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Introduction

The Exam Success series will help you to reach your highest potential and achieve the best possible grade.
Unlike traditional revision guides, these new books give advice on improving answers, helping to show you
what examiners expect of candidates. All the titles are written by authors who have a great deal of experience
in preparing candidates for exam success.

Exam Success in Cambridge International AS and A Level Physics covers the requirements of the AS Level and
A Level Cambridge 9702 Physics syllabus. The first 26 units cover the syllabus content, while Unit 27 provides
advice on experimental skills for paper 3 and help with planning, analysing and evaluating experiments for
paper 5. Unit 28 consists of questions in the styles of the five exam papers, with exam tips to support your
work. In addition, there is a separate Maths skills Appendix at the back of the book, providing further help and
guidance with essential mathematical skills.

At the start of each unit, cross-references are given to Physics in Context for Cambridge International AS & A
Level, should you wish to study the topic in more depth. Throughout the book, a grey vertical bar shows AS
content, and an orange bar shows A Level content; key terms are also highlighted.

Each Exam Success book has common features to help you do your best in the exam:

O These summarise what you need to show that you can do in the These show where in the

exam. Check them off one by one when you are confident. book you can find more
information about the topic.

Worked example . . )
These give examples of questions, and show you how best to answer them 1hase Proviea gllaancs
| d y = ~ | | and advice to help you
understand exactly what
examiners are looking for.
™ J
These include key information that you must remember if you are to
achieve a high grade. L Maths skills
; = These remind you of the
\ vital mathematical skills
that you need in order to
o Raise your grade answer exam questions in
physics.
Here, you can read answers by candidates who did not achieve L A

maximum marks, as well as find out how to improve their answers.

9 Exam-style questions

Each unit has examples of the sort of questions to expect in the
exam. Answers are available on the OUP support website, together
with additional exam-style questions and answers on many topics.

Access your support website for additional content here:
www.oxfordsecondary.com/9780198409946



Physical quantities gy

1.1 pages 2-5

and units A 21.2 pages 318-320

Understand that physical quantities have a magnitude and a unit, and make reasonable estimates
of some of them.

O Recall the SI base quantities and their units: mass (kg), length (m), time (s), current (A), and
temperature (K).

O Express derived units as products or quotients of the SI base units, and use the correct units.
Use SI base units to check the homogeneity of physical equations.

Use prefixes and their symbols to indicate submultiples or multiples of both base and derived
units: pico (p), nano (n), micro (), milli (m), centi (c), deci (d), kilo (k), mega (M), giga (G),
and tera (T).

Understand the conventions for labelling graph axes and table columns .
Distinguish between scalar and vector quantities, and give examples of each.

Add or subtract vectors, and represent a vector as two perpendicular components.
Recall the meaning of a mole (mol) as a specific amount of a substance.

Understand that the Avogadro constant N, is the number of atoms in 0.012kg of carbon-12.

O3 A O O O

Use molar quantities, where one mole of a substance contains Avogadro’s number of particles of
that substance.

Physical quantities

Physical quantities, such as kinetic energy, electric current, and temperature,
are expressed by a number (the ‘magnitude’) and a unit.

Making estimates

Being able to estimate a quantity is an important skill that can be improved
with practice. Start with quantities you know, or can estimate reasonably
accurately, and combine them to estimate a value for an unknown quantity.

Worked example

The solar constant (the average amount of energy reaching the Earth

per square metre each second) is 1.4kWm™ (see Figure 1.1). The Solar constant
radius of the Earth = 6.4x10°km. Estimate the energy received per = LdkWm™

day on Earth from the Sun.

Answer A Figure 1.1 Solar constant
energy per day = “area’ of Earth x solar constant x time

Tx(6.4x10°) x (1.4 x10%)x (24 x 60 x 60) = 107°]

L "

*covered in Appendix: Maths skills




Table 1.1 gives the value of some physical quantities that are useful to know
in order to estimate other quantities.

¥ Table 1.1 Useful quantities

Quantity Value Quantity Value
Diameter of a nucleus 107%m Atmospheric pressure 1.0x10°Pa
Diameter of an atom 10"m One day 8.64 x 10°s
Wavelength of visible light [400-700nm One year 3.1x10"s
Radius of the Earth 6.4 x10°m Speed of a car 20-30ms’
Mass of an electron 9.1 x 107 kg Speed of sound in air 330ms”
Mass of a proton 1.7 x 107 kg Speed of light in a vacuum 3x10°ms”
Mass of a postage stamp |5 x 107 kg Energy of an alpha particle 5MeV
Mass of an apple 0.1kg Freezing point of water 0°C

Mass of an adult 70kg Boiling point of water 100°C
Density of air 1.3kgm™ Specific heat capacity of water 4200Jkg'°C™
Density of water 10*kgm™ Charge on an electron e 1.6x10"°C
Gravitational field strength, g | 9.81Nkg"(9.81 ms™) | Charge transferred by a lightning flash | 1C

Sl units

The SI system of units (Systeme International d’Unités) is an internationally
agreed system of units, built on seven base units (see Table 1.2).

¥ Table 1.2 Sl base units

The units of other
quantities are derived from

these seven base units.

Unit Symbol Base unit

metre m length

kilogram kg mass

second s time

ampere A electric current

kelvin K temperature

mole* mol amount of a substance
candela™ cd light intensity

“A Level only ** not part of the A Level course.

Expressing derived units in terms of base units

The familiar units for quantities such as force (newtons, NJ, and energy
(joules, J) can be ‘broken down’ into their base units by using an equation
which links these quantities to quantities whose units are known.

Worked example

Answer

L

The SI base units of force are kgms -,

Determine the base units of force.

The base units of force can be found using F = ma.

units of force (N) = units of mass (kg) x units of acceleration (ms™")

2




Physical quantities and units

Table 1.3 lists the derived units that you will encounter at A and AS Level.

¥ Table 1.3 Derived units

Quantity Symbol | Unit Sl base units
force F newton (N) kgms™
pressure p pascal (Pa) kgm™'s®
energy E joule (J) kgm’s™
power P watt (W) kgm®s™
frequency f hertz (Hz) s’
charge Q coulomb (C) As
potential difference (p.d.) v volt (V) kgm’s” A
electrical resistance R ohm (Q) kgm®s®A?
capacitance G farad (F) A’kg'm™s*
magnetic flux density* B tesla (T) kgs”A™
magnetic flux* i) weber (Wb) kgm’s”A™
“A Level only

Some quantities have no units (e.g., the refractive index of glass). These
quantities are called dimensionless quantities.

Using Sl base units to check equations

For any equation to be correct, a necessary condition is that the equation Checking the homogeneity
must be homogeneous; the units of the left-hand side of the equation must of an equation does not
match those on the right-hand side. prove it is correct — it
only shows whether an
. N equation could be correct.
Worked example

A student is studying how the period of oscillation of a simple pendulum
depends on its length [. She cannot recall whether the theoretical
equation for the period T of the pendulum is:

T=2:r\(§i or T=2m i
l 8

Which equation is correct?

Answer 1
[ms™) _ -

The units of the first equation are:

m?
1

2
The units of the second equation are: _(m}* =3

1
[ms~]*
and so only the second equation can be correct. (This method does not prove
the equation - it cannot show whether the 2~ in the equation is correct).

e A

Using prefixes

Physics is often concerned with very small numbers, such as the diameters of
atomic nuclei, and very large numbers, such as the masses of stars and planets.
These can be expressed in standard form (a number between 1.0 and 10.0
multiplied by a multiple of 10); for example, the radius of the Earth is 6.37x10°m.




Another way of expressing such numbers is to use prefixes (see Table 1.4). A Dielx Iehrescti= o

V¥ Table 1.4 Prefixes multiple of 10 (e.g., kilo
means 10(’).
Prefix Symbol Multiple Example
pico p 107 pF (picofarad)
nano n 10 nC {(nanocoulomb)
micro M 10°° pA (microamp)
milli m 107 mV (millivolt)
centi c 107 cm (centimetre)
deci d 107" dB (decibel)
kilo k 10° kg (kilogram)
mega M 10° MQ (megohm)
giga G 10° GJ (gigajoule)
tera i} 10" TW (terawatt)

Tables and graphs

Measurements from an experiment should always be recorded in a neat table. You
should make sure the table has enough columns to include any repeated readings,
averages, and calculated values that you use later to analyse your results.

Each column heading should have the quantity being recorded, and the
unit it is measured in, separated by a solidus (/); for example m /g or T /s.
Alternatively, the units can be in brackets.

Scalar and vector quantities
: A scalar quantity only has magnitude (size); for example

mass, speed, distance, and temperature.

: A vector quantity is one which has both magnitude and a
direction; fDr example, displacement, velocity, force, and momentum.

Adding and subtracting vectors

A vector such as velocity can be represented by an arrow, the length of the
arrow indicating the magnitude of the quantity (the speed) and the direction
of the arrow indicating the direction of travel. Vectors are usually indicated by
bold type (a), or with an arrow (3).

Two vectors a and b (see Figure 1.2) are added by placing one of the vectors
so that it begins at the end of the other vector. The sum of the two vectors is a
straight line drawn from the beginning of the first vector to the end of the second.

/ a+b b

A Figure 1.2 Adding vectors

The same procedure can be used to subtract one vector from another,

To find a - b, first draw the vector —b by drawing the vector b, but pointing in
the opposite direction to b, and then add this to a (see Figure 1.3).

A Figure 1.3 Subtracting vectors



Physical quantities and units

Representing a vector as two perpendicular components
(resolving vectors)

It is often useful to separate a vector, such as a force or velocity, into two
components at right angles to each other.

In Figure 1.4 the horizontal component of the force F is Fcos#; the vertical

component is Fsin@. The resultant vector (the sum of the two components)
is F.

Fsing The component adjacent
to the angle 6 is always

the cosine component.

r

Feooso
A Figure 1.4 Components of a vector

Avogadro’s constant and moles

is defined as the number of atoms in exactly 12g

; % |
of the carbon isotope ':C. T
N, =6.023 x 107 important when studying
the behaviour of gases.

The mole (mol) is the unit for measuring the amount of a substance. One See Unit 10 Ideal gases.

mole of a substance consisting of identical particles is defined as the quantity

of the substance containing N, particles.

The molar mass of a substance is defined as the mass of the substance that
contains N, particles (1 mole of the substance). The units of molar mass are
kgmol .

f N

Worked example

1 How many molecules of nitrogen are there in 1.0 kg of nitrogen gas?

Answer
The molar mass of nitrogen is 14.0 x 10 "kgmol .
Number of atoms = L_,} x6.02 x 10" = 4.3 x10” atoms
14.0x 10"

2 The molar mass of aluminium is 27 g. The density of aluminium is
2.7 x 10°kgm *. Calculate the molar volume of aluminium.

Answer _
molar mass 27 x 10~

, - - =1.0x10"m’
density 2.7x10

Molar volume of aluminium =

3 The density of copper is 8900kgm  and its molar mass is
63.5gmol " '. Calculate the number of free electrons per m’ if each
atom contributes one conduction electromn.

Answer
8900

63.5%107
=8.4 x 10° electrons/m".

Number of electrons/m’ = x 6.02 x 107




Raise your grade

The energy released by the fission of one uranium nucleus is 3.2 x 107" J.

State this energy in pJ. 3.2 x10""J = 32 x 10724

=12

p = pico = 10 energy= %2 pJ v [1]

The orbital period of Jupiter is 0.37 Gs. Express this time in years.

0375 =03TXx10's=31%10° v Correct prefix of ‘G’ = giga= 10°

The answer needs to be converted from seconds to years. The correct
answer is 11.9 years [No. of seconds in a year = 3.1 x 107).

The speed v of sound waves in air is given by the equation:

P
P

where p is the pressure of the air, p is the density of the air, and vy is a dimensionless constant.

V:

Show that this equation is homogeneous. , i

v . N —2 ; T E X
units of v=ms units of |12 = (K_m‘?') = (Egrm—j:) =(m's ) =ms™ v
P gm

kg

Dame units, s0 equation is homogeneous.  Working shown clearly. [l

A ship is travelling due east at a speed of 5kmh™. A patrol vessel is 12 km due south of
the ship, moving with a speed of 13kmh™, and wishes to intercept the ship.

Ship Skmh™!
[ ——

| — - mmmmmmmmmmnes
i
'

12 km

9 /13kmp!
o, A ;

Patral vessel
(a) At what angle 8 should the patrol vessel sail in order to intercept the ship?
Semb

l , 5 . <4 9 . Correct answer with
ne= —.6=4an ) =22l v \working shown clearly.

1%

Frmh”

6=, 224"

(b) How much time elapses before the patrol vessel reaches the ship?

velocity in direction of ship = 13 cos 22 = zkmh" o | Correct method.

12

fime taken to travel IZkm = - = 1 hour v/ EEREC PRI

time= 1.0 hour [3]

............




Physical quantities and units

9 Exam-style questions

1 The friction force F on a sphere of radius r falling (b) Express the following using an appropriate

with velocity v through a liquid is given by the prefix:
equation: () 64x10°m
E=itrm (i) 0.0075A

where 7 is the viscosity of the liquid. (i) 3.0x10°m s 3]

What are the SI base units of viscosity?

A kgms B kgm's C kgms' D kgm's"[1]

8 (a) Describe the difference between a scalar
quantity and a vector quantity. [1]

2 The stress needed to fracture a material with a (b) In the following list, underline all the vector

crack is given by the equation: quantities.
— ‘}fE weight acceleration stress power work [2]
g = —_—
9 The diagram shows a car travelling up a hill at

where E is the Young modulus, d the width of the constant speed.
crack, and k is a dimensionless constant. For the
equation to be homogeneous, what are the units

of y?
AN BJ C Nm™* D Jm™ [1]

3 What is the best estimate of the kinetic energy of
an Olympic 100 m runner, running at top speed?

A 04kl B4kl C 40kl D 400kJ [1] (a) State:

4 Which one of the following physical quantities is (i) the horizontal component of the friction
a vector? force F

A work B mass C momentum D power [1] (i) the vertical component of the engine

5 'Two vectors, a and b are as shown below. force T
/ \

Which vector represents a — b?
(b) The density of copper is 8930kgm™. The

/ / T
molar mass of copper is 63.5gmol .
A B C

p [ Calculate the molar volume of copper.  [2]
6 One light-year is the distance travelled by light in

(iii) the component of the weight force W
acting down the slope. [3]

(b) By resolving forces along the slope, write
down an equation relating F, T, and W. [1]

10 (a) State what is meant by a mole. [1]

(c) The diameter of a copper atom is 2.55x

one year. The diameter of the Milky Way galaxy is
approximately 100000 light-years.

What is the best estimate of this distance in
metres?

[The speed of light is 3 x 10°ms™.]
A 10°m B 10'm € 10°m D 10°m [1]
(a) Express the following in standard form:

(i) 470kQ (i) 1000pF  (iii) 0.05nm (3]

10" m. Assuming each copper atom occupies
a cube of side 2.55x 10" m, calculate;

(i) the volume of one cube

(i) the number of cubes in one mole of
copper. [3]

(d) Suggest a reason why your answer to

(c)(ii) is different from the Avogadro
constant. [1]



Measurement

techniques

AS pages xii=xviii
A 18.4 page 273

O

quantities.
Use rulers, vernier calipers, micrometers, and protractors.

Measure weight and, hence, mass using balances.

Measure temperature using a thermometer.
Use ammeters and voltmeters, selecting appropriate scales.
Use a cathode-ray oscilloscope (c.r.o.).

Use analogue scales and digital displays, and calibration curves.

OO O0OO0Oogooaoaoao

in measurements.

O Understand the difference between precision and accuracy.

uncertainties.

1 Use a calibrated Hall probe.

Use techniques to measure length, volume, angle, mass, time, temperature, and electrical

Measure time using stopwatches and the time-base of a cathode-ray oscilloscope.

Understand and explain the effects of systematic errors (including zero errors) and random errors

O Assess the uncertainty in a derived quantity by simple addition of absolute, fractional or percentage

Taking measurements

Measuring length
Rulers and scales

Metre rules and 30cm rulers are usually calibrated to the nearest millimetre,
and so any readings using a ruler should normally be recorded to the nearest
millimetre.

If the ruler is to be used to measure a vertical distance, it should be held
against a set square which is perpendicular to the ruler and the bench (see
Figure 2.1). Alternatively, a plumb line (a small weight on a string) can be
used to check that that the ruler is vertical. When the ruler is in the correct

position it is a good idea to clamp it to a clamp stand. ﬁﬂ@"“ﬂ ,H.L—,
Y = 5T
/|

A small spirit level can be used to make sure a
ruler is horizontal.

Vernier calipers

Vernier calipers (see Figure 2.2) can be used to
measure distances from a few millimetres up
to 10cm or more. They can usually be read to a
precision of + 0.1 mm.

The zero mark is first used to read the main scale to
the nearest millimetre. Then look for the mark on
the sliding scale which is in line with a mark on the
main scale - if it is 7 then 0.7 mm (0.07 cm) should
be added onto the main scale reading.

A Figure 2.2 Vernier
calipers

30em rule

Set square

T L e per T e Py
I==|=¢===ysvsgu;=uugsv89

SRS ECEEEFRoEEHEA

Bench

il i bl
TR

A Figure 2.1 Use a set
square to check a ruler is
vertical

m ~\

Using a set square to
check a ruler is vertical,
or a spirit level to check
it is horizontal, and

then clamping the ruler
in position, are often
valid ‘improvements’ in
question 2 of Paper 3
‘Advanced practical skills.

\_ >




Measurement techniques

Micmmeters Spindle Barrel Thimble
A micrometer (see Figure 2.3) can measure distances from 0.01 mm to a few A
centimetres, to a precision of + 0.01 mm. (See Unit 27 for more details on [ — s

e .

how to use a micrometer.) S

Measuring volume

The volume of regularly-shaped objects such as cubes or spheres can be A Figure 2.3 Micrometer
found by simple measurement and calculation. For example, to find the
volume V of a sphere, measure its diameter d and use the equation:

_xd’
6

For odd shapes, a liquid displacement method can be used. A calibrated
measuring cylinder or beaker is partially filled with water. The object

g

7 3 i i} 11 12 13 14 15 16

can then be placed into the water and the change in volume calculated. A Figure 2.4 Measuring
Alternatively, a displacement can may be used. Figure 2.4 shows how to the diameter of a tube or
measure the diameter of a tube or cylinder. cylinder

;

Measuring angle

Protractors usually have a precision of + 1°, and so values of angle should
be recorded to the nearest degree. If the protractor cannot be held steady
(on a bench for example), it is a good idea to clamp the protractor to a
clamp stand.

-

For more details on using
a protractor see Unit 27
kPracﬁca! assessment.

g

Measuring mass and weight Instruments to measure
temperature are discussed

Weighing machines such as spring balances (force meters), lever balances kin Unit 11 Tamperatire:

and top-pan electronic balances all work by measuring a force (weight).
Many are calibrated to display the mass of the object on the Earth’s surface,
using W = mg where W is the weight of an object (in newtons), m the mass
in kilograms, and g the acceleration of free fall (9.81 ms™).

;

The use of a galvanometer
in null methods is discussed
The calibration of these instruments can be easily checked with known masses. in Unit 20 Direct current

\ circuits (d.c.).

Measuring temperature

There are a range of instruments to measure temperature, including liquid-in-
glass thermometers, thermocouples, and thermistors.

Measuring electrical quantities

Analogue and digital meters are readily available to measure electrical = - =
quantities such as current, voltage and resistance.

A Figure 2.5 Analogue meter
Analogue meters

Care needs to be taken to avoid parallax errors when reading an analogue
meter (see Figure 2.5). If the meter has a mirror behind the pointer, the
reflection of the pointer should always be in line with the pointer itself when
taking the reading. The meter should also be checked for ‘zero’ error - it
should read ‘0’ when disconnected.

Digital meters

Many digital meters (see Figure 2.6) have a number of different scales to
choose from; a digital ammeter may have 0-200 pA as its most sensitive range
and 0-10A as its least sensitive. For example, if you are trying to measure a
current of about 10mA, it is a good idea to start with the least sensitive range
and gradually increase the sensitivity until you find a suitable range (in this A Figure 2.6 Digital meter
example, 0-20 mA).




Measuring time
Stopwatches and stop clocks

Digital stopwatches often have a precision of £ 0.01s, but judging the timing
for an oscillation, for example, involves human error, and so the accuracy of
the measurement is likely to be no better than + 0.2s.

When recording small time intervals, it is important to repeat the
measurement several times and then find a mean value in order to reduce
the random error as much as possible. When measuring the period of an
oscillating system, it is good practice to measure five or ten oscillations
(rather than individual oscillations), to repeat these measurements two or
three times, and then to find an overall mean value. These steps reduce the
percentage uncertainty in the value of the period significantly.

Cathode-ray oscilloscope

A cathode-ray oscilloscope (c.r.0.) is particularly useful for investigating
voltages which are changing with time, including alternating current (a.c.)
signals and the discharge of a capacitor. The two key controls on the
instrument panel are:

e y-gain: This states the number of volts per division (volts/div.) in the
y direction. A division is usually 1cm (1 square) on the screen. The
smaller the number of volts/div., the more sensitive the scale.

* time-base: This indicates how quickly the electron beam moves across
the screen, and is usually calibrated in seconds/division (s/div.). The
larger the value of the time-base, the slower the dot moves across the
screen.

Figure 2.7 shows an example of an oscilloscope display:

* The y-gain is set to 20mV /div. so the amplitude of the voltage signal is
60mV, (The peak-to-peak voltage is 120 mV.)

* The time-base is set to 10 ms/div. Three complete cycles occur in ten
divisions.

s Period T of the signal = lﬂx? =333ms

1

SR
333x10° G

1
* Frequency f = =

Using a calibrated Hall probe

A Hall probe is used to measure and detect magnetic fields. It is a thin slice
of semiconductor material that is usually mounted on the end of a plastic rod
(see Figure 2.8). When it is placed perpendicular to a constant magnetic field,
a steady current passes through the slice and a potential difference (known as
the Hall voltage) is produced across the slice. The p.d. is proportional to the
size of the magnetic flux density.

In order to measure a magnetic flux density, the Hall probe must first be
calibrated using a known magnetic field. See Unit 22 for more details on how
to calibrate a Hall probe.

y-gain Time-base

A Figure 2.7 Oscilloscope
controls

See Unit 22 Magnetic
fields for an explanation of
the Hall effect.

Thin slice of
semiconductor

A Figure 2.8 Hall probe



Measurement techniques

Calibration curves

Many instruments give outputs which are proportional to the quantity being
measured, and so can easily be calibrated. Others, such as a thermocouple or
thermistor used to measure temperature, give non-linear outputs, and so need
calibration curves to convert the output of the instrument to the quantity
being measured.

Worked example 14000 Y T T T T O T e T T
A thermistor has the calibration curve woood
shown in Figure 2.9. HHHH
10000 1+
a) What is the temperature T when the =
resistance of the thermistor is 6.0 k(? ‘E, 8000 4
= I
b) What is the resistance R when the 7 enoo oo
temperature is 70 °C? g REaRAREmA S
a000 Ho b
Answer T T T B ™
a) From the graph, when R = 6.0k 2000_
the temperature is 39 °C. o
b) From the graph, when T = 70°C, Qi 28 S0 40 8 HE S0 8k W0
R o ZDODQ Temperature TJQC
A Figure 2.9 A calibration curve

", A

Errors and uncertainties

Systematic and random errors Systematic error

True value Measured values
Systematic errors
Systematic errors cause all the recordings of a measurement to be displaced
one way or the other from the true or accurate value (see Figure 2.10).
Causes include zero errors in instruments, incorrectly calibrated scales,
or changes in environmental conditions such as temperature. Using a
micrometer with a zero error to measure the diameter of a resistance wire,
for example, will give a very precise value (to the nearest 0.01 mm) but not a
very accurate value if no allowance is made for the zero error.

A Figure 2.10 Precise but
inaccurate

Systematic errors can be reduced or eliminated by, for example, checking for

any zero error in a micrometer or vernier calipers, or using two ammeters in Ramion arror

; T
series to check they read the same value. Varf:z
Random errors
Handom errors occur principally because of the limitations of the ¥
experimenter; for example, in judging the start and finish of an oscillation. ¥ Y
A random error means that the values of a measurement are scattered in a
random fashion (see Figure 2.11). The error can be reduced by taking several Measured values

values and calculating a mean. If a range of values are recorded, a reasonable

estimate of the absolute uncertainty of the measurement is half the range. A Flgure:2 11 Acclmts bt

imprecise




Precision and accuracy

Measurements should ideally be both precise and accurate, with all the
readings grouped closely around the ‘true’ value. If several values are close
together and one value is significantly different from all the others (an
outlier), it can usually be rejected as an anomalous result,

Precision

A precise measurement is the degree to which the measurement is repeatable.
The precision of an instrument is the smallest non-zero reading (the

smallest division) that can be measured by the instrument or the size of the
smallest division on a measuring instrument. A micrometer is a more precise
instrument than a metre rule because it can measure to a precision of

+ 0.01 mm, whereas it is only possible to record values to the nearest
millimetre using a metre rule.

Accuracy

Accuracy is how close the value(s) are to the true value. It is a measure

of the confidence an experimenter has in a measurement. An accurate
measurement can be obtained using a correctly calibrated instrument skilfully
(e.g., by avoiding parallax errors). Accuracy is expressed by the absolute or
percentage uncertainty in a measurement.

Uncertainty
Suppose five measurements of the diameter d of a glass marble are recorded:
2.52cm 249cm 248cm 2.51cm 2.49cm

The mean value is 2.498 cm and the range of values (largest to smallest) is
0.04cm. The diameter of the marble should be recorded as:

2.50+0.02cm

The mean value is only given to the nearest 0.01 cm because the uncertainty
in the value is 0.02cm. The value is stating that:

* d lies between 2.48cm and 2.52cm
* the uncertainty in the value is 0.02cm (half the range).

The percentage uncertainty in the value of d can be found from the
equation:
absolute uncertainty

x 100%
mean value

percentage uncertainty =

In this example, the percentage uncertainty in d is:

0.02
—x100=10.
leﬁx 00 8%

To calculate the total percentage uncertainty in a quantity that depends on
several measurements, add the individual percentage uncertainties, but first
you need to multiply each value by the measurement’s index (power). For
example, if a quantity p is given by:

0

3
X
P*]::
Z

the percentage uncertainty in p is equal to:

3 x % uncertainty 4 A % % i 4 x % uncertainty

in x uncertainty in y inz



Measurement techniques

Raise your grade

An experiment is performed to measure the Young modulus E of copper using a long, thin copper
wire. The diameter d and length £, of the wire are measured, and then a tensile force F is applied to

the wire. The extension x of the wire is then recorded. The measurements made are shown in the
first two columns of the table.

Measurement Value Percentage uncertainty
0002 =
Length of wire £, | 0.953 + 0.002m X100 = 0.27
0953
v v Method of
; ; 0.01 . ;
Diameter of wired | 0.21 £ 0.01mm — x 100 = 43% calculation and
021 values are correct
0.05 .
Tensile force F 5.15+ 0.05N — X 100 = 10%
55
0l "
Extension of wirex | 1.2 + 0.1mm — x100 = 33%
1.2
(a) State a suitable instrument for measuring:
’ A ruler can only measure to the nearest
A micrometer measures to a ; ;
s mm. A travelling microscope or other
precision of 0.01 mm.

vernier scale is needed.
micrometer v 20 cm ruler ¥ o
(i) Qreesonreesancsnssccctsinsiaiansancens (i) x el

---------------------------------------

(b) Complete the table by calculating the percentage uncertainties in the measurements.

(c) The Young modulus is found from the equation:

2]

E- 4F¢, v Correct substitutions
xd®x including conversion
(i) Calculate the value of E. of mmtom
Ew ik {0 _ 4x515x 0953 —118xlp!! v Correctvalue.
ad*x  ax(021x107?)% x(12x107?)
E:U.O.'.O.OIJ.S.‘E(..I.O-TO.O.O.Nm-2
(ii) Calculate the percentage uncertainty in E.

The percentage uncertainty in d” is twice the
percentage uncertainty in d. (If there had been

a d’ term the percentage uncertainty would be
three times as much as that in d.)

Total percentage uncertainy = 02 +48 +1.0+ 83 =143% X
The correct value is:

02+2%x48+1.0+8.3=19.1%. Percentage uncertainty = 14327%

(iii) State the value of E and its uncertainty to the appropriate number of significant figures.

143% of 118 X 10" = 0169 X 10"
v The value is correct allowing for ‘error carried

1]
forward’ from (c) (ii); only one decimal place is E= (.I?-:_FQ?-).XI.O JNm? [4]
justified because of the large uncertainty.

(d) Suggest a possible cause of systematic error in the measurements made.

‘2ero ecror’ in the micrometer v Avalid answer.




9 Exam-style questions

1

What is the reading on the vernier scale?

a 1 2 3 4

N i innm
T[]
a

10

A 094cm B 095cm C 1.04cm D 1.05cm[1]

A student is using a micrometer to measure the
diameter of a resistance wire. This is the reading
on the micrometer scale.

<15

LN

[T T1

|
/HI

What is the diameter of the wire?
A 0.11 mm
C 1.10mm

B 0.61 mm
D 1.11 mm [1]

This is an electrical signal displayed on a
cathode-ray oscilloscope (c.r.o.).

Al Al Ial |a
[\ I\‘E

N\
[

——]
"]

What are the frequency and amplitude of the
signal?

Frequency/kHz | Amplitude/mV)
A 2.5 125
B 2.5 250
Cc 5.0 125
D 5.0 250

(1]

4

MNumber of readings

The density of brass was found by measuring the
diameter d and the mass m of a brass sphere.

d 16.5+ 0.1 mm
m 19.7+0.1g
The density p can be found using the equation:
6m
p= e

What is the percentage uncertainty in the value
of the density?

A05% BO06% C11% D23% [1]

Several students in a class each measure the
height of a bench using the same metre ruler.
The results are shown in the chart below.

6 2 } | | J LD T VS N N O U N U NN R S — .
4 4
7 -
0 ! 1
0 748 75.0 75.2 754
Height of bench/cm

The true value of the height is 75.3 cm.
(a) State how the chart is evidence of:
(i) random error

(ii) systematic error. [2]

(b) Describe how you would expect the chart
to change if the measurements were more
accurate.

(1]
A force of 40£1N is exerted by a gas on a piston
of diameter 7.0 £ 0.5cm.

(a) Calculate the pressure on the piston.

(b) Calculate the percentage uncertainty in the
value of the pressure.

(c) State the value of the pressure and its
absolute uncertainty to the appropriate
number of significant figures.

(6]
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Define distance, displacement, speed (including average speed), velocity, and acceleration.
Use graphs to represent distance, displacement, speed, velocity, and acceleration.
Calculate velocity from the gradient of a displacement-time graph

Calculate displacement from the area under a velocity-time graph

Calculate acceleration from the gradient of a velocity-time graph.

Derive and use the eguations of motion for constant acceleration in a straight line.

Describe an experimental method for measuring g, the acceleration of free fall.

O OoOooagoaoao g

Solve problems about projectiles and objects falling in a uniform gravitational field without
air resistance.

Describing motion

Kinematics is the study of motion and the relationship between quantities
such as displacement, velocity, and acceleration. Here is a reminder of the
key ideas.

Displacement ¢ is the distance moved in a particular direction.

Velocity v is the rate of change of displacement with time:

) A B oo
T At

Average speed is the total distance travelled divided by the time taken: A means ‘the change in’.
_ total distance Vectors have magnitude
* 7 time taken and direction; for example,
" : : G displacement, velocity and
Acceleration a is the rate of change of velocity with time: acceleration.
Av R
a= At Scalars only have
; : z : : magnitude; for example,
Displacement, velocity, and acceleration are all examples of vectors, Distance distance and speed.
and speed are both scalars, S - 5
Using graphs
Displacement-time graphs
The gradient of the displacement-time graph (see Figure 3.1) is the
.. [As
velocity | =— |.
v(5)

When calculating a
velocity by finding

the gradient, draw a
tangent, and complete a
large triangle as shown
in Figure 3.1. As can be
read directly from the
Time ¢ axis of the graph.

L o

Displacement s

A Figure 3.1 Velocity is the gradient of a displacement-time graph




Changes in the gradient of a displacement-time graph give information about
acceleration as well as velocity (see Figure 3.2).

Decreasing gradient - the
velocity is decreasing, so
the acceleration is
p negative.
Constant gradient — the
velocity is constant, so
the acceleration is zero.

Increasing gradient - the
velocity is increasing, so the
acceleration is positive.

Displacement

Time

A Figure 3.2 Acceleration in displacement-time graphs

Worked example 190 -
The graph shown in Figure 3.3 is the displacement- - - ] : |
time graph for an athlete running a 100m race. ¢ e B ) B

a) Describe how the velocity of the athlete changes:
i) during the first 2s
i) between 5sand 7s

iii) between 9s and 11s.

Displacement/m
3

b) Use the graph to estimate the velocity of the

athlete after 8.0s. 20 e e !
Answer
a) i) The gradient of the line is increasing so the g 0 5 10 15
velocity of the athlete is increasing. The athlete Time/s

is accelerating. AFi 3.3
igure 3.

ii) The gradient is constant, so the athlete is
moving with constant velocity.

For more on drawing

decelerating. gradients see Appendix:
Maths skills.
b) Draw a large tangent on the graph at t = 8.0s and
complete the right-angled triangle (see dotted line in 120 - -
Figure 3.4). et o
At 12-0 ’ ?E‘SD--;-éi
g SSSSSrsss===s
- 404 7, | o e
20"/:,"""- —— !
g 4 : ‘ == . O
0 5 10 15
Time/s
A Figure 3.4




Kinematics o

Velocity-time graphs The gradient of the graph
Av
Velocity-time graphs are very useful. The gradient of (3?
a velocity-time graph is the acceleration, and the area The atea under
under a velocity-time graph between any two points is the graph isthe
the displacement (see Figure 3.5). displacement

)is the acceleration

Av

i e o e e

At

A Figure 3.5 Acceleration and displacement
can be calculated from a velocity-time graph

Worked example
Figure 3.6 shows the velocity-time graph for a car starting from rest.
a) Determine the car’s acceleration at t = 4s.
36 P A e e
o5 EEEEH
B B W Don’t forget to include
7, DA the units in your answer.
E
I 15 bbb
() S ot R i i
O T T T ! T :I 1
0O 2 4 6 8 10 12 14 -
tis E
A Figure 3.6
b) Estimate the distance travelled in the first 6s.
Answer
a) The acceleration at t = 4s is the gradient at t = 4s
(see Figure 3.7).
qoAv _320-110
At 8.0
b) The distance travelled is
the area under the graph —
(see Figure 3.8) from For inars grt estimating
S areas see Appendix:
' Maths skills.
distance travelled = %2 x &
6 x 35=105m E
A Figure 3.8




Equations of motion
If an object is travelling with constant acceleration, the equations of motion
may be used to analyse its motion.

A velocity-time graph for an object moving with constant acceleration a,
starting with velocity 1, and reaching a velocity v in t seconds, shows how
these equations arise. A

From Figure 3.9:

R s e .
i - 1 R
acceleration = gradient Gradient = 52 :
v-u '
U= 1
: ) |
SO v=u+at (equation 1) g : (v=d)
o I
The displacement, s, of an object can be found by working  ~ i
]
out the area under the graph (see Figure 3.10): !
_____________________ X
displacement = area under the graph “r ; i

s=ut+ Y(v-ult

from equation 1, v — u = at so:

Y

s=ut+ Y (at)t Time

A Figure 3.9 The acceleration is given by the

s =ut + hat’ tion 2
u a (equation 2) gradient of the velocity-time graph

| — e
|

(v—u)

é—(v— ujt l

u ——n

Velocity

uf

-
>

A
L

Time
A Figure 3.10 The displacement is the area under the graph

The third equation can be derived from equations 1 and 2:

First, ‘square’ equation 1: These equations only apply
_ 2_ .2 2 when the acceleration or
Vs (el s s 2uat v at deceleration is constant,
=u’ + 2a(ut + Ysat) including zero acceleration
constant velocity).
$0 v =u’ +2as (equation 3) ( v)
The three equations of motion: v=u +at You need to be able to
» Yoat® recall these equations
S=utsiea and you may be asked to
Vo =0 + 2as derive them.




