C7 V 

First law of thermodynamics: work, heat, internal energy change 

Let 1.00 kg of liquid water at 100De be converted to steam 
at 100De by boiling at standard atmospheric pressure (which 
is 1.00 atm or 1.01 X 105 Pa) in the arrangement of Fig. 
18-17. The volume of that water changes from an initial 
value of 1.00 X 10-3 m3 as a liquid to 1.671 m3 as steam. 

(a) How much work is done by the system during this 
process? 

(1) The system must do positive work because the volume 
increases. (2) We calculate the work W done by integrating 
the pressure with respect to the volume (Eq.18-25). 

Calculation: Because here the pressure is constant at 
1.01 X 105 Pa, we can take p outside the integral. Thus, 

W = (Vf P dV = p (Vf dV = P(Vf - Yj) 
)v

i 
)v

i 

= (1.01 X 105 Pa)(1.671 m3 - 1.00 X 10-3 m3) 

= 1.69 X 105 J = 169 kJ. (Answer) 

(b) How much energy is transferred as heat during the 
process? 

Because the heat causes only a phase change and not a change 
in temperature, it is given fully by Eq.18-16 (Q = Lm). 

Calculation: Because the change is from liquid to gaseous 
phase, L is the heat of vaporization Lv, with the value given 
in Eq.18-17 and Table 18-4. We find 

Q = Lvm = (2256 kJ/kg)(1.00 kg) 

= 2256 kJ = 2260 kJ. (Answer) 

(c) What is the change in the system's internal energy dur­
ing the process? 

The change in the system's internal energy is related to the 
heat (here, this is energy transferred into the system) and 
the work (here, this is energy transferred out of the system) 
by the first law of thermodynamics (Eq. 18-26). 

Calculation: We write the first law as 

!1Eint = Q - W = 2256 kJ - 169 kJ 

= 2090 kJ = 2.09 MJ. (Answer) 

This quantity is positive, indicating that the internal energy 
of the system has increased during the boiling process. This 
energy goes into separating the H20 molecules, which 
strongly attract one another in the liquid state. We see that, 
when water is boiled, about 7.5% (= 169 kJ/2260 kJ) of the 
heat goes into the work of pushing back the atmosphere. 
The rest of the heat goes into the system's internal energy. 

Insulation 

Fig. 18-1 7 Water boiling at constant pressure. Energy is 
transferred from the thermal reservoir as heat until the liquid 
water has changed completely into steam. Work is done by the 
expanding gas as it lifts the loaded piston. 

0~ P l U S Additional examples, video, and practice available at WileyPLUS 
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We assume a steady 
transfer of energy as heat. 

Fig. 18-18 Thermal conduction. Energy 
is transferred as heat from a reservoir at 
temperature T H to a cooler reservoir at 
temperature Tc through a conducting slab 
of thickness L and thermal conductivity k. 

Some Thermal Conductivities 

Substance k(W/m·K) 

Metals 
Stainless steel 14 

Lead 35 

Iron 67 

Brass 109 

Aluminum 235 

Copper 401 

Silver 428 

Gases 
Air (dry) 0.026 

Helium 0.15 

Hydrogen 0.18 

Building Materials 
Polyurethane foam 0.024 

Rock wool 0.043 

Fiberglass 0.048 

White pine 0.11 

Window glass 1.0 

1 Heat Transfer Mechanisms 
We have discussed the transfer of energy as heat between a system and its en­
vironment, but we have not yet described how that transfer takes place. There are 
three transfer mechanisms: conduction, convection, and radiation. 

If you leave the end of a metal poker in a fire for enough time, its handle will get 
hot. Energy is transferred from the fire to the handle by (thermal) conduction 
along the length of the poker. The vibration amplitudes of the atoms and elec­
trons of the metal at the fire end of the poker become relatively large because 
of the high temperature of their environment. These increased vibrational ampli­
tudes, and thus the associated energy, are passed along the poker, from atom to 
atom, during collisions between adjacent atoms. In this way, a region of rising 
temperature extends itself along the poker to the handle. 

Consider a slab of face area A and thickness L, whose faces are maintained 
at temperatures T Hand T c by a hot reservoir and a cold reservoir, as in Fig. 18-18. 
Let Q be the energy that is transferred as heat through the slab, from its hot face 
to its cold face, in time t. Experiment shows that the conduction rate Pcond (the 
amount of energy transferred per unit time) is 

Q TH - Tc 
Pcond = -t- = kA L (18-32) 

in which k, called the thermal conductivity, is a constant that depends on the 
material of which the slab is made. A material that readily transfers energy by 
conduction is a good thermal conductor and has a high value of k. Table 18-6 gives 
the thermal conductivities of some common metals, gases, and building materials. 

If you are interested in insulating your house or in keeping cola cans cold on a 
picnic, you are more concerned with poor heat conductors than with good ones. 
For this reason, the concept of thermal resistance R has been introduced into 
engineering practice. The R -value of a slab of thickness L is defined as 

L 
R=T' (18-33) 

The lower the thermal conductivity of the material of which a slab is made, the 
higher the R -value of the slab; so something that has a high R -value is a poor ther­
mal conductor and thus a good thermal insulator. 

Note that R is a property attributed to a slab of a specified thickness, not to a 
material. The commonly used unit for R (which, in the United States at least, is 
almost never stated) is the square foot-Fahrenheit degree-hour per British 
thermal unit (ft 2 • FO. h/Btu). (Now you know why the unit is rarely stated.) 

Figure 18-19 shows a composite slab, consisting of two materials having different 
thicknesses L) and L2 and different thermal conductivities k) and k2. The tempera­
tures of the outer surfaces of the slab are T Hand T c. Each face of the slab has area 
A. Let us derive an expression for the conduction rate through the slab under the 
assumption that the transfer is a steady-state process; that is, the temperatures 
everywhere in the slab and the rate of energy transfer do not change with time. 



The energy transfer per 
second here ... 

... equals the energy 
transfer per second here. 

Fig. 18-19 Heat is transferred at a steady rate through a composite slab made up of 
two different materials with different thicknesses and different thermal conductivities. 
The steady-state temperature at the interface of the two materials is Tx. 
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In the steady state, the conduction rates through the two materials must be 
equal. This is the same as saying that the energy transferred through one material 
in a certain time must be equal to that transferred through the other material in 
the same time. If this were not true, temperatures in the slab would be changing 
and we would not have a steady-state situation. Letting Tx be the temperature of 
the interface between the two materials, we can now use Eq. 18-32 to write 

p _ k2A(TH - Tx) _ klA(Tx - Tc) (18-34) 
cand - L2 - LI . 

Solving Eq.18-34 for Tx yields, after a little algebra, 

klL2TC + k2L JTH Tx = (18-35) 
klL2 + k2LI 

Substituting this expression for T x into either equality of Eq. 18-34 yields 

p A(TH - Tc) (18-36) 
cond = L/k

J 
+ L21k2 . 

We can extend Eq. 18-36 to apply to any number n of materials making up 
a slab: 

A(TH - Tc) 
Pcand = 2: (Llk) . (18-37) 

The summation sign in the denominator tells us to add the values of Llk for all 
the materials . 

• CHECKPOINT 7 

The figure shows the face and 
interface temperatures of a com­
posite slab consisting of four 

a 

-5.0°C 

c 

materials, of identical thicknesses, through which the heat transfer is steady. Rank the ma­
terials according to their thermal conductivities, greatest first. 

When you look at the flame of a candle or a match, you are watching thermal 
energy being transported upward by convection. Such energy transfer occurs 
when a fluid, such as air or water, comes in contact with an object whose tem­
perature is higher than that of the fluid. The temperature of the part of the fluid 
that is in contact with the hot object increases, and (in most cases) that fluid 
expands and thus becomes less dense. Because this expanded fluid is now lighter 
than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the 
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Fig. 18-20 A false-color thermogram re­
veals the rate at which energy is radiated by a 
cat. The rate is color-coded, with white and 
red indicating the greatest radiation rate. The 
nose is cool. (Edward Kinsman/Photo 
Researchers) 

Fig. 18-21 A rattlesnake's face has ther­
mal radiation detectors, allowing the snake 
to strike at an animal even in complete 
darkness. (David A. Northcott/Corbis 
Images) 

surrounding cooler fluid then flows so as to take the place of the rising warmer 
fluid, and the process can then continue. 

Convection is part of many natural processes. Atmospheric convection plays 
a fundamental role in determining global climate patterns and daily weather vari­
ations. Glider pilots and birds alike seek rising thermals (convection currents of 
warm air) that keep them aloft. Huge energy transfers take place within the 
oceans by the same process. Finally, energy is transported to the surface of the 
Sun from the nuclear furnace at its core by enormous cells of convection, in 
which hot gas rises to the surface along the cell core and cooler gas around the 
core descends below the surface. 

The third method by which an object and its environment can exchange energy 
as heat is via electromagnetic waves (visible light is one kind of electromag­
netic wave). Energy transferred in this way is often called thermal radiation to 
distinguish it from electromagnetic signals (as in, say, television broadcasts) and 
from nuclear radiation (energy and particles emitted by nuclei). (To "radiate" 
generally means to emit.) When you stand in front of a big fire, you are warmed 
by absorbing thermal radiation from the fire; that is, your thermal energy 
increases as the fire's thermal energy decreases. No medium is required for heat 
transfer via radiation - the radiation can travel through vacuum from, say, the 
Sun to you. 

The rate Prad at which an object emits energy via electromagnetic radiation 
depends on the object's surface area A and the temperature T of that area in 
kelvins and is given by 

(18-38) 

Here (J' = 5.6704 X 10-8 W/m2 • K4 is called the Stefan-Boltzmann constant after 
Josef Stefan (who discovered Eq. 18-38 experimentally in 1879) and Ludwig 
Boltzmann (who derived it theoretically soon after). The symbolB represents the 
emissivity of the object's surface, which has a value between 0 and 1, depending 
on the composition of the surface. A surface with the maximum emissivity of 1.0 
is said to be a blackbody radiator, but such a surface is an ideal limit and does not 
occur in nature. Note again that the temperature in Eq. 18-38 must be in kelvins 
so that a temperature of absolute zero corresponds to no radiation. Note also that 
every object whose temperature is above 0 K-including you-emits thermal 
radiation. (See Fig. 18-20.) 

The rate Pabs at which an object absorbs energy via thermal radiation from its 
environment, which we take to be at uniform temperature Tenv (in kelvins), is 

(18-39) 

The emissivity B in Eq. 18-39 is the same as that in Eq. 18-38. An idealized 
blackbody radiator, with B = 1, will absorb all the radiated energy it inter­
cepts (rather than sending a portion back away from itself through reflection 
or scattering). 

Because an object will radiate energy to the environment while it absorbs 
energy from the environment, the object's net rate Pnet of energy exchange due to 
thermal radiation is 

(18-40) 

Pnet is positive if net energy is being absorbed via radiation and negative if it is 
being lost via radiation. 
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Thermal radiation is involved in the numerous medical cases of a dead rat­
tlesnake striking a hand reaching toward it. Pits between each eye and nostril of a 
rattlesnake (Fig. 18-21) serve as sensors of thermal radiation. When, say, a mouse 
moves close to a rattlesnake's head, the thermal radiation from the mouse trig­
gers these sensors, causing a reflex action in which the snake strikes the mouse 
with its fangs and injects its venom. The thermal radiation from a reaching hand 
can cause the same reflex action even if the snake has been dead for as long as 30 
min because the snake's nervous system continues to function. As one snake ex­
pert advised, if you must remove a recently killed rattlesnake, use a long stick 
rather than your hand. 

Thermal conduction through a layered wall 

Figure 18-22 shows the cross section of a wall made of 
white pine of thickness La and brick of thickness Ld 
(= 2.0La), sandwiching two layers of unknown material 
with identical thicknesses and thermal conductivities. The 
thermal conductivity of the pine is ka and that of the brick 
is kd (= 5.0ka)' The face area A of the wall is unknown. 
Thermal conduction through the wall has reached the 
steady state; the only known interface temperatures are 
Tl = 25°e, T2 = 20oe, and Ts = -100e. What is interface 
temperature T4? 

(1) Temperature T4 helps determine the rate Pd at which en­
ergy is conducted through the brick, as given by Eq. 18-32. 
However, we lack enough data to solve Eq. 18-32 for T4. (2) 
Because the conduction is steady, the conduction rate Pd 

through the brick must equal the conduction rate Pa through 
the pine. That gets us going. 

Calculations: From Eq. 18-32 and Fig. 18-22, we can write 

~-Ts and Pd = kdA ---''----''-
Ld 

Setting P a = P d and solving for T4 yield 

~ = kaLd (11 Tz) + Ts· 
kdLa 

Letting Ld = 2.0La and kd = 5.0km and inserting the known 
temperatures, we find 

~ = kaC2.0La) (25°e - 20°C) + (-100C) 
(5.0ka)La 

(a) (b) (e) (d) 

(Answer) 

The energy transfer 
per second isthe 
same in each layer. 

Fig. 18-22 Steady-state heat transfer through a wall. 

.£'0v~ iPLUS Additional examples, video, and practice available at WileyPLUS 

Temperature; Thermometers Temperature is an SI base 
quantity related to our sense of hot and cold. It is measured with a 
thermometer, which contains a working substance with a measur­
able property, such as length or pressure, that changes in a regular 
way as the substance becomes hotter or colder. 

Zeroth Law of Thermodynamics When a thermometer and 
some other object are placed in contact with each other, they even­
tually reach thermal equilibrium. The reading of the thermometer 

is then taken to be the temperature of the other object. The process 
provides consistent and useful temperature measurements because 
of the zel'oth law of thel'modynamics: If bodies A and Bare 
each in thermal equilibrium with a third body C (the thermome­
ter), then A and B are in thermal equilibrium with each other. 

The Kelvin Temperature Scale In the SI system, tempera­
ture is measured on the Kelvin scale, which is based on the triple 
point of water (273.16 K). Other temperatures are then defined by 
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use of a constant-volume gas thermometel; in which a sample of gas 
is maintained at constant volume so its pressure is proportional to 
its temperature. We define the temperature T as measured with a 
gas thermometer to be 

T = (273.16 K) ( lim L). 
gas->O P3 

(18-6) 

Here T is in kelvins, and P3 and p are the pressures of the gas at 
273.16 K and the measured temperature, respectively. 

Celsius and Fahrenheit Scales The Celsius temperature 
scale is defined by 

(18-7) 

with Tin kelvins. The Fahrenheit temperature scale is defined by 

(18-8) 

Thermal Expansion All objects change size with changes in tem­
perature. For a temperature change t:.T, a change t:.L in any linear di­
mension L is given by 

t:.L = Lo:t:.T, (18-9) 

in which 0: is the coefficient of linear expansion. The change t:. V in 
the volume V of a solid or liquid is 

t:.V = V{3t:.T. (18-10) 

Here {3 = 30: is the material's coefficient of volume expansion. 

Heat Heat Q is energy that is transferred between a system and 
its environment because of a temperature difference between 
them. It can be measured in joules (1), calories (cal), kilocalories 
(Calor kcal), or British thel'mal units (Btu), with 

1 cal = 3.968 X 10-3 Btu = 4.18681. (18-12) 

Heat Capacity and Specific Heat If heat Q is absorbed by 
an object, the object's temperature change Tf - Tj is related to Q by 

(18-13) 

in which C is the heat capacity of the object. If the object has mass 
111, then 

Q = cm(Tf - TJ, (18-14) 

where c is the specific heat of the material making up the object. 
The molal' specific heat of a material is the heat capacity per mole, 
which means per 6.02 X 1023 elementary units of the material. 

Heat of Transformation Heat absorbed by a material may 
change the material's physical state-for example, from solid to liq­
uid or from liquid to gas. The amount of energy required per unit mass 
to change the state (but not the temperature) of a particular material 
is its heat oftransformation L. Thus, 

Q = LI11. (18-16) 

The heat of vapOl'ization Lv is the amount of energy per unit mass 
that must be added to vaporize a liquid or that must be removed to 
condense a gas. The heat of fusion LF is the amount of energy per 
unit mass that must be added to melt a solid or that must be re­
moved to freeze a liquid. 

Work Associated with Volume Change A gas may 
exchange energy with its surroundings through work. The amount 

of work W done by a gas as it expands or contracts from an initial 
volume V to a final volume Vf is given by 

W = f dW = J:f P dV. (18-25) 
1 

The integration is necessary because the pressure p may vary dur­
ing the volume change. 

First Law of Thermodynamics The principle of conser­
vation of energy for a thermodynamic process is expressed in the 
first law of thermodynamics, which may assume either of the 
forms 

t:.Eint = Eint.t - E int,; = Q - W (first law) 

or dEint = dQ - dW (first law). 

(18-26) 

(18-27) 

E int represents the internal energy of the material, which depends 
only on the material's state (temperature, pressure, and volume). 
Q represents the energy exchanged as heat between the system 
and its surroundings; Q is positive if the system absorbs heat and 
negative if the system loses heat. W is the work done by the sys­
tem; W is positive if the system expands against an external force 
from the surroundings and negative if the system contracts be­
cause of an external force. Q and Ware path dependent; t:.Eint is 
path independent. 

Applications of the First Law The first law of thermody­
namics finds application in several special cases: 

adiabatic processes: 

constant-volume processes: 

cyclical processes: 

free expansions: 

Q = 0, t:.Eint = - W 

W = 0, t:.Eint = Q 

t:.Eint = 0, Q = W 

Q = W = t:.Eint = 0 

Conduction, Convection, and Radiation The rate Pcond at 
which energy is conducted through a slab for which one face is 
maintained at the higher temperature T H and the other face is 
maintained at the lower temperature Tc is 

(18-32) 

Here each face of the slab has area A, the length of the slab (the 
distance between the faces) is L, and k is the thermal conductivity 
of the material. 

Convection occurs when temperature differences cause an en­
ergy transfer by motion within a fluid. 

Radiation is an energy transfer via the emission of electromag­
netic energy. The rate Prad at which an object emits energy via ther­
mal radiation is 

(18-38) 

where (]' (= 5.6704 X 1O-8 W/m 2 'K4) is the Stefan-Boltzmann 
constant, B is the emissivity of the object's surface, A is its sur­
face area, and T is its surface temperature (in kelvins). The rate 
Pabs at which an object absorbs energy via thermal radiation 
from its environment, which is at the uniform temperature Tenv 
(in kelvins), is 

(18-39) 



The initial length L, change in temperature I1T, and change in 
length I1L of four rods are given in the following table. 
Rank the rods according to their coefficients of thermal ex­
pansion, greatest first. 

Rod L(m) I1T(CO
) I1L (m) 

a 2 10 4 X 10-4 

b 1 20 4 X 10-4 

C 2 10 8 X 10-4 

d 4 5 4 X 10-4 

Figure 18-23 shows three linear 

oo~ ~ 
temperature scales, with the freezing 

15:~ 1':~ and boiling points of water indicated. 
Rank the three scales according to 
the size of one degree on them, great-

_500 

est first. -1400 200 

Materials A, B, and C are solids Fig. 18-23 Question 2. 
that are at their melting tempera-
tures. Material A requires 200 J to melt 4 kg, material B requires 
300 J to melt 5 kg, and material C requires 300 J to melt 6 kg. Rank 
the materials according to their heats of fusion, greatest first. 

A sample A of liquid water and a sample B of ice, of identical 
mass, are placed in a thermally insulated container and allowed to 
come to thermal equilibrium. Figure 18-24a is a sketch of the tempera­
ture Tof the samples versus time t. (a) Is the equilibrium temperature 
above, below, or at the freezing point of water? (b) In reaching equi­
librium, does the liquid partly freeze, fully freeze, or undergo no freez­
ing? ( c) Does the ice partly melt, fully melt, or undergo no melting? 

Question 4 continued: Graphs b through f of Fig. 18-24 are 
additional sketches of T versus t, of which one or more are im­
possible to produce. (a) Which is impossible and why? (b) In the 
possible ones, is the equilibrium temperature above, below, or at 
the freezing point of water? (c) As the possible situations reach 
equilibrium, does the liquid partly freeze, fully freeze, or un­
dergo no freezing? Does the ice partly melt, fully melt, or un­
dergo no melting? 

T T T 

(d) '------- (e) '------- (j) 

Fig. 1 8-24 Questions 4 and 5. 

Figure 18-25 shows 
three different arrange­
ments of materials 1,2, and 
3 to form a wall. The ther­
mal conductivities are k1 > 
k2 > kJ• The left side of the 
wall is 20 Co higher than 

(a) 
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(b) (c) 

Fig. 1 8-25 Question 6. 

the right side. Rank the arrangements according to (a) the (steady 
state) rate of energy conduction through the wall and (b) the tem­
perature difference across material 1, greatest first. 

Figure 18-26 shows 
two closed cycles on p-V 
diagrams for a gas. The 
three parts of cycle 1 are 
of the same length and 
shape as those of cycle 2. 
For each cycle, should the 
cycle be traversed clock­
wise or counterclockwise 

(1) (2) 

Fig. 1 8-26 Questions 7 and 8. 

if (a) the net work W done by the gas is to be positive and (b) the 
net energy transferred by the gas as heat Q is to be positive? 

For which cycle in Fig. 18-26, traversed clockwise, is (a) W 
greater and (b) Q greater? 

Three different materials of 
identical mass are placed one at a 
time in a special freezer that can ex­
tract energy from a material at a cer­
tain constant rate. During the cool­
ing process, each material begins in 
the liquid state and ends in the solid 
state; Fig. 18-27 shows the tempera­

T 

Fig. 18-27 Question 9. 

ture T versus time t. (a) For material 1, is the specific heat for the 
liquid state greater than or less than that for the solid state? Rank 
the materials according to (b) freezing-point temperature, (c) spe­
cific heat in the liquid state, (d) specific heat in the solid state, and 
(e) heat of fusion, all greatest first. 

A solid cube of edge length r, a solid sphere of radius r, and a 
solid hemisphere of radius r, all made of the same material, are 
maintained at temperature 300 K in an environment at tempera­
ture 350 K. Rank the objects according to the net rate at which ther­
mal radiation is exchanged with the environment, greatest first. 

'j A hot object is dropped into a thermally insulated container of 
water, and the object and water are then allowed to come to thermal 
equilibrium. The experiment is repeated twice, with different hot ob­
jects. All three objects have the same mass and initial temperature, 
and the mass and initial temperature of the water are the same in the 
three experiments. For each of the experiments, Fig. 18-28 gives graphs 
of the temperatures T of the object and the water versus time t. Rank 
the graphs according to the specific heats of the objects, greatest first. 

T T T 

(",b::, (b) L-___ ---'" (c) '-----'------', t 

Fig. 18-28 Question 11. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wlley.com/coliege/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Measuring Temperature 
Suppose the temperature of a gas is 373.15 K when it is at the 

boiling point of water. What then is the limiting value of the ratio 
of the pressure of the gas at that boiling point to its pressure at the 
triple point of water? (Assume the volume of the gas is the same at 
both temperatures.) 

Two constant-volume gas thermometers are assembled, one with 
nitrogen and the other with hydrogen. Both contain enough gas so that 
P3 = SO kPa. (a) What is the difference between the pressures in the 
two thermometers if both bulbs are in boiling water? (Hint: See Fig. lS-
6.) (b) Which gas is at higher pressure? 

A gas thermometer is con­
structed of two gas-containing 
bulbs, each in a water bath, as 
shown in Fig. lS-29. The pressure 
difference between the two bulbs is 
measured by a mercury manome­
ter as shown. Appropriate reser- Fig. 18-29 Problem 3. 
voirs, not shown in the diagram, 
maintain constant gas volume in the two bulbs. There is no differ­
ence in pressure when both baths are at the triple point of water. 
The pressure difference is 120 torr when one bath is at the triple 
point and the other is at the boiling point of water. It is 90.0 torr 
when one bath is at the triple point and the other is at an un­
known temperature to be measured. What is the unknown tem­
perature? 

The Celsius and Fahrenheit Scales 
(a) In 1964, the temperature in the Siberian village of 

Oymyakon reached -71 0e. What temperature is this on the 
Fahrenheit scale? (b) The highest officially recorded temperature in 
the continental United States was 134°F in Death Valley, California. 
What is this temperature on the Celsius scale? 

At what temperature is the Fahrenheit scale reading equal to (a) 
twice that of the Celsius scale and (b) half that of the Celsius scale? 

On a linear X temperature scale, water freezes at -125.0oX and 
boils at 375.0°X. On a linear Y temperature scale, water freezes at 
-70.00oy and boils at - 30.00°y' A temperature of 50.00oy corre­
sponds to what temperature on the X scale? 

IlW Suppose that on a linear temperature scale X, water 
boils at -53.5°X and freezes at -170oX. What is a temperature 
of 340 K on the X scale? (Approximate water's boiling point as 
373 K.) 

Thermal Expansion 
At 20°C, a brass cube has an edge length of 30 cm. What is 

the increase in the cube's surface area when it is heated from 
20°C to 75°C? 

IlW A circular hole in an aluminum plate is 2.725 cm in 
diameter at 0.000°e. What is its diameter when the temperature of 
the plate is raised to 100.0°C? 

o An aluminum flagpole is 33 m high. By how much does its 
length increase as the temperature increases by 15 CO? 

What is the volume of a lead ball at 30.00°C if the ball's vol­
ume at 60.00°C is 50.00 cm3? 

An aluminum-alloy rod has a length of 10.000 cm at 20.000°C 
and a length of 10.015 cm at the boiling point of water. (a) What is 
the length of the rod at the freezing point of water? (b) What is the 
temperature if the length of the rod is 10.009 cm? 

'1 SSM Find the change in volume of an aluminum sphere 
with an initial radius of 10 cm when the sphere is heated from 
O.O°C to 100°e. 

When the temperature of a copper coin is raised by 100 Co, 
its diameter increases by O.lS%. To two significant figures, give the 
percent increase in (a) the area of a face, (b) the thickness, (c) the 
volume, and (d) the mass of the coin. (e) Calculate the coefficient 
of linear expansion of the coin. 

H.W A steel rod is 3.000 cm in diameter at 25.00°e. A brass 
ring has an interior diameter of 2.992 cm at 25.00°e. At what com­
mon temperature will the ring just slide onto the rod? 

When the temperature of a metal cylinder is raised from O.O°C 
to 100°C,its length increases by 0.23%. (a) Find the percent change in 
density. (b) What is the metal? Use Table lS-2. 

SSM WWW An aluminum cup of 100 cm3 capacity is com-
pletely filled with glycerin at 22°e. How much glycerin, if any, will 
spill out of the cup if the temperature of both the cup and the glyc­
erin is increased to 2S0C? (The coefficient of volume expansion of 
glycerin is 5.1 X 1O-4/Co.) 

At 20°C, a rod is exactly 20.05 cm long on a steel 
ruler. Both the rod and the ruler are placed in an oven at 270°C, 
where the rod now measures 20.11 cm on the same ruler. What is 
the coefficient of linear expansion for the material of which the 
rod is made? 

A vertical glass tube of length L = 1.2S0 000 m is half 
filled with a liquid at 20.000 000°e. How much will the height of 
the liquid column change when the tube and liquid are heated to 
30.000000°C? Use coefficients aglass = 1.000000 X 1O-5/K and 
,sliquid = 4.000000 X 1O-5/K. 

In a certain experiment, a 
small radioactive source must move 
at selected, extremely slow speeds. 
This motion is accomplished by fas­
tening the source to one end of an 
aluminum rod and heating the cen­
tral section of the rod in a con- Fig. 18-30 Problem 20. 
trolled way. If the effective heated 
section of the rod in Fig. lS-30 has length d = 2.00 cm, at what 
constant rate must the temperature of the rod be changed if the 
source is to move at a constant speed of 100 nm/s? 



SSM IlW As a result of a 
temperature rise of 32 Co, a bar with 
a crack at its center buckles upward 
(Fig.1S-31). If the fixed distance Lo is 
3.77 m and the coefficient of linear 
expansion of the bar is 25 X 1O-6/Co, 
find the rise x of the center. 

The Absorption of 
Heat by Solids and Liquids 

I~--- Lo --~ .. F: 

Fig. 18-31 Problem21. 

One way to keep the contents of a garage from becoming 
too cold on a night when a severe subfreezing temperature is forecast 
is to put a tub of water in the garage. If the mass of the water is 125 kg 
and its initial temperature is 20°C, (a) how much energy must the wa­
ter transfer to its surroundings in order to freeze completely and (b) 
what is the lowest possible temperature of the water and its surround­
ings until that happens? 

SSM A small electric immersion heater is used to heat 100 g 
of water for a cup of instant coffee. The heater is labeled 
"200 watts" (it converts electrical energy to thermal energy at this 
rate). Calculate the time required to bring all this water from 
23.0°C to 100°C, ignoring any heat losses. 

A certain substance has a mass per mole of 50.0 g/mol. When 
314 J is added as heat to a 30.0 g sample, the sample's temperature 
rises from 25.0°C to 45.0°C. What are the (a) specific heat and (b) 
molar specific heat of this substance? (c) How many moles are in 
the sample? 

A certain diet doctor encourages people to diet by drinking ice 
water. His theory is that the body must burn off enough fat to raise 
the temperature of the water from O.OO°C to the body temperature 
of 37.0°C. How many liters of ice water would have to be consumed 
to burn off 454 g ( about lib) of fat, assuming that burning this much 
fat requires 3500 Cal be transferred to the ice water? Why is it not 
advisable to follow this diet? (One liter = 103 cm3. The density of 
water is 1.00 g/cm3.) 

What mass of butter, which has a usable energy content of 6.0 
Cal/g (= 6000 cal/g), would be equivalent to the change in gravita­
tional potential energy of a 73.0 kg man who ascends from sea 
level to the top of Mt. Everest, at elevation S.S4 km? Assume that 
the average g for the ascent is 9.S0 m/s2• 

SSM Calculate the minimum amount of energy, in joules, re­
quired to completely melt 130 g of silver initially at 15.0°C. 

How much water remains unfrozen after 50.2 kJ is transferred 
as heat from 260 g of liquid water initially at its freezing point? 

In a solar water heater, energy from the Sun is gathered by 
water that circulates through tubes in a rooftop collector. The solar 
radiation enters the collector through a transparent cover and 
warms the water in the tubes; this water is pumped into a holding 
tank. Assume that the efficiency of the overall system is 20% (that 
is, SO% of the incident solar energy is lost from the system). What 
collector area is necessary to raise the temperature of 200 L of wa­
ter in the tank from 20°C to 40°C in 1.0 h when the intensity of 
incident sunlight is 700 W/m2? 

A 0.400 kg sample is placed in a cooling apparatus that re­
moves energy as heat at a constant rate. Figure lS-32 gives the tem­
perature T of the sample versus time t; the horizontal scale is set by 
ts = SO.O min. The sample freezes during the energy removal. The 
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specific heat of the sample in its initial liquid phase is 3000 J/kg . K. 
What are (a) the sample's heat of fusion and (b) its specific heat in 
the frozen phase? 

t(min) 

Fig. 1 8-32 Problem 30. 

IlW What mass of steam at 100°C must be mixed with 150 g 
of ice at its melting point, in a thermally insulated container, to 
produce liquid water at 50°C? 

The specific heat of a substance varies with temperature ac­
cording to the function c = 0.20 + 0.14T + 0.023T2

, with Tin °C 
and c in cal/g . K. Find the energy required to raise the temperature 
of 2.0 g of this substance from 5.0°C to 15°C. 

Nonmetric version: (a) How long does a 2.0 X 105 Btu/h wa­
ter heater take to raise the temperature of 40 gal of water from 
70°F to 100°F? Metric version: (b) How long does a 59 kW water 
heater take to raise the temperature of 150 L of water from 21°C 
t03S0C? 

Samples A and B are at different initial temperatures 
when they are placed in a thermally insulated container and al­
lowed to come to thermal equilibrium. Figure IS-33a gives their 
temperatures T versus time t. Sample A has a mass of 5.0 kg; sam­
ple B has a mass of 1.5 kg. Figure IS-33b is a general plot for the 
material of sample B. It shows the temperature change !:1T that the 
material undergoes when energy is transferred to it as heat Q. The 
change !:1T is plotted versus the energy Q per unit mass of the ma­
terial, and the scale of the vertical axis is set by !:1 Ts = 4.0 Co. What 
is the specific heat of sample A? 

100 

10 
t(min) 

(a) 

20 

° S 
h 
<1 

I'1T, 

o 

Fig. 18-33 Problem 34. 

8 
Q/m (kJ/kg) 

(b) 

An insulated Thermos contains 130 cm3 of hot coffee at 
SO.O°C. You put in a 12.0 g ice cube at its melting point to cool the cof­
fee. By how many degrees has your coffee cooled once the ice has 
melted and equilibrium is reached? Treat the coffee as though it were 
pure water and neglect energy exchanges with the environment. 

A 150 g copper bowl contains 220 g of water, both at 20.0°C. A 
very hot 300 g copper cylinder is dropped into the water, causing the 
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water to boil, with 5.00 g being converted to steam. The final temper­
ature of the system is 100°e. Neglect energy transfers with the envi­
ronment. (a) How much energy (in calories) is transferred to the wa­
ter as heat? (b) How much to the bowl? (c) What is the original 
temperature of the cylinder? 

A person makes a quantity of iced tea by mixing 500 g of hot 
tea (essentially water) with an equal mass of ice at its melting 
point. Assume the mixture has negligible energy exchanges with its 
environment. If the tea's initial temperature is T j = 90°C, when 
thermal equilibrium is reached what are (a) the mixture's tempera­
ture Tf and (b) the remaining mass mf of ice? If T j = 70°C, when 
thermal equilibrium is reached what are (c) Tf and (d) 111/ 

A 0.530 kg sample of liquid water and a sample of ice are 
placed in a thermally insulated container. The container also con­
tains a device that transfers energy as heat from the liquid water to 
the ice at a constant rate P, until thermal equilibrium is reached. 
The temperatures T of the liquid water and the ice are given in Fig. 
IS-34 as functions of time t; the horizontal scale is set by ts = SO.O 
min. (a) What is rate P? (b) What is the initial mass of the ice in the 
container? (c) When thermal equilibrium is reached, what is the 
mass of the ice produced in this process? 

{(min) 

Fig. 1 8-34 Problem 3S. 

@ Ethyl alcohol has a boiling point of 7S.0°C, a freezing 
point of -114°C, a heat of vaporization of S79 kJ/kg, a heat of 
fusion of 109 kJ/kg, and a specific heat of 2.43 kJ/kg' K. How 
much energy must be removed from 0.510 kg of ethyl alcohol 
that is initially a gas at 7S.0°C so that it becomes a solid at 
-114°C? 

Calculate the specific heat of a metal from the following 
data. A container made of the metal has a mass of 3.6 kg and con­
tains 14 kg of water. A 1.S kg piece of the metal initially at a tem­
perature of IS0°C is dropped into the water. The container and wa­
ter initially have a temperature of 16.0°C, and the final 
temperature of the entire (insulated) system is IS.0°e. 

SSM www (a) Two 50 g ice cubes are dropped into 200 g of 
water in a thermally insulated container. If the water is initially at 
25°C, and the ice comes directly from 
a freezer at -15°C, what is the final 
temperature at thermal equilibrium? 
(b) What is the final temperature if 
only one ice cube is used? 

A 20.0 g copper ring at 
O.OOO°C has an inner diameter 
of D = 2.54000 cm. An aluminum 
sphere at 100.0°C has a diameter of 
d = 2.545 OS cm. The sphere is put 

1----- d ------I 

on top of the ring (Fig. IS-35), and Fig. 18-35 Problem 42. 

the two are allowed to come to thermal equilibrium, with no heat 
lost to the surroundings. The sphere just passes through the ring at 
the equilibrium temperature. What is the mass of the sphere? 

Some Special Cases of the First Law 
of Thermodynamics 

In Fig. IS-36, a gas sample 

Po 
A expands from Vo to 4.0Vo while its 

pressure decreases from Po to 
Po/4.0. If Vo = 1.0 m3 and Po = 40 ~ 
Pa, how much work is done by the v 

gas if its pressure changes with ~~ 
volume via (a) path A, (b) path B, _ 

--- ,---- 1----- - ----

and (c) path C? 

A thermodynamic system 
is taken from state A to state B 
to state C, and then back to A, as 
shown in the p-V diagram of Fig. 
IS-37a. The vertical scale is set 
by Ps = 40 Pa, and the horizontal 

c B 

o 4.01'0 

Fig. 18-36 Problem 43. 

scale is set by Vs = 4.0 m3. (a)-(g) Complete the table in Fig. 
IS-37b by inserting a plus sign, a minus sign, or a zero in each indi­
cated cell. (h) What is the net work done by the system as it moves 
once through the cycle ABCA? 

jJs 
'2 e:-

~ Q w A&nt 

~ A-B (a) (b) + p.. 

B-C + (e) (d) 

0 C-A (e) (f) (g) 
(a) Volume (m3) (b) 

Fig. 18-37 Problem 44. 

SSM IlW A gas within a closed chamber undergoes the cy­
cle shown in the p-V diagram of Fig. IS-3S. The horizontal scale is 
set by Vs = 4.0 m3. Calculate the net energy added to the system as 
heat during one complete cycle. 

~, 

S 
"-
6 

~ 
I..; 

p.. 

40 

30 

20 

10 

o 
Volume (m3) 

Fig. 18-38 Problem 45. 

Suppose 200 J of work is done on a system and 70.0 cal is ex­
tracted from the system as heat. In the sense of the first law of 
thermodynamics, what are the values (including algebraic signs) 
of (a) W, (b) Q, and (c) ~Eint? 



SSM WWW When a system is taken from state i to state f 
along path iafin Fig. lS-39, Q = 50 cal and W = 20 cal. Along path 
ibf, Q = 36 cal. (a) What is W along path ibf? (b) If W = -13 cal 
for the return path fl, what is Q for this path? (c) If Eint,i = 10 cal, 
what is Eint,P If Eint,b = 22 cal, what is Q for (d) path ib and (e) 
path bf? 

a f 

o 
Volume 

Fig. 18-39 Problem 47. 

Gas held within a chamber 
passes through the cycle shown in Fig. 
lS-40. Determine the energy trans- 1:: 

ferred by the system as heat during j 
process CA if the energy added as heat _ 
QAB during process AB is 20.0 J, no en­
ergy is transferred as heat during 
process BC, and the net work done 
during the cycle is 15.0 1. 0 

Figure lS-41 represents a 
closed cycle for a gas (the figure is not 
drawn to scale). The change in the in- p 
ternal energy of the gas as it moves 
from a to c along the path abc is -200 
1. As it moves from c to d, lS0 J must 

B 

Volume 

Fig. 18-40 

Problem4S. 

be transferred to it as heat. An addi­
tional transfer of SO J to it as heat is 
needed as it moves from d to a. How 
much work is done on the gas as it 
moves from c to d? 

'--------v 

A lab sample of gas is taken 
through cycle abca shown in the p-V /) 
diagram of Fig. lS-42. The net work 
done is + 1.21. Along path ab, the 
change in the internal energy is +3.0 J 
and the magnitude of the work done 
is 5.01. Along path ca, the energy 
transferred to the gas as heat is +2.5 

Fig. 18-41 

Problem 49. 

c 

1. How much energy is transferred as 
heat along (a) path ab and (b) path bc? 

'--------v 

Heat Transfer 
Mechanisms 

Fig. 18-42 

Problem 50. 

A sphere of radius 0.500 m, temperature 27.0°C, and emissivity 
0.S50 is located in an environment of temperature n.o°e. At what 
rate does the sphere (a) emit and (b) absorb thermal radiation? (c) 
What is the sphere's net rate of energy exchange? 

The ceiling of a single-family dwelling in a cold climate should 
have an R-value of 30. To give such insulation, how thick would a layer 
of (a) polyurethane foam and (b) silver have to be? 

SSM Consider the slab shown in Fig. lS-lS. Suppose that 
L = 25.0 cm, A = 90.0 cm2, and the material is copper. If TH = 

125°C, Tc = 10.0°C, and a steady state is reached, find the conduc­
tion rate through the slab. 
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If you were to walk briefly in space without a spacesuit 
while far from the Sun (as an astronaut does in the movie 2001, A 
Space Odyssey), you would feel the cold of space-while you radiated 
energy, you would absorb almost none from your environment. (a) At 
what rate would you lose energy? (b) How much energy would you 
lose in 30 s? Assume that your emissivity is 0.90, and estimate other 
data needed in the calculations. 

IlW A cylindrical copper rod of length 1.2 m and cross­
sectional area 4.S cm2 is insulated to prevent heat loss through its 
surface. The ends are maintained at a temperature difference of 
100 Co by having one end in a water-ice mixture and the other in 
a mixture of boiling water and steam. (a) At what rate is energy 
conducted along the rod? (b) At what rate does ice melt at the 
cold end? 

The giant hornet Vespa mandarinia japonica preys on 
Japanese bees. However, if one of the hornets attempts to invade a 
beehive, several hundred of the bees quickly form a compact ball 
around the hornet to stop it. They don't sting, bite, crush, or suffocate 
it. Rather they overheat it by quickly raising their body tempera­
tures from the normal 35°C to 47°C or 4SoC, which is lethal to the 
hornet but not to the bees (Fig. lS-43). Assume the following: 500 
bees form a ball of radius R = 2.0 cm for a time t = 20 min, the pri­
mary loss of energy by the ball is by thermal radiation, the ball's 
surface has emissivity e = O.SO, and the ball has a uniform temper­
ature. On average, how much additional energy must each bee pro­
duce during the 20 min to maintain 47°C? 

Fig. 1 8-43 Problem 56. 
(© D/; Masato Ono, Tamagawa University) 

(a) What is the rate of energy loss in watts per square meter 
through a glass window 3.0 mm thick if the outside temperature is 
-20°F and the inside temperature is +72°F? (b) A storm window 
having the same thickness of glass is installed parallel to the first 
window, with an air gap of 7.5 cm between the two windows. What 
now is the rate of energy loss if conduction is the only important 
energy-loss mechanism? 

A solid cylinder of radius r l = 2.5 cm, length hi = 5.0 
cm, emissivity 0.S5, and temperature 30°C is suspended in an envi­
ronment of temperature 50°C. (a) What is the cylinder's net thermal 
radiation transfer rate PI? (b) If the 
cylinder is stretched until its radius is TJ ~~~(l~G~ff411'.; 
1'2 = 0.50 cm, its net thermal radiation 
transfer rate becomes P2• What is the ra­
tioP2 lP I? 

In Fig. lS-44a, two identical rectan­
gular rods of metal are welded end to end, 
with a temperature of TI = O°C on the left 
side and a temperature of T2 = lOO°C on 

T 1 

(a) 

(b) 

Fig. 18-44 

Problem 59. 
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the right side. In 2.0 min, 10 J is conducted at a constant rate from 
the right side to the left side. How much time would be required to 
conduct 10 J if the rods were welded side to side as in Fig. 18-44b? 

Figure 18-45 shows the cross 
section of a wall made of three layers. 
The layer thicknesses are L 1, L2 = 
0.700LI> and L3 = 0.350L1• The thermal 1H 
conductivities are kl> k2 = 0.900kl> and k3 
= 0.800k1• The temperatures at the left 
and right sides of the wall are T H = 30.0°C 
and T c = -15.0°C, respectively. Thermal 
conduction is steady. (a) What is the tem­
perature difference I1T2 across layer 2 (be-

Fig. 18-45 

Problem 60. 

tween the left and right sides of the layer)? If k2 were, instead, equal to 
1.1kl> (b) would the rate at which energy is conducted through the 
wall be greater than, less than, or the same as previously, and (c) 
what would be the value of I1T2? 

SSM A tank of water has 
been outdoors in cold weather, and 
a slab of ice 5.0 cm thick has formed 
on its surface (Fig. 18-46). The air 
above the ice is at -10°C. Calculate 
the rate of ice formation (in cen­
timeters per hour) on the ice slab. 
Take the thermal conductivity of ice 
to be 0.0040 calls· cm . CO and its 
density to be 0.92 g/cm3.Assume no 
energy transfer through the tank 
walls or bottom. 

Leidenfrost effect. A 
water drop that is slung onto a skil­
let with a temperature between 
100°C and about 200°C will last Fig. 18-46 Problem 61. 
about 1 s. However, if the skillet is 
much hotter, the drop can last sev- Water drop 
eral minutes, an effect named after I!L r ... 

an early investigator. The longer life- ""1,·".,-==rf L7----'-"-'-"'---~.Cl 

time is due to the support of a thin Skillet 

layer of air and water vapor that sep- Fig. 18-47 Problem 62. 
arates the drop from the metal (by 
distance L in Fig. 18-47). Let L = 

0.100 mm, and assume that the drop is fiat with height h = 1.50 mm 
and bottom face area A = 4.00 X 10-6 m2. Also assume that the 
skillet has a constant temperature Ts = 300°C and the drop has a 
temperature of 100°C, Water has density p = 1000 kg/m3, and the 
supporting layer has thermal conductivity k = 0.026 W 1m· K. (a) At 
what rate is energy conducted from the skillet to the drop through 
the drop's bottom surface? (b) If conduction is the primary way en­
ergy moves from the skillet to the drop, how long will the drop last? 

Figure 18-48 shows (in cross section) a wall consisting of 

:2SJ 
l-L1~~~ .1. 

Fig. 18-48 Problem 63. 

four layers, with thermal conductivities k1 = 0.060 W 1m' K, k3 = 

0.040 W/m· K, and k4 = 0.12 W/m' K (k2 is not known). The layer 
thicknesses are L1 = 1.5 cm, L3 = 2.8 cm, and L4 = 3.5 cm (L2 is 
not known). The known temperatures are T1 = 30°C, T12 = 25°C, 
and T4 = -10°C, Energy transfer through the wall is steady. What 
is interface temperature T34? 

Penguin huddling. To withstand the harsh weather of 
the Antarctic, emperor penguins huddle in groups (Fig. 18-49). 
Assume that a penguin is a circular cylinder with a top surface area 
a = 0.34 m2 and height h = 1.1 m. Let Pr be the rate at which an in­
dividual penguin radiates energy to the environment (through the 
top and the sides); thus NPris the rate at whichN identical, well-sepa­
rated penguins radiate. If the penguins huddle closely to form a hud­
dled cylinder with top surface area Na and height h, the cylinder radi­
ates at the rate Ph' If N = 1000, (a) what is the value of the fraction 
PhlNPr and (b) by what percentage does huddling reduce the total ra­
diation loss? 

Fig. 1 8-49 Problem 64. 
(Alain TorterototlPeterArnold, Inc.) 

Ice has formed on a shallow pond, and a steady state has been 
reached, with the air above the ice at -5.0°C and the bottom of the 
pond at 4.0°C, If the total depth of ice + water is 1.4 m, how thick is 
the ice? (Assume that the thermal conductivities of ice and water are 
0.40 and 0.12 callm . Co . s, respectively.) 

Evaporative cooling of beverages. A cold bever­
age can be kept cold even on a warm day if it is slipped into a 
porous ceramic container that has been soaked in water. Assume 
that energy lost to evaporation matches the net energy gained via 
the radiation exchange through the top and side surfaces. The con­
tainer and beverage have temperature T = 1YC, the environment 
has temperature Tenv = 32°C, and the container is a cylinder with 
radius r = 2.2 cm and height 10 cm. Approximate the emissivity as 
B = 1, and neglect other energy exchanges. At what rate dmldt is 
the container losing water mass? 

Additional Problems 
In the extrusion of cold chocolate from a tube, work is 

done on the chocolate by the pressure applied by a ram forcing 
the chocolate through the tube. The work per unit mass of ex­
truded chocolate is equal to pip, where p is the difference be­
tween the applied pressure and the pressure where the choco­
late emerges from the tube, and p is the density of the chocolate. 



Rather than increasing the temperature of the chocolate, this 
work melts cocoa fats in the chocolate. These fats have a heat of 
fusion of 150 kJ/kg. Assume that all of the work goes into that 
melting and that these fats make up 30% of the chocolate's mass. 
What percentage of the fats melt during the extrusion if p = 5.5 
MPa and p = 1200 kg/m3? 

Icebergs in the North Atlantic present hazards to shipping, 
causing the lengths of shipping routes to be increased by about 30% 
during the iceberg season. Attempts to destroy icebergs include 
planting explosives, bombing, torpedoing, shelling, ramming, and 
coating with black soot. Suppose that direct melting of the iceberg, 
by placing heat sources in the ice, is tried. How much energy as heat 
is required to melt 10% of an iceberg that has a mass of 200 000 
metric tons? (Use 1 metric ton = 1000 kg.) 

Figure 18-50 displays a closed cycle for p 
a gas. The change in internal energy along 
path ea is -1601. The energy transferred to 
the gas as heat is 200 J along path ab, and 40 
J along path be. How much work is done by 
the gas along (a) path abc and (b) path ab? 

In a certain solar house, energy from 
the Sun is stored in barrels filled with water. 
In a particular winter stretch of five cloudy 
days, 1.00 X 106 kcal is needed to maintain 

'-------v 
Fig. 18-50 

Problem 69. 

the inside of the house at 22.0°C. Assuming that the water in the 
barrels is at 50.0°C and that the water has a density of 1.00 X 
103 kg/m3, what volume of water is required? 

A 0.300 kg sample is placed in a 
cooling apparatus that removes en­
ergy as heat at a constant rate of 2.81 
W. Figure 18-51 gives the tempera- E 
ture T of the sample versus time t. 
The temperature scale is set by Ts = 
30°C and the time scale is set by ts = 
20 min. What is the specific heat of 
the sample? 

o 
t(min) 

The average rate at which en- Fig. 18-51 Problem 71. 
ergy is conducted outward through 
the ground surface in North America is 54.0 mW/m2, and the aver­
age thermal conductivity of the near-surface rocks is 2.50 W/m' K. 
Assuming a surface temperature of 10.0°C, find the temperature at 
a depth of 35.0 km (near the base of the crust). Ignore the heat 
generated by the presence of radioactive elements. 

What is the volume increase of an aluminum cube 5.00 cm on 
an edge when heated from 10.0°C to 60.0°C? 

In a series of experiments, block B is to be placed in a ther­
mally insulated container with block A, which has the same mass as 
block B. In each experiment, block Yr., 
B is initially at a certain temperature 
TB, but temperature TA of block A 
is changed from experiment to ex- g 
periment. Let Tf represent the final h'-, 

temperature of the two blocks 
when they reach thermal equilib­
rium in any of the experiments. 
Figure 18-52 gives temperature Tf 
versus the initial temperature TA 

0'---_____ -----' 

for a range of possible values of Fig. 18-52 Problem 74. 
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TA, from TAl = 0 K to TA2 = 500 K. The vertical axis scale is set by 
Tfs = 400 K. What are (a) temperature TB and (b) the ratio eB/eA of 
the specific heats of the blocks? 

Figure 18-53 displays a closed 
cycle for a gas. From e to b, 40 J is 
transferred from the gas as heat. 
From b to a, 130 J is transferred from 
the gas as heat, and the magnitude of 
the work done by the gas is 801. 
From a to e, 400 J is transferred to 

p 

• a 

'------------v 
the gas as heat. What is the work Fig. 18-53 Problem 75. 
done by the gas from a to e? (Hint: 
You need to supply the plus and minus signs for the given data.) 

Three equal-length straight rods, of aluminum, Invar, and 
steel, all at 20.0°C, form an equilateral triangle with hinge pins at 
the vertices. At what temperature will the angle opposite the Invar 
rod be 59.95°? See Appendix E for needed trigonometric formulas 
and Table 18-2 for needed data. 

SSM The temperature of a 0.700 kg cube of ice is decreased 
to -150°C. Then energy is gradually transferred to the cube as heat 
while it is otherwise thermally isolated from its environment. The 
total transfer is 0.6993 M1. Assume the value of eice given in Table 
18-3 is valid for temperatures from -150°C to O°C. What is the fi­
nal temperature of the water? 

Icicles. Liquid water coats an active (growing) ici­
cle and extends up a short, narrow tube along the central axis 
(Fig. 18-54). Because the water-ice interface must have a tem­
perature of O°C, the water in the tube cannot lose energy through 
the sides of the icicle or down through the tip because there is no 
temperature change in those directions. It can lose energy and 
freeze only by sending energy up (through distance L) to the top 
of the icicle, where the temperature Tr can be below O°c. Take 
L = 0.12 m and T, = - 5°C. Assume that the central tube and the 
upward conduction path both have cross-sectional area A. In 
terms of A, what rate is (a) energy conducted upward and (b) 
mass converted from liquid to ice at the top of the central tube? (c) 
At what rate does the top of the tube move downward because of 
water freezing there? The thermal conductivity of ice is 0.400 
W/m'K, and the density of liquid water is 1000 kg/m3. 

L 

1 

I 

V-Energy transfer 
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: {: Liquid coating 
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':'i,,4, ' Liquid water 
\'/ (OOe) 

Fig. 18-54 Problem 78. 

SSM A sample of gas expands from an initial pressure and 
volume of 10 Pa and 1.0 m3 to a final volume of 2.0 m3• During the 
expansion, the pressure and volume are related by the equation 
p = aV2, where a = 10 N/mB• Determine the work done by the gas 
during this expansion. 
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80 Figure lS-55a shows a cylinder containing gas and closed by a 
movable piston. The cylinder is kept submerged in an ice-water mix­
ture. The piston is quickly pushed down from position 1 to position 2 
and then held at position 2 until the gas is again at the temperature of 
the ice-water mixture; it then is slowly raised back to position 1. 
Figure lS-55b is a p-V diagram for the process. If 100 g of ice is 
melted during the cycle, how much work has been done on the gas? 

(a) 

Ice and 
water 

Fig. 18-55 Problem SO. 

SSM A sample of gas under­
goes a transition from an initial 
state a to a final state b by three 3p/2 
different paths (processes), as 
shown in the p-V diagram in Fig. 
IS-56, where Vb = 5.00Vi. The en-
ergy transferred to the gas as heat P/2 
in process 1 is 10pYi' In terms of 

p 

(b) 

:CC e , Start 

I 

PYio what are (a) the energy 
transferred to the gas as heat in 
process 2 and (b) the change in 
internal energy that the gas un­
dergoes in process 3? 

Fig. 1 8-56 Problem S1. 

A copper rod, an aluminum rod, and a brass rod, each of 6.00 
m length and 1.00 cm diameter, are placed end to end with the alu­
minum rod between the other two. The free end of the copper rod 
is maintained at water's boiling point, and the free end of the brass 
rod is maintained at water's freezing point. What is the steady-state 
temperature of (a) the copper-aluminum junction and (b) the alu­
minum - brass junction? 

SSM The temperature of a Pyrex disk is changed from 1O.0°C 
to 60.0°C. Its initial radius is S.OO cm; its initial thickness is 0.500 
cm. Take these data as being exact. What is the change in the vol­
ume of the disk? (See Table lS-2.) 

(a) Calculate the rate at which body heat is conducted through 
the clothing of a skier in a steady-state process, given the following 
data: the body sUliace area is 1.S m2

, and the clothing is 1.0 cm thick; 
the skin surface temperature is 33°C and the outer surface of the 
clothing is at 1.0°C; the thermal conductivity of the clothing is 0.040 
Wlm . K. (b) If, after a fall, the skier's clothes became soaked with wa­
ter of thermal conductivity 0.60 Wlm . K, by how much is the rate of 
conduction mUltiplied? 

SSM A 2.50 kg lump of aluminum is heated to 92.0°C and 
then dropped into S.OO kg of water at 5.00°C. Assuming that the 
lump-water system is thermally isolated, what is the system's equi­
librium temperature? 

A glass window pane is exactly 20 cm by 30 cm at 10°C. By 
how much has its area increased when its temperature is 40°C, as­
suming that it can expand freely? 

A recruit can join the semi-secret "300 F" club at the 
Amundsen-Scott South Pole Station only when the outside tem­
perature is below -70°C. On such a day, the recruit first basks in a 
hot sauna and then runs outside wearing only shoes. (This is, of 
course, extremely dangerous, but the rite is effectively a protest 
against the constant danger of the cold.) 

Assume that upon stepping out of the sauna, the recruit's skin 
temperature is 102°F and the walls, ceiling, and floor of the sauna 
room have a temperature of 30°C. Estimate the recruit's surface area, 
and take the skin emissivity to be O.SO. (a) What is the approximate 
net rate Pnet at which the recruit loses energy via thermal radiation ex­
changes with the room? Next, assume that when outdoors, half the re­
cruit's surface area exchanges thermal radiation with the sky at a tem­
perature of -2YC and the other half exchanges thermal radiation 
with the snow and ground at a temperature of -SO°c. What is the ap­
proximate net rate at which the recruit loses energy via thermal radia­
tion exchanges with (b) the sky and (c) the snow and ground? 

A steel rod at 25.0°C is bolted at both ends and then cooled. 
At what temperature will it rupture? Use Table 12-1. 

An athlete needs to lose weight and decides to do it by "pump­
ing iron." (a) How many times must an SO.O kg weight be lifted a dis­
tance of 1.00 m in order to burn off 1.00 lb of fat, assuming that that 
much fat is equivalent to 3500 Cal? (b) If the weight is lifted once 
every 2.00 s, how long does the task take? 

Soon after Earth was formed, heat released by the decay of ra­
dioactive elements raised the average internal temperature from 300 
to 3000 K, at about which value it remains today. Assuming an aver­
age coefficient of volume expansion of 3.0 X 10-5 K-1, by how much 
has the radius of Earth increased since the planet was formed? 

It is possible to melt ice by rubbing one block of it against an­
other. How much work, in joules, would you have to do to get 1.00 
g of ice to melt? 

A rectangular plate of glass initially has the dimensions 0.200 
m by 0.300 m. The coefficient of linear expansion for the glass is 
9.00 X 1O-6/K. What is the change in the plate's area if its tempera­
ture is increased by 20.0 K? 

Suppose that you intercept 5.0 X 10-3 of the energy radiated 
by a hot sphere that has a radius of 0.020 m, an emissivity of O.SO, 
and a surface temperature of 500 K. How much energy do you in­
tercept in 2.0 min? 

A thermometer of mass 0.0550 kg and of specific heat 0.S37 
kJ/kg' K reads 15.0°C. It is then completely immersed in 0.300 kg 
of water, and it comes to the same final temperature as the water. If 
the thermometer then reads 44.4°C, what was the temperature of 
the water before insertion of the 
thermometer? 

A sample of gas expands from 
V j = 1.0 m3 and PI = 40 Pa to V2 = 
4.0 m3 and P2 = 10 Pa along path B 
in the P-V diagram in Fig. IS-57. It is 
then compressed back to V j along ei­
ther path A or path C. Compute the 
net work done by the gas for the 
complete cycle along (a) path BA 
and (b)pathBC. 
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Fig. 18-57 Problem 95. 



One of the main subjects in thermodynamics is the physics of gases. A 
gas consists of atoms (either individually or bound together as molecules) that fill 
their container's volume and exert pressure on the container's walls. We can usu­
ally assign a temperature to such a contained gas. These three variables associ­
ated with a gas-volume, pressure, and temperature-are all a consequence of 
the motion of the atoms. The volume is a result of the freedom the atoms have to 
spread throughout the container, the pressure is a result of the collisions of the 
atoms with the container's walls, and the temperature has to do with the kinetic 
energy of the atoms. The kinetic theory of gases, the focus of this chapter, relates 
the motion of the atoms to the volume, pressure, and temperature of the gas. 

Applications of the kinetic theory of gases are countless. Automobile engineers 
are concerned with the combustion of vaporized fuel (a gas) in the automobile en­
gines. Food engineers are concerned with the production rate of the fermentation 
gas that causes bread to rise as it bakes. Beverage engineers are concerned with how 
gas can produce the head in a glass of beer or shoot a cork from a champagne bottle. 
Medical engineers and physiologists are concerned with calculating how long a 
scuba diver must pause during ascent to eliminate nitrogen gas from the blood­
stream (to avoid the bends). Environmental scientists are concerned with how heat 
exchanges between the oceans and the atmosphere can affect weather conditions. 

The first step in our discussion of the kinetic theory of gases deals with measur­
ing the amount of a gas present in a sample, for which we use Avogadro's number. 

Avogadro's Number 
When our thinking is slanted toward atoms and molecules, it makes sense to 
measure the sizes of our samples in moles. If we do so, we can be certain that we 
are comparing samples that contain the same number of atoms or molecules. 
The mole is one of the seven SI base units and is defined as follows: 

One mole is the number of atoms in a 12 g sample of carbon-12. 

The obvious question now is: "How many atoms or molecules are there in a 
mole?" The answer is determined experimentally and, as you saw in Chapter 18, is 

N A = 6.02 X 1023 mol- 1 (Avogadro's number), (19-1) 

where mol- 1 represents the inverse mole or "per mole," and mol is the abbre­
viation for mole. The number N A is called Avogadro'S number after Italian sci­
entist Amedeo Avogadro (1776-1856), who suggested that all gases occupying 
the same volume under the same conditions of temperature and pressure contain 
the same number of atoms or molecules. 
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The number of moles n contained in a sample of any substance is equal to the ratio 
of the number of molecules N in the sample to the number of molecules N A in 1 mol: 

N 
n=-. 

NA 
(19-2) 

(Caution: The three symbols in this equation can easily be confused with one 
another, so you should sort them with their meanings now, before you end in 
"N-confusion.") We can find the number of moles n in a sample from the mass 
Msam of the sample and either the molar mass M (the mass of 1 mol) or the 
molecular mass m (the mass of one molecule): 

Msam Msam n=--=--
M mNA ' 

(19-3) 

In Eq. 19-3, we used the fact that the mass M of 1 mol is the product of the mass 
m of one molecule and the number of molecules N A in 1 mol: 

(19-4) 

1 Ideal Gases 
Our goal in this chapter is to explain the macroscopic properties of a gas-such 
as its pressure and its temperature-in terms of the behavior of the molecules 
that make it up. However, there is an immediate problem: which gas? Should it 
be hydrogen, oxygen, or methane, or perhaps uranium hexafluoride? They are 
all different. Experimenters have found, though, that if we confine 1 mol samples 
of various gases in boxes of identical volume and hold the gases at the same 
temperature, then their measured pressures are almost the same, and at lower 
densities the differences tend to disappear. Further experiments show that, at low 
enough densities, all real gases tend to obey the relation 

p V = nRT (ideal gas law), (19-5) 

in which p is the absolute (not gauge) pressure, n is the number of moles of gas 
present, and T is the temperature in kelvins. The symbol R is a constant called 
the gas constant that has the same value for all gases-namely, 

R = 8.31 J/mol· K. (19-6) 

Equation 19-5 is called the ideal gas law. Provided the gas density is low, this law 
holds for any single gas or for any mixture of different gases. (For a mixture, 
n is the total number of moles in the mixture.) 

We can rewrite Eq. 19-5 in an alternative form, in terms of a constant called 
the Boltzmann constant k, which is defined as 

k = ~ = 8.31 J/mol' K = 1.38 X 10-23 J/K. 
NA 6.02 X 1023 mol- 1 (19-7) 

This allows us to write R = kN A' Then, with Eq.19-2 (n = NINA), we see that 

nR = Nk. (19-8) 

Substituting this into Eq.19-5 gives a second expression for the ideal gas law: 

pV = NkT (ideal gas law). (19-9) 

(Caution: Note the difference between the two expressions for the ideal gas 
law - Eq. 19-5 involves the number of moles n, and Eq. 19-9 involves the number 
of molecules N.) 



You may well ask, "What is an ideal gas, and what is so 'ideal' about it?" The 
answer lies in the simplicity of the law (Eqs. 19-5 and 19-9) that governs its 
macroscopic properties. Using this law-as you will see-we can deduce many 
properties of the ideal gas in a simple way. Although there is no such thing in 
nature as a truly ideal gas, all real gases approach the ideal state at low enough 
densities-that is, under conditions in which their molecules are far enough 
apart that they do not interact with one another. Thus, the ideal gas concept 
allows us to gain useful insights into the limiting behavior of real gases. 

The interior of the railroad tank car in Fig. 19-1 was being cleaned with steam 
by a crew late one afternoon. When they left for the night, they sealed the car. 
When they returned the next morning, they discovered that something had crushed 
the car in spite of its extremely strong steel walls, as if some giant creature from a 
grade B science fiction movie had stepped on it during a rampage that night. 

With Eq. 19-9, we can explain what actually crushed the railroad tank car. 
When the car was being cleaned, its interior was filled with very hot steam, which 
is a gas of water molecules. The cleaning crew left the steam inside the car when 
they closed all the valves on the car at the end of their work shift. At that point the 
pressure of the gas in the car was equal to atmospheric pressure because the 
valves had been opened to the atmosphere during the cleaning. As the car cooled 
during the night, the steam cooled and much of it condensed, which means that the 
number N of gas molecules and the temperature T of the gas both decreased. 
Thus, the right side of Eq. 19-9 decreased, and because volume V was constant, the 
gas pressure p on the left side also decreased. At some point during the night, the 
gas pressure inside the car reached such a low value that the external atmospheric 
pressure was able to crush the car's steel walls. The cleaning crew could have pre­
vented this accident by leaving the valves open, so that air could enter the car to 
keep the internal pressure equal to the external atmospheric pressure. 

Suppose we put an ideal gas in a piston-cylinder arrangement like those in 
Chapter 18. Suppose also that we allow the gas to expand from an initial volume 
Vi to a final volume Vf while we keep the temperature T of the gas constant. Such 
a process, at constant temperature, is called an isothermal expansion (and the 
reverse is called an isothermal compression). 

On a p-V diagram, an isotherm is a curve that connects points that have the 
same temperature. Thus, it is a graph of pressure versus volume for a gas whose tem­
perature T is held constant. For n moles of an ideal gas, it is a graph of the equation 

1 1 
p = nRTV = (aconstant)V' (19-10) 

Figure 19-2 shows three isotherms, each corresponding to a different (constant) 
value of T. (Note that the values of T for the isotherms increase upward to the 
right.) Superimposed on the middle isotherm is the path followed by a gas during 
an isothermal expansion from state i to state f at a constant temperature of 310 K. 

To find the work done by an ideal gas during an isothermal expansion, we 
start with Eq. 18-25, 

J
Vf 

W = p dV. (19-11) 
Vi 

This is a general expression for the work done during any change in volume of any 
gas. For an ideal gas, we can use Eq. 19-5 (pV = nRT) to substitute for p, obtaining 

W = JVf nRT dV. 
Vi V 

(19-12) 

Because we are considering an isothermal expansion, T is constant, so we can 
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Fig. 19-1 A railroad tank car 
crushed overnight. (Photo courtesy 
www.Houston.RailFan.net) 

p 

The expansion is along 
an isotherm (the gas has 
constant temperature). 

T= 320 K 

f 
T=310 K 

T= 300 K 

~----------------------v 

Fig. 19-2 Three isotherms on a 
p-V diagram. The path shown along 
the middle isotherm represents an 
isothelmal expansion of a gas from 
an initial state i to a final state f 
The path from/to i along the 
isotherm would represent the re­
verse process-that is, an isothermal 
compression. 
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CHECKPOINT 1 

An ideal gas has an initial pressure of 3 
pressure units and an initial volume of 4 
volume units. The table gives the final 
pressure and volume of the gas (in 
those same units) in five processes. 
Which processes start and end on the 
same isotherm? 

a b 

P 112 6 
V 1 2 

c d e 

541 
7 3 12 

move it in front of the integral sign to write 

JVr dV [JVr W = nRT V = nRT In V . 
Vi Vi 

(19-13) 

By evaluating the expression in brackets at the limits and then using the rela­
tionship In a - In b = In(a/b), we find that 

Vf W = nR TIn - (ideal gas, isothermal process). 
Vi 

(19-14) 

Recall that the symbol In specifies a natural logarithm, which has base e. 
For an expansion, 1j is greater than Vi, so the ratio 1j/Vi in Eq. 19-14 is greater 

than unity. The natural logarithm of a quantity greater than unity is positive, and 
so the work W done by an ideal gas during an isothermal expansion is positive, as 
we expect. For a compression, 1j is less than Vi, so the ratio of volumes in Eq. 
19-14 is less than unity. The natural logarithm in that equation-hence the work 
W - is negative, again as we expect. 

Equation 19-14 does not give the work W done by an ideal gas during every 
thermodynamic process. Instead, it gives the work only for a process in which 
the temperature is held constant. If the temperature varies, then the symbol T 
in Eq.19-12 cannot be moved in front of the integral symbol as in Eq.19-13, and 
thus we do not end up with Eq.19-14. 

However, we can always go back to Eq.19-11 to find the work W done by an ideal 
gas (or any other gas) during any process, such as a constant-volume process and a 
constant -pressure process. If the volume of the gas is constant, then Eq.19-11 yields 

W=o (constant-volume process). (19-15) 

If, instead, the volume changes while the pressure P of the gas is held constant, 
then Eq.19-11 becomes 

W = p(1j - Vi) = P Ll V (cons tan t -pressure process). (19-16) 

Ideal gas and changes of temperature, volume, and pressure 

A cylinder contains 12 L of oxygen at 20°C and 15 atm. The 
temperature is raised to 35°C, and the volume is reduced to 
8.5 L. What is the final pressure of the gas in atmospheres? 
Assume that the gas is ideal. 

Because the gas is ideal, we can use the ideal gas law to relate 
its parameters, both in the initial state i and in the final state f 

Calculations: From Eq.19-5 we can write 

PiVi = nRTi and PrVr = nRTr· 

Dividing the second equation by the first equation and solving 

Note here that if we converted the given initial and final vol­
umes from liters to the proper units of cubic meters, the 
multiplying conversion factors would cancel out of Eq. 
19-17. The same would be true for conversion factors that 
convert the pressures from atmospheres to the proper pas­
cals. However, to convert the given temperatures to kelvins 
requires the addition of an amount that would not cancel 
and thus must be included. Hence, we must write 

and 

Ti = (273 + 20) K = 293 K 

Tr = (273 + 35) K = 308 K. 

Inserting the given data into Eq.19-17 then yields 
forPr yields PiI[ V; = (15 atm)(308 K)(12 L) = 

Pr = 1j1j' (19-17) Pr (293 K)(8.5 L) 22 atm. (Answer) 

ffffs Additional examples, video, and practice available at WileyPLUS 



PRESSURE, TEMPERATURE, AND RMS SPEED 511 

Work by an ideal gas 

One mole of oxygen (assume it to be an ideal gas) expands 
at a constant temperature T of 310 K from an initial volume 
Vi of 12 L to a final volume Vf of 19 L. How much work is 
done by the gas during the expansion? 

3.0 . 

Generally we find the work by integrating the gas pressure 
with respect to the gas volume, using Eq.19-11. However, be­
cause the gas here is ideal and the expansion is isothermal, 
that integration leads to Eq.19-14. 

Calculation: Therefore, we can write 

~2.0 

~ 
~ 
~ 

W = nRTln .-!i 
Vi 

19 L 
= (1 mol)(8.31 J/mol· K)(310 K) In 12 L 

= 1180 J. (Answer) 
P-< 1.0 --

The expansion is graphed in the p-V diagram of Fig. 
19-3. The work done by the gas during the expansion is rep­
resented by the area beneath the curve if 

o 
Volume (L) 

Fig. 1 9-3 The shaded area represents the work done by 1 mol of 
oxygen in expanding from 1{ to \fat a temperature T of310 K. 

You can show that if the expansion is now reversed, 
with the gas undergoing an isothermal compression from 19 
L to 12 L, the work done by the gas will be -1180 J. Thus, an 
external force would have to do 1180 J of work on the gas to 
compress it. 

~rus Additional examples, video, and practice available at WileyPLUS 

1 Pressure, Temperature, and RMS Speed 
Here is our first kinetic theory problem. Let n moles of an ideal gas be confined 
in a cubical box of volume V, as in Fig. 19-4. The walls of the box are held at 
temperature T. What is the connection between the pressure p exerted by the gas 
on the walls and the speeds of the molecules? 

The molecules of gas in the box are moving in all directions and with various 
speeds, bumping into one another and bouncing from the walls of the box like 
balls in a racquetball court. We ignore (for the time being) collisions of the mole­
cules with one another and consider only elastic collisions with the walls. 

Figure 19-4 shows a typical gas molecule, of mass m and velocity V, that is 
about to collide with the shaded wall. Because we assume that any collision of a 
molecule with a wall is elastic, when this molecule collides with the shaded wall, 
the only component of its velocity that is changed is the x component, and that 
component is reversed. This means that the only change in the particle's momen­
tum is along the x axis, and that change is 

I:!..Px = (-mvt ) - (mvr) = -2mvr · 

Hence, the momentum I:!..Px delivered to the wall by the molecule during the collision is 
+ 2mvr • (Because in this book the symbol p represents both momentum and pressure, 
we must be careful to note that here p represents momentum and is a vector quantity.) 

The molecule of Fig. 19-4 will hit the shaded wall repeatedly. The time I:!..t 
between collisions is the time the molecule takes to travel to the opposite wall and 
back again (a distance 2L) at speed vr • Thus, I:!..t is equal to 2L1v, .. (Note that this re­
sult holds even if the molecule bounces off any of the other walls along the way, be­
cause those walls are parallel to x and so cannot change v".) Therefore, the average 

)' 

L 

L 

L 

NOimal to 
shaded wall 

Fig. 19-4 A cubical box of edge 
length L, containing 11 moles of an 
ideal gas. A molecule of mass m and 
velocity v is about to collide with the 
shaded wall of area U. A normal to 
that wall is shown. 
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Some RMS Speeds at Room 
Temperature (T= 300 K)a 

Molar 
Mass 
(10-3 

Vrms 

Gas kg/mol) (m/s) 

Hydrogen (Hz) 2.02 1920 

Helium (He) 4.0 1370 

Water vapor 
(HzO) 18.0 645 

Nitrogen (Nz) 28.0 517 

Oxygen (Oz) 32.0 483 

Carbon dioxide 
(COz) 44.0 412 

Sulfur dioxide 
(SOz) 64.1 342 

"For convenience, we often set room 
temperature equal to 300 K even though (at 
27"C or 81°F) that represents a fairly warm 
room. 

rate at which momentum is delivered to the shaded wall by this single molecule is 

f},Px 
f},t 

2m v, 

2L1vt 

From Newton's second law (F = dpldt) , the rate at which momentum is 
delivered to the wall is the force acting on that wall. To find the total force, we 
must add up the contributions of all the molecules that strike the wall, allowing 
for the possibility that they all have different speeds. Dividing the magnitude of 
the total force F, by the area of the wall (= L2) then gives the pressure p on that 
wall, where now and in the rest of this discussion, p represents pressure. Thus, 
using the expression for f},p)!J.t, we can write this pressure as 

F'x mv'f:l/L + mV~2IL + ... + mv'f:NIL 
p = V = L2 

= (;; )(V;l + V;2 + ... + V;N) , (19-18) 

where N is the number of molecules in the box. 
Since N = nN A, there are nN A terms in the second set of parentheses of Eq.19-18. 

We can replace that quantity by nNA(v;)avg, where (vDavg is the average value of the 
square of the x components of all the molecular speeds. Equation 19-18 then becomes 

_ nmNA 2 
p - L3 (vJavg· 

However, mNA is the molar mass M of the gas (that is, the mass of 1 mol of the 
gas).Also,L3 is the volume of the box, so 

nM(vDavg 
p = V . (19-19) 

For any molecule, v2 = v~ + v~ + v~. Because there are many molecules and 
because they are all moving in random directions, the average values of the 
squares of their velocity components are equal, so that v~ = ~ v2

• Thus, Eq. 
19-19 becomes 

(19-20) 

The square root of (v2)avg is a kind of average speed, called the root-me an­
square speed of the molecules and symbolized by Vrms' Its name describes it 
rather well: You square each speed, you find the mean (that is, the average) of 
all these squared speeds, and then you take the square root of that mean. With 
y(v2

)avg = vrmSl we can then write Eq.19-20 as 

nMv;ms 
p= (19-21) 

3V 

This tells us how the pressure of the gas (a purely macroscopic quantity) depends 
on the speed of the molecules (a purely microscopic quantity). 

We can turn Eq. 19-21 around and use it to calculate Vrms' Combining 
Eq. 19-21 with the ideal gas law (p V = nRT) leads to 

Vrms = )3~T. (19-22) 

Table 19-1 shows some rms speeds calculated from Eq.19-22. The speeds are sur­
prisingly high. For hydrogen molecules at room temperature (300 K), the rms 
speed is 1920 mis, or 4300 mi/h-faster than a speeding bullet! On the surface 
of the Sun, where the temperature is 2 X 106 K, the rms speed of hydrogen 
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molecules would be 82 times greater than at room temperature were it not for 
the fact that at such high speeds, the molecules cannot survive collisions among 
themselves. Remember too that the rms speed is only a kind of average speed; 
many molecules move much faster than this, and some much slower. 

The speed of sound in a gas is closely related to the rms speed of the molecules 
of that gas. In a sound wave, the disturbance is passed on from molecule to molecule 
by means of collisions. The wave cannot move any faster than the "average" speed of 
the molecules. In fact, the speed of sound must be somewhat less than this "average" 
molecular speed because not all molecules are moving in exactly the same direction 
as the wave. As examples, at room temperature, the rms speeds of hydrogen and ni­
trogen molecules are 1920 mls and 517 mis, respectively. The speeds of sound in 
these two gases at this temperature are 1350 mls and 350 mis, respectively. 

A question often arises: If molecules move so fast, why does it take as long as 
a minute or so before you can smell perfume when someone opens a bottle 
across a room? The answer is that, as we shall discuss in Section 19-6, each 
perfume molecule may have a high speed but it moves away from the bottle only 
very slowly because its repeated collisions with other molecules prevent it from 
moving directly across the room to you. 

Average and rms values 

Here are five numbers: 5, 11,32,67, and 89. 

(a) What is the average value navg of these numbers? 

Calculation: We find this from 

5 + 11 + 32 + 67 + 89 

Calculation:We find this from 

_ /52 + 112 + 322 + 672 + 892 

nrms - 'V 5 

= 52.1. (Answer) 
navg = 5 = 40.8. (Answer) 

(b) What is the rms value nrms of these numbers? 

The rms value is greater than the average value because 
the larger numbers-being squared-are relatively more 
important in forming the rms value. 

ff\fs Additional examples, Video, and practice available at WileyPLUS 

Translational Kinetic Energy 
We again consider a single molecule of an ideal gas as it moves around in the box 
of Fig. 19-4, but we now assume that its speed changes when it collides with other 
molecules. Its translational kinetic energy at any instant is ! mv2• Its average 
translational kinetic energy over the time that we watch it is 

v _ (1 2) _ 1 (2) _ 1 2 
1'1..avg - "2 mv avg - "2 m v avg - "2 mVrms> (19-23) 

in which we make the assumption that the average speed of the molecule during our 
observation is the same as the average speed of all the molecules at any given time. 
(Provided the total energy of the gas is not changing and provided we observe our 
molecule for long enough, this assumption is appropriate.) Substituting for Vrms from 
Eq.19-22leads to 

However, Mlm, the molar mass divided by the mass of a molecule, is simply 
Avogadro's number. Thus, 

3RT 
Kavg = 2NA . 
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_CHECKPOINT 2 

A gas mixture consists of molecules of types 
1, 2, and 3, with molecular masses nIl > 
nIz > nI3' Rank the three types according to 
(a) average kinetic energy and (b) rms 
speed, greatest first. 

Fig. 1 9-5 A molecule traveling through 
a gas, colliding with other gas molecules in 
its path. Although the other molecules are 
shown as stationary, they are also moving 
in a similar fashion. 

(a) 

In 

(b) 

Fig.19-6 (a) A collision occurs when 
the centers of two molecules come within a 
distance d of each other, d being the molec­
ular diameter. (b) An equivalent but more 
convenient representation is to think of the 
moving molecule as having a radius d and 
all other molecules as being points. The 
condition for a collision is unchanged. 

Using Eq. 19-7 (k = RIN A), we can then write 

1 

Kavg = ~kT. (19-24) 

This equation tells us something unexpected: 

At a given temperature T, all ideal gas molecules - no matter what their mass­
have the same average translational kinetic energy-namely,~kT. When we measure 
the temperature of a gas, we are also measuring the average translational kinetic 
energy of its molecules. 

Mean Free Path 
We continue to examine the motion of molecules in an ideal gas. Figure 19-5 
shows the path of a typical molecule as it moves through the gas, changing both 
speed and direction abruptly as it collides elastically with other molecules. 
Between collisions, the molecule moves in a straight line at constant speed. 
Although the figure shows the other molecules as stationary, they are (of 
course) also moving. 

One useful parameter to describe this random motion is the mean free path 
,.\ of the molecules. As its name implies, ,.\ is the average distance traversed by a 
molecule between collisions. We expect ,.\ to vary inversely with NIV, the number 
of molecules per unit volume (or density of molecules). The larger NIV is, the 
more collisions there should be and the smaller the mean free path. We also 
expect"\ to vary inversely with the size of the molecules-with their diameter d, 
say. (If the molecules were points, as we have assumed them to be, they would 
never collide and the mean free path would be infinite.) Thus, the larger the mole­
cules are, the smaller the mean free path. We can even predict that ,.\ should vary 
(inversely) as the square of the molecular diameter because the cross section of 
a molecule-not its diameter-determines its effective target area. 

The expression for the mean free path does, in fact, turn out to be 

(mean free path). (19-25) 

To justify Eq.19-25, we focus attention on a single molecule and assume-as 
Fig. 19-5 suggests-that our molecule is traveling with a constant speed v and 
that all the other molecules are at rest. Later, we shall relax this assumption. 

We assume further that the molecules are spheres of diameter d. A collision 
will then take place if the centers of two molecules come within a distance d of 
each other, as in Fig. 19-6a. Another, more helpful way to look at the situation is 
to consider our single molecule to have a radius of d and all the other molecules 
to be points, as in Fig. 19-6b. This does not change our criterion for a collision. 

As our single molecule zigzags through the gas, it sweeps out a short cylinder 
of cross-sectional area 1Td 2 between successive collisions. If we watch this mol­
ecule for a time interval !1t, it moves a distance v !1t, where v is its assumed speed. 
Thus, if we align all the short cylinders swept out in interval !1t, we form a 
composite cylinder (Fig. 19-7) of length v !1t and volume (1Td 2)( v At). The number 
of collisions that occur in time At is then equal to the number of (point) mole­
cules that lie within this cylinder. 

Since NIV is the number of molecules per unit volume, the number of molecules 
in the cylinder is NIV times the volume of the cylinder, or (NIV) ( 1Td2v At). This is also 
the number of collisions in time M. The mean free path is the length of the path (and 



of the cylinder) divided by this number: 

A = length of path during M 
number of collisions in At 

1 

vM 
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(19-26) 

This equation is only approximate because it is based on the assumption that 
all the molecules except one are at rest. In fact, all the molecules are moving; 
when this is taken properly into account, Eq. 19-25 results. Note that it differs 
from the (approximate) Eq. 19-26 only by a factor of 110. 

Fig. 19-7 In time !:.t the moving mole­
cule effectively sweeps out a cylinder of 
length v D.t and radius d. 

The approximation in Eq. 19-26 involves the two v symbols we canceled. The v 
in the numerator is vavg, the mean speed of the molecules relative to the container. 
The v in the denominator is Vre!> the mean speed of our single molecule relative to the 
other molecules, which are moving. It is this latter average speed that determines the 
number of collisions. A detailed calculation, taking into account the actual speed dis­
tribution of the molecules, gives Vrel = 0 vavg and thus the factor 0. 

CHECKPOINT 3 

One mole of gas A, with molecular diam­
eter 2do and average molecular speed vo, 
is placed inside a certain container. One 
mole of gas B, with molecular diameter 
do and average molecular speed 2vo (the 
molecules of B are smaller but faster), is 
placed in an identical container. Which 
gas has the greater average collision rate 
within its container? 

The mean free path of air molecules at sea level is about 0.1 [Lm. At an altitude 
of 100 km, the density of air has dropped to such an extent that the mean free path 
rises to about 16 cm. At 300 km, the mean free path is about 20 km. A problem faced 
by those who would study the physics and chemistry of the upper atmosphere in the 
laboratory is the unavailability of containers large enough to hold gas samples (of 
Freon, carbon dioxide, and ozone) that simulate upper atmospheric conditions. 

Mean free path, average speed, collision frequency 

(a) What is the mean free path A for oxygen molecules at tem­
perature T = 300 K and pressure p = 1.0 atm? Assume that 
the molecular diameter is d = 290 pm and the gas is ideal. 

Each oxygen molecule moves among other moving oxygen 
molecules in a zigzag path due to the resulting collisions. Thus, 
we use Eq.19-25 for the mean free path. 

Calculation: We first need the number of molecules per unit 
volume, NIV. Because we assume the gas is ideal, we can use 
the ideal gas law of Eq. 19-9 (p V = NkT) to write NIV = plkT. 
Substituting this into Eq.19-25, we find 

1 kT 
A=-----

07Td2 NIV 07Td2p 

(1.38 X 10-23 J/K) (300 K) 

= 1.1 X 10-7 m. (Answer) 
This is about 380 molecular diameters. 

(b) Assume the average speed of the oxygen molecules is 
v = 450 m/s. What is the average time t between successive 

collisions for any given molecule? At what rate does the mol­
ecule collide; that is, what is the frequency f of its collisions? 

(1) Between collisions, the molecule travels, on average, the 
mean free path A at speed v. (2) The average rate or fre­
quency at which the collisions occur is the inverse of the 
time t between collisions. 

Calculations: From the first key idea, the average time be­
tween collisions is 

distance A 1.1 X 10-7 m 
t=----

speed v 450 mls 

= 2.44 X 10-10 s = 0.24 ns. (Answer) 

This tells us that, on average, any given oxygen molecule has 
less than a nanosecond between collisions. 

From the second key idea, the collision frequency is 

1 1 f = - = = 4.1 X 109 S-l. (Answer) 
t 2.44 X 10-10 s 

This tells us that, on average, any given oxygen molecule 
makes about 4 billion collisions per second. 

Additional examples, video, and practice available at WileyPLUS 
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1 The Distribution of Molecular Speeds 
The root-mean-square speed V rms gives us a general idea of molecular speeds in 
a gas at a given temperature. We often want to know more. For example, what 
fraction of the molecules have speeds greater than the rms value? What fraction 
have speeds greater than twice the rms value? To answer such questions, we need 
to know how the possible values of speed are distributed among the molecules. 
Figure 19-8a shows this distribution for oxygen molecules at room temperature 
(T = 300 K);Fig.19-8b compares it with the distribution at T = 80 K. 

In 1852, Scottish physicist James Clerk Maxwell first solved the problem of 
finding the speed distribution of gas molecules. His result, known as Maxwell's 
speed distribution law, is 

(19-27) 

Here M is the molar mass of the gas, R is the gas constant, T is the gas temper­
ature, and v is the molecular speed. It is this equation that is plotted in Fig. 
19-8a, b. The quantity P(v) in Eq. 19-27 and Fig. 19-8 is a probability distribution 
function: For any speed v, the product P(v) dv (a dimensionless quantity) is the 
fraction of molecules with speeds in the interval dv centered on speed v. 

As Fig. 19-8a shows, this fraction is equal to the area of a strip with height 
P(v) and width dv. The total area under the distribution curve corresponds to the 
fraction of the molecules whose speeds lie between zero and infinity. All 
molecules fall into this category, so the value of this total area is unity; that is, 

f' P( v) dv = 1. (19-28) 

The fraction (frac) of molecules with speeds in an interval of, say, V1 to V2 is then 

J
V 2 

frac = P(v) dv. 
1'1 

(19-29) 

In principle, we can find the average speed vavg of the molecules in a gas with the 
following procedure: We weight each value of v in the distribution; that is, we mul­
tiply it by the fraction P( v) dv of molecules with speeds in a differential interval 
dv centered on v. Then we add up all these values of v P(v) dv. The result is vavg . 

In practice, we do all this by evaluating 

vavg = f'VP(V)dV. (19-30) 

Substituting for P(v) from Eq.19-27 and using generic integral 20 from the list of 
integrals in Appendix E, we find 

vavg = ~ s:: (average speed). (19-31) 

Similarly, we can find the average of the square of the speeds (v2Lvg with 

(v2)avg = f'v 2 P(v) dv. (19-32) 

Substituting for P(v) from Eq.19-27 and using generic integral 16 from the list of 
integrals in Appendix E, we find 

2 _ 3RT ( ) (v )avg - ~. 19-33 
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1.0-Fig. 19-8 (a) The Maxwell speed distribution for oxygen 
molecules at T = 300 K. The three characteristic speeds are 
marked. (b) The curves for 300 K and 80 K. Note that the 
molecules move more slowly at the lower temperature. Because 
these are probability distributions, the area under each curve 
has a numerical value of unity. 

°o~~~~--L-~~~--~~~~~~ 
200 600 800 1000 1200 

(b) 

The square root of (v2)avg is the root-mean-square speed Vrms' Thus, 

Vrms = ~ 3~T (rms speed), (19-34) 

which agrees with Eq. 19-22. 
The most probable speed Vp is the speed at which P(v) is maximum (see Fig. 

19-8a). To calculate Vp, we set dPldv = 0 (the slope of the curve in Fig. 19-8a is 
zero at the maximum of the curve) and then solve for v. Doing so, we find 

vp = ~2~T (most probable speed). (19-35) 

A molecule is more likely to have speed v p than any other speed, but some 
molecules will have speeds that are many times Vp. These molecules lie in the high­
speed tail of a distribution curve like that in Fig. 19-8a. Such higher speed mole­
cules make possible both rain and sunshine (without which we could not exist): 

Rain The speed distribution of water molecules in, say, a pond at summertime 
temperatures can be represented by a curve similar to that of Fig. 19-8a. Most of 
the molecules do not have nearly enough kinetic energy to escape from the water 
through its surface. However, small numbers of very fast molecules with speeds 
far out in the high-speed tail of the curve can do so. It is these water molecules 
that evaporate, making clouds and rain a possibility. 

As the fast water molecules leave the surface, carrying energy with them, the 
temperature of the remaining water is maintained by heat transfer from the 
surroundings. Other fast molecules-produced in particularly favorable collisions­
quickly take the place of those that have left, and the speed distribution is maintained. 

Sunshine Let the distribution curve of Fig. 19-8a now refer to protons in the 
core of the Sun. The Sun's energy is supplied by a nuclear fusion process that 
starts with the merging of two protons. However, protons repel each other 
because of their electrical charges, and protons of average speed do not have 
enough kinetic energy to overcome the repulsion and get close enough to merge. 
Very fast protons with speeds in the high-speed tail of the distribution curve can 
do so, however, and for that reason the Sun can shine. 

Speed (m/s) 
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Speed distribution in a gas 

A container is filled with oxygen gas maintained at room 
temperature (300 K). What fraction of the molecules have 
speeds in the interval 599 to 601 m/s? The molar mass M of 
oxygen is 0.0320 kg/mol. 

1. The speeds of the molecules are distributed over a wide 
range of values, with the distributionP(v) ofEq.19-27. 

2. The fraction of molecules with speeds in a differential 
interval dv is P(v) dv. 

3. For a larger interval, the fraction is found by integrating 
P( v) over the interval. 

4. However, the interval Llv = 2 mls here is small compared 
to the speed v = 600 mls on which it is centered. 

Calculations: Because Llv is small, we can avoid the inte­
gration by approximating the fraction as 

frac = P(v) Llv = 41/'( 2;T yl2 v2e-Mv2/2RT Llv. 

The function P( v) is plotted in Fig. 19-8a. The total area 
between the curve and the horizontal axis represents the to-

tal fraction of molecules (unity). The area of the thin gold 
strip represents the fraction we seek. 

To evaluate frac in parts, we can write 

(19-36) 
where 

( 
M )3/2 ( 0.0320 kg/mol )3/2 

A = 21/'RT = (21/')(8.31 J/mol' K)(300 K) 

Mv2 

andB = 
2RT 

= -2.31. 

= 2.92 X 10-9 S3/m3 

(0.0320 kg/mol)(600 m/s)2 
(2)(8.31 J/mol' K)(300 K) 

Substituting A and B into Eq. 19-36 yields 

frac = (41/')(A)(v2)(eB)(Llv) 

= (41/')(2.92 X 10-9 S3/m3)(600 m/s)2(e-2.31)(2 m/s) 

= 2.62 X 10-3. (Answer) 

Thus, at room temperature, 0.262% of the oxygen molecules 
will have speeds that lie in the narrow range between 599 
and 601 m/s. If the gold strip of Fig. 19-8a were drawn to the 
scale of this problem, it would be a very thin strip indeed. 

Average speed, rms speed, most probable speed 

The molar mass M of oxygen is 0.0320 kg/mol. 

(a) What is the average speed vavg of oxygen gas molecules 
at T = 300 K? 

To find the average speed, we must weight speed v with the 
distribution function P(v) of Eq. 19-27 and then integrate 
the resulting expression over the range of possible speeds 
(from zero to the limit of an infinite speed). 

Ca/culation:We end up with Eq.19-31, which gives us 

vavg = ~ s:: 
8(8.31 J/mol' K)(300 K) 

1/'(0.0320 kg/mol) 

= 445 m/s. 

This result is plotted in Fig. 19-8a. 

(Answer) 

(b) What is the root-mean-square speed Vrms at 300 K? 

To find Vrms ' we must first find (v2
)avg by weighting v2 with the 

distribution function P(v) of Eq. 19-27 and then integrating 
the expression over the range of possible speeds. Then we 
must take the square root of the result. 

Calculation: We end up with Eq. 19-34, which gives us 

Vrms = ~ 3~T 

3(8.31 J/mol· K)(300 K) 
0.0320 kg/mol 

= 483 m/s. (Answer) 

This result, plotted in Fig. 19-8a, is greater than vavg because 
the greater speed values influence the calculation more 
when we integrate the v2 values than when we integrate the 
v values. 
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(c) What is the most probable speed Vp at 300 K? 
vp = ~2~T 

Speed v p corresponds to the maximum of the distribution 
function P(v), which we obtain by setting the derivative 
dPldv = 0 and solving the result for v. 

2(8.31 J/mol' K)(300 K) 

0.0320 kglmol 

= 395 m/s. (Answer) 

Calculation: We end up with Eq. 19-35, which gives us This result is also plotted in Fig. 19-8a. 

~rus Additional examples, video, and practice available at WileyPLUS 

1 The Molar Specific Heats of an Ideal Gas 
In this section, we want to derive from molecular considerations an expression for 
the internal energy Eint of an ideal gas. In other words, we want an expression for the 
energy associated with the random motions of the atoms or molecules in the gas. We 
shall then use that expression to derive the molar specific heats of an ideal gas. 

Let us first assume that our ideal gas is a monatomic gas (which has individual 
atoms rather than molecules), such as helium, neon, or argon. Let us also assume 
that the internal energy E int of our ideal gas is simply the sum of the translational 
kinetic energies of its atoms. (As explained by quantum theory, individual atoms 
do not have rotational kinetic energy.) 

The average translational kinetic energy of a single atom depends only on 
the gas temperature and is given by Eq. 19-24 as Kavg = ~kT. A sample of n 
moles of such a gas contains nN A atoms. The internal energy Eint of the sample is then 

Eint = (nNA)Kavg = (nNA)akT). (19-37) 

Using Eq.19-7 (k = RIN A), we can rewrite this as 

E int = ~nRT (monatomic ideal gas). (19-38) 

The internal energy Eint of an ideal gas is a function of the gas temperature only; it 
does not depend on any other variable. 

With Eq.19-38 in hand, we are now able to derive an expression for the molar spe­
cific heat of an ideal gas. Actually, we shall derive two expressions. One is for the case in 
which the volume of the gas remains constant as energy is transferred to or from it as 
heat. The other is for the case in which the pressure of the gas remains constant as en­
ergy is transfelTed to or from it as heat. The symbols for these two molar specific heats 
are Cv and Cp , respectively. (By convention, the capital letter C is used in both cases, 
even though Cvand Cp represent types of specific heat and not heat capacities.) 

Figure 19-9a shows n moles of an ideal gas at pressure p and temperature T, 
confined to a cylinder of fixed volume V. This initial state i of the gas is marked on 
the p-V diagram of Fig. 19-9b. Suppose now that you add a small amount of 

(a) 
The temperature 
increase is done 
without changing 
the volume. 

Volume 

(b) 

Fig. 19-9 (a) The temperature of an 
ideal gas is raised from T to T + Ll T in a 
constant-volume process. Heat is added, 
but no work is done. (b) The process on a 
p-V diagram. 
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Molar Specific Heats at 
Constant Volume 

Molecule 

Monatomic 

Diatomic 

Polyatomic 

Cv 
Example (J/mol· K) 

Ideal ~R = 12.5 

Real 
He 12.5 

Ar 12.6 

Ideal ~R = 20.8 

Real 
Nz 20.7 

Oz 20.8 

Ideal 3R = 24.9 

Real NH4 29.0 

COz 29.7 

The paths are different, 
but the change in the 
internal energy is the 
same. 

Volume 
Fig. 19-10 Three paths representing 
three different processes that take an ideal 
gas from an initial state i at temperature T 
to some final state f at temperature T + 
!:IT. The change !:lEint in the internal energy 
of the gas is the same for these three 
processes and for any others that result in 
the same change of temperature. 

energy to the gas as heat Q by slowly turning up the temperature of the thermal 
reservoir. The gas temperature rises a small amount to T + b.T, and its pressure 
rises to P + b.p, bringing the gas to final state f. In such experiments, we would 
find that the heat Q is related to the temperature change b.Tby 

Q = nCvb.T (constant volume), (19-39) 

where Cv is a constant called the molar specific heat at constant volume. Substi­
tuting this expression for Q into the first law of thermodynamics as given by Eq. 18-
26 (b.Eint = Q - W) yields 

(19-40) 

With the volume held constant, the gas cannot expand and thus cannot do any 
work. Therefore, W = 0, and Eq. 19-40 gives us 

C 
- b.Eint 

V - n b.T . 

From Eq. 19-38, the change in internal energy must be 

b.Eint = ~nR b.T. 

Substituting this result into Eq.19-41 yields 

Cv = ~R = 12.5 J/mol' K (monatomic gas). 

(19-41) 

(19-42) 

(19-43) 

As Table 19-2 shows, this prediction of the kinetic theory (for ideal gases) agrees 
very well with experiment for real monatomic gases, the case that we have 
assumed. The (predicted and) experimental values of Cv for diatomic gases 
(which have molecules with two atoms) and polyatomic gases (which have mole­
cules with more than two atoms) are greater than those for monatomic gases for 
reasons that will be suggested in Section 19-9. 

We can now generalize Eq. 19-38 for the internal energy of any ideal gas by 
substituting Cv for ~R; we get 

(any ideal gas). (19-44) 

This equation applies not only to an ideal monatomic gas but also to diatomic 
and polyatomic ideal gases, provided the appropriate value of Cv is used. Just as 
with Eq. 19-38, we see that the internal energy of a gas depends on the temper­
ature of the gas but not on its pressure or density. 

When a confined ideal gas undergoes temperature change b.T, then from ei­
ther Eq.19-41 or Eq.19-44 the resulting change in its internal energy is 

(ideal gas, any process). (19-45) 

This equation tells us: 

A change in the internal energy Eint of a confined ideal gas depends on only the 
change in the temperature, not on what type of process produces the change. 

As examples, consider the three paths between the two isotherms in the p-V dia­
gram of Fig. 19-10. Path 1 represents a constant-volume process. Path 2 represents a 
constant-pressure process (that we are about to examine). Path 3 represents a process 
in which no heat is exchanged with the system's environment (we discuss this in Section 
19-11). Although the values of heat Q and work Wassociated with these three paths 
differ, as do Pi and Vi' the values of b.Eint associated with the three paths are identical 
and are all given by Eq. 19-45, because they all involve the same temperature change 
b.T. Therefore, no matter what path is actually taken between T and T + b.T, we can al­
ways use path 1 and Eq.19-45 to compute b.Eint easily. 
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We now assume that the temperature of our ideal gas is increased by the same 
small amount b.T as previously but now the necessary energy (heat Q) is added 
with the gas under constant pressure. An experiment for doing this is shown in 
Fig. 19-11a; the p-V diagram for the process is plotted in Fig. 19-11b. From such 
experiments we find that the heat Q is related to the temperature change b.T by 

(constant pressure), (19-46) 

where Cp is a constant called the molar specific heat at constant pressure. This 
Cp is greater than the molar specific heat at constant volume Cv, because energy 
must now be supplied not only to raise the temperature of the gas but also for 
the gas to do work-that is, to lift the weighted piston of Fig. 19-11a. 

To relate molar specific heats Cp and Cv, we start with the first law of ther­
modynamics (Eq.18-26): 

b.Eint = Q - W. (19-47) 

We next replace each term in Eq. 19-47. For b.Eint , we substitute from Eq. 
19-45. For Q, we substitute from Eq. 19-46. To replace W, we first note that since 
the pressure remains constant, Eq. 19-16 tells us that W = p b. V. Then we note 
that, using the ideal gas equation (p V = nRT), we can write 

W= p b.V = nRb.T. (19-48) 

Making these substitutions in Eq. 19-47 and then dividing through by n b.T, we find 

Cv = Cp - R 
and then 

(19-49) 

This prediction of kinetic theory agrees well with experiment, not only for 
monatomic gases but also for gases in general, as long as their density is low 
enough so that we may treat them as ideal. 

The left side of Fig. 19-12 shows the relative values of Q for a monatomic gas 
undergoing either a constant-volume process (Q = ~nR b.T) or a constant­
pressure process (Q = ~nR b.T). Note that for the latter, the value of Q is higher 
by the amount W, the work done by the gas in the expansion. Note also that for 
the constant-volume process, the energy added as Q goes entirely into the change 
in internal energy b.Eint and for the constant-pressure process, the energy added 
as Q goes into both b.Eint and the work W. 

Fig. 19-12 The rela­
tive values of Q for a 
monatomic gas (left side) 
and a diatomic gas under­
going a constant-volume 
process (labeled "con V") 
and a constant-pressure 
process (labeled "con p"). 
The transfer of the energy 
into work W and internal 
energy (~Eint) is noted. 

Monatomic Diatomic 

---------------T EO:~' ~ ..owloo 

W int~trans 

tnRt.T 

t nR t. T T Q @ con p 
Lw 

w L t.Emt --- trans 

+"RAT 1 Q. con V 

L t.Eint --- trans 

lQ@con V 

L ~rotation 
t.Eint ~ trans 

(a) 

The temperature 

\ 

increase is done 
without changing 
the pressure. 

J __ L ___ ~., ,f 
, , T+t.T 
I % "~ 

-"~'--T 

V v+t.v 

(b) Volume 

Fig. 19-11 (a) The temperature of an 
ideal gas is raised from Tto T + ~Tin a 
constant-pressure process. Heat is added 
and work is done in lifting the loaded pis­
ton. (b) The process on a p-V diagram. The 
work p ~ V is given by the shaded area. 



522 19 THE KINETIC THEORY OF GASES 

CHECKPOINT 4 

The figure here shows five paths traversed by a gas on a p-V diagram. Rank the paths 
according to the change in internal energy of the gas, greatest first. 

p 

4 

~--------------v 

Monatomic gas, heat, internal energy, and work 

A bubble of 5.00 mol of helium is submerged at a certain 
depth in liquid water when the water (and thus the helium) 
undergoes a temperature increase AT of 20.0 Co at constant 
pressure. As a result, the bubble expands. The helium is 
monatomic and ideal. 

(a) How much energy is added to the helium as heat during 
the increase and expansion? 

Heat Q is related to the temperature change ATby a molar 
specific heat of the gas. 

Calculations: Because the pressure p is held constant dur­
ing the addition of energy, we use the molar specific heat at 
constant pressure Cp and Eq.19-46, 

Q = nCp AT, (19-50) 

to find Q. To evaluate Cp we go to Eq. 19-49, which tells us 
that for any ideal gas, Cp = Cv + R. Then from Eq.19-43, we 
know that for any monatomic gas (like the helium here), 
Cv = ~R. Thus, Eq. 19-50 gives us 

Q = n(Cv + R) AT = n(~R + R) AT = n(~R) AT 

= (5.00 mol)(2.5)(8.31 J/mol· K)(20.0 CO) 

= 2077.5 J = 2080 J. (Answer) 

(b) What is the change AEint in the internal energy of the 
helium during the temperature increase? 

Because the bubble expands, this is not a constant-volume 
process. However, the helium is nonetheless confined (to the 
bubble). Thus, the change AEint is the same as would occur in 
a constant-volume process with the same temperature 
change AT. 

Calculation: We can now easily find the constant-volume 
change AEint with Eq. 19-45: 

AEint = nCvAT = nGR) AT 

= (5.00 mol)(1.5)(8.31 J/mol' K)(20.0 CO) 

= 1246.5 J = 1250 J. (Answer) 

(c) How much work W is done by the helium as it expands 
against the pressure of the surrounding water during the 
temperature increase? 

The work done by any gas expanding against the pressure 
from its environment is given by Eq. 19-11, which tells us to in­
tegrate p dV. When the pressure is constant (as here), we can 
simplify that to W = p A V. When the gas is ideal (as here), we 
can use the ideal gas law (Eq.19-5) to write p AV = nR AT. 

Calculation: We end up with 

W=nRAT 

= (5.00 mol)(8.31 J/mol' K)(20.0 CO) 

= 831 J. (Answer) 

Another way: Because we happen to know Q and AEint , we 
can work this problem another way: We can account for the 
energy changes of the gas with the first law of thermody­
namics, writing 

W = Q - AEint = 2077.5 J - 1246.5 J 

= 831 J. (Answer) 

The transfers: Let's follow the energy. Of the 2077.5 J trans­
ferred to the helium as heat Q, 831 J goes into the work W re­
quired for the expansion and 1246.5 J goes into the internal energy 
Eint, which, for a monatomic gas, is entirely the kinetic energy of 
the atoms in their translational motion. These several results are 
suggested on the left side of Fig. 19-12. 

Additional examples, video, and practice available at WileyPLUS 
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1 Degrees of Freedom and Molar 
Specific Heats 
As Table 19-2 shows, the prediction that Cv = ~R agrees with experiment for 
monatomic gases but fails for diatomic and polyatomic gases. Let us try to ex­
plain the discrepancy by considering the possibility that molecules with more 
than one atom can store internal energy in forms other than translational ki­
netic energy. 

Figure 19-13 shows common models of helium (a monatomic molecule, con­
taining a single atom), oxygen (a diatomic molecule, containing two atoms), and 
methane (a polyatomic molecule). From such models, we would assume that all 
three types of molecules can have translational motions (say, moving left-right 
and up-down) and rotational motions (spinning about an axis like atop). In 
addition, we would assume that the diatomic and poly atomic molecules can have 
oscillatory motions, with the atoms oscillating slightly toward and away from one 
another, as if attached to opposite ends of a spring. 

To keep account of the various ways in which energy can be stored in a gas, 
James Clerk Maxwell introduced the theorem of the equipartition of energy: 

Every kind of molecule has a certain number f of degrees of freedom, which are 
independent ways in which the molecule can store energy. Each such degree of freedom 
has associated with it-on average-an energy of !kT per molecule (or ~RT per mole). 

Let us apply the theorem to the translational and rotational motions of the 
molecules in Fig. 19-13. (We discuss oscillatory motion in the next section.) For 
the translational motion, superimpose an xyz coordinate system on any gas. The 
molecules will, in general, have velocity components along all three axes. Thus, 
gas molecules of all types have three degrees of translational freedom (three 
ways to move in translation) and, on average, an associated energy of 3(~kT) 
per molecule. 

For the rotational motion, imagine the origin of our xyz coordinate system 
at the center of each molecule in Fig. 19-13. In a gas, each molecule should be 
able to rotate with an angular velocity component along each of the three axes, 
so each gas should have three degrees of rotational freedom and, on average, an 
additional energy of 3(~kT) per molecule. However, experiment shows this is 
true only for the polyatomic molecules. According to quantum theory, the 
physics dealing with the allowed motions and energies of molecules and atoms, 
a monatomic gas molecule does not rotate and so has no rotational energy (a 
single atom cannot rotate like atop). A diatomic molecule can rotate like a top 
only about axes perpendicular to the line connecting the atoms (the axes are 
shown in Fig. 19-13b) and not about that line itself. Therefore, a diatomic mole­
cule can have only two degrees of rotational freedom and a rotational energy of 
only 2(~kT) per molecule. 

To extend our analysis of molar specific heats (Cp and Cv, in Section 19-8) 
to ideal diatomic and polyatomic gases, it is necessary to retrace the derivations 
of that analysis in detail. First, we replace Eq. 19-38 (Eint = ~nRT) with Eint = 
(f12)nRT, where f is the number of degrees of freedom listed in Table 19-3. 
Doing so leads to the prediction 

Cv = ( {)R = 4.16f J/mol· K, (19-51) 

which agrees-as it must-with Eq. 19-43 for monatomic gases (f= 3). As 
Table 19-2 shows, this prediction also agrees with experiment for diatomic gases (f = 

5), but it is too low for polyatomic gases (f = 6 for molecules comparable to CH4). 

He 

(a) He 

~I~~ ___ O 

H 

H 

Fig. 19-13 Models of molecules as 
used in kinetic theory: (a) helium, a 
typical monatomic molecule; (b) oxy­
gen, a typical diatomic molecule; and 
(c) methane, a typical polyatomic 
molecule. The spheres represent 
atoms, and the lines between them 
represent bonds. Two rotation axes 
are shown for the oxygen molecule. 
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Degrees of Freedom for Various Molecules 

Degrees of Freedom Predicted Molar Specific Heats 

Molecule Example Translational Rotational Total (f) CvCEq.19-51) cp = Cv + R 

Monatomic He 3 0 3 ~R ~R 

Diatomic O2 3 2 5 ~R ~R 

Polyatomic CH4 3 3 6 3R 4R 

Diatomic gas, heat, temperature, internal energy 

We transfer 1000 J as heat Q to a diatomic gas, allowing the 
gas to expand with the pressure held constant. The gas mole­
cules each rotate around an internal axis but do not oscil­
late. How much of the 1000 J goes into the increase of the 
gas's internal energy? Of that amount, how much goes into 
AKtran (the kinetic energy of the translational motion of the 
molecules) and AKrot (the kinetic energy of their rotational 
motion)? 

1. The transfer of energy as heat Q to a gas under constant 
pressure is related to the resulting temperature increase 
ATvia Eq.19-46 (Q = nCp AT). 

2. Because the gas is diatomic with molecules undergoing 
rotation but not oscillation, the molar specific heat is, 
from Fig. 19-12 and Table 19-3, Cp = ~R. 

3. The increase AEint in the internal energy is the same as 
would occur with a constant-volume process resulting in the 
same AT. Thus, from Eq. 19-45, AEint = nCv AT. From Fig. 
19-12 and Table 19-3, we see that Cv = ~R. 

4. For the same n and AT, AEint is greater for a diatomic gas 
than a monatomic gas because additional energy is re­
quired for rotation. 

Increase in E1nt: Let's first get the temperature change AT 
due to the transfer of energy as heat. From Eq. 19-46, substi­
tuting ~R for Cp , we have 

Q 
AT=~R' 

'in 
(19-52) 

We next find AEint from Eq. 19-45, substituting the molar 
specific heat Cv (= ~R) for a constant-volume process and 
using the same AT. Because we are dealing with a di-

atomic gas, let's call this change AEint,dia' Equation 19-45 
gives us 

AEint,dia = nCv AT = n~R( ~;;R ) = 9Q 
= 0.71428Q = 714.3 J. (Answer) 

In words, about 71 % of the energy transferred to the gas 
goes into the internal energy. The rest goes into the work re­
quired to increase the volume of the gas, as the gas pushes 
the walls of its container outward. 

Increases in K: If we were to increase the temperature of a 
monatomic gas (with the same value of n) by the amount 
given in Eq. 19-52, the internal energy would change by a 
smaller amount, call it AEint, man' because rotational motion 
is not involved. To calculate that smaller amount, we still use 
Eq. 19-45 but now we substitute the value of Cv for a 
monatomic gas-namely, CI' = ~R. So, 

AEint,mon = n~R AT. 

Substituting for AT from Eq. 19-52 leads us to 

AEint,mon = n~R( nfR ) = ~Q 
= 0.42857 Q = 428.6 J. 

For the monatomic gas, all this energy would go into the 
kinetic energy of the translational motion of the atoms. The 
important point here is that for a diatomic gas with the same 
values of n and AT, the same amount of energy goes into the 
kinetic energy of the translational motion of the molecules. 
The rest of AEint,dia (that is, the additional 285.7 J) goes into 
the rotational motion of the molecules. Thus, for the di­
atomic gas, 

AKtrans = 428.6 J and AKrot = 285.7 J. (Answer) 

~rus Additional examples, video, and practice available at WileyPLUS 
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1 A Hint of Quantum Theory 
We can improve the agreement of kinetic theory with experiment by including 
the oscillations of the atoms in a gas of diatomic or polyatomic molecules. For 
example, the two atoms in the O2 molecule of Fig. 19-13b can oscillate toward 
and away from each other, with the interconnecting bond acting like a spring. 
However, experiment shows that such oscillations occur only at relatively high 
temperatures of the gas-the motion is "turned on" only when the gas molecules 
have relatively large energies. Rotational motion is also subject to such "turning 
on," but at a lower temperature. 

Figure 19-14 is of help in seeing this turning on of rotational motion and 
oscillatory motion. The ratio CvlR for diatomic hydrogen gas (H2) is plotted there 
against temperature, with the temperature scale logarithmic to cover several orders 
of magnitude. Below about 80 K, we find that CvlR = 1.5. This result implies that 
only the three translational degrees of freedom of hydrogen are involved in the spe­
cificheat. 

As the temperature increases, the value of CvlR gradually increases to 2.5, 
implying that two additional degrees of freedom have become involved. 
Quantum theory shows that these two degrees of freedom are associated with the 
rotational motion of the hydrogen molecules and that this motion requires a 
certain minimum amount of energy. At very low temperatures (below 80 K), the 
molecules do not have enough energy to rotate. As the temperature increases 
from 80 K, first a few molecules and then more and more of them obtain enough 
energy to rotate, and the value of CvlR increases, until all of the molecules are ro­
tating and CvlR = 2.5. 

Similarly, quantum theory shows that oscillatory motion of the molecules 
requires a certain (higher) minimum amount of energy. This minimum amount is 
not met until the molecules reach a temperature of about 1000 K, as shown in 
Fig. 19-14. As the temperature increases beyond 1000 K, more and more mole­
cules have enough energy to oscillate and the value of CvlR increases, until all of 
the molecules are oscillating and CvlR = 3.5. (In Fig. 19-14, the plotted curve 
stops at 3200 K because there the atoms of a hydrogen molecule oscillate so 
much that they overwhelm their bond, and the molecule then dissociates into two 
separate atoms.) 

4 

7/2 

3 

5/2 

3/2 

O~~~~~ __ -L-L~~~L-__ L-~~~~ 

20 50 100 200 500 1000 2000 500010,000 
Temperature (K) 

Fig. 1 9-1 4 Cv/ R versus temperature for ( diatomic) hydrogen 
gas. Because rotational and oscillatory motions begin at certain 
energies, only translation is possible at very low temperatures. As 
the temperature increases, rotational motion can begin. At still 
higher temperatures, oscillatory motion can begin. 
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Fig. 19-15 (a) The vol­
ume of an ideal gas is in­
creased by removing mass 
from the piston. The process 
is adiabatic (Q = 0). (b) The 
process proceeds from i to f 
along an adiabat on a p-V 
diagram. 

THE KINETIC THEORY OF GASES 

1 1 The Adiabatic Expansion of an Ideal Gas 
We saw in Section 17-4 that sound waves are propagated through air and 
other gases as a series of compressions and expansions; these variations in the 
transmission medium take place so rapidly that there is no time for energy to 
be transferred from one part of the medium to another as heat. As we saw in 
Section 18-11, a process for which Q = 0 is an adiabatic process. We can ensure 
that Q = 0 either by carrying out the process very quickly (as in sound waves) 
or by doing it (at any rate) in a well-insulated container. 

Figure 19-15a shows our usual insulated cylinder, now containing an ideal gas 
and resting on an insulating stand. By removing mass from the piston, we can 
allow the gas to expand adiabatically. As the volume increases, both the pressure 
and the temperature drop. We shall prove next that the relation between the 
pressure and the volume during such an adiabatic process is 

p V Y = a constant (adiabatic process), (19-53) 

in which 'Y = CplCv, the ratio of the molar specific heats for the gas. On a p-V 
diagram such as that in Fig. 19-15b, the process occurs along a line (called an 
adiabat) that has the equation p = (a constant)/VY. Since the gas goes from an ini­
tial state i to a final state f, we can rewrite Eq.19-53 as 

(adiabatic process). (19-54) 

To write an equation for an adiabatic process in terms of T and V, we use 
the ideal gas equation (p V = nRT) to eliminate p from Eq. 19-53, finding 

(
nRT) -----v- V Y = a constant. 

Because nand R are constants, we can rewrite this in the alternative form 

TV Y- 1 = a constant ( adiabatic process), (19-55) 

in which the constant is different from that in Eq. 19-53. When the gas goes from 
an initial state i to a final state t, we can rewrite Eq. 19-55 as 

TVY- 1 - TV Y- 1 
i i - f f (adiabatic process). (19-56) 

Understanding adiabatic processes allows you to understand why popping 
the cork on a cold bottle of champagne or the tab on a cold can of soda causes 
a slight fog to form at the opening of the container. At the top of any unopened 
carbonated drink sits a gas of carbon dioxide and water vapor. Because the gas pres­
sure is greater than atmospheric pressure, the gas expands out into the atmosphere 

(a) 

We slowly remove lead shot, allowing an 
expansion without any heat transfer. 

Insulation 

Volume 

(b) 

Isotherms: 
700 K 
500 K 
300 K 
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when the container is opened. Thus, the gas volume increases, but that means the gas 
must do work pushing against the atmosphere. Because the expansion is rapid, it is 
adiabatic, and the only source of energy for the work is the internal energy of the 
gas. Because the internal energy decreases, the temperature of the gas also de­
creases, which causes the water vapor in the gas to condense into tiny drops of fog. 

1 
Suppose that you remove some shot from the piston of Fig. 19-15a, allowing the ideal 
gas to push the piston and the remaining shot upward and thus to increase the volume 
by a differential amount dV. Since the volume change is tiny, we may assume that the 
pressure p of the gas on the piston is constant during the change. This assumption al­
lows us to say that the work dW done by the gas during the volume increase is equal to 
p dV. From Eq.18-27, the first law ofthermodynamics can then be written as 

dEint = Q - p dV. (19-57) 

Since the gas is thermally insulated (and thus the expansion is adiabatic), we 
substitute 0 for Q. Then we use Eq. 19-45 to substitute nCv dT for dEint . With 
these substitutions, and after some rearranging, we have 

n dT = - ( ~v ) dV. (19-58) 

N ow from the ideal gas law (p V = nRT) we have 

p dV + V dp = nR dT. (19-59) 

Replacing R with its equal, Cp - Cv, in Eq. 19-59 yields 

dT 
= p dV + Vdp 

n C - C . 
p v 

(19-60) 

Equating Eqs. 19-58 and 19-60 and rearranging then give 

dp + ( Cp ) dV = o. 
p Cv V 

Replacing the ratio of the molar specific heats with 'Yand integrating (see integral 
5 in Appendix E) yield 

In p + 'Y In V = a constant. 

Rewriting the left side as In p VI' and then taking the antilog of both sides, we find 

P VI' = a constant. (19-61) 

Recall from Section 18-11 that a free expansion of a gas is an adiabatic process 
with no work or change in internal energy. Thus, a free expansion differs from the 
adiabatic process described by Eqs. 19-53 through 19-61, in which work is done 
and the internal energy changes. Those equations then do not apply to a free ex­
pansion, even though such an expansion is adiabatic. 

Also recall that in a free expansion, a gas is in equilibrium only at its initial 
and final points; thus, we can plot only those points, but not the expansion itself, 
on a p-V diagram. In addition, because AEint = 0, the temperature of the final 
state must be that of the initial state. Thus, the initial and final points on a p-V 
diagram must be on the same isotherm, and instead of Eq. 19-56 we have 

Ti = Tf (free expansion). (19-62) 

If we next assume that the gas is ideal (so that pV = nRT), then because 
there is no change in temperature, there can be no change in the product p V. 
Thus, instead of Eq. 19-53 a free expansion involves the relation 

(free expansion). (19-63) 
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Adiabatic expansion, free expansion 

Initially, 1 mol of oxygen (assumed to be an ideal gas) has 
temperature 310 K and volume 12 L. We will allow it to ex­
pand to volume 19 L. 

(a) What would be the final temperature if the gas expands adi­
abatically? Oxygen (02) is diatomic and here has rotation but 
not oscillation. 

1. When a gas expands against the pressure of its environ­
ment, it must do work. 

2. When the process is adiabatic (no energy is transferred as 
heat), then the energy required for the work can come only 
from the internal energy of the gas. 

3. Because the internal energy decreases, the temperature 
T must also decrease. 

Calculations: We can relate the initial and final tempera­
tures and volumes with Eq. 19-56: 

TV'Y-l - TV'Y-l 
i i - f f . (19-64) 

Because the molecules are diatomic and have rotation but 
not oscillation, we can take the molar specific heats from 
Table 19-3. Thus, 

Cp ~R 
'}' = -C = -5- = 1.40. 

v 'iR 

Solving Eq. 19-64 for Tf and inserting known data then yield 

T 
TiV/-l (310 K)(12 L)1.40-1 

f = VII = (19 L)1.40-1 

= (310 K)(~)0.40 = 258 K. (Answer) 

(b) What would be the final temperature and pressure if, 
instead, the gas expands freely to the new volume, from an 
initial pressure of2.0 Pa? 

The temperature does not change in a free expansion be­
cause there is nothing to change the kinetic energy of the 
molecules. 

Calculation: Thus, the temperature is 

Tf = Ti = 310 K. (Answer) 

We find the new pressure using Eq. 19-63, which gives us 

Vi 12 L 
Pf = Pi V = (2.0 Pa) 19 L = 1.3 Pa. 

f 
(Answer) 

A Graphical Summary of Four Gas Processes 

In this chapter we have discussed four special processes that an ideal 
gas can undergo. An example of each (for a monatomic ideal gas) is 
shown in Fig. 19-16, and some associated characteristics are given in 
Table 19-4, including two process names (isobaric and isochoric) that 
we have not used but that you might see in other courses. 

CHECKPOINT 5 

Rank paths 1,2, and 3 in Fig. 19-16 according to the energy 
transfer to the gas as heat, greatest first. 

Four Special Processes 

Path in Fig. 19-16 

1 
2 
3 
4 

Constant Quantity Process'lYpe 

Isobaric 
Isothermal 
Adiabatic 
Isochoric 

Fig. 19-16 

Ap-Vdia­
gram repre­
senting four 
special 
processes for 
an ideal 
monatomic 
gas. 

i~l.f 
4 2 
f 3 f 

f 

Volume 

Some Special Results 

700K 
500K 
400 K 

(ilEint = Q - Wand ilEint = nCvilTfor all paths) 

Q = nCp ilT; W = p il V 
Q = W = nRTln(Vr/Vi); ilEint = 0 
Q = 0; W = -ilEint 

Q = ilEint = nCvilT; W = 0 

Additional examples, video, and practice available at WileyPLUS 



Kinetic Theory of Gases The kinetic theory of gases relates 
the macroscopic properties of gases (for example, pressure and 
temperature) to the microscopic properties of gas molecules (for 
example, speed and kinetic energy). 

Avogadro's Number One mole of a substance contains 
NA (Avogadro's number) elementary units (usually atoms or mole­
cules), where N A is found experimentally to be 

NA = 6.02 X 1023 mol-l (Avogadro's number). (19-1) 

One molar mass M of any substance is the mass of one mole of the 
substance. It is related to the mass m of the individual molecules of 
the substance by 

(19-4) 

The number of moles n contained in a sample of mass Msam, con­
sisting of N molecules, is given by 

N Msam Msam (1 ) n = - =-- = --. 19-2, 9-3 
NA M mNA 

Ideal Gas An ideal gas is one for which the pressure p, volume 
V, and temperature T are related by 

pV= nRT (ideal gas law). (19-5) 

Here n is the number of moles of the gas present and R is a constant 
(8.31 J/mol' K) called the gas constant. The ideal gas law can also be 
written as 

pV= NkT, (19-9) 

where the Boltzmann constant k is 

k = ~ = 1.38 X 10-23 J/K. (19-7) 

Work in an Isothermal Volume Change The work done 
by an ideal gas during an isothermal (constant-temperature) 
change from volume 1'i to volume lj is 

W = nRTln Vr (ideal gas, isothermal process). (19-14) 
Vi 

Pressure, Temperature, and Molecular Speed The pres­
sure exerted by n moles of an ideal gas, in terms of the speed of its 
molecules, is 

p= 
3V 

(19-21) 

where Vrms = ~(v2)avg is the root-mean-squal'e speed of the mole­
cules of the gas. With Eq.19-5 this gives 

Vrms = ~ 3~T . (19-22) 

Temperature and Kinetic Energy The average transla­
tional kinetic energy Kavg per molecule of an ideal gas is 

Kavg = ~kT. (19-24) 

Mean Free Path The mean free path A of a gas molecule is its 
average path length between collisions and is given by 

1 
A = V21Td 2 NIV ' (19-25) 

where NIV is the number of molecules per unit volume and d is the 
molecular diameter. 
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Maxwell Speed Distribution The Maxwell speed distri­
bution P(v) is a function such that P(v) dv gives the fraction 
of molecules with speeds in the interval dv at speed v: 

( 
M )3/2 2 

P(v) = 41T 21TRT v2 e-Mv 
12RT. (19-27) 

Three measures of the distribution of speeds among the molecules of 
a gas are 

(average speed), (19-31) 

Vp=~2~T (most probable speed), (19-35) 

and the rms speed defined above in Eq.19-22. 

Molar Specific Heats The molar specific heat Cv of a gas at 
constant volume is defined as 

(19-39,19-41) 

in which Q is the energy transferred as heat to or from a sample of 
n moles of the gas, !:::.T is the resulting temperature change of the 
gas, and !:::.Eint is the reSUlting change in the internal energy of the 
gas. For an ideal monatomic gas, 

Cv = ~R = 12.5 J/mol· K. (19-43) 

The molar specific heat Cp of a gas at constant pressure is defined to be 
Q 

Cp = n !:::.T ' (19-46) 

in which Q, n, and!:::.T are defined as above. Cp is also given by 

Cp = Cv + R. (19-49) 

For n moles of an ideal gas, 

(ideal gas). (19-44) 

If n moles of a confined ideal gas undergo a temperature change!:::. T 
due to any process, the change in the internal energy of the gas is 

(ideal gas, any process). (19-45) 

Degrees of Freedom and Cv We find Cv by using the 
equipartition of energy theorem, which states that every degree of 
freedom of a molecule (that is, every independent way it can store 
energy) has associated with it-on average-an energy ~kT per 
molecule (= ~RT per mole). If f is the number of degrees of free­
dom, then E int = (f12)nRT and 

Cv = ({)R = 4.16f J/mol' K. (19-51 ) 

For monatomic gases f = 3 (three translational degrees); for diatomic 
gases f = 5 (three translational and two rotational degrees). 

Adiabatic Process When an ideal gas undergoes a slow 
adiabatic volume change (a change for which Q = 0), 

p V Y = a constant (adiabatic process), (19-53) 

in which y (= CplCv) is the ratio of molar specific heats for the gas. 
For a free expansion, however, p V = a constant. 
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For four situations for an abe d 
ideal gas, the table gives the Q -50 +35 -15 +20 
energy transferred to or from the W - 50 + 35 
gas as heat Q and either the work Won -40 +40 
W done by the gas or the work 
Won done on the gas, all in joules. Rank the four situations in terms of 
the temperature change of the gas, p 
most positive first. 

In the p-V diagram of Fig. 19-17, 
the gas does 5 J of work when taken 
along isotherm ab and 4 J when 
taken along adiabat be. What is the 
change in the internal energy of the 
gas when it is taken along the 
straight path from a to e? ~-----------------11 

:3 For a temperature increase of Fig. 19-17 Question 2. 
I1Tb a certain amount of an ideal gas 
requires 30 J when heated at constant volume and 50 J when heated 
at constant pressure. How much work is done by the gas in the sec­
ond situation? 

The dot in Fig. 19-18a represents the initial state of a gas, and 
the vertical line through the dot divides the p-V diagram into re­
gions 1 and 2. For the following processes, determine whether the 
work W done by the gas is positive, negative, or zero: (a) the gas 
moves up along the vertical line, (b) it moves down along the verti­
cal line, (c) it moves to anywhere in region 1, and (d) it moves to 
anywhere in region 2. 

(a) (b) (c) 

Fig. 19-18 Questions 4, 6, and 8. 

A certain amount of energy is to p 
be transferred as heat to 1 mol of a 
monatomic gas (a) at constant pres­
sure and (b) at constant volume, and to 2 

3 

4 
1 mol of a diatomic gas (c) at constant 
pressure and (d) at constant volume. 
Figure 19-19 shows four paths from an L------------------v 
initial point to four final points on a Fig. 19-19 Question 5. 
p-V diagram. Which path goes with 
which process? (e) Are the molecules of the diatomic gas rotating? 

6 The dot in Fig. 19-18b represents the initial state of a gas, and the 
isotherm through the dot divides the p-V diagram into regions 1 and 2. 
For the following processes, determine whether the change I1Eint in the 
internal energy of the gas is positive, negative, or zero: (a) the gas 
moves up along the isotherm, (b) it moves down along the isotherm, (c) 
it moves to anywhere in region 1, and (d) it moves to anywhere in 
region 2. 

(a) Rank the four paths of Fig. 19-16 according to the work 
done by the gas, greatest first. (b) Rank paths 1,2, and 3 according 
to the change in the internal energy of the gas, most positive first 
and most negative last. 

The dot in Fig. 19-18e represents the initial state of a gas, and 
the adiabat through the dot divides the p-V diagram into regions 
1 and 2. For the following processes, determine whether the cor­
responding heat Q is positive, negative, or zero: (a) the gas moves 
up along the adiabat, (b) it moves down along the adiabat, (c) it 
moves to anywhere in region 1, and (d) it moves to anywhere in 
region 2. 

An ideal diatomic gas, with molecular rotation but not 
oscillation, loses energy as heat Q. Is the resulting decrease in the 
internal energy of the gas greater if the loss occurs in a constant­
volume process or in a constant-pressure process? 

Does the temperature of an ideal gas increase, decrease, 
or stay the same during (a) an isothermal expansion, (b) an expan­
sion at constant pressure, (c) an adiabatic expansion, and (d) an in­
crease in pressure at constant volume? 

III 
Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

5S M Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wHey.com/coliege/haliiday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Avogadro's Number 
Find the mass in kilograms of 7.50 X 1024 atoms of arsenic, 

which has a molar mass of 74.9 g/mol. 

Gold has a molar mass of 197 g/mol. (a) How many moles of 
gold are in a 2.50 g sample of pure gold? (b) How many atoms are 
in the sample? 

Ideal Gases 
SSM Oxygen gas having a volume of 1000 cm3 at 40.0°C and 

1.01 X 105 Pa expands until its volume is 1500 cm3 and its pressure is 

1.06 X 105 Pa. Find (a) the number of moles of oxygen present and 
(b) the final temperature of the sample. 

A quantity of ideal gas at 10.0°C and 100 kPa occupies a vol­
ume of 2.50 m3. (a) How many moles of the gas are present? (b) If 
the pressure is now raised to 300 kPa and the temperature is raised 
to 30.0°C, how much volume does the gas occupy? Assume no leaks. 

The best laboratory vacuum has a pressure of about 1.00 X 

10- 18 atm, or 1.01 X 10- 13 Pa. How many gas molecules are there 
per cubic centimeter in such a vacuum at 293 K? 



·6 Water bottle in a hot car. In the American Southwest, 
the temperature in a closed car parked in sunlight during the sum­
mer can be high enough to burn flesh. Suppose a bottle of water at 
a refrigerator temperature of 5.00°C is opened, then closed, and 
then left in a closed car with an internal temperature of 75.0°e. 
Neglecting the thermal expansion of the water and the bottle, find 
the pressure in the air pocket trapped in the bottle. (The pressure 
can be enough to push the bottle cap past the threads that are in­
tended to keep the bottle closed.) 

Suppose 1.80 mol of an ideal gas is taken from a volume of 
3.00 m3 to a volume of 1.50 m3 via an isothermal compression at 
30°e. (a) How much energy is transferred as heat during the com­
pression, and (b) is the transfer to or from the gas? 

Compute (a) the number of moles and (b) the number of mol­
ecules in 1.00 cm3 of an ideal gas at a pressure of 100 Pa and a tem­
perature of 220 K. 

An automobile tire has a volume of 1.64 X 10-2 m3 and con­
tains air at a gauge pressure (pressure above atmospheric pres­
sure) of 165 kPa when the temperature is 0.00°e. What is the gauge 
pressure of the air in the tires when its temperature rises to 27.0°C 
and its volume increases to 1.67 X 10-2 m3? Assume atmospheric 
pressure is 1.01 X 105 Pa. 

A container encloses 2 mol of an ideal gas that has molar 
mass M j and 0.5 mol of a second ideal gas that has molar mass 
M2 = 3M j • What fraction of the total pressure on the container 
wall is attributable to the second gas? (The kinetic theory explana­
tion of pressure leads to the experimentally discovered law of par­
tial pressures for a mixture of gases that do not react chemically: 
The total pressure exerted by the mixture is equal to the sum of the 
pressures that the several gases would exert separately if each were 
to occupy the vessel alone.) 

SSM IlW WWW Air that initially occupies 0.140 m3 at a 
gauge pressure of 103.0 kPa is expanded isothermally to a pressure 
of 101.3 kPa and then cooled at constant pressure until it reaches 
its initial volume. Compute the work done by the air. (Gauge pres­
sure is the difference between the actual pressure and atmospheric 
pressure.) 

Submarine rescue. When the U. S. submarine 
Squalus became disabled at a depth of 80 m, a cylindrical cham­
ber was lowered from a ship to rescue the crew. The chamber had 
a radius of 1.00 m and a height of 4.00 m, was open at the bottom, 
and held two rescuers. It slid along a guide cable that a diver had 
attached to a hatch on the submarine. Once the chamber reached 
the hatch and clamped to the hull, the crew could escape into the 
chamber. During the descent, air was released from tanks to pre­
vent water from flooding the chamber. Assume that the interior 
air pressure matched the water pressure at depth h as given by 
Po + pgh, where Po = 1.000 atm is the surface pressure and p = 

1024 kg/m3 is the density of seawater. Assume a surface tempera­
ture of20.0°C and a submerged water temperature of -30.0°e. (a) 
What is the air volume in the chamber at the surface? (b) If air had 
not been released from the tanks, what would have been the air 
volume in the chamber at depth h = 80.0 m? (c) How many moles 
of air were needed to be released to maintain the original air vol­
ume in the chamber? 

A sample of an ideal gas is taken through the cyclic 
process abca shown in Fig. 19-20. The scale of the vertical axis is set 

by Pb = 7.5 kPa and Pac = 2.5 kPa. At 
point a, T = 200 K. (a) How many 
moles of gas are in the sample? What 
are (b) the temperature of the gas at 
point b, (c) the temperature of the 
gas at point c, and (d) the net energy 
added to the gas as heat during the 
cycle? 

In the temperature range 310 
K to 330 K, the pressure p of a certain 
nonideal gas is related to volume V 
and temperature Tby 
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b 

a 

1.0 3.0 
Volume (m3) 

Fig. 19-20 Problem 13. 

T T2 
P = (24.9 J/K) 11 - (0.00662 J/K2) V' 

How much work is done by the gas if its temperature is raised from 
315 K to 325 K while the pressure is held constant? 

··15 Suppose 0.825 mol of an ideal gas undergoes an isothermal 
expansion as energy is added to it as heat Q. If Fig. 19-21 shows the 
final volume 1j versus Q, what is the gas temperature? The scale of 
the vertical axis is set by Vfs = 0.30 m3

, and the scale of the hori­
zontal axis is set by Qs = 1200 J. 

Q(J) 

Fig. 19-21 Problem 15. 

An air bubble of volume 20 cm3 is at the bottom of a lake 
40 m deep, where the temperature is 4.0°e. The bubble rises to the 
surface, which is at a temperature of 20°e. Take the temperature of 
the bubble's air to be the same as that of the surrounding water. 
Just as the bubble reaches the surface, what is its volume? 

Container A in Fig. 19-22 holds an ideal gas at a pres­
sure of 5.0 X 105 Pa and a temperature of 300 K. It is connected by 

B 

a thin tube (and a closed valve) to 
container B, with four times the vol­
ume of A. Container B holds the 
same ideal gas at a pressure of 1.0 X 
105 Pa and a temperature of 400 K. 
The valve is opened to allow the 
pressures to equalize, but the tem­
perature of each container is main­
tained. What then is the pressure? 

Fig. 19-22 Problem 17. 

Pressure, Temperature, and RMS Speed 
The temperature and pressure in the Sun's atmosphere are 

2.00 X 106 K and 0.0300 Pa. Calculate the rms speed of free elec­
trons (mass 9.11 X 10-31 kg) there, assuming they are an ideal gas. 
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(a) Compute the rms speed of a nitrogen molecule at 20.0DC, 
The molar mass of nitrogen molecules (N2) is given in Table 19-1. 
At what temperatures will the rms speed be (b) half that value and 
(c) twice that value? 

Calculate the rms speed of helium atoms at 1000 K. See 
Appendix F for the molar mass of helium atoms. 

·21 SSM The lowest possible temperature in outer space is 2.7 
K. What is the rms speed of hydrogen molecules at this tempera­
ture? (The molar mass is given in Table 19-1.) 

Find the rms speed of argon atoms at 313 K. See Appendix F 
for the molar mass of argon atoms. 

A beam of hydrogen molecules (H2) is directed toward a wall, at 
an angle of 55D with the normal to the wall. Each molecule in the beam 
has a speed of 1.0 km/s and a mass of 3.3 X 10-24 g. The beam strikes the 
wall over an area of 2.0 cm2, at the rate of 1023 molecules per second. 
What is the beam's pressure on the wall? 

At 273 K and 1.00 X 10-2 atm, the density of a gas is 1.24 X 

10-5 g/cm3. (a) Find v rms for the gas molecules. (b) Find the molar 
mass of the gas and (c) identify the gas. (Hint: The gas is listed in 
Table 19-1.) 

Translational Kinetic Energy 
Determine the average value of the translational kinetic en­

ergy of the molecules of an ideal gas at (a) O.OODC and (b) 100D C, 

What is the translational kinetic energy per mole of an ideal gas at 
( c) O.OODC and (d) 100DC? 

What is the average translational kinetic energy of nitrogen 
molecules at 1600 K? 

Water standing in the open at 32.0DC evaporates because of 
the escape of some of the surface molecules. The heat of vaporization 
(539 cal/g) is approximately equal to 811, where 8 is the average en­
ergy of the escaping molecules and 11 is the number of molecules per 
gram. (a) Find 8. (b) What is the ratio of 8 to the average kinetic en­
ergy of H20 molecules, assuming the latter is related to temperature 
in the same way as it is for gases? 

Mean Free Path 
At what frequency would the wavelength of sound in air be 

equal to the mean free path of oxygen molecules at 1.0 atm pres­
sure and O.OODC? The molecular diameter is 3.0 X 10-8 cm. 

SSM The atmospheric density at an altitude of 2500 km is about 
1 molecule!cm3. (a) Assuming the molecular diameter of 2.0 X 10-8 

cm, find the mean free path predicted by Eq. 19-25. (b) Explain 
whether the predicted value is meaningful. 

The mean free path of nitrogen molecules at O.ODC and 1.0 atm 
is 0.80 X 10-5 cm. At this temperature and pressure there are 2.7 X 

10 19 molecules/cm3• What is the molecular diameter? 

In a certain particle accelerator, protons travel around a cir­
cular path of diameter 23.0 m in an evacuated chamber, whose 
residual gas is at 295 K and 1.00 X 10-6 torr pressure. (a) Calculate 
the number of gas molecules per cubic centimeter at this pressure. 
(b) What is the mean free path of the gas molecules if the molecu­
lar diameter is 2.00 X 10-8 cm? 

At 20D C and 750 torr pressure, the mean free paths for ar­
gon gas (AI') and nitrogen gas (N2) are AAr = 9.9 X 10-6 cm and 
AN2 = 27.5 X 10-6 cm. (a) Find the ratio of the diameter of an AI' 
atom to that of an N2 molecule. What is the mean free path of 
argon at (b) 20DC and 150 torr, and (c) -40DC and 750 torr? 

The Distribution of Molecular Speeds 
SSM The speeds of 10 molecules are 2.0, 3.0, 4.0, ... , 11 

km/s. What are their (a) average speed and (b) rms speed? 

The speeds of 22 particles are as follows (N; represents the 
number of particles that have speed v;): 

M 2 4 6 8 2 

v; (cm/s) 1.0 2.0 3.0 4.0 5.0 

What are (a) vavg, (b) Vrms> and (c) vp? 

Ten particles are moving with the following speeds: four at 
200 m/s, two at 500 m/s, and four at 600 m/s. Calculate their (a) av­
erage and (b) rms speeds. (c) Is v rms > V avg ? 

It is found that the most probable speed of molecules in a 
gas when it has (uniform) temperature T2 is the same as the rms 
speed of the molecules in this gas when it has (uniform) tempera­
ture T j • Calculate T2/T j • 

SSM WWW Figure 19-23 a 
;;:-
i( 

0 1'0 21'0 

Speed 

shows a hypothetical speed distri­
bution for a sample of N gas parti­
cles (note that P(v) = 0 for speed 
v> 2vo). What are the values of (a) 
avo, (b) Vavg/VO' and (c) vrmJVO? (d) 
What fraction of the particles has a 
speed between 1.5vo and 2.0vo? 

Fig. 19-23 Problem 37. 

Figure 19-24 gives the probability distribution for nitrogen 
gas. The scale of the horizontal axis is set by Vs = 1200 m/s. What 
are the (a) gas temperature and (b) rms speed of the molecules? 

o 
v (m/s) 

Fig. 19-24 Problem 38. 

v s 

At what temperature does the rms speed of (a) H2 (molecu­
lar hydrogen) and (b) O2 (molecular oxygen) equal the escape 
speed from Earth (Table B-2)? At what temperature does the rms 
speed of (c) H2 and (d) O2 equal the escape speed from the Moon 
(where the gravitational acceleration at the surface has magnitude 
0.16g)? Considering the answers to parts (a) and (b), should there 
be much (e) hydrogen and (f) oxygen high in Earth's upper atmo­
sphere, where the temperature is about 1000 K? 

Two containers are at the same temperature. The first con­
tains gas with pressure PI> molecular mass 1111> and rms speed Vrms l' 

The second contains gas with pressure 2.0pl> molecular mass 1112, 

and average speed Vavg2 = 2.0Vrms l' Find the mass ratio 1111/1112' 

A hydrogen molecule (diameter 1.0 X 10-8 cm), traveling at 
the rms speed, escapes from a 4000 K furnace into a chamber contain-



ing cold argon atoms (diameter 3.0 X 10-8 cm) at a density of 
4.0 X 10 19 atoms/cm3. (a) What is the speed of the hydrogen mole­
cule? (b) If it collides with an argon atom, what is the closest their 
centers can be, considering each as spherical? (c) What is the initial 
number of collisions per second experienced by the hydrogen mol­
ecule? (Hint: Assume that the argon atoms are stationary. Then the 
mean free path of the hydrogen molecule is given by Eq. 19-26 and 
not Eq.19-25.) 

The Molar Specific Heats of an Ideal Gas 
What is the internal energy of 1.0 mol of an ideal monatomic 

gas at 273 K? 

The temperature of 3.00 mol of an ideal diatomic gas is in­
creased by 40.0 Co without the pressure of the gas changing. The mol­
ecules in the gas rotate but do not oscillate. (a) How much energy is 
transferred to the gas as heat? (b) What is the change in the internal 
energy of the gas? (c) How much work is done by the gas? (d) By 
how much does the rotational kinetic energy of the gas increase? 

One mole of an ideal diatomic gas goes from a to c along 
the diagonal path in Fig. 19-25. The __ 

r 

scale of the vertical axis is set by Pab = ~ Pab _ a.!'~""~'iIP'_._".b 
5.0 kPa and Pc = 2.0 kPa, and the :: 
scale of the horizontal axis is set by 0) 

Vbc = 4.0 m3 and Va = 2.0 m3. During ~ p,-­
the transition, (a) what is the change Po< 

in internal energy of the gas, and 
(b) how much energy is added to the 11" VI), 

Volume (m3) 
gas as heat? (c) How much heat is re-
quired if the gas goes from a to c Fig. 19-25 Problem 44. 

along the indirect path abc? 

IlW The mass of a gas molecule can be computed from its 
specific heat at constant volume cv. (Note that this is not Cv.) Take 
cv = 0.075 cal/g· Co for argon and calculate (a) the mass of an ar­
gon atom and (b) the molar mass of argon. 

Under constant pressure, the temperature of 2.00 mol of an 
ideal monatomic gas is raised 15.0 K. What are (a) the work W 
done by the gas, (b) the energy transferred as heat Q, (c) the 
change 6.Eint in the internal energy of the gas, and (d) the change 
6.K in the average kinetic energy per atom? 

The temperature of 2.00 mol of an ideal monatomic gas is 
raised 15.0 K at constant volume. What are (a) the work W done by 
the gas, (b) the energy transferred as heat Q, (c) the change 6.Eint in 
the internal energy of the gas, and (d) the change 6.K in the aver­
age kinetic energy per atom? 

When 20.9 J was added as heat to a particular ideal gas, the 
volume of the gas changed from 50.0 cm3 to 100 cm3 while the 
pressure remained at 1.00 atm. (a) By how much did the internal 
energy of the gas change? If the quantity of gas present was 2.00 X 
10-3 mol, find (b) Cp and (c) Cv. 

SSM A container holds a mixture of three nonreacting 
gases: 2.40 mol of gas 1 with CV1 = 12.0 J/mol' K, 1.50 mol of gas 2 
with CV2 = 12.8 J/mol· K, and 3.20 mol of gas 3 with CV3 = 20.0 
J/mol· K. What is Cv of the mixture? 

Degrees of Freedom and Molar Specific Heats 
We give 70 J as heat to a diatomic gas, which then expands at 

constant pressure. The gas molecules rotate but do not oscillate. By 
how much does the internal energy of the gas increase? 
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IlW When 1.0 mol of oxygen (02) gas is heated at constant 
pressure starting at O°C, how much energy must be added to the gas as 
heat to double its volume? (The molecules rotate but do not oscillate.) 

Suppose 12.0 g of oxygen (02) gas is heated at constant atmo­
spheric pressure from 25.0°C to 125°C. (a) How many moles of oxy­
gen are present? (See Table 19-1 for the molar mass.) (b) How much 
energy is transferred to the oxygen as heat? (The molecules rotate but 
do not oscillate.) (c) What fraction of the heat is used to raise the in­
ternal energy of the oxygen? 

SSM WWW Suppose 4.00 mol of an ideal diatomic gas, with 
molecular rotation but not oscillation, experienced a temperature in­
crease of 60.0 K under constant-pressure conditions. What are (a) the 
energy transferred as heat Q, (b) the change 6.Eint in internal energy of 
the gas, (c) the work W done by the gas, and (d) the change 6.K in the 
total translational kinetic energy of the gas? 

The Adiabatic Expansion of an Ideal Gas 
·54 We know that for an adiabatic process P VY = a constant. 
Evaluate "a constant" for an adiabatic process involving exactly 2.0 
mol of an ideal gas passing through the state having exactly P = 1.0 
atm and T = 300 K. Assume a diatomic gas whose molecules ro­
tate but do not oscillate. 

A certain gas occupies a volume of 4.3 L at a pressure of 1.2 
atm and a temperature of 310 K. It is compressed adiabatically to a 
volume of 0.76 L. Determine (a) the final pressure and (b) the final 
temperature, assuming the gas to be an ideal gas for which 'Y = 1.4. 

Suppose 1.00 L of a gas with 'Y = 1.30, initially at 273 K and 
1.00 atm, is suddenly compressed adiabatically to half its initial vol­
ume. Find its final (a) pressure and (b) temperature. (c) If the gas is 
then cooled to 273 K at constant pressure, what is its final volume? 

The volume of an ideal gas is adiabatically reduced from 200 
L to 74.3 L. The initial pressure and temperature are 1.00 atm and 
300 K. The final pressure is 4.00 atm. (a) Is the gas monatomic, di­
atomic, or polyatomic? (b) What is the final temperature? (c) How 
many moles are in the gas? 

Opening champagne. In a bottle of champagne, the 
pocket of gas (primarily carbon dioxide) between the liquid and the 
cork is at pressure of Pi = 5.00 atm. When the cork is pulled from the 
bottle, the gas undergoes an adiabatic expansion until its pressure 
matches the ambient air pressure of 1.00 atm. Assume that the ratio of 
the molar specific heats is 'Y = 1. If the gas has initial temperature Ti = 

5.00°C, what is its temperature at the end of the adiabatic expansion? 

Figure 19-26 shows two paths that may be taken by a gas 
from an initial point i to a final point! Path 1 consists of an isother­
mal expansion (work is 50 J in magnitude), an adiabatic expansion 

P 

Path 2 

~Path 1 

f / Isothermal 

yAdiabatic 

Isothermal../ 
L------------------------------------F 

Fig. 19-26 Problem 59. 
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(work is 40 J in magnitude), an isothermal compression (work is 30 
J in magnitude), and then an adiabatic compression (work is 25 J in 
magnitude). What is the change in the internal energy of the gas if 
the gas goes from point i to point f along path 2? 

Adiabatic wind. The normal airflow over the 
Rocky Mountains is west to east. The air loses much of its moisture 
content and is chilled as it climbs the western side of the moun­
tains. When it descends on the eastern side, the increase in pressure 
toward lower altitudes causes the temperature to increase. The 
flow, then called a chinook wind, can rapidly raise the air tempera­
ture at the base of the mountains. Assume that the air pressure p 
depends on altitude y according to p = Po exp (-ay), where Po = 

1.00 atm and a = 1.16 X 10-4 m- I . Also assume that the ratio of 
the molar specific heats is '}' = ~. A parcel of air with an initial tem­
perature of -5.00°C descends adiabatically from Yl = 4267 m to 
Y = 1567 m. What is its temperature at the end of the descent? 

A gas is to be expanded from initial state i to final state f 
along either path 1 or path 2 on a p-V diagram. Path 1 consists of 
three steps: an isothermal expansion (work is 40 J in magnitude), 
an adiabatic expansion (work is 20 J in magnitude), and another 
isothermal expansion (work is 30 J in magnitude). Path 2 consists 
of two steps: a pressure reduction at constant volume and an ex­
pansion at constant pressure. What is the change in the internal en­
ergy of the gas along path 2? 

~ An ideal diatomic gas, with rotation but no oscillation, 
undergoes an adiabatic compression. Its initial pressure and vol­
ume are 1.20 atm and 0.200 m3• Its final pressure is 2.40 atm. How 
much work is done by the gas? 

Figure 19-27 shows a cycle 
undergone by 1.00 mol of an ideal 
monatomic gas. The temperatures 
are Tl = 300 K, T2 = 600 K, and 
T3 = 455 K. For l--c> 2, what are (a) 
heat Q, (b) the change in internal en­
ergy ilEint> and (c) the work done 
W? For 2 --c> 3, what are (d) Q, (e) 
ilEint, and (f) W? For 3 --c> 1, what are 
(g) Q, (h) ilEint> and (i) W? For the full 

2 

Volume 

cycle, what are (j) Q, (k) ilEint, and (1) Fig. 19-27 Problem 63. 
W? The initial pressure at point 1 is 
1.00 atm (= 1.013 X 105 Pa). What are the (m) volume and (n) pres­
sure at point 2 and the (0) volume and (p) pressure at point 3? 

Additional Problems 
Calculate the work done by an external agent during an 

isothermal compression of 1.00 mol of oxygen from a volume of 
22.4 L at O°C and 1.00 atm to a volume of 16.8 L. 

An ideal gas undergoes an adiabatic compression from 
p = 1.0 atm, V = 1.0 X 106 L, T = O.O°C to P = 1.0 X 105 atm, 
V = 1.0 X 103 L. (a) Is the gas monatomic, diatomic, or polyatomic? 
(b) What is its final temperature? (c) How many moles of gas are 
present? What is the total translational kinetic energy per mole (d) 
before and (e) after the compression? (f) What is the ratio of the 
squares of the rms speeds before and after the compression? 

An ideal gas consists of 1.50 mol of diatomic molecules that 
rotate but do not oscillate. The molecular diameter is 250 pm. The 
gas is expanded at a constant pressure of 1.50 X 105 Pa, with a 
transfer of 200 J as heat. What is the change in the mean free path 
of the molecules? 

An ideal monatomic gas initially has a temperature of 330 K 
and a pressure of 6.00 atm. It is to expand from volume 500 cm3 to 
volume 1500 cm3

• If the expansion is isothermal, what are (a) the fi­
nal pressure and (b) the work done by the gas? If, instead, the ex­
pansion is adiabatic, what are (c) the final pressure and (d) the 
work done by the gas? 

In an interstellar gas cloud at 50.0 K, the pressure is 
1.00 X 10-8 Pa. Assuming that the molecular diameters of the gases 
in the cloud are all 20.0 nm, what is their mean free path? 

SSM The envelope and basket of a hot-air balloon have a 
combined weight of 2.45 kN, and the envelope has a capacity (volume) 
of 2.18 X 103 m3. When it is fully inflated, what should be the tempera­
ture of the enclosed air to give the balloon a lifting capacity (force) of 
2.67 kN (in addition to the balloon's weight)? Assume that the sur­
rounding air, at 20.0°C, has a weight per unit volume of 11.9 N/m3 and a 
molecular mass of 0.028 kg/mol, and is at a pressure of 1.0 atm. 

An ideal gas, at initial temperature TJ and initial volume 2.0 
m3, is expanded adiabatically to a volume of 4.0 m3, then expanded 
isothermally to a volume of 10 m3, and then compressed adiabati­
cally back to T j • What is its final volume? 

SSM The temperature of 2.00 mol of an ideal monatomic gas 
is raised 15.0 K in an adiabatic process. What are (a) the work W 
done by the gas, (b) the energy transferred as heat Q, (c) the 
change ilEint in internal energy of the gas, and (d) the change ilK in 
the average kinetic energy per atom? 

At what temperature do atoms of helium gas have the same rms 
speed as molecules of hydrogen gas at 20.0°C? (The molar masses are 
given in Table 19-1.) 

SSM At what frequency do molecules (diameter 290 pm) col­
lide in (an ideal) oxygen gas (02) at temperature 400 K and pres­
sure 2.00 atm? 

(a) What is the number of molecules per cubic meter in air at 
20°C and at a pressure of 1.0 atm (= 1.01 X 105 Pa)? (b) What is 
the mass of 1.0 m3 of this air? Assume that 75% of the molecules 
are nitrogen (N2) and 25% are oxygen (02), 

The temperature of 3.00 mol of a gas with Cv = 6.00 
cal/mol' K is to be raised 50.0 K. If the process is at constant vol­
ume, what are (a) the energy transferred as heat Q, (b) the work 
W done by the gas, (c) the change ilEint in internal energy of the 
gas, and (d) the change ilK in the total translational kinetic en­
ergy? If the process is at constant pressure, what are (e) Q, (f) W, 
(g) ilEint , and (h) ilK? If the process is adiabatic, what are (i) Q, (j) 
W, (k) ilEint, and (I) ilK? 

During a compression at a constant pressure of 250 Pa, the 
volume of an ideal gas decreases from 0.80 m3 to 0.20 m3• The ini­
tial temperature is 360 K, and the gas loses 210 J as heat. What are 
(a) the change in the internal energy of the gas and (b) the final 
temperature of the gas? 

SSM Figure 19-28 shows a hypothetical speed distribution 

Vo 
Speed 

Fig. 19-28 Problem 77. 



for particles of a certain gas: P(v) = Cv2 for 0 < v::; Vo and P(v) = 0 
for v > vo. Find (a) an expression for C in terms of vo, (b) the average 
speed of the particles, and (c) their rms speed. 

(a) An ideal gas initially at pressure Po undergoes a free ex­
pansion until its volume is 3.00 times its initial volume. What then 
is the ratio of its pressure to Po? (b) The gas is next slowly and adia­
batically compressed back to its original volume. The pressure af­
ter compression is (3.00)1I3pO' Is the gas monatomic, diatomic, or 
polyatomic? (c) What is the ratio of the average kinetic energy per 
molecule in this final state to that in the initial state? 

SSM An ideal gas undergoes isothermal compression from 
an initial volume of 4.00 m3 to a final volume of 3.00 m3• There is 
3.50 mol of the gas, and its temperature is 10.0°e. (a) How much 
work is done by the gas? (b) How much energy is transferred as 
heat between the gas and its environment? 

Oxygen (02) gas at 273 K and 1.0 atm is confined to a cubical 
container 10 cm on a side. Calculate/::,.UgIKavg, where /::,.Ug is the 
change in the gravitational potential energy of an oxygen molecule 
falling the height of the box and Kavg is the molecule's average 
translational kinetic energy. 

An ideal gas is taken through a complete cycle in three 
steps: adiabatic expansion with work equal to 125 J, isothermal 
contraction at 325 K, and increase in pressure at constant volume. 
(a) Draw ap-V diagram for the three steps. (b) How much energy 
is transferred as heat in step 3, and (c) is it transferred to or from 
the gas? 

(a) What is the volume occupied by 1.00 mol of an ideal gas at 
standard conditions-that is, 1.00 atm (= 1.01 X 105 Pa) and 273 
K? (b) Show that the number of molecules per cubic centimeter 
(the Loschmidt number) at standard conditions is 2.69 X 109• 

SSM A sample of ideal gas expands from an initial pressure 
and volume of 32 atm and 1.0 L to a final volume of 4.0 L. The ini­
tial temperature is 300 K. If the gas is monatomic and the expan­
sion isothermal, what are the (a) final pressure Pi' (b) final temper­
ature Ti , and (c) work W done by the gas? If the gas is monatomic 
and the expansion adiabatic, what are (d) Pi' (e) Ti , and (f) W? If 
the gas is diatomic and the expansion adiabatic, what are (g) Pi' (h) 
Ti , and (i) W? 

An ideal gas with 3.00 mol is initially in state 1 with pressure 
Pl = 20.0 atm and volume VI = 1500 cm3. First it is taken to state 
2 with pressure P2 = 1.50Pl and volume V2 = 2.00V1. Then it is 
taken to state 3 with pressure P3 = 2.00PI and volume V3 = 
0.500V1• What is the temperature of the gas in (a) state 1 and (b) 
state 2? (c) What is the net change in internal energy from state 1 
to state 3? 
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A steel tank contains 300 g of ammonia gas (NH3) at a pres­
sure of 1.35 X 106 Pa and a temperature of n°e. (a) What is the 
volume of the tank in liters? (b) Later the temperature is 22°C and 
the pressure is 8.7 X 105 Pa. How many grams of gas have leaked 
out of the tank? 

In an industrial process the volume of 25.0 mol of a monatomic 
ideal gas is reduced at a uniform rate from 0.616 m3 to 0.308 m3 in 
2.00 h while its temperature is increased at a uniform rate from 
27.0°C to 450°C. Throughout the process, the gas passes through 
thermodynamic equilibrium states. What are (a) the cumulative 
work done on the gas, (b) the cumulative energy absorbed by the 
gas as heat, and (c) the molar specific heat for the process? (Hint: 
To evaluate the integral for the work, you might use 

f a + bx bx aB - bA 
A + Bx dx = B + B2 In(A + Bx), 

an indefinite integral.) Suppose the process is replaced with a two­
step process that reaches the same final state. In step 1, the gas 
volume is reduced at constant temperature, and in step 2 the tem­
perature is increased at constant volume. For this process, what are 
(d) the cumulative work done on the gas, (e) the cumulative energy 
absorbed by the gas as heat, and (f) the molar specific heat for the 
process? 

Figure 19-29 shows a cycle consisting of five paths: AB 
is isothermal at 300 K, BC is adiabatic with work = 5.0 J, CD is at a 
constant pressure of 5 atm, DE is isothermal, and EA is adiabatic 
with a change in internal energy of 8.0 1. What is the change in in­
ternal energy of the gas along path CD? 

11 

Fig. 19-29 Problem 87. 

An ideal gas initially at 300 K is compressed at a constant 
pressure of 25 N/m2 from a volume of 3.0 m3 to a volume of 1.8 m3. 
In the process, 75 J is lost by the gas as heat. What are (a) the 
change in internal energy of the gas and (b) the final temperature 
of the gas? 
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Time has direction, the direction in which we age. We are accustomed to 
many one-way processes-that is, processes that can occur only in a certain 
sequence (the right way) and never in the reverse sequence (the wrong way). An egg 
is dropped onto a fioor, a pizza is baked, a car is driven into a lamppost, large waves 
erode a sandy beach-these one-way processes are irreversible, meaning that they 
cannot be reversed by means of only small changes in their environment. 

One goal of physics is to understand why time has direction and why one­
way processes are irreversible. Although this physics might seem disconnected 
from the practical issues of everyday life, it is in fact at the heart of any engine, 
such as a car engine, because it determines how well an engine can run. 

The key to understanding why one-way processes cannot be reversed 
involves a quantity known as entropy. 

Irreversible Processes and Entropy 
The one-way character of irreversible processes is so pervasive that we take it for 
granted. If these processes were to occur spontaneously (on their own) in the 
wrong way, we would be astonished. Yet none of these wrong-way events would 
violate the law of conservation of energy. 

For example, if you were to wrap your hands around a cup of hot coffee, you 
would be astonished if your hands got cooler and the cup got warmer. That is 
obviously the wrong way for the energy transfer, but the total energy of the 
closed system (hands + cup of coffee) would be the same as the total energy if 
the process had run in the right way. For another example, if you popped a helium 
balloon, you would be astonished if, later, all the helium molecules were to gather 
together in the original shape of the balloon. That is obviously the wrong way for 
molecules to spread, but the total energy of the closed system (molecules + 
room) would be the same as for the right way. 

Thus, changes in energy within a closed system do not set the direction of 
irreversible processes. Rather, that direction is set by another property that we 
shall discuss in this chapter- the change in entropy flS of the system. The change 
in entropy of a system is defined in the next section, but we can here state its 
central property, often called the entropy postulate: 

If an irreversible process occurs in a closed system, the entropy S of the system 
always increases; it never decreases. 



Entropy differs from energy in that entropy does not obey a conservation law. 
The energy of a closed system is conserved; it always remains constant. For 
irreversible processes, the entropy of a closed system always increases. Because of 
this property, the change in entropy is sometimes called "the arrow of time." For 
example, we associate the explosion of a popcorn kernel with the forward 
direction of time and with an increase in entropy. The backward direction of time 
(a videotape run backwards) would correspond to the exploded popcorn re­
forming the original kernel. Because this backward process would result in an 
entropy decrease, it never happens. 

There are two equivalent ways to define the change in entropy of a system: 
(1) in terms of the system's temperature and the energy the system gains or loses 
as heat, and (2) by counting the ways in which the atoms or molecules that make 
up the system can be arranged. We use the first approach in the next section and 
the second in Section 20-S. 

Change in Entropy 
Let's approach this definition of change in entropy by looking again at a process 
that we described in Sections lS-11 and 19-11: the free expansion of an ideal gas. 
Figure 20-la shows the gas in its initial equilibrium state i, confined by a closed 
stopcock to the left half of a thermally insulated container. If we open the 
stopcock, the gas rushes to fill the entire container, eventually reaching the final 
equilibrium state f shown in Fig. 20-lb. This is an irreversible process; all the 
molecules of the gas will never return to the left half of the container. 

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume 
of the gas in its initial state i and final state f. Pressure and volume are state 
properties, properties that depend only on the state of the gas and not on how it 
reached that state. Other state properties are temperature and energy. We now 
assume that the gas has still another state property-its entropy. Furthermore, 
we define the change in entropy Sf - Si of a system during a process that takes 
the system from an initial state i to a final state f as 

!1S = Sf - Si = If di (change in entropy defined). (20-1) 

Here Q is the energy transferred as heat to or from the system during the process, 
and T is the temperature of the system in kelvins. Thus, an entropy change 
depends not only on the energy transferred as heat but also on the temperature 
at which the transfer takes place. Because T is always positive, the sign of !1S is 
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and 
entropy change is the joule per kelvin. 

There is a problem, however, in applying Eq. 20-1 to the free expansion of 
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature, 
and volume of the gas fluctuate unpredictably. In other words, they do not have a 
sequence of well-defined equilibrium values during the intermediate stages of the 
change from initial state i to final state f. Thus, we cannot trace a pressure-vol­
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a 
relation between Q and Tthat allows us to integrate as Eq. 20-1 requires. 

However, if entropy is truly a state property, the difference in entropy 
between states i and f must depend only on those states and not at all on the way 
the system went from one state to the other. Suppose, then, that we replace the 
irreversible free expansion of Fig. 20-1 with a reversible process that connects 
states i and f. With a reversible process we can trace a pressure-volume path on 
a p-V plot, and we can find a relation between Q and T that allows us to use 
Eq. 20-1 to obtain the entropy change. 
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System Stopcock closed 

(a) Initial state i 

Irreversible 
process 

G ~ Stopcock open 

(b) Final state f 

Fig. 20-1 The free expansion of an 
ideal gas. (a) The gas is confined to the left 
half of an insulated container by a closed 
stopcock. (b) When the stopcock is 
opened, the gas rushes to fill the entire 
container. This process is irreversible; that 
is, it does not occur in reverse, with the gas 
spontaneously collecting itself in the left 
half of the container. 

Volume 

Fig. 20-2 A p-V diagram showing the 
initial state i and the final state f of the free 
expansion of Fig. 20-1. The intermediate 
states of the gas cannot be shown because 
they are not equilibrium states. 
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(a) Initial state i 

Reversible 
process 

(b) Final state f 

Fig. 20-3 The isothermal expansion of 
an ideal gas, done in a reversible way. The 
gas has the same initial state i and same fi­
nal state f as in the irreversible process of 
Figs. 20-1 and 20-2. 

We saw in Section 19-11 that the temperature of an ideal gas does not change 
during a free expansion: ~ = Tf = T. Thus, points i and f in Fig. 20-2 must be on 
the same isotherm. A convenient replacement process is then a reversible 
isothermal expansion from state i to state f, which actually proceeds along that 
isotherm. Furthermore, because T is constant throughout a reversible isothermal 
expansion, the integral of Eq. 20-1 is greatly simplified. 

Figure 20-3 shows how to produce such a reversible isothermal expansion. 
We confine the gas to an insulated cylinder that rests on a thermal reservoir 
maintained at the temperature T. We begin by placing just enough lead shot on 
the movable piston so that the pressure and volume of the gas are those of the 
initial state i of Fig. 20-1a. We then remove shot slowly (piece by piece) until the 
pressure and volume of the gas are those of the final state f of Fig. 20-1b. The 
temperature of the gas does not change because the gas remains in thermal con­
tact with the reservoir throughout the process. 

The reversible isothermal expansion of Fig. 20-3 is physically quite different 
from the irreversible free expansion of Fig. 20-1. However, both processes have 
the same initial state and the same final state and thus must have the same change in 
entropy. Because we removed the lead shot slowly, the intermediate states of the 
gas are equilibrium states, so we can plot them on a p-V diagram (Fig. 20-4). 

To apply Eq. 20-1 to the isothermal expansion, we take the constant tempera­
ture T outside the integral, obtaining 

1 (f 
AS = Sf- Si = TJi dQ. 

Because J dQ = Q, where Q is the total energy transferred as heat during the 
process, we have 

Q 
AS = Sf- S· =­

I T (change in entropy, isothermal process). (20-2) 

To keep the temperature T of the gas constant during the isothermal expansion 
of Fig. 20-3, heat Q must have been energy transferred from the reservoir to the 
gas. Thus, Q is positive and the entropy of the gas increases during the isothermal 
process and during the free expansion of Fig. 20-1. 

To summarize: 

To find the entropy change for an irreversible process occurring in a closed system, 
replace that process with any reversible process that connects the same initial and final 
states. Calculate the entropy change for this reversible process with Eq. 20-1. 

When the temperature change AT of a system is small relative to the tem­
perature (in kelvins) before and after the process, the entropy change can be 
approximated as 

Q 
AS = Sf - Si = --, 

T.vg 
(20-3) 

where Tavg is the average temperature of the system in kelvins during the process. 

Fig. 20-4 A p-V diagram for the reversible 
isothermal expansion of Fig. 20-3. The intermediate 
states, which are now equilibrium states, are shown. Volume 



CHECKPOINT 1 

Water is heated on a stove. Rank the entropy changes of the water as its temperature rises 
(a) from 20De to 30De, (b) from 30De to 35De, and ( c) from 800 e to 85De, greatest first. 

We have assumed that entropy, like pressure, energy, and temperature, is a property 
of the state of a system and is independent of how that state is reached. That entropy 
is indeed a state function (as state properties are usually called) can be deduced only 
by experiment. However, we can prove it is a state function for the special and impor­
tant case in which an ideal gas is taken through a reversible process. 

To make the process reversible, it is done slowly in a series of small steps, 
with the gas in an equilibrium state at the end of each step. For each small step, 
the energy transferred as heat to or from the gas is dQ, the work done by the gas 
is dW, and the change in internal energy is dEint . These are related by the first law 
of thermodynamics in differential form (Eq.18-27): 

dEint = dQ - dW. 

Because the steps are reversible, with the gas in equilibrium states, we can use 
Eq. 18-24 to replace dW with p dV and Eq. 19-45 to replace dEint with nCv dT. 
Solving for dQ then leads to 

dQ = p dV + nCv dT. 

Using the ideal gas law, we replace p in this equation with nRTIV. Then we divide 
each term in the resulting equation by T, obtaining 

dQ dV dT 
T = nR-----y- + nCvT· 

Now let us integrate each term of this equation between an arbitrary initial state 
i and an arbitrary final state fto get 

(f dQ = (fnR dV + (fnc
v 

dT. 
J T J V J T 

The quantity on the left is the entropy change !:J.S (= Sf - Si) defined by Eq. 20-I. 
Substituting this and integrating the quantities on the right yield 

(20-4) 

Note that we did not have to specify a particular reversible process when we 
integrated. Therefore, the integration must hold for all reversible processes that 
take the gas from state i to state .f. Thus, the change in entropy !:J.S between the 
initial and final states of an ideal gas depends only on properties of the initial 
state (Vj and T i ) and properties of the final state (Vr and Tf ); !:J.S does not depend 
on how the gas changes between the two states. 

CHECKPOINT 2 

An ideal gas has temperature Tl at the initial 
state i shown in the p-V diagram here. The I 
gas has a higher temperature Tz at final ;~ 
states a and b, which it can reach along the ~ 
paths shown. Is the entropy change along the 
path to state a larger than, smaller than, or '----___________ _ 
the same as that along the path to state b? Volume 
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Entropy change of two blocks coming to thermal equilibrium 

Figure 20-Sa shows two identical copper blocks of mass m = 

1.S kg: block L at temperature TiL = 600 e and block R at 
temperature TiR = 20°e. The blocks are in a thermally insu­
lated box and are separated by an insulating shutter. When 
we lift the shutter, the blocks eventually come to the equi­
librium temperature Tf = 400 e (Fig. 20-Sb). What is the net 
entropy change of the two-block system during this irre­
versible process? The specific heat of copper is 386 llkg . K. 

To calculate the entropy change, we must find a reversible 
process that takes the system from the initial state of Fig. 20-Sa 
to the final state of Fig. 20-Sb. We can calculate the net en­
tropy change f:.Srev of the reversible process using Eq. 20-1, 
and then the entropy change for the irreversible process is 
equal to f:.Srev ' 

Calculations: For the reversible process, we need a ther­
mal reservoir whose temperature can be changed slowly 
(say, by turning a knob). We then take the blocks through 
the following two steps, illustrated in Fig. 20-6. 

Step 1: With the reservoir's temperature set at 60oe, put 
block L on the reservoir. (Since block and reservoir are at 
the same temperature, they are already in thermal equilib­
rium.) Then slowly lower the temperature of the reservoir 
and the block to 40oe. As the block's temperature changes 
by each increment dT during this process, energy dQ is trans­
ferred as heat from the block to the reservoir. Using Eq. 18-
14, we can write this transferred energy as dQ = me dT, 
where e is the specific heat of copper. According to Eq. 20-1, 

Movable 

t 
r Insulation 

m'l ~. 7Z~:;;:;.±. ['< '~~(~~.r.:7Z!~i\il 
. Warm ~ Cool 

I TiLl ~ I 1iRI ~ 
L ,\ R 

Irreversible 
process 

(a) (b) 

Fig.20-5 (a) In the initial state, two copper blocks Land R, 
identical except for their temperatures, are in an insulating box and 
are separated by an insulating shutter. (b) When the shutter is re­
moved, the blocks exchange energy as heat and come to a final 
state, both with the same temperature Tf . 

(a) Step 1 (b) Step 2 

Fig. 20-6 The blocks of Fig. 20-5 can proceed from their initial 
state to their final state in a reversible way if we use a reservoir with a 
controllable temperature (a) to extract heat reversibly from block L 
and (b) to add heat reversibly to block R. 

the entropy change f:.S L of block L during the full tem­
perature change from initial temperature TiL (= 600 e = 
333 K) to final temperature Tf (= 400 e = 313 K) is 

f:.S
L 

= Jf_d_Q_ = iTf_m_e_d_T_ = me iTf dT 
i T TiL T TiL T 

If 
= meln-. 

TiL 
Inserting the given data yields 

313K 
f:.SL = (1.S kg)(386 llkg· K) In 333 K 

= -3S.8611K. 

Step 2: With the reservoir's temperature now set at 20oe, 
put block R on the reservoir. Then slowly raise the tempera­
ture of the reservoir and the block to 40°e. With the 
same reasoning used to find f:.S L, you can show that the 
entropy change f:.S R of block R during this process is 

313K 
f:.SR = (1.S kg)(386 llkg· K) In 293 K 

= +38.2311K. 

The net entropy change f:.Srev of the two-block system un­
dergoing this two-step reversible process is then 

f:.Srev = f:.SL + f:.SR 

= -3S.86 11K + 38.23 11K = 2.4 11K. 

Thus, the net entropy change f:.Sirrev for the two-block sys­
tem undergoing the actual irreversible process is 

f:.Sirrev = f:.Srev = 2.4 11K. (Answer) 

This result is positive, in accordance with the entropy 
postulate of Section 20-2. 

fills Additional examples, video, and practice available at WileyPLUS 
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Entropy change of a free expansion of a gas 

Suppose 1.0 mol of nitrogen gas is confined to the left side 
of the container of Fig. 20-1a. You open the stopcock, and 
the volume of the gas doubles. What is the entropy change 
of the gas for this irreversible process? Treat the gas as ideal. 

in which n is the number of moles of gas present. From Eq. 
20-2 the entropy change for this reversible process in which 
the temperature is held constant is 

_ Q _ nRTln(ytlVi) _ yt 
6.Srev - T - T - nR In V,' 

I 

(1) We can determine the entropy change for the irreversible 
process by calculating it for a reversible process that provides 
the same change in volume. (2) The temperature of the 
gas does not change in the free expansion. Thus, the reversible 
process should be an isothermal expansion-namely, the one 
of Figs. 20-3 and 20-4. 

Substituting n = 1.00 mol and ytlVi = 2, we find 

V; 
6.Srev = nR In ~ = (1.00 mol)(8.31 J/mol' K)(1n 2) 

I 

= +5.76 JIK. 

Calculations: From Table 19-4, the energy Q added as heat 
to the gas as it expands isothermally at temperature T from 
an initial volume Vi to a final volume yt is 

Thus, the entropy change for the free expansion (and for all 
other processes that connect the initial and final states 
shown in Fig. 20-2) is 

6.Sirrev = 6.Srev = +5.76 JIK. (Answer) 

yt 
Q = nRTln­

Vi' 

Because 6.S is positive, the entropy increases, in accordance 
with the entropy postulate of Section 20-2. 

fills Additional examples, video, and practice available at WileyPLUS 

The Second law of Thermodynamics 
Here is a puzzle. If we cause the reversible process of Fig. 20-3 to proceed from 
(a) to (b) in that figure, the change in entropy of the gas-which we take as our 
system-is positive. However, because the process is reversible, we can just as 
easily make it proceed from (b) to (a), simply by slowly adding lead shot to the 
piston of Fig. 20-3b until the original volume of the gas is restored. In this reverse 
process, energy must be extracted as heat from the gas to keep its temperature 
from rising. Hence Q is negative and so, from Eq. 20-2, the entropy of the gas 
must decrease. 

Doesn't this decrease in the entropy of the gas violate the entropy postulate 
of Section 20-2, which states that entropy always increases? No, because that 
postulate holds only for irreversible processes occurring in closed systems. The 
procedure suggested here does not meet these requirements. The process is not 
irreversible, and (because energy is transferred as heat from the gas to the reser­
voir) the system-which is the gas alone-is not closed. 

However, if we include the reservoir, along with the gas, as part of the 
system, then we do have a closed system. Let's check the change in entropy of 
the enlarged system gas + reselvoir for the process that takes it from (b) to 
(a) in Fig. 20-3. During this reversible process, energy is transferred as heat from 
the gas to the reservoir-that is, from one part of the enlarged system to 
another. Let IQI represent the absolute value (or magnitude) of this heat. With 
Eq. 20-2, we can then calculate separately the entropy changes for the gas 
(which loses IQI) and the reservoir (which gains IQI). We get 

IQI 
6.Sgas = -y 
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~.:~ . Coiled 

~ 
(a) 

(b) 

Fig.20-7 A section of a rubber band (a) 
unstretched and (b) stretched, and a poly­
mer within it (a) coiled and (b) uncoiled. 

and IQI 
~Sres = +T' 

The entropy change of the closed system is the sum of these two quantities: O. 
With this result, we can modify the entropy postulate of Section 20-2 to 

include both reversible and irreversible processes: 

If a process occurs in a closed system, the entropy of the system increases for irre­
versible processes and remains constant for reversible processes. It never decreases. 

Although entropy may decrease in part of a closed system, there will always 
be an equal or larger entropy increase in another part of the system, so that the 
entropy of the system as a whole never decreases. This fact is one form of the 
second law offhermodynamics and can be written as 

~S20 (second law of thermodynamics), (20-5) 

where the greater-than sign applies to irreversible processes and the equals sign 
to reversible processes. Equation 20-5 applies only to closed systems. 

In the real world almost all processes are irreversible to some extent because 
of friction, turbulence, and other factors, so the entropy of real closed systems 
undergoing real processes always increases. Processes in which the system's 
entropy remains constant are always idealizations. 

To understand why rubber resists being stretched, let's write the first law of 
thermodynamics 

dE = dQ - dW 

for a rubber band undergoing a small increase in length dx as we stretch it between 
our hands. The force from the rubber band has magnitude P, is directed inward, and 
does work dW = - P dx during length increase dx. From Eq. 20-2 (~S = QIT), 
small changes in Q and S at constant temperature are related by dS = dQIT, or 
dQ = T dS. So, now we can rewrite the first law as 

dE = TdS + Pdx. (20-6) 

To good approximation, the change dE in the internal energy of rubber is 0 if the 
total stretch of the rubber band is not very much. Substituting 0 for dE in Eq. 20-6 
leads us to an expression for the force from the rubber band: 

P = -T dS (20-7) 
dx' 

This tells us that Pis proportional to the rate dSldx at which the rubber band's en­
tropy changes during a small change dx in the rubber band's length. Thus, you can 
feel the effect of entropy on your hands as you stretch a rubber band. 

To make sense of the relation between force and entropy, let's consider a simple 
model of the rubber material. Rubber consists of cross-linked polymer chains (long 
molecules with cross links) that resemble three-dimensional zig-zags (Fig. 20-7). 
When the rubber band is at its rest length, the polymers are coiled up in a spaghetti­
like arrangement. Because of the large disorder of the molecules, this rest state has a 
high value of entropy. When we stretch a rubber band, we uncoil many of those poly­
mers, aligning them in the direction of stretch. Because the alignment decreases the 
disorder, the entropy of the stretched rubber band is less. That is, the change dSldx in 
Eq. 20-7 is a negative quantity because the entropy decreases with stretching. Thus, 
the force on our hands from the rubber band is due to the tendency of the polymers 
to return to their former disordered state and higher value of entropy. 
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Entropy in the Real World: Engines 
A heat engine, or more simply, an engine, is a device that extracts energy from its 
environment in the form of heat and does useful work. At the heart of every 
engine is a working substance. In a steam engine, the working substance is water, 
in both its vapor and its liquid form. In an automobile engine the working sub­
stance is a gasoline-air mixture. If an engine is to do work on a sustained basis, 
the working substance must operate in a cycle; that is, the working substance 
must pass through a closed series of thermodynamic processes, called strokes, 
returning again and again to each state in its cycle. Let us see what the laws of 
thermodynamics can tell us about the operation of engines. 

A 
We have seen that we can learn much about real gases by analyzing an ideal gas, 
which obeys the simple law p V = nRT. Although an ideal gas does not exist, any 
real gas approaches ideal behavior if its density is low enough. Similarly, we can 
study real engines by analyzing the behavior of an ideal engine. 

In an ideal engine, all processes are reversible and no wasteful energy transfers occur 
due to, say, friction and turbulence. 

We shall focus on a particular ideal engine called a Carnot engine after the 
French scientist and engineer N. L. Sadi Carnot (pronounced "car-no"), who first 
proposed the engine's concept in 1824. This ideal engine turns out to be the best 
(in principle) at using energy as heat to do useful work. Surprisingly, Carnot was 
able to analyze the performance of this engine before the first law of thermo­
dynamics and the concept of entropy had been discovered. 

Figure 20-8 shows schematically the operation of a Carnot engine. During 
each cycle of the engine, the working substance absorbs energy IQHI as heat from 
a thermal reservoir at constant temperature TH and discharges energy IQLI as 
heat to a second thermal reservoir at a constant lower temperature TL • 

Fig. 20-8 The elements of a Carnot 
engine. The two black arrowheads on 
the central loop suggest the working 
substance operating in a cycle, as if on 
a p-V plot. Energy I QHI is transferred 
as heat from the high-temperature 
reservoir at temperature T H to the 
working substance. Energy IQLI is 
transferred as heat from the working 
substance to the low-temperature 
reservoir at temperature TL. Work W 
is done by the engine (actually by the 
working substance) on something in 
the environment. 

Schematic of 
a Carnot engine 

Heat is 
absorbed. 

Heat is lost. 
Work is done 
by the engine. 

Figure 20-9 shows a p-V plot of the Carnot cycle- the cycle followed by the 
working substance. As indicated by the arrows, the cycle is traversed in the clock­
wise direction. Imagine the working substance to be a gas, confined to an insu­
lating cylinder with a weighted, movable piston. The cylinder may be placed at 
will on either of the two thermal reservoirs, as in Fig. 20-6, or on an insulating 
slab. Figure 20-9a shows that, if we place the cylinder in contact with the high­
temperature reservoir at temperature TH , heat IQHI is transferred to the working 
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Stages of a 
Carnot engine 

Fig.20-9 Apressure-volume 
plot of the cycle followed by the 
working substance of the Carnot 
engine in Fig. 20-8. The cycle con­
sists of two isothermal (ab and 
cd) and two adiabatic processes 
(bc and da). The shaded area en­
closed by the cycle is equal to the 
work W per cycle done by the 
Carnot engine. 

Entropy S 

Fig. 20-10 The Carnot cycle of 

o 

Fig. 20-9 plotted on a temperature-entropy 
diagram. During processes ab and cd the 
temperature remains constant. During 
processes be and da the entropy remains 
constant. 

r Isothermal: 
heat is absorbed 

QH 

Volume 

(a) 

TH 

->':~i-1L 

Adiabatic: 
no heat 

o 
Negative work 
is done. 

Adiabatic: 
no heat 

(b) 

Isothermal: 
heat is lost 

substance from this reservoir as the gas undergoes an isothermal expansion from 
volume Va to volume Vb' Similarly, with the working substance in contact with 
the low-temperature reservoir at temperature TL , heat IQLI is transferred from 
the working substance to the low-temperature reservoir as the gas undergoes an 
isothermal compression from volume Vc to volume Vd (Fig. 20-9b). 

In the engine of Fig. 20-8, we assume that heat transfers to or from the work­
ing substance can take place only during the isothermal processes ab and cd of 
Fig. 20-9. Therefore, processes bc and da in that figure, which connect the two 
isotherms at temperatures TH and TL , must be (reversible) adiabatic processes; 
that is, they must be processes in which no energy is transferred as heat. To ensure 
this, during processes bc and da the cylinder is placed on an insulating slab as the 
volume of the working substance is changed. 

During the processes ab and bc of Fig. 20-9a, the working substance is ex­
panding and thus doing positive work as it raises the weighted piston. This work 
is represented in Fig. 20-9a by the area under curve abc. During the processes cd 
and da (Fig. 20-9b), the working substance is being compressed, which means that 
it is doing negative work on its environment or, equivalently, that its environment 
is doing work on it as the loaded piston descends. This work is represented by the 
area under curve cda. The net work per cycle, which is represented by W in both 
Figs. 20-8 and 20-9, is the difference between these two areas and is a positive 
quantity equal to the area enclosed by cycle abcda in Fig. 20-9. This work W is 
performed on some outside object, such as a load to be lifted. 

Equation 20-1 (LlS = f dQIT) tells us that any energy transfer as heat must 
involve a change in entropy. To see this for a Carnot engine, we can plot the 
Carnot cycle on a temperature-entropy (T-S) diagram as in Fig. 20-10. The let­
tered points a, b, c, and d there correspond to the lettered points in the p-V dia­
gram in Fig. 20-9. The two horizontal lines in Fig. 20-10 correspond to the two 
isothermal processes of the cycle. Process ab is the isothermal expansion of the 
cycle. As the working substance (reversibly) absorbs energy IQHI as heat at con­
stant temperature T H during the expansion, its entropy increases. Similarly, dur­
ing the isothermal compression cd, the working substance (reversibly) loses en­
ergy IQLI as heat at constant temperature TL , and its entropy decreases. 

The two vertical lines in Fig. 20-10 correspond to the two adiabatic processes 
of the Carnot cycle. Because no energy is transferred as heat during the two 
processes, the entropy of the working substance is constant during them. 
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The Work To calculate the net work done by a Carnot engine during a cycle, let us 
apply Eq. 18-26, the first law of thermodynamics (AEint = Q - W), to the working 
substance. That substance must return again and again to any arbitrarily selected 
state in the cycle. Thus, if X represents any state property of the working substance, 
such as pressure, temperature, volume, internal energy, or entropy, we must have 
AX = 0 for every cycle. It follows that A Eint = 0 for a complete cycle of the working 
substance. Recalling that Q in Eq. 18-26 is the net heat transfer per cycle and W is 
the net work, we can write the first law of thermodynamics for the Carnot cycle as 

(20-8) 

Entropy Changes In a Carnot engine, there are two (and only two) reversible 
energy transfers as heat, and thus two changes in the entropy of the working sub­
stance-one at temperature T H and one at Tu The net entropy change per cycle is then 

AS = ASH + ASL = ~ - ~. 
TH TL 

(20-9) 

Here ASH is positive because energy IQHI is added to the working substance as heat 
(an increase in entropy) and ASL is negative because energy IQLI is removed from the 
working substance as heat (a decrease in entropy). Because entropy is a state function, 
we must have AS = 0 for a complete cycle. Putting AS = 0 in Eq. 20-9 requires that 

IQHI IQLI 
TH TL 

(20-10) 

Note that, because TH> TL, we must have IQHI > IQLI; that is, more energy is 
extracted as heat from the high-temperature reservoir than is delivered to the 
low-temperature reservoir. 

We shall now derive an expression for the efficiency of a Carnot engine. 

The purpose of any engine is to transform as much of the extracted energy QH into 
work as possible. We measure its success in doing so by its thermal efficiency 8, 

defined as the work the engine does per cycle ("energy we get") divided by the 
energy it absorbs as heat per cycle ("energy we pay for"): 

energy we get s = ----'="---"'---

energy we pay for 
(efficiency, any engine). (20-11) 

For a Carnot engine we can substitute for W from Eq. 20-8 to write Eq. 20-11 as 

8e = 
IQHI - IQLI = 1 _ ~ 

QH IQHI' 
(20-12) 

Using Eq. 20-10 we can write this as 

(efficiency, Carnot engine), (20-13) 

where the temperatures TL and TH are in kelvins. Because TL < TH, the Carnot 
engine necessarily has a thermal efficiency less than unity-that is, less than 
100%. This is indicated in Fig. 20-8, which shows that only part of the energy 
extracted as heat from the high-temperature reservoir is available to do work, 
and the rest is delivered to the low-temperature reservoir. We shall show in 
Section 20-7 that no real engine can have a thermal efficiency greater than that 
calculated from Eq. 20-13. 
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Fig. 20-12 The North Anna nuclear 
power plant near Charlottesville, Virginia, 
which generates electric energy at the rate 
of 900 MW. At the same time, by design, it 
discards energy into the nearby river at the 
rate of 2100 MW. This plant and all others 
like it throwaway more energy than they 
deliver in useful form. They are real coun­
terparts of the ideal engine of Fig. 20-8. 
(© Robert Ustinich) 

Stages of a 
Stirling engine 

V;, Fb 
Volume 

Fig. 20-13 A p-V plot for the 
working substance of an ideal Stirling en­
gine, with the working substance assumed 
for convenience to be an ideal gas. 

Fig. 20-11 The elements of a perfect en­
gine- that is, one that converts heat QH from 
a high-temperature reservoir directly to work 
W with 100% efficiency. 

Perfect engine: 
total conversion 
of heat to work 

Inventors continually try to improve engine efficiency by reducing the en­
ergy IQLI that is "thrown away" during each cycle. The inventor's dream is to 
produce the perfect engine, diagrammed in Fig. 20-11, in which IQLI is reduced 
to zero and IQHI is converted completely into work. Such an engine on an 
ocean liner, for example, could extract energy as heat from the water and use 
it to drive the propellers, with no fuel cost. An automobile fitted with such an 
engine could extract energy as heat from the surrounding air and use it to 
drive the car, again with no fuel cost. Alas, a perfect engine is only a dream: 
Inspection of Eq. 20-13 shows that we can achieve 100% engine efficiency 
(that is, B = 1) only if TL = 0 or TH ~ 00, impossible requirements. Instead, ex­
perience gives the following alternative version of the second law of thermo­
dynamics, which says in short, there are no perfect engines: 

No series of processes is possible whose sole result is the transfer of energy as heat 
from a thermal reservoir and the complete conversion of this energy to work. 

To summarize: The thermal efficiency given by Eq. 20-13 applies only to 
Carnot engines. Real engines, in which the processes that form the engine cycle 
are not reversible, have lower efficiencies. If your car were powered by 
a Carnot engine, it would have an efficiency of about 55% according to Eq. 
20-13; its actual efficiency is probably about 25%. A nuclear power plant 
(Fig. 20-12), taken in its entirety, is an engine. It extracts energy as heat from a re­
actor core, does work by means of a turbine, and discharges energy as heat to a 
nearby river. If the power plant operated as a Carnot engine, its efficiency would 
be about 40%; its actual efficiency is about 30%. In designing engines of any type, 
there is simply no way to beat the efficiency limitation imposed by Eq. 20-13. 

Equation 20-13 applies not to all ideal engines but only to those that can be 
represented as in Fig. 20-9- that is, to Carnot engines. For example, Fig. 20-13 
shows the operating cycle of an ideal Stirling engine. Comparison with the 
Carnot cycle of Fig. 20-9 shows that each engine has isothermal heat transfers at 
temperatures T Hand TL • However, the two isotherms of the Stirling engine cycle 
are connected, not by adiabatic processes as for the Carnot engine but by con­
stant-volume processes. To increase the temperature of a gas at constant volume 
reversibly from TL to T H (process da of Fig. 20-13) requires a transfer of energy as 
heat to the working substance from a thermal reservoir whose temperature can 
be varied smoothly between those limits. Also, a reverse transfer is required in 
process bc. Thus, reversible heat transfers (and corresponding entropy changes) 
occur in all four of the processes that form the cycle of a Stirling engine, not just 
two processes as in a Carnot engine. Thus, the derivation that led to Eq. 20-13 
does not apply to an ideal Stirling engine. More important, the efficiency of an 
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ideal Stirling engine is lower than that of a Carnot engine operating between 
the same two temperatures. Real Stirling engines have even lower efficiencies. 

The Stirling engine was developed in 1816 by Robert Stirling. This engine, 
long neglected, is now being developed for use in automobiles and spacecraft. 
A Stirling engine delivering 5000 hp (3.7 MW) has been built. Because they are 
quiet, Stirling engines are used on some military submarines. 

CHECKPOINT 3 

Three Carnot engines operate between reservoir temperatures of (a) 400 and 500 K, 
(b) 600 and 800 K, and ( c) 400 and 600 K. Rank the engines according to their thermal 
efficiencies, greatest first. 

Carnot engine, efficiency, power, entropy changes 

Imagine a Carnot engine that operates between the temper­
atures TH = 850 K and TL = 300 K. The engine performs 
1200 J of work each cycle, which takes 0.25 s. 

(a) What is the efficiency of this engine? 

The efficiency 8 of a Carnot engine depends only on the ratio 
T JT H of the temperatures (in kelvins) of the thermal reser­
voirs to which it is connected. 

Calculation: Thus, from Eq. 20-13, we have 
TL 300K 

8 = 1 - TH = 1 - 850 K = 0.647 = 65%. (Answer) 

(b) What is the average power of this engine? 

The average power P of an engine is the ratio of the work W 
it does per cycle to the time t that each cycle takes. 

Calculation: For this Carnot engine, we find 

W 1200J 
P = -t- = 0.25 s = 4800 W = 4.8 kW. (Answer) 

(c) How much energy IQHI is extracted as heat from the 
high-temperature reservoir every cycle? 

The efficiency 8 is the ratio of the work W that is done per cy­
cle to the energy IQHI that is extracted as heat from the high­
temperature reservoir per cycle (8 = W/IQHI). 

Calculation: Here we have 

IQ I = ~ = 1200 J = 1855 J. 
H 8 0.647 

(Answer) 

(d) How much energy IQLI is delivered as heat to the low­
temperature reservoir every cycle? 

For a Carnot engine, the work W done per cycle is equal to 
the difference in the energy transfers as heat: IQHI - IQLI, as 
in Eq. 20-8. 

Calculation: Thus, we have 

IQLI = IQHI - W 

= 1855 J - 1200 J = 655 J. (Answer) 

(e) By how much does the entropy of the working substance 
change as a result of the energy transferred to it from the 
high-temperature reservoir? From it to the low-temperature 
reservoir? 

The entropy change t::..S during a transfer of energy as heat 
Q at constant temperature T is given by Eq. 20-2 (t::..S = 
QIT). 

Calculations: Thus, for the positive transfer of energy QH 
from the high-temperature reservoir at T H, the change in 
the entropy of the working substance is 

QH 1855 J 
t::..SH = TH = 850 K = +2.18 J/K. (Answer) 

Similarly, for the negative transfer of energy QL to the 
low-temperature reservoir at TL , we have 

t::..S = QL = - 655 J = _ 2.18 J/K. (Answer) 
L TL 300 K 

Note that the net entropy change of the working substance for 
one cycle is zero, as we discussed in deriving Eq. 20-10. 

Additional examples, video, and practice available at WileyPLUS 
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Impossibly efficient engine 

An inventor claims to have constructed an engine that has 
an efficiency of 75% when opera,ted between the boiling 
and freezing points of water. Is this possible? 

Calculation: From Eq. 20-13, we find that the efficiency of 
a Carnot engine operating between the boiling and freezing 
points of water is 

TL (0 + 273) K 
8 = 1 - TH = 1 - (100 + 273) K = 0.268 = 27%. 

The efficiency of a real engine must be less than the effi­
ciency of a Carnot engine operating between the same two 
temperatures. 

Thus, for the given temperatures, the claimed efficiency of 
75% for a real engine (with its irreversible processes and 
wasteful energy transfers) is impossible. 

Additional examples, video, and practice available at WileyPLUS 

Schematic of 
a refrigerator 

W _-"--!---" 

Work is done 
on the engine. 

is lost. 

Heat is 
absorbed. 

Fig. 20-14 The elements of a refrigera­
tor. The two black arrowheads on the cen­
tralloop suggest the working substance op­
erating in a cycle, as if on a p-V plot. Energy 
is transferred as heat QL to the working 
substance from the low-temperature reser­
voir. Energy is transferred as heat QH to 
the high-temperature reservoir from the 
working substance. Work W is done on the 
refrigerator (on the working substance) by 
something in the environment. 

Entropy in the Real World: Refrigerators 
A refrigerator is a device that uses work in order to transfer energy from a low­
temperature reservoir to a high-temperature reservoir as the device continuously 
repeats a set series of thermodynamic processes. In a household refrigerator, for 
example, work is done by an electrical compressor to transfer energy from the 
food storage compartment (a low-temperature reservoir) to the room (a high­
temperature reservoir). 

Air conditioners and heat pumps are also refrigerators. The differences are 
only in the nature of the high- and low-temperature reservoirs. For an air condi­
tioner, the low-temperature reservoir is the room that is to be cooled and the 
high-temperature reservoir is the (presumably warmer) outdoors. A heat pump is 
an air conditioner that can be operated in reverse to heat a room; the room is the 
high-temperature reservoir, and heat is transferred to it from the (presumably 
cooler) outdoors. 

Let us consider an ideal refrigerator: 

In an ideal refrigerator, all processes are reversible and no wasteful energy transfers 
occur as a result of, say, friction and turbulence. 

Figure 20-14 shows the basic elements of an ideal refrigerator. Note that its oper­
ation is the reverse of how the Carnot engine of Fig. 20-8 operates. In other 
words, all the energy transfers, as either heat or work, are reversed from those of 
a Carnot engine. We can call such an ideal refrigerator a Carnot refrigerator. 

The designer of a refrigerator would like to extract as much energy IQLI as pos­
sible from the low-temperature reservoir (what we want) for the least amount of 
work IWI (what we pay for). A measure of the efficiency of a refrigerator, then, is 

K = what we want 
what we pay for 

(coefficient of performance, 
any refrigerator), 

(20-14) 

where K is called the coefficient of performance. For a Carnot refrigerator, the first 
law of thermodynamics gives IWI = IQHI - IQLI, where IQHI is the magnitude of the 
energy transferred as heat to the high-temperature reservoir. Equation 20-14 then 
becomes 

(20-15) 

Because a Carnot refrigerator is a Carnot engine operating in reverse, we can 
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combine Eq. 20-10 with Eq. 20-15; after some algebra we find 

(coefficient of performance, 
Carnot refrigerator). 

(20-16) 

For typical room air conditioners, K = 2.5. For household refrigerators, 
K = 5. Perversely, the value of K is higher the closer the temperatures of the two 
reservoirs are to each other. That is why heat pumps are more effective in 
temperate climates than in climates where the outside temperature is much lower 
than the desired inside temperature. 

It would be nice to own a refrigerator that did not require some input of 
work-that is, one that would run without being plugged in. Figure 20-15 rep­
resents another "inventor's dream," a perfect refrigerator that transfers energy as 
heat Q from a cold reservoir to a warm reservoir without the need for work. 
Because the unit operates in cycles, the entropy of the working substance does 
not change during a complete cycle. The entropies of the two reservoirs, however, 
do change: The entropy change for the cold reservoir is -IQIITL, and that for the 
warm reservoir is +IQIITH. Thus, the net entropy change for the entire system is 

AS=-~+~. 
TL TH 

Because TH> TL, the right side of this equation is negative and thus the net 
change in entropy per cycle for the closed system refrigerator + reservoirs is also 
negative. Because such a decrease in entropy violates the second law of ther­
modynamics (Eq. 20-5), a perfect refrigerator does not exist. (If you want your 
refrigerator to operate, you must plug it in.) 

This result leads us to another (equivalent) formulation of the second law of 
thermodynamics: 

No series of processes is possible whose sole result is the transfer of energy as heat 
from a reservoir at a given temperature to a reservoir at a higher temperature. 

In short, there are no pelject refrigerators. 

CHECKPOINT 4 

You wish to increase the coefficient of performance of an ideal refrigerator. You can do 
so by (a) running the cold chamber at a slightly higher temperature, (b) running the 
cold chamber at a slightly lower temperature, (c) moving the unit to a slightly warmer 
room, or (d) moving it to a slightly cooler room. The magnitudes of the temperature 
changes are to be the same in all four cases. List the changes according to the resulting 
coefficients of performance, greatest first. 

The Efficiencies of Real Engines 
Let Be be the efficiency of a Carnot engine operating between two given tem­
peratures. In this section we prove that no real engine operating between those 
temperatures can have an efficiency greater than Be. If it could, the engine would 
violate the second law of thermodynamics. 

Let us assume that an inventor, working in her garage, has constructed an 
engine X, which she claims has an efficiency B x that is greater than Be: 

(a claim). (20-17) 

Let us couple engine X to a Carnot refrigerator, as in Fig. 20-16a. We adjust the 
strokes of the Carnot refrigerator so that the work it requires per cycle is just equal 

Perfect refrigerator: 
total transfer of heat 
from cold to hot 
without any work 

Fig. 20-15 The elements of a perfect 
refrigerator-that is, one that transfers 
energy from a low-temperature reservoir 
to a high-temperature reservoir without 
any input of work. 



550 R ENTROPY AND THE SECOND LAW OF THERMODYNAMICS 

Engine QH 
,....r:.-.,.~v X r+o~-+< 

Fig.20-16 (a) Engine X drives a Carnot 
refrigerator. (b) If, as claimed, engine X is 
more efficient than a Carnot engine, then 
the combination shown in (a) is equivalent 
to the perfect refrigerator shown here. This 
violates the second law of thermodynamics, 
so we conclude that engine X cannot be 
more efficient than a Carnot engine. 

(b) 

to that provided by engine X. Thus, no (external) work is performed on or by the 
combination engine + refrigerator of Fig. 20-16a, which we take as our system. 

IfEq. 20-17 is true, from the definition of efficiency (Eq. 20-11), we must have 

IWI IWI --->--
IQi-I1 IQHI' 

where the prime refers to engine X and the right side of the inequality is the 
efficiency of the Carnot refrigerator when it operates as an engine. This inequal­
ity requires that 

(20-18) 

Because the work done by engine X is equal to the work done on the Carnot 
refrigerator, we have, from the first law of thermodynamics as given by Eq. 20-8, 

which we can write as 

(20-19) 

Because of Eq. 20-18, the quantity Q in Eq. 20-19 must be positive. 
Comparison of Eq. 20-19 with Fig. 20-16 shows that the net ef­

fect of engine X and the Carnot refrigerator working in combina­
tion is to transfer energy Q as heat from a low-temperature reser­
voir to a high-temperature reservoir without the requirement of 
work. Thus, the combination acts like the perfect refrigerator of 

Perfect Fig. 20-15, whose existence is a violation of the second law of ther-
refrigerator modynamics. 

Something must be wrong with one or more of our assump­
tions, and it can only be Eq. 20-17. We conclude that no real engine 
can have an efficiency greater than that of a Carnot engine when 
both engines work between the same two temperatures. At most, the 
real engine can have an efficiency equal to that of a Carnot engine. 
In that case, the real engine is a Carnot engine. 

A Statistical View of Entropy 
In Chapter 19 we saw that the macroscopic properties of gases can be explained 
in terms of their microscopic, or molecular, behavior. For one example, recall that 
we were able to account for the pressure exerted by a gas on the walls of its con­
tainer in terms of the momentum transferred to those walls by rebounding gas 
molecules. Such explanations are part of a study called statistical mechanics. 

Here we shall focus our attention on a single problem, one involving the 
distribution of gas molecules between the two halves of an insulated box. This 
problem is reasonably simple to analyze, and it allows us to use statistical 
mechanics to calculate the entropy change for the free expansion of an ideal gas. 
You will see that statistical mechanics leads to the same entropy change as we 
would find using thermodynamics. 

Figure 20-17 shows a box that contains six identical (and thus indistinguish­
able) molecules of a gas. At any instant, a given molecule will be in either the 
left or the right half of the box; because the two halves have equal volumes, the 
molecule has the same likelihood, or probability, of being in either half. 

Table 20-1 shows the seven possible configurations of the six molecules, each 
configuration labeled with a Roman numeral. For example, in configuration I, all 
six molecules are in the left half of the box (n1 = 6) and none are in the right half 
(n2 = 0). We see that, in general, a given configuration can be achieved in a 
number of different ways. We call these different arrangements of the molecules 
microstates. Let us see how to calculate the number of microstates that corre­
spond to a given configuration. 
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Six Molecules in a Box 

Calculation Entropy 
Configura tion Multiplicity W ofW 1O-23 11K 

Label 111 112 (number of microstates) (Eq.20-20) (Eq.20-21) 

6 0 1 6!/(6! O!) = 1 0 
II 5 1 6 6!/(5! I!) = 6 2.47 

III 4 2 15 6!/( 4! 2!) = 15 3.74 
IV 3 3 20 6!/(3! 3!) = 20 4.13 
V 2 4 15 6!/(2! 4!) = 15 3.74 

VI 1 5 6 6!/(1! 5!) = 6 2.47 
VII 0 6 1 6!/(0! 6!) = 1 0 

Total = 64 

Suppose we have N molecules, distributed with nl molecules in one half of 
the box and n2 in the other. (Thus nl + n2 = N.) Let us imagine that we distribute 
the molecules "by hand," one at a time. If N = 6, we can select the first molecule 
in six independent ways; that is, we can pick anyone of the six molecules. We can 
pick the second molecule in five ways, by picking anyone of the remaining five 
molecules; and so on. The total number of ways in which we can select all six mol­
ecules is the product of these independent ways, or 6 X 5 X 4 X 3 X 2 X 1 = 720. 
In mathematical shorthand we write this product as 6! = 720, where 6! is pro­
nounced "six factorial." Your hand calculator can probably calculate factorials. 
For later use you will need to know that O! = 1. (Check this on your calculator.) 

However, because the molecules are indistinguishable, these 720 arrange­
ments are not all different. In the case that nl = 4 and n2 = 2 (which is config­
uration III in Table 20-1), for example, the order in which you put four molecules 
in one half of the box does not matter, because after you have put all four in, 
there is no way that you can tell the order in which you did so. The number of 
ways in which you can order the four molecules is 4! = 24. Similarly, the number 
of ways in which you can order two molecules for the other half of the box is 
simply 2! = 2. To get the number of different arrangements that lead to the (4,2) 
split of configuration III, we must divide 720 by 24 and also by 2. We call the 
resulting quantity, which is the number of microstates that correspond to a given 
configuration, the multiplicity W of that configuration. Thus, for configuration III, 

6! 720 
1tJn = 4! 2! = 24 X 2 = 15. 

Thus, Table 20-1 tells us there are 15 independent microstates that correspond to 
configuration III. Note that, as the table also tells us, the total number of mi­
crostates for six molecules distributed over the seven configurations is 64. 

Extrapolating from six molecules to the general case of N molecules, we have 

N! 
W=---

nl! n2! 
(multiplicity of configuration). (20-20) 

You should verify that Eq. 20-20 gives the multiplicities for all the configurations 
listed in Table 20-1. 

The basic assumption of statistical mechanics is 

All microstates are equally probable. 

In other words, if we were to take a great many snapshots of the six molecules as 

(b) 

Fig. 20-17 An insulated box 
contains six gas molecules. Each 
molecule has the same probability of 
being in the left half of the box as in 
the right half. The arrangement in 
(a) corresponds to configuration III 
in Table 20-1, and that in (b) 
corresponds to configuration IV. 
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Central 
configuration 
peak 

Percentage of molecules in left half 

Fig. 20-18 For a large number of 
molecules in a box, a plot of the number 
of microstates that require various per­
centages of the molecules to be in the 
left half of the box. Nearly all the mi­
crostates correspond to an approxi­
mately equal sharing of the molecules 
between the two halves of the box; those 
microstates form the central configura­
tion peak on the plot. For N = 1()22, the 
central configuration peak is much too 
narrow to be drawn on this plot. 

they jostle around in the box of Fig. 20-17 and then count the number of times 
each microstate occurred, we would find that all 64 microstates would occur 
equally often. Thus the system will spend, on average, the same amount of time in 
each of the 64 microstates. 

Because all microstates are equally probable but different configurations 
have different numbers of microstates, the configurations are not all equally 
probable. In Table 20-1 configuration IV, with 20 microstates, is the most probable 
configuration, with a probability of 20/64 = 0.313. This result means that the sys­
tem is in configuration IV 31.3% of the time. Configurations I and VII, in which 
all the molecules are in one half of the box, are the least probable, each with a 
probability of 1/64 = 0.016 or 1.6%. It is not surprising that the most probable 
configuration is the one in which the molecules are evenly divided between the 
two halves of the box, because that is what we expect at thermal equilibrium. 
However, it is surprising that there is any probability, however small, of finding all 
six molecules clustered in half of the box, with the other half empty. 

For large values of N there are extremely large numbers of microstates, but 
nearly all the microstates belong to the configuration in which the molecules are 
divided equally between the two halves of the box, as Fig. 20-18 indicates. Even 
though the measured temperature and pressure of the gas remain constant, the 
gas is churning away endlessly as its molecules "visit" all probable microstates 
with equal probability. However, because so few microstates lie outside the very 
narrow central configuration peak of Fig. 20-18, we might as well assume that the 
gas molecules are always divided equally between the two halves of the box. As 
we shall see, this is the configuration with the greatest entropy. 

Microstates and multiplicity 

Suppose that there are 100 indistinguishable molecules in the 
box of Fig. 20-17. How many microstates are associated with the 
configuration n1 = 50 and n2 = 50, and with the configuration 
n1 = 100 and n2 = O? Interpret the results in terms of the rela­
tive probabilities of the two configurations. 

Similarly, for the configuration (100,0), we have 

100! 1 1 
100! O! = O! = T = 1. (Answer) 

The multiplicity W of a configuration of indistinguishable 
molecules in a closed box is the number of independent 
microstates with that configuration, as given by Eq. 20-20. 

Calculations: Thus, for the (n!> n2) configuration (50,50), 

N! 100! 
W=--

nj! n2! 50! 50! 

9.33 X 10157 

(3.04 X 1064)(3.04 X 1064) 

= 1.01 X 1029• (Answer) 

The meaning: Thus, a 50-50 distribution is more likely 
than a 100-0 distribution by the enormous factor of 
about 1 X 1029• If you could count, at one per nanosec­
ond, the number of microstates that correspond to the 
50-50 distribution, it would take you about 3 X 1012 

years, which is about 200 times longer than the age of the 
universe. Keep in mind that the 100 molecules used in 
this sample problem is a very small number. Imagine 
what these calculated probabilities would be like for a 
mole of molecules, say about N = 1024• Thus, you need 
never worry about suddenly finding all the air molecules 
clustering in one corner of your room, with you gasping 
for air in another corner. So, you can breathe easy be­
cause of the physics of entropy. 

Additional examples, video, and practice available at WileyPLUS 

In 1877, Austrian physicist Ludwig Boltzmann (the Boltzmann of Boltzmann's 
constant k) derived a relationship between the entropy S of a configuration of a 
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gas and the multiplicity W of that configuration. That relationship is 

S = kIn W (Boltzmann's entropy equation). (20-21) 

This famous formula is engraved on Boltzmann's tombstone. 
It is natural that Sand W should be related by a logarithmic function. The 

total entropy of two systems is the sum of their separate entropies. The probability 
of occurrence of two independent systems is the product of their separate proba­
bilities. Because In ab = In a + In b, the logarithm seems the logical way to 
connect these quantities. 

Table 20-1 displays the entropies of the configurations of the six-molecule 
system of Fig. 20-17, computed using Eq. 20-21. Configuration IV, which has the 
greatest multiplicity, also has the greatest entropy. ~CHECKPOINT 5 When you use Eq. 20-20 to calculate W, your calculator may signal "OVER­
FLOW" if you try to find the factorial of a number greater than a few hundred. 
Instead, you can use Stirling's approximation for In N!: 

A box contains 1 mol of a gas. Consider 
two configurations: (a) each half of the 
box contains half the molecules and (b) 
each third of the box contains one-third 
of the molecules. Which configuration 
has more microstates? 

In N! = N(ln N) - N (Stirling's approximation). (20-22) 

The Stirling of this approximation was an English mathematician and not the 
Robert Stirling of engine fame. 

Entropy change of free expansion using microstates 

In the first sample problem of this chapter, we showed that 
when n moles of an ideal gas doubles its volume in a free 
expansion, the entropy increase from the initial state i to the 
final state f is Sf - Si = nR In 2. Derive this result with 
statistical mechanics. 

We can relate the entropy S of any given configuration of 
the molecules in the gas to the multiplicity W of microstates 
for that configuration, using Eq. 20-21 (S = kIn W). 

Calculations: We are interested in two configurations: the 
final configuration f (with the molecules occupying the full 
volume of their container in Fig. 20-1b) and the initial con­
figuration i (with the molecules occupying the left half of the 
container). Because the molecules are in a closed container, 
we can calculate the multiplicity W of their microstates with 
Eq. 20-20. Here we have N molecules in the n moles of the 
gas. Initially, with the molecules all in the left half of the con­
tainer, their (nh n2) configuration is (N, 0). Then, Eq. 20-20 
gives their multiplicity as 

N! 
Wi = Hi O! = 1. 

Finally, with the molecules spread through the full volume, 
their (nh n2) configuration is (NI2, Nl2). Then, Eq. 20-20 
gives their multiplicity as 

N! 
Wf = (NI2)! (NI2)! 

From Eq. 20-21, the initial and final entropies are 

Si = k In Wi = k In 1 = 0 

and 

Sf = kIn Wf = k In(N!) - 2k In[(NI2)!]. (20-23) 

In writing Eq. 20-23, we have used the relation 

a 
lnZ;Z = Ina - 2lnb. 

Now, applying Eq. 20-22 to evaluate Eq. 20-23, we find that 

Sf = k In(N!) - 2k In[(NI2)!] 

= k[N(1n N) - N] - 2k[(NI2) In(NI2) - (NI2)] 

= k[N(1n N) - N - N In(NI2) + N] 

= k[N(lnN) - N(lnN -ln2)] = Nk In 2. (20-24) 

From Eq. 19-8 we can substitute nR for Nk, where R is the 
universal gas constant. Equation 20-24 then becomes 

Sf= nRln2. 

The change in entropy from the initial state to the final is 
thus 

Sf - Si = nR In 2 - 0 

= nRln2, (Answer) 

which is what we set out to show. In the first sample prob­
lem of this chapter we calculated this entropy increase for 
a free expansion with thermodynamics by finding an 
equivalent reversible process and calculating the entropy 
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change for that process in terms of temperature and heat 
transfer. In this sample problem, we calculate the same in­
crease in entropy with statistical mechanics using the fact 

that the system consists of molecules. In short, the two, 
very different approaches give the same answer. 

Additional examples, video, and practice available at WileyPLUS 

One-Way Processes An irreversible process is one that can­
not be reversed by means of small changes in the environment. The 
direction in which an irreversible process proceeds is set by the 
change in entropy IlS of the system undergoing the process. 
Entropy S is a state property (or state fllnction) of the system; that is, 
it depends only on the state of the system and not on the way in 
which the system reached that state. The entropy postlllate states (in 
part): If an irreversible process OCCllrs in a closed system, the entropy 
of the system always increases. 

Calculating Entropy Change The entropy change IlS for an 
irreversible process that takes a system from an initial state i to a final 
state f is exactly equal to the entropy change IlS for any reversible 
process that takes the system between those same two states. We can 
compute the latter (but not the former) with 

D.S = Sf - Sj = r di . (20-1) 

Here Q is the energy transferred as heat to or from the system dur­
ing the process, and T is the temperature of the system in kelvins 
during the process. 

For a reversible isothermal process, Eq. 20-1 reduces to 

(20-2) 

When the temperature change IlT of a system is small relative to 
the temperature (in kelvins) before and after the process, the en­
tropy change can be approximated as 

(20-3) 

where Tavg is the system's average temperature during the process. 
When an ideal gas changes reversibly from an initial state with 

temperature Tj and volume Vj to a final state with temperature Tfand 
volume VI, the change IlS in the entropy of the gas is 

VI 'It IlS = Sf- Sj = nRln- + nC"ln-. (20-4) 
Vi If 

The Second Law of Thermodynamics This law, which is 
an extension of the entropy postulate, states: If a process occllrs in 
a closed system, the entropy of the system increases for irreversible 
processes and remains constant for reversible processes. It never de­
creases. In equation form, 

IlS 2: O. (20-5) 

Engines An engine is a device that, operating in a cycle, extracts 
energy as heat IQHI from a high-temperature reservoir and does a cer-

tain amount of work IWI.The efficiency B of any engine is defined as 

energy we get IWI 
B= =--

energy we pay for IQHI . 
(20-11) 

In an ideal engine, all processes are reversible and no wasteful energy 
transfers occur due to, say, friction and turbulence. A Carnot engine is 
an ideal engine that follows the cycle of Fig. 20-9. Its efficiency is 

- 1 - IQLI - 1 _ TL (20-12,20-13) 
Be - IQHI - TH ' 

in which T Hand TL are the temperatures of the high- and low-tem­
perature reservoirs, respectively. Real engines always have an effi­
ciency lower than that given by Eq. 20-13. Ideal engines that are 
not Carnot engines also have lower efficiencies. 

A pe/ject engine is an imaginary engine in which energy ex­
tracted as heat from the high-temperature reservoir is converted 
completely to work. Such an engine would violate the second law 
of thermodynamics, which can be restated as follows: No series of 
processes is possible whose sole result is the absorption of energy 
as heat from a thermal reservoir and the complete conversion of 
this energy to work. 

Refrigerators A refrigerator is a device that, operating in a cy­
cle, has work W done on it as it extracts energy IQLI as heat from a 
low-temperature reservoir. The coefficient of performance K of a 
refrigerator is defined as 

K = what we want 
what we pay for 

(20-14) 

A Carnot refrigel'3tOl' is a Carnot engine operating in reverse. 
For a Carnot refrigerator, Eq. 20-14 becomes 

IQLI TL 
Ke = IQHI - IQLI TH - TL . (20-15,20-16) 

A pe/ject refrigerator is an imaginary refrigerator in which en­
ergy extracted as heat from the low-temperature reservoir is con­
verted completely to heat discharged to the high-temperature reser­
voir, without any need for work. Such a refrigerator would violate 
the second law of thermodynamics, which can be restated as follows: 
No series of processes is possible whose sole result is the transfer of 
energy as heat from a reservoir at a given temperature to a reservoir 
at a higher temperature. 

Entropy from a Statistical View The entropy of a system 
can be defined in terms of the possible distributions of its 
molecules. For identical molecules, each possible distribution of 
molecules is called a microstate of the system. All equivalent mi­
crostates are grouped into a configuration of the system. The num-



ber of microstates in a configuration is the multiplicity W of the 
configuration. 

For a system of N molecules that may be distributed between 
the two halves of a box, the multiplicity is given by 

W=~ (20-20) 
nl! n2! ' 

in which nl is the number of molecules in one half of the box and n2 is 
the number in the other half. A basic assumption of statistical 
mechanics is that all the microstates are equally probable. Thus, con­
figurations with a large multiplicity occur most often. When N is very 

1 Point i in Fig. 20-19 represents 
the initial state of an ideal gas at 
temperature T. Taking algebraic ~ 

signs into account, rank the entropy ~ 

changes that the gas undergoes as it ~ 

moves, successively and reversibly, 
from point i to points a, b, c, and d, 
greatest first. 

T-I1T 

Volume 

In four experiments, blocks A Fig.20-19 Question 1. 
and B, starting at different initial 
temperatures, were brought together in an insulating box and al­
lowed to reach a common final temperature. The entropy changes 
for the blocks in the four experiments had the following values (in 
joules per kelvin), but not necessarily in the order given. 
Determine which values for A go with which values for B. 

Block 

A 

B 

8 

-3 
5 

-8 

Values 

3 

-5 
9 

-2 

A gas, confined to an insulated cylinder, is compressed 
adiabatically to half its volume. Does the entropy of the gas 
increase, decrease, or remain unchanged during this process? 

4 An ideal monatomic gas at initial temperature To (in kelvins) 
expands from initial volume Vo to volume 2Vo by each of the five 
processes indicated in the T- V diagram of Fig. 20-20. In which 
process is the expansion (a) isothermal, (b) isobaric (constant pres-

1'c) 2Fo 
Volume 

Fig. 20-20 Question 4. 

QUESTIONS 555 

large (say, N = 1022 molecules or more), the molecules are nearly 
always in the configuration in which 111 = 112' 

The multiplicity Wof a configuration of a system and the en­
tropy S of the system in that configuration are related by 
Boltzmann's entropy equation: 

S = kIn W, (20-21) 

where k = 1.38 X 10-23 J/K is the Boltzmann constant. 
When N is very large (the usual case), we can approximate 

In N! with Stirling's approximation: 

In N! = N(ln N) N. (20-22) 

sure), and (c) adiabatic? Explain your answers. (d) In which processes 
does the entropy of the gas decrease? 

In four experiments, 2.5 mol of hydrogen gas undergoes 
reversible isothermal expansions, starting from the same volume 
but at different temperatures. The corresponding p-V plots are 
shown in Fig. 20-21. Rank the situations according to the change in 
the entropy of the gas, greatest first. 

p 

a 

~------~L---~----~------F 

Fig. 20-21 Question 5. 

A box contains 100 atoms in a configuration that has 50 atoms 
in each half of the box. Suppose that you could count the different 
microstates associated with this configuration at the rate of 100 bil­
lion states per second, using a supercomputer. Without written cal­
culation, guess how much computing time you would need: a day, a 
year, or much more than a year. 

Does the entropy per cycle increase, decrease, or remain the 
same for (a) a Camot engine, (b) a real engine, and (c) a perfect 
engine (which is, of course, impossible to build)? 

Three Camot engines operate between temperature limits of 
(a) 400 and 500 K, (b) 500 and 600 K, and (c) 400 and 600 K. Each 
engine extracts the same amount of energy per cycle from the 
high-temperature reservoir. Rank the magnitudes of the work 
done by the engines per cycle, greatest first. 

An inventor claims to have invented four engines, each of which 
operates between constant-temperature reservoirs at 400 and 300 K. 
Data on each engine, per cycle of operation, are: engine A, QH = 200 
J, QL = -175 J, and W = 40 J; engine B, QH = 500 J, QL = -200 J, and 
W = 400 J; engine C, QH = 600 J, QL = -200 J, and W = 400 J; engine 
D, QH = 100 J, QL = -90 J, and W = 10 J. Of the first and second laws 
of thermodynamics, which (if either) does each engine violate? 

Does the entropy per cycle increase, decrease, or remain the 
same for (a) a Camot refrigerator, (b) a real refrigerator, and (c) a 
perfect refrigerator (which is, of course, impossible to build)? 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/coliege/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Change in Entropy 
SSM Suppose 4.00 mol of an ideal gas undergoes a reversible 

isothermal expansion from volume V j to volume V2 = 2.00Vj at tem­
perature T = 400 K. Find (a) the work done by the gas and (b) the 
entropy change of the gas. (c) If the expansion is reversible and adia­
batic instead of isothermal, what is the entropy change of the gas? 

An ideal gas undergoes a reversible isothermal expansion at 
77.0°C, increasing its volume from 1.30 L to 3.40 L. The entropy 
change of the gas is 22.0 J/K. How many moles of gas are present? 

IlW A 2.50 mol sample of an ideal gas expands reversibly and 
isothermally at 360 K until its volume is doubled. What is the in­
crease in entropy of the gas? 

How much energy must be transferred as heat for a reversible 
isothermal expansion of an ideal gas at 132°C if the entropy of the 
gas increases by 46.0 J/K? 

IlW Find (a) the energy absorbed as heat and (b) the change 
in entropy of a 2.00 kg block of copper whose temperature is in­
creased reversibly from 25.0°C to 100°e. The specific heat of cop­
per is 386 J/kg . K. 

(a) What is the entropy change of a 12.0 g ice cube that melts 
completely in a bucket of water whose temperature is just above 
the freezing point of water? (b) What is the entropy change of a 
5.00 g spoonful of water that evaporates completely on a hot plate 
whose temperature is slightly above the boiling point of water? 

IlW A 50.0 g block of copper whose temperature is 400 K is 
placed in an insulating box with a 100 g block of lead whose tem­
perature is 200 K. (a) What is the equilibrium temperature of the 
two-block system? (b) What is the change in the internal energy of 
the system between the initial state and the equilibrium state? (c) 
What is the change in the entropy of the system? (See Table 18-3.) 

At very low temperatures, the molar specific heat Cv of many 
solids is approximately Cv = AT3, where A depends on the partic­
ular substance. For aluminum, A = 3.15 X 10-5 J/mol' K4. Find the 
entropy change for 4.00 mol of aluminum when its temperature is 
raised from 5.00 K to 10.0 K. 

A 10 g ice cube at -10°C is placed in a lake whose temperature is 
15°e. Calculate the change in entropy of the cube-lake system as the 
ice cube comes to thermal equilibrium with the lake. The specific heat of 
ice is 2220 J/kg' K. (Hint: Will the ice cube affect the lake temperature?) 

A 364 g block is 
put in contact with a 
thermal reservoir. The 

60 

block is initially at a Q 40 
"­

lower temperature than ~ 

the reservoir. Assume ~ 20 
that the consequent 
transfer of energy as heat 
from the reservoir to the 
block is reversible. Figure 
20-22 gives the change 

T" 
T(K) 

Fig. 20-22 Problem 10. 

in entropy IlS of the block until thermal equilibrium is reached. The 
scale of the horizontal axis is set by Ta = 280 K and Tb = 380 K. 
What is the specific heat of the block? 

SSM WWW In an experiment, 200 g of aluminum (with a 
specific heat of 900 J/kg . K) at 100°C is mixed with 50.0 g of water 
at 20.0°C, with the mixture thermally isolated. (a) What is the equi­
librium temperature? What are the entropy changes of (b) the alu­
minum, (c) the water, and (d) the aluminum-water system? 

A gas sample undergoes a reversible isothermal expansion. 
Figure 20-23 gives the change IlS in entropy of the gas versus the 
final volume Vf of the gas. The scale of the vertical axis is set by 
IlSs = 64 J/K. How many moles are in the sample? 

D.Ss 

o 
11 (m3

) 

Fig. 20-23 Problem 12. 

In the irreversible process of Fig. 20-5, let the initial temper­
atures of the identical blocks Land R be 305.5 and 294.5 K, 
respectively, and let 215 J be the energy that must be transferred 
between the blocks in order to reach equilibrium. For the re­
versible processes of Fig. 20-6, what is IlS for (a) block L, (b) its 
reservoir, (c) block R, (d) its reservoir, (e) the two-block system, 
and (f) the system of the two blocks and the two reservoirs? 

(a) For 1.0 mol of a 
monatomic ideal gas taken 
through the cycle in Fig. 20-24, 
where VI = 4.00Vo, what is 
WI Po Vo as the gas goes from state 
a to state c along path abc? What 
is IlEin/po Vo in going (b) from b to 
c and (c) through one full cycle? 
What is IlS in going (d) from b to 
c and (e) through one full cycle? 

Po a _=---lli--. 

Volume 

Fig. 20-24 Problem 14. 

A mixture of 1773 g of water and 227 g of ice is in an initial 
equilibrium state at 0.000°e. The mixture is then, in a reversible 
process, brought to a second equilibrium state where the 
water-ice ratio, by mass, is 1.00: 1.00 at 0.000°e. (a) Calculate the 
entropy change of the system during this process. (The heat of fu­
sion for water is 333 kJ/kg.) (b) The system is then returned to the 
initial equilibrium state in an irreversible process (say, by using a 
Bunsen burner). Calculate the entropy change of the system dur­
ing this process. (c) Are your answers consistent with the second 
law of thermodynamics? 



An 8.0 g ice cube at -10°C is put into a Thermos flask 
containing 100 cm3 of water at 20°e. By how much has the entropy of 
the cube-water system changed when equilibrium is reached? The 
specific heat of ice is 2220 J/kg . K. 

In Fig. 20-25, where V 23 = 

3.00Vb n moles of a diatomic ideal gas 
are taken through the cycle with the 
molecules rotating but not oscillat­
ing. What are (a) P21PJ, (b) P31Pb 
and (c) T3ITI? For path 1 ~ 2, what 
are (d) WlnRTJ, (e) QlnRTJ, (f) 
I1EintfnRTJ, and (g) I1SlnR? For 
path 2 ~ 3, what are (h) WlnRTj, 
(i) QlnRTb (j) I1EintfnRTJ, (k) 
I1SlnR? For path 3 ~ 1, what are 
(1) WlnRTj, (m) QlnRTj, (n) 
I1EintfnRTb and (0) I1SlnR? 

8 A 2.0 mol sample of an 
ideal monatomic gas undergoes the 
reversible process shown in Fig. 20-
26. The scale of the vertical axis is 
set by Ts = 400.0 K and the scale of 
the horizontal axis is set by Ss = 

20.0 J/K. (a) How much energy is 
absorbed as heat by the gas? (b) 
What is the change in the internal 
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Volume 

Fig.20-25 Problem 17. 
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energy of the gas? (c) How much Fig.20-26 Problem 18. 
work is done by the gas? 

Suppose 1.00 mol of a monatomic ideal gas is taken from 
initial pressure PI and volume VI through two steps: (1) an isother­
mal expansion to volume 2.00VI and (2) a pressure increase to 
2.00pI at constant volume. What is Q/PI VI for (a) step 1 and (b) 
step 2? What is WlpI VI for (c) step 1 and (d) step 2? For the full 
process, what are (e) I1EintfPI VI and (f) I1S? The gas is returned to 
its initial state and again taken to the same final state but now 
through these two steps: (1) an isothermal compression to pressure 
2.00pI and (2) a volume increase to 2.00VI at constant pressure. 
What is Qlpl VI for (g) step 1 and (h) step 2? What is Wipi VI for (i) 
step 1 and (j) step 2? For the full process, what are (k) I1Ein/PI VI 
and (I) I1S? 

Expand 1.00 mol of an monatomic gas initially at 5.00 kPa 
and 600 K from initial volume Vi = 1.00 m3 to final volume Vi = 

2.00 m3. At any instant during the expansion, the pressure P and 
volume Vof the gas are related by P = 5.00 exp[(Vi - V)la], withp 
in kilopascals, Vi and V in cubic meters, and a = 1.00 m3• What are 
the final (a) pressure and (b) temperature of the gas? (c) How 
much work is done by the gas during the expansion? (d) What is 
I1S for the expansion? (Hint: Use two simple reversible processes 
to find M.) 

Energy can be removed from water as heat at 
and even below the normal freezing point (O.O°C at atmospheric 
pressure) without causing the water to freeze; the water is then 
said to be supercooled. Suppose a 1.00 g water drop is super­
cooled until its temperature is that of the surrounding air, which 
is at - 5.00°C. The drop then suddenly and irreversibly freezes, 
transferring energy to the air as heat. What is the entropy change 
for the drop? (Hint: Use a three-step reversible process as if the 
water were taken through the normal freezing point.) The spe­
cific heat of ice is 2220 J/kg . K. 
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An insulated Thermos contains 130 g of water at 
80.0°e. You put in a 12.0 g ice cube at O°C to form a system of 
ice + original water. (a) What is the equilibrium temperature of the 
system? What are the entropy changes of the water that was origi­
nally the ice cube (b) as it melts and (c) as it warms to the equilib­
rium temperature? (d) What is the entropy change of the original 
water as it cools to the equilibrium temperature? (e) What is the 
net entropy change of the ice + original water system as it reaches 
the equilibrium temperature? 

Entropy in the Real World: Engines 
A Carnot engine whose low-temperature reservoir is at 1 rc 

has an efficiency of 40%. By how much should the temperature of 
the high-temperature reservoir be increased to increase the effi­
ciency to 50%? 

A Carnot engine absorbs 52 kJ as heat and exhausts 36 kJ as 
heat in each cycle. Calculate (a) the engine's efficiency and (b) the 
work done per cycle in kilojoules. 

A Carnot engine has an efficiency of 22.0%. It operates be­
tween constant-temperature reservoirs differing in temper.ature by 
75.0 Co. What is the temperature of the (a) lower-temperature and 
(b) higher-temperature reservoir? 

In a hypothetical nuclear fusion reactor, the fuel is deuterium 
gas at a temperature of 7 X 108 K. If this gas could be used to oper­
ate a Carnot engine with TL = 100°C, what would be the engine's 
efficiency? Take both temperatures to be exact and report your an­
swer to seven significant figures. 

SSM www A Carnot engine operates between 235°C and 
115°C, absorbing 6.30 X 104 J per cycle at the higher temperature. 
(a) What is the efficiency of the engine? (b) How much work per 
cycle is this engine capable of performing? 

In the first stage of a two-stage Carnot engine, energy is ab­
sorbed as heat QI at temperature TJ, work WI is done, and energy 
is expelled as heat Q2 at a lower temperature T2. The second stage 
absorbs that energy as heat Qz, does work W2, and expels energy as 
heat Q3 at a still lower temperature T3. Prove that the efficiency of 
the engine is (TI - T3)ITI. 

Figure 20-27 shows a re­
versible cycle through which 1.00 
mol of a monatomic ideal gas is 
taken. Assume that P = 2po, V = 

2Vo, Po = 1.01 X 105 Pa, and Vo = 
0.0225 m3• Calculate (a) the work 
done during the cycle, (b) the en-
ergy added as heat during stroke 
abc, and (c) the efficiency of the cy­ Volume 

cle. (d) What is the efficiency of a Fig. 20-27 Problem 29. 
Carnot engine operating between 
the highest and lowest temperatures that occur in the cycle? (e) Is 
this greater than or less than the efficiency calculated in (c)? 

A 500 W Carnot engine operates between constant-temper­
ature reservoirs at 100°C and 60.0°e. What is the rate at which en­
ergy is (a) taken in by the engine as heat and (b) exhausted by the en­
gine as heat? 

The efficiency of a particular car engine is 25% when the en­
gine does 8.2 kJ of work per cycle. Assume the process is re­
versible. What are (a) the energy the engine gains per cycle as heat 
Qgain from the fuel combustion and (b) the energy the engine loses 
per cycle as heat Qlost. If a tune-up increases the efficiency to 31 %, 
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what are (c) Qgain 
and (d) Qlost at the 
same work value? 

A Carnot 
engine is set up to 
produce a certain 
work W per cycle. In 
each cycle, energy in 
the form of heat QH 
is transferred to the 
working substance of 

2 
c9 

OL-__ -L __ ~L-__ _L __ ~ __ ~ 

250 300 

TH(K) 

Fig. 20-28 Problem 32. 

350 

the engine from the higher-temperature thermal reservoir, which is 
at an adjustable temperature TH • The lower-temperature thermal 
reservoir is maintained at temperature TL = 250 K. Figure 20-28 
gives QH for a range of TH • The scale of the vertical axis is set by 
QHs = 6.0 kJ. If THis set at 550 K, what is QH? 

SSM ILW Figure 20-29 
shows a reversible cycle through 
which 1.00 mol of a monatomic 
ideal gas is taken. Volume Vc = ~ 

8.00Vb' Process be is an adiabatic ex- ~ 
pansion, with Pb = 10.0 atm and Vb = p.. 

1.00 X 10-3 m3. For the cycle, find (a) 
the energy added to the gas as heat, 
(b) the energy leaving the gas as heat, 
(c) the net work done by the gas, and 
(d) the efficiency of the cycle. 

b 

Adiabatic 

11 c 
Volume 

An ideal gas (1.0 mol) is the 
Fig. 20-29 Problem 33. 

working substance in an engine that operates on the cycle shown in 
Fig. 20-30. Processes Be and DA are reversible and adiabatic. (a) Is 
the gas monatomic, diatomic, or polyatomic? (b) What is the 
engine efficiency? 