Using the equations of motion

Kinematics

'S N\
Worked example
An aeroplane touches down at the end of a runway travelling at a speed
of 72ms™" (see Figure 3.11). It decelerates uniformly at a rate of 3ms™.
72ms’!
—_—
A Figure 3.11
Calculate:
a) the speed of the aeroplane 8s after touchdown
b) the distance travelled along the runway before coming to rest.
Answer
a) Usingv=u +at:
p=72+(-3) x8=48ms™ The acceleration is
. P ) _ negative because
b) Using v = u” + 2as with v = 0 when the aeroplane comes to rest: the aeroplane is
0°=72"+2x(-3) x5 decelerating.
§s=864m
\ J

Motion under gravity

At low speeds air resistance has a negligible effect on falling objects and can
be ignored. The equations of motion can be used to solve problems where
a = g, the acceleration of free fall.

The value of g is provided
in Exam Papers 1, 2,
and 4.

-

Worked example

1 A stone is thrown vertically upwards with a velocity of 30.0ms™ and
falls back down to the ground (Figure 3.12).

Calculate:

a) the velocity of the stone after 4.0s

b) the maximum height reached by the stone

Answer
a) Using v=u + at:

v=30.0+(-9.81) x4.0 =-9.24ms""

The velocity is 9.24ms ' downwards.

0°=30.0"+2x(-9.81) xs

5=45.9m

b) Using v" = u° + 2as with v = 0 when the stone reaches its highest point:

! |la=g=98ms?
0

BOmslT

A Figure 3.12

P8 romombcr [
Take care deciding

on the sign of g. An
object thrown into the

air, for example, is

always accelerating
downwards, whether

the object happens to

be moving upwards or
downwards.




-

2 A hot-air balloon (see Figure 3.13) is ascending at a constant speed of
3.0ms™". A sandbag is dropped from the balloon and hits the ground
after 5.0s.

=1
a) Calculate the height of the balloon when the sandbag was released. I3.0ms

b) Draw the graph of velocity against time for the sandbag, from the
moment the sandbag is released until it hits the ground. Ignore air

resistance.
Answer
a) Using s = ut + %at’ from the moment the sandbag is released until it A Figure 3.13
hits the ground:
§=3.0%5.0+ % x (~9.81) x 5.0 # Is negative asthe.
displacement is
=-108m downwards.

b) See Figure 3.14.

vims™!
A
10 -
0 -
s
=10 4
=20
-30 J
-40 4
50X
A Figure 3.14
Projectiles
The movement of any object travelling through the air (see Constant velocity in the
Figure 3.15) can be described in terms of its horizontal and vertical REsieBriglgreakR
components. If air resistance can be ignored, the components are: \
e constant acceleration g vertically downwards i
* constant velocity horizontally (as no forces act horizontally). l

The equations of motion can be applied separately in the horizontal
and vertical directions to solve problems.

P4
If the initial velocity is V, making an angle € to the horizontal Constant downward
(see Figure 3.16), then: acceleration gin the

vertical direction
e the horizontal velocity is Vcos 8
A Figure 3.15 Projectile motion
e the initial vertical velocity is Vsin 6.

For more on

. resolving vectors in
Veoso two directions, see
Appendix: Maths skills.

A Figure 3.16 Horizontal and
vertical components of velocity




Figure 3.17 summarises some facts about the projectile’s motion.
e At its maximum height H:
o the vertical component of velocity is zero
o the horizontal component of the velocity stays constant at Vcos6.

e When the projectile has travelled its full range R, the vertical
displacement is zero (the net distance travelled vertically is 0).

Vertical component of
velocity = Oms!

Oms!

Vcose
Vertical displacement = Om

/

B

R

A Figure 3.17 Projectile motion

Kinematics o

Applying the equations
of motion to projectiles, it
can be shown that:
2
e V:sin®@
2g
V?sin26
g

and
Jeii

Worked example
A cannon fires a cannonball with an initial velocity of 12ms™ at an angle
of 50° to the horizontal.

12ms? ?
Hi
B
0 2 >
A Figure 3.18
Show that:
a) the injtial‘hnriznntal component of the cannonball’s velocity
is 7.7ms"

b) the maximum height H reached is 4.3 m.

Answer
a) Initial horizontal velocity = 12 cos50°

=7.7ms"

b) Using v* = ' + 2as applied vertically from the starting point A to

the highest point:
0’ = (12sin50)* +2 x (-9.81) x H
. 2
P (12sin50) —43m
2x9.8

‘Show’ means you are

expected to derive the
answer given, showing
all your working.

The vertical component
of the velocity at the
highest point is zero.




Raise your grade

The graph shows how the velocity of a drag-racing car changes with time. The graph can be divided
into three separate stages, as shown below.

Velcity/ ms 1
404
20 -
H Time/s
. i i P :
0 1 2 3 3 5
Stage 1 Stage 2 iStage3

(a) Describe the motion of the car during the three separate stages.

The car accelerates at first, then travels at constant speed. After 4 seconds it starts fo

L R R R R ]

slow down

«eeessesseessaneses The statement is correct, but lacks sufficient detail. A better answer would ==+
be: In stage 1 the car accelerates from rest. As the velocity increases, the  __ [3]
acceleration decreases (the gradient of the graph decreases). In stage 2 the
velocity is constant at 45ms™". After 4s, at the beginning of stage 3, the car
decelerates quickly and at a uniform rate, coming to rest after 4.8s.

(b) Use the graph to find the acceleration of the car.

@) after0.5s X X Acceleration is change in velocity/time. A tangent

velocity 5 should be drawn at t = 0.5s and the gradient of the

Peceleration = =—=70 tangent calculated.
time 05 A good answer would be:
acceleration = gradient of graph at t =0.5s
P s
1.2
acceleration = 70 ms™  [2]
(ii) after 4.5s. o
_ X X The candidate has misread the second time value (it
acceleration = —4 =4 should be 4.8s not 5.0s). The answer should also be
50 - 40 negative (the car is decelerating).
45-0

A good answer would be a = = -56.3ms™

40-48

acceleration =45 ms?  [2]

(c) Estimate the total distance travelled by the car.
v X
Total distance = area under graph = 45 X 4+ 2 X 0.8 =198

The correct method has been used to find the distance travelled for one
mark, but the calculation hasn’t taken into account the area under the
curve of the graph between t =0sand t=1.4s.

A better answer: distance = 51x5.0x 020+45x26+'2x45x0.80=186m (istance = 1/8m [2]
51 small squares under the curved part of the gragph 77




9 Exam-style questions

1

A cyclist travels from one town to the next at an
average speed of 40kmh™. She completes the
return journey at an average speed of 20kmh™.

What was her average speed for the whole
journey?

A 25kmh™
C 30kmh™

B 27kmh™
D 33kmh™ (1]

The graph shows the distance travelled by a car
in the first 20 s of a journey.
350

300

250 +

Distance/m

Time/s

What is the best estimate of the speed of the car
after 10s?

A 8ms' B 12ms' C l6ms’' D 20ms” [1]

A stone is thrown vertically upwards with a speed
of 20ms™ near the edge of a cliff and falls down
to hit the beach below the cliff 6.0s later.

-y

1
¥
¥
'
¥
H
'
¥
H
'
i
¥
'
i
¥

Y

What is the height H of the cliff?
A 56.4m B 86.4m C 176m D 296m (1]

(a) Explain the difference between a scalar
quantity and a vector quantity. [1]

(b) Underline the vector quantities in the list
below:
speed displacement acceleration velocity [1]

Kinematics °

(c) A tennis player hits a tennis ball horizontally
with a speed of 60ms™. The ball is initially
at a height of 1.40m above the ground
and 11.90m from the net. Air resistance is
negligible.

1.40m

(i) Calculate the time it takes for the ball to
reach the net.

(ii) Show that the ball passes over the net
if the net is 1.07 m high. [4]

(d) Calculate the distance the ball is from the net
when it lands on the other side of the court. [2]

(e) The distance the ball moves is different from
its displacement. Explain why. [1]

5 A basketball player throws a basketball into the
hoop of the basket.

(a) Calculate:

(i) the initial horizontal component of the
velocity of the basketball

(i) the time it takes for the ball to reach the
basketball

(i) the height h of the basket above the
ground. [5]

(b) Determine the velocity of the ball as it
reaches the basket. [3]
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> 3 Dynamics

O Understand that mass is the property of an object that resists change in motion.

O Recall F = ma and solve problems using it; understand that acceleration and resultant force are
always in the same direction.

O Understand that linear momentum is given by mv, and that force is the rate of change of
momentum,.

O State and apply Newton’s laws of motion.

O Understand the concept of weight as the effect of a gravitational field on a mass and recall that the
weight of a body is mg.

O State the principle of conservation of momentum and apply it to solve problems, including elastic
and inelastic collisions between objects in one and two dimensions.

O Know that, for elastic collisions, the relative speed of approach is equal to the relative speed
of separation.

O Understand that the momentum of a system is always conserved in collisions between objects, but
that some change in kinetic energy may occur.

O Describe qualitatively the effect of air resistance on the motion of objects falling in a uniform
gravitational field.

Dynamics is concerned with the affect forces have on the movement of
masses as described by Newton’s three laws motion.

Momentum and Newton’s laws of motion

Mass and inertia

When a car brakes suddenly we feel we are ‘thrown forward” - in reality we
are just trying to carry on moving in a straight line at constant speed. The
reluctance of an object to change its motion (to speed up, slow down or
change direction) is called its inerfia. The mass of an object is an indication
of its inertia and is measured in kilograms (kg).

The greater the mass of an object, the greater the resistance to change (see

Figure 4.1). a Large mass - difficult to
start moving

Newton’s first law of motion

Newton'’s first law of motion states that a resultant force is needed to
accelerate or decelerate an object.

Newton’s first law: An object will remain stationary, or continue at
constant speed in a straight line, unless acted on by an external force.

b Large mass —difficult to

stop maoving

A Figure 4.1 Large masses -
difficult to start and stop



The first law appears to contradict our daily experience of forces and
movement - to make something move at constant speed it has to be
continually pushed. But this ignores the friction forces that oppose the
motion. A parachutist falling at constant speed has balanced forces of weight
acting downwards and air resistance acting upwards - the resultant force on
the parachutist is zero (see Figure 4.2).

In Figure 4.3, the driving force D from the engine is initially greater than the
air resistance and friction forces F, and so the car accelerates. At a certain
speed the friction forces will equal the driving force and the car will travel at
constant speed. If the brakes are applied, the friction forces are bigger than
the driving force and the car decelerates.

—
<~@iiny— Gy <~ Gy

a D > F: accelerates as b D=F: moves at a ¢ D <F: decelerates as
forces are unbalanced constant speed as forces are unbalanced
forces are balanced

A Figure 4.3 Balanced and unbalanced forces

Momentum
The momentum p of an object is its mass m multiplied by its velocity v.

p=mv

Newton’s second law of motion

If a resultant force acts on an object, it speeds up, slows down or changes
direction; that is, its momentum changes. Newton’s second law links the size
of the force applied to the change in momentum.

Newton’s second law: The rate of change of momentum of an object is
proportional to the resultant force on it.

Consider an object of mass m moving with speed u acted on by a constant
force F for a time ¢ (Figure 4.4):

Force F ] i i v

e Time t >

A Figure 4.4 Force = rate of change of momentum

Using Newton'’s second law:

Fo change in momentum mv-mu m(v-u)
time taken t t B

ma

Fe ma

where a is the acceleration of the object. By defining the unit of force (the
newton) as that force which gives a mass of 1kg an acceleration of 1 ms™, we
can write:

F=ma

Dynamics o

Air resistance
force F

Weight force W

A Figure 4.2 The forces

are balanced (F = W) so the
parachutist falls at a constant
speed

Momentum is a vector. It
has units of kgms™.

Force = rate of change of
momentum

F=ma




Mass and weight

When an object of mass m is held above the Earth’s surface and then
released, it accelerates downwards at 9.81 ms™ (ignoring air resistance)
because there is an unbalanced force acting on it (its weight W).
Using F = ma:

W=mg
where g is the acceleration of free fall.

Newton’s third law of motion

When you push a door, the door pushes you - forces always act in pairs.
Newton’s third law is often quoted as ‘action = reaction’, but it can be stated
more formally.

! Remember

Newton’s third law: When two objects interact, they exert equal and
opposite forces on each other.

Action and reaction forces are often misunderstood. The key points to
remember are:

* Forces do not exist individually, but in pairs.

* The forces are of the same type; for example, both gravitational.
* The two forces act on different objects.

* The third law applies to every situation.

Think of a book resting on a table, as shown in Figure 4.5.

T

A Figure 4.5 Newton’s third law

¢ The weight W of the book acts downwards.

* The push up from the table, R, is equal to W because the book is in
equilibrium (if it wasn’t the book would fall through the table, or take off!).

However, this is not the ‘reaction’ force in Newton's third law. If the table
were to disappear there would still be a ‘reaction’ force.

The two forces referred to in Newton’s third law act on different objects.

¢ The force causing the book to have weight is the gravitational pull of
the Earth.

e The ‘reaction’ force is the gravitational pull upwards on the Earth by
the book.

@



Dynamics o

Conservation of linear momentum The quantity FAt is called
the impulse.

Newton’s second law can be written:

_ A(mw)
At
50 FAt = A(mv)

F

When two objects collide, the same force F acts for the same time At on both
objects, and so the magnitude of the change in momentum will be the same
for both objects.

In Figure 4.6 the momentum of one of the masses will decrease, but the
momentum of the other mass increases by an equal amount, and so the total
momentum of the two masses is the same as before the collision. There is no
change in the total overall momentum. This is an example of the principle of
conservation of momentum.

Each ball is in contact
with the other for time Af

A Figure 4.6 Impulse = FAt

Principle of conservation of momentum: For a system of interacting
objects, the total momentum remains constant provided no external
resultant force acts on the system.

This is why momentum is such a useful quantity to calculate. Although
the momentum of individual objects changes, the total momentum in any
interaction (e.g., a collision or explosion) remains constant provided no
external force acts.

r 1

Worked examples

1 AU nucleus has a mass of 3.9 x 10 kg. It decays by emitting an
alpha particle, of mass 6.6 x 10 kg, with a speed of 1.6 x 10'ms™".
What is the recoil velocity of the nucleus?

Answer

The total momentum before and after the alpha particle is emitted is zero.
Let the velocity of the nucleus after the alpha particle is emitted be v.

momentum of  momentum of alpha _ 0
decayed nucleus particle N The minus sign shows
38 5 B : that the nucleus recoils;
(39%x107 -66x107Jv+6.6x107 x1.6x10°=0 it moves in the opposite
—6.6x 107x 1.6 x 107 o direction to the alpha
e V= TB.OX10 7 -66x107) - 28x10ms particle.
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2 A physics student holds a ball above his head. He drops the ball and it

falls to the ground, bounces a few times and eventually comes to rest.
He says the ball initially has no momentum, gains momentum as it falls
but has negative momentum when it bounces back up, and so momentum
cannot be conserved. What would you say to the student in reply?

Answer

*  Before the ball is released, the total momentum of the ball and the
Earth is zero.

® As the ball descends, the Earth is ascending upwards with the same
magnitude of momentum, but in the opposite direction due to the
gravitational pull of the ball on the Earth (see Figure 4.7). We don’t
notice the Earth moving up because its mass is so large compared to
the ball, making its speed too small to measure. The total momentum
of the ball and Earth ‘system’ is still zero.

*  When the ball hits the Earth, it exerts a sudden force on the Earth
which causes its momentum to change direction.

Increasing positive
momentum

Increasing negative
momentum

A Figure 4.7
*  As the ball moves up the Earth moves down with an equal magnitude Conservation of
of momentum. momentum
Collisions

Elastic collisions

When objects collide, the total momentum of the objects remains constant. If
kinetic energy is also conserved in a collision, it is called an elastic collizion,
The collisions of molecules in an ideal gas are considered elastic, and the
collisions of snooker balls are almost elastic.

In Figure 4.8, two hard spheres are both travelling in the same direction:

m, is moving with speed 1, and m, is moving more slowly with speed u,.

m, has a head-on collision with m,. After the collision, m, is travelling faster
than m,.

Applying conservation of total momentum:
m,u, + myl, = muv, + m,v,
Simplifying:
m,(u, - v,) =-m,(u,-v,) (equation 1)
Applying conservation of kinetic energy:
-;—mluf + %mzuj = %m]vf + %mzuj

Simplifying this equation:

m (e = vl) = —my(ul =2) (equation 2)
Dividing equation 2 by 1:

: 2
mt(utz = Urz} _ —m, (1, —v;)

m,(u, -v,) -m,(u, -v,)
Simplifying this equation: u+v=u,+v,
Rearranging: U =l=0 =0
So velocity of separation = velocity of approach

@

.

a before the collision (ty > u2)

m my
‘ ¥ ' Yo

b after the collision (v > v}

A Figure 4.8 Elastic collisions

I8 Maths skills

‘The difference of two
squares’

a’ -b°=(a-b)a+b)

==

Elastic collision:
momentum and kinetic
energy are conserved.

The velocity of separation
equals the velocity of
L approach.




Inelastic collisions

Most collisions are inelastic collisions - some of the initial kinetic energy Inelastic collision: total
is ‘lost’ (usually transferred as heat or sound energy). A car colliding with momentum is conserved
a tree, or the collisions of electrons in a gas in which the atoms of the gas but total kinetic energy
become excited, are both examples of inelastic collisions. The principle of is not.

conservation of momentum still applies to inelastic collisions.

Worked example

A dynamics trolley of mass 0.90 kg, travelling at a speed 1.40ms™t

of 2.50ms™, collides head—on with another trolley of —
mass 1.80kg, travelling in the opposite direction with 2-50"‘5,_1 (o) ( o }

a speed uf 1.40ms™, as shown in Pjigure 4.9. The two 09%0kg i 1 80ke
trolleys stick together after the collision. ( : L_I:’ L . . |
a) Calculate their common speed, v, after the collision. 4 Figure 4.9 Inelastic collisions
b) Determine in which direction they both move after the collision.
c) Calculate the total kinetic energy E :

i) before the collision i) after the collision.
d) Why are your answers to ¢) i) and c) ii) not the same?
Answer
a) Total momentum before collision = total momentum after collision:

0.90x2.50-1.80x1.40=(1.80+0.90) x v

,— (0.90x2.50 - 1.80 x 1.40)
- (1.80 + 0.90)

b) The final velocity is negative; the trolleys move in the same direction as
the 1.80kg trolley is moving before the collision.

c) i) E before collision = % x 0.90 x 2.50° + %2 x 1.80 x (~1.40)"

=-0.10ms"

=4.58]
i) E,_ after collision = ¥ x 2.7 x (-0.1)" = 0.014]

d) Kinetic energy is lost (as heat and sound). As the trolleys ‘stick’ there
is a friction force acting on each trolley accelerating/decelerating it (the
friction forces are doing work).

Collisions in two dimensions

va
The principle of conservation of momentum can be .,f
applied to collisions in two dimensions. The total %)
momentum in any direction must remain constant.

In Figure 4.10 a mass M is travelling at speed u
towards a mass m which is at rest. When they collide,
the line joining their centres makes an angle 8 with
the original direction of M.

Applying the principle of conservation of momentum:

In the x direction: Mu = Mv cos¢ + mv,cos 6

In the y direction: Muy,sin¢ = mv,sin 8 A Figure 4.10 Conservation of momentum in two

dimensions




Worked example

A snooker ball, travelling at a speed of 2.0ms™", has an off-centre collision
with an identical ball which is at rest, as shown in Figure 4.11. After the
collision the first ball moves at an angle of 60° to its original direction at
a speed of 0.8ms™".

\0 8ms!

A Figure 4.11 Conservation of momentum in two dimensions

a) Calculate the speed v and direction 8 of the second ball after
the collision.

b) State whether the collision is elastic or inelastic. Justify your answer.
Answer

a) Let the mass of each ball be m. Using the principle of conservation
of momentum:

In the initial direction of travel of the first ball:
mx 2.0=(mx0.8 cos60) + (mv cos6)
vcosB=1.6 (equation 1)
At 90° to the initial direction of the first ball:
0=mvsin®-m x 0.8 x sin60
vsinB=0.693 (equation 2)

Equation 2 divided by equation 1:

sin@ _ 0.693 - 0.4333
cos 1.6

s0 6=tan"' (0.433) = 23.4°

Substituting this value into equation 1:

1.6

v=——"  =174ms™
cos 23.4°

b) ChangeinE =%mx2.0°-%mx0.8-1%mx174=0166m

The collision is inelastic as some kinetic energy is lost.

‘Justify’ means ‘give
some evidence for’ —
in this case some
calculation to show
whether the collision is
elastic or not.

sin@
cosf

=tan@

@




Dynamics

Non-uniform motion
Free fall and air resistance

Figure 4.12 shows different stages after a skydiver jumps from an aeroplane, =
and Figure 4.13 summarises her motion in a graph.
60“"' A A | a a=g=9.81ms"2
H sccclerating e
50
b 5<9.8lms?
40 -
F<mg
£ 301
= ca=0
F=mg
20 -
constant speed
w4
7 d F>mg
FaH decelerating
iy ——— S ' L
0 10 20 30
s
A Figure 4.13 Velocity-time graph for a skydiver
When she first leaves the aeroplane (Figure 4.12a) there is only one force
acting on her - her weight mg, and so she accelerates towards the ground at
=2
9.81ms™. e F=mg
constant speed

As her speed increases, she is hitting more air molecules every second,
and so the upward air resistance force F increases (Figure 4.12b). The net,
or resultant, force is still downward, and so she continues to accelerate
downwards, but at a slower rate.

Eventually the skydiver is falling at such a high speed (about 50ms™) that
her weight mg and the air resistance force F exactly balance each other
(Figure 4.12¢), and so there is no resultant force on her. She continues to fall
at this speed, known as the terminal velocity.

When the skydiver opens her parachute, the air resistance force is suddenly
greatly increased (Figure 4.12d). The upwards force is now greater than the
weight force, and so she begins to decelerate.

After a short time she will reach a much slower speed (about 6ms™), where the A Figure 4.12 Forces on
air resistance force and the weight force balance again (Figure 4.12¢), and she a skydiver
will continue to fall at this slower speed until she hits the ground (Figure 4.12f).




Raise your grade

(a) State the principle of conservation of momentum.

The total momentum of a 51516(’0 remains v X The statement is correct but insufficient — 2]
L T T i-{ is Onlyirue ifihere is no resu"ant o
constant. force acting on the system.

L R R R R R Y L]

(b) Explain what is meant by an elastic collision. : —_— - :
X An elastic collision is one in which the

6!’15!‘91 i conserved. total kinetic energy remains constant. [1]

T T e Y PR e

(c) A ball of mass mis travelling with speed u in a straight line when it collides elastically with a
stationary ball of mass 2m, as shown below. After the collision, the smaller mass is moving with
a velocity v, and the larger mass with a velocity v,

i " Y
) —_— —_—
m ] 2m:} m @ Em%}
Befare the collision After the collision
(i) Show that v, = %”
Conservation of momentum: mu = mv, + 2mv, — u=v, + 2v, N v

Elastic collision: velocity of separation = velocity of approach

v,-v,=u @ v
Adding equations (1) and (2): 3v, =2u -y, = 7‘—; v
(i) Calculate v,.
- Zu u
From equation (): v =u-2v,=u-2X—=-—— ¥
3 3 (4]

(d) The ball of mass 2m then collides with a wall and bounces back with a speed of % The collision

with the wall lasts t seconds.
X Momentum is a vector - the

Calculate: (i) the change in momentum of the ball ‘rebound” m?mentum is negative.
The change in momentum is:
2u u Zmu 2 o
C,hangr, in momentum = ZmMx — —2mMx — = —— 2mx—u~2mx(w£)=_ml{=2
3 ES ES 3 3
(ii) the average force acting on the wall during the collision.
2mu v Method is correct

A () T (error carried forward) ]
F= M) =

At 3

(e) The momentum of the ball has changed. Explain how the principle of conservation of momentum
still applies.

(correct answer is 2Tmu)

ﬂ]b ai.j¢gﬁan(.i 'll‘ha rﬁ% bf—‘hirdEa i i% C’Qpr} 1‘ 1‘0) all m nt‘.0ti*‘-‘iOOQP'RQO;-\;%.‘QHQOQO

LR ET) shesssasans

direction - the total momentum of the ball and wall systern’ remains the same. v/ v

R R R T EEEE TR R L T e R ) T R R R R R ]

A good answer.

R L R T T R T T Ty

'e [2]

r




9 Exam-style questions

1

An electron in an electron ‘gun’ is accelerated
from rest to a speed of 4.2 x 10'ms™ over a
distance of 15 mm. What is the force on the
electron?

[m, =9.11 x 107 kg]

A 54x10°N

B 11x10“N

C 54x10™N

D 1.1x10°N [1]

A lift of mass 1.4 x 10" kg is ascending with an
acceleration of 1.6ms™. What is the tension in
the cables supporting the lift?

A 2.2kN B 11.5kN
C 13.7kN D 16.0kN (1]

A box of mass 40 kg is pulled by a force of 600N
at an angle of 40° to the horizontal, as shown
below. The friction force F is equal to half the
weight of the box.

F
-

What is the acceleration of the box?
B 6.6ms™
D 11.0ms™ (1]

A 4.7ms”
C 92ms”

A mass of 1.4kg moving with a velocity of
0.7ms" collides with a mass of 0.7kg moving in
the opposite direction with a speed of 0.2ms™".
After the collision, the 1.4 kg mass is moving
with a speed of 0.3 ms™' in the same direction as

before.
0.7ms™? 0.2ms™?
1.4 - 0]

What is the speed of the 0.7 kg mass after the
collision?

A 0.6ms’
C 1.8ms™

B 1.0ms™
D 2.2ms™ [1]

Dynamics o

Two dynamics trolleys P and Q are initially at
rest. The mass of trolley P is 0.90kg; the mass

of the trolley Q is unknown. They are “exploded
apart’ by the release of a spring—loaded plunger
at the front of one of the trolleys, and move off in
opposite directions as shown below.

/‘\ﬂ
7 o ol

1.20ms™!

1.80mst
-— e
L r ek [ @l
What is the mass of trolley Q?
A 0.60kg B 0.74kg C 1.35kg D 1.67kg [1]

(a) State the principle of conservation of
momentum. 2]

(b) Curling is a sport in which players slide
circular ‘stones’ on a sheet of ice towards a
target. The stones each have a mass of 18kg
and a diameter of 19.0cm.

A stone is travelling at a speed of 4.0ms™
when it collides with a second identical but
stationary stone, as shown above.

i) Calculate the momentum of the first stone
before the collision.

(ii) Show that the stationary stone moves off
at an angle of 60° to the original direction
of travel of the first stone. [3]

(c) The speed v of the first stone after the collision

is twice the speed of the second stone.
Calculate:

(i) 6. the angle the first stone is deflected

(ii) v. [4]



Forces, density,

AS 3.1-3.6 pages 44-55
a nd pressu re 5.1-5.2 pages 74-77

O Describe the force on a mass in a uniform gravitational field and on a charge in a uniform
electric field.

O Understand the origin of the upthrust acting on a body in a fluid.
O Show a qualitative understanding of frictional forces and viscous forces including air resistance.

O Understand that the weight of a body may be taken as acting at a single point known as its centre
of gravity.

Define and apply the moment of a force.

Understand that a couple is a pair of forces that only produces rotation.

Define and apply the torque of a couple.

State and apply the principle of moments.

Understand that, when there is no resultant force and no resultant torque, a system is in equilibrium.
Use a vector triangle to represent coplanar forces in equilibrium.

Define and use density and pressure.

O OoOgooooao g

Derive, from the definitions of pressure and density, the equation Ap = pgAh and use it
to solve problems.

Types of force ‘ ‘ |

Gravitational forces

Any mass in a gravitational field experiences a force. The gravitational field
strength g is defined as the force on unit mass (1kg). The force F on a mass mg
m is:

la =g=981lms=

F=mg

Near the Earth’s surface the gravitational field is uniform - constant in both A Figure 5.1 Gravitational
magnitude and direction - and has a value of 9.81Nkg . As F= ma, an field strength

object dropped near the surface of the Earth will have an acceleration of

9.81ms * ignoring air resistance (see Figure 5.1). On the Moon g = 1.6Nkg ™’

so the acceleration of free fall on the Moon is 1.6ms . Fleld strength £

Electrical forces
An electrically charged object in an electric field experiences a force. The >

electric field strength E is defined as the force per unit positive charge (1C) £ :

on a stationary point charge.

The force on a charge g (see Figure 5.2) is: !
F=Eg -

Upthrust (buoyancy) forces A Figure 5.2 Electric field

An object immersed in a fluid (liquid or gas) experiences an upward force, strength

an upthrust, equal to the weight of the fluid that has been displaced. For
example, a ball of radius r submersed in a liquid of density p has displaced a [

volume V = #zr’ of liquid.

Volume of a sphere of
radius r = 47r®




Forces, density, and pressure

Force upwards Force upwards
on liquid = weight on liquid = weight
of liquid of liquid displaced

A Figure 5.3 Upthrust (buoyancy) forces

The upward force on the liquid must have been equal to the weight of the
liquid (see Figure 5.3a), as it was in equilibrium. This same force now acts
on the ball (see Figure 5.3b) - the upthrust will be V = %71’ pg.

Frictional and viscous forces

Friction is a force which always opposes motion. If a book resting on a table
is gently pushed one way, there is a friction force in the opposite direction
and the book will remain at rest (see Figure 5.4a).

Pushing force Friction Pushing force Friction
force force
a In equilibrium (at rest) b Beginning to accelerate

A Figure 5.4 Frictional forces on a book

If the pushing force is gradually increased, the book will eventually slide

along the table as the friction force reaches a maximum value (sometimes ‘ H | F
referred to as the limiting friction force). Once the book is moving, the w
friction force is called the dynamic or sliding friction force, and is usually

less than the limiting friction force (see Figure 5.4b). el l w

Objects moving through liquids or gases also experience resistive forces due
to friction - these are usually referred to as viscous (drag) forces. A swimmer
swimming in the sea, or a raindrop falling through the air, experiences
viscous (drag) forces.

a acceleration

The size of the viscous drag depends on a range of factors including the
viscosity of the fluid (its ‘thickness’ or ‘stickiness’) and the speed and shape F
of the object moving through the fluid.

The viscosity of gases is generally much less than the viscosity of liquids, but Rt W
can still have significant effects. A skydiver falling from an aeroplane initially l
accelerates (Figure 5.5a) but as the speed of the skydiver increases so does

the drag force. Eventually the drag force equals the weight of the skydiver, b constant speed

who then continues to fall at a constant speed, called the terminal velocity A Figure 5.5 Forces in
(Figure 5.5b). free fall




4 3
Worked example B
A hot-air balloon ascends at constant speed (Figure 5.6).
a) State the forces acting on the balloon and their directions.
b) Derive an equation relating the forces you have identified. Constant
speed

Answer
a) The weight of the balloon W and the drag or friction force F both act

downwards. The upthrust or buoyancy force B acts upwards.
b) As the balloon is rising at constant speed, the net force on the

balloon must be zero.

W+ F
W+F=B

A Figure 5.6 Drag and
buoyancy
Centre of gravity
] Centre of gravity
The centre of gravity of a body (an object) is the point where all the weight
of the body can be considered to act. Knowledge of the position of the centre
of gravity is helpful in assessing the stability of an object.
In Figure 5.7a the object is stable - the weight force is trying to rotate the
object anticlockwise, returning it to an upright position.
a Stable

In Figure 5.7b the object has been tilted further so that the line of action of
the weight force is outside the right-hand edge of the object. The weight force

is trying to rotate the object clockwise, causing it to topple over. Centre of grawity
The turning effects of forces
The turning effect of a force is called the moment of the force.

The moment of a force about a point is the force multiplied by the b Unstable
perpendicular distance from the line of action of the force to the point.

A Figure 5.7 Centre of

The Sl units of the moment of a force are Nm. gravity

For a force F, a perpendicular distance d from a point P, the moment about P
is Fd (see Figure 5.8).

The principle of moments

If an object is subjected to a number of forces, but is in equilibrium, the
turning effects (moments) of each of the forces must balance out. This
statement is known as the principle of moments,

== e
Sum of the clockwise moments = sum of the anticlockwise moments ]

A Figure 5.8 Moment of
a force

&




Forces, density, and pressure o

Worked example
A horizontal beam is hinged at one end and supports a light fitting. The

beam is held in place by a rope, as shown in Figure 5.9. Calculate the
tension T in the rope.

; The 'perpendicular distance’

e for calculating the moment of T
about the hinge is 90.0 x sin 30°
(the dotted line).

30°
.'!
50.0cm | 400cm
70N
A Figure 5.9

Answer
Using the principle of moments about the hinge:

sum of the anticlockwise moments = sum of the clockwise moments

T % (90.0 % sin30°) = 70 x 50.0

T=77.8N
Torque and couple
A couple is a pair of equal and opposite forces acting on a body, but not P

along the same line. A couple can only cause a body to rotate.

The torque of a couple is the total moment of the couple, and so has the

same units as moments (Nm)j. £

The torque about point P is F x d (see Figure 5.10). (The torque is the same .

value, regardless of the position of P). A Figure 5.10 Torque of
a couple

Equilibrium of forces
For a body to be in equilibrinm, two conditions must be satisfied:

Torque of couple = Fd

* The resultant force acting in any direction must be zero.

* The resultant torque about any point must be zero.




o

Worked example

A uniform ladder AB, of length 6.0 m and weight 100N, rests against a
smooth wall. The base of the ladder rests on the floor and is 2.0m from
the wall, as shown in Figure 5.11.

Calculate:
a) the angle the ladder makes with the wall
b) the force on the ladder from the wall

¢) the size and direction of the force on the ladder from the floor.

Answer
The ladder is uniform, so the centre of gravity of the ladder is halfway
along the ladder.
. 1
a) sind 201 so 8= sm‘l(—)= 19.5°
6.0 3 3

b) Taking moments about point B:
Sx6cos8=100x3sin@
S=50tanf® =50tan19.5=17.7N
¢} Resolving vertically: P = 100N
Resolving horizontally: F=5=17.7N

The force at B has two components (see Figure 5.12):

The resultant force R = +/(100° +17.7%)

= 101.6N

angle ¢ = tan™' (%)= 10.0°

P ecam o I

One way of approaching
many problems on
equilibrium is to

resolve forces in two
perpendicular directions
and use the principle

of moments about a
suitable point: ‘resolve,
resolve and take
moments.’

A Figure 5.11

100N

17.7N
A Figure 5.12

Equilibrium under three forces

If an object acted on by three forces is in equilibrium, as shown in Figure 5.13a,

the resultant of the three forces must be zero. The three forces, drawn as
vectors, must form a triangle (see Figure 5.13b).

Free-body diagram b Vector triangle of forces

A Figure 5.13 Equilibrium under three forces

“Three force’ questions can be approached in a number of ways:

by resolving forces in two directions and taking moments about a
suitable point

using Lami’s theorem (see Figure 5.14)

drawing a scale diagram of the triangle of forces.

@

{8 Maths skills

FF F

1 — = 3

smtEJ1 sm&z smtE}3

A Figure 5.14 Lami’s
Lthec;:rem




Forces, density, and pressure

- ~
Worked example
A block of weight W rests on a rough slope making an angle 8 with the N
horizontal, as shown in Figure 5.15. Calculate:
a) the friction force F b) the normal force N. F
Method 1: Resolving forces :
a) Resolving forces along the slope: F=Wsin8 lw
Resolving forces perpendicular to the slope: N = Wcos 6 A Figure 5.15 Equilibrium
Method 2: Using Lami’s theorem unperthreeforees
F - N - W
sin(180 - 6) sin(90+ &) sin90°

22 sin(180 - 6) = sin @
a) F=Wsin# b) N=Wcos#8

sin(90 + 6) = cos @

Method 3: Drawing a scale diagram of the triangle of forces
See Figure 5.16.

2 Draw a line at 8 tothe

1 Draw the weight vertical from the start of W

force Wtoa
suitable scale\

a) The length and direction
of this arrow is the friction
force F. \\

b) The length and direction
of this arrow is the reaction
force M.

== 3 Drawaline at 8 to the horizontal from
cmmme =>:00N 0 the end of W. Where the two lines meet
completes the force triangle.

A Figure 5.16 Drawing a scale diagram

\ J
Density and pressure m
Density ety s s
The denzity p of a material is defined as the mass per unit volume. For an ~ volume
object of mass M and volume V: - % Sl units are kgm™
- : Some densities that are
Worked example useful to know:
, i
The density of air is 1.29 kgm™. Estimate the mass of air in a school hall. air: 1.29kgm
Answer water: 1.0 x 10°kgm™
Estimated volume of school hall = 35m x 20m x 8m = 5600 m’ 1ml of water (1cm°) has a
mass of 1.0g.
Mass M of air = pV = 1.29 x 5600 = 7200 kg - -
k J m
Pressure
The pressure pis defined as the normal force per unit area (see Figure 5.17): o} =%
= IR Force F S| units for pressure are
N m~ or pascal (Pa)

A Figure 5.17 Pressure

&




Worked example

A bar of gold has dimensions 16.0cm x 5.0cm x 2.5 cm and a mass
of 3.86kg.

a) What is the density of gold?

b) What is the maximum pressure the bar can exert when placed
on a table?

Answer

a) p=£-—= 366 =19.3x10°kgm™
Vo 0.160 x 0.050 x 0.025

b) See Figure 5.18 for the orientation for maximum pressure.

_F 3.86x981 A Figure 5.18 Orientation
Py =—=——"——=1303kPa -
A 0.050 x 0.025 for maximum pressure
. J
Pressure in liquids and gases Atmospheric

Pressure Oy

The pressure on the surface of a column of liquid is the atmospheric pressure
p,- Below the surface, the pressure increases with depth due to the weight of
liquid above, as shown in Figure 5.19. For a column of liquid of depth Ah, cross-
sectional area A and density p, the increase in pressure is Ap. For equilibrium:

Area A
ApA = p(AA) g
Ap = pgAh
Liquid

The net upwards force due to the increased pressure at depth Ah is the d:‘:slityp
buoyancy force discussed earlier.
~ 3 Pressure= gy +4,

Worked examples

1 Submersibles used for exploring the deepest oceans can dive to a -

depth of 6000m. What is the total pressure on the outside of them? A Figure 5.19 Pressure in
3 liquids

[density of water = 1.00 x 10°kgm*, atmospheric pressure = 1.0 x 10" Pa]

Answer
Hydrostatic pressure p due to the weight of water: Ap = pghh
p=pgih=1.00x10"x9.81 x 6000 =5.89 x 10'Pa Yol al60 hadd 1o ba abia
total pressure = hydrostatic pressure + atmospheric pressure to derive this equation.

=5.89 x 10’ + 1.0 x 10° = 5.90 x 10’ Pa

[Note: the atmospheric pressure is very small compared to the
hydrostatic pressure, and can be ignored for most calculations.]

2 The atmospheric pressure at a height of 10km is 2.8 x 10" Pa.

a) A window of an aeroplane has an area 900 cm®. Calculate the
force on the window when the aeroplane is flying at this height,
assuming that the air pressure inside the aeroplane is 1.0 x 10°Pa.

b) In which direction is this force?
Answer
a) Net force exerted on window = Ap x A
=(1.0x10° - 2.8%x10") x 900 x 10~*
=6.5kN
b) The force acts outwards from inside the aeroplane.

- A

@




Forces, density, and pressure

Raise your grade

(a) State the two conditions necessary for a body to be in equilibrium.

The candidate has stated the first condition for equilibrium correctly, but should also have
""" stated that the total moment (or torque) acting on the body must be zero.

R R L L R L T T T shsseas disbbeidisdiadsiditasesnabetas [2]

(b) A uniform beam AB, of length 1.400m and weight 34N, is attached by a hinge to a wall at A, as
shown in the diagram. The beam is kept horizontal by a wire attached to the beam at C and the
wall at D. A lantern of weight 26 N hangs from end B.

D
T
P
Al Q 3¢ c B
|
r: i 3 o
£ J0.0cm EEE 35.0cn
4N
¥

26N

(i) Take moments about A to show that the tension T in the wire is 115N.

v v : :
T X 1055in 30° = 34 x 070 + 2b X 140 The canldldate Ilqas calculated the clockwise
and anticlockwise moments correctly, and
found the correct value for T.

T=15N 2]

The method for finding P is

e i . correct for the first mark, but
(ii) Calculate the vertical force P exerted by the hinge. the calculation of P is incorrect

Resolving forces vertically: P+ Tsin%0° =34+ 2(, v~ the value of P should be
~_ ., 60-115sin30 =2.5N.
P=00+1155in%0"x
P=1A5N vertical forceP=....|.r1§....N [2]
(iii) Show that the horizontal force Q exerted by the hinge is 100 N.

Resolving forces horizontally: @ =T cos%0° v Avalid method for finding Q. An
alternative method is to ‘take

=15¢08%0" =99.6N  oments’ about point D. [1]
(iv) Find the size and direction of the resultant force exerted by the hinge.

{?-2 = II'].‘52 + ﬂ"[ﬁ]‘_[g2 v Avalid method for finding R, allowing
error carried forward (e.c.f.) —the

5N B=1540N correct value is 99.6N.
: .
’ranﬁl=—5=l.lﬁ : Sy : .
YT 99 v Avalid method for finding 8, again allowing

SRRt B EEN) o Zﬁ_‘]“ for e.c.f.—the correct value is 1.4°. 2]




9 Exam-style questions

1 Four forces act on a point.

F,=110N
F,=7.0N
30°
45°
Fy=50N
F3=9.0N

Which statement is incorrect?

A The vertical component of F, is 3.5N.

B The horizontal component of F, is 9.5N.
C The vertical component of F, is 6.4 N.

D The horizontal component of F, is 0.0N.

2 A load of 400N is supported by two cables, as
shown below. One cable is pulled horizontally
with a force of 170N.

170N

400N

What is the best estimate of the tension in the
other cable?

A 165N B 230N C 400N D 435N

3 A book is held upright by gripping it in the comer,

between thumb and forefinger, as shown below.

30.0cm

l 8.0cm

The book weighs 12.0N. What is the torque
applied by the hand to the book?

A 48.0Ncm clockwise
B 48.0Ncm anticlockwise
C 180.0Ncm clockwise

D 180.0Ncm anticlockwise

4 A measuring cylinder contains oil to a depth of

6 cm floating on water. The depth of the water is
9cm. The density of the oil is 900 kgm ™ and the

3

density of water is 1000kgm .

Qil

Water

What is the pressure at the bottom of the cylinder
due to the liquids?

A 1.38kPa B 141kPa C 1.87kPa D 2.21kPa
(1]

(a) Define the moment of a force. [1]

(b) State the principle of moments. [1]

(c) The drawing shows a beam QT, of length
1.5m and negligible mass, supporting a load
of 4.8kN. The beam is held in equilibrium by
cord PR. The cord is at an angle of 70° to the
vertical and length TR is 1.0m.

Calculate the tension in the cord. [3]

6 A cable-car is at rest supported by a cable, as

shown below.

30 10'N

By drawing the triangle of forces to a suitable scale,
find the tensions T, and T, in the cable. [3]



Work, energy,

and power

AS 2.4-2.7 pages 32-39

O Give examples of energy in different forms, its conversion and conservation, and apply the
principle of conservation of energy to simple examples.
Understand ‘work’ as the product of a force and displacement in the direction of the force.

Calculate the work done in different situations, including the work done by a gas expanding
against a constant external pressure: W=pAV.

Recall and understand that the efficiency of a system is

O o

useful energy output
total energy input
Appreciate the implications of energy losses in devices and use the concept of efficiency to solve problems.

Derive, from the equations of motion, the equation for kinetic energy Eﬁémvz and apply the equation.

Distinguish between gravitational potential energy and elastic potential energy.
Understand and use the relationship between force and potential energy in a uniform field to solve
problems.

Derive, from the equation W=Fs, the formula AEp=mgAh for potential energy changes near the
Earth’s surface.

oo oo o

O

O

Recall and use the formula AE =mgAh for potential energy changes near the Earth’s surface.
O Define power as the work done per unit time (P = _t"'f) and derive P=Fv.

O Solve problems using the relationships P:-l':i and P=Fv.

Energy conversion and conservation

Energy

Energy is needed to make objects move, to lift them up, or to make them
warmer. It can be described as the ability to do work or change temperature,
and can take many forms including heat, light, sound, movement (kinetic
energy), and electrical energy. There are various forms of potential energy
(energy which is stored), including elastic potential energy (e.g., of a stretched
rubber band), gravitational potential energy (the energy a mass has by virtue
of its position in a gravitational field), and electrical potential energy (energy a
charged particle has because of its position in an electric field).

Principle of conservation of energy

Energy cannot be created or d'&itmyed, only converted from one form tq]
another.

An electric motor converts electrical energy to movement, together with some
heat and sound energy. A candle converts chemical energy into light and
heat. A solar cell converts light energy into electrical energy.

Work and energy types

Work

Worl is done when a force moves in the direction of the force (Figure 6.1).
When work is done, energy is transferred, perhaps as kinetic energy,
gravitational potential energy, heat or sound.




% B BRI

5

A Figure 6.1 Work done and energy transferred

The work done (in joules) is the force (in newtons) multiplied by the
distance moved in the direction of the force (in metres).

work done =forcexdistance moved in the direction of the force
W=Fs

Types of energy

Table 6.1 shows different types of energy and their descriptions.

¥ Table 6.1 Forms of energy

Energy Description

Energy a mass has due to its position in a
gravitational field (work must be done to ‘lift' a mass
against a gravitational field)

Energy a charged object has due to its position in an
electric field (work must be done to move a positively
charged object in the opposite direction to an electric
field)

Energy stored in an object or material due to
deformation (e.g., stretching or compressing a spring)

The energy a mass has due to its speed

-

See Unit 9 Deformation
of solids for more about
elastic potential energy.

See Unit 12 Thermal
properties of materials

for more on internal
energy and the first law of
thermodynamics.

See Unit 17 Electric fields
for more on electrical

potential energy.
L.

The combined kinetic and potential energies of all
the particles in a body

The energy that can be released during chemical or
nuclear reactions

Potential energy and kinetic energy
Gravitational potential energy

When a load is lifted, work is done on the load, and the load gains
gravitational potential energy. The force needed to just lift a mass m is mg.
If the mass is lifted a vertical height Ah (see Figure 6.2):

change in gravitational potential energy of the mass AE =work done
=mgxAh

Al

mg

A Figure 6.2 Gravitational potential energy

Change in gravitational
potential energy

ﬁEp:mgﬂh




Work, energy, and power

Kinetic energy

If work is done on an object that is free to move, the object will accelerate
and gain kinetic energy E,_(Figure 6.3).

..........

: e
FORMNCY,
b p >
A Figure 6.3 Kinetic energy
work done=E, =Fs
using Newton’s second law, F=ma:
E =(ma)s
For uniform acceleration:
vi=ui+2as.
So for an object starting from rest (2=0):
vz
as=—
2
(5)-3m
so E=m\7 =gy

P oo E

When calculating work
done, kinetic energy, or
change in gravitational
potential energy,
remember that quantities
such as mass m, change
in height Ah and speed v
must all be in Sl units for
the calculated value to be
: in joules.

E = % mv?

You also need to be able
to derive this equation.

Worked examples
[Take g, the acceleration of free fall, as 9.81ms>.]

1 A child pulls a sledge a horizontal distance of 50m with a force of
240N at an angle of 30° to the horizontal, as shown in Figure 6.4.

How much work does the child do?

Answer
work done= (240 cos30°) x50=10.4kJ

2 A human flea has a mass of 0.45mg and can leap vertically with an initial
velocity of 90 cms™!, reaching a height of 3.5cm (see Figure 6.5).
a) Calculate:

i) the initial kinetic energy of the flea
ii) the change in gravitational potential energy of the flea.
b) Why are the answers to a) i) and a) ii) not the same?

Answer y ;
a) i Eﬁzmzﬁ:zx (0.45%109) x (90x 102)2=1.8x107"J
ii) AE, =mgAh=(0.45x10)x9.81x (3.5%10) =1.5x 10"

b) Air resistance causes some energy to be ‘lost’ as heat.

A Figure 6.4 Child pulling a sledge

ot

240 cos30° is the
horizontal component
of the force —only this
force does work. The
vertical component does
no work as the sledge
does not move vertically.

.

3.5cm

A Figure 6.5 Human
flea jumping




Work done by an expanding gas

When a gas expands, it is applying a force against its surroundings and doing
work because the force applied by the gas is moving. Figure 6.6 shows a gas
at pressure p inside a cylinder pushing against a piston of surface area A.

Gas at pressure p

Surface area A
A Figure 6.6 Work done by a gas
If the piston moves a small distance Ax (small enough for the pressure not to
alter significantly) the work done by the gas AW is:
AW=FAx=pAAx=pAV

where AV is the change in volume of the gas.

See Unit 12 Thermal
properties of materials for
more on the work done by
a system and the first law
of thermodynamics.

BE=:

Work AW done by a gas
expanding at constant
pressure is:

AW =pAV

When a gas is
compressed, AV is
negative (the volume is
decreasing). Work has
to be done on a gas to
compress it; i.e., the
work done by the gas is
X negative.

-~

Worked example

A gas at a constant pressure of 2.0x10°Pa is cooled so that its volume
decreases from 2.5m* to 1.8 m’. Calculate the work done by the gas.

The minus sign indicates
that work is done on the

Answer gas to compress it into
AW=pAV=2.0x10°% (1.8 — 2.5)=— 1.4 X105 J a smaller volume.

\.

Efficiency

A light bulb is designed to convert electrical energy into light energy, a car
engine to convert chemical energy into kinetic energy, and a nuclear power
station to change nuclear (atomic) energy into electricity. None of these
processes are 100% efficient. In each example, some energy is ‘lost’ (‘wasted’)
as unwanted forms of energy such as heat or sound energy (see Figure 6.7).

Energy in I | '

- -
A Figure 6.7 Efficiency of an electric motor

Useful energy out

Electric
motor

‘Wasted' energy

The =iicicncy of a system is defined as:

useful energy output «100%
total energy input

efficiency =




Work, energy, and power

Worked example

A hydraulic jack lifts one wheel of a car, applying a
force of 3.6kN to to one of the wheels when the
handle of the jack is pressed down with a force of
150N. Each time the handle is moved down 20.0 cm,
the car wheel rises 0.5cm, as shown in Figure 6.8,

a) Calculate the efficiency of the hydraulic jack.
b) Explain why the hydraulic jack is not 100% efficient.

Answer
useful energy output

- x 100%
total energy input

a) Efficiency=

150N 56 0em

x 100%

150 x 20.0 x 107

=60%

b) Energy is ‘lost’ as heat and sound energy caused by friction between
the moving parts of the jack. The platform of the hydraulic jack has
mass so gains some potential energy when the wheel is lifted.

3.6x10° x 0.5x 10~ A Figure 6.8 Hydraulic jack

Change in potential energy in a gravitational field

A mass m experiences a force mg when it is in a gravitational field, where g
is the gravitational field strength, as shown in Figure 6.9.

In order to move the mass a small distance Ax in the opposite direction to the
gravitational field (small enough for the gravitational field strength g not to
change significantly), an amount of work mgAx must be done on the mass.
The gravitational potential energy of the mass increases by the same amount:

AE =mgAx
If the gravitational field is uniform (g is constant):
AE =mg Ah
where Al is the total distance moved in the opposite direction to the

gravitational field.

Change in potential energy in an electric field

A charge 4q experiences a force Eq when placed in an electric field of strength
E, as shown in Figure 6.10.

In order to move the charge a small distance Ax in the opposite direction to
the electric field (small enough for the electric field strength E not to change
significantly), an amount of work EgAx must be done on the charge. The
electrical potential energy of the charge increases by the same amount.

AEP=Eq Ax
If the electric field is uniform (E is constant):
AE =Eqd

where d is the total distance moved in the opposite direction to the electric
field.

AL, = mgAh

Tax Ah

mg

Y

A Figure 6.9 Gravitational
field and potential energy

- d

I |

Eg i
& ~—@g &

AED = EgAx

A Figure 6.10 Electric field
and potential energy

- Exam tip

Notice that the symbol E
represents electric field
strength, but ED represents
potential energy.

+ 4+ + + o+




Power
Power is the rate of doing work (or transferring energy).

work done (J)

power (W)= time taken (s)

Using the equation for work done: W=Fs, gives:

Fs s
power= 5" F(;) = Fv

E=Ea

work done
Iu wer= ——mM8M94
s time taken

= force x velocity
= Fv

The 8l unit of power is the
kwatt (W).

~

Worked examples

1 Gravel falls onto a conveyor belt at the rate of 5.0kgs™
as shown in Figure 6.11. The conveyor belt is moving at
a constant speed of 3.0ms™.

a) What is the power of the electric motor needed to 5-0kgs"l :

H *s 3% B g% %, o,
i ’o':h‘."’..l.lln :".’: °

-

drive the conveyor belt?

b) Why is the answer to a) an underestimate of the true value?

Answer

A Figure 6.11 Conveyor belt

4=

30ms!

a) Each second 5.0 kg of gravel is accelerated to a
speed of 3.0ms™'. The minimum power required is
the kinetic energy gained by the gravel each second.

1
pnwer:Ex 5x32=22.5W

b) The conveyor belt is not 100% efficient. Energy
is lost as heat and sound energy caused by the
frictional forces acting on the moving belt.

2 A 1kW electric motor is used to lift a load of 300N with the
aid of a simple pulley system, as shown in Figure 6.12. A force
of 200 N applied by the motor will just lift the load.

200N

/-\ 1 KW electric matar

a) Explain why the force needed to lift the load is less
than 300N.

b) Calculate the efficiency of the pulley system. Bom

c¢) The motor lifts the load 8.0m in 5.0s. What is the

overall efficiency of the motor and pulley system?
State any assumptions you make.

Answer

a) To lift the load 1.0m the motor has to pull the rope
a distance of 2.0m. The work done by the motor is
200x2.0=400J; the work done on the load is only 300x1.0=300J.

b) For every 1.0m the load is raised:

efficiency=

30
useful energy output % 100% :_Q x 100 =75%
total energy input 40

300 x 8.0
c) output power=useful energy out per second= ——g%— =480 W

input power=1x10* W

useful power output __480 100% = 48%

overall efficiency= =
9 total power input 1 x 10°

A Figure 6.12 Pulley system

The load also gains
kinetic energy since it is
moving, but when the
motor stops, this energy
is quickly ‘lost’ so is not

§ ‘useful’ energy.




Work, energy, and power

) Raise your grade

(@) Explain what is meant by work done. Work done = force x distance

; moved in the direction of the force.
work done=force x distance moved x

-------------------------------------------------------------------------------------------------------

Answer should include reference to gravitational field e.g add °...its position in a gravitational field’.

Elastic PE. is Energy stored because soma’fhing has been stretched v 2]

(c) The picture shows part of a rollercoaster ride.

5.0ms!
—

The carriage and passengers, of total mass 500 kg, is moving horizontally at A with a speed of
5.0ms™'. Air resistance is negligible and other friction forces can be ignored.

Show that the change in gravitational potential energy of the carriage and passengers, as the
carriage moves from A to B, is 88kd.

A€, =mgAh=500x 181X (330 —20.0) =83 kT v  Method.

........................................................................................................... [1]
(d) Calculate: The kinetic energy the carriage
(i) the kinetic energy of the carriage and passengers at B. :Ezaezytziﬂi:::ﬁehfmld be
Potential eneray lost = Kinetic energ) QAL =88 KT XV .. oeeverurersssessressens 2

Uses principle of conservation of energy.

---------

(ii) the speed v of the carriage and passengers at B. (Correct value is 95 kJ.)
| x 3% %107
Emvﬁz% X 10> = v= 22# =138 ms" vv speed=_ 19 ms [2]
oo T e
Correct method used. «eeeseeereeesenness Correct calculation allowing for e.c.f. +ecevsvennnaas

(e) Infact, air resistance and other frictional forces are significant. The speed of the carriage at B is
13ms™'. The length of the track from A to B is 30 m. Calculate the average frictional force acting
on the carriage and passengers as it moves from A to B.

Fa:AE'P— AE =88 X10°— /A X500 X (13" —5) =52 X 10"v | Correct method.
............. i MR U b L O R SR oy oy (TN

..........................................................................................................

.............

A




9 Exam-style questions

1 A uniform square paving stone, of dimensions 4 (a) Distinguish between gravitational potential
40.0cmx40.0cmx8.0cm, has a mass of 30kg and energy and electrical potential energy. [2]
is lying flat on the ground. (b) A tennis ball of mass 60g is dropped from

e c AL > i a height of 4.0 m onto level ground.

‘ [ & 0cm B

¥ ‘ i
v

How much work is needed to stand the paving P4
stone on its end? 40m H
A 47] B 59 H
C 106J D 18J 1]

2 Starting from rest, a skier skis down a 30° slope Vlé) §
of length 25 m. Ignoring frictional forces, what is Y feoms? |

7
hetispeed atihend of fieRlope: Ignoring air resistance, calculate:

() the gravitational potential energy lost by
the ball when it reaches the ground

(ii) the speed v of the ball just before it

hits the ground. [3]
(c) The ball rebounds with a speed of 6.2ms™".
i . Calculate:
A l6ms B 2lms (i) the fraction of energy ‘lost’ in the collision
C 24ms" B Sl (1] (ii) the maximum height H reached by the ball
3 A constant force F is applied to an object which is after the first bounce. [3]
initially at rest. 5 (a) (i) Define power.
F -
() { (i) Use your definition to show that:
L s ) power=forcex velocity [3]
Which graph shows the variation of W, the work (b) A lorry of mass 3000kg moves at a speed of
done by the force, against s, the distance travelled 15ms ! along a horizontal road. A resistive
by the object? force of 2.4kN acts on the lorry.
WJL W“ 15ms'_1
— Resistive farce
of 2.4kN
) @
A B B 2 The lorry accelerates at 0.50ms™. Calculate:
(1) the driving force produced by the lorry’s
wh wt engine
(i) the output power of the engine. [3]
S‘ Sh
c D (1]



7 Motion in a circle

Key points

[l Define the radian and express angular displacement in radians.

Understand and use angular speed to solve problems.

O

Recall and use v=rw to solve problems.

o

Understand the centripetal acceleration for motion in a circle at constant speed.

2

Recall and use the centripetal acceleration equations a=r®? and a=l’;—.

O

Describe how motion in a curved path needs a perpendicular force.

i
1

2
1 Recall and use the centripetal force equations F=mr? and F= mr” ;

L. -

Kinematics of uniform circular motion

o
Radians and angular displacement >
The angular displacement 8 of an object moving in a circular path is 0= arc length =£ :
usually measured in radians (Figure 7.1). ' radius r

For a complete circle (360°), [=2ar, so 6 =2x radians:

3
1 radian= 360 _ 5730 ‘\
Angular velocity
The angular velocity o of an object is the rate of change of angular
displacement with time: B
A6
O A Figure 7.1 Radian measure

where A@ is the angle ‘swept’ by the radius in time At and is measured in
radians per second (rads™ or just s!). The linear speed v is related to the
angular speed @ by the equation:

U=rau v
For an object moving with constant angular speed ® around a circle of radius
r (see Figure 7.2), the time for one complete revolution is T, where:

2nr 2w

v @

Worked example

The approximate distance from the Earth to the Moon is 3.84 x10%m; the A Figure 7.2 Angular velocity
Moon takes 27.3 days to orbit the Earth.

Calculate:
a) the angular velocity  of the Moon around the Earth

b) the average speed v of the Moon.

Answer
V=
ﬂ) w= 2—?:: = 2z =2.66x10"%rads™ —
T 27.3%24 X 60 X 60 or
b) v=r®=3.84x10°%2.66x10=1.02kms"" "o
\ 7




Centripetal acceleration and centripetal force

Centripetal acceleration

Velocity is a

gquantity - it has both magnitude and direction. Since

an object moving in a circle is constantly changing direction, its velocity is
constantly changing. It is accelerating.

From Figure 7.3, for an object moving a small angular displacement A@in a
small time At, the change in velocity Av is:

(as AB is very small)

Av=2vsin (%)= vAB

So the centripetal acceleration a is:
_QU_UAH_
At At

Substituting v=rw, the centripetal acceleration a can also be written:

2

el
a=raf=—
>

-~

Worked example

A wind turbine (see Figure 7.4) rotates at 14 revolutions per minute
(r.p.m.). The diameter of the turbine is 70m.

a) Calculate the angular velocity of the turbine in rads™

b) Determine the centripetal acceleration of a point:
i) at the end of one of the turbine blades
ii) at the midpoint of one of the turbine blades.

Answer

W x2n =1.47rads™

a) w=14rpm.=
b) i) a=rw*=35x1.472=75.6ms"

il)a=rw*=17.5x1.47*=37.8ms™

Centripetal force

From F=ma, a force is needed to accelerate an object. If an object is moving
along a curved path it must be accelerating because its velocity (a vector) is

changing direction, even if its speed is constant.

The force needed to keep an object of mass m
moving in a circle of radius r with constant

speed v is:
§ P
F=ma=mre’= : ‘_."i
The direction of the acceleration is towards
the centre of the circle so the force must ;
act towards the centre of the circle (Figure 7.5).

A Figure 7.5 Centripetal force

AB— |

A Figure 7.3 Centripetal
acceleration

For small angles:
sinf=0

where the angle @is
measured in radians.

L >
a=raf=—
7
. A
-
|f \
I
|
“\ \
‘
\ /’
\_“‘ ///

A Figure 7.4 Wind turbine




Motion in a circle

-

Worked examples

1 The international space station 1SS (Figure 7.6) orbits the Earth at
a height of 400 km above the Earth’s surface, taking 92 minutes
to complete one orbit. The radius of the Earth is 6370 km.

a) Calculate:
i) the angular velocity of the space station
ii) the centripetal acceleration of the space station.

b) The mass of the space station is 4.2 x 10°kg.
i) Calculate the centripetal force acting on the space station.
if) What provides this force?

Answer

=1.14 x 107 rads™ A

i) a=rar=(6.37x105+4x 109 x(1.14x10%)? = 8.80m 5
b) i) F=ma=4.2x10°x8.80=3.70x10°N

ii) The gravitational pull of the Earth on the space station
keeps it in orbit around the Earth.

A ball of mass m connected to a string of length [ is whirled in a

vertical circle at a constant speed v, as shown in Figure 7.7.

a) Explain why the ball is accelerating even though it is
travelling at constant speed.

b) Calculate the tension in the string:
i) when the ball is at its lowest point

if) when the ball is at its highest point,

Determine the minimum velocity needed for the ball to
continue to travel in a circular path.

Answer
a) Acceleration is the rate of change of velocity - a vector quantity,
which has both magnitude and direction. As the direction of the
ball is changing continuously, the velocity is also changing. It is
ii) At the highest point
(see Figure 7.9):

b) i) At the lowest point
(see Figure 7.8):

2

2
T—mg=mu T+mg =

2

2 mv

muv T =

T=mg+

c¢) From b) ii), the tension in the string cannot be less than zero

(otherwise the string will be slack and the ball will be in free fall).

2

= -mg>0 so W gr
v>y(gr)

Figure 7.6 International Space
Station orbiting the Earth

.

______________

A Figure 7.7 Vertical rotation of
a ball

accelerating.

A Figure 7.8

ﬁl"?\_,

T+mg

A Figure 7.9




. Raise your grade

A conical pendulum consists of a small ball of mass 50g suspended on a string and rotated in a
circle of radius 0.40m at a constant speed of 90 r.p.m., as shown. [The value of g is 9.81ms=2]

(@) (i) Show that the angular velocity o of the sphere is 9.4 rads™.

_ _qox2m _ i
o=90 r.pm.= w0 =q4rad s"'v Correct method and calculation. (1]

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(ii) Hence show that the centripetal acceleration of the ball is 35ms™=.

a=rof=040X 94" =253 mstv

............................................................... Correct method and calculation.  [1]
(b) (i) Calculate the centripetal force acting on the ball. Correct method and calculation,

= ~ but units omitted (should be N),

tf’m?vﬁ&i@‘&]?" 052?;?‘?]ﬂ4f.¥‘0""+1tﬁ.f'!‘r?!?% SO Ioses secom mark- ’

centripetal force=1T1 2]

(il) State the direction of this force.

Outwards from the centre of the circle x ogieet stateimelt went el (]
mebereasatatatasasEsaasnenintosnsisasasasissnninnisansivesasssBlIBERS  IEWAIEIS NG CEmtie S

(c) Show that the angle @is approximately 75°.
—> Tein@=mra?=50 X 107X 040 X 9 4*

R Y R R R TS

F=ma applied in horizontal [**
=1Tl v direction correctly.

L Ry (RN

T Tco&é':w:mﬂ:‘ioxw'*xf’l.%l v

R N R TN ] T T Y]

Forces in vertical direction

=044 resolved correctly.
Tsinf@ 171

fan@= TeosO —m:?bo v

L T R N TR T Y]

0=145" v Correct value for 6.

A R e R (4]

.




Motion in a circle |

Exam-style questions

[The value of gis 9.81ms™~.] (b) Hence show that:

1 (&) Express the following angles in radians: (i) T=mlw*
(i) 60° (i) 250° (iii) 95° [3] (ii) tan Qz% 2]
b) E the followi di i
(b) dip:s:' € l01lowing radian measumes in 5 Aball of mass 0.20kg is connected to a light,
gn ' . i inextensible string and rotates in a vertical circle
(i) r (ii) T (iii) 7 [3] of radius 0.40m. The speed of the ball at its

An electric fan rotates at 800 r.p.m. The distance
from the tip of a blade of the fan to the centre is
30.0cm.

Calculate:
(a) the angular speed of the fan in rads™
(b) the linear speed of the tip of a blade. [2]

A simple pendulum consists of a small ball of
mass 80.0 g tied to a thin string of length 0.60m,

A

0.60m

o_o5mi o'

m=280.0g

The ball is pulled to one side so that it is raised
0.05m above its lowest position and released.

Calculate:

(a) the speed of the ball when it reaches its
lowest position

(b) the maximum tension in the string.

A ball of mass m is connected to a string of length [

and whirled around to form a conical pendulum

moving with angular velocity @ in a horizontal
circle of radius r.

6

6.0ms!

(@) Use the principle of conservation of energy to
show that the speed of the ball at its highest
point is 4.5ms™". [2]

(b) Hence calculate the tension in the string:

(i) at its lowest point
(i) at its highest point. [3]

(c) Describe and explain what would happen if
the speed of the ball at its lowest point was
3.0ms. [2]

A cyclist travels in a circle of radius 50.0m at

a speed of 20ms-', as shown below. The

combined mass of the motorcyclist and

motorcycle is 250 kg.

(a) Calculate:

(i) the combined weight W of the motorcyclist
and the motorcycle

(if) the vertical reaction force R, [2]

(b) (i) Calculate the centripetal acceleration of the
motorcycle and motorcyclist.

(if) Hence show that the centripetal force

o Fis 2.0kN. (3]
(a) State an expression, in terms of m, r and o, for:
) ' ' (c) Explain what provides the force F. [2]
(i) the centripetal acceleration of the ball (d) Show that the angle 0is 51°, State any
(i) the centripetal force acting on the ball. [2] assumptions you make. [2]



8 Gravitational fields

A13.1-13.5 pages 196-207

[ Understand the idea of gravitational field as an example of field of force, and define gravitational
field strength as force per unit mass.

[l Understand that, outside the sphere, the mass of a sphere can be treated as a point mass at its
centre.

o Gm,m
1 Recall and use Newton’s law of gravitation in the form F= ——=.
r

[ Analyse circular orbits in inverse square law fields, including geostationary orbits, by relating the
gravitational force to the centripetal acceleration it causes.

[l Derive, from Newton's law of gravitation and the definition of gravitational field strength, the
equation g= -% for the gravitational field strength of a point mass.
r
GM
[ Recall and solve problems using the equation g= - for gravitational field strength of a point
mass.
[l Appreciate that, on the surface of the Earth, g is approximately constant.

[ Define gravitational potential at a point as the work done in bringing unit mass from infinity to the
point.

1 Solve problems using the equation ¢:—% for the potential in the field of a point mass.
r

Newton’s law of gravitation . i
Any two masses will attract each other. The size of the force of attraction ‘_e

]
-
3 depends on the product of the two masses and varies inversely as the square of !
< their distance apart. This can be summarised in Newton's law of gravitation; | ]

Le r n

Ll LS
r A Figure 8.1 Newton’s law of
where m_ and m, are the masses, and r the distance between the centres of gravitation

the two masses (Figure 8.1). G is a constant, called the universal gravitational
constant, and is equal to 6.67 x10"" N m*kg™.

For objects such as planets and moons, each mass can be treated as if all Fe Gm,m,
the mass is acting at the centre of the object (in the same way as a charged r

sphere can be treated as if all the charge is at the centre of the sphere).

Worked examples

The Earth has a mass of 6.0 x10**kg, and the Moon has a mass of
7.4x10%kg. The average distance between the centre of the Earth, and
the centre of the Moon is 3.9 x10°km. Calculate the gravitational force

The value of G is provided
in Exam Papers 1, 2, and 4.

Spherical masses can be
exerted on the Moon by the Earth. [This e Bioa o ] i Uil 8
Answer by the Moon on the Earth. concentrated at the centre. |
=11 24 22
F:Gmg’"’* . 6.67 x 107" x (6.0 ><510 ]3x2(7.4 x107) —1.95%10°N
r (3.9x 10" x107)

@



Gravitational fields [

Grawtatlonal field strength ‘g/P
The gravitationa Id stre ll g at a point is the force per unit mass on : \
a small test mass at that pmnt (see Figure 8.2). It is a vector (having both 0
magnitude and direction) and has units of Nkg'. 4 r

From Newton's law, for a mass M the gravitational field a distance r from the

centre of the mass is: A Figure 8.2 Gravitational

GM field strength g

£= oE

The direction of the force is towards the centre of mass M. Gravitational field
lines can be drawn to show the direction of the gravitational field.

Figure 8.3 illustrates that the Earth’s gravitational field is radial (it varies

as 1/r*), but on a smaller scale, such as near the Earth’s surface, the field Near the Earth’s surface
strength is constant in both magnitude and direction - a uniform field. the gravitational field g is

constant and has a value
'S B of 9.81 Nkg'.

Worked example
[GM for Earth is 4.0x 10" N m?kg'; radius of the Earth is 6.4x10°km.]

Calculate the gravitational field strength:
a) on the Earth’s surface

b) 1.00km above the Earth’s surface

Answer o ) A Figure 8.3 Radial
a) :GM - M ~9.8Nkg" These values illustrate gravitational field
r* (6.4 x10%) why g near the Earth’s
surface can be considered ;
GM 4.0 x10" . | aconstant.
b) g=—= ———— =9.8Nkg" Take care to be consistent
2 (6.4 x 10° +10%) e . .
with units. In this question,
> * | GMis in S.I. units, so r
. . must be converted to
Orbital motion metres before substituting
Any object moving round in a circle of radius r at a constant speed v is the value for r into the
accelerating because it is constantly changing direction. Acceleration is the Lequailon.

rate of change of velocity (a vector), and an object moving in a circle is
changing direction. The acceleration is a where

v
a=—.
r
Using F=ma, the force F needed to keep an object of mass m moving
in a circle of radius r with constant speed v (see Figure 8.4) is:

2
mv
F=

r

In the case of a satellite orbiting the Earth, or a planet orbiting
the Sun, this force is the gravitational force of attraction.

For a mass m orbiting a mass M at a distance r:

GMm mv’ < GM
— = S0 V=, |—

r r r

A Figure 8.4 Orbital motion
The time T for one orbit is:




Worked example :
[GM for Earth=4.0x 10" Nm? kg, radius of the Earth=06.4x 10°km] F.Or e de.ialls about
circular motion see

A satellite is orbiting in a low Earth orbit, 1000km above the Earth’s Unit 7 Motion in a circle.
surface. Calculate:

a) the speed of the satellite
b) the time taken for one orbit of the Earth.