Po 

c 
~/~ . 

~~~----~~------~~-
~ 2~ 8~ 16~ 

Volume 

Fig. 20-30 Problem 34. 

The cycle in Fig. 20-31 represents the operation of a gaso-

2 

4 

Volume 

Fig. 20-31 Problem 35. 

line internal combustion engine. Volume V3 = 4.00Vj • Assume the 
gasoline-air intake mixture is an ideal gas with 'Y = 1.30. What are 
the ratios (a) TzITj, (b) T31Tb (c) T41Tb (d) P31Pb and (e) P4lpj? 
(f) What is the engine efficiency? 

Entropy in the Real World: Refrigerators 
How much work must be done by a Carnot refrigerator to 

transfer 1.0 J as heat (a) from a reservoir at 7.0°C to one at 27°C, 
(b) from a reservoir at -73°C to one at 27°C, (c) from a reservoir 
at -173°C to one at 27°C, and (d) from a reservoir at -223°C to 
one at 27°C? 

SSM A heat pump is used to heat a building. The outside 
temperature is 25.0°C, and the temperature inside the building is 
to be maintained at 22°C. The pump's coefficient of performance is 
3.8, and the heat pump delivers 7.54 MJ as heat to the building 
each hour. If the heat pump is a Carnot engine working in reverse, 
at what rate must work be done to run it? 

The electric motor of a heat pump transfers energy as heat 
from the outdoors, which is at -5.0°C, to a room that is at 17°C. If 
the heat pump were a Carnot heat pump (a Carnot engine working 
in reverse), how much energy would be transferred as heat to the 
room for each joule of electric energy consumed? 

SSM A Carnot air conditioner takes energy from the ther­
mal energy of a room at 70°F and transfers it as heat to the 
outdoors, which is at 96°F, For each joule of electric energy 
required to operate the air conditioner, how many joules are re­
moved from the room? 

-40 To make ice, a freezer that is a reverse Carnot engine extracts 
42 kJ as heat at -15°C during each cycle, with coefficient of perfor­
mance 5.7. The room temperature is 30.3°C. How much (a) energy 
per cycle is delivered as heat to the room and (b) work per cycle is 
required to run the freezer? 

·.41 IlW An air conditioner operating between 93°F and 70°F is 
rated at 4000 Btu/h cooling capacity. Its coefficient of performance 
is 27% of that of a Carnot refrigerator operating between the same 
two temperatures. What horsepower is required of the air condi­
tioner motor? 

The motor in a refrigerator has a power of 200 W. If the freez­
ing compartment is at 270 K and the outside air is at 300 K, and as­
suming the efficiency of a Carnot refrigerator, what is the maximum 
amount of energy that can be extracted as heat from the freezing 
compartment in 10.0 min? 

Figure 20-32 represents a Carnot engine that works 
between temperatures T j = 400 K and Tz = 150 K and drives a 

T2 
Engine 

Refrigerator 

Fig. 20-32 Problem 43. 



Carnot refrigerator that works between temperatures T3 = 325 K 
and T4 = 225 K. What is the ratio Q3IQl? 

(a) During each cycle, a Carnot engine absorbs 750 J as heat 
from a high-temperature reservoir at 360 K, with the low-tempera­
ture reservoir at 2S0 K. How much work is done per cycle? (b) The 
engine is then made to work in reverse to function as a Carnot re­
frigerator between those same two reservoirs. During each cycle, 
how much work is required to remove 1200 J as heat from the low­
temperature reservoir? 

A Statistical View of Entropy 
Construct a table like Table 20-1 for eight molecules. 

A box contains N identical gas molecules equally divided 
between its two halves. For N = 50, what are (a) the multiplicity W 
of the central configuration, (b) the total number of microstates, 
and (c) the percentage of the time the system spends in the central 
configuration? For N = 100, what are (d) Wofthe central configura­
tion, (e) the total number of microstates, and (f) the percentage of 
the time the system spends in the central configuration? For N = 200, 
what are (g) Wof the central configuration, (h) the total number of 
microstates, and (i) the percentage of the time the system spends in 
the central configuration? (j) Does the time spent in the central con­
figuration increase or decrease with an increase in N? 

SSM WWW A box contains N gas molecules. Consider 
the box to be divided into three equal parts. (a) By extension of 
Eq. 20-20, write a formula for the multiplicity of any given con­
figuration. (b) Consider two configurations: configuration A 
with equal numbers of molecules in all three thirds of the box, 
and configuration B with equal numbers of molecules in each 
half of the box divided into two equal parts rather than three. 
What is the ratio WAIWB of the multiplicity of configuration A to 
that of configuration B? (c) Evaluate WAIWB for N = 100. 
(Because 100 is not evenly divisible by 3, put 34 molecules into 
one of the three box parts of configuration A and 33 in each of 
the other two parts.) 

Additional Problems 
Four particles are in the insulated box of Fig. 20-17. 

What are (a) the least multiplicity, (b) the greatest multiplicity, 
(c) the least entropy, and (d) the greatest entropy of the 
four-particle system? 

A cylindrical copper rod of length 1.50 m and radius 2.00 cm is 
insulated to prevent heat loss through its curved sUliace. One end is 
attached to a thermal reservoir fixed at 300°C; the other is attached to 
a thermal reservoir fixed at 30.0°e. What is the rate at which entropy 
increases for the rod - reservoirs system? 

Suppose 0.550 mol of an ideal gas is isothermally and 
reversibly expanded in the four situations given below. What is the 
change in the entropy of the gas for each situation? 

Situation (a) (b) (c) (d) 

Temperature (K) 250 350 400 450 

Initial volume (cm3) 0.200 0.200 0.300 0.300 

Final volume (cm3) O.SOO O.SOO 1.20 1.20 

SSM As a sample of nitrogen gas (N2) undergoes a temper­
ature increase at constant volume, the distribution of molecular 
speeds increases. That is, the probability distribution function 
P(v) for the molecules spreads to higher speed values, as sug-
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gested in Fig. 19-5b. One way to report the spread in P(v) is to 
measure the difference i1v between the most probable speed Vp 

and the rms speed Vrms ' When P(v) spreads to higher speeds, i1v 
increases. Assume that the gas is ideal and the N2 molecules ro­
tate but do not oscillate. For 1.5 mol, an initial temperature of 250 
K, and a final temperature of 500 K, what are (a) the initial differ­
ence i1v;, (b) the final difference i1vf, and (c) the entropy change 
i1S for the gas? 

Suppose 1.0 mol of a monatomic ideal gas initially at 10 Land 
300 K is heated at constant volume to 600 K, allowed to expand 
isothermally to its initial pressure, and finally compressed at con­
stant pressure to its original volume, pressure, and temperature. 
During the cycle, what are (a) the net energy entering the system 
(the gas) as heat and (b) the net work done by the gas? (c) What is 
the efficiency ofthe cycle? 

Suppose that a deep shaft were drilled in Earth's crust near 
one of the poles, where the surface temperature is -40°C, to a 
depth where the temperature is SOO°e. (a) What is the theoretical 
limit to the efficiency of an engine operating between these tem­
peratures? (b) If all the energy released as heat into the low-tem­
perature reservoir were used to melt ice that was initially at 
-40°C, at what rate could liquid water at O°C be produced by a 100 
MW power plant (treat it as an engine)? The specific heat of ice is 
2220 J/kg' K; water's heat of fusion is 333 kJ/kg. (Note that the en­
gine can operate only between O°C and SOO°C in this case. Energy 
exhausted at -40°C cannot warm anything above -40°e.) 

What is the entropy change for 3.20 mol of an ideal 
monatomic gas undergoing a reversible increase in temperature 
from 3S0 K to 425 K at constant volume? 

A 600 g lump of copper at SO.O°C is placed in 70.0 g of water 
at 1O.0°C in an insulated container. (See Table lS-3 for specific 
heats.) (a) What is the equilibrium temperature of the copper-wa­
ter system? What entropy changes do (b) the copper, (c) the water, 
and (d) the copper-water system undergo in reaching the equilib­
rium temperature? 

Figure 20-33 gives the force 
magnitude F versus stretch distance x 

F(N) 

for a rubber band, with the scale of the Fs - - -­
Faxis set by Fs = 1.50 N and the scale 
of the x axis set by Xs = 3.50 cm. The 
temperature is 2.00°e. When the rubber 
band is stretched by x = 1.70 cm, at 
what rate does the entropy of the rub­
ber band change during a small addi­
tional stretch? 

The temperature of 1.00 mol of a 

Xs 

x (em) 

Fig. 20-33 

Problem 56. 

monatomic ideal gas is raised reversibly from 300 K to 400 K, with 
its volume kept constant. What is the entropy change of the gas? 

Repeat Problem 57, with the pressure now kept constant. 

SSM A 0.600 kg sample of water is initially ice at tempera­
ture - 20°e. What is the sample's entropy change if its temperature 
is increased to 40°C? 

A three-step cycle is undergone by 3.4 mol of an ideal diatomic 
gas: (1) the temperature of the gas is increased from 200 K to 500 K 
at constant volume; (2) the gas is then isothermally expanded to its 
original pressure; (3) the gas is then contracted at constant pressure 
back to its original volume. Throughout the cycle, the molecules ro­
tate but do not oscillate. What is the efficiency of the cycle? 
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An inventor has built an engine X and claims that its 
efficiency ex is greater than the efficiency e of an ideal engine oper­
ating between the same two temperatures. Suppose you couple en­
gine X to an ideal refrigerator (Fig. 20-34a) and adjust the cycle of 
engine X so that the work per cycle it provides equals the work per 
cycle required by the ideal refrigerator. Treat this combination as a 
single unit and show that if the inventor's claim were true (if ex > 
e), the combined unit would act as a perfect refrigerator (Fig. 20-
34b), transferring energy as heat from the low-temperature reser­
voir to the high-temperature reservoir without the need for work. 

(a) (b) 

Fig. 20-34 Problem 61. 

Suppose 2.00 mol of a di-
atomic gas is taken reversibly 
around the cycle shown in the 350 

T-S diagram of Fig. 20-35, where g 
Sj = 6.00 J/K and S2 = 8.00 J/K. ~ 
The molecules do not rotate or ~ 300 

<l.i 

oscillate. What is the energy S 
transferred as heat Q for (a) path ~ 

1 ~ 2, (b) path 2 ~ 3, and (c) the 
full cycle? (d) What is the work 
VV for the isothermal process? Sl 

Perfect 
refrigerator 

2 

The volume V j in state 1 is 0.200 
m3. What is the volume in 
(e) state 2 and (f) state 3? 

Entropy (J/K) 

Fig. 20-35 Problem 62. 

What is the change '~.Eint for (g) path 1 ~ 2, (h) path 2 ~ 3, 
and (i) the full cycle? (Hint: (h) can be done with one or two lines 
of calculation using Section 19-8 or with a page of calculation using 
Section 19-11.) (j) What is the work VV for the adiabatic process? 

A three-step cycle is undergone reversibly by 4.00 mol of an ideal 
gas: (1) an adiabatic expansion that gives the gas 2.00 times its initial 
volume, (2) a constant-volume process, (3) an isothermal compression 
back to the initial state of the gas. We do not know whether the gas is 
monatomic or diatomic; if it is diatomic, we do not know whether the 
molecules are rotating or oscillating. What are the entropy changes for 
(a) the cycle, (b) process 1, (c) process 3,and (d) process 2? 

(a) A Carnot engine operates between a hot reservoir at 320 
K and a cold one at 260 K. If the engine absorbs 500 J as heat per 
cycle at the hot reservoir, how much work per cycle does it deliver? 
(b) If the engine working in reverse functions as a refrigerator be­
tween the same two reservoirs, how much work per cycle must be 
supplied to remove 1000 J as heat from the cold reservoir? 

A 2.00 mol diatomic gas initially at 300 K undergoes this cy­
cle: It is (1) heated at constant volume to 800 K, (2) then allowed to 

expand isothermally to its initial pressure, (3) then compressed at 
constant pressure to its initial state. Assuming the gas molecules 
neither rotate nor oscillate, find (a) the net energy transferred as 
heat to the gas, (b) the net work done by the gas, and (c) the effi­
ciency of the cycle. 

An ideal refrigerator does 150 J of work to remove 560 J as 
heat from its cold compartment. (a) What is the refrigerator's coef­
ficient of performance? (b) How much heat per cycle is exhausted 
to the kitchen? 

Suppose that 260 J is conducted from a constant-temperature 
reservoir at 400 K to one at (a) 100 K, (b) 200 K, ( c) 300 K, and (d) 
360 K. What is the net change in entropy ilSnet of the reservoirs in 
each case? (e) As the temperature difference of the two reservoirs 
decreases, does ilSnet increase, decrease, or remain the same? 

68 An apparatus that liquefies helium is in a room maintained at 
300 K. If the helium in the apparatus is at 4.0 K, what is the 
minimum ratio QtolQfrom, where Qto is the energy delivered as heat to 
the room and Qfrom is the energy removed as heat from the helium? 

A brass rod is in thermal contact with a constant­
temperature reservoir at 130DC at one end and a constant-temper­
ature reservoir at 24.0DC at the other end. (a) Compute the total 
change in entropy of the rod - reservoirs system when 5030 J of en­
ergy is conducted through the rod, from one reservoir to the other. 
(b) Does the entropy of the rod change? 

A 45.0 g block of tungsten at 30.0°C and a 25.0 g block of sil­
ver at -120DC are placed together in an insulated container. (See 
Table 18-3 for specific heats.) (a) What is the equilibrium tempera­
ture? What entropy changes do (b) the tungsten, (c) the silver, and 
(d) the tungsten-silver system undergo in reaching the equilib­
rium temperature? 

A box contains N molecules. Consider two configurations: 
configuration A with an equal division of the molecules between 
the two halves of the box, and configuration B with 60.0% of the 
molecules in the left half of the box and 40.0% in the right half. For 
N = 50, what are (a) the multiplicity VVA of configuration A, (b) the 
multiplicity VVB of configuration B, and (c) the ratio tElA of the time 
the system spends in configuration B to the time it spends in con­
figuration A? For N = 100, what are (d) VVA , (e) VVB, and (f) tBIA? 

For N = 200, what are (g) VVA , (h) VVB, and (i) tBIA? (j) With in­
creasing N, does t increase, decrease, or remain the same? 

Calculate the efficiency of a fossil-fuel power plant that con­
sumes 380 metric tons of coal each hour to produce useful work at 
the rate of 750 MW. The heat of combustion of coal (the heat due 
to burning it) is 28 MJ/kg. 

SSM A Carnot refrigerator extracts 35.0 kJ as heat during 
each cycle, operating with a coefficient of performance of 4.60. 
What are (a) the energy per cycle transferred as heat to the room 
and (b) the work done per cycle? 

A Carnot engine whose high-temperature reservoir is at 400 
K has an efficiency of 30.0%. By how much should the temperature 
of the low-temperature reservoir be changed to increase the effi­
ciency to 40.0%? 

SSM System A of three particles and system B of five parti­
cles are in insulated boxes like that in Fig. 20-17. What is the least 
multiplicity VV of (a) system A and (b) system B? What is the great­
est mUltiplicity VV of (c) A and (d) B? What is the greatest entropy 
of (e) A and (f) B? 
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You are surrounded by devices that depend on the physics of electro­
magnetism, which is the combination of electric and magnetic phenomena. This 
physics is at the root of computers, television, radio, telecommunications, house­
hold lighting, and even the ability of food wrap to cling to a container. This 
physics is also the basis of the natural world. Not only does it hold together all 
the atoms and molecules in the world, it also produces lightning, auroras, and 
rainbows. 

The physics of electromagnetism was first studied by the early Greek 
philosophers, who discovered that if a piece of amber is rubbed and then brought 
near bits of straw, the straw will jump to the amber. We now know that the attrac­
tion between amber and straw is due to an electric force. The Greek philosophers 
also discovered that if a certain type of stone (a naturally occurring magnet) is 
brought near bits of iron, the iron will jump to the stone. We now know that the 
attraction between magnet and iron is due to a magnetic force. 

From these modest origins with the Greek philosophers, the sciences of 
electricity and magnetism developed separately for centuries-until 1820, in fact, 
when Hans Christian Oersted found a connection between them: an electric cur­
rent in a wire can deflect a magnetic compass needle. Interestingly enough, 
Oersted made this discovery, a big surprise, while preparing a lecture demonstra­
tion for his physics students. 

The new sCience of electromagnetism was developed further by workers in 
many countries. One of the best was Michael Faraday, a truly gifted experimenter 
with a talent for physical intuition and visualization. That talent is attested to by 
the fact that his collected laboratory notebooks do not contain a single equation. 
In the mid-nineteenth century, James Clerk Maxwell put Faraday's ideas into 
mathematical form, introduced many new ideas of his own, and put electromag­
netism on a sound theoretical basis. 

Our discussion of electromagnetism is spread through the next 16 chapters. 
We begin with electrical phenomena, and our first step is to discuss the nature of 
electric charge and electric force. 

Electric Charge 
In dry weather, you can produce a spark by walking across certain types of carpet 
and then bringing one of your fingers near a metal doorknob, metal faucet, or 
even a friend. You can also produce multiple sparks when you pull, say, a sweater 
from your body or clothes from a dryer. Sparks and the "static cling" of clothing 
(similar to what is seen in Fig. 21-1) are usually just annoying. However, if you 
happen to pull off a sweater and then spark to a computer, the results are more 
than just annoying. 

Fig. 21-1 Static cling, an electrical phe­
nomenon that accompanies dry weather, 
causes these pieces of paper to stick to one 
another and to the plastic comb, and your 
clothing to stick to your body. 
(Fundamental Photographs) 
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Glass 

(a) 

(b) 

Fig. 21 -2 (a) Two charged rods ofthe 
same sign repel each other. (b) Two 
charged rods of opposite signs attract each 
other. Plus signs indicate a positive net 
charge, and minus signs indicate a negative 
net charge. 

Fig. 21-3 A carrier bead from a photo­
copying machine; the bead is covered with 
toner particles that cling to it by electrosta­
tic attraction. The diameter of the bead is 
about 0.3 mm. (Courtesy Xerox) 

These examples reveal that we have electric charge in our bodies, sweaters, 
carpets, doorknobs, faucets, and computers. In fact, every object contains a vast 
amount of electric charge. Electric charge is an intrinsic characteristic of the 
fundamental particles making up those objects; that is, it is a property that comes 
automatically with those particles wherever they exist. 

The vast amount of charge in an everyday object is usually hidden because 
the object contains equal amounts of the two kinds of charge: positive charge and 
negative charge. With such an equality-or balance-of charge, the object is said 
to be electrically neutral; that is, it contains no net charge. If the two types of 
charge are not in balance, then there is a net charge. We say that an object is 
charged to indicate that it has a charge imbalance, or net charge. The imbalance is 
always much smaller than the total amounts of positive charge and negative 
charge contained in the object. 

Charged objects interact by exerting forces on one another. To show this, we first 
charge a glass rod by rubbing one end with silk. At points of contact between the rod 
and the silk, tiny amounts of charge are transferred from one to the other, slightly up­
setting the electrical neutrality of each. (We rub the silk over the rod to increase the 
number of contact points and thus the amount, still tiny, of transferred charge.) 

Suppose we now suspend the charged rod from a thread to electrically isolate 
it from its surroundings so that its charge cannot change. If we bring a second, 
similarly charged, glass rod nearby (Fig. 21-2a), the two rods repel each other; that 
is, each rod experiences a force directed away from the other rod. However, if we 
rub a plastic rod with fur and then bring the rod near the suspended glass rod 
(Fig. 21-2b), the two rods attract each other; that is, each rod experiences a force 
directed toward the other rod. 

We can understand these two demonstrations in terms of positive and 
negative charges. When a glass rod is rubbed with silk, the glass loses some of its 
negative charge and then has a small unbalanced positive charge (represented by 
the plus signs in Fig. 21-2a). When the plastic rod is rubbed with fur, the plastic 
gains a small unbalanced negative charge (represented by the minus signs in 
Fig. 21-2b). Our two demonstrations reveal the following: 

Charges with the same electrical sign repel each other, and charges with opposite 
electrical signs attract each other. 

In Section 21-4, we shall put this rule into quantitative form as Coulomb's law of 
electrostatic force (or electric force) between charges. The term electrostatic is 
used to emphasize that, relative to each other, the charges are either stationary or 
moving only very slowly. 

The "positive" and "negative" labels and signs for electric charge were 
chosen arbitrarily by Benjamin Franklin. He could easily have interchanged the 
labels or used some other pair of opposites to distinguish the two kinds of charge. 
(Franklin was a scientist of international reputation. It has even been said that 
Franklin's triumphs in diplomacy in France during the American War of 
Independence were facilitated, and perhaps even made possible, because he was 
so highly regarded as a scientist.) 

The attraction and repulsion between charged bodies have many industrial ap­
plications, including electrostatic paint spraying and powder coating, fly-ash collec­
tion in chimneys, nonimpact ink-jet printing, and photocopying. Figure 21-3 shows 
a tiny carrier bead in a photocopying machine, covered with particles of black pow­
der called toner, which stick to it by means of electrostatic forces. The negatively 
charged toner particles are eventually attracted from the carrier bead to a rotating 
drum, where a positively charged image of the document being copied has formed. 
A charged sheet of paper then attracts the toner particles from the drum to itself, 
after which they are heat-fused permanently in place to produce the copy. 
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1 Conductors and Insulators 
We can classify materials generally according to the ability of charge to move 
through them. Conductors are materials through which charge can move rather 
freely; examples include metals (such as copper in common lamp wire), the 
human body, and tap water. Nonconductors-also called insulators-are ma­
terials through which charge cannot move freely; examples include rubber 
(such as the insulation on common lamp wire), plastic, glass, and chemically 
pure water. Semiconductors are materials that are intermediate between con­
ductors and insulators; examples include silicon and germanium in computer 
chips. Superconductors are materials that are pC/feet conductors, allowing 
charge to move without any hindrance. In these chapters we discuss only con­
ductors and insulators. 

Here is an example of how conduction can eliminate excess charge on an 
object. If you rub a copper rod with wool, charge is transferred from the wool to 
the rod. However, if you are holding the rod while also touching a faucet, you 
cannot charge the rod in spite of the transfer. The reason is that you, the rod, and 
the faucet are all conductors connected, via the plumbing, to Earth's surface, 
which is a huge conductor. Because the excess charges put on the rod by the wool 
repel one another, they move away from one another by moving first through the 
rod, then through you, and then through the faucet and plumbing to reach 
Earth's surface, where they can spread out. The process leaves the rod electrically 
neutral. 

In thus setting up a pathway of conductors between an object and Earth's 
surface, we are said to ground the object, and in neutralizing the object (by elimi­
nating an unbalanced positive or negative charge), we are said to discharge the 
object. If instead of holding the copper rod in your hand, you hold it by an 
insulating handle, you eliminate the conducting path to Earth, and the rod can 
then be charged by rubbing (the charge remains on the rod), as long as you do 
not touch it directly with your hand. 

The properties of conductors and insulators are due to the structure and 
electrical nature of atoms. Atoms consist of positively charged protons, negatively 
charged electrons, and electrically neutral neutrons. The protons and neutrons are 
packed tightly together in a central nucleus. 

The charge of a single electron and that of a single proton have the same 
magnitude but are opposite in sign. Hence, an electrically neutral atom contains 
equal numbers of electrons and protons. Electrons are held near the nucleus 
because they have the electrical sign opposite that of the protons in the nucleus 
and thus are attracted to the nucleus. 

When atoms of a conductor like copper come together to form the solid, 
some of their outermost (and so most loosely held) electrons become free to 
wander about within the solid, leaving behind positively charged atoms (positive 
ions). We call the mobile electrons conduction electrons. There are few (if any) 
free electrons in a nonconductor. 

The experiment of Fig. 21-4 demonstrates the mobility of charge in a conduc­
tor. A negatively charged plastic rod will attract either end of an isolated neutral 

Fig. 21 -4 A neutral copper rod is electrically iso­
lated from its surroundings by being suspended on a 
nonconducting thread. Either end of the copper rod 
will be attracted by a charged rod. Here, conduction 
electrons in the copper rod are repelled to the far end 
of that rod by the negative charge on the plastic rod. 
Then that negative charge attracts the remaining posi­
tive charge on the near end of the copper rod, rotating 
the copper rod to bring that near end closer to the 
plastic rod. 
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Fig.21-5 Two pieces of a wintergreen LifeSaver candy as 
they fall away from each other. Electrons jumping from the 
negative surface of piece A to the positive surface of piece B 
collide with nitrogen (N2) molecules in the air. 

A 

/"-- -
~N20( 
B + + + 

+ + + + 

copper rod. What happens is that many of the conduction electrons in the closer 
end of the copper rod are repelled by the negative charge on the plastic rod. 
Some of the conduction electrons move to the far end of the copper rod, leaving 
the near end depleted in electrons and thus with an unbalanced positive charge. 
This positive charge is attracted to the negative charge in the plastic rod. 
Although the copper rod is still neutral, it is said to have an induced charge, which 
means that some of its positive and negative charges have been separated due to 
the presence of a nearby charge. 

Similarly, if a positively charged glass rod is brought near one end of a 
neutral copper rod, conduction electrons in the copper rod are attracted to that 
end. That end becomes negatively charged and the other end positively charged, 
so again an induced charge is set up in the copper rod. Although the copper rod is 
still neutral, it and the glass rod attract each other. 

Note that only conduction electrons, with their negative charges, can move; 
positive ions are fixed in place. Thus, an object becomes positively charged only 
through the removal a/negative charges. 

Indirect evidence for the attraction of charges with opposite signs can be seen 
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have 
a friend chomp on a piece of the candy in the darkness, you will see a faint blue 
flash from your friend's mouth with each chomp. Whenever a chomp breaks a 
sugar crystal into pieces, each piece will probably end up with a different number 
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with 
more electrons on its surface than B (Fig. 21-5). This means that B has positive 
ions (atoms that lost electrons to A) on its surface. Because the electrons on A 
are strongly attracted to the positive ions on B, some of those electrons jump 
across the gap between the pieces. 

As A and B fall away from each other, air (primarily nitrogen, Nz) flows into 
the gap, and many of the jumping electrons collide with nitrogen molecules in the 
air, causing the molecules to emit ultraviolet light. You cannot see this type of 
light. However, the wintergreen molecules on the surfaces of the candy pieces 
absorb the ultraviolet light and then emit blue light, which you can see-it is the 
blue light coming from your friend's mouth. 

CHECKPOINT 1 

The figure shows five 
pairs of plates: A, B, and 
D are charged plastic 
plates and C is an elec­
trically neutral copper 
plate. The electrostatic 
forces between the pairs 
of plates are shown for 

B 

,---D----11 cp ,---I D----1 

three of the pairs. For the remaining two pairs, do the plates repel or attract each other? 



1 Coulomb's law 
If two charged particles are brought near each other, they each exert a force on 
the other. If the particles have the same sign of charge, they repel each other 
(Figs. 21-6a and b). That is, the force on each particle is directed away from the 
other particle, and if the particles can move, they move away from each other. If, 
instead, the particles have opposite signs of charge, they attract each other 
(Fig. 21-6c) and, if free to move, they move closer to each other. 

This force of repulsion or attraction due to the charge properties of objects is 
called an electl'ostatic fOl'ce. The equation giving the force for charged particles is 
called Coulomb's law after Charles-Augustin de Coulomb, whose experiments in 
1785 led him to it. In terms of the particles in Fig. 21-7, where particle 1 has 
charge ql and particle 2 has charge q2, the force on particle 1 is 

F = k qjq2 r (Coulomb's law), (21-1) 
r2 

in which r is a unit vector along an axis extending through the two particles, r is 
the distance between them, and k is a constant. (As with other unit vectors, r has a 
magnitude of exactly 1 and no dimension or unit; its purpose is to point.) If the 
particles have the same signs of charge, the force on particle 1 is in the direction 
of r; if they have opposite signs, the force is opposite r. 

Curiously, the form of Eq. 21-1 is the same as that of Newton's equation 
(Eq. 13-3) for the gravitational force between two particles with masses ml and 
m2 that are separated by a distance r: 

-> G mlm2 ~ F= --r r2 

in which G is the gravitational constant. 

(Newton's law), (21-2) 

The constant kin Eq. 21-1, by analogy with the gravitational constant Gin 
Eq. 21-2, may be called the electrostatic constant. Both equations describe in­
verse square laws that involve a property of the interacting particles-the mass 
in one case and the charge in the other. The laws differ in that gravitational 
forces are always attractive but electrostatic forces may be either attractive or 
repulsive, depending on the signs of the two charges. This difference arises from 
the fact that, although there is only one kind of mass, there are two kinds of 
charge. 

Coulomb's law has survived every experimental test; no exceptions to it have 
ever been found. It holds even within the atom, correctly describing the force 
between the positively charged nucleus and each of the negatively charged 
electrons, even though classical Newtonian mechanics fails in that realm and is 
replaced there by quantum physics. This simple law also correctly accounts for 
the forces that bind atoms together to form molecules, and for the forces that 
bind atoms and molecules together to form solids and liquids. 

The SI unit of charge is the coulomb. For practical reasons having to do with 
the accuracy of measurements, the coulomb unit is derived from the SI unit 
ampere for electric current i. Current is the rate dq/dt at which charge moves past 
a point or through a region. In Chapter 26 we shall discuss current in detail. Until 
then we shall use the relation 

. dq 
1=-

dt 
(electric current), (21-3) 

in which i is the current (in amperes) and dq (in coulombs) is the amount of charge 
moving past a point or through a region in time dt (in seconds). Rearranging Eq. 21-3 
tells us that 

1 C = (lA)(l s). 

For historical reasons (and because doing so simplifies many other formulas), 
the electrostatic constant k of Eq. 21-1 is usually written 1I4m,:o. Then the magni-
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Always draw the force 
vector with the tail on 
the particle. 

(a) 

(b) 

(e) 

The forces push the 
particles apart. 

But here the forces 
pull the particles 
together. 

Fig. 21-6 Two charged particles repel 
each other if they have the same sign of 
charge, either (a) both positive or (b) both 
negative. ( c) They attract each other if they 
have opposite signs of charge. 

~r~~ 
~;jI--------------- q] 

q2 

Fig. 21 -7 The electrostatic force on 
particle 1 can be described in terms of a 
unit vector r along an axis through the two 
particles. 
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tude of the force in Coulomb's law becomes 

(Coulomb's law). 

The constants in Eqs. 21-1 and 21-4 have the value 

1 
k = -- = 8.99 X 109 N·m2/C2• 

47TBO 

(21-4) 

(21-5) 

The quantity BO, called the permittivity constant, sometimes appears separately in 
equations and is 

BO = 8.85 X 10-12 C2/N . m2. (21-6) 

Still another parallel between the gravitational force and the electrostatic 
force is that both obey the principle of superposition. If we have n charged parti­
cles, they interact independently in pairs, and the force on anyone of them, let us 
say particle 1, is given by the vector sum 

(21-7) 

in which, for example, F14 is the force acting on particle 1 due to the presence of 
particle 4. An identical formula holds for the gravitational force. 

Finally, the shell theorem that we found so useful in our study of gravitation 
has analogs in electrostatics: 

A shell of uniform charge attracts or repels a charged particle that is outside the shell 
as if all the shell's charge were concentrated at its center. 

If a charged particle is located inside a shell of uniform charge, there is no net 
electrostatic force on the particle from the shell. 

(In the first theorem, we assume that the charge on the shell is much greater than 
that of the particle. Then any redistribution of the charge on the shell due to the 
presence of the particle's charge can be neglected.) 

If excess charge is placed on a spherical shell that is made of conducting material, the 
excess charge spreads uniformly over the (external) surface. For example, if we place 
excess electrons on a spherical metal shell, those electrons repel one another and 
tend to move apart, spreading over the available surface until they are uniformly dis­
tributed. That arrangement maximizes the distances between all pairs of the excess 
electrons. According to the first shell theorem, the shell then will attract or repel an 
external charge as if all the excess charge on the shell were concentrated at its center. 

If we remove negative charge from a spherical metal shell, the resulting pos­
itive charge of the shell is also spread uniformly over the surface of the shell. For 
example, if we remove 11 electrons, there are then 11 sites of positive charge (sites 
missing an electron) that are spread uniformly over the shell. According to the 
first shell theorem, the shell will again attract or repel an external charge as if all 
the shell's excess charge were concentrated at its center. 

CHECKPOINT 2 

The figure shows two 
protons (symbol p) and 

e p p 

one electron (symbol e) on an axis. What is the direction of (a) the electrostaticforce on 
the central proton due to the electron, (b) the electrostatic force on the central proton 
due to the other proton, and (c) the net electrostatic force on the central proton? 
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Finding the net force due to two other particles 

(a) Figure 21-8a shows two positively charged particles fixed in 
place on an x axis. The charges are ql = 1.60 X 10 -19 C and q2 = 

3.20 X 10-19 C, and the particle separation is R = 0.0200 m. 
What are the magnitude and direction of the electrostatic force 
Fi2 on particle 1 from particle 2? 

Because both particles are positively charged, particle 1 is re­
pelled by particle 2, with a force magnitude given by Eq. 21-4. 
Thus, the direction of force Fi2 on particle 1 is away from parti­
cle 2, in the negative direction of the x axis, as indicated in the 
free-body diagram of Fig. 21-8b. 

Two particles: Using Eq. 21-4 with separation R substituted 
for r, we can write the magnitude F12 of this force as 

= (8.99 X 10 9 N . m2/C2) 

(1.60 X 10 -19 C)(3.20 X 10 -19 C) 

X (0.0200 m)2 

= 1.15 X 10 -24 N. 

Thus, force Fi2 has the following magnitude and direction 
(relative to the positive direction of the x axis): 

1.15 X 10-24 Nand 180°. 

We can also write Fi2 in unit-vector notation as 
---> _ -24 " F12 - - (1.15 X 10 N)1. 

(Answer) 

(Answer) 

(b) Figure 21-8c is identical to Fig. 21-8a except that particle 
3 now lies on the x axis between particles 1 and 2. Particle 3 
has charge q3 = -3.20 X 10-19 C and is at a distance ~R from 
particle 1. What is the net electrostatic force Fi,net on particle 
1 due to particles 2 and 3? 

The presence of particle 3 does not alter the electrostatic 
force on particle 1 from particle 2. Thus, force R2 still acts on 
particle 1. Similarly, the force R3 that acts on particle 1 due 
to particle 3 is not affected by the presence of particle 2. 
Because particles 1 and 3 have charge of opposite signs, 
particle 1 is attracted to particle 3. Thus, force Fi3 is di­
rected toward particle 3, as indicated in the free-body dia­
gram of Fig. 21-8d. 

Three particles: To find the magnitude of R3, we can 
rewrite Eq. 21-4 as 

F. - _1_ Iql 11 q31 

13 - 471'Bo (~R)2 

= (8.99 X 10 9 N· m2/C2) 

(1.60 X 10- 19 C)(3.20 X 10-19 C) 

X (~)2(0.0200 m)2 

= 2.05 X 10 -24 N. 

We can also write R3 in unit-vector notation: 

---> -24 1-F13 = (2.05 X 10 N)l. 

y 

Fig. 21-8 (a) 
Two charged parti­
cles of charges q 1 

and qz are fixed in 
place on an x axis. 
(b) The free-body 
diagram for particle 
1, showing the elec­
trostatic force on it 
from particle 2. (c) 
Particle 3 included. 
(d) Free-body dia­
gram for particle 1. 
(e) Particle 4 
included. (f) Free­
body diagram for 
particle 1. 

This is the first 
arrangement. 

This is the second 
arrangement. 

This is the third 
arrangement. 

ql q2 
-fili)i---------;fU- x 

I----R -I 
(a) 

This is the particle 
of interest. 

~ (b) , 

It is pushed away 
from particle 2. 

~ q3Q fGF- x 

li2 

I--tR~ 
(c) 

This is still the 
particle of interest. 

(d) 

It is pulled toward 
particle 3. 

It is pushed away 
from particle 2. 

(e) 

~ 
This is still the 

).~' ~ particle of interest. 
Fl4 

1'12 e 

l' It is PUII~"d toward 
(J) particle 4. 

It is pushed away 
from particle 2. 
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The net force Fi net on particle 1 is the vector sum of Fi2 
and Fi3; that is, fro~ Eq. 21-7, we can write the net force 
Fi,net on particle 1 in unit-vector notation as 

Fi net = Fi2 + Fi3 

= - (1.15 X 1O-24 N)i + (2.05 X 1O-24 N)i 

= (9.00 X 10 -25 N)i. (Answer) 

Thus, Fi,net has the following magnitude and direction (relative 
to the positive direction of the x axis): 

9.00 X 10-25 Nand 0°. (Answer) 

(c) Figure 21-8e is identical to Fig. 21-8a except that particle 
4 is now included. It has charge q4 = -3.20 X 10-19 C, is at a 
distance ~R from particle 1, and lies on a line that makes an 
angle e = 60° with the x axis. What is the net electrostatic 
force Fi,net on particle 1 due to particles 2 and 4? 

The net force Fi net is the vector sum of Fi2 and a new force 
Fi4 acting on pa;ticle 1 due to particle 4. Because particles 1 
and 4 have charge of opposite signs, particle 1 is attracted to 
particle 4. Thus, force Fi4 on particle 1 is directed toward 
particle 4, at angle e = 60°, as indicated in the free-body di­
agram of Fig. 21-8f 

Four particles: We can rewrite Eq. 21-4 as 

F. - _1_ iq1iiq4i 
14 - 47TBO (~R)2 

= (8.99 X 10 9 N . m2/C2) 

(1.60 X 10 -19 C)(3.20 X 10 -19 C) 

X (~)2(0.0200 m)2 

= 2.05 X 10 -24 N. 

Then from Eq. 21-7, we can write the net force Fi,net on particle 
1 as 

Fi net = Fi2 + Fi4' 

Because the forces Fi2 and Fi4 are not directed along the 
same axis, we cannot sum simply by combining their mag­
nitudes. Instead, we must add them as vectors, using one of 
the following methods. 

Method 1. Summing directly on a vector-capable calculator. 
For Fib we enter the magnitude 1.15 X 10-24 and the angle 
180°. For Fi4, we enter the magnitude 2.05 X 10-24 and the 
angle 60°. Then we add the vectors. 

Method 2. Summing in unit-vector notation. First we 
rewrite Fi4 as 

Fi4 = (F1A cos e)i + (Fi4 sin ())J. 

Substituting 2.05 X 10-24 N for P14 and 60° for e, this becomes 

Fi4 = (1.025 X 1O-24 N)i + (1.775 X 1O-24 N)j. 

Then we sum: 

Fi,net = Fi2 + Fi4 

= - (1.15 X 10 -24 N)i 

+ (1.025 X 1O-24 N)i + (1.775 X 1O-24 N)J 

= (-1.25 X 1O-25 N)i + (1.78 X 1O-24 N)j. 

(Answer) 

Method 3. Summing components axis by axis. The sum of 
the x components gives us 

Fi,netyt = Fi2yt + Fi4yt = Fi2 + Fi4 cos 60° 

= -1.15 X 10-24 N + (2.05 X 10-24 N)(cos 60°) 

= -1.25 X 10-25 N. 

The sum of the y components gives us 

Fi,net,y = Fi2,y + Fi4,y = 0 + Fi4 sin 60° 
= (2.05 X 10 -24 N)(sin 60°) 

= 1.78 X 10 -24 N. 

The net force Fi net has the magnitude 

Fi,net = V Pr,netyt + Pr,net,y = 1.78 X 10 -24 N. (Answer) 

To find the direction of Fi net' we take 

F. 
() = tan-1 1,net,y = -86.00. 

Fi,netyr 

However, this is an unreasonable result because Fi net must 
have a direction between the directions of Fi2 and Fi4' To 
correct e, we add 180°, obtaining 

-86.0° + 180° = 94.0°. (Answer) 

i~S Additional examples, video, and practice available at WileyPLUS 

CHECKPOINT 3 

The figure here shows three alTangements of an electron e and two pro­
tons p. (a) Rank the arrangements according to the magnitude of the 
net electrostatic force on the electron due to the protons, largest first. 
(b) In situation c, is the angle between the net force on the electron and 
the line labeled d less than or more than 45°7 

I=d:D----1 
d~ 

@ ® W 

e p p 

(a) 

e D 

I---- d -I- D----1 dr @ '" '" p e p 

(b) (c) 
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Equilibrium of two forces on a particle 

Figure 21-9a shows two particles fixed in place: a particle of 
charge ql = +8q at the origin and a particle of charge q2 = -2q 
at x = L. At what point (other than infinitely far away) can a 
proton be placed so that it is in equilibrium (the net force on it is 
zero)? Is that equilibrium stable or unstable? (That is, if the pro­
ton is displaced, do the forces drive it back to the point of equi­
librium or drive it farther away?) 

If Fl is the force on the proton due to charge ql and F2 is the 
force on the proton due to charge q2, then the point we seek is 
where Fl + IS = O. Thus, 

(21-8) 

This tells us that at the point we seek, the forces acting on 
the proton due to the other two particles must be of equal 
magnitudes, 

PI = P2, (21-9) 

and that the forces must have opposite directions. 

Reasoning: Because a proton has a positive charge, the pro­
ton and the particle of charge ql are of the same sign, and 
force Fl on the proton must point away from qj. Also, the 
proton and the particle of charge q2 are of opposite signs, so 
force F2 on the proton must point toward q2' "Away from ql" 
and "toward q2" can be in opposite directions only if the pro­
ton is located on the x axis. 

If the proton is on the x axis at any point between ql and 
qz, such as point P in Fig. 21-9b, then Fl and F2 are in the 
same direction and not in opposite directions as required. If 
the proton is at any point on the x axis to the left of qJ, such 
as point S in Fig. 21-9c, then Fj and F2 are in opposite direc­
tions. However, Eq. 21-4 tells us that ~ and Fz cannot have 
equal magnitudes there: PI must be greater than P2, because PI 
is produced by a closer charge (with lesser r) of greater magni­
tude (8q versus 2q). 

Finally, if the proton is at any point on the x axis to the 
right of q2, such as point R in Fig. 21-9d, then Fl and F2 are 
again in opposite directions. However, because now the 
charge of greater magnitude (qj) is farther away from the pro­
ton than the charge of lesser magnitude, there is a point at 
which PI is equal to P2• Let x be the coordinate of this point, 
and let qp be the charge of the proton. 

Calculations: With the aid of Eq. 21-4, we can now rewrite Eq. 
21-9 (which says that the forces have equal magnitudes): 

_1_ 8qqp 1 2qqp 
47TBO x2 47TBo (x - L)2' 

(21-10) 

(Note that only the charge magnitudes appear in Eq. 
21-10. We already decided about the directions of the 
forces in drawing Fig. 21-9d and do not want to include any 
positive or negative signs here.) Rearranging Eq. 21-10 
gives us 

(X:LY=!· 
After taking the square roots of both sides, we have 

x - L 1 

x 2' 
which gives us 

x = 2L. (Answer) 

The equilibrium at x = 2L is unstable; that is, if the proton is 
displaced leftward from point R, then PI and P2 both increase 
but P2 increases more (because q2 is closer than ql), and a net 
force will drive the proton farther leftward. If the proton is dis­
placed rightward, both PI and P2 decrease but P2 decreases 
more, and a net force will then drive the proton farther right­
ward. In a stable equilibrium, if the proton is displaced slightly, it 
returns to the equilibrium position. 

(a) 

(c) 

)' 

qil q2 

~L--rx 

)' 

The forces cannot 
cancel {one is 
definitely larger}. 

Pushed away 

from Q1' 

pulled 
)' toward Q2' 

Iql F2 q2 

~x 
(b) The forces 

cannot cancel 
{same direction}. 

)' 

Iql q2 F2 

~,x 

(d) The forces can cancel, 

at the right distance. 

Fig. 21 -9 (a) Tho particles of charges q I and q2 are fixed in 
place on an x axis, with separation L. (b )-(d) Three possible loca­
tions P, S, and R for a proton. At each location, FI is the force on 
the proton from particle 1 and F2 is the force on the proton from 
particle 2. 

Additional examples, video, and practice available at WileyPLUS 
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Charge sharing by two identical conducting spheres 

In Fig. 21-10a, two identical, electrically isolated conducting 
spheres A and B are separated by a (center-to-center) dis­
tance a that is large compared to the spheres. Sphere A has 
a positive charge of +Q, and sphere B is electrically neutral. 
Initially, there is no electrostatic force between the spheres. 
(Assume that there is no induced charge on the spheres 
because of their large separation.) 

(a) Suppose the spheres are connected for a moment by a 
conducting wire. The wire is thin enough so that any net 
charge on it is negligible. What is the electrostatic force 
between the spheres after the wire is removed? 

(1) Because the spheres are identical, connecting them 
means that they end up with identical charges (same sign 
and same amount). (2) The initial sum of the charges (in­
cluding the signs of the charges) must equal the final sum of 
the charges. 

Reasoning: When the spheres are wired together, the 
(negative) conduction electrons on B, which repel one an­
other, have a way to move away from one another (along 
the wire to positively charged A, which attracts them­
Fig. 21-10b.) As B loses negative charge, it becomes posi­
tively charged, and as A gains negative charge, it becomes 
less positively charged. The transfer of charge stops when 
the charge on B has increased to + Q/2 and the charge on 
A has decreased to + Q/2, which occurs when - Q/2 has 
shifted from B to A. 

After the wire has been removed (Fig. 21-10c), we can 
assume that the charge on either sphere does not disturb the 
uniformity of the charge distribution on the other sphere, 
because the spheres are small relative to their separation. Thus, 
we can apply the first shell theorem to each sphere. By Eq. 21-4 

IB 
q~O +Q/2 +Q/2 +Q/2 

a 

1 +Q +Q/2 ~Q/2 
q~O 

(a) (b) (c) (d) (e) 

Fig. 21-10 Two small conducting spheres A and B. (a) To start, 
sphere A is charged positively. (b) Negative charge is transferred from 
B to A through a connecting wire. (c) Both spheres are then charged 
positively. (d) Negative charge is transferred through a grounding wire 
to sphere A. ( e) Sphere A is then neutral. 

withqr = q2 = Q/2andr = a, 

F = _1_ (Q/2)(Q/2) = _1 _ (R)2. 
47TBo a2 167TBo a 

(Answer) 

The spheres, now positively charged, repel each other. 

(b) Next, suppose sphere A is grounded momentarily, and 
then the ground connection is removed. What now is the 
electrostatic force between the spheres? 

Reasoning: When we provide a conducting path between a 
charged object and the ground (which is a huge conductor), 
we neutralize the object. Were sphere A negatively charged, 
the mutual repulsion between the excess electrons would 
cause them to move from the sphere to the ground. 
However, because sphere A is positively charged, electrons 
with a total charge of - Q/2 move from the ground up onto 
the sphere (Fig. 21-10d), leaving the sphere with a charge of 
o (Fig. 21-10e). Thus, there is (again) no electrostatic force 
between the two spheres. 

~ws Additional examples, video, and practice available at WileyPLUS 

Charge Is Quantized 
In Benjamin Franklin's day, electric charge was thought to be a continuous 
fluid-an idea that was useful for many purposes. However, we now know that 
fluids themselves, such as air and water, are not continuous but are made up of 
atoms and molecules; matter is discrete. Experiment shows that "electrical fluid" 
is also not continuous but is made up of multiples of a certain elementary charge. 
Any positive or negative charge q that can be detected can be written as 

q = ne, n = ±1,±2,±3, ... , 

in which e, the elementary charge, has the approximate value 

e = 1.602 X 10- 19 C. 

(21-11) 

(21-12) 
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The elementary charge e is one of the important constants of nature. The electron 
and proton both have a charge of magnitude e (Table 21-1). (Quarks, the con­
stituent particles of protons and neutrons, have charges of ±e/3 or ±2e/3, but 
they apparently cannot be detected individually. For this and for historical 
reasons, we do not take their charges to be the elementary charge.) 

You often see phrases-such as "the charge on a sphere," "the amount of 
charge transferred," and "the charge carried by the electron" - that suggest that 
charge is a substance. (Indeed, such statements have already appeared in this 
chapter.) You should, however, keep in mind what is intended: Particles are the 
substance and charge happens to be one of their properties,just as mass is. 

When a physical quantity such as charge can have only discrete values rather 
than any value, we say that the quantity is quantized. It is possible, for example, to 
find a particle that has no charge at all or a charge of + 10e or -6e, but not a parti­
cle with a charge of, say, 3.57e. 

The quantum of charge is small. In an ordinary 100 W lightbulb, for example, 
about 10 19 elementary charges enter the bulb every second and just as many 
leave. However, the graininess of electricity does not show up in such large-scale 
phenomena (the bulb does not flicker with each electron),just as you cannot feel 
the individual molecules of water with your hand. 

CHECKPOINT 4 

Initially, sphere A has a charge of -50e and sphere B has a charge of +20e. The 
spheres are made of conducting material and are identical in size. If the spheres then 
touch, what is the resulting charge on sphere A? 

Mutual electric repulsion in a nucleus 

The Charges of Three Particles 

Particle Symbol Charge 

Electron e ore -e 

Proton p +e 

Neutron n 0 

The nucleus in an iron atom has a radius of about 4.0 X 

10-15 m and contains 26 protons. 

(a) What is the magnitude of the repulsive electrostatic 
force between two of the protons that are separated by 
4.0 X 10-15 m? 

acting on a proton. Such forces should explode the nucleus 
of any element but hydrogen (which has only one proton in 
its nucleus). However, they don't, not even in nuclei with a 
great many protons. Therefore, there must be some enor­
mous attractive force to counter this enormous repulsive 
electrostatic force. 

The protons can be treated as charged particles, so the mag­
nitude of the electrostatic force on one from the other is 
given by Coulomb's law. 

Calculation: Table 21-1 tells us that the charge of a proton 
is +e. Thus, Eq. 21-4 gives us 

1 e2 

F=---
47TBo r2 

(8.99 X 109 N·m2/C2)(1.602 X 10-19 C)2 
(4.0 X 10-15 m)2 

= 14N. (Answer) 

No explosion: This is a small force to be acting on a macro­
scopic object like a cantaloupe, but an enormous force to be 

(b) What is the magnitude of the gravitational force 
between those same two protons? 

Because the protons are particles, the magnitude of the 
gravitational force on one from the other is given by 
Newton's equation for the gravitational force (Eq. 21-2). 

Calculation: With mp (= 1.67 X 10 -27 kg) representing the 
mass of a proton, Eq. 21-2 gives us 

2 
F= G mp 

r2 

(6.67 X 10-11 N . m2/kg2) (1.67 X 10-27 kg)2 
(4.0 X 10-15 m)2 

1.2 X 10 -35 N. (Answer) 
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Weak versus strong: This result tells us that the (attrac­
tive) gravitational force is far too weak to counter the repul­
sive electrostatic forces between protons in a nucleus. 
Instead, the protons are bound together by an enormous 
force called (aptly) the strong nuclear force-a force that 
acts between protons (and neutrons) when they are close 
together, as in a nucleus. 

than the electrostatic force, it is more important in large­
scale situations because it is always attractive. This means that 
it can collect many small bodies into huge bodies with huge 
masses, such as planets and stars, that then exert large gravita­
tional forces. The electrostatic force, on the other hand, is re­
pulsive for charges of the same sign, so it is unable to collect 
either positive charge or negative charge into large concen­
trations that would then exert large electrostatic forces. Although the gravitational force is many times weaker 

Additional examples, video, and practice available at WileyPLUS 

Fig. 21 -11 A photograph of trails 
of bubbles left in a bubble chamber 
by an electron and a positron. The 
pair of particles was produced by a 
gamma ray that entered the chamber 
directly from the bottom. Being elec­
trically neutral, the gamma ray did 
not generate a telltale trail of bub­
bles along its path, as the electron 
and positron did. (Courtesy 
Lawrence Berkeley Laboratory) 

1 Charge Is Conserved 
If you rub a glass rod with silk, a positive charge appears on the rod. Measure­
ment shows that a negative charge of equal magnitude appears on the silk. This 
suggests that rubbing does not create charge but only transfers it from one body 
to another, upsetting the electrical neutrality of each body during the process. 
This hypothesis of conservation of charge, first put forward by Benjamin 
Franklin, has stood up under close examination, both for large-scale charged 
bodies and for atoms, nuclei, and elementary particles. No exceptions have ever 
been found. Thus, we add electric charge to our list of quantities-including 
energy and both linear and angular momentum - that obey a conservation law. 

Important examples of the conservation of charge occur in the radioactive 
decay of nuclei, in which a nucleus transforms into (becomes) a different type of 
nucleus. For example, a uranium-238 nucleus e38U) transforms into a thorium-
234 nucleus e34Th) by emitting an alpha particle. Because that particle has the 
same makeup as a helium-4 nucleus, it has the symbol 4He. The number used in 
the name of a nucleus and as a superscript in the symbol for the nucleus is called 
the mass number and is the total number of the protons and neutrons in the 
nucleus. For example, the total number in 238U is 238. The number of protons in 
a nucleus is the atomic number Z, which is listed for all the elements in Appendix 
F. From that list we find that in the decay 

(21-13) 

the parent nucleus 238U contains 92 protons (a charge of +92e), the daughter nucleus 
234Th contains 90 protons (a charge of +90e), and the emitted alpha particle 4He con­
tains 2 protons (a charge of +2e). We see that the total charge is +92e before and after 
the decay; thus, charge is conserved. (The total number of protons and neutrons is also 
conserved: 238 before the decay and 234 + 4 = 238 after the decay.) 

Another example of charge conservation occurs when an electron e- (charge 
-e) and its antiparticle, the positron e+ (charge +e), undergo an annihilation 
process, transforming into two gamma rays (high-energy light): 

(annihilation). (21-14) 

In applying the conservation-of-charge principle, we must add the charges alge­
braically, with due regard for their signs. In the annihilation process of Eq. 21-14 
then, the net charge of the system is zero both before and after the event. Charge 
is conserved. 

In pair production, the converse of annihilation, charge is also conserved. In 
this process a gamma ray transforms into an electron and a positron: 

(pair production). (21-15) 

Figure 21-11 shows such a pair-production event that occurred in a bubble cham-
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ber. A gamma ray entered the chamber from the bottom and at one point trans­
formed into an electron and a positron. Because those new particles were 
charged and moving, each left a trail of tiny bubbles. (The trails were curved 
because a magnetic field had been set up in the chamber.) The gamma ray, being 
electrically neutral, left no trail. Still, you can tell exactly where it underwent pair 
production-at the tip of the curved V, which is where the trails of the electron 
and positron begin. 

Electric Charge The strength of a particle's electrical interac­
tion with objects around it depends on its electric charge, which 
can be either positive or negative. Charges with the same sign repel 
each other, and charges with opposite signs attract each other. An 
object with equal amounts of the two kinds of charge is electrically 
neutral, whereas one with an imbalance is electrically charged. 

Conductors are materials in which a significant number of 
charged particles (electrons in metals) are free to move. The 
charged particles in nonconductors, or insulatOl's, are not free to 
move. 

The Coulomb and Ampere The SI unit of charge is the 
coulomb (C). It is defined in terms of the unit of current, the am­
pere (A), as the charge passing a particular point in 1 second when 
there is a current of 1 ampere at that point: 

1 C = (1 A)(l s). 

This is based on the relation between current i and the rate dqldt at 
which charge passes a point: 

. dq 
z=-

dt 
(electric current). (21-3) 

Coulomb's Law Coulomb's law describes the electrostatic 
force between small (point) electric charges q 1 and q2 at rest (or 

Figure 21-12 shows 
four situations in which 
five charged particles are 
evenly spaced along an 
axis. The charge values 
are indicated except for 
the central particle, which 
has the same charge in all 
four situations. Rank the 

(1) ------<>-----<>-----<>-----<>-
-e -e +e-e 

(2) ------<>-----<>-----<>-----<>-
+e +e +e-e 

(3) ------<>-----<>-----<>-----<>-
-e -e +e +e 

(4) ------<>-----<>-----<>----
-e +e +e-e 

situations according to Fig.21-12 Question 1. 
the magnitude of the net 
electrostatic force on the central particle, greatest first. 

Figure 21-13 shows three pairs of identical spheres that are to 
be touched together and then separated. The initial charges on them 
are indicated. Rank the pairs according to (a) the magnitude of the 
charge transferred during touching and (b) the charge left on the 
positively charged sphere, greatest first. 

nearly at rest) and separated by a distance 1': 

F = _1_ I ql 11 q21 
41TBO 1'2 

(Coulomb's law). (21-4) 

Here BO = 8.85 X 10 -12 c2/N . m2 is the permittivity constant, and 
1/47TBO = k = 8.99 X 109 N· m2/C 2• 

The force of attraction or repulsion between point charges at 
rest acts along the line joining the two charges. If more than two 
charges are present, Eq. 21-4 holds for each pair of charges. The net 
force on each charge is then found, using the superposition princi­
ple, as the vector sum of the forces exerted on the charge by all the 
others. 

The two shell theorems for electrostatics are 

A shell of uniform charge attracts or repels a charged particle 
that is outside the shell as if all the shell's charge were concen­
trated at its center. 

If a charged particle is located inside a shell ofuniform charge, 
there is no net electrostatic force on the particle frol11 the shell. 

The Elementary Charge Electric charge is quantized: any 
charge can be written as ne, where n is a positive or negative inte­
ger and e is a constant of nature called the elementary charge 
(= 1.602 X 10 -19 C). Electric charge is conserved: the net charge of 
any isolated system cannot change. 

+6e -4e 

(1) 

o +2e 

(2) 

Fig.21-13 Question 2. 

-12e +14e 

(3) 

Figure 21-14 shows four situations in which charged particles are 
fixed in place on an axis. In which situations is there a point to the left 
of the particles where an electron will be in equilibrium? 

~ OJ " " +q -3q -q +3q 

(a) (b) 

" .. " €I 

+3q -q -3q +q 

(e) (d) 

Fig. 21-14 Question 3. 
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Figure 21-15 shows two charged 
particles on an axis. The charges are -3q -q 

free to move. However, a third Fig.21-15 Question 4. 
charged particle can be placed at a 
certain point such that all three particles are then in equilibrium. (a) 
Is that point to the left of the first two particles, to their right, or be­
tween them? (b) Should the third particle be positively or negatively 
charged? (c) Is the equilibrium stable or unstable? 

In Fig. 21-16, a central particle of 
charge -q is surrounded by two cir­
cular rings of charged particles. What 
are the magnitude and direction of 
the net electrostatic force on the cen­
tral particle due to the other parti­
cles? (Hint: Consider symmetry.) 

A positively charged ball is 
brought close to an electrically neu-

+4q 

tral isolated conductor. The conduc- -2q -2q 
tor is then grounded while the ball 
is kept close. Is the conductor +4q 
charged positively, charged nega-

Fig.21-16 Question 5. 
tively, or neutral if (a) the ball is first 
taken away and then the ground connection is removed and (b) 
the ground connection is first removed and then the ball is taken 
away? 

Figure 21-17 shows three situations involving a charged parti­
cle and a uniformly charged spherical shell. The charges are given, 
and the radii of the shells are indicated. Rank the situations ac­
cording to the magnitude of the force on the particle due to the 
presence of the shell, greatest first. 

--+-- - - -'-c~ - --- T ---
+6q ... I 

\ d 
_________ L __ L __ 

2\+5Q 

(a) 

Fig.21-17 

+2q -q 
~-------------~-

-R\:)--------
-4Q 

(b) 

Question 7. 

\"! 
R/2 
+SQ 

(c) 

Figure 21-18 shows four arrangements of charged particles. 

p p 

d d 

P e 
+Q 2d +Q 2d 

(a) (b) 

e e 

d d 

P e 
+Q 2d +Q 2d 

(c) (d) 

Fig.21-18 Question 8. 

Rank the arrangements according to the magnitude of the net 
electrostatic force on the particle with charge +Q, greatest 
first. 

9 Figure 21-19 shows four situations in which particles of 
charge +q or -q are fixed in place. In each situation, the parti­
cles on the x axis are equidistant from the y axis. First, consider 
the middle particle in situation 1; the middle particle experiences 
an electrostatic force from each of the other two particles. (a) 
Are the magnitudes F of those forces the same or different? (b) 
Is the magnitude of the net force on the middle particle equal to, 
greater than, or less than 2F? (c) Do the x components of the 
two forces add or cancel? (d) Do their y components add or can­
cel? (e) Is the direction of the net force on the middle particle 
that of the canceling components or the adding components? (f) 
What is the direction of that net force? Now consider the re­
maining situations: What is the direction of the net force on the 
middle particle in (g) situation 2, (h) situation 3, and (i) situation 
4? (In each situation, consider the symmetry of the charge distri­
bution and determine the canceling components and the adding 
components.) 

)' )' 

+q -q 

x x 
+q +q +q +q 

(1) (2) 

)' )' 

-q 

+q 

x x 
+q -q +q -q 

(3) (4) 

Fig.21-19 Question 9. 

In Fig. 21-20, a central particle of charge - 2q is surrounded by a 
square array of charged particles, separated by either distance d or d/2 
along the perimeter of the square. What are the magnitude and direc­
tion of the net electrostatic force on the central particle due to the 
other particles? (Hint: Consideration of symmetry can greatly reduce 
the amount of work required here.) 

+2q 
-7q 

+4q 

-5q -3q 

+3q -~q 

-3q -5q 

+4q 
-7q 

+2q 

Fig. 21-20 Question 10. 
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Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at http://www.wiley.com/college/halliday 
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Coulomb's Law 
SSM ILW Of the charge Q initially on a tiny sphere, a portion 

q is to be transferred to a second, nearby sphere. Both spheres can 
be treated as particles. For what value of qlQ will the electrostatic 
force between the two spheres be maximized? 

Identical isolated conducting spheres 1 and 2 have equal 
charges and are separated by a distance that is large compared with 
their diameters (Fig. 21-21a). The electrostatic force acting on 
sphere 2 due to sphere 1 is f. Suppose now that a third identical 
sphere 3, having an insulating handle and initially neutral, is 
touched first to sphere 1 (Fig. 21-21b), then to sphere 2 (Fig. 21-21c), 
and finally removed (Fig. 21-21d). The electrostatic force that now 
acts on sphere 2 has magnitude F'. What is the ratio F'IF? 

(a) (b) 

(e) (d) 

Fig. 21-21 Problem 2. 

SSM What must be the distance between point charge ql = 

26.0 fLC and point charge q2 = -47.0 fLC for the electrostatic force 
between them to have a magnitude of 5.70 N? 

In the return stroke of a typical lightning bolt, a current 
of 2.5 X 104 A exists for 20 fLs. How much charge is transferred in 
this event? 

A particle of charge + 3.00 X 10 -6 C is 12.0 cm distant from a 
second particle of charge -1.50 X 10 -6 C. Calculate the magni­
tude of the electrostatic force between the particles. 

IlW Two equally charged particles are held 3.2 X 10-3 m 
apart and then released from rest. The initial acceleration of the 
first particle is observed to be 7.0 m/s2 and that of the second to 
be 9.0 m/s2• If the mass of the first particle is 6.3 X 10-7 kg, what 
are (a) the mass of the second particle and (b) the magnitude of 
the charge of each particle? 

In Fig. 21-22, three charged particles lie on an x axis. Particles 
1 and 2 are fixed in place. Particle 3 is free to move, but the net 

I--L 12---+-- L23----4 
:&/i II II X 
1 2 3 

Fig. 21-22 Problems 7 and 40. 

electrostatic force on it from parti­
cles 1 and 2 happens to be zero. If 
L23 = LIz, what is the ratio q1lq2? 

In Fig. 21-23, three identical 
conducting spheres initially have 
the following charges: sphere A, 4Q; 
sphere B, -6Q; and sphere C, O. 
Spheres A and B are fixed in place, 
with a center-to-center separation 
that is much larger than the spheres. 

Fig. 21-23 

Problems 8 and 65. 

Two experiments are conducted. In experiment 1, sphere C is 
touched to sphere A and then (separately) to sphere B, and then it is 
removed. In experiment 2, starting with the same initial states, the 
procedure is reversed: Sphere C is touched to sphere B and then 
(separately) to sphere A, and then it is removed. What is the ratio of 
the electrostatic force between A and B at the end of experiment 2 to 
that at the end of experiment 1 ? 

SSM WWW Two identical conducting spheres, fixed in 
place, attract each other with an electrostatic force of 0.108 N when 
their center-to-center separation is 50.0 cm. The spheres are then 
connected by a thin conducting wire. When the wire is removed, 
the spheres repel each other with an electrostatic force of 0.0360 N. 
Of the initial charges on the spheres, 
with a positive net charge, what was (a) )' 

the n(egative charge on one of them 11 a~21 
and b) the positive charge on the 
other? 

In Fig. 21-24, four particles a a 

form a square. The charges are ql = 1 I 
q
Q

4
/
= ifQ ahnd q2 =lq3 = q. ~a) fWhat is x 
q tenet e ectrostatlc orce on 31-----a~4 

particles 1 and 4 is zero? (b) Is there 
any value of q that makes the net elec­
trostatic force on each of the four parti­
cles zero? Explain. 

Fig. 21-24 

Problems 10, 11, and 70. 

ILW In Fig. 21-24, the particles have charges qJ = -q2 = 100nC 
and q3 = -q4 = 200 nC, and distance a = 5.0 cm. What are the (a) x 
and (b) Y components of the net electrostatic force on particle 3? 

Two particles are fixed on an x axis. Particle 1 of charge 40 fLC is 
located at x = -2.0 cm; particle 2 of charge Q is located at x = 3.0 cm. 
Particle 3 of charge magnitude 20 fLC is released from rest on the y 
axis at y = 2.0 cm. What is the value of Q if the initial acceleration of 
particle 3 is in the positive direction of (a) the x axis and (b) the y axis? 

In Fig. 21-25, particle 1 of charge + 1.0 fLC and particle 2 
of charge -3.0 fLC are held at separa­
tion L = 10.0 cm on an x axis. If particle 
3 of unknown charge q3 is to be located 
such that the net electrostatic force on 
it from particles 1 and 2 is zero, what 

)' 

_____ 1 ...... 1---........,; ......... - x 

r-- L -1 
must be the (a) x and (b) y coordinates Fig.21-25 Problems 
of particle 3? 13,19,30,58, and 67. 
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Three particles are fixed on an x axis. Particle 1 of charge q1 is 
atx = -a, and particle 2 of charge q2 is atx = +a. If their net electro­
static force on particle 3 of charge +Q is to be zero, what must be the 
ratio q11q2 when particle 3 is at (a) x = +0.500a and (b) x = + 1.50a? 

The charges and coordinates of two charged particles 
held fixed in an xy plane are q1 = +3.0 /-LC, Xl = 3.5 cm, Y1 = 0.50 
cm, and q2 = -4.0/-LC, X2 = -2.0 cm, Yz = 1.5 cm. Find the (a) 
magnitude and (b) direction of the electrostatic force on particle 2 
due to particle 1. At what (c) x and (d) Y coordinates should a third 
particle of charge q3 = +4.0 /-LC be placed such that the net elec­
trostatic force on particle 2 due to particles 1 and 3 is zero? 

In Fig. 21-26a, particle 1 (of charge q1) and particle 2 (of 
charge q2) are fixed in place on an x axis, 8.00 cm apart. Particle 3 (of 
charge q3 = +8.00 X 10-19 C) is to be placed on the line between par­
ticles 1 and 2 so that they produce a net electrostatic force F;,uel on it. 
Figure 21-26b gives the x component of that force versus the coordi­
nate x at which particle 3 is placed. The scale of the x axis is set by Xs = 
8.0 cm.What are (a) the sign of charge ql and (b) the ratio q21q1? 

2 
@ x 

f-+----+--+-I- x (em) 

(a) 
-1 

(b) 

Fig. 21-26 Problem 16. 

In Fig. 21-27a, particles 1 and 2 
have charge 20.0 /-LC each and are 
held at separation distance d = 1.50 
m. (a) What is the magnitude of the 
electrostatic force on particle 1 due 
to particle 2? In Fig. 21-27b, particle 3 
of charge 20.0 /-LC is positioned so as 
to complete an equilateral triangle. 
(b) What is the magnitude of the net 
electrostatic force on particle 1 due 
to particles 2 and 3? 

In Fig. 21-28a, three positively 
charged particles are fixed on an x 
axis. Particles Band C are so close to 

lilT ,,~ 
d~ 

d 3" 

2,,1 d/ 
,,~ 

(a) (b) 

Fig. 21-27 Problem 17. 

------@@__--... ~~@--x 
A Be 

(a) 

each other that they can be consid- ... "..-----,,@__--_,,--x 
ered to be at the same distance from B A e 
particle A. The net force on particle (b) 

A due to particles Band Cis 2.014 X 
10-23 N in the negative direction of Fig.21-28 Problem 18. 

the x axis. In Fig. 21-28b, particle B 
has been moved to the opposite side of A but is still at the same 
distance from it. The net force on A is now 2.877 X 10 -24 N in the 
negative direction of the x axis. What is the ratio qClqB? 

SSM www In Fig. 21-25, particle 1 of charge +q and par­
ticle 2 of charge +4.00q are held at separation L = 9.00 cm on an 
x axis. If particle 3 of charge q3 is to be located such that the 
three particles remain in place when released, what must be the (a) 
x and (b) Y coordinates of particle 3, and (c) the ratio q3lq? 

Figure 21-29a shows an arrangement of three charged par­
ticles separated by distance d. Particles A and C are fixed on the x 
axis, but particle B can be moved along a circle centered on parti-

cle A. During the movement, a radial line between A and B makes an 
angle () relative to the positive direction of the x axis (Fig. 21-29b). 
The curves in Fig. 21-29c give, for two situations, the magnitude Fuel of 
the net electrostatic force on particle A due to the other particles. 
That net force is given as a function of angle () and as a multiple of a 
basic amount Fo. For example on curve 1, at () = 1800

, we see that 
Fnet = 2Fo. (a) For the situation corresponding to curve 1, what is the 
ratio of the charge of particle C to that of particle B (including sign)? 
(b) For the situation corresponding to curve 2, what is that ratio? 
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Fig. 21-29 Problem 20. 

A nonconducting spherical shell, with an inner radius of 4.0 
cm and an outer radius of 6.0 cm, has charge spread nonuniformly 
through its volume between its inner and outer surfaces. The vol­
ume charge density p is the charge per unit volume, with the unit 
coulomb per cubic meter. For this shell p = blr, where r is the distance 
in meters from the center of the shell and b = 3.0 /-LC/m2. What is the 
net charge in the shell? 

Figure 21-30 shows an 
arrangement of four charged parti­
cles, with angle () = 30.00 and dis­
tance d = 2.00 cm. Particle 2 has 
charge q2 = +8.00 X 10-19 C; par­
ticles 3 and 4 have charges q3 = 
q4 = -1.60 X 10-19 C. (a) What is 

...­...-
...- () 

y 
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2 

distance D between the origin and Fig.21-30 Problem 22. 
particle 2 if the net electrostatic 
force on particle 1 due to the other particles is zero? (b) If parti­
cles 3 and 4 were moved closer to the x axis but maintained their 
symmetry about that axis, would the required value of D be 
greater than, less than, or the same as in part (a)? 

In Fig. 21-31, particles 1 and 2 of 
y 

charge ql = q2 = +3.20 X 10-19 Care 1 

on a y axis at distance d = 17.0 cm T 
from the origin. Particle 3 of charge d 

q3 = +6.40 X 10-19 C is moved gradu- + f-------i
3
---X 

ally along the x axis from x = 0 to x = d 

+5.0 m. At what values of x will the .L 2 
magnitude of the electrostatic force on 
the third particle from the other two Fig. 21-31 Problem 23. 
particles be (a) minimum and (b) 
maximum? What are the (c) minimum and (d) maximum magnitudes? 

Charge Is Quantized 
Two tiny, spherical water drops, with identical charges 

of -1.00 X 10 -16 C, have a center-to-center separation of 1.00 cm. 
(a) What is the magnitude of the electrostatic force acting between 
them? (b) How many excess electrons are on each drop, giving it 
its charge imbalance? 



IlW How many electrons would have to be removed from a 
coin to leave it with a charge of + 1.0 X 10 -7 C? 

What is the magnitude of the electrostatic force between a 
singly charged sodium ion (Na+, of charge +e) and an ad­
jacent singly charged chlorine ion (Cl-, of charge -e) in a salt crys­
tal if their separation is 2.82 X 10-10 m? 

SSM The magnitude of the electrostatic force between two 
identical ions that are separated by a distance of 5.0 X 10-10 m is 
3.7 X 1O-9N. (a) What is the charge of each ion? (b) How many 
electrons are "missing" from each ion (thus giving the ion its 
charge imbalance)? 

A current of 0.300 A through your chest can send your 
heart into fibrillation, ruining the normal rhythm of heartbeat and 
disrupting the flow of blood (and thus oxygen) to your brain. If 
that current persists for 2.00 min, how many conduction electrons 
pass through your chest? 

In Fig. 21-32, particles 2 
and 4, of charge -e, are fixed in 
place on a y axis, at yz = -10.0 cm 
and Y4 = 5.00 cm. Particles 1 and 3, 
of charge -e, can be moved along 
the x axis. Particle 5, of charge +e, is 
fixed at the origin. Initially particle 1 
is at Xl = -10.0 cm and particle 3 is 

y 

4 

-.------~----~~-x 
3 

2 

at X3 = 10.0 cm. (a) To what X value Fig.21-32 Problem 29. 
must particle 1 be moved to rotate 
the direction of the net electric force Fnet on particle 5 by 30° coun­
terclockwise? (b) With particle 1 fixed at its new position, to what X 

value must you move particle 3 to rotate Fnet back to its original 
direction? 

In Fig. 21-25, particles 1 and 2 are fixed in place on anx axis, at a 
separation of L = 8.00 cm. Their charges are ql = +e and qz = -27e. 
Particle 3 with charge q3 = +4e is to be placed on the line between 
particles 1 and 2, so that they produce a net electrostatic force F3•net on 
it. (a) At what coordinate should particle 3 be placed to minimize the 
magnitude ofthat force? (b) What is that minimum magnitude? 

IlW Earth's atmosphere is constantly bombarded by cosmic 
ray protons that originate somewhere in space. If the protons all 
passed through the atmosphere, each square meter of Earth's sur­
face would intercept protons at the average rate of 1500 protons 
per second. What would be the electric current intercepted by the 
total surface area of the planet? 

Figure 21-33a shows charged particles 1 and 2 that are fixed in 
place on an x axis. Particle 1 has a charge with a magnitude of iqli = 

8.ODe. Particle 3 of charge q3 = +8.ODe is initially on the x axis near par­
ticle 2. Then particle 3 is gradually moved in the positive direction of 

(a) 

2 
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Fig. 21-33 Problem 32. 
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Fig. 21-34 Problem 34. 

SSM In crystals of the salt cesium chloride, cesium ions 
Cs+ form the eight corners of a cube and a chlorine ion Cl- is at the 
cube's center (Fig. 21-35). The edge length of the cube is 0040 nm. 
The Cs+ ions are each deficient by one electron (and thus each has 
a charge of +e), and the Cl- ion has one excess electron (and thus 
has a charge of - e). (a) What is the magnitude of the net electrosta­
tic force exerted on the Cl- ion by the eight Cs+ ions at the corners 
of the cube? (b) If one of the Cs+ ions is missing, the crystal is said 
to have a defect; what is the magnitude of the net electrostatic force 
exerted on the CI- ion by the seven remaining Cs+ ions? 

1 
OAOnm 

I---------K.]!I J 
Fig. 21-35 Problem 35. 

Charge Is Conserved 
Electrons and positrons are produced by the nuclear transforma­

tions of protons and neutrons known as beta decay. (a) If a proton trans­
forms into a neutron, is an electron or a positron produced? (b) If a neu­
tron transforms into a proton, is an electron or a positron produced? 

SSM Identify X in the following nuclear reactions: (a) IH + 
9Be -'> X + n; (b) 12C + IH -'> X; (c) 15N + IH -'> 4He + X. 
Appendix F will help. 

Additional Problems 
Figure 21-36 shows four 

identical conducting spheres that are 
actually well separated from one an­
other. Sphere W (with an initial 
charge of zero) is touched to sphere 

A B c 

Fig. 21-36 Problem 38. 
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A and then they are separated. Next, sphere W is touched to sphere 
B (with an initial charge of -32e) and then they are separated. 
Finally, sphere W is touched to sphere C (with an initial charge of 
+48e), and then they are separated. The final charge on sphere W is 
+ 18e. What was the initial charge on sphere A? 

SSM In Fig. 21-37, particle 1 
of charge +4e is above a floor by 
distance d1 = 2.00 mm and particle 
2 of charge +6e is on the floor, at 
distance dz = 6.00 mm horizontally 
from particle 1. What is the x com­
ponent of the electrostatic force on 

y 

~-,.,T,l--f ~t~l ~...",;hc-' ~_ x 

~d2~ 
particle 2 due to particle I? Fig. 21 -37 Problem 39. 

In Fig. 21-22, particles 1 and 2 are fixed in place, but particle 3 
is free to move. If the net electrostatic force on particle 3 due to 
particles 1 and 2 is zero and L Z3 = 2.00L1Z, what is the ratio q/qz? 

(a) What equal positive charges would have to be placed on 
Earth and on the Moon to neutralize their gravitational attraction? 
(b) Why don't you need to know the lunar distance to solve this prob­
lem? (c) How many kilograms of hydrogen ions (that is, protons) 
would be needed to provide the positive charge calculated in (a)? 

In Fig. 21-38, two tiny conducting 
balls of identical mass m and identical 
charge q hang from nonconducting 
threads of length L. Assume that (J is so 
small that tan (J can be replaced by its 
approximate equal, sin (J. (a) Show that 

( 
qZL )113 

x = 21T1>omg 

gives the equilibrium separation x of 
the balls. (b) If L = 120 cm, m = 10 g, 
and x = 5.0 cm, what is Iql? 

(a) Explain what happens to the 
balls of Problem 42 if one of them is dis-
charged (loses its charge q to, say, the 

Fig. 21-38 

Problems 42 and 43. 

q 

ground). (b) Find the new equilibrium separation x, using the given 
values of Land 111 and the computed value of Iql. 

SSM How far apart must two protons be if the magnitude of the 
electrostatic force acting on either one due to the other is equal to the 
magnitude of the gravitational force on a proton at Earth's surface? 

How many megacoulombs of positive charge are in 1.00 
mol of neutral molecular-hydrogen gas (Hz)? 

In Fig. 21-39, four particles are fixed along an x axis, separated 
by distances d = 2.00 cm. The charges are qj = +2e, qz = -e, q3 = 

+e, and q4 = +4e, with e = 1.60 X 10-19 C. In unit-vector notation, 
what is the net electrostatic force on (a) particle 1 and (b) particle 
2 due to the other particles? 

d d d 
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Fig. 21-39 Problem 46. 

Point charges of +6.0 fLC and -4.0 fLC are placed on an 
x axis, at x = 8.0 m and x = 16 m, respectively. What charge must 
be placed at x = 24 m so that any charge placed at the origin would 
experience no electrostatic force? 

In Fig. 21-40, three identical conduct­
ing spheres form an equilateral triangle of 
side length d = 20.0 cm. The sphere radii 
are much smaller than d, and the sphere 
charges are qA = -2.00 nC, qB = -4.00 
nC, and qc = +8.00 nC. (a) What is the 
magnitude of the electrostatic force be­
tween spheres A and C? The following 
steps are then taken: A and Bare 
connected by a thin wire and then discon­

Fig. 21-40 

Problem 48. 

nected; B is grounded by the wire, and the wire is then removed; B 
and C are connected by the wire and then disconnected. What now 
are the magnitudes of the electrostatic force (b) between spheres 
A and C and (c) between spheres Band C? 

A neutron consists of one "up" quark of charge +2e13 and two 
"down" quarks each having charge -e/3. If we assume that the down 
quarks are 2.6 X 10-15 m apart inside the neutron, what is the magni­
tude of the electrostatic force between them? 

Figure 21-41 shows a long, nonconducting, massless rod of 
length L, pivoted at its center and balanced with a block of weight W 
at a distance x from the left end. At the left and right ends of the rod 
are attached small conducting spheres with positive charges q and 2q, 
respectively. A distance h directly beneath each of these spheres is a 
fixed sphere with positive charge Q. (a) Find the distance x when the 
rod is horizontal and balanced. (b) What value should h have so that 
the rod exerts no vertical force on the bearing when the rod is hori­
zontal and balanced? 

I: L 'I x 'I 
T +q Bearing 
11 

1 +Q 

Fig. 21-41 Problem 50. 

A charged nonconducting rod, with a length of 2.00 m and a 
cross-sectional area of 4.00 cm2, lies along the positive side of an x 
axis with one end at the origin. The volume charge density p is 
charge per unit volume in coulombs per cubic meter. How many 
excess electrons are on the rod if p is (a) uniform, with a value of 
-4.00 fLC/m\ and (b) nonuniform, with a value given by p = bxz, 
where b = -2.00 fLC/m5? 

A particle of charge Q is fixed at the origin of an xy coordi­
nate system. At t = 0 a particle (m 0.800 g, q = 4.00 fLC) is lo­
cated on the x axis at x = 20.0 cm, moving with a speed of 50.0 m/s 
in the positive y direction. For what value of Q will the moving par­
ticle execute circular motion? (Neglect the gravitational force on 
the particle.) 

What would be the magnitude of the electrostatic force be­
tween two 1.00 C point charges separated by a distance of (a) 1.00 
m and (b) 1.00 km if such point charges existed (they do not) and 
this configuration could be set up? 

A charge of 6.0 fLC is to be split into two parts that are then 
separated by 3.0 mm. What is the maximum possible magnitude of 
the electrostatic force between those two parts? 



Of the charge Q on a tiny sphere, a fraction a is to be trans­
ferred to a second, nearby sphere. The spheres can be treated as 
particles. (a) What value of a maximizes the magnitude F of the 
electrostatic force between the two spheres? What are the (b) 
smaller and (c) larger values of a that put F at half the maximum 
magnitude? 

If a cat repeatedly rubs against your cotton slacks on a 
dry day, the charge transfer between the cat hair and the cotton can 
leave you with an excess charge of -2.00 f.J.,e. (a) How many elec­
trons are transferred between you and the cat? 

You will gradually discharge via the floor, but if instead of 
waiting, you immediately reach toward a faucet, a painful spark 
can suddenly appear as your fingers near the faucet. (b) In that 
spark, do electrons flow from you to the faucet or vice versa? (c) 
Just before the spark appears, do you induce positive or negative 
charge in the faucet? (d) If, instead, the cat reaches a paw toward 
the faucet, which way do electrons flow in the resulting spark? (e) 
If you stroke a cat with a bare hand on a dry day, you should take 
care not to bring your fingers near the cat's nose or you will hurt it 
with a spark. Considering that cat hair is an insulator, explain how 
the spark can appear. 

We know that the negative charge on the electron and the 
positive charge on the proton are equal. Suppose, however, that 
these magnitudes differ from each other by 0.00010%. With what 
force would two copper coins, placed 1.0 m apart, repel each other? 
Assume that each coin contains 3 X 1022 copper atoms. (Hint: A 
neutral copper atom contains 29 protons and 29 electrons.) What 
do you conclude? 

In Fig. 21-25, particle 1 of charge -SO.O f.J.,C and particle 2 of 
charge +40.0 f.J.,C are held at separation L = 20.0 cm on an x axis. 
In unit-vector notation, what is the net electrostatic force on parti­
cle 3, of charge q3 = 20.0 f.J.,C, if particle 3 is placed at (a) x = 40.0 
cm and (b) x = SO.O cm? What should be the (c) x and (d) Y coordi­
nates of particle 3 if the net electrostatic force on it due to particles 
1 and 2 is zero? 

What is the total charge in coulombs of 75.0 kg of electrons? 

In Fig. 21-42, six charged particles surround particle 7 at radial 
distances of either d = 1.0 cm or 2d, as drawn. The charges are ql = 

+2e, q2 = +4e, q3 = +e, q4 = +4e, q5 = +2e, q6 = +Se, q7 = +6e, 
with e = 1.60 X 10-19 e. What is the magnitude of the net electrosta­
tic force on particle 7? 
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Fig.21-42 Problem 60. 

Three charged particles form a triangle: particle 1 with charge 
QI = So.o nC is at xy coordinates (0, 3.00 mm), particle 2 with 
charge Q2 is at (0, -3.00 mm), and particle 3 with charge q = lS.0 
nC is at (4.00 mm, 0). In unit-vector notation, what is the electro­
static force on particle 3 due to the other two particles if Q2 is equal 
to (a) SO.O nC and (b) -SO.O nC? 
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SSM In Fig. 21-43, what are the (a) magnitude and (b) direc­
tion of the net electrostatic force on particle 4 due to the other 
three particles? All four particles are fixed in the xy plane, and ql = 
-3.20 X 10-19 C, q2 = +3.20 X 10-19 C, q3 = +6.40 X 10-19 C, q4 = 
+3.20 X 10-19 C, 81 = 35.0D ,d1 = 3.00 cm,and d2 = d3 = 2.00 cm. 
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Fig.21-43 Problem 62. 

Two point charges of 30 nC and -40 nC are held fixed on an x 
axis, at the origin and at x = 72 cm, respectively. A particle with a 
charge of 42 f.J.,C is released from rest at x = 2S cm. If the initial ac­
celeration of the particle has a magnitude of 100 km/s2, what is the 
particle's mass? 

Two small, positively charged spheres have a combined 
charge of 5.0 X 10 -5 e. If each sphere is repelled from the other by 
an electrostatic force of 1.0 N when the spheres are 2.0 m apart, 
what is the charge on the sphere with the smaller charge? 

The initial charges on the three identical metal spheres in Fig. 
21-23 are the following: sphere A, Q; sphere B, -QI4; and sphere 
C, Q/2, where Q = 2.00 X 10-14 e. Spheres A and B are fixed in 
place, with a center-to-center separation of d = 1.20 m, which is 
much larger than the spheres. Sphere C is touched first to sphere A 
and then to sphere B and is then removed. What then is the magni­
tude of the electrostatic force between spheres A and B? 

An electron is in a vacuum near Earth's surface and located at 
y = 0 on a vertical y axis. At what value of y should a second electron 
be placed such that its electrostatic force on the first electron balances 
the gravitational force on the first electron? 

SSM In Fig. 21-25, particle 1 of charge -S.OOq and particle 2 
of charge + 2.00q are held at separation L on an x axis. If particle 3 
of unknown charge q3 is to be located such that the net electrosta­
tic force on it from particles 1 and 2 is zero, what must be the (a) x 
and (b) y coordinates of particle 3? 

Two engineering students, John with a mass of 90 kg and 
Mary with a mass of 45 kg, are 30 m apart. Suppose each has a 
0.01 % imbalance in the amount of positive and negative charge, 
one student being positive and the other negative. Find the order 
of magnitude of the electrostatic force of attraction between them 
by replacing each student with a sphere of water having the same 
mass as the student. 

In the radioactive decay of Eq. 21-13, a 238U nucleus transforms 
to 234Th and an ejected 4He. (These are nuclei, not atoms, and thus 
electrons are not involved.) When the separation between 234Th and 
4He is 9.0 X 10-15 m, what are the magnitudes of (a) the electrostatic 
force between them and (b) the acceleration of the 4He particle? 

In Fig. 21-24, four particles form a square. The charges are 
q1 +Q, q2 = q3 = q, and q4 = -2.00Q. What is qlQ if the net 
electrostatic force on particle 1 is zero? 
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Fig. 22-1 (a) A positive test charge 
qo placed at point P near a charged ob­
ject. An electrostatic force F acts on the 
test charge. (b) The electric field Eat 
point P produced by the charged object. 

Some Electric Fields 

Field Location 
or Situation Value (N/C) 

At the surface of a 
uranium nucleus 3 X 1021 

Within a hydrogen 
atom, at a radius 
of5.29 X 10-11 m 5 X 1011 

Electric breakdown 
occurs in air 3 X 106 

Near the charged 
drum of a photocopier 105 

N ear a charged comb 103 

In the lower atmosphere 102 

Inside the copper wire 
of household circuits 10-2 

I 

The physics of the preceding chapter tells us how to find the electric 
force on a particle 1 of charge +ql when the particle is placed near a particle 2 of 
charge +q2' A nagging question remains: How does particle 1 "know" of the pres­
ence of particle 2? That is, since the particles do not touch, how can particle 
2 push on particle 1-how can there be such an action at a distance? 

One purpose of physics is to record observations about our world, such as the 
magnitude and direction of the push on particle 1. Another purpose is to provide a 
deeper explanation of what is recorded. One purpose of this chapter is to provide 
such a deeper explanation to our nagging questions about electric force at a dis­
tance. We can answer those questions by saying that particle 2 sets up an electric 
field in the space surrounding itself. If we place particle 1 at any given point in that 
space, the particle "knows" of the presence of particle 2 because it is affected by the 
electric field that particle 2 has already set up at that point. Thus, particle 2 pushes on 
particle 1 not by touching it but by means of the electric field produced by particle 2. 

Our goal in this chapter is to define electric field and discuss howto calculate 
it for various arrangements of charged particles. 

The Electric Field 
The temperature at every point in a room has a definite value. You can measure 
the temperature at any given point or combination of points by putting a ther­
mometer there. We call the resulting distribution of temperatures a temperature 
field. In much the same way, you can imagine a pressure field in the atmosphere; 
it consists of the distribution of air pressure values, one for each point in the 
atmosphere. These two examples are of scalar fields because temperature and air 
pressure are scalar quantities. 

The electric field is a vector field; it consists of a distribution of vectors, one for 
each point in the region around a charged object, such as a charged rod. In princi­
ple, we can define the electric field at some point near the charged object, such as 
point P in Fig. 22-1a, as follows: We first place a positive charge q(h called a test 
charge, at the point. We then measure the electrostatic force F that acts on the test 
charge. Finally, we define the electric field E at point P due to the charged object as 

---> F 
E=-

% 
(electric field). (22-1) 

Thus, the magnitude of the electric field E at point P is E = F/ qQ, and the direction of 
E is that of the force F that acts on the positive test charge. As shown in Fig. 22-1b, 
we represent the electric field at P with a vector whose tail is at P. To define the elec­
tric field within some region, we must similarly define it at all points in the region. 

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1 
shows the electric fields that occur in a few physical situations. 



Although we use a positive test charge to define the electric field of a charged 
object, that field exists independently of the test charge. The field at point P in 
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put 
there. (We assume that in our defining procedure, the presence of the test charge 
does not affect the charge distribution on the charged object, and thus does not 
alter the electric field we are defining.) 

To examine the role of an electric field in the interaction between charged 
objects, we have two tasks: (1) calculating the electric field produced by a given 
distribution of charge and (2) calculating the force that a given field exerts on a 
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for 
several charge distributions. We perform the second task in Sections 22-8 and 
22-9 by considering a point charge and a pair of point charges in an electric field. 
First, however, we discuss a way to visualize electric fields. 

Electric Field lines 
Michael Faraday, who introduced the idea of electric fields in the 19th century, 
thought of the space around a charged body as filled with lines afforce. Although 
we no longer attach much reality to these lines, now usually called electric field 
lines, they still provide a nice way to visualize patterns in electric fields. 

The relation between the field lines and electric field vectors is this: (1) At 
any point, the direction of a straight field line or the direction of the tangent to a 
curved field line gives the direction of E at that point, and (2) the field lines are 
drawn so that the number of lines per unit area, measured in a plane that is 
perpendicular to the lines, is proportional to the magnitude of E. Thus, E is large 
where field lines are close together and small where they are far apart. 

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive 
test charge anywhere near the sphere, an electrostatic force pointing toward the 
center of the sphere will act on the test charge as shown. In other words, the elec­
tric field vectors at all points near the sphere are directed radially toward the 
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b, 
which point in the same directions as the force and field vectors. Moreover, the 
spreading of the field lines with distance from the sphere tells us that the magni­
tude of the electric field decreases with distance from the sphere. 

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field 
vectors at all points near the sphere would be directed radially away from 
the sphere. Thus, the electric field lines would also extend radially away from the 
sphere. We then have the following rule: 

Electric field lines extend away from positive charge (where they originate) and 
toward negative charge (where they terminate). 

Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane) 
with a uniform distribution of positive charge on one side. If we were to place a 

Fig. 22-3 (a) The electrostatic force 
F on a positive test charge near a very -I' 

large, nonconducting sheet with uni- .f ---
formly distributed positive charge on -I' l' Positive test 

l' l' 
one side. (b) The electric field vector E 1flr 

charge 

at the location of the test charge, and l' 

the electric field lines in the space l' l' 
c{ 

.f l' 
near the sheet. The field lines extend -I' -I' 

away from the positively charged -I' 

sheet. (c) Side view of (b). 
(a) 

l' 

(b) 
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(a) 

(b) 

-: 

Positive 
test charge 

Fig. 22-2 (a) The electrostatic force 
F acting on a positive test charge near a 
sphere of uniform negative charge. (b) 
The electric field vector E at the loca­
tion of the test charge, and the electric 
field lines in the space near the sphere. 
The field lines extend toward the nega­
tively charged sphere. (They originate 
on distant positive charges.) 

(c) 
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Fig. 22-4 Field lines for two equal positive 
point charges. The charges repel each other. 
(The lines terminate on distant negative 
charges.) To "see" the actual three-dimen­
sional pattern of field lines, mentally rotate 
the pattern shown here about an axis passing 
through both charges in the plane of the page. 
The three-dimensional pattern and the elec­
tric field it represents are said to have rota­
tional symmetry about that axis. The electric 
field vector at one point is shown; note that it 
is tangent to the field line through that point. 

Fig. 22-5 Field lines for a positive point 
charge and a nearby negative point charge 
that are equal in magnitude. The charges at­
tract each other. The pattern of field lines and 
the electric field it represents have rotational 
symmetry about an axis passing through both 
charges in the plane of the page. The electric 
field vector at one point is shown; the vector 
is tangent to the field line through the point. 

Fig. 22-6 The electric field vectors at 
various points around a positive point 
charge. 

--

positive test charge at any point near the sheet 
of Fig. 22-3a, the net electrostatic force acting on 
the test charge would be perpendicular to the 
sheet, because forces acting in all other direc­
tions would cancel one another as a result of 
the symmetry. Moreover, the net force on the 
test charge would point away from the sheet as 
shown. Thus, the electric field vector at any point 
in the space on either side of the sheet is also 
perpendicular to the sheet and directed away 
from it (Figs. 22-3b and c). Because the charge is 
uniformly distributed along the sheet, all the 

field vectors have the same magnitude. Such an electric field, with the same mag­
nitude and direction at every point, is a uniform electric field. 

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi­
nitely large, but if we consider a region that is near the middle of a real sheet and not 
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c. 

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5 
shows the pattern for two charges that are equal in magnitude but of opposite 
sign, a configuration that we call an electric dipole. Although we do not often use 
field lines quantitatively, they are very useful to visualize what is going on. 

The Electric Field Due to a Point Charge 
To find the electric field due to a point charge q (or charged particle) at any point 
a distance r from the point charge, we put a positive test charge qo at that point. 
From Coulomb's law (Eq. 21-1), the electrostatic force acting on qo is 

P
-> = 1 qqo A 

47TBO 71'· (22-2) 

The direction of F is directly away from the point charge if q is positive, and directly 
toward the point charge if q is negative. The electric field vector is, from Eq. 22-1, 

E= F =_l_!L r 
qo 47TBo r2 

(point charge). (22-3) 

The direction of E is the same as that of the force on the positive test charge: 
directly away from the point charge if q is positive, and toward it if q is negative. 

Because there is nothing special about the point we chose for qo, Eq. 22-3 
gives the field at every point around the point charge q. The field for a positive 
point charge is shown in Fig. 22-6 in vector form (not as field lines). 

We can quickly find the net, or resultant, electric field due to more than one point 
charge. If we place a positive test charge qo near n point charges q I, q2, ... , q", then, 
from Eq. 21-7, the net force Po from the n point charges acting on the test charge is 

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is 

(22-4) 

Here Ei is the electric field that would be set up by point charge i acting alone. 
Equation 22-4 shows us that the principle of superposition applies to electric 
fields as well as to electrostatic forces. 
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CHECKPOINT 1 

The figure here shows a proton p and an electron e on 
an x axis. What is the direction of the electric field due to the electron at (a) point Sand 
(b) point R? What is the direction of the net electric field at (c) point Rand (d) point S? 

Net electric field due to three charged particles 

Figure 22-7a shows three particles with charges ql = +2Q, 
qz = -2Q, and q3 = -4Q, each a distance d from the origin. 
What net electric field £ is produced at the origin? 

Char]es qj, qz, and q3 produce electric field vectors £1> £z, 
and E3, respectively, at the origin, and the net electric field is 
the vector sum £ = £1 + £z + £3' To find this sum, we first 
must find the magnitudes and orientations of the three field 
vectors. 

Magnitudes and directions: To find the magnitude of £1> 
which is due to ql, we use Eq. 22-3, substituting d for rand 
2Q for q and obtaining 

1 2Q 
El =-4--dz ' 

7TBO 

Similarly, we find the magnitudes of £2 and £3 to be 

y 

d 

30° 30° 
----~~~~~-----------x 

30° 
Find the net field 
at this empty point. 

d 

Field away 

(b) 

(a) 

)' )' 

Field toward 
-----*~~------x 

(e) 

Fig. 22-7 (a) Three particles with charges qIl q2, and q3 are at the 
same distance d from the origin. (b) The electric field vectors £1> £z, 
and £3, at the origin due to the three particles. (c) The electric field 
vector £3 and the vector sum £1 + £2 at the origin. 

1 2Q 1 4Q 
Ez = -4--- -dz and E3 = -4--- -dz . 

7TBO 7TBO 

We next must find the orientations of the three electric 
field vectors at the origin. Because ql is a positive charge, 
the field vector it produces points directly away from it, 
and because qz and q3 are both negative, the field vectors 
they produce point directly toward each of them. Thus, the 
three electric fields produced at the origin by the three 
charged particles are oriented as in Fig. 22-7b. (Caution: 
Note that we have placed the tails of the vectors at the 
point where the fields are to be evaluated; doing so de­
creases the chance of error. Error becomes very probable 
if the tails of the field vectors are placed on the particles 
crea ting the fields.) 

Adding the fields: We can now add the fields vectorially 
just as we added force vectors in Chapter 21. However, here 
we can use symmetry to simplify the procedure. From Fig. 
22-7b, we see that electric fields £1 and £z have the same di­
rection. Hence, their vector sum has that direction and has 
the magnitude 

1 2Q 1 2Q 
El + Ez = -4--- -dz + -4--- -dz 

7TBO 7TBO 

1 4Q 

47TBO dZ
' 

which happens to equal the magnitude of field £3' 

We must now combine two vectors, £3 and the vector 
sum £1 + l{, that have the same magnitude and that are 
oriented symmetrically about the x axis, as shown in Fig. 
22-7c. From the symmetry of Fig. 22-7c, we realize that the 
equal y components of our two vectors cancel (one is up­
ward and the other is downward) and the equal x 
components add (both are rightward). Thus, the net electric 
field £ at the origin is in the positive direction of the x axis 
and has the magnitude 

E = 2E3x = 2E3 cos 30° 

1 4Q 6.93Q 
= (2) -4- -d2 (0.866) = 2 . 

7TBo 47TBOd 
(Answer) 

Additional examples, video, and practice available at WileyPLUS 
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-q 

(a) 

Dipole 
center 

Up here the +q 
field dominates. 

Down here the -q 
field dominates. 

(b) 

Fig. 22-8 (a) An electric dipole. The 
electric field vectors E( +) and E( _) at point 
P on the dipole axis result from the dipole's 
two charges. Point P is at distances r( +) and 
r(_) from the individual charges that make 
up the dipole. (b) The dipole moment p of 
the dipole points from the negative charge 
to the positive charge. 

The Electric Field Due to an Electric Dipole 
Figure 22-8a shows two charged particles of magnitude q but of opposite sign, 
separated by a distance d. As was noted in connection with Fig. 22-5, we call this 
configuration an electric dipole. Let us find the electric field due to the dipole of 
Fig. 22-8a at a point P, a distance z from the midpoint of the dipole and on the 
axis through the particles, which is called the dipole axis. 

From symmetry, the electric field E at point P-and also the fields E(+) and 
E(_) due to the separate charges that make up the dipole-must lie along the 
dipole axis, which we have taken to be a z axis. Applying the superposition princi­
ple for electric fields, we find that the magnitude E of the electric field at P is 

E = E(+) - E(_) 

_l __ q _ _ _ l ___ q_ 

41TBO r[+) 41TBO r[_) 

q q 
(22-5) 

After a little algebra, we can rewrite this equation as 

(22-6) 

After forming a common denominator and multiplying its terms, we come to 

(22-7) 

We are usually interested in the electrical effect of a dipole only at distances 
that are large compared with the dimensions of the dipole- that is, at distances such 
that z j» d. At such large distances, we have d/2z ~ 1 in Eq. 22-7. Thus, in our ap­
proximation, we can neglect the d/2z term in the denominator, which leaves us with 

E=_l_ qd 
21TBO Z3' 

(22-8) 

The product qd, which involves the two intrinsic properties q and d of the 
dipole, is the magnitude p of a vector quantity known as the electric dipole moment 
jJ of the dipole. (The unit of Ii is the coulomb-meter.) Thus, we can write Eq. 22-8 as 

(electric dipole). (22-9) 

The direction of Ii is taken to be from the negative to the positive end of the 
dipole, as indicated in Fig. 22-8b. We can use the direction of Ii to specify the 
orientation of a dipole. 

Equation 22-9 shows that, if we measure the electric field of a dipole only at 
distant points, we can never find q and d separately; instead, we can find only their 
product. The field at distant points would be unchanged if, for example, q were 
doubled and d simultaneously halved. Although Eq. 22-9 holds only for distant 
points along the dipole axis, it turns out that E for a dipole varies as 1Ir3 for all 
distant points, regardless of whether they lie on the dipole axis; here r is the dis­
tance between the point in question and the dipole center. 

Inspection of Fig. 22-8 and of the field lines in Fig. 22-5 shows that the direc­
tion of If for distant points on the dipole axis is always the direction of the dipole 
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moment vector p. This is true whether point P in Fig. 22-8a is on the upper or the 
lower part of the dipole axis. 

Inspection of Eq. 22-9 shows that if you double the distance of a point from a di­
pole, the electric field at the point drops by a factor of 8. If you double the distance 
from a single point charge, however (see Eq. 22-3), the electric field drops only by a 
factor of 4. Thus the electric field of a dipole decreases more rapidly with distance 
than does the electric field of a single charge. The physical reason for this rapid de­
crease in electric field for a dipole is that from distant points a dipole looks like two 
equal but opposite charges that almost-but not quite-coincide. Thus, their elec­
tric fields at distant points almost-but not quite-cancel each other. 

Electric dipole and atmospheric sprites 

Sprites (Fig. 22-9a) are huge flashes that occur far above a 
large thunderstorm. They were seen for decades by pilots 
flying at night, but they were so brief and dim that most pi­
lots figured they were just illusions. Then in the 1990s sprites 
were captured on video. They are still not well understood 
but are believed to be produced when especially powerful 
lightning occurs between the ground and storm clouds, par­
ticularly when the lightning transfers a huge amount of neg­
ative charge -q from the ground to the base of the clouds 
(Fig. 22-9b). 

Just after such a transfer, the ground has a complicated 
distribution of positive charge. However, we can model the 
electric field due to the charges in the clouds and the ground 
by assuming a vertical electric dipole that has charge -q at 
cloud height h and charge +q at below-ground depth h (Fig. 
22-9c). If q = 200 C and h = 6.0 km, what is the magnitude of 
the dipole's electric field at altitude Zl = 30 km somewhat 
above the clouds and altitude Z2 = 60 km somewhat above the 
stratosphere? 

We can approximate the magnitude E of an electric dipole's elec­
tric field on the dipole axis with Eq. 22-8. 

Calculations: We write that equation as 

E = _1_ q(2h) 
27T80 Z3 ' 

where 2h is the separation between -q and +q in Fig. 22-9c. For 
the electric field at altitude Z 1 = 30 km, we find 

E = _1_ (200 C)(2)(6.0 X 103 m) 
27T80 (30 X 103 m)3 

= 1.6 X 103 N/C. (Answer) 

Similarly, for altitude Z2 = 60 km, we find 

E = 2.0 X 102 N/C. (Answer) 

As we discuss in Section 22-8, when the magnitude of an 
electric field exceeds a certain critical value Ee> the field can 
pull electrons out of atoms (ionize the atoms), and then the 
freed electrons can run into other atoms, causing those 
atoms to emit light. The value of Ee depends on the density 
of the air in which the electric field exists. At altitude Z2 = 60 
km the density of the air is so low that E = 2.0 X 102 N/C 
exceeds Ee> and thus light is emitted by the atoms in the air. 
That light forms sprites. Lower down, just above the clouds 
at Zl = 30 km, the density of the air is much higher, E = 

1.6 X 103 N/C does not exceed Ee, and no light is emitted. 
Hence, sprites occur only far above storm clouds. 

(a) 

z 

T 
-q 

h 

h 

(b) (c) 1 +q 

Fig. 22-9 (a) Photograph of a sprite. (Courtesy NASA) (b) 
Lightning in which a large amount of negative charge is trans­
ferred from ground to cloud base. (c) The cloud - ground system 
modeled as a vertical electric dipole. 

~fus Additional examples, video, and practice available at WileyPLUS 
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Some Measures of Electric Charge 

Name Symbol SI Unit 

Charge q C 

Linear charge 
density A Clm 

Surface charge 
density (J" C/m2 

Volume charge 
density p Clm3 

The Electric Field Due to a Line of Charge 
We now consider charge distributions that consist of a great many closely spaced 
point charges (perhaps billions) that are spread along a line, over a surface, or 
within a volume. Such distributions are said to be continuous rather than discrete. 
Since these distributions can include an enormous number of point charges, we 
find the electric fields that they produce by means of calculus rather than by con­
sidering the point charges one by one. In this section we discuss the electric field 
caused by a line of charge. We consider a charged surface in the next section. In 
the next chapter, we shall find the field inside a uniformly charged sphere. 

When we deal with continuous charge distributions, it is most convenient to 
express the charge on an object as a charge density rather than as a total charge. 
For a line of charge, for example, we would report the linear charge density 
(or charge per unit length) A, whose SI unit is the coulomb per meter. Table 22-2 
shows the other charge densities we shall be using. 

Figure 22-10 shows a thin ring of radius R with a uniform positive linear 
charge density A around its circumference. We may imagine the ring to be made 
of plastic or some other insulator, so that the charges can be regarded as fixed 
in place. What is the electric field E at point P, a distance z from the plane of the 
ring along its central axis? 

To answer, we cannot just apply Eq. 22-3, which gives the electric field set up 
by a point charge, because the ring is obviously not a point charge. However, we 
can mentally divide the ring into differential elements of charge that are so small 
that they are like point charges, and then we can apply Eq. 22-3 to each of them. 
Next, we can add the electric fields set up at P by all the differential elements. 
The vector sum of the fields gives us the field set up at P by the ring. 

Let ds be the (arc) length of any differential element of the ring. Since A is 
the charge per unit (arc) length, the element has a charge of magnitude 

dq = Ads. (22-10) 

This differential charge sets up a differential electric field dE at point P, which is 
a distance r from the element. Treating the element as a point charge and using 
Eq. 22-10, we can rewrite Eq. 22-3 to express the magnitude of dE as 

dE _ 1 dq _ 1 A ds 
- 477eo 7 - 477eo ---;Z. 

From Fig. 22-10, we can rewrite Eq. 22-11 as 

dE = _1_ Ads 
477eo (Z2 + R2) . 

Fig. 22-10 A ring of uniform positive 
charge. A differential element of charge 
occupies a length ds (greatly exaggerated for 
clarity). This element sets up an electric field 
iE at point P. The component of dE along 
the central axis of the ring is dE cos B. 

(22-11) 

(22-12) 

The perpendicular 
components just 
cancel but the parallel 
components add. 
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Figure 22-10 shows that iE is at angle e to the central axis (which we have taken 
to be a z axis) and has components perpendicular to and parallel to that axis. 

Every charge element in the ring sets up a differential field dE at P, with 
magnitude given by Eq. 22-12. All the dE vectors have identical components 
parallel to the central axis, in both magnitude and direction. All these dE vectors 
have components perpendicular to the central axis as well; these perpendicular 
components are identical in magnitude but point in different directions. In fact, 
for any perpendicular component that points in a given direction, there is 
another one that points in the opposite direction. The sum of this pair of compo­
nents, like the sum of all other pairs of oppositely directed components, is zero. 

Thus, the perpendicular components cancel and we need not consider them 
further. This leaves the parallel components; they all have the same direction, 
so the net electric field at P is their sum. 

The parallel component of dE shown in Fig. 22-10 has magnitude dE cos e. The 
figure also shows us that 

(22-13) 

Then multiplying Eq. 22-12 by Eq. 22-13 gives us, for the parallel component of dE, 

dE cos e = ZA d 
41TBO(Z2 + R2)3/2 S. 

(22-14) 

To add the parallel components dE cos e produced by all the elements, we 
integrate Eq. 22-14 around the circumference of the ring, from s = 0 to s = 21TR. 
Since the only quantity in Eq. 22-14 that varies during the integration is s, the other 
quantities can be moved outside the integral sign. The integration then gives us 

f ZA l27rR 
E = dE cos e = 4 (2 2)3/2 ds 1TBO Z + R 0 

41TBO(Z2 + R2)312 . 
(22-15) 

Since A is the charge per length of the ring, the term A(21TR) in Eq. 22-15 is q, the 
total charge on the ring. We then can rewrite Eq. 22-15 as 

(charged ring). (22-16) 

If the charge on the ring is negative, instead of positive as we have assumed, the 
magnitude of the field at P is still given by Eq. 22-16. However, the electric field 
vector then points toward the ring instead of away from it. 

Let us check Eq. 22-16 for a point on the central axis that is so far away that 
Z ?> R. For such a point, the expression Z2 + R2 in Eq. 22-16 can be approximated 
as Z2, and Eq. 22-16 becomes 

E = _1_.!L 
41TBO Z2 

(charged ring at large distance). (22-17) 

This is a reasonable result because from a large distance, the ring "looks like" 
a point charge. If we replace Z with r in Eq. 22-17, we indeed do have Eq. 22-3, 
the magnitude of the electric field due to a point charge. 

Let us next check Eq. 22-16 for a point at the center of the ring- that is, for 
Z = O. At that point, Eq. 22-16 tells us that E = O. This is a reasonable result 
because if we were to place a test charge at the center of the ring, there would 
be no net electrostatic force acting on it; the force due to any element of the 
ring would be canceled by the force due to the element on the opposite side of 
the ring. By Eq. 22-1, if the force at the center of the ring were zero, the electric 
field there would also have to be zero. 
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Electric field of a charged circular rod 

Figure 22-11a shows a plastic rod having a uniformly distrib­
uted charge - Q. The rod has been bent in a 120° circular arc 
of radius r. We place coordinate axes such that the axis of 
symmetry of the rod lies along the x axis and the origin is at 
the center of curvature P of the rod. In terms of Q and r, 
what is the electric field If due to the rod at point P? 

Because the rod has a continuous charge distribution, we 
must find an expression for the electric fields due to differ­
ential elements of the rod and then sum those fields via 
calculus. 

An element: Consider a differential element having arc 
length ds and located at an angle () above the x axis (Figs. 
22-11b and c). If we let A represent the linear charge density of 
the rod, our element ds has a differential charge of magnitude 

dq = Ads. (22-18) 

The element's field: Our element produces a differential 
electric field dE at point P, which is a distance r from the 
element. Treating the element as a point charge, we can 
rewrite Eq. 22-3 to express the magnitude of dE as 

dE = _1_ dq = _1_ Ads 
41TBO r2 41TBO r 2 ' 

(22-19) 

The direction of dE is toward ds because charge dq is 
negative. 

Symmetric partner: Our element has a symmetrically 
located (mirror imaae) element ds' in the bottom half ofthe rod. 
The electric field dE' set up at P by ds' also has the magnitude 
given by Eq. 22-19, but the field vector points toward ds' as 
shown in Fig. 22-11d. If we resolve the electric field vectors of ds 
and ds' into x and y components as shown in Figs. 22-11e and f, we 
see that their y components cancel (because they have equal 
magnitudes and are in opposite directions). We also see that their 
x components have equal magnitudes and are in the same 
direction. 

Summing: Thus, to find the electric field set up by the rod, 
we need sum (via integration) only the x components of the 
differential electric fields set up by all the differential ele­
ments of the rod. From Fig. 22-11fand Eq. 22-19, we can write 
the component dEt set up by ds as 

1 A 
dEx = dE cos e = -4----2 cos e ds. 

1TBO r 
(22-20) 

Equation 22-20 has two variables, () and s. Before we can 
integrate it, we must eliminate one variable. We do so by 
replacing ds, using the relation 

ds=rd(), 

in which d() is the angle at P that includes arc length ds 
(Fig. 22-11g). With this replacement, we can integrate Eq. 
22-20 over the angle made by the rod at P, from () = -60° to 
() = 60°; that will give us the magnitude of the electric field 
at P due to the rod: 

I f60' 1 A 
E = dEt = -4-- ----:2 cos e r de 

-60' 1TBO 1 

= --- cos e de = --- sin e A f60
' A [ J60' 

41TBor -60' 41TBor -60' 

1.73A 
41TBor . 

(22-21) 

(If we had reversed the limits on the integration, we would 
have gotten the same result but with a minus sign. Since the 
integration gives only the magnitude of E, we would then 
have discarded the minus sign.) 

Charge density: To evaluate A, we note that the rod 
subtends an angle of 120° and so is one-third of a full circle. 
Its arc length is then 2nr/3, and its linear charge density 
must be 

A = charge = _Q_ = 0,477Q 
length 21T1-/3 r' 

Substituting this into Eq. 22-21 and simplifying give us 

E = (1.73)(0,477Q) 
41TBor2 

0.83Q 
(Answer) 

41TBor2 . 

The direction of E is toward the rod, along the axis of symmetry 
of the charge distribution. We can write E in unit-vector nota­
tion as 

Additional examples, video, and practice available at WileyPLUS 



This negatively charged rod 
is obviously not a particle. 

(a) 
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But we can treat this 
element as a particle. 

)' 

x p 

(b) 

Here is the field the 
element creates. 

(c) 

x 

These y components just 
cancel, so neglect them. 

These x components add. 
Our job is to add all such 
components. 

y 

(d) 

x 

Symmetric 
element ds' 

Here is the field created by 
the symmetric element, 
same size and angle. 

y 

x x 

Symmetric Symmetric 
element ds' element £Is' 

(e) (/) 

We use this to relate the 
element's arc length to 
the angle that it subtends. 

)' 

--~-------------x p 

(g) 

Fig. 22-11 (a) A plastic rod of charge - Q is a circular section of radius r and central angle 120°; 
point P is the center of curvature of the rod. (b )-( c) A differential element in the top half of the rod, 
at an angle () to the x axis and of arc length ds, sets up a differential electric field dE at P. (d) An ele­
ment ds', symmetric to ds about the x axis, sets up a field dE' at P with the same magnitude. (e)-(j) 
The field components. (g) Arc length ds makes an angle d () about point P. 
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A Field Guide for Lines of Charge 

Here is a generic guide for finding the electric field E pro­
duced at a point P by a line of uniform charge, either circu­
lar or straight. The general strategy is to pick out an element 
dq of the charge, find dE due to that element, and integrate 
dE over the entire line of charge. 

Step 1. If the line of charge is circular, let ds be the arc 
length of an element of the distribution. If the line is 
straight, run an x axis along it and let dx be the length of 
an element. Mark the element on a sketch. 

Step 2. Relate the charge dq of the element to the length of 
the element with either dq = A ds or dq = A dx. Consider 
dq and A to be positive, even if the charge is actually nega­
tive. (The sign of the charge is used in the next step.) 

Step 3. Express the field dE produced at P by dq with 
Eq. 22-3, replacing q in that equation with either A ds or 
A dx. If the charge on the line is positive, then at P draw a 
vector dE that points directly away from dq. If the charge 
is negative, draw the vector pointing directly toward dq. 

Step 4. Always look for any symmetry in the situation. If P 
is on an axis of symmetry of the charge distribution, re­
solve the field dE produced by dq into components that 
are perpendicular and parallel to the axis of symmetry. 
Then consider a second element dq' that is located sym­
metrically to dq about the line of symmetry. At P draw 
the vector dE' that this symmetrical element produces 
and resolve it into components. One of the components 
produced by dq is a canceling component; it is canceled 
by the corresponding component produced by dq' and 
needs no further attention. The other component 
produced by dq is an adding component; it adds to the 
corresponding component produced by dq'.Add the 
adding components of all the elements via integration. 

Step 5. Here are four general types of uniform charge 
distributions, with strategies for the integral of step 4. 

Ring, with point P on (central) axis of symmetry, as 
in Fig. 22-10. In the expression for dE, replace r2 with 
Z2 + R2, as in Eq. 22-12. Express the adding component 
of dE in terms of e. That introduces cos e, but eis identi­
cal for all elements and thus is not a variable. Replace 
cos e as in Eq. 22-13. Integrate over s, around the cir­
cumference of the ring. 

CHECKPOINT 2 

The figure here shows three nonconducting rods, one circular and two 
straight. Each has a uniform charge of magnitude Q along its top half 
and another along its bottom half. For each rod, what is the direction of 
the net electric field at point P? 

Circular are, with point P at the center of curvature, as 
in Fig. 22-11. Express the adding component of dE in terms 
of e. That introduces either sin ear cos e. Reduce the result­
ing two variables sand e to one, e, by replacing ds with r de. 
Integrate over e from one end of the arc to the other end. 

Straight line, with point P on an extension of the line, 
as in Fig. 22-12a. In the expression for dE, replace r with x. 
Integrate over x, from end to end of the line of charge. 

Straight line, with point P at perpendicular dis­
tance y from the line of charge, as in Fig. 22-12b. In the 
expression for dE, replace r with an expression involving x 
and y. If P is on the perpendicular bisector of the line of 
charge, find an expression for the adding component of dE. 
That will introduce either sin e or cos e. Reduce the result­
ing two variables x and e to one, x, by replacing the 
trigonometric function with an expression (its definition) 
involving x and y. Integrate over x from end to end of the 
line of charge. If P is not on a line of symmetry, as in Fig. 
22-12c, set up an integral to sum the components dEt , 

and integrate over x to find Et' Also set up an integral 
to sum the components dEy, and integrate over x again to 
find EY' Use the components E t and Ey in th~ usual way to 
find the magnitude E and the orientation of E. 

Step 6. One arrangement of the integration limits gives a pos­
itive result. The reverse gives the same result with a minus 
sign; discard the minus sign. If the result is to be stated in 
terms of the total charge Q of the distribution, replace A 
with QI L, in which L is the length of the distribution. 

--e-----{+ + + + + + + + +f-x p 

(a) 

y 

! 
)' 

I 
----1+ + + + + + + + +f-x 

(c) 

Fig. 22-12 (a) Point P is on an extension of the line of charge. 
(b) P is on a line of symmetry of the line of charge, at perpendicu­
lar distance y from that line. (c) Same as (b) except that P is not on 
a line of symmetry. 

j' 

(a) 

y 

+Q 

P 
---lI----x 

+Q 

(b) (c) 

y 

+Q 

P 
--M--->--x 

-Q 
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The Electric Field Due to a Charged Disk 
Figure 22-13 shows a circular plastic disk of radius R that has a positive surface 
charge of uniform density a on its upper surface (see Table 22-2). What is the 
electric field at point P, a distance z from the disk along its central axis? 

Our plan is to divide the disk into concentric fiat rings and then to calculate 
the electric field at point P by adding up (that is, by integrating) the contribu­
tions of all the rings. Figure 22-13 shows one such ring, with radius l' and radial 
width dr. Since ais the charge per unit area, the charge on the ring is 

dq = adA = a(21Ttdr), (22-22) 

where dA is the differential area of the ring. 
We have already solved the problem of the electric field due to a ring 

of charge. Substituting dq from Eq. 22-22 for q in Eq. 22-16, and replacing R in 
Eq. 22-16 with 1', we obtain an expression for the electric field dE at P due to the 
arbitrarily chosen fiat ring of charge shown in Fig. 22-13: 

which we may write as 

za27Tr dr 
dE = ------:---:-::-c:-

47Teo(Z2 + 1'2)3/2 ' 

(22-23) 

We can now find E by integrating Eq. 22-23 over the surface of the disk­
that is, by integrating with respect to the variable l' from l' = 0 to l' = R. Note that 
z remains constant during this process. We get 

J az LR E = dE = - (Z2 + 1'2)-3/2(21') dr. 
4eo 0 

(22-24) 

To solve this integral, we cast it in the form f XIII dX by setting X = (Z2 + 1'2), 

m = -~, and dX = (21') dr. For the recast integral we have 

J 
XIII+! 

XllldX= , 
m + 1 

and so Eq. 22-24 becomes 

= az [(Z2 + 1'2)-112 JR 
E !. 

4eo -2 0 
(22-25) 

Taking the limits in Eq. 22-25 and rearranging, we find 

(22-26) 

as the magnitude of the electric field produced by a flat, circular, charged disk 
at points on its central axis. (In carrying out the integration, we assumed that 
z 2: 0.) 

If we let R ~ 00 while keeping z finite, the second term in the parentheses in 
Eq. 22-26 approaches zero, and this equation reduces to 

E = ~ (infinite sheet). (22-27) 
2eo 

This is the electric field produced by an infinite sheet of uniform charge located 
on one side of a nonconductor such as plastic. The electric field lines for such 
a situation are shown in Fig. 22-3. 

We also get Eq. 22-27 if we let z ~ 0 in Eq. 22-26 while keeping R finite. This 
shows that at points very close to the disk, the electric field set up by the disk is 
the same as if the disk were infinite in extent. 

~ 

£IE 

p 

z 

Fig. 22-13 A disk of radius R and uni­
form positive charge. The ring shown has 
radius r and radial width dr. It sets up a dif­
ferential electric field if at point P on its 
central axis. 
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CHECKPOINT 3 

a) In the figure, what is the direction of 
the electrostatic force on the electron 
due to the external electric field shown? 
(b) In which direction will the electron 
accelerate if it is moving parallel to the y 
axis before it encounters the external 
field? (c) If, instead, the electron is ini­
tially moving rightward, will its speed 
increase, decrease, or remain constant? 

y 

--~~.-+------------x 
e 

Insulating 
chamber 
wall 

Fig. 22-14 The Millikan oil-drop appa­
ratus for measuring the elementary charge 
e. When a charged oil drop drifted into 
chamber C through the hole in plate PI> its 
motion could be controlled by closing and 
opening switch S and thereby setting up or 
eliminating an electric field in chamber C. 
The microscope was used to view the drop, 
to permit timing of its motion. 

G C 

Input 
signals 

Deflecting plate 

Deflecting 
plate 

Fig. 22-15 Ink-jet printer. Drops shot 
from generator G receive a charge in 
charging unit C. An input signal from a 
computer controls the charge and thus the 
effect of field E on where the drop lands on 
the paper. 

A Point Charge in an Electric Field 
In the preceding four sections we worked at the first of our two tasks: given a 
charge distribution, to find the electric field it produces in the surrounding space. 
Here we begin the second task: to determine what happens to a charged particle 
when it is in an electric field set up by other stationary or slowly moving charges. 

What happens is that an electrostatic force acts on the particle, as given by 

F= qE, (22-28) 

in which q is the charge of the particle (including its sign) and E is the electric 
field that other charges have produced at the location of the particle. (The field is 
not the field set up by the particle itself; to distinguish the two fields, the field 
acting on the particle in Eq. 22-28 is often called the external field. A charged 
particle or object is not affected by its own electric field.) Equation 22-28 tells us 

The electrostatic force F acting on a charged particle located in an external electric 
field E has the direction of E if the charge q of the particle is positive and has the 
opposite direction if q is negative. 

Equation 22-28 played a role in the measurement of the elementary charge e by 
American physicist Robert A. Millikan in 1910-1913. Figure 22-14 is a represen­
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of 
them become charged, either positively or negatively, in the process. Consider a 
drop that drifts downward through the small hole in plate PI and into chamber C. 
Let us assume that this drop has a negative charge q. 

If switch S in Fig. 22-14 is open as shown, battery B has no electrical effect on 
chamber C. If the switch is closed (the connection between chamber C and the 
positive terminal of the battery is then complete), the battery causes an excess 
positive charge on conducting plate PI and an excess negative charge on conduct­
ing plate P2• The charged plates set up a downward-directed electric field E in 
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any 
charged drop that happens to be in the chamber and affects its motion. In partic­
ular, our negatively charged drop will tend to drift upward. 

By timing the motion of oil drops with the switch opened and with it closed 
and thus determining the effect of the charge q, Millikan discovered that the 
values of q were always given by 

q = ne, for n = 0, ±1, ±2, ±3, ... , (22-29) 

in which e turned out to be the fundamental constant we call the elementary 
charge, 1.60 X 10-19 C. Millikan's experiment is convincing proof that charge is 
quantized, and he earned the 1923 Nobel Prize in physics in part for this work. 
Modern measurements of the elementary charge rely on a variety of interlocking 
experiments, all more precise than the pioneering experiment of Millikan. 

The need for high-quality, high-speed printing has caused a search for an 
alternative to impact printing, such as occurs in a standard typewriter. Building 
up letters by squirting tiny drops of ink at the paper is one such alternative. 

Figure 22-15 shows a negatively charged drop moving between two conduct­
ing deflecting plates, between which a uniform, downward-directed electric field 
E has been set up. The drop is deflected upward according to Eq. 22-28 and then 
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strikes the paper at a position that is determined by the magnitudes of If and the 
charge q of the drop. 

In practice, E is held constant and the position of the drop is determined by 
the charge q delivered to the drop in the charging unit, through which the drop 
must pass before entering the deflecting system. The charging unit, in turn, is 
activated by electronic signals that encode the material to be printed. 

If the magnitude of an electric field in air exceeds a certain critical value Eo the 
air undergoes electrical breakdown, a process whereby the field removes elec­
trons from the atoms in the air. The air then begins to conduct electric current 
because the freed electrons are propelled into motion by the field. As they move, 
they collide with any atoms in their path, causing those atoms to emit light. We can 
see the paths, commonly called sparks, taken by the freed electrons because of that 
emitted light. Figure 22-16 shows sparks above charged metal wires where the 
electric fields due to the wires cause electrical breakdown of the air. 

Fig. 22-16 The metal wires are so charged that the electric fields they produce in the 
surrounding space cause the air there to undergo electrical breakdown. (Adam Hart-Davis/ 
Photo Researchers) 

Motion of a charged particle in an electric field 

y 

Plate 

o x=L x 
I=========="=' 

Plate 

Figure 22-17 shows the deflecting plates of an ink-jet 
printer, with superimposed coordinate axes. An ink drop 
with a mass m of 1.3 X 10-10 kg and a negative charge of 
magnitude Q = 1.5 X 10-13 C enters the region between 
the plates, initially moving along the x axis with speed 
Vx = 18 m/s. The length L of each plate is 1.6 cm. The 
plates are charged and. thus produce an electric field at all 
points between them. Assume that field If is downward 
directed, is uniform, and has a magnitude of 1.4 X 106 

N/C. What is the vertical deflection of the drop at the far 
edge of the plates? (The gravitational force on the drop is 
small relative to the electrostatic force acting on the drop 
and can be neglected.) 

Fig. 22-17 An ink drop of mass m and charge magnitude Q is 
deflected in the electric field of an ink -jet printer. 

The drop is negatively charged and the electric field is directed 
downward. From Eq. 22-28, a constant electrostatic force of 
magnitude QE acts upward on the charged drop. Thus, as the 
drop travels parallel to the x axis at constant speed vx, it 
accelerates upward with some constant acceleration ay. 

Calculations: Applying Newton's second law (F = ma) for 
components along the y axis, we find that 

F QE 
a =-=--

y m m' (22-30) 

Let t represent the time required for the drop to pass 
through the region between the plates. During t the vertical 
and horizontal displacements of the drop are 

y = !ayt2 and L = vxt, (22-31) 

respectively. Eliminating t between these two equations and 
substituting Eq. 22-30 for ay, we find 

QEL2 

y= 
2mv; 

(1.5 X 10-13 C)(1.4 X 106 N/C)(1.6 X 10-2 m? 
(2)(1.3 X 10-10 kg)(18 m/s)2 

= 6.4 X 10-4 m 

= 0.64mm. (Answer) 

~s Additional examples, video, and practice available at WileyPLUS 
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Positive side A Dipole in an Electric Field 

Negative side 

Fig.22-18 A molecule of HzO,showing 
the three nuclei (represented by dots) and 
the regions in which the electrons can be lo­
cated. The electric dipole moment p points 
from the (negative) oxygen side to the (pos­
itive) hydrogen side of the molecule. 

" . 
(a) 

The dipole is being 
torqued into alignment. 

(b) 

Fig.22-19 (a) An electric dipole in a 
uniform external electric field E. Two cen­
ters of equal but opposite charge are sepa­
rated by distance d. The line between them 
represents their rigid connection. (b) Field 
If causes a torque T on the dipole. The di­
rection of T is into the page, as represented 
by the symbol @. 

We have defined the electric dipole moment p of an electric dipole to be a vector that 
points from the negative to the positive end of the dipole. As you will see, the behavior 
of a dipole in a uniform external electric field E can be described completely in terms 
of the two vectors E and p, with no need of any details about the dipole's stmcture. 

A molecule of water (H20) is an electric dipole; Fig. 22-18 shows why. There 
the black dots represent the oxygen nucleus (having eight protons) and the two 
hydrogen nuclei (having one proton each). The colored enclosed areas represent 
the regions in which electrons can be located around the nuclei. 

In a water molecule, the two hydrogen atoms and the oxygen atom do not 
lie on a straight line but form an angle of about 105°, as shown in Fig. 22-18. As 
a result, the molecule has a definite "oxygen side" and "hydrogen side." 
Moreover, the 10 electrons of the molecule tend to remain closer to the oxygen 
nucleus than to the hydrogen nuclei. This makes the oxygen side of the molecule 
slightly more negative than the hydrogen side and creates an electric dipole 
moment p that points along the symmetry axis of the molecule as shown. 
If the water molecule is placed in an external electric field, it behaves as would be 
expected of the more abstract electric dipole of Fig. 22-8. 

To examine this behavior, we now consider such an abstract dipole in a uniform 
external electric field E, as shown in Fig. 22-19a. We assume that the dipole is a rigid 
stmcture that consists of two centers of opposite charge, each of magnitude q, sepa­
rated by a distance d. The dipole moment p makes an angle 8 with field E. 

Electrostatic forces act on the charged ends of the dipole. Because the 
electric field is uniform, those forces act in opposite directions (as shown in 
Fig. 22-19a) and with the same magnitude F = qE. Thus, because the field is 
uniform, the net force on the dipole from the field is zero and the center of mass 
of the dipole does not move. However, the forces on the charged ends do produce 
a net torque T on the dipole about its center of mass. The center of mass lies on 
the line connecting the charged ends, at some distance x from one end and thus 
a distance d - x from the other end. From Eq. 10-39 (T = rF sin ¢), we can write 
the magnitude of the net torque T as 

T = Fx sin 8 + F( d - x) sin 8 = F d sin 8. (22-32) 

We can also write the magnitude ofT in terms of the magnitudes of the elec­
tric field E and the dipole moment p = qd. To do so, we substitute qE for F and 
plq for din Eq. 22-32, finding that the magnitude of Tis 

T = pEsin 8. (22-33) 

We can generalize this equation to vector form as 

~ ~ ----7 • 

T = P x E (torque on a dIpole). (22-34) 

Vectors j! and E are shown in Fig. 22-19b. The torque acting on a dipole tends to 
rotate p (hence the dipole) into the direction of field E, thereby reducing 8. In 
Fig. 22-19, such rotation is clockwise. As we discussed in Chapter 10, we can rep­
resent a torque that gives rise to a clockwise rotation by including a minus sign 
with the magnitude of the torque. With that notation, the torque of Fig. 22-19 is 

T = -pE sin 8. (22-35) 

Potential energy can be associated with the orientation of an electric dipole in an 
electric field. The dipole has its least potential energy when it is in its equilibrium 
orientation, which is when its moment j! is lined up with the field E (then 
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T = p X If = 0). It has greater potential energy in all other orientations. Thus 
the dipole is like a pendulum, which has its least gravitational potential energy in 
its equilibrium orientation-at its lowest point. To rotate the dipole or the 
pendulum to any other orientation requires work by some external agent. 

In any situation involving potential energy, we are free to define the zero­
potential-energy configuration in a perfectly arbitrary way because only differ­
ences in potential energy have physical meaning. It turns out that the expres­
sion for the potential energy of an electric dipole in an external electric field is 
simplest if we choose the potential energy to be zero when the angle 0 in Fig. 
22-19 is 90°. We then can find the potential energy U of the dipole at any other 
value of o with Eq. 8-1 (AU = - W) by calculating the work W done by the field 
on the dipole when the dipole is rotated to that value of o from 90°. With the aid 
of Eq. 10-53 (W = J T dO) and Eq. 22-35, we find that the potential energy U at 
any angle Ois 

U = -W = - (0 TdO = (0 pEsin OdO. 
)90' )90' 

(22-36) 

Evaluating the integral leads to 

U = -pEcos O. (22-37) 

We can generalize this equation to vector form as 

U = - p. E (potential energy of a dipole). (22-38) 

Equations 22-37 and 22-38 show us that the potential energy of the dipole is least 
(U = -pE) when 0 = 0 (p and If are in the same direction); the potential energy is 
greatest (U = P E) when e = 180° (p and If are in opposite directions). 

When a dipole rotates from an initial orientation 0i to another orientation Of' 
the work W done on the dipole by the electric field is 

W = -AU = -(Uf Ui), (22-39) 

where Uf and Ui are calculated with Eq. 22-38. If the change in orientation is 
caused by an applied torque (commonly said to be due to an external agent), then 
the work Wa done on the dipole by the applied torque is the negative of the work 
done on the dipole by the field; that is, 

Wa = - W = (Uf - UJ (22-40) 

Food can be warmed and cooked in a microwave oven if the food contains water 
because water molecules are electric dipoles. When you turn on the oven, the mi­
crowave source sets up a rapidly oscillating electric field E within the oven and 
thus also within the food. From Eq. 22-34, we see that any electric field E pro­
duces a torque on an electric dipole moment p to align p with E. Because the 
oven's If oscillates, the water molecules continuously flip-flop in a frustrated at­
tempt to align with E. 

Energy is transferred from the electric field to the thermal energy of the water 
(and thus of the food) where three water molecules happened to have bonded to­
gether to form a group. The flip-flop breaks some of the bonds. When the mole­
cules reform the bonds, energy is transferred to the random motion of the group 
and then to the surrounding molecules. Soon, the thermal energy of the water is 
enough to cook the food. Sometimes the heating is surprising. If you heat a jelly 
donut, for example, the jelly (which holds a lot of water) heats far more than the 
donut material (which holds much less water). Although the exterior of the donut 
may not be hot, biting into the jelly can burn you. If water molecules were not 
electric dipoles, we would not have microwave ovens. 

CHECKPOINT 4 

The figure shows four orientations of an 
electric dipole in an external electric 
field. Rank the orientations according 
to (a) the magnitude of the torque on 
the dipole and (b) the potential energy 
of the dipole, greatest first. 

(1) (2) 

~ 

E 

(3) (4) 
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Torque and energy of an electric dipole in an electric field 

A neutral water molecule (H20) in its vapor state has an 
electric dipole moment of magnitude 6.2 X 10-30 C· m. 

(a) How far apart are the molecule's centers of positive and 
negative charge? 

A molecule's dipole moment depends on the magnitude q 
of the molecule's positive or negative charge and the charge 
separation d. 

Calculations: There are 10 electrons and 10 protons in a 
neutral water molecule; so the magnitude of its dipole mo­
mentis 

p = qd = (lOe)(d), 

in which d is the separation we are seeking and e is the ele­
mentary charge. Thus, 

p 6.2 X 10-30 C·m 
d = 10e = (10)(1.60 X 10-19 C) 

= 3.9 X 10-12 m = 3.9 pm. (Answer) 

This distance is not only small, but it is also actually smaller 
than the radius of a hydrogen atom. 

(b) If the molecule is placed in an electric field of 1.5 X 
104 N/C, what maximum torque can the field exert on it? 
(Such a field can easily be set up in the laboratory.) 

The torque on a dipole is maximum when the angle () be­
tween jJ and E is 90°. 

Calculation: Substituting () = 90° in Eq. 22-33 yields 

T = pE sin () 

= (6.2 X 1O-30 C·m)(1.5 X 104N/C)(sin900) 

= 9.3 X 10-26 N ·m. (Answer) 

(c) How much work must an external agent do to rotate this 
molecule by 180° in this field, starting from its fully aligned 
position, for which () = O? 

The work done by an external agent (by means of a torque 
applied to the molecule) is equal to the change in the mole­
cule's potential energy due to the change in orientation. 

Calculation: From Eq. 22-40, we find 

YY" = Viso' - Uo 
= (-pE cos 180°) - (-pE cos 0) 

= 2pE = (2)(6.2 X 10-30 C·m)(1.5 X 104 N/C) 

= 1.9 X 10-25 J. (Answer) 

\illis Additional examples, video, and practice available at WileyPLUS 

Electric Field To explain the electrostatic force between two 
charges, we assume that each charge sets up an electric field in the 
space around it. The force acting on each charge is then due to the 
electric field set up at its location by the other charge. 

Definition of Electric Field The electric field E at any point 
is defined in terms of the electrostatic force F that would be ex­
erted on a positive test charge qo placed there: 

--> F 
E=-. 

% 
(22-1) 

Electric Field Lines Electric field lines provide a means for visu­
alizing the direction and magnitude of electric fields. The electric field 
vector at any point is tangent to a field line through that point. The 
density of field lines in any region is proportional to the magnitude of 
the electric field in that region. Field lines originate on positive 
charges and terminate on negative charges. 

Field Due to a Point Charge The magnitude of the electric 
field E set up by a point charge q at a distance I' from the charge is 

--> 1 q, 
E=---r 

47TBo 1'2 
(22-3) 

The direction of E is away from the point charge if the charge is 
positive and toward it if the charge is negative. 

Field Due to an Electric Dipole An electric dipole consists 
of two particles with charges of equal magnitude q but opposite 
sign, separated by a small distance d. Their electric dipole moment 
If has magnitude qd and points from the negative charge to the 
positive charge. The magnitude of the electric field set up by the 
dipole at a distant point on the dipole axis (which runs through 
both charges) is 

1 p 
E=---

27TBo Z3' 
(22-9) 



where z is the distance between the point and the center of the 
dipole. 

Field Due to a Continuous Charge Distribution The 
electric field due to a continuous charge distribution is found by 
treating charge elements as point charges and then summing, via 
integration, the electric field vectors produced by all the charge el­
ements to find the net vector. 

Force on a Point Charge in an Electric Field When a 
point charge q is placed in an external electric field If, the electro­
static force F that acts on the point charge is 

F= qIf. (22-28) 

Figure 22-20 shows three arrangements of electric field lines. In 
each arrangement, a proton is released from rest at point A and is 
then accelerated through point B by the electric field. Points A and 
B have equal separations in the three arrangements. Rank the 
arrangements according to the linear momentum of the proton at 
point B, greatest first. 

.. 

A B 

.. 
(a) (b) (c) 

Fig. 22-20 Question 1. 

Figure 22-21 shows two square arrays of charged particles. The 
squares, which are centered on point P, are misaligned. The parti­
cles are separated by either d or d/2 along the perimeters of the 
squares. What are the magnitude and direction of the net electric 
field at P? 

+6q 
-2q 

+3q .. 

-'I 
----'1+2q 

-2q 
p -q 

-q • -q 

+2q 
---< -3q 

+3q .. +6q 
-2q 

Fig. 22-21 Question 2. 

In Fig. 22-22, two particles of charge -q are arranged symmet­
rically about the y axis; each produces an electric field at point P on 
that axis. (a) Are the magnitudes of the fields at P equal? (b) Is 
each electric field directed toward or away from the charge pro-
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Force F has the same direction as If if q is positive and the 
opposite direction if q is negative. 

Dipole in an Electric Field When an electric dipole of dipole 
moment p is placed in an electric field If, the field exerts a torque 
T on the dipole: 

(22-34) 

The dipole has a potential energy U associated with its orientation 
in the field: 

(22-38) U= -p'£' 
Th~potential energy is defined to be zero when pis J?erpendicular 
to E; it is least (U = -pE) when p is aligned with E and greatest 
(U = pE) when p is directed opposite If. 

)' 

p 

-q -q 

ducing it? (c) Is the magnitude of 
the net electric field at P equal to 
the sum of the magnitUdes E of the 
two field vectors (is it equal to 
2E)? (d) Do the x components of 
those two field vectors add or can­
cel? (e) Do their y components 
add or cancel? (f) Is the direction 
of the net field at P that of the can-

L~------~----~~--X 

I--d d~ 

Fig. 22-22 Question 3. 

celing components or the adding components? (g) What is the di­
rection of the net field? 

Figure 22-23 shows four situations in which four charged patti­
cles are evenly spaced to the left and right of a central point. The 
charge values are indicated. Rank the situations according to the 
magnitude of the net electric field at the central point, greatest first. 

(1) ~~ ------<t-------1'iJ~-
+e -e -e +e 

(2) ~~ ------<t-------1'iJ~-
+e +e -e -e 

(3) ~~ 1-----'iJ~-
-e +e +e +e 

(4) ~~ 
-e -e +e -e 

Fig. 22-23 Question 4. 

Figure 22-24 shows two charged particles fixed in place on an 
axis. (a) Where on the axis (other " @ 

than at an infinite distance) is there +q -3q 
a point at which their net electric Fig. 22-24 Question 5. 
field is zero: between the charges, to 
their left, or to their right? (b) Is 
there a point of zero net electric field 
anywhere off the axis (other than at 
an infinite distance)? 

In Fig. 22-25, two identical cir­
cular nonconducting rings are cen-

p~ 

• 
\ ! 
, /R' A \ tRi B " i mg ,/' ng 

Fig. 22-25 Question 6. 
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tered on the same line. For three situations, the uniform charges 
on rings A and B are, respectively, (1) qo and qo, (2) -qo and -qo, 
and (3) -qo and qo. Rank the situations according to the magni­
tude of the net electric field at (a) point PI midway between the 
rings, (b) point P2 at the center of ring B, and (c) point P3 to the 
right of ring B, greatest first. 

1 The potential energies associated with four orientations of an 
electric dipole in an electric field are (1) -SUo, (2) -7Uo, (3) 3Uo, 
and (4) SUa, where Uois positive. Rank the orientations according 
to (a) the angle between the electric dipole moment p and the 
electric field E and (b) the magnitude of the torque on the electric 
dipole, greatest first. 

S (a) In the Checkpoint of Section 22-9, if the dipole rotates from 
orientation 1 to orientation 2, is the work done on the dipole by the 
field positive, negative, or zero? (b) If, instead, the dipole rotates 
from orientation 1 to orientation 4, is the work done by the field 
more than, less than, or the same as in (a)? 

Figure 22-26 shows two disks and a flat ring, each with the same 
uniform charge Q. Rank the objects according to the magnitude of 
the electric field they create at points P (which are at the same ver­
tical heights), greatest first. 

p p p 

2R 

(a) (b) (c) 

Fig. 22-26 Question 9. 

lOIn Fig. 22-27, an electron e travels through a small hole in 
plate A and then toward plate B. A uniform electric field in the re­
gion between the plates then slows the electron without deflecting 

it. (a) What is the direction of the 
field? (b) Four other particles simi- e --+t---... 
larly travel through small holes in ...... -H-- +q2 
either plate A or plate B and then +ql--++--
into the region between the plates. ......-H-- -q3 

Three have charges +qb +q2, and 
-q3' The fourth (labeled n) is a 

n_-++-__ 

A B 

neutron, which is electrically neu- Fig. 22-27 Question 10. 
tral. Does the speed of each of 
those four other particles increase, decrease, or remain the same in 
the region between the plates? 

In Fig. 22-28a, a circular plastic rod with uniform charge 
+ Q produces an electric field of magnitude E at the center of 
curvature (at the origin). In Figs. 22-28b, c, and d, more circular 
rods, each with identical uniform charges +Q, are added until the 
circle is complete. A fifth arrangement (which would be labeled e) 
is like that in d except the rod in the fourth quadrant has charge 
-Q. Rank the five arrangements according to the magnitude of the 
electric field at the center of curvature, greatest first. 

)' )' 

--------~----~---x --~L---~----~---x 

(a) (b) 

)' )' 

--~~--~----~---x --~~---+----~---x 

(c) (d) 

Fig.22-28 Question 11. 

Tutoring problem available {at instructor's discretion} in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
http://www.wiley.com/coliege/halllday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Electric Field Lines 
Sketch qualitatively the electric field lines both between and 

outside two concentric conducting spherical shells when a uniform 
positive charge ql is on the inner shell and a uniform negative 
charge -q2 is on the outer. Consider the cases ql > q2, ql = q2, and 
ql < q2' 

In Fig. 22-29 the electric field lines on the left have twice the 
separation of those on the right. (a) 
If the magnitude of the field at A is 
40 N/C, what is the magnitude of 
the force on a proton at A? (b) 
What is the magnitude of the field 
at B? Fig. 22-29 Problem 2. 

The Electric Field Due to a Point Charge 
The nucleus of a plutonium-239 atom contains 94 pro­

tons. Assume that the nucleus is a sphere with radius 6.64 fm and 
with the charge of the protons uniformly spread through the 
sphere. At the nucleus surface, what are the (a) magnitude and (b) 
direction (radially inward or outward) of the electric field pro­
duced by the protons? 

Two particles are attached to an x axis: particle 1 of charge 
-2.00 X 10-7 C at x = 6.00 cm, particle 2 of charge +2.00 X 10-7 C 
at x = 21.0 cm. Midway between the particles, what is their net 
electric field in unit-vector notation? 

SSM What is the magnitude of a point charge whose electlic field 
50 cm away has the magnitude 2.0 N/C? 



What is the magnitude of a point 
charge that would create an electric 
field of 1.00 N/C at points 1.00 m 
away? 

SSM IlW WWW In Fig. 22-30, 
the four particles form a square of 
edge length a = 5.00 cm and have 
charges ql = +10.0 nC, qz = -20.0 
nC,q3 = +20.0 nC,and q4 = -10.0 ne. 
In unit-vector notation, what net elec- Fig. 22-30 Problem 7. 
tric field do the particles produce at 
the square's center? 

In Fig. 22-31, the four parti­
cles are fixed in place and have charges 
ql = qz = +5e, q3 = +3e, and q4 = 
-12e. Distance d = 5.0 /Lm. What is 
the magnitude of the net electric field 
at point P due to the particles? 

Figure 22-32 shows two 
charged particles on an x axis: -q = 
-3.20 X 10-19 C at x = -3.00 m and 
q = 3.20 X 10-19 C at x = +3.00 m. Fig. 22-31 Problem 8. 
What are the (a) magnitude and (b) 
direction (relative to the positive direction of the x axis) of the 
net electric field produced at point P at y = 4.00 m? 

)' 

p 

-Q~-----+------~~x 
-q q 

Fig. 22-32 Problem 9. 

o Figure 22-33a shows two charged particles fixed in place 
on an x axis with separation L. The ratio q/qz of their charge magni­
tudes is 4.00. Figure 22-33b shows the x component Enet•x of their net 
electric field along the x axis just to the right of particle 2. The x axis 
scale is set by Xs = 30.0 cm. (a) At what value of x> 0 is Enet•r maxi­
mum? (b) If particle 2 has charge -qz = - 3e, what is the value of 
that maximum? 

)' 

G 
2 

"'-
+qj -q2 Z 0 

"i' 0 x 0 

r----L 
.--< 

-2 
" <i 

kf -4 

x (em) 

(a) (b) 

Fig. 22-33 Problem 10. 

SSM Two particles are fixed to an x axis: particle 1 of charge 
qj = 2.1 X 10-8 C at x = 20 cm and particle 2 of charge q2 = 
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-4.00ql at x = 70 cm. At what coordinate on the axis is the net elec­
tric field produced by the particles equal to zero? 

Figure 22-34 shows an 
uneven arrangement of electrons 
(e) and protons (p) on a circular arc 
of radius r = 2.00 cm, with angles 
8j = 30.0°, 82 = 50.0°, 83 = 30.0°, 
and 84 = 20.0°. What are the (a) 
magnitude and (b) direction (rela­
tive to the positive direction of the x 
axis) of the net electric field pro­
duced at the center of the arc? 

Figure 22-35 shows a proton 
(p) on the central axis through a 
disk with a uniform charge density 
due to excess electrons. Three of 
those electrons are shown: electron 
ec at the disk center and electrons es 

at opposite sides of the disk, at ra­

)' 

Fig. 22-34 Problem 12. 

z 

" r " ,. , 
r---R -40. I .-R----1 

dius R from the center. The proton Fig. 22-35 Problem 13. 
is initially at distance z = R = 2.00 
cm from the disk. At that location, what are the magnitudes of (a) 
the electric field Ec due to electron ec and (b) the net electric field 
Esnet due to electrons es? The proton is then moved to z = RIlO.O. 
What then are the magnitudes of (c) ~ and (d) Es•net at the pro­
ton's location? (e) From (a) and (c) we see that as the proton gets 
nearer to the disk, the magnitude of Ec increases. Why does the 
magnitude of IL,net decrease, as we see 
from (b) and (d)? 

In Fig. 22-36, particle 1 of 
charge qj = -5.00q and particle 2 
of charge qz = +2.00q are fixed to 
an x axis, (a) As a multiple of dis­
tance L, at what coordinate on the 
axis is the net electric field of the Fig. 22-36 

particles zero? (b) Sketch the net electric field lines. 

Problem 14. 

In Fig. 22-37, the three particles are 
fixed in place and have charges ql = q2 = 
+e and q3 = +2e. Distance a = 6.00 /Lm, 
What are the (a) magnitude and (b) direc­
tion of the net electric field at point P due to 
the particles? 

I) Figure 22-38 shows a plastic rllig of 
radius R =50.0 cm. Two small charged 
beads are on the ring: Bead 1 of charge 
+2.00/LC is fixed in place at the left side; 
bead 2 of charge +6.00/LC can be moved 

Fig. 22-37 

Problem 15. 

along the ring. The two beads produce a net electric field of magni-

)' 

--~----~~~----x 
Bead 1 

Fig. 22-38 Problem 16. 
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tude E at the center of the ring. At what (a) positive and (b) nega­
tive value of angle 8 should bead 2 be positioned such that E = 

2.00 X 105 N/C? 

1\\'0 charged beads are on the plastic ring in Fig. 22-39a. 
Bead 2, which is not shown, is fixed in place on the ring, which has 
radius R = 60.0 cm. Bead 1 is initially on the x axis at angle 8 = 00

• 

It is then moved to the opposite side, at angle 8 = 1800
, through the 

first and second quadrants of the xy coordinate system. Figure 22-
39b gives the x component of the net electric field produced at the 
origin by the two beads as a function of 8, and Fig. 22-39c gives the 
y component. The vertical axis scales are set by En = 5.0 X 104 N/C 
and Eys = -9.0 X 104 N/C. (a) At what angle 8 is bead 2 located? 
What are the charges of (b) bead 1 and (c) bead 2? 

(b) 

y 

(a) 

f--l-------."F--l---I-- 8 

~Ring 

Bead 1 

900 1800 

0,--.--,--.--.-8 

(c) 

Fig.22-39 Problem 17. 

The Electric Field Due to an Electric Dipole 
The electric field of an electric dipole along the dipole axis is 

approximated by Eqs. 22-8 and 22-9. If a binomial expansion is 
made of Eq. 22-7, what is the next term in the expression for the di­
pole's electric field along the dipole axis? That is, what is Enext in 
the expression 

__ 1_~ ? 
E - 2 3 + Enext • 

7TEo Z 

Figure 22-40 shows an electric dipole. What are the (a) magni­
tude and (b) direction (relative to the positive direction of the x axis) 
of the dipole's electric field at point P, located at distance r ~ d? 

+qG 
j 

d/2 

F~-----T-----------'p 
d/2 

-q~ 
Fig. 22-40 Problem 19. 

Equations 22-8 and 22-9 are approximations of the magnitude 
of the electric field of an electric dipole, at points along the dipole 
axis. Consider a point P on that axis at distance z = 5.00d from the di­
pole center (d is the separation distance between the particles of the 

dipole). Let Eappr be the magnitude of the field at point P as approxi­
mated by Eqs. 22-8 and 22-9. Let E act be the actual magnitude. What is 
the ratio Eappr/Eact? 

SSM Electric quadrupole. Figure 22-41 shows an electric 
quadrupole. It consists of two dipoles with dipole moments that are 
equal in magnitude but opposite in direction. Show that the value of 
E on the axis of the quadrupole for a point P a distance z from its 
center (assume z ~ d) is given by 

in which Q (= 2qdZ) is known as the quadrupole moment of the 
charge distribution. 

Fig. 22-41 Problem 21. 

The Electric Field Due to a Line of Charge 
Density, density, density. (a) A charge -300e is uniformly dis­

tributed along a circular arc of radius 4.00 cm, which subtends an 
angle of 400

• What is the linear charge density along the arc? (b) A 
charge - 300e is uniformly distributed over one face of a circular 
disk of radius 2.00 cm. What is the surface charge density over that 
face? (c) A charge - 300e is uniformly distributed over the surface 
of a sphere of radius 2.00 cm. What is the surface charge density 
over that surface? (d) A charge -300e is uniformly spread through 
the volume of a sphere of radius 2.00 cm. What is the volume 
charge density in that sphere? 

Figure 22-42 shows two paral­
lel nonconducting rings with their 
central axes along a common line. 
Ring 1 has uniform charge qj and ra­
dius R; ring 2 has uniform charge qz 
and the same radius R. The rings are 
separated by distance d = 3.00R. 
The net electric field at point P on 
the common line, at distance R from 
ring 1, is zero. What is the ratio q/qz? 

A thin nonconducting rod 
with a uniform distribution of posi­
tive charge Q is bent into a circle of 
radius R (Fig. 22-43). The central 
perpendicular axis through the ring 
is a z axis, with the origin at the cen­
ter of the ring. What is the magni­

Fig. 22-42 Problem 23. 

z 

tude of the electric field due to the Fig. 22-43 Problem 24. 
rod at (a) z = 0 and (b) z = oo? 
(c) In terms of R, at what positive value of z is that magnitude max­
imum? (d) If R = 2.00 cm and Q = 4.00 j.LC, what is the maximum 
magnitude? 

Figure 22-44 shows three circular arcs centered on the origin 
of a coordinate system. On each arc, the uniformly distributed 
charge is given in terms of Q = 2.00 j.Lc. The radii are given in terms of 



R = 10.0 cm. What are the (a) magni-
tude and (b) direction (relative to the 
positive x direction) of the net electric 
field at the origin due to the arcs? 

IlW In Fig. 22-45, a thin glass 
rod forms a semicircle of radius r = 

5.00 cm. Charge is uniformly distrib­
uted along the rod, with +q = 4.50 

y 

3R 

2R 

R 

pC in the upper half and -q = -4.50 Fig. 22-44 Problem 25. 
pC in the lower half. What are the (a) 
magnitude and (b) direction (relative to the 
positive direction of the x axis) of the electric 
field E at P, the center of the semicircle? 

In Fig. 22-46, two curved plastic 
rods, one of charge +q and the other of 
charge -q, form a circle of radius R = 

8.50 cm in an xy plane. The x axis passes 
through both of the connecting points, and 
the charge is distributed uniformly on 
both rods. If q = 15.0 pC, what are the (a) 
magnitude and (b) direction (relative to 
the positive direction of the x axis) of the 
electric field E produced at P, the center 
of the circle? 

"23 Charge is uniformly distributed 
around a ring of radius R = 2.40 cm, and 
the resulting electric field magnitude E is 
measured along the ring's central axis 
(perpendicular to the plane of the ring). At 
what distance from the ring's center is 
Emaximum? 

Fig. 22-45 
Problem 26. 

y 

-1I--~t-.,----lI- x 

Fig. 22-46 
Problem 27. 

""29 Figure 22-47 a shows a nonconducting rod with a uniformly dis­
tributed charge +Q. The rod forms a half-circle with radius Rand 
produces an electric field of magnitude Eare at its center of curvature 
P. If the arc is collapsed to a point at distance R from P (Fig. 22-47b), 
by what factor is the magnitude of the electric field at P multiplied? 

p +Q p 

----0 " 
f-R--1 

(a) (b) 

Fig. 22-47 Problem 29. 

Figure 22-48 shows two con­
centric rings, of radii Rand R' = 
3.00R, that lie on the same plane. 
Point P lies on the central z axis, at 
distance D = 2.00R from the cen­
ter of the rings. The smaller ring 
has uniformly distributed charge 
+ Q. In terms of Q, what is the uni­
formly distributed charge on the 
larger ring if the net electric field at 
Pis zero? 

z 

p 

D 

Fig. 22-48 Problem 30. 

SSM IlW WWW In Fig. 
22-49, a nonconducting rod of 
length L = 8.15 cm has a charge 
-q = -4.23 fC uniformly distrib­
uted along its length. (a) What is 
the linear charge density of the 
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Fig. 22-49 Problem 31. 

rod? What are the (b) magnitude and (c) direction (relative to the 
positive direction of the x axis) of the electric field produced at 
point P, at distance a = 12.0 cm from the rod? What is the electric 
field magnitude produced at distance a = 50 m by (d) the rod and 
(e) a particle of charge -q = -4.23 fC that replaces the rod? 

t;I! In Fig. 22-50, positive 
charge q = 7.81 pC is spread uni­
formly along a thin nonconducting 
rod of length L = 14.5 cm. What 
are the (a) magnitude and (b) di­
rection (relative to the positive di­
rection of the x axis) of the electric 

R 

field produced at point P, at dis- G+DD+:::;:·.3+~DDDD+J-x 
tance R = 6.00 cm from the rod ~I'---L----<' I 
along its perpendicular bisector? 

Fig. 22-50 Problem 32. 
In Fig. 22-51, a "semi-infi­

nite" nonconducting rod (that is, 
infinite in one direction only) has 
uniform linear charge densi.!}' A. 
Show that the electric field Ep at 
point P makes an angle of 45° with 
the rod and that this result is inde­
pendent of the distance R. (Hint: 
Separately find the component of Ep 
parallel to the rod and the compo­
nent perpendicular to the rod.) 

+ .+ r 
R 

L P 

Fig. 22-51 

+ + 

Problem 33. 

The Electric Field Due to a Charged Disk 
A disk of radius 2.5 cm has a surface charge density of 5.3 

/-LC/m2 on its upper face. What is the magnitude of the electric field 
produced by the disk at a point on its central axis at distance z = 

12 cm from the disk? 

-35 SSM WWW At what distance along the central perpendicu­
lar axis of a uniformly charged plastic disk of radius 0.600 m is the 
magnitude of the electric field equal to one-half the magnitude of 
the field at the center of the surface of the disk? 

A circular plastic disk with radius R = 2.00 cm has a uni­
formly distributed charge Q = +(2.00 X 106)e on one face. A cir­
cular ring of width 30 /-Lm is centered on that face, with the center 
of that width at radius r = 0.50 cm. In coulombs, what charge is 
contained within the width of the ring? 

Suppose you design an appa-
ratus in which a uniformly charged 
disk of radius R is to produce an 
electric field. The field magnitude is 
most important along the central 
perpendicular axis of the disk, at a 
point P at distance 2.00R from the 
disk (Fig. 22-52a). Cost analysis sug­
gests that you switch to a ring of the 
same outer radius R but with inner 
radius R/2.00 (Fig. 22-52b). Assume 

z 
p 

(a) 

z 
p 

(b) 

that the ring will have the same Fig. 22-52 Problem 37. 



602 ELECTRIC FIELDS 

surface charge density as the original disk. If you switch to the 
ring, by what percentage will you decrease the electric field mag­
nitude at P? 

Figure 22-53a shows a circular disk that is uniformly 
charged. The central z axis is perpendicular to the disk face, with 
the origin at the disk. Figure 22-53b gives the magnitude of the 
electric field along that axis in terms of the maximum magnitUde 
Em at the disk surface. The z axis scale is set by Zs = 8.0 cm.What is 
the radius of the disk? 

z 

(a) 

z (em) 

(b) 

Fig. 22-53 Problem 38. 

A Point Charge in an Electric Field 
In Millikan's experiment, an oil drop of radius 1.64 [Lm and 

density 0.851 g/cm3 is suspended in chamber C (Fig. 22-14) when a 
downward electric field of 1.92 X 105 N/C is applied. Find the 
charge on the drop, in terms of e. 

-40 An electron with a speed of 5.00 X 108 cm/s enters an 
electric field of magnitude 1.00 X 103 N/C, traveling along a field 
line in the direction that retards its motion. (a) How far will the 
electron travel in the field before stopping momentarily, and (b) 
how much time will have elapsed? (c) If the region containing the 
electric field is 8.00 mm long (too short for the electron to stop 
within it), what fraction of the electron's initial kinetic energy will 
be lost in that region? 

SSM A charged cloud system produces an electric field in 
the air near Earth's surface. A particle of charge -2.0 X 10-9 C is 
acted on by a downward electrostatic force of 3.0 X 10-6 N when 
placed in this field. (a) What is the magnitUde of the electric field? 
What are the (b) magnitude and (c) direction of the electrostatic 
force ~l on the proton placed in this field? (d) What is the magni­
tude of the gravitational force F; on the proton? (e) What is the ra­
tio Fell Fg in this case? 

Humid air breaks down (its molecules become ionized) in an 
electric field of 3.0 X 106 N/C. In that field, what is the magnitude 
of the electrostatic force on (a) an electron and (b) an ion with a 
single electron missing? 

SSM An electron is released from rest in a uniform electric 
field of magnitude 2.00 X 104 N/C. Calculate the acceleration of 
the electron. (Ignore gravitation.) 

An alpha particle (the nucleus of a helium atom) has a mass 
of 6.64 X 10-27 kg and a charge of +2e. What are the (a) magnitude 
and (b) direction of the electric field that will balance the gravita­
tional force on the particle? 

IlW An electron on the axis of an electric dipole is 25 nm from 
the center of the dipole. What is the magnitude of the electrostatic 
force on the electron if the dipole moment is 3.6 X 10-29 C· m? 
Assume that 25 nm is much larger than the dipole charge separation. 

An electron is accelerated eastward at 1.80 X 109 m/s2 by an 
electric field. Determine the field (a) magnitUde and (b) direction. 

SSM Beams of high-speed protons can be produced in 
"guns" using electric fields to accelerate the protons. (a) What 
acceleration would a proton experience if the gun's electric 
field were 2.00 X 104 N/C? (b) What speed would the proton at­
tain if the field accelerated the proton through a distance of 
1.00 cm? 

In Fig. 22-54, an electron (e) is to 
be released from rest on the central axis 
of a uniformly charged disk of radius R. 
The surface charge density on the disk is 
+4.00 [LClm2. What is the magnitude of 
the electron's initial acceleration if it is 
released at a distance (a) R, (b) R1100, 
and (c) RI1000 from the center of the 
disk? (d) Why does the acceleration mag­
nitude increase only slightly as the release 
point is moved closer to the disk? 

e 

Fig. 22-54 

Problem 48. 

A 10.0 g block with a charge of +8.00 X 10-5 C is placed in 
an electric field E = (3000i - 600]) N/C. What are the (a) magni­
tude and (b) direction (relative to the positive direction of the x 
axis) of the electrostatic force on the block? If the block is released 
from rest at the origin at time t = 0, what are its (c) x and (d) y co­
ordinates at t = 3.00 s? 

At some instant the velocity components of an electron 
moving between two charged parallel plates are v, = 1.5 X 105 mls 
and Vy = 3.0 X 103 m/s. Suppose the electric field between the 
plates is given by E = (120 N/C)j. In unit-vector notation, what are 
(a) the electron's acceleration in that field and (b) the electron's ve­
locity when its x coordinate has changed by 2.0 cm? 

Assume that a honeybee is a sphere of diameter 1.000 
cm with a charge of +45.0 pC uniformly spread over its surface. 
Assume also that a spherical pollen grain of diameter 40.0 [Lm is 
electrically held on the surface of the sphere because the bee's 
charge induces a charge of -1.00 pC on the near side of the sphere 
and a charge of + 1.00 pC on the far side. (a) What is the magnitUde 
of the net electrostatic force on the grain due to the bee? Next, as­
sume that the bee brings the grain to a distance of 1.000 mm from 
the tip of a flower's stigma and that the tip is a particle of charge 
-45.0 pc. (b) What is the magnitude of the net electrostatic force 
on the grain due to the stigma? (c) Does the grain remain on the 
bee or does it move to the stigma? 

An electron enters a region of uniform electric field with an 
initial velocity of 40 kmls in the same direction as the electric field, 
which has magnitude E = 50 N/C. (a) What is the speed of the 
electron 1.5 ns after entering this region? (b) How far does the 
electron travel during the 1.5 ns interval? 

Two large parallel copper 
plates are 5.0 cm apart and have a 
uniform electric field between them 
as depicted in Fig. 22-55. An elec­
tron is released from the negative 
plate at the same time that a proton 
is released from the positive plate. 
Neglect the force of the particles on 
each other and find their distance 
from the positive plate when they 

Positive 
plate 

~ 

E 

Negative 
plate 

Fig. 22-55 Problem 53. 

pass each other. (Does it surprise you that you need not know the 
electric field to solve this problem?) 



In Fig. 22-56, an electron 
is shot at an initial speed of 
1'0 = 2.00 X 106 mis, at angle 80 = 

40.0° from an x axis. It moves 
through a uniform electric field 

)' Detecting 
screen 

E = (5.00 N/C)]. A screen for de- Fig.22-56 Problem 54. 
tecting electrons is positioned paral-
lel to the y axis, at distance x = 3.00 m. In unit-vector notation, 
what is the velocity of the electron when it hits the screen? 

IlW A uniform electric field exists in a region between two 
oppositely charged plates. An electron is released from rest at the 
surface of the negatively charged plate and strikes the surface of 
the opposite plate, 2.0 cm away, in a time 1.5 X 10-8 s. (a) What is 
the speed of the electron as it strikes the second plate? (b) What is 
the magnitude of the electric field E? 

A Dipole in an Electric Field 
An electric dipole consists of charges +2e and -2e separated 

by 0.78 nm. It is in an electric field of strength 3.4 X 106 N/C. 
Calculate the magnitude of the torque on the dipole when the di­
pole moment is (a) parallel to, (b) perpendicular to, and (c) an­
tiparallel to the electric field. 

SSM An electric dipole consisting of charges of magnitude 
1.50 nC separated by 6.20 ,urn is in an electric field of strength 1100 
N/C. What are (a) the magnitude of the electric dipole moment and 
(b) the difference between the potential energies for dipole orienta­
tions parallel and antiparallel to If? 

1---+-+----1--; e 

A certain electric dipole is 
placed in a uniform electric field E of 
magnitude 20 N/C. Figure 22-57 gives 
the potential energy U of the dipole 
versus the angle 8 between E and the 
dipole moment p. The vertical axis 
scale is set by Us = 100 X 10-28 1. 
What is the magnitude of p? Fig. 22-57 Problem 58. 

How much work is required to 
turn an electric dipole 180° in a uniform 
electric field of magnitude E = 46.0 N/C 
if p = 3.02 X 10-25 C . m and the initial 
angle is 64°? 

A certain electric dipole is 
placed in a uniform electric field E of 
magnitude 40 N/C. Figure 22-58 gives 

ilCN 
l- 0 I I e 

Fig. 22-58 

Problem 60. 

the magnitude 7 of the torque on the dipole versus the angle 8 be­
tween field E and the dipole moment p. The vertical axis scale is 
set by 7s = 100 X 10-28 N· m. What is the magnitude of p? 

Find an expression for the oscillation frequency of an elec­
tric dipole of dipole moment p and rotational inertia I for small 
amplitudes of oscillation about its equilibrium position in a uni­
form electric field of magnitude E. 

Additional Problems 
(a) What is the magnitude of an electron's acceleration in a uni­

fmm electJic field of magnitude 1.40 X 106 N/C? (b) How long would 
the electron take, starting from rest, to attain one-tenth the speed of 
light? (c) How far would it travel in that time? 

A spherical water drop 1.20 ,urn in diameter is suspended in calm 
air due to a downward-directed atmospheric electric field of magni-
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tude E = 462 N/C. (a) What is the magnitude of the gravitational 
force on the drop? (b) How many excess electrons does it have? 

Three particles, each with positive charge Q, form an equilat­
eral triangle, with each side of length d. What is the magnitude of the 
electric field produced by the particles at the midpoint of any side? 

In Fig. 22-59a, a particle of charge +Q produces an electric field 
of magnitude Epart at point P, at distance R from the particle. In Fig. 
22-59b, that same amount of charge is spread uniformly along a 
circular arc that has radius Rand sub tends an angle 8. The charge 
on the arc produces an electric field of magnitude E arc at its center 
of curvature P. For what value of 8 does Earc = 0.500Epart? (Hint: 
You will probably resort to a graphical solution.) 

+Q p 
-0 @ 

r-R-1 
(a) (b) 

Fig. 22-59 Problem 65. 

A proton and an electron form two corners of an equilateral 
triangle of side length 2.0 X 10-6 m. What is the magnitude of the 
net electric field these two particles produce at the third corner? 

A charge (uniform linear density = 9.0 nC/m) lies on a string 
that is stretched along an x axis from x = 0 to x = 3.0 m. Determine 
the magnitude of the electric field at x = 4.0 m on the x axis. 

In Fig. 22-60, eight particles form q1 q2 

a square in which distance d = 2.0 cm. d d 

The charges are ql = +3e, q2 = +e, d 

q3 = -5e, q4 = -2e, q5 = +3e, q6 = +e, 
q7 = -5e, and q8 = +e. In unit-vector 
notation, what is the net electric field at 
the square's center? 

Two particles, each with a charge 
of magnitude 12 nC, are at two of the 
vertices of an equilateral triangle with 
edge length 2.0 ill. What is the magni­
tude of the electric field at the third 
vertex if (a) both charges are positive 

q8 

d 

q7 

)' 

Lx 

d d 

Fig. 22-60 

Problem 68. 

and (b) one charge is positive and the other is negative? 

d 

d 

In one of his experiments, Millikan observed that the follow­
ing measured charges, among others, appeared at different times 
on a single drop: 

6.563 X 10-19 C 

8.204 X 10- 19 C 

11.50 X 10-19 C 

13.13 X 10-19 C 

16.48 X 10-19 C 

18.08 X 10- 19 C 

19.71 X 10-19 C 

22.89 X 10-19 C 

26.13 X 10-19 C 

What value for the elementary charge e can be deduced from these 
data? 

A charge of 20 nC is uniformly distributed along a straight 
rod of length 4.0 m that is bent into a circular arc with a radius of 
2.0 m. What is the magnitude of the electric field at the center of 
curvature of the arc? 
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An electron is constrained to the central axis of the ring of 
charge ofradius R in Fig. 22-10, with z q R. Show that the electro­
static force on the electron can cause it to oscillate through the ring 
center with an angular frequency 

w = ) 47rs::R3 ' 

where q is the ring's charge and m is the electron's mass. 

SSM The electric field in an xy plane produced by a posi­
tively charged particle is 7.2( 4.oi + 3.0)) N/C at the point (3.0,3.0) 
cm and 100i N/C at the point (2.0,0) cm. What are the (a) x and (b) 
y coordinates of the particle? (c) What is the charge of the particle? 

(a) What total (excess) charge q must the disk in Fig. 22-13 
have for the electric field on the surface of the disk at its center to 
have magnitude 3.0 X 106 N/C, the E value at which air breaks 
down electrically, producing sparks? Take the disk radius as 2.5 cm, 
and use the listing for air in Table 22-1. (b) Suppose each surface 
atom has an effective cross-sectional area of 0.015 nm2• How many 
atoms are needed to make up the disk surface? (c) The charge cal­
culated in (a) results from some of the surface atoms having one 
excess electron. What fraction of these 
atoms must be so charged? 

In Fig. 22-61, particle 1 (of charge 
+ 1.00 ftC), particle 2 (of charge + 1.00 
ftC), and particle 3 (of charge Q) form 
an equilateral triangle of edge length 
a. For what value of Q (both sign and 
magnitude) does the net electric field Fig. 22-61 Problems 
produced by the particles at the center 75 and 86. 
of the triangle vanish? 

In Fig. 22-62, an electric dipole swings 
from an initial orientation i (Oi = 20.00

) to a fi- ~ 

nal orientation f (Of = 20.00
) in a uniform ex- Pt 

ternal electric field E. The electric dipole mo­
ment is 1.60 X 10-27 C . m; the field magnitude 
is 3.00 X 106 N/C. What is the change in the di­
pole's potential energy? 

A particle of charge -qj is at the origin of 
an x axis. (a) At what location on the axis 
should a particle of charge -4qj be placed so 
that the net electric field is zero at x = 2.0 mm 

Fig. 22-62 

Problem 76. 

on the axis? (b) If, instead, a particle of charge +4qj is placed at 
that location, what is the direction (relative to the positive direc­
tion of the x axis) of the net electric field at x = 2.0 mm? 

Two particles, each of positive charge q, are fixed in place on a 
y axis, one at y = d and the other at y = -d. (a) Write an expres­
sion that gives the magnitude E of the net electric field at points on 
the x axis given by x = ad. (b) Graph E versus a for the range 0 < 
a < 4. From the graph, determine the values of a that give (c) the 
maximum value of E and (d) half the maximum value of E. 

A clock face has negative point charges -q, -2q, -3q, ... , 
-12q fixed at the positions of the corresponding numerals. The clock 
hands do not perturb the net field due to the point charges. At what 
time does the hour hand point in the same direction as the electric 
field vector at the center of the dial? (Hint: Use symmetry.) 

Calculate the electric dipole moment of an electron and a 
proton 4.30 nm apart. 

An electric field E with an average magnitude of about 150 
N/C points downward in the atmosphere near Earth's surface. We 
wish to "float" a sulfur sphere weighing 4,4 N in this field by charg­
ing the sphere. (a) What charge (both sign and magnitude) must be 
used? (b) Why is the experiment impractical? 

A circular rod has a radius of curvature R = 9.00 cm and a 
uniformly distributed positive charge Q = 6.25 pC and sub tends 
an angle 0 = 2,40 rad. What is the magnitude of the electric field 
that Q produces at the center of curvature? 

SSM An electric dipole with dipole moment 

p = (3.00i + 4.00))(1.24 X 10-30 C' m) 

is in an electric field E = (4000 N/C)i, (a) What is the potential en­
ergy of the electric dipole? (b) What is the torque acting on it? ( c) If 
an external agent turns the dipole until its electric dipole moment is 

p = (-4.00i + 3.00))(1.24 X 10-30 C· m), 

how much work is done by the agent? 

In Fig. 22-63, a uniform, upward electric field E of magnitude 
2.00 X 103 N/C has been set up between two horizontal plates by 
charging the lower plate positively and the upper plate negatively. 
The plates have length L = 10.0 cm and separation d = 2.00 cm. 
An electron is then shot between the plates from the left edge of 
the lower plate. The initial velocity Vo of the electron makes an an­
gle 0 = 45.00 with the lower plate 
and has a magnitude of 6.00 X 106 

m/s. (a) Will the electron strike one 
of the plates? (b) If so, which plate ~ d 

and how far horizontally from the 5<: E I 
1'0 e left edge will the electron strike? T 

For the data of Problem 70, as- k�.---- L ---~.I 
sume that the charge q on the drop 

Fig. 22-63 Problem 84. is given by q = ne, where n is an 
integer and e is the elementary 
charge. (a) Find n for each given value of q. (b) Do a linear regres­
sion fit of the values of q versus the values of n and then use that fit 
to find e. 

In Fig. 22-61, particle 1 (of charge +2.00 pC), particle 2 (of 
charge -2.00 pC), and particle 3 (of charge +5.00 pC) form an 
equilateral triangle of edge length a = 9.50 cm. (a) Relative to the 
positive direction of the x axis, determine the direction of the force 
l{ on particle 3 due to the other particles by sketching electric field 
lines of the other particles. (b) Calculate the magnitude of l{. 

In Fig. 22-64, particle 1 of charge ql = 1.00 pC and particle 2 
of charge q2 = -2.00 pC are fixed at a distance d = 5.00 cm apart. 
In unit-vector notation, what is the net electric field at points (a) A, 
(b) B, and (c) C? (d) Sketch the electric field lines. 

__ - rI---{;A~ sl __ ~ sl---9----- d--, •• -,>; 

A 2 B 2 2 C 

Fig. 22-64 Problem 87. 

In Fig. 22-8, let both charges be positive. Assuming z ~ d, 
show that E at point P in that figure is then given by 

E=_l_ !!L 
47rso Z2' 



WHAT I S PHYSICS? 
One of the primary goals of physics is to find simple ways of solving 

seemingly complex problems. One of the main tools of physics in attaining this 
goal is the use of symmetry. For example, in finding the electric field E of the 
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the 
fields dE (= k dq/r2) of charge elements in the ring and rod. Then we simplified 
the calculation of E by using symmetry to discard the perpendicular components 
of the dE vectors. That saved us some work. 

For certain charge distributions involving symmetry, we can save far more work 
by using a law called Gauss' law, developed by German mathematician and physi­
cist Carl Friedrich Gauss (1777-1855). Instead of considering the fields if of 
charge elements in a given charge distribution, Gauss' law considers a hypothetical 
(imaginary) closed surface enclosing the charge distribution. This Gaussian surface, 
as it is called, can have any shape, but the shape that minimizes our calculations of 
the electric field is one that mimics the symmetry of the charge distribution. For ex­
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a 
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in 
this chapter, find the electric field on the surface by using the fact that 

Gauss' law relates the electric fields at points on a (closed) Gaussian surface to the 
net charge enclosed by that surface. 

We can also use Gauss' law in reverse: If we know the electric field on a Gaussian 
surface, we can find the net charge enclosed by the surface. As a limited example, 
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the 
center of the sphere and have equal magnitude. Gauss' law immediately tells us that 
the spherical surface must enclose a net positive charge that is either a particle or 
distributed spherically. However, to calculate how much charge is enclosed, we need 
a way of calculating how much electric field is intercepted by the Gaussian surface in 
Fig. 23-1. This measure of intercepted field is called flux, which we discuss next. 

Flux 
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity v at 
a small square loop of area A. Let cD represent the volume flow rate (volume per unit 
time) at which air flows through the loop. This rate depends on the angle between v 
and the plane of the loop. If v is perpendicular to the plane, the rate cD is equal to vA. 

If v is parallel to the plane of the loop, no air moves through the loop, so 
cD is zero. For an intermediate angle e, the rate cD depends on the component of 
v normal to the plane (Fig. 23-2b). Since that component is v cos e, the rate of volume 
flow through the loop is 

cD = (v cos e)A. (23-1) 

This rate of flow through an area is an example of a flux-a volume flux in this 
situation. 

·CHA·PTE.R 

1 

Spherical 
Gaussian 

~ 

E 

Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors 
are of uniform magnitude and point 
radially outward at all surface points, 
you can conclude that a net positive 
distribution of charge must lie within 
the surface and have spherical 
symmetry. 
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Fig.23-2 (a) A uniform airstream ofve­
locity v is perpendicular to the plane of a 
square loop of area A.(b) The component 
of v perpendicular to the plane of the loop 
is v cos 0, where 0 is the angle between v 
and a normal to the plane. (c) The area vec­
tor A is perpendicular to the plane of the 
loop and makes an angle o with v. (d) The 
velocity field intercepted by the area of the 
loop. 

Pierce 
inward: 
negative 
flux 

Pierce 
outward: 
positive 
flux 

Skim: zero flux 

Fig. 23-3 A Gaussian surface of 
arbitrary shape immersed in an 
electric field. The surface is divided into 
small squares of area LlA. The electric field 
vectors If and the area vectors Llit for three 
representative squares, marked 1,2, and 3, 
are shown. 

Air flow 

(a) (b) (c) (d) 

Before we discuss a flux involved in electrostatics, we need to rewrite Eq. 
23-1 in terms of vectors. To do this, we first define an area vector A as being a 
vector whose magnitude is equal to an area (here the area of the loop) and whose 
direction is normal to the plane of the area (Fig. 23-2c). We then rewrite Eq. 23-1 
as the scalar (or dot) product of the velocity vector 11 of the airstream and the area 
vector A of the loop: 

<P = v A cos {} = v' A , (23-2) 
-> -> 

where {} is the angle between v and A. 
The word "flux" comes from the Latin word meaning "to flow." That meaning 

makes sense if we talk about the flow of air volume through the loop. However, Eq. 
23-2 can be regarded in a more abstract way. To see this different way, note that we 
can assign a velocity vector to each point in the airstream passing through the loop 
(Fig. 23-2d). Because the composite of all those vectors is a velocity field, we can in­
terpret Eq. 23-2 as giving the flux of the velocity field through the loop. With this in­
terpretation, flux no longer means the actual flow of something through an area­
rather it means the product of an area and the field across that area. 

Flux of an Electric Field 
To define the flux of an electric field, consider Fig. 23-3, which shows an arbitrary 
(asymmetric) Gaussian surface immersed in a nonuniform electric field. Let us 
divide the surface into small squares of area M, each square being small enough 
to permit us to neglect any curvature and to consider the individual square to be 
flat. We represent each such element of area with an area vector M, whose mag­
nitude is the area ~A. Each vector ~A is perpendicular to the Gaussian surface 
and directed away from the interior of the surface. 

Because the squares have been taken to be arbitrarily small, the electric field 
If may be taken as constant over any given square. The vectors M and If for 
each square then make some angle {} with each other. Figure 23-3 shows an 
enlarged view of three squares on the Gaussian surface and the angle {} for each. 

A provisional definition for the flux of the electric field for the Gaussian 
surface of Fig. 23-3 is 

(23-3) 

This equation instructs us to visit each square on the Gaussian surface, evaluate the 
scalar product If . ~A for the two vectors If and ~A we find there, and sum the re­
sults algebraically (that is, with signs included) for all the squares that make up the 
surface. The value of each scalar product (positive, negative, or zero) determines 
whether the flux through its square is positive, negative, or zero. Squares like square 
1 in Fig. 23-3, in which If points inward, make a negative contribution to the sum of 
Eq. 23-3. Squares like 2, in which If lies in the surface, make zero contribution. 
Squares like 3, in which If points outward, make a positive contribution. 
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The exact definition of the flux of the electric field through a closed surface is 
found by allowing the area of the squares shown in Fig. 23-3 to become smaller 
and smaller, approaching a differential limit dA. The area vectors then approach 
a differential limit dA. The sum of Eq. 23-3 then becomes an integral: 

(electric flux through a Gaussian surface). (23-4) 

The loop on the integral sign indicates that the integration is to be taken over the 
entire (closed) surface. The flux of the electric field is a scalar, and its SI unit is the 
newton -square-meter per coulomb (N' m2/C). 

We can interpret Eq. 23-4 in the following way: First recall that we can use 
the density of electric field lines passing through an area as a proportional mea­
sure of the magnitude of the electric field E there. Specifically, the magnitude E is 
proportional to the number of electric field lines per unit area. Thus, the scalar 
product E· dA in Eq. 23-4 is proportional to the number of electric field lines 
passing through area dA. Then, because the integration in Eq. 23-4 is carried out 
over a Gaussian surface, which is closed, we see that 

The electric flux <P through a Gaussian surface is proportional to the net number of 
electric field lines passing through that surface. 

Flux through a closed cylinder, uniform field 

Figure 23-4 shows a Gaussian surface in the form of a 
cylinder of radius R immersed in a uniform electric field E, 
with the cylinder axis parallel to the field. What is the flux 
<I> of the electric field through this closed surface? 

CHECKPOINT 1 

The figure here shows a Gaussian cube 
of face area A immersed in a uniform 
electric field E that has the positive 
direction of the z axis. In terms of E 
and A, what is the flux through (a) the 
front face (which is in the xy plane), 
(b) the rear face, (c) the top face, and 
(d) the whole cube? 

b 
~ 

E 

.. 

z 

rGaussian 
/ surface 

.. 
We can find the flux <I> through the Gaussian surface by inte­
grating the scalar product E . dA over that surface. 

Fig. 23-4 A cylindrical Gaussian surface, closed by end caps, is 
immersed in a uniform electric field. The cylinder axis is parallel to 
the field direction. 

Calculations: We can do the integration by writing the flux as 
the sum of three terms: integrals over the left cylinder cap a, the 
cylindrical surface b, and the right cap c. Thus, from Eq. 23-4, 

<I>=fE.dA 

= f E· dA + f if· £4 + f E· dA. 
abc 

(23-5) 

For all points on the left cap, the angle 8 between E and 
dA is 1800 and the magnitude E of the field is uniform. Thus, 

f E· dA = f E( cos 180°) dA = - E f dA = - EA, 
a 

where f dA gives the cap's area A (= 7TR2
). Similarly, for the 

right cap, where 8 = 0 for all points, 

f E· dA = f E( cos 0) dA = EA. 
c 

Finally, for the cylindrical surface, where the angle 8 is 90° at 
all points, 

f E· dA = f E( cos 90°) dA = O. 
b 

Substituting these results into Eq. 23-5 leads us to 

<I> = - EA + 0 + EA = O. (Answer) 

The net flux is zero because the field lines that represent the 
electric field all pass entirely through the Gaussian surface, 
from the left to the right. 

';!'~ pJ':lts Additional examples, video, and practice available at WileyPLUS 
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Flux through a closed cube, nonuniform field 

A nonuniform electric field given by E = 3.0xi + 4.0J 
pierces the Gaussian cube shown in Fig. 23-5a. (E is in 
newtons per coulomb and x is in meters.) What is the 
electric flux through the right face, the left face, and the 
top face? (We consider the other faces in another sample 
problem.) 

We can find the flux <P through the surface by integrating the 
scalar product E . dA over each face. 

Right face: An area vector A is always perpendicular to its 
surface and always points away from the interior of a 
Gaussian surface. Thus, the vector dA for any area element 
(small section) on the right face of the cube must point in 
the positive direction of the x axis. An example of such an 
element is shown in Figs. 23-5b and c, but we would have an 
identical vector for any other choice of an area element on 
that face. The most convenient way to express the vector is 
in unit-vector notation, 

dA = dAi. 

From Eq. 23-4, the flux <Pr through the right face is then 

<Pr = J E' dA = J (3.0xi + 4.0]) . (dAi) 

= J [(3.0x)(dA)i . i + (4.0)(dA)J . i] 

= J (3.0x dA + 0) = 3.0 J x dA. 

We are about to integrate over the right face, but we note 
that x has the same value everywhere on that face-namely, 
x = 3.0 m. This means we can substitute that constant value 

for x. This can be a confusing argument. Although x is cer­
tainly a variable as we move left to right across the figure, 
because the right face is perpendicular to the x axis, every 
point on the face has the same x coordinate. (The y and z co­
ordinates do not matter in our integral.) Thus, we have 

<Pr = 3.0 J (3.0) dA = 9.0 J dA. 

The integral fdA merely gives us the area A = 4.0 m2 of the 
right face; so 

<Pr = (9.0 N/C)(4.0 m2) = 36 N· m2/C. (Answer) 

Left face: The procedure for finding the flux through the 
left face is the same as that for the right face. However, two 
factors change. (1) The differential area vector dA points in 
the negative direction of the x axis, and thus dA = - dAi 
(Fig. 23-5d). (2) The term x again appears in our integration, 
and it is again constant over the face being considered. 
However, on the left face, x = 1.0 m. With these two 
changes, we find that the flux <PI through the left face is 

<PI = -12N·m2/C. (Answer) 

Top face: The differential area vector dA points in the posi­
tive direction of the y axis, and thus dA = dAJ (Fig. 23-5e). 
The flux <PI through the top face is then 

<PI = J (3.0xi + 4.0J) . (dAJ) 

= J [(3.0x)(dA)i· J + (4.0)(dA)J . n 

= J (0 + 4.0 dA) = 4.0 J dA 

= 16N·m2/C. (Answer) 

Additional examples, video, and practice available at WileyPLUS 

Gauss'Law 
Gauss' law relates the net flux <P of an electric field through a closed surface 
(a Gaussian surface) to the net charge qene that is enclosed by that surface. It tells us that 

BO<P = qene (Gauss' law). (23-6) 

By substituting Eq. 23-4, the definition of flux, we can also write Gauss' law as 

1-- --BO r E . dA = q ene (Gauss' law). (23-7) 
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The y component 
is a constant. 

The x component 
depends on the 
value of x. 

The y component of the 
field skims the surface 
and gives no flux. The 
dot product is just zero. 

Ex 
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The x component of the 
field pierces the surface 
and gives outward flux. 

z 

(c) The dot product is positive. 

Fig. 23-5 (a) A Gaussian cube with one edge 
on the x axis lies within a nonuniform 
electric field that depends on the value of x. (b) 
Each differential area element has an outward 
vector that is perpendicular to the area. (c) 
Right face: the x component of the field pierces 
the area and produces positive (outward) flux. 
The y component does not pierce the area and 
thus does not produce any flux. (d) Left face: the 
x component of the field produces negative (in­
ward) flux. (e) Top face: the y component of the 
field produces positive (outward) flux. 

The y component of the 
field pierces the surface 
and gives outward flux. 
The dot product is positive. 

z 

y 

(b) 

y 

-dA 1<1-_+-1 

y 

(e) 

Equations 23-6 and 23-7 hold only when the net charge is located in a vacuum or 
(what is the same for most practical purposes) in air. In Chapter 25, we modify Gauss' 
law to include situations in which a material such as mica, oil, or glass is present. 

In Eqs. 23-6 and 23-7, the net charge qenc is the algebraic sum of all the 
enclosed positive and negative charges, and it can be positive, negative, or zero. We 
include the sign, rather than just use the magnitude of the enclosed charge, be­
cause the sign tells us something about the net flux through the Gaussian surface: 
If qenc is positive, the net flux is outward; if qenc is negative, the net flux is inward. 

Charge outside the surface, no matter how large or how close it may be, is 
not included in the term qenc in Gauss' law. The exact form and location of the 
charges inside the Gaussian surface are also of no concern; the only things that 
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-dA 

--> 

.....,!---!>dA 
)-----x 

The differential area vector 
(for a surface element) is 
perpendicular to the surface 
and outward. 

The y component of the 
field skims the surface 
and gives no flux. The 
dot product is just zero. 

I----x 

The x component of the 
field pierces the surface 

(d) and gives inward flux. The 
dot product is negative. 

The x component of the 
field skims the surface 
and gives no flux. The 
dot product is just zero. 

)-----x 
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Fig. 23-6 Two point charges, equal 
in magnitude but opposite in sign, and 
the field lines that represent their net 
electric field. Four Gaussian surfaces 
are shown in cross section. Surface Sj 
encloses the positive charge. Surface 
S2 encloses the negative charge. 
Surface S3 encloses no charge. Surface 
S4 encloses both charges and thus no 
net charge. 

matter on the right side of Eqs. 23-6 and 23-7 are the magnitude and sign of the 
net enclosed charge. The quantity E on the left side of Eq. 23-7, however, is the 
electric field resulting from all charges, both those inside and those outside the 
Gaussian surface. This statement may seem to be inconsistent, but keep this in 
mind: The electric field due to a charge outside the Gaussian surface contributes 
zero net fiux through the surface, because as many field lines due to that charge 
enter the surface as leave it. 

Let us apply these ideas to Fig. 23-6, which shows two point charges, equal in 
magnitude but opposite in sign, and the field lines describing the electric fields 
the charges set up in the surrounding space. Four Gaussian surfaces are also 
shown, in cross section. Let us consider each in turn. 

Surface 51' The electric field is outward for all points on this surface. Thus, the 
fiux of the electric field through this surface is positive, and so is the net 
charge within the surface, as Gauss' law requires. (That is, in Eq. 23-6, if <I> is 
positive, qenc must be also.) 

Surface 52' The electric field is inward for all points on this surface. Thus, the fiux of 
the electric field through this surface is negative and so is the enclosed charge, as 
Gauss' law requires. 

Surface 53' This surface encloses no charge, and thus qenc = O. Gauss' law (Eq. 
23-6) requires that the net fiux of the electric field through this surface be 
zero. That is reasonable because all the field lines pass entirely through the 
surface, entering it at the top and leaving at the bottom. 

Surface 54' This surface encloses no net charge, because the enclosed posi­
tive and negative charges have equal magnitudes. Gauss' law requires 
that the net flux of the electric field through this surface be zero. That is 
reasonable because there are as many field lines leaving surface 54 as en­
tering it. 

What would happen if we were to bring an enormous charge Q up close to sur­
face 54 in Fig. 23-6? The pattern of the field lines would certainly change, but 
the net flux for each of the four Gaussian surfaces would not change. We can 
understand this because the field lines associated with the added Q would pass 
entirely through each of the four Gaussian surfaces, making no contribution to 
the net flux through any of them. The value of Q would not enter Gauss' law in 
any way, because Q lies outside all four of the Gaussian surfaces that we are 
considering. 

CHECKPOINT 2 

The figure shows three situations in which a Gaussian cube sits in an electric field. The 
arrows and the values indicate the directions of the field lines and the magnitudes (in 
N . m2/C) of the flux through the six sides of each cube. (The lighter arrows are for the 
hidden faces.) In which situation does the cube enclose (a) a positive net charge, (b) a 
negative net charge, and (c) zero net charge? 

5 

(1) (2) (3) 
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Relating the net enclosed charge and the net flux 

Figure 23-7 shows five charged lumps of plastic and an 
electrically neutral coin. The cross section of a Gaussian sur­
face S is indicated. What is the net electric flux through the 
surface if ql = q4 = +3.1 nC, q2 = qs = -5.9 nC, and q3 = 
-3.1 nC? 

The net flux <P through the surface depends on the net 
charge qenc enclosed by surface S. 

Calculation: The coin does not contribute to <P because it 
is neutral and thus contains equal amounts of positive and 
negative charge. We could include those equal amounts, 
but they would simply sum to be zero when we calculate 
the net charge enclosed by the surface. So, let's not bother. 
Charges q4 and qs do not contribute because they are out­
side surface S. They certainly send electric field lines 

through the surface, but as much enters as leaves and no 
net flux is contributed. Thus, qenc is only the sum ql + q2 + 
q3 and Eq. 23-6 gives us 

<P = qenc = q1 + q2 + q3 
80 80 

+3.1 X 10-9 C - 5.9 X 10-9 C 3.1 X 10-9 C 

8.85 X 10 -12 C2/N . m2 

= -670 N· m 2/C. (Answer) 

The minus sign shows that the net flux through the surface is 
inward and thus that the net charge within the surface is 
negative. 

s 

Fig. 23-7 Five plastic objects, each with an electric charge, and 
a coin, which has no net charge. A Gaussian surface, shown in 
cross section, encloses three of the plastic objects and the coin. 

+ 

Enclosed charge in a nonuniform field 

What is the net charge enclosed by the Gaussian cube of 
Fig. 23-5, which lies in the electric field It = 3.0xi + 4.0J? 
(E is in newtons per coulomb and x is in meters.) 

The net charge enclosed by a (real or mathematical) closed 
surface is related to the total electric flux through the 
surface by Gauss' law as given by Eq. 23-6 (80<P = qenc). 

Flux: To use Eq. 23-6, we need to know the flux through all 
six faces of the cube. We already know the flux through the 
right face (<p r = 36 N· m2/C), the left face (<p, = -12 
N· m2/C), and the top face (<p{ = 16 N· m2/C). 

For the bottom face, our calculation is just like that for 
the top face except that the differential area vector dA is 
now directed downward along the y axis (recall, it must be 
outward from the Gaussian enclosure). Thus, we have 

dA = -dAJ, and we find 

<Pb = -16N·m2/C. 

For the front face we have dA = dAk, and for the back face, 
dA = -dAk. When we take the dot product of the given elec­
tric field It = 3.0xi + 4.0J with either of these expressions for 
dA, we get 0 and thus there is no flux through those faces. We 
can now find the total flux through the six sides of the cube: 

<P = (36 - 12 + 16 - 16 + 0 + 0) N . m2/C 

= 24 N ·m2/C. 

Enclosed charge: Next, we use Gauss' law to find the 
charge qenc enclosed by the cube: 

qenc = 80<P = (8.85 X 10-12 C2/N . m2)(24 N . m2/C) 

= 2.1 X 10-10 C. (Answer) 

Thus, the cube encloses a net positive charge. 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 23-8 A spherical Gaussian 
surface centered on a point charge q. 

v
-I --

copperJ( 
surface l 

Gaussian 
surface 

(a) 

\ 
surface 

,__ Copper 
surface 

(b) 

Fig.23-9 (a) A lump of copper with a 
charge q hangs from an insulating thread. 
A Gaussian surface is placed within the 
metal, just inside the actual surface. (b) The 
lump of copper now has a cavity within it. 
A Gaussian surface lies within the metal, 
close to the cavity surface. 

Gauss' Law and Coulomb's Law 
Because Gauss' law and Coulomb's law are different ways of describing the rela­
tion between electric charge and electric field in static situations, we should be 
able to derive each from the other. Here we derive Coulomb's law from Gauss' 
law and some symmetry considerations. 

Figure 23-8 shows a positive point charge q, around which we have drawn a 
concentric spherical Gaussian surface of radius r. Let us divide this surface into 
differential areas dA. By definition, the area vector dA at any point is perpendic­
ular to the surface and directed outward from the interior. From the symmetry of 
the situation, we know that at any point the electric field E is also perpendicular 
to the surface and directed outward from the interior. Thus, since the angle () 
between E and dA is zero, we can rewrite Eq. 23-7 for Gauss' law as 

eo f E . dA = eo f E dA = qenc' (23-8) 

Here qenc = q. Although E varies radially with distance from q, it has the same 
value everywhere on the spherical surface. Since the integral in Eq. 23-8 is taken 
over that surface, E is a constant in the integration and can be brought out in 
front of the integral sign. That gives us 

eoE f dA = q. (23-9) 

The integral is now merely the sum of all the differential areas dA on the sphere 
and thus is just the surface area, 47TT 2• Substituting this, we have 

eoE( 47TT 2
) = q 

or E=_l_~ 
41Teo r2 ' 

(23-10) 

This is exactly Eq. 22-3, which we found using Coulomb's law. 

CHECKPOINT 3 

There is a certain net flux <Pi through a Gaussian sphere of radius r enclosing an iso­
lated charged particle. Suppose the enclosing Gaussian surface is changed to (a) a 
larger Gaussian sphere, (b) a Gaussian cube with edge length equal to r, and (c) a 
Gaussian cube with edge length equal to 21'. In each case, is the net flux through the new 
Gaussian surface greater than, less than, or equal to <Pi? 

A Charged Isolated Conductor 
Gauss' law permits us to prove an important theorem about conductors: 

If an excess charge is placed on an isolated conductor, that amount of charge will 
move entirely to the surface of the conductor. None of the excess charge will be found 
within the body of the conductor. 

This might seem reasonable, considering that charges with the same sign repel 
one another. You might imagine that, by moving to the surface, the added charges 
are getting as far away from one another as they can. We turn to Gauss' law for 
verification of this speculation. 

Figure 23-9a shows, in cross section, an isolated lump of copper hanging from 
an insulating thread and having an excess charge q. We place a Gaussian surface 
just inside the actual surface of the conductor. 
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The electric field inside this conductor must be zero. If this were not so, the field 
would exert forces on the conduction (free) electrons, which are always present in a 
conductor, and thus current would always exist within a conductor. (That is, charge 
would flow from place to place within the conductor.) Of course, there is no such 
perpetual current in an isolated conductor, and so the internal electric field is zero. 

(An internal electric field does appear as a conductor is being charged. How­
ever, the added charge quickly distributes itself in such a way that the net internal 
electric field - the vector sum of the electric fields due to all the charges, both 
inside and outside-is zero. The movement of charge then ceases, because the 
net force on each charge is zero; the charges are then in electrostatic equilibrium.) 

If E is zero everywhere inside our copper conductor, it must be zero for all 
points on the Gaussian surface because that surface, though close to the surface 
of the conductor, is definitely inside the conductor. This means that the flux 
through the Gaussian surface must be zero. Gauss' law then tells us that the net 
charge inside the Gaussian surface must also be zero. Then because the excess 
charge is not inside the Gaussian surface, it must be outside that surface, which 
means it must lie on the actual surface of the conductor. 

Figure 23-9b shows the same hanging conductor, but now with a cavity that is 
totally within the conductor. It is perhaps reasonable to suppose that when we 
scoop out the electrically neutral material to form the cavity, we do not change 
the distribution of charge or the pattern of the electric field that exists in Fig. 
23-9a. Again, we must turn to Gauss' law for a quantitative proof. 

We draw a Gaussian surface surrounding the cavity, close to its surface but in­
side the conducting body. Because E = 0 inside the conductor, there can be no flux 
through this new Gaussian surface. Therefore, from Gauss' law, that surface can en­
close no net charge. We conclude that there is no net charge on the cavity walls; all 
the excess charge remains on the outer surface of the conductor, as in Fig. 23-9a. 

Suppose that, by some magic, the excess charges could be "frozen" into position 
on the conductor's surface, perhaps by embedding them in a thin plastic coating, 
and suppose that then the conductor could be removed completely. This is 
equivalent to enlarging the cavity of Fig. 23-9b until it consumes the entire con­
ductor, leaving only the charges. The electric field would not change at all; it 
would remain zero inside the thin shell of charge and would remain unchanged 
for all external points. This shows us that the electric field is set up by the charges 
and not by the conductor. The conductor simply provides an initial pathway for 
the charges to take up their positions. 

You have seen that the excess charge on an isolated conductor moves entirely to 
the conductor's surface. However, unless the conductor is spherical, the charge 
does not distribute itself uniformly. Put another way, the surface charge density if 
(charge per unit area) varies over the surface of any nonspherical conductor. 
Generally, this variation makes the determination of the electric field set up by 
the surface charges very difficult. 

However, the electric field just outside the surface of a conductor is easy to 
determine using Gauss' law. To do this, we consider a section of the surface that 
is small enough to permit us to neglect any curvature and thus to take the section 
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Fig. 23-10 (0) Perspective view and (b) 
side view of a tiny portion of a large, iso­
lated conductor with excess positive charge 
on its surface. A (closed) cylindrical 
Gaussian surface, embedded perpendicu­
larly in the conductor, encloses some of the 
charge. Electric field lines pierce the exter­
nal end cap of the cylinder, but not the inter­
nal end cap. The external end cap has area A 
and area vector A. 

to be flat. We then imagine a tiny cylindrical Gaussian surface to be embedded in 
the section as in Fig. 23-10: One end cap is fully inside the conductor, the other is 
fully outside, and the cylinder is perpendicular to the conductor's surface. 

The electric field E at and just outside the conductor's surface must also be 
perpendicular to that surface. If it were not, then it would have a component 
along the conductor's surface that would exert forces on the surface charges, 
causing them to move. However, such motion would violate our implicit as­
sumption that we are dealing with electrostatic equilibrium. Therefore, It is per­
pendicular to the conductor's surface. 

We now sum the flux through the Gaussian surface. There is no flux through 
the internal end cap, because the electric field within the conductor is zero. There 
is no flux through the curved surface of the cylinder, because internally (in the 
conductor) there is no electric field and externally the electric field is parallel to 
the curved portion of the Gaussian surface. The only flux through the Gaussian 
surface is that through the external end cap, where It is perpendicular to the 
plane of the cap. We assume that the cap area A is small enough that the field 
magnitude E is constant over the cap. Then the flux through the cap is EA, and 
that is the net flux <I> through the Gaussian surface. 

The charge qenc enclosed by the Gaussian surface lies on the conductor's sur­
face in an area A. If iT is the charge per unit area, then qenc is equal to iTA. When 
we substitute iTA for qenc and EA for <1>, Gauss' law (Eq. 23-6) becomes 

BoEA = iTA, 

from which we find 

(conducting surface). (23-11) 

Thus, the magnitude of the electric field just outside a conductor is proportional 
to the surface charge density on the conductor. If the charge on the conductor is 
positive, the electric field is directed away from the conductor as in Fig. 23-10. It 
is directed toward the conductor if the charge is negative. 

The field lines in Fig. 23-10 must terminate on negative charges somewhere in 
the environment. If we bring those charges near the conductor, the charge density at 
any given location on the conductor's surface changes, and so does the magnitude of 
the electric field. However, the relation between iT and E is still given by Eq. 23-11. 

Spherical metal shell, electric field and enclosed charge 

Figure 23-11a shows a cross section of a spherical metal 
shell of inner radius R. A point charge of -5.0 I've is located 
at a distance R/2 from the center of the shell. If the shell is 
electrically neutral, what are the (induced) charges on its in­
ner and outer surfaces? Are those charges uniformly distrib­
uted? What is the field pattern inside and outside the shell? 

be zero. Gauss' law then tells us that the net charge enclosed 
by the Gaussian surface must be zero. 

Reasoning: With a point charge of -5.0 I've within the 
shell, a charge of +5.0 I've must lie on the inner wall of the 
shell in order that the net enclosed charge be zero. If the 
point charge were centered, this positive charge would be 
uniformly distributed along the inner wall. However, since 
the point charge is off-center, the distribution of positive 
charge is skewed, as suggested by Fig. 23-11b, because the 
positive charge tends to collect on the section of the inner 
wall nearest the (negative) point charge. 

Figure 23-11b shows a cross section of a spherical Gaussian 
surface within the metal, just outside the inner wall of the 
shell. The electric field must be zero inside the metal (and 
thus on the Gaussian surface inside the metal). This means 
that the electric flux through the Gaussian surface must also 

Because the shell is electrically neutral, its inner wall 
can have a charge of +5.0 I've only if electrons, with a total 
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charge of -5.0 /Le, leave the inner wall and move to the 
outer wall. There they spread out uniformly, as is also sug­
gested by Fig. 23-11b. This distribution of negative charge is 
uniform because the shell is spherical and because the 
skewed distribution of positive charge on the inner wall can­
not produce an electric field in the shell to affect the distrib­
ution of charge on the outer wall. Furthermore, these nega­
tive charges repel one another. 

(a) (b) 

Fig. 23-11 (a) A negative point charge is located within a 
spherical metal shell that is electrically neutral. (b) As a result, 
positive charge is non uniformly distributed on the inner wall 
of the shell, and an equal amount of negative charge is uni­
formly distributed on the outer wall. 

The field lines inside and outside the shell are shown 
approximately in Fig. 23-11b. All the field lines intersect 
the shell and the point charge perpendicularly. Inside the 
shell the pattern of field lines is skewed because of the 
skew of the positive charge distribution. Outside the shell 
the pattern is the same as if the point charge were centered 
and the shell were missing. In fact, this would be true no 
matter where inside the shell the point charge happened to 
be located. 

Additional examples, video, and practice available at WileyPLUS 

Applying Gauss' law: Cylindrical Symmetry 
Figure 23-12 shows a section of an infinitely long cylindrical plastic rod with 
a uniform positive linear charge density A. Let us find an expression for the mag­
nitude of the electric field E at a distance r from the axis of the rod. 

Our Gaussian surface should match the symmetry of the problem, which is 
cylindrical. We choose a circular cylinder of radius r and length h, coaxial with the 
rod. Because the Gaussian surface must be closed, we include two end caps as 
part of the surface. 

Imagine now that, while you are not watching, someone rotates the plastic rod 
about its longitudinal axis or turns it end for end. When you look again at the rod, 
you will not be able to detect any change. We conclude from this symmetry that the 
only uniquely specified direction in this problem is along a radial line. Thus, at every 
point on the cylindrical part of the Gaussian surface, E must have the same magni­
tude E and (for a positively charged rod) must be directed radially outward. 

Since 2m' is the cylinder's circumference and h is its height, the area A of the 
cylindrical surface is 2m'h. The fiux of E through this cylindrical surface is then 

cD = EA cos e = E(2nrh) cos 0 = E(2nrh). 

There is no fiux through the end caps because E, being radially directed, is paral­
lel to the end caps at every point. 

The charge enclosed by the surface is Ah, which means Gauss' law, 

reduces to 

yielding 

BocD = qenc' 

BoE(2m'h) = Ah, 

E=_A_ 
21TBor 

(line of charge). (23-12) 

This is the electric field due to an infinitely long, straight line of charge, at a point 
that is a radial distance r from the line. The direction of E is radially outward 
from the line of charge if the charge is positive, and radially inward if it is nega­
tive. Equation 23-12 also approximates the field of a finite line of charge at points 
that are not too near the ends (compared with the distance from the line). 

r 
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Gaussian 
surface 

l /-- +--~E 
'+ 

There is flux only 
through the 
curved surface. 

Fig. 23-12 A Gaussian surface in the 
form of a closed cylinder surrounds a section 
of a very long, uniformly charged, cylindrical 
plastic rod. 
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Gauss' law and an upward streamer in a lightning storm 

Upward streamer in a lightning storm. The woman in Fig. 23-13 
was standing on a lookout platform in the Sequoia National 
Park when a large storm cloud moved overhead. Some of the 
conduction electrons in her body were driven into the ground 
by the cloud's negatively charged base (Fig. 23-14a), leaving 
her positively charged. You can tell she was highly charged 
because her hair strands repelled one another and extended 
away from her along the electric field lines produced by the 
charge on her. 

Lightning did not strike the woman, but she was in 
extreme danger because that electric field was on the 
verge of causing electrical breakdown in the surrounding 
air. Such a breakdown would have occurred along a path 
extending away from her in what is called an upward 
streamer. An upward streamer is dangerous because the 
resulting ionization of molecules in the air suddenly frees 
a tremendous number of electrons from those molecules. 
Had the woman in Fig. 23-13 developed an upward 
streamer, the free electrons in the air would have moved 
to neutralize her (Fig. 23-14b), producing a large, perhaps 
fatal, charge flow through her body. That charge flow is 
dangerous because it could have interfered with or even 
stopped her breathing (which is obviously necessary for 
oxygen) and the steady beat of her heart (which is obvi-

Fig.23-13 This woman has become 
positively charged by an overhead storm 
cloud. (Courtesy NOAA) 

e e 

(a) (b) 

Upward 
streamer 

(c) 

Fig.23-14 (a) Some of the conduction electrons in the 
woman's body are driven into the ground, leaving her posi­
tively charged. (b) An upward streamer develops if the air 
undergoes electrical breakdown, which provides a path for 
electrons freed from molecules in the air to move to the 
woman. ( c) A cylinder represents the woman. 

ously necessary for the blood flow that carries the oxy­
gen). The charge flow could also have caused burns. 

Let's model her body as a narrow vertical cylinder of 
height L = 1.8 m and radius R = 0.10 m (Fig. 23-14c). 
Assume that charge Q was uniformly distributed along the 
cylinder and that electrical breakdown would have oc­
curred if the electric field magnitude along her body had 
exceeded the critical value Ee = 2.4 MN/C. What value of 
Q would have put the air along her body on the verge of 
breakdown? 

Because R ~ L, we can approximate the charge distribution 
as a long line of charge. Further, because we assume that the 
charge is uniformly distributed along this line, we can ap­
proximate the magnitude of the electric field along the side 
of her body with Eq. 23-12 (E = J..127TBor). 

Calculations: Substituting the critical value Ee for E, the 
cylinder radius R for radial distance r, and the ratio QIL for 
linear charge density J.., we have 

E = QIL 
e 27TBOR' 

or Q = 27TBORLEe' 

Substituting given data then gives us 

Q = (27T)(8.85 X 1O-12 C 2 /N·m2)(0.10m) 

X (1.8 m)(2.4 X 106 N/C) 

= 2.402 X 10-5 C = 24 fLC. (Answer) 

fills Additional examples, video, and practice available at WileyPLUS 
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Applying Gauss' Law: Planar Symmetry 

Figure 23-15 shows a portion of a thin, infinite, nonconducting sheet with a uni­
form (positive) surface charge density 0". A sheet of thin plastic wrap, uniformly 
charged on one side, can serve as a simple model. Let us find the electric field 11 
a distance r in front of the sheet. 

A useful Gaussian surface is a closed cylinder with end caps of area A, 
arranged to pierce the sheet perpendicularly as shown. From symmetry, If must 
be perpendicular to the sheet and hence to the end caps. Furthermore, since the 
charge is positive, If is directed away from the sheet, and thus the electric field 
lines pierce the two Gaussian end caps in an outward direction. Because the field 
lines do not pierce the curved surface, there is no fiux through this portion of the 
Gaussian surface. Thus E· dA is simply E dA; then Gauss' law, 

BO f If· dA = q enc' 

becomes Bo(EA + EA) = O"A, 

where O"A is the charge enclosed by the Gaussian surface. This gives 

E=~ 
2Bo 

(sheet of charge). (23-13) 

Since we are considering an infinite sheet with uniform charge density, this result 
holds for any point at a finite distance from the sheet. Equation 23-13 agrees with 
Eq. 22-27, which we found by integration of electric field components. 

Figure 23-16a shows a cross section of a thin, infinite conducting plate with excess 
positive charge. From Section 23-6 we know that this excess charge lies on the 
surface of the plate. Since the plate is thin and very large, we can assume that 
essentially all the excess charge is on the two large faces of the plate. 

If there is no external electric field to force the positive charge into some par­
ticular distribution, it will spread out on the two faces with a uniform surface 
charge density of magnitude 0"1' From Eq. 23-11 we know that just outside the 
plate this charge sets up an electric field of magnitude E = O"l/BO' Because the 
excess charge is positive, the field is directed away from the plate. 

Figure 23-16b shows an identical plate with excess negative charge having 
the same magnitude of surface charge density 0"1' The only difference is that now 
the electric field is directed toward the plate. 

Suppose we arrange for the plates of Figs. 23-16a and b to be close to each 
other and parallel (Fig. 23-16c). Since the plates are conductors, when we bring 
them into this arrangement, the excess charge on one plate attracts the excess 
charge on the other plate, and all the excess charge moves onto the inner faces of 
the plates as in Fig. 23-16c. With twice as much charge now on each inner face, the 
new surface charge density (call it 0") on each inner face is twice 0"1' Thus, the elec­
tric field at any point between the plates has the magnitude 

E = 20"1 =~. 
BO BO 

(23-14) 

This field is directed away from the positively charged plate and toward the nega­
tively charged plate. Since no excess charge is left on the outer faces, the electric 
field to the left and right of the plates is zero. 

A J 
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-r -l' Gaussian 
-r surface 

There is flux only 

(a) through the 
two end faces. 

i 
I 
ri 

-+ 
A 

(b) 

Fig. 23-1 5 (a) Perspective view and (b) 
side view of a portion of a very large, thin 
plastic sheet, uniformly charged on one 
side to surface charge density CT. A closed 
cylindrical Gaussian surface passes through 
the sheet and is perpendicular to it. 

(~ (~ 

E=O E=O 

(c) 

Fig. 23-16 (a) A thin, very large conduct­
ing plate with excess positive charge. (b) An 
identical plate with excess negative charge. 
(c) The two plates arranged so they are par­
allel and close. 



618 ER 3 GAUSS' LAW 

Because the charges on the plates moved when we brought the plates close 
to each other, Fig. 23-16c is not the superposition of Figs. 23-16a and b; that is, the 
charge distribution of the two-plate system is not merely the sum of the charge 
distributions of the individual plates. 

You may wonder why we discuss such seemingly unrealistic situations as the 
field set up by an infinite line of charge, an infinite sheet of charge, or a pair of 
infinite plates of charge. One reason is that analyzing such situations with Gauss' 
law is easy. More important is that analyses for "infinite" situations yield good 
approximations to many real-world problems. Thus, Eq. 23-13 holds well for a 
finite nonconducting sheet as long as we are dealing with points close to the sheet 
and not too near its edges. Equation 23-14 holds well for a pair of finite conduct­
ing plates as long as we consider points that are not too close to their edges. 

The trouble with the edges of a sheet or a plate, and the reason we take care 
not to deal with them, is that near an edge we can no longer use planar symmetry to 
find expressions for the fields. In fact, the field lines there are curved (said to be an 
edge effect or fringing), and the fields can be very difficult to express algebraically. 

Electric field near two parallel charged metal plates 

Figure 23-17 a shows portions of two large, parallel, non­
conducting sheets, each with a fixed uniform charge on one 
side. The magnitudes of the surface charge densities are 
0'(+) = 6.8 J.LC/m2 for the positively charged sheet and 0'(_) = 
4.3 J.LC/m2 for the negatively charged sheet. 

Find the electric field E (a) to the left of the sheets, 
(b) between the sheets, and (c) to the right of the sheets. 

With the charges fixed in place (they are on nonconduc­
tors), we can find the electric field of the sheets in Fig. 23-17 a 
by (1) finding the field of each sheet as if that sheet were iso­
lated and (2) algebraically adding the fields of the isolated 
sheets via the superposition principle. (We can add the fields 
algebraically because they are parallel to each other.) 

Calculations: At any point, the electric field E( +) due to 
the positive sheet is directed away from the sheet and, from 
Eq. 23-13, has the magnitude 

0'( +) 6.8 X 10 -6 C/m2 

E(+) = 280 = (2)(8.85 X 10-12 C2/N .m2) 

= 3.84 X 105 N/e. 

Fig.23-17 (a) Two large,paral­
leI sheets, uniformly charged on 
one side. (b) The individual elec­
tric fields resulting from the two 
charged sheets. (c) The net field 
due to both charged sheets, found 
by superposition. (a) 

O" (+ 

c!-

0" (_) 

+ (b) 

Similarly, at any point, the electric field ~ _ ) due to the negative 
sheet is directed toward that sheet and has the magnitude 

0'(_) 4.3 X 10-6 C/m2 

E(_) = 280 = (2)(8.85 X 10-12 C2/N .m2) 

= 2.43 X 105 N/e. 

Figure 23-17b shows the fields set up by the sheets to the left of 
the sheets (L), between them (B), and to their right (R). 

The resultant fields in these three regions follow from the 
superposition principle. To the left, the field magnitude is 

EL = E(+) - E(_) 
= 3.84 X 105 N/C - 2.43 X 105 N/C 

(Answer) 

Because E(+) is larger than E(_), the net electric field EL in this 
region is directed to the left, as Fig. 23-17 c shows. To the right of 
the sheets, the electric field has the same magnitude but is di­
rected to the right, as Fig. 23-17 c shows. 

Between the sheets, the two fields add and we have 

EB = E(+) + E(_) 
= 3.84 X 105 N/C + 2.43 X 105 N/C 

= 6.3 X 105 N/e. (Answer) 

The electric field EB is directed to the right. 

c!- c!-
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~ 

EL E 
L B R ~ -4 
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PLUS Additional examples, video, and practice available at WileyPLUS 
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Applying Gauss' law: Spherical Symmetry 
Here we use Gauss' law to prove the two shell theorems presented without proof 
in Section 21-4: 

A shell of uniform charge attracts or repels a charged particle that is outside the shell 
as if all the shell's charge were concentrated at the center of the shell. 

If a charged particle is located inside a shell of uniform charge, there is no electrosta­
tic force on the particle from the shell. 

Figure 23-18 shows a charged spherical shell of total charge q and radius R and two 
concentric spherical Gaussian smiaces, S1 and S2' If we followed the procedure of 
Section 23-5 as we applied Gauss' law to surface S2, for which r 2: R, we would find that 

1 q 
E=---

41TBO r2 
(spherical shell, field at r ~ R). (23-15) 

This field is the same as one set up by a point charge q at the center of the shell of 
charge. Thus, the force produced by a shell of charge q on a charged particle 
placed outside the shell is the same as the force produced by a point charge q 
located at the center of the shell. This proves the first shell theorem. 

Applying Gauss' law to surface Sl, for which r < R, leads directly to 

E=O (spherical shell, field at r < R), (23-16) 

because this Gaussian surface encloses no charge. Thus, if a charged particle were 
enclosed by the shell, the shell would exert no net electrostatic force on the parti­
cle. This proves the second shell theorem. 

Any spherically symmetric charge distribution, such as that of Fig. 23-19, can 
be constructed with a nest of concentric spherical shells. For purposes of applying 
the two shell theorems, the volume charge density p should have a single value 
for each shell but need not be the same from shell to shell. Thus, for the charge 
distribution as a whole, p can vary, but only with r, the radial distance from the 
center. We can then examine the effect of the charge distribution "shell by shell." 

In Fig. 23-19a, the entire charge lies within a Gaussian surface with r> R. 
The charge produces an electric field on the Gaussian surface as if the charge 
were a point charge located at the center, and Eq. 23-15 holds. 

Figure 23-19b shows a Gaussian surface with r < R. To find the electric 
field at points on this Gaussian surface, we consider two sets of charged 
shells-one set inside the Gaussian surface and one set outside. Equation 
23-16 says that the charge lying outside the Gaussian surface does not set up a 
net electric field on the Gaussian surface. Equation 23-15 says that the charge 
enclosed by the surface sets up an electric field as if that enclosed charge were 
concentrated at the center. Letting q' represent that enclosed charge, we can 
then rewrite Eq. 23-15 as 

1 q' 
E = -- - (spherical distribution, field at r :5 R). (23-17) 

41TBO r2 

ff the full charge q enclosed within radius R is uniform, then q' enclosed 
within radius r in Fig. 23-19b is proportional to q: 

(
charge enclosed bY) 
sphere of radius r 

(
volume enclosed bY) 
sphere of radius r 

full charge 
full volume 

Fig. 23-18 A thin, uniformly charged, 
spherical shell with total charge q, in cross 
section. Two Gaussian surfaces Sl and S2 
are also shown in cross section. Surface S2 
encloses the shell, and Sl encloses only the 
empty interior of the shell. 

Enclosed 

(a) 

(b) The flux through the 

surface depends on 
only the enclosed 
charge. 

Fig. 23-19 The dots represent a spheri­
cally symmetric distribution of charge of 
radius R, whose volume charge density pis 
a function only of distance from the center. 
The charged object is not a conductor, and 
therefore the charge is assumed to be fixed 
in position. A concentric spherical 
Gaussian surface with r > R is shown in 
(a). A similar Gaussian surface with r < R 
is shown in (b). 
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or 

This gives us 

q' q 
<1: 7Tr3 = <1:

7T
R 3 ' 

3 3 

1'3 
q' = q R3' 

(23-18) 

(23-19) 

Substituting this into Eq. 23-17 yields 

E - ( q )1' 
- 47TBOR3 

(uniform charge, field at r :5 R). (23-20) 

CHECKPOINT 4 

The figure shows two large, parallel, nonconducting sheets with identical (positive) uni­
form surface charge densities, and a sphere with a uniform (positive) volume charge 
density. Rank the four numbered points according to the magnitude of the net electric 
field there, greatest first. 

Gauss' Law Gauss' law and Coulomb's law are different ways 
of describing the relation between charge and electric field in static 
situations. Gauss' law is 

Bact> = qenc (Gauss' law), (23-6) 

in which qenc is the net charge inside an imaginary closed surface (a 
Gaussian surface) and ct> is the net flux of the electric field through 
the surface: 

(electric flux through a 
Gaussian surface). 

Coulomb's law can be derived from Gauss' law. 

(23-4) 

Applications of Gauss' Law Using Gauss' law and, in some 
cases, symmetry arguments, we can derive several important 
results in electrostatic situations. Among these are: 

1. An excess charge on an isolated conductor is located entirely on 
the outer surface of the conductor. 

2. The external electric field near the surface of a charged conductor 
is perpendicular to the surface and has magnitude 

(]' 

E=­
BO 

(conducting surface). 

Within the conductor, E = O. 

(23-11) 

3. The electric field at any point due to an infinite line of charge 
with uniform linear charge density A is perpendicular to the line 
of charge and has magnitude 

l"' -I Jrt-' 
-2 -3 -4 

-t' d-4-d-4-d-4-d-4-d 'f-

E=_A_ 
271"Bor 

(line of charge), (23-12) 

where I' is the perpendicular distance from the line of charge to 
the point. 

4. The electric field due to an infinite nonconducting sheet with 
uniform surface charge density (]' is perpendicular to the plane 
of the sheet and has magnitude 

(]' 

E=-
2Bo 

(sheet of charge). (23-13) 

5. The electric field outside a spherical shell of charge with radius Rand 
total charge q is directed radially and has magnitude 

E = _1_!L 
471"Bo 1'2 

(spherical shell, for r 2: R). (23-15) 

Here r is the distance from the center of the shell to the point at 
which E is measured. (The charge behaves, for external points, as if 
it were all located at the center of the sphere.) The field inside a 
uniform spherical shell of charge is exactly zero: 

E=O (spherical shell, for r < R). (23-16) 

6. The electric field inside a uniform sphere of charge is directed 
radially and has magnitude 

(23-20) 



1 A surface has the area vector A = (2i + 3]) m2• What is the 
flux of a uniform electric field through the area if the field is 
(a) if = 4i N/C and (b) if = 4]( N/C? 

Figure 23-20 shows, in cross section, three solid cylinders, each of 
length L and uniform charge Q. Concentric with each cylinder is a 
cylindrical Gaussian surface, with all three surfaces having the same 
radius. Rank the Gaussian surfaces according to the electric field at 
any point on the surface, greatest first. 

(a) (b) (c) 

Fig. 23-20 Question 2. 

Figure 23-21 shows, in cross sec­
tion, a central metal ball, two spheri­
cal metal shells, and three spherical 
Gaussian surfaces of radii R, 2R, and 
3R, all with the same center. The uni­
form charges on the three objects 
are: ball, Q; smaller shell, 3Q; larger 
shell, 5Q. Rank the Gaussian sur­
faces according to the magnitude of 
the electric field at any point on the 
surface, greatest first. 

Figure 23-22 shows, in cross sec­
tion, two Gaussian spheres and two 
Gaussian cubes that are centered on 
a positively charged particle. (a) 
Rank the net flux through the four 
Gaussian surfaces, greatest first. (b) 
Rank the magnitudes of the electric 
fields on the surfaces, greatest first, 
and indicate whether the magni­
tudes are uniform or variable along 
each surface. 

In Fig. 23-23, an electron is re­
leased between two infinite noncon­
ducting sheets that are horizontal and 
have uniform surface charge densities 
(7"( +) and 0H, as indicated. The electron 
is subjected to the following three situ­
ations involving sUliace charge densi­
ties and sheet separations. Rank the 
magnitudes of the electron's accelera­
tion, greatest first. 

Situation 

Fig. 23-21 Question 3. 

Fig. 23-22 Question 4. 

+ + + + + + + 

"-<JH 

Fig. 23-23 Question 5. 

Separation 

1 
2 

3 

+4(7" 

+7(7" 

+3(7" 

-4(7" d 

4d 
9d 

-(7" 

-5(7" 

au ESTION S 621 

Three infinite nonconducting sheets, with uniform positive sur­
face charge densities (7",2(7", and 3(7", are arranged to be parallel like 
the two sheets in Fig. 23-17 a. What is their order, from left to right, 
if the electric field if produced by the arrangement has magnitude 
E = 0 in one region and E = 2(7"/80 in another region? 

Figure 23-24 shows four situations in which four very long 
rods extend into and out of the page (we see only their cross sec­
tions). The value below each cross section gives that particular 
rod's uniform charge density in micro coulombs per meter. The 
rods are separated by either d or 2d as drawn, and a central point 
is shown midway between the inner rods. Rank the situations ac­
cording to the magnitude of the net electric field at that central 
point, greatest first. 

(a) fJ!~ ~t 

+3 +2 -2 -3 

(b) 
+2 -4 -4 +2 

(c) ~ ~ • ~ .-
+8 -2 +2 +8 

(d) ~ ® • ~ @--
-6 +5 +5 -6 

Fig. 23-24 Question 7. 

Figure 23-25 shows four solid spheres, each with charge 
Q uniformly distributed through its volume. (a) Rank the spheres 
according to their volume charge density, greatest first. The figure 
also shows a point P for each sphere, all at the same distance 
from the center of the sphere. (b) Rank the spheres according to 
the magnitude of the electric field they produce at point P, great­
est first. 

P. P. 

• 

(a) (b) (c) (d) 

Fig. 23-25 Question 8. 

A small charged ball lies within the hollow of a metallic 
spherical shell of radius R. For three situations, the net charges on 
the ball and shell, respectively, are (1) +4q, 0; (2) -6q, + lOq; (3) 
+16q, -12q. Rank the situations according to the charge on (a) 
the inner surface of the shell and (b) the outer surface, most posi­
tive first. 

Rank the situations of Question 9 according to the magnitude 
of the electric field (a) halfway through the shell and (b) at a point 
2R from the center of the shell, greatest first. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty i lW Interactive solution is at 
http://www_wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Flux of an Electric Field 
@1 SSM The square surface 
shown in Fig. 23-26 measures 3.2 
mm on each side, It is immersed in 
a uniform electric field with magni­
tude E = 1800 N/C and with field 
lines at an angle of () = 35° with a 
normal to the surface, as shown. 
Take that normal to be directed 
"outward," as though the surface 
were one face of a box. Calculate 
the electric flux through the surface, 

Normal 

Fig. 23-26 Problem 1. 

An electric field given by E = 4.01 - 3.0(y2 + 2.0)J pierces a 
Gaussian cube of edge length 2.0 m and positioned as shown in 
Fig. 23-5. (The magnitude E is in newtons per coulomb and the 
position x is in meters.) What is the electric flux through the (a) 
top face, (b) bottom face, (c) left face, and (d) back face? (e) 
What is the net electric flux through the cube? 

The cube in Fig. 23-27 has 
edge length 1.40 m and is oriented 
as shown in a region of uniform 
electric field. Find the electric flux 
through the right face if the electric 
field, in newtons per coulomb, is 
given by (a) 6.001, (b) - 2.00], and 
(c) -3.001 + 4.00k. (d) What is the 
total flux through the cube for each 
field? 

Gauss' Law 
In Fig. 23-28, a butterfly net is 

in a uniform electric field of magni­
tude E = 3.0 mN/C. The rim, a cir­
cle of radius a = 11 cm, is aligned 
perpendicular to the field. The net 
contains no net charge. Find the 
electric flux through the netting. 

In Fig. 23-29, a proton is a dis­
tance dl2 directly above the center 
of a square of side d. What is the 
magnitude of the electric flux 
through the square? (Hint: 
Think of the square as one 
face of a cube with edge d.) 

-0 At each point on the 
surface of the cube shown 

------)' 

x 

Fig. 23-27 Problems 3, 
6, and 9. 

Fig. 23-28 Problem 4. 

d/2 

~ 

in Fig. 23-27, the electric ,-4~---d 
field is parallel to the z 
axis. The length of each 

Fig. 23-29 Problem 5. 

edge of the cube is 3.0 m. On the top face of the cube the field is 
E = - 34k N/C, and on the bottom face it is E = + 20k N/C. 
Determine the net charge contained within the cube. 

A point charge of 1.8 fLC is at the center of a Gaussian cube 55 
cm on edge. What is the net electric flux through the surface? 

When a shower is turned on in a closed bathroom, the 
splashing of the water on the bare tub can fill the room's air with 
negatively charged ions and produce an electric field in the air as 
great as 1000 N/C. Consider a bathroom with dimensions 2.5 m X 
3.0 m X 2.0 m. Along the ceiling, floor, and four walls, approximate 
the electric field in the air as being directed perpendicular to 
the surface and as having a uniform magnitude of 600 N/C. Also, 
treat those surfaces as forming a closed Gaussian surface around 
the room's air. What are (a) the volume charge density p and (b) 
the number of excess elementary charges e per cubic meter in the 
room's air? 

IlW Fig. 23-27 shows a Gaussian surface in the shape of a 
cube with edge length 1.40 m. What are (a) the net flux <I> through 
the surface and (b) the net charge q ene enclosed by the surface if 
E = (3.00y]) N/C, with y in meters? What are (c) <I> and (d) qene if 
E = [-4.001 + (6.00 + 3.00y)]] N/C? 

Figure 23-30 shows a closed Gaussian surface in the shape of a 
cube of edge length 2.00 m. It lies in a region 
where the nonuniform electric field is given by 
E = (3.00x + 4.00)1 + 6.00J + 7.00k N/C, 
with x in meters. What is the net charge con­
tained by the cube? 

Figure 23-31 shows a closed x 
Gaussian surface in the shape of a cube of edge 
length 2.00 m, with one corner at Xl = 5.00 m, 
Yl = 4.00 m. The cube lies in a region where the 

Fig. 23-30 

Problem 10. 

)' 

electric field vector is given by E = -3.001 - 4.00y2J + 3.00k N/C, 
with y in meters. What is the net charge contained by the cube? 

Fig. 23-31 Problem 11. x 

Figure 23-32 shows two non­
conducting spherical shells fixed in 
place. Shell 1 has uniform surface 
charge density +6.0 fLC/m2 on its 
outer surface and radius 3.0 cm; 
shell 2 has uniform surface charge 
density +4.0 fLC/m2 on its outer 
surface and radius 2.0 cm; the shell 
centers are separated by L = 10 cm. 
In unit-vector notation, what is the 
net electric field at x = 2.0 cm? 

z 

--l!----+--ll!----'f----{r x 

Fig. 23-32 Problem 12. 

SSM The electric field in a certain region of Earth's atmo­
sphere is directed vertically down. At an altitude of 300 m the field 



has magnitude 60.0 N/C; at an altitude of 200 m, the magnitude is 
100 N/C. Find the net amount of charge contained in a cube 100 m 
on edge, with horizontal faces at altitudes of 200 and 300 m. 

Flux and nonconducting shells. A charged particle is sus­
pended at the center of two concentric spherical shells that are 
very thin and made of nonconducting material. Figure 23-33a 
shows a cross section. Figure 23-33b gives the net flux <P through a 
Gaussian sphere centered on the particle, as a function of the ra­
dius ,. of the sphere. The scale of the vertical axis is set by <Ps = 

5.0 X 105 N· m2/C. (a) What is the charge of the central particle? 
What are the net charges of (b) shell A and (c) shell B? 

(a) 

I i 

U 
<Ps f-i ,I 

"-
~, 

S 
z 0 

I- i--- i-- 1--- 1--- i--- ---'" 0 
0 --- I- !---
>9< 1---1-

-<Ps L- : I j 

(b) 

Fig. 23-33 Problem 14. 

, I , 

---
!--i~! 

i--- 1---- i-- 1--- ! 
I-

I 
I , 

A particle of charge +q is placed at one comer of a Gaussian 
cube. What multiple of qlso gives the flux through (a) each cube face 
forming that comer and (b) each of the other cube faces? 

The box-like Gaussian surface shown in Fig. 23-34 en­
closes a net charge of +24.0so C and lies in an electric field given 
by E = [(10.0 + 2.00x)i - 3.00j + bzk] N/C, with x and z in me­
ters and b a constant. The bottom face is in the xz plane; the top face 
is in the horizontal plane passing through Y2 = 1.00 m. For Xl = 
1.00 m,x2 = 4.00 m, Zl = 1.00 m, and Z2 = 3.00 m, what is b? 

y 

Fig. 23-34 Problem 16. 

A Charged Isolated Conductor 
SSM A uniformly charged conducting sphere of 1.2 m diam­

eter has a surface charge density of 8.1 f-LC/m2• (a) Find the net 
charge on the sphere. (b) What is the total electric flux leaving the 
surface of the sphere? 

The electric field just above the surface of the charged con­
ducting drum of a photocopying machine has a magnitude E of 
2.3 X 105 N/C. What is the surface charge density on the drum? 

Space vehicles traveling through Earth's radiation belts can 
intercept a significant number of electrons. The resulting charge 
buildup can damage electronic components and disrupt operations. 
Suppose a spherical metal satellite 1.3 m in diameter accumulates 2.4 
f-LC of charge in one orbital revolution. (a) Find the resulting surface 
charge density. (b) Calculate the magnitude of the electric field just 
outside the surface of the satellite, due to the surface charge. 

PROBLEMS 623 

Fhc( and conducting shells. A charged particle is held at the 
center of two concentric conducting spherical shells. Figure 23-35a 
shows a cross section. Figure 23-35b gives the net flux <P through a 
Gaussian sphere centered on the particle, as a function of the radius ,. 
of the sphere. The scale of the vertical axis is set by <Ps = 5.0 X lOS 
N· m2/C. What are (a) the charge of the central particle and the net 
charges of (b) shell A and (c) shell B? 

-2<ps ,--

(a) (b) 

Fig. 23-35 Problem 20. 

An isolated conductor has net charge + 10 X 10 -6 C and a cav­
ity with a point charge q = +3.0 X 10-6 C. What is the charge on (a) 
the cavity wall and (b) the outer surface? 

Applying Gauss' Law: Cylindrical Symmetry 
An electron is released 9.0 cm from a very long nonconduct­

ing rod with a uniform 6.0 f-LC/m. What is the magnitUde of the 
electron's initial acceleration? 

(a) The drum of a photocopying machine has a length of 42 cm 
and a diameter of 12 cm. The electric field just above the drum's sur­
face is 2.3 X 105 N/C. What is the total charge on the drum? (b) The 
manufacturer wishes to produce a desktop version of the machine. 
This requires reducing the drum length to 28 cm and the diameter to 
8.0 cm. The electric field at the drum surface must not change. What 
must be the charge on this new drum? 

Figure 23-36 shows a section 
of a long, thin-walled metal tube of 
radius R = 3.00 em, with a charge 
per unit length of A = 2.00 X 10-8 

C/m. What is the magnitude E of 
the electric field at radial distance 
(a) ,. = R12.00 and (b) ,. = 2.00R? 
(c) Graph E versus r for the range 
,. = 0 to 2.00R. 

SSM An infinite line of 
charge produces a field of magni- Fig. 23-36 Problem 24. 
tude 4.5 X 104 N/C at distance 2.0 
m. Find the linear charge density. 

Figure 23-37a shows a narrow charged solid cylinder that is 
coaxial with a larger charged cylindrical shell. Both are noncon-

(a) 

Fig. 23-37 

Problem 26. 

E s 

(b) -}.~ 

t I i:; .. (; 

H-t-ril_- T.. •• __ ' .. I I ; I : 
i ' i 

I I ! ; i 

I I I I ' ! 
r(cm) 
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ducting and thin and have uniform surface charge densities on 
their outer surfaces. Figure 23-37b gives the radial component E of 
the electric field versus radial distance r from the common axis, and 
Es = 3.0 X 103 N/C. What is the shell's linear charge density? 

A long, straight wire has fixed negative charge with a linear 
charge density of magnitude 3.6 nCim. The wire is to be enclosed 
by a coaxial, thin-walled nonconducting cylindrical shell of radius 
1.5 cm. The shell is to have positive charge on its outside surface 
with a surface charge density O'that makes the net external electric 
field zero. Calculate 0'. 

A charge of uniform linear density 2.0 nCim is distrib­
uted along a long, thin, nonconducting rod. The rod is coaxial with a 
long conducting cylindrical shell (inner radius = 5.0 cm, outer ra­
dius = 10 cm). The net charge on the shell is zero. (a) What is the 
magnitude of the electric field 15 cm from the axis of the shell? 
What is the surface charge density on the (b) inner and (c) outer 
surface ofthe shell? 

0$29 SSM WWW Figure 23-38 is 
a section of a conducting rod of ra­
dius R1 = 1.30 mm and length L = 

11.00 m inside a thin-walled coaxial 
conducting cylindrical shell of ra­
dius R2 = 1O.0R1 and the (same) 
length L. The net charge on the rod 
is Q1 = +3.40 X 10-12 C; that on 
the shell is Q2 = - 2.00Q1' What are 
the (a) magnitude E and (b) direc­
tion (radially inward or outward) of 
the electric field at radial distance 
r = 2.00R2? What are (c) E and (d) 
the direction at r = 5.00R1? What is 
the charge on the (e) interior and 
(f) exterior surface of the shell? 

In Fig. 23-39, short sections 

Fig. 23-38 Problem 29. 

y 

Line 1 Line 2 

of two very long parallel lines of - I---i--1---- x 

charge are shown, fixed in place, 
separated by L = 8.0 cm. The uni­
form linear charge densities are L/2 L/2 

+6.0/hC/m for line 1 and -2.0 Fig. 23-39 Problem 30. 
/hC/m for line 2. Where along the x 
axis shown is the net electric field from the two lines zero? 

ILW Two long, charged, thin-walled, concentric cylindrical 
shells have radii of 3.0 and 6.0 cm. The charge per unit length is 
5.0 X 1O-6 C/m on the inner shell and -7.0 X 1O-6 C1m on the 
outer shell. What are the (a) magnitude E and (b) direction (radi­
ally inward or outward) of the electric field at radial distance r = 

4.0 cm? What are (c) E and (d) the direction at r = 8.0 cm? 

A long, nonconducting, solid cylinder of radius 4.0 cm has a 
nonuniform volume charge density p that is a function of radial dis­
tance r from the cylinder axis: p = Ar2. For A = 2.5 /hC/ms, what is the 
magnitude of the electric field at (a) 
r = 3.0 cm and (b) r = 5.0 cm? 

Applying Gauss' Law: 
Planar Symmetry x 

In Fig. 23-40, two large, thin 
metal plates are parallel and close to 
each other. On their inner faces, the 
plates have excess surface charge Fig. 23-40 Problem 33. 

densities of opposite signs and magnitude 7.00 X 10-22 C/m2• In 
unit-vector notation, what is the electric field at points (a) to the left 
of the plates, (b) to the right of them, and ( c) between them? 

In Fig. 23-41, a small circular hole of radius R = 1.80 cm has 
been cut in the middle of an infinite, fiat, nonconducting surface 
that has uniform charge density 0' = 4.50 pC/m2. A z axis, with its 
origin at the hole's center, is perpendicular to the surface. In unit­
vector notation, what is the electric field at point P at z = 2.56 cm? 
(Hint: See Eq. 22-26 and use superposition.) 

Fig. 23-41 Problem 34. 

Figure 23-42a shows three plastic sheets that are large, par­
allel, and uniformly charged. Figure 23-42b gives the component of 
the net electric field along an x axis through the sheets. The scale of the 
vertical axis is set by Es = 6.0 X lOS N/C. What is the ratio of the 
charge density on sheet 3 to that on sheet 2? 

E s 

6 
"-z 
'" 0 
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kl 
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I -------1-
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(b) 

Fig. 23-42 Problem 35. 

Figure 23-43 shows cross sec­
tions through two large, parallel, non­
conducting sheets with identical distrib­
utions of positive charge with surface 
charge density 0' = 1.77 X 10-22 C/m2• 

In unit-vector notation, what is if at 
points (a) above the sheets, (b) between 
them, and ( c) below them? 

y 

++++E::0++++ 
x 

Fig. 23-43 

Problem 36. 

SSM WWW A square metal plate of edge length 8.0 cm and 
negligible thickness has a total charge of 6.0 X 10-6 C. (a) Estimate 
the magnitude E ofthe electric field just off the center of the plate (at, 
say, a distance of 0.50 mm from the center) by assuming that the 
charge is spread uniformly over the two faces of the plate. (b) 
Estimate E at a distance of 30 m (large relative to the plate size) by as­
suming that the plate is a point charge. 

"38 In Fig. 23-44a, an electron is shot directly away from a uni­
formly charged plastic sheet, at speed Vs = 2.0 X lOs mls. The sheet is 



nonconducting, fiat, and very large. Figure 23-44b gives the electron's 
vertical velocity component v versus time t until the return to the 
launch point. What is the sheet's surface charge density? 

v s r'{ --I 

V> 

Le 
'-

I '}'" 

f+ l' 'f. l' l' :p 

(a) 

S 
0 '" 0 

:::::. 
'" l' l' ! 

-1's .L 

Fig. 23-44 Problem 38. 

I", 

t (ps) 

(b) 

SSM In Fig. 23-45, a small, nonconducting + 
ball of mass m = 1.0 mg and charge q = 2.0 X (j 

10 -8 C (distributed uniformly through its vol­
ume) hangs from an insulating thread that 
makes an angle e = 30° with a vertical, uni­
formly charged nonconducting sheet (shown in 
cross section). Considering the gravitational 
force on the ball and assuming the sheet extends 
far vertically and into and out of the page, calcuc 

late the surface charge density (Tof the sheet. 

·'40 Figure 23-46 shows a very large noncon-

i 
, 

:2_ 
i' 
~ 

-

L. ~ 

ducting sheet that has a uniform surface charge Fig. 23-45 
density of (T = -2.00 p,C/m2; it also shows a par- Problem 39. 
ticle of charge Q = 6.00 p,C, at dis­
tance d from the sheet. Both are 
fixed in place. If d = 0.200 m, at 
what (a) positive and (b) negative 
coordinate on the x axis (other than 
infinity) is the net electric field Enet 

of the sheeL'lld particle zero? (c) If 

y 

~~ad Q ., 

d = 0.800 m, at what coordinate on Fig. 23-46 Problem 40. 
the x axis is Ket = O? 

An electron is shot directly toward the center of a large 
metal plate that has surface charge density -2.0 X 10-6 C/m2• If the 
initial kinetic energy of the electron is 1.60 X 10-17 J and if the elec­
tron is to stop (due to electrostatic repulsion from the plate) just as it 
reaches the plate, how far from the plate must the launch point be? 

Two large metal plates of area 1.0 m2 face each other, 5.0 
cm apart, with equal charge magnitudes I q I but opposite signs. 
The field magnitude E between them (neglect fringing) is 55 N/C. 
Find Iql. 

Figure 23-47 shows a cross sec­
tion through a very large nonconduct­
ing slab of thickness d = 9.40 mm and 
uniform volume charge density p = 
5.80 fC/m3• The origin of an x axis is at 
the slab's center. What is the magnitUde 
of the slab's electric field at an x coordi­
nate of (a) 0, (b) 2.00 mm, (c) 4.70 mm, 
and (d) 26.0 mm? 

-+-+--+----x 

Fig. 23-47 Problem 43. 

Applying Gauss' Law: Spherical Symmetry 
Figure 23-48 gives the magnitude of the electric field inside and 

outside a sphere with a positive charge distributed uniformly through-
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out its volume. The scale of the vertical 
axis is set by Es = 5.0 X 107 N/C. What 
is the charge on the sphere? 

Tho charged concentric spher­
ical shells have radii 10.0 cm and 

~E u s 
'- -

Z 
'" o 
'""' 

o 2 
15.0 cm. The charge on the inner T(cm) 

4 

shell is 4.00 X 10 -8 C, and that on Fig. 23-48 Problem 44. 
the outer shell is 2.00 X 10 -8 C. Find 
the electric field (a) at r = 12.0 cm and (b) at r = 20.0 cm. 

A point charge causes an electric fiux of -750 N· m2/C to 
pass through a spherical Gaussian surface of 10.0 cm radius cen­
tered on the charge. (a) If the radius of the Gaussian surface were 
doubled, how much fiux would pass through the surface? (b) What 
is the value ofthe point charge? 

SSM An unknown charge sits on a conducting solid sphere 
of radius 10 cm. If the electric field 15 cm from the center of the 
sphere has the magnitude 3.0 X 103 N/C and is directed radially in­
ward, what is the net charge on the sphere? 

"48 A charged particle is held at the center of a spherical shell. 
Figure 23-49 gives the magnitude E of the electric field versus radial 
distance r. The scale of the vertical axis is set by Es = 10.0 X 107 N/C. 
Approximately, what is the net charge on the shell? 

Es 

6 
'-z 
'" 0 
:::::. 
kl 

0 

r(cm) 

Fig. 23-49 Problem 48. 

In Fig. 23-50, a solid sphere of 
radius a = 2.00 cm is concentric 
with a spherical conducting shell of 
inner radius b = 2.00a and outer ra­
dius c = 2.40a. The sphere has a net 
uniform charge q1 = +5.00 fC; the 
shell has a net charge q2 = -q1' 
What is the magnitude of the elec­
tric field at radial distances (a) r = 0, 
(b) r = aI2.00, (c) r = a, (d) r = 

1.50a, (e) r = 2.30a, and (f) r = 

3.50a? What is the net charge on the 
(g) inner and (h) outer surface of the 
shell? 

··SO Figure 23-51 shows two 
nonconducting spherical shells fixed in 
place on an x axis. Shell 1 has uniform 
surface charge density +4.0 p,C/m2 on 
its outer surface and radius 0.50 cm, 

Fig. 23-50 Problem 49. 

and shell 2 has uniform surface charge Fig. 23-51 Problem 50. 
density -2.0 p,C/m2 on its outer sur-
face and radius 2.0 cm; the centers are separated by L = 6.0 cm. Other 
than at x = 00, where on the x axis is the net electric field equal to zero? 
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SSM WWW In Fig. 23-52, a 
nonconducting spherical shell of inner 
radius a = 2.00 cm and outer radius 
b = 2.40 cm has (within its thickness) 
a positive volume charge density p = 

All', where A is a constant and I'is the 
distance from the center of the shell. 
In addition, a small ball of charge q = 

45.0 fC is located at that center. What 
value should A have if the electric field 
in the shell (a::; I' ::; b) is to be uni­
form? 

Figure 23-53 shows a spherical 
shell with uniform volume charge den­
sity p = 1.84 nC/m3, inner radius a = 

10.0 cm, and outer radius b = 2.00a. 
What is the magnitude of the electric 
field at radial distances (a) I' = 0; (b) 
I' = aI2.00, (c) I' = a, (d) I' = 1.50a, (e) 
I' = b,and (f) I' = 3.00b? 

IlW The volume charge den­
sity of a solid nonconducting sphere 
of radius R = 5.60 cm varies with 

Fig. 23-52 Problem 51. 

+ + + 
+ + + + + + + 

+ + + + + + + + + 

radial distance I' as given by p = Fig. 23-53 Problem 52. 
(14.1 pC/m3)I'IR. (a) What is the sphere's total charge? What is the 
field magnitude E at (b) I' = 0, (c) I' = RI2.00, and (d) I' = R? (e) 
Graph E versus I: 

Figure 23-54 shows, in cross 
section, two solid spheres with uni­
formly distributed charge through­
out their volumes. Each has radius E5X9 1 2 

R. Point P lies on a line connecting Fig. 23-54 Problem 54. 
the centers of the spheres, at radial 
distance R/2.00 from the center of sphere 1. If the net electric field 
at point P is zero, what is the ratio qzlqj of the total charges? 

A charge distribution that is spherically symmetric but not 
uniform radially produces an electric field of magnitude E = Kr4, 
directed radially outward from the center of the sphere. Here r is 
the radial distance from that center, and K is a constant. What is 
the volume density p of the charge distribution? 

Additional Problems 
The electric field in a particular space is E = (x + 2)i N/C, 

with x in meters. Consider a cylindrical Gaussian surface of radius 
20 cm that is coaxial with the x axis. One end of the cylinder is at 
x = O. (a) What is the magnitude of the electric flux through the 
other end of the cylinder at x = 2.0 m? (b) What net charge is en­
closed within the cylinder? 

A thin-walled metal spherical shell has radius 25.0 cm and 
charge 2.00 X 10-7 C. Find E for a point (a) inside the shell, (b) 
just outside it, and (c) 3.00 m from the center. 

A uniform surface charge of density 8.0 nC/m2 is distributed over 
the entire xy plane. What is the electric flux through a spherical 
Gaussian smiace centered on the origin and having a radius of 5.0 cm? 

Charge of uniform volume density p = 1.2 nC/m3 fills an infi­
nite slab between x = -5.0 cm and x = +5.0 cm. What is the mag­
nitude of the electric field at any point with the coordinate (a) x = 

4.0 cm and (b) x 6.0 cm? 

The chocolate crumb mystery. Explosions ignited by 
electrostatic discharges (sparks) constitute a serious danger in fa­
cilities handling grain or powder. Such an explosion occurred in 
chocolate crumb powder at a biscuit factory in the 1970s. Workers 
usually emptied newly delivered sacks of the powder into a loading 
bin, from which it was blown through electrically grounded plastic 
pipes to a silo for storage. Somewhere along this route, two condi­
tions for an explosion were met: (1) The magnitude of an electric 
field became 3.0 X 106 N/C or greater, so that electrical breakdown 
and thus sparking could occur. (2) The energy of a spark was 150 mJ 
or greater so that it could ignite the powder explosively. Let us check 
for the first condition in the powder flow through the plastic pipes. 

Suppose a stream of negatively charged powder was blown 
through a cylindrical pipe of radius R = 5.0 cm. Assume that the 
powder and its charge were spread uniformly through the pipe 
with a volume charge density p. (a) Using Gauss' law, find an ex­
pression for the magnitude of the electric field E in the pipe as a 
function of radial distance r from the pipe center. (b) Does E in­
crease or decrease with increasing r? (c) Is E directed radially in­
ward or outward? (d) For p = 1.1 X 10-3 C/m3 (a typical value at 
the factory), find the maximum E and determine where that maxi­
mum field occurs. (e) Could sparking occur, and if so, where? (The 
story continues with Problem 70 in Chapter 24.) 

SSM A thin-walled metal spherical shell of radius a has a 
charge qa' Concentric with it is a thin-walled metal spherical shell of 
radius b > a and charge qb' Find the electric field at points a distance 
rfrom the common center, where (a) I' < a, (b) a < r < b, and (c) I' > 
b. (d) Discuss the criterion you would use to determine how the 
charges are distributed on the inner and outer surfaces of the shells. 

A point charge q = 1.0 X 10 -7 C is at the center of a spherical 
cavity of radius 3.0 cm in a chunk of metal. Find the electric field 
(a) 1.5 cm from the cavity center and (b) anyplace in the metal. 

A proton at speed v = 3.00 X 105 m/s orbits at radius I' = 1.00 
cm outside a charged sphere. Find the sphere's charge. 

Equation 23-11 (E = (TIso) gives the electric field at points near a 
charged conducting surface. Apply this equation to a conducting 
sphere of radius I' and charge q, and show that the electric field outside 
the sphere is the same as the field of a point charge located at the cen­
ter of the sphere. 

Charge Q is uniformly distributed in a sphere of radius R. (a) 
What fraction of the charge is contained within the radius 
I' = RI2.00? (b) What is the ratio of the electric field magnitude at 
I' = R12.00 to that on the surface of the sphere? 

Assume that a ball of charged particles has a uniformly dis­
tributed negative charge density except for a narrow radial tun­
nel through its center, from the surface on one side to the surface 
on the opposite side. Also assume that we can position a proton 
anywhere along the tunnel or outside the ball. Let FR be the magni­
tude of the electrostatic force on the proton when it is located at 
the ball's surface, at radius R. As a multiple of R, how far from the 
surface is there a point where the force magnitude is 0.50FR if we 
move the proton (a) away from the ball and (b) into the tunnel? 

SSM The electric field at point P just outside the outer sur­
face of a hollow spherical conductor of inner radius 10 cm and 
outer radius 20 cm has magnitUde 450 N/C and is directed 
outward. When an unknown point charge Q is introduced into the 
center of the sphere, the electric field at P is still directed outward 
but is now 180 N/C. (a) What was the net charge enclosed by the 



outer surface before Q was introduced? (b) What is charge Q? 
After Q is introduced, what is the charge on the (c) inner and (d) 
outer surface of the conductor? 

The net electric flux through each face of a die (singular of 
dice) has a magnitude in units of 103 N . m2/C that is exactly equal 
to the number of spots N on the face (1 through 6). The flux is in­
ward for N odd and outward for N even. What is the net charge in­
side the die? 

Figure 23-55 shows, in 
cross section, three infinitely 
large nonconducting sheets 
on which charge is uniformly 
spread. The surface charge 
densities are ITj = +2.00 

peT L/2 
a3==============F .=========== 

)' 

Lx 2L 

j.LC/m2, IT2 = +4.00 j.LC/m2, 
and IT3 = -5.00 j.LC/m2, and 
distance L = 1.50 cm. In unit­
vector notation, what is the 
net electric field at point P? 

a2 =====J==i = 
L 
t 

aj============~~========== 

Fig. 23-55 Problem 69. 
Charge of uniform vol-

ume density p = 3.2 j.LC/m3 fills a nonconducting solid sphere of ra­
dius 5.0 cm.What is the magnitude of the electric field (a) 3.5 cm and 
(b) 8.0 cm from the sphere's center? 

A Gaussian surface in the form of a hemisphere of radius R = 

5.68 cm lies in a uniform electric field of magnitude E = 2.50 N/C. 
The surface encloses no net charge. At the (flat) base of the sur­
face, the field is perpendicular to the surface and directed into the 
surface. What is the flux through (a) the base and (b) the curved 
portion of the surface? 

What net charge is enclosed by the 
Gaussian cube of Problem 2? 

A nonconducting solid sphere has a uni­
form volume charge density p. Let r be the 
vector from the center of the sphere to a gen­
eral point P within the sphere. (a) Show that 
the electric field at P is given by If = p7I3so. Fig. 23-56 

(Note that the result is independent of the Problem 73. 
radius of the sphere.) (b) A spherical cavity is hollowed out of the 
sphere, as shown in Fig. 23-56. Using superposition concepts, show 
that the electric field at all points 
within the cavity is uniform and 
equal to If = pa/3so, where a is the 
position vector from the center of 
the sphere to the center of the cavity. 

A uniform charge density of 
500 nC/m3 is distributed through­
out a spherical volume of radius 
6.00 cm. Consider a cubical Gaussian 
surface with its center at the center 
of the sphere. What is the electric 
flux through this cubical surface if its 
edge length is (a) 4.00 cm and (b) 
14.0cm? 

Figure 23-57 shows a Geiger 
counter, a device used to detect ion­
izing radiation, which causes ioniza­
tion of atoms. A thin, positively 

Charged 
cylindrical shell 

Fig. 23-57 Problem 75. 
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charged central wire is surrounded by a concentric, circular, con­
ducting cylindrical shell with an equal negative charge, creating a 
strong radial electric field. The shell contains a low-pressure inert 
gas. A particle of radiation entering the device through the shell 
wall ionizes a few of the gas atoms. The resulting free electrons (e) 
are drawn to the positive wire. However, the electric field is so in­
tense that, between collisions with gas atoms, the free electrons 
gain energy sufficient to ionize these atoms also. More free elec­
trons are thereby created, and the process is repeated until the 
electrons reach the wire. The resulting "avalanche" of electrons is 
collected by the wire, generating a signal that is used to record the 
passage of the original particle of radiation. Suppose that the ra­
dius of the central wire is 25 j.Lm, the inner radius of the shell 1.4 
cm, and the length of the shell 16 cm. If the electric field at the 
shell's inner wall is 2.9 X 104 N/C, what is the total positive charge 
on the central wire? 

Charge is distributed uniformly throughout the volume of an in­
finitely long solid cylinder of radius R. (a) Show that, at a distance I' < 
R from the cylinder axis, 

PI' 
E = 2so' 

where p is the volume charge density. (b) Write an expression for E 
whenI' > R. 

SSM A spherical conducting shell has a charge of -14 j.LC on 
its outer surface and a charged particle in its hollow. If the net 
charge on the shell is -10 j.LC, what is the charge ( a) on the inner 
surface of the shell and (b) of the particle? 

18 A charge of 6.00 pC is spread uniformly throughout the volume of 
a sphere of radius I' = 4.00 cm. What is the magnitude of the electric 
field at a radial distance of (a) 6.00 cm and (b) 3.00 cm? 

Water in an irrigation ditch of width w = 3.22 m and depth d = 

1.04 m flows with a speed of 0.207 mls. The mass flllx of the flowing 
water through an imaginary surface is the product of the water's 
density (1000 kg/m3) and its volume flux through that surface. Find 
the mass flux through the following imaginary surfaces: (a) a sur­
face of area wd, entirely in the water, perpendicular to the flow; (b) 
a surface with area 3wd/2, of which wd is in the water, perpendicular 
to the flow; (c) a surface of area wd/2, entirely in the water, perpendic­
ular to the flow; (d) a surface of area wd, half in the water and half out, 
perpendicular to the flow; (e) a sUliace of area wd, entirely in the 
water, with its normal 34.0° from the direction of flow. 

80 Charge of uniform surface density 8.00 nC/m2 is distributed over 
an entire xy plane; charge of uniform surface density 3.00 nC/m2 is 
distributed over the parallel plane defined by z = 2.00 m. Determine 
the magnitude of the electric field at any point having a z coordinate 
of (a) 1.00 m and (b) 3.00 m. 

A spherical ball of charged particles has a uniform charge 
density. In terms of the ball's radius R, at what radial distances (a) 
inside and (b) outside the ball is the magnitude of the ball's electric 
field equal to ~ of the maximum magnitUde of that field? 

SSM A free electron is placed between two large, parallel, 
nonconducting plates that are horizontal and 2.3 cm apart. One 
plate has a uniform positive charge; the other has an equal amount 
of uniform negative charge. The force on the electron due to the 
electric field If between the plates balances the gravitational force 
on the electron. What are (a) the magnitude of the surface charge 
density on the plates and (b) the direction (up or down) of If? 
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WHAT IS PH CS? 
One goal of physics is to identify basic forces in our world, such as the 

electric force we discussed in Chapter 21. A related goal is to determine whether 
a force is conservative-that is, whether a potential energy can be associated with 
it. The motivation for associating a potential energy with a force is that we can 
then apply the principle of the conservation of mechanical energy to closed sys­
tems involving the force. This extremely powerful principle allows us to calculate 
the results of experiments for which force calculations alone would be very diffi­
cult. Experimentally, physicists and engineers discovered that the electric force is 
conservative and thus has an associated electric potential energy. In this chapter 
we first define this type of potential energy and then put it to use. 

Electric Potential Energy 
When an electrostatic force acts between two or more charged particles within 
a system of particles, we can assign an electric potential energy U to the system. 
If the system changes its configuration from an initial state i to a different final 
state f, the electrostatic force does work Won the particles. From Eq. 8-1, we then 
know that the resulting change ~ U in the potential energy of the system is 

(24-1) 

As with other conservative forces, the work done by the electrostatic force is path 
independent. Suppose a charged particle within the system moves from point i to 
point fwhile an electrostatic force between it and the rest of the system acts on it. 
Provided the rest of the system does not change, the work W done by the force on 
the particle is the same for all paths between points i andf. 

For convenience, we usually take the reference configuration of a system of 
charged particles to be that in which the particles are all infinitely separated from 
one another. Also, we usually set the corresponding reference potential energy to 
be zero. Suppose that several charged particles come together from initially infi­
nite separations (state i) to form a system of neighboring particles (state f). Let 
the initial potential energy Ui be zero, and let Woo represent the work done by the 
electrostatic forces between the particles during the move in from infinity. Then 
from Eq. 24-1, the final potential energy U of the system is 

U= -WOO" 

CHECKPOINT 1 

In the figure, a proton moves from point i to point f in a 
uniform electric field directed as shown. (a) Does the 
electric field do positive or negative work on the proton? 

........... f------i~ 
f I 

(b) Does the electric potential energy of the proton increase or decrease? 

(24-2) 

--> 

EI> 
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Work and potential. energy in an electric field 

Electrons are continually being knocked out of air molecules in 
the atmosphere by cosmic-ray particles coming in from space. 
Once released, each electron experiences an electrostatic force P 
due to the electric field If that is produced in the atmosphere by 
charged particles already on Earth. Near Earth's surface the elec­
tric field has the magnitude E = 150 N/C and is directed down­
ward. What is the change t::..U in the electric potential energy of a 
released electron when the electrostatic force causes it to move 
vertically upward through a distance d = 520 m (Fig. 24-1)? 

(1) The change t::..U in the electric potential energy of the 
electron is related to the work W done on the electron by the 
electric field. Equation 24-1 (t::..U = - W) gives the relation. 

Fig. 24-1 An electron in the atmosphere is moved upward 
through displacement d by an electrostatic force F due to an 
electric field E. 

(2) The work done by a constant force P on a particle under­
going a displacement dis 

W= pod. (24-3) 

(3) The electrostatic force and the electric field are related 
by the force equation P = qIf, where here q is the charge 
of an electron (= -1.6 X 10-19 C). 

Calculations: Substituting for Pin Eq. 24-3 and taking the 
dot product yield 

W = qIf 0 d = qEd cos e, (24-4) 

where e is the angle between the directions of If and d. The 
field If is directed downward and the displacement d is 
directed upward; so e = 180°. Substituting this and other 
data into Eq. 24-4, we find 

W = (-1.6 X 10-19 C)(150 N/C)(520 m) cos 180° 

= 1.2 X 10-14 J. 

Equation 24-1 then yields 

t::..U = -W = -1.2 X 10-14 J. (Answer) 

This result tells us that during the 520 m ascent, the electric 
potential energy of the electron decreases by 1.2 X 10-14 J. 

'~ flUS Additional examples, video, and practice available at WileyPLUS 

Electric Potential 
The potential energy of a charged particle in an electric field depends on the 
charge magnitude. However, the potential energy per unit charge has a unique 
value at any point in an electric field. 

For an example of this, suppose we place a test particle of positive charge 
1.60 X 10-19 C at a point in an electric field where the particle has an electric 
potential energy of 2.40 X 10-17 J. Then the potential energy per unit charge is 

2.40 X 10-17 J 
1.60 X 10-19 C = 150 J/e. 

Next, suppose we replace that test particle with one having twice as much 
positive charge, 3.20 X 10-19 e. We would find that the second particle has an 
electric potential energy of 4.80 X 10-17 J, twice that of the first particle. 
However, the potential energy per unit charge would be the same, still 150 J/e. 

Thus, the potential energy per unit charge, which can be symbolized as Ulq, is 
independent of the charge q of the particle we happen to use and is characteristic 
only of the electric field we are investigating. The potential energy per unit charge at 
a point in an electric field is called the electric potential V (or simply the potential) 
at that point. Thus, 

V=~. 
q 

Note that electric potential is a scala/; not a vectOl: 

(24-5) 
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The electric potential difference ~ V between any two points i and fin an elec­
tric field is equal to the difference in potential energy per unit charge between 
the two points: 

~V = Vf llt V; 11,=---
I q q 

~U 

q 
(24-6) 

Using Eq. 24-1 to substitute - W for ~U in Eq. 24-6, we can define the potential 
difference between points i and f as 

W V= --
I q (potential difference defined). (24-7) 

The potential difference between two points is thus the negative of the work 
done by the electrostatic force to move a unit charge from one point to the other. 
A potential difference can be positive, negative, or zero, depending on the signs 
and magnitudes of q and W. 

If we set Ui = 0 at infinity as our reference potential energy, then by Eq. 24-5, 
the electric potential V must also be zero there. Then from Eq. 24-7, we can define 
the electric potential at any point in an electric field to be 

V=_Wo, 
q 

(potential defined), (24-8) 

where Woo is the work done by the electric field on a charged particle as that parti­
cle moves in from infinity to point f A potential V can be positive, negative, or 
zero, depending on the signs and magnitudes of q and WOO' 

The SI unit for potential that follows from Eq. 24-8 is the joule per coulomb. 
This combination occurs so often that a special unit, the volt (abbreviated V), is used 
to represent it. Thus, 

1 volt = 1 joule per coulomb. (24-9) 

This new unit allows us to adopt a more conventional unit for the electric field If, 
which we have measured up to now in newtons per coulomb. With two unit conver­
sions, we obtain 

1 N/C = (1~) ( 1 V' C ) ( 1 J ) 
C lJ IN'm 

= 1 Vim. (24-10) 

The conversion factor in the second set of parentheses comes from Eq. 24-9; that 
in the third set of parentheses is derived from the definition of the joule. From 
now on, we shall express values of the electric field in volts per meter rather than 
in newtons per coulomb. 

Finally, we can now define an energy unit that is a convenient one for energy 
measurements in the atomic and subatomic domain: One electron-volt (e V) is the 
energy equal to the work required to move a single elementary charge e, such as 
that of the electron or the proton, through a potential difference of exactly one 
volt. Equation 24-7 tells us that the magnitude of this work is q ~ V; so 

1 eV = e(l V) 

= (1.60 X 10-19 e)(1 J/e) = 1.60 X 10- 19 J. 

Suppose we move a particle of charge q from point i to point f in an electric field 
by applying a force to it. During the move, our applied force does work Wapp on 



the charge while the electric field does work Won it. By the work - kinetic energy 
theorem of Eq. 7-10, the change t:J.K in the kinetic energy of the particle is 

t:J.K = Kf - J( = Wapp + W. (24-11) 

Now suppose the particle is stationary before and after the move. Then Kf and 
Ki are both zero, and Eq. 24-11 reduces to 

Wapp = - W. (24-12) 

In words, the work Wapp done by our applied force during the move is equal to 
the negative of the work W done by the electric field-provided there is no 
change in kinetic energy. 

By using Eq. 24-12 to substitute Wapp into Eq. 24-1, we can relate the work 
done by our applied force to the change in the potential energy of the particle 
during the move. We find 

(24-13) 

By similarly using Eq. 24-12 to substitute Wapp into Eq. 24-7, we can relate our work 
Wapp to the electric potential difference t:J. V between the initial and final locations of 
the particle. We find 

Wapp = q t:J.V. (24-14) 

Wapp can be positive, negative, or zero depending on the signs and magnitudes 
ofq and t:J.V. 

Equipotential Surfaces 
Adjacent points that have the same electric potential form an equipoteutial 
surface, which can be either an imaginary surface or a real, physical surface. No 
net work W is done on a charged particle by an electric field when the particle 
moves between two points i and f on the same equipotential surface. This follows 
from Eq. 24-7, which tells us that W must be zero if Vf = Vi' Because of the path 
independence of work (and thus of potential energy and potential), W = 0 for 
any path connecting points i and f on a given equipotential surface regardless of 
whether that path lies entirely on that surface. 

Figure 24-2 shows a family of equipotential surfaces associated with the elec­
tric field due to some distribution of charges. The work done by the electric field 

No work is done along 
this path on an 
equipotential surface. 

No work is done along this path 
that returns to the same surface. 

Equal work is done along 
these paths between the 

Fig.24-2 Portions of four equipotential surfaces at electric potentials V j = 100 V, V2 = 
80 V, V3 = 60 V, and V4 = 40 V. Four paths along which a test charge may move are shown. 
Two electric field lines are also indicated. 
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CHECKPOINT 2 

In the figure of Checkpoint 1, we move 
the proton from point i to point f in a 
uniform electric field directed as 
shown. (a) Does our force do positive 
or negative work? (b) Does the proton 
move to a point of higher or lower po­
tential? 
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/ Equipotential surface 

.Li/Field ~ine I 

I I I I 
I I 

(c) 

(b) 

Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold) 
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to 
an electric dipole. 

on a charged particle as the particle moves from one end to the other of paths 
I and II is zero because each of these paths begins and ends on the same 
equipotential surface and thus there is no net change in potential. The work 
done as the charged particle moves from one end to the other of paths III and 
IV is not zero but has the same value for both these paths because the initial 
and final potentials are identical for the two paths; that is, paths III and IV 
connect the same pair of equipotential surfaces. 

From symmetry, the equipotential surfaces produced by a point charge or 
a spherically symmetrical charge distribution are a family of concentric 
spheres. For a uniform electric field, the surfaces are a family of planes per­
pendicular to the field lines. In fact, equipotential surfaces are always perpen­
dicular to electric field lines and thus to E, which is always tangent to these 
lines. If E were not perpendicular to an equipotential surface, it would have a 
component lying along that surface. This component would then do work on a 
charged particle as it moved along the surface. However, by Eq. 24-7 work 
cannot be done if the surface is truly an equipotential surface; the only possi­
ble conclusion is that E must be everywhere perpendicular to the surface. 
Figure 24-3 shows electric field lines and cross sections of the equipotential 
surfaces for a uniform electric field and for the field associated with a point 
charge and with an electric dipole. 
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Calculating the Potential from the Field 
We can calculate the potential difference between any two points i and f in an 
electric field if we know the electric field vector If all along any path connecting 
those points. To make the calculation, we find the work done on a positive test 
charge by the field as the charge moves from i to f, and then use Eq. 24-7. 

Consider an arbitrary electric field, represented by the field lines in Fig. 24-4, 
and a positive test charge qo that moves along the path shown from point i to 
point f At any point on the path, an electrostatic force qoIf acts on the charge as it 
moves through a differential displacement ds. From Chapter 7, we know that the 
differential work dW done on a particle by a force P during a displacement ds is 
given by the dot product of the force and the displacement: 

dW= P·ds. (24-15) 

For the situation of Fig. 24-4, P = qoIf and Eq. 24-15 becomes 

dW = qoIf· ds. (24-16) 

To find the total work W done on the particle by the field as the particle moves 
from point i to point f, we sum - via integration - the differential works done on 
the charge as it moves through all the displacements ds along the path: 

(f ~ 
W = qo J E·ds. (24-17) 

If we substitute the total work W from Eq. 24-17 into Eq. 24-7, we find 

(f ~ 
Vf - Vi = -J E·ds. (24-18) 

Thus, the potential difference Vf - Vi between any two points i andfin an electric 
field is equal to the negative of the line integral (meaning the integral along a 
particular path) of If· ds from i to f However, because the electrostatic force is 
conservative, all paths (whether easy or difficult to use) yield the same result. 

Equation 24-18 allows us to calculate the difference in potential between any 
two points in the field. If we set potential Vi = 0, then Eq. 24-18 becomes 

(f ~ 
V= -Ji E·ds, (24-19) 

in which we have dropped the subscript f on Vf' Equation 24-19 gives us the 
potential V at any point f in the electric field relative to the zero potential at point i. 
If we let point i be at infinity, then Eq. 24-19 gives us the potential Vat any point f 
relative to the zero potential at infinity. 

~ CHECKPOINT 3 

The figure here shows a family of par­
allel equipotential surfaces (in cross 
section) and five paths along which we 
shall move an electron from one sur­
face to another. (a) What is the direc­
tion of the electric field associated with 
the surfaces? (b) For each path, is the 
work we do positive, negative, or zero? 
(c) Rank the paths according to the 
work we do, greatest first. 

I I I 
I ~'~--+I----T---~----
I I .~~---+----+----

I + 2 .. + :: 
: 3ri • I + I I 
I I I 4 I I 
I I I ~ I 
I I .~ ~ I 

II II 5 + I I II • + II I I I I 
I I I I I I 

OOV MV WV OOV WV WV 

Fig.24-4 A test charge qomoves 
from point i to point f along the path 
shown in a nonuniform electric field. 
During a displacement ds', an elec­
trostatic force qoE acts on the test 
charge. This force points in the direc­
tion of the field line at the location of 
the test charge. 
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Finding the potential change from the electric field 

(a) Figure 24-5a shows two points i and fin a uniform electric 
field E. The points lie on the same electric field line (not 
shown) and are separated by a distance d. Find the potential 
difference Vr - Vi by moving a positive test charge qo from i to 
f along the path shown, which is parallel to the field direction. 

We can find the potential difference between any two points 
in an electric field by integrating E· dS' along a path con­
necting those two points according to Eq. 24-18. 

Calculations: We begin by mentally moving a test charge 
qo along that path, from initial point i to final point f. As we 
move such a test charge along the path in Fig. 24-5a, its dif­
fer~ntial displacement dS' alwClJs has the same direction 
as E. Thus, the angle e between E and dS' is zero and the dot 
product in Eq. 24-18 is 

E· dS' = E ds cos e = E ds. (24-20) 

Eqnations 24-18 and 24-20 then give us 

(f -> (f 
Vr Vi = - Ji E· dS' = - Ji E ds. (24-21) 

Since the field is uniform, E is constant over the path and 
can be moved outside the integral, giving us 

Vr - Vi = -E r ds = -Ed, (Answer) 

in which the integral is simply the length d of the path. The 
minus sign in the result shows that the potential at point fin 
Fig. 24-5a is lower than the potential at point i. This is a general 

result The potential always decreases along a path that extends 
in the direction of the electric field lines. 

(b) Now find the potential difference Vr - Vi by moving the 
positive test charge qo from i to f along the path icf shown in 
Fig. 24-5b. 

Calculations: The Key Idea of (a) applies here too, except 
now we move the test charge along a path that consists of 
two lines: ic and cf. At all points along line ic, the displace­
ment dS' of the test charge is perpendicular to E. Thus, the 
angle ebetween E and dS' is 90°, and the dot product E· dS' 
is O. Equation 24-18 then tells us that points i and c are at the 
same potential: Vc - Vi = O. 

For line cfwe have e = 45° and, from Eq. 24-18, 

if -> if Vr Vi = - c E· dS' = - c E( cos 4SO) ds 

= -E(cos 45°) r ds. 

The integral in this equation is just the length of line cf; 
from Fig. 24-5b, that length is d/cos 45°. Thus, 

lj- Vj= -E(cos45°) d
4 

0= -Ed. (Answer) 
cos 5 

This is the same result we obtained in (a), as it must be; the 
potential difference between two points does not depend on 
the path connecting them. Moral: When you want to find the 
potential difference between two points by moving a test 
charge between them, you can save time and work by choos­
ing a path that simplifies the use ofEq. 24-18. 

The electric field points from 
higher potential to lower potential. 

The field is perpendicular to this ic path, 
so there is no change in the potential. 

Fig.24-5 (a) A test charge qo 
moves in a straight line from point i 
to point I, along the direction of a 
uniform external electric field. (b) 
Charge qo moves along path icl in the 
same electric field. 

. I 
1 Higher potential 

r J Lower potential r J, 

(a) (b) 

c 

The field has a component 
along this cf path, so there 
is a change in the potential. 

j j 

Additional examples, video, and practice available at WileyPLUS 
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Potential Due to a Point Charge 
We now use Eq. 24-18 to derive, for the space around a charged particle, an 
expression for the electric potential V relative to the zero potential at infinity. 
Consider a point P at distance R from a fixed particle of positive charge q (Fig. 24-6). 
To use Eq. 24-18, we imagine that we move a positive test charge qo from point P to 
infinity. Because the path we take does not matter, let us choose the simplest one­
a line that extends radially from the fixed particle through P to infinity. 

To use Eq. 24-18, we must evaluate the dot product 

If· dS' = E cos e ds. (24-22) 

The electric field E in Fig. 24-6 is directed radially outward from the fixed 
particle. Thus, the differential displacement dS' of the test particle along its path has 
the same direction as E. That means that in Eq. 24-22, angle e = 0 and cos e = 1. 
Because the path is radial, let us write ds as dr. Then, substituting the limits R and co, 
we can write Eq. 24-18 as 

(24-23) 

Next, we set VI = 0 (at co) and Vi = V (at R). Then, for the magnitude of the 
electric field at the site of the test charge, we substitute from Eq. 22-3: 

E=_1_!L 
41TBO 1'2' 

With these changes, Eq. 24-23 then gives us 

q roo 1 q [1]00 
o - V = - 41TBO JR --;z dr = 41TBo --; R 

1 q 
----

41TBO R 

Solving for V and switching R to 1', we then have 

1 q 
V=---

41TBO I' 

(24-24) 

(24-25) 

(24-26) 

as the electric potential V due to a particle of charge q at any radial distance 
l' from the particle. 

Although we have derived Eq. 24-26 for a positively charged particle, the 
derivation holds also for a negatively charged particle, in which case, q is a nega­
tive quantity. Note that the sign of V is the same as the sign of q: 

A positively charged particle produces a positive electric potential. A negatively 
charged particle produces a negative electric potential. 

Figure 24-7 shows a computer-generated plot of Eq. 24-26 for a positively 
charged particle; the magnitude of V is plotted vertically. Note that the magni­
tude increases as l' ~ O. In fact, according to Eq. 24-26, V is infinite at I' = 0, 
although Fig. 24-7 shows a finite, smoothed-off value there. 

Equation 24-26 also gives the electric potential either outside or on the exter­
nal surface of a spherically symmetric charge distribution. We can prove this by 
using one of the shell theorems of Sections 21-4 and 23-9 to replace the actual 
spherical charge distribution with an equal charge concentrated at its center. 
Then the derivation leading to Eq. 24-26 follows, provided we do not consider 
a point within the actual distribution. 

To find the potential of 
the charged particle, 

i 
we move this test charge 
out to infinity. 

~ 

E ds 

go c 

p 

1 

Fig. 24-6 The positive point charge q 
produces an electric field If and an electric 
potential Vat point P. We find the potential 
by moving a test charge qofrom P to infin­
ity. The test charge is shown at distance I' 
from the point charge, during differential 
displacement dS'. 

F(r) 

/ 

/ 
x 

Fig. 24-7 A computer-generated plot of 
the electric potential V(r) due to a positive 
point charge located at the origin of anxy 
plane. The potentials at points in the xy 
plane are plotted vertically. (Curved lines 
have been added to help you visualize the 
plot.) The infinite value of V predicted by 
Eq. 24-26 for I' = 0 is not plotted. 
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Potential Due to a Group of Point Charges 
We can find the net potential at a point due to a group of point charges with the 
help of the superposition principle. Using Eq. 24-26 with the sign of the charge 
included, we calculate separately the potential resulting from each charge at 
the given point. Then we sum the potentials. For n charges, the net potential is 

(n point charges). (24-27) 

Here qi is the value of the ith charge and ri is the radial distance of the given point 
from the ith charge. The sum in Eq. 24-27 is an algebraic sum, not a vector sum 
like the sum that would be used to calculate the electric field resulting from a group 
of point charges. Herein lies an important computational advantage of potential 
over electric field: It is a lot easier to sum several scalar quantities than to sum sev­
eral vector quantities whose directions and components must be considered. 

CHECKPOINT 4 

The figure here shows 
three arrangements of I=d --.f ~ 
two protons. Rank the. III III 

P 
arrangements accord-
ing to the net electric 

(a) (b) 

potential produced at point P by the protons, greatest first. 

Net potential of several charged particles 

I--d --+-D -------l Ill. @ 

P 

(c) 

What is the electric potential at point P, located at the cen­
ter of the square of point charges shown in Fig. 24-8a? The 
distance d is 1.3 m, and the charges are 

(Because electric potential is a scalar, the orientations of the 
point charges do not matter.) 

Calculations: From Eq. 24-27, we have 
ql = +12 nC, 

qz = -24nC, 

q3 = +31 nC, 

q4 = +17 ne. 

The electric potential V at point P is the algebraic sum of 
the electric potentials contributed by the four point charges. 

/'- " 
I ~ \ ~ 

I \ 
I I 

I I 
I \ 

I \ 
I , 

I /',P 
I ~, 

/ V = 350 V "- - - _ "-
I '\ 
I \ 
I I 
\ I 
, I 

" I (b) '-'" .. c ___________ .-/' (a) 

Fig. 24-8 (a) Four point charges are held fixed at the cor­
ners of a square. (b) The closed curve is a cross section, in the 
plane of the figure, of the equipotential surface that contains 
point P. (The curve is drawn only roughly.) 

V= ± Vf=_l_(~+~+~+~). 
i=l 41TBO r r r r 

The distance r is d/{2, which is 0.919 m, and the sum of the 
charges is 

ql + qz + q3 + q4 = (12 - 24 + 31 + 17) X 10-9 C 

= 36 X 10-9 e. 

Thus, 
V = (8.99 X 109 N . mZ/CZ) (36 X 10-9 C) 

0.919 m 

= 350V. (Answer) 

Close to any of the three positive charges in Fig. 24-8a, the 
potential has very large positive values. Close to the single nega­
tive charge, the potential has very large negative values. 
Therefore, there must be points within the square that have the 
same intermediate potential as that at point P. The curve in Fig. 
24-8b shows the intersection of the plane of the figure with the 
equipotential surface that contains point P. Any point along that 
curve has the same potential as point P. 

Additional examples, video, and practice available at WileyPLUS 
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Potential is not a vector, orientation is irrelevant 

(a) In Fig. 24-9a, 12 electrons (of charge -e) are equally 
spaced and fixed around a circle of radius R. Relative to V = 

o at infinity, what are the electric potential and electric field at 
the center C of the circle due to these electrons? 

(1) The electric potential Vat C is the algebraic sum of the 
electric potentials contributed by all the electrons. (Because 
electric potential is a scalar, the orientations of the electrons 
do not matter.) (2) The electric field at C is a vector quantity 
and thus the orientation of the electrons is important. 

Calculations: Because the electrons all have the same neg­
ative charge -e and are all the same distance R from C, Eq. 
24-27 gives us 

1 e 
V= -12---. 

47TSo R 
(Answer) (24-28) 

Because of the symmetry of the arrangement in Fig. 
24-9a, the electric field vector at C due to any given electron 
is canceled by the field vector due to the electron that is dia­
metrically opposite it. Thus, at C, 

E= O. (Answer) 

c 

(a) 

Potential is a scalar and 
orientation is irrelevant. 

(b) 

\ 
\ 

/ 
/ 

\ 

/ 

\ 
\ 

\ 

/ 
/ 

/ 

Fig. 24-9 (a) Twelve electrons uniformly spaced around a circle. 
(b) The electrons nonuniformly spaced along an arc of the original 
circle. 

(b) If the electrons are moved along the circle until they are 
nonuniformly spaced over a 120° arc (Fig. 24-9b), what then 
is the potential at C? How does the electric field at C change 
(if at all)? 

Reasoning: The potential is still given by Eq. 24-28, because 
the distance between C and each electron is unchanged and 
orientation is irrelevant. The electric field is no longer zero, 
however, because the arrangement is no longer symmetric. 
A net field is now directed toward the charge distribution. 

fills Additional examples, video, and practice available at WileyPLUS 

Potential Due to an Electric Dipole 
Now let us apply Eq. 24-27 to an electric dipole to find the potential at an 
arbitrary point P in Fig. 24-10a. At P, the positive point charge (at distance r(+» 

sets up potential V(+) and the negative point charge (at distance r(_» sets up po­
tential V( _). Then the net potential at P is given by Eq. 24-27 as 

2 1 (q -q) 
V = 2: Vi = V(+) + V{-) = -- --+-

;=1 47TSo r(+) r(_) 

q r(_) - r(+) 
(24-29) 

'(-l( +) 

Naturally occurring dipoles-such as those possessed by many mole­
cules-are quite small; so we are usually interested only in points that are rel­
atively far from the dipole, such that r > d, where d is the distance between 
the charges. Under those conditions, the approximations that follow from Fig. 
24-10b are 

r(_) r(+) = d cos e and r(-l(+) = 1'2. 

If we substitute these quantities into Eq. 24-29, we can approximate V to be 

V = _q_ dcos e 
47TSo 1'2 



638 ELECTRIC POTENTIAL 

z 

+q 

r 
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l, 
-q 

(a) 

z 

-, 
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l 
-q 

(b) 
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! 

p 

Fig. 24-10 (a) Point P is a distance r 
from the midpoint 0 of a dipole, The line 
OPmakes an angle 8 with the dipole axis. 
(b) If P is far from the dipole, the lines of 
lengths r(+) and rH are approximately par­
allel to the line of length r, and the dashed 
black line is approximately perpendicular 
to the line of length r( _). 

where () is measured from the dipole axis as shown in Fig. 24-10a. We can now 
write Vas 

V = _1_ -"-p_c-,,o_s _8 
41780 r2 

(electric dipole), (24-30) 

in which p (= qd) is the magnitude of the electric dipole moment p defined in 
Section 22-5. The vector p is directed along the dipole axis, from the negative to 
the positive charge. (Thus, () is measured from the direction of p.) We use this 
vector to report the orientation of an electric dipole. 

CHECK.POINT 5 

Suppose that three points are set at equal (large) distances r from the center of the di­
pole in Fig. 24-10: Point a is on the dipole axis above the positive charge, point b is on 
the axis below the negative charge, and point c is on a perpendicular bisector through 
the line connecting the two charges. Rank the points according to the electric potential 
of the dipole there, greatest (most positive) first. 

Many molecules, such as water, have permanent electric dipole moments. In other 
molecules (called nonpolar molecules) and in every isolated atom, the centers of 
the positive and negative charges coincide (Fig. 24-11a) and thus no dipole 
moment is set up. However, if we place an atom or a nonpolar molecule in an 
external electric field, the field distorts the electron orbits and separates the 
centers of positive and negative charge (Fig. 24-11b). Because the electrons are 
negatively charged, they tend to be shifted in a direction opposite the field. This 
shift sets up a dipole moment p that points in the direction of the field. This 
dipole moment is said to be induced by the field, and the atom or molecule is then 
said to be polarized by the field (that is, it has a positive side and a negative side). 
When the field is removed, the induced dipole moment and the polarization 
disappear. 

(a) 

(b) 

The electric field shifts 
the positive and negative 
charges, creating a dipole. 

Fig. 24-11 (a) An atom, showing the positively charged nucleus (green) and 
the negatively charged electrons (gold shading). The centers of positive and 
negative charge coincide. (b) If the atom is placed in an external electric field E, 
the electron orbits are distorted so that the centers of positive and negative charge 
no longer coincide. An induced dipole moment p appears. The distortion is 
greatly exaggerated here. 
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Potential Due to a Continuous Charge Distribution 
When a charge distribution q is continuous (as on a uniformly charged thin rod 
or disk), we cannot use the summation of Eq. 24-27 to find the potential Vat a point 
P. Instead, we must choose a differential element of charge dq, determine the 
potential dV at P due to dq, and then integrate over the entire charge distribution. 

Let us again take the zero of potential to be at infinity. If we treat the element of 
charge dq as a point charge, then we can use Eq. 24-26 to express the potential dV at 
point P due to dq: 

dV=_1- dq 
4m~o r 

(positive or negative dq). (24-31) 

Here r is the distance between P and dq. To find the total potential Vat P, we 
integrate to sum the potentials due to all the charge elements: 

f 1 f dq V= dV=-- --. 
47T80 r 

(24-32) 

The integral must be taken over the entire charge distribution. Note that because the 
electric potential is a scalar, there are no vector components to consider in Eq. 24-32. 

We now examine two continuous charge distributions, a line and a disk. 

In Fig. 24-12a, a thin nonconducting rod of length L has a positive charge of 
uniform linear density A. Let us determine the electric potential V due to the rod 
at point P, a perpendicular distance d from the left end of the rod. 

We consider a differential element dx of the rod as shown in Fig. 24-12b. This 
(or any other) element of the rod has a differential charge of 

dq = Adx. (24-33) 

This element produces an electric potential dV at point P, which is a distance 
r = (x2 + d 2)112 from the element (Fig. 24-12c). Treating the element as a point 

r 
d 

This charged rod 
is obviously not a 
particle. r But we can treat this 

d element as a particle. 

_h 
-x t ·-x 

I· L 

Fig. 24-12 (a) A thin, uni- (a) 
formly charged rod pro-

(b) 

duces an electric potential r Vat point P. (b) An Our job is to add the 
element can be treated as a potentials due to all 
particle. (c) The potential at d= r 

P due to the element de- ~h 
the elements. 

pends on the distance r. We -x 

0, 
_h ~-x 

need to sum the potentials X= 0 
Here is the leftmost due to all the elements, 

from the left side (d) to the element. 

x=L Here is the rightmost 
element. 

right side (e). (d) (e) 

.P Here is how to find f\ distance r from the 
element. I r\ 

I ~~d.\' 
~x-j 

(e) 
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p 

~ 
r z Every charge element 

in the ring contributes 
to the potential at P. 

Fig. 24-13 A plastic disk of radius R, 
charged on its top surface to a uniform sur­
face charge density (T. We wish to find the 
potential Vat point P on the central axis of 
the disk. 

charge, we can use Eq. 24-31 to write the potential dV as 

dV= _1_ dq = _1_ Adx 
47T80 r 47T80 (x2 + d2)112 . 

(24-34) 

Since the charge on the rod is positive and we have taken V = 0 at infinity, we 
know from Section 24-6 that dV in Eq. 24-34 must be positive. 

We now find the total potential V produced by the rod at point P by integrat­
ing Eq. 24-34 along the length of the rod, from x = 0 to x = L (Figs. 24-12d and e), 
using integral 17 in Appendix E. We find 

= 4~80 1 L -(-x-2 -:-:-2-)-11-2 

= 4~80 [In( L + (L2 + J2)112) - In d J 
We can simplify this result by using the general relation In A - In B = In(A/B). 
We then find 

__ A_ [L + (U + d2)112 J 
V-

4 
In d . 

7T80 
(24-35) 

Because V is the sum of positive values of dV, it too is positive, consistent with 
the logarithm being positive for an argument greater than 1. 

In Section 22-7, we calculated the magnitude of the electric field at points on the 
central axis of a plastic disk of radius R that has a uniform charge density u on 
one surface. Here we derive an expression for V(z), the electric potential at any 
point on the central axis. 

In Fig. 24-13, consider a differential element consisting of a flat ring of radius 
R' and radial width dR'. Its charge has magnitude 

dq = U(27TR')(dR'), 

in which (27TR')(dR') is the upper surface area of the ring. All parts of this 
charged element are the same distance r from point P on the disk's axis. With the 
aid of Fig. 24-13, we can use Eq. 24-31 to write the contribution of this ring to 
the electric potential at P as 

dV = _1_ dq = _1_ U(27TR')(dR') 
47T80 r 47T80 ~Z2 + R'2 . 

(24-36) 

We find the net potential at P by adding (via integration) the contributions of all 
the rings from R' = 0 to R' = R: 

V= dV=- =~dZ2+R2_Z). f U !oR R'dR' 
280 0 ~Z2 + R'2 280 

(24-37) 

Note that the variable in the second integral of Eq. 24-37 is R' and not z, which 
remains constant while the integration over the surface of the disk is carried out. 
(Note also that, in evaluating the integral, we have assumed that z 2:: 0.) 
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24-10 Calculating the Field from the Potential 
In Section 24-5, you saw how to find the potential at a point f if you know 
the electric field along a path from a reference point to point f. In this section, 
we propose to go the other way-that is, to find the electric field when we know 
the potential. As Fig. 24-3 shows, solving this problem graphically is easy: If we 
know the potential V at all points near an assembly of charges, we can draw in 
a family of equipotential surfaces. The electric field lines, sketched perpendicular 
to those surfaces, reveal the variation of If. What we are seeking here is the math­
ematical equivalent of this graphical procedure. 

Figure 24-14 shows cross sections of a family of closely spaced equipo­
tential surfaces, the potential difference between each pair of adjacent surfaces 
being dV. As the figure suggests, the field if at any point P is perpendicular to the 
equipotential surface through P. 

Suppose that a positive test charge qo moves through a displacement ds 
from one equipotential surface to the adjacent surface. From Eq. 24-7, we see that 
the work the electric field does on the test charge during the move is -qo dV. 
From Eq. 24-16 and Fig. 24-14, we see that the work done by the electric field may 
also be written as the scalar product (qoif). d-S, or qoE(cos 8) ds. Equating these 
two expressions for the work yields 

or 

-qo dV = qoE(cos 8) ds, (24-38) 

dV 
Ecos 8 = ----;t;. (24-39) 

Since E cos 8is the component of if in the direction of ds, Eq. 24-39 becomes 

aV 
E=--

S as . (24-40) 

We have added a subscript to E and switched to the partial derivative symbols 
to emphasize that Eq. 24-40 involves only the variation of V along a specified 
axis (here called the saxis) and only the component of if along that axis. In 
words, Eq. 24-40 (which is essentially the reverse operation of Eq. 24-18) 
states: 

The component of E in any direction is the negative of the rate at which the electric 
potential changes with distance in that direction. 

If we take the s axis to be, in turn, the x, y, and z axes, we find that the x, y, and 
z components of if at any point are 

av 
E =--' 

x ax ' 
aV 

E =--' 
Y ay , 

E = _ aV 
Z az (24-41) 

Thus, if we know V for all points in the region around a charge distribution - that 
is, if we know the function Vex, y, z) - we can find the components of if, and thus 
if itself, at any point by taking partial derivatives. 

For the simple situation in which the electric field if is uniform, Eq. 24-40 
becomes 

~V 
E=-­

~s' 
(24-42) 

where s is perpendicular to the equipotential surfaces. The component of the 
electric field is zero in any direction parallel to the equipotential surfaces because 
there is no change in potential along the surfaces. 

\ 
\ 

\ 
\ 
\ 

\\-l Two 

equipotential 
surfaces 

Fig. 24-14 A test charge qomoves a 
distance dS' from one equipotential surface 
to another. (The separation between the 
surfaces has been exaggerated for clarity.) 
The displacement dS' makes an angle (;I with 
the direction of the electric field E. 

_ CHECKPOINT 6 

The figure shows three pairs of parallel 
plates with the same separation, and the 
electric potential of each plate. The elec­
tric field between the plates is uniform 
and perpendicular to the plates. (a) Rank 
the pairs according to the magnitude of 
the electric field between the plates, 
greatest first. (b) For which pair is the 
electric field pointing rightward? (c) If an 
electron is released midway between the 
third pair of plates, does it remain there, 
move rightward at constant speed, move 
leftward at constant speed, accelerate 
rightward, or accelerate leftward? 

I I 
-50V +150V 

(1) 

I I 
I I 

-20V +200V 

(2) 

-200V -400V 

(3) 
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Finding the field from the potential 

The electric potential at any point on the central axis of a 
uniformly charged disk is given by Eq. 24-37, 

try about that axis. Thus, we want the component E z of E in 
the direction of z. This component is the negative of the rate 
at which the electric potential changes with distance z. 

V= ~dZ2 + R2 - z). 
2eo Calculation: Thus, from the last of Eqs. 24-41, we can write 

Starting with this expression, derive an expression for the 
electric field at any point on the axis of the disk. E = - aV = -~~CVz2+R2 

z az 2eo dz 
z) 

(Answer) 

We want the electric field E as a function of distance z alo11& 
the axis of the disk. For any value of z, the direction of E 
must be along that axis because the disk has circular symme-

= ~(1- z ) 
2eo y z2 + R2 . 

This is the same expression that we derived in Section 22-7 
by integration, using Coulomb's law. 

~rus Additional examples, video, and practice available at WileyPLUS 

Fig. 24-15 Two charges held a 
fixed distance r apart. 

Electric Potential Energy of a System 
of Point Charges 

In Section 24-2, we discussed the electric potential energy of a charged particle as 
an electrostatic force does work on it. In that section, we assumed that the charges 
that produced the force were fixed in place, so that neither the force nor the corre­
sponding electric field could be influenced by the presence of the test charge. In 
this section we can take a broader view, to find the electric potential energy of a 
system of charges due to the electric field produced by those same charges. 

For a simple example, suppose you push together two bodies that have 
charges of the same electrical sign. The work that you must do is stored as electric 
potential energy in the two-body system (provided the kinetic energy of the bod­
ies does not change). If you later release the charges, you can recover this stored 
energy, in whole or in part, as kinetic energy of the charged bodies as they rush 
away from each other. 

We define the electric potential energy of a system of point charges, held in 
fixed positions by forces not specified, as follows: 

The electric potential energy of a system of fixed point charges is equal to the work 
that must be done by an external agent to assemble the system, bringing each charge in 
from an infinite distance. 

We assume that the charges are stationary both in their initial infinitely distant 
positions and in their final assembled configuration. 

Figure 24-15 shows two point charges ql and q2, separated by a distance r. To 
find the electric potential energy of this two-charge system, we must mentally build 
the system, starting with both charges infinitely far away and at rest. When we bring 
ql in from infinity and put it in place, we do no work because no electrostatic force 
acts on ql. However, when we next bring q2 in from infinity and put it in place, we 
must do work because ql exerts an electrostatic force on q2 during the move. 

We can calculate that work with Eq. 24-8 by dropping the minus sign (so that 
the equation gives the work we do rather than the field's work) and substituting q2 
for the general charge q. Our work is then equal to q2 V, where V is the potential that 
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has been set up by ql at the point where we put q2' From Eq. 24-26, that potential is 

V= _1_!ll. 
41TBO r 

Thus, from our definition, the electric potential energy of the pair of point 
charges of Fig. 24-15 is 

(24-43) 

If the charges have the same sign, we have to do positive work to push them 
together against their mutual repulsion. Hence, as Eq. 24-43 shows, the potential 
energy of the system is then positive. If the charges have opposite signs, we have 
to do negative work against their mutual attraction to bring them together if they 
are to be stationary. The potential energy of the system is then negative. 

Potential energy of a system of three charged particles 

Figure 24-16 shows three point charges held in fixed positions 
by forces that are not shown. What is the electric potential 
energy V of this system of charges? Assume that d = 12 cm 
and that 

ql = +q, q2 = -4q, and q3 = +2q, 

in which q = 150 ne. 

The potential energy V of the system is equal to the work 
we must do to assemble the system, bringing in each charge 
from an infinite distance. 

Calculations: Let's mentally build the system of Fig. 
24-16, starting with one of the point charges, say qh in place 
and the others at infinity. Then we bring another one, say q2' 
in from infinity and put it in place. From Eq. 24-43 with d 
substituted for r, the potential energy V12 associated with 
the pair of point charges ql and q2 is 

TT __ 1_ qlq2 
Ul2 - . 

41TBO d 

We then bring the last point charge q3 in from infinity and 
put it in place. The work that we must do in this last step is 
equal to the sum of the work we must do to bring q3 near ql 
and the work we must do to bring it near q2' From Eq. 24-43, 
with d substituted for r, that sum is 

1 qlq3 1 q2q3 
lti3 + VV23 = V13 + V23 = -4-- --d- + -4-- --d-' 

1TBo· 1TBo· 

The total potential energy V of the three-charge system is the 
sum of the potential energies associated with the three pairs of 

q2 

1\ Energy is associated 
with each pair of 

d d particles. 

L-d-\~ 
Fig. 24-16 Three charges are fixed at the vertices of an equilateral 
triangle. What is the electric potential energy of the system? 

charges. This sum (which is actually independent of the order 
in which the charges are brought together) is 

V = Vl2 + V13 + V23 

= _1_( (+q)(-4q) 
41TBO d 

(+q)( +2q) (-4q)( +2q) ) 
+ d + d 

_ 10q2 

41TBOd 

(8.99 X 109 N . m2/C2)(10)(150 X 10-9 C)2 

0.12m 

= -1.7 X 1O-2 J = -17mJ. (Answer) 

The negative potential energy means that negative 
work would have to be done to assemble this structure, 
starting with the three charges infinitely separated and at rest. 
Put another way, an external agent would have to do 17 mJ of 
work to disassemble the structure completely, ending with the 
three charges infinitely far apart. 

~rus Additional examples, video, and practice available at WileyPLUS 
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Conservation of mechanical energy with electric potential energy 

An alpha particle (two protons, two neutrons) moves into a 
stationary gold atom (79 protons, 118 neutrons), passing 
through the electron region that surrounds the gold nucleus 
like a shell and headed directly toward the nucleus 
(Fig. 24-17). The alpha particle slows until it momentarily 
stops when its center is at radial distance r = 9.23 fm from the 
nuclear center. Then it moves back along its incoming path. 
(Because the gold nucleus is much more massive than the 
alpha particle, we can assume the gold nucleus does not 
move.) What was the kinetic energy Ki of the alpha particle 
when it was initially far away (hence external to the gold 
atom)? Assume that the only force acting between the alpha 
particle and the gold nucleus is the ( electrostatic) Coulomb 
force. 

During the entire process, the mechanical energy of the 
alpha particle + gold atom system is conserved. 

Reasoning: When the alpha particle is outside the atom, 
the system's initial electric potential energy Ui is zero be­
cause the atom has an equal number of electrons and pro­
tons, which produce a net electric field of zero. However, 
once the alpha particle passes through the electron region 
surrounding the nucleus on its way to the nucleus, the elec­
tric field due to the electrons goes to zero. The reason is that 
the electrons act like a closed spherical shell of uniform neg­
ative charge and, as discussed in Section 23-9, such a shell 
produces zero electric field in the space it encloses. The al­
pha particle still experiences the electric field of the protons 

Fig.24-17 An alpha par­
ticle, traveling head-on toward 
the center of a gold nucleus, 
comes to a momentary stop 
(at which time all its kinetic 
energy has been transferred 
to electric potential energy) 
and then reverses its path. 

Alpha 
particle 

'I 

Gold 
nucleus 

in the nucleus, which produces a repulsive force on the pro­
tons within the alpha particle. 

As the incoming alpha particle is slowed by this repulsive 
force, its kinetic energy is transferred to electric potential 
energy of the system. The transfer is complete when the alpha 
particle momentarily stops and the kinetic energy is Kf = O. 

Calculations: The principle of conservation of mechanical 
energy tells us that 

Ki + Ui = Kf + Uf. (24-44) 

We know two values: Ui = 0 and Kf = O. We also know that 
the potential energy Uf at the stopping point is given by the 
right side of Eq. 24-43, with q1 = 2e, q2 = 7ge (in which e is 
the elementary charge, 1.60 X 10-19 C), and r = 9.23 fm. 
Thus, we can rewrite Eq. 24-44 as 

1 (2e)(7ge) 
Ki = 47TBo 9.23 fm 

(8.99 X 109 N· m2/C2)(lS8)(1.60 X 10-19 C)2 

9.23 X 10-15 m 

= 3.94 X 10-12 J = 24.6 MeV. (Answer) 

:~s Additional examples, video, and practice available at WileyPLUS 

1 Potential of a Charged Isolated Conductor 
In Section 23-6, we concluded that If = 0 for all points inside an isolated conductor. 
We then used Gauss' law to prove that an excess charge placed on an isolated con­
ductor lies entirely on its surface. (This is true even if the conductor has an empty in­
ternal cavity.) Here we use the ill'st of these facts to prove an extension of the second: 

An excess charge placed on an isolated conductor will distribute itself on the surface of 
that conductor so that all points ofthe conductor-whether on the surface or inside­
come to the same potential. This is true even if the conductor has an internal cavity and 
even if that cavity contains a net charge. 

Our proof follows directly from Eq. 24-18, which is 

f
f~ 

Vf - Vi = - i E· dS: 

Since If = 0 for all points within a conductor, it follows directly that Vf = Vi for 
all possible pairs of points i and f in the conductor. 
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Figure 24-18a is a plot of potential against radial distance r from the center 
for an isolated spherical conducting shell of 1.0 m radius, having a charge of 
1.0 fLC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because 
the charge q behaves for such external points as if it were concentrated at the 
center of the shell. That equation holds right up to the surface of the shell. Now 
let us push a small test charge through the shell-assuming a small hole exists­
to its center. No extra work is needed to do this because no net electric force acts 
on the test charge once it is inside the shell. Thus, the potential at all points inside 
the shell has the same value as that on the surface, as Fig. 24-18a shows. 

Figure 24-18b shows the variation of electric field with radial distance for the 
same shell. Note that E = 0 everywhere inside the shell. The curves of Fig. 24-18b 
can be derived from the curve of Fig. 24-18a by differentiating with respect to r, 
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of 
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with 
respect to r, using Eq. 24-19. 

Fig. 24-19 A large spark 
jumps to a car's body and then 
exits by moving across the 
insulating left front tire (note 
the flash there), leaving the per­
son inside unharmed. (Courtesy 
Westinghouse Electric 
Corporation) 

On nonspherical conductors, a surface charge does not distribute itself uniformly 
over the surface of the conductor. At sharp points or sharp edges, the surface charge 
density - and thus the external electric field, which is proportional to it - may reach 
very high values. The air around such sharp points or edges may become ionized, pro­
ducing the corona discharge that golfers and mountaineers see on the tips of bushes, 
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges, 
like hair that stands on end, are often the precursors of lightning strikes. In such cir­
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where 
the electric field is guaranteed to be zero. A car (unless it is a convertible or made 
with a plastic body) is almost ideal (Fig. 24-19). 

If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all 
points of the conductor still come to a single potential regardless of whether the 
conductor has an excess charge. The free conduction electrons distribute them­
selves on the surface in such a way that the electric field they produce at interior 
points cancels the external electric field that would otherwise be there. 
Furthermore, the electron distribution causes the net electric field at all points on 
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could 
be somehow removed, leaving the surface charges frozen in place, the internal 
and external electric field would remain absolutely unchanged. 

r(m) 

(b) 

Fig.24-18 (a) A plot of V(r) both 
inside and outside a charged spheri­
cal shell of radius 1.0 m. (b) A plot of 
E(r) for the same shell. 

Fig. 24-20 An uncharged conduc­
tor is suspended in an external elec­
tric field. The free electrons in the 
conductor distribute themselves on 
the surface as shown, so as to reduce 
the net electric field inside the con­
ductor to zero and make the net field 
at the surface perpendicular to the 
surface. 
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Electric Potential Energy The change tlU in the electric po­
tential energy U of a point charge as the charge moves from an ini­
tial point i to a final point fin an electric field is 

(24-1 ) 

where W is the work done by the electrostatic force (due to the 
external electric field) on the point charge during the move from 
i to f. If the potential energy is defined to be zero at infinity, the 
electric potential energy U of the point charge at a particular 
point is 

u = -Woo, (24-2) 

Here Woo is the work done by the electrostatic force on the point 
charge as the charge moves from infinity to the particular point. 

Electric Potential Difference and Electric Potential 
We define the potential difference tl V between two points i and f 
in an electric field as 

W 
tlV = \j - Vi = --, (24-7) 

q 

where q is the charge of a particle on which work W is done by the 
electric field as the particle moves from point i to point f. The po­
tential at a point is defined as 

V = - Woo. (24-8) 
q 

Here Woo is the work done on the particle by the electric field as the 
particle moves in from infinity to the point. The SI unit of potential 
is the volt: 1 volt = 1 joule per coulomb. 

Potential and potential difference can also be written in terms 
of the electric potential energy U of a particle of charge q in an 
electric field: 

V=~ 
q' 

~ q tlU 
tl V = \j - Vi = - - - = --. 

q q q 

(24-5) 

(24-6) 

Equipotential Surfaces The points on an equipotential 
surface all have the same electric potential. The work done on a 
test charge in moving it from one such surface to another is inde­
pendent of the locations of the initial and final points on these 
surfaces and of the path that joins the points. The electric field E 
is always directed perpendicularly to corresponding equipoten­
tial surfaces. 

Finding V from E The electric potential difference between 
two points i andfis 

(f ~ 
\j - Vi = - J; E . ds', (24-18) 

where the integral is taken over any path connecting the points. If the 
integration is difficult along any particular path, we can choose a differ­
ent path along which the integration might be easier. If we choose V; = 

0, we have, for the potential at a particular point, 
(f ~ 

V = - J E· ds'. (24-19) 

Potential Due to Point Charges The electric potential due to 
a single point charge at a distance r from that point charge is 

V = _1_!L (24-26) 
47TBO r ' 

where V has the same sign as q. The potential due to a collection of 
point charges is 

V = ± Vi = _1_ ± !XL. 
;=1 47TBo ;=1 Ii 

(24-27) 

Potential Due to an Electric Dipole At a distance r from 
an electric dipole with dipole moment magnitude p = qd, the elec­
tric potential of the dipole is 

V = _1_ p cos () (24-30) 
47TBO ,.2 

for r ~ d; the angle B is defined in Fig. 24-10. 

Potential Due to a Continuous Charge Distribution 
For a continuous distribution of charge, Eq. 24-27 becomes 

V = _1_ J!!!L (24-32) 
47TBo r' 

in which the integral is taken over the entire distribution. 

Calculating E from V The component of E in any direction is 
the negative of the rate at which the potential changes with dis­
tance in that direction: 

av 
Es= --. as 

The x, y, and z components of E may be found from 

av 
Ey= --; 

ay 
av 

E =--
Z az . 

When E is uniform, Eq. 24-40 reduces to 

E = _ tlV 
tls ' 

(24-40) 

(24-41) 

(24-42) 

where s is perpendicular to the equipotential surfaces. The electric 
field is zero parallel to an equipotential surface. 

Electric Potential Energy of a System of Point Charges 
The electric potential energy of a system of point charges is equal 
to the work needed to assemble the system with the charges ini­
tially at rest and infinitely distant from each other. For two charges 
at separation r, 

U=W 
47TBO r 

(24-43) 

Potential of a Charged Conductor An excess charge 
placed on a conductor will, in the equilibrium state, be located en­
tirely on the outer surface of the conductor. The charge will distrib­
ute itself so that the following occur: (1) The entire conductor, in­
cluding interior points, is at a uniform potential. (2) At every 
internal point, the electric field due to the charge cancels the exter­
nal electric field that otherwise would have been there. (3) The net 
electric field at every point on the surface is perpendicular to the 
surface. 



In Fig. 24-21, eight particles -4q -2q +q 
form a square, with distance d ~----~'-----d-'--­
between adjacent particles. What 
is the electric potential at point 
P at the center of the square if 
the electric potential is zero at 
infinity? 

Figure 24-22 shows three sets 
of cross sections of equipotential 
surfaces; all three cover the same 

+5q • p -5q 

-2q +4q size region of space. (a) Rank the -q 
arrangements according to the 

Fig. 24-21 Question l. 
magnitude of the electric field pre-
sent in the region, greatest first. (b) In which is the electric field di­
rected down the page? 

-- --- --- 20 V - -- -- -- -140 V ---- -- -- -10 V 
-------- 40 
- - - - - - - 60 - - - - - - - -120 - - - - - - - - -30 
---- --- 80 
--------100 ---------100 - - - - - - - - -50 

(1) (2) (3) 

Fig. 24-22 Question 2. 

Figure 24-23 shows four pairs of charged particles. For each pair, let 
V = 0 at infinity and consider ~,et at points on the x axis. For which 
pairs is there a point at which Vnet = 0 (a) between the particles and (b) 
to the right of the particles? (c) At such a point is Enet due to the parti­
cles equal to zero? (d) For each pair, are there off-axis points (other 
than at infinity) where Vnet = O? 

" ~ x " -2q +6q +3q 
(1) (2) 

.. $ x " +12q +q -6q 
(3) (4) 

Fig. 24-23 Questions 3 and 9. 

Figure 24-24 gives the electric j! 

potential V as a function of x. (a) 
Rank the five regions according to 
the magnitude of the x component 
of the electric field within them, 
greatest first. What is the direction 

@ x 
-4q 

" x 
-2q 

5 
-- x 

of the field along the x axis in Fig. 24-24 Question 4. 
(b) region 2 and (c) region 4? 

Figure 24-25 shows three paths 
along which we can move the posi­
tively charged sphere A closer to 
positively charged sphere B, which 
is held fixed in place. (a) Would 
sphere A be moved to a higher or 
lower electric potential? Is the work Fig.24-25 Question 5. 
done (b) by our force and (c) by the 
electric field due to B positive, negative, or zero? (d) Rank the 
paths according to the work our force does, greatest first. 
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Figure 24-26 shows four arrangements of charged particles, all 
the same distance from the origin. Rank the situations according to 
the net electric potential at the origin, most positive first. Take the 
potential to be zero at infinity. 

~ + ~ 
-4q 

-2q +2q +2q 

-9q -3q -q 

-2q -7q 

(a) (b) (c) (d) 

Fig. 24-26 Question 6. 

Figure 24-27 shows a system of three charged particles. If you 
move the particle of charge +q from point A to point D, are the 
following quantities positive, negative, or zero: (a) the change in 
the electric potential energy of the three-particle system, (b) the 
work done by the net electrostatic force on the particle you moved 
(that is, the net force due to the other two particles), and (c) the 
work done by your force? (d) What are the answers to (a) through 
(c) if, instead, the particle is moved from E to C? 

I--d 'I- d-~'l-I--d-I--d-I--d-I 
~i---Ig • • g • 

A +Q B C +Q D 

Fig. 24-27 Questions 7 and 8. 

In the situation of Question 7, is the work done by your force 
positive, negative, or zero if the particle is moved (a) from A to E, 
(b) from A to C, and (c) from E to D? (d) Rank those moves ac­
cording to the magnitUde of the work done by your force, great­
est first. 

Figure 24-23 shows four pairs of charged particles with identi­
cal separations. (a) Rank the pairs according to their electric po­
tential energy (that is, the energy of the two-particle system), 
greatest (most positive) first. (b) 
For each pair, if the separation be­
tween the particles is increased, 
does the potential energy of the 
pair increase or decrease? 

(a) In Fig. 24-28a, what is the 
potential at point P due to charge 
Q at distance R from P? Set V = 
o at infinity. (b) In Fig. 24-28b, the 
same charge Q has been spread 
uniformly over a circular arc of 
radius R and central angle 40°. 
What is the potential at point P, 
the center of curvature of the arc? 
(c) In Fig. 24-28c, the same charge 
Q has been spread uniformly over 
a circle of radius R. What is the 
potential at point P, the center of 
the circle? (d) Rank the three sit­
uations according to the magni­
tude of the electric field that is set 
up at P, greatest first. 

Q R-op 

(a) 

Q -
--R_~400(fUIl angle) 

/AP 

~ 
~ 

(b) 

Q 

~ >( 

R op 

(c) 

Fig. 24-28 Question 10. 
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Tutoring problem available {at instructor's discretion} in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty Il.W Interactive solution is at 
http://www.wlley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Electric Potential 
A particular 12 V car battery can send a total charge of 

84 A . h (ampere-hours) through a circuit, from one terminal to the 
other. (a) How many coulombs of charge does this represent? 
(Hint: See Eq. 21-3.) (b) If this entire charge undergoes a change in 
electric potential of 12 V, how much energy is involved? 

The electric potential difference between the ground and a cloud 
in a particular thunderstorm is 1.2 X 109 V. In the unit electron-volts 
what is the magnitude of the change in the electric potential energ; 
of an electron that moves between the ground and the cloud? 

Much of the material making up Saturn's rings is in the form 
of tiny dust grains having radii on the order of 10-6 m. These grains 
are located in a region containing a dilute ionized gas, and they pick 
up excess electrons. As an approximation, suppose each grain is 
spherical, with radius R = 1.0 X 10-6 m. How many electrons would 
one grain have to pick up to have a potential of -400 V on its surface 
(takingV= o at infinity)? 

Calculating the Potential from the Field 
Two large, parallel, conducting plates are 12 cm apart and have 

charges of equal magnitude and opposite sign on their facing sur­
faces. An electrostatic force of 3.9 X 10-15 N acts on an electron 
placed anywhere between the two plates. (Neglect fringing.) (a) 
Find the electric field at the position of the electron. (b) What is the 
potential difference between the plates? 

SSM An infinite nonconducting sheet has a surface charge 
density u = 0.10 j.LC/m2 on one side. How far apart are equipoten­
tial surfaces whose potentials differ by 50 V? 

When an electron moves from A to B along an electric field 
line in Fig. 24-29, the electric field does 3.94 X 10-19 J of work on 
it. What are the electric potential differences (a) VB - VA, (b) 
V c - VA, and ( c) V c - VB? 

Electric 
field 

~~/ .. ~ E4"'P"'",ti", 
Fig. 24-29 Problem 6. 

The electric field in a region of space has the components Ey = 
Ez = 0 and E, = (4.00 N/C)x. Point A is on the y axis at y = 3.00 m, 
and point B is on the x axis at x = 4.00 m. What is the potential dif­
ference VB - VA? 

A graph of the x component of the electric field as a function of 
x in a region of space is shown in Fig. 24-30. The scale of the vertical 
axis is set by E,s = 20.0 N/C. The y and z components of the electric 

field are zero in this region. If the electric potential at the origin is 10 
V, (a) what is the electric potential at x = 2.0 m, (b) what is 
the greatest positive value of the electric potential for points on the x 
axis for which 0 :s; x :s; 6.0 m, and (c) for what value of x is the electric 
potential zero? 

x(m) 

Fig. 24-30 Problem 8. 

An infinite nonconducting sheet has a surface charge density 
u = +5.80 pC/m2. (a) How much work is done by the electric field 
due to the sheet if a particle of charge q = + 1.60 X 10-19 C is 
moved from the sheet to a point P at distance d = 3.56 cm from the 
sheet? (b) If the electric potential V is defined to be zero on the 
sheet, what is Vat P? 

o Two uniformly charged, infinite, nonconducting planes are 
parallel to a yz plane and positioned at x = -50 cm and x = +50 
cm. The charge densities on the planes are -50nC/m2 and +25 
nC/m2, respectively. What is the magnitude of the potential differ­
ence between the origin and the point on the x axis at x = + 80 cm? 
(Hint: Use Gauss' law.) 

1 A nonconducting sphere has radius R = 2.31 cm and uni­
formly distributed charge q = +3.50 fC. Take the electric potential at 
the sphere's center to be Vo = O. What is Vat radial distance (a) r = 
1.45 cm and (b) r = R. (Hint: See Section 23-9.) 

Potential Due to a Group of Point Charges 
As a space shuttle moves through the dilute ionized gas of 

Earth's ionosphere, the shuttle's potential is typically changed by 
-1.0 V during one revolution. Assuming the shuttle is a sphere of ra­
dius 10 m, estimate the amount of charge it collects. 

What are (a) the charge and (b) the charge density on the sur­
face of a conducting sphere of radius 0.15 m whose potential is 200 V 
(with V = 0 at infinity)? 

Consider a point charge q = 1.0 j.LC, point A at distance 
d1 = 2.0 m from q, and point B at distance d2 = 1.0 ill. (a) If A and B 
are diametrically opposite each other, as in Fig. 24-31a, what is the elec-

0- d2 -0 . dj ---· • 

B q A 

(a) 

Fig. 24-31 Problem 14. 



tric potential difference VA - VB? (b) What is that electric potential 
difference if A and B are located as in Fig. 24-31b? 

SSM IlW A spherical drop of water carrying a charge of 
30 pC has a potential of 500 Vat its surface (with V = 0 at infin­
ity). (a) What is the radius of the drop? (b) If two such drops of 
the same charge and radius combine to form a single spherical 
drop, what is the potential at the surface of the new drop? 

Figure 24-32 shows a 
rectangular array of charged 
particles fixed in place, with distance 
a = 39.0 cm and the charges shown 
as integer multiples of qj = 3.40 pC 
and q2 = 6.00 pc. With V = 0 at in­
finity, what is the net electric poten­
tial at the rectangle'S center? (Hint: 
Thoughtful examination can reduce Fig. 24-32 Problem 16. 
the calculation.) 

In Fig. 24-33, what is the net electric potential at point P 
due to the four particles if V = 0 at infinity, q = 5.00 fC, and d = 

4.00 cm? 

\q /' 
d>-(d~ 

d 

\ 
+q0 

Fig.24-33 Problem 17. 

Two charged particles are shown in Fig. 24-34a. 
Particle 1, with charge qj, is fixed in place at distance d. Particle 2, 
with charge q2, can be moved along the x axis. Figure 24-34b gives 
the net electric potential Vat the origin due to the two particles as 
a function of the x coordinate of particle 2. The scale of the x axis is 
set by Xs = 16.0 cm. The plot has an asymptote of V = 5.76 X 10-7 

Vas x ~ 00. What is q2 in terms of e? 

t-d~ . , 
~ 

4r:::F=-8;L· 
o I, 
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(a) (b) 

Fig. 24-34 Problem 18. 

x (em) 

In Fig. 24-35, particles with the charges ql = +5e and 
q2 = -15e are fixed in place with a separation of d = 24.0 cm. With 

Fig. 24-35 Problems 19,20, and 97. 
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electric potential defined to be V = 0 at infinity, what are the finite 
(a) positive and (b) negative values of x at which the net electric 
potential on the x axis is zero? 

Tho particles, of charges qj and q2, are separated by distance 
d in Fig. 24-35. The net electric field due to the particles is zero at 
x = d/4. With V = 0 at infinity, locate (in terms of d) any point on 
the x axis (other than at infinity) at which the electric potential due 
to the two particles is zero. 

24·8 Potential Due to an Electric Dipole 
·21 IlW The ammonia molecule NH3 has a permanent electric 
dipole moment equal to 1.47 D, where 1 D = 1 debye unit = 
3.34 X 10-30 C· m. Calculate the electric potential due to an am­
monia molecule at a point 52.0 nm away along the axis of the di­
pole. (Set V = 0 at infinity.) 

In Fig. 24-36a, a particle of elementary charge +e is initially 
at coordinate z = 20 nm on the dipole axis (here a z axis) through 
an electric dipole, on the positive side of the dipole. (The origin of 
z is at the center of the dipole.) The particle is then moved along a 
circular path around the dipole center until it is at coordinate z = 
-20 nm, on the negative side of the dipole axis. Figure 24-36b 
gives the work Wa done by the force moving the particle versus 
the angle () that locates the particle relative to the positive direc­
tion of the z axis. The scale of the vertical axis is set by Was = 4.0 X 
10-30 J. What is the magnitude of the dipole moment? 

\ ---1-1----+---:s: -Was ......, .. 

(a) (b) 

Fig. 24-36 Problem 22. 

Potential Due to a 
Continuous Charge Distribution 

(a) Figure 24-37a shows a nonconducting rod of length L = 

6.00 cm and uniform linear charge density A = +3.68 pC/m. 
Assume that the electric potential is defined to be V = 0 at infin­
ity. What is V at point P at distance d = 8.00 cm along the rod's 
perpendicular bisector? (b) Figure 24-37 b shows an identical rod 
except that one half is now negatively charged. Both halves have a 
linear charge density of magnitude 3.68 pC/m. With V = 0 at infin­
ity, what is Vat P? 

r 
d 

1++++++1++++++1 

I-- L/2 -1- L/2 -I 
(a) 

Fig. 24-37 Problem 23. 
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(b) 
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In Fig. 24-38, a plastic rod having a uni­
formly distributed charge Q = -25.6 pC has 
been bent into a circular arc of radius R = 

3.71 cm and central angle cp = 120°. With V = 

o at infinity, what is the electric potential at P, 
the center of curvature of the rod? 

A plastic rod has been bent into a circle 
of radius R = 8.20 cm. It has a charge Ql = 

+4.20 pC uniformly distributed along one­
quarter of its circumference and a charge 
Q2 = -6Ql uniformly distributed along the 
rest of the circumference (Fig. 24-39). With 
V = 0 at infinity, what is the electric potential 

/ 
/ 

/ 

/ 

/ 
/ 

/ 

~tCP-E~~, ." ... P R ' 
\ : 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

Fig. 24-38 

Problem 24. 

at (a) the center C of the circle and (b) point P, on the central axis 
of the circle at distance D = 6.71 cm from the center? 

PT 
D 

1 ' 
~ R 

Fig. 24-39 Problem 25. 

Figure 24-40 shows a thin 
rod with a uniform charge density of 
2.00 f-LC/m. Evaluate the electric po­
tential at point P if d = D = Ll4.00. 

In Fig. 24-41, three thin plastic 

V 
d 

~* ____ ~===R=o=d==~r-x 
~L~---I·I 

rods form quarter-circles with a com- Fig. 24-40 Problem 26. 
mon center of curvature at the origin. 
The uniform charges on the rods are Ql = +30 nC, Q2 = + 3.0Qb 
and Q3 = -8.0Ql' What is the net electric potential at the origin due 
to the rods? 

Q2 

y (em) 
4.0 c 

l 
--"----;':-+------'~ x (em) 

Fig. 24-41 Problem 27. 

Figure 24-42 shows a thin plastic rod of length L = 12.0 cm and 
uniform positive charge Q = 56.1 fC lying on anx axis. With V = 0 at infin­
ity, find the electric potential at point Pi on the axis, at distance d = 2.50 cm 
from one end of the rod. 

y 

Fig. 24-42 Problems 28, 33, 38, and 40. 

In Fig. 24-43, what is the net electric potential at the origin 
due to the circular arc of charge Ql = +7.21 pC and the two parti­
cles of charges Q2 = 4.00Ql and Q3 = -2.00Ql? The arc's center of 
curvature is at the origin and its radius is R = 2.00 m; the angle in­
dicated is () = 20.0°. 

y 

Fig. 24-43 Problem 29. 

The smiling face of Fig. 24-44 consists of three items: 

1. a thin rod of charge -3.0 f-LC that forms a full circle of radius 
6.0cm; 

2. a second thin rod of charge 2.0 f-LC that forms a circular arc of 
radius 4.0 cm, subtending an angle of 90° about the center of the 
full circle; 

3. an electric dipole with a dipole moment that is perpendicular to 
a radial line and has magnitude 1.28 X 10-21 C . m. 

What is the net electric potential at the center? 

Fig. 24-44 Problem 30. 

SSM www A plastic disk 
of radius R = 64.0 cm is charged on 
one side with a uniform surface 
charge density (T = 7.73 fC/m2, 

and then three quadrants of the 
disk are removed. The remaining 
quadrant is shown in Fig. 24-45. 
With V = 0 at infinity, what is the 

PT 
D 

·1···· 
potential due to the remaining Fig. 24-45 Problem 31. 
quadrant at point P, which is on the 
central axis of the original disk at distance D = 25.9 cm from the 
original center? 

A nonuniform linear charge distribution given by A = bx, 
where b is a constant, is located along an x axis from x = 0 to x = 

0.20 m. If b = 20 nC/m2 and V = 0 at infinity, what is the electric po­
tential at (a) the origin and (b) the point y = 0.l5 m on the y axis? 

The thin plastic rod shown in Fig. 24-42 has length L = 12.0 
cm and a nonuniform linear charge density A = ex, where e = 28.9 



pC/mZ. With V = 0 at infinity, find the electric potential at point PIon 
the axis, at distance d = 3.00 cm from one end. 

Calculating the Field from the Potential 
Two large parallel metal plates are 1.5 cm apart and have 

charges of equal magnitudes but opposite signs on their facing sur­
faces. Take the potential of the negative plate to be zero. If the po­
tential halfway between the plates is then +5.0 V, what is the elec­
tric field in the region between the plates? 

The electric potential at points in an xy plane is given by V = 

(2.0 V/mZ)xZ - (3.0 V/mZ)yz. In unit-vector notation, what is the 
electric field at the point (3.0 m, 2.0 m)? 

The electric potential V in the space between two fiat parallel 
plates 1 and 2 is given (in volts) by V = 1500xz, where x (in meters) 
is the perpendicular distance from plate 1. At x = 1.3 cm, (a) what 
is the magnitude of the electric field and (b) is the field directed to­
ward or away from plate 1 ? 

SSM What is the magnitude of the electric field at the point 
(3.001 - 2.00J + 4.00k) m if the electric potential is given by V = 

2.00xyzZ, where V is in volts and x,y, and z are in meters? 

Figure 24-42 shows a thin plastic rod of length L = 13.5 cm 
and uniform charge 43.6 fC. (a) In terms of distance d, find an ex­
pression for the electric potential at point Pj. (b) Next, substitute 
variable x for d and find an expression for the magnitude of the 
component Ey of the electric field at PI' (c) What is the direction of 
Ey relative to the positive direction of the x axis? (d) What is the 
value of Ey at P j for x = d = 6.20 cm? (e) From the symmetry in 
Fig. 24-42, determine Ey at PI' 

An electron is placed in an xy plane where the electric po­
tential depends on x and y as shown in Fig. 24-46 (the potential 
does not depend on z). The scale of the vertical axis is set by Vs = 
500 V. In unit-vector notation, what is the electric force on the 
electron? 

l' s 
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-1's 

x(m) y(m) 

Fig. 24-46 Problem 39. 

The thin plastic rod of length L = 10.0 cm in Fig. 24-42 has 
a nonuniform linear charge density ;\ = cx, where c = 49.9 pC/mz. 
(a) With V = 0 at infinity, find the electric potential at point P2 on 
the y axis at y = D = 3.56 cm. (b) Find the electric field component 
Ey at Pz. (c) Why cannot the field component Ey at Pz be found us­
ing the result of (a)? 

Electric Potential Energy of 
a System of Point Charges 

A particle of charge +7.5/LC is released from rest at the 
point x = 60 cm on an x axis. The particle begins to move due to 
the presence of a charge Q that remains fixed at the origin. What is 
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the kinetic energy of the particle at the instant it has moved 40 cm 
if (a) Q = +20 /LC and (b) Q = -20/LC? 

(a) What is the electric potential energy of two electrons sep­
arated by 2.00 nm? (b) If the separation increases, does the poten­
tial energy increase or decrease? 

SSM ILW WWW How much work is 
required to set up the arrangement of Fig. 24-
47 if q = 2.30 pC, a = 64.0 cm, and the p31'ti­
cles are initially infinitely far apart and at rest? 

In Fig. 24-48, seven charged particles are 
fixed in place to form a square with an edge 
length of 4.0 cm. How much work must we do -q 
to bring a particle of charge +6e initially at 
rest from an infinite distance to the center of 
the square? 

y 

I 
-2e 

-e 3e 

+2e 

+3e +e 
+3e 

Fig. 24-48 Problem 44. 

Fig. 24-47 

Problem 43. 

+q 

IlW A particle of charge q is fixed at point P, and a second 
particle of mass In and the same charge q is initially held a distance 
1'1 from P. The second particle is then released. Determine its speed 
when it is a distance I'z from P. Let q = 3.1 /LC, In = 20 mg, 1'1 = 
0.90 mm, and 1'2 = 2.5 mm. 

A charge of -9.0 nC is uniformly distributed around a thin 
plastic ring lying in a yz plane with the ring center at the origin. A 
-6.0 pC point charge is located on the x axis at x = 3.0 m. For a 
ring radius of 1.5 m, how much work must an external force do on 
the point charge to move it to the origin? 

What is the escape speed for an electron initially at rest 
on the surface of a sphere with a radius of 1.0 cm and a uniformly 
distributed charge of 1.6 X 10- 15 C? That is, what initial speed must 
the electron have in order to reach an infinite distance from the 
sphere and have zero kinetic energy when it gets there? 

A thin, spherical, conducting shell of radius R is mounted 
on an isolating support and charged to a potential of -125 V. An 
electron is then fired directly toward the center of the shell, from 
point P at distance I' from the center of the shell (I' P R). What 
initial speed Vo is needed for the electron to just reach the shell 
before reversing direction? 

Two electrons are fixed 
2.0 cm apart. Another electron is 
shot from infinity and stops midway 
between the two. What is its initial 
speed? 

In Fig. 24-49, how much work 
must we do to bring a particle, of 
charge Q = + 16e and initially at rest, 
along the dashed line from infinity to Fig. 24-49 Problem 50. 
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the indicated point near two fixed particles of charges qj = +4e and 
q2 = -q/2? Distance d = 1.40 cm, ()j = 43°, and ()2 = 60°. 

In the rectangle of Fig. 24-
50, the sides have lengths 5.0 cm and 
15 cm, ql = -5.0 ftC, and q2 = +2.0 
ftc. With V = 0 at infinity, what is the 
electric potential at (a) corner A and 
(b) corner B? (c) How much work is Fig.24-50 Problem51. 
required to move a charge q3 = +3.0 
ftC from B to A along a diagonal of the rectangle? (d) Does this 
work increase or decrease the electric potential energy of the three­
charge system? Is more, less, or the same work required if q3 is 
moved along a path that is (e) inside the rectangle but not on a diag­
onal and (f) outside the rectangle? 

Figure 24-51a shows an electron moving along an electric di­
pole axis toward the negative side of the dipole. The dipole is fixed in 
place. The electron was initially very far from the dipole, with kinetic 
energy 100 e V. Figure 24-51b gives the kinetic energy K of the elec­
tron versus its distance r from the dipole center. The scale of the hori­
zontal axis is set by rs = 0.10 m. What is the magnitude of the dipole 
moment? -~ + - -e 

(a) 

r(m) 

(b) 

Fig. 24-51 Problem 52. 

Two tiny metal spheres A and B, mass mA = 5.00 g and mB = 

10.0 g, have equal positive charge q = 5.00 ftc. The spheres are con­
nected by a massless nonconducting string of length d = 1.00 m, 
which is much greater than the radii of the spheres. (a) What is the 
electric potential energy of the system? (b) Suppose you cut the 
string. At that instant, what is the acceleration of each sphere? (c) A 
long time after you cut the string, what is the speed of each sphere? 

A positron (charge +e, mass equal to the electron mass) is 
moving at 1.0 X 107 mls in the positive direction of an x axis when, at 
x = 0, it encounters an electric field directed along the x axis. The 
electric potential V associated with the field is given in Fig. 24-52. The 
scale of the vertical axis is set by Vs = 500.0 V. (a) Does the positron 
emerge from the field at x = 0 (which means its motion is reversed) 
or at x = 0.50 m (which means its motion is not reversed)? (b) What 
is its speed when it emerges? 

'---'---'---'-----'-----'L--J X (em) 
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Fig. 24-52 Problem 54. 

An electron is projected with an initial speed of 3.2 X 105 mls 
directly toward a proton that is fixed in place. If the electron is ini­
tially a great distance from the proton, at what distance from the 
proton is the speed of the electron instantaneously equal to twice 
the initial value? 

Figure 24-53a shows three particles on an x axis. Particle 1 
(with a charge of + 5.0 ftC) and particle 2 (with a charge of + 3.0 
ftC) are fixed in place with separation d = 4.0 cm. Particle 3 can 
be moved along the x axis to the right of particle 2. Figure 24-
53b gives the electric potential energy U of the three-particle 
system as a function of the x coordinate of particle 3. The scale 
of the vertical axis is set by Us = 5.01. What is the charge of par­
ticle 3? 

y 
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Fig. 24-53 Problem 56. 

Ix(em) 

i 

SSM Identical 50 ftC charges are fixed on an x axis at 
x = ±3.0 m. A particle of charge q = -15 ftC is then released from 
rest at a point on the positive part of the y axis. Due to the symme­
try of the situation, the particle moves along the y axis and has ki­
netic energy 1.2 J as it passes through the point x = 0, y = 4.0 m. 
(a) What is the kinetic energy of the particle as it passes through 
the origin? (b) At what negative value of y will the particle mo­
mentarily stop? 

Proton in a well. Figure 24-54 shows electric potential 
V along an x axis. The scale of the vertical axis is set by Vs = 10.0 
V. A proton is to be released at x = 3.5 cm with initial kinetic 
energy 4.00 eV. (a) If it is initially moving in the negative direc­
tion of the axis, does it reach a turning point (if so, what is the x 
coordinate of that point) or does it escape from the plotted re­
gion (if so, what is its speed at x = O)? (b) If it is initially moving 
in the positive direction of the axis, does it reach a turning point 
(if so, what is the x coordinate of that point) or does it escape 
from the plotted region (if so, what is its speed at x = 6.0 cm)? 
What are the ( c) magnitude F and (d) direction (positive or neg­
ative direction of the x axis) of the electric force on the proton 
if the proton moves just to the left of x = 3.0 cm? What are (e) F 
and (f) the direction if the proton moves just to the right of x = 

5.0 cm? 

o 2 345 6 7 

Fig. 24-54 Problem 58. 

In Fig. 24-55, a charged particle (either an electron or a 
proton) is moving rightward between two parallel charged plates 
separated by distance d = 2.00 mm. The plate potentials are VI = 

-70.0 V and V2 = - 50.0 V. The particle is slowing from an initial 



speed of 90.0 kmls at the left plate. (a) Is 
the particle an electron or a proton? (b) 
What is its speed just as it reaches plate 2? 

~I' --d-------I·I 

In Fig. 24-56a, we move an electron ~--- ~ from an infinite distance to a point at dis­
tance R = 8.00 cm from a tiny charged Vj 
ball. The move requires work W = 2.16 X 
10-13 J by us. (a) What is the charge Q on 
the ball? In Fig. 24-56b, the ball has been 

Fig. 24-55 

Problem 59. 

sliced up and the slices spread out so that an equal amount of 
charge is at the hour positions on a circular clock face of radius 
R = 8.00 cm. Now the electron is brought from an infinite distance 
to the center of the circle. (b) With that addition of the electron to 
the system of 12 charged particles, what is the change in the electric 
potential energy of the system? 

Q 

(a) (b) 

Fig. 24-56 Problem 60. 

Suppose N electrons can be placed in either of two 
configurations. In configuration 1, they are all placed on the cir­
cumference of a narrow ring of radius R and are uniformly distrib­
uted so that the distance between adjacent electrons is the same 
everywhere. In configuration 2, N - 1 electrons are uniformly dis­
tributed on the ring and one electron is placed in the center of the 
ring. (a) What is the smallest value of N for which the second con­
figuration is less energetic than the first? (b) For that value of N, 
consider anyone circumference electron-call it eo. How many 
other circumference electrons are closer to eo than the central 
electron is? 

Potential of a Charged Isolated Conductor 
Sphere 1 with radius R j has positive charge q. Sphere 2 with 

radius 2.00R j is far from sphere 1 and initially uncharged. After the 
separated spheres are connected with a wire thin enough to retain 
only negligible charge, (a) is potential VI of sphere 1 greater than, 
less than, or equal to potential Vz of sphere 2? What fraction of q 
ends up on (b) sphere 1 and (c) sphere 2? (d) What is the ratio 
uj/uz of the surface charge densities of the spheres? 

SSM WWW Two metal spheres, each of radius 3.0 cm, have 
a center-to-center separation of 2.0 m. Sphere 1 has charge + 1.0 X 
10-8 C; sphere 2 has charge -3.0 X 10-8 C. Assume that the sepa­
ration is large enough for us to say that the charge on each sphere 
is uniformly distributed (the spheres do not affect each other). 
With V = 0 at infinity, calculate (a) the potential at the point 
halfway between the centers and the potential on the surface of (b) 
sphere 1 and (c) sphere 2. 

A hollow metal sphere has a potential of +400 V with respect 
to ground (defined to be at V = 0) and a charge of 5.0 X 10-9 C. 
Find the electric potential at the center of the sphere. 
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SSM What is the excess charge on a conducting sphere of 
radius r = 0.15 m if the potential of the sphere is 1500 V and V = 0 
at infinity? 

Tho isolated, concentric, conducting spherical shells have 
radii R j = 0.500 m and Rz = 1.00 m, uniform charges ql = +2.00 
pC and qz = + 1.00 /-LC, and negligible thicknesses. What is the 
magnitude of the electric field E at radial distance (a) r = 4.00 m, 
(b) r = 0.700 m, and (c) r = 0.200 m? With V = 0 at infinity, what is 
Vat (d) r = 4.00 m, (e) r = 1.00 m, (f) r = 0.700 m, (g) r = 0.500 m, 
(h) r = 0.200 m, and (i) r = O? (j) Sketch E(r) and V(r). 

A metal sphere of radius 15 cm has a net charge of 3.0 X 
10-8 C. (a) What is the electric field at the sphere's surface? (b) If 
V = 0 at infinity, what is the electric potential at the sphere's sur­
face? (c) At what distance from the sphere's surface has the elec­
tric potential decreased by 500 V? 

Additional Problems 
Here are the charges and coordinates of two point charges 

located in an xy plane: qj = +3.00 X 10-6 C, X = +3.50 cm, 
y = +0.500 cm and qz = -4.00 X 10-6 C, X = -2.00 cm, y = + 1.50 
cm. How much work must be done to locate these charges at their 
given positions, starting from infinite separation? 

SSM A long, solid, conducting cylinder has a radius of 2.0 cm. 
The electric field at the surface of the cylinder is 160 N/C, directed radi­
ally outward. Let A, B, and C be points that are 1.0 cm, 2.0 cm, and 5.0 
cm, respectively, from the central axis of the cylinder. What are (a) the 
magnitude of the electric field at C and the electric potential differ­
ences (b) VB - Vcand (c) VA - VB? 

The chocolate crumb mystery. This story begins with 
Problem 60 in Chapter 23. (a) From the answer to part (a) of that 
problem, find an expression for the electric potential as a function 
of the radial distance r from the center of the pipe. (The electric 
potential is zero on the grounded pipe wall.) (b) For the typical 
volume charge density p = -1.1 X 10-3 C/m3, what is the differ­
ence in the electric potential between the pipe's center and its in­
side wall? (The story continues with Problem 60 in Chapter 25.) 

SSM Starting from Eq. 24-30, derive an expression for the elec­
tric field due to a dipole at a point on the dipole axis. 

The magnitude E of an electric field depends on the radial dis­
tance r according to E = Alr4, where A is a constant with the unit 
volt-cubic meter. As a mUltiple of A, what is the magnitude of the 
electric potential difference between r = 2.00 m and r = 3.00 m? 

(a) If an isolated conducting sphere 10 cm in radius has a net 
charge of 4.0 /-LC and if V = 0 at infinity, what is the potential on 
the surface of the sphere? (b) Can this situation actually occur, 
given that the air around the sphere undergoes electrical break­
down when the field exceeds 3.0 MV/m? 

Three particles, charge q1 = + 10 /-LC, 
qz = -20 /-LC, and q3 = +30/-LC, are posi­
tioned at the vertices of an isosceles 
triangle as shown in Fig. 24-57. If a = 10 cm 
and b = 6.0 cm, how much work must an 
external agent do to exchange the positions 
of (a) ql and q3 and, instead, (b) q1 and qz? 

q2 
An electric field of approximately 100 

Vim is often observed near the surface of 
Earth. If this were the field over the entire 

Fig. 24-57 

Problem 74. 
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surface, what would be the electric potential of a point on the sur­
face? (Set V = 0 at infinity.) 

A Gaussian sphere of radius 4.00 cm is centered on a ball that 
has a radius of 1.00 cm and a uniform charge distribution. The total 
(net) electric flux through the surface of the Gaussian sphere is 
+5.60 X 104 N· m2/C. What is the electric potential 12.0 cm from 
the center of the ball? 

In a Millikan oil-drop experiment (Section 22-8), a uniform 
electric field of 1.92 X 105 N/C is maintained in the region between 
two plates separated by 1.50 cm. Find the potential difference be­
tween the plates. 

Figure 24-58 shows three circular, nonconducting arcs of ra­
dius R = 8.50 cm. The charges on the arcs are ql = 4.52 pC, q2 = 
-2.00qj, q3 = +3.00ql' With V = 0 at infinity, what is the net elec­
tric potential of the arcs at the common center of curvature? 

y 

Fig. 24-58 Problem 78. 

An electron is released from rest on the axis of an electric di­
pole that has charge e and charge separation d = 20 pm and that is 
fixed in place. The release point is on the positive side of the dipole, 
at distance 7.0d from the dipole center. What is the electron's 
speed when it reaches a point 5.0d from the dipole center? 

Figure 24-59 shows a ring of outer radius R = 13.0 cm, inner 
radius r = 0.200R, and uniform surface charge density if = 6.20 
pC/m2. With V = 0 at infinity, find the electric potential at point P 
on the central axis of the ring, at distance z = 2.00R from the cen­
ter of the ring. 

(J 

Fig. 24-59 Problem 80. 

Electron in a well. Figure 24-60 shows electric potential V along 
an x axis. The scale of the vertical axis is set by Vs = 8.0 V. An elec­
tron is to be released at x = 4.5 cm with initial kinetic energy 3.00 e V. 
(a) If it is initially moving in the negative direction of the axis, does it 
reach a turning point (if so, what is the x coordinate of that point) 
or does it escape from the plotted region (if so, what is its speed at 
x = O)? (b) If it is initially moving in the positive direction of the 
axis, does it reach a turning point (if so, what is the x coordinate of 

that point) or does it escape from the plotted region (if so, what is 
its speed at x = 7.0 cm)? What are the (c) magnitude F and (d) di­
rection (positive or negative direction of the x axis) of the electric 
force on the electron if the electron moves just to the left of x = 4.0 
cm? What are (e) F and (f) the direction if it moves just to the right 
ofx = 5.0 cm? 

o 2 345 6 7 

Fig. 24-60 Problem 81. 

(a) If Earth had a uniform surface charge density of 1.0 
electron/m2 (a very artificial assumption), what would its poten­
tial be? (Set V = 0 at infinity.) What would be the (b) magnitude 
and (c) direction (radially inward or outward) of the electric field 
due to Earth just outside its surface? 

In Fig. 24-61, point P is at dis­
tance dl = 4.00 m from particle 1 ql 

(ql = -2e) and distance d2 = 2.00 m 
from particle 2 (q2 = +2e), with both 
particles fixed in place. (a) With V = 0 

----~p 
I 
I 

: d2 

I 

Q q2 

at infinity, what is Vat P? If we bring a Fig. 24-61 Problem 83. 
particle of charge q3 = +2e from in-
finity to P, (b) how much work do we do and (c) what is the poten­
tial energy of the three-particle sytem? 

A solid conducting sphere of radius 3.0 cm has a charge of 30 
nC distributed uniformly over its surface. Let A be a point 1.0 cm 
from the center of the sphere, S be a point on the surface of the 
sphere, and B be a point 5.0 cm from the center of the sphere. What 
are the electric potential differences (a) Vs - VB and (b) VA - VB? 

In Fig. 24-62, we move a particle of charge + 2e in from infinity to 
the x axis. How much work do we do? Distance D is 4.00 m. 

00 

I 
I 

~+2e 
I 

t 
+2e +e I 

--0 0)----'--1 --x 

r---D ~r---D-j 

Fig. 24-62 Problem 85. 

Figure 24-63 shows a hemi­
sphere with a charge of 4.00 j.LC dis­
tributed uniformly through its vol­
ume. The hemisphere lies on an xy 

plane the way half a grapefruit Fig. 24-63 Problem 86. 
might lie face down on a kitchen 
table. Point P is located on the plane, along a radial line from the 
hemisphere'S center of curvature, at radial distance 15 cm. What is 
the electric potential at point P due to the hemisphere? 

SSM Three +0.12 C charges form an equilateral triangle 1.7 
m on a side. Using energy supplied at the rate of 0.83 kW, how 
many days would be required to move one of the charges to the 
midpoint of the line joining the other two charges? 



Two charges q = +2.0 f.LC are 
fixed a distance d = 2.0 cm apart 
(Fig. 24-64). (a) With V = 0 at infin-

c 

d/2 

d/2~~ 
q 

ity, what is the electric potential at 
point C? (b) You bring a third 
charge q = +2.0 f.LC from infinity to q 
C. How much work must you do? 
(c) What is the potential energy U of Fig. 24-64 Problem 88. 

the three-charge configuration when the third charge is in place? 

Initially two electrons are fixed in place with a separation of 
2.00 f.Lm. How much work must we do to bring a third electron in 
from infinity to complete an equilateral triangle? 

90 A particle of positive charge Q is fixed at point P. A second 
particle of mass m and negative charge -q moves at constant 
speed in a circle of radius 1'10 centered at P. Derive an expression 
for the work W that must be done by an external agent on the sec­
ond particle to increase the radius of the circle of motion to 1'2' 

Two charged, parallel, flat conducting surfaces are spaced d = 
1.00 cm apart and produce a potential difference Ll V = 625 V be­
tween them. An electron is projected from one surface directly to­
ward the second. What is the initial speed of the electron if it stops 
just at the second surface? 

+ql -q2 -q3 
In Fig. 24-65, point P is at the r----

I 

d~------dt 

center of the rectangle. With V = 0 I 
at infinity, ql = 5.00 fC, q2 = 2.00 I p I 

fC, q3 = 3.00 fC, and d = 2.54 cm, 'L · --1' 
what is the net electric potential at d~ ______ d 
P due to the six charged particles? +q3 

SSM A uniform charge of Fig.24-65 Problem 92. 
+ 16.0 f.LC is on a thin circular ring 
lying in an xy plane and centered on the origin. The ring's radius is 
3.00 cm. If point A is at the origin and point B is on the z axis at 
z = 4.00 cm, what is VB VA? 

Consider a point charge q = 1.50 X 10-8 C, and take V = 0 at 
infinity. (a) What are the shape and dimensions of an equipotential 
surface having a potential of 30.0 V due to q alone? (b) Are sur­
faces whose potentials differ by a constant amount (1.0 V, say) 
evenly spaced? 

SSM A thick spherical shell of charge Q and uniform volume 
charge density p is bounded by radii rl and 1'2 > 1'1' With V = 0 at in­
finity, find the electric potential Vas a function of distance I' from 
the center of the distribution, considering regions (a) I' > 1'2, (b) 
1'2> I' > 1'10 and (c) I' < 1'1' (d) Do these solutions agree with each 
other at r = 1'2 and I' = 1'1? (Hint: See Section 23-9.) 

A charge q is distributed uniformly throughout a spherical 
volume of radius R. Let V = 0 at infinity. What are (a) Vat radial 
distance I' < Rand (b) the potential difference between points at 
I' = R and the point at I' = O? 

Figure 24-35 shows two charged particles on an axis. Sketch 
the electric field lines and the equipotential surfaces in the plane of 
the page for (a) ql = +q, q2 = +2q and (b) ql = +q, q2 = -3q. 

What is the electric potential energy of the charge configura-
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tion of Fig. 24-8a? Use the numerical values provided in the associ­
ated sample problem. 

(a) Using Eq. 24-32, show that the electric potential at a point 
on the central axis of a thin ring (of charge q and radius R) and at 
distance z from the ring is 

1 
V= 

47TBO 

(b) From this result, derive an expression for the electric field mag­
nitude E at points on the ring's axis; compare your result with the 
calculation of E in Section 22-6. 

An alpha particle (which has two protons) is sent directly to­
ward a target nucleus containing 92 protons. The alpha particle has 
an initial kinetic energy of 0.48 pI What is the least center-to-cen­
ter distance the alpha particle will be from the target nucleus, as­
suming the nucleus does not move? 

In the quark model of fundamental particles, a proton is 
composed of three quarks: two "up" quarks, each having charge 
+2eI3, and one "down" quark, having charge -eI3. Suppose that 