Answer

4.0 x 10" £

a) v= (64 = — =74 x10"ms :
x 10°+10 } Remember that the radius
of the orbit is the radius of
the Earth plus the height
2 6.4 x 10° +10° .

_2ar i ( & - % } =6.28 x10°s (about 105 minutes) of the orbit above the
v 7.4 x 10° surface of the Earth.

Geostationary satellites

Satellites in geostationary orbit complete one rotation of the Earth in
24 hours, as shown in Figure 8.5. Viewed from Earth, the satellites
appear stationary.

3
Re-arranging T = 2m, ’GrM T =24 hours

the radius R of a geostationary orbit is:

|| 2[4 x10" x (24 x 60 x 60)° I
= GMT \fx 4”_)( ekl A Figure 8.5 Geostationary orbit

R=423x10m

The height h of a geostationary satellite above the Earth’s surface is:
h=4.23%10"-6.4x10°=3.59 % 10" m

Gravitational potential I8 Remember

The gravitational potential ¢ at a point P is defined as the work done in By convention,
brmgmg unit mass (1 kg} fmm infinity to that point (see Figure 8.6). As gravitational potential
work would need to be done in taking unit mass from the point to infinity, is zero at infinity, so
gravitational potential is always negative. anywhere else the

gravitational potential
is less than zero; i.e.,
negative.

\ A

A long way away!

Distance from the
centre of M

P
i
i
i
i

¢

A Figure 8.6 Gravitational potential A Figure 8.7 Variation of gravitational potential



Gravitational fields

For point P, a distance r from a mass M, as shown in Figures 8.6 and 8.7, the
gravitational potential is:

GM
¢=—?
This means that (GM/1) joules of energy are needed to move 1kg from P to
a long way away from M. The closer point P is to mass M (the smaller the
value of ), the greater the value of (GM/r), and so the greater the energy
needed to move 1kg to a point far away from M.

The units of gravitational
potential are Jkg™.

s 3
r N
Worked example The escape velocity is
Ignoring air resistance how fast must an object be thrown up in the air to the velocity an object
not come down again? (What is its escape velocity?) needs to completely
break free from the
Answer gravitational field of a
GM ; )
On the Earth’s surface the gravitational potential is R m?S? and ‘escape’ to
infinity.
where R is the radius of the Earth, and M its mass. N >

An amount of energy equal to % is needed for 1kg to ‘escape’,

GMm
so a mass m would need

joules of energy.

The kinetic energy given to the object must be at least as large as this for
the object to escape:

1, GMm
=muU =
2 R
2GM
V=
R

For Earth, GM=4.0x 10" Nm?kg ', R=06.4x 10° km, so

s [2x40x 10" The ‘escape velocity’
e 6.4 x10° from Earth is about

-
=1.12x10* ms™ 11kms
. S

Gravitational field and gravitational potential
difference

The gravitational potential difference between two points is the work done
in moving unit mass (1kg) from one point to the other. If the two points are
close enough together, such that the gravitational field strength g does not
change significantly, the change in gravitational potential A¢ in moving a
small distance Ah is:

Ap=ghAh [ '
For a mass m moving a distance Ah, the change in gravitational potential AE. =mgAh
P

energy AE is mgAh (the equation for gravitational potential energy
calculations on, or near, the Earth’s surface).

See Unit 6 Work, energy
and power for examples
of the use of this equation.




/) Raise your grade

The graph shows how the gravitational potential ¢ due to the planet Mars varies with distance r from
the centre of the planet. The mean radius of Mars is 3.4 x 108m.

ri 10%m

¢/ 107 kg

1.0 4

~-1.2 -

(a) (i) Define gravitational potential. The statement is correct, but

The gravitational potential at a point is the energy ::iﬁ:ﬂg:ﬁ' di;ffi;?::ﬁgi’:i’fl
mass (i.e., 1kg) from infinity to

needed fo move a mass from infinity to that point. v X 40 oine Soncerned. 2l

R N T T T Y Ty

(ii) Explain why gravitational potential is negative.

Energy is needed 1o fransfer a mass from a point 1o infinity —energy is gained moving a

L R Y

mass the other way. v A good answer.

L T ott¢d¢t0!0t¢h¢¢tototdt¢t¢-¢o+h¢o+-tdtdt¢t¢t¢t¢t000[1]

(b) Use the graph to find the gravitational potential:

(i) onthe surface of Mars
1% X 10 Tkg.l . Good estimate from the graph.

sssssssssrnany |"-'-'uvuoooooooooou'-'-v-ruioo'.ooo.cop'v-:-ruvvqcoooooooootu:ur-v-v'.ooooo.ooc'p"vi[1]

gravitational potential= 13X 10"... Tkg"

(if) ata point P, 6.0x108m from the centre of Mars.
lo -l
TIX 10 :.TKG v [1]

L R L R R R

gravitational potential= 7.1 X 6% .5 Kg’l

(c) Calculate the energy needed to move 100 kg from the surface of Mars to the point P.

Enengy needed =100 X (1.3 X 10'=T1 X 109 =59 X 10°T v v/

rreen T YRR R TR Y

Correct method, correct calculation with unit.

energy needed= 59X 10°7 [2]




Exam-style questions

[Use G=6.67x 10" N m*kg*; radius of the
Earth=6.4x10*km]

1

Two average-sized adults are standing
approximately 1.0m apart.

(a) Estimate the mass of one adult. [1]

(b) Hence estimate the gravitational force
between the two adults. [1]

(c) If both adults are standing on a frictionless
surface, and in the absence of air resistance,
estimate the size of the acceleration towards
each other. [1]

The Moon orbits the Earth once in 27.3 days.
Its mean orbital radius is 3.8x10°km. Use this
information to calculate the mass of the Earth. [3]

Use g on the Earth’s surface as 9.81 Nkg'. The
Earth’s radius is 6.37>10*km.

(a) Calculate the mass of the Earth.

(b) Justify the number of significant figures in
YOUT answer. [3]

A planet is in a circular orbit around a star of
mass M. The radius of the orbit is R, and the
time for one orbitis T.

(a) Show that the velocity v of the planet is:

’2GM
v=. ==
R

(b) Hence show that:

3

T—z=él constant [3]

Use g on the surface of the Moon as 1.6ms=.
The radius of the Moon is 1.74x10°km.

Calculate:
(a) the mass of the Moon

(b) the gravitational potential on the surface of
the Moon

(c) the escape velocity from the Moon's

surface. (4]

Europa, one of Jupiter’s moons, orbits the planet
once every 85 hours at a radius of 6.7 x10° km.

Calculate:
(a) the speed of Europa
(b) the mass of Jupiter. [3]

Gravitational fields

(a) Define gravitational potential. [1]

(b) A spacecraft, of mass 6.0x 10*kg, is in orbit
round the Earth at a height of 200km.

.
-

Calculate:

(i) the gravitational field strength at this
height

(if) the gravitational potential at this
height. [3]
(c) The spacecraft moves to an orbit 500 km
above the Earth’s surface.
Calculate;
(i) the gravitational potential at this new
height

(if) the increase in gravitational potential
energy of the spacecraft. [3]

A weather satellite, of mass 320 kg, is to be placed
in geostationary orbit, 3.56x 10°m above the
Earth’s surface.

(a) (i) State the time taken for one orbit.

(i) Show that the speed of the satellite is
3.1x10*°ms™.

(i) Calculate the kinetic energy of the
satellite. [4]

(b) Calculate the gravitational potential:
() on the Earth’s surface
(if) at the orbit height of 3.59 x 10" m. [3]

(c) Calculate the increase in gravitational
potential energy of the satellite in being lifted
from the Earth’s surface to its orbit height, [1]

(d) Suggest one reason why the energy needed
to launch the satellite into orbit is much
more than the sum of your answers to

(a) (iii) and (c). [1]



9 Deformation of solids

compressive.

O

spring constant.
Define and use the terms stress, strain, and Young modulus.

Describe an experiment to find the Young modulus of a metal wire.

Distinguish between elastic and plastic deformation of a material.

O 0o ooaog

Understand that forces cause materials to deform and that the deformation can be tensile or

Describe the behaviour of springs in terms of load, extension, elastic limit, Hooke’s law, and the

Understand that the area under the force-extension graph is the work done.

Find the strain energy in a deformed material from the area under the force-extension graph.

Force and solid materials

When a pair of forces is applied to a solid material it deforms; that is, it
changes shape. Forces that stretch a material are called tensile forces (see
Figure 9.1a); forces which compress a material are called compressive forces
(see Figure 9.1b).

—

a Tensile forces b Compressive forces

A Figure 9.1 Forces on a solid material

The deformation is elastic if the material returns to its original shape

once the forces have been removed. If there is some permanent deformation
(e.g., compression or extension) when the forces have been removed, plastic
deformation has occurred.

Stretching springs

The graph in Figure 9.2 shows the extension (stretch) of a spring as different
loads are placed on it.

" Original length
of spring

Extension x

Load

Y

0

Extension

A Figure 9.2 Stretching a spring

&

Key terms

Deformation: change of
shape.

Tensile: forces which
stretch.

Compressive: forces
which compress or
squash.

Elastic: returns to original
shape when forces are
removed.

Plastic: some permanent
deformation when forces

L are removed.




Deformation of solids

® 0-A: The graph is a straight line, through the origin. Doubling the load
doubles the stretch (extension) - the spring obeys Hooke's law:

F=kx

where F is the load applied, x is the extension, and k is called the spring
constant and is a measure of the stiffness of the spring. The SI units for
k are Nm™.

Point A is called the elastic limit. The spring stretches elastically. If the
load is removed at any point between O and A, the spring will return to
its original length.

* A-B: If the spring is stretched some plastic deformation occurs. When
the load is removed the load-extension graph follows the dotted line.
With the load removed completely, there is a permanent extension of
the spring.

Energy considerations

The work done in stretching a spring is the area under the load-extension
graph (see Figure 9.3). If the spring obeys Hooke’s law and is not stretched
beyond the elastic limit, the work done on the spring (called the strain
energy) is:

E=+Fx

bl

Substituting from F=kx gives

= Liy? =1
=tkx’or E =1

a-|"g,

As the spring stretches elastically, all the energy stored is recoverable as
mechanical energy when the load is removed from the spring.

( b

Worked example

A spring, with unstretched length 12.0cm, stretches 4.0 cm when
supporting a load of 5.0N.

a) Determine the spring constant k of the spring.
b) Calculate the total length of the spring if it supports a load of 8.0N.
c) Find the energy stored in the spring when it is stretched by 7.0cm.

State any assumptions you make.

Answer

a) k=£-_20 _i35Nm
X 40x10

b) x=§=i=0.{lﬁ4m

Total length of spring=12.0+6.4=18.4cm

c) Ezékxzzéx 125 (7.0x10-2)*=0.311J

Assumptions made: the spring obeys Hooke’s law, and the elastic limit is
not exceeded.

PR oremoo

Hooke’s Law:
F=kx

k is the spring constant; it
is measured in Nm-'.

x is the total extension of

the spring, not the total
length of the spring.

L

Work dane = % Fx

PR e

Extension

A Figure 9.3 Energy stored
in a stretched spring

Pl cxam o

When using an equation
like the equation for the
energy stored in a spring,
the units used must be
consistent.

The extension must be

in metres (m), the force

applied in newtons (N),

and the stiffness k in

newtons/metre (Nm™), so

that the final answer is in
| joules (J).

&




Stretching materials

The graph (Figure 9.4) shows how a ductile metal (one that can be drawn
into a thin wire, such as copper) stretches when supporting different loads.

* (D-A: The material obeys Hooke’s law - the extension of the material
is directly proportional to the load applied. If the load is removed, the
material returns to its original length. It has behaved elastically. A is the
Hooke’s law limit.

*  A-B: The material is now past the Hooke’s law limit, but still behaves
elastically. If the load is removed, the material again returns to its
original length - B is the elastic limit.

* B-C: The material has been stretched beyond its elastic limit. If the material
is stretched to point C and the load then removed, the material will not
return to its original length, but instead return along the dotted line on the
graph. There is now some permanent deformation of the material.

If a material is stretched beyond its elastic limit (see Figure 9.5), the work
done in stretching the material is the area under the loading curve (solid
line). The recoverable mechanical energy is the area under the unloading
curve (dotted line).

The difference between the two areas is the energy lost as internal energy
(heat) in the material.

Stress, strain, and the Young modulus

When stetching different materials, such as metal wires, siress and st

are more useful quantities to calculate than just the force applied and the
extension, as the stress-strain graph illustrates properties of the material itself
rather than one specific length or diameter of the material.

Stress o

force applied
stress o = bp - £

cross-sectional area A

The SI units for stress are Nm™, or pascal (Pa).

Straing

: extension x
strain e =

original length - E_U

Strain has no units. It can be expressed as a number or a percentage.

Worked example

A steel wire of length 3.0 m and diameter 1.0 mm stretches 1.9mm when
supporting a mass of 10kg. [Use g=9.81 ms2.] Calculate:

a) the stress b) the strain.

Answer

BY i DBl g iy R
A ax(0.5x107)?
x  19x10”

b) &= = :7D=63x10 (0.063%)

Load

0 Extension

A Figure 9.4 Load against
extension graph for ductile
metals

Load

A

0 Extension

A Figure 9.5 Stretching
beyond the elastic limit

Area A

A Figure 9.6 Stress

Extension x

Original length £

A Figure 9.7 Strain

When calculating A (the
cross-sectional area)

don’t forget to halve the
diameter to find the radius
when using A=nr’.




Deformation of solids

Young modulus E

The Voung modulus of a material is a measure of the stiffness of that
material. The larger the value of E, the stiffer the material - the greater the
stress needed to produce a particular strain.

Be careful not to confuse
E for the Young modulus
with E for energy.

stres

Young modulus=
strain

B
£

The units for the Young modulus are Nm™ or pascal (Pa).

m ~

force applied

stress = Pp o g= F
cross-sectional area A

strain = m oF B= o
original length ‘]
stress

Young modulus = oo g=2
strain £
‘. "

Worked examples

1 A nylon rope of length 3.5m and diameter 5.0mm stretches 12 mm
when supporting a load of 80kg. Determine the Young modulus of

the nylon.
F 80 x 9.81
(E) ax(25x107)

s = =12 x10"Pa
£ X 12 x 107
I, 3.5

2 A car hoist is supported by four solid steel columns. Each column is
2.0m high and 2.0cm in diameter. Determine how far the hoist will
descend when supporting a car of mass 2000kg.

[Young modulus of steel=2.0x 10" Nm™]

Answer

Answer
X = Fy - (2000-59.81) x:2.0 — =1.6x10" m (0.16 mm)
EA 20x10" x4 x 7 x (1.0 x 107°)

Measuring Young modulus E
Figure 9.8 shows a simple way of measuring E using a thin wire.

Small mark an wire

Wooden blocks with scale/ruler behind it
G<lamp l
Pulle
i I / ¥
Mass hanger +
~ slotted masses

A Figure 9.8 Measuring Young modulus £




This method is useful for testing materials that can be drawn into long, thin
strips such as copper or steel wire, nylon or polythene. A mark is made

on the wire, and the length of the wire from the wooden blocks recorded.
Weights are steadily added, and the extension of the wire recorded for
different loads (the weights can be removed periodically to see if the wire
returns to its original length; that is, if the material is still elastic).

The length of the wire can be measured with a metre rule and the diameter
with vernier calipers (or a micrometer if available). Stress and strain can
then be calculated from the load and extension values, and a graph of stress
against strain plotted. The value of E can then be found from the graph.

Making improvements

Practical physics papers often ask how a particular experiment or
procedure can be improved.

How can this experiment be improved? Good suggestions might
include:

* using a longer length of wire (this will reduce the percentage
uncertainty in the measurement of the length of the wire)

* measuring the extension with a travelling microscope
= measuring the diameter of the wire with a micrometer (a micrometer

is accurate to £ 0.01 mm, whereas vernier calipers are only accurate
to + 0.1 mm).

Avoid making suggestions for improvements that should be carried
out anyway, such as repeating measurements, reading an instrument
‘square-on’ to avoid parallax errors, or correcting for zero errors in

Lins1ru ments.

Elastic and plastic deformation

The loading and unloading force-extension graphs for different materials
provide useful information about their elastic and plastic properties.

In Figure 9.9a, the metal wire is elastic up to the elastic limit, If the load
exceeds the elastic limit value, the material will not return to its original
length. The area under the loading curve is the work done in stretching the
material (the strain energy). Up to the elastic limit this energy is stored as
potential energy and can be recovered as mechanical energy.

In Figure 9.9b, the material is elastic but does not obey Hooke's law. The area
under the unloading curve is the energy which is recoverable as mechanical

energy. The area between the two curves is the energy lost as internal energy
(heat) in the material. This is why car tyres are hot after a long journey.

In Figure 9.9c, the material behaves plastically. When the load is removed
there is only a small reduction in length. The area between the two curves is
the energy lost as internal energy (heat) in the material.

Elastic limit

l .

Load
i
%

‘,"i_lnl{:ading

Extension

a Metal wire

/
Loadng/

Unloading

Load

Extension
b Rubber

/

Loading //
——

/ Unloading

: /

Extension

Load

¢ Polythene

A Figure 9.9 Stretching
different materials



Deformation of solids

Raise your grade

(a) Define, for a metal wire,

(i) stress

Dtvess, is. the force, on. the wice. divided by the, cross-sectional.area,of, e wire. ...
(ii) Young modulus A correct definition.
tensile stress
Young modulus equals prag prare v A correct definition.  [2]

L T R ]

(b) A steel cable of length 0.50m and diameter 4.0mm is suspended from the ceiling and supports
a chandelier (a light fitting). The mass of the chandelier is 25.0kg. The Young modulus of steel is
2.1 x10"Pa.

Calculate:

(i) the weight of the chandelier

W=mg=220. %9872

.e .s-saﬁ.‘-;a.a-¢.I5¢sas¢-¢asas¢-¢tt¢t¢-¢nsasano.sa.a-unoos.-.¢-¢as¢s+-¢at¢o¢-¢tsas+-+nsau

weight=____ 245 N [1]

(i) the extension of the cable caused by the weight of the chandelier.

A 245 x 050 4 "
i - T lox10 Vv X
A 21x10" x 7T x (?. % 10 ) Correct method.

R R R R R R ]

Correct substitutions into equation. The candidate has forgotten to convert the answer
from metres to millimetres.

extension= 4. X 107 mm [3]

SesssesssRnEeRnE.

(c) The steel cable consists of a large number of very thin strands of steel bound together, rather
than a single wire. Suggest a reason for this. [1]
Aot of thin sirands are. sironger. than. 2 single thick cable

R rE L] L T Y

If the combined cross-sectional area of all the thin strands is the same as the cross-
sectional area of the thick cable, the strengths of the two cables are exactly the same. A
large number of thin cables is much easier to bend (more flexible) than a single thick cable.




9 Exam-style questions

1 A spring stretches 4cm when supporting a load of 5 A lift in a building is supported by six steel
20N. cables, each 20 m long. Each cable consists of
Three identical springs to the one described are 20 strands of steel wire of diameter 2.0 mm.
connected as shown in the diagram. The Young modulus of steel is 2.1x 10" Pa.

A man of mass 80kg steps into the lift. How
far will the lift descend?

A 0.01mm B 0.05mm
C 0.10mm D 0.20mm [1]

6 A metal wire of length 1.200m and diameter
0.61 mm stretches 0.43 mm when a load of
1.30 kg is hung from one end.

What is the extension of the three springs when

supporting a load of 30 N? (@) Calculate:
A 3cm B 6cm (i) the stress on the wire
C 9cm D155 (1] (i) the strain of the wire
2 The graph shows the extension of a spring for iy e Yeiaang AR i metal, [4]
different loads. (b) Justify the number of significant figures
- you have given for your answer to (a)(iii). [1]
H 7 (a)Define the Young modulus. [1]
90 4
(b) The upper leg bone (femur) in an adult
G HH HEE HHEH human has a length of 50cm and a
?0‘;;;":.1151.':::::::.:.?:.:"":::"."':'.f.::.:..‘:::'::::' minimum diameter of 2.8 cm.
e P H The Young modulus of bone is 8.5x10°Pa.
2 sob L ERt Estimate:
. — () the mass of a man
- (i) the maximum stress on the bone when
H the man stands on one leg
*H (iii) the compression of the bone when the
man stands on one leg. [4]
0 T — R s e e s S (c) State, with a reason, whether your answer

T T
¢ 05 1 15 2 25 3 35 4 45 5 55

B to (b)(iii) is likely to be an overestimate or

an underestimate. 1
What is the energy stored in the spring when a H]

load of 80N is applied to the spring? 8 You have been asked to investigate the

mechanical properties of nylon. You are

A 1.6J B 3.2J provided with a reel of nylon thread.
C 160J D. 320 (1] Design a laboratory experiment to determine
3 What are the SI base units of stress? the mechanical properties of the material. Draw
A kgm's? B kgms? a diagram showing the arrangement of your
C kgm-s D kgms? (1] equipment. In your account you should pay

4 A tensile force is applied to a thin wire causing it particular attention to:

to stretch by an amount x. The same force is now (@) the procedure to be followed
applied to a wire of the same material, but with
three times the length and twice the diameter.
How much will this wire stretch?

2 3 4 3 (d) the analysis of the data
k=2 w2 gl e (1] :
3 4 3 2 (e) the safety precautions to be taken. [15]

(b) the measurements to be taken
(c) the control of variables



Ideal gases

~1 Recall and solve problems using the equation of state for an ideal gas pV¥=nRT.
Z1 Infer from a Brownian motion experiment the evidence for the movement of molecules.
"1 State the basic assumptions of the kinetic theory of gases.

Explain how molecular movement causes the pressure exerted by a gas, and hence deduce the

1
relationship pV = ENm <c’>, where N is the number of molecules.

"1 Recall that the Boltzmann constant k is given by the expression k = Ni'

A

C1 Compare pV = %Nm <c*>with pV=NkT, and hence deduce that the average translational kinetic

energy of a molecule is proportional to T.

Equation of state for an ideal gas

An ideal gas is one in which all the collisions between atoms or molecules
are perfectly elastic and in which there are no intermolecular forces. Such a _

; pV =nRT
gas obeys the equation:

pV=nRT

A Level

where p is the pressure of the gas, V its volume, and T its absolute
temperature measured in kelvin (K). n is the number of moles of the gas and
R is the molar gas constant. The equation is called the equation of state for
an ideal gas.

Real gases normally obey this equation except under extremely low values
of temperature or very high pressures. For gases at moderate values of
temperature and pressure it can be shown by experiment that:

* pux .37 at constant temperature - Boyle’s law (Figure 10.1a)

e VoT at constant pressure - Charles’ law (Figure 10.1b)

¢ p o T at constant temperature - the pressure law (Figure 10.1c).

[ A o4
1 / > / >
v -273°C Temperature/°C =273°C Temperature/°C
a Boyle's law: p ot -lﬁ b Charles’ law: Vo T(in kelvin) ¢ pressure law: pa T(in kelvin)
at constant temperature at constant pressure at constant temperature

A Figure 10.1 Gas laws



The three gas laws can be combined:

Vv
PY _ constant

The size of the constant depends on the number of gas molecules (e.g., doubling
the number of gas molecules in a sample doubles the number of collisions of the
molecules with the walls of the container, and so doubles the pressure).

R is the value of the constant for one mole of gas molecules. A mole is just
a number, Av« N, (where N,=6.02x 10" mol™'), and so the
constant for a different amount of gas is nR where n is the number of moles
of gas present.

i ™

Worked example

Before setting off on a journey, the air in the tyres of a car was at a
temperature of 18°“C and a pressure of 1.92x10°Pa. Immediately after
completing the journey the pressure in the tyres was 2.25x 10°Pa. What
was the temperature of the air in the tyres?

Answer

The volume of the air in the tyres V is constant, and so from the
equation of state for an ideal gas:

pY _pX

T, T,
50
5
I _Tp, (273 + 18}x(z.2:5x10  J—
D 1.92x10'

Temperature of the air in the tyres=341 — 273=68°C.
L A

Kinetic theory of gases
Brownian motion

Particles of smoke, illuminated with a bright light and observed under

a microscope, ‘jiggle’ about randomly, continually changing speed and
direction (see Figure 10.2). The effect is explained by air molecules, which
are too small to see under the microscope, bombarding each smoke particle
from different directions. Brownian motion is clear evidence that molecules
in gases are in continuous, random motion and is the experimental basis for

the kinetic theory of gases.

s

L~ Micrascope

Smoke particle

N

Lamp
[ 4
(=0
/ \
Smoke particles Glass rod for
ina glass cell focussing light

a Observing B rownian mation b Motion of smoke particles

A Figure 10.2 Brownian motion

Don’t forget that T in
all the gas equations
is always the absolute

temperature, in kelvin:
T(K)=T(°C)+273"°

The values of R and N,
are provided in Exam
Papers 1, 2, and 4.

R w
Avogadro’s constant N,

is equal to the number of
atoms in 12g of 2C.

Nﬁ=6.02><1 0**mol’

A mole (mol) of anything is
N, of it.

See Unit 1 Physical
quantities and units.

' ™
Brownian motion is named
after Robert Brown, a
botanist. In 1827 he
observed pollen grains
in water and noticed tiny
particles, ejected by the
pollen grains, moving
about randomly in the

water.
.




Internal energy of a gas

The molecules of a gas have both kinetic energy (because they are moving)
and potential energy (because there are attractive forces between them). The
sum total of all the molecules’ potential and kinetic energies is the internal
energy of the gas.

For an ideal gas, there are no intermolecular forces so the molecules have no
potential energy - all the internal energy of an ideal gas is kinetic energy.

Kinetic theory of gases

The kinetic theory of gases is based on the model of a gas that has many
identical particles moving about randomly, colliding with each other and the
walls of their container, constantly changing speed and direction.

The theory makes a number of simplifying assumptions about gases:

* the gas molecules have negligible volume compared to the volume of
the gas as a whole

= the forces between gas molecules are negligible, except when colliding
with each other

* collisions between molecules, or between molecules and the walls of
their container, are perfectly elastic

* for an individual gas molecule, the time for a collision is negligible
compared to the time between collisions.

Imagine a single molecule of mass m, inside a box of side L, travelling at
speed ¢ towards the right-hand side of the box (Figure 10.3). When it collides
with the wall it has a perfectly elastic collision and rebounds with the same
speed in the opposite direction:

change in momentum of the molecule=mc — (-mc)=2me

The molecule moves towards the left-hand wall, rebounds, and returns to hit
the right-hand wall again. The molecule will have travelled a total distance
2L at speed ¢ between collisions with the right-hand wall:

time taken between collisions with the right-hand wall = 2
c

Using Newton's second law (force=rate of change of momentum):

force on right-hand wall=rate of change in momentum

_2me _mc’

% L
¢
WZ
force ( L ) mc’

pressure on right-hand wall= = — =
area L L

For N molecules in the gas, all moving with different speeds, the pressure
is: ; ;
P m<c’> m<c’>

=N -
P & v

where <¢®> is the mean of the squares of the velocities and V is the volume
of the box. This assumes all the molecules are travelling in the same direction
and colliding with the same two opposite faces of the box.

Ideal gases

See Unit 12 Thermal
properties of materials

for more about internal
energy and the first law of
thermodynamics.

A Figure 10.3 Molecule in
a box



At any one time, as many molecules are moving up and down, or forward
and backward, as left and right, and so we must divide by three to calculate

the pressure in any direction:

1. m<ch>
—=N
3 3 v

This equation is usually written:
pV = : Nm <c*>
3
Re-arranging this equation gives:
p= : (Nm) <c’> = 1p<r:z>
% 3

where p is the density of the gas.

-
Worked example

Estimate the r.m.s. speed of air molecules at room temperature.

Answer

Estimates: atmospheric pressure = 1.0x10° Pa

density of air at room temperature = 1.29kgm™
R . 1 R
earranging  pV = 3quc > gives:
1 /[Nm 1 2
=—|—]<c’>==p<c’>
4 3 ( v ) 3 A

5
S0 <(‘2>=3_p=M=2.3x][}5
P 1.29

The root-mean-square speed (¢ ) = y<c’> =480ms™.

L

Kinetic energy of a gas molecule

1 .
Comparing pV=§ Nm <c*> with the equation of state for an ideal gas:

% Nm <¢*>=nRT

1 ;3
kinetic energy of a gas mulecu1e=5m <c‘>=EkT

where k is the Boltzmann constant (k=1.38x10*JK").

So the average kinetic energy of a gas molecule is directly proportional to the

absolute temperature of the gas.

The r.m.s. or root-mean-
square’ speed (¢ )is
the square root of the
mean value of the squares
of the speeds.

~

N=number of molecules
n=number of moles
N (Avogadro’s

n N, constant)
(. R __ 83
N, 6.02x 10%
=1.38 x 10®JK™’

You may be asked to deduce the relationship between average kinetic

energy and absolute temperature.

The value of k is provided
in Exam Papers 1, 2,
and 4.




Ideal gases

Raise your grade

(a) State two assumptions made in the kinetic theory of gases.

afoms.have. elastic, collision

The. velume, o individu
A good answer. Other answers include: no inter-molecular forces/molecules in random
motion/time of collision negligible compared to time between collisions/large number of

molecules.

(b) Using the kinetic theory, it can be shown that the pressure p and the volume V of a gas are

related by the equation: pV = 1Nm<cz>
3
State the meaning of: The answer is correct, but note that there are 2 marks

(i) Nm available. The second mark is for identifying m as the 2]
mass of an individual atom/molecule and/or N as the

The mass of the 935 VX number of atoms/ molecules.

(ii) <c> [1]
The speed of the g2s molecules 5quamd 'S

The symbol < > denotes a mean (average) value. <c?> is the mean of the squares of
the velocities of all the gas atoms/molecules.

c) Use this equation to show that the density p of a gas is given by p = 27 ; 1
P 2
_1 3 _INm ., Nm <z
pV = ;Nm< ¢ >=>p-;7< ¢ > buTT— P (the density)
__°p N_m'_ correctly identified as the density.
50 P pEpy v v

T T T T T Y

(d) (i) An ideal gas obeys the equation pV=NkT where k is the Boltzmann constant. Combine
this equation with the equation given in part (b) to show that the kinetic energy of a gas

molecule is proportional to T. N cancels and equation re-arranged to find (1]

| 2 1 2
=— = m<c®>.
pv 3Nm<|c >=NKT o 2

L R L R R

| % — ; :
80 —m <c >==kT —> the kinetic energy of a gas molecule is proportional to T
2 2
(ii) A gas, initially at a temperature of 50 °C, is heated to a temperature of 150°C. Compare
the kinetic energies of a gas molecule at these two temperatures. [2]

Kinetic energy of a gas molecule is Propoﬁiona‘. to T 50 kinetic enengy at 150°C is

e O L T )

fhree times kinetic enerqy at 50°C. xx

L T T TIETYy L T T Y]

A frequent error. The temperature T is the absolute temperature, measured in kelvin.

The answer is:
kinetic energy at150°C _ (273+150) _

=Ea
kinetic energy at 50°C 273+50




“/) Exam-style questions

1 (a) State what is meant by an ideal gas. [1]

5

(b) An oxygen cylinder contains oxygen at a
pressure of 1.37x10°Pa and a
temperature of 20°C. Calculate the
pressure if the temperature rises to 70°C. [2]

(a) What is the equation of state for an ideal
gas? (1]
(b) A weather balloon is released from ground

level, where the temperature is 20 °C.
The pressure inside the balloon is 1.2x10°Pa.

The temperature of the atmosphere
decreases by 5°C for each kilometre the
balloon rises.

Calculate:

(i) the temperature of the atmosphere at a
height 3km above ground level

(ii) the pressure of the gas inside the
balloon at this height. [Assume the
volume of the balloon remains
constant. ] [3]

(a) Define Avagadro’s constant. [1]
(b) A gas cylinder contains 9.0x 10 m® of

argon (* Ar) at a pressure of 1.37x10°Pa
and a temperature of 20°C.

Calculate:
(i) the number of moles of argon

(ii) the mass of argon in the cylinder. [3]

1
(c) For an ideal gas, pV = gNm <c’>.

(i) Explain what is meant by <¢*>.

(ii) Calculate the root-mean-square speed
of the argon atoms. [3]

(a) State what is meant by a mole of gas. [1]

(b) An ideal gas at a temperature of 25°C exerts
a pressure of 2.0x10°Pa. The volume of
the gas is 4.0x10”m?. Calculate the
number of moles of gas present. [2]

(c) The gas is heated at constant volume so
that the pressure increases to 2.5x 10° Pa.
What is the new temperature of the gas? [1]

(a) (i) Describe what is meant by the internal
energy of a gas.

(ii) Explain how this differs from the
internal energy of an ideal gas. [2]

8

(b) Calculate the internal energy of:
(i) 30g of helium (*He) at 50°C,
(i) 0.5g of krypton (**Kr) at 200°C. [3]
[Both gases can be treated as ideal gases.]

The equation of state for an ideal gas with
pressure p and volume V is:

pV=nRT
(a) State the meaning of the symbol:
(i) n (i) R (iii) T. [3]
(b) A gas cylinder contains 5.0x10™*m’ of xenon
at a pressure of 20.0x 10°Pa and a temperature

of 27°C. Determine the number
of atoms of xenon that are in the cylinder. [3]

A piston of mass 0.400kg can slide freely up
and down a cylinder of inner diameter 12.0cm.
The temperature of the air trapped inside the
cylinder is 20°C. The piston rests at a height
of 8.0cm above the base of the cylinder.

Air

N

80cm

- -

 12.0em

(a) Calculate the pressure (above atmospheric
pressure) of the air trapped in the cylinder. [1]

(b) The temperature of the air is increased to
80°C. Determine the new height of the
piston in the cylinder. [2]

A canister of volume 2.50x 10 m* contains

air at a pressure of 1.01 x 10°Pa. The temperature
of the air is 20°C.

[Specific heat capacity of air at constant volume
is 0.716 kJ kg K-'. Molar mass of air is 29gmol-.]

(a) Determine how many moles of air are in the
canister. [2]

(b) The air in the canister is heated to 80°C.
Calculate:

(i) the pressure of the air at the new
temperature

(i) the change in internal energy of the
air. (3]



11 Temperature

A 20.1-20.5 pages 298-313

[l Understand that heat (thermal) energy is transferred from a region of higher temperature to a
region of lower temperature.

[} Understand that regions of equal temperature are in thermal equilibrium.

[l Understand that a physical property that varies with temperature may be used for the measurement
of temperature and state examples of such properties.

[J Understand that there is an absolute scale of temperature that does not depend on the property of
any particular substance (i.e., the thermodynamic scale and the concept of absolute zero).

[ Convert temperatures measured in kelvin to degrees Celsius and recall that T/K=T/°C+273.15.

[ Compare the relative advantages and disadvantages of thermistor and thermocouple thermometers.

' 7
Heat and temperature If T, > T, heat energy flows
Heat is the movement of energy caused by a temperature difference. If one from A to B E
body (A) is in thermal contact with another body (B) at a lower temperature, o
then heat energy will flow from A to B (see Figure 11.1). <
The extra energy that B gains can either increase the average energy of the ’ ’
molecules of B or cause B to do physical work. For example, if B is a gas, i M'J”Tfmm %
the extra energy can cause the gas to expand (doing external work) or the
internal energy of the gas to increase (or both). A Figure 11.1 Heat flow

whenT, > T,

If A and B are at the same temperature, no net heat flow takes place. The two

bodies are in thermal equilibrium (see Figure 11.2). imemalyiibsian: Bt p
il S

net heat energy flows from A
Measuring temperature toB

A wide range of thermomelric properties can be used to measure
temperature, including:

* expansion of a liquid (e.g., mercury or alcohol)
n Mo net heat flow T

e change in electrical resistance of a metal wire (e.g., platinum)

* change of electrical resistance of a thermistor
A Figure 11.2 Thermal

* change in the output p.d. of a thermocouple equilibrium when T, =T,

¢ change in pressure of a fixed volume of gas.

Some of these physical properties vary linearly with a change in temperature

over a large range of temperatures (e.g., the resistance of a metal wire); A thermometric property
others do not vary linearly, or do so only over a small range of temperatures is one which changes
(E.g., the resistance of a thermistor). with temperature; e.g.,

electrical resistance.




Liquid-in-glass thermometers

Liquids such as mercury and alcohol expand as their temperature rises. The
volume of liquid is small, allowing the thermometer to respond quickly to
changes in temperature, and is contained in a thin-walled glass bulb to aid
the conduction of heat energy (see Figure 11.3). Making the capillary tube
finer increases the sensitivity of the thermometer.

Liquid-in-glass thermometers are relatively cheap and portable, but cannot be
used to read temperatures remotely or electronically. They have a restricted
range, limited by the freezing and boiling points of the liquids. They are also
fragile and mercury is poisonous.

They are usually calibrated by first placing 100

the uncalibrated thermometer in melting
ice (Figure 11.4a) and then directly above
boiling water (Figure 11.4b) to establish
two ‘fixed points’ on the temperature scale,
as shown in Figure 11.3. The distance
between the two fixed point marks can
then be subdivided into 100 equal degrees
(‘centigrade’).

Uncalibrated
thermometer

0°C

Melting ice

Metal resistance thermometers

Metal resistance thermometers (sometimes
called RTDs - resistance temperature
detectors) consist of a length of fine wire
wrapped around a ceramic (or glass)

strip or rod, as shown in Figure 11.5.

The wire is usually platinum, nickel or
copper. Platinum is particularly good as
the relationship between resistance and
temperature is extremely linear.

a lce point (0°C)

Platinum resistance thermometers have a wide range of operating
temperatures (typically —200°C to 1200°C) and are very accurate, but are
unsuitable for rapidly changing temperatures because of the relatively high
heat capacity of the wire.

Thermistors

[hermistors are semiconductors consisting of a mixture of metals and
metal oxides (see Figure 11.6). The electrical resistance of most thermistors
decreases as the temperature increases (NTC - negative temperature
coefficient) though the resistance of some thermistors increases with
increasing temperature (PTC - positive temperature coefficient). In both
cases the relationship between temperature and resistance is non-linear so a
calibration curve is also needed.

Thermocouples

A thermocouple consists of two different metal
wires, such as iron and copper, or platinum and
constantan (an alloy of copper and nickel) joined
together to form two junctions as shown in
Figure 11.7.

Copper wire \

Junction 1
{at reference temperatue)

A Figure 11.7 Therm

D)

100°C \-

Thin capillary tube

TSR

100 equal degrees

{‘cantigmda’)
o X
Thin glass bulb
Mercury ar
aleohol

A Figure 11.3 Liquid-in-glass
thermometer

T Steam
Boiling water

Heat

b Steam point (100°C)

.

.--"'--—

A Figure 11.4 Calibrating a thermometer

Ceramic rod

Connecting kads

Platinum, nickel of
SO e ir & coll

A Figure 11.5 Metal
resistance thermometer

A Figure 11.6 Symbol for a
thermistor

/ Copper wire

Junction 2
{at unrknown temperature)

Iran wire

ocouple



Temperature

When the two junctions are at different temperatures an e.m.f. is produced. The
larger the difference in temperature, the greater the e.m.f., but the relationship
is not linear, and so a calibration graph of p.d. against T is also needed.

For more about calibration
curves, see Unit 2
The thermocouple junctions require little heat energy to warm up so they Measurement techniques

respond very quickly to changes in temperature. They can also be made quite

small so that the temperature at precise locations can be found. As the output
from the thermocouple is electrical it can be recorded and used as part of a
control system to monitor temperature and give warnings if a temperature
becomes too high or too low. Temperatures up to 2000°C can be measured.

Constant-volume gas thermometer

If the volume of a fixed mass of gas is kept constant
when heated, the change in pressure is proportional

to the change in temperature, Constant-volume gas Air
thermometers have a very wide range of temperatures,

but are bulky and slow to respond (see Figure 11.8).

They are used mainly as a standard to help calibrate

other, more practical thermometers.

In Figure 11.8, as the gas is heated by the surrounding liquid, the
increased pressure pushes the mercury column down on one side of
the tube and up on the other. The difference in height i is proportional
to the change in temperature.

Comparing different types of thermometer

Mercury
Liguid

A Figure 11.8 Constant-
volume gas thermometer

¥ Table 11.1 Advantages and disadvantages of different types of thermometer

(NTC) or increases (PTC) as
temperature rises

Type of Thermometric
thermometer property Advantages Disadvantages

Liquid-in-glass | Liquid expands as Easy to use, portable, Fragile, restricted range, must

(e.g., mercury, |temperature rises high precision be read directly, cannot measure

alcohol) the temperature of small objects

Platinum Resistance increases Very accurate, wide Slow response — not suitable for

resistance (linearly) as temperature range of temperatures, | rapidly changing temperatures,
rises can be used remotely or measuring the temperature of

small objects
Thermistor Resistance decreases Low cost, small size Non-linear and relatively small

range of operating temperatures
(-100°C to +300°C)

Thermocouple

E.m.f. produced across
thermocouple which
depends on the difference
in temperature between
the two thermocouple
junctions

Fast response, wide
range, remote readings
possible with long
leads. Can measure
temperature at a
specific point

Metals can corrode. One
junction needs to be maintained
at a constant temperature.
E.m.f. produced is small (a few
microvolts/°C) so sensitive
instrument needed to measure
e.m.f.

‘standard’ thermometer
to calibrate other types
of thermometer

Constant- Pressure of gas increases | Wide range of Bulky and slow to respond
volume gas with increasing temperature | temperatures, very
thermometer accurate. Used as a




Worked example

830Q when the temperature is 70 °C.

b) Calculate the resistance of the wire when the temperature is 55°C
¢) State any assumptions you make in deriving your answers.
Answer

Change in temperature 70 -30

change in resistance  830-760

temperature=30+ (795 — 760) x 0.571=50°C

b) 30+ (R - 760) x0.571=55°C, R—760 = 505 ;7310

=43.8, so R=8040Q

.

a) Determine the temperature of the wire when its resistance is 795Q.

= 0.571°C Q™', so when R=7954),

A platinum resistance wire has a resistance of 760Q when the temperature is 30 °C and a resistance of

c) The resistance of the wire varies linearly with temperature for the range of temperatures in the question.

Temperature scales

Most temperature scales are thermometric scales in that they rely on the

properties of a particular substance to establish the fixed points of the scale.
The Celsius scale, for example, uses the melting point of ice (0 °C) and the

boiling point of water (100°C) as its fixed points.

The absolute (thermodynamic) scale of temperature does not depend on

physical pmpertles Instead the scale relies on two fixed points:

® absoluts : the temperature at which a substance has minimum

internal energy (the atoms or molecules of the substance have no random

kinetic energy, but may still have some potential energy),

e {riple point of water; the temperature and pressure at which water exists

in equlhbrmm asa suhd liquid and vapour (0.01°C and 611.2 Pa).

The size of the unit of temperature on the thermodynamic scale of

temperature is chosen to be the same as the size of a degree on the Celsius
scale - a 1°C change in temperature is the same as a change of 1kelvin (1K).

To convert temperature

from Celsius scale to
absolute scale:

T/K=T/°C+273.15

A Raise your grade

A student is investigating how the resistance R(£2) of a thin copper wire changes with temperature

T (°C).
Ohmmeter T/°C R/Q
Q——
25 4.4+ 0.05
38 4.6+ 0.05
Thermometer

Copper wire 51 4.8+ 0.05
_— 65 5.0+ 0.05
69 5.1+ 0.05
i 89 5.4+ 0.05

Heat




Temperature | |

~

(a) (1)) Plotagraph of R/ against T/°C. Include error bars for R. 2]

(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph. Both
lines should be clearly labelled. 2]

(iii) Determine the gradient and intercept of the line of best fit.

Gradient = 5.16-4.44 =0.0157 Q-‘l v CorreCt read -Offs and SUbSﬁtution into '&_y
74.0-28.0 to find the gradient. Ax
; : : radient=0.0151€Q°C"
Using the point (840, 532) in y=mx+c. g 20RIMN L
‘C.T- .:Iql?.:.é‘?‘%.:‘.o“'oﬁl‘fz->f<..%‘R‘:.f};fo'otg-g..l’."..-..“.0....f-“.f.f‘f""..‘."’..‘.’. [2]
Correct read-off and substitution into y=mx+c. intercept=__ 400Q
56
‘Worst acceptable’ line
drawn - ‘bottom-right to 4., WV e st A
top-left’. a straight line. SR
v \ e
Points plotted accurately. 55 | A \
Error bars drawn correctly. E*’ EE oo bt
T |
50 4 _ JJEE I
‘Best fit’ line drawn g 7 |
accurately. = w// v
1 A |
L |
T I
|
4.4 - ,E"f
42 : : : : : : !
20 30 40 50 60 70 80 90

Ti°C
(b) R and T are related by the equation:
R=a(1+bT) where a and b are constants.

Use your values from (a(iii) to determine the values of a and b. Give appropriate units.

a=y—intercept=4.00 The candidate has matched a with the
; y-intercept and ab with the gradient, but has
ab=gradient=0.0151 omitted the units for a and b.
radient 0.0l J The units for a must be the same as the units
b=g = 51=’3ﬁ3><|03 vx B Bl

2 400
bT must be dimensionless, so b has units

of °C-".
a=___ 4.00 2]
b= 349%X107




Exam-style questions

"

1

(@) Convert into kelvin, and to an appropriate
number of decimal places:

@ 100.00°C
(i) o°C
(iii) — 80.7°C (3]

(b) Convert into °C, and to an appropriate
number of decimal places:

() 273K
(i) 376.2K
(iii) 0.0K (3]

(c) State and explain what is meant by thermal
equilibrium. (2]
Describe a method of calibrating a liquid-in-glass

thermometer between 0°C and 100°C. [3]

Describe one advantage and one disadvantage
of a thermistor used as a thermometer
compared to a thermocouple. [2]

(@) (i) State the two fixed points used for the
absolute temperature scale.

(ii) Describe the difference between the
absolute temperature scale and other
temperature scales. [3]

(b) State what is meant by the absolute zero
of temperature. [1]

(c) A heater raises the temperature inside an
incubator from 19.7 °C to 37.5°C.

Determine, in kelvin and to an appropriate
number of decimal places:

(i) the rise in temperature of the incubator
(ii) the final temperature of the incubator. [2]

A thermocouple produces an e.m.f, of 5.5uV for
each 1.0°C temperature difference between the
two junctions of the thermocouple. The cold
junction is maintained at a constant temperature
of 20.0°C.

(@) Calculate:

(i) the temperature of the hot junction
when the e.m.f. is 1.21 mV

(ii) the e.m.f. when the temperature of
the hot junction is 1200°C. [2]

(b) State any assumptions you make. [1]

6 A mercury-in-glass thermometer and a

platinum resistance thermometer are both used
to measure the temperature of a water bath.

(a) The length of the mercury column at the
ice point is 16.3 mm; at the steam point
the length of the column is 53.1 mm. When
placed in the water bath, the length of the
mercury column is 32.8 mm.

Determine the temperature of the water
bath on the centigrade scale, as measured
by the mercury-in-glass thermometer. [2]

(b) The resistance of the platinum resistance
thermometer at the ice point is 2.875 £; at
the steam point it is 4.621 Q. When placed
in the water bath its resistance is 3.663 Q.

Determine the temperature of the water
bath on the centigrade scale, as measured
by the platinum resistance thermometer.  [2]

(c) Suggest a reason why your answers to
(a) and (b) are not the same. [1]

State, with reasons, which type of thermometer
you would use to measure the following:

(a) the melting point of wax [1]
(b) the temperature of a Bunsen flame [1]
(c) the air temperature in the Antarctic. [1]

A student is investigating the relation between
the resistance R of a platinum wire and its
temperature T.

It is suggested that the relationship is:

R=R (1+aT)
where R, and « are constants.

Design a laboratory experiment to test the
relationship between R and T. Explain how your
results could be used to determine values for R,
and ¢. You should draw a diagram showing the
arrangement of your equipment. In your account
you should pay particular attention to:

¢ the procedure to be followed
* the measurements to be taken
* the control of variables

¢ the analysis of the data

* any safety precautions to be taken. [15]



Thermal properties

12 of materials

1 Explain, using a simple kinetic model for matter:
© the structure of solids, liquids, and gases
© why melting and boiling take place without a change in temperature

© why the specific latent heat of vaporisation is higher than the specific latent heat of fusion for
the same substance

© why a cooling effect accompanies evaporation.

[l Define and use the concept of specific heat capacity, and identify the main principles of its
determination by electrical methods.

1 Define and use the concept of specific latent heat, and identify the main principles of its
determination by electrical methods.

[l Understand that internal energy is determined by the state of the system, and that it can be
expressed as the sum of a random distribution of kinetic and potential energies associated with the
molecules of a system.

] Relate a rise in temperature of a body to an increase in its internal energy.

1 Recall and use the first law of thermodynamics AU=g+w expressed in terms of the increase in
internal energy, the heating of the system (energy transferred to the system by heating) and the
work done on the system.

Specific heat capacity and specific latent heat

Solids, liquids and gases
Solids

The atoms and molecules in a solid substance are close together, held in
place by strong forces of attraction between them (see Figure 12.1a). Heating
a solid causes the molecules to vibrate more (the temperature of the solid
increases). If enough heat energy is supplied, the molecules can break free
of each other, and the substance starts to melt.

A Level

Liquids

In liquids, the atoms and molecules are free to slip past each other and
move about at random (see Figure 12.1b). The forces of attraction between
molecules are much smaller, allowing the liquid to flow. Heating a liquid
cause the temperature to rise as the molecules gain more kinetic energy.
The fastest molecules, near the surface of the liquid, may have enough
energy to escape completely (evaporate). If enough heat energy is supplied, b Liquids
all the molecules have enough energy to break free and the liquid starts Q

to boil. o/<. |
O
Gases e

The atoms or molecules that make up a gas are much further apart and

moving at high speeds, continually having elastic collisions with the walls of ¢ Gases
their container and each other (see Figure 12.1c). Heating a gas causes the A Figure 12.1 Solids, liquids,
average molecular speed to increase and the temperature of the gas to rise. and gases



Melting and boiling

If a solid such as ice is heated at a uniform rate, its temperature rises until it

reaches its melting point. Once completely melted, its temperature continues The temperature of a
to rise until it reaches its boiling point. Once boiled, the temperature of the substance is an indication
gas continues to rise. Figure 12.2 illustrates this process. of the kinetic/vibrational
* Asasolid is heated from A to B, its temperature rises. energy of its molecules.
The energy needed to raise the temperature of 1kg of a
substance by 1°C is called the specific heat capacity ¢ of

the substance.

*  From B to C the substance is melting. All the heat energy
supplied is being used to weaken or break the bonds L — =

2 point
between molecules, so the molecules do not gain any extra 2 Liquid / Latent heat af
kinetic energy during this stage - the temperature of the % ol L
substance remains constant. = gie:itng N €
* The energy needed to melt 1 ]:(g of the substance at its fo;eDnr: ZESL?QQU
melting point is called the specific latent heat of fusion L. .
(When a liquid solidifies energy is released ) The amount
of energy needed to melt mkg of a substance at its melting A Time
point is mL,.

A Figure 12.2 Melting and boiling
* From C to D the temperature of the liquid rises until it reaches

its boiling point. If the specific heat capacity of the liquid is ¢, then the

heat energy needed to raise the temperature of a mass m of the liquid

by an amount A8 is mcAB.

e From D to E all the heat energy supplied is being used to break the bonds
between molecules completely, and the temperature of the liquid/gas
remains constant until this process is complete. The energy needed to
change 1 kg of a liquid at its beiling point into gas is called the s

f vape n L . This is much larger than the spemhc
latent heat of fusion because the molecules have to break away from
each other completely during vaporisation. When a gas condenses back
into a liquid this energy is released as heat into the surroundings. The
amount of energy needed to vaporise mkg of a substance at its boiling
point is mL .

* From E to F the molecules gain more kinetic energy and the temperature
of the gas rises.

Cooling by evaporation

At any one instant the molecules of a liquid have a range Fastest moving

of kinetic energies (see Figure 12.3). The more energetic molecules escape

particles which also happen to be at the surface of the C/
liquid may have enough energy to ‘escape’ completely \O Vapour
(become vaporised). If the fastest molecules evaporate, the

average energy of the molecules left behind decreases; its O

temperature falls slightly compared to its surroundings.

Average speed of

Liguid

Y f§’
J& %

is cooler

A Figure 12.3 Cooling by evaporation

remaining malecules
decreases - the liquid



Thermal properties of materials

' ~ -
Worked example m

Specific in a definition

a) State two differences between evaporation and boiling.
) & & means ‘for 1kg’. The units

b) Explain why the specific latent heat of vaporisation of a substance is of specific heat capacity
much greater than the specific latent heat of fusion. are J kg 'K™'. The units of
specific latent heat are
Answer Jkg.

a) Evaporation can occur at any temperature but only at the surface
of a liquid. Boiling only occurs at the boiling point of the substance
but takes place throughout the liquid. Boiling usually requires a .
heat source but is a relatively rapid process; evaporation draws heat ‘m—
energy from the surroundings but is a relatively slow process. The specific latent heat

of a substance is the

b) The energy required to completely separate molecules when energy needed to change

changing from liquid to gas is much greater than that needed to the state of 1kg of the
‘loosen’ the bonds between molecules when changing from solid to substance at constant
liquid. temperature.

L . '\ o

Finding the specific heat capacity of a metal

A metal of known mass m is placed in an insulated container and heated
with an electrical heater which fits into a hole drilled into the metal, as
shown in Figure 12.4. A thermometer, fitted into a second drilled hole,
measures the temperature change.

Electrical «—

circuit Thermometer
d.c. supply
40 —
Electrical . A
Fialar —— Insulation
Metal block
Immersion heater

A Figure 12.4 Measuring specific heat capacity

The electrical power of the heater is IV, where [ is the current through the
heater and V the potential difference across it. A stopwatch records the time
t the heater is switched on and the thermometer measures the change in

temperature A6.

If no heat is lost to the surroundings: mcAf = IVt so ¢ = AVE

mAf

The value is likely to be an overestimate of the true value as some energy will
always be lost to the surroundings.

g '
Worked example

A cylinder of aluminium, of mass 1.0kg, is heated by a 50 W electric immersion heater. After 4 minutes the
temperature of the cylinder has risen 11 °C. Determine the specific heat capacity of aluminium.

Answer
energy supplied to aluminium=50x(4x60)=12000J

- ; - 12000 B i ] The correct value is
specific heat capacity of aluminium = TR 1.09 x 10" Jkg™ K 920 J kg~ K-'.




Finding the specific heat capacity of a liquid using a
calorimeter

A simple calorimeter is a metal canister (made from copper or aluminium)
of known mass and specific heat capacity, with a tight-fitting lid (see
Figure 12.5). The calorimeter is insulated to reduce heat lost to the
surroundings as much as possible. A known mass of the liquid is heated
using a small electrical heater and A#@, the rise in temperature, is recorded.

Tight-fitting lid

Electrical «—

circiit Thermometer

Electrical
heater

Insulation

Liguid

Calorimeter Stirrer

A Figure 12.5 Measuring the specific heat capacity of a liquid
The same method for measuring the electrical energy supplied to find

the specific heat capacity of a solid is used, but the heat energy
absorbed by the calorimeter also has to be taken into account.

i ™\

Worked example

500cm® of water are heated from 18°C to 26°C in a copper calorimeter of
mass 200g. The water is heated by a 50 W electrical immersion heater for
6.0 minutes. Calculate the specific heat capacity of water c_.

[Specific heat capacity of copper is 390J kg K-'; density of water is
1.0gcm™.]

Answer
Mass of 500cm® water=500g

heat energy gain in internal gain in internal
from heater energy of water energy of copper

f_A‘l( A Y [ A \

[50x6x60]=[500x10"xc, x (26 - 18)]+[200x10-*x390x (26 - 18)]

4c,=18000 — 624
¢ =4300Jkg K-

L ”

Finding the specific latent fusion of a solid

Figure 12.6 shows how the specific latent heat of fusion of ice can be
found. Ice at its melting point is heated by an electrical immersion heater.
The amount of ice melted in a fixed time can be found by weighing the
beaker before and after heating. The heat energy needed to melt an amount A Figure 12.6 Measuring the
m of ice at its melting point is mL,. specific latent heat of fusion
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Worked example

Ice at its melting point is heated by a 50 W immersion heater. After 10 minutes it is found that 100g of ice
has melted.

a) Calculate the specific latent heat of ice.

b) State, with a reason, why your answer is an overestimate or an underestimate of the true value.

Answer

a) (100x10%)xL,=50x (10x60) [Thetm? VEIU? is J
L,=3.0x10°Jkg" 3.3x10°Jkg™.

b) This is an underestimate because some of the heat energy to melt the ice comes from the surroundings.
This can be compensated for by repeating the experiment with the heater removed or switched off.
The amount of water that collects in the beaker can be subtracted from the first value to find a more
accurate value for L,.

Finding the specific latent heat of vaporisation of a liquid

The liquid is first heated to its boiling point, as shown in Figure 12.7. A

As the liquid boils the vapour passes through a condenser and
collects in a beaker. The liquid is boiled for a fixed time ¢, and the
current [ in the heater and potential difference V across the heater
are recorded. The amount of condensed vapour collected m can
be found by weighing the beaker before and after the liquid has ' Vapaur
boiled. The amount of energy needed to boil m kg at its boiling
point is mL,.

Coaling water
The experiment can be repeated with different values of I and g
V but boiling the liquid for the same fixed time t. The results can E;I;::r“iec
be used to obtain an accurate value for L , the specific latent heat

of vaporisation of the liquid, by eliminating the heat energy lost
to the surroundings during the experiment.

Bailing liguid
Hesater

A Figure 12.7 Measuring the specific
latent heat of vaporisation

- \
Worked example
A liquid is boiled for 5 minutes, using the apparatus shown in ¥ Table 12.1
Figure 12.7. The mass m of condensed liquid collected is found
by weighing the beaker before and after boiling the liquid. The I1A 74 mlg
experiment is repeated with a different set of values for the 3.5 18 43

current I in the heater and p.d. V across the heater. The results are
shown in Table 12.1.

2.5 11 16

Determine the specific latent heat capacity L, of the liquid.
Answer
energy supplied by heater (IVt) =energy used to vaporise liquid (mL,) + energy lost to surroundings (H)
1st experiment: 3.5%18x(5x60)=(43x107) xL +H (eqn 1)
2nd experiment:  2.5x11x(5x60)=(16x10")xL +H (eqn 2)
(egqn 1) — (eqn 2):  27x10°L,=1.065x10*
L, =3.94x10°Jkg




Internal energy and the first law of thermodynamics

The internal energy of a sy 1 is defined as:
internal energy =  sum of the random distribution of kinetic
of a system and potential energies of its molecules

The internal energy of an object or system can be increased by:
* heating the object
* doing mechanical work on the object.

If a gas is heated, its molecules move faster, and so have more kinetic
energy. If the gas is compressed, the ‘squashing’ imparts kinetic energy

to the molecules - when a bicycle pump is compressed quickly the end
becomes hotter. The change in internal energy, the external work done, and
the heat energy supplied to an object are linked together by the first law of

The first law is really a statement of the « ervation of er . It states
that the change in internal energy of a system {AU] is Equal to the sum of the
energy entering the system by heating (g) and the energy entering the system
by work being done on it (w).

9

Make sure you understand
the sign convention used
for the 1st law:

* +g means heat energy
is supplied to the
system

e —g means heat energy
is supplied by the system

* 4w means work is done
on the system

* —w means work is done
by the system.

AU=g+w

-
Worked examples

volume of 1.7m? Calculate the change in internal energy of the water.

density of water =1.0x10°kgm™]

Answer

heat energy supplied to the water to evaporate it, g
work done on atmosphere, w
w=-1.01x10°%(1.7-1.0x10%)=-1.72x 10°]

change in internal energy AU=g+w=2.26x10°-1.72x10°
AU=2.09x10°]

Answer

start to emit heat energy (g is now negative).

the rubber band will remain constant:

AU=w - g=0

g=(1.0x10%)x (1.0% 10°) X 2.26 X 106=2.26 X 10°]

1 A litre of water at 100°C is left to evaporate. When it has all evaporated, the water vapour occupies a

[atmospheric pressure=1.01 x 10° Pa; specific latent heat of vaporisation of water=2.26x10°Jkg™;

w is negative
because work
is done on the
atmosphere

2 When a rubber band is quickly stretched and released several times, its temperature increases.
Describe what happens to the rubber band in relation to the first law of thermodynamics. State
whether each of the following is positive, negative, or zero: AU, g, and w.

To stretch the rubber band a force is moved in the direction of the force; that is external work is done
to the rubber band (w is positive). No heat energy is supplied from an external source (g=0) so the
change in internal energy AU=w. As the rubber band becomes warmer than its surroundings it will

Eventually the external work done w will be equal to the heat energy lost g, and the internal energy of
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. Raise your grade
(a) Define specific latent heat. [3]

The, energy needed 1o, change state, vxx

BersrRnn e LR R R T Y ] L R R TRy

A better answer would be ‘the energy needed, per kg, to change state, at constant
temperature.’ In the case of a liquid, it is the energy needed to change 1kg from liquid
at its boiling point to vapour.

(b) A student carries out an experiment to find the specific latent heat of vaporisation of water.

d.c. supply
O =

o191

Water vapour
Coaling water

@ Condensed

vapour

Bailing liguid
Heater

The water is heated up to its boiling point, and then boiled for 6.0 minutes. The mass m of
condensed water vapour collected is found by weighing the beaker before and after boiling the
water. The experiment is repeated with a different set of values for the current I in the heater
and p.d. V across the heater.

I/A ViV m/g
The results of the experiment are shown. 30 16 47
Suggest why the same amount of heat energy 20 12 21
H is lost to the surroundings in each
experiment.

A good answer. (1]

----------------------------------------------------------------------------------------------------

(c) Calculate:

(i) the specific latent heat of vaporisation of the liquid L, [3]
3.0X 1 X (b X b0) = (41x107%) X L, +H ) v Correct method.
() —@): 26 x 107 X L =11280— 40 O

L=33X10°v
L=33X10°Jkg!  [3]

sasssssRsBEnan

(ii) the heat energy H lost to the surroundings.

From equation 2: Correct calculation.
H=2.0X12 X (X 0) — (21X 107%) X 33 X 10°

=Mo Jv H= 10y 1]




| Exam-style questions

1 (a) Define specific heat capacity.
(b) Calculate: [1]

(i) the energy needed to raise the
temperature of 8.0kg of aluminium by
5°C
[Specific heat capacity of aluminium is
920Jkg 'K '.]

(ii) the specific heat capacity of lead if
0.48kJ are needed to raise the
temperature of 200 g of lead by 18°C. [2]

2 A 3.0kW electric heater is used to heat 140kg
of water in a tank from 20°C to 65°C.

[Specific heat capacity of water is
4200 kg 'K

(@) Determine the time taken to heat the water. [2]

(b) State, with a reason, whether your answer
to(a)is an under-estimate or an over-
estimate, [2]

3 The height of the Angel Falls waterfall in
Venezuela is 980 m.
[Specific heat capacity of water is 4200Jkg'K™.]

(@) Describe the energy changes involved as
the water falls from the top to the bottom
of the waterfall. (2]

(b) Assuming 70% of the change in potential
energy is converted into internal energy of
the water, determine the difference in
temperature between the top and the
bottom of the waterfall. [1]

4 A continuous flow calorimeter is used to find the
specific heat capacity of a liquid.

Electrical

Liquid out, 26.3°C
heater ‘

Liquid in, 17.8°C T
14 gst

Liquid enters the tube at a constant rate of
1.4gs'. The temperature of the liquid at the inlet
is 17.8°C. As it flows through the calorimeter, the
liquid is heated by an electrical heater of output
power 37.4 W. The liquid leaves the calorimeter at
a temperature of 26.3 °C.

7

The flow rate is now doubled. The output
power of the heater is increased until the
temperature of the liquid leaving the calorimeter
is again 26.3 °C. The output power of the heater
is now 66.7 kW.

Calculate:
(@) the specific heat capacity of the liquid [2]

(b) the heat energy lost each second to the
surroundings. [2]

State what is meant by the internal energy
of a system. [2]

(a) State the first law of thermodynamics.
Explain the meaning of any symbols you
use, [3]

(b) A balloon bursts and all the air escapes
rapidly. State and explain, using the first
law of thermodynamics, what happens to
the internal energy of the air that was
inside the balloon. [2]

(c) A block of ice is removed from a freezer
and placed in a warm room. The ice starts to
melt.

() Explain why work is done on the ice
as it melts.

(i) Compare the work done on the ice
with the change in internal energy of
the ice as it melts. [3]

A cube of aluminium, with sides of length
2.0cm, is heated so that its temperature
increases from 20°C to 450°C. The cube
expands so that its volume increases by
7x107 %.

[Density of aluminium=2.7 gcm™; specific
heat capacity of aluminium=900J kg K]

(a) The first law of thermodynamics states
that

AU=g+w

For the aluminium cube described, state
whether:

(i) g is positive or negative

(i) w is positive or negative. [2]

(b) Calculate the change in internal energy
of the aluminium cube. [3]



13 Oscillations

A 12.1-12.6 pages 178~-192

experimental and graphical methods.

|

0

Recall and use the equations v = v,coswt and v = =0V (x; - x°).

and the importance of critical damping.

-

Describe practical examples of forced oscillations and resonance.

O

frequency response and sharpness of the resonance.

[l Describe simple examples of free oscillations and investigate the motion of an oscillator using

1 Understand and use the terms amplitude, period, frequency, angular frequency, and phase
difference, and express the period in terms of both frequency and angular frequency.

Recognise and use the simple harmonic motion equation a = —w*x.

Recall and use x = x, sin @t as a solution to the simple harmonic motion (SHM) equation.

Use graphs to describe the changes in displacement, velocity, and acceleration during SHM.
Describe the interchange between kinetic and potential energy during SHM.

Describe practical examples of damped oscillations, including the effects of the degree of damping

Use graphs to show how the amplitude of a forced oscillation changes with frequency near to
the natural frequency of the system, and understand qualitatively the factors that determine the

[ Give examples where resonance is useful and where resonance should be avoided.

Oscillations
Any to-and-fro motion about a fixed point, such as a pendulum clock

(Figure 13.1) or a child bouncing up and down on a trampoline, is an example

of an oscillation. Starting from the equilibrium position, a complete
oscillation is the movement to the maximum displacement in one direction,
back through the equilibrium position to the maximum displacement in the
other direction and back again to the equilibrium position.

Investigating the motion of an oscillator
Using a variable resistor and an oscilloscope

%_ﬁ_ Variable
- resistor

<

Heavy / ":5:,:;:5\.':‘

pendulum

(- Toc.ro.

a b | c
A Figure 13.2 Using a variable resistor to obtain a displacement against
time graph

Maximum
displacement

One complete

Equilibrium osRiiafice

position

A Figure 13.1 Simple pendulum

(A variable resistor, which is )
part of a potential divider
circuit, is connected to a
heavy pendulum. As the
pendulum swings, the
resistance of the variable
resistor changes, changing
the potential difference (p.d.)
across it. The variation in
p.d. can be displayed on a
cathode ray oscilloscope

| (c.r.0).

7

&

A Level



Using a motion sensor

Motion sensor

A Figure 13.3 Using a motion sensor to obtain a displacement against
time graph

Key terms

; is the maximum displacement from the equilibrium position. It
can be measured in a variety of units (e.g., metres or degrees) depending on
the type of oscillation. If the amplitude is constant, no energy is being lost
and the oscillations are described as free oscillations.

‘eriod T (s) is the time for one complete to-and-fro oscillation.

Frequency fIs the number of oscillations per second, measured in hertz
(Hz). 1 Hz is one oscillation, or cycle, per second.

1
f=7

v @ is defined as Z?H (= 27f), measured in rads™.

27
[i1]

T =

~h |

Displacement-time graphs

i 1

A motion sensor is placed
beneath a mass. The
sensor emits pulses of
ultrasound which are
reflected back and
detected by the sensor.
The time it takes for each
pulse to return is used to
calculate the position of

=
Worked example

The graph in Figure 13.4 shows the displacement of a mass on a
spring against time. Find the period, frequency, angular frequency, and
amplitude of oscillation of the mass.

Peried T

24 o o e o e - -
Amplitude
1+
T T T T T T
01 0.2 0.3 04 0.5 0.6 0.7 [Timek
-1
Peried T
=5

A Figure 13.4 Displacement-time graph for an undamped oscillator

Displacement/cm
[s2]

Answer
period T of the oscillation is 0.20s

frequency f = % =5.0Hz

angular frequency = 2xf=31.4rads™

amplitude of the oscillation is 2.0cm

the mass.
L

kHz = kilohertz = 10°Hz
MHz = megahertz = 10°Hz
GHz = gigahertz = 10°Hz
THz = terahertz = 102 Hz

For more on radians see
the Maths skills section.

The amplitude is not the
distance from peak to
trough — it is the distance
from the maximum
displacement to the

oscillations falls to zero.
L

equilibrium position.
L

Damped oscillations

are oscillations in which
the amplitude decreases
{(due to friction). The
greater the amount of
damping, the more quickly
the amplitude of the
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Phase difference

The phase difference between two or more oscillations can be described in ¥ Table 13.1 Phase difference
terms of fractions of a cycle, in radians or in degrees (see Table 13.1). Two
oscillators that are out of step by half a cycle (in antiphase) are n radians Cycles | Radians | Degrees
out of phase; if one oscillator is at a maximum value when another is at zero 0 0 0
displacement, the oscillators are one-quarter of a cycle out of phase or x/2
radians out of phase. A % 90°
Figure 13.5 shows the displacement against time of two oscillators, A and =
B. Oscillator B is out of phase with oscillator A (oscillator A reaches its Ve i 180
maximum displacement before oscillator B, so leads B (B lags behind A)). % 3 Az
t * 5
The phase difference is % cycles or Zn% radians or 360 % degrees. In 2
Figure 13.5 the phase difference is one-quarter of a cycle (or n/2 rad or 90°). 2n 360
n 2nw 360n°
Displacement
nit

.

g
A

2 T

A Figure 13.5 Phase difference

Simple harmonic motion (SHM)

notion (SHM) is defined as motion in which the
acceleration is:

* proportional to the displacement from a fixed point For SHM the period T

* in the opposite direction to the displacement. is independent of the

) , amplitude of the oscillation.
SHM can be expressed by the equation: a = — a’x

where a is the acceleration, x the displacement, and @ the angular frequency.
The minus sign is important as @? must be positive; it means that the
acceleration will always have the opposite sign to the displacement. Many

oscillations, including that of a mass on a spring and a simple pendulum, The equation a = -@x is
approximate to SHM. provided in Exam Papers 1,
2,and 4.

A trolley of mass m is attached to a spring of stiffness k. It is pulled to one
side and released (see Figure 13.6).

When the trolley is a distance x to the left of the equilibrium position, the
spring exerts a force kx to the right. Using F = ma:

—-kx = ma
: : : k
Rearranging this equation; a= —ax
As this is SHM, a = —@’x, so:
w’ = x
m
Hence: A Figure 13.6 Simple harmonic motion

k . 1\]? \/E
w=,l— =— |— T =2m,|—
J; f 2z \m k



The SHM equation a = —e’x can be solved to find the velocity and

displacement at time t. If the displacement is x and the velocity is v at time t,

then:
X=x, sin wt
and V=1, cosmt

where x, is the amplitude of the oscillation and v, is the maximum speed. It

can also be shown that:
The maximum speed

v =1 oV(x2 - x%) (when x = 0) is:

v, = X,

You do not need to be able
to derive the equations:

v== (H‘J(Xﬁ - x?)

v =V, coswt

X = X, sin ot

They are provided in Exam
I Papers 1, 2, and 4.

-

Worked examples

1 A mass on a spring is oscillating with SHM. The amplitude is 0.30m
and the period of oscillation is 1.2s. Calculate:

a) the frequency b) the angular frequency
c) the maximum speed d) the maximum acceleration.

Answer

9
b e pmany,
a f=7-13

b) w=2nf=2nx0.833 =5.23rads™
¢ v, =ox=523x030=157ms"
d a=-wx,s0a,, = &’x,=523"%x030=82ms"

2 A trolley, of mass m = 0.90kg, is suspended between two springs,
each of spring constant 25N m™', as shown in Figure 13.7. It is
displaced to one side and released.