the three quarks are equidistant from one another. Take that sepa­
ration distance to be 1.32 X 10-15 m and calculate the electric po­
tential energy of the system of (a) only the two up quarks and (b) 
all three quarks. 

(a) A proton of kinetic energy 4.80 MeV travels head-on to­
ward a lead nucleus. Assuming that the proton does not penetrate the 
nucleus and that the only force between proton and nucleus is the 
Coulomb force, calculate the smallest center-to-center separation dp 

between proton and nucleus when the proton momentarily stops. If 
the proton were replaced with an alpha particle (which contains two 
protons) of the same initial kinetic energy, the alpha particle would 
stop at center-to-center separation dQ • (b) What is daldp? 

In Fig. 24-66, two particles of 1 2 P 

charges ql and q2 are fixed to an x --0-----0 • x 
axis. If a third particle, of charge r- d-+-1.5d-1 

+6.0 f.LC, is brought from an infi- Fig.24-66 Problem 103. 
nite distance to point P, the three-
particle system has the same electric potential energy as the origi­
nal two-particle system. What is the charge ratio q/q2? 

A charge of 1.50 X 10-8 C lies on an isolated metal sphere of 
radius 16.0 cm. With V = 0 at infinity, what is the electric potential 
at points on the sphere's surface? 

SSM A solid copper sphere whose radius is 1.0 cm has a 
very thin surface coating of nickel. Some of the nickel atoms are 
radioactive, each atom emitting an electron as it decays. Half of 
these electrons enter the copper sphere, each depositing 100 ke V 
of energy there. The other half of the electrons escape, each carry­
ing away a charge -e. The nickel coating has an activity of 3.70 X 
108 radioactive decays per second. The sphere is hung from a long, 
nonconducting string and isolated from its surroundings. (a) How 
long will it take for the potential of the sphere to increase by 1000 
V? (b) How long will it take for the temperature of the sphere to 
increase by 5.0 K due to the energy deposited by the electrons? 
The heat capacity of the sphere is 14 11K. 
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One goal of physics is to provide the basic science for practical devices 
de1ngl1ed by engineers. The focus of this chapter is on one extremely common 
example-the capacitor, a device in which electrical energy can be stored. For ex­
ample, the batteries in a camera store energy in the photoflash unit by charging a 
capacitor. The batteries can supply energy at only a modest rate, too slowly for 
the photoflash unit to emit a flash of light. However, once the capacitor is 
charged, it can supply energy at a much greater rate when the photoflash unit is 
triggered-enough energy to allow the unit to emit a burst of bright light. 

The physics of capacitors can be generalized to other devices and to any situ­
ation involving electric fields. For example, Earth's atmospheric electric field is 
modeled by meteorologists as being produced by a huge spherical capacitor that 
partially discharges via lightning. The charge that skis collect as they slide along 
snow can be modeled as being stored in a capacitor that frequently discharges as 
sparks (which can be seen by nighttime skiers on dry snow). 

The first step in our discussion of capacitors is to determine how much 
charge can be stored. This "how much" is called capacitance. 

Capacitance 
Figure 25-1 shows some of the many sizes and shapes of capacitors. Figure 25-2 
shows the basic elements of any capacitor-two isolated conductors of any 

Fig. 25-1 An assortment of capacitors. 

Fig. 25-2 Two conductors, isolated 
electrically from each other and from 
their surroundings, form a capacitO/: 
When the capacitor is charged, the 
charges on the conductors, or plates as 
they are called, have the same magni­
tude q but opposite signs. 
(Paul SilvermannlFundamental 
Photographs) 



(a) 

plate has 
charge -q 

Electric field lines 

(b) 

Fig.25-3 (a) A parallel-plate capacitor, made up of two plates of area A separated by 
a distance d. The charges on the facing plate surfaces have the same magnitude q but 
opposite signs. (b) As the field lines show, the electric field due to the charged plates is 
uniform in the central region between the plates. The field is not uniform at the edges of 
the plates, as indicated by the "fringing" of the field lines there. 

shape. No matter what their geometry, flat or not, we call these conductors 
plates. 

Figure 25-3a shows a less general but more conventional arrangement, called 
a parallel-plate capacitor, consisting of two parallel conducting plates of area 
A separated by a distance d. The symbol we use to represent a capacitor (-II-) is 
based on the structure of a parallel-plate capacitor but is used for capacitors of all 
geometries. We assume for the time being that no material medium (such as glass 
or plastic) is present in the region between the plates. In Section 25-6, we shall 
remove this restriction. 

When a capacitor is charged, its plates have charges of equal magnitudes but 
opposite signs: +q and -q. However, we refer to the charge of a capacitor as 
being q, the absolute value of these charges on the plates. (Note that q is not the 
net charge on the capacitor, which is zero.) 

Because the plates are conductors, they are equipotential surfaces; all points on a 
plate are at the same electric potential. Moreover, there is a potential difference be­
tween the two plates. For historical reasons, we represent the absolute value of this 
potential difference with V rather than with the Ll V we used in previous notation. 

The charge q and the potential difference V for a capacitor are proportional 
to each other; that is, 

q= CV. (25-1) 

The proportionality constant C is called the capacitance of the capacitor. Its 
value depends only on the geometry of the plates and not on their charge or 
potential difference. The capacitance is a measure of how much charge must be 
put on the plates to produce a certain potential difference between them: The 
greater the capacitance, the more charge is required. 

The SI unit of capacitance that follows from Eq. 25-1 is the coulomb per volt. 
This unit occurs so often that it is given a special name, the farad (F): 

1 farad = 1 F = 1 coulomb per volt = 1 e/v. (25-2) 

As you will see, the farad is a very large unit. Submultiples of the farad, such as 
the microfarad (1,uF = 10-6 F) and the picofarad (1 pF = 10-12 F), are more 
convenient units in practice. 

One way to charge a capacitor is to place it in an electric circuit with a battery. 
An electric circuit is a path through which charge can flow. A battery is a device 

·2 CAPACITANCE 657 
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s 
(a) 

Termin~ :J.~ 

"* t . Termin~ 
(b) 

Fig.25-4 (0) Battery B, switch S, and plates h and I of capacitor C, connected in a cir­
cuit. (b) A schematic diagram with the circuit elements represented by their symbols. 

that maintains a certain potential difference between its terminals (points at 
which charge can enter or leave the battery) by means of internal electrochemi­
cal reactions in which electric forces can move internal charge. 

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter­
connecting wires form a circuit. The same circuit is shown in the schematic dia­
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor 
represent those devices. The battery maintains potential difference V between its 
terminals. The terminal of higher potential is labeled + and is often called the 
positive terminal; the terminal of lower potential is labeled - and is often called 
the negative terminal. 

The circuit shown in Figs. 25-4a and b is said to be incomplete because 
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, the 
circuit is complete and charge can then flow through the switch and the wires. 
As we discussed in Chapter 21, the charge that can flow through a conductor, 
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed, 
electrons are driven through the wires by an electric field that the battery sets 
up in the wires. The field drives electrons from capacitor plate h to the positive 
terminal of the battery; thus, plate h, losing electrons, becomes positively 
charged. The field drives just as many electrons from the negative terminal of 
the battery to capacitor plate I; thus, plate I, gaining electrons, becomes nega­
tively charged just as much as plate h, losing electrons, becomes positively 
charged. 

Initially, when the plates are uncharged, the potential difference between 
them is zero. As the plates become oppositely charged, that potential differ­
ence increases until it equals the potential difference V between the terminals 
of the battery. Then plate h and the positive terminal of the battery are at the 
same potential, and there is no longer an electric field in the wire between 
them. Similarly, plate I and the negative terminal reach the same potential, 
and there is then no electric field in the wire between them. Thus, with the 
field zero, there is no further drive of electrons. The capacitor is then said to 
be fully charged, with a potential difference V and charge q that are related 
by Eq. 25-1. 

In this book we assume that during the charging of a capacitor and after­
ward, charge cannot pass from one plate to the other across the gap separating 
them. Also, we assume that a capacitor can retain (or store) charge indefinitely, 
until it is put into a circuit where it can be discharged. 

CHECKPOINT 1 

Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when 
the charge q on it is doubled and (b) when the potential difference V across it is 
tripled? 
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Calculating the Capacitance 
Our goal here is to calculate the capacitance of a capacitor once we know its 
geometry. Because we shall consider a number of different geometries, it seems 
wise to develop a general plan to simplify the work. In brief our plan is as follows: 
(1) Assume a charge q on the plates; (2) calculate the electric field E between 
the plates in terms of this charge, using Gauss' law; (3) knowing E, calculate the 
potential difference V between the plates from Eq. 24-18; (4) calculate C from 
Eq.25-1. 

Before we start, we can simplify the calculation of both the electric field and 
the potential difference by making certain assumptions. We discuss each in turn. 

To relate the electric field E between the plates of a capacitor to the charge q on 
either plate, we shall use Gauss' law: 

1 --> --> Bar E·dA = q. (25-3) 

Here q is the charge enclosed by a Gaussian surface and p E· dA is the net 
electric flux through that surface. In all cases that we shall consider, the Gaussian 
surface will be such that whenever there is an electric flux through it, E will have 
a uniform magnitude E and the vectors E and dA will be parallel. Equation 25-3 
then reduces to 

q = BoEA (special case of Eq. 25-3), (25-4) 

in which A is the area of that part of the Gaussian surface through which there is a 
flux. For convenience, we shall always draw the Gaussian surface in such a way that 
it completely encloses the charge on the positive plate; see Fig. 25-5 for an example. 

In the notation of Chapter 24 (Eq. 24-18), the potential 
the plates of a capacitor is related to the field E by 

]
f --> 

Vf - Vi = - i E· ds, 

difference between 

(25-5) 

in which the integral is to be evaluated along any path that starts on one plate 
and ends on the other. We shall always choose a path that follows an electric 
field line, from the negative plate to the positive plate. For this path, the vectors 
E and ds will have opposite directions; so the dot product E· ds will be equal 
to - E ds. Thus, the right side of Eq. 25-5 will then be positive. Letting V represent 
the difference Vr - Vi, we can then recast Eq. 25-5 as 

V = L+ E ds (special case ofEq. 25-5), (25-6) 

in which the - and + remind us that our path of integration starts on the nega­
tive plate and ends on the positive plate. 

We are now ready to apply Eqs. 25-4 and 25-6 to some particular cases. 

We assume, as Fig. 25-5 suggests, that the plates of our parallel-plate capacitor are 
so large and so close together that we can neglect the fringing of the electric field 

We use Gauss' law to relate 
q and E. Then we integrate the 
E to get the potential difference. 

I 

/i':: L - :~ - - o- j- }" 
Gaussian 

-q 

integration 

Fig. 25-5 A charged parallel-plate ca­
pacitor. A Gaussian surface encloses the 
charge on the positive plate. The integra­
tion of Eq. 25-6 is taken along a path ex­
tending directly from the negative plate to 
the positive plate. 
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Total charge -q 

surface 
integration 

Fig. 25-6 A cross section of a long cylin­
drical capacitor, showing a cylindrical 
Gaussian surface of radius r (that encloses 
the positive plate) and the radial path of in­
tegration along which Eq. 25-6 is to be ap­
plied. This figure also serves to illustrate a 
spherical capacitor in a cross section 
through its center. 

at the edges of the plates, taking If to be constant throughout the region between 
the plates. 

We draw a Gaussian surface that encloses just the charge q on the positive 
plate, as in Fig. 25-5. From Eq. 25-4 we can then write 

q = soEA, (25-7) 

where A is the area of the plate. 
Equation 25-6 yields 

V = L+ E ds = E f ds = Ed. (25-8) 

In Eq. 25-8, E can be placed outside the integral because it is a constant; the sec­
ond integral then is simply the plate separation d. 

If we now substitute q from Eq. 25-7 and V from Eq. 25-8 into the relation 
q = CV (Eq. 25-1), we find 

C = soA 
d 

(parallel-plate capacitor). (25-9) 

Thus, the capacitance does indeed depend only on geometrical factors-namely, 
the plate area A and the plate separation d. Note that C increases as we increase 
area A or decrease separation d. 

As an aside, we point out that Eq. 25-9 suggests one of our reasons for writing 
the electrostatic constant in Coulomb's law in the form 1I47Tso. If we had not 
done so, Eq. 25-9-which is used more often in engineering practice than 
Coulomb's law-would have been less simple in form. We note further that 
Eq. 25-9 permits us to express the permittivity constant So in a unit more appro­
priate for use in problems involving capacitors; namely, 

So = 8.85 X 10-12 F/m = 8.85 pF/m. (25-10) 

We have previously expressed this constant as 

So = 8.85 X 10-12 C2/N . m2• (25-11) 

A 
Figure 25-6 shows, in cross section, a cylindrical capacitor of length L formed by 
two coaxial cylinders of radii a and b. We assume that L ?> b so that we can 
neglect the fringing of the electric field that occurs at the ends of the cylinders. 
Each plate contains a charge of magnitude q. 

As a Gaussian surface, we choose a cylinder of length L and radius r, closed 
by end caps and placed as is shown in Fig. 25-6. It is coaxial with the cylinders and 
encloses the central cylinder and thus also the charge q on that cylinder. Equation 
25-4 then relates that charge and the field magnitude E as 

q = soEA = soE(2m'L), 

in which 2mL is the area of the curved part of the Gaussian surface. There is 
no flux through the end caps. Solving for E yields 

E=--,,-q-
27TsoLr 

Substitution of this result into Eq. 25-6 yields 

V = f-+ E ds = q fa dr - In(~) 
27TSoL b -,-. - 27TSoL a' 

(25-12) 

(25-13) 

where we have used the fact that here ds = -dr (we integrated radially inward). 
From the relation C = qlV, we then have 
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L 
C = 21TSo In(bla) (cylindrical capacitor). (25-14) 

We see that the capacitance of a cylindrical capacitor, like that of a parallel-plate 
capacitor, depends only on geometrical factors, in this case the length L and the 
two radii band a. 

Figure 25-6 can also serve as a central cross section of a capacitor that consists of 
two concentric spherical shells, of radii a and b. As a Gaussian surface we draw a 
sphere of radius r concentric with the two shells; then Eq. 25-4 yields 

q = soEA = soE( 41Tr2), 

in which 41TT2 is the area of the spherical Gaussian surface. We solve this equation 
for E, obtaining 

1 q 
E=---

41TSo r2 ' 
(25-15) 

which we recognize as the expression for the electric field due to a uniform spher­
ical charge distribution (Eq. 23-15). 

If we substitute this expression into Eq. 25-6, we find 

f + q (a dr q (1 1 ) q b - a 
V = _ E ds = - 41TBO Jb ~ = 41TSo -;; - b = 41TSo -;;;;-' (25-16) 

where again we have substituted -dr for ds. If we now substitute Eq. 25-16 into 
Eq. 25-1 and solve for C, we find 

ab 
C = 41TSo -b-­

-a 
(spherical capacitor). (25-17) 

We can assign a capacitance to a single isolated spherical conductor of radius R 
by assuming that the "missing plate" is a conducting sphere of infinite radius. 
After all, the field lines that leave the surface of a positively charged isolated 
conductor must end somewhere; the walls of the room in which the conductor is 
housed can serve effectively as our sphere of infinite radius. 

To find the capacitance of the conductor, we first rewrite Eq. 25-17 as 

a 
C = 41TSo 1 - alb 

If we then let b ~ 00 and substitute R for a, we find 

C = 41TSoR (isolated sphere). (25-18) 

Note that this formula and the others we have derived for capacitance (Eqs. 25-9, 
25-14, and 25-17) involve the constant BO multiplied by a quantity that has the 
dimensions of a length. 

"'CHECKPOINT 2 

For capacitors charged by the same battery, does the charge stored by the capacitor 
increase, decrease, or remain the same in each of the following situations? (a) The 
plate separation of a parallel-plate capacitor is increased. (b) The radius of the inner 
cylinder of a cylindrical capacitor is increased. (c) The radius of the outer spherical 
shell of a spherical capacitor is increased. 
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Charging the plates in a parallel-plate capacitor 

In Fig. 25-7a, switch S is closed to connect the uncharged ca­
pacitor of capacitance C = 0.25 fLF to the battery of potential 
difference V = 12 V. The lower capacitor plate has thickness 
L = 0.50 cm and face area A = 2.0 X 10-4 m2, and it consists 
of copper, in which the density of conduction electrons is n = 

8.49 X 1028 electrons/m3• From what depth d within the plate 
(Fig. 25-7b) must electrons move to the plate face as the ca­
pacitor becomes charged? 

magnitude that collects there is 

q = CV = (0.25 X 10-6 F)(12 V) 

= 3.0 X 10-6 C. 

Dividing this result by e gives us the number N of conduc­
tion electrons that come up to the face: 

q 3.0 X 10-6 C 
N = --;- = 1.602 X 10-19 C 

= 1.873 X 1013 electrons. 

The charge collected on the plate is related to the capaci­
tance and the potential difference across the capacitor by 
Eq.25-1 (q = CV). 

These electrons come from a volume that is the product of the 
face area A and the depth d we seek. Thus, from the density of 
conduction electrons (number per volume), we can write 

Calculations: Because the lower plate is connected to the 
negative terminal of the battery, conduction electrons move 
up to the face of the plate. From Eq. 25-1, the total charge 

or 

N 
n = Ad' 

N 1.873 X 1013 electrons 
d = - = ----,------,::------,:-::---------:--

An (2.0 X 10-4 m2) (8.49 X 1028 electrons/m3) 

= 1.1 X 1O-12 m = 1.1 pm. (Answer) 

(a) (b) 

Fig. 25-7 (a) A battery and capacitor circuit. (b) The 
lower capacitor plate. 

In common speech, we would say that the battery charges 
the capacitor by supplying the charged particles. But what 
the battery really does is set up an electric field in the wires 
and plate such that electrons very close to the plate face 
move up to the negative face. 

c~rus Additional examples, video, and practice available at WileyPLUS 

Capacitors in Parallel and in Series 
When there is a combination of capacitors in a circuit, we can sometimes replace 
that combination with an equivalent capacitor- that is, a single capacitor that 
has the same capacitance as the actual combination of capacitors. With such a 
replacement, we can simplify the circuit, affording easier solutions for unknown 
quantities of the circuit. Here we discuss two basic combinations of capacitors 
that allow such a replacement. 

Figure 25-8a shows an electric circuit in which three capacitors are connected in 
parallel to battery B. This description has little to do with how the capacitor plates 
are drawn. Rather, "in parallel" means that the capacitors are directly wired 
together at one plate and directly wired together at the other plate, and that the 
same potential difference V is applied across the two groups of wired-together 
plates. Thus, each capacitor has the same potential difference V, which produces 
charge on the capacitor. (In Fig. 25-8a, the applied potential V is maintained by 
the battery.) In general, 
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When a potential difference V is applied across several capacitors connected in 
parallel, that potential difference V is applied across each capacitor. The total charge 
q stored on the capacitors is the sum of the charges stored on all the capacitors. 

When we analyze a circuit of capacitors in parallel, we can simplify it with 
this mental replacement: 

Capacitors connected in parallel can be replaced with an equivalent capacitor that 
has the same total charge q and the same potential difference Vas the actual 
capacitors. 

(You might remember this result with the nonsense word "par-V," which is close 
to "party," to mean "capacitors in parallel have the same V.") Figure 25-8b shows 
the equivalent capacitor (with equivalent capacitance Ceq) that has replaced the 
three capacitors (with actual capacitances Cj, C2, and C3) of Fig. 25-8a. 

To derive an expression for Ceq in Fig. 25-8b, we first use Eq. 25-1 to find the 
charge on each actual capacitor: 

ql = ClV, q2 = C2V, and q3 = C3V. 

The total charge on the parallel combination of Fig. 25-8a is then 

q = ql + q2 + q3 = (C1 + C2 + C3) V. 

The equivalent capacitance, with the same total charge q and applied potential 
difference Vas the combination, is then 

a result that we can easily extend to any number n of capacitors, as 

11 

Ceq = 2: Cj 
j=l 

(11 capacitors in parallel). (25-19) 

Thus, to find the equivalent capacitance of a parallel combination, we simply add 
the individual capacitances. 

Figure 2S-9a shows three capacitors connected in series to battery B. This description 
has little to do with how the capacitors are drawn. Rather, "in series" means that the 
capacitors are wired serially, one after the other, and that a potential difference V is 
applied across the two ends of the series. (In Fig. 25-9a, this potential difference V is 
maintained by battery B.) The potential differences that then exist across the capaci­
tors in the series produce identical charges q on them. 

When a potential difference V is applied across several capacitors connected in 
series, the capacitors have identical charge q. The sum of the potential differences 
across all the capacitors is equal to the applied potential difference V. 

We can explain how the capacitors end up with identical charge by following 
a chain reaction of events, in which the charging of each capacitor causes the 
charging of the next capacitor. We start with capacitor 3 and work upward to 
capacitor 1. When the battery is first connected to the series of capacitors, it 

Parallel capacitors and 
their equivalent have 
the same V ("par-V"). 

Fig. 25-8 (a) Three capacitors connected 
in parallel to battery B. The battery main­
tains potential difference V across its termi­
nals and thus across each capacitor. (b) The 
equivalent capacitor, with capacitance Ceq, 
replaces the parallel combination. 
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Terminal 

+ 
B V 

Terminal 

(a) 

(b) 

Series capacitors and 
their equivalent have 
the same q ("seri-q"). 

Fig. 25-9 (a) Three capacitors con­
nected in series to battery B. The battery 
maintains potential difference V between 
the top and bottom plates of the series 
combination. (b) The equivalent capacitor, 
with capacitance Ceq, replaces the series 
combination. 

CHECKPOINT 3 

A battery of potential V stores charge q 
on a combination of two identical ca­
pacitors. What are the potential differ­
ence across and the charge on either ca­
pacitor if the capacitors are (a) in 
parallel and (b) in series? 

produces charge -q on the bottom plate of capacitor 3. That charge then repels 
negative charge from the top plate of capacitor 3 (leaving it with charge +q). The 
repelled negative charge moves to the bottom plate of capacitor 2 (giving it 
charge -q). That charge on the bottom plate of capacitor 2 then repels negative 
charge from the top plate of capacitor 2 (leaving it with charge +q) to the bottom 
plate of capacitor 1 (giving it charge -q). Finally, the charge on the bottom plate 
of capacitor 1 helps move negative charge from the top plate of capacitor 1 to the 
battery, leaving that top plate with charge +q. 

Here are two important points about capacitors in series: 

1. When charge is shifted from one capacitor to another in a series of capacitors, 
it can move along only one route, such as from capacitor 3 to capacitor 2 in 
Fig. 25-9a. If there are additional routes, the capacitors are not in series. 

2. The battery directly produces charges on only the two plates to which it is 
connected (the bottom plate of capacitor 3 and the top plate of capacitor 1 in 
Fig. 25-9a). Charges that are produced on the other plates are due merely to 
the shifting of charge already there. For example, in Fig. 25-9a, the part of the 
circuit enclosed by dashed lines is electrically isolated from the rest of the 
circuit. Thus, the net charge of that part cannot be changed by the battery­
its charge can only be redistributed. 

When we analyze a circuit of capacitors in series, we can simplify it with this 
mental replacement: 

Capacitors that are connected in series can be replaced with an equivalent capacitor that 
has the same charge q and the same total potential difference Vas the actual series capacitors. 

(You might remember this with the nonsense word "seri-q" to mean "capacitors 
in series have the same q.") Figure 25-9b shows the equivalent capacitor (with 
equivalent capacitance Ceq) that has replaced the three actual capacitors 
(with actual capacitances Cl , C2, and C3) of Fig. 25-9a. 

To derive an expression for Ceq in Fig. 25-9b, we first use Eq. 25-1 to find the 
potential difference of each actual capacitor: 

q 
V1 = C;' 

The total potential difference V due to the battery is the sum of these three 
potential differences. Thus, 

( 
1 1 1 ) 

V=V1+~+V3=q C;+C;+"C;' 

The equivalent capacitance is then 

q 1 
Ceq = V = lIC

l 
+ lIC

2 
+ 1/C

3 
' 

1 1 1 1 
or -=-+-+-. 

Ceq Cl C2 C3 

We can easily extend this to any number n of capacitors as 

(n capacitors in series). (25-20) 

Using Eq. 25-20 you can show that the equivalent capacitance of a series of 
capacitances is always less than the least capacitance in the series. 



CAPACITORS IN PARALLEL AND IN SERIES 665 

Capacitors in parallel and in series 

(a) Find the equivalent capacitance for the combination of 
capacitances shown in Fig. 25-10a, across which potential 
difference V is applied. Assume 

C1 = 12.0 ,uF, C2 = 5.30 ,uF, and C3 = 4.50 ,up. 

Any capacitors connected in series can be replaced with 
their equivalent capacitor, and any capacitors connected in 
parallel can be replaced with their equivalent capacitor. 
Therefore, we should first check whether any of the capaci­
tors in Fig. 25-10a are in parallel or series. 

Finding equivalent capacitance: Capacitors 1 and 3 are 
connected one after the other, but are they in series? No. 
The potential V that is applied to the capacitors produces 
charge on the bottom plate of capacitor 3. That charge 
causes charge to shift from the top plate of capacitor 3. 
However, note that the shifting charge can move to the 
bottom plates of both capacitor 1 and capacitor 2. 
Because there is more than one route for the shifting 

We first reduce the 
circuit to a single 
capacitor. 

A 

C1 - C -

120 ;if 136 ;'T 
V B 

j 1~;if 
(a) 

The equivalent of 
parallel capacitors 
is larger. 

(b) 

The equivalent of 
series capacitors 
is smaller. 

(c) 

charge, capacitor 3 is not in series with capacitor 1 (or ca­
pacitor 2). 

Are capacitor 1 and capacitor 2 in parallel? Yes. 
Their top plates are directly wired together and their 
bottom plates are directly wired together, and electric 
potential is applied between the top-plate pair and the 
bottom-plate pair. Thus, capacitor 1 and capacitor 2 are 
in parallel, and Eq. 25-19 tells us that their equivalent ca­
pacitance C12 is 

C12 = C1 + C2 = 12.0,uF + 5.30,uF = 17.3,uP. 

In Fig. 25-10b, we have replaced capacitors 1 and 2 with 
their equivalent capacitor, called capacitor 12 (say "one 
two" and not "twelve"). (The connections at points A and B 
are exactly the same in Figs. 25-10a and b.) 

Is capacitor 12 in series with capacitor 3? Again apply­
ing the test for series capacitances, we see that the charge 
that shifts from the top plate of capacitor 3 must entirely go 
to the bottom plate of capacitor 12. Thus, capacitor 12 and 
capacitor 3 are in series, and we can replace them with their 
equivalent C123 ("one two three"), as shown in Fig. 25-10c. 

Next, we work 
backwards to the 
desired capacitor. 

(d) 

Applying q = CV 
yields the charge. 

12.5V 

ql23 = 
44.61lC 

CI23 = VI23 = 
3.571lF 12.5 V 

(e) 

Series capacitors and 
their equivalent have 
the same q (Useri-q"). 

Applying V= q/C yields 
the potential difference. 

Parallel capacitors and 
their equivalent have 
the same V ("par-V"). 

Applying q = CV 
yields the charge. 

12.5V 

ql2 = 
44.6,tC 

CI2 ='" ~ 

17.3 1l1 
q3 = 

44.6 1l~",~ 
C3 =", 

4.50 1lF 

(J) 

q3 = 
12.5V 

1 
44.6 JIC "," 

4.~6 ~;Fl~2;' 
(h) 

Fig. 25-10 (a) - (d) Three capacitors are reduced to one equivalent capacitor. (e) - (i) 
Working backwards to get the charges. 

(i) 
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From Eq. 25-20, we have 

1 1 1 
--=-+-
Cl23 Cl2 C3 

1 1 --- + = 0.280,uF-I, 
17.3 ,uF 4.50 ,uF 

from which 

1 
C123 = 0.280,uF-I = 3.57 ,uF. (Answer) 

(b) The potential difference applied to the input terminals 
in Fig. 25-10a is V = 12.5 V. What is the charge on C1? 

We now need to work backwards from the equivalent 
capacitance to get the charge on a particular capacitor. We 
have two techniques for such "backwards work": (1) Seri-q: 
Series capacitors have the same charge as their equivalent 
capacitor. (2) Par-V: Parallel capacitors have the same 
potential difference as their equivalent capacitor. 

Working backwards: To get the charge ql on capacitor 1, 
we work backwards to that capacitor, starting with the 
equivalent capacitor 123. Because the given potential differ­
ence V (= 12.5 V) is applied across the actual combination 
of three capacitors in Fig. 25-10a, it is also applied across 
C123 in Figs. 25-10d and e.Thus, Eq. 25-1 (q = CV) gives us 

q123 = C123 V = (3.57 ,uF)(12.5 V) = 44.6 ,uc. 

The series capacitors 12 and 3 in Fig. 25-10b each have the 
same charge as their equivalent capacitor 123 (Fig. 25-10f). 
Thus, capacitor 12 has charge ql2 = q123 = 44.6 ,uc. From 
Eq. 25-1 and Fig. 25-10g, the potential difference across ca­
pacitor 12 must be 

Vl2 = qI2 = 44.6 ,uC = 2.58 V. 
C12 17.3 ,uF 

The parallel capacitors 1 and 2 each have the same potential 
difference as their equivalent capacitor 12 (Fig. 25-lOh). Thus, 
capacitor 1 has potential difference VI = V12 = 2.58 V, and, 
from Eq. 25-1 and Fig. 25-10i, the charge on capacitor 1 must be 

ql = CI VI = (12.0 ,uF)(2.58 V) 

= 31.0 ,uc. (Answer) 

One capacitor charging up another capacitor 

Capacitor 1, with CI = 3.55 ,uF, is charged to a potential 
difference Vo = 6.30 V, using a 6.30 V battery. The battery is 
then removed, and the capacitor is connected as in Fig. 25-11 
to an uncharged capacitor 2, with C2 = 8.95 ,uF. When switch 
S is closed, charge flows between the capacitors. Find the 
charge on each capacitor when equilibrium is reached. 

The situation here differs from the previous example because 
here an applied electric potential is not maintained across a 
combillation of capacitors by a battery or some other source. 
Here, just after switch S is closed, the only applied electric po­
tential is that of capacitor 1 on capacitor 2, and that potential 
is decreasing. Thus, the capacitors in Fig. 25-11 are not con­
nected in series; and although they are drawn parallel, ill this 
situation they are not in parallel. 

As the electric potential across capacitor 1 decreases, 
that across capacitor 2 increases. Equilibrium is reached when 
the two potentials are equal because, with no potential differ­
ence between connected plates of the capacitors, there is no 
electric field withirl the connectillg wires to move conduction 
electrons. The initial charge on capacitor 1 is then shared be­
tween the two capacitors. 

Calculations: Initially, when capacitor 1 is connected to 
the battery, the charge it acquires is, from Eq. 25-1, 

qo = CI Vo = (3.55 X 10-6 F) (6.30 V) 

= 22.365 X 10-6 C. 

When switch S in Fig. 25-11 is closed and capacitor 1 begins to 
charge capacitor 2, the electric potential and charge on capaci­
tor 1 decrease and those on capacitor 2 increase until 

VI = V2 (equilibrium). 

From Eq. 25-1, we can rewrite this as 

qi q2 - -
CI C2 

(equilibrium). 

Because the total charge cannot magically change, the total 
after the transfer must be 

ql + q2 = qo (charge conservation); 

Fig. 25-11 A potential differ­
ence Vo is applied to capacitor 1 
and the charging battery is re­
moved. Switch S is then closed so 
that the charge on capacitor 1 is 
shared with capacitor 2. 

After the switch is closed, 
charge is transferred until 
the potential differences 
match. 



ENERGY STORED IN AN ELECTRIC FIELD 667 

thus Solving this for ql and substituting given data, we find 

ql = 6.35 p,c. (Answer) We can now rewrite the second equilibrium equation as 

ql qo ql The rest of the initial charge (qo = 22.365 p,C) must be on 

C1 C2 
capacitor 2: 

q2 = 16.0 p,c. 

Additional examples, video, and practice available at WileyPLUS 

Energy Stored in an Electric Field 
Work must be done by an external agent to charge a capacitor. Starting with an 
uncharged capacitor, for example, imagine that-using "magic tweezers"-you 
remove electrons from one plate and transfer them one at a time to the other 
plate. The electric field that builds up in the space between the plates has a direc­
tion that tends to oppose further transfer. Thus, as charge accumulates on the 
capacitor plates, you have to do increasingly larger amounts of work to transfer 
additional electrons. In practice, this work is done not by "magic tweezers" but by 
a battery, at the expense of its store of chemical energy. 

We visualize the work required to charge a capacitor as being stored in the 
form of electric potential energy U in the electric field between the plates. You 
can recover this energy at will, by discharging the capacitor in a circuit,just as you 
can recover the potential energy stored in a stretched bow by releasing the bow­
string to transfer the energy to the kinetic energy of an arrow. 

Suppose that, at a given instant, a charge q' has been transferred from one 
plate of a capacitor to the other. The potential difference V' between the plates at 
that instant will be q'le. If an extra increment of charge dq' is then transferred, 
the increment of work required will be, from Eq. 24-7, 

dW = V' dq' = ~ dq'. 

The work required to bring the total capacitor charge up to a final value q is 

J 
1 (q q2 

W = dW = c Jo q' dq' = 2C' 

This work is stored as potential energy U in the capacitor, so that 

(potential energy). (25-21) 

From Eq. 25-1, we can also write this as 

(potential energy). (25-22) 

Equations 25-21 and 25-22 hold no matter what the geometry of the capacitor is. 
To gain some physical insight into energy storage, consider two parallel-plate 

capacitors that are identical except that capacitor 1 has twice the plate separation 
of capacitor 2. Then capacitor 1 has twice the volume between its plates and also, 
from Eq. 25-9, half the capacitance of capacitor 2. Equation 25-4 tells us that if both 
capacitors have the same charge q, the electric fields between their plates are iden­
tical. And Eq. 25-21 tells us that capacitor 1 has twice the stored potential energy of 
capacitor 2. Thus, of two otherwise identical capacitors with the same charge and 
same electric field, the one with twice the volume between its plates has twice the 
stored potential energy. Arguments like this tend to verify our earlier assumption: 

(Answer) 



668 H CAPACITANCE 

The potential energy of a charged capacitor may be viewed as being stored in the 
electric field between its plates. 

As we discussed in Section 24-12, making contact with certain materials, such as 
clothing, carpets, and even playground slides, can leave you with a significant 
electrical potential. You might become painfully aware of that potential if a spark 
leaps between you and a grounded object, such as a faucet. In many industries in­
volving the production and transport of powder, such as in the cosmetic and food 
industries, such a spark can be disastrous. Although the powder in bulk may not 
burn at all, when individual powder grains are airborne and thus surrounded by 
oxygen, they can burn so fiercely that a cloud of the grains burns as an explosion. 
Safety engineers cannot eliminate all possible sources of sparks in the powder in­
dustries. Instead, they attempt to keep the amount of energy available in the 
sparks below the threshold value V t (= 150 mJ) typically required to ignite 
airborne grains. 

Suppose a person becomes charged by contact with various surfaces as he 
walks through an airborne powder. We can roughly model the person as a spherical 
capacitor of radius R = 1.8 m. From Eq. 25-18 (C = 4'lTBOR) and Eq. 25-22 
(V = ~CV'), we see that the energy of the capacitor is 

V = ~(4'lTBOR) 01. 

From this we see that the threshold energy corresponds to a potential of 

V - r-w;- _ 2(150 X 10-3 J) 
\j ~ 417(8.85 X 10-12 C2/N· m2)(1.8 m) 

= 3.9 X 104 V. 

Safety engineers attempt to keep the potential of the personnel below this level 
by "bleeding" off the charge through, say, a conducting floor. 

In a parallel-plate capacitor, neglecting fringing, the electric field has the same 
value at all points between the plates. Thus, the energy density u-that is, the 
potential energy per unit volume between the plates-should also be uniform. 
We can find u by dividing the total potential energy by the volume Ad of the 
space between the plates. Using Eq. 25-22, we obtain 

V CV2 

II = Ad = 2Ad' (25-23) 

With Eq. 25-9 (C = BoA/d), this result becomes 

u = ~BO (~r (25-24) 

However, from Eq. 24-42 (E = -~ V/~s), V/d equals the electric field magnitude 
E;so 

u = ~ BoE2 (energy density). (25-25) 

Although we derived this result for the special case of an electric field of a 
parallel-plate capacitor, it holds generally, whatever may be the source of 
the electric field. If an electric field E exists at any point in space, we can think 
of that point as a site of electric potential energy with a density (amount per 
unit volume) given by Eq. 25-25. 
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Potential energy and energy density of an electric field 

An isolated conducting sphere whose radius R is 6.85 cm 
has a charge q = 1.25 nC 

(b) What is the energy density at the surface of the sphere? 

(a) How much potential energy is stored in the electric field 
of this charged conductor? The density u of the energy stored in an electric field depends 

on the magnitude E of the field, according to Eq. 25-25 
(u = ~BoE2). 

(1) An isolated sphere has capacitance given by Eq. 25-18 
(C = 41TBoR). (2) The energy U stored in a capacitor depends 
on the capacitor's charge q and capacitance C according to 
Eq.25-21 (U= q2/2C). 

Calculations: Here we must first find E at the surface of 
the sphere, as given by Eq. 23-15: 

E=_l_L 
41TBO R2' 

Calculation: Substituting C = 41TBoR into Eq. 25-21 gives us 
The energy density is then 

q2 q2 
U= - = -"---

2C 81TBOR 

(1.25 X 10-9 C)2 

(81T)(8.85 X 10-12 F/m) (0.0685 m) 

= 1.03 X 10-7 J = 103 nJ. (Answer) = 2.54 X 10-5 J/m3 = 25.4 pJ/m3• (Answer) 

.~rus Additional examples, video, and practice available at WileyPLUS 

Capacitor with a Dielectric 
If you fill the space between the plates of a capacitor with a dielectric, which is an 
insulating material such as mineral oil or plastic, what happens to the capaci­
tance? Michael Faraday- to whom the whole concept of capacitance is largely 
due and for whom the SI unit of capacitance is named-first looked into this 
matter in 1837. Using simple equipment much like that shown in Fig. 25-12, he 
found that the capacitance increased by a numerical factor K, which he called the 
dielectric constant of the insulating material. Table 25-1 shows some dielectric 
materials and their dielectric constants. The dielectric constant of a vacuum is 
unity by definition. Because air is mostly empty space, its measured dielectric 
constant is only slightly greater than unity. Even common paper can significantly 

Fig. 25-12 The simple 
electrostatic apparatus used 
by Faraday. An assembled 
apparatus (second from left) 
forms a spherical capacitor 
consisting of a central brass 
ball and a concentric brass 
shell. Faraday placed dielec­
tric materials in the space 
between the ball and the 
shell. (The Royal Institute, 
England/Bridgeman Art 
Library/NY) 

Some Properties of Dielectricsa 

Dielectric Dielectric 
Constant Strength 

Material K (kV/mm) 

Air (1 atm) 1.00054 3 
Polystyrene 2.6 24 
Paper 3.5 16 
Transformer 

oil 4.5 
Pyrex 4.7 14 
Ruby mica 5.4 
Porcelain 6.5 
Silicon 12 
Germanium 16 
Ethanol 25 
Water (20°C) 80.4 
Water (25°C) 78.5 
Titania 

ceramic 130 
Strontium 

titanate 310 8 

For a vacuum, K = unity. 

"Measured at room temperature, except for the water. 
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11 = a constant 

(a) 

Fig. 25-13 (a) If the potential difference 
between the plates of a capacitor is main­
tained, as by battery B, the effect of a dielec­
tric is to increase the charge on the plates. 
(b) If the charge on the capacitor plates is 
maintained, as in this case, the effect of a 
dielectric is to reduce the potential differ­
ence between the plates. The scale shown is 
that of a potentiometel; a device used to 
measure potential difference (here, between 
the plates). A capacitor cannot discharge 
through a potentiometer. 

+ + + + 

q = a constant 

(b) 

increase the capacitance of a capacitor, and some materials, such as strontium ti­
tanate, can increase the capacitance by more than two orders of magnitude. 

Another effect of the introduction of a dielectric is to limit the potential 
difference that can be applied between the plates to a certain value V max, called 
the breakdown potential. If this value is substantially exceeded, the dielectric 
material will break down and form a conducting path between the plates. Every 
dielectric material has a characteristic dielectric strength, which is the maximum 
value of the electric field that it can tolerate without breakdown. A few such 
values are listed in Table 25-l. 

As we discussed just after Eq. 25-18, the capacitance of any capacitor can be 
written in the form C = 80:£, (25-26) 

in which:£ has the dimension of length. For example,:£ = A /d for a parallel-plate 
capacitor. Faraday's discovery was that, with a dielectric completely filling the 
space between the plates, Eq. 25-26 becomes 

C = K80:£ = I(Cain (25-27) 
where Cair is the value of the capacitance with only air between the plates. For ex­
ample, if we fill a capacitor with strontium titanate, with a dielectric constant of 
310, we multiply the capacitance by 310. 

Figure 25-13 provides some insight into Faraday's experiments. In 
Fig. 25-13a the battery ensures that the potential difference V between the plates 
will remain constant. When a dielectric slab is inserted between the plates, the 
charge q on the plates increases by a factor of K; the additional charge is delivered 
to the capacitor plates by the battery. In Fig. 25-13b there is no battery, and there­
fore the charge q must remain constant when the dielectric slab is inserted; then 
the potential difference V between the plates decreases by a factor of K. 

Both these observations are consistent (through the relation q = CV) with the 
increase in capacitance caused by the dielectric. 

Comparison of Eqs. 25-26 and 25-27 suggests that the effect of a dielectric 
can be summed up in more general terms: 

In a region completely filled by a dielectric material of dielectric constant /(, all 
electrostatic equations containing the permittivity constant 80 are to be modified by 
replacing 80 with /(80' 

Thus, the magnitude of the electric field produced by a point charge inside a 
dielectric is given by this modified form of Eq. 23-15: 

E = _1 _!L (25-28) 
47TK80 r 2 ' 

Also, the expression for the electric field just outside an isolated conductor 
immersed in a dielectric (see Eq. 23-11) becomes 

E=~. (25-29) 
K80 

Because K is always greater than unity, both these equations show that for a fixed 
distribution of charges, the effect of a dielectric is to weaken the electric field that 
would otherwise be present. 
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Work and energy when a dielectric is inserted into a capacitor 

A parallel-plate capacitor whose capacitance Cis 13.5 pF is 
charged by a battery to a potential difference V = 12.5 V 
between its plates. The charging battery is now discon­
nected, and a porcelain slab (K = 6.50) is slipped between 
the plates. 

(a) What is the potential energy of the capacitor before the 
slab is inserted? 

We can relate the potential energy Vi of the capacitor to the 
capacitance C and either the potential V (with Eq. 25-22) or 
the charge q (with Eq. 25-21): 

Calculation: Because we are given the initial potential 
V (= 12.5 V), we use Eq. 25-22 to find the initial stored 
energy: 

~ = ~CV2 = ~(13.5 X 10-12 F)(12.5 V)2 

= 1.055 X 10-9 J = 1055 pJ = 1100 pJ. (Answer) 

(b) What is the potential energy of the capacitor-slab device 
after the slab is inserted? 

Because the battery has been disconnected, the charge on 
the capacitor cannot change when the dielectric is inserted. 
However, the potential does change. 

Calculations: Thus, we must now use Eq. 25-21 to write the 
final potential energy Vf , but now that the slab is within the 
capacitor, the capacitance is KC. We then have 

U - L _ ~ _ 1055 pJ 
'f - 2KC - K - 6.50 

= 162 pJ = 160 pJ. (Answer) 

When the slab is introduced, the potential energy decreases 
by a factor of K. 

The "missing" energy, in principle, would be apparent to 
the person who introduced the slab. The capacitor would ex­
ert a tiny tug on the slab and would do work on it, in amount 

W = Vi - Vf = (1055 - 162) pJ = 893 pI 

If the slab were allowed to slide between the plates with no 
restraint and if there were no friction, the slab would oscillate 
back and forth between the plates with a (constant) mechani­
cal energy of 893 pJ, and this system energy would transfer 
back and forth between kinetic energy of the moving slab and 
potential energy stored in the electric field. 

l~ 
·pLUS Additional examples, video, and practice available at WileyPLUS 

Dielectrics: An Atomic View 
What happens, in atomic and molecular terms, when we put a dielectric in an 
electric field? There are two possibilities, depending on the type of molecule: 

1. Polar dielectrics. The molecules of some dielectrics, like water, have permanent 
electric dipole moments. In such materials (called polar dielectrics), the electric 
dipoles tend to line up with an external electric field as in Fig. 25-14. Because the 
molecules are continuously jostling each other as a result of their random thermal 
motion, this alignment is not complete, but it becomes more complete as the mag­
nitude of the applied field is increased (or as the temperature, and thus the 
jostling, are decreased). The alignment of the electric dipoles produces an electric 
field that is directed opposite the applied field and is smaller in magnitude. 

Fig. 25-14 (a) Molecules 
with a permanent electric dipole 
moment, showing their random 
orientation in the absence of an 
external electric field. (b) An 
electric field is applied, produc­
ing partial alignment of the 
dipoles. Thermal agitation pre­
vents complete alignment. (a) 

I 

~ 
+ 

+ 
t 
I 

(b) 
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The initial electric field 
inside this nonpolar 
dielectric slab is zero. 

(a) 

The applied field 
aligns the atomic 
dipole moments. 

(b) 

The field of the aligned 
atoms is opposite the 
applied field. 

(c) 

Fig. 25-15 (a) A nonpolar dielectric 
slab. The circles represent the electrically 
neutral atoms within the slab. (b) An elec­
tric field is applied via charged capacitor 
plates; the field slightly stretches the atoms, 
separating the centers of positive and nega­
tive charge. (c) The separation produces 
surface charges on the slab faces. These 
charges set up a field E', which opposes the 
applied field Eo. The resultant field E inside 
the dielectric (the vector sum of Eo and E') 
has the same direction as Eo but a smaller 
magnitude. 

2. Nonpolar dielectrics. Regardless of whether they have permanent electric 
dipole moments, molecules acquire dipole moments by induction when 
placed in an external electric field. In Section 24-8 (see Fig. 24-11), we saw 
that this occurs because the external field tends to "stretch" the molecules, 
slightly separating the centers of negative and positive charge. 

Figure 25-15a shows a nonpolar dielectric slab with no external electric field 
applied. In Fig. 25-15b, an electric field Eo is applied via a capacitor, whose plates 
are charged as shown. The result is a slight separation of the centers of the posi­
tive and negative charge distributions within the slab, producing positive charge 
on one face of the slab (due to the positive ends of dipoles there) and negative 
charge on the opposite face (due to the negative ends of dipoles there). The slab 
as a whole remains electrically neutral and-within the slab-there is no excess 
charge in any volume element. 

Figure 25-15c shows that the induced surface charges on the faces produce an 
electric field E' in the direction opposite that of the applied electric field Eo. The 
resultant field E inside the dielectric (the vector sum of fields Eo and E') has the 
direction of Eo but is smaller in magnitude. 

Both the field E' produced by the surface charges in Fig. 25-15c and the electric 
field produced by the permanent electric dipoles in Fig. 25-14 act in the same way­
they oppose the applied field E. Thus, the effect of both polar and nonpolar dielectrics 
is to weaken any applied field within them, as between the plates of a capacitor. 

Dielectrics and Gauss' Law 
In our discussion of Gauss' law in Chapter 23, we assumed that the charges 
existed in a vacuum. Here we shall see how to modify and generalize that law if 
dielectric materials, such as those listed in Table 25-1, are present. Figure 25-16 
shows a parallel-plate capacitor of plate area A, both with and without a 
dielectric. We assume that the charge q on the plates is the same in both situa­
tions. Note that the field between the plates induces charges on the faces of the 
dielectric by one of the methods described in Section 25-7. 

For the situation of Fig. 25-16a, without a dielectric, we can find the electric 
field Eo between the plates as we did in Fig. 25-5: We enclose the charge +q on the 
top plate with a Gaussian surface and then apply Gauss' law. Letting Eo represent 
the magnitude of the field, we find 

or 

eo f E· dA = eoEA = q, (25-30) 

q 
Eo = eoA' (25-31) 

In Fig. 25-16b, with the dielectric in place, we can find the electric field 
between the plates (and within the dielectric) by using the same Gaussian sur­
face. However, now the surface encloses two types of charge: It still encloses 

Fig. 25-16 

A parallel-plate 
capacitor (a) with­
out and (b) with a di­
electric slab inserted. 
The charge q on the 
plates is assumed to 
be the same in both 
cases. (a) (b) 
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charge +q on the top plate, but it now also encloses the induced charge -q' on 
the top face of the dielectric. The charge on the conducting plate is said to be free 
charge because it can move if we change the electric potential of the plate; the 
induced charge on the surface of the dielectric is not free charge because it 
cannot move from that surface. 

The net charge enclosed by the Gaussian surface in Fig. 25-16b is q q', so 
Gauss' law now gives 1. --> _ _ , 

So r E . iii - soEA - q - q , 

or 
q - q' 

E = --=--s-oA-"--. 

(25-32) 

(25-33) 

The effect of the dielectric is to weaken the original field Eo by a factor of K; so we 
may write 

E= Eo =_q_. 
K KsoA 

Comparison of Eqs. 25-33 and 25-34 shows that 

q _ q' = iL. 
K 

(25-34) 

(25-35) 

Equation 25-35 shows correctly that the magnitude q' of the induced surface 
charge is less than that of the free charge q and is zero if no dielectric is present 
(because then K = 1 in Eq. 25-35). 

By substituting for q - q' from Eq. 25-35 in Eq. 25-32, we can write Gauss' 
law in the form 

So f Kit· dA = q (Gauss' law with dielectric). (25-36) 

This equation, although derived for a parallel-plate capacitor, is true generally 
and is the most general form in which Gauss' law can be written. Note: 

1. The flux integral now involves KE, not just E. (The vector saKE is sometimes 
called the electric displacement 15, so that Eq. 25-36 can be written in the form 
pD 'dA = q.) 

2. The charge q enclosed by the Gaussian surface is now taken to be the free 
charge only. The induced surface charge is deliberately ignored on the right 
side of Eq. 25-36, having been taken fully into account by introducing the 
dielectric constant K on the left side. 

3. Equation 25-36 differs from Eq. 23-7, our original statement of Gauss' law, 
only in that So in the latter equation has been replaced by KSo. We keep K 
inside the integral of Eq. 25-36 to allow for cases in which K is not constant 
over the entire Gaussian surface. 

Dielectric partially filling the gap in a capacitor 

Figure 25-17 shows a parallel-plate capacitor of plate area 
A and plate separation d. A potential difference Va is applied 
between the plates by connecting a battery between them. The 
battery is then disconnected, and a dielectric slab of thickness b 
and dielectric constant K is placed between the plates as shown. 
Assume A = 115 cm2, d = 1.24 cm, Va = 85.5 V, b = 0.780 cm, 
and K = 2.61. 

(a) What is the capacitance Co before the dielectric slab is 
inserted? 

Calculation: From Eq. 25-9 we have 

C _ soA _ (8.85 X 10-12 F/m)(115 X 10-4 m2) 

a - d - 1.24 X 10-2 m 

= 8.21 X 10-12 F = 8.21 pF. (Answer) 
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(b) What free charge appears on the plates? 

Calculation: From Eq. 25-1, 

q = Co Va = (8.21 X 10-12 F)(85.5 V) 

= 7.02 X 10-10 C = 702 pc. (Answer) 

Because the battery was disconnected before the slab was 
inserted, the free charge is unchanged. 

(c) What is the electric field Eo in the gaps between the 
plates and the dielectric slab? 

We need to apply Gauss' law, in the form of Eq. 25-36, to 
Gaussian surface I in Fig. 25-17. 

Calculations: That surface passes through the gap, and so it 
encloses only the free charge on the upper capacitor plate. 
Electric field pierces only the bottom of the Gaussian surface. 
Because there the area vector dA and the field vector Eo are 
both directed downward, the dot product in Eq. 25-36 becomes 

Eo·dA = EodAcosO° = EodA. 

Equation 25-36 then becomes 

BoKEo f dA = q. 

The integration now simply gives the surface area A of the 
plate. Thus, we obtain 

BoKEoA = q, 

q 
Eo = ----:-:-::t. 

BOIV"1 
or 

We must put K = 1 here because Gaussian surface I does 
not pass through the dielectric. Thus, we have 

E _ _ q_ _ 7.02 X 10-10 C 
0- BoKA - (8.85 X 1O-12 F/m)(1)(115 X 10-4 m2) 

= 6900 Vim = 6.90 kV/m. (Answer) 

Note that the value of Eo does not change when the slab is 
introduced because the amount of charge enclosed by 
Gaussian surface I in Fig. 25-17 does not change. 

(d) What is the electric field E1 in the dielectric slab? 

Now we apply Gauss' law in the form of Eq. 25-36 to 
Gaussian surface II in Fig. 25-17. 

Calculations: That surface encloses free charge -q and in­
duced charge +q', but we ignore the latter when we use Eq. 
25-36. We find 

(25-37) 

Gaussian 
Fig. 25-1 7 surface I 
A parallel-plate ca­
pacitor containing 
a dielectric slab 
that only partially 
fills the space be­
tween the plates. 

+q 

The first minus sign in this equation comes from the dot 
product E1 . dA along the top of the Gaussian surface be­
cause now the field vector E1 is directed downward and the 
area vector dA (which, as always, points outward from the 
interior of a closed Gaussian surface) is directed upward. 
With 180° between the vectors, the dot product is negative. 
Now K = 2.61. Thus, Eq. 25-37 gives us 

E1 = _q_ = Eo = 6.90 kV/m 
BoKA K 2.61 

= 2.64 kV/m. (Answer) 
(e) What is the potential difference V between the plates 
after the slab has been introduced? 

We find V by integrating along a straight line directly from 
the bottom plate to the top plate. 

Calculation: Within the dielectric, the path length is band 
the electric field is E1• Within the two gaps above and below 
the dielectric, the total path length is d - b and the electric 
field is Eo. Equation 25-6 then yields 

V = L+ E ds = Eo( d - b) + E1 b 

= (6900 Vim) (0.0124 m - 0.00780 m) 

+ (2640 V/m)(0.00780 m) 

= 52.3 V. (Answer) 
This is less than the original potential difference of 85.5 V. 

(f) What is the capacitance with the slab in place between 
the plates of the capacitor? 

The capacitance C is related to the free charge q and the 
potential difference V via Eq. 25-1. 

Calculation: Taking q from (b) and V from (e), we have 

C = 5L = 7.02 X 10-10 C 
V 52.3 V 

= 1.34 X 10-11 F = 13.4 pF. (Answer) 

This is greater than the original capacitance of 8.21 pF. 

~llis Additional examples, video, and practice available at WileyPLUS 



Capacitor; Capacitance A capacitor consists of two isolated 
conductors (the plates) with charges +q and -q. Its capacitance C 
is defined from 

q = CV, (25-1 ) 

where V is the potential difference between the plates. 

Determining Capacitance We generally determine the 
capacitance of a particular capacitor configuration by (1) assuming a 
charge q to have been placed on the plates, (2) finding the electric field 
£ due to this charge, (3) evaluating the potential difference V, and (4) 
calculating C from Eq. 25-1. Some specific results are the following: 

A parallel-plate capacitor with flat parallel plates of area A 
and spacing d has capacitance 

C = B~A. (25-9) 

A cylindrical capacitor (two long coaxial cylinders) of length L 
and radii a and b has capacitance 

L 
C = 27TBO In(b/a) . (25-14) 

A spherical capacitor with concentric spherical plates of radii a 
and b has capacitance 

ab 
C = 47TBO -b--' 

-a 

An isolated sphere of radius R has capacitance 

C = 47TBOR. 

(25-17) 

(25-18) 

Capacitors in Parallel and in Series The equivalent 
capacitances Ceq of combinations of individual capacitors con­
nected in parallel and in series can be found from 

and 

II 

Ceq = 2: Cj 
j~l 

(/1 capacitors in parallel) (25-19) 

(/1 capacitors in series). (25-20) 

Figure 25-18 shows plots of 
charge versus potential difference 
for three parallel-plate capacitors 
that have the plate areas and separa­
tions given in the table. Which plot 
goes with which capacitor? Fig. 25-18 Question 1. 

Capacitor Area 

1 
2 

3 

A 

2A 

A 

Separation 

d 

d 

2d 

What is Ceq of three capacitors, each of capacitance C, if they 
are connected to a battery (a) in series with one another and (b) in 
parallel? (c) In which arrangement is there more charge on the 
equivalent capacitance? 

QUESTIONS 675 

Equivalent capacitances can be used to calculate the capacitances 
of more complicated series-parallel combinations. 

Potential Energy and Energy Density The electric poten­
tial energy U of a charged capacitor, 

2 

U = -.5L = lCV2 
2C 2 ' 

(25-21,25-22) 

is equal to the work required to charge the capacitor. This energy 
can be associated with the capacitor's electric field £. By extension 
we can associate stored energy with any electric field. In vacuum, 
the energy density ii, or potential energy per unit volume, within an 
electric field of magnitude E is given by 

(25-25) 

Capacitance with a Dielectric If the space between the 
plates of a capacitor is completely filled with a dielectric material, the 
capacitance C is increased by a factor K, called the dielectric constant, 
which is characteristic of the material. In a region that is completely 
filled by a dielectric, all electrostatic equations containing BO must be 
modified by replacing BO with KBO' 

The effects of adding a dielectric can be understood physically in 
terms of the action of an electric field on the permanent or induced 
electric dipoles in the dielectric slab. The result is the formation of in­
duced charges on the surfaces of the dielectric, which results in a 
weakening of the field within the dielectric for a given amount of free 
charge on the plates. 

Gauss' Law with a Dielectric When a dielectric is present, 
Gauss' law may be generalized to 

BO f 1(£ • dA = q. (25-36) 

Here q is the free charge; any induced surface charge is accounted for 
by including the dielectric constant K inside the integral. 

(a) In Fig. 25-19a, are capacitors 1 and 3 in series? (b) In the same 
figure, are capacitors 1 and 2 in parallel? (c) Rank the equivalent ca­
pacitances of the four circuits shown in Fig. 25-19, greatest first. 

(c) 

Fig. 25-19 

c3 

il! 1 
±L c 1 2'r 

(b) 

c] 

.lc "r] 

[ ~IJ 'I I:c, 
i! 

(d) C2 

Question 3. 
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Figure 25-20 shows three circuits, each consisting of a switch and 
two capacitors, initially charged as indicated (top plate positive). 
After the switches have been closed, in which circuit (if any) will 
the charge on the left -hand capacitor (a) increase, (b) decrease, and 
(c) remain the same? 

6q,r l .. 3Q 6Q.r l,3Q 
2 C 'L-I' _--,'T' C 3 C ccL..-r' _---'T C 

(1 ) (2) 

6Qrl ... 3Q 
2C'fl'2C 

(3) 

Fig. 25-20 Question 4. 

Initially, a single capacitance C1 is wired to a battery. Then ca­
pacitance C2 is added in parallel. Are (a) the potential difference 
across C1 and (b) the charge ql on C1 now more than, less than, or 
the same as previously? (c) Is the equivalent capacitance Cl2 of C1 

and C2 more than, less than, or equal to Cj ? (d) Is the charge stored 
on C1 and C2 together more than, less than, or equal to the charge 
stored previously on C1? 

Repeat Question 5 for C2 added in series rather than in parallel. 

For each circuit in Fig. 25-21, are the capacitors connected in 
series, in parallel, or in neither mode? 

(")=r1J -I~f (,J f 1 
Fig. 25-21 Question 7. 

Figure 25-22 shows an open 
switch, a battery of potential differ­
ence V, a current-measuring meter 
A, and three identical uncharged 
capacitors of capacitance C. When 
the switch is closed and the circuit 
reaches equilibrium, what are (a) Fig.25-22 Question 8. 
the potential difference across each capacitor and (b) the charge 
on the left plate of each capacitor? (c) During charging, what net 
charge passes through the meter? 

9 A parallel-plate capacitor is connected to a battery of electric 
potential difference V. If the plate separation is decreased, do the 
following quantities increase, decrease, or remain the same: (a) the 
capacitor's capacitance, (b) the potential difference across the ca­
pacitor, (c) the charge on the capacitor, (d) the energy stored by 
the capacitor, (e) the magnitude of the electric field between the 
plates, and (f) the energy density of that electric field? 

When a dielectric slab is inserted 
between the plates of one of the two 
identical capacitors in Fig. 25-23, do the 
following properties of that capacitor in­
crease, decrease, or remain the same: (a) 
capacitance, (b) charge, (c) potential dif­
ference, and (d) potential energy? (e) 
How about the same properties of the 
other capacitor? 

C 

-] J 
~c 

-J B 
IC 

" 

Fig. 23-19 

Question 10. 

You are to connect capacitances C1 and C2, with Cj > C2, to a 
battery, first individually, then in series, and then in parallel. Rank 
those arrangements according to the amount of charge stored, greatest 
first. 

I 
Tutoring problem available (at instructor's discretion) in Wi/eyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
http://www.wiley.com/coliege/haHiday 

Additional information available in The Flying Circus of Physics and at flyingcircusoiphysics.com 

Capacitance 
·1 The two metal objects in Fig. 
25-24 have net charges of +70 pC 
and -70 pC, which result in a 20 V Fig.25-24 Problem 1. 
potential difference between them. 
(a) What is the capacitance of the system? (b) If the charges are 
changed to +200 pC and -200 pC, what does the capacitance be­
come? (c) What does the potential 
difference become? 

J 
C 

The capacitor in Fig. 25-25 has a 
capacitance of 25 fLF and is initially 
uncharged. The battery provides a 
potential difference of 120 V. After 
switch S is closed, how much charge 
will pass through it? 

Fig. 25-25 Problem 2. 

Calculating the Capacitance 
SSM A parallel-plate capacitor has circular plates of 8.20 cm 

radius and 1.30 mm separation. (a) Calculate the capacitance. (b) 
Find the charge for a potential difference of 120 V. 

The plates of a spherical capacitor have radii 38.0 mm and 40.0 
mm. (a) Calculate the capacitance. (b) What must be the plate area 
of a parallel-plate capacitor with the same plate separation and 
capacitance? 

What is the capacitance of a drop that results when two 
mercury spheres, each of radius R = 2.00 mm, merge? 

You have two flat metal plates, each of area 1.00 m2, with which to 
construct a parallel-plate capacitor. (a) If the capacitance of the device 
is to be 1.00 F, what must be the separa-
tion between the plates? (b) Could this d (pm) 

capacitor actually be constructed? 

If an uncharged parallel-plate 
capacitor (capacitance C) is connected 
to a battery, one plate becomes nega-
tively charged as electrons move to the 
plate face (area A). In Fig. 25-26, the 
depth d from which the electrons come 0 
in the plate in a particular capacitor is 
plotted against a range of values for the Fig. 25-26 Problem 7. 



potential difference V of the battery. The density of conduction elec­
trons in the copper plates is 8.49 X 1028 electrons/m3• The vertical 
scale is set by ds = 1.00 pm, and the horizontal scale is set by Vs = 20.0 
V. What is the ratio C/A? 

Capacitors in Parallel and in Series 
How many 1.00 ,uF capacitors must be connected in parallel to 

store a charge of 1.00 C with a potential of 110 V across the 
capacitors? 

Each of the uncharged capaci­
tors in Fig. 25-27 has a capacitance 
of 25.0 ,uFo A potential difference 
of V = 4200 V is established when 
the switch is closed. How many 
coulombs of charge then pass 
through meter A? Fig. 25-27 Problem 9. 

In Fig. 25-28, find the equivalent capacitance of the combination. 
Assume that Cj is 10.0 ,uP, C2 is 5.00 ,uF, and C3 is 4.00 ,uFo 

Fig. 25-28 Problems 10 and 34. 

ILW In Fig. 25-29, find the 
equivalent capacitance of the 
combination. Assume that Cj = 

10.0,uF, C2 = 5.00 ,uF, and C3 = 

4.00,uF. 

l>---C-j ,,"T'"l-L 

L 1---'-------' Two parallel-plate capaci­
tors, 6.0 ,uF each, are connected in 
parallel to a 10 V battery. One of 

Fig. 25-29 Problems 11, 
the capacitors is then squeezed so 
that its plate separation is 50.0% of 17, and 38. 
its initial value. Because of the squeezing, (a) how much additional 
charge is transferred to the capacitors by the battery and (b) what 
is the increase in the total charge stored on the capacitors? 

SSM IlW A 100 pF capacitor is charged to a potential 
difference of 50 V, and the charging battery is disconnected. The 
capacitor is then connected in parallel with a second (initially 
uncharged) capacitor. If the potential difference across the first 
capacitor drops to 35 V, what is 
the capacitance of this second ca­
pacitor? 

+ 
In Fig. 25-30, the battery has a 

potential difference of V = 10.0 V 
and the five capacitors each have a 
capacitance of 10.0 ,uFo What is the 
charge on (a) capacitor 1 and (b) ca-

Fig. 25-30 Problem 14. 
pacitor2? 

In Fig. 25-31, a 20.0 V battery is connected across 
capacitors of capacitances C j = C6 = 3.00,uF and C3 = Cs = 

2.00C2 = 2.00C4 = 4.00,uF. What are (a) the equivalent capac­
itance Ceq of the capacitors and (b) the charge stored by Ceq? What 

PROBLEMS 677 

are (c) V j and (d) qj of capacitor 1, (e) V2 and (f) q2 of capacitor 2, 
and (g) V3 and (h) q3 of capacitor 3? 

1~--~'------~~~-C-5~~ ~ : G.! ~:!: Cs 

VL£c, 
! ! 

Fig. 25-31 Problem 15. 

Plot 1 in Fig. 25-32a gives the charge q that can be stored on ca­
pacitor 1 versus the electric potential V set up across it. The vertical 
scale is set by qs = 16.0 ,uC, and the horizontal scale is set by Vs = 2.0 V. 
Plots 2 and 3 are similar plots for capacitors 2 and 3, respectively. 
Figure 25-32b shows a circuit with those three capacitors and a 6.0 V 
battery. What is the charge stored on capacitor 2 in that circuit? 

qs 1--+----1------+-

o 
F(V) 

(a) 

" s 

Fig. 25-32 Problem 16. 

(b) 

In Fig. 25-29, a potential difference of V = 100.0 V is ap­
plied across a capacitor arrangement with capacitances Cj = 10.0 ,uF, 
C2 = 5.00 ,uF, and C3 = 4.00,uF. If capacitor 3 undergoes electrical 
breakdown so that it becomes equivalent to conducting wire, what is 
the increase in (a) the charge on capacitor 1 and (b) the potential dif­
ference across capacitor 1 ? 

Figure 25-33 shows a circuit section of four air-filled 
capacitors that is connected to a larger circuit. The graph below the 
section shows the electric potential V(x) as a function of position x 

L-~r---++~--r+---X 

I I 
I I 
I I 

-C14IH] 
I I 

I 

I I 

~ 12L ________ ~N~i _______________ X 

Fig. 25-33 Problem 18. 
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along the lower part of the section, through capacitor 4. Similarly, 
the graph above the section shows the electric potential V(x) as a 
function of position x along the upper part of the section, through 
capacitors 1, 2, and 3. Capacitor 3 has a capacitance of 0.80 JLF. 
What are the capacitances of (a) capacitor 1 and (b) capacitor 2? 

In Fig. 25-34, the battery has potential difference V = 

9.0 V, C2 = 3.0 JLF, C4 = 4.0 JLF, and all the capacitors are initially 
uncharged. When switch S is closed, a total charge of 12 JLC passes 
through point a and a total charge of 8.0 JLC passes through point 
b. What are (a) CI and (b) C3? 

Fig. 25-34 Problem 19. 

Figure 25-35 shows a 
variable "air gap" capacitor 
for manual tuning. Alternate 
plates are connected together; 
one group of plates is fixed in 
position, and the other group 
is capable of rotation. Consider 
a capacitor of n = 8 plates of 
alternating polarity, each plate 
having area A = 1.25 cm2 and 

Fig. 25-35 Problem 20. 

separated from adjacent plates by distance d = 3.40 mm. What is 
the maximum capacitance of the device? 

SSM WWW In Fig. 25-36, the capacitances are CI = 1.0 JLF 
and C2 = 3.0 JLF, and both capacitors 
are charged to a potential difference 
of V = 100 V but with opposite po­
larity as shown. Switches SI and S2 
are now closed. (a) What is now the 
potential difference between points 
a and b? What now is the charge on Fig. 25-36 Problem 21. 
capacitor (b) 1 and (c) 2? 

In Fig. 25-37, V = 10 V, CI = 
10 JLF, and C2 = C3 = 20 JLF. Switch S 
is first thrown to the left side until ca­
pacitor 1 reaches equilibrium. Then 
the switch is thrown to the right. 
When equilibrium is again reached, 
how much charge is on capacitor I? 

The capacitors in Fig. 25-38 are 
initially uncharged. The capacitances 
are CI = 4.0 JLF, C2 = 8.0 JLF, and C3 

= 12 JLF, and the battery's potential 
difference is V = 12 V. When switch S 

Fig. 25-37 Problem 22. 

is closed, how many electrons travel 
through (a) point a, (b) point b, (c) Fig.25-38 Problem 23. 
point c, and (d) point d? In the figure, 
do the electrons travel up or down through (e) point b and (f) point c? 

Figure 25-39 represents two air-filled cylindrical capacitors 
connected in series across a battery with potential V = 10 V. 
Capacitor 1 has an inner plate radius of 5.0 mm, an outer plate radius 
of 1.5 cm, and a length of 5.0 cm. Capacitor 2 has an inner plate radius 

of 2.5 mm, an outer plate radius of 1.0 cm, 1 ; .~J 

and a length of 9.0 cm. The outer plate of ca- .' .. · ... '.1·.,'.'. CI 
pacitor 2 is a conducting organic membrane V T 
that can be stretched, and the capacitor can _ ~'J:: C2 

be inflated to increase the plate separation. I....-___ ..J 

If the outer plate radius is increased to 2.5 
cm by inflation, (a) how many electrons 
move through point P and (b) do they move 
toward or away from the battery? 

In Fig. 25-40, two parallel-plate ca­
pacitors (with air between the plates) are 
connected to a battery. Capacitor 1 has a 
plate area of 1.5 cm2 and an electric field 
(between its plates) of magnitude 2000 Vim. 
Capacitor 2 has a plate area of 0.70 cm2 and 

1 
T 

Fig. 25-39 

Problem 24. 

C J" 1,,1" 

Fig. 25-40 

Problem 25. 

an electric field of magnitude 1500 Vim. What is the total charge on 
the two capacitors? 

Capacitor 3 in Fig. 25-41a is a variable capacitor (its capaci­
tance C3 can be varied). Figure 25-41b gives the electric potential 
VI across capacitor 1 versus C3• The horizontal scale is set by C3s = 

12.0 JLF. Electric potential VI approaches an asymptote of 10 V as 
C3 ----> 00. What are (a) the electric potential V across the battery, (b) 
Cj,and (c) C2? 

C3 (/IF) 

(a) (b) 

Fig. 25-41 Problem 26. 

Figure 25-42 shows a 
12.0 V battery and four 
uncharged capacitors of capaci­
tances CI = 1.00 JLF, C2 = 2.00 
JLF, C3 = 3.00 JLF, and C4 = 4.00 
JLF. If only switch S] is 
closed, what is the charge on (a) 
capacitor 1, (b) capacitor 2, ( c) 
capacitor 3, and (d) capacitor 4? 
If both switches are closed, what 
is the charge on (e) capacitor 1, 
(f) capacitor 2, (g) capacitor 3, 
and (h) capacitor 4? 

Figure 25-43 dis­
plays a 12.0 V battery and 3 
uncharged capacitors of capaci­
tances C1 = 4.00 JLF, C2 = 6.00 
JLF, and C3 = 3.00 JLF. The switch 
is thrown to the left side until ca­
pacitor 1 is fully charged. Then 

B 

Fig. 25-42 Problem 27. 

Fig 25 43 Problem 28. the switch is thrown to the right. .-
What is the final charge on (a) capacitor 1, (b) capacitor 2, and (c) ca­
pacitor3? 



Energy Stored in an Electric Field 
What capacitance is required to store an energy of 10 kW· h 

at a potential difference of 1000 V? 

How much energy is stored in 1.00 m3 of air due to the "fair 
weather" electric field of magnitude 150 Vim? 

SSM A 2.0 p,F capacitor and a 4.0 p,F capacitor are con­
nected in parallel across a 300 V potential difference. Calculate the 
total energy stored in the capacitors. 

A parallel-plate air-filled capacitor having area 40 cm2 and 
plate spacing 1.0 mm is charged to a potential difference of 600 V. 
Find (a) the capacitance, (b) the magnitude of the charge on each 
plate, (c) the stored energy, (d) the electric field between the plates, 
and (e) the energy density between the plates. 

A charged isolated metal sphere of diameter 10 cm has a po­
tential of 8000 V relative to V = 0 at infinity. Calculate the energy 
density in the electric field near the surface of the sphere. 

In Fig. 25-28, a potential difference V = 100 V is applied 
across a capacitor arrangement with capacitances C, = 10.0 p,F, 
C2 = 5.00 p,F, and C3 = 4.00 p,F. What are (a) charge q3, (b) poten­
tial difference V3, and (c) stored energy V3 for capacitor 3, (d) q" 
(e) V" and (f) V, for capacitor 1, and (g) qb (h) Vb and (i) V2 for 
capacitor 2? 

Assume that a stationary electron is a point of charge. What 
is the energy density it of its electric field at radial distances (a) r = 

1.00 mm, (b) r = 1.00 p,m, (c) r = 1.00 nm, and (d) r = 1.00 pm? 
(e) What is II in the limit as r ~ O? 

As a safety engineer, 
you must evaluate the practice of 
storing flammable conducting liq­
uids in nonconducting containers. 
The company supplying a certain liq­
uid has been using a squat, cylindri­

£Venting port 

---- -+ 
- - - - + 

+ + + + ++ 

cal plastic container of radius r = Fig. 25-44 Problem 36. 
0.20 m and filling it to height h = 10 
cm, which is not the container's full interior height (Fig. 25-44). 
Your investigation reveals that during handling at the company, 
the exterior surface of the container commonly acquires a nega­
tive charge density of magnitude 2.0 p,C/m2 (approximately uni­
form). Because the liquid is a conducting material, the charge on 
the container induces charge separation within the liquid. (a) 
How much negative charge is induced in the center of the liq­
uid's bulk? (b) Assume the capacitance of the central portion of 
the liquid relative to ground is 35 pF. What is the potential en­
ergy associated with the negative charge in that effective capaci­
tor? (c) If a spark occurs between the ground and the central 
portion of the liquid (through the venting port), the potential en­
ergy can be fed into the spark. The minimum spark energy 
needed to ignite the liquid is 10 mJ. In this situation, can a spark 
ignite the liquid? 

SSM IlW WWW The parallel plates in a capacitor, with a 
plate area of 8.50 cm2 and an air-filled separation of 3.00 mm, are 
charged by a 6.00 V battery. They are then disconnected from the 
battery and pulled apart (without discharge) to a separation of 8.00 
mm. Neglecting fringing, find (a) the potential difference between 
the plates, (b) the initial stored energy, (c) the final stored energy, 
and (d) the work required to separate the plates. 

In Fig. 25-29, a potential difference V = 100 V is applied 
across a capacitor arrangement with capacitances C, = 10.0 p,F, 
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C2 = 5.00 p,F, and C3 = 15.0 p,F. What are (a) charge q3, (b) poten­
tial difference V3, and (c) stored energy V3 for capacitor 3, (d) q" 
(e) V" and (f) V, for capacitor 1, and (g) q2, (h) V2, and (i) V2 for 
capacitor 2? 

In Fig. 25-45, C, = 10.0 p,F, C2 = 20.0 p,F, and C3 = 25.0 
p,F. If no capacitor can with- ----1! ! ! I I 
stand a potential difference of A~ 1---1 1---1 :---.B 

more than 100 V without fail- C, C2 C3 

ure, what are (a) the magnitude Fig.25-45 Problem 39. 
of the maximum potential dif-
ference that can exist between points A and Band (b) the maximum 
energy that can be stored in the three-capacitor arrangement? 

Capacitor with a Dielectric 
An air-filled parallel-plate capacitor has a capacitance of 1.3 

pF. The separation of the plates is doubled, and wax is inserted be­
tween them. The new capacitance is 2.6 pF. Find the dielectric con­
stant of the wax. 

SSM A coaxial cable used in a transmission line has an inner 
radius of 0.10 mm and an outer radius of 0.60 mm. Calculate the 
capacitance per meter for the cable. Assume that the space be­
tween the conductors is filled with polystyrene. 

A parallel-plate air-filled capacitor has a capacitance of 50 
pF. (a) If each of its plates has an area of 0.35 m2

, what is the sepa­
ration? (b) If the region between the plates is now filled with mate­
rial having K = 5.6, what is the capacitance? 

Given a 7.4 pF air-filled capacitor, you are asked to convert 
it to a capacitor that can store up to 7.4 p,J with a maximum po­
tential difference of 652 V. Which dielectric in Table 25-1 should 
you use to fill the gap in the capacitor if you do not allow for a 
margin of error? 

You are asked to construct a capacitor having a capacitance 
near 1 nF and a breakdown potential in excess of 10 000 V. You 
think of using the sides of a tall Pyrex drinking glass as a dielec­
tric, lining the inside and outside curved surfaces with aluminum 
foil to act as the plates. The glass is 15 cm tall with an inner radius 
of 3.6 cm and an outer radius of 3.8 cm. What are the (a) capaci­
tance and (b) breakdown potential of this capacitor? 

A certain parallel-plate capacitor is filled with a dielectric 
for which I( = 5.5. The area of each plate is 0.034 m2, and the 
plates are separated by 2.0 mm. The capacitor will fail (short out 
and burn up) if the electric field between the plates exceeds 
200 kN/C. What is the maximum energy that can be stored in the 
capacitor? 

In Fig. 25-46, how much charge 
is stored on the parallel-plate capaci­
tors by the 12.0 V battery? One is 
filled with air, and the other is filled 
with a dielectric for which I( = 3.00; 
both capacitors have a plate area of 
5.00 X 10-3 m2 and a plate separation 
of 2.00 mm. 

J 
T 

Fig. 25-46 Problem 46. 

SSM IlW A certain substance has a dielectric constant of 
2.8 and a dielectric strength of 18 MV/m. If it is used as the dielec­
tric material in a parallel-plate capacitor, what minimum area 
should the plates of the capacitor have to obtain a capacitance of 
7.0 X 10-2 p,F and to ensure that the capacitor will be able to with­
stand a potential difference of 4.0 k V? 
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Figure 25-47 shows a paral­
lel-plate capacitor with a plate 
area A = 5.56 cm2 and separation 
d = 5.56 mm. The left half of the 
gap is filled with material of dielec­
tric constant Kj = 7.00; the right half 
is filled with material of dielectric 
constant K2 = 12.0. What is the ca­
pacitance? 

Fig. 25-47 Problem 48. 

··49 Figure 25-48 shows a parallel-plate ca­
pacitor with a plate area A = 7.89 cm2 and 
plate separation d = 4.62 mm. The top half 
of the gap is filled with material of dielectric 
constant Kj = 11.0; the bottom half is filled 
with material of dielectric constant K2 = 

12.0. What is the capacitance? 

Figure 25-49 shows a par­
allel-plate capacitor of plate area 
A = 10.5 cm2 and plate separation 
2d = 7.12 mm. The left half of the 
gap is filled with material of dielec­
tric constant Kj = 21.0; the top of the 
right half is filled with material of 
dielectric constant K2 = 42.0; the 

Fig. 25-48 

Problem 49. 

d 

bottom of the right half is filled with Fig. 25-49 Problem 50. 
material of dielectric constant K3 = 

58.0. What is the capacitance? 

25-8 Dielectrics and Gauss' Law 
·51 SSM www A parallel-plate capacitor has a capacitance of 
100 pF, a plate area of 100 cm2, and a mica dielectric (K = 5.4) com­
pletely filling the space between the plates. At 50 V potential dif­
ference, calculate (a) the electric field magnitude E in the mica, (b) 
the magnitude of the free charge on the plates, and (c) the magni­
tude of the induced surface charge on the mica. 

For the arrangement of Fig. 25-17, suppose that the battery 
remains connected while the dielectric slab is being introduced. 
Calculate (a) the capacitance, (b) the charge on the capacitor 
plates, (c) the electric field in the gap, and (d) the electric field in 
the slab, after the slab is in place. 

A parallel-plate capacitor has plates of area 0.12 m2 and a 
separation of 1.2 cm. A battery charges the plates to a potential dif­
ference of 120 V and is then disconnected. A dielectric slab of thick­
ness 4.0 mm and dielectric constant 4.8 is then placed symmetrically 
between the plates. (a) What is the capacitance before the slab is in­
serted? (b) What is the capacitance with the slab in place? What is 
the free charge q (c) before and (d) after the slab is inserted? What 
is the magnitude of the electric field (e) in the space between the 
plates and dielectric and (f) in the dielectric itself? (g) With the slab 
in place, what is the potential difference across the plates? (h) How 
much external work is involved in inserting the slab? 

Two parallel plates of area 100 cm2 are given charges of 
equal magnitudes 8.9 X 10-7 C but opposite signs. The electric field 
within the dielectric material filling the space between the plates is 
1.4 X 106 Vim. (a) Calculate the dielectric constant of the material. 
(b) Determine the magnitude of the charge induced on each di­
electric surface. 

The space between two concentric conducting spherical 
shells of radii b = 1.70 cm and a = 1.20 cm is filled with a sub-

stance of dielectric constant K = 23.5. A po­
tential difference V = 73.0 V is applied 
across the inner and outer shells. Determine 
(a) the capacitance of the device, (b) the 
free charge q on the inner shell, and (c) the 
charge q' induced along the surface of the 
inner shell. 

Additional Problems 
56 In Fig. 25-50, the battery potential differ­
ence V is 10.0 V and each of the seven capaci­
tors has capacitance 10.0 JLF. What is the 
charge on (a) capacitor 1 and (b) capacitor 2? 

51 SSM In Fig. 25-51, V = 9.0 V, C1 = 
C2 = 30 JLF, and C3 = C4 = 15 JLF. What 
is the charge on capacitor 4? 

The capacitances of the four ca­
pacitors shown in Fig. 25-52 are given in 
terms of a certain quantity C. (a) If C = 

50 JLF, what is the equivalent capaci­
tance between points A and B? (Hint: 

ki]~ '.::C, 
- + 

"'N,' V 

Fig. 25-50 

Problem 56. 

Fig. 25-51 

Problem 57. 

First imagine that a battery is connected between those two points; 
then reduce the circuit to an equivalent capacitance.) (b) Repeat 
for points A and D. 

C 

A_I i wI" 
2C_._~ 

.1. 
1=4C 

Bo I ! j--l--D 
6C 

Fig. 25-52 Problem 58. 

59 In Fig. 25-53, V = 12 V, C1 = C4 = 
2.0 JLF, C2 = 4.0 JLF, and C3 = 1.0 JLF. 
What is the charge on capacitor 4? 

60 The chocolate crumb mys­
tery. This story begins with Problem 60 
in Chapter 23. As part of the investiga­
tion of the biscuit factory explosion, the 
electric potentials of the workers were 
measured as they emptied sacks of 
chocolate crumb powder into the load­
ing bin, stirring up a cloud of the pow-

Fig. 25-53 

Problem 59. 

der around themselves. Each worker had an electric potential of 
about 7.0 kV relative to the ground, which was taken as zero poten­
tial. (a) Assuming that each worker was effectively a capacitor with a 
typical capacitance of 200 pF, find the energy stored in that effective 
capacitor. If a single spark between the worker and any conducting 
object connected to the ground neutralized the worker, that energy 
would be transferred to the spark. According to measurements, a 
spark that could ignite a cloud of chocolate crumb powder, and thus 
set off an explosion, had to have an energy of at least 150 mJ. (b) 
Could a spark from a worker have set off an explosion in the cloud 
of powder in the loading bin? (The story continues with Problem 
60 in Chapter 26.) 

Figure 25-54 shows capacitor 1 (C j = 8.00 JLF), capacitor 2 
(C2 = 6.00 JLF), and capacitor 3 (C3 = 8.00 JLF) connected to a 12.0 
V battery. When switch S is closed so as to connect uncharged ca-



pacitor 4 (C4 = 6.00 ttF), (a) 
how much charge passes 
through point P from the bat­
tery and (b) how much charge 
shows up on capacitor 4? (c) 
Explain the discrepancy in 
those two results. 

Fig. 25-54 Problem 61. 

Tho air-filled, parallel-plate capacitors are to be connected to a 
10 V battery, first individually, then in series, and then in parallel. In 
those arrangements, the energy stored in the capacitors turns out to 
be, listed least to greatest: 75 p.J, 100 p.J, 300 p.J, and 400 p.J. Of the 
two capacitors, what is the (a) smaller and (b) greater capacitance? 

Tho parallel-plate capacitors, 6.0 ttF each, are connected in 
series to a 10 V battery. One of the capacitors is then squeezed so 
that its plate separation is halved. Because of the squeezing, (a) 
how much additional charge is transferred to the capacitors by the 
battery and (b) what is the increase in the total charge stored on 
the capacitors (the charge on the posi­
tive plate of one capacitor plus the 
charge on the positive plate of the 
other capacitor)? 

64 In Fig. 25-55, V = 12 V, C, = 
Cs = C6 = 6.0 ttF, and Cz = C3 = C4 = 
4.0 ttF. What are (a) the net charge 
stored on the capacitors and (b) the 
charge on capacitor 4? 

65 SSM In Fig. 25-56, the parallel- Fig. 25-55 Problem 64. 
plate capacitor of plate area 2.00 X 

lO-z mZ is filled with two dielectric slabs, 1 
each with thickness 2.00 mm. One slab has 
dielectric constant 3.00, and the other, T V 
4.00. How much charge does the 7.00 V 
battery store on the capacitor? 

66 A cylindrical capacitor has radii a 
and b as in Fig. 25-6. Show that half the 
stored electric potential energy lies within 
a cylinder whose radius is r = YfiE. 

Fig. 25-56 

Problem 65. 

67 A capacitor of capacitance C, = 6.00 ttF is connected in series 
with a capacitor of capacitance Cz = 4.00 ttF, and a potential 
difference of 200 V is applied across the pair. (a) Calculate the 
equivalent capacitance. What are (b) charge q, and (c) potential 
difference V, on capacitor 1 and (d) qz and (e) Vz on capacitor 2? 

Repeat Problem 67 for the same two capacitors but with them 
now connected in parallel. 

A certain capacitor is charged 
to a potential difference V. If you 
wish to increase its stored energy 
by 10%, by what percentage should 
you increase V? 

A slab of copper of thickness 
b = 2.00 mm is thrust into a paral­
lel-plate capacitor of plate area A = 

2.40 cm2 and plate separation d = 

5.00 mm, as shown in Fig. 25-57; the 
Fig. 25-57 Problems 70 

and 71. 
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slab is exactly halfway between the plates. (a) What is the capaci­
tance after the slab is introduced? (b) If a charge q = 3.40 ttC is 
maintained on the plates, what is the ratio of the stored energy be­
fore to that after the slab is inserted? (c) How much work is done 
on the slab as it is inserted? (d) Is the slab sucked in or must it be 
pushed in? 

Repeat Problem 70, assuming that a potential difference V = 
85.0 V, rather than the charge, is held constant. 

A potential difference of 300 V is applied to a series 
connection of two capacitors of capacitances C, = 2.00 ttF and 
C2 = 8.00 ttF. What are (a) charge q, and (b) potential difference 
V, on capacitor 1 and (c) qz and (d) Vz on capacitor 2? The charged 
capacitors are then disconnected from each other and from the 
battery. Then the capacitors are reconnected with plates of the 
same signs wired together (the battery is not used). What now are 
(e) q" (f) V" (g) qz, and (h) V2? Suppose, instead, the capacitors 
charged in part (a) are reconnected with plates of opposite signs 
wired together. What now are (i) q" (D V" (k) qz, and (1) V 2? 

73 Figure 25-58 shows a four-ca­
pacitor arrangement that is con­
nected to a larger circuit at points A 
and B. The capacitances are C, = 10 
ttF and C2 = C3 = C4 = 20 ttF. The 
charge on capacitor 1 is 30 ttc. What 
is the magnitude of the potential 
difference VA - VB? 

Fig. 25-58 Problem 73. 

74 You have two plates of copper, a sheet of mica (thickness = 
0.10 mm, K = 5.4), a sheet of glass (thickness = 2.0 mm, K = 7.0), 
and a slab of paraffin (thickness = 1.0 cm, K = 2.0). To make a par­
allel-plate capacitor with the largest C, which sheet should you 
place between the copper plates? 

75 A capacitor of unknown capacitance C is charged to 100 V and 
connected across an initially uncharged 60 ttF capacitor. If the final 
potential difference across the 60 ttF capacitor is 40 V, what is C? 

76 A 10 V battery is connected to a series of n capacitors, each of 
capacitance 2.0 ttF. If the total stored energy is 25 p.J, what is n? 

~~ateS~~pa~~:;·~5-;:d t~o ~r~a~~~~ ~,J,,__ cJ~_~ 1 
nected in parallel across a 600 V bat- 'Bl'---' '-~I :1' T-
tery. Each plate has area 80.0 cmz; . IL-. ___ ....I.L.-__ ---J_ 

the plate separations are 3.00 mm. Fig.25-59 Problem 77. 
Capacitor A is filled with air; capaci-
tor B is filled with a dielectric of dielectric constant I( = 2.60. Find 
the magnitude of the electric field within (a) the dielectric of ca­
pacitor Band (b) the air of capacitor A. What are the free charge 
densities (1" on the higher-potential plate of (c) capacitor A and (d) 
capacitor B? (e) What is the induced charge density (1"' on the top 
surface of the dielectric? 

You have many 2.0 ttF capacitors, each capable of with­
standing 200 V without undergoing electrical breakdown (in 
which they conduct charge instead of storing it). How would you 
assemble a combination having an equivalent capacitance of (a) 
0.40 ttF and (b) 1.2 ttF, each combination capable of withstanding 
1000 V? 
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In the last five chapters we discussed electrostatics-the physics of 
charges. In this and the next chapter, we discuss the physics of electric 

curl'ents- that is, charges in motion. 
Examples of electric currents abound and involve many professions. Mete­

orologists are concerned with lightning and with the less dramatic slow flow of 
charge through the atmosphere. Biologists, physiologists, and engineers working 
in medical technology are concerned with the nerve currents that control muscles 
and especially with how those currents can be reestablished after spinal cord 
injuries. Electrical engineers are concerned with countless electrical systems, such 
as power systems, lightning protection systems, information storage systems, and 
music systems. Space engineers monitor and study the flow of charged particles 
from our Sun because that flow can wipe out telecommunication systems in orbit 
and even power transmission systems on the ground. 

In this chapter we discuss the basic physics of electric currents and why they 
can be established in some materials but not in others. We begin with the mean­
ing of electric current. 

Electric Current 
Although an electric current is a stream of moving charges, not all moving 
charges constitute an electric current. If there is to be an electric current through 
a given surface, there must be a net flow of charge through that surface. Two 
examples clarify our meaning. 

1. The free electrons (conduction electrons) in an isolated length of copper wire 
are in random motion at speeds of the order of 106 m/s. If you pass a hypothet­
ical plane through such a wire, conduction electrons pass through it in both 
directions at the rate of many billions per second-but there is no net trans­
port of charge and thus no current through the wire. However, if you connect 
the ends of the wire to a battery, you slightly bias the flow in one direction, 
with the result that there now is a net transport of charge and thus an electric 
current through the wire. 

2. The flow of water through a garden hose represents the directed flow of posi­
tive charge (the protons in the water molecules) at a rate of perhaps several 
million coulombs per second. There is no net transport of charge, however, 
because there is a parallel flow of negative charge (the electrons in the water 
molecules) of exactly the same amount moving in exactly the same direction. 

In this chapter we restrict ourselves largely to the study-within the 
framework of classical physics-of steady currents of conduction electrons 
moving through metallic conductors such as copper wires. 



As Fig. 26-1a reminds us, any isolated conducting loop-regardless of 
whether it has an excess charge-is all at the same potential. No electric field can 
exist within it or along its surface. Although conduction electrons are available, 
no net electric force acts on them and thus there is no current. 

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no 
longer at a single potential. Electric fields act inside the material making up 
the loop, exerting forces on the conduction electrons, causing them to move 
and thus establishing a current. After a very short time, the electron flow 
reaches a constant value and the current is in its steady state (it does not vary 
with time). 

Figure 26-2 shows a section of a conductor, part of a conducting loop in 
which current has been established. If charge dq passes through a hypothetical 
plane (such as aa' ) in time dt, then the current i through that plane is defined as 

. dq 
1=-

dt 
(definition of current). (26-1) 

We can find the charge that passes through the plane in a time interval 
extending from 0 to t by integration: 

q = J dq = L i dt, (26-2) 

in which the current i may vary with time. 

b 

Fig. 26-2 The current i ~ 
through the conductor has 
the same value at planes 
aa' , bb' , and ee'. 

The current is the same in 
any cross section. 

Under steady-state conditions, the current is the same for planes aa' , bb' , and 
ee' and indeed for all planes that pass completely through the conductor, no 
matter what their location or orientation. This follows from the fact that charge is 
conserved. Under the steady-state conditions assumed here, an electron must 
pass through plane aa' for every electron that passes through plane ee'. In the 
same way, if we have a steady flow of water through a garden hose, a drop of 
water must leave the nozzle for every drop that enters the hose at the other end. 
The amount of water in the hose is a conserved quantity. 

The SI unit for current is the coulomb per second, or the ampere (A), which 
is an SI base unit: 

1 ampere = 1 A = 1 coulomb per second = 1 Cis. 

The formal definition of the ampere is discussed in Chapter 29. 
Current, as defined by Eq. 26-1, is a scalar because both charge and time in 

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with 
an arrow to indicate that charge is moving. Such arrows are not vectors, however, 
and they do not require vector addition. Figure 26-3a shows a conductor with 
current io splitting at a junction into two branches. Because charge is conserved, 
the magnitudes of the currents in the branches must add to yield the magnitude 
of the current in the original conductor, so that 

(26-3) 

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change 
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow 
along a conductor, not a direction in space. 
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(a) 

(b) 

Fig. 26-1 (a) A loop of copper in 
electrostatic equilibrium. The entire 
loop is at a single potential, and the 
electric field is zero at all points in­
side the copper. (b) Adding a battery 
imposes an electric potential differ­
ence between the ends of the loop 
that are connected to the terminals 
of the battery. The battery thus pro­
duces an electric field within the 
loop, from terminal to terminal, and 
the field causes charges to move 
around the loop. This movement of 
charges is a current i. 

The current into the 
junction must equal 
the current out 
(charge is conserved). 

io -
(a) 

Fig. 26-3 The relation io = i j + i2 
is true at junction a no matter what the 
orientation in space of the three wires. 
Currents are scalars, not vectors. 
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In Fig. 26-1b we drew the current arrows in the direction in which positively 
charged particles would be forced to move through the loop by the electric field. 
Such positive charge carriers, as they are often called, would move away from the 
positive battery terminal and toward the negative terminal. Actually, the charge 
carriers in the copper loop of Fig. 26-1b are electrons and thus are negatively 
charged. The electric field forces them to move in the direction opposite the 
current arrows, from the negative terminal to the positive terminal. For historical 
reasons, however, we use the following convention: 

A current arrow is drawn in the direction in which positive charge carriers would move, 
even if the actual charge carriers are negative and move in the opposite direction. 

We can use this convention because in most situations, the assumed motion 
of positive charge carriers in one direction has the same effect as the actual 
motion of negative charge carriers in the opposite direction. (When the effect is 
not the same, we shall drop the convention and describe the actual motion.) 

CHECKPOINT 1 

The figure here shows a portion of a circuit. 
What are the magnitude and direction of the 
current i in the lower right-hand wire? 

Current is the rate at which charge passes a point 

-IA 

2A - 2A-

2A -

Water flows through a garden hose at a volume flow rate dVldt 
of 450 cm3/s. What is the current of negative charge? 

We can express the rate dNldt in terms of the given vol­
ume flow rate dVldt by first writing 

The current i of negative charge is due to the electrons in the wa­
ter molecules moving through the hose. The current is the rate at 
which that negative charge passes through any plane that cuts 
completely across the hose. 

Calculations: We can write the current in terms of the 
number of molecules that pass through such a plane per sec­
ondas 

(

charge ) (electrons) (mOleCUles) 
per per per 

electron molecule second 

or i = (e)(10) ~~. 
We substitute 10 electrons per molecule because a water 
(H20) molecule contains 8 electrons in the single oxygen atom 
and 1 electron in each of the two hydrogen atoms. 

(

mOleCUles) (mOleCUles) ( moles. ) 
per = per per umt 

second mole mass 

(

mass ) (VOlume) 
X per unit per . 

volume second 

"Molecules per mole" is Avogadro's number N A- "Moles per 
unit mass" is the inverse of the mass per mole, which is the 
molar mass M of water. "Mass per unit volume" is the 
(mass) density Pmass of water. The volume per second is the 
volume flow rate dVldt. Thus, we have 

~~ = NA( ~ )Pmass( ~~) = NA;;ass ~~. 
Substituting this into the equation for i, we find 

. - 10 N M-1 dV 
l - e A Pmass dt' 
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We know that Avogadro's number N A is 6.02 X 1023 mole­
cules/mol, or 6.02 X 1023 mol-I, and from Table 15-1 we 
know that the density of water Pmass under normal condi­
tions is 1000 kg/m3. We can get the molar mass of water 
from the molar masses listed in Appendix F (in grams per 
mole): We add the molar mass of oxygen (16 g/mol) to 
twice the molar mass of hydrogen (1 g/mol), obtaining 18 
g/mol = 0.018 kg/mol. So, the current of negative charge 
due to the electrons in the water is 

i = (10)(1.6 X 10 -19 C)(6.02 X 1023 mol-I) 

X (0.018 kg/mol)-1(1000 kg/m3)(450 X 10-6 m3/s) 

2.41 X 107 Cis = 2.41 X 107 A 

24.1 MA. (Answer) 

This current of negative charge is exactly compensated by a 
current of positive charge associated with the nuclei of the 
three atoms that make up the water molecule. Thus, there is 
no net flow of charge through the hose. 

~FfrIfs Additional examples, video, and practice available at WileyPLUS 

Current Density 
Sometimes we are interested in the current i in a particular conductor. At other 
times we take a localized view and study the flow of charge through a cross sec­
tion of the conductor at a particular point. To describe this flow, we can use the 
cunent density 7, which has the same direction as the velocity of the moving 
charges if they are positive and the opposite direction if they are negative. For 
each element of the cross section, the magnitude 1 is equal to the current per unit 
area through that element. We can write the amount of current through the ele­
ment as 7· dA, where dA is the area vector of the element, perpendicular to the 
element. The total current through the surface is then 

i = J 7·dA. (26-4) 

If the current is uniform across the surface and parallel to dA, then 7 is also uni­
form and parallel to dA. Then Eq. 26-4 becomes 

so 

i = J 1 dA = 1 J dA = lA, 

i 
l= A' (26-5) 

where A is the total area of the surface. From Eq. 26-4 or 26-5 we see that the SI 
unit for current density is the ampere per square meter (A/m2). 

In Chapter 22 we saw that we can represent an electric field with electric 
field lines. Figure 26-4 shows how current density can be represented with a 
similar set of lines, which we can call streamlines. The current, which is toward 
the right in Fig. 26-4, makes a transition from the wider conductor at the left to 
the narrower conductor at the right. Because charge is conserved during the 
transition, the amount of charge and thus the amount of current cannot 
change. However, the current density does change-it is greater in the narrower 
conductor. The spacing of the streamlines suggests this increase in current den­
sity; streamlines that are closer together imply greater current density. 

When a conductor does not have a current through it, its conduction electrons 
move randomly, with no net motion in any direction. When the conductor does 
have a current through it, these electrons actually still move randomly, but now 

Fig. 26-4 Streamlines representing 
current density in the flow of charge 
through a constricted conductor. 
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Current is said to be due to positive charges that 
are propelled by the electric field. 

Fig. 26-5 Positive charge carri­
ers drift at speed v d in the direc­
tion of the applied electric field E. 
By convention, the direction of 
the current density 7 and the 
sense of the current arrow are 
drawn in that same direction. 

~ 

<l!----E 
~ 

J 

they tend to drift with a drift speed v d in the direction opposite that of the applied 
electric field that causes the current. The drift speed is tiny compared with the 
speeds in the random motion. For example, in the copper conductors of house­
hold wiring, electron drift speeds are perhaps 10 -5 or 10 -4 mis, whereas the 
random-motion speeds are around 106 m/s. 

We can use Fig. 26-5 to relate the drift speed v d of the conduction electrons 
in a current through a wire to the magnitude J of the current density in the 
wire. For convenience, Fig. 26-5 shows the equivalent drift of positive charge 
carriers in the direction of the applied electric field E. Let us assume that these 
charge carriers all move with the same drift speed v d and that the current den­
sity J is uniform across the wire's cross-sectional area A. The number of charge 
carriers in a length L of the wire is nAL, where n is the number of carriers per 
unit volume. The total charge of the carriers in the length L, each with charge 
e, is then 

q = (nAL)e. 

Because the carriers all move along the wire with speed Vd, this total charge 
moves through any cross section of the wire in the time interval 

L 
t=-. 

Vd 

Equation 26-1 tells us that the current i is the time rate of transfer of charge 
across a cross section, so here we have 

. q nALe 
I = - = -- = nAev d' (26-6) 

t LlVd 

Solving for Vd and recalling Eq. 26-5 (J = ilA) , we obtain 

i J 
Vd=--=-

nAe ne 
or, extended to vector form, 

7 = (ne)vd' (26-7) 

Here the product ne, whose SI unit is the coulomb per cubic meter (e/m3) , is the 
carrier charge density. For positive carriers, ne is positive and Eq. 26-7 predicts 
that 7 and Vd have the same direction. For negative carriers, ne is negative and 7 
and Vd have opposite directions. 

_CHECKPOINT 2 

The figure shows conduction electrons moving left­
ward in a wire. Are the following leftward or right­
ward: (a) the current i, (b) the current density 7, (c) 
the electric field E in the wire? 
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Current density, uniform and nonuniform 

(a) The current density in a cylindrical wire of radius 
R = 2.0 mm is uniform across a cross section of the wire and is 
J = 2.0 X 105 Nm2

• What is the current through the outer por­
tion of the wire between radial distances RI2 and R (Fig. 26-6a)? 

Because the current density is uniform across the cross section, 
the current density J, the current i, and the cross-sectional area 
A are related by Eq. 26-5 (J = iIA). 

Calculations: We want only the current through a reduced 
cross-sectional area A' of the wire (rather than the entire 
area), where 

So, we rewrite Eq. 26-5 as 

i =JA ' 

and then substitute the data to find 

i = (2.0 X 10 5 A/m2)(9.424 X 10-6 m2) 

= 1.9 A. (Answer) 

(b) Suppose, instead, that the current density through a 
cross section varies with radial distance r as J = ar2, in which 
a = 3.0 X 1011 A/m4 and r is in meters. What now is the cur­
rent through the same outer portion of the wire? 

Because the current density is not uniform across a cross 
section of the wire, we must resort to Eq. 26-4 (i = J 7· £{) 
and integrate the current density over the portion of the 
wire from r = RI2 to r = R. 

We want the current in the area 
between these two radii. 

If the current is nonuniform, we start with a 
ring that is so thin that we can approximate 
the current density as being uniform within it. 

Its area is the product of the 
circumference and the width. 

(a) 

Fig. 26·6 (a) Cross section of a wire of 
radius R. If the current density is uniform, 
the current is just the product of the cur­
rent density and the area. (b) - (e) If the 
current is nonuniform, we must first find 
the current through a thin ring and then 
sum (via integration) the currents in all 
such rings in the given area. 

(b) 

Our job is to sum the current in 
all rings from this smallest one ... 

(d) 

(c) 

The current within the ring is 
the product of the current density 
and the ring's area. 

... to this largest one. 

/----."'" 
/ , 

I 
I \ 
1 J 
\ I 
\ / 

" / '--_/ 

(e) 
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Calculations: The current density vector 7 (along the 
wire's length) and the differential area vector dA (per­
pendicular to a cross section of the wire) have the same di­
rection. Thus, 

7· dA = I dA cos 0 = IdA. 

We need to replace the differential area dA with some­
thing we can actually integrate between the limits r = R/2 
and r = R. The simplest replacement (because I is given as a 
function of r) is the area 27Tr dr of a thin ring of circumfer­
ence 27Tr and width dr (Fig. 26-6b). We can then integrate 
with r as the variable of integration. Equation 26-4 then 

gives us 

i= J7.dA= J IdA 

= (R ar2 2m' dr = 27Ta (R r3 dr 
JRl2 JRI2 

= 27Ta [ ~ I/2 = ~a [R4 - ~: J = ~~ 7TaR4 

15 = 32 7T(3.0 X 10 11 A/m4)(0.0020 m)4 = 7.1 A. 

(Answer) 

In a current, the conduction electrons move very slowly 

What is the drift speed of the conduction electrons in a cop­
per wire with radius r = 900 /Lm when it has a uniform cur­
rent i = 17 mA? Assume that each copper atom contributes 
one conduction electron to the current and that the current 
density is uniform across the wire's cross section. 

1. The drift speed v d is related to the current density 7 and 
the number n of conduction electrons per unit volume 
according to Eq. 26-7, which we can write as I = nev d' 

2. Because the current density is uniform, its magnitude I is 
related to the given current i and wire size by Eq. 26-5 
(I = i/A, where A is the cross-sectional area of the wire). 

3. Because we assume one conduction electron per atom, 
the number n of conduction electrons per unit volume is 
the same as the number of atoms per unit volume. 

Calculations: Let us start with the third idea by writing 

(
atoms) (atoms) (moles ) ( mass ) 

n = per unit = per per unit per unit . 
volume mole mass volume 

The number of atoms per mole is just Avogadro's number 
NA (= 6.02 X 1023 mol-1). Moles per unit mass is the inverse 
of the mass per mole, which here is the molar mass M of 
copper. The mass per unit volume is the (mass) density Pmass 
of copper. Thus, 

( 
1 ) NAPmass 

n = NA M Pmass = M . 

Taking copper's molar mass M and density Pmass from 
Appendix F, we then have (with some conversions of units) 

or 

(6.02 X 1023 mol-1)(8.96 X 103 kg/m3) 
n= 

63.54 X 10 -3 kg/mol 

= 8.49 X 1028 electrons/m3 

n = 8.49 X 1028 m-3. 

Next let us combine the first two key ideas by writing 

i 
A = nevd' 

Substituting for A with 7Tf2 (= 2.54 X 10 -6 m2) and solving 
for v d, we then find 

17 X 10-3 A 

= 4.9 X 10 -7 mis, (Answer) 

which is only 1.8 mm/h, slower than a sluggish snail. 

Lights are fast: You may well ask: "If the electrons drift so 
slowly, why do the room lights turn on so quickly when I 
throw the switch?" Confusion on this point results from not 
distinguishing between the drift speed of the electrons and 
the speed at which changes in the electric field configuration 
travel along wires. This latter speed is nearly that of light; 
electrons everywhere in the wire begin drifting almost at 
once, including into the lightbulbs. Similarly, when you open 
the valve on your garden hose with the hose full of water, a 
pressure wave travels along the hose at the speed of sound 
in water. The speed at which the water itself moves through 
the hose-measured perhaps with a dye marker-is much 
slower. 

Additional examples, video, and practice available at WileyPLUS 
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Resistance and Resistivity 
If we apply the same potential difference between the ends of geometrically similar 
rods of copper and of glass, very different currents result. The characteristic of the 
conductor that enters here is its electrical resistance. We determine the resistance 
between any two points of a conductor by applying a potential difference V be­
tween those points and measuring the current i that results. The resistance R is then 

R=~ 
i 

(definition of R). (26-8) 

The SI unit for resistance that follows from Eq. 26-8 is the volt per ampere. This com­
bination occurs so often that we give it a special name, the ohm (symbol n); that is, 

1 ohm = 1 n = 1 volt per ampere 

= 1 VIA. (26-9) 

A conductor whose function in a circuit is to provide a specified resistance is 
called a resistor (see Fig. 26-7). In a circuit diagram, we represent a resistor and 
a resistance with the symbol -.A.Nv-- . If we write Eq. 26-8 as 

. V 
z=R"' 

we see that, for a given V, the greater the resistance, the smaller the current. 
The resistance of a conductor depends on the manner in which the potential 

difference is applied to it. Figure 26-8, for example, shows a given potential dif­
ference applied in two different ways to the same conductor. As the current 
density streamlines suggest, the currents in the two cases - hence the measured 
resistances-will be different. Unless otherwise stated, we shall assume that any 
given potential difference is applied as in Fig. 26-8b. 

(b) 

Fig. 26-8 Tho ways of applying a potential difference to a conducting rod. The gray 
connectors are assumed to have negligible resistance. When they are arranged as in 
(a) in a small region at each rod end, the measured resistance is larger than when they 
are arranged as in (b) to cover the entire rod end. 

As we have done several times in other connections, we often wish to take a 
general view and deal not with particular objects but with materials. Here we do so 
by focusing not on the potential difference V across a particular resistor but on the 
electric field E at a point in a resistive material. Instead of dealing with the current i 
through the resistor, we deal with the current density 7 at the point in question. 
Instead of the resistance R of an object, we deal with the resistivity p of the material: 

E 
p=-

J 
(definition of p). (26-10) 

(Compare this equation with Eq. 26-8.) 
If we combine the SI units of E and J according to Eq. 26-10, we get, for the 

unit of p, the ohm-meter (n· m): 

unit (E) = Vim = ~m = n'm 
unit (1) A/m2 A . 

(Do not confuse the ohm-mete1; the unit of resistivity, with the ohmmete1; which 
is an instrument that measures resistance.) Table 26-1 lists the resistivities of 
some materials. 

Fig. 26-7 An assortment of resistors. 
The circular bands are color-coding marks 
that identify the value of the resistance. 
(The Image Works) 

Resistivities of Some Materials at Room 
Temperature (20°C) 

Resistivity, p Temperature 
Material (n·m) Coefficient 

of Resistivity, 
a (K-1) 

Typical Metals 

Silver 1.62 X 10-8 4.1 X 10-3 

Copper 1.69 X 10-8 4.3 X 10-3 

Gold 2.35 X 10-8 4.0 X 10-3 

Aluminum 2.75 X 10-8 4.4 X 10-3 

Manganina 4.82 X 10-8 0.002 X 10-3 

Tungsten 5.25 X 10-8 4.5 X 10-3 

Iron 9.68 X 10-8 6.5 X 10-3 

Platinum 10.6 X 10-8 3.9 X 10-3 

Typical 
Semiconductors 

Silicon, 
pure 2.5 X 103 -70 X 10-3 

Silicon, 
n-typeb 8.7 X 10-4 

Silicon, 
p-typeC 2.8 X 10-3 

Typical 
Insulators 

Glass 1010-1014 

Fused 
quartz ~1016 

a An alloy specifically designed to have a small value 
ofa. 
bPure silicon doped with phosphorus impurities to a 
charge carrier density of 1023 m-3• 

"Pure silicon doped with aluminum impurities to a 
charge carrier density of 1023 m-3• 
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Current is driven by 
a potential difference. 

h------- L --~ 

A~,·-----
V 

Fig. 26-9 A potential difference 
V is applied between the ends of a 
wire of length L and cross section A, 
establishing a current i. 

We can write Eq. 26-10 in vector form as 

If = pl. (26-11) 

Equations 26-10 and 26-11 hold only for isotropic materials-materials whose 
electrical properties are the same in all directions. 

We often speak of the conductivity (J' of a material. This is simply the recipro­
cal of its resistivity, so 

1 
(J' =-

p 
(definition of 0-). (26-12) 

The SI unit of conductivity is the reciprocal ohm-meter, (D· m)-l. The unit name 
mhos per meter is sometimes used (mho is ohm backwards). The definition of (J' 

allows us to write Eq. 26-11 in the alternative form 

1 = (J'E. (26-13) 

We have just made an important distinction: 

Resistance is a property of an object. Resistivity is a property of a material. 

If we know the resistivity of a substance such as copper, we can calculate the 
resistance of a length of wire made of that substance. Let A be the cross-sectional 
area of the wire, let L be its length, and let a potential difference V exist between 
its ends (Fig. 26-9). If the streamlines representing the current density are uniform 
throughout the wire, the electric field and the current density will be constant for 
all points within the wire and, from Eqs. 24-42 and 26-5, will have the values 

E = VIL and J = iiA. 

We can then combine Eqs. 26-10 and 26-14 to write 

EVIL 
p = J = ilA . 

However, Vii is the resistance R, which allows us to recast Eq. 26-15 as 

(26-14) 

(26-15) 

(26-16) 

Equation 26-16 can be applied only to a homogeneous isotropic conductor of 
uniform cross section, with the potential difference applied as in Fig. 26-8b. 

The macroscopic quantities V, i, and R are of greatest interest when we are 
making electrical measurements on specific conductors. They are the quantities 
that we read directly on meters. We turn to the microscopic quantities E, J, and p 
when we are interested in the fundamental electrical properties of materials. 

CHECKPOINT 3 L 

The figure here shows three 
cylindrical copper conductors ;1 ,.---.,~~~~ 
along with their face areas and 2 
lengths. Rank them according to (a) (b) 

the current through them, great-
est first, when the same potential difference V is placed across their lengths. 

L/2 
;1~ 
2~ 

(c) 
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Fig. 26-10 The re­
sistivity of copper as a 
function of tempera­
ture. The dot on the 
curve marks a conve­
nient reference point at 
temperature To = 293 
K and resistivity Po = 

1.69 X 10-8 n· m. 

10 

~ 8 
Cl 
"I 6 0 ,...., 

i:?- 4 
.~ 

'0 

~ 2 

°0~2~0~0~~~~8~00~10~00~1-2~00~ 

Temperature (K) 

Resistivity can depend 
on temperature. 

The values of most physical properties vary with temperature, and resistivity is no 
exception. Figure 26-10, for example, shows the variation of this property for 
copper over a wide temperature range. The relation between temperature and 
resistivity for copper-and for metals in general-is fairly linear over a rather 
broad temperature range. For such linear relations we can write an empirical 
approximation that is good enough for most engineering purposes: 

P - Po = Poct(T - To)· (26-17) 

Here To is a selected reference temperature and Po is the resistivity at that tem­
perature. Usually To = 293 K (room temperature), for which Po = 1.69 X 10-8 

o . m for copper. 
Because temperature enters Eq. 26-17 only as a difference, it does not matter 

whether you use the Celsius or Kelvin scale in that equation because the sizes of 
degrees on these scales are identical. The quantity ct in Eq. 26-17, called the 
temperature coefficient of resistivity, is chosen so that the equation gives good 
agreement with experiment for temperatures in the chosen range. Some values of 
ct for metals are listed in Table 26-1. 

A material has resistivity, a block of the material has resistance 

A rectangular block of iron has dimensions 1.2 cm X 1.2 
cm X 15 cm. A potential difference is to be applied to 
the block between parallel sides and in such a way that 
those sides are equipotential surfaces (as in Fig. 26-8b). 
What is the resistance of the block if the two parallel 
sides are (1) the square ends (with dimensions 1.2 cm X 

1.2 cm) and (2) two rectangular sides (with dimensions 
1.2 cm X 15 cm)? 

Calculations: For arrangement 1, we have L = 15 cm = 

0.15 m and 

The resistance R of an object depends on how the electric 
potential is applied to the object. In particular, it depends 
on the ratio LlA, according to Eq. 26-16 (R = pLlA), 
where A is the area of the surfaces to which the potential 
difference is applied and L is the distance between those 
surfaces. 

A = (1.2 cm)2 = 1.44 X 10-4 m2• 

Substituting into Eq. 26-16 with the resistivity p from Table 
26-1, we then find that for arrangement 1, 

_ pL _ (9.68 X 10 -80· m)(0.15 m) 3 
R - A - 1.44 X 10-4 m2 

= 1.0 X 10-4 0 = 100 fLO. (Answer) 

Similarly, for arrangement 2, with distance L = 1.2 cm 
and area A = (1.2 cm)(15 cm), we obtain 

R _ pL _ (9.68 X 10-8 O·m)(1.2 X 10-2 m) 
- A - 1.80 X 10-3 m2 

= 6.5 X 10 -7 0 = 0.65 fLO. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 26-11 (a) A potential difference V 
is applied to the terminals of a device, 
establishing a current i. (b) A plot of cur­
rent i versus applied potential difference V 
when the device is a 1000 n resistor. (c) A 
plot when the device is a semiconducting 
pn junction diode. 

CHECKPOINT 4 

The following table gives the current i (in 
amperes) through two devices for sev­
eral values of potential difference V (in 
volts). From these data, determine which 
device does not obey Ohm's law. 

Device 1 

v 

2.00 

3.00 

4.00 

4.50 

6.75 
9.00 

Device 2 

V 

2.00 

3.00 

4.00 

1.50 

2.20 

2.80 

Ohm's Law 
As we just discussed in Section 26-4, a resistor is a conductor with a specified 
resistance. It has that same resistance no matter what the magnitude and direction 
(polarity) of the applied potential difference are. Other conducting devices, how­
ever, might have resistances that change with the applied potential difference. 

Figure 26-11a shows how to distinguish such devices. A potential difference 
V is applied across the device being tested, and the resulting current i through the 
device is measured as V is varied in both magnitude and polarity. The polarity of 
V is arbitrarily taken to be positive when the left terminal of the device is at a 
higher potential than the right terminal. The direction of the resulting current 
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V 
(with the right terminal at a higher potential) is then negative; the current it 
causes is assigned a minus sign. 

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line 
passing through the origin, so the ratio iIV (which is the slope of the straight line) 
is the same for all values of V. This means that the resistance R = Vii of the 
device is independent of the magnitude and polarity of the applied potential 
difference V. 

Figure 26-11c is a plot for another conducting device. Current can exist in this 
device only when the polarity of V is positive and the applied potential difference 
is more than about 1.5 V. When current does exist, the relation between i and V is 
not linear; it depends on the value of the applied potential difference V. 

We distinguish between the two types of device by saying that one obeys 
Ohm's law and the other does not. 

Ohm's law is an assertion that the current through a device is always directly 
proportional to the potential difference applied to the device. 

(This assertion is correct only in certain situations; still, for historical reasons, the 
term "law" is used.) The device of Fig. 26-11b-which turns out to be a 1000 n 
resistor-obeys Ohm's law. The device of Fig. 26-11c-which is called a pn junc­
tion diode-does not. 

A conducting device obeys Ohm's law when the resistance of the device is indepen­
dent of the magnitude and polarity of the applied potential difference. 

It is often contended that V = iR is a statement of Ohm's law. That is not 
true! This equation is the defining equation for resistance, and it applies to all 
conducting devices, whether they obey Ohm's law or not. If we measure the 
potential difference V across, and the current i through, any device, even a pl1 
junction diode, we can find its resistance at that value of V as R = Vii. The essence 
of Ohm's law, however, is that a plot of i versus V is linear; that is, R is inde­
pendent of V. 

We can express Ohm's law in a more general way if we focus on conducting 
materials rather than on conducting devices. The relevant relation is then 
Eq. 26-11 (if = pl), which corresponds to V = iR. 

A conducting material obeys Ohm's law when the resistivity of the material is 
independent of the magnitude and direction of the applied electric field. 

All homogeneous materials, whether they are conductors like copper or semicon­
ductors like pure silicon or silicon containing special impurities, obey Ohm's law 
within some range of values of the electric field. If the field is too strong, however, 
there are departures from Ohm's law in all cases. 
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A Microscopic View of Ohm's law 
To find out why particular materials obey Ohm's law, we must look into the 
details of the conduction process at the atomic level. Here we consider only con­
duction in metals, such as copper. We base our analysis on the free-electron 
model, in which we assume that the conduction electrons in the metal are free to 
move throughout the volume of a sample, like the molecules of a gas in a closed 
container. We also assume that the electrons collide not with one another but 
only with atoms of the metal. 

According to classical physics, the electrons should have a Maxwellian speed 
distribution somewhat like that of the molecules in a gas (Section 19-7), and thus 
the average electron speed should depend on the temperature. The motions of 
electrons are, however, governed not by the laws of classical physics but by those 
of quantum physics. As it turns out, an assumption that is much closer to the 
quantum reality is that conduction electrons in a metal move with a single effec­
tive speed Veff, and this speed is essentially independent of the temperature. For 
copper, veil = 1.6 X 106 m/s. 

When we apply an electric field to a metal sample, the electrons modify their 
random motions slightly and drift very slowly-in a direction opposite that of 
the field-with an average drift speed Vd' The drift speed in a typical metallic con­
ductor is about 5 X 10-7 mis, less than the effective speed (1.6 X 106 m/s) by many 
orders of magnitude. Figure 26-12 suggests the relation between these two 
speeds. The gray lines show a possible random path for an electron in the absence 
of an applied field; the electron proceeds from A to B, making six collisions along 
the way. The green lines show how the same events might occur when an electric 
field E is applied. We see that the electron drifts steadily to the right, ending at B' 
rather than at B. Figure 26-12 was drawn with the assumption that v" = 0.02Veff' 

However, because the actual value is more like v" = (10 -13)Veff' the drift displayed in 
the figure is greatly exaggerated. 

The motion of conduction electrons in an electric field E is thus a combina­
tion of the motion due to random collisions and that due to E. When we consider 
all the free electrons, their random motions average to zero and make no con­
tribution to the drift speed. Thus, the drift speed is due only to the effect of the 
electric field on the electrons. 

If an electron of mass m is placed in an electric field of magnitude E, the elec­
tron will experience an acceleration given by Newton's second law: 

F eE 
a =-=--. 

m m 
(26-18) 

The nature of the collisions experienced by conduction electrons is such that, 
after a typical collision, each electron will-so to speak-completely lose its 
memory of its previous drift velocity. Each electron will then start off fresh after 
every encounter, moving off in a random direction. In the average time r between 
collisions, the average electron will acquire a drift speed of v" = ar. Moreover, if 
we measure the drift speeds of all the electrons at any instant, we will find that 
their average drift speed is also ar. Thus, at any instant, on average, the electrons 
will have drift speed v" = ar. Then Eq. 26-18 gives us 

eEr 
v" = ar= --. 

m 

Combining this result with Eq. 26-7 (J = ne v,,), in magnitude form, yields 

JeEr 
v,,=-=--, 

ne m 

(26-19) 

(26-20) 

Fig. 26-12 The gray lines show an 
electron moving from A to B, making 
six collisions en route. The green lines 
show what the electron's path might 
be in the presence of an applied elec­
tric field E. Note the steady drift in the 
direction of - E. (Actually, the green 
lines should be slightly curved, to rep­
resent the parabolic paths followed by 
the electrons between collisions, under 
the influence of an electric field.) 
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which we can write as 

(26-21) 

Comparing this with Eq. 26-11 (If = pl), in magnitude form, leads to 

(26-22) 

Equation 26-22 may be taken as a statement that metals obey Ohm's law if we 
can show that, for metals, their resistivity p is a constant, independent of the 
strength of the applied electric field E. Let's consider the quantities in Eq. 26-22. 
We can reasonably assume that n, the number of conduction electrons per vol­
ume, is independent of the field, and m and e are constants. Thus, we only need to 
convince ourselves that r, the average time (or mean free time) between colli­
sions, is a constant, independent of the strength of the applied electric field. 
Indeed, rcan be considered to be a constant because the drift speed Vd caused by 
the field is so much smaller than the effective speed Veff that the electron speed­
and thus r-is hardly affected by the field. 

Mean free time and mean free distance 

(a) What is the mean free time rbetween collisions for the 
conduction electrons in copper? 

The mean free time r of copper is approximately constant, and 
in particular does not depend on any electric field that might be 
applied to a sample of the copper. Thus, we need not consider 
any particular value of applied electric field. However, because 
the resistivity p displayed by copper under an electric field de­
pends on T, we can find the mean free time Tfrom Eq. 26-22 (p = 
m/e2nT). 

Calculations: That equation gives us 

m 
T=--

ne2p' 
(26-23) 

The number of conduction electrons per unit volume in cop­
per is 8.49 X 1028 m-3. We take the value of p from Table 
26-1. The denominator then becomes 

(8.49 X 1028 m -3)(1.6 X 10 -19 C)2(1.69 X 10 -8 n· m) 

= 3.67 X 1O-17 C2 ·fl/m2 = 3.67 X lO-17 kg/s, 

where we converted units as 

C2'J/C 

m 2 ·C/s 
kg·m2/s2 ~ 

m2/s s 

Using these results and substituting for the electron mass m, 
we then have 

9.1 X 10 -31 kg 
T = = 2.5 X 10-14 s. (Answer) 

3.67 X 10-17 kg/s 

(b) The mean free path A of the conduction electrons in a 
conductor is the average distance traveled by an electron 
between collisions. (This definition parallels that in 
Section 19-6 for the mean free path of molecules in a gas.) 
What is A for the conduction electrons in copper, assum­
ing that their effective speed Veff is 1.6 X 106 m/s? 

The distance d any particle travels in a certain time t at a 
constant speed v is d = vt. 

Calculation: For the electrons in copper, this gives us 

A = VeffT 

= (1.6 X 10 6 m/s)(2.5 X 10-14 s) 

= 4.0 X 10 -8 m = 40 nm. 

(26-24) 

(Answer) 

This is about 150 times the distance between nearest-neigh­
bor atoms in a copper lattice. Thus, on the average, each con­
duction electron passes many copper atoms before finally 
hitting one. 

,"~ 
p]~lts Additional examples, video, and practice available at WileyPLUS 
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Power in Electric Circuits 
Figure 26-13 shows a circuit consisting of a battery B that is connected by 
wires, which we assume have negligible resistance, to an unspecified conducting 
device. The device might be a resistor, a storage battery (a rechargeable battery), 
a motor, or some other electrical device. The battery maintains a potential 
difference of magnitude V across its own terminals and thus (because of the 
wires) across the terminals of the unspecified device, with a greater potential at 
terminal a of the device than at terminal b. 

Because there is an external conducting path between the two terminals of 
the battery, and because the potential differences set up by the battery are main­
tained, a steady current i is produced in the circuit, directed from terminal a to ter­
minal b. The amount of charge dq that moves between those terminals in time in­
terval dt is equal to i dt. This charge dq moves through a decrease in potential of 
magnitude V, and thus its electric potential energy decreases in magnitUde by the 
amount 

dU = dq V = i dt V. (26-25) 

The principle of conservation of energy tells us that the decrease in electric po­
tential energy from a to b is accompanied by a transfer of energy to some other 
form. The power P associated with that transfer is the rate of transfer dUldt, which is 
given by Eq. 26-25 as 

P= iV (rate of electrical energy transfer). (26-26) 

Moreover, this power P is also the rate at which energy is transferred from the 
battery to the unspecified device. If that device is a motor connected to a mechan­
ical load, the energy is transferred as work done on the load. If the device is a 
storage battery that is being charged, the energy is transferred to stored chemical 
energy in the storage battery. If the device is a resistor, the energy is transferred 
to internal thermal energy, tending to increase the resistor's temperature. 

The unit of power that follows from Eq. 26-26 is the volt-ampere (V, A). 
We can write it as 

1 V' A = (1 ~) (1 ~) = 1 ~ = 1 W. 

As an electron moves through a resistor at constant drift speed, its average 
kinetic energy remains constant and its lost electric potential energy appears as 
thermal energy in the resistor and the surroundings. On a microscopic scale this 
energy transfer is due to collisions between the electron and the molecules of the 
resistor, which leads to an increase in the temperature of the resistor lattice. The 
mechanical energy thus transferred to thermal energy is dissipated (lost) because 
the transfer cannot be reversed. 

For a resistor or some other device with resistance R, we can combine Eqs. 
26-8 (R = Vii) and 26-26 to obtain, for the rate of electrical energy dissipation 
due to a resistance, either 

or 
V 2 

P=­
R 

(resistive dissipation) (26-27) 

(resistive dissipation). (26-28) 

Caution: We must be careful to distinguish these two equations from Eq. 26-26: 
P = iV applies to electrical energy transfers of all kinds; P = i2R and P = V 2/R 
apply only to the transfer of electric potential energy to thermal energy in a 
device with resistance. 

The battery at the left 
supplies energy to the 
conduction electrons 
that form the current. 

-. 
I 

Fig. 26-13 A battery B sets up a 
current i in a circuit containing an 
unspecified conducting device. 

HECKPOINT5 

A potential difference V is connected 
across a device with resistance R, caus­
ing current i through the device. Rank 
the following variations according to the 
change in the rate at which electrical en­
ergy is converted to thermal energy due 
to the resistance, greatest change first: 
(a) V is doubled with R unchanged, (b) i 
is doubled with R unchanged, (c) R is 
doubled with V unchanged, (d) R is dou­
bled with i unchanged. 
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Rate of energy dissipation in a wire carrying current 

You are given a length of uniform heating wire made of a 
nickel-chromium-iron alloy called Nichrome; it has a re­
sistance R of n O. At what rate is energy dissipated in each 
of the following situations? (1) A potential difference of 120 
V is applied across the full length of the wire. (2) The wire is 
cut in half, and a potential difference of 120 V is applied 
across the length of each half. 

v 2 (120 V)2 
p=-= =200W R no . (Answer) 

In situation 2, the resistance of each half of the wire is 
(n 0)/2, or 36 O. Thus, the dissipation rate for each half is 

pi = (120 V)2 = 400 W 
360 ' 

and that for the two halves is 

p = 2P' = 800 W. (Answer) Current in a resistive material produces a transfer of mechani­
cal energy to thermal energy; the rate of transfer (dissipation) 
is given by Eqs. 26-26 to 26-28. 

Calculations: Because we know the potential V and resis­
tance R, we use Eq. 26-28, which yields, for situation 1, 

This is four times the dissipation rate of the full length of 
wire. Thus, you might conclude that you could buy a heating 
coil, cut it in half, and reconnect it to obtain four times the 
heat output. Why is this unwise? (What would happen to the 
amount of current in the coil?) 

~s Additional examples, video, and practice available at WileyPLUS 

Semiconductors 
Semiconducting devices are at the heart of the microelectronic revolution that 
ushered in the information age. Table 26-2 compares the properties of silicon­
a typical semiconductor-and copper-a typical metallic conductor. We see that 
silicon has many fewer charge carriers, a much higher resistivity, and a temper­
ature coefficient of resistivity that is both large and negative. Thus, although the 
resistivity of copper increases with increasing temperature, that of pure silicon 
decreases. 

Pure silicon has such a high resistivity that it is effectively an insulator and 
thus not of much direct use in microelectronic circuits. However, its resistivity can 
be greatly reduced in a controlled way by adding minute amounts of specific 
"impurity" atoms in a process called doping. Table 26-1 gives typical values of 
resistivity for silicon before and after doping with two different impurities. 

We can roughly explain the differences in resistivity (and thus in conductiv­
ity) between semiconductors, insulators, and metallic conductors in terms of the 
energies of their electrons. (We need quantum physics to explain in more detail.) 
In a metallic conductor such as copper wire, most of the electrons are firmly 
locked in place within the atoms; much energy would be required to free them so 
they could move and participate in an electric current. However, there are also 
some electrons that, roughly speaking, are only loosely held in place and that 
require only little energy to become free. Thermal energy can supply that energy, 

Some Electrical Properties of Copper and Silicon 

Property 

Type of material 
Charge carrier density, m-3 

Resistivity, n . m 
Temperature coefficient of resistivity, 1(-1 

Copper 

Metal 
8.49 X 1028 

1.69 X 10-8 

+4.3 X 10-3 

Silicon 

Semiconductor 
1 X 10 16 

2.5 X 103 

-70 X 10-3 



as can an electric field applied across the conductor. The field would not only free 
these loosely held electrons but would also propel them along the wire; thus, the 
field would drive a current through the conductor. 

In an insulator, significantly greater energy is required to free electrons so 
they can move through the material. Thermal energy cannot supply enough en­
ergy, and neither can any reasonable electric field applied to the insulator. Thus, 
no electrons are available to move through the insulator, and hence no current 
occurs even with an applied electric field. 

A semiconductor is like an insulator except that the energy required to free 
some electrons is not quite so great. More important, doping can supply electrons 
or positive charge carriers that are very loosely held within the material and thus 
are easy to get moving. Moreover, by controlling the doping of a semiconductor, 
we can control the density of charge carriers that can participate in a current and 
thereby can control some of its electrical properties. Most semiconducting 
devices, such as transistors and junction diodes, are fabricated by the selective 
doping of different regions of the silicon with impurity atoms of different kinds. 

Let us now look again at Eq. 26-25 for the resistivity of a conductor: 

(26-29) 

where n is the number of charge carriers per unit volume and T is the mean time 
between collisions of the charge carriers. (We derived this equation for conduc­
tors, but it also applies to semiconductors.) Let us consider how the variables n 
and Tchange as the temperature is increased. 

In a conductor, n is large but very nearly constant with any change in temper­
ature. The increase of resistivity with temperature for metals (Fig. 26-10) is due 
to an increase in the collision rate of the charge carriers, which shows up in 
Eq. 26-29 as a decrease in T, the mean time between collisions. 

In a semiconductor, n is small but increases very rapidly with temperature as 
the increased thermal agitation makes more charge carriers available. This causes 
a decrease of resistivity with increasing temperature, as indicated by the negative 
temperature coefficient of resistivity for silicon in Table 26-2. The same increase 
in collision rate that we noted for metals also occurs for semiconductors, but its 
effect is swamped by the rapid increase in the number of charge carriers. 

Superconductors 
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mercury 
absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phenome­
non of superconductivity is of vast potential importance in technology because it 
means that charge can flow through a superconducting conductor without losing its 
energy to thermal energy. Currents created in a superconducting ring, for example, 
have persisted for several years without loss; the electrons making up the current re­
quire a force and a source of energy at start-up time but not thereafter. 

Prior to 1986, the technological development of superconductivity was throttled 
by the cost of producing the extremely low temperatures required to achieve the ef­
fect. In 1986, however, new ceramic materials were discovered that become super­
conducting at considerably higher (and thus cheaper to produce) temperatures. 
Practical application of superconducting devices at room temperature may eventu­
ally become commonplace. 

Superconductivity is a phenomenon much different from conductivity. In 
fact, the best of the normal conductors, such as silver and copper, cannot become 
superconducting at any temperature, and the new ceramic superconductors are 
actually good insulators when they are not at low enough temperatures to be in 
a superconducting state. 

26· SU PERCON DUCTORS 697 

a 
~ 0.16 
u 

B 
.1ij 0.08 ----+ 

~ 

00 2 4 6 
Temperature (K) 

Fig. 26-14 The resistance of mercury 
drops to zero at a temperature of about 4 K. 

A disk-shaped magnet is levitated above 
a superconducting material that has been 
cooled by liquid nitrogen. The goldfish is 
along for the ride. (Courtesy Shoji 
Tonaka/International Superconductivity 
Technology Center, Tokyo, Japan) 



698 ER CURRENT AND RESISTANCE 

One explanation for superconductivity is that the electrons that make up the 
current move in coordinated pairs. One of the electrons in a pair may electrically 
distort the molecular structure of the superconducting material as it moves 
through, creating nearby a short-lived concentration of positive charge. The other 
electron in the pair may then be attracted toward this positive charge. According 
to the theory, such coordination between electrons would prevent them from 
colliding with the molecules of the material and thus would eliminate electrical 
resistance. The theory worked well to explain the pre-1986, lower temperature 
superconductors, but new theories appear to be needed for the newer, higher 
temperature superconductors. 

Current An electric current i in a conductor is defined by 

. dq 
I=Tt· (26-1) 

Here dq is the amount of (positive) charge that passes in time dt 
through a hypothetical surface that cuts across the conductor. By 
convention, the direction of electric current is taken as the direc­
tion in which positive charge carriers would move. The SI unit of 
electric current is the ampere (A): 1 A = 1 Cis. 

Current Density 
7 (a vector) by 

Current (a scalar) is related to CUlTent density 

J 
~ ~ 

i = J. dA, (26-4) 

where dA is a vector perpendicular to a surface element of area dA 
and the integral is taken over any surface cutting across the conductor. 
7 has the same direction as the velocity of the moving charges if they 
are positive and the opposite direction if they are negative. 

Drift Speed of the Charge Carriers When an electric field 
E is established in a conductor, the charge carriers (assumed posi­
tive) acquire a drift speed v d in the direction of E; the velocity v dis 
related to the current density by 

7 = (ne) Vd, (26-7) 

where ne is the carrier charge density. 

Resistance of a Conductor The resistance R of a conductor 
is defined as 

R=~ 
i 

(definition of R), (26-8) 

where V is the potential difference across the conductor and i is the 
current. The S1 unit of resistance is the ohm (D): 1 D = 1 VIA. Similar 
equations define the resistivity p and conductivity (Tof a material: 

1 E 
p=-=-

(T J 
(definitions of p and IT), (26-12,26-10) 

where E is the magnitude of the applied electric field. The S1 unit of 
resistivity is the ohm-meter (D· m). Equation 26-10 corresponds to 
the vector equation 

E = pI. (26-11) 

The resistance R of a conducting wire of length L and uniform 
cross section is 

R (26-16) 

where A is the cross-sectional area. 

Change of p with Temperature The resistivity p for most 
materials changes with temperature. For many materials, including 
metals, the relation between p and temperature T is approximated 
by the equation 

p - Po = poa(T - To)· (26-17) 

Here To is a reference temperature, Po is the resistivity at To, and a is 
the temperature coefficient of resistivity for the material. 

Ohm's Law A given device (conductor, resistor, or any other elec­
trical device) obeys Ohm's law if its resistance R, defined by Eq. 26-8 as 
Vii, is independent of the applied potential difference V. A given mate­
rial obeys Ohm's law if its resistivity, defined by Eq. 26-10, is indepen­
dent of the magnitude and direction of the applied electric field E. 

Resistivity of a Metal By assuming that the conduction elec­
trons in a metal are free to move like the molecules of a gas, it is possi­
ble to derive an expression for the resistivity of a metal: 

(26-22) 

Here n is the number of free electrons per unit volume and T is the 
mean time between the collisions of an electron with the atoms of 
the metal. We can explain why metals obey Ohm's law by pointing 
out that T is essentially independent of the magnitude E of any 
electric field applied to a metal. 

Power The power P, or rate of energy transfer, in an electrical de­
vice across which a potential difference V is maintained is 

P= iV (rate of electrical energy transfer). (26-26) 

Resistive Dissipation If the device is a resistor, we can write 
Eq. 26-26 as 

(resistive dissipation). (26-27,26-28) 

In a resistor, electric potential energy is converted to internal thermal 
energy via collisions between charge carriers and atoms. 

Semiconductors Semiconductors are materials that have few 
conduction electrons but can become conductors when they are 
doped with other atoms that contribute free electrons. 

Superconductors Superconductors are materials that lose all 
electrical resistance at low temperatures. Recent research has dis­
covered materials that are superconducting at surprisingly high 
temperatures. 



Figure 26-15 shows cross sections through three long con­
ductors of the same length and material, with square cross 
sections of edge lengths as shown. Conductor B fits snugly 
within conductor A, and conductor C fits snugly within conduc­
tor B. Rank the following according to their end-to-end 
resistances, greatest first: the individual conductors and the 
combinations of A + B (B inside A), B + C (C inside B), and 
A + B + C (B inside A inside C). 

;f3{ 
.fIt 

A 

Fig. 26-15 Question 1. 

Figure 26-16 shows cross sections through three wires of identi­
cal length and material; the sides are given in millimeters. Rank the 
wires according to their resistance (measured end to end along 
each wire's length), greatest first. 

6 

2 

31- l 
(c)~ (b) 

Fig.26-16 Question 2. 

Figure 26-17 shows a rectangu-
lar solid conductor of edge lengths 
L, 2L, and 3L. A potential differ­
ence V is to be applied uniformly 
between pairs of opposite faces of L 

the conductor as in Fig. 26-8b. First 

2L 

3L 

V is applied between the left-right Fig.26-17 Question 3. 
faces, then between the top-bottom 
faces, and then between the front - back faces. Rank those pairs, 
greatest first, according to the following (within the conductor): (a) 
the magnitude of the electric field, (b) the current density, (c) the 
current, and (d) the drift speed of the electrons. 

Figure 26-18 shows plots of the current i through a certain cross 
section of a wire over four different time periods. Rank the periods 
according to the net charge that passes through the cross section 
during the period, greatest first. 

Fig. 26-18 Question 4. 

QUESTIONS 699 

Figure 26-19 shows four situations in which positive and negative 
charges move horizontally and gives the rate at which each charge 
moves. Rank the situations according to the effective current 
through the regions, greatest first. 

7 Cis 3 Cis "'--0 
(a) (b) 

2 Cis 
~ 

Q5C/: 

(e) 

Fig. 26-19 Question 5. 

In Fig. 26-20, a wire that carries a 
current consists of three sections 
with different radii. Rank the sec­
tions according to the following 
quantities, greatest first: (a) current, 
(b) magnitude of current density, 
and (c) magnitude of electric field. A 

6 Cis 
~ 

i Cis'" 

(d) 

B c 

Figure 26-21 gives the electric 
potential Vex) versus position x 
along a copper wire carrying cur­
rent. The wire consists of three sec­
tions that differ in radius. Rank the 
three sections according to the mag­
nitude of the (a) electric field and 
(b) current density, greatest first. 

Fig. 26-20 Question 6. 

The following table gives the 
lengths of three copper rods, their 
diameters, and the potential differ­

I A I B 

Fig. 26-21 

c 

Question 7. 

ences between their ends. Rank the rods according to (a) the 
magnitude of the electric field within them, (b) the current den­
sity within them, and (c) the drift speed of electrons through 
them, grea test first. 

Rod Length Diameter Potential Difference 

1 L 3d V 

2 2L d 2V 

3 3L 2d 2V 

Figure 26-22 gives the drift speed Vd 

V d of conduction electrons in a cop-

I 

. 

I per wire versus position x along the 
wire. The wire consists of three sec- I 

I 

tions that differ in radius. Rank the A B C I 
three sections according to the fol-
lowing quantities, greatest first: (a) Fig.26-22 Question 9. 
radius, (b) number of conduction 

x 

electrons per cubic meter, (c) magnitude of electric field, (d) con­
ductivity. 
o Three wires, of the same diameter, are connected in turn be­

tween two points maintained at a constant potential difference. 
Their resistivities and lengths are p and L (wire A), 1.2p and 1.2L 
(wire B), and 0.9p and L (wire C). Rank the wires according to the 
rate at which energy is transferred to thermal energy, greatest first. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
htlp:llwww.wiley.com!college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Electric Current 
"'1 During the 4.0 min a 5.0 A current is set up in a wire, how 
many (a) coulombs and (b) electrons pass through any cross sec­
tion across the wire's width? 

An isolated conducting sphere has a 10 cm radius. One wire 
carries a current of 1.000 002 0 A into it. Another wire carries a 
current of 1.000 000 0 A out of it. How long would it take for the 
sphere to increase in potential by 1000 V? 

A charged belt, 50 cm wide, travels at 30 m/s between 
a source of charge and a sphere. The belt carries charge into the 
sphere at a rate corresponding to 100/-LA. Compute the surface 
charge density on the belt. 

Current Density 
The (United States) National Electric Code, which sets maxi­

mum safe currents for insulated copper wires of various diameters, 
is given (in part) in the table. Plot the safe current density as a 
function of diameter. Which wire gauge has the maximum safe cur­
rent density? ("Gauge" is a way of identifying wire diameters, and 
1 mil = 10-3 in.) 

Gauge 
Diameter, mils 
Safe current, A 

4 6 
204 162 
70 50 

8 10 12 
129 102 81 
35 25 20 

14 
64 
15 

16 18 
51 40 

6 3 

SSM WWW A beam contains 2.0 X 108 doubly charged posi-
tive ions per cubic centimeter, all of which are moving north with 
a speed of 1.0 X 105 mls. What are the (a) magnitude and (b) direction 
of the current density 7? (c) What additional quantity do you need to 
calculate the total current i in this ion beam? 

A certain cylindrical 
wire carries current. We draw 
a circle of radius I' around its 
central axis in Fig. 26-23a to 
determine the current i within 
the circle. Figure 26-23b shows 
current i as a function of 1'2. 

The vertical scale is set by is = 
4.0 rnA, and the horizontal 
scale is set by ~ = 4.0 mm2

• (a) 

(a) 

(b) 

Fig. 26-23 Problem 6. 

Is the current density uniform? (b) If so, what is its magnitude? 

A fuse in an electric circuit is a wire that is designed to melt, 
and thereby open the circuit, if the current exceeds a predeter­
mined value. Suppose that the material to be used in a fuse melts 
when the current density rises to 440 A/cm2• What diameter of 
cylindrical wire should be used to make a fuse that will limit the 
current to 0.50 A? 

A small but measurable current of 1.2 X 10 -10 A exists in a 
copper wire whose diameter is 2.5 mm. The number of charge car­
riers per unit volume is 8.49 X 10 28 m-3. Assuming the current is 
uniform, calculate the (a) current density and (b) electron drift 
speed. 

The magnitude 1(1') of the current density in a certain cylin­
drical wire is given as a function of radial distance from the center 
of the wire's cross section as 1(1') = BI', where r is in meters, I is in 
amperes per square meter, and B = 2.00 X 105 Nm3• This function 
applies out to the wire's radius of 2.00 mm. How much current is 
contained within the width of a thin ring concentric with the wire if 
the ring has a radial width of 10.0 /-Lm and is at a radial distance of 
1.20 mm? 

The magnitude I of the current density in a certain lab 
wire with a circular cross section of radius R = 2.00 mm is given by 
1= (3.00 X 10 8)1'2, with I in amperes per square meter and radial 
distance I' in meters. What is the current through the outer section 
bounded by I' = 0.900R and r = R? 

1 What is the current in a wire of radius R = 3.40 mm if the 
magnitude of the current density is given by (a) la = 10rIR and (b) 
Ib = 10(1 - r/R), in which r is the radial distance and 10 = 5.50 X 

104 A/m2? (c) Which function maximizes the current density near 
the wire's surface? 

Near Earth, the density of protons in the solar wind (a stream 
of particles from the Sun) is 8.70 cm-3, and their speed is 470 km/s. 
(a) Find the current density of these protons. (b) If Earth's mag­
netic field did not deflect the protons, what total current would 
Earth receive? 

IlW How long does it take electrons to get from a car 
battery to the starting motor? Assume the current is 300 A and the 
electrons travel through a copper wire with cross-sectional area 
0.21 cm2 and length 0.85 m. The number of charge carriers per unit 
volume is 8.49 X 1028 m-3. 

Resistance and Resistivity 
A human being can be electrocuted if a current as 

small as 50 rnA passes near the heart. An electrician working with 
sweaty hands makes good contact with the two conductors he is 
holding, one in each hand. If his resistance is 2000 n, what might 
the fatal voltage be? 

SSM A coil is formed by winding 250 turns of insulated 16-
gauge copper wire (diameter = 1.3 mm) in a single layer on a 
cylindrical form of radius 12 cm. What is the resistance of the coil? 
Neglect the thickness ofthe insulation. (Use Table 26-1.) 

Copper and aluminum are being considered for a 
high-voltage transmission line that must carry a current of 60.0 A. 
The resistance per unit length is to be 0.150 Wkm. The densities of 
copper and aluminum are 8960 and 2600 kg/m3, respectively. 
Compute (a) the magnitude I of the current density and (b) the 
mass per unit length ..\ for a copper cable and (c) I and (d) ..\ for an 
aluminum cable. 

A wire of Nichrome (a nickel-chromium-iron alloy com­
monly used in heating elements) is 1.0 m long and 1.0 
mm2 in cross-sectional area. It carries a current of 4.0 A when a 2.0 
V potential difference is applied between its ends. Calculate the 
conductivity (Tof Nichrome. 



A wire 4.00 m long and 6.00 mm in diameter has a resistance 
of 15.0 mD. A potential difference of 23.0 V is applied between the 
ends. (a) What is the current in the wire? (b) What is the magnitude 
of the current density? (c) Calculate the resistivity of the wire ma­
terial. (d) Using Table 26-1, identify the material. 

SSM What is the resistivity of a wire of 1.0 mm diameter, 2.0 
m length, and 50 mD resistance? 

A certain wire has a resistance R. What is the resistance of a 
second wire, made of the same material, that is half as long and has 
half the diameter? 

IlW A common flashlight bulb is rated at 0.30 A and 2.9 V (the 
values of the current and voltage under operating conditions). If the 
resistance of the tungsten bulb filament at room temperature (20°C) is 
1.1 D, what is the temperature of the filament when the bulb is on? 

Kiting during a storm. The legend that Benjamin 
Franklin flew a kite as a storm approached is only a legend-he 
was neither stupid nor suicidal. Suppose a kite string of radius 2.00 
mm extends directly upward by 0.800 km and is coated with a 0.500 
mm layer of water having resistivity 150 D . m. If the potential dif­
ference between the two ends of the string is 160 MV, what is the 
current through the water layer? The danger is not this current but 
the chance that the string draws a lightning strike, which can have a 
current as large as 500 000 A (way beyond just being lethal). 

When 115 V is applied across a wire that is 10 m long and 
has a 0.30 mm radius, the magnitude of the current density is 1.4 X 

104 A/m2• Find the resistivity of the wire. 

Figure 26-24a gives the magnitude E(x) of the electric fields 
that have been set up by a battery along a resistive rod of length 
9.00 mm (Fig. 26-24b). The vertical scale is set by Es = 4.00 X 103 

Vim. The rod consists of three sections of the same material but 
with different radii. (The schematic diagram of Fig. 26-24b does not 
indicate the different radii.) The radius of section 3 is 2.00 mm. 
What is the radius of (a) section 1 and (b) section 2? 

Es 
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Fig. 26-24 Problem 24. 

SSM ILW A wire with a resistance of 6.0 D is drawn out 
through a die so that its new length is three times its original 
length. Find the resistance of the longer wire, assuming that the re­
sistivity and density of the material are unchanged. 

In Fig. 26-25a, a 9.00 V battery is connected to a resistive 

8 
x=o 6 

11 
§: 4 
::-

2 
x= .\'s 

0 Xs 

(a) (b) ,,(mm) 

Fig. 26-25 Problem 26. 
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strip that consists of three sections with the same cross-sectional 
areas but different conductivities. Figure 26-25b gives the electric 
potential Vex) versus position x along the strip. The horizontal 
scale is set by Xs = 8.00 mm. Section 3 has conductivity 3.00 X 107 

(D· mt I. What is the conductivity of section (a) 1 and (b) 2? 

www Two conductors are made of the same mater­
ial and have the same length. Conductor A is a solid wire of diame­
ter 1.0 mm. Conductor B is a hollow tube of outside diameter 
2.0 mm and inside diameter 1.0 mm. What is the resistance ratio 
RAIRS' measured between their ends? 

Figure 26-26 gives the 
electric potential Vex) along a cop-
per wire carrying uniform current, 
from a point of higher potential ~ 
v,. = 12.0 /-tV at x = 0 to a point of ::­
zero potential at Xs = 3.00 m. The 
wire has a radius of 2.00 mm. What 
is the current in the wire? o 

,,(m) 
A potential difference of 

3.00 n V is set up across a 2.00 cm Fig. 26-26 Problem 28. 
length of copper wire that has a ra-
dius of 2.00 mm. How much charge drifts through a cross section 
in 3.00 ms? 

If the gauge number of a wire is increased by 6, the diameter 
is halved; if a gauge number is increased by 1, the diameter de­
creases by the factor 2116 (see the table in Problem 4). Knowing this, 
and knowing that 1000 ft of lO-gauge copper wire has a resistance 
of approximately 1.00 D, estimate the resistance of 25 ft of 22-
gauge copper wire. 

An electrical cable consists of 125 strands of fine wire, each 
having 2.65 /-tD resistance. The same potential difference is ap­
plied between the ends of all the strands and results in a total cur­
rent of 0.750 A. (a) What is the current in each strand? (b) What 
is the applied potential difference? (c) What is the resistance of 
the cable? 

Earth's lower atmosphere contains negative and positive 
ions that are produced by radioactive elements in the soil 
and cosmic rays from space. In a certain region, the atmospheric 
electric field strength is 120 Vim and the field is directed verti­
cally down. This field causes singly charged positive ions, at a den­
sity of 620 cm-3, to drift downward and singly charged negative 
ions, at a density of 550 cm-3, to drift upward (Fig. 26-27). The 
measured conductivity of the air in that region is 2.70 X 10-14 

(D· m)-I. Calculate (a) the magnitude of the current density and 
(b) the ion drift speed, assumed to be the same for positive and 
negative ions. 

Fig. 26-27 Problem 32. 
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A block in the shape of a rectangular solid has a cross-sec­
tional area of 3.50 cm2 across its width, a front-to-rear length of 
15.8 cm, and a resistance of 935 D. The block's material contains 
5.33 X 10 22 conduction electrons/m3• A potential difference of 
35.8 V is maintained between its front and rear faces. (a) What is 
the current in the block? (b) If the current density is uniform, 
what is its magnitude? What are (c) the drift velocity of the con­
duction electrons and (d) the magnitude of the electric field in 
the block? 

Figure 26-28 shows wire 
section 1 of diameter D J = 4.00R 
and wire section 2 of diameter 
D2 = 2.00R, connected by a tapered (1) 

section. The wire is copper and car- Fig. 26-28 Problem 34. 
ries a current. Assume that the cur-
rent is uniformly distributed across any cross-sectional area 
through the wire's width. The electric potential change V along 
the length L = 2.00 m shown in section 2 is 10.0 fL V. The number 
of charge carriers per unit volume is 8.49 X 1028 m-3. What is the 
drift speed of the conduction electrons in section 1 ? 

In Fig. 26-29, current is set up through a truncated right cir­
cular cone of resistivity 731 D· m, left radius a = 2.00 mm, right ra­
dius b = 2.30 mm, and length L = 1.94 cm. Assume that the cur­
rent density is uniform across any cross section taken 
perpendicular to the length. What is the resistance of the cone? 

i - I 
b 

__ ,_I 

Fig. 26-29 Problem 35. 

i -
Swimming during a storm. Figure 26-30 shows a 

swimmer at distance D = 35.0 m from a lightning strike to the wa­
ter, with current 1= 78 kA. The water has resistivity 30 D . m, the 
width of the swimmer along a radial line from the strike is 0.70 m, 
and his resistance across that width is 4.00 kD. Assume that the 
current spreads through the water over a hemisphere centered on 
the strike point. What is the current through the swimmer? 

L1r-j l-
. . ....... ...'1 
--,-- I 
J----D~ 

Fig. 26-30 Problem 36. 

A Microscopic View of Ohm's Law 
Show that, according to the free-electron model of electrical 

conduction in metals and classical physics, the resistivity of metals 
should be proportional to {T, where T is the temperature in 
kelvins. (See Eq.19-31.) 

Power in Electric Circuits 
In Fig. 26-31a, a 20 D resistor is connected to a battery. Figure 

26-31b shows the increase of ther­
mal energy Eth in the resistor as a 
function of time t. The vertical scale 
is set by Eth,s = 2.50 mJ, and the hor­
izontal scale is set by ts = 4.0 s. What 
is the electric potential across the 
battery? 

A certain brand of hot-dog 
cooker works by applying a poten- ~ 
tial difference of 120 V across op- J 
posite ends of a hot dog and allow-
ing it to cook by means of the 
thermal energy produced. The cur-
rent is 10.0 A, and the energy re-
quired to cook one hot dog is 60.0 

o 

kJ. If the rate at which energy is Fig. 26-31 
supplied is unchanged, how long will 
it take to cook three hot dogs simultaneously? 

(a) 

t (s) 

(b) 

Problem 38. 

Thermal energy is produced in a resistor at a rate of 100 W 
when the current is 3.00 A. What is the resistance? 

SSM A 120 V potential difference is applied to a space 
heater whose resistance is 14 D when hot. (a) At what rate is elec­
trical energy transferred to thermal energy? (b) What is the cost 
for 5.0 h at US$0.05/kW· h? 

In Fig. 26-32, a battery of potential dif­
ference V = 12 V is connected to a resistive 
strip of resistance R = 6.0 D. When an elec­
tron moves through the strip from one end 
to the other, (a) in which direction in the fig­
ure does the electron move, (b) how much 
work is done on the electron by the electric 
field in the strip, and (c) how much energy is 

Fig. 26-32 

Problem 42. 

transferred to the thermal energy of the strip by the electron? 

IlW An unknown resistor is connected between the terminals 
of a 3.00 V battery. Energy is dissipated in the resistor at the rate of 
0.540 W. The same resistor is then connected between the terminals 
of a 1.50 V battery. At what rate is energy now dissipated? 

A student kept his 9.0 V, 7.0 W radio turned on at full volume 
from 9:00 P.M. until 2:00 A.M. How much charge went through it? 

SSM ILW A 1250 W radiant heater is constructed to oper­
ate at 115 V. (a) What is the current in the heater when the unit is 
operating? (b) What is the resistance of the heating coil? (c) How 
much thermal energy is produced in 1.0 h? 

A copper wire of cross-sectional area 2.00 X 10 -6 m2 

and length 4.00 m has a current of 2.00 A uniformly distributed 
across that area. (a) What is the magnitude of the electric field 
along the wire? (b) How much electrical energy is transferred to 
thermal energy in 30 min? 

A heating element is made by maintaining a potential differ­
ence of 75.0 V across the length of a Nichrome wire that has a 2.60 X 

10-6 m2 cross section. Nichrome has a resistivity of 5.00 X 10-7 D· m. 
(a) If the element dissipates 5000 W, what is its length? (b) If 100 V is 
used to obtain the same dissipation rate, what should the length be? 

Exploding shoes. The rain-soaked shoes of a person 
may explode if ground current from nearby lightning vaporizes the 
water. The sudden conversion of water to water vapor causes a dra­
matic expansion that can rip apart shoes. Water has density 1000 



kg/m3 and requires 2256 kJ/kg to be vaporized. If horizontal cur­
rent lasts 2.00 ms and encounters water with resistivity 150 D . m, 
length 12.0 cm, and vertical cross-sectional area 15 X 10-5 m2, what 
average current is required to vaporize the water? 

A 100 W lightbulb is plugged into a standard 120 V outlet. 
(a) How much does it cost per 31-day month to leave the light 
turned on continuously? Assume electrical energy costs 
US$0.06/kW· h. (b) What is the resistance of the bulb? (c) What is 
the current in the bulb? 

The current through the battery and resistors 1 and 2 in 
Fig. 26-33a is 2.00 A. Energy is transferred from the current to ther­
mal energy Elh in both resistors. Curves 1 and 2 in Fig. 26-33b give 
that thermal energy Elh for resistors 1 and 2, respectively, as a func­
tion of time t. The vertical scale is set by E lh" = 40.0 mJ, and the hori­
zontal scale is set by ts = 5.00 s. What is the power of the battery? 

(b) t (s) 

Fig. 26-33 Problem 50. 

SSM WWW Wire C and 
wire D are made from different 
materials and have length Lc = 

LD = 1.0 m. The resistivity and 
diameter of wire Care 2.0 X 10-6 

D . m and 1.00 mm, and those of 
wire Dare 1.0 X 10-6 D· m and 

~Lc--~'I-'--LD~ 
123 

Fig. 26-34 Problem 51. 

0.50 mm. The wires are joined as shown in Fig. 26-34, and a current 
of 2.0 A is set up in them. What is the electric potential difference 
between (a) points 1 and 2 and (b) points 2 and 3? What is the rate 
at which energy is dissipated between (c) points 1 and 2 and (d) 
points 2 and 3? 

The current-density magnitude in a certain circular wire 
is J = (2.75 X 10 10 A/m4)r2, where r is the radial distance out to the 
wire's radius of 3.00 mm. The potential applied to the wire (end to 
end) is 60.0 V. How much energy is converted to thermal energy in 
1.00 h? 

A 120 V potential difference is applied to a space heater 
that dissipates 500 W during operation. (a) What is its resistance 
during operation? (b) At what rate do electrons flow through any 
cross section of the heater element? 

Figure 26-35a shows a rod of resistive material. The resis-
tance per unit length of the rod in- (a) -' I--,\' (m) 

creases in the positive direction of 0 1.0 

the x axis. At any position x along --II-- do\' 
the rod, the resistance dR of a nar- (b) ~ 
row (differential) section of width n~ 
dx is given by dR = 5.00x dx, (c) V n 
where dR is in ohms and x is in U 
meters. Figure 26-35b shows such a 
narrow section. You are to slice off Fig.26-35 Problem 54. 
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a length of the rod between x = 0 and some position x = Land 
then connect that length to a battery with potential difference V = 

5.0 V (Fig. 26-35c). You want the current in the length to transfer 
energy to thermal energy at the rate of 200 W. At what position x = 

L should you cut the rod? 

Additional Problems 
SSM A Nichrome heater dissipates 500 W when the applied 

potential difference is 110 V and the wire temperature is SOODe. 
What would be the dissipation rate if the wire temperature were 
held at 200DC by immersing the wire in a bath of cooling oil? The 
applied potential difference remains the same, and IX for Nichrome 
at SOODCis 4.0 X 1O-4 K-l. 

A potential difference of 1.20 V will be applied to a 33.0 m 
length of IS-gauge copper wire (diameter = 0.0400 in.). Calculate 
(a) the current, (b) the magnitude of the current density, (c) the 
magnitude of the electric field within the wire, and (d) the rate at 
which thermal energy will appear in the wire. 

An lS.0 W device has 9.00 V across it. How much charge goes 
through the device in 4.00 h? 

An aluminum rod with a square cross section is 1.3 m long 
and 5.2 mm on edge. (a) What is the resistance between its ends? 
(b) What must be the diameter of a cylindrical copper rod of length 
1.3 m if its resistance is to be the same as that of the aluminum 
rod? 

A cylindrical metal rod is 1.60 m long and 5.50 mm in 
diameter. The resistance between its two ends (at 20DC) is 1.09 X 
10-3 D. (a) What is the material? (b) A round disk, 2.00 cm in di­
ameter and 1.00 mm thick, is formed of the same material. What is 
the resistance between the round faces, assuming that each face is 
an equipotential surface? 

The chocolate crumb mystery. This story begins with 
Problem 60 in Chapter 23 and continues through Chapters 24 and 
25. The chocolate crumb powder moved to the silo through a pipe 
of radius R with uniform speed v and uniform charge density p. 
(a) Find an expression for the current i (the rate at which charge 
on the powder moved) through a perpendicular cross section of 
the pipe. (b) Evaluate i for the conditions at the factory: pipe ra­
dius R = 5.0 cm, speed v = 2.0 mis, and charge density p = 1.1 X 
10-3 C/m3• 

If the powder were to flow through a change V in electric 
potential, its energy could be transferred to a spark at the rate P = 

iV. (c) Could there be such a transfer within the pipe due to the ra­
dial potential difference discussed in Problem 70 of Chapter 24? 

As the powder flowed from the pipe into the silo, the electric 
potential of the powder changed. The magnitude of that change 
was at least equal to the radial potential difference within the pipe 
(as evaluated in Problem 70 of Chapter 24). (d) Assuming that 
value for the potential difference and using the current found in 
(b) above, find the rate at which energy could have been trans­
ferred from the powder to a spark as the powder exited the pipe. 
(e) If a spark did occur at the exit and lasted for 0.20 s (a reason­
able expectation), how much energy would have been transferred 
to the spark? 

Recall from Problem 60 in Chapter 23 that a minimum energy 
transfer of 150 mJ is needed to cause an explosion. (f) Where did 
the powder explosion most likely occur: in the powder cloud at the 
unloading bin (Problem 60 of Chapter 25), within the pipe, or at 
the exit of the pipe into the silo? 
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61 SSM A steady beam of alpha particles (q = +2e) traveling 
with constant kinetic energy 20 Me V carries a current of 0.25 /-LA. 
(a) If the beam is directed perpendicular to a fiat surface, how many 
alpha particles strike the surface in 3.0 s? (b) At any instant, how 
many alpha particles are there in a given 20 cm length of the beam? 
(c) Through what potential difference is it necessary to accelerate 
each alpha particle from rest to bring it to an energy of 20 Me V? 

A resistor with a potential difference of 200 V across it trans­
fers electrical energy to thermal energy at the rate of 3000 W. What 
is the resistance of the resistor? 

63 A 2.0 kW heater element from a dryer has a length of 80 cm. 
If a 10 cm section is removed, what power is used by the now short­
ened element at 120 V? 

A cylindrical resistor of radius 5.0 mm and length 2.0 cm is 
made of material that has a resistivity of 3.5 X 10 -5 n· m. What are 
(a) the magnitude of the current density and (b) the potential dif­
ference when the energy dissipation rate in the resistor is 1.0 W? 

A potential difference V is applied to a wire of cross-sectional 
area A, length L, and resistivity p. You want to change the applied 
potential difference and stretch the wire so that the energy dissipa­
tion rate is multiplied by 30.0 and the current is multiplied by 4.00. 
Assuming the wire's density does not change, what are (a) the ratio 
of the new length to Land (b) the ratio of the new cross-sectional 
area toA? 

The headlights of a moving car require about 10 A from the 
12 V alternator, which is driven by the engine. Assume the alterna­
tor is 80% efficient (its output electrical power is 80% of its input 
mechanical power), and calculate the horsepower the engine must 
supply to run the lights. 

A 500 W heating unit is designed to operate with an applied 
potential difference of 115 V. (a) By what percentage will its heat 
output drop if the applied potential difference drops to 110 V? 
Assume no change in resistance. (b) If you took the variation of re­
sistance with temperature into account, would the actual drop in 
heat output be larger or smaller than that calculated in (a)? 

The copper windings of a motor have a resistance of 50 n at 
20°C when the motor is idle. After the motor has run for several 
hours, the resistance rises to 58 n. What is the temperature of the 
windings now? Ignore changes in the dimensions of the windings. 
(Use Table 26-1.) 

How much electrical energy is transferred to thermal energy 
in 2.00 h by an electrical resistance of 400 n when the potential ap­
plied across it is 90.0 V? 

A caterpillar of length 4.0 cm crawls in the direction of electron 
drift along a 5.2-mm-diameter bare copper wire that carries a uni­
form current of 12 A. (a) What is the potential difference between 
the two ends of the caterpillar? (b) Is its tail positive or negative 
relative to its head? (c) How much time does the caterpillar take to 
crawl 1.0 cm if it crawls at the drift speed of the electrons in the 
wire? (The number of charge carriers per unit volume is 8.49 X 

1028 m-3.) 

71 SSM (a) At what temperature would the resistance of a cop­
per conductor be double its resistance at 20.0°C? (Use 20.0°C as 
the reference point in Eq. 26-17; compare your answer with Fig. 
26-10.) (b) Does this same "doubling temperature" hold for all 
copper conductors, regardless of shape or size? 

A steel trolley-car rail has a cross-sectional area of 56.0 cm2. 

What is the resistance of 10.0 km of rail? The resistivity of the steel 
is 3.00 X 10-7 n· m. 

A coil of current-carrying Nichrome wire is immersed in a liq­
uid. (Nichrome is a nickel-chromium-iron alloy commonly used 
in heating elements.) When the potential difference across the coil 
is 12 V and the current through the coil is 5.2 A, the liquid evapo­
rates at the steady rate of 21 mg/s. Calculate the heat of vaporiza­
tion of the liquid (see Section 18-8). 

The current density in a wire is uniform and has magni­
tude 2.0 X 106 A/m2, the wire's length is 5.0 m, and the density of 
conduction electrons is 8.49 X 1028 m-3. How long does an elec­
tron take (on the average) to travel the length of the wire? 

A certain x-ray tube operates at a current of 7.00 rnA and a 
potential difference of 80.0 kV. What is its power in watts? 

A current is established in a gas discharge tube when a suffi­
ciently high potential difference is applied across the two elec­
trodes in the tube. The gas ionizes; electrons move toward the 
positive terminal and singly charged positive ions toward the 
negative terminal. (a) What is the current in a hydrogen dis­
charge tube in which 3.1 X 10 18 electrons and 1.1 X 10 18 protons 
move past a cross-sectional area of the tube each second? (b) Is 
the direction of the current density 7 toward or away from the 
negative terminal? 



WHAT IS. PHYSICS? 
You are surrounded by electric circuits. You might take pride in the 

number of electrical devices you own and might even carry a mental list of the 
devices you wish you owned. Everyone of those devices, as well as the electrical 
grid that powers your home, depends on modern electrical engineering. We can­
not easily estimate the current financial worth of electrical engineering and its 
products, but we can be certain that the financial worth continues to grow yearly 
as more and more tasks are handled electrically. Radios are now tuned electroni­
cally instead of manually. Messages are now sent by email instead of through the 
postal system. Research journals are now read on a computer instead of in a li­
brary building, and research papers are now copied and filed electronically in­
stead of photocopied and tucked into a filing cabinet. 

The basic science of electrical engineering is physics. In this chapter we cover 
the physics of electric circuits that are combinations of resistors and batteries 
(and, in Section 27-9, capacitors). We restrict our discussion to circuits through 
which charge flows in one direction, which are called either direct-current circuits 
or DC circuits. We begin with the question: How can you get charges to flow? 

"Pumping" Charges 
If you want to make charge carriers flow through a resistor, you must establish a 
potential difference between the ends of the device. One way to do this is to con­
nect each end of the resistor to one plate of a charged capacitor. The trouble with 
this scheme is that the flow of charge acts to discharge the capacitor, quickly 
bringing the plates to the same potential. When that happens, there is no longer 
an electric field in the resistor, and thus the flow of charge stops. 

To produce a steady flow of charge, you need a "charge pump," a device 
that-by doing work on the charge carriers-maintains a potential difference 
between a pair of terminals. We call such a device an emf device, and the device is 
said to provide an emf 'g, which means that it does work on charge carriers. 
An emf device is sometimes called a seat of emf. The term emf comes from the 
outdated phrase electromotive force, which was adopted before scientists clearly 
understood the function of an emf device. 

In Chapter 26, we discussed the motion of charge carriers through a circuit in 
terms of the electric field set up in the circuit-the field produces forces that 
move the charge carriers. In this chapter we take a different approach: We discuss 
the motion of the charge carriers in terms of the required energy - an emf device 
supplies the energy for the motion via the work it does. 

A common emf device is the battery, used to power a wide variety of 
machines from wristwatches to submarines. The emf device that most influences 
our daily lives, however, is the electric generator, which, by means of electrical 
connections (wires) from a generating plant, creates a potential difference in our 
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The world's largest battery energy storage 
plant (dismantled in 1996) connected over 
8000 large lead-acid batteries in 8 strings at 
1000 Veach with a capability of 10 MW of 
power for 4 hours. Charged up at night, the 
batteries were then put to use during peak 
power demands on the electrical system. 
(Courtesy Southern California Edison 
Company) 
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Fig. 27-1 A simple electric circuit, in 
which a device of emf'tf; does work on the 
charge carriers and maintains a steady 
current i in a resistor of resistance R. 

homes and workplaces. The emf devices known as solar cells, long familiar as the 
wing-like panels on spacecraft, also dot the countryside for domestic applications. 
Less familiar emf devices are the fuel cells that power the space shuttles and the 
thermopiles that provide onboard electrical power for some spacecraft and for 
remote stations in Antarctica and elsewhere. An emf device does not have to be 
an instrument-living systems, ranging from electric eels and human beings to 
plants, have physiological emf devices. 

Although the devices we have listed differ widely in their modes of opera­
tion, they all perform the same basic function - they do work on charge carriers 
and thus maintain a potential difference between their terminals. 

Work, Energy, and Emf 
Figure 27-1 shows an emf device (consider it to be a battery) that is part of a 
simple circuit containing a single resistance R (the symbol for resistance and a 
resistor is -A/V'v-). The emf device keeps one of its terminals (called the positive 
terminal and often labeled +) at a higher electric potential than the other termi­
nal (called the negative terminal and labeled -). We can represent the emf of the 
device with an arrow that points from the negative terminal toward the positive 
terminal as in Fig. 27 -1. A small circle on the tail of the emf arrow distinguishes it 
from the arrows that indicate current direction. 

When an emf device is not connected to a circuit, the internal chemistry of 
the device does not cause any net flow of charge carriers within it. However, 
when it is connected to a circuit as in Fig. 27-1, its internal chemistry causes a net 
flow of positive charge carriers from the negative terminal to the positive termi­
nal, in the direction of the emf arrow. This flow is part of the current that is set up 
around the circuit in that same direction (clockwise in Fig. 27-1). 

Within the emf device, positive charge carriers move from a region of low 
electric potential and thus low electric potential energy (at the negative terminal) 
to a region of higher electric potential and higher electric potential energy (at 
the positive terminal). This motion is just the opposite of what the electric field 
between the terminals (which is directed from the positive terminal toward the 
negative terminal) would cause the charge carriers to do. 

Thus, there must be some source of energy within the device, enabling it to 
do work on the charges by forcing them to move as they do. The energy source 
may be chemical, as in a battery or a fuel cell. It may involve mechanical forces, as 
in an electric generator. Temperature differences may supply the energy, as in a 
thermopile; or the Sun may supply it, as in a solar cell. 

Let us now analyze the circuit of Fig. 27 -1 from the point of view of work and 
energy transfers. In any time interval dt, a charge dq passes through any cross sec­
tion of this circuit, such as aa'. This same amount of charge must enter the emf 
device at its low-potential end and leave at its high-potential end. The device 
must do an amount of work dWon the charge dq to force it to move in this way. 
We define the emf of the emf device in terms of this work: 

'i8= dW 
dq 

(definition of'if;). (27-1) 

In words, the emf of an emf device is the work per unit charge that the device 
does in moving charge from its low-potential terminal to its high-potential termi­
nal. The SI unit for emf is the joule per coulomb; in Chapter 24 we defined that 
unit as the volt. 

An ideal emf device is one that lacks any internal resistance to the internal 
movement of charge from terminal to terminal. The potential difference between 
the terminals of an ideal emf device is equal to the emf of the device. For exam-
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pIe, an ideal battery with an emf of 12.0 V always has a potential difference of 
12.0 V between its terminals. 

A real emf device, such as any real battery, has internal resistance to the 
internal movement of charge. When a real emf device is not connected to a 
circuit, and thus does not have current through it, the potential difference 
between its terminals is equal to its emf. However, when that device has current 
through it, the potential difference between its terminals differs from its emf. We 
shall discuss such real batteries in Section 27-5. 

When an emf device is connected to a circuit, the device transfers energy to 
the charge carriers passing through it. This energy can then be transferred from 
the charge carriers to other devices in the circuit, for example, to light a bulb. 
Figure 27-2a shows a circuit containing two ideal rechargeable (storage) batteries 
A and B, a resistance R, and an electric motor M that can lift an object by using 
energy it obtains from charge carriers in the circuit. Note that the batteries are 
connected so that they tend to send charges around the circuit in opposite direc­
tions. The actual direction of the current in the circuit is determined by the battery 
with the larger emf, which happens to be battery B, so the chemical energy within 
battery B is decreasing as energy is transferred to the charge carriers passing 
through it. However, the chemical energy within battery A is increasing because 
the current in it is directed from the positive terminal to the negative terminal. 
Thus, battery B is charging battery A. Battery B is also providing energy to motor 
M and energy that is being dissipated by resistance R. Figure 27-2b shows all three 
energy transfers from battery B; each decreases that battery's chemical energy. 

Calculating the Current in a Single .. loop Circuit 
We discuss here two equivalent ways to calculate the current in the simple single­
loop circuit of Fig. 27-3; one method is based on energy conservation considera­
tions, and the other on the concept of potential. The circuit consists of an ideal 
battery B with emf'(g, a resistor of resistance R, and two connecting wires. (Unless 
otherwise indicated, we assume that wires in circuits have negligible resistance. 
Their function, then, is merely to provide pathways along which charge carriers 
can move.) 

Equation 26-27 (P = i2R) tells us that in a time interval dt an amount of energy 
given by PR dt will appear in the resistor of Fig. 27-3 as thermal energy. As noted 
in Section 26-7, this energy is said to be dissipated. (Because we assume the wires 
to have negligible resistance, no thermal energy will appear in them.) During the 
same interval, a charge dq = i dt will have moved through battery B, and the 
work that the battery will have done on this charge, according to Eq. 27 -1, is 

dW = '(g dq = '(gi dt. 

From the principle of conservation of energy, the work done by the (ideal) bat­
tery must equal the thermal energy that appears in the resistor: 

'(gi dt = PR dt. 

This gives us 

'(g = iR. 

The emf'(g is the energy per unit charge transferred to the moving charges by the 
battery. The quantity iR is the energy per unit charge transferred from the mov­
ing charges to thermal energy within the resistor. Therefore, this equation means 
that the energy per unit charge transferred to the moving charges is equal to the 

(a) 

(b) 

Fig.27-2 (a) In the circuit, egB > egA; 
so battery B determines the direction of 
the current. (b) The energy transfers in 
the circuit. 

The battery drives current 
through the resistor, from 
high potential to low potential. 

i - Higher 
potential 

B R ~i 
Lower 

~ potential 
1 

Fig.27-3 A single-loop circuit in 
which a resistance R is connected 
across an ideal battery B with ernfeg. 
The resulting current i is the same 
throughout the circuit. 
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energy per unit charge transferred from them. Solving for i, we find 

. 'jg 
1=-R· (27-2) 

Suppose we start at any point in the circuit of Fig. 27-3 and mentally proceed 
around the circuit in either direction, adding algebraically the potential differ­
ences that we encounter. Then when we return to our starting point, we must 
also have returned to our starting potential. Before actually doing so, we shall 
formalize this idea in a statement that holds not only for single-loop circuits such 
as that of Fig. 27-3 but also for any complete loop in a multiloop circuit, as we 
shall discuss in Section 27 -7: 

LOOP RULE: The algebraic sum of the changes in potential encountered in a 
complete traversal of any loop of a circuit must be zero. 

This is often referred to as Kirchhoff's loop rule (or Kirchhoff's voltage law), after 
German physicist Gustav Robert Kirchhoff. This rule is equivalent to saying that 
each point on a mountain has only one elevation above sea level. If you start 
from any point and return to it after walking around the mountain, the algebraic 
sum of the changes in elevation that you encounter must be zero. 

In Fig. 27-3, let us start at point a, whose potential is Va> and mentally walk 
clockwise around the circuit until we are back at a, keeping track of potential 
changes as we move. Our starting point is at the low-potential terminal of the bat­
tery. Because the battery is ideal, the potential difference between its terminals is 
equal to 'jg. When we pass through the battery to the high-potential terminal, the 
change in potential is +'jg. 

As we walk along the top wire to the top end of the resistor, there is no 
potential change because the wire has negligible resistance; it is at the same 
potential as the high-potential terminal of the battery. So too is the top end of the 
resistor. When we pass through the resistor, however, the potential changes 
according to Eq. 26-8 (which we can rewrite as V = iR). Moreover, the potential 
must decrease because we are moving from the higher potential side of the resis­
tor. Thus, the change in potential is - iR. 

We return to point a by moving along the bottom wire. Because this wire also has 
negligible resistance, we again find no potential change. Back at point a, the potential 
is again Va. Because we traversed a complete loop, our initial potential, as modified 
for potential changes along the way, must be equal to our final potential; that is, 

Va + 'jg - iR = Va. 

The value of Va cancels from this equation, which becomes 

'jg - iR = O. 

Solving this equation for i gives us the same result, i = 'jg/R, as the energy method 
(Eq.27-2). 

If we apply the loop rule to a complete counterclockwise walk around the 
circuit, the rule gives us 

-'jg + iR = 0 

and we again find that i = 'jg/R. Thus, you may mentally circle a loop in either 
direction to apply the loop rule. 

To prepare for circuits more complex than that of Fig. 27-3, let us set down 
two rules for finding potential differences as we move around a loop: 
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RESISTANCE RULE: For a move through a resistance in the direction of the 
current, the change in potential is - iR; in the opposite direction it is + iR. 

EMF RULE: For a move through an ideal emf device in the direction of the emf 
arrow, the change in potential is +"8; in the opposite direction it is -"8. 

CHECKPOINT 1 

The figure shows the current i in a single-loop circuit 
with a battery B and a resistance R (and wires of 
negligible resistance). (a) Should the emf arrow at B 
be drawn pointing leftward or rightward? At points 
a, b, and c, rank (b) the magnitude of the current, (c) 
the electric potential, and (d) the electric potential 
energy of the charge carriers, greatest first. 

Other Single-loop Circuits 

-i 

In this section we extend the simple circuit of Fig. 27-3 in two ways. 

Figure 27-4a shows a real battery, with internal resistance r, wired to an external 
resistor of resistance R. The internal resistance of the battery is the electrical 
resistance of the conducting materials of the battery and thus is an unremovable 
feature of the battery. In Fig. 27-4a, however, the battery is drawn as if it could be 
separated into an ideal battery with emf'(g and a resistor of resistance r. The order 
in which the symbols for these separated parts are drawn does not matter. 

If we apply the loop rule clockwise beginning at point a, the changes in 
potential give us 

'(g - ir - iR = O. (27-3) 

Solving for the current, we find 

. '(g 
l=---. 

R + r 
(27-4) 

Note that this equation reduces to Eq. 27-2 if the battery is ideal-that is, if r = O. 
Figure 27-4b shows graphically the changes in electric potential around the 

circuit. (To better link Fig. 27-4b with the closed circuit in Fig. 27-4a, imagine 
curling the graph into a cylinder with point a at the left overlapping point a at 

i -
a <>---"8 b 

b + ~T I 
(:1 

it !i OJ 
R ';::l 

>:: 
1l 
0 ,;, "-' a . 

Leal ~attery -- Emf device 
i 

(a) (b) 

Fig.27-4 (a) A single-loop circuit containing a real battery having internal resistance 
r and emf "8. (b) The same circuit, now spread out in a line. The potentials encountered 
in traversing the circuit clockwise from a are also shown. The potential v" is arbitrarily 
assigned a value of zero, and other potentials in the circuit are graphed relative to Va' 

i - a 

Resistor 
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b 

a 

+ 

i -

~ 
I 

CIRCUITS 

(a) 

b 

a 

(b) 

Series resistors 
and their 
equivalent have 
the same 
current ("ser-i"). 

Fig. 27-5 (a) Three resistors are con­
nected in series between points a and b. 
(b) An equivalent circuit, with the three 
resistors replaced with their equivalent 
resistance Reg. 

CHECKPOINT 2 

In Fig. 27-5a, if R j > R2 > R3, rank the 
three resistances according to (a) the 
current through them and (b) the po­
tential difference across them, greatest 
first. 

the right.) Note how traversing the circuit is like walking around a (potential) 
mountain back to your starting point - you return to the starting elevation. 

In this book, when a battery is not described as real or if no internal resistance 
is indicated, you can generally assume that it is ideal-but, of course, in the real 
world batteries are always real and have internal resistance. 

Figure 27-5a shows three resistances connected in series to an ideal battery with 
emf '(g. This description has little to do with how the resistances are drawn. 
Rather, "in series" means that the resistances are wired one after another and 
that a potential difference V is applied across the two ends of the series. In Fig. 
27-5a, the resistances are connected one after another between a and b, and a 
potential difference is maintained across a and b by the battery. The potential 
differences that then exist across the resistances in the series produce identical 
currents i in them. In general, 

When a potential difference V is applied across resistances connected in series, 
the resistances have identical currents i. The sum of the potential differences across 
the resistances is equal to the applied potential difference V. 

Note that charge moving through the series resistances can move along only a 
single route. If there are additional routes, so that the currents in different resis­
tances are different, the resistances are not connected in series. 

Resistances connected in series can be replaced with an equivalent resistance Reg that has 
the same current i and the same total potential difference Vas the actual resistances. 

You might remember that Req and all the actual series resistances have the same 
current i with the nonsense word "ser-i." Figure 27-5b shows the equivalent resis­
tance Req that can replace the three resistances of Fig. 27-5a. 

To derive an expression for Reg in Fig. 27-5b, we apply the loop rule to both 
circuits. For Fig. 27-5a, starting at a and going clockwise around the circuit, we find 

'(g iR J - iR2 iR3 = 0, 

. '(g 
z= 

R J + R2 + R3 
or (27-5) 

For Fig. 27-5b, with the three resistances replaced with a single equivalent resis­
tance Reg, we find 

'(g - iReg = 0, 

or 
'(g 

i=--. 
Reg 

Comparison of Eqs. 27-5 and 27-6 shows that 

Reg = R j + R2 + R3· 

The extension to n resistances is straightforward and is 

/I 

Reg = 2: R j 
j~l 

(n resistances in series). 

(27-6) 

(27-7) 

Note that when resistances are in series, their equivalent resistance is greater 
than any of the individual resistances. 
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Potential Difference Between Two Points 
We often want to find the potential difference between two points in a circuit. For 
example, in Fig. 27-6, what is the potential difference Vb - Va between points a and b? 
To find out, let's start at point a (at potential Va) and move through the battery to point 
b (at potential Vb) while keeping track of the potential changes we encounter. When 
we pass through the battery's emf, the potential increases by~. When we pass through 
the battery's intemal resistance r, we move in the direction of the current and thus the 
potential decreases by ir. We are then at the potential of point b and we have 

Va + ~ - ir = Vb, 

or Vb - Va = ~ ir. (27-8) 

To evaluate this expression, we need the current i. Note that the circuit is the 
same as in Fig. 27-4a, for which Eq. 27-4 gives the current as 

. ~ 
1=---. 

R + I' 

Substituting this equation into Eq. 27-8 gives us 

~ 
Vb-Va=~- R+r r 

=-~-R. 
R + I' 

Now substituting the data given in Fig. 27-6, we have 

12V 
Vb - Va = 4 r. r. 4.0 n = 8.0 V . 

. OH + 2.0H 

(27-9) 

(27-10) 

(27-11) 

Suppose, instead, we move from a to b counterclockwise, passing through 
resistor R rather than through the battery. Because we move opposite the current, the 
potential increases by iR. Thus, 

or 

Va + iR = Vb 

Vb - Va = iR. (27-12) 

Substituting for i from Eq. 27-9, we again find Eq. 27-10. Hence, substitution of 
the data in Fig. 27 -6 yields the same result, Vb - Va = 8.0 V. In general, 

To find the potential between any two points in a circuit, start at one point and 
traverse the circuit to the other point, following any path, and add algebraically the 
changes in potential you encounter. 

In Fig. 27-6, points a and b are located at the terminals of the battery. Thus, the 
potential difference Vb - Va is the terminal-to-terminal potential difference V 
across the battery. From Eq. 27-8, we see that 

V = ~ - ir. (27-13) 

If the intemal resistance I' of the battery in Fig. 27-6 were zero, Eq. 27 -13 tells 
us that V would be equal to the emf ~ of the battery-namely, 12 V. However, 
because r = 2.0 n, Eq. 27-13 tells us that V is less than ~. From Eq. 27-11, we 
know that V is only 8.0 V. Note that the result depends on the value of the current 
through the battery. If the same battery were in a different circuit and had a 
different current through it, V would have some other value. 

The internal resistance reduces 
the potential difference between 
the terminals. 

-----00-

b + i 

a -

r:= 2.0 Q 

~i= 12V 

R=4.0Q 

Fig.27-6 Points a and b, which are 
at the terminals of a real battery, dif­
fer in potential. 
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Fig. 27-7 (a) Point a is directly con-
nected to ground. (b) Point b is directly 
connected to ground. 

CHECKPOINT 3 

A battery has an emf of 12 V and an in­
ternal resistance of 2 n. Is the terminal­
to-terminal potential difference greater 
than, less than, or equal to 12 V if the 
current in the battery is (a) from the 
negative to the positive terminal, (b) 
from the positive to the negative termi­
nal, and ( c) zero? 

--,---.-
b + 1 

--,---.-
b + 1 

2.00 R=4.00 

12V 2.00 R=4.0 0 
a _ 

-L-
a _ 

-L-
(a) Ground is taken (b) 

to be zero potential. 

Figure 27-7 a shows the same circuit as Fig. 27-6 except that here point a is directly 
connected to ground, as indicated by the common symbol --:!:-. Grounding a cir­
cuit usually means connecting the circuit to a conducting path to Earth's surface 
(actually to the electrically conducting moist dirt and rock below ground). Here, 
such a connection means only that the potential is defined to be zero at the 
grounding point in the circuit. Thus in Fig. 27-7a, the potential at a is defined to 
be Va = O. Equation 27 -11 then tells us that the potential at b is Vb = 8.0 V. 

Figure 27-7b is the same circuit except that point b is now directly connected 
to ground. Thus, the potential there is defined to be Vb = O. Equation 27-11 now 
tells us that the potential at a is Va = -8.0 V. 

When a battery or some other type of emf device does work on the charge carri­
ers to establish a current i, the device transfers energy from its source of energy 
(such as the chemical source in a battery) to the charge carriers. Because a real 
emf device has an internal resistance r, it also transfers energy to internal thermal 
energy via resistive dissipation (Section 26-7). Let us relate these transfers. 

The net rate P of energy transfer from the emf device to the charge carriers is 
given by Eq. 26-26: 

P= iV, (27-14) 

where V is the potential across the terminals of the emf device. From Eq. 27-13, 
we can substitute V = ~ - ir into Eq. 27-14 to find 

P = i(~ - ir) = i~ - i2r. (27-15) 

From Eq. 26-27, we recognize the term i2r in Eq. 27-15 as the rate Pr of energy 
transfer to thermal energy within the emf device: 

(internal dissipation rate). (27-16) 

Then the term i~ in Eq. 27-15 must be the rate Pemf at which the emf device 
transfers energy both to the charge carriers and to internal thermal energy. Thus, 

(power of emf device). (27-17) 

If a battery is being recharged, with a "wrong way" current through it, the 
energy transfer is then from the charge carriers to the battery-both to the 
battery's chemical energy and to the energy dissipated in the internal resistance r. 
The rate of change of the chemical energy is given by Eq. 27-17, the rate of dissi­
pation is given by Eq. 27-16, and the rate at which the carriers supply energy is 
given by Eq. 27-14. 
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Single-loop circuit with two real batteries 

The emfs and resistances in the circuit of Fig. 27 -Sa have the 
following values: 

~1 = 4.4 V, ~2 = 2.1 V, 

r1 = 2.3 a, r2 = 1.S a, R = 5.5 a. 
(a) What is the current i in the circuit? 

We can get an expression involving the current i in this single­
loop circuit by applying the loop rule. 

Calculations: Although knowing the direction of i is not 
necessary, we can easily determine it from the emfs of the 
two batteries. Because ~1 is greater than ~2' battery 1 
controls the direction of i, so the direction is clockwise. 
(These decisions about where to start and which way you 
go are arbitrary but, once made, you must be consistent 
with decisions about the plus and minus signs.) Let us 
then apply the loop rule by going counterclockwise­
against the current-and starting at point a. We find 

-~1 + ir1 + iR + ir2 + ~2 = O. 

Check that this equation also results if we apply the loop 
rule clockwise or start at some point other than a. Also, 
take the time to compare this equation term by term with 
Fig. 27-Sb, which shows the potential changes graphically 
(with the potential at point a arbitrarily taken to be 
zero). 

Solving the above loop equation for the current i, we 
obtain 

~1 - ~2 4.4 V - 2.1 V i = ----"---"--
R + r1 + r2 5.5 a + 2.3 a + 1.S a 

= 0.2396 A = 240 rnA. (Answer) 

(b) What is the potential difference between the terminals 
of battery 1 in Fig. 27 -Sa? 

We need to sum the potential differences between points a 
andb. 

Calculations: Let us start at point b (effectively the nega­
tive terminal of battery 1) and travel clockwise through bat­
tery 1 to point a (effectively the positive terminal), keeping 
track of potential changes. We find that 

Vb - ir1 + ~1 = Va> 

a 

Battery 1 Battery 2 

(a) 

-5 

(b) 

Fig. 27-8 (a) A single-loop circuit containing two real batteries 
and a resistor. The batteries oppose each other; that is, they tend to 
send current in opposite directions through the resistor. (b) A 
graph of the potentials, counterclockwise from point a, with the po­
tential at a arbitrarily taken to be zero. (To better link the circuit 
with the graph, mentally cut the circuit at a and then unfold the left 
side of the circuit toward the left and the right side of the circuit to­
ward the right.) 

which gives us 

Va - 1'1, = - ir1 + ~1 
= -(0.2396 A)(2.3 a) + 4.4 V 

= +3.S4 V = 3.S V, (Answer) 

which is less than the emf of the battery. You can verify this 
result by starting at point b in Fig. 27-Sa and traversing the 
circuit counterclockwise to point a. We learn two points 
here. (1) The potential difference between two points in a 
circuit is independent of the path we choose to go from one 
to the other. (2) When the current in the battery is in the 
"proper" direction, the terminal-to-terminal potential dif­
ference is low. 

Ws Additional examples, video, and practice available at WileyPLUS 
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The current into the junction 
must equal the current out 
(charge is conserved). 

d 

'g2 
~ 

- + 

Fig.27-9 A multiloop circuit consisting 
of three branches: left-hand branch bad, 
right-hand branch bcd, and central branch 
bd. The circuit also consists of three loops: 
left-hand loop badb, right-hand loop bcdb, 
and big loop badcb. 

Parallel resistors and their 
equivalent have the same 
potential difference ("par-V"). 

~~a,. ,-~_+_!_3,-____ , 

R] !i3 

lb 
b ----i2 + i:J 

(a) 

Fig. 27-10 (a) Three resistors 
connected in parallel across points a 
and b. (b) An equivalent circuit, with 
the three resistors replaced with 
their equivalent resistance Req. 

Multiloop Circuits 
Figure 27-9 shows a circuit containing more than one loop. For simplicity, we 
assume the batteries are ideal. There are two junctions in this circuit, at band d, 
and there are three branches connecting these junctions. The branches are the left 
branch (bad), the right branch (bed), and the central branch (bd). What are the 
currents in the three branches? 

We arbitrarily label the currents, using a different SUbscript for each branch. 
Current i1 has the same value everywhere in branch bad, i2 has the same value 
everywhere in branch bcd, and i3 is the current through branch bd. The directions 
of the currents are assumed arbitrarily. 

Consider junction d for a moment: Charge comes into that junction via 
incoming currents i1 and i3, and it leaves via outgoing current i2. Because there is 
no variation in the charge at the junction, the total incoming current must equal 
the total outgoing current: 

(27-18) 

You can easily check that applying this condition to junction b leads to exactly 
the same equation. Equation 27 -18 thus suggests a general principle: 

JUNCTION RULE: The sum of the currents entering any junction must be equal to 
the sum of the currents leaving that junction. 

This rule is often called Kirchhoff's junction rule (or Kirchhoff's current law). It is 
simply a statement of the conservation of charge for a steady flow of charge­
there is neither a buildup nor a depletion of charge at a junction. Thus, our basic 
tools for solving complex circuits are the loop rule (based on the conservation of 
energy) and the junction rule (based on the conservation of charge). 

Equation 27-18 is a single equation involving three unknowns. To solve the cir­
cuit completely (that is, to find all three currents), we need two more equations in­
volving those same unknowns. We obtain them by applying the loop rule twice. In the 
circuit of Fig. 27-9, we have three loops from which to choose: the left-hand loop 
(badb), the right-hand loop (bcdb), and the big loop (badcb). Which two loops we 
choose does not matter -let's choose the left-hand loop and the right -hand loop. 

If we traverse the left-hand loop in a counterclockwise direction from point 
b, the loop rule gives us 

(27-19) 

If we traverse the right-hand loop in a counterclockwise direction from point b, 
the loop rule gives us (27-20) 

We now have three equations (Eqs. 27-18,27-19, and 27-20) in the three unknown 
currents, and they can be solved by a variety of techniques. 

If we had applied the loop rule to the big loop, we would have obtained 
(moving counterclockwise from b) the equation 

~l - i1R1 - i2R2 - ~2 = O. 

However, this is merely the sum of Eqs. 27-19 and 27-20. 

Figure 27-10a shows three resistances connected in parallel to an ideal battery of emf 
~. The term "in parallel" means that the resistances are directly wired together on one 
side and directly wired together on the other side, and that a potential difference V is 
applied across the pair of connected sides. Thus, all three resistances have the same 
potential difference V across them, producing a current through each. In general, 



When a potential difference V is applied across resistances connected in parallel, the 
resistances all have that same potential difference V. 

In Fig. 27-lOa, the applied potential difference V is maintained by the battery. In 
Fig. 27-10b, the three parallel resistances have been replaced with an equivalent 
resistance Req. 

Resistances connected in parallel can be replaced with an equivalent resistance Req that 
has the same potential difference V and the same total cunent i as the actual resistances. 

You might remember that Req and all the actual parallel resistances have the 
same potential difference V with the nonsense word "par-V." 

To derive an expression for Req in Fig. 27-10b, we first write the current in 
each actual resistance in Fig. 27-1 Oa as 

and 

where V is the potential difference between a and b. If we apply the junction rule 
at point a in Fig. 27 -lOa and then substitute these values, we find 

. . . . V( 1 1 1 ) 
I = II + 12 + 13 = - + - + - . 

Rl R2 R3 
(27-21) 

If we replaced the parallel combination with the equivalent resistance Req (Fig. 
27-10b), we would have 

. V 
I=R' 

eq 

Comparing Eqs. 27-21 and 27-22 leads to 

1 1 1 1 --=-+-+-. 
Req RI R2 R3 

Extending this result to the case of n resistances, we have 

1 11 1 
-=2:-
Req j=l R j 

(n resistances in parallel). 

(27-22) 

(27-23) 

(27-24) 

For the case of two resistances, the equivalent resistance is their product divided 
by their sum; that is, 

(27-25) 

Note that when two or more resistances are connected in parallel, the equivalent 
resistance is smaller than any of the combining resistances. Table 27-1 summarizes the 
equivalence relations for resistors and capacitors in series and in parallel. 

Series and Parallel Resistors and Capacitors 

Series Parallel Series 

Resistors 
1/ 
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CHECKPOINT 4 

A battery, with potential V across it, is 
connected to a combination of two iden­
tical resistors and then has cunent i 
through it. What are the potential differ­
ence across and the current through ei­
ther resistor if the resistors are (a) in se­
ries and (b) in parallel? 

Parallel 

Capacitors 
1/ 

Reg = 2: Rj Eq.27-7 
j=l 

1 II 1 
- = 2: - Eq.27-24 
Req j=l R j 

1 1/ 1 
- = 2: - Eq.25-20 
Ceq j=l Cj 

Ceq = 2: Cj Eq.25-19 
j=l 

Same current through 
all resistors 

Same potential difference 
across all resistors 

Same charge on all 
capacitors 

Same potential difference 
across all ca paci tors 
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Resistors in parallel and in series 

Figure 27-11a shows a multiloop circuit containing one ideal 
battery and four resistances with the following values: 

Rl = 200, R2 = 20 0, ~ = 12 V, 

R3 = 30 0, R4 = 8.0 D. 

(a) What is the current through the battery? 

Noting that the current through the battery must also be 
the current through Rh we see that we might find the 
current by applying the loop rule to a loop that includes R1 
because the current would be included in the potential 
difference across R l' 

Incorrect method: Either the left-hand loop or the big 
loop should do. Noting that the emf arrow of the battery 
points upward, so the current the battery supplies is clock­
wise, we might apply the loop rule to the left-hand loop, 
clockwise from point a. With i being the current through the 
battery, we would get 

(incorrect). 

However, this equation is incorrect because it assumes 
that Rh R2, and R4 all have the same current i. Resistances 
R1 and R4 do have the same current, because the current 
passing through R4 must pass through the battery and then 
through R1 with no change in value. However, that current 
splits at junction point b-only part passes through Rz, the 
rest through R3• 

Dead-end method: To distinguish the several currents in 
the circuit, we must label them individually as in Fig. 27-11b. 
Then, circling clockwise from a, we can write the loop rule 
for the left-hand loop as 

+~ - i1R1 - i2R2 - i1R4 = O. 

Unfortunately, this equation contains two unknowns, i1 and i2; 

we would need at least one more equation to find them. 

Successful method: A much easier option is to simplify 
the circuit of Fig. 27-11b by finding equivalent resistances. 
Note carefully that R land R2 are not in series and thus cannot 
be replaced with an equivalent resistance. However, R2 and 
R3 are in parallel, so we can use either Eq. 27-24 or Eq. 27-25 
to find their equivalent resistance R23. From the latter, 

(200)(30 D) = 12 D. 
SOD 

We can now redraw the circuit as in Fig. 27-11c; note that 
the current through R23 must be i j because charge that 
moves through Rl and R4 must also move through R23. For 
this simple one-loop circuit, the loop rule (applied clockwise 
from point a as in Fig. 27 -l1d) yields 

+~ - ijR j - i1R23 - i1R4 = O. 

Substituting the given data, we find 

12 V - i l(20 D) - i1(12 D) - i l(8.0 D) = 0, 

which gives us 

12 V 
i l = 400 = 0.30 A. (Answer) 

(b) What is the current i2 through R2? 

(1) We must now work backward from the equivalent circuit 
of Fig. 27-11d, where R23 has replaced R2 and R3. (2) Because 
R2 and R3 are in parallel, they both have the same potential 
difference across them as R23. 

Working backward: We know that the current through R23 
is i l = 0.30 A. Thus, we can use Eq. 26-8 (R = Vii) and Fig. 
27-11e to find the potential difference V23 across R 23. Setting 
R23 = 120 from (a), we write Eq. 26-8 as 

V23 = i1R23 = (0.30 A)(12 D) = 3.6 V. 

The potential difference across R2 is thus also 3.6 V (Fig. 
27-11/), so the current i2 in R2 must be, by Eq. 26-8 and 
Fig. 27-11g, 

. Vz 3.6 V 
12 = - = -- = 0.18 A 

R2 200 . 
(Answer) 

(c) What is the current i3 through R3? 

We can answer by using either of two techniques: (1) Apply 
Eq. 26-8 as we just did. (2) Use the junction rule, which tells us 
that at point b in Fig. 27-11b, the incoming current i1 and the 
outgoing currents i2 and i3 are related by 

i1 = i2 + i3· 

Calculation: Rearranging this junction-rule result yields 
the result displayed in Fig. 27 -l1g: 

i3 = i l - i2 = 0.30 A - 0.18 A 

= 0.12 A. (Answer) 

Additional examples, video, and practice available at WileyPLUS 



'tg=12V r 

R j R3 

r 'tg - R2 

a 

(a) 

Applying the loop rule 
yields the current. 

i] = 0.30A -
R] = 20 n 

'tg= 12V 1~ 

R4=S,0 n 

a -i] =0.30A 

(d) 

Parallel resistors and 
their equivalent have 
the same V ("par-V"). 

i] =0.30A i3 - b -

b 

R] = 20 n R3=30 n 
V3= 3.6 V 

V2= 3.6 V r2 

R 2= 20 n 

R4=S,0 n 

-i j =0.30A 
(j) 

i] -

-i] 

~ 

(b) 
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The equivalent of parallel 
resistors is smaller. 

i] - b 

R] = 20 n 

r 'tg - l i] 
R 23 = 12 n 

R4= S.O n 
a - c 

i j 

(c) 

Applying V = iR yields 
the potential difference. 

i] =0.30A - b 

Ii] =0.30A 
V23 = 3.6 V ,R23 = 12 n 

R4= S.O n 

a - c 

i] =0.30A 

(e) 

Applying i= VIR 
yields the current. 

i] =0.30A - b 

V2 = 3.6 V 

R4=S,0 n 

-i] = 0.30A 
(g) 

R3=30 n 
V3= 3.6 V 

I i 2 =0.lSA ,R2 = 20 n 

Fig. 27-11 (a) A circuit with an ideal battery. (b) Label the currents. (c) Replacing the parallel resistors with their 
equivalent. (d) - (g) Working backward to find the currents through the parallel resistors. 
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Many real batteries in series and in parallel in an electric fish 

Electric fish are able to generate current with biological cells 
called electroplaques, which are physiological emf devices. The 
electroplaques in the type of electric fish known as a South 
American eel are arranged in 140 rows, each row stretching 
horizontally along the body and each containing 5000 electro­
plaques. The arrangement is suggested in Fig. 27 -12a; each 
electroplaque has an emf '?8 of 0.15 V and an internal resis­
tance r of 0.25 fl. The water surrounding the eel completes a 
circuit between the two ends of the electroplaque array, one 
end at the animal's head and the other near its tail. 

(a) If the water surrounding the eel has resistance Rw = 800 fl, 
how much current can the eel produce in the water? 

We can simplify the circuit of Fig. 27 -12a by replacing 
combinations of emfs and internal resistances with equiva­
lent emfs and resistances. 

First, reduce each row to 
one emf and one resistance. 

Calculations: We first consider a single row. The total emf 
'?8row along a row of 5000 electroplaques is the sum of the emfs: 

'?8row = 5000'?8 = (5000)(0.15 V) = 750 V 

The total resistance Rrow along a row is the sum of the inter­
nal resistances of the 5000 electroplaques: 

Rrow = 5000r = (5000)(0.25 fl) = 1250 fl. 

We can now represent each of the 140 identical rows as having 
a single emf'?8row and a single resistance R row (Fig. 27-12b). 

In Fig. 27 -12b, the emf between point a and point b on 
any row is '?8row = 750 V. Because the rows are identical and 
because they are all connected together at the left in Fig. 
27-12b, all points b in that figure are at the same electric 
potential. Thus, we can consider them to be connected so 
that there is only a single point b. The emf between point a 
and this single point b is '?8row = 750 V, so we can draw the 
circuit as shown in Fig. 27 -12c. 

Points with the same 
potential can be taken 
as though connected. 

1----5000 electroplaques per row --+--1 750V 

(a) 

~ 

~row p 

- "row + -
+ FvW-ilFv\t\A-........ ---±jh-NV'---t-l 

~row p 

R,·ow 
Emfs in parallel 
act as a single emf. Rrow 

~row = 750V 

b 

: Rr : 

(e) 

140 rows 

(b) 

Replace the parallel 
resistances with their 

-r-- -'-'row 

Ib 
I 
I 

a I e 
~row I p : 

L--_~"-II~ 
R,,, 

~row i 
equivalent. 

ra r~r--b----~~---e--' 

R,,, 
~------~/V0~------~ 

(d) 

Fig.27-12 (a) A model of the electric circuit of an eel in water. Each electroplaque of the eel has an emf~ and internal 
resistance r. Along each of 140 rows extending from the head to the tail of the eel, there are 5000 electroplaques. The sur­
rounding water has resistance RI\" (b) The emf ~row and resistance Rrow of each row. (c) The emf between points a and b is ~row' 
Between points band care 140 parallel resistances Rrow. (d) The simplified circuit, with Req replacing the parallel combination. 



Between points band c in Fig. 27 -12c are 140 resistances 
Rrow = 1250 D, all in parallel. The equivalent resistance Req 
of this combination is given by Eq. 27-24 as 

1 140 1 1 
-=L:-=140-, 
Req j= J Rj Rrow 

or R = Rrow = 1250 D = 8 9 D 
eq 140 140 . 3 . 

Replacing the parallel combination with R eq, we obtain the 
simplified circuit of Fig. 27 -12d. Applying the loop rule to this 
circuit counterclockwise from point b, we have 

't;row - iRw - iReq = O. 

Solving for i and substituting the known data, we find 

750 V 
800D + 8.93 D 

= 0.927 A = 0.93 A. (Answer) 
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If the head or tail of the eel is near a fish, some of this current 
could pass along a narrow path through the fish, stunning or 
killing it. 

(b) How much current irow travels through each row of 
Fig. 27 -12a? 

Because the rows are identical, the current into and out of 
the eel is evenly divided among them. 

Calculation: Thus, we write 

. - _i _ _ 0.927 A _ 66 X 1 -3 
lrow - 140 - 140 -. 0 A. (Answer) 

Thus, the current through each row is small, about two orders 
of magnitude smaller than the current through the water. This 
tends to spread the current through the eel's body, so that the 
eel need not stun or kill itself when it stuns or kills a fish. 

Multiloop circuit and simultaneous loop equations 

Figure 27-13 shows a circuit whose elements have the 
following values: 

't;1 = 3.0 V, 't;2 = 6.0 V, 

R J = 2.0D, R2 = 4.0D. 

The three batteries are ideal batteries. Find the magnitude and 
direction of the current in each of the three branches. 

It is not worthwhile to try to simplify this circuit, because no 
two resistors are in parallel, and the resistors that are in series 
(those in the right branch or those in the left branch) present 
no problem. So, our plan is to apply the junction and loop rules. 

Junction rule: Using arbitrarily chosen directions for the 
currents as shown in Fig. 27-13, we apply the junction rule at 
point a by writing 

(27-26) 

An application of the junction rule at junction b gives only 
the same equation, so we next apply the loop rule to any two 
of the three loops of the circuit. 

Left-hand loop: We first arbitrarily choose the left-hand 
loop, arbitrarily start at point b, and arbitrarily traverse the 
loop in the clockwise direction, obtaining 

-i1R1 + 't;1 - i1R1 - (i1 + i2)R2 't;2 = 0, 

where we have used (il + i2) instead of i3 in the middle 
branch. Substituting the given data and simplifying yield 

(27-27) 

~ ~ 

R J 

i3 ~ 
R J ~1~2 

Fig. 27-13 
~Jl~ 

R2 
Amultiloop 
circuit with ~1~2 three ideal R J 

batteries and b -- i2 
five resistances. iJ 

Right-hand loop: For our second application of the loop 
rule, we arbitrarily choose to traverse the right-hand loop 
counterclockwise from point b, finding 

-i2R 1 + 't;2 - i2R 1 - (il + i2)R2 - 't;2 = O. 

Substituting the given data and simplifying yield 

i1( 4.0 D) + i2(8.0 D) = O. (27-28) 

Combining equations: We now have a system of two 
equations (Eqs. 27-27 and 27-28) in two unknowns (il and i2) 

to solve either "by hand" (which is easy enough here) or 
with a "math package." (One solution technique is Cramer's 
rule, given in Appendix E.) We find 

i1 = -0.50 A. (27-29) 

(The minus sign signals that our arbitrary choice of direc­
tion for i1 in Fig. 27-13 is wrong, but we must wait to correct 
it.) Substituting i1 = -0.50 A into Eq. 27-28 and solving for 
i2 then give us 

i2 = 0.25 A. (Answer) 



720 R CIRCUITS 

WithEq. 27-26 we then find that 

i3 = i l + i2 = -0.50A + 0.25 A 

= -0.25 A. 

those currents are wrong. Thus, as a last step here, we correct 
the answers by reversing the arrows for i l and i3 in Fig. 27-13 
and then writing 

The positive answer we obtained for i2 signals that our 
choice of direction for that current is correct. However, the 
negative answers for i l and i3 indicate that our choices for 

i1 = 0.50A and i3 = 0.25 A. (Answer) 

Caution: Always make any such correction as the last step 
and not before calculating all the currents. 

Additional examples, video, and practice available at WileyPLUS 

Fig. 27-14 A single-loop circuit, show­
ing how to connect an ammeter (A) and a 
voltmeter (V). 

Fig. 27-15 When switch S is closed on 
a, the capacitor is charged through the re­
sistor. When the switch is afterward closed 
on b, the capacitor discharges through the 
resistor. 

The Ammeter and the Voltmeter 
An instrument used to measure currents is called an ammeter. To measure the 
current in a wire, you usually have to break or cut the wire and insert the amme­
ter so that the current to be measured passes through the meter. (In Fig. 27-14, 
ammeter A is set up to measure current i.) 

It is essential that the resistance RA of the ammeter be very much smaller 
than other resistances in the circuit. Otherwise, the very presence of the meter 
will change the current to be measured. 

A meter used to measure potential differences is called a voltmeter. To find 
the potential difference between any two points in the circuit, the voltmeter ter­
minals are connected between those points without breaking or cutting the wire. 
(In Fig. 27-14, voltmeter V is set up to measure the voltage across R1.) 

It is essential that the resistance Rv of a voltmeter be very much larger than 
the resistance of any circuit element across which the voltmeter is connected. 
Otherwise, the meter itself becomes an important circuit element and alters the 
potential difference that is to be measured. 

Often a single meter is packaged so that, by means of a switch, it can be made 
to serve as either an ammeter or a voltmeter-and usually also as an ohmmeter, 
designed to measure the resistance of any element connected between its termi­
nals. Such a versatile unit is called a multimeter. 

RC Circuits 
In preceding sections we dealt only with circuits in which the currents did not 
vary with time. Here we begin a discussion of time-varying currents. 

The capacitor of capacitance C in Fig. 27-15 is initially uncharged. To charge it, we 
close switch S on point a. This completes an RC series circuit consisting of the 
capacitor, an ideal battery of emf~, and a resistance R. 

From Section 25-2, we already know that as soon as the circuit is complete, 
charge begins to flow (current exists) between a capacitor plate and a battery 
terminal on each side of the capacitor. This current increases the charge q on the 
plates and the potential difference Ve (= q/C) across the capacitor. When that 
potential difference equals the potential difference across the battery (which 
here is equal to the emf ~), the current is zero. From Eq. 25-1 (q = CV), the equi­
librium (final) charge on the then fully charged capacitor is equal to C~. 

Here we want to examine the charging process. In particular we want to 
know how the charge q(t) on the capacitor plates, the potential difference Ve(t) 
across the capacitor, and the current i(t) in the circuit vary with time during the 
charging process. We begin by applying the loop rule to the circuit, traversing it 



clockwise from the negative terminal of the battery. We find 

% - iR - ~ = O. (27-30) 

The last term on the left side represents the potential difference across the capac­
itor. The term is negative because the capacitor's top plate, which is connected to 
the battery's positive terminal, is at a higher potential than the lower plate. Thus, 
there is a drop in potential as we move down through the capacitor. 

We cannot immediately solve Eq. 27-30 because it contains two variables, 
i and q. However, those variables are not independent but are related by 

. dq 
I=Tt· (27-31) 

Substituting this for i in Eq. 27-30 and rearranging, we find 

R dq +!L = % 
dt C 

(charging equation). (27-32) 

This differential equation describes the time variation of the charge q on the 
capacitor in Fig. 27-15. To solve it, we need to find the function q(t) that satisfies 
this equation and also satisfies the condition that the capacitor be initially 
uncharged; that is, q = 0 at t = O. 

We shall soon show that the solution to Eq. 27-32 is 

(charging a capacitor). (27-33) 

(Here e is the exponential base, 2.718 ... ,and not the elementary charge.) Note 
that Eq. 27-33 does indeed satisfy our required initial condition, because at t = 0 
the term e-tlRC is unity; so the equation gives q = O. Note also that as t goes to 
infinity (that is, a long time later), the term e-tiRC goes to zero; so the equation 
gives the proper value for the full (equilibrium) charge on the capacitor­
namely, q = C%.A plot of q(t) for the charging process is given in Fig. 27-16a. 

The derivative of q(t) is the current i(t) charging the capacitor: 

i = ~; = (~ )e-tIRC (charging a capacitor). (27-34) 

A plot of i(t) for the charging process is given in Fig. 27-16b. Note that the current 
has the initial value %/R and that it decreases to zero as the capacitor becomes 
fully charged. 

A capacitor that is being charged initially acts like ordinary connecting wire relative 
to the charging current. A long time later, it acts like a broken wire. 

By combining Eq. 25-1 (q = CV) and Eq. 27-33, we find that the potential 
difference VcCt) across the capacitor during the charging process is 

(charging a capacitor). (27-35) 

This tells us that Vc = 0 at t = 0 and that Vc = % when the capacitor becomes 
fully charged as t ~ 00. 

The product RC that appears in Eqs. 27-33, 27-34, and 27-35 has the dimensions 
of time (both because the argument of an exponential must be dimensionless and 

12 
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The capacitor's charge 
grows as the resistor's 
current dies out. 

0246810 
Time (ms) 

(a) 

Time (ms) 

(b) 

Fig.27-16 (a)AplotofEq.27-33, 
which shows the buildup of charge on the 
capacitor of Fig. 27-15. (b) A plot of Eq. 
27 -34, which shows the decline of the 
charging current in the circuit of Fig. 27-
15. The curves are plotted for R = 2000 il, 
C = 1 fLF, and ~ = 10 V; the small trian­
gles represent successive intervals of one 
time constant T. 
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because, in fact, 1.0 n X 1.0 F = 1.0 s). The product RC is called the capacitive 
time constant of the circuit and is represented with the symbol T: 

T=RC (time constant). (27-36) 

From Eq. 27-33, we can now see that at time t = T (= RC), the charge on the ini­
tially uncharged capacitor of Fig. 27 -15 has increased from zero to 

(27-37) 

In words, during the first time constant T the charge has increased from zero to 
63% of its final value C~. In Fig. 27-16, the small triangles along the time axes 
mark successive intervals of one time constant during the charging of the capaci­
tor. The charging times for RC circuits are often stated in terms of T. 

Assume now that the capacitor of Fig. 27-15 is fully charged to a potential Vo 
equal to the emf ~ of the battery. At a new time t = 0, switch S is thrown from a to 
b so that the capacitor can discharge through resistance R. How do the charge 
q(t) on the capacitor and the current i(t) through the discharge loop of capacitor 
and resistance now vary with time? 

The differential equation describing q(t) is like Eq. 27-32 except that now, 
with no battery in the discharge loop, ~ = O. Thus, 

R dq +!L = 0 
dt C 

(discharging equation). (27-38) 

The solution to this differential equation is 

(discharging a capacitor), (27-39) 

where qo (= CVo) is the initial charge on the capacitor. You can verify by substitu­
tion that Eq. 27-39 is indeed a solution ofEq. 27-38. 

Equation 27-39 tells us that q decreases exponentially with time, at a rate that 
is set by the capacitive time constant T = RC. At time t = T, the capacitor's 
charge has been reduced to qoe-l, or about 37% of the initial value. Note that a 
greater Tmeans a greater discharge time. 

Differentiating Eq. 27-39 gives us the current i(t): 

i = ~; = - ( :~ )e- tIRC (discharging a capacitor). (27-40) 

This tells us that the current also decreases exponentially with time, at a rate set 
by T. The initial current io is equal to qolRC. Note that you can find io by simply 
applying the loop rule to the circuit at t = O;just then the capacitor's initial poten­
tial Vo is connected across the resistance R, so the current must be io = VoiR = 
(qo/C)IR = qolRC. The minus sign in Eq. 27-40 can be ignored; it merely means 
that the capacitor's charge q is decreasing. 

To solve Eq. 27-32, we first rewrite it as 

dq + _q_ = ~ 
dt RC R 

The general solution to this differential equation is of the form 

q = qp + Ke-(I/, 

(27-41) 

(27-42) 



where qp is a particular solution of the differential equation, K is a constant to 
be evaluated from the initial conditions, and a = lIRC is the coefficient of q in 
Eq. 27-41. To find qp' we set dq/dt = 0 in Eq. 27-41 (corresponding to the final 
condition of no further charging), let q = qp' and solve, obtaining 

qp = C'0. (27-43) 

To evaluate K, we first substitute this into Eq. 27-42 to get 

q = C'0 + Ke-at• 

Then substituting the initial conditions q = 0 and t = 0 yields 

0= C'0 + K, 

or K = -C'0. Finally, with the values of qp' a, and K inserted, Eq. 27-42 becomes 

q = C'0 - C'0e- tIRC, 

which, with a slight modification, is Eq. 27-33. 

CHECKPOINT 5 

The table gives four sets of values for the circuit elements in Fig. 
27-15. Rank the sets according to (a) the initial current (as the 
switch is closed on a) and (b) the time required for the current to 
decrease to half its initial value, greatest first. 

'(g (V) 
R (D,) 
C (,uF) 

1 

12 

2 

3 

2 

12 

3 
2 

RC CIRCUITS 723 

3 

10 
10 
0.5 

4 

10 
5 
2 

Discharging an RC circuit to avoid a fire in a race car pit stop 

As a car rolls along pavement, electrons move from the 
pavement first onto the tires and then onto the car body. The 
car stores this excess charge and the associated electric po­
tential energy as if the car body were one plate of a capacitor 
and the pavement were the other plate (Fig. 27 -17 a). When the 
car stops, it discharges its excess charge and energy through 
the tires, just as a capacitor can discharge through a resistor. If 
a conducting object comes within a few centimeters of the car 
before the car is discharged, the remaining energy can be 
suddenly transferred to a spark between the car and the 
object. Suppose the conducting object is a fuel dispenser. The 
spark will not ignite the fuel and cause a fire if the spark 
energy is less than the critical value Ufire = 50 mJ. 

When the car of Fig. 27-17a stops at time t = 0, the car­
ground potential difference is Vo = 30 kV. The car-ground 
capacitance is C = 500 pF, and the resistance of each tire is 
Rtire = 100 GO. How much time does the car take to discharge 
through the tires to drop below the critical value Ufire? 'lJ:i~~ 

(1) At any time t, a capacitor's stored electric potential en­
ergy U is related to its stored charge q according to Eq. 25-21 
(U = q2/2C). (2) While a capacitor is discharging, the charge 
decreases with time according to Eq. 27-39 (q = qoe- tIRC). 

Calculations: We can treat the tires as resistors that are 
connected to one another at their tops via the car body and at 

(a) 

u 

(d) 

lOOGQ 

9.4 
t (s) 

Fig.27-17 (a) A charged car and the pavement acts like a 
capacitor that can discharge through the tires. (b) TIle effec­
tive circuit of the car-pavement capacitor, with four tire 
resistances R tire connected in parallel. (c) The equivalent 
resistance R of the tires. (d) The electric potential energy U 
in the car-pavement capacitor decreases during discharge. 
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their bottoms via the pavement. Figure 27-17b shows how the 
four resistors are connected in parallel across the car's capaci­
tance, and Fig. 27-17c shows their equivalent resistance R. 
From Eq. 27-24,R is given by 

or 

11111 -=--+--+--+--
R R tire Rtire R tire R tire ' 

R = R tire = 100 X 10
9
0 = 25 X 1090. 

4 4 
(27-44) 

When the car stops, it discharges its excess charge and en­
ergy through R. 

We now use our two Key Ideas to analyze the discharge. 
Substituting Eq. 27-39 into Eq. 25-21 gives 

q2 (qae-tIRc)2 
U = - = ~'--------'--

2C 2C 
2 

_ qa -211RC 
- 2C e . (27-45) 

From Eq. 25-1 (q = CV), we can relate the initial charge qa 
on the car to the given initial potential difference Va: qa = 

CVa. Substituting this equation into Eq. 27 -45 brings us to 

U = (CVo)2 e-211RC = CV6 e-2t1RC 
2C 2 

or -211RC 2U 
e = CV6' 

(27-46) 

Taking the natural logarithms of both sides, we obtain 

or 

~ = I ( 2U) 
RC n CV6 ' 

t = - RC In( 2U ) 
2 CV6' 

(27-47) 

Substituting the given data, we find that the time the car 
takes to discharge to the energy level Ufire = 50 mJ is 

(25 X 1090)(500 X 10-12 F) 
t = - -'------'-'----------'---

2 

( 
2(50 X 1O-3 J) ) 

X In (500 X 10 -12 F)(30 X 10 3 V)2 

= 9.4 s. (Answer) 

Fire or no fire: This car requires at least 9.4 s before fuel or 
a fuel dispenser can be brought safely near it. During a race, 
a pit crew cannot wait that long. Instead, tires for race cars 
include some type of conducting material (such as carbon 
black) to lower the tire resistance and thus increase the car's 
discharge rate. Figure 27-17d shows the stored energy U ver­
sus time t for tire resistances of R = 100 GO (the value we 
used in our calculations here) and R = 10 GO. Note how 
much more rapidly a car discharges to level Ufire with the 
lower R value. 

"~s Additional examples, video, and practice available at WileyPLUS 

Emf An emf device does work on charges to maintain a potential 
difference between its output terminals. If dW is the work the device 
does to force positive charge dq from the negative to the positive ter­
minal, then the emf (work per unit charge) of the device is 

~= dW 
dq 

(definition of~). (27-1) 

The volt is the SI unit of emf as well as of potential difference. An 
ideal emf device is one that lacks any internal resistance. The po­
tential difference between its terminals is equal to the emf. A real 
emf device has internal resistance. The potential difference be­
tween its terminals is equal to the emf only if there is no current 
through the device. 

Analyzing Circuits The change in potential in traversing a re­
sistance R in the direction of the current is -iR; in the opposite di­
rection it is +iR (resistance rule). The change in potential in tra­
versing an ideal emf device in the direction of the emf arrow is +'(1;; 

in the opposite direction it is -'(1; (emf rule). Conservation of en­
ergy leads to the loop rule: 

Loop Rule. The algebraic sum of the changes in potential encountered 
in a complete traversal of any loop of a circuit I1lllst be zero. 

Conservation of charge gives us the junction rule: 

Junction Rule. The slim of the currents entering any junction 
must be equal to the SUI1l of the currents leaving that junction. 

Single-Loop Circuits The current in a single-loop circuit con­
taining a single resistance R and an emf device with emf '(1; and in­
ternal resistance r is 

. ~ 
l=---

R + r' (27-4) 

which reduces to i '(1;/ R for an ideal emf device with r = O. 

Power When a real battery of emf '(1; and internal resistance r 
does work on the charge carriers in a current i through the battery, 
the rate P of energy transfer to the charge carriers is 

P= iV, (27-14) 

where V is the potential across the terminals of the battery. The rate 



P,. at which energy is dissipated as thermal energy in the battery is 

(27-16) 

The rate Pernf at which the chemical energy in the battery changes is 

Pernf = i'fl,. (27-17) 

Series Resistances When resistances are in series, they have 
the same current. The equivalent resistance that can replace a se­
ries combination of resistances is 

II 

Req = 2: Rj 
j~j 

(/I resistances in series). (27-7) 

Parallel Resistances When resistances are in parallel, 
they have the same potential difference. The equivalent resistance 
that can replace a parallel combination of resistances is given by 

(/I resistances in parallel). (27-24) 

(a) In Fig. 27-18a, with R j > R 2, is the potential difference 
across R2 more than, less than, or equal to that across Rj? (b) Is the 
current through resistor R2 more than, less than, or equal to that 
through resistor R j ? 

R3 

I0. 
Rj 

+ 

(a) (b) 

Rj 

R2 

R3 

(d) 

I0. 
Fig. 27-18 Questions 1 and 2. 

(a) In Fig. 27-18a, are resistors R j and R3 in series? (b) Are 
resistors R j and R2 in parallel? (c) Rank the equivalent resistances 
of the four circuits shown in Fig. 27-18, greatest first. 

You are to connect resistors R j and Rz, with R j > R2, to a bat­
tery, first individually, then in series, and then in parallel. Rank 
those arrangements according to the amount of current through 
the battery, greatest first. 

In Fig. 27-19, a circuit consists of 
a battery and two uniform resistors, 
and the section lying along an x axis 
is divided into five segments of 
equal lengths. (a) Assume that R j = 
R2 and rank the segments according Fig. 27-19 Question 4. 
to the magnitude of the average 
electric field in them, greatest first. (b) Now assume that R J > R2 
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RC Circuits When an emf 'fl, is applied to a resistance R and ca­
pacitance C in series, as in Fig. 27-15 with the switch at a, the charge 
on the capacitor increases according to 

(charging a capacitor), (27-33) 

in which C'fl, = qo is the equilibrium (final) charge and RC = Tis 
the capacitive time constant of the circuit. During the charging, the 
current is 

(charging a capacitor). (27-34) 

When a capacitor discharges through a resistance R, the charge on 
the capacitor decays according to 

(discharging a capacitor). (27-39) 

During the discharging, the current is 

i = ~~ = - ( :~ )e-1IRC (discharging a capacitor). (27-40) 

and then again rank the segments. (c) What is the direction of the 
electric field along the x axis? 

5 For each circuit in Fig. 27-20, are the resistors connected in 
series, in parallel, or neither? 

DB + 

(a) (b) (c) 

Fig. 27-20 Question 5. 

Res-monster maze. In Fig. 27-21, all the resistors have a 
resistance of 4.0 n and all the (ideal) batteries have an emf of 4.0 
V. What is the current through resistor R? (If you can find the 
proper loop through this maze, you can answer the question with a 
few seconds of mental calculation.) 

Fig. 27-21 Question 6. 

A resistor R J is wired to a battery, then resistor R2 is added in 
series. Are (a) the potential difference across R j and (b) the cur-
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rent i j through R j now more than, less than, or the same as previ­
ously? (c) Is the equivalent resistance RI2 of RI and R2 more than, 
less than, or equal to R)? 

Cap-monster maze. In Fig. 27-22, all the capacitors have a 
capacitance of 6.0 ,uF, and all the batteries have an emf of 10 V. 
What is the charge on capacitor C? (If you can find the proper loop 
through this maze, you can answer the question with a few seconds 
of mental calculation.) 

Fig. 27-22 Question 8. 

9 Initially, a single resistor RI is wired to a battery. Then resistor 
R2 is added in parallel. Are (a) the potential difference across R) 
and (b) the current i 1 through R 1 now more than, less than, or the 
same as previously? (c) Is the equivalent resistance RI2 of RI and 

R2 more than, less than, or equal to RI? (d) Is the total current 
through R j and R2 together more than, less than, or equal to the 
current through RI previously? 

After the switch in Fig. 27-15 is 
closed on point a, there is current i 
through resistance R. Figure 27-23 
gives that current for four sets of 
values of R and capacitance C: (1) Ro 
and Co, (2) 2Ro and Co, (3) Ro and 
2Co, (4) 2Ro and 2Co. Which set goes 
with which curve? 

Figure 27-24 shows three sec­
tions of circuit that are to be con-
nected in turn to the same battery 

d 

L---------~~=----t 

Fig. 27-23 Question 10. 

via a switch as in Fig. 27-15. The resistors are all identical, as are the 
capacitors. Rank the sections according to (a) the final (equilib­
rium) charge on the capacitor and (b) the time required for the 
capacitor to reach 50% of its final charge, greatest first. 

]] 
(1) (2) (3) 

Fig.27-24 Question 11. 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

I LW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Potential Difference Between Two Points 
SSM WWW In Fig. 27-25, the ideal 

batteries have emfs '01 = 12 V and '02 = 
6.0 V. What are (a) the current, the dissi­
pation rate in (b) resistor 1 (4.0 D) and (c) 
resistor 2 (8.0 D), and the energy transfer 
rate in (d) battery 1 and (e) battery 2? Is 
energy being supplied or absorbed by (f) 
battery 1 and (g) battery 2? 

In Fig. 27-26, the ideal batteries 
have emfs '0 1 = 150 V and '02 = 50 V 
and the resistances are RI = 3.0 D 
and R2 = 2.0 D. If the potential at P is 
100 V, what is it at Q? 

Fig. 27-25 

Problem 1. 

IlW A car battery with a 12 V 
emf and an internal resistance of 0.040 
D is being charged with a current of 50 
A. What are (a) the potential differ- Fig.27-26 Problem 2. 
ence V across the terminals, (b) the 
rate P r of energy dissipation inside the battery, and (c) the rate Pern! 

of energy conversion to chemical form? When the battery is used to 
supply 50 A to the starter motor, what are (d) V and (e) Pr? 

Figure 27-27 shows a circuit of four resistors that are con­
nected to a larger circuit. The graph below the circuit shows the elec­
tric potential V(x) as a function of position x along the lower branch 
of the circuit, through resistor 4; the potential VA is 12.0 V. The graph 

1 
1 

1 

1 1 1 1 1 1 

c::J 
I I 
1 1 

I 

1 1 

~ FOA L ___ ----'-~__'J. :1 ______ .,. ~ _ N . 
Fig. 27-27 Problem 4. 



above the circuit shows the electric potential Vex) versus position x 
along the upper branch of the circuit, through resistors 1,2, and 3; 
the potential differences are L1 VB = 2.00 V and L1 V c = 5.00 V. 
Resistor 3 has a resistance of 200 n. What is the resistance of (a) re­
sistor 1 and (b) resistor 2? 

A 5.0 A current is set up in a circuit for 6.0 min by a recharge­
able battery with a 6.0 V emf. By how much is the chemical energy 
ofthe battery reduced? 

A standard flashlight battery can deliver about 2.0 W . h of en­
ergy before it runs down. (a) If a battery costs US$0.80, what is the 
cost of operating a 100 W lamp for 8.0 h using batteries? (b) What 
is the cost if energy is provided at the rate of US$0.06 per kilowatt­
hour? 

A wire of resistance 5.0 n is connected to a battery whose emf 
<;g is 2.0 V and whose internal resistance is 1.0 n. In 2.0 min, how 
much energy is (a) transferred from chemical form in the battery, 
(b) dissipated as thermal energy in the wire, and (c) dissipated as 
thermal energy in the battery? 

A certain car battery with a 12.0 V emf has an initial charge of 
120 A . h. Assuming that the potential across the terminals stays con­
stant until the battery is completely discharged, for how many hours 
can it deliver energy at the rate of 100 W? 

(a) In electron-volts, how much work does an ideal battery 
with a 12.0 V emf do on an electron that passes through the battery 
from the positive to the negative terminal? (b) If 3.40 X 10 18 elec­
trons pass through each second, what is the power of the battery in 
watts? 

(a) In Fig. 27-28, what value i:',""1+~ 
must R have if the current in the cir- 016 
cuit is to be 1.0 rnA? Take <;gl = 2.0 
V, <;g2 = 3.0 V, and 1'1 = 1'2 = 3.0 n. Ii 

(b) What is the rate at which thermal 
energy appears in R? 

SSM In Fig. 27-29, circuit 

R 

section AB absorbs energy at a rate Fig. 27-28 Problem 10. 
of 50 W when current i = 1.0 A 
through it is in the indicated direc­
tion. Resistance R = 2.0 n. (a) What 
is the potential difference between 
A and B? Emf device X lacks inter­
nal resistance. (b) What is its emf? Fig.27-29 Problem 11. 
(c) Is point B connected to the posi-
tive terminal of X or to the negative terminal? 

Figure 27-30 shows a resistor of resistance R = 6.00 n con­
nected to an ideal battery of emf <;g = 12.0 V by means of two copper 
wires. Each wire has length 20.0 cm and radius 
1.00 mm. In dealing with such circuits in this chap-
ter, we generally neglect the potential differences 
along the wires and the transfer of energy to ther- <;g 
mal energy in them. Check the validity of this ne­
glect for the circuit of Fig. 27-30: What is the po­
tential difference across (a) the resistor and (b) 
each of the two sections of wire? At what rate is 
energy lost to thermal energy in (c) the resistor 
and (d) each section of wire? 

Wire 1 

R 

Wire 2 

Fig. 27-30 

Problem 12. 

A 10-km-long underground cable extends east to west and 
consists of two parallel wires, each of which has resistance 13 
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ntkm. An electrical short develops 
at distance x from the west end 
when a conducting path of resis­
tance R connects the wires (Fig. 27-
31). The resistance of the wires and 
the short is then 100 n when mea- Fig. 27-31 Problem 13. 
sured from the east end and 200 n 
when measured from the west end. What are (a) x and (b) R? 

In Fig. 27-32a, both batteries have emf <;g = 1.20 V and 
the external resistance R is a variable resistor. Figure 27-32b gives 
the electric potentials V between the terminals of each battery as 
functions of R: Curve 1 corresponds to battery 1, and curve 2 corre­
sponds to battery 2. The horizontal scale is set by Rs = 0.20 n. What 
is the internal resistance of (a) battery 1 and (b) battery 2? 

0.5 

:tl tR o 1-----1:-,---:::;;,+'----+--+_--1 
,f , , 

-0.3 

(a) 

R(Q) 

(b) 

Fig.27-32 Problem 14. 

IlW The current in a single-loop circuit with one resistance 
R is 5.0 A. When an additional resistance of 2.0 n is inserted in se­
ries with R, the current drops to 4.0 A. What is R? 

A solar cell generates a potential difference of 0.10 V 
when a 500 n resistor is connected across it, and a potential dif­
ference of 0.15 V when a 1000 n resistor is substituted. What are 
the (a) internal resistance and (b) emf of the solar cell? (c) The 
area of the cell is 5.0 cm2, and the rate per unit area at which it re­
ceives energy from light is 2.0 mW/cm2. What is the efficiency of 
the cell for converting light energy to thermal energy in the 1000 
n external resistor? 

SSM In Fig. 27-33, battery 1 has emf 
<;gj = 12.0 V and internal resistance 1'1 = 0.016 
n and battery 2 has emf <;g2 = 12.0 V and in­
ternal resistance 1'2 = 0.012 n. The batteries 
are connected in series with an external resis­
tance R. (a) What R value makes the termi­
nal-to-telminal potential difference of one of 
the batteries zero? (b) Which battery is that? 

Multiloop Circuits 

~ It' tI< 26 _ 2 

Fig. 27-33 

Problem 17. 

-1 In Fig. 27-9, what is the potential difference VI - Vc between 
points d and c if<;gj = 4.0 V, <;g2 = 1.0 V,R j = R2 = 10 n, and R3 = 5.0 
n, and the battery is ideal? 

A total resistance of 3.00 n is to be produced by connecting 
an unknown resistance to a 12.0 n resistance. (a) What must be the 
value of the unknown resistance, and (b) should it be connected in 
series or in parallel? 

When resistors 1 and 2 are connected in series, the equivalent 
resistance is 16.0 n. When they are connected in parallel, the 
equivalent resistance is 3.0 n. What are (a) the smaller resistance 
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and (b) the larger resistance of these 
two resistors? 

-21 Four 18.0 n resistors are con­
nected in parallel across a 25.0 V F 

ideal battery. What is the current 
through the battery? 

H 

Figure 27-34 shows five 5.00 n 
resistors. Find the equivalent resis­
tance between points (a) F and H 
and (b) F and G. (Hint: For each 
pair of points, imagine that a battery 
is connected across the pair. ) 

In Fig. 27-35, Rj = 100 n, R2 = 

Fig. 27-34 Problem 22. 

~3-R;, 

50 n, and the ideal batteries have a ..... ~+-II--_-- + _ b 
4K) 4K) 

emfs 'gi = 6.0 V, 'g2 = 5.0 V, and 'g2 'g3 
'g3 = 4.0 V. Find (a) the current in re- Rl 
sistor 1, (b) the current in resistor 2, 
and (c) the potential difference be­
tween points a and b. 

In Fig. 27-36, Rj = R2 = 4.00 n 
and R3 = 2.50 n. Find the equivalent 
resistance between points D and E. 
(Hint: Imagine that a battery is con­
nected across those points.) 

SSM Nine copper wires of 
length I and diameter d are connected 

Fig. 27-35 Problem 23. 

D Rl 

~ 
Fig. 27-36 Problem 24. 

in parallel to form a single composite conductor of resistance R. 
What must be the diameter D of a single copper wire of length I if it 
is to have the same resistance? 

Figure 27-37 shows a battery 
connected across a uniform resistor 
Ro. A sliding contact can move across 
the resistor from x = 0 at the left to 
x = 10 cm at the right. Moving the con­
tact changes how much resistance is to 
the left of the contact and how much is 
to the right. Find the rate at which en­
ergy is dissipated in resistor R as a 
function of x. Plot the function for 'g = 

50 V, R = 2000 n, and Ro = 100 n. 
'·21 Side flash. Figure 27-38 
indicates one reason no one should 
stand under a tree during a lightning 
storm. If lightning comes down the side 
of the tree, a portion can jump over to 
the person, especially if the current on 
the tree reaches a dry region on the 
bark and thereafter must travel 
through air to reach the ground. In the 
figure, part of the lightning jumps 

R 

~x~ contact 
/

Sliding 

Fig. 27-37 Problem 26. 

Lightning~ . 
current 

h 

through distance d in air and then trav- Fig.27-38 Problem 27. 
els through the person (who has negli-
gible resistance relative to that of air). The rest of the current travels 
through air alongside the tree,for a distance h. If d/h = 0.400 and the to­
tal current is! = 5000 A, what is the current through the person? 

The ideal battery in Fig. 27-39a has emf'g = 6.0 V. Plot 1 in 
Fig. 27-39b gives the electric potential difference V that can appear 

across resistor 1 of the circuit versus the current i in that resistor. 
The scale of the V axis is set by Vs = 18.0 V, and the scale of the 
i axis is set by is = 3.00 rnA. Plots 2 and 3 are similar plots for resis­
tors 2 and 3, respectively. What is the current in resistor 2? 

(a) 

(b) 

Fig. 27-39 Problem 28. 

In Fig. 27-40, Rj = 6.00 n, R2 = 

18.0 n, and the ideal battery has emf 
'g = 12.0 V. What are the (a) size and 
(b) direction (left or right) of current 
i j ? (c) How much energy is dissipated 
by all four resistors in 1.00 min? 

i(mA) 

"30 In Fig. 27-41, the ideal bat­
teries have emfs 'gj = 10.0 V and 
'g2 = 0.500'gj, and the resistances are 
each 4.00 n. What is the current in (a) 
resistance 2 and (b) resistance 3? 

Fig. 27-40 Problem 29. 

Fig. 27-41 Problems 30,41,and 88. 

SSM In Fig. 27-42, the 
ideal batteries have emfs 'gj = 5.0 V 
and 'g2 = 12 V, the resistances are 
each 2.0 n, and the potential is de­
fined to be zero at the grounded point 
of the circuit. What are potentials (a) 
VI and (b) V2 at the indicated points? 

Both batteries in Fig. 27-43a Fig.27-42 Problem 31. 
are ideal. Emf 'gj of battery 1 has a 
fixed value, but emf 'g2 of battery 2 can be varied between 1.0 V 

$ 
is 

+ ;:: 
'g2 R2 ~ 0 

;:l 
U 

(a) -is 

(b) 'g2 (V) 

Fig. 27-43 Problem 32. 



and 10 V. The plots in Fig. 27-43b give the currents through the 
two batteries as a function of 'g2' The vertical scale is set by is = 
0.20 A. You must decide which plot corresponds to which battery, 
but for both plots, a negative current occurs when the direction of 
the current through the battery is opposite the direction of 
that battery's emf. What are (a) emf 'gb (b) resistance Rb and (c) 
resistance R2 ? 

In Fig. 27-44, the current in resistance 6 is i6 = 1.40 A 
and the resistances are R j = R2 = R3 = 2.00 il, R4 = 16.0 il, 
Rs = 8.00 il, and R6 = 4.00 il. What is the emf of the ideal 
battery? 

Fig. 27-44 Problem 33. 

The resistances in Figs. 27-45a and b are all 6.0 il, and the 
batteries are ideal 12 V batteries. (a) When switch S in Fig. 27-45a 
is closed, what is the change in the electric potential Vj across resis­
tor 1, or does Vj remain the same? (b) When switch S in Fig. 27-45b 
is closed, what is the change in Vj across resistor 1, or does Vj re­
main the same? 

s 

(a) (b) 

Fig. 27-45 Problem 34. 

In Fig. 27-46, 'g = 12.0 V, R j = 2000 il, Rz = 3000 il, and 
R3 = 4000 il. What are the potential differences (a) VA - VB' (b) 
VB - Vc,(c) Vc - VD,and (d) VA - Vc? 

Fig. 27-46 Problem 35. 

In Fig. 27-47, 'gj = 6.00 
V, 'gz = 12.0 V, R j = 100 il, R2 = 

200 il, and R3 = 300 il. One point 
of the circuit is grounded (V = 0). 
What are the (a) size and (b) direc­
tion (up or down) of the current 
through resistance 1, the (c) size 
and (d) direction (left or right) of Fig. 27-47 Problem 36. 
the current through resistance 2, 
and the (e) size and (f) direction of the current through resistance 
3? (g) What is the electric potential at point A? 

PROBLEMS 729 

In Fig. 27-48, the resistances 
are R j = 2.00 il, R2 = 5.00 il, and 
the battery is ideal. What value of R3 
maximizes the dissipation rate in 
resistance 3? 

Figure 27-49 shows a section 
of a circuit. The resistances are R j = 

2.0 il, Rz = 4.0 il, and R3 = 6.0 il, 
and the indicated current is i = 6.0 
A. The electric potential difference 
between points A and B that connect 
the section to the rest of the circuit is 
VA - VB = 78 V. (a) Is the device rep­
resented by "Box" absorbing or pro­
viding energy to the circuit, and (b) 
at what rate? 

Fig. 27-48 Problems 37 
and 98. 

-i 

In Fig. 27-50, two batter­
ies of emf 'g = 12.0 V and internal 
resistance I' = 0.300 il are connected 

Fig.27-49 Problem 38. 

in parallel across a resistance R. (a) For what 
value of R is the dissipation rate in the resistor 
a maximum? (b) What is that maximum? 

Two identical batteries of emf 'g = 12.0 
V and internal resistance I' = 0.200 il are to 
be connected to an external resistance R, ei­
ther in parallel (Fig. 27-50) or in series 
(Fig. 27-51). If R = 2.001', what is the current i 
in the external resistance in the (a) parallel 
and (b) series arrangements? (c) For which 
arrangement is i greater? If R = 1'/2.00, what 
is i in the external resistance in the (d) paral­
lel and (e) series arrangements? (f) For which 
arrangement is i greater now? 

r!+·~r:J-i i<& . . r.·:.<& .. r c 
: ' ' j', ',; 

R 
'-----NW'-------I 
Fig. 27-51 Problem 40. 

R 

Fig. 27-50 

Problems 39 
and 40. 

In Fig. 27-41, 'gj = 3.00 V, 'g2 = 1.00 V, R j = 4.00 il, R2 = 
2.00 il, R3 = 5.00 il, and both batteries are ideal. What is the rate at 
which energy is dissipated in (a) R h (b) Rz, and (c) R3? What is the 
power of (d) battery 1 and (e) battery 2? 

In Fig. 27-52, an array of n par­
allel resistors is connected in series 
to a resistor and an ideal battery. All 
the resistors have the same resis­
tance. If an identical resistor were 
added in parallel to the parallel ar­
ray, the current through the battery 
would change by 1.25%. What is the 
value of n? 

n resistors 
in parallel 

Fig. 27-52 Problem 42. 

You are given a number of 10 il resistors, each capable of 
dissipating only 1.0 W without being destroyed. What is the mini­
mum number of such resistors that you need to combine in series 
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or in parallel to make a 10 n resistance that is capable of dissipat­
ing at least 5.0 W? 

In Fig. 27-53, R[ = 100 n, 
R2 = R3 = 50.0 n, R4 = 75.0 n, and 
the ideal battery has emf 'is = 6.00 V. 
(a) What is the equivalent resis­
tance? What is i in (b) resistance 1, 
( c) resistance 2, (d) resistance 3, and 
(e) resistance 4? 

IlW In Fig. 27-54, the resis­
tances are R j = 1.0 nand R2 = 2.0 
n, and the ideal batteries have emfs 
'is [ = 2.0 V and 'iS 2 = 'iS 3 = 4.0 V. 
What are the (a) size and (b) direc­
tion (up or down) of the current in 
battery 1, the (c) size and (d) direc­
tion of the current in battery 2, and 
the (e) size and (f) direction of the 
current in battery 3? (g) What is the 
potential difference Va - Vb? 

In Fig. 27-55a, resistor 3 is a 

Fig. 27-53 

Problems 44 and 48. 

b 

Fig. 27-54 

Problem 45. 

variable resistor and the ideal battery has emf 'is = 12 V. Figure 
27-55b gives the current i through the battery as a function of R 3. 

The horizontal scale is set by R3s = 20 n. The curve has an as­
ymptote of 2.0 rnA as R3 ~ 00. What are (a) resistance R[ and (b) 
resistance R2 ? 

(a) 

R3 (0) 

(b) 

Fig. 27-55 Problem 46. 

SSM A copper wire of radius a = 0.250 mm has an 
aluminum jacket of outer radius b = 0.380 mm. There is a current 
i = 2.00 A in the composite wire. Using Table 26-1, calculate the 
current in (a) the copper and (b) the aluminum. (c) If a potential 
difference V = 12.0 V between the ends maintains the current, 
what is the length of the composite wire? 

In Fig. 27-53, the resistors have the values R j = 7.00 n, R2 = 

12.0 n, and R3 = 4.00 n, and the ideal battelY's emf is 'is = 24.0 V. For 
what value of R4 will the rate at which the battery transfers energy to 
the resistors equal (a) 60.0 W, (b) the maximum possible rate Pma" and 
(c) the minimum possible rate P min? What are (d) Pmax and (e) P mill? 

The Ammeter and the Voltmeter 
IlW (a) In Fig. 27-56, 

what does the ammeter read if 
'is = 5.0 V (ideal battery), R j = 

2.0 n, R2 = 4.0 n, and R3 = 6.0 
n? (b) The ammeter and bat­
tery are now interchanged. 
Show that the ammeter reading 
is unchanged. Fig. 27-56 Problem 49. 

In Fig. 27-57, R[ = 2.00R, the 
ammeter resistance is zero, and the 
battery is ideal. What multiple of'iSIR 
gives the current in the ammeter? 

In Fig. 27-58, a voltmeter of 
resistance Rv = 300 n and an amme­
ter of resistance RA = 3.00 n are be- Fig. 27-57 Problem 50. 
ing used to measure a resistance R in 
a circuit that also contains a resis­
tance Ro = 100 n and an ideal bat­
tery of emf 'is = 12.0 V. Resistance R 
is given by R = Vii, where V is the 
potential across Rand i is the amme­
ter reading. The voltmeter reading is 
V', which is V plus the potential dif­
ference across the ammeter. Thus, 
the ratio of the two meter readings is 

R 

I----{ V)------1 

not R but only an apparent resistance Fig.27-58 Problem 51. 
R' = V'li. If R = 85.0 n, what are (a) 
the ammeter reading, (b) the voltmeter reading, and (c) R'? (d) If 
RA is decreased, does the difference between R' and R increase, 
decrease, or remain the same? 

A simple ohmmeter is made by connecting a 1.50 V flash­
light battery in series with a resistance R and an ammeter that 
reads from 0 to 1.00 rnA, as shown in Fig. 27-59. Resistance R is 
adjusted so that when the clip leads are shorted together, the me­
ter deflects to its full-scale value of 1.00 mAo What external resis­
tance across the leads results in a deflection of (a) 10.0%, (b) 
50.0%, and (c) 90.0% of full scale? (d) If the ammeter has a resis­
tance of 20.0 n and the internal resistance of the battery is negli­
gible, what is the value of R? 

Fig. 27-59 Problem 52. 

In Fig. 27-14, assume that 'is = 3.0 V, r = 100 n,R j = 250 n, 
and R2 = 300 n. If the voltmeter resistance Rv is 5.0 kn, what 
percent error does it introduce into the measurement of the po­
tential difference across Rj? Ignore 
the presence of the ammeter. 

When the lights of a car are 
switched on, an ammeter in series with 
them reads 10.0 A and a voltmeter 
connected across them reads 12.0 V 
(Fig. 27-60). When the electric starting 
motor is turned on, the ammeter read­
ing drops to 8.00 A and the lights dim 
somewhat. If the internal resistance of 
the battery is 0.0500 n and that of the 
ammeter is negligible, what are (a) the 
emf of the battery and (b) the current 
through the starting motor when the 
lights are on? 

~Starting 
S motor' 

I----{ V )-----1 

Fig. 27-60 

Problem 54. 



In Fig. 27-61, R, is to be ad­
justed in value by moving the slid­
ing contact across it until points a 
and b are brought to the same po­
tential. (One tests for this condi­
tion by momentarily connecting a 
sensitive ammeter between a and 
b; if these points are at the same 
potential, the ammeter will not de­
flect.) Show that when this adjust­
ment is made, the following rela­
tion holds: R, = RsRzl R I' An 
unknown resistance (R,) can be 
measured in terms of a standard 
(Rs) using this device, which is 
called a Wheatstone bridge. 

In Fig. 27-62, a voltmeter of 
resistance Rv = 300 D and an amme­
ter of resistance RA = 3.00 D are be­
ing used to measure a resistance R in 
a circuit that also contains a resis­
tance Ro = 100 D and an ideal bat­
tery of emf ~ = 12.0 V. Resistance R 
is given by R = Vii, where V is the 
voltmeter reading and i is the cur­
rent in resistance R. However, the 
ammeter reading is not i but rather 

Fig. 27-61 

Problem 55. 

R 

Fig. 27-62 

Problem 56. 

i' , which is i plus the current through the voltmeter. Thus, the ratio 
of the two meter readings is not R but only an apparent resistance 
R' = Vii'. If R = 85.0 D, what are (a) the ammeter reading, (b) the 
voltmeter reading, and (c) R'? (d) If Rv is increased, does the dif­
ference between R' and R increase, decrease, or remain the same? 

RCCircuits 
Switch S in Fig. 27-63 is closed at 

time t = 0, to begin charging an initially 
uncharged capacitor of capacitance C = 

15.0 J.LF through a resistor of resistance 
R = 20.0 D. At what time is the potential 
across the capacitor equal to that across 
the resistor? 

Fig. 27-63 

Problems 
57 and 96. 

In an RC series circuit, emf ~ = 12.0 V, resistance R = 1.40 
MD, and capacitance C = 1.80 J.LF. (a) Calculate the time constant. 
(b) Find the maximum charge that will appear on the capacitor 
during charging. (c) How long does it take for the charge to build 
up to 16.0 J.LC? 

SSM What multiple of the time constant T gives the time 
taken by an initially uncharged capacitor in an RC series circuit to 
be charged to 99.0% of its final charge? 

A capacitor with initial charge qo is discharged through a re­
sistor. What multiple of the time constant T gives the time the ca­
pacitor takes to lose (a) the first one-third of its charge and (b) 
two-thirds of its charge? 

IlW A 15.0 kD resistor and a capacitor are connected in se­
ries, and then a 12.0 V potential difference is suddenly applied 
across them. The potential difference across the capacitor rises to 
5.00 V in 1.30 J.LS. (a) Calculate the time constant of the circuit. (b) 
Find the capacitance of the capacitor. 

PROBLEMS 731 

Figure 27-64 shows the circuit of 
a flashing lamp, like those attached to 
barrels at highway construction sites. 
The fluorescent lamp L (of negligible + 
capacitance) is connected in parallel -
across the capacitor C of an RC circuit. 
There is a current through the lamp 
only when the potential difference 
across it reaches the breakdown volt­
age V L; then the capacitor discharges 

R 

Fig. 27-64 

Problem 62. 

completely through the lamp and the lamp flashes briefly. For a 
lamp with breakdown voltage VL = 72.0 V, wired to a 95.0 V ideal 
battery and a 0.150 J.LF capacitor, what resistance R is needed for 
two flashes per second? 

SSM WWW In the circuit of 
Fig. 27-65, ~ = 1.2 kV, C = 6.5 J.LF, RI = 

Rz = R3 = 0.73 MD. With C com­
pletely uncharged, switch S is sud­
denly closed (at t = 0). At t = 0, what 
are (a) current i1 in resistor 1, (b) cur­
rent iz in resistor 2, and (c) current i3 
in resistor 3? At t = 00 (that is, after 
many time constants), what are (d) il> 

Fig. 27-65 

Problem 63. 

(e) iz, and (f) i3? What is the potential difference Vz across resistor 
2 at (g) t = 0 and (h) t = oo? (i) Sketch Vz versus t between these 
two extreme times. 

A capacitor with an initial potential difference of 100 V is 
discharged through a resistor when a switch between them is 
closed at t = O. At t = 10.0 s, the potential difference across the ca­
pacitor is 1.00 V. (a) What is the time constant of the circuit? (b) 
What is the potential difference across the capacitor at t = 17.0 s? 

In Fig. 27-66, RI = 10.0 kD, 
Rz = 15.0 kD, C = 0.400 J.LF, and the 
ideal battery has emf ~ = 20.0 V. 
First, the switch is closed a long time 
so that the steady state is reached. 
Then the switch is opened at time t = 

O. What is the current in resistor 2 at 
t = 4.00 ms? 

c 

Fig. 27-66 

Problems 65 and 99. 

Figure 27-67 displays two circuits with a charged capacitor 
that is to be discharged through a resistor when a switch is 
closed. In Fig. 27-67a, Rl = 20.0 D and C1 = 5.00 J.LF. In Fig. 
27-67b, Rz = 10.0 D and Cz = 8.00 J.LF. The ratio of the initial 
charges on the two capacitors is qoZlqOl = 1.50. At time t = 0, 
both switches are closed. At what time t do the two capacitors 
have the same charge? 

(a) (b) 

Fig. 27-67 Problem 66. 

The potential difference between the plates of a leaky 
(meaning that charge leaks from one plate to the other) 2.0 J.LF ca­
pacitor drops to one-fourth its initial value in 2.0 s. What is the 
equivalent resistance between the capacitor plates? 
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A 1.0 fLF capacitor with an initial stored energy of 0.50 J is 
discharged through a 1.0 Mn resistor. (a) What is the initial charge 
on the capacitor? (b) What is the current through the resistor when 
the discharge starts? Find an expression that gives, as a function of 
time t, (c) the potential difference V c across the capacitor, (d) the 
potential difference VR across the resistor, and (e) the rate at which 
thermal energy is produced in the resistor. 

A 3.00 Mn resistor and a 1.00 fLF capacitor are connected in 
series with an ideal battery of emf 18 = 4.00 V. At 1.00 s after the 
connection is made, what is the rate at which (a) the charge of the 
capacitor is increasing, (b) energy is being stored in the capacitor, 
(c) thermal energy is appearing in the resistor, and (d) energy is be­
ing delivered by the battery? 

Additional Problems 
Each of the six real batteries in Fig. 

27-68 has an emf of 20 V and a resistance of 
4.0 n. (a) What is the current through the 
(external) resistance R = 4.0 n? (b) What is 
the potential difference across each battery? 
(c) What is the power of each battery? (d) R 

At what rate does each battery transfer en- Fig. 27-68 

ergy to internal thermal energy? Problem 70. 

In Fig. 27-69, Rl = 20.0 n, R2 = 10.0 n, and the ideal battery has 
emf 18 = 120 V. What is the current at point a if we close (a) only 
switch SI> (b) only switches SI and Sz, and ( c) all three switches? 

Fig. 27-69 Problem 71. 

In Fig. 27-70, the ideal battery has emf 18 = 30.0 V, and the re­
sistances are R j = R2 = 14 n, R3 = R4 = Rs = 6.0 n, R6 = 2.0 n, 
and R7 = 1.5 n. What are currents (a) i2, (b) i4, (c) il> (d) i3, and (e) is? 

R2 

+ 
!18 -

ij 

R4 R!i 

Fig.27-70 Problem 72. 

SSM Wires A and B, having equal lengths of 40.0 m and 
equal diameters of 2.60 mm, are connected in series. A potential 
difference of 60.0 V is applied between the ends of the 
composite wire. The resistances are RA = 0.127 nand 
RB = 0.729 n. For wire A, what are (a) magnitude J of the cur­
rent density and (b) potential difference V? (c) Of what type 
material is wire A made (see Table 26-1)? For wire B, what are 
(d) J and (e) V? (f) Of what type material is B made? 

What are the (a) size and (b) direction (up or down) of cur-

rent i in Fig. 27-71, where all resistances are 4.0 n and all batteries 
are ideal and have an emf of 10 V? (Hint: This can be answered us­
ing only mental calculation.) 

Fig. 27-71 Problem 74. 

Suppose that, while you are sitting in a chair, charge 
separation between your clothing and the chair puts you at a po­
tential of 200 V, with the capacitance between you and the chair at 
150 pF. When you stand up, the increased separation between your 
body and the chair decreases the capacitance to 10 pF. (a) What 
then is the potential of your body? That potential is reduced over 
time, as the charge on you drains through your body and shoes 
(you are a capacitor discharging through a resistance). Assume 
that the resistance along that route is 300 Gn. If you touch an elec­
trical component while your potential is greater than 100 V, you 
could ruin the component. (b) How long must you wait until your 
potential reaches the safe level of 100 V? 

If you wear a conducting wrist strap that is connected to ground, 
your potential does not increase as much when you stand up; you also 
discharge more rapidly because the resistance through the grounding 
connection is much less than through your body and shoes. (c) Suppose 
that when you stand up, your potential is 1400 V and the chair-to-you 
capacitance is 10 pF. What resistance in that Wlist-strap grounding con­
nection will allow you to discharge to 100 V in 0.30 s, which is less time 
than you would need to reach for, say, your computer? 

In Fig. 27-72, the ideal batteries have emfs 181 = 20.0 V, 

Fig. 27-71 Problem 76. 



jg2 = 10.0 V, and jg3 = 5.00 V, and the resistances are each 2.00 n. 
What are the (a) size and (b) direction (left or right) of current ij ? 
(c) Does battery 1 supply or absorb energy, and (d) what is its 
power? (e) Does battery 2 supply or absorb energy, and (f) what is 
its power? (g) Does battery 3 supply or absorb energy, and (h) 
what is its power? 

SSM A temperature-stable resistor is made by connecting a 
resistor made of silicon in series with one made of iron. If the re­
quired total resistance is 1000 n in a wide temperature range 
around 20ce, what should be the resistance of the (a) silicon resis­
tor and (b) iron resistor? (See Table 26-1.) 

In Fig. 27-14, assume that jg = 5.0 V, I' = 2.0 n, R j = 5.0 n, and 
R2 = 4.0 n. If the ammeter resistance RA is 0.10 n, what percent 
error does it introduce into the measurement of the current? 
Assume that the voltmeter is not present. 

SSM An initially uncharged capacitor C is fully charged by a 
device of constant emf jg connected in series with a resistor R. 
(a) Show that the final energy stored in the capacitor is half the 
energy supplied by the emf device. (b) By direct integration of 
i2R over the charging time, show that the thermal energy dissi­
pated by the resistor is also half the energy supplied by the emf 
device. 

In Fig. 27-73, R j = 5.00 n, R2 = 
10.0 n,R3 = 15.0 n, Cj = 5.00 ,uF, C2 = 
10.0 ,uF, and the ideal battery has emf 
jg = 20.0 V. Assuming that the circuit is 
in the steady state, what is the total en- + 
ergy stored in the two capacitors? 

In Fig. 27-5a, find the potential 
difference across R2 if jg = 12 V, R j Fig.27-73 Problem 80. 
= 3.0 n, R2 = 4.0 n, and R3 = 5.0 n. 

In Fig. 27-8a, calculate the potential difference between a and 
c by considering a path that contains R, 1'10 and jgj. 

SSM A controller on an electronic arcade game consists of 
a variable resistor connected across the plates of a 0.220 ,uF capaci­
tor. The capacitor is charged to 5.00 V, then discharged through the 
resistor. The time for the potential difference across the plates to 
decrease to 0.800 V is measured by a clock inside the game. If the 
range of discharge times that can be handled effectively is from 
10.0,us to 6.00 ms, what should be the (a) lower value and (b) 
higher value of the resistance range of the resistor? 

An automobile gasoline gauge is shown schematically in Fig. 
27-74. The indicator (on the dashboard) has a resistance of 10 n. 
The tank unit is a float connected to a variable resistor whose re­
sistance varies linearly with the volume of gasoline. The resistance 

,-----.., 
I ~ d' I I n !Cator ~ Indicator 
I L _____ l 

];

+ ! 12V 

Connected 
through 
chassis 

Tank 

Fig. 27-74 Problem 84. 

PROB LEMS 733 

is 140 n when the tank is empty and 20 n when the tank is full. 
Find the current in the circuit when the tank is (a) empty, (b) half­
full, and (c) full. Treat the battery as ideal. 

SSM The starting motor of a car is turning too slowly, and 
the mechanic has to decide whether to replace the motor, the ca­
ble, or the battery. The car's manual says that the 12 V battery 
should have no more than 0.020 n internal resistance, the motor 
no more than 0.200 n resistance, and the cable no more than 
0.040 n resistance. The mechanic turns on the motor and mea­
sures 11.4 V across the battery, 3.0 V across the cable, and a cur­
rent of 50 A. Which part is defective? 

Two resistors R j and R2 may be connected either in series or 
in parallel across an ideal battery with emf jg. We desire the rate 
of energy dissipation of the parallel combination to be five times 
that of the series combination. If R j = 100 n, what are the (a) 
smaller and (b) larger of the two values of R2 that result in that 
dissipation rate? 

The circuit of Fig. 27-75 shows a 
capacitor, two ideal batteries, two resis­
tors, and a switch S. Initially S has been 
open for a long time. If it is then closed 
for a long time, what is the change in 
the charge on the capacitor? Assume 
C = 1O,uF, jgj = 1.0 V, jg2 = 3.0 V, Fig.27-75 Problem 87. 
R j = 0.20 n,and R2 = OAOn. 

In Fig. 27-41, R j = 10.0 n, R2 = 20.0 n, and the ideal batteries 
have emfs jgj = 20.0 V and jg2 = 50.0 V. What value of R3 results in 
no current through battery 1? 

In Fig. 27-76, R = 10 n. What is the equivalent resistance 
between points A and B? (Hint: This circuit section might look 
simpler if you first assume that points A and B are connected to 
a battery.) 

2.0R 

4.0R 

6.0R 

3.0R 
A ---'\/\1\.----' 

Fig.27-76 Problem 89. 

(a) In Fig. 27-4a, show that the rate at which energy is 
dissipated in R as thermal energy is a maximum when R = r. (b) 
Show that this maximum power is P = jg2/4r. 

In Fig. 27-77, the ideal batteries have emfs jgj = 12.0 V and 

Fig.27-77 Problem 91. 
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~2 = 4.00 V, and the resistances are each 4.00 n. What are the (a) 
size and (b) direction (up or down) of iJ and the (c) size and (d) di­
rection of i2? (e) Does battery 1 supply or absorb energy, and (f) 
what is its energy transfer rate? (g) Does battery 2 supply or ab­
sorb energy, and (h) what is its energy transfer rate? 

Figure 27-78 shows a portion of a circuit through which there 
is a current 1= 6.00 A. The resistances are R j = R2 = 2.00R3 = 
2.00R4 = 4.00 n. What is the current i j through resistor 1 ? 

~I 
Fig.27-78 Problem 92. 

Thermal energy is to be generated in a 0.10 n resistor at the 
rate of 10 W by connecting the resistor to a battery whose emf is 
1.5 V. (a) What potential difference must exist across the resis­
tor? (b) What must be the in ternal resistance of the battery? 

Figure 27-79 shows three 20.0 
n resistors. Find the equivalent re­
sistance between points (a) A and B, 
(b) A and C, and (c) Band C. (Hint: Fi5Y 
Imagine that a battery is connected 

Fig.27-79 Problem 94. 
between a given pair of points.) 

A 120 V power line is protected by a 15 A fuse. What is the 
maximum number of 500 W lamps that can be simultaneously op­
erated in parallel on this line without "blowing" the fuse because 
of an excess of current? 

Figure 27-63 shows an ideal battery of emf ~ = 12 V, 

a resistor of resistance R = 4.0 n, and an uncharged capacitor of 
capacitance C = 4.0 f.J.,F. After switch S is closed, what is the current 
through the resistor when the charge on the capacitor is 8.0 f.J.,e? 

SSM A group of N identical batteries of emf ~ and internal 
resistance r may be connected all in series (Fig. 27-80a) or all in 
parallel (Fig. 27-80b) and then across a resistor R. Show that both 
arrangements give the same current in R if R = r. 

N battedes in series 

r+ ~F-Vv\f'-;-""""-4±J:J-. ~ r: ~ j ~ j 

R 
~------------~IVVV~----------~ 

(a) 

N batteries in parallel 
, 

R 

(b) 

Fig. 27-80 Problem 97. 

SSM In Fig. 27-48, R J = R2 = 10.0 n, and the ideal battery 
has emf ~ = 12.0 V. (a) What value of R3 maximizes the rate at 
which the battery supplies energy and (b) what is that maximum 
rate? 

SSM In Fig. 27-66, the ideal battery has emf ~ = 30 V, the 
resistances are R J = 20 kn and Rz = 10 kn, and the capacitor is 
uncharged. When the switch is closed at time t = 0, what is the cur­
rent in (a) resistance 1 and (b) resistance 2? (c) A long time later, 
what is the current in resistance 2? 



I 

WHAT IS 
As we have discussed, one major goal of physics is the study of how an 

electric field can produce an electric force on a charged object. A closely related 
goal is the study of how a magnetic field can produce a magnetic force on a (mov­
ing) charged particle or on a magnetic object such as a magnet. You may already 
have a hint of what a magnetic field is if you have ever attached a note to a refrig­
erator door with a small magnet or accidentally erased a credit card by moving it 
near a magnet. The magnet acts on the door or credit card via its magnetic field. 

The applications of magnetic fields and magnetic forces are countless and 
changing rapidly every year. Here are just a few examples. For decades, the 
entertainment industry depended on the magnetic recording of music and images 
on aUdiotape and videotape. Although digital technology has largely replaced 
magnetic recording, the industry still depends on the magnets that control CD 
and DVD players and computer hard drives; magnets also drive the speaker 
cones in headphones, TVs, computers, and telephones. A modern car comes 
equipped with dozens of magnets because they are required in the motors for 
engine ignition, automatic window control, sunroof control, and windshield wiper 
control. Most security alarm systems, doorbells, and automatic door latches 
employ magnets. In short, you are surrounded by magnets. 

The science of magnetic fields is physics; the application of magnetic fields is 
engineering. Both the science and the application begin with the question "What 
produces a magnetic field?" 

What Produces a Magnetic Field? 
Because an electric field Jf is produced by an electric charge, we might reason­
ably expect that a magnetic field If is produced by a magnetic charge. Although 
individual magnetic charges (called magnetic monopoles) are predicted by cer­
tain theories, their existence has not been confirmed. How then are magnetic 
fields produced? There are two ways. 

One way is to use moving electrically charged particles, such as a current in 
a wire, to make an electromagnet. The current produces a magnetic field that can 
be used, for example, to control a computer hard drive or to sort scrap metal 
(Fig. 28-1). In Chapter 29, we discuss the magnetic field due to a current. 

The other way to produce a magnetic field is by means of elementary parti­
cles such as electrons because these particles have an intrinsic magnetic field 
around them. That is, the magnetic field is a basic characteristic of each particle 

Fig. 28-1 Using an electromagnet to collect and transport scrap metal at a steel mill. 
(Digital Vision/Getty Images) 
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just as mass and electric charge (or lack of charge) are basic characteristics. As we 
discuss in Chapter 32, the magnetic fields of the electrons in certain materials add 
together to give a net magnetic field around the material. Such addition is the 
reason why a permanent magnet, the type used to hang refrigerator notes, has a 
permanent magnetic field. In other materials, the magnetic fields of the electrons 
cancel out, giving no net magnetic field surrounding the material. Such cancella­
tion is the reason you do not have a permanent field around your body, which is 
good because otherwise you might be slammed up against a refrigerator door 
every time you passed one. 

Our first job in this chapter is to define the magnetic field E. We do so by 
using the experimental fact that when a charged particle moves through a 
magnetic field, a magnetic force FB acts on the particle. 

The Definition of 11 
We determined the electric field E at a point by putting a test particle of charge 
q at rest at that point and measuring the electric force FE acting on the particle. 
We then defined E as 

-> Ii 
E=­

q 
(28-1) 

If a magnetic monopole were available, we could define E in a similar way. Because 
such particles have not been found, we must define E in another way, in terms of the 
magnetic force FB exerted on a moving electrically charged test particle. 

In principle, we do this by firing a charged particle through the point at which 
E is to be defined, using various directions and speeds for the particle and deter­
mining the force FB that acts on the particle at that point. After many such trials we 
would find that when the particle's velocity v is along a particular axis through the 
point, force FB is zero. For all other directions of v, the magnitude of FB is always 
proportional to v sin cp, where cp is the angle between the zero-force axis and the di­
rection of V. Furthermore, the direction of FB is always perpendicular to the direc­
tion of V. (These results suggest that a cross product is involved.) 

We can then define a magnetic field E to be a vector quantity that is directed 
along the zero-force axis. We can next measure the magnitude of FB when v is 
directed perpendicular to that axis and then define the magnitude of E in terms 
of that force magnitude: 

where q is the charge of the particle. 
We can summarize all these results with the following vector equation: 

-> ->---> 
FB = qv X B; (28-2) 

that is, the force FB on the particle is equal to the charge q times the cross product 
of its velocity v and the field E (all measured in the same reference frame). 
Using Eq. 3-27 for the cross product, we can write the magnitude of FB as 

FB = IqlvB sin cp, (28-3) 

where cp is the angle between the directions of velocity v and magnetic field E. 

Equation 28-3 tells us that the magnitude of the force FB acting on a particle in 
a magnetic field is proportional to the charge q and speed v of the particle. Thus, 



Cross v into jJ to get the new vector v x jJ. 

(a) (b) (c) 

Force on positive 
particle 

(d) 

Fig.28-2 (a) - (c) The right-hand rule (in which vis swept into E through the smaller 
angle ¢ between them) gives the direction of v X E as the direction of the thumb. (d) If q 
is positive, then the direction of FB = qv x E is in the direction of v X E. (e) If q is nega­
tive, then the direction of FB is opposite that of v x E. 

the force is equal to zero if the charge is zero or if the particle is stationary. 
Equation 28-3 also tells us that the magnitude of the force is zero if v and Bare 
either parallel (¢; = 0°) or antiparallel (¢; = 180°), and the force is at its 
maximum when v and B are perpendicular to each other. 

Equation 28-2 tells us all this plus the direction of FB • From Section 3-8, 
we know that the cross product v X jJ in Eq. 28-2 is a vector that is perpendicu­
lar to the two vectors v and B. The right-hand rule (Figs. 28-2a through c) tells us 
that the thumb of the right hand points in the direction of v x B when the 
fingers sweep v into B. If q is positive, then (by Eq. 28-2) the force FB has the 
same sign as v X jJ and thus must be in the same direction; that is, for positive q, 
FB is directed along the thumb (Fig. 28-2d). If q is negative, then the force FB and 
cross product v X B have opposite signs and thus must be in opposite directions. 
For negative q, FB is directed opposite the thumb (Fig. 28-2e). 

Regardless of the sign of the charge, however, 

The force FB acting on a charged particle moving with velocity 11 through 
a magnetic field E is always perpendicular to v and E. 

---> --->---> 
Thus, FB never has a component parallel to v. This means that FB cannot change 
the particle's speed v (and thus it cannot change the particle's kinetic energy). 
The force can change only the direction of v (and thus the direction of travel); 
only in this sense can FB accelerate the particle. 

To develop a feeling for Eq. 28-2, consider Fig. 28-3, which shows some tracks 
left by charged particles moving rapidly through a bubble chamber. The chamber, 
which is filled with liquid hydrogen, is immersed in a strong uniform magnetic 
field that is directed out of the plane of the figure. An incoming gamma ray parti­
cle-which leaves no track because it is uncharged-transforms into an electron 
(spiral track marked e-) and a positron (track marked e+) while it knocks an 
electron out of a hydrogen atom (long track marked e-). Check with Eq. 28-2 and 
Fig. 28-2 that the three tracks made by these two negative particles and one posi­
tive particle curve in the proper directions. 

The SI unit for B that follows from Eqs. 28-2 and 28-3 is the newton per 
coulomb-meter per second. For convenience, this is called the tesla (T): 

newton 
1 tesla = 1 T = 1 --------­

(coulomb ) (meterlsecond) 
Recalling that a coulomb per second is an ampere, we have 

1 T = 1 newton = 1 ~ 
(coulomb/second)(meter) A· m . 

(28-4) 

----> 
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Force on negative 
particle 

(e) 

Fig. 28-3 The tracks of two 
electrons (e-) and a positron 
(e+) in a bubble chamber that is 
immersed in a uniform mag­
netic field that is directed out of 
the plane of the page. 
(Lawrence Berkeley 
Laboratory/Photo Researchers) 
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Some Approximate Magnetic Fields 

At surface of neutron star 

Near big electromagnet 

Near small bar magnet 

At Earth's surface 

In interstellar space 

Smallest value in 
magnetically 
shielded room 

(a) 

(b) 

lOST 

1.5T 
1O-2 T 

10-4 T 

lO- lO T 

10-14 T 

Fig.28-4 (a) The magnetic field 
lines for a bar magnet. (b) A "cow 
magnet" -a bar magnet that is in­
tended to be slipped down into the ru­
men of a cow to prevent accidentally 
ingested bits of scrap iron from reach­
ing the cow's intestines. The iron filings 
at its ends reveal the magnetic field 
lines. (Courtesy D/: Richard Cannon, 
Southeast Missouri State University, 
Cape Girardeau) 

An earlier (non-SI) unit for B, still in common use, is the gauss (G), and 

1 tesla = 104 gauss. (28-5) 

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth's 
magnetic field near the planet's surface is about 10-4 T (= 100 fLT or 1 G). 

CHECKPOINT 1 

The figure shows three 
situations in which a 
charged particle with ve­
locity v travels through 
a uniform magnetic field 
E. In each situation, 
what is the direction of 
the magnetic force FE 
on the particle? 

z 

y 

~ 

B 

(a) 

y 

I~ 
71

·-;.: 
z --> 

v 

(b) 

~ 

B 

---:h!~--;.: 

(c) 

We can represent magnetic fields with field lines, as we did for electric fields. 
Similar rules apply: (1) the direction of the tangent to a magnetic field line at 
any point gives the direction of B at that point, and (2) the spacing of the lines 
represents the magnitude of B - the magnetic field is stronger where the lines 
are closer together, and conversely. 

Figure 28-4a shows how the magnetic field near a bar magnet (a permanent 
magnet in the shape of a bar) can be represented by magnetic field lines. The lines 
all pass through the magnet, and they all form closed loops (even those that 
are not shown closed in the figure). The external magnetic effects of a bar magnet 
are strongest near its ends, where the field lines are most closely spaced. Thus, the 
magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near 
the two ends of the magnet. 

The (closed) field lines enter one end of a magnet and exit the other end. The 
end of a magnet from which the field lines emerge is called the north pole of the 
magnet; the other end, where field lines enter the magnet, is called the south pole. 
Because a magnet has two poles, it is said to be a magnetic dipole. The magnets we 
use to fix notes on refrigerators are short bar magnets. Figure 28-5 shows two other 
common shapes for magnets: a horseshoe magnet and a magnet that has been bent 
around into the shape of a C so that the pole faces are facing each other. (The mag­
netic field between the pole faces can then be approximately uniform.) Regardless 
of the shape of the magnets, if we place two of them near each other we find: 

Opposite magnetic poles attract each other, and like magnetic poles repel each other. 

Earth has a magnetic field that is produced in its core by still unknown 
mechanisms. On Earth's surface, we can detect this magnetic field with a compass, 
which is essentially a slender bar magnet on a low-friction pivot. This bar magnet, 
or this needle, turns because its north-pole end is attracted toward the Arctic 
region of Earth. Thus, the south pole of Earth's magnetic field must be located 
toward the Arctic. Logically, we then should call the pole there a south pole. 
However, because we call that direction north, we are trapped into the statement 
that Earth has a geomagnetic north pole in that direction. 

With more careful measurement we would find that in the Northern Hemi­
sphere, the magnetic field lines of Earth generally point down into Earth and toward 
the Arctic. In the Southern Hemisphere, they generally point up out of Earth and 
away from the Antarctic- that is, away from Earth's geomagnetic south pole. 
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The field lines run from 
the north pole to the 
south pole. 

(a) (b) 

Fig.28-5 (a) A horseshoe magnet and (b) a C-shaped magnet. (Only some of the 
external field lines are shown.) 

Magnetic force on a moving charged particle 

A uniform magnetic field E, with magnitude 1.2 mT, is 
directed vertically upward throughout the volume of a labo­
ratory chamber. A proton with kinetic energy 5.3 Me V en­
ters the chamber, moving horizontally from south to north. 
What magnetic deflecting force acts on the proton as it en­
ters the chamber? The proton mass is 1.67 X 10-27 kg. 
(Neglect Earth's magnetic field.) 

Because the proton is charged and moving through a mag­
netic field, a magnetic force FB can act on it. Because the ini­
tial direct~n of the proton's velocity is not along a magnetic 
field line, F B is not simply zero. 

Magnitude: To find the magnitude of FB , we can use Eq. 28-3 
(FB = IqlvB sin cp) provided we first find the proton's speed v. 
We can find v from the given kinetic energy because 
K = ~ mv2• Solving for v, we obtain 

v = ~~( = 
(2)(5.3 MeV)(1.60 X 10- 3 J/MeV) 

1.67 X 10-27 kg 

= 3.2 X 107 m/s. 

Equation 28-3 then yields 

FB = IqlvB sin cp 
= (1.60 X 10-19 C)(3.2 X 107 m/s) 

X (1.2 X 10-3 T)(sin 90°) 

= 6.1 X 10-15 N. (Answer) 

This may seem like a small force, but it acts on a particle of 
small mass, producing a large acceleration; namely, 

FB 6.1 X 10-15 N 
a = - = = 3.7 X 1012 m/s2• 

m 1.67 X 10-27 kg 

Direction: To find the direction of FB, we use the fact that FB 
has the direction of the cross product qv X E. Because the 
charge q is positive, FB must have the same direction as v X 11, 
which can be determined with the right-hand rule for cross 
products (as in Fig. 28-2d). We know that vis directed horizon­
tally from south to north and E is directed vertically up. The 
right-hand rule shows us that the deflecting force FB must be 
directed horizontally from west to east, as Fig. 28-6 shows. (The 
array of dots in the figure represents a magnetic field directed 
out of the plane of the figure. An array of Xs would have repre­
sented a magnetic field directed into that plane.) 

If the charge of the particle were negative, the magnetic 
deflecting force would be directed in the opposite direction­
that is, horizontally from east to west. This is predicted auto­
matically by Eq. 28-2 if we substitute a negative value for q. 

s 

Path of proton 

@B 

Fig. 28-6 An overhead view of a proton moving from south to 
north with velocity v in a chamber. A magnetic field is directed 
vertically upward in the chamber, as represented by the array of 
dots (which resemble the tips qf arrows). The proton is deflected 
toward the east. 

ffus Additional examples, video, and practice available at WileyPLUS 
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Fig. 28-7 A modern version ofJ. J. 
Thomson's apparatus for measuring the ra­
tio of mass to charge for the electron. An 
electric field E is established by connecting 
a battery across the deflecting-plate termi­
nals. The magnetic field jJ is set up by 
means of a current in a system of coils (not 
shown). The magnetic field shown is into 
the plane of the figure, as represented by 
the array of Xs (which resemble the feath­
ered ends of arrows). 

Crossed Fields: Discovery of the Electron 
Both an electric field E and a magnetic field B can produce a force on a charged 
particle. When the two fields are perpendicular to each other, they are said to be 
crossed fields. Here we shall examine what happens to charged particles­
namely, electrons-as they move through crossed fields. We use as our example 
the experiment that led to the discovery of the electron in 1897 by 1. 1. Thomson 
at Cambridge University. 

Figure 28-7 shows a modern, simplified version of Thomson's experimental 
apparatus-a cathode ray tube (which is like the picture tube in an old type televi­
sion set). Charged particles (which we now know as electrons) are emitted by 
a hot filament at the rear of the evacuated tube and are accelerated by an applied 
potential difference V. After they pass through a slit in screen C, they form a 
narrow beam. They then pass through a region of crossed E and JJ fields, headed 
toward a fluorescent screen S, where they produce a spot of light (on a television 
screen the spot is part of the picture). The forces on the charged particles in the 
crossed-fields region can deflect them from the center of the screen. By controlling 
the magnitudes and directions of the fields, Thomson could thus control where the 
spot of light appeared on the screen. Recall that the force on a negatively charged 
particle due to an electric field is directed opposite the field. Thus, for the arrange­
ment of Fig. 28-7, electrons are forced up the page by electric field E and down the 
page by magnetic field B; that is, the forces are in opposition. Thomson's proce­
dure was equivalent to the following series of steps. 

1. Set E = 0 and B = 0 and note the position of the spot on screen S due to the 
undeflected beam. 

2. Turn on E and measure the resulting beam deflection. 

3. Maintaining E, now turn on JJ and adjust its value until the beam returns to the 
undeflected position. (With the forces in opposition, they can be made to cancel.) 

We discussed the deflection of a charged particle moving through an elec­
tric field E between two plates (step 2 here) in the sample problem in the pre­
ceding section. We found that the deflection of the particle at the far end of the 
plates is 

IqlEU 
y= 

2mv2 
' 

(28-6) 

where v is the particle's speed, m its mass, and q its charge, and L is the length of 
the plates. We can apply this same equation to the beam of electrons in Fig. 28-7; 
if need be, we can calculate the deflection by measuring the deflection of the 
beam on screen S and then working back to calculate the deflection y at the end 
of the plates. (Because the direction of the deflection is set by the sign of the 

+ 

To vacuum pump 

Glass 
envelope 
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particle's charge, Thomson was able to show that the particles that were lighting 
up his screen were negatively charged.) 

When the two fields in Fig. 28-7 are adjusted so that the two deflecting forces 
cancel (step 3), we have from Eqs. 28-1 and 28-3 

or 

IqlE = IqlvB sin(900) = IqlvB 

E 
v=S' (28-7) 

Thus, the crossed fields allow us to measure the speed of the charged particles pass­
ing through them. Substituting Eq. 28-7 for v in Eq. 28-6 and rearranging yield 

m 
Iql 

(28-8) 

in which all quantities on the right can be measured. Thus, the crossed fields allow us 
to measure the ratio m/lql of the particles moving through Thomson's apparatus. 

Thomson claimed that these particles are found in all matter. He also claimed 
that they are lighter than the lightest known atom (hydrogen) by a factor of more 
than 1000. (The exact ratio proved later to be 1836.15.) His m/lql measurement, 
coupled with the boldness of his two claims, is considered to be the "discovery of 
the electron." 

CHECKPOINT 2 

The figure shows four directions for the velocity vector v of a positively charged par­
ticle moving through a uniform electric field E (directed out of the page and repre­
sented with an encircled dot) and a uniform magnetic field E. (a) Rank directions 1,2, 
and 3 according to the magnitude of the net force on the particle, greatest first. (b) Of 
all four directions, which might result in a net force of zero? 

-"> 
V 

-"> ® 
v 

-"> 
V 

Crossed Fields: The Hall Effect 
As we just discussed, a beam of electrons in a vacuum can be deflected by a 
magnetic field. Can the drifting conduction electrons in a copper wire also be 
deflected by a magnetic field? In 1879, Edwin H. Hall, then a 24-year-old grad­
uate student at the Johns Hopkins University, showed that they can. This Hall 
effect allows us to find out whether the charge carriers in a conductor are posi­
tively or negatively charged. Beyond that, we can measure the number of such 
carriers per unit volume of the conductor. 

Figure 28-8a shows a copper strip of width d, carrying a current i whose 
conventional direction is from the top of the figure to the bottom. The charge 
carriers are electrons and, as we know, they drift (with drift speed Vd) in the 
opposite direction, from bottom to top. At the instant shown in Fig. 28-8a, 
an external magnetic field B, pointing into the plane of the figure, has just 
been turned on. From Eq. 28-2 we see that a magnetic deflecting force FB will act 
on each drifting electron, pushing it toward the right edge of the strip. 

~t~ !i 
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Fig. 28-8 A strip of copper carrying a 
current i is immersed in a magnetic field E. 
(a) The situation immediately after the 
magnetic field is turned on. The curved path 
that will then be taken by an electron is 
shown. (b) The situation at equilibrium, 
which quickly follows. Note that negative 
charges pile up on the right side of the strip, 
leaving uncompensated positive charges on 
the left. Thus, the left side is at a higher po­
tential than the right side. (c) For the same 
current direction, if the charge carriers 
were positively charged, they would pile up 
on the right side, and the right side would 
be at the higher potential. 
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As time goes on, electrons move to the right, mostly piling up on the right 
edge of the strip, leaving uncompensated positive charges in fixed positions at the 
left edge. The separation of positive charges on the left edge and negative charges 
on the right edge produces an electric field E within the strip, pointing from left 
to right in Fig. 28-8b. This field exerts an electric force FE on each electron, tend­
ing to push it to the left. Thus, this electric force on the electrons, which opposes 
the magnetic force on them, begins to build up. 

An equilibrium quickly develops in which the electric force on each electron 
has increased enough to match the magnetic force. When this happens, as Fig. 
28-8b shows, the force due to jj and the force due to E are in balance. The drift­
ing electrons then move along the strip toward the top of the page at velocity Vd 
with no further collection of electrons on the right edge of the strip and thus no 
further increase in the electric field E. 

A Hall potential difference V is associated with the electric field across strip 
width d. From Eq. 24-42, the magnitude of that potential difference is 

V= Ed. (28-9) 

By connecting a voltmeter across the width, we can measure the potential differ­
ence between the two edges of the strip. Moreover, the voltmeter can tell us 
which edge is at higher potential. For the situation of Fig. 28-8b, we would find 
that the left edge is at higher potential, which is consistent with our assumption 
that the charge carriers are negatively charged. 

For a moment, let us make the opposite assumption, that the charge carriers 
in current i are positively charged (Fig. 28-8c). Convince yourself that as these 
charge carriers move from top to bottom in the strip, they are pushed to the right 
edge by FB and thus that the right edge is at higher potential. Because that last 
statement is contradicted by our voltmeter reading, the charge carriers must be 
negatively charged. 

Now for the quantitative part. When the electric and magnetic forces are in 
balance (Fig. 28-8b), Eqs. 28-1 and 28-3 give us 

(28-10) 

From Eq. 26-7, the drift speed v d is 

J i 
Vd=-=--

ne neA' 
(28-11) 

in which J (= ilA) is the current density in the strip, A is the cross-sectional area 
of the strip, and n is the number density of charge carriers (their number per unit 
volume). 

In Eq. 28-10, substituting for E with Eq. 28-9 and substituting for Vd with 
Eq. 28-11, we obtain 

Bi 
n = VIe' (28-12) 

in which I (= Aid) is the thickness of the strip. With this equation we can find n 
from measurable quantities. 

It is also possible to use the Hall effect to measure directly the drift speed 
v d of the charge carriers, which you may recall is of the order of centimeters per 
hour. In this clever experiment, the metal strip is moved mechanically through 
the magnetic field in a direction opposite that of the drift velocity of the charge 
carriers. The speed of the moving strip is then adjusted until the Hall potential 
difference vanishes. At this condition, with no Hall effect, the velocity of the 
charge carriers with respect to the laboratory frame must be zero, so the velocity 
of the strip must be equal in magnitude but opposite the direction of the velocity 
of the negative charge carriers. 
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Potential difference set up across a moving conductor 

Figure 28-9a shows a solid metal cube, of edge length 
d = 1.5 cm, moving in the positive y direction at a constant 
velocity v of magnitude 4.0 m/s. The cube moves through a 
uniform magnetic field lJ of magnitude 0.050 T in the posi­
tive z direction. 

(a) Which cube face is at a lower electric potential and 
which is at a higher electric potential because of the motion 
through the field? 

Because the cube is moving through a magnetic field lJ, a 
magnetic force Fn acts on its charged particles, including its 
conduction electrons. 

Reasoning: When the cube first begins to move through 
the magnetic field, its electrons do also. Because each elec­
tron has charge q and is moving through a magnetic field 
with velocity v, the magnetic force FE acting on the elec­
tron is given by Eq. 28-2. Because q is negative, the direc­
tion of FE is opposite the cross product v X 11, which is in 

'I 
C,Lld ____ x 

d 

(a) 

This is the resulting 
electric field. 

)' 

I Ft 
(e) 

This is the cross­
product result. 

(b) 

The weak electric 
field creates a weak 
electric force. 

the positive direction of the x axis (Fig. 28-9b). Thus, FE 
acts in the negative direction of the x axis, toward the left 
face of the cube (Fig. 28-9c). 

Most of the electrons are fixed in place in the atoms 
of the cube. However, because the cube is a metal, it con­
tains conduction electrons that are free to move. Some of 
those conduction electrons are deflected by FE to the left 
cube face, making that face negatively charged and 
leaving the right face positively charged (Fig. 28-9d). This 
charge separation produces an electric field E directed 
from the positively charged right face to the negatively 
charged left face (Fig. 28-ge). Thus, the left face is at 
a lower electric potential, and the right face is at a higher 
electric potential. 

(b) What is the potential difference between the faces of 
higher and lower electric potential? 

1. The electric field E created by the charge separation 
produces an electric force FE = q E on each electron 

This is the magnetic 
force on an electron. 

More migration 
creates a greater 
electric field. 

Electrons are forced 
to the left face, leaving 
the right face positive. 

(d) 

I 
+1 

~Lx 
The forces now 
balance. No more 
electrons move to 
the left face. 

[ I 
i~1 

I 
~ ~ I 
FE ... F: .. E I . ------x 

(h) 

Fig.28-9 (a) A solid metal cube moves at constant velocity through a uniform magnetic field. (b)­
(d) In these front views, the magnetic force acting on an electron forces the electron to the left face, 
making that face negative and leaving the opposite face positive. (e) (f) The resulting weak electric 
field creates a weak electric force on the next electron, but it too is forced to the left face. Now (g) the 
electric field is stronger and (h) the electric force matches the magnetic force. 
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(Fig. 28-91). Because q is negative, this force is directed oppo­
site the field E - that is, rightward. Thus on each electron, FE 
acts toward the right and FB acts toward the left. 

Calculations: We seek the potential difference V between 
the left and right cube faces after equilibrium was reached 
(which occurred quickly). We can obtain V with Eq. 28-9 
(V = Ed) provided we first find the magnitude E of the 
electric field at equilibrium. We can do so with the equation 
for the balance of forces (FE = FB)' 

2. When the cube had just begun to move through the 
magnetic field and the charge separation had just 
begun, the magnitude of E began to increase from zero. 
Thus, the magnitude of Fe also began to increase from 
zero and was initially smaller than the magnitude FB . 

During this early stage, the net force on any electron was 
dominated by FB , which continuously moved additional 
electrons to the left cube face, increasing the charge sepa­
ration (Fig. 28-9g). 

3. However, as the charge separation increased, eventu­
ally magnitude FE became equal to magnitude FB (Fig. 
28-9h). The net force on any electron was then zero, and 
no additional electrons were moved to the left cube 
face. Thus, the magnitude of FE could not increase fur­
ther, and the electrons were then in equilibrium. 

For FE, we substitute IqIE, and then for FB, we substitute 
IqlvB sin ¢ from Eq. 28-3. From Fig. 28-9a, we see that the 
angle ¢ between velocity vector if and magnetic field vector 
B is 90°; thus sin ¢ = 1 and FE = FB yields 

IqlE = IqlvB sin 90° = IqlvB. 

This gives us E = vB; so V = Ed becomes 

V= vBd. 

Substituting known values gives us 

V = (4.0 m/s)(0.050 T)(0.015 m) 

= 0.0030 V = 3.0 m V. 

(28-13) 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 

A Circulating Charged Particle 
If a particle moves in a circle at constant speed, we can be sure that the net force 
acting on the particle is constant in magnitude and points toward the center of 
the circle, always perpendicular to the particle's velocity. Think of a stone tied to 
a string and whirled in a circle on a smooth horizontal surface, or of a satellite 
moving in a circular orbit around Earth. In the first case, the tension in the string 
provides the necessary force and centripetal acceleration. In the second case, Earth's 
gravitational attraction provides the force and acceleration. 

Figure 28-10 shows another example: A beam of electrons is projected into 
a chamber by an electron gun G. The electrons enter in the plane of the page with 
speed v and then move in a region of uniform magnetic field JJ directed out of 
that plane. As a result, a magnetic force FB = q if X B continuously deflects the 
electrons, and because if and B are always perpendicular to each other, this 
deflection causes the electrons to follow a circular path. The path is visible in the 
photo because atoms of gas in the chamber emit light when some of the circulat­
ing electrons collide with them. 

We would like to determine the parameters that characterize the circular 
motion of these electrons, or of any particle of charge magnitude Iql and mass m 
moving perpendicular to a uniform magnetic field ]j at speed v. From Eq. 28-3, 
the force acting on the particle has a magnitude of IqlvB. From Newton's second 
law (F = ma) applied to uniform circular motion (Eq. 6-18), 

we have 

v2 

F=m-, 
r 

mv2 

IqlvB = --. 
r 

Solving for r, we find the radius of the circular path as 

(28-14) 

(28-15) 
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Fig. 28-1 0 Electrons circulating in a chamber containing gas at low pressure (their path 
is the glowing circle). A uniform magnetic field JJ, pointing directly out of the plane of 
the page, fills the chamber. Note the radially directed magnetic force Ps; for circular motion to 
occur, Fs must point toward the center of the circle. Use the right -hand rule for cross products to 
confirm that Fs = q v x JJ gives Ps the proper direction. (Don't forget the sign of q.) 
(Courtesy John Le P. Webb, Sussex University, England) 

mv 
r=--

IqlB 
(radius). (28-16) 

The period T (the time for one full revolution) is equal to the circumference 
divided by the speed: 

T 
_ 21Tr _ 21T mv _ 2mn 
- -- - - -- - -- (period). 

v v IqlB IqlB 

The frequency f (the number of revolutions per unit time) is 

f= ~ = IqlB 
T 2mn 

(frequency). 

The angular frequency (J) of the motion is then 

IqlB 
(J) = 21Tf = -­

m 
( angular frequency). 

(28-17) 

(28-18) 

(28-19) 

The quantities T, f, and (J) do not depend on the speed of the particle (provided 
the speed is much less than the speed of light). Fast particles move in large circles 
and slow ones in small circles, but all particles with the same charge-to-mass 
ratio Iqllm take the same time T (the period) to complete one round trip. Using 
Eq. 28-2, you can show that if you are looking in the direction of S, the direction 
of rotation for a positive particle is always counterclockwise, and the direction for 
a negative particle is always clockwise. 

If the velocity of a charged particle has a component parallel to the (uniform) 
magnetic field, the particle will move in a helical path about the direction of the field 
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The velocity component 
perpendicular to the field 
causes circling, which is 
stretched upward by the 
parallel component. 

q 
(a) 

Fig. 28-11 (a) A chargedyarticle moves 
in a uniform magnetic field B, the particle's 
velocity v making an angle ¢ with the field 
direction. (b) The particle follows a helical 
path of radius r and pitch p. (c) A charged 
particle spiraling in a nonuniform magnetic 
field. (The particle can become trapped, 
spiraling back and forth between the strong 
field regions at either end.) Note that the 
magnetic force vectors at the left and right 
sides have a component pointing toward 
the center of the figure. 

(b) (c) 

vector. Figure 28-11a, for example, shows the velocity vector v of such a particle re­
solved into two components, one parallel to B and one perpendicular to it: 

VII = V cos cp and V.l = v sin cp. (28-20) 

The parallel component determines the pitch p of the helix - that is, the distance 
between adjacent turns (Fig. 28-11b). The perpendicular component determines 
the radius of the helix and is the quantity to be substituted for v in Eq. 28-16. 

Figure 28-11c shows a charged particle spiraling in a nonuniform magnetic 
field. The more closely spaced field lines at the left and right sides indicate that 
the magnetic field is stronger there. When the field at an end is strong enough, the 
particle "reflects" from that end. If the particle reflects from both ends, it is said to 
be trapped in a magnetic bottle. 

CHECKPOINT 3 

The figure here shows the circular paths of two particles that travel 
at the same speed in a uniform magnetic field If, which is directed 
into the page. One particle is a proton; the other is an electron ~ 
(which is less massive). (a) Which particle follows the smaller circle, B 

and (b) does that particle travel clockwise or counterclockwise? 

@ 

Helical motion of a charged particle in a magnetic field 

An electron with a kinetic energy of 22.5 e V moves into a 
region of uniform magnetic field B of magnitude 4.55 X 

10-4 T. The angle between the directions of jJ and the elec­
tron's velocity v is 65'so. What is the pitch of the helical 
path taken by the electron? 

(1) The pitch p is the distance the electron travels parallel to 
the magnetic field B during one period T of circulation. (2) 
The period T is given by Eq. 28-17 regardless of the angle 
between the directions of vand B (provided the angle is not 
zero, for which there is no circulation of the electron). 

Calculations: Using Eqs. 28-20 and 28-17, we find 

277111 
p = vliT = (v cos cp) IqIB' (28-21) 

Calculating the electron's speed v from its kinetic energy, 
find that v = 2.81 X 106 m/s. Substituting this and known 
data in Eq. 28-21 gives us 

p = (2.81 X 106 m/s)(cos 65'so) 

27T(9.11 X 10-31 kg) 
X (1.60 X 10-19 C)(4.55 X 10-4 T) 

= 9.16 cm. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Uniform circular motion of a charged particle in a magnetic field 

Figure 28-12 shows the essentials of a mass spectrometer, 
which can be used to measure the mass of an ion; an ion of 
mass m (to be measured) and charge q is produced in 
source S. The initially stationary ion is accelerated by the 
electric field due to a potential difference V. The ion leaves 
S and enters a separator chamber in which a uniform mag­
netic field Ii is perpendicular to the path of the ion. A wide 
detector lines the bottom wall of the chamber, and the Ii 
causes the ion to move in a semicircle and thus strike the 
detector. Suppose that B = 80.000 mT, V = 1000.0 V, and 
ions of charge q = + 1.6022 X 10-19 C strike the detector 
at a point that lies at x = 1.6254 m. What is the mass m of 
the individual ions, in atomic mass units (Eq. 1-7: 1 u = 
1.6605 X 10-27 kg)? 

(1) Because the (uniform) magnetic field causes the 
(charged) ion to follow a circular path, we can relate the ion's 
mass m to the path's radius r with Eq. 28-16 (r = mvllqIB). 
From Fig. 28-12 we see that r = x/2 (the radius is half the di­
ameter). From the problem statement, we know the magni­
tude B of the magnetic field. However, we lack the ion's 
speed v in the magnetic field after the ion has been acceler­
ated due to the potential difference V. (2) To relate v and V, 
we use the fact that mechanical energy (Emec = K + U) is 
conserved during the acceleration. 

Finding speed: When the ion emerges from the source, its 
kinetic energy is approximately zero. At the end of the 
acceleration, its kinetic energy is ~mv2. Also, during the ac­
celeration, the positive ion moves through a change in 
potential of - V. Thus, because the ion has positive charge q, 
its potential energy changes by -qV If we now write the 
conservation of mechanical energy as 

!::..K+ !::..U= 0, 

we get 

~mv2 - qV= 0 

ef 
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Fig. 28-12 Essentials of a mass spectrometer. A positive 
ion, after being accelerated from its source S by a potential dif­
ference V, enters a chamber of uniform magnetic field E. 
There it travels through a semicircle of radius r and strikes a 
detector at a distance x from where it entered the chamber. 

or v = J2:V. (28-22) 

Finding mass: Substituting this value for v into Eq. 28-16 
gives us 

r = ;; = ; J 2:V = ~ J 2~ V . 
Thus, x = 2r = ~ J 2n; V . 

Solving this for m and substituting the given data yield 

B2qx2 
n1 = -----

8V 
_ (0.080000 T)2(1.6022 X 10-19 C)(1.6254 m? 

8(1000.0 V) 

= 3.3863 X 10-25 kg = 203.93 u. (Answer) 

'''~ INllf:ye 

PLUS Additional examples, video, and practice available at WileyPLUS 

Cyclotrons and Synchrotrons 
Beams of high-energy particles, such as high-energy electrons and protons, have 
been enormously useful in probing atoms and nuclei to reveal the fundamental 
structure of matter. Such beams were instrumental in the discovery that atomic 
nuclei consist of protons and neutrons and in the discovery that protons and 
neutrons consist of quarks and gluons. The challenge of such beams is how to 



748 MAG NETIC FI ELDS 

The protons spiral outward 
in a cyclotron, picking up 
energy in the gap. 

Oscillator 

Fig. 28-13 The elements of a cy­
clotron, showing the particle source S 
and the dees. A uniform magnetic 
field is directed up from the plane of 
the page. Circulating protons spiral 
outward within the hollow dees, gain­
ing energy every time they cross the 
gap between the dees. 

make and control them. Because electrons and protons are charged, they can be 
accelerated to the required high energy if they move through large potential 
differences. Because electrons have low mass, accelerating them in this way can 
be done in a reasonable distance. However, because protons (and other charged 
particles) have greater mass, the distance required for the acceleration is too 
long. 

A clever solution to this problem is first to let protons and other massive 
particles move through a modest potential difference (so that they gain a modest 
amount of energy) and then use a magnetic field to cause them to circle back 
and move through a modest potential difference again. If this procedure is 
repeated thousands of times, the particles end up with a very large energy. 

Here we discuss two accelerators that employ a magnetic field to repeatedly 
bring particles back to an accelerating region, where they gain more and more 
energy until they finally emerge as a high-energy beam. 

Figure 28-13 is a top view of the region of a cyclotron in which the particles 
(protons, say) circulate. The two hollow D-shaped objects (each open on its 
straight edge) are made of sheet copper. These dees, as they are called, are part of 
an electrical oscillator that alternates the electric potential difference across the 
gap between the dees. The electrical signs of the dees are alternated so that the 
electric field in the gap alternates in direction, first toward one dee and then 
toward the other dee, back and forth. The dees are immersed in a large magnetic 
field directed out of the plane of the page. The magnitUde B of this field is set via 
a control on the electromagnet producing the field. 

Suppose that a proton, injected by source S at the center of the cyclotron in 
Fig. 28-13, initially moves toward a negatively charged dee. It will accelerate 
toward this dee and enter it. Once inside, it is shielded from electric fields by the 
copper walls of the dee; that is, the electric field does not enter the dee. The mag­
netic field, however, is not screened by the (nonmagnetic) copper dee, so the 
proton moves in a circular path whose radius, which depends on its speed, is given 
by Eq. 28-16 (r = mv/lqIB). 

Let us assume that at the instant the proton emerges into the center gap from 
the first dee, the potential difference between the dees is reversed. Thus, the pro­
ton again faces a negatively charged dee and is again accelerated. This process 
continues, the circulating proton always being in step with the oscillations of the 
dee potential, until the proton has spiraled out to the edge of the dee system. 
There a deflector plate sends it out through a portal. 

The key to the operation of the cyclotron is that the frequency I at which the 
proton circulates in the magnetic field (and that does not depend on its speed) 
must be equal to the fixed frequency lose of the electrical oscillator, or 

1= lose (resonance condition). (28-23) 

This resonance condition says that, if the energy of the circulating proton is to 
increase, energy must be fed to it at a frequency lose that is equal to the natural 
frequency I at which the proton circulates in the magnetic field. 

Combining Eqs. 28-18 (f = IqlBl2mn) and 28-23 allows us to write the 
resonance condition as 

IqlB = 2mnlose. (28-24) 

For the proton, q and m are fixed. The oscillator (we assume) is designed to work 
at a single fixed frequency lose. We then "tune" the cyclotron by varying B until 
Eq. 28-24 is satisfied, and then many protons circulate through the magnetic field, 
to emerge as a beam. 
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At proton energies above 50 Me V, the conventional cyclotron begins to fail 
because one of the assumptions of its design-that the frequency of revolution 
of a charged particle circulating in a magnetic field is independent of the parti­
cle's speed-is true only for speeds that are much less than the speed of light. At 
greater proton speeds (above about 10% of the speed of light), we must treat the 
problem relativistically. According to relativity theory, as the speed of a circulat­
ing proton approaches that of light, the proton's frequency of revolution 
decreases steadily. Thus, the proton gets out of step with the cyclotron's oscilla­
tor-whose frequency remains fixed at fose-and eventually the energy of the 
still circulating proton stops increasing. 

There is another problem. For a 500 Ge V proton in a magnetic field of 1.5 T, 
the path radius is 1.1 km. The corresponding magnet for a conventional cyclotron 
of the proper size would be impossibly expensive, the area of its pole faces being 
about 4 X 106 m2. 

The proton synchrotron is designed to meet these two difficulties. The 
magnetic field B and the oscillator frequency fosCl instead of having fixed val­
ues as in the conventional cyclotron, are made to vary with time during the ac­
celerating cycle. When this is done properly, (1) the frequency of the circulating 
protons remains in step with the oscillator at all times, and (2) the protons follow 
a circular-not a spiral-path. Thus, the magnet need extend only along that cir­
cular path, not over some 4 X 106 m2

. The circular path, however, still must be 
large if high energies are to be achieved. The proton synchrotron at the Fermi 
National Accelerator Laboratory (Fermilab) in Illinois has a circumference of 6.3 
km and can produce protons with energies of about 1 Te V (= 1012 e V). 

Accelerating a charged particle in a cyclotron 

Suppose a cyclotron is operated at an oscillator frequency of 
12 MHz and has a dee radius R = 53 cm. 

(a) What is the magnitude of the magnetic field needed for 
deuterons to be accelerated in the cyclotron? The deuteron 
mass is m = 3.34 X 10-27 kg (twice the proton mass). 

For a given oscillator frequency fose, the magnetic field mag­
nitude B required to accelerate any particle in a cyclotron 
depends on the ratio mllql of mass to charge for the particle, 
according to Eq. 28-24 (lqlB = 21T1nfose). 

Calculation: For deuterons and the oscillator frequency fose = 
12 MHz, we find 

27Tmfose (27T)(3.34 X 1O-27 kg)(12 X 106 s-1) 

B = Iql = 1.60 X 10-19 C 

= 1.57 T = 1.6 T. (Answer) 

Note that, to accelerate protons, B would have to be re­
duced by a factor of 2, provided the oscillator frequency re­
mained fixed at 12 MHz. 

(b) What is the resulting kinetic energy of the deuterons? 

(1) The kinetic energy (!mv2
) of a deuteron exiting the cy­

clotron is equal to the kinetic energy it had just before exiting, 
when it was traveling in a circular path with a radius approxi­
mately equal to the radius R of the cyclotron dees. (2) We can 
find the speed v of the deuteron in that circular path with Eq. 
28-16 (r = mvllqIB). 

Calculations: Solving that equation for v, substituting R 
for r, and then substituting known data, we find 

RlqlB 
v=---= 

m 
(0.53 m)(1.60 X 10-19 C)(1.57 T) 

3.34 X 10-27 kg 

= 3.99 X 107 mls. 

This speed corresponds to a kinetic energy of 

K = lmv2 
2 

= ~(3.34 X 10-27 kg)(3.99 X 107 mls)2 

= 2.7 X 10-12 J, (Answer) 

or about 17 Me V. 

~~s Additional examples, video, and practice available at WileyPLUS 
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A force acts on Magnetic Force on a Current"Carrying Wire 

~ 

B 

(a) 

a current through 
a Bfield. 

(b) (c) 

Fig. 28-1 4 A flexible wire passes be­
tween the pole faces of a magnet (only the 
farther pole face is shown). (a) Without cur­
rent in the wire, the wire is straight. (b) With 
upward current, the wire is deflected right­
ward. (c) With downward current, the de­
flection is leftward. The connections for get­
ting the current into the wire at one end and 
out of it at the other end are not shown. 

Fig. 28-15 A close-up view of a section 
of the wire of Fig. 28-14b. The current direc­
tion is upward, which means that electrons 
drift downward. A magnetic field that 
emerges from the plane of the page causes 
the electrons and the wire to be deflected 
to the right. 

We have already seen (in connection with the Hall effect) that a magnetic field 
exerts a sideways force on electrons moving in a wire. This force must then be 
transmitted to the wire itself, because the conduction electrons cannot escape 
sideways out of the wire. 

In Fig. 28-14a, a vertical wire, carrying no current and fixed in place at both 
ends, extends through the gap between the vertical pole faces of a magnet. 
The magnetic field between the faces is directed outward from the page. In Fig. 
28-14b, a current is sent upward through the wire; the wire deflects to the right. 
In Fig. 28-14c, we reverse the direction of the current and the wire deflects to 
the left. 

Figure 28-15 shows what happens inside the wire of Fig. 28-14b. We see one 
of the conduction electrons, drifting downward with an assumed drift speed v d' 

Equation 28-3, in which we must put ¢; = 90°, tells us that a force FB of magni­
tude eVdB must act on each such electron. From Eq. 28-2 we see that this force 
must be directed to the right. We expect then that the wire as a whole will experi­
ence a force to the right, in agreement with Fig. 28-14b. 

If, in Fig. 28-15, we were to reverse either the direction of the magnetic field 
or the direction of the current, the force on the wire would reverse, being directed 
now to the left. Note too that it does not matter whether we consider negative 
charges drifting downward in the wire (the actual case) or positive charges drift­
ing upward. The direction of the deflecting force on the wire is the same. We are 
safe then in dealing with a current of positive charge, as we usually do in dealing 
with circuits. 

Consider a length L of the wire in Fig. 28-15. All the conduction electrons in 
this section of wire will drift past plane xx in Fig. 28-15 in a time t = Llv". Thus, in 
that time a charge given by 

. . L 
q = zt= z-

v" 
will pass through that plane. Substituting this into Eq. 28-3 yields 

FB = qVdB sin ¢; = ~ VdB sin 90° 
Vd 

or FB = iLB. (28-25) 

Note that this equation gives the magnetic force that acts on a length L of straight wire 
carrying a current i and immersed in a uniform magnetic field E that is pelpendicular 
to the wire. 

If the magnetic field is not perpendicular to the wire, as in Fig. 28-16, the 
magnetic force is given by a generalization of Eq. 28-25: 

(force on a current). (28-26) 

Here r is a length vector that has magnitude L and is directed along the wire 
segment in the direction of the (conventional) current. The force magnitude FB is 

FB = iLB sin ¢;, (28-27) 

where ¢; is the angle between the directions of r and E. The direction of FB is 
that of the cross product r x If because we take current i to be a positive quan­
tity. Equation 28-26 tells us that FB is always perpendicular to the plane defined 
by vectors rand E, as indicated in Fig. 28-16. 

Equation 28-26 is equivalent to Eq. 28-2 in that either can be taken as the 
defining equation for E. In practice, we define E from Eq. 28-26 because it is 
much easier to measure the magnetic force acting on a wire than that on a single 
moving charge. 
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If a wire is not straight or the field is not uniform, we can imagine the wire 
broken up into small straight segments and apply Eq. 28-26 to each segment. The 
force on the wire as a whole is then the vector sum of all the forces on the 
segments that make it up. In the differential limit, we can write 

The force is perpendicular 
to both the field and the length. 

(28-28) 

and we can find the resultant force on any given arrangement of currents by 
integrating Eq. 28-28 over that arrangement. 

In using Eq. 28-28, bear in mind that there is no such thing as an isolated 
current-carrying wire segment of length dL. There must always be a way to intro­
duce the current into the segment at one end and take it out at the other end. Fig.28-16 A wire carrying current i 

makes an angle ¢ with magnetic field E. 
The wire has length L in the field and 
length vector r (in the direction of the cur­
rent). A magnetic force Fs = {i x E acts 
on the wire. 

CHECKPOINT 4 

The figure shows a current i through a wire in a uniform magnetic field E, as well as 
the magnetic force is acting on the wire. The field is oriented so that the force is maxi­
mum. In what direction is the field? 

~I 
Z FE 

x 

Magnetic force on a wire carrying current 

A straight, horizontal length of copper wire has a current 
i = 28 A through it. What are the magnitude and direction 
of the minimum magnetic field B needed to suspend the 
wire-that is, to balance the gravitational force on it? The 
linear density (mass per unit length) of the wire is 46.6 g/m. 

(1) Because the wire carries a current, a magnetic force FE 
can act on the wire if we place it in a magnetic field E. To 
balance the downward gravitational force l{ on the wire, we 
want is to be directed upward (Fig. 28-17). (2) The direction 
of is is related to the directions of B and the wire's length 
vector L by Eq. 28-26 (is = iL X B). 

Calculations: Because L is directed horizontally (and the 
current is taken to be positive), Eq. 28-26 and the right-hand 
rule for cross products tell us that B must be horizontal and 
rightward (in Fig. 28-17) to give the required upward is. 

The magnitude of is is FE = iLB sin ¢ (Eq. 28-27). 
Because we want is to balance J{, we want 

iLB sin ¢ = mg, (28-29) 

where mg is the magnitude of J{ and m is the mass of the wire. 

~ 

mg 

Fig. 28-17 A wire (shown in cross section) carrying current out 
of the page. 

We also want the minimal field magnitude B for is to balance 
J{. Thus, we need to maximize sin ¢ i!1 Eq. 28-29. To do so, we 
set ¢ = 900

, thereby arranging for B to be perpendicular to 
the wire. We then have sin ¢ = 1, so Eq. 28-29 yields 

B = mg (mIL)g (28-30) 
iL sin ¢ 

We write the result this way because we know miL, the linear 
density of the wire. Substituting known data then gives us 

(46.6 X 10-3 kg/m)(9.8 m/s2) 
B = 28A 

= 1.6 X 10-2 T. (Answer) 

This is about 160 times the strength of Earth's magnetic field. 

Additional examples, video, and practice available at WileyPLUS 
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Fig. 28-18 The elements of an electric 
motor. A rectangular loop of wire, carrying a 
current and free to rotate about a fixed axis, 
is placed in a magnetic field. Magnetic 
forces on the wire produce a torque that ro­
tates it. A commutator (not shown) reverses 
the direction ofthe current every half-revo­
lution so that the torque always acts in the 
same direction. 

Torque on a Current loop 
Much of the world's work is done by electric motors. The forces behind this work 
are the magnetic forces that we studied in the preceding section - that is, the 
forces that a magnetic field exerts on a wire that carries a current. 

Figure 28-18 shows a simple motor, consisting of a single current-carrying 
loop immersed in a magnetic field B. The two magnetic forces F and - F pro­
duce a torque on the loop, tending to rotate it about its central axis. Although 
many essential details have been omitted, the figure does suggest how the action 
of a magnetic field on a current loop produces rotary motion. Let us analyze that 
action. 

Figure 28-19a shows a rectangular loop of sides a and b, carrying current 
i through uniform magnetic field B. We place the loop in the field so that 
its long sides, labeled 1 and 3, are perpendicular to the field direction (which is 
into the page), but its short sides, labeled 2 and 4, are not. Wires to lead the cur­
rent into and out of the loop are needed but, for simplicity, are not shown. 

To define the orientation of the loop in the magnetic field, we use a normal 
vector n that is perpendicular to the plane of the loop. Figure 28-19b shows 
a right-hand rule for finding the direction of n. Point or curl the fingers of your 
right hand in the direction of the current at any point on the loop. Your extended 
thumb then points in the direction of the normal vector n. 

In Fig. 28-19c, the normal vector of the loop is shown at an arbitrary angle 
e to the direction of the magnetic field B. We wish to find the net force and net 
torque acting on the loop in this orientation. 

The net force on the loop is the vector sum of the forces acting on its 
four sides. For side 2 the vector r in Eq. 28-2<?yoint~}n the direction of the cur­
rent and has magnitude b. The angle between Land B for side 2 (see Fig. 28-19c) 
is 90° - e. Thus, the magnitude of the force acting on this side is 

Fz = ibB sin(90° - e) = ibB cos e. 

x x x F,1 xxx xxx x x x 

Side 1 
x x x ~ 

Side 2, I 
xF4 xx xx lSxb 

Side 4 ~ 

X X X X X X ~ X X X X X-)OX 

x x XL' A A !:J'Sid~3A . 
F3 B 

(a) a (b) 

Fig.28-19 A rectangular loop, of 
length a and width b and carrying a cur­
rent i, is located in a uniform magnetic 
field. A torque T acts to align the normal 
vector ft with the direction of the field. (a) 
The loop as seen by looking in the direc­
tion of the magnetic field. (b) A perspec­
tive of the loop showing how the right­
hand rule gives the direction of ft, which is 
perpendicular to the plane of the loop. ( c) 
A side view of the loop, from side 2. 
The loop rotates as indicated. (c) 

(28-31) 

~ 

B 



"1 THE MAGNETIC DIPOLE MOMENT 753 

You can show that the force F4 acting on side 4 has the same magnitude as F2 but 
the opposite direction. Thus, F2 and F4 cancel out exactly. Their net force is zero 
and, because their common line of action is through the center of the loop, their 
net torque is also zero. 

The situation is different for sides 1 and 3. For them, r is perpendicular to E, 
so the forces Fl and F3 have the common magnitude iaB. Because these two 
forces have opposite directions, they do not tend to move the loop up or down. 
However, as Fig. 28-19c shows, these two forces do not share the same line of 
action; so they do produce a net torque. The torque tends to rotate the loop so 
as to align its normal vector n with the direction of the magnetic field E. That 
torque has moment arm (b/2) sin e about the central axis of the loop. The magni­
tude 7' of the torque due to forces Fl and F3 is then (see Fig. 28-19c) 

7' = (iaB ~ sin e) + (iaB ~ sin e) = iabB sin e. (28-32) 

Suppose we replace the single loop of current with a coil of N loops, or turns. 
Further, suppose that the turns are wound tightly enough that they can be 
approximated as all having the same dimensions and lying in a plane. Then the 
turns form a fiat coil, and a torque 7' with the magnitude given in Eq. 28-32 acts 
on each of them. The total torque on the coil then has magnitude 

7 = N7' = NiabB sin e = (NiA)B sin e, (28-33) 

in which A (= ab) is the area enclosed by the coil. The quantities in parentheses 
(NiA) are grouped together because they are all properties of the coil: its number 
of turns, its area, and the current it carries. Equation 28-33 holds for all flat coils, 
no matter what their shape, provided the magnetic field is uniform. For example, 
for the common circular coil, with radius r, we have 

7 = (Ni-rrr)B sin e. (28-34) 

Instead of focusing on the motion of the coil, it is simpler to keep track of the 
vector n, which is normal to the plane of the coil. Equation 28-33 tells us that 
a current-carrying flat coil placed in a magnetic field will tend to rotate so that n 
has the same direction as the field. In a motor, the current in the coil is reversed 
as n begins to line up with the field direction, so that a torque continues to rotate 
the coil. This automatic reversal of the current is done via a commutator that 
electrically connects the rotating coil with the stationary contacts on the wires 
that supply the current from some source. 

10 The Magnetic Dipole Moment 
As we have just discussed, a torque acts to rotate a current-carrying coil placed in 
a magnetic field. In that sense, the coil behaves like a bar magnet placed in the 
magnetic field. Thus, like a bar magnet, a current-carrying coil is said to be a mag­
netic dipole. Moreover, to account for the torque on the coil due to the magnetic 
field, we assign a magnetic dipole moment 71 to the coil. The direction of 71 is that 
of the normal vector n to the plane of the coil and thus is given by the same right­
hand rule shown in Fig. 28-19. That is, grasp the coil with the fingers of your right 
hand in the direction of current i; the outstretched thumb of that hand gives the 
direction of 71. The magnitude of 71 is given by 

fJ, = NiA (magnetic moment), (28-35) 

in which N is the number of turns in the coil, i is the current through the coil, and A is 
the area enclosed by each turn of the coil. From this equation, with i in amperes and 
A in square meters, we see that the unit of 71 is the ampere-square meter (A, m2

). 



754 R MAGNETIC FIELDS 

The magnetic moment vector 
attempts to align with the 
magnetic field. 

Highest 
energy 

Lowest 
energy 

Fig. 28-20 The orientations of highest 
and lowest energy of a magnetic dipole 
(here a coil carlJing current) in an external 
magnetic field B. The direction of the cur­
rent i gives the direction of the magnetic 
dipole moment /1 via the right-hand rule 
shown for n in Fig. 28-19b. 

Some Magnetic Dipole Moments 

Small bar magnet 

Earth 

Proton 

Electron 

5 J/T 

8.0 X 1022 J/T 
1.4 X 10-26 J/T 

9.3 X 10-24 J/T 

Using 71, we can rewrite Eq. 28-33 for the torque on the coil due to a mag­
netic field as 

r = fLB sin e, (28-36) 

in which eis the angle between the vectors 71 and E. 
We can generalize this to the vector relation 

T = 71 X E, (28-37) 

which reminds us very much of the corresponding equation for the torque 
exerted by an electric field on an electric dipole-namely,Eq. 22-34: 

---> ---> ---> 
r=pxE. 

In each case the torque due to the field-either magnetic or electric-is equal to 
the vector product of the corresponding dipole moment and the field vector. 

A magnetic dipole in an external magnetic field has an energy that depends on 
the dipole's orientation in the field. For electric dipoles we have shown (Eq. 22-38) 
that 

U(O) = -p.E. 
In strict analogy, we can write for the magnetic case 

U( 0) = - 71' E. (28-38) 

In each case the energy due to the field is equal to the negative of the scalar prod­
uct of the corresponding dipole moment and the field vector. 

A magnetic dipole has its lowest energy (= - fLB cos 0 = - fLB) when its di­
pole moment 71 is lined up with the magnetic field (Fig. 28-20). It has its highest 
energy (= - fLB cos 1800 = + fLB) when 71 is directed opposite the field. From Eq. 
28-38, with U in joules and E in teslas, we see that the unit of 71 can be the joule 
per tesla (J/T) instead of the ampere-square meter as suggested by Eq. 28-35. 

If an applied torque (due to "an external agent") rotates a magnetic dipole 
from an initial orientation ei to another orientation Of' then work Wa is done on 
the dipole by the applied torque. If the dipole is stationary before and after the 
change in its orientation, then work Wa is 

(28-39) 

where Ufand Ui are calculated with Eq. 28-38. 
So far, we have identified only a current-carrying coil as a magnetic dipole. 

However, a simple bar magnet is also a magnetic dipole, as is a rotating sphere of 
charge. Earth itself is (approximately) a magnetic dipole. Finally, most subatomic 
particles, including the electron, the proton, and the neutron, have magnetic 
dipole moments. As you will see in Chapter 32, all these quantities can be viewed 
as current loops. For comparison, some approximate magnetic dipole moments 
are shown in Table 28-2. 

CHECKPOINT 5 

The figure shows four orientations, at angle 0, of a magnetic dipole moment It in a 
magnetic field. Rank the orientations according to (a) the magnitude of the torque on 
the dipole and (b) the orientation energy of the dipole, greatest first. 

d(® e I> --> 

e B 

11 @ 
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Rotating a magnetic dipole in a magnetic field 

Figure 28-21 shows a circular coil with 250 turns, an area A 
of 2.52 X 10-4 m2, and a current of 100 j.LA. The coil is at rest 
in a uniform magnetic field of magnitude B = 0.85 T, with its 
magnetic dipole moment 71 initially aligned with E. 

(a) In Fig. 28-21, what is the direction of the current in the coil? 

Right-hand rule: Imagine cupping the coil with your right 
hand so that your right thumb is outstretched in the direc­
tion of 71. The direction in which your fingers curl around 
the coil is the direction of the current in the coil. Thus, in the 
wires on the near side of the coil-those we see in Fig. 28-21-
the current is from top to bottom. 

(b) How much work would the torque applied by an exter­
nal agent have to do on the coil to rotate it 900 from its ini-

Fig. 28-21 A side view of a circular coil 
carrying a current and oriented so that its 
magnetic dipole moment is aligned with 
magnetic field E. 

tial orientation, so that 71 is perpendicular to E and the coil 
is again at rest? 

The work Wa done by the applied torque would be equal to 
the change in the coil's orientation energy due to its change 
in orientation. 

Calculations: From Eq. 28-39 (Wa = Uf - Ui), we find 

VYa = U(900
) - U(OO) 

= - flB cos 900 
- (- flB cos 00

) = 0 + j.LB 

= j.LB. 

Substituting for j.LfromEq. 28-35 (j.L = NiA) , we find that 

VYa = (NiA)B 

= (250)(100 X 10-6 A)(2.52 X 10-4 m2)(0.85 T) 

= 5.355 X 10-6 J = 5,4 j.LJ. (Answer) 

~s Additional examples, video, and practice available at WileyPLUS 

Magnetic Field 8 A magnetic field B is defined in terms of the 
force FH acting on a test particle with charge q moving through the 
field with velocity v: 

fs = qv x E. (28-2) 

The SI unit for E is the tesla (T): 1 T = 1 N/(A' m) = 104 gauss. 

The Hall Effect When a conducting strip carrying a current i is 
placed in a uniform magnetic field E, some charge carriers (with 
charge e) build up on one side of the conductor, creating a poten­
tial difference V across the strip. The polarities of the sides indicate 
the sign of the charge carriers. 

A Charged Particle Circulating in a Magnetic Field A 
charged particle with mass m and charge magnitude Iql moving with 
velocity v perpendicular to a uniform magnetic field 8 will travel in 
a circle. Applying Newton's second law to the circular motion yields 

mv2 

IqlvB = -, (28-15) 
r 

from which we find the radius r of the circle to be 

mv 
r= 

IqlB 
(28-16) 

The frequency of revolution t, the angular frequency w, and the 
period of the motion T are given by 

t=~= 1 ~ 
27T T 27T111 . 

(28-19,28-18,28-17) 

Magnetic Force on a Current-Carrying Wire A straight 
wire carrying a current i in a uniform magnetic field experiences a 
sideways force 

fs = iL x E. (28-26) 

The force acting on a current element i dL in a magnetic field is 

(28-28) 

The direction of the length vector L or dL is that of the current i. 

Torque on a Current-Carrying Coil A coil (of area A and N 
turns, carrying current i) in a uniform magnetic field E will 
experience a torque T given by 

T = /1 x E. (28-37) 

Here j1 is the magnetic dipole moment of the coil, with magnitude 
fh = NiA and direction given by the right-hand rule. 

Orientation Energy of a Magnetic Dipole The orientaion 
energy of a magnetic dipole in a magnetic field is 

U(8) = -/1,8. (28-38) 

If an external agent rotates a magnetic dipole from an initial orien­
tation 8i to some other orientation 8f and the dipole is stationary 
both initially and finally, the work W;, done on the dipole by the 
agent is 

(28-39) 
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Figure 28-22 shows three situations in which a positively 
charged particle moves at velocity v through a uniform magnetic 
field If and experiences a magnetic force FH • In each situation, 
determine whether the orientations of the vectors are physically 
reasonable. 

(a) (b) (c) 

Fig. 28-22 Question 1. 

Figure 28-23 shows a wire that 
carries current to the right through a 
uniform magnetic field. It also 
shows four choices for the direction 
of that field. (a) Rank the choices 

~l 

2 
®3 
@4 

Choices for B 
according to the magnitude of the Fig. 28-23 Question 2. 
electric potential difference that 
would be set up across the width of the wire, greatest first. (b) For 
which choice is the top side of the wire at higher potential than the 
bottom side of the wire? 

Figure 28-24 shows a metallic, rectan­
gular solid that is to move at a certain 
speed v through the uniform magnetic 
field If. The dimensions of the solid are 
multiples of d, as shown. You have six 
choices for the direction of the velocity: 
parallel to x, y, or z in either the positive 
or negative direction. (a) Rank the six 
choices according to the potential differ­
ence set up across the solid, greatest first. 

3d 

Fig. 28-24 
Question 3. 

(b) For which choice is the front face at lower potential? 

Figure 28-25 shows the path of a particle through six regions of 
uniform magnetic field, where the path is either a half-circle or a 
quarter-circle. Upon leaving the last region, the particle travels be­
tween two charged, parallel plates and is deflected toward the plate 
of higher potential. What is the direction of the magnetic field in 
each of the six regions? 

d 

a 
f 

b 

Fig. 28-25 Question 4. 

In Section 28-4, we discussed a charged particle moving 
through crossed fields with the forces FE and FH in opposition. We 

found that the particle moves in a straight line (that is, neither 
force dominates the motion) if its speed is given by Eq. 28-7 (v = 

EIB). Which of the two forces dominates if the speed of the parti­
cleis (a) v < EIB and (b) v> EIB? 

Figure 28-26 shows crossed uniform electric and magnetic 
fields E and If and, at a certain instant, the velocity vectors of 
the 10 charged particles listed in Table 28-3. (The vectors are 
not drawn to scale.) The speeds given in the table are either 
less than or greater than EIB (see Question 5). Which particles 
will move out of the page toward you after the instant shown in 
Fig. 28-26? 

Fig. 28-26 Question 6. 

Question 6 

Particle Charge Speed Particle 

1 + Less 6 

2 + Greater 7 

3 + Less 8 

4 + Greater 9 

5 Less 10 

Figure 28-27 shows the path of an 
electron that passes through two regions 
containing uniform magnetic fields of 
magnitudes B! and Bz. Its path in each 
region is a half-circle. (a) Which field is 
stronger? (b) What is the direction of 
each field? (c) Is the time spent by the 
electron in the If! region greater than, 
less than, or the same as the time spent 
in the lIz region? 

Charge Speed 

+ 
+ 

Greater 

Less 

Greater 

Less 

Greater 

Fig. 28-27 

Question 7. 

Figure 28-28 shows the path of an 
electron in a region of uniform mag­
netic field. The path consists of two 
straight sections, each between a 
pair of uniformly charged plates, and 
two half-circles. Which plate is at the 
higher electric potential in (a) the 
top pair of plates and (b) the bottom 
pair? ( c) What is the direction of the 

Fig. 28-28 Question 8. 
magnetic field? 

(a) In Checkpoint 5, if the dipole moment 71 is rotated from ori­
entation 2 to orientation 1 by an external agent, is the work done on 
the dipole by the agent positive, negative, or zero? (b) Rank the 
work done on the dipole by the agent for these three rotations, 
greatest first: 2 ~ 1, 2 ~ 4, 2 ~ 3. 



Particle roundabout. Figure 28-29 shows 11 paths through a 
region of uniform magnetic field. One path is a straight line; the 
rest are half-circles. Table 28-4 gives the masses, charges, and 
speeds of 11 particles that take these paths through the field in the 
directions shown. Which path in the figure corresponds to which 
particle in the table? (The direction of the magnetic field can be 
determined by means of one of the paths, which is unique.) 

Question 10 

Particle Mass Charge Speed 

1 2m q v 
2 111 2q v 
3 11112 q 2v 
4 3m 3q 3v 
5 2m q 2v 
6 111 -q 2v 
7 111 -4q v 
8 m -q v 
9 2111 -2q 3v 

10 111 -2q 8v 
11 3111 0 3v 
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Fig. 28-29 Question 10. 

In Fig. 28-30, a charged parti­
cle enters a uniform magnetic field 
lJ with speed va, moves through a 
half-circle in time To, and then 
leaves the field. (a) Is the charge 
positive or negative? (b) Is the final 
speed of the particle greater than, 
less than, or equal to va? ( c) If the Fig. 28-30 Question 11. 
initial speed had been 0.5vo, would 
the time spent in field lJ have been greater than, less than, or equal 
to To? (d) Would the path have been a half-circle, more than a half­
circle, or less than a half-circle? 

Tutoring problem available {at instructor's discretion} in WileyPLUS and WebAssign 

SS M Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 
http://www.wiley.com/college/halliday 

Number of dots indicates level of problem difficulty I LW Interactive solution is at 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Definition of i 
SSM IlW A proton traveling at 23.0° with respect to the di­

rection of a magnetic field of strength 2.60 mT experiences a mag­
netic force of 6.50 X 10-17 N. Calculate (a) the proton's speed and 
(b) its kinetic energy in electron-volts. 

A particle of mass 10 g and charge 80 p.,C moves through a 
uniform magnetic field, in a region where the free-fall acceleration 
is -9.8] m/s2. The velocity of the particle is a constant 20i km/s, 
which is perpendicular to the magnetic field. What, then, is the 
magnetic field? 

An electron that has velocity 

v = (2.0 X 106 mls)i + (3.0 X 106 m/s)] 

moves through the uniform magnetic field if = (0.030 T)i -
(0.15 T)]. (a) Find the force on the electron due to the magnetic 
field. (b) Repeat your calculation for a proton having the same 
velocity. 

An alpha particle travels at a velocity v of magnitude 550 mls 
through a uniform magnetic field lJ of magnitude 0.045 T. (An al­
pha particle has a charge of +3.2 X 10-19 C and a mass of 6.6 X 
10-27 kg.) The angle between v and lJ is 52°. What is the magni­
tude of (a) the force Fa acting on the particle due to the field and 

(b) the acceleration of the particle due to Fa? (c) Does the speed 
of the particle increase, decrease, or remain the same? 

An electron moves through a uniform magnetic field given by 
if = B) + (3.0B,)]. At a particular instant, the electron has veloc­
ity v = (2.oi + 4.0]) m/s and the magnetic force acting on it is 
(604 X 10-19 N)k. Find Br 

A proton moves through a uniform magnetic field 
given by if = (lOi - 20] + 30k) mT. At time tlo the proton has a 
velocity given by v = v) + Vy] + (2.0 km/s)k and the magnetic 
force on the proton is FB = (4.0 X 10-17 N)i + (2.0 X 10-17 N)]. 
At that instant, what are (a) v, and (b) vy? 

Crossed Fields: Discovery of the Electron 
An electron has an initial velocity of (12.0j + 15.0k) km/s and 

a constant acceleration of (2.00 X 1012 m/s2)i in a region in which 
uniform electric and magnetic fields are present. If lJ = (400 p.,T)i, 
find the electric field E. 

An electric field of 1.50 kV/m and a perpendicular magnetic 
field of 00400 T act on a moving electron to produce no net force. 
What is the electron's speed? 

IlW In Fig. 28-31, an electron accelerated from rest through 
potential difference VI = 1.00 kV enters the gap between two par-
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allel plates having separation d = 20.0 mm and potential differ­
ence V2 = 100 V. The lower plate is at the lower potential. Neglect 
fringing and assume that the electron's velocity vector is perpen­
dicular to the electric field vector between the plates. In unit-vector 
notation, what uniform magnetic field allows the electron to travel 
in a straight line in the gap? 

)' 

Lx 

111 
r-'---, 

~! rn'!'*'=' ==':;]'''!l\ll''-~;''18::C;::<'=::::J;lJ(3j} } 112 

I I [Y0}'" ~'//0;'f1ii.,W0,{b':.'~ ",,;1 

Fig. 28-31 Problem 9. 

A proton travels through uniform magnetic and electric 
fields. The magnetic field is If = - 2.501 mT. At one instant the 
velocity of the proton is v = 2000J m/s. At that instant and in 
unit-vector notation, what is the net force acting on the proton if 
the electric field is (a) 4.00k Vim, (b) -4.00k Vim, and (c) 
4.001 Vim? 

An ion source is producing 6Li ions, which have charge +e 
and mass 9.99 X 10-27 kg. The ions are accelerated by a potential 
difference of 10 kV and pass horizontally into a region in which 
there is a uniform vertical magnetic field of magnitude B = 1.2 T. 
Calculate the strength of the smallest electric field, to be set up 
over the same region, that will allow the 6Li ions to pass through 
undeflected. 

At time tj, an electron is 
sent along the positive direction of an 
x axis, through both an electric field 
E and a magnetic field If, with E di-
rected parallel to the y axis. Figure 
28-32 gives the y component Fnet•y of 
the net force on the electron due to 
the two fields, as a function of the 
electron's speed v at time fl' The scale 
of the velocity axis is set by Vs = 100.0 

Z 
m ,. 
0 
:::;, 
" i 

k," 

2 

0 
0 

-1 

-2 
v (m/s) 

mls. The x and z components of the Fig. 28-32 Problem 12. 
net force are zero at fl' Assuming 
B, = 0, find (a) the magnitude E and (b) If in unit-vector notation. 

Crossed Fields: The Hall Effect 
A strip of copper 150 ,urn thick and 4.5 mm wide is placed 

in a uniform magnetic field If of magnitude 0.65 T, with If per­
pendicular to the strip. A current i = 23 A is then sent through 
the strip such that a Hall potential difference V appears across 
the width of the strip. Calculate V. 
(The number of charge carriers per 
unit volume for copper is 8.47 X 

1028 electrons/m3.) 

x x x B 
Xe----tI )' 

x x x 

x x x 

A metal strip 6.50 cm long, 
0.850 cm wide, and 0.760 mm thick 
moves with constant velocity v 
through a uniform magnetic field B = 
1.20 mT directed perpendicular to the 
strip, as shown in Fig. 28-33. A poten­
tial difference of 3.90,uV is measured 
between points x and y across the 
strip. Calculate the speed v. Fig. 28-33 Problem 14. 

In Fig. 28-34, a conducting rectangular solid of dimensions 
d, = 5.00 m, dy = 3.00 m, and dz = 2.00 m moves at constant 
velocity v = (20.0 m/s)i through a uniform magnetic field 
B = (30.0 mT)]. What are the result­
ing (a) electric field within the solid, 
in unit-vector notation, and (b) po­
tential difference across the solid? 

'-----x 
Figure 28-34 shows a 

metallic block, with its faces parallel 
to coordinate axes. The block is in a 
uniform magnetic field of magni­
tude 0.020 T. One edge length of the 
block is 25 cm; the block is not 
drawn to scale. The block is moved 

Fig. 28-34 

Problems 15 and 16. 

at 3.0 mls parallel to each axis, in turn, and the resulting potential 
difference V that appears across the block is measured. With the 
motion parallel to the y axis, V = 12 mV; with the motion parallel 
to the z axis, V = 18 m V; with the motion parallel to the x axis, 
V = O. What are the block lengths (a) d" (b) dy , and (c) dz? 

A Circulating Charged Particle 
An alpha particle can be produced in certain radioactive 

decays of nuclei and consists of two protons and two neutrons. 
The particle has a charge of q = +2e and a mass of 4.00 u, where u 
is the atomic mass unit, with 1 u = 1.661 X 10-27 kg. Suppose an 
alpha particle travels in a circular path of radius 4.50 cm in a uni­
form magnetic field with B = 1.20 T. Calculate (a) its speed, (b) 
its period of revolution, (c) its kinetic energy, and (d) the poten­
tial difference through which it would have to be accelerated to 
achieve this energy. 

·18 In Fig. 28-35, a particle moves along a 
circle in a region of uniform magnetic field of 
magnitude B = 4.00 mT. The particle is either a 
proton or an electron (you must decide which). 
It experiences a magnetic force of magnitude 

Fig. 28-35 
3.20 X 10-15 N. What are (a) the particle's speed, Problem 18. 
(b) the radius of the circle, and (c) the period of 
the motion? 

A certain particle is sent into a uniform magnetic field, with 
the particle's velocity vector perpendicular to the direction of the 
field. Figure 28-36 gives the period T of the particle's motion versus 
the inverse of the field magnitude B. The vertical axis scale is set by 
'Fs = 40.0 ns, and the horizontal axis scale is set by B;I = 5.0 T-I . 

What is the ratio mlq of the particle's mass to the magnitude of its 
charge? 

S 
h 

o 
B-1 (T-1) 

Fig. 28-36 Problem 19. 



An electron is accelerated from 
rest through potential difference V 
and then enters a region of uniform 
magnetic field, where it undergoes I 
uniform circular motion. Figure 28-37 ... 
gives the radius I' of that motion ver-
sus V1I2. The vertical axis scale is set 
by 1~ = 3.0 mm, and the horizontal 0 

axis scale is set by vF2 = 40.0 V1I2. 
What is the magnitude of the mag-
netic field? Fig. 28-37 Problem 20. 

SSM An electron of kinetic energy 1.20 keY circles in a 
plane perpendicular to a uniform magnetic field. The orbit radius is 
25.0 cm. Find (a) the electron's speed, (b) the magnetic field mag­
nitude, (c) the circling frequency, and (d) the period of the motion. 

In a nuclear experiment a proton with kinetic energy 
1.0 Me V moves in a circular path in a uniform magnetic field. What 
energy must (a) an alpha particle (q = +2e, 111 = 4.0 u) and (b) a 
deuteron (q = +e, 111 = 2.0 u) have if they are to circulate in the 
same circular path? 

What uniform magnetic field, applied perpendicular to a 
beam of electrons moving at 1.30 X 106 mis, is required to make 
the electrons travel in a circular arc of radius 0.350 m? 

An electron is accelerated from rest by a potential difference 
of 350 V. It then enters a uniform magnetic field of magnitude 200 
mT with its velocity perpendicular to the field. Calculate (a) the 
speed of the electron and (b) the radius of its path in the magnetic 
field. 

(a) Find the frequency of revolution of an electron with an 
energy of 100 e V in a uniform magnetic field of magnitude 35.0 ,uT. 
(b) Calculate the radius of the path of this electron if its velocity is 
perpendicular to the magnetic field. 

In Fig. 28-38, a charged parti­
cle moves into a region of uniform 
magnetic field E, goes through half 
a circle, and then exits that region. 
The particle is either a proton or an 
electron (you must decide which). Fig.28-38 Problem 26. 
It spends 130 ns in the region. 
(a) What is the magnitude of E? (b) If the particle is sent back 
through the magnetic field (along the same initial path) but with 
2.00 times its previous kinetic energy, how much time does it spend 
in the field during this trip? 

A mass spectrometer (Fig. 28-12) is used to separate ura­
nium ions of mass 3.92 X 10-25 kg and charge 3.20 X 10-19 C from 
related species. The ions are accelerated through a potential differ­
ence of 100 kV and then pass into a uniform magnetic field, where 
they are bent in a path of radius 1.00 m. After traveling through 
180° and passing through a slit of width 1.00 mm and height 
1.00 cm, they are collected in a cup. (a) What is the magnitude of 
the (perpendicular) magnetic field in the separator? If the machine 
is used to separate out 100 mg of material per hour, calculate (b) 
the current of the desired ions in the machine and (c) the thermal 
energy produced in the cup in 1.00 h. 

A particle undergoes uniform circular motion of radius 26.1 
,urn in a uniform magnetic field. The magnetic force on the particle 
has a magnitude of 1.60 X 10-17 N. What is the kinetic energy of 
the particle? 
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An electron follows a helical path in a uniform magnetic 
field of magnitude 0.300 T. The pitch of the path is 6.00 ,urn, and the 
magnitude of the magnetic force on the electron is 2.00 X 10-15 N. 
What is the electron's speed? 

In Fig. 28-39, an electron with 
an initial kinetic energy of 4.0 ke Venters 
region 1 at time t = O. That region con­
tains a uniform magnetic field directed 
into the page, with magnitude 0.010 T. 
The electron goes through a half-circle 
and then exits region 1, headed toward 
region 2 across a gap of 25.0 cm. There is 
an electric potential difference Ll. V = 

2000 V across the gap, with a polarity 
such that the electron's speed increases 

® 11 
Region 1 

~ t 
Region 2 

01 2 

Fig. 28-39 

Problem 30. 

uniformly as it traverses the gap. Region 2 contains a uniform mag­
netic field directed out of the page, with magnitude 0.020 T. The 
electron goes through a half-circle and then leaves region 2. At 
what time t does it leave? 

A particular type of fundamental particle decays by trans­
forming into an electron e - and a positron e +. Suppose the decay­
ing particle is at rest in a uniform magnetic field E of magnitude 
3.53 mT and the e- and e+ move away from the decay point in 
paths lying in a plane perpendicular to E. How long after the decay 
do the e- and e+ collide? 

A source injects an electron of speed v = 1.5 X 107 mls into 
a uniform magnetic field of magnitude B = 1.0 X 10-3 T. The ve­
locity of the electron makes an angle B = 10° with the direction of 
the magnetic field. Find the distance d from the point of injection 
at which the electron next crosses the field line that passes through 
the injection point. 

SSM WWW A positron with kinetic energy 2.00 ke V is 
projected into a uniform magnetic field E of magnitude 0.100 T, 
with its velocity vector making an angle of 89.0° with E. Find (a) 
the period, (b) the pitch p, and (c) the radius I' of its helical path. 

An electron follows a helical path in a uniform magnetic 
field given by E = (201 - 50J - 30k) mT. At time t = 0, the elec­
tron's velocity is given by 17 = (201 - 30J + 50k) m/s. (a) What is 
the angle ¢ between 11 and Ii? The electron's velocity changes 
with time. Do (b) its speed and (c) the angle ¢ change with time? 
(d) What is the radius of the helical path? 

Cyclotrons and Synchrotrons 
A proton circulates in a cyclotron, beginning approximately 

at rest at the center. Whenever it passes through the gap between 
dees, the electric potential difference between the dees is 200 V. (a) 
By how much does its kinetic energy increase with each passage 
through the gap? (b) What is its kinetic energy as it completes 100 
passes through the gap? Let 1'100 be the radius of the proton's circu­
lar path as it completes those 100 passes and enters a dee, and let 
1'101 be its next radius, as it enters a dee the next time. (c) By what 
percentage does the radius increase when it changes from 1'100 to 
1'101? That is, what is 

r - I' 
percentage increase = 101 100 100%? 

1'100 

A cyclotron with dee radius 53.0 cm is operated at an oscil­
lator frequency of 12.0 MHz to accelerate protons. (a) What mag­
nitude B of magnetic field is required to achieve resonance? (b) At 
that field magnitude, what is the kinetic energy of a proton emerg-
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ing from the cyclotron? Suppose, instead, that B = 1.57 T. (c) What 
oscillator frequency is required to achieve resonance now? (d) At 
that frequency, what is the kinetic energy of an emerging proton? 

Estimate the total path length traveled by a deuteron in a 
cyclotron of radius 53 cm and operating frequency 12 MHz during 
the (entire) acceleration process. Assume that the accelerating 
potential between the dees is 80 kY. 

In a certain cyclotron a proton moves in a circle of radius 
0.500 m. The magnitude of the magnetic field is 1.20 T. (a) What is 
the oscillator frequency? (b) What is the kinetic energy of the pro­
ton, in electron-volts? 

28·8 Magnetic Force on a Current-Carrying Wire 
SSM A horizontal power line carries a current of 5000 A 

from south to north. Earth's magnetic field (60.0 ,aT) is directed to­
ward the north and inclined downward at 70.0° to the horizontal. 
Find the (a) magnitude and (b) direction of the magnetic force on 
100 m of the line due to Earth's field. 

&40 A wire 1.80 m long carries a current of 13.0 A and makes an 
angle of 35.0° with a uniform magnetic field of magnitude B = 1.50 
T. Calculate the magnetic force on the wire. 

·41 IlW A 13.0 g wire of length 
L = 62.0 cm is suspended by a pair 
of flexible leads in a uniform mag­
netic field of magnitude 0.440 T (Fig. 
28-40). What are the (a) magnitude 
and (b) direction (left or right) of the 
current required to remove the 
tension in the supporting leads? Fig. 28-40 Problem 41. 

The bent wire shown in Fig. 
28-41 lies in a uniform magnetic Y 
field. Each straight section is 2.0 m 
long and makes an angle of B = 60° 
with the x axis, and the wire carries a 
current of 2.0 A. What is the net 
magnetic force on the wire in unit­
vector notation if the magnetic field 
is given by (a) 4.0k T and (b) 4.01 T? 

A single-turn current loop, 

~--.--=-.--------x 

carrying a current of 4.00 A, is in Fig. 28-41 Problem 42. 
the shape of a right triangle with 
sides 50.0, 120, and 130 cm. The loop is in a uniform magnetic field of 
magnitude 75.0 mT whose direction is parallel to the current in the 
130 cm side of the loop. What is the magnitude of the magnetic force 
on (a) the 130 cm side, (b) the 50.0 cm side, and (c) the 120 cm side? 
(d) What is the magnitude of the net force on the loop? 

Figure 28-42 shows a wire 
ring of radius a = 1.8 cm that is per­
pendicular to the general direction 
of a radially symmetric, diverging 
magnetic field. The magnetic field 
at the ring is everywhere of the 
same magnitude B = 3.4 mT, and 
its direction at the ring everywhere Fig. 28-42 Problem 44. 
makes an angle B = 20° with a nor-
mal to the plane of the ring. The twisted lead wires have no effect 
on the problem. Find the magnitude of the force the field exerts on 
the ring if the ring carries a current i = 4.6 rnA. 

A wire 50.0 cm long carries a 0.500 A current in the posi­
tive direction of an x axis through a magnetic field jJ = 

(3.00 mT)] + (10.0 mT)k. In unit-vector notation, what is the mag­
neticforce on the wire? 

In Fig. 28-43, a metal wire of mass m = 24.1 mg can slide 
with negligible friction on two horizontal parallel rails separated 
by distance d = 2.56 cm. The track lies in a vertical uniform mag­
netic field of magnitude 56.3 mT. At time t = 0, device G is con­
nected to the rails, producing a constant current i = 9.13 rnA in the 
wire and rails (even as the wire moves). At t = 61.1 ms, what are 
the wire's (a) speed and (b) direction of motion (left or right)? 

Fig. 28-43 Problem 46. 

A 1.0 kg copper rod rests on two horizontal rails 
1.0 m apart and carries a current of 50 A from one rail to the other. 
The coefficient of static friction between rod and rails is 0.60. What 
are the (a) magnitude and (b) angle (relative to the vertical) of the 
smallest magnetic field that puts the rod on the verge of sliding? 

·'·48 A long, rigid conductor, lying along an x axis, carries a cur­
rent of 5.0 A in the negative x direction. A magnetic field jJ is pre­
sent, given by jJ = 3.01 + 8.0X2], with x in meters and jJ in millites­
las. Find, in unit-vector notation, the force on the 2.0 m segment of 
the conductor that lies between x = 1.0 m and x = 3.0 m. 

28-9 Torque on a Current Loop 
SSM Figure 28-44 shows a 

rectangular 20-turn coil of wire, of 
dimensions 10 cm by 5.0 cm. It car­
ries a current of 0.10 A and is 
hinged along one long side. It is 
mounted in the xy plane, at angle 

Hinge 
line 

Y 

B 

B = 30° to the direction of a uni­
form magnetic field of magnitude 
0.50 T. In unit-vector notation, what 
is the torque acting on the coil 
about the hinge line? Fig. 28-44 Problem 49. 

An electron moves in a circle 
of radius r = 5.29 X 10-11 m with 
speed 2.19 X 106 m/s. Treat the circular path as a current loop with 
a constant current equal to the ratio of the electron's charge mag­
nitude to the period of the motion. 
If the circle lies in a uniform mag­
netic field of magnitude B = 

7.10 mT, what is the maximum pos­
sible magnitude of the torque pro­
duced on the loop by the field? 

Figure 28-45 shows a wood 
cylinder of mass m = 0.250 kg and 
length L = 0.100 m, with N = 10.0 
turns of wire wrapped around it lon­
gitudinally, so that the plane of the 

~ 

B 

wire coil contains the long central Fig. 28-45 Problem 51. 



axis of the cylinder. The cylinder is released on a plane inclined at 
an angle 8 to the horizontal, with the plane of the coil parallel to 
the incline plane. If there is a vertical uniform magnetic field of 
magnitude 0.500 T, what is the least current i through the coil that 
keeps the cylinder from rolling down the plane? 

In Fig. 28-46, a rectangular loop car­
rying current lies in the plane of a uniform 
magnetic field of magnitude 0.040 T. The 
loop consists of a single turn of flexible con­
ducting wire that is wrapped around a flexi­
ble mount such that the dimensions of the 
rectangle can be changed. (The total length 1.-1 '---X~~----I'I 
of the wire is not changed.) As edge length x 
is varied from approximately zero to its 
maximum value of approximately 4.0 cm, 

Fig. 28-46 

Problem 52. 

the magnitude T of the torque on the loop changes. The maximum 
value of Tis 4.80 X 10-8 N· m. What is the current in the loop? 

Prove that the relation T = NiAB sin 8holds not only for the 
rectangular loop of Fig. 28-19 but also for a closed loop of any 
shape. (Hint: Replace the loop of arbitrary shape with an assembly 
of adjacent long, thin, approximately rectangular loops that are 
nearly equivalent to the loop of arbitrary shape as far as the distri­
bution of current is concerned.) 

The Magnetic Dipole Moment 

A magnetic dipole with a dipole moment of magnitude 
0.020 JfT is released from rest in a uniform magnetic field of mag­
nitude 52 mT. The rotation of the dipole due to the magnetic force 
on it is unimpeded. When the dipole rotates through the orienta­
tion where its dipole moment is aligned with the magnetic field, its 
kinetic energy is 0.80 mJ. (a) What is the initial angle between the 
dipole moment and the magnetic field? (b) What is the angle 
when the dipole is next (momentarily) at rest? 

SSM TWo concentric, circu­
lar wire loops, of radii r1 = 20.0 cm 
and r2 = 30.0 cm, are located in an 
xy plane; each carries a clockwise 
current of 7.00 A (Fig. 28-47). (a) 
Find the magnitude of the net 
magnetic dipole moment of the 
system. (b) Repeat for reversed 
current in the inner loop. 

A circular wire loop of radius 
15.0 cm carries a current of 2.60 A. 
It is placed so that the normal to its 

)' 