Calculate:

a) the angular frequency b) the period of the oscillations.

Answer

a) When the trolley is displaced a distance x, the restoring force
trying to push/pull the trolley back towards its equilibrium
position is 2kx.

Using F = ma: =2kx = ma
2k
a=-—x
m
w: = 2k _2x25 — @ =745rads™

b) i

k=25Nm

A Figure 13.7 SHM oscillator




Oscillations

Using graphs to analyse SHM

Figure 13.8 shows the relationships between dispacement, velocity and
acceleration during simple harmonic motion.

a Displacement
against time 10 4

m
L

isplacementicm
(=]

i T T
2 022 024026 0

54 Time,
10 4
When the displacement is The welocity is the gradient When the displacement is its
zero, the velocity is its of the displacement-time maximum value (the amplitude},
maximum value graph the velocity is zero
b Velocity\
against time 6

Velacity/ms™

When the velocity is zero, The acceleration is the When the velocity is at its
the acceleration is its gradient of the velocity-time maximum value the acceleration
maximum value graph is 22rg

¢ Acceleration
against time

002 0204 006 028
Timels

Acceleration/ms™

When the acceleration is positive,
the displacement is negative
{and vice versa)

=400 4

A Figure 13.8 Displacement, velocity, and acceleration against time graphs for SHM.

% Remember Enery

SHM and energy For undamped SHM the
The energy of an object oscillating total energy is constant.
with simple harmonic motion
changes from potential energy (P.E.)
to kinetic energy (K.E.) and back

to potential energy again (see
Figure 13.9).

lotal energy

FE.

K.E

Displacement

A Figure 13.9 SHM and energy




Worked example

and oscillates with SHM.

at time ¢ is:

X =x,sinat

Derive expressions for:
a) the potential energy E of the oscillator at time ¢
b) the kinetic energy E, of the oscillator at time ¢

¢) the total energy of the oscillator at time t.
Answer

5 1, ., 1., ..,
a) potential energy = Ekx = Ekx” sin® wt

- 1 .5 1 <
b) kinetic energy =S = —m(x,w cos wt) =

(4]
b | =

1 5 3 1 . _
c) total energy = Ekxj sin® wt + Emﬁ w” cos”® wt

, k
but ®® = — so
m

A trolley of mass m is connected to a spring of spring constant
k as shown in Figure 13.10. The spring is initially neither stretched
nor compressed. The trolley is displaced to the left and released,

The displacement x of the mass from its equilibrium pesition

where x is the amplitude of the oscillation and @ the angular frequency. d )

mx;w’ cos’ wt

IS .
total energy = —kx;(sin” wt + cos’ wt)

A Figure 13.10

X = X, sin ot

V= ax cos wt
\ 1]

See Unit 9 Deformation
of solids for more about
the energy stored in a

\ stretched spring.

-y

e The total energy in
SHM is constant.

2
_ lk P e The total energy is
5 o proportional to the
square of the
amplitude.
. »,
Damped and forced oscillations, B
44
and resonance .
: ] ARSI
i i :H T T T T T T 1 /I_-‘\‘
Damped oscillations s O A T T % hE
Real oscillators (see Figure 13.11) lose energy over time, & i
mainly as heat caused by friction and air resistance. ]
If a mass on a spring is pulled down and released, &
it oscillates up and down, the amplitude gradually a An underdamped system oscillates several times

decreasing (exponentially) over time.

Critical damping

A critically damped oscillator returns to its equilibrium
position in as short a time as possible without
oscillating. The suspension of a car is designed to be
critically damped - when the car goes over a bump

in the road the suspension returns the car to its
equilibrium position as quickly as possible without
oscillating.

as the amplitude gradually decreases to zero

6_
4 4
% 2-/\
E
= 2004 e 8 113 1A e 18P0 23 1P PR IPR
%.2_ Timefs
- 4
& -
b An overdamped system very slowly returns

to the equilibrium position without oscillating

A Figure 13.11 Damped SHM
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Forced oscillations and resonance

Oscillators can be driven by an external
system, with energy being transferred

from the external system to the Ampitude
oscillator. Figure 13.12 illustrates how a
vibration generator can be used to drive
the oscillations of a mass on a spring. Spring

Resonanca

Light damipeng — sharp
TRSONANCE DaEk

At very low driving frequencies, the mass

and spring will oscillate with the same MES ey 7

. i . Signal generator oroad fesanance peak
amplitude as the vibration generator (see 2
Figure 13.13). As the driving frequency E/D_wmw e
is increased, the amplitude of the Ee Tt Reciency
oscillation gradually increases as more A Figure 13.12 Forced A Figure 13.13 Forced oscillations
energy is transferred to the mass on the oscillations and resonance  with damping
spring.
When the frequency of the forced oscillations is the same as the natural For heavily damped
frequency of the mass and spring (the natural frequency f), the mass systems 1hle relsonant
oscillates with its maximum amplitude. This is known as resonance. The size frequency is slightly lower

of the amplitude at resonance depends on the amount of damping. than the natural frequency.

Worked example

A mass is suspended vertically between two stretched springs. The lower
spring is attached to a vibration generator connected to a signal generator.
When the vibration generator is switched on the mass oscillates vertically,
as shown in Figure 13.14.

a) In the context of the apparatus shown, explain what is meant by:
i) natural frequency i) forced oscillations i) resonance.

b) A student measures the amplitude of oscillation for different
frequencies. She then plots a graph of amplitude against frequency.
Sketch the graph she is likely to obtain. Label this graph A.

¢) She replaces the mass with an equal mass in the form of a thin disc.
Sketch a second line on your graph showing how the amplitude will generator
vary with frequency for the thin disc. Label this graph B.

Vibration Signal

generator

A Figure 13.14

Answer

a) i) If the mass is pulled down and released, the (b).(c)
frequency of vibration would be the natural "
frequency.

ii) The vibration generator forces the mass and
springs to oscillate at the frequency of the
generator (the driving frequency).

A — light damping

Amplitude

iii) As the driving frequency approaches the natural
frequency, the amplitude of the oscillations B — heavy damping
becomes very large, reaching a maximum
value when the driving frequency is equal

to the natural frequency. The system is then
resonating. A Figure 13.15

T

Frequency




', Raise your grade

1 (a) Define simple harmonic motion.

------------------------------------------------------------------------------------------------------

*** This is a correct answer but not a complete definition of SHM. It should also state ******
..., that the acceleration is always in the opposite direction to the displacement. ... 2

(b) An aeroplane is moving at a constant speed u, flying at a level height. It experiences some
turbulence and is displaced vertically, causing it to oscillate in the vertical direction.

u e
Tx

>

Theory shows that the vertical acceleration a of the aeroplane is given by the equation:

2g°
OB LN
UQ

where x is the vertical displacement.
(i) Explain how it can be deduced from the equation that the aeroplane oscillates with simple
harmonic motion.

g.and u are both constants, so the. acceleration d is proportional to the displacement. v/ X
This is a correct answer but again not complete. The candidate has ignored
the significance of the minus sign — this shows the acceleration is always in
. the opposite direction to the displacement. ., [2]

LTS R T Y]

(ii) Calculate the period of oscillation of an aircraft travelling at 300kmh-". [Use g = 9.81 ms2]

. 300 %1000 F The candidate has converted the speed
U=300kmh™ =————=%2ms v ofthe aeroplane into Sl units correctly,
(0 x O giving an answer to an appropriate

number of significant figures.

2¢"  2x98"
5 g _ 1 =002 = w = /00219 =0T rad s~ v

o =
u* 23’
270 L7 The candidate has equated the angular
T=—=——=3lbs v frequency @ to g and u correctly.
@ 0101
The final calculation is correct. period of oscillation =]l s [3]

{ili) The oscillations of the aeroplane are lightly damped. Explain what lightly damped means.
The aeroplane does not complete a full oscillation before the vertical movement ends. x
. This answer is incorrect — the candidate has described heavily damped .............

oscillations. Lightly damped oscillations mean several oscillations will be
. completed before the amplitude has fallen to zero. ~ eeeeeens (1]
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. Exam-style questions

A ball of mass 200g is suspended from a spring. (c) Use the graph to find:
When the ball is pulled down 6.0 cm and

i) the f fA
released, it oscillates with a period of 0.70s. [, e ireqiiericyo

(ii) the maximum speed of A

Calculate:
(ii) the maximum acceleration of A. [4]
(a) the frequency of oscillation [1]
4 (a) Define simple harmonic motion. [2]
(b) the maximum speed of the ball [1]

(b) A small mass oscillates vertically according to

(c) the acceleration when the ball is 2.0 cm the equation:

above the equilibrium position. [2]

y = 15cos 20t
The graph shows the variation of displacement
with time for a mass-spring oscillator. where y is the displacement in centimetres of

z the mass at time t.

- Calculate:
4. (i) the frequency of the oscillation
5] {if) the angular frequency
o (iili) the maximum speed of the mass. [4]
) ) ESEETAEEEE CERELINEID UL;B 5 A U-tube contains liquid of density p. The tube is
briefly tilted to one side and then returned to the
4 vertical position. The liquid oscillates back and
& forth with simple harmonic motion.

Cross-sectiona
area A

(@) Use the graph to determine:

EquiEbrium posifion =

(i) the period of oscillation Lere £ of fuid [T enstye ey

(ii) the frequency

(iii) the angular frequency. [4]
(a) Explain why the liguid oscillator satisfies the

(b) Use the graph to calculate the speed of the erinlitiners tor SN 2]

mass at time t = 0.20s. (2]
(b) Determine:
The displacement-time graphs of two oscillators,

A and B, are shown in the graphs. (i) the mass of liquid in the tube

{if) the unbalanced force on the liquid at time ¢
. A (iii) the period of the oscillations. [4]
44

6 (a) In relation to oscillating systems, explain

§ 2

= B .

2 what is meant by:

rd 2 . .

5 | o oMl 15 oz ood ofs o 04 o.ok Time/s @) forced vibrations

fas}
2 {if) resonance. [2]
61 (b) Describe one situation where resonance can

be useful and one situation where resonance

(a) State the phase difference between A and B: should be avoided. (2]

(i) as a fraction of a cycle
(il) in radians. [2]

. . amplitude of A
(b) Determine the ratio .mpltuds ot R [1]



AS 8.1-8.8 pages 116-131
A 24.1 pages 367-370

~

O Describe what is meant by wave motion as illustrated by vibration in ropes, springs, and ripple tanks.

O Understand and use the terms displacement, amplitude, phase difference, period, frequency,
wavelength, and speed.

O Deduce, from the definitions of speed, frequency and wavelength, the wave equation v = fh.

O Recall and use the equation v = fA.

O Understand that energy is transferred by a progressive wave.

O Recall and use the relationship intensity « (amplitude)’.

O Compare transverse and longitudinal waves.

O Analyse and interpret graphical representations of transverse and longitudinal waves.

O Determine the frequency of sound using a calibrated cathode-ray oscilloscope (c.r.0.).

O Determine the wavelength of sound using stationary waves.

O Understand that when a source of waves moves relative to a stationary observer, there is a change

in observed frequency (Doppler effect).

i v
Use the expression f, = f,
v+

Ay

relative to a stationary observer.

O

for the observed frequency when a source of sound waves moves

O

Appreciate that Doppler shift is observed with all waves, including sound and light.

O

State that all electromagnetic waves travel with the same speed in free space and recall the orders
of magnitude of the wavelengths of the principal radiations from radio waves to y-rays.

Explain how ultrasonic waves can be generated and detected using piezo-electric transducers.

Explain how ultrasound can be used to obtain diagnostic information about internal structures.

O O 0O

Understand specific acoustic impedance and its importance to the intensity reflection coefficient
at a boundary.

|

Recall and solve problems by using the equation I = I e for the attenuation of ultrasound in matter.

\ J

Progressive waves
What are progressive waves?

Progressive waves transfer energy from Peak
e transfer energy tro Amplitude, A Wavelength A
one point to another.
. Directian of
There are two types of progressive wave. / i

* lransverse waves; Waves on a rope 1
are examples of transverse waves,
As a transverse wave passes along - </ s
: Oscillationaf =€ Wavelengih /.
the rope, the particles of the rope Traugh particles of rope '
oscillate in a direction perpendicular
to the direction of energy transfer

(see Figure 14.1).

A Figure 14.1 Transverse waves

Water waves, secondary seismic waves and electromagnetic waves are
examples of transverse waves.

&




* [ongitudinal(con € ;» Longitudinal, or compression,
waves on a shnky (a long sprmg) can best illustrate the properties of
longitudinal waves. The individual rings of the slinky oscillate back and
forth parallel to the direction of energy transfer.

—{00 0 W00 00y ==

Oscillation
of rings

R arefacn an
Wavelength A

Compression

A Figure 14.2 Longitudinal (compression) waves

Sound waves and primary seismic waves are longitudinal waves. As a sound
wave travels through air, the air molecules continually move closer together
(compression) and then further apart (rarefaction) creating areas of high pressure
and low pressure, The greater the amplitude of the sound wave, the greater the
pressure difference between the areas of compression and expansion.

Displacement of a particle

The displacement of an individual particle in a transverse or longitudinal
wave is shown in Figure 14.3.

Amplitude A Period T

<
—
=
o
2 /
]
o
Bl
=
L4}
a

Time t

Period T

A Figure 14.3 Displacement-time graph for a particle
on the wave

The period T of the oscillation is the time taken for one complete oscillation
(and the time for one complete wave to pass any given point). It is related to
the frequency of the wave by the equation:

.
P

The frequency f is measured in hertz (Hz). 1 Hz = 1 wave/second.

Wave equation

number of waves passing in

length of one wave
* one second (the frequency)

(the wavelength)
v=fA

speed of
a wave

Waves

For transverse waves:

A (m): The
maximum displacement
from the equilibrium (rest)
position.

A (m): The
distance from one peak
to the next (or from one
trough to the next).

f (Hz): The
number of complete waves
passing any point in one
second (and the number
of complete oscillations of
a vibrating particle each
second).

For longitudinal waves:

A (m):
The distance from one
compression to the next
(or from one rarefaction to
the next).

f (Hz): The
number of complete waves
passing any point in one
second.

For any wave:

The ! T (s)is the time
taken for one complete
wave to pass any given
point (and also the time for
one complete oscillation of
2 particle of the wave).

S

Be careful to distinguish
between a displacement-
distance graph (a
‘snapshot’ of a wave at
one particular moment)
and a displacement-time
graph (which shows
how the displacement of
one particle on the wave
Lchanges with time).




Phase difference

Particles at different points along a wave are out of step with each other -

there is a p! * between them.

In Figure 14.4 peints P and R are exactly half an oscillation out of step with
each other - when P starts to move up, R starts to move down (they are in
antiphase). Points P and Q are one quarter of an oscillation out of step with
each other (when P is at its maximum displacement, Q is at the equilibrium
position). Points P and S are exactly one cycle out of phase with each other
so are in phase (both are moving up or down at exactly the same time). Phase
difference can be expressed in degrees or radians where 360°, or 2n radians,
represents one complete cycle (see Table 14.1).

¥ Table 14.1 Phase difference

Phase Phase Phase
difference/cycles | difference/° | difference /radians
P—>Q it % T
4 2
L h l 180 T
2
P—>S 1 360 (0) 27 (0)

Phase difference can also be used to describe how two waves compare with
each other.

In Figure 14.5 the two waves A and B are out of phase with each other,

Point P on wave B has reached its maximum displacement and will start to
move downwards. The corresponding point Q on wave A is at the equilibrium
position and moving upwards; that is, wave A is lagging behind wave B by

quarter of a cycle. Another way of saying this is wave B leads wave A by %
radians or 90°.

Intensity of a wave

The of a wave is a measure of its power. The intensity I of a
wave is proportional to the square of the amplitude A of the wave.

Toc A?
Halving the amplitude of a wave reduces its intensity by a factor of four.

Electromagnetic waves

The family of waves which includes visible light is called the
(see Table 14.2). All electromagnetic waves:

* are transverse waves
* travel at the speed of light (3.0 x 10°ms~') in a vacuum,

2>
S
K

Displacement

\/ \/ Distance

P S

A Figure 14.4 Phase

difference

ol i/ Distanca
7

a B

A Figure 14.5 Phase
difference

I A2

Try to memorise Table 14.2.
You may be asked to recall
the order of magnitude

of the main parts of

the spectrum and from
these the corresponding
frequencies can be
calculated using

c=fA, wherec is the speed
of light (3.0 x 10°ms~").

¥ Table 14.2 Electromagnetic spectrum - -
Electromagnetic | gamma | X-rays | ultraviolet visible infrared | microwaves | radio
wave rays waves
Typical 10-12 1010 10-8 4 x 107-7 x 107 102 102 10-'-10°
wavelengths/m (400-700nm)




Measuring the wavelength of sound using
stationary waves

Stationary waves in an air column formed inside a pipe or tube can be used
to find the wavelength of sound waves.

A loudspeaker is connected to a signal generator and placed at the end of a
tube which is closed at one end (see Figure 14.6). As the frequency of the
signal generator is slowly increased, the tube resonates (produces a louder
sound) at particular frequencies due to stationary waves forming in

the tube.

Signal
Loudspeaker generator

=
@

I
Node Antinode

A Figure 14.6 Stationary waves in air columns

e e

A 34

4 4
First-order resonance Second-order resonance

A Figure 14.7 First-order and second-order longitudinal stationary
waves

Figure 14.7 shows the first two stationary waves in the tube. The closed end
is a displacement node (the molecules of air cannot oscillate) and a pressure
antinode. The free end is a displacement antinode and a pressure node.

If the length of the tube is L then the first resonant frequency occurs when

L = A/4 so A = 4L. For the second resonant frequency, A = 4L/3. Tubes and
pipes open at both ends can also be used in this way.

Doppler effect

When a source of waves travels towards a stationary observer, the
wavelength of the waves decreases and the frequency detected by the
observer increases.

This effect is known as the D ct. If the source of waves is moving
away from the observer the opposite effect occurs, with the observer
detecting a lower frequency. A familiar example is the sound of a train as it
passes you - the frequency (pitch) of the sound decreases as the train passes

you and moves away.

For a source of sound waves moving towards a stationary observer:

v

fo =1
U-v,
where f is the frequency of sound of the source, v, the velocity of the source,
v the velocity of sound, and f, the frequency detected by the observer. For a
source of sound waves travelling away from a stationary observer:

f=Ff

U+,

v

Waves

==

Sound waves are
longitudinal waves so

the diagrams showing
stationary transverse
waves in a tube are a little
misleading. They can be
thought of as graphs of the
maximum displacement of
air molecules at different
points inside the tube.

For more about stationary

waves in air columns see
L Unit 15 Superposition.

Numerical questions on
the Doppler effect will anly
be concerned with sound
waves, travelling towards
or away from a stationary

observer.
. o
v
fo = l;
vV

8

— for sound waves moving
towards a stationary
observer

+ for waves moving away
from a stationary observer.

" =




Worked example

the train has passed through the station? [Speed of sound in air = 330ms™.]

Answer
For the train travelling towards the observer: 800 = fq(

330
———— ] (egn 2
330+35)[q ]

330 )x (330_35)x 800 = 650 Hz
330 + 35 330

For the train travelling away from the observer: f, = fq(

Combining eqn 1 and eqn 2: f; =(

S

A train is travelling towards a station at a speed of 35ms™'. An observer standing on a platform in the
station hears the train emitting sound of frequency 800 Hz. What frequency will the observer hear when

Doppler shift

The Doppler effect occurs with many types of wave including light waves and
microwaves. A radar speed camera emits pulses of microwaves which are
reflected back by a vehicle. The faster the vehicle is travelling the greater the
change in frequency between the emitted pulses and the reflected pulses.

The wavelengths of light detected from distant stars are longer than the
characteristic wavelengths expected of the line spectra of gases such as
hydrogen and helium, suggesting that other stars and galaxies are moving
away from the Earth. This is often referred to as the Doppler shift or red shift
(as the wavelengths are longer, moving towards the red end of the visible
spectrum).

Ultrasonic waves (ultrasound)

; are sound waves with frequencies above human hearing
(typlcally 20 L(Hz] Unlike high-frequency electromagnetic waves such as
X-rays, they are non-ionising, and so do not damage living tissue and are
ideal for use in medical imaging. The frequencies used are usually between
1 MHz and 10 MHz (frequencies lower than 1 MHz are diffracted too much
and frequencies higher than 10 MHz are absorbed too much by body tissue).

Ultrasonic waves are produced using a | Juiy “in the shape
of a disc. An alternating voltage apphed between the faces of the disc causes
it to vibrate. If the frequency chosen coincides with the natural frequency

of the disc, resonance occurs, and the disc emits ultrasonic waves at the
resonant frequency (see Figure 14.8).

In medical imaging, an ultrasound probe emits pulses of ultrasound into a
body. The ultrasonic waves are partially reflected each time the ultrasonic
waves pass from one material (medium) to another. The reflected waves
cause the disc of the probe to vibrate, generating a small p.d. across the disc.
The probe thus acts as both transmitter and receiver of the ultrasonic waves,
the reflected pulses enabling a ‘sound picture’ to be constructed.

Absorbing ——
material

Electrodes < I P icz0-£lectric
crystal

T

Thin .

membrane
Pu Ises

l
uItrasomc

waves
—
l

A Figure 14.8 Piezo-electric
probe



Waves

Transmission and reflection of ultrasound waves V Table 14.3 Acoustic
When ultrasonic waves reach a boundary between two different materials, impedance
some of the wave energy is reflected and the rest is transmitted (and : :
: : : ; Material Acoustic
refracted). The proportion of energy that is reflected is determined by the ;
e . impedance
acoustic impedance Z of each of the two materials, where: S
Z/kgmZs
Z=pe air 430
p is the density of the material and c is the speed of sound in the material. blood 1.59 x 108
Some typical values are given in Table 14.3. bone 6.80 x 10°
The intensity reflection coefficient is the fraction of ultrasonic wave energy muscle 1.70 x 108
flected, is gi by th tion: -
reflected, and is given by the equation ) ofifcie B 10
I—R=M water 1.50 x 108
I, (Z1 +Z, ]2 ;

where [ is the intensity of the incident waves, I, the intensity of the reflected
waves, and Z, and Z, the acoustic impedances of the two materials (see

Acoustic impedance Z;
Figure 14.9).

' ™

Worked example I I

Ultrasonic waves from a piezo-electric probe pass from bone into soft
tissue. Calculate the fraction of ultrasonic wave energy that is reflected
back towards the probe.

Answer
5 ; Approximately a third
I, (2,-2) (6.80-1.63) 0.376 of the incident wave
= -~ = == 0. -
lo (2,+2,) (6.80+1.63) energy is reflected. A Figure 14.9 Transmission
\ J and reflection

Two key points to remember about the equation for the reflection coefficient:
: I : :
e ifZ =Z then I_R = 0 - almost all the wave energy is transmitted

1 I
e IfZ is very different from Z, (e.g., air and soft tissue) then I_R =1 and Ultrasonic probe
almost all the wave energy is reflected. °

This explains why a coupling medium such as a liquid gel is needed . .
between an ultrasonic probe and soft tissue such as skin (see Figure 14.10). Coupling ge! Soft tissue

Any air between the probe and the soft tissue would mean virtually all the I
ultrasonic wave energy is reflected back off the soft tissue as }{i = 1. Placing

0
the front of the probe in a gel (which has a similar acoustic impedance to

soft tissue) means that almost all the wave energy will be transmitted into

the body. A Figl;ure 14.1 0. U.se of .
coupling gel to limit reflection
Absorption of ultrasonic waves from soft tissue

When a parallel beam of ultrasonic waves passes through a substance, the

intensity of the waves decreases exponentially with distance.
Ultrasonic
The intensity I of a wave after passing through a distance x of a material is b Lo 1
given by:
I=]e ™
X
- —

Where I, is the incident intensity, and y the absorption coefficient of the
substance (see Figure 14.11). A Figure 14,11 Exponential

absorption




)| Raise your grade
(a) State what is meant by the specific acoustic impedance of a medium.

acoustic impedance = density x speed vx A correct statement, but insufficient for
cere e L L R S 2 marks. A better answer would be ‘specific ++*

acoustic impedance is the product of the
................................................... density of the medium and the speed of won 2]
ultrasound in the medium’.

(b) A vet is using a piezo-electric probe to examine an animal. Pulses of ultrasonic waves pass
through the animal and are partially reflected each time the waves reach a boundary between one
medium and the next.

k_ To oscilloscope

Coupling gel . .
Piezo-electric probe Material | Acoustic impedance
o Z/ kgm-2s
i Soft tissue air 430
muscle 1.70 x 108

Muscle

soft tissue 1.63 % 108

- = bone 6.80 < 10°

(i) Explain why the piezo-electric probe emits pulses of ultrasound.

0 that the reflected pulses can be defected between emitting pulses vx

A better answer would include ‘... which means that the time taken for each pulse to
return can be calculated and hence the depth of each reflecting boundary’.

(i) Explain the purpose of the coupling gel.

50, that most of the ultrasound pulse is transmitted theough the soff tissue. vix | ...
A better answer would include ‘... because the coupling gel has a similar acoustic
impedance to soft tissue/if there is air between the probe and the soft tissue most of ****
the ultrasound would be reflected’.

R Y] [4]

(c) The intensity reflection coefficient at a boundary between two media is given by the equation:

L _(Z-Z)

Pl Qg S R
I, (Z+Z)

where [ is the intensity of the incident ultrasonic waves, I, the intensity of the reflected waves,
and Z and Z, the acoustic impedances of the two media.

Calculate the fraction of the ultrasonic wave energy transmitted when the ultrasonic waves reach
the boundary between muscle and bone.
2 2
L (2-2] (ws-uso)® p——
L (Z. +Z, )2 (167 + b20)*

Correct substitution of values for Z, and Z, into the fraction transmitted = _ 23%  [2]
eqguation and correct calculation for the first mark, but

the value obtained is the fraction reflected. The fraction

transmitted is 1 — 0.376 = 0.624 (62%)




9 Exam-style questions

1 Transverse waves on a rope are travelling at a
speed of 10.0ms". The frequency of the waves
is 5.0Hz.

NAWAWA .
SRAVARV \/

What is the phase difference between two points
on the rope a distance 1.00m apart?
T 3n
A 5 B =« C 5 D 2n [1]
2 (Gamma rays, ultraviolet waves and microwaves
are all electromagnetic waves. Which option lists

these waves in order of increasing frequency?

A gamma rays, ultraviolet, microwaves

B gamma rays, microwaves, ultraviolet

C ultraviolet, microwaves, gamma rays

D microwaves, ultraviolet, gamma rays [1]

3 An organ pipe of length 50.0 cm is closed at
one end. The speed of sound in air is 330 ms™.
What are the two lowest frequencies that can be
produced by the pipe?

A 165Hz and 330Hz B 165Hz and 495Hz
C 330Hz and 660Hz D 660Hz and880Hz [1]

4 A racing car approaches a stationary observer
with a constant speed u. If the speed of sound in
air is v, what is the change in frequency heard by
the observer as the car passes him?

fuv B 2fuv
(Uzwuz} (Uz__uz}

fuv 2fuv
ib‘z+112§ iu + 1 } [1]
5 A special loudspeaker, with a power output of
1.0 x 10~*W, emits sound energy equally in all
directions.

(@) Calculate the intensity of sound (the sound
energy per second per m?) at the following
distances from the speaker:

(i) 3.0m (i) 9.0m [2]
[Surface area of a sphere of radius ris 4nr.]

(b) Compare the amplitude of vibration of air
molecules at the two distances in (a). [2]

Waves

(@) Define, for a transverse wave:
(i) the amplitude A (i) the wavelength A. [2]

(b) A student is investigating waves using a ripple
tank. The drawing shows the waves at one
particular moment,

Wave speed =9.0cms ™!

6.0mm

[

Oscillator B 5.4cm '
Determine:
(i) the amplitude of the waves
(i) the wavelength of the waves
(iii) the frequency of the oscillator

(iv) the phase difference between points
P and Q. (4]

(c) Sketch a graph of the displacement of point
P against time, for a period of 0.5s. Include
appropriate scales, [3]

(@) Describe the Doppler effect. [2]

(b) An ambulance has a siren which emits a note
of frequency 700 Hz. It is travelling towards a
stationary observer at a speed of 30ms'.

Determine:
(i) the frequency heard by the observer

(i) the change in frequency heard by
the observer once the ambulance has
gone past. [3]

8 A pregnant woman is having an ultrasound scan

using a piezo-electric probe. A gel is spread over
the patient’s abdomen and the probe placed onto
the gel.

(@) Define specific acoustic impedance. [2]
(b) Explain the purpose of the gel. [2]

(c) Suggest a reason why only high frequency
ultrasonic waves are used for this. [1]

Draw a diagram of a piezo-electric probe.
Describe and explain how it produces and
detects ultrasonic waves. [5]

@



15 Superposition

O Explain and use the principle of superposition in simple applications.

O Show an understanding of experiments that demonstrate stationary waves using microwaves,
stretched strings, and air columns.

O Explain the formation of a stationary wave using a graphical method, and identify nodes and antinodes.
O Explain the meaning of the term diffraction.

O Show an understanding of experiments that demonstrate diffraction, including the diffraction of
water waves in a ripple tank with both a wide gap and a narrow gap.

O

Understand the terms interference and coherence.

O

Show an understanding of experiments that demonstrate two-source interference using water
ripples, light and microwaves.

Understand the conditions required if two-source interference fringes are to be observed.
Recall and solve problems using the equation A = ax/D for double-slit interference using light.
Recall the equation for diffraction gratings and solve problems using the formula dsin 6= nA.

O 0O oo

Describe the use of a diffraction grating to determine the wavelength of light.

Superposition

Principle of superposition

When two waves meet and overlap, the total displacement at any point is the
(vector) sum of the individual displacements at that point - this is called the
principle of superposition.

Interference

When two or more waves combine to produce a new wave, they can interfere + - I\/\/\/
constructively or destructively. AVAVAV

e (Constructive interference: the two waves are in phase. They superpose 8 Copstructive interference

(‘add up’) to produce a wave that has a larger amplitude than the
original waves (see Figure 15.1a).

e Destructive interference: two waves are 180° (x radians) out of phase. /\/\/
They superpose so that the amplitude of the resultant wave is smaller. If + =
the two waves have the same amplitude they cancel out completely (see \/\/\

Figure 15.1b). b Destructive interference

Stationary waves A Figure 15.1 Interference

Stationary waves are produced when interference takes place between two
progressive waves of equal frequency and amplitude travelling in opposite
directions along the same line. For example, if a rope is tied to a post at one end
and made to oscillate at a particular frequency at the other end, the wave reflected
by the post will overlap with the outward wave to produce a stationary wave.

Imagine two waves of equal frequency and amplitude, ” f"" “'*-._‘ﬁ ‘ "‘.-""‘%.‘V__,;’"“'w 4-\/\/\/\
travelling towards each other at the same speed (see '
Figure 15.2): A Figure 15.2 Producing a stationary wave

©




At some point the two waves will be in phase and interfere
constructively to form a wave with an amplitude which is twice
the amplitude of one of the waves, as shown in Figure 15.3a.

A quarter of a time period later, one wave will have moved a quarter
of a wavelength to the right; the other wave will have moved the same
distance to the left. The waves are now exactly half a wavelength out
of step (in antiphase) and will cancel out completely, as shown in
Figure 15.3b.

A further time T/4 later the two waves are again in phase and will
superpose constructively (Figure 15.3c).

Examples of stationary waves

Stretched strings

When waves are produced on a stretched string, (for example, by plucking
a guitar string) several different stationary waves can be formed.

The second- and higher-order stationary waves occur at higher frequencies of

Fundamental frequency (first harmonic): The simplest stationary
wave on a stretched string is shown in Figure 15.4. This is the
fundamental mode of vibration (also called the first harmonic).
Nodes are points where the amplitude of vibration is zero.

Antinodes are points where the amplitude of vibration is a maximum.

vibration.

Antinode

A Figure 15.4 Fundamental mode of vibration

Second order (second harmonic): Points P and Q are in antiphase
(m or 180° out of phase) - P is about to move up as Q is about to
move down (see Figure 15.5).

L=4

A Figure 15.5 Second-order stationary wave

Superposition

Resultant wave.

N

i
1
i
i
i
"
i
i

1
1
i
i
1
0
i
i
1
il
i
i
"

i

i
i
1
1

iResultant wave

A Figure 15.3 How stationary
waves are formed

==

For a one-loop stationary
wave:
v v
f =—=—
a2l

where L is the length of the
string and v the velocity of
progressive waves on the

L string.

BE=m

For a two-loop stationary
wave:

=

>|=<
=

This frequency is twice the
kfundamental frequency.

&




Air columns

Stationary sound waves can be produced in pipes and other columns of
air. A sound wave travelling down a pipe can interfere with a sound wave
reflected back from the end of the pipe to form a stationary longitudinal

wave. Just as with stretched strings, there are several modes of vibration.
Closed pipe Loudspeaker

Displacement
antinode

The experiment in Figure 15.6 shows how stationary waves can be
produced in an air column. As the frequency of the signal generator
is gradually increased a number of louder sounds are heard at specific
frequencies. Figure 15.6 shows how the second-order stationary sound Displacement

: nodes Signal generator
wave is formed.

£ < - - Closed end
The air molecules cannot vibrate freely at the closed end making this
a displacement node. The air molecules have no restrictions on their A Figure 15.6 Stationary
movement at the open end - this is a displacement antinode. The longitudinal wave

displacement nodes are pressure antinodes - the air is being constantly
compressed and expanded at these points. The first three stationary waves in
a pipe closed at one end are shown in Figure 15.7.

A A A m

The stationary wave
patterns in an air column
are longitudinal stationary
waves. They are drawn

as transverse waves to
show how the amplitude

¥ v of vibration of the air
molecules varies along the
s length of the air column.

—
a =
~
I
-
|

A=4L A= A=

ol
ale

v B

v Sv
A4

=
A 4

f=L_¥ fo=

=
A 4L

~
—

A Figure 15.7 Stationary waves in a pipe closed at one end

Open pipe

Stationary waves can also be produced in pipes open at both ends. In this
case, both ends are displacement antinodes as the air molecules are free to
vibrate with the maximum amplitude (see Figure 15.8).

m[k‘j

A=2L iA=L

ol

f=

r3h
Il
>
Il
~|=
wh
I
I

Rl
=

B
A 2L

kS

A Figure 15.8 Stationary waves in open pipes
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Superposition

Worked example

A tuning fork is sounded above a cylinder of water, as shown in
Figure 15.9. A tap is opened and the level of the water gradually falls. The
sound becomes louder when the level of the water falls to certain levels.

Two successive loud sounds occur when the water level is 69.0cm and
35.8cm above the bench.

Determine the frequency of the tuning fork. [Speed of sound in air =
340ms.]

Answer
The difference in the two levels of water must be the distance between

A
two successive nodes (E) as shown in Figure 15.10:

%-= 69.0-35.8 =33.2cm S0 A=66.4x%107m

v 340
mm—— = 5125
f A 66.4x107

Tuning fork

A Figure 15.9 Investigating
resonant frequencies

el B

A Figure 15.10
Microwaves

Microwaves can also be used to demonstrate the properties of stationary waves.
A microwave transmitter emits microwaves towards a metal plate which reflects
the microwaves back towards the transmitter, as shown in Figure 15.11.

Microwave transmitter = ) Metal plate

Microwave receiver\m

A Figure 15.11 Microwave stationary waves

The transmitted and reflected waves superpose to form a stationary wave. As
the microwave receiver is moved along a line directly between the microwave
transmitter and the metal plate, it detects successive, equally spaced, strong,
and weak signals. The distance between successive minima is the distance
between two adjacent nodes - half a wavelength.

The nodes on a stationary wave have zero energy; the antinodes have
maximum energy. As the positions of the nodes and antinodes do not change,
no energy is transferred by a stationary wave.