~~~~~~~~~~X 

plane makes an angle of 41.00 with a 
Fig. 28-47 Problem 55. 

uniform magnetic field of magni-
tude 12.0T. (a) Calculate the magni-
tude of the magnetic dipole moment of the loop. (b) What is the 
magnitude ofthe torque acting on the loop? 

SSM A circular coil of 160 turns has a radius of 1.90 cm. 
(a) Calculate the current that results in a magnetic dipole moment 
of magnitude 2.30 A . m2• (b) Find the maximum magnitude of the 
torque that the coil, carrying this current, can experience in a uni­
form 35.0 mT magnetic field. 

The magnetic dipole moment of Earth has magnitude 8.00 X 

1022 JfT. Assume that this is produced by charges flowing in Earth's 
molten outer core. If the radius of their circular path is 3500 km, 
calculate the current they produce. 

PROBLEMS 761 

A current loop, carrying a current of 5.0 A, is in the shape of 
a right triangle with sides 30,40, and 50 cm. The loop is in a uniform 
magnetic field of magnitude 80 mT whose direction is parallel to 
the current in the 50 cm side of the loop. Find the magnitude of (a) 
the magnetic dipole moment of the loop and (b) the torque on the 
loop. 

Figure 28-48 shows a current loop 
ABCDEFA carrying a current i = 5.00 
A. The sides of the loop are parallel to 
the coordinate axes shown, with AB = 

20.0 cm, BC = 30.0 cm, and FA = 10.0 
cm. In unit-vector notation, what is the 
magnetic dipole moment of this loop? 
(Hint: Imagine equal and opposite cur­
rents i in the line segment AD; then 
treat the two rectangular loops ABCDA 
andADEFA.) 

SSM The coil in Fig. 28-49 carries 

Fig. 28-48 

Problem 60. 

x 

current i = 2.00 A in the direction indicated, is parallel to an xz 
plane, has 3.00 turns and an area of 4.00 X 10-3 m2, and lies 
in a uniform magnetic field jJ = (2.001 - 3.00J - 4.00k) mT. What 
are (a) the orientation energy ofthe coil in the magnetic field and (b) 
the torque (in unit-vector notation) on the coil due to the magnetic 
field? 

z 

Fig. 28-49 Problem 61. 

In Fig. 28-50a, two concentric coils, lying in the same plane, 
carry currents in opposite directions. The current in the larger coil 1 is 
fixed. Current i2 in coil 2 can be varied. Figure 28-50b gives the net mag­
netic moment of the two-coil system as a function of iz. The vertical axis 
scale is set by fLnet,s = 2.0 X 10-5 A· m2, and the hOlizontal axis scale is 
set by iz, = 10.0 rnA. If the current in coil 2 is then reversed, what is the 
magnitUde of the net magnetic moment of the two-coil system when i2 = 

7.0 rnA? 

(a) 

~S 
11 net,s ~,-,-,--,--

~ 
::i. -11 nel,s I 

i2 (rnA) 

(b) 

Fig. 28-50 Problem 62. 

A circular loop of wire having a radius of 8.0 cm carries a 
current of 0.20 A. A vector of unit length and parallel to the di­
pole moment 71 of the loop is given by 0.601 - 0.80], (This unit 
vector gives the orientation of the magnetic dipole moment vec­
tor.) If the loop is located in a uniform magnetic field given by 
jJ = (0.25 T)1 + (0.30 T)k, find (a) the torque on the loop (in unit­
vector notation) and (b) the orientation energy of the loop. 
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Figure 28-51 gives the orientation energy U of a mag­
netic dipole in an external magnetic field B, as a function of angle 
¢ between the directions of B and the dipole moment. The vertical 
axis scale is set by ~ = 2.0 X 10-4 J. The dipole can be rotated 
about an axle with negligible friction in order that to change ¢. 
Counterclockwise rotation from ¢ = 0 yields positive values of ¢, 
and clockwise rotations yield negative values. The dipole is to be 
released at angle ¢ = 0 with a rotational kinetic energy of 6.7 X 
10-4 J, so that it rotates counterclockwise. To what maximum value 
of ¢ will it rotate? (In the language of Section 8-6, what value ¢ is 
the turning point in the potential well of Fig. 28-51?) 

Fig. 28-51 Problem 64. 

SSM ILW A wire of length 25.0 cm carrying a current of 
4.51 rnA is to be formed into a circular coil and placed in a uniform 
magnetic field B of magnitUde 5.71 mT. If the torque on the coil 
from the field is maximized, what are (a) the angle between Band 
the coil's magnetic dipole moment and (b) the number of turns in 
the coil? (c) What is the magnitude of that maximum torque? 

Additional Problems 
A proton of charge +e and mass In enters a uniform magnetic 

field B = B1 with an initial velocity v = vo) + vo)' Find an expres­
sion in unit-vector notation for its velocity vat any later time t. 

A stationary circular wall clock has a face with a radius of 15 
cm. Six turns of wire are wound around its perimeter; the wire car­
ries a current of 2.0 A in the clockwise direction. The clock is lo­
cated where there is a constant, uniform external magnetic field of 
magnitude 70 mT (but the clock still keeps perfect time). At ex­
actly 1:00 P.M., the hour hand of the clock points in the direction of 
the external magnetic field. (a) After how many minutes will the 
minute hand point in the direction of the torque on the winding 
due to the magnetic field? (b) Find the torque magnitUde. 

A wire lying along a y axis from y = 0 to y = 0.250 m carries a 
current of 2.00 rnA in the negative direction of the axis. The wire 
fully lies in a nonuniform magnetic field that is given by 
B = (0.300 T/m)y1 + (0.400 T/m)y]. In unit-vector notation, what 
is the magnetic force on the wire? 

Atom 1 of mass 35 u and atom 2 of mass 37 u are both singly 
ionized with a charge of +e. After being introduced into a mass 
spectrometer (Fig. 28-12) and accelerated from rest through a po­
tential difference V = 7.3 kV, each ion follows a circular path in a 
uniform magnetic field of magnitUde B = 0.50 T. What is the dis­
tance ~x between the points where the ions strike the detector? 

An electron with kinetic energy 2.5 keY moving along the 
positive direction of an x axis enters a region in which a uniform 
electric field of magnitude 10 kV/m is in the negative direction of 
the y axis. A uniform magnetic field B is to be set up to keep the 
electron moving along the x axis, and the direction of B is to be 

chosen to minimize the required magnitude of B. In unit-vector 
notation, what B should be set up? 

Physicist S. A. Goudsmit devised a method for measuring the 
mass of heavy ions by timing their period of revolution in a known 
magnetic field. A singly charged ion of iodine makes 7.00 rev in a 
45.0 mT field in 1.29 ms. Calculate its mass in atomic mass units. 

A beam of electrons whose kinetic energy is J( emerges from 
a thin-foil "window" at the end of an accelerator tube. A metal 
plate at distance d from this window is perpendicular to the direc­
tion of the emerging beam (Fig. 28-52). (a) Show that we can pre­
vent the beam from hitting the plate if we apply a uniform mag­
netic field such that 

B?:: 

in which In and e are the electron mass and charge. (b) How should 
B be oriented? 

Fig. 28-52 Problem 72. 

SSM At time t = 0, an electron with kinetic energy 12 ke V 
moves through x = 0 in the positive direction of an x axis that is 
parallel to the horizontal component of Earth's magnetic field B. 
The field's vertical component is downward and has magnitude 
55.0/LT. (a) What is the magnitUde of the electron's acceleration 
due to B? (b) What is the electron's distance from the x axis when 
the electron reaches coordinate x = 20 cm? 

A particle with charge 2.0 C moves through a uniform 
magnetic field. At one instant the velocity of the particle is 
(2.01 + 4.0J + 6.0k) mls and the magnetic force on the particle is 
(4.01 20J + 12k) N. The x and y components of the magnetic 
field are equal. What is B? 

A proton, a deuteron (q = +e, In = 2.0 u), and an alpha parti­
cle (q = +2e, In = 4.0 u) all having the same kinetic energy enter a 
region of uniform magnetic field B, moving perpendicular to B. 
What is the ratio of (a) the radius I'd of the deuteron path to the ra­
dius rp of the proton path and (b) the radius ro: of the alpha particle 
path to rp? 

Bainbridge'S mass spectrometer, shown in Fig. 28-53, sepa­
rates ions having the same velocity. 
The ions, after entering through slits, 
Sl and S2, pass through a velocity 
selector composed of an electric field 
produced by the charged plates P and 
P', and a magnetic field B perpendicu­
lar to the electric field and the ion 
path. The ions that then pass undevi­
ated through the crossed E and B 
fields enter into a region where a sec­
ond magnetic field B' exists, where 
they are made to follow circular Fig. 28-53 Problem 76. 



paths. A photographic plate (or a modern detector) registers their 
arrival. Show that, for the ions, qlm = ElrBB', where r is the radius 
of the circular orbit. 

SSM In Fig. 28-54, an electron moves at speed v = 100 mls 
along an x axis through uniform electric and magnetic fields. The 
magnetic field II is directed into the page and has magnitude 5.00 T. 
In unit-vector notation, what is the electric field? 

-+1--~®_B~l_' ---x 

Fig.28-54 Problem 77. 

(a) In Fig. 28-8, show that the ratio of the Hall electric field mag­
nitude E to the magnitude Ec of the electric field responsible for 
moving charge (the current) along the length of the strip is 

E B 
Ec nep 

where p is the resistivity of the material and n is the number den­
sity of the charge carriers. (b) Compute this ratio numerically for 
Problem 13. (See Table 26-1.) 

SSM A proton, a deuteron (q = +e, /11 = 2.0 u), and an alpha 
particle (q = +2e, In = 4.0 u) are accelerated through the same 
potential difference and then enter the same region of uniform 
magnetic field ll, moving perpendicular to ll. What is the ratio of 
(a) the proton's kinetic energy [(p to the alpha particle's kinetic en­
ergy 1(,,, and (b) the deuteron's kinetic energy [(d to [(ex? If the ra­
dius of the proton's circular path is 10 cm, what is the radius of (c) 
the deuteron's path and (d) the alpha particle's path? 

An electron in an old-fashioned TV camera tube is moving at 
7.20 X 106 mls in a magnetic field of strength 83.0 mT. What is the 
(a) maximum and (b) minimum magnitude of the force acting on 
the electron due to the field? (c) At one point the electron has an 
acceleration of magnitude 4.90 X 1014 m/s2• What is the angle be­
tween the electron's velocity and the magnetic field? 
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A 5.0 f.LC particle moves through a region containing the 
uniform magnetic field -20; mT and the uniform electric field 
300J Vim. At a certain instant the velocity of the particle is 
(171 - I1J + 7.0k) kmls. At that instant and in unit-vector nota­
tion, what is the net electromagnetic force (the sum of the electric 
and magnetic forces) on the particle? 

In a Hall-effect experiment, a current of 3.0 A sent length­
wise through a conductor 1.0 cm wide, 4.0 cm long, and 10 f.Lm 
thick produces a transverse (across the width) Hall potential dif­
ference of 10 f.L V when a magnetic field of 1.5 T is passed perpen­
dicularly through the thickness of the conductor. From these 
data, find (a) the drift velocity of the charge carriers and (b) the 
number density of charge carriers. (c) Show on a diagram the po­
larity of the Hall potential difference with assumed current and 
magnetic field directions, assuming also that the charge carriers 
are electrons. 

SSM A particle of mass 6.0 g moves at 4.0 kmls in an xy 
plane, in a region with a uniform magnetic field given by 5.01 mT. 
At one instant, when the particle's velocity is directed 37° counter­
clockwise from the positive direction of the x axis, the magnetic 
force on the particle is 0.48]( N. What is the particle's charge? 

A wire lying along an x axis from x = 0 to x = 1.00 m 
carries a current of 3.00 A in the positive x direction. The wire is 
immersed in a nonuniform magnetic field that is given by II = 

(4.00 T/m2)x21 - (0.600 T/m2)x2j. In unit-vector notation, what is 
the magnetic force on the wire? 

At one instant, 11 = (- 2.001 + 4.00J - 6.00k) mls is the ve­
locity of a proton in a uniform magnetic field II = (2.001 
4.00J + 8.00k) mT. At that instant, what are (a) the magnetic force 
P acting on the proton, in unit-vector notation, (b) the angle 
between 11 and P, and (c) the angle between 11 and ll? 

An electron has velocity v = (321 + 40]) kmls as it 
enters a uniform magnetic field II = 601 f.LT. What are (a) the radius 
of the helical path taken by the electron and (b) the pitch of that 
path? (c) To an observer looking into the magnetic field region from 
the entrance point of the electron, does the electron spiral clockwise 
or counterclockwise as it moves? 
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One basic observation of physics is that a moving charged particle 
produces a magnetic field around itself. Thus a current of moving charged parti­
cles produces a magnetic field around the current. This feature of electromagnet­
ism, which is the combined study of electric and magnetic effects, came as a sur­
prise to the people who discovered it. Surprise or not, this feature has become 
enormously important in everyday life because it is the basis of countless electro­
magnetic devices. For example, a magnetic field is produced in maglev trains and 
other devices used to lift heavy loads. 

Our first step in this chapter is to find the magnetic field due to the current in 
a very small section of current-carrying wire. Then we shall find the magnetic field 
due to the entire wire for several different arrangements of the wire. 

Calculating the Magnetic Field 
Due to a Current 

Figure 29-1 shows a wire of arbitrary shape carrying a current i. We want to find 
the magnetic field B at a nearby point P. We first mentally divide the wire into 
differential elements ds and then define for each element a length vector ds that 
has length ds and whose direction is the direction of the current in ds. We can 
then define a differential current-length element to be ids; we wish to calculate 
the field dB produced at P by a typical current-length element. From experiment 
we find that magnetic fields, like electric fields, can be superimposed to find a net 
field. Thus, we can calculate the net field B at P by summing, via integration, the 

Fig. 29-1 A current-length element 
i ds produces a differential magnetic 
field ilJ at point P. The green X (the 
tail of an arrow) at the dot for point P 
indicates that ilJ is directed into the 
page there. 

I 
I 

This element of current creates a 
magnetic field at P, into the page. 

\ids~ 
I' 8 ~ ,tf r rdB(into 
ds.~~ page) 

'I r p 
I 
I 
I 

i( . ~ Current 
\ distribution 
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contributions iE from all the current-length elements. However, this summation 
is more challenging than the process associated with electric fields because of 
a complexity; whereas a charge element dq producing an electric field is a scalar, 
a current-length element i dS' producing a magnetic field is a vector, being the 
product of a scalar and a vector. 

The magnitude of the field iE produced at point P at distance r by a current­
length element i dS' turns out to be 

dB = fLo i ds sin e 
41T ,.2 ' (29-1) 

where e is the angle between the directions of dS' and r, a unit vector that points 
from ds toward P. Symbol fLo is a constant, called the permeability constant, 
whose value is defined to be exactly 

fLo = 41T X 10-7 T· m/A = 1.26 X 1O-6T· m/A. (29-2) 

The direction of iE, shown as being into the page in Fig. 29-1, is that of the cross 
product dS' x r. We can therefore write Eq. 29-1 in vector form as 

(Biot-Savart law). (29-3) 

This vector equation and its scalar form, Eq. 29-1, are known as the law of Biot 
and Savart (rhymes with "Leo and bazaar"). The law, which is experimentally 
deduced, is an inverse-square law. We shall use this law to calculate the net 
magnetic field B produced at a point by various distributions of current. 

Shortly we shall use the law of Biot and Savart to prove that the magnitude of the 
magnetic field at a perpendicular distance R from a long (infinite) straight wire 
carrying a current i is given by 

(long straight wire). (29-4) 

The field magnitude B in Eq. 29-4 depends only on the current and the per­
pendicular distance R of the point from the wire. We shall show in our derivation 
that the field lines of B form concentric circles around the wire, as Fig. 29-2 shows 
and as the iron filings in Fig. 29-3 suggest. The increase in the spacing of the lines 
in Fig. 29-2 with increasing distance from the wire represents the 1IR decrease in 
the magnitude of B predicted by Eq. 29-4. The lengths of the two vectors B in the 
figure also show the 11 R decrease. 

Fig. 29-3 Iron filings 
that have been sprinkled 
onto cardboard collect in 
concentric circles when 
current is sent through the 
central wire. The align­
ment, which is along 
magnetic field lines, is 
caused by the magnetic 
field produced by the cur­
rent. (Courtesy Education 
Development Center) 

The magnetic field vector 
at any point is tangent to 
a circle. 

Fig. 29-2 The magnetic field lines pro­
duced by a current in a long straight wire 
form concentric circles around the wire. 
Here the current is into the page, as indi­
cated by the x. 
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Fig. 29-4 A right-hand rule gives the di­
rection of the magnetic field due to a cur­
rent in a wire. (a) The situation of Fig. 29-2, 
seen from the side. The magnetic field B at 
any point to the left of the wire is perpen­
dicular to the dashed radial line and di­
rected into the page, in the direction of the 
fingertips, as indicated by the x. (b) If the 
current is reversed, B at any point to the 
left is still perpendicular to the dashed ra­
dial line but now is directed out of the page, 
as indicated by the dot. 

s 

This element of current 
creates a magnetic field 
at P, into the page. 

I . riB 
l·I---R~': 

it P 

Fig.29-5 Calculating the mag­
netic field produced by a current i in 
a long straight wire. The field dB at P 
associated with the current-length el­
ement i d-s is directed into the page, 
as shown. 

(a) (b) 

The thumb is in the 
current's direction. 
The fingers reveal 
the field vector's 
direction, which is 
tangent to a circle. 

Here is a simple right-hand rule for finding the direction of the magnetic field 
set up by a current-length element, such as a section of a long wire: 

Right-hand rule: Grasp the element in your right hand with your extended thumb 
pointing in the direction of the current. Your fingers will then naturally curl around in 
the direction of the magnetic field lines due to that element. 

The result of applying this right-hand rule to the current in the straight wire 
of Fig. 29-2 is shown in a side view in Fig. 29-4a. To determine the direction of the 
magnetic field B set up at any particular point by this current, mentally wrap your 
right hand around the wire with your thumb in the direction of the current. Let 
your fingertips pass through the point; their direction is then the direction of the 
magnetic field at that point. In the view of Fig. 29-2, B at any point is tangent to 
a magnetic field line; in the view of Fig. 29-4, it is pe1pendicular to a dashed radial 
line connecting the point and the current. 

Figure 29-5, which is just like Fig. 29-1 except that now the wire is straight and of 
infinite length, illustrates the task at hand. We seek the field B at point P, a per­
pendicular distance R from the wire. The magnitude of the differential magnetic 
field produced at P by the current-length element i df located a distance l' from P 
is given by Eq. 29-1: 

dB = /-Lo ids sin e . 
41T 1'2 

The direction of dB in Fig. 29-5 is that of the vector df x I-namely, directly 
into the page. 

Note that dB at point P has this same direction for all the current-length 
elements into which the wire can be divided. Thus, we can find the magnitude of 
the magnetic field produced at P by the current-length elements in the upper half 
of the infinitely long wire by integrating dB in Eq. 29-1 from 0 to 00. 

Now consider a current-length element in the lower half of the wire, one that 
is as far below P as df is above P. By Eq. 29-3, the magnetic field produced at P 
by this current-length element has the same magnitude and direction as that from 
element i df in Fig. 29-5. Further, the magnetic field produced by the lower half 
of the wire is exactly the same as that produced by the upper half. To find the 
magnitude of the total magnetic field B at P, we need only multiply the result of 
our integration by 2. We get 

B = 2 roo dB = /-Lo i roo sin e ds . 
Jo 21T Jo 1'2 

(29-5) 

The variables e, s, and r in this equation are not independent; Fig. 29-5 shows 
that they are related by 
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and 
R 

sin e = sine 1T - e) = ~:::;===;:::;­
VS2 + R2 

With these substitutions and integral 19 in Appendix E, Eq. 29-5 becomes 

E - fJ-o i (00 R ds 
- 21T Jo (S2 + R2)3/2 

fJ-o i I s Joo fJ-o i 
= 21TR L (S2 + R2)1I2 0 = 21TR ' 

(29-6) 

as we wanted. Note that the magnetic field at P due to either the lower half or the 
upper half of the infinite wire in Fig. 29-5 is half this value; that is, 

(semi-infinite straight wire). (29-7) 

a 
To find the magnetic field produced at a point by a current in a curved wire, we 
would again use Eq. 29-1 to write the magnitude of the field produced by a single 
current-length element, and we would again integrate to find the net field 
produced by all the current-length elements. That integration can be difficult, 
depending on the shape of the wire; it is fairly straightforward, however, when the 
wire is a circular arc and the point is the center of curvature. 

Figure 29-6a shows such an arc-shaped wire with central angle cp, radius R, 
and center C, carrying current i. At C, each current-length element i d-s of the 
wire produces a magnetic field of magnitude dE given by Eq. 29-1. Moreover, as 
Fig. 29-6b shows, no matter where the element is located on the wire, the angle B 
between the vectors d-S and r is 90°; also, r = R. Thus, by substituting R for rand 
90° for Bin Eq. 29-1, we obtain 

dE = fJ-o i ds sin 90° = fJ-o i ds 
41T R2 41T R2 

(29-8) 

The field at C due to each current-length element in the arc has this magnitude. 
An application of the right-hand rule anywhere along the wire (as in Fig. 

29-6c) will show that all the differential fields iJJ have the same direction at C­
directly out of the page. Thus, the total field at C is simply the sum (via integra­
tion) of all the differential fields iJJ. We use the identity ds = R dcp to change the 
variable of integration from ds to dcp and obtain, from Eq. 29-8, 

E = JdE = (ef> fJ-o iR dcp = fJ-o i (ef> dcjJ. 
Jo 41T R2 41TR Jo 

Integrating, we find that 

(at center of circular arc). (29-9) 

Note that this equation gives us the magnetic field only at the center of 
curvature of a circular arc of current. When you insert data into the equation, you 
must be careful to express cp in radians rather than degrees. For example, to find 
the magnitude of the magnetic field at the center of a full circle of current, you 
would substitute 21Trad for cp in Eq. 29-9, finding 

fJ-o i 

2R 
(at center of full circle). (29-10) 

(al (b) 

B---,. 
C 

(e) 

The right-hand rule 
reveals the field's 
direction at the center. 

Fig. 29-6 (a) A wire in the shape of a 
circular arc with center C carries current i. 
(b) For any element of wire along the arc, 
the angle between the directions of ds and 
f is 90°. (c) Determining the direction of 
the magnetic field at the center C due to 
the current in the wire; the field is out of the 
page, in the direction of the fingertips, as in­
dicated by the colored dot at C. 
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Magnetic field at the center of a circular arc of current 

The wire in Fig. 29-7 a carries a current i and consists of a 
circular arc of radius R and central angle 1T12 rad, and two 
straight sections whose extensions intersect the center C of 
the arc. What magnetic field B (magnitude and direction) 
does the current produce at C? 

We can find the magnetic field B at point C by applying the 
Biot-Savart law of Eq. 29-3 to the wire, point by point along 
the full length of the wire. However, the application of Eq. 
29-3 can be simplified by evaluating B separately for the 
three distinguishable sections of the wire-namely, (1) the 
straight section at the left, (2) the straight section at the right, 
and (3) the circular arc. 

Straight sections: For any current-length element in sec­
tion 1, the angle 0 between dr and r is zero (Fig. 29-7b); so 
Eq.29-1 gives us 

d - fLo i ds sin 0 = fLo i ds sin 0 = 0 
Bl - 41T r2 41T r2 . 

Thus, the current along the entire length of straight section 1 
contributes no magnetic field at C: 

Bl = O. 

The same situation prevails in straight section 2, where 
the angle o between dr and r for any current-length element 
is 180°. Thus, 

B2 = O. 

Circular arc: Application of the Biot-Savart law to evalu­
ate the magnetic field at the center of a circular arc leads to 
Eq. 29-9 (B = fLoi¢/41TR). Here the central angle ¢ of the arc 
is 1T12 rad. Thus from Eq. 29-9, the magnitude of the magnetic 
field B3 at the arc's center Cis 

B - fLoi( 1T12) _ fLoi 
3 - 41TR - 8R . 

To find the direction of B3, we apply the right-hand rule 
displayed in Fig. 29-4. Mentally grasp the circular arc with 
your right hand as in Fig. 29-7c, with your thumb in the 
direction of the current. The direction in which your fingers 
curl around the wire indicates the direction of the magnetic 
field lines around the wire. They form circles around the 
wire, coming out of the page above the arc and going into 
the page inside the arc. In the region of point C (inside the 
arc), your fingertips point into the plane of the page. Thus, B3 
is directed into that plane. 

Net field: Generally, when we must combine two or 
more magnetic fields to find the net magnetic field, we must 
combine the fields as vectors and not simply add their 
magnitudes. Here, however, only the circular arc produces a 
magnetic field at point C. Thus, we can write the magnitude 
of the net field B as 

(Answer) 

The direction of B is the direction of B3-namely, into the 
plane of Fig. 29-7. 

Current directly toward or 
away from C does not 
create any field there. 

",,1" 
~ 
~ 
~ 
~ -> 

" • '" B3 C C C 

(a) (b) (c) 

Fig. 29-7 (a) A wire consists of two straight sections (1 and 2) and a circular arc (3), 
and carries current i. (b) For a current-length element in section 1, the angle between df and 
f is zero. (c) Determining the direction of magnetic field B3 at C due to the current in the 
circular arc; the field is into the page there . 

. ~WS Additional examples, video, and practice available at WileyPLUS 
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Magnetic field off to the side of two long straight currents 

Figure 29-8a shows two long parallel wires carrying cur­
rents i1 and i2 in opposite directions. What are the magni­
tude and direction of the net magnetic field at point P? 
Assume the following values: i1 = 15 A, i2 = 32 A, and 
d = 5.3 cm. 

(1) The net magnetic field B at point P is the vector sum 
of the magnetic fields due to the currents in the two wires. 
(2) We can find the magnetic field due to any current by 
applying the Biot-Savart law to the current. For points 
near the current in a long straight wire, that law leads to 
Eq.29-4. 

Finding the vectors: In Fig. 29-8a, point P is distance R 
from both currents i1 and i2• Thus, Eq. 29-4 tells us that at 
point P those currents produce magnetic fields Bl and B2 
with magnitudes 

B - /Loil d B _ /Lo i2 
1 - 2nR an 2 - 27TR . 

In the right triangle of Fig. 29-8a, note that the base angles 
(between sides R and d) are both 45°. This allows us to write 
cos 45° = R/d and replace R with d cos 45°. Then the field 
magnitudes Bl and B2 become 

(a) 

The two currents create 
magnetic fields that must 
be added as vectors to get 
the net field. 

y 
--+ 
B 

----~~~---------x 

(!). ---d---+Q!) 
il 

(b) 

Fig. 29-8 (a) Tho wires carry currents il and i2 in opposite direc­
tions (out of and into the page). Note the right angle at P. (b) The 
separate fields BI and B2 are combined vectorially to yield the net 
fieldB. 

We want to combine Bl and B2 to find their vector sum, 
which is the net field B at P. To find the directions of Bl and 
Bz, we apply the right-hand rule of Fig. 29-4 to each current 
in Fig. 29-8a. For wire 1, with current out of the page, we 
mentally grasp the wire with the right hand, with the thumb 
pointing out of the page. Then the curled fingers indicate 
that the field lines run counterclockwise. In particular, in the 
region of point P, they are directed upward to the left. 
Recall that the magnetic field at a point near a long, straight 
current-carrying wire must be directed perpendicular to a 
radial line between the point and the current. Thus, Bl must 
be directed upward to the left as drawn in Fig. 29-8b. (Note 
carefully the perpendicular symbol between vector Bl and 
the line connecting point P and wire 1.) 

Repeating this analysis for the current in wire 2, we find 
that B2 is directed upward to the right as drawn in Fig. 29-8b. 
(Note the perpendicular symbol between vector B2 and the 
line connecting point P and wire 2.) 

Adding the vectors: We can now vectorially add Bl and B2 
to find the net magnetic field B at point P, either by using a 
vector-capable calculator or by resolving the vectors into 
components and then combining the components of B. 
However, in Fig. 29-8b, there is a third method: Because Bl 
and B2 are perpendicular to each other, they form the legs of 
a right triangle, with B as the hypotenuse. The Pythagorean 
theorem then gives us 

B = VEi + m = /Lo Vii + i~ 
27Td( cos 45°) 

(47T X 10-7 T· m/ A) V~(1-5-A----:)2'---+-(3-2-A-)2 

(27T)(5.3 X 10-2 m)(cos 45°) 

= 1.89 X 10-4 T = 190 /LT. (Answer) 

The angle ¢ between the directions of Band B2 in Fig. 29-8b 
follows from 

which, with Bl and B2 as given above, yields 

i 15 A 
¢ = tan-1 -L = tan-1 -- = 25° 

i2 32 A . 

The angle between the direction of B and the x axis shown 
in Fig. 29-8b is then 

(Answer) 

Additional examples, video, and practice available at WileyPLUS 
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The field due to a 
at the position of b 
creates a force on b. a ~ 

~~Y 
~//' F;,~ 

~ ~~ 
~ ---> 

lb E" (due to ia) 

Fig. 29-9 Two parallel wires carrying 
currents in the same direction attract each 
other.Ea is the magnetic field at wire b pro­
duced by the current in wire a. F"a is the re­
sulting force acting on wire b because it 
carries current in Ea. 

Conducting rail 

(a) 

(b) 

Fig. 29-10 (a) A rail gun, as a current i 
is set up in it. The current rapidly causes the 
conducting fuse to vaporize. (b) The cur­
rent produces a magnetic field E between 
the rails, and the field causes a force F to 
act on the conducting gas, which is part of 
the current path. The gas propels the pro­
jectile along the rails, launching it. 

Force Between Two Parallel Currents 
Two long parallel wires carrying currents exert forces on each other. Figure 29-9 
shows two such wires, separated by a distance d and carrying currents ia and ib • 

Let us analyze the forces on these wires due to each other. 
We seek first the force on wire b in Fig. 29-9 due to the current in wire a. That 

current produces a magnetic field Ba> and it is this magnetic field that actually 
causes the force we seek. To find the force, then, we need the magnitude and 
direction of the field Ba at the site afwire b. The magnitude of Ba at every point of 
wire b is, from Eq. 29-4, 

B = /Loia 
a 27Td' (29-11) 

The curled-straight right-hand rule tells us that the direction of Ba at wire b is 
down, as Fig. 29-9 shows. 

Now that we have the field, we can find the force it produces on wire b. 
Equation 28-26 tells us that the force J{a on a length L of wire b due to the exter­
nal magnetic field Ba is 

J{a = ibL X Ba> (29-12) 

where L is the length vector of the wire. In Fig. 29-9, vectors Land Ba are perpen­
dicular to each other, and so with Eq. 29-11, we can write 

R . LB . 900 /LoLiaib 
ba = lb a SIn = 27Td . (29-13) 

The direction of J{a is the direction of the cross product L x Ea. Applying 
the right-hand rule for cross products to rand Ba in Fig. 29-9, we see that 1{a is di­
rectly toward wire a, as shown. 

The general procedure for finding the force on a current-carrying wire is this: 

To find the force on a current-carrying wire due to a second current-carrying wire, 
first find the field due to the second wire at the site of the first wire. Then find the force 
on the first wire due to that field. 

We could now use this procedure to compute the force on wire a due to the 
current in wire b. We would find that the force is directly toward wire b; hence, 
the two wires with parallel currents attract each other. Similarly, if the two cur­
rents were antiparallel, we could show that the two wires repel each other. Thus, 

Parallel currents attract each other, and antiparallel currents repel each other. 

The force acting between currents in parallel wires is the basis for the defini­
tion of the ampere, which is one of the seven SI base units. The definition, 
adopted in 1946, is this: The ampere is that constant current which, if maintained 
in two straight, parallel conductors of infinite length, of negligible circular cross 
section, and placed 1 m apart in vacuum, would produce on each of these con­
ductors a force of magnitude 2 X 10 -7 newton per meter of wire length. 

One application of the physics of Eq. 29-13 is a rail gun. In this device, a magnetic 
force accelerates a projectile to a high speed in a short time. The basics of a rail 
gun are shown in Fig. 29-lOa. A large current is sent out along one of two parallel 
conducting rails, across a conducting "fuse" (such as a narrow piece of copper) 



between the rails, and then back to the current source along the second rail. The 
projectile to be fired lies on the far side of the fuse and fits loosely between the 
rails. Immediately after the current begins, the fuse element melts and vaporizes, 
creating a conducting gas between the rails where the fuse had been. 

The curled-straight right-hand rule of Fig. 29-4 reveals that the currents in 
the rails of Fig. 29-10a produce magnetic fields that are directed downward 
between the rails. The net magnetic field B exerts a force F on the gas due to the 
current i through the gas (Fig. 29-10b). With Eq. 29-12 and the right-hand rule 
for cross products, we find that F points outward along the rails. As the gas is 
forced outward along the rails, it pushes the projectile, accelerating it by as much 
as 5 X 106g, and then launches it with a speed of 10 km/s, all within 1 ms. Some­
day rail guns may be used to launch materials into space from mining operations 
on the Moon or an asteroid. 

CHECKPOINT 1 

The figure here shows three long, straight, parallel, equally spaced wires with identical 
currents either into or out of the page. Rank the wires according to the magnitude of 
the force on each due to the currents in the other two wires, greatest first. 

a b 

Ampere's Law 
We can find the net electric field due to any distribution of charges by first writing 
the differential electric field iE due to a charge element and then summing the 
contributions of dE from all the elements. However, if the distribution is compli­
cated, we may have to use a computer. Recall, however, that if the distribution 
has planar, cylindrical, or spherical symmetry, we can apply Gauss' law to find the 
net electric field with considerably less effort. 

Similarly, we can find the net magnetic field due to any distribution of currents 
by first writing the differential magnetic field dB (Eq. 29-3) due to a current-length 
element and then summing the contributions of dB from all the elements. Again we 
may have to use a computer for a complicated distribution. However, if the distrib­
ution has some symmetry, we may be able to apply Ampere's law to find the mag­
netic field with considerably less effort. This law, which can be derived from the 
Biot-Savart law, has traditionally been credited to Andre-Marie Ampere 
(1775-1836), for whom the SI unit of current is named. However, the law actually 
was advanced by English physicist James Clerk Maxwell. 

Ampere's law is 

(Ampere's law). (29-14) 

The loop on the integral sign means that the scalar (dot) product B' ds is to be 
integrated around a closed loop, called an Amperian loop. The current ienc is the 
net current encircled by that closed loop. 

To see the meaning of the scalar product B . ds and its integral, let us first 
apply Ampere's law to the general situation of Fig. 29-11. The figure shows cross 
sections of three long straight wires that carry currents ib i2, and i3 either directly 
into or directly out of the page. An arbitrary Amperian loop lying in the plane of 
the page encircles two of the currents but not the third. The counterclockwise 
direction marked on the loop indicates the arbitrarily chosen direction of integra­
tion for Eq. 29-14. 

To apply Ampere's law, we mentally divide the loop into differential vector 
elements ds that are everywhere directed along the tangent to the loop in the 

Amperian 
loop 

AMPERE'S LAW 771 

Only the currents 
encircled by the 
loop are used in 
Ampere's law. 

Direction of 
integration 

Fig. 29-11 Ampere's law applied to an 
arbitrary Amperian loop that encircles two 
long straight wires but excludes a third 
wire. Note the directions of the currents. 



772 R MAGNETIC FIELDS DUE TO CURRENTS 

This is how to assign a 
sign to a current used in 
Ampere's law. 

integration 

Fig.29-12 A right-hand rule for 
Ampere's law, to determine the signs for 
currents encircled by an Amperian loop. 
The situation is that of Fig. 29-11. 

All of the current is 
encircled and thus all 
is used in Ampere's law. 

Wire 
Arnperian 
loop 

Fig. 29-13 Using Ampere's law to find 
the magnetic field that a current i produces 
outside a long straight wire of circular cross 
section. The Amperian loop is a concentric 
circle that lies outside the wire. 

direction of integration. Assume that at the location of the element df shown in 
Fig. 29-11, the net magnetic field due to the three currents is B. Because the wires 
are perpendicular to the page, we know that the magnetic field at df due to each 
current is in the plane of Fig. 29-11; thus, their net magnetic field B at dfmust also 
be in that plane. However, we do not know the orientation of B within the plane. 
In Fig. 29-11, B is arbitrarily drawn at an angle 0 to the direction of df. 

The scalar product 13· df on the left side of Eq. 29-14 is equal to B cos 0 ds. 
Thus, Ampere's law can be written as 

f B' df = f B cos 0 ds = fLoienc· (29-15) 

We can now interpret the scalar product B . df as being the product of a length ds 
of the Amperian loop and the field component B cos 0 tangent to the loop. Then 
we can interpret the integration as being the summation of all such products 
around the entire loop. 

When we can actually perform this integration, we do not need to know the 
direction of B before integrating. Instead, we arbitrarily assume B to be generally 
in the direction of integration (as in Fig. 29-11). Then we use the following 
curled-straight right-hand rule to assign a plus sign or a minus sign to each of the 
currents that make up the net encircled current ienc: 

Curl your right hand around the Amperian loop, with the fingers pointing in the 
direction of integration. A current through the loop in the general direction of your 
outstretched thumb is assigned a plus sign, and a current generally in the opposite 
direction is assigned a minus sign. 

Finally, we solve Eq. 29-15 for the magnitude of B. If B turns out positive, then 
the direction we assumed for B is correct. If it turns out negative, we neglect the 
minus sign and redraw B in the opposite direction. 

In Fig. 29-12 we apply the curled-straight right-hand rule for Ampere's law 
to the situation of Fig. 29-11. With the indicated counterclockwise direction of 
integration, the net current encircled by the loop is 

(Current i3 is not encircled by the loop.) We can then rewrite Eq. 29-15 as 

f B cos Ods = fLO(il - i2)' (29-16) 

You might wonder why, since current i3 contributes to the magnetic-field mag­
nitude B on the left side of Eq. 29-16, it is not needed on the right side. The answer 
is that the contributions of current i3 to the magnetic field cancel out because the 
integration in Eq. 29-16 is made around the full loop. In contrast, the contributions 
of an encircled current to the magnetic field do not cancel out. 

We cannot solve Eq. 29-16 for the magnitude B of the magnetic field because for 
the situation of Fig. 29-11 we do not have enough information to simplify and solve 
the integral. However, we do know the outcome of the integration; it must be equal to 
fLo(i1 - i2), the value of which is set by the net current passing through the loop. 

We shall now apply Ampere's law to two situations in which symmetry does 
allow us to simplify and solve the integral, hence to find the magnetic field. 

Figure 29-13 shows a long straight wire that carries current i directly out of the 
page. Equation 29-4 tells us that the magnetic field B produced by the current has 
the same magnitude at all points that are the same distance r from the wire; 



that is, the field JJ has cylindrical symmetry about the wire. We can take advan­
tage of that symmetry to simplify the integral in Ampere's law (Eqs. 29-14 and 
29-15) if we encircle the wire with a concentric circular Amperian loop of radius 
r, as in Fig. 29-13. The magnetic field JJ then has the same magnitude B at every 
point on the loop. We shall integrate counterclockwise, so that dS' has the direc­
tion shown in Fig. 29-13. 

We can further simplify the quantity B cos 8 in Eq. 29-15 by noting that JJ is 
tangent to the loop at every point along the loop, as is dS'. Thus, JJ and dS' are 
either parallel or antiparallel at each point of the loop, and we shall arbitrarily 
assume the former. Then at every point the angle 8 between dS' and JJ is 0°, so 
cos 8 = cos 0° = 1. The integral in Eq. 29-15 then becomes 

f JJ. dS' = f B cos 8 ds = B f ds = B(27Tr). 

Note that ~ ds is the summation of all the line segment lengths ds around the 
circular loop; that is, it simply gives the circumference 2m of the loop. 

Our right-hand rule gives us a plus sign for the current of Fig. 29-13. The right 
side of Ampere's law becomes + fJ-oi, and we then have 

B(2m) = fLoi 

or B = fLoi 
27Tr 

(outside straight wire). (29-17) 

With a slight change in notation, this is Eq. 29-4, which we derived earlier-with 
considerably more effort - using the law of Biot and Savart. In addition, because 
the magnitude B turned out positive, we know that the correct direction of JJ 
must be the one shown in Fig. 29-13. 

Figure 29-14 shows the cross section of a long straight wire of radius R that 
carries a uniformly distributed current i directly out of the page. Because the 
current is uniformly distributed over a cross section of the wire, the magnetic 
field JJ produced by the current must be cylindrically symmetrical. Thus, to find 
the magnetic field at points inside the wire, we can again use an Amperian loop of 
radius r, as shown in Fig. 29-14, where now r < R. Symmetry again suggests that JJ 
is tangent to the loop, as shown; so the left side of Ampere's law again yields 

f JJ. dS' = B f ds = B(27Tr). (29-18) 

To find the right side of Ampere's law, we note that because the current is 
uniformly distributed, the current ienc encircled by the loop is proportional to the 
area encircled by the loop; that is, 

(29-19) 

Our right-hand rule tells us that ienc gets a plus sign. Then Ampere's law gives us 

7Tr2 
B(27Tr) = fLoi 7TR2 

or B = (2~~2 ) r (inside straight wire). (29-20) 

Thus, inside the wire, the magnitude B of the magnetic field is proportional to r, 
is zero at the center, and is maximum at r = R (the surface). Note that Eqs. 29-17 
and 29-20 give the same value for B at the surface. 

AMPERE'S LAW 773 

Only the current encircled 
by the loop is used in 
Ampere's law. 

Wire 
surface 

Fig.29-14 Using Ampere's law to find 
the magnetic field that a current i produces 
inside a long straight wire of circular cross 
section. The current is uniformly distrib­
uted over the cross section of the wire and 
emerges from the page. An Amperian loop 
is drawn inside the wire. 

CHECKPOINT 2 

The figure here shows three equal cur­
rents i (two parallel and one antiparal­
leI) and four Amperian loops. Rank the 
lo~s according to the magnitude of 
9i B . dS' along each, greatest first. 

--;-__ -l-__ .;--a 

~-----I-__ ~~b 
c '-t-__ -I-/ d 
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Ampere's law to find the field inside a long cylinder of current 

Figure 29-15a shows the cross section of a long conducting 
cylinder with inner radius a = 2.0 cm and outer radius 
b = 4.0 cm. The cylinder carries a current out of the page, 
and the magnitude of the current density in the cross sec­
tion is given by J = cr2, with C = 3.0 X 106 A/m4 and r in 
meters. What is the magnetic field E at the dot in Fig. 
29-15a, which is at radius r = 3.0 cm from the central axis 
of the cylinder? 

The point at which we want to evaluate E is inside the mate­
rial of the conducting cylinder, between its inner and outer 
radii. We note that the current distribution has cylindrical 
symmetry (it is the same all around the cross section for any 
given radius). Thus, the symmetry allows us to use Ampere's 
law to find B at the point. We first draw the Amperian loop 
shown in Fig. 29-15b. The loop is concentric with the cylin­
der and has radius r = 3.0 cm because we want to evaluate 
E at that distance from the cylinder's central axis. 

Next, we must compute the current ienc that is encircled 
by the Amperian loop. However, we cannot set up a propor­
tionality as in Eq. 29-19, because here the current is not uni­
formly distributed. Instead, we must integrate the current 
density magnitude from the cylinder's inner radius a to the 
loop radius r, using the steps shown in Figs. 29-15c through h. 

Calculations: We write the integral as 

ienc = I J dA = r cr 2(21Tr dr) 

(r [ 4 Jr 
= 21TC Ja r3 dr = 21TC --s:- a 

Note that in these steps we took the differential area dA to 
be the area of the thin ring in Figs. 29-15d-f and then re­
placed it with its equivalent, the product of the ring's cir­
cumference 21Tt and its thickness dr. 

For the Amperian loop, the direction of integration indi­
cated in Fig. 29-15b is (arbitrarily) clockwise. Applying the 
right-hand rule for Ampere's law to that loop, we find that we 
should take ienc as negative because the current is directed out 
of the page but our thumb is directed into the page. 

We next evaluate the left side of Ampere's law 
exactly as we did in Fig. 29-14, and we again obtain 
Eq. 29-18. Then Ampere's law, 

f E· ds' = fLoienc, 

gives us 

fL01TC 4 4 B(21Tr) = --2- (r - a ). 

Solving for B and substituting known data yield 

(41TX 1O-7 T·m/A)(3.0 X 106A/m4) 

4(0.030m) 

X [(0.030 m)4 - (0.020 m)4] 

= -2.0 X 10-5 T. 

Thus, the magnetic field E at a point 3.0 cm from the central 
axis has magnitude 

B = 2.0 X 1O-5 T (Answer) 

and forms magnetic field lines that are directed opposite 
our direction of integration, hence counterclockwise in 
Fig. 29-15b. 

Additional examples, video, and practice available at WileyPLUS 

Fig. 29-16 A solenoid carrying current i. 

Solenoids and Toroids 

We now turn our attention to another situation in which Ampere's law proves 
useful. It concerns the magnetic field produced by the current in a long, tightly 
wound helical coil of wire. Such a coil is called a solenoid (Fig. 29-16). We assume 
that the length of the solenoid is much greater than the diameter. 

Figure 29-17 shows a section through a portion of a "stretched-out" solenoid. 
The solenoid's magnetic field is the vector sum of the fields produced by the indi-
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We want the 
magnetic field at 
the dot at radius r. 

fIX' 
~ 

(a) 

Its area dA is the 
product of the ring's 
circumference 
and the width dr. 

(e) 

So, we put a concentric 
Amperian loop through 
the dot. 

We need to find the 
current in the area 
encircled by the loop. 

Arnperian 
loop 

(b) 

The current within the 
ring is the product of 
the current density J 
and the ring's area dA. 

dA 

(f) 

(c) 

Our job is to sum 
the currents in all 
rings from this 
smallest one ... 

(g) 

We start with a ring 
that is so thin that 
we can approximate 
the current density as 
being uniform within it. 

(d) 

... to this largest 
one, which has the 
same radius as the 
Amperian loop. 

(h) 

Fig. 29-15 (a) - (b) To find the magnetic field at a point within this conducting cylinder, we use a con­
centric Amperian loop through the point. We then need the current encircled by the loop. (c) - (h) 
Because the current density is nonuniform, we start with a thin ring and then sum (via integration) the 
currents in all such rings in the encircled area. 

Fig. 29-17 A vertical cross section through the central axis of a 
"stretched-out" solenoid. The back portions of five turns are shown, as are 
the magnetic field lines due to a current through the solenoid. Each turn pro­
duces circular magnetic field lines near itself. Near the solenoid's axis, the 
field lines combine into a net magnetic field that is directed along the axis. 
The closely spaced field lines there indicate a strong magnetic field. Outside 
the solenoid the field lines are widely spaced; the field there is very weak. 
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Fig. 29-18 Magnetic field lines for a real solenoid of finite length. The field is strong 
and uniform at interior points such as PI but relatively weak at external points such as P2• 

vidual turns (windings) that make up the solenoid. For points very close to a turn, 
the wire behaves magnetically almost like a long straight wire, and the lines of B 
there are almost concentric circles. Figure 29-17 suggests that the field tends to 
cancel between adjacent turns. It also suggests that, at points inside the solenoid 
and reasonably far from the wire, B is approximately parallel to the (central) 
solenoid axis. In the limiting case of an ideal solenoid, which is infinitely long 
and consists of tightly packed (close-packed) turns of square wire, the field inside 
the coil is uniform and parallel to the solenoid axis. 

At points above the solenoid, such as P in Fig. 29-17, the magnetic field set 
up by the upper parts of the solenoid turns (these upper turns are marked 0) 
is directed to the left (as drawn near P) and tends to cancel the field set up at P 
by the lower parts of the turns (these lower turns are marked (8), which is di­
rected to the right (not drawn). In the limiting case of an ideal solenoid, the 
magnetic field outside the solenoid is zero. Taking the external field to be zero 
is an excellent assumption for a real solenoid if its length is much greater than 
its diameter and if we consider external points such as point P that are not at 
either end of the solenoid. The direction of the magnetic field along the sole­
noid axis is given by a curled-straight right-hand rule: Grasp the solenoid with 
your right hand so that your fingers follow the direction of the current in the 
windings; your extended right thumb then points in the direction of the axial 
magnetic field. 

Figure 29-18 shows the lines of B for a real solenoid. The spacing of these lines 
in the central region shows that the field inside the coil is fairly strong and uniform 
over the cross section of the coil. The external field, however, is relatively weak. 

Let us now apply Ampere's law, 

f B· df = /Loiene , (29-21) 

to the ideal solenoid of Fig. 29-19, where B is uniform within the solenoid and 
zero outside it, using the rectangular Amperian loop abcda. We write 9i B· df as 

~h 
d 

·a 

:C i 

Fig. 29-19 Application of Ampere's law to a section of a long ideal solenoid carrying 
a current i. The Amperian loop is the rectangle abcda. 



the sum of four integrals, one for each loop segment: 

f B·dS' = r B·dS' + f B'dS' + Ld B'dS' + f B·dS'. (29-22) 

The first integral on the right of Eq. 29-22 is Bh, where B is the magnitude of 
the uniform field B inside the solenoid and h is the (arbitrary) length of the 
segment from a to b. The second and fourth integrals are zero because for every 
element ds of these segments, B either is perpendicular to ds or is zero, and thus 
the product Ii . dS' is zero. The third integral, which is taken along a segment that 
lies outside the solenoid, is zero because B = 0 at all external points. Thus, 
~ B· dS' for the entire rectangular loop has the value Bh. 

The net current ienc encircled by the rectangular Amperian loop in Fig. 29-19 
is not the same as the current i in the solenoid windings because the windings 
pass more than once through this loop. Let n be the number of turns per unit 
length of the solenoid; then the loop encloses nh turns and 

ienc = i(nh). 

Ampere's law then gives us 

Bh = J4Jinh 

or B = f-toin (ideal solenoid). (29-23) 

Although we derived Eq. 29-23 for an infinitely long ideal solenoid, it 
holds quite well for actual solenoids if we apply it only at interior points and 
well away from the solenoid ends. Equation 29-23 is consistent with the ex­
perimental fact that the magnetic field magnitude B within a solenoid does 
not depend on the diameter or the length of the solenoid and that B is uni­
form over the solenoidal cross section. A solenoid thus provides a practical 
way to set up a known uniform magnetic field for experimentation, just as a 
parallel-plate capacitor provides a practical way to set up a known uniform 
electric field. 

Figure 29-20a shows a toroid, which we may describe as a (hollow) solenoid that 
has been curved until its two ends meet, forming a sort of hollow bracelet. What 
magnetic field Ii is set up inside the toroid (inside the hollow of the bracelet)? We 
can find out from Ampere's law and the symmetry of the bracelet. 

From the symmetry, we see that the lines of Ii form concentric circles inside 
the toroid, directed as shown in Fig. 29-20b. Let us choose a concentric circle of 

(a) 

Fig. 29-20 (a) A toroid carrying a current i. (b) A 
horizontal cross section of the toroid. The interior 
magnetic field (inside the bracelet-shaped tube) can be 
found by applying Ampere's law with the Amperian 
loop shown. (b) 

SOLENOIDS AND TOROIDS 777 
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radius r as an Amperian loop and traverse it in the clockwise direction. Ampere's 
law (Eq. 29-14) yields 

(B)(2nr) = /-4)iN, 

where i is the current in the toroid windings (and is positive for those windings 
enclosed by the Amperian loop) and N is the total number of turns. This gives 

(toroid). (29-24) 

In contrast to the situation for a solenoid, B is not constant over the cross section 
of a toroid. 

It is easy to show, with Ampere's law, that B = 0 for points outside an ideal 
toroid (as if the toroid were made from an ideal solenoid). The direction of the 
magnetic field within a toroid follows from our curled-straight right-hand rule: 
Grasp the toroid with the fingers of your right hand curled in the direction of 
the current in the windings; your extended right thumb points in the direction 
of the magnetic field. 

The field inside a solenoid (a long coil of current) 

A solenoid has length L = 1.23 m and inner diameter 
d = 3.55 cm, and it carries a current i = 5.57 A. It consists of 
five close-packed layers, each with 850 turns along length L. 
What is B at its center? 

Calculation: Because B does not depend on the diameter of 
the windings, the value of n for five identical layers is simply 
five times the value for each layer. Equation 29-23 then tells us 

5 X 850 turns 

The magnitude B of the magnetic field along the solenoid's 
central axis is related to the solenoid's current i and number 
of turns per unit length n by Eq. 29-23 (B = /-4) in). 

B = fLoin = (41T X 10-7 T·m/A)(5.57 A) 1.23 m 

= 2.42 X 10 -2 T = 24.2 mT. (Answer) 

To a good approximation, this is the field magnitude through­
out most of the solenoid. 

,fills Additional examples, video, and practice available at WileyPLUS 

A Current-Carrying Coil as a Magnetic Dipole 
So far we have examined the magnetic fields produced by current in a long 
straight wire, a solenoid, and a toroid. We turn our attention here to the field 
produced by a coil carrying a current. You saw in Section 28-10 that such a coil 
behaves as a magnetic dipole in that, if we place it in an external magnetic field E, 
a torque T given by 

(29-25) 

acts on it. Here j1 is the magnetic dipole moment of the coil and has the magni­
tude NiA, where N is the number of turns, i is the current in each turn, and A is 
the area enclosed by each turn. (Caution: Don't confuse the magnetic dipole 
moment j1 with the permeability constant fLo.) 

Recall that the direction of j1 is given by a curled-straight right-hand rule: 
Grasp the coil so that the fingers of your right hand curl around it in the direction 
of the current; your extended thumb then points in the direction of the dipole 
moment j1. 
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We turn now to the other aspect of a current-carrying coil as a magnetic dipole. 
What magnetic field does it produce at a point in the surrounding space? The 
problem does not have enough symmetry to make Ampere's law useful; so we 
must turn to the law of Biot and Savart. For simplicity, we first consider only a 
coil with a single circular loop and only points on its perpendicular central axis, 
which we take to be a z axis. We shall show that the magnitude of the magnetic 
field at such points is 

B(z) = 2(R2 + Z2)312 ' (29-26) 

in which R is the radius of the circular loop and z is the distance of the point in 
question from the center of the loop. Furthermore, the direction of the mag­
netic field B is the same as the direction of the magnetic dipole moment 11 of 
the loop. 

For axial points far from the loop, we have z ~ R in Eq. 29-26. With that 
approximation, the equation reduces to 

Recalling that 1TR2 is the area A of the loop and extending our result to include 
a coil of N turns, we can write this equation as 

B( ) = /Lo NiA 
z 2 3' 1T Z 

Further, because Band 11 have the same direction, we can write the equation in 
vector form, substituting from the identity /L = NiA: 

(current-carrying coil). (29-27) 

Thus, we have two ways in which we can regard a current-carrying coil as a 
magnetic dipole: (1) it experiences a torque when we place it in an external 
magnetic field; (2) it generates its own intrinsic magnetic field, given, for dis­
tant points along its axis, by Eq. 29-27. Figure 29-21 shows the magnetic field of 
a current loop; one side of the loop acts as a north pole (in the direction of 11) 
and the other side as a south pole, as suggested by the lightly drawn magnet in 
the figure. If we were to place a current-carrying coil in an external magnetic 
field, it would tend to rotate just like a bar magnet would. 

CHECKPOINT 3 

The figure here shows four arrangements of circular loops of radius l' or 21', centered on 
vertical axes (perpendicular to the loops) and carrying identical currents in the direc­
tions indicated. Rank the arrangements according to the magnitude of the net magnetic 
field at the dot, midway between the loops on the central axis, greatest first. 

c:b cb @ 
cb cb @ 

I I I 
(a) (b) (c) 

cb 
@ 

I 
(If) 

Fig. 29-21 A current loop produces a 
magnetic field like that of a bar magnet and 
thus has associated north and south poles. 
The magnetic dipole moment 11 of the loop, 
its direction given by a curled-straight 
right-hand rule, points from the south pole 
to the north pole, in the direction of the 
field lJ within the loop. 
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p 

z 

a 

The perpendicular 
components 
just cancel. We add 
only the parallel 
components. 

Fig. 29-22 Cross section through a cur­
rent loop of radius R. The plane of the 
loop is perpendicular to the page, and only 
the back half of the loop is shown. We use 
the law of Biot and Savart to find the mag­
netic field at point P on the central per­
pendicular axis of the loop. 

Figure 29-22 shows the back half of a circular loop of radius R carrying a current 
i. Consider a point P on the central axis of the loop, a distance z from its plane. 
Let us apply the law of Biot and Savart to a differential element ds of the loop, 
located at the left side of the loop. The length vector df for this element points 
perpendicularly out of the page. The angle e between df and r in Fig. 29-22 is 900

; 

the plane formed by these two vectors is perpendicular to the plane of the page 
and contains both rand df. From the law of Biot and Savart (and the right-hand 
rule), the differential field iB produced at point P by the current in this element 
is perpendicular to this plane and thus is directed in the plane of the figure, 
perpendicular to r, as indicated in Fig. 29-22. 

Let us resolve iB into two components: dB Il along the axis of the loop and 
dB 1- perpendicular to this axis. From the symmetry, the vector sum of all the per­
pendicular components dB 1- due to all the loop elements ds is zero. This leaves 
only the axial (parallel) components dB Il and we have 

B = f dB II • 

For the element df in Fig. 29-22, the law of Biot and Savart (Eq. 29-1) tells us 
that the magnetic field at distance ris 

dB = fLo i ds sin 90
0 

47T 1'2 

We also have 
dB Il = dB cos a. 

Combining these two relations, we obtain 

dB _ fLo i cos ads 
II - 47Tr2 (29-28) 

Figure 29-22 shows that /' and a are related to each other. Let us express each in 
terms of the variable z, the distance between point P and the center of the loop. 
The relations are 

I' = YR2 + Z2 (29-29) 

and 
R R 

cos a = - = ----:~=:::::;;_ 
/' VR2 + Z2 

(29-30) 

Substituting Eqs. 29-29 and 29-30 into Eq. 29-28, we find 

Note that i, R, and z have the same values for all elements ds around the loop; so 
when we integrate this equation, we find that 

B = f dB Il 

or, because f ds is simply the circumference 27TR of the loop, 

fLoiR2 
B(z) = 2(R2 + Z2)3/2 . 

This is Eq. 29-26, the relation we sought to prove. 



The Biot-Savart Law The magnetic field set up by a current­
carrying conductor can be found from the Biot-Savart law. This 
law asserts that the contribution iB to the field produced by a 
current-length element i d? at a point P located a distance I' from 
the current element is 

dB = fLo i d? x r 
47T 1'2 

(Biot-Savart law). (29-3) 

Here r is a unit vector that points from the element toward P. The 
quantity fLo, called the permeability constant, has the value 

47TX 1O-7T'mJA = 1.26 X 1O-6T·mJA. 

Magnetic Field of a Long Straight Wire For a long 
straight wire carrying a current i, the Biot-Savart law gives, for the 
magnitude of the magnetic field at a perpendicular distance R from 
the wire, 

B = fLoi 
27TR 

(long straight wire). (29-4) 

Magnetic Field of a Circular Arc The magnitude of the 
magnetic field at the center of a circular arc, of radius R and central 
angle cp (in radians), carrying current i, is 

(at center of circular arc). (29-9) 

Force Between Parallel Currents Parallel wires carrying 
currents in the same direction attract each other, whereas parallel 
wires carrying currents in opposite directions repel each other. The 
magnitude of the force on a length L of either wire is 

(29-13) 

Figure 29-23 shows three circuits, each consisting of two radial 
lengths and two concentric circular arcs, one of radius I' and the 
other of radius R > r. The circuits have the same current through 
them and the same angle between the two radial lengths. Rank the 
circuits according to the magnitude of the net magnetic field at the 
center, greatest first. 

• 

(a) (b) (c) 

Fig. 29-23 Question 1. 

Figure 29-24 represents a snapshot of the velocity vectors of 
four electrons near a wire carrying current i. The four velocities 

QUESTIONS 781 

where d is the wire separation, and ia and ib are the currents in the 
wires. 

Ampere's Law Ampere's law states that 

f B· ds' = fLoiene (Ampere's law). (29-14) 

The line integral in this equation is evaluated around a closed loop 
called an Amperian loop. The current i on the right side is the net 
current encircled by the loop. For some current distributions, Eq. 
29-14 is easier to use than Eq. 29-3 to calculate the magnetic field 
due to the currents. 

Fields of a Solenoid and a Toroid Inside a long solenoid 
carrying current i, at points not near its ends, the magnitude B of 
the magnetic field is 

B = fLoin (ideal solenoid), (29-23) 

where n is the number of turns per unit length. At a point inside a 
toroid, the magnitude B of the magnetic field is 

B = fLoiN ~ 
27T I' 

(toroid), (29-24) 

where I' is the distance from the center of the toroid to the point. 

Field of a Magnetic Dipole The magnetic field produced by 
a current-carrying coil, which is a magnetic dipole, at a point P lo­
cated a distance z along the coil's perpendicular central axis is par­
allel to the axis and is given by 

---+ fLo!1 
B(z) = -2 -3' 

7T Z 
(29-27) 

where !1 is the dipole moment of the coil. This equation applies 
only when z is much greater than the dimensions of the coil. 

have the same magnitude; velocity 
V2 is directed into the page. 
Electrons 1 and 2 are at the same 
distance from the wire, as are elec­
trons 3 and 4. Rank the electrons ac­
cording to the magnitudes of the 
magnetic forces on them due to cur­
rent i, greatest first. 

Figure 29-25 shows four arrange­
ments in which long parallel wires Fig. 29-24 Question 2. 

~-----® t-----® t-----® t-----® 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 
I I I I I I I I 

I I I I 

®- ---$ ®-----® ®-----$ ®-----$ 
(a) (b) (c) (d) 

Fig. 29-25 Question 3. 
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cany equal currents directly into or out of the page at the corners of 
identical squares. Rank the arrangements according to the magnitude 
of the net magnetic field at the center of the square, greatest first. 

Figure 29-26 shows cross sections -®--O--
of two long straight wires; the left- P i] i2 

hand wire carries current i j directly Fig. 29-26 Question 4. 
out of the page. If the net magnetic 
field due to the two currents is to be zero at point P, (a) should the 
direction of current i2 in the right-hand wire be directly into or out of 
the page and (b) should i2 be greater than, less than, or equal to ij 7 

Figure 29-27 shows three circuits consisting of straight radial 
lengths and concentric circular arcs (either half- or quarter-circles 
of radii 1', 21', and 31'). The circuits carry the same current. Rank 
them according to the magnitude of the magnetic field produced at 
the center of curvature (the dot), greatest first. 

(a) (b) (e) 

Fig. 29-27 Question 5. 

Figure 29-28 gives, as a function of radial distance 1', the magni­
tude B of the magnetic field inside and outside four wires (a, b, c, and 
d), each of which carries a current that is uniformly distributed across 
the wire's cross section. Overlapping portions of the plots are indi­
cated by double labels. Rank the wires according to (a) radius, (b) the 
magnitude of the magnetic field on the surface, and (c) the value of 
the current, greatest first. (d) Is the magnitude of the current density 
in wire a greater than, less than, or equal to that in wire c7 

B 

Fig. 29-28 Question 6. 

7 Figure 29-29 shows four circular Amperian loops (a, b, c, d) 
concentric with a wire whose current is directed out of the page. 
The current is uniform across the wire's circular cross section (the 
shaded region). Rank the loops according to the magnitude of 
g; Ii· df around each, greatest first. 

Fig. 29-29 Question 7. 

Figure 29-30 shows four arrangements in which long, parallel, 
equally spaced wires carry equal currents directly into or out of the 
page. Rank the arrangements according to the magnitude of the 

net force on the central wire due to the currents in the other wires, 
greatest first. 

(a) ---<il---®----(~. --oo--~~-

(b)---~--~~.----oo---~r_--~---

(e)----~--~~--~~--~--~~-

(~ --~--~.~-~--oo--~~-

Fig. 29-30 Question 8. 

Figure 29-31 shows four circular 
Amperian loops (a, b, c, d) and, in 
cross section, four long circular con- a ---hH-lr-hl 

ductors (the shaded regions), all of 
which are concentric. Three of the b d 

conductors are hollow cylinders; the 
central conductor is a solid cylinder. 
The currents in the conductors are, 
from smallest radius to largest radius, Fig. 29-31 Question 9. 
4 A out of the page, 9 A into the page, 
5 A out of the page, and 3 A into the page. Rank the Amperian loops 
according to the magnitude of g; B· df around each, greatest first. 

10 Figure 29-32 shows four identical currents i and five Amperian 
paths (a through e) encircling them. Rank the paths according to the 
value of g; Ii· df taken in the directions shown, most positive first. 

(a) -r--~---+------~------r­
(b) 

(e) -r--~---+-

(~ 

(e) 

Fig. 29-32 Question 10. 

11 Figure 29-33 shows three arrangements of three long straight 
wires carrying equal currents directly into or out of the page. (a) 
Rank the arrangements according to the magnitude of the net 
force on wire A due to the currents in the other wires, greatest first. 
(b) In arrangement 3, is the angle between the net force on wire A 
and the dashed line equal to, less than, or more than 45°7 

(1) (2) 

I 

IA dr 
(3) 

Fig. 29-33 Question 11. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halllday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics,com 

Calculating the Magnetic Field Due to a Current 
A surveyor is using a magnetic compass 6.1 m below a power 

line in which there is a steady current of 100 A. (a) What is the 
magnetic field at the site of the compass due to the power line? (b) 
Will this field interfere seriously 
with the compass reading? The hori­
zontal component of Earth's mag­
netic field at the site is 20 f.LT. 

Figure 29-34a shows an element 
of length ds = 1.00 f.Lm in a very 
long straight wire carrying current. 
The current in that element sets up a 
differential magnetic field dB at 
points in the surrounding space. 
Figure 29-34b gives the magnitude 

I 
I 

I 
/ 

----
/ 

e 

(a) 

dB of the field for points 2.5 cm 
from the element, as a function of ~ 

angle () between the wire and a 
straight line to the point. The verti-
cal scale is set by dBs = 60.0 pT. 
What is the magnitude of the mag­
netic field set up by the entire wire 
at perpendicular distance '2.5 cm 
from the wire? 

e (rad) 

(b) 

Fig. 29-34 Problem 2. 

SSM At a certain location in the Philippines, Earth's magnetic 
field of 39 f.LT is horizontal and directed due north. Suppose the net 
field is zero exactly 8.0 cm above a long, straight, horizontal wire 
that carries a constant current. What are the (a) magnitude and (b) 
direction of the current? 

A straight conductor carrying 
current i = 5.0 A splits into identi­
cal semicircular arcs as shown in 
Fig. 29-35. What is the magnetic 
field at the center C of the 
resulting circular loop? 

In Fig. 29-36, a current i = 10 A 
is set up in a long hairpin conductor 
formed by bending a wire into a 
semicircle of radius R = 5.0 mm. 
Point b is midway between the 
straight sections and so distant from 
the semicircle that each straight sec­
tion can be approximated as being an 
infinite wire. What are the (a) magni­
tude and (b) direction (into or out of 
the page) of B at a and the (c) magni­
tude and (d) direction of B at b? 

In Fig. 29-37, point P is at 
perpendicular distance R = 2.00 cm 
from a very long straight wire carry­
ing a current. The magnetic field B 

Fig. 29-35 Problem 4. 

i ·b -
Fig. 29-36 Problem 5. 

~s~ Wire 

Fig. 29-37 Problem 6. 

set up at point P is due to contributions from all the identical current­
length elements i d'S along the wire. What is the distance s to the ele­
ment making (a) the greatest contribution to field Band (b) 10.0% of 
the greatest contribution? 

·1 In Fig. 29-38, two circular arcs 
have radii a = 13.5 cm and b = 10.7 cm, 
subtend angle () = 74.0°, carry current i 
= 0.411 A, and share the same center of 
curvature P. What are the (a) magni­
tude and (b) direction (into or out of 
the page) of the net magnetic field at P? 

In Fig. 29-39, two semicircular arcs 
have radii R2 = 7.80 cm and Rl = 3.15 
cm, carry current i = 0.281 A, and 
share the same center of curvature C. 
What are the (a) magnitude and (b) 
direction (into or out of the page) of 
the net magnetic field at C? 

P 

Fig.29-38 Problem 7. 

~ 
C 

SSM Two long straight wires are Fig. 29-39 Problem 8. 
parallel and 8.0 cm apart. They are to 
carry equal currents such that the magnetic field at a point 
halfway between them has magnitude 300 f.LT. (a) Should the cur­
rents be in the same or opposite directions? (b) How much cur­
rent is needed? 

In Fig. 29-40, a wire forms a 
semicircle of radius R = 9.26 cm and 
two (radial) straight segments each 
of length L = 13.1 cm. The wire car­
ries current i = 34.8 rnA. What are 
the (a) magnitude and (b) direction 
(into or out of the page) of the net 
magnetic field at the semicircle's cen­
ter of curvature C? 

In Fig. 29-41, two long straight 
wires are perpendicular to the page 
and separated by distance d l = 0.75 
cm. Wire 1 carries 6.5 A into the page. 
What are the (a) magnitude and 
(b) direction (into or out of the page) 
of the current in wire 2 if the net mag­

Fig. 29-40 Problem 10. 

Wire l®~~t­

d] 

Wire 201 
p (t 
.~~-

netic field due to the two currents is Fig. 29-41 Problem 11. 
zero at point P located at distance 
d2 = 1.50 cm from wire 2? 

In Fig. 29-42, two long straight 
wires at separation d = 16.0 cm carry 
currents il = 3.61 rnA and i2 = 3.00ij 
out of the page. (a) Where on the x 
axis is the net magnetic field equal to 
zero? (b) If the two currents are dou- Fig.29-42 Problem 12. 
bled, is the zero-field point shifted 
toward wire 1, shifted toward wire 2, or unchanged? 
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In Fig. 29-43, point PI is at dis- Plf P2t 
tance R = 13.1 cm on the perpendic- I 
ular bisector of a straight wire of R R 

length L = 18.0 cm carrying current i! ! 
i = 58.2 rnA. (Note that the wire is - _ _ 
not long.) What is the magnitude of I ... '----L------...J.I 
the magnetic field at PI due to i? 

Equation 29-4 gives the mag­
nitude B of the magnetic field set up 

Fig. 29-43 Problems 
13 and 17. 

by a current in an infinitely long straight wire, at a point P at per­
pendicular distance R from the wire. Suppose that point P is actu­
ally at perpendicular distance R from the midpoint of a wire with a 
finite length L. Using Eq. 29-4 to calculate B then results in a cer­
tain percentage error. What value must the ratio LlR exceed if the 
percentage error is to be less than 1.00%? That is, what LlR gives 

(B from Eq. 29-4) - (B actual) (100%) = 1.00%? 
(B actual) 

Figure 29-44 shows two cur­
rent segments. The lower segment 
carries a current of il = 0.40 A and 
includes a semicircular arc with 
radius 5.0 cm, angle 180°, and center 
point P. The upper segment carries 
current i2 = 2il and includes a circu­

fJ 

lar arc with radius 4.0 cm, angle Fig. 29-44 Problem 15. 
120°, and the same center point P. 
What are the (a) magnitude and (b) direction of the net magnetic 
field IJ at P for the indicated current directions? What are the (c) 
magnitude and (d) direction of IJ if i1 is reversed? 

In Fig. 29-45, two concen-
tric circular loops of wire carrying ~ 
current in the same direction lie in r' ~l ______ ) 2 
the same plane. Loop 1 has radius '-~ 
1.50 cm and carries 4.00 rnA. Loop 2 
has radius 2.50 cm and carries 6.00 Fig. 29-45 Problem 16. 
rnA. Loop 2 is to be rotated about a diameter while the net mag­
netic field IJ set up by the two loops at their common center is 
measured. Through what angle must loop 2 be rotated so that the 
magnitude of that net field is 100 nT? 

SSM In Fig. 29-43, point P2 is at perpendicular distance R = 
25.1 cm from one end of a straight wire of length L = 13.6 cm 
carrying current i = 0.693 A. (Note that the wire is not long.) What 
is the magnitude of the magnetic field at P2? 

A current is set up in a wire 
loop consisting of a semicircle of ra­
dius 4.00 cm, a smaller concentric 
semicircle, and two radial straight 
lengths, all in the same plane. Figure 

(a) (b) 

29-46a shows the arrangement but is Fig. 29-46 Problem 18. 
not drawn to scale. The magnitude of 
the magnetic field produced at the center of curvature is 47.25 pT. 
The smaller semicircle is then flipped over (rotated) until the loop 
is again entirely in the same plane (Fig. 29-46b). The magnetic field 
produced at the (same) center of curvature now has magnitude 
15.75/LT, and its direction is reversed. What is the radius of the 
smaller semicircle? 

*·19 One long wire lies along an x axis and carries a current of 30 
A in the positive x direction. A second long wire is perpendicular 
to the xy plane, passes through the point (0,4.0 m, 0), and carries a 
current of 40 A in the positive z direction. What is the magnitude 
of the resulting magnetic field at the point (0,2.0 m, O)? 

In Fig. 29-47, part of a long in-
sulated wire carrying current 
i = 5.78 rnA is bent into a circular 
section of radius R = 1.89 cm. In 
unit-vector notation, what is the 
magnetic field at the center of curva­
ture C if the circular section (a) lies 
in the plane of the page as shown 
and (b) is perpendicular to the plane 
of the page after being rotated 90° 
counterclockwise as indicated? 

tI) Figure 29-48 shows two 
very long straight wires (in cross 
section) that each carry a current of 
4.00 A directly out of the page. 
Distance d1 = 6.00 m and distance 
d2 = 4.00 m. What is the magnitude 
of the net magnetic field at point P, 
which lies on a perpendicular bisec­
tor to the wires? 

Fig. 29-47 Problem 20. 

I 
I 
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Fig. 29-48 Problem 21. 

Figure 29-49a shows, in cross section, two long, parallel wires 
carrying current and separated by distance L. The ratio il/i2 of their 
currents is 4.00; the directions of the currents are not indicated. 
Figure 29-49b shows the y component By of their net magnetic field 
along the x axis to the right of wire 2. The vertical scale is set by 
Bys = 4.0 nT, and the horizontal scale is set by Xs = 20.0 cm. (a) At 
what value of x > 0 is By maximum? (b) If i2 = 3 rnA, what is the 
value of that maximum? What is the direction (irJto or out of the 
page) of (c) i1 and (d) i2? 

y 
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Fig. 29-49 Problem 22. 

IlW Figure 29-50 shows a 
snapshot of a proton moving at ve­
locity j1 = (-200 m/s)] toward a 
long straight wire with current i = 

350 rnA. At the instant shown, the 
proton's distance from the wire is 
d = 2.89 cm. In unit-vector nota­

y 

IT lv 
~=======.~.~=--x 
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Fig. 29-50 Problem 23. 

tion, what is the magnetic force on the proton due to the current? 

tI) Figure 29-51 shows, in cross section, four thin wires that 
are parallel, straight, and very long. They carry identical currents in 
the directions indicated. Initially all four wires are at distance d = 
15.0 cm from the origin of the coordinate system, where they cre-



ate a net magnetic field B. (a) To what 
value of x must you move wire 1 along 
the x axis in order to rotate B counter­
clockwise by 300 ? (b) With wire 1 in that 
new position, to what value of x must 
you move wire 3 along the x axis to 
rotate If by 300 back to its initial orien­
tation? 

SSM A wire with current 
i = 3.00 A is shown in Fig. 29-52. Two 
semi-infinite straight sections, both 
tangent to the same circle, are con­
nected by a circular arc that has a cen­
tral angle 8 and runs along the circum­
ference of the circle. The arc and the 
two straight sections all lie in the same 
plane. If B = 0 at the circle's center, 
what is 8? 

In Fig. 29-53a, wire 1 consists of 
a circular arc and two radial lengths; it 
carries current il = 0.50 A in the direc-

)' 
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Fig. 29-51 

Problem 24. 

Fig. 29-52 

Problem 25. 

tion indicated. Wire 2, shown in cross section, is long, straight, and 
perpendicular to the plane of the figure. Its distance from the cen­
ter of the arc is equal to the radius R of the arc, and it carries a cur­
rent i2 that can be varied. The two currents set up a net magnetic 
field B at the center of the arc. Figure 29-53b gives the square of 
the field's magnitude B2 plotted versus the square of the current i~. 
The vertical scale is set by m = 10.0 X 1O- lO T2. What angle is 
sub tended by the arc? 

(a) 

i~ (A2) 

(b) 

Fig. 29-53 Problem 26. 

In Fig. 29-54, two long straight 
wires (shown in cross section) carry 
currents il = 30.0 rnA and i2 = 40.0 
rnA directly out of the page. They are 
equal distances from the origin, 
where they set up a magnetic field B. 
To what value must current il be 
changed in order to rotate B 20.00 

clockwise? 

Figure 29-55a shows two 

)' 

---{\i.)-----+---------x 
i2 

Fig.29-54 Problem 27. 

wires, each carrying a current. Wire 1 consists of a circular arc of 
radius R and two radial lengths; it carries current il = 2.0 A in the 
direction indicated. Wire 2 is long and straight; it carries a current i2 
that can be varied; and it is at distance R/2 from the center of the 
arc. The net magnetic field B due to the two currents is measured at 
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the center of curvature of the arc. Figure 29-55b is a plot of 
the component of B in the direction perpendicular to the figure as 
a function of current i2• The horizontal scale is set by i2s = 1.00 A. 
What is the angle sub tended by the arc? 

R 

(b) 

Fig. 29-55 Problem 28. 

SSM In Fig. 29-56, four long straight wires 
are perpendicular to the page, and their cross sec­
tions form a square of edge length a = 20 cm. The 
currents are out of the page in wires 1 and 4 and 
into the page in wires 2 and 3, and each wire car­
ries 20 A. In unit-vector notation, what is the net 
magnetic field at the square's center? 

Two long straight thin wires with current 
lie against an equally long plastic cylinder, at ra­
dius R = 20.0 cm from the cylinder's central axis. 

Fig. 29-56 

Problems 29, 
37, and 40. 

Figure 29-57 a shows, in cross section, the cylinder and wire 1 but not 
wire 2. With wire 2 fixed in place, wire 1 is moved around the cylin­
der, from angle 81 = 00 to angle 81 = 1800

, through the first and sec­
ond quadrants of the xy coordinate system. The net magnetic field 

)' 

Wire 1 

--+---1"'--"--"1- x 

(a) 
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Fig. 29-57 Problem 30. 
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B at the center of the cylinder is measured as a function of 8). 
Figure 29-57b gives the x component B, of that field as a function 
of 8) (the vertical scale is set by Bn = 6.0 fLT), and Fig. 29-57c 
gives the y component By (the vertical scale is set by Bys = 4.0 
fLT). (a) At what angle 82 is wire 2 
located? What are the (b) size and 
(c) direction (into or out of the 
page) of the current in wire 1 and 
the (d) size and (e) direction of the 
current in wire 2? 

In Fig. 29-58, length a is 4.7 cm 
(short) and current i is 13 A. What 
are the (a) magnitude and (b) direc­
tion (into or out of the page) of the 
magnetic field at point P? 

The current-carrying wire 

r-- a ~I~ a-----1 
--- - -----1 p 

I 

it I 
I 
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1 
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Fig. 29-58 Problem 31. 

loop in Fig. 29-59a lies all in one plane and consists of a semicircle of 
radius 10.0 cm, a smaller semicircle with the same center, and two 
radial lengths. The smaller semicircle is rotated out of that plane by 
angle 8, until it is perpendicular to the plane (Fig. 29-59b). Figure 
29-59c gives the magnitude of the net magnetic field at the center of 
curvature versus angle 8. The vertical scale is set by Ba = 10.0 fLT 
andBb = 12.0 fLT.Whatis the radius of the smaller semicircle? 

y 

(a) Bb 

z ~ 
~ 

Ba 
0 n/4 n/2 

f) (rad) 

(c) 

Fig. 29-59 Problem 32. 

x x x x x x -x 

SSM IlW Figure 29-60 shows 
a cross section of a long thin ribbon 
of width w = 4.91 cm that is carry­
ing a uniformly distributed total 
current i = 4.61 fLA into the page. 
In unit-vector notation, what is the 
magnetic field B at a point P in the 
plane of the ribbon at a distance d = 

l-d~~lV~1 

Fig. 29-60 Problem 33. 

2.16 cm from its edge? (Hint: 
Imagine the ribbon as being con­
structed from many long, thin, par­
allel wires.) 

Figure 29-61 shows, in cross 

y 

Wire 2 

section, two long straight wires held -r'/---I'---'---I-X 

against a plastic cylinder of radius Wire 1 

20.0 cm. Wire 1 carries current i) = 

60.0 rnA out of the page and is fixed 
in place at the left side of the cylin-
der. Wire 2 carries current i2 = 40.0 Fig. 29-61 Problem 34. 

rnA out of the page and can be moved around the cylinder. At 
what (positive) angle 82 should wire 2 be positioned such that, at 
the origin, the net magnetic field due to the two currents has mag­
nitude 80.0 nT? 

Force Between Two Parallel Currents 
SSM Figure 29-62 shows 

wire 1 in cross section; the wire is 
long and straight, carries a current 
of 4.00 rnA out of the page, and is 
at distance d) = 2.40 cm from a 
surface. Wire 2, which is parallel to 
wire 1 and also long, is at horizon­
tal distance d2 = 5.00 cm from Fig. 29-62 Problem 35. 
wire 1 and carries a current of 6.80 
rnA into the page. What is the x component of the magnetic 
force per unit length on wire 2 due to wire 1 ? 

In Fig. 29-63, five long par'allel z 

wires in an xy plane are separated by 1_ _ _ . _ 

distance d = 8.00 cm, have lengths ~ y 

of 10.0 m, and carry identical cur- I- d + d + d -..1...- d-l 
rents of 3.00 A out of the page. Each 
wire experiences a magnetic force Fig. 29-63 Problems 36 
due to the other wires. In unit-vector and 39. 
notation, what is the net magnetic 
force on (a) wire 1, (b) wire 2, (c) wire 3, (d) wire 4, and (e) wire 5? 

In Fig. 29-56, four long straight wires are perpendicular 
to the page, and their cross sections form a square of edge length 
a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of 
the page in wires 1 and 4 and into the page in wires 2 and 3. In unit­
vector notation, what is the net magnetic force per meter of wire 
length on wire 4? 

Figure 29-64a shows, in cross section, three current-carrying 
wires that are long, straight, and parallel to one another. Wires 1 
and 2 are fixed in place on an x axis, with separation d. Wire 1 has a 
current of 0.750 A, but the direction of the current is not given. 
Wire 3, with a current of 0.250 A out of the page, can be moved 
along the x axis to the right of wire 2. As wire 3 is moved, the mag­
nitude of the net magnetic force Fz on wire 2 due to the currents in 
wires 1 and 3 changes. The x component of that force is Fl , and the 
value per unit length of wire 2 is FlJ L2. Figure 29-64b gives FlJ L2 
versus the position x of wire 3. The plot has an asymptote Fl/L2 = 
-0.627 fLN/m as x -> 00. The horizontal scale is set by Xs = 12.0 cm. 
What are the (a) size and (b) direction (into or out of the page) of 
the current in wire 2? 

y 1.0 --r---'--
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(a) (b) 

Fig. 29-64 Problem 38. 

In Fig. 29-63, five long parallel wires in an xy plane are 
separated by distance d = 50.0 cm. The currents into the page are 



i j = 2.00 A, i3 = 0.250 A, i4 = 4.00 A, and is = 2.00 A; the current out 
of the page is i2 = 4.00 A. What is the magnitude of the net force per 
unit length acting on wire 3 due to the currents in the other wires? 

In Fig. 29-56, four long straight wires are perpendicular to 
the page, and their cross sections 
form a square of edge length 
a = 8.50 cm. Each wire carries 15.0 
A, and all the currents are out of 
the page. In unit-vector notation, 
what is the net magnetic force per 
meter afwire length on wire 1? )' 

Lx IlW In Fig. 29-65, a long 
straight wire carries a current i j = 

30.0 A and a rectangular loop car­
ries current i2 = 20.0 A. Take a = 
1.00 cm, b = 8.00 cm, and L = 30.0 
cm. In unit-vector notation, what is 
the net force on the loop due to i j ? 

Fig. 29-65 Problem 41. 

Ampere's Law 
In a particular region there is a uniform current density of 

15 A/m2 in the positive z direction. What is the value of ~ B· d'S 
when that line integral is calculated along the three straight-line 
segments from (x, y, z) coordinates (4d,0, 
0) to (4d, 3d, 0) to (0, 0, 0) to (4d, 0, 0), 
where d = 20 cm? 

Figure 29-66 shows a cross section 
across a diameter of a long cylindrical conduc­
tor of radius a = 2.00 cm carrying uniform 
current 170 A. What is the magnitude of the 
current's magnetic field at radial distance (a) 
0, (b) 1.00 cm, (c) 2.00 cm (wire's surface), and 
(d) 4.00 cm? 

Fig. 29-66 

Problem 43. 

Figure 29-67 shows two 
closed paths wrapped around two 
conducting loops carrying currents 
i j = 5.0 A and i2 = 3.0 A. What is 
the value of the integral ~ B· d'S for 
(a) path 1 and (b) path2? Fig. 29-67 Problem 44. 

SSM Each of the eight 
conductors in Fig. 29-68 carries 2.0 
A of current into or out of the page. 
Two paths are indicated for the line 
integral ~ B . d'S. What is the value 
of the integral for (a) path 1 and (b) 
path2? 

Eight wires cut the page per­
pendicularly at the points shown in 
Fig. 29-69. A wire labeled with the 
integer k (k = 1, 2, ... , 8) carries 
the current ki, where i = 4.50 rnA. 
For those wires with odd k, the cur­
rent is out of the page; for those 
with even k, it is into the page. 
Evaluate ~ B· d'S along the closed 
path in the direction shown. 

IlW The current density 7 
inside a long, solid, cylindrical wire 

~':) C~) 
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2 

Fig. 29-68 Problem 45. 

Fig. 29-69 Problem 46. 
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of radius a = 3.1 mm is in the direction of the central axis, and its 
magnitude varies linearly with radial distance I' from the axis ac­
cording to J = Jor/a, where Jo = 310 Alm2• 

Find the magnitude of the magnetic field 
at (a) r = O,(b)r = a/2,and (c) I' = a. 

In Fig. 29-70, a long circular pipe 
with outside radius R = 2.6 cm carries a 
(uniformly distributed) current i = 
8.00 rnA into the page. A wire runs paral­
lel to the pipe at a distance of 3.00R from 
center to center. Find the (a) magnitude 
and (b) direction (into or out of the 
page) of the current in the wire such that 
the net magnetic field at point P has the 
same magnitude as the net magnetic 
field at the center of the pipe but is in the 
opposite direction. 

Solenoids and Toroids 

Wire o~~~-----,t­

R 

Po---t1-

t 

Fig. 29-70 

Problem 48. 

R 

A toroid having a square cross section, 5.00 cm on a side, and 
an inner radius of 15.0 cm has 500 turns and carries a current of 
0.800 A. (It is made up of a square solenoid-instead of a round 
one as in Fig. 29-16-bent into a doughnut shape.) What is the 
magnetic field inside the toroid at (a) the inner radius and (b) the 
outer radius? 

A solenoid that is 95.0 cm long has a radius of 2.00 cm and 
a winding of 1200 turns; it carries a current of 3.60 A. Calculate 
the magnitude of the magnetic field inside the solenoid. 

A 200-turn solenoid having a length of 25 cm and a diameter 
of 10 cm carries a current of 0.29 A. Calculate the magnitude of the 
magnetic field B inside the solenoid. 

A solenoid 1.30 m long and 2.60 cm in diameter carries a cur­
rent of 18.0 A. The magnetic field inside the solenoid is 23.0 mT. 
Find the length of the wire forming the solenoid. 

A long solenoid has 100 turns/cm and carries current i. An 
electron moves within the solenoid in a circle of radius 2.30 cm 
perpendicular to the solenoid axis. The speed of the electron is 
0.0460c (c = speed of light). Find the current i in the solenoid. 

An electron is shot into one end of a solenoid. As it enters 
the uniform magnetic field within the solenoid, its speed is 800 
mls and its velocity vector makes an angle of 30° with the central 
axis of the solenoid. The solenoid carries 4.0 A and has 8000 turns 
along its length. How many revolutions does the electron make 
along its helical path within the solenoid by the time it emerges 
from the solenoid's opposite end? (In a real solenoid, where the 
field is not uniform at the two ends, the number of revolutions 
would be slightly less than the answer here.) 

SSM IlW WWW A long solenoid with 10.0 turns/cm and 
a radius of 7.00 cm carries a current of 20.0 rnA. A current of 
6.00 A exists in a straight conductor located along the central 
axis of the solenoid. (a) At what radial distance from the axis will 
the direction of the resulting magnetic field be at 45.0° to the ax­
ial direction? (b) What is the magnitude of the magnetic field 
there? 

A Current-Carrying Coil as a Magnetic Dipole 
Figure 29-71 shows an arrangement known as a Helmholtz coil. 

It consists of two circular coaxial coils, each of 200 turns and radius 
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R = 25.0 cm, separated by a distance s = R. The two coils carry equal 
currents i = 12.2 rnA in the same direction. Find the magnitude of 
the net magnetic field at P, midway between the coils. 

y 

--~-+~ ---+'---x 

r-s~1 

Fig. 29-71 Problems 56 and 90. 

SSM A student makes a short electromagnet by winding 
300 turns of wire around a wooden cylinder of diameter d = 5.0 
cm. The coil is connected to a battery producing a current of 4.0 A 
in the wire. (a) What is the magnitude of the magnetic dipole mo­
ment of this device? (b) At what axial distance z ;l> d will the mag­
netic field have the magnitude 5.0 f-LT (approximately one-tenth 
that of Earth's magnetic field)? 

Figure 29-72a shows a length of 
wire carrying a current i and bent 
into a circular coil of one turn. In Fig. 
29-72b the same length of wire has 
been bent to give a coil of two turns, 
each of half the original radius. (a) If 
Ba and Bb are the magnitudes of the 
magnetic fields at the centers of the 
two coils, what is the ratio BblBa? (b) 
What is the ratio f-Lbl f-La of the dipole 
moment magnitudes of the coils? 

(a) (b) 

Fig.29-72 Problem 58. 

SSM What is the magnitude of the magnetic dipole moment Jl 
of the solenoid described in Problem 51? 

In Fig. 29-73a, two circular loops, with different 
currents but the same radius of 4.0 cm, are centered on a y axis. 
They are initially separated by distance L = 3.0 cm, with loop 2 po­
sitioned at the origin of the axis. The currents in the two loops pro­
duce a net magnetic field at the origin, with y component B)" That 
component is to be measured as loop 2 is gradually moved in the 
positive direction of the y axis. Figure 29-73b gives By as a function 
of the position y of loop 2. The curve approaches an asymptote of 
By = 7.20 f-LT as y ---4 00. The horizontal scale is set by Ys = 10.0 cm. 
What are (a) current i1 in loop 1 and (b) current i2 in loop 2? 

(a) 

y (em) 

(b) 

Fig.29-73 Problem 60. 

A circular loop of radius 12 cm carries a current of 15 A. A 
fiat coil of radius 0.82 cm, having 50 turns and a current of 1.3 A, is 

concentric with the loop. The plane of the loop is perpendicular to 
the plane of the coil. Assume the loop's magnetic field is uniform 
across the coil. What is the magnitude of (a) the magnetic field 
produced by the loop at its center and (b) the torque on the coil 
due to the loop? 

In Fig. 29-74, current i = 

56.2 rnA is set up in a loop having 
two radial lengths and two semicir­
cles of radii a = 5.72 cm and b = 
9.36 cm with a common center P. 
What are the (a) magnitude and 
(b) direction (into or out of the 
page) of the magnetic field at P 
and the (c) magnitude and (d) di­
rection of the loop's magnetic di- Fig.29-74 Problem 62. 
pole moment? 

In Fig. 29-75, a conductor car- y 
ries 6.0 A along the closed path 
abedefgha running along 8 of the 12 
edges of a cube of edge length 10 
cm. (a) Taking the path to be a com­
bination of three square current 
loops (befgb, abgha, and edefe), find 
the net magnetic moment of the 
path in unit-vector notation. (b) 
What is the magnitude of the net 
magnetic field at the xyz coordi- d 

nates of (0,5.0 m,O)? Fig.29-75 Problem 63. 

Additional Problems 
In Fig. 29-76, a closed loop car­

ries current i = 200 rnA. The loop 
consists of two radial straight wires 
and two concentric circular arcs of 
radii 2.00 m and 4.00 ill. The angle () 
is 1T14 rad. What are the (a) magni­
tude and (b) direction (into or out of 
the page) of the net magnetic field at 
the center of curvature P? 

A cylindrical cable of radius Fig.29-76 Problem 64. 
8.00 mm carries a current of 25.0 A, 
uniformly spread over its cross-sectional area. At what distance 
from the center of the wire is there a point within the wire where 
the magnetic field magnitude is 0.100 mT? 

Two long wires lie in an xy plane, and each carries a current in 
the positive direction of the x axis. Wire 1 is at y = 10.0 cm and car­
ries 6.00 A; wire 2 is at y = 5.00 cm and carries 10.0 A. (a) In unit­
vector notation, what is the net magnetic field B at the origin? (b) 
At what value of y does B = O? (c) If the current in wire 1 is re­
versed, at what value of y does B = O? 

Tho wires, both of length L, are formed into a circle and a square, 
and each carries current i. Show that the square produces a greater 
magnetic field at its center than the circle produces at its center. 

A long straight wire carries a current of 50 A. An electron, 
traveling at 1.0 X 107 mis, is 5.0 cm from the wire. What is the mag­
nitude of the magnetic force on the electron if the electron velocity 
is directed (a) toward the wire, (b) parallel to the wire in the direc­
tion of the current, and (c) perpendicular to the two directions de­
fined by (a) and (b)? 



Three long wires are parallel to 
a z axis, and each carries a current of 
10 A in the positive z direction. Their 
points of intersection with the xy 
plane form an equilateral triangle 
with sides of 50 cm, as shown in Fig. 
29-77. A fourth wire (wire b) passes 
through the midpoint of the base of 
the triangle and is parallel to the 
other three wires. If the net magnetic 
force on wire a is zero, what are the 
(a) size and (b) direction (+z or -z) 
of the current in wire b? 

Figure 29-78 shows a closed loop 
with current i = 2.00 A. The loop 
consists of a half-circle of radius 4.00 
m, two quarter-circles each of radius 
2.00 m, and three radial straight 
wires. What is the magnitude of the 
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Fig. 29-77 Problem 69. 

net magnetic field at the common Fig. 29-78 Problem 70. 
center of the circular sections? 

A 10-gauge bare copper wire (2.6 mm in diameter) can carry 
a current of 50 A without overheating. For this current, what is the 
magnitude of the magnetic field at the surface of the wire? 

A long vertical wire carries an unknown current. Coaxial with 
the wire is a long, thin, cylindrical conducting surface that carries a 
current of 30 rnA upward. The cylindrical surface has a radius of 
3.0 mm. If the magnitude of the magnetic field at a point 5.0 mm 
from the wire is 1.0 /LT, what are the (a) size and (b) direction of 
the current in the wire? 

Figure 29-79 shows a cross section of a 
long cylindrical conductor of radius a = 4.00 
cm containing a long cylindrical hole of radius 
b = 1.50 cm. The central axes of the cylinder 
and hole are parallel and are distance d = 

2.00 cm apart; current i = 5.25 A is uniformly 
distributed over the tinted area. (a) What is 
the magnitude of the magnetic field at the 
center of the hole? (b) Discuss the two spe­
cial cases b = 0 and d = O. 

Fig. 29-79 

Problem 73. 

The magnitude of the magnetic field 88.0 cm from the axis of 
a long straight wire is 7.30 /LT. What is the current in the wire? 

SSM Figure 29-80 shows a wire 
segment of length /).s = 3.0 cm, cen­
tered at the origin, carrying current i 
= 2.0 A in the positive y direction (as 
part of some complete circuit). To cal­
culate the magnitude of the magnetic 
field lJ produced by the segment at a 
point several meters from the origin, 
we can use B = (/Lo/41T)i /).s (sin 8)/r­
as the Biot-Savart law. This is 
because rand 8 are essentially con-

z 

Fig. 29-80 Problem 75. 

stant over the segment. Calculate lJ (in unit-vector notation) at the (x, 
y, z) coordinates (a) (0,0,5.0 m), (b) (0,6.0 m, 0), (c) (7.0 m, 7.0 m, 0), 
and (d) ( - 3.0 m, -4.0 m,O). 

Figure 29-81 shows, in cross section, two long parallel 

wires spaced by distance d = 10.0 cm; each carries 100 A, out of the 
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page in wire 1. Point P is on a perpen­
dicular bisector of the line connect­
ing the wires. In unit-vector notation, 
what is the net magnetic field at P if 
the current in wire 2 is (a) out of the 
page and (b) into the page? 

In Fig. 29-82, two infinitely long Fig. 29-81 

wires carry equal currents i. Each follows 

Problem 76. 

a 90° arc on the circumference of the 
same circle of radius R. Show that the 
magnetic field lJ at the center of the circle 
is the same as the field lJ a distance R be- " , 
Iowan infinite straight wire carrying a 
current i to the left. 

A long wire carrying 100 A is per-
pendicular to the magnetic field lines of 
a uniform magnetic field of magnitude 
5.0 mT.At what distance from the wire is 
the net magnetic field equal to zero? 

" i 
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Fig. 29-82 

Problem 77. 

A long, hollow, cylindrical conductor (with inner radius 2.0 
mm and outer radius 4.0 mm) carries a current of 24 A distrib­
uted uniformly across its cross section. A long thin wire that is co­
axial with the cylinder carries a current of 24 A in the opposite 
direction. What is the magnitude of the magnetic field (a) 1.0 
mm, (b) 3.0 mm, and (c) 5.0 mm from the central axis of the wire 
and cylinder? 

A long wire is known to have a radius greater than 4.0 mm and 
to carry a current that is uniformly distributed over its cross section. 
The magnitude of the magnetic field due to that current is 0.28 mT 
at a point 4.0 mm from the axis of the wire, and 0.20 mT at a point 10 
mm from the axis of the wire. What is the radius of the wire? 

...••..•.•..... -x 

SSM Figure 29-83 shows a 
cross section of an infinite con­
ducting sheet carrying a current per 
unit x-length of A; the current 
emerges perpendicularly out of the 
page. (a) Use the Biot-Savart law 
and symmetry to show that for all Fig. 29-83 Problem 81. 
points P above the sheet and all 
points P' below it, the magnetic field lJ is parallel to the sheet and 
directed as shown. (b) Use Ampere's law to prove that B = ~/LoA 
at all points P and P'. 

Figure 29-84 shows, in cross section, two long parallel wires 
that are separated by distance d = 18.6 cm. Each carries 4.23 A, 
out of the page in wire 1 and into the page in wire 2. In unit-vector 
notation, what is the net magnetic field at point P at distance R = 

34.2 cm, due to the two currents? 

)' 

p 
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Fig. 29-84 Problem 82. 



790 HA R MAGNETIC FIELDS DUE TO CURRENTS 

SSM In unit-vector notation, 
what is the magnetic field at point 
P in Fig. 29-85 if i = 10 A and a = 
8.0 cm? (Note that the wires are 
not long.) 

Three long wires all lie in an xy 
plane parallel to the x axis. They are 
spaced equally, 10 cm apart. The two 
outer wires each carry a current of 
5.0 A in the positive x direction. 
What is the magnitude of the force 
on a 3.0 m section of either of the 

a/ 

y - - ;1 1 
Lx I 
~~ 

I-a ,I 
Fig. 29-85 Problem 83. 

outer wires if the current in the center wire is 3.2 A (a) in the posi­
tive x direction and (b) in the negative x direction? 

SSM Figure 29-86 shows a cross section of a hollow cylindri­
cal conductor of radii a and b, carrying a uniformly distributed cur­
rent i. (a) Show that the magnetic field magnitude B(r) for the ra­
dial distance r in the range b < r < a is given by 

(b) Show that when r = a, this equation gives 
the magnetic field magnitude B at the surface 
of a long straight wire carrying current i; 
when r = b, it gives zero magnetic field; 
and when b = 0, it gives the magnetic field in­
side a solid conductor of radius a carrying 
current i. (c) Assume that a = 2.0 cm, b = 1.8 
cm, and i = 100 A, and then plot B(r) for the 
range 0 < r < 6 cm. 

Fig. 29-86 

Problem 85. 

Show that the magnitude of the magnetic field produced at 
the center of a rectangular loop of wire of length L and width W, 
carrying a current i, is 

B = 2/Loi (U + W2)1I2 
7T LW 

Figure 29-87 shows a cross section of a 
long conducting coaxial cable and gives its 
radii (a, b, c). Equal but opposite currents i 
are uniformly distributed in the two conduc­
tors. Derive expressions for B(r) with radial 
distance r in the ranges (a) r < c, (b) c < r < 
b, (c) b < r < a, and (d) r> a. (e) Test these 
expressions for all the special cases that occur 
to you. (f) Assume that a = 2.0 cm, b = 1.8 
cm, c = 0.40 cm, and i = 120 A and plot the 
function B(r) over the range 0 < r < 3 cm. 

Fig. 29-87 

Problem 87. 

Figure 29-88 is an idealized schematic drawing of a rail gun. 
Projectile P sits between two wide rails of circular cross section; a 

I· L ,I 
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Fig. 29-88 Problem 88. 

source of current sends current through the rails and through the 
(conducting) projectile (a fuse is not used). (a) Let w be the dis­
tance between the rails, R the radius of each rail, and i the current. 
Show that the force on the projectile is directed to the right along 
the rails and is given approximately by 

F = i2/Lo In w + R 
27T R 

(b) If the projectile starts from the left end of the rails at rest, find the 
speed v at which it is expelled at the right. Assume that i = 450 kA, 
w = 12 mm, R = 6.7 cm, L = 4.0 m, and the projectile mass is 10 g. 

A square loop of wire of edge length a carries current i. Show 
that, at the center of the loop, the magnitude of the magnetic field 
produced by the current is 

B = 2V2/Loi. 
7Ta 

In Fig. 29-71, an arrangement known as Helmholtz coils 
consists of two circular coaxial coils, each of N turns and radius R, 
separated by distance s. The two coils carry equal currents i in the 
same direction. (a) Show that the first derivative of the magnitude 
of the net magnetic field of the coils (dB/dx) vanishes at the mid­
point P regardless of the value of s. Why would you expect this to 
be true from symmetry? (b) Show that the second derivative 
(d 2B/dx2) also vanishes at P, provided s = R. This accounts for the 
uniformity of B near P for this particular coil separation. 

SSM A square loop of wire of edge length a carries current i. 
Show that the magnitude of the magnetic field produced at a point 
on the central perpendicular axis of the loop and a distance x from 
its center is 

Prove that this result is consistent with the result shown in 
Problem 89. 

Show that if the thickness of a toroid is much smaller than 
its radius of curvature (a very skinny toroid), then Eq. 29-24 for the 
field inside a toroid reduces to Eq. 29-23 for the field inside a sole­
noid. Explain why this result is to be expected. 

SSM Show that a uniform magnetic field lJ cannot drop 
abruptly to zero (as is suggested by the lack of field lines to the 
right of point a in Fig. 29-89) as one moves perpendicular to lJ, say 
along the horizontal arrow in the figure. (Hint: Apply Ampere's 
law to the rectangular path shown by the dashed lines.) In actual 
magnets, "fringing" of the magnetic field lines always occurs, which 
means that lJ approaches zero in a gradual manner. Modify the 
field lines in the figure to indicate a more realistic situation. 

{[ 

Fig. 29-89 Problem 93. 
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~ In Chapter 29 we discussed the fact that a current produces a 
magnetic field. That fact came as a surprise to the scientists who discovered the 
effect. Perhaps even more surprising was the discovery of the reverse effect: A 
magnetic field can produce an electric field that can drive a current. This link be­
tween a magnetic field and the electric field it produces (induces) is now called 
Faraday's law a/induction. 

The observations by Michael Faraday and other scientists that led to this law 
were at first just basic science. Today, however, applications of that basic science 
are almost everywhere. For example, induction is the basis of the electric guitars 
that revolutionized early rock and still drive heavy metal and punk today. It is 
also the basis of the electric generators that power cities and transportation lines 
and of the huge induction furnaces that are commonplace in foundries where 
large amounts of metal must be melted rapidly. 

Before we get to applications like the electric guitar, we must examine two 
simple experiments about Faraday's law of induction. 

Two Experiments 
Let us examine two simple experiments to prepare for our discussion of 
Faraday's law of induction. 

First Experiment. Figure 30-1 shows a conducting loop connected to a sensitive 
ammeter. Because there is no battery or other source of emf included, there is no 
current in the circuit. However, if we move a bar magnet toward the loop, a current 
suddenly appears in the circuit. The current disappears when the magnet stops. If we 
then move the magnet away, a current again suddenly appears, but now in the oppo­
site direction. If we experimented for a while, we would discover the following: 

1. A current appears only if there is relative motion between the loop and the 
magnet (one must move relative to the other); the current disappears when 
the relative motion between them ceases. 

2. Faster motion produces a greater current. 

3. If moving the magnet's north pole toward the loop causes, say, clockwise 
current, then moving the north pole away causes counterclockwise current. 
Moving the south pole toward or away from the loop also causes currents, but 
in the reversed directions. 

The current produced in the loop is called an indnced current; the work done 
per unit charge to produce that current (to move the conduction electrons that 

CHA'PTER 

The magnet's motion 
creates a current in 
the loop. 

Fig. 30-1 An ammeter registers a 
current in the wire loop when the magnet 
is moving with respect to the loop. 
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Closing the switch 
causes a current in 
the left-hand loop. 

Fig. 30-2 An ammeter registers a cur­
rent in the left-hand wire loop just as switch 
S is closed (to turn on the current in the 
right-hand wire loop) or opened (to turn 
off the current in the right-hand loop). No 
motion of the coils is involved. 

constitute the current) is called an induced emf; and the process of producing the 
current and emf is called induction. 

Second Experiment. For this experiment we use the apparatus of Fig. 30-2, 
with the two conducting loops close to each other but not touching. If we close 
switch S, to turn on a current in the right-hand loop, the meter suddenly and 
briefly registers a current-an induced current-in the left-hand loop. If we then 
open the switch, another sudden and brief induced current appears in the left­
hand loop, but in the opposite direction. We get an induced current (and thus an 
induced emf) only when the current in the right-hand loop is changing (either 
turning on or turning off) and not when it is constant (even if it is large). 

The induced emf and induced current in these experiments are apparently 
caused when something changes-but what is that "something"? Faraday knew. 

Faraday's law of Induction 
Faraday realized that an emf and a current can be induced in a loop, as in our two 
experiments, by changing the amount of magnetic field passing through the loop. 
He further realized that the "amount of magnetic field" can be visualized in terms 
of the magnetic field lines passing through the loop. Faraday's law of induction, 
stated in terms of our experiments, is this: 

An emf is induced in the loop at the left in Figs. 30-1 and 30-2 when the number of 
magnetic field lines that pass through the loop is changing. 

The actual number of field lines passing through the loop does not matter; the 
values of the induced emf and induced current are determined by the rate at 
which that number changes. 

In our first experiment (Fig. 30-1), the magnetic field lines spread out from 
the north pole of the magnet. Thus, as we move the north pole closer to the loop, 
the number of field lines passing through the loop increases. That increase appar­
ently causes conduction electrons in the loop to move (the induced current) and 
provides energy (the induced emf) for their motion. When the magnet stops mov­
ing, the number of field lines through the loop no longer changes and the induced 
current and induced emf disappear. 

In our second experiment (Fig. 30-2), when the switch is open (no current), there 
are no field lines. However, when we turn on the current in the right-hand loop, the 
increasing current builds up a magnetic field around that loop and at the left-hand 
loop. While the field builds, the number of magnetic field lines through the left-hand 
loop increases. As in the first experiment, the increase in field lines through that loop 
apparently induces a current and an emf there. When the current in the right-hand 
loop reaches a final, steady value, the number of field lines through the left-hand 
loop no longer changes, and the induced current and induced emf disappear. 

To put Faraday's law to work, we need a way to calculate the amount of magnetic field 
that passes through a loop. In Chapter 23, in a similar situation, we needed to calcu­
late the amount of electric field that passes through a surface. There we defined an 
electric flux <I> E = J it· dA. Here we define a magnetic flux: Suppose a loop enclosing 
an area A is placed in a magnetic field E. Then the magnetic flux through the loop is 

(magnetic flux through area A). (30-1) 

As in Chapter 23, dA is a vector of magnitude dA that is perpendicular to a 
differential area dA. 
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As a special case of Eq. 30-1, suppose that the loop lies in a plane and that the 
magnetic field is perpendicular to the plane of the loop. Then we can write the dot 
product in Eq. 30-1 as B dA cos 0° = B dA. If the magnetic field is also uniform, 
then B can be brought out in front of the integral sign. The remaining J dA then 
gives just the area A of the loop. Thus, Eq. 30-1 reduces to 

<PB = BA (B .1 area A, B uniform). (30-2) 

From Eqs. 30-1 and 30-2, we see that the SI unit for magnetic flux is the 
tesla-square meter, which is called the weber (abbreviated Wb): 

1 weber = 1 Wb = 1 T· m2• (30-3) 

With the notion of magnetic flux, we can state Faraday's law in a more 
quantitative and useful way: 

The magnitude of the emf '"8 induced in a conducting loop is equal to the rate at 
which the magnetic flux <PB through that loop changes with time. 

As you will see in the next section, the induced emf ~ tends to oppose the flux 
change, so Faraday's law is formally written as 

~ = _ d<PB 

dt 
(Faraday's law), (30-4) 

with the minus sign indicating that opposition. We often neglect the minus sign in 
Eq. 30-4, seeking only the magnitude of the induced emf. 

If we change the magnetic flux through a coil of N turns, an induced emf appears 
in every turn and the total emf induced in the coil is the sum of these individual in­
duced emfs. If the coil is tightly wound (closely packed), so that the same magnetic flux 
<P B passes through all the turns, the total emf induced in the coil is 

~ = -N d<PB 

dt 
(coil of N turns). (30-5) 

Here are the general means by which we can change the magnetic flux 
through a coil: 

1. Change the magnitude B of the magnetic field within the coil. 

2. Change either the total area of the coil or the portion of that area that lies 
within the magnetic field (for example, by expanding the coil or sliding it into 
or out of the field). 

3. Change the angle between the direction of the magnetic field If and the plane 
of the coil (for example, by rotating the coil so that field If is first perpendicu­
lar to the plane of the coil and then is along that plane). 

Induced emf in coil due to a solenoid 

CHECKPOINT 1 

The graph gives the magnitude B(t) of a 
uniform magnetic field that exists 
throughout a conducting loop, with the di­
rection of the field perpendicular to the 
plane of the loop. Rank the five regions of 
the graph according to the magnitude of 
the emf induced in the loop, greatest first. 

B 

I ~I 
I I 

j 

a bed e 

The long solenoid S shown (in cross section) in Fig. 30-3 
has 220 turns/cm and carries a current i = 1.5 A; its diam­
eter D is 3.2 cm. At its center we place a 130-turn closely 
packed coil C of diameter d = 2.1 cm. The current in the 
solenoid is reduced to zero at a steady rate in 25 ms. What 
is the magnitude of the emf that is induced in coil C while 
the current in the solenoid is changing? 

1. Because it is located in the interior of the solenoid, coil C lies 
within the magnetic field produced by current i in the 
solenoid; thus, there is a magnetic flux <P B through coil C. 

2. Because current i decreases, flux <P B also decreases. 
3. As <P B decreases, emf ~ is induced in coil C. 
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because the final current in the solenoid is zero. To find the 
initial flux <PB,;, we note that area A is ~1Td2 (= 3.464 X 10-4 

m2) and the number n is 220 turns/cm, or 22000 turns/m. 
Substituting Eq. 29-23 into Eq. 30-2 then leads to 

<PB,; = BA = (fLoin)A 
Fig. 30-3 A coil C is located inside a solenoid S, which 
carries current i. = (41T X 1O-7 T·m/A)(1.S A)(22 000 turns/m) 

X (3.464 X 10-4 m2) 
4. The flux through each turn of coil C depends on the area 

A and orientation of that turn in the solenoid's magnetic 
field E. Because I1 is uniform and directed perpendicular 
to areaA, the flux is given by Eq. 30-2 (<PB = BA). 

= 1.44 X 10 -5 Wb. 

Now we can write 

5. The magnitude B of the magnetic field in the interior of a so­
lenoid depends on the solenoid's current i and its number n 
of turns per unit length, according to Eq. 29-23 (B = Jloin). 

!1<PB = <PBJ - <PB,; 
!J..t !J..t 

(0 - 1.44 X 10-5 Wb) 
2S X 1O-3 s 

Calculations: Because coil C consists of more than one 
turn, we apply Faraday's law in the form of Eq. 30-S 
('if; = -N d<PB/dt), where the number of turns N is 130 and 
d<pB/dtis the rate at which the flux changes. 

= -S.76 X 10-4 Wb/s = -S.76 X 10-4 V. 

We are interested only in magnitudes; so we ignore the mi­
nus signs here and in Eq. 30-S, writing 

Because the current in the solenoid decreases at a 
steady rate, flux <PB also decreases at a steady rate, and so we 
can write d<PB/dt as !1<PB/!J..t. Then, to evaluate !1<PB, we need 
the final and initial flux values. The final flux <P B,f is zero 

d<PB 
'if; = N~ = (130 turns)(S.76 X 1O-4 y) 

= 7.5 X 1O-2 y = 7SmV. (Answer) 

~s Additional examples, video, and practice available at WileyPLUS 
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The magnet's motion 
creates a magnetic 
dipole that opposes 
the motion. 

Fig. 30-4 Lenz's law at work. As the 
magnet is moved toward the loop, a current 
is induced in the loop. The current produces 
its own magnetic field, with magnetic di­
pole moment 71 oriented so as to oppose 
the motion of the magnet. Thus, the in­
duced current must be counterclockwise 
as shown. 

Lenz's Law 
Soon after Faraday proposed his law of induction, Heinrich Friedrich Lenz 
devised a rule for determining the direction of an induced current in a loop: 

An induced current has a direction such that the magnetic field due to the current 
opposes the change in the magnetic flux that induces the current. 

Furthermore, the direction of an induced emf is that of the induced current. To get 
a feel for Lenz's law, let us apply it in two different but equivalent ways to Fig. 30-4, 
where the north pole of a magnet is being moved toward a conducting loop. 

1. Opposition to Pole Movement. The approach of the magnet's north pole in 
Fig. 30-4 increases the magnetic flux through the loop and thereby induces a 
current in the loop. From Fig. 29-21, we know that the loop then acts as a mag­
netic dipole with a south pole and a north pole, and that its magnetic dipole 
moment 71 is directed from south to north. To oppose the magnetic flux 
increase being caused by the approaching magnet, the loop's north pole (and 
thus 71) must face toward the approaching north pole so as to repel it (Fig. 
30-4). Then the curled-straight right-hand rule for 71 (Fig. 29-21) tells us that 
the current induced in the loop must be counterclockwise in Fig. 30-4. 

If we next pull the magnet away from the loop, a current will again be 
induced in the loop. Now, however, the loop will have a south pole facing 
the retreating north pole of the magnet, so as to oppose the retreat. Thus, the 
induced current will be clockwise. 

2. Opposition to Flux Change. In Fig. 30-4, with the magnet initially distant, no 
magnetic flux passes through the loop. As the north pole of the magnet then 



nears the loop with its magnetic field E directed downward, 
the flux through the loop increases. To oppose this increase in 
flux, the induced current i must set up its own field ~nd di­
rected upward inside the loop, as shown in Fig. 30-Sa; then the 
upward flux of field ~nd opposes the increasing downward flux 
of field E. The curled-straight right-hand lUle of Fig. 29-21 
then tells us that i must be counterclockwise in Fig. 30-Sa. 

Note carefully that the flux of ~nd always opposes the 
change in the flux of E, but that does not always mean that 
~nd points opposite E. For example, if we next pull the mag­
net away from the loop in Fig. 30-4, the flux <PB from the 
magnet is still directed downward through the loop, but it is 
now decreasing. The flux of ~nd must now be downward in­
side the loop, to oppose the decrease in <PB , as shown in Fig. 
30-Sb. Thus'~nd and E are now in the same direction. 

In Figs. 30-Sc and d, the south pole of the magnet ap­
proaches and retreats from the loop, respectively. 

The induced 
current creates 
this field, trying 
to offset the 
change. 

The fingers are 
in the current's 
direction; the 
thumb is in the 
induced field's 
direction. 

Increasing the external 
field Binduces a current 
with a field arnd that 
opposes the change. 

cf~ 
, I 

Ii 
v 
(a) 

Decreasing the external 
field Binduces a current 
with a field arnd that 
opposes the change. 

(b) 

LENZ'S LAW 795 

CHECKPOINT 2 

The figure shows three situations in which identical circular con­
ducting loops are in uniform magnetic fields that are either in­
creasing (Inc) or decreasing (Dec) in magnitude at identical 
rates. In each, the dashed line coincides with a diameter. Rank 
the situations according to the magnitude of the current in­
duced in the loops, greatest first. 

• • • • • • x x x x x x • • • • • • 

. . . . . . . . . . . . . . . . . . 
(a) 

Increasing the external 
field Binduces a current 
with a field arnd that 
opposes the change. 

(e) 

(b) (e) 

Decreasing the external 
field Binduces a current 
with a field arnd that 
opposes the change. 

(d) 

Fig. 30-5 The direction of the current i induced in a loop is such that the current's magnetic field ~nd opposes the change in the 
magnetic field lJ inducing i. The field ~nd is always directed opposite an increasing field lJ (a, c) and in the same direction as a decreasing 
field lJ (b, d). TIle curled-straight right-hand rule gives the direction of the induced current based on the direction of the induced field. 
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Induced emf and current due to a changing uniform B field 

Figure 30-6 shows a conducting loop consisting of a half-circle 
of radius r = 0.20 m and three straight sections. The half­
circle lies in a uniform magnetic field B that is directed out 
of the page; the field magnitude is given by B = 4.0t2 + 
2.Ot + 3.0, with B in teslas and t in seconds. An ideal battery 
with emf'i8bat = 2.0 V is connected to the loop. The resistance 
of the loop is 2.0 n. 

(a) What are the magnitUde and direction of the emf'i8 ind 

induced around the loop by field B at t = 10 s? 

1. According to Faraday's law, the magnitude of 'i8 ind is 
equal to the rate dCPBldt at which the magnetic flux 
through the loop changes. 

2. The flux through the loop depends on how much of the 
loop's area lies within the flux and how the area is ori­
ented in the magnetic field B. 

3. Because B is uniform and is perpendicular to the plane of 
the loop, the flux is given by Eq. 30-2 (CPB = BA). (We 
don't need to integrate B over the area to get the fiux.) 

4. The induced field Bind (due to the induced current) must 
always oppose the change in the magnetic flux. 

Magnitude: Using Eq. 30-2 and realizing that only the field 
magnitude B changes in time (not the area A), we rewrite 
Faraday's law, Eq. 30-4, as 

'i8. = dCPB = d(BA) = A dB 
md dt dt dt . 

Because the flux penetrates the loop only within the half­
circle, the area A in this equation is 11Tr2. Substituting this 
and the given expression for B yields 

_ dB _ 1Tr2 ~ 2 
'i8 ind - A dt - 2 dt (4.0t + 2.Ot + 3.0) 

1Tr2 
= -2- (S.Ot + 2.0). 

-1'------
1/2 

i.!:=::::fF,:====::1J~ - + 
1!bat 

Fig. 30-6 A battery is connected to a conducting loop that includes 
a half-circle of radius r lying in a uniform magnetic field. The field is di­
rected out of the page; its magnitude is ·changing. 

At t = 10 s, then, 

1T (0.20 m)2 
'i8ind = 2 [S.0(10) + 2.0] 

= 5.152 V = 5.2 V. (Answer) 

Direction: To find the direction of 'i8ind, we first note that in 
Fig. 30-6 the flux through the loop is out of the page and in­
creasing. Because the induced field Bind (due to the induced 
current) must oppose that increase, it must be into the page. 
Using the curled-straight right-hand rule (Fig. 30-5c), we find 
that the induced current is clockwise around the loop, and 
thus so is the induced emf'i8ind• 

(b) What is the current in the loop at t = 10 s? 

The point here is that two emfs tend to move charges 
around the loop. 

Calculation: The induced emf 'i8 ind tends to drive a current 
clockwise around the loop; the battery's emf 'i8 bat tends to 
drive a current counterclockwise. Because 'i8 ind is greater 
than 'i8 bat, the net emf 'i8 net is clockwise, and thus so is the cur­
rent. To find the current at t = 10 s, we use Eq. 27-2 (i = 'i8IR): 

. 'i8 net 'i8 ind - 'i8 bat 1=--= 
R R 

5.152 V - 2.0 V = 1 5 A = 1 6 A 
2.0n . S .. (Answer) 

Induced emf due to a changing nonuniform B field 

Figure 30-7 shows a rectangular loop of wire immersed in 
a nonuniform and varying magnetic field B that is perpen­
dicular to and directed into the page. The field's magni­
tude is given by B = 4t2x2

, with B in teslas, t in seconds, 

and x in meters. (Note that the function depends on both 
time and position.) The loop has width W = 3.0 m and 
height H = 2.0 m. What are the magnitude and direction 
of the induced emf'i8 around the loop at t = 0.10 s? 



1. Because the magnitude of the magnetic field Jj is chang­
ing with time, the magnetic flux ¢B through the loop is 
also changing. 

2. The changing flux induces an emf 18 in the loop according 
to Faraday's law, which we can write as 18 = d¢Bldt. 
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any time t: 

18 = d¢B = d(nt
2

) = 144t, 
dt dt 

in which 18 is in volts. At t = 0.10 s, 

18 = (144 V/s)(0.10 s) = 14 V. (Answer) 

3. To use that law, we need an expression for the flux ¢B 
at any time t. However, because B is not uniform over 
the area enclosed by the loop, we cannot use Eq. 30-2 
(¢B = BA) to find that expression; instead we must use 
Eq. 30-1 (¢B = J jJ. dA). 

Calculations: In Fig. 30-7, Jj is perpendicular to the plane 
of the loop (and hence parallel to the differential area 
vector dA); so the dot product in Eq. 30-1 gives B dA. 
Because the magnetic field varies with the coordinate x but 
not with the coordinate y, we can take the differential area 
dA to be the area of a vertical strip of height H and width dx 
(as shown in Fig. 30-7). Then dA = H dx, and the flux 
through the loop is 

The flux of Jj through the loop is into the page in Fig. 
30-7 and is increasing in magnitude because B is increasing in 
magnitude with time. By Lenz's law, the field Bind of the in­
duced current opposes this increase and so is directed out of 
the page. The curled-straight right-hand rule in Fig. 30-Sa 
then tells us that the induced current is counterclockwise 
around the loop, and thus so is the induced emf 18. 

¢B = f B'dA = f BdA = f BHdx = f 4t2x2Hdx. 

If the field varies with position, 
we must integrate to get the 
flux through the loop. 

y 

I J-dA 
I s 

H I 0-. a B 

We start with a strip 

Treating t as a constant for this integration and inserting the 
integration limits x = 0 and x = 3.0 m, we obtain 1 

I 
I 

o thin that we can 
pproximate the field as 
eing uniform within it. b 

->0 J..-dx 
x 

W ' I 

¢B = 4t2H f'O x 2 dx = 4t2H [ ~ IO = nt2
, 

where we have substituted H = 2.0 m and ¢B is in webers. 
Now we can use Faraday's law to find the magnitude of 18 at 

Fig. 30-7 A closed conducting loop, of width Wand height H, 
lies in a nonuniform, varying magnetic field that points directly into 
the page. To apply Faraday's law, we use the vertical strip of height 
H, width dx, and area dA. 

irus Additional examples, video, and practice available at WileyPLUS 

Induction and Energy Transfers 
By Lenz's law, whether you move the magnet toward or away from the loop in 
Fig. 30-1, a magnetic force resists the motion, requiring your applied force to do 
positive work. At the same time, thermal energy is produced in the material of 
the loop because of the material's electrical resistance to the current that is 
induced by the motion. The energy you transfer to the closed loop + magnet sys­
tem via your applied force ends up in this thermal energy. (For now, we neglect 
energy that is radiated away from the loop as electromagnetic waves during the 
induction.) The faster you move the magnet, the more rapidly your applied force 
does work and the greater the rate at which your energy is transferred to thermal 
energy in the loop; that is, the power of the transfer is greater. 

Regardless of how current is induced in a loop, energy is always transferred 
to thermal energy during the process because of the electrical resistance of the 
loop (unless the loop is superconducting). For example, in Fig. 30-2, when switch 
S is closed and a current is briefly induced in the left-hand loop, energy is trans­
ferred from the battery to thermal energy in that loop. 
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Fig. 30-8 You pull a closed conducting loop out of a magnetic field at constant 
velocity v. While the loop is moving, a clockwise current i is induce1 i~the lo~, and 
the loop segments still within the magnetic field experience forces FI , F2, and F3• 

Figure 30-8 shows another situation involving induced current. A rectan­
gular loop of wire of width L has one end in a uniform external magnetic 
field that is directed perpendicularly into the plane of the loop. This field 
may be produced, for example, by a large electromagnet. The dashed lines in 
Fig. 30-8 show the assumed limits of the magnetic field; the fringing of the 
field at its edges is neglected. You are to pull this loop to the right at a con­
stant velocity v. 

The situation of Fig. 30-8 does not differ in any essential way from that of 
Fig. 30-1. In each case a magnetic field and a conducting loop are in relative 
motion; in each case the fiux of the field through the loop is changing with time. 
It is true that in Fig. 30-1 the fiux is changing because If is changing and in 
Fig. 30-8 the fiux is changing because the area of the loop still in the magnetic 
field is changing, but that difference is not important. The important difference 
between the two arrangements is that the arrangement of Fig. 30-8 makes calcu­
lations easier. Let us now calculate the rate at which you do mechanical work as 
you pull steadily on the loop in Fig. 30-8. 

As you will see, to pull the loop at a constant velocity V, you must apply 
a constant force F to the loop because a magnetic force of equal magnitude but 
opposite direction acts on the loop to oppose you. From Eq. 7-48, the rate at 
which you do work - that is, the power - is then 

P=Fv, (30-6) 

where F is the magnitude of your force. We wish to find an expression for P in 
terms of the magnitude B of the magnetic field and the characteristics of the 
loop-namely, its resistance R to current and its dimension L. 

As you move the loop to the right in Fig. 30-8, the portion of its area within 
the magnetic field decreases. Thus, the fiux through the loop also decreases and, 
according to Faraday's law, a current is produced in the loop. It is the presence of 
this current that causes the force that opposes your pull. 

To find the current, we first apply Faraday's law. When x is the length of the 
loop still in the magnetic field, the area of the loop still in the field is Lx. Then 
from Eq. 30-2, the magnitude of the fiux through the loop is 

<fiB = BA = BLx. (30-7) 

As x decreases, the fiux decreases. Faraday's law tells us that with this fiux 
decrease, an emf is induced in the loop. Dropping the minus sign in Eq. 30-4 and 
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using Eq. 30-7, we can write the magnitude of this emf as 

d¢B d dx 
18 = -- = - BLx = BL - = BLv 

dt dt dt' 
(30-8) 

in which we have replaced dxldtwith v, the speed at which the loop moves. 
Figure 30-9 shows the loop as a circuit: induced emf 18 is represented on the 

left, and the collective resistance R of the loop is represented on the right. 
The direction of the induced current i is obtained with a right-hand rule as in 
Fig. 30-5b for decreasing flux; applying the rule tells us that the current must be 
clockwise, and 18 must have the same direction. 

To find the magnitude of the induced current, we cannot apply the loop rule for 
potential differences in a circuit because, as you will see in Section 30-6, we cannot 
define a potential difference for an induced emf. However, we can apply the 
equation i = 181 R. With Eq. 30-8, this becomes 

. BLv 
l=~. (30-9) 

Because three segments of the loop in Fig. 30-8 carry this current through the 
magnetic field, sideways deflecting forces act on those segments. From Eq. 28-26 
we know that such a deflecting force is, in general notation, 

~ = iL X B. (30-10) 

In Fig. 30-8, the deflecting forces acting on the three segments of the loop are 
marked ~, l{, and K Note, however, that from the symmetry, forces l{ and IS 
are equal in magnitude and cancel. This leaves only force ~, which is directed 
opposite your force F on the loop and thus is the force opposing you. 
So,F = -Fl' 

Using Eq. 30-10 to obtain the magnitude of ~ and noting that the angle 
between lJ and the length vector L for the left segment is 90°, we write 

F = F1 = iLB sin 90° = iLB. (30-11) 

Substituting Eq. 30-9 for i in Eq. 30-11 then gives us 

B2L2v 
F=-R-' (30-12) 

Because B, L, and R are constants, the speed v at which you move the loop is con­
stant if the magnitude F of the force you apply to the loop is also constant. 

By substituting Eq. 30-12 into Eq. 30-6, we find the rate at which you do work 
on the loop as you pull it from the magnetic field: 

(rate of doing work). (30-13) 

To complete our analysis, let us find the rate at which thermal energy 
appears in the loop as you pull it along at constant speed. We calculate it from 
Eq.26-27, 

(30-14) 

Substituting for i from Eq. 30-9, we find 

p = (B~V yR = B2~2V2 (thermal energy rate), (30-15) 

which is exactly equal to the rate at which you are doing work on the loop 
(Eq. 30-13). Thus, the work that you do in pulling the loop through the magnetic 
field appears as thermal energy in the loop. 

R 

- i 

Fig. 30-9 A circuit diagram for the loop 
of Fig. 30-8 while the loop is moving. 
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Fig. 30-10 (a) As you pull a solid con­
ducting plate out of a magnetic field, eddy 
currents are induced in the plate. A typical 
loop of eddy current is shown. (b) A con­
ducting plate is allowed to swing like a pen­
dulum about a pivot and into a region of 
magnetic field. As it enters and leaves the 
field, eddy currents are induced in the 
plate. 

Pivot~ 

(a) (b) 

Suppose we replace the conducting loop of Fig. 30-8 with a solid conducting plate. 
If we then move the plate out of the magnetic field as we did the loop (Fig. 30-lOa), 
the relative motion of the field and the conductor again induces a current in the 
conductor. Thus, we again encounter an opposing force and must do work because 
of the induced current. With the plate, however, the conduction electrons making 
up the induced current do not follow one path as they do with the loop. Instead, the 
electrons swirl about within the plate as if they were caught in an eddy (whirlpool) 
of water. Such a current is called an eddy current and can be represented, as it is in 
Fig. 30-10a, as if it followed a single path. 

As with the conducting loop of Fig. 30-8, the current induced in the plate 
results in mechanical energy being dissipated as thermal energy. The dissipation 
is more apparent in the arrangement of Fig. 30-10b; a conducting plate, free to 
rotate about a pivot, is allowed to swing down through a magnetic field like 
a pendulum. Each time the plate enters and leaves the field, a portion of its 
mechanical energy is transferred to its thermal energy. After several swings, no 
mechanical energy remains and the warmed-up plate just hangs from its pivot. 

'" CHECKPOINT 3 
The figure shows four wire loops, with edge lengths of either L or 2L. All four loops 
will move through a region of uniform magnetic field JJ (directed out of the page) at 
the same constant velocity. Rank the four loops according to the maximum magnitude 
of the emf induced as they move through the field, greatest first. 

o 
a 

c 

Induced Electric Fields 

d 

,----------, ..... ' ~ 
, 'B , ..... ' , ' , ..... ' , ' , ..... ' __________ J 

Let us place a copper ring of radius r in a uniform external magnetic field, as in 
Fig. 30-11a. The field - neglecting fringing - fills a cylindrical volume of radius R. 
Suppose that we increase the strength of this field at a steady rate, perhaps by 
increasing-in an appropriate way-the current in the windings of the electro­
magnet that produces the field. The magnetic flux through the ring will then 
change at a steady rate and-by Faraday's law-an induced emf and thus an 
induced current will appear in the ring. From Lenz's law we can deduce that the 
direction of the induced current is counterclockwise in Fig. 30-11a. 

If there is a current in the copper ring, an electric field must be present along the 
ring because an electric field is needed to do the work of moving the conduction 
electrons. Moreover, the electric field must have been produced by the changing 



(a) 

(e) (d) 

Fig. 30-11 (a) If the magnetic field increases at a steady rate, a constant induced cur­
rent appears, as shown,in the copper ring of radius r.(b) An induced electric field exists 
even when the ring is removed; the electric field is shown at four points. (c) The complete 
picture of the induced electric field, displayed as field lines. (d) Four similar closed paths that 
enclose identical areas. Equal emfs are induced around paths 1 and 2, which lie entirely within 
the region of changing magnetic field. A smaller emf is induced around path 3, which only 
partially lies in that region. No net emf is induced around path 4, which lies entirely outside 
the magnetic field. 

magnetic flux. This induced electric field E is just as real as an electric field produced 
by static charges; either field will exert a force qoE on a particle of charge qo. 

By this line of reasoning, we are led to a useful and informative restatement 
of Faraday's law of induction: 

A changing magnetic field produces an electric field. 

The striking feature of this statement is that the electric field is induced even if 
there is no copper ring. Thus, the electric field would appear even if the changing 
magnetic field were in a vacuum. 

To fix these ideas, consider Fig. 30-11b, which is just like Fig. 30-11a except 
the copper ring has been replaced by a hypothetical circular path of radius r. We 
assume, as previously, that the magnetic field Jj is increasing in magnitude at 
a constant rate dB/dt. The electric field induced at various points around the 
circular path must-from the symmetry-be tangent to the circle, as Fig. 30-11b 
shows. * Hence, the circular path is an electric field line. There is nothing special 
about the circle of radius r, so the electric field lines produced by the changing 
magnetic field must be a set of concentric circles, as in Fig. 30-11c. 

As long as the magnetic field is increasing with time, the electric field repre­
sented by the circular field lines in Fig. 30-11c will be present. If the magnetic field 
remains constant with time, there will be no induced electric field and thus no 
electric field lines. If the magnetic field is decreasing with time (at a constant 

* Arguments of symmetry would also permit the lines of jf around the circular path to be radial, 
rather than tangential. However, such radial lines would imply that there are free charges, distributed 
symmetrically about the axis of symmetry, on which the electric field lines could begin or end; there 
are no such charges. 

INDUCED ELECTRIC FIELDS 801 
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rate), the electric field lines will still be concentric circles as in Fig. 30-11e, but 
they will now have the opposite direction. All this is what we have in mind when 
we say "A changing magnetic field produces an electric field." 

Consider a particle of charge qo moving around the circular path of Fig. 30-11b. 
The work W done on it in one revolution by the induced electric field is W = 'f!,qo, 
where'f!, is the induced emf - that is, the work done per unit charge in moving the 
test charge around the path. From another point of view, the work is 

W = J p. ds = (qoE)(2m), (30-16) 

where qoE is the magnitude of the force acting on the test charge and 2m is the 
distance over which that force acts. Setting these two expressions for Wequal to 
each other and canceling qo, we find that 

'f!, = 2mE. (30-17) 

Next we rewrite Eq. 30-16 to give a more general expression for the work 
done on a particle of charge qo moving along any closed path: 

W = f p. ds = qo f if· ds. (30-18) 

(The loop on each integral sign indicates that the integral is to be taken around 
the closed path.) Substituting 'f!,qo for W, we find that 

'f!, = f if· ds. (30-19) 

This integral reduces at once to Eq. 30-17 if we evaluate it for the special case of 
Fig.30-11b. 

With Eq. 30-19, we can expand the meaning of induced emf. Up to this point, 
induced emf has meant the work per unit charge done in maintaining current due 
to a changing magnetic flux, or it has meant the work done per unit charge on 
a charged particle that moves around a closed path in a changing magnetic flux. 
However, with Fig. 30-11b and Eq. 30-19, an induced emf can exist without the 
need of a current or particle: An induced emf is the sum-via integration-of 
quantities if· ds around a closed path, where if is the electric field induced by 
a changing magnetic flux and ds is a differential length vector along the path. 

If we combine Eq. 30-19 with Faraday's law in Eq. 30-4 ('f!, = -d<PBldt), we 
can rewrite Faraday's law as 

(Faraday's law). (30-20) 

This equation says simply that a changing magnetic field induces an electric field. 
The changing magnetic field appears on the right side of this equation, the elec­
tric field on the left. 

Faraday's law in the form of Eq. 30-20 can be applied to any closed path that 
can be drawn in a changing magnetic field. Figure 30-11d, for example, shows four 
such paths, all having the same shape and area but located in different positions 
in the changing field. The induced emfs 'f!, (= p if· ds) for paths 1 and 2 are equal 
because these paths lie entirely in the magnetic field and thus have the same 
value of d<PBldt. This is true even though the electric field vectors at points along 
these paths are different, as indicated by the patterns of electric field lines in the 
figure. For path 3 the induced emf is smaller because the enclosed flux <PB (hence 
d<PBldt) is smaller, and for path 4 the induced emf is zero even though the electric 
field is not zero at any point on the path. 
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A 
Induced electric fields are produced not by static charges but by a changing mag­
netic flux. Although electric fields produced in either way exert forces on charged 
particles, there is an important difference between them. The simplest evidence 
of this difference is that the field lines of induced electric fields form closed loops, 
as in Fig. 30-11e. Field lines produced by static charges never do so but must start 
on positive charges and end on negative charges. 

In a more formal sense, we can state the difference between electric fields 
produced by induction and those produced by static charges in these words: 

Electric potential has meaning only for electric fields that are produced by static 
charges; it has no meaning for electric fields that are produced by induction. 

You can understand this statement qualitatively by considering what happens 
to a charged particle that makes a single journey around the circular path in 
Fig. 30-11b. It starts at a certain point and, on its return to that same point, has 
experienced an emf'(g of, let us say, 5 V; that is, work of 5 J/C has been done on the 
particle, and thus the particle should then be at a point that is 5 V greater in 
potential. However, that is impossible because the particle is back at the same 
point, which cannot have two different values of potential. Thus, potential has no 
meaning for electric fields that are set up by changing magnetic fields. 

We can take a more formal look by recalling Eq. 24-18, which defines the 
potential difference between two points i and fin an electric field E: 

If -> 

Vf - Vi = - i E·df. (30-21) 

In Chapter 24 we had not yet encountered Faraday's law of induction; so the elec­
tric fields involved in the derivation of Eq. 24-18 were those due to static charges. 
If i and fin Eq. 30-21 are the same point, the path connecting them is a closed 
loop, Vi and Vf are identical, and Eq. 30-21 reduces to 

f E· df = O. (30-22) 

However, when a changing magnetic flux is present, this integral is not zero but is 
-diPBldt, as Eq. 30-20 asserts. Thus, assigning electric potential to an induced 
electric field leads us to a contradiction. We must conclude that electric potential 
has no meaning for electric fields associated with induction. 

CHECKPOINT 4 

The figure shows five lettered regions in which a uniform magnetic field extends either directly 
out of the page or into the page, with the direction indicated only for region a. The field is in­
creasing in magnitude at the same steady rate in all five regions; the regions are identical in 
area. Also shown are four numbered paths along which ~ B· dS' has the magnitudes given be­
low in telms of a quantity "mag." Determine whether the magnetic field is directed into or out 
of the page for regions b through e. 

Path 1 

~ B'dS' mag 

3 

2 

2(mag) 

3 4 
3(mag) o 
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Induced electric field due to changing B field, inside and outside 

In Fig. 30-11b, take R = 8.5 cm and dBldt = 0.13 Tis. 

(a) Find an expression for the magnitude E of the induced 
electric field at points within the magnetic field, at radius r 
from the center of the magnetic field. Evaluate the expres­
sion for r = 5.2 cm. 

An electric field is induced by the changing magnetic field, 
according to Faraday's law. 

Calculations: To calculate the field magnitude E, we ap­
ply Faraday's law in the form of Eq. 30-20. We use a circu­
lar path of integration with radius r :::; R because we want 
E for points within the magnetic field. We assume from the 
symmetry that E in Fig. 30-11b is tangent to the circular 
path at all points. The path vector d-s is also always tangent 
to the circular path; so the dot product E· d-s in Eq. 30-20 
must have the magnitude E ds at all points on the path. We 
can also assume from the symmetry that E has the same 
value at all points along the circular path. Then the left side 
of Eq. 30-20 becomes 

f E· d-s = f E ds = E f ds = E(21Tr). (30-23) 

(The integral p ds is the circumference 27Tf of the circular 
path.) 

Next, we need to evaluate the right side of Eq. 30-20. 
Because B is uniform over the area A encircled by the path 
of integration and is directed perpendicular to that area, the 
magnetic flux is given by Eq. 30-2: 

(30-24) 

Substituting this and Eq. 30-23 into Eq. 30-20 and dropping 
the minus sign, we find that 

01' 

dB 
E(27Tf) = (7Tf2) dt 

E =~ dB 
2 dt' 

(Answer) (30-25) 

Equation 30-25 gives the magnitude of the electric field at 
any point for which r :::; R (that is, within the magnetic field). 
Substituting given values yields, for the magnitude of E at 
r = 5.2 cm, 

E = (5.2 X 10 -2 m) (1 I ) 
2 O. 3 Ts 

= 0.0034 Vim = 3.4 mV/m. (Answer) 

(b) Find an expression for the magnitude E of the induced 
electric field at points that are outside the magnetic field, at 
radius r from the center of the magnetic field. Evaluate the ex­
pression for r = 12.5 cm. 

Here again an electric field is induced by the changing mag­
netic field, according to Faraday's law, except that now we 
use a circular path of integration with radius r ;::::: R because 
we want to evaluate E for points outside the magnetic field. 
Proceeding as in (a), we again obtain Eq. 30-23. However, 
we do not then obtain Eq. 30-24 because the new path of in­
tegration is now outside the magnetic field, and so the mag­
netic flux encircled by the new path is only that in the area 
1TR2 of the magnetic field region. 

Calculations: We can now write 

(30-26) 

Substituting this and Eq. 30-23 into Eq. 30-20 (without the 
minus sign) and solving for E yield 

R2 dB 
E = --. (Answer) (30-27) 

2r dt 

Because E is not zero here, we know that an electric field is 
induced even at points that are outside the changing mag­
netic field, an important result that (as you will see in 
Section 31-11) makes transformers possible. 

With the given data, Eq. 30-27 yields the magnitude of 
It at r = 12.5 cm: 

(8.5 X 10 -2 m)2 
E = (2)(12.5 X 10-2 m) (0.13 Tis) 

= 3.8 X 10-3 Vim = 3.8 mV/m. (Answer) 

Equations 30-25 and 30-27 give the same result for 
r = R. Figure 30-12 shows a plot of E(r). Note that the inside 
and outside plots meet at r = R. 

00 10 20 30 40 
r (em) 

Fig. 30-12 A plot of the induced electric field E(/'). 

ifus Additional examples, video, and practice available at WileyPLUS 
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Inductors and Inductance 
We found in Chapter 25 that a capacitor can be used to produce a desired electric 
field. We considered the parallel-plate arrangement as a basic type of capacitor. 
Similarly, an inductor (symbol Jl®l6) can be used to produce a desired magnetic 
field. We shall consider a long solenoid (more specifically, a short length near the 
middle of a long solenoid) as our basic type of inductor. 

If we establish a current i in the windings (turns) of the solenoid we are 
taking as our inductor, the current produces a magnetic flux <PB through the 
central region of the inductor. The inductance of the inductor is then 

L = N<PB 
i 

(inductance defined), (30-28) 

in which N is the number of turns. The windings of the inductor are said to be 
linked by the shared flux, and the product N<p B is called the magnetic flux linkage. 
The inductance L is thus a measure of the flux linkage produced by the inductor 
per unit of current. 

Because the SI unit of magnetic flux is the tesla -square meter, the SI unit of 
inductance is the tesla-square meter per ampere (T·m2/A). We call this the 
henry (H), after American physicist Joseph Henry, the codiscoverer of the law of 
induction and a contemporary of Faraday. Thus, 

1henry=lH=1 T·m2/A. (30-29) 

Through the rest of this chapter we assume that all inductors, no matter what 
their geometric arrangement, have no magnetic materials such as iron in their 
vicinity. Such materials would distort the magnetic field of an inductor. 

Consider a long solenoid of cross-sectional area A. What is the inductance per unit 
length near its middle? To use the defining equation for inductance (Eq. 30-28), we 
must calculate the flux linkage set up by a given current in the solenoid windings. 
Consider a length I near the middle of this solenoid. The flux linkage there is 

N<PB = (nl)(BA), 

in which n is the number of turns per unit length of the solenoid and B is the 
magnitude of the magnetic field within the solenoid. 

The magnitude B is given by Eq. 29-23, 

B = f-toin, 
and so from Eq. 30-28, 

L = N<PB = (nl)(BA) 
i 

= f-to n2IA. 

(nl)(f-to in )(A) 

Thus, the inductance per unit length near the center of a long solenoid is 

(solenoid). 

(30-30) 

(30-31) 

Inductance-like capacitance-depends only on the geometry of the device. 
The dependence on the square of the number of turns per unit length is to be 
expected. If you, say, triple n, you not only triple the number of turns (N) but you 
also triple the flux (<ps = BA = f-toinA) through each turn, multiplying the flux 
linkage N<Ps and thus the inductance L by a factor of 9. 

The crude inductors with which Michael 
Faraday discovered the law of induction. In 
those days amenities such as insulated wire 
were not commercially available. It is said 
that Faraday insulated his wires by wrap­
ping them with strips cut from one of his 
wife's petticoats. (The Royal 
Institution/Bridgeman Art Library/NY) 
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Fig. 30-1 3 If the current in a coil is 
changed by varying the contact position on 
a variable resistor, a self-induced emf '(g L 

will appear in the coil while the current is 
changing. 

If the solenoid is very much longer than its radius, then Eq. 30-30 gives its 
inductance to a good approximation. This approximation neglects the spreading 
of the magnetic field lines near the ends of the solenoid, just as the parallel-plate 
capacitor formula (C = soAld) neglects the fringing of the electric field lines near 
the edges of the capacitor plates. 

From Eq. 30-30, and recalling that n is a number per unit length, we can see 
that an inductance can be written as a product of the permeability constant fLo 
and a quantity with the dimensions of a length. This means that fLo can be ex­
pressed in the unit henry per meter: 

Self·lnduction 

flo = 47T X 1O-7 T'm/A 

= 47T X 10-7 Him. (30-32) 

If two coils-which we can now call inductors-are near each other, a current i 
in one coil produces a magnetic flux <PB through the second coil. We have seen that if 
we change this flux by changing the current, an induced emf appears in the second 
coil according to Faraday's law. An induced emf appears in the first coil as well. 

An induced emf '(g L appears in any coil in which the current is changing. 

This process (see Fig. 30-13) is called self-induction, and the emf that appears is 
called a self-induced emf. It obeys Faraday's law of induction just as other 
induced emfs do. 

For any inductor, Eq. 30-28 tells us that 

N<PB = Li. (30-33) 

Faraday's law tells us that 

CJ? __ d(N<PB) 
CoL - dt' (30-34) 

By combining Eqs. 30-33 and 30-34 we can write 

~ = -L!!i. 
L dt (self-induced emf). (30-35) 

Thus, in any inductor (such as a coil, a solenoid, or a toroid) a self-induced emf 
appears whenever the current changes with time. The magnitude of the current 
has no influence on the magnitude of the induced emf; only the rate of change of 
the current counts. 

You can find the direction of a self-induced emf from Lenz's law. The minus 
sign in Eq. 30-35 indicates that-as the law states-the self-induced emf ~L has 
the orientation such that it opposes the change in current i. We can drop the 
minus sign when we want only the magnitude of~L-

Suppose that, as in Fig. 30-14a, you set up a current i in a coil and arrange to 
have the current increase with time at a rate dildt. In the language of Lenz's law, 
this increase in the current is the "change" that the self-induction must oppose. For 
such opposition to occur, a self-induced emf must appear in the coil, pointing-as 
the figure shows-so as to oppose the increase in the current. If you cause the cur­
rent to decrease with time, as in Fig. 30-14b, the self-induced emf must point in a 
direction that tends to oppose the decrease in the current, as the figure shows. In 
both cases, the emf attempts to maintain the initial condition. 

In Section 30-6 we saw that we cannot define an electric potential for an 
electric field (and thus for an emf) that is induced by a changing magnetic flux. 



This means that when a self-induced emf is produced in the inductor of Fig. 30-13, 
we cannot define an electric potential within the inductor itself, where the flux 
is changing. However, potentials can still be defined at points of the circuit that 
are not within the inductor-points where the electric fields are due to charge 
distributions and their associated electric potentials. 

Moreover, we can define a self-induced potential difference VL across an 
inductor (between its terminals, which we assume to be outside the region of 
changing flux). For an ideal inductor (its wire has negligible resistance), the mag­
nitude of VL is equal to the magnitude of the self-induced emf~L' 

If, instead, the wire in the inductor has resistance r, we mentally separate the 
inductor into a resistance r (which we take to be outside the region of changing 
flux) and an ideal inductor of self-induced emf ~L- As with a real battery of emf 
~ and internal resistance r, the potential difference across the terminals of a real 
inductor then differs from the emf. Unless otherwise indicated, we assume here 
that inductors are ideal. 

CHECKPOINT 5 

The figure shows an emf W, L induced in a coil. Which of 
the following can describe the current through the coil: (a) 
constant and rightward, (b) constant and leftward, (c) in­
creasing and rightward, (d) decreasing and rightward, 
(e) increasing and leftward, (f) decreasing and leftward? 

RL Circuits 
In Section 27-9 we saw that if we suddenly introduce an emf ~ into a single-loop 
circuit containing a resistor R and a capacitor C, the charge on the capacitor does 
not build up immediately to its final equilibrium value C~ but approaches it in an 
exponential fashion: 

(30-36) 

The rate at which the charge builds up is determined by the capacitive time 
constant Te, defined in Eq. 27-36 as 

Te = RC. (30-37) 

If we suddenly remove the emf from this same circuit, the charge does not 
immediately fall to zero but approaches zero in an exponential fashion: 

(30-38) 

The time constant Te describes the fall of the charge as well as its rise. 
An analogous slowing of the rise (or fall) of the current occurs if we introduce 

an emf ~ into (or remove it from) a single-loop circuit containing a resistor Rand 
an inductor L. When the switch S in Fig. 30-15 is closed on a, for example, the cur­
rent in the resistor starts to rise. If the inductor were not present, the current 
would rise rapidly to a steady value ~/R. Because of the inductor, however, a self­
induced emf '(g L appears in the circuit; from Lenz's law, this emf opposes the rise of 
the current, which means that it opposes the battery emf ~ in polarity. Thus, the 
current in the resistor responds to the difference between two emfs, a constant ~ 
due to the battery and a variable ~L (= - L dildt) due to self-induction. As long as 
'(g L is present, the current will be less than ~/R. 

As time goes on, the rate at which the current increases becomes less rapid 
and the magnitude of the self-induced emf, which is proportional to dildt, 
becomes smaller. Thus, the current in the circuit approaches '(gIR asymptotically. 
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i (increasing) 

o-----==----------'1 
~icgI' 
~-I L 

The changing 
0>------....1 current changes 

(a) the flux, which 

i (decreasing) 
0>-----"------, 

1 
~ o 

(b) 

creates an emf 
that opposes 
the change. 

Fig.30-14 (a) The currenti is increasing, 
and the self-induced emfW,L appears along 
the coil in a direction such that it opposes 
the increase. The arrow representing W, L can 
be drawn along a turn of the coil or along­
side the coil. Both are shown. (b) The cur­
rent i is decreasing, and the self-induced emf 
appears in a direction such that it opposes 
the decrease, 

Fig. 30-15 An RL circuit. When switch 
S is closed on a, the current rises and ap­
proaches a limiting value W,/R. 
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x t----'\IV\.N\r--... 

~-------~z 

Fig.30-16 The circuit of Fig. 30-15 
with the switch closed on a. We apply 
the loop rule for the circuit clockwise, 
starting at x. 

We can generalize these results as follows: 

Initially, an inductor acts to oppose changes in the current through it. A long time 
later, it acts like ordinary connecting wire. 

Now let us analyze the situation quantitatively. With the switch S in Fig. 30-15 
thrown to a, the circuit is equivalent to that of Fig. 30-16. Let us apply the loop 
rule, starting at point x in this figure and moving clockwise around the loop along 
with current i. 

1. Resistor. Because we move through the resistor in the direction of current i, 
the electric potential decreases by iR. Thus, as we move from point x to 
point y, we encounter a potential change of - iR. 

2. Inductor. Because current i is changing, there is a self-induced emf ~L in the 
inductor. The magnitude of~L is given by Eq. 30-35 as L di/dt. The direction of 
~ L is upward in Fig. 30-16 because current i is downward through the inductor 
and increasing. Thus, as we move from point y to point z, opposite the direc­
tion of~L' we encounter a potential change of - L di/dt. 

3. Battery. As we move from point z back to starting point x, we encounter a 
potential change of +~ due to the battery's emf. 

Thus, the loop rule gives us 

or 

-iR 

L di R' CP -+ 7= (!) 

dt 
(RL circuit). (30-39) 

Equation 30-39 is a differential equation involving the variable i and its first 
derivative dildt. To solve it, we seek the function i(t) such that when i(t) and its 
first derivative are substituted in Eq. 30-39, the equation is satisfied and the initial 
condition i(O) = 0 is satisfied. 

Equation 30-39 and its initial condition are of exactly the form of Eq. 27-32 
for an RC circuit, with i replacing q, L replacing R, and R replacing lie. The solu­
tion of Eq. 30-39 must then be of exactly the form of Eq. 27-33 with the same 
replacements. That solution is 

(30-40) 

which we can rewrite as 

(rise of current). (30-41) 

Here Tv the indnctive time constant, is given by 

L 
TL = Ii" (time constant). (30-42) 

Let's examine Eq. 30-41 for just after the switch is closed (at time t = 0) 
and for a time long after the switch is closed (t ~ (0). If we substitute t = 0 into 
Eq. 30-41, the exponential becomes e-o = 1. Thus, Eq. 30-41 tells us that the cur­
rent is initially i = 0, as we expected. Next, if we let t go to 00, then the exponen­
tial goes to e-OO = O. Thus, Eq. 30-41 tells us that the current goes to its equilib­
rium value of~/R. 

We can also examine the potential differences in the circuit. For example, Fig. 
30-17 shows how the potential differences VR (= iR) across the resistor and 



V L (= L di/dt) across the inductor vary with time for particular values of '&, L, 
and R. Compare this figure carefully with the corresponding figure for an RC 
circuit (Fig. 27-16). 

To show that the quantity 7L (= LlR) has the dimension of time, we convert 
from henries per ohm as follows: 

1!!=1!!( IV·s )(10.A)=1 o 0 IH·A 1 V s. 

The first quantity in parentheses is a conversion factor based on Eq. 30-35, and 
the second one is a conversion factor based on the relation V = iR. 

The physical significance of the time constant follows from Eq. 30-41. If we 
put t = 7L = LI R in this equation, it reduces to 

. - '& (1 -1) - 0 63 '& I-Ii - e -. Ii' (30-43) 

Thus, the time constant 7L is the time it takes the current in the circuit to reach 
about 63% of its final equilibrium value ,&/R. Since the potential difference VR 

across the resistor is proportional to the current i, a graph of the increasing 
current versus time has the same shape as that of V R in Fig. 30-17 a. 

If the switch S in Fig. 30-15 is closed on a long enough for the equilibrium 
current ,&/R to be established and then is thrown to b, the effect will be to remove 
the battery from the circuit. (The connection to b must actually be made an 
instant before the connection to a is broken. A switch that does this is called a 
make-before-break switch.) With the battery gone, the current through the resis­
tor will decrease. However, it cannot drop immediately to zero but must decay to 
zero over time. The differential equation that governs the decay can be found by 
putting'& = 0 in Eq. 30-39: 

di . Ldi + IR = O. (30-44) 

By analogy with Eqs. 27-38 and 27-39, the solution of this differential equation 
that satisfies the initial condition i(O) = io = ,&/R is 

(decay of current). (30-45) 

We see that both current rise (Eq. 30-41) and current decay (Eq. 30-45) in an RL 
circuit are governed by the same inductive time constant, 7L' 

We have used io in Eq. 30-45 to represent the current at time t = O. In our 
case that happened to be '&/ R, but it could be any other initial value. 

"CHECKPOINT 6 
The figure shows three circuits with identical batteries, inductors, and resistors. Rank 
the circuits according to the current through the battery (a) just after the switch is 
closed and (b) a long time later, greatest first. (If you have trouble here, work through 
the next sample problem and then try again.) 

(1) (2) (3) 

10 
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The resistor's potential 
difference turns on. 
The inductor's potential 
difference turns off. 

~ ~-
~4 

2 

o 2 4 6 8 
l(ms) 

(a) 

o 2 4 6 8 
t(ms) 

(b) 

Fig. 30-17 The variation with time of 
(a) VR , the potential difference across the 
resistor in the circuit of Fig. 30-16, and (b) 
VL , the potential difference across the in­
ductor in that circuit. The small triangles 
represent successive intervals of one induc­
tive time constant TL = LlR. The figure is 
plotted for R = 2000,0., L = 4.0 H, and 
'g=lOV. 
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RL circuit, immediately after switching and after a long time 

Figure 30-18a shows a circuit that contains three identical 
resistors with resistance R = 9.0 D, two identical inductors 
with inductance L = 2.0 mR, and an ideal battery with emf 
% = 18 V. 

(a) What is the current i through the battery just after the 
switch is closed? 

Just after the switch is closed, the inductor acts to oppose a 
change in the current through it. 

Calculations: Because the current through each inductor is 
zero before the switch is closed, it will also be zero just after­
ward. Thus, immediately after the switch is closed, the induc­
tors act as broken wires, as indicated in Fig. 30-18b. We then 
have a single-loop circuit for which the loop rule gives us 

% - iR = O. 

Substituting given data, we find that 

. = .-.! = 18 V = 2 0 A 
1 R 9.0D . . (Answer) 

(b) What is the current i through the battery long after the 
switch has been closed? 

Long after the switch has been closed, the currents in the cir­
cuit have reached their equilibrium values, and the inductors 
act as simple connecting wires, as indicated in Fig. 30-18c. 

(a) 

R 
+ 

R 

R 

(c) 
Long later, it acts 
like ordinary wire. 

+ 

(b) 

R 

R 

Initially, an inductor 
acts like broken wire. 

+ 
R/3 

(d) 

Fig.30-18 (a) A multiloop RL circuit with an open switch. (b) 
The equivalent circuit just after the switch has been closed. (c) The 
equivalent circuit a long time later. (d) The single-loop circuit that 
is equivalent to circuit ( c). 

Calculations: We now have a circuit with three identical 
resistors in parallel; from Eq. 27-23, their equivalent resistance 
is Req = R/3 = (9.0 D)/3 = 3.0 D. The equivalent circuit shown 
in Fig. 30-18d then yields the loop equation % - iReq = 0, or 

% 18V 
i = - = 30 A = 6.0 A. (Answer) 

Req . H 

RL circuit, current during the transition 

A solenoid has an inductance of 53 mH and a resistance of 0.37 
n. If the solenoid is connected to a battery, how long will the 
current take to reach half its final equilibrium value? (This is a 
real solenoid because we are considering its small, but nonzero, 
intemal resistance.) 

We can mentally separate the solenoid into a resistance and 
an inductance that are wired in series with a battery, as in 
Fig. 30-16. Then application of the loop rule leads to 
Eq. 30-39, which has the solution of Eq. 30-41 for the current 
i in the circuit. 

Calculations: According to that solution, current i in­
creases exponentially from zero to its final equilibrium 
value of %/ R. Let to be the time that current i takes to reach 
half its equilibrium value. Then Eq. 30-41 gives us 

1 % % "2 Ii = Ii (1 - e-toITL). 

We solve for to by canceling %/R, isolating the exponential, 
and taking the natural logarithm of each side. We find 

L 53 X 1O-3 H 
to = TL In 2 = R In 2 = 0.37 D In 2 

= 0.10 s. (Answer) 

~rvs Additional examples, video, and practice available at WileyPLUS 
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10 Energy Stored in a Magnetic Field 
When we pull two charged particles of opposite signs away from each other, 
we say that the resulting electric potential energy is stored in the electric field 
of the particles. We get it back from the field by letting the particles move 
closer together again. In the same way we say energy is stored in a magnetic 
field, but now we deal with current instead of electric charges. 

To derive a quantitative expression for that stored energy, consider again 
Fig. 30-16, which shows a source of emf '(g connected to a resistor R and an induc­
tor L. Equation 30-39, restated here for convenience, 

di . 
'(g = L -d + ,R, (30-46) 

t 

is the differential equation that describes the growth of current in this circuit. 
Recall that this equation follows immediately from the loop rule and that the 
loop rule in turn is an expression of the principle of conservation of energy for 
single-loop circuits. If we multiply each side of Eq. 30-46 by i, we obtain 

di 
'(gi = Li- + i2R 

dt ' 
(30-47) 

which has the following physical interpretation in terms of the work done by the 
battery and the resulting energy transfers: 

1. If a differential amount of charge dq passes through the battery of emf '(g in 
Fig. 30-16 in time dt, the battery does work on it in the amount '(g dq. The 
rate at which the battery does work is ('(g dq)ldt, or '(gi. Thus, the left side of 
Eq. 30-47 represents the rate at which the emf device delivers energy to the 
rest of the circuit. 

2. The rightmost term in Eq. 30-47 represents the rate at which energy appears as 
thermal energy in the resistor. 

3. Energy that is delivered to the circuit but does not appear as thermal en­
ergy must, by the conservation-of-energy hypothesis, be stored in the mag­
netic field of the inductor. Because Eq. 30-47 represents the principle of 
conservation of energy for RL circuits, the middle term must represent the 
rate dUBldt at which magnetic potential energy UB is stored in the mag­
netic field. 

Thus 

We can write this as 

Integrating yields 

or 

dUB -L' di 
Tt- 'Tt· 

dUB = Li di. 

rUB {i 
Jo dUB = Jo Li di 

(magnetic energy), 

(30-48) 

(30-49) 

which represents the total energy stored by an inductor L carrying a current i. 
Note the similarity in form between this expression and the expression for the 
energy stored by a capacitor with capacitance C and charge q; namely, 

q2 
UE = 2C' (30-50) 

(The variable P corresponds to q2, and the constant L corresponds to lie.) 
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Energy stored in a magnetic field 

A coil has an inductance of 53 mH and a resistance of 
0.350. 

(a) If a 12 V emf is applied across the coil, how much en­
ergy is stored in the magnetic field after the current has built 
up to its equilibrium value? 

The energy stored in the magnetic field of a coil at any time 
depends on the current through the coil at that time, accord­
ing to Eq. 30-49 (UB = ~ Li2). 

Calculations: Thus, to find the energy UBoo stored at 
equilibrium, we must first find the equilibrium current. From 
Eq. 30-41, the equilibrium current is 

. 18 12V 
100 = Ii = 0.35 0 = 34.3 A. (30-51) 

Then substitution yields 

UBoo = ~Li~ = G)(53 X 10-3 H)(34.3 A)2 

= 31 J. (Answer) 

(b) After how many time constants will half this equilib­
rium energy be stored in the magnetic field? 

Calculations: Now we are being asked: At what time twill 
the relation 

be satisfied? Using Eq. 30-49 twice allows us to rewrite this 
energy condition as 

or (30-52) 

This equation tells us that, as the current increases from its ini­
tial value of 0 to its final value of i'fJ> the magnetic field will 
have half its final stored energy when the current has in­
creased to this value. In general, we know that i is given by Eq. 
30-41, and here ioo (see Eq. 30-51) is 18/R; so Eq. 30-52 becomes 

18 18 
-(1 - e- tirL) = --. 
R v2R 

By canceling 18/R and rearranging, we can write this as 

1 
e- tirL = 1 - -- = 0293 v2 . , 

which yields 

t 
- = -In 0.293 = 1.23 
'TL 

or t = 1.2'Tv (Answer) 

Thus, the energy stored in the magnetic field of the coil by 
the current will reach half its equilibrium value 1.2 time 
constants after the emf is applied. 

Ws Additional examples, video, and practice available at WileyPLUS 

Energy Density of a Magnetic Field 
Consider a length l near the middle of a long solenoid of cross-sectional area 
A carrying current i; the volume associated with this length is Al. The energy UB 

stored by the length l of the solenoid must lie entirely within this volume because 
the magnetic field outside such a solenoid is approximately zero. Moreover, 
the stored energy must be uniformly distributed within the solenoid because the 
magnetic field is (approximately) uniform everywhere inside. 

Thus, the energy stored per unit volume of the field is 

UB 
UB = At 

or, since 

we have 

LP L i2 

U ------
B - 2Al - l 2A' (30-53) 



Here L is the inductance of length I of the solenoid. 
Substituting for Lll from Eq. 30-31, we find 

_ 1 2'2 
UB - 'i!Lon 1 , (30-54) 

where n is the number of turns per unit length. From Eq. 29-23 (B = !Loin) we can 
write this energy density as 

(magnetic energy density). (30-55) 

This equation gives the density of stored energy at any point where the magni­
tude of the magnetic field is B. Even though we derived it by considering the 
special case of a solenoid, Eq. 30-55 holds for all magnetic fields, no matter how 
they are generated. The equation is comparable to Eq. 25-25, 

(30-56) 

which gives the energy density (in a vacuum) at any point in an electric field. 
Note that both UB and UE are proportional to the square of the appropriate field 
magnitude, B or E. 

'" CHECKPOINT 7 
The table lists the number of turns per unit length, current, and cross-sectional area 
for three solenoids. Rank the solenoids according to the magnetic energy density 
within them, greatest first. 

Thrnsper 
Solenoid Unit Length Current Area 

a 2nj ij 2Aj 

b nj 2ij Aj 

c nj ij 6A j 

1 Mutual Induction 
In this section we return to the case of two interacting coils, which we first dis­
cussed in Section 30-2, and we treat it in a somewhat more formal manner. We 
saw earlier that if two coils are close together as in Fig. 30-2, a steady current i in 
one coil will set up a magnetic flux <P through the other coil (linking the other 
coil). If we change i with time, an emf % given by Faraday's law appears in the sec­
ond coil; we called this process induction. We could better have called it mutual 
induction, to suggest the mutual interaction of the two coils and to distinguish it 
from self-induction, in which only one coil is involved. 

Let us look a little more quantitatively at mutual induction. Figure 30-19a 
shows two circular close-packed coils near each other and sharing a common 
central axis. With the variable resistor set at a particular resistance R, the battery 
produces a steady current i j in coil 1. This current creates a magnetic field repre­
sented by the lines of Bj in the figure. Coil 2 is connected to a sensitive meter but 
contains no battery; a magnetic flux <P21 (the flux through coil 2 associated with 
the current in coil 1) links the N2 turns of coil 2. 

We define the mutual inductance M21 of coil 2 with respect to coil 1 as 

N2<P21 
M21 = --=--="­

il 
(30-57) 

·1 MUTUAL INDUCTION 813 



814 CHA ER 30 INDUCTION AND INDUCTANCE 

Fig.30-19 Mutual induction. (a) The 
magnetic field Bj produced by current i j in 
coill extends through coil 2. If i j is varied 
(by varying resistance R), an emf is induced 
in coil 2 and current registers on the meter 
connected to coil 2. (b) The roles of the 
coils interchanged. 

, (~~\iv 
'----=fff I--·-~/ \ \ 

...-------:-i, ) 

Coill Coil 2 

(a) (b) 

which has the same form as Eq. 30-28, 

L = N¢/i, (30-58) 

the definition of inductance. We can recast Eq. 30-57 as 

M 21i1 = N2¢21' (30-59) 

If we cause i1 to vary with time by varying R, we have 

dil d¢21 
M21 dr = N2-;it. (30-60) 

The right side of this equation is, according to Faraday's law, just the magnitude 
of the emf '(g2 appearing in coil 2 due to the changing current in coill. Thus, with a 
minus sign to indicate direction, 

di1 
'(g2 = -M21 dr' (30-61) 

which you should compare with Eq. 30-35 for self-induction ('(g = - L di/dt). 
Let us now interchange the roles of coils 1 and 2, as in Fig. 30-19b; that is, we set up a 

current iz in coil 2 by means of a battery, and this produces a magnetic flux ¢12 that links 
coill. If we change i2 with time by varying R, we then have, by the argument given above, 

di2 
'(gl = - M12 dr' (30-62) 

Thus, we see that the emf induced in either coil is proportional to the rate of 
change of current in the other coil. The proportionality constants M21 and M12 seem to 
be different. We assert, without proof, that they are in fact the same so that no sub­
scripts are needed. (This conclusion is true but is in no way obvious.) Thus, we have 

M21 = M12 = M, 

and we can rewrite Eqs. 30-61 and 30-62 as 

'(g = -M dil 
2 dt 

and CJ? = -M di2 
°1 dt . 

(30-63) 

(30-64) 

(30-65) 
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Mutual inductance of two parallel coils 

Figure 30-20 shows two circular close-packed coils, the 
smaller (radius R2, with N2 turns) being coaxial with the 
larger (radius Rb with Nl turns) and in the same plane. 

(a) Derive an expression for the mutual inductance M for 
this arrangement of these two coils, assuming that Rl p R2• 

The mutual inductance M for these coils is the ratio of the 
flux linkage (NiP) through one coil to the current i in the 
other coil, which produces that flux linkage. Thus, we need 
to assume that currents exist in the coils; then we need to 
calculate the flux linkage in one of the coils. 

Calculations: The magnetic field through the larger coil 
due to the smaller coil is nonuniform in both magnitude and 
direction; so the flux through the larger coil due to the 
smaller coil is nonuniform and difficult to calculate. 
However, the smaller coil is small enough for us to assume 
that the magnetic field through it due to the larger coil is ap­
proximately uniform. Thus, the flux through it due to the 
larger coil is also approximately uniform. Hence, to find M 
we shall assume a current il in the larger coil and calculate 
the flux linkage N2iP21 in the smaller coil: 

M -_ N2.iP21. (30-66) 
11 

The flux iP21 through each turn of the smaller coil is, 
from Eq. 30-2, 

where Bl is the magnitude of the magnetic field at points 
within the small coil due to the larger coil and A2 (= 7T m) is 
the area enclosed by the turn. Thus, the flux linkage in the 
smaller coil (with its N2 turns) is 

(30-67) 

To find Bl at points within the smaller coil, we can use 
Eq.29-26, 

with z set to 0 because the smaller coil is in the plane of the 
larger coil. That equation tells us that each turn of the larger 
coil produces a magnetic field of magnitude f-toil/2Rl at 
points within the smaller coil. Thus, the larger coil (with its 
N1 turns) produces a total magnetic field of magnitude 

B - N f-toil 
I - I 2Rl 

at points within the smaller coil. 

(30-68) 

Fig. 30-20 A small coil is located at the center of a large 
coil. The mutual inductance of the coils can be determined by 
sending current i j through the large coil. 

Substituting Eq. 30-68 for Bl and 7TR~ for A2 in Eq. 
30-67 yields 

N iP - 7Tf-toNlN2m il 
2 21 - 2Rl 

Substituting this result into Eq. 30-66, we find 

M = N2i~21 = 7Tf-tO~~2m. (Answer) (30-69) 

(b) What is the value of M for Nl = N2 = 1200 turns, 
R2 = 1.1 cm,andR I = 15 cm? 

Calculations: Equation 30-69 yields 

(7T)( 47T X 10 -7 H/m)(1200)(1200)(0.011 m)2 
M = (2)(0.15 m) 

= 2.29 X 10-3 H = 2.3 mHo (Answer) 

Consider the situation if we reverse the roles of the two 
coils-that is, if we produce a current i2 in the smaller coil 
and try to calculate M from Eq. 30-57 in the form 

M = N1iP12 
i2 . 

The calculation of iP I2 (the nonuniform flux of the smaller 
coil's magnetic field encompassed by the larger coil) is not 
simple. If we were to do the calculation numerically using 
a computer, we would find M to be 2.3 mH, as above! This 
emphasizes that Eq. 30-63 (M21 = M12 = M) is not obvious. 

Additional examples, video, and practice available at WileyPLUS 
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Magnetic Flux The magnetic flux <I>B through an area A in a 
magnetic field 11 is defined as 

f
~ ~ 

<I>B = B 'dA, (30-1 ) 

where the integral is taken over the area. The SI unit of magnetic 
flux is the weber, where 1 Wb = 1 T· mZ• If 11 is perpendicular to 
the area and uniform over it, Eq. 30-1 becomes 

<I>B = BA (if ~ A, iJ uniform). (30-2) 

Faraday's Law of Induction If the magnetic flux <I>B through 
an area bounded by a closed conducting loop changes with time, a 
current and an emf are produced in the loop; this process is called 
induction. The induced emf is 

'(g = _ d<I>B 
dt 

(Faraday's law). (30-4) 

If the loop is replaced by a closely packed coil of N turns, the in-
duced emf is d <I> B 

'(g = - N -----;[to (30-5) 

Lenz's Law An induced current has a direction such that 
the magnetic field due to the current opposes the change in the 
magnetic flux that induces the current. The induced emf has the 
same direction as the induced current. 