Diffraction l

When waves pass through a gap, or past a partial l
obstruction, they bend and spread out beyond
the geometric ‘shadow’ region of the gap or
obstruction, as shown in Figure 15.12. This effect
is called diffraction and the waves are said to be

‘diffracted’. —_—
E ~ "

a Diffraction past an obstacle b Diffraction through an
aperture

o —

A Figure 15.12 Diffraction

The amount of spreading of a wave as it passes
through an aperture depends on the size of :l: l
I —

the aperture. Most diffraction occurs when the

aperture is a similar size to the wavelength of the - —
< . S B —
waves, as shown in Figure 15.13a. : S
\__/ -~ -
v e——
a Aperture size = 4 b Aperture size = A

A Figure 15.13 Diffraction and aperture size

Two-source interference

If two sources of waves are in close proximity to each other (for example,
two wave ‘dippers’ in a ripple tank, or two loudspeakers) the two sets of
waves overlap. If the two sets of waves have the same frequency and similar
amplitudes, and the two sources are coherent (have a fixed phase difference
between them), they can produce an interference pattern, with points of

) . ) ; : Wave dippers
constructive interference and points of destructive interference.

Figure 15.14 shows successive wavefronts produced by two vibrating dippers
in a ripple tank (the lines represent the peaks, or crests, of waves). At points
such as P, two wave peaks are interfering constructively and producing

a larger amplitude; at points such as Q a wave peak from one source is
overlapping with a wave trough from the other, cancelling out (destructive
interference). At points such as R, two troughs are meeting and interfering

constructively to produce a deeper trough. A Figure 15.14 Interference
patterns in a ripple tank

If two loudspeakers are connected to the same signal generator and placed
a short distance apart, a similar interference pattern to the one described in Q
the ripple tank can be observed (see Figure 15.15). 1

A person walking from P to Q hears a series of loud and quiet sounds. Loudspeaker
Where the sound is loud, the path difference (the difference in the distance
travelled by a sound wave from one loudspeaker compared to the other)
must be a whole number of wavelengths, and so constructive interference
oCCurs.

Signal
b
Where there is a quiet sound, the path difference must be an odd number S
of half-wavelengths so that the sound waves interfere destructively. The . 2
sound waves may not cancel out completely because the sound wave from
P

one speaker will have travelled further than the other, so will have a smaller
amplitude. A Figure 15.15 Interference
patterns with sound waves

@




Superposition

Young’s double-slits experiment

Young's double-slits experiment provides evidence for the wave-like nature of
light by producing interference fringes on a screen. Figure 15.16 shows how
the experiment is set up.

Interference fringes

/-..C observed on screen
A
B

ng%?iiug: ; >>> W /

A Figure 15.16 Young’s double-slits experiment

Light from a monochromatic light source (e.g., a laser) passes through a
single slit and diffracts (spreads out). It then passes through two narrow slits
A and B. There is a fixed phase difference between the light emerging from
slits A and B as the waves are part of the same wavefront; that is, the light
from A and B is coherent.

Interference fringes (areas of light and dark) can be observed on a screen
some distance away. Consider the case when the light from slits A and B
emerges in phase. In Figure 15.16, the distance BC is slightly longer than
the distance AC - there is a path difference between the light waves from
slit A and slit B. If this distance is an odd number of half-wavelengths, the
two waves will be out of phase (in antiphase) when they reach C and will
interfere destructively - a dark fringe will be observed. If the path difference
is a whole number of wavelengths the two waves will be in phase at C and
interfere constructively, producing a bright fringe.

From Figure 15.17 the two waves emerging from slits A and B can be
considered parallel as the distance D to the screen is much greater than
the slit separation a. The path difference BP is a sin8. The first-order bright
fringe occurs when the path difference is A, the second-order when the path tan 6 = sin 6 = § where 8is
difference is 24, and so on. The nth bright fringe occurs when the path measured in radians.
difference is nA. For a bright fringe:

For small angles:

nA=asin@

Analysing Young'’s slits experiment

From Figure 15.17, x_= Dtan#, but
since @is small, tan @ = sin @, so:
ni

X, = Dsing = D—
a

Similarly, the (n+ 1)th bright fringe

>

( DA "B Path difference

. . nm+ —asind

isgivenby x,_, =D : RE=ash
) a

The distance between adjacent

bright fringes is x, where:

_( <) DA . _ax = D
A= =il S0 AT A Figure 15.17 Analysing the double-slits experiment




The wavelengths of visible light are small (= 5 x 107 m) so the fringes are
very close together. To increase the fringe separation:

* Make the slit separation a as small as possible.
¢ Make the distance D between the slits and the screen as large as possible.

* Use light with as long a wavelength as possible (e.g., red light rather than
blue light).

Carrying out the experiment in a darkened room also makes the fringes easier
to detect.

For Young’s double-slits
experiment:

P
D

You are not expected to be

able to prove this equation,

but you must be able to

recall it and know what the

L symbols represent.

Worked example

Light of wavelength 589nm is incident on a pair of slits, forming an
interference pattern on a screen 1.40 m away. The bright fringes on the
screen are 0.20cm apart. Determine the separation of the two slits.

Pl oo o N

It is important to have
consistent units.
Each of the lengths

Answer given in the question
5 is converted to metres
g o 01U LAl "_12'40 = 4.12x10*m(0.412mm) | Defore caloulating a.
X 0.20 x 10

5\ J
Diffraction gratings
The double-slit in Young’s
experiment can be replaced
by multiple slits. Increasing The diffraction grating equation:
the number of slits has dsinB=ni

the effect of making much
sharper and clearer maxima
(bright lines or ‘fringes’). A
diffraction grating consists of
many parallel slits extremely
close together, ruled on a
transparent plate. The light

[}
B F(’I:‘ath difference
BF = dsin#

Q (First-order maximum)

SCreen

F el

R Zsro-order maximum

passing through each slit is
diffracted, and constructive
interference occurs only at
very specific angles, the light
waves cancelling each other
out in all other directions.

Diffraction grating

4 (First-arder maximum)

A Figure 15.18 Analysing diffraction grating experiment

For the light waves from two adjacent slits to be in phase and add
up constructively, the path difference BP must be a whole number of
wavelengths. From Figure 15.18, if the distance between adjacent slits is d:

dsin@=ni

where n is an integer. There is also a zero-order maximum in the same
direction as the incident beam (the waves coming from every slit of the
grating have all travelled the same distance, so they are all in phase).

&




Superposition

|, Raise your grade

(a) Inrelation to light waves, explain what is meant by the terms:

(i) monochromatic

A single colour X
o-oto--ctcocontcng-otono-oooco-rcrcn Amore precise’ Scienﬁﬁcdeﬂniﬁon is needed_ ressse

Monochromatic light waves are waves with a single
.................................... WaVEIEng{h [e_g_’ !he I|ght fmm a |aser)_ T

(if) constructive interference.

When two waves meet and make a bigger light wave v X

™ The right idea, but a better answer would be "When two waves overlap, and are in
... phase, so that their amplitudes add up to make a light wave with a larger amplitude’. ,,.. [3]

(b) A student attempts to measure the wavelength of light using Young’s slits, as shown below.

Slit separation Dauble slit
&1.0 mm \\
O.5mm;
~ ;2‘:
Manochromatic
light source _/—'gm_/—’ SR

\-q—-—
Single slit

() The light is diffracted by the single slit. Explain what is meant by diffraction.
The light bends as it passes trough the slit v/ X ‘correct, but the candidate shouid
have added “... and spreads out,
........................................................... beyond the geometric ‘shadow’ of the
slit’ for the second mark

(if) Explain why the light from the double slit is coherent.
The light waves from the two slits are in phase. x

T P Y assane

The light entering each of the two slits is from the same wavefront so there must be a fixed
. phase difference between the light waves emerging from them (the light waves don’t need
to be in phase to be coherent).

LT

(ili) Use the student’s results to calculate the wavelength of the light used.

ax 10x107 x05x10” 5
}b=_= 2 =532>(|0 -Jm ./
D 940 x 10 Correct calculation.
Correct equation/method. wavelength =532 x 107" m v (5]

The student wants to make the fringes further apart so that they are easier to see and measure
accurately. Suggest two changes the student could make to the experiment to achieve this.

1 Move the screen further away from the slits v Correct suggestion.

L R L T N T T T T tesssssmnEw

R R R R Y N R R TR Y

2 Move the two lits further 2part X The opposite is true. From the two-slits equation

L T T R T T AT

Xx = —, so the fringe spacing x increases if a,
a

Y R ‘he distance between 1he Slits, is decreased_ [2]




9 Exam-style questions

1 Two waves superpose as shown below. 4 Which statement correctly describes the meaning
of diffraction?

A When waves meet in phase and their
amplitudes add up.

B When waves meet out of phase and cancel
out.

C When waves pass an obstacle and bend,
entering the geometric shadow of the object.

waves? [1] y
, ) e D When waves from two sources have a fixed

phase difference. [1]

5 A diffraction grating has 400 linesmm™'. When
monochromatic light passes through the grating,
the third-order maxima subtend an angle of 40°,
as shown below.

Diffraction grating

N

a0° Third-order maxirma
2 A string is stretched between points X and Y. A ey
One end of the string is vibrated, setting up a What is the wavelength of the light?

stationary wave, as shown below.
A 285nm B 410nm € 540nm D 820nm [1]

Vibration

soneror I 6 White light passes through a diffraction grating

and a series of visible spectra are observed on a
screen some distance away, together with a white
light maximum at a point directly in line with
Which statement is correct? the diffraction grating and the light source (zero
order). A series of visible spectra are seen either
side of the zero order.

A The string is oscillating at its fundamental
frequency.
(a) Describe what is meant by diffraction. [2]

(b) Explain why:

B The distance RS is one wavelength.

C Points P and Q are in phase.

D Poiiits Ris a figds. (] (i) the central zero-order maximum is white

(ii) the first-order maximum for green light is
in a different position from the first-order
maximum for red light. [2]

3 Anorgan pipe of length 0.500m is closed at
one end. What are the two lowest resonant
frequencies the pipe can produce?

(c) Blue light of wavelength 460nm produces a

[The speed of sound is 340 ms.]
third-order maximum at an angle of 17.7°.

A 170Hz 340Hz A wavelength of red light produces a second-
B 170Hz 510Hz order maximum at the same angle.

C 227Hz 340Hz Calculate;

D 227Hz 510Hz (1] (i) the number of lines per millimetre of the

diffraction grating
(ii) the wavelength of the red light. (3]

@



16 Communications

[ Appreciate that information may be carried by a number of different channels, including
wire-pairs, coaxial cables, radio and microwave links, and optic fibres.

[0 Understand the term modulation, and be able to distinguish between amplitude modulation (AM)
and frequency modulation (FM).

[0 Recall that a carrier wave, amplitude modulated by a single audio frequency, is equivalent to the
carrier wave frequency together with two sideband frequencies.

[ Understand the term bandwidth.
Recall the frequencies and wavelengths used in different channels of communication.

[l Demonstrate an awareness of the relative advantages of AM and FM transmissions.

a

Recall the advantages of the transmission of data in digital form, compared with the transmission
of data in analogue form.

1 Understand that the digital transmission of speech or music involves analogue-to-digital conversion
(ADC) before transmission and digital-to-analogue conversion (DAC) after reception.

1 Understand the effect of the sampling rate and the number of bits in each sample on the
reproduction of an input signal.

[ Discuss the relative advantages and disadvantages of channels of communication in terms of
available bandwidth, noise, crosslinking, security, signal attenuation, repeaters and regeneration.

[ Recall the relative merits of both geostationary and polar orbiting satellites for communicating
information.

[ Understand and use signal attenuation expressed in dB and dB per unit length.

1

7 Recall and use the expression ‘number of dB’ = 10 lg(gﬂ) for the ratio of two powers.

2

e o

Analogue signals Audible signals cannot

Music and speech are examples of analogue signals as they can vary be transmitted by

continuously in both amplitude and frequency. They can be transmitted electromagnetic waves

(‘carried’) by radio waves using either amplitude modulation (AM) or with audible frequencies E

frequency modulation (FM). because: g
: <

» long aerials would
Amplitude modulation (AM) B oo

Amplitude modulation (AM) is the simplest form of modulation, and uses a
carrier wave of fixed frequency. The information to be transmitted (the audio
frequency) is combined with the carrier wave so that the amplitude of the
radio wave varies to match the information signal, as shown in Figure 16.1.

» radio stations would
overlap (it would be
impossible to ‘tune
in’ to one particular
station)

Radio 'carrier” wave
AR B e

very short.

T~~~ ~__~ |nformation signal

Amplitude-modulated
carrier wave

A Figure 16.1 Amplitude modulation (AM) E



If the carrier-wave frequency is f, and the audio frequency is f, it can be shown

that the amplitude-modulated carrier wave consists of:
* awave of frequency f, and constant amplitude
* waves of frequency f, - f, and f_+ f, with constant amplitude

as shown in Figure 16.2.
C
frequency

NWUWWWUWWNMWWW e
MWWW'W\WMMMWW\M =& “~ sideband

frequencies
MWWV £+ £ ~

A Figure 16.2 Sideband frequencies frequencies

Each audio frequency has its own pair of sideband frequencies

(see Figure 16.3). When speech or music is transmitted it contains

a range of frequencies up to a maximum frequency f, and there will

be a corresponding range, or band, of sideband frequencies, from

(,f f ) to (f, + f,). The range of sideband frequencies is called the
th and is equal to 2f,, as shown in Figure 16.4.

Each radio or TV station is allocated a band of frequencies - the
width of this band is the channel bandwidth. The frequencies
transmitted by the station are restricted to lie within the channel
bandwidth. AM carrier frequencies are in the range 535-1605kHz,

with frequencies of 540kHz to 1600kHz assigned at 10 kHz intervals.

Frequency modulation (FM)

In frequency mod 1 (FM]), the frequency of the carrier wave is

rnDdulated by the amphtude of the information signal. Where the amplitude
of the information signal is high (and positive) the frequency of the carrier
wave is increased; where the amplitude is negative the frequency of the

carrier wave is decreased, as illustrated in Figure 16.5.

Carrier wave
frequency

Information signal

Frequency-modulated
carrier wave

A Figure 16.5 Frequency modulation

Amplitude

1%

o

ah

f+1f  Freguency

A Figure 16.3 Frequency spectrum

Amplitude

A f f"+ £, Frequency
u—v
+ Bandwidth = 2

A Figure 16.4 Bandwidth

' ™

FM transmission is more
expensive than AM
transmission, but is less
affected by noise —
unwanted electrical
interference from such
things as electric motors,
mobile phones, and the
random thermal motion of
electrons. The noise signal
adds on to, and distorts,
the signal being
transmitted. If the signal is
amplified, the noise is
amplified too.

L A

AM and FM are examples

of analogue signals. They

do not apply to digital
signals.
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Worked examples

A person is listening to music on a radio station transmitting on a frequency of 909 kHz with a bandwidth
of 9kHz.

1 a) Calculate:
i) the wavelength of the radio station
ii) the maximum audible frequency f,.

b) Comment on the quality of the sound heard.

Answer
3x10°
8 )A=c=—2— __330m
7~ 909x10
3
i) £ =210 45 10°Hz @.5kHz)

b) The human ear can detect frequencies up to 20 kHz, so the higher frequencies would not be
transmitted; the quality of the sound reproduction would be poor.

2 A sinusoidal carrier wave has a frequency of 800 kHz and an amplitude of 5.0V, The carrier wave is
frequency modulated by a sinusoidal signal of frequency 10kHz and amplitude 3.0V.

The frequency deviation of the carrier wave is 30kHz V-'. (This means that the frequency of the carrier
wave increases or decreases by 30 kHz for a change of 1.0V in the modulating signal.)

Calculate:
a) the amplitude of the carrier wave

b) the maximum and minimum values of the frequency of the carrier wave.

Answer
a) amplitude = 5.0V

In frequency modulation,
the amplitude of the

b) maximum frequency = 800 + (3 x 30) = 890kHz carrier wave is constant.

minimum frequency = 800 - (3 x 30) = 710kHz

L

Comparing FM and AM transmission

V¥ Table 16.1 AM and FM transmission

AM FM

AM transmitters and receivers are relatively cheap
and simple to make.

Frequency modulation of a signal is more complex,
making the cost greater than AM.

Poorer sound quality compared to FM because
of narrower bandwidth — can only carry audio
frequencies up to 5kHz.

AM signals can be transmitted over long distances.

Affected by noise (e.g., from electric motors) as
noise changes the amplitude of the signal and AM
is amplitude modulated.

Long wavelengths, so AM signals can diffract
around obstacles such as hills and tall buildings.

Better sound quality compared to FM due to larger
bandwidth — can carry audio frequencies up to
20 kHz.

The range (~ 30km) is smaller than AM (as higher
frequency radio waves are more attenuated than
low-frequency waves).

FM signals are less affected by noise — a change in
the amplitude of the signal due to noise does not
affect the frequency modulation of the signal.

Short wavelengths, so little diffraction around
obstacles. Line-of-sight needed to receive an
FM broadcast.




Dlgltal signals

A digital signal is one that has been encoded as a series of ‘0’s and ‘1’s.
An analcgue signal, such as the electrical vultage from a mu:mphcme is
converted into a digital signal by an analogt digital co " (ADC) in
a process called pulse code modulation (PCM}

Voltage

A Figure 16.6 Pulse amplitude modulation (PAM)

The analogue signal is first sampled, by being measured at regular time
intervals, as shown in Figure 16.6 - a process called pulse amplitude

modulation (PAM). The sampling rate must be at least double the = T
highest frequency to be transmitted if the transmitted signal is to i
be accurately reconstructed by the receiver. For speech and music i: ) 1001
the highest frequency is 22 kHz, and so a sampling frequency of at 3 8 1000
least 44 kHz is needed. 2 4 } ‘ / 0111
6 0110
Each sampled voltage is assigned a quantum level corresponding E é- I 5 0101
to a unique binary number. For example, in Figure 16.7 a voltage d 1 ; gé??
of 3.1 V would be assigned level 8 and the binary code 1000. This =2 1 o 0010
example uses 4 bits (binary digits) so has 2* (16) possible quantum _4: 1 0001
levels. A greater number of bits means the quantisation process is -5 0 0000
more accurate, but the information takes longer to transmit and
more space to store. A Figure 16.7 Quantisation

The digital signal can then be transmitted as a series of electromagnetic
wave pulses (e.g., as pulses of light sent down an optic fibre). When the
information reaches the receiver, the analogue SLgnaL is reconstructed from
the digital signal using a digital-to-analogue co r (DAC).

Advantages of digital transmission

Electrical noise can affect the amplitude of a digital signal in the same way
as analogue signals, but even if the transmitted signal becomes distorted by
noise, the receiving system only has to be able to recognise the separate ‘1's
and ‘0’s of the signal to reconstruct the original signal accurately. In addition,
noisy signals can be ‘cleaned’ by regenerator amplifiers placed at regular
intervals along a transmission link, as illustrated in Figure 16.8.

AR R) _

- - Regenerator -
‘Noisy" signal 'Cleaned’ signal

A Figure 16.8 Regeneration ‘cleans’ a noisy signal

Digital signals can be compressed into pulses of much shorter duration than
the signal itself, and so many separate signals can be transmitted at the same
time (multiplexing).
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If a large number of bits are used, some of the bits can be used to check for
any transmission errors. Digital systems are also more secure (difficult to
intercept) and can be encrypted for extra protection.

Transmitting information

Information can be transmitted along a range of different communication
channels.

Wire pairs

Iwisted w : are a low-cost way of transmitting low-frequency signals
over relatlvely short distances (up to 100m). The heating effect of the current
in the wires causes rapid attenuation of the signal over longer distances, and
the wires act as aerials, radiating energy as electromagnetic waves. Twisting
the wires together reduces the amount of energy radiated, but does not
eliminate it completely. Wire pairs are also susceptible to cross-linking, where
the signal carried by one wire pair is picked up by another, and noise from
things such as electric motors and fluorescent lights.

Coaxial cables

A coaxial cable consists of a copper wire separated from an outer copper
braid conductor by polythene insulation, as shown in Figure 16.9. The cable
is further protected by an outer layer of plastic insulation.

Coaxial cables have much less attenuation than wire pairs, radiating less
energy. There is also less noise and cross-linking, and coaxial cables are more
difficult to ‘tap’. They have a greater bandwidth (~60 MHz) than wire pairs,
so can carry much more information.

Radio waves

d » are electromagnetic waves with wavelengths ranging from 0.1m
to lkm or greater (see Table 16.2). They are used by TV and radio stations
and for two-way communications, including mobile phones.

¥ Table 16.2 Radio wavebands

Copper wire —’a\

P ]

g Palythene

;‘\% insulation

— Copper braid

Quter
insulation

hig

A Figure 16.9 Coaxial cable

Wavelengths Uses
Long-wave >1km international long-wave AM radio
Medium-wave (MF) 100m-1km medium-wave radio stations
Short-wave (HF) 10m-100m | AM short-wave radio
Very high frequency (VHF) 1m-10m local FM radio
Ultra-high frequency (UHF) 0.1m-1m TV broadcasts, mobile phones

Radio waves are affected by the atmosphere in different ways, depending on
the frequency of the waves (see Figure 16.10, overleaf).

s Surface waves: Low-frequency (long wavelength) radio waves spread
out from a transmitter because of diffraction and stay near the surface of
the Earth. They also diffract around hills and tall buildings so there are
few places where reception is poor.

* Sky waves: Medium- and high-frequency (MF and HF) waves (medium
and short wavelengths) are reflected by the ionosphere and can travel around
the Earth by being repeatedly reflected by the ionosphere and the ground.

* Space waves: Radio waves with frequencies greater than 30 MHz are
used for line-of-sight communications and satellite links,
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Surface wave Line-of-sight wave

A Figure 16.10 Surface waves, sky waves and space waves

Microwaves

; are electromagnetic waves with wavelengths between 1 mm and
10 cm. They have a much greater bandwidth so can carry more information.
They are used for satellite communications and line-of-sight communications.
For long-distance microwave links, several repeater and regenerator stations
are needed, which can both amplify and ‘clean’ the microwave signals.

Optic fibres

Optic fibres are used to transmit digital signals as pulses of infrared light with
wavelengths in the region of 1200nm. They have several advantages over
copper-wire-based communication systems, including:

* amuch higher bandwidth so they can transmit much more information,
at a faster rate

* |ess signal attenuation and so fewer regenerator/amplifier stations
are needed

s greater security - they are virtually impossible to “tap.

They are also much less affected by noise, can be ‘cleaned’ by regenerator
stations, and are cheaper and lighter than copper-wire systems, making them
ideal for communications over long distances.

Satellite communications § orbit time = 24 hours

Satellites are used to transmit information, such as international telephone

links and satellite TV broadcasts, around the Earth, though there is a time w\*\
delay between the sending and receiving of information. Two types of !
satellites are used:

* (eostationary sat :: These orbit the Earth at a height of 36000km above
the equatar once every 24 hours so that, viewed from the Earth, they appear
stationary (see Figure 16.11). Microwave beams are sent from ground-based
transmitters to a satellite using one carrier frequency (the uplink); the

v
]

.

r

A Figure 16.11 Geostationary
satellite

satellite then transmits the microwave beam back down to satellite dish For more on geostationary
receivers on the ground using a different frequency (the downlink). orbits see Unit 8
Gravitational fields.

Satellite links for long-distance communications are better than using
radio waves as they are not obstructed by hills and do not rely on
reflection by the ionosphere (which varies in reflectivity during the day).
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s P rhit itellites; Some satellites orbit the Earth above the poles
ata hE‘lght of ?00—800 krn above the Earth’s surface, taking 90 minutes to
complete an orbit, as shown in Figure 16.12. As polar-orbiting satellites
are relatively close to the Earth’s surface, they can be used for weather
forecasting and surveillance.

When used for communications, polar-orbiting satellites have much
shorter delay times (because they are much nearer the Earth’s surface),
but the ‘footprint’ (the area of ground the radiation emitted by the
satellite covers on the Earth’s surface) is much smaller. The satellite has
to be continually tracked by a ground station.

Attenuation

n is the gradual decrease in the power of a signal the further
it travels. Infrared waves are absorbed or scattered as they pass through
an optic fibre, radio waves and microwaves are partly absorbed by the
atmosphere, and electrical signals in wires lose energy through heating the
wires and radiating energy.

The power may decrease by a very large factor over long distances (several
powers-of-ten), and so a logarithmic scale is used to measure the attenuation.
If the power falls from P, to P,, the attenuation is:

P
attenuation = 10 log , (Fl)
2

Attenuation is measured in decibels (dB) where 1dB is one-tenth of a bel (B).

The attenuation in an electrical cable or an optic fibre is often expressed in
dBkm-, the total attenuation divided by the length of the cable.

' o
Worked example

The input power to an optic fibre of length 40km is 14 mW. The power at
the receiver is 620pW. Calculate the attenuation per kilometre.

Answer =
attenuation = 10 log, (21} =10 log, (%) —135dB
P, 620x10°

attenuation per km = L =0.34dBkm"!

Orbit time =90 minutes

A Figure 16.12 Polar orbiting
satellite

LN A

The eqguation for
comparing two powers P,
and P, is:

No. of dB = 1[)Iogm(§)
R,

You must be able to recall
and use this equation.

If P, > P, the value is
positive, indicating a
power gain.

If P, <P, the value is
negative, indicating the
power has been reduced
(attenuated).

The negative sign can
usually be ignored, but
when a system has both
power gains and
attenuation (e.g., an FM
transmission with
repeaters), the overall gain
can be found by adding up
all the power gains and
losses expressed in dB, but

treating losses as negative.
L

o

The effects of attenuation can be reduced by using repeaters and regenerators:

* Repeaters are amplifiers used at intervals along a communication link to
amplify the signal (though they amplify the noise as well as the signal).

* Regenerators are used in digital communications systems to ‘clean’ the
digital signal by removing noise and restoring the digital signal to its
original amplitude,

The gain of a repeater is also usually expressed in dB where:

gain = 10 log,, (J;;“') .

As a signal travels it becomes weaker, and the noise becomes a greater
fraction of the total signal - the signal-to-noise ratio decreases. The signal-to-
noise ratio is also expressed in dB, with many communication systems setting
a minimum value for this ratio,

log,, stands for logarithms

to base 10 (written as Ig).

log, stands for logarithms
to base e (written as In).




) Raise your grade

(a) A digital communication system uses pulses of infrared radiation which pass through an optic
fibre. The radiation is attenuated as it passes through the fibre.

(i) State what is meant by attenuation.

The infrared wave gradua‘.‘.]- gets less and less. X oo el ror 1 the

gradual decrease of power or
intensity (or amplitude).

R R T T T T T YN ..

(i) Explain why infrared radiation is used rather than visible light.

The infrared ‘.igh’r is leas acattered than visible Infrared waves are scattered
less than visible light, but

light, because it has a shorter wavelength vx because they have a longer (3]
wavelength than visible light.

(b) The pulses are transmitted along a fibre of length 45km. The power input from the transmitter
is 11.8mW.

Optic fibre

|Tran5mitterl > | I Receiver |

45km i

The signal power output at the receiver is 470 uW. The noise level at the receiver is 0.29 uW.
The signal-to-noise ratio at the output must be at least 35dB.

(i) Determine whether the signal-to-noise ratio at the receiver is greater than 35dB.

PS il Ko The correct
dignal-to-noise ratio =10 log_{ =— ) =10 log | — )=3%2d% v method
o 2
L 029 and values
. . o substituted
The signal-to-noise ratio is less than 2548 oot
(i) Calculate the attenuation per kilometre of the optic fibre. v Correct
_3 calculation.
] \ fransmifier i “6 X |0 4 d
Attenuation = 10 log, v ]= 10 log,, Ko o) = 14.0 %

v The attenuation along the whole length of the optic fibre has been calculated correctly

X but the question asks for the attenuation per km. The correct answer is % =0.31dBkm-!

attenuation perkm=__ 14.0  dBkm™ [4]

(c) To improve the system, a regenerator is connected halfway along the cable.

Describe the purpose of a regenerator.

The signa‘. ia amp\ifiﬁd bi the regenerator X x

L L R PR Y]

L T Y R R RN T R Y

The regenerator does not amplify the signal — it reads the ‘0’s and ‘1’s of the distorted signal
and recreates them as sharp ‘0’s and ‘1’s — i.e, it removes or ‘cleans’ the noise from the signal.

L T R R TR ] Bz]

v
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- Exam-style questions

1 (a) Describe what is meant by amplitude 4 An electrical signal is transmitted along a

modulation (AM). [2]

(b) The graph shows how the amplitude of
the signal from a radio station varies with
frequency.

Amplitude

628 693 698 Frequency/kHz

State, for this signal:
(i) the bandwidth
(if) the carrier frequency

(iii) the maximum audio frequency that
can be transmitted. [3]

(c) Use your answer to (b)(iii) to comment on
the quality of the sound that would be heard
listening to this radio station. [2]

(a) Suggest two reasons why audio signals are
not transmitted using electromagnetic waves
with audio frequencies. [2]

(b) Describe what is meant by frequency
modulation. [2]

(c) State two advantages and two disadvantages
of FM radio transmission compared to AM
radio transmission. [4]

(a) State two advantages of digital transmission
of information compared to analogue
transmission. 2]

(b) In the recording of music using digital
technology, describe the effect of increasing:

(i) the sampling rate
(ii) number of bits. [2]

(c) A 4 gigabit music CD records music using a
sampling rate of 44 kHz and 16 bits.
(i) Explain why 44 kHz is a sufficiently high
sampling rate.

(ii) Determine how many quantisation
levels are possible using 16 bits. [3]

(d) Two (stereo) channels are recorded on
the CD. Estimate the playing time
available on the CD. [3]

cable of length 200km. The input power to
the cable is 500 mW and the attenuation of the
cable is 0.3dBkm".

(a) Calculate:
(i) the attenuation of the cable
(ii) the output power of the receiver. [3]

(b) A repeater with a gain of 20dB is placed
halfway along the cable.

(i) Explain the purpose of a repeater.

(ii) Calculate the new output power at the
receiver. [3]

An Earth station sends a microwave signal to a
satellite in geostationary orbit. The attenuation
of the signal is 5.4 x 20-*dBkm ~!. The power
transmitted from the Earth station 16 kW.

(a) State one reason why microwaves are used
for satellite communications. [1]

(b) Calculate:

(i) the attenuation of the signal by the
time it reaches the satellite

(ii) the power received by the satellite. (3]

(c) The signal-to-noise ratio at the satellite must
be greater than 40dB. Calculate the maximum
value of the noise power at the satellite.  [2]

The minimum acceptable signal-to-noise ratio in
an optic fibre cable is 25 dB. The noise power is
3.5x 107"W.

(a) Calculate the minimum power of the
signal. [2]

(b) The input power to the cable is 400uW and
the attenuation of the cable is 0.65dBkm.

Calculate the maximum permissible length
of cable. [2]
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Understand that an electric field is an example of a field of force, and define electric field strength
as force per unit positive charge acting on a stationary point charge.

O Represent an electric field using field lines.

O Recall, and use, E = ‘iz to calculate the field strength of the uniform field between charged
parallel plates in terms of potential difference and separation.

O Calculate the forces on charges in uniform electric fields.

O Describe the effect of a uniform electric field on the motion of charged particles.

] Understand that, for any point outside a metal sphere, the charge on the sphere acts as a point
charge at its centre.
QQ,

dre,r’

O]

Recall, and use, Coulomb’s law, F =
OrT air.

, for the force between two point charges in free space

Recall, and use, E = LZ

dme,r
Define potential at a point as the work done to bring a unit positive charge from infinity to the point.

D

for the field strength of a point charge in free space or air.

3 i

State that the field strength at a point is equal to the negative of the potential gradient at that point.

o

Use the equation V =

Z for the potential in the field of a point charge.
£y

Recognise the similarities between aspects of electric fields and gravitational fields.

What is an electric field?

An eleciric field is a region where charged particles experience forces. If a
small positive charge Q is placed at a point in the field and it experiences =
a force F, then the electric field strength E at that point is defined as:

F _ Sl units are NC

Q

Electric field strength is a vector quantity - it has direction as well as ‘ .m

magnitude. The direction of the electric field is the direction of the force on a » Field lines point away
unit positive charge, and can be shown by electric field lines (see Figure 17.1). frvonﬁ po sit-i'v B charges

towards negative

o

A

» The closer together
the field lines, the

. . , . greater the electric
a Near an isolated positive charge b Near an isolated negative charge field strength.

p, v Y AN e
/?\\\-_..4—,//\ %/~\\\ e

¢ Between two opposite charges d Between a point positive charge,
and an oppositely-charged plate

A Figure 17.1 Examples of electric field lines

&
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Uniform electric fields

Electric field between two parallel plates

If there is a potential difference across two large parallel plates, the electric
field between the plates is uniform - it is constant both in magnitude and
direction (see Figure 17.2a).

3 d .

- +
- +
_ i F

. | I <@
o + Q
- +
= * -« »

* v EEErm

a Field between two parallel plates b Force between two parallel plates

%4
A Figure 17.2 Electric field and force between two parallel plates ~d L e S

Sl units are Vm'!
For two metal plates that are a distance d apart with a p.d. V between them,

when a charge +Q moves from the positively charged plate to the negatively (equivalent to NC™)
charged plate (see Figure 17.2b), the work done on the charge is: This equation can also be
_ written:
e Y
G L " Ad
Q d - 7
Worked examples

1 An electron is between two parallel plates that are 2.0cm apart. The p.d. between the
plates is 5.0kV. Calculate:

a) the electric field strength between the plates b) the force on the electron.
Answer
V 5 x 103 5 -1 -1
E=s—m=————=25x107V N
A B B VT (NG
b) F=EQ

=Fe=25x100x1.6x10""Y=4.0x10"“N

2 A small charged ball, of mass 5.0g, is suspended by a nylon thread between two parallel plates, and
hangs at an angle of 40° to the vertical (see Figure 17.3). The p.d. between the plates is 2.0kV, and the
distance between the plates is 10.0cm.

How much charge is on the ball?
Answer

Resolving vertically: Tcos 40° =mg =5.0x10"*x 9.81 =4.91 x 10°*

v 2.0x10°
Resolving horizontally: Tsin 40° = F, = 1 xQ= m:; xQ=2x10'Q
Dividing the second equation by the first:
4 &
2x10 Q_Z " sin 40 A0
491x107  cosd0 5 R
491x107 x 0.83
et H 0B oy e e oo
2x 10 2KV

A Figure 17.3




Motion of charged particles in a uniform electric field

Uniform electric fields can change the speed and direction of charged
particles.

7~

Worked example

The p.d. between two metal plates, S and T, is 3.0 kV. The two plates are
6.0cm apart. An electron is at rest next to the negatively charged plate S. It
accelerates towards the positively charged plate T, a metal disc with a hole
in the middle (see Figure 17.4).

Calculate:
a) the electric field strength between the two plates
b) the force on the electron
i ¢) the acceleration of the electron
d) the speed of the electron when it reaches T.
Answer

V _ 3.0x10°

8) Besat i . cogapinge-
) d ™ 60x107

b) F=Ee=50x10"x1.6x10"""=8.0x10"*N
c) Using F=ma:

-15
a= £=% =8.8x10"ms?

d) Using v*=u® + 2as:
=0 + 2% (8.8% 109 x (6.0 x 10°2) = 1.1 x 10

r=32x10'ms™!

This example shows
how electrons are
accelerated in, for
example, cathode-ray
oscilloscopes.

3.0kV
1l
L |
Electron - Metal
disc
S
< 6.0cm »
I
A Figure 174

The mass of an electron
me and the electronic
charge e are provided
in Exam Papers 1, 2,
and 4.

Electric field strength between point charges

Coulomb’s law

says that if two | s, Q, and Q,, are a distance r
apart (see Figure 17.5), the force F between them is:
s
dme,r?
¢, is a constant, called the permittivity of free space. Its value is
8.85x 10" *Fm™.

F 0} Q& F
O —

€ r >

A Figure 17.5 The force between two point charges

If the two charges are both positive, or both negative, the force is repulsive
(by convention, a positive force). If one charge is positive, and the other
negative, the force is attractive (by convention, a negative force).

Electric field strength of a point charge

The at a point is the force on a unit positive charge at that
point, and so far a point charge Q, by replacing Q, with ‘1" in Coulomb’s law:

Q

E= -
dme,r’

If you’re asked to define
Coulomb’s law, make
sure that you refer to the
force between two point
charges.

L% S

Pl e o | .