Emf and the Induced Electric Field An emf is induced by a 
changing magnetic flux even if the loop through which the flux is 
changing is not a physical conductor but an imaginary line. The 
changing magnetic field induces an electric field E at every point of 
such a loop; the induced emf is related to E by 

'(g = f E· d'S, (30-19) 

where the integration is taken around the loop. From Eq. 30-19 we 
can write Faraday's law in its most general form, 

1 ~ d<I>B r E· df = - -----;[t (Faraday's law). 

A changing magnetic field induces an electric field E. 

(30-20) 

Inductors An inductor is a device that can be used to produce a 
known magnetic field in a specified region. If a current i is established 
through each of the N windings of an inductor, a magnetic flux <I>B links 
those windings. The inductance L of the inductor is 

L = N<I>B (inductance defined). (30-28) 
i 

If the circular conductor in Fig. 30-21 undergoes thermal ex­
pansion while it is in a uniform magnetic field, a current is induced 

Fig. 30-21 Question 1. 

The SI unit of inductance is the henry (H), where 1 henry = 1 H = 1 
T· mZ/A. The inductance per unit length near the middle of a long sole­
noid of cross-sectional area A and n turns per unit length is 

(solenoid). (30-31) 

Self·lnduction If a current i in a coil changes with time, an emf 
is induced in the coil. This self-induced emf is 

di 
'(gL = -Ldi' (30-35) 

The direction of '(g L is found from Lenz's law: The self-induced emf 
acts to oppose the change that produces it. 

Series RL Circuits If a constant emf '(g is introduced into a sin­
gle-loop circuit containing a resistance R and an inductance L, the 
current rises to an equilibrium value of'(gIR according to 

(rise of current). (30-41) 

Here TL (= LlR) governs the rate of rise of the current and is called 
the inductive time constant of the circuit. When the source of con­
stant emf is removed, the current decays from a value io according to 

(decay of current). (30-45) 

Magnetic Energy If an inductor L carries a current i, the 
inductor's magnetic field stores an energy given by 

(magnetic energy). (30-49) 

If B is the magnitude of a magnetic field at any point (in an 
inductor or anywhere else), the density of stored magnetic energy 
at that point is 

(magnetic energy density). (30-55) 

Mutuallnduction If coils 1 and 2 are near each other, a chang­
ing current in either coil can induce an emf in the other. This mu­
tual induction is described by 

'(g = - M!!:.!L (30-64) 
Z dt 

and '(g = -M diz 
1 dt ' (30-65) 

where M (measured in henries) is the mutual inductance. 

clockwise around it. Is the magnetic field directed into or out of the 
page? 

The wire loop in Fig. 30-22a is subjected, in turn, to six 
uniform magnetic fields, each directed parallel to the z axis, 
which is directed out of the plane of the figure. Figure 30-22b 
gives the z components B z of the fields versus time t. (Plots 1 and 
3 are parallel; so are plots 4 and 6. Plots 2 and 5 are parallel to 
the time axis.) Rank the six plots according to the emf induced in 



the loop, greatest clockwise emf first, greatest counterclockwise 
emf last. 

)' 

--1~---+----1~-X 

(a) (b) 

Fig. 30-22 Question 2. 

In Fig. 30-23, a long straight wire with current i passes (without 
touching) three rectangular wire loops with edge lengths L, 1.5L, 
and 2L. The loops are widely spaced (so as not to affect one an­
other). Loops 1 and 3 are symmetric about the long wire. Rank the 
loops according to the size of the current induced in them if cur­
renti is (a) constant and (b) increasing, greatest first. 

i -
Fig. 30-23 Question 3. 

Figure 30-24 shows two circuits in which a conducting bar is slid 
at the same speed v through the same uniform magnetic field and 
along a U-shaped wire. The parallel lengths of the wire are separated 
by 2L in circuit 1 and by L in circuit 2. The current induced in circuit 
1 is counterclockwise. (a) Is the magnetic field into or out of the 
page? (b) Is the current induced in circuit 2 clockwise or counter­
clockwise? (c) Is the emf induced in circuit 1 larger than, smaller 
than, or the same as that in circuit 2? 

(1) (2)~EL= 
Fig. 30-24 Question 4. 

Figure 30-25 shows a circular re-
gion in which a decreasing uniform a 

magnetic field is directed out of the b 

page, as well as four concentric circu-
lar paths. Rank the paths according 
to the magnitude of ~ E· df evalu-
ated along them, greatest first. Fig. 30-25 Question 5. 

In Fig. 30-26, a wire loop has been 
bent so that it has three segments: segment be (a quarter-circle), ae 
(a square corner), and ab (straight). Here are three choices for a 
magnetic field through the loop: 

(1) 81 = 3i + 7] - 5tk, 
(2) 82 = 5,i - 4] - 15k, 

(3) 83 = 2i - 5t] - 12k, 

QUESTIONS 817 

where if is in milliteslas and , is in sec­
onds. Without written calculation, rank 
the choices according to (a) the work 
done per unit charge in setting up the in­
duced current and (b) that induced cur­
rent, greatest first. ( c) For each choice, 
what is the direction of the induced cur­
rent in the figure? 

Figure 30-27 shows a circuit with two 

z 
a 

)' 

Fig. 30-26 

Question 6. 

identical resistors and an ideal inductor. Is the current through the 
central resistor more than, less than, or the same as that through 
the other resistor (a) just after the closing of switch S, (b) a long 
time after that, (c) just after S is reopened a long time later, and 
(d) a long time after that? 

+ 

t/~ 
S 

Fig.30-27 Question 7. 

The switch in the circuit of 
Fig. 30-15 has been closed on a for a 
very long time when it is then 
thrown to b. The resulting current 
through the inductor is indicated in 
Fig. 30-28 for four sets of values for 
the resistance R and inductance L: 
(1) Ra and La, (2) 2Ra and La, (3) Ro 
and 2La, (4) 2Ra and 2La. Which set 
goes with which curve? 

t Figure 30-29 shows three circuits 
with identical batteries, inductors, 
and resistors. Rank the circuits, 

Fig. 30-28 Question 8. 

greatest first, according to the current through the resistor labeled R 
(a) long after the switch is closed, (b) just after the switch IS 

reopened a long time later, and (c) long after it is reopened. 

(1) (2) (3) 

Fig.30-29 Question 9. 

Figure 30-30 gives the varia­
tion with time of the potential dif­
ference VR across a resistor in 
three circuits wired as shown in 
Fig. 30-16. The circuits contain the 
same resistance R and emf '(g but 
differ in the inductance L. Rank 
the circuits according to the value 
of L, greatest first. Fig. 30-30 Question 10. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked-out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
http://www.wiley.com/college/halllday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Lenz's Law 
In Fig. 30-31, a circular loop of wire 10 cm 

in diameter (seen edge-on) is placed with its 
normal IV at an angle e = 30° with the direction 
of a uniform magnetic field JJ of magnitude 0.50 
T. The loop is then rotated such that IV rotates in 
a cone about the field direction at the rate 100 
rev/min; angle e remains unchanged during the 
process. What is the emf induced in the loop? 

A certain elastic conducting material is 
stretched into a circular loop of 12.0 cm radius. 

Fig. 30-31 

Problem 1. 

It is placed with its plane perpendicular to a uniform 0.800 T mag­
netic field. When released, the radius of the loop starts to shrink at 
an instantaneous rate of 75.0 cm/s. What emf is induced in the loop 
at tha t instant? 

SSM WWW In Fig. 30-32, a 
120-turn coil of radius 1.8 cm and re­
sistance 5.3 fl is coaxial with a 
solenoid of 220 turns/cm and 
diameter 3.2 cm. The solenoid cur­
rent drops from 1.5 A to zero in time 
interval M = 25 ms. What current is 
induced in the coil during M? 

A wire loop of radius 12 cm and 
resistance 8.5 fl is located in a uni­
form magnetic field JJ that changes 
in magnitude as given in Fig. 30-33. 
The vertical axis scale is set by Bs = 

0.50 T, and the horizontal axis scale 
is set by ts = 6.00 s. The loop's plane 

Fig. 30-32 Problem 3. 

E 
o Is 

I (s) 

Fig.30-33 Problem 4. 

is perpendicular to JJ. What emf is induced in the loop during time in­
tervals (a) 0 to 2.0 s, (b) 2.0 s to 4.0 s, and ( c) 4.0 s to 6.0 s? 

In Fig. 30-34, a wire forms a 
closed circular loop, of radius R = 

2.0 m and resistance 4.0 fl. The 
circle is centered on a long straight 
wire; at time t = 0, the current in 
the long straight wire is 5.0 A 
rightward. Thereafter, the current Fig. 30-34 Problem 5. 
changes according to i = 5.0 A -
(2.0 A/S2)t2. (The straight wire is insulated; so there is no electrical 
contact between it and the wire of the loop.) What is the magni­
tude of the current induced in the loop at times t > O? 

Figure 30-35a shows a circuit consisting of an ideal battery 

(b) t (s) 

Fig. 30-35 Problem 6. 

with emf 'i8 = 6.00 fL V, a resistance R, and a small wire loop of 
area 5.0 cm2

• For the time interval t = 10 s to t = 20 s, an external 
magnetic field is set up throughout the loop. The field is uniform, 
its direction is into the page in Fig. 30-35a, and the field magni­
tude is given by B = at, where B is in teslas, a is a constant, and t 
is in seconds. Figure 30-35b gives the current i in the circuit be­
fore, during, and after the external field is set up. The vertical 
axis scale is set by is = 2.0 rnA. Find the constant a in the equa­
tion for the field magnitude. 

In Fig. 30-36, the magnetic fiux 
through the loop increases according 
to the relation <DB = 6.0t2 + 7.0t, where 
<DB is in milliwebers and t is in seconds. 
(a) What is the magnitude of the emf 
induced in the loop when t = 2.0 s? (b) 
Is the direction of the current through 
R to the right or left? 

A uniform magnetic field JJ is per­
R 
" 

pendicular to the plane of a circular Fig. 30-36 Problem 7. 
loop of diameter 10 cm formed from 
wire of diameter 2.5 mm and resistivity 1.69 X 10-8 fl· m. At what 
rate must the magnitude of JJ change to induce a 10 A current in 
the loop? 

A small loop of area 6.8 mm2 is placed inside a long solenoid 
that has 854 turns/cm and carries a sinusoidally varying current i of 
amplitude 1.28 A and angular frequency 212 rad/s. The central axes 
of the loop and solenoid coincide. What is the amplitude of the emf 
induced in the loop? 

Figure 30-37 shows a closed loop of wire that consists of a 
pair of equal semicircles, of radius 3.7 cm, lying in mutually per­
pendicular planes. The loop was formed by folding a flat circular 
loop along a diameter until the two halves became perpendicular 
to each other. A uniform magnetic field JJ of magnitude 76 mT is 
directed perpendicular to the fold diameter and makes equal an­
gles (of 45°) with the planes of the semicircles. The magnetic field 
is reduced to zero at a uniform rate during a time interval of 4.5 
ms. During this interval, what are the (a) magnitude and (b) di­
rection (clockwise or counterclockwise when viewed along the 
direction of JJ) of the emf induced in the loop? 

~
Magnetic 

~ \~~.field 

~ 
'~~ 

~ 
Fig. 30-37 Problem 10. 



1 A rectangular coil of N turns and of length a and width b is 
rotated at frequency fin a uniform magnetic field B, as indicated in 
Fig. 30-38. The coil is connected to co-rotating cylinders, against 
which metal brushes slide to make contact. (a) Show that the emf 
induced in the coil is given (as a function of time t) by 

'g = 21TfNabB sin(21Tft) = 'go sin(21Tft). 

This is the principle of the commercial alternating-current gen­
erator. (b) What value of Nab gives an emf with 'go = 150 V 
when the loop is rotated at 60.0 revls in a uniform magnetic 
field of 0.500 T? 

B>: x. )< 

x , ;< )\ 

Lu ><xxx x>< 

>: ::'1.>< >< >: >~>: >< x.J >: 

Fig. 30-38 Problem 11. 

L 

w 

In Fig. 30-39, a wire loop of lengths L = Y 
40.0 cm and W = 25.0 cm lies in a magnetic 
field B. What are the (a) magnitude 'g and (b) 
direction (clockwise or counterclockwise-or 
"none"if'g = 0) of the emf induced in the loop if Ib===~-X 

B = (4.00 X 10-2 T/m)yk?What are (c) 'g and Fig. 30-39 

(d) the direction if B = (6.00 X 10-2 T/s)tk? Problem 12. 
What are (e) 'g and (f) the direction if 
B = (8.00 X 10 -2 Tim' s)ytk? What are (g) 'g and (h) the direction if 
B = (3.00 X 10-2 Tim· s )xt]? What are (i) 'g and (j) the direction if 
B = (5.00 X 1O-2 T/m's)yti? 

IlW One hundred turns of (insulated) copper wire are 
wrapped around a wooden cylindrical core of cross-sectional area 
1.20 X 10-3 m2• The two ends of the wire are connected to a resis­
tor. The total resistance in the circuit is 13.0 n. If an externally ap­
plied uniform longitudinal magnetic field in the core changes 
from 1.60 T in one direction to 1.60 T in the opposite direction, 
how much charge flows through a point in the circuit during the 
change? 

In Fig. 30-40a, a uniform magnetic field B increases in 
magnitude with time t as given by Fig. 30-40b, where the verti­
cal axis scale is set by Bs = 9.0 mT and the horizontal scale is 
set by ts = 3.0 s. A circular conducting loop of area 8.0 X 10-4 

m2 lies in the field, in the plane of the page. The amount of 
charge q passing point A on the loop is given in Fig. 30-40c as a 
function of t, with the vertical axis scale set by qs = 6.0 mC and 
the horizontal axis scale again set by ts = 3.0 s. What is the 
loop's resistance? 

(a) 

BSUlJi .. 1 
f=;' i I 

S I' ~ I 
>q " 

o i, 

t (s) 

(b) 

C/SUi:. !.' i .. I.: 

5 !', 
~ : i 

o t, 
t (s) 

(c) 

Fig.30-40 Problem 14. 

PROBLEMS 819 

A square wire loop with 
2.00 m sides is perpendicular to a 
uniform magnetic field, with half 
the area of the loop in the field as 
shown in Fig. 30-41. The loop con­
tains an ideal battery with emf'g = -"'-
20.0 V. If the magnitude of the 
field varies with time according to 
B = 0.0420 0.870t, with B in tes-

~0 • 

B. ~. , 
'-:lr 

las and t in seconds, what are (a) 
the net emf in the circuit and (b) 
the direction of the (net) current 
around the loop? 

v ';g bat 

Problem 15. Fig. 30-41 

Figure 30-42a shows a wire that forms a rectangle 
(W = 20 cm, H = 30 cm) and has a resistance of 5.0 mn. Its inte­
rior is split into three equal areas, with magnetic fields Bb E2, and 
B3. The fields are uniform within each region and directly out of or 
into the page as indicated. Figure 30-42b gives the change in the z 
components B z of the three fields with time t; the vertical axis scale 
is set by Bs = 4.0 itT and Bb = -2.5B" and the horizontal axis scale 
is set by ts = 2.0 s. What are the (a) magnitude and (b) direction of 
the current induced in the wire? 

y 

r 
H . @B

2 1 Li _~~-~B~~~-_--,"·,--x 
I--w---j 

(a) 

Fig. 30-42 Problem 16. 

A small circular loop of area 2.00 cm2 is placed in the plane 
of, and concentric with, a large circular loop of radius 1.00 m. The 
current in the large loop is changed at a constant rate from 200 A 
to -200 A (a change in direction) in a time of 1.00 s, starting at 
t = O. What is the magnitude of the magnetic field E at the center 
of the small loop due to the current in the large loop at (a) t = 0, 
(b) t = 0.500 s, and (c) t = 1.00 s? (d) From t = 0 to t = 1.00 s, is B 
reversed? Because the inner loop is small, assume E is uniform 
over its area. (e) What emf is induced in the small loop at t = 0.500 s? 

In Fig. 30-43, two straight ' , , , 
conducting rails form a right an­
gie. A conducting bar in contact 
with the rails starts at the vertex 
at time t = 0 and moves with a --> 

0lI @Bo, 
constant velocity of 5.20 mls "., 
along them. A magnetic field with F P bl 18 
B = 0.350 T is directed out of the Ig. 30-43 ro em . 

page. Calculate (a) the flux through the triangle formed by the 
rails and bar at t = 3.00 sand (b) the emf around the triangle at 
that time. (c) If the emf is 'g = at", where a and n are constants, 
what is the value of n? 

ILW An electric generator contains a coil of 100 turns of 
wire, each forming a rectangular loop 50.0 cm by 30.0 cm. The coil 
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is placed entirely in a uniform magnetic field with magnitude B = 

3.50 T and with If initially perpendicular to the coil's plane. What 
is the maximum value of the emf produced when the coil is spun at 
1000 rev/min about an axis perpendicular to If? 

At a certain place, Earth's magnetic field has magnitude 
B = 0.590 gauss and is inclined downward at an angle of 70.0° to 
the horizontal. A flat horizontal circular coil of wire with a radius 
of 10.0 cm has 1000 turns and a total resistance of 85.0 n. It is 
connected in series to a meter with 140 n resistance. The coil is 
flipped through a half-revolution about a diameter, so that it is 
again horizontal. How much charge flows through the meter dur­
ing the flip? 

In Fig. 30-44, a stiff wire bent 
into a semicircle of radius a = 2.0 cm 
is rotated at constant angular speed 40 
rev/s in a uniform 20 mT magnetic 
field. What are the (a) frequency and 
(b) amplitude of the emf induced in 
the loop? 

A rectangular loop (area = 

R 

0.15 m2) turns in a uniform mag- Fig. 30-44 Problem 21. 
netic field, B = 0.20 T. When the an-
gle between the field and the normal to the plane of the loop is 1T/2 
rad and increasing at 0.60 rad/s, what emf is induced in the loop? 

SSM Figure 30-45 shows 
two parallel loops of wire having 
a common axis. The smaller loop 
(radius r) is above the larger loop 
(radius R) by a distance x ~ R. 
Consequently, the magnetic field 
due to the counterclockwise current 
i in the larger loop is nearly uniform 
throughout the smaller loop. 

x 

Suppose that x is increasing at the Fig. 30-45 Problem 23. 
constant rate dx/dt = v. (a) Find an 
expression for the magnetic flux through the area of the smaller 
loop as a function of x. (Hint: See Eq. 29-27.) In the smaller loop, 
find (b) an expression for the induced emf and (c) the direction of 
the induced current. 

A wire is bent into three cir­
cular segments, each of radius r = 

10 cm, as shown in Fig. 30-46. Each 
segment is a quadrant of a circle, ab 
lying in the xy plane, be lying in the 
yz plane, and ea lying in the zx 
plane. (a) If a uniform magnetic 
field If points in the positive x di­
rection, what is the magnitude of 
the emf developed in the wire when 
B increases at the rate of 3.0 mT/s? x 

a 

(b) What is the direction of the cur- Fig. 30-46 Problem 24. 
rent in segment be? 

Two long, parallel copper wires of diameter 2.5 mm 
carry currents of 10 A in opposite directions. (a) Assuming that 
their central axes are 20 mm apart, calculate the magnetic flux per 
meter of wire that exists in the space between those axes. (b) What 
percentage of this flux lies inside the wires? (c) Repeat part (a) for 
parallel currents. 

For the wire arrangement in Fig. 30-47, a = 12.0 cm and b = 
16.0 cm. The current in the long straight wire is i = 4.50F lO.Ot, 
where i is in amperes and t is in seconds. (a) Find the emf in the 
square loop at t = 3.00 s. (b) What is the direction of the induced 
current in the loop? 

1 i b

l 1 l ~I '~~==;b~=~'1 

Fig. 30-47 Problem 26. 

IlW As seen in Fig. 30-48, a square loop of wire has sides of 
length 2.0 cm. A magnetic field is directed out of the page; its mag­
nitude is given by B = 4.Ot2y, where B is in teslas, t is in seconds, 
and y is in meters. At t = 2.5 s, what are the (a) magnitude and (b) 
direction of the emf induced in the loop? 

y 

Fig. 30-48 Problem 27. 

In Fig. 30-49, a rectangular 
loop of wire with length a = 2.2 cm, 
width b = 0.80 cm, and resistance 
R = 0040 mn is placed near an infi­
nitely long wire carrying current 
i = 4.7 A. The loop is then moved 
away from the wire at constant 

i;TI~-=-=-=-=--=-=-=-=-=-~I 
r 

1 
speed v = 3.2 mm/s. When the cen- Fig. 30-49 Problem 28. 
tel' of the loop is at distance 
r = 1.5b, what are (a) the magnitude of the magnetic flux through 
the loop and (b) the current induced in the loop? 

Induction and Energy Transfers 
In Fig. 30-50, a metal rod is forced to move with constant ve­

locity v along two parallel metal rails, connected with a strip of 
metal at one end. A magnetic field of magnitude B = 0.350 T 
points out of the page. (a) If the rails are separated by L = 25.0 cm 
and the speed of the rod is 55.0 cm/s, what emf is generated? (b) If 
the rod has a resistance of 18.0 n and the rails and connector have 

T 
L 

1 =====l.J'======lIIi 

Fig. 30-50 Problems 29 and 35. 



negligible resistance, what is the current in the rod? (c) At what 
rate is energy being transferred to thermal energy? 

In Fig. 30-51a, a circular loop of wire is concentric with a sole­
noid and lies in a plane perpendicular to the solenoid's central axis. 
The loop has radius 6.00 cm. The solenoid has radius 2.00 cm, con­
sists of 8000 turns/m, and has a current iso1 varying with time t as 
given in Fig. 30-51b, where the vertical axis scale is set by is = 1.00 
A and the horizontal axis scale is set by ts = 2.0 s. Figure 30-51c 
shows, as a function of time, the energy Etb that is transferred to 
thermal energy of the loop; the vertical axis scale is set by Es = 

100.0 nl What is the loop's resistance? 

(a) 

iS~. ~ - ---- t-- -~ - .:. 
---- < ; - ' 
...... £ - ._. ,,1,- _! 

o 
t (s) 

(b) 

t (s) 

(c) 

Fig. 30-51 Problem 30. 

SSM ILW If 50.0 cm of copper wire (diameter = 1.00 mm) 
is formed into a circular loop and placed perpendicular to a uni­
form magnetic field that is increasing at the constant rate of 10.0 
mT/s, at what rate is thermal energy generated in the loop? 

A loop antenna of area 2.00 cm2 and resistance 5.21 p.n is 
perpendicular to a uniform magnetic field of magnitude 17.0,uT. 
The field magnitude drops to zero in 2.96 ms. How much thermal 
energy is produced in the loop by the change in field? 

Figure 30-52 shows a rod of 
length L = 10.0 cm that is forced to 
move at constant speed v = 5.00 
m/s along horizontal rails. The rod, 
rails, and connecting strip at the 
right form a conducting loop. The 
rod has resistance 00400 D; the rest 
of the loop has negligible resis­
tance. A current i = 100 A through 
the long straight wire at distance 
a = 10.0 mm from the loop sets up 
a (nonuniform) magnetic field 
through the loop. Find the (a) emf 
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Fig. 30-52 Problem 33. 

and (b) current induced in the loop. (c) At what rate is thermal en­
ergy generated in the rod? (d) What is the magnitude of the force 
that must be applied to the rod to make it move at constant speed? 
(e) At what rate does this force do 
work on the rod? 

In Fig. 30-53, a long rectan­
gular conducting loop, of width L, 
resistance R, and mass m, is hung 
in a horizontal, uniform magnetic 
field B that is directed into the 
page and that exists only above 
line aa. The loop is then dropped; 
during its fall, it accelerates until it 
reaches a certain terminal speed 
v(. Ignoring air drag, find an ex­
pression for v(. 
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Fig. 30-53 Problem 34. 

PROBLEMS 821 

The conducting rod shown in Fig. 30-50 has length L and is 
being pulled along horizontal, frictionless conducting rails at a 
constant velocity 11. The rails are connected at one end with a 
metal strip. A uniform magnetic field B, directed out of the page, 
fills the region in which the rod moves. Assume that L = 10 cm, 
v = 5.0 mis, and B = 1.2 T. What are the (a) magnitude and (b) 
direction (up or down the page) of the emf induced in the rod? 
What are the (c) size and (d) direction of the current in the con­
ducting loop? Assume that the resistance of the rod is 0040 D and 
that the resistance of the rails and metal strip is negligibly small. 
(e) At what rate is thermal energy being generated in the rod? (f) 
What external force on the rod is needed to maintain 11? (g) At 
what rate does this force do work on the rod? 

Induced Electric Fields 
Figure 30-54 shows two circular regions R j and R2 with radii 

/'1 = 20.0 cm and /'2 = 30.0 cm. In RI there is a uniform magnetic 
field of magnitude B 1 = 50.0 mT directed into the page, and in R2 
there is a uniform magnetic field of magnitude B2 = 75.0 mT di­
rected out of the page (ignore fringing). Both fields are decreas­
ing at the rate of 8.50 mT/s. Calculate p jf. ds' for (a) path 1, (b) 
path 2, and ( c) path 3. 
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Fig. 30-54 Problem 36. 

SSM ILW A long solenoid has a diameter of 12.0 cm. When a 
current i exists in its windings, a uniform magnetic field of magnitude 
B = 30.0 mT is produced in its interior. By decreasing i, the field is 
caused to decrease at the rate of 6.50 mT/s. Calculate the magnitude 
of the induced electric field (a) 2.20 cm and (b) 8.20 cm from the axis 
of the solenoid. 

A circular region in an 
xy plane is penetrated by a 
uniform magnetic field in the posi­
tive direction of the z axis. The 
field's magnitude B (in teslas) in­
creases with time t (in seconds) ac­
cording to B = at, where a is a 
constant. The magnitude E of the 
electric field set up by that in­
crease in the magnetic field is 

E s 

o 

,. I 
,I ... 

1"1 

i 

r(cm) 

r s 

Fig. 30-55 Problem 38. 

given by Fig. 30-55 versus radial distance r; the vertical axis scale 
is set by Es = 300 ,uN/C, and the horizontal axis scale is set by 
rs = 4.00 cm. Find a. 

The magnetic field of a cylindrical magnet that has a 
pole-face diameter of 3.3 cm can be varied sinusoidally between 
29.6 T and 30.0 T at a frequency of 15 Hz. (The current in a wire 
wrapped around a permanent magnet is varied to give this varia­
tion in the net field.) At a radial distance of 1.6 cm, what is the am­
plitude of the electric field induced by the variation? 
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Inductors and Inductance 
The inductance of a closely packed coil of 400 turns is 8.0 

mHo Calculate the magnetic flux through the coil when the current 
is 5.0 rnA. 

A circular coil has a 10.0 cm radius and consists of 30.0 
closely wound turns of wire. An externally produced magnetic 
field of magnitude 2.60 mT is perpendicular to the coil. (a) If no 
current is in the coil, what magnetic flux links its turns? 
(b) When the current in the coil is 3.80 A in a certain direction, 
the net flux through the coil is found to vanish. What is the 
inductance of the coil? 

Figure 30-56 shows a copper strip of 
width W = 16.0 cm that has been bent to 
form a shape that consists of a tube of radius 
R = 1.8 cm plus two parallel flat extensions. 
Current i = 35 rnA is distributed uniformly 
across the width so that the tube is effec­
tively a one-turn solenoid. Assume that the 
magnetic field outside the tube is negligible 
and the field inside the tube is uniform. 
What are (a) the magnetic field magnitude 
inside the tube and (b) the inductance of the 
tube (excluding the flat extensions)? 

~ Two identical long wires of radius 
a = 1.53 mm are parallel and carry identical 

\~i Wv 
Fig. 30-56 

Problem 42. 

currents in opposite directions. Their center-to-center separation is 
d = 14.2 cm. Neglect the flux within the wires but consider the flux 
in the region between the wires. What is the inductance per unit 
length of the wires? 

Self·lnduction 
A 12 H inductor carries a current of 2.0 A. At what rate must 

the current be changed to produce a 60 V emf in the inductor? 

At a given instant the current 
and self-induced emf in an inductor 
are directed as indicated in Fig. 30-57. 
(a) Is the current increasing or de­
creasing? (b) The induced emf is 17 V, 
and the rate of change of the current 
is 25 kA/s; find the inductance. 

--' 00000' 
Fig. 30-57 Problem 45. 

The current i through a 4.6 H inductor varies with time t as 
shown by the graph of Fig. 30-58, where the vertical axis scale is set by 
is = 8.0 A and the horizontal axis scale is set by ts = 6.0 ms. The inductor 
has a resistance of 12 fl. Find the magnitude of the induced emf ~ dur­
ing time intervals (a) 0 to 2 liS, (b) 2 ms to 5 ms, and (c) 5 ms to 6 ms. 
(Ignore the behavior at the ends ofthe intervals.) 

o Is 
I (ms) 

Fig. 30-58 Problem 46. 

Inductors in series. Two inductors L j and L2 are connected in 
series and are separated by a large distance so that the magnetic 

field of one cannot affect the other. (a) Show that the equivalent 
inductance is given by 

Leq = L j + L 2. 

(Hint: Review the derivations for resistors in series and capacitors 
in series. Which is similar here?) (b) What is the generalization of 
(a) for N inductors in series? 

'·48 Inductors in parallel. Two inductors L j and L2 are connected 
in parallel and separated by a large distance so that the magnetic 
field of one cannot affect the other. (a) Show that the equivalent 
inductance is given by 

1 1 1 =-+-. 
Leq L j L2 

(Hint: Review the derivations for resistors in parallel and capacitors 
in parallel. Which is similar here?) (b) What is the generalization of 
(a) for N inductors in parallel? 

··49 The inductor arrangement of 
Fig. 30-59, with L j = 30.0 mH, L2 = 

50.0 mH, L3 = 20.0 mH, and L4 = 

15.0 mH, is to be connected to a 
varying current source. What is the 
equivalent inductance of the 
arrangement? (First see Problems 
47 and 48.) 

RL Circuits 

Fig. 30-59 Problem 49. 

The current in an RL circuit builds up to one-third of its 
steady-state value in 5.00 S. Find the inductive time constant. 

IlW The current in an RL circuit drops from 1.0 A to 10 rnA 
in the first second following removal of the battery from the cir­
cuit. If Lis 10 H, find the resistance R in the circuit. 

The switch in Fig. 30-15 is closed on a at time t = O. What is 
the ratio ~d~ of the inductor's self-induced emf to the battery's 
emf (a) just after t = 0 and (b) at t = 2.007"L? (c) At what multiple 
of 7"L will ~ d~ = 0.5007 

SSM A solenoid having an inductance of 6.30,uH is con­
nected in series with a 1.20 kfl resistor. (a) If a 14.0 V battery is 
connected across the pair, how long will it take for the current 
through the resistor to reach 80.0% of its final value? (b) What is the 
current through the resistor at time t = 1. 0 7"L ? 

In Fig. 30-60, ~ = 100 V, R j = 10.0 fl, R2 = 20.0 fl, R3 = 30.0 
fl, and L = 2.00 H. Immediately after switch S is closed, what are 
(a) i j and (b) i2? (Let currents in the indicated directions have posi­
tive values and currents in the opposite directions have negative 
values.) A long time later, what are (c) i j and (d) i2? The switch is 
then reopened. Just then, what are (e) i j and (f) i2? A long time 
later, what are (g) i j and (h) i2? 

( 
Fig. 30-60 Problem 54. 



SSM A battery is connected to a series RL circuit at time 
t = O. At what multiple of TL will the current be 0.100% less than 
its equilibrium value? 

In Fig. 30-61, the inductor has 25 turns and the ideal battery has 
an emf of 16 V. Figure 30-62 gives the magnetic flux <P through each 
turn versus the current i through the inductor. The vertical axis scale is 
set by <Ps = 4.0 X 10-4 T·m2, and the horizontal axis scale is set by is = 

2.00 A. If switch S is closed at time t = 0, at what rate dildt will the 
current be changing att = l.5TL? 

%WR Ci',<I>s 
S 

E-< 
'T 
0 
.-< 

e 
L 0 is 

Fig. 30-61 
i(A) 

Problems 56,80,83, and 93. Fig. 30-62 Problem 56. 

In Fig. 30-63, R = 15 n, 
L = 5.0 H, the ideal battery has '(g = 

10 V, and the fuse in the upper 
branch is an ideal 3.0 A fuse. It has 
zero resistance as long as the cur­
rent through it remains less than 3.0 
A. If the current reaches 3.0 A, the 
fuse "blows" and thereafter has in­

Fuse 

R 

+~ - S 
L 

finite resistance. Switch S is closed Fig.30-63 Problem 57. 
at time t = O. (a) When does the 
fuse blow? (Hint: Equation 30-41 does not apply. Rethink Eq. 
30-39.) (b) Sketch a graph of the current i through the inductor as a 
function of time. Mark the time at which the fuse blows. 

Suppose the emf of the battery in the circuit shown 
in Fig. 30-16 varies with time t so that the current is given by i(t) = 

3.0 + 5.0t, where i is in amperes and t is in seconds. Take R = 4.0 n 
and L = 6.0 H, and find an expression for the battery emf as a 
function of t. (Hint: Apply the loop rule.) 

SSM WWW In Fig. 30-64, 
after switch S is closed at time 
t = 0, the emf of the source is auto­
matically adjusted to maintain a 
constant current i through S. (a) Find 
the current through the inductor as a 
function of time. (b) At what time is 
the current through the resistor equal 
to the current through the inductor? 

COIistant,f S 
current 
source 

Fig. 30-64 Problem 59. 

A wooden toroidal core with a square cross section has an in­
ner radius of 10 cm and an outer radius of 12 cm. It is wound with one 
layer of wire (of diameter 1.0 mm and resistance per meter 0.020 Wm). 
What are (a) the inductance and (b) the inductive time constant of the 
resulting toroid? Ignore the thickness of the insulation on the wire. 

Energy Stored in a Magnetic Field 
SSM A coil is connected in series with a 10.0 kn resistor. An 

ideal 50.0 V battery is applied across the two devices, and the cur­
rent reaches a value of 2.00 mA after 5.00 ms. (a) Find the induc­
tance of the coil. (b) How much energy is stored in the coil at this 
same moment? 

PROBLEMS 823 

A coil with an inductance of 2.0 H and a resistance of 10 n is 
suddenly connected to an ideal battery with '(g = 100 V. At 0.10 s 
after the connection is made, what is the rate at which (a) energy is 
being stored in the magnetic field, (b) thermal energy is appearing 
in the resistance, and (c) energy is being delivered by the battery? 

IlW At t = 0, a battery is connected to a series arrangement 
of a resistor and an inductor. If the inductive time constant is 37.0 
ms, at what time is the rate at which energy is dissipated in the re­
sistor equal to the rate at which energy is stored in the inductor's 
magnetic field? 

At t = 0, a battery is connected to a series arrangement of a 
resistor and an inductor. At what multiple of the inductive time 
constant will the energy stored in the inductor's magnetic field be 
0.500 its steady-state value? 

For the circuit of Fig. 30-16, assume that '(g = 10.0 V, 
R = 6.70 n, and L = 5.50 H. The ideal battery is connected at 
time t = O. (a) How much energy is delivered by the battery dur­
ing the first 2.00 s? (b) How much of this energy is stored in the 
magnetic field of the inductor? (c) How much of this energy is 
dissipated in the resistor? 

Energy Density of a MagnetiC Field 
A circular loop of wire 50 mm in radius carries a current of 

100 A. Find the (a) magnetic field strength and (b) energy density 
at the center of the loop. 

SSM A solenoid that is 85.0 cm long has a cross-sectional 
area of 17.0 cm2. There are 950 turns of wire carrying a current of 
6.60 A. (a) Calculate the energy density of the magnetic field inside 
the solenoid. (b) Find the total energy stored in the magnetic field 
there (neglect end effects). 

A toroidal inductor with an inductance of 90.0 mH encloses 
a volume of 0.0200 m3• If the average energy density in the toroid is 
70.0 J/m3, what is the current through the inductor? 

ILW What must be the magnitude of a uniform electric field 
if it is to have the same energy density as that possessed by a 0.50 T 
magnetic field? 

)' 

2 

Figure 30-65a shows, in 
cross section, two wires that are 
straight, parallel, and very long. The 
ratio i j li2 of the current carried by 

--@-----1---~---X 

wire 1 to that carried by wire 2 is 
113. Wire 1 is fixed in place. Wire 2 
can be moved along the positive 
side of the x axis so as to change the 
magnetic energy density UB set up 

(a) 

by the two currents at the origin. {f' 
Figure 30-65b gives liB as a function 
of the position x of wire 2. The 
curve has an asymptote of UB = (b) 

2 

o 
x (em) 

1.96 nJ/m3 as x ~ <Xl, and the hori- Fig. 30-65 Problem 70. 
zontal axis scale is set by Xs = 60.0 
cm. What is the value of (a) i1 and (b) i2? 

A length of copper wire carries a current of 10 A uniformly 
distributed through its cross section. Calculate the energy density 
of (a) the magnetic field and (b) the electric field at the surface of 
the wire. The wire diameter is 2.5 mm, and its resistance per unit 
length is 3.3 Wkm. 
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Mutual Induction 
Coil 1 has Ll = 25 mH and Nl = 100 turns. Coil 2 has L2 = 40 

mH and N2 = 200 turns. The coils are fixed in place; their mutual in­
ductance M is 3.0 mHo A 6.0 rnA current in coil 1 is changing at the 
rate of 4.0 A/s. (a) What magnetic flux <1>12 links coil 1, and (b) what 
self-induced emf appears in that coil? (c) What magnetic flux <1>21 links 
coil 2, and (d) what mutually induced emf appears in that coil? 

SSM Two coils are at fixed locations. When coil 1 has no 
current and the current in coil 2 increases at the rate 15.0 Als, the 
emf in coil 1 is 25.0 m V. (a) What is their mutual inductance? (b) 
When coil 2 has no current and coil 1 has a current of 3.60 A, what 
is the flux linkage in coil2? 

Two solenoids are part of the spark coil of an automobile. 
When the current in one solenoid falls from 6.0 A to zero in 2.5 ms, 
an emf of 30 kV is induced in the other solenoid. What is the mu­
tual inductance M of the solenoids? 

IlW A rectangular loop of N 
closely packed turns is positioned 
near a long straight wire as shown in 
Fig. 30-66. What is the mutual induc­
tance M for the loop-wire combina­
tion if N = 100, a = 1.0 cm, b = 8.0 
cm, and l = 30 cm? 

A coil C of N turns is placed 
around a long solenoid S of radius R 
and n turns per unit length, as in Fig. 
30-67. (a) Show that the mutual in­
ductance for the coil-solenoid com­
bination is given by M = fJ.D1TR2nN. 
(b) Explain why M does not depend 
on the shape, size, or possible lack of 
close packing of the coil. 

SSM Two coils connected as 

t 
a -i 

t 11IFr"~~~",N~tl",II",'n",s'\llJl 
b 
11~ __ ~J 

I· ·1 
Fig. 30-66 Problem 75. 

c 

Fig. 30-67 Problem 76. 

shown in Fig. 30-68 separately have inductances L j and L2• Their 
mutual inductance is M. (a) Show that this combination can be re­
placed by a single coil of equivalent inductance given by 

Leq = L J + L2 + 2M. 

(b) How could the coils in Fig. 30-68 be reconnected to yield an 
equivalent inductance of 

Leq = L j + L2 - 2M? 

(This problem is an extension of Problem 47, but the requirement 
that the coils be far apart has been removed.) 

L j 

Fig. 30-68 Problem 77. 

Additional Problems 
At time f = 0, a 12.0 V potential difference is suddenly ap­

plied to the leads of a coil of inductance 23.0 mH and a certain re-

sistance R. At time t = 0.150 ms, the current through the inductor 
is changing at the rate of 280 A/s. Evaluate R. 

L 

-i 

SSM In Fig. 30-69, the battery 
is ideal and cg = 10 V, R J = 5.0 n, 
R2 = 10 n, and L = 5.0 H. Switch S 
is closed at time t = O. Just 
afterwards, what are (a) ij, (b) iz, (c) 
the current is through the switch, (d) 
the potential difference V2 across 
resistor 2, (e) the potential differ­
ence VL across the inductor, and (f) 
the rate of change di2ldf? A long 
time later, what are (g) ij, (h) iz, (i) is, Fig. 30-69 Problem 79. 
(j) V2, (k) V L , and (1) di2ldf? 

In Fig. 30-61, R = 4.0 kn, L = 8.0 ,uH, and the ideal battery has 
cg = 20 V. How long after switch S is closed is the current 2.0 mA? 

1---'-----
ICDI® 
1 1 
1 1 
L ___ l. ____ _ 

(a) 

SSM Figure 30-70a shows a 
rectangular conducting loop of resis­
tance R = 0.020 n, height H = 1.5 
cm, and length D = 2.5 cm being 
pulled at constant speed v = 40 cm/s 
through two regions of uniform mag­
netic field. Figure 30-70b gives the 
current i induced in the loop as a 

~ function of the position x of the right ,::l, - o~~~~~~~~x 
side of the loop. The vertical axis 
scale is set by is = 3.0 ,uA. For exam-
ple, a current equal to is is induced 
clockwise as the loop enters region 1. 

(b) 

What are the (a) magnitude and (b) Fig.30-70 Problem 81. 
direction (into or out of the page) of 
the magnetic field in region I? What are the ( c) magnitude and (d) 
direction of the magnetic field in region 2? 

A uniform magnetic field B is perpendicular to the plane of a 
circular wire loop of radius r. The magnitude of the field varies with 
time according to B = Boe- tlr, where Bo and 7 are constants. Find 
an expression for the emf in the loop as a function of time. 

Switch S in Fig. 30-61 is 
closed at time t = 0, initiating the 
buildup of current in the 15.0 mH 
inductor and the 20.0 n resistor. 
At what time is the emf across the 
inductor equal to the potential 
difference across the resistor? 

Figure 30-71a shows two 
concentric circular regions in 
which uniform magnetic fields 
can change. Region 1, with radius 
rj = 1.0 cm, has an outward mag­
netic field Bl that is increasing in 
magnitude. Region 2, with radius 
r2 = 2.0 cm, has an outward mag­
netic field B2 that may also be 
changing. Imagine that a conduct­
ing ring of radius R is centered on 
the two regions and then the emf 
cg around the ring is determined. 
Figure 30-71b gives emf cg as a 

(a) 

o 
(b) R2 (cm2) 

Fig. 30-71 Problem 84. 



function of the square R2 of the ring's radius, to the outer edge of 
region 2. The vertical axis scale is set by '(gs = 20.0 n V. What are the 
rates (a) dBj/dt and (b) dB2/dt? (c) Is the magnitude of 112 increas­
ing, decreasing, or remaining constant? 

SSM Figure 30-72 shows a uniform magnetic field I1 confined 
to a cylindrical volume of radius R. The magnitude of I1 is decreasing 
at a constant rate of 10 mT/s. In unit-vector notation, what is the ini­
tial acceleration of an electron released at (a) point a (radial distance 
r = 5.0 cm), (b) point b (r = 0), and (c) point c (r = 5.0 cm)? 

y 
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Fig.30-72 Problem 85. 

In Fig. 30-73a, switch S has been closed on A long enough 
to establish a steady current in the inductor of inductance 
Ll = 5.00 mH and the resistor of resistance R j = 25.0 n. Similarly, 
in Fig. 30-73b, switch S has been closed on A long enough to estab­
lish a steady current in the inductor of inductance L2 = 3.00 mH 
and the resistor of resistance R2 = 30.0 n. The ratio <1>02/<1>01 of the 
magnetic flux through a turn in inductor 2 to that in inductor 1 is 
1.50.At time t = 0, the two switches are closed on B.At what time t 
is the flux through a turn in the two inductors equal? 

Fig.30-73 Problem 86. 

SSM A square wire loop 20 cm on a side, with resistance 
20 mn, has its plane normal to a uniform magnetic field of magni­
tude B = 2.0 T. If you pull two opposite sides of the loop away 
from each other, the other two sides automatically draw toward 
each other, reducing the area enclosed by the loop. If the area is re­
duced to zero in time M = 0.20 s, what are (a) the average emf and 
(b) the average current induced in the loop during 6.t? 

A coil with 150 turns has a magnetic flux of 50.0 nT . m2 

through each turn when the current is 2.00 rnA. (a) What is the 
inductance of the coil? What are the (b) inductance and (c) flux 
through each turn when the current is increased to 4.00 rnA? 
(d) What is the maximum emf'(g across the coil when the current 
through it is given by i = (3.00 rnA) cos(377t), with t in seconds? 

PROBLEMS 825 

A coil with an inductance of 2.0 H and a resistance of 10 n is 
suddenly connected to an ideal battery with '(g = 100 V. (a) What is 
the equilibrium current? (b) How much energy is stored in the mag­
netic field when this current exists in the coil? 

How long would it take, following the removal of the battery, 
for the potential difference across the resistor in an RL circuit (with 
L = 2.00 H,R = 3.00 n) to decay to 10.0% of its initial value? 

SSM In the circuit of Fig. 30-74, 
R] = 20 kn, R2 = 20 n, L = 50 mH, 
and the ideal battery has '(g = 40 V. 
Switch S has been open for a long 
time when it is closed at time t = O. 
Just after the switch is closed, what 
are (a) the current ibat through the 
battery and (b) the rate diba/dt? At Fig.30-74 Problem 91. 
t = 3.0 f.Ls, what are (c) ibat and (d) 
diba/dt? A long time later, what are (e) ibat and (f) diba/dt? 

The flux linkage through a certain coil of 0.75 n resistance 
would be 26 mWb if there were a current of 5.5 A in it. (a) 
Calculate the inductance of the coil. (b) If a 6.0 V ideal battery 
were suddenly connected across the coil, how long would it take 
for the current to rise from 0 to 2.5 A? 

93 In Fig. 30-61, a 12.0 V ideal battelY, a 20.0 n resistor, and an induc­
tor are connected by a switch at time t = O. At what rate is the battery 
transferring energy to the inductor's field at t = 1.61 TL? 

94 A long cylindrical solenoid with 100 turns/cm has a radius of 
1.6 cm. Assume that the magnetic field it produces is parallel to its 
axis and is uniform in its interior. (a) What is its inductance per 
meter of length? (b) If the current changes at the rate of 13 A/s, 
what emf is induced per meter? 

In Fig. 30-75, R] = 8.0 n, R2 = 

10 n, Ll = 0.30 H, L2 = 0.20 H, and 
the ideal battery has ~ = 6.0 V. (a) 
Just after switch S is closed, at what 
rate is the current in inductor 
1 changing? (b) When the circuit is in 
the steady state, what is the current 
in inductor 1 ? 

Fig.30-75 Problem 95. 

A square loop of wire is held in a uniform 0.24 T magnetic 
field directed perpendicular to the plane of the loop. The length of 
each side of the square is decreasing at a constant rate of 5.0 cm/s. 
What emf is induced in the loop when the length is 12 cm? 

At time t = 0, a 45 V potential difference is suddenly applied 
to the leads of a coil with inductance L = 50 mH and resistance 
R = 180 n. At what rate is the current through the coil increasing 
at t = 1.2 ms? 

The inductance of a closely wound coil is such that an emf of 
3.00 mV is induced when the current changes at the rate of 5.00 
A/s. A steady current of 8.00 A produces a magnetic flux of 40.0 
f.LWb through each turn. (a) Calculate the inductance of the coil. 
(b) How many turns does the coil have? 
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··WHAlIS 
We have explored the basic physics of electric and magnetic fields and 

how energy can be stored in capacitors and inductors. We next turn to the associ­
ated applied physics, in which the energy stored in one location can be transferred 
to another location so that it can be put to use. For example, energy produced at a 
power plant can show up at your home to run a computer. The total worth of this 
applied physics is now so high that its estimation is almost impossible. Indeed, mod­
ern civilization would be impossible without this applied physics. 

In most parts of the world, electrical energy is transferred not as a direct 
current but as a sinusoidally oscillating current (alternating current, or ac). The 
challenge to both physicists and engineers is to design ac systems that transfer 
energy efficiently and to build appliances that make use of that energy. 

In our discussion of electrically oscillating systems in this chapter, our first step is to 
examine oscillations in a simple circuit consisting of inductance L and capacitance C. 

1 LC Oscillations, Qualitatively 
Of the three circuit elements resistance R, capacitance C, and inductance L, we have 
so far discussed the series combinations RC (in Section 27-9) and RL (in Section 
30-9). In these two kinds of circuit we found that the charge, current, and potential 
difference grow and decay exponentially. The time scale of the growth or decay is 
given by a time constant 7, which is either capacitive or inductive. 

We now examine the remaining two-element circuit combination LC. You 
will see that in this case the charge, current, and potential difference do not decay 
exponentially with time but vary sinusoidally (with period T and angular 
frequency w). The resulting oscillations of the capacitor's electric field and the 
inductor's magnetic field are said to be electromagnetic oscillations. Such a 
circuit is said to oscillate. 

Parts a through h of Fig. 31-1 show succeeding stages of the oscillations in 
a simple LC circuit. From Eq. 25-21, the energy stored in the electric field of the 
capacitor at any time is 

(31-1) 
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where q is the charge on the capacitor at that time. From Eq. 30-49, the energy 
stored in the magnetic field of the inductor at any time is 

Liz 
UB = -2-' 

where i is the current through the inductor at that time. 

(31-2) 

We now adopt the convention of representing instantaneous values of the 
electrical quantities of a sinusoidally oscillating circuit with small letters, such 
as q, and the amplitudes of those quantities with capital letters, such as Q. 
With this convention in mind, let us assume that initially the charge q on the 
capacitor in Fig. 31-1 is at its maximum value Q and that the current i through 
the inductor is zero. This initial state of the circuit is shown in Fig. 31-1a. The 
bar graphs for energy included there indicate that at this instant, with zero 
current through the inductor and maximum charge on the capacitor, the en­
ergy UB of the magnetic field is zero and the energy UE of the electric field is 
a maximum. As the circuit oscillates, energy shifts back and forth from one 
type of stored energy to the other, but the total amount is conserved. 

i= 0 LOG ++ ++ 

r~Ul 
UB uE 

Entirely (a) 

electrical 
energy 

(b) (c) 

maxi 

Entirely 
magnetic 
energy 

.::f 

(d) 
i= 0 LOG 1IIH 

++ ++ 

(e) 

I ~-- -
(11) 

Un UE 

(g) Entirely 

magnetic 
energy 

Fig.31-1 Eight stages in a single cycle of oscillation of a resistanceless LC circuit. 
The bar graphs by each figure show the stored magnetic and electrical energies. The 
magnetic field lines of the inductor and the electric field lines of the capacitor are shown. 
(a) Capacitor with maximum charge, no current. (b) Capacitor discharging, current 
increasing. (c) Capacitor fully discharged, current maximum. (d) Capacitor charging 
but with polarity opposite that in (a), current decreasing. (e) Capacitor with maximum 
charge having polarity opposite that in (a), no current. (f) Capacitor discharging, current 
increasing with direction opposite that in (b). (g) Capacitor fully discharged, current 
maximum. (11) Capacitor charging, current decreasing. 

(f) 

Entirely 
electrical 
energy 
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(b) !: 

Fig. 31 -2 (a) The potential difference 
across the capacitor of the circuit of Fig. 
31-1 as a function of time. This quantity is 
proportional to the charge on the capaci­
tor. (b) A potential proportional to the cur­
rent in the circuit of Fig. 31-1. The letters re­
fer to the correspondingly labeled 
oscillation stages in Fig. 31-1. 

The capacitor now starts to discharge through the inductor, positive charge 
carriers moving counterclockwise, as shown in Fig. 31-1b. This means that a cur­
rent i, given by dq/dt and pointing down in the inductor, is established. As the 
capacitor's charge decreases, the energy stored in the electric field within the 
capacitor also decreases. This energy is transferred to the magnetic field that 
appears around the inductor because of the current i that is building up there. 
Thus, the electric field decreases and the magnetic field builds up as energy is 
transferred from the electric field to the magnetic field. 

The capacitor eventually loses all its charge (Fig. 31-1c) and thus also loses its 
electric field and the energy stored in that field. The energy has then been fully 
transferred to the magnetic field of the inductor. The magnetic field is then at 
its maximum magnitude, and the current through the inductor is then at its 
maximum value 1. 

Although the charge on the capacitor is now zero, the counterclockwise 
current must continue because the inductor does not allow it to change suddenly 
to zero. The current continues to transfer positive charge from the top plate to the 
bottom plate through the circuit (Fig. 31-1d). Energy now flows from the inductor 
back to the capacitor as the electric field within the capacitor builds up again. The 
current gradually decreases during this energy transfer. When, eventually, the 
energy has been transferred completely back to the capacitor (Fig. 31-1e), the cur­
rent has decreased to zero (momentarily). The situation of Fig. 31-1e is like the ini­
tial situation, except that the capacitor is now charged oppositely. 

The capacitor then starts to discharge again but now with a clockwise current 
(Fig. 31-1f). Reasoning as before, we see that the clockwise current builds to a 
maximum (Fig. 31-1g) and then decreases (Fig. 31-1h), until the circuit eventually 
returns to its initial situation (Fig. 31-1a). The process then repeats at some 
frequency f and thus at an angular frequency U) = 21Tf In the ideal LC circuit with 
no resistance, there are no energy transfers other than that between the electric 
field of the capacitor and the magnetic field of the inductor. Because of the con­
servation of energy, the oscillations continue indefinitely. The oscillations need 
not begin with the energy all in the electric field; the initial situation could be any 
other stage of the oscillation. 

To determine the charge q on the capacitor as a function of time, we can put 
in a voltmeter to measure the time-varying potential difference (or Voltage) Vc 
that exists across the capacitor C. From Eq. 25-1 we can write 

which allows us to find q. To measure the current, we can connect a small resis­
tance R in series with the capacitor and inductor and measure the time-varying 

Fig.31-3 An oscillo­
scope trace showing how 
the oscillations in an RLC 
circuit actually die away 
because energy is dissipated 
in the resistor as thermal 
energy. (Courtesy Agilent 
Technologies) 
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potential difference VR across it; VR is proportional to i through the relation 

VR = iR. 

We assume here that R is so small that its effect on the behavior of the circuit is 
negligible. The variations in time of Vc and VR, and thus of q and i, are shown in 
Fig. 31-2. All four quantities vary sinusoidally. 

In an actual LC circuit, the oscillations will not continue indefinitely because 
there is always some resistance present that will drain energy from the elec­
tric and magnetic fields and dissipate it as thermal energy (the circuit may 
become warmer). The oscillations, once started, will die away as Fig. 31-3 sug­
gests. Compare this figure with Fig. 15-15, which shows the decay of mechanical 
oscillations caused by frictional damping in a block -spring system. 

1 The Electrical-Mechanical Analogy 
Let us look a little closer at the analogy between the oscillating LC system of 
Fig. 31-1 and an oscillating block-spring system. Two kinds of energy are 
involved in the block-spring system. One is potential energy of the compressed 
or extended spring; the other is kinetic energy of the moving block. These two 
energies are given by the formulas in the first energy column in Table 31-1. 

The table also shows, in the second energy column, the two kinds of energy 
involved in LC oscillations. By looking across the table, we can see an analogy 
between the forms of the two pairs of energies-the mechanical energies of the 
block-spring system and the electromagnetic energies of the LC oscillator. The 
equations for v and i at the bottom of the table help us see the details of the analogy. 
They tell us that q corresponds to x and i corresponds to v (in both equations, the 
former is differentiated to obtain the latter). These correspondences then suggest 
that, in the energy expressions, lIC corresponds to k and L corresponds to m. Thus, 

q corresponds to x, lIC corresponds to k, 
i corresponds to v, and L corresponds to m. 

These correspondences suggest that in an LC oscillator, the capacitor is mathemati­
cally like the spring in a block -spring system and the inductor is like the block. 

In Section 15-3 we saw that the angular frequency of oscillation of a (fric­
tionless) block - spring system is 

Ffc 
w- - (block -spring system). (31-3) 

111 

The correspondences listed above suggest that to find the angular frequency of 
oscillation for an ideal (resistanceless) LC circuit, k should be replaced by lIC 
and 111 by L, yielding 

1 
w=---vrc (LC circuit). (31-4) 

Comparison of the Energy in Two Oscillating Systems 

Block-Spring System 

Element 

Spring 

Block 

Energy 

Potential,1h -2 

Kinetic, ~I11V2 
v = dxldt 

LC Oscillator 

Element 

Capacitor 

Inductor 

Energy 

Electrical, ~(1/C)q2 

Magnetic, ~Li2 

i = dqldt 

CHECKPOINT 1 

A charged capacitor and an inductor 
are connected in series at time t = O. In 
terms of the period T of the resulting 
oscillations, determine how much later 
the following reach their maximum 
value: (a) the charge on the capacitor; 
(b) the voltage across the capacitor, 
with its original polarity; (c) the energy 
stored in the electric field; and (d) the 
current. 
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1 LC Oscillations, Quantitatively 
Here we want to show explicitly that Eq. 31-4 for the angular frequency of LC 
oscillations is correct. At the same time, we want to examine even more closely 
the analogy between LC oscillations and block-spring oscillations. We start 
by extending somewhat our earlier treatment of the mechanical block-spring 
oscillator. 

We analyzed block-spring oscillations in Chapter 15 in terms of energy transfers 
and did not-at that early stage-derive the fundamental differential equation 
that governs those oscillations. We do so now. 

We can write, for the total energy U of a block-spring oscillator at any 
instant, 

U -TT a-I 2+112 
- ub + s - 'imv 'i KX , (31-5) 

where Ub and Us are, respectively, the kinetic energy of the moving block and the 
potential energy of the stretched or compressed spring. If there is no friction­
which we assume-the total energy U remains constant with time, even though 
v and x vary. In more formal language, dU/dt = O. This leads to 

dU d ~ ~ 
-- = -(!mv2 + !kX2) = mv- + /(x- = O. 

dt dt 2 2 dt dt 
(31-6) 

However, v = dx/dt and dv/dt = d 2x/dt2. With these substitutions, Eq. 31-6 
becomes 

(block -spring oscillations). (31-7) 

Equation 31-7 is the fundamental differential equation that governs the friction­
less block -spring oscillations. 

The general solution to Eq. 31-7 -that is, the function x(t) that describes the 
block-spring oscillations-is (as we saw in Eq.15-3) 

x = X cos(wt + cfJ) (displacement), (31-8) 

in which X is the amplitude of the mechanical oscillations (XIIl in Chapter 15), w is 
the angular frequency of the oscillations, and cfJ is a phase constant. 

Now let us analyze the oscillations of a resistanceless LC circuit, proceeding 
exactly as we just did for the block -spring oscillator. The total energy U present 
at any instant in an oscillating LC circuit is given by 

Li2 q2 
U = UB + UE = 2 + 2C' (31-9) 

in which UB is the energy stored in the magnetic field of the inductor and UE is the 
energy stored in the electric field of the capacitor. Since we have assumed the circuit 
resistance to be zero, no energy is transferred to thermal energy and U remains con­
stant with time. In more formal language, dUi dt must be zero. This leads to 

~~ = :t (L;2 + i~) = Li ~~ + ~ ~; = O. (31-10) 
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However, i = dqldt and dildt = d 2qldt2• With these substitutions, Eq. 31-10 
becomes 

(LC oscillations). (31-11) 

This is the differential equation that describes the oscillations of a resistanceless 
LC circuit. Equations 31-11 and 31-7 are exactly of the same mathematical form. 

Since the differential equations are mathematically identical, their solutions must 
also be mathematically identical. Because q corresponds to x, we can write the 
general solution of Eq. 31-11, by analogy to Eq. 31-8, as 

q = Qcos(wt + ¢) (charge), (31-12) 

where Q is the amplitude of the charge variations, w is the angular frequency of 
the electromagnetic oscillations, and ¢ is the phase constant. 

Taking the first derivative of Eq. 31-12 with respect to time gives us the 
current of the LC oscillator: 

i = ~; = -wQ sin(wt + ¢) 

The amplitude I of this sinusoidally varying current is 

1= wQ, 

and so we can rewrite Eq. 31-13 as 

i = -Isin(wt+ ¢). 

(current). (31-13) 

(31-14) 

(31-15) 

We can test whether Eq. 31-12 is a solution of Eq. 31-11 by substituting Eq. 31-12 
and its second derivative with respect to time into Eq. 31-11. The first derivative 
ofEq. 31-12 is Eq. 31-13. The second derivative is then 

d 2q 
dt2 = - w2Q cos( wt + ¢). 

Substituting for q and d 2qldt2 in Eq. 31-11, we obtain 

1 
- Lw2Q cos( wt + ¢) + c Q cos( wt + ¢) = O. 

Canceling Q cos( wt + ¢) and rearranging lead to 

1 
w = vLC' 

Thus, Eq. 31-12 is indeed a solution of Eq. 31-11 if w has the constant value 
1/{f;(;. Note that this expression for w is exactly that given by Eq. 31-4, which 
we arrived at by examining correspondences. 

The phase constant ¢ in Eq. 31-12 is determined by the conditions that exist 
at any certain time-say, t = O. If the conditions yield ¢ = 0 at t = 0, Eq. 31-12 
requires that q = Q and Eq. 31-13 requires that i = 0; these are the initial con­
ditions represented by Fig. 31-1a. 
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The electrical and magnetic 
energies vary but the total 
is constant. 

The electrical energy stored in the LC circuit at time t is, from Eqs. 31-1 and 31-12, 

(31-16) 

UE (t) The magnetic energy is, from Eqs. 31-2 and 31-13, 

UB = ~Li2 = ~LW2Q2 sin2(wt + ¢). 

Substituting for w from Eq. 31-4 then gives us 

o T/2 T 
Time 

(31-17) 

Fig. 31 -4 The stored magnetic 
energy and electrical energy in the 
circuit of Fig. 31-1 as a function of 
time. Note that their sum remains con­
stant. Tis the period of oscillation. 

Figure 31-4 shows plots of UE(t) and UB(t) for the case of ¢ = O. Note that 

1. The maximum values of UE and UB are both Q2/2C. 

2. At any instant the sum of U E and U B is equal to Q2/2C, a constant. 

3. When U E is maximum, U B is zero, and conversely. 

CHECKPOINT 2 

A capacitor in an LC oscillator has a maximum potential difference of 17 V and a max­
imum energy of 160 j.LJ. When the capacitor has a potential difference of 5 V and an en­
ergy of 10 j.LJ, what are (a) the emf across the inductor and (b) the energy stored in the 
magnetic field? 

LC oscillator: potential change, rate of current change 

A 1.5 fLF capacitor is charged to 57 V by a battery, which is 
then removed. At time t = 0, a 12 mH coil is connected in series 
with the capacitor to form an LC oscillator (Fig. 31-1). 

(a) What is the potential difference VL(t) across the inductor 
as a function of time? 

(1) The current and potential differences of the circuit (both 
the potential difference of the capacitor and the potential 
difference of the coil) undergo sinusoidal oscillations. (2) 
We can still apply the loop rule to these oscillating potential 
differences, just as we did for the non oscillating circuits of 
Chapter 27. 

Calculations: At any time t during the oscillations, 
the loop rule and Fig. 31-1 give us 

VL(t) = vc(t); (31-18) 

that is, the potential difference VL across the inductor must 
always be equal to the potential difference Vc across the 
capacitor, so that the net potential difference around the circuit 
is zero. Thus, we will find VL(t) if we can find ve(t), and we can 
find v c(t) from q(t) with Eq. 25-1 (q = CV). 

Because the potential difference vc(t) is maximum 
when the oscillations begin at time t = 0, the charge q on the 
capacitor must also be maximum then. Thus, phase constant 
¢ must be zero; so Eq. 31-12 gives us 

q = Q cos wt. (31-19) 

(Note that this cosine function does indeed yield maximum q 
(= Q) when t = 0.) To get the potential difference vc(t), we 
divide both sides of Eq. 31-19 by C to write 

q Q 
- = -coswt 
C C ' 

and then use Eq. 25-1 to write 

Ve = Vecos wt. (31-20) 

Here, Ve is the amplitude of the oscillations in the potential 
difference Ve across the capacitor. 

Next, substituting Vc = VL from Eq. 31-18, we find 

(31-21) 

We can evaluate the right side of this equation by first not­
ing that the amplitude V c is equal to the initial (maximum) 
potential difference of 57 V across the capacitor. Then we 
find wwith Eq. 31-4: 
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1 1 
w = --- = -.,---------:----::--:-

VLC [(0.012 H)(1.5 X 10-6 F)]O.5 

= 7454 rad/s = 7500 rad/s. 

Thus, Eq. 31-21 becomes 

i = -wQ sin wt. 

Calculations: Taking the derivative, we have 

d
di = ~ (-wQ sin wt) = -w2Q cos wt. 

t dt 

VL = (57 V) cos(7500 rad/s)t. (Answer) 

(b) What is the maximum rate (dildt)max at which the cur­
rent i changes in the circuit? 

We can simplify this equation by substituting CV c for Q 
(because we know C and Vc but not Q) and lIVLC for w 
according to Eq. 31-4. We get 

di 1 Vc dt = - LC CVccos wt = -TcOS wt. 

With the charge on the capacitor oscillating as in Eq. 31-12, 
the current is in the form of Eq. 31-13. Because cp = 0, that 
equation gives us 

This tells us that the current changes at a varying (sinusoidal) 
rate, with its maximum rate of change being 

Vc 57 V = 4750 AI = 4800 AI 
L 0.012 H s s. (Answer) 

Additional examples, video, and practice available at WileyPLUS 

Damped Oscillations in an RLC Circuit 
A circuit containing resistance, inductance, and capacitance is called an RLC 
circuit. We shall here discuss only series RLC circuits like that shown in Fig. 31-5. 
With a resistance R present, the total electromagnetic energy U of the circuit (the 
sum of the electrical energy and magnetic energy) is no longer constant; instead, 
it decreases with time as energy is transferred to thermal energy in the resistance. 
Because of this loss of energy, the oscillations of charge, current, and potential 
difference continuously decrease in amplitude, and the oscillations are said to be 
damped, just as with the damped block -spring oscillator of Section 15-8. 

To analyze the oscillations of this circuit, we write an equation for the total 
electromagnetic energy U in the circuit at any instant. Because the resistance 
does not store electromagnetic energy, we can use Eq. 31-9: 

Li2 q2 
U = UB + UE = -2- + 2C' (31-22) 

Now, however, this total energy decreases as energy is transferred to thermal 
energy. The rate of that transfer is, from Eq. 26-27, 

dU = -i2R (31-23) 
dt ' 

where the minus sign indicates that U decreases. By differentiating Eq. 31-22 with 
respect to time and then substituting the result in Eq. 31-23, we obtain 

dU = Li!!:i + !L dq = -i2R. 
dt dt C dt 

Substituting dqldt for i and d2qldt2 for dildt, we obtain 

d 2q dq 1 
L--+R-+-q=O 

dt2 dt C 
(RLC circuit), (31-24) 

which is the differential equation for damped oscillations in an RLC circuit. 
The solution to Eq. 31-24 is 

q = Qe-RI/2L cos(w't + cp), (31-25) 

Fig. 31 -5 A series RLC circuit. As the 
charge contained in the circuit oscillates 
back and forth through the resistance, elec­
tromagnetic energy is dissipated as thermal 
energy, damping (decreasing the amplitude 
of) the oscillations. 
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in which 

(31-26) 

where w = lIVLC, as with an undamped oscillator. Equation 31-25 tells us how 
the charge on the capacitor oscillates in a damped RLC circuit; that equation is 
the electromagnetic counterpart of Eq. 15-42, which gives the displacement of 
a damped block-spring oscillator. 

Equation 31-25 describes a sinusoidal oscillation (the cosine function) with 
an exponentially decaying amplitude Qe-RtI2L (the factor that multiplies the 
cosine). The angular frequency Wi of the damped oscillations is always less than 
the angular frequency w of the undamped oscillations; however, we shall here 
consider only situations in which R is small enough for us to replace Wi with w. 

Let us next find an expression for the total electromagnetic energy U of 
the circuit as a function of time. One way to do so is to monitor the energy 
of the electric field in the capacitor, which is given by Eq. 31-1 (U E = q2/2C). By 
substituting Eq. 31-25 into Eq. 31-1, we obtain 

q2 [Qe-RtI2Lcos(w't + (MF Q2 
U = - = = - e-RtiL COS2(W't + 4». (31-27) 

E 2C 2C 2C 

Thus, the energy of the electric field oscillates according to a cosine-squared 
term, and the amplitude of that oscillation decreases exponentially with time. 

Damped RLC circuit: charge amplitude 

A series RLC circuit has inductance L = 12 mH, capaci­
tance C = 1.6 ,uF, and resistance R = 1.5 n and begins to os­
cillate at time t = O. 

Solving for t and then substituting given data yield 

2L 
t = --ln050 = R . 

(2)(12 X 10-3 H)(1n 0.50) 

1.5 n 
(a) At what time t will the amplitude of the charge oscilla­
tions in the circuit be 50% of its initial value? (Note that we 
do not know that initial value.) 

The amplitude of the charge oscillations decreases exponen­
tially with time t: According to Eq. 31-25, the charge ampli­
tude at any time tis Qe-RtI2L, in which Q is the amplitude at 
time t = O. 

Calculations: We want the time when the charge ampli­
tude has decreased to 0.50Q, that is, when 

Qe-RtI2L = 0.50Q. 

We can now cancel Q (which also means that we can answer 
the question without knowing the initial charge). Taking the 
natural logarithms of both sides (to eliminate the exponen­
tial function), we have 

Rt 
-- = ln050 2L .. 

= 0.0111 s = 11 ms. (Answer) 

(b) How many oscillations are completed within this time? 

The time for one complete oscillation is the period T = 
21T/W, where the angular frequency for LC oscillations is 
given by Eq. 31-4 (w = lIVLC). 

Calculation: In the time interval !:::,.t = 0.0111 s, the number 
of complete oscillations is 

I::..t !:::,.t 

T 21TVLC 

0.0111 s = 13 
21T[(12 X 10-3 H)(1.6 X 10-6 F)P/2 . 

(Answer) 

Thus, the amplitude decays by 50% in about 13 complete 
oscillations. This damping is less severe than that shown in 
Fig. 31-3, where the amplitude decays by a little more than 
50% in one oscillation. 

Additional examples, video, and practice available at WileyPLUS 
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1 Alternating Current 
The oscillations in an RLC circuit will not damp out if an external emf device 
supplies enough energy to make up for the energy dissipated as thermal energy 
in the resistance R. Circuits in homes, offices, and factories, including countless 
RLC circuits, receive such energy from local power companies. In most countries 
the energy is supplied via oscillating emfs and currents- the current is said to be 
an alternating current, or ac for short. (The nonoscillating current from a battery 
is said to be a direct cOlorent, or dc.) These oscillating emfs and currents vary si­
nusoidally with time, reversing direction (in North America) 120 times per sec­
ond and thus having frequency f = 60 Hz. 

At first sight this may seem to be a strange arrangement. We have seen that 
the drift speed of the conduction electrons in household wiring may typically be 
4 X 10-5 m/s. If we now reverse their direction every l~O s, such electrons can 
move only about 3 X 10-7 m in a half-cycle. At this rate, a typical electron can 
drift past no more than about 10 atoms in the wiring before it is required to 
reverse its direction. How, you may wonder, can the electron ever get anywhere? 

Although this question may be worrisome, it is a needless concern. The con­
duction electrons do not have to "get anywhere." When we say that the current in 
a wire is one ampere, we mean that charge passes through any plane cutting 
across that wire at the rate of one coulomb per second. The speed at which the 
charge carriers cross that plane does not matter directly; one ampere may corre­
spond to many charge carriers moving very slowly or to a few moving very 
rapidly. Furthermore, the signal to the electrons to reverse directions-which 
originates in the alternating emf provided by the power company's generator­
is propagated along the conductor at a speed close to that of light. All electrons, 
no matter where they are located, get their reversal instructions at about the 
same instant. Finally, we note that for many devices, such as lightbulbs and toast­
ers, the direction of motion is unimportant as long as the electrons do move so as 
to transfer energy to the device via collisions with atoms in the device. 

The basic advantage of alternating current is this: As the current alternates, so 
does the magnetic field that surrounds the conductOl: This makes possible the use 
of Faraday's law of induction, which, among other things, means that we can step 
up (increase) or step down (decrease) the magnitude of an alternating potential 
difference at will, using a device called a transformer, as we shall discuss later. 
Moreover, alternating current is more readily adaptable to rotating machinery 
such as generators and motors than is (nonalternating) direct current. 

Figure 31-6 shows a simple model of an ac generator. As the conducting loop 
is forced to rotate through the external magnetic field B, a sinusoidally oscillating 
emf ~ is induced in the loop: 

(31-28) 

The angular frequency Wd of the emf is equal to the angular speed with which the 
loop rotates in the magnetic field, the phase of the emf is wdt, and the amplitude of 
the emf is ~111 (where the subscript stands for maximum). When the rotating loop 
is part of a closed conducting path, this emf produces (drives) a sinusoidal (alter­
nating) current along the path with the same angular frequency Wd, which then is 
called the driving angular frequency. We can write the current as 

(31-29) 

in which I is the amplitude of the driven current. (The phase wdt - cp of the cur­
rent is traditionally written with a minus sign instead of as wdt + cp.) We include 
a phase constant cp in Eq. 31-29 because the current i may not be in phase with 
the emf~. (As you will see, the phase constant depends on the circuit to which 
the generator is connected.) We can also write the current i in terms of the 
driving frequency fd of the emf, by substituting 21Tfd for Wd in Eq. 31-29. 

Fig. 31 -6 The basic mechanism of an 
alternating-current generator is a conduct­
ing loop rotated in an external magnetic 
field. In practice, the alternating emf in­
duced in a coil of many turns of wire is 
made accessible by means of slip rings at­
tached to the rotating loop. Each ring is 
connected to one end of the loop wire and 
is electrically connected to the rest of the 
generator circuit by a conducting brush 
against which the ring slips as the loop 
(and it) rotates. 
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---i 
Fig.31-7 A single-loop circuit contain­
ing a resistor, a capacitor, and an inductor. 
A generator, represented by a sine wave in 
a circle, produces an alternating emf that 
establishes an alternating current; the di­
rections of the emf and current are indi­
cated here at only one instant. 

Fig. 31 -8 A resistor is connected across an 
alternating-current generator. 

1 Forced Oscillations 
We have seen that once started, the charge, potential difference, and current in 
both undamped LC circuits and damped RLC circuits (with small enough R) 
oscillate at angular frequency W = 1/{LC. Such oscillations are said to be free 
oscillations (free of any external emf), and the angular frequency W is said to be 
the circuit's natural angular frequency. 

When the external alternating emf of Eq. 31-28 is connected to an RLC 
circuit, the oscillations of charge, potential difference, and current are said to be 
driven oscillations or forced oscillations. These oscillations always occur at the 
driving angular frequency wd: 

Whatever the natural angular frequency w of a circuit may be, forced oscillations 
of charge, current, and potential difference in the circuit always occur at the driving 
angular frequency Wd' 

However, as you will see in Section 31-9, the amplitudes of the oscillations very 
much depend on how close Wd is to w. When the two angular frequencies match­
a condition known as resonance-the amplitude I of the current in the circuit is 
maximum. 

1 Three Simple Circuits 
Later in this chapter, we shall connect an external alternating emf device to 
a series RLC circuit as in Fig. 31-7. We shall then find expressions for the 
amplitude I and phase constant ¢ of the sinusoidally oscillating current in 
terms of the amplitude 'f!,m and angular frequency Wd of the external emf. First, 
let's consider three simpler circuits, each having an external emf and only one 
other circuit element: R, C, or L. We start with a resistive element (a purely re­
sistive load). 

A 
Figure 31-8 shows a circuit containing a resistance element of value R and an 
ac generator with the alternating emf of Eq. 31-28. By the loop rule, we have 

'f!, - VR = O. 

With Eq. 31-28, this gives us 

Because the amplitude VR of the alternating potential difference (or voltage) 
across the resistance is equal to the amplitude 'f!,111 of the alternating emf, we can 
write this as 

(31-30) 

From the definition of resistance (R = Vii), we can now write the current iR in the 
resistance as 

From Eq. 31-29, we can also write this current as 

iR=IRsin(wdt ¢), 

(31-31) 

(31-32) 

where IR is the amplitude of the current iR in the resistance. Comparing Eqs. 
31-31 and 31-32, we see that for a purely resistive load the phase constant ¢ = 0°. 



(a) 

For a resistive load, 
the current and potential 
difference are in phase. 

~Instants~ 
represented in (b) (b) 

Rotation of 
~h~sorsat 

~ateOJd 

"In phase" means 
that they peak at 
the same time. 

Fig. 31 -9 (a) The cutTent i R and the potential difference v R across the resistor are plotted on 
the same graph, both versus time t. They are in phase and complete one cycle in one period T. (b) 
A phasor diagram shows the same thing as (a). 

We also see that the voltage amplitude and current amplitude are related by 

(resistor). (31-33) 

Although we found this relation for the circuit of Fig. 31-8, it applies to any 
resistance in any ac circuit. 

By comparing Eqs. 31-30 and 31-31, we see that the time-varying quantities 
VR and iR are both functions of sin wdt with ¢ = 00

• Thus, these two quantities are 
in phase, which means that their corresponding maxima (and minima) occur at 
the same times. Figure 31-9a, which is a plot of VR(t) and iR(t), illustrates this fact. 
Note that VR and iR do not decay here because the generator supplies energy to 
the circuit to make up for the energy dissipated in R. 

The time-varying quantities VR and iR can also be represented geometrically 
by phasors. Recall from Section 16-11 that phasors are vectors that rotate around 
an origin. Those that represent the voltage across and current in the resistor of 
Fig. 31-8 are shown in Fig. 31-9b at an arbitrary time t. Such phasors have the 
following properties: 

Angular speed: Both phasors rotate counterclockwise about the origin with an 
angular speed equal to the angular frequency WeI of VR and iR. 

Length: The length of each phasor represents the amplitude of the alternating 
quantity: VR for the voltage and I R for the current. 

Projection: The projection of each phasor on the vertical axis represents the 
value of the alternating quantity at time t: VR for the voltage and iR for 
the current. 

Rotation angle: The rotation angle of each phasor is equal to the phase of the 
alternating quantity at time t. In Fig. 31-9b, the voltage and current are in 
phase; so their phasors always have the same phase welt and the same rotation 
angle, and thus they rotate together. 

Mentally follow the rotation. Can you see that when the phasors have 
rotated so that welt = 900 (they point vertically upward), they indicate that just 
then v R = V Rand i R = I R? Equations 31-30 and 31-32 give the same results. 

CHECKPOINT 3 

If we increase the driving frequency in a circuit with a purely resistive load, do (a) am­
plitude V Rand (b) amplitude IR increase, decrease, or remain the same? 

THREE SIMPLE CIRCUITS 837 
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Purely resistive load: potential difference and current 

In Fig. 31-8, resistance R is 200 n and the sinusoidal alter­
nating emf device operates at amplitude 'f/,m = 36.0 V and 
frequency fd = 60.0 Hz. 

(a) What is the potential difference VR(t) across the resistance 
as a function of time t, and what is the amplitude VR of VR(t)? 

In a circuit with a purely resistive load, the potential difference 
VR(t) across the resistance is always equal to the potential differ­
ence 'f/,(t) across the emf device. 

Calculations: Here we have VR(t) = 'f/,(t) and VR = 'f/,m. 
Since 'f/,m is given, we can write 

V R = 'f/,m = 36.0 V. 

To find VR(t), we use Eq. 31-28 to write 

VR(t) = 'f/,(t) = 'f/,m sin wdt 

and then substitute 'f/,m = 36.0 V and 

to obtain 
Wd = 21Tfd = 21T(60 Hz) = 1201T 

VR = (36.0 V) sin(1201Tt). 

(Answer) 

(31-34) 

(Answer) 

We can leave the argument of the sine in this form for con­
venience, or we can write it as (377 rad/s)tor as (377 S-I)t. 

(b) What are the current iR(t) in the resistance and the 
amplitude IR of iR(t)? 

In an ac circuit with a purely resistive load, the alternating 
current iR(t) in the resistance is in phase with the alternating po­
tential difference VR(t) across the resistance; that is, the phase 
constant ¢ for the current is zero. 

Calculations: Here we can write Eq. 31-29 as 

iR = IR sine Wdt - ¢) = IR sin wdt. 

From Eq. 31-33, the amplitude IR is 

~ 36.0V 
IR = R = 200n = 0.180 A. 

(31-35) 

(Answer) 

Substituting this and Wd = 21Tfd = 1201T into Eq. 31-35, we 
have 

iR = (0.180 A) sin(1201Tt). (Answer) 

irus Additional examples, video, and practice available at WileyPLUS 

Fig. 31-10 A capacitor is connected 
across an alternating-current generator. 

Figure 31-10 shows a circuit containing a capacitance and a generator with the 
alternating emf of Eq. 31-28. Using the loop rule and proceeding as we did 
when we obtained Eq. 31-30, we find that the potential difference across the 
capacitor is 

(31-36) 

where Ve is the amplitude of the alternating voltage across the capacitor. From 
the definition of capacitance we can also write 

qe = CVe = CVe sin wdt. (31-37) 

Our concern, however, is with the current rather than the charge. Thus, we differ­
entiate Eq. 31-37 to find 

(31-38) 

We now modify Eq. 31-38 in two ways. First, for reasons of symmetry of nota­
tion, we introduce the quantity Xc, called the capacitive reactance of a capacitor, 
defined as 

(capacitive reactance). (31-39) 



For a capacitive load, the 
current leads the potential 
difference by 90°. 

I 
¢ = _90 0 

= -n/2 rad : 

T 
I 
I 
I 
I 
I 

~Instants~ 
represen ted in (b) 

(a) (b) 

\

Rotation of 
phasors at 

rate rod 

"Leads" means that the 
current peaks at an 
earlier time than the 
potential difference. 

Fig. 31 -11 (a) The current in the capacitor leads the voltage by 90° (= 'TT/2 rad). (b) A 
phasor diagram shows the same thing. 

Its value depends not only on the capacitance but also on the driving angular 
frequency Wd' We know from the definition of the capacitive time constant 
(T = RC) that the SI unit for C can be expressed as seconds per ohm. Applying 
this to Eq. 31-39 shows that the SI unit of Xc is the ohm, just as for resistance R. 

Second, we replace cos Wdt in Eq. 31-38 with a phase-shifted sine: 

cos wdt = sine wdt + 90°). 

You can verify this identity by shifting a sine curve 90° in the negative direction. 
With these two modifications, Eq. 31-38 becomes 

ic = (~~) sine wdt + 90°). (31-40) 

From Eq. 31-29, we can also write the current ic in the capacitor of Fig. 31-10 as 

(31-41) 

where Ie is the amplitude of ic. Comparing Eqs. 31-40 and 31-41, we see that for 
a purely capacitive load the phase constant 4> for the current is -90°. We also see 
that the voltage amplitude and current amplitude are related by 

(capacitor) . (31-42) 

Although we found this relation for the circuit of Fig. 31-10, it applies to any 
capacitance in any ac circuit. 

Comparison of Eqs. 31-36 and 31-40, or inspection of Fig. 31-11a, shows that 
the quantities Vc and ic are 90°, 1T12 rad, or one-quarter cycle, out of phase. 
Furthermore, we see that ic leads Vo which means that, if you monitored the 
current ic and the potential difference Vc in the circuit of Fig. 31-10, you would 
find that ic reaches its maximum before v c does, by one-quarter cycle. 

This relation between ic and Vc is illustrated by the phasor diagram of 
Fig. 31-11b.As the phasors representing these two quantities rotate counterclock­
wise together, the phasor labeled Ie does indeed lead that labeled Vo and by an 
angle of 90°; that is, the phasor Ie coincides with the vertical axis one-quarter 
cycle before the ph as or V c does. Be sure to convince yourself that the phasor 
diagram of Fig. 31-11b is consistent with Eqs. 31-36 and 31-40. 
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CHECKPOINT 4 

The figure shows, in (a), a sine curve 
S(t) = sin( wdt) and three other sinu­
soidal curves A(t), B(t), and C(t), each of 
the form sin(wdt - ¢). (a) Rank the 
three other curves according to the value 
of ¢, most positive first and most nega­
tive last. (b) Which curve corresponds to 
which phasor in (b) of the figure? (c) 
Which curve leads the others? 

(a) 

(b) 
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Purely capacitive load: potential difference and current 

In Fig. 31-10, capacitance Cis 15.0,uF and the sinusoidal 
alternating emf device operates at amplitude 'fj,1Il = 36.0 V 
and frequency id = 60.0 Hz. 

(a) What are the potential difference vc(t) across the 
capacitance and the amplitude Ve of vc(t)? 

In a circuit with a purely capacitive load, the potential differ­
ence ve(t) across the capacitance is always equal to the potential 
difference 'fj,(t) across the emf device. 

Calculations: Here we have vc(t) = 'fj,(t) and Ve = 'fj,1Il' 
Since 'fj,1Il is given, we have 

Ve = 'fj,m = 36.0 V. 

To find vc(t) , we use Eq. 31-28 to write 

vc(t) = 'fj,(t) = 'fj,1Il sin wdt. 

(Answer) 

(31-43) 

Then, substituting 'fj,m = 36.0 V and Wd = 21TJ" = 1201T into 
Eq. 31-43, we have 

Ve = (36.0 V) sin(1201Tt). (Answer) 

(b) What are the current ic(t) in the circuit as a function of 
time and the amplitude Ie of ic(t)? 

In an ac circuit with a purely capacitive load, the alternating 
current ic(t) in the capacitance leads the alternating poten­
tial difference vc(t) by 90°; that is, the phase constant ¢ for 
the current is - 90°, or - 1T12 rad. 

Calculations: Thus, we can write Eq. 31-29 as 

(31-44) 

We can find the amplitude Ie from Eq. 31-42 (Ve = IeXc) if 
we first find the capacitive reactance Xc. From Eq. 31-39 
(Xc = 11 WelC ) , with Wei = 21Tiel' we can write 

1 1 
Xc = 21TjdC = (21T)(60.0 Hz)(15.0 X 10-6 F) 

= 177 n. 
Then Eq. 31-42 tells us that the current amplitude is 

Ie = 1 = ~~.~ ~ = 0.203 A. (Answer) 

Substituting this and Wd = 21Tid = 1201T into Eq. 31-44, we 
have 

ie = (0.203 A) sin(1201Tt + 1T12). (Answer) 

~rus Additional examples, Video, and practice available at WileyPLUS 

Fig.31-12 An inductor is connected 
across an alternating-current generator. 

Figure 31-12 shows a circuit containing an inductance and a generator with the al­
ternating emf of Eq. 31-28. Using the loop rule and proceeding as we did to 
obtain Eq. 31-30, we find that the potential difference across the inductance is 

(31-45) 

where VL is the amplitude of Vv From Eq. 30-35 ('fj,L = -L dildt), we can write 
the potential difference across an inductance L in which the current is changing 
at the rate dijdt as diL 

VL = L dr' (31-46) 

If we combine Eqs. 31-45 and 31-46, we have 

diL V L . 
dr=Tsmwdt. (31-47) 

Our concern, however, is with the current rather than with its time derivative. We 
find the former by integrating Eq. 31-47, obtaining 

. J. V L J . ( V L 
) IL = dlL = - sm Wdtdt = - -- cos wdt. 

L WdL 
(31-48) 

We now modify this equation in two ways. First, for reasons of symmetry of 
notation, we introduce the quantity XL, called the inductive reactauce of an 



inductor, which is defined as 

(inductive reactance). (31-49) 

The value of XL depends on the driving angular frequency Wd' The unit of the 
inductive time constant 'TL indicates that the SI unit of XL is the ohm, just as it is 
for Xc and for R. 

Second, we replace -cos wdt in Eq. 31-48 with a phase-shifted sine: 

t . ( t 90°). -cos Wd = sm Wd 

You can verify this identity by shifting a sine curve 90° in the positive direction. 
With these two changes, Eq. 31-48 becomes 

. (~). ( lL = XL sm wd t 

From Eq. 31-29, we can also write this current in the inductance as 

iL = h sin(wdt - </J), 

(31-50) 

(31-51) 

where h is the amplitude of the current iL . Comparing Eqs. 31-50 and 31-51, 
we see that for a purely inductive load the phase constant </J for the current is 
+90°. We also see that the voltage amplitude and current amplitude are re­
lated by 

(inductor). (31-52) 

Although we found this relation for the circuit of Fig. 31-12, it applies to any 
inductance in any ac circuit. 

Comparison of Eqs. 31-45 and 31-50, or inspection of Fig. 31-13a, shows that 
the quantities iL and VL are 90° out of phase. In this case, however, iL lags VL; 

that is, monitoring the current iL and the potential difference VL in the circuit of 
Fig. 31-12 shows that iL reaches its maximum value after VL does, by one-quarter 
cycle. 

The phasor diagram of Fig. 31-13b also contains this information. As the 
phasors rotate counterclockwise in the figure, the phasor labeled h does indeed 
lag that labeled VL , and by an angle of 90°. Be sure to convince yourself that 
Fig. 31-13b represents Eqs. 31-45 and 31-50. 

CHECKPOINT 5 

If we increase the driving frequency in a circuit with a purely capacitive load, do (a) am­
plitude V c and (b) amplitude Ie increase, decrease, or remain the same? If, instead, the 
circuit has a purely inductive load, do (c) amplitude VL and (d) amplitude h increase, 
decrease, or remain the same? 
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(a) 

For an inductive load, 
the current lags the 
potential difference 
by 90°. 

~Instants~ 
represented in (b) 

\

Rotation of 
phasors at 

I'L - - - - --i FL rate rod 

(b) 

"Lags" means that the 
current peaks at a 
later time than the 
potential difference. 

Fig.31-13 (a) The current in the induc­
tor lags the voltage by 90° (= 1T/2 rad). (b) 
A phasor diagram shows the same thing. 

Leading and Lagging in AC Circuits Table 31-2 summarizes 
the relations between the current i and the voltage v for each of the 
three kinds of circuit elements we have considered. When an ap­
plied alternating voltage produces an alternating current in these 
elements, the current is always in phase with the voltage across a re­
sistor, always leads the voltage across a capacitor, and always lags 
the voltage across an inductor. 

in it the letter I (for current) comes after the letter E (for emf or 
voltage). Thus, for an inductor, the current lags (comes after) the 
voltage. Similarly ICE (which contains a C for capacitor) means 
that the current leads (comes before) the voltage. You might also 
use the modified mnemonic "ELI positively is the ICE man" to re­
member that the phase constant 4> is positive for an inductor. 

Many students remember these results with the mnemonic 
"ELI the ICE man." ELI contains the letter L (for inductor), and 

If you have difficulty in remembering whether Xc is equal to 
rodC (wrong) or 1/WdC (right), try remembering that C is in the 
"cellar" - that is, in the denominator. 
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Phase and Amplitude Relations for Alternating Currents and Voltages 

Circuit Resistance Phase of Phase Constant Amplitude 
Element Symbol or Reactance the Current (or Angle) ¢ Relation 

Resistor R R In phase with VR 0° (= 0 rad) VR = IRR 
Capacitor C Xc = 1/w"C Leads Vc by 90° (= 1T12 rad) -90° (= -1T12 rad) Vc = IcXc 
Inductor L XL = WdL Lags v L by 90° (= 1T12 rad) +90° (= +1T12 rad) VL = hXL 

Purely inductive load: potential difference and current 

In Fig. 31-12,inductance L is 230 mH and the sinusoidal 
alternating emf device operates at amplitude 'fbm = 36.0 V 
and frequency fd = 60.0 Hz. 

(a) What are the potential difference VL(t) across the induc­
tance and the amplitude VL ofvL(t)? 

In a circuit with a purely inductive load, the potential dif­
ference VL(t) across the inductance is always equal to the 
potential difference 'fb(t) across the emf device. 

Calculations: Here we have VL(t) = 'fb(t) and VL = 'fbm• 

Since 'fb m is given, we know that 

VL = 'fb lll = 36.0 V 

To find VL(t), we use Eq. 31-28 to write 

v L(t) = 'fb(t) = 'fb lll sin (tJl. 

(Answer) 

(31-53) 

Then, substituting 'fb lll = 36.0 V and Wd = 21Tfd = 1201T into 
Eq. 31-53, we have 

VL = (36.0 V) sin(120m). (Answer) 

(b) What are the current iL(t) in the circuit as a function of 
time and the amplitude h of iL(t)? 

In an ac circuit with a purely inductive load, the alternating 
current iL(t) in the inductance lags the alternating potential dif­
ference VL(t) by 90°. (In the mnemonic of the problem-solving 
tactic, this circuit is "positively an ELI circuit," which tells us 
that the emf E leads the current I and that ¢ is positive.) 

Calculations: Because the phase constant ¢ for the 
current is +90°, or +1T12 rad, we can write Eq.31-29 as 

iL = h sine wdt - ¢) = h sine Welt - 1T12). (31-54) 

We can find the amplitude h from Eq. 31-52 (VL = hXL) if 
we first find the inductive reactance XL. From Eq. 31-49 
(XL = WdL ) , with Wd = 21Tfel, we can write 

XL = 21Tt,L = (21T)(60.0 Hz)(230 X 10-3 H) 

= 86.7 D. 

Then Eq. 31-52 tells us that the current amplitude is 

h = 1 = ~~:~~ = 0.415 A. (Answer) 

Substituting this and Wd = 21Tfd = 1201T into Eq. 31-54, we 
have 

iL = (0.415 A) sin(120m - 1T12). (Answer) 

~rus Additional examples, video, and practice available at WileyPLUS 

1 Series RLC Circuit 
We are now ready to apply the alternating emf of Eg. 31-28, 

'fb = 'fb 111 sin Wd t (applied emf), (31-55) 

to the full RLC circuit of Fig. 31-7. Because R, L, and C are in series, the same 
current 

(31-56) 

is driven in all three of them. We wish to find the current amplitude I and the 
phase constant ¢. The solution is simplified by the use of phasor diagrams. 
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We start with Fig. 31-14a, which shows the phasor representing the current of 
Eq. 31-56 at an arbitrary time t. The length of the phasor is the current ampli­
tude I, the projection of the phasor on the vertical axis is the current i at time t, 
and the angle of rotation of the phasor is the phase wdt - cp of the current at 
time t. 

Figure 31-14b shows the phasors representing the voltages across R, L, and C 
at the same time t. Each phasor is oriented relative to the angle of rotation of 
current ph as or I in Fig. 31-14a, based on the information in Table 31-2: 

Resistor: Here current and voltage are in phase; so the angle of rotation of volt­
age phasor VR is the same as that of phasor I. 

Capacitor: Here current leads voltage by 90°; so the angle of rotation of voltage 
phasor Ve is 90° less than that of phasor I. 

Inductor: Here current lags voltage by 90°; so the angle of rotation of voltage 
phasor VL is 90° greater than that of phasor 1. 

Figure 31-14b also shows the instantaneous voltages VR, Ve, and VL across R, C, 
and L at time t; those voltages are the projections of the corresponding phasors 
on the vertical axis of the figure. 

Figure 31-14c shows the phasor representing the applied emf of Eq. 31-55. 
The length of the phasor is the emf amplitude ~II" the projection of the ph as or 
on the vertical axis is the emf ~ at time t, and the angle of rotation of the phasor is 
the phase wdt of the emf at time t. 

From the loop rule we know that at any instant the sum of the voltages v R, Ve, 

and VL is equal to the applied emf~: 

(31-57) 

Thus, at time t the projection ~ in Fig. 31-14c is equal to the algebraic sum of the 
projections VR, Ve, and VL in Fig. 31-14b. In fact, as the phasors rotate together, this 
equality always holds. This means that ph as or ~111 in Fig. 31-14c must be equal to 
the vector sum of the three voltage phasors V R, Ve, and V L in Fig. 31-14b. 

That requirement is indicated in Fig. 31-14d, where phasor ~111 is drawn as the 
sum ofphasors VR , VL , and Ve. Because phasors VL and Vehave opposite directions 
in the figure, we simplify the vector sum by first combining V L and Veto form the 
single phasor VL - Ve. Then we combine that single phasor with VR to find the net 
phasor.Again, the net phasor must coincide with phasor ~II" as shown. 

Both triangles in Fig. 31-14d are right triangles. Applying the Pythagorean 
theorem to either one yields 

~?;, = Vk + (li - Vef (31-58) 

From the voltage amplitude information displayed in the rightmost column of 
Table 31-2, we can rewrite this as 

~~, = (IR)2 + (IXL - IXc)2, 

and then rearrange it to the form 
! 

I = ~111 
v'R2 + (XL - Xc)2 

(31-59) 

(31-60) 

The denominator in Eq. 31-60 is called the impedance Z of the circuit for the 
driving angular frequency wd: 

(impedance defined). (31-61) 

(a) 

\ This is in 
_\ phase with I. 

-:\ "R 
[ This is ahead 

of 1 by 90°. VIi 

l1c:;-- - --Vi. 

V((b) -2 ;~iS is behind 

1 by 90°. 

(e) 

(d) 

This ¢ is the angle 
between 1 and the 
driving emf. 

Fig. 31-14 (a) A phasor representing the 
alternating current in the driven RLC circuit 
of Fig. 31-7 at time t. The amplitude I, the in­
stantaneous value i, and the phase (Wdt - ¢) 
are shown. (b) Phasors representing the volt­
ages across the inductor, resistor, and capaci­
tor, oriented with respect to the current pha­
SOl' in (a). (c) A phasor representing the 
alternating emf that drives the current of (a). 
(d) The emf phasor is equal to the vector sum 
of the three voltage phasors of (b). Here, volt­
age phasors V L and V c have been added vec­
torially to yield their net phasor (V L - V d. 
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We can then write Eq. 31-60 as 
1= 'gm 

Z· (31-62) 

If we substitute for Xc and XL from Eqs. 31-39 and 31-49, we can write 
Eq. 31-60 more explicitly as 

(current amplitude). (31-63) 

We have now accomplished half our goal: We have obtained an expression 
for the current amplitude I in terms of the sinusoidal driving emf and the circuit 
elements in a series RLC circuit. 

The value of I depends on the difference between WdL and 1/wdC in 
Eq. 31-63 or, equivalently, the difference between XL and Xc in Eq. 31-60. In 
either equation, it does not matter which of the two quantities is greater because 
the difference is always squared. 

The current that we have been describing in this section is the steady-state 
current that occurs after the alternating emf has been applied for some time. 
When the emf is first applied to a circuit, a brief transient current occurs. Its dura­
tion (before settling down into the steady-state current) is determined by the 
time constants 7L = LlR and 7C = RC as the inductive and capacitive elements 
"turn on." This transient current can, for example, destroy a motor on start-up if it 
is not properly taken into account in the motor's circuit design. 

From the right-hand phasor triangle in Fig. 31-14d and from Table 31-2 we can write 

which gives us 

XL-XC 
tan 4> = R 

IXL - 1Xc 

IR 

(phase constant). 

(31-64) 

(31-65) 

This is the other half of our goal: an equation for the phase constant 4> in the sinu­
soidally driven series RLC circuit of Fig. 31-7. In essence, it gives us three different 
results for the phase constant, depending on the relative values of the reactances 
XL and Xc: 

XL> Xc: The circuit is said to be more inductive than capacitive. Equation 31-65 
tells us that 4> is positive for such a circuit, which means that phasor I rotates 
behind phasor 'gill (Fig. 31-15a). A plot of'g and i versus time is like that in 
Fig. 31-15b. (Figures 31-14c and dwere drawn assuming XL > Xc.) 

Xc> XL: The circuit is said to be more capacitive than inductive. Equation 31-65 tells 
us that 4> is negative for such a circuit, which means that phasor I rotates ahead of 
phasor'gm (Fig. 31-15c).A plot of'g and iversus time is like that in Fig. 31-15d. 

Xc = XL: The circuit is said to be in resonance, a state that is discussed next. Equation 
31-65 tells us that 4> = 0° for such a circuit, which means that phasors 'gill and I ro­
tate together (Fig. 31-15e ).A plot of'g and i versus time is like that in Fig. 31-15f 

As illustration, let us reconsider two extreme circuits: In the purely inductive 
circuit of Fig. 31-12, where XL is nonzero and Xc = R = 0, Eq. 31-65 tells us that 
the circuit's phase constant is 4> = +90° (the greatest value of 4», consistent with 
Fig. 31-13b. In the purely capacitive circuit of Fig. 31-10, where Xc is nonzero and 
XL = R = 0, Eq. 31-65 tells us that the circuit's phase constant is 4> = -90° (the 
least value of 4», consistent with Fig. 31-11b. 
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Fig.31-15 Phasor diagrams and 
graphs of the alternating emf~ and 
current i for the driven RLC circuit 
of Fig. 31-7. In the phasor diagram of 
(a) and the graph of (b), the currenti 
lags the driving emf~ and the cur­
rent's phase constant 1> is positive. In 
(c) and (d), the current i leads the 
driving emf ~ and its phase constant 
1> is negative. In (e) and (f), the cur­
rent i is in phase with the driving emf 
~ and its phase constant 1> is zero. 

Positive rp means that the 
current lags the emf (ELI): 
the phasor is vertical later 
and the curve peaks later. 

(a) 

Negative rp means that the 
current leads the emf (ICE): 
the phasor is vertical earlier 
and the curve peaks earlier. 

(c) 

Zero rp means that the current 
and emf are in phase: the 
phasors are vertical together 
and the curves peak together. 

(e) 

Equation 31-63 gives the current amplitude I in an RLC circuit as a function of the 
driving angular frequency UJd of the external alternating emf. For a given resistance R, 
that amplitude is a maximum when the quantity UJdL - 1/ UJdC in the denominator is 
zero-that is, when 

or (maximum I). (31-66) 

Because the natural angular frequency UJ of the RLC circuit is also equal to 
l/YLC, the maximum value of I occurs when the driving angular frequency 
matches the natural angular frequency-that is, at resonance. Thus, in an RLC 
circuit, resonance and maximum current amplitude I occur when 

(resonance). (31-67) 

Figure 31-16 shows three resonance curves for sinusoidally driven oscillations 
in three series RLC circuits differing only in R. Each curve peaks at its maximum 
current amplitude I when the ratio UJd/UJ is 1.00, but the maximum value of I 
decreases with increasing R. (The maximum I is always cgm/R; to see why, com­
bine Eqs. 31-61 and 31-62.) In addition, the curves increase in width (measured in 
Fig. 31-16 at half the maximum value of 1) with increasing R. 

To make physical sense of Fig. 31-16, consider how the reactances XL and Xc 
change as we increase the driving angular frequency UJd, starting with a value 

~,i 
Positive if! 

(b) 

~, i 
Negative if! 

(d) 
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Fig. 31-16 Resonance curves for the 
driven RLC circuit of Fig. 31-7 with L = 
100 pH, C = 100 pF, and three values of 
R. The current amplitude I of the alter­
nating current depends on how close the 
driving angular frequency Wd is to the 
natural angular frequency w. The hori­
zontal arrow on each curve measures 
the curve's half-width, which is the 
width at the half-maximum level and is a 
measure of the sharpness of the reso­
nance. To the left of wdl W = 1.00, the cir­
cuit is mainly capacitive, with Xc > XL; 
to the right, it is mainly inductive, with 
XL > Xc· 

Driving OJd equal to natural OJ 

• high current amplitude 

• circuit is in resonance 

• equally capacitive and inductive 

• Xc equals XL 
• current and emf in phase 

• zero ¢ 

R=lOQ 

0.90 0.95 1.05 1.10 

Low driving OJd High driving OJd 

• low current amplitude • low current amplitude 

• ICE side of the curve • ELI side of the curve 

• more capacitive • more inductive 

• Xc is greater • XL is greater 
• current leads emf • current lags emf 

• negative ¢ • positive ¢ 

much less than the natural frequency w. For small Wd, reactance XL (= wdL) is 
small and reactance Xc (= 1/ WdC) is large. Thus, the circuit is mainly capacitive 
and the impedance is dominated by the large Xc> which keeps the current low. 

As we increase Wd, reactance Xc remains dominant but decreases while reac­
tance XL increases. The decrease in Xc decreases the impedance, allowing the 
current to increase, as we see on the left side of any resonance curve in Fig. 31-16. 
When the increasing XL and the decreasing Xc reach equal values, the current is 
greatest and the circuit is in resonance, with Wd = W. 

As we continue to increase Wd, the increasing reactance XL becomes pro­
gressively more dominant over the decreasing reactance Xc. The impedance 
increases because of XL and the current decreases, as on the right side of any 
resonance curve in Fig. 31-16. In summary, then: The low-angular-frequency side 
of a resonance curve is dominated by the capacitor's reactance, the high-angular­
frequency side is dominated by the inductor's reactance, and resonance occurs in 
the middle. 

CHECKPOINT 6 

Here are the capacitive reactance and inductive reactance, respectively, for three sinu­
soidally driven series RLC circuits: (1) 50 n, 100 n; (2) 100 n, 50 n; (3) 50 n, 50 n. (a) 
For each, does the current lead or lag the applied emf, or are the two in phase? (b) Which 
circuit is in resonance? 
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Current amplitude, impedance, and phase constant 

In Fig. 31-7, let R = 200 D, C = 15.0 ,uF, L = 230 mH, 
fd = 60.0 Hz, and 'if)1Il = 36.0 V. (These parameters are those 
used in the earlier sample problems above.) 

We then find 

I = 'if)m = 36.0 V = 164 A 
Z 219 D O. . (Answer) 

(a) What is the current amplitude I? 
(b) What is the phase constant ¢ of the current in the 
circuit relative to the driving emf? 

The current amplitude I depends on the amplitude 'if)m of the 
driving emf and on the impedance Z of the circuit, accord­
ing to Eq. 31-62 (I ~ 'if)I1l/Z). 

Calculations: So, we need to find Z, which depends on resis­
tance R, capacitive reactance Xc, and inductive reactance Xv 
The circuit's resistance is the given resistance R. Its capacitive 
reactance is due to the given capacitance and, from an earlier 
sample problem, Xc = 177 D. Its inductive reactance is due 
to the given inductance and, from another sample problem, 
XL = 86.7 D. Thus, the circuit's impedance is 

The phase constant depends on the inductive reactance, the 
capacitive reactance, and the resistance of the circuit, 
according to Eq. 31-65. 

Calculation: Solving Eq. 31-65 for ¢ leads to 

1 XL - Xc 86.7 D - 177 D 
¢ = tan- = tan-1------

R 200D 

= -24.3° = -0.424 rad. (Answer) 

Z = YR2 + (XL - Xc)2 

= Y(200 D)2 + (86.7 D - 177 D)2 

= 219 D. 

The negative phase constant is consistent with the fact that 
the load is mainly capacitive; that is, Xc > Xv In the com­
mon mnemonic for driven series RLC circuits, this circuit is 
an ICE circuit- the current leads the driving emf. 

irus Additional examples, video, and practice available at WileyPLUS 

31- Power in Alternating"Current Circuits 
In the RLC circuit of Fig. 31-7, the source of energy is the alternating-current 
generator. Some of the energy that it provides is stored in the electric field in the 
capacitor, some is stored in the magnetic field in the inductor, and some is dis­
sipated as thermal energy in the resistor. In steady-state operation, the average 
stored energy remains constant. The net transfer of energy is thus from the gener­
ator to the resistor, where energy is dissipated. 

The instantaneous rate at which energy is dissipated in the resistor can be 
written, with the help of Eqs. 26-27 and 31-29, as 

p = PR = [Isin(wdt ¢)fR = 12Rsin2(wdt - ¢). (31-68) 

The average rate at which energy is dissipated in the resistor, however, is the aver­
age of Eq. 31-68 over time. Over one complete cycle, the average value of sin e, 
where e is any variable, is zero (Fig. 31-17a) but the average value of sin2 e is! 
(Fig. 31-17b). (Note in Fig. 31-17b how the shaded areas under the curve but 
above the horizontal line marked +! exactly fill in the unshaded spaces below 
that line.) Thus, we can write, from Eq. 31-68, 

Pavg = I~R = (~ YR. (31-69) 

The quantity IIY2 is called the root-meaD-square, or l'ms, value of the current i: 

(rms current). (31-70) 

sinB 

(a) 

(b) 

Fig.31-17 (a) A plot of sin Bversus B. 
The average value over one cycle is zero. (b) 
A plot of sin2 B versus B. The average value 
over one cycle is ~ . 
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We can now rewrite Eq. 31-69 as 

(average power). (31-71) 

Equation 31-71 looks much like Eq. 26-27 (P = i2R); the message is that if we 
switch to the rms current, we can compute the average rate of energy dissipation 
for alternating-current circuits just as for direct-current circuits. 

We can also define rms values of voltages and emfs for alternating-current 
circuits: 

V 'iSm 
Yrms = v'2 and 'iS rms = v'2 (rms voltage; rms emf). (31-72) 

Alternating-current instruments, such as ammeters and voltmeters, are usually cali­
brated to read Irms> Vrms> and 'iS rms• Thus, if you plug an alternating-current voltmeter 
into a household electrical outlet and it reads 120 V, that is an rms voltage. The 
maximum value of the potential difference at the outlet is v'2 X (120 V), or 170 V. 

Because the proportionality factor 11v'2 in Eqs. 31-70 and 31-72 is the same 
for all three variables, we can write Eqs. 31-62 and 31-60 as 

I = 'iS rms 
rms Z (31-73) 

and, indeed, this is the form that we almost always use. 
We can use the relationship Irms = 'iSrmslZ to recast Eq. 31-71 in a useful 

equivalent way. We write 

(31-74) 

From Fig. 31-14d, Table 31-2, and Eq. 31-62, however, we see that RIZ is just the 
cosine of the phase constant cp: 

1'R IR R 
coscp = - = - =-. 

'iSm IZ Z 
(31-75) 

Equation 31-74 then becomes 

(average power), (31-76) 

in which the term cos cp is called the power factor. Because cos cp = cos( - cp), 
Eq. 31-76 is independent of the sign of the phase constant cp. 

To maximize the rate at which energy is supplied to a resistive load in an RLC 
circuit, we should keep the power factor cos cp as close to unity as possible. This is 
equivalent to keeping the phase constant cp in Eq. 31-29 as close to zero as possible. If, 
for example, the circuit is highly inductive, it can be made less so by putting more ca­
pacitance in the circuit, connected in series. (Recall that putting an additional capaci­
tance into a series of capacitances decreases the equivalent capacitance Ceq of the se­
ries.) Thus, the resulting decrease in Ceq in the circuit reduces the phase constant and 
increases the power factor in Eq. 31-76. Power companies place series-connected ca­
pacitors throughout their transmission systems to get these results. 

"'CHECKPOINT 7 

(a) If the current in a sinusoidally driven series RLC circuit leads the emf, would we in­
crease or decrease the capacitance to increase the rate at which energy is supplied to 
the resistance? (b) Would this change bring the resonant angular frequency of the cir­
cuit closer to the angular frequency of the emf or put it farther away? 
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Driven RLC circuit: power factor and average power 

A series RLC circuit, driven with ~rms = 120 V at fre­
quency fd = 60.0 Hz, contains a resistance R = 200 D, an 
inductance with inductive reactance XL = 80.0 D, and a ca­
pacitance with capacitive reactance Xc = 150 D. 

(a) What are the power factor cos ¢ and phase constant ¢ 
of the circuit? 

The power factor cos ¢ can be found from the resistance R 
and impedance Z via Eq. 31-75 (cos ¢ = RIZ). 

Calculations: To calculate Z, we use Eq. 31-61: 

Z = VR2 + (XL - Xc)2 

= V(200 D)2 + (80.0 D - 150 D)2 = 211.90 D. 

Equation 31-75 then gives us 

R 200D 
cos ¢ = Z = 211.90 D = 0.9438 "'" 0.944. (Answer) 

Taking the inverse cosine then yields 

¢ = cos- 1 0.944 = ±19.3°. 

Both + 19.3° and -19.3° have a cosine of 0.944. To deter­
mine which sign is correct, we must consider whether the 
current leads or lags the driving emf. Because Xc > XL, this 
circuit is mainly capacitive, with the current leading the emf. 
Thus, ¢ must be negative: 

(Answer) 

We could, instead, have found ¢ with Eq. 31-65. A calculator 
would then have given us the answer with the minus sign. 

(b) What is the average rate Pavg at which energy is 
dissipated in the resistance? 

There are two ways and two ideas to use: (1) Because the 
circuit is assumed to be in steady-state operation, the rate 
at which energy is dissipated in the resistance is equal to 
the rate at which energy is supplied to the circuit, as given 
by Eq. 31-76 (Pavg = ~rmJrms cos ¢). (2) The rate at which 
energy is dissipated in a resistance R depends on the 
square of the rms current I rms through it, according to Eq. 
31-71 (Pavg = I~msR). 

First way: We are given the rms driving emf ~rms and we 
already know cos ¢ from part (a). The rms current I rms 

is determined by the rms value of the driving emf and the 

circuit's impedance Z (which we know), according to Eq. 
31-73: 

1 = ~rms 
rms Z 

Substituting this into Eq. 31-76 then leads to 

D CQ 1 -h ~~ms -h 
r avg = COrms rms cos 'I' = Z cos 'I' 

(120 V)2 
= 211.90 D (0.9438) = 64.1 W. 

Second way: Instead, we can write 

P - 12 R - ~;ms R 
avg - rms - V 

(120 V)2 
(211.90 D)2 (200 D) = 64.1 W. 

(Answer) 

(Answer) 

(c) What new capacitance Cnew is needed to maximize Pavg 

if the other parameters of the circuit are not changed? 

(1) The average rate Pavg at which energy is supplied and 
dissipated is maximized if the circuit is brought into reso­
nance with the driving emf. (2) Resonance occurs when 
Xc = XL' 

Calculations: From the given data, we have Xc> XL' 
Thus, we must decrease Xc to reach resonance. From Eq. 
31-39 (Xc = l/wdC), we see that this means we must in­
crease C to the new value Cnew• 

Using Eq. 31-39, we can write the resonance condition 
Xc = XL as 

Substituting 21Tfd for Wd (because we are givenfd and not Wd) 
and then solving for Cnew, we find 

1 
(21T)(60 Hz)(80.0 D) 

= 3.32 X 10-5 F = 33.2 fLF. (Answer) 

Following the procedure of part (b), you can show that with 
Cnew, the average power of energy dissipation P avg would 
then be at its maximum value of 

P avg, max = 72.0 W. 

Additional examples, video, and practice available at WileyPLUS 
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Primary Secondary 

Fig.31-18 An ideal transformer (two 
coils wound on an iron core) in a basic 
transformer circuit. An ac generator pro­
duces current in the coil at the left (the pri­
mary). The coil at the right (the secondmy) 
is connected to the resistive load R when 
switch S is closed. 

31" 11 Transformers 

When an ac circuit has only a resistive load, the power factor in Eq. 31-76 is 
cos 0° = 1 and the applied rms emf '(grms is equal to the rms voltage Vrms across the 
load. Thus, with an rms current I rms in the load, energy is supplied and dissipated 
at the average rate of 

P avg = '(gI = IV. (31-77) 

(In Eq. 31-77 and the rest of this section, we follow conventional practice and drop 
the subscripts identifying rms quantities. Engineers and scientists assume that all 
time-varying currents and voltages are reported as rms values; that is what the me­
ters read.) Equation 31-77 tells us that, to satisfy a given power requirement, we 
have a range of choices for I and V, provided only that the product IV is as required. 

In electrical power distribution systems it is desirable for reasons of safety and 
for efficient equipment design to deal with relatively low voltages at both the gener­
ating end (the electrical power plant) and the receiving end (the home or factory). 
Nobody wants an electric toaster or a child's electric train to operate at, say, 10 kY. 
On the other hand, in the transmission of electrical energy from the generating plant 
to the consumer, we want the lowest practical current (hence the largest practical 
voltage) to minimize 12 R losses (often called ohmic losses) in the transmission line. 

As an example, consider the 735 k V line used to transmit electrical energy 
from the La Grande 2 hydroelectric plant in Quebec to Montreal, 1000 km away. 
Suppose that the current is 500 A and the power factor is close to unity. Then 
from Eq. 31-77, energy is supplied at the average rate 

P avg = '(gI = (7.35 X 105 V)(500 A) = 368 MW. 

The resistance of the transmission line is about 0.220 o/km; thus, there is a total 
resistance of about 220 0 for the 1000 km stretch. Energy is dissipated due to that 
resistance at a rate of about 

P avg = I2R = (500A)2(2200) = 55.0MW, 

which is nearly 15 % of the supply rate. 
Imagine what would happen if we doubled the current and halved the volt­

age. Energy would be supplied by the plant at the same average rate of 368 MW 
as previously, but now energy would be dissipated at the rate of about 

P avg = J2R = (1000 A)2(220 0) = 220 MW, 

which is almost 60% of the supply rate. Hence the general energy transmission 
rule: Transmit at the highest possible voltage and the lowest possible current. 

The transmission rule leads to a fundamental mismatch between the requirement 
for efficient high-voltage transmission and the need for safe low-voltage generation 
and consumption. We need a device with which we can raise (for transmission) and 
lower (for use) the ac voltage in a circuit, keeping the product current X voltage es­
sentially constant. The transformer is such a device. It has no moving parts, operates 
by Faraday's law of induction, and has no simple direct -current counterpart. 

The ideal transformer in Fig. 31-18 consists of two coils, with different num­
bers of turns, wound around an iron core. (The coils are insulated from the core.) 
In use, the primary winding, of Np turns, is connected to an alternating-current 
generator whose emf'(g at any time t is given by 

(31-78) 

The secondary winding, of Ns turns, is connected to load resistance R, but its 



circuit is an open circuit as long as switch S is open (which we assume for the 
present). Thus, there can be no current through the secondary coil. We assume 
further for this ideal transformer that the resistances of the primary and sec­
ondary windings are negligible. Well-designed, high-capacity transformers can 
have energy losses as low as 1 %; so our assumptions are reasonable. 

For the assumed conditions, the primary winding (or primary) is a pure 
inductance and the primary circuit is like that in Fig. 31-12. Thus, the (very small) 
primary current, also called the magnetizing current Imag, lags the primary voltage 
Vp by 90°; the primary's power factor (= cos ¢ in Eq. 31-76) is zero; so no power 
is delivered from the generator to the transformer. 

However, the small sinusoidally changing primary current Imag produces a 
sinusoidally changing magnetic flux <PB in the iron core. The core acts to strengthen 
the flux and to bring it through the secondary winding (or secondary). Because <PB 
varies, it induces an emf 'iS turn (= d<PBldt) in each turn of the secondary. In fact, this 
emf per turn 'iS turn is the same in the primary and the secondary. Across the primary, 
the voltage Vp is the product of 'is turn and the number of turns Np; that is, Vp = 'iSturnNp. 
Similarly, across the secondary the voltage is Vs = 'iSturnNs. Thus, we can write 

or 

Vp Vs 
'iS turn = N N' 

p s 

Ns V, = Vp N (transformation of voltage). 
p 

(31-79) 

If Ns > Np , the device is a step-up transformer because it steps the primary's voltage 
Vp up to a higher voltage Vs' Similarly, if Ns < Np, it is a step-down transformer. 

With switch S open, no energy is transferred from the generator to the rest of 
the circuit, but when we close S to connect the secondary to the resistive load R, 
energy is transferred. (In general, the load would also contain inductive and ca­
pacitive elements, but here we consider just resistance R.) Here is the process: 

1. An alternating current Is appears in the secondary circuit, with corresponding 
energy dissipation rate I;R (= V'HR) in the resistive load. 

2. This current produces its own alternating magnetic flux in the iron core, and 
this flux induces an opposing emf in the primary windings. 

3. The voltage Vp of the primary, however, cannot change in response to this 
opposing emf because it must always be equal to the emf 'is that is provided by 
the generator; closing switch S cannot change this fact. 

4. To maintain VP' the generator now produces (in addition to Imag) an alternat­
ing current Ip in the primary circuit; the magnitude and phase constant of 
Ip are just those required for the emf induced by Ip in the primary to exactly 
cancel the emf induced there by Is. Because the phase constant of Ip is not 90° 
like that of Imag, this current Ip can transfer energy to the primary. 

We want to relate Is to IF' However, rather than analyze the foregoing com­
plex process in detail, let us just apply the principle of conservation of energy. 
The rate at which the generator transfers energy to the primary is equal to Ip Vp. 
The rate at which the primary then transfers energy to the secondary (via the 
alternating magnetic field linking the two coils) is IsVs' Because we assume 
that no energy is lost along the way, conservation of energy requires that 

IpVp = r.vs. 

Substituting for Vs from Eq. 31-79, we find that 

Np 
Is = Ip-­

Ns 
(transformation of currents). (31-80) 

31-11 TRANSFORM ERS 851 
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_CHECKPOINT 8 

An alternating-current emf device in a 
certain circuit has a smaller resistance 
than that of the resistive load in the cir­
cuit; to increase the transfer of energy 
from the device to the load, a trans­
former will be connected between the 
two. (a) Should Ns be greater than or 
less than Np? (b) Will that make it a 
step-up or step-down transformer? 

This equation tells us that the current I, in the secondary can differ from the 
current II' in the primary, depending on the turns ratio NpiNs. 

Current II' appears in the primary circuit because of the resistive load R in 
the secondary circuit. To find II" we substitute I, = VsIR into Eq. 31-80 and then 
we substitute for V, from Eq. 31-79. We find 

1 (Ns )2 
II' = Ii Np VI" (31-81) 

This equation has the form II' = VplReq, where equivalent resistance Req is 

(31-82) 

This Req is the value of the load resistance as "seen" by the generator; the genera­
tor produces the current II' and voltage VI' as if the generator were connected to a 
resistance Req. 

Equation 31-82 suggests still another function for the transformer. For maximum 
transfer of energy from an emf device to a resistive load, the resistance of the emf 
device must equal the resistance of the load. The same relation holds for ac 
circuits except that the impedance (rather than just the resistance) of the genera­
tor must equal that of the load. Often this condition is not met. For example, in 
a music-playing system, the amplifier has high impedance and the speaker set has 
low impedance. We can match the impedances of the two devices by coupling 
them through a transformer that has a suitable turns ratio NpiNs. 

Transformer: turns ratio, average power, rms currents 

A transformer on a utility pole operates at VI' = 8.5 kV on 
the primary side and supplies electrical energy to a number 
of nearby houses at Vs = 120 V, both quantities being rms val­
ues. Assume an ideal step-down transformer, a purely resistive 
load, and a power factor of unity. 

are the rms currents in the primary and secondary of the 
transformer? 

For a purely resistive load, the power factor cos cp is unity; thus, 
the average rate at which energy is supplied and dissipated is 
given by Eq. 31-77 (Pavg = 'fhI = IV). 

(a) What is the turns ratio NplNs of the transformer? 

The turns ratio NplNs is related to the (given) rms primary 
and secondary voltages via Eq. 31-79 (Vs = YpNsINp). 

Calculation: We can write Eq. 31-79 as 

(31-83) 

(Note that the right side of this equation is the inverse of the 
turns ratio.) Inverting both sides ofEq. 31-83 gives us 

Np v;, 8.5 X 10
3 

V = 70.83 = 71 (Answer) 
Ns Y, 120 V . 

(b) The average rate of energy consumption (or dissipa­
tion) in the houses served by the transformer is 78 kW. What 

Calculations: In the primary circuit, with VI' = 8.5 kV, 
Eq. 31-77 yields 

1 = P',vg 
I' V. I' 

78 X 103 W 
8.5 X 103 V = 9.176 A = 9.2 A. 

(Answer) 
Similarly, in the secondary circuit, 

Pavg 78 X 10
3 

W = 650 A 
I,=V-= 120 V . 

s 

(Answer) 

You can check that Is = IiNplNs) as required by Eq. 31-80. 

(c) What is the resistive load Rs in the secondary circuit? 
What is the corresponding resistive load Rp in the primary 
circuit? 



One way: We can use V = IR to relate the resistive load to 
the rms voltage and current. For the secondary circuit, we 
find 

V, 120 V 
Rs = I = 650 A = 0.1846 fl = 0.18 fl. (Answer) 

s 

Similarly, for the primary circuit we find 

l-j, 8.5 X 103 V 
Rp = I 9.176 A = 926 fl = 930 fl. (Answer) 

p 

REVIEW & SUMMARY 853 

Second way: We use the fact that Rp equals the equivalent 
resistive load "seen" from the primary side of the transformer, 
which is a resistance modified by the turns ratio and given by 
Eq. 31-82 (Req = (NpINs)2R). If we substitute Rp for Req and Rs 
for R, that equation yields 

Rp = (~ yRs = (70.83)2(0.1846 fl) 

= 926 fl = 930 fl. (Answer) 

;~ Add I I d d b IAI PLUS itiona examp es, vi eo, an practice availa Ie at vvileyPLUS 

LC Energy Transfers In an oscillating LC circuit, energy is 
shuttled periodically between the electric field of the capacitor and 
the magnetic field of the inductor; instantaneous values of the two 
forms of energy are 

q2 Li2 
UE = 2C and UB = 2 (31-1,31-2) 

where q is the instantaneous charge on the capacitor and i is the 
instantaneous current through the inductor. The total energy 
U (= U E + U B) remains constant. 

LC Charge and Current Oscillations The principle of con­
servation of energy leads to 

d2q 1 
L dt2 + c q = 0 (LCoscillations) (31-11) 

as the differential equation of LC oscillations (with no resistance). 
The solution of Eq. 31-11 is 

q = Q cos(wt + cjJ) (charge), (31-12) 

in which Q is the charge amplitude (maximum charge on the capac­
itor) and the angular frequency w of the oscillations is 

1 
w = vLC' (31-4) 

The phase constant cjJ in Eq. 31-12 is determined by the initial con­
ditions (at t = 0) of the system. 

The current i in the system at any time tis 

i = -wQ sin(wt + cjJ) (current), (31-13) 

in which wQ is the current amplitude 1. 

Damped Oscillations Oscillations in an LC circuit are damped 
when a dissipative element R is also present in the circuit. Then 

d 2q dq 1 
L dt2 + R -:it + c q = 0 (RLC circuit). (31-24) 

The solution of this differential equation is 

q = Qe-RtI2L cos(w't + cjJ), (31-25) 

where w' = V w2 - (RI2L)1. (31-26) 

We consider only situations with small R and thus small damping; 
then w' = w. 

Alternating Currents; Forced Oscillations A series RLC 
circuit may be set into forced oscillation at a driving angular fre­
quency Wd by an external alternating emf 

'if; = 'if;m sin wdt. (31-28) 

The current driven in the circuit is 

i = I sin( wdt cjJ), (31-29) 

where cjJ is the phase constant of the current. 

Resonance The current amplitude I in a series RLC circuit 
driven by a sinusoidal external emf is a maximum (I = 'if;mIR) when 
the driving angular frequency Wd equals the natural angular 
frequency w of the circuit (that is, at resonance). Then Xc = XL, 
cjJ = 0, and the current is in phase with the emf. 

Single Circuit Elements The alternating potential difference 
across a resistor has amplitude VR = IR; the current is in phase 
with the potential difference. 

For a capacito/; Vc = 1Xc. in which Xc = 1/wdC is the capacitive 
reactance; the current here leads the potential difference by 900 

(cjJ = -900 = -17-/2 rad). 
For an inductor, VL = IXL, in which XL = w"L is the inductive 

reactance; the current here lags the potential difference by 900 

(cjJ = +90 0 = +1T12 rad). 

Series RLC Circuits For a series RLC circuit with an alternat­
ing external emf given by Eq. 31-28 and a resulting alternating cur­
rent given by Eq. 31-29, 

VR2 + (WdL - 1/wdC)2 

(current amplitude) (31-60,31-63) 

and 
XL -Xc 

tan cjJ = R (phase constant). (31-65) 

Defining the impedance Z of the circuit as 

Z = V R2 + (XL - Xc? (impedance) (31-61) 

allows us to write Eq. 31-60 as 1= 'if;mIZ. 
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Power In a series RLC circuit, the average power Pavg of the 
generator is equal to the production rate of thermal energy in the 
resistor: 

P avg = I ~msR = 'fi,rmJ rms cos cpo (31-71,31-76) 

Here rms stands for root-me an-square; the rms quantities are 
related to the maximum quantities by Irms = IIV2, v.:ms = VIV2, 
and 'fi,rms = 'fi, 1Il/V2. The term cos cp is called the power factor of 
the circuit. 

Transformers A transformer (assumed to be ideal) is an iron core 
on which are wound a primary coil of Np turns and a secondary coil of 
Ns turns. If the primary coil is connected across an alternating-current 
generator, the primary and secondary voltages are related by 

1 Figure 31-19 shows three oscillating LC circuits with identical in­
ductors and capacitors. Rank the circuits according to the time taken 
to fully discharge the capacitors during the oscillations, greatest first. 

O~··'·"· [IJ"'.d ,',.,., 0 ..... 1 """- \~" 7;-"C/J'~1 ",p~,cy, 

1'.""»1 

(a) (b) (e) 

Fig. 31-19 Question 1. 

Figure 31-20 shows graphs of capacitor voltage Vc for LC 
circuits 1 and 2, which contain identical capacitances and have the 
same maximum charge Q. Are (a) the inductance L and (b) the 
maximum current I in circuit 1 greater than, less than, or the same 
as those in circuit 2? 

Fig.31-20 Question 2. 

A charged capacitor and an inductor are connected at time 
t = O. In terms of the period T of the resulting oscillations, what is 
the first later time at which the following reach a maximum: (a) UB, 
(b) the magnetic flux through the inductor, (c) dUdt, and (d) the 
emf of the inductor? 

What values of phase constant cp in 
Eq. 31-12 allow situations (a), (c), (e), 
and (g) of Fig. 31-1 to occur at t = O? 

Curve a in Fig. 31-21 gives the 
impedance Z of a driven RC circuit 
versus the driving angular frequency 
Wd' The other two curves are similar 
but for different values of resistance 

z 

~1-------~ 
a ' 

R and capacitance C. Rank the three Fig. 31-21 Question 5. 
curves according to the corresponding value of R, greatest first. 

Charges on the capacitors in three oscillating LC circuits vary 

Ns 
Vs = Vp N (transformation of voltage). 

p 

(31-79) 

The currents through the coils are related by 

- liL Is - Ip N (transformation of currents), 
s 

(31-80) 

and the equivalent resistance of the secondary circuit, as seen by 
the generator, is 

(31-82) 

where R is the resistive load in the secondary circuit. The ratio 
NplNs is called the transformer's turns ratio. 

as: (1) q = 2 cos 4t, (2) q = 4 cos t, (3) q = 3 cos 4t (with q in 
coulombs and t in seconds). Rank the circuits according to (a) the 
current amplitude and (b) the period, greatest first. 

An alternating emf source with a certain emf amplitUde is con­
nected, in turn, to a resistor, a capaci-
tor, and then an inductor. Once con-
nected to one of the devices, the b 

I~~~~~~.~~~"~~~-
driving frequency fd is varied and the 
amplitude I of the resulting current 
through the device is measured and 
plotted. Which of the three plots in ill 
Fig. 31-22 corresponds to which of Fig.31-22 Question 7. 
the three devices? 

8 The values of the phase constant cp for four sinusoidally driven 
series RLC circuits are (1) -150, (2) +350, (3) 'TIl3 rad, and (4) 
- 7T/6 rad. (a) In which is the load primarily capacitive? (b) In 
which does the current lag the alternating emf? 

9 Figure 31-23 shows the current i 
and driving emf 'fi, for a series RLC 'fi" i 

circuit. (a) Is the phase constant pos-
itive or negative? (b) To increase the 
rate at which energy is transferred 
to the resistive load, should L be in­
creased or decreased? (c) Should, in-
stead,Cbe increased or decreased? Fig.31-23 Question 9. 

1 Figure 31-24 shows three situa-
tions like those of Fig. 31-15. Is the driving angular frequency 
greater than, less than, or equal to the resonant angular frequency 
of the circuit in (a) situation 1, (b) situation 2, and (c) situation 3? 

(2) 

Fig.31-24 Question 10. 

Figure 31-25 shows the current i and driving emf 'fi, for a 
series RLC circuit. Relative to the emf curve, does the current curve 



shift leftward or rightward and does the amplitude of that curve in­
crease or decrease if we slightly increase (a) L, (b) C, and (c) Wd? 

Figure 31-25 shows the current i and driving emf '(g for a series 
RLC circuit. (a) Does the current lead or lag the emf? (b) Is the 
circuit's load mainly capacitive or mainly inductive? (c) Is the an­
gular frequency Wd of the emf greater than or less than the natural 
angular frequency w? 
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Fig.31-25 Questions 11 and 12. 

Tutoring problem available {at instructor's discretion} in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wlley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

LC Oscillations, Qualitatively 
An oscillating LC circuit consists of a 75.0 mH inductor and a 

3.60,uF capacitor. If the maximum charge on the capacitor is 2.90 
,uC, what are (a) the total energy in the circuit and (b) the maxi­
mum current? 

The frequency of oscillation of a certain LC circuit is 200 kHz. 
At time t = 0, plate A of the capacitor has maximum positive 
charge. At what earliest time t > 0 will (a) plate A again have maxi­
mum positive charge, (b) the other plate of the capacitor have 
maximum positive charge, and (c) the inductor have maximum 
magnetic field? 

In a certain oscillating LC circuit, the total energy is converted 
from electrical energy in the capacitor to magnetic energy in the 
inductor in 1.50 ,us. What are (a) the period of oscillation and (b) 
the frequency of oscillation? (c) How long after the magnetic en­
ergy is a maximum will it be a maximum again? 

What is the capacitance of an oscillating LC circuit if the maxi­
mum charge on the capacitor is 1.60 ,uC and the total energy is 140 ,uJ? 

In an oscillating LC circuit, L = 1.10 mH and C = 4.00 ,up. 
The maximum charge on the capacitor is 3.00 ,uc. Find the maxi­
mum current. 

The Electrical- Mechanical Analogy 
A 0.50 kg body oscillates in SHM on a spring that, when ex­

tended 2.0 mm from its equilibrium position, has an 8.0 N restoring 
force. What are (a) the angular frequency of oscillation, (b) the pe­
riod of oscillation, and (c) the capacitance of an LC circuit with the 
same period if L is 5.0 H? 

SSM The energy in an oscillating LC circuit containing a 
1.25 H inductor is 5.70 ,uJ. The maximum charge on the capacitor is 
175 ,uc. For a mechanical system with the same period, find the (a) 
mass, (b) spring constant, ( c) maximum displacement, and (d) max­
imumspeed. 

LC Oscillations, Quantitatively 
A single loop consists of inductors (Ll> L 2, ••• ), capacitors 

(Cl> C2, ••. ), and resistors (Rl> R2, ••• ) connected in series as 
shown, for example, in Fig. 31-26a. Show that regardless of the se­
quence of these circuit elements in the loop, the behavior of this 
circuit is identical to that of the simple LC circuit shown in Fig. 

31-26b. (Hint: Consider the loop rule and see Problem 47 in 
Chapter 30.) 

(a) (b) 

Fig. 31 -26 Problem 8. 

IlW In an oscillating LC circuit with L = 50 mH and C = 
4.0 ,uF, the current is initially a maximum. How long will it take be­
fore the capacitor is fully charged for the first time? 

LC oscillators have been used in circuits connected to loud­
speakers to create some of the sounds of electronic music. What in­
ductance must be used with a 6.7 ,uF capacitor to produce a fre­
quency of 10 kHz, which is near the middle of the audible range of 
frequencies? 

SSM WWW A variable capacitor with a range from 10 to 
365 pF is used with a coil to form a variable-frequency LC circuit to 
tune the input to a radio. (a) What is the ratio of maximum fre­
quency to minimum frequency that can be obtained with such a ca­
pacitor? If this circuit is to obtain frequencies from 0.54 MHz to 
1.60 MHz, the ratio computed in (a) is too large. By adding a capac­
itor in parallel to the variable capacitor, this range can be adjusted. 
To obtain the desired frequency range, (b) what capacitance should 
be added and (c) what inductance should the coil have? 

In an oscillating LC circuit, when 75.0% of the total energy 
is stored in the inductor's magnetic field, (a) what multiple of the 
maximum charge is on the capacitor and (b) what mUltiple of the 
maximum current is in the inductor? 

In an oscillating LC circuit, L = 3.00 mH and C = 2.70 
,up. At t = 0 the charge on the capacitor is zero and the current is 
2.00 A (a) What is the maximum charge that will appear on the 
capacitor? (b) At what earliest time t > 0 is the rate at which en­
ergy is stored in the capacitor greatest, and (c) what is that great­
est rate? 

To construct an oscillating LC system, you can choose from 
a 10 mH inductor, a 5.0 ,uF capacitor, and a 2.0 ,uF capacitor. What 
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are the (a) smallest, (b) second smallest, (c) second largest, and (d) 
largest oscillation frequency that can be set up by these elements in 
various combinations? 

IlW An oscillating LC circuit consisting of a 1.0 nF capaci­
tor and a 3.0 mH coil has a maximum voltage of 3.0 V. What are (a) 
the maximum charge on the capacitor, (b) the maximum current 
through the circuit, and (c) the maximum energy stored in the 
magnetic field of the coil? 

An inductor is connected across a capacitor whose 
capacitance can be varied by turning a knob. We wish to make the 
frequency of oscillation of this LC circuit vary linearly with the an­
gle of rotation of the knob, going from 2 X 105 to 4 X 105 Hz as the 
knob turns through 180°. If L = 1.0 mH, plot the required capaci­
tance C as a function of the angle of rotation of the knob. 

IlW ~ In Fig. 31-27, R = 

14.0 n, C = 6.20 f-LF, and L = 54.0 
mH, and the ideal battery has emf 
'(g = 34.0 V. The switch is kept at a 
for a long time and then thrown to 
position b. What are the (a) fre­
quency and (b) current amplitude 
of the resulting oscillations? 

R 

An oscillating LC circuit has a Fig.31-27 Problem 17. 
current amplitude of 7.50 mA, a po-
tential amplitude of 250 m V, and a capacitance of 220 nP. What are 
(a) the period of oscillation, (b) the maximum energy stored in the 
capacitor, (c) the maximum energy stored in the inductor, (d) the 
maximum rate at which the current changes, and (e) the maximum 
rate at which the inductor gains energy? 

Using the loop rule, derive the differential equation for an 
LC circuit (Eq. 31-11). 

In an oscillating LC circuit in which C = 4.00 f-LF, the 
maximum potential difference across the capacitor during 
the oscillations is 1.50 V and the maximum current through the 
inductor is 50.0 mA. What are (a) the inductance L and (b) the 
frequency of the oscillations? (c) How much time is required for 
the charge on the capacitor to rise from zero to its maximum 
value? 

IlW In an oscillating LC circuit with C = 64.0 f-LF, the current 
is given by i = (1.60) sin(2500t + 0.680), where t is in seconds, i in 
amperes, and the phase constant in radians. (a) How soon after t = 

o will the current reach its maximum value? What are (b) the in­
ductance Land (c) the total energy? 

A series circuit containing inductance L j and capacitance C1 

oscillates at angular frequency w. A second series circuit, contain­
ing inductance L2 and capacitance C2, oscillates at the same angu­
lar frequency. In terms of w, what is the angular frequency of oscil­
lation of a series circuit containing all four of these elements? 
Neglect resistance. (Hint: Use the formulas for equivalent capaci­
tance and equivalent inductance; see Section 25-4 and Problem 47 
in Chapter 30.) 

In an oscillating LC circuit, L = 25.0 mH and C = 7.80 f-LP. 
At time t = 0 the current is 9.20 mA, the charge on the capacitor is 
3.80 f-LC, and the capacitor is charging. What are (a) the total en­
ergy in the circuit, (b) the maximum charge on the capacitor, and 
(c) the maximum current? (d) If the charge on the capacitor is 
given by q = Q cos( wt + 4», what is the phase angle 4>? (e) 

Suppose the data are the same, except that the capacitor is dis­
charging at t = O. What then is 4>? 

Damped Oscillations in an RLC Circuit 
A single-loop circuit consists of a 7.20 n resistor, a 

12.0 H inductor, and a 3.20 f-LF capacitor. Initially the capacitor has 
a charge of 6.20 f-LC and the current is zero. Calculate the charge on 
the capacitor N complete cycles later for (a) N = 5, (b) N = 10, and 
(c)N = 100. 

IlW What resistance R should be connected in series with an 
inductance L = 220 mH and capacitance C = 12.0 f-LF for the 
maximum charge on the capacitor to decay to 99.0% of its initial 
value in 50.0 cycles? (Assume Wi = w.) 

In an oscillating series RLC circuit, find the time required 
for the maximum energy present in the capacitor during an oscilla­
tion to fall to half its initial value. Assume q = Q at t = O. 

SSM In an oscillating series RLC circuit, show that t:.UlU, 
the fraction of the energy lost per cycle of oscillation, is given to a 
close approximation by 27TR/wL. The quantity wLiR is often called 
the Q of the circuit (for quality). A high-Q circuit has low resis­
tance and a low fractional energy loss (= 27T/Q) per cycle. 

Three Simple Circuits 
A 1.50 f-LF capacitor is connected as in Fig. 31-10 to an ac gen­

erator with '(gill = 30.0 V. What is the amplitude of the resulting al­
ternating current if the frequency of the emf is (a) 1.00 kHz and (b) 
8.00 kHz? 

IlW A 50.0 mH inductor is connected as in Fig. 31-12 to an ac 
generator with '(gill = 30.0 V. What is the amplitude of the resulting 
alternating current if the frequency of the emf is (a) 1.00 kHz and 
(b) 8.00 kHz? 

A 50.0 n resistor is connected as in Fig. 31-8 to an ac genera­
tor with '(gill = 30.0 V. What is the amplitude of the resulting alter­
nating current if the frequency of the emf is (a) 1.00 kHz and (b) 
8.00 kHz? 

(a) At what frequency would a 6.0 mH inductor and a 10 f-LF 
capacitor have the same reactance? (b) What would the reactance 
be? (c) Show that this frequency would be the natural frequency of 
an oscillating circuit with the same Land C. 

An ac generator has emf '(g = '(gill sin w"t, with '(gm = 25.0 V 
and Wd = 377 rad/s. It is connected to a 12.7 H inductor. (a) What is 
the maximum value of the current? (b) When the current is a maxi­
mum, what is the emf of the generator? (c) When the emf of the gen­
erator is -12.5 V and increasing in magnitude, what is the current? 

SSM An ac generator has emf'(g = '(gill sine wdt - 7T/4), where 
'(gill = 30.0 V and Wd = 350 rad/s. The current produced in a con­
nected circuit is i(t) = I sin(wdt 37T/4), where 1= 620 mA. At 
what time after t = 0 does (a) the generator emf first reach a maxi­
mum and (b) the current first reach a maximum? (c) The circuit 
contains a single element other than the generator. Is it a capacitor, 
an inductor, or a resistor? Justify your answer. (d) What is the value 
of the capacitance, inductance, or resistance, as the case may be? 

An ac generator with emf '(g = '(gill sin wdt, where '(gill = 
25.0 V and Wd = 377 rad/s, is connected to a 4.15 f-LF capacitor. (a) 
What is the maximum value of the current? (b) When the current 
is a maximum, what is the emf of the generator? (c) When the emf 
of the generator is -12.5 V and increasing in magnitude, what is 
the current? 



31 The Series RLC Circuit 
IlW A coil of inductance 88 mH and unknown resistance and a 

0.94 JLF capacitor are connected in series with an alternating emf of 
frequency 930 Hz. If the phase constant between the applied voltage 
and the current is 750

, what is the resistance ofthe coil? 

An alternating source with a variable frequency, a capacitor 
with capacitance C, and a resistor with resistance R are connected 
in series. Figure 31-28 gives the impedance Z of the circuit versus 
the driving angular frequency Wd; the curve reaches an asymptote 
of 500 il, and the horizontal scale is set by Wds = 300 rad/s. The fig­
ure also gives the reactance Xc for the capacitor versus Wd' What 
are (a) R and (b) C? 

g 
~ 400 

N 

o 
Wd (rad/s) 

Fig. 31-28 Problem 36. 

-37 An electric motor has an effective resistance of 32.0 il and an in­
ductive reactance of 45.0 il when working under load. The rms volt­
age across the alternating source is 420 V. Calculate the rms current. 

038 The current amplitude I versus driving angular frequency 
Wd for a driven RLC circuit is given in Fig. 31-29, where the verti­
cal axis scale is set by Is = 4.00 A. The inductance is 200 JLH, and 
the emf amplitude is 8.0 V. What are (a) C and (b) R? 

I sO-

Il I~ 
,--,--

i--

I-v 1\ :.... ------f-f-

~ r--..l"--1-F, I 
I I I 

30 50 
Wd (1000 rad/s) 

Fig. 31 -29 Problem 38. 

I 

Remove the inductor from the circuit in Fig. 31-7 and set R = 

200 il, C = 15.0 JLF,fd = 60.0 Hz, and '-&/11 = 36.0 V. What are (a) Z, 
(b) c/J, and ( c) I? (d) Draw a phasor diagram. 

An alternating source drives a series RLC circuit with an emf 
amplitude of 6.00 V, at a phase angle of + 30.00

• When the potential 
difference across the capacitor reaches its maximum positive value 
of +5.00 V, what is the potential difference across the inductor 
(sign included)? 

SSM In Fig. 31-7, set R = 200 il, C = 70.0 JLF, L = 230 mH, 
fd = 60.0 Hz, and '-&/11 = 36.0 V. What are (a) Z, (b) c/J, and (c) I? (d) 
Draw a ph as or diagram. 

An alternating source with a variable frequency, an inductor 
with inductance L, and a resistor with resistance R are connected 
in series. Figure 31-30 gives the impedance Z of the circuit versus 
the driving angular frequency We/, with the horizontal axis scale set 
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by Wds = 1600 rad/s. The figure also gives the reactance XL for the 
inductor versus Wd' What are (a) R and (b) L? 

120 

g 80 

~ 
N 40 

0 Olds 

Old (rad/s) 

Fig. 31 -30 Problem 42. 

Remove the capacitor from the circuit in Fig. 31-7 and set 
R = 200 il, L = 230 mH, fd = 60.0 Hz, and '-&/11 = 36.0 V. What are 
(a) Z, (b) c/J, and (c) I? (d) Draw a phasor diagram. 

··44 t» An ac generator with '-&/11 = 220 V and operating at 
400 Hz causes oscillations in a series RLC circuit having R = 220 
il, L = 150 mH, and C = 24.0 JLF. Find (a) the capacitive reactance 
Xc, (b) the impedance Z, and ( c) the current amplitude I. A second 
capacitor of the same capacitance is then connected in series with 
the other components. Determine whether the values of (d) Xc. (e) 
Z, and (f) I increase, decrease, or remain the same. 

··45 IlW t» (a) In an RLC circuit, can the amplitude of the 
voltage across an inductor be greater than the amplitude of the 
generator emf? (b) Consider an RLC circuit with '-&/11 = 10 V, R = 

10 il, L = 1.0 H, and C = 1.0 JLF. Find the amplitude of the voltage 
across the inductor at resonance. 

An alternating emf source with a variable frequency fd is con­
nected in series with a 50.0 il resistor and a 20.0 JLF capacitor. The 
emf amplitude is 12.0 V. (a) Draw a phasor diagram for phasor VR 

(the potential across the resistor) and phasor Vc (the potential 
across the capacitor). (b) At what driving frequency fd do the two 
phasors have the same length? At that driving frequency, what are 
(c) the phase angle in degrees, (d) the angular speed at which the 
phasors rotate, and (e) the current amplitude? 

SSM WWW An RLC circuit such as that of Fig. 31-7 has 
R = 5.00 il, C = 20.0 JLF, L = 1.00 H, and '-&m = 30.0 V. (a) At what 
angular frequency Wd will the current amplitude have its maximum 
value, as in the resonance curves of Fig. 31-16? (b) What is this 
maximum value? At what (c) lower angular frequency Wdl and (d) 
higher angular frequency Wd2 will the current amplitUde be half 
this maximum value? (e) For the resonance curve for this circuit, 
what is the fractional half-width (We/I - We/2)/ w? 

Figure 31-31 shows a driven RLC circuit that contains 
two identical capacitors and two switches. The emf amplitude is set 
at 12.0 V, and the driving frequency is set at 60.0 Hz. With both 
switches open, the current leads the emf by 30.90

• With switch Sl 
closed and switch S2 still open, the emf leads the current by 15.00

• 

With both switches closed, the current amplitude is 447 mA. What 
are (a) R, (b) C,and (c) L? 

Fig. 31 -31 Problem 48. 
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In Fig. 31-32, a generator 
with an adjustable frequency of 
oscillation is connected to resis­
tance R = 100 n, inductances 
LI = 1.70 mH and L z = 2.30 
mH, and capacitances C j = 4.00 
J.LF, Cz = 2.50 J.LF, and C3 = 3.50 Fig.31-32 Problem 49. 
J.LF. (a) What is the resonant fre-
quency of the circuit? (Hint: See Problem 47 in Chapter 30.) What 
happens to the resonant frequency if (b) R is increased, (c) LI is in­
creased, and (d) C3 is removed from the circuit? 

An alternating emf source with a variable frequency tl is con­
nected in series with an 80.0 n resistor and a 40.0 mH inductor. The 
emf amplitude is 6.00 V. (a) Draw a phasor diagram for phasor VR 

(the potential across the resistor) and phasor VL (the potential 
across the inductor). (b) At what driving frequency fd do the two 
phasors have the same length? At that driving frequency, what are 
( c) the phase angle in degrees, (d) the angular speed at which the 
phasors rotate, and (e) the current amplitude? 

SSM The fractional half-width t:.Wd of a resonance curve, 
such as the ones in Fig. 31-16, is the width of the curve at half the 
maximum value of I. Show that t:.Wd/ W = R(3C/ L )I/Z, where W is the 
angular frequency at resonance. Note that the ratio t:.Wd/W in­
creases with R, as Fig. 31-16 shows. 

·10 Power in Alternating-Current Circuits 
An ac voltmeter with large impedance is connected in turn 

across the inductor, the capacitor, and the resistor in a series circuit 
having an alternating emf of 100 V (rms); the meter gives the same 
reading in volts in each case. What is this reading? 

SSM An air conditioner connected to a 120 V rms ac line is 
equivalent to a 12.0 n resistance and a 1.30 n inductive reactance 
in series. Calculate (a) the impedance of the air conditioner and (b) 
the average rate at which energy is supplied to the appliance. 

What is the maximum value of an ac voltage whose rms value 
is 100 V? 

What direct current will produce the same amount of ther­
mal energy, in a particular resistor, as an alternating current that 
has a maximum value of 2.60 A? 

A typical light dimmer used 
to dim the stage lights in a theater 
consists of a variable inductor L 
(whose inductance is adjustable be­

, "-.\ 

~., 
To ene:-Jrgy 00 0 0'-- ~ 
supply I ___ ---------l 

tween zero and LmaJ connected in Fig. 31 -33 Problem 56. 
series with a lightbulb B, as shown in 
Fig. 31-33. The electrical supply is 120 V (rms) at 60.0 Hz; the light­
bulb is rated at 120 V, 1000 W. (a) What Lmax is required if the rate of 
energy dissipation in the lightbulb is to be varied by a factor of 5 
from its upper limit of 1000 W? Assume that the resistance of the 
lightbulb is independent of its temperature. (b) Could one use a vari­
able resistor (adjustable between zero and RmaJ instead of an 
inductor? (c) If so, what Rmax is required? (d) Why isn't this done? 

In an RLC circuit such as that of Fig. 31-7 assume that R = 
5.00 n, L = 60.0 mH,fd = 60.0 Hz, and ~m = 30.0 V. For what val­
ues of the capacitance would the average rate at which energy is 
dissipated in the resistance be (a) a maximum and (b) a minimum? 
What are (c) the maximum dissipation rate and the corresponding 
(d) phase angle and (e) power factor? What are (f) the minimum 

dissipation rate and the corresponding (g) phase angle and (h) 
power factor? 

For Fig. 31-34, show that the average rate at which energy is 
dissipated in resistance R is a maximum when R is equal to the in­
ternal resistance r of the ac generator. (In the text discussion we 
tacitly assumed that r = 0.) 

R 

Fig.31-34 Problems 58 and 66. 

In Fig. 31-7, R = 15.0 n, C = 4.70 J.LF, and L = 25.0 mHo The 
generator provides an emf with rms voltage 75.0 V and frequency 
550 Hz. (a) What is the rms current? What is the rms voltage across 
(b) R, (c) C, (d) L, (e) C and L together, and (f) R, C, and L to­
gether? At what average rate is energy dissipated by (g) R, (h) C, 
and (i) L? 

~ In a series oscillating RLC circuit, R = 16.0 n, C = 31.2 
p,F, L = 9.20 mH, and ~m = ~III sin wdt with ~m = 45.0 V and 
Wd = 3000 rad/s. For time t = 0.442 ms find (a) the rate Pg at which 
energy is being supplied by the generator, (b) the rate Peat which 
the energy in the capacitor is changing, (c) the rate PLat which the 
energy in the inductor is changing, and (d) the rate PR at which en­
ergy is being dissipated in the resistor. (e) Is the sum of Pc, P L, and 
PR greater than, less than, or equal to Pg? 

SSM WWW Figure 31-35 shows an ac generator con-
nected to a "black box" through a pair of terminals. The box con­
tains an RLC circuit, possibly even a multiloop circuit, whose ele­
ments and connections we do not know. Measurements outside 
the box reveal that 

~(t) = (75.0 V) sin wdt 

and i(t) = (1.20 A) sine wdt + 42.0°). 

(a) What is the power factor? (b) Does the current lead or lag 
the emf? (c) Is the circuit in the box largely inductive or largely 
capacitive? (d) Is the circuit in the box in resonance? (e) Must 
there be a capacitor in the box? (f) An inductor? (g) A resistor? 
(h) At what average rate is energy delivered to the box by the 
generator? (i) Why don't you need to know Wd to answer all 
these questions? 

i(t) 

«oDI 
Fig.31-35 Problem 61. 

Transformers 
A generator supplies 100 V to a transformer's primary coil, 

which has 50 turns. If the secondary coil has 500 turns, what is the 
secondary voltage? 

SSM IlW A transformer has 500 primary turns and 10 sec-



ondary turns. (a) If Vp is 120 V (rms), what is 1/, with an open cir­
cuit? If the secondary now has a resistive load of 15 n, what is the 
current in the (b) primary and (c) secondary? 

Figure 31-36 shows an "autotransformer." It consists of a sin­
gle coil (with an iron core). Three taps T j are 
provided. Between taps T j and T2 there are 
200 turns, and between taps T2 and T3 there 
are 800 turns. Any two taps can be chosen 
as the primary terminals, and any two taps 
can be chosen as the secondary terminals. 
For choices producing a step-up trans­
former, what are the (a) smallest, (b) second 
smallest, and (c) largest values of the ratio 
Vs/Vp? For a step-down transformer, what 
are the (d) smallest, (e) second smallest, 
and (f) largest values of 1/,lVp? 

An ac generator provides emf to a 

Fig. 31-36 

Problem 64. 

resistive load in a remote factory over a two-cable transmission 
line. At the factory a step-down transformer reduces the voltage 
from its (rms) transmission value VI to a much lower value that is 
safe and convenient for use in the factory. The transmission line 
resistance is 0.30 n/cable, and the power of the generator is 250 
kW. If VI = 80 kV, what are (a) the voltage decrease ~ V along the 
transmission line and (b) the rate Pd at which energy is dissipated 
in the line as thermal energy? If VI = 8.0 k V, what are (c) ~ V and 
(d) Pd? If VI = 0.80 kV, what are (e) ~ Vand (f) Pd? 

Additional Problems 
In Fig. 31-34, let the rectangular box on the left represent the 

(high-impedance) output of an audio amplifier, with r = 1000 n. 
Let R = 10 n represent the (low-impedance) coil of a loudspeaker. 
For maximum transfer of energy to the load R we must have R = r, 
and that is not true in this case. However, a transformer can be 
used to "transform" resistances, making them behave electrically 
as if they were larger or smaller than they actually are. (a) Sketch 
the primary and secondary coils of a transformer that can be intro­
duced between the amplifier and the speaker in Fig. 31-34 to match 
the impedances. (b) What must be the turns ratio? 

An ac generator produces emf ~ = ~11l sin(wdt - 7T/4), where 
~111 = 30.0 V and Wd = 350 rad/s. The current in the circuit attached 
to the generator is i(t) = I sin(wdt + 7T/4), where 1= 620 mA. (a) 
At what time after t = 0 does the generator emf first reach a maxi­
mum? (b) At what time after t = 0 does the current first reach a 
maximum? (c) The circuit contains a single element other than the 
generator. Is it a capacitor, an inductor, or a resistor? Justify your 
answer. (d) What is the value of the capacitance, inductance, or re­
sistance, as the case may be? 

A series RLC circuit is driven by a generator at a frequency of 
2000 Hz and an emf amplitude of 170 V. The inductance is 60.0 
mH, the capacitance is 0.400 fLF, and the resistance is 200 n. (a) 
What is the phase constant in radians? (b) What is the current am­
plitude? 

A generator of frequency 3000 Hz drives a series RLC circuit 
with an emf amplitude of 120 V. The resistance is 40.0 n, the capac­
itance is 1.60 fLF, and the inductance is 850 fLH. What are (a) the 
phase constant in radians and (b) the current amplitude? (c) Is the 
circuit capacitive, inductive, or in resonance? 

A 45.0 mH inductor has a reactance of 1.30 kn. (a) What is its 
operating frequency? (b) What is the capacitance of a capacitor with 

PROS lEMS 859 

the same reactance at that frequency? If the frequency is doubled, 
what is the new reactance of (c) the inductor and (d) the capacitor? 

71 An RLC circuit is driven by a generator with an emf 
amplitude of 80.0 V and a current amplitude of 1.25 A. The current 
leads the emf by 0.650 rad. What are the (a) impedance and (b) re­
sistance of the circuit? (c) Is the circuit inductive, capacitive, or in 
resonance? 

A series RLC circuit is driven in such a way that the maxi­
mum voltage across the inductor is 1.50 times the maximum volt­
age across the capacitor and 2.00 times the maximum voltage 
across the resistor. (a) What is 4> for the circuit? (b) Is the circuit in­
ductive, capacitive, or in resonance? The resistance is 49.9 n, and 
the current amplitude is 200 mA. (c) What is the amplitude of the 
driving emf? 

A capacitor of capacitance 158 fLF and an inductor form an 
LC circuit that oscillates at 8.15 kHz, with a current amplitude of 
4.21 mA. What are (a) the inductance, (b) the total energy in the 
circuit, and (c) the maximum charge on the capacitor? 

An oscillating LC circuit has an inductance of 3.00 mH and a 
capacitance oflO.O fLF. Calculate the (a) angularfrequency and (b) 
period of the oscillation. (c) At time t = 0, the capacitor is charged 
to 200 fLC and the current is zero. Roughly sketch the charge on 
the capacitor as a function of time. 

For a certain driven series RLC circuit, the maximum genera­
tor emf is 125 V and the maximum current is 3.20 A. If the current 
leads the generator emf by 0.982 rad, what are the (a) impedance 
and (b) resistance of the circuit? (c) Is the circuit predominantly 
capacitive or inductive? 

A 1.50 fLF capacitor has a capacitive reactance of 12.0 n. (a) 
What must be its operating frequency? (b) What will be the capaci­
tive reactance if the frequency is doubled? 

SSM In Fig. 31-37, a three-phase generator G produces electri­
cal power that is transmitted by means of three wires. The electric 
potentials (each relative to a common reference level) are V j = 
A sin Wdt for wire 1, V2 = A sin( wdt - 120°) for wire 2, and V3 = 

A sin( wdt - 240°) for wire 3. Some types of industrial equipment 
(for example, motors) have three terminals and are designed to 
be connected directly to these three wires. To use a more conven­
tional two-terminal device (for 
example, a lightbulb), one connects 
it to any two of the three wires. 
Show that the potential difference 
between any two of the wires (a) Three-wire transmission line 

oscillates sinusoidally with angular Fig.31-37 Problem 77. 
frequency w" and (b) has an ampli-
tude ofAV3. 

An electric motor connected to a 120 V, 60.0 Hz ac outlet does 
mechanical work at the rate of 0.100 hp (1 hp = 746 W). (a) If the 
motor draws an rms current of 0.650 A, what is its effective resis­
tance, relative to power transfer? (b) Is this the same as the resis­
tance of the motor's coils, as measured with an ohmmeter with the 
motor disconnected from the outlet? 

SSM (a) In an oscillating LC circuit, in terms of the maxi­
mum charge Q on the capacitor, what is the charge there when the 
energy in the electric field is 50.0% of that in the magnetic field? 
(b) What fraction of a period must elapse following the time the 
capacitor is fully charged for this condition to occur? 



860 C R 1 ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 

80 A series RLC circuit is driven by an alternating source at a 
frequency of 400 Hz and an emf amplitude of 90.0 V. The 
resistance is 20.0 D, the capacitance is 12.1 fLF, and the inductance 
is 24.2 mHo What is the rms potential difference across (a) the re­
sistor, (b) the capacitor, and (c) the inductor? (d) What is the aver­
age rate at which energy is dissipated? 

SSM In a certain series RLC circuit being driven at a fre­
quency of 60.0 Hz, the maximum voltage across the inductor is 2.00 
times the maximum voltage across the resistor and 2.00 times the 
maximum voltage across the capacitor. (a) By what angle does the 
current lag the generator emf? (b) If the maximum generator emf 
is 30.0 V, what should be the resistance of the circuit to obtain a 
maximum current of 300 rnA? 

A 1.50 mH inductor in an oscillating LC circuit stores a maxi­
mum energy of 10.0 pJ. What is the maximum current? 

A generator with an adjustable frequency of oscillation is 
wired in series to an inductor of L = 2.50 mH and a capacitor of 
C = 3.00 fLF. At what frequency does the generator produce the 
largest possible current amplitude in the circuit? 

A series RLC circuit has a resonant frequency of 6.00 kHz. 
When it is driven at 8.00 kHz, it has an impedance of 1.00 kD and 
a phase constant of 45 0

• What are (a) R, (b) L, and (c) C for this 
circuit? 

SSM An LC circuit oscillates at a frequency of 10.4 kHz. (a) 
If the capacitance is 340 fLF, what is the inductance? (b) If the max­
imum current is 7.20 rnA, what is the total energy in the circuit? (c) 
What is the maximum charge on the capacitor? 

!:IS When under load and operating at an rms voltage of 220 V, a 
certain electric motor draws an rms current of 3.00 A. It has a resis­
tance of 24.0 D and no capacitive reactance. What is its inductive 
reactance? 

The ac generator in Fig. 31-38 supplies 120 Vat 60.0 Hz. With 
the switch open as in the diagram, the current leads the generator 
emf by 20.00

• With the switch in position 1, the current lags the gen-

erator emf by 10.00
• When the 

switch is in position 2, the current 
amplitude is 2.00 A. What are (a) 
R,(b)L,and(c)C? rv 

In an oscillating LC circuit, 
L = 8.00 mH and C = 1.40 fLF. At 
time t = 0, the current is maximum 

S --+-----l 
2 

at 12.0 mA. (a) What is the maxi- Fig.31-38 Problem 87. 
mum charge on the capacitor dur-
ing the oscillations? (b) At what earliest time t> 0 is the rate of 
change of energy in the capacitor maximum? (c) What is that maxi­
mum rate of change? 

SSM For a sinusoidally driven series RLC circuit, show that 
over one complete cycle with period T (a) the energy stored in the 
capacitor does not change; (b) the energy stored in the inductor 
does not change; (c) the driving emf device supplies energy 
(~T)cgmlcos 1>; and (d) the resistor dissipates energy (~T)RP. (e) 
Show that the quantities found in (c) and (d) are equal. 

What capacitance would you connect across a 1.30 mH 
inductor to make the resulting oscillator resonate at 3.50 kHz? 

91 A series circuit with resistor-inductor-capacitor combina­
tion Rj, Lj, Cj has the same resonant frequency as a second circuit 
with a different combination R 2, L 2, C2• You now connect the two 
combinations in series. Show that this new circuit has the same res­
onant frequency as the separate circuits. 

Consider the circuit shown 
in Fig. 31-39. With switch Sj 
closed and the other two 
switches open, the circuit has a 
time constant Te. With switch S2 
closed and the other two 
switches open, the circuit has a 
time constant TV With switch S3 

L c R 

Fig.31-39 Problem 92. 

closed and the other two switches open, the circuit oscillates with a 
period T. Show that T = 27rV TeTv 



This chapter reveals some of the breadth of physics because it ranges 
from the basic science of electric and magnetic fields to the applied science and 
engineering of magnetic materials. First, we conclude our basic discussion of elec­
tric and magnetic fields, finding that most of the physics principles in the last 11 
chapters can be summarized in only four equations, known as Maxwell's 
equations. 

Second, we examine the science and en­
gineering of magnetic materials. The careers 
of many scientists and engineers are focused 
on understanding why some materials are 
magnetic and others are not and on how ex­
isting magnetic materials can be improved. 
These researchers wonder why Earth has a 
magnetic field but you do not. They find 
countless applications for inexpensive mag­
netic materials in cars, kitchens, offices, and 
hospitals, and magnetic materials often show 
up in unexpected ways. For example, if you 
have a tattoo (Fig. 32-1) and undergo an 
MRI (magnetic resonance imaging) scan, 
the large magnetic field used in the scan may 
noticeably tug on your tattooed skin be­
cause some tattoo inks contain magnetic 
particles. In another example, some break­
fast cereals are advertised as being "iron for­
tified" because they contain small bits of 
iron for you to ingest. Because these iron 
bits are magnetic, you can collect them by 
passing a magnet over a slurry of water and 
cereal. 

Our first step here is to revisit Gauss' 
law, but this time for magnetic fields. 

Fig. 32-1 Some of the inks used for 
tattoos contain magnetic particles. 
(Oliver StrewelGetty Images, Inc.) 

CHAPTER 
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Fig. 32-3 If you break a magnet, each 
fragment becomes a separate magnet, with 
its own north and south poles. 

Gauss' law for Magnetic Fields 
Figure 32-2 shows iron powder that has been sprinkled onto a transparent sheet 
placed above a bar magnet. The powder grains, trying to align themselves with 
the magnet's magnetic field, have fallen into a pattern that reveals the field. One 
end of the magnet is a source of the field (the field lines diverge from it) and the 
other end is a sink of the field (the field lines converge toward it). By convention, 
we call the source the north pole of the magnet and the sink the south pole, and 
we say that the magnet, with its two poles, is an example of a magnetic dipole. 

Fig. 32-2 A bar magnet is a magnetic di­
pole. The iron filings suggest the magnetic 
field lines. (Colored light fills the back­
ground.) (Runk/Schoenberger/Grant Heilman 
Photography) 

Suppose we break a bar magnet into pieces the way we can break a piece of 
chalk (Fig. 32-3). We should, it seems, be able to isolate a single magnetic pole, 
called a magnetic monopole. However, we cannot-not even if we break the 
magnet down to its individual atoms and then to its electrons and nuclei. Each 
fragment has a north pole and a south pole. Thus: 

The simplest magnetic structure that can exist is a magnetic dipole. Magnetic 
monopoles do not exist (as far as we know). 

Gauss' law for magnetic fields is a formal way of saying that magnetic 
monopoles do not exist. The law asserts that the net magnetic flux <DB through 
any closed Gaussian surface is zero: 

1-> -> 
<DB = r B . dA = 0 (Gauss' law for magnetic fields). (32-1) 

Contrast this with Gauss' law for electric fields, 

<DE = 1 If. £4 = qenc (Gauss' law for electric fields). r 80 

In both equations, the integral is taken over a closed Gaussian surface. Gauss' law 
for electric fields says that this integral (the net electric flux through the surface) 
is proportional to the net electric charge qenc enclosed by the surface. Gauss' law 
for magnetic fields says that there can be no net magnetic flux through the sur­
face because there can be no net "magnetic charge" (individual magnetic poles) 
enclosed by the surface. The simplest magnetic structure that can exist and thus 
be enclosed by a Gaussian surface is a dipole, which consists of both a source and 
a sink for the field lines. Thus, there must always be as much magnetic flux into 
the surface as out of it, and the net magnetic flux must always be zero. 
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Gauss' law for magnetic fields holds for structures more complicated than 
a magnetic dipole, and it holds even if the Gaussian surface does not enclose the 
entire structure. Gaussian surface II near the bar magnet of Fig. 32-4 encloses no 
poles, and we can easily conclude that the net magnetic flux through it is zero. 
Gaussian surface I is more difficult. It may seem to enclose only the north pole of 
the magnet because it encloses the label N and not the label S. However, a south 
pole must be associated with the lower boundary of the surface because magnetic 
field lines enter the surface there. (The enclosed section is like one piece of the 
broken bar magnet in Fig. 32-3.) Thus, Gaussian surface I encloses a magnetic 
dipole, and the net flux through the surface is zero. 

CHECKPOINT 1 

The figure here shows four closed surfaces with flat top and bottom faces and curved 
sides. The table gives the areas A of the faces and the magnitudes B of the uniform and 
perpendicular magnetic fields through those faces; the units of A and B are arbitrary 
but consistent. Rank the surfaces according to the magnitudes of the magnetic flux 
through their curved sides, greatest first. 

Surface Atop B top A bot Bbot 

a 2 6, outward 4 3, inward 

b 2 1, inward 4 2, inward 
c 2 6, inward 2 8, outward 
d 2 3, outward 3 2, outward 

(a) (b) (c) (d) 

Induced Magnetic Fields 
In Chapter 30 you saw that a changing magnetic flux induces an electric field, and 
we ended up with Faraday's law of induction in the form 

(Faraday's law of induction). (32-2) 

Here E is the electric field induced along a closed loop by the changing magnetic 
flux <PB encircled by that loop. Because symmetry is often so powerful in physics, 
we should be tempted to ask whether induction can occur in the opposite sense; 
that is, can a changing electric flux induce a magnetic field? 

The answer is that it can; furthermore, the equation governing the induction 
of a magnetic field is almost symmetric with Eq. 32-2. We often call it Maxwell's 
law of induction after James Clerk Maxwell, and we write it as 

(Maxwell's law of induction). (32-3) 

Here B is the magnetic field induced along a closed loop by the changing electric 
flux <P E in the region encircled by that loop. 

As an example of this sort of induction, we consider the charging of a parallel­
plate capacitor with circular plates. (Although we shall focus on this arrangement, 

Fig. 32-4 The field lines for the 
magnetic field B of a short bar mag-
net. The red curves represent cross 
sections of closed, three-dimensional 
Gaussian surfaces. 
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The changing of the 
electric field between 
the plates creates a 
magnetic field. 
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(b) 

Fig. 32-5 (a) A circular parallel-plate ca­
pacitor, shown in side view, is being charged 
by a constant current i. (b) A view from 
within the capacitor, looking toward the plate 
at the right in (a). The electric field E is uni­
form, is directed into the page (toward the 
plate), and grows in magnitude as the charge 
on the capacitor increases. The magnetic field 
B induced by this changing electric field is 
shown at four points on a circle with a radius r 
less than the plate radius R. 

a changing electric flux will always induce a magnetic field whenever it occurs.) We 
assume that the charge on our capacitor (Fig. 32-5a) is being increased at a steady 
rate by a constant current i in the connecting wires. Then the electric field magni­
tude between the plates must also be increasing at a steady rate. 

Figure 32-5b is a view of the right-hand plate of Fig. 32-5a from between the 
plates. The electric field is directed into the page. Let us consider a circular loop 
through point 1 in Figs. 32-5a and b, a loop that is concentric with the capacitor plates 
and has a radius smaller than that of the plates. Because the electric field through the 
loop is changing, the electric flux through the loop must also be changing. According to 
Eq. 32-3, this changing electric flux induces a magnetic field around the loop. 

Experiment proves that a magnetic field fj is indeed induced around such 
a loop, directed as shown. This magnetic field has the same magnitude at every 
point around the loop and thus has circular symmetry about the central axis of 
the capacitor plates (the axis extending from one plate center to the other). 

If we now consider a larger loop-say, through point 2 outside the plates 
in Figs. 32-5a and b-we find that a magnetic field is induced around that loop 
as well. Thus, while the electric field is changing, magnetic fields are induced 
between the plates, both inside and outside the gap. When the electric field stops 
changing, these induced magnetic fields disappear. 

Although Eq. 32-3 is similar to Eq. 32-2, the equations differ in two ways. 
First, Eq. 32-3 has the two extra symbols fLo and So, but they appear only because 
we employ S1 units. Second, Eq. 32-3 lacks the minus sign of Eq. 32-2, mean­
ing that the induced electric field It and the induced magnetic field fj have 
opposite directions when they are produced in otherwise similar situations. To 
see this opposition, examine Fig. 32-6, in which an increasing magnetic field fj, 
directed into the page, induces an electric field It. The induced field It is counter­
clockwise, opposite the induced magnetic field fj in Fig. 32-5b. 

Now recall that the left side of Eq. 32-3, the integral of the dot product fj. df 
around a closed loop, appears in another equation-namely, Ampere's law: 

f fj. df = fLoienc (Ampere's law), (32-4) 

where ienc is the current encircled by the closed loop. Thus, our two equations that 
specify the magnetic field fj produced by means other than a magnetic material 
(that is, by a current and by a changing electric field) give the field in exactly the 
same form. We can combine the two equations into the single equation 

Fig. 32-6 A uniform magnetic 
field B in a circular region. The field, 
directed into the page, is increasing in 
magnitude. The electric field E in­
duced by the changing magnetic field 
is shown at four points on a circle 
concentric with the circular region. 
Compare this situation with that of 
Fig. 32-5b. 

(Ampere-Maxwell law). (32-5) 

The induced Edirection here is opposite the 
~ 

induced B direction in the preceding figure. 

x X 
--'> 

x X~2<_ 

x x x 



"3 INDUCED MAGNETIC FIELDS 865 

When there is a current but no change in electric flux (such as with a wire 
carrying a constant current), the first term on the right side of Eq. 32-S is zero, and 
so Eq. 32-S reduces to Eq. 32-4, Ampere's law. When there is a change in electric 
flux but no current (such as inside or outside the gap of a charging capacitor), the 
second term on the right side of Eq. 32-S is zero, and so Eq. 32-S reduces to 
Eq. 32-3, Maxwell's law of induction. 

CHECKPOINT 2 

The figure shows graphs of the electric field magnitude E 
versus time t for four uniform electric fields, all contained 
within identical circular regions as in Fig. 32-5b. Rank the 
fields according to the magnitudes of the magnetic fields 
they induce at the edge of the region, greatest first. 

Magnetic field induced by changing electric field 

A parallel-plate capacitor with circular plates of radius R is 
being charged as in Fig. 32-Sa. 

(a) Derive an expression for the magnetic field at radius r 
for the case r ::; R. 

A magnetic field can be set up by a current and by induction 
due to a changing electric flux; both effects are included in 
Eq. 32-S. There is no current between the capacitor plates of 
Fig. 32-S, but the electric flux there is changing. Thus, Eq. 
32-S reduces to 

1--> ~ dCPE 
j' B . ds = /LoBo --;u-' (32-6) 

We shall separately evaluate the left and right sides of this 
equation. 

Left side of Eq. 32-6: We choose a circular Amperian loop 
with a radius r ::; R as shown in Fig. 32-Sb because we want 
to evaluate the magnetic field for r::; R~that is, inside the 
capacitor. The magnetic field lJ at all points along the loop is 
tangent to the loop, as is the path element dS'. Thus, lJ and 
dS' are either parallel or antiparallel at each point of the 
loop. For simplicity, assume they are parallel (the choice 
does not alter our outcome here). Then 

f lJ . dS' = f B ds cos 0° = f B ds. 

Due to the circular symmetry of the plates, we can also as­
sume that lJ has the same magnitude at every point around 
the loop. Thus, B can be taken outside the integral on the right 
side of the above equation. The integral that remains is p ds, 
which simply gives the circumference 21T1' of the loop. The left 
side ofEq. 32-6 is then (B)(21T1} 

Right side of Eq. 32-6: We assume that the electric field 
E is uniform between the capacitor plates and directed per­
pendicular to the plates. Then the electric flux CPE through 
the Amperian loop is EA, where A is the area encircled by 
the loop within the electric field. Thus, the right side of Eq. 
32-6 is /LoBo d(EA)/dt. 

Combining results: Substituting our results for the left 
and right sides into Eq. 32-6, we get 

d(EA) 
(B)(27Tr) = /LoBo dt . 

Because A is a constant, we write d(EA) as A dE; so we have 

dE 
(B)(27Tr) = /LoBoA dt' (32-7) 

The area A that is encircled by the Amperian loop within the 
electric field is the full area 1T1'2 of the loop because the loop's 
radius r is less than (or equal to) the plate radius R. Sub­
stituting 1T1'2 for A in Eq. 32-7 leads to, for r ::; R, 

B = /LoBor dE 
2 dt' 

(Answer) (32-8) 

This equation tells us that, inside the capacitor, B increases 
linearly with increased radial distance r, from 0 at the cen­
tral axis to a maximum value at plate radius R. 

(b) Evaluate the field magnitude B for r = RIS = 11.0 mm 
and dEldt = 1.S0 X 1012 Vim' s. 

Calculation: From the answer to (a), we have 

1 dE 
B = 2 /LoBor dt 

= ~(47T X 10-7 T· m/A)(8.8S X 10-12 C2/N' m2) 

X (11.0 X 10-3 m)(1.S0 X 1012 Vim' s) 
= 9.18 X 10-8 T. (Answer) 
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(c) Derive an expression for the induced magnetic field for 
the case r 2: R. 

This equation tells us that, outside the capacitor, B 
decreases with increased radial distance r, from a maximum 
value at the plate edges (where r = R). By substituting r = 

R into Eqs. 32-8 and 32-9, you can show that these equations 
are consistent; that is, they give the same maximum value of 
B at the plate radius. 

Calculation: Our procedure is the same as in (a) except we 
now use an Amperian loop with a radius r that is greater than 
the plate radius R, to evaluate B outside the capacitor. 
Evaluating the left and right sides of Eq. 32-6 again leads to 
Eq. 32-7. However, we then need this subtle point The elec­
tric field exists only between the plates, not outside the plates. 
Thus, the area A that is encircled by the Amperian loop in the 
electric field is not the full area 1Tr2 of the loop. Rather, A is 
only the plate area 1TR2. 

Substituting 1TR2 for A in Eq. 32-7 and solving the result 
for B give us, for r 2: R, 

(Answer) (32-9) 

The magnitude of the induced magnetic field calculated 
in (b) is so small that it can scarcely be measured with sim­
ple apparatus. This is in sharp contrast to the magnitudes of 
induced electric fields (Faraday's law), which can be mea­
sured easily. This experimental difference exists partly be­
cause induced emfs can easily be multiplied by using a coil 
of many turns. No technique of comparable simplicity exists 
for multiplying induced magnetic fields. In any case, the ex­
periment suggested by this sample problem has been done, 
and the presence of the induced magnetic fields has been 
verified quantitatively. 

Additional examples, video, and practice available at WileyPLUS 

Displacement Current 
If you compare the two terms on the right side of Eq. 32-5, you will see that the 
product Bo(dcfJEldt) must have the dimension of a current. In fact, that product has 
been treated as being a fictitious current called the displacement current id: 

(displacement current). (32-10) 

"Displacement" is poorly chosen in that nothing is being displaced, but we are 
stuck with the word. Nevertheless, we can now rewrite Eq. 32-5 as 

f lJ· ds = /Loid,enc + /Loienc (Ampere-Maxwell law), (32-11) 

in which id,enc is the displacement current that is encircled by the integration loop. 
Let us again focus on a charging capacitor with circular plates, as in 

Fig. 32-7 a. The real current i that is charging the plates changes the electric field If 
between the plates. The fictitious displacement current id between the plates is 
associated with that changing field If. Let us relate these two currents. 

The charge q on the plates at any time is related to the magnitude E of the 
field between the plates at that time by Eq. 25-4: 

q = BoAE, (32-12) 

in which A is the plate area. To get the real current i, we differentiate Eq. 32-12 
with respect to time, finding 

dq. dE 
Tt= 1 = BoA&. (32-13) 

To get the displacement current id , we can use Eq. 32-10. Assuming that the 
electric field If between the two plates is uniform (we neglect any fringing), 
we can replace the electric flux cfJ E in that equation with EA. Then Eq. 32-10 



Fig.32-7 (a) Before and (d) after 

Before charging, there 
is no magnetic field. 

(a) =====i 

During charging, the 
right-hand rule works for both 
the real and fictional currents. 

L L 

(b) 
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During charging, magnetic 
field is created by both 
the real and fictional currents. 

B 

i,) 
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B 

After charging, there 
is no magnetic field. 

B 

the plates are charged, there is no 
magnetic field. (b) During the charging, 
magnetic field is created by both the real 
current and the (fictional) displacement 
current. (c) The same right-hand rule 
works for both currents to give the direc­
tion of the magnetic field. 

(e) (d) ===c===i 

B B B 

becomes 

(32-14) 

Comparing Eqs. 32-13 and 32-14, we see that the real current i charging the 
capacitor and the fictitious displacement current id between the plates have the 
same magnitude: 

(displacement current in a capacitor). (32-15) 

Thus, we can consider the fictitious displacement current id to be simply a con­
tinuation of the real current i from one plate, across the capacitor gap, to the 
other plate. Because the electric field is uniformly spread over the plates, the 
same is true of this fictitious displacement current id , as suggested by the spread 
of current arrows in Fig. 32-7b. Although no charge actually moves across the gap 
between the plates, the idea of the fictitious current id can help us to quickly find 
the direction and magnitude of an induced magnetic field, as follows. 

In Chapter 29 we found the direction of the magnetic field produced by a real 
current i by using the right-hand rule of Fig. 29-4. We can apply the same rule to 
find the direction of an induced magnetic field produced by a fictitious displace­
ment current id , as is shown in the center of Fig. 32-7 c for a capacitor. 

We can also use id to find the magnitude of the magnetic field induced by 
a charging capacitor with parallel circular plates of radius R. We simply consider 
the space between the plates to be an imaginary circular wire of radius R carrying 
the imaginary current id • Then, from Eq. 29-20, the magnitude of the magnetic 
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field at a point inside the capacitor at radius r from the center is 

(inside a circular capacitor). (32-16) 

Similarly, from Eq. 29-17, the magnitude of the magnetic field at a point outside 
the capacitor at radius r is 

B = /Laid 
21Tr 

(outside a circular capacitor). (32-17) 

CHECKPOINT 3 

The figure is a view of one plate of a parallel-plate ca­
pacitor from within the capacitor. The dashed lines 
show four integration paths (path b follows the edge of 
the plate). Rank the paths according to the magnitude 
of p B . ds along the paths during the discharging of the 
capacitor, greatest first. 

Treating a changing electric field as a displacement current 

A circular parallel-plate capacitor with plate radius R is 
being charged with a current i. 

(a) Between the plates, what is the magnitude of p B . ds', in 
terms of flo and i, at a radius r = R/5 from their center? 

A magnetic field can be set up by a current and by induction 
due to a changing electric flux (Eq. 32-5). Between the 
plates in Fig. 32-5, the current is zero and we can account for 
the changing electric flux with a fictitious displacement cur­
rent id • Then integral p B . ds' is given by Eq. 32-11, but be­
cause there is no real current i between the capacitor plates, 
the equation reduces to 

f B· ds' = /Laid,ene' (32-18) 

Calculations: Because we want to evaluate p B . ds' at 
radius r = R/5 (within the capacitor), the integration loop en­
circles only a portion id,ene of the total displacement current id. 
Let's assume that id is uniformly spread over the full plate 
area. Then the portion of the displacement current encircled 
by the loop is proportional to the area encircled by the loop: 

(
encircled disp.lacement ) 

current ld,ene 

(
total displac~ment ) 

current ld 

encircled area 1Tr2 
full plate area 1TR2 . 

This gives us 

Substituting this into Eq. 32-18, we obtain 

1. --> 1Tr2 
j' B . ds' = floid 1TR2 ' (32-19) 

Now substituting id = i (from Eq. 32-15) and r = R/5 into 
Eq. 32-19 leads to 

1. B . d~ _ . (R/5)2 _ floi 
j' S - /La l R2 - 25' (Answer) 

(b) In terms of the maximum induced magnetic field, what 
is the magnitude of the magnetic field induced at r = R/5, 
inside the capacitor? 

Because the capacitor has parallel circular plates, we can 
treat the space between the plates as an imaginary wire of 
radius R carrying the imaginary current id• Then we can use 
Eq. 32-16 to find the induced magnetic field magnitude Bat 
any point inside the capacitor. 

Calculations: At r = R/5, Eq. 32-16 yields 

/La i<iCR/5) /Laid 
21TR2 101TR . 

(32-20) 



From Eq. 32-16, the maximum field magnitude Bmax within 
the capacitor occurs at r = R. It is 
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(Answer) 

( 
fLoid ) /Laid 

Bmax = 21TR2 R = 21TR' (32-21) 

Dividing Eq. 32-20 by Eq. 32-21 and rearranging the result, 
we find that the field magnitude at r = Rl5 is 

We should be able to obtain this result with a little rea­
soning and less work. Equation 32-16 tells us that inside the 
capacitor, B increases linearly with r. Therefore, a point ~ the 
distance out to the full radius R of the plates, where Bmax 
occurs, should have a field B that is ~Bmax' 

ms Additional examples, video, and practice available at WileyPLUS 

Maxwell's Equations 
Equation 32-5 is the last of the four fundamental equations of electromagnetism, 
called Maxwell's equations and displayed in Table 32-1. These four equations 
explain a diverse range of phenomena, from why a compass needle points north 
to why a car starts when you turn the ignition key. They are the basis for the func­
tioning of such electromagnetic devices as electric motors, television transmitters 
and receivers, telephones, fax machines, radar, and microwave ovens. 

Maxwell's equations are the basis from which many of the equations you 
have seen since Chapter 21 can be derived. They are also the basis of many of the 
equations you will see in Chapters 33 through 36 concerning optics. 

Maxwell's Equationsa 

Name Equation 

Gauss' law for electricity 1--> --> j E· dA = qenc/SO 

Gauss' law for magnetism 1--> --> 
jB.dA=O 

Faraday's law 

Ampere-Maxwell law 

"Written on the assumption that no dielectric or magnetic materials are present. 

Magnets 

Relates net electric flux to net enclosed electric charge 

Relates net magnetic flux to net enclosed magnetic charge 

Relates induced electric field to changing magnetic flux 

Relates induced magnetic field to changing electric flux 
and to current 

The first known magnets were lodestones, which are stones that have been magnetized 
(made magnetic) naturally. When the ancient Greeks and ancient Chinese discovered 
these rare stones, they were amused by the stones' ability to attract metal over a short 
distance, as if by magic. Only much later did they learn to use lodestones (and artifi­
cially magnetized pieces of iron) in compasses to determine direction. 

Today, magnets and magnetic materials are ubiquitous. Their magnetic prop­
erties can be traced to their atoms and electrons. In fact, the inexpensive magnet 
you might use to hold a note on the refrigerator door is a direct result of the 
quantum physics taking place in the atomic and subatomic material within the 
magnet. Before we explore some of this physics, let's briefly discuss the largest 
magnet we commonly use-namely, Earth itself. 
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For Earth, the south pole 
of the dipole is actually 
in the north. 

R 
M cp _ 

::~~~;) '~?l~~' 
/ ~'\\)) 

~ R NI 

Fig. 32-8 Earth's magnetic field 
represented as a dipole field. The di­
pole axis MM makes an angle of 
ll'so with Earth's rotational axis RR. 
The south pole of the dipole is 
in Earth's Northern Hemisphere. 

Earth is a huge magnet; for points near Earth's surface, its magnetic field can be 
approximated as the field of a huge bar magnet-a magnetic dipole-that strad­
dles the center of the planet. Figure 32-8 is an idealized symmetric depiction of the 
dipole field, without the distortion caused by passing charged particles from the Sun. 

Because Earth's magnetic field is that of a magnetic dipole, a magnetic dipole 
moment 71 is associated with the field. For the idealized field of Fig. 32-8, the 
magnitude of 71 is 8.0 X 1022 liT and the direction of 71 makes an angle of 11.5° 
with the rotation axis (RR) of Earth. The dipole axis (MM in Fig. 32-8) lies along 
71 and intersects Earth's surface at the geomagnetic north pole off the northwest 
coast of Greenland and the geomagnetic south pole in Antarctica. The lines of the 
magnetic field JJ generally emerge in the Southern Hemisphere and reenter 
Earth in the Northern Hemisphere. Thus, the magnetic pole that is in Earth's 
Northern Hemisphere and known as a "north magnetic pole" is really the south 
pole of Earth's magnetic dipole. 

The direction of the magnetic field at any location on Earth's surface is com­
monly specified in terms of two angles. The field declination is the angle (left or 
right) between geographic north (which is toward 90° latitude) and the horizon­
tal component of the field. The field inclination is the angle (up or down) between 
a horizontal plane and the field's direction. 

Magnetometers measure these angles and determine the field with much pre­
cision. However, you can do reasonably well with just a compass and a dip meta 
A compass is simply a needle-shaped magnet that is mounted so it can rotate 
freely about a vertical axis. When it is held in a horizontal plane, the north-pole 
end of the needle points, generally, toward the geomagnetic north pole (really a 
south magnetic pole, remember). The angle between the needle and geographic 
north is the field declination. A dip meter is a similar magnet that can rotate 
freely about a horizontal axis. When its vertical plane of rotation is aligned with 
the direction of the compass, the angle between the meter's needle and the hori­
zontal is the field inclination. 

At any point on Earth's surface, the measured magnetic field may differ 
appreciably, in both magnitude and direction, from the idealized dipole field of 
Fig. 32-8. In fact, the point where the field is actually perpendicular to Earth's 
surface and inward is not located at the geomagnetic north pole off Greenland as 
we would expect; instead, this so-called dip north pole is located in the Queen 
Elizabeth Islands in northern Canada, far from Greenland. 

In addition, the field observed at any location on the surface of Earth varies 
with time, by measurable amounts over a period of a few years and by substantial 
amounts over, say, 100 years. For example, between 1580 and 1820 the direction 
indicated by compass needles in London changed by 35°. 

In spite of these local variations, the average dipole field changes only slowly 
over such relatively short time periods. Variations over longer periods can be 
studied by measuring the weak magnetism of the ocean floor on either side of the 
Mid-Atlantic Ridge (Fig. 32-9). This floor has been formed by molten magma 

Mid-Atlantic Ridge 

Fig. 32-9 A magnetic profile of the seafloor on either side of the Mid­
Atlantic Ridge. The seafloor, extruded through the ridge and spreading out 
as part of the tectonic drift system, displays a record of the past magnetic his­
tory of Earth's core. The direction of the magnetic field produced by the core 
reverses about every million years. 
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that oozed up through the ridge from Earth's interior, solidified, and was pulled 
away from the ridge (by the drift of tectonic plates) at the rate of a few centime­
ters per year. As the magma solidified, it became weakly magnetized with its 
magnetic field in the direction of Earth's magnetic field at the time of solidifica­
tion. Study of this solidified magma across the ocean floor reveals that Earth's 
field has reversed its polarity (directions of the north pole and south pole) about 
every million years. The reason for the reversals is not known. In fact, the mecha­
nism that produces Earth's magnetic field is only vaguely understood. 

Magnetism and Electrons 
Magnetic materials, from lodestones to videotapes, are magnetic because of the 
electrons within them. We have already seen one way in which electrons can 
generate a magnetic field: Send them through a wire as an electric current, and 
their motion produces a magnetic field around the wire. There are two more ways, 
each involving a magnetic dipole moment that produces a magnetic field in the sur­
rounding space. However, their explanation requires quantum physics that is be­
yond the physics presented in this book, and so here we shall only outline the results. 

An electron has an intrinsic angular momentum called its spin angular momen­
tum (or just spin) S; associated with this spin is an intrinsic spin magnetic 
dipole moment T1s. (By intrinsic, we mean that Sand T1s are basic characteristics 
of an electron, like its mass and electric charge.) Vectors Sand /1.\. are related by 

---> e ---> 
fLs = --S, 

m 
(32-22) 

in which e is the elementary charge (1.60 X 10-19 C) and m is the mass of an electron 
(9.11 X 10-31 kg). The minus sign means that T1s and S are oppositely directed. 

Spin S is different from the angular momenta of Chapter 11 in two respects: 

1. Spin S itself cannot be measured. However, its component along any axis can 
be measured. 

2. A measured component of S is quantized, which is a general term that means 
it is restricted to certain values. A measured component of S can have only 
two values, which differ only in sign. 

Let us assume that the component of spin S is measured along the z axis of a 
coordinate system. Then the measured component Sz can have only the two 
values given by 

Sz = ms 2
h
7T' for ms = ±~, (32-23) 

where ms is called the spin magnetic quantum number and h (= 6.63 X 10-34 J. s) 
is the Planck constant, the ubiquitous constant of quantum physics. The signs 
given in Eq. 32-23 have to do with the direction of Sz along the z axis. When Sz 
is parallel to the z axis, ms is +~ and the electron is said to be spin up. When Sz is 
antiparallel to the z axis, ms is -~ and the electron is said to be spin down. 

The spin magnetic dipole moment T1s of an electron also cannot be measured; 
only its component along any axis can be measured, and that component too is 
quantized, with two possible values of the same magnitude but different signs. We 
can relate the component fl-s,z measured on the z axis to Sz by rewriting Eq. 32-22 
in component form for the z axis as 

e 
fLsz = - -Sz· , m 
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For an electron, the spin 
is opposite the magnetic 
dipole moment. 

Fig. 32-10 The spin S, spin magnetic 
dipole moment /ls, and magnetic dipole 
field li of an electron represented as a mi­
croscopic sphere. 

Substituting for Sz from Eq. 32-23 then gives us 

eh 
II. - +-­
r-s,Z - - 4 ' 7Tm 

(32-24) 

where the plus and minus signs correspond to fLs,z being parallel and antiparallel 
to the z axis, respectively. 

The quantity on the right side of Eq. 32-24 is called the Bohr magneton fLB: 

eh 
fLB = -- = 9.27 X 10-24 liT 

47Tm 
(Bohr magneton). (32-25) 

Spin magnetic dipole moments of electrons and other elementary particles can 
be expressed in terms of fLB' For an electron, the magnitude of the measured z 
component of 71s is 

(32-26) 

(The quantum physics of the electron, called quantum electrodynamics, or QED, re­
veals that fLs z is actually slightly greater than 1fLB, but we shall neglect that fact.) 

When a'n electron is placed in an external magnetic field Bext' an energy U can 
be associated with the orientation of the electron's spin magnetic dipole moment 
71s just as an energy can be associated with the orientation of the magnetic dipole 
moment 71 of a current loop placed in B ext• From Eq. 28-38, the orentation energy 
for the electron is 

(32-27) 

where the z axis is taken to be in the direction of B ext• 

If we imagine an electron to be a microscopic sphere (which it is not), we can 
represent the spin -.5, the spin magnetic dipole moment 71" and the associated mag­
netic dipole field as in Fig. 32-10. Although we use the word "spin" here, electrons do 
not spin like tops. How, then, can something have angular momentum without actu­
ally rotating? Again, we would need quantum physics to provide the answer. 

Protons and neutrons also have an intrinsic angular momentum called spin and 
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors 
have the same direction, and for a neutron they have opposite directions. We shall 
not examine the contributions of these dipole moments to the magnetic fields of 
atoms because they are about a thousand times smaller than that due to an electron. 

CHECKPOINT 4 

The figure here shows the spin orientations of two particles 
in an external magnetic field liext• (a) If the particles are 
electrons, which spin orientation is at lower energy? (b) If, 
instead, the particles are protons, which spin orientation is 
at lower energy? 

->1 1 B.,xt 1-> Sz S, 

(1) (2) 

When it is in an atom, an electron has an additional angular momentum called 
its orbital angnlar momentnm forb' Associated with forb is an orbital magnetic 
dipole moment 71orb; the two are related by 

---> e ---> 

fLorb = - 2m Lorb' (32-28) 

The minus sign means that 710rb and forb have opposite directions. 
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Orbital angular momentum forb cannot be measured; only its component 
along any axis can be measured, and that component is quantized. The compo­
nent along, say, a z axis can have only the values given by 

h 
L orbz = me-

2 
' , 1T for me = 0, ±1, ±2, ... , ± (limit), (32-29) 

in which me is called the orbital magnetic quantum number and "limit" refers to 
some largest allowed integer value for me. The signs in Eq. 32-29 have to do with 
the direction of Lorb,z along the z axis. 

The orbital magnetic dipole moment Tlorb of an electron also cannot itself be 
measured; only its component along an axis can be measured, and that compo­
nent is quantized. By writing Eq, 32-28 for a component along the same z axis 
as above and then substituting for Lorb,z from Eq. 32-29, we can write the z 
component /-torb,z of the orbital magnetic dipole moment as 

eh 
/-torb,z = - me 41Tm 

and, in terms of the Bohr magneton, as 

/-torb,z = -me/-tB' 

(32-30) 

(32-31) 

When an atom is placed in an external magnetic field Bext' an energy U can be 
associated with the orientation of the orbital magnetic dipole moment of each 
electron in the atom. Its value is 

--> --> 
U = -/-torb' Bext = - fLorb,zBext , (32-32) 

where the z axis is taken in the direction of B ext . 

Although we have used the words "orbit" and "orbital" here, electrons do not 
orbit the nucleus of an atom like planets orbiting the Sun, How can an electron 
have an orbital angular momentum without orbiting in the common meaning of 
the term? Once again, this can be explained only with quantum physics. 

We can obtain Eq. 32-28 with the non quantum derivation that follows, in which 
we assume that an electron moves along a circular path with a radius that is much 
larger than an atomic radius (hence the name "loop model"). However, the 
derivation does not apply to an electron within an atom (for which we need 
quantum physics), 

We imagine an electron moving at constant speed v in a circular path of 
radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative 
charge of the electron is equivalent to a conventional current i (of positive 
charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the or­
bital magnetic dipole moment of such a current loop is obtained from Eq. 28-35 
withN= 1: 

/-torb = iA, (32-33) 

where A is the area enclosed by the loop. The direction of this magnetic dipole 
moment is, from the right-hand rule of Fig. 29-21, downward in Fig, 32-11. 

To evaluate Eq. 32-33, we need the current i, Current is, generally, the rate 
at which charge passes some point in a circuit. Here, the charge of magnitude 
e takes a time T = 21TT/V to circle from any point back through that point, so 

charge e i = ----''''-- - -
time - 21Tr/v' 

(32-34) 

z 

LOrb 

~ r A 

-+ 
V 

orb 

Fig. 32-11 An electron moving at con­
stant speed v in a circular path of radius r 
that encloses an area A. The electron has an 
orbital angular momentum Lorb and an as­
sociated orbital magnetic dipole moment 
Morb' A clockwise current i (of positive 
charge) is equivalent to the counterclock­
wise circulation of the negatively charged 
electron. 
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Fig.32-12 (a) A loop model for 
an electron orbiting in an atom while 
in a nonuniform magnetic field Bext• 

(b) Charge -e moves counter­
clockwise; the associated conven­
tional current i is clockwise. (c) The 
magnetic forces iF on the left and 
right sides of the loop, as seen from 
the plane of the loop. The net force 
on the loop is upward. (d) Charge -e 
now moves clockwise. (e) The net 
force on the loop is now downward. 

Substituting this and the area A = 1Tr2 of the loop into Eq. 32-33 gives us 

_ e 2 _ evr 
/Lorb - 21TrlV 1Tr - -2-' (32-35) 

To find the electron's orbital angular momentum Lorb' we use Eq. 11-18, 
e = mer X 11). Because rand 11 are perpendicular, Lorb has the magnitude 

L orb = mrv sin 90° = mrv. (32-36) 

The vector Lorb is directed upward in Fig. 32-11 (see Fig. 11-12). Combining 
Eqs. 32-35 and 32-36, generalizing to a vector formulation, and indicating the 
opposite directions of the vectors with a minus sign yield 

which is Eq. 32-28. Thus, by "classical" (nonquantum) analysis we have ob­
tained the same result, in both magnitude and direction, given by quantum 
physics. You might wonder, seeing as this derivation gives the correct result for 
an electron within an atom, why the derivation is invalid for that situation. The 
answer is that this line of reasoning yields other results that are contradicted 
by experiments. 

We continue to consider an electron orbit as a current loop, as we did in 
Fig. 32-11. Now,however, we draw the loop in a nonuniform magnetic field Bext as 
shown in Fig. 32-12a. (This field could be the diverging field near the north pole of 
the magnet in Fig. 32-4.) We make this change to prepare for the next several sec­
tions, in which we shall discuss the forces that act on magnetic materials when the 
materials are placed in a nonuniform magnetic field. We shall discuss these forces 
by assuming that the electron orbits in the materials are tiny current loops like 
that in Fig. 32-12a. 

Here we assume that the magnetic field vectors all around the electron's 
circular path have the same magnitude and form the same angle with the vertical, 
as shown in Figs. 32-12b and d. We also assume that all the electrons in an atom 
move either counterclockwise (Fig. 32-12b) or clockwise (Fig. 32-12d). The asso­
ciated conventional current i around the current loop and the orbital magnetic 
dipole moment /lorb produced by i are shown for each direction of motion. 

Figures 32-12c and e show diametrically opposite views of a length element 
dL of the loop that has the same direction as i, as seen from the plane of the orbit. 
Also shown are the field Bext and the resulting magnetic force dF on dL. Recall 
that a current along an element dL in a magnetic field Bext experiences a mag­
netic force dF as given by Eq. 28-28: 

(32-37) 

On the left side of Fig. 32-12c, Eq. 32-37 tells us that the force dF is directed 
upward and rightward. On the right side, the force dF is just as large and is 
directed upward and leftward. Because their angles are the same, the horizontal 
components of these two forces cancel and the vertical components add. The 
same is true at any other two symmetric points on the loop. Thus, the net force 
on the current loop of Fig. 32-12b must be upward. The same reasoning leads to 
a downward net force on the loop in Fig. 32-12d. We shall use these two results 
shortly when we examine the behavior of magnetic materials in nonuniform 
magnetic fields. 



Magnetic Materials 
Each electron in an atom has an orbital magnetic dipole moment and a spin 
magnetic dipole moment that combine vectorially. The resultant of these two 
vector quantities combines vectorially with similar resultants for all other elec­
trons in the atom, and the resultant for each atom combines with those for all 
the other atoms in a sample of a material. If the combination of all these mag­
netic dipole moments produces a magnetic field, then the material is magnetic. 
There are three general types of magnetism: diamagnetism, paramagnetism, 
and ferromagnetism. 

1. Diamagnetism is exhibited by all common materials but is so feeble that it is 
masked if the material also exhibits magnetism of either of the other two 
types. In diamagnetism, weak magnetic dipole moments are produced in the 
atoms of the material when the material is placed in an external magnetic field 
B ext ; the combination of all those induced dipole moments gives the material 
as a whole only a feeble net magnetic field. The dipole moments and thus their 
net field disappear when Bext is removed. The term diamagnetic material 
usually refers to materials that exhibit only diamagnetism. 

2. Paramagnetism is exhibited by materials containing transition elements, rare 
earth elements, and actinide elements (see Appendix G). Each atom of such a 
material has a permanent resultant magnetic dipole moment, but the mo­
ments are randomly oriented in the material and the material as a whole 
lacks a net magnetic field. However, an external magnetic field Bext can par­
tially align the atomic magnetic dipole moments to give the material a net 
magnetic field. The alignment and thus its field disappear when Bex! is re­
moved. The term paramagnetic material usually refers to materials that ex­
hibit primarily paramagnetism. 

3. Ferromagnetism is a property of iron, nickel, and certain other elements (and 
of compounds and alloys of these elements). Some of the electrons in these 
materials have their resultant magnetic dipole moments aligned, which pro­
duces regions with strong magnetic dipole moments. An external field Bext can 
then align the magnetic moments of such regions, producing a strong magnetic 
field for a sample of the material; the field partially persists when Bext is 
removed. We usually use the terms ferromagnetic material and magnetic mate­
rial to refer to materials that exhibit primarily ferromagnetism. 

The next three sections explore these three types of magnetism. 

Diamagnetism 
We cannot yet discuss the quantum physical explanation of diamagnetism, but 
we can provide a classical explanation with the loop model of Figs. 32-11 and 32-
12. To begin, we assume that in an atom of a diamagnetic material each electron 
can orbit only clockwise as in Fig. 32-12d or counterclockwise as in Fig. 32-12b. 
To account for the lack of magnetism in the absence of an external magnetic 
field B.:xt, we assume the atom lacks a net magnetic dipole moment. This implies 
that before Bex! is applied, the number of electrons orbiting in one direction is 
the same as that orbiting in the opposite direction, with the result that the net 
upward magnetic dipole moment of the atom equals the net downward mag­
netic dipole moment. 

Now let's turn on the nonuniform field B ext of Fig. 32-12a, in which B ext is 
directed upward but is diverging (the magnetic field lines are diverging). We 
could do this by increasing the current through an electromagnet or by moving 

DIAMAGNETISM 875 



876 R MAXWELL'S EQUATIONS; MAGNETISM OF MATTER 

Fig. 32-13 An overhead view of a frog 
that is being levitated in a magnetic field 
produced by current in a vertical solenoid 
below the frog. (Courtesy A. K. Gein, High 
Field Magnet Laboratory, University of 
Nijmegen, The Netherlands) 

the north pole of a bar magnet closer to, and below, the orbits. As the magni­
tude of B ext increases from zero to its final maximum, steady-state value, a clock­
wise electric field is induced around each electron's orbital loop according to 
Faraday's law and Lenz's law. Let us see how this induced electric field affects the 
orbiting electrons in Figs. 32-12b and d. 

In Fig. 32-12b, the counterclockwise electron is accelerated by the clockwise 
electric field. Thus, as the magnetic field Bext increases to its maximum value, the elec­
tron speed increases to a maximum value. This means that the associated conventional 
current i and the downward magnetic dipole moment 71 due to i also increase. 

In Fig. 32-12d, the clockwise electron is decelerated by the clockwise electric 
field. Thus, here, the electron speed, the associated current i, and the upward 
magnetic dipole moment 71 due to i all decrease. By turning on field Bext' we have 
given the atom a net magnetic dipole moment that is downward. This would also 
be so if the magnetic field were uniform. 

The non uniformity of field B ext also affects the atom. Because the current i in 
Fig. 32-12b increases, the upward magnetic forces iP in Fig. 32-12c also increase, 
as does the net upward force on the current loop. Because current i in Fig. 32-12d 
decreases, the downward magnetic forces iP in Fig. 32-12e also decrease, as does 
the net downward force on the current loop. Thus, by turning on the nonuniform 
field Bext' we have produced a net force on the atom; moreover, that force is 
directed away from the region of greater magnetic field. 

We have argued with fictitious electron orbits (current loops), but we have 
ended up with exactly what happens to a diamagnetic material: If we apply 
the magnetic field of Fig. 32-12, the material develops a downward magnetic 
dipole moment and experiences an upward force. When the field is removed, 
both the dipole moment and the force disappear. The external field need not be 
positioned as shown in Fig. 32-12; similar arguments can be made for other orien­
tations of B ext• In general, 

A diamagnetic material placed in an external magnetic field Bext develops a magnetic 
dipole moment directed opposite B.,xt. If the field is nonuniform, the diamagnetic mater­
ial is repelled from a region of greater magnetic field toward a region of lesser field. 

The frog in Fig. 32-13 is diamagnetic (as is any other animal). When the frog 
was placed in the diverging magnetic field near the top end of a vertical current­
carrying solenoid, every atom in the frog was repelled upward, away from the 
region of stronger magnetic field at that end of the solenoid. The frog moved 
upward into weaker and weaker magnetic field until the upward magnetic force 
balanced the gravitational force on it, and there it hung in midair. The frog is not 
in discomfort because every atom is subject to the same forces and thus there is 
no force variation within the frog. The sensation is similar to the "weightless" sit­
uation of floating in water, which frogs like very much. If we went to the expense 
of building a much larger solenoid, we could similarly levitate a person in midair 
due to the person's diamagnetism. 

CHECKPOINT 5 

The figure shows two diamagnetic spheres located near the south pole of a bar magnet. Are 
(a) the magnetic forces on the spheres and (b) the magnetic dipole moments ofthe spheres 
directed toward or away from the bar magnet? (c) Is the magnetic force on sphere 1 greater 
than, less than, or equal to that on sphere 2? 

1 2 



10 Paramagnetism 
In paramagnetic materials, the spin and orbital magnetic dipole moments of the 
electrons in each atom do not cancel but add vectorially to give the atom a net 
(and permanent) magnetic dipole moment /1. In the absence of an external 
magnetic field, these atomic dipole moments are randomly oriented, and the 
net magnetic dipole moment of the material is zero. However, if a sample of the 
material is placed in an external magnetic field Bext' the magnetic dipole moments 
tend to line up with the field, which gives the sample a net magnetic dipole 
moment. This alignment with the external field is the opposite of what we saw 
with diamagnetic materials. 

A paramagnetic material placed in an external magnetic field Bext develops a magnetic 
dipole moment in the direction of B..xt. If the field is nonuniform, the paramagnetic mate­
rial is attracted toward a region of greater magnetic field from a region of lesser field. 

A paramagnetic sample with N atoms would have a magnetic dipole moment 
of magnitude N J-t if alignment of its atomic dipoles were complete. However, ran­
dom collisions of atoms due to their thermal agitation transfer energy among the 
atoms, disrupting their alignment and thus reducing the sample's magnetic dipole 
moment. 

The importance of thermal agitation may be measured by comparing two 
energies. One, given by Eq. 19-24, is the mean translational kinetic energy 
J( (= ~kT) of an atom at temperature T, where k is the Boltzmann constant 
(1.38 X 10-23 J/K) and T is in kelvins (not Celsius degrees). The other, derived 
from Eq. 28-38, is the difference in energy flUB (= 2J-tBext) between parallel align­
ment and antiparallel alignment of the magnetic dipole moment of an atom and 
the external field. (The lower energy state is - J-tBext and the higher energy state is 
+J-tBext.) As we shall show below, J( jb flUB, even for ordinary temperatures and 
field magnitUdes. Thus, energy transfers during collisions among atoms can signif­
icantly disrupt the alignment of the atomic dipole moments, keeping the mag­
netic dipole moment of a sample much less than N J-t. 

We can express the extent to which a given paramagnetic sample is magne­
tized by finding the ratio of its magnetic dipole moment to its volume V. This vec­
tor quantity, the magnetic dipole moment per unit volume, is the magnetization 
M of the sample, and its magnitude is 

measured magnetic moment 
M= V . (32-38) 

The unit of M is the ampere-square meter per cubic meter, or ampere per meter 
(Aim). Complete alignment of the atomic dipole moments, called saturation of 
the sample, corresponds to the maximum value Mmax = N J-tIV. 

In 1895 Pierre Curie discovered experimentally that the magnetization of a 
paramagnetic sample is directly proportional to the magnitude of the external 
magnetic field B ext and inversely proportional to the temperature T in kelvins: 

M = C Bext 

T' 
(32-39) 

Equation 32-39 is known as Curie's law, and C is called the Curie constant. 
Curie's law is reasonable in that increasing B ext tends to align the atomic dipole 
moments in a sample and thus to increase M, whereas increasing T tends to dis­
rupt the alignment via thermal agitation and thus to decrease M. However, the 
law is actually an approximation that is valid only when the ratio BextlT is not 
too large. 
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Liquid oxygen is suspended between the 
two pole faces of a magnet because the liq­
uid is paramagnetic and is magnetically at­
tracted to the magnet. (Richard 
Megna/Fundamental Photographs) 
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Fig. 32-14 A magnetization curve for potassium chromium sulfate, a 
paramagnetic salt. The ratio of magnetization M of the salt to the maximum 
possible magnetization Mmax is plotted versus the ratio of the applied mag­
netic field magnitude Bex! to the temperature T. Curie's law fits the data at 
the left; quantum theory fits all the data. After W. E. Henry. 
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Figure 32-14 shows the ratio MIMmax as a function of Bex/Tfor a sample of 
the salt potassium chromium sulfate, in which chromium ions are the para­
magnetic substance. The plot is called a magnetization curve. The straight line 
for Curie's law fits the experimental data at the left, for Bex/T below about 
0.5 T/K. The curve that fits all the data points is based on quantum physics. The 
data on the right side, near saturation, are very difficult to obtain because they 
require very strong magnetic fields (about 100000 times Earth's field), even at 
very low temperatures. 

CHECKPOINT 6 

The figure here shows two paramagnetic spheres located near the south pole of a bar 
magnet. Are (a) the magnetic forces on the spheres and (b) the magnetic dipole 
moments of the spheres directed toward or away from the bar magnet? (c) Is the magnetic 
force on sphere 1 greater than,less than,or equal to that on sphere 27 

2 

Orientation energy of a magnetic field in a paramagnetic gas 

A paramagnetic gas at room temperature (T = 300 K) is 
placed in an external uniform magnetic field of magnitude 
B = 1.5 T; the atoms of the gas have magnetic dipole mo­
ment f.L = 1.0f.LB' Calculate the mean translational kinetic en­
ergy K of an atom of the gas and the energy difference t::..v B 

between parallel alignment and antiparallel alignment of the 
atom's magnetic dipole moment with the external field. 

(1) The mean translational kinetic energy K of an atom in a 
gas depends on the temperature of the gas. (2) The enerID' UB 

of a magnetic dipole J1 in an external magnetic field B de­
pends on the angle e between the directions of J1 and E. 
Calculations: From Eq. 19-24, we have 

K = ~ kT = ~ (1.38 X 10-23 J IK)(300 K) 

= 6.2 X 10-21 J = 0.039 eV. (Answer) 

From Eq. 28-38 (UB = -J1. E), we can write the difference 
f::..UB between parallel alignment (e = 0°) and antiparallel 
alignment (e = 180°) as 

f::..UB = - f.LB cos 180° - (- f-tB cos 0°) = 2f-tB 

= 2f-tBB = 2(9.27 X 10-24 J/T)(1.5 T) 

= 2.8 X 10-23 J = 0.00017 eV. (Answer) 

Here K is about 230 times f::..UB; so energy exchanges among the 
atoms dUlIDg their collisions with one another can easily reorient 
any magnetic dipole moments that might be aligned with the ex­
ternal magnetic field. That is, as soon as a magnetic dipole mo­
ment happens to become aligned with the external field, in the di­
pole's low energy state, chances are very good that a neighboring 
atom will hit the atom, transferring enough energy to put the di­
pole in a higher energy state. Thus, the magnetic dipole moment 
exhibited by the paramagnetic gas must be due to fleeting partial 
alignments of the atomic dipole moments. 

~~&s Additional examples, video, and practice available at WileyPLUS 



11 Ferromagnetism 
When we speak of magnetism in everyday conversation, we almost always 
have a mental picture of a bar magnet or a disk magnet (probably clinging to a 
refrigerator door). That is, we picture a ferromagnetic material having strong, 
permanent magnetism, and not a diamagnetic or paramagnetic material having 
weak, temporary magnetism. 

Iron, cobalt, nickel, gadolinium, dysprosium, and alloys containing these elements 
exhibit ferromagnetism because of a quantum physical effect called exchange cou­
pling in which the electron spins of one atom interact with those of neighboring atoms. 
The result is alignment of the magnetic dipole moments of the atoms, in spite of the 
randomizing tendency of atomic collisions due to thermal agitation. This persistent 
alignment is what gives ferromagnetic materials their permanent magnetism. 

If the temperature of a ferromagnetic material is raised above a certain 
critical value, called the Curie temperature, the exchange coupling ceases to be 
effective. Most such materials then become simply paramagnetic; that is, the 
dipoles still tend to align with an external field but much more weakly, and ther­
mal agitation can now more easily disrupt the alignment. The Curie temperature 
for iron is 1043 K (= 770°C). 

The magnetization of a ferromagnetic material such as iron can be studied 
with an arrangement called a Rowland ring (Fig. 32-15). The material is formed 
into a thin toroidal core of circular cross section. A primary coil P having n turns 
per unit length is wrapped around the core and carries current ip• (The coil is 
essentially a long solenoid bent into a circle.) If the iron core were not present, 
the magnitude of the magnetic field inside the coil would be, from Eq. 29-23, 

(32-40) 

However, with the iron core present, the magnetic field B inside the coil is greater 
than Bo, usually by a large amount. We can write the magnitude of this field as 

B = Bo + BM, (32-41) 

where B M is the magnitude of the magnetic field contributed by the iron core. 
This contribution results from the alignment of the atomic dipole moments 
within the iron, due to exchange coupling and to the applied magnetic field Bo, 
and is proportional to the magnetization M of the iron. That is, the contribution 
B M is proportional to the magnetic dipole moment per unit volume of the iron. 
To determine BM we use a secondary coil S to measure B, compute Bo with 
Eq. 32-40, and subtract as suggested by Eq. 32-41. 

Figure 32-16 shows a magnetization curve for a ferromagnetic material in 
a Rowland ring: The ratio B M/ B M.max' where B M,max is the maximum possible value of 
B M, corresponding to saturation, is plotted versus Bo. The curve is like Fig. 32-14, the 
magnetization curve for a paramagnetic substance: Both curves show the extent to 
which an applied magnetic field can align the atomic dipole moments of a material. 

For the ferromagnetic core yielding Fig. 32-16, the alignment of the dipole 
moments is about 70% complete for Bo = 1 X 10-3 T. If Bo were increased to 1 T, 
the alignment would be almost complete (but Bo = 1 T, and thus almost complete 
saturation, is quite difficult to obtain). 

Exchange coupling produces strong alignment of adjacent atomic dipoles in 
a ferromagnetic material at a temperature below the Curie temperature. Why, 
then, isn't the material naturally at saturation even when there is no applied 
magnetic field Bo? Why isn't every piece of iron a naturally strong magnet? 

To understand this, consider a specimen of a ferromagnetic material such as 
iron that is in the form of a single crystal; that is, the arrangement of the atoms that 
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Fig. 32-15 A Rowland ring. A primary 
coil P has a core made of the ferromagnetic 
material to be studied (here iron). The core 
is magnetized by a current ip sent through 
coil P. (The turns of the coil are represented 
by dots.) The extent to which the core is 
magnetized determines the total magnetic 
field B within coil P. Field B can be mea­
sured by means of a secondary coil S. 
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Fig. 32-16 A magnetization curve for a 
ferromagnetic core material in the 
Rowland ring of Fig. 32-15. On the vertical 
axis, 1.0 corresponds to complete align­
ment (saturation) of the atomic dipoles 
within the material. 
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Fig.32-17 A photograph of 
domain patterns within a single crys­
tal of nickel; white lines reveal the 
boundaries of the domains. The 
white arrows superimposed on the 
photograph show the orientations of 
the magnetic dipoles within the do­
mains and thus the orientations of 
the net magnetic dipoles of the do­
mains. The crystal as a whole is un­
magnetized if the net magnetic field 
(the vector sum over all the domains) 
is zero. (Courtesy Ralph W. DeBlois) 

b 

Fig.32-18 A magnetization curve 
(ab) for a ferromagnetic specimen and 
an associated hysteresis loop (bcdeb). 

make it up-its crystal lattice-extends with unbroken regularity throughout the 
volume of the specimen. Such a crystal will, in its normal state, be made up of a num­
ber of magnetic domains. These are regions of the crystal throughout which the 
alignment of the atomic dipoles is essentially perfect. The domains, however, are not 
all aligned. For the crystal as a whole, the domains are so oriented that they largely 
cancel with one another as far as their external magnetic effects are concerned. 

Figure 32-17 is a magnified photograph of such an assembly of domains in a 
single crystal of nickel. It was made by sprinkling a colloidal suspension of finely 
powdered iron oxide on the surface of the crystal. The domain boundaries, which 
are thin regions in which the alignment of the elementary dipoles changes from a 
certain orientation in one of the domains forming the boundary to a different 
orientation in the other domain, are the sites of intense, but highly localized and 
nonuniform, magnetic fields. The suspended colloidal particles are attracted to 
these boundaries and show up as the white lines (not all the domain boundaries 
are apparent in Fig. 32-17). Although the atomic dipoles in each domain are 
completely aligned as shown by the arrows, the crystal as a whole may have only 
a very small resultant magnetic moment. 

Actually, a piece of iron as we ordinarily find it is not a single crystal but an 
assembly of many tiny crystals, randomly arranged; we call it a polycrystalline 
solid. Each tiny crystal, however, has its array of variously oriented domains, just 
as in Fig. 32-17. If we magnetize such a specimen by placing it in an external 
magnetic field of gradually increasing strength, we produce two effects; together 
they produce a magnetization curve of the shape shown in Fig. 32-16. One effect 
is a growth in size of the domains that are oriented along the external field at the 
expense of those that are not. The second effect is a shift of the orientation of the 
dipoles within a domain, as a unit, to become closer to the field direction. 

Exchange coupling and domain shifting give us the following result: 

. ~ A ferromagnetic material placed in an external magnetic field Bex! develops a strong mag­
netic dipole moment in the direction of B ext• If the field is nonuniform, the ferromagnetic 
material is attracted toward a region of greater magnetic field from a region of lesser field. 

Magnetization curves for ferromagnetic materials are not retraced as we increase 
and then decrease the external magnetic field Bo. Figure 32-18 is a plot of B M versus 
Bo during the following operations with a Rowland ring: (1) Starting with the iron un­
magnetized (point a), increase the current in the toroid until Bo (= f.4jin) has the 
value corresponding to point b; (2) reduce the current in the toroid winding (and thus 
Bo) back to zero (point c); (3) reverse the toroid current and increase it in magnitUde 
until Bo has the value corresponding to point d; (4) reduce the current to zero again 
(point e); (5) reverse the current once more until point b is reached again. 

The lack of retrace ability shown in Fig. 32-18 is called hysteresis, and the 
curve bcdeb is called a hysteresis loop. Note that at points c and e the iron core is 
magnetized, even though there is no current in the toroid windings; this is the 
familiar phenomenon of permanent magnetism. 

Hysteresis can be understood through the concept of magnetic domains. 
Evidently the motions of the domain boundaries and the reorientations of the 
domain directions are not totally reversible. When the applied magnetic field Bo 
is increased and then decreased back to its initial value, the domains do not 
return completely to their original configuration but retain some "memory" of 
their alignment after the initial increase. This memory of magnetic materials is 
essential for the magnetic storage of information. 

This memory of the alignment of domains can also occur naturally. When 
lightning sends currents along multiple tortuous paths through the ground, 
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the currents produce intense magnetic fields that can suddenly magnetize any 
ferromagnetic material in nearby rock. Because of hysteresis, such rock mater­
ial retains some of that magnetization after the lightning strike (after the 
currents disappear). Pieces of the rock-later exposed, broken, and loosened 
by weathering-are then lodestones. 

Magnetic dipole moment of a compass needle 

A compass needle made of pure iron (density 7900 kg/m3) 
has a length L of 3.0 cm, a width of 1.0 mm, and a thickness 
of 0.50 mm. The magnitude of the magnetic dipole moment 
of an iron atom is I1Fe = 2.1 X 10-23 J/T. If the magnetiza­
tion of the needle is equivalent to the alignment of 10% of the 
atoms in the needle, what is the magnitude of the needle's 
magnetic dipole moment /1? 

(1) Alignment of all N atoms in the needle would give a magni­
tude of N I1Fe for the needle's magnetic dipole moment /1. 
However, the needle has only 10% alignment (the random ori­
entation of the rest does not give any net contribution to 71). 
Thus, 

11 = 0.10N I1Fe' (32-42) 

(2) We can find the number of atoms N in the needle from 
the needle's mass: 

N = needle's mass 
iron's atomic mass 

(32-43) 

Finding N: Iron's atomic mass is not listed in Appendix F, 
but its molar mass M is. Thus, we write 

. . iron's molar mass M 
Hon's atomIC mass = A d b N 

voga ro's num er A 
(32-44) 

Next, we can rewrite Eq. 32-43 in terms of the needle's mass 
m, the molar mass M, and Avogadro's number N A: 

N = mNA 
M' 

(32-45) 

The needle's mass m is the product of its density and its 
volume. The volume works out to be 1.5 X 10-8 m3; so 

needle's mass m = (needle's density)(needle's volume) 

= (7900 kg/m3) (1.5 X 10-8 m3) 

= 1.185 X 10-4 kg. 

Substituting into Eq. 32-45 with this value for m, and also 
55.847 g/mol (= 0.055847 kg/mol) for M and 6.02 X 1023 for 
NA , we find 

N = ~(_1._18_5_X_10_-_4 --,kg~)~(6-:-.0_2-:-X_1_0_23.!-) 
0.055 847 kg/mol 

= 1.2774 X 1021 • 

Finding p,: Substituting our value of N and the value of I1Fe 

into Eq. 32-42 then yields 

11 = (0.10)(1.2774 X 1021 )(2.1 X 10-23 J /T) 

= 2.682 X 10-3 J /T = 2.7 X 10-3 J/T. (Answer) 

/~S Additional examples, video, and practice available at WileyPLUS 

Gauss' Law for Magnetic Fields The simplest magnetic 
structures are magnetic dipoles. Magnetic monopoles do not exist 
(as far as we know). Gauss' law for magnetic fields, 

1~ ~ 
<1>8 = j B . dA = 0, (32-1) 

states that the net magnetic flux through any (closed) Gaussian 
surface is zero. It implies that magnetic monopoles do not exist. 

Maxwell's Extension of Ampere's Law A changing elec­
tric flux induces a magnetic field E. Maxwell's law, 

f ~ d<l>E 
B . d'S = /-toSa-­

dt 
(Maxwell's law of induction), (32-3) 

relates the magnetic field induced along a closed loop to the chang­
ing electric flux <l>E through the loop. Ampere's law, 
p E . d'S = J.Laienc (Eq. 32-4), gives the magnetic field generated by a 
current ienc encircled by a closed loop. Maxwell's law and Ampere's 
law can be written as the single equation 

(Ampere- Maxwell law). (32-5) 

Displacement Current We define the fictitious displacement 
current due to a changing electric field as 

(32-10) 
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Equation 32-5 then becomes 

f B· dS' = fLOid,ene + fLoiene (Ampere-Maxwell law), (32-11) 

where id,ene is the displacement current encircled by the integration 
loop, The idea of a displacement current allows us to retain the no­
tion of continuity of current through a capacitor. However, dis­
placement current is not a transfer of charge. 

Maxwell's Equations Maxwell's equations, displayed in 
Table 32-1, summarize electromagnetism and form its foundation, 
including optics. 

Earth's Magnetic Field Earth's magnetic field can be 
approximated as being that of a magnetic dipole whose dipole mo­
ment makes an angle of l1.SO with Earth's rotation axis, and with 
the south pole of the dipole in the Northern Hemisphere. The di­
rection of the local magnetic field at any point on Earth's surface is 
given by the field declination (the angle left or right from geo­
graphic north) and the field inclination (the angle up or down from 
the horizontal). 

Spin Magnetic Dipole Moment An electron has an intrinsic 
angular momentum called spin angular momentum (or spin) S, with 
which an intrinsic spin magnetic dipole moment 71s is associated: 

~ e---+ 
fLs=--S, 

m 
(32-22) 

Spin S cannot itself be measured, but any component can be 
measured. Assuming that the measurement is along the z axis of a 
coordinate system, the component Sz can have only the values 
given by 

for ms = ±~, (32-23) 

where h (= 6.63 X 10-34 J. s) is the Planck constant. Similarly, the 
electron's spin magnetic dipole moment 71s cannot itself be mea­
sured but its component can be measured. Along a z axis, the com­
ponent is 

eh 
fLsz = ±-- = ±fLB, 

, 4ml1 

where fLB is the Bohr magneton: 

eh 
fLB = -- = 9.27 X 10-24 J /T. 

4mll 

(32-24,32-26) 

(32-25) 

The energy U associated with the orientation of the spin magnetic di­
pole moment in an external magnetic field B ext is 

(32-27) 

Orbital Magnetic Dipole Moment An electron in an atom 
has an additional angular momentum called its orbital angular mo­
mentum Lorb, with which an orbital magnetic dipole moment 710rb is 
associated: 

(32-28) 

Orbital angular momentum is quantized and can have only values 

given by 

for me = 0, ±1, ±2, ... , ± (limit). (32-29) 

This means that the associated magnetic dipole moment measured 
along a z axis is given by 

eh 
fLorb,z = -me 41TJ11 = -mefLB' (32-30,32-31) 

The energy U associated with the orientation of the orbital magnetic 
dipole moment in an external magnetic field Bex! is 

U = -71orb' Bex! = - fLorb,zBext · (32-32) 

Diamagnetism Diamagnetic materials do not exhibit magnet­
ism until they are placed in an external magnetic field B ext . They 
then develop a magnetic dipole moment directed opposite B ext . 

If the field is nonuniform, the diamagnetic material is repelled 
from regions of greater magnetic field. This property is called 
diamagnetism. 

Paramagnetism In a paramagnetic material, each atom has a 
permanent magnetic dipole moment 71, but the dipole moments 
are randomly oriented and the material as a whole lacks a mag­
netic field. However, an external magnetic field B ext can partially 
align the atomic dipole moments to give the material a net magnetic 
dipole moment in the direction of B ext. If Bex! is nonuniform, the 
material is attracted to regions of greater magnetic field. These proper­
ties are called paramagnetism. 

The alignment of the atomic dipole moments increases with 
an increase in B ext and decreases with an increase in temperature 
T. The extent to which a sample of volume V is magnetized is given 
by its magnetization Ai, whose magnitude is 

measured magnetic moment 
M= V . (32-38) 

Complete alignment of all N atomic magnetic dipoles in a sample, 
called saturation of the sample, corresponds to the maximum mag­
netization value Mmax = NfL/V. For low values of the ratio Bex/T, 
we have the approximation 

M = C Bext 

T 
(Curie's law), 

where C is called the Curie constant. 

(32-39) 

Ferromagnetism In the absence of an external magnetic field, 
some of the electrons in a ferromagnetic material have their mag­
netic dipole moments aligned by means of a quantum physical in­
teraction called exchange coupling, producing regions (domains) 
within the material with strong magnetic dipole moments. An ex­
ternal field B ext can align the magnetic dipole moments of those re­
gions, producing a strong net magnetic dipole moment for the ma­
terial as a whole, in the direction of B ext. This net magnetic dipole 
moment can partially persist when field Bex! is removed. If Bex! is 
nonuniform, the ferromagnetic material is attracted to regions of 
greater magnetic field. These properties are called ferromagnetism. 
Exchange coupling disappears when a sample's temperature ex­
ceeds its Curie temperature. 



1 Figure 32-19a shows a capacitor, 
with circular plates, that is being 
charged. Point a (near one of the con­
necting wires) and point b (inside the 
capacitor gap) are equidistant from 
the central axis, as are point c (not so 

o 

ao 

co 

(a) 

r 

(b) 

near the wire) and point d (between 
the plates but outside the gap). In Fig. 
32-19b, one curve gives the variation 
with distance r of the magnitude of 
the magnetic field inside and outside 
the wire. The other curve gives the 
variation with distance r of the magni­
tude of the magnetic field inside and 
outside the gap. The two curves 
partially overlap. Which of the three 
points on the curves correspond to 
which of the four points of Fig. 32-19a? 

Fig. 32-19 Question 1. 

Figure 32-20 shows a parallel-plate ca­
pacitor and the current in the connecting 
wires that is discharging the capacitor. Are 
the directions of (a) electric field E and (b) 
displacement current id leftward or right­
ward between the plates? (c) Is the magnetic 
field at point P into or out of the page? 

p 
o 

i --

Fig. 32-20 
Question 2. 

Figure 32-21 shows, in 
two situations, an electric 
field vector E and an in­
duced magnetic field line. 
In each, is the magnitude 
of E increasing or de­
creasing? 

Ci? c-l~ 
B 

Figure 32-22a shows a 
pair of opposite spin ori-
entations for an electron 
in an external magnetic 
field Bex!. Figure 32-22b 
gives three choices for 
the graph of the potential 
energies associated with 
those orientations as a 
function of the magni­
tude of Bex!. Choices b 
and c consist of intersect­
ing lines, choice a of par­

(a) 

(~ (0 

Fig. 32-21 Question 3. 

(b) 

Fig. 32-22 Question 4. 

allellines. Which is the correct choice? 

An electron in an external magnetic field Bex! has its spin angu­
lar momentum Sz antiparallel to Bex!. If the electron undergoes a 
spin-flip so that Sz is then parallel with Bex!' must energy be sup­
plied to or lost by the electron? 

Does the magnitude of the net force on the current loop of Figs. 
32-12a and b increase, decrease, or remain the same if we increase 
(a) the magnitude of Bex! and (b) the divergence of Bex!? 

Figure 32-23 shows a face-on view of one of the two square 
plates of a parallel-plate capacitor, as well as four loops that are lo­
cated between the plates. The capacitor is being discharged. (a) 

QUESTIONS 883 

Neglecting fringing of the mag­
netic field, rank the loops accord­
ing to the magnitude of ~ B . d-S 
along them, greatest first. (b) 
Along which loop, if any, is the 
angle between the directions of B 
and d-S constant (so that their dot 
product can easily be evaluated)? 
(c) Along which loop, if any, is B 
constant (so that B can be 

Fig. 32-23 Question 7. 

brought in front of the integral sign in Eq. 32-3)? 

8 Figure 32-24 shows three loop models of an electron orbiting coun­
terclockwise within a magnetic field. The fields are nonuniform for 
models 1 and 2 and uniform for model 3. For each model, are (a) the 
magnetic dipole moment of the loop and (b) the magnetic force on the 
loop directed up, directed down, or zero? 

(1) (2) (3) 

Fig. 32-24 Questions 8,9, and 10. 

Replace the current loops of Question 8 and Fig. 32-24 with 
diamagnetic spheres. For each field, are (a) the magnetic dipole 
moment of the sphere and (b) the magnetic force on the sphere di­
rected up, directed down, or zero? 

Replace the current loops of Question 8 and Fig. 32-24 with 
paramagnetic spheres. For each field, are (a) the magnetic dipole 
moment of the sphere and (b) the magnetic force on the sphere di­
rected up, directed down, or zero? 

Figure 32-25 represents three rectangular samples of a ferro­
magnetic material in which the magnetic dipoles of the domains 
have been directed out of the page (encircled dot) by a very strong 
applied field Bo. In each sample, an island domain still has its mag­
netic field directed into the page (encircled x). Sample 1 is one 
(pure) crystal. The other samples contain impurities collected 
along lines; domains cannot easily spread across such lines. 

The applied field is now to be reversed and its magnitude 
kept moderate. The change causes the island domain to grow. 
(a) Rank the three samples according to the success of that growth, 
greatest growth first. Ferromagnetic materials in which the magnetic 
dipoles are easily changed are said to be magnetically soft; when the 
changes are difficult, requiring strong applied fields, the materials are 
said to be magnetically hard. (b) Of the three samples, which is the 
most magnetically hard? 

(1) (2) (3) 

Fig. 32-25 Question 11. 
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III 
Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

S5 M Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wlley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Gauss' Law for Magnetic Fields 
The magnetic flux through each of five faces of a die (singular 

of "dice") is given by <I> B = ± NWb, where N (= 1 to 5) is the num­
ber of spots on the face. The flux is positive (outward) for N even 
and negative (inward) for N odd. What is the flux through the sixth 
face of the die? 

Figure 32-26 shows a closed surface. Along 
the flat top face, which has a radius of 2.0 cm, a 
perpendicular magnetic field B of magnitude 
0.30 T is directed outward. Along the flat bot­
tom face, a magnetic flux of 0.70 m Wb is di­
rected outward. What are the (a) magnitude 
and (b) direction (inward or outward) of the 
magnetic flux through the curved part of the 
surface? 

SSM IlW A Gaussian surface in the 

Fig. 32-26 

Problem 2. 

shape of a right circular cylinder with end caps has a radius of 12.0 
cm and a length of 80.0 cm. Through one end there is an inward 
magnetic flux of 25.0 ftWb. At the other end there is a uniform 
magnetic field of 1.60 mT, normal to the surface and directed out­
ward. What are the (a) magnitude and (b) direction (inward or out­
ward) of the net magnetic flux through the curved surface? 

Two wires, parallel to a z 
axis and a distance 41' apart, 
carry equal currents i in oppo­
site directions, as shown in Fig. 
32-27. A circular cylinder of ra­
dius I' and length L has its axis 
on the z axis, midway between 
the wires. Use Gauss' law for 

y 

magnetism to derive an expres- Fig. 32-27 Problem 4. 
sian for the net outward mag-
netic flux through the half of the cylindrical surface above the x 
axis. (Hint: Find the flux through the portion of the xz plane that 
lies within the cylinder.) 

Induced Magnetic Fields 
SSM The induced magnetic field at radial distance 6.0 mm 

from the central axis of a circular parallel-plate capacitor is 2.0 X 

10-7 T. The plates have radius 3.0 mm. At what rate iEldt is the 
electric field between the plates changing? 

A capacitor with square plates of edge 
length L is being discharged by a current of 0.75 
A Figure 32-28 is a head-on view of one of the 
plates from inside the capacitor. A dashed rec­
tangular path is shown. If L = 12 cm, W = 4.0 
cm, and H = 2.0 cm, what is the value of 
9i B· d:f around the dashed path? 

Uniform electric flux. Figure 32-29 
shows a circular region of radius R = 3.00 cm 

L 

L 

Fig. 32-28 

Problem 6. 

in which a uniform electric flux is directed out of the plane of the 

page. The total electric flux through the region is 
given by <I> E = (3.00 m V . m/s )t, where t is in sec­
onds. What is the magnitude of the magnetic 
field that is induced at radial distances (a) 2.00 
cm and (b) 5.00 cm? 

Nonuniform electric flux. Figure 32-
29 shows a circular region of radius R = 3.00 
cm in which an electric flux is directed out of 
the plane of the page. The flux encircled by a 
concentric circle of radius r is given by <I> E,enc = 

Fig. 32-29 

Problems 7 to 
10 and 19 to 22. 

(0.600 V' m/s)(r/R)t, where I' oS Rand t is in seconds. What is the 
magnitude of the induced magnetic field at radial distances (a) 2.00 
cm and (b) 5.00 cm? 

Uniform electric field. In Fig. 32-29, a uniform electric field 
is directed out of the page within a circular region of radius R = 3.00 
cm. The field magnitude is given by E = (4.50 X 10-3 Vim' s)t, 
where t is in seconds. What is the magnitude of the induced magnetic 
field at radial distances (a) 2.00 cm and (b) 5.00 cm? 

Nonuniform electric field. In Fig. 32-29, an electric field 
is directed out of the page within a circular region of radius R = 

3.00 cm. The field magnitude is E = (0.500 Vim' s)(l - rIR)t, where t 
is in seconds and r is the radial distance (r oS R). What is the magni­
tude of the induced magnetic field at radial distances (a) 2.00 cm and 
(b) 5.00 cm? 

Suppose that a parallel-plate capacitor has circular plates 
with radius R = 30 mm and a plate separation of 5.0 mm. Suppose 
also that a sinusoidal potential difference with a maximum value of 
150 V and a frequency of 60 Hz is applied across the plates; that is, 

V = (150 V) sin[27T(60 Hz)t]. 

(a) Find Bmax(R), the maximum value of the induced magnetic field 
that occurs at I' = R. (b) Plot BmaxCr) for 0 < I' < 10 cm. 

A parallel-plate capacitor with circular plates of radius 40 
mm is being discharged by a current of 6.0 AAt what radius (a) in­
side and (b) outside the capacitor gap is the magnitude of the in­
duced magnetic field equal to 75% of its maximum value? (c) What 
is that maximum value? 

Displacement Current 
what rate must the potential difference between the 

plates of a parallel-plate capacitor with a 2.0 ftF capacitance be 
changed to produce a displacement current of 1.5 A? 

A parallel-plate capacitor with circular plates of radius R is 
being charged. Show that the magnitude of the current density of 
the displacement current is Id = Bo(dEldt) for I' oS R. 

SSM Prove that the displacement current in a parallel-plate 
capacitor of capacitance C can be written as id = C(dVldt), where 
V is the potential difference between the plates. 

A parallel-plate capacitor with circular plates of radius 0.10 
m is being discharged. A circular loop of radius 0.20 m is concentric 



with the capacitor and halfway between the plates. The displace­
ment current through the loop is 2.0 A. At what rate is the electric 
field between the plates changing? 

A silver wire has resistivity p = 1.62 X 10-8 f1 . m and 
a cross-sectional area of 5.00 mm2. The current in the wire is uni­
form and changing at the rate of 2000 A/s when the current is 100 
A. (a) What is the magnitude of the (uniform) electric field in the 
wire when the current in the wire is 100 A? (b) What is the dis­
placement current in the wire at that time? (c) What is the ratio of 
the magnitude of the magnetic field due to the displacement cur­
rent to that due to the current at a distance r from the wire? 

The circuit in Fig. 32-30 con­
sists of switch S, a 12.0 V ideal battery, 
a 20.0 Mf1 resistor, and an air-filled 
capacitor. The capacitor has parallel 
circular plates of radius 5.00 cm, sep­
arated by 3.00 mm. At time t = 0, 
switch S is closed to begin charging Fig. 32-30 Problem 18. 
the capacitor. The electric field be-
tween the plates is uniform. At t = 250 j.LS, what is the magnitude of 
the magnetic field within the capacitor, at radial distance 3.00 cm? 

9 Uniform displacement-current density. Figure 32-29 shows a 
circular region of radius R = 3.00 cm in which a displacement cur­
rent is directed out of the page. The displacement current has a 
uniform density of magnitude Jd = 6.00 A/m2• What is the magni­
tude of the magnetic field due to the displacement current at radial 
distances (a) 2.00 cm and (b) 5.00 cm? 

Uniform displacement current. Figure 32-29 shows a circular 
region of radius R = 3.00 cm in which a uniform displacement cur­
rent id = 0.500 A is out of the page. What is the magnitude of the 
magnetic field due to the displacement current at radial distances 
(a) 2.00 cm and (b) 5.00 cm? 

@ Nonuniform displacement-current density. Figure 32-29 
shows a circular region of radius R = 3.00 cm in which a displace­
ment current is directed out of the page. The magnitude of the den­
sity of this displacement current is Jd = (4.00 A/m2)(1 - rIR), 
where r is the radial distance (r:s R). What is the magnitude of the 
magnetic field due to the displacement current at (a) r = 2.00 cm 
and (b) r = 5.00 cm? 

Nonuniform displacement current. Figure 32-29 shows a 
circular region of radius R = 3.00 cm in which a displacement cur­
rent id is directed out of the page. The magnitude of the displace­
ment current is given by id = (3.00 A)(rIR), 
where r is the radial distance (r :S R). What is 
the magnitude of the magnetic field due to id at 
radial distances (a) 2.00 cm and (b) 5.00 cm? 

SSM fI.W In Fig. 32-31, a parallel-plate 
capacitor has square plates of edge length 
L = 1.0 m. A current of 2.0 A charges the ca­
pacitor, producing a uniform electric field E 
between the plates, with E perpendicular to 
the plates. (a) What is the displacement cur­
rent id through the region between the plates? 
(b) What is dE/dt in this region? (c) What is 
the displacement current encircled by the 
square dashed path of edge length d = 0.50 
m? (d) What is g; B· dS' around this square 
dashed path? 

Edge view 

1 
L 

J 
Top view 

Fig. 32-31 

Problem 23. 

PROBLEMS 885 

The magnitude of the electric field be­
tween the two circular parallel plates in Fig. 
32-32 is E = (4.0 X 105) - (6.0 X 104t), with 
E in volts per meter and t in seconds. At t = 

0, E is upward. The plate area is 4.0 X 10-2 

m2• For t 2: 0, what are the (a) magnitude and 
(b) direction (up or down) of the displace­
ment current between the plates and (c) is 

Fig. 32-32 

Problem 24. 

the direction of the induced magnetic field clockwise or counter­
clockwise in the figure? 

IlW As a parallel-plate capacitor with circular plates 20 cm in 
diameter is being charged, the current density of the displacement 
current in the region between the plates is uniform and has a magni­
tude of 20 Nm2• (a) Calculate the magnitude B of the magnetic field 
at a distance r = 50 mm from the axis of symmetry of this region. (b) 
Calculate dEldtin this region. 

A capacitor with parallel circular plates of radius R = 1.20 
cm is discharging via a current of 12.0 A. Consider a loop of radius 
RI3 that is centered on the central axis between the plates. (a) How 
much displacement current is encircled by the loop? The maximum 
induced magnetic field has a magnitude of 12.0 mT. At what radius 
(b) inside and (c) outside the capacitor gap is the magnitude of the in­
duced magnetic field 3.00 mT? 

ILW In Fig. 32-33, a uniform 
electric field E collapses. The verti­
cal axis scale is set by Es = 6.0 X 105 

N/C, and the horizontal axis scale is 
set by ts = 12.0 fLs. Calculate the 
magnitUde of the displacement cur­
rent through a 1.6 m2 area perpen­
dicular to the field during each of 
the time intervals a, b, and c shown 
on the graph. (Ignore the behavior 
at the ends of the intervals.) 

Figure 32-34a shows the 
current i that is produced in a wire 
of resistivity 1.62 X 10-8 f1 . m. The 
magnitude of the current versus 
time t is shown in Fig. 32-34b. The 
vertical axis scale is set by is = 10.0 
A, and the horizontal axis scale is 
set by ts = 50.0 ms. Point P is at 
radial distance 9.00 mm from the 
wire's center. Determine the magni­
tude of the magnetic field Bi at point 
P due to the actual current i in the 
wire at (a) t = 20 ms, (b) t = 40 ms, 
and (c) t = 60 ms. Next, assume that 
the electric field driving the current 
is confined to the wire. Then deter­
mine the magnitude of the magnetic 
field Bid at point P due to the dis­
placement current i" in the wire at 
(d) t = 20 ms, (e) t = 40 ms, and (f) 
t = 60 ms. At point P at t = 20 s, 
what is the direction (into or out of 
the page) of (g) Bi and (h) Bid? 

In Fig. 32-35, a capacitor 
with circular plates of radius R = 

G 
"­
Z 

o ts 
Time (/1s) 

Fig. 32-33 Problem 27. 

o 

Wire 

(a) 

ts 
t(ms) 

(b) 

Fig. 32-34 Problem 28. 

1f;=1f;1II sin OJ( 

Fig. 32-35 Problem 29. 
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18.0 cm is connected to a source of emf 'i!S = 'i!Sm sin wt, where 'i!S111 = 
220 V and w = 130 rad/s. The maximum value of the displacement 
current is id = 7.60 J.LA. Neglect fringing of the electric field at the 
edges of the plates. (a) What is the maximum value of the current i 
in the circuit? (b) What is the maximum value of d<p E/dt, where <P E 
is the electric flux through the region between the plates? (c) What 
is the separation d between the plates? (d) Find the maximum 
value of the magnitude of E between the plates at a distance r = 

11.0 cm from the center. 

Magnets 
Assume the average value of the vertical component of Earth's 

magnetic field is 43 J.LT (downward) for all of Arizona, which has an 
area of 2.95 X H)5 km2• What then are the (a) magnitude and (b) di­
rection (inward or outward) of the net magnetic flux through the rest 
of Earth's surface (the entire surface excluding Arizona)? 

In New Hampshire the average horizontal component of 
Earth's magnetic field in 1912 was 16 J.LT, and the average inclina­
tion or "dip" was 73°. What was the corresponding magnitude of 
Earth's magnetic field? 

Magnetism and Electrons 
Figure 32-36a is a one-axis 

graph along which two of the al­
lowed energy values (levels) of an 
atom are plotted. When the atom is E;, --- - - --
placed in a magnetic field of 0.500 T, 
the graph changes to that of Fig. 32-
36b because of the energy associ- E1 E1 

ated with 71orb' E. (We neglect 71s.) 
Level E1 is unchanged, but level E2 (a) (b) 

splits into a (closely spaced) triplet 
of levels. What are the allowed val- Fig. 32-36 Problem 32. 
ues of me associated with (a) energy 
level El and (b) energy level E2? (c) In joules, what amount of en­
ergy is represented by the spacing between the triplet levels? 

SSM www If an electron in an atom has an orbital angular 
momentum with m = 0, what are the components (a) Lorb,z and 
(b) J.Lorb,z? If the atom is in an external magnetic field lJ that has 
magnitude 35 mT and is directed along the z axis, what are (c) the 
energy Uorb associated with l10rb and (d) the energy Uspin associated 
with I1s? If, instead, the electron has m = -3, what are (e) Lorb,Z' (f) 
J.Lorb,z' (g) Uorb, and (h) Uspin? 

What is the energy difference between parallel and 
antiparallel alignment of the z component of an electron's spin 
magnetic dipole moment with an external magnetic field of magni­
tude 0.25 T, directed parallel to the z axis? 

What is the measured component of the orbital magnetic di­
pole moment of an electron with (a) me = 1 and (b) me = -2? 

An electron is placed in a magnetic field E that is directed 
along a z axis. The energy difference between parallel and antipar­
allel alignments of the z component of the electron's spin magnetic 
moment with E is 6.00 X 10-25 1. What is the magnitude of E? 

Diamagnetism 
Figure 32-37 shows a loop 

model (loop L) for a diamagnetic 
material. (a) Sketch the magnetic 
field lines within and about the mate­
rial due to the bar magnet. What is 

L o-x 
Fig. 32-37 

Problems 37 and 71. 

the direction of (b) the loop's net magnetic dipole moment 11, 
(c) the conventional current i in the loop (clockwise or counter­
clockwise in the figure), and (d) the magnetic force on the loop? 

Assume that an electron of mass m and charge magnitude e 
moves in a circular orbit of radius r about a nucleus. A uniform 
magnetic field E is then established perpendicular to the plane of 
the orbit. Assuming also that the radius of the orbit does not 
change and that the change in the speed of the electron due to field 
E is small, find an expression for the change in the orbital magnetic 
dipole moment of the electron due to the field. 

(I Paramagnetism 
A sample of the paramagnetic salt to which the mag­

netization curve of Fig. 32-14 applies is to be tested to see whether it 
obeys Curie's law. The sample is placed in a uniform 0.50 T magnetic 
field that remains constant throughout the experiment. The magneti­
zation M is then measured at temperatures ranging from 10 to 300 
K. Will it be found that Curie's law is valid under these conditions? 

A sample of the paramagnetic salt to which the magnetiza­
tion curve of Fig. 32-14 applies is held at room temperature (300 
K). At what applied magnetic field will the degree of magnetic sat­
uration of the sample be (a) 50% and (b) 90%? (c) Are these fields 
attainable in the laboratory? 

SSM H.W A magnet in the form of a cylindrical rod has a 
length of 5.00 cm and a diameter of 1.00 cm. It has a uniform mag­
netization of 5.30 X 103 A/m. What is its magnetic dipole moment? 

A 0.50 T magnetic field is applied to a paramagnetic gas 
whose atoms have an intrinsic magnetic dipole moment of 1.0 X 

10-23 J/T. At what temperature will the mean kinetic energy of 
translation of the atoms equal the energy required to reverse such 
a dipole end for end in this magnetic field? 

An electron with kinetic energy Ke travels in a circular path 
that is perpendicular to a uniform magnetic field, which is in the 
positive direction of a z axis. The electron's motion is subject only 
to the force due to the field. (a) Show that the magnetic dipole mo­
ment of the electron due to its orbital motion has magnitUde J.L = 

Ke/B and that it is in the direction opposite that of E. What are the 
(b) magnitude and (c) direction of the magnetic dipole moment of 
a positive ion with kinetic energy K j under the same circum­
stances? (d) An ionized gas consists of 5.3 X 1021 electrons/m3 and 
the same number density of ions. Take the average electron kinetic 
energy to be 6.2 X 10-20 J and the average ion kinetic energy to be 
7.6 X 10-21 1. Calculate the magnetization of the gas when it is in a 
magnetic field of 1.2 T. a 

Figure 32-38 gives the magne- ~ 

tization curve for a paramagnetic ma- i 
terial. The vertical axis scale is set by ~ 
a = 0.15, and the horizontal axis scale 
is set by b = 0.2 T/K. Let J.Lsam be the 
measured net magnetic moment of a 
sample of the material and J.Lmax be 

o b 

the maximum possible net magnetic Fig. 32-38 Problem 44. 
moment of that sample. According to 
Curie's law, what would be the ratio J.L,anJ J.Lmax were the sample 
placed in a uniform magnetic field of magnitude 0.800 T, at a tem­
perature of2.00 K? 

SSM Consider a solid containing N atoms per unit volume, 
each atom having a magnetic dipole moment 71. Suppose the direc­
tion of 71 can be only parallel or antiparallel to an externally ap-



plied magnetic field B (this will be the case if /1 is due to the spin of 
a single electron). According to statistical mechanics, the probabil­
ity of an atom being in a state with energy U is proportional to 
e- UlkT, where T is the temperature and k is Boltzmann's constant. 
Thus, because energy U is - /1- B, the fraction of atoms whose di­
pole moment is parallel to B is proportional to ellBlkT and the frac­
tion of atoms whose dipole moment is antiparallel to B is propor­
tional to e-IlBlkT. (a) Show that the magnitude of the magnetization 
of this solid is M = NfL tanh(fLBlkT). Here tanh is the hyperbolic 
tangent function: tanh(x) = (eX - e-X)/(e' + e-X). (b) Show that 
the result given in (a) reduces to M = NfL2BlkTfor fLB ~ kT. (c) 
Show that the result of (a) reduces to M = NfL for fLB ~ kT. (d) 
Show that both (b) and (c) agree qualitatively with Fig. 32-14. 

1 Ferromagnetism 
You place a magnetic compass on a horizontal surface, 

allow the needle to settle, and then give the compass a gentle wiggle 
to cause the needle to oscillate about its equilibrium position. The 
oscillation frequency is 0.312 Hz. Earth's magnetic field at the loca­
tion of the compass has a horizontal component of 18.0 fLT. The 
needle has a magnetic moment of 0.680 mJ/T. What is the needle's 
rotational inertia about its (vertical) axis of rotation? 

SSM ILW WWW The magnitude of the magnetic dipole 
moment of Earth is 8.0 X 1022 liT. (a) If the origin of this magnet­
ism were a magnetized iron sphere at the center of Earth, what 
would be its radius? (b) What fraction of the volume of Earth 
would such a sphere occupy? Assume complete alignment of the 
dipoles. The density of Earth's inner core is 14 g/cm3• The magnetic 
dipole moment of an iron atom is 2.1 X 10-23 liT. (Note: Earth's 
inner core is in fact thought to be in both liquid and solid forms 
and partly iron, but a permanent magnet as the source of Earth's 
magnetism has been ruled out by several considerations. For one, 
the temperature is certainly above the Curie point.) 

The magnitude of the dipole moment associated with an 
atom of iron in an iron bar is 2.1 X 10-23 J/T. Assume that all the 
atoms in the bar, which is 5.0 cm long and has a cross-sectional 
area of 1.0 cm2, have their dipole moments aligned. (a) What is the 
dipole moment of the bar? (b) What torque must be exerted to 
hold this magnet perpendicular to an external field of magnitude 
1.5 T? (The density of iron is 7.9 g/cm3.) 

SSM The exchange coupling mentioned in Section 32-11 as 
being responsible for ferromagnetism is not the mutual magnetic 
interaction between two elementary magnetic dipoles. To show 
this, calculate (a) the magnitude of the magnetic field a distance of 
10 nm away, along the dipole axis, from an atom with magnetic di­
pole moment 1.5 X 10-23 lIT (cobalt), and (b) the minimum en­
ergy required to turn a second identical dipole end for end in this 
field. (c) By comparing the latter with the mean translational ki­
netic energy of 0.040 e V, what can you conclude? 

A magnetic rod with length 6.00 cm, radius 3.00 mm, and 
(uniform) magnetization 2.70 X 103 Aim can turn about its center 
like a compass needle. It is placed in a uniform magnetic field B of 
magnitude 35.0 mT, such that the directions of its dipole moment 
and B make an angle of 68.0°. (a) What is the magnitude of the 
torque on the rod due to B? (b) What is the change in the orienta­
tion energy of the rod if the angle changes to 34.00? 

The saturation magnetization Mmax of the ferromagnetic 
metal nickel is 4.70 X 105 AIm. Calculate the magnetic dipole mo­
ment of a single nickel atom. (The density of nickel is 8.90 g/cm3

, 

and its molar mass is 58.71 g/mol.) 

PROB LEMS 887 

Measurements in mines and boreholes indicate that Earth's 
interior temperature increases with depth at the average rate of 30 
CO/km. Assuming a surface temperature of 10°C, at what depth 
does iron cease to be ferromagnetic? (The Curie temperature of 
iron varies very little with pressure.) 

A Rowland ring is formed of ferromagnetic material. It is 
circular in cross section, with an inner radius of 5.0 cm and an outer 
radius of 6.0 cm, and is wound with 400 turns of wire. (a) What cur­
rent must be set up in the windings to attain a toroidal field of mag­
nitude Bo = 0.20 mT? (b) A secondary coil wound around the 
toroid has 50 turns and resistance 8.0 n. If, for this value of B o, we 
have BM = 800Bo, how much charge moves through the secondary 
coil when the current in the toroid windings is turned on? 

Additional Problems 
Using the approximations given in Problem 61, find (a) the al­

titude above Earth's surface where the magnitude of its magnetic 
field is 50.0% of the surface value at the same latitude; (b) the max­
imum magnitude of the magnetic field at the core-mantle bound­
ary, 2900 km below Earth's surface; and the (c) magnitude and (d) 
inclination of Earth's magnetic field at the north geographic pole. 
(e) Suggest why the values you calculated for ( c) and (d) differ 
from measured values. 

Earth has a magnetic dipole moment of 8.0 X 1022 liT. 
(a) What current would have to be produced in a single turn of 
wire extending around Earth at its geomagnetic equator if we 
wished to set up such a dipole? Could such an arrangement 
be used to cancel out Earth's magnetism (b) at points in space well 
above Earth's surface or (c) on Earth's surface? 

A charge q is distributed uniformly around a thin ring of ra­
dius r. The ring is rotating about an axis through its center and per­
pendicular to its plane, at an angular speed w. (a) Show that the 
magnetic moment due to the rotating charge has magnitude 
fL = !qwr2. (b) What is the direction of this magnetic moment if 
the charge is positive? 

A magnetic compass has its needle, of mass 0.050 kg and 
length 4.0 cm, aligned with the horizontal component of Earth's 
magnetic field at a place where that component has the value B" = 
16 fLT. After the compass is given a momentary gentle shake, the 
needle oscillates with angular frequency w = 45 rad/s. Assuming 
that the needle is a uniform thin rod mounted at its center, find the 
magnitude of its magnetic dipole moment. 

The capacitor in Fig. 32-7 is being charged with a 2.50 A cur­
rent. The wire radius is 1.50 mm, and the plate radius is 2.00 cm. 
Assume that the current i in the wire and the displacement current 
id in the capacitor gap are both uniformly distributed. What is the 
magnitude of the magnetic field due to i at the following radial dis­
tances from the wire's center: (a) 1.00 mm (inside the wire), (b) 
3.00 mm (outside the wire), and (c) 2.20 cm (outside the wire)? 
What is the magnitude of the magnetic field due to id at the follow­
ing radial distances from the central axis between the plates: (d) 
1.00 mm (inside the gap), (e) 3.00 mm (inside the gap), and (f) 2.20 
cm (outside the gap)? (g) Explain why the fields at the two smaller 
radii are so different for the wire and the gap but the fields at the 
largest radius are not. 

A parallel-plate capacitor with circular plates of radius 
R = 16 mm and gap width d = 5.0 mm has a uniform electric 
field between the plates. Starting at time t = 0, the potential dif­
ference between the two plates is V = (100 V)e- tIT

, where the 
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time constant 7 = 12 ms. At radial distance r = 0.80R from the 
central axis, what is the magnetic field magnitude (a) as a function 
of time for t 2: 0 and (b) at time t = 37? --> 

60 A magnetic flux of 7.0 m Wb is directed out­
ward through the flat bottom face of the closed 
surface shown in Fig. 32-39. Along the flat top 
face (which has a radius of 4.2 cm) there is a OAO 
T magnetic field 11 directed perpendicular to the 
face. What are the (a) magnitude and (b) direc­
tion (inward or outward) of the magnetic flux 
through the curved part of the surface? 

B 

Fig. 32-39 

Problem 60. 

61 SSM The magnetic field of Earth can be approximated as the 
magnetic field of a dipole. The horizontal and vertical components 
of this field at any distance r from Earth's center are given by 

B /-toM \ B /-toM· \ 
h = 4171'3 cos "m' v = 27Tr 3 SIn """ 

where Am is the magnetic latitude (this type of latitude is measured 
from the geomagnetic equator toward the north or south geomag­
netic pole). Assume that Earth's magnetic dipole moment has 
magnitude M = 8.00 X 1022 A· m2. (a) Show that the magnitude of 
Earth's field at latitude Am is given by 

(b) Show that the inclination ¢i of the magnetic field is related to 
the magnetic latitude Am by tan ¢i = 2 tan Am. 

62 Use the results displayed in Problem 61 to predict the 
(a) magnitude and (b) inclination of Earth's magnetic field at the 
geomagnetic equator, the (c) magnitude and (d) inclination at geo­
magnetic latitude 60.0°, and the (e) magnitude and (f) inclination 
at the north geomagnetic pole. 

63 A parallel-plate capacitor with circular plates of radius 55.0 
mm is being charged. At what radius (a) inside and (b) outside the 
capacitor gap is the magnitude of the induced magnetic field equal 
to 50.0% of its maximum value? 

64 A sample of the paramagnetic salt to which the magnetization 
curve of Fig. 32-14 applies is immersed in a uniform magnetic field 
of 2.0 T. At what temperature will the degree of magnetic satura­
tion of the sample be (a) 50 % and (b) 90 % ? 

A parallel-plate capacitor with circular plates of radius R is being 
discharged. The displacement current through a central circular area, 
parallel to the plates and with radius R12, is 2.0 A. What is the dis­
charging current? 

66 Figure 32-40 gives the variation of an electric field that is per­
pendicular to a circular area of 2.0 m2• During the time period 
shown, what is the greatest displacement current through the area? 

6 

G 4 
"'-
b 2 I-i-+-+-i--,~-r-f--"'-L-,-I 
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12 

Fig. 32-40 Problem 66. 

In Fig. 32-41, a parallel-plate capacitor is being discharged by a 
current i = 5.0 A. The plates are square with edge length L = 8.0 

mm. (a) What is the rate at which the 
electric field between the plates is 
changing? (b) What is the value of 
p 11 . d-s around the dashed path, 
where H = 2.0 mm and W = 3.0 mm? 

What is the measured compo­
nent of the orbital magnetic dipole 
moment of an electron with the val­
ues(a)me=3and(b)me=-4? Fig. 32-41 Problem 67. 

69 In Fig. 32-42, a bar magnet lies near a paper cylinder. (a) Sketch 
the magnetic field lines that pass through the surface of the cylinder. 
(b) What is the sign of 11 . dA for every area dA on the surface? (c) 
Does this contradict Gauss' law for magnetism? Explain. 

Fig. 32-42 Problem 69. 

70 In the lowest energy state of the hydrogen atom, the most 
probable distance of the single electron from the central proton 
(the nucleus) is 5.2 X 10-11 m. (a) Compute the magnitude of the 
proton's electric field at that distance. The component fLs,z of the 
proton's spin magnetic dipole moment measured on a z axis is 1A X 
10-26 JIT. (b) Compute the magnitude of the proton's magnetic field 
at the distance 5.2 X 10-11 m on the z axis. (Hint: Use Eq. 29-27.) (c) 
What is the ratio of the spin magnetic dipole moment of the elec­
tron to that of the proton? 

71 Figure 32-37 shows a loop model (loop L) for a paramagnetic 
material. (a) Sketch the field lines through and about the material 
due to the magnet. What is the direction of (b) the loop's net mag­
netic dipole moment /1, (c) the conventional current i in the loop 
(clockwise or counterclockwise in the figure), and (d) the magnetic 
force acting on the loop? 

72 Two plates (as in Fig. 32-7) are being discharged by a constant 
current. Each plate has a radius of 4.00 cm. During the discharging, 
at a point between the plates at radial distance 2.00 cm from the 
central axis, the magnetic field has a magnitude of 12.5 nT. (a) 
What is the magnitude of the magnetic field at radial distance 6.00 
cm? (b) What is the current in the wires attached to the plates? 

73 SSM If an electron in an atom has orbital angular momentum 
with me values limited by :+:3, how many values of (a) Lorb,z and (b) 
fLorb,z can the electron have? In terms of h, m, and e, what is the greatest 
allowed magnitude for (c) Lorb,z and (d) fLocb,z? (e) What is the greatest 
allowed magnitude for the z component of the electron's net angular 
momentum (orbital plus spin)? (f) How many values (signs included) 
are allowed for the z component of its net angular momentum? 

A parallel-plate capacitor with circular plates is being charged. 
Consider a circular loop centered on the central axis and located be­
tween the plates. If the loop radius of 3.00 cm is greater than the 
plate radius, what is the displacement current between the plates 
when the magnetic field along the loop has magnitude 2.00 fLT? 

75 Suppose that :+:4 are the limits to the values of me for an elec­
tron in an atom. (a) How many different values of the electron's 
fLocb,z are possible? (b) What is the greatest magnitude of those pos­
sible values? Next, if the atom is in a magnetic field of magnitude 
0.250 T, in the positive direction of the z axis, what are (c) the max­
imum energy and (d) the minimum energy associated with those 
possible values of fLocb,z? 



I 

The information age in which we live is based almost entirely on the 
physics of electromagnetic waves. Like it or not, we are now globally con­
nected by television, telephones, and the Web. And like it or not, we are con­
stantly immersed in those signals because of television, radio, and telephone 
transmitters. 

Much of this global interconnection of information processors was not 
imagined by even the most visionary engineers of 20 years ago. The challenge for 
today's engineers is trying to envision what the global interconnection will be like 
20 years from now. The starting point in meeting that challenge is understanding 
the basic physics of electromagnetic waves, which come in so many different 
types that they are poetically said to form Maxwell's rainbow. 

Maxwell's Rainbow 
The crowning achievement of James Clerk Maxwell (see Chapter 32) was to 
show that a beam of light is a traveling wave of electric and magnetic fields-an 
electromagnetic wave-and thus that optics, the study of visible light, is a branch 
of electromagnetism. In this chapter we move from one to the other: we conclude 
our discussion of strictly electrical and magnetic phenomena, and we build a 
foundation for optics. 

In Maxwell's time (the mid 1800s), the visible, infrared, and ultraviolet 
forms of light were the only electromagnetic waves known. Spurred on by 
Maxwell's work, however, Heinrich Hertz discovered what we now call radio 
waves and verified that they move through the laboratory at the same speed as 
visible light. 

As Fig. 33-1 shows, we now know a wide spectrum (or range) of electromag­
netic waves: Maxwell's rainbow. Consider the extent to which we are immersed in 
electromagnetic waves throughout this spectrum. The Sun, whose radiations 
define the environment in which we as a species have evolved and adapted, is 
the dominant source. We are also crisscrossed by radio and television signals. 
Microwaves from radar systems and from telephone relay systems may reach us. 
There are electromagnetic waves from lightbulbs, from the heated engine blocks 
of automobiles, from x-ray machines, from lightning flashes, and from buried 
radioactive materials. Beyond this, radiation reaches us from stars and other 
objects in our galaxy and from other galaxies. Electromagnetic waves also travel 
in the other direction. Television signals, transmitted from Earth since about 
1950, have now taken news about us (along with episodes of I Love Lucy, albeit 
very faintly) to whatever technically sophisticated inhabitants there may be on 
whatever planets may encircle the nearest 400 or so stars. 

I 
I 
I 
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Fig. 33-2 The relative sensitivity of the 
average human eye to electromagnetic 
waves at different wavelengths. This por­
tion of the electromagnetic spectrum to 
which the eye is sensitive is called visible 
light. 
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Fig. 33-1 The electromagnetic spectrum. 
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In the wavelength scale in Fig. 33-1 (and similarly the corresponding 
frequency scale), each scale marker represents a change in wavelength (and 
correspondingly in frequency) by a factor of 10. The scale is open-ended; the 
wavelengths of electromagnetic waves have no inherent upper or lower bound. 

Certain regions of the electromagnetic spectrum in Fig. 33-1 are identified by 
familiar labels, such as x rays and radio waves. These labels denote roughly 
defined wavelength ranges within which certain kinds of sources and detectors of 
electromagnetic waves are in common use. Other regions of Fig. 33-1, such as 
those labeled TV channels and AM radio, represent specific wavelength bands 
assigned by law for certain commercial or other purposes. There are no gaps in the 
electromagnetic spectrum-and all electromagnetic waves, no matter where they 
lie in the spectrum, travel through free space (vacuum) with the same speed c. 

The visible region of the spectrum is of course of particular interest to us. 
Figure 33-2 shows the relative sensitivity of the human eye to light of various 
wavelengths. The center of the visible region is about 555 nm, which produces the 
sensation that we call yellow-green. 

The limits of this visible spectrum are not well defined because the eye 
sensitivity curve approaches the zero-sensitivity line asymptotically at both long 
and short wavelengths. If we take the limits, arbitrarily, as the wavelengths at 
which eye sensitivity has dropped to 1 % of its maximum value, these limits are 
about 430 and 690 nm; however, the eye can detect electromagnetic waves some­
what beyond these limits if they are intense enough . 

The Traveling Electromagnetic Wave, Qualitatively 
Some electromagnetic waves, including x rays, gamma rays, and visible light, 
are radiated (emitted) from sources that are of atomic or nuclear size, where 
quantum physics rules. Here we discuss how other electromagnetic waves are 
generated. To simplify matters, we restrict ourselves to that region of the spec­
trum (wavelength ;\ = 1 m) in which the source of the radiation (the emitted 
waves) is both macroscopic and of manageable dimensions. 
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Fig. 33-3 An arrangement for generating a traveling electromagnetic wave in the 
shortwave radio region of the spectrum: an LC oscillator produces a sinusoidal current in 
the antenna, which generates the wave. P is a distant point at which a detector can monitor 
the wave traveling past it. 

Figure 33-3 shows, in broad outline, the generation of such waves. At its heart is 
an LC oscillator, which establishes an angular frequency w (= lIYLC). Charges 
and currents in this circuit vary sinusoidally at this frequency, as depicted in Fig. 31-1. 
An external source-possibly an ac generator-must be included to supply energy 
to compensate both for thermal losses in the circuit and for energy carried away by 
the radiated electromagnetic wave. 

The LC oscillator of Fig. 33-3 is coupled by a transformer and a transmis­
sion line to an antenna, which consists essentially of two thin, solid, conducting 
rods. Through this coupling, the sinusoidally varying current in the oscillator 
causes charge to oscillate sinusoidally along the rods of the antenna at the 
angular frequency w of the LC oscillator. The current in the rods associated 
with this movement of charge also varies sinusoidally, in magnitude and direc­
tion, at angular frequency w. The antenna has the effect of an electric dipole 
whose electric dipole moment varies sinusoidally in magnitude and direction 
along the antenna. 

Because the dipole moment varies in magnitude and direction, the electric 
field produced by the dipole varies in magnitude and direction. Also, because the 
current varies, the magnetic field produced by the current varies in magnitude 
and direction. However, the changes in the electric and magnetic fields do not 
happen everywhere instantaneously; rather, the changes travel outward from the 
antenna at the speed of light c. Together the changing fields form an electromag­
netic wave that travels away from the antenna at speed c. The angular frequency 
of this wave is w, the same as that of the LC oscillator. 

Figure 33-4 shows how the electric field If and the magnetic field J1 change 
with time as one wavelength of the wave sweeps past the distant point P of 
Fig. 33-3; in each part of Fig. 33-4, the wave is traveling directly out of the page. 
(We choose a distant point so that the curvature of the waves suggested in 
Fig. 33-3 is small enough to neglect. At such points, the wave is said to be a plane 
wave, and discussion of the wave is much simplified.) Note several key features in 
Fig. 33-4; they are present regardless of how the wave is created: 

1. The electric and magnetic fields If and J1 are always perpendicular to the 
direction in which the wave is traveling. Thus, the wave is a transverse wave, as 
discussed in Chapter 16. 

2. The electric field is always perpendicular to the magnetic field. 

3. The cross product If x J1 always gives the direction in which the wave travels. 

4. The fields always vary sinusoidally, just like the transverse waves discussed 
in Chapter 16. Moreover, the fields vary with the same frequency and in phase 
(in step) with each other. 

In keeping with these features, we can assume that the electromagnetic wave 
is traveling toward P in the positive direction of an x axis, that the electric field in 
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Fig.33-4 (a)-(h)Thevariationin 
the electric field If and the magnetic 
field B at the distant point P of Fig. 
33-3 as one wavelength of the elec­
tromagnetic wave travels past it. In 
this perspective, the wave is traveling 
directly out of the page. The two 
fields vary sinusoidally in magnitude 
and direction. Note that they are al­
ways perpendicular to each other 
and to the wave's direction of travel. 
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Fig. 33-4 is oscillating parallel to the y axis, and that the magnetic field is then 
oscillating parallel to the z axis (using a right-handed coordinate system, of 
course). Then we can write the electric and magnetic fields as sinusoidal functions 
of position x (along the path of the wave) and time t: 

E = Em sin(kx - wt), (33-1) 

B = Bm sin(kx - wt), (33-2) 

in which Em and Bm are the amplitudes of the fields and, as in Chapter 16, wand k 
are the angular frequency and angular wave number of the wave, respectively. 
From these equations, we note that not only do the two fields form the electro­
magnetic wave but each also forms its own wave. Equation 33-1 gives the electric 
wave component of the electromagnetic wave, and Eq. 33-2 gives the magnetic 
wave component. As we shall discuss below, these two wave components cannot 
exist independently. 

From Eq. 16-13, we know that the speed of the wave is wile However, 
because this is an electromagnetic wave, its speed (in vacuum) is given the sym­
bol c rather than v. In the next section you will see that c has the value 

1 
c=---

y'JLoBo 
(wave speed), (33-3) 

which is about 3.0 X 108 m/s. In other words, 

All electromagnetic waves, including visible light, have the same speed c in vacuum. 

You will also see that the wave speed c and the amplitudes of the electric and 
magnetic fields are related by 

( amplitude ratio). (33-4) 

If we divide Eq. 33-1 by Eq. 33-2 and then substitute with Eq. 33-4, we find that 
the magnitudes of the fields at every instant and at any point are related by 

E 
-=c 
B 

(magnitude ratio). (33-5) 

We can represent the electromagnetic wave as in Fig. 33-5a, with a ray 
(a directed line showing the wave's direction of travel) or with wave/ronts (imagi­
nary surfaces over which the wave has the same magnitude of electric field), or 
both. The two wavefronts shown in Fig. 33-5a are separated by one wavelength 
A (= 21Tlk) of the wave. (Waves traveling in approximately the same direction 
form a beam, such as a laser beam, which can also be represented with a ray.) 

We can also represent the wave as in Fig. 33-5b, which shows the electric and 
magnetic field vectors in a "snapshot" of the wave at a certain instant. The curves 
through the tips of the vectors represent the sinusoidal oscillations given by 
Eqs. 33-1 and 33-2; the wave components It and B are in phase, perpendicular to 
each other, and perpendicular to the wave's direction of travel. 

Interpretation of Fig. 33-5b requires some care. The similar drawings for a trans­
verse wave on a taut string that we discussed in Chapter 16 represented the up and 
down displacement of sections of the string as the wave passed (something actually 
moved). Figure 33-5b is more abstract. At the instant shown, the electric and mag­
netic fields each have a certain magnitude and direction (but always perpendicular 
to the x axis) at each point along the x axis. We choose to represent these vector 
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Fig.33-5 (a) An electromagnetic wave represented with a ray and two 
wavefronts; the wavefronts are separated by one wavelength A. (b) The 
same wave represented in a "snapshot" of its electric field It and mag­
netic field Jj at points on the x axis, along which the wave travels at speed 
c. As it travels past point P, the fields vary as shown in Fig. 33-4. The elec­
tric component of the wave consists of only the electric fields; the mag­
netic component consists of only the magnetic fields. The dashed rectan­
gle at P is used in Fig. 33-6. component 

quantities with a pair of arrows for each point, and so we must draw arrows of differ­
ent lengths for different points, all directed away from the x axis, like thorns on a 
rose stem. However, the arrows represent field values only at points that are on the x 
axis. Neither the arrows nor the sinusoidal curves represent a sideways motion of 
anything, nor do the arrows connect points on the x axis with points off the axis. 

Drawings like Fig. 33-5 help us visualize what is actually a very complicated 
situation. First consider the magnetic field. Because it varies sinusoidally, it 
induces (via Faraday's law of induction) a perpendicular electric field that also 
varies sinusoidally. However, because that electric field is varying sinusoidally, it 
induces (via Maxwell's law of induction) a perpendicular magnetic field that also 
varies sinusoidally. And so on. The two fields continuously create each other via 
induction, and the resulting sinusoidal variations in the fields travel as a wave­
the electromagnetic wave. Without this amazing result, we could not see; indeed, 
because we need electromagnetic waves from the Sun to maintain Earth's tem­
perature, without this result we could not even exist. 

The waves we discussed in Chapters 16 and 17 require a medium (some material) 
through which or along which to travel. We had waves traveling along a string, 
through Earth, and through the air. However, an electromagnetic wave (let's use 
the term light wave or light) is curiously different in that it requires no medium 
for its travel. It can, indeed, travel through a medium such as air or glass, but it 
can also travel through the vacuum of space between a star and us. 

Once the special theory of relativity became accepted, long after Einstein 
published it in 1905, the speed of light waves was realized to be special. One rea­
son is that light has the same speed regardless of the frame of reference from 
which it is measured. If you send a beam of light along an axis and ask several 
observers to measure its speed while they move at different speeds along that 
axis, either in the direction of the light or opposite it, they will all measure the 
same speed for the light. This result is an amazing one and quite different from 
what would have been found if those observers had measured the speed of any 
other type of wave; for other waves, the speed of the observers relative to the 
wave would have affected their measurements. 

The meter has now been defined so that the speed of light (any electromag­
netic wave) in vacuum has the exact value 

c = 299 792 458 mIs, 

which can be used as a standard. In fact, if you now measure the travel time of a 
pulse of light from one point to another, you are not really measuring the speed 
of the light but rather the distance between those two points. 

component 
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Fig. 33-6 As the electromagnetic 
wave travels rightward past point P 
in Fig. 33-5b, the sinusoidal variation 
of the magnetic field S through a 
rectangle centered at P induces 
electric fields along the rectangle. 
At the instant shown,S is decreasing 
in magnitude and the induced elec­
tric field is therefore greater in mag­
nitude on the right side of the 
rectangle than on the left. 

The Traveling Electromagnetic Wave, Quantitatively 
We shall now derive Eqs. 33-3 and 33-4 and, even more important, explore the 
dual induction of electric and magnetic fields that gives us light. 

The dashed rectangle of dimensions dx and h in Fig. 33-6 is fixed at point P on the 
x axis and in the xy plane (it is shown on the right in Fig. 33-5b). As the electro­
magnetic wave moves rightward past the rectangle, the magnetic flux <PB through 
the rectangle changes and-according to Faraday's law of induction-induced 
electric fields appear throughout the region of the rectangle. We take E and 
E + dE to be the induced fields along the two long sides of the rectangle. These 
induced electric fields are, in fact, the electrical component of the electro­
magnetic wave. 

Note the small red portion of the magnetic field component curve far from 
the y axis in Fig. 33-5b. Let's consider the induced electric fields at the instant 
when this red portion of the magnetic component is passing through the rectan­
gle. Just then, the magnetic field through the rectangle points in the positive z 
direction and is decreasing in magnitude (the magnitude was greater just before 
the red section arrived). Because the magnetic field is decreasing, the magnetic 
flux <PB through the rectangle is also decreasing. According to Faraday's law, this 
change in flux is opposed by induced electric fields, which produce a magnetic 
field 11 in the positive z direction. 

According to Lenz's law, this in turn means that if we imagine the boundary 
of the rectangle to be a conducting loop, a counterclockwise induced current 
would have to appear in it. There is, of course, no conducting loop; but this 
analysis shows that the induced electric field vectors E and E + dE are indeed 
oriented as shown in Fig. 33-6, with the magnitude of E + dE greater than that of 
It. Otherwise, the net induced electric field would not act counterclockwise 
around the rectangle. 

Let us now apply Faraday's law of induction, 

f jf. d-s = - d;B , (33-6) 

counterclockwise around the rectangle of Fig. 33-6. There is no contribution to 
the integral from the top or bottom of the rectangle because E and d-S are per­
pendicular to each other there. The integral then has the value 

f E· d-s = (E + dE)h - Eh = h dE. (33-7) 

The flux <P B through this rectangle is 

<PB = (B)(h dx), (33-8) 

where B is the average magnitude of 13 within the rectangle and h dx is the area 
of the rectangle. Differentiating Eq. 33-8 with respect to t gives 

d<PB = h d dB 
dt x dt . 

If we substitute Eqs. 33-7 and 33-9 into Eq. 33-6, we find 

dB 
hdE = -hdx-

or 
dE 
dx 

dt 

dB 
dt . 

(33-9) 

(33-10) 
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Actually, both Band E are functions of two variables, x and t, as Eqs. 33-1 and 
33-2 show. However, in evaluating dEldx, we must assume that t is constant 
because Fig. 33-6 is an "instantaneous snapshot." Also, in evaluating dBldt we 
must assume that x is constant because we are dealing with the time rate of 
change of B at a particular place, the point P in Fig. 33-5b. The derivatives under 
these circumstances are partial derivatives, and Eq. 33-10 must be written 

aE 
ax 

aB 
at (33-11) 

The minus sign in this equation is appropriate and necessary because, although E 
is increasing with x at the site of the rectangle in Fig. 33-6, B is decreasing with t. 

From Eq. 33-1 we have 

and from Eq. 33-2 

Then Eq. 33-11 reduces to 

aE 
= kEIII cos(kx - wt) ax 

aB 
= -wBI11 cos(kx - wt). at 

kEm cos(kx - wt) = wBm cos(kx - wt). (33-12) 

The ratio wlk for a traveling wave is its speed, which we are calling c. Equation 
33-12 then becomes 

Em 
--=c 
Bm 

(amplitude ratio), (33-13) 

which is just Eq. 33-4. 

Figure 33-7 shows another dashed rectangle at point P of Fig. 33-5b; this one is 
in the xz plane. As the electromagnetic wave moves rightward past this new 
rectangle, the electric flux <P E through the rectangle changes and - according to 
Maxwell's law of induction-induced magnetic fields appear throughout the 
region of the rectangle. These induced magnetic fields are, in fact, the magnetic 
component of the electromagnetic wave. 

We see from Fig. 33-5b that at the instant chosen for the magnetic field repre­
sented in Fig. 33-6, marked in red on the magnetic component curve, the electric 
field through the rectangle of Fig. 33-7 is directed as shown. Recall that at the 
chosen instant, the magnetic field in Fig. 33-6 is decreasing. Because the two fields 
are in phase, the electric field in Fig. 33-7 must also be decreasing, and so must the 
electric flux <P E through the rectangle. By applying the same reasoning we applied 
to Fig. 33-6, we see that the changing flux <P E will induce a magnetic field with vec­
tors Jj and B + ilJ oriented as shown in Fig. 33-7, where field B + dB is greater 
than field B. 

Fig. 33-7 The sinusoidal variation of the electric 
field through this rectangle, located (but not shown) 
at point P in Fig. 33-5b, induces magnetic fields along 
the rectangle. The instant shown is that of Fig. 33-6: E 
is decreasing in magnitude, and the magnitude of the 
induced magnetic field is greater on the right side of 
the rectangle than on the left. 

The oscillating electric field 
induces an oscillating and 
perpendicular magnetic field. 

y 
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Let us apply Maxwell's law of induction, 

1. ~ ~ dcfJE r B • ds = !LoBo ----;tt , (33-14) 

by proceeding counterclockwise around the dashed rectangle of Fig. 33-7. Only 
the long sides of the rectangle contribute to the integral because the dot product 
along the short sides is zero. Thus, we can write 

f 13 ·ds = -(B + dB)h + Bh = -h dB. (33-15) 

The flux cfJ E through the rectangle is 

cfJE = (E)(h dx), (33-16) 

where E is the average magnitude of E within the rectangle. Differentiating 
Eq. 33-16 with respect to t gives 

dcfJ E = h d dE 
dt x dt . 

If we substitute this and Eq. 33-15 into Eq. 33-14, we find 

- h dB = /LoBo ( h dx ~~) 
or, changing to partial-derivative notation as we did for Eq. 33-11, 

aB aE 
- ax = !LoBo (it. (33-17) 

Again, the minus sign in this equation is necessary because, although B is increas­
ing with x at point P in the rectangle in Fig. 33-7, E is decreasing with t. 

Evaluating Eq. 33-17 by using Eqs. 33-1 and 33-2 leads to 

-kBm cos(kx - wt) = - /LoBowEm cos(kx - wt), 

which we can write as 
1 

/LoBO( wi k) 

Combining this with Eq. 33-13 leads at once to 

1 

1 

c = (wave speed), 
V!LoBo 

which is exactly Eq. 33-3. 

"CHECKPOINT 1 

y 

--> 
B 

y 

/7 
// 

// 

(33-18) 

The magnetic field I1 
through the rectangle 
of Fig. 33-6 is shown at 
a different instant in 
part 1 of the figure 
here; I1 is directed in 

)----III."iI'-----X 

I I 

)----;-/~/"---- X 
// 

the xz plane, parallel z 
to the z axis, and its 
magnitude is increas­

(1) 

I I 
cJ 

4~/ 

z 

(2) 

ing. (a) Complete part 1 by drawing the induced electric fields, indicating both directions 
and relative magnitudes (as in Fig. 33-6). (b) For the same instant, complete part 2 of the 
figure by drawing the electric field of the electromagnetic wave. Also draw the induced 
magnetic fields, indicating both directions and relative magnitudes (as in Fig. 33-7). 
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Energy Transport and the Poynting Vector 
All sunbathers know that an electromagnetic wave can transport energy and 
deliver it to a body on which the wave falls. The rate of energy transport per unit 
area in such a wave is described by a vector S, called the Poynting vector after 
physicist John Henry Poynting (1852-1914), who first discussed its properties. 
This vector is defined as 

-> 1 ---> -> 
S =-E X B 

fLo 
(Poynting vector). (33-19) 

Its magnitude S is related to the rate at which energy is transported by a wave 
across a unit area at any instant (inst): 

S = (energy/time) = (power) . 
area ins! area ins! 

(33-20) 

From this we can see that the SI unit for S is the watt per square meter (W/m2). 

The direction of the Poynting vector S of an electromagnetic wave at any point gives 
the wave's direction of travel and the direction of energy transport at that point. 

Because If and Jj are perpendicular to each other in an electromagnetic 
wave, the magnitude of If X Jj is EB. Then the magnitude of Sis 

1 
S=-EB 

fLo ' 
(33-21) 

in which S, E, and B are instantaneous values. The magnitudes E and B are so 
closely coupled to each other that we need to deal with only one of them; we 
choose E, largely because most instruments for detecting electromagnetic waves 
deal with the electric component of the wave rather than the magnetic compo­
nent. Using B = E/c from Eq. 33-5, we can rewrite Eq. 33-21 in terms of just the 
electric component as 

S = _1_E2 
CfLo 

(instantaneous energy flow rate). (33-22) 

By substituting E = Em sin(kx - wt) into Eq. 33-22, we could obtain an 
equation for the energy transport rate as a function of time. More useful in prac­
tice, however, is the average energy transported over time; for that, we need to 
find the time-averaged value of S, written Savg and also called the intensity I of the 
wave. Thus from Eq. 33-20, the intensity I is 

I = Savg = (energy/time) = (power) . 
area avg area avg 

(33-23) 

From Eq. 33-22, we find 

_ _ 1 [2] _ 1 2' 2( )] I - Savg - -- E avg - -- [E III sm kx - wt avg' 
CfLo cfLo 

(33-24) 

Over a full cycle, the average value of sin2 8, for any angular variable 8, is ! (see 
Fig. 31-17). In addition, we define a new quantity Erms , the root-mean-square 
value of the electric field, as 

Em 
Erms = Vi . (33-25) 
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The energy emitted by light 
source S must pass through 
the sphere of radius r. 

/ 

/ 
s 

/ 
Fig. 33-8 A point source S emits electro­
magnetic waves uniformly in all directions. 
The spherical wavefronts pass through an 
imaginary sphere of radius r that is centered 
onS. 

We can then rewrite Eq. 33-24 as 

_ 1 2 1- --Erms• 
cfLo 

(33-26) 

Because E = cB and c is such a very large number, you might conclude 
that the energy associated with the electric field is much greater than that as­
sociated with the magnetic field. That conclusion is incorrect; the two energies 
are exactly equal. To show this, we start with Eq. 25-25, which gives the energy 
density U ( = !BoE2) within an electric field, and substitute cB for E; then we 
can write 

- 1 E2 - 1 (B)2 U E - 2Bo - 2Bo C • 

If we now substitute for c with Eq. 33-3, we get 

_ 1 1 2 _ B2 
UE - 2Bo-- B - --. 

/LoBo 2/Lo 

However, Eq. 30-55 tells us that B2/2fLo is the energy density UB of a magnetic field 
B; so we see that UE = UB everywhere along an electromagnetic wave. 

How intensity varies with distance from a real source of electromagnetic radia­
tion is often complex-especially when the source (like a searchlight at a 
movie premier) beams the radiation in a particular direction. However, in some 
situations we can assume that the source is a point source that emits the light 
isotropically-that is, with equal intensity in all directions. The spherical wave­
fronts spreading from such an isotropic point source S at a particular instant are 
shown in cross section in Fig. 33-8. 

Let us assume that the energy of the waves is conserved as they spread from 
this source. Let us also center an imaginary sphere of radius r on the source, as 
shown in Fig. 33-8. All the energy emitted by the source must pass through the 
sphere. Thus, the rate at which energy passes through the sphere via the radiation 
must equal the rate at which energy is emitted by the source- that is, the source 
power Ps• The intensity I (power per unit area) measured at the sphere must then 
be, from Eq. 33-23, 

power Ps 1= =--
area 417r2 ' 

(33-27) 

where 41TT2 is the area of the sphere. Equation 33-27 tells us that the intensity of 
the electromagnetic radiation from an isotropic point source decreases with the 
square of the distance rfrom the source. 

_CHECKPOINT 2 

The figure here gives the electric field of an electromagnetic wave at a certain point and a 
certain instant. The wave is transporting energy in the negative z direction. What is the di­
rection of the magnetic field of the wave at that point and instant? 

~, 
z 
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Light wave: rms values of the electric and magnetic fields 

When you look at the North Star (Polaris), you intercept light 
from a star at a distance of 431ly and emitting energy at a rate 
of 2.2 X 1()3 times that of our Sun (Psun = 3.90 X 1026 W). 
Neglecting any atmospheric absorption, find the rms values of 
the electric and magnetic fields when the starlight reaches you. 

1. The rms value Erms of the electric field in light is related to 
the intensity I of the light via Eq. 33-26 (I = mmslCfLo). 

2. Because the source is so far away and emits light with 
equal intensity in all directions, the intensity I at any 
distance r from the source is related to the source's 
power Ps via Eq. 33-27 (I = PsI4m2). 

3. The magnitudes of the electric field and magnetic field 
of an electromagnetic wave at any instant and at any 
point in the wave are related by the speed of light c 
according to Eq. 33-5 (EIB = c). Thus, the rms values of 
those fields are also related by Eq. 33-5. 

Electric field: Putting the first two ideas together gives us 

I=~= mms 
4m2 cfLo 

~ P"c/Lo and Erms = 4m2 • 

Substituting Ps = (2.2 X 103)(3.90 X 1026 W), r = 431 ly = 
4.08 X 1018 m, and values for the constants, we find 

Erms = 1.24 X 10-3 Vim = 1.2 mV/m. (Answer) 

Magnetic field: From Eq. 33-5, we write 

B = Erms 1.24 X 10-3 Vim 
rms C 3.00 X 108 mls 

= 4.1 X 10-12 T = 4.1 pT. 

Cannot compare the fields: Note that Erms (= 1.2 m Vim) 
is small as judged by ordinary laboratory standards, but Brms 

(= 4.1 pT) is quite small. This difference helps to explain why 
most instruments used for the detection and measurement of 
electromagnetic waves are designed to respond to the elec­
tric component of the wave. It is wrong, however, to say that 
the electric component of an electromagnetic wave is 
"stronger" than the magnetic component. You cannot compare 
quantities that are measured in different units. However, these 
electric and magnetic components are on an equal basis be­
cause their average energies, which can be compared, are equal. 

Additional examples, video, and practice available at WileyPLUS 

Radiation Pressure 
Electromagnetic waves have linear momentum and thus can exert a pressure on 
an object when shining on it. However, the pressure must be very small because, 
for example, you do not feel a punch during a camera flash. 

To find an expression for the pressure, let us shine a beam of electromagnetic 
radiation -light, for example-on an object for a time interval!::..t. Further, let us 
assume that the object is free to move and that the radiation is entirely absorbed 
(taken up) by the object. This means that during the interval !::..t, the object gains 
an energy !:::..U from the radiation. Maxwell showed that the object also gains 
linear momentum. The magnitude !:::..p of the momentum change of the object is 
related to the energy change !:::"Uby 

!:::..p = !:::..U 
c 

(total absorption), (33-28) 

where c is the speed of light. The direction of the momentum change of the object 
is the direction of the incident (incoming) beam that the object absorbs. 

Instead of being absorbed, the radiation can be reflected by the object; that 
is, the radiation can be sent off in a new direction as if it bounced off the object. If 
the radiation is entirely reflected back along its original path, the magnitude of 
the momentum change of the object is twice that given above, or 

Ap __ 2!:::..U 
Ll (total reflection back along path). 

c 
(33-29) 
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In the same way, an object undergoes twice as much momentum change when a 
perfectly elastic tennis ball is bounced from it as when it is struck by a perfectly 
inelastic ball (a lump of wet putty, say) of the same mass and velocity. If the inci­
dent radiation is partly absorbed and partly reflected, the momentum change of 
the object is between !1Ulc and 2 !1Ulc. 

From Newton's second law in its linear momentum form (Section 9-4), we 
know that a change in momentum is related to a force by 

!1p 
F=--;s:;. (33-30) 

To find expressions for the force exerted by radiation in terms of the intensity 1 of 
the radiation, we first note that intensity is 

1 = power = energy/time . 
area area 

Next, suppose that a flat surface of area A, perpendicular to the path of the radia­
tion, intercepts the radiation. In time interval M, the energy intercepted by area A is 

!1U = lA !1t. (33-31) 

If .the energy is completely absorbed, then Eq. 33-28 tells us that !1p = lA !1tlc, 
and, from Eq. 33-30, the magnitude of the force on the area A is 

lA 
F=­

c 
(total absorption). (33-32) 

Similarly, if the radiation is totally reflected back along its original path, Eq. 33-29 
tells us that!1p = 21A !1tlc and, from Eq. 33-30, 

F= 21A 
c 

(total reflection back along path). (33-33) 

If the radiation is partly absorbed and partly reflected, the magnitude of the force 
on area A is between the values of lAic and 21Alc. 

The force per unit area on an object due to radiation is the radiation pressure 
Pro We can find it for the situations of Eqs. 33-32 and 33-33 by dividing both sides 
of each equation by A. We obtain 

and 

1 
p=-

r C 

21 
P =-

r C 

(total absorption) (33-34) 

(total reflection back along path). (33-35) 

Be careful not to confuse the symbol Pr for radiation pressure with the symbol p 
for momentum. Just as with fluid pressure in Chapter 14, the SI unit of radiation 
pressure is the newton per square meter (N/m2) , which is called the pascal (Pa). 

The development of laser technology has permitted researchers to achieve 
radiation pressures much greater than, say, that due to a camera flashlamp. This 
comes about because a beam of laser light-unlike a beam of light from a small 
lamp filament-can be focused to a tiny spot. This permits the delivery of great 
amounts of energy to small objects placed at that spot. 

CHECKPOINT 3 

Light of uniform intensity shines perpendicularly on a totally absorbing surface, fully 
illuminating the surface. If the area of the surface is decreased, do (a) the radiation 
pressure and (b) the radiation force on the surface increase, decrease, or stay the same? 



Polarization 
VHF (very high frequency) television antennas in England are oriented 
vertically, but those in North America are horizontal. The difference is due to the 
direction of oscillation of the electromagnetic waves carrying the TV signal. In 
England, the transmitting equipment is designed to produce waves that are 
polarized vertically; that is, their electric field oscillates vertically. Thus, for the 
electric field of the incident television waves to drive a current along an antenna 
(and provide a signal to a television set), the antenna must be vertical. In North 
America, the waves are polarized horizontally. 

Figure 33-9a shows an electromagnetic wave with its electric field oscillating 
parallel to the vertical y axis. The plane containing the If vectors is called the 
plane of oscillation of the wave (hence, the wave is said to be plane-polarized in 
the y direction). We can represent the wave's polarization (state of being polar­
ized) by showing the directions of the electric field oscillations in a head-on view 
of the plane of oscillation, as in Fig. 33-9b. The vertical double arrow in that figure 
indicates that as the wave travels past us, its electric field oscillates vertically-it 
continuously changes between being directed up and down the y axis. 

The electromagnetic waves emitted by a television station all have the same 
polarization, but the electromagnetic waves emitted by any common source of 
light (such as the Sun or a bulb) are polarized randomly, or unpolarized (the two 
terms mean the same thing). That is, the electric field at any given point is always 
perpendicular to the direction of travel of the waves but changes directions 
randomly. Thus, if we try to represent a head-on view of the oscillations over some 
time period, we do not have a simple drawing with a single double arrow like that of 
Fig. 33-9b; instead we have a mess of double arrows like that in Fig. 33-10a. 

In principle, we can simplify the mess by resolving each electric field of 
Fig. 33-lOa into y and z components. Then as the wave travels past us, the net 
y component oscillates parallel to the y axis and the net z component oscillates 
parallel to the z axis. We can then represent the unpolarized light with a pair of 
double arrows as shown in Fig. 33-lOb. The double arrow along the y axis represents 
the oscillations of the net y component of the electric field. The double arrow along 
the z axis represents the oscillations of the net z component of the electric field. In 
doing all this, we effectively change unpolarized light into the superposition of two 
polarized waves whose planes of oscillation are perpendicular to each other-one 
plane contains the y axis and the other contains the z axis. One reason to make this 
change is that drawing Fig. 33-10b is a lot easier than drawing Fig. 33-lOa. 

We can draw similar figures to represent light that is partially polarized (its 
field oscillations are not completely random as in Fig. 33-10a, nor are they paral­
lel to a single axis as in Fig. 33-9b). For this situation, we draw one of the double 
arrows in a perpendicular pair of double arrows longer than the other one. 

Fig. 33-10 (a) Unpolarized light con­
sists of waves with randomly directed 
electric fields. Here the waves are all trav­
eling along the same axis, directly out of 
the page, and all have the same amplitude 
E. (b) A second way of representing un­
polarized light-the light is the superpo­
sition of two polarized waves whose 
planes of oscillation are perpendicular 
to each other. 

Unpo/arized light 
headed toward 
you-the electric 
fields are in all 
directions in the 
plane. 

(a) 

y 

z 
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(a) 

y 

z--

(b) 

Plane of 
oscillation 

x 

Vertically polarized 
light headed toward 
you-the electric fields 
are all vertical. 

Fig. 33-9 (a) The plane of oscillation of 
a polarized electromagnetic wave. (b) To 
represent the polarization, we view the 
plane of oscillation head-on and indicate 
the directions of the oscillating electric field 
with a double arrow. 

y 

z--~------~------~--

(b) 

This is a quick 
way to symbolize 
unpolarized light. 
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The sheet's polarizing axis 
is vertical, so only vertically 
polarized light emerges. 

Incident light ray 

sheet 

Vertically polarized light 

Fig. 33-11 Unpolarized light becomes 
polarized when it is sent through a polariz­
ing sheet. Its direction of polarization is 
then parallel to the polarizing direction of 
the sheet, which is represented here by the 
vertical lines drawn in the sheet. 

y 

The sheet's polarizing 
axis is vertical, so 
only vertical 
components of 
the electric fields 
pass. 

Fig. 33-12 Polarized light approaching 
a polarizing sheet. The electric field E of 
the light can be resolved into components 
Ey (parallel to the polarizing direction of 
the sheet) and Ez (perpendicular to that di­
rection). Component Ey will be transmitted 
by the sheet; component Ez will be 
absorbed. 

We can transform unpolarized visible light into polarized light by sending it 
through a polarizing sheet, as is shown in Fig. 33-11. Such sheets, commercially 
known as Polaroids or Polaroid filters, were invented in 1932 by Edwin Land 
while he was an undergraduate student. A polarizing sheet consists of certain 
long molecules embedded in plastic. When the sheet is manufactured, it is 
stretched to align the molecules in parallel rows, like rows in a plowed field. When 
light is then sent through the sheet, electric field components along one direction 
pass through the sheet, while components perpendicular to that direction are 
absorbed by the molecules and disappear. 

We shall not dwell on the molecules but, instead, shall assign to the sheet a 
polarizing direction, along which electric field components are passed: 

An electric field component parallel to the polarizing direction is passed (transmitted) 
by a polarizing sheet; a component perpendicular to it is absorbed. 

Thus, the electric field of the light emerging from the sheet consists of only the 
components that are parallel to the polarizing direction of the sheet; hence the 
light is polarized in that direction. In Fig. 33-11, the vertical electric field compo­
nents are transmitted by the sheet; the horizontal components are absorbed. The 
transmitted waves are then vertically polarized. 

We now consider the intensity of light transmitted by a polarizing sheet. We start 
with unpolarized light, whose electric field oscillations we can resolve into y and 
z components as represented in Fig. 33-lOb. Further, we can arrange for the y axis 
to be parallel to the polarizing direction of the sheet. Then only the y components 
of the light's electric field are passed by the sheet; the z components are 
absorbed. As suggested by Fig. 33-10b, if the original waves are randomly ori­
ented, the sum of the y components and the sum of the z components are equal. 
When the z components are absorbed, half the intensity 10 of the original light is 
lost. The intensity I of the emerging polarized light is then 

(33-36) 

Let us call this the one-half rule; we can use it only when the light reaching a 
polarizing sheet is unpolarized. 

Suppose now that the light reaching a polarizing sheet is already polarized. 
Figure 33-12 shows a polarizing sheet in the plane of the page and the electric 
field If of such a polarized light wave traveling toward the sheet (and thus prior 
to any absorption). We can resolve If into two components relative to the polariz­
ing direction of the sheet: parallel component Ey is transmitted by the ~eet, and 
perpendicular component Ez is absorbed. Since e is the angle between E and the 
polarizing direction of the sheet, the transmitted parallel component is 

Ey = Ecos e. (33-37) 

Recall that the intensity of an electromagnetic wave (such as our light wave) 
is proportional to the square of the electric field's magnitude (Eq. 33-26, 
1= E;m.!c/Lo). In our present case then, the intensity I of the emerging wave is 
proportional to E~ and the intensity 10 of the original wave is proportional to E2. 
Hence, from Eq. 33-37 we can write 1110 = cos2 e, or 

1= Iocos2 e. (33-38) 

Let us call this the cosine-squared rule; we can use it only when the light reaching 



a polarizing sheet is already polarized. Then the transmitted intensity I is a maxi­
mum and is equal to the original intensity 10 when the original wave is polarized 
parallel to the polarizing direction of the sheet (when e in Eq. 33-38 is 0° or 180°). 
The transmitted intensity is zero when the original wave is polarized perpendicu­
lar to the polarizing direction of the sheet (when e is 90°). 

Figure 33-13 shows an arrangement in which initially unpolarized light is sent 
through two polarizing sheets PI and P2• (Often, the first sheet is called the 
polarizer, and the second the analyzer.) Because the polarizing direction of PI is 
vertical, the light transmitted by PI to P2 is polarized vertically. If the polarizing 
direction of P2 is also vertical, then all the light transmitted by PI is transmitted 
by P2• If the polarizing direction of P2 is horizontal, none of the light transmitted 
by PI is transmitted by P2• We reach the same conclusions by considering only the 
relative orientations of the two sheets: If their polarizing directions are parallel, 
all the light passed by the first sheet is passed by the second sheet (Fig. 33-14a). If 
those directions are perpendicular (the sheets are said to be crossed), no light is 
passed by the second sheet (Fig. 33-14b). Finally, if the two polarizing directions 
of Fig. 33-13 make an angle between 0° and 90°, some of the light transmitted by 
PI will be transmitted by P2, as set by Eq. 33-38. 

Light can be polarized by means other than polarizing sheets, such as by 
reflection (discussed in Section 33-10) and by scattering from atoms or molecules. 
In scattering, light that is intercepted by an object, such as a molecule, is sent off 
in many, perhaps random, directions. An example is the scattering of sunlight by 
molecules in the atmosphere, which gives the sky its general glow. 

Although direct sunlight is unpolarized, light from much of the sky is at least 
partially polarized by such scattering. Bees use the polarization of sky light in 
navigating to and from their hives. Similarly, the Vikings used it to navigate across 
the North Sea when the daytime Sun was below the horizon (because of the high 
latitude of the North Sea). These early seafarers had discovered certain crystals 
(now called cordierite) that changed color when rotated in polarized light. By 
looking at the sky through such a crystal while rotating it about their line of sight, 
they could locate the hidden Sun and thus determine which way was south. 

Fig.33-14 (a) Overlapping po­
larizing sheets transmit light fairly 
well when their polarizing direc­
tions have the same orientation, but 
(b) they block most of the light 
when they are crossed. (Richard 
Megna/Fundamental Photographs.) (a) 

CHECKPOINT 4 
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Polarizing 
direction 

light is vertically 
polarized. 

The sheet's polarizing axis 
is tilted, so only a fraction 
of the intensity passes. 

Fig. 33-13 The light transmitted by 
polarizing sheet P j is vertically polarized, 
as represented by the vertical double 
arrow. The amount of that light that is then 
transmitted by polarizing sheet P 2 depends 
on the angle between the polarization 
direction of that light and the polarizing di­
rection of P2 (indicated by the lines drawn 
in the sheet and by the dashed line). 

The figure shows four pairs of polarizing sheets, 
seen face-on. Each pair is mounted in the path of 
initially unpolarized light. The polarizing direction 
of each sheet (indicated by the dashed line) is ref­
erenced to either a horizontal x axis or a vertical y 
axis. Rank the pairs according to the fraction of 
the initial intensity that they pass, greatest first. 

, , , 

0(. 0(".600 0'''''600 0:""600 
~

" _ _ / \l. _ " \l. _ ( \l. 
, I I I 600 , , 

(a) (b) (c) (d) 
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Polarization and intensity with three polarizing sheets 

Figure 33-1Sa, drawn in perspective, shows a system of three 
polarizing sheets in the path of initially unpolarized light. 
The polarizing direction of the first sheet is parallel to the y 
axis, that of the second sheet is at an angle of 60° counter­
clockwise from the y axis, and that of the third sheet is paral­
lel to the x axis. What fraction of the initial intensity 10 of the 
light emerges from the three-sheet system, and in which 
direction is that emerging light polarized? 

1. We work through the system sheet by sheet, from the 
first one encountered by the light to the last one. 

2. To find the intensity transmitted by any sheet, we apply 
either the one-half rule or the cosine-squared rule, 
depending on whether the light reaching the sheet is 
unpolarized or already polarized. 

3. The light that is transmitted by a polarizing sheet is al­
ways polarized parallel to the polarizing direction of the 
sheet. 

First sheet: The original light wave is represented in 
Fig. 33-1Sb, using the head-on, double-arrow representation 
of Fig. 33-10b. Because the light is initially unpolarized, the 
intensity 11 of the light transmitted by the first sheet is given 
by the one-half rule (Eq. 33-36): 

11 = ~Io. 

Because the polarizing direction of the first sheet is parallel to 
the y axis, the polarization of the light transmitted by it is also, 
as shown in the head-on view of Fig. 33-1Sc. 

Second sheet: Because the light reaching the second sheet 
is polarized, the intensity I z of the light transmitted by that 
sheet is given by the cosine-squared rule (Eq. 33-38). The angle 

8 in the rule is the angle between the polarization direction of 
the entering light (parallel to the y axis) and the polmizing 
direction of the second sheet (60° counterclockwise from the y 
axis), and so 8is 60°. (The larger angle between the two direc­
tions, namely 120°, can also be used.) We have 

I z = 11 cosz 60°. 

The polarization of this transmitted light is parallel to the 
polarizing direction of the sheet transmitting it-that is, 60° 
counterclockwise from the y axis, as shown in the head-on 
view of Fig. 33-1Sd. 

Third sheet: Because the light reaching the third sheet is 
polarized, the intensity 13 of the light transmitted by that 
sheet is given by the cosine-squared rule. The angle 8 is 
now the angle between the polarization direction of the 
entering light (Fig. 33-1Sd) and the polarizing direction of 
the third sheet (parallel to the x axis), and so 8 = 30°. 
Thus, 

13 = l z cosz 30°. 

This final transmitted light is polarized parallel to the x axis 
(Fig. 33-1Se). We find its intensity by substituting first for l z 
and then for 11 in the equation above: 

Thus, 

13 = I z cosz 30° = (I1 cosz 60°) cosz 30° 

= (f-Io) cosz 60° cosz 30° = 0.09410' 

13 I; = 0.094. (Answer) 

That is to say, 9.4% of the initial intensity emerges from 
the three-sheet system. (If we now remove the second 
sheet, what fraction of the initial intensity emerges from 
the system?) 

~s Additional examples, video, and practice available at WileyPLUS 

Reflection and Refraction 
Although a light wave spreads as it moves away from its source, we can often 
approximate its travel as being in a straight line; we did so for the light wave in 
Fig. 33-Sa. The study of the properties of light waves under that approximation is 
called geometrical optics. For the rest of this chapter and all of Chapter 34, we 
shall discuss the geometrical optics of visible light. 

The photograph in Fig. 33-16a shows an example of light waves traveling in 
approximately straight lines. A narrow beam of light (the incident beam), angled 
downward from the left and traveling through air, encounters a plane (fiat) water 
surface. Part of the light is reflected by the surface, forming a beam directed 
upward toward the right, traveling as if the original beam had bounced from the 
surface. The rest of the light travels through the surface and into the water, form-
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Work through 
the system, 
sheet by sheet. 

Light is sent through 
this system of three 
polarizing sheets. 

The incident light 

The sheet's polarization axis 
is 60° counterclockwise 
from the vertical. 

The sheet's 
polarization axis 
is vertical. 

1 
+,~~ unpolarized. 

(c) The emerging light 
is polarized vertically. 
The intensity is given 
by the one-half rule. 

The sheet's 
polarization axis 
is horizontal. 

~ <l---l> (d) 

(e) 

The emerging light is polar­
ized horizontally. The 
intensity is given by the 
cosine-squared rule. 

The incident light is 
polarized vertically. 

The emerging light is polarized 
60° counterclockwise from the 
vertical. The intensity is given by 
the cosine-squared rule. 

The incident light is 
polarized 60° 
counterclockwise 
from the vertical. 

Fig. 33-15 (a) Initially unpolarized light of intensity Io is sent into a system of three 
polarizing sheets. The intensities 11> 12, and 13 of the light transmitted by the sheets are 
labeled. Shown also are the polarizations, from head-on views, of (b) the initial light and 
the light transmitted by (c) the first sheet, (d) the second sheet, and (e) the third sheet. 

Fig. 33-16 (a) A photograph showing 
an incident beam of light reflected and 
refracted by a horizontal water surface. 
(©1974 FPIFundamentals Photography) 
(Fig. 33-16 continues on next page.) 

Intensity rules: 

If the incident light is unpolarized, 
use the one-half rule: 

iemerge = 0.5iincident· 

If the incident light is already polarized, 
use the cosine-square rule: 

iemerge = iincident(COs 0)2, 

but be sure to insert the angle between 
the polarization of the incident light and 
the polarization axis of the sheet. 

905 
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Incident 
ray 

Reflected 

Fig. 33-16 (Continued) (b) A ray repre­
sentation of (a). The angles of incidence 
(81), reflection (8D, and refraction (82) are 
marked. 

ing a beam directed downward to the right. Because light can travel through it, 
the water is said to be transparent; that is, we can see through it. (In this chapter 
we shall consider only transparent materials and not opaque materials, through 
which light cannot travel. ) 

The travel of light through a surface (or interface) that separates two media is 
called refl"action, and the light is said to be refracted. Unless an incident beam of 
light is perpendicular to the surface, refraction changes the light's direction 
of travel. For this reason, the beam is said to be "bent" by the refraction. Note in 
Fig. 33-16a that the bending occurs only at the surface; within the water, the light 
travels in a straight line. 

In Figure 33-16b, the beams of light in the photograph are represented with 
an incident ray, a reflected ray, and a refracted ray (and wavefronts). Each ray is 
oriented with respect to a line, called the normal, that is perpendicular to the sur­
face at the point of reflection and refraction. In Fig. 33-16b, the angle of incidence 
is 81> the angle of reflection is 0;, and the angle of refraction is 82, all measured 
relative to the normal. The plane containing the incident ray and the normal is the 
plane of incidence, which is in the plane of the page in Fig. 33-16b. 

Experiment shows that reflection and refraction are governed by two laws: 
Law of reflection: A reflected ray lies in the plane of incidence and has an 

angle of reflection equal to the angle of incidence (both relative to the nor­
mal). In Fig. 33-16b, this means that 

(reflection) . (33-39) 

(We shall now usually drop the prime on the angle of reflection.) 
Law of refraction: A refracted ray lies in the plane of incidence and has an 

angle of refraction 82 that is related to the angle of incidence 01 by 

(refraction). (33-40) 

Here each of the symbols nj and n2 is a dimensionless constant, called the index 
of refraction, that is associated with a medium involved in the refraction. We 
derive this equation, called Snell's law, in Chapter 35. As we shall discuss there, 
the index of refraction of a medium is equal to c!v, where v is the speed of light in 
that medium and c is its speed in vacuum. 

Table 33-1 gives the indexes of refraction of vacuum and some common 
substances. For vacuum, n is defined to be exactly 1; for air, n is very close to 1.0 
(an approximation we shall often make). Nothing has an index of refraction 
below 1. 

Some Indexes of Refractiona 

Medium Index Medium Index 

Vacuum Exactly 1 Typical crown glass 1.52 
Air (STP)b 1.00029 Sodium chloride 1.54 
Water (20De) 1.33 Polystyrene 1.55 

Acetone 1.36 Carbon disulfide 1.63 

Ethyl alcohol 1.36 Heavy flint glass 1.65 

Sugar solution (30%) 1.38 Sapphire 1.77 

Fused quartz 1.46 Heaviest flint glass 1.89 

Sugar solution (80%) 1.49 Diamond 2.42 

aFor a wavelength of 589 nm (yellow sodium light). 

bSTP means "standard temperature (DoC) and pressure (1 atm)." 
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n2 = nl 

(a) If the indexes match, 

there is no direction 
change. 

If the next index is greater, 
the ray is bent toward the 
normal. 

Fig. 33-17 Refraction of light traveling from a medium with an index of refraction nl 

into a medium with an index of refraction n2' (a) The beam does not bend when n2 = nj; 
the refracted light then travels in the undeflected direction (the dotted line), which is the 
same as the direction of the incident beam. The beam bends (b) toward the normal when 
n2 > nl and (c) away from the normal when n2 < nl' 

We can rearrange Eq. 33-40 as 

(33-41) 

to compare the angle of refraction ()z with the angle of incidence ()1' We can 
then see that the relative value of ()z depends on the relative values of n2 and n1: 

1. If nz is equal to nj, then ()z is equal to ()1 and refraction does not bend the light 
beam, which continues in the undefiected direction, as in Fig. 33-17 a. 

2. If nz is greater than nj, then ()z is less than ()1' In this case, refraction bends the 
light beam away from the undefiected direction and toward the normal, as in 
Fig. 33-17b. 

3. If n2 is less than nj, then ()z is greater than ()1' In this case, refraction bends the 
light beam away from the undefiected direction and away from the normal, as 
in Fig. 33-17 c. 

Refraction cannot bend a beam so much that the refracted ray is on the same side 
of the normal as the incident ray. 

The index of refraction n encountered by light in any medium except vacuum 
depends on the wavelength of the light. The dependence of n on wavelength 
implies that when a light beam consists of rays of different wavelengths, the rays 
will be refracted at different angles by a surface; that is, the light will be spread 
out by the refraction. This spreading of light is called chromatic dispersion, in 
which "chromatic" refers to the colors associated with the individual wavelengths 
and "dispersion" refers to the spreading of the light according to its wavelengths 
or colors. The refractions of Figs. 33-16 and 33-17 do not show chromatic disper­
sian because the beams are monochromatic (of a single wavelength or color). 

Generally, the index of refraction of a given medium is greater for a shorter 
wavelength (corresponding to, say, blue light) than for a longer wavelength (say, 
red light). As an example, Fig. 33-18 shows how the index of refraction of fused 
quartz depends on the wavelength of light. Such dependence means that when a 
beam made up of waves of both blue and red light is refracted through a surface, 
such as from air into quartz or vice versa, the blue component (the ray corre­
sponding to the wave of blue light) bends more than the red component. 

(c) 
If the next index is less, 
the ray is bent away from 
the normal. 

>:i o 
'jj 

1.48 

~ 1.47 

~ 
'B 
~ 1.46 

'"CI 
.s 

1.45 '--_'--_'--_'--_L----' 

300 400 500 600 700 800 
Wavelength (nm) 

Fig. 33-18 The index of refrac­
tion as a function of wavelength for 
fused quartz. The graph indicates 
that a beam of short-wavelength 
light, for which the index of refrac­
tion is higher, is bent more upon 
entering or leaving quartz than a 
beam of long-wavelength light. 
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Fig.33-20 (a) A triangular prism sepa­
rating white light into its component colors. 
(b) Chromatic dispersion occurs at the first 
surface and is increased at the second sur­
face. (Courtesy Bausch & Lomb) 

Incident 
white light 

(a) 

Reflected 
white light 

Glass ~ 

Incident 
white light 

Air ~ 

Blue is always 
bent more 
than red. (b) 

Reflected 
white light 

'Refracted 
82b ··· ..... light 

Fig. 33-19 Chromatic dispersion of white light. The blue component is bent more than 
the red component. (a) Passing from air to glass, the blue component ends up with the 
smaller angle of refraction. (b) Passing from glass to air, the blue component ends up with 
the greater angle of refraction. Each dotted line represents the direction in which the light 
would continue to travel if it were not bent by the refraction. 

A beam of white light consists of components of all (or nearly all) the colors 
in the visible spectrum with approximately uniform intensities. When you see 
such a beam, you perceive white rather than the individual colors. In Fig. 33-19a, 
a beam of white light in air is incident on a glass surface. (Because the pages of 
this book are white, a beam of white light is represented with a gray ray here. 
Also, a beam of monochromatic light is generally represented with a red ray.) 
Of the refracted light in Fig. 33-19a, only the red and blue components are shown. 
Because the blue component is bent more than the red component, the angle of 
refraction ()2b for the blue component is smaller than the angle of refraction ()2r 

for the red component. (Remember, angles are measured relative to the normal.) 
In Fig. 33-19b, a ray of white light in glass is incident on a glass-air interface. 
Again, the blue component is bent more than the red component, but now ()2b is 
greater than ()2r' 

To increase the color separation, we can use a solid glass prism with a trian­
gular cross section, as in Fig. 33-20a. The dispersion at the first surface (on the left 
in Figs. 33-20a, b) is then enhanced by the dispersion at the second surface. 

The most charming example of chromatic dispersion is a rainbow. When sun­
light (which consists of all visible colors) is intercepted by a falling raindrop, 

(b) 

(a) 
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Fig. 33-21 (a) The separation of col­
ors when sunlight refracts into and out of 
falling raindrops leads to a primary rain­
bow. The antisolar point A is on the hori­
zon at the right. The rainbow colors ap­
pear at an angle of 42° from the direction 
of A. (b) Drops at 42° from A in any di­
rection can contribute to the rainbow. (c) 
The rainbow arc when the Sun is higher 
(and thus A is lower). (d) The separation 

(a) 

of colors leading to a secondary rainbow. (c) 

Sunlight 
iii 

Rainbow 

Water drops 

A-

some of the light refracts into the drop, reflects once from the drop's inner sur­
face, and then refracts out of the drop. Figure 33-21a shows the situation when 
the Sun is on the horizon at the left (and thus when the rays of sunlight are hor­
izontal). The first refraction separates the sunlight into its component colors, 
and the second refraction increases the separation. (Only the red and blue rays 
are shown in the figure.) If many falling drops are brightly illuminated, you can 
see the separated colors they produce when the drops are at an angle of 42° 
from the direction of the antisolar point A, the point directly opposite the Sun 
in your view. 

To locate the drops, face away from the Sun and point both arms directly 
away from the Sun, toward the shadow of your head. Then move your right arm 
directly up, directly rightward, or in any intermediate direction until the angle 
between your arms is 42°. If illuminated drops happen to be in the direction of 
your right arm, you see color in that direction. 

Because any drop at an angle of 42° in any direction from A can contribute 
to the rainbow, the rainbow is always a 42° circular arc around A (Fig. 33-21b) 
and the top of a rainbow is never more than 42° above the horizon. When the 
Sun is above the horizon, the direction of A is below the horizon, and only a 
shorter, lower rainbow arc is possible (Fig. 33-21c). 

Because rainbows formed in this way involve one reflection of light inside 
each drop, they are often called primary rainbows. A secondary rainbow involves 
two reflections inside a drop, as shown in Fig. 33-21d. Colors appear in the sec­
ondary rainbow at an angle of 52° from the direction of A. A secondary rainbow 
is wider and dimmer than a primary rainbow and thus is more difficult to see. 
Also, the order of colors in a secondary rainbow is reversed from the order in 
a primary rainbow, as you can see by comparing parts a and d of Fig. 33-21. 

Rainbows involving three or four reflections occur in the direction of the Sun 
and cannot be seen against the glare of sunshine in that part of the sky. Rainbows 
involving even more reflections inside the drops are too dim to see. 

(b) 

/ 

0<\52° 
(d) ( ........ . 

Rainbow 
I 
I 
I 

:420 

I 
I __ ~~ __ 

Water drops 

A-
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CHECKPOINT 5 

Which of the three drawings here (if any) show physically possible refraction? 

(a) (b) 

n=.1.1. .. 55 ~ ... .. 7 n =1.6 

(c) 

Reflection and refraction of a monochromatic beam 

(a) In Fig. 33-22a, a beam of monochromatic light re­
flects and refracts at point A on the interface between 
material 1 with index of refraction nl = 1.33 and mater­
ial 2 with index of refraction n2 = 1.77. The incident 
beam makes an angle of 50° with the interface. What is 
the angle of reflection at point A? What is the angle of 
refraction there? 

(1) The angle of reflection is equal to the angle of inci­
dence, and both angles are measured relative to the nor­
mal to the surface at the point of reflection. (2) When light 
reaches the interface between two materials with different 
indexes of refraction (call them n1 and n2)' part of the light 
can be refracted by the interface according to Snell's law, 
Eq.33-40: 

(33-42) 

where both angles are measured relative to the normal at 
the point of refraction. 

Calculations: In Fig. 33-22a, the normal at point A is 
drawn as a dashed line through the point. Note that the an­
gle of incidence 81 is not the given 50° but is 90° - 50° = 40°. 
Thus, the angle of reflection is 

(Answer) 

The light that passes from material 1 into material 2 
undergoes refraction at point A on the interface between 
the two materials. Again we measure angles between light 
rays and a normal, here at the point of refraction. Thus, in 
Fig. 33-22a, the angle of refraction is the angle marked 82, 

Solving Eq. 33-42 for 82 gives us 

. 1 (n 1 . ) . 1 (1.33 . 4 0) 82 = sm- -;;; sm 81 = sm- 1.77 sm 0 

(Answer) 

(a) 

(b) 

Fig. 33-22 (a) Light reflects and refracts at point A on the inter­
face between materials 1 and 2. (b) The light that passes through 
material 2 reflects and refracts at point B on the interface between 
materials 2 and 3 (air). Each dashed line is a normal. Each dotted 
line gives the incident direction of travel. 

This result means that the beam swings toward the normal 
(it was at 40° to the normal and is now at 29°). The reason is 
that when the light travels across the interface, it moves into 
a material with a greater index of refraction. Caution: Note 
that the beam does not swing through the normal so that it 
appears on the left side of Fig. 33-22a. 
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(b) The light that enters material 2 at point A then reaches 
point B on the interface between material 2 and material 3, 
which is air, as shown in Fig. 33-22b. The interface through B 
is parallel to that through A. At B, some of the light reflects 
and the rest enters the air. What is the angle of reflection? 
What is the angle of refraction into the air? 

Next, the light that passes from material 2 into the air 
undergoes refraction at point B, with refraction angle e3• 

Thus, we again apply Snell's law of refraction, but this time 
we write Eq. 33-40 as 

n3 sin e3 = n2 sin e2. (33-43) 

Solving for e3 then leads to 
Calculations: We first need to relate one of the angles at 
point B with a known angle at point A. Because the inter­
face through point B is parallel to that through point A, 
the incident angle at B must be equal to the angle of re­
fraction e2, as shown in Fig. 33-22b. Then for reflection, we 
again use the law of reflection. Thus, the angle of reflec­
tion at B is 

83 = sin-1 
(:: sin 82) = sin-1 (~:~~ Sin28.880

) 

= 58.75° = 59°. (Answer) 

(Answer) 

This result means that the beam swings away from the normal 
(it was at 29° to the normal and is now at 59°). The reason is 
that when the light travels across the interface, it moves into 
a material (air) with a lower index of refraction. 

,~s Additional examples, video, and practice available at WileyPLUS 

Total Internal Reflection 
Figure 33-23a shows rays of monochromatic light from a point source S in glass 
incident on the interface between the glass and air. For ray a, which is perpendic­
ular to the interface, part of the light reflects at the interface and the rest travels 
through it with no change in direction. 

For rays b through e, which have progressively larger angles of incidence at 
the interface, there are also both reflection and refraction at the interface. As the 
angle of incidence increases, the angle of refraction increases; for ray e it is 90°, 
which means that the refracted ray points directly along the interface. The angle 
of incidence giving this situation is called the critical angle ee. For angles of inci­
dence larger than ee, such as for rays f and g, there is no refracted ray and all the 
light is reflected; this effect is called total internal reflection. 

To find en we use Eq. 33-40; we arbitrarily associate subscript 1 with the 
glass and subscript 2 with the air, and then we substitute ee for e1 and 90° for e2, 

(a) 

If the next index is lower 
and the incident angle is 
large enough, the light 
can be trapped inside. 

Fig. 33-23 (a) Total internal reflection of light from a point source S in glass 
occurs for all angles of incidence greater than the critical angle Be. At the critical 
angle, the refracted ray points along the air-glass interface. (b) A source in a 
tank of water. (Ken Kay/Fundamental Photographs) 

(b) 
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Fig. 33-24 An endoscope used to 
inspect an artery. (©LaurentiPhototake) 

Incident 
Reflected 

ray 
/' 

Air 
Glass 

Component perpendicular to page 

Component parallel to page 

Fig. 33-25 A ray of unpolarized 
light in air is incident on a glass surface 
at the Brewster angle 0B' The electric 
fields along that ray have been re­
solved into components perpendicular 
to the page (the plane of incidence, 
reflection, and refraction) and compo­
nents parallel to the page. The reflected 
light consists only of components per­
pendicular to the page and is thus 
polarized in that direction. The re­
fracted light consists of the original 
components parallel to the page and 
weaker components perpendicular to 
the page; this light is partially polarized. 

which leads to 

(33-44) 
which gives us 

(critical angle). (33-45) 

Because the sine of an angle cannot exceed unity, n2 cannot exceed n[ in this 
equation. This restriction tells us that total internal reflection cannot occur 
when the incident light is in the medium of lower index of refraction. If 
source S were in the air in Fig. 33-23a, all its rays that are incident on the 
air-glass interface (includingfand g) would be both reflected and refracted 
at the interface. 

Total internal reflection has found many applications in medical technology. 
For example, a physician can view the interior of an artery of a patient by running 
two thin bundles of optical fibers through the chest wall and into an artery 
(Fig. 33-24). Light introduced at the outer end of one bundle undergoes repeated 
total internal reflection within the fibers so that, even though the bundle provides 
a curved path, most of the light ends up exiting the other end and illuminating the 
interior of the artery. Some of the light reflected from the interior then comes 
back up the second bundle in a similar way, to be detected and converted to an 
image on a monitor's screen for the physician to view. 

Polarization by Reflection 
You can vary the glare you see in sunlight that has been reflected from, say, water 
by looking through a polarizing sheet (such as a polarizing sunglass lens) and 
then rotating the sheet's polarizing axis around your line of sight. You can do 
so because any light that is reflected from a surface is either fully or partially 
polarized by the reflection. 

Figure 33-25 shows a ray of unpolarized light incident on a glass surface. 
Let us resolve the electric field vectors of the light into two components. The 
perpendicular components are perpendicular to the plane of incidence and 
thus also to the page in Fig. 33-25; these components are represented with 
dots (as if we see the tips of the vectors). The parallel components are parallel 
to the plane of incidence and the page; they are represented with double­
headed arrows. Because the light is unpolarized, these two components are of 
equal magnitude. 

In general, the reflected light also has both components but with unequal 
magnitudes. This means that the reflected light is partially polarized-the elec­
tric fields oscillating along one direction have greater amplitudes than those 
oscillating along other directions. However, when the light is incident at a par­
ticular incident angle, called the Brewster angle BB, the reflected light has only 
perpendicular components, as shown in Fig. 33-25. The reflected light is then 
fully polarized perpendicular to the plane of incidence. The parallel compo­
nents of the incident light do not disappear but (along with perpendicular com­
ponents) refract into the glass. 

Glass, water, and the other dielectric materials discussed in Section 25-7 can 
partially and fully polarize light by reflection. When you intercept sunlight 
reflected from such a surface, you see a bright spot (the glare) on the surface 
where the reflection takes place. If the surface is horizontal as in Fig. 33-25, the 
reflected light is partially or fully polarized horizontally. To eliminate such glare 
from horizontal surfaces, the lenses in polarizing sunglasses are mounted with 
their polarizing direction vertical. 
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For light incident at the Brewster angle ~, we find experimentally that the 
reflected and refracted rays are perpendicular to each other. Because the 
reflected ray is reflected at the angle ~ in Fig. 33-25 and the refracted ray is at an 
angle Bn we have 

BB + Br = 90°. (33-46) 

These two angles can also be related with Eq. 33-40. Arbitrarily assigning sub­
script 1 in Eq. 33-40 to the material through which the incident and reflected rays 
travel, we have, from that equation, 

nl sin BB = n2 sin Br. (33-47) 

Combining these equations leads to 

nl sin BB = n2 sin(90° BB) = n2 cos BB, (33-48) 
which gives us 

(Brewster angle). (33-49) 

(Note carefully that the subscripts in Eq. 33-49 are not arbitrary because of our 
decision as to their meanings.) If the incident and reflected rays travel in air, we 
can approximate nl as unity and let n represent n2 in order to write Eq. 33-49 as 

~ = tan-1 n (Brewster's law). (33-50) 

This simplified version of Eq. 33-49 is known as Brewster's law. Like BB, it is named 
after Sir David Brewster, who found both experimentally in 1812. 

Savg, which is called the intensity 1 of the wave: 

_ 1 2 
1 - --Errus , 

CJ.Lo 
(33-26) 

Electromagnetic Waves An electromagnetic wave consists 
of oscillating electric and magnetic fields. The various possible fre­
quencies of electromagnetic waves form a spectrum, a small part of 
which is visible light. An electromagnetic wave traveling along an x 
axis has an electric field E and a magnetic field E with magnitudes 
that depend on x and t: 

E = Em sin(kx - wt) 

in which Errus = Em/V2. A point source of electromagnetic waves 
emits the waves isotropically- that is, with equal intensity in all di­
rections. The intensity of the waves at distance r from a point 
source of power Ps is 

and B = Bm sin(kx - wt), (33-1,33-2) 

where Em and Bm are the amplitudes of E and E. The electric field in­
duces the magnetic field and vice versa. The speed of any electromag­
netic wave in vacuum is c, which can be written as 

E 1 
c=-=---

B YJ.LoSo' 
(33-5,33-3) 

where E and B are the simultaneous magnitudes of the fields. 

Energy Flow The rate per unit area at which energy is trans­
ported via an electromagnetic wave is given by the Poynting 
vector S: 

~ 1 -) ~ 
S=-E X B. 

J.Lo 
(33-19) 

The direction of S (and thus of the wave's travel and the energy 
transport) is perpendicular to the directions of both E and E. The 
time-averaged rate per unit area at which energy is transported is 

P, 
1=-4 2' TTr 

(33-27) 

Radiation Pressure When a surface intercepts electro­
magnetic radiation, a force and a pressure are exerted on the sur­
face. If the radiation is totally absorbed by the surface, the force is 

IA 
F=­

c 
(total absorption), (33-32) 

in which 1 is the intensity of the radiation and A is the area of the 
surface perpendicular to the path of the radiation. If the radiation 
is totally reflected back along its original path, the force is 

21A 
F=-­

c 
(total reflection back along path). 

The radiation pressure Pr is the force per unit area: 

1 
p=-

r C 
(total absorption) 

(33-33) 

(33-34) 



914 c ER 33 ELECTROMAG NETIC WAVES 

and 
21 

p =-
r C (total reflection back along path). (33-35) 

Polarization Electromagnetic waves are polarized if their 
electric field vectors are all in a single plane, called the plane of os­
cillation. Light waves from common sources are not polarized; that 
is, they are unpolarized, or polarized randomly. 

Polarizing Sheets When a polarizing sheet is placed in the 
path of light, only electric field components of the light parallel to 
the sheet's polarizing direction are transmitted by the sheet; compo­
nents perpendicular to the polarizing direction are absorbed. The 
light that emerges from a polarizing sheet is polarized parallel to the 
polarizing direction of the sheet. 

If the original light is initially unpolarized, the transmitted 
intensity I is half the original intensity 10: 

(33-36) 

If the original light is initially polarized, the transmitted intensity 
depends on the angle B between the polarization direction of the 
original light and the polarizing direction of the sheet: 

1= locos2 B. (33-38) 

Geometrical Optics Geometrical optics is an approximate treat­
ment of light in which light waves are represented as straight-line rays. 

If the magnetic field of a light wave oscillates parallel to a y axis 
and is given by By = Bill sin(kz wt), (a) in what direction does the 
wave travel and (b) parallel to which axis does the associated electric 
field oscillate? 

:2 Suppose we rotate the second sheet in Fig. 33-15a, starting with 
the polarization direction aligned with the y axis (B = 0) and ending 
with it aligned with the x axis (B = 900

). Which of the four curves in 
Fig. 33-26 best shows the intensity of the light through the three­
sheet system during this 900 rotation? 

Fig. 33-26 Question 2. 

(a) Figure 33-27 shows light reaching a polarizing sheet whose 
polarizing direction is parallel to a y axis. We shall rotate the sheet 
400 clockwise about the light's indicated line of travel. During this 
rotation, does the fraction of the initial light intensity passed by the 

Fig. 33-27 Question 3. 

Reflection and Refraction When a light ray encounters a 
boundary between two transparent media, a reflected ray and a 
refracted ray generally appear. Both rays remain in the plane of 
incidence. The angle of reflection is equal to the angle of incidence, 
and the angle of refraction is related to the angle of incidence by 
Snell's law, 

(refraction) , (33-40) 

where n) and n2 are the indexes of refraction of the media in which 
the incident and refracted rays travel. 

Total Internal Reflection A wave encountering a boundary 
across which the index of refraction decreases will experience total 
internal reflection if the angle of incidence exceeds a critical angle 
Be, where 

(critical angle). (33-45) 

Polarization by Reflection A reflected wave will be fully 
polarized, with its E vectors perpendicular to the plane of incidence, 
if it strikes a boundary at the Brewster angle BB, where 

(Brewster angle). (33-49) 

sheet increase, decrease, or remain the same if the light is (a) ini­
tially unpolarized, (b) initially polarized parallel to the x axis, and 
( c) initially polarized parallel to the y axis? 

4 Figure 33-28 shows the electric and magnetic 
fields of an electromagnetic wave at a certain instant. 
Is the wave traveling into the page or out of it? 

-> 
E 

5 In Fig. 33-15a, start with light that is initially Fig. 33-28 

polarized parallel to the x axis, and write the ratio Question 4. 
of its final intensity h to its initial intensity 10 as 
lila = A cos" B. What are A, n, and B if we rotate the polarizing di­
rection of the first sheet (a) 600 counterclockwise and (b) 900 clock­
wise from what is shown? 

In Fig. 33-29, unpolarized light is sent into a system of five po­
larizing sheets. Their polarizing directions, measured counterclock­
wise from the positive direction of the y axis, are the following: 
sheet 1,350

; sheet 2, 00
; sheet 3, 00

; sheet 4, 1100
; sheet 5,45 0

• Sheet 
3 is then rotated 1800 counterclockwise about the light ray. During 

y 

x 

Fig. 33-29 Question 6. 



that rotation, at what angles (mea­
sured counterclockwise from the y 
axis) is the transmission of light 
through the system eliminated? 

Figure 33-30 shows rays of mono-
chromatic light passing through three c 

materials a, b, and c. Rank the materi-
als according to the index of refrac- Fig.33-30 Question 7. 
tion, greatest first. 

Figure 33-31 shows the multiple reflections of a light ray 
along a glass corridor where the walls are either parallel or per­
pendicular to one another. If the angle of incidence at point a is 
30°, what are the angles of reflection of the light ray at points b, c, 
d, e,andf? 

Fig. 33-31 Question 8. 

Figure 33-32 shows four long Air 
horizontal layers A - D of different X A 

/' 1.3 
materials, with air above and be- ..,---------

1.5 B 

1.4 c 

1.3 D 

Air 

low them. The index of refraction 
of each material is given. Rays of 
light are sent into the left end of 
each layer as shown. In which 
layer is there the possibility of to­
tally trapping the light in that 

Fig.33-32 Question 9. 
layer so that, after many reflec-
tions, all the light reaches the right end of the layer? 

10 The leftmost block in Fig. 33-33 depicts total internal 
reflection for light inside a material with an index of refraction nl 
when air is outside the material. A light ray reaching point A from 
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anywhere within the shaded region at the left (such as the ray 
shown) fully reflects at that point and ends up in the shaded region 
at the right. The other blocks show similar situations for two other 
materials. Rank the indexes of refraction of the three materials, 
greatest first. 

Air A Air A Air A 

~~EZ:J 
Fig. 33-33 Question 10. 

11 Each part of Fig. 33-34 shows light that refracts through an in­
terface between two materials. The incident ray (shown gray in the 
figure) consists of red and blue light. The approximate index of re­
fraction for visible light is indicated for each material. Which of the 
three parts show physically possible refraction? (Hint: First consider 
the refraction in general, regardless of the color, and then consider 
how red and blue light refract differently.) 

~
1=1.5 

~~~-. 

(a) n = 1.3 
(b) (c) 

Fig. 33-34 Question 11. 

12 In Fig. 33-35, light travels from 
material a, through three layers of 
other materials with surfaces paral­
lel to one another, and then back 
into another layer of material a. 
The refractions (but not the associ­
ated reflections) at the surfaces 
are shown. Rank the materials ac­
cording to index of refraction, 
greatest first. (Hint: The parallel 

a b 

n = 1.3 

arrangement of the surfaces allows Fig. 33-35 Question 12. 
comparison. ) 

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Maxwell's Rainbow 
.1 A certain helium-neon laser emits red light in a narrow band 
of wavelengths centered at 632.8 nm and with a "wavelength 
width" (such as on the scale of Fig. 33-1) of 0.0100 nm. What is the 
corresponding "frequency width" for the emission? 

Project Seafarer was an ambitious program to construct an 
enormous antenna, buried underground on a site about 10 000 
km2 in area. Its purpose was to transmit signals to submarines 
while they were deeply submerged. If the effective wavelength 

were 1.0 X 104 Earth radii, what would be the (a) frequency and 
(b) period of the radiations emitted? Ordinarily, electromagnetic 
radiations do not penetrate very far into conductors such as sea­
water, and so normal signals cannot reach the submarines. 

From Fig. 33-2, approximate the (a) smaller and (b) 
larger wavelength at which the eye of a standard observer has half 
the eye's maximum sensitivity. What are the (c) wavelength, (d) 
frequency, and (e) period of the light at which the eye is the most 
sensitive? 
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-4 About how far apart must you hold your hands for them to 
be separated by 1.0 nano-light-second (the distance light travels 
in 1.0 ns)? 

The Traveling Electromagnetic Wave, 
Qualitatively 

SSM What inductance must be connected to a 17 pF capaci­
tor in an oscillator capable of generating 550 nm (i.e., visible) elec­
tromagnetic waves? Comment on your answer. 

·6 What is the wavelength of the electromagnetic wave emitted 
by the oscillator-antenna system of Fig. 33-3 if L = 0.253 pH and 
C = 25.0pF? 

33·5 Energy Transport and the Poynting Vector 

What is the intensity of a traveling plane electromagnetic 
wave if Bm is 1.0 X 10-4 T? 

-8 Assume (unrealistically) that a TV station acts as a point 
source broadcasting isotropic ally at 1.0 MW. What is the intensity 
of the transmitted signal reaching Proxima Centauri, the star near­
est our solar system, 4.31y away? (An alien civilization at that dis­
tance might be able to watch X Files.) A light-year (ly) is the dis­
tance light travels in one year. 

-9 ILW Some neodymium-glass lasers can provide 100 TW of 
power in 1.0 ns pulses at a wavelength of 0.26 [Lm. How much en­
ergy is contained in a single pulse? 

'10 A plane electromagnetic wave has a maximum electric field 
magnitude of 3.20 X 10-4 Vim. Find the magnetic field amplitude. 

·11 IlW A plane electromagnetic wave traveling in the positive 
direction of an x axis in vacuum has components Ex = Ey = 0 and 
Ez = (2.0 Vim) cos[( 7T X 1015 S-I)(t - xlc)]. (a) What is the amplitude 
of the magnetic field component? (b) Parallel to which axis does the 
magnetic field oscillate? (c) When the electric field component is in 
the positive direction of the z axis at a certain point P, what is the 
direction of the magnetic field component there? 

·12 In a plane radio wave the maximum value of the electric field 
component is 5.00 Vim. Calculate (a) the maximum value of the mag­
netic field component and (b) the wave intensity. 

Sunlight just outside Earth's atmosphere has an intensity of 
1.40 kW/m2. Calculate (a) Em and (b) Bm for sunlight there, assum­
ing it to be a plane wave. 

··14 An isotropic point source emits light at wavelength 
500 nm, at the rate of 200 W. A light detector is positioned 400 m 
from the source. What is the maximum rate aBiat at which the 
magnetic component of the light changes with time at the detec­
tor's location? 

··15 An airplane flying at a distance of 10 km from a radio trans­
mitter receives a signal of intensity 10 [LW/m2. What is the ampli­
tude of the (a) electric and (b) magnetic component of the signal at 
the airplane? (c) If the transmitter radiates uniformly over a hemi­
sphere, what is the transmission power? 

Frank D. Drake, an investigator in the SET! (Search for 
Extra-Terrestrial Intelligence) program, once said that the large 
radio telescope in Arecibo, Puerto Rico (Fig. 33-36), "can detect a 
signal which lays down on the entire surface of the earth a power 
of only one picowatt." (a) What is the power that would be re­
ceived by the Arecibo antenna for such a signal? The antenna di­
ameter is 300 m. (b) What would be the power of an isotropic 

source at the center of our galaxy that could provide such a signal? 
The galactic center is 2.2 X 104 1y away. A light-year is the distance 
light travels in one year. 

Fig.33-36 Problem 16. Radio telescope at Arecibo. (Courtesy 
Cornell University) 

The maximum electric field 10 m from an isotropic point 
source of light is 2.0 Vim. What are (a) the maximum value of the 
magnetic field and (b) the average intensity of the light there? (c) 
What is the power of the source? 

The intensity I of light from 
an isotropic point source is deter­
mined as a function of distance r 
from the source. Figure 33-37 gives 
intensity I versus the inverse square ...., 
r- 2 of that distance. The vertical axis 
scale is set by Is = 200 W 1m2, and 

o 

the horizontal axis scale is set by 
r;2 = 8.0 m-2• What is the power of Fig.33-37 Problem 18. 
the source? 

Radiation Pressure 
SSM High-power lasers are used to compress a plasma (a 

gas of charged particles) by radiation pressure. A laser generating 
radiation pulses with peak power 1.5 X 1()3 MW is focused onto 1.0 
mm2 of high-electron-density plasma. Find the pressure exerted on 
the plasma if the plasma reflects all the light beams directly back 
along their paths. 

-20 Radiation from the Sun reaching Earth (just outside the at­
mosphere) has an intensity of 1.4 kW/m2. (a) Assuming that Earth 
(and its atmosphere) behaves like a flat disk perpendicular to the 
Sun's rays and that all the incident energy is absorbed, calculate 
the force on Earth due to radiation pressure. (b) For comparison, 
calculate the force due to the Sun's gravitational attraction. 

-21 IlW What is the radiation pressure 1.5 m away from a 500 W 
lightbulb? Assume that the surface on which the pressure is ex­
erted faces the bulb and is perfectly absorbing and that the bulb ra­
diates uniformly in all directions. 

A black, totally absorbing piece of cardboard of area 
A = 2.0 cm2 intercepts light with an intensity of 10 W/m2 from a 
camera strobe light. What radiation pressure is produced on the 
cardboard by the light? 

Someone plans to float a small, totally absorbing sphere 0.500 
m above an isotropic point source of light, so that the upward ra-



diation force from the light matches the downward gravitational 
force on the sphere. The sphere's density is 19.0 g/cm3, and its ra­
dius is 2.00 mm. (a) What power would be required of the light 
source? (b) Even if such a source were made, why would the sup­
port of the sphere be unstable? 

"24 It has been proposed that a spaceship might be propelled 
in the solar system by radiation pressure, using a large sail made of 
foil. How large must the surface area of the sail be if the radiation 
force is to be equal in magnitude to the Sun's gravitational attrac­
tion? Assume that the mass of the ship + sail is 1500 kg, that the sail 
is perfectly reflecting, and that the sail is oriented perpendicular to 
the Sun's rays. See Appendix C for needed data. (With a larger sail, 
the ship is continuously driven away from the Sun.) 

SSM Prove, for a plane electromagnetic wave that is nor­
mally incident on a flat surface, that the radiation pressure on the 
surface is equal to the energy density in the incident beam. (This rela­
tion between pressure and energy density holds no matter what frac­
tion of the incident energy is reflected.) 

'·26 In Fig. 33-38, a laser beam of 
power 4.60 Wand diameter D = 2.60 
mm is directed upward at one circular 
face (of diameter d < 2.60 mm) of a per­
fectly reflecting cylinder. The cylinder is 
levitated because the upward radiation 
force matches the downward gravita­
tional force. If the cylinder's density is 
1.20 g/cm3, what is its height H? 

'·27 SSM WWW A plane electro­
magnetic wave, with wavelength 3.0 m, 
travels in vacuum in the positive direc­

Fig. 33-38 

Problem 26. 

tion of an x axis. The electric field, of amplitude 300 Vim, oscillates 
parallel to the y axis. What are the (a) frequency, (b) angular fre­
quency, and (c) angular wave number of the wave? (d) What is the 
amplitude of the magnetic field component? (e) Parallel to which 
axis does the magnetic field oscillate? (f) What is the time­
averaged rate of energy flow in watts per square meter associated 
with this wave? The wave uniformly illuminates a surface of area 
2.0 m2• If the surface totally absorbs the wave, what are (g) the rate 
at which momentum is transferred to the surface and (h) the radia­
tion pressure on the surface? 

The average intensity of the solar radiation that strikes nor­
mally on a surface just outside Earth's atmosphere is 1.4 kW/m2• 

(a) What radiation pressure Pr is exerted on this surface, assuming 
complete absorption? (b) For comparison, find the ratio of Pr to 
Earth's sea-level atmospheric pressure, which is 1.0 X 105 Pa. 

SSM A small spaceship with a mass of only 1.5 X 103 kg 
(including an astronaut) is drifting in outer space with negligible 
gravitational forces acting on it. If the astronaut turns on a 10 kW 
laser beam, what speed will the ship attain in 1.0 day because of the 
momentum carried away by the beam? 

A small laser emits light at power 5.00 mW and 
wavelength 633 nm. The laser beam is focused (narrowed) until 
its diameter matches the 1266 nm diameter of a sphere placed in its 
path. The sphere is perfectly absorbing and has density 5.00 X 103 

kg/m3. What are (a) the beam intensity at the sphere's location, (b) 
the radiation pressure on the sphere, ( c) the magnitude of the corre­
sponding force, and (d) the magnitude of the acceleration that force 
alone would give the sphere? 
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·"31 As a comet swings around 
the Sun, ice on the comet's surface 
vaporizes, releasing trapped dust 
particles and ions. The ions, because Sun 
they are electrically charged, are 
forced by the electrically charged 
solar wind into a straight ion tail that Comet 
points radially away from the Sun 

"­
"-
"\,, '- 1 Dust tail 

" ....... ....... , .......... .... 
3'~ 

2 

Ion tail 

(Fig. 33-39). The (electrically neu- Fig. 33-39 Problem 31. 
tral) dust particles are pushed radi-
ally outward from the Sun by the radiation force on them from 
sunlight. Assume that the dust particles are spherical, have density 
3.5 X 103 kg/m3, and are totally absorbing. (a) What radius must a 
particle have in order to follow a straight path, like path 2 in the 
figure? (b) If its radius is larger, does its path curve away from the 
Sun (like path 1) or toward the Sun (like path 3)? 

33-7 Polarization 
'32 In Fig. 33-40, initially unpolarized light is sent into a system 
of three polarizing sheets whose polarizing directions make angles 
of OJ = O2 = 03 = 500 with the direction of the y axis. What percent­
age of the initial intensity is transmitted by the system? (Hint: Be 
careful with the angles.) 

y 

x 

Fig. 33-40 Problems 32 and 33. 

SSM In Fig. 33-40, initially unpolarized light is sent into a 
system of three polarizing sheets whose polarizing direc­
tions make angles of 0l = 400

, O2 = 200
, and 03 = 400 with the di­

rection of the y axis. What percentage of the light's initial intensity 
is transmitted by the system? (Hint: Be careful with the angles.) 

In Fig. 33-41, a beam of unpolarized 
light, with intensity 43 W/m2, is sent into a sys­
tem of two polarizing sheets with polarizing di­
rections at angles OJ = 700 and O2 = 900 to the 
y axis. What is the intensity of the light trans­
mitted by the system? 

IlW In Fig. 33-41, a beam of light, with 
intensity 43 W/m2 and polarization parallel to 
a y axis, is sent into a system of two polarizing 
sheets with polarizing directions at angles of 
OJ = 700 and O2 = 900 to the y axis. What is the 

Fig. 33-41 

Problems 34,35, 
and 42. 

intensity of the light transmitted by the two-sheet system? 

At a beach the light is generally partially polarized 
due to reflections off sand and water. At a particular beach on 
a particular day near sundown, the horizontal component of the 
electric field vector is 2.3 times the vertical component. A standing 
sunbather puts on polarizing sunglasses; the glasses eliminate the 
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horizontal field component. (a) What fraction of the light intensity 
received before the glasses were put on now reaches the sun­
bather's eyes? (b) The sunbather, still wearing the glasses, lies on 
his side. What fraction of the light intensity received before the 
glasses were put on now reaches his eyes? 

SSM www We want to rotate the direction of polariza­
tion of a beam of polarized light through 90° by sending the beam 
through one or more polarizing sheets. (a) What is the minimum 
number of sheets required? (b) What is the minimum number of 
sheets required if the transmitted intensity is to be more than 60% 
of the original intensity? 

In Fig. 33-42, unpolarized light is sent into a system of three 
polarizing sheets. The angles 81> 82, and 83 of the polarizing direc­
tions are measured counterclockwise from the positive direction of 
the y axis (they are not drawn to scale). Angles 81 and 83 are fixed, 
but angle 82 can be varied. Figure 33-43 gives the intensity of the 
light emerging from sheet 3 as a function of 82, (The scale of the in­
tensity axis is not indicated.) What percentage of the light's initial 
intensity is transmitted by the system when 82 = 30°? 

,~ 
82 I ' 
'~ \ 

83 I ' 'A ,,,---""----/ 

Fig. 33-42 Problems 38, 
40, and 44. 

I 

180082 

Fig. 33-43 Problem 38. 

Unpolarized light of intensity 10 mW/m2 is sent into a po­
larizing sheet as in Fig. 33-11. What are (a) the amplitude of the 
electric field component of the transmitted light and (b) the radi­
ation pressure on the sheet due to its absorbing some of the light? 

"40 In Fig. 33-42, unpolarized light is sent into a system of three 
polarizing sheets. The angles 81, 82, and 83 of the polarizing directions 
are measured counterclockwise from the positive direction of the y 
axis (they are not drawn to scale). Angles 81 and 83 are fixed, but an­
gle 82 can be varied. Figure 33-44 gives the intensity of the light 
emerging from sheet 3 as a function of 82, (The scale of the intensity 
axis is not indicated.) What percentage of the light's initial intensity 
is transmitted by the three-sheet system when 82 = 90°? 

I 

oRtOOLH, 
0° 60° 1200 1800 2 

Fig. 33-44 Problem 40. 

A beam of polarized light is sent into a system of two polar­
izing sheets. Relative to the polarization direction of that incident 
light, the polarizing directions of the sheets are at angles 8 for the 
first sheet and 90° for the second sheet. If 0.10 of the incident inten­
sity is transmitted by the two sheets, what is 8? 

In Fig. 33-41, unpolarized light is sent into a system of two po­
larizing sheets. The angles 81 and Oz of the polarizing directions of the 
sheets are measured counterclockwise from the positive direction of 
the y axis (they are not drawn to scale in the figure). Angle 81 is fixed 
but angle 82 can be varied. Figure 33-45 gives the intensity of the light 
emerging from sheet 2 as a function of Oz. (The scale of the intensity 
axis is not indicated.) What percentage of the light's initial intensity is 
transmitted by the two-sheet system when Oz = 90°? 

I 

82 
180° 

Fig. 33-45 Problem 42. 

A beam of partially polarized light can be considered to be a 
mixture of polarized and unpolarized light. Suppose we send such 
a beam through a polarizing filter and then rotate the filter through 
360° while keeping it perpendicular to the beam. If the transmitted 
intensity varies by a factor of 5.0 during the rotation, what fraction 
of the intensity of the original beam is associated with the beam's 
polarized light? 

In Fig. 33-42, unpolarized light is sent into a system of three 
polarizing sheets, which transmits 0.0500 of the initial light inten­
sity. The polarizing directions of the first and third sheets are at an­
gles 81 = 0° and 83 = 90°. What are the (a) smaller and (b) larger 
possible values of angle 82 « 90°) for the polarizing direction of 
sheet2? 

sec. 33-8 Reflection and Refraction 
·45 When the rectangular metal tank in Fig. 33-46 is filled to the 
top with an unknown liquid, observer 0, with eyes level with the 
top of the tank, can just see corner E. A ray that refracts toward ° 
at the top surface of the liquid is shown. If D = 85.0 em and L = 

1.10 m, what is the index of refraction of the liquid? 

o VI Normal to 
I liquid surface 

---L -----+-

Fig. 33-46 Problem 45. 

·46 In Fig. 33-47a, a light ray in an underlying material is 
incident at angle 81 on a boundary with water, and some of 
the light refracts into the water. There are two choices of 
underlying material. For each, the angle of refraction 82 versus the 
incident angle 81 is given in Fig. 33-47h. The horizontal axis scale is 
set by 81s = 90°. Without calculation, determine whether the index 
of refraction of (a) material 1 and (b) material 2 is greater or less 



than the index of water (n = 1.33). What is the index of refraction 
of (c) material 1 and (d) material2? 

Water 

(a) (b) 

Fig. 33-47 Problem 46. 

·47 Light in vacuum is incident on the surface of a glass slab. In the 
vacuum the beam makes an angle of 32.0° with the normal to the sur­
face, while in the glass it makes an angle of 21.0° with the normal. 
What is the index of refraction of the glass? 

·48 In Fig. 33-48a, a light ray in water is incident at angle (Jj on a 
boundary with an underlying material, into which some of the light re­
fracts. There are two choices of underlying material. For each, the an­
gle of refraction Bz versus the incident angle (Jj is given in Fig. 33-48b. 
The vertical axis scale is set by Bzs = 90°. Without calculation, deter­
mine whether the index of refraction of (a) material 1 and (b) material 
2 is greater or less than the index of water (n = 1.33). What is the in­
dex of refraction of (c) material 1 and (d) material2? 

(a) (b) 

Fig. 33-48 Problem 48. 

·49 Figure 33-49 shows light reflecting from two perpendicular reflect­
ing surfaces A and B. Find the angle between the incoming ray i and the 
outgoing ray 1". 

Fig. 33-49 Problem 49. 

In Fig. 33-50a, a beam of light in material 1 is incident on a 
boundary at an angle (Jj = 40°. Some of the light travels through 
material 2, and then some of it emerges into material 3. The two 
boundaries between the three materials are parallel. The final direc­
tion of the beam depends, in part, on the index of refraction n3 of 
the third material. Figure 33-50b gives the angle of refraction (J3 in 
that material versus n3 for a range of possible n3 values. The vertical 
axis scale is set by (J3a = 30.0° and (J3b = 50.0°. (a) What is the index 
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of refraction of material 1, or is the index impossible to calculate 
without more information? (b) What is the index of refraction of 
material 2, or is the index impossible to calculate without more in­
formation? (c) If (Jj is changed to 70° and the index of refraction of 
material 3 is 2.4, what is (J3? 

2 3 

e3a '---'---'---'-----'---'---'------'-11j 
1.5 1.7 1.9 

(a) (b) 

Fig. 33-50 Problem 50. 

In Fig. 33-51, light is incident at angle (Jj = 40.1° on a 
boundary between two transparent materials. Some of the light 
travels down through the next three layers of transparent materi­
als, while some of it reflects upward and then escapes into the air. If 
nj = 1.30, n2 = 1.40, n3 = 1.32, and n4 = 1.45, what is the value of 
(a) (Js in the air and (b) (J4 in the bottom material? 

Fig. 33-51 Problem 51. 

In Fig. 33-52a, a beam of light in material 1 is incident on a 
boundary at an angle of (Jj = 30°. The extent of refraction of the 
light into material 2 depends, in part, on the index of refraction n2 

of material 2. Figure 33-52b gives the angle of refraction (J2 versus 
n2 for a range of possible n2 values. The vertical axis scale is set by 
Bza = 20.0° and Bzb = 40.0°. (a) What is the index of refraction of 
material 1 ? (b) If the incident angle is changed to 60° and material 
2 has n2 = 2.4, then what is angle (J2? 

2 

e2a '-----'---'---'----'----'---'----'-- '/12 
1.3 1.5 1.7 1.9 

(a) (b) 

Fig. 33-52 Problem 52. 
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SSM IlW WWW In Fig. 33-53, a ray is incident on one 
face of a triangular glass prism in air. The angle of incidence () is 
chosen so that the emerging ray also makes the same angle () with 
the normal to the other face. Show that the index of refraction n of 
the glass prism is given by 

sin ~('" + cf» 
n= 

sin ~cf> 

where cf> is the vertex angle of the prism and if; is the deviation an­
gle, the total angle through which the beam is turned in passing 
through the prism. (Under these conditions the deviation angle if; 
has the smallest possible value, which is called the angle of mini­
mum deviation.) 

Fig. 33-53 

Problems 53 and 64. 

Dispersion in a window pane. In Fig. 
33-54, a beam of white light is incident at angle () = 

50° on a common window pane (shown in cross sec­
tion). For the pane's type of glass, the index of re­
fraction for visible light ranges from 1.524 at the 
blue end of the spectrum to 1.509 at the red end. 
The two sides of the pane are parallel. What is the 
angular spread of the colors in the beam (a) when Fig. 33-54 

the light enters the pane and (b) when it emerges Problem 54. 
from the opposite side? (Hint: When you look at an 
object through a window pane, are the colors in the light from the 
object dispersed as shown in, say, Fig. 33-207) 

SSM In Fig. 33-55, a 2.00-
m-Iong vertical pole extends from 
the bottom of a swimming pool to a 
point 50.0 cm above the water. 
Sunlight is incident at angle () = 

55.0°. What is the length of the 
shadow of the pole on the level bot-
tom of the pool? 

sunrays 

Rainbows from square Fig. 33-55 Problem 55. 
drops. Suppose that, on some surreal 
world, raindrops had a square cross section 
and always fell with one face horizontal. 
Figure 33-56 shows such a falling drop, with a 
white beam of sunlight incident at () = 70.0° at 
point P. The part of the light that enters the 
drop then travels to point A, where some of it 
refracts out into the air and the rest reflects. 
That reflected light then travels to point B, 
where again some of the light refracts out into 
the air and the rest reflects. What is the differ­
ence in the angles of the red light (n = 1.331) 
and the blue light (n = 1.343) that emerge at 

B 

Fig. 33-56 

Problem 56. 

A 

(a) point A and (b) point B? (This angular difference in the light 
emerging at, say, point A would be the rainbow's angular width.) 

Total Internal Reflection 
A point source of light is 80.0 cm below the surface of a body 

of water. Find the diameter of the circle at the surface through 
which light emerges from the water. 

The index of refraction of benzene is 1.8. What is the critical 
angle for a light ray traveling in benzene toward a flat layer of air 
above the benzene? 

SSM ILW In Fig. 33-57, a 
ray of light is perpendicular to the 
face ab of a glass prism (n = 1.52). 
Find the largest value for the angle 
cf> so that the ray is totally reflected 

Fig. 33-57 Problem 59. at face ac if the prism is immersed 
(a) in air and (b) in water. 

In Fig. 33-58, light from ray A 
refracts from material 1 (nj = 1.60) 
into a thin layer of material 2 (n2 = 

1.80), crosses that layer, and is then 
incident at the critical angle on the 
interface between materials 2 and 3 
(n3 = 1.30). (a) What is the value of 
incident angle ()A? (b) If ()A is de- Fig.33-58 Problem 60. 
creased, does part of the light re-
fract into material3? 

c 

Light from ray B refracts from material 1 into the thin layer, 
crosses that layer, and is then incident at the critical angle on the 
interface between materials 2 and 3. (c) What is the value of inci­
dent angle ()B? (d) If ()B is decreased, does part of the light refract 
into material3? 

In Fig. 33-59, light ini­
tially in material 1 refracts into ma­
terial 2, crosses that material, and is 
then incident at the critical angle on 
the interface between materials 2 na 
and 3. The indexes of refraction are 
nj = 1.60, n2 = 1.40, and n3 = 1.20. 
(a) What is angle B? (b) If () is in­
creased, is there refraction of light 
into material3? 

A catfish is 2.00 m 
below the surface of a smooth lake. 

Fig. 33-59 Problem 61. 
(a) What is the diameter of the circle 
on the surface through which the fish can see the world outside the 
water? (b) If the fish descends, does the diameter of the circle in­
crease, decrease, or remain the same? 

In Fig. 33-60, light enters a 90° 
triangular prism at point P with inci­
dent angle (), and then some of it re­
fracts at point Q with an angle of re­
fraction of 90°. (a) What is the index of 
refraction of the prism in terms of ()? 
(b) What, numerically, is the maxi­
mum value that the index of refrac­

Air 

Fig. 33-60 Problem 63. 

tion can have? Does light emerge at Q if the incident angle at P is 
(c) increased slightly and (d) decreased slightly? 



Suppose the prism of Fig. 33-S3 has apex angle ¢ = 60.0° 
and index of refraction n = 1.60. (a) What is the smallest angle of 
incidence 8 for which a ray can enter the left face of the prism and 
exit the right face? (b) What angle of incidence 8 is required for the 
ray to exit the prism with an identical angle 8 for its refraction, as it 
does in Fig. 33-S3? 

Figure 33-61 depicts a sim­
plistic optical fiber: a plastic core (nl = 

1.S8) is surrounded by a plastic sheath 
(n2 = 1.53). A light ray is incident on 
one end of the fiber at angle 8. The ray 
is to undergo total internal reflection 
at point A, where it encounters the Fig. 33-61 Problem 6S. 
core-sheath boundary. (Thus 
there is no loss of light through that boundary.) What is the maxi­
mum value of 8 that allows total internal reflection at A? 

In Fig. 33-62, a light ray in air 
is incident at angle 81 on a block of 
transparent plastic with an index of 
refraction of 1.S6. The dimensions 
indicated are H = 2.00 cm and W = 
3.00 cm. The light passes through 
the block to one of its sides and 

i------w----I· I 
2 

3 

there undergoes reflection (inside 4 
the block) and possibly refraction 
(out into the air). This is the point Fig. 33-62 Problem 66. 
of first reflection. The reflected 
light then passes through the block to another of its sides-a 
point of second reflection. If 81 = 40°, on which side is the point 
of (a) first reflection and (b) second reflection? If there is refrac­
tion at the point of (c) first reflection and (d) second reflection, 
give the angle of refraction; if not, answer "none." If 81 = 70°, on 
which side is the point of (e) first reflection and (f) second re­
flection? If there is refraction at the point of (g) first reflection 
and (h) second reflection, give the angle of refraction; if not, an­
swer "none." 

In the ray diagram of Fig. 33-63, where the angles are not 
drawn to scale, the ray is incident at the critical angle on the inter­
face between materials 2 and 3. Angle ¢ = 60.0°, and two of the in­
dexes of refraction are nl = 1.70 and n2 = 1.60. Find (a) index of re­
fraction n3 and (b) angle 8. (c) If 8 is decreased, does light refract 
into material3? 

Fig. 33-63 Problem 67. 

Polarization by Reflection 
(a) At what angle of incidence will the light reflected from 

water be completely polarized? (b) Does this angle depend on the 
wavelength of the light? 

PROBLEMS 921 

SSM Light that is traveling in water (with an index of refrac­
tion of 1.33) is incident on a plate of glass (with index of refraction 
l.S3). At what angle of incidence does the reflected light end up 
fully polarized? 

In Fig. 33-64, a light ray in air is incident on a flat layer of ma­
terial2 that has an index of refraction 112 = loS. Beneath material 2 
is material 3 with an index of refraction 113' The ray is incident on the 
air-material 2 interface at the Brewster angle for that interface. The 
ray of light refracted into material 3 happens to be incident on the 
material 2-material 3 interface at the Brewster angle for that 
interface. What is the value of 113? 

Fig. 33-64 Problem 70. 

Additional Problems 
SSM (a) How long does it take a radio signal to travel ISO km 

from a transmitter to a receiving antenna? (b) We see a full Moon 
by reflected sunlight. How much earlier did the light that enters 
our eye leave the Sun? The Earth-Moon and Earth-Sun dis­
tances are 3.8 X 105 km and loS X 108 km, respectively. (c) What 
is the round-trip travel time for light between Earth and a space­
ship orbiting Saturn, 1.3 X 109 km distant? (d) The Crab nebula, 
which is about 6S00 light-years (ly) distant, is thought to be the 
result of a supernova explosion recorded by Chinese astronomers 
in A.D. lOS4. In approximately what year did the explosion actu­
ally occur? (When we look into the night sky, we are effectively 
looking back in time.) 

An electromagnetic wave with frequency 4.00 X 1014 Hz trav­
els through vacuum in the positive direction of an x axis. The wave 
has its electric field directed parallel to the y axis, with amplitude 
Em. At time t = 0, the electric field at point P on the x axis has a 
value of + Em 14 and is decreasing with time. What is the distance 
along the x axis from point P to the first point with E = 0 if we 
search in (a) the negative direction and (b) the positive direction 
of the x axis? 

SSM The electric component of a beam of polarized light is 

Ey = (S.OO Vim) sin[(1.00 X 106 m-I)z + wt]. 

(a) Write an expression for the magnetic field component of the 
wave, including a value for w. What are the (b) wavelength, (c) pe­
riod, and (d) intensity of this light? (e) Parallel to which axis does 
the magnetic field oscillate? (f) In which region of the electromag­
netic spectrum is this wave? 

A particle in the solar system is under the combined influence 
of the Sun's gravitational attraction and the radiation force due 
to the Sun's rays. Assume that the particle is a sphere of density 
1.0 X 103 kg/m3 and that all the incident light is absorbed. (a) 
Show that, if its radius is less than some critical radius R, the par­
ticle will be blown out of the solar system. (b) Calculate the criti­
cal radius. 
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75 SSM In Fig. 33-65, a light ray en­
ters a glass slab at point A at incident 
angle 01 = 45.0° and then undergoes 
total internal reflection at point B. 
What minimum value for the index of 
refraction of the glass can be inferred 
from this information? 

Air 

In Fig. 33-66, unpolarized 
light with an intensity of 25 W/m2 is 
sent into a system of four polarizing 
sheets with polarizing directions at 
angles 81 = 40°, O2 = 20°, 03 = 20°, 
and 04 = 30°. What is the intensity of 
the light that emerges from the system? 

B 

Fig. 33-65 Problem 75. 

and outer edges of a rainbow (Fig. 33-21a), what is the angular 
width of the rainbow? 

78 The primary rainbow described in Problem 77 is the 
type commonly seen in regions where rainbows appear. It is pro­
duced by light reflecting once inside the drops. Rarer is the sec­
ondary rainbow described in Section 33-S, produced by light re­
flecting twice inside the drops (Fig. 33-6Sa). (a) Show that the 
angular deviation of light entering and then leaving a spherical wa­
ter drop is 

0dev = (lS00)k + 20i - 2(k + 1)0" 

where k is the number of internal reflections. Using the procedure 
of Problem 77, find the angle of minimum deviation for (b) red 
light and (c) blue light in a secondary rainbow. (d) What is the an­
gular width of that rainbow (Fig. 33-21d)? 

The tertiary rainbow depends on three internal reflections 
(Fig. 33-6Sb). It probably occurs but, as noted in Section 33-S, 
cannot be seen because it is very faint and lies in the bright sky 
surrounding the Sun. What is the angle of minimum deviation for 
(e) the red light and (f) the blue light in this rainbow? (g) What is 
the rainbow's angular width? 

(a) (b) 

Fig. 33-66 Problem 76. Fig. 33-68 Problem 7S. 

Rainbow. Figure 33-67 shows a light ray entering and 
then leaving a falling, spherical raindrop after one internal reflec­
tion (see Fig. 33-21a). The final direction of travel is deviated 
(turned) from the initial direction of travel by angular deviation 
0dev' (a) Show that 0dev is 

where 0i is the angle of incidence of the rayon the drop and Or is 
the angle of refraction of the ray within the drop. (b) Using Snell's 
law, substitute for Or in terms of 0i and the index of refraction n of 
the water. Then, on a graphing calculator or with a computer 
graphing package, graph 0dev versus 0i for the range of possible 0i 
values and for n = 1.331 for red light and n = 1.333 for blue light. 

The red-light curve and the blue-light curve have different 
minima, which means that there is a different angle of minimum 
deviation for each color. The light of any given color that leaves the 
drop at that color's angle of mini-
mum deviation is especially bright Water drop 
because rays bunch up at that angle. 
Thus, the bright red light leaves the Incident 

drop at one angle and the bright ray 

blue light leaves it at another angle. 
Determine the angle of mini­

mum deviation from the 8dev curve 
for (c) red light and (d) blue light. 
(e) If these colors form the inner Fig.33-67 Problem 77. 

79 SSM (a) Prove that a ray of light incident on the surface of a 
sheet of plate glass of thickness t emerges from the opposite face 
parallel to its initial direction but displaced sideways, as in Fig. 33-69. 
(b) Show that, for small angles of incidence 0, this displacement is 
given by 

n 1 
x = to--­

n ' 

where n is the index of refraction of the glass and ° is measured in 
radians. 

Fig. 33-69 Problem 79. 

An electromagnetic wave is traveling in the negative 
direction of a y axis. At a particular position and time, the electric 
field is directed along the positive direction of the z axis and has a 
magnitude of 100 Vim. What are the (a) magnitude and (b) direc­
tion of the corresponding magnetic field? 



The magnetic component of a polarized wave of light is 

B, = (4.0 X 10~6T) sin[(1.57 X 107 m~l)y + wt]. 

(a) Parallel to which axis is the light polarized? What are the (b) 
frequency and (c) intensity of the light? 

In Fig. 33-70, unpolarized light 
is sent into the system of three po­
larizing sheets, where the polarizing 
directions of the first and third sheets 
are at angles e1 = 30° (counterclock­
wise) and e3 = 30° (clockwise). What 
fraction of the initial light intensity e 

15'3, ' emerges from the system? 1--; 

83 SSM A ray of white light trav­
eling through fused quartz is incident 
at a quartz-air interface at angle e!. 

y 

Assume that the index of refraction Fig.33-70 Problem 82. 
of quartz is n = 1.456 at the red end 
of the visible range and 11 = 1.470 at the blue end. If e1 is (a) 42.00°, 
(b) 43.10°, and (c) 44.00°, is the refracted light white, white domi­
nated by the red end of the visible range, or white dominated by the 
blue end of the visible range, or is there no refracted light? 

84 Three polarizing sheets are stacked. The first and third are 
crossed; the one between has its polarizing direction at 45.0° to the 
polarizing directions of the other two. What fraction of the inten­
sity of an originally unpolarized beam is transmitted by the stack? 

In a region of space where gravitational forces can be 
neglected, a sphere is accelerated by a uniform light beam of inten­
sity 6.0 mW/m2• The sphere is totally absorbing and has a radius of 
2.0 ttm and a uniform density of 5.0 X 103 kg/m3. What is the mag­
nitude of the sphere's acceleration due to the light? 

An unpolarized beam of light is sent into a stack of four po­
larizing sheets, oriented so that the angle between the polarizing 
directions of adjacent sheets is 30°. What fraction of the incident 
intensity is transmitted by the system? 

87 SSM During a test, a NATO surveillance radar system, oper­
ating at 12 GHz at 180 kW of power, attempts to detect an 
incoming stealth aircraft at 90 km. Assume that the radar beam is 
emitted uniformly over a hemisphere. (a) What is the intensity of 
the beam when the beam reaches the aircraft's location? The air­
craft reflects radar waves as though it has a cross-sectional area of 
only 0.22 m2• (b) What is the power of the aircraft's reflection? 
Assume that the beam is reflected uniformly over a hemisphere. 
Back at the radar site, what are (c) the intensity, (d) the maximum 
value of the electric field vector, and (e) the rms value of the mag­
netic field of the reflected radar beam? 

The magnetic component of an electromagnetic wave in vac­
uum has an amplitude of 85.8 nT and an angular wave number of 
4.00 m~l. What are (a) the frequency of the wave, (b) the rms value 
of the electric component, and (c) the intensity of the light? 
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Calculate the (a) upper and (b) lower limit of the Brewster an­
gle for white light incident on fused quartz. Assume that the wave­
length limits of the light are 400 and 700 nm. 

In Fig. 33-71, two light rays pass from air through five 
layers of transparent plastic and then back into air. The layers 
have parallel interfaces and unknown thicknesses; their indexes 
of refraction are n1 = 1.7, n2 = 1.6, n3 = 1.5, n4 = 1.4, and n5 = 
1.6. Ray b is incident at angle eb = 20°. Relative to a normal at 
the last interface, at what angle do (a) ray a and (b) ray b 
emerge? (Hint: Solving the problem algebraically can save 
time.) If the air at the left and right sides in the figure were, in­
stead, glass with index of refraction 1.5, at what angle would ( c) 
ray a and (d) ray b emerge? 

Fig. 33-71 Problem 90. 

91 A helium-neon laser, radiating 
at 632.8 nm, has a power output of 
3.0 m W. The beam diverges (spreads) 
at angle e = 0.17 mrad (Fig. 33-72). 

n5 Air 

(a) What is the intensity of the beam Fig. 33-72 Problem 91. 
40 m from the laser? (b) What is the 
power of a point source providing that intensity at that distance? 

92 In about A.D. 150, Claudius Ptolemy gave the following mea­
sured values for the angle of incidence e1 and the angle of refrac­
tion e2 for a light beam passing from air to water: 

10° 

20° 

30° 

40° 

8° 

15°30' 

22°30' 

29° 

50° 

60° 

70° 

80° 

35° 

40°30' 

45°30' 

50° 

Assuming these data are consistent with the law of refraction, use 
them to find the index of refraction of water. These data are inter­
esting as perhaps the oldest recorded physical measurements. 

A beam of initially unpolarized light is sent through two 
polarizing sheets placed one on top of the other. What must be 
the angle between the polarizing directions of the sheets if the 
intensity of the transmitted light is to be one-third the incident 
intensity? 
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One goal of physics is to discover the basic laws governing light, 
such as law of refraction. A broader goal is to put those laws to use, and 
perhaps the most important use is the production of images. The first photo­
graphic images, made in 1824, were only novelties, but our world now thrives 
on images. Huge industries are based on the production of images on televi­
sion, computer, and theater screens. Images from satellites guide military 
strategists during times of conflict and environmental strategists during 
times of blight. Camera surveillance can make a subway system more secure, 
but it can also invade the privacy of unsuspecting citizens. Physiologists and 
medical engineers are still puzzled by how images are produced by the hu­
man eye and the visual cortex of the brain, but they have managed to create 
mental images in some sightless people by electrical stimulation of the 
brain's visual cortex. 

Our first step in this chapter is to define and classify images. Then we exam­
ine several basic ways in which they can be produced. 

Two Types of Image 
For you to see, say, a penguin, your eye must intercept some of the light rays 
spreading from the penguin and then redirect them onto the retina at the rear of 
the eye. Your visual system, starting with the retina and ending with the visual 
cortex at the rear of your brain, automatically and subconsciously processes the 
information provided by the light. That system identifies edges, orientations, 
textures, shapes, and colors and then rapidly brings to your consciousness an 
image (a reproduction derived from light) of the penguin; you perceive and rec­
ognize the penguin as being in the direction from which the light rays came and 
at the proper distance. 

Your visual system goes through this processing and recognition even if the 
light rays do not come directly from the penguin, but instead reflect toward you 
from a mirror or refract through the lenses in a pair of binoculars. However, you 
now see the penguin in the direction from which the light rays came after they 
reflected or refracted, and the distance you perceive may be quite different from 
the penguin's true distance. 

For example, if the light rays have been reflected toward you from a standard 
flat mirror, the penguin appears to be behind the mirror because the rays you 
intercept come from that direction. Of course, the penguin is not back there. This 
type of image, which is called a virtual image, truly exists only within the brain 
but nevertheless is said to exist at the perceived location. 

A real image differs in that it can be formed on a surface, such as a card or a 
movie screen. You can see a real image (otherwise movie theaters would be 
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Fig. 34-1 (a) A ray from a low section of the sky refracts through air that is heated by 
a road (without reaching the road). An observer who intercepts the light perceives it to be 
from a pool of water on the road. (b) Bending (exaggerated) of a light ray descending 
across an imaginary boundary from warm air to warmer air. (c) Shifting of wavefronts and 
associated bending of a ray, which occur because the lower ends of wavefronts move faster 
in warmer air. (d) Bending of a ray ascending across an imaginary boundary to warm air 
from warmer air. 

empty), but the existence of the image does not depend on your seeing it and it is 
present even if you are not. 

In this chapter we explore several ways in which virtual and real images are 
formed by reflection (as with mirrors) and refraction (as with lenses). We also dis­
tinguish between the two types of image more clearly, but here first is an example 
of a natural virtual image. 

A 
A common example of a virtual image is a pool of water that appears to lie on 
the road some distance ahead of you on a sunny day, but that you can never 
reach. The pool is a mirage (a type of illusion), formed by light rays coming 
from the low section of the sky in front of you (Fig. 34-1a). As the rays ap­
proach the road, they travel through progressively warmer air that has been 
heated by the road, which is usually relatively warm. With an increase in air 
temperature, the density of the air-and hence the index of refraction of the 
air-decreases slightly. Thus, as the rays descend, encountering progressively 
smaller indexes of refraction, they continuously bend toward the horizontal 
(Fig. 34-1b). 

Once a ray is horizontal, somewhat above the road's surface, it still bends 
because the lower portion of each associated wavefront is in slightly warmer air 
and is moving slightly faster than the upper portion of the wavefront (Fig. 34-1c). 
This nonuniform motion of the wavefronts bends the ray upward. As the ray then 
ascends, it continues to bend upward through progressively greater indexes of 
refraction (Fig. 34-1d). 

If you intercept some of this light, your visual system automatically infers 
that it originated along a backward extension of the rays you have intercepted 
and, to make sense of the light, assumes that it came from the road surface. If the 
light happens to be bluish from blue sky, the mirage appears bluish, like water. 
Because the air is probably turbulent due to the heating, the mirage shimmies, as 
if water waves were present. The bluish coloring and the shimmy enhance the 
illusion of a pool of water, but you are actually seeing a virtual image of a low 
section of the sky. As you travel toward the illusionary pool, you no longer inter­
cept the shallow refracted rays and the illusion disappears. 
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In a plane mirror the light 
seems to come from an 
object on the other side. 

~I'----P----~----

Fig. 34-2 A point source of light 
0, called the object, is a perpendicular 
distance p in front of a plane mirror. 
Light rays reaching the mirror from 0 
reflect from the mirror. If your eye 
intercepts some of the reflected rays, 
you perceive a point source of light I 
to be behind the mirror, at a perpen­
dicular distance i. The perceived 
source I is a virtual image of object O. 

Mirror 
I 

Fig. 34-4 A "pencil" of rays from 
o enters the eye after reflection at the 
mirror. Only a small portion of the 
mirror near a is involved in this reflec­
tion. The light appears to originate at 
point I behind the mirror. 

Plane Mirrors 
A mirror is a surface that can reflect a beam of light in one direction instead of 
either scattering it widely in many directions or absorbing it. A shiny metal 
surface acts as a mirror; a concrete wall does not. In this section we examine the 
images that a plane mirror (a flat reflecting surface) can produce. 

Figure 34-2 shows a point source of light 0, which we shall call the object, 
at a perpendicular distance p in front of a plane mirror. The light that is inci­
dent on the mirror is represented with rays spreading from O. The reflection 
of that light is represented with reflected rays spreading from the mirror. If 
we extend the reflected rays backward (behind the mirror), we find that the 
extensions intersect at a point that is a perpendicular distance i behind the 
mirror. 

If you look into the mirror of Fig. 34-2, your eyes intercept some of the 
reflected light. To make sense of what you see, you perceive a point source of light 
located at the point of intersection of the extensions. This point source is the 
image I of object O. It is called a point image because it is a point, and it is a vir­
tual image because the rays do not actually pass through it. (As you will see, rays 
do pass through a point of intersection for a real image.) 

I---P i~ 
o I 

Fig. 34-3 Two rays from Fig. 34-2. Ray Oa makes 
an arbitrary angle () with the normal to the mirror sur-
face. Ray Ob is perpendicular to the mirror. Mirror 

Figure 34-3 shows two rays selected from the many rays in Fig. 34-2. One 
reaches the mirror at point b, perpendicularly. The other reaches it at an arbitrary 
point a, with an angle of incidence O. The extensions of the two reflected rays 
are also shown. The right triangles aOba and alba have a common side and three 
equal angles and are thus congruent (equal in size); so their horizontal sides have 
the same length. That is, 

lb = Ob, (34-1) 

where lb and Ob are the distances from the mirror to the image and the object, 
respectively. Equation 34-1 tells us that the image is as far behind the mirror as 
the object is in front of it. By convention (that is, to get our equations to work 
out), object distances p are taken to be positive quantities and image distances i 
for virtual images (as here) are taken to be negative quantities. Thus, Eq. 34-1 can 
be written as Iii = p or as 

i =-p (plane mirror). (34-2) 

Only rays that are fairly close together can enter the eye after reflection at a 
mirror. For the eye position shown in Fig. 34-4, only a small portion of the mirror 
near point a (a portion smaller than the pupil of the eye) is useful in forming the 
image. To find this portion, close one eye and look at the mirror image of a small 
object such as the tip of a pencil. Then move your fingertip over the mirror sur­
face until you cannot see the image. Only that small portion of the mirror under 
your fingertip produced the image. 



In Fig. 34-5, an extended object 0, represented by an upright arrow, is at 
perpendicular distance p in front of a plane mirror. Each small portion of the 
object that faces the mirror acts like the point source 0 of Figs. 34-2 and 34-3. 
If you intercept the light reflected by the mirror, you perceive a virtual image I 
that is a composite of the virtual point images of all those portions of the ob­
ject. This virtual image seems to be at (negative) distance i behind the mirror, 
with i and p related by Eq. 34-2. 

We can also locate the image of an extended object as we did for a point 
object in Fig. 34-2: we draw some of the rays that reach the mirror from the top of 
the object, draw the corresponding reflected rays, and then extend those reflected 
rays behind the mirror until they intersect to form an image of the top of the 
object. We then do the same for rays from the bottom of the object. As shown in 
Fig. 34-5, we find that virtual image I has the same orientation and height (mea­
sured parallel to the mirror) as object O. 

Fig. 34-6 A maze of 
mirrors. (Courtesy 
Adrian Fishel: 
www.mazemaker.com) 

In a mirror maze (Fig. 34-6), each wall is covered, floor to ceiling, with a mirror. 
Walk through such a maze and what you see in most directions is a confusing mon­
tage of reflections. In some directions, however, you see a hallway that seems to of­
fer a path through the maze. Take these hallways, though, and you soon learn, after 
smacking into mirror after mirror, that the hallways are largely an illusion. 

Figure 34-7 a is an overhead view of a simple mirror maze in which differently 
painted floor sections form equilateral triangles (60° angles) and walls are 
covered with vertical mirrors. You look into the maze while standing at point 0 at 
the middle of the maze entrance. In most directions, you see a confusing jumble 
of images. However, you see something curious in the direction of the ray shown 
in Fig. 34-7a. That ray leaves the middle of mirror B and reflects to you at the 
middle of mirror A. (The reflection obeys the law of reflection, with the angle of 
incidence and the angle of reflection both equal to 30°.) 

To make sense of the origin of the ray reaching you, your brain automati­
cally extends the ray backward. It appears to originate at a point lying behind 
mirror A. That is, you perceive a virtual image of B behind A, at a distance equal 
to the actual distance between A and B (Fig. 34-7b). Thus, when you face into the 
maze in this direction, you see B along an apparent straight hallway consisting of 
four triangular floor sections. 
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In a plane mirror the image 
is just as far from the mirror 
as the object. 

Fig. 34-5 An extended object 0 and 
its virtual image I in a plane mirror. 

(a) 

(b) 

(c) 

A hallway seems to 
lie in front of you. 

(£I) 

Fig.34-7 (a) Overhead view of a mirror 
maze. A ray from mirror B reaches you at 
o by reflecting from mirror A. (b) Mirror B 
appears to be behind A. (c) The ray reach­
ing you comes from you. (d) You see a vir­
tual image of yourself at the end of an 
apparent hallway. 
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Bending the mirror 
this way shifts 
the image away. 

C Central axis 

I. 

(a) 

(b) 

(c) 

I 

Bending it this 
way shifts the 
image closer. 

Central axis C 

• 1 

Fig.34-8 (a) An object ° forms a virtual 
image I in a plane mirror. (b) If the mirror 
is bent so that it becomes concave, the im­
age moves farther away and becomes 
larger. (c) If the plane mirror is bent so that 
it becomes convex, the image moves closer 
and becomes smaller. 

This story is incomplete, however, because the ray reaching you does not 
originate at mirror B - it only reflects there. To find the origin, we continue to 
apply the law of reflection as we work backwards, reflection by reflection on the 
mirrors. Working through the four reflections shown in Fig. 34-7c, we finally come 
to the origin of the ray: you! What you see when you look along the apparent 
hallway is a virtual image of yourself, at a distance of nine triangular floor sec­
tions from you (Fig. 34-7d). (There is a second apparent hallway extending away 
from point O. Which way must you face to look along it?) 

CHECKPOINT 1 

In the figure you are in a system of two vertical parallel A 
mirrors A and B separated by distance d. A grinning gar- iiIiililiIi_iiIiililiIi ___ _ 

.. 0 __ --""c!.",· 
gayle is perched at point 0, a distance O.2d from mirror 
A. Each mirror produces a first (least deep) image of the 
gargoyle. Then each mirror produces a second image 
with the object being the first image in the opposite mir- B 

ror. Then each mirror produces a third image with the 
object being the second image in the opposite mirror, and so on-you might see hun­
dreds of grinning gargoyle images. How deep behind mirror A are the first, second, and 
third images in mirror A ? 

Spherical Mirrors 
We turn now from images produced by plane mirrors to images produced by mir­
rors with curved surfaces. In particular, we consider spherical mirrors, which are 
simply mirrors in the shape of a small section of the surface of a sphere. A plane 
mirror is in fact a spherical mirror with an infinitely large radius of curvature and 
thus an approximately flat surface. 

a 
We start with the plane mirror of Fig. 34-8a, which faces leftward toward an 
object 0 that is shown and an observer that is not shown. We make a concave 
mirror by curving the mirror's surface so it is concave ("caved in") as in Fig. 
34-8b. Curving the surface in this way changes several characteristics of the 
mirror and the image it produces of the object: 

1. The center of curvature C (the center of the sphere of which the mirror's sur­
face is part) was infinitely far from the plane mirror; it is now closer but still in 
front of the concave mirror. 

2. The field of view-the extent of the scene that is reflected to the observer­
was wide; it is now smaller. 

3. The image of the object was as far behind the plane mirror as the object was in 
front; the image is farther behind the concave mirror; that is, Iii is greater . 

4. The height of the image was equal to the height of the object; the height of the 
image is now greater. This feature is why many makeup mirrors and shaving 
mirrors are concave - they produce a larger image of a face. 

We can make a convex mirror by curving a plane mirror so its surface is 
convex ("flexed out") as in Fig. 34-8c. Curving the surface in this way (1) moves 
the center of curvature C to behind the mirror and (2) increases the field of view. 
It also (3) moves the image of the object closer to the mirror and (4) shrinks it. 
Store surveillance mirrors are usually convex to take advantage of the increase in 
the field of view - more of the store can then be seen with a single mirror. 



To find the focus, 
send in rays parallel 
to the central axis. 

Real 

c 

I. 
(a) 

Central c 
axis 

If you intercept the 
reflections, they seem 
to come from this point. 

Virtual 
focus 

F,~," 

i' ,~' ' ' ' .. 

Central 

(b) 

c 

,I 

Fig. 34-9 (a) In a concave mirror, incident parallel light rays are brought to a real 
focus at F, on the same side of the mirror as the incident light rays. (b) In a convex mirror, 
incident parallel light rays seem to diverge from a virtual focus at F, on the side of the 
mirror opposite the light rays. 

For a plane mirror, the magnitUde of the image distance i is always equal to 
the object distance p. Before we can determine how these two distances are 
related for a spherical mirror, we must consider the reflection of light from an 
object 0 located an effectively infinite distance in front of a spherical mirror, 
on the mirror's central axis. That axis extends through the center of curvature C 
and the center c of the mirror. Because of the great distance between the object 
and the mirror, the light waves spreading from the object are plane waves when 
they reach the mirror along the central axis. This means that the rays representing 
the light waves are all parallel to the central axis when they reach the mirror. 

When these parallel rays reach a concave mirror like that of Fig. 34-9a, those 
near the central axis are reflected through a common point P; two of these reflected 
rays are shown in the figure. If we placed a (small) card at P, a point image of the 
infinitely distant object 0 would appear on the card. (This would occur for any infi­
nitely distant object.) Point Pis called the focal point (or focus) of the mirror, and its 
distance from the center of the mirror c is the focallengthfofthe mirror. 

If we now substitute a convex mirror for the concave mirror, we find that the 
parallel rays are no longer reflected through a common point. Instead, they 
diverge as shown in Fig. 34-9b. However, if your eye intercepts some of the 
reflected light, you perceive the light as originating from a point source behind 
the mirror. This perceived source is located where extensions of the reflected rays 
pass through a common point (P in Fig. 34-9b). That point is the focal point (or 
focus) P of the convex mirror, and its distance from the mirror surface is the focal 
length f of the mirror. If we placed a card at this focal point, an image of object 0 
would not appear on the card; so this focal point is not like that of a concave mirror. 

To distinguish the actual focal point of a concave mirror from the per­
ceived focal point of a convex mirror, the former is said to be a real focal point 
and the latter is said to be a virtual focal point. Moreover, the focal length f of 
a concave mirror is taken to be a positive quantity, and that of a convex mirror a 
negative quantity. For mirrors of both types, the focal length f is related to the 
radius of curvature r of the mirror by 

(spherical mirror), (34-3) 

where r is positive for a concave mirror and negative for a convex mirror. 
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Changing the location 
of the object relative to 
F changes the image. 

I+-P=f~ 

(b) 

Virtual 

(c) 

Fig. 34-10 (a) An object 0 inside the focal point of a concave mirror, and its virtual 
image I. (b) The object at the focal point F. (c) The object outside the focal point, and 
its real image I. 

Images from Spherical Mirrors 
With the focal point of a spherical mirror defined, we can find the relation 
between image distance i and object distance p for concave and convex spherical 
mirrors. We begin by placing the object 0 inside the focal point of the concave 
mirror-that is, between the mirror and its focal point F (Fig. 34-10a). An 
observer can then see a virtual image of 0 in the mirror: The image appears to be 
behind the mirror, and it has the same orientation as the object. 

If we now move the object away from the mirror until it is at the focal 
point, the image moves farther and farther back from the mirror until, when 
the object is at the focal point, the image is at infinity (Fig. 34-10b). The im­
age is then ambiguous and imperceptible because neither the rays reflected 
by the mirror nor the ray extensions behind the mirror cross to form an im­
age of O. 

If we next move the object outside the focal point- that is, farther away 
from the mirror than the focal point-the rays reflected by the mirror con­
verge to form an inverted image of object 0 (Fig. 34-10c) in front of the mirror. 
That image moves in from infinity as we move the object farther outside F. If 
you were to hold a card at the position of the image, the image would show up 
on the card-the image is said to be focused on the card by the mirror. (The 
verb "focus," which in this context means to produce an image, differs from the 
noun "focus," which is another name for the focal point.) Because this image 
can actually appear on a surface, it is a real image-the rays actually intersect 
to create the image, regardless of whether an observer is present. The image 
distance i of a real image is a positive quantity, in contrast to that for a virtual 
image. We also see that 

Real images form on the side of a mirror where the object is, and virtual images form 
on the opposite side. 
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As we shall prove in Section 34-9, when light rays from an object make only 
small angles with the central axis of a spherical mirror, a simple equation relates 
the object distance p, the image distance i, and the focallengthf: 

1 1 1 
-+-=-
p i f 

(spherical mirror). (34-4) 

We assume such small angles in figures such as Fig. 34-10, but for clarity the 
rays are drawn with exaggerated angles. With that assumption, Eq. 34-4 applies 
to any concave, convex, or plane mirror. For a convex or plane mirror, only a 
virtual image can be formed, regardless of the object's location on the central 
axis. As shown in the example of a convex mirror in Fig. 34-8c, the image is al­
ways on the opposite side of the mirror from the object and has the same orien­
tation as the object. 

The size of an object or image, as measured perpendicular to the mirror's 
central axis, is called the object or image height. Let h represent the height of the 
object, and hi the height of the image. Then the ratio hi Ih is called the lateral 
magnification m produced by the mirror. However, by convention, the lateral 
magnification always includes a plus sign when the image orientation is that of 
the object and a minus sign when the image orientation is opposite that of the 
object. For this reason, we write the formula for m as 

hi 
imi=­

h 
(lateral magnification). (34-5) 

We shall soon prove that the lateral magnification can also be written as 

i 
m=--

p 
(lateral magnification). (34-6) 

For a plane mirror, for which i = -p, we have m = +1. The magnification 
of 1 means that the image is the same size as the object. The plus sign means that 
the image and the object have the same orientation. For the concave mirror of 
Fig. 34-10c, m = -1.5. 

Equations 34-3 through 34-6 hold for all plane mirrors, concave spherical 
mirrors, and convex spherical mirrors. In addition to those equations, you 
have been asked to absorb a lot of information about these mirrors, and you 
should organize it for yourself by filling in Table 34-1. Under Image Location, 
note whether the image is on the same side of the mirror as the object or on 
the opposite side. Under Image Type, note whether the image is real or virtual. 
Under Image Orientation, note whether the image has the same orientation 
as the object or is inverted. Under Sign, give the sign of the quantity or fill in 

Your Organizing Table for Mirrors 

Mirror 
Type 

Plane 

Concave 

Convex 

Object 
Location 

Anywhere 

InsideF 

OutsideF 

Anywhere 

Image 

Location Type Orientation 

Sign 

off ofr ofm 
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(a) 

2--~::!;: 

(c) 

Any two of these four rays 
will locate the image. 

o 

3 

F c 

Here too, any two rays 
4 

will locate the image. 

(b) 

c 
F 

(d) 

Fig. 34-11 (a, b) Four rays that may be drawn to find the image formed by a concave 
mirror. For the object position shown, the image is real, inverted, and smaller than the 
object. (c, d) Four similar rays for the case of a convex mirror. For a convex mirror, the 
image is always virtual, oriented like the object, and smaller than the object. [In (c), ray 2 
is initially directed toward focal point F. In (d), ray 3 is initially directed toward center of 
curvature C.] 

± if the sign is ambiguous. You will need this organization to tackle home­
work or a test. 

Figures 34-11a and b show an object 0 in front of a concave mirror. We can 
graphically locate the image of any off-axis point of the object by drawing a ray 
diagram with any two of four special rays through the point: 

1. A ray that is initially parallel to the central axis reflects through the focal point 
F (ray 1 in Fig. 34-11a). 

2. A ray that reflects from the mirror after passing through the focal point 
emerges parallel to the central axis (ray 2 in Fig. 34-11a). 

3. A ray that reflects from the mirror after passing through the center of curva­
ture C returns along itself (ray 3 in Fig. 34-11b). 

4. A ray that reflects from the mirror at point c is reflected symmetrically about 
that axis (ray 4 in Fig. 34-11b). 

The image of the point is at the intersection of the two special rays you choose. 
The image of the object can then be found by locating the images of two or more 
of its off-axis points. You need to modify the descriptions of the rays slightly to 
apply them to convex mirrors, as in Figs. 34-11c and d. 



IMAGES FROM SPHERICAL MIRRORS 933 

We are now in a position to derive Eq. 34-6 (m = -i/p), the equation for the lat­
eral magnification of an object reflected in a mirror. Consider ray 4 in Fig. 34-11b. 
It is reflected at point c so that the incident and reflected rays make equal angles 
with the axis of the mirror at that point. 

The two right triangles abc and dec in the figure are similar (have the same 
set of angles); so we can write 

de cd 

ab ca 

The quantity on the left (apart from the question of sign) is the lateral magnification 
m produced by the mirror. Because we indicate an inverted image as a negative mag­
nification, we symbolize this as -m. However, cd = i and ca = p; so we have 

m= (magnification), 
p 

(34-7) 

which is the relation we set out to prove. 

CHECKPOINT 2 

A Central American vampire bat, dozing on the central axis of a spherical mirror, is 
magnified by m = -4. Is its image (a) real or virtual, (b) inverted or of the same orienta­
tion as the bat, and (c) on the same side of the mirror as the bat or on the opposite side? 

Image produced by a spherical mirror 

A tarantula of height h sits cautiously before a spherical 
mirror whose focal length has absolute value If I = 40 cm. 
The image of the tarantula produced by the mirror has the 
same orientation as the tarantula and has height hi = 0.20h. 

Calculations: We know that the ratio of image height hi to 
object height h is 0.20. Thus, from Eq. 34-5 we have 

(a) Is the image real or virtual, and is it on the same side of 
the mirror as the tarantula or the opposite side? 

Reasoning: Because the image has the same orientation as 
the tarantula (the object), it must be virtual and on the op­
posite side of the mirror. (You can easily see this result if 
you have filled out Table 34-1.) 

(b) Is the mirror concave or convex, and what is its focal 
lengthf, sign included? 

We cannot tell the type of mirror from the type of image be­
cause both types of mirror can produce virtual images. 
Similarly, we cannot tell the type of mirror from the sign of 
the focal length f, as obtained from Eq. 34-3 or Eq. 34-4, be­
cause we lack enough information to use either equation. 
However, we can make use of the magnification information. 

hi 
Iml = h = 0.20. 

Because the object and image have the same orientation, we 
know that m must be positive: m = +0.20. Substituting this 
into Eq. 34-6 and solving for, say, i gives us 

i = -0.20p, 

which does not appear to be of help in finding f However, it 
is helpful if we substitute it into Eq. 34-4. That equation 
gives us 

111 1 1 1 7 = i + p = -0.20p + P = p (-5 + 1), 

from which we find 
f= -p/4. 

Now we have it: Because p is positive, f must be negative, 
which means that the mirror is convex with 

f= -40cm. (Answer) 

,~s Additional examples, video, and practice available at WileyPLUS 
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1:" 1'--->1 

I---P i -----+j 

(a) 

This insect has been entombed in amber 
for about 25 million years. Because we view 
the insect through a curved refracting sur­
face, the location of the image we see does 
not coincide with the location of the insect 
(see Fig. 34-12d). (Dr. Paul A. ZahllPholo 
Researchers) 

Virtual 
~~~ Virtual 

0 I I 0 

nl 112 nl ~ nl 112 

(c) (d) -=L I---P i~ 

(b) 

Virtual 

0 0 

nl ~ nl 112 

(e) (j) 

Fig. 34-12 Six possible ways in which an image can be formed by refraction through a 
spherical surface of radius r and center of curvature C. The surface separates a medium with 
index of refraction nl from a medium with index of refraction n2' The point object 0 is al­
ways in the medium with nj, to the left of the surface. The material with the lesser index of re­
fraction is unshaded (think of it as being air, and the other material as being glass). Real im­
ages are formed in (a) and (b); virtual images are formed in the other four situations. 

Spherical Refracting Surfaces 
We now turn from images formed by reflection to images formed by refraction 
through surfaces of transparent materials, such as glass. We shall consider only 
spherical surfaces, with radius of curvature r and center of curvature C. The light 
will be emitted by a point object 0 in a medium with index of refraction nl; it will 
refract through a spherical surface into a medium of index of refraction n2' 

Our concern is whether the light rays, after refracting through the surface, 
form a real image (no observer necessary) or a virtual image (assuming that an 
observer intercepts the rays). The answer depends on the relative values of nl and 
n2 and on the geometry of the situation. 

Six possible results are shown in Fig. 34-12. In each part of the figure, the 
medium with the greater index of refraction is shaded, and object 0 is always in the 
medium with index of refraction nl> to the left of the refracting surface. In each part, 
a representative ray is shown refracting through the surface. (That ray and a ray 
along the central axis suffice to determine the position of the image in each case.) 

At the point of refraction of each ray, the normal to the refracting surface is a 
radial line through the center of curvature C. Because of the refraction, the ray 
bends toward the normal if it is entering a medium of greater index of refraction 
and away from the normal if it is entering a medium of lesser index of refraction. 
If the bending sends the ray toward the central axis, that ray and others 
(undrawn) form a real image on that axis. If the bending sends the ray away from 
the central axis, the ray cannot form a real image; however, backward extensions 
of it and other refracted rays can form a virtual image, provided (as with mirrors) 
some of those rays are intercepted by an observer. 

Real images I are formed (at image distance i) in parts a and b of Fig. 34-12, 
where the refraction directs the ray toward the central axis. Virtual images are 
formed in parts c and d, where the refraction directs the ray away from the cen­
tral axis. Note, in these four parts, that real images are formed when the object is 
relatively far from the refracting surface and virtual images are formed when the 
object is nearer the refracting surface. In the final situations (Figs. 34-12e and f), 
refraction always directs the ray away from the central axis and virtual images 
are always formed, regardless of the object distance. 
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Note the following major difference from reflected images: 

Real images form on the side of a refracting surface that is opposite the object, and 
virtual images form on the same side as the object. 

In Section 34-9, we shall show that (for light rays making only small angles 
with the central axis) 

_n_l + _n_2 = _n..:::.2_-_n=-.1 
p i r' 

(34-8) 

Just as with mirrors, the object distance p is positive, and the image distance i is positive 
for a real image and negative for a virtual image. However, to keep all the signs correct 
in Eq. 34-8, we must use the following rule for the sign of the radius of curvature r: 

When the object faces a convex refracting surface, the radius of curvature r is 
positive. When it faces a concave surface, r is negative. 

Be careful: This is just the reverse of the sign convention we have for mirrors. 

CHECKPOINT 3 

A bee is hovering in front of the concave spherical refracting surface of a glass sculp­
ture. (a) Which part of Fig. 34-12 is like this situation? (b) Is the image produced by the 
surface real or virtual, and (c) is it on the same side as the bee or the opposite side? 

Image produced by a refracting surface 

A Jurassic mosquito is discovered embedded in a chunk of 
amber, which has index of refraction 1.6. One surface of the 
amber is spherically convex with radius of curvature 3.0 mm 
(Fig. 34-13). The mosquito's head happens to be on the central 
axis of that surface and, when viewed along the axis, appears 
to be buried S.O mm into the amber. How deep is it really? 

The head appears to be S.O mm into the amber only because 
the light rays that the observer intercepts are bent by refrac­
tion at the convex amber surface. The image distance i dif­
fers from the object distance p according to Eq. 34-8. To use 
that equation to find the object distance, we first note: 

1. Because the object (the head) and its image are on the 
same side of the refracting surface, the image must be 
virtual and so i = -S.O mm. 

yields 

and 

!:L + .!!2:... = n2 - nl 
p i r 

1.6 1.0 1.0 - 1.6 
-+----

P -S.Omm -3.0mm 

p = 4.0mm. 

I 0 C 

(Answer) 

2. Because the object is always taken to be in the medium of 
index of refraction nh we must have nl = 1.6 and n2 = 1.0. 

3. Because the object faces a concave refracting surface, the ra­
dius of curvature r is negative, and so r = -3.0 mm. 

Calculations: Making these substitutions in Eq. 34-8, 

Fig. 34-13 A piece of amber with a mosquito from the 
Jurassic period, with the head buried at point O. The spherical 
refracting surface at the right end, with center of curvature C, 
provides an image I to an observer intercepting rays from the 
object at O. 

~rus Additional examples, video, and practice available at WileyPLUS 
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Thin Lenses 
A lens is a transparent object with two refracting surfaces whose central axes 
coincide. The common central axis is the central axis of the lens. When a lens is 
surrounded by air, light refracts from the air into the lens, crosses through the 
lens, and then refracts back into the air. Each refraction can change the direction 
of travel of the light. 

A lens that causes light rays initially parallel to the central axis to converge is 
(reasonably) called a converging lens. If, instead, it causes such rays to diverge, 
the lens is a diverging lens. When an object is placed in front of a lens of either 
type, light rays from the object that refract into and out of the lens can produce 
an image of the object. 

We shall consider only the special case of a thin lens-that is, a lens in which 
the thickest part is thin relative to the object distance p, the image distance i, and 
the radii of curvature rl and rz of the two surfaces of the lens. We shall also 
consider only light rays that make small angles with the central axis (they are 
exaggerated in the figures here). In Section 34-9 we shall prove that for such rays, 
a thin lens has a focallengthf Moreover, i and p are related to each other by 

1 1 1 
-=-+-
f p i 

(thin lens), (34-9) 

which is the same as we had for mirrors. We shall also prove that when a thin lens 
with index of refraction n is surrounded by air, this focal length f is given by 

~ = (n - 1) (~ - ~) 
f rl rz 

(thin lens in air), (34-10) 

which is often called the lens maker's equation. Here rl is the radius of curvature 
of the lens surface nearer the object and rz is that of the other surface. The signs 
of these radii are found with the rules in Section 34-6 for the radii of spherical 
refracting surfaces. If the lens is surrounded by some medium other than air (say, 
corn oil) with index of refraction nmedium, we replace n in Eq. 34-10 with nlnmedium. 

Keep in mind the basis of Eqs. 34-9 and 34-10: 

A lens can produce an image of an object only because the lens can bend light 
rays, but it can bend light rays only if its index of refraction differs from that of the 
surrounding medium. 

A fire is being started by focusing 
sunlight onto newspaper by means of 
a converging lens made of clear ice. 
The lens was made by melting both 
sides of a flat piece of ice into a con­
vex shape in the shallow vessel 
(which has a curved bottom). 
(Courtesy Matthew G. Wheeler) 



Fig.34-14 (a) Rays initially paral­
lel to the central axis of a converging 
lens are made to converge to a real fo­
cal point F2 by the lens. The lens is 
thinner than drawn, with a width like 
that of the vertical line through it. We 
shall consider all the bending of rays 
as occurring at this central line. (b) An 
enlargement of the top part of the 
lens of (a); normals to the surfaces are 
shown dashed. Note that both refrac­
tions bend the ray downward, toward 
the central axis. (c) The same initially 
parallel rays are made to diverge by a 
diverging lens. Extensions of the di­
verging rays pass through a virtual fo­
cal point F2• (d) An enlargement of 
the top part of the lens of (c). Note 
that both refractions bend the ray up­
ward, away from the central axis. 

To find the focus, 
send in rays parallel 
to the central axis. 

(a) 

(c) 

If you intercept these 
rays, they seem to 
come from F2. 

Fl c2 

Figure 34-14a shows a thin lens with convex refracting surfaces, or sides. 
When rays that are parallel to the central axis of the lens are sent through the lens, 
they refract twice, as is shown enlarged in Fig. 34-14b. This double refraction causes 
the rays to converge and pass through a common point P2 at a distance f from the 
center of the lens. Hence, this lens is a converging lens; further, a real focal point (or 
focus) exists at P2 (because the rays really do pass through it), and the associated 
focal length is f When rays parallel to the central axis are sent in the opposite direc­
tion through the lens, we find another real focal point at PIon the other side of the 
lens. For a thin lens, these two focal points are equidistant from the lens. 

Because the focal points of a converging lens are real, we take the associated 
focal lengths fto be positive, just as we do with a real focus of a concave mirror. 
However, signs in optics can be tricky; so we had better check this in Eq. 34-10. 
The left side of that equation is positive iffis positive; how about the right side? 
We examine it term by term. Because the index of refraction n of glass or any 
other material is greater than 1, the term (n - 1) must be positive. Because the 
source of the light (which is the object) is at the left and faces the convex left 
side of the lens, the radius of curvature rl of that side must be positive according 
to the sign rule for refracting surfaces. Similarly, because the object faces a con­
cave right side of the lens, the radius of curvature r2 of that side must be negative 
according to that rule. Thus, the term (1/rl 11r2) is positive, the whole right side 
of Eq. 34-10 is positive, and all the signs are consistent. 

Figure 34-14c shows a thin lens with concave sides. When rays that are paral­
lel to the central axis of the lens are sent through this lens, they refract twice, as 
is shown enlarged in Fig. 34-14d; these rays diverge, never passing through any 
common point, and so this lens is a diverging lens. However, extensions of the 
rays do pass through a common point P2 at a distance f from the center of the 
lens. Hence, the lens has a virtual focal point at P2. (If your eye intercepts some of 
the diverging rays, you perceive a bright spot to be at P2, as if it is the source of 
the light.) Another virtual focus exists on the opposite side of the lens at Pi, sym­
metrically placed if the lens is thin. Because the focal points of a diverging lens 
are virtual, we take the focallengthfto be negative. 
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(b) 

(tf) 

The bending occurs 
only at the surfaces. 
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Diverging lenses can 
give only virtual images. 

Converging lenses can o 
give either type of image. I 

I 

(b) (c) 

Fig.34-15 (a) A real, inverted image J is formed by a converging lens when the object 
o is outside the focal point Fl' (b) The image J is virtual and has the same orientation as 0 
~hen 0 is inside the focal point. (c) A diverging lens forms a virtual image J, with the same 
orientation as the object 0, whether 0 is inside or outside the focal point of the lens. 

We now consider the types of image formed by converging and diverging lenses. 
Figure 34-15a shows an object 0 outside the focal point Fj of a converging lens. 
The two rays drawn in the figure show that the lens forms a real, inverted image I 
of the object on the side of the lens opposite the object. 

When the object is placed inside the focal point Flo as in Fig. 34-15b, the lens 
forms a virtual image I on the same side of the lens as the object and with the 
same orientation. Hence, a converging lens can form either a real image or a 
virtual image, depending on whether the object is outside or inside the focal 
point, respectively. 

Figure 34-15c shows an object 0 in front of a diverging lens. Regardless of 
the object distance (regardless of whether 0 is inside or outside the virtual focal 
point), this lens produces a virtual image that is on the same side of the lens as the 
object and has the same orientation. 

As with mirrors, we take the image distance i to be positive when the image is 
real and negative when the image is virtual. However, the locations of real and 
virtual images from lenses are the reverse of those from mirrors: 

Real images form on the side of a lens that is opposite the object, and virtual images 
form on the side where the object is. 

The lateral magnification m produced by converging and diverging lenses is given 
by Eqs. 34-5 and 34-6, the same as for mirrors. 

You have been asked to absorb a lot of information in this section, and you 
should organize it for yourself by filling in Table 34-2 for thin symmetric lenses (both 

Your Organizing Table for Thin lenses 

Image Sign 

Lens Object 
Type Location Location Type Orientation off ofr ofm 

InsideF 
Converging 

OutsideF 

Diverging Anywhere 



sides are convex or both sides are concave). Under Image Location note whether 
the image is on the same side of the lens as the object or on the opposite side. Under 
Image Type note whether the image is real or virtual. Under Image Orientation note 
whether the image has the same orientation as the object or is inverted. 

Figure 34-16a shows an object 0 outside focal point Pi of a converging lens. We 
can graphically locate the image of any off-axis point on such an object (such as 
the tip of the arrow in Fig. 34-16a) by drawing a ray diagram with any two of 
three special rays through the point. These special rays, chosen from all those that 
pass through the lens to form the image, are the following: 

1. A ray that is initially parallel to the central axis of the lens will pass through 
focal point Pz (ray 1 in Fig. 34-16a). 

2. A ray that initially passes through focal point Pi will emerge from the lens 
parallel to the central axis (ray 2 in Fig. 34-16a). 

3. A ray that is initially directed toward the center of the lens will emerge from 
the lens with no change in its direction (ray 3 in Fig. 34-16a) because the ray 
encounters the two sides of the lens where they are almost parallel. 

The image of the point is located where the rays intersect on the far side of the lens. 
The image of the object is found by locating the images of two or more of its points. 

Figure 34-16b shows how the extensions of the three special rays can be used 
to locate the image of an object placed inside focal point Pi of a converging lens. 
Note that the description of ray 2 requires modification (it is now a ray whose 
backward extension passes through Pi)' 

You need to modify the descriptions of rays 1 and 2 to use them to locate an 
image placed (anywhere) in front of a diverging lens. In Fig. 34-16c, for example, 
we find the point where ray 3 intersects the backward extensions of rays 1 and 2. 

Here we consider an object sitting in front of a system of two lenses whose central 
axes coincide. Some of the possible two-lens systems are sketched in Fig. 34-17, but 
the figures are not drawn to scale. In each, the object sits to the left of lens 1 but 
can be inside or outside the focal point of the lens. Although tracing the light rays 
through any such two-lens system can be challenging, we can use the following 
simple two-step solution: 

In each figure, any two of the 
rays will locate the image. 

o 

(a) 

Fig.34-16 Three special rays allow us to locate an image 
formed by a thin lens whether the object 0 is (a) outside or (b) 
inside the focal point of a converging lens, or (c) anywhere in 
front of a diverging lens. 

(b) 

(c) 
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Step 1 Neglecting lens 2, use Eq. 34-9 to locate the image II produced by lens 1. 
Determine whether the image is on the left or right side of the lens, 
whether it is real or virtual, and whether it has the same orientation as the 
object. Roughly sketch II' The top part of Fig. 34-17 a gives an example. 

Step 2 Neglecting lens 1, treat II as though it is the object for lens 2. Use Eq. 34-9 to 
locate the image 12 produced by lens 2. This is the final image of the system. 
Determine whether the image is on the left or right side of the lens, whether 
it is real or virtual, and whether it has the same orientation as the object for 
lens 2. Roughly sketch 12, The bottom part of Fig. 34-17 a gives an example. 

Li---..--.. --ti-i-'\ --­

\ 
/\ 

I 

Outside focal h I ~I 
~ if 

Outside focal ): 
point point 

-~./\.~ 
Outside focal 
point 

li12 is somewhere to t-P2--/ the right oflens 2. 

(a) 

Outside focal 
point 

Fig.34-17 Several sketches 
(not to scale) of a two-lens sys­
tem in which an object sits to 
the left of lens 1. In step 1 of 
the solution, we consider lens 1 
and ignore lens 2 (shown in 
dashes). In step 2, we consider 
lens 2 and ignore lens 1 (no 
longer shown). We want to find 
the final image, that is, the im­
age produced by lens 2. 

12 is somewhere to 
the left of lens 2. 

1 
(c) 

lr 
h 

1\ 
II 

',I 
'; 

t Outside focal 12 is somewhere to 

poin< • .~f len, 2. 

I· P2~.[ 
(e) 

(b) 

12 is somewhere to 
the right oflens 2. 

)11 
~P2iS 

negative. 

1tL~' ____ "'.f--li': 
Inside focal : , I 

II 
point 

t 12 is somewhere to 
: the right oflens 2. 

-"'--O-u-ts-i-de-fo-c-al-p-o-in-t-... ·f--,T 
I· P2 -----1.[ 

(d) 

LPl~,'\ ________ \ _i __ 1l.- u 
Outside focal hI / \ 
point 

12 is somewhere to 
the left oflens 2. 

(J) 
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Thus we treat the two-lens system with two single-lens calculations, using 
the normal decisions and rules for a single lens. The only exception to the proce­
dure occurs if lilies to the right of lens 2 (past lens 2). We still treat it as the ob­
ject for lens 2, but we take the object distance P2 as a negative number when we 
use Eq. 34-9 to find 12, Then, as in our other examples, if the image distance i2 is 
positive, the image is real and on the right side of the lens. An example is 
sketched in Fig. 34-17 b. 

This same step-by-step analysis can be applied for any number of lenses. It 
can also be applied if a mirror is substituted for lens 2. The overall (or net) lateral 
magnification M of a system of lenses (or lenses and a mirror) is the product of 
the individual lateral magnifications as given by Eq. 34-7 (m = -i/p). Thus, for a 
two-lens system, we have 

CHECKPOINT 4 

A thin symmetric lens provides an image 
of a fingerprint with a magnification of 
+0.2 when the fingerprint is 1.0 cm farther 
from the lens than the focal point of the 
lens. What are the (a) type and (b) orienta­
tion of the image, and ( c) what is the type 
oflens? 

(34-11) 

If M is positive, the final image has same the orientation as the object (the one in 
front of lens 1). If M is negative, the final image is inverted from the object. In the 
situation where P2 is negative, such as in Fig. 34-17b, determining the orientation 
of the final image is probably easiest by examining the sign of M. 

Image produced by a thin symmetric lens 

A praying mantis preys along the central axis of a thin sym­
metric lens, 20 cm from the lens. The lateral magnification of 
the mantis provided by the lens is m = -0.25, and the index 
of refraction of the lens material is 1.65. 

(a) Determine the type of image produced by the lens, the 
type of lens, whether the object (mantis) is inside or outside 
the focal point, on which side of the lens the image appears, 
and whether the image is inverted. 

Reasoning: We can tell a lot about the lens and the image 
from the given value of m. From it and Eq. 34-6 (m = - i/p) , 
we see that 

i = -mp = 0.25p. 

Even without finishing the calculation, we can answer the 
questions. Because p is positive, i here must be positive. That 
means we have a real image, which means we have a con­
verging lens (the only lens that can produce a real image). 
The object must be outside the focal point (the only way a 
real image can be produced). Also, the image is inverted and 
on the side of the lens opposite the object. (That is how a 
converging lens makes a real image.) 

(b) What are the two radii of curvature of the lens? 

1. Because the lens is symmetric, r1 (for the surface nearer 
the object) and r2 have the same magnitude r. 

2. Because the lens is a converging lens, the object faces a 

convex surface on the nearer side and so r1 = +r. 
Similarly, it faces a concave surface on the farther side; so 
r2 = -r. 

3. We can relate these radii of curvature to the focal length ! 
via the lens maker's equation, Eq. 34-10 (our only equation 
involving the radii of curvature of a lens). 

4. We can relate! to the object distance p and image dis­
tance i via Eq. 34-9. 

Calculations: We know p, but we do not know i. Thus, our 
starting point is to finish the calculation for i in part (a); we 
obtain 

i = (0.25)(20 cm) = 5.0 cm. 

Now Eq. 34-9 gives us 

1 1 1 1 1 
-=-+-=---+---
! p i 20 cm 5.0 cm ' 

from which we find! = 4.0 cm. 
Equation 34-10 then gives us 

1.. = (n - 1) (.l. _ .l.) = (n _ 1) (_1 __ 1 ) 
! ~ ~ +r-r 

or, with known values inserted, 

1 2 
40 

= (1.65 -1)-, 
. cm r 

which yields 

r = (0.65)(2)(4.0 cm) = 5.2 cm. (Answer) 

~llis Additional examples, video, and practice available at WileyPLUS 
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Image produced by a system of two thin lenses 

Figure 34-18a shows a jalapeno seed 0 1 that is placed in 
front of two thin symmetrical coaxial lenses 1 and 2, with fo­
cal lengths 11 = +24 cm and 12 = +9.0 cm, respectively, and 
with lens separation L = 10 cm. The seed is 6.0 cm from lens 
1. Where does the system of two lenses produce an image of 
the seed? 

(a) 

(b) 

(c) 

Lens 1 Lens 2 
/< 

I 
I 
I 
I 

~I. : I 

i j L~ 
r---- Ji : 

I 
I 
I 
I 
I 
I 

First, use the nearest 
lens to locate its image. 

Then use that image 
as the object for the 
other lens. 

,! Lens 2 

Fig. 34-18 (a) Seed 0 1 is distance PI from a two-lens system 
with lens separation L. We use the arrow to orient the seed. (b) 
The image 11 produced by lens 1 alone. (c) Image 11 acts as object 
O2 for lens 2 alone, which produces the final image 12, 

We could locate the image produced by the system of 
lenses by tracing light rays from the seed through the two 
lenses. However, we can, instead, calculate the location of 
that image by working through the system in steps, lens 
by lens. We begin with the lens closer to the seed. The im­
age we seek is the final one-that is, image 12 produced 
by lens 2. 

Lens 1: Ignoring lens 2, we locate the image 11 produced by 
lens 1 by applying Eq. 34-9 to lens 1 alone: 

1 1 1 
-+-=-
PI il 11 . 

The object 0 1 for lens 1 is the seed, which is 6.0 cm from the 
lens; thus, we substitute PI = +6.0 cm. Also substituting the 
given value of11, we then have 

11 1 ----+-=---
+6.0 cm il +24 cm' 

which yields il = -8.0 cm. 
This tells us that image 11 is 8.0 cm from lens 1 and virtual. 

(We could have guessed that it is virtual by noting that the 
seed is inside the focal point of lens 1, that is, between the lens 
and its focal point.) Because II is virtual, it is on the same side 
of the lens as object 0 1 and has the same orientation as the 
seed, as shown in Fig. 34-18b. 

Lens 2: In the second step of our solution, we treat image 
II as an object O2 for the second lens and now ignore lens 
1. We first note that this object O2 is outside the focal 
point of lens 2. So the image 12 produced by lens 2 must be 
real, inverted, and on the side of the lens opposite O2 , Let 
us see. 

The distance P2 between this object O2 and lens 2 is, 
from Fig. 34-18c, 

P2 = L + I ill = 10 cm + 8.0 cm = 18 cm. 

Then Eq. 34-9, now written for lens 2, yields 

1 1 1 
---+-=----
+18 cm i2 +9.0 cm . 

Hence, i2 = +18 cm. (Answer) 

The plus sign confirms our guess: Image 12 produced by lens 
2 is real, inverted, and on the side of lens 2 opposite 02> as 
shown in Fig. 34-18c. Thus, the image would appear on a 
card placed at its location. 

Additional examples, video, and practice available at WileyPLUS 
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Optical Instruments 
The human eye is a remarkably effective organ, but its range can be extended in 
many ways by optical instruments such as eyeglasses, microscopes, and telescopes. 
Many such devices extend the scope of our vision beyond the visible range; satel­
lite-borne infrared cameras and x-ray microscopes are just two examples. 

The mirror and thin-lens formulas can be applied only as approximations to 
most sophisticated optical instruments. The lenses in typical laboratory micro­
scopes are by no means "thin." In most optical instruments the lenses are com­
pound lenses; that is, they are made of several components, the interfaces rarely 
being exactly spherical. Now we discuss three optical instruments, assuming, for 
simplicity, that the thin-lens formulas apply. 

The normal human eye can focus a sharp image of an object on the retina (at the 
rear of the eye) if the object is located anywhere from infinity to a certain point 
called the near point Pfl' If you move the object closer to the eye than the near 
point, the perceived retinal image becomes fuzzy. The location of the near point 
normally varies with age. We have all heard about people who claim not to need 
glasses but read their newspapers at arm's length; their near points are receding. 
To find your own near point, remove your glasses or contacts if you wear any, 
close one eye, and then bring this page closer to your open eye until it becomes 
indistinct. In what follows, we take the near point to be 25 cm from the eye, a bit 
more than the typical value for 20-year-olds. 

Figure 34-19a shows an object 0 placed at the near point Pn of an eye. The 
size of the image of the object produced on the retina depends on the angle e 
that the object occupies in the field of view from that eye. By moving the object 
closer to the eye, as in Fig. 34-19b, you can increase the angle and, hence, the 
possibility of distinguishing details of the object. However, because the object is 

h 

~1'----25 em ---~, I 
(a) 

. " ,< To distant virtual image 

I 

(c) 

Fig. 34-19 (a) An object 0 of height h placed at the near point of a human eye 
occupies angle () in the eye's view. (b) The object is moved closer to increase the angle, 
but now the observer cannot bring the object into focus. (c) A converging lens is placed 
between the object and the eye, with the object just inside the focal point Fj of the lens. 
The image produced by the lens is then far enough away to be focused by the eye, and 
the image occupies a larger angle ()' than object 0 does in (a). 

OPTICAL I NSTRU M ENTS , 943 
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then closer than the near point, it is no longer in focus; that is, the image is no 
longer clear. 

You can restore the clarity by looking at a through a converging lens, placed 
so that a is just inside the focal point F j of the lens, which is at focal length f 
(Fig. 34-19c). What you then see is the virtual image of a produced by the lens. 
That image is farther away than the near point; thus, the eye can see it clearly. 

Moreover, the angle ()' occupied by the virtual image is larger than the largest 
angle () that the object alone can occupy and still be seen clearly. The angular magni­
fication me (not to be confused with lateral magnification m) of what is seen is 

me = ()' I(). 

In words, the angular magnification of a simple magnifying lens is a comparison 
of the angle occupied by the image the lens produces with the angle occupied by 
the object when the object is moved to the near point of the viewer. 

From Fig. 34-19, assuming that 0 is at the focal point of the lens, and approxi­
mating tan () as () and tan ()' as ()' for small angles, we have 

We then find that 
() = hl25 cm and ()' = hit 

25cm 
me=---

f 
(simple magnifier). (34-12) 

Figure 34-20 shows a thin-lens version of a compound microscope. The instru­
ment consists of an objective (the front lens) of focal length fob and an eyepiece 
(the lens near the eye) of focal length fey. It is used for viewing small objects that 
are very close to the objective. 

The object a to be viewed is placed just outside the first focal point F j of the 
objective, close enough to F j that we can approximate its distance p from the lens 
as being fob' The separation between the lenses is then adjusted so that the 
enlarged, inverted, real image I produced by the objective is located just inside 
the first focal point Fi of the eyepiece. The tube length s shown in Fig. 34-20 is 
actually large relative to fob, and therefore we can approximate the distance i 
between the objective and the image I as being length s. 

From Eq. 34-6, and using our approximations for p and i, we can write the 
lateral magnification produced by the objective as 

i s 
m= --=--

p fob' 
(34-13) 

Eyepiece 

Objective 

o 

l' 
rays 

To distant virtual image 

r--fob -+-fob ---+--- s --+ fey-l 

Fig. 34-20 A thin-lens representation of a compound microscope (not to scale). The 
objective produces a real image I of object 0 just inside the focal point FI of the eyepiece. 
Image I then acts as an object for the eyepiece, which produces a virtual final image l' that 
is seen by the observer. The objective has focal length fob; the eyepiece has focal length fey; 
and s is the tube length. 



Objective 

rays 
from 

distant 
object 

(a) 

Eyepiece 

rays 

(b) 

Fig. 34-21 (a) A thin-lens representation of a refracting telescope. From rays that are 
approximately parallel when they reach the objective, the objective produces a real image [ 
of a distant source of light (the object). (One end of the object is assumed to lie on the cen­
tral axis.) Image [,formed at the common focal points F2 and F{, acts as an object for the 
eyepiece, which produces a virtual final image I' at a great distance from the observer. The 
objective has focal length fob; the eyepiece has focallengthfey. (b) Image [has height h' and 
takes up angle (job measured from the objective and angle (jey measured from the eyepiece. 

Because the image I is located just inside the focal point FI of the eyepiece, the 
eyepiece acts as a simple magnifying lens, and an observer sees a final (virtual, 
inverted) image l' through it. The overall magnification of the instrument is the prod­
uct of the lateral magnification m produced by the objective, given by Eq. 34-13, and 
the angular magnification me produced by the eyepiece, given by Eq. 34-12; that is, 

s 25 cm 
M = mme = -----

fob fey 
(microscope). (34-14) 

Telescopes come in a variety of forms. The form we describe here is the simple 
refracting telescope that consists of an objective and an eyepiece; both are repre­
sented in Fig. 34-21 with simple lenses, although in practice, as is also true for 
most microscopes, each lens is actually a compound lens system. 

The lens arrangements for telescopes and for microscopes are similar, but 
telescopes are designed to view large objects, such as galaxies, stars, and planets, at 
large distances, whereas microscopes are designed for just the opposite purpose. 
This difference requires that in the telescope of Fig. 34-21 the second focal point of 
the objective F2 coincide with the first focal point of the eyepiece FI, whereas in 
the microscope of Fig. 34-20 these points are separated by the tube length s. 

In Fig. 34-21a, parallel rays from a distant object strike the objective, making 
an angle (job with the telescope axis and forming a real, inverted image I at the 
common focal point Fz, Fl' This image I acts as an object for the eyepiece, through 
which an observer sees a distant (still inverted) virtual image 1'. The rays defining 
the image make an angle (jey with the telescope axis. 

The angular magnification me of the telescope is (je/(job' From Fig. 34-21b, for 
rays close to the central axis, we can write (job = h'lfob and (jey = h'lfey, which gives us 

me = - fob (telescope), (34-15) 
fey 

where the minus sign indicates that l' is inverted. In words, the angular magnification 
of a telescope is a comparison of the angle occupied by the image the telescope pro­
duces with the angle occupied by the distant object as seen without the telescope. 

Magnification is only one of the design factors for an astronomical telescope 
and is indeed easily achieved. A good telescope needs light-gathering power, 
which determines how bright the image is. This is important for viewing faint 
objects such as distant galaxies and is accomplished by making the objective 

8 OPTICAL INSTRUMENTS 945 



946 CHA R IMAGES 

o 

Fig. 34-22 A concave spherical 
mirror forms a real point image I by 
reflecting light rays from a point 
object 0. 

" " 

~ .

.... ·'~2· .. y, 
a, f3' 

o C C Alds I "k 

Fig. 34-23 A real point image I of a 
point object 0 is formed by refraction at 
a spherical convex surface between two 
media. 

diameter as large as possible. A telescope also needs resolving power, which is the 
ability to distinguish between two distant objects (stars, say) whose angular sepa­
ration is small. Field of view is another important design parameter. A telescope 
designed to look at galaxies (which occupy a tiny field of view) is much different 
from one designed to track meteors (which move over a wide field of view). 

The telescope designer must also take into account the difference between 
real lenses and the ideal thin lenses we have discussed. A real lens with spherical 
surfaces does not form sharp images, a flaw called spherical aberration. Also, 
because refraction by the two surfaces of a real lens depends on wavelength, a 
real lens does not focus light of different wavelengths to the same point, a flaw 
called chromatic aberration. 

This brief discussion by no means exhausts the design parameters of astro­
nomical telescopes-many others are involved. We could make a similar listing 
for any other high-performance optical instrument. 

Th ree Proofs 

Figure 34-22 shows a point object 0 placed on the central axis of a concave 
spherical mirror, outside its center of curvature C. A ray from 0 that makes an 
angle a' with the axis intersects the axis at I after reflection from the mirror at a. 
A ray that leaves 0 along the axis is reflected back along itself at c and also 
passes through f. Thus, f is the image of 0; it is a real image because light actually 
passes through it. Let us find the image distance i. 

A trigonometry theorem that is useful here tells us that an exterior angle of a 
triangle is equal to the sum of the two opposite interior angles. Applying this to 
triangles OaC and Oaf in Fig. 34-22 yields 

{3 = a' + 8 and y = a' + 28. 

If we eliminate 8 between these two equations, we find 

a' + Y = 2{3. (34-16) 

We can write angles a', {3, and y, in radian measure, as 

ac ac 
a'=--=-

cO p' 

ac ac 
{3=-=-

cC r ' 

and 
ac ac 

Y=-=-
cI i ' 

(34-17) 

where the overhead symbol means "arc." Only the equation for {3 is exact, because 
the center of curvature of ac is at C. However, the equations for a' and yare ap­
proximately correct if these angles are small enough (that is, for rays close to the 
central axis). Substituting Eqs. 34-17 into Eq. 34-16, using Eq. 34-3 to replace r with 
2f, and canceling ac lead exactly to Eq. 34-4, the relation that we set out to prove . 

The incident ray from point object 0 in Fig. 34-23 that falls on point a of a spheri­
cal refracting surface is refracted there according to Eq. 33-40, 

n1 sin 81 = 172 sin 82, 

If a' is small, 81 and 82 will also be small and we can replace the sines of these 
angles with the angles themselves. Thus, the equation above becomes 

(34-18) 



We again use the fact that an exterior angle of a triangle is equal to the sum of the 
two opposite interior angles. Applying this to triangles COa and ICa yields 

81 = a + (3 and (3 = 82 + y. 

If we use Eqs. 34-19 to eliminate 81 and 82 from Eq. 34-18, we find 

n1 a + n2Y = (n2 n1)(3· 

In radian measure the angles a, (3, and yare 

iii: 
a=-' 

p' 

ac 
{3=-; 

r 
iii: 

y=-i . 

(34-19) 

(34-20) 

(34-21) 

Only the second of these equations is exact. The other two are approximate 
because I and 0 are not the centers of circles of which iii: is a part. However, for a 
small enough (for rays close to the axis), the inaccuracies in Eqs. 34-21 are small. 
Substituting Eqs. 34-21 into Eq. 34-20 leads directly to Eq. 34-8, as we wanted. 

Our plan is to consider each lens surface as a separate refracting surface, and to 
use the image formed by the first surface as the object for the second. 

We start with the thick glass "lens" of length L in Fig. 34-24a whose left and 
right refracting surfaces are ground to radii r' and r". A point object 0' is placed 
near the left surface as shown. A ray leaving 0' along the central axis is not 
deflected on entering or leaving the lens. 

A second ray leaving 0' at an angle a with the central axis intersects the left 
surface at point a', is refracted, and intersects the second (right) surface at point a". 
The ray is again refracted and crosses the axis at f', which, being the intersection of 
two rays from 0', is the image of point 0', formed after refraction at two surfaces. 

Figure 34-24b shows that the first (left) surface also forms a virtual image of 
0' at I'. To locate I', we use Eq. 34-8, 

!.:l. + !!2. = n2 - n1 
p i r 

L 
1- /," ----:r- i"---1 
(a) 
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Fig. 34-24 (a) Two rays from point object 
0' form a real image 1" after refracting 
through two spherical surfaces of a lens. The 
object faces a convex surface at the left side of 
the lens and a concave surface at the right side. 
The ray traveling through points a' and a" is ac­
tually close to the central axis through the lens. 
(b) The left side and (c) the right side of the 
lens in (a), shown separately. 

~ ________ p,, ________ I--__ I'_"=r-+j i"~ 
1-: -- i' ----~,l_I .----L ----=1 

(c) 
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Putting nl = 1 for air and n2 = n for lens glass and bearing in mind that the image 
distance is negative (that is, i = -i' in Fig. 34-24b), we obtain 

1 n n - 1 
(34-22) 

p' i' 1" 

In this equation i' will be a positive number because we have already introduced 
the minus sign appropriate to a virtual image. 

Figure 34-24c shows the second surface again. Unless an observer at point 
a" were aware of the existence of the first surface, the observer would think that 
the light striking that point originated at point l' in Fig. 34-24b and that the 
region to the left of the surface was filled with glass as indicated. Thus, the (vir­
tual) image l' formed by the first surface serves as a real object 0" for the second 
surface. The distance of this object from the second surface is 

p" = i' + L. (34-23) 

To apply Eq. 34-8 to the second surface, we must insert nl = nand n2 = 1 
because the object now is effectively imbedded in glass. If we substitute with 
Eq. 34-23, then Eq. 34-8 becomes 

nIl - n 
i' + L + -;;; = -1'-,-, -. (34-24) 

Let us now assume that the thickness L of the "lens" in Fig. 34-24a is so small 
that we can neglect it in comparison with our other linear quantities (such as p', 
i', p", i", 1", and 1'"). In all that follows we make this thin-lens approximation. 
Putting L = 0 in Eq. 34-24 and rearranging the right side lead to 

n 1 n - 1 
-;-;- + -:;;- = - --,-, -. 
I I l' 

Adding Eqs. 34-22 and 34-25 leads to 

J, + ~ = (n - 1) (~- +,). 
P I l' l' 

(34-25) 

Finally, calling the original object distance simply p and the final image distance 
simply i leads to 

1.- + ~ = (n - 1) (l... -~), 
p I 1" 1'" 

(34-26) 

which, with a small change in notation, is Eqs. 34-9 and 34-10. 

II11I 
Real and Virtual Images An image is a reproduction of an 
object via light. If the image can form on a surface, it is a real im­
age and can exist even if no observer is present. If the image re­
quires the visual system of an observer, it is a virtual image. 

1. Spherical Mirror: 

1 112 
-+-=-=-
p i f r' 

(34-4,34-3) 

Image Formation Spherical mirrors, spherical refracting sur­
faces, and thin lenses can form images of a source of light - the ob­
ject-by redirecting rays emerging from the source. The image oc­
curs where the redirected rays cross (forming a real image) or 
where backward extensions of those rays cross (forming a virtual 
image). If the rays are sufficiently close to the central axis through 
the spherical mirror, refracting surface, or thin lens, we have the 
following relations between the object distance p (which is posi­
tive) and the image distance i (which is positive for real images and 
negative for virtual images): 

where f is the mirror's focal length and r is its radius of curvature. 
A plane mirror is a special case for which r --'> 00, so that p = -i. 
Real images form on the side of a mirror where the object is lo­
cated, and virtual images form on the opposite side. 

2. Spherical Refracting Surface: 

!!..L + ~ = n2 - nj 
p i r 

(single surface), (34-8) 

where nj is the index of refraction of the material where the object is 
located, n2 is the index of refraction of the material on the other side 



of the refracting surface, and ris the radius of curvature of the sur­
face. When the object faces a convex refracting surface, the radius I' 
is positive. When it faces a concave surface, I' is negative. Real im­
ages form on the side of a refracting surface that is opposite the ob­
ject, and virtual images form on the same side as the object. 

3. Thin Lens: 

~ + ~ = ~ = (n - 1) (~ - ~), 
P 1 f 1'1 1'2 

(34-9,34-10) 

where f is the lens's focal length, n is the index of refraction of the 
lens material, and 1'1 and 1'2 are the radii of curvature of the two 
sides of the lens, which are spherical surfaces. A convex lens sur­
face that faces the object has a positive radius of curvature; a con­
cave lens surface that faces the object has a negative radius of cur­
vature. Real images form on the side of a lens that is opposite the 
object, and virtual images form on the same side as the object. 

Lateral Magnification The lateral magnification m produced 
by a spherical mirror or a thin lens is 

i 
m=--. 

p 

The magnitude of m is given by 

hi 
Iml=h' 

Figure 34-25 shows a fish and a 
fish stalker in water. (a) Does the 
stalker see the fish in the general 
region of point a or point b? (b) 
Does the fish see the (wild) eyes of 
the stalker in the general region of 
point c or point d? 

:2 In Fig. 34-26, stick figure 0 
stands in front of a spherical mir­
ror that is mounted within the 
boxed region; the central axis 
through the mirror is shown. The 
four stick figures 11 to 14 suggest 
general locations and orienta­
tions for the images that might be 
produced by the mirror. (The fig­
ures are only sketched in; neither 
their heights nor their distances 
from the mirror are drawn to 

• a • b 

(34-6) 

(34-5) 

.c 

Fig. 34-25 Question 1. 

I 
I 
I 
1.--

Fig. 34-26 

Questions 2 and 10. 

scale.) (a) Which of the stick figures could not possibly repre­
sent images? Of the possible images, (b) which would be due to 
a concave mirror, (c) which would be due to a convex mirror, 
(d) which would be virtual, and (e) which would involve nega­
tive magnification? 

Figure 34-27 is an overhead view of a mirror maze based on 
floor sections that are equilateral triangles. Every wall within the 
maze is mirrored. If you stand at entrance x, (a) which of the 
maze monsters a, b, and c hiding in the maze can you see along 

QUESTIONS 949 

where h and hi are the heights (measured perpendicular to the 
central axis) of the object and image, respectively. 

Optical Instruments Three optical instruments that extend 
human vision are: 

1. The simple magnifying lens, which produces an angular magnifi­
cation me given by 

25cm 
me=--f-' (34-12) 

where f is the focal length of the magnifying lens. The distance 
of 25 cm is a traditionally chosen value that is a bit more than 
the typical near point for someone 20 years old. 

2. The compound microscope, which produces an overall magnifi­
cation M given by 

s 25 cm 
M=mme=---;:---I'-' (34-14) 

Job Jey 

where m is the lateral magnification produced by the objective, 
me is the angular magnification produced by the eyepiece, s is 
the tube length, and fob and fey are the focal lengths of the objec­
tive and eyepiece, respectively. 

3. The refracting telescope, which produces an angular magnifica­
tion me given by 

the virtual hallways extending 
from entrance x; (b) how many 
times does each visible mon­
ster appear in a hallway; and 
(c) what is at the far end of a 
hallway? 

4 A penguin waddles along 
the central axis of a concave 
mirror, from the focal point to 
an effectively infinite distance. 

(34-15) 

III 

(a) How does its image move? Fig.34-27 Question 3. 
(b) Does the height of its im-
age increase continuously, decrease continuously, or change in 
some more complicated manner? 

When a T. rex pursues a jeep in the movie Jurassic Park, we see 
a reflected image of the T. rex via a side-view mirror, on which is 
printed the (then darkly humorous) warning: "Objects in mirror 
are closer than they appear." Is the 
mirror flat, convex, or concave? 

An object is placed against the 
center of a concave mirror and then 
moved along the central axis until it 
is 5.0 m from the mirror. During the 
motion, the distance Iii between the 
mirror and the image it produces is 
measured. The procedure is then re­
peated with a convex mirror and a 
plane mirror. Figure 34-28 gives the 

Iii 

1 

Fig. 34-28 Questions 
6 and 8. 

p 
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results versus object distance p. Which curve corresponds to which 
mirror? (Curve 1 has two segments.) 

7 The table details six variations 
of the basic arrangement of two thin 
lenses represented in Fig. 34-29. 

• (The points labeled F! and F2 are F! 
the focal points of lenses 1 and 2.) 

Lens 1 Lens 2 
i j 

An object is distance p! to the left of Fig. 34-29 Question 7. 
lens 1, as in Fig. 34-18. (a) For which 
variations can we tell, without calculation, whether the final image 
(that due to lens 2) is to the left or right of lens 2 and whether it has 
the same orientation as the object? (b) For those "easy" variations, 
give the image location as "left" or "right" and the orientation as 
"same" or "inverted." 

Variation Lens 1 Lens 2 

1 Converging Converging P! < If! I 
2 Converging Converging p! > If! I 
3 Diverging Converging p! < I!II 
4 Diverging Converging P! > If!1 
5 Diverging Diverging PI < If!1 
6 Diverging Diverging P! > If! I 

An object is placed against the center of a converging lens 
and then moved along the central axis until it is 5.0 m from the 

lens. During the motion, the distance Iii between the lens and the 
image it produces is measured. The procedure is then repeated 
with a diverging lens. Which of the curves in Fig. 34-28 best gives 
Iii versus the object distance p for these lenses? (Curve 1 consists 
of two segments. Curve 3 is straight.) 

Figure 34-30 shows four thin lenses, all of the same material, 
with sides that either are fiat or have a radius of curvature of mag­
nitude 10 cm. Without written calculation, rank the lenses accord­
ing to the magnitude of the focal length, greatest first. 

(a) (b) (c) (d) 

Fig. 34-30 Question 9. 

1 () In Fig. 34-26, stick figure 0 stands in front of a thin, 
symmetric lens that is mounted within the boxed region; the cen­
tral axis through the lens is shown. The four stick figures I! to 14 
suggest general locations and orientations for the images that 
might be produced by the lens. (The figures are only sketched in; 
neither their height nor their distance from the lens is drawn to 
scale.) (a) Which of the stick figures could not possibly represent 
images? Of the possible images, (b) which would be due to a con­
verging lens, (c) which would be due to a diverging lens, (d) 
which would be virtual, and (e) which would involve negative 
magnification? 

III 
Tutoring problem available {at instructor's discretion} in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual WWW Worked·out solution is at 

Number of dots indicates level of problem difficulty IlW Interactive solution is at 
http://www.wiley.com/coliege/haliiday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

34·3 Plane Mirrors 
·1 You look through a camera toward an image of a humming­
bird in a plane mirror. The camera is 4.30 m in front of the mirror. 
The bird is at camera level, 5.00 m to your right and 3.30 m from the 
mirror. What is the distance between the camera and the apparent 
position of the bird's image in the mirror? 

IlW A moth at about eye level is 10 cm in front of a plane 
mirror; you are behind the moth, 30 cm from the mirror. What is 
the distance between your eyes and the apparent position of the 
moth's image in the mirror? 

In Fig. 34-31, an isotropic point source of light S is positioned 
at distance d from a viewing screen A and the light intensity Ip at 

Fig. 34-31 Problem 3. 

point P (level with S) is measured. Then a plane mirror M is placed 
behind S at distance d. By how much is Ip multiplied by the pres­
ence of the mirror? 

"4 Figure 34-32 shows an overhead view of a corridor with a 
plane mirror M mounted at one end. A burglar B sneaks along the 
corridor directly toward the center of the mirror. If d = 3.0 m, how 
far from the mirror will she be when the security guard S can first see 
her in the mirror? 

r- d ----+--- d ----1 
M I I T I I 

I I d 
I I 1 

~ 
I 

~ 
I 

I • 
I S 

t 
• 
B 

Fig. 34-32 Problem 4. 

SSM WWW Figure 34-33 shows a smalllightbulb suspended at 
distance d! = 250 cm above the surface of the water in a swimming 



pool where the water depth is d2 = 

200 cm. The bottom of the pool is a 
large mirror. How far below the mir­
ror surface is the image of the bulb? 
(Hint: Assume that the rays are close 
to a vertical axis through the bulb, 
and use the small-angle approxima­
tion in which sin () = tan () = ().) 

Images 
from Spherical Mirrors 

An object is moved along the 
central axis of a spherical mirror 
while the lateral magnification m of 
it is measured. Figure 34-34 gives m 
versus object distance p for the 
range Pa = 2.0 cm to Ph = 8.0 cm. 
What is m for P = 14.0 cm? 

A concave shaving mirror has a 
radius of curvature of 35.0 cm. It is 
positioned so that the (upright) im­
age of a man's face is 2.50 times the 

Mirror 

Fig. 34-33 Problem 5. 

4 

p(cm) 

Fig. 34-34 Problem 6. 

size of the face. How far is the mirror from the face? 

An object is placed against 
the center of a spherical mirror 
and then moved 70 cm from it 
along the central axis as the image 
distance i is measured. Figure 
34-35 gives i versus object distance 
p out to Ps = 40 cm. What is i for 
p=70cm? 

PROBLEMS 951 

400 ---,----~. 

~ o 
o I---O';::--+--+-----l 

-400 
p(cm) 

SSM 9,11,13 12 Fig. 34-35 Problem 8. 
Spherical mirrors. Object 0 stands 
on the central axis of a spherical mirror. For this situation, each 
problem in Table 34-3 gives object distance Ps (centimeters), the 
type of mirror, and then the distance (centimeters, without proper 
sign) between the focal point and the mirror. Find (a) the radius of 
curvature r (including sign), (b) the image distance i, and (c) the 
lateral magnification m. Also, determine whether the image is (d) 
real (R) or virtual (V), (e) inverted (I) from object 0 or nonin­
verted (NI), and (f) on the same side of the mirror as 0 or on the 
opposite side. 

SSM 23, 29 22 More mirrors. Object 0 
stands on the central axis of a spherical or plane mirror. For this situa­
tion, each problem in Table 34-4 refers to (a) the type of mirror, 

Problems 9 through 16: Spherical Mirrors. See the setup for these problems. 

(a) (b) (c) (d) (e) (f) 

P Mirror I' m RIV IfNI Side 

9 +18 Concave, 12 
10 +15 Concave, 10 
11 +8.0 Convex,10 
12 +24 Concave,36 
13 +12 Concave,18 
14 +22 Convex,35 
15 +10 Convex,8.0 
16 +17 Convex,14 

Problems 17 through 29: More Mirrors. See the setup for these problems. 

(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Type f I' P m RIV IfNI Side 

17 Concave 20 +10 
18 +24 0.50 I 
19 -40 -10 
20 +40 -0.70 
21 +20 +30 
22 20 +0.10 
23 30 +0.20 
24 +60 -0.50 
25 +30 0.40 I 
26 20 +60 Same 
27 -30 -15 
28 +10 +1.0 
29 Convex 40 4.0 
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(b) the focal distance f, (c) the radius of curvature r, (d) the object 
distance p, (e) the image distance i, and (f) the lateral magnification 
m. (All distances are in centimeters.) It also refers to whether (g) 
the image is real (R) or virtual (V), (h) inverted (I) or noninverted 
(NI) from 0, and (i) on the same side of the mirror as object 0 or 
on the opposite side. Fill in the missing information. Where only a 
sign is missing, answer with the sign. 

Figure 34-36 gives the lateral 
magnification m of an object versus 
the object distance p from a spheri-
cal mirror as the object is moved ~ 0.5 

along the mirror's central axis 
through a range of values for p. The 
horizontal scale is set by Ps = 10.0 o 
cm. What is the magnification of Ps 

p(cm) 
the object when the object is 21 cm 
from the mirror? Fig. 34-36 Problem 30. 

(a) A luminous point is moving at speed va toward a spheri­
cal mirror with radius of curvature r, along the central axis of the 
mirror. Show that the image of this point is moving at speed 

VI = ( 2p '- r Y Va, 

where p is the distance of the luminous point from the mirror at 
any given time. Now assume the mirror is concave, with r = 15 cm, 
and let va = 5.0 cm/s. Find VI when (b) p = 30 cm (far outside the 
focal point), (c) p = 8.0 cm (just outside the focal point), and (d) 
p = 10 mm (very near the mirror). 

Spherical Refracting Surfaces 
SSM 33, 35 37 Spherical refracting sur-

faces. An object 0 stands on the central axis of a spherical re­
fracting surface. For this situation, each problem in Table 34-5 
refers to the index of refraction nl where the object is located, 
(a) the index of refraction n2 on the other side of the refracting 
surface, (b) the object distance p, (c) the radius of curvature r of 
the surface, and (d) the image distance i. (All distances are in 
centimeters.) Fill in the missing infor-
mation, including whether the image 
is (e) real (R) or virtual (V) and (f) on 
the same side of the surface as object 
o or on the opposite side. 

In Fig. 34-37, a beam of paral­
leI light rays from a laser is incident Fig. 34-37 Problem 39. 

on a solid transparent sphere of index of refraction n. (a) If a point 
image is produced at the back of the sphere, what is the index of re­
fraction of the sphere? (b) What index of refraction, if any, will pro­
duce a point image at the center of the sphere? 

A glass sphere has radius R = 

5.0 cm and index of refraction 1.6. A 
paperweight is constructed by slic­
ing through the sphere along a 
plane that is 2.0 cm from the center 
of the sphere, leaving height h = 3.0 
cm. The paperweight is placed on a 
table and viewed from directly 
above by an observer who is dis­
tance d = 8.0 cm from the tabletop Fig. 34-38 Problem 40. 
(Fig. 34-38). When viewed through 
the paperweight, how far away does the tabletop appear to be to 
the observer? 

Thin Lenses 
A lens is made of glass having an index of refraction of 1.5. 

One side of the lens is fiat, and the other is convex with a radius of 
curvature of 20 cm. (a) Find the focal length of the lens. (b) If an 
object is placed 40 cm in front of the lens, where is the image? 

Figure 34-39 gives the lateral 
magnification m of an object versus 
the object distance p from a lens as 
the object is moved along the cen­
tral axis of the lens through a range 
of values for p out to Ps = 20.0 cm. 
What is the magnification of the ob­
ject when the object is 35 cm from 
the lens? 

A movie camera with a (single) 
lens offocallength 75 mm takes a pic­
ture of a person standing 27 m away. 
If the person is 180 cm tall, what is the 
height of the image on the film? 

An object is placed against the 
center of a thin lens and then moved 
away from it along the central axis as 
the image distance i is measured. 
Figure 34-40 gives i versus object 
distance p out to Ps = 60 cm. What is 
the image distance when p = 100 cm? 

o Ps 
p(cm) 

Fig. 34-39 Problem 42. 

p(cm) 

Fig. 34-40 Problem 44. 

Problems 32 through 38: Spherical Refracting Surfaces. 
See the setup for these problems. 

(a) (b) (c) (d) (e) (f) 

/11 n2 P r RIV Side 

32 1.0 1.5 +10 +30 
33 1.0 1.5 +10 -13 
34 1.5 +100 -30 +600 
35 1.5 1.0 +70 +30 
36 1.5 1.0 -30 -7.5 
37 1.5 1.0 +10 -6.0 
38 1.0 1.5 +30 +600 
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Problems 50 through 57: Thin Lenses. See the setup for these problems. 

(a) 
p Lens 

50 +16 C,4.0 
51 +12 C,16 
52 +25 C,35 
53 +8.0 D,12 
54 +10 D,6.0 
55 +22 D,14 
56 +12 D,31 
57 +45 C,20 

You produce an image of the Sun on a screen, using a thin 
lens whose focal length is 20.0 cm. What is the diameter of the im­
age? (See Appendix C for needed data on the Sun.) 

An object is placed against the center of a thin lens and then 
moved 70 cm from it along the central axis as the image distance i is 
measured. Figure 34-41 gives i versus 0 p (em) 

object distance p out to Ps = 40 cm. 
What is the image distance when p = 

70cm? ~ -10 

SSM WWW A double-convex 
lens is to be made of glass with an 
index of refraction of 1.5. One surface 

-20 

is to have twice the radius of curva- Fig. 34-41 Problem 46. 
ture of the other and the focal length 
is to be 60 mm. What is the (a) smaller 6 
and (b) larger radius? 

An object is moved along the 4 
central axis of a thin lens while the ~ 

2~-f--I--f--f~~-I-+-i 

o Ps 
p(em) 

lateral magnification m is mea­
sured. Figure 34-42 gives m versus 
object distance p out to Ps = 8.0 cm. 
What is the magnification of the ob­
ject when the object is 14.0 cm from 
the lens? Fig. 34-42 Problem 48. 

(b) (c) (d) (e) 

m RIV IINI Side 

SSM An illuminated slide is held 44 cm from a screen. How 
far from the slide must a lens of focal length 11 cm be placed (be­
tween the slide and the screen) to form an image of the slide's pic­
ture on the screen? 

51 SSM 53, 57 55 Thin lenses. Object 0 
stands on the central axis of a thin symmetric lens. For this situa­
tion, each problem in Table 34-6 gives object distance p (cen­
timeters), the type of lens (C stands for converging and D for di­
verging), and then the distance (centimeters, without proper 
sign) between a focal point and the lens. Find (a) the image dis­
tance i and (b) the lateral magnification m of the object, includ­
ing signs. Also, determine whether the image is (c) real (R) or 
virtual (V), (d) inverted (I) from object 0 or noninverted (NI), 
and (e) on the same side of the lens as object 0 or on the oppo­
site side. 

SSM 59 66 Lenses with given radii. Object 
o stands in front of a thin lens, on the central axis. For this situation, 
each problem in Table 34-7 gives object distance p, index of refraction 
n of the lens, radius 1'1 of the nearer lens surface, and radius 1'2 of the 
farther lens surface. (All distances are in centimeters.) Find (a) the 
image distance i and (b) the lateral magnification m of the object, in­
cluding signs. Also, determine whether the image is (c) real (R) or vir­
tual (V), (d) inverted (I) from object 0 or noninverted (NI), and (e) 
on the same side of the lens as object 0 or on the opposite side. 

Problems 58 through 67: Lenses with Given Radii. See the setup for these problems. 

(a) (b) (c) (d) (e) 
p n 1'1 1'2 m RIV IINI Side 

58 +29 1.65 +35 00 

59 +75 1.55 +30 -42 
60 +6.0 1.70 +10 -12 
61 +24 1.50 -15 -25 
62 +10 1.50 +30 -30 
63 +35 1.70 +42 +33 
64 +10 1.50 -30 -60 
65 +10 1.50 -30 +30 
66 +18 1.60 -27 +24 
67 +60 1.50 +35 -35 
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Problems 69 through 79: More Lenses. See the setup for these problems. 

(a) (b) (c) 

Type t P 

69 +10 +5.0 

70 20 +8.0 

71 +16 

72 +16 

73 +10 

74 C 10 +20 

75 10 +5.0 

76 10 +5.0 

77 +16 

78 +10 

79 20 +8.0 

In Fig. 34-43, a real inverted image I of an object 0 is formed 
by a certain lens (not shown); the object-image separation is d = 
40.0 cm, measured along the central axis of the lens. The image is 
just half the size of the object. (a) What kind of lens must be used 
to produce this image? (b) How far from the object must the lens 
be placed? (c) What is the focal length of the lens? 

o 
Lens 
here Axis 

~d_--.jI 
Fig. 34-43 Problem 68. 

79 SSM 75, 77 78 More lenses. Object 0 
stands on the central axis of a thin symmetric lens. For this situa­
tion, each problem in Table 34-8 refers to (a) the lens type, con­
verging (C) or diverging (D), (b) the focal distance t, (c) the ob­
ject distance P, (d) the image distance i, and (e) the lateral 

(d) (e) (f) (g) (h) 

m RIV IINI Side 

<1.0 NI 

+0.25 

-0.25 

-0.50 

<1.0 Same 

>1.0 

+1.25 

0.50 NI 

>1.0 

magnification m. (All distances are in centimeters.) It also 
refers to whether (f) the image is real (R) or virtual (V), (g) in­
verted (I) or noninverted (NI) from 0, and (h) on the same side of 
the lens as 0 or on the opposite side. Fill in the missing informa­
tion, including the value of m when only an inequality is given. 
Where only a sign is missing, answer with the sign. 

SSM WWW 83 82, 85 Two-lens sys-
tems. In Fig. 34-44, stick figure 0 (the object) stands on the com­
mon central axis of two thin, symmetric lenses, which are 
mounted in the boxed regions. Lens 1 is mounted within the 
boxed region closer to 0, which is at object distance Pl' Lens 2 is 
mounted within the farther boxed region, at distance d. Each 
problem in Table 34-9 refers to a 
different combination of lensesf ,~O_----,--: -_i-t-: ___ +-i_2-,-:r-
and different values for distances, - :: :: 
which are given in centimeters. ~ _J ~ ____ J 

The type of lens is indicated by C r-- d----1 
for converging and D for diverg­
ing; the number after CorD is the 
distance between a lens and either 

Fig. 34-44 Problems 80 
through 87. 

Problems 80 through 87: Two-Lens Systems. See the setup for these problems. 

(a) (b) (c) (d) (e) 

PI Lens 1 d Lens 2 i2 M RIV IINI Side 

80 +10 C,15 10 C,8.0 
81 +12 C,8.0 32 C,6.0 
82 +8.0 D,6.0 12 C,6.0 
83 +20 C,9.0 8.0 C,5.0 
84 +15 C,12 67 C,10 
85 +4.0 C,6.0 8.0 D,6.0 
86 +12 C,8.0 30 D,8.0 
87 +20 D,12 10 D,8.0 



of its focal points (the proper sign of the focal distance is not in­
dicated). 

Find (a) the image distance i2 for the image produced by lens 2 
(the final image produced by the system) and (b) the overallia teral 
magnification M for the system, including signs. Also, determine 
whether the final image is (c) real (R) or virtual (V), (d) inverted 
(I) from object 0 or noninverted (NI), and (e) on the same side of 
lens 2 as object 0 or on the opposite side. 

Optical Instruments 
If the angular magnification of an astronomical telescope is 36 

and the diameter of the objective is 75 mm, what is the minimum di­
ameter of the eyepiece required to collect all the light entering the 
objective from a distant point source on the telescope axis? 

SSM In a microscope of the type shown in Fig. 34-20, the 
focal length of the objective is 4.00 cm, and that of the eyepiece is 
8.00 cm. The distance between the lenses is 25.0 cm. (a) What is the 
tube length s? (b) If image I in Fig. 34-20 is to be just inside focal 
point F l, how far from the objective should the object be? What then 
are (c) the lateral magnification m of the objective, (d) the angular 
magnification me of the eyepiece, and (e) the overall magnification 
M of the microscope? 

Figure 34-45a shows the basic structure of a camera. 
A lens can be moved forward or back to produce an image on 
film at the back of the camera. For a certain camera, with the dis­
tance i between the lens and the film set at f = 5.0 cm, parallel 
light rays from a very distant object 0 converge to a point image 
on the film, as shown. The object is now brought closer, to a dis­
tance of p = 100 cm, and the lens-film distance is adjusted so 
that an inverted real image forms on the film (Fig. 34-45b). (a) 
What is the lens-film distance i now? (b) By how much was dis­
tance i changed? 

I 

r------f ----1 r-p-' +--1--i-----1 
(a) (b) 

Fig. 34-45 Problem 90. 

SSM Figure 34-46a shows the basic structure of a human 
eye. Light refracts into the eye through the cornea and is then 
further redirected by a lens whose shape (and thus ability to fo­
cus the light) is controlled by muscles. We can treat the cornea 
and eye lens as a single effective thin lens (Fig. 34-46b). A "nor­
mal" eye can focus parallel light rays from a distant object 0 to a 
point on the retina at the back of the eye, where processing of 
the visual information begins. As an object is brought close to 
the eye, however, the muscles must change the shape of the lens 
so that rays form an inverted real image on the retina (Fig. 
34-46c). (a) Suppose that for the parallel rays of Figs. 34-46a and 
b, the focal length f of the effective thin lens of the eye is 2.50 
cm. For an object at distance p = 40.0 cm, what focal length f' of 
the effective lens is required for the object to be seen clearly? (b) 
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Must the eye muscles increase or decrease the radii of curvature of 
the eye lens to give focallengthf'? 

(

Lens 
Retina 

Muscle~ .....• _ .. c. 

Cornea" .. Effective lens 
,". > 

Light from 
distant 
object 0 

(a) 

I' 
~ p ~---I'I""'" ~ i ----1 

(c) 

Fig. 34-46 Problem 91. 

Retina 

An object is 10.0 mm from the objective of a certain com­
pound microscope. The lenses are 300 mm apart, and the intermedi­
ate image is 50.0 mm from the eyepiece. What overall magnification is 
produced by the instrument? 

Someone with a near point PI! of 25 cm views a thimble 
through a simple magnifying lens of focal length 10 cm by placing the 
lens near his eye. What is the angular magnification of the thimble if it 
is positioned so that its image appears at (a) Pn and (b) infinity? 

Additional Problems 
An object is placed against the center of a spherical mirror 

and then moved 70 cm from it along the central axis as the image 
distance i is measured. Figure 34-47 gives i versus object distance p 
out to Ps = 40 cm. What is the image distance when the object is 70 
cm from the mirror? 

Fig. 34-47 Problem 94. 

95, 99 Three-lens systems. In Fig. 34-48, 
stick figure 0 (the object) stands on the common central axis of 
three thin, symmetric lenses, which are mounted in the boxed 
regions. Lens 1 is mounted within the boxed region closest to 0, 

Fig. 34-48 Problems 95 through 100. 
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Problems 95 through 100: Three-Lens Systems. See the setup for these problems. 

PI Lens 1 dl2 Lens 2 

95 +12 C,8.0 28 C,6.0 

96 +4.0 D,6.0 9.6 C,6.0 

97 +18 C,6.0 15 C,3.0 

98 +2.0 C,6.0 15 C,6.0 

99 +8.0 D,8.0 8.0 D,16 
100 +4.0 C,6.0 8.0 D,4.0 

which is at object distance Pl' Lens 2 is mounted within the middle 
boxed region, at distance d12 from lens 1. Lens 3 is mounted in the 
farthest boxed region, at distance d23 from lens 2. Each problem in 
Table 34-10 refers to a different combination of lenses and different 
:a.lue~ for distances, which are given in centimeters. The type of lens 
IS mdIcated by C for converging and D for diverging; the number af­
ter C or D is the distance between a lens and either of the focal 
points (the proper sign of the focal distance is not indicated). 

Find (a) the image distance i3 for the (final) image produced 
by lens 3 (the final image produced by the system) and (b) the 
overall lateral magnification M for the system, including signs. 
Also, determine whether the final image is (c) real (R) or virtual 
(V), (d) inverted (I) from object 0 or noninverted (NI), and (e) on 
the same side of lens 3 as object 0 or on the opposite side. 

SSM The formula 1/p + 1Ii = 1/[ is called the Gaussian 
form of the thin-lens formula. Another form of this formula, the 
Newtonian form, is obtained by considering the distance x from the 
object to the first focal point and the distance x' from the second 
focal point to the image. Show that xx' = j2 is the Newtonian form 
of the thin-lens formula. 

Figure 34-49a is an overhead view of two vertical plane mirrors 
with an object 0 placed between them. If you look into the mirrors, 
you see multiple images of O. You can find them by drawing the re­
flection in each mirror of the angular region between the mirrors, as 
is done in Fig. 34-49b for the left-hand mirror. Then draw the reflec­
tion of the reflection. Continue this on the left and on the right until 
the reflections meet or overlap at the rear of the mirrors. Then you 
can count the number of images of O. How many images of 0 would 
you see if () is (a) 90°, (b) 45°, and (c) 60°? If () = 120°, determine the 
(d) smallest and (e) largest number of images that can be seen de­
pending on your perspective and the location of O. (f) In each situa­
tion, draw the image locations and orientations as in Fig. 34-49b. 

(J 

~ (J 

tJo 
(a) (b) 

Fig. 34-49 Problem 102. 

d23 

8.0 
14 
11 
19 
5.1 

5.7 

(a) (b) (c) (d) (e) 

Lens 3 i3 M RIV IINI Side 

C,6.0 
C,4.0 
C,3.0 
C,5.0 
C,8.0 
D,12 

103 SSM Tho thin lenses of focal lengths 11 and 12 are in contact. 
Show that they are equivalent to a single thin lens for which the fo­
cal length is I = Id2 / UI + [2)' 

104 Two plane mirrors are placed parallel to each other and 40 cm 
apart. An object is placed 10 cm from one mirror. Determine the (a) 
smallest, (b) second smallest, (c) third smallest (occurs twice), and (d) 
fourth smallest distance between the object and image of the object. 

In Fig. 34-50, a box is some­
where at the left, on the central axis of 
the thin converging lens. The image 1,11 
of the box produced by the plane mir­
ror is 4.00 cm "inside" the mirror. The 
lens-mirror separation is 10.0 cm, and 
the focal length of the lens is 2.00 cm. Fig. 34-50 Problem 105. 
(a) What is the distance between the 
box and the lens? Light reflected by the mirror travels back through 
the lens, which produces a final image of the box. (b) What is the dis­
tance between the lens and that final image? 

06 In Fig. 34-51, an object is placed in front of a converging lens 
at a distance equal to twice the focal length 11 of the lens. On the 
other side of the lens is a concave mirror of focal length 12 sepa­
rated from the lens by a distance 2UI + 12)' Light from the object 
passes rightward through the lens, reflects from the mirror, passes 
leftward through the lens, and forms a final image of the object. 
What are (a) the distance between the lens and that final image 
and (b) the overall lateral magnification M of the object? Is the im­
age (c) real or virtual (if it is virtual, it requires someone looking 
through the lens toward the mirror), (d) to the left or right of the 
lens, and (e) inverted or noninverted relative to the object? 

r- 2Ji -4'I'~ 21Ji +12) 

Fig. 34-51 Problem 106. 

SSM A fruit fly of height H sits in front of lens 1 on the cen­
tt:al axis through the lens. The lens forms an image of the fly at a 
dIstance d = 20 cm from the fly; the image has the fly's orientation 
and height HI = 2.0H. What are (a) the focal length 11 of the lens 
and (b) the object distance PI of the fly? The fly then leaves lens 



1 and sits in front of lens 2, which also forms an image at d = 20 cm 
that has the same orientation as the fly, but now HJ = 0.50H. What 
are (c) f2 and (d) P2? 

You grind the lenses shown in 
Fig. 34-52 from flat glass disks (n = 
1.5) using a machine that can grind a 
radius of curvature of either 40 cm or 
60 cm. In a lens where either radius is (l) 

appropriate, you select the 40 cm ra-
dius. Then you hold each lens in sun-
shine to form an image of the Sun: 
What are the (a) focal length f and 
(b) image type (real or virtual) for 
(bi-convex) lens 1, (c)fand (d) image (4) 

type for (plane-convex) lens 2, (e) f 
and (f) image type for (meniscus con-
vex) lens 3, (g) f and (h) image type 

(2) 

(5) 

Fig. 34-52 

Problem 108. 

(3) 

(6) 

for (bi-concave) lens 4, (i) f and (j) image type for (plane-concave) 
lens 5, and (k) f and (1) image type for (meniscus concave) lens 6? 

109 In Fig. 34-53, a fish watcher at 
point P watches a fish through a glass 
wall of a fish tank. The watcher is 
level with the fish; the index of re­
fraction of the glass is 8/5, and that of 
the water is 4/3. The distances are 
dl = 8.0 cm, d2 = 3.0 cm, and d3 = 

6.8 cm. (a) To the fish, how far away 
does the watcher appear to be? 
(Hint: The watcher is the object. 
Light from that object passes 

I d2 ' 
f+----- dl - -+- d3 --..J 
I I 
I I 
I I 

.r------ - ----~ 
Watcher 

Wall 

Fig. 34-53 

Problem 109. 

through the wall's outside surface, which acts as a refracting sur­
face. Find the image produced by that surface. Then treat that im­
age as an object whose light passes through the wall's inside sur­
face, which acts as another refracting surface. Find the image 
produced by that surface, and there is the answer.) (b) To the 
watcher, how far away does the fish appear to be? 

110 A goldfish in a spherical fish bowl of radius R is at the level 
of the center C of the bowl and at distance RI2 from the glass (Fig. 
34-54). What magnification of the fish is produced by the water in 

Fig. 34-54 Problem 110. 
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the bowl for a viewer looking along a line that includes the fish 
and the center, with the fish on the near side of the center? The 
index of refraction of the water is 1.33. Neglect the glass wall of 
the bowl. Assume the viewer looks with one eye. (Hint: Equation 
34-5 holds, but Eq. 34-6 does not. You need to work with a ray di­
agram of the situation and assume that the rays are close to the 
observer's line of sight- that is, they deviate from that line by 
only small angles.) 

11 Figure 34-55 shows a beam expander made with two coaxial 
converging lenses of focal lengths fl and f2 and separation d = 
fl + f2' The device can expand a laser beam while keeping the 
light rays in the beam parallel to the central axis through the 
lenses. Suppose a uniform laser beam of width Wi = 2.5 mm and 
intensity Ii = 9.0 kW/m2 enters a beam expander for which fl = 

12.5 cm and f2 = 30.0 cm. What are (a) Wf and (b) If of the beam 
leaving the expander? (c) What value of d is needed for the beam 
expander if lens 1 is replaced with a diverging lens of focal length 
fl = -26.0 cm? 

Fig. 34-55 Problem 111. 

112 You look down at a coin that lies at the bottom of a pool of 
liquid of depth d and index of refraction n (Fig. 34-56). Because 
you view with two eyes, which intercept different rays of light 
from the coin, you perceive the coin to be where extensions of the 
intercepted rays cross, at depth da instead of d. Assuming that the 
intercepted rays in Fig. 34-56 are close to a vertical axis through 
the coin, show that da = din. (Hint: Use the small-angle approxi­
mation sin e = tan e = e.) 

To left 
eye 

d 

Fig. 34-56 Problem 112. 
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WHAlISPHYSICS? 
One of the major goals of physics is to understand the nature of light. 

This goal has been difficult to achieve (and has not yet fully been achieved) 
because light is complicated. However, this complication means that light offers 
many opportunities for applications, and some of the richest opportunities in­
volve the interference of light waves-optical interference. 

Nature has long used optical interference for coloring. For example, the 
wings of a Morpho butterfly are a dull, uninspiring brown, as can be seen on the 
bottom wing surface, but the brown is hidden on the top surface by an arresting 
blue due to the interference of light reflecting from that surface (Fig. 35-1). 
Moreover, the top surface is color-shifting; if you change your perspective or if 
the wing moves, the tint of the color changes. Similar color shifting is used in the 
inks on many currencies to thwart counterfeiters, whose copy machines can 
duplicate color from only one perspective and therefore cannot duplicate any shift 
in color caused by a change in perspective. 

To understand the basic physics of optical interference, we must largely 
abandon the simplicity of geometrical optics (in which we describe light as rays) 
and return to the wave nature of light. 

Fig. 35-1 The blue of the top 
surface of a Morpho butterfly wing 
is due to optical interference and 
shifts in color as your viewing 
perspective changes. (Philippe 
ColombilPhotoDisc!IGetty Images) 

Light as a Wave 
The first person to advance a convincing wave theory for light was Dutch physi­
cist Christian Huygens, in 1678. Although much less comprehensive than the 
later electromagnetic theory of Maxwell, Huygens' theory was simpler mathe­
matically and remains useful today. Its great advantages are that it accounts for 
the laws of reflection and refraction in terms of waves and gives physical mean­
ing to the index of refraction. 



Huygens' wave theory is based on a geometrical construction that allows us 
to tell where a given wavefront will be at any time in the future if we know its 
present position. This construction is based on Huygens' principle, which is: 

All points on a wavefront serve as point sources of spherical secondary wavelets. 
After a time t, the new position of the wavefront will be that of a surface tangent to 
these secondary wavelets. 

Here is a simple example. At the left in Fig. 35-2, the present location of a wavefront 
of a plane wave traveling to the right in vacuum is represented by plane ab, perpen­
dicular to the page. Where will the wavefront be at time I1t later? We let several 
points on plane ab (the dots) serve as sources of spherical secondary wavelets that 
are emitted at t = O. At time At, the radius of all these spherical wavelets will have 
grown to c 11t, where c is the speed of light in vacuum. We draw plane de tangent to 
these wavelets at time 11t. This plane represents the wavefront of the plane wave at 
time At; it is parallel to plane ab and a perpendicular distance c I1t from it. 

We now use Huygens' principle to derive the law of refraction, Eq. 33-40 (Snell's 
law). Figure 35-3 shows three stages in the refraction of several wavefronts at 
a flat interface between air (medium 1) and glass (medium 2). We arbitrarily 
choose the wavefronts in the incident light beam to be separated by ,11, the 
wavelength in medium 1. Let the speed of light in air be VI and that in glass be V2' 

We assume that V2 < Vb which happens to be true. 
Angle ()j in Fig. 35-3a is the angle between the wavefront and the interface; it 

has the same value as the angle between the normal to the wavefront (that is, the 
incident ray) and the normal to the interface. Thus, ()j is the angle of incidence. 

As the wave moves into the glass, a Huygens wavelet at point e in Fig. 35-3b 
will expand to pass through point c, at a distance of ,11 from point e. The time 
interval required for this expansion is that distance divided by the speed of the 
wavelet, or A1/v1' Now note that in this same time interval, a Huygens wavelet at 
point h will expand to pass through point g, at the reduced speed V2 and with 
wavelength ,12' Thus, this time interval must also be equal to A2/v2' By equating 
these times of travel, we obtain the relation 

Refraction occurs at the 
surface, giving a new 
direction of travel. 

(a) 

Air 
Glass 

A1 V1 
(35-1) 

(b) 

Fig.35-3 The refraction of a plane wave at an air-glass interface, as portrayed by Huygens' 
principle. The wavelength in glass is smaller than that in air. For simplicity, the reflected wave is 
not shown. Parts (a) through (c) represent three successive stages of the refraction. 

3 2 LIGHT AS A WAVE 959 

/ 
Wavefront at 

1=0 

b d 

a 

Fig. 35-2 The propagation of a 
plane wave in vacuum, as portrayed 
by Huygens' principle. 

Refracted wave 

(c) 
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which shows that the wavelengths of light in two media are proportional to the 
speeds of light in those media. 

By Huygens' principle, the refracted wavefront must be tangent to an arc of 
radius A2 centered on h, say at point g. The refracted wavefront must also be tan­
gent to an arc of radius A1 centered on e, say at c. Then the refracted wavefront 
must be oriented as shown. Note that (Jz, the angle between the refracted wave­
front and the interface, is actually the angle of refraction. 

For the right triangles hce and hcg in Fig. 35-3b we may write 

. Al 
sm (Jl = hc (for triangle hce) 

and (for triangle hcg). 

Dividing the first of these two equations by the second and using Eq. 35-1, we find 

(35-2) 

We can define the index of refraction n for each medium as the ratio of the 
speed of light in vacuum to the speed of light v in the medium. Thus, 

c 
n=­

v 
(index of refraction). 

In particular, for our two media, we have 
c 

nl = - and 
VI 

If we combine Eqs. 35-2 and 35-4, we find 

c 
n2=-' 

V2 

sin (Jl c/nl n2 

sin (J2 c/n2 nl 

or (law of refraction), 

as introduced in Chapter 33. 

CHECKPOINT 1 

(35-3) 

(35-4) 

(35-5) 

(35-6) 

The figure shows a monochromatic ray of light traveling across parallel interfaces, from 
an original material a, through layers of materials band c, and then back into material 
a. Rank the materials according to the speed of light in them, greatest first. 

We have now seen that the wavelength of light changes when the speed of the 
light changes, as happens when light crosses an interface from one medium into 
another. Further, the speed of light in any medium depends on the index of 
refraction of the medium, according to Eq. 35-3. Thus, the wavelength of light in 
any medium depends on the index of refraction of the medium. Let a certain 



monochromatic light have wavelength A and speed c in vacuum and wavelength 
An and speed v in a medium with an index of refraction n. Now we can rewrite 
Eq. 35-1 as 

V 
An = A-. 

c 

Using Eq. 35-3 to substitute lin for vic then yields 

A 
An=-· 

n 

(35-7) 

(35-8) 

This equation relates the wavelength of light in any medium to its wavelength in 
vacuum. It tells us that the greater the index of refraction of a medium, the 
smaller the wavelength of light in that medium. 

What about the frequency of the light? Let fn represent the frequency of the 
light in a medium with index of refraction n. Then from the general relation of 
Eq.16-13 (v = At), we can write 

V 

1" =T' 
n 

Substituting Eqs. 35-3 and 35-8 then gives us 

c1n c 
1" = Aln = A = f, 

where f is the frequency of the light in vacuum. Thus, although the speed and 
wavelength of light in the medium are different from what they are in vacuum, 
the frequency of the light in the medium is the same as it is in vacuum. 

The fact that the wavelength of light depends on the index of refraction 
via Eq. 35-8 is important in certain situations involving the interference of light 
waves. For example, in Fig. 35-4, the waves of the rays (that is, the waves repre­
sented by the rays) have identical wavelengths A and are initially in phase in air 
(n = 1). One of the waves travels through medium 1 of index of refraction nl and 
length L. The other travels through medium 2 of index of refraction n2 and the 
same length L. When the waves leave the two media, they will have the same 
wavelength-their wavelength A in air. However, because their wavelengths 
differed in the two media, the two waves may no longer be in phase. 

The phase difference between two light waves can change if the waves travel through 
different materials having different indexes of refraction. 

As we shall discuss soon, this change in the phase difference can determine how 
the light waves will interfere if they reach some common point. 

To find their new phase difference in terms of wavelengths, we first count the 
number Nl of wavelengths there are in the length L of medium 1. From Eq. 35-8, 
the wavelength in medium 1 is Ani = Alnl; so 

L Lnl 
~ =-=--. 

All! A 
(35-9) 

Similarly, we count the number N2 of wavelengths there are in the length L of 
medium 2, where the wavelength is A/!2 = Aln2: 

L Ln2 
N2 =-=--· 

An2 A 
(35-10) 

To find the new phase difference between the waves, we subtract the smaller of 
Nl and N2 from the larger. Assuming n2 > n1> we obtain 

Ln2 L111 L 
N2 - Nl = -A- - -A- = -:\(112 - 111)' (35-11) 
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The difference in indexes 
causes a phase shift 
between the rays. 

Fig. 35-4 Two light rays travel through 
two media having different indexes of 
refraction. 
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~rimary 
~ rainbow 

Supernumeraries 

Fig. 35-5 A primary rainbow and the 
faint supernumeraries below it are due to 
optical interference. 

Suppose Eq. 35-11 tells us that the waves now have a phase difference of 
45.6 wavelengths. That is equivalent to taking the initially in-phase waves and 
shifting one of them by 45.6 wavelengths. However, a shift of an integer num­
ber of wavelengths (such as 45) would put the waves back in phase; so it is 
only the decimal fraction (here, 0.6) that is important. A phase difference of 
45.6 wavelengths is equivalent to an effective phase difference of 0.6 wave­
length. 

A phase difference of 0.5 wavelength puts two waves exactly out of phase. 
If the waves had equal amplitudes and were to reach some common point, they 
would then undergo fully destructive interference, producing darkness at that 
point. With a phase difference of 0.0 or 1.0 wavelength, they would, instead, 
undergo fully constructive interference, resulting in brightness at the common 
point. Our phase difference of 0.6 wavelength is an intermediate situation but 
closer to fully destructive interference, and the waves would produce a dimly 
illuminated common point. 

We can also express phase difference in terms of radians and degrees, as we 
have done already. A phase difference of one wavelength is equivalent to phase 
differences of 21Trad and 360°. 

CHECKPOINT 2 

The light waves of the rays in Fig. 35-4 have the same wavelength and amplitude and 
are initially in phase. (a) If 7.60 wavelengths fit within the length of the top material 
and 5.50 wavelengths fit within that of the bottom material, which material has the 
greater index of refraction? (b) If the rays are angled slightly so that they meet at the 
same point on a distant screen, will the interference there result in the brightest pos­
sible illumination, bright intermediate illumination, dark intermediate illumination, 
or darkness? 

In Section 33-8, we discussed how the colors of sunlight are separated into a 
rainbow when sunlight travels through falling raindrops. We dealt with a simpli­
fied situation in which a single ray of white light entered a drop. Actually, light 
waves pass into a drop along the entire side that faces the Sun. Here we cannot 
discuss the details of how these waves travel through the drop and then emerge, 
but we can see that different parts of an incoming wave will travel different 
paths within the drop. That means waves will emerge from the drop with differ­
ent phases. Thus, we can see that at some angles the emerging light will be in 
phase and give constructive interference. The rainbow is the result of such con­
structive interference. For example, the red of the rainbow appears because 
waves of red light emerge in phase from each raindrop in the direction in which 
you see that part of the rainbow. The light waves that emerge in other direc­
tions from each raindrop have a range of different phases because they take a 
range of different paths through each drop. This light is neither bright nor col­
orful, and so you do not notice it. 

If you are lucky and look carefully below a primary rainbow, you can 
see dimmer colored arcs called supernumeraries (Fig. 35-5). Like the main arcs 
of the rainbow, the supernumeraries are due to waves that emerge from each 
drop approximately in phase with one another to give constructive interfer­
ence. If you are very lucky and look very carefully above a secondary rainbow, 
you might see even more (but even dimmer) supernumeraries. Keep in mind 
that both types of rainbows and both sets of supernumeraries are naturally oc­
curring examples of optical interference and naturally occurring evidence that 
light consists of waves. 
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Phase difference of two waves due to difference in refractive indexes 

In Fig. 35-4, the two light waves that are represented by the 
rays have wavelength 550.0 nm before entering media 1 and 
2. They also have equal amplitudes and are in phase. Medium 
1 is now just air, and medium 2 is a transparent plastic layer 
of index of refraction 1.600 and thickness 2.600 ,urn. 

(a) What is the phase difference of the emerging waves in 
wavelengths, radians, and degrees? What is their effective 
phase difference (in wavelengths)? 

The phase difference of two light waves can change if they 
travel through different media, with different indexes of re­
fraction. The reason is that their wavelengths are different in 
the different media. We can calculate the change in phase 
difference by counting the number of wavelengths that fits 
into each medium and then subtracting those numbers. 

Calculations: When the path lengths of the waves in the two 
media are identical, Eq. 35-11 gives the result of the subtraction. 
Here we have nl = 1.000 (for the air),llz = 1.600,L = 2.600 ,urn, 
and A = 550.0 nm. Thus, Eq. 35-11 yields 

L 
Nz - Nl = A (nz - nl) 

2.600 X 10-6 m 
= 5.500 X 10-7 m (1.600 - 1.000) 

= 2.84. (Answer) 

Thus, the phase difference of the emerging waves is 2.84 wave­
lengths. Because 1.0 wavelength is equivalent to 27T rad and 
360°, you can show that this phase difference is equivalent to 

phase difference = 17.8 rad = 1020°. (Answer) 

The effective phase difference is the decimal part of the 
actual phase difference expressed in wavelengths. Thus, we have 

effective phase difference = 0.84 wavelength. (Answer) 

You can show that this is equivalent to 5.3 rad and about 
300°. Caution: We do not find the effective phase difference 
by taking the decimal part of the actual phase difference as 
expressed in radians or degrees. For example, we do not take 
0.8 rad from the actual phase difference of 17.8 rad. 

(b) If the waves reached the same point on a distant screen, 
what type of interference would they produce? 

Reasoning: We need to compare the effective phase differ­
ence of the waves with the phase differences that give the 
extreme types of interference. Here the effective phase dif­
ference of 0.84 wavelength is between 0.5 wavelength (for 
fully destructive interference, or the darkest possible result) 
and 1.0 wavelength (for fully constructive interference, or 
the brightest possible result), but closer to 1.0 wavelength. 
Thus, the waves would produce intermediate interference 
that is closer to fully constructive interference - they would 
produce a relatively bright spot. 

~11rs Additional examples, video, and practice available at WileyPLUS 

Diffraction 
In the next section we shall discuss the exper­
iment that first proved that light is a wave. To 
prepare for that discussion, we must intro­
duce the idea of diffraction of waves, a phe­
nomenon that we explore much more fully in 
Chapter 36. Its essence is this: If a wave en­
counters a barrier that has an opening of di­
mensions similar to the wavelength, the part of 
the wave that passes through the opening will 
flare (spread) out-will diffract-into the re­
gion beyond the barrier. The flaring is consis­
tent with the spreading of wavelets in the 
Huygens construction of Fig. 35-2. Diffraction 
occurs for waves of all types, not just light 
waves; Fig. 35-6 shows the diffraction of water 
waves traveling across the surface of water in 
a shallow tank. 

Fig. 35-6 Waves produced by an os­
cillating paddle at the left flare out 
through an opening in a barrier along 
the water surface. (Runk Schoen­
berger/Grant Heilman Photography) 
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A wave passing through 

I 
a slit flares (diffracts). 

Incident Diffracted 
wave wave 

~ f..-). 

iilf T 
a 
-.l 

s"J 
(6.0).) --...:..0... 

(a) 

Fig. 35-7 Diffraction represented 
schematically. For a given wavelength A, the 
diffraction is more pronounced the smaller 
the slit width a. The figures show the cases 
for (a) slit width a = 6.0A, (b) slit width a = 

3.0A, and (c) slit width a = 1.5A. In all three 
cases, the screen and the length of the slit 
extend well into and out of the page, per­
pendicular to it. 

Fig.35-8 In Young's interference ex­
periment, incident monochromatic light is 
diffracted by slit So, which then acts as a 
point source of light that emits semicircular 
wavefronts. As that light reaches screen B, 
it is diffracted by slits Sl and S2, which then 
act as two point sources of light. The light 
waves traveling from slits Sl and S2 overlap 
and undergo interference, forming an inter­
ference pattern of maxima and minima on 
viewing screen C. This figure is a cross sec­
tion; the screens, slits, and interference pat­
tern extend into and out of the page. 
Between screens Band C, the semicircular 
wave fronts centered on S2 depict the waves 
that would be there if only S2 were open. 
Similarly, those centered on Sl depict waves 
that would be there if only Sl were open. 

./" ~ f..-). 

)))l 
~ f..-). 

-.l -.l 
a a 

T I 
T 
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~ 

"-.... (b) (c) 

Figure 35-7a shows the situation schematically for an incident plane wave of 
wavelength A encountering a slit that has width a = 6.0,1 and extends into and out 
of the page. The part of the wave that passes through the slit flares out on the far 
side. Figures 35-7b (with a = 3.0,1) and 35-7c (a = 1.5,1) illustrate the main fea­
ture of diffraction: the narrower the slit, the greater the diffraction. 

Diffraction limits geometrical optics, in which we represent an electromagnetic 
wave with a ray. If we actually try to form a ray by sending light through a narrow slit, 
or through a series of narrow slits, diffraction will always defeat our effort because it 
always causes the light to spread. Indeed, the narrower we make the slits (in the hope 
of producing a narrower beam), the greater the spreading is. Thus, geometrical optics 
holds only when slits or other apertures that might be located in the path of light do 
not have dimensions comparable to or smaller than the wavelength of the light. 

Young's Interference Experiment 
In 1801, Thomas Young experimentally proved that light is a wave, contrary to what 
most other scientists then thought. He did so by demonstrating that light undergoes 
interference, as do water waves, sound waves, and waves of all other types. In addi­
tion, he was able to measure the average wavelength of sunlight; his value, 570 nm, 
is impressively close to the modern accepted value of 555 nm. We shall here exam­
ine Young's experiment as an example of the interference of light waves. 

Figure 35-8 gives the basic arrangement of Young's experiment. Light from a 
distant monochromatic source illuminates slit So in screen A. The emerging light 

Incident 
wave 

A B 

Max 

Max 

Max 

Max 

Max 

Max 

Max 

Max 

Max 

Max 

, Max 

Max 

Max 
C 

The waves emerging 
from the two slits 
overlap and form an 
interference pattern. 
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then spreads via diffraction to illuminate two slits SI and S2 in screen B. 
Diffraction of the light by these two slits sends overlapping circular waves into 
the region beyond screen B, where the waves from one slit interfere with the 
waves from the other slit. 

The "snapshot" of Fig. 35-8 depicts the interference of the overlapping waves. 
However, we cannot see evidence for the interference except where a viewing 
screen C intercepts the light. Where it does so, points of interference maxima form 
visible bright rows-called bright bands, bright fringes, or (loosely speaking) max­
ima-that extend across the screen (into and out of the page in Fig. 35-8). Dark re­
gions-called dark bands, dark fringes, or (loosely speaking) minima-result from 
fully destructive interference and are visible between adjacent pairs of bright 
fringes. (Maxima and minima more properly refer to the center of a band.) The pat­
tern of bright and dark fringes on the screen is called an interference pattern. Figure 
35-9 is a photograph of part of the interference pattern that would be seen by an ob­
server standing to the left of screen C in the arrangement of Fig. 35-8. 

Light waves produce fringes in a Young's double-slit interference experiment, as it 
is called, but what exactly determines the locations of the fringes? To answer, 
we shall use the arrangement in Fig. 35-lOa. There, a plane wave of monochromatic 
light is incident on two slits SI and S2 in screen B; the light diffracts through the slits 
and produces an interference pattern on screen C. We draw a central axis from the 
point halfway between the slits to screen C as a reference. We then pick, for discus­
sion, an arbitrary point P on the screen, at angle Oto the central axis. This point inter­
cepts the wave of ray rl from the bottom slit and the wave of ray r2 from the top slit. 

These waves are in phase when they pass through the two slits because there 
they are just portions of the same incident wave. However, once they have passed 
the slits, the two waves must travel different distances to reach P. We saw a simi­
lar situation in Section 17-5 with sound waves and concluded that 

The phase difference between two waves can change if the waves travel paths of 
different lengths. 

The change in phase difference is due to the path length difference I1L in the 
paths taken by the waves. Consider two waves initially exactly in phase, traveling 
along paths with a path length difference I1L, and then passing through some 
common point. When I1L is zero or an integer number of wavelengths, the waves 
arrive at the common point exactly in phase and they interfere fully con-

Fig. 35-10 (a) Waves from slits Sj and 
S2 (which extend into and out of the page) 
combine at P, an arbitrary point on screen 
C at distance y from the central axis. The 
angle Bserves as a convenient locator for 
P. (b) For D ~ d, we can approximate rays 
rl and 1"2 as being parallel, at angle B to the 
central axis. 

Incident 
wave 

(a) 

I-----D -I 

p 

1 
_______ d ____ _ 

T 
(b) 

c 

Fig. 35-9 A photograph of the interfer­
ence pattern produced by the arrangement 
shown in Fig. 35-8, but with short slits. (The 
photograph is a front view of part of screen 
C.) The alternating maxima and minima 
are called intelference fringes (because they 
resemble the decorative fringe sometimes 
used on clothing and rugs). (learl Walker) 

The M shifts 
one wave from 
the other, which 
determines the 
interference. 
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structively there. If that is true for the waves of rays r1 and r2 in Fig. 35-10, then 
point P is part of a bright fringe. When, instead, !1L is an odd multiple of half a 
wavelength, the waves arrive at the common point exactly out of phase and they 
interfere fully destructively there. If that is true for the waves of rays r1 and r2, 
then point P is part of a dark fringe. (And, of course, we can have intermediate 
situations of interference and thus intermediate illumination at P.) Thus, 

What appears at each point on the viewing screen in a Young's double-slit interference 
experiment is determined by the path length difference IiL of the rays reaching that point. 

We can specify where each bright fringe and each dark fringe is located on 
the screen by giving the angle () from the central axis to that fringe. To find (), we 
must relate it to !1L. We start with Fig. 35-10a by finding a point b along ray r1 
such that the path length from b to P equals the path length from S2 to P. Then 
the path length difference!1L between the two rays is the distance from S1 to b. 

The relation between this Scto-b distance and () is complicated, but we can 
simplify it considerably if we arrange for the distance D from the slits to the 
screen to be much greater than the slit separation d. Then we can approximate 
rays r1 and r2 as being parallel to each other and at angle () to the central axis 
(Fig. 35-10b). We can also approximate the triangle formed by Sj, S2, and b as 
being a right triangle, and approximate the angle inside that triangle at S2 as 
being (). Then, for that triangle, sin () = !1L/d and thus 

!1L = d sin () (path length difference). (35-12) 

For a bright fringe, we saw that !1L must be either zero or an integer number of 
wavelengths. Using Eq. 35-12, we can write this requirement as 

!1L = d sin () = (integer)(A), (35-13) 

or as 

dsin () = mA, form = 0,1,2, ... (maxima - bright fringes). (35-14) 

For a dark fringe, !1L must be an odd multiple of half a wavelength. Again using 
Eq. 35-12, we can write this requirement as 

!1L = dsin () = (odd number)(!,.\) , (35-15) 
or as 

d sin () = (m + !),.\, for m = 0, 1, 2, ... (minima-dark fringes). (35-16) 

With Eqs. 35-14 and 35-16, we can find the angle () to any fringe and thus 
locate that fringe; further, we can use the values of m to label the fringes. For 
the value and label m = 0, Eq. 35-14 tells us that a bright fringe is at () = ° and thus 
on the central axis. This central maximum is the point at which waves arriving from 
the two slits have a path length difference !1L = 0, hence zero phase difference. 

For, say, m = 2, Eq. 35-14 tells us that bright fringes are at the angle 

above and below the central axis. Waves from the two slits arrive at these two 
fringes with !1L = 2A and with a phase difference of two wavelengths. These 
fringes are said to be the second-order bright fringes (meaning m = 2) or the 
second side maxima (the second maxima to the side of the central maximum), 
or they are described as being the second bright fringes from the central 
maximum. 
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For m = 1, Eq. 35-16 tells us that dark fringes are at the angle 

. _1(1.5A) () = sm -d-,-

above and below the central axis. Waves from the two slits arrive at these two 
fringes with AL = 1.5A and with a phase difference, in wavelengths, of 1.5. These 
fringes are called the second-order dark fringes or second minima because they are 
the second dark fringes to the side of the central axis. (The first dark fringes, or first 
minima, are at locations for which m = 0 in Eq. 35-16.) 

We derived Eqs. 35-14 and 35-16 for the situation D ~ d. However, they also 
apply if we place a converging lens between the slits and the viewing screen 
and then move the viewing screen closer to the slits, to the focal point of the lens. 
(The screen is then said to be in the focal plane of the lens; that is, it is in the plane 
perpendicular to the central axis at the focal point.) One property of a converg­
ing lens is that it focuses all rays that are parallel to one another to the same point 
on its focal plane. Thus, the rays that now arrive at any point on the screen (in the 
focal plane) were exactly parallel (rather than approximately) when they left 
the slits. They are like the initially parallel rays in Fig. 34-14a that are directed to 
a point (the focal point) by a lens. 

"'CHECKPOINT 3 

In Fig. 35-lOa, what are I:!;.L (as a multiple of the wavelength) and the phase difference 
(in wavelengths) for the two rays if point P is (a) a third side maximum and (b) a third 
minimum? 

Double-slit interference pattern 

What is the distance on screen C in Fig. 35-10a between 
adjacent maxima near the center of the interference pattern? 
The wavelength A of the light is 546 nm, the slit separation d 
is 0.12 mm, and the slit-screen separation D is 55 cm. 
Assume that e in Fig. 35-10 is small enough to permit use of 
the approximations sin e = tan e = e, in which e is expressed 
in radian measure. 

Calculations: If we equate our two expressions for angle e 
and then solve for Ym' we find 

(1) First, let us pick a maximum with a low value of m to 
ensure that it is near the center of the pattern. Then, from 
the geometry of Fig. 35-10a, the maximum's vertical distance 
Ym from the center of the pattern is related to its angle e 
from the central axis by 

tan () = () = ?; . 
(2) From Eq. 35-14, this angle () for the mth maximum is 
given by 

. mA 
sm () = () = d' 

mAD 
Ym=-d-' (35-17) 

For the next maximum as we move away from the pattern's 
center, we have 

(m + l)AD 
Ym+1 = d . (35-18) 

We find the distance between these adjacent maxima by 
subtracting Eq. 35-17 from Eq. 35-18: 

AD 
Ay = Ym+1 - Ym = d 

(546 X 10-9 m)(55 X 10-2 m) 

0.12 X 10-3 m 

= 2.50 X 10-3 m = 2.5 mm. (Answer) 

As long as d and () in Fig. 35-10a are small, the separation of 
the interference fringes is independent of m; that is, the 
fringes are evenly spaced. 

~fus Additional examples, video, and practice available at WileyPLUS 
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Double-slit interference pattern with plastic over one slit 

A double-slit interference pattern is produced on a screen, 
as in Fig. 35-10; the light is monochromatic at a wavelength 
of 600 nm. A strip of transparent plastic with index of re­
fraction n = 1.50 is to be placed over one of the slits. Its 
presence changes the interference between light waves 
from the two slits, causing the interference pattern to be 
shifted across the screen from the original pattern. Figure 
35-11a shows the original locations of the central bright 
fringe (m = 0) and the first bright fringes (m = 1) above 
and below the central fringe. The purpose of the plastic is 
to shift the pattern upward so that the lower m = 1 bright 
fringe is shifted to the center of the pattern. Should the 
plastic be placed over the top slit (as arbitrarily drawn in 
Fig. 35-11b) or the bottom slit, and what thickness L 
should it have? 

The interference at a point on the screen depends on the 
phase difference of the light rays arriving from the two slits. 
The light rays are in phase at the slits, but their relative phase 
can shift on the way to the screen due to (1) a difference in 
the length of the paths they follow and (2) a difference in the 
number of their internal wavelengths An in the materials 
through which they pass. The first condition applies to any 
off-center point, and the second condition applies when the 
plastic covers one of the slits. 

Path length difference: Figure 35-11a shows rays rl and r2 
along which waves from the two slits travel to reach the 
lower m = 1 bright fringe. Those waves start in phase at the 
slits but arrive at the fringe with a phase difference of 
exactly 1 wavelength. To remind ourselves of this main char­
acteristic of the fringe, let us call it the lA fringe. The one­
wavelength phase difference is due to the one-wavelength 
path length difference between the rays reaching the fringe; 
that is, there is exactly one more wavelength along ray r2 
than along rl' 

Figure 35-11b shows the lA fringe shifted up to the 
center of the pattern with the plastic strip over the top slit 
(we still do not know whether the plastic should be there 
or over the bottom slit). The figure also shows the new ori­
entations of rays rl and r2 to reach that fringe. There still 
must be one more wavelength along r2 than along rl (be­
cause they still produce the lA fringe), but now the path 
length difference between those rays is zero, as we can tell 
from the geometry of Fig. 35-11b. However, r2 now passes 
through the plastic. 

Internal wavelength: The wavelength An of light in a 
material with index of refraction n is smaller than the wave­
length in vacuum, as given by Eq. 35-8 (An = Aln). Here, this 
means that the wavelength of the light is smaller in the plastic 
than in the air. Thus, the ray that passes through the plastic will 
have more wavelengths along it than the ray that passes 
through only air-so we do get the one extra wavelength we 
need along ray r2 by placing the plastic over the top slit, as 
drawn in Fig. 35-11b. 

Thickness: To determine the required thickness L of the 
plastic, we first note that the waves are initially in phase and 
travel equal distances L through different materials (plastic 
and air). Because we know the phase difference and require 
L, we use Eq. 35-11, 

(35-19) 

We know that N2 - Nl is 1 for a phase difference of one 
wavelength, n2 is 1.50 for the plastic in front of the top slit, 
nl is 1.00 for the air in front of the bottom slit, and A is 
600 X 10-9 m. Then Eq. 35-19 tells us that, to shift the lower 
m = 1 bright fringe up to the center of the interference pat­
tern, the plastic must have the thickness 

L = A(N2 - Nl) = (600 X 10-9 m)(l) 
n2 - nl 1.50 - 1.00 

= 1.2 X 10-6 m. (Answer) 

(a) 

m=l 

m=O 

m=l 

The difference in indexes 
causes a phase shift 
between the rays, moving 
the 1 A fringe upward. 

U fringe 

(b) 

Ufringe 

Fig. 35-11 (a) Arrangement for two-slit interference (not to 
scale). The locations of three bright fringes (or maxima) are indi­
cated. (b) A strip of plastic covers the top slit. We want the l.A 
fringe to be at the center of the pattern. 

Additional examples, video, and practice available at WileyPLUS 
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Coherence 
For the interference pattern to appear on viewing screen C in Fig. 35-8, the light 
waves reaching any point P on the screen must have a phase difference that does 
not vary in time. That is the case in Fig. 35-8 because the waves passing through 
slits Sl and S2 are portions of the single light wave that illuminates the slits. 
Because the phase difference remains constant, the light from slits Sl and S2 is 
said to be completely coherent. 

Direct sunlight is partially coherent; that is, sunlight waves intercepted at two 
points have a constant phase difference only if the points are very close. If you 
look closely at your fingernail in bright sunlight, you can see a faint interference 
pattern called speckle that causes the nail to appear to be covered with specks. 
You see this effect because light waves scattering from very close points on the 
nail are sufficiently coherent to interfere with one another at your eye. The slits in 
a double-slit experiment, however, are not close enough, and in direct sunlight, 
the light at the slits would be incoherent. To get coherent light, we would have to 
send the sunlight through a single slit as in Fig. 35-8; because that single slit is 
small, light that passes through it is coherent. In addition, the smallness of the slit 
causes the coherent light to spread via diffraction to illuminate both slits in the 
double-slit experiment. 

If we replace the double slits with two similar but independent monochromatic 
light sources, such as two fine incandescent wires, the phase difference between the 
waves emitted by the sources varies rapidly and randomly. (This occurs because the 
light is emitted by vast numbers of atoms in the wires, acting randomly and inde­
pendently for extremely short times - of the order of nanoseconds.) As a result, at 
any given point on the viewing screen, the interference between the waves from the 
two sources varies rapidly and randomly between fully constructive and fully 
destructive. The eye (and most common optical detectors) cannot follow such 
changes, and no interference pattern can be seen. The fringes disappear, and the 
screen is seen as being uniformly illuminated. 

A laser differs from common light sources in that its atoms emit light in a 
cooperative manner, thereby making the light coherent. Moreover, the light is 
almost monochromatic, is emitted in a thin beam with little spreading, and can be 
focused to a width that almost matches the wavelength of the light. 

Intensity in Double-Slit Interference 
Equations 35-14 and 35-16 tell us how to locate the maxima and minima of 
the double-slit interference pattern on screen C of Fig. 35-10 as a function of the 
angle e in that figure. Here we wish to derive an expression for the intensity I of 
the fringes as a function of e. 

The light leaving the slits is in phase. However, let us assume that the light waves 
from the two slits are not in phase when they arrive at point P. Instead, the electric 
field components of those waves at point P are not in phase and vary with time as 

E1 = Eosin wt 

and E2 = Eo sine wt + cp), 

(35-20) 

(35-21) 

where w is the angular frequency of the waves and cp is the phase constant of 
wave E2. Note that the two waves have the same amplitude Eo and a phase differ­
ence of cpo Because that phase difference does not vary, the waves are coherent. 
We shall show that these two waves will combine at P to produce an intensity I 
given by 

(35-22) 
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Fig. 35-12 A plot of Eq. 35-22, showing 
the intensity of a double-slit interference 
pattern as a function of the phase difference 
between the waves when they arrive from 
the two slits. 1o is the (uniform) intensity that 
would appear on the screen if one slit were 
covered. The average intensity of the fringe 
pattern is 21o, and the maximum intensity 
(for coherent light) is 41o, 

2 o 
2 o 

2 
o 2 

111, for maxima 
111, for minima 

2.5 2 l.5 0.5 0 0.5 1 1.5 2 2.5 I.!..L/ A 

and that 

'" 271'd. 
'I' = -A- sm e. (35-23) 

In Eq. 35-22, 10 is the intensity of the light that arrives on the screen from one 
slit when the other slit is temporarily covered. We assume that the slits are so nar­
row in comparison to the wavelength that this single-slit intensity is essentially 
uniform over the region of the screen in which we wish to examine the fringes. 

Equations 35-22 and 35-23, which together tell us how the intensity I of the 
fringe pattern varies with the angle e in Fig. 35-10, necessarily contain informa­
tion about the location of the maxima and minima. Let us see if we can extract 
that information to find equations about those locations. 

Study of Eq. 35-22 shows that intensity maxima will occur when 
1", _ 
2'1' - m71', for m = 0,1,2, .... (35-24) 

If we put this result into Eq. 35-23, we find 

2 271'd. 
m71' = -A- sm e, for m = 0, 1,2, ... 

or d sin e = mA, form = 0,1,2, ... (maxima), (35-25) 

which is exactly Eq. 35-14, the expression that we derived earlier for the locations 
of the maxima. 

The minima in the fringe pattern occur when 

!4> = (m + !)71', for m = 0,1,2, .... (35-26) 

If we combine this relation with Eq. 35-23, we are led at once to 

d sin e = (m + !)A, for m = 0,1,2, . . . (minima), (35-27) 

which is just Eq. 35-16, the expression we derived earlier for the locations of the 
fringe minima. 

Figure 35-12, which is a plot of Eq. 35-22, shows the intensity of double-slit 
interference patterns as a function of the phase difference 4> between the waves 
at the screen. The horizontal solid line is la, the (uniform) intensity on the screen 
when one of the slits is covered up. Note in Eq. 35-22 and the graph that the 
intensity I varies from zero at the fringe minima to 410 at the fringe maxima. 

If the waves from the two sources (slits) were incoherent, so that no enduring 
phase relation existed between them, there would be no fringe pattern and the 
intensity would have the uniform value 210 for all points on the screen; the 
horizontal dashed line in Fig. 35-12 shows this uniform value. 

Interference cannot create or destroy energy but merely redistributes it over the 
screen. Thus, the average intensity on the screen must be the same 210 regardless of 
whether the sources are coherent. This follows at once from Eq. 35-22; if we substitute 
!, the average value of the cosine-squared function, this equation reduces to lavg = 210, 
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We shall combine the electric field components E1 and E2, given by Eqs. 35-20 
and 35-21, respectively, by the method of phasors as is discussed in Section 16-11. 
In Fig. 35-13a, the waves with components E1 and E2 are represented by phasors 
of magnitude Eo that rotate around the origin at angular speed w. The values 
of E1 and E2 at any time are the projections of the corresponding phasors on the 
vertical axis. Figure 35-13a shows the phasors and their projections at an arbitrary 
time t. Consistent with Eqs. 35-20 and 35-21, the phasor for E1 has a rotation 
angle wt and the phasor for E2 has a rotation angle wt + ¢ (it is phase-shifted 
ahead of E1)' As each phasor rotates, its projection on the vertcal axis varies with 
time in the same way that the sinusoidal functions of Eqs. 35-20 and 35-21 vary 
with time. 

To combine the field components E1 and E2 at any point P in Fig. 35-10, we 
add their phasors vectorially, as shown in Fig. 35-13b. The magnitude of the vector 
sum is the amplitude E of the resultant wave at point P, and that wave has a cer­
tain phase constant f3. To find the amplitude E in Fig. 35-13b, we first note that the 
two angles marked f3 are equal because they are opposite equal-length sides of 
a triangle. From the theorem (for triangles) that an exterior angle (here ¢, as 
shown in Fig. 35-13b) is equal to the sum of the two opposite interior angles (here 
that sum is f3 + (3), we see that f3 = ! ¢. Thus, we have 

E = 2(Eo cos (3) 

= 2Eo cos!¢. 

If we square each side of this relation, we obtain 

E2 = 4E5 cos2 ! ¢. 

(35-28) 

(35-29) 

Now, from Eq. 33-24, we know that the intensity of an electromagnetic wave is 
proportional to the square of its amplitude. Therefore, the waves we are combining 
in Fig. 35-13b, whose amplitudes are Eo, each has an intensity 10 that is proportional 
to E5, and the resultant wave, with amplitude E, has an intensity 1 that is propor­
tional to E2. Thus, 

1 E2 

10 E5' 

Substituting Eq. 35-29 into this equation and rearranging then yield 

1 = 410 cos2 !¢, 

which is Eq. 35-22, which we set out to prove. 
We still must prove Eq. 35-23, which relates the phase difference ¢ between 

the waves arriving at any point P on the screen of Fig. 35-10 to the angle () that 
serves as a locator of that point. 

The phase difference ¢ in Eq. 35-21 is associated with the path length differ­
ence Slb in Fig. 35-10b. If Slb is !A, then ¢ is 7T; if Slb is A, then ¢ is 27T, and so on. 
This suggests 

(
Phase) 27T (path length) 

difference = T difference . (35-30) 

The path length difference Sib in Fig. 35-10b is d sin (); so Eq. 35-30 for the phase 
difference between the two waves arriving at point P on the screen becomes 

A. = 27Td sin () 
'I' A ' 

which is Eq. 35-23, the other equation that we set out to prove to relate ¢ to the 
angle ()that locates P. 

(a) 
Phasors that represent 
waves can be added to 
find the net wave. 

E2 -------------:'i\ 

(b) 

Fig.35-13 (a) Phasors representing, at 
time t, the electric field components given 
by Eqs. 35-20 and 35-21. Both phasors have 
magnitude Eo and rotate with angular 
speed w. Their phase difference is 4>. (b) 
Vector addition of the two phasors gives 
the phasor representing the resultant wave, 
with amplitude E and phase constant /3. 
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In a more general case, we might want to find the resultant of more than two 
sinusoidally varying waves at a point. Whatever the number of waves is, our 
general procedure is this: 

1. Construct a series of phasors representing the waves to be combined. Draw them 
end to end, maintaining the proper phase relations between adjacent phasors. 

2. Construct the vector sum of this array. The length of this vector sum gives 
the amplitude of the resultant phasor. The angle between the vector sum 
and the first phasor is the phase of the resultant with respect to this first pha­
sor. The projection of this vector-sum phasor on the vertical axis gives the time 
variation of the resultant wave. 

CHECKPOINT 4 

Each of four pairs of light waves arrives at a certain point on a screen. The waves have the 
same wavelength. At the arrival point, their amplitudes and phase differences are (a) 2Eo, 
6Eo, and ?Trad; (b) 3Eo, 5Eo, and ?Trad; (c) 9Eo, 7Eo, and 3?Trad; (d) 2Eo, 2Eo, and 0 rad. 
Rank the four pairs according to the intensity of the light at the arrival point, greatest 
first. (Hint: Draw phasors.) 

Combining three light waves by using phasors 

Three light waves combine at a certain point where their 
electric field components are Phasors that represent 

waves can be added to 
find the net wave. E1 = Eo sin wt, 

E2 = Eo sine wt + 60°), 

E3 = Eo sine wt - 30°). 

Find their resultant component E(t) at that point. 

The resultant wave is 

E(t) = E1(t) + Eit) + E3(t). 

We can use the method of phasors to find this sum, and we 
are free to evaluate the phasors at any time t. 

Calculations: To simplify the solution, we choose t = 0, for 
which the phasors representing the three waves are shown 
in Fig. 35-14. We can add these three phasors either directly 
on a vector-capable calculator or by components. For the 
component approach, we first write the sum of their hori­
zontal components as 

2: E" = Eo cos 0 + Eo cos 60° + Eo cos( - 30°) = 2.37 Eo. 

The sum of their vertical components, which is the value of 
E att = O,is 

2: Ev = Eo sin 0 + Eo sin 60° + Eo sine - 30°) = 0.366Eo. 

Fig. 35-14 Three phasors, 
representing waves with equal 
amplitudes Eo and with phase 
constants 0°,60°, and -30°, 
shown at time t = O. The pha­
sors combine to give a resul­
tant phasor with magnitude 
ER , at angle (3. 

E 

The resultant wave E(t) thus has an amplitude ER of 

ER = Y(2.37Eo)2 + (0.366Eo)2 = 2.4Eo, 

and a phase angle f3 relative to the phasor representing E1 of 

_ -1 ( 0.366Eo ) _ ° f3 - tan 2.37 Eo - 8.8 . 

We can now write, for the resultant wave E(t), 

E = ER sin(wt + (3) 

= 2.4Eo sin(wt + 8.8°). (Answer) 

Be careful to interpret the angle f3 correctly in Fig. 35-14: It is 
the constant angle between ER and the phasor representing 
E1 as the four phasors rotate as a single unit around the 
origin. The angle between ER and the horizontal axis in 
Fig. 35-14 does not remain equal to f3. 

Additional examples, video, and practice available at WileyPLUS 
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Interference from Thin Films 
The colors we see when sunlight illuminates a soap bubble or an oil slick are 
caused by the interference of light waves reflected from the front and back sur­
faces of a thin transparent film. The thickness of the soap or oil film is typically of 
the order of magnitude of the wavelength of the (visible) light involved. (Greater 
thicknesses spoil the coherence of the light needed to produce the colors due to 
interference. ) 

Figure 35-15 shows a thin transparent film of uniform thickness L and index 
of refraction n2, illuminated by bright light of wavelength A from a distant point 
source. For now, we assume that air lies on both sides of the film and thus that 
nl = n3 in Fig. 35-15. For simplicity, we also assume that the light rays are almost 
perpendicular to the film (8 = 0). We are interested in whether the film is bright 
or dark to an observer viewing it almost perpendicularly. (Since the film is 
brightly illuminated, how could it possibly be dark? You will see.) 

The incident light, represented by ray i, intercepts the front (left) surface 
of the film at point a and undergoes both reflection and refraction there. The 
reflected ray '1 is intercepted by the observer's eye. The refracted light crosses 
the film to point b on the back surface, where it undergoes both reflection and 
refraction. The light reflected at b crosses back through the film to point c, where 
it undergoes both reflection and refraction. The light refracted at c, represented 
by ray '2, is intercepted by the observer's eye. 

If the light waves of rays '1 and '2 are exactly in phase at the eye, they 
produce an interference maximum and region ac on the film is bright to the 
observer. If they are exactly out of phase, they produce an interference mini­
mum and region ac is dark to the observer, even though it is illuminated. If there 
is some intermediate phase difference, there are intermediate interference and 
brightness. 

Thus, the key to what the observer sees is the phase difference between the 
waves of rays '1 and '2' Both rays are derived from the same ray i, but the path 
involved in producing '2 involves light traveling twice across the film (a to b, and 
then b to c), whereas the path involved in producing'l involves no travel through 
the film. Because 8 is about zero, we approximate the path length difference 
between the waves of '1 and '2 as 2L. However, to find the phase difference 
between the waves, we cannot just find the number of wavelengths A that is 
equivalent to a path length difference of 2L. This simple approach is impossible 

The interference depends 
on the reflections and the 
path lengths. n] 

Fig. 35-15 Light waves, represented with ray i, are incident on a thin film of thick­
ness L and index of refraction 112' Rays '1 and '2 represent light waves that have been 
reflected by the front and back surfaces of the film, respectively. (All three rays are actu­
ally nearly perpendicular to the film.) The interference of the waves Of'l and'2 with each 
other depends on their phase difference. The index of refraction III of the medium at the 
left can differ from the index of refraction 113 of the medium at the right, but for now we 
assume that both media are air, with III = 113 = 1.0, which is less than 112, 
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Fig. 35-1 6 Phase changes when a pulse is reflected at the interface between two stretched 
strings of different linear densities. The wave speed is greater in the lighter string. (a) The inci­
dent pulse is in the denser string. (b) The incident pulse is in the lighter string. Only here is 
there a phase change, and only in the reflected wave. 

for two reasons: (1) the path length difference occurs in a medium other than air, 
and (2) reflections are involved, which can change the phase. 

The phase difference between two waves can change if one or both are reflected. 

Before we continue our discussion of interference from thin films, we must 
discuss changes in phase that are caused by reflections. 

Refraction at an interface never causes a phase change-but reflection can, 
depending on the indexes of refraction on the two sides of the interface. Figure 
35-16 shows what happens when reflection causes a phase change, using as an 
example pulses on a denser string (along which pulse travel is relatively slow) 
and a lighter string (along which pulse travel is relatively fast). 

When a pulse traveling relatively slowly along the denser string in Fig. 35-16a 
reaches the interface with the lighter string, the pulse is partially transmitted and par­
tially reflected, with no change in orientation. For light, this situation corresponds to 
the incident wave traveling in the medium of greater index of refraction n (recall that 
greater n means slower speed). In that case, the wave that is reflected at the interface 
does not undergo a change in phase; that is, its reflection phase shift is zero. 

When a pulse traveling more quickly along the lighter string in Fig. 35-16b 
reaches the interface with the denser string, the pulse is again partially transmit­
ted and partially reflected. The transmitted pulse again has the same orientation 
as the incident pulse, but now the reflected pulse is inverted. For a sinusoidal 
wave, such an inversion involves a phase change of 1T rad, or half a wavelength. 
For light, this situation corresponds to the incident wave traveling in the medium 
of lesser index of refraction (with greater speed). In that case, the wave that is 
reflected at the interface undergoes a phase shift of 1Trad, or half a wavelength. 

We can summarize these results for light in terms of the index of refraction of 
the medium off which (or from which) the light reflects: 

Reflection 

Off lower index 

Off higher index 

Reflection phase shift 

o 
0.5 wavelength 

This might be remembered as "higher means half." 

In this chapter we have now seen three ways in which the phase difference 
between two waves can change: 
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1. by reflection 

2. by the waves traveling along paths of different lengths 

3. by the waves traveling through media of different indexes of refraction 

When light reflects from a thin film, producing the waves of rays rj and r2 shown 
in Fig. 35-15, all three ways are involved. Let us consider them one by one. 

We first reexamine the two reflections in Fig. 35-15. At point a on the front 
interface, the incident wave (in air) reflects from the medium having the higher 
of the two indexes of refraction; so the wave of reflected ray rj has its phase 
shifted by 0.5 wavelength. At point b on the back interface, the incident wave re­
flects from the medium (air) having the lower of the two indexes of refraction; so 
the wave reflected there is not shifted in phase by the reflection, and thus neither 
is the portion of it that exits the film as ray r2' We can organize this information 
with the first line in Table 35-1, which refers to the simplified drawing in Fig. 35-17 
for a thin film in air. So far, as a result of the reflection phase shifts, the waves 
of rj and r2 have a phase difference of 0.5 wavelength and thus are exactly out 
of phase. 

Now we must consider the path length difference 2L that occurs because the 
wave of ray r2 crosses the film twice. (This difference 2L is shown on the second 
line in Table 35-1.) If the waves of rj and r2 are to be exactly in phase so that they 
produce fully constructive interference, the path length 2L must cause an addi­
tional phase difference of 0.5, 1.5, 2.5, ... wavelengths. Only then will the net 
phase difference be an integer number of wavelengths. Thus, for a bright film, 
we must have 

odd number 
2L = 2 X wavelength (in-phase waves). (35-31) 

The wavelength we need here is the wavelength ''\'12 of the light in the medium 
containing path length 2L-that is, in the medium with index of refraction n2' 

Thus, we can rewrite Eq. 35-31 as 

odd number 
2L = 2 X An2 (in-phase waves). (35-32) 

If, instead, the waves are to be exactly out of phase so that there is fully 
destructive interference, the path length 2L must cause either no additional 
phase difference or a phase difference of 1, 2, 3, ... wavelengths. Only then will 
the net phase difference be an odd number of half-wavelengths. For a dark film, 
we must have 

2L = integer X wavelength (out-of-phase waves). (35-33) 

where, again, the wavelength is the wavelength An2 in the medium containing 2L. 
Thus, this time we have 

2L = integer X An2 (out-of-phase waves). (35-34) 

Now we can use Eq. 35-8 (An = Aln) to write the wavelength of the wave of ray r2 
inside the film as 

(35-35) 

where A is the wavelength of the incident light in vacuum (and approximately 
also in air). Substituting Eq. 35-35 into Eq. 35-32 and replacing "odd number/2" 
with (m + ~) give us 

A 
2L = (m + ~)-, 

n2 
for m = 0,1,2,... (maxima-bright film in air). (35-36) 

An Organizing Table for Thin-Film 
Interference in Air (Fig. 35-17)" 

Reflection 
phase 
shifts 

Path length 

0.5 
wavelength 

o 

difference 2L 

Index in 
which 
path 
length nz 
difference 
occurs 

odd number A 
In phasea: 2L = ----- X -

2 nz 

Out of 
phasea : 

. A 
2L = lllteger X -

nz 

"Valid for n2 > nj and n2 > n3' 

Air Air 

L 

Fig. 35-17 Reflections from a thin 
film in air. 
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Fig. 35-18 The reflection of light 
from a soapy water film spanning a 
vertical loop. The top portion is so thin 
that the light reflected there under­
goes destructive interference, making 
that portion dark. Colored interfer­
ence fringes, or bands, decorate the 
rest of the film but are marred by cir­
culation of liquid within the film as the 
liquid is gradually pulled downward 
by gravitation. (Richard 
Megna/Fundamental Photographs) 

Similarly, with m replacing "integer," Eq. 35-34 yields 

A 
2L=m-

n2' 
for m = 0, 1, 2, ... (minima-dark film in air). (35-37) 

For a given film thickness L, Eqs. 35-36 and 35-37 tell us the wavelengths of 
light for which the film appears bright and dark, respectively, one wavelength for 
each value of m. Intermediate wavelengths give intermediate brightnesses. For a 
given wavelength A, Eqs. 35-36 and 35-37 tell us the thicknesses of the films that 
appear bright and dark in that light, respectively, one thickness for each value of 
m. Intermediate thicknesses give intermediate brightnesses. 

A special situation arises when a film is so thin that L is much less than A, say, 
L < O.H. Then the path length difference 2L can be neglected, and the phase 
difference between /'1 and /'2 is due only to reflection phase shifts. If the film of 
Fig. 35-17, where the reflections cause a phase difference of 0.5 wavelength, 
has thickness L < O.lA, then /'1 and /'2 are exactly out of phase, and thus the film 
is dark, regardless of the wavelength and intensity of the light. This special situa­
tion corresponds to m = 0 in Eq. 35-37. We shall count any thickness L < O.H as 
being the least thickness specified by Eq. 35-37 to make the film of Fig. 35-17 
dark. (Every such thickness will correspond to m = 0.) The next greater thick­
ness that will make the film dark is that corresponding to m = 1. 

Figure 35-18 shows a vertical soap film whose thickness increases from 
top to bottom because gravitation has caused the film to slump. Bright white light 
illuminates the film. However, the top portion is so thin that it is dark. In the 
(somewhat thicker) middle we see fringes, or bands, whose color depends 
primarily on the wavelength at which reflected light undergoes fully constructive 
interference for a particular thickness. Toward the (thickest) bottom the fringes 
become progressively narrower and the colors begin to overlap and fade. 

CHECKPOINT 5 

The figure shows four 
situations in which 
light reflects perpen­
dicularly from a thin 
film of thickness L, 
with indexes of refrac-

1..-
L 

T 1.3 

(1) (2) 

i·· t.··.>l.4! 
1.3 

(3) 

.1 
L 

T 
(4) 

tion as given. (a) For which situations does reflection at the film interfaces cause a zero 
phase difference for the two reflected rays? (b) For which situations will the film be 
dark if the path length difference 2L causes a phase difference of 0.5 wavelength? 

Thin-film interference of a water film in air 

White light, with a uniform intensity across the visible 
wavelength range of 400 to 690 nm, is perpendicularly inci­
dent on a water film, of index of refraction n2 = 1.33 and 
thickness L = 320 nm, that is suspended in air. At what 
wavelength A is the light reflected by the film brightest to 
an observer? 

The reflected light from the film is brightest at the wave­
lengths A for which the reflected rays are in phase with one 
another. The equation relating these wavelengths A to the 
given film thickness L and film index of refraction n2 is either 



Eq. 35-36 or Eq. 35-37, depending on the reflection phase 
shifts for this particular film. 

Calculations: To determine which equation is needed, we 
should fill out an organizing table like Table 35-1. However, 
because there is air on both sides of the water film, the situa­
tion here is exactly like that in Fig. 35-17, and thus the table 
would be exactly like Table 35-1. Then from Table 35-1, we 
see that the reflected rays are in phase (and thus the film is 
brightest) when 

odd number 
2L = 2 

which leads to Eq. 35-36: 
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1 A 
2L = (m + 2)-' 

n2 

Solving for A and substituting for Land n2> we find 

(2)(1.33)(320 nm) 
m +! 

2 

851nm 
m +! . 

2 

For m = 0, this gives us A = 1700 nm, which is in the infrared 
region. For m = 1, we find A = 567 nm, which is yellow-green 
light, near the middle of the visible spectrum. For m = 2, A = 

340 nm, which is in the ultraviolet region. Thus, the wave­
length at which the light seen by the observer is brightest is 

A = 567 nm. (Answer) 

Thin-film interference of a coating on a glass lens 

In Fig. 35-19, a glass lens is coated on one side with a thin 
film of magnesium fluoride (MgF2) to reduce reflection 
from the lens surface. The index of refraction of MgF2 is 
1.38; that of the glass is 1.50. What is the least coating thick­
ness that eliminates (via interference) the reflections at the 
middle of the visible spectrum (A = 550 nm)? Assume that 
the light is approximately perpendicular to the lens surface. 

Reflection is eliminated if the film thickness L is such that 
light waves reflected from the two film interfaces are exactly 
out of phase. The equation relating L to the given wave­
length A and the index of refraction n2 of the thin film is ei­
ther Eq. 35-36 or Eq. 35-37, depending on the reflection 
phase shifts at the interfaces. 

Calculations: To determine which equation is needed, we fill 
out an organizing table like Table 35-1. At the first interface, 
the incident light is in air, which has a lesser index of refraction 
than the MgF2 (the thin film). Thus, we fill in 0.5 wavelength 
under 1'1 in our organizing table (meaning that the waves of 
ray 1'1 are shifted by 0.5A at the first interface). At the second 
interface, the incident light is in the MgF2, which has a lesser 
index of refraction than the glass on the other side of the inter­
face. Thus, we fill in 0.5 wavelength under 1'2 in our table. 

Because both reflections cause the same phase shift, they 
tend to put the waves of 1'1 and 1'2 in phase. Since we want those 
waves to be out of phase, their path length difference 2L must 
be an odd number of half-wavelengths: 

odd number A 
2L = ----- X -. 

2 n2 

This leads to Eq. 35-36. Solving that equation for L then 
gives us the film thicknesses that will eliminate reflection 
from the lens and coating: 

A 
L = (m + !)-

2 2n2' 
for m = 0, 1, 2, . . .. (35-38) 

We want the least thickness for the coating-that is, the 
smallest value of L. Thus, we choose m = 0, the smallest pos­
sible value of m. Substituting it and the given data in Eq. 
35-38, we obtain 

A 550nm 
L = - = = 99.6 nm. 

4n2 (4)(1.38) 
(Answer) 

Air MgF 2 • Glass 
III ~ 1.00 112 ~ 1.38 113 =1.50 

~~-- aQ 
iii Both reflection phase shifts 

~L~ . are 0.5 wavelength. So, only 
! the path length difference 
i determines the interference. 

Fig. 35-19 Unwanted reflections from glass can be suppressed 
(at a chosen wavelength) by coating the glass with a thin transpar­
ent film of magnesium fluoride of the properly chosen thickness. 

~~s Additional examples, video, and practice available at WileyPLUS 
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Thin-film interference of a transparent wedge 

Figure 35-20a shows a transparent plastic block with a 
thin wedge of air at the right. (The wedge thickness is 
exaggerated in the figure.) A broad beam of red light, with 
wavelength A = 632.8 nm, is directed downward through 
the top of the block (at an incidence angle of 00

). Some of 
the light that passes into the plastic is reflected back up 
from the top and bottom surfaces of the wedge, which acts 
as a thin film (of air) with a thickness that varies uni­
formly and gradually from LL at the left-hand end to LR at 
the right-hand end. (The plastic layers above and below 
the wedge of air are too thick to act as thin films.) An ob­
server looking down on the block sees an interference 
pattern consisting of six dark fringes and five bright red 
fringes along the wedge. What is the change in thickness 
ilL (= L R - L L) along the wedge? 

(1) The brightness at any point along the left-right length 
of the air wedge is due to the interference of the waves re­
flected at the top and bottom interfaces of the wedge. (2) 
The variation of brightness in the pattern of bright and 
dark fringes is due to the variation in the thickness of the 
wedge. In some regions, the thickness puts the reflected 
waves in phase and thus produces a bright reflection (a 
bright red fringe). In other regions, the thickness puts the 
reflected waves out of phase and thus produces no reflec­
tion (a dark fringe). 

Organizing the reflections: Because the observer sees 
more dark fringes than bright fringes, we can assume that 
a dark fringe is produced at both the left and right ends of 
the wedge. Thus, the interference pattern is that shown in 
Fig. 35-20b. 

We can represent the reflection of light at the top and 
bottom interfaces of the wedge, at any point along its length, 
with Fig. 35-20c, in which L is the wedge thickness at that 
point. Let us apply this figure to the left end of the wedge, 
where the reflections give a dark fringe. 

We know that, for a dark fringe, the waves of rays rl 

and r2 in Fig. 35-20e must be out of phase. We also know 
that the equation relating the film thickness L to the light's 
wavelength A and the film's index of refraction n2 is either 
Eq. 35-36 or Eq. 35-37, depending on the reflection phase 
shifts. To determine which equation gives a dark fringe at 
the left end of the wedge, we should fill out an organizing 
table like Table 35-1, as shown in Fig. 35-20e. 

At the top interface of the wedge, the incident light is in 
the plastic, which has a greater n than the air beneath that 
interface. So, we fill in 0 under rl in our organizing table. At 
the bottom interface of the wedge, the incident light is in air, 
which has a lesser n than the plastic beneath that interface. 
So we fill in 0.5 wavelength under r2' So, the phase difference 
due to the reflection shifts is 0.5 wavelength. Thus the reflec­
tions alone tend to put the waves of rl and r2 out of phase. 

Reflections at left end (Fig. 35-20d): Because we see a 
dark fringe at the left end of the wedge, which the reflection 
phase shifts alone would produce, we don't want the path 
length difference to alter that condition. So, the path length 
difference 2L at the left end must be given by 

. A 
2L = mteger X -, 

n2 

which leads to Eq. 35-37: 

A 
2L=m-, 

n2 
for m = 0,1,2, .... (35-39) 

Reflections at right end (Fig. 35-20f): Equation 35-39 
holds not only for the left end of the wedge but also for any 
point along the wedge where a dark fringe is observed, in­
cluding the right end, with a different integer value of m for 
each fringe. The least value of m is associated with the least 
thickness of the wedge where a dark fringe is observed. 
Progressively greater values of m are associated with pro­
gressively greater thicknesses of the wedge where a dark 
fringe is observed. Let mL be the value at the left end. Then 
the value at the right end must be mL + 5 because, from 
Fig. 35-20b, the right end is located at the fifth dark fringe 
from the left end. 

Thickness difference: To find ilL, we first solve Eq. 35-39 
twice - once for the thickness L L at the left end and once for the 
thickness LR at the right end: 

A 
LR = (mL + 5) -. (35-40) 

2n2 

We can now subtract LL from LR and substitute 112 = 1.00 for 
the air within the wedge and A = 632.8 X 10-9 m: 

(mL + 5)A mLA 5 A 
ilL = LR - LL = - -- = - -

2n2 2112 2 n2 
= 1.58 X 10-6 m. (Answer) 

Additional examples, video, and practice available at WileyPLUS 
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Overhead incident light 

Side view 

(a) 

Overhead view 
(b)~_....., 

This dark fringe is due to fully 
destructive interference. So, 
the reflected rays must be 
out of phase. 

i 
Reflection 
shifts: 

O.5it 

(d) 

nl plastic 
(higher index) 

Total reflection 
shift = 0.5 
wavelength. 
So, the reflections 
put the waves 
out of phase. 

We want the reflected waves 
to be out of phase. They 
already are out of phase 
because of the reflection 
shifts. So, we don't want 
the path length difference 
2L to change that. Thus, 
2L = (integer)AlnQ' 

The path length 
difference (down 
and back up) is 2L. 

(e) Organizing Table 

Reflection 
phase 
shifts 

Path length 
difference 

(c) 

o 0.5 
wavelength 

2L 

Here too, the dark fringe 
means that the reflected 
waves are out of phase. 

(f) 

The path length 
difference is 2L 
here too but the 
L is larger. 

Here again, the waves are 
already out of phase by the 
reflection shifts. So, the 
path length difference must 
be 2L = (integer)AlnQ, but 
with the larger L. 

Fig. 35-20 (a) Red light is incident on a thin, air-filled wedge in the side of a transparent plastic 
block. The thickness of the wedge is LL at the left end and LR at the right end. (b) The view from 
above the block: an interference pattern of six dark fringes and five bright red fringes lies over the 
region of the wedge. (c) A representation of the incident ray i, reflected rays 1'1 and 1'2, and thickness 
L of the wedge anywhere along the length of the wedge. The reflection rays at the (d) left and (f) 
right ends of the wedge and (e) their organizing table. 
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t 
Movable 
mirror M 

2 

M 

Arm 1 

The interference 
at the eye 
depends on the 

T path length 
difference and 
the index of any 
inserted material. 

Fig. 35-21 Michelson's interferometer, 
showing the path of light originating at 
point P of an extended source S. Mirror M 
splits the light into two beams, which reflect 
from mirrors Ml and M2 back to M and 
then to telescope T. In the telescope an ob­
server sees a pattern of interference 
fringes. 

Michelson's Interferometer 
An interferometer is a device that can be used to measure lengths or changes in 
length with great accuracy by means of interference fringes. We describe the form 
originally devised and built by A. A. Michelson in 1881. 

Consider light that leaves point P on extended source S in Fig. 35-21 and 
encounters beam splitter M. A beam splitter is a mirror that transmits half the 
incident light and reflects the other half. In the figure we have assumed, for 
convenience, that this mirror possesses negligible thickness. At M the light thus 
divides into two waves. One proceeds by transmission toward mirror Ml at the end 
of one arm of the instrument; the other proceeds by reflection toward mirror M2 at 
the end of the other arm. The waves are entirely reflected at these mirrors and are 
sent back along their directions of incidence, each wave eventually entering tele­
scope T. What the observer sees is a pattern of curved or approximately straight in­
terference fringes; in the latter case the fringes resemble the stripes on a zebra. 

The path length difference for the two waves when they recombine at the 
telescope is 2d2 - 2dl , and anything that changes this path length difference will 
cause a change in the phase difference between these two waves at the eye. As an 
example, if mirror M2 is moved by a distance ~A, the path length difference is 
changed by A and the fringe pattern is shifted by one fringe (as if each dark stripe 
on a zebra had moved to where the adjacent dark stripe had been). Similarly, 
moving mirror M2 by ~A causes a shift by half a fringe (each dark zebra stripe 
shifts to where the adjacent white stripe had been). 

A shift in the fringe pattern can also be caused by the insertion of a thin 
transparent material into the optical path of one of the mirrors-say, M l . If the 
material has thickness L and index of refraction n, then the number of wave­
lengths along the light's to-and-fro path through the material is, from Eq. 35-9, 

N. = 2L = 2Ln 
III An A' 

(35-41) 

The number of wavelengths in the same thickness 2L of air before the insertion 
of the material is 

N. = 2L 
a A' (35-42) 

When the material is inserted, the light returned from mirror Ml undergoes a 
phase change (in terms of wavelengths) of 

N. - N. = 2Ln _ 2L = 2L (n - 1) 
III a ,\ A,\ . (35-43) 

For each phase change of one wavelength, the fringe pattern is shifted by one 
fringe. Thus, by counting the number of fringes through which the material causes 
the pattern to shift, and substituting that number for NIIl - Na in Eq. 35-43, you 
can determine the thickness L of the material in terms of A. 

By such techniques the lengths of objects can be expressed in terms of the 
wavelengths of light. In Michelson's day, the standard of length-the meter­
was the distance between two fine scratches on a certain metal bar preserved at 
Sevres, near Paris. Michelson showed, using his interferometer, that the standard 
meter was equivalent to 1 553 163.5 wavelengths of a certain monochromatic red 
light emitted from a light source containing cadmium. For this careful measure­
ment, Michelson received the 1907 Nobel Prize in physics. His work laid the foun­
dation for the eventual abandonment (in 1961) of the meter bar as a standard of 
length and for the redefinition of the meter in terms of the wavelength of light. 
By 1983, even this wavelength standard was not precise enough to meet the grow­
ing requirements of science and technology, and it was replaced with a new stan­
dard based on a defined value for the speed of light. 



Huygens' Principle The three-dimensional transmission of 
waves, including light, may often be predicted by Huygens' princi­
ple, which states that all points on a wavefront serve as point 
sources of spherical secondary wavelets. After a time t, the new po­
sition of the wavefront will be that of a surface tangent to these 
secondary wavelets. 

The law of refraction can be derived from Huygens' principle 
by assuming that the index of refraction of any medium is n = c/v, 
in which v is the speed of light in the medium and c is the speed of 
light in vacuum. 

Wavelength and Index of Refraction The wavelength An 
of light in a medium depends on the index of refraction n of the 
medium: 

A 
.1n =-, 

n 
(35-8) 

in which A is the wavelength in vacuum. Because of this dependency, 
the phase difference between two waves can change if they pass 
through different materials with different indexes of refraction. 

Young's Experiment In Young's interference experiment, 
light passing through a single slit falls on two slits in a screen. The light 
leaving these slits flares out (by diffraction), and interference occurs in 
the region beyond the screen. A fringe pattern, due to the interfer­
ence, forms on a viewing screen. 

The light intensity at any point on the viewing screen depends 
in part on the difference in the path lengths from the slits to that 
point. If this difference is an integer number of wavelengths, the 
waves interfere constructively and an intensity maximum results. If 
it is an odd number of half-wavelengths, there is destructive inter­
ference and an intensity minimum occurs. The conditions for maxi­
mum and minimum intensity are 

dsin (J = mA, form = 0,1,2, ... 
(maxima-bright fringes), (35-14) 

d sin (J = (m + i ).1, for m = 0, 1, 2, ... 
(minima-dark fringes), (35-16) 

where (J is the angle the light path makes with a central axis and d 
is the slit separation. 

Does the spacing between fringes in a two-slit interference 
pattern increase, decrease, or stay the same if (a) the slit separa­
tion is increased, (b) the color of the light is switched from red 
to blue, and (c) the whole apparatus is submerged in cooking 
sherry? (d) If the slits are illuminated with white light, then at 
any side maximum, does the blue component or the red compo­
nent peak closer to the central maximum? 

(a) If you move from one bright fringe in a two-slit interference 
pattern to the next one farther out, (b) does the path length differ­
ence ilL increase or decrease and (c) by how much does it change, 
in wavelengths A? 

QUESTIONS 981 

Coherence If two light waves that meet at a point are to interfere 
perceptibly, the phase difference between them must remain constant 
with time; that is, the waves must be coherent. When two coherent 
waves meet, the resulting intensity may be found by using phasors. 

Intensity in Two-Slit Interference In Young's interference 
experiment, two waves, each with intensity 1o, yield a resultant 
wave of intensity 1 at the viewing screen, with 

1 = 41o cos2 icfJ, 27Td . 
where cfJ = -.1- sm (J. (35-22,35-23) 

Equations 35-14 and 35-16, which identify the positions of the 
fringe maxima and minima, are contained within this relation. 

Thin-Film Interference When light is incident on a thin 
transparent film, the light waves reflected from the front and back 
surfaces interfere. For near-normal incidence, the wavelength con­
ditions for maximum and minimum intensity of the light reflected 
from aftlm in air are 

1 A 
2L = (m + 2)-' 

n2 
for m = 0, 1, 2, ... 

(maxima-bright film in air), 

A 
2L = m -, for m = 0, 1,2, ... 

nz 

(35-36) 

(minima-dark film in air), (35-37) 

where n2 is the index of refraction of the film, L is its thickness, and 
A is the wavelength of the light in air. 

If the light incident at an interface between media with differ­
ent indexes of refraction is in the medium with the smaller index of 
refraction, the reflection causes a phase change of 7T rad, or half a 
wavelength, in the reflected wave. Otherwise, there is no phase 
change due to the reflection. Refraction causes no phase shift. 

The Michelson Interferometer In Michelson's interferom­
eter a light wave is split into two beams that, after traversing paths 
of different lengths, are recombined so they interfere and form a 
fringe pattern. Varying the path length of one of the beams allows 
distances to be accurately expressed in terms of wavelengths of 
light, by counting the number of fringes through which the pattern 
shifts because of the change. 

II 
Figure 35-22 shows two light rays that are initially exactly in 

phase and that reflect from several glass surfaces. Neglect the slight 

T 
d 

1 

Fig. 35-22 Question 3. 
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slant in the path of the light in the second arrangement. (a) What is 
the path length difference of the rays? In wavelengths A, (b) what 
should that path length difference equal if the rays are to be exactly 
out of phase when they emerge, and (c) what is the smallest value of 
d that will allow that final phase difference? 

In Fig. 35-23, three pulses of light-a, b, and c-of the same 
wavelength are sent through layers of plastic having the given in­
dexes of refraction and along the paths indicated. Rank the 
pulses according to their travel time through the plastic layers, 
greatest first. 

Fig. 35-23 Question 4. 

Is there an interference maximum, a minimum, an intermediate 
state closer to a maximum, or an intermediate state closer to a min­
imum at point P in Fig. 35-10 if the path length difference of the 
two rays is (a) 2.2A, (b) 3.5A, (c) 1.8A, and (d) LOA? For each situa­
tion, give the value of m associated with the maximum or minimum 
involved. 

Figure 35-24a gives intensity I versus position x on the viewing 
screen for the central portion of a two-slit interference pattern. 
The other parts of the figure give phasor diagrams for the electric 
field components of the waves arriving at the screen from the two 
slits (as in Fig. 35-13a). Which numbered points on the screen best 
correspond to which phasor diagram? 

I 

Central 

~,1~ ~ 
2345 ~ T 

(a) (b) (c) (d) 

Fig. 35-24 Question 6. 

Figure 35-25 shows two sources Sl and Sz that emit radio waves 
of wavelength A in all directions. The sources are exactly in phase 
and are separated by a distance equal to 1.5;\. The vertical broken 
line is the perpendicular bisector of the distance between the 
sources. (a) If we start at the indicated start point and travel along 
path 1, does the interference produce a maximum all along the 
path, a minimum all along the path, or alternating maxima and 
minima? Repeat for (b) path 2 (along an axis through the sources) 
and (c) path 3 (along a perpendicular to that axis). 

, 

j 4,3 

_____ ~-- ___ ~-------J 
Start Start 'j 2 

Fig. 35-25 Question 7. 

Figure 35-26 shows two rays of light, of wavelength 600 nm, that 
reflect from glass surfaces separated by 150 nm. The rays are ini­
tially in phase. (a) What is the path length difference of the rays? 
(b) When they have cleared the reflection region, are the rays ex­
actly in phase, exactly out of phase, or in some intermediate state? 

Fig. 35-26 Question 8. 

Light travels along the length of a 1500-nm-Iong nanostructure. 
When a peak of the wave is at one end of the nanostructure, is there 
a peak or a valley at the other end if the wavelength is (a) 500 nm 
and (b) 1000 nm? 

o Figure 35-27a shows the cross section of a vertical thin film 
whose width increases downward because gravitation causes 
slumping. Figure 35-27b is a face-on view of the film, showing four 
bright (red) interference fringes that result when the film is illumi­
nated with a perpendicular beam of red light. Points in the cross 
section corresponding to the bright fringes are labeled. In terms of 
the wavelength of the light inside the film, what is the difference in 
film thickness between (a) points a and band (b) points band d? 

(a) (b) 

Fig. 35-27 Question 10. 

Figure 35-28 shows four situations in which light reflects per­
pendicularly from a thin film of thickness L sandwiched between 
much thicker materials. The indexes of refraction are given. In 
which situations does Eq. 35-36 correspond to the reflections yield­
ing maxima (that is, a bright film)? 

L 1.6 1.6 1.3 1.6 L 

T 1.8 1.4 1.4 1.5 T 
(a) (b) (c) (d) 

Fig. 35-28 Question 11. 

Figure 35-29 shows the transmission of light through a thin 
film in air by a perpendicular beam 
(tilted in the figure for clarity). (a) 
Did ray r3 undergo a phase shift 
due to reflection? (b) In wave­
lengths, what is the reflection phase 
shift for ray r4? (c) lfthe film thick­
ness is L, what is the path length 

Incident 

difference between rays r3 and r4? Fig. 35-29 Question 12. 
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Tutoring problem available (at instructor's discretion) in Wl1eyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/coUege/haliiday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Light as a Wave 
-1 In Fig. 35-30, a light wave along 
ray rl reflects once from a mirror and 
a light wave along ray r2 reflects 
twice from that same mirror and 
once from a tiny mirror at distance L 
from the bigger mirror. (Neglect the 
slight tilt of the rays.) The waves have 
wavelength 620 nm and are initially in 

Fig. 35-30 

Problems 1 and 2. 

phase. (a) What is the smallest value of L that puts the final light 
waves exactly out of phase? (b) With the tiny mirror initially at that 
value of L, how far must it be moved away from the bigger mirror to 
again put the final waves out of phase? 

In Fig. 35-30, a light wave along ray rl reflects once from a mir­
ror and a light wave along ray r2 reflects twice from that same mir­
ror and once from a tiny mirror at distance L from the bigger mir­
ror. (Neglect the slight tilt of the rays.) The waves have wavelength 
;\ and are initially exactly out of phase. What are the (a) smallest, 
(b) second smallest, and (c) third smallest values of LI;\ that result 
in the final waves being exactly in phase? 

SSM In Fig. 35-4, assume that two waves of light in air, of 
wavelength 400 nm, are initially in phase. One travels through a glass 
layer of index of refraction nl = 1.60 and thickness L. The other trav­
els through an equally thick plastic layer of index of refraction n2 = 

1.50. (a) What is the smallest value L should have if the waves are to 
end up with a phase difference of 5.65 rad? (b) If the waves arrive at 
some common point with the same amplitude, is their interference 
fully constructive, fully destructive, intermediate but closer to fully 
constructive, or intermediate but closer to fully destructive? 

In Fig. 35-31a, a beam of light in material 1 is incident on a 
boundary at an angle of 30°. The extent to which the light is bent 
due to refraction depends, in part, on the index of refraction n2 of 
material 2. Figure 35-31b gives the angle of refraction (}2 versus n2 
for a range of possible n2 values, from na = 1.30 to nb = 1.90. What 
is the speed of light in material 1 ? 

(a) (b) 

Fig. 35-31 Problem 4. 

How much faster, in meters per second, does light travel in 
sapphire than in diamond? See Table 33-1. 

The wavelength of yellow sodium light in air is 589 nm. (a) 
What is its frequency? (b) What is its wavelength in glass whose in-

dex of refraction is 1.52? (c) From the results of (a) and (b), find its 
speed in this glass. 

The speed of yellow light (from a sodium lamp) in a certain 
liquid is measured to be 1.92 X 108 m/s. What is the index of refrac­
tion of this liquid for the light? 

In Fig. 35-32, two light pulses are r-L-t-L-I-L-t-L-j 
sent through layers of plastic with 
thicknesses of either L or 2L as 
shown and indexes of refraction nl = 
1.55, /12 = 1.70, /13 = 1.60, /14 = 1.45, 
n5 = 1.59, n6 = 1.65, and n7 = 1.50. 
(a) Which pulse travels through the 

Pulse 
n1 I n2 n3 n4 

2 

Pulse 
n5 n6 n7 

1 

plastic in less time? (b) What multi- Fig. 35-32 Problem 8. 
pie of Lie gives the difference in the 
traversal times of the pulses? 

In Fig. 35-4, assume that the two light waves, of wavelength 
620 nm in air, are initially out of phase by 'Tf rad. The indexes of re­
fraction of the media are nl = 1.45 and n2 = 1.65. What are the (a) 
smallest and (b) second smallest value of L that will put the waves 
exactly in phase once they pass through the two media? 

Air 
In Fig. 35-33, 

a light ray is inci­
dent at angle ()I = 

50° on a series of 
five transparent lay­
ers with parallel 
boundaries. For lay­
ers 1 and 3, LI = 20 
pm, L3 = 25 pm, nl 
= 1.6, and n3 = 1.45. Fig. 35-33 Problem 10. 

Air 

(a) At what angle does the light emerge back into air at the right? (b) 
How much time does the light take to travel through layer 3? 

Suppose that the two waves in Fig. 35-4 have wavelength 
;\ = 500 nm in air. What multiple of ;\ gives their phase difference 
when they emerge if (a) /11 = 1.50, n2 = 1.60, and L = 8.50 pm; (b) 
/11 = 1.62, /12 = 1.72, and L = 8.50 
,um;and (c) /11 = 1.59,n2 = 1.79, and 
L = 3.25 ,um? (d) Suppose that in 
each of these three situations the 
waves arrive at a common point 
(with the same amplitude) after 
emerging. Rank the situations ac­
cording to the brightness the waves 
produce at the common point. 

In Fig. 35-34, two light rays 
go through different paths by re­
flecting from the various flat sur­
faces shown. The light waves have a 
wavelength of 420.0 nm and are 
initially in phase. What are the (a) 
smallest and (b) second smallest 

Ray 2 --r_~~ 

Fig. 35-34 Problems 12 
and 98. 
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value of distance L that will put the waves exactly out of phase as 
they emerge from the region? 

0·13 IlW Tho waves of light 
in air, of wavelength .A = 600.0 nm, 
are initially in phase. They then both 
travel through a layer of plastic 
as shown in Fig. 35-35, with L j = 

4.00 !Lm, L2 = 3.50 !Lm, /11 = 1.40, 
and /12 = 1.60. (a) What mUltiple of .A 
gives their phase difference after 
they both have emerged from the 
layers? (b) If the waves later arrive Fig. 35-35 Problem 13. 
at some common point with the 
same amplitude, is their interference fully constructive, fully de­
structive, intermediate but closer to fully constructive, or 
intermediate but closer to fully destructive? 

35·4 Young's Interference Experiment 
·14 In a double-slit arrangement the slits are separated by a dis­
tance equal to 100 times the wavelength of the light passing through 
the slits. (a) What is the angular separation in radians between the 
central maximum and an adjacent maximum? (b) What is the dis­
tance between these maxima on a screen 50.0 cm from the slits? 

5 SSM A double-slit arrangement produces interference 
fringes for sodium light (.A = 589 nm) that have an angular separa­
tion of 3.50 X 10-3 rad. For what wavelength would the angular 
separation be 10.0% greater? 

A double-slit arrangement produces interference fringes for 
sodium light (.A = 589 nm) that are 0.20° apart. What is the angular 
fringe separation if the entire arrangement is immersed in water 
(/1 = 1.33)? 

.'17 SSM In Fig. 35-36, two ra­
dio-frequency point sources SI and S2, 

r--- d----1 
-----.~----~e~---x 

Sj S2 

separated by distance d = 2.0 m, are Fig. 35-36 Problems 
radiating in phase with .A = 0.50 m. A 17 and 22. 
detector moves in a large circular path 
around the two sources in a plane containing them. How many 
maxima does it detect? 

-18 In the two-slit experiment of Fig. 35-10, let angle B be 20.0°, 
the slit separation be 4.24 !Lm, and the wavelength be .A = 500 nm. 
(a) What multiple of .A gives the phase difference between the 
waves of rays rj and r2 when they arrive at point P on the distant 
screen? (b) What is the phase difference in radians? (c) Determine 
where in the interference pattern point P lies by giving the maxi­
mum or minimum on which it lies, or the maximum and minimum 
between which it lies. 

·1 SSM IlW Suppose that Young's experiment is performed 
with blue-green light of wavelength 500 nm. The slits are 1.20 mm 
apart, and the viewing screen is 5.40 m from the slits. How far apart 
are the bright fringes near the center of the interference pattern? 

Monochromatic green light, of wavelength 550 nm, illuminates 
two parallel narrow slits 7.70 !Lm apart. Calculate the angular devi­
ation (Bin Fig. 35-10) of the third-order (m = 3) bright fringe (a) in 
radians and (b) in degrees. 

In a double-slit experiment, the distance between slits is 5.0 
mm and the slits are 1.0 m from the screen. Two interference pat­
terns can be seen on the screen: one due to light of wavelength 480 
nm, and the other due to light of wavelength 600 nm. What is the 

separation on the screen between the third-order (m = 3) bright 
fringes of the two interference patterns? 

In Fig. 35-36, two isotropic point sources S 1 and S2 emit iden­
tical light waves in phase at wavelength .A. The sources lie at sepa­
ration d on an x axis, and a light detector is moved in a circle of 
large radius around the midpoint between them. It detects 30 
points of zero intensity, including two on the x axis, one of them to 
the left of the sources and the other to the right of the sources. 
What is the value of d/.A? 

In Fig. 35-37, sources A and B 
emit long-range radio waves of 
wavelength 400 m, with the phase of 
the emission from A ahead of that A B 

from source B by 90°. The distance rA Fig. 35-37 Problem 23. 
from A to detector D is greater than 
the corresponding distance rB by 100 m. What is the phase difference 
of the waves at D? 

In Fig. 35-38, two isotropic point sources Sl and S2 emit light in 
phase at wavelength .A and at the same amplitude. The sources are 
separated by distance 2d = 6.00.A. They lie on an axis that is parallel to 
an x axis, which runs along a viewing screen at distance D = 20.DA. The 
origin lies on the perpendicular bisector between the sources. The fig­
ure shows two rays reaching point P on the screen, at position Xp. (a) 
At what value of Xp do the rays have the minimum possible phase 

o 
I p x 

difference? (b) What multiple of .A 
gives that minimum phase differ­
ence? (c) At what value of Xp do the 
rays have the maximum possible 
phase difference? What mUltiple of .A 
gives (d) that maximum phase differ­
ence and (e) the phase difference 
when Xp = 6.00.A? (f) When Xp = Sj 

~ __ ~L-__ ~~~ __ ___ 

6.00.A, is the resulting intensity at 1_. d+d-l 
point P maximum, minimum, inter- I ·~I 

mediate but closer to maximum, or 
Fig. 35-38 Problem 24. 

intermediate but closer to minimum? 

In Fig. 35-39, two isotropic 
point sources of light (Sl and S2) are 
separated by distance 2.70 !Lm 
along a y axis and emit in phase at 
wavelength 900 nm and at the same 
amplitude. A light detector is lo­

-------'--<Sj )j'--' ----.p~ x 

S2 

cated at point P at coordinate Xp on Fig.35-39 Problems 25 
the x axis. What is the greatest value and 28. 
of Xp at which the detected light is 
minimum due to destructive interference? 

In a double-slit experiment, the fourth-order maximum for a 
wavelength of 450 nm occurs at an angle of B = 90°. Thus, it is on 
the verge of being eliminated from the pattern because B cannot 
exceed 90° in Eq. 35-14. (a) What range of wavelengths in the visi­
ble range (400 nm to 700 nm) are not present in the third-order 
maxima? To eliminate all of the visible light in the fourth-order 
maximum, (b) should the slit separation be increased or decreased 
and (c) what least change in separation is needed? 

A thin flake of mica (/1 = 1.58) is used to cover one slit of a 
double-slit interference arrangement. The central point on the view­
ing screen is now occupied by what had been the seventh bright side 
fringe (m = 7). If.A = 550 nm, what is the thickness ofthe mica? 



··'28 Figure 35-39 shows two isotropic point sources of light (Sj 
and S2) that emit in phase at wavelength 400 nm and at the same 
amplitude. A detection point P is shown on an x axis that extends 
through source Sj. The phase difference ¢ between the light arriv­
ing at point P from the two sources is to be measured as P is moved 
along the x axis from x = 0 out to x = +00. The results out to Xs = 

10 X 10-7 m are given in Fig. 35-40. On the way out to +00, what is 
the greatest value of x at which the light arriving at P from SI is ex­
actly out of phase with the light arriving at P from S2? 

x (10-7 m) 

Fig. 35-40 Problem 28. 

Intensity in Double-Slit Interference 

x s 

SSM Two waves of the same frequency have amplitudes 1.00 
and 2.00. They interfere at a point where their phase difference is 
60.0°. What is the resultant amplitude? 

Find the sum y of the following quantities: 

Yl = 10 sin wt and Y2 = 8.0 sin( wt + 30°). 

IlW Add the quantities Yl = 10 sin wt,Yz = 15 sin(wt + 30°), 
and Y3 = 5.0 sin( wt - 45°) using the phasor method. 

In the double-slit experiment of Fig. 35-10, the electric fields 
of the waves arriving at point P are given by 

El = (2.00 ItV/m) sin[(1.26 X 1Q15)t] 

E2 = (2.00 ItV/m) sin[(1.26 X 1Q15)t + 39.6 rad], 

where time t is in seconds. (a) What is the amplitude of the 
resultant electric field at point P? (b) What is the ratio of the inten­
sity Ip at point P to the intensity Icen at the center of the interfer­
ence pattern? (c) Describe where point P is in the interference pat­
tern by giving the maximum or minimum on which it lies, or the 
maximum and minimum between which it lies. In a phasor diagram 
of the electric fields, (d) at what rate would the phasors rotate 
around the origin and (e) what is the angle between the phasors? 

Three electromagnetic waves travel through a certain 
point P along an x axis. They are polarized parallel to a Y axis, with 
the following variations in their amplitudes. Find their resultant at P. 

El = (10.0 ItV/m) sin[(2.0 X 1014 rad/s)t] 
E2 = (5.00 ItV/m) sin[(2.0 X 1014 rad/s)t + 45.0°] 

E3 = (5.00 ItV/m) sin[(2.0 X 1014 rad/s)t 45.0°] 

In the double-slit experiment of Fig. 35-10, the viewing 
screen is at distance D = 4.00 m, point P lies at distance Y = 20.5 
cm from the center of the pattern, the slit separation d is 4.50 Itm, 
and the wavelength A is 580 nm. (a) Determine where point P is in 
the interference pattern by giving the maximum or minimum on 
which it lies, or the maximum and minimum between which it lies. 
(b) What is the ratio of the intensity I p at point P to the intensity 
Icen at the center of the pattern? 
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sec.35-7 Interference from Thin Films 
SSM We wish to coat flat glass (n = 1.50) with a transparent 

material (n = 1.25) so that reflection of light at wavelength 600 nm 
is eliminated by interference. What minimum thickness can the 
coating have to do this? 

A 600-nm-thick soap film (n = 1.40) in air is illuminated with 
white light in a direction perpendicular to the film. For how many 
different wavelengths in the 300 to 700 nm range is there (a) fully 
constructive interference and (b) fully destructive interference in 
the reflected light? 

The rhinestones in costume jewelry are glass with index of 
refraction 1.50. To make them more reflective, they are often 
coated with a layer of silicon monoxide of index of refraction 2.00. 
What is the minimum coating thickness needed to ensure that light 
of wavelength 560 nm and of perpendicular incidence will be re­
flected from the two surfaces of the coating with fully constructive 
interference? 

White light is sent downward onto a horizontal thin film that 
is sandwiched between two materials. The indexes of refraction are 
1.80 for the top material, 1.70 for the thin film, and 1.50 for the bot­
tom material. The film thickness is 5.00 X 10-7 m. Of the visible 
wavelengths (400 to 700 nm) that result in fully constructive inter­
ference at an observer above the film, which is the (a) longer and 
(b) shorter wavelength? The materials and film are then heated so 
that the film thickness increases. (c) Does the light resulting in fully 
constructive interference shift toward longer or shorter wave­
lengths? 

ILW Light of wavelength 624 nm is incident perpendicularly 
on a soap film (n = 1.33) suspended in air. What are the (a) least 
and (b) second least thicknesses of the film for which the reflec­
tions from the film undergo fully constructive interference? 

A thin film of acetone (n = 1.25) coats a thick glass plate 
(n = 1.50). White light is incident normal to the film. In the reflec­
tions, fully destructive interference occurs at 600 nm and fully con­
structive interference at 700 nm. Calculate the thickness of the ace­
tone film. 

SSM 47, 51 ~ 
45, 49 Reflection by thin layers. In Fig. 
35-41, light is incident perpendicularly 1'1 1'2 

on a thin layer of material 2 that lies be- -::t:::::!==;;;;;;;:::p~-l 
tween (thicker) materials 1 and 3. (The 
rays are tilted only for clarity.) The 
waves of rays rl and r2 interfere, and 
here we consider the type of interfer- Fig. 35-41 Problems 
ence to be either maximum (max) or 41 through 52. 
minimum (min). For this situation, each 
problem in Table 35-2 refers to the indexes of refraction n 1> nZ, and 
n3, the type of interference, the thin-layer thickness L in nanome­
ters, and the wavelength A in nanometers of the light as measured 
in air. Where A is missing, give the wavelength that is in the visible 
range. Where L is missing, give the second least thickness or the 
third least thickness as indicated. 

The reflection of perpendicularly incident white light by a 
soap film in air has an interference maximum at 600 nm and a min­
imum at 450 nm, with no minimum in between. If n = 1.33 for the 
film, what is the film thickness, assumed uniform? 

A plane wave of monochromatic light is incident normally 
on a uniform thin film of oil that covers a glass plate. The wave-
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length of the source can be varied continu­
ously. Fully destructive interference of the 
reflected light is observed for wavelengths of 
500 and 700 nm and for no wavelengths in 
between. If the index of refraction of the oil 
is 1.30 and that of the glass is 1.50, find the 
thickness of the oil film. 

Problems 41 through 52: Reflection by Thin Layers. See the setup for these problems. 

SSM www A disabled tanker leaks 
kerosene (n = 1.20) into the Persian Gulf, cre­
ating a large slick on top of the water (n = 

1.30). (a) If you are looking straight down 
from an airplane, while the Sun is overhead, at 
a region of the slick where its thickness is 460 
nm, for which wavelength(s) of visible light is 
the reflection brightest because of constructive 
interference? (b) If you are scuba diving di­
rectly under this same region of the slick, for 
which wavelength(s) of visible light is the 
transmitted intensity strongest? 

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

nj 

1.68 
1.55 
1.60 
1.50 
1.55 
1.68 
1.50 
1.60 
1.32 
1.40 
1.40 

1.32 

n2 n3 

1.59 1.50 
1.60 1.33 
1.40 1.80 
1.34 1.42 
1.60 1.33 
1.59 1.50 
1.34 1.42 
1.40 1.80 
1.75 1.39 
1.46 1.75 
1.46 1.75 

1.75 1.39 

1)rpe L A 

min 2nd 342 
max 285 
min 200 
max 2nd 587 
max 3rd 612 
min 415 
min 380 
max 2nd 632 
max 3rd 382 
min 2nd 482 
min 210 

max 325 

A thin film, with a thickness of 272.7 
nm and with air on both sides, is illuminated 
with a beam of white light. The beam is per­
pendicular to the film and consists of the full 
range of wavelengths for the visible spec­
trum. In the light reflected by the film, light 
with a wavelength of 600.0 nm undergoes 
fully constructive interference. At what 
wavelength does the reflected light undergo 
fully destructive interference? (Hint: You 
must make a reasonable assumption about 
the index of refraction.) 

Problems 57 through 68: Transmission Through Thin Layers. 
See the setup for these problems. 

SSM 59 64, 65 
Transmission through thin layers. In Fig. 
35-42, light is incident perpendicularly on a 
thin layer of material 2 that lies between 
(thicker) materials 1 and 3. (The rays are tilted 
only for clarity.) Part of the light ends up in 
material 3 as ray 1'3 (the light does not reflect 
inside material 2) and 1'4 (the light reflects 
twice inside material 2). The waves of 1'3 

and 1'4 interfere, and here we consider the nj 
type of interference to be either maximum 
(max) or minimum (min). For this situation, 
each problem in Table 35-3 refers to the in­
dexes of refraction nj, nz, and n3, the type of 
interference, the thin-layer thickness L in 
nanometers, and the wavelength A in 
nanometers of the light as measured in air. 
Where A is missing, give the wavelength that 
is in the visible range. Where L is missing, 
give the second least thickness or the third 

nj 

57 1.55 
58 1.32 
59 1.68 
60 1.50 
61 1.32 
62 1.68 
63 1.40 
64 1.40 
65 1.60 
66 1.60 
67 1.50 
68 1.55 

Fig. 35-42 

Problems 57 
through 68. 

least thickness as indicated. Incident light 

In Fig. 35-43, a broad beam 
of light of wavelength 630 nm is incident 
at 900 on a thin, wedge-shaped film with 
index of refraction 1.50. Transmission 
gives 10 bright and 9 dark fringes along 
the film's length. What is the left -to-right 
change in film thickness? Fig. 35-43 Problem 69. 

n2 n3 Type 

1.60 1.33 min 
1.75 1.39 min 
1.59 1.50 max 
1.34 1.42 max 
1.75 1.39 min 
1.59 1.50 max 
1.46 1.75 max 
1.46 1.75 max 
1.40 1.80 min 
1.40 1.80 max 
1.34 1.42 min 
1.60 1.33 min 

··70 In Fig. 35-44, a broad beam of 
light of wavelength 620 nm is sent di­
rectly downward through the top plate 
of a pair of glass plates touching at the 
left end. The air between the plates 
acts as a thin film, and an interference 
pattern can be seen from above the 

L 

285 
3rd 
415 
380 
325 
2nd 
2nd 
210 
2nd 
200 
2nd 
3rd 

Incident light 

382 

342 
482 

632 

587 
612 

plates. Initially, a dark fringe lies at the Fig. 35-44 Problems 
left end, a bright fringe lies at the right 70-74. 
end, and nine dark fringes lie between 
those two end fringes. The plates are then very gradually 
squeezed together at a constant rate to decrease the angle be­
tween them. As a result, the fringe at the right side changes be­
tween being bright to being dark every 15.0 s. (a) At what rate is 
the spacing between the plates at the right end being changed? 
(b) By how much has the spacing there changed when both left 
and right ends have a dark fringe and there are five dark fringes 
between them? 

In Fig. 35-44, two microscope slides touch at one end and are 
separated at the other end. When light of wavelength 500 nm 



shines vertically down on the slides, an overhead observer sees an 
interference pattern on the slides with the dark fringes separated 
by 1.2 mm. What is the angle between the slides? 

In Fig. 35-44, a broad beam of monochromatic light is 
directed perpendicularly through two glass plates that are held 
together at one end to create a wedge of air between them. An 
observer intercepting light reflected from the wedge of air, which 
acts as a thin film, sees 4001 dark fringes along the length of the 
wedge. When the air between the plates is evacuated, only 4000 
dark fringes are seen. Calculate to six significant figures the index of 
refraction of air from these data. 

SSM In Fig. 35-44, a broad beam of light of wavelength 
683 nm is sent directly downward through the top plate of a pair of 
glass plates. The plates are 120 mm long, touch at the left end, and 
are separated by 48.0 p,m at the right end. The air between the 
plates acts as a thin film. How many bright fringes will be seen by 
an observer looking down through the top plate? 

Tho rectangular glass plates (n = 1.60) are in contact 
along one edge and are separated along the opposite edge (Fig. 
35-44). Light with a wavelength of 600 nm is incident perpendicu­
larly onto the top plate. The air between the plates acts as a thin 
film. Nine dark fringes and eight bright fringes are observed from 
above the top plate. If the distance between the two plates along 
the separated edges is increased by 600 nm, how many dark fringes 
will there then be across the top plate? 

SSM IlW Figure 35-45a shows a lens with radius of curva­
ture R lying on a flat glass plate and illuminated from above by 
light with wavelength A. Figure 35-45b (a photograph taken from 
above the lens) shows that circular interference fringes (called 
Newton's rings) appear, associated with the variable thickness d of 

(a) 

Incident 
light 

Air Glass 

R 

Fig.35-45 Problems 75-77. (Courtesy Bausch & Lomb) 
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the air film between the lens and the plate. Find the radii r of the 
interference maxima assuming rlR q 1. 

In a Newton's rings experiment (see Problem 75), the radius 
of curvature R of the lens is 5.0 m and the lens diameter is 20 mm. 
(a) How many bright rings are produced? Assume that A = 589 
nm. (b) How many bright rings would be produced if the arrange­
ment were immersed in water (n = 1.33)? 

A Newton's rings apparatus is to be used to determine the ra­
dius of curvature of a lens (see Fig. 35-45 and Problem 75). The radii 
of the nth and (n + 20)th bright rings are measured and found to be 
0.162 and 0.368 cm, respectively, in light of wavelength 546 nm. 
Calculate the radius of curvature of the lower surface of the lens. 

A thin film of liquid is held in a horizontal circular ring, 
with air on both sides of the film. A beam of light at wavelength 
550 nm is directed perpendicularly onto the film, and the intensity 
I of its reflection is monitored. Figure 35-46 gives intensity I as a 
function of time t; the horizontal scale is set by ts = 20.0 s. The in­
tensity changes because of evaporation from the two sides of the 
film. Assume that the film is flat and has parallel sides, a radius of 
1.80 cm, and an index of refraction of 1.40. Also assume that the 
film's volume decreases at a constant rate. Find that rate. 

o is 
i (8) 

Fig. 35-46 Problem 78. 

Michelson's Interferometer 
If mirror M2 in a Michelson interferometer (Fig. 35-21) is moved 

through 0.233 mm, a shift of 792 bright fringes occurs. What is the 
wavelength of the light producing the fringe pattern? 

A thin film with index of refraction n = 1.40 is placed in one 
arm of a Michelson interferometer, perpendicular to the optical 
path. If this causes a shift of 7.0 bright fringes of the pattern pro­
duced by light of wavelength 589 nm, what is the film thickness? 

SSM www In Fig. 35-47, 
an airtight chamber of length 
d = 5.0 cm is placed in one of the 
arms of a Michelson interferome­
ter. (The glass window on each end 
of the chamber has negligible thick­
ness.) Light of wavelength A = 500 
nm is used. Evacuating the air from 
the chamber causes a shift of 60 
bright fringes. From these data and 
to six significant figures, find the in­
dex of refraction of air at atmo-
spheric pressure. 

The element sodium can 

pump 

emit light at two wavelengths, Al = Fig. 35-47 Problem 81. 
588.9950 nm and A2 = 589.5924 nm. 
Light from sodium is being used in a Michelson interferometer (Fig. 
35-21). Through what distance must mirror M2 be moved if the 
shift in the fringe pattern for one wavelength is to be 1.00 fringe 
more than the shift in the fringe pattern for the other wavelength? 
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Additional Problems 
83 Two light rays, initially in 
phase and with a wavelength 
of 500 nm, go through different 
paths by reflecting from the various 
mirrors shown in Fig. 35-48. (Such a 
reflection does not itself produce a 
phase shift.) (a) What least value of 
distance d will put the rays exactly 
out of phase when they emerge 
from the region? (Ignore the slight 

:--d-+-d~: 
I I I 
,,' I I 

Ray 1 

tilt of the path for ray 2.) (b) Fig. 35-48 Problem 83. 
Repeat the question assuming that 
the entire apparatus is immersed in a protein solution with an in­
dex of refraction of 1.38. 

In Figure 35-49, two isotropic point sources Sl and S2 emit 
light in phase at wavelength A and at the same amplitude. The 
sources are separated by distance d = 6.0OA on an x axis. A viewing 
screen is at distance D = 20.0A from S2 and parallel to the y axis. The 
figure shows two rays reaching point P on the screen, at height yp. 
(a) At what value of y p do the rays have the minimum possible phase 
difference? (b) What multiple of A gives that minimum phase differ­
ence? (c) At what value of yp do 
the rays have the maximum possi­
ble phase difference? What multi­
ple of A gives (d) that maximum 
phase difference and (e) the phase 
difference when yp = d? (f) When 
yp = d, is the resulting intensity at 
point P maximum, minimum, in­
termediate but closer to maxi­
mum, or intermediate but closer to 
minimum? 

Screen 
y 

p 

Fig. 35-49 Problem 84. 

85 SSM A double-slit arrangement produces bright interference 
fringes for sodium light (a distinct yellow light at a wavelength 
of A = 589 nm). The fringes are angularly separated by 0.30° near 
the center of the pattern. What is the angular fringe separation if 
the entire arrangement is immersed in water, which has an index of 
refraction of 1.33? 

In Fig. 35-50a, the waves along rays 1 and 2 are initially in 
phase, with the same wavelength A in air. Ray 2 goes through a 
material with length L and index of refraction n. The rays are 
then reflected by mirrors to a common point P on a screen. 
Suppose that we can vary n from n = 1.0 to n = 2.5. Suppose also 
that, from n = 1.0 to n = ns = 1.5, the intensity I of the light at 
point P varies with n as given in Fig. 35-50b. At what values of 11 

greater than 1.4 is intensity I (a) maximum and (b) zero? (c) 
What multiple of A gives the phase difference between the rays at 
point P when n = 2.0? 

Ray 2 
-li--'+--~-

Ray 1 

(a) 

Screen 
I 

'--_L-_'-----'~ ....... '"""""::.....Jn 
ns 

(b) 

Fig.35-50 Problems 86 and 87. 

SSM In Fig. 35-50a, the waves 
along rays 1 and 2 are initially in 
phase, with the same wavelength A in 
air. Ray 2 goes through a material 
with length L and index of refraction 
n. The rays are then reflected by mir­
rors to a common point P on a 
screen. Suppose that we can vary L 
from 0 to 2400 nm. Suppose also 0 

that, from L = 0 to Ls = 900 nm, the 

I 

L, 
L(nm) 

intensity I of the light at point P Fig. 35-51 Problem 87. 
varies with L as given in Fig. 35-51. 
At what values of L greater than Ls is intensity I (a) maximum and 
(b) zero? (c) What multiple of A gives the phase difference 
between ray 1 and ray 2 at common point P when L = 1200 nm? 

88 Light of wavelength 700.0 nm is sent along a route of length 
2000 nm. The route is then filled with a medium having an index of 
refraction of 1.400. In degrees, by how much does the medium 
phase-shift the light? Give (a) the full shift and (b) the equivalent 
shift that has a value less than 360°. 

SSM In Fig. 35-52, a microwave transmitter at height a above 
the water level of a wide lake transmits microwaves of wavelength A 
toward a receiver on the opposite shore, a distance x above the water 
level. The microwaves reflecting from the water interfere with the mi­
crowaves arriving directly from the transmitter. Assuming that the 
lake width D is much greater than a and x, and that A 2: a, find an ex­
pression that gives the values of x for which the signal at the receiver 
is maximum. (Hint: Does the reflection cause a phase change?) 

Tl fl 
Ik----·' --D-----+l.\ 

Fig. 35-52 Problem 89. 

)' 
In Fig. 35-53, two isotropic point 

sources Sl and S2 emit light at wavelength 
A = 400 nm: Source Sl is located at y = 

640 nm; source S2 is located at y = -640 
nm. At point PI (at x = 720 nm), the wave 
from S2 arrives ahead of the wave from Sl 
by a phase difference of 0.6001T rad. (a) 
What multiple of A gives the phase differ­
ence between the waves from the two 
sources as the waves arrive at point Pz, 
which is located at y = 720 nm. (The fig­
ure is not drawn to scale.) (b) If the 
waves arrive at P2 with equal ampli­
tudes, is the interference there fully 
constructive, fully destructive, inter­
mediate but closer to fully construc­

----+--~~-x 

tive, or intermediate but closer to 
fully destructive? 

Ocean waves moving at a 
speed of 4.0 mls are approaching a 
beach at angle 01 = 30° to the normal, 
as shown from above in Fig. 35-54. 

Fig. 35-53 

Problem 90. 

I 
Shoreline I 
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Shallow waler 
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Deepwater·· . '. 
.. ····le
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, 

Fig. 35-54 Problem 91. 



Suppose the water depth changes abruptly at a certain distance from 
the beach and the wave speed there drops to 3.0 mls. (a) Close to the 
beach, what is the angle e2 between the direction of wave motion 
and the normal? (Assume the same law of refraction as for light.) 
(b) Explain why most waves come in normal to a shore even though 
at large distances they approach at a variety of angles. 

Figure 35-55a shows two light rays that are initially in phase as 
they travel upward through a block of plastic, with wavelength 400 
nm as measured in air. Light ray 1'1 exits directly into air. However, 
before light ray 1'2 exits into air, it travels through a liquid in a hol­
low cylinder within the plastic. Initially the height L liq of the liquid 
is 40.0 tim, but then the liquid begins to evaporate. Let ¢ be the 
phase difference between rays 1'1 and 1'2 once they both exit into the 
air. Figure 35-55b shows ¢ versus the liquid's height L liq until the 
liquid disappears, with ¢ given in terms of wavelength and the hor­
izontal scale set by Ls = 40.00 tim. What are (a) the index of refrac­
tion of the plastic and (b) the index of refraction of the liquid? 

Ii 12 
60 

1 
L liq 

~ 

1 -e- 20 
'-i- --,-----

'''-. Plastic 0 Ls 
L liq (/lm) 

(a) (b) 

Fig. 35-55 Problem 92. 

SSM If the distance between the first and tenth minima of 
a double-slit pattern is 18.0 mm and the slits are separated by 0.150 
mm with the screen 50.0 cm from the slits, what is the wavelength 
of the light used? 

Figure 35-56 shows an op­
tical fiber in which a central 
plastic core of index of refrac­
tion nl = 1.58 is surrounded by 
a plastic sheath of index of re­
fraction n2 = 1.53. Light can 
travel along different paths 
within the central core, leading 

..-------------

Fig. 35-56 Problem 94. 

--_.' 

to different travel times through the fiber. This causes an initially 
short pulse of light to spread as it travels along the fiber, resulting 
in information loss. Consider light that travels directly along the 
central axis of the fiber and light that is repeatedly reflected at the 
critical angle along the core-sheath interface, reflecting from side 
to side as it travels down the central core. If the fiber length is 300 
m, what is the difference in the travel times along these two 
routes? 

SSM Tho parallel slits are illuminated with monochromatic 
light of wavelength 500 nm. An interference pattern is formed on a 
screen some distance from the slits, and the fourth dark band is lo­
cated 1.68 cm from the central bright band on the screen. (a) What 
is the path length difference corresponding to the fourth dark 
band? (b) What is the distance on the screen between the central 
bright band and the first bright band on either side of the central 
band? (Hint: The angle to the fourth dark band and the angle to 
the first bright band are small enough that tan e = sin e.) 
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A camera lens with index of refraction greater than 1.30 is 
coated with a thin transparent film of index of refraction 1.25 to 
eliminate by interference the reflection of light at wavelength A 
that is incident perpendicularly on the lens. What multiple of A 
gives the minimum film thickness needed? 

SSM Light of wavelength A is used in a Michelson interfer­
ometer. Let x be the position of the movable mirror, with x = 0 
when the arms have equal lengths d2 = dl • Write an expression for 
the intensity of the observed light as a function of x, letting 1m be 
the maximum intensity. 

In two experiments, light is to be sent along the two paths 
shown in Fig. 35-34 by reflecting it from the various flat surfaces 
shown. In the first experiment, rays 1 and 2 are initially in phase and 
have a wavelength of 620.0 nm. In the second experiment, rays 1 and 
2 are initially in phase and have a wavelength of 496.0 nm. What 
least value of distance L is required such that the 620.0 nm waves 
emerge from the region exactly in phase but the 496.0 nm waves 
emerge exactly out of phase? 

Figure 35-57 shows the design of a Texas arcade game. Four 
laser pistols are pointed toward the center of an array of plastic 
layers where a clay armadillo is the target. The indexes of refrac­
tion of the layers are nl = 1.55, n2 = 1.70, n3 = 1.45, n4 = 1.60, ns = 
1.45, n6 = 1.61, n7 = 1.59, ns = 1.70, and n9 = 1.60. The layer thick­
nesses are either 2.00 mm or 4.00 mm, as drawn. What is the travel 
time through the layers for the laser burst from (a) pistol 1, (b) pis­
tol2, (c) pistol 3, and (d) pistol4? (e) If the pistols are fired simul­
taneously, which laser burst hits the target first? 

4 

3 

Fig. 35-57 Problem 99. 

1 A thin film suspended in air is 0.410 tim thick and is 
illuminated with white light incident perpendicularly on its surface. 
The index of refraction of the film is 1.50. At what wavelength will 
visible light that is reflected from the two surfaces of the film un­
dergo fully constructive interference? 

Find the slit separation of a double-slit arrangement that will 
produce interference fringes 0.018 rad apart on a distant screen 
when the light has wavelength A = 589 nm. 

In a phasor diagram for any point on the viewing screen for 
the two-slit experiment in Fig. 35-10, the resultant-wave phasor ro­
tates 60.0° in 2.50 X 10-16 s. What is the wavelength? 
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Fig. 36-1 This diffraction pattern 
appeared on a viewing screen when 
light that had passed through a nar­
row vertical slit reached the screen. 
Diffraction caused the light to flare 
out perpendicular to the long sides of 
the slit. That flaring produced an inter­
ference pattern consisting of a broad 
central maximum plus less intense 
and narrower secondary (or side) 
maxima, with minima between them. 
(Ken Kay/Fundamental Photographs) 

One focus of physics in the study of light is to understand and put to 
use the diffraction of light as it passes through a narrow slit or (as we shall 
discuss) past either a narrow obstacle or an edge. We touched on this phe­
nomenon in Chapter 35 when we looked at how light flared-diffracted­
through the slits in Young's experiment. Diffraction through a given slit is 
more complicated than simple flaring, however, because the light also inter­
feres with itself and produces an interference pattern. It is because of such 
complications that light is rich with application opportunities. Even though 
the diffraction of light as it passes through a slit or past an obstacle seems aw­
fully academic, countless engineers and scientists make their living using this 
physics, and the total worth of diffraction applications worldwide is probably 
incalculable. 

Before we can discuss some of these applications, we first must discuss why 
diffraction is due to the wave nature of light. 

Diffraction and the Wave Theory of light 
In Chapter 35 we defined diffraction rather loosely as the flaring of light as it 
emerges from a narrow slit. More than just flaring occurs, however, because the 
light produces an interference pattern called a diffraction pattern. For example, 
when monochromatic light from a distant source (or a laser) passes through a 
narrow slit and is then intercepted by a viewing screen, the light produces on the 
screen a diffraction pattern like that in Fig. 36-1. This pattern consists of a broad 
and intense (very bright) central maximum plus a number of narrower and less 
intense maxima (called secondary or side maxima) to both sides. In between the 
maxima are minima. Light flares into those dark regions, but the light waves can­
cel out one another. 

Such a pattern would be totally unexpected in geometrical optics: If light 
traveled in straight lines as rays, then the slit would allow some of those rays 
through to form a sharp rendition of the slit on the viewing screen instead of a 
pattern of bright and dark bands as we see in Fig. 36-1. As in Chapter 35, we must 
conclude that geometrical optics is only an approximation. 

Diffraction is not limited to situations when light passes through a narrow 
opening (such as a slit or pinhole). It also occurs when light passes an edge, such 
as the edges of the razor blade whose diffraction pattern is shown in Fig. 36-2. 
Note the lines of maxima and minima that run approximately parallel to the 
edges, at both the inside edges of the blade and the outside edges. As the light 
passes, say, the vertical edge at the left, it flares left and right and undergoes inter­
ference, producing the pattern along the left edge. The rightmost portion of that 
pattern actually lies behind the blade, within what would be the blade's shadow if 
geometrical optics prevailed. 
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You encounter a common example of diffraction when you look at a clear blue 
sky and see tiny specks and hairlike structures floating in your view. These floaters, as 
they are called, are produced when light passes the edges of tiny deposits in the vit­
reous humor, the transparent material filling most of the eyeball. What you are see­
ing when a floater is in your field of vision is the diffraction pattern produced on the 
retina by one of these deposits. If you sight through a pinhole in a piece of cardboard 
so as to make the light entering your eye approximately a plane wave, you can dis­
tinguish individual maxima and minima in the patterns. 

Diffraction is a wave effect. That is, it occurs because light is a wave and it 
occurs with other types of waves as well. For example, you have probably seen 
diffraction in action at football games. When a cheerleader near the playing 
field yells up at several thousand noisy fans, the yell can hardly be heard because 
the sound waves diffract when they pass through the narrow opening of the 
cheerleader's mouth. This flaring leaves little of the waves traveling toward the 
fans in front of the cheerleader. To offset the diffraction, the cheerleader can yell 
through a megaphone. The sound waves then emerge from the much wider open­
ing at the end of the megaphone. The flaring is thus reduced, and much more of 
the sound reaches the fans in front of the cheerleader. 

Diffraction finds a ready explanation in the wave theory of light. However, this 
theory, originally advanced in the late 1600s by Huygens and used 123 years later 
by Young to explain double-slit interference, was very slow in being adopted, 
largely because it ran counter to Newton's theory that light was a stream of 
particles. 

Newton's view was the prevailing view in French scientific circles of the early 19th 
century, when Augustin Fresnel was a young military engineer. Fresnel, who believed 
in the wave theory of light, submitted a paper to the French Academy of Sciences de­
scribing his experiments with light and his wave-theory explanations of them. 

In 1819, the Academy, dominated by supporters of Newton and thinking to 
challenge the wave point of view, organized a prize competition for an essay on the 
subject of diffraction. Fresnel won. The Newtonians, however, were not swayed. 
One of them, S. D. Poisson, pointed out the "strange result" that if Fresnel's theories 
were correct, then light waves should flare into the shadow region of a sphere as 
they pass the edge of the sphere, producing a bright spot at the center of the 
shadow. The prize committee arranged a test of Poisson's prediction and discov­
ered that the predicted Fresnel bright spot, as we call it today, was indeed there (Fig. 
36-3). Nothing builds confidence in a theory so much as having one of its unex­
pected and counterintuitive predictions verified by experiment. 

Fig. 36-3 A photograph of the 
diffraction pattern of a disk. Note the con­
centric diffraction rings and the Fresnel 
bright spot at the center of the pattern. This 
experiment is essentially identical to that 
arranged by the committee testing Fresnel's 
theories, because both the sphere they used 
and the disk used here have a cross section 
with a circular edge. (learl Walker) 

Fig. 36-2 The diffraction pattern 
produced by a razor blade in mono­
chromatic light. Note the lines of 
alternating maximum and minimum 
intensity. (Ken Kay/Fundamental 
Photographs) 
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Diffraction by a Single Slit: Locating the Minima 
Let us now examine the diffraction pattern of plane waves of light of wavelength 
A that are diffracted by a single long, narrow slit of width a in an otherwise 
opaque screen E, as shown in cross section in Fig. 36-4. (In that figure, the slit's 
length extends into and out of the page, and the incoming wavefronts are parallel 
to screen E.) When the diffracted light reaches viewing screen C, waves from 
different points within the slit undergo interference and produce a diffraction 
pattern of bright and dark fringes (interference maxima and minima) on the 
screen. To locate the fringes, we shall use a procedure somewhat similar to the 
one we used to locate the fringes in a two-slit interference pattern. However, 
diffraction is more mathematically challenging, and here we shall be able to find 
equations for only the dark fringes. 

Before we do that, however, we can justify the central bright fringe seen in 
Fig. 36-1 by noting that the Huygens wavelets from all points in the slit travel 
about the same distance to reach the center of the pattern and thus are in phase 
there. As for the other bright fringes, we can say only that they are approximately 
halfway between adjacent dark fringes. 

To find the dark fringes, we shall use a clever (and simplifying) strategy that 
involves pairing up all the rays coming through the slit and then finding what 
conditions cause the wavelets of the rays in each pair to cancel each other. We 
apply this strategy in Fig. 36-4 to locate the first dark fringe, at point Pl' First, 
we mentally divide the slit into two zones of equal widths a12. Then we extend 
to P1 a light ray r1 from the top point of the top zone and a light ray r2 from the 
top point of the bottom zone. We want the wavelets along these two rays to can­
cel each other when they arrive at Pl' Then any similar pairing of rays from the 
two zones will give cancellation. A central axis is drawn from the center of the slit 
to screen C, and PI is located at an angle e to that axis. 

The wavelets of the pair of rays r1 and r2 are in phase within the slit because 
they originate from the same wavefront passing through the slit, along the width 
of the slit. However, to produce the first dark fringe they must be out of phase by 
Al2 when they reach PI; this phase difference is due to their path length differ­
ence, with the path traveled by the wavelet of r2 to reach P1 being longer than the 
path traveled by the wavelet of 1'1' To display this path length difference, we find a 
point b on ray r2 such that the path length from b to PI matches the path length of 
ray r1' Then the path length difference between the two rays is the distance from 
the center of the slit to b. 

Fig. 36-4 Waves 
from the top points of 
two zones of width 
a/2 undergo fully 
destructive interfer­
ence at point Plan 
viewing screen C. 

Incident 
wave 

T 
a/2 

I 

Totally destructive 
in terference 

L_~'i __ --71IPI 

Central axis 

Viewing 
screen 

C 

This pair of rays cancel 
each other at Pl' So 
do all such pairings. 
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When viewing screen C is near screen B, as in Fig. 36-4, the diffraction 
pattern on C is difficult to describe mathematically. However, we can simplify the 
mathematics considerably if we arrange for the screen separation D to be much 
larger than the slit width a. Then we can approximate rays r1 and r2 as being 
parallel, at angle e to the central axis (Fig. 36-5). We can also approximate the tri­
angle formed by point b, the top point of the slit, and the center point of the slit as 
being a right triangle, and one of the angles inside that triangle as being e. The 
path length difference between rays r1 and r2 (which is still the distance from the 
center of the slit to point b) is then equal to (a/2) sin e. 

We can repeat this analysis for any other pair of rays originating at cor­
responding points in the two zones (say, at the midpoints of the zones) and 
extending to point Pl' Each such pair of rays has the same path length difference 
(a/2) sin e. Setting this common path length difference equal to A/2 (our condition 
for the first dark fringe), we have 

a. A 
2 sme =2' 

which gives us 

a sin e = A (first minimum). (36-1) 

Given slit width a and wavelength A, Eq. 36-1 tells us the angle e of the first dark 
fringe above and (by symmetry) below the central axis. 

Note that if we begin with a > A and then narrow the slit while holding the 
wavelength constant, we increase the angle at which the first dark fringes appear; 
that is, the extent of the diffraction (the extent of the flaring and the width of the 
pattern) is greater for a narrower slit. When we have reduced the slit width to the 
wavelength (that is, a = A), the angle of the first dark fringes is 90°. Since the first 
dark fringes mark the two edges of the central bright fringe, that bright fringe 
must then cover the entire viewing screen. 

We find the second dark fringes above and below the central axis as we 
found the first dark fringes, except that we now divide the slit into four zones of 
equal widths a/4, as shown in Fig. 36-6a. We then extend rays r), rb r3, and r4 
from the top points of the zones to point Pb the location of the second dark 
fringe above the central axis. To produce that fringe, the path length difference 

D 

PI 

These rays 

cancel at P2' 

Incident 
C 

wave 

(a) 

T 
a/4 t, 

1\ 

ie\ 

T' 1 
1 

1\ 

ie\ 
a/4 1 \ 

1i 

To see the cancellation, 
group the rays into pairs. 

Path length 
difference between 

Ii and 12 

Path length 
difference between 

13 and 14 

(b) 

Fig. 36-6 (a) Waves from the top points of four zones of width a/4 undergo fully destruc­
tive inteIierence at point P2' (b) For D ~ a, we can approximate rays I'j, 1'2, 1'3, and 1'4 as being 
parallel, at angle Oto the central axis. 

T 
a/2 

1 
Path length 
difference 

This path length 
difference shifts 
one wave from the 
other, which 
determines 
the interference. 

Fig.36-5 For D ~ a, we can approxi­
mate rays 1', and 1'2 as being parallel, at an­
gle Oto the central axis. 
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between rj and r2, that between r2 and r3, and that between r3 and r4 must all be 
equal to A12. 

For D ~ a, we can approximate these four rays as being parallel, at angle 
e to the central axis. To display their path length differences, we extend a per­
pendicular line through each adjacent pair of rays, as shown in Fig. 36-6b, to 
form a series of right triangles, each of which has a path length difference as 
one side. We see from the top triangle that the path length difference between 
rl and r2 is (a/4) sin e. Similarly, from the bottom triangle, the path length dif­
ference between r3 and r4 is also (a/4) sin e. In fact, the path length difference 
for any two rays that originate at corresponding points in two adjacent zones 
is (a/4) sin e. Since in each such case the path length difference is equal to Al2, 
we have 

a. A 
4 SIll e = 2' 

which gives us 
a sin e = 2A (second minimum). (36-2) 

We could now continue to locate dark fringes in the diffraction pattern by 
splitting up the slit into more zones of equal width. We would always choose an 
even number of zones so that the zones (and their waves) could be paired as we 
have been doing. We would find that the dark fringes above and below the central 
axis can be located with the general equation 

a sin e= mA, form = 1,2,3, ... (minima-dark fringes). (36-3) 

You can remember this result in the following way. Draw a triangle like the 
one in Fig. 36-5, but for the full slit width a, and note that the path length differ­
ence between the top and bottom rays equals a sin e. Thus, Eq. 36-3 says: 

In a single-slit diffraction experiment, dark fringes are produced where the path 
length differences (a sin 8) between the top and bottom rays are equal to A, 2A, 3A, . ... 

This may seem to be wrong because the waves of those two particular rays will be 
exactly in phase with each other when their path length difference is an integer 
number of wavelengths. However, they each will still be part of a pair of waves 
that are exactly out of phase with each other; thus, each wave will be canceled by 
some other wave, resulting in darkness. (Two light waves that are exactly out of 
phase will always cancel each other, giving a net wave of zero, even if they happen 
to be exactly in phase with other light waves.) 

Equations 36-1,36-2, and 36-3 are derived for the case of D ~ a. However, 
they also apply if we place a converging lens between the slit and the viewing 
screen and then move the screen in so that it coincides with the focal plane of 
the lens. The lens ensures that rays which now reach any point on the screen are 
exactly parallel (rather than approximately) back at the slit. They are like the 
initially parallel rays of Fig. 34-14a that are directed to the focal point by a con­
verging lens. 

CHECKPOINT 1 

We produce a diffraction pattern on a viewing screen by means of a long narrow slit il­
luminated by blue light. Does the pattern expand away from the bright center (the 
maxima and minima shift away from the center) or contract toward it if we (a) switch 
to yellow light or (b) decrease the slit width? 
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Single-slit diffraction pattern with white light 

A slit of width a is illuminated by white light. 

(a) For what value of a will the first minimum for red light 
of wavelength .A = 650 nm appear at 8 = 15°? 

The first side maximum for any wavelength is about halfway 
between the first and second minima for that wavelength. 

Diffraction occurs separately for each wavelength in the 
range of wavelengths passing through the slit, with the lo­
cations of the minima for each wavelength given by Eq. 
36-3 (a sin 8 = m.A). 

Calculations: Those first and second minima can be 
located with Eq. 36-3 by setting m = 1 and m = 2, respec­
tively. Thus, the first side maximum can be located 
approximately by setting m = 1.5. Then Eq. 36-3 becomes 

Calculation: When we set m = 1 (for the first minimum) 
and substitute the given values of 8 and .A, Eq. 36-3 yields 

m.A (1)(650 nm) 
a=--= 

sin 8 sin 15° 

a sin 8 = 1.5.A'. 

Solving for .A' and substituting known data yield 

, asin8 
.A = 1.5 

= 430nm. 

(2511 nm)(sin 15°) 
1.5 

(Answer) 

= 2511 nm = 2.5 fLm. (Answer) 

For the incident light to flare out that much (±15° to the first min­
ima) the slit has to be very fine indeed - in this case, a mere four 
times the wavelength. For comparison, note that a fine human 
hair may be about 100 fLm in diameter. 

(b) What is the wavelength .A' of the light whose first side 
diffraction maximum is at 15°, thus coinciding with the first 
minimum for the red light? 

Light of this wavelength is violet (far blue, near the short­
wavelength limit of the human range of visible light). From 
the two equations we used, can you see that the first side 
maximum for light of wavelength 430 nm will always coin­
cide with the first minimum for light of wavelength 
650 nm, no matter what the slit width is? However, the an­
gle 8 at which this overlap occurs does depend on slit 
width. If the slit is relatively narrow, the angle will be rela­
tively large, and conversely. 

.~ d L flUS Ad itional examples, video, and practice available at WileyP US 

Intensity in Single"Slit Diffraction, Qualitatively 
In Section 36-3 we saw how to find the positions of the minima and the maxima in 
a single-slit diffraction pattern. Now we turn to a more general problem: find an 
expression for the intensity I of the pattern as a function of 8, the angular position 
of a point on a viewing screen. 

To do this, we divide the slit of Fig. 36-4 into N zones of equal widths Ax small 
enough that we can assume each zone acts as a source of Huygens wavelets. We 
wish to superimpose the wavelets arriving at an arbitrary point P on the viewing 
screen, at angle 8 to the central axis, so that we can determine the amplitude Eo of 
the electric component of the resultant wave at P. The intensity of the light at P is 
then proportional to the square of that amplitude. 

To find Eo, we need the phase relationships among the arriving wavelets. The 
phase difference between wavelets from adjacent zones is given by 

(
phase ) _ (27T) (path length) 

difference - A difference' 

For point P at angle 8, the path length difference between wavelets from adjacent 
zones is Ax sin 8; so the phase difference A¢ between wavelets from adjacent zones is 

A¢ = ( 2; ) (Ax sin 8). (36-4) 
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Fig. 36-7 Phasor diagrams for 
N = 18 phasors, corresponding to 
the division of a single slit into 18 
zones. Resultant amplitudes Eo are 
shown for (a) the central maximum 
at 0 = 0, (b) a point on the screen ly­
ing at a small angle Oto the central 
axis, ( c) the first minimum, and (d) 
the first side maximum. 

I 

I:J 

(d) 

(c) 

top ray 

Here, with an even larger 
phase difference, they add 
to give a small amplitude 
and thus a small intensity. 

The last phasor is out of 
phase with the first phasor 
by 27r rad {full circle}. 

Here, with a larger phase 
difference, the phasors add 
to give zero amplitude and 
thus a minimum in the pattern. 

Here the phasors have a small 
phase difference and add to give 

(b) a smaller amplitude and thus 

less intensity in the pattern. 

bottom 

The phasors from the 18 zones 
in the slit are in phase and add 

(a) to give a maximum amplitude 
and thus the central maximum 
in the diffraction pattern. 

We assume that the wavelets arriving at P all have the same amplitude /J..E. 
To find the amplitude Ee of the resultant wave at P, we add the amplitude /J..E via 
phasors. To do this, we construct a diagram of N phasors, one corresponding to 
the wavelet from each zone in the slit. 

For point Po at () = 0 on the central axis of Fig. 36-4, Eq. 36-4 tells us that the 
phase difference /J..CP between the wavelets is zero; that is, the wavelets all arrive in 
phase. Figure 36-7 a is the corresponding phasor diagram; adj acent phasors 
represent wavelets from adjacent zones and are arranged head to tail. Because 
there is zero phase difference between the wavelets, there is zero angle between 
each pair of adjacent phasors. The amplitude Ee of the net wave at Po is the vector 
sum of these phasors. This arrangement of the phasors turns out to be the one that 
gives the greatest value for the amplitude E e. We call this value Em; that is, Em is 
the value of Eefor () = O. 
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We next consider a point P that is at a small angle 0 to the central axis. 
Equation 36-4 now tells us that the phase difference Acp between wavelets from 
adjacent zones is no longer zero. Figure 36-7b shows the corresponding phasor 
diagram; as before, the phasors are arranged head to tail, but now there is an 
angle Acp between adjacent phasors. The amplitude Eo at this new point is still the 
vector sum of the phasors, but it is smaller than that in Fig. 36-7a, which means 
that the intensity of the light is less at this new point P than at Po. 

It we continue to increase 0, the angle Acp between adjacent phasors increases, 
and eventually the chain of phasors curls completely around so that the head of the 
last phasor just reaches the tail of the first phasor (Fig. 36-7c). The amplitude Eo is 
now zero, which means that the intensity of the light is also zero. We have reached 
the first minimum, or dark fringe, in the diffraction pattern. The first and last pha­
sors now have a phase difference of 21T rad, which means that the path length dif­
ference between the top and bottom rays through the slit equals one wavelength. 
Recall that this is the condition we determined for the first diffraction minimum. 

As we continue to increase (), the angle Acp between adjacent phasors con­
tinues to increase, the chain of phasors begins to wrap back on itself, and the 
resulting coil begins to shrink. Amplitude Eo now increases until it reaches a 
maximum value in the arrangement shown in Fig. 36-7d. This arrangement 
corresponds to the first side maximum in the diffraction pattern. 

It we increase 0 a bit more, the resulting shrinkage of the coil decreases Eo, 
which means that the intensity also decreases. When 0 is increased enough, the 
head of the last phasor again meets the tail of the first phasor. We have then 
reached the second minimum. 

We could continue this qualitative method of determining the maxima and min­
ima of the diffraction pattern but, instead, we shall now turn to a quantitative method. 

","CHECKPOINT 2 

The figures represent, in smoother form (with more phasors) 
than Fig. 36-7, the phasor diagrams for two points of a diffraction 
pattern that are on opposite sides of a certain diffraction maxi­
mum. (a) Which maximum is it? (b) What is the approximate 
value of m (in Eq. 36-3) that corresponds to this maximum? 

00 
(a) (b) 

Intensity in Single-Slit Diffraction, Quantitatively 
Equation 36-3 tells us how to locate the minima of the single-slit diffraction pat­
tern on screen C of Fig. 36-4 as a function of the angle 0 in that figure. Here we 
wish to derive an expression for the intensity I( 0) of the pattern as a function of 
O. We state, and shall prove below, that the intensity is given by 

(
sin (1')2 

1(0) = 1m -(1'- , (36-5) 

where 
1 1Ta. (1' = _A. = - sm 0 
2'1-' A . (36-6) 

The symbol (1' is just a convenient connection between the angle 0 that locates a 
point on the viewing screen and the light intensity I( 0) at that point. The intensity 
1m is the greatest value of the intensities I( 0) in the pattern and occurs at the cen­
tral maximum (where e = 0), and cp is the phase difference (in radians) between 
the top and bottom rays from the slit of width a. 

Study of Eq. 36-5 shows that intensity minima will occur where 

(1'= m1T, for m = 1,2,3, .... (36-7) 
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20 15 10 5 0 5 10 15 20 
e (degrees) 

(a) 

Fig. 36-8 The relative intensity in 
single-slit diffraction for three values 
of the ratio a/A. The wider the slit is, 
the narrower is the central diffrac­
tion maximum. 

R 

R 

Fig. 36-9 A construction used to 
calculate the intensity in single-slit 
diffraction. The situation shown 
corresponds to that of Fig. 36-7b. 

If we put this result into Eq. 36-6, we find 

7Ta . 
m7T = A SIll e, for m = 1, 2, 3, ... , 

or a sin e = mA, for m = 1,2,3, ... (minima-dark fringes), (36-8) 

which is exactly Eq. 36-3, the expression that we derived earlier for the location 
of the minima. 

Figure 36-8 shows plots of the intensity of a single-slit diffraction pattern, 
calculated with Eqs. 36-5 and 36-6 for three slit widths: a = A, a = SA, and a = 
lOA. Note that as the slit width increases (relative to the wavelength), the width 
of the central diffraction maximum (the central hill-like region of the graphs) 
decreases; that is, the light undergoes less flaring by the slit. The secondary max­
ima also decrease in width (and become weaker). In the limit of slit width a be­
ing much greater than wavelength A, the secondary maxima due to the slit disap­
pear; we then no longer have single-slit diffraction (but we still have diffraction 
due to the edges of the wide slit, like that produced by the edges of the razor 
blade in Fig. 36-2). 

To find an expression for the intensity at a point in the diffraction pattern, 
we need to divide the slit into many zones and then add the phasors corre­
sponding to those zones, as we did in Fig. 36-7. The arc of phasors in Fig. 36-9 
represents the wavelets that reach an arbitrary point P on the viewing screen 
of Fig. 36-4, corresponding to a particular small angle e. The amplitude Eo of 
the resultant wave at P is the vector sum of these phasors. If we divide the 
slit of Fig. 36-4 into infinitesimal zones of width ~x, the arc of phasors in Fig. 
36-9 approaches the arc of a circle; we call its radius R as indicated in that 
figure. The length of the arc must be Em, the amplitude at the center of the 
diffraction pattern, because if we straightened out the arc we would have the 
phasor arrangement of Fig. 36-7a (shown lightly in Fig. 36-9). 

The angle <p in the lower part of Fig. 36-9 is the difference in phase between 
the infinitesimal vectors at the left and right ends of arc Em. From the geometry, <p 
is also the angle between the two radii marked R in Fig. 36-9. The dashed line in 
that figure, which bisects <p, then forms two congruent right triangles. From either 
triangle we can write 

. 1 Eo 
SIll 2<P = 2R' 

In radian measure, <p is (with Em considered to be a circular arc) 

Ao = Em 
'/' R' 

Solving this equation for R and substituting in Eq. 36-9 lead to 

(36-9) 

E Em. lAo (36 10) o = !<p SIll 2'/" -

In Section 33-5 we saw that the intensity of an electromagnetic wave is pro­
portional to the square of the amplitude of its electric field. Here, this means that 
the maximum intensity 1m (which occurs at the center of the diffraction pattern) 
is proportional to E~, and the intensity 1( e) at angle e is proportional to E~. Thus, 
we may write 

1( e) Ei 
1,/1 E,7, . (36-11) 

Substituting for Eo with Eq. 36-10 and then substituting Q' = !<p, we are led to the 
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following expression for the intensity as a function of e: 

(
sin 0')2 

I( e) =],,, -0'- . 
This is exactly Eq. 36-5, one of the two equations we set out to prove. 

The second equation we wish to prove relates a to e. The phase difference cp 
between the rays from the top and bottom of the entire slit may be related to a 
path length difference with Eq. 36-4; it tells us that 

cp = ( 2; ) (a sin e), 

where a is the sum of the widths Llx of the infinitesimal zones. However, cp = 20', 
so this equation reduces to Eq. 36-6. 

CHECKPOINT 3 

Two wavelengths, 650 and 430 run, are used separately in a single-slit diffraction experi­
ment. The figure shows the results as graphs of intensity I versus angle 8 for the two dif­
fraction patterns. If both wavelengths are then used simultaneously, what color will be 
seen in the combined diffraction pattern at (a) angle A and (b) angleR? 

o 

I 

.•.•......•. 
'. '. '. 

\ ...•.... 
' . .•.. 

..........•... 
L-------~~~~~~~ .. ·~ .. ·~ .. ·~ .. ·~ .. ·~ .. ·~--e 

A B 

Intensities of the maxima in a single-slit interference pattern 

intensities at those maxima, we get Find the intensities of the first three secondary maxima (side 
maxima) in the single-slit diffraction pattern of Fig. 36-1, 
measured as a percentage of the intensity of the central 
maximum. 

~ = (sin 0')2 = (sin(m ~ !)17" )2, for m = 1,2,3, .... 
1m a (m + 2)17" 

The secondary maxima lie approximately halfway between 
the minima, whose angular locations are given by Eq. 36-7 
(a = m1T). The locations of the secondary maxima are then 
given (approximately) by 

for m = 1, 2, 3, ... , 

with a in radian measure. We can relate the intensity I at 
any point in the diffraction pattern to the intensity 1m of the 
central maximum via Eq. 36-5. 

Calculations: Substituting the approximate values of a for 
the secondary maxima into Eq. 36-5 to obtain the relative 

The first of the secondary maxima occurs for m = 1, and its 
relative intensity is 

~ = ( sin(l ~ !)17")2 = ( sin 1.517")2 
],/1 (1 + '2)17" 1.517" 

= 4.50 X 10-2 = 4.5%. 

For m = 2 and m = 3 we find that 

~ = 1.6% 
],/1 

1 
and _3_ = 0.83%. 

],/1 

(Answer) 

(Answer) 

As you can see from these results, successive secondary 
maxima decrease rapidly in intensity. Figure 36-1 was delib­
erately overexposed to reveal them. 

~rus Additional examples, video, and practice available at WileyPLUS 
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Fig. 36-10 The diffraction pattern of a 
circular aperture. Note the central maxi­
mum and the circular secondary maxima. 
The figure has been overexposed to bring 
out these secondary maxima, which are 
much less intense than the central maxi­
mum. (JearlWalker) 

Fig. 36-11 At the top, the images 
of two point sources (stars) formed 
by a converging lens. At the bottom, 
representations of the image intensi­
ties. In (a) the angular separation of 
the sources is too small for them to be 
distinguished, in (b) they can be mar­
ginally distinguished, and in (c) they 
are clearly distinguished. Rayleigh's 
criterion is satisfied in (b), with the 
central maximum of one diffraction 
pattern coinciding with the first 
minimum of the other. 

Diffraction by a Circular Aperture 
Here we consider diffraction by a circular aperture-that is, a circular opening, 
such as a circular lens, through which light can pass. Figure 36-10 shows the image 
formed by light from a laser that was directed onto a circular aperture with a very 
small diameter. This image is not a point, as geometrical optics would suggest, but 
a circular disk surrounded by several progressively fainter secondary rings. 
Comparison with Fig. 36-1 leaves little doubt that we are dealing with a diffrac­
tion phenomenon. Here, however, the aperture is a circle of diameter d rather 
than a rectangular slit. 

The (complex) analysis of such patterns shows that the first minimum for the 
diffraction pattern of a circular aperture of diameter d is located by 

sin 8 = 1.22 ~ (first minimum-circular aperture). (36-12) 

The angle (1 here is the angle from the central axis to any point on that (circular) 
minimum. Compare this with Eq. 36-1, 

. A 
Slll 8 =-

a 
(first minimum-single slit), (36-13) 

which locates the first minimum for a long narrow slit of width a. The main differ­
ence is the factor 1.22, which enters because of the circular shape of the aperture. 

The fact that lens images are diffraction patterns is important when we wish to 
resolve (distinguish) two distant point objects whose angular separation is small. 
Figure 36-11 shows, in three different cases, the visual appearance and corre­
sponding intensity pattern for two distant point objects (stars, say) with small 
angular separation. In Figure 36-11a, the objects are not resolved because of 
diffraction; that is, their diffraction patterns (mainly their central maxima) overlap 
so much that the two objects cannot be distinguished from a single point object. In 
Fig. 36-11b the objects are barely resolved, and in Fig. 36-11c they are fully resolved. 

In Fig. 36-11b the angular separation of the two point sources is such that the 
central maximum of the diffraction pattern of one source is centered on the first 
minimum of the diffraction pattern of the other, a condition called Rayleigh's 
criterion for resolvability. From Eq. 36-12, two objects that are barely resolvable 

(a) (b) (c) 



by this criterion must have an angular separation ~ of 

_ . -1 1.22,\ 
(JR - SIll --d-' 

DIFFRACTION BY A CIRCULAR APERTURE 

Since the angles are small, we can replace sin (JR with (JR expressed in radians: 

Applying Rayleigh's criterion for re­
solvability to human vision is only an 
approximation because visual resolvabil­
ity depends on many factors, such as the 
relative brightness of the sources and 
their surroundings, turbulence in the air 
between the sources and the observer, 
and the functioning of the observer's 
visual system. Experimental results show 
that the least angular separation that can 
actually be resolved by a person is gener­
ally somewhat greater than the value 
given by Eq. 36-14. However, for calcula­
tions here, we shall take Eq. 36-14 as 
being a precise criterion: If the angular 
separation (J between the sources is 
greater than (JR, we can visually resolve 
the sources; if it is less, we cannot. 

(Rayleigh's criterion). (36-14) 
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Rayleigh's criterion can explain the 
arresting illusions of color in the style of 
painting known as pointillism (Fig. 36-
12). In this style, a painting is made not 
with brush strokes in the usual sense but 
rather with a myriad of small colored 
dots. One fascinating aspect of a pointil­

Fig. 36-12 The pointillistic painting The Seine at Herb lay by Maximilien Luce consists 
of thousands of colored dots. With the viewer very close to the canvas, the dots and their 
true colors are visible. At normal viewing distances, the dots are irresolvable and thus 
blend. (Maximilien Luce, The Seine at Herblay, 1890. Musee d'Orsay, Paris, France. Photo 
by Erich Lessing/Art Resource) 

listic painting is that when you change your distance from it, the colors shift in sub­
tle, almost subconscious ways. This color shifting has to do with whether you can re­
solve the colored dots. When you stand close enough to the painting, the angular 
separations (J of adjacent dots are greater than (JR and thus the dots can be seen in­
dividually. Their colors are the true colors of the paints used. However, when you 
stand far enough from the painting, the angular separations (J are less than ~ and 
the dots cannot be seen individually. The resulting blend of colors coming into your 
eye from any group of dots can then cause your brain to "make up" a color for that 
group-a color that may not actually exist in the group. In this way, a pointillistic 
painter uses your visual system to create the colors of the art. 

When we wish to use a lens instead of our visual system to resolve objects of small 
angular separation, it is desirable to make the diffraction pattern as small as possible. 
According to Eq. 36-14, this can be done either by increasing the lens diameter or by 
using light of a shorter wavelength. For this reason ultraviolet light is often used with 
microscopes because its wavelength is shorter than a visible light wavelength. 

CHECKPOINT 4 

Suppose that you can barely resolve two red dots because of diffraction by the pupil of 
your eye. If we increase the general illumination around you so that the pupil 
decreases in diameter, does the resolvability of the dots improve or diminish? 
Consider only diffraction. (You might experiment to check your answer.) 
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Pointillistic paintings use the diffraction of your eye 

Figure 36-13a is a representation of the colored dots on a 
pointillistic painting. Assume that the average center­
to-center separation of the dots is D = 2.0 mm. Also assume 
that the diameter of the pupil of your eye is d = 1.5 mm and 
that the least angular separation between dots you can 
resolve is set only by Rayleigh's criterion. What is the least 
viewing distance from which you cannot distinguish 
dots on the painting? 

Consider any two adjacent dots that you can distinguish 
when you are close to the painting. As you move away, you 
continue to distinguish the dots until their angular separa­
tion 8 (in your view) has decreased to the angle given by 

(a) 

t 
D 
~ 

~I·---L---~·I 

(b) 

Fig.36-13 (a) Representation of some dots on a pointillis­
tic painting, showing an average center-to-center separation 
D. (b) The arrangement of separation D between two dots, 
their angular separation (), and the viewing distance L. 

Rayleigh's criterion: 

(36-15) 

Calculations: Figure 36-13b shows, from the side, the angular 
separation 8 of the dots, their center-to-center separation D, 
and your distance L from them. Because D/L is small, angle 8 
is also small and we can make the approximation 

D 
8=­

L' 
(36-16) 

Setting 8 of Eq. 36-16 equal to 8R of Eq. 36-15 and solv­
ing for L, we then have 

L=~ 
1.22,.\ . (36-17) 

Equation 36-17 tells us that L is larger for smaller A. Thus, as 
you move away from the painting, adjacent red dots (long 
wavelengths) become indistinguishable before adjacent 
blue dots do. To find the least distance L at which no colored 
dots are distinguishable, we substitute ,.\ = 400 nm (blue or 
violet light) into Eq. 36-17: 

(2.0 X 10-3 m)(l.5 X 10-3 m) 
L = (1.22)(400 X 10-9 m) = 6.1 m. (Answer) 

At this or a greater distance, the color you perceive at 
any given spot on the painting is a blended color that may 
not actually exist there. 

Rayleigh's criterion for resolving two distant objects 

A circular converging lens, with diameter d = 32 mm and 
focal length f = 24 cm, forms images of distant point 
objects in the focal plane of the lens. The wavelength is 
,.\ = 550 nm. 

(a) Considering diffraction by the lens, what angular sepa­
ration must two distant point objects have to satisfy 
Rayleigh's criterion? 

Figure 36-14 shows two distant point objects Pl and P2 , 

the lens, and a viewing screen in the focal plane of the 
lens. It also shows, on the right, plots of light intensity I 
versus position on the screen for the central maxima of 
the images formed by the lens. Note that the angular sepa­
ration 80 of the objects equals the angular separation 8i of the 
images. Thus, if the images are to satisfy Rayleigh's criterion 

Focal-plane 

~I~~ 
D eo 79 
q - 2 

2 ~f~ 
I 

Fig.36-14 Light from two distant point objects PI 
and P2 passes through a converging lens and forms im­
ages on a viewing screen in the focal plane of the lens. 
Only one representative ray from each object is 
shown. The images are not points but diffraction pat­
terns, with intensities approximately as plotted at the 
right. The angular separation of the objects is ()o and 
that of the images is ()i; the central maxima of the im­
ages have a separation Llx. 
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for resolvability, the angular separations on both sides of the 
lens must be given by Eq. 36-14 (assuming small angles). 

(b) What is the separation Lll of the centers of the images in the 
focal plane? (That is, what is the separation of the central peaks 
in the two intensity-versus-position curves?) 

Calculations: From Eq. 36-14, we obtain 

A 
eo = ej = eR = 1.22 d 

Calculations: From either triangle between the lens and 
the screen in Fig. 36-14, we see that tan e/2 = D..xI2f. 
Rearranging this equation and making the approximation 

(1.22)(550 x 10-9 m) 
32 X 1O-3 m 

= 2.1 X 10-5 rad. (Answer) tan e = e, we find 
D..x = tej , (36-18) 

At this angular separation, each central maximum in the 
two intensity curves of Fig. 36-14 is centered on the first 
minimum of the other curve. 

where ej is in radian measure. Substituting known data then 
yields 

D..x = (0.24 m)(2.1 X 10-5 rad) = 5.0 /Lm. (Answer) 

!'~ _~_LUS Additional examples, video, and practice available at WileyPLUS 

Diffraction by a Double Slit 
In the double-slit experiments of Chapter 35, we implic­
itly assumed that the slits were much narrower than the 
wavelength of the light illuminating them; that is, a ~ A. 
For such narrow slits, the central maximum of the dif­
fraction pattern of either slit covers the entire viewing 
screen. Moreover, the interference of light from the two 
slits produces bright fringes with approximately the 
same intensity (Fig. 35-12). 

In practice with visible light, however, the condi­
tion a ~ A is often not met. For relatively wide slits, the 
interference of light from two slits produces bright 
fringes that do not all have the same intensity. That is, 
the intensities of the fringes produced by double-slit 
interference (as discussed in Chapter 35) are modified 
by diffraction of the light passing through each slit (as 
discussed in this chapter). 

As an example, the intensity plot of Fig. 36-15a 
suggests the double-slit interference pattern that 
would occur if the slits were infinitely narrow (and 
thus a ~ A); all the bright interference fringes would 
have the same intensity. The intensity plot of Fig. 
36-15b is that for diffraction by a single actual slit; the 
diffraction pattern has a broad central maximum and 
weaker secondary maxima at ±17°. The plot of Fig. 
36-15c suggests the interference pattern for two actual 
slits. That plot was constructed by using the curve of 
Fig. 36-15b as an envelope on the intensity plot in Fig. 
36-15a. The positions of the fringes are not changed; 
only the intensities are affected. 

Figure 36-16a shows an actual pattern in which both 
double-slit interference and diffraction are evident. If 
one slit is covered, the single-slit diffraction pattern of 
Fig. 36-16b results. Note the correspondence between 
Figs. 36-16a and 36-15c, and between Figs. 36-16b and 
36-1~b. In comparing these figures, bear in mind that 
Fig. G~ 16 has been deliberately overexposed to bring 

20 15 10 

20 15 10 

505 
e (degrees) 

(a) 

505 
e (degrees) 

(b) 

5 0 
e (degrees) 

(c) 

10 

10 

15 20 

15 20 

This diffraction minimum 
eliminates some of the 
double-slit bright fringes. 

15 20 

Fig. 36-15 (a) The intensity plot to be expected in a double-slit inter­
ference experiment with vanishingly narrow slits. (b) The intensity plot 
for diffraction by a typical slit of width a (not vanishingly narrow). (c) 
The intensity plot to be expected for two slits of width a. The curve of (b) 
acts as an envelope, limiting the intensity of the double-slit fringes in 
(a). Note that the first minima ofthe diffraction pattern of (b) eliminate 
the double-slit fringes that would occur near 12° in (c). 
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(a) 

(b) 

Fig. 36·1 6 (a) Interference fringes for an actual double-slit system; compare with 
Fig. 36-1Sc. (b) The diffraction pattern of a single slit; compare with Fig. 36-1Sb. (lear! Walker) 

out the faint secondary maxima and that several secondary maxima (rather than 
one) are shown. 

With diffraction effects taken into account, the intensity of a double-slit 
interference pattern is given by 

(
sin a)2 

I( e) = Im( cos2 f3) -a- (double slit), (36-19) 

in which (36-20) 

and 
1Ta . 

a = -sme. 
A 

(36-21) 

Here d is the distance between the centers of the slits and a is the slit width. Note 
carefully that the right side of Eq. 36-19 is the product of 1m and two factors. (1) The 
interference factor cos2 f3 is due to the interference between two slits with slit sepa­
ration d (as given by Eqs. 35-22 and 35-23). (2) The diffraction factor [(sin a)/aF is 
due to diffraction by a single slit of width a (as given by Eqs. 36-5 and 36-6). 

Let us check these factors. If we let a ~ 0 in Eq. 36-21, for example, then 
a ~ 0 and (sin a)/a ~ 1. Equation 36-19 then reduces, as it must, to an equation 
describing the interference pattern for a pair of vanishingly narrow slits with slit 
separation d. Similarly, putting d = 0 in Eq. 36-20 is equivalent physically to caus­
ing the two slits to merge into a single slit of width a. Then Eq. 36-20 yields f3 = 0 
and cos2 f3 = 1. In this case Eq. 36-19 reduces, as it must, to an equation describing 
the diffraction pattern for a single slit of width a. 

The double-slit pattern described by Eq. 36-19 and displayed in Fig. 36-16a 
combines interference and diffraction in an intimate way. Both are superposition 
effects, in that they result from the combining of waves with different phases at a 
given point. If the combining waves originate from a small number of elementary 
coherent sources-as in a double-slit experiment with a ~ A-we call the 
process interference. If the combining waves originate in a single wavefront-as in 
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a single-slit experiment-we call the process diffraction. This distinction between 
interference and diffraction (which is somewhat arbitrary and not always adhered 
to) is a convenient one, but we should not forget that both are superposition effects 
and usually both are present simultaneously (as in Fig. 36-16a). 

Double-slit experiment with diffraction of each slit included 

In a double-slit experiment, the wavelength A of the light 
source is 405 nm, the slit separation dis 19.44/Lm, and the 
slit width a is 4.050 /Lm. Consider the interference of the 
light from the two slits and also the diffraction of the light 
through each slit. 

(a) How many bright interference fringes are within the 
central peak of the diffraction envelope? 

We first analyze the two basic mechanisms responsible for 
the optical pattern produced in the experiment: 

1. Single-slit diffraction: The limits of the central peak are 
the first minima in the diffraction pattern due to either slit 
individually. (See Fig. 36-15.) The angular locations of those 
minima are given by Eq. 36-3 (a sin () = mA). Here let us 
rewrite this equation as a sin () = mlA, with the subscript 1 
referring to the one-slit diffraction. For the first minima in 
the diffraction pattern, we substitute ml = 1, obtaining 

a sin () = A. (36-22) 

2. Double-slit interference: The angular locations of the 
bright fringes of the double-slit interference pattern are 
given by Eq. 35-14, which we can write as 

d sin () = m2A, for m2 = 0,1,2, . . . . (36-23) 

Here the subscript 2 refers to the double-slit interference. 

Calculations: We can locate the first diffraction minimum 
within the double-slit fringe pattern by dividing Eq. 36-23 by 
Eq. 36-22 and solving for m2' By doing so and then substitut­
ing the given data, we obtain 

_ ~ - 19.44/Lm - 48 
m2 - a - 4.050 /Lm - .. 

This tells us that the bright interference fringe for m2 = 4 fits 
into the central peak of the one-slit diffraction pattern, but 
the fringe for m2 = 5 does not fit. Within the central diffrac­
tion peak we have the central bright fringe (m2 = 0), and 
four bright fringes (up to m2 = 4) on each side of it. Thus, a 
total of nine bright fringes of the double-slit interference pat­
tern are within the central peak of the diffraction envelope. 

./ Diffraction envelope 
.... 1112 = 0 

... 1 

o 0.1 

'~~.:=.~ r Diffraction envelope 

6/ < 8 

0.3 

The m5 double-slit fringe 
}---- is almost eliminated by 

the diffraction minimum. 

0.2 0.3 

o (rad) 

Fig. 36-17 One side of the intensity plot for a two-slit interfer­
ence experiment. The inset shows (vertically expanded) the plot 
within the first and second side peaks of the diffraction envelope. 

The bright fringes to one side of the central bright fringe are 
shown in Fig. 36-17. 

(b) How many bright fringes are within either of the first 
side peaks of the diffraction envelope? 

The outer limits of the first side diffraction peaks are the 
second diffraction minima, each of which is at the angle () 
given by a sin () = mlA with ml = 2: 

a sin () = 2A. (36-24) 

Calculation: Dividing Eq. 36-23 by Eq. 36-24, we find 

_ 2d _ (2)(19.44/Lm) - 96 
m2 - a - 4.050 /Lm -.. 

This tells us that the second diffraction minimum occurs 
just before the bright interference fringe for m2 = 10 in 
Eq. 36-23. Within either first side diffraction peak we have 
the fringes from m2 = 5 to m2 = 9, for a total of five bright 
fringes of the double-slit interference pattern (shown in 
the inset of Fig. 36-17). However, if the m2 = 5 bright 
fringe, which is almost eliminated by the first diffraction 
minimum, is considered too dim to count, then only four 
bright fringes are in the first side diffraction peak. 

ifus Additional examples, video, and practice available at WileyPLUS 
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Fig. 36-18 An idealized diffraction 
grating, consisting of only five rulings, 
that produces an interference pattern 
on a distant viewing screen C. 

II I 
3 2 

Intensity 
I 

111=0 
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(a) 

m=O 
(b) 

I II 
1 2 3 

Fig.36-19 (a) The intensity plot 
produced by a diffraction grating with 
a great many rulings consists of nar­
row peaks, here labeled with their or­
der numbers m. (b) The corresponding 
bright fringes seen on the screen are 
called lines and are here also 
labeled with order numbers m. 

Diffraction Gratings 
One of the most useful tools in the study of light and of objects that emit and 
absorb light is the diffraction grating. This device is somewhat like the double-slit 
arrangement of Fig. 35-10 but has a much greater number N of slits, often called 
rulings, perhaps as many as several thousand per millimeter. An idealized grating 
consisting of only five slits is represented in Fig. 36-18. When monochromatic light 
is sent through the slits, it forms narrow interference fringes that can be analyzed 
to determine the wavelength of the light. (Diffraction gratings can also be opaque 
surfaces with narrow parallel grooves arranged like the slits in Fig. 36-18. Light 
then scatters back from the grooves to form interference fringes rather than being 
transmitted through open slits.) 

With monochromatic light incident on a diffraction grating, if we gradually 
increase the number of slits from two to a large number N, the intensity plot 
changes from the typical double-slit plot of Fig. 36-15c to a much more compli­
cated one and then eventually to a simple graph like that shown in Fig. 36-19a. The 
pattern you would see on a viewing screen using monochromatic red light from, 
say, a helium - neon laser is shown in Fig. 36-19b. The maxima are now very narrow 
(and so are called lines); they are separated by relatively wide dark regions. 

We use a familiar procedure to find the locations of the bright lines on the 
viewing screen. We first assume that the screen is far enough from the grating so 
that the rays reaching a particular point P on the screen are approximately par­
allel when they leave the grating (Fig. 36-20). Then we apply to each pair of 
adjacent rulings the same reasoning we used for double-slit interference. The sep­
aration d between rulings is called the grating spacing. (If N rulings occupy a total 
width w, then d = w/N.) The path length difference between adjacent rays is again 
d sin () (Fig. 36-20), where () is the angle from the central axis of the grating (and of 
the diffraction pattern) to point P. A line will be located at P if the path length dif­
ference between adjacent rays is an integer number of wavelengths-that is,if 

dsin()=mA, form=0,1,2, ... (maxima -lines), (36-25) 

where A is the wavelength of the light. Each integer m represents a different line; 
hence these integers can be used to label the lines, as in Fig. 36-19. The integers 
are then called the order numbers, and the lines are called the zeroth-order line 
(the central line, with m = 0), the first-order line (m = 1), the second-order line 
(m = 2), and so on. 

If we rewrite Eq. 36-25 as () = sin-lemA/d), we see that, for a given diffraction 
grating, the angle from the central axis to any line (say, the third-order line) 
depends on the wavelength of the light being used. Thus, when light of an 
unknown wavelength is sent through a diffraction grating, measurements of the 
angles to the higher-order lines can be used in Eq. 36-25 to determine the wave­
length. Even light of several unknown wavelengths can be distinguished and 
identified in this way. We cannot do that with the double-slit arrangement of 
Section 35-4, even though the same equation and wavelength dependence apply 
there. In double-slit interference, the bright fringes due to different wavelengths 
overlap too much to be distinguished. 

A grating's ability to resolve (separate) lines of different wavelengths depends on 
the width of the lines. We shall here derive an expression for the half-width of 
the central line (the line for which m = 0) and then state an expression for the 
half-widths of the higher-order lines. We define the half-width of the central line 
as being the angle Ll()hw from the center of the line at () = 0 outward to where 
the line effectively ends and darkness effectively begins with the first minimum 



Fig. 36-20 The rays from the rul­
ings in a diffraction grating to a dis­
tant point P are approximately par­
allel. The path length difference 
between each two adjacent rays is 
d sin (), where () is measured as 
shown. (The rulings extend into and 
out of the page.) 

This path length difference 
between adjacent rays 
determines the interference. 

Path length 
'-.iV--- difference 

between adjacent rays 

6 

(Fig. 36-21). At such a minimum, the N rays from the N slits of the grating cancel 
one another. (The actual width of the central line is, of course, 2(~ehw), but line 
widths are usually compared via half-widths.) 

In Section 36-3 we were also concerned with the cancellation of a great many 
rays, there due to diffraction through a single slit. We obtained Eq. 36-3, which, 
because of the similarity of the two situations, we can use to find the first 
minimum here. It tells us that the first minimum occurs where the path length 
difference between the top and bottom rays equals A. For single-slit diffraction, 
this difference is a sin e. For a grating of N rulings, each separated from the next 
by distance d, the distance between the top and bottom rulings is Nd (Fig. 36-22), 
and so the path length difference between the top and bottom rays here is 
Nd sin ~ehw' Thus, the first minimum occurs where 

Nd sin ~ehw = A. (36-26) 

Because ~ehw is small, sin ~ehw = ~ehw (in radian measure). Substituting this in 
Eq. 36-26 gives the half-width of the central line as 

A 
~ehw = Nd (half-width of central line). (36-27) 

We state without proof that the half-width of any other line depends on its location 
relative to the central axis and is 

A 
~ehw = -N-d-co-s-e (half-width of line at 8). (36-28) 

Note that for light of a given wavelength A and a given ruling separation d, the 
widths of the lines decrease with an increase in the number N of rulings. Thus, of 
two diffraction gratings, the grating with the larger value of N is better able to 
distinguish between wavelengths because its diffraction lines are narrower and so 
produce less overlap. 

Fig. 36-22 The top and bottom mlings of a diffrac­
tion grating of N mlings are separated by Nd. The top 
and bottom rays passing through these rulings have a 
path length difference of Nd sin ~~w, where ~~w is the 
angle to the first minimum. (The angle is here greatly 
exaggerated for clarity.) 

I/"opray .. To first 
mInImUm 

T;), ~ 
~()hw \ V Bottom ray 

T ~ /~ Path length 1 : /~L'>.()l difference r:... _...:w 
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Intensity 

0° 

Fig. 36-21 The half-width ~~w 
of the central line is measured from 
the center of that line to the adjacent 
minimum on a plot of I versus () like 
Fig. 36-19a. 
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Fig. 36-23 A simple type of grat­
ing spectroscope used to analyze the 
wavelengths oflight emitted by 
source S. 

This is the center 
of the pattern. 

111=1 
III 0 ,-------'----, 

Diffraction gratings are widely used to determine the wavelengths that are emitted 
by sources of light ranging from lamps to stars. Figure 36-23 shows a simple grating 
spectroscope in which a grating is used for this purpose. Light from source S is fo­
cused by lens Ll on a vertical slit Sl placed in the focal plane of lens L 2• The light 
emerging from tube C (called a collimator) is a plane wave and is incident perpen­
dicularly on grating G, where it is diffracted into a diffraction pattern, with the m = 
o order diffracted at angle e = 0 along the central axis of the grating. 

We can view the diffraction pattern that would appear on a viewing screen at 
any angle e simply by orienting telescope T in Fig. 36-23 to that angle. Lens L3 of 
the telescope then focuses the light diffracted at angle e (and at slightly smaller 
and larger angles) onto a focal plane FF' within the telescope. When we look 
through eyepiece E, we see a magnified view of this focused image. 

By changing the angle e of the telescope, we can examine the entire diffraction 
pattern. For any order number other than m = 0, the original light is spread out ac­
cording to wavelength (or color) so that we can determine, with Eq. 36-25,just what 
wavelengths are being emitted by the source. If the source emits discrete wave­
lengths, what we see as we rotate the telescope horizontally through the angles cor­
responding to an order m is a vertical line of color for each wavelength, with the 
shorter-wavelength line at a smaller angle ethan the longer-wavelength line. 

For example, the light emitted by a hydrogen lamp, which contains hydrogen 
gas, has four discrete wavelengths in the visible range. If our eyes intercept this 
light directly, it appears to be white. If, instead, we view it through a grating 
spectroscope, we can distinguish, in several orders, the lines of the four colors 
corresponding to these visible wavelengths. (Such lines are called emission lines.) 
Four orders are represented in Fig. 36-24. In the central order (m = 0), the lines 
corresponding to all four wavelengths are superimposed, giving a single white 
line at e = O. The colors are separated in the higher orders. 

The third order is not shown in Fig. 36-24 for the sake of clarity; it actually 
overlaps the second and fourth orders. The fourth-order red line is missing 
because it is not formed by the grating used here. That is, when we attempt to 
solve Eq. 36-25 for the angle e for the red wavelength when m = 4, we find that 
sin e is greater than unity, which is not possible. The fourth order is then said to be 
incomplete for this grating; it might not be incomplete for a grating with greater 
spacing d, which will spread the lines less than in Fig. 36-24. Figure 36-25 is a 
photograph of the visible emission lines produced by cadmium. 

111=2 

The higher orders are 
spread out more in angle. 

111=4 , 

I I I III L I I II II 
0° 10° 20° 30° 40° 50° 60° 70° 80° 

Fig. 36-24 The zeroth, first, second, and fourth orders of the visible emission lines from hydrogen. Note that the 
lines are farther apart at greater angles. (They are also dimmer and wider, although that is not shown here.) 

Fig. 36-25 The visible emission lines of cadmium, as seen through a grating 
spectroscope. (Department of Physics, Imperial College/Science Photo Library/Photo 
Researchers) 
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CHECKPOINT 5 

The figure shows lines of different orders produced by 
a diffraction grating in monochromatic red light. (a) Is 
the center of the pattern to the left or right? (b) In 
monochromatic green light, are the half-widths of the lines produced in the same or­
ders greater than, less than, or the same as the half-widths of the lines shown? 

Gratings: Dispersion and Resolving Power 

To be useful in distinguishing wavelengths that are close to each other (as in a 
grating spectroscope), a grating must spread apart the diffraction lines associated 
with the various wavelengths. This spreading, called dispersion, is defined as 

D = b.e 
b.A 

(dispersion defined). (36-29) 

Here b.e is the angular separation of two lines whose wavelengths differ by b.A. 
The greater D is, the greater is the distance between two emission lines whose 
wavelengths differ by b.A. We show below that the dispersion of a grating at angle 
eis given by 

m 
D=--­

d cos e (dispersion of a grating). (36-30) 

Thus, to achieve higher dispersion we must use a grating of smaller grating spac­
ing d and work in a higher-order m. Note that the dispersion does not depend on 
the number of rulings N in the grating. The SI unit for D is the degree per meter 
or the radian per meter. 

To resolve lines whose wavelengths are close together (that is, to make the lines 
distinguishable), the line should also be as narrow as possible. Expressed other­
wise, the grating should have a high resolving power R, defined as 

Aavg 
R=­

b.A 
(resolving power defined). (36-31) 

Here Aavg is the mean wavelength of two emission lines that can barely be recog­
nized as separate, and b.A is the wavelength difference between them. The greater 
R is, the closer two emission lines can be and still be resolved. We shall show 
below that the resolving power of a grating is given by the simple expression 

R=Nm (resolving power of a grating). (36-32) 

To achieve high resolving power, we must use many rulings (large N). 

Let us start with Eq. 36-25, the expression for the locations of the lines in the dif­
fraction pattern of a grating: 

d sin e = mA. 

Let us regard e and A as variables and take differentials of this equation. We find 

d(cos e) de = In dA. 

The fine rulings, each 0.5 ,urn wide, on 
a compact disc function as a diffrac­
tion grating. When a small source of 
white light illuminates a disc, the dif­
fracted light forms colored "lanes" that 
are the composite of the diffraction 
patterns from the rulings. 
(Kristen BrochmannlFundamental 
Photographs) 
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Fig. 36-26 The intensity patterns 
for light of two wavelengths sent 
through the gratings of Table 36-1. 
Grating B has the highest resolving 
power, and grating C the highest 
dispersion. 

For small enough angles, we can write these differentials as small differences, 
obtaining d( cos (J) f:. (J = m f:.A (36-33) 

M) m 
or 

f:.;\ d cos e' 

The ratio on the left is simply D (see Eq. 36-29), and so we have indeed derived 
Eq.36-30. 

We start with Eq. 36-33, which was derived from Eq. 36-25, the expression for the lo­
cations of the lines in the diffraction pattern formed by a grating. Here f:.A is the small 
wavelength difference between two waves that are diffracted by the grating, and f:.eis 
the angular separation between them in the diffraction pattern. If f:.(J is to be the 
smallest angle that will permit the two lines to be resolved, it must (by Rayleigh's cri­
terion) be equal to the half-width of each line, which is given by Eq. 36-28: 

;\ 

f:. (Jhw = N d cos e 

If we substitute f:.(Jhw as given here for f:.e in Eq. 36-33, we find that 

;\ 
N = m f:.;\, 

from which it readily follows that 

;\ 
R=-=Nm f:.;\ . 

This is Eq. 36-32, which we set out to derive. 

The resolving power of a grating must not be confused with its dispersion. Table 36-1 
shows the characteristics of three gratings, all illuminated with light of wavelength 
A = 589 llill, whose diffracted light is viewed in the first order (m = 1 in Eq. 36-25). 
You should verify that the values of D and R as given in the table can be calculated 
with Eqs. 36-30 and 36-32, respectively. (In the calculations for D, you will need to 
convert radians per meter to degrees per micrometer.) 

For the conditions noted in Table 36-1, gratings A and B have the same 
dispersion D and A and C have the same resolving power R. 

Figure 36-26 shows the intensity patterns (also called line shapes) that would 
be produced by these gratings for two lines of wavelengths A1 and A2> in the 
vicinity of A = 589 nm. Grating B, with the higher resolving power, produces 
narrower lines and thus is capable of distinguishing lines that are much closer 
together in wavelength than those in the figure. Grating C, with the higher 
dispersion, produces the greater angular separation between the lines. 

Three Gratingsa 

Grating N d(nm) e D COIfLm) R 

A 10000 2540 13.4° 23.2 10000 
B 20000 2540 13.40 23.2 20000 
C 10000 1360 25S 46.3 10000 

aData are for A = 589 nm and m = 1. 



6·10 X·RAY DI FFRACTION 1011 

Dispersion and resolving power of a diffraction grating 

A diffraction grating has 1.26 X 104 rulings uniformly spaced 
over width w = 25.4 mm. It is illuminated at normal incidence 
by yellow light from a sodium vapor lamp. This light contains 
two closely spaced emission lines (known as the sodium 
doublet) of wavelengths 589.00 nm and 589.59 nm. 

(a) At what angle does the first-order maximum occur (on 
either side of the center of the diffraction pattern) for the 
wavelength of 589.00 nm? 

The maxima produced by the diffraction grating can be deter­
mined with Eq.36-25 (dsin () = mA). 

Calculations: The grating spacing dis 

d = ~ = 25.4 X 10-3 m 
N 1.26 X 104 

= 2.016 X 10-6 m = 2016 nm. 

The first-order maximum corresponds to m = 1. Substituting 
these values for d and minto Eq. 36-25 leads to 

8 = sin-1 mA = sin-1 (1)(589.00 nm) 
d 2016nm 

= 16.99° = 17.0°. (Answer) 

(b) Using the dispersion of the grating, calculate the angular 
separation between the two lines in the first order. 

(1) The angular separation /l8 between the two lines in the 
first order depends on their wavelength difference /lA and 
the dispersion D of the grating, according to Eq. 36-29 
(D = /l{)//lA). (2) The dispersion D depends on the angle 8 
at which it is to be evaluated. 

Calculations: We can assume that, in the first order, the 
two sodium lines occur close enough to each other for us to 

evaluate D at the angle () = 16.99° we found in part (a) for 
one of those lines. Then Eq. 36-30 gives the dispersion as 

D= m 
d cos 8 

1 
(2016 nm)(cos 16.99°) 

= 5.187 X 10-4 rad/nm. 

From Eq. 36-29 and with /lA in nanometers, we then have 

/l8 = D /lA = (5.187 X 10-4 rad/nm)(589.59 - 589.00) 

= 3.06 X 10-4 rad = 0.0175°. (Answer) 

You can show that this result depends on the grating spac­
ing d but not on the number of rulings there are in the 
grating. 

(c) What is the least number of rulings a grating can have and 
still be able to resolve the sodium doublet in the first order? 

(1) The resolving power of a grating in any order m is 
physically set by the number of rulings N in the grating 
according to Eq. 36-32 (R = Nm). (2) The smallest wave­
length difference /lA that can be resolved depends on the 
average wavelength involved and on the resolving power 
R ofthe grating, according to Eq. 36-31 (R = Aavg//lA). 

Calculation: For the sodium doublet to be barely resolved, 
/lA must be their wavelength separation of 0.59 nm, and Aavg 
must be their average wavelength of 589.30 nm. Thus, we 
find that the smallest number of rulings for a grating to 
resolve the sodium doublet is 

N=~=~ 
m m/l'\ 

589.30 nm 
(1)(0.59 nm) 

= 999 rulings. (Answer) 

Additional examples, video, and practice available at WileyPLUS 

10 X-Ray Diffraction 
x rays are electromagnetic radiation whose wavelengths are of the order of 1 A 
(= 10-10 m). Compare this with a wavelength of 550 nm (= 5.5 X 10-7 m) at the 
center of the visible spectrum. Figure 36-27 shows that x rays are produced when 
electrons escaping from a heated filament F are accelerated by a potential differ­
ence V and strike a metal target T. 

Fig. 36-27 X rays are generated when electrons leaving heated filament F are acceler­
ated through a potential difference V and strike a metal target T. The "window" W in the 
evacuated chamber C is transparent to x rays. 
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The extra distance of ray 2 
determines the interference. 

Fig. 36-28 (a) The cubic structure of 
NaCI, showing the sodium and chlorine 
ions and a unit cell (shaded). (b) Incident x 
rays undergo diffraction by the structure of 
(a). The x rays are diffracted as if they were 
reflected by a family of parallel planes, with 
the angle of reflection equal to the angle of 
incidence, both angles measured relative to 
the planes (not relative to a normal as in 
optics). (c) The path length difference be­
tween waves effectively reflected by two 
adjacent planes is 2d sin e. (d) A different 
orientation of the incident x rays relative to 
the structure. A different family of parallel 
planes now effectively reflects the x rays. 

A standard optical diffraction grating cannot be used to discriminate between 
different wavelengths in the x-ray wavelength range. For A = 1 A (= 0.1 nm) and 
d = 3000 nm, for example, Eq. 36-25 shows that the first-order maximum occurs at 

_ . -1 mA _ . -1 (1)(0.1 nm) - 00019° e - sm d - sm 3000 nm -. . 

This is too close to the central maximum to be practical. A grating with d = A is 
desirable, but, because x-ray wavelengths are about equal to atomic diameters, 
such gratings cannot be constructed mechanically. 

In 1912, it occurred to German physicist Max von Laue that a crystalline 
solid, which consists of a regular array of atoms, might form a natural three­
dimensional "diffraction grating" for x rays. The idea is that, in a crystal such as 
sodium chloride (NaCI), a basic unit of atoms (called the unit cell) repeats itself 
throughout the array. Figure 36-28a represents a section through a crystal of NaCI 
and identifies this basic unit. The unit cell is a cube measuring ao on each side. 

When an x-ray beam enters a crystal such as NaCI,x rays are scattered-that is, 
redirected-in all directions by the crystal structure. In some directions the scat­
tered waves undergo destructive interference, resulting in intensity minima; in other 
directions the interference is constructive, resulting in intensity maxima. This 
process of scattering and interference is a form of diffraction. 

Although the process of diffraction of x rays by a crystal is complicated, the max­
ima turn out to be in directions as if the x rays were reflected by a family of parallel re­
flecting planes (or crystal planes) that extend through the atoms within the crystal and 
that contain regular arrays of the atoms. (The x rays are not actually reflected; we use 
these fictional planes only to simplify the analysis of the actual diffraction process.) 

Figure 36-28b shows three reflecting planes (part of a family containing many par­
allel planes) with interplanar spacing d, from which the incident rays shown are said to 
reflect. Rays 1,2, and 3 reflect from the first, second, and third planes, respectively. At 
each reflection the angle of incidence and the angle of reflection are represented with 
e. Contrary to the custom in optics, these angles are defined relative to the surface of 
the reflecting plane rather than a normal to that surface. For the situation of Fig. 
36-28b, the interplanar spacing happens to be equal to the unit cell dimension ao. 

Figure 36-28c shows an edge-on view of reflection from an adjacent pair of 
planes. The waves of rays 1 and 2 arrive at the crystal in phase. After they are 
reflected, they must again be in phase because the reflections and the reflecting 
planes have been defined solely to explain the intensity maxima in the diffraction 
of x rays by a crystal. Unlike light rays, the x rays do not refract upon entering the 
crystal; moreover, we do not define an index of refraction for this situation. Thus, 
the relative phase between the waves of rays 1 and 2 as they leave the crystal is set 
solely by their path length difference. For these rays to be in phase, the path length 
difference must be equal to an integer multiple of the wavelength A of the x rays. 

By drawing the dashed perpendiculars in Fig. 36-28c, we find that the path 
length difference is 2d sin e. In fact, this is true for any pair of adjacent planes in 
the family of planes represented in Fig. 36-28b. Thus, we have, as the criterion for 
intensity maxima for x-ray diffraction, 

2d sin e = mA, for m = 1,2,3, ... (Bragg's law), (36-34) 

where m is the order number of an intensity maximum. Equation 36-34 is called 
Bragg's law after British physicist W. L. Bragg, who first derived it. (He and his father 
shared the 1915 Nobel Prize in physics for their use of x rays to study the structures 
of crystals.) The angle of incidence and reflection in Eq. 36-34 is called a Bragg angle. 

Regardless of the angle at which x rays enter a crystal, there is always a fam­
ily of planes from which they can be said to reflect so that we can apply Bragg's 
law. In Fig. 36-28d, notice that the crystal structure has the same orientation as it 
does in Fig. 36-28a, but the angle at which the beam enters the structure differs 
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from that shown in Fig. 36-28b. This new angle requires a new family of reflecting 
planes, with a different interplanar spacing d and different Bragg angle e, in order 
to explain the x-ray diffraction via Bragg's law. 

Figure 36-29 shows how the interplanar spacing d can be related to the 
unit cell dimension ao. For the particular family of planes shown there, the 
Pythagorean theorem gives 

or 

5d=~, 

ao 
d = ,MA = 0.2236ao· 

v20 
(36-35) 

Figure 36-29 suggests how the dimensions of the unit cell can be found once the 
interplanar spacing has been measured by means of x-ray diffraction. 

Fig. 36-29 A family of planes 
through the structure of Fig. 36-28a, 
and a way to relate the edge length aD 
of a unit cell to the interplanar 
spacing d. X-ray diffraction is a powerful tool for studying both x-ray spectra and the 

arrangement of atoms in crystals. To study spectra, a particular set of crystal planes, 
having a known spacing d, is chosen. These planes effectively reflect different wave­
lengths at different angles. A detector that can discriminate one angle from another 
can then be used to determine the wavelength of radiation reaching it. The crystal 
itself can be studied with a monochromatic x-ray beam, to determine not only the 
spacing of various crystal planes but also the structure of the unit cell. 

111;.illlll 
Diffraction When waves encounter an edge, an obstacle, or an 
aperture the size of which is comparable to the wavelength of the 
waves, those waves spread out as they travel and, as a result, 
undergo interference. This is called diffraction. 

Single-Slit Diffraction Waves passing through a long 
narrow slit of width a produce, on a viewing screen, a single-slit 
diffraction pattern that includes a central maximum and other 
maxima, separated by minima located at angles 8 to the central 
axis that satisfy 

a sin 8 = mA, for m = 1,2,3, . . . (minima). (36-3) 

The intensity of the diffraction pattern at any given angle 8 is 

(
sin a )2 7Ta . 

l(e) = 1m -a- , where a = Tsm e (36-5,36-6) 

and 1m is the intensity at the center of the pattern. 

Circular-Aperture Diffraction Diffraction by a circular 
aperture or a lens with diameter d produces a central maximum 
and concentric maxima and minima, with the first minimum at an 
angle 8 given by 

. 1 A sm e = .22--;] (first minimum-circular aperture). (36-12) 

Rayleigh's Criterion Rayleigh's criterion suggests that two 
objects are on the verge of resolvability if the central diffraction 
maximum of one is at the first minimum of the other. Their angular 
separation must then be at least 

(Rayleigh's criterion), (36-14) 

in which d is the diameter of the aperture through which the light 
passes. 

1I1I 
Double-Slit Diffraction Waves passing through two slits, 
each of width a, whose centers are a distance d apart, display dif­
fraction patterns whose intensity 1 at angle 8 is 

(
sin a)2 

1( e) = Im( cos2 (3) -a- (double slit), (36-19) 

with f3 = (7Td / A) sin 8 and a as for single-slit diffraction. 

Diffraction Gratings A diffraction grating is a series of "slits" 
used to separate an incident wave into its component wavelengths 
by separating and displaying their diffraction maxima. Diffraction 
by N (multiple) slits results in maxima (lines) at angles 8 such that 

dsin 8= mA, for m = 0, 1,2, ... (maxima), (36-25) 

with the half-widths of the lines given by 

A 
Aehw = Nd cos 8 (half-widths). 

The dispersion D and resolving power R are given by 

D = A8 =_m_ 
AA d cose 

and 

R = Aavg = Nm 
AA . 

(36-28) 

(36-29,36-30) 

(36-31,36-32) 

X-Ray Diffraction The regular array of atoms in a crystal is a 
three-dimensional diffraction grating for short-wavelength waves 
such as x rays. For analysis purposes, the atoms can be visualized as 
being arranged in planes with characteristic interplanar spacing d. 
Diffraction maxima (due to constructive interference) occur if the 
incident direction of the wave, measured from the surfaces of these 
planes, and the wavelength A of the radiation satisfy Bragg's law: 

2dsin8=mA, form=1,2,3, ... (Bragg's law). (36-34) 
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"I You are conducting a single-slit diffraction experiment with light 
of wavelength A. What appears, on a distant viewing screen, at a point 
at which the top and bottom rays through the slit have a path length 
difference equal to (a) SA and (b) 4.5A? 

In a single-slit diffraction experiment, the top and bottom rays 
through the slit arrive at a certain point on the viewing screen with 
a path length difference of 4.0 wavelengths. In a phasor representa­
tion like those in Fig 36-7, how many overlapping circles does the 
chain of phasors make? 

:1 For three experiments, Fig. 36-30 
gives the parameter f3 of Eq. 36-20 ver­
sus angle () for two-slit interference us­
ing light of wavelength 500 nm. The slit 
separations in the three experiments 
differ. Rank the experiments according 
to (a) the slit separations and (b) the to­
tal number of two-slit interference max­
ima in the pattern, greatest first. 

For three experiments, Fig. 36-31 
gives a versus angle () in one-slit diffrac­

f3 

o 
() (rad) 

Fig. 36-30 

Question 3. 

n/2 

tion using light of wavelength 500 nm. Rank the experiments ac­
cording to (a) the slit widths and (b) the total number of diffraction 
minima in the pattern, greatest first. 

a 

() (rad) 

Fig. 36-31 Question 4. 

Figure 36-32 shows four choices for the rectangular opening of 
a source of either sound waves or light waves. The sides have 
lengths of either L or 2L, with L being 3.0 times the wavelength of 
the waves. Rank the openings according to the extent of (a) 
left-right spreading and (b) up-down spreading of the waves due 
to diffraction, greatest first. 

DDDD 
(1) (2) (3) (4) 

Fig. 36-32 Question 5. 

Light of frequency filluminating a long narrow slit produces a 
diffraction pattern. (a) If we switch to light of frequency 1.3f, does the 
pattern expand away from the center or contract toward the center? 
(b) Does the pattern expand or contract if, instead, we submerge the 
equipment in clear corn syrup? 

At night many people see rings (called entoptic halos) sur­
rounding bright outdoor lamps in otherwise dark surroundings. 
The rings are the first of the side maxima in diffraction patterns 

produced by structures that are thought to be within the cornea (or 
possibly the lens) of the observer's eye. (The central maxima of 
such patterns overlap the lamp.) (a) Would a particular ring be­
come smaller or larger if the lamp were switched from blue to red 
light? (b) If a lamp emits white light, is blue or red on the outside 
edge of the ring? 

(a) For a given diffraction grating, does the smallest difference 
b.A in two wavelengths that can be resolved increase, decrease, or 
remain the same as the wavelength increases? (b) For a given 
wavelength region (say, around 500 nm), is b.A greater in the first 
order or in the third order? 

9 Figure 36-33 shows a red line and a green line of the same order in 
the pattern produced by a diffraction grating. If we increased the 
number of rulings in the grating -say, by removing tape that had cov­
ered the outer half of the rulings-would (a) the half-widths of the 
lines and (b) the separation of the lines increase, decrease, or remain 
the same? (c) Would the lines shift to the right, shift to the left, or re­
main in place? 

II 
Fig. 36-33 Questions 9 and 10. 

o For the situation of Question 9 and Fig. 36-33, if instead we in­
creased the grating spacing, would (a) the half-widths of the lines 
and (b) the separation of the lines increase, decrease, or remain the 
same? (c) Would the lines shift to the right, shift to the left, or 
remain in place? 

11 (a) Figure 36-34a shows the lines produced by diffraction grat­
ings A and B using light of the same wavelength; the lines are of the 
same order and appear at the same angles (). Which grating has the 
greater number of rulings? (b) Figure 36-34b shows lines of two or­
ders produced by a single diffraction grating using light of two wave­
lengths, both in the red region of the spectrum. Which lines, the left 
pair or right pair, are in the order with greater m? Is the center of the 
diffraction pattern located to the left or to the right in (c) Fig. 36-34a 
and (d) Fig. 36-34b? 

A LI --'---'--'--' 

(~ (~ 

Fig.36-34 Question 11. 

Figure 36-35 shows the bright fringes that lie within the central 
diffraction envelope in two double-slit diffraction experiments using 
the same wavelength of light. Are (a) the slit width a, (b) the slit sep­
aration d, and (c) the ratio d/a in experiment B greater than, less 
than, or the same as those quantities in experiment A? 

A /1111 

B 1111111111111111 I 
Fig. 36-35 Question 12. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
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Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

Diffraction by a Single Slit: Locating the Minima 
·1 The distance between the first and fifth minima of a 
single-slit diffraction pattern is 0.35 mm with the screen 40 cm 
away from the slit, when light of wavelength 550 nm is used. (a) 
Find the slit width. (b) Calculate the angle B of the first diffraction 
minimum. 

What must be the ratio of the slit width to the wavelength for a sin­
gle slit to have the first diffraction minimum at B = 45.00 ? 

·3 A plane wave of wavelength 590 nm is incident on a slit with a 
width of a = 0040 mm. A thin converging lens of focal length +70 
cm is placed between the slit and a viewing screen and focuses the 
light on the screen. (a) How far is the screen from the lens? (b) 
What is the distance on the screen from the center of the diffrac­
tion pattern to the first minimum? 

·4 In conventional television, signals are broadcast from towers 
to home receivers. Even when a receiver is not in direct view of a 
tower because of a hill or building, it can still intercept a signal if 
the signal diffracts enough around the obstacle, into the obstacle's 
"shadow region." Previously, television signals had a wavelength 
of about 50 cm, but digital television signals that are transmitted 
from towers have a wavelength of about 10 mm. (a) Did this 
change in wavelength increase or decrease the diffraction of the 
signals into the shadow regions of obstacles? Assume that a signal 
passes through an opening of 5.0 m width between two adjacent 
buildings. What is the angular spread of the central diffrac­
tion maximum (out to the first minima) for wavelengths of (b) 50 
cm and (c) 10 mm? 

A single slit is illuminated by light of wavelengths Aa and Ab, 
chosen so that the first diffraction minimum of the Aa component 
coincides with the second minimum of the Ab component. (a) If 
Ab = 350 nm, what is Aa? For what order number nIb (if any) does a 
minimum of the Ab component coincide with the minimum of the 
Aa component in the order number (b) nIa = 2 and (c) nIa = 3? 

Monochromatic light of wavelength 441 nm is incident on a 
narrow slit. On a screen 2.00 m away, the distance between the sec­
ond diffraction minimum and the central maximum is 1.50 cm. (a) 
Calculate the angle of diffraction B of the second minimum. (b) 
Find the width of the slit. 

Light of wavelength 633 nm is incident on a narrow slit. The 
angle between the first diffraction minimum on one side of the 
central maximum and the first minimum on the other side is 1.20°. 
What is the width of the slit? 

Sound waves with frequency 
3000 Hz and speed 343 mls diffract 
through the rectangular opening of 
a speaker cabinet and into a large 
auditorium of length d = 100 m. 
The opening, which has a horizontal 
width of 30.0 cm, faces a wall 100 m 
away (Fig. 36-36). Along that wall, 
how far from the central axis will a Fig. 36-36 Problem 8. 

listener be at the first diffraction minimum and thus have difficulty 
hearing the sound? (Neglect reflections.) 

SSM IlW A slit 1.00 mm wide is illuminated by light of 
wavelength 589 nm. We see a diffraction pattern on a screen 3.00 m 
away. What is the distance between the first two diffraction minima 
on the same side of the central diffraction maximum? 

"10 Manufacturers of wire (and other objects of small dimension) 
sometimes use a laser to continually monitor the thickness of the 
product. The wire intercepts the laser beam, producing a diffraction 
pattern like that of a single slit of the same width as the wire diame­
ter (Fig. 36-37). Suppose a helium-neon laser, of wavelength 632.8 
nm, illuminates a wire, and the diffraction pattern appears on a 
screen at distance L = 2.60 m. If the desired wire diameter is 1.37 
mm, what is the observed distance between the two tenth-order 
minima (one on each side of the central maximum)? 

Fig. 36-37 Problem 10. 

Intensity in Single-Slit Diffraction, Quantitatively 
A 0.10-mm-wide slit is illuminated by light of wavelength 589 

nm. Consider a point P on a viewing screen on which the diffrac­
tion pattern of the slit is viewed; the point is at 30° from the central 
axis of the slit. What is the phase difference between the Huygens 
wavelets arriving at point P from the top and midpoint of the slit? 
(Hint: See Eq. 36-4.) 

Figure 36-38 gives a versus 
the sine of the angle B in a single­
slit diffraction experiment using 
light of wavelength 610 nm. The 
vertical axis scale is set by as = 12 
rad. What are (a) the slit width, (b) 
the total number of diffraction 
minima in the pattern (count them 

a (rad) 
as 1---,-------,-----, 

"'"--------"-_---1-_-'-_-'- sin e 
o 0.5 1 

Fig. 36-38 Problem 12. 

on both sides of the center of the diffraction pattern), (c) the least 
angle for a minimum, and (d) the greatest angle for a minimum? 

Monochromatic light with wavelength 538 nm is incident on 
a slit with width 0.025 mm. The distance from the slit to a screen is 
3.5 m. Consider a point on the screen 1.1 cm from the central maxi­
mum. Calculate (a) B for that point, (b) a, and (c) the ratio of the 
intensity at that point to the intensity at the central maximum. 
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·14 In the single-slit diffraction experiment of Fig. 36-4, let the 
wavelength of the light be 500 nm, the slit width be 6.00 tLm, and the 
viewing screen be at distance D = 3.00 m. Let a y axis extend up­
ward along the viewing screen, with its origin at the center of the dif­
fraction pattern. Also let Ip represent the intensity of the diffracted 
light at point P at y = 15.0 cm. (a) What is the ratio of /p to the inten­
sity 1m at the center of the pattern? (b) Determine where point P is 
in the diffraction pattern by giving the maximum and minimum 
between which it lies, or the two minima between which it lies. 

SSM www The full width at half-maximum (FWHM) of a 
central diffraction maximum is defined as the angle between the two 
points in the pattern where the intensity is one-half that at the center 
of the pattern. (See Fig. 36-8b.) (a) Show that the intensity drops to 
one-half the maximum value when sin2 a = cl-/2. (b) Verify that a = 

1.39 rad (about 800
) is a solution to the transcendental equation of 

(a). (c) Show that the FWHM is A8 = 2 sin-l(0.443"\/a), where a is 
the slit width. Calculate the FWHM of the central maximum for slit 
width (d) 1.00"\, (e) 5.00"\, and (f) 10.0"\. 

··16 Babinet's principle. A monochromatic beam of parallel light 
is incident on a "collimating" hole of diameter x il> "\. Point P lies in 
the geometrical shadow region on a distant screen (Fig. 36-39a). 
Tho diffracting objects, shown in Fig. 36-39b, are placed in turn over 
the collimating hole. Object A is an opaque circle with a hole in it, 
and B is the "photographic negative" of A. Using superposition 
concepts, show that the intensity at P is identical for the two dif­
fracting objects A and B. 

Screen 

p 

x 

~---
A B 

(a) (b) 

Fig. 36-39 Problem 16. 

"17 (a) Show that the values of a at which intensity maxima for 
single-slit diffraction occur can be found exactly by differentiating 
Eq. 36-5 with respect to a and equating the result to zero, obtaining 
the condition tan a = a. To find values of a satisfying this relation, 
plot the curve y = tan a and the straight line y = a and then find 
their intersections, or use a calculator to find an appropriate value 
of a by trial and error. Next, from a = (m + ~)7T, determine the 
values of m associated with the maxima in the single-slit pattern. 
(These m values are not integers because secondary maxima do 
not lie exactly halfway between minima.) What are the (b) smallest 
a and (c) associated m, the (d) second smallest a and (e) associated 
m, and the (f) third smallest a and (g) associated m? 

Diffraction by a Circular Aperture 
Ii The wall of a large room is covered with acoustic tile in 

which small holes are drilled 5.0 mm from center to center. How 
far can a person be from such a tile and still distinguish the indi­
vidual holes, assuming ideal conditions, the pupil diameter of the 
observer's eye to be 4.0 mm, and the wavelength of the room 
light to be 550 nm? 

-19 (a) How far from grains of red sand must you be to position 
yourself just at the limit of resolving the grains if your pupil diame­
ter is 1.5 mm, the grains are spherical with radius 50 tLm, and the 
light from the grains has wavelength 650 nm? (b) If the grains were 
blue and the light from them had wavelength 400 nm, would the 
answer to (a) be larger or smaller? 

The radar system of a navy cruiser transmits at a wavelength 
of 1.6 cm, from a circular antenna with a diameter of 2.3 m. At a 
range of 6.2 km, what is the smallest distance that two speedboats 
can be from each other and still be resolved as two separate objects 
by the radar system? 

·21 SSM www Estimate the linear separation of two objects on 
Mars that can just be resolved under ideal conditions by an 
observer on Earth (a) using the naked eye and (b) using the 200 in. 
(= 5.1 m) Mount Palomar telescope. Use the following data: dis­
tance to Mars = 8.0 X 107 km, diameter of pupil = 5.0 mm, wave­
length of light = 550 nm. 

Assume that Rayleigh's criterion gives the limit of reso­
lution of an astronaut's eye looking down on Earth's surface from a 
typical space shuttle altitude of 400 km. (a) Under that idealized as­
sumption, estimate the smallest linear width on Earth's surface that 
the astronaut can resolve. Take the astronaut's pupil diameter to be 
5 mm and the wavelength of visible light to be 550 nm. (b) Can the 
astronaut resolve the Great Wall of China (Fig. 36-40), which is more 
than 3000 km long, 5 to 10 m thick at its base, 4 m thick at its top, and 
8 m in height? ( c) Would the astronaut be able to resolve any unmis­
takable sign of intelligent life on Earth's surface? 

Fig. 36-40 Problem 22. The Great Wall of China. 
(APlWide World Photos) 

SSM The two headlights of an approaching automobile are 
1.4 m apart. At what (a) angular separation and (b) maximum dis­
tance will the eye resolve them? Assume that the pupil diameter is 
5.0 mm, and use a wavelength of 550 nm for the light. Also assume 
that diffraction effects alone limit the resolution so that Rayleigh's 
criterion can be applied. 

Entoptic halos. If someone looks at a bright outdoor 
lamp in otherwise dark surroundings, the lamp appears to be sur­
rounded by bright and dark rings (hence halos) that are actually a cir­
cular diffraction pattern as in Fig. 36-10, with the central maximum 
overlapping the direct light from the lamp. The diffraction is pro­
duced by structures within the cornea or lens of the eye (hence entop-



tic). If the lamp is monochromatic at wavelength 550 nm and the first 
dark ring subtends angular diameter 2.5° in the observer's view, what 
is the (linear) diameter of the structure producing the diffraction? 

-25 IlW Find the separation of two points on the Moon's surface 
that can just be resolved by the 200 in. (= 5.1 m) telescope at 
Mount Palomar, assuming that this separation is determined by 
diffraction effects. The distance from Earth to the Moon is 3.8 X 
105 km. Assume a wavelength of 550 nm for the light. 

·26 The telescopes on some commercial surveillance satellites 
can resolve objects on the ground as small as 85 cm across (see 
Google Earth), and the telescopes on military surveillance satel­
lites reportedly can resolve objects as small as 10 cm across. 
Assume first that object resolution is determined entirely by 
Rayleigh's criterion and is not degraded by turbulence in the at­
mosphere. Also assume that the satellites are at a typical altitude of 
400 km and that the wavelength of visible light is 550 nrn. What 
would be the required diameter of the telescope aperture for (a) 
85 cm resolution and (b) 10 cm resolution? (c) Now, considering 
that turbulence is certain to degrade resolution and that the aper­
ture diameter of the Hubble Space Telescope is 2.4 m, what can 
you say about the answer to (b) and about how the military surveil­
lance resolutions are accomplished? 

If Superman really had x-ray vision at 0.10 nm wavelength 
and a 4.0 mm pupil diameter, at what maximum altitude could he 
distinguish villains from heroes, assuming that he needs to resolve 
points separated by 5.0 cm to do this? 

The wings of tiger beetles (Fig. 36-41) are col­
ored by interference due to thin cuticle-like layers. In addition, 
these layers are arranged in patches that are 60/-Lm across and 
produce different colors. The color you see is a pointillistic mix­
ture of thin-film interference colors that varies with perspective. 
Approximately what viewing distance from a wing puts you at the 
limit of resolving the different colored patches according to 
Rayleigh's criterion? Use 550 nm as the wavelength of light and 3.00 
mm as the diameter of your pupil. 

Fig. 36-41 Problem 28. Tiger beetles are colored by 
pointillistic mixtures of thin-film interference colors. 
(Kjell B. SandvedlBruce Coleman, Inc.) 
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(a) What is the angular separation of two stars if their im­
ages are barely resolved by the Thaw refracting telescope at the 
Allegheny Observatory in Pittsburgh? The lens diameter is 76 cm 
and its focal length is 14 m. Assume ,.\ = 550 nm. (b) Find the dis­
tance between these barely resolved stars if each of them is 10 
light-years distant from Earth. (c) For the image of a single star in 
this telescope, find the diameter of the first dark ring in the diffrac­
tion pattern, as measured on a photographic plate placed at the fo­
cal plane of the telescope lens. Assume that the structure of the im­
age is associated entirely with diffraction at the lens aperture and 
not with lens "errors." 

·.30 Floaters. The floaters you see when viewing a 
bright, featureless background are diffraction patterns of defects in 
the vitreous humor that fills most of your eye. Sighting through a 
pinhole sharpens the diffraction pattern. If you also view a small 
circular dot, you can approximate the defect's size. Assume that the 
defect diffracts light as a circular aperture does. Adjust the dot's dis­
tance L from your eye (or eye lens) until the dot and the circle of the 
first minimum in the diffraction pattern appear to have the same size 
in your view. That is, until they have the same diameter D' on the 
retina at distance L' = 2.0 cm from the front of the eye, as suggested 
in Fig. 36-42a, where the angles on the two sides of the eye lens are 
equal. Assume that the wavelength of visible light is"\ = 550 nm. If the 
dot has diameter D = 2.0 mm and is distance L = 45.0 cm from the 
eye and the defect is x = 6.0 mm in front of the retina (Fig. 36-42b), 
what is the diameter of the defect? 
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Fig. 36-42 Problem 30. 

SSM Millimeter-wave radar generates a narrower beam 
than conventional microwave radar, making it less vulnerable to 
antiradar missiles than conventional radar. (a) Calculate the angu­
lar width 28 of the central maximum, from first minimum to first 
minimum, produced by a 220 GHz radar beam emitted by a 55.0-
cm-diameter circular antenna. (The frequency is chosen to coin­
cide with a low-absorption atmospheric "window.") (b) What is 28 
for a more conventional circular antenna that has a diameter of 2.3 
m and emits at wavelength 1.6 cm? 

(a) A circular diaphragm 60 cm in diameter oscillates at a 
frequency of 25 kHz as an underwater source of sound used for 
submarine detection. Far from the source, the sound intensity is 
distributed as the diffraction pattern of a circular hole whose diam­
eter equals that of the diaphragm. Take the speed of sound in water 
to be 1450 mls and find the angle between the normal to the di­
aphragm and a line from the diaphragm to the first minimum. (b) 
Is there such a minimum for a source having an (audible) fre­
quency of 1.0 kHz? 

Nuclear-pumped x-ray lasers are seen as a possible 
weapon to destroy ICBM booster rockets at ranges up to 2000 km. 
One limitation on such a device is the spreading of the beam due to 
diffraction, with resulting dilution of beam intensity. Consider such 
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a laser operating at a wavelength of 1.40 nm. The element that 
emits light is the end of a wire with diameter 0.200 mm. (a) 
Calculate the diameter of the central beam at a target 2000 km 
away from the beam source. (b) By what factor is the beam inten­
sity reduced in transit to the target? (The laser is fired from space, 
so that atmospheric absorption can be ignored.) 

A circular obstacle produces the same diffrac­
tion pattern as a circular hole of the same diameter (except very 
near () = 0). Airborne water drops are examples of such obstacles. 
When you see the Moon through suspended water drops, such as in 
a fog, you intercept the diffraction pattern from many drops. The 
composite of the central diffraction maxima of those drops forms a 
white region that surrounds the Moon and may obscure it. Figure 
36-43 is a photograph in which the Moon is obscured. There are 
two faint, colored rings around the Moon (the larger one may be 
too faint to be seen in your copy of the photograph). The smaller 
ring is on the outer edge of the central maxima from the drops; the 
somewhat larger ring is on the outer edge of the smallest of the 
secondary maxima from the drops (see Fig. 36-10). The color is visi­
ble because the rings are adjacent to the diffraction minima (dark 
rings) in the patterns. (Colors in other parts of the pattern overlap 
too much to be visible.) 

(a) What is the color of these rings on the outer edges of the 
diffraction maxima? (b) The colored ring around the central 
maxima in Fig. 36-43 has an angular diameter that is 1.35 times 
the angular diameter of the Moon, which is 0.50°. Assume that 
the drops all have about the same diameter. Approximately what 
is that diameter? 

Fig. 36-43 Problem 34. The corona around the Moon is a 
composite of the diffraction patterns of airborne water drops. 
(Pekka ParvianenlPhoto Researchers) 

36-7 Diffraction by a Double Slit 
Suppose that the central diffraction envelope of a double-slit 

diffraction pattern contains 11 bright fringes and the first diffrac­
tion minima eliminate (are coincident with) bright fringes. How 
many bright fringes lie between the first and second minima of the 
diffraction envelope? 

A beam of light of a single wavelength is incident perpendic­
ularly on a double-slit arrangement, as in Fig. 35-10. The slit widths 

are each 46 J.Lm and the slit separation is 0.30 mm. How many com­
plete bright fringes appear between the two first-order minima of 
the diffraction pattern? 

-31 In a double-slit experiment, the slit separation d is 2.00 times 
the slit width w. How many bright interference fringes are in the 
central diffraction envelope? 

-38 In a certain two-slit interference pattern, 10 bright fringes lie 
within the second side peak of the diffraction envelope and diffrac­
tion minima coincide with two-slit interference maxima. What is the 
ratio of the slit separation to the slit width? 

"39 Light of wavelength 440 nm passes through a double slit, 
yielding a diffraction pattern whose graph of intensity I versus an­
gular position () is shown in Fig. 36-44. Calculate (a) the slit width 
and (b) the slit separation. ( c) Verify the displayed intensities of 
the m = 1 and m = 2 interference fringes. 
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"40 Figure 36-45 gives the para­
meter f3 of Eq. 36-20 versus the sine 
of the angle () in a two-slit interfer­
ence experiment using light of 
wavelength 435 nm. The vertical 
axis scale is set by f3s = 80.0 rad. 
What are (a) the slit separation, (b) 
the total number of interference 
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maxima (count them on both sides 
Fig. 36-45 Problem 40. 

of the pattern's center), (c) the smallest angle for a maxima, and 
(d) the greatest angle for a minimum? Assume that none of the 
interference maxima are completely eliminated by a diffraction 
minimum. 

"41 In the two-slit interference experiment of Fig. 35-10, the slit 
widths are each 12.0 J.Lm, their separation is 24.0 J.Lm, the wave­
length is 600 nm, and the viewing screen is at a distance of 4.00 m. 
Let Ip represent the intensity at point P on the screen, at height 
y = 70.0 cm. (a) What is the ratio of Ip to the intensity 1m at the 
center of the pattern? (b) Determine where P is in the two-slit in­
terference pattern by giving the maximum or minimum on which it 
lies or the maximum and minimum between which it lies. (c) In the 
same way, for the diffraction that occurs, determine where point P 
is in the diffraction pattern. 

(a) In a double-slit experiment, what ratio of d to a 
causes diffraction to eliminate the fourth bright side fringe? (b) 
What other bright fringes are also eliminated? 



SSM www (a) How many bright fringes appear between 
the first diffraction-envelope minima to either side of the central 
maximum in a double-slit pattern if ,1= 550 nm, d = 0.150 mm, 
and a = 30.0 Mm? (b) What is the ratio of the intensity of the third 
bright fringe to the intensity of the central fringe? 

Diffraction Gratings 
Perhaps to confuse a predator, some tropical gyrinid 

beetles (whirligig beetles) are colored by optical interference that 
is due to scales whose alignment forms a diffraction grating (which 
scatters light instead of transmiting it). When the incident light rays 
are perpendicular to the grating, the angle between the first-order 
maxima (on opposite sides of the zeroth-order maximum) is about 
26° in light with a wavelength of 550 nm. What is the grating spac­
ing of the beetle? 

·45 A diffraction grating 20.0 mm wide has 6000 rulings. Light of 
wavelength 589 nm is incident perpendicularly on the grating. 
What are the (a) largest, (b) second largest, and ( c) third largest 
values of e at which maxima appear on a distant viewing screen? 

Visible light is incident perpendicularly on a grating with 315 
rulings/mm. What is the longest wavelength that can be seen in the 
fifth-order diffraction? 

·41 SSM IlW A grating has 400 lines/mm. How many orders of 
the entire visible spectrum (400-700 nm) can it produce in a dif­
fraction experiment, in addition to the m = 0 order? 

A diffraction grating is made up of slits of width 300 nm with 
separation 900 nm. The grating is illuminated by monochromatic 
plane waves of wavelength ,1= 600 nm at normal incidence. (a) 
How many maxima are there in the full diffraction pattern? (b) 
What is the angular width of a spectral line observed in the first or­
der if the grating has 1000 slits? 

SSM www Light of wavelength 600 nm is incident nor­
mally on a diffraction grating. Two adjacent maxima occur at an­
gles given by sin e = 0.2 and sin e = 0.3. The fourth-order maxima 
are missing. (a) What is the separation between adjacent slits? 
(b) What is the smallest slit width this grating can have? For that 
slit width, what are the (c) largest, (d) second largest, and (e) third 
largest values of the order number m of the maxima produced by 
the grating? 

With light from a gaseous discharge tube incident normally 
on a grating with slit separation 1.73 Mm, sharp maxima of green 
light are experimentally found at angles e = ±17.6°, 37.3°, -37.1", 
65.2°, and -65.0°. Compute the wavelength of the green light that 
best fits these data. 

A diffraction grating having 180 lines/mm is illuminated 
with a light signal containing only two wavelengths, ,11 = 400 nm 
and ,12 = 500 nm. The signal is incident perpendicularly on the 
grating. (a) What is the angular separation between the second-or­
der maxima of these two wavelengths? (b) What is the smallest an­
gie at which two of the resulting maxima are superimposed? (c) 
What is the highest order for which maxima for both wavelengths 
are present in the diffraction pattern? 

A beam of light consisting of wavelengths from 
460.0 nm to 640.0 nm is directed perpendicularly onto a diffrac­
tion grating with 160 lines/mm. (a) What is the lowest order that 
is overlapped by another order? (b) What is the highest order 
for which the complete wavelength range of the beam is pre­
sent? In that highest order, at what angle does the light at wave-
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length (c) 460.0 nm and (d) 640.0 nm appear? (e) What is the 
greatest angle at which the light at wavelength 460.0 nm ap­
pears? 

A grating has 350 rulings/mm and is illuminated at normal 
incidence by white light. A spectrum is formed on a screen 30.0 cm 
from the grating. If a hole 10.0 mm square is cut in the screen, its 
inner edge being 50.0 mm from the central maximum and parallel 
to it, what are the (a) shortest and (b) longest wavelengths of the 
light tha t passes through the hole? 

Derive this expression for the intensity pattern for a three-slit 
"grating": 

I = ~Im(l + 4 cos 4> + 4 cos2 4», 

where 4> = (2'T1d sin e)/ A and a ~ A. 

sec. 36·9 Gratings: Dispersion and ResolVing Power 
·55 SSM IlW A source containing a mixture of hydrogen and 
deuterium atoms emits red light at two wavelengths whose mean is 
656.3 nm and whose separation is 0.180 nm. Find the minimum 
number of lines needed in a diffraction grating that can resolve 
these lines in the first order. 

(a) How many rulings must a 4.00-cm-wide diffraction grating 
have to resolve the wavelengths 415.496 and 415.487 nm in the sec­
ond order? (b) At what angle are the second-order maxima found? 

051 Light at wavelength 589 nm from a sodium lamp is incident 
perpendicularly on a grating with 40 000 rulings over width 76 
nm. What are the first-order (a) dispersion D and (b) resolving 
power R, the second-order (c) D and (d) R, and the third-order 
(e) D and (f) R? 

·58 A grating has 600 rulings/mm and is 5.0 mm wide. (a) What is 
the smallest wavelength interval it can resolve in the third order at 
A = 500 nm? (b) How many higher orders of maxima can be seen? 

-59 A diffraction grating with a width of 2.0 cm contains 
1000 lines/cm across that width. For an incident wavelength of 600 
nm, what is the smallest wavelength difference this grating can re­
solve in the second order? 

'60 The D line in the spectrum of sodium is a doublet with wave­
lengths 589.0 and 589.6 nm. Calculate the minimum number oflines 
needed in a grating that will resolve this doublet in the second­
order spectrum. 

·61 With a particular grating the sodium doublet (589.00 nm and 
589.59 nm) is viewed in the third order at 10° to the normal and is 
barely resolved. Find (a) the grating spacing and (b) the total width 
of the rulings. 

A diffraction grating illuminated by monochromatic light 
normal to the grating produces a certain line at angle e. (a) What is 
the product of that line's half-width and the grating's resolving 
power? (b) Evaluate that product for the first order of a grating of 
slit separation 900 nm in light of wavelength 600 nm. 

Assume that the limits of the visible spectrum are arbitrarily 
chosen as 430 and 680 nm. Calculate the number of rulings per mil­
limeter of a grating that will spread the first-order spectrum 
through an angle of20.0°. 

o X-Ray Diffraction 
What is the smallest Bragg angle for x rays of wavelength 30 

pm to reflect from reflecting planes spaced 0.30 nm apart in a cal­
cite crystal? 
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·65 An x-ray beam of wavelength A undergoes first-order reflec­
tion (Bragg law diffraction) from a crystal when its angle of inci­
dence to a crystal face is 23°, and an x-ray beam of wavelength 97 
pm undergoes third-order reflection when its angle of incidence to 
that face is 60°. Assuming that the two beams reflect from the same 
family of reflecting planes, find (a) the interplanar spacing and (b) 
the wavelengthA. 

An x-ray beam of a certain wavelength is incident on a NaCI 
crystal, at 30.0° to a certain family of reflecting planes of spacing 
39.8 pm. If the reflection from those planes is of the first order, 
what is the wavelength of the x rays? 

Figure 36-46 is a graph of intensity versus angular position () 
for the diffraction of an x-ray beam by a crystal. The horizontal 
scale is set by ()s = 2.00°. The beam consists of two wavelengths, 
and the spacing between the reflecting planes is 0.94 nm. What are 
the (a) shorter and (b) longer wavelengths in the beam? 

o 

Fig. 36-46 Problem 67. 

If first-order reflection occurs in a crystal at Bragg angle 3.4°, 
at what Bragg angle does second-order reflection occur from the 
same family of reflecting planes? 

X rays of wavelength 0.12 nm are found to undergo second­
order reflection at a Bragg angle of 28° from a lithium fluoride 
crystal. What is the interplanar spacing of the reflecting planes in 
the crystal? 

In Fig. 36-47, first-order reflection from the reflection 
planes shown occurs when an x-ray beam of wavelength 0.260 nm 
makes an angle () = 63.8° with the top face of the crystal. What is 
the unit cell size ao? 

Fig. 36-47 Problem 70. 

SSM In Fig. 36-48, let a beam of x rays of wavelength 
0.125 nm be incident on an NaCI crystal at angle () = 45.0° to the 
top face of the crystal and a family of reflecting planes. Let the re­
flecting planes have separation d = 0.252 nm. The crystal is turned 
through angle ¢ around an axis perpendicular to the plane of the 

page until these reflecting planes 
give diffraction maxima. What are 
the (a) smaller and (b) larger value 
of ¢ if the crystal is turned clockwise 
and the ( c) smaller and (d) larger 
value of ¢ if it is turned counter­
clockwise? 

Incident 
beam 

() 

---~ 
In Fig. 36-48, an x-ray beam of Fig. 36-48 Problems 71 

wavelengths from 95.0 to 140 pm is and 72. 
incident at () = 45.0° to a family of 
reflecting planes with spacing d = 275 pm. What are the (a) longest 
wavelength A and (b) associated order number m and the (c) short­
est A and (d) associated m of the intensity maxima in the diffrac­
tion of the beam? 

Consider a two-dimensional square crystal structure, such as 
one side of the structure shown in Fig. 36-28a. The largest interpla­
nar spacing of reflecting planes is the unit cell size ao. Calculate and 
sketch the (a) second largest, (b) third largest, (c) fourth largest, 
(d) fifth largest, and (e) sixth largest interplanar spacing. (f) Show 
that your results in (a) through (e) are consistent with the general 
formula 

d = ao 
VJiI+72' 

where h and Ie are relatively prime integers (they have no common 
factor other than unity). 

Additional Problems 
14 An astronaut in a space shuttle claims she can just barely re­
solve two point sources on Earth's surface, 160 km below. 
Calculate their (a) angular and (b) linear separation, assuming 
ideal conditions. Take A = 540 nm and the pupil diameter of the as­
tronaut's eye to be 5.0 mm. 

SSM Visible light is incident perpendicularly on a diffraction 
grating of 200 rulings/mm. What are the (a) longest, (b) second 
longest, and ( c) third longest wavelengths that can be associated 
with an intensity maximum at 0 = 30.00 ? 

16 A beam of light consists of two wavelengths, 590.159 nm and 
590.220 nm, that are to be resolved with a diffraction grating. If the 
grating has lines across a width of 3.80 cm, what is the minimum 
number of lines required for the two wavelengths to be resolved in 
the second order? 

11 SSM In a single-slit diffraction experiment, there is a minimum 
of intensity for orange light (A = 600 run) and a minimum of intensity 
for blue-green light (A = 500 nm) at the same angle of 1.00 mrad. For 
what minimum slit width is this possible? 

A double-slit system with individual slit widths of 0.030 mm 
and a slit separation of 0.18 mm is illuminated with 500 nm light di­
rected perpendicular to the plane of the slits. What is the total number 
of complete bright fringes appearing between the two first- order min­
ima of the diffraction pattern? (Do not count the fringes that coincide 
with the minima ofthe diffraction pattern.) 

SSM A diffraction grating has resolving power R = Aavgl!::'A = 

Nm. (a) Show that the corresponding frequency range !::.fthat can just 
be resolved is given by !::.f = C/NmA. (b) From Fig. 36-22, show that the 
times required for light to travel along the ray at the bottom of the 
figure and the ray at the top differ by M = (Nd/c) sinO. (c) Show that 
(!::.f)(!::.t) = 1, this relation being independent of the various grating 
parameters. Assume N ;? l. 



SO The pupil of a person's eye has a diameter of 5.00 mm. 
According to Rayleigh's criterion, what distance apart must two 
small objects be if their images are just barely resolved when they 
are 250 mm from the eye? Assume they are illuminated with light 
of wavelength 500 nm. 

81 Light is incident on a grating at an angle t/J as shown in Fig. 36-49. 
Show that bright fringes occur at angles 8 that satisfy the equation 

d(sin t/J + sin 8) = rnA, for rn = 0,1,2, .... 

(Compare this equation with Eq. 36-25.) Only the special case t/J = 
o has been treated in this chapter. 

~Grating 

Fig. 36-49 Problem 81. 

82 A grating with d = 1.50 fl-m is illuminated at various angles of 
incidence by light of wavelength 600 nm. Plot, as a function of the 
angle of incidence (0 to 90°), the angular deviation of the first­
order maximum from the incident direction. (See Problem 81.) 

SSM In two-slit interference, if the slit separation is 14 fl-m and 
the slit widths are each 2.0 fl-m, (a) how many two-slit maxima are in 
the central peak of the diffraction envelope and (b) how many are in 
either of the first side peak of the diffraction envelope? 

84 In a two-slit interference pattern, what is the ratio of slit sepa­
ration to slit width if there are 17 bright fringes within the central 
diffraction envelope and the diffraction minima coincide with two­
slit interference maxima? 

A beam of light with a narrow wavelength range centered on 
450 nm is incident perpendicularly on a diffraction grating with a 
width of 1.80 cm and a line density of 1400 lines/cm across that 
width. For this light, what is the smallest wavelength difference this 
grating can resolve in the third order? 

If you look at something 40 m from you, what is the smallest 
length (perpendicular to your line of sight) that you can resolve, 
according to Rayleigh's criterion? Assume the pupil of your eye 
has a diameter of 4.00 mm, and use 500 nm as the wavelength of 
the light reaching you. 

Tho yellow flowers are separated by 60 cm along a line perpen­
dicular to your line of sight to the flowers. How far are you from the 
flowers when they are at the limit of resolution according to the 
Rayleigh criterion? Assume the light from the flowers has a single 
wavelength of 550 nm and that your pupil has a diameter of 5.5 mm. 

In a single-slit diffraction experiment, what must be the ratio 
of the slit width to the wavelength if the second diffraction minima 
are to occur at an angle of 37.0° from the center of the diffraction 
pattern on a viewing screen? 
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A diffraction grating 3.00 cm wide produces the second order 
at 33.0° with light of wavelength 600 nm. What is the total number 
oflines on the grating? 

A single-slit diffraction experiment is set up with light of 
wavelength 420 nm, incident perpendicularly on a slit of width 5.10 
fl-m. The viewing screen is 3.20 m distant. On the screen, what is the 
distance between the center of the diffraction pattern and the sec­
ond diffraction minimum? 

A diffraction grating has 8900 slits across 1.20 cm. If light with 
a wavelength of 500 nm is sent through it, how many orders (max­
ima) lie to one side of the central maximum? 

92 In an experiment to monitor the Moon's surface with a light 
beam, pulsed radiation from a ruby laser (A = 0.69 fl-m) was di­
rected to the Moon through a reflecting telescope with a mirror ra­
dius of 1.3 m. A reflector on the Moon behaved like a circular flat 
mirror with radius 10 cm, reflecting the light directly back toward 
the telescope on Earth. The reflected light was then detected after 
being brought to a focus by this telescope. Approximately what 
fraction of the original light energy was picked up by the detector? 
Assume that for each direction of travel all the energy is in the cen­
tral diffraction peak. 

In June 1985, a laser beam was sent out from the Air Force 
Optical Station on Maui, Hawaii, and reflected back from the shut­
tle Discovery as it sped by 354 km overhead. The diameter of the 
central maximum of the beam at the shuttle position was said to be 
9.1 m, and the beam wavelength was 500 nm. What is the effective 
diameter of the laser aperture at the Maui ground station? (Hint: 
A laser beam spreads only because of diffraction; assume a circular 
exit aperture.) 

A diffraction grating 1.00 cm wide has 10 000 parallel slits. 
Monochromatic light that is incident normally is diffracted 
through 30° in the first order. What is the wavelength of the light? 

SSM If you double the width of a single slit, the intensity of 
the central maximum of the diffraction pattern increases by a fac­
tor of 4, even though the energy passing through the slit only dou­
bles. Explain this quantitatively. 

When monochromatic light is incident on a slit 22.0 fl-m wide, 
the first diffraction minimum lies at 1.80° from the direction of the 
incident light. What is the wavelength? 

A spy satellite orbiting at 160 km above Earth's surface has a 
lens with a focal length of 3.6 m and can resolve objects on the 
ground as small as 30 cm. For example, it can easily measure the 
size of an aircraft's air intake port. What is the effective diameter 
of the lens as determined by diffraction consideration alone? 
Assume A = 550 nm. 

Suppose that two points are separated by 2.0 cm. If they are 
viewed by an eye with a pupil opening of 5.0 mm, what distance 
from the viewer puts them at the Rayleigh limit of resolution? 
Assume a light wavelength of 500 nm. 

A diffraction grating has 200 lines/mm. Light consisting of a 
continuous range of wavelengths between 550 nm and 700 nm is 
incident perpendicularly on the grating. (a) What is the lowest or­
der that is overlapped by another order? (b) What is the highest 
order for which the complete spectrum is present? 
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Fig. 37-1 Einstein posing for a 
photograph as fame began to accumulate. 
(Corbis Images) 

WHAT ISPflYSICS? 
One principal subject of physics is relativity, the field of study that 

measures events (things that happen): where and when they happen, and by how 
much any two events are separated in space and in time. In addition, relativity has 
to do with transforming such measurements (and also measurements of energy 
and momentum) between reference frames that move relative to each other. 
(Hence the name relativity.) 

Transformations and moving reference frames, such as those we discussed in 
Sections 4-8 and 4-9, were well understood and quite routine to physicists in 1905. 
Then Albert Einstein (Fig. 37-1) published his special theory of relativity. The 
adjective special means that the theory deals only with inertial reference frames, 
which are frames in which Newton's laws are valid. (Einstein's general theory of 
relativity treats the more challenging situation in which reference frames can 
undergo gravitational acceleration; in this chapter the term relativity implies only 
inertial reference frames.) 

Starting with two deceivingly simple postulates, Einstein stunned the sci­
entific world by showing that the old ideas about relativity were wrong, even 
though everyone was so accustomed to them that they seemed to be unques­
tionable common sense. This supposed common sense, however, was derived 
only from experience with things that move rather slowly. Einstein's relativ­
ity, which turns out to be correct for all physically possible speeds, predicted 
many effects that were, at first study, bizarre because no one had ever experi­
enced them. 

In particular, Einstein demonstrated that space and time are entangled; 
that is, the time between two events depends on how far apart they occur, and 
vice versa. Also, the entanglement is different for observers who move relative 
to each other. One result is that time does not pass at a fixed rate, as if it were 
ticked off with mechanical regularity on some master grandfather clock that 
controls the universe. Rather, that rate is adjustable: Relative motion can 
change the rate at which time passes. Prior to 1905, no one but a few daydream­
ers would have thought that. Now, engineers and scientists take it for granted 
because their experience with special relativity has reshaped their common 
sense. For example, any engineer involved with the Global Positioning System 
of the NAVSTAR satellites must routinely use relativity (both special relativity 
and general relativity) to determine the rate at which time passes on the satel­
lites because that rate differs from the rate on Earth's surface. If the engineers 
failed to take relativity into account, GPS would become almost useless in less 
than one day. 

Special relativity has the reputation of being difficult. It is not difficult 
mathematically, at least not here. However, it is difficult in that we must be 
very careful about who measures what about an event and just how that 
measurement is made-and it can be difficult because it can contradict 
routine experience. 



The Postulates 
We now examine the two postulates of relativity, on which Einstein's theory is based: 

1. The Relativity Postulate: The laws of physics are the same for observers in all 
inertial reference frames. No one frame is preferred over any other. 

Galileo assumed that the laws of mechanics were the same in all inertial reference 
frames. Einstein extended that idea to include all the laws of physics, especially 
those of electromagnetism and optics. This postulate does not say that the mea­
sured values of all physical quantities are the same for all inertial observers; most 
are not the same. It is the laws of physics, which relate these measurements to one 
another, that are the same. 

2. The Speed of Light PostUlate: The speed of light in vacuum has the same value c in 
all directions and in all inertial reference frames. 

We can also phrase this postulate to say that there is in nature an ultimate speed c, 
the same in all directions and in all inertial reference frames. Light happens to 
travel at this ultimate speed. However, no entity that carries energy or information 
can exceed this limit. Moreover, no particle that has mass can actually reach speed 
c, no matter how much or for how long that particle is accelerated. (Alas, the faster­
than-light warp drive used in many science fiction stories appears to be impossible.) 

Both postulates have been exhaustively tested, and no exceptions have ever 
been found. 

The existence of a limit to the speed of accelerated electrons was shown in a 1964 
experiment by W. Bertozzi, who accelerated electrons to various measured 
speeds and - by an independent method - measured their kinetic energies. He 
found that as the force on a very fast electron is increased, the electron's mea­
sured kinetic energy increases toward very large values but its speed does not 
increase appreciably (Fig. 37-2). Electrons have been accelerated in laboratories 
to at least 0.999 999 999 95 times the speed of light but-close though it may 
be-that speed is still less than the ultimate speed c. 

This ultimate speed has been defined to be exactly 

c = 299792458 m/s. (37-1) 

Caution: So far in this book we have (appropriately) approximated c as 
3.0 X 108 mis, but in this chapter we shall often use the exact value. You might 
want to store the exact value in your calculator's memory (if it is not there 
already), to be called up when needed. 

If the speed of light is the same in all inertial reference frames, then the speed of 
light emitted by a source relative to, say, a laboratory should be the same as the 
speed of light that is emitted by a source at rest in the laboratory. This claim has been 
tested directly, in an experiment of high precision. The "light source" was the neutral 
pion (symbol ?TO), an unstable, short-lived particle that can be produced by collisions 
in a particle accelerator. It decays (transforms) into two gamma rays by the process 

?TO ~ ')' + ')'. (37-2) 

Gamma rays are part of the electromagnetic spectrum (at very high frequencies) 
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Fig.37-2 The dots show measured 
values of the kinetic energy of an electron 
plotted against its measured speed. No mat­
ter how much energy is given to an electron 
(or to any other particle having mass), its 
speed can never equal or exceed the ulti­
mate limiting speed c. (The plotted curve 
through the dots shows the predictions of 
Einstein's special theory of relativity.) 
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and so obey the speed of light postulate, just as visible light does. (In this chapter 
we shall use the term light for any type of electromagnetic wave, visible or not.) 

In 1964, physicists at CERN, the European particle-physics laboratory near 
Geneva, generated a beam of pions moving at a speed of 0.999 75c with respect to 
the laboratory. The experimenters then measured the speed of the gamma rays 
emitted from these very rapidly moving sources. They found that the speed of the 
light emitted by the pions was the same as it would be if the pions were at rest in 
the laboratory, namely c. 

Measuring an Event 
An event is something that happens, and every event can be assigned three 
space coordinates and one time coordinate. Among many possible events are 
(1) the turning on or off of a tiny lightbulb, (2) the collision of two particles, 
(3) the passage of a pulse of light through a specified point, (4) an explosion, 
and (5) the sweeping of the hand of a clock past a marker on the rim of the clock. 
A certain observer, fixed in a certain inertial reference frame, might, for example, 
assign to an event A the coordinates given in Table 37-1. Because space and time 
are entangled with each other in relativity, we can describe these coordinates 
collectively as spacetime coordinates. The coordinate system itself is part of the 
reference frame of the observer. 

A given event may be recorded by any number of observers, each in a dif­
ferent inertial reference frame. In general, different observers will assign differ­
ent spacetime coordinates to the same event. Note that an event does not 
"belong" to any particular inertial reference frame. An event is just something 
that happens, and anyone in any reference frame may detect it and assign space­
time coordinates to it. 

Making such an assignment can be complicated by a practical problem. For 
example, suppose a balloon bursts 1 km to your right while a firecracker pops 
2 km to your left, both at 9:00 A.M. However, you do not detect either event 
precisely at 9:00 A.M. because at that instant light from the events has not yet 
reached you. Because light from the firecracker pop has farther to go, it arrives at 
your eyes later than does light from the balloon burst, and thus the pop will seem 
to have occurred later than the burst. To sort out the actual times and to assign 
9:00 A.M. as the happening time for both events, you must calculate the travel 
times of the light and then subtract these times from the arrival times. 

This procedure can be very messy in more challenging situations, and we 
need an easier procedure that automatically eliminates any concern about the 
travel time from an event to an observer. To set up such a procedure, we shall 
construct an imaginary array of measuring rods and clocks throughout the 
observer's inertial frame (the array moves rigidly with the observer). This 
construction may seem contrived, but it spares us much confusion and calculation 
and allows us to find the coordinates, as follows. 

1. The Space Coordinates. We imagine the observer's coordinate system fitted 
with a close-packed, three-dimensional array of measuring rods, one set of 
rods parallel to each of the three coordinate axes. These rods provide a way to 
determine coordinates along the axes. Thus, if the event is, say, the turning on 
of a smalllightbulb, the observer, in order to locate the position of the event, 
need only read the three space coordinates at the bulb's location. 

2. The Time Coordinate. For the time coordinate, we imagine that every point 
of intersection in the array of measuring rods includes a tiny clock, which the 
observer can read because the clock is illuminated by the light generated by 
the event. Figure 37-3 suggests one plane in the "jungle gym" of clocks and 
measuring rods we have described. 



THE RELATIVITY OF SIMULTANEITY 1025 

The array of clocks must be synchronized properly. It is not enough to 
assemble a set of identical clocks, set them all to the same time, and then move 
them to their assigned positions. We do not know, for example, whether mov­
ing the clocks will change their rates. (Actually, it will.) We must put the clocks 
in place and then synchronize them. 

If we had a method of transmitting signals at infinite speed, synchroniza­
tion would be a simple matter. However, no known signal has this property. 
We therefore choose light (any part of the electromagnetic spectrum) to send 
out our synchronizing signals because, in vacuum, light travels at the greatest 
possible speed, the limiting speed c. 

Here is one of many ways in which an observer might synchronize an 
array of clocks using light signals: The observer enlists the help of a great num­
ber of temporary helpers, one for each clock. The observer then stands at a 
point selected as the origin and sends out a pulse of light when the origin clock 
reads t = O. When the light pulse reaches the location of a helper, that helper 
sets the clock there to read t = ric, where r is the distance between the helper 
and the origin. The clocks are then synchronized. 

3. The Spacetime Coordinates. The observer can now assign spacetime 
coordinates to an event by simply recording the time on the clock nearest the 
event and the position as measured on the nearest measuring rods. If there are 
two events, the observer computes their separation in time as the difference in 
the times on clocks near each and their separation in space from the differ­
ences in coordinates on rods near each. We thus avoid the practical problem of 
calculating the travel times of the signals to the observer from the events. 

The Relativity of Simultaneity 
Suppose that one observer (Sam) notes that two independent events (event Red 
and event Blue) occur at the same time. Suppose also that another observer 
(Sally), who is moving at a constant velocity v with respect to Sam, also records 
these same two events. Will Sally also find that they occur at the same time? 

The answer is that in general she will not: 

If two observers are in relative motion, they will not, in general, agree as to whether 
two events are simultaneous. If one observer finds them to be simultaneous, the other 
generally will not. 

We cannot say that one observer is right and the other wrong. Their observations 
are equally valid, and there is no reason to favor one over the other. 

The realization that two contradictory statements about the same natural 
event can be correct is a seemingly strange outcome of Einstein's theory. How­
ever, in Chapter 17 we saw another way in which motion can affect measurement 
without balking at the contradictory results: In the Doppler effect, the frequency 
an observer measures for a sound wave depends on the relative motion of 
observer and source. Thus, two observers moving relative to each other can mea­
sure different frequencies for the same wave, and both measurements are correct. 

We conclude the following: 

Simultaneity is not an absolute concept but rather a relative one, depending on the 
motion of the observer. 

If the relative speed of the observers is very much less than the speed of light, 
then measured departures from simultaneity are so small that they are not 
noticeable. Such is the case for all our experiences of daily living; that is why the 
relativity of simultaneity is unfamiliar. 

z 

We use this array to assign 
spacetime coordinates. 

y 

x 

Fig. 37-3 One section of a three­
dimensional array of clocks and measuring 
rods by which an observer can assign space­
time coordinates to an event, such as a flash 
of light at point A. The event's space coor­
dinates are approximately x = 3.6 rod 
lengths,y = 1.3 rod lengths, and z = O. The 
time coordinate is whatever time appears 
on the clock closest to A at the instant of 
the flash. 
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Fig.37-4 The spaceships of Sally and 
Sam and the occurrences of events from 
Sam's view. Sally's ship moves rightward 
with velocity v. (a) Event Red occurs at po­
sitions RR' and event Blue occurs at posi­
tions BB'; each event sends out a wave of 
light. (b) Sam simultaneously detects the 
waves from event Red and event Blue. (c) 
Sally detects the wave from event Red. (d) 
Sally detects the wave from event Blue. 

A 
Let us clarify the relativity of simultaneity with an example based on the postu­
lates of relativity, no clocks or measuring rods being directly involved. Figure 37-4 
shows two long spaceships (the SS Sally and the SS Sam), which can serve as 
inertial reference frames for observers Sally and Sam. The two observers are 
stationed at the midpoints of their ships. The ships are separating along a common 
x axis, the relative velocity of Sally with respect to Sam being v. Figure 37 -4a shows 
the ships with the two observer stations momentarily aligned opposite each other. 

Two large meteorites strike the ships, one setting off a red flare (event Red) 
and the other a blue flare (event Blue), not necessarily simultaneously. Each 
event leaves a permanent mark on each ship, at positions RR' and BB'. 

Let us suppose that the expanding wavefronts from the two events happen to 
reach Sam at the same time, as Fig. 37-4b shows. Let us further suppose that, after 
the episode, Sam finds, by measuring the marks on his spaceship, that he was 
indeed stationed exactly halfway between the markers Band R on his ship when 
the two events occurred. He will say: 

Sam Light from event Red and light from event Blue reached me at the same time. 
From the marks on my spaceship, I find that I was standing halfway between the 
two sources. Therefore, event Red and event Blue were simultaneous events. 

As study of Fig. 37-4 shows, Sally and the expanding wavefront from event Red 
are moving toward each other, while she and the expanding wavefront from 
event Blue are moving in the same direction. Thus, the wavefront from event Red 
will reach Sally before the wavefront from event Blue does. She will say: 

Sally Light from event Red reached me before light from event Blue did. From 
the marks on my spaceship, I found that I too was standing halfway between 
the two sources. Therefore, the events were not simultaneous; event Red 
occurred first, followed by event Blue. 

These reports do not agree. Nevertheless, both observers are correct. 
Note carefully that there is only one wavefront expanding from the site of 

each event and that this wavefront travels with the same speed c in both reference 
frames, exactly as the speed of light postulate requires. 

It might have happened that the meteorites struck the ships in such a way 
that the two hits appeared to Sally to be simultaneous. If that had been the case, 
then Sam would have declared them not to be simultaneous. 

(a) 

(c) ... Sally receives the wave 
from event Red first. 

d~~ ____ ~ ____ ~~) 
Sam detects both events 

(b) 

(d) 

Waves from the two events reach 
Sam simultaneously but ... 



The Relativity of Time 
If observers who move relative to each other measure the time interval (or tem­
poral separation) between two events, they generally will find different results. 
Why? Because the spatial separation of the events can affect the time intervals 
measured by the observers. 

The time interval between two events depends on how far apart they occur in both 
space and time; that is, their spatial and temporal separations are entangled. 

In this section we discuss this entanglement by means of an example; however, the 
example is restricted in a crucial way: To one of two observers, the two events occur at 
the same location. We shall not get to more general examples until Section 37-7. 

Figure 37 -Sa shows the basics of an experiment Sally conducts while she and her 
equipment-a light source, a mirror, and a clock-ride in a train moving with con­
stant velocity v relative to a station. A pulse of light leaves the light source B (event 
1), travels vertically upward, is reflected vertically downward by the mirror, and then 
is detected back at the source (event 2). Sally measures a certain time interval !:lt~ 
between the two events, related to the distance D from source to mirror by 

2D 
tHo =­

c 
(Sally). (37-3) 

The two events occur at the same location in Sally's reference frame, and she 
needs only one clock C at that location to measure the time interval. Clock C is 
shown twice in Fig. 37 -Sa, at the beginning and end of the interval. 

Consider now how these same two events are measured by Sam, who is 
standing on the station platform as the train passes. Because the equipment 
moves with the train during the travel time of the light, Sam sees the path of the 
light as shown in Fig. 37-Sb. For him, the two events occur at different places in 
his reference frame, and so to measure the time interval between events, Sam 
must use two synchronized clocks, C1 and C2, one at each event. According to 
Einstein's speed of light postulate, the light travels at the same speed c for Sam as 

Fig.37-5 (a) Sally, on the 
train, measures the time interval 
Mo between events 1 and 2 using 
a single clock C on the train. That 
clock is shown twice: first for 
event 1 and then for event 2. (b) 
Sam, watching from the station 
as the events occur,requires two 
synchronized clocks, C1 at event 
1 and C2 at event 2, to measure 
the time interval between the 
two events; his measured time 
interval is M. 

Mirror __ ~M 

Sally 

(a) 

Event 1 is the emission of light. 
Event 2 is the return of the light. 
We want the time between them. 
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Mirror 

Sam 

(b) 

The measure of that time interval 
on Sally's clock differs from that 
on Sam's clock due to the relative 
motion. 
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As the speed parameter goes to 1.0 
(as the speed approaches c), 
the Lorentz factor approaches infinity. 
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Fig. 37-6 A plot ofthe Lorentz factor 'Yas 
a function of the speed parameter f3 (= vic). 

for Sally. Now, however, the light travels distance 2L between events 1 and 2. The 
time interval measured by Sam between the two events is 

in which 

!:::.t = 2L 
c 

(Sam), 

From Eq. 37-3, we can write this as 

L = ~"(!:-v~,1~t)~2~+~(--C!~c ~,1~tO)-2. 

If we eliminate L between Eqs. 37 -4 and 37-6 and solve for ,1t, we find 

!:::.t = ,1to 
VI - (V/c)2' 

(37-4) 

(37-5) 

(37-6) 

(37-7) 

Equation 37-7 tells us how Sam's measured interval ,1t between the events 
compares with Sally's interval ,1 to. Because v must be less than c, the denomina­
tor in Eq. 37-7 must be less than unity. Thus, !:::.t must be greater than !:::.to: Sam 
measures a greater time interval between the two events than does Sally. Sam and 
Sally have measured the time interval between the same two events, but the 
relative motion between Sam and Sally made their measurements different. We 
conclude that relative motion can change the rate at which time passes between 
two events; the key to this effect is the fact that the speed of light is the same for 
both observers. 

We distinguish between the measurements of Sam and Sally in this way: 

When two events occur at the same location in an inertial reference frame, the time 
interval between them, measured in that frame, is called the proper time interval or 
the proper time. Measurements of the same time interval from any other inertial 
reference frame are always greater. 

Thus, Sally measures a proper time interval, and Sam measures a greater time 
interval. (The term proper is unfortunate in that it implies that any other mea­
surement is improper or nonreal. That is just not so.) The amount by which a 
measured time interval is greater than the corresponding proper time interval 
is called time dilation. (To dilate is to expand or stretch; here the time interval is 
expanded or stretched.) 

Often the dimensionless ratio vic in Eq. 37-7 is replaced with j3, called the 
speed parameter, and the dimensionless inverse square root in Eq. 37-7 is often 
replaced with y, called the Lorentz factor: 

1 1 
y = V1=7J2 = VI - (vic? 

(37-8) 

With these replacements, we can rewrite Eq. 37-7 as 

(time dilation). (37-9) 

The speed parameter j3 is always less than unity, and, provided v is not zero, y 
is always greater than unity. However, the difference between y and 1 is not 
significant unless v > D.lc. Thus, in general, "old relativity" works well enough for 
v < D.lc, but we must use special relativity for greater values of v. As shown in 
Fig. 37-6, yincreases rapidly in magnitude as j3 approaches 1 (as v approaches c). 
Therefore, the greater the relative speed between Sally and Sam is, the greater 
will be the time interval measured by Sam, until at a great enough speed, the 
interval takes "forever." 



You might wonder what Sally says about Sam's having measured a greater 
time interval than she did. His measurement comes as no surprise to her, because 
to her, he failed to synchronize his clocks C1 and C2 in spite of his insistence that 
he did. Recall that observers in relative motion generally do not agree about 
simultaneity. Here, Sam insists that his two clocks simultaneously read the same 
time when event 1 occurred. To Sally, however, Sam's clock C2 was erroneously 
set ahead during the synchronization process. Thus, when Sam read the time of 
event 2 on it, to Sally he was reading off a time that was too large, and that is 
why the time interval he measured between the two events was greater than the 
interval she measured. 

1. Microscopic Clocks. Subatomic particles called muons are unstable; that is, 
when a muon is produced, it lasts for only a short time before it decays (trans­
forms into particles of other types). The lifetime of a muon is the time interval 
between its production (event 1) and its decay (event 2). When muons are 
stationary and their lifetimes are measured with stationary clocks (say, in a 
laboratory), their average lifetime is 2.200 fLs. This is a proper time interval 
because, for each muon, events 1 and 2 occur at the same location in the 
reference frame of the muon-namely, at the muon itself. We can represent 
this proper time interval with ~to; moreover, we can call the reference frame 
in which it is measured the rest frame of the muon. 

If, instead, the muons are moving, say, through a laboratory, then mea­
surements of their lifetimes made with the laboratory clocks should yield a 
greater average lifetime (a dilated average lifetime). To check this conclusion, 
measurements were made of the average lifetime of muons moving with a 
speed of 0.9994c relative to laboratory clocks. From Eq. 37-8, with f3 = 0.9994, 
the Lorentz factor for this speed is 

1 1 
'Y = vr=[32 = VI _ (0.9994)2 = 28.87. 

Equation 37-9 then yields, for the average dilated lifetime, 

M = 'Y Mo = (28.87)(2.200 f.LS) = 63.51 fLS. 

The actual measured value matched this result within experimental error. 

2. Macroscopic Clocks. In October 1971, Joseph Hafele and Richard Keating 
carried out what must have been a grueling experiment. They flew four 
portable atomic clocks twice around the world on commercial airlines, once in 
each direction. Their purpose was "to test Einstein's theory of relativity with 
macroscopic clocks." As we have just seen, the time dilation predictions of 
Einstein's theory have been confirmed on a microscopic scale, but there is 
great comfort in seeing a confirmation made with an actual clock. Such macro­
scopic measurements became possible only because of the very high precision 
of modern atomic clocks. Hafele and Keating verified the predictions of the 
theory to within 10%. (Einstein's general theory of relativity, which predicts 
that the rate at which time passes on a clock is influenced by the gravitational 
force on the clock, also plays a role in this experiment.) 

A few years later, physicists at the University of Maryland carried out a 
similar experiment with improved precision. They flew an atomic clock 
round and round over Chesapeake Bay for flights lasting 15 h and succeeded 
in checking the time dilation prediction to better than 1%. Today, when 
atomic clocks are transported from one place to another for calibration or 
other purposes, the time dilation caused by their motion is always taken into 
account. 

THE RELATIVITY OF TIME 1029 
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"'CHECKPOINT 1 
Standing beside railroad tracks, we are suddenly startled by a relativistic 
boxcar traveling past us as shown in the figure. Inside, a well-equipped hobo 
fires a laser pulse from the front ofthe boxcar to its rear. (a) Is our measure­
ment of the speed of the pulse greater than, less than, or the same as that 
measured by the hobo? (b) Is his measurement of the flight time of the 
pulse a proper time? (c) Are his measurement and our measurement of the 
flight time related by Eq. 37-9? 

Time dilation for a space traveler who returns to Earth 

Your starship passes Earth with a relative speed of 0.9990c. 
After traveling 10.0 y (your time), you stop at lookout post 
LP13, turn, and then travel back to Earth with the same 
relative speed. The trip back takes another 10.0 y (your 
time). How long does the round trip take according to mea­
surements made on Earth? (Neglect any effects due to the 
accelerations involved with stopping, turning, and getting 
back up to speed.) 

We begin by analyzing the outward trip: 

1. This problem involves measurements made from two 
(inertial) reference frames, one attached to Earth and 
the other (your reference frame) attached to your ship. 

2. The outward trip involves two events: the start of the 
trip at Earth and the end of the trip at LP13. 

3. Your measurement of 10.0 y for the outward trip is the 
proper time !::..to between those two events, because the 
events occur at the same location in your reference 
frame-namely, on your ship. 

4. The Earth-frame measurement of the time interval !::..t 
for the outward trip must be greater than Mo, according 
to Eq. 37-9 (!:::.t = 'Y !::..to) for time dilation. 

Calculations: Using Eq. 37-8 to substitute for 'Yin Eq. 37-9, 
we find 

!:::.to 
!:::.t = ---;:;::=~;:::;;­

V1 - (vic? 

10.0 y = (22.37)(10.0 y) = 224 y. 
V1 - (0.9990c/C)2 

On the return trip, we have the same situation and the 
same data. Thus, the round trip requires 20 y of your time 
but 

!:::.ttotal = (2)(224 y) = 448 Y (Answer) 

of Earth time. In other words, you have aged 20 y while the 
Earth has aged 448 y. Although you cannot travel into the 
past (as far as we know), you can travel into the future of, 
say, Earth, by using high-speed relative motion to adjust the 
rate at which time passes. 

Time dilation and travel distance for a relativistic particle 

The elementary particle known as the positive kaon (K+) 
is unstable in that it can decay (transform) into other par­
ticles. Although the decay occurs randomly, we find that, 
on average, a positive kaon has a lifetime of 0.1237 its 
when stationary-that is, when the lifetime is measured in 
the rest frame of the kaon. If a positive kaon has a speed 
of 0.990c relative to a laboratory reference frame when 
the kaon is produced, how far can it travel in that frame 
during its lifetime according to classical physics (which is 
a reasonable approximation for speeds much less than c) 
and according to special relativity (which is correct for all 
physically possible speeds)? 

1. We have two (inertial) reference frames, one attached to 
the kaon and the other attached to the laboratory. 

2. This problem also involves two events: the start of the 
kaon's travel (when the kaon is produced) and the end of 
that travel (at the end of the kaon's lifetime). 

3. The distance traveled by the kaon between those two 
events is related to its speed v and the time interval for 
the travel by 

distance 
(37-10) 

v = time interval' 



With these ideas in mind, let us solve for the distance first 
with classical physics and then with special relativity. 

Classical physics: In classical physics we would find the 
same distance and time interval (in Eq. 37-10) whether we 
measured them from the kaon frame or from the laboratory 
frame. Thus, we need not be careful about the frame in 
which the measurements are made. To find the kaon's travel 
distance dcp according to classical physics, we first rewrite 
Eq. 37-10 as 

dcp = v 1J..t, (37-11) 

where at is the time interval between the two events in 
either frame. Then, substituting 0.990c for v and 0.1237 fJ-S 
for at in Eq. 37-11, we find 

dcp = (0.990c) at 

= (0.990)(299792 458 m/s)(0.1237 x 10-6 s) 

= 36.7 m. (Answer) 
This is how far the kaon would travel if classical physics 
were correct at speeds close to c. 

Special relativity: In special relativity we must be very 
careful that both the distance and the time interval in Eq. 
37-10 are measured in the same reference frame-espe­
cially when the speed is close to c, as here. Thus, to find the 
actual travel distance dsr of the kaon as measured from the 
laboratory frame and according to special relativity, we 
rewrite Eq. 37-10 as 

dsr = vat, (37-12) 

7· THE RELATIVITY OF LENGTH 1031 

where IJ..t is the time interval between the two events as mea­
sured from the laboratory frame. 

Before we can evaluate dsr in Eq. 37-12, we must find 
1J..t. The 0.1237 fJ-S time interval is a proper time because the 
two events occur at the same location in the kaon frame­
namely, at the kaon itself. Therefore, let ato represent this 
proper time interval. Then we can use Eq. 37-9 (at = y lJ..to) 
for time dilation to find the time interval IJ..t as measured 
from the laboratory frame. Using Eq. 37-8 to substitute for 
yin Eq. 37-9 leads to 

at = lJ..to 
Vi - (vlc)Z 

0.1237 X 10-
6 

s = 8.769 X 10-7 s. 
Vi - (0.990c!cf 

This is about seven times longer than the kaon's proper life­
time. That is, the kaon's lifetime is about seven times longer 
in the laboratory frame than in its own frame-the kaon's 
lifetime is dilated. We can now evaluate Eq. 37-12 for the 
travel distance dsr in the laboratory frame as 

dsr = vat = (0.990c) at 

= (0.990)(299792458 m/s)(8.769 x 10-7 s) 

= 260m. (Answer) 

This is about seven times dcp• Experiments like the one out­
lined here, which verify special relativity, became routine in 
physics laboratories decades ago. The engineering design 
and the construction of any scientific or medical facility that 
employs high-speed particles must take relativity into 
account. 

iWS Additional examples, video, and practice available at WileyPLUS 

The Relativity of length 
If you want to measure the length of a rod that is at rest with respect to you, 
you can-at your leisure-note the positions of its end points on a long sta­
tionary scale and subtract one reading from the other. If the rod is moving, 
however, you must note the positions of the end points simultaneously (in your 
reference frame) or your measurement cannot be called a length. Figure 37-7 
suggests the difficulty of trying to measure the length of a moving penguin by 
locating its front and back at different times. Because simultaneity is relative 
and it enters into length measurements, length should also be a relative quan­
tity. It is. 

Fig. 37-7 If you want to measure 
the front-to-back length of a pen­
guin while it is moving, you must 
mark the positions of its front and 
back simultaneously (in your 
reference frame), as in (a), rather 
than at different times, as in (b). (a) xA(tO) xB(tO) 

You measure a width at 
an instant, not spread 
out over time. 
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Let La be the length of a rod that you measure when the rod is stationary 
(meaning you and it are in the same reference frame, the rod's rest frame). If, 
instead, there is relative motion at speed v between you and the rod along the 
length of the rod, then with simultaneous measurements you obtain a length L 
given by 

~~ La L = La V 1 - {32 = - (length contraction). 
'Y 

(37-13) 

Because the Lorentz factor 'Y is always greater than unity if there is relative 
motion, L is less than La. The relative motion causes a length contraction, and L is 
called a contracted length. Because 'Y increases with speed v, the length contrac­
tion also increases with v. 

The length La of an object measured in the rest frame of the object is its proper 
length or rest length. Measurements of the length from any reference frame that is in 
relative motion parallel to that length are always less than the proper length. 

Be careful: Length contraction occurs only along the direction of relative 
motion. Also, the length that is measured does not have to be that of an object 
like a rod or a circle. Instead, it can be the length (or distance) between two 
objects in the same rest frame-for example, the Sun and a nearby star (which 
are, at least approximately, at rest relative to each other). 

Does a moving object really shrink? Reality is based on observations and 
measurements; if the results are always consistent and if no error can be deter­
mined, then what is observed and measured is real. In that sense, the object really 
does shrink. However, a more precise statement is that the object is really mea­
sured to shrink - motion affects that measurement and thus reality. 

When you measure a contracted length for, say, a rod, what does an observer 
moving with the rod say of your measurement? To that observer, you did not 
locate the two ends of the rod simultaneously. (Recall that observers in motion 
relative to each other do not agree about simultaneity.) To the observer, you first 
located the rod's front end and then, slightly later, its rear end, and that is why 
you measured a length that is less than the proper length. 

Length contraction is a direct consequence of time dilation. Consider once more 
our two observers. This time, both Sally, seated on a train moving through a 
station, and Sam, again on the station platform, want to measure the length of the 
platform. Sam, using a tape measure, finds the length to be La, a proper length 
because the platform is at rest with respect to him. Sam also notes that Sally, on 
the train, moves through this length in a time !::.t = La/V, where v is the speed of 
the train; that is, 

La = v At (Sam). (37-14) 

This time interval !::.t is not a proper time interval because the two events that 
define it (Sally passes the back of the platform and Sally passes the front of 
the platform) occur at two different places, and therefore Sam must use two syn­
chronized clocks to measure the time interval !::.t. 

For Sally, however, the platform is moving past her. She finds that the two 
events measured by Sam occur at the same place in her reference frame. She can 
time them with a single stationary clock, and so the interval !::.ta that she measures 
is a proper time interval. To her, the length L of the platform is given by 

L = v!::.ta (Sally). (37 -15) 
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If we divide Eq. 37-15 by Eq. 37-14 and apply Eq. 37-9, the time dilation equation, 
we have 

L vMo 1 

Lo vM 
, 

y 

or L = Lo , (37-16) 
y 

which is Eq. 37-13, the length contraction equation. 

Time dilation and length contraction as seen from each frame 

In Fig. 37-S, Sally (at point A) and Sam's spaceship (of 
proper length Lo = 230 m) pass each other with constant rel­
ative speed v. Sally measures a time interval of 3.57 f.J,S for 
the ship to pass her (from the passage of point B in Fig. 37-Sa 
to the passage of point C in Fig. 37 -Sb). In terms of c, what is 
the relative speed v between Sally and the ship? 

Let's assume that speed v is near c. Then: 

1. This problem involves measurements made from two 
(inertial) reference frames, one attached to Sally arid the 
other attached to Sam and his spaceship. 

2. This problem also involves two events: the first is the 
passage of point B past Sally (Fig. 37 -Sa) and the second 
is the passage of point C past her (Fig. 37 -Sb). 

3. From either reference frame, the other reference frame 
passes at speed v and moves a certain distance in the 
time interval between the two events: 

distance 
(37-17) v = time interval . 

Because speed v is assumed to be near the speed of 
light, we must be careful that the distance and the time 
interval in Eq. 37 -17 are measured in the same reference 
frame. Otherwise, speed has no meaning. 

Calculations: We are free to use either frame for the mea­
surements. Because we know that the time interval !:it be­
tween the two events measured from Sally's frame is 3.57 
f.J,S, let us also use the distance L between the two events 
measured from her frame. Equation 37 -17 then becomes 

L 
v = ---;;t. (37-1S) 

We do not know L, but we can relate it to the given Lo: 
The distance between the two events as measured from 
Sam's frame is the ship's proper length Lo. Thus, the distance 
L measured from Sally'S frame must be less than L o, as 
given by Eq. 37-13 (L = Lo/y) for length contraction. 
Substituting Lo/y for L in Eq. 37-1S and then substituting 
Eq. 37-S for y, we find 

Lo/y Lo V(l - (vlc)2 
v = ~ = !:it 

These are Sally is measurements, 
from her reference frame: 

These are Sam's measurements, 
from his reference frame: 

Fig. 37-8 (a) - (b) 
Event 1 occurs when point 
B passes Sally (at point A) 
and event 2 occurs when 
point C passes her. (c) -
(d) Event 1 occurs when 
Sally passes point Band 
event 2 occurs when she 
passes point C. 

Sally 
A • 

(r 
- - - -(;" "Jiii,,:::;::%,~-

!J.t= 3.57 fls 

C B v 

f-- LoIY---1 
Contracted length 

Sally 
A • 

(b) --------------t:,:.J~iml; .... )+~-
C B v 

Sally 
-=>~------

v 
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Solving this equation for v (notice that it is on the left and 
also buried in the Lorentz factor) leads us to 

Loc 
v=~:;:::::::;~==:;::;;:-

V(c At)2 + L5 
(230 m)c 

V(299 792 458 m/s)2(3.57 X 10 6 s)2 + (230 m)2 

= 0.210c. (Answer) 

Thus, the relative speed between Sally and the ship is 21 % 
of the speed of light. 

Note that only the relative motion of Sally and Sam 
matters here; whether either is stationary relative to, say, a 
space station is irrelevant. In Figs. 37-8a and b we took Sally 
to be stationary, but we could instead have taken the ship to 

be stationary, with Sally moving to the left past it. Event 1 is 
again when Sally and point B are aligned (Fig. 37-8c), and 
event 2 is again when Sally and point C are aligned (Fig. 37-
8d). However, we are now using Sam's measurements. So 
the length between the two events in his frame is the proper 
length Lo of the ship and the time interval between them is 
not Sally's measurement At but a dilated time interval I' at. 

Substituting Sam's measurements into Eq. 37-17, we have 

Lo 
v = yat' 

which is exactly what we found using Sally's measurements. 
Thus, we get the same result of v = 0.210c with either set of 
measurements, but we must be careful not to mix the mea­
surements from the two frames. 

Time dilation and length contraction in outrunning a supernova 

Caught by surprise near a supernova, you race away from the 
explosion in your spaceship, hoping to outrun the high-speed 
material ejected toward you. Your Lorentz factor yrelative to 
the inertial reference frame of the local stars is 22.4. 

(a) To reach a safe distance, you figure you need to cover 
9.00 X 1016 m as measured in the reference frame of the local 
stars. How long will the flight take, as measured in that frame? 

From Chapter 2, for constant speed, we know that 

d 
_ distance 

spee -.. I 
tIme mterva 

(37-19) 

From Fig. 37-6, we see that because your Lorentz factor I' 
relative to the stars is 22.4 (large), your relative speed v is 
almost c-so close that we can approximate it as c. Then for 
speed v = c, we must be careful that the distance and the time 
interval in Eq. 37-19 are measured in the same reference frame. 

Calculations: The given distance (9.00 X 1016 m) for the 
length of your travel path is measured in the reference 
frame of the stars, and the requested time interval at is to be 
measured in that same frame. Thus, we can write 

( 
tim~ interval ) = distance relative to stars. 

relatIve to stars c 

Then substituting the given distance, we find that 

(
time interval) 9.00 X 1016 m 

relative to stars 299 792 458 mls 

= 3.00 X 108 S = 9.51 y. (Answer) 

(b) How long does that trip take according to you (in your 
reference frame)? 

1. We now want the time interval measured in a different refer­
ence frame-namely, yours. Thus, we need to transform the 
data given in the reference frame of the stars to your frame. 

2. The given path length of 9.00 X 1016 m, measured in 
the reference frame of the stars, is a proper length Lo, 
because the two ends of the path are at rest in that 
frame. As observed from your reference frame, the 
stars' reference frame and those two ends of the path 
race past you at a relative speed of v = c. 

3. You measure a contracted length Loll' for the path, not 
the proper length Lo. 

Calculations: We can now rewrite Eq. 37-19 as 

( 
tim~ interval) = distance relative to you Loll' 

relatIve to you c c 

Substituting known data, we find 

( 
tim~ interval ) = (9.00 X 1016 m)/22.4 

relatIve to you 299 792 458 mls 

= 1.340 X 107 s = 0.425 y. (Answer) 

In part (a) we found that the flight takes 9.51 y in the refer­
ence frame of the stars. However, here we find that it takes 
only 0.425 y in your frame, due to the relative motion and 
the resulting contracted length of the path. 

~Ths Additional examples, video, and practice available at WileyPLUS 



7" THE LORENTZ TRANSFORMATION 

The Lorentz Transformation 
Figure 37-9 shows inertial reference frame S' moving with speed v relative to 
frame S, in the common positive direction of their horizontal axes (marked x and 
x'). An observer in S reports spacetime coordinates x, y, z, t for an event, and an 
observer in S' reports x', y', Z', t' for the same event. How are these sets of num­
bers related? 

We claim at once (although it requires proof) that the y and z coordinates, 
which are perpendicular to the motion, are not affected by the motion; that is, y = y' 
and z = Z'. Our interest then reduces to the relation between x and x' and that 
between t and t'. 

Prior to Einstein's publication of his special theory of relativity, the four coor­
dinates of interest were assumed to be related by the Galilean transformation 
equations: 

x' = x - vt 

t' = t 

(Galilean transformation equations; 
approximately valid at low speeds). (37-20) 

(These equations are written with the assumption that t = t' = 0 when the origins 
of Sand S' coincide.) You can verify the first equation with Fig. 37-9. The second 
equation effectively claims that time passes at the same rate for observers in both 
reference frames. That would have been so obviously true to a scientist prior to 
Einstein that it would not even have been mentioned. When speed v is small 
compared to c, Eqs. 37-20 generally work well. 

y 
S y' S' 

-> 
v 

Event 
~--vt-_-t-+--_X' 

~----X-+---~ 
Fig.37-9 Tho inertial reference frames: frame 
S' has velocity v relative to frame S. '-------X '-------X' 

We state without proof that the correct transformation equations, which remain 
valid for all speeds up to the speed of light, can be derived from the postulates of 
relativity. The results, called the Lorentz transformation equations* or sometimes 
(more loosely) just the Lorentz transformations, are 

x' = y(x - vt), 

y' = y, 

Z' = z, 
t' = y(t - vx/c2) 

(Lorentz transformation equations; 
valid at all physically possible speeds). 

(37-21) 

(The equations are written with the assumption that t = t' = 0 when the origins 
of Sand S' coincide.) Note that the spatial values x and the temporal values tare 

* You may wonder why we do not call these the Einstein transformation equations (and why not the 
Einstein factor for y). H. A. Lorentz actually derived these equations before Einstein did, but as the 
great Dutch physicist graciously conceded, he did not take the further bold step of interpreting these 
equations as describing the true nature of space and time. It is this interpretation, first made by 
Einstein, that is at the heart of relativity. 

1035 



1036 CHAPTER RELATIVITY 

bound together in the first and last equations. This entanglement of space and 
time was a prime message of Einstein's theory, a message that was long rejected 
by many of his contemporaries. 

It is a formal requirement of relativistic equations that they should reduce to 
familiar classical equations if we let e approach infinity. That is, if the speed of light 
were infinitely great, all finite speeds would be "low" and classical equations would 
never fail. If we let e ~ 00 in Eqs. 37-21, y~ 1 and these equations reduce-as we 
expect-to the Galilean equations (Eqs. 37-20). You should check this. 

Equations 37-21 are written in a form that is useful if we are given x and t and 
wish to find x' and t'. We may wish to go the other way, however. In that case we 
simply solve Eqs. 37-21 for x and t, obtaining 

x = y(x' + vt') and t = y(t' + vx' fe2). (37-22) 

Comparison shows that, starting from either Eqs. 37-21 or Eqs. 37-22, you can find 
the other set by interchanging primed and unprimed quantities and reversing the 
sign of the relative velocity v. (For example, if the S' frame has a positive velocity 
relative to an observer in the S frame as in Fig. 37-9, then the S frame has a nega­
tive velocity relative to an observer in the S' frame.) 

Equations 37-21 and 37-22 relate the coordinates of a single event as seen by 
two observers. Sometimes we want to know not the coordinates of a single event 
but the differences between coordinates for a pair of events. That is, if we label 
our events 1 and 2, we may want to relate 

Ax = X2 - Xl and At = t2 - t1> 

as measured by an observer in S, and 

Ax' = x~ - Xl and At' = t~ - t1, 
as measured by an observer in S'. 

Table 37-2 displays the Lorentz equations in difference form, suitable for 
analyzing pairs of events. The equations in the table were derived by simply substitut­
ing differences (such as Ax and Ax') for the four variables in Eqs.37-21 and 37-22. 

The lorentz Transformation Equations for Pairs of Events 

1. ~x = y(~x' + v M) 
2. M = y(M' + v ~X'/C2) 

1 
y=~===­\/1 - (V/C)2 

1'. ~x' = y(~x - v M) 
2'. M = y(M - v ~X/C2) 

1 

Frame S' moves at velocity v relative to frame S. 

Be careful: When substituting values for these differences, you must be 
consistent and not mix the values for the first event with those for the second 
event. Also, if, say, Ax is a negative quantity, you must be certain to include the 
minus sign in a substitution. 

CHECKPOINT 2 

In Fig. 37-9, frame S' has velocity 0.90c relative to frame S. An observer in frame S' 
measures two events as occurring at the following spacetime coordinates: event Yellow 
at (5.0 m, 20 ns) and event Green at (-2.0 m, 45 ns). An observer in frame S wants to 
find the temporal separation May = ta - ty between the events. (a) Which equation in 
Table 37-2 should be used? (b) Should +0.90c or -0.90c be substituted for v in the 
parentheses on the equation's right side and in the Lorentz factor y? What value 
should be substituted into the (c) first and (d) second term in the parentheses? 
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Some Consequences of the lorentz Equations 
Here we use the equations of Table 37-2 to affirm some of the conclusions that we 
reached earlier by arguments based directly on the postulates. 

Consider Eq. 2 of Table 37-2, 

M = I' (M' + V ~2X' ). (37-23) 

If two events occur at different places in reference frame S' of Fig. 37-9, then 
~x' in this equation is not zero. It follows that even if the events are simultane­
ous in S' (thUS M' = 0), they will not be simultaneous in frame S. (This is in ac­
cord with our conclusion in Section 37-4.) The time interval between the events 
in S will be 

V ~x' 
M = I' -- (simultaneous events in S'). 

c2 

Thus, the spatial separation ~x' guarantees a temporal separation ~t. 

Suppose now that two events occur at the same place in S' (thUS ~x' = 0) but at 
different times (thUS M' ¥= 0). Equation 37-23 then reduces to 

~t = I'M' (eventsinsameplaceinS'). (37-24) 

This confirms time dilation between frames Sand S'. Moreover, because the 
two events occur at the same place in S', the time interval ~t' between them 
can be measured with a single clock, located at that place. Under these con­
ditions, the measured interval is a proper time interval, and we can label it 
Mo as we have previously labeled proper times. Thus, with that label Eq. 
37-24 becomes 

(time dilation), 

which is exactly Eq. 37-9, the time dilation equation. Thus, time dilation is a spe­
cial case of the more general Lorentz equations. 

Consider Eq.l' of Table 37-2, 

~x' = I'(~x - v M). (37-25) 

If a rod lies parallel to the x and x' axes of Fig. 37-9 and is at rest in reference 
frame S' , an observer in S' can measure its length at leisure. One way to do so is 
by subtracting the coordinates of the end points of the rod. The value of ~x' that 
is obtained will be the proper length Lo of the rod because the measurements are 
made in a frame where the rod is at rest. 

Suppose the rod is moving in frame S. This means that ~x can be identified as 
the length L of the rod in frame S only if the coordinates of the rod's end points 
are measured simultaneously- that is, if ~t = O. If we put ~x' = Lo, ~x = L, and 
M = 0 in Eq. 37-25, we find 

L = Lo 
I' 

(length contraction), (37-26) 

which is exactly Eq. 37-13, the length contraction equation. Thus, length contrac­
tion is a special case of the more general Lorentz equations. 
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Lorentz transformations and reversing the sequence of events 

An Earth starship has been sent to check an Earth outpost 
on the planet P1407, whose moon houses a battle group of 
the often hostile Reptulians. As the ship follows a straight­
line course first past the planet and then past the moon, it 
detects a high-energy microwave burst at the Reptulian 
moon base and then, 1.10 s later, an explosion at the Earth 
outpost, which is 4.00 X 108 m from the Reptulian base as 
measured from the ship's reference frame. The Reptulians 
have obviously attacked the Earth outpost, and so the star­
ship begins to prepare for a confrontation with them. 

(a) The speed of the ship relative to the planet and its moon 
is 0.980c. What are the distance and time interval between 
the burst and the explosion as measured in the planet-moon 
frame (and thus according to the occupants of the stations)? 

1. This problem involves measurements made from two 
reference frames, the planet-moon frame and the star­
ship frame. 

2. We have two events: the burst and the explosion. 
3. We need to transform the given data as measured in the 

starship frame to the corresponding data as measured in 
the planet - moon frame. 

Starship frame: Before we get to the transformation, we 
need to carefully choose our notation. We begin with a sketch 
of the situation as shown in Fig. 37-10. There, we have chosen 
the ship's frame S to be stationary and the planet-moon 
frame S' to be moving with positive velocity (rightward). 
(This is an arbitrary choice; we could, instead, have chosen 
the planet-moon frame to be stationary. Then we would re­
draw 11 in Fig. 37-10 as being attached to the S frame and indi­
cating leftward motion; v would then be a negative quantity. 
The results would be the same.) Let subscripts e and b repre­
sent the explosion and burst, respectively. Then the given 
data, all in the unprimed (starship ) reference frame, are 

~x = Xe - Xb = +4.00 X 108 m 

and ~t = te - tb = +1.10 s. 

Here, ~ is a positive quantity because in Fig. 37-10, the coor­
dinate Xe for the explosion is greater than the coordinate Xb for 
the burst; M is also a positive quantity because the time te of 
the explosion is greater (later) than the time tb of the burst. 

Planet-moon frame: We seek ~x' and M' , which we shall 
get by transforming the given S-frame data to the 
planet-moon frame S'. Because we are considering a pair 
of events, we choose transformation equations from Table 
37-2-namely,Eqs.l' and 2': 

~X' = 'Y(~x - v M) (37-27) 

The relative motion alters the time intervals between 
events and maybe even their sequence. 

J-. 
I-L----«e+--+-+-+--x' 

Moon 
(burst) Planet 

(explosion) 

Fig. 37-10 A planet and its moon in reference frame S' move 
rightward with speed v relative to a starship in reference frame S. 

and M' = 'Y (M _ v ~X ). (37-28) 

Here, v = +0.980c and the Lorentz factor is 

1 1 
'Y = = = 5.0252. 

VI - (V/C)2 VI - (+0.980c/C)2 

Equation 37-27 then becomes 

~x' = (5.0252)[4.00 X 108 m - (+0.980c)(1.10s)] 

= 3.86 X 108 m, 

and Eq. 37-28 becomes 

M' = (5.0252{(1.10S) -

= -1.04 s. 

(Answer) 

(+0.980c)(4.00 X 10 8m) ] 
c2 

(Answer) 

(b) What is the meaning of the minus sign in the value for ~t'? 

Reasoning: We must be consistent with the notation we set 
up in part (a). Recall how we originally defined the time in­
terval between burst and explosion: M = te - tb = + 1.10 s. 
To be consistent with that choice of notation, our definition 
of ~t' must be t~ - t;'; thus, we have found that 

~t' = t~ - t;, = -1.04 s. 

The minus sign here tells us that t;, > t~; that is, in the 
planet-moon reference frame, the burst occurred 1.04 s 
after the explosion, not 1.10 s before the explosion as 
detected in the ship frame. 

(c) Did the burst cause the explosion, or vice versa? 

The sequence of events measured in the planet-moon refer­
ence frame is the reverse of that measured in the ship frame. 
In either situation, if there is a causal relationship between 
the two events, information must travel from the location of 
one event to the location of the other to cause it. 
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Checking the speed: Let us check the required speed of 
the information. In the ship frame, this speed is 

_ ~x _ 4.00 X 108 m _ 8 
Vinfo - At - 1.10 s - 3.64 X 10 mis, 

but that speed is impossible because it exceeds c. In the 
planet-moon frame, the speed comes out to be 3.70 X 108 

mis, also impossible. Therefore, neither event could possibly 
have caused the other event; that is, they are unrelated events. 
Thus, the starship should not confront the Reptulians. 

~frus Additional examples, video, and practice available at WileyPLUS 

The Relativity of Velocities 
Here we wish to use the Lorentz transformation equations to compare the veloci­
ties that two observers in different inertial reference frames Sand S' would mea­
sure for the same moving particle. Let S' move with velocity v relative to S. 

Suppose that the particle, moving with constant velocity parallel to the x and 
x' axes in Fig. 37-11, sends out two signals as it moves. Each observer measures 
the space interval and the time interval between these two events. These four 
measurements are related by Eqs.l and 2 of Table 37-2, 

~x = 'Y(~x' + V At') 

and At = 'Y (~t' + v ~:' ). 
If we divide the first of these equations by the second, we find 

~x ~x' + V ~t' 

~t At' + v ~X'IC2' 

Dividing the numerator and denominator of the right side by At', we find 

~x ~x'/~t' + v 
At 1 + v(~x'/~t')/c2' 

However, in the differential limit, ~x/~t is u, the velocity of the particle as mea­
sured in S, and ~x' I~t' is u', the velocity of the particle as measured in S'. Then 
we have, finally, 

u' + v 
u= 

1 + u'vlc2 (relativistic velocity transformation) (37-29) 

as the relativistic velocity transformation equation. This equation reduces to the 
classical, or Galilean, velocity transformation equation, 

u = u' + v (classical velocity transformation), (37-30) 

when we apply the formal test of letting c ---7 00. In other words, Eq. 37-29 is 
correct for all physically possible speeds, but Eq. 37-30 is approximately correct 
for speeds much less than c. 

)['S )[:"s, 
~ Particle 
v C? as measured from S' 

u as measured from S 

x x' 

The speed of the moving 
particle depends on the 
frame. 

Fig. 37-11 Reference frame S' moves with velocity 11 relative to frame S. A particle has 
velocity Tt' relative to reference frame S' and velocity Tt relative to reference frame S. 
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10 Doppler Effect for light 
In Section 17-9 we discussed the Doppler effect (a shift in detected frequency) 
for sound waves traveling in air. For such waves, the Doppler effect depends on 
two velocities-namely, the velocities of the source and detector with respect to 
the air. Air is the medium that transmits the waves. 

That is not the situation with light waves, for they (and other electromagnetic 
waves) require no medium, being able to travel even through vacuum. The 
Doppler effect for light waves depends on only one velocity, the relative velocity 
v between source and detector, as measured from the reference frame of either. 
Let fo represent the propel' frequency of the source- that is, the frequency that is 
measured by an observer in the rest frame of the source. Let f represent the fre­
quency detected by an observer moving with velocity v relative to that rest frame. 
Then, when the direction of v is directly away from the source, 

f1=03 
f= fo\jT+{3 (source and detector separating), (37-31) 

where (3 = vic. When the direction of v is directly toward the source, we must 
change the signs in front of both (3 symbols in Eq. 37 -31. 

For low speeds ((3 q; 1), Eq. 37-31 can be expanded in a power series in (3 and 
approximated as 

(source and detector separating, f3 ~ 1). (37-32) 

The corresponding low-speed equation for the Doppler effect with sound waves 
(or any waves except light waves) has the same first two terms but a different 
coefficient in the third term. Thus, the relativistic effect for low-speed light 
sources and detectors shows up only with the (32 term. 

A police radar unit employs the Doppler effect with microwaves to measure 
the speed v of a car. A source in the radar unit emits a microwave beam at a certain 
(proper) frequency fo along the road. A car that is moving toward the unit inter­
cepts that beam but at a frequency that is shifted upward by the Doppler effect 
due to the car's motion toward the radar unit. The car reflects the beam back to­
ward the radar unit. Because the car is moving toward the radar unit, the detector 
in the unit intercepts a reflected beam that is further shifted up in frequency. The 
unit compares that detected frequency with fo and computes the speed v of the car. 

In astronomical observations of stars, galaxies, and other sources of light, we 
can determine how fast the sources are moving, either directly away from us or 
directly toward us, by measuring the Doppler shift of the light that reaches us. If a 
certain star were at rest relative to us, we would detect light from it with a certain 
proper frequency fo. However, if the star is moving either directly away from us 
or directly toward us, the light we detect has a frequency f that is shifted from fo 
by the Doppler effect. This Doppler shift is due only to the radial motion of the 
star (its motion directly toward us or away from us), and the speed we can deter­
mine by measuring this Doppler shift is only the radial speed v of the star-that 
is, only the radial component of the star's velocity relative to us. 

Suppose a star (or any other light source) moves away from us with a radial 
speed v that is low enough ((3 is small enough) for us to neglect the (32 term in 
Eq. 37-32. Then we have 

f = fo(l (3). (37-33) 
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Because astronomical measurements involving light are usually done in wave­
lengths rather than frequencies, let us replace fwith c/ A and fo with c/ Ao, where A 
is the measured wavelength and Ao is the proper wavelength (the wavelength 
associated withfo). We then have 

c c 
A = ~(1 - (3), 

or A = Ao(l - (3)-1. (37-34) 

Because we assume f3 is small, we can expand (1 - (3)-1 in a power series. 
Doing so and retaining only the first power of f3, we have 

A = Ao(1 + (3), 

A-A 
f3 = o. 

Ao 
or 

Replacing f3with vic and A - Ao with I~Alleads to 

I~AI 
v=--c 

Ao 
(radial speed oflight source, v ~ c). 

(37-35) 

(37-36) 

The difference ~A is the wavelength Doppler shift of the light source. We enclose 
it with an absolute sign so that we always have a magnitude of the shift. 

Equation 37-36 is an approximation that can be applied only when v ~ c. 
Under that condition, Eq. 37-36 can be applied whether the light source is 
moving toward or away from us. If it is moving away from us, then A is longer than 
Ao, ~A is positive, and the Doppler shift is called a red shift. (The term red does 
not mean the detected light is red or even visible. It merely serves as a memory 
device because red is at the long wavelength end of the visible spectrum. Thus A is 
longer than Ao.) If the light source is moving toward us, then A is shorter than Ao, 
~A is negative, and the Doppler shift is called a blue shift. 

CHECKPOINT 3 

The figure shows a source that emits 
light of proper frequency fo while moving 
directly toward the right with speed cf4 as 
measured from reference frame S. The fig­
ure also shows a light detector, which 
measures a frequency f > fo for the emit­
ted light. (a) Is the detector moving to­
ward the left or the right? (b) Is the speed of the detector as measured from reference 
frame S more than cf4, less than cf4, or equal to cf4? 

So far, we have discussed the Doppler effect, here and in Chapter 17, only for 
situations in which the source and the detector move either directly toward or 
directly away from each other. Figure 37-12 shows a different arrangement, in 
which a source S moves past a detector D. When S reaches point P, the velocity of 
S is perpendicular to the line joining P and D, and at that instant S is moving 
neither toward nor away from D. If the source is emitting sound waves of fre­
quency fo, D detects that frequency (with no Doppler effect) when it intercepts 
the waves that were emitted at point P. However, if the source is emitting light 
waves, there is still a Doppler effect, called the transverse Doppler effect. In this sit­
uation, the detected frequency of the light emitted when the source is at point Pis 

f = fa ~ (transverse Doppler effect). (37-37) 

Fig. 37-12 A light source S travels with 
velocity v past a detector at D. The special 
theory of relativity predicts a transverse 
Doppler effect as the source passes 
through point P, where the direction of 
travel is perpendicular to the line extend­
ing through D. Classical theory predicts 
no such effect. 
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For low speeds (f3 ~ 1), Eq. 37-37 can be expanded in a power series in f3 and 
approximated as 

(low speeds). (37-38) 

Here the first term is what we would expect for sound waves, and again the 
relativistic effect for low-speed light sources and detectors appears with the f32 term. 

In principle, a police radar unit can determine the speed of a car even when 
the path of the radar beam is perpendicular (transverse) to the path of the car. 
However, Eq. 37-38 tells us that because f3 is small even for a fast car, the rela­
tivistic term f32/2 in the transverse Doppler effect is extremely small. Thus, f = fo 
and the radar unit computes a speed of zero. 

The transverse Doppler effect is really another test of time dilation. If we 
rewrite Eq. 37-37 in terms of the period T of oscillation of the emitted light wave 
instead of the frequency, we have, because T = Ilf, 

To 
T = -VI _ {32 = yTo, (37-39) 

in which To (= lifo) is the proper period of the source. As comparison with 
Eq. 37-9 shows, Eq. 37-39 is simply the time dilation formula because a period is 
a time interval. 

11 A New Look at Momentum 
Suppose that a number of observers, each in a different inertial reference frame, 
watch an isolated collision between two particles. In classical mechanics, we have 
seen that-even though the observers measure different velocities for the col­
liding particles-they all find that the law of conservation of momentum holds. 
That is, they find that the total momentum of the system of particles after the 
collision is the same as it was before the collision. 

How is this situation affected by relativity? We find that if we continue to 
define the momentum fJ of a particle as mv, the product of its mass and its velocity, 
total momentum is not conserved for the observers in different inertial frames. We 
have two choices: (1) Give up the law of conservation of momentum or (2) see 
whether we can refine our definition of momentum in some new way so that the 
law of conservation of momentum still holds. The correct choice is the second one. 

Consider a particle moving with constant speed v in the positive direction of 
an x axis. Classically, its momentum has magnitude 

ilx 
p = mv = m--

Llt 
(classical momentum), (37-40) 

in which ilx is the distance it travels in time Llt. To find a relativistic expression for 
momentum, we start with the new definition 

ilx 
p = m ilt

o
' 

Here, as before, ilx is the distance traveled by a moving particle as viewed by an 
observer watching that particle. However, ilto is the time required to travel that 
distance, measured not by the observer watching the moving particle but by 
an observer moving with the particle. The particle is at rest with respect to this 
second observer; thus that measured time is a proper time. 

Using the time dilation formula, Llt = y ilto (Eq. 37-9), we can then write 

ilx ilx Llt ilx 
p = m Llto = m Tt Llto = m Llt y. 
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However, since I1xll1tis just the particle velocity v, we have 

p = ymv (momentum). (37-41) 

Note that this differs from the classical definition of Eq. 37-40 only by the 
Lorentz factor y. However, that difference is important: Unlike classical momen­
tum, relativistic momentum approaches an infinite value as v approaches c. 

We can generalize the definition ofEq. 37-41 to vector form as 

-p = ymV' (momentum). (37-42) 

This equation gives the correct definition of momentum for all physically possible 
speeds. For a speed much less than c, it reduces to the classical definition of 
momentum (-p = mV'). 

A New look at Energy 

The science of chemistry was initially developed with the assumption that in 
chemical reactions, energy and mass are conserved separately. In 1905, Einstein 
showed that as a consequence of his theory of special relativity, mass can be con­
sidered to be another form of energy. Thus, the law of conservation of energy is 
really the law of conservation of mass - energy. 

In a chemical reaction (a process in which atoms or molecules interact), the 
amount of mass that is transferred into other forms of energy (or vice versa) is 
such a tiny fraction of the total mass involved that there is no hope of measuring 
the mass change with even the best laboratory balances. Mass and energy truly 
seem to be separately conserved. However, in a nuclear reaction (in which nuclei 
or fundamental particles interact), the energy released is often about a million 
times greater than in a chemical reaction, and the change in mass can easily 
be measured. 

An object's mass m and the equivalent energy Eo are related by 

(37-43) 

which, without the subscript 0, is the best-known science equation of all time. This 
energy that is associated with the mass of an object is called mass energy or rest 
energy. The second name suggests that Eo is an energy that the object has even 
when it is at rest, simply because it has mass. (If you continue your study of 
physics beyond this book, you will see more refined discussions of the relation 
between mass and energy. You might even encounter disagreements about just 
what that relation is and means.) 

Table 37-3 shows the (approximate) mass energy, or rest energy, of a few 
objects. The mass energy of, say, a U.S. penny is enormous; the equivalent amount 

The Energy Equivalents of a Few Objects 

Object 

Electron 
Proton 
Uranium atom 
Dust particle 

u.s. penny 

Mass (kg) 

= 9.11 X 10-31 

= 1.67 X 10-27 

= 3.95 X 10-25 

= 1 X 10-13 

= 3.1 X 10-3 

Energy Equivalent 

= 8.19 X 10-14 J 

= 1.50 X 10-10 J 

= 3.55 X 10-8 J 

=lX104 J 
= 2.8 X 1014 J 

(=511keV) 
(= 938 MeV) 
(= 225 OeV) 
(= 2 kcal) 
(= 78 OW· h) 

1043 
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of electrical energy would cost well over a million dollars. On the other hand, 
the entire annual U.S. electrical energy production corresponds to a mass of only 
a few hundred kilograms of matter (stones, burritos, or anything else). 

In practice, SI units are rarely used with Eq. 37-43 because they are too large 
to be convenient. Masses are usually measured in atomic mass units, where 

1 u = 1.66053886 X 10-27 kg, (37-44) 

and energies are usually measured in electron-volts or multiples of it, where 

1 eV = 1.602176462 X 10-19 J. (37-45) 

In the units of Eqs. 37-44 and 37 -45, the multiplying constant c2 has the values 

c2 = 9.31494013 X 108 eV/u = 9.31494013 X 105 keV/u 

= 931.494013 MeV/u. (37-46) 

Equation 37-43 gives, for any object, the mass energy Eo that is associated with 
the object's mass m, regardless of whether the object is at rest or moving. If the 
object is moving, it has additional energy in the form of kinetic energy K. If we 
assume that the object's potential energy is zero, then its total energy E is the sum 
of its mass energy and its kinetic energy: 

E = Eo + K = mc 2 + K. (37-47) 

Although we shall not prove it, the total energy E can also be written as 

(37-48) 

where yis the Lorentz factor for the object's motion. 
Since Chapter 7, we have discussed many examples involving changes in the 

total energy of a particle or a system of particles. However, we did not include 
mass energy in the discussions because the changes in mass energy were either 
zero or small enough to be neglected. The law of conservation of total energy still 
applies when changes in mass energy are significant. Thus, regardless of what 
happens to the mass energy, the following statement from Section 8-8 is still true: 

The total energy E of an isolated system cannot change. 

For example, if the total mass energy of two interacting particles in an isolated 
system decreases, some other type of energy in the system must increase because 
the total energy cannot change. 

In a system undergoing a chemical or nuclear reaction, a change in the total 
mass energy of the system due to the reaction is often given as a Q value. The 
Q value for a reaction is obtained from the relation 

(
system's initial) (system's final ) 

total mass energy = total mass energy + Q 

or (37-49) 

Using Eq. 37-43 (Eo = mc2
), we can rewrite this in terms of the initial total mass 

Mi and the final total mass Mf as 

MiC2 = Mf c2 + Q 

or (37-50) 

where the change in mass due to the reaction is 11M = Mf - Mi' 
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If a reaction results in the transfer of energy from mass energy to, say, kinetic 
energy of the reaction products, the system's total mass energy Eo (and total 
mass M) decreases and Q is positive. If, instead, a reaction requires that energy 
be transferred to mass energy, the system's total mass energy Eo (and its total 
mass M) increases and Q is negative. 

For example, suppose two hydrogen nuclei undergo a fusion reaction in 
which they join together to form a single nucleus and release two particles in the 
process. The total mass energy (and total mass) of the resultant single nucleus 
and two released particles is less than the total mass energy (and total mass) of 
the initial hydrogen nuclei. Thus, the Q of the fusion reaction is positive, and 
energy is said to be released (transferred from mass energy) by the reaction. 
This release is important to you because the fusion of hydrogen nuclei in the Sun 
is one part of the process that results in sunshine on Earth and makes life here 
possible. 

In Chapter 7 we defined the kinetic energy K of an object of mass m moving at 
speed v well below c to be 

(37-51) 

However, this classical equation is only an approximation that is good enough 
when the speed is well below the speed of light. 

Let us now find an expression for kinetic energy that is correct for all physi­
cally possible speeds, including speeds close to c. Solving Eq. 37-47 for K and then 
substituting for E from Eq. 37 -48 lead to 

K = E - me2 = yme2 - me2 

= me2(y - 1) (kinetic energy), (37-52) 

where y (= 1/\11 - (vle)2) is the Lorentz factor for the object's motion. 
Figure 37-13 shows plots of the kinetic energy of an electron as calculated 

with the correct definition (Eq. 37-52) and the classical approximation (Eq. 
37-51), both as functions of vIe. Note that on the left side of the graph the two 
plots coincide; this is the part of the graph-at lower speeds-where we have 
calculated kinetic energies so far in this book. This part of the graph tells us that 
we have been justified in calculating kinetic energy with the classical expression 
ofEq. 37-51. However, on the right side of the graph-at speeds near e-the two 
plots differ significantly. As vIe approaches 1.0, the plot for the classical definition 
of kinetic energy increases only moderately while the plot for the correct defini­
tion of kinetic energy increases dramatically, approaching an infinite value as vIe 
approaches 1.0. Thus, when an object's speed v is near e, we must use Eq. 37-52 to 
calculate its kinetic energy. 

Figure 37-13 also tells us something about the work we must do on an object 
to increase its speed by, say, 1 %. The required work W is equal to the resulting 
change !::..K in the object's kinetic energy. If the change is to occur on the low­
speed, left side of Fig. 37-13, the required work might be modest. However, if the 
change is to occur on the high-speed, right side of Fig. 37-13, the required work 
could be enormous because the kinetic energy K increases so rapidly there with 
an increase in speed v. To increase an object's speed to e would require, in princi­
ple, an infinite amount of energy; thus, doing so is impossible. 

The kinetic energies of electrons, protons, and other particles are often stated 
with the unit electron-volt or one of its multiples used as an adjective. For exam­
ple, an electron with a kinetic energy of 20 MeV may be described as a 20 Me V 
electron. 

1.5 

0.5 

o 

As vic approaches 1.0, 
the actual kinetic energy 
approaches infinity. 

I---K=mJ2[ 1 -1] 
L- ~1- (vlc)2 

J 
I 

-
-

/ ./ 
~ 

~ K=~mv2 

o 0.2 0.4 0.6 0.8 1.0 
vic 

Fig.37-13 The relativistic (Eq. 37-52) 
and classical (Eq. 37-51) equations for the 
kinetic energy of an electron, plotted as a 
function of vic, where v is the speed of the 
electron and c is the speed of light. Note 
that the two curves blend together at low 
speeds and diverge widely at high speeds. 
Experimental data (at the X marks) show 
that at high speeds the relativistic curve 
agrees with experiment but the classical 
curve does not. 
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This might help you to 

remember the relat:0\ 

~J~I 
~e \1 

I, IIlc
2 -I 

Fig.37-14 A useful memory diagram 
for the relativistic relations among the 
total energy E, the rest energy or mass 
energy me2, the kinetic energy K, and the 
momentum magnitude p. 

In classical mechanics, the momentum p of a particle is mv and its kinetic energy 
K is ~mv2. If we eliminate v between these two expressions, we find a direct rela­
tion between momentum and kinetic energy: 

p2 = 2Km (classical). (37-53) 

We can find a similar connection in relativity by eliminating v between the 
relativistic definition of momentum (Eq. 37-41) and the relativistic definition of 
kinetic energy (Eq. 37-52). Doing so leads, after some algebra, to 

(37-54) 

With the aid of Eq. 37-47, we can transform Eq. 37-54 into a relation between the 
momentum p and the total energy E of a particle: 

(37-55) 

The right triangle of Fig. 37-14 can help you keep these useful relations in mind. 
You can also show that, in that triangle, 

sin e = f3 and cos e = 1/y. (37-56) 

With Eq. 37-55 we can see that the product pe must have the same unit as 
energy E; thus, we can express the unit of momentum p as an energy unit divided 
bye, usually as MeV/e or Ge Vie in fundamental particle physics. 

CHECKPOINT 4 

Are (a) the kinetic energy and (b) the total energy of a 1 GeV electron more than, 
less than, or equal to those of a 1 Ge V proton? 

Energy and momentum of a relativistic electron 

(a) What is the total energy E of a 2.53 MeV electron? E = 0.511 MeV + 2.53 MeV = 3.04 MeV. (Answer) 

(b) What is the magnitude p of the electron's momentum, 
in the unit MeV/e? (Note that e is the symbol for the speed 
of light and not itself a unit.) From Eq. 37-47, the total energy E is the sum of the electron's 

mass energy (or rest energy) me2 and its kinetic energy: 

E = me2 + 1(, (37-57) 

Calculations: The adjective "2.53 Me V" in the problem 
statement means that the electron's kinetic energy is 2.53 
MeV. To evaluate the electron's mass energy me2, we substi­
tute the electron's mass m from Appendix B, obtaining 

me2 = (9.109 X 10-31 kg)(299 792 458 m/s)2 

= 8.187 X 10-14 J. 

Then dividing this result by 1.602 X 10-13 J/MeV gives us 
0.511 MeV as the electron's mass energy (confirming the 
value in Table 37-3). Equation 37-57 then yields 

We can find p from the total energy E and the mass energy 
me2 via Eq. 37-55, 

Calculations: Solving for pe gives us 

pe = Y E2 - (me2)2 

= Y(3.04 MeV)2 - (0.511 MeV? = 3.00 MeV. 

Finally, dividing both sides by e we find 

p = 3.00 MeV/e. (Answer) 

_f~s Additional examples, video, and practice available at WileyPLUS 
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Energy and an astounding discrepancy in travel time 

The most energetic proton ever detected in the cosmic rays 
coming to Earth from space had an astounding kinetic 
energy of 3.0 X 1020 e V (enough energy to warm a teaspoon 
of water by a few degrees). 

(a) What were the proton's Lorentz factor yand speed v 
(both relative to the ground-based detector)? 

(1) The proton's Lorentz factor y relates its total energy E 
to its mass energy mc2 via Eq. 37-48 (E = ymc2). (2) The 
proton's total energy is the sum of its mass energy mc2 and 
its (given) kinetic energy K. 

Calculations: Putting these ideas together we have 

y = ~ = mc
2 

+ K = 1 + ~ (37-58) 
mc2 mc2 mc2 ' 

From Table 37-3, the proton's mass energy mc2 is 938 MeV. 
Substituting this and the given kinetic energy into Eq. 37-58, 
we obtain 

3.0 X 1020 eV 
y = 1 + 938 X 106 eV 

= 3.198 X 1011 = 3.2 X 1011. (Answer) 

This computed value for yis so large that we cannot use 
the definition of y (Eq. 37-8) to find v. Try it; your calculator 
will tell you that [3 is effectively equal to 1 and thus that v is 
effectively equal to c. Actually, v is almost c, but we want 
a more accurate answer, which we can obtain by first solving 
Eq. 37-8 for 1 - [3. To begin we write 

1 1 1 
y = V1={32 = -V~(=l =-=(3)=(1=+=f3=-) = V2(1 - (3)' 

where we have used the fact that [3 is so close to unity that 
1 + [3 is very close to 2. (We can round off the sum of two 
very close numbers but not their difference.) The velocity 
we seek is contained in the 1 - [3 term. Solving for 1 - [3 
then yields 

1- __ 1__ 1 
f3 - 2y2 - (2)(3.198 X 1011)2 

= 4.9 X 10-24 = 5 X 10-24 • 

Thus, [3 = 1 - 5 X 10-24 

and, since v = [3c, 

v = 0.999999999999999999999 995c. (Answer) 

(b) Suppose that the proton travels along a diameter of the 
Milky Way galaxy (9.8 X 104 ly). Approximately how long 
does the proton take to travel that diameter as measured 
from the common reference frame of Earth and the 
Galaxy? 

Reasoning: We just saw that this ultrarelativistic proton is trav­
eling at a speed barely less than c. By the definition of light-year, 
light takes 1 y to travel a distance of 11y, and so light should take 
9.8 X 104 y to travel 9.8 X lO4ly, and this proton should take al­
most the same time. Thus, from our Earth-Milky Way refer­
ence frame, the proton's trip takes 

D.t = 9.8 X 104 y. (Answer) 

(c) How long does the trip take as measured in the reference 
frame of the proton? 

1. This problem involves measurements made from two 
(inertial) reference frames: one is the Earth - Milky Way 
frame and the other is attached to the proton. 

2. This problem also involves two events: the first is when 
the proton passes one end of the diameter along the 
Galaxy, and the second is when it passes the opposite 
end. 

3. The time interval between those two events as measured 
in the proton's reference frame is the proper time inter­
val D.to because the events occur at the same location in 
that frame-namely, at the proton itself. 

4. We can find the proper time interval D.to from the time 
interval D.t measured in the Earth - Milky Way frame by 
using Eq. 37-9 (D.t = y D.to) for time dilation. (Note that 
we can use that equation because one of the time mea­
sures is a proper time. However, we get the same rela­
tion if we use a Lorentz transformation.) 

Calculation: Solving Eq. 37-9 for D.to and substituting y 
from (a) and D.t from (b), we find 

D.t 9.8 X 104 Y 
D.to = Y = 3.198 X 1011 

= 3.06 X 10-7 Y = 9.7 s. (Answer) 

In our frame, the trip takes 98 000 y. In the proton's frame, it 
takes 9.7 s! As promised at the start of this chapter, relative 
motion can alter the rate at which time passes, and we have 
here an extreme example. 

Additional examples, video, and practice available at WileyPLUS 
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The Postulates Einstein's special theory of relativity is based 
on two postulates: 

1. The laws of physics are the same for observers in all inertial 
reference frames. No one frame is preferred over any other. 

2. The speed of light in vacuum has the same value c in all 
directions and in all inertial reference frames. 

The speed of light c in vacuum is an ultimate speed that cannot be 
exceeded by any entity carrying energy or information. 

Coordinates of an Event Three space coordinates and one 
time coordinate specify an event. One task of special relativity is to 
relate these coordinates as assigned by two observers who are in 
uniform motion with respect to each other. 

Simultaneous Events If two observers are in relative 
motion, they will not, in general, agree as to whether two events 
are simultaneous. If one of the observers finds two events at differ­
ent locations to be simultaneous, the other will not, and conversely. 
Simultaneity is not an absolute concept but a relative one, depend­
ing on the motion of the observer. The relativity of simultaneity is a 
direct consequence of the finite ultimate speed c. 

Time Dilation If two successive events occur at the same place 
in an inertial reference frame, the time interval Alo between them, 
measured on a single clock where they occur, is the proper time be­
tween the events. Observers in frames moving relative to that frame 
will measure a larger value for this interval. For an observer moving 
with relative speed v, the measured time interval is 

Alo ilto 
ilt = ----::::==== 

Vi - (vlc)2 ~ 

= y Alo (time dilation). (37-7 to 37-9) 

Here f3 = vic is the speed parameter and y = 1/~ is the 
Lorentz factor. An important result of time dilation is that moving 
clocks run slow as measured by an observer at rest. 

Length Contraction The length Lo of an object measured by an 
observer in an inertial reference frame in which the object is at rest 
is called its proper length. Observers in frames moving relative to that 
frame and parallel to that length will measure a shorter length. For an 
observer moving with relative speed v, the measured length is 

.~ Lo L = Lo V 1 - f32 = -
Y 

(length contraction). (37-13) 

The Lorentz Transformation The Lorentz transformation 
equations relate the spacetime coordinates of a single event as 
seen by observers in two inertial frames, Sand S', where S' is mov­
ing relative to S with velocity v in the positive x and x' direction. 
The four coordinates are related by 

x' = y(x - vt), 

y' = y, 

Z' = z, 
t' = y(t - vxlc2) 

(37-21) 

Relativity of Velocities When a particle is moving with speed 
u' in the positive x' direction in an inertial reference frame S' that 
itself is moving with speed v parallel to the x direction of a second 
inertial frame S, the speed u of the particle as measured in S is 

u' + V 
u= 

1 + u'vlc2 (relativistic velocity). (37-29) 

Relativistic Doppler Effect If a source emitting light waves 
of frequency fo moves directly away from a detector with relative 
radial speed v (and speed parameter f3 = vic), the frequency fmea­
sured by the detector is 

f1=73 
f= to yT+{3' (37-31) 

The motion results in a decrease in the detected frequency and (as 
more commonly measured) an increase in the wavelength (red 
shift). If the source moves directly toward the detector, the signs in 
Eq. 37-31 are reversed. Now the motion results in an increase in 
frequency and a decrease in wavelength (blue shift). 

For astronomical observations, the Doppler effect is measured 
in wavelengths. For speeds much less than c, Eq. 37-31 leads to 

lilAI 
v=--c 

Ao ' 
(37-36) 

where ilA (= A - Ao) is the Doppler shift in wavelength due to the 
motion. 

Transverse Doppler Effect If the relative motion of the light 
source is perpendicular to a line joining the source and detector, 
the Doppler frequency formula is 

f = to ~. (37-37) 

This transverse Doppler effect is due to time dilation. 

Momentum and Energy The following definitions of linear 
momentum p, kinetic energy K, and total energy E for a particle of 
mass m are valid at any physically possible speed: 

p= ymv 
E = mc2 + K = ymc2 

K=mc2(y-l) 

(momentum), 

(total energy), 

(kinetic energy). 

(37-42) 

(37-47,37-48) 

(37-52) 

Here y is the Lorentz factor for the particle's motion, and mc2 is 
the mass energy, or rest energy, associated with the mass of the par­
ticle. These equations lead to the relationships 

and 

(pc)2 = K2 + 2Kmc2, 

E2 = (pC)2 + (mc2)2. 

(37-54) 

(37-55) 

When a system of particles undergoes a chemical or nuclear 
reaction, the Q of the reaction is the negative of the change in the 
system's total mass energy: 

(37-50) 

where M j is the system's total mass before the reaction and Mf is its 
total mass after the reaction. 



A rod is to move at constant 
speed v along the x axis of reference 
frame S, with the rod's length parallel 
to that axis. An observer in frame S is 
to measure the length L of the rod. 
Which of the curves in Fig. 37-15 best 
gives length L (vertical axis of the 
graph) versus speed parameter f3? 

Figure 37-16 shows a ship (at­
tached to reference frame S') pass- 0 

ing us (standing in reference frame 
S). A proton is fired at nearly the 
speed of light along the length of the 
ship, from the front to the rear. (a) Is 

0.2 0.4 

f3 
0.6 

Fig. 37-15 

Questions 1 and 3. 

0.8 

the spatial separation !lX' between the point at which the proton is 
fired and the point at which it hits the ship's rear wall a positive or 
negative quantity? (b) Is the temporal separation M' between 
those events a positive or negative quantity? 

s' Proton------.... 

.lli-__________________ AL-L _____ x' 

Fig. 37-16 Question 2 and Problem 68. 

Reference frame S' is to pass reference frame S at speed v 
along the common direction of the x' and x axes, as in Fig. 37-9.An 
observer who rides along with frame S' is to count off 25 s on his 
wristwatch. The corresponding time interval !It is to be measured 
by an observer in frame S. Which of the curves in Fig. 37-15 best 
gives M (vertical axis of the graph) versus speed parameter f3? 
4 Figure 37-17 shows two clocks in sta­
tionary frame S' (they are synchronized 
in that frame) and one clock in moving 
frame S. Clocks C, and C; read zero S 
when they pass each other. When clocks 
C, and C2 pass each other, (a) which 
clock has the smaller reading and (b) 
which clock measures a proper time? 

Fig.37-17 Question 4. 
Figure 37-18 shows two clocks in 

stationary frame S (they are synchronized in 
that frame) and one clock in moving frame 
S'. Clocks C1 and C; read zero when they pass 
each other. When clocks C; and C2 pass each S 

other, (a) which clock has the smaller reading 
and (b) which clock measures a proper time? 

Sam leaves Venus in a spaceship headed to 
Mars and passes Sally, who is on Earth, with a 
relative speed of O.5e. (a) Each measures the 
Venus-Mars voyage time. Who measures a 

Fig. 37-18 
Question 5. 

proper time: Sam, Sally, or neither? (b) On the way, Sam sends a pulse 
of light to Mars. Each measures the travel time of the pulse. Who mea­
sures a proper time: Sam, Sally, or neither? 

The plane of clocks and measuring rods in Fig. 37-19 is like that 
in Fig. 37-3. The clocks along the x axis are separated (center to cen-
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ter) by 1 light-second, as are the )' 

clocks along the y axis, and all the B~i'J=i~H:R 
clocks are synchronized via the 
procedure described in Section 37-
3. When the initial synchronizing 
signal of t = 0 from the origin 
reaches (a) clock A, (b) clock B, 
and (c) clock C, what initial time is 
then set on those clocks? An event z 

occurs at clock A when it reads 10 Fig.37-19 Question 7. 

s. (d) How long does the signal of 
that event take to travel to an observer stationed at the origin? (e) 
What time does that observer assign to the event? 

The rest energy and total energy, respec­
tively, of three particles, expressed in terms 
of a basic amount A are (1) A, 2A; (2) A, 
3A; (3) 3A, 4A. Without written calculation, 
rank the particles according to their (a) 
mass, (b) kinetic energy, (c) Lorentz factor, 
and (d) speed, greatest first. 

Figure 37-20 shows the triangle of 
Fig 37-14 for six particles; the slanted lines 2 
and 4 have the same length. Rank the parti­
cles according to (a) mass, (b) momentum 
magnitUde, and (c) Lorentz factor, greatest 
first. (d) Identify which two particles have 
the same total energy. (e) Rank the three 

3 

4 

Fig. 37-20 

Question 9. 

lowest-mass particles according to kinetic energy, greatest first. 

6 

While on board a starship, you intercept signals from four shut­
tle craft that are moving either directly toward or directly away from 
you. The signals have the same proper frequency fo. The speed and 
direction (both relative to you) of the shuttle craft are (a) 0.3e to­
ward, (b) 0.6e toward, (c) 0.3e away, and (d) 0.6e away. Rank the 
shuttle craft according to the frequency you receive, greatest first. 

Figure 37-21 shows one of four star cruisers that are in a race. 
As each cruiser passes the starting line, a shuttle craft leaves the 
cruiser and races toward the finish line. You, judging the race, are 
stationary relative to the starting and finish lines. The speeds Vc of 
the cruisers relative to you and the speeds Vs of the shuttle craft rel­
ative to their respective starships are, in that order, (1) 0.70e, OAOe; 
(2) OAOe, 0.70e; (3) 0.20e, 0.90e; (4) 0.50e, 0.60e. (a) Rank the shut­
tle craft according to their speeds relative to you, greatest first. (b) 
Rank the shuttle craft according to the distances their pilots mea­
sure from the starting line to the finish line, greatest first. (c) Each 
starship sends a signal to its shuttle craft at a certain frequency fo as 
measured on board the starship. Rank the shuttle craft according 
to the frequencies they detect, greatest first. 

I 
I 
I Starting line 
I 

Fig. 37-21 

Finish line 

Question 11. 
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Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign 

SSM Worked-out solution available in Student Solutions Manual 

Number of dots indicates level of problem difficulty 

WWW Worked-out solution is at 

IlW Interactive solution is at 
http://www.wiley.com/college/halliday 

Additional information available in The Flying Circus of Physics and at flyingcircusofphysics.com 

The Relativity of Time 
The mean lifetime of stationary muons is measured to be 2.2000 

jLs. The mean lifetime of high-speed muons in a burst of cosmic rays 
observed from Earth is measured to be 16.000 jLS. To five significant 
figures, what is the speed parameter (3 of these cosmic-ray muons 
relative to Earth? 

To eight significant figures, what is speed parameter (3 if the 
Lorentz factor 'Y is (a) 1.010 000 0, (b) 10.000 000, (c) 100.000 00, 
and (d) 1000.000 a? 

You wish to make a round trip from Earth in a spaceship, 
traveling at constant speed in a straight line for exactly 6 months 
(as you measure the time interval) and then returning at the same 
constant speed. You wish further, on your return, to find Earth as it 
will be exactly 1000 years in the future. (a) To eight significant fig­
ures, at what speed parameter (3 must you travel? (b) Does it mat­
ter whether you travel in a straight line on your journey? 

(Come) baek to the future. Suppose that a father is 20.00 y 
older than his daughter. He wants to travel outward from Earth for 
2.000 y and then back to Earth for another 2.000 y (both intervals 
as he measures them) such that he is then 20.00 y younger than his 
daughter. What constant speed parameter (3 (relative to Earth) is 
required for the trip? 

IlW An unstable high-energy particle enters a detector and 
leaves a track of length 1.05 mm before it decays. Its speed relative 
to the detector was 0.992e. What is its proper lifetime? That is, how 
long would the particle have lasted before decay had it been at rest 
with respect to the detector? 

Reference frame S' is to pass reference frame S at speed v 
along the common direction of the x' and x axes, as in Fig. 37-9. An 
observer who rides along with frame S' is to count off a certain 
time interval on his wristwatch. The corresponding time interval !:..t 
is to be measured by an observer in frame S. Figure 37-22 gives !:..t 
versus speed parameter (3 for a range of values for (3. The vertical 
axis scale is set by !:..ta = 14.0 s. What is interval !:..t if v = 0.98e? 

o 

I 
I 

Fig. 37-22 Problem 6. 

The premise of the Planet of the Apes movies and book is that 
hibernating astronauts travel far into Earth's future, to a time 
when human civilization has been replaced by an ape civilization. 
Considering only special relativity, determine how far into Earth's 

future the astronauts would travel if they slept for 120 y while trav­
eling relative to Earth with a speed of 0.9990e, first outward from 
Earth and then back again. 

The Relativity of Length 
An electron of (3 = 0.999987 moves along the axis of an evac­

uated tube that has a length of 3.00 m as measured by a laboratory 
observer S at rest relative to the tube. An observer S' who is at rest 
relative to the electron, however, would see this tube moving with 
speed v (= (3e). What length would observer S' measure for the tube? 

·9 SSM A spaceship of rest length 130 m races past a timing 
station at a speed of 0.740e. (a) What is the length of the spaceship 
as measured by the timing station? (b) What time interval will the 
station clock record between the passage of the front and back 
ends ofthe ship? 

·10 A meter stick in frame S' makes an angle of 30° with the x' 
axis. If that frame moves parallel to the x axis of frame S with 
speed 0.90e relative to frame S, what is the length of the stick as 
measured from S? 

A rod lies parallel to the x axis of reference frame S, moving 
along this axis at a speed of 0.630e. Its rest length is 1.70 m. What 
will be its measured length in frame S? 

··12 The length of a spaceship is measured to be exactly half its 
rest length. (a) To three significant figures, what is the speed para­
meter (3 of the spaceship relative to the observer's frame? (b) By 
what factor do the spaceship's clocks run slow relative to clocks in 
the observer's frame? 

A space traveler takes off from Earth and moves at 
speed 0.9900e toward the star Vega, which is 26.00 ly distant. How 
much time will have elapsed by Earth clocks (a) when the traveler 
reaches Vega and (b) when Earth observers receive word from the 
traveler that she has arrived? (c) How much older will Earth ob­
servers calculate the traveler to be (measured from her frame) 
when she reaches Vega than she was when she started the trip? 

"14 A rod is to move at constant speed v along the x axis of refer­
ence frame S, with the rod's length parallel to that axis. An observer 
in frame S is to measure the length L of the rod. Figure 37-23 gives 
length L versus speed parameter (3 for a range of values for (3. The 
vertical axis scale is set by La = 1.00 m. What is L if v = 0.95e? 

Fig.37-23 Problem 14. 



The center of our Milky Way galaxy is about 23 000 Iy 
away. (a) To eight significant figures, at what constant speed para­
meter would you need to travel exactly 23 000 Iy (measured in the 
Galaxy frame) in exactly 30 y (measured in your frame)? (b) 
Measured in your frame and in light-years, what length of the 
Galaxy would pass by you during the trip? 

Some Consequences of the Lorentz Equations 

Observer S reports that an event occurred on the x axis of his 
reference frame at x = 3.00 X 108 m at time t = 2.50 s. Observer S' 
and her frame are moving in the positive direction of the x axis at a 
speed of 0.400c. Further, x = x' = 0 at t = t' = O. What are the (a) 
spatial and (b) temporal coordinate of the event according to S'? If 
S' were, instead, moving in the negative direction of the x axis, what 
would be the (c) spatial and (d) temporal coordinate of the event 
according to S'? 

SSM www In Fig. 37-9, the origins of the two frames 
coincide at t = t' = 0 and the relative speed is 0.950c. Two mi­
crometeorites collide at coordinates x = 100 km and t = 200 J.LS 
according to an observer in frame S. What are the (a) spatial and 
(b) temporal coordinate of the collision according to an observer 
in frame S'? 

8 Inertial frame S' moves at a speed of 0.60c with respect to 
frame S (Fig. 37-9). Further, x = x' = 0 at t = t' = 0.1\\10 events are 
recorded. In frame S, event 1 occurs at the origin at t = 0 and event 
2 occurs on the x axis at x = 3.0 km at t = 4.0 J.LS. According to ob­
server S', what is the time of (a) event 1 and (b) event 2? (c) Do the 
two observers see the two events in the same sequence or the re­
verse sequence? 

An experimenter arranges to trigger two flashbulbs 
simultaneously, producing a big flash located at the origin of his 
reference frame and a small flash at x = 30.0 km. An observer 
moving at a speed of 0.250c in the positive direction of x also views 
the flashes. (a) What is the time interval between them according 
to her? (b) Which flash does she say occurs first? 

As in Fig. 37-9, reference frame S' passes reference 
frame S with a certain velocity. Events 1 and 2 are to have a certain 
temporal separation t:J.t' according to the S' observer. However, 
their spatial separation /lx ' according to that observer has not 
been set yet. Figure 37-24 gives their temporal separation t:J.t ac­
cording to the S observer as a function of /lx ' for a range of /lx ' 
values. The vertical axis scale is set by Ma = 6.00 J.LS. What is M'? 

!1x' (m) 

Fig. 37-24 Problem 20. 

Relativistic reversal of events. Figures 37-25a and b show the 
(usual) situation in which a primed reference frame passes an un­
primed reference frame, in the common positive direction of the x 
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and x' axes, at a constant relative velocity of magnitude v. We are 
at rest in the unprimed frame; Bullwinkle, an astute student of rela­
tivity in spite of his cartoon upbringing, is at rest in the primed 
frame. The figures also indicate events A and B that occur at the 
following spacetime coordinates as measured in our unprimed 
frame and in Bullwinkle's primed frame: 

Event Unprimed Primed 

A 

B 

(xA, tA) 

(x~, t~) 

In our frame, event A occurs before event B, with temporal separa­
tion t:J.t = tB - tA = 1.00 J.LS and spatial separation Llx = XB - XA = 400 
m. Let t:J.t' be the temporal separation of the events according to 
Bullwinkle. (a) Find an expression for t:J.t' in terms of the speed 
parameter f3 (= vie) and the given data. Graph t:J.t' versus f3 for the 
following two ranges of f3: 

(b) 0 to 0.01 (v is low, from 0 to O.Ole) 

(c) 0.1 to 1 (v is high, from O.le to the limit c) 

(d) At what value of f3 is t:J.t' = O? For what range of f3 is the 
sequence of events A and B according to Bullwinkle (e) the same 
as ours and (f) the reverse of ours? (g) Can event A cause event B, 
or vice versa? Explain. 

~ ~ 

v v 

x;\ xA x' ·n 
x' I 

iB 
x' 

"A I x x 
XA XA Xn 

(a) Event A (b) EventB 

Fig. 37-25 Problems 21,22,60, and 61. 

For the passing reference frames in Fig. 37-25, events A and 
B occur at the following spacetime coordinates: according to the 
unprimed frame, (XA, tA) and (xn, tn); according to the primed 
frame, (xA, tA) and (x~, t~). In the unprimed frame, t:J.t = tn - tA = 
1.00 J.LS and /lx = Xn - XA = 400 m. (a) Find an expression for /lx ' 
in terms of the speed parameter f3 and the given data. Graph /lx ' 
versus f3 for two ranges of f3: (b) 0 to 0.01 and (c) 0.1 to 1. (d) At 
what value of f3is /lx ' minimum, and (e) what is that minimum? 

IlW A clock moves along an x axis at a speed of 0.600e and 
reads zero as it passes the origin. (a) Calculate the clock's Lorentz 
factor. (b) What time does the clock read as it passes x = 180 m? 

Bullwinkle in reference frame S' passes you in reference 
frame S along the common direction of the x' and x axes, as in Fig. 
37-9. He carries three meter sticks: meter stick 1 is parallel to the x' 
axis, meter stick 2 is parallel to the y' axis, and meter stick 3 is paral­
lel to the z' axis. On his wristwatch he counts off 15.0 s, which takes 
30.0 s according to you. 1\\10 events occur during his passage. 
According to you, event 1 occurs at Xj = 33.0 m and tj = 22.0 ns, 
and event 2 occurs at X2 = 53.0 m and t2 = 62.0 ns. According to 
your measurements, what is the length of (a) meter stick 1, (b) me­
ter stick 2, and (c) meter stick 3? According to Bullwinkle, what are 
(d) the spatial separation and (e) the temporal separation between 
events 1 and 2, and (f) which event occurs first? 
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In Fig. 37-9, observer S detects two flashes of light. A big 
flash occurs at Xl = 1200 m and, 5.00 fLs later, a small flash occurs at 
X2 = 4S0 m. As detected by observer S', the two flashes occur at a 
single coordinate x'. (a) What is the speed parameter of S', and (b) 
is S' moving in the positive or negative direction of the x axis? To 
S', (c) which flash occurs first and (d) what is the time interval 
between the flashes? 

In Fig. 37-9, observer S detects two flashes of light. A big 
flash occurs at Xl = 1200 m and, slightly later, a small flash occurs 
at X2 = 4S0 m. The time interval between the flashes is t:.t = f2 - fl' 
What is the smallest value of t:.t for which observer S' will deter­
mine that the two flashes occur at the same x' coordinate? 

The Relativity of Velocities 

SSM A particle moves along the x' axis of frame S' with 
velocity 0.40e. Frame S' moves with velocity 0.60e with respect 
to frame S. What is the velocity of the particle with respect to 
frame S? 

In Fig. 37-11, frame S' moves relative to frame S with 
velocity 0.62ci while a particle moves parallel to the common x 
and x' axes. An observer attached to frame S' measures the par­
ticle's velocity to be 0.47ei. In terms of e, what is the particle's 
velocity as measured by an observer attached to frame S accord­
ing to the (a) relativistic and (b) classical velocity transforma­
tion? Suppose, instead, that the S' measure of the particle's ve­
locity is -0.47ei. What velocity does the observer in Snow 
measure according to the (c) relativistic and (d) classical velocity 
transformation? 

Galaxy A is reported to be receding from us with a speed of 
0.35e. Galaxy B, located in precisely the opposite direction, is also 
found to be receding from us at this same speed. What mUltiple of e 
gives the recessional speed an observer on Galaxy A would find for 
(a) our galaxy and (b) Galaxy B? 

Stellar system Ql moves away from us at a speed of O.SOOe. 
Stellar system Q2> which lies in the same direction in space but is 
closer to us, moves away from us at speed 0.400e. What multiple of 
e gives the speed of Q2 as measured by an observer in the reference 
frame OfQl? 

SSM IlW WWW A spaceship whose rest length is 350 m 
has a speed of 0.S2e with respect to a certain reference frame. A 
micrometeorite, also with a speed of 0.S2e in this frame, passes the 
spaceship on an anti parallel track. How long does it take this ob­
ject to pass the ship as measured on the ship? 

In Fig. 37-26a, particle P is to move parallel to the x and 
x' axes of reference frames Sand S', at a certain velocity relative to 

y y' ud 

l, [ ;; 
<liP 

x' 

0 0.2c 0.4c 
v 

(a) (b) 

Fig. 37-26 Problem 32. 

frame S. Frame S' is to move parallel to the x axis of frame S at 
velocity v. Figure 37-26b gives the velocity u' of the particle rela­
tive to frame S' for a range of values for v. The vertical axis scale 
is set by u~ = O.SOOe. What value will u' have if (a) v = 0.90e and 
(b) v ~ e? 

An armada of spaceships that is 1.001y long (in its 
rest frame) moves with speed O.SOOe relative to a ground station in 
frame S. A messenger travels from the rear of the armada to the 
front with a speed of 0.950e relative to S. How long does the trip 
take as measured (a) in the messenger's rest frame, (b) in the ar­
mada's rest frame, and (c) by an observer in frame S? 

Doppler Effect for Light 

A sodium light source moves in a horizontal circle at a constant 
speed of 0.100e while emitting light at the proper wavelength of Ao = 

5S9.00 nm. Wavelength A is measured for that light by a detector fixed 
at the center of the circle. What is the wavelength shift A - Ao? 

-35 SSM A spaceship, moving away from Earth at a speed of 
0.900e, reports back by transmitting at a frequency (measured in 
the spaceship frame) of 100 MHz. To what frequency must Earth 
receivers be tuned to receive the report? 

Certain wavelengths in the light from a galaxy in the constel­
lation Virgo are observed to be 0.4% longer than the correspond­
ing light from Earth sources. (a) What is the radial speed of this 
galaxy with respect to Earth? (b) Is the galaxy approaching or re­
ceding from Earth? 

-37 Assuming that Eq. 37-36 holds, find how fast you would 
have to go through a red light to have it appear green. Take 620 
nm as the wavelength of red light and 540 nm as the wavelength 
of green light. 

-38 Figure 37-27 is a graph of intensity versus wavelength for 
light reaching Earth from galaxy NGC 7319, which is about 3 X 

108 light-years away. The most intense light is emitted by the oxy­
gen in NGC 7319. In a laboratory that emission is at wavelength 
A = 513 nm, but in the light from NGC 7319 it has been shifted to 
525 nm due to the Doppler effect (all the emissions from NGC 
7319 have been shifted). (a) What is the radial speed of NGC 
7319 relative to Earth? (b) Is the relative motion toward or away 
from our planet? 

800 
I 

I 

200 

~0~0~~45~0~~50~0~~55~0~~60~0~~65~0~~~--~750 
Wavelength (nrn) 

Fig. 37-27 Problem 3S. 

SSM A spaceship is moving away from Earth at speed 
0.20e. A source on the rear of the ship emits light at wavelength 
450 nm according to someone on the ship. What (a) wavelength 
and (b) color (blue, green, yellow, or red) are detected by someone 
on Earth watching the ship? 
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'40 How much work must be done to increase the speed of an 
electron from rest to (a) 0.500e, (b) 0.990e, and (c) 0.9990e? 

·41 SSM WWW The mass of an electron is 9.109 38188 X 10-31 

kg. To six significant figures, find (a) y and (b) (3 for an electron 
with kinetic energy K = 100.000 Me V. 

-42 What is the minimum energy that is required to break a nu­
cleus of 12C (of mass 11.996 71 u) into three nuclei of 4He (of mass 
4.00151 u each)? 

'43 How much work must be done to increase the speed of an 
electron (a) from 0.18e to 0.1ge and (b) from 0.98e to 0.9ge? Note 
that the speed increase is O.Ole in both cases. 

·44 In the reaction p + 19F ~ a + 160, the masses are 

m(p) = 1.007825 u, 

m(F) = 18.998405 u, 

m(a) = 4.002603 u, 

m(O) = 15.994915 u. 

Calculate the Q of the reaction from these data. 

·'45 In a high-energy collision between a cosmic-ray particle and 
a particle near the top of Earth's atmosphere, 120 km above sea 
level, a pion is created. The pion has a total energy E of 1.35 X 105 

MeV and is traveling vertically downward. In the pion's rest frame, 
the pion decays 35.0 ns after its creation. At what altitude above 
sea level, as measured from Earth's reference frame, does the de­
cay occur? The rest energy of a pion is 139.6 MeV. 

'·46 (a) If m is a particle's mass, p is its momentum magnitude, 
and K is its kinetic energy, show that 

(pc? - K2 
m = 2Ke2 

(b) For low particle speeds, show that the right side of the equation re­
duces to m. (c) If a particle has K = 55.0 MeV when p = 121 Me VIc, 
what is the ratio mIme of its mass to the electron mass? 

··41 5S M A 5.00-grain aspirin tablet has a mass of 320 mg. For how 
many kilometers would the energy equivalent of this mass power an 
automobile? Assume 12.75 km/L and a heat of combustion of 3.65 X 
107 JIL for the gasoline used in the automobile. 

The mass of a muon is 207 times the electron mass; the 
average lifetime of muons at rest is 2.20 p,s. In a certain experi­
ment, muons moving through a laboratory are measured to have 
an average lifetime of 6.90 p,s. For the moving muons, what are (a) 
(3, (b) K, and (c) p (in MeV/e)? 

As you read this page (on paper or monitor screen), 
a cosmic ray proton passes along the left-right width of the page 
with relative speed v and a total energy of 14.24 nl According to 
your measurements, that left-right width is 21.0 cm. (a) What is 
the width according to the proton's reference frame? How much 
time did the passage take according to (b) your frame and (c) the 
proton's frame? 

"50 To four significant figures, find the following when the kinetic 
energy is 10.00 MeV: (a) y and (b) (3 for an electron (Eo = 0.510 998 
MeV), (c) yand (d) (3 for a proton (Eo = 938.272 MeV), and (e) yand 
(f) (3 for an a particle (Eo = 3727.40 MeV). 

ILW What must be the momentum of a particle with mass 
m so that the total energy of the particle is 3.00 times its rest 
energy? 

PROBLEMS 1053 

"52 Apply the binomial theorem (Appendix E) to the last part of 
Eq. 37-52 for the kinetic energy of a particle. (a) Retain the first two 
terms of the expansion to show the kinetic energy in the form 

K = (first term) + (second term). 

The first term is the classical expression for kinetic energy. The 
second term is the first-order correction to the classical expression. 
Assume the particle is an electron. If its speed v is el20, what is the 
value of (b) the classical expression and (c) the first -order correc­
tion? If the electron's speed is 0.80e, what is the value of (d) the classi­
cal expression and (e) the first-order correction? (f) At what speed 
parameter (3 does the first-order correction become 10% or 
greater of the classical expression? 

"53 In Section 28-6, we showed that a particle of charge q and 
mass m will move in a circle of radius r = mvl'.!iIB when its velocity 
v is perpendicular to a uniform magnetic field B. We also found that 
the period T of the motion is independent of speed v. These two results 
are approximately correct if v «; e. For relativistic speeds, we must use 
the correct equation for the radius: 

p ymv 
r = IqlB = IqIB' 

(a) Using this equation and the definition of period (T = 21T1'lv), find 
the correct expression for the period. (b) Is T independent of v? If a 
10.0 MeV electron moves in a circular path in a uniform magnetic 
field of magnitude 2.20 T, what are (c) the radius according to 
Chapter 28, (d) the correct radius, (e) the period according to 
Chapter 28, and (f) the correct period? 

"54 What is (3 for a particle with (a) K = 2.00Eo and (b) E = 

2.00Eo? 

"55 A certain particle of mass m has momentum of magnitude 
me. What are (a) (3, (b) y, and (c) the ratio KIEo? 

(a) The energy released in the explosion of 1.00 mol of TNT 
is 3.40 Ml The molar mass of TNT is 0.227 kg/mol. What weight of 
TNT is needed for an explosive release of 1.80 X 1014 J? (b) Can 
you carry that weight in a backpack, or is a truck or train required? 
(c) Suppose that in an explosion of a fission bomb, 0.080% of the 
fissionable mass is converted to released energy. What weight of 
fissionable material is needed for an explosive release of 1.80 X 
1014 J? (d) Can you carry that weight in a backpack, or is a truck or 
train required? 

Quasars are thought to be the nuclei of active galaxies in the 
early stages of their formation. A typical quasar radiates energy at 
the rate of 1041 W. At what rate is the mass of this quasar being re­
duced to supply this energy? Express your answer in solar mass 
units per year, where one solar mass unit (1 smu = 2.0 X 1030 kg) is 
the mass of our Sun. 

'·58 The mass of an electron is 9.109 38188 X 10-31 kg. To eight 
significant figures, find the following for the given electron ki­
netic energy: (a) y and (b) (3 for K = 1.000 000 0 ke V, (c) y and 
(d) (3 for K = 1.0000000 MeV, and then (e) yand (f) (3 for K = 

1.000 000 0 Ge V. 

An alpha particle with kinetic energy 7.70 MeV collides 
with an 14N nucleus at rest, and the two transform into an 170 nu­
cleus and a proton. The proton is emitted at 90° to the direction 
of the incident alpha particle and has a kinetic energy of 4.44 
MeV. The masses of the various particles are alpha particle, 
4.00260 u; 14N, 14.00307 u; proton, 1.007825 u; and 170,16.99914 u. 
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In MeV, what are (a) the kinetic energy of the oxygen nucleus 
and (b) the Q of the reaction? (Hint: The speeds of the particles 
are much less than c.) 

Additional Problems 

60 Temporal separation between two events. Events A and B 
occur with the following spacetime coordinates in the reference 
frames of Fig. 37-25: according to the unprimed frame, (XA' tA) and 
(XB' tB); according to the primed frame, (xA' tA) and (x~, t~). In the un­
primed frame, I::J.t = tB - tA = 1.00}J.S and LU = XB - XA = 240 ill. (a) 
Find an expression for I:!.t' in terms of the speed parameter f3 and the 
given data. Graph 1::J.t' versus f3 for the following two ranges of f3: (b) 0 
to 0.01 and (c) 0.1 to 1. (d) At what value of f3 is M minimum and 
(e) what is that minimum? (f) Can one of these events cause the 
other? Explain. 

61 Spatial separation between two events. For the passing 
reference frames of Fig. 37-25, events A and B occur with the fol­
lowing spacetime coordinates: according to the unprimed frame, 
(XA' tA) and (XB' tB); according to the primed frame, (xA' tA) and 
(x~, t~). In the unprimed frame, I::J.t = tB - tA = 1.00 f-LS and I:!.x = 

XB - XA = 240 m. (a) Find an expression for I:!.x' in terms of the 
speed parameter f3 and the given data. Graph I:!.x' versus f3 for 
two ranges of f3: (b) 0 to 0.01 and (c) 0.1 to 1. (d) At what value of 
f3 is I:!.x' = O? 

62 In Fig. 37-28a, particle P is to move parallel to the x and 
x' axes of reference frames Sand S', at a certain velocity relative 
to frame S. Frame S' is to move parallel to the x axis of frame S at 
velocity v. Figure 37-28b gives the velocity u' of the particle rela­
tive to frame S' for a range of values for v. The vertical axis scale 
is set by u~ = -0.800c. What value will u' have if (a) v = 0.80c 
and (b) v ~ c? 

v 
0 O.2c O.4c 

y y' 

[, [ ;; 

",p 

X' ud 
(a) (b) 

Fig. 37-28 Problem 62. 

Superluminal jets. Figure 37-29a shows the path taken by 
a knot in a jet of ionized gas that has been expelled from a galaxy. 
The knot travels at constant velocity v at angle e from the direc­
tion of Earth. The knot occasionally emits a burst of light, which is 
eventually detected on Earth. Tho bursts are indicated in Fig. 
37-29a, separated by time t as measured in a stationary frame near 
the bursts. The bursts are shown in Fig. 37-29b as if they were pho­
tographed on the same piece of film, first when light from burst 1 
arrived on Earth and then later when light from burst 2 arrived. 
The apparent distance Dapp traveled by the knot between the two 
bursts is the distance across an Earth-observer's view of the knot's 
path. The apparent time Tapp between the bursts is the difference in 
the arrival times of the light from them. The apparent speed of the 
knot is then Vapp = DapplTapp. In terms of v, t, and e, what are (a) 
Dapp and (b) Tapp? (c) Evaluate Vapp for v = 0.980c and e = 30.0°. 

When superluminal (faster than light) jets were first observed, they 
seemed to defy special relativity-at least until the correct geome­
try (Fig. 37-29a) was understood. 

of knot of ionized gas 

Burst 1 

Burst 2 

(a) 

Burst 1 Burst 2 

(b) 

Fig.37-29 Problem 63. 

Reference frame S' passes reference frame S with a certain ve­
locity as in Fig. 37-9. Events 1 and 2 are to have a certain spatial sep­
aration LU' according to the S' observer. However, their temporal 
separation 1::J.t' according to that observer has not been set yet. Figure 
37-30 gives their spatial separation LU according to the S observer as 
a function of 1::J.t' for a range of I:!.t' values. The vertical axis scale is set 
by LUa = 10.0 m. What is LU'? 
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Fig. 37-30 Problem 64. 

Another approach to velocity transformations. In Fig. 37-31, 
reference frames Band C move past reference frame A in the com-

Fig. 37-31 Problems 65,66, and 67. 



mon direction of their x axes. Represent the x components of the 
velocities of one frame relative to another with a two-letter sub­
script. For example, v AB is the x component of the velocity of A rel­
ative to B. Similarly, represent the corresponding speed parame­
ters with two-letter subscripts. For example, f3AB (= v AB/C) is the 
speed parameter corresponding to VAB. (a) Show that 

f3AC = f3AB + f3BC . 
1 + f3ABf3BC 

Let MAB represent the ratio (1 - f3AB)/(l + f3AB)' and let M Bc and 
MAC represent similar ratios. (b) Show that the relation 

MAc = MABMBc 

is true by deriving the equation of part (a) from it. 

Continuation of Problem 65. Use the result of part (b) in 
Problem 65 for the motion along a single axis in the following situ­
ation. Frame A in Fig. 37-31 is attached to a particle that moves 
with velocity +0.500c past frame B, which moves past frame C with 
a velocity of +0.500c. What are (a) MAc, (b) f3AC, and (c) the veloc­
ity of the particle relative to frame C? 

Continuation of Problem 65. Let reference frame C in Fig. 37-31 
move past reference frame D (not shown). (a) Show that 

MAD = MABMBcMcD' 

(b) Now put this general result to work: Three particles move paral­
lel to a single axis on which an observer is stationed. Let plus and mi­
nus signs indicate the directions of motion along that axis. Particle A 
moves past particle B at f3AB = +0.20. Particle B moves past particle 
Cat f3BC = -0.40. Particle C moves past observer D at f3CD = +0.60. 
What is the velocity of particle A relative to observer D? (The solu­
tion technique here is much faster than using Eq. 37-29.) 

Figure 37-16 shows a ship (attached to reference frame S') 
passing us (standing in reference frame S) with velocity 
v = 0.950d. A proton is fired at speed 0.980c relative to the ship 
from the front of the ship to the rear. The proper length of the ship 
is 760 m. What is the temporal separation between the time the 
proton is fired and the time it hits the rear wall of the ship accord­
ing to (a) a passenger in the ship and (b) us? Suppose that, instead, 
the proton is fired from the rear to the front. What then is the tem­
poral separation between the time it is fired and the time it hits the 
front wall according to (c) the passenger and (d) us? 

The car-in-the-garage problem. Carman has just purchased 
the world's longest stretch limo, which has a proper length of 
Lc = 30.5 m. In Fig. 37-32a, it is shown parked in front of a garage 
with a proper length of Lg = 6.00 m. The garage has a front door 
(shown open) and a back door (shown closed). The limo is obvi­
ously longer than the garage. Still, Garageman, who owns the 
garage and knows something about relativistic length contrac­
tion, makes a bet with Carman that the limo can fit in the garage 
with both doors closed. Carman, who dropped his physics course 
before reaching special relativity, says such a thing, even in princi­
ple, is impossible. 

To analyze Garageman's scheme, an Xc axis is attached to the 
limo, with Xc = 0 at the rear bumper, and an Xg axis is attached to 
the garage, with Xg = 0 at the (now open) front door. Then Carman 
is to drive the limo directly toward the front door at a velocity of 
0.9980c (which is, of course, both technically and financially impossi­
ble). Carman is stationary in the Xc reference frame; Garageman is 
stationary in the Xg reference frame. 

PROBLEMS 1055 

There are two events to consider. Event 1: When the rear 
bumper clears the front door, the front door is closed. Let the time 
of this event be zero to both Carman and Garageman: tgl = tel = O. 
The event occurs at Xc = Xg = O. Figure 37-32b shows event 1 ac­
cording to the Xg reference frame. Event 2: When the front bumper 
reaches the back door, that door opens. Figure 37-32c shows event 
2 according to the Xg reference frame. 

According to Garageman, (a) what is the length of the limo, 
and what are the spacetime coordinates (b) Xg2 and (c) tg2 of event 
2? (d) For how long is the limo temporarily "trapped" inside the 
garage with both doors shut? Now consider the situation from 
the Xc reference frame, in which the garage comes racing past the 
limo at a velocity of -0.9980c. According to Carman, (e) what is 
the length of the passing garage, what are the spacetime coordi­
nates (f) Xc2 and (g) tc2 of event 2, (h) is the limo ever in the 
garage with both doors shut, and (i) which event occurs first? (j) 
Sketch events 1 and 2 as seen by Carman. (k) Are the events 
causally related; that is, does one of them cause the other? (1) 
Finally, who wins the bet? 

(a) 

(b) (c) 

Fig. 37-32 Problem 69. 

10 An airplane whose rest length is 40.0 m is moving at uniform 
velocity with respect to Earth, at a speed of 630 m/s. (a) By what 
fraction of its rest length is it shortened to an observer on Earth? 
(b) How long would it take, according to Earth clocks, for the air­
plane's clock to fall behind by 1.00 j.Ls? 

11 SSM To circle Earth in low orbit, a satellite must have a 
speed of about 2.7 X 104 km/h. Suppose that two such satellites or­
bit Earth in opposite directions. (a) What is their relative speed 
as they pass, according to the classical Galilean velocity transfor­
mation equation? (b) What fractional error do you make in (a) by 
not using the (correct) relativistic transformation equation? 

Find the speed parameter of a particle that takes 2.0 y longer 
than light to travel a distance of 6.0 ly. 

SSM How much work is needed to accelerate a proton from 
a speed of 0.9850c to a speed of 0.9860c? 

A pion is created in the higher reaches of Earth's atmosphere 
when an incoming high-energy cosmic-ray particle collides with an 
atomic nucleus. A pion so formed descends toward Earth with a 
speed of 0.99c. In a reference frame in which they are at rest, pions 
decay with an average life of 26 ns. As measured in a frame fixed 
with respect to Earth, how far (on the average) will such a pion 
move through the atmosphere before it decays? 
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SSM If we intercept an electron having total energy 1533 
MeV that came from Vega, which is 26ly from us, how far in light­
years was the trip in the rest frame of the electron? 

The total energy of a proton passing through a laboratory ap­
paratus is 10.611 nl What is its speed parameter (3? Use the proton 
mass given in Appendix B under "Best Value," not the commonly 
remembered rounded number. 

A spaceship at rest in a certain reference frame S is given a 
speed increment of 0.50c. Relative to its new rest frame, it is then 
given a further 0.50c increment. This process is continued until its 
speed with respect to its original frame S exceeds 0.999c. How 
many increments does this process require? 

78 In the red shift of radiation from a distant galaxy, a certain ra­
diation, known to have a wavelength of 434 nm when observed in 
the laboratory, has a wavelength of 462 nm. (a) What is the radial 
speed of the galaxy relative to Earth? (b) Is the galaxy approach­
ing or receding from Earth? 

SSM What is the momentum in MeV/c of an electron with a 
kinetic energy of 2.00 MeV? 

The radius of Earth is 6370 km, and its orbital speed about the 
Sun is 30 km/s. Suppose Earth moves past an observer at this 
speed. To the observer, by how much does Earth's diameter con­
tract along the direction of motion? 

81 A particle with mass m has speed c!2 relative to inertial frame 
S. The particle collides with an identical particle at rest relative to 
frame S. Relative to S, what is the speed of a frame S' in which the 
total momentum of these particles is zero? This frame is called the 
center of momentum frame. 

An elementary particle produced in a laboratory experiment 
travels 0.230 mm through the lab at a relative speed of 0.960c be­
fore it decays (becomes another particle). (a) What is the proper 
lifetime of the particle? (b) What is the distance the particle travels 
as measured from its rest frame? 

What are (a) K, (b) E, and (c) p (in GeV/c) for a proton mov­
ing at speed 0.990c? What are (d) K, (e) E, and (f) p (in MeV/c) for 
an electron moving at speed 0.990c? 

A radar transmitter T is fixed to a reference frame S' that is 
moving to the right with speed v relative to reference frame S (Fig. 
37-33). A mechanical timer (essentially a clock) in frame S', having 
a period TO (measured in S'), causes transmitter T to emit timed 
radar pulses, which travel at the speed of light and are received by 
R, a receiver fixed in frame S. (a) What is the period Tof the timer 
as detected by observer A, who is fixed in frame S? (b) Show that 
at receiver R the time interval between pulses arriving from Tis 
not Tor TO, but 

(c) Explain why receiver R and observer A, who are in the same 

reference frame, measure a different period for the transmitter. 
(Hint: A clock and a radar pulse are not the same thing.) 

s s' 

R 

A 

Fig. 37-33 Problem 84. 

One cosmic-ray particle approaches Earth along Earth's 
north-south axis with a speed of 0.80c toward the geographic 
north pole, and another approaches with a speed of 0.60c toward 
the geographic south pole (Fig. 37-34). What is the relative speed of 
approach of one particle with respect to the other? 

cct, 
Geographic I 
north pole 

south pole 
GeOgraPhict 

O.60c 

Fig. 37-34 Problem 85. 

86 (a) How much energy is released in the explosion of a fission 
bomb containing 3.0 kg of fissionable material? Assume that 0.10% of 
the mass is converted to released energy. (b) What mass of TNT would 
have to explode to provide the same energy release? Assume that 
each mole of TNT liberates 3.4 MJ of energy on exploding. The 
molecular mass of TNT is 0.227 kg/mol. (c) For the same mass of ex­
plosive, what is the ratio of the energy released in a nuclear explo­
sion to that released in a TNT explosion? 

(a) What potential difference would accelerate an electron to 
speed c according to classical physics? (b) With this potential dif­
ference, what speed would the electron actually attain? 

A Foron cruiser moving directly toward a Reptulian scout 
ship fires a decoy toward the scout ship. Relative to the scout ship, 
the speed of the decoy is 0.980c and the speed of the Foron cruiser 
is 0.900c. What is the speed of the decoy relative to the cruiser? 
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The 51 Base Units 

Quantity Name 

length meter 

mass kilogram 

time second 

electric current ampere 

thermodynamic temperature kelvin 

amount of substance mole 

luminous intensity candela 

Symbol 

m 

kg 

s 

A 

K 

mol 

cd 

it ( I) 

Definition 

the length of the path traveled by light in vacuum in 
11299,792,458 of a second." (1983) 
". . . this prototype [a certain platinum - iridium cylinder 1 shall 
henceforth be considered to be the unit of mass." (1889) 
" ... the duration of 9,192,631,770 periods of the radiation 
corresponding to the transition between the two hyperfine 
levels of the ground state of the cesium-133 atom." (1967) 

". .. that constant current which, if maintained in two 
straight parallel conductors of infinite length, of negligible 
circular cross section, and placed 1 meter apart in vacuum, 
would produce between these conductors a force equal to 
2 X 10-7 newton per meter of length." (1946) 

" ... the fraction 11273.16 of the thermodynamic temperature 
of the triple point of water." (1967) 
". . . the amount of substance of a system which contains as 
many elementary entities as there are atoms in 0.012 kilo­
gram of carbon-12." (1971) 

the luminous intensity, in a given direction, of a source 
that emits monochromatic radiation of frequency 540 X 

1012 hertz and that has a radiant intensity in that direction 
of 11683 watt per steradian." (1979) 

* Adapted from "The International System of Units (SI)," National Bureau of Standards Special Publication 330, 1972 edition. The definitions above were 
adopted by the General Conference of Weights and Measures, an international body, on the dates shown. In this book we do not use the candela. 
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A-2 APPENDIX A THE INTERNATIONAL SYSTEM OF UNITS (SI) 

Some SI Derived Units 

area 

volume 

frequency 

Quantity 

mass density (density) 

speed, velocity 

angular velocity 

acceleration 

angular acceleration 

force 

pressure 

work, energy, quantity of heat 

power 

quantity of electric charge 

potential difference, electromotive force 

electric field strength 

electric resistance 

capacitance 

magnetic flux 

inductance 

magnetic flux density 

magnetic field strength 

entropy 

specific heat 

thermal conductivity 

radiant intensity 

The SI Supplementary Units 

Quantity Name of Unit Symbol 

plane angle radian rad 

solid angle steradian sr 

Name of Unit 

square meter 

cubic meter 

hertz 

kilogram per cubic meter 

meter per second 

radian per second 

meter per second per second 

radian per second per second 

newton 

pascal 

joule 

watt 

coulomb 

volt 

volt per meter (or newton per coulomb) 

ohm 

farad 

weber 

henry 

tesla 

ampere per meter 

joule per kelvin 

joule per kilogram kelvin 

watt per meter kelvin 

watt per steradian 

Symbol 

m2 

m3 

Hz 
kg/m3 

m/s 

rad/s 

m/s2 

rad/s2 

N 

Pa 

J 

W 

C 

V 

VIm 

n 
F 
Wb 

H 

T 

AIm 

J/K 

J/(kg· K) 
W/(m·K) 

W/sr 

S-1 

kg· m/s2 

N/m2 

N'm 

J/s 

A·s 

W/A 

N/C 

VIA 

A·slY 

V's 

V's/A 

Wb/m2 



Constant Symbol Computational Value 

Speed of light in a vacuum c 3.00 X 108 mls 

Elementary charge e 1.60 X 10-19 C 

Gravitational constant G 6.67 X 10-11 m3/s2. kg 

Universal gas constant R 8.31 J/mol· K 

Avogadro constant NA 6.02 X 1023 mol-1 

Boltzmann constant k 1.38 X 10-23 J/K 

Stefan - Boltzmann constant if 5.67 X 10-8 W/m2. K4 

Molar volume of ideal gas at STpd Vrn 2.27 X 10-2 m3/mol 

Permittivity constant EO 8.85 X 10-12 F/m 

Permeability constant f.Lo 1.26 X 10 -6 Him 

Planck constant h 6.63 X 10-34 J. s 

Electron masse me 9.11 X 10-31 kg 

5.49 X 10-4 u 

Proton masse mp 1.67 X 10-27 kg 

1.0073 u 

Ratio of proton mass to electron mass mime 1840 

Electron charge-to-mass ratio elme 1.76 X 1011 C/kg 

Neutron masse mn 1.68 X 10-27 kg 

1.0087 u 

Hydrogen atom masse mIll 1.0078 u 

Deuterium atom masse m2H 
2.0136u 

Helium atom masse m4He 
4.0026 u 

Muon mass mIL 1.88 X 10-28 kg 

Electron magnetic moment /he 9.28 X 10-24 J/T 

Proton magnetic moment /hp 1.41 X 10-26 J/T 

Bohr magneton /hB 9.27 X 10-24 J/T 

Nuclear magneton /hN 5.05 X 10-27 J/T 

Bohr radius a 5.29 X 10-11 m 

Rydberg constant R 1.10 X 107 m-1 

Electron Compton wavelength Ac 2.43 X 10-12 m 

"Values given in this column should be given the same unit and power of 10 as the computational value. 

bparts per million. 

CMasses given in u are in unified atomic mass units, where 1 u = 1.660538782 X 10-27 kg. 

dSTP means standard temperature and pressure: O°C and 1.0 atm (0.1 MPa). 

Best (1998) Value 

Valuea Uncertaintyh 

2.99792458 exact 

1.602 176487 0.025 

6.67428 100 

8.314472 1.7 

6.02214179 0.050 

1.3806504 1.7 

5.670400 7.0 

2.271 0981 1.7 

8.854 187 817 62 exact 

1.256 637 06143 exact 

6.62606896 0.050 

9.10938215 0.050 

5.4857990943 4.2 X 10-4 

1.672 621 637 0.050 

1.00727646677 1.0 X 10-4 

1836.152672 47 4.3 X 10-4 

1.758820150 0.Q25 

1.674927211 0.050 

1.008 664 915 97 4.3 X 10-4 

1.0078250316 0.0005 

2.013 553 212 724 3.9 X 10-5 

4.0026032 0.067 

1.88353130 0.056 

9.28476377 0.025 

1.410 606 662 0.026 

9.27400915 0.Q25 

5.05078324 0.Q25 

5.291 772 085 9 6.8 X 10-4 

1.097 373 156 852 7 6.6 X 10-6 

2.4263102175 0.0014 

*The values in this table were selected from the 1998 CODATA recommended values (www.physics.nist.gov). 
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Some Distances from Earth 

To the Moon* 

To the Sun* 

To the nearest star (Proxima Centauri) 

3.82 X 108 m 

1.50 X 1011 m 

4.04 X 1016 m 

To the center of our galaxy 

To the Andromeda Galaxy 

To the edge of the observable universe 

*Mean distance. 

The Sun, Earth, and the Moon 

Property 

Mass 

Mean radius 

Mean density 

Free-fall acceleration at the surface 

Escape velocity 

Period of rotationa 

Radiation powerc 

aMeasured with respect to the distant stars. 

Unit 

kg 

m 
kg/m3 

rnls2 

km/s 

W 

bThe Sun, a ball of gas, does not rotate as a rigid body. 

Sun Earth 

1.99 X 1030 5.98 X 1024 

6.96 X 108 6.37 X 106 

1410 5520 

274 9.81 

618 11.2 

37 d at polesb 26 d at equatorb 23 h56 min 

3.90 X 1026 

CJust outside Earth's atmosphere solar energy is received, assuming normal incidence, at the rate of 1340 W/m2
• 

Some Properties of the Planets 

Mercury Venus Earth Mars Jupiter Saturn Uranus 

Mean distance from Sun, 
57.9 108 150 228 778 1430 2870 

106km 

Period of revolution, y 0.241 0.615 1.00 1.88 11.9 29.5 84.0 

Period of rotation," d 58.7 -243b 0.997 1.03 0.409 0.426 -0.451b 

Orbital speed, krnls 47.9 35.0 29.8 24.1 13.1 9.64 6.81 

Inclination of axis to orbit <28° =3° 23.4° 25.0° 3.08° 26.7° 97.9° 

Inclination of orbit to 
7.00° 3.39° 1.85° 1.30° 2.49° 0.77° 

Earth's orbit 

Eccentricity of orbit 0.206 0.0068 0.0167 0.0934 0.0485 0.0556 0.0472 

Equatorial diameter, km 4880 12100 12800 6790 143000 120000 51800 

Mass (Earth = 1) 0.0558 0.815 1.000 0.107 318 95.1 14.5 

Density (water = 1) 5.60 5.20 5.52 3.95 1.31 0.704 1.21 

Surface value of g,C rnls2 3.78 8.60 9.78 3.72 22.9 9.05 7.77 

Escape velocity,C km/s 4.3 10.3 11.2 5.0 59.5 35.6 21.2 

Known satellites 0 0 1 2 63 + ring 60 + rings 27 + rings 

aMeasured with respect to the distant stars. 
bYenus and Uranus rotate opposite their orbital motion. 
cGravitational acceleration measured at the planet's equator. 

A-4 

2.2 X 102°m 
2.1 X 1022 m 

~ 1026 m 

Moon 

7.36 X 1022 

1.74 X 106 

3340 

1.67 

2.38 

27.3 d 

Neptune Pluto 

4500 5900 

165 248 

0.658 6.39 

5.43 4.74 

29.6° 57.5° 

1.77° 17.2° 

0.0086 0.250 

49500 2300 

17.2 0.002 

1.67 2.03 

11.0 0.5 

23.6 1.3 

13 + rings 3 



Conversion factors may be read directly from these tables. For example, 1 degree = 2.778 X 

10-3 revolutions, so 16.7° = 16.7 X 2.778 X 10-3 rev. The SI units are fully capitalized. Adapted 
in part from G. Shortley and D. Williams, Elements of Physics, 1971, Prentice-Hall, Englewood 
Cliffs,NJ. 

Plane Angle 

1 degree = 1 60 

1 minute = 1.667 X 10-2 1 

1 second = 2.778 X 10-4 1.667 X 10-2 

1 RADIAN = 57.30 3438 

1 revolution = 360 2.16 X 10 4 

Solid Angle 

1 sphere = 411' steradians = 12.57 steradians 

Length 

1 centimeter = 1 
1 METER = 100 

1 kilometer = 105 

1 inch = 2.540 

1 foot = 30.48 

cm 

1 mile = 1.609 X 105 

1 angstrom = 10-10 m 

METER 

10-2 

1 

1000 

2.540 X 10-2 

0.3048 

1609 

1 fermi = 10-15 m 

II RADIAN rev 

3600 1.745 X 10-2 2.778 X 10-3 

60 2.909 X 10-4 4.630 X 10-5 

1 4.848 X 10-6 7.716 X 10-7 

2.063 X 105 1 0.1592 

1.296 X 106 6.283 1 

km in. ft 

10-5 0.3937 3.281 X 10-2 

10-3 39.37 3.281 

1 3.937 X 104 3281 
2.540 X 10-5 1 8.333 X 10-2 

3.048 X 10-4 12 1 

1.609 6.336 X 104 5280 

1 fathom = 6 ft 

1 nautical mile = 1852 m 
= 1.151 miles = 6076 ft 

1 light-year = 9.461 X 1012 km 1 Bohr radius = 5.292 X 10-11 m 

1 parsec = 3.084 X 10 13 km 

Area 

METER2 

1 SQUARE METER = 1 

1 square centimeter = 10-4 

1 square foot = 9.290 X 10-2 

1 square inch = 6.452 X 10-4 

1 square mile = 2.788 X 107 ft2 = 640 acres 

1 barn = 10-28 m2 

104 

1 

929.0 

6.452 

1 yard 3 ft 

ft2 in? 

10.76 1550 

1.076 X 10-3 0.1550 

1 144 

6.944 X 10-3 1 

1 acre = 43 560 ft 2 

1 hectare = 104 m2 = 2.471 acres 

mi 

6.214 X 10-6 

6.214 X 10-4 

0.6214 

1.578 X 10-5 

1.894 X 10-4 

1 

1 rod = 16.5 ft 

1 mil = 10-3 in. 

1 nm = 1O-9 m 

A-5 



A-6 APPENDI D CONVERSION FACTORS 

Volume 

METER3 cm3 L 

1 CUBIC METER = 1 106 1000 

1 cubic centimeter = 10-6 1 1.000 X 10-3 

1 liter = 1.000 X 10-3 1000 1 

1 cubic foot = 2.832 X 10-2 2.832 X 104 28.32 
1 cubic inch = 1.639 X 10-5 16.39 1.639 X 10-2 

1 U.S. fluid gallon = 4 U.S. fluid quarts = 8 U.S. pints 128 U.S. fluid ounces = 231 in.3 

1 British imperial gallon = 277.4 in.3 = 1.201 U.S. fluid gallons 

Mass 

ft3 in.3 

35.31 6.102 x 104 

3.531 X 10-5 6.102 X 10-2 

3.531 X 10-2 61.02 

1 1728 
5.787 X 10-4 1 

Quantities in the colored areas are not mass units but are often used as such. For example, when we write 1 kg "=" 
2.205 lb, this means that a kilogram is a mass that weighs 2.205 pounds at a location where g has the standard value 
of 9.80665 m/s2• 

g KILOGRAM slug u oz lb ton 

1 gram = 1 0.001 6.852 X 10-5 6.022 X 1023 3.527 X 10-2 2.205 X 10-3 1.102 X 10-6 

1 KILOGRAM = 1000 1 6.852 X 10-2 6.022 X 1026 35.27 2.205 1.102 X 10-3 

1 slug = 1.459 X 104 14.59 1 8.786 X 1027 514.8 32.17 1.609 X 10-2 

1 atomic 
mass unit = 1.661 X 10-24 1.661 X 10-27 1.138 X 10-28 1 5.857 X 10-26 3.662 X 10-27 1.830 X 10-30 

1 ounce = 28.35 2.835 X 10-2 1.943 X 10-3 1.718 X 1025 1 6.250 X 10-2 3.125 X 10-5 

1 pound = 453.6 0.4536 3.108 X 10-2 2.732 X 1026 16 1 0.0005 

1 ton = 9.072 X 105 907.2 62.16 5.463 X 1029 3.2 X 104 2000 1 

1 metric ton = 1000 kg 

Density 

Quantities in the colored areas are weight densities and, as such, are dimensionally different from mass densities. 
See the note for the mass table. 

KILOGRAM/ 
slug/ft3 METER3 g/cm3 Ib/ft3 Ib/in.3 

1 slug per foot3 = 1 515.4 0.5154 32.17 1.862 X 10-2 

1 KILOGRAM 
per METER3 = 1.940 X 10-3 1 0.001 6.243 X 10-2 3.613 X 10-5 

1 gram per centimeter3 = 1.940 1000 1 62.43 3.613 X 10-2 

1 pound per foot3 = 3.108 X 10-2 16.02 16.02 X 10-2 1 5.787 X 10-4 

1 pound per inch3 = 53.71 2.768 X 104 27.68 1728 1 

Time 

y d h min SECOND 

1 year = 1 365.25 8.766 X 103 5.259 X 105 3.156 X 107 

1 day = 2.738 X 10-3 1 24 1440 8.640 X 104 

1 hour = 1.141 X 10-4 4.167 X 10-2 1 60 3600 
1 minute = 1.901 X 10-6 6.944 X 10-4 1.667 X 10-2 1 60 

1 SECOND = 3.169 X 10-8 1.157 X 10-5 2.778 X 10-4 1.667 X 10-2 1 



N ! D CONVERSION FACTORS A-7 

ft/s 

1 foot per second = 1 

1 kilometer per hour = 0.9113 

1 METER per SECOND = 3.281 

1 mile per hour = 1.467 

1 centimeter per second = 3.281 X 10-2 

km/h 

1.097 

1 

3.6 

1.609 
3.6 X 10-2 

1 knot = 1 nautical mi/h = 1.688 ft/s 1 milmin = 88.00 ftls = 60.00 mi/h 

Force 

METER/SECOND 

0.3048 

0.2778 

1 

0.4470 

0.01 

mi/h cm/s 

0.6818 30.48 

0.6214 27.78 

2.237 100 

1 44.70 
2.237 X 10-2 1 

Force units in the colored areas are now little used. To clarify: 1 gram-force (= 1 gf) is the force of gravity that 
would act on an object whose mass is 1 gram at a location where g has the standard value of 9.80665 m/s2

• 

dyne NEWTON lb pdl gf kgf 

1 dyne = 1 10-5 2.248 X 10-6 7.233 X 10-5 1.020 X 10-3 1.020 X 10-6 

1 NEWTON = 105 1 0.2248 7.233 102.0 0.1020 

1 pound = 4.448 X 105 4.448 1 32.17 453.6 0.4536 

1 poundal = 1.383 X 104 0.1383 3.108 X 10-2 1 14.10 1.410 X 102 

1 gram-force = 980.7 9.807 X 10-3 2.205 X 10-3 7.093 X 10-2 1 0.001 

1 kilogram-force = 9.807 X 105 9.807 2.205 70.93 1000 1 

1 ton = 2000 lb 

Pressure 

atm dyne/cm2 inch of water cmHg PASCAL Ib/in.2 Ib/ft2 

1 atmosphere = 1 1.013 X 106 406.8 76 1.013 X 105 14.70 2116 

1 dyne per 
centimeter2 = 9.869 X 10-7 1 4.015 X 10-4 7.501 X 10-5 0.1 1.405 X 10-5 2.089 X 10-3 

1 inch of 
watera at 4°C = 2.458 X 10-3 2491 1 0.1868 249.1 3.613 X 10-2 5.202 

1 centimeter 
of mercury a 

at O°C = 1.316 X 10-2 1.333 X 104 5.353 1 1333 0.1934 27.85 
1 PASCAL = 9.869 X 10-6 10 4.015 X 10-3 7.501 X 10-4 1 1.450 X 10-4 2.089 X 10-2 

1 pound per inch2 = 6.805 X 10-2 6.895 X 104 27.68 5.171 6.895 X 103 1 144 

1 pound per foot2 = 4.725 X 10-4 478.8 0.1922 3.591 X 10-2 47.88 6.944 X 10-3 1 

aWhere the acceleration of gravity has the standard value of 9.80665 m/s2• 

1 bar = 106 dyne/cm2 = 0.1 MPa 1 millibar = 10 3 dyne/cm2 = 102 Pa 1 torr = 1 mmHg 
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Energy, Work, Heat 
Quantities in the colored areas are not energy units but are included for convenience. They arise from the relativistic 
mass-energy equivalence formula E = me2 and represent the energy released if a kilogram or unified atomic mass 
unit (u) is completely converted to energy (bottom two rows) or the mass that would be completely converted to 
one unit of energy (rightmost two columns). 

Btu erg ft ·lb 

1 British 1.055 777.9 
thermal unit = X lO lD 

9.481 7.376 
1 erg = X 10-11 X 10-8 

1.285 1.356 
1 foot-pound = X 10-3 X 107 1 

1 horsepower- 2.685 1.980 
hour = 2545 X 10 13 X 106 

9.481 
1 JOULE = X 10-4 107 0.7376 

3.968 4.1868 
1 calorie = X 10-3 X 107 3.088 

1 kilowatt- 3.600 2.655 
hour = 3413 X 1013 X 106 

1.519 1.602 1.182 
1 electron-volt = X 10-22 X 10-12 X 10-19 

1 million 1.519 1.602 1.182 
electron-volts = X 10-16 X 10-6 X 10-13 

8.521 8.987 6.629 
1 kilogram = X 1013 X 1023 X 1016 

1 unified 
atomic mass 1.415 1.492 1.101 

unit = X 10-13 X 10-3 X lO- lD 

Power 

Btu/h 

1 British thermal unit per hour = 1 

1 foot-pound per second = 4.628 

1 horsepower = 2545 

1 calorie per second = 14.29 

Magnetic Field 

gauss 

1 gauss = 1 
1 TESLA = 104 

1 milligauss = 0.001 

1 kilowatt = 3413 

1 WATT = 3.413 

TESLA 

10-4 

1 
10-7 

1 tesla = 1 weber/meter2 

hp·h 

3.929 
X 10-4 

3.725 
X 10-14 

5.051 
X 10-7 

3.725 
X 10-7 

1.560 
X 10-6 

1.341 

5.967 
X 10-26 

5.967 
X 10-20 

3.348 
X lO lD 

5.559 
X 10-17 

ft . Ibis 

0.2161 

1 

550 

3.088 

737.6 

0.7376 

milligauss 

1000 

107 

1 

JOULE cal kW·h eV MeV kg 

1055 252.0 2.930 6.585 6.585 1.174 
X 10-4 X 1021 X 1015 X 10-14 

2.389 2.778 6.242 6.242 1.113 
10-7 X 10-8 X 10-14 X 1011 X 105 X 10-24 

3.766 8.464 8.464 1.509 
1.356 0.3238 X 10-7 X 1018 X 1012 X 10-17 

2.685 6.413 1.676 1.676 2.988 
X 106 X 105 0.7457 X 1025 X 1019 X 10-11 

2.778 6.242 6.242 1.113 
1 0.2389 X 10-7 X 1018 X 1012 X 10-17 

1.163 2.613 2.613 4.660 
4.1868 X 10-6 X 1019 X 10 13 X 10-17 

3.600 8.600 2.247 2.247 4.007 
X 106 X 105 X 1025 X 10 19 X 10-11 

1.602 3.827 4.450 1.783 
X 10-19 X 10-20 X 10-26 1 10-6 X 10-36 

1.602 3.827 4.450 1.783 
X 10-13 X 10-14 X 10-20 10-6 X 10-30 

8.987 2.146 2.497 5.610 5.610 1 
X 10 16 X 1016 X lO lD X 1035 X 1029 

1.492 3.564 4.146 9.320 932.0 1.661 
X 10-10 X 10- 11 X 10-17 X 108 X 10-27 

hp calls kW 

3.929 X 10-4 6.998 X 10-2 2.930 X 10-4 

1.818 X 10-3 0.3239 

1 178.1 

5.615 X 10-3 1 

1.341 238.9 

1.341 X 10-3 0.2389 

Magnetic Flux 

maxwell 

1 maxwell = 1 
1 WEBER = 108 

WEBER 

10-8 

1 

1.356 X 10-3 

0.7457 
4.186 X 10-3 

1 

0.001 

u 

7.070 
X 10 12 

670.2 

9.037 
X 109 

1.799 
X 1016 

6.702 
X 109 

2.806 
X lO lD 

2.413 
X 1016 

1.074 
X 10-9 

1.074 
X 10-3 

6.022 
X 1026 

WATT 

0.2930 

1.356 

745.7 

4.186 

1000 

1 



Circle of radius r: circumference = 2m; area = m 2
, 

Sphere of radius r: area = 4m2; volume = ~m3, 
Right circular cylinder of radius r and height h: 

area = 2m2 + 2mh; volume = m 2h. 

Triangle of base a and altitude h: area = ~ah, 

-b ± v'b2 - 4ac 
Ifax2 + bx + c = 0, then x = -------

2a 

sin fJ = L x yaxis cos fJ =-
r r 

tan fJ = L x 
cot fJ =-

x y 

r r 
sec fJ = - csc fJ = -

() 

y 

x y I£..-E _____ ~_ x axis 

In this right triangle, 
a2 + b2 = c2 

Angles areA, B, C 

Opposite sides are a, b, c 

Angles A + B + C = 180° 
sin A sin B sin C 

abc 

c2 = a2 + b2 
- 2ab cos C 

Exterior angle D = A + C 

equals 

= equals approximately 

0 

is the order of magnitude of 

x 

c 

APPENDIX E 

r 

¥= is not equal to 

- is identical to, is defined as 

> is greater than (~is much greater than) 

< is less than (~is much less than) 

;::::: is greater than or equal to (or, is no less than) 

:5 is less than or equal to (or, is no more than) 

± plus or minus 

ex is proportional to 

L the sum of 

xavg the average value of x 

sin(90° - fJ) = cos fJ 

cos(90° - fJ) = sin fJ 

sin fJ/cos fJ = tan fJ 

sin2 fJ + cos2 fJ = 1 

sec2 () - tan2 () = 1 

csc2 () - coe fJ = 1 

sin 2() = 2 sin ()cos () 

cos 2fJ = cos2 () - sin2 fJ = 2 cos2 () - 1 = 1 - 2 sin2 () 

sine a ± (3) = sin a cos f3 ± cos a sin f3 
cos( a ± (3) = cos a cos f3 + sin a sin f3 

tan a ± tan f3 
tan(a ± (3) = ------'--

1 + tan a tan f3 
sin a ± sin f3 = 2 sin ~(a ± (3) cos ~(a + (3) 

cos a + cos f3 = 2 cos ~(a + (3) cos ~(a - (3) 

cos a - cos f3 = -2 sin ~(a + (3) sin ~(a - (3) 

nom 
nx n(n - 1)x2 

(1 + x)" = 1 + l! + 2! + ' , , (X2 < 1) 

A-9 
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In(l + x) = x - !X2 + ~X3 - ••• (Ixl < 1) 

(j3 85 

sin 8 = 8 - - + - -
3! 5! 

82 84 
cos 8 = 1 - - + - -

2! 4! 

83 285 

tan 8 = 8 + 3 + 15 + 

Two simultaneous equations in unknowns x and y, 

alx + bly = Cl and a2x + b2y = C2, 

have the solutions 

I Cl b11 
C2 b2 c1b2 - C2bl 

x= 
a1b2 a2bl 

la1 b11 
a2 b2 

and 

lal cli 
a2 C2 alc2 - a2cl 

y= 
bll 

alb2 - a2bl . I al 
a2 b2 

Let 1, Land k be unit vectors in the x, y, and z direc­
tions.Then 

i· i = ] .] = k' k = 1, H =]. k = k· i = 0, 

i x i = ] x ] = k x k = 0, 

i x ] = k, ]Xk=1, k x i =] 
Any vector a with components a" ay, and az along the 
x, y, and z axes can be written as 

a = a) + ay] + aJ. 

Let a, b, and c be arbitrary vectors with magnitudes a, 
b,and c.Then 

a x (b + c) = (a x b) + (a x c) 

(sa) x b = a x (sb) = sea x b) (s = a scalar). 

Let 8 be the smaller of the two angles between a and 
b.Then 

a' b = b· a = axbx + ayby + azbz = ab cos 8 

i ] k 
a x b = -b x a = ax ay az 

bx by bz 

= i lay azl_] I ax azl + k I ax ayl 
by bz bx bz bx by 

= (aybz - byaz)i + (azbx bzat)] 

+ (axby - btay)k 

la x bl = ab sin 8 

a' (b x c) = b· (c x a) = c' (a x b) 
a x (b x c) = (a·c)b - (a'by-C 



In what follows, the letters u and v stand for any functions of 
x, and a and m are constants. To each of the indefinite inte­
grals should be added an arbitrary constant of integration. 
The Handbook of Chemistry and Physics (CRC Press Inc.) 
gives a more extensive tabulation. 

1. ~~ =1 

d du 
2. dx (au) = a dx 

d du dv 
3. dx (u + v) = dx + dx 

d 
4. -xm = mxm - 1 

dx 

d 1 
5. -lnx =-

dx x 

d dv du 
6. -(uv) = u- + v-

dx dx dx 

d 
7. dx eX = eX 

8 
d . 

· dx sm x = cos x 

9 
d . 

• dx cos x = -smx 

d 
10. dx tan x = sec2 x 

d 
11. dx cot x = -csc2 

X 

d 
12. dx sec x = tan x sec x 

d 
13. dx csc x = -cot x csc x 

d du 
14. -e" = e"-

dx dx 

15 
d . du 

• dx sm u = cos u dx 

16 
d . du 

• - cos u = -sm u -
dx dx 

A MATH EMATICAL FORM U LAS A-11 

1. J dx = x 

2. J au dx = a J u dx 

3. J (u + v) dx = J u dx + J v dx 

J 
xm+l 

4. xm dx = ( m * -1) 
m + 1 

5. J ~ = In Ixl 

6. J u dv dx = uv - J v du dx 
dx dx 

7. J eX dx = eX 

8. J sin x dx = - cos x 

9. J cos x dx = sin x 

10. J tan x dx = In Isec xl 

11. J sin2 x dx = ~ x - ~ sin 2x 

12. J e-ax dx = - ! e-ax 

13. J xe-ax dx = - ~2 (ax + 1) e-ax 

14. J x2e-ax dx = - :3 (a 2x2 + 2ax + 2)e-ax 

L
oo n! 

15. x"e-ax dx = --
o a"+ 1 

100 n' 20. X21l +1 e-ax' dx = . (a > 0) 
o 2a"+ 1 

J 
xdx 

21. --d- = x - dln(x + d) 
x + . 



t 

All physical properties are for a pressure of 1 atm unless otherwise specified. 

Specific 
Atomic Molar Boiling Heat, 
Number Mass, Density, Melting Point, 11(g·°e) 

Element Symbol Z g/mol g/cm3 at 20°C Point,OC °C at 25°C 

Actinium Ac 89 (227) 10.06 1323 (3473) 0.092 
Aluminum Al 13 26.9815 2.699 660 2450 0.900 
Americium Am 95 (243) 13.67 1541 
Antimony Sb 51 121.75 6.691 630.5 1380 0.205 
Argon Ar 18 39.948 1.6626 X 10-3 -189.4 -185.8 0.523 
Arsenic As 33 74.9216 5.78 817 (28 atm) 613 0.331 
Astatine At 85 (210) (302) 
Barium Ba 56 137.34 3.594 729 1640 0.205 
Berkelium Bk 97 (247) 14.79 

Beryllium Be 4 9.0122 1.848 1287 2770 1.83 
Bismuth Bi 83 208.980 9.747 271.37 1560 0.122 
Bohrium Bh 107 262.12 
Boron B 5 10.811 2.34 2030 1.11 
Bromine Br 35 79.909 3.12 (liquid) -7.2 58 0.293 
Cadmium Cd 48 112.40 8.65 321.03 765 0.226 
Calcium Ca 20 40.08 1.55 838 1440 0.624 
Californium Cf 98 (251) 

Carbon C 6 12.01115 2.26 3727 4830 0.691 
Cerium Ce 58 140.12 6.768 804 3470 0.188 
Cesium Cs 55 132.905 1.873 28.40 690 0.243 
Chlorine CI 17 35.453 3.214 X 10-3 We) -101 -34.7 0.486 
Chromium Cr 24 51.996 7.19 1857 2665 0.448 
Cobalt Co 27 58.9332 8.85 1495 2900 0.423 
Copernicium Cp 112 (285) 

Copper Cu 29 63.54 8.96 1083.40 2595 0.385 
Curium Cm 96 (247) 13.3 

Darmstadtium Ds 110 (271) 

Dubnium Db 105 262.114 
Dysprosium Dy 66 162.50 8.55 1409 2330 0.172 
Einsteinium Es 99 (254) 

Erbium Er 68 167.26 9.15 1522 2630 0.167 
Europium Eu 63 151.96 5.243 817 1490 0.163 
Fermium Fm 100 (237) 

Fluorine F 9 18.9984 1.696 X 10-3 We) -219.6 -188.2 0.753 
Francium Fr 87 (223) (27) 
Gadolinium Gd 64 157.25 7.90 1312 2730 0.234 
Gallium Ga 31 69.72 5.907 29.75 2237 0.377 
Germanium Ge 32 72.59 5.323 937.25 2830 0.322 
Gold Au 79 196.967 19.32 1064.43 2970 0.131 
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Element 

Hafnium 

Hassium 

Helium 

Holmium 

Hydrogen 

Indium 

Iodine 

Iridium 

Iron 

Krypton 

Lanthanum 

Lawrencium 

Lead 

Lithium 

Lutetium 

Magnesium 

Manganese 

Meitnerium 

Mendelevium 

Mercury 

Molybdenum 

Neodymium 

Neon 

Neptunium 

Nickel 

Niobium 

Nitrogen 

Nobelium 

Osmium 

Oxygen 

Palladium 

Phosphorus 

Platinum 

Plutonium 

Polonium 

Potassium 

Praseodymium 

Promethium 

Protactinium 

Radium 

Radon 

Rhenium 

Rhodium 

Roentgenium 

Rubidium 

Ruthenium 

Rutherfordium 

Symbol 

Hf 

Hs 

He 

Ho 

H 
In 

I 

Ir 

Fe 

Kr 

La 

Lr 

Pb 

Li 

Lu 

Mg 

Mn 

Mt 

Md 

Hg 

Mo 

Nd 

Ne 

Np 

Ni 

Nb 

N 

No 

Os 

o 
Pd 

P 

Pt 

Pu 

Po 

K 

PI' 

Pm 

Pa 

Ra 

Rn 

Re 

Rh 

Rg 

Rb 

Ru 

Rf 

Atomic 
Number 

Z 

72 
108 

2 

67 

1 
49 

53 

77 

26 

36 

57 

103 

82 

3 

71 
12 

25 

109 

101 

80 

42 

60 

10 

93 

28 

41 

7 

102 

76 

8 

46 

15 
78 

94 

84 

19 

59 

61 

91 

88 
86 

75 

45 

111 

37 

44 

104 

Molar 
Mass, 
g/mol 

178.49 

(265) 

4.0026 

164.930 

1.00797 

114.82 

126.9044 

192.2 

55.847 

83.80 

138.91 

(257) 

207.19 

6.939 

174.97 

24.312 

54.9380 

(266) 

(256) 

200.59 

95.94 

144.24 

20.183 

(237) 

58.71 
92.906 

14.0067 

(255) 

190.2 

15.9994 

106.4 

30.9738 

195.09 

(244) 

(210) 

39.102 

140.907 

(145) 

(231) 

(226) 

(222) 

186.2 

102.905 

(280) 

85.47 

101.107 

261.11 

APP N DIX F PROPERTI ES OF TH E ELEM ENTS A-13 

Density, 
g/cm3 at 20°C 

13.31 

0.1664 X 10-3 

8.79 

0.08375 X 10-3 

7.31 

4.93 

22.5 

7.874 

3.488 X 10-3 

6.189 

11.35 

0.534 

9.849 

1.738 

7.44 

13.55 
10.22 

7.007 

0.8387 X 10-3 

20.25 

8.902 

8.57 

1.1649 X 10-3 

22.59 

1.3318 X 10-3 

12.02 

1.83 

21.45 

19.8 

9.32 

0.862 

6.773 

7.22 

15.37 (estimated) 

5.0 

9.96 X 10-3 (O°C) 

21.02 

12.41 

1.532 

12.37 

Melting 
Point,Oc 

2227 

-269.7 

1470 

-259.19 

156.634 

113.7 

2447 

1536.5 

-157.37 

920 

327.45 

180.55 

1663 

650 

1244 

-38.87 

2617 

1016 

-248.597 

637 

1453 

2468 

-210 

3027 

-218.80 

1552 

44.25 

1769 

640 

254 

63.20 

931 

(1027) 

(1230) 

700 

(-71) 
3180 

1963 

39.49 

2250 

Boiling 
Point, 

°c 

5400 

-268.9 

2330 

-252.7 

2000 

183 

(5300) 

3000 

-152 

3470 

1725 
1300 

1930 

1107 

2150 

357 

5560 

3180 

-246.0 

2730 

4927 

-195.8 

5500 

-183.0 

3980 

280 

4530 

3235 

760 

3020 

-61.8 

5900 

4500 

688 

4900 

Specific 
Heat, 

J/(g·°C) 
at 25°C 

0.144 

5.23 

0.165 

14.4 

0.233 

0.218 

0.130 

0.447 

0.247 

0.195 

0.129 

3.58 

0.155 

1.03 

0.481 

0.138 

0.251 

0.188 

1.03 

1.26 

0.444 

0.264 

1.03 

0.130 

0.913 

0.243 

0.741 

0.134 

0.130 

0.758 

0.197 

0.092 

0.134 

0.243 

0.364 

0.239 



A·14 APPENDIX F PROPERTIES OF THE ELEMENTS 

Specific 
Atomic Molar Boiling Heat, 
Number Mass, Density, Melting Point, J/(g· DC) 

Element Symbol Z g/mol g/cm3 at 20DC Point,OC DC at 25DC 

Samarium Sm 62 150.35 7.52 1072 1630 0.197 

Scandium Sc 21 44.956 2.99 1539 2730 0.569 

Seaborgium Sg 106 263.118 

Selenium Se 34 78.96 4.79 221 685 0.318 

Silicon Si 14 28.086 2.33 1412 2680 0.712 

Silver Ag 47 107.870 10.49 960.8 2210 0.234 

Sodium Na 11 22.9898 0.9712 97.85 892 1.23 

Strontium Sr 38 87.62 2.54 768 1380 0.737 

Sulfur S 16 32.064 2.07 119.0 444.6 0.707 

Tantalum Ta 73 180.948 16.6 3014 5425 0.138 

Technetium Tc 43 (99) 11.46 2200 0.209 

Tellurium Te 52 127.60 6.24 449.5 990 0.201 

Terbium Tb 65 158.924 8.229 1357 2530 0.180 

Thallium Tl 81 204.37 11.85 304 1457 0.130 

Thorium Th 90 (232) 11.72 1755 (3850) 0.117 

Thulium Tm 69 168.934 9.32 1545 1720 0.159 

Tin Sn 50 118.69 7.2984 231.868 2270 0.226 

Titanium Ti 22 47.90 4.54 1670 3260 0.523 

Tungsten W 74 183.85 19.3 3380 5930 0.134 

Unnamed Uut 113 (284) 

Unnamed Unq 114 (289) 

Unnamed Uup 115 (288) 

Unnamed Uuh 116 (293) 

Unnamed Uus 117 

Unnamed Uuo 118 (294) 

Uranium U 92 (238) 18.95 1132 3818 0.117 

Vanadium V 23 50.942 6.11 1902 3400 0.490 

Xenon Xe 54 131.30 5.495 X 10-3 -111.79 -108 0.159 

Ytterbium Yb 70 173.04 6.965 824 1530 0.155 

Yttrium Y 39 88.905 4.469 1526 3030 0.297 

Zinc Zn 30 65.37 7.133 419.58 906 0.389 

Zirconium Zr 40 91.22 6.506 1852 3580 0.276 

The values in parentheses in the column of molar masses are the mass numbers of the longest-lived isotopes of those elements that are radioactive. 
Melting points and boiling points in parentheses are uncertain. 

The data for gases are valid only when these are in their usual molecular state, such as H2, He, 02, Ne, etc. The specific heats of the gases are the 
values at constant pressure. 

Source: Adapted from 1. Emsley, The Elements, 3rd ed., 1998, Clarendon Press, Oxford. See also www.webelements.com for the latest values and 
newest elements. 
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CHAPTER 1 
P 1. (a) 4.00 X 104km;(b) 5.10 X 108 km2;(c) 1.08 X 1012 km3 

3. (a) 109 ,um; (b)10-4; (c) 9.1 X lOs pm 5.(a)160rods;(b)40 
chains 7.1.1 X 103 acre-feet 9.1.9 X 1022 cm3 11. (a) 1.43; (b) 
0.864 13. (a) 495 s; (b) 141 s; (c) 198 s; (d) - 245 s 15.1.21 X 1Q12 
t1J3 17. C, D, A, E, E; the important criterion is the consistency of 
the daily variation, not its magnitude 19.5.2 X 106 m 21.9.0 X 
1049 atoms 23. (a) 1 X 103 kg; (b) 158kg/s 25.1.9 X lOSkg 27. 
(a) 1.18 X 1O-29 m3; (b) 0.282 nm 29.1.75 X 103 kg 31.1.43 
kg/min 33. (a) 293 US. bushels; (b) 3.81 X 103 US. bushels 35. 
(a) 22 pecks; (b) 5.5 Imperial bushels; (c) 200 L 37.8 X 102 km 
39. (a) 18.8 gallons; (b) 22.5 gallons 41.0.3 cord 43.3.8 mg/s 
45. (a) yes; (b) 8.6 universe seconds 47.0.12AU/min 49. (a) 
3.88; (b)7.65; (c) 156 ken3; (d) 1.19 X 103m3 51. (a) 3.9 m,4.8 m; 
(b) 3.9 X 103mm,4.8 X 103 mm; (c) 2.2 m3,4.2 m3 53. (a) 4.9 X 
10-6 pc; (b) 1.6 X 10-Sly 

CHAPTER :2 

1. band c 2. (check the derivative dxldt) (a) 1 and 4; 
(b) 2 and 3 3. (a) plus; (b) minus; (c) minus; (d) plus 4. 1 and 4 
(a = d 2xldt2 must be constant) 5. (a) plus (upward displacement 
ony axis); (b) minus (downward displacement ony axis); (c) a = 

- g = -9.8mJs2 

1. (a) negative; (b) positive; (c) yes; (d) positive; (e) constant 
3. (a) all tie; (b) 4, tie of 1 and 2, then 3 5. (a) positive direction; 
(b) negative direction; (c) 3 and 5; (d) 2 and 6 tie, then 3 and 5 tie, 
then 1 and 4 tie (zero) 7. (a)D;(b) E 9. (a) 3,2,1;(b) 1,2,3;(c) 
all tie; (d) 1,2,3 

1.13 m 3. (a) +40 km/h; (b) 40 km/h 5. (a) 0; (b) -2 m; (c) 0; 
(d) 12 m; (e) + 12 m; (f) +7 mJs 7.60 km 9.1.4 m 11.128 kmJh 
13. (a) 73 kmJh; (b) 68 kmJh; (c) 70 km/h; (d) 0 15. (a) - 6 m/s; (b) 
- x direction; (c) 6 m/s; (d) decreasing; (e) 2 s; (f) no 17. (a) 28.5 
cmJs; (b) 18.0 cm/s; (c) 40.5 cm/s; (d) 28.1 cm/s; (e) 30.3 cmJs 19. 
- 20 m/s2 21. (a) 1.10 m/s; (b) 6.11 mmJs2; (c) 1.47 m/s; (d) 6.11 
mm/s2 23.1.62 X 1Q1S m/s2 25.(a)30s;(b)300m 27.(a)+1.6 
m/s; (b) + 18 mls 29. (a) 10.6 m; (b) 41.5 s 31. (a) 3.1 X 106 s; (b) 
4.6 X 1013 m 33.(a)3.56mJs2;(b)8.43m/s 35.0.90mJs2 37. (a) 
4.0mJs2;(b)+x 39.(a)-2.5m/s2;(b)1;(d)0;(e)2 41.40m 43. 
(a) 0.994mJs2 45. (a) 31 mJs;(b) 6.4s 47. (a) 29.4m;(b) 2.45 s 
49. (a) 5.4 s; (b)41 m/s 51.(a)20m;(b)59m 53.4.0m/s 55. (a) 
857 mJs2; (b) up 57. (a) 1.26 X 103 m/s2; (b) up 59. (a) 89 cm; (b) 
22cm 61.20.4m 63.2.34m 65. (a) 2.25 mJs; (b) 3.90mJs 67. 
0.56 m/s 69.100 m 71. (a) 2.00 s; (b) 12 cm; (c) - 9.00 cmJs2; (d) 
right; (e) left; (f) 3.46s 73. (a) 82 m; (b) 19m/s 75. (a) 0.74 s; (b) 
6.2 m/s2 77. (a) 3.1 mJs2; (b) 45 m; (c) 13 s 79.17 m/s 81. + 47 
mls 83. (a) 1.23 cm; (b) 4 times; (c) 9 times; (d) 16 times; (e) 25 
times 85.25 kmJh 87.1.2 h 89.4H 91. (a) 3.2 s; (b) 1.3 s 93. 
(a) 8.85 m/s; (b) 1.00 m 95. (a) 2.0 mJs2; (b) 12 m/s; (c) 45 m 97. 
(a) 48.5 m/s; (b) 4.95 s; (c) 34.3 mJs; (d) 3.50 s 99.22.0 mJs 101. 
(a) v = (V5 + 2gh)0.5; (b) t = [(V5 + 2gh)0.5 - Vol I g; (c) same as (a); 
(d) t = [(VB + 2gh)o.s + Vol I g,greater 

CHAPTER 3 
1. (a) 7 m (if and b are in same direction); (b) 1 m(if and b are in 

opposite directions) 2. c, d,f (components must be head to tail; if 
must extend from tail of one component to head of the other) 3. (a) 
+,+ ;(b)+ ,-; (c) + ,+ (draw vectorfrom tail ofd] to head otd2) 

to Checkpoints and Odd-Numbered 
Questions and Problems 

4. (a) 90°; (b) 0° (vectors are parallel-same direction); (c) 180° (vec­
tors are antiparallel-opposite directions) 5. (a) 0° or 180°; (b) 90° 

1. yes, when the vectors are in same direction 3. Either the se­
quence d2, d1 or the sequence d2, d2, d3 5. all but (e) 7. (a) yes; 
(b) yes; (c) no 9. (a) + x for (1), + z for (2), + z for (3); (b) - x for (1), 
- z for (2), - z for (3) 

1. (a) -2.5 m; (b) - 6.9 m 3. (a) 47.2 m; (b) 122° 5. (a) 156 
km; (b) 39.8° west of due north 7. (a) 6.42 m; (b) no; (c) yes; (d) 
yes; (e) a possible answer: (4.30 m)i + (3.70 m)] + (3.00 m)k; (f) 
7.96 m 9. (a) (3.0 m)i - (2.0 m)] + (5.0 m)k; (b) (5.0 m)i - (4.0 
m)] - (3~0 m)k; (c) (- 5.0 m)i + (4.0 m)] + (3.0 m)k 11. (a) 
(-9.0m)i + (10 m)j; (b) 13m;(c) 132° 13.4.74km 15.(a)1.59 
m; (b) 12.1 m; (c) 12.2 m; (d) 82.5° 17. (a) 38 m; (b) - 37S; (c) 130 
m; (d) 1.2°; (e) 62 m; (f) 130° 19.5.39 m at 21.8° left offorward 
21. (a)-70.0cm;(b) 80.0 cm; (c) 141cm;(d) 172° 23.3.2 25. 
2.6km 27. (a) 8i + 16h(b)2! + 4i 29.(ap.5c~;(b),900;(c) 
8.6 cm; (d) 48° 31. (a) ai + aj + ak;(b)-ai + aj + ak;(c)ai -
a] + ak;(d)-ai - aJ + ak;(e) 54.7°; (f)3°.5a 33. (a) 12;(b)+z; 
(c) 12; (d) z; (e) 12; (f) + z 35. (a) -18.8 units; (b) 26.9 units, + z 
direction 37. (a)-21;(b)-9;(c)5i -l1J - 9k 39.70S 41. 
22° 43. (a) 3.00 m; (b) 0; (c) 3.46 m; (d) 2.00 m; (e) - 5.00 m; (f) 
8.66 m; (g) - 6.67; (h) 4.33 45. (a) - 83.4; (b )(1.14 X 103)k; (c) 
1.14 X 103, 8not defined, ¢ = 0°; (d)90.00;(e)-5.14i + 6.13J + 
3.00k; (f) 8.54, 8 = 130°, ¢ = 69.4° 47. (a) 140°; (b) 90.0°; (c) 99.1 ° 
49. (a) 103 km; (b) 60.9° north of due west 51. (a) 27.8 m; (b) 13.4 
m 53. (a) 30; (b) 52 55. (a) -2.83 m; (b) -2.83 m; (c) 5.00 m; (d) 
0; (e) 3.00 m; (f) 5.20 m; (g) 5.17 m; (h) 2.37 m; (i) 5.69 m; U) 25° 
north of due east; (k) 5.69 m; (1) 25° south of due west 57.4.1 
59. (a) (9.19m)i' + (7.71m)]';(b)(14.0m)i' + (3.41m)]' 61. (a) 
lli + 5.0J -7.0k;(b)1200;(c)-4.9;(d)7.3 63.(a)3.0m2;(b)52 
m3;(c)(l1m2)i + (9.0m2)J + (3.0m2)k 65. (a)(-40i - 20J + 
25k) m; (b) 45 m 

CHAPTER 4 
1. (draw v tangent to path, tail on path) (a) first; (b) third 

2. (take second derivative with respect to time) (1) and (3) at and 
ay are both constant and thus a is constant; (2) and (4) ay is con­
stant but ax is not, thus a is not 3. yes 4. (a) Vt constant; (b) Vy 

initially positive, decreases to zero, and then becomes progres­
sively more negative; ( c) ax = 0 thr~ughout; (d) a y = - g through­
out 5. (a) - (4 m/s)i; (b) - (8 mJs2)j 
Q 1.a andctie,thenb 3. decreases 5.a, b, c 7.(a)0;(b)350 
kmJh; (c) 350 km/h; (d) same (nothing changed about the vertical 
motion) 9. (a) all tie; (b) all tie; (c) 3,2,1; (d) 3,2,1 11.2, then 1 
and 4 tie, then 3 13. (a) yes; (b) no; (c) yes 

1. (a) 6.2m 3. (-2.0m)i + (6.0m)J - (lOm)k 5. (a)7.59 
kmJh; (b) 22S east of due north 7. (- 0.70 m/s)i + (1.4 m/s)J -
(0.40 m/s)k 9. (a) 0.83 cmJs; (b) 0°; (c) 0.11 m/s; (d) - 63° 11. (a) 
(6.00 m)i - (106 m)J; (b) (19.0 mJs)i - (224 m/s)J; (c) (24.0 
m/s2)i - (336 mJS2)J; (d) - 85.2° 13. (a)(8 m/s2)tJ + (1 m/s)k; (b) 
(8m!s2)j 15.(a)(-1.~Om/s)];(b)(4.50m)i - (2.25m)J 17.(32 
m/s)i 19. (a)(72.0m)i + (90.7m)j;(b)49S 21. (a) 18 cm; (b) 
1.9m 23. (a) 3.03 s;(b) 758m;(c) 29.7m/s 25.43.1 mJs (155 
kmJh) 27.(a)1O.0s;(b)897m 29.78.5° 31.3.35m 33. (a) 
202 mJs; (b) 806 m; ( c) 161 m/s; (d) -171 mJs 35.4.84 cm 37. (a) 
1.60 m; (b) 6.86 m; ( c) 2.86 m 39. (a) 32.3 m; (b) 21.9 mJs; (c) 40.4°; 
(d) below 41.55S 43. (a) 11 m; (b) 23 m; (c) 17 m/s; (d) 63° 

AN-1 



AN-2 ANSWERS 

45. (a) ramp; (b) 5.82 m; (c) 31.0° 47. (a) yes; (b) 2.56 m 49. (a) 
31°; (b) 63° 51. (a) 2.3°; (b) 1.4 m; (c) 18° 53. (a)75.0 m; (b) 31.9 
m/s; ( c) 66.9°; (d) 25.5 m 55. the third 57. (a) 7.32 m; (b) west; (c) 
north 59. (a) 12 s; (b) 4.1 mls2; (c) down; (d) 4.1 mls2; (e) up 61. 
(a) 1.3 X 105 m1s;(b)7.9 X 105 m/s2;(c) increase 63.2.92m 65. 
(3.00mls2)i + (6.00mls2)) 67. 160mls2 69. (a) 13 mls2; (b) east­
ward; ( c) 13 mls2; (d) eastward 71. 1.67 73. (a )(80 km/h)i - (60 
km/h)); (b) 0°; (c) answers do not change 75.32 mls 77.60° 79. 
(a) 38 knots; (b) 1.5° east of due north; (c) 4.2 h; (d) IS west of 
due south 81. (a)(-32kmlh)i - (46km/h)j; (b)[(2.5 km) - (32 
kmlh)t]i + [(4.0km) - (46km/h)t]]; (c) 0.084h;(d) 2 X 102m 
83. (a) - 30°; (b) 69 min; (c) 80 min; (d) 80 min; (e) 0°; (f) 60 min 
85. (a) 2.7 km; (b) 76° clockwise 87. (a) 44m; (b) 13 m; (c) 8.9 m 
89. (a) 45 m; (b) 22 m/s 91. (a) 2.6 X WZmls; (b) 45 s; (c) increase 
93. (a) 63 km; (b) 18° south of due east; (c) 0.70 kmlh; (d) 18° south 
of due east; (e) 1.6 km/h; (f) 1.2 km/h; (g) 33° north of due east 95. 
(a) 1.5; (b)(36 m,54m) 97. (a) 62ms;(b) 4.8 X 102m1s 99.2.64 
m 101. (a) 2.5 m; (b) 0.82 m; (c) 9.8 mls2; (d) 9.8 m/s2 103. (a) 6.79 
km/h; (b) 6.96° 105. (a) 16 m/s; (b) 23°; ( c) above; (d) 27 mls; (e) 
57"; (f) below 107. (a) 4.2 m, 45°; (b) 5.5 m, 68°; (c) 6.0 m, 90°; (d) 
4.2 m, 135°; (e) 0.85 mis, 135°; (f) 0.94 mis, 90°; (g) 0.94 mis, 180°; 
(h) 0.30 m/s2, 180°; (i) 0.30 mls2, 270° 109. (a) 5.4 X 10-13 m; (b) de­
crease 111. (a) 0.034 mls2; (b) 84 min 113. (a) 8.43 m; (b) -129° 
115. (a) 2.00 ns; (b) 2.00 mm; (c) 1.00 X 107 mls; (d) 2.00 X 106 m/s 
117. (a) 24 mls; (b) 65° 119.93° from the car's direction of motion 

CHAPTER 5 
1. c, d, and e (PI and P2 must be head to tail, P net must be 

from tail of one of them to head of the other) 2. (a) and (b) 2 N, 
leftward (acceleration is zero in each situation) 3. (a) equal; (b) 
greater (acceleration is upward, thus net force on body must be up­
ward) 4. (a) equal; (b) greater; (c) less 5. (a) increase; (b) yes; 
(c) same; (d) yes 
Q 1. (a) 2,3,4; (b) 1,3,4; (c) 1, + y;2, +x;3,fourth quadrant; 4, 
third quadrant 3. increase 5. (a) 2 and 4; (b) 2 and 4 7. (a) M; 
(b) M; (c) M; (d) 2M; (e) 3M 9. (a) 20 kg; (b) 18 kg; (c) 10 kg; (d) 
all tie; (e) 3,2, 1 11. (a) increases from initial value mg; (b) de­
creases from mg to zero (after which the block moves up away 
from the floor) 
P 1. 2.9 m/s2 3.(a)1.88N;(b)0.684N;(c)(1.88N)i + (0.684N)) 
5. (a)(0.86m1s2)i - (0.16 mls2)); (b) 0.88 m/s2; (c)-11° 7. (a) 
(- 32.0 N)i - (20.8 N)); (b) 38.2 N; (c) -147° 9. (a) 8.37 N; (b) 
-133°; (c) -125° 11.9.0 mls2 13. (a) 4.0 kg; (b) 1.0 kg; (c) 4.0 kg; 
(d) 1.0 kg 15. (a) 108 N; (b) 108 N; (c) 108 N 17. (a) 42 N; (b) 72 
N;(c)4.9m1s2 19.1.2 X 105 N 21. (a) 11.7 N; (b)-59.0° 23. (a) 
(285 N)i + (705 N)); (b) (285 N)i - (115 N)); (c) 307 N; (d) - 22.0°; 
(e) 3.67 mls2; (f) 22.0° 25. ( a) 0.022 m/s2; (b) 8.3 X 104 km; (c) 
1.9 X 103m/s 27.1.5mm 29. (a) 494 N; (b) up; (c) 494 N; (d) 
down 31. (a) 1.18m;(b)0.674s;(c)3.50mls 33.1.8 X 104 N 
35. (a) 46.7"; (b) 28.0° 37. (a) 0.62 mls2; (b) 0.13 m/s2; (c) 2.6 m 
39. (a) 2.2 X 1O-3N;(b) 3.7 X 1O-3N 41. (a) 1.4 mls2; (b) 4.1 mls 
43. (a) 1.23 N; (b) 2.46 N; (c) 3.69 N; (d) 4.92 N; (e) 6.15 N; (f) 0.250 N 
45. (a) 31.3 kN;(b) 24.3 kN 47.6.4 X 103N 49. (a) 2.18 m/s2;(b) 
116 N; ( c) 21.0 mls2 51. (a )3.6 mls2; (b) 17 N 53. ( a) 0.970 m/s2; 

(b) 11.6 N; (c)34.9 N 55. (a) 1.1 N 57. (a) 0.735 mls2; (b) down; 
(c) 20.8 N 59. (a) 4.9 mls2; (b) 2.0 m/s2; ( c) up; (d) 120 N 61. 
2Mal(a + g) 63. (a) 8.0 m/s; (b) + x 65. (a) 0.653 m/s3; (b) 0.896 
m/s3; (c) 6.50 s 67.81.7 N 69.2.4 N 71.16 N 73. (a) 2.6 N; (b) 
17° 75. (a) 0; (b) 0.83 m/s2; (c) 0 77. (a) 0.74 m/s2; (b) 7.3 mls2 

79. (a) 11 N; (b) 2.2 kg; (c) 0; (d) 2.2 kg 81.195 N 83. (a) 4.6 mls2; 
(b) 2.6 mls2 85. (a) rope breaks; (b) 1.6 m/s2 87. (a) 65 N; (b) 49 N 
89. (a) 4.6 X 103N;(b) 5.8 X 103N 91. (a) 1.8 X 102N;(b) 6.4 X 

102 N 93. (a) 44 N; (b) 78 N; (c) 54 N; (d) 152 N 95. (a) 4 kg; (b) 
6.5 m/s2; (c) 13 N 

CHAPTER 
1. (a) zero (because there is no attempt at sliding); (b) 5 N; (c) 

no; (d) yes; (e) 8 N 2. (a is directed toward center of circular 
path) (a) a downward, PNupward; (b) a and PN upward 
Q 1. (a) decrease; (b) decrease; (c) increase; (d) increase; (e) in­
crease 3. (a) same; (b) increases; (c) increases; (d) no 5. (a) up­
ward; (b) horizontal, toward you; (c) no change; (d) increases; (e) 
increases 7. At first, 1s is directed up the ramp and its magnitude 
increases from mg sin e until it reaches Is,max' Thereafter the force is 
kinetic friction directed up the ramp, with magnitude fk (a constant 
value smaller thanf~max)' 9.4,3, then 1,2, and 5 tie 11. (a) all tie; 
(b) all tie; (c) 2, 3, 1 

1.36 m 3. (a) 2,0 X 102N; (b) 1.2 X 102 N 5. (a) 6.0 N; (b) 
3,6N;(c)3.1N 7. (a) 1.9 X 102N;(b)0.56m/s2 9. (a) 11N;(b) 
0.14m/s2 11. (a) 3,0 X WZN;(b)1.3m1s2 13. (a) 1.3 X WZN;(b) 
no; (c) 1.1 X 102N;(d)46N;(e)17N 15.2° 17. (a)(17N)i;(b) 
(20N)i;(c) (15N)i 19. (a) no; (b)(-12N)i + (5,ON)) 21. (a) 
19°;(b)3.3kN 23.0,37 25.1.0 X WZN 27. (a) 0; (b) (-3,9 
m/s2)i; (c) (-1.0 mls2)i 29. ( a) 66 N; (b) 2.3 m/s2 31. (a) 3.5 mls2; 
(b)0.21N 33.9,9s 35.4.9 X 102N 37. (a) 3.2 X 102km/h;(b) 
6.5 X 102 km/h; (c) no 392.3 41. 0.60 43.21 m 45. (a) light; 
(b)778 N; (c) 223 N; (d) 1.11 kN 47. (a) 10 s; (b) 4.9 X 102N; (c) 
1.1 X 103 N 49.1.37 X 103 N 51.2.2 km 53.12° 55.2.6 X 103 

N 57.1.81 mls 59. (a) 8.74 N; (b) 37,9 N; (c) 6.45 mls; (d) radially 
inward 61. (a) 27 N; (b) 3.0 mls2 63. (b) 240 N; (c) 0.60 65. (a) 
69kmlh;(b) 139 kmlh; (c) yes 67.g(sine 2°.5f.tk cos e) 69.3.4 
mls2 71. (a) 35,3 N; (b) 39,7 N; (c) 320 N 73. (a)7.5 mls2; (b) 
down; (c) 9.5 m/s2; (d) down 75. (a) 3,0 X 105 N; (b) 1.2° 77.147 
mls 79. (a) 13 N; (b) 1.6 mls2 81. (a) 275 N; (b) 877 N 83. (a) 
84.2N;(b)52.8N;(c)1.87m1s2 85.3.4% 87. (a) 3.21 X 103 N; (b) 
yes 89. (a) 222 N; (b) 334N; (c) 311 N; (d) 311 N; (e) c, d 91. (a) 
V5/(4gsin e); (b) no 93. (a) 0.34; (b) 0.24 95. (a) f.tkmg/(sin e -
f.tkCOS e); (b) eo = tan- 1 f.ts 97.0.18 

CHAPTER 1 
1. (a) decrease; (b) same; (c) negative, zero 2. (a) positive; 

(b) negative; (c) zero 3. zero 
1. all tie 3. (a) positive; (b) negative; (c) negative 5. b (posi­

tive work), a (zero work), c (negative work), d (more negative 
work) 7.alltie 9.(a)A;(b)B 
P 1. (a) 2.9 X 107 m/s; (b) 2.1 X 10- 13 J 3. (a) 5 X 1014 J; (b) 
0.1 megaton TNT; (c) 8 bombs 5. (a) 2.4 m/s; (b) 4.8 m/s 7.0,96 J 
9.20J 11. (a) 62.3°; (b) 118° 13. (a) 1.7 X 102N;(b)3.4 X 102 

m;(c)-5,8 X 104J;(d)3.4 X 102N;(e) 1.7 X 102m;(f)-5.8 X 

104 J 15. (a) 1.50 J; (b) increases 17. (a) 12 kJ; (b) -11 kJ; 
(c) 1.1 kJ;(d) 5.4m/s 19.25 J 21. (a) -3MgdI4;(b) Mgd; (c) 
Mgdl4; (d) (gdI2)0.5 23.4.411 25. (a) 25.9 kJ; (b) 2.45 N 27. 
(a) 7.2 J; (b) 7.2 J; (c) 0; (d) -25 J 29. (a) 0.90 J; (b) 2.1 J; (c) 0 
31. (a) 6,6 m/s; (b) 4,7 m 33. (a) 0.12 m; (b) 0,36 J; (c) - 0.36 J; 
(d) 0,060 m; (e) 0.090 J 35. (a) 0; (b) 0 37. (a) 42 J; (b) 30 J; (c) 
12 J; (d) 6.5 mis, + x axis; (e) 5.5 mis, + x axis; (f) 3.5 mis, + x axis 
39.4.00 N/m 41.5.3 X 102 J 43. (a) 0.83 J; (b) 2.5 J; (c) 4,2 J; 
(d) 5.0W 45.4.9 X 102W 47. (a) 1.0 X 102 J; (b) 8.4 W 49. 
7.4 X 102W 51. (a)32,0 J; (b) 8.00W;(c) 78.2° 53.(a)1.20J; 
(b)1.10m/s 55. (a) 1.8 X 105 ft'lb;(b) 0,55 hp 57. (a)797N; 
(b) 0; ( c) 1.55 kJ; (d) 0; (e) 1.55 kJ; (f) F varies during displace­
ment 59.(a)1 X 105 megatons TNT; (b) 1 X 107 bombs 61. 
-6J 63. (a)314J;(b) 155J;(c)0;(d)158J 65. (a) 98N;(b) 
4,0 cm;(c) 3.9J; (d)-3,9 J 67. (a) 23 mm; (b) 45 N 69.165 kW 



71. - 37 J 73. (a) 13 J; (b) 13 J 75.235 kW 77. (a) 6 J; (b) 6.0 J 
79. (a) 0.6 J; (b) 0; (c) -0.6J 

CHAPTER 11 
1. no (consider round trip on the small loop ) 2.3,1,2 (see 

Eq.8-6) 3. (a) all tie; (b) all tie 4. (a) CD,AB,BC (0) (check 
slope magnitudes); (b) positive direction of x 5. all tie 
Q 1.(a)3,2,1;(b)1,2,3 3.(a)12J;(b)-2J 5. (a) increasing; 
(b) decreasing; ( c) decreasing; (d) constant in AB and BC, de­
creasing in CD 7. + 30 J 9.2,1,3 

1.89 N/cm 3. (a) 167 J; (b) -167 J; (c) 196 J; (d) 29 J; (e) 167 J; 
(f) -167 J; (g) 296 J; (h) 129 J 5. (a) 4.31 mJ; (b) - 4.31 mJ; (c) 
4.31 mJ; (d) - 4.31 mJ; (e) all increase 7. (a) 13.lJ; (b) -13.1 J; (c) 
13.1 J;(d) all increase 9. (a) 17.0mls;(b) 26.5 m/s; (c) 33.4m1s;(d) 
56.7 m; (e) all the same 11. (a) 2.08 m/s; (b) 2.08 mls; (c) increase 
13.(a)0.98J;(b)-0.98J;(c)3.1N/cm 15. (a) 2.6 X 102 m; (b) 
same; (c) decrease 17. (a) 2.5 N; (b) 0.31 N; (c) 30 cm 19. (a)784 
N/m;(b) 62.7 J;(c) 62.7 J;(d) 80.0cm 21. (a) 8.35m/s;(b) 4.33 
m/s; (c) 7.45 mls; (d) both decrease 23. (a) 4.85 m/s; (b) 2.42 m/s 
25.-3.2 X 102J 27. (a) no; (b) 9.3 X 102N 29.(a)35cm;(b)1.7 
mls 31. (a) 39.2J;(b) 39.2 J; (c) 4.00m 33. (a) 2.40 mls; (b) 4.19 
mls 35.(a)39.6cm;(b)3.64cm 37. 18mJ 39. (a)2.1m/s;(b) 
10 N; (c) + x direction; (d) 5.7 m; (e) 30 N; (f) - x direction 41. (a) 
- 3.7 J; (c) 1.3 m; (d) 9.1 m; (e) 2.2 J; (f) 4.0 m; (g) (4 x)e-x'4; (h) 
4.0m 43. (a) 5.6J;(b) 3.5J 45. (a) 30.1 J;(b) 30.1 J;(c) 0.225 
47.0.53J 49. (a)-2.9kJ;(b) 3.9 X 102 J; (c) 2.1 X 102N 51. (a) 
1.5 MJ; (b) 0.51 MJ; (c) 1.0 MJ; (d) 63 mls 53. (a) 67 J; (b) 67 J; (c) 
46 cm 55. (a) - 0.90 J; (b) 0.46 J; (c) 1.0 m/s 57.1.2 m 59. (a) 
19.4 m; (b) 19.0m/s 61. (a) 1.5 X 1O-2N;(b)(3.8 X 102)g 63. (a) 
7.4 mls; (b) 90 cm; (c) 2.8 m; (d) 15 m 65.20 cm 67. (a) 7.0 J; (b) 
22J 69.3.7J 71.4.33m/s 73.25J 75. (a) 4.9m/s; (b) 4.5 N; 
(c) 7P; (d) same 77. (a) 4.8 N; (b) + x direction; (c) 1.5 m; (d) 13.5 
m;(e)3.5m/s 79. (a) 24kJ;(b) 4.7 X 102N 81. (a) 5.00 J; (b) 
9.00 J; (c) 11.0 J; (d) 3.00 J; (e) 12.0 J; (f) 2.00 J; (g) 13.0 J; (h) 1.00 J; 
(i) 13.0 J; U) 1.00 J; (I) 11.0 J; (m) 10.8 m; (n) It returns to x = 0 and 
stops. 83. (a) 6.0kJ;(b) 6.0 X 102W;(c) 3.0 X 102W;(d) 9.0 X 
102W 85.880MW 87. (a) Vo = (2gL)o.s;(b) 5mg; (c)-mgL; (d) 
- 2mgL 89. (a) 109 J; (b) 60.3 J; (c) 68.2 J; (d) 41.0 J 91. (a) 2.7 J; 
(b)1.8J;(c)0.39m 93. (a) 10 m; (b) 49 N; (c) 4.1 m;(d) 1.2 X 102 

N 95. (a) 5.5 m/s;(b) 5.4m;(c) same 97.80mJ 99.24W 101. 
-12J 103.(a)8.8m/s;(b)2.6kJ;(c)1.6kW 105. (a)7.4 X 102J; 
(b) 2.4 X 102 J 107.15 J 109. (a) 2.35 X 103 J; (b) 352 J 111. 
738 m 113. (a) - 3.8 kJ; (b) 31 kN 115. (a) 300 J; (b) 93.8 J; (c) 
6.38 m 117. (a) 5.6 J; (b) 12 J; (c) 13 J 119. (a) 1.2 J; (b) 11 mls; 
(c) no; (d) no 121. (a) 2.1 X 106 kg; (b)(100 + 1.5t)o.s m/s; (c) 
(1.5 X 106)/(100 + 1.5t)o.s N; (d) 6.7 km 

CHAPTER 9 
1. (a) origin; (b) fourth quadrant; (c) on y axis below origin; 

(d) origin; (e) third quadrant; (f) origin 2. (a)- (c) at the center of 
mass, still at the origin (their forces are internal to the system and 
cannot move the center of mass) 3. (Consider slopes and Eq. 
9-23.) (a) 1,3, and then 2 and 4 tie (zero force); (b) 3 4. (a) un­
changed; (b) unchanged (see Eq. 9-32); ( c) decrease (Eq. 9-35) 5. 
(a) zero; (b) positive (initial Py downy; final Py up y); (c) positive di­
rection of y 6. (No net external force; P conserved.) (a) 0; (b) no; 
(c)-x 7. (a) 10 kg· m/s; (b) 14kg·m/s;(c)6kg·m/s 8.(a)4 
kg· m/s; (b) 8 kg· m/s; (c) 3 J 9. (a) 2 kg· m/s (conserve momen­
tum along x); (b) 3 kg· m/s (conserve momentum alongy) 

1. (a) 2 N, rightward; (b) 2 N, rightward; (c) greater than 2 N, 
rightward 3. b, c, a 5. (a) x yes,y no; (b) x yes,y no; (c) x no,y yes 
7. (a) c, kinetic energy cannot be negative; d, total kinetic energy 

ANSWERS AN-3 

cannot increase; (b) a; (c) b 9. (a) one was stationary; (b) 2; (c) 5; 
(d) equal (pool player's result) 11. (a) C; (b) B; (c) 3 
P 1. (a)-1.50m;(b) 1.43m 3. (a)-6.5 cm;(b) 8.3 cm;(c) 1.4 
cm 5.(a)-0.45cm;(b)-2.0cm 7. (a) 0; (b)3.13 X lO- 11 m 9. 
(a) 28 cm; (b) 2.3 mls 11. (-4.0 m)i + (4.0 m)J 13.53 m 15. (a) 
(2.351 -1.57J) mls2; (b) (2.351 1.57J)t mis, with t in seconds; (d) 
straight, at downward angle 34° 17.4.2 m 19. (a)7.5 X 104 J; (b) 
3.8 X 104 kg· m/s; (c) 39° south of due east 21. (a) 5.0 kg . m/s; (b) 
10 kg· m/s 23.1.0 X 103 to 1.2 X 103 kg'm/s 25. (a)42N·s;(b) 
2.1kN 27.(a)67m/s;(b)-x;(c)1.2kN;(d)-x 29.5N 31. (a) 
2.39 X 103N's;(b) 4.78 X lOSN;(c) 1.76 X 103N·s;(d)3.52 X lOs 
N 33. (a) 5.86 kg· mls; (b) 59.8°; (c) 2.93 kN;(d) 59.8° 35.9.9 X 
102 N 37. (a) 9.0 kg· mls; (b) 3.0 kN; (c) 4.5 kN; (d) 20 m/s 39.3.0 
mm/s 41. (a) - (0.15 m/s)i; (b) 0.18 m 43.55 em 45. (a) 
(1.00i 0.167J) km/s; (b) 3.23 MJ 47. (a) 14 mls; (b) 45° 49. 
3.1 X 102m1s 51. (a) 721 mls;(b) 937m/s 53. (a) 33%; (b) 23%; 
(c) decreases 55. (a) +2.0 mls; (b) -1.3 J; (c) + 40 J; (d) system got 
energy from some source, such as a small explosion 57. (a) 4.4 
m/s; (b) 0.80 59.25 cm 61. (a) 99 g; (b) 1.9 m/s; (c) 0.93 mls 63. 
(a) 3.00 m/s; (b) 6.00 mls 65. (a) 1.2 kg; (b) 2.5 m/s 67. - 28 em 
69. (a) 0.21 kg; (b )7.2 m 71. (a) 4.15 X lOs m/s; (b) 4.84 X lOs mls 
73. 120° 75. (a) 433 m/s; (b) 250 m/s 77. (a) 46 N; (b) none 79. 
(a) 1.57 X 106 N; (b) 1.35 X 1Q5 kg; (c) 2.08 kmls 81. (a) 7290 mls; 
(b) 8200 mls; (c) 1.271 X 101OJ;(d) 1.275 X 1010 J 83.(a)1.92m; 
(b) 0.640 m 85. (a) 1.78 m/s; (b) less; (c) less; (d) greater 87. (a) 
3.7 mls; (b) 1.3N·s;(c) 1.8 X 102N 89. (a)(7.4 X 103N's)i­
(7.4 X 103N·s)J;(b)(-7.4 X 103N·s)i;(c) 2.3 X 103N; (d) 2.1 X 
104N;(e)-45° 91. +4.4 m/s 93.1.18 X 104 kg 95.(a)1.9m/s; 
(b) - 30°; (c) elastic 97. (a) 6.9 m/s; (b) 30°; (c) 6.9 m/s; (d) - 30°; 
(e) 2.0 m/s; (f) -180° 99. (a) 25 mm; (b) 26 mm; (c) down; (d) 
1.6 X 10-2 m/s2 101.29 J 103.2.2 kg 105.5.0 kg 107. (a) 50 
kg/s; (b) 1.6 X 102 kg/s 109. (a) 4.6 X 103 km; (b)73% 111.190 
mls 113.28.8N 115.(a)0.745mm;(b)153°;(c)1.67mJ 117. 
(a) (2.67 mls)1 + (- 3.00 m/s)J; (b) 4.01 m/s; (c) 48.4° 119. (a) 
- 0.50 m; (b) 1.8 cm; (c) 0.50 m 121. 0.22 % 

CHAPTER 10 
1. b andc 2. (a) and (d) (ex = d 2 0ldt2 mustbe a constant) 

3. (a) yes; (b) no; ( c) yes; (d) yes 4. all tie 5.1,2,4,3 (see Eq.10-
36) 6. (see Eq.10-40) 1 and 3 tie, 4, then 2 and 5 tie (zero) 7. (a) 
downward in the figure ('Tnet = 0); (b) less (consider moment arms) 

1. (a) c, a, then band d tie; (b) b, then a and c tie, then d 3. all 
tie 5. (a) decrease; (b) clockwise; (c) counterclockwise 7. larger 
9.c,a,b 

1.14 rev 3. (a) 4.0 rad/s; (b) 11.9 rad/s 5.11 rad/s 7. (a) 4.0 
mls;(b)no 9. (a) 3.00s;(b) 18.9rad 11. (a) 30s;(b) 1.8 X 103rad 
13. (a)3.4 X 102s;(b)-4.5 X 1O-3rad/s2;(c)98s 15.8.0s 17. 
(a) 44 rad; (b) 5.5 s;(c) 32s;(d)-2.1 s;(e)40s 19. (a) 2.50 X 10-3 

rad/s; (b) 20.2 mls2; (c) 0 21.6.9 X lO- 13 rad/s 23. (a) 20.9 rad/s; 
(b)12.5m1s;(c)800rev/min2;(d)600rev 25. (a) 7.3 X lO-srad/s; 
(b) 3.5 X 102m1s;(c)7.3 X lO-s rad/s; (d) 4.6 X 102m1s 27.(a)73 
cmls2; (b) 0.075; (c) 0.11 29. (a) 3.8 X 103rad/s; (b) 1.9 X 102 m/s 
31. (a) 40 s; (b) 2.0 rad/s2 33.12.3 kg· m2 35. (a) 1.1 kJ; (b) 9.7 kJ 
37.0.097 kg· m2 39. (a) 49 MJ;(b) 1.0 X 102min 41. (a) 0.023 
kg·m2;(b)1.1mJ 43.4.7 X 1O-4kg'm2 45.-3.85N·m 
47.4.6 N . m 49. (a) 28.2 rad/s2; (b) 338 N . m 51. (a) 6.00 cm/s2; 

(b) 4.87 N; (c) 4.54 N; (d) 1.20 rad/s2; (e) 0.0138 kg . m2 53.0.140 N 
55.2.51 X 1O-4kg'm2 57. (a) 4.2 X 102rad/s2;(b) 5.0 X 102rad/s 
59.396N·m 61.(a)-19.8kJ;(b)1.32kW 63.5.42m1s 65. (a) 
5.32 m/s2; (b) 8.43 mls2; (c) 41.8° 67.9.82 rad/s 69.6.16 X lO-s 

kg·m2 71.(a)31.4rad/s2;(b)0.754m1s2; (c) 56.1N; (d) 55.1 N 
73. (a) 4.81 X lOSN;(b) 1.12 X 104N'm;(c) 1.25 X 106 J 75. (a) 2.3 



AN-4 ANSWERS 

rad/sZ; (b) 1.4 rad/sz 77. (a) - 67 rev/minz; (b) 8.3 rev 81.3.1 rad/s 
83. (a) 1.57 m/sz; (b) 4.55 N; (c) 4.94 N 85.30 rev 87.0.054 kg· mZ 

89.1.4 X lOzN'm 91.(a)10J;(b)0.27m 93.4.6rad/sz 95.2.6J 
97. (a) 5.92 X 104 mlsz; (b) 4.39 X 104s-z 99. (a) 0.791 kg'mZ;(b) 
1.79 X lO- z N . m 101. (a) 1.5 X lOz cmls; (b) 15 rad/s; ( c) 15 rad/s; 
(d) 75 cmls; (e) 3.0 rad/s 103. (a) 7.0 kg· mZ; (b) 7.2 mls; (c) n° 

CHAPTER 11 
1. (a) same; (b) less 2. less (consider the transfer of energy 

from rotational kinetic energy to gravitational potential energy) 3. 
(draw the vectors, use right-hand rule) (a) ±z; (b) + y; (c) - x 4. 
(see Eq.11-21) (a) 1 and 3 tie; then 2 and 4 tie, then 5 (zero ); (b) 2 
and 3 5. (see Eqs.11-23 and 11-16)(a) 3,1; then 2 and 4 tie (zero); 
(b) 3 6. (a) all tie (same 'T, same t, thus same ilL); (b) sphere, disk, 
hoop (reverse order of!) 7. (a) decreases; (b) same ('Tnet = 0, so L 
is conserved); (c) increases 
Q 1. a, then band c tie, then e, d (zero) 3. (a) spins in place; (b) 
rolls toward you; (c) rolls away from you 5. (a) 1,2,3 (zero); (b) 1 
and 2 tie, then 3; (c) 1 and 3 tie, then 2 7. (a) same; (b) increase; ( c) 
decrease; (d) same, decrease, increase 9.D,B, then A and Ctie 
P 1. (a) 0; (b) (22m1s)1;(c) (-22 m/s)l; (d) 0; (e) 1.5 X 103 mlsz; (f) 
1.5 X 103 m/sz; (g) (22 mls) 1; (h)( 44 mls) 1; (i) 0; (j) 0; (k) 1.5 X 103 

mlsz; (1) 1.5 X 103 mlsz 3. - 3.15 J 5.0.020 7. (a) 63 rad/s; (b) 4.0 m 
9.4.8m 11. (a)(-4.0N) 1; (b) 0.60kg· mZ 13.0.50 15. (a) 
- (0.11 m)w; (b) - 2.1 mlsz; (c) - 47 rad/sz; (d) 1.2 s; (e) 8.6 m; (f) 6.1 
mls 17. (a) 13 cmlsz; (b) 4.4 s; (c) 55 cm/s; (d) 18 mJ; (e) 1.4 J; (f) 27 
rev/s 19. (-2.0 N· m)l 21. (a)(6.0 N· m)J + (8.0 N· m)k; (b) 
(-22N'm)1 23.(a)(-1.5N·m)1- (4.0N·m)J - (1.0N·m)k; 
(b)(-1.5N·m)1- (4.0N·m)J - (1.0N·m)k 25. (a) (50N·m)k; 
(b) 90° 27. (a) 0;(b)(8.0N· m)l + (8.0N·m)k 29. (a) 9.8 
kg· mZ/s; (b) + z direction 31. ( a) 0; (b) - 22.6 kg· mZ/s; (c) -7.84 
N· m; (d) -7.84N· m 33. (a) (-1.7 X lOz kg· mZ/s)k; (b) (+ 56 
N· m)k; (c) (+ 56 kg· mZ/sZ)k 35. (a) 48tk N· m; (b) increasing 
37. (a) 4.6 X 10-3 kg. mZ; (b) 1.1 X 10-3 kg· mZ/s; (c) 3.9 X 10-3 

kg·mz/s 39. (a) 1.47 N· m; (b) 20.4 rad; (c) -29.9 J; (d) 19.9W 
41. (a) 1.6 kg . mZ; (b) 4.0 kg . mZ/s 43. (a) 1.5 m; (b) 0.93 rad/s; ( c) 98 
J; (d) 8.4 rad/s; (e) 8.8 X lOz J; (f) internal energy of the skaters 45. 
(a) 3.6 rev/s; (b) 3.0; (c) forces on the bricks from the man trans­
ferred energy from the man's internal energy to kinetic energy 47. 
0.17 rad/s 49. (a)750 rev/min; (b) 450 rev/min; (c) clockwise 51. 
(a) 267 rev/min; (b) 0.667 53.1.3 X 103 mls 55.3.4 rad/s 57. (a) 
18 rad/s; (b) 0.92 59.11.0 mls 6L 1.5 radls 63.0.070 rad/s 65. (a) 
0.148 rad/s; (b) 0.0123; (c) 181 ° 67. (a) 0.180 m; (b) clockwise 69. 
0.041 rad/s 71. ( a) 1.6 mlsz; (b) 16 rad/sz; ( c) (4.0 N)l 73. (a) 0; (b) 
0; (c) - 30Pk kg· mZ/s; (d) - 90tZk N . m; (e) 30t3k kg· mZ/s; (f) 90tZk 
N'm 75. (a) 149kg·m2;(b) 158 kg· mZ/s; (c) 0.744rad/s 77. (a) 
6.65 X 10-5 kg . mZ/s; (b) no; (c) 0; (d) yes 79. (a) 0.333; (b) 0.111 
81. (a) 58.8 J; (b ) 39.2J 83. (a) 61.7 J; (b) 3.43 m; (c) no 85. (a) 
mvRI(J + MRZ); (b) mvRZI(J + MRZ) 87. rotational speed would 
decrease; day would be about 0.8 s longer 89. (a) 12.7 rad/s; (b) 
clockwise 91. (a) 0.81 mJ; (b) 0.29; (c) 1.3 X lO-zN 93. (a) mRzl2; 
(b) a solid circular cylinder 

CtiAPTER 12 
1. c, e,f 2. (a) no; (b) at site of 1;, perpendicular to plane of 

figure; (c) 45 N 3. d 
Q 1. (a) 1 and 3 tie, then 2; (b) all tie; (c) 1 and 3 tie, then 2 (zero) 
3. a and c (forces and torques balance) 5. ( a) 12 kg; (b) 3 kg; 
(c) 1 kg 7. (a) at C (to eliminate forces there from a torque 
equation); (b) plus; (c) minus; (d) equal 9. increase 

P 1. (a) 1.00 m; (b) 2.00 m; (c) 0.987 m; (d) 1.97 m 3. (a) 9.4 N; 
(b) 4.4 N 5.7.92 kN 7. (a) 2.8 X lOz N; (b) 8.8 X lOz N; (c) n° 
9.74.4 g 11. (a) 1.2 kN; (b) down; (c) 1.7 kN; (d) up; (e) left; 
(f) right 13. (a) 2.7 kN; (b) up; (c) 3.6 kN; (d) down 15. (a) 5.0N; 
(b) 30 N; (c) 1.3 m 17. (a) 0.64 m; (b) increased 19.8.7 N 
21. (a) 6.63 kN; (b) 5.74 kN; ( c) 5.96 kN 23. (a) 192 N; (b) 96.1 N; 
(c) 55.5 N 25.13.6 N 27. (a) 1.9 kN; (b) up; (c) 2.1 kN; (d) down 
29. (a) (-80 N)l + (1.3 X 10ZN)J; (b) (80 N)l + (1.3 X 10z N)J 
31.2.20 m 33. (a) 60.0°; (b) 300 N 35. (a) 445 N; (b) 0.50; (c) 315 N 
37.0.34 39. (a) 211 N; (b) 534 N; (c) 320 N 41. (a) slides; 
(b) 31°; (c) tips; (d)34° 43. (a) 6.5 X 106 N/m2; (b) 1.1 X 10-5 m 
45. (a) 0.80; (b) 0.20; (c) 0.25 47. (a) 1.4 X 109 N;(b) 75 
49. (a) 866 N; (b) 143 N; (c) 0.165 51. (a) 1.2 X 10z N; (b) 68 N 
53.(a)1.8X107N;(b)1.4X107N;(c)16 55.0.29 57.76N 
59. (a) 8.01 kN; (b) 3.65 kN; (c) 5.66 kN 61. n.7 N 63. (a) Ll2; 
(b) Ll4;(c) Ll6;(d) Ll8;(e) 25L124 65. (a) 88N;(b) (301 + 97J) N 
67.2.4 X 109 N/mz 69.60° 71. (a) fL < 0.57; (b) fL > 0.57 
73. (a) (351 + 200J) N; (b) (-451 + 200J) N; (c) 1.9 X lOz N 
75. (a) BC, CD,DA; (b) 535 N; (c)757 N 77. (a) 1.38 kN; (b) 180 N 
79. (a) al = L12, az = 5L18, h = 9 Ll8; (b) bl = 2L13, bz = Ll2, 
h=7L16 81.Ll4 83. (a) 106N;(b) 64.0° 

CHAPTER 13 
CP 1. all tie 2. (a) 1, tie of2 and 4, then 3; (b) line d 
3. (a) increase; (b) negative 4. (a) 2; (b) 1 5. (a) path 1 
(decreased E (more negative) gives decreased a); (b) less 
(decreased a gives decreased T) 
Q 1. 3 GWldl, leftward 3. Gm2lr, upward 5. band c tie, then a 
(zero) 7. 1, tie of 2 and 4, then 3 9. (a) positive y; (b) yes, rotates 
counterclockwise until it points toward particle B 11. b, d, and! 
all tie, then e, c, a 
P 1.! 3. 19 m 5.0.8 m 7. -5.00d 9.2.60 X 105 km 
11.(a)M=m;(b)0 13.8.31xlO-9 N 15.(a)-1.88d; 
(b)-3.90d;(c)0.489d 17.(a)17N;(b)2.4 19.2.6x106 m 
21.5 X 1024 kg 23. (a) 7.6 m/sz; (b) 4.2 m/s2 25. (a) (3.0 X 
10-7 N/kg)m; (b) (3.3 X 10-7 N/kg)m; (c) (6.7 X 10-7 N/kg·m)mr 
27. (a) 9.83 m/s2; (b) 9.84 m/sz; (c) 9.79 m/sz 29.5.0 X 109 J 
31. (a) 0.74; (b) 3.8 mlsz; (c) 5.0 kmls 33. (a) 0.0451; (b) 28.5 
35. -4.82 X 10-13 J 37. (a) 0.50 pJ; (b) -0.50 pJ 39. (a) 1.7 km/s; 
(b) 2.5 X 105 m; ( c) 1.4 km/s 41. (a) 82 kmls; (b) 1.8 X 104 km/s 
43.(a)7.82kmls;(b)87.5min 45.6.5 X lOZ3 kg 47.5 X 1010 stars 
49. (a) 1.9 X 1013 m; (b) 3.6Rp 51. (a) 6.64 X 103 km; (b) 0.0136 
53.5.8 X 106 m 57.0.ny 59.(GMIL)0.5 61. (a) 3.19 X 103 km; 
(b) lifting 63. (a) 2.8 y; (b) 1.0 X 10-4 65. ( a) r1.5; (b) r- I ; (c) r°.5; 
(d)r-O.5 67. (a)7.5 km/s;(b) 97 min; (c) 4.1 X lOZkm; (d)7.7 km/s; 
(e) 93 min; (f)3.2 X 1O-3 N; (g) no; (h) yes 69.1.1 s 
71. (a) GMmx(xZ + RZ)-3/2; (b) [2GM(R- I - (R2 + X2)-1/Z)]1I2 
73. (a) 1.0 X 103 kg; (b) 1.5 km/s 75.3.2 X 10-7 N 77. 037J fLN 
79. 21Tf1.5G-O.5(M + mI4t°.5 81. (a) 2.2 X 10-7 rad/s; (b) 89 km/s 
83. (a) 2.15 X 104 s; (b) 12.3 kmls; ( c) 12.0 km/s; (d) 2.17 X 1011 J; 
(e) -4.53 X 1011 J; (f) -2.35 X 1011 J; (g) 4.04 X 107 m; (h) 1.22 X 
103 s; (i) elliptical 85.2.5 X 104 km 87. (a) 1.4 X 106 m/s; (b) 3 X 
106 m/s2 89. (a) 0; (b) 1.8 X 1032 J; (c) 1.8 X 1032 J; (d) 0.99 km/s 
91. (a) GmzlRi; (b) Gm2/2Ri; (c) (GmIRi)0.5; (d) 2(GmIRi)0.5; 
(e) Gm21Ri; (f) (2Gml RJ°.5; (g) The center-of-mass frame is an in­
ertial frame, and in it the principle of conservation of energy may 
be written as in Chapter 8; the reference frame attached to body A 
is noninertial, and the principle cannot be written as in Chapter 8. 
Answer (d) is correct. 93.2.4 X 104 m/s 95. -0.044J fLN 
97. GMEml12RE 



CHAPTER 14 
1. all tie 2. (a) all tie (the gravitational force on the penguin 

is the same); (b) 0.95po, Po, 1.1Po 3.13 cm3/s, outward 
4. (a) all tie; (b) 1, then 2 and 3 tie, 4 (wider means slower); 
(c) 4,3,2,1 (wider and lower mean more pressure) 

1. (a) moves downward; (b) moves downward 3. (a) down­
ward; (b) downward; (c) same 5. b, then a and d tie (zero), then c 
7. (a) 1 and 4; (b) 2; (c) 3 9.B, C,A 
P 1.0.074 3.1.1 X 105 Pa 5.2.9 X 104 N 7. (b) 26 kN 
9. (a) 1.0 X 103 torr; (b) 1.7 X 103 torr 11. (a) 94 torr; (b) 4.1 X 102 

torr; (c) 3.1 X 102 torr 13.1.08 X 103 atm 15. -2.6 X 104 Pa 
17.7.2 X 105 N 19.4.69 X 105 N 21.0.635 J 23.44 km 
25.739.26torr 27.(a)7.9km;(b)16km 29.8.50kg 31. (a) 
6.7 X 102 kglm3; (b) 7.4 X 102 kglm3 33. (a) 2.04 X 10-2 m3; 

(b) 1.57 kN 35. five 37.57.3 cm 39. (a) 1.2 kg; (b) 1.3 X 103 

kglm3 41. (a) 0.10; (b) 0.083 43. (a) 637.8 cm3; (b) 5.102 m3; 

(c) 5.102 X 103 kg 45.0.126m3 47. (a) 1.80 m3; (b) 4.75 m3 

49. (a) 3.0 mls; (b) 2.8 mls 51.8.1 mls 53.66 W 55.1.4 X 105 J 
57. (a) 1.6 X 10-3 m3/s; (b) 0.90 m 59. (a) 2.5 mls; (b) 2.6 X 105 Pa 
61. (a) 3.9 m/s; (b) 88 kPa 63. 1.1 X 102 m/s 65. (b) 2.0 X 10-2 

m3/s 67. (a)74 N; (b) 1.5 X 102 m3 69. (a) 0.0776m3/s; (b) 69.8 
kg/s 71. (a) 35 cm; (b) 30 cm; (c) 20 cm 73.1.5 g/cm3 75.5.11 X 
10-7 kg 77.44.2 g 79.6.0 X 102 kglm3 81.45.3 cm3 

83. (a) 3.2 mls; (b) 9.2 X 104 Pa; (c) 10.3 m 85.1.07 X 103 g 

CHAPTER 15 
CP 1.(sketchxversust)(a)-xm;(b)+xm;(c)0 2.a(Fmust 
have the form of Eq.15-10) 3. (a) 5 J; (b) 2 J; (c) 5 J 4. all tie (in 
Eq.15-29,m is included in!) 5.1,2,3 (the ratio mlb matters; 
k does not) 
Q 1. a and b 3. (a) 2; (b) positive; ( c) between 0 and + Xm 

5. (a) between D and E; (b) between 37T12 rad and 27Trad 
7. (a) all tie; (b) 3, then 1 and 2 tie; (c) 1,2,3 (zero); (d) 1,2,3 (zero); 
(e) 1,3,2 9. b (infinite period, does not oscillate), c, a 
11. (a) greater; (b) same; (c) same; (d) greater; (e) greater 

1. (a) 0.50 s; (b) 2.0 Hz; (c) 18 cm 3.37.8 m/s2 5. (a) 1.0 mm; 
(b) 0.75 mls; (c) 5.7 X 102 mls2 7. (a) 498 Hz; (b) greater 
9. (a) 3.0 m; (b) -49 m/s; (c) -2.7 X 102 m1s2; (d) 20 rad; (e) 1.5 Hz; 
(f) 0.67 s 11. 39.6 Hz 13. (a) 0.500 s; (b) 2.00 Hz; ( c) 12.6 rad/s; 
(d) 79.0 N/m; (e) 4.40 mls; (f) 27.6 N 15. (a) 0.18A; (b) same 
direction 17. (a) 5.58 Hz; (b) 0.325 kg; (c) 0.400 m 19. (a) 25 cm; 
(b) 2.2 Hz 21.54 Hz 23.3.1 cm 25. (a) 0.525 m; (b) 0.686 s 
27. (a) 0.75; (b) 0.25; (c) 2-0.5xlll 29.37mJ 31. (a) 2.25 Hz; 
(b) 125 J; (c) 250 J; (d) 86.6 cm 33. (a) 1.1 mls; (b) 3.3 cm 
35. (a) 3.1 ms; (b) 4.0 m/s; (c) 0.080 J; (d) 80 N; (e) 40 N 
37. (a) 2.2 Hz; (b) 56 cmls; (c) 0.10 kg; (d) 20.0 cm 39. (a) 39.5 
rad/s; (b) 34.2 rad/s; (c) 124 rad/s2 41. (a) 0.205 kg·m2; (b) 47.7 cm; 
(c) 1.50 s 43. (a) 1.64 s; (b) equal 45.8.77 s 47.0.366 s 
49. (a) 0.845 rad; (b) 0.0602 rad 51. (a) 0.53 m; (b) 2.1 s 
53.0.0653 s 55. (a) 2.26 s; (b) increases; ( c) same 57.6.0% 
59. (a) 14.3 s; (b) 5.27 61. (a) Fmlbw; (b) Fmlb 63.5.0 cm 
65. (a) 2.8 X 103 rad/s; (b) 2.1 mls; (c) 5.7 kmls2 67. (a) 1.1 Hz; 
(b) 5.0 cm 69.7.2 mls 71. (a)7.90 N/m; (b) 1.19 cm; (c) 2.00 Hz 
73. (a) 1.3 X 102 N/m; (b) 0.62 s; (c) 1.6 Hz; (d) 5.0 cm; (e) 0.51 mls 
75.(a)16.6cm;(b)1.23% 77.(a)1.2J;(b)50 79.1.53m 
81. (a) 0.30 m; (b) 0.28 s; (c) 1.5 X 102 mls2; (d) 11 J 83. (a) 1.23 
kN/m; (b) 76.0 N 85.1.6 kg 87. (a) 0.735 kg· m2; (b) 0.0240 N . m; 
(c) 0.181 rad/s 89. (a) 3.5 m; (b) 0.75 s 91. (a) 0.35 Hz; (b) 0.39 
Hz; (c) 0 (no oscillation) 93. (a) 245 N/m; (b) 0.284 s 

ANSWERS AN-5 

95.0.079 kg . m2 97. (a) 8.11 X 10-5 kg . m2; (b) 3.14 rad/s 
99.14.0° 101. (a) 3.2 Hz; (b) 0.26 m; (c) x = 
(0.26 m) cos(20t - 7(12), with t in seconds 103. (a) 0.44 s; (b) 0.18 m 
105. (a) 0.45 s; (b) 0.10 m above and 0.20 m below; (c) 0.15 m; 
(d) 2.3 J 107.7 X 102 N/m 

CHAPTER 16 
1. a, 2; b, 3; c, 1 (compare with the phase in Eq. 16-2, then see 

Eq.16-5) 2. (a)2,3,1 (see Eq. 16-12); (b) 3, then 1 and 2 tie (find 
amplitude of dyldt) 3. (a) same (independent of/); (b) decrease 
(A = vi/); (c) increase; (d) increase 4.0.20 and 0.80 tie, then 0.60, 
0.45 5.(a)1;(b)3;(c)2 6.(a)75Hz;(b)525Hz 
Q 1. (a) 1,4,2,3; (b) 1,4,2,3 3. a, upward;b, upward; c, down­
ward; d, downward; e, downward;/, downward; g, upward; h, upward 
5. intermediate (closer to fully destructive) 7. (a) 0,0.2 wave­
length, 0.5 wavelength (zero); (b) 4Pavg,1 9. d 11. c, a, b 
P 1.1.1 ms 3. (a) 3.49 m-1; (b) 31.5 mls 5. (a) 0.680 s; (b) 1.47 
Hz; (c) 2.06 mls 7. (a) 64 Hz; (b) 1.3 m; (c) 4.0cm; (d) 5.0m-1; 
(e) 4.0 X 102 s-1; (f) 7T12 rad; (g) minus 9. (a) 3.0 mm; (b) 16 m-1; 
(c) 2.4 X 102 S-1; (d) minus 11. (a) negative; (b) 4.0 cm; (c) 0.31 
cm-1; (d) 0.63 S-1; (e) mad; (f) minus; (g) 2.0 cmls; (h) -2.5 cmls 
13. (a) 11.7 cm; (b) 7Trad 15. (a) 0.12 mm; (b) 141 m-1; (c) 628 S-1; 
(d) plus 17. (a) 15 m/s; (b) 0.036 N 19. 129 mls 21.2.63 m 
23. (a) 5.0 cm; (b) 40 cm; (c) 12 mls; (d) 0.033 s; (e) 9.4 mls; 
(f) 16 m-l ; (g) 1.9 X 102 S-1; (h) 0.93 rad; (i) plus 27.3.2 mm 
29.0.20mls 31.1.41YIll 33. (a) 9.0 mm; (b) 16 m-l ; (c) 1.1 X 103 

s-1; (d) 2.7 rad; (e) plus 35.5.0 cm 37. (a) 3.29 mm; (b) 1.55 rad; 
( c) 1.55 rad 39.84° 41. (a) 82.0 mls; (b) 16.8 m; ( c) 4.88 Hz 
43. (a) 7.91 Hz; (b) 15.8 Hz; (c) 23.7 Hz 45. (a) 105 Hz; (b) 158 mls 
47.260 Hz 49. (a) 144 mls;(b) 60.0 cm; (c) 241 Hz 51. (a) 0.50 cm; 
(b) 3.1 m-1;(c) 3.1 X 102 s- l ;(d) minus 53. (a) 0.25 cm; (b) 1.2 X 102 

cmls;(c) 3.0 cm; (d) 0 55.0.25 m 57. (a) 2.00 Hz; (b) 2.00 m; (c) 4.00 
mls; (d) 50.0 cm; (e) 150 cm; (f) 250 cm; (g) 0; (h) 100 cm; (i) 200 cm 
59. (a) 324 Hz; (b) eight 61.36N 63.(a)75Hz;(b)13ms 
65. (a) 2.0mm; (b) 95 Hz; (c) +30 mls; (d) 31 cm; (e) 1.2 mls 
67. (a) 0.31 m; (b) 1.64 rad; (c) 2.2 mm 69. (a) 0.83Y1; (b) 31° 
71. (a) 3.77 mls; (b) 12.3 N; (c) 0; (d) 46.4 W; (e) 0; (f) 0; (g) ± 0.50 cm 
73.1.2rad 75. (a) 300 mls; (b) no 77. (a) [kM(C + M)lm]O.5 
79. (a) 144m1s; (b) 3.00 m; (c) 1.50 m; (d) 48.0 Hz; (e) 96.0 Hz 
81. (a) 1.00 cm; (b) 3.46 X 103 S-1; (c) 10.5 m-1; (d) plus 83. (a) 
27TYml>"; (b) no 85. (a) 240 cm; (b) 120 cm; (c) 80cm 87. (a) 1.33 
mls; (b) 1.88 mls; ( c) 16.7 mls2; (d) 23.7 mls2 89. (a) 0.52 m; (b) 40 
mls; (c) 0.40 m 91. (a) 0.16 m; (b) 2.4 X 102 N; (c) y(x, t) = 
(0.16 m) sin[(1.57 m-l)x] sin[(31.4 S-1)t] 93. (c) 2.0 mls; (d) -x 

CHAPTER 17 
1. beginning to decrease (example: mentally move the curves 

of Fig. 17-6 rightward past the point at x = 42 cm) 2. (a) 1 and 2 
tie, then 3 (see Eq.17-28); (b) 3, then 1 and 2 tie (see Eq.17-26) 
3. second (see Eqs.17-39 and 17-41) 4. a, greater; b, less;c, can't 
tell; d, can't tell; e, greater;f, less 

1. (a) 0,0.2 wavelength, 0.5 wavelength (zero ); (b) 4Pavg,l 

3.C,thenAandBtie 5.E,A,D,C,B 7.1,4,3,2 9. 150 Hz 
and 450 Hz 

1. (a) 79 m; (b) 41 m; (c) 89 m 3. (a) 2.6 km; (b) 2.0 X 102 

5.1.9 X 1Q3km 7.40.7 m 9.0.23 ms 11. (a) 76.2/Lm;(b) 0.333 mm 
13.960 Hz 15. (a) 2.3 X 102 Hz; (b) higher 17. (a) 143 Hz; (b)3; 
(c) 5; (d) 286 Hz; (e) 2; (f) 3 19. (a) 14; (b) 14 21. (a) 343 Hz; 
(b) 3; ( c) 5; (d) 686 Hz; (e) 2; (f) 3 23. (a) 0; (b) fully constructive; 
(c) increase; (d) 128 m; (e) 63.0 m; (f) 41.2 m 25.36.8 nm 



AN-6 ANSWERS 

27. (a) 1.0 X 103; (b) 32 29.15.0 mW 31.2 ftW 33.0.76 ftm 
35. (a) 5.97 X 1O-5W/m2; (b) 4.48 nW 37. (a) 0.34 nW; (b) 0.68 nW; 
(c) 1.4 nW; (d) 0.88nW; (e) 0 39. (a) 405 m/s;(b) 596 N; (c) 44.0 
cm; (d) 37.3 cm 41. (a) 833 Hz; (b) 0.418 m 43. (a) 3; (b) 1129 Hz; 
(c)1506Hz 45. (a) 2; (b) 1 47.12.4m 49.45.3N 51. 2.25 ms 
53. 0.020 55. (a) 526 Hz; (b) 555 Hz 57. 0 59. (a) 1.022 kHz; 
(b) 1.045 kHz 61.41 kHz 63. 155 Hz 65. (a) 2.0 kHz; (b) 2.0 
kHz 67. (a) 485.8 Hz; (b) 500.0 Hz; (c) 486.2 Hz; (d) 500.0 Hz 
69. (a) 42°; (b) 11 s 71.1 cm 73.2.1 m 75. (a) 39.7 ftW/m2; 
(b) 171 nm; (c) 0.893 Pa 77.0.25 79. (a) 2.10 m; (b) 1.47 m 
81. (a) 59.7; (b) 2.81 X 10-4 83. (a) rightward; (b) 0.90 m/s; (c) less 
85. (a) 11 ms; (b) 3.8m 87. (a) 9.7 X 102 Hz; (b) 1.0 kHz; (c) 60 Hz, 
no 89. (a) 21 nm; (b) 35 cm; (c) 24 nm; (d) 35 cm 91. (a) 7.70 Hz; 
(b) 7.70 Hz 93. (a) 5.2 kHz; (b) 2 95. (a) lOW; (b) 0.032 W/m2; 

(c)99dB 97.(a)0;(b)0.572m;(c)1.14m 99.171m 101. (a) 
3.6 X 102 m/s; (b) 150 Hz 103.400 Hz 105. (a) 14; (b) 12 

CHAPTER 18 
1. (a) all tie; (b) 500 X, 500 y, 500 W 2. (a) 2 and 3 tie, then 1, 

then 4; (b) 3,2, then 1 and 4 tie (from Eqs.18-9 and 18-10, assume 
that change in area is proportional to initial area) 3. A (see 
Eq.18-14) 4. c and e (maximize area enclosed by a clockwise 
cycle) 5. (a) all tie (~Eint depends on i andf,not on path); (b) 4,3, 
2,1 (compare areas under curves); (c) 4,3,2,1 (see Eq.18-26) 
6. (a) zero (closed cycle); (b) negative (Wnet is negative; see 
Eq.18-26) 7. band d tie, then a, c (Pcond identical; see Eq.18-32) 

1. c, then the rest tie 3.B, then A and C tie 5. (a) f, because 
ice temperature will not rise to freezing point and then drop; (b) b 
and c at freezing point, d above, e below; (c) in b liquid partly 
freezes and no ice melts; in c no liquid freezes and no ice melts; in d 
no liquid freezes and ice fully melts; in e liquid fully freezes and no 
ice melts 7. (a) both clockwise; (b) both clockwise 9. (a) greater; 
(b) 1,2,3; (c) 1,3,2; (d) 1,2,3; (e) 2,3, 1 11. c, b, a 

1.1.366 3.348 K 5. (a)320°F; (b) -12.3°F 7. -92.1°X 
9.2.731 cm 11.49.87 cm3 13.29 cm3 15. 360°C 17.0.26 cm3 

19.0.13 mm 21.7.5 cm 23.160 s 25.94.6 L 27.42.7 kl 
29.33 m2 31.33 g 33.3.0 min 35.13.5 Co 37. (a) 5.3°C; (b) 0; 
(c)0°C;(d)60g 39.742kl 41.(a)0°C;(b)2SC 43.(a)1.2X 
102 1; (b) 75 1; (c) 301 45. - 301 47. (a) 6.0 cal; (b) -43 cal; 
(c) 40 cal; (d) 18 cal; (e) 18 cal 49. 601 51. (a) 1.23 k W; (b) 
2.28 kW; (c) 1.05 kW 53.1.66 klls 55. (a) 16 lis; (b) 0.048 g/s 
57. (a) 1.7 X 104W/m2;(b) 18W/m2 59.0.50min 61.0.40cm/h 
63.-4.2°C 65.1.1m 67.10% 69.(a)801;(b)801 71.4.5X 
102 llkg· K 73.0.432 cm3 75.3.1 X 102 1 77.79SC 79.231 
81. (a) 11PI VI; (b) 6PI VI 83.4.83 X 10-2 cm3 85.1O.5°C 
87. (a) 90W; (b) 2.3 X 102 W; (c) 3.3 X 102 W 89. (a) 1.87 X 104; 
(b)10.4h 91.3331 93.8.61 95.(a)-451;(b)+451 

CiiAPTER 19 
1. all but c 2. (a) all tie; (b) 3,2,1 3. gas A 4. 5 (greatest 

change in 1), then tie of 1,2,3, and 4 5.1,2,3 (Q3 = 0, Q2 goes 
into work W2, but QI goes into greater work WI and increases 
gas temperature) 

1. d, then a and b tie, then c 3.201 5. (a) 3; (b) 1; (c) 4; (d) 2; 
(e) yes 7. (a) 1,2,3,4;(b) 1,2,3 9. constant-volume process 

1.0.933 kg 3. (a) 0.0388 mol; (b) 220°C 5.25 molecules/cm3 

7. (a) 3.14 X 103 1; (b) from 9.186kPa 11.5.60kl 
13. (a) 1.5 mol; (b) 1.8 X 103 K; (c) 6.0 X 102 K; (d) 5.0 kl 

15. 360 K 17.2.0 X 105 Pa 19. (a) 511 m/s; (b) - 200°C; (c) 899°C 
21.1.8 X 102 m/s 23.1.9kPa 25. (a) 5.65 X 10-21 1; (b) 7.72 X 
10-21 1; (c) 3.40kl; (d) 4.65 kl 27. (a) 6.76 X 10-20 l;(b) 10.7 
29. (a) 6 X 109 km 31. (a) 3.27 X 1010 molecules/cm3; (b) 172 m 
33. (a) 6.5 km/s; (b) 7.1 km/s 35. (a) 420 m/s; (b) 458 m/s; (c) yes 
37. (a) 0.67; (b) 1.2; (c) 1.3; (d) 0.33 39. (a) 1.0 X 104 K; (b) 1.6 X 
105 K; (c) 4.4 X 102 K; (d) 7.0 X 103 K; (e) no; (f) yes 41. (a) 7.0 
km/s; (b) 2.0 X 10-8 cm; (c) 3.5 X 1010 collisions/s 43. (a) 3.49 kl; 
(b) 2.49kl; (c) 997 1; (d) 1.00kl 45. (a) 6.6 X 10-26 kg; (b) 40 
g/mol 47. (a) 0; (b) +3741; (c) +3741; (d) +3.11 X 10-22 1 
49.15.81Imol·K 51.8.0 kl 53. (a) 6.98 kl; (b) 4.99 kl; (c) 1.99 kl; 
(d) 2.99kl 55. (a) 14atm;(b) 6.2 X 102 K 57. (a) diatomic; 
(b) 446K;(c) 8.10 mol 59.-151 61.-201 63. (a) 3.74kl; 
(b )3.74 kl; (c) 0; (d) 0; (e) -1.81 kl; (f) 1.81 kl; (g) - 3.22 kl; 
(h) -1.93 kl; (i) -1.29 kl; U) 5201; (k) 0; (1) 5201; (m) 0.0246 m3; 

(n) 2.00 atm; (0) 0.0373 m3; (p) 1.00 atm 65. (a) monatomic; 
(b) 2.7 X 104 K; (c) 4.5 X 104 mol; (d) 3.4 kl; (e) 3.4 X 102 kl; 
(f) 0.010 67. (a) 2.00 atm; (b) 333 1; (c) 0.961 atm; (d) 236 1 
69.349 K 71. (a) -3741; (b) 0; (c) +3741; (d) +3.11 X 10-22 1 
73.7.03 X 109 S-l 75. (a) 900 cal; (b) 0; (c) 900 cal; (d) 450 cal; 
( e) 1200 cal; (f) 300 cal; (g) 900 cal; (h) 450 cal; (i) 0; U) -900 cal; 
(k) 900 cal; (1) 450 cal 77. (a) 3Iv~; (b) 0.750vo; (c) 0.775vo 
79. (a) -2.37kl; (b) 2.37 kl 81. (b) 1251; (c) to 83. (a) 8.0 atm; 
(b) 300 K; (c) 4.4 kl; (d) 3.2 atm; (e) 120 K; (f) 2.9 kl; (g) 4.6 atm; 
(h) 170 K; (i) 3.4kl 85. (a) 38 L; (b) 71 g 87. -3.01 

CHAPTE 20 
CP 1. a, b, c 2. smaller (Q is smaller) 3. c, b, a 4. a, d, c, b 5. b 

1. b,a, c, d 3. unchanged 5. a and c tie, then band d tie 
7. (a) same; (b) increase; (c) decrease 9. A, first; B, first and 
second; C, second; D, neither 

1.(a)9.22kl;(b)23.lJ/K;(c)0 3.14.41IK 5.(a)5.79X 
104 1; (b) 17311K 7. (a) 320 K; (b) 0; (c) +1.72 11K 9. +0.76 11K 
11. (a) 57.0°C; (b) -22.1 11K; (c) +24.9 11K; (d) +2.81IK 
13. (a) -710mlIK;(b) +710mllK;(c) +723 mllK; (d) -723mlIK; 
(e) + 13 mllK; (f) 0 15. (a) -943 11K; (b) +943 11K; (c) yes 
17. (a) 0.333; (b) 0.215; (c) 0.644; (d) 1.10; (e) 1.10; (f) 0; (g) 1.10; 
(h) 0; (i) -0.889; U) -0.889; (k) -1.10; (1) -0.889; (m) 0; (n) 0.889; 
(0) 0 19. (a) 0.693; (b) 4.50; (c) 0.693; (d) 0; (e) 4.50; (f) 23.0 11K; 
(g) -0.693; (h) 7.50; (i) -0.693; U) 3.00; (k) 4.50; (1) 23.0 11K 
21.-1.181IK 23.97K 25.(a)266K;(b)341K 27. (a) 23.6%; 
(b) 1.49 X 104 1 29. (a) 2.27 kl; (b) 14.8 kl; (c) 15.4%; (d) 75.0%; 
(e) greater 31. (a) 33 kl; (b) 25 kl;(c) 26 kl; (d) 18kl 
33. (a) 1.47 kl; (b) 5541; (c) 918 1; (d) 62.4% 35. (a) 3.00; (b) 1.98; 
(c) 0.660; (d) 0.495; (e) 0.165; (f) 34.0% 37.440 W 39.201 
41.0.25 hp 43.2.03 47. (a) W = N!I(nl! n2! n3!); (b) 
[(NI2)! (NI2)!]/[(NI3)! (NI3)! (NI3)!]; (c) 4.2 X 1Q16 49.0.141 llK·s 
51. (a) 87 m/s; (b) 1.2 X 102 m/s; (c) 2211K 53. (a) 78%; (b) 82 kg/s 
55. (a) 40.9°C; (b) -27.lJ/K; (c) 30.3 11K; (d) 3.1811K 57. +3.59 11K 
59.1.18 X 10311K 63. (a) 0; (b) 0; (c) -23.0 11K; (d) 23.0 11K 
65. (a) 25.5 kl; (b) 4.73 kl; (c) 18.5% 67. (a) 1.95 11K; (b) 0.650 11K; 
(c) 0.217 11K; (d) 0.072 11K; (e) decrease 69. (a) 4.45 11K; (b) no 
71. (a) 1.26 X 1014; (b) 4.71 X 1013; (c) 0.37; (d) 1.01 X 1029; 

(e) 1.37 X 1028; (f) 0.14; (g) 9.05 X 1058; (h) 1.64 X 1057; (i) 0.018; 
U) decrease 73. (a) 42.6 kl; (b )7.61 kl 75. (a) 1; (b) 1; (c) 3; 
(d) 10; (e) 1.5 X 10-23 11K; (f) 3.2 X 1O-23 11K 



CHAPTER 1 
1. C and D attract; Band D attract 2. (a) leftward; 

(b) leftward; ( c) leftward 3. (a) a, c, b; (b) less than 4. -15e 
(net charge of - 30e is equally shared) 

1.3,1,2, 4 (zero) 3. a and b 5. 2kllr2, up the page 
7. band c tie, then a (zero) 9. (a) same; (b) less than; (c) cancel; 
(d) add; (e) adding components; (f) positive direction of y; 
(g) negative direction of y; (h) positive direction of x; (i) negative 
direction of x 
P 1.0.500 3.1.39m 5.2.81N 7.-4.00 9.(a)-1.00,uC; 
(b) 3.00,uC 11. (a) 0.17 N; (b) -0.046 N 13. (a) -14 cm; (b) 0 
15. (a) 35 N; (b) -10°; (c) -8.4 cm; (d) +2.7 cm 17. (a) 1.60 N; 
(b) 2.77 N 19. (a) 3.00 cm; (b) 0; (c) -0.444 21.3.8 X 10-8 C 
23. (a) 0; (b) 12 cm; (c) 0; (d) 4.9 X 1O-26 N 25.6.3 X 1011 
27. (a) 3.2 X 10-19 C; (b) 2 29. (a) -6.05 cm; (b) 6.05 cm 
31. 122 mA 33. 1.3 X 107 C 35. (a) 0; (b) 1.9 X 10-9 N 
37. (a) 9B; (b) 13N; (c) 12C 39.1.31 X 10-22 N 41. (a) 5.7 X 1013 C; 
(b) cancels out; (c) 6.0 X 105 kg 43. (b) 3.1 cm 45.0.19 MC 
47. -45,uC 49.3.8 N 51. (a) 2.00 X 1010 electrons; (b) 1.33 X 1010 
electrons 53. (a) 8.99 X 109 N; (b) 8.99 kN 55. (a) 0.5; (b) 0.15; 
(c)0.85 57.1.7x108 N 59.-1.32X1013 C 61. (a)(0.829N)i; 
(b) ( -0.621 N)I 63.2.2 X 10-6 kg 65.4.68 X 10-19 N 
67. (a) 2.72L; (b) 0 69. (a) 5.1 X 102 N; (b)7.7 X 1028 m/s2 

CHAPTER 22 
1. (a) rightward; (b) leftward; (c) leftward; (d) rightward 

(p and e have same charge magnitude, and p is farther) 
2. ( a) toward positive y; (b) toward positive x; (c) toward negative y 
3. (a) leftward; (b) leftward; (c) decrease 4. (a) all tie; (b) 1 and 3 
tie, then 2 and 4 tie 

1. a, b, c 3. (a) yes; (b) toward; (c) no (the field vectors are not 
along the same line); (d) cancel; (e) add; (f) adding components; 
(g) toward negative y 5. (a) to their left; (b) no 7. (a) 4,3,1,2; 
(b) 3, then 1 and 4 tie, then 2 9. a, b, c 11. e, b, then a and c tie, 
then d (zero) 

3. (a) 3.07 X 1021 N/C; (b) outward 5.56 pC 7. (1.02 X 
105 N/C)I 9. (a) 1.38 X 10-10 N/C; (b) 180° 11. - 30 cm 
13. (a) 3.60 X 1O-6N/C; (b) 2.55 X 10-6 N/C; (c)3.60 X 10-4 N/C; 
(d) 7.09 X 10-7 N/C; (e) As the proton nears the disk, the forces on 
it from electrons es more nearly cancel. 15. (a) 160 N/C; (b) 45° 
17. (a) -90°; (b) +2.0 ,uC; (c) -1.6,uC 19. (a) qdI41Tsor3; (b) -90° 
23.0.506 25. (a) 1.62 X 106 N/C; (b) -45° 27. (a) 23.8 N/C; 
(b) -90° 29.1.57 31. (a) -5.19 X 10-14 C/m; (b) 1.57 X 10-3 N/C; 
( c) -180°; (d) 1.52 X 10-8 N/C; (e) 1.52 X 10-8 NlC 35.0.346 m 
37.28% 39. -5e 41. (a) 1.5 X 103N/C; (b) 2.4 X 10-16 N; (c) up; 
(d) 1.6 X 1O-26 N;(e) 1.5 X 1010 43.3.51 X 1015 m/s2 

45.6.6 X 10-15 N 47. (a) 1.92 X 1012 m/s2; (b) 1.96 X 105 m/s 
49. (a) 0.245 N; (b) -11.3°; (c) 108m; (d) -21.6 m 51.2.6 XlO- lO N; 
(b) 3.1 X 10-8 N; (c) moves to stigma 53.27,um 55. (a) 2.7 X 106 

m/s;(b) 1.0kN/C 57. (a) 9.30 X 10-15 C·m;(b) 2.05 X 10-11 J 
59.1.22 X 10-23 J 61. (1/21T)(PEII)°.5 63. (a) 8.87 X 10-15 N; 
(b) 120 65.217° 67.61 N/C 69. (a) 47 N/C; (b) 27 N/C 
71.38 N/C 73. (a) -1.0 cm; (b) 0; (c) 10 pC 75. + 1.00,uC 
77. (a) 6.0 mm; (b) 180° 79.9:30 81. (a) -0.029 C; (b) repulsive 
forces would explode the sphere 83. (a) -1.49 X 10-26 J; 
(b)( -1.98 X 10-26 N ·m)/(; (c) 3.47 X 10-26 J 85. (a) top row: 4, 8, 
12; middle row: 5, 10, 14; bottom row: 7,11,16; (b) 1.63 X 10-19 C 
87. (a) ( -1.80 N/C)i; (b) (43.2 N/C)i; ( c) ( - 6.29 N/C)i 

PROBLEMS AN-7 

OIAPTER 23 
1. (a) + EA; (b) - EA; (c) 0; (d) 0 2. (a) 2; (b) 3; ( c) 1 

3. (a) equal; (b) equal; (c) equal 4.3 and 4 tie, then 2, 1 
1. (a) 8 N'm2/C; (b) 0 3. all tie 5. all tie 7. a, c, then band d 

tie (zero) 9. (a) 2,1,3;(b) all tie (+4q) 
1. -0.015 N'm2/C 3. (a) 0; (b) -3.92 N'm2/C; (c) 0; (d) 0 

5.3.01 nN'm2/C 7.2.0 X 105 N'm2/C 9. (a) 8.23 N'm2/C; 
(b) 72.9 pC; (c) 8.23 N'm2/C; (d) 72.9 pC 11. -1.70 nC 
13.3.54,uC 15. (a) 0; (b) 0.0417 17. (a) 37 ,uC;(b) 4.1 X 106 N'm2/C 
19. (a) 4.5 X 10-7 C/m2;(b) 5.1 X 104 N/C 21. (a) -3.0 X 1O-6C; 
(b) + 1.3 X 10-5 C 23. (a) 0.32 ,uC; (b) 0.14,uC 25.5.0 ,uC/m 
27.3.8 X 10-8 C/m2 29. (a) 0.214 N/C; (b) inward; (c) 0.855 N/C; 
(d) outward; (e) -3.40 X 10-12 C; (f) -3.40 X 10-12 C 31. (a) 2.3 X 
106 N/C; (b) outward; (c) 4.5 X 1Q5 N/C; (d) inward 33. (a) 0; 
(b) 0; (c) (-7.91 X lO- 11 N/C)i 35. -1.5 37. (a) 5.3 X 107 N/C; 
(b) 60 N/C 39.5.0 nC/m2 41.0.44 mm 43. (a) 0; (b) 1.31 ,uN/C; 
(c) 3.08 ,uN/C; (d) 3.08 ,uN/C 45. (a) 2.50 X 104 N/C; (b) 1.35 X 
104 N/C 47. -7.5 nC 49. (a) 0; (b) 56.2 mN/C; (c) 112 mN/C; 
(d) 49.9mN/C; (e) 0; (f) 0; (g) -5.00fC; (h) 0 51.1.79 X 10-11 C/m2 

53. (a) 7.78 fC; (b) 0; (c) 5.58 mN/C; (d) 22.3 mN/C 55.6Ksor3 
57. (a) 0; (b) 2.88 X 104 N/C; (c) 200 N/C 59. (a) 5.4 N/C; 
(b) 6.8N/C 61. (a) O;(b) q.l41Tsor2;(c) (qa + qb)/41Tsor 
63. -1.04 nC 65. (a) 0.125; (b) 0.500 67. (a) +2.0 nC; 
(b) -1.2nC;(c) +1.2 nC; (d) +0.80nC 69.(5.65 X 104 N/C)I 
71. (a) -2.53 X 10-2 N'm2/C; (b) +2.53 X 1O-2N·m2/C 
75.3.6 nC 77. (a) +4.0 ,uC; (b) -4.0,uC 79. (a) 693 kg/s; 
(b) 693 kg/s; (c) 347 kg/s; (d) 347 kg/s; (e) 575 kg/s 81. (a) 0.25R; 
(b) 2.0R 

CHAPTER 24 
1. (a) negative; (b) increase 2. (a) positive; (b) higher 

3. (a) rightward; (b) 1,2,3,5: positive; 4, negative; (c) 3, then 1,2, 
and 5 tie, then 4 4. all tie 5. a, c (zero), b 6. (a) 2, then 1 and 3 
tie; (b) 3; (c) accelerate leftward 

1. -4qI41Tsod 3. (a) 1 and 2; (b) none; (c) no; (d) 1 and 2, yes; 
3 and 4, no 5. (a) higher; (b) positive; (c) negative; (d) all tie 
7. (a) 0; (b) 0; (c) 0; (d) all three quantities still 0 9. (a) 3 and 4 tie, 
then 1 and 2 tie; (b) 1 and 2, increase; 3 and 4, decrease 
P 1. (a) 3.0 X 105 C; (b) 3.6 X 106 J 3.2.8 X 105 5.8.8 mm 
7. -32.0V 9. (a) 1.87 X 10-21 J;(b) -11.7 mV 11. (a) -0.268 mY; 
(b)-0.681mV 13. (a) 3.3 nC;(b) 12nC/m2 15. (a)0.54mm; 
(b) 790V 17.0.562 mV 19. (a) 6.0 cm; (b) -12.0 cm 21. 16.3,uV 
23. (a) 24.3 mY; (b) 0 25. (a) -2.30 V; (b) -1.78 V 27.13 kV 
29.32.4 mV 31.47.1,uV 33.18.6 mV 35. (-12 V/m)i+(12 V/m)I 
37.150 N/C 39. (-4.0 X 10-16 N)i +(1.6 X 10-16 N)I 
41. (a) 0.90 J; (b) 4.5 J 43. -0.192 pJ 45.2.5 km/s 47.22 km/s 
49. 0.32 km/s 51. (a) +6.0 X 104 V; (b) -7.8 X 105V;(c)2.5J; 
(d) increase; (e) same; (f) same 53. (a) 0.225 J; (b) A 45.0 m/s2, 
B 22.5 m/s2; (c) A 7.75 m/s,B 3.87 m/s 55.1.6 X 10-9 m 
57. (a) 3.0 J; (b) -8.5 m 59. (a) proton; (b) 65.3 km/s 61. (a) 12; 
(b) 2 63. (a) -1.8 X 102 V; (b) 2.9 kV; (c) -8.9 kV 
65.2.5 X 10-8 C 67. (a) 12 kN/C; (b) 1.8 kV; (c) 5.8 cm 
69. (a) 64 N/C; (b) 2.9 V; (c) 0 71. pI21Tsor3 73. (a) 3.6 X 1Q5 V; 
(b) no 75.6.4 X 108V 77.2.90 kV 79.7.0 X 105 m/s 
81. (a) 1.8 cm; (b) 8.4 X 105 m/s; (c) 2.1 X 10-17 N; (d) positive; 
(e) 1.6 X 10-17 N; (f) negative 83. (a) +7.19 X lO- lO V; 
(b) +2.30 X 1O-28 J;(c) +2.43 X 1O-29 J 85.2.30 X 1O-28 J 
87.2.1 days 89.2.30 X 10-22 J 91.1.48 X 107 m/s 93. -1.92 MV 



AN-8 ANSWERS 

95. (a) Q/47Tsor;(b) (pI3so) (1.5r~ - 0.50r2 - rtr-l), 
p= Q/[(47T/3) (d - d)]; (c) (p/2so) (d - d),withpasin (b); (d) yes 
101. (a) 0.484 MeV; (b) 0 103. -1.7 105. (a) 38 s; (b) 280 days 

1. (a) same; (b) same 2. (a) decreases; (b) increases; 
(c) decreases 3. (a) V, q12; (b) V/2; q 

1. a, 2; b, 1; c, 3 3. (a) no; (b) yes; (c) all tie 5. (a) same; 
(b) same; (c) more; (d) more 7. a, series; b, parallel; c, parallel 
9. (a) increase; (b) same; (c) increase; (d) increase; (e) increase; 
(f) increase 11. parallel, C1 alone, C2 alone, series 

1. (a) 3.5 pF; (b) 3.5 pF; (c) 57 V 3. (a) 144 pF; (b )17.3 nC 
5.0.280 pF 7.6.79 X 10-4 F/mz 9.315 mC 11.3.16 pF 
13.43 pF 15. (a) 3.00 pF; (b) 60.0 pC; (c) 10.0 V; (d) 30.0 pC; 
(e) 10.0 V; (f) 20.0 pC; (g) 5.00 V; (h) 20.0 pC 17. (a)789 pC; 
(b) 78.9V 19. (a) 4.0pF;(b) 2.0pF 21. (a) 50 V; (b) 5.0 X 10-5 C; 
(c) 1.5 X 10-4 C 23. (a) 4.5 X 1014; (b) 1.5 X 1014; (c) 3.0 X 1014; (d) 
4.5 X 1014; (e) up; (f) up 25.3.6 pC 27. (a) 9.00 pC; 
(b) 16.0 pC; ( c) 9.00 pC; (d) 16.0 pC; (e) 8.40 pC; (f) 16.8 pC; 
(g) 10.8 pC; (h) 14.4 pC 29.72 F 31.0.27 J 33.0.11 J/m3 

35. (a) 9.16 X 10-18 J/m3; (b) 9.16 X 10-6 J/m3 ; (c) 9.16 X 106 J/m3; 

(d) 9.16 X 1018 J/m3; (e) 00 37. (a) 16.0 V; (b) 45.1 pJ; (c) 120 pJ; (d) 
75.2pJ 39. (a) 190 V; (b) 95mJ 41.81pF/m 43.Pyrex 
45.66pJ 47.0.63mz 49.17.3pF 51. (a) lOkV/m;(b) 5.0nC; 
(c) 4.1 nC 53. (a) 89 pF; (b) 0.12 nF; (c) 11 nC; (d) 11 nC; 
(e) 10 kV/m; (f) 2.1 kV/m; (g) 88 V; (h) -0.17 pJ 55. (a) 0.107 nF; 
(b)7.79nC;(c)7.45nC 57.45pC 59.16pC 61. (a)7.20pC; 
(b) 18.0 pC; ( c) Battery supplies charges only to plates to which it is 
connected; charges on other plates are due to electron transfers 
between plates, in accord with new distribution of voltages across 
the capacitors. So the battery does not directly supply charge on 
capacitor 4. 63. ( a) 10 pC; (b) 20 pC 65. 1.06 nC 67. (a) 2.40 pF; 
(b) 0.480 mC; (c) 80 V; (d) 0.480 mC; (e) 120 V 69.4.9% 
71. (a) 0.708 pF; (b) 0.600; (c) 1.02 X 10-9 J; (d) sucked in 73.5.3 V 
75.40 pF 77. (a) 200 kV/m; (b) 200 kV/m; (c) 1.77 pC/mz; 
(d) 4.60 pC/mz; (e) -2.83 pC/mz 

HAPTER 26 
1. 8 A, rightward 2. (a) - (c) rightward 3. a and c tie, then b 

4. device 2 5. (a) and (b) tie, then (d), then (c) 
1. tie of A, B, and C, then tie of A + Band B + C, then 

A + B +C 3. (a) top-bottom, front-back, left-right; (b) top­
bottom, front-back, left-right; (c) top-bottom, front-back, left-right; 
(d) top-bottom, front-back, left-right 5. a, b, and c all tie, then d 
7. (a) B,A, C; (b) B,A, C 9. (a) C, B,A; (b) all tie; (c) A, B, C; 
(d) all tie 

1. (a) 1.2 kC; (b)7.5 X lOZ1 3.6.7 pC/m2 5. (a) 6.4A/m2; 
(b) north; (c) cross-sectional area 7.0.38 mm 9.18.1 pA 
11. (a) 1.33 A; (b) 0.666 A; (c) fa 13. 13 min 15. 2.4 fl 
17.2.0 X 106 (fl·mt1 19.2.0 X 10-8 fl'm 21. (1.8 X 103tC 
23.8.2 X 10-4 fl'm 25.54 fl 27.3.0 29.3.35 X 10-7 C 
31. (a) 6.00 rnA; (b) 1.59 X 10-8 V; (c) 21.2 nfl 33. (a) 38.3 rnA; 
(b) 109 A/mz; (c) 1.28 cmfs; (d) 227 Vim 35.981 kfl 39.150 s 
41. (a) 1.0 kW; (b) US$0.25 43.0.135 W 45. (a) 10.9 A; 
(b) 10.6 fl; ( c) 4.50 MJ 47. ( a) 5.85 m; (b) 10.4 m 49. ( a) US$4.46; 
(b) 144 fl; (c) 0.833A 51. (a) 5.1 V; (b) 10 V; (c) lOW; (d) 20W 
53. (a) 28.8 fl; (b) 2.60 X 1019 S-I 55.660 W 57.28.8 kC 
59. (a) silver; (b) 51.6 nfl 61. (a) 2.3 X 1012; (b) 5.0 X 103; (c) 10 MV 
63.2.4 kW 65. (a) 1.37; (b) 0.730 67. (a) -8.6%; (b) smaller 
69. 146 kJ 71. (a) 250°C; (b) yes 73. 3.0 X 106 J Ikg 75. 560 W 

CHAPIE 21 
1. ( a) rightward; (b) all tie; (c) b, then a and c tie; 

(d) b, then a and c tie 2. (a) all tie; (b) Rj,Rz,R3 3. (a) less; 
(b) greater; (c) equal 4. (a) V12, i; (b) V, il2 5. (a) 1,2,4,3; 
(b) 4, tie of 1 and 2, then 3 

1. (a) equal; (b) more 3. parallel, Rz, R I, series 5. ( a) series; 
(b) parallel; (c) parallel 7. (a) less; (b) less; (c) more 9. (a) same; 
(b) same; ( c) less; (d) more 11. (a) all tie; (b) 1,3,2 

1. (a) 0.50 A; (b) LOW; (c) 2.0W; (d) 6.0W; (e) 3.0W; (f) sup­
plied; (g) absorbed 3. (a) 14 V; (b) 1.0 X lOzW; (c) 6.0 X lOzW; 
(d) 10 V; (e) 1.0 X lOzW 5.11kJ 7.(a)80J;(b)67J;(c)13J 
9. (a) 12.0 eV; (b) 6.53 W 11. (a) 50V; (b) 48 V; (c) negative 
13. (a) 6.9 km; (b) 20 fl 15.8.0 fl 17. (a) 0.004 fl; (b) 1 
19. (a) 4.00 fl; (b) parallel 21.5.56 A 23. (a) 50 rnA; (b) 60 rnA; 
(c) 9.0 V 25.3d 27.3.6 X 103 A 29. (a) 0.333 A; (b) right; 
(c) 720 J 31. (a) -11 V; (b) -9.0V 33.48.3 V 35. (a) 5.25 V; 
(b) 1.50 V; (c) 5.25 V; (d) 6.75V 37.1.43 fl 39. (a) 0.150fl; 
(b) 240W 41. (a) 0.709W; (b) 0.050W; (c) 0.346 W; (d) 1.26 W; 
(e) -0.158W 43.9 45. (a) 0.67 A; (b) down; (c) 0.33A;(d) up; 
(e) 0.33A; (f) up; (g)3.3 V 47. (a) 1.11 A; (b) 0.893 A; (c) 126 m 
49. (a) 0.45 A 51. (a) 55.2 rnA; (b) 4.86 V; (c) 88.0 fl; (d) decrease 
53. - 3.0% 57.0.208 ms 59.4.61 61. (a) 2.41 fLs; (b) 161 pF 
63. (a) 1.1 rnA; (b) 0.55 rnA; ( c) 0.55 rnA; (d) 0.82 rnA; (e) 0.82 rnA; 
(f) 0; (g) 4.0 X lOz V; (h) 6.0 X 102 V 65.411/'(,A 67.0.72 Mfl 
69. (a) 0.955 p,c/s; (b) 1.08 fLW; (c) 2.74 fLW; (d) 3.82 fLW 
71. (a) 3.00A; (b) 3.75A; (c) 3.94A 73. (a) 1.32 X 107 A/mz; 
(b) 8.90 V; (c) copper; (d) 1.32 X 107 A/mz; (e) 51.1 V; (f) iron 
75. (a) 3.0kV; (b) 10s;(c) 11 Gfl 77. (a) 85.0fl;(b) 915 fl 
81. 4.0 V 83. (a) 24.8 fl; (b) 14.9 kfl 85. the cable 87. -13 fLC 
89.20 fl 91. (a) 3.00A; (b) down; (c) 1.60 A; (d) down; (e) supply; 
(f) 55.2 W; (g) supply; (h) 6.40W 93. (a) 1.0 V; (b) 50 mfl 
95.3 99. (a) 1.5 rnA; (b) 0; (c) 1.0 rnA 

CHAPTER 28 

1. a, + z; b, -x; c, FB = 0 2. (a)2, then tie of 1 and 3 (zero); 
(b) 4 3. (a) electron; (b) clockwise 4. - Y 5. (a) all tie; (b) 1 and 
4 tie, then 2 and 3 tie 

1. (a) no, bec~use 11 ~nd FB must be perpendicular; (b) yes; 
(c ) no, because Band FB must be perpendicular 
3. (a) +z and -z tie, then +y and -y tie, then +x and -x tie (zero); 
(b) +y 5. (a) FE; (b) FB 7. (a) B

1
; (b) Bl into page,Bz out of page; 

(c) less 9. (a) positive; (b) 2 ~ 1 and 2 ~ 4 tie, then 2 ~ 3 (which is 
zero) 11. (a) negative; (b) equal; (c) equal; (d) half-circle 

1. (a) 400 kmfs; (b) 835 eV 3. (a) (6.2 X 10-14 N)k; 
(b) (-6.2 X 1O-14 N)k 5. -2.0T 7. (-H.4V/m)i - (6.00 Vim)] + 
(4.80V/m)k 9. -(0.267mT)k 11.0.68MV/m 13.7.4pV 
15. (a)( -600mV/m)k; (b) 1.20 V 17. (a) 2.60 X 106 mfs; 
(b) 0.109 ps;(c) 0.140 MeV; (d) 70.0kV 19.1.2 X 10-9 kg/C 
21. (a) 2.05 X 107 mfs; (b) 467 pT; (c) 13.1 MHz; (d) 76.3 ns 
23.21.1pT 25.(a)0.978MHz;(b)96.4cm 27. (a) 495 mT; 
(b) 22.7 rnA; ( c) 8.17 MJ 29.65.3 kmfs 31.5.07 ns 
33. (a) 0.358 ns; (b) 0.166 mm; (c) 1.51 mm 35. (a) 200 eV; 
(b)20.0keV;(c)0.499% 37.2.4 X lOzm 39. (a) 28.2N; 
(b) horizontally west 41. (a) 467 rnA; (b) right 43. (a) 0; (b) 0.138 N; 
(c)0.138N;(d)0 45. (-2.50mN)] + (0.750mN)k 47. (a) 0.12T; 
(b)31° 49.(-4.3 X 1O-3 N'm)] 51. 2.45 A 55. (a) 2.86A·mz; 
(b) 1.10A·mz 57. (a) 12.7 A; (b) 0.0805 N'm 59. (a) 0.30Amz; 
(b) 0.024 N'm 61. (a) -72.0 pJ; (b)(96.oi + 48.0k) pN·m 
63. (a) -(9.7 X 1O-4N'm)i - (7.2 X 1O-4 N'm)] + (8.0 X 1O-4N'm)k; 
(b) -6.0 X 10-4 J 65. (a) 90°; (b) 1; (c) 1.28 X 1O-7 N'm 



67. (a) 20 min; (b) 5.9 X 1O-2N'm 69.8.2 mm 71.127 u 
73. (a) 6.3 X 1Q14 mJs2; (b )3.0 mm 75. (a) 1.4; (b) 1.0 
77. (-500V/m)J 79. (a) 0.50; (b) 0.50; (c) 14 cm; (d) 14 cm 
81. (0.80J -l.1k) mN 83. -40 mC 85. (a) (12.8i + 6.41J) X 
10-22 N; (b) 90°; (c) 173° 

R 29 
1. b, c, a 2. d, tie of a and c, then b 3. d, a, tie of band c (zero) 

Q 1. c, a, b 3. c, d, then a and b tie (zero) 5. a, c, b 
7. c and d tie, then b, a 9. b, a, d, c (zero) 11. (a) 1,3,2; (b) less 

1. (a) 3.3 liT; (b) yes 3. (a) 16 A; (b) east 5. (a) 1.0 mT; 
(b) out; (c) 0.80 mT; (d) out 7. (a) 0.102 liT; (b) out 
9. (a) opposite; (b) 30 A 11. (a) 4.3 A; (b) out 13.50.3 nT 
15. (a) 1.7 liT; (b) into; (c) 6.7 liT; (d) into 17.132 nT 19.5.0 liT 
21.256 nT 23. (-7.75 X 10-23 N)i 25.2.00 rad 27.61.3 rnA 
29. (80IlT)J 31. (a) 20 liT; (b) into 33. (22.3 pT)J 35.88.4 pN/m 
37. (-125IlN/m)i + (41.7IlN/m)J 39.800 nN/m 
41. (3.20 mN)J 43. (a) 0; (b) 0.850 mT; (c) 1.70 mT; (d) 0.850 mT 
45. (a) -2.5IlT·m; (b) 0 47. (a) 0; (b) 0.10 liT; (c) 0.40 liT 
49. (a) 533 liT; (b) 400 liT 51. 0.30 mT 53. 0.272 A 
55. (a) 4.77 cm; (b) 35.5 liT 57. (a) 2.4A·m2; (b) 46 cm 
59.0.47 A'm2 6L (a) 79 liT; (b) 1.1 X 1O-6N'm 63. (a)(0.060A·m2)J; 
(b)(96pT)J 65.1.28mm 69.(a)15A;(b)-z 71.7.7mT 
73. (a) 15.3 liT 75. (a) (0.24i) nT; (b) 0; (c) (-43k) pT; (d) (0.14k) nT 
79. (a) 4.8 mT; (b) 0.93 mT; (c) 0 83. ( -0.20 mT)k 
87. (a) lloirI21Tc2; (b) lloiI21Tr; (c) lloi(a2 r2)/21T(a2 - b2)r; (d) 0 

CHAPTER 30 

CP 1. b, then d and e tie, and then a and c tie (zero) 2. a and b 
tie, then c (zero) 3. c and d tie, then a and b tie 4. b, out; c, out; d, 
into; e, into 5. d and e 6. (a) 2, 3, 1 (zero ); (b) 2,3,1 
7. a and b tie, then c 

1. out 3. (a) all tie (zero); (b) 2, then 1 and 3 tie (zero) 5. d 
and c tie, then b, a 7. (a) more; (b) same; (c) same; (d) same (zero) 
9. (a) all tie (zero); (b) 1 and 2 tie, then 3; (c) all tie (zero) 

1.0 3.30 rnA 5.0 7. (a) 31 mY; (b) left 9.0.198 mV 
11. (b) 0.796 m2 13.29.5 mC 15. (a) 21.7 V; (b) counterclock­
wise 17. (a) 1.26 X 1O-4T; (b) 0; (c) 1.26 X 1O-4 T; (d) yes; 
(e) 5.04 X 1O-8V 19.5.50 kV 21. (a) 40 Hz; (b) 3.2 mV 
23. (a) lloiR21Tr2/2x3; (b) 3lloi1T R2r2v12x4; ( c) counterclockwise 
25. (a) 13IlWb/m; (b) 17%; (c) 0 27. (a) 80 IlV; (b) clockwise 
29. (a) 48.1 mV;(b) 2.67 rnA; (c) 0.129 mW 31.3.68IlW 
33. (a) 240 IlV; (b) 0.600 rnA; (c) 0.144IlW; (d) 2.87 X 10-8 N; 
(e) 0.1441lW 35. (a) 0.60 V; (b) up; (c) 1.5 A; (d) clockwise; 
(e) 0.90W; (f) 0.18 N; (g) 0.90W 37. (a) 71.5IlV/m; (b) 1431lV/m 
39.0.15 Vim 41. (a) 2.45 mWb; (b) 0.645 mH 43.1.81IlH/m 
45. (a) decreasing; (b) 0.68 mH 47. (b) Leq = "i,Lj , sum from j = 1 
toj=N 49.59.3mH 51.460 53. (a) 8.45 ns;(b)7.37 rnA 
55.6.91 57. (a) 1.5 s 59. (a) i[l - exp( -RtIL)]; (b) (LlR) In 2 
61. (a) 97.9 H; (b) 0.196 mJ 63.25.6 ms 65. (a) 18.7 J; (b) 5.10 J; 
(c) 13.6 J 67. (a)34.2 J/m3; (b) 49.4 mJ 69.1.5 X 108V/m 
71. (a) 1.0J/m3;(b) 4.8 X 10-15 J/m3 73. (a) 1.67 mH; (b) 6.00mWb 
75. 131lH 77. (b) have the turns of the two solenoids wrapped in 
opposite directions 79. (a) 2.0 A; (b) 0; (c) 2.0 A; (d) 0; (e) 10 V; 
(f) 2.0 A/s; (g) 2.0 A; (h) 1.0 A; (i) 3.0 A; (j) 10 V; (k) 0; (1) 0 
81. (a) 10 liT; (b) out; (c) 3.3 liT; (d) out 83.0.520 ms 
85. (a) (4.4 X 107 m/s2)i ; (b) 0; ( c) ( -4.4 X 107 m/s2)i 
87.(a)0.40V;(b)20A 89.(a)lOA;(b)1.0X102J 91. (a)O; 
(b) 8.0 X 102 A/s; (c) 1.8 rnA; (d) 4.4 X 102 A/s; (e) 4.0 rnA; (f) 0 
93.1.15W 95. (a) 20A/s;(b) 0.75A 97. 12A/s 

ANSWERS AN-9 

CHAPTER 31 
1. (a) T12; (b) T; (c) T12; (d) TI4 2. (a) 5V; (b) 150llJ 

3. (a) remains the same; (b) remains the same 4. (a) C,B,A; (b) 1, 
A;2,B;3, S;4, C; (c) A 5. (a) remains the same; (b) increases; 
(c) remains the same; (d) decreases 6. (a) 1, lags; 2, leads; 3, in 
phase; (b) 3 (Wd= wwhenXL = XC> 7. (a) increase (circuit is 
mainly capacitive; increase C to decrease Xc to be closer to reso­
nance for maximum Pavg); (b) closer 8. (a) greater; (b) step-up 

1. b,a,c 3. (a) T14; (b) T14; (c) T12; (d) TI2 5. c, b, a 7.a 
inductor; b resistor; c capacitor 9. (a) positive; (b) decreased (to 
decrease XL and get closer to resonance); (c) decreased (to increase 
Xc and get closer to resonance) 11. (a) rightward, increase (XL 
increases, closer to resonance); (b) rightward, increase (Xc decreases, 
closer to resonance); (c) rightward, increase (w,/ w increases, closer to 
resonance) 
P 1. (a) 1.17IlJ;(b) 5.58 rnA 3. (a) 6.00 lis; (b) 167kHz;(c)3.00IlS 
5.45.2 rnA 7. (a) 1.25 kg; (b) 372 N/m; (c) 1.75 X 10-4 m; 
(d) 3.02 mm/s 9.7.0 X 10-4 s 11. (a) 6.0; (b) 36 pF; (c) 0.22 mH 
13. (a) 0.180 mC; (b)70.7Ils; (c) 66.7W 15. (a) 3.0nC; (b) 1.7 rnA; 
(c) 4.5 nJ 17. (a) 275 Hz; (b) 365 rnA 21. (a) 356 lis; (b) 2.50 mH; 
(c) 3.20 mJ 23. (a) 1.981lJ; (b) 5.56IlC; (c) 12.6 rnA; (d) -46.9°; 
(e) +46.9° 25.8.66 mO 29. (a) 95.5 rnA; (b) 11.9 rnA 
31. (a) 0.65 kHz; (b) 24 0 33. (a) 6.73 ms; (b) 11.2 ms; 
(c) inductor; (d) 138 mH 35. 89 0 37.7.61 A 39. (a) 267 0; 
(b) -41S; (c) 135 rnA 41. (a) 206 0; (b) 13.7°; (c) 175 rnA 
43. (a) 2180; (b) 23.4°; (c) 165 rnA 45. (a) yes; (b) 1.0 kV 
47. (a) 224 rad/s; (b) 6.00 A; (c) 219 rad/s; (d) 228 rad/s; (e) 0.040 
49. (a) 796 Hz; (b) no change; (c) decreased; (d) increased 
53. (a) 12.1 0; (b) 1.19 kW 55.1.84A 57. (a) 117 IlF; (b) 0; 
(c) 90.0 W; (d) 0°; (e) 1; (f) 0; (g) -90°; (h) 0 59. (a) 2.59 A; 
(b) 38.8 V; (c) 159 V; (d) 224 V; (e) 64.2 V; (f) 75.0 V; (g) 100 W; (h) 0; 
(i) 0 61. (a) 0.743; (b) lead; ( c) capacitive; (d) no; (e) yes; (f) no; 
(g) yes; (h) 33.4 W 63. (a) 2.4 V; (b) 3.2 rnA; (c) 0.16A 
65. (a) 1.9 V; (b) 5.9W; (c) 19V; (d) 5.9 X 1Q2W; (e) 0.19 kV; (f) 59 kW 
67. ( a) 6.73 ms; (b) 2.24 ms; ( c) capacitor; (d) 59.0 IlF 
69. (a) -00405 rad; (b) 2.76 A; (c) capacitive 71. (a) 64.00; 
(b) 50.9 0; (c) capacitive 73. (a) 2.41IlH; (b) 2104 pJ; (c) 82.2 nC 
75. (a) 39.1 0; (b) 21.7 0; (c) capacitive 79. (a) 0.577Q; (b) 0.152 
81. (a) 45.0°; (b) 70.7 0 83.1.84 kHz 85. (a) 0.689IlH; 
(b) 17.9 pJ; (c) 0.110 IlC 87. (a) 1650; (b) 313 mH; (c) 14.91lF 

CHAPTER 32 
1. d, b, c, a (zero) 2. a, c, b, d (zero) 3. tie of b, c, and d, then a 

4. (a) 2; (b) 1 5. (a) away; (b) away; (c) less 6. (a) toward; 
(b) toward; (c) less 

1. 1 a,2 b, 3 c and d 3. a, decreasing; b, decreasing 
5. supplied 7. (a) a and b tie, then c, d; (b) none (because plate 
lacks circular symmetry, 13 not tangent to any circular loop); 
(c) none 9. (a) 1 up, 2 up, 3 down; (b) 1 down, 2 up,3 zero 
11. (a) 1,3,2; (b) 2 

1.+3Wb 3.(a)47AIlWb;(b)inward 5.204 X lO13 V/m's 
7. (a) 1.18 X 1O-19 T; (b) 1.06 X 1O-19 T 9. (a) 5.01 X 1O-22 T; 
(b) 4.51 X lO-22 T 11. (a) 1.9 pT 13.7.5 X 105V/s 
17. (a) 0.324 Vim; (b) 2.87 X 1O-16A; (c) 2.87 X 10-18 

19. (a) 7504 nT; (b) 67.9nT 21. (a) 27.9nT;(b) 15.1 nT 
23. (a) 2.0A; (b) 2.3 X 1011 V/m·s; (c) 0.50A; (d) 0.63IlT·m 
25. (a) 0.63 liT; (b) 2.3 X 1Q12V/m·s 27. (a) 0.71 A; (b) 0; (c) 2.8A 
29. (a) 7.60 IlA; (b) 859 kV·m!s; (c) 3.39 mm; (d) 5.16 pT 31. 55 liT 
33. (a) 0; (b) 0; (c) O;(d) ±3.2 X 1O-25 J;(e) -3.2 X 10-34 J·s; 
(f) 2.8 X 10-23 J/T; (g) -9.7 X 10-25 J; (h) ±3.2 X 10-25 J 
35. (a) -9.3 X 1O-24J!T; (b) 1.9 X 10-23 J/T 37. (b) +x; 



AN-10 ANSWERS 

(c) clockwise; (d) +x 39. yes 41.20.8 mJfT 43. (b) K/B; 
(c) -z; (d) 0.31 kA/m 47. (a) 1.8 X 102 km; (b) 2.3 X 10-5 

49. (a) 3.0 ,uT; (b) 5.6 X 10-10 eV 51.5.15 X 10-24 A'm2 

53. (a) 0.14A; (b)79,uC 55. (a) 6.3 X 108 A; (b) yes; (c) no 
57.0.84 kJfT 59. (a) (1.2 X lO-13 T) exp[ -tl(0.012 s)]; 
(b) 5.9 X 1O-15 T 63. (a) 27.5 mm;(b) 110mm 65.8.0A 
67. (a) -8.8 X 1Q15V/m·s; (b) 5.9 X 1O-7 T·m 69. (b) sign is 
minus; (c) no, because there is compensating positive flux through 
open end nearer to magnet 71. (b) -x; (c) counterclockwise; 
(d) -x 73. (a)7; (b)7; (c) 3hI2'IT; (d) 3ehI4'ITm; (e)3.5hI2'IT; 
(f) 8 75. (a) 9; (b) 3.71 X 10-23 JfT;(c) +9.27 X 10-24 J; 
(d) -9.27 X 10-24 J 

CHAPTER 33 
1. (a) (Use Fig. 33-5.) On right side of rectangle, E is in 

negative y direction; on left side, E + dE is greater and in same 
direction; (b) E is downward. On right side, B is in negative z 
direction; on left side, B + dB is greater and in same direction. 
2. positive direction ofx 3. (a) same; (b) decrease 4. a, d, b, c 
(zero) 5. a 

1. (a) positive direction of z; (b) x 3. (a) same; (b) increase; 
(c) decrease 5.(a)and(b)A=1,n=4,0=30° 7.a,b,c 9.B lLnone 

1.7.49 GHz 3. (a) 515 nm; (b) 610 nm; (c) 555 nm; 
(d) 5.41 X 1014 Hz; (e) 1.85 X 1O-15 S 5.5.0 X 10-21 H 7. 1.2 MW/m2 
9.0.10 MJ 11. (a) 6.7 nT; (b) y; (c) negative direction of y 
13. (a) 1.03 kV/m; (b) 3.43,uT 15. (a) 87 mV/m; (b) 0.29 nT; 
(c) 6.3 kW 17. (a) 6.7 nT;(b) 5.3 mW/m2;(c) 6.7W 19.1.0 X 107 Pa 
21.5.9 X 10-8 Pa 23. (a) 4.68 X 1011 W; (b) any chance 
disturbance could move sphere from directly above source-the 
two force vectors no longer along the same axis 27. (a) 1.0 X 108 Hz; 
(b) 6.3 X 108 rad/s; (c) 2.1 m-1; (d) 1.0 ,uT; (e) z; (f) 1.2 X 1Q2 W/m2; 
(g) 8.0 X 1O-7 N; (h) 4.0 X 10-7 Pa 29.1.9 mm/s 31. (a) 0.17 ,urn; 
(b)towardtheSun 33.3.1% 35.4.4W/m2 37. (a) 2 sheets; 
(b) 5 sheets 39. (a) 1.9 Vim; (b) 1.7 X 10-11 Pa 41.20° or 70° 
43.0.67 45. 1.26 47.1.48 49. 180° 51. (a) 56.9°; (b )35.3° 
55.1.07 m 57.182 cm 59. (a) 48.9°; (b) 29.0° 61. (a) 26.8°; 
(b) yes 63. (a)(l + sin2 0)°.5; (b) 2°·5; ( c) yes; (d) no 65.23.2° 
67. ( a) 1.39; (b) 28.1°; ( c) no 69.49.0° 71. ( a) 0.50 ms; (b) 8.4 min; 
(c) 2.4 h; (d) 5446 B.C. 73. (a) (16.7 nT) sin[(1.00 X 106 m-1)z + 
(3.00 X 1014 S-I)t]; (b) 6.28 .urn; (c) 20.9 fs; (d)33.2 mW/m2; (e) x; 
(f) infrared 75.1.22 77. (c) 137.6° (d) 139.4° (e) 1.7° 
81. (a) z axis; (b)7.5 X 1014 Hz; (c) 1.9 kW/m2 83. (a) white; 
(b) white dominated by red end; (c) no refracted light 
85.1.5 X 10-9 m/s2 87. (a) 3.5 .u W/m2; (b) 0.78 ,uW; 
(c) 1.5 X 1O-17 W/m2;(d) 1.1 X 1O-7V/m;(e)0.25fT 89. (a) 55.8°; 
(b) 55.5° 91.(a)83W/m2;(b)1.7MW 93.35° 

CHAPTER 34 
1. 0.2d, 1.8d, 2.2d 2. (a) real; (b) inverted; (c) same 

3. (a) e; (b) virtual, same 4. virtual, same as object, diverging 
1. (a) a; (b) c 3. (a) a and c; (b) three times; ( c) you 

5. convex 7. (a) all but variation 2; (b) 1,3,4: right, inverted; 5, 6: 
left, same 9. d (infinite), tie of a and b, then c 
P 1.9.10 m 3.1.11 5.351 cm 7.10.5 cm 9. (a) +24 cm; 
(b) +36cm;(c) -2.0; (d) R;(e) I; (f) same 11. (a) -20cm; 
(b) -4.4 cm; (c) +0.56; (d) V; (e) NI; (f) opposite 13. (a) +36 cm; 
(b) -36cm;(c) +3.0; (d) V; (e) NI;(f) opposite 15. (a) -16cm; 
(b) -4.4 cm; (c) +0.44; (d) V; (e) NI; (f) opposite 17. (b) plus; 
(c) +40 cm; (e) -20 cm; (f) +2.0; (g) V; (h) NI; (i) opposite 
19. (a) convex; (b) -20 cm; (d) +20 cm; (f) +0.50; (g) V; (h) NI; 

(i) opposite 21. (a) concave; (c) +40 cm; (e) +60 cm; (f) -2.0; 
(g) R; (h) I; (i) same 23. (a) convex; (b) minus; (c) -60 cm; 
(d) + 1.2 m; (e) -24 cm; (g) V; (h) NI; (i) opposite 25. (a) concave; 
(b) +8.6 cm; (c) + 17 cm; (e) + 12 cm; (f) minus; (g) R; (i) same 
27. (a) convex; (c) -60 cm; (d) +30 cm; (f) +0.50; (g) V; (h) NI; 
(i) opposite 29. (b) -20 cm; (c) minus; (d) +5.0 cm; (e) minus; 
(f) +0.80 (g) V; (h) NI; (i) opposite 31. (b) 0.56 cmls; (c) 11 mls; 
(d) 6.7 cmls 33. (c) -33 cm; (e) V; (f) same 35. (d) -26 cm; (e) V; 
(f) same 37. (c) + 30 cm; (e) V; (f) same 39. (a) 2.00; (b) none 
41.(a)+40cm;(b)oo 43.5.0mm 45.1.86mm 47. (a) 45 mm; 
(b) 90 mm 49.22 cm 51. (a) -48 cm; (b) +4.0; (c) V; (d) NI; 
(e) same 53. (a) -4.8 cm; (b) +0.60; (c) V; (d) NI; (e) same 
55. (a) -8.6cm;(b) +0.39; (c) V; (d) NI;(e) same 57. (a) +36cm; 
(b) -0.80; (c) R; (d) I; (e) opposite 59. (a) +55 cm; (b) -0.74; 
(c) R;(d) I;(e) opposite 61. (a) -18 cm; (b) +0.76; (c) V; (d) NI; 
(e) same 63. (a) -30 cm; (b) +0.86; (c) V; (d) NI; (e) same 
65. (a) -7.5cm;(b) +0.75; (c) V; (d) NI;(e) same 67. (a) +84cm; 
(b) -1.4; (c) R; (d) I; (e) opposite 69. (a) C; (d) -10 cm; (e) +2.0; 
(f) V; (g) NI; (h) same 71. (a) D;(b) -5.3 cm; (d) -4.0 cm; (f) V; (g) 
NI;(h)same 73. (a) C;(b) +3.3 cm; (d) +5.0cm; (f) R;(g) I; 
(h) opposite 75. (a) D; (b) minus; (d) - 3.3 cm; (e) +0.67; (f) V; 
(g) NI 77. (a) C; (b) +80 cm; (d) -20 cm; (f) V; (g) NI; (h) same 
79. (a) C; (b) plus; (d) -13 cm; (e) + 1.7; (f)V; (g) NI; (h) same 
81. (a) +24 cm; (b) +6.0; (c) R; (d) NI; (e) opposite 
83. (a) +3.1 cm; (b) -0.31; (c) R; (d) I; (e) opposite 85. (a) -4.6 cm; 
(b) +0.69; (c) V; (d) NI: (e) same 87. (a) -5.5cm;(b) +0.12; (c)V; 
(d) NI; (e) same 89. (a) 13.0 cm; (b) 5.23 cm; (c) -3.25; (d) 3.13; 
(e) -10.2 91. (a) 2.35 cm; (b) decrease 93. (a) 3.5; (b) 2.5 
95. (a) +8.6 cm; (b) +2.6; (c) R; (d) NI; (e) opposite 
97. (a) +7.5 cm; (b) -0.75; (c) R; (d) I; (e) opposite 99. (a) +24 cm; 
(b) -0.58; (c) R; (d) I; (e) opposite 105. (a) 3.00 cm; (b) 2.33 cm 
107. (a) 40 cm; (b) 20 cm; (c) -40 cm; (d) 40 cm 109. (a) 20 cm; 
(b) 15 cm 111. (a) 6.0 mm; (b) 1.6 kW/m2; (c) 4.0 cm 

CHAPTER 35 
1. b (least n), c, a 2. (a) top; (b) bright intermediate illumina­

tion (phase difference is 2.1 wavelengths) 3. (a) 3A,3; (b) 2.5A, 2.5 
4. a and d tie (amplitude of resultant wave is 4Eo), then band c tie 
(amplitude of resultant wave is 2Eo) 5. (a) 1 and 4; (b) 1 and 4 
Q 1. (a) decrease; (b) decrease; ( c) decrease; (d) blue 3. (a) 2d; 
(b) (odd number) Al2; (c) AI4 5. (a) intermediate closer to 
maximum, m = 2; (b) minimum, m = 3; ( c) intermediate closer to 
maximum,m = 2; (d) maximum,m = 1 7. (a) maximum; 
(b) minimum; (c) alternates 9. (a) peak; (b) valley 11. c, d 

1. (a) 155 nm; (b) 310 nm 3. (a) 3.60 f.1m; (b) intermediate 
closer to fully constructive 5.4.55 X 107 mls 7.1.56 
9. (a) 1.55 f.1m; (b) 4.65,um 11. (a) 1.70; (b) 1.70; (c) 1.30; 
(d) all tie 13. (a) 0.833; (b) intermediate closer to fully 
constructive 15.648 nm 17.16 19.2.25 mm 21.72,um 
23.0 25. 7.88 f.1m 27.6.64,um 29.2.65 31.27 sine wt + 8.5") 
33. (17.1f.1V/m) sin[(2.0 X 1014 rad/s)t] 35.120nm 37.70.0nm 
39. ( a) 0.117 f.1m; (b) 0.352 ,urn 41. 161 nm 43. 560 nm 
45.478 nm 47.509 nm 49.273 nm 51.409 nm 53.338 nm 
55. (a) 552 nm; (b) 442 nm 57. 608 nm 59. 528 nm 61. 455 nm 
63.248 nm 65.339 nm 67.329 nm 69.1.89 f.1m 71.0.012° 
73.140 75. [em + ~)AR]O.5, for m = 0, 1,2,... 77.1.00 m 
79.588 nm 81.1.00030 83. (a) 50.0 nm; (b) 36.2 nm 85.0.23° 
87. (a) 1500 nm; (b) 2250 nm; (c) 0.80 89.x = (Dl2a)(m + 0.5)A, 
for m = 0, 1,2,.. . 91. (a) 22°; (b) refraction reduces () 93. 600 nm 
95. (a) 1.75f.1m;(b) 4.8mm 97.1111 cos2(21TXIA) 99. (a) 42.0ps; 
(b) 42.3 ps; ( c) 43.2 ps; (d) 41.8 ps; (e) 4 101. 33,um 



CHAPTER 36 
1. ( a) expand; (b) expand 2. (a) second side maximum; 

(b) 2.5 3. (a) red; (b) violet 4. diminish 5. (a) left; (b) less 
Q 1. (a) m = 5 minimum; (b) (approximately) maximum between 
the m = 4 and m = 5 minima 3. (a)A,B, C; (b) A,B, C 
5. (a) 1 and 3 tie, then 2 and 4 tie; (b) 1 and 2 tie, then 3 and 4 tie 
7. (a) larger; (b) red 9. (a) decrease; (b) same; (c) remain in place 
11. (a) A; (b) left; (c) left; (d) right 

1. (a) 2.5 mm; (b) 2.2 X 10-4 rad 3. (a) 70 cm; (b) 1.0 mm 
5. (a)700 nm; (b) 4; (c) 6 7.60A,um 9.1.77 mm 
11. 160° 13. ( a) 0.18°; (b) 0046 rad; (c) 0.93 15. (d) 52.5°; 
(e) 10.1"; (f) 5.06° 17. (b) 0; (c) -0.500; (d) 40493 rad; (e) 0.930; 
(f) 7.725 rad; (g) 1.96 19. (a) 19 cm; (b) larger 21. (a) 1.1 X 104 km; 
(b) 11 km 23. (a) 1.3 X 10-4 rad; (b) 10 km 25.50 m 
27.1.6 X l(}lkm 29. (a) 8.8 X 10-7 rad;(b) 804 X 107 km;(c) 0.025 mm 
31. (a) 0.346°; (b) 0.97° 33. (a) 17.1 m; (b) 1.37 X 10-10 

35.5 37.3 39.(a)5.0,um;(b)20,um 41. (a)7A3 X 10-3; 

(b) between the m = 6 minimum (the seventh one) and the m = 7 
maximum (the seventh side maximum); (c) between the m = 3 
minimum (the third one) and the m = 4 minimum (the fourth one) 
43. (a) 9; (b) 0.255 45. (a) 62.1"; (b) 45.0°; (c) 32.0° 47.3 
49. (a) 6.0 ,urn; (b) 1.5 ,urn; (c) 9; (d)7; (e) 6 51. (a) 2.1 0; (b) 21°; 
(c) 11 53. (a) 470 nm; (b) 560 nm 55.3.65 X 103 

57. (a) 0.032° Inm; (b) 4.0 X 104; ( c) 0.076° Inm; (d) 8.0 X 104; 

(e) 0.24°/nm; (f) 1.2 X 105 59.0.15 nm 61. (a) 10 ,urn; (b) 3.3 mm 
63.1.09 X 103 rulings/mm 65. (a) 0.17 nm; (b) 0.13 nm 
67. (a) 25 pm; (b) 38pm 69.0.26nm 71. (a) 15.3°; (b) 30.6°; 
(c) 3.1°; (d) 37.8° 73. (a) 0.7071ao; (b) OA472ao; (c) 0.3162ao; 
(d) 0.2774ao; (e) 0.2425ao 75. (a) 625 nm; (b) 500 nm; (c) 416 nm 
77.3.0mm 83.(a)13;(b)6 85.59.5pm 87.4.9km 89.1.36x1Q4 
91.2 93.4.7cm 97.36cm 99. (a) fourth; (b) seventh 

PROBLEMS AN-11 

CI"IAPTER 37 
1. (a) same (speed of light postulate); (b) no (the start and 

end of the flight are spatially separated); (c) no (because his 
measurement is not a proper time) 2. (a) Eq. 2; (b) +0.90e; 
(c) 25 ns; (d) -7.0 m 3. (a) right; (b) more 4. (a) equal; (b) less 

1.e 3.b 5. (a) C'};(b) C'} 7.(a)4s;(b)3s;(c)5s;(d)4s;(e) 
10 s 9. (a) a tie of 3, 4, and 6, then a tie ofl, 2, and 5; (b) 1, then a 
tie of 2 and 3, then 4, then a tie of 5 and 6; (c) 1,2,3,4,5,6; (d) 2 and 
4; (e) 1,2,5 11. (a) 3, tie of 1 and 2, then 4; (b) 4, tie of 1 and 2, 
then 3; (c) 1,4,2,3 

1. 0.990 50 3. (a) 0.999 999 50 5. 00446 ps 7.2.68 X 103 Y 
9. (a) 87 Am; (b) 394 ns 11. 1.32 m 13. (a) 26.26 y; (b) 52.26 y; 
(c)3.705y 15.(a)0.99999915;(b)30ly 17. (a) 138km; 
(b) - 374 ,us 19. ( a) 25.8 ,us; (b) small flash 21. ( a) 
y[1.00,us -f3(400 m)/(2.998 X 108 mls)]; (d) 0.750; (e) 0 < f3 < 0.750; 
(f) 0.750 < f3 < 1; (g) no 23. (a) 1.25; (b) 0.800,us 
25. (a) 00480; (b) negative; (c) big flash; (d) 4.39,us 27.0.81e 
29. (a) 0.35; (b) 0.62 31. 1.2,us 33. ( a) 1.25 y; (b) 1.60 y; ( c) 4.00 Y 
35.22.9 MHz 37.0.13e 39. (a) 550 nm; (b) yellow 
41. (a) 196.695; (b) 0.999 987 43. (a) 1.0 ke V; (b) 1.1 Me V 
45.110 km 47.1.01 X 107 km 49. (a) 0.222 cm; (b) 701 ps; 
(c) 7040 ps 51.2.83me 53. y(21TmllqIB); (b) no; (c) 4.85 mm; 
(d) 15.9 mm; (e) 16.3 ps; (f) 0.334 ns 55. (a) 0.707; (b) 1.41; 
(c)OA14 57.18smu/y 59. (a) 2.08 MeV; (b) -1.21 MeV 
61. (d) 0.801 63. (a) vt sin 0; (b) t[l -(vic) cos 0]; (c)3.24e 
67. (b) +OA4e 69. (a) 1.93 m; (b) 6.00 m; (c) 13.6 ns; (d) 13.6 ns; 
(e) 0.379 m; (f) 30.5 m; (g) -101 ns; (h) no; (i) 2; (k) no; (1) both 
71. (a) SA X 104 kmlh; (b) 6.3 X 10-10 73.189 MeV 
75.8.7 X 1O-3 ly 77.7 79.2A6MeV/e 81.0.27e 
83. (a) 5.71 GeV; (b) 6.65 GeV; (c) 6.58 GeV/e; (d) 3.11 MeV; 
(e) 3.62 MeV; (f) 3.59 MeV/e 85.0.95e 87. (a) 256 kV; (b) 0.745e 





A acre-foot, 9 
ag (gravitational acceleration), action at a distance, 580 

334 activity, of radioactive sample, 
variation with altitude, 334t 1175 

absolute pressure, 363 addition 
absolute zero, 476 of vectors by components, 
absorption, of heat by solids 44-46 

and liquids, 485-488 of vectors geometrically, 39, 
absorption event, photons, 39-40,40 

1058 adiabat, 526, 526 
in lasers, 1132 adiabatic expansion, 491-492, 

absorption lines, 11 00,1101 492 
ac (alternating current), 826, ideal gas, 526,526-528 

835 adiabatic processes 
acceleration, 263t. See also an- first law of thermodynamics 

gular acceleration; for, 491-493, 492t 
forces summarized, 528, 528t 

constant, 22,22-24 adiabatic wind, 534 
free-fall,25-26 air 
graphical integration in mo- bulk modulus, 446 

tion analysis, 27, 27-28 density, 360t 
negative, 20 dielectric properties at 1 
and Newton's first law, 87-91 atm, 669, 669t 
Newton's laws applications, and drag force, 121-123 

100-105 effect on projectile motion, 
and Newton's second law, 68-69,68 

91-94 electric breakdown, 593, 593, 
one-dimensional motion, 602 

18-26 electric breakdown field, 
principle of equivalence 580t 

(with gravitation), 347 index of refraction at STP, 
projectile motion, 64-70 906t 
relating linear to angular, speed of sound in, 446-447, 

251,251 447t 
relative motion in one di- terminal speeds in, 122t 

mension, 73-74 thermal conductivity, 494t 
relative motion in two di- air conditioners, 548 

mensions, 74-75 airspeed,84 
rockets, 225,224-226 alpha decay, 1177-1179,1178 
rolling down ramp, 278-279, alpha particles, 572, 644, 

279 1166-1168,1166,1177 
sign of,20 binding energy per nucleon, 
simple harmonic motion, 1172 

389,389 magic nucleon number, 1186 
system of particles, 206-209 radiation dosage, 1184 
two- and three-dimensional in thermonuclear fusion, 

motion, 73-75 1209 
uniform circular motion, alternating current (ac), 826, 

70-72, 71, 124 835 
as vector quantity, 38 alternating current circuits, 
yo-yo, 281 835. See also transform-

acceleration amplitude, in sim- ers 
pIe harmonic motion, capacitive load, 838-840, 839 
389 forced oscillations, 836, 836 

acceleration vectors, 38 inductive load, 840-841, 841 
accelerators, 747-749,1219, LC oscillations, 826-829, 827 

1220,1220 leading and lagging in, 841, 
acceptor atoms, 1153 842t, 843 

INDEX 

Figures are noted by page numbers in italics, tables are 
indicated by t following the page number. 

phase and amplitude reI a- simple pendulum, 396 
tionships, 842t angular displacement, 242,242 

power in, 847-849 nonvector nature of,247 
resistive load, 836-838, 837 angular frequency 
RLC circuit damped oscilla- circulating charged particle, 

tions, 833,833-834 745 
series RLC circuits, 842-847, damped harmonic oscillator, 

843 400 
alternating current generator, ofemf,835 

835 LC oscillations, 826, 
with capacitive load, 831-832,832 

838-840,839 natural,402 
with inductive load, 840, simple harmonic motion, 

840-842,841 386-389,388 
with resistive load, 836-838, sound waves, 449 

837 waves, 416 
with transformer, 850, angular magnification 

850-853 compound microscope, 944 
ammeters, 720, 720 refracting telescope, 945 
Ampere, Andre-Marie, 771 simple magnifying lens, 943 
Ampere-Maxwell law, 864, angular momentum,284, 

864-866 284-285,289t 
Maxwell's equation form, conservation of,290-293, 

869t 291,292 
Ampere's law, 771-774 at equilibrium, 305 
ampere (unit),565,683, 770 Newton's second law in an-
Amperian loop, 771,771-774 gular form, 285 
amplitude rigid body rotating about 

alternating current, 842t fixed axis, 288-290,289 
of emf in ac, 835 system of particles, 288 
exponentially decaying in angular motion, 242 

RLC circuits, 834 angular position, 242-243,242, 
LC oscillations, 826 263t 
simple harmonic motion, relating to linear, 250 

387-388,388 angular simple harmonic mo-
waves, 415, 415-416, 416 tion, 394, 394-395 

amplitude ratio, traveling elec- angular simple harmonic oscil-
tromagnetic waves, 892 lator, 394,394-395 

amusement park rides angularspeed,243,244 
roller coaster headache, 252 relating to linear, 250-251 
roller coasters, 20 in rolling, 275-277,276 
Rotor,249 angular velocity, 243-246, 263t 

analyzer, 903 vector nature of,247, 
Andromeda Galaxy, 330-331, 246-247 

331 angular wave number, 415, 
angle of incidence, 906, 906 1072 
angle of minimum deviation sound waves, 449 

prism, 920 annihilation, 1222 
rainbow, 922 electron-positron, 572, 572, 

angle of reflection, 906, 906 1222 
angle of refraction, 906, 906 proton-antiproton, 1224t, 
angles, 43 1224 
angular acceleration, 243, 263t annular cylinder 

relating to linear, 251,251 rotational inertia, 255t 
rolling wheel, 278, 278 antenna, 891,891 
rotation with constant, antibaryons, 1237 

248-249 antiderivative,24 
angular amplitude antihydrogen, 1108, 1222 
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antimatter, 1222 Stern-Gerlach experiment, baryonic matter, 1240 Big Bang, 1237,1240-1242, 
energy released by 1 kg, 1118,1118-1120 baryon number, conservation 1241 

1195t attractive forces, 331 of,1229 binding energy, See nuclear 
antineutrino, 1180 aurora,561 baryons, 1221, 1228-1229, 1245 binding energy 
antinodes, 431, 431,433 automobiles. See also race cars conservation of baryon binding energy per nucleon, 
antiparticles, 1222, 1224 magnet applications, 735 number, 1229 1171,1172,1198 

formation in early universe, spark discharge from, 645, and eightfold way, 1231t, Biot-Savart law, 765-766, 771, 
1240 645 1231-1232 779 

antiprotons, 1222 tire pressure, 361t and quark model, 1232, 1237 bivalent atom, 1145 
antihydrogen, 1108, 1222 autotransformer, 859, 859 baseball blackbody radiator, 496 
discovery of, 1248 average acceleration collision of ball with bat, black holes, 330 

proton-antiproton annihila- one-dimensional motion, 18 211,211 event horizon, 337 

tion, 1224t, 1224 two- and three-dimensional fly ball, air resistance to, 68, gravitational lensing caused 

antisolar point, 909,909 motion, 62-64 68 by,348,348 

aphelion distance, 344 average angular acceleration, base quantities, 1 miniature, 351 

apparent weight, 96 243 base standards, 1 and quasars, 1239 

in fluids, 369-370 average angular velocity, 243 basilisk lizards, 233,233 supermassive, 330 

Archimedes' principle, 367, average power, 155, 185 basketball free throws, 58 blocks 

367-370 engines, 547 bats, navigation using ultra- acceleration of falling, 261 

area vector, 606 traveling wave on stretched sonic waves, 464 connected to massless, fric-

astronomical Doppler effect, string,423 batteries. See also emf tionless pulleys, 97, 98, 

1040-1042,1041 average speed connected to capacitors, 658, 100,100-101 

astronomical unit, 12 of gas molecules, 516-518 658,666 floating, 370 

atmosphere (atm), 361 one-dimensional motion, 16 and current, 682-684, 683 forces on stationary, 117, 

atmospheric pressure, 361 t average velocity as emf devices, 705, 706-707 116-118 

atomic bomb, 1172, 1201 constant acceleration, 23 in multiloop circuits, 714, friction of sliding, 97,97 

rating, 1215 one-dimensional motion, 
714--719 hanging and sliding, 100, 

as trigger for fusion bomb, 14-15 
multiple batteries in multi-

100-101 

1211 
two- and three-dimensional 

loop circuit, 716-717, 
Newton's laws applications, 

atomic clocks, 5-6 
motion, 60 

717 
92,100-105 

time dilation tests, 1029 
Avogadro's number, 507-508, 

potential difference across, 
normal forces, 96-97, 97 

a tomic mass, 1171 
685 

711-712,712 
power used in work on, 156, 

axis of rotation, 242, 242 156 
selected nuclides, 1168t and power in circuits, 695, 

stable static equilibrium, 
atomic mass units, 7,1171 

B 695-696 
305-306,307,309-313 

atomic number, 572,1117,1168 Babinet's principle, 1016 in RC circuits, 720, 720-724 third-law force pair, 98-99, 
atoms, 1083. See also electrons; ball recharging, 712 99 

neutrons; protons projectile motion, 64--66, 65 in RL circuits, 808-810 work done by external force 
absorption and emission of ballet dancing in single-loop circuits, with friction, 181,181 

light, 1113 grand jete, 208,208 707-710 block-spring oscillator, 830 
angular momentum, 1113- tour jete, 292,292 work and energy, 706, block-spring systems 

1114,1113,1115-1117, ballistic pendulum, 220,220 706-707 damped oscillating systems, 
1116 balloons, lifting capacity, 534 beam, 892 400,400--401 

Bohr model, 1096-1099, Balmer series, 1097, beam expander, 957 and electrical-mechanical 
1097 1099-11 01,11 00 beam splitter, 980, 1067, 1067 analogy, 829t, 829 

Einstein-de Haas experi- band-gap pattern beats, 459, 459--460 kinetic energy, 149, 149-151, 
ment, 1114,1114 crystalline solid,1144 becquerel,1175 151 

electron spin, 1115 insulator, 1144 bends,507 oscillating systems, 390, 
formation in early universe, metal,1145 during flight, 379 390-392 

1240 semiconductor, 1151 Bernoulli's equation, 374-377 potential energy, 167-168, 
magnetic resonance, 1121, bands, energy bands in crys- beta decay, 577, 1180-1182, 167,171 

1120-1121 talline solids, 1144,1144 1181 blood pressure 
magnetism, 1113-1114,1113 bar magnets and quark model, 1234 normal systolic, 360t 
matter wave interference, Earth as, 870, 870 beta-minus decay, 1180 blue shift, 1041 

1068,1068 magnetic dipole moment of beta-plus decay, 1180 bob, of pendulum, 395 
orbital angular momentum, small, 755, 755t bi-concave lens, 957 body armor, 444, 444 

1115-1117,1116,1117 magnetic field, 862,862-863 bi-convex lens, 957 body diagonal, 56 
properties of, 1112-1114, magnetic field lines, 738, bicycle wheels Bohr, Niels, 1089, 1185, 1199 

1113 738-739 rolling, 275-277,276,277 Bohr magneton, 872, 873, 1117 
spin angular momentum, barrier tunneling, 1074, rolling with friction, Bohr model, of hydrogen, 

1116-1117,1117 1074-1076 278-280,279 1096-1199,1097 
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Bohr radius, 1098, 1106 series circuits, 663-666, 715t, spherical mirrors, 928, 928 electric potential due to, 640, 
boiling point, 486 842-844 spherical refracting surfaces, 640 

selected substances, 487t capacitive reactance, 838 934,934 charged isolated conductor 
Boltzmann, Ludwig, 1133 capacitive time constant center of gravity, 308-309,308 with cavity, 612, 613 

entropy equation, 553 RC circuits, 721,721 center of mass electric potential, 644-645, 
Boltzmann constant, 508 capacitors, 656, 656-658, 658 and center of gravity, 645 
Bose, Satyendra N ath, 1220 with ac generator, 838, 308-309 in external electric field, 645, 
Bose-Einstein condensate, 838-840 one-dimensional inelastic 645 

1221,1221 charging,657,658 collisions, 218-220,219, Gauss' law for, 612-615 
bosons, 1220-1221,1221 charging in RC circuits, 720, 220 spark discharge from, 
bottomness, 1231 720-721 rolling wheel, 276, 276 561-562 
bottom quark, 1233t, 1234 with dielectrics, 669, 669-671 solid bodies, 203-206,205 charged objects, 561-562, 580 
boundary condition, 1103 discharging, 658 system of particles, 202-203, charge number, 1117 
Bragg angle, 1012-1013 discharging in RC circuits, 202,206-209 charge quantum number, 1224 
Bragg's law, 1012-1013 720,720-721,722-724 center of momentum frame, charging 
Brahe,Tycho, 342 displacement current, 1056 capacitors, 657-658 
branches, circuits, 714 866-869,867 center of oscillation, physical capacitors in RC circuits, 
breakdown potential, 670 electric field calculation, 659 pendulum, 397 720,720-721 
breakeven, in magnetic con- energy density, 668 centigrade temperature scale, charm, 1231 

finement, 1212 energy stored in electric 479 charm quark, 1233t, 1234 
Brewster angle, 912, 912 field,667-669 central axis Chernobyl reactor, 1194 
Brewster's law, 913 Faraday's, 669,669 spherical mirrors, 929,929 chip (integrated circuits), 
bright bands, See bright fringes induced magnetic field, 863, central configuration peak, 552 1159-1160 
bright fringes 865-866 central diffraction maximum, chocolate crumb explosion 

double-slit interference, 964, LC oscillations, 826-829, 827 998,998 mystery, 626,653,680, 
964,966 in parallel, 662-663,663, central interference maximum, 703 

single-slit diffraction, 715t 966 chromatic aberration, 946 
992-993,993 phase and amplitude rela- central line, 1007 

chromatic dispersion, 907-908, 
British thermal unit (Btu), 485 tionships for ac circuits, central maximum 

908 
Brookhaven accelerator, 1219 842t 

diffraction patterns, 990, 990 
circuit elements, 658 

bubble chambers,572, potential difference calcula- circuits, 658, 658, 705, 715t. See 
572-573,737,737 tion, 659-662 

centripetal acceleration, 70-71 
also alternating current 

gamma ray track, 1069, RC circuits, 720,720-724 
centripetal force, 124-129,125 

circuits 
1069-1070 RLC circuits, 833-834, 833 

Cerenkov counters, 1248 capacitive load, 838-840, 839 
proton-antiproton annihila- in series, 663-667,664, 715t, CERN accelerator, 1219, 1236 capacitors in parallel, 

tion event, 1223, 1223 842-844,843 antihydrogen, 1222 662-663,663,715t 
buildings series RLC circuits, 842-844, pion beam experiments, capacitors in series, 663, 

natural angular frequency, 843 1024 663-666, 715t, 842-844, 
402 carbon cycle, in stars, 1217 cesium 843 

submerged during earth- carbon14 dating, 1183 work function, 1079 current direction, 714 
quakes, 7-8 carbon dioxide cesium137, in fallout, 1194 current in single-loop, 707, 

swaying in wind, 393-394, molar specific heat at con- chain-link conversion, of units, 707-709 
434 stant volume, 520t 3 direct-current (DC), 705 

bulk modulus, 317,446 RMS speed at room temper- chain reaction, 1201 grounding, 712,712 
bungee-cord jumping, 166,166 ature,512t change in entropy, See entropy inductive load, 840-842, 841 
buoyant force, 367-370,368 carbon disulfide changes inductors in series, 842-844, 

index of refraction, 906t characteristic nuclear time, 843 
C Carnot cycle, 543,543,544 1194 integrated,1159-1160, 1159 
c. See speed of light Carnot engines, 543-546, 543 characteristic x-ray spectrum, internal resistance, 709,709 
calorie (cal), 484 efficiency, 545-546, 549-550 1128,1128 multiloop, 708,714,714-719 
Calorie (Cal) (nutritional), 484 Carnot refrigerators, 548, charge, See electric charge oscillating, 826 
cameras, 943, 955 549-550 charge carrier density, 685 parallel capacitors, 662-663, 
cancer radiation therapy, 1165 cars, See automobiles; race cars silicon and copper com- 663,715t 

with 60CO, 1190 cascade, of decay processes, pared, 696t, 696-697 parallel inductors, 822 
capacitance, 656-658 1230 charge carriers, 684, 1151 parallel resistors, 714, 
calculating, 659-662 cat, terminal speed of falling, doped semiconductors, 714-719,715t 

LC oscillations, 826-829, 827 122,122-123 1152-1154 potential difference be-
parallel circuits, 662-663, cathode ray tube, 740,740-741 drift speed, 686, 685-688 tween two points, 711, 

715t Celsius temperature scale, semiconductors, 696 711-714,712 
RC circuits, 720,720-724 479-481,480 charged disk power, potential, and emf, 
RLC circuits, 833-834 center of curvature electric field due to,591 712-713 
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circuits (cant.) in ideal transformers, 850, concrete constant-volume gas ther-
power in, 695-696 850-851 coefficient oflinear expan- mometer, 478, 478-479 
RC, 720,720-724 magnetic field, 779,779-780 sion,482t constant-volume molar spe-
resistive load, 836-838, 837 mutual induction, 813-815, elastic properties, 317, 317t cific heat, 519-520 
resistors in parallel, 714, 814 condensing, 486 constant -volume processes, 

714-719,715t self-induction, 806, 806-807 conducting devices, 692 489,489-490 
resistors in series, 710,710, cold-weld, 118,118 conducting plates first law of thermodynamics 

715t,842-844,843 collective model, of nucleus, eddy currents, 800 for, 492t, 492 
RL, 807, 807-810,809 1185 Gauss' law, 617, 617-618 summarized, 528, 528t 
RLC, 833,833-834 collimated slit, 1118 conduction, 494-495, 494,495 work done by ideal gases, 
series capacitors, 663, collimator, 1008, 1118 conduction band, 1151,1151 510 

663-666, 715t, 842-844, collisions, 211-214 conduction electrons, 563, 682, constant-volume specific heat, 
843 elastic in one dimension, 1145-1150 486 

series inductors, 842-844, 221,221-223 conduction rate, 494 contact potential difference, 
843 glancing, 224, 224 conductivity, 690, 1146 1155 

series resistors, 710, 710, impulse of series of colli- conductors, 563-564, 682. See continuous charge distribu-
715t,842-844,843 sions, 213-214,214 also electric current tion,586 

single-loop, 707-710, 836 impulse of single collision, drift speed in, 685-688 electric potential due to, 639, 
work, energy, and emf, 706, 212,211-212 Ohm's law, 692-695 639-640,640 

706-707 inelastic in one dimension, configurations, in statistical continuous x-ray spectrum, 
circular aperture 218,218-220,219 mechanics, 550-553 1127,1127-1128 

diffraction patterns, 1000, momentum and kinetic en- confinement principle, 1084 contracted length, 1032 
1000-1003 ergy,217-218 conservation of angular mo- convection, 495 

circular arc charge distribu- two dimensions, 224,224 mentum, 290-294,291, converging lens, 936-937,937 
tions,590 color force, 1236-1237 292 conversion factors, 3 

clocks color-neutral quarks, conservation of baryon num- convex lenses, 957 
event measurement array, 1236-1237 ber,1229 convex mirrors, 929, 929 

1025,1025 
color-shifting inks, 958 conservation of electric images, 931 

time dilation tests, comets charge, 572-573 
Coordinated Universal Time 

1029-1030,1057 
dust and ion tails, 917,917 conservation of energy, 140, 

(UTC),5-6 
stimulated emission from, 183-186,184 

closed circuit, 709,709 
1140-1141,1141 conservation of lepton num-

copper 
closed cycle processes 

commutator, 752, 752 bel', 1228 
coefficient of linear expan-

first law of thermodynamics compass, 869 conservation of linear momen-
sion,482t 

for, 492, 492t completely inelastic collisions, tum, 215-217 conduction electrons, 563 
closed path, 168 -169169 218,218-220,219 conservation of strangeness, electric properties com-
closed-path test, for conserva- complex conjugate, 1071 1231 pared to silicon, 696t, 

tive force, 168 component notation, vectors, conservative forces, 168, 629 696-697, 1143t, 
closed shell, 1186 42 path independence of, 1150-1151 
closed subshell, 1126 components, of light, 907-908 168-170,169 energy levels, 1143,1143 
closed system, 207 componen ts, of vectors, 41, constant acceleration Fermi energy, 1145, 1162 

entropy, 542 41-44 one-dimensional motion, 22, Fermi speed, 1145 
linear momentum conserva- adding vectors by, 45,44-46 22-24 heats of transformation, 487t 

tion,215 composite slab, conduction constant angular acceleration mean free time, 694 
COBE (Cosmic Background through, 494-495, 495 rotation with, 248-249 resistivity, 689t, 691, 691, 

Explorer) satellite, 1242 compound microscope, 944, constant linear acceleration, 1151 
coefficient of kinetic friction, 944 248 rubbing rod with wool, 563 

119-121 compound nucleus, 1185 constant-pressure molar spe- temperature coefficient of 
coefficient of linear expansion, compressibility, 318, 361 cific heat, 521-522 resistivity, 1151 

482 compressive stress, 316-317 constant-pressure processes, unit cell, 1142,1142 
selected materials, 482t Compton scattering, 1062, 489,489-490 copper wire 

coefficient of performance 1062-1065,1063 summarized, 528, 528t aluminum competes with, 
refrigerators, 548 Compton shift, 1062, work done by ideal gases, 700 

coefficient of static friction, 1062-1065 511 as conductor, 563, 563, 683, 
119-121 Compton wavelength, 1064 constant -pressure specific 683 

coefficient of volume expan- computers heat, 486 drift speed in, 686 
sion,482 preventing sparks when constant-temperature electric field inside, 580t 

coherence, 969 working on, 732 processes magnetic force on current 
coherence length, 1131 concave lenses, 957 summarized, 528, 528t carrying, 750,750-751 
coherent light, 969,1131 concave mirrors, 929, 929 work done by ideal gases, cord (unit of wood), 11 
coils, 753. See also inductors images, 931 509,509-510 core (Earth), 353, 353 
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density, 335-336, 335,336, current amplitude damping constant, simple har- diamond lattice, 1142,1142 
361t series RLC circuits, 842-844, monic motion, 400 diatomic molecules, 520 

pressure,361t 843 damping force, simple har- degrees of freedom, 523, 
core (Sun) current-carrying wire monic motion, 400 523-524,524t 

density, 360t magnetic field due to, dark bands, See dark fringes molar specific heats at con-
pressure,361t 764-769,765 dark energy, 1243 stant volume, 520t 
speed distribution of pho- magnetic field inside long dark fringes potential energy, 193 

tons in, 517 straight, 773,773-774 double-slit interference, 964, dielectric constant, 669 
corona discharge, 645 magnetic field outside long 964-965,965,967 selected materials, 669t 
correspondence principle, straight, 772, 772-773 single-slit diffraction, 992, dielectrics 

1089,1106 magnetic force, 750,750-751 992-994,998 atomic view, 671, 671 
cosine, 43, 43 magnetic force between par- dark matter, 1240 with capacitors, 669-670 
cosine-squared rule, for inten- allel, 770,770-771 daughter nuclei, 572, 1189 and Gauss' law, 672-674, 672 

sity of transmitted po- current density, 685-688, 685 de (direct current), 705, 835 polarization of light by re-
larized light, 902 current law, Kirchoff's, 714 de Broglie wavelength, 1067, flection, 912 

Cosmic Background Explorer current-length element, 764, 1085 dielectric strength, 669-670 
(COBE) satellite, 1242 764 decay, See radioactive decay selected materials, 669t 

cosmic background radiation, current loops, 683, 683 decay constant, 1174 differential equation, 830 
1239,1241,1242-1243, electrons, 873-874,873,874 decay rate, 1174-1177 diffraction. See also interfer-
1243 Faraday's law of induction, deceleration, 20 ence 

cosmic ray protons, 577 792-794 decibel,454-456 circular aperture, 1000, 
cosmic rays, 701 Lenz's law for finding direc- dees, 748 1000-1002 
Coulomb barrier, 1207 tion of current, 794, de-excitation, of electrons to double-slit,1003,1003-1005, 
coulomb per second, 683 794-797,795 lower energy levels, 1004 
Coulomb's law, 565-572, 565 as magnetic dipoles, 1086 Fresnel bright spot, 991 ,991 

and Gauss' law, 612 778-780,779 deformation, 315,315 intensity in double-slit, 1003, 
spherical conductors, 566, solenoids and toroids, 

degenerate energy levels, 1095 1003-1004 
566-570 

774-778,775 
degrees of freedom, ideal gas intensity in single-slit, 

coulomb (unit), 565 
torque on, 752,752-753 

molecules, 523-524 997-999,998 
Crab nebula pUlsar, 268 density interference compared and 
critical angle, for total internal 

curvature, of space, 347-348, 
defined,7 contrasted,1005 

reflection, 911 
347,1241 fluids, 359-361 by organized layers, 

crossed fields cutoff frequency, photoelectric linear density of stretched 1011-1013,1012 
discovery of electron, effect, 1060 string, 420 single-slit, 963-964, 964,992, 

740-741 cutoff wavelength selected engineering materi- 992-995,993 
Hall effect, 741-744,741,750 continuous x-ray spectrum, als,317t and wave theory of light, 

crossed sheets, polarizers, 903, 1127 selected materials and ob- 990-991 
903 photoelectric effect, 1060 jects, 360t x rays, 1011-1013, 1012 

cross product, 49-51, 51 cycle uniform, for solid bodies, diffraction factor, 1004 
crust (Earth), 353, 353 engines, 543 203-204 diffraction gratings, 1006, 

density, 335, 360t simple harmonic motion, density gradient, 1155 1006-1008 
crystal defects, 577 387 density of occupied states, dispersion, 1009, 1009-1011 
crystalline solids thermodynamic, 489, 490, 1149,1149-1150 resolving power, 1009-1011, 

electrical properties, 1142, 492 density of states, 1146-1147, 1010 
1142-1143 cyclotrons, 748,748-749 1147 three-slit,1019 

energy levels, 1143, 1143 cylinders depletion zone x rays, 1011 
crystal planes, 1011,1011 rotational inertia, 255t MOSFET,1160 diffraction patterns 
crystals tracer study of flow around, p-n junctions, 1155 defined,990-991 

matter waves incident after 371 derived units, 2 double-slit, 1003,1 004 
x ray and electron scat- calculating capacitance, 660, deuterium, 1182 single-slit, 1003, 1004 
tering, 1068, 1068, 1069 660-661 heavy water, 1217 diffusion current,p-n junc-

polycrystalline solids, 880 cylindrical symmetry, Gauss' deuterium-tritium fuel pellets, tions, 1155 
x-ray diffraction, 1011, law, 615, 615-616 1212,1212 dimensional analysis, 420 

1011-1013 deuterons, 1190, 1211 dip meter, 870 
curie (unit), 1175 D in cyclotron, 749 dip north pole, 870 
Curie constant, 878 damped oscillations deuteron-triton reaction, 1211 dipole antenna,890-893,891 
Curie's law, 878 RLC circuits, 833-834 diamagnetic material, 875 dipole axis, 584, 870 
Curie temperature, 879 damped simple harmonic mo- diamagnetism, 875-876, 876 dip-slip, 57 
currency, anti-counterfeiting tion, 400, 400-401, 401 diamond direct current (de), 835 

measures, 958 damped simple harmonic os- as insulator, 1144, 1151 direct-current (de) circuits, 
current, See electric current cillator, 400, 400 unit cell, 1142, 1142 705,835 
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direction doping, of semiconductors, effective magnetic dipole work on photoelectric ef-
of acceleration in one-di- 696, 1152-1154 moment, 1117 fect,1059-1062 

mensional motion, 19 Doppler effect, 461-465,1025 ellipsoidal shape of, 335 work on photons, 1057-1059 
of acceleration in two- and detector moving, source sta- escape speed, 341t, 341-342 Einstein-de Haas experiment, 

three-dimensional mo- tionary, 462, 462 gravitation near surface, 1114,1114 
tion,62-63 for light, 1040-1042,1041 334-337,336 Einstein ring, 348, 348 

of displacement in one-di- source moving, detector sta- interior of, 353, 353 elastic bodies, 315 
mensional motion, tionary, 463,463 Kepler's law of periods, 344t elastic collisions 
13-14 dose equivalent, radiation, level of compensation, 380 defined, 217 

of vector components, 41 1184 magnetic dipole moment, in one dimension with mov-
of vectors, 39-40, 39, 40 dot product, 48, 48 754, 754t, 887 ing target, 222-223, 223 
of velocity in one-dimen- double-slit diffraction, 1003, magnetism, 869-871 in one dimension with sta-

sional motion, 16 1003-1005,1004 nonuniform distribution of tionary target, 221 , 
of velocity in two- and double-slit interference mass, 335,335-337 221-222 

three-dimensional mo- intensity, 969-972, 970 rotation, 336, 336 in two dimensions, 224, 224 
tion,60 from matter waves, satellite orbits and energy, elasticity, 305, 315-318, 316 

discharging 1067-1068,1068 345-346,345 and wave speed on stretched 
capacitors, 658 single-photon, wide-angle variation in length of day string, 420 
capacitors in RC circuits, version, 1067, 1067 over 4-year period, 6 elastic potential energy, 167 

720,720-724 single-photon version, 1066 earthquakes determining, 171 
a charged object, 563 Young's experiment, 964, building oscillations during, traveling wave on stretched 

disintegration, 1169 964-968 386 string, 421-422, 421 
disintegration constant, 1174 doubly magic nuclides, 1186 buildings submerged during, electrical breakdown, 5801 t, 
disintegration energy, 1177 down quark, 578, 655, 7 593,593 
disks 1232-1234, 1233t natural angular frequency of electrically isolated object, 562 

diffraction by circular aper- drag coefficient, 122 buildings, 402, 402 electrically neutral objects, 562 
ture,1000,1000-1003 drag force, 121-123 Sand P waves, 468 electrical-mechanical analogy, 

rotational inertia, 251t 
damped simple harmonic Earth's magnetic field, 738, 

829t,829 
dispersion 

motion, 400 870,870-871 
electric charge, 561-562. See 

chromatic, 907-908, 908 
mechanical energy not con- magnetic latitude, 888 

also circuits conductors 
by diffraction gratings, 1009, and insulators, 563-564 

1009-1011 
served in presence of, polarity reversal, 870, 

conservation of, 572-573 
displacement. See also angular 175 870-871 and Coulomb's law, 565-572, 

displacement; work as nonconservative force, at surface, 738t 565 
damped harmonic oscillator, 168 eccentricity, of orbits, 342-343, induced, 564 

400-401,401 drain, FETs, 1159, 1159 343 LC oscillations, 826, 830 
one-dimensional motion, 14 drift current,p-n junctions, and orbital energy, 345 measures of, 586, 586t 
simple harmonic motion, 1155 planets of Solar System, 344t quantization, 571 

388,388,389 drift speed, 686-688 eddy currents, 800 electric circuits, See circuits 
traveling waves, 417 Hall effect for determining, edge effect, 618 electric current, 682-685, 683 
two- and three-dimensional 741,741-742 effective cross-sectional area, calculating in single-loop 

motion, 58-60,59 driven oscillations, 402, 836, 122 circuits, 707,707-709 
as vector quantity, 14, 38 836 effective magnetic dipole mo- current density, 685-688, 685 
waves on vibrating string, driving angular frequency, 835 ment,1117 direction in circuits, 684, 

414-417,415 driving frequency, of emf, 835 effective phase difference, op- 684-685 
displacement amplitude d subshells, 1125, 1127 tical interference, 962 induced, 791, 797-800 

forced oscillations, 402, 402 efficiency LC oscillations, 826, 831 
sound waves, 449, 449 E Carnot engines, 545-546 magnetic field due to, 

displacement current, 866-868, E (exponent of 10),2 real engines, 546, 549-550 764-769,765 
867 Earth, 330,1243. See also core; Stirling engines, 546 time-varying in RC circuits, 

displacement vector, 38,38 crust; gravitational eightfold way, 1231, 1231t, 720-724 
dissipated energy, in resistors, force; mantle 1231-1232 electric dipole, 582, 754 

695,707 angular momentum effects Einstein, Albert, 87, 893, 1022, in electric field, 594-596 
ac current circuits, 847-848 if polar ice caps melted, 1022,1025, 1043. See electric field due to, 584, 

distortion parameter, 1200 304 also relativity 584-585 
distribution of molecular atmospheric electric field, Bose-Einstein condensate, electric potential due to, 

speeds, 516-519,517 58Ot,656 1221,1221 637-638,638 
diverging lens, 936-937,937 average density, 360t and bosons, 1221 induced, 638 
donor atoms, 1152-1153 density as function of dis- and lasers, 1132 potential energy, 594-595 
doped semiconductors, 1152, tance from center, 335 view of gravitation, 347, electric dipole antenna, 891, 

1152-1154 eccentricity of orbit, 343 347-348 891-892 
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electric dipole moment, 585, due to group of point electron diffraction, 1069 wave functions, 1088-1091, 
585,594 charges, 636, 636-637 electron microscope, 1080 1089 

dielectrics, 671 due to line of charge, 639, electron neutrinos, 1227, 1227t electron-volt, 630 
permanent, 638 639-640 electron-positron annihilation, electroplaques, 718,718-719 

electric displacement, 673 due to point charge, 635, 635 572,572,1222 electrostatic constant, 565 
electric field, 580-581, 736 and induced electric field, electrons, 563,1219 electrostatic equilibrium, 613 

calculating from potential, 803-804 accelerator studies, 748 electrostatic force, 562, 580 
641,641-642 electric potential difference, 630 barrier tunneling, 1074, and Coulomb's law, 565-572, 

calculating potential from, electric potential energy, 1074-1076,1075 565 
633,633-634 628-629,629 Bohr model, 1096-1099, electric field due to point 

capacitors, 659 system of point charges, 1097 charge, 582, 582-583 

crossed fields, 741-744,741 642-644,643 bubble chamber tracks, 572, point charge in electric field, 

and current, 682 electric quadrupole, 600, 600 572,738 592-593 

due to charged disk, 591, electric spark, 593,593 charge, 571,571 t work done by, 628, 630-631 

640,640 airborne dust explosions set Compton scattering, 1063, electroweak force, 1236 

due to electric dipole, 584, off by, 668-669 1063-1065,1063 elementary charge, 570 

584-585 dangers of, 645, 645 conduction, 1145-1150 measuring, 592 

due to line of charge, and pit stop fuel dispenser discovery by Thomson, 740, emf 

586-590,586 fire, 723, 723-724 740-741,1165 alternating current, 835 

due to point charge, 582, electric wave component, of as fermions, 1220 defined, 705 

582-583 electromagnetic waves, kinetic energy dependence and energy and work, 706, 

electric dipole in, 594-596 891-893,893 on speed, 1023,1023 706-707 

energy stored in capacitor, electromagnetic energy, 832 as leptons, 1221, 1227, 1227t induced, 792 

667-669 electromagnetic force, 1221, loop model for orbits, potential and power in cir-

equipotential surfaces, 631, 1235-1236 873-874,873,874 cuits,711-714 

631-632,632 messenger particle, magnetic dipole moment, self-induced, 806 

flux, 606, 606-608, 884 1235-1237 754, 754t emf devices, 705. See also bat-

Gauss' law for, 605, 608-620, electromagnetic oscillations, and magnetism, 869-874 teries 

771, 862, 869t 
826-829,827 majority carrier in n-type internal dissipation rate, 712 

Hall effect, 741-744, 741,750 
damped in RLC circuits, semiconductors, 1153, real and ideal, 706-706, 707 

induced, 800-804, 801 
833-834 1153t emf rule, 709 

LC oscillations, 826 
forced, 836, 836-838 matter waves, 1067-1070, emission event, photons, 1058 

point charge in, 592-593 
electromagnetic radiation, 890 1068,1069,1083-1084 lasers, 1132,1132-1133 
electromagnetic spectrum, minority carrier in p-type emission lines, 1006,1006, 

polarized light, 902, 902-904, 
889-890,890 semiconductors, 1153, 1100-1101 

903 electromagnetic waves, 413, 1153t emissivity, 496 
system of point charges, 889-890. See also reflec- orbital angular momentum, endothermic reactions, 1227 

642-644,643 tion; refraction 872-873,873 energy. See also gravitational 
traveling electromagnetic energy transport, 897-899, from proton-antiproton an- potential energy; ki-

waves, 890-893,891,893 898 nihilation, 1224t netic energy; mechani-
work done by, 628 induced electric field, 894, radiation dosage, 1184 cal energy; potential en-

electric field lines, 581 ,581-582 894-896 spin, 1115, 1115t, 1220-1221, ergy; thermal energy; 
electric fish, 718 induced magnetic field, 895, 1221 work 
electric flux, 606, 606-608, 884 895-896 spin angular momentum, conservation of, 140, 
electric force, 562, 735 intensity variation with dis- 871-872,872 183-186,184 
electric generator, 705 tance,898,898-899 spin-flip, 883 dark energy, 1243 
electric motors, 752,752-753, polarization, 901,901-904, in superconductors, 697-698 defined, 140 

869 902,903 electron spin, 1115, 1115t, and relativity, 1043-1047 
electric potential, 629-631 polarization by reflection, 1220-1221,1221 scalar nature of, 38 

calculating field from, 641, 912,912-913 electron traps, 1115 in simple harmonic motion, 
641-642 Poynting vector, 897-899, energies of, 1084-1088 392-394,393 

calculating from field, 633, 898 finite well, 1091, 1091-1093 as state property, 537 
633-634 radiation pressure, 899-900 multiple electrons in rectan- stored in electric field, 

charged isolated sphere, 645, speed of travel, 413, 893 gular, 1121-1124 667-669 
645 traveling, 890-896,893,894 nanocrystallites,1093,1093 stored in magnetic field, 

due to charged disk, 640, 640 electromagnetism, 764, 869 one-dimensional, 1084-1095 811-812 
due to continuous charge electromagnets, 735,735 quantum corrals, 1094,1094 transport by electromagnetic 

distribution, 639, magnetic field near big, 738t quantum dots, 1083,1094, waves, 897-899, 898 
639-640,640 electromotive force (emf), 705. 1094 traveling wave on stretched 

due to electric dipole, See also emf two- and three-dimensional, string, 421,421-423 
637-638,638 electron capture, 1180 1095,1095-1096 energy bands, 1143-1144,1144 
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energy density defined, 305-306 expansion, of universe, 1238, calculating, 1150 
capacitors, 668 electrostatic, 613 1242-1243,1243 effect of doping on, 
electric field, 668 examples of static, 309-313 explosions 1163-1164,1164 
kinetic energy density of flu- indeterminate structures, one-dimensional, 216, Fermilab accelerator, 1219, 

ids, 374 314,314 216-217 1234 
magnetic field, 812-813 protons, 569 two-dimensional, 216-217, Fermi level, 1145 

energy gap, 1143-1144,1144 requirements of, 306-307 217 fermions, 1220-1221,1221 
energy-level diagrams, 1085, secular, 1191 extended objects, 100, 927,927 quarks as, 1233t 

1085 thermal, 477 locating images by drawing Fermi speed, 1145 
one-electron, 1123,1123 equilibrium charge, capacitors rays, 939, 939 ferromagnetic materials, 875, 

energy levels in RC circuits, 720 external electric field, 591 879-880,879,880 
excitation and de-excitation, equilibrium points, in potential Gaussian surfaces, 612, magnetically hard and soft, 

1086 energy curves, 176-177 612-614 883 
full, empty, and partially oc- equilibrium position, simple isolated conductor in, 645, ferromagnetism, 875, 879-880, 

cupied, 1122 pendulum, 395 645 879. See also iron 
hydrogen, 1099-1100,1099, equilibrium separation, atoms external forces, 92 FET (field-effect-transistor), 

1100 in diatomic molecules, collisions and internal en- 1159,1159 
multiple electron traps, 193 ergy transfers, 184-185 field declination, 870 

1121-1124 equipartition of energy, 523 system of particles, 206-209 field -effect-transistor (FET), 
nuclear, 1172 equipotential surfaces, 631, work done with friction, 1159,1159 
single electron traps, 631-633 180-182 field inclination, 870 

1084-1088,1085 equivalence, of gravity and ac- work done without friction, field of view 
energy method, of calculating celeration,347 180 refracting telescope, 945 

current in single-loop equivalent capacitance/capaci- external magnetic field spherical mirrors, 928 
circuits, 707 tor and diamagnetism, 875-876 final state, 488, 489, 520 

engines parallel capacitances, and ferromagnetism, 875, finite well electron traps, 1091, 
Carnot, 543-546, 543, 662-663, 663, 715t 879-880,879 1091-1092 

549-550 series capacitances, 663-666, and paramagnetism, 875, fires 
efficiency, 543,545-546,549, 715t 877-878 pit stop fuel dispenser fire, 

549-550,550 equivalent inductance/induc- external torque, 288 723, 723-724 
ideal, 543-544 tor and conservation of angular first law of thermodynamics, 
perfect, 546, 546 parallel inductances, 822 momentum, 290, 291 491 
Stirling, 546, 546 series inductances, 822 eye, See human eye special cases of, 492t, 

entoptic halos, 1014, 1016 equivalent resistance/resistor eyepiece 492--493 
entropy parallel resistances, 714, compound microscope, 944, first-order line, 1006 

engines, 543-546 714-719,715t 944 first reflection point, 921,921 
force due to, 542 series resistances, 710, 715t refracting telescope, 945 fish, electric, 718-719 
and irreversible processes, escape speed, 341-342 fission fragments, 1196-1198 

536 selected astronomical bod- F fixed axis, 241 
and probability, 552-553 ies,34lt face-centered cubic, 1142,1142 angular momentum of rigid 
refrigerators, 548-549 event horizon, 337 Fahrenheit temperature scale, body rotation about, 
and second law of thermo- events, 1022 479--481,480 288-290,289 

dynamics, 541-542 Lorentz factor, 1028,1028, farad, 657 flavors, of quarks, 1232, 
as state function, 537, 1029,1043 Faraday, Michael, 561, 581, 669, 1236-1237 

539-540 Lorentz transformation, 791,792,805 floaters, 991,1017 
statistical mechanics view of, 1035,1035-1036 Faraday'S law of induction, floating, 367, 368 

550-553 measuring, 1024-1025,1025 792-794,863 fluids, 121 
entropy changes, 536, 537-541 relativistic reversal, 1051 Faraday's experiments, 792 apparent weight in, 369-370 

Carnot engines, 545 relativity of length, 1031, and Lenz's law, 794,794-797, Archimedes' principle, 367, 
Stirling engines, 545 1031-1034,1038 795 367-370 

entropy postulate, 536 relativity of simultaneity, Maxwell's equation form, Bernoulli's equation, 
equation of continuity, 1025-1026,1026,1037 869t 374-377 

372-374,372 relativity of time, 1027, mutual induction, 814 defined, 359 
equations of motion 1027-1031,1037 reformulation, 802 density, 359-360 

constant acceleration, 23, 23t relativity of velocities, 1039, self-induction, 806, 806-807 equation of continuity, 372, 
constant linear and angular 1039 transformers, 850 372-373 

acceleration contrasted, exchange coupling, 879,887 femtometer,1170 hydraulic lever, 366, 366-367 
248t excitation, of electrons, 1086, fermi (unit), 1170 motion of ideal, 371-372,372 

free-fall, 25 1086 Fermi, Enrico, 1196, 1206, 1220 Pascal's principle, 366, 
equilibrium, 92. See also static excitation energy, 1110 Fermi-Dirac statistics, 1148 366-367 

equilibrium excited states, 1085,1086 Fermienerg~1145,1146,1148 pressure, 360-361 
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pressure measurement, and Newton's third law, 98 as nonconservative force gamma rays, 573, 737,890 
365-367,366 nonconservative, 168 (kinetic friction), 168 bubble chamber track, 1069, 

at rest, 362, 362-364 normal, 96-97, 97 and rolling, 278-279,279 1069 
fluid streamlines, 371-372, 372 path independence of con- work done by external force radiation dosage, 1184 
flux, 605-606, 606 servative, 168-170,169 with, 180-182,180, 181 ultimate speed, 1023 

of electric field, 606, principle of superposition frictionless surface, 88, 97 gas constant, 508 
606-608,884 for, 88 fringing, 618 gases, 507. See also ideal gases; 

of magnetic field, 862 resultant, 92 fuel charge, nuclear reactor, kinetic theory of gases 
focal length of rolling, 278-280,279 1205 compressibility, 360 

compound microscope, 944, tension, 97-98, 98 fuel rods, 1202, 1205 confined to cylinder with 
944-945 unit of, 88, 88-90 fulcrum, 321 movable piston, 

refracting telescope, 945, 945 as vector quantities, 88 full levels, 1122 488-490,489 
simple magnifying lens, 943, and weight, 95-96 full width at half maximum, density of selected, 360t 

943-944 forward-bias connection,junc- 1016 as fluids, 359 
spherical mirrors, 928, tion rectifiers, fully charged capacitor, 658 specific heats of selected, 

928-930 1156-1157,1156,1157 fully constructive interference, 485t 
thin lenses, 936-937,937 Franklin, Benjamin, 562, 570, 426,427,427t, 431 speed of sound in, 447t 

focal plane, 967 572,701 sound waves, 451 thermal conductivity of se-
focal point Fraunhofer lines, 1141 fully destructive interference, lected,494t 

compound microscope, 944, free-body diagrams, 92-94, 93 426,427, 427t, 431 gas state, 486 
944-945 Newton's laws applications, sound waves, 451 gauge (wire), 700 

refracting telescope, 945, 100-105 fundamental mode, 434, 457 gauge pressure, 363 
945-946 free charge, 673 fur gauss (unit), 738 

simple magnifying lens, 943, free-electron model, 1115, rubbing plastic rod with, 562 Gauss, Carl Friedrich, 605 
943-944 1145 fused quartz Gaussian form, of thin-lens 

spherical mirrors, 928, of Ohm's law, 693 coefficient of linear expan- formula, 956 
928-929 free electrons, 682 sion, 482t Gaussian surfaces 

thin lenses, 936-937,937 free expansion index of refraction, 906t capacitors, 659-662 
two-lens system, 939-940, first law of thermodynamics index of refraction as func- defined, 605, 605 

940 for, 492t, 492 tion of wavelength, 907 electric field flux through, 
focus, See focal point ideal gases, 527-528, 537, resistivity, 689t 606,606-608 
force constant, 149 537-541,538 fusion,1045,1172,1207-1208 external electric field, 
forced oscillations, 402, 836, free-fall acceleration (g), controlled, 1211-1213 613-614,614 

836 25-26,25 in Sun and stars, 1207, and Gauss' law for magnetic 
forced oscillators, 402, 402 measuring with physical 1209-1210,1209 fields, 862 
forces, 289t. See also accelera- pendulum, 397 fusion reaction, 1045 Gauss' law, 605 

tion; angular momen- free-fall flight, 25 charged isolated conductor, 
tum; collisions; drag free oscillations, 402, 836 G 612-615 
force; electrostatic free particle, 1071 g units, of acceleration, 20 conducting plates, 617, 
force; external forces; and Heisenberg's uncer- g, free-fall acceleration, 25-26 617-618 
friction; gravitational tainty principle, 1072, measuring with physical and Coulomb's law, 612 
force; internal forces; 1073 pendulum, 397 cylindrical symmetry, 615, 
linear momentum; mag- matter waves, 1084 G, gravitational constant, 331 615-616 
netic force; spring force; free space, 890 galaxies, 330 dielectrics, 672-674, 672 
torque; variable force; freezing point, 486 Doppler shift, 1041 for electric fields, 605, 
work frequency, 414-417 Doppler shift ofNGC 7319, 608-620, 862,869t 

attractive, 331 circulating charged particle, 1052,1052 isolated conductor with cav-
buoyant, 367, 367-370 744-745 formation in early universe, ity, 612,613 
centripetal, 124-128,125 and index of refraction, 961 1241 for magnetic fields, 862-863, 
conservative, 168 -170,169, photons, 1058 gravitational lensing caused 863, 869t 

629 simple harmonic motion, by,348,348 Maxwell's equation forms, 
defined,87 386-388,388 preponderance of matter 869t 
due to entropy, 542 sound waves, 449 over antimatter, 1222 nonconducting sheet, 617, 
equilibrium, 92 wave on stretched string, 421 recession, and expansion of 617 
and motion, 13 waves, 418, 418 universe, 1238 planar symmetry, 617-618, 
net, 92 Fresnel bright spot, 991,991 superluminal jets, 1054 617 
and Newton's first law, 87-91 friction, 97, 97,117, 116-121. Galilean transformation equa- spherical symmetry, 
Newton's laws applications, See also kinetic fric- tions, 1035 619-620,619 

100-105 tional force; static fric- Gali/eo, 355 Geiger counter, 627,627,1165 
and Newton's second law, tional force gamma-ray photons, 1222 general theory of relativity, 

91-94 cold-weld, 118,118, 119 in fusion, 1209 347-348,1022,1029 
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geomagnetic pole, 738, 870 and principle of superposi- heats of transformation, energy levels and spectra, 
geometrical optics, 904, 990 tion, 333-334 486-488 1099-1101 

diffraction as limit to, work done by, 146, 146-148 selected substances, 487t formation in early universe, 
963-964 gravitational lensing, 348, 348 heat transfer, 494-497 1241 

geosynchronous orbit, 354 gravitational potential en- Heisenberg's uncertainty prin- in fusion, 1045, 1207-1213 
glass. See also Pyrex glass ergy,166, 339-342, 339 ciple,1072,1073, heats of transformation, 487t 

coefficient of linear expan- determining, 171 1235-1236 quantum numbers, 1101 t, 

sion, 482t and escape speed,341-342 helical paths, charged particles, 1101-1103 

index of refraction, 906t and gravitational force, 745-746,746 RMS speed at room temper-

as insulator, 563 340-341 helium-neon gas laser, 1133, ature,512t 

polarization of light by re- graviton, 348 1133-1135 and Schrodinger's equation, 

flection, 912 gray (unit), 1184 Helmholtz coil, 787,788,790 1099-1106,1115 

rubbing rod with silk, 562, grounding, 563 helum-burning, in fusion, 1210 speed of sound in, 447t 

562,563 ground speed, 84 henry (unit), 805 thermal conductivity, 494t 

shattering by sound waves, ground state, 1085, 1086,1086 hertz, 386 wave function of ground 

454 wave function of hydrogen, holes, 1128, 1151 state, 1102-1103,11 03 

Global Positioning System 1102-1103,1103 majority carrier in p-type hydrogen bomb (thermonu-

(GPS), 1, 1022 zero-point energy, 1090 semiconductors, 1153, clear bomb), 1211,1217 

g-LOC (g-induced loss of con- g subshells, 1125 1153t hydrostatic pressures, 362-364 

sciousness), 72 gyroscope precession, 294-295, minority carrier in n-type hysteresis 

in dogfights, 380 295 semiconductors, 1153, ferromagnetic materials, 

gluons, 747,1233,1236 1153t 880-881 

gold,1129 H holograms, 1131 hysteresis loop, 880, 880 

alpha particle scattering, hadrons, 1221, 1228-1230 home-base level, for spectral 
1166 half-life, 1170, 1175, 1219 series, 1101 I 

impact with alpha particle, and radioactive dating, 1183 Hooke, Robert, 149 ideal emf devices, 706 

644 half-width of diffraction grat- Hooke's law, 149, 176 ideal engines, 543-544 

isotopes, 1169 
ing lines, 1006-1007, 

hoop 
ideal fluids 

grand jete, 208, 208 
1007 rotational inertia, 255t 

motion, 371-372,372 
resonance curves, 845-846, ideal gases, 508-511 

grand unification theories 
846 

horizontal motion, in projectile 
adiabatic expansion, 

(GUTs),1237 
Hall effect, 741-744,741,750, 

motion, 66-67,67 
526-528 

graphical integration, for one-
1142 

horizontal range, in projectile 
average speed of molecules, 

dimensional motion, 27, Hall potential difference, 742 motion,65,66 516-519 
27-28 halo nuclides, 1170 horsepower (hp), 155 free expansion, 537, 

grating spacing, 1006-1007 hanging blocks, 100, 100-101 h subshells, 1125 537-541,538 
grating spectroscope, 1008, hard reflection, of traveling Hubble constant, 1238 internal energy, 519-522 

1008 waves at boundary, 432 Hubble's law, 1238 molar specific heat and de-
gravitation, 330 harmonic motion, 387 human body grees of freedom, 

and Big Bang, 1241 harmonic number, 434 as conductor, 563 523-524 
Einstein's view of, 347-348, musical sounds, 456-459 physiological emf devices, molar specific heat at con-

348 harmonic series, 434 706 stant pressure, 521-522 
inside Earth, 337-338 hearing threshold, 454t human eye, 943,955, 955 molar specific heat at con-
near Earth's surface, heat, 547-548. See also thermo- floaters, 991, 1017 stant volume, 519-520 

334-337,335 dynamics image production, 926 molar specific heats, 519-522 
Newton's law of,330-332, absorption by solids and liq- sensitivity to different wave- most probable speed of mol-

331,342 uids, 485-488 lengths, 890,890 ecules,517 
gravitational acceleration defined,484 Huygens' principle, 959, RMS speed, 511,511-513, 

(ag),334 first law of thermodynamics, 959-960 512t,516 
variation with altitude, 334t 491 Huygens' wavelets, 959, 992, translational kinetic energy, 

gravitational constant (G), 331 path-dependent quantity, 995 513-514 
gravitational force, 94, 1221 491 hydraulic compression, 317 work done at constant pres-

center of gravity,308, signs for, 483-484 hydraulic engineering, 359 sure, 510 
308-309 and temperature, 483-484 hydraulic jack, 367 work done at constant tem-

electrostatic force con- heat capacity, 485 hydraulic lever, 366, 366-367 perature,509,509-510 
trasted,572 heat engines, 543-548 hydraulic stress, 316, 316-318 work done at constant vol-

and Newton's law of gravita- heat of fusion, 487 hydrogen ume, 510 
tion, 330-332, 331 selected substances, 487t Bohr model, 1096-1099, ideal gas law, 508 

pendulums, 395,395 heat of vaporization, 486 1097 ideal gas temperature, 479 
and potential energy, selected substances, 487t electric field within, 580t ideal inductor, 807 

340-341 heat pumps, 548 emission lines, 1008,1008 ideal refrigerators, 548 



IND 1-11 

ideal solenoid, 776-777 from traveling electromag- instantaneous angular acceler- sound waves, 451 
ideal spring, 149 netic waves,895, ation,243 internal energy, 476 
ideal toroids, 778 895-896 instantaneous angular velocity, and conservation of total en-
ideal transformers, 850, inductance, 805-806 243 ergy, 183 

850-852 LC oscillations, 826-829 instantaneous power, 155, 185 and external forces, 184-185 
ignition, in magnetic confine- RL circuits, 807-810 instantaneous velocity and first law of thermody-

ment,1212 RLC circuits, 833-834 one-dimensional motion, namics,491 
image distances, 926 solenoids, 805-806, 806 17-18 of ideal gas by kinetic the-
images induction, 792. See also two- and three-dimensional ory, 519-522 

extended objects, 927,927, Faraday's law of induc- motion,60 internal forces, 92 

939,939 tion insulators, 563-564, 697 system of particles, 206-9 

locating by drawing rays, energy transfer, 797-800, 798 electrical properties, 1144, internal resistance 

932,932-933,939,939 mutual induction, 813-815, 1144 ammeters, 720 

from plane mirrors, 926, 814 resistivities of selected, 689t circuits, 709,709 

926-928 self-induction, 806, 806-807, unit cell, 1142 emf devices, 712-713 

from spherical mirrors, 928, 813 integrated circuits, 1159-1160 internal torque, 288 

928,930,930-934,946, inductive reactance, 841 intensity International Bureau of 

946 inductive time constant, diffraction gratings, 1006 Weights and Standards, 

from spherical refracting 808-809 double-slit diffraction, 1003, 3,6 

surfaces, 934, 934-935, inductors, 805,805-807 1003-1005 International System of Units, 

946-947,946 with ac generator, 840, double-slit interference, 2 

from thin lenses, 938, 840-841,841 969-972,970 interplanar spacing, 1012 

938-942,939,947-948, LC oscillations, 826-829,827 electromagnetic waves, 898, intrinsic angular momentum 

947 in parallel, 822 898-899 electrons, 871 

types of, 924-925 phase and amplitude rela- single-slit diffraction, protons and neutrons, 872 

impedance, 843 tionships for ac circuits, 995-999,996,998 inverse cosine, 43, 43 

matching in transformers, 842t of transmitted polarized inverse sine, 43, 43 

852 RL circuits, 807-810 light, 902-904, 903 inverse tangent, 43, 43 

impulse, 212 RLC circuits, 833,833-834 intensity, of sound waves, inverse trig functions, 43, 43 

series of collisions, 213, 213 
in series, 822, 844-853 452-456,453 inverted images, 930, 930 

single collision, 211,211-212 
series RLC circuits, 842-844, interference, 4257, 425-428, ionization energy, 1113, 1113 

843 426 See also diffraction plot of elements, 1113 
incident ray, 904-906, 905 

inelastic collisions and coherence, 969 ionized atoms, 1101 
incoherent light, 969 defined,218 combining more than two iron, 1126-1127. See also steel 
incompressible flow, 371 in one dimension,218, waves,972 Curie temperature, 
indefinite integral, 24 218-220,219 diffraction compared and 879 
independent particle model, of in two dimensions, 224 contrasted,1003-1004 ferromagnetic material, 875, 

nucleus, 1185-1186 inertial confinement, 1212 double-slit from from mat- 879-880 
indeterminate structures inertial reference frames, ter waves, 1067-1069, quantum corral, 1094, 1094 

equilibrium,314,314 89-90,1022 1068 radius of nucleus, 571 
index of refraction inexact differentials, 491 double-slit from single pho- resistivity, 689t 

and chromatic dispersion, infinitely deep potential en- tons,1065,1065-1067 iron filings 
907-908 ergy well, 1085, 1085 intensity in double-slit, bar magnet's effect on, 862, 

common materials, 906t infinite potential well, 1085 969-972,970 862 
defined, 906, 960 inflation, of early universe, 1241 Michelson's interferometer, current-carrying wire's ef-
and wavelength, 960-962 infrared radiation, 899 980,980 fect on, 765 
induced charge, 564 initial conditions, 391 Newton's rings, 987, 987 irreversible processes, 536. See 
induced current, 791 initial state, 488, 489, 519 and rainbows, 962, 962 also entropy and sec-
induced electric dipole mo- in phase sound waves, 451,451-452 ond law of thermody-

ment,638 ac circuits, 842t thin films, 973,973-979 namics,541-542 
induced electric fields, resistive load, 838 Young's double-slit experi- irrotational flow, 371, 374 

800-804,801 sound waves, 451 ment,964,964-968,965 island of stability, 1170 
from traveling electromag- thin-film interference, 973- interference factor, 1004 isobaric processes summa-

netic waves,894, 974 interference fringes, 965, 965 rized, 528, 528t 
894-896 traveling electromagnetic locating, 965, 965-967 isobars, 1170 

induced emf, 792 waves, 890-891 interference pattern, 964, 964, isochoric processes summa-
induced magnetic fields, waves, 425, 428 967 rized, 528, 528t 

863-866,864 instantaneous acceleration interfering waves, 425 isolated spherical capacitors, 
displacement current, one-dimensional motion, 18 interferometer, 980 669 

866-869,867 two- and three-dimensional intermediate interference, 426, calculating capacitance, 
finding,867-868,868 motion, 62-63 427,427t 661-662 
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isolated system, 173 and conservation of total en- junction lasers, 1158,1158 relativity of, 1031, 
conservation of total energy, ergy,183-186 nuclear-pumped x-ray, 1017 1031-1034,1037 

183-184 defined, 141 operation, 1132, 1132-1135 length contraction, 
linear momentum conserva- and momentum, 1046 for plasma compression, 916 1032-1034 

tion,215 and relativity, 1045, radiation pressure, 899-900 consequences of Lorentz 
isotherm, 509,509 1045-1047 surgery applications, 1131, transformation equa-
isothermal compression, 509 of rolling, 277, 277-280 1131 tions,1037-1038 

Carnot engine, 543,543 of rotation, 253-254,254 laser thickness monitoring, length units, 3--4 
isothermal expansion, 509 satellites in orbit, 345-346, 1015,1015 lens, 936. See also thin lenses 

Carnot engine, 543,543 346 lasing, 1134, 1140 diffraction by, 1000 
entropy change, 537-538, simple harmonic motion, lateral magnification lens maker's equation, 936 

538 393,393 compound microscope, 944 Lenz's law, 794,794-797,795 
isothermal processes traveling wave on stretched spherical mirrors, 931 self-induction, 806 

summarized, 528, 528t string, 421,421,422 two-lens system, 939 lepton number, 1228 
isotopes, 1169 and work, 142-146,143 lateral manipulation, using conservation of, 1228 
isotopic abundance, 1168t yo-yo, 281 STM,1075 leptons, 1221, 1227t, 1227-1228 
isotropic materials, 690 kinetic energy density, of flu- lattice, 315,315,1142,1142 conservation of lepton num-
isotropic point source, 898 ids, 374 law of areas (Kepler's second ber,1228 
isotropic sound source, 454 kinetic energy function, 176 law), 343,343 formation in early universe, 

kinetic frictional force, 118, 118 law of Biot and Savart, 1241 
J as nonconservative force, 765-766,771,779 lifetime, subatomic particles, 
joint, in rock layers, 131 168 law of conservation of angular 1029 
Josephson junction, 1075 rolling wheel, 278 momentum, 290, lifting capacity, balloons, 534 
joule (1),141,485 kinetic theory of gases. See also 290-294,291,292 light, 413, 894. See also diffrac-
junction diodes, 697 gases; ideal gases law of conservation of electric tion; interference; pho-
junction lasers, 1158,1158 average speed of molecules, charge, 572-573 tons; reflection; refrac-
junction plane, 1154,1155 516-518 law of conservation of energy, tion 
junction rectifiers, 1156, and Avogadro's number, 183-186,184 Doppler effect, 461 

1156-1157,1164 507-508 law of conservation of linear in early universe, 1241 
junction rule, Kirchoff's, 714 distribution of molecular momentum, 215 Huygens' principle, 959, 
junctions, circuits, 714 speeds, 516-519,517 law of orbits (Kepler's first 959-960 

mean free path,514, 514-515 law),342-343,343 law of reflection, 906 
K molar specific heat and de- law of periods (Kepler's third law of refraction, 906, 959, 
kaons, 1030, 1219 grees of freedom, law),344, 344 959-962 

and eightfold way, 1231t 523-524 for planets in Solar System, as probability wave, 
and strangeness, 1231 most probable speed of mol- 344t 1065-1067 

kelvins, 476, 478, 479, 482 ecules, 517 law of reflection, 906 travel through media of dif-
Kelvin temperature scale, 476, and quantum theory, 523, law of refraction, 906, 959, ferent indices of refrac-

476,480 525 959-962 tion, 961, 961 
Kepler, Johannes, 342 RMS speed, 511,511-513, Lawson's criteria, 1211 as wave, 959, 959-963 
Kepler's first law (law of or- 512t,516 LC oscillations wave theory of, and diffrac-

bits), 342-343, 343 translational kinetic energy, and electrical-mechanical tion,990-991 
Kepler's second law (law of ar- 513-514 analogy, 830t, 830 light-emitting diodes (LEDs), 

eas), 343, 343 Kirchoff's current law, 714 qualitative aspects, 826-829, 1157,1157-1158,1158 
Kepler's third law (law of peri- Kirchoff's junction rule, 714 827 light-gathering power refract-

ods),344,344 Kirchoff's loop rule, 708 quantitative aspects, ing telescope, 945 
for planets in Solar System, Kirchoff's voltage law, 708 830-833 lightning, 561,656 

344t K shell, 1128,1129, 1136 LC oscillators, 830t, 830-833 role in creation of lode-
kilogram, 6 radio wave creation, stones,881 
kilowatt-hour, 155 L 890-893,891 side flash, 728,728 
kinematics, 13 lagging, in ac circuits, 841, 842t, lead upward streamers, 616, 616 
kinetic energy, 2631. See also 843 coefficient of linear expan- light quantum, 1057-1058 

collisions; rotational ki- lagging waves, 428 sion,482t light wave, 893 
netic energy; transla- lambda particle and eightfold heats of transformation, 487t light-year, 12 
tional kinetic energy; way, 1231t specific heats, 485t line (spectra!), 1101 
work-kinetic energy lambda-zero particle, 1230 thermal conductivity, 494t linear acceleration, See accel-
theorem laminar flow, 371 leading, in ac circuits, 841, 842t, eration 

collisions, 217-218 lasers, 1131-1132 843 linear charge density, 586, 586t 
and conservation of me- coherence, 969 leading waves, 428 linear density, of stretched 

chanical energy, helium-neon gas, 1133, Leidenfrost effect, 504 string, 420, 421 
173-175 1133-1135 length linear expansion, 482,482 
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linear momentum, 210, 289t longitudinal motion, 414 defined, 735,737,739 magnetic potential energy, 
completely inelastic colli- longitudinal waves, 413-414, displacement current, 753-754,811 

sions in one dimension, 414 866-868,867 magnetic resonance, 
218-219 long jump due to current in circular arc 1120-1121,1121 

conservation of, 215-217 conservation of angular mo- of wire, 767,767-768 magnetic resonance imaging, 
elastic collisions in one di- mentum, 291,291 due to current in long SeeMRI 

mension with moving long wave radiation, 890 straight wire, 765-767, magnetic wave component, of 
target, 222-223 loop model, for electron orbits, 766 electromagnetic waves, 

elastic collisions in one di- 873-874,873,874 Earth, 870,870-871 892-893,893 
mension with stationary loop rule, 708, 714 energy density of, 812-813 magnetism. See also Earth's 
target, 221-222 RL circuits, 808, 808 energy stored in, 811-812 magnetic field 

elastic collisions in two di- Lorentz factor, 1028,1028, and Faraday'S law of induc- Earth, 870, 870-871 
mensions,224 1029,1043 tion, 792-794,793 electrons, 871-874 

at equilibrium, 305 Lorentz transformation, 1035, Gauss' law for, 862-863, 869t protons and neutrons, 872 
and impulse of series of col- 1035-1036 Hall effect, 741,741-744,750 

magnetization 
lisions,213 Lorentz transformation equa- induced, 863-865,864 

ferromagnetic materials, 
and impulse of single colli- tions,1035-1036 inside long straight current 

sion,211-212 consequences of, 1037-1038 carrying wire, 773, 
879,879-880 

inelastic collisions in one di- pairs of events, 1036t 773-774 paramagnetic materials, 877, 

mension, 218,218-220, Loschmidt number, 535 LC oscillations, 826 877-878 

219 L shell, 1128-1129,1128 and Lenz' law, 794,794-797, magnetization curves 

inelastic collisions in two di- Lyman series, 11 00,1101,1104 795 ferromagnetic materials, 

mensions,224 outside long straight current 879,879-880 

photons, 1062,1062-1065, M carrying wire, 772, hysteresis, 880, 880 

1063 Mach cone, 465,465 772-773 paramagnetic materials, 868, 

system of particles, 211 Mach cone angle, 465, 465 parallel currents, 770, 877 

linear momentum-impulse Mach number, 465 770-771 magnetometers, 870 

theorem, 212 magic electron numbers, selected objects and situa- magnets, 561, 735,735-739, 
linear motion, 241 1185-1186 tions,738t 738,869-871 
linear oscillator, 390-392 magic nucleon numbers, solenoids, 776-777,775 applications, 735 
linear simple harmonic oscilla- 1185-1186 synchrotrons, 749 magnetic dipoles, 862, 862-863 

tors, 390, 390-392 magnetically hard material, toroids,777,777-778 magnitude 
line integral, 633 883 torque on current loops, 752, of acceleration in one-di-
line of action, of torque, 259, magnetically soft material, 883 752-753 mensional motion, 19 

259 magnetic confinement, 1212 traveling electromagnetic of acceleration in two- and 
line of charge magnetic dipole moment, 754, waves, 890-893,891, 893 three-dimensional mo-

electric field due to, 586-590, 754-755,1114,1114 magnetic field lines, 738, tion,62 
586 diamagnetic materials, 738-739,739 of displacement in one-di-

electric potential due to, 639, 875-876 current-carrying wire, mensional motion, 14 
639-640 effective, 1117 766-767 of free-fall acceleration, 25 

line of symmetry, center of ferromagnetic materials, magnetic flux, 862 of vectors, 39,39 
mass of solid bodies 875,879 and Faraday's law, 792-793 of velocity in one-dimen-
with, 203 orbital, 873 magnetic flux linkage, 805 sional motion, 15 

lines, diffraction gratings, paramagnetic materials, 875, magnetic force, 561, 736 of velocity in two- and 
1006-1007 877-878 circulating charged particle, three-dimensional mo-

lines of force, 581 spin, 871-872,872 744-747,745,746 
tion,62-63 

lines shapes, diffraction grat- magnetic dipoles, 738, 753-755, current-carrying wire, 750, 
magnitude-angle notation, 

ings,lOlO 754,862,862-863 750-751,770,770-771 
liquefaction, of ground during magnetic domains, 879-880, particle in magnetic field, vectors, 42 

earthquakes, 7 880 736-738, 737 magnitude ratio, traveling 

liquids and hysteresis, 880 magnetic latitude, 887 electromagnetic waves, 

compressibility, 317,360 magnetic energy, 811-812 magnetic levitation, 697, 697 893 

density of selected, 360t magnetic energy density, magnetic materials, 861,862, majority carriers, 1153 

as fluids, 359 812-813 875 motions of, 1154-1156,1155 

heat absorption, 485-488 magnetic field, 736. See also diamagnetism, 875, 875-876 mantle (Earth), 353, 353 

speed of sound in, 447t Earth's magnetic field ferromagnetism, 875, density, 335 

thermal expansion, 481-483 Ampere's law, 771,771-774 879-880,879 mass, 263t. See also center of 

liquid state, 486 circulating charged particle, magnetically hard and soft, 883 mass 
Local Group, 330 744-747,745,746 paramagnetism, 875, 877, defined, 90-91 
Local Supercluster, 330 crossed fields, 740,741,744 877-878 scalar nature of, 38, 91 
lodestones, 561, 869, 881 cyclotrons, 748,748 magnetic monopole, 736, 862 of selected objects, 7t 
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mass (cant.) damped harmonic oscillator, Doppler effect, 461 lasers, 1131 
units, 6-7 400 Mid-Atlantic Ridge, magnet- monovalent atom, 1145 
and wave speed on stretched satellites in orbit, 345,345 ism, 870, 870 Moon, 330 

string, 420 simple harmonic motion, Milky Way galaxy, 330 corona around, 1018,1018 
weight contrasted, 96 392-393,393 Millikan oil-drop experiment, potential effect on humans, 

mass dampers, 394 mechanical waves, 413 592,592 351 
mass energy, 1043-1044 medium, 893 millimeter of mercury radioactive dating of rocks, 

energy equivalents of parti- melting point, 486 (mm Hg), 361 1183 

cles and objects, 1043t selected substances, 487t millimeter-wave radar, 1017 more capacitive than inductive 

mass excess, 1171 meniscus concave lens, 957 miniature black holes, 351 circuit, 844 

mass flow rate, 373 meniscus convex lens, 957 minima more inductive than capacitive 

massless, frictionless pulleys, mercury barometer, 361, 365, circular aperture diffraction, circuit, 844 

98,98 365 1000,1000 Moseley plot, 1129,1129-1130 

Newton's laws applications, mercury thermometer, 482 diffraction patterns, 990, MOSFET (metal-oxidesemi-

100,100-101 mesons, 1221,1228-1229 990-991,991 conductor-field-effect-

massless cord, 98, 98 and eightfold way, 1231t, double-slit interference, 964, transistor), 1159,1159 

massless spring, 149 1231-1232 964,966,970 most probable configuration, 

mass number, 572, 1168 and quark model, single-slit diffraction, 552 

selected nuclides, 1168t 1232-1234,1237 992-995,995-997,996 most probable speed in fusion, 

mass spectrometer, 747,747 underlying structure sug- thin-film interference, 976 1207 

matter gested, 1232 minority carriers, 1153 of gas molecules, 517 

antimatter, 1222 messenger particles, 1235-1237 motions of, 1154-1155 motion, 13. See also accelera-

baryonic matter, 1240 metallic conductors, 682, 696 mirage, 925, 925 tion; collisions; dis-

dark matter, 1240 metal-oxide-semiconductor- mirrors, 926 placement; forces; one-

energy released by 1 kg, field effect-transistor plane, 926, 926-928 dimensional motion; 

1195t (MOSFET),1159,1159 spherical, 928-934,928,929, position; uniform circu-

nuclear, 1174 metals 946,946-947 lar motion; velocity 

particle nature of, coefficients of linear expan- mobile radio, 889 graphical integration, 27, 
sion,482t moderators, for nuclear reac- 27-28 

1069-1070,1069 
density of occupied states, tors, 1202 projectile, 64-70, 65 

wave nature of, 1067-1069 
matter waves, 413 

1149,1149-1150 modulus of elasticity, 315 relative in one dimension, 

electrons, 1067-1070,1068, 
density of states, 1146-1148, Mohole,353 73,73-74 

1147 molar mass, 508 relative in two dimensions, 
1069,1070,1083,1084 elastic properties of se- molar specific heat, 485 74-75,75 

maxima lected,317t at constant pressure, two- and three-dimensional, 
diffraction patterns, 990, 990 electrical properties, 521-522 58-64 
double-slit interference, 964, 1145-1150 at constant volume, 519-520 MRI (magnetic resonance 

964,967,970 lattice, 315,315 and degrees of freedom, 523, imaging) 
single-slit diffraction, occupancy probability, 523-524 effect on magnetic tattoo 

992-995 1147-1148,1148 selected materials, 485t inks, 861, 861 
thin-film interference, 975 resistivities of selected, 689t molecular mass, 508 M shell, 1128, 1128 

Maxwell, James Clerk, 516, speed of sound in, 447t molecular speeds, Maxwell's multiloop circuits, 707, 714, 
523,561,771,863,890, thermal conductivity of se- distribution of, 516-519, 714-720 
899,958,1236 lected,494t 517 resistances in parallel, 714, 

Maxwellian electromagnetism, unit cell, 1142 molecules, 1112 714-720 
1218 metastable states, 1132 matter wave interference, 1069 multimeter,720 

Maxwell's equations, 861, 869t, meter (m), 1, 3-4 moment arm, 259, 259 multiplication, of vectors, 
1071 metric system, 2 moment of inertia, 253 47-52,48 

Maxwell's law of induction, mho (unit), 690 momentum, 210. See also an- multiplication factor, nuclear 
863 Michelson's interferometer, gular momentum; lin- reactors, 1203 

Maxwell's rainbow, 889-890 980,980 ear momentum multiplicity, of configurations 
Maxwell's speed distribution microfarad, 657 center of momentum frame, in statistical mechanics, 

law 516-519,517 microscopes, 943 1056 551 
mean free time, 694 compound, 944, 944 and kinetic energy, 1046 muon neutrinos, 1227, 1227t 
mean life, radioactive decay, electron microscopes, 1080 and relativity, 1042-1043 muons, 1029-1030, 1054, 1219, 

1175,1219 microscopic clocks, time dila- monatomic molecules, 519 1227t,1227 
measurement, 1 tion tests, 1029 degrees of freedom, 523, decay, 1225 
mechanical energy microstates, in statistical me- 523-524, 524t from proton-antiproton an-

conservation of, 173-175 chanics, 550 - 552 molar specific heats at con- nihilation, 1224t, 1224 
and conservation of total en- microwave cooking, 595 stant volume, 520t musical sounds, 456-459 

ergy,183 microwaves, 413, 889 monochromatic light, 907 mutual induction, 813-815,814 
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N spin angular momentum, diamagnetic materials, 875 semiconductors, 1150-1152 
nanotechnology, 1083 871 and loop model for elec- silicon and copper com-
National Institute of Standards neutron stars, 82, 352, 1190 trons, 873-874,873,874 pared,1143t 

and Technology density of core, 360t nonviscous flow, 371 number density of conduction 
(NIST),5 escape speed, 34lt normal (optics), 904-906, 905, electrons, 1145 

natural angular frequency, 402, magnetic field at surface, 906 
836 738t normal force, 96-98,97 0 

series RLC circuits, 846, 846 newton (N), 88 normalizing, wave function, object, 926, 926-927 
NAVSTAR satellites, 1022 Newton, Isaac, 87,330,342,991 1089 object distance, 926 
n channel, in MOSFET, 1159 Newtonian form, of thin-lens north magnetic pole, 870 objective 
near point, 943,943 formula, 956 north pole, magnets, 738--739, compound microscope, 944, 
negative charge, 562, 562 Newtonian mechanics, 87, 739,862,862 944 
negative charge carriers, 684 1071,1218 n-type semiconductors, 1152, refracting telescope, 945, 945 

drift speed, 686 Newtonian physics, 1083 1152-1153. See also p-n occupancy probability, 
negative direction, 13, 13 newton per coloumb, 580 junctions 1147-1148,1148 
negative lift, in race cars, Newton's first law, 87-91 nuclear angular momentum, occupied levels, 1122 

126-127,127 Newton's law of gravitation, 1172 occupied state density, 1149, 
negative terminal, batteries, 330-333,331 nuclear binding energy, 1149-1150 

658,658,706 Kepler's laws follow from, 1171-1172,1172,1198, ohm (unit), 689 
net force, 92 342 1199 ohmic losses, 850 
net torque, 259 Newton's laws, 87 and excitation energy, 1110 ohmmeter, 689 
net wave, 425 applying in problem solving, selected nuclides, 1168t ohm-meter, 689 
net work, 144 100-105 nuclear energy, 1195 Ohm's law, 692, 692 
net work per cycle Newton's rings, 987,987 nuclear energy levels, 1172 microscopic view of, 693, 

Carnot engine, 544 Newton's second law, 91-94 nuclear fission, 1172, 693-694 
neutral equilibrium, potential angular form, 285-286 1196-1201, 1199 oil slick, interference patterns 

energy curves, 178 applying in problem solving, nuclear force, 1173-1174 from,973 
neutral pion, 1023 100-105 nuclear fusion, See thermonu- one-dimensional elastic colli-
neutrinos, 1180 for rotation, 260-262 clear fusion sions, 221,221-223 

and beta decay, 1180-1181 system of particles, 206-209, nuclear magnetic moment, one-dimensional electron 
in fusion, 1209-1210 207 1172 traps multiple elec-
as leptons, 1221 in terms of momentum, 210 nuclear magnetic resonance trons, 1122 
as nonbaryonic dark matter, translational and rotational (NMR),1121 single electron, 1084-1096 

1240 forms contrasted, 263t, nuclear magnetic resonance one-dimensional explosions, 
from proton-antiproton an- 289t (NMR) spectrum, 1121, 216,216 

nihilation, 1224t units in, 92t 1121 one-dimensional inelastic col-
neutron diffraction, 1069 Newton's third law, 98 nuclear power plant, 1202, lisions, 218, 218-221, 
neutron excess, 1169 NMR spectrum, 1121,1121 1204 219 
neutron generation time, in noble gases, 1126, 1186 nuclear radii, 1170 one-dimensional infinite po-

nuclear reactors, 1215 nodes, 431, 431,433 nuclear reactions, 1043 tential well, 1085 
neutron number, 1168 nonbaryonic dark matter, 1240 nuclear reactors, 1202-1205 one-dimensional motion, 13 

selected nuclides, 1168t nonconducting sheet natural, 1206,1206 acceleration, 18-27 
neutron rich fragments, 1197 Gauss' law, 617, 617 nuclear spin, 1172 average acceleration, 18 
neutrons, 563, 1219 nonconductors, 563 nuclear weapons, 1172 average speed, 16 

accelerator studies, 748 nonconservative forces, 168 nucleons, 1168, 1221 average velocity, 14-16 
balance in nuclear reactors, noninertial frame, 89 magic nucleon numbers, constant acceleration,22, 

1202-1203,1203 nonlaminar flow, 371 1186 22-25 
charge, 571, 571t nonpolar dielectrics, 672 nucleus, 563, 1165-1168 displacement, 13-14 
collision with protons, 1190 nonpolar molecules, 638 models, 1184-1186,1185 free-fall acceleration, 25-26 
control in nuclear reactors, nonquantized portion, of en- radioactive decay, 572, graphical integration, 27, 

1202-1205,1203 ergy level diagram, 1219-1220 27-28 
discovery of, 1236 1092,1092 nuclides, 1167-1168, 1168t. See instantaneous acceleration, 
and eightfold way, 123lt nonsteady flow, 371 also radioactive decay 18 
as fermi oms, 1220 nonuniform displacement cur- magic nucleon num- instantaneous velocity, 
formation in early universe, rent,885 bers, 1185-1186 17-18 

1241 nonuniform displacement-cur- organizing, 1169-1170,1169 position, 13,13-14 
as hadrons, 1221 rent density, 885 nuclidic chart, 1169-1170,1169 relative, 73,73-74 
magnetic dipole moment, nonuniform electric field, 608, and radioactivity, Schrodinger's equation, 

754 884 1181-1182,1182 1071 
and mass number, 572 nonuniform electric flux, 884 number density of charge car- speed,18 
as matter wave, 1068 nonuniform magnetic field riers, 742,1143 velocity, 17-18 
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one-dimensional variable heats of transformation, 487t conservation of baryon torsion, 394, 394 
force, 151-152,152 molar specific heat and de- number, 1229 underwater swinging 

one-half rule, for intensity of grees of freedom, 524t conservation of lepton num- (damped), 400 
transmitted polarized molar specific heat at con- ber,1228 perfect engines, 546, 546 
light, 902 stant volume, 520t conservation of strangeness, perfect refrigerators, 549,549 

one-way processes, 536 paramagnetism of liquid, 1231 perihelion distance, 344 
open-tube manometer, 365, 877 decay processes, 1222-1227 period 

365-366 RMS speed at room temper- fermions, 1220-1221,1221 circulating charged particle, 
optical fibers, 912, 1131 ature,512t formation in early universe, 744-747 

with junction lasers, 1158 1241 LC oscillations, 826 
optical instruments, 943-946 p hadrons,1221,1228-1229 linear simple harmonic os-
optical interference, 959. See pair production, 572-573 leptons, 1221, 1227t, cilIa tor, 390 

also interference pancake collapse, of tall build- 1227-1228 simple harmonic motion, 
and rainbows, 962, 962 ing,237 magnetic force on, 736-738, 387,388,389 

optics, 889 parallel-axis theorem, for cal- 737 sound waves, 449 
orbital angular momentum, culating rotational iner- particle nature of matter, waves, 416, 416-417 

872,873,1115-1117, tia,254-255,255 1069-1070,1069 periodic motion, 386 
1116 parallel circuits quark model, 1232-1235, periodic table, 1057, 1113 

and orbital quantum num- capacitors, 662-663, 663, 1233 building, 1124-1127 
ber,1115t 715t Standard Model, 1220-1222 x rays and ordering of ele-

orbital energy, 1098 inductors, 822 particle systems ments,1127-1130 
orbital magnetic dipole mo- resistors, 714,714-717, 715t angular momentum, 288 period of revolution, 71 

ment, 872, 1115-1117, summary of relations, 715t center of mass, 201-206,202, permanent electric dipole mo-
1116 parallel components, of un- 205 ment,638 

diamagnetic materials, polarized light, 912 linear momentum, 211 permanent magnets, 736 
875-876 parallel currents, magnetic Newton's second law for, permeability constant, 765 

ferromagnetic materials, field between two, 770, 206-209,207 permittivity constant, 566 
875,879 770-771 pascal (Pa), 361, 446, 900 perpendicular components, of 

paramagnetic materials, 
parallel-plate capacitors, 656, 

Pascal's principle, 366, 366-367 unpolarized light, 912 
877-878 

656 
Paschen series, 11 00, 11 01 phase 

orbital magnetic quantum 
calculating capacitance, 659 

path-dependent quantities, 490 alternating current, 842t 
number, 873, 110lt, 

with dielectric, 671,671-674, 
path-independent quantities simple harmonic motion, 

1102, 1115t conservative forces, 388,388 
orbital quantum number, 672 168-170,169 waves, 415, 415 

1101t, 1102, 1115t, 1143 displacement current, gravitational potential en- phase angle 
orbital radius, 1097-1098 866-868,867 ergy,340-341 alternating current, 842t 
order numbers, diffraction energy density, 668 work done by electrostatic simple harmonic motion, 

gratings, 1006 induced magnetic field, force, 628 388,388 
order of magnitude, 4 863-866 path length difference phase change, 486 
origin, 13 paramagnetic material, 875, double-slit interference, 965, phase constant 
oscillating circuit, 826 875,877-878 965-966,971-972 alternating current, 842t, 848 
oscillation mode, 433-434 paramagnetism, 875,877, single-slit diffraction, 993, series RLC circuits, 844-845, 
oscillations, 386. See also pen- 877-878 993,994,995 845 

dulums; simple har- parent nucleus, 572 sound waves, 451 simple harmonic motion, 
monic motion; waves partial derivatives, 419,450, thin-film interference, 973 388,388 

forced, 402, 836-837,837 895 Pauli exclusion principle, 1121 waves, 417, 417 
free, 402 partially occupied levels, 1122 bosons don't obey, 1220 phase difference 
LC circuits, 826-829,827 partially polarized light, 901, and energy levels in crys- double-slit interference, 965, 

out of phase 902 talline solids, 1143 969-970,971-972 
ac circuits, 842t particle accelerators, 747-749, fermions obey, 1220 Michelson's interferometer, 
capacitive load, 838-839 1218,1219,1219 and Fermi speed, 1145 980 
inductive load, 840 particle-antiparticle annihila- nucleons, 1185 optical interference, 961-962 
simple harmonic motion, tion,1222 and periodic table, 1125 and resulting interference 

390 particle detectors, 1219,1219 pendulums type, 427t 
sound waves, 451 particles, 13,571 as angular simple harmonic single-slit diffraction, 995 
thin-film interference, 975 antiparticles, 1222, 1224 oscillator, 394, 394-395 sound waves, 451 
waves, 425 basic forces and messenger ballistic, 220, 220 thin-film interference, 975 

overpressure, 366 particles, 1235-1237 conservation of mechanical waves, 425-426 
oxygen, 523 bosons, 1220-1221,1221 energy, 173-175,174 phase-shifted 

distribution of molecular circulating charged, physical, 396-397,397 reflection phase shifts, 974, 
speeds at 300 K, 517 744-747,745,746 simple, 395, 395-396 974 
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sound waves, 451 as hadrons, 1221 polarization, 901,901-904,902, capacitors, 659, 659-662 
waves, 425-426 as mesons, 1221 903 capacitors in parallel, 

phasor diagram, 428-429,429 from proton-antiproton an- by reflection, 912, 912-913 662-663,663 
phasors, 428-430, 430 nihilation, 1224t, polarized light, 901,901-902 capacitors in series, 664, 

capacitive load, 838, 838, 839 1222-1225 intensity of transmitted, 902, 663-666,842-844 
double-slit interference, 971 pitch,359 902-904,903 Hall,741 
inductive load, 840, 840,841 pitot tube, 383 polarized waves, 901,901-904, LC oscillations, 826 
resistive load, 838 planar symmetry, Gauss' law, 902 and Ohm's law, 692 
series RLC circuits, 844-845, 617,617-618 polarizer, 903 power, potential, and emf, 

845 planar waves, 446 polarizing direction, 903, 903 712-713 
single-slit diffraction, Planck constant, 1058 polarizing sheets, 902, 902-903, resistors in parallel, 714-715 

995-999,996,998 plane-concave lens, 957 903,912 resistors in series, 710,710, 
photo diode, 1158 plane-convex lens, 957 polar molecules, 638 842-844 
photoelectric current, 1059 plane mirrors, 926-928, 927 Polaroid filters, 902 RL circuits, 807, 807-810 
photoelectric effect, plane of incidence, 906 pole faces, horseshoe magnet, single-loop circuits, 707, 

1059-1062,1061 plane of oscillation, polarized 739 707-709 
photoelectric equation, light, 901, 901 polyatomic molecules, 520 between two points in cir-

1060-1061 plane of symmetry, center of degrees of freedom, 523, cuit, 711,711-713,712 
photoelectrons, 1059 mass of solid bodies 523-524,524t potential energy. See also elas-
photomultiplier tube, 1067 with,203 molar specific heats at con- tic potential energy; 
photon absorption, 1058, 1113 plane-polarized waves, 901 stant volume, 520t gravitational potential 

absorption lines, 11 00,1101 plane waves, 891 polycrystalline solids, 880 energy 
for electrons to gain energy, plastics popUlation inversion, 1133, and conservation of me-

1086 as insulators, 563 1139 chanical energy, 173, 
energy changes in hydrogen rubbing rod with fur, 563 junction lasers, 1158 173-175,174 

atom, 1098 plates, capacitors, 657, 657-658 porcelain and conservation of total en-
lasers, 1132 plate tectonics, 13 dielectric properties, 69t, ergy, 183-184 

photon emission, 1058, 1113 plum pudding model, of atom, 671 defined,167 
for electrons to lose energy, 1166 position, 263t. See also angular determining, 170-172 

1086 pn junction diode, 692, 697 position; displacement 
electric dipole, 594-595 

emission lines, 11 00, 1101 p-n junctions, 1154-1156,1155 one-dimensional motion, 13, 
satellites in orbit, 345, 345 

energy changes in hydrogen junction lasers, 1158,1158 13-14 
simple harmonic motion, 

atom, 1098 junction rectifiers, 1156, relating linear to angular, 
lasers, 1132,1132-1133 1156-1157,1164 250 

392,393 

stimulated emission, 1132, light-emitting diodes simple harmonic motion, and work,167, 167-170 

1133 (LEDs),1157-1158, 388 yo-yo, 280-281 

photons 1158 two- and three-dimensional potential energy barrier, 1074, 

as bosons, 1220 point charges motion,58-59,59 1074 

in early universe, 1241 Coulomb's law, 565, 565-572 position vector, 58, 58 potential energy curves, 

energy of, 1058 in electric field, 592-593 positive charge, 672,562 176-179,177 

momentum, 1062, electric field due to, 582, positive charge carriers, 684 potential energy function, 

1062-1065, 1063 582-583 drift speed, 686 176-178,177 

and photoelectric effect, electric potential due to, 635, emf devices, 706 potential method, of calculat-

1059-1062 635 positive direction, 13, 13 ing current in single-

as quantum of light, electric potential due to positive ions, 563 loop circuits, 707-708 

1057-1059 group of, 636, 636-637 positive kaons, 1030 potential well, 178 

single-photon version of electric potential energy of positive terminal, batteries, potentiometer, 670 

double-slit interference, system, 642, 642-644 658,658,706 pounds per square inch (psi), 

1065,1065-1066 point image, 926-927 positrons 361 

single-photon wide-angle point of symmetry, center of antihydrogen, 1222 power, 155-156,156,185, 263t 

version of double-slit mass of solid bodies bubble chamber tracks,572, in alternating current cir-

interference, 1067,1067 with,203 737 cuits, 847-848 

virtual, 1235-1236 point source, 446 electron-positron annihila- in direct current circuits, 

physical pendulum, 396-398, isotropic, 454, 898 tion, 572, 572, 1222 695-696 

398 light, 898, 926 in fusion, 1207-1208 and emf in circuits, 712-713 
picofarad,657 polar dielectrics, 671 potential, 629-631. See also in rotation, 262 
piezoelectricity, 1075 polarity electric potential traveling wave on stretched 
pinhole diffraction, 990 of applied potential differ- potential barrier, 1074, 1074, string, 421,421-423 
pions, 1024, 1055, 1219 ence, 692 1200 power factor, 849 

decay, 1225 of Earth's magnetic field, re- potential difference, 629-631 power lines 
and eightfold way, 1231t versals in, 870, 870 across real battery, 712-713 transformers for, 850 
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power transmission systems, trapped electrons, Q quantum transition, 1086 
682 1088-1089 quadrupole moment, 600 quantum tunneling, 1074, 

transformer requirements, probability wave quanta, 1057 1074-1076 
850 light as, 1066-1067 quantization, 1057, 1083 quark family, 1233t 

Poynting vector, 897-899, 898 matter wave as, 1068 electric charge, 571 quark flavors, 1232, 1236-1237 
precession, of gyroscope, projectile, 64 energy in electron traps, quarks, 578, 654, 747, 1232-

293-295,295 elastic collisions in one di- 1084-1088 1235,1233, 1233t 
precession rate, of gyroscope, mension with moving orbital angular momentum, charge, 571 

294 target, 222-223 872 formation in early universe, 
prefixes, for SI Units, 2t elastic collisions in one di- orbital energy, 1098 1241 
pressure mension with stationary spin angular momentum, quasars, 1053, 1237 

fluids, 359-361 target, 221-222 871 gravitational lensing associ-
and ideal gas law, 508-511 inelastic collisions in one di- quantum, 1057 ated with, 348 
measuring, 365,365-366 mension,218 quantum chromo dynamics quicksand, 385 
and RMS speed of ideal gas, series of collisions, 213 (QCD),1236 

511-513 single collision, 211-212 quantum corrals, 1094,1094 R 
scalar nature of, 38 projectile motion, 64-70, 65,66 quantum dots, 1083,1094, 1094 R-value,494 
as state property, 537 proper frequency, 1040 quantum electrodynamics race cars 
triple point of water, 478 proper length, 1032 (QED), 872, 1235 collision with wall, 214,214 
work done by ideal gas at proper period, 1042 quantum jump, 1086 negative lift in Grand Prix 

constant, 510 proper time, 1028 quantum mechanics, 87,1057 cars, 126-127,127 
pressure amplitude proper wavelength, 1041 quantum numbers, 1084, 1115t pit stop fuel dispenser fire, 

sound waves, 449, 449 proton number, 1168 charge, 1224 723, 723-724 
pressure field, 580 selected nuclides, 1168t for hydrogen, 1102-1103 rad (unit), 1184 
pressure sensor, 360 proton-proton (p-p) cycle, and Pauli exclusion princi- radar waves, 413 
pressurized-water nuclear 1209-1210,1209 pIe, 1121 radial component 

reactor, 1204,1204 protons, 563, 1219 and periodic table, of linear acceleration, 251 
primary coil, transformer, 850 accelerator studies, 748 1124-1126 of torque, 259 
primary loop, pressurized-wa-

and atomic number, 572 quantum physics, 1057. See radial probability density, 
ter reactor, 1204,1204 

as baryons, 1221 
also electron traps; 1103,1103,1106 

primary rainbow, 909, 922 
charge, 571, 571 t 

Pauli exclusion princi- radians, 43, 242 
primary rainbows and optical pIe; photons; radiated waves, 890 

interference, 962, 962 decay rate, 1245 
Schrodinger's equation radiation (electromagnetic), 

primary winding, transformer, in equilibrium, 569 
barrier tunneling, 1074, 890 

850 as fermions, 1220 1074-1076 radiation dosage, 1184 
principal quantum number, formation in early universe, and basic properties of radiation heat transfer, 

1102, 110H, 1115t, 1143 1241 atoms, 1112-1114,1113 496-497 
principle of conservation of in fusion, 1207-1213 confinement principle, 1084 radiation pressure, 899-900 

mechanical energy, 173 as hadrons, 1221 correspondence principle, radiation therapy, 1190 
principle of energy conserva- magnetic dipole moment, 1089,1106 radioactive dating, 1183, 1183 

tion,140 754, 754t Heisenberg's uncertainty radioactive decay, 572, 1169, 
principle of equivalence, 347 mass energy, 1043t principle, 1072, 1073, 1219-1220 
principle of superposition, 88 and mass number, 572 1236 alpha decay, 1177-1179,1178 

and electrostatic force, 566 as matter wave, 1068, 1069, hydrogen wave function, beta decay, 1180-1181,1181, 
for gravitation, 333-334 1083 1099-1106 1234 
for waves, 425, 425 spin angular momentum, matter waves, 1083 muons, 1029 

prism, 908, 908 871 nucleus, 1165 and nuclidic chart, 
angle of minimum deviation, ultrarelativistic,1047 occupancy probability, 1181-1182,1182 

920 in well, 652 1147-1148,1148 process, 1174-1177 
probability proton synchrotrons, 749 particles, 1219 radioactive elements, 1165 

and entropy, 552-553 p subshells, 1125, 1126 and solid-state electronic radioactive wastes,1204, 1204 
probability density, 1071-1072 p-type semiconductors, 1153, devices, 1142 radionuclides,1169 

barrier tunneling, 1074-1075 1153 quantum states, 1083, 1114 radiation dosage, 1184 
finding, 1072 pulleys, massless frictionless, degenerate, 1095 radio waves, 413, 889, 890 
trapped electrons, 98,98 density of, 1146-1147,1147 Doppler effect, 461 

1088-1090,1089 Newton's laws applications, density of occupied, 1149, radium, 1191 
probability distribution func- 100,100-101 1149-1150 radius of curvature 

tion,516 pulsars, 268 hydrogen with n = 2,1105, spherical mirrors, 928, 928 -
probability of detection secondary time standard 1105-1106 929,929 

hydrogen electron, based on,9 quantum theory, 523, 525, 1057, spherical refracting surfaces, 
1102-1103 pulse, wave, 414, 414 1083 934,934 
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radon, 1165, 1191 reference particle, 399 of velocities, 1039, 1039 refracting telescope, 945, 945 
rail gun, 770,770-771,790,790 reference point, for potential relativity postulate, 1023 resolving vectors, 41 
rainbows, 888, 908-909, 909, energy, 171 relaxed state, of spring, 149, resonance 

922 reference potential energy, 628 149 forced oscillations, 402, 837 
and optical interference, reflected light, 904 released energy, from fusion series RLC circuits, 845-846, 

962,962 reflected radiation, 899 reaction, 1045 846 
ramp reflected ray, 904-905, 905 rem (unit), 1184 and standing waves, 433, 

rolling down, 278-279,279 reflecting planes, 1012,1012 resistance, 689-691 433--435 
randomly polarized light, reflection, 904-907,905, 906 alternating current, 842t resonance capture, of neu-

901,901-902 lawof,906 calculating from resistivity, trons in nuclear reac-
range, in projectile motion, 64, polarization by, 912, 912-913 690,690 tors, 1202 

68 of standing waves at bound- Ohm's law, 692, 692-694 resonance condition cy-
rare earth elements, 1129 ary, 432,432 parallel circuits, 714, clotrons, 748 

paramagnetism, 875 total internal, 911,911-912 714-719 resonance curves 
rattlesnake, thermal radiation reflection phase shifts, 974, RC circuits, 720-723 series RLC circuits, 845-846, 

sensors, 496 974-976 RL circuits, 807-810 846 
ray diagram, 932, 932 refracted light, 906 RLC circuits, 833-834, 842-844 resonance peak, 402, 1121 
Rayleigh's criterion, 1000, refracted ray, 906,906 series circuits, 710, 710, resonant frequencies, 433, 433, 

1000-1001 refracting telescope, 945, 842-844 434 
rays, 446, 446 945-946 resistance rule, 709 musical sounds, 457,458 

locating extended object im- refraction, 904-910, 906. See resistivity, 689,1142 response time, nuclear reactor 
ages by drawing, 939, also index of refraction calculating resistance from, control rods, 1203 
939 and chromatic dispersion, 690,690 rest energy, 1043 

locating images by drawing, 907,907-908,908 Ohm's law, 693 rest frame, 1029 
932,932 law of, 906, 959-962, 959 selected materials at room rest length, 1032 

RBE (relative biology effec- refrigerators, 548, 548-549 temperature, 689t restoring force, 149 
tiveness) factor, 1184 relative biology effectiveness semiconductors, 1151 resultant, of vector addition, 39 

RC circuits, 720,720 (RBE) factor, 1184 silicon and copper com-
resultant force, 92 

capacitor charging, 720, relative motion pared, 696t, 696-697, 
resultant torque, 259 

720-721 in one dimension, 73-74, 73 1143t 
capacitor discharging, 720, in two dimensions, 74-75,74 resistors, 689, 689-690 

resultant wave, 425, 425 

720,722-724 relativity, 1057, 1218 with ac generator, 836, 
reverse saturation current, 

real batteries, 707, 707 brief description, 1023 836-837 
junction rectifiers, 1164 

internal resistance, 711,711 Doppler effect for light, in multiloop circuits, 714, 
reversible processes, 537-541 

potential difference across, 1040-1042,1041 714-719,717 right-handed coordinate sys-

711,711-712 and energy, 1043-1047 Ohm's law, 692, 692-694 tem, 44,44 

real emf devices, 707, 707 general theory of, 347-348, in parallel, 714,714-719 right-hand rule, 247,247 

internal resistance, 711 1022-1023,1029 phase and amplitude rela- Ampere's law, 771,771 

real engines and kinetic energy, 1045, tionships for ac circuits, angular quantities, 247,247 

efficiency, 546, 549-550 1045-1047 842t displacement current, 

real fluids, 371 of length, 1031, 1031-1034, power dissipation in ac cir- 866-867,867 

real focal point, 929, 929 1037 cuits, 847-848 induced current, 795,795 

real images, 924-925 Lorentz factor, 1028,1028, and power in circuits, Lenz's law, 794, 794 

spherical mirrors, 930 1029,1043 695-696 magnetic dipole moment, 

spherical refracting surfaces, Lorentz transformation, RC circuits, 720, 720-723 753-754,754 

934,934 1035,1035-1036 RL circuits,807,807-810 magnetic field due to cur-

thin lenses, 938, 938 and mass energy, 1043-1045, RLC circuits, 833,833-834, rent, 765, 765 

real solenoid, 776 1043t 842-844,843 magnetic force, 737,737 

recessional speed parameter, measuring events, in series, 710,710,842-844, magnetism, 770 

Doppler shift, 1246 1024-1025,1025 843 vector products, 50, 50, 769 

rechargeable batteries, 707 and momentum, 1042 series RLC circuits, 842-844, rigid bodies 

recharging batteries, 712 postulates, 1023 843 angular momentum of rota-
red shift, 1041 of simultaneity, 1025-1026, in single-loop circuits, 707, tion about fixed axis, 
reference circle, 399 1026,1037 707-710 288-290,289 
reference configuration, for special theory of, 87, 893, work, energy, and emf, 706, defined,241 

potential energy, 171, 1022,1029 706-707 elasticity of real, 315 
628 speed of light postulate, resolvability, 1000,1000-1001 ring charge distributions, 586, 

reference frames, 73-74 1023-1024 resolving power 586-587,590 
inertial, 89-90 of time, 1027-1031,1027, diffraction gratings, RL circuits, 807, 807-810, 809 
noninertial,89 1037,1042 1009-1011,1010 RLC circuits, 833,833-834 

reference line, 242, 242 of total energy, 1044-1045 highest for microscope, 1080 series, 842-846,843 
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RMS (root-me an-square) cur- rotational inertia, 253, 263t hydrogen ground state, resistors, 710,710, 715t, 
rent, in ac circuits, 847 calculating, 254-258 1102-1103,1103,1115 842-844,843 

RMS (root-mean-square) rotational kinetic energy, 253 numerical solution for mul- RLC, 833,833-834,842-846, 
speed, of ideal gas, 511, of rolling, 278 ticomponent atoms, 843 
511-513,516 and work, 262-264 1124 summary of relations, 715t 

selected substances, 512t yo-yo, 280-281 scientific notation, 2 series limit, 1100, 1101 
rock climbing rotational symmetry, 582 scintillation counter, 1248 shearing stress, 315, 315-316 

crimp hold, 324, 324 rotational variables, 241-246, seat of emf, 705 shear modulus, 316 
energy conservation in de- 289t secondary coil, transformer, shells, 1106, 1115, 1115t 

scent using rings, 183, vector nature of,246-247 850-851 and characteristic x-ray 
183 rotation axis, 242,242 secondary loop, pressurized spectrum, 1128 

energy expended against Rotor (amusement park ride), water reactor, 1204, and energy levels in crys-
gravitational force 249 1204 talline solids, 1143 
climbing Mount Rowland ring, 879, 879 secondary maxima, diffraction and periodic table, 
Everest, 199 rubber band, entropy change patterns, 990, 990 1126-1127 

friction coefficients between on stretching, 542 secondary rainbows, 909, 909, shell theorem, 332 
shoes and rock, 119 rulers, 1 922,962 shock waves, 465,465 

lie-back climb along fissure, rulings, diffraction grating, secondary standards, 3 short wave radiation, 891 
322,322 1003,1003 secondary winding, trans- side maxima 

rockets, 224-226,225 Rutherford, Ernest, 1081, 1165 former, 850-851 diffraction patterns, 990, 990 
roller-coaster headache, 252 R-value, 494 second law of thermodynam- interference patterns, 966 
roller coasters Rydberg constant, 1099 ics, 541-542 sievert (unit), 1184 

maximum acceleration, 20 second minima, interference sigma particle, 1219 
rolling S patterns, 967 and eightfold way, 1231t 

down ramp, 278,278-280 satellites second-order bright fringes, in- and strangeness, 1231 
forces of,278-280,279 charge buildup in radiation terference patterns, 966 sign 
friction during, 278, 278 belt, 623 second-order dark fringes, in- acceleration, 20 
kinetic energy of,277,277 geosynchronous orbit, 354 terference patterns, 967 displacement, 13-14 
as pure rotation, 276-277, gravitational potential en- second-order line, 1006 heat, 484 

276 ergy,339 second reflection point, 921, velocity, 20, 27 
as translation and rotation Kepler's laws, 342-344 921 work, 143 

combined, 275-277,277 orbits and energy,345, second side maxima, interfer- silicon 
yo-yo, 280-281,281 345-346 ence patterns, 966 effect of doping on Fermi 

room temperature, 476 saturation magnetization, 877, secular equilibrium, 1191 energy, 1163 
root-mean-square (RMS) 878,879,887 seismic waves,413 electric properties com-

current, in ac circuits, 847 scalar components, 44 self-induced emf, 806, 806 pared to copper, 696t, 
root-me an-square (RMS) scalar fields, 580 self-induction, 806, 806-807 696-697,1143t, 1151 

speed, of ideal gas, 511, scalar product, 48 mutual induction con- electron number density in 
511-513 scalars,38 trasted,813 conduction band, 1164 

and distribution of molecu- multiplying vectors by, semi-classical angle, 1116 germanium compared to, 
lar speeds, 516 47--48 semiconducting devices, 696 1162 

selected substances, 512t scanning tunneling microscope semiconductors, 563. See also in MOSFETs, 1159 
rotation, 242. See also rolling; (STM), 1075-1076,1075 p-n junctions; transis- properties of n- and p-doped 

torque; terms beginning quantum corral, 1094, 1094 tors compared,1153t 
with "angular" scattering doped,1152-1153,1153 resistivity of pure, 689t 

angular momentum of rigid polarized light, 903 electrical properties, as semiconductor, 563, 
body rotating about x rays, 1011,1011 1150-1151,1151 696-697,1150-1151 
fixed axis, 288-290, 289 schematic diagrams, 658 light-emitting diodes temperature coefficient of 

conservation of angular mo- Schrodinger's equation, (LEDs),1157-1158, resistivity, 1151 
mentum, 290-293,291, 1071-1072, 1083 1158 unit cell, 1142,1142 
293 electron in finite well, nanocrystallites, 1093,1093 silicon, n-type resistivity, 689t 

constant angular accelera- 1091-1092 resistivities of selected, 689t silicon,p-type resistivity, 689t 
tion, 248-249 electron in one-dimensional unit cell, 1142 silk 

kinetic energy of, 253-254, infinite well, 1088-1091 semimajor axis, of orbits, rubbing glass rod with,562, 
254 electron in rectangular box, 342-343,343 562-562,572 

Newton's second law for, 1095 planets of Solar System, 344t simple harmonic motion, 
260-261 electron in rectangular cor- series circuits 386-389,387,388 

relating linear and angular ral,1095 capacitors, 663-666,664, acceleration, 389, 389 
variables, 250-253,251 finding probability density, 715t, 842-844,843 angular, 394, 394-395 

in rolling, 275-277,276 1072 inductors, 842-844,843 damped,400,400--401,401 
rotational equilibrium, 307 and hydrogen, 1099-1106 RC, 720,720-723 energy, 392-394, 393 
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force law for, 390-392 center of mass, 203-206 and RMS speed in gas, 513 spontaneous otoacoustic emis-
pendulums, 395,395 - 398, solids in various media, 447t sion, 470 

397 compressibility, 318 speed parameter, in time dila- spring constant, 149 
and uniform circular mo- electrical properties of crys- tion, 1028,1028 spring force, 149-150 

tion, 398-399,399 talline,1142,1142-1143 spherical aberration, 946 as conservative force, 168, 
velocity, 388, 388,389,389 heat absorption, 485-488 spherical capacitors 168 
waves produced by, 413-414 specific heats of selected, calculating capacitance, work done by, 149, 149-151 

simple harmonic oscillators. 485t 661-662 spring scale, 96, 96 
See also pendulums speed of sound in, 447t spherical conductors sprites, 585, 585 

angular,394,394-395 thermal conductivity of se- Coulomb's law for, 566, s subshells, 1125, 1126 
linear, 390, 390-392 lected,494t 566-570 stable equilibrium potential 
simple magnifying lens, 943, thermal expansion, 481-483, spherically symmetric charge energy curves, 178 

943 482 distribution, 635 stable static equilibrium, 
simple pendulum, 395, solid state, 486 Gauss' law for, 619, 619 305-306,306 

395-396 solid-state electronic devices, spherical mirrors, 928, stainless steel 
simultaneity 1142 928-930,929,930 thermal conductivity, 494t 

consequences of Lorentz sonar,445 focal points, 929-930, 930 standard kilogram, 6, 6 
transformation equa- sonic boom, 465 images from, 928, 928, 930, standard meter bar, 3 
tions, 1037 sound intensity, 452-456, 453 930-933,946,946-947 Standard Model, of fund amen-

relativity of, 1025-1026,1026 sound level, 452-456 spherical refracting surfaces, tal particles, 1220-1222 
sine,43,43 selected sounds, 454t 934,934-935 standards, 1 
single-component forces, 88 sound waves,413-414 images from, 934, 934-935, standing waves, 431,431-432, 
single-loop circuits, 836 beats, 459, 459-460 946,946-947 1083 

current calculation, 707, Doppler effect, 461-464, spherical shell reflections at boundary, 432, 
707-708 462,463 Coulomb's law for, 566 432 

internal resistance, 709,709 interference, 451,451-452 566-570 and resonance, 433,433-435 
resistances in series, 710,710 sources of musical, 456-459, rotational inertia, 255t stars, 1057. See also black 

single-slit diffraction, 963-964, 457,458 spherical symmetry, Gauss' holes; neutron stars 
964,992,992-995,993 speed of, 446-448, 447t law, 619, 619-620 orbiting, 355 

intensity, 995-999,996,998 supersonic speed, 465,465 
spherical waves, 446 Doppler shift, 1040 

sinusoidal waves, 414-417,415, traveling waves, 448, 
spin, 1115, 1115t, 1219-1221, formation in early universe, 

417 448-450 
SI units, 2 south pole, magnets, 738-739, 1220 1241 

skateboarding, motion ana- 739,862,862 isospin, 1245 fusion in, 1172, 1207, 

lyzed,67 space charge, 1155 nuclides, 1168t, 1172 1208-1210,1209 

slab space curvature, 347,347 spin angular momentum, preponderance of matter 

rotational inertia, 255t space time, 347, 1057,1241 871-872,1115,1115t, over antimatter, 1222 

sliding block, 100,100-101 spacetime coordinates, 1116-1117,1117 rotational speed as function 

sliding friction, 118,118 1024-1025 and spin quantum number, of distance from galac-

slit diffraction, 990 spark, See electric spark 1115t tic center, 1240,1240 

slope, of line, 15-16,16 special theory of relativity, 87, spin-down electron state, 871, S2 star at center of Milky Way 

Snell's law, 906, 959 893,1023,1029 1117,1120,1120 galaxy, white dwarfs, 

soap bubbles, interference pat- specific heat, 485. See also mo- spin-flipping, 883, 1121,1121 341t,360t 

terns from, 973, 976, 976 lar specific heat spin magnetic dipole moment, state,486 

sodium, 1126, 1186 selected materials, 485t 871-872,872, state function 

sodium chloride, 1126 speckle, 969 1116-1117,1117 entropy as, 539-540 

index of refraction, 906t spectral emission lines, 1082 diamagnetic materials, state properties, 537-538 

x-ray diffraction, 1012, 1012 spectrum, 1101 875-876 static equilibrium, 305, 

sodium doublet, 1140 speed. See also angular speed ferromagnetic materials, 305-306,306 

sodium vapor lamp, 1058 average in one-dimensional 875,879 examples, 309-312, 313-311 

soft reflection, of traveling motion,16 paramagnetic materials, 875, fluids, 362,362 

waves at boundary, 432 one-dimensional motion, 18 877-878 indeterminate structures, 

solar system, 1243 relating linear to angular, spin magnetic quantum num- 314,314 

solar wind 250 ber, 871,1115, 1115t, requirements of, 306-307 

and comets, 917,917 in rolling, 276-277,277 1219-1220 static frictional force, 116-118, 
solenoids, 774 traveling waves, 417-420 spin quantum number, 1115, 117 

induced emf, 794-795 speed of light, 893 1115t, 1219-1220 rolling wheel, 278 
inductance, 805-806 as ultimate speed, 1023 spin-up electron state, 871, statistical mechanics, 550-553 
magnetic energy density, 812 speed of light postulate, 1117,1120,1120 steady flow, 371 
magnetic field, 776,776-777 1023-1024 spontaneous emission, 1132, steady-state current, 682 

solid bodies speed of sound, 446-448 1132-1133 series RLC circuits, 842 
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Stefan-Boltzmann constant, and energy levels in crys- systems of particles, See parti- and wave speed on stretched 
496 talline solids, 1143 cle systems string, 421 

step-down transformer, 851 and periodic table, 1125 terminals, batteries, 658, 706 
step-up transformer, 851 /subshells, 1125 T terminal speed, 122, 122-123 
Stern-Gerlach experiment, substrate, 1159 tangent, 43, 43 tesla (unit), 737 

1118,1118-1120 subtraction tangential component test charge, 580-581,581 
stick-and-slip,118 of vectors by components, of linear acceleration, Tevatron, 1234 
stimulated emission, 45-46 250-251 thermal agitation 

1132-1133 of vectors geometrically, of torque, 258 ferromagnetic materials, 879 
from comets, 1140, 1140 39-40,40 target paramagnetic materials, 877 

Stirling engines, 546, 546 Sun, 1243 collisions in two dimensions, thermal capture, of neutrons in 
Stirling's approximation, 553 convection cells in, 496 224,224 nuclear reactor, 1202 
stopping potential, photoelec- density at center of,360t, elastic collisions in one di- thermal conduction, 494-495, 

tric effect, 1059-1061, 1217 mension with moving, 495 
1061 escape speed, 34lt 222-223,223 thermal conductivity, 494-495 

straight line charge distribu- fusion in, 1172, 1207, elastic collisions in one di- selected materials, 494t 
tions, 590 1209-1210,1209 mension with station- thermal conductor, 494 

straight-line motion, See one- monitoring charged parti- ary, 221,221 thermal efficiency 
dimensional motion cles from, 682 inelastic collisions in one di- Carnot engines, 545-546 

strain, 315-318,516 neutrinos from, 1181 mension, 218 Stirling engines, 546 
strain gage,316,316 period of revolution about series of collisions, 213,213 thermal energy, 168, 475 
strangeness, 1231 galactic center, 354 single collision, 211-212 and conservation of total en-

and hypercharge, 1245 pressure at center of, 36lt tattoo inks, magnetic particles ergy, 183 
strange particles, 1230-1231, radiation from, 889 in, 861,861 thermal equilibrium, 477 

1231 randomly polarized light, tau neutrinos, 1227, 1227t thermal expansion, 481-483, 
strange quark, 1232, 1233t, 901 tau particle, 1227, 1227t 482 

1233 speed distribution of pho- telescopes, 943 thermal insulator, 494 
streamlines tons in core, 517 refracting, 945,945-946 thermal neutrons, 1196-1201, 

in electric fields, 685 superconductivity, 697 surveillance satellites, 1017 1202 
in fluid flow, 371, 372 superconductors, 563, 697, television, 869 thermal radiation, 496-497 

stress, 315, 315 697-698 magnet applications, 735 thermal reservoir, 488, 489 
stress-strain curves, 316, 316 supercooling, 557 television waves, 413 thermal resistance to conduc-
stress-strain test specimen, 316 supercritical state, nuclear re- temperature, 476 tion,494 
stretched strings, 446 actors, 1203 defined,478 thermodynamic cycles, 489, 

energy and power of travel- superluminal jets, galaxies, and heat, 483 490,492 
ing wave on, 421, 1054 and ideal gas law, 508-511 thermodynamic processes, 
421-423 supermassive black holes, 330 measuring, 478-479 488-491,489 

harmonics, 434-435 supernova, 82, 34lt, 1210,1210, and RMS speed of ideal gas, graphical summary, 528 
resonance, 433,433-435 1242-1243 511-513 thermodynamics, 477. See also 

standing waves, 431,431-432, supernova SN1987a, 1181, scalar nature of, 38 entropy; irreversible 
432 1181,1210,1210 as state property, 537 processes 

transverse and longitudinal supernumeraries, 962, 962 work done by ideal gas at first law, 491-494 
waves on, 414, 414 superposition principle for constant, 509, 509-510 second law, 541-542 

wave equation, 423-424 forces, See principle of and zeroth law of thermody- zeroth law, 477, 477 
wave speed on, 420-421, 420 superposition namics, 478, 477 thermometers, 477 

strike-slip, 57 surface charge density, 586, temperature coefficient of re- constant-volume gas, 478, 
strokes, 543 586t sistivity, 691, 1143 478-479 
strong force, 115, 1173, 1221 Swaves,468 selected materials, 689t liquid-in-glass, 482 

conservation of strange- symmetric lenses, 938-939 semiconductors, 1151 thermonuclear bomb, 1211 
ness,1231 symmetry silicon and copper com- thermonuclear fusion, 1045, 

messenger particle, cylindrical, Gauss' law, 615, pared, 696t, 1143t 1172,1207-1208 
1235-1236 615-616 temperature field, 580 controlled,1211-1213 

strong interaction, 1224 importance in physics, 605 temperature scales, 476, 476, in Sun and stars, 1207, 
strong nuclear force, 572 line, plane, point: center of 479-481 1209-1210,1209 
sub critical state, nuclear reac- mass of bodies with, 203 compared, 480 thermopiles, 706 

tors, 1203 planar, Gauss' law, 617, temporal separation, of events, thermoscope, 477, 477 
submarines 617-618 1027 thin films 

Project Seafarer, 915 spherical, Gauss' law, 619, tensile stress,316,316 interference, 973,973-979 
sonar,445 619-620 tension force, 97-98, 98 thin-lens approximation, 948 

subs hells, 1106, 1115, 1115t system, 92, 483 and elasticity, 316-317 thin-lenses, 936-942 
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images from, 938, 938-942, torr, 361 triple point cell, 478, 478 uniform electric field, 582,582, 
939,947,947-948 torsion constant, torsion pen- triple point of water, 478-479 884 

two-lens systems, 939-941, dulum,394 tritium, 1211, 1212 uniform electric flux, 884 
940 torsion pendulum, 394, 394 and valley of the nuclides, unit cell, 1012, 1012 

thin-lens formulas, 936 total internal reflection, 911 , 1182 metals, insulators, and semi-
Newtonian and Gaussian 911-912 triton, 1211 conductors, 1142-1143, 

forms contrasted, 956 tour jete,291, 291 tube length, compound micro- 1142 
third-law force pair, 98 tracer, for following fluid flow, scope, 944 United States Naval 
three-dimensional electron 371,371 tunnel diode, 1074 Observatory time sig-

traps, 1095, 1095-1096 trajectory, in projectile motion, tunneling, barrier, 1074, nals,6 
three-dimensional motion 67 1074-1076 units, 1-2 

acceleration, 61,61 transformers, 850-852 turbulent flow, 371 changing, 3 
position and displacement, autotransformer, 859, 859 turning points, in potential en- length, 3-4 

58,58-60 energy transmission require- ergy curves, 176-178, mass, 6-8 
velocity, 60, 60-62, 61 ments,850 177 time, 5-6 

three-slit diffraction gratings, ideal, 850, 850-852 turns unit vectors, 44, 44 
1019 impedance matching, 852 in coils, 752-753 universe 

thrust, 226 in L C oscillators, 891, 891 in solenoids, 776 Big Bang, 1237, 1240-1243, 
thunderstorm sprites, 585, 585 transient current series RLC turns ratio, transformers, 852 1241 
time circuits, 844 two-dimensional collisions, color-coded image of un i-

directional nature of, 536 transistors, 697,1059 224,224 verse at 379,000 yrs old, 
relativity of, 1027, field-effect -transistor two-dimensional electron 1242,1242 

1027-1031,1037 (FET),1159,1159-1160 traps, 1095, 1095-1096 cosmic background radia-
scalar nature of, 38 MOSFET (metal-oxide- two-dimensional explosions, tion, 1239, 1241, 1243, 
units, 5-6 semiconductor-field- 216,216 1243 

time constant effecttransistor),1159, two-dimensional motion 
critical density for continued 

LC oscillations, 826 1159 acceleration, 62-64, 63 
expansion, 1246 

RC circuits, 721, 721 transition elements 
position and displacement, 

dark energy, 1243 
RL circuits, 809 paramagnetism, 875 dark matter, 1240 

time dilation, 1028 translation, 241. See also one-
58-60,58,59 estimated age, 1238 

relative, 74-75,74 
consequences of Lorentz dimensional motion; 

velocity, 60-62,60,61 
expansion, 1238,1243, 

transformation equa- two-dimensional mo- 1242-1243,1246 
tions,1037 tion 

U 
temperature of early, 477 

tests of, 1029 in rolling, 275-277,276 
ultimate strength, 316,316 

unoccupied levels, 1122, 1144, 
and transverse Doppler ef- translational equilibrium, 306 1185 

fect,1041,1041-1042 translational kinetic energy selected engineering materi- unpolarized light, 901,901 
time intervals, 5, 5t ideal gases, 513-514 als,317t unstable equilibrium, 178 

between relativistic events, of rolling, 277 ultrarelativistic proton, 1047 potential energy curves, 178 
1027,1027-1031 yo-yo, 280-281 ultrasound unstable static equilibrium, 306 

time signals, 6 translational variables, 289t bat navigation using, 464 up quark, 578, 655, 1232, 1233t, 
tokamak, 1212 transmission coefficient, bar- blood flow speed measure- 1233,1234 
ton, 11 rier tunneling, 1075 ment using, 473 uranium 
top quark, 1233t, 1234 transparent material, 906 ultrasound imaging, 445,445 density of nucleus, 360t 
toroids transuranic nuclides, 1204 ultraviolet light, 413 electric field at surface of 

magnetic field, 777,777-778 transverse Doppler effect, ultraviolet radiation, 869 nucleus, 580t 
torque, 258-260, 289t 1041,1041-1042 uncertainty principle, 1072, mass energy, 1043t 

and angular momentum of transverse motion, 414 1073,1236 uranium228 
system of particles, 288 transverse waves, 413-414, 414 uniform charge distributions alpha decay, 1177 

and conservation of angular electromagnetic waves, 891 electric field lines, 581, half-life, 1178, 1179t 
momentum, 290 traveling electromagnetic 581-582 uranium235, 1215 

on current loop, 752, waves, 890-896, 893,894 types of, 590 enriching fuel, 1202, 1216 
752-753 traveling waves, 414,1083 uniform circular motion, fission, 1196-1201, 1199, 

and gyroscope precession, energy and power, 421, 70-72,71 1214 
294,295 421-423 centripetal force in, 124-128, fissionability, 120Ot, 1201, 

internal and external, 288 sound, 448, 448-450 125 1206 
net (resultant), 259 speed, 417, 417-419 and simple harmonic mo- in natural nuclear reactor, 
Newton's second law in an- wave function, 1071-1072 tion,398-399,399 1206 

gular form, 285 triangular prism, 908, 908 uniform displacement current, percentage in uranium ore, 
particle about fixed point, angle of minimum deviation, 885 1216 

281,281-282 920 uniform displacement-current spontaneous fission, 1214 
rolling down ramp, 278-279 trig functions, 43, 43 density, 885 uranium236, 1197, 1200t 
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uranium238, 572, 1174 graphical integration in mo- volume probability density, waves; stretched strings; 
abundance in granite, 1192 tion analysis, 27, 27-28 1103,1103,1105,1105, traveling waves 
alpha decay, 1178, 1177-1179 line of sight, 355 1106 phasors, 428-430, 429 
binding energy per nucleon, and Newton's first law, 87-91 principle of superposition 

1172 and Newton's second law, W for, 425, 425 
fissionability, 120Ot, 1201, 91-94 water transverse and longitudinal, 

1206 one-dimensional motion, boiling and freezing points 413-414,414 
half-life, 1179, 1179t, 1192 14-18 in Celsius and types of, 413 

uranium239, 1200t projectile motion, 64-70 Fahrenheit, 480t wavelength and frequency, 
uranium enrichment, 1202, relative motion in one di- bulk modulus, 317, 446 414-417 

1216 mension,73-74 density, 360t wave shape, 415 
relative motion in two di- dielectric properties, 669t wave speed, 417, 417-420 

V mensions,74-75 diffraction of waves in tank, sound waves, 449 
vacant levels, 1144 relativity of, 1039, 1039 963,963 on stretched string, 420, 
valence band, 1151,1151 rockets, 224-226 as electric dipole, 594,594, 420-421 
valence electrons, 1083, 1126, sign of, 20 638 wave trains, 1131 

1145 simple harmonic motion, electric field within, 580t weak force, 1221 
valence number, 1152 388,388,389,389 heats of transformation, 486, messenger particle, 1235 
valley of nuclides, 1182, 1182 two- and three-dimensional 487t weak interaction, 1225 
vaporization, 486 motion, 60-62,61,62 heavy, 1217 weber (unit), 793 
vapor state, 486 uniform circular motion, index of refraction, 906t weight, 95-96 
variable capacitor, 678 70-72,71 in microwave cooking, 595 apparent weight in fluids, 
variable force as vector quantity, 38 as moderator for nuclear re- 369-370 

work done by general vari- velocity amplitude actors, 1202 weightlessness, 124 
able, 151-153,152 forced oscillations, 402, 402 as polar dielectric, 671 well depth, finite well electron 

work done by spring force, simple harmonic motion, polarization of light by re- traps, 1091 
149,149-151 389 

flection, 912 whiplash injury, 28 
variable-mass systems, rockets, velocity field, 606, 606 

pure, as insulator, 563 white dwarfs, 341 t 
224-226,225 velocity vectors, 38 

RMS speed at room temper-
density of core, 360t 

variable resistors, 727 venturi meter, 383 
ature,512t 

white light 
vector angles, 41, 41 vertical motion, in projectile 

specific heats, 485t 
chromatic dispersion, 908, 

degrees and radians, 43 motion, 66-67,67 908 
measuring, 43 virtual focal point, 929, 929 

speed of sound in, 447, 447t 
Wien's law, 1247 

vector-capable calculator, 44 virtual images 
tap water, as conductor, 563 

Wilkinson Microwave 
vector components, 41, 41-43, defined, 924 thermal properties, 482-483 

Anisotropy Probe 
42 spherical mirrors, 930 triple point, 478 (WMAP),1242 

addition, 44-46 spherical refracting surfaces, water waves, 413 windings, solenoid, 776 
vector equation, 39 934,934 watt (W), 2,155-156 window glass 
vector fields, 580 thin lenses, 938, 938 Watt, James, 155 thermal conductivity, 494t 
vector product, 48, 50, 49-52 virtual photons, 1235 wave equation, 423-424 Wintergreen LifeSaver, blue 
vector quantities, 14,38 viscous drag force, 371 wave forms, 414, 414 flashes, 564 
vectors, 580 visible light, 413, 890 wavefronts, 445,445 WMAP (Wilkinson 

adding by components, ultimate speed, 1023 wave function, 1071-1072. See Microwave Anisotropy 
44-46 volt, 630 also Schrodinger's Probe), 1242 

adding geometrically, 39, voltage. See also potential dif- equation W messenger particle, 1236 
39-40,40 ference electron traps, 1088-1091, work, 263t 

coupled, 1114 ac circuits, 842t 1089 Carnot engines, 545 
cross product, 49-52, 51 transformers, 850-852 hydrogen ground state, and conservation of me-
defined, 38, 38-40,39 voltage law, Kirchoff's, 708 1102-1103,1103 chanical energy, 
dot product, 48, 48 volt-ampere, 695 normalizing, 1089 173-175 
and laws of physics, 47 voltmeters, 720,720 wave interference, 425, and conservation of total en-
multiplication, 47-52, 48 volume 425-428,426 ergy,183-186,184 
resolving, 41 and ideal gas law, 508-511 sound waves, 451,451-452 defined, 142-143 
scalar product, 48-49 as state property, 537 wavelength, 415, 415 done by electrostatic force, 
unit, 44, 44 work done by ideal gas at and index of refraction, 630-631 
vector product, 47, 50, 50-51 constant, 510 960-962 done by external force with 

vector sum (resultant), 39, volume charge density, 576, sound waves, 449 friction, 180-182 
39-40 578, 586, 586t wave on stretched string, 420 done by external force with-

velocity, 263t. See also acceler- volume expansion, 482-483 wavelength Doppler shift, 1040 out friction, 180 
ation; angular velocity; volume flow rate, 373, 605-606 waves. See also seismic waves; done by gravitational force, 
forces; kinetic energy volume flux, 605 sound waves; standing 146,146-148 
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done by ideal gas at constant path-dependent quantity, xenon Young's double-slit interfer-
pressure, 510 490 decay chain, 1197 ence experiment, 965, 

done by ideal gas at constant path independence of con- xi-minus particle, 1230, 123lt, 965-967 
temperature, 509, servative forces, 1235 single-photon, wide-angle 
509-510 168-170,169 x-ray diffraction, 1011-1013, version, 1067, 1067 

done by ideal gas at constant and potential energy, 167, 1012 single-photon version, 1065, 
volume, 510 167-170 x rays, 413, 889, 890 1066 

done by spring force, 149, and power, 155-156,156 characteristic x-ray spec- Young's modulus, 316 
149-151 and rotational kinetic en- trum,1128-1129,1129 selected engineering materi-

done by variable force, ergy,262-264 continuous x-ray spectrum, als,317t 
151-155,152 signs for, 143 1127,1127-1128 yo-yo, 280-281,281 

done in lifting and lowering work, energy, and emf, 706-707 and ordering of elements, 
objects, 147,147-148 work function, 1060 1127-1130 Z 

done on system by external working substance, 543 radiation dosage, 1184 zero angular position, 242 
force, 180-182,181 work-kinetic energy theorem, zero-point energy, 1090 

first law of thermodynamics, 144-146, 263t Y zeroth law of thermodynamics, 
491-493 variable force, 153-155 y component, of vectors, 41-42, 477,477 

and heat, 484, 488-490 41 zeroth-order line, 1006 
and kinetic energy, 143, X yield strength, 316,316 Z messenger particle, 1236 

142-146 x component, of vectors, 41-42, selected engineering materi-
net, 144 41,42 als,317t 







Speed of light c 2.998 X 108 m/s 

Gravitational constant G 6.673 X 10-11 N . m2/kg2 

Avogadro constant NA 6.022 X 1023 11101-1 

Universal gas constant R 8.314 J/mol . K 

Mass-energy relation c2 8.988 X 1016 J/kg 

931.49 MeV/u 

Permittivity constant 80 8.854 X 10-12 F/m 

Permeability constant flo 1.257 X 10--6 Him 

Planck constant h 6.626 X 10-34 J . s 

4.136 X 1O-15 eV's 

Boltzmann constant k 1.381 X 10-23 J/K 

8.617 X 10-5 eV/K 

Elementary charge e 1.602 X 10-19 C 

Electron mass l11e 9.109 X 10-31 kg 

Proton mass I1lp 1.673 X 10-27 kg 

Neutron mass I1ln 1.675 X 10-27 kg 

Deuteron mass I11d 3.344 X 10-27 kg 

Bohr radius a 5.292 X 10-11 m 

Bohr magneton flB 9.274 X 10-24 J/T 

5.788 X 10-5 eV/T 

Rydberg constant R 1.097373 X 107 m-I 

*For a more complete list, showing also the best experimental values, see Appendix B. 

Alpha A a Iota I Rho P p 

Beta B f3 Kappa K I( Sigma 2: u 

Gamma r y Lambda A A Tau T T 

Delta Ll 8 Mu M fL Upsilon Y v 

Epsilon E E Nu N v Phi <I> ¢,rp 

Zeta Z t; Xi S g Chi X X 
Eta H Y/ Omicron 0 0 Psi 'Jf 

'" Theta e () Pi II 1T Omega n w 



Mass and Density 

1 kg = 1000g = 6.02 X 1026 u 

1 slug = 14.59 kg 

1 u = 1.661 X 10-27 kg 

1 kg/m3 = 10-3 g/cm3 

Le1lgth a1ld Volume 

1 m = 100 cm = 39.4 in. = 3.28 ft 

1 mi = 1.61 km = 5280 ft 

1 in. = 2.54 cm 

1nm=1O-9 m=10A 

1 pm = 10-12 m = 1000 fm 

1 light-year = 9.461 X 1015 m 

1 m3 = 1000 L = 35.3 ft3 = 264 gal 

Time 

1 d = 86400 s 

1 y = 365+ d = 3.16 X 107 s 

A1lgular Measure 

1 rad=57.3°=0.159 rev 

1T rad=180° = ~ rev 
2 

Speed 

1 m/s = 3.28 ft/s = 2.24 mi/h 

1 km/h = 0.621 mi/h = 0.278 m/s 

Force and Pressure 

1 N = 105 dyne = 0.225 lb 

lIb = 4.45N 

1 ton = 2000lb 

1 Pa = 1 N/m2 = 10 dyne/cm2 

=1.45 X lO-4lb/in? 

1 atm = 1.01 X 105 Pa = 14.7Ib/in.2 

=76.0 cm Hg 

E1lergy a1ld Power 

1 J = 107 erg = 0.2389 cal = 0.738 ft· lb 

1kW· h = 3.6 X 106 J 

1 cal = 4.1868 J 

1 eV = 1.602 X 10-19 J 

1 horsepower = 746 W = 550 ft . IbIs 

Mag1letism 

1 T = 1 Wb/m2 = 104 gauss 

*See Appendix D for a more complete list. 
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