1 _899x10°Nm2GC2
4-115:0

This value, and the value
of ¢, are provided in Exam
Papers 1,2, and 4.

L. 7

B oo I
Coulomb’s law is defined
for point charges, but a
sphere of charge, with the
charges equally spread
over the sphere, acts

as if all the charge were
concentrated at the centre
of the sphere.

L "
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Worked examples

1 Calculate the force between two protons 2.0 x 10~ '*m apart.
(The charge on a proton= +e = 1.6 x 10-'"C)

Answer

F= QQ, =8.99x 107 x

4me, r

(1.6 x 107)

o 10°N
(2 x107%)

=5.8x

2 A metal sphere of radius 50 mm carries a charge of + 200pC.

a) What is the strength of the electric field 20 mm from the surface of
the sphere?

b) In which direction is the electric field?

Answer

i
8 E- 0 200 x 10

=8.99%10° x ————
& (70x107°)

b) The direction is radially, away from the sphere (see Figure 17.6).

=3.7x10°NC™

dme,;r

L

A Figure 17.6

Electric potentlal

The elect | at a point is defined as the work done in bringing
unit pnsmve charge [+ 1C) from infinity to that point. The work done is
independent of the path taken (see Figure 17.7).

For a point charge + Q, the energy needed to bring + 1C from infinity to a
point P that is a distance r from Q (i.e., the potential at point P) is inversely
proportional to r (see Figure 17.8). The potential V is calculated using the
equation;

Q

dxer

Vie

| A long way away! |

H 1 coulomb

3- P
\, +Q

A Figure 17.7 The meaning of electric potential

Moving a unit positive charge towards + Q requires work to be done as the
positive charges are trying to push each other apart. The smaller the value
of r (the closer the test charge gets) the greater the amount of work required.
The unit positive charge gains electrical potential energy as it approaches Q,
and so Vis positive.

No work needs to be done to move the positive test charge towards a charge — Q.
Instead, the unit positive charge is pulled towards — Q and gains kinetic energy.

The test charge loses potential energy as it approaches — Q, and so V is negative.

Electric potential is useful for calculating the energy needed or gained when
charged particles move from one place to another. If the potential is known

at two different points, then the energy needed for a unit positive charge to

move from one point to the other is the potential difference.

Electric force and electric
field strength are both
vectors because they
have direction as well as
magnitude.

Electric potential is a
scalar quantity — it only
has magnitude.

Y

-

A Figure 17.8 Electric
potential V at a distance r
from a point charge Q

The formula
V- Q
4.?1'&‘1}."
is provided in Exam
Papers 1, 2, and 4, but
remember it has units of
e




Electric field and potential gradient

For two parallel plates, with a potential difference V between them, the
potential V increases linearly from 0V to + V (Figure 17.9). As shown earlier,

the field strength is equal to —i—v (the negative of the potential gradient),
and is constant. *

———
AL

Vincreasing —»

ov +V

- +

- +

: «—F i

- +

- +

v
AV
AV =

o

A Figure 17.9 Electric field E between two parallel plates
It can be shown that the equation:

electric field strength = — potential gradient

The negative sign is
needed because the
field strength E is in the
opposite direction to the
displacement Ax.

E = - potential
gradient

Ax

X

A Figure 17.10 Field
strength is the negative of the
potential gradient

applies more generally. If a graph of electric potential against distance is
plotted, the field strength at any point is the negative of the gradient of the
graph at that point (Figure 17.10).

Comparing electrical and gravitational fields

The gravitational force between two masses and the electrical force between
two charges both obey inverse-square laws (see Table 17.1).

¥ Table 17.1 Comparison of electrical and gravitational fields

Force Field Potential Potential energy
: Gmm GM GM
Gravity F =f g=r_2 ¢= —= PE - Gn‘rmr2
Q QQ
Electricity o QQ, E_ Q Vi 7 PE - T 1
dre,r? dne,r mELl TEyr

* The electrical force can be attractive or repulsive, depending on the sign of the
charges, but the gravitational force is always attractive.

* FElectrical potential can be positive or negative, depending on the sign of the charge.
Gravitational potential must always be negative as work needs to be done to move a
test mass to infinity where, by convention, it has zero potential energy.

* Astwo masses are moved apart, the potential energy of the two masses increases
(work has to be done to separate the two masses).

* Astwo positive charges are moved apart, the potential energy of the two charges
decreases (work has to be done to push the two positive charges together).



Electric fields

Raise your grade

A beam of electrons is fired from an electron ‘gun’ inside a vacuum tube. The electrons pass between
two metal plates, a distance d apart. A potential difference Vis applied between the two plates, and
the electron beam is deflected upwards, as shown.

+V
Electron
‘gun’ Beam of
electrons
= R
Vacuum tube

(a) Explain why the electrons are deflected upwards.

d Not sufficient explanation — should add ‘and are attracted

X
Blectrons are nega‘nvc‘»{ Chargb to the positive plate because opposite charges attract’.

R Y R T T )

(b) State, and explain, the effect on the deflection of the electrons for each of the following
changes: (i) the distance d between the plates is decreased

The electric field 5’fren9’fh € (= V/d) will increase, in‘c/rbaﬁmg the upwards force on the

L R N

electrons, 0 the electrons will be deflected more. v s e 2]

T R Ry ) FEssssBERER RS

(ii) the potential difference V between the plates is decreased

The electric field 5’frr,ng’fh £ will decrease, dbcrca-aing the upwards force on the electrons,

T T T T T Y

50 the electrons will be deflected less. v

L R RN

A'gtuad answer. o00-0!0-ootntotonootvtoovoono[1]

(ili) the speed of the electrons is decreased.

The force on the electrons has not changbd s0 the deflection will be the same. ¥ [1]

L Y

An incorrect answer. The electrons spend more time between the two
plates (because they are moving more slowly) so the upwards force acts
on them for longer - the deflection would be larger.

(c) Describe, and explain, what would happen if the beam of electrons was replaced by a beam
of o-particles travelling at the same speed as the electrons.

---------------------------------------------------------------------------------------------------------

They would deflect downwards. v x [2

R R R e R T T Ty

For the second mark the candidate should add that the deflection will be smaller because the
mass of an alpha particle is much greater than the mass of an electron. The force acting on
an alpha particle will be double that on an electron, but the mass of an alpha particle is several
thousand times greater than the mass of an electron.
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Exam-style questions

A charged oil drop, of mass 5.0 x 10" kg, is held
stationary between two parallel, charged plates,
5.0mm apart.

Oil drop——O 5.0mm

+ + T + +

The p.d. between the two plates is 516 V.

What is the charge on the oil drop?

A 48x10%*C C 4.8x10%C

B 48x10"C D 4.8x10C [1]

Two parallel metal plates, 20.0cm apart, are
connected to the terminals of a 5.0kV supply.

What is the field strength between the plates?

A 025NC

B 25NC-

C 2.5x10*NC

D 2.5x10°NC (1]

An electron is positioned midway between two
oppositely charged, parallel plates connected to

a d.c. supply. Which one of the graphs shows
how the force F on the electron varies with the
separation d of the plates? [1]

Fi

p \ ‘
a

c

(a) Sketch the electric field pattern between two
negatively charged particles. Each particle
carries the same amount of charge.

@ @ (1]

7

(b) How would the diagram change if one of the
particles had double the charge of the other?

(2]

A sphere of diameter 4.0cm carries a negative
charge of 6.0nC.

(a) Calculate the electric field strength:
(i) on the surface of the sphere
(il) at a point P, 10.0 cm from the centre of
the sphere. [3]
(b) Calculate the electric potential:
(i) on the surface of the sphere
(ii) at a point P, 10.0 cm from the centre of
the sphere. [3]
(c) Calculate the work done in moving a charge
of + 4 pC from the surface of the sphere to
point P, 2]

A metal sphere is suspended from an insulating
wire. The sphere is connected to the positive
output of a 5kV d.c. supply.

+5kV
-

The potential 500 mm from the centre of the
sphere is 3.0k V.

Calculate:
(@) the charge on the sphere [2]
(b) the radius of the sphere [2]

(c) the potential 800 mm from the centre
of the sphere. [2]

The force between two charged particles is
inversely proportional to the square of the
distance between them - an example of an
inverse square law. The variation of the
gravitational force between two masses with their
distance apart is also an inverse square law.

(@) Describe two ways in which gravitational
and electrostatic forces are similar, (2]

(b) Describe one way in which the two
forces are not similar, [1]



| t: @ Capacitance

Key points

A 15.1-15.3 pages 220-227

O

Recall and use C = %—

o

E

Understand some of the functions of capacitors in simple circuits.

[l Define capacitance and the farad for isolated conductors and parallel-plate capacitors.

Derive and use the formula for the capacitance of capacitors connected in series.
Derive and use the formula for the capacitance of capacitors connected in parallel.

1 1
Deduce, from the area under a potential-charge graph, the equation W=5 QV =3 cv’®,

Parallel-plate capacitors

Capacitors are devices for storing charge and energy in electric circuits. They
usually consist of two metal plates a short distance apart, separated by an
insulating material. Figure 18.1 shows the circuit symbol for a capacitor.

4

R |_/\_
Ao Electrons
o -G§.| i_§+0
[

A Figure 18.2 Charging a capacitor

In the circuit shown in Figure 18.2, when the switch is closed, electrons flow
from the negative terminal of the cell onto the left-hand plate of the capacitor,
and an equal number of electrons leave the right-hand plate and move to the
positive terminal of the cell. The left-hand plate then has a negative charge -Q
and the right-hand plate has an equal positive charge +Q (the net charge
stored in a capacitor is zero).

The greater the value of V, the potential difference (p.d.) across the capacitor,
the greater the charge Q. Doubling V doubles the charge Q (see Figure 18.3):

QoV
or Q=CV

where C is the capacitance of the capacitor. The units of capacitance are
farads (F). Capacitance is the charge stored per unit potential difference.

If a p.d. of 1V produces a charge of 1C (coulomb) on the plates of a capacitor
(positive charge on one plate, negative on the other) the capacitor has a
capacitance of 1F.

r ™)
Worked example
What are the SI base units of capacitance?
Answer
C As As
Units are; — = = =kg'm7s'A’
: Vv JC' kgm’s?A's™ g
\ o

A Figure 18.1 Symbol for a
capacitor

~
b=
[

Charge @

A Figure 18.3Q = V

=

The capacitance C of a
capacitor is the charge Q
stored per unit potential
difference:

A Level



Most capacitors have capacitances very much smaller than 1F.

Table 18.1 gives the prefixes often used for capacitances.

¥ Table 18.1 Prefixes used with capacitance

Microfarads uF 10°F
Nanofarads nF 10°F
Picofarads pF 10"°F

~

Worked examples

1 A 500nF capacitor is connected to a 12 Vd.c. supply.
What is the charge on either plate of the capacitor?

Answer
Q=CV=500x10"x12=6uC
2 A potential difference of 5.0kV is connected across a 470 pF capacitor.,
a) What is the charge stored?

b) How many extra electrons are there on the negative plate of the
capacitor? [e= 1.6 x 10" "°C]

Answer
a) Q=CV=470x10°x5x10°=2.35C
2.35
b) number of ‘extra’ electrons on negative plate = ———
1.6x10
=1.47 x 10"

Take care not to confuse
C (the symbol for the unit
of charge, the coulomb)
and C (the symbol for
the capacitance of a

} capacitor).

This means there will be
+2.35C of charge on

one plate, and -2.35C of
charge on the other plate.

Capacitors in series

Figure 18.4 shows three capacitors, with capacitances C,. C,, and C,, connected
in series to a d.c. supply with a terminal p.d. V. As the capacitors are in
series, the charges on each plate of all the capacitors must be the same
(charge is conserved).

From Kirchhoff’s second law:

V=V +V,+V,

Capacitors add up in series in the same way as resistors add up in parallel.
Adding capacitors up in series makes a capacitor with smaller capacitance.

v
1|
LB

G G Cs

-a||+@  -Q||+a@ Q| |+@

|| H ||

¥ ] Y

A Figure 18.4 Capacitorsin
series

See Unit 20 Direct current
circuits (d.c.) for more
about Kirchhoff’s laws.

d g i

C ke e
Capacitors in series add
up like resistors in parallel.
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Worked examples
1 Three capacitors with capacitance 3 uF, 4 uF, and 5UF are connected in series. What is their combined
capacitance?
Answer
1 (1 1 1)
(6 3 4 5
_20+15+12
60
1_47
C 60
C=13 F o
1
2 A 5uF capacitor is connected in series to a 10puF capacitor. The
combination of capacitors is connected to a 12V d.c. supply (Figure 18.5). +Q5|“|F_Q +Clzc|h|{9
Calculate: | | | |
1% V.
a) the p.d. across the 10uF capacitor ! ‘
b) the charge on the 5uF capacitor. A Figure 18.5
Answer
a) From Kirchhoff's second law: V + V, =12 (egn 1)
Charge on both capacitors is the same:
Q=CV=5x10 "V, =10x10 "V,
vV, =2V, (eqn 2)
Fromeqn 1 and eqn 2: V, =8V, V, =4V
b) Q=CV=5x10"x8=40uC
L J
V
1
Capacitors in parallel A
In Figure 18.6 three capacitors, (C,, C,, and C,) are connected in parallel to a
d.c. supply with a terminal p.d. V. G
-] |+@
The potential difference across each capacitor is the same as the potential II I .
difference across the d.c. supply (V), as they are all in parallel.
The total charge ‘stored’ is Q, where: G,
Q=0Q,+Q,+Q, ] |
=CV+CV+CV
Q=VI(C,+(+C) C

Q
?=C=C1+CQ+Ca

Capacitors add up in parallel in the same way as resistors add up in series.
Adding capacitors up in parallel makes a capacitor with larger capacitance.

A Figure 18.6 Capacitors in

parallel

mpr—

C=C,+C,

+ <,

Capacitors in parallel add
up like resistors in series.
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Worked examples

1 Three capacitors, with capacitance 1000 1F, 2200uF, and 4700uF are
connected in parallel.

a) What is the total effective capacitance?

b) If the parallel combination of capacitors is connected to a
12V d.c. power supply, what is the total charge stored?

Answer
a) C=C,+C,+C,=1000+ 2200 + 4700 = 7900pF
b) Q=CV=7900x10 "x12 =95mC

2 Three capacitors are connected as shown in Figure 18.7. The total U
effective capacitance is 20uF. What is the value of C? c
Answer ° °
1 1 1
T
(20+40) C 20 40 F
i_1 1 _2 A Figure 18.7
C 20 60 a0
C =30pF
\ J

Energy stored in capacitors

When a capacitor is being charged, work is done in pushing charge onto one
plate and ‘pulling’ it off the other. For a capacitor that is initially uncharged, the
work done in pushing the first few charges onto one of the plates is very small,
but as the charge on the plates builds up it gets harder and harder to push more
charge onto the plate (because the charges already there are repelling them).

The energy stored W in a capacitor charged to a potential difference V is
equal to the area under the graph of p.d. against charge (see Figure 18.8).

Calculating the energy stored

p.d.

The area under the
graph represents the

)
i
:
/ energy stored in a
i capacitor

Charge Q

A Figure 18.8 Energy stored in a capacitor M

Energy stored in a
From Figure 18.8: capacitor W
1
. — 1
Energy stored: W 5 (9% = o
2
Using Q = CV: =loy !
gQ=CV: =3 =—CcV?

Uses of capacitors

Capacitors have a wide range of uses, including defibrillators, flash
photography and back-up power supplies for devices such as computers.




Capacitance

'S ™
Worked examples

1 The graph (Figure 18.9) shows the charge Q on a capacitor as the potential difference V across it is
gradually increased.

280 1

240 4

B
S

160 4

Charge Q/uC
o Mo
=] &
1 L

F=9
o
1

o

A Figure 18.9
a) What is the capacitance of the capacitor?
b) What is the energy stored in the capacitor when the p.d. across it is 14.0V?

c) The capacitor is partially discharged so that the p.d. across it falls from 14.0V to 9.0V. how much
energy is lost by the capacitor?

Answer

b) energy stored = %CVZ =0.5x20x 107 x 14.0°=1.96 x 10™°J
c) energy lost = area under graph between 14.0V and 9.0V

=%(280 +180) x 10 °x (14.0-9.0) = 1.15 x 10 ]

2 A defibrillator (see Figure 18.10) is a device that provides an electric
shock to the heart of someone who is in cardiac arrest. A capacitor
of capacitance 15uF is first charged to a potential difference of
8.0kV. It is then discharged through the patient using two metal
disks connected to insulated handles.

Calculate:

a) the charge on either plate of the capacitor

b) the energy stored in the capacitor.
Answer

a) Q=CV=15x10°x8.0x10°=0.12C

by W= %CV2 = %x 15 % 107 x (8.0 x 10°)* = 480J

B.0kV

DS

<

T-":FI

A Figure 18.10 Defibrillator

3 The top and bottom layers of a thundercloud can be treated as a capacitor of approximate capacitance
10"F. Just before a lightning strike the p.d. between the top and bottom of the thundercloud is

approximately 3 x 10”V. Calculate the energy stored in a thundercloud.
Answer

W =%CV2 = %xlﬂ_ﬂ x (3x10°) = 4.5x10"J




<) Raise your grade
A capacitor of capacitance 200 uF is connected to a 12V d.c. supply.
12v

(@) Define capacitance. 200pF
Qomething has, capacitance. if it stores change, when 2, voltage.is.across it ... x

....................................................................................

+..-++-.. Thisis a description of what capacitors do, rather than a definition. A good .......... [1]
answer would be ‘The capacitance of a capacitor is defined as the charge
stored per unit potential difference’.

..............

(b) (i) Show that the charge on the capacitor is 2.4mC.
Q =N =12 X200 =2400pL = 24mC v A good answer. (1]
(li) Calculate the energy stored in the capacitor.
Energy stored = é V' = 05X 200 X 12" = 144 X 10’7 v x

The candidate has substituted the correct values into the correct equation
(method mark), but has not taken account of the capacitance being in uf, not F
The answer should be 0.5 x 200 x 10°x 12° = 1.44 x 107°J.
(c) The 200uF capacitor, still charged, is disconnected from the power supply and connected
to an uncharged 100 uF capacitor.

[2]

200pF

100uF
() Show that the potential difference across the 200 1F capacitor is now 8V.
The 2400 pC charge is ‘shared” between the 2 capacitors so that the pd. across each
capacitor is the same (the capacitors are in parallel).

BV across 100 pF means 300 pC; BV across 200 pF capacitor means 1600 pC.

Total charge = 800 + 100 = 2400 pC (charge is conserved) v v v

A good answer.  [3]
(li) Calculate the total energy stored in the two capacitors.

| | | |

Total energy stored = —4V* + —£,V* = — x 100 x 8” + — x 200 x 8
Y Z 2 2
=09 x10'T vv

Correct method and substitution. Calculation is correct, allowing for error carried forward —

already penalised for using uF rather than converting to F. The answer should be 0.96 x 107 J. 2l

(d) Explain why your answers to (b)(ii) and (c)(ii) are not the same. X
Electrical resistance

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Not enough for a mark. The candidate should have written ‘Charge must flow from one capacitor ]
to the other (an electric current) so energy is lost as heat because of electrical resistance’.




1

2

3

4

. Exam-style questions

When a capacitor is charged to 400V the charge

stored on the capacitor is 800 mC.
(a) What is the capacitance of the capacitor? [1]

(b) Why is it ambiguous to refer to the
charge stored on a capacitor? [1]

A 400uF and a 600uF capacitor are connected
in parallel and the combination is connected in
series to a 1000 uF capacitor. The three capacitors
are then connected to a 10V d.c. power supply.

10V
1]
1
400pF
1000pF
600pF

(a) Determine the combined capacitance of:

(i) the two capacitors in parallel

(ii) the three capacitors in combination.  [2]
(b) Calculate the charge:

(i) on the 400uF capacitor

(ii) on the 600UF capacitor. [2]

(¢) Calculate the p.d. across the 1000 F capacitor.
(1]

A photoflash capacitor fitted to a camera has
a capacitance of S00uF. It is charged to a
voltage of 300V.

(a) Determine the energy stored in the
capacitor. [2]

(b) The capacitor discharges completely in
3 ms. Calculate the average power
output of the flash. [2]

A student has a 20uF capacitor, a 47 uF capacitor,
and an 82 uF capacitor,

(a) (i) What is the largest capacitance that he
can make from the three capacitors?

(ii) Draw a diagram to show how the three
capacitors should be connected. [2]

CapaCitancE ==

(b} (i) How can the three capacitors be
combined to have an overall
capacitance of 50 uF?

(i) Draw a diagram to show how the three
capacitors should be connected. [2]

A 1000 pF capacitor is connected to a 6 Vd.c.
supply, as shown.

1000 pF

(a) Calculate:
(i) the charge on the capacitor
(i) the energy stored in the capacitor. [2]

The 1000uF capacitor, still charged, is
disconnected from the battery. A 500uF capacitor
is now charged to 6V by the d.c. supply and then
disconnected. The two capacitors are then joined
together as shown below; the positively-charged
plate of one capacitor being connected to the
negatively-charged plate of the other.

500 uF

1000 uF
(b) Calculate the charge on either plate of:

(i) the 500uF capacitor

(i) the 1000pF capacitor, [2]
(c) Determine the potential difference across:

(i) the 500UF capacitor

(i) the 1000 puF capacitor. [2]

(d) (i) Calculate the total energy stored in the
two capacitors.

(i) Explain why this is less than your
value in (a)(ii). [2]
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- 0w AS 6.2-6.5 pages 92-99
eIGCtrICIty A 16.1 pages 234-236

Understand that electric current is a flow of charge carriers and that the charge on the carriers
is quantised.

O Define the coulomb, and be able to recall and use Q = It.

O Derive and use the equation I = Anvg, where n is the number density of charge carriers.

O Define potential difference and the volt, and be able to recall and use V=W/Q and P= VL

O Define resistance and the ohm, and recall and use V = IR.

O Be able torecall and use P=1°R.

O State Ohm’s law.

O Sketch and explain the [V characteristics of: a metallic conductor at constant temperature, a
filament lamp, a semiconductor diode.

O Recall and use R = pL/A.

[l Link the change in resistance of a light-dependent resistor with changing light intensity.

[l Sketch the graph of resistance against temperature for a negative temperature coefficient thermistor.

1 Understand the action of a piezo-electric transducer and its application in a simple microphone.

[l Describe how a metal-wire strain gauge works, and relate the extension of a strain gauge to the
change in its resistance.

Current and charge

An electric current is any flow of electrically-charged particles. In metal

conductors such as copper wires the charge carriers are electrons; in liquids

the charge carriers are ions. The coulomb (C) is the SI
unit of electric charge and
The amount of charge on a charged particle is quantised - it is always is defined as the charge
a multiple of the electronic charge e = 1.6 x 107" C, where C stands for conveyed by a current of
coulomb, the unit of electric charge. 1 ampere in 1 second.
The current Iis the amount of charge flowing past a point each second. charge = current x time
If a charge Q flows in a time ¢, the current I is given by: . Qap
ref
t
Worked example Answer
A current of 60mA flows in a wire for 1 minute. a) Q=It=60x10"x60=3.6C
Calculate: 3.6
b) number of electrons = —
a) how much charge passes 1.6x10
- 19
b) how many electrons pass. [e= 1.6 x 107°C.] =2.25x 10" electrons

When an electric current passes through a metal wire the charge is carried
by electrons which ‘drift’ from one end of the wire to the other. Figure 19.1

shows a wire of cross-sectional area A carrying a current I. The number See Unit 10 /deal gases
density n of the material is the number of free charge carriers per cubic for more about Brownian
metre. It is sometimes also called the charge density. otign: ;

&




Current of electricity ]

As well as their random thermal (‘Brownian’) motion, the electrons have a
drift velocity v, as shown in Figure 19.1.

In time t, the charge carriers travel a distance L = vt, and so the number
of charge carriers passing any given point in time t is nAL, where n is
the number density of charge carriers and A is the cross-sectional area of
the wire.

If the charge on each charge carrier is g, the current I is:
I= nAqu = nAqv (asu = %)

For conductors such as copper, the number density of charge carriers
is typically 10”m™, For semiconductors it is much smaller, typically

10°=10"m™. Semiconductors are materials with resistances that lie

between metals (low resistance) and insulators (high resistance).

~

Worked example

Estimate the drift velocity of electrons in a copper wire of diameter
0.56mm when a current of 60mA passes through it. Assume the charge
density of copper is 10°m™ and use e = 1.6 x 10’ C.

Answer
_ _ 60x 10~
nAq  10% x rsx[n.zsxm'-*f %1.6x10™

a) v

=1.5%x10"ms" (0.015mms"')

Potential difference and the volt

In the circuit shown in Figure19.2, the electrons effectively ‘pick up’ energy
as they pass through the cell and ‘deposit’ it at the lamp. The amount of
energy delivered to the lamp per coulomb of charge passing through the
lamp is called the potential difference (p.d.), or voltage V, across the bulb:

v

Q

where W is the work done when a charge Q passes.

In Figure 19.2 a voltmeter connected across the lamp measures how much
energy per coulomb is lost, in volts (V). 1 volt is 1 joule per coulomb. A
voltmeter is connected in parallel with (‘across’) a component because it is
comparing the energy per coulomb on either side of the component.

In Figure 19.3, if the current flowing through a component is I and the p.d.
across the component is V, the power P dissipated in the component is:

p _ emergy per _ o of coulombs _ energy lost per
second per second coulomb

or P=1IV

Area A Charge
carriers

A Figure 19.1 Charge
carriers in a conductor

I=nAqv

You need to be able to
derive this equation.

Conventional current

I'is shown flowing from
positive to negative; in
reality it is electrons which
flow the other way - from
the negative terminal to
the positive terminal.

Electrons gain energy
passing through the cell
—

I
Flow of

1

Current 1 - electrons

Electrons lose ®

energy passing
through the lamp

A Figure 19.2 Electron flow

=

The potential difference is
defined as the work done
(or energy transferred) per
unit charge.

The volt (V) is the Sl unit
of potential difference
and is equal to 1 joule per
coulomb.

“~ -

Fjoules transferred

1 coulombs each sacond

passing

each second S
220, .
1%
P=1v
V joules transferred
by each coulomb

A Figure 19.3 Energy transfer



Worked example
An electric kettle is labelled 230V, 3kW".

a) Calculate the electric current in the kettle when in use.

b) Determine the energy transferred to the kettle if it is switched on
for 5 minutes.

Answer
a) I=£=@=13.0A
Vo230
b) energy = power x time = 3000 x (5 x 60) =9 x 10°J  (900kJ)
. A
Resistance and the ohm
The resist > of an electrical component is a measure of how difficult it is

to pass a current through the component (see Figure 19.4).
Resistance is defined by the equation:

gl
I

If 1A flows in a component when the potential difference across it is 1V, then
the resistance of the component is 1 ohm (£2).

Combining the equations P=1V and V = IR gives:
P=IR
I-v characteristics

The circuit shown in Figure 19.5 can be used to investigate how the electrical
resistance of a component changes. By adjusting the variable resistor, the
current can be measured for different values of p.d. across the resistor.

I-V characteristic of an ohmic resistor

For some resistors, including metal wires at constant temperature, the current
passing through the resistor is directly proportional to the applied voltage, as
shown in Figure 19.6.

Vv
R = — = constant
1
This is known as | v. A resistor that obeys Ohm’s law is an
. Ohm’s law is more of a ‘rule’ than a law, which only some

resistors obey, and then only under certain conditions; for example, constant
temperature.

Other electrical components generally do not obey Ohm’s law.

When describing Ohm’s law, it is not enough to write:

L
I

This is just the definition of resistance; for Ohm’s law to be obeyed the
resistance must be constant.

To calculate the resistance, read off a value of V and the corresponding

L value of I on the graph and then calculate V/I

Power (W) = current (A) x
p-d.(v)
P=1V
Power is measured in
! watts (W).

A Figure 19.4 Electrical
resistance

~

The ohm (Q) is the S| unit
of electrical resistance and
is equal to 1VA™.

A Figure 19.5 Measuring
resistance

G0 =
50 4
40 +
30
20 4
10 4

O T 1
0 5 10

Potential difference/N

A Figure 19.6 -V
characteristic of an ohmic
resistor

Current/mA




Current of electricity

I-V characteristic of a filament lamp

For a filament lamp doubling the voltage from 5V to 10V increases the
current, but doesn’t double it, as shown in Figure 19.7. Since R = V/I the
resistance of the lamp must be increasing. This is because as more current
passes through the lamp, the filament (usually made of tungsten metal) gets
hotter, and so the metal atoms vibrate much more vigorously, making it more
difficult for electrons to pass through.

I-V characteristic of a semiconductor diode

When a semiconductor diode is biased (connected in its reverse
direction - see Figure 19.8a) it has a very large resistance - almost no current
flows as shown in Figure 19.9.

If the diode is | biased (connected in its forward direction - see
Figure 19.8b.) a small p.d (~-0.6V) causes the diode to conduct with almost
no resistance as shown in Figure 19.9.

D P

a Reverse biased b Forward biased

A Figure 19.8 Forward- and reverse-biased diodes
Resistivity
For a conductor such as a metal wire or a carbon resistor (see Figure 19.10),
the resistance of the conductor depends on its dimensions and on the
material it is made from. Doubling the length of a wire doubles the
resistance. Doubling the diameter of a wire increases the cross-sectional area
of the wire by a factor of four which decreases the resistance by the same
factor (it is as if four of the original wires have been connected in parallel).

For a conductor of length L and cross-sectional area A, we can write:

s
A

where p is the of the material. p is measured in Qm. Good
conductors such as copper have very low resistivities (about 10°Qm). Good
insulators have very high resistivities (about 10°~10" Qm). Semiconductors
have resistivities between 10 and 10° Qm.

2.54

Current/A

O T 1
0 5 10

p.d./V

A Figure 19.7 -V
characteristic of a filament lamp

Current/mA
30 AE
25+
-
15+
10 4

5 -

fal
r T 1

-1 05 0
Vaoltage/V

A Figure 19.9 -V
characteristic of a
semiconductor diode

L
Cross-sectional /
area A X

Resistivity p

A Figure 19.10 Resistivity

Resistance, R = -‘%

A
The units of resistivity p
are Qm.

-

Worked example
Constantan wire is an alloy of copper and nickel with a resistivity of

49.0 x 10”°Qmm. What is the resistance of a constantan wire of length
50.0cm and diameter 0.46 mm?

Answer

-7
pL _ 4.90 x 10 xD.SQD = 1470

A ax(023x10%)

Always check that the
units are consistent. In
this example, convert
the units of diameter and
length to metres and the
resistivity to Qm.

Also check that you’ve
halved the diameter to
find the radius when
using 7r” to find the
cross-sectional area
of the wire, and don’t
forget to square r!




Sensing devices
Light-dependent resistor (LDR)

The resistance of some semiconductor materials (e.g., cadmium sulphide)
is altered by the amount of light falling on them (Figure 19.11). The light
energy is absorbed by the material, releasing electrons in the material to

become ‘conduction electrons’. A typical light

ssistor (LDR) has

a resistance of 10M€Q in complete darkness but this falls to a few hundred

ohms in bright light.

LDRs are used in a range of electronic devices to operate light-sensitive
switches including automatic street lights and camera light-meters. Its symbol

is shown in Figure 19.12.

Negative temperature coefficient thermistor

The resistance of thermistors changes with temperature. A negative
temperature coefficient thermistor has a smaller resistance at higher
temperatures, as shown in Figure 19.13 - the rise in temperature increases
the number of electrons that are ‘free’ to conduct.

The change of resistance can be very large for a small increase or decrease
in temperature. Thermistors are used in thermostats, fire alarms and digital
thermometers. They monitor the oil and water temperature in cars and
prevent high currents flowing through computers and electric motors when
first switched on. Its symbol is shown in Figure 19.14.

Potential divider circuits

Thermistors and LDRs are often used as part of a potential divider circuit as

shown in Figures 19.15 and 19.16.

Piezo-electric transducer

The piezo-electric transducer (Figure 19.17)
generates a potential difference when it is
compressed (i.e., subjected to mechanical
stresses). The piezo-electric material is
crystalline and contains positive and negative
ions. When a stress is applied to the material,
the centres of charge of the positive and
negative ions move in opposite directions,
creating a small potential difference. Sound
waves directed at a piezo-electric microphone
cause the crystal to compress and expand,
generating an alternating p.d. which can be
connected to an amplifier.

ch.t

0

A Figure 19.15 Temperature
control: As the temperature
decreases, V_ increases

The principle can also be applied in reverse, as a loudspeaker - an alternating
voltage applied across a piezo-electric crystal will cause the distance
across the material to increase and decrease. If the crystal is attached to a

diaphragm, sound waves are produced.

Strain gauge

A strain gauge consists of a long thin wire mounted on a thin plastic strip.
The gauge can be fixed to a building or other structures such as bridges -
as the structure moves or bends the wire stretches, and so its resistance
increases due to its length increasing and its diameter decreasing. See page
151 for more details of how strain gauges are used.

Resistance

Y

Light intensity

A Figure 19.11 Resistance of
an LDR against light intensity
AN

A Figure 19.12 Symbol for
an LDR

Resistance

v

Temperature

A Figure 19.13 Resistance
of a thermistor against
temperature

—7

A Figure 19.14 Symbol for a
thermistor

5

Vo 7T I_{,

Vm.t

I 5

A Figure 19.16 Monitoring
light level: As the light level
increases, V__ increases

Sound
Piezo-le lectric Waves
crysta = ,—o
. 4 Alternating

a

I voltage

A Figure 19.17 Piezo-electric
microphone

A transducer is a device
which converts one form
of energy into another.




Current of electricity

= The statement is true but is not a
Ralse your grade definition of the ohm.

(a) Define the ohm. A better answer would be ‘1 ohm
The ohm is the 1. unit of resistance  x is 1 volt per ampere”. []

ooooooooooooooooooooooooooooooooooooooooooooooooooooooo

(b) A three-way light bulb has two filaments and power outputs of 60W, 120W, and 180W.
It is connected to a 120V mains supply as shown.

B0W filament /*

% 120 W filament

o O

(i) Show that, when the switch is in position 1, the resistance of the 60 W filament is 240 Q.
(1]

2 2 z
Vv V: o
p= ? = R=—= . =2400) v Method and correct substitution.
p 0

(ii) The 60 W filament is a tungsten wire of length 580 mm and diameter 0.046 mm.
Calculate the resistivity of tungsten.

v V4 Substitution and calculation.
240 x T x (0023 x1077)*
p= E - ( - ) =0Lqx 1w Om™ The units of resistivity
L 5%0 x 10~ are Qm, not Qm™".
Method LIXx10 Qm " x

resis‘li‘u’i‘ly Df 1Ungs‘en S sssssssssssssassasssns [4]

(¢) The switch is moved to position 2. Calculate the resistance of the 120W filament.

v
v* V¢ 120 o ,
p=— = R=—=—=1200 v Substitution and calculation.
E P 120
Method. 120

resistance of the 120W filament =..0..... Q [2]

(d) The switch is moved to position 3. Calculate the total current drawn from the 120V supply.

Total resistance = 240 + 120 =30 () x  The two filaments are connected in parallel,
not in series. The combined resistance is

V
Current | = —=——=03%3A X 800, and the total current is JE%Q =15A
[

current drawn from the supply =0?:% A [2]




9 Exam-style questions

1 An electric toaster is labelled 230V, 1kW. It is
switched on for 3 minutes. How many electrons
pass through the toaster in this time?

A 82x107 B 1.6x10"
C 49x10” D 8.0x 10" [1]

2 An electric lamp has a resistance of 720Q when
switched on. If a charge of 25C passes through the
lamp in one minute, what is the power of the lamp?

A 30W B 75W C 125W D 300W [1]

3 A thin slice of germanium of thickness 0.2mm
and width 2.5 mm, carries a current of 30pA.

30““&‘ 0.2 Fﬂ#

e
1
g ‘

The density of charge carriers in germanium is
6.0 x 10*'m™, Assuming all the charge carriers are
electrons, what is their drift velocity?

A 0.063ms™ B 0.63ms”
C 63ms” D 0.063ms” (1]

4 A student is investigating how the resistance of a
metal wire varies with the diameter of the wire.

She measures the resistance R of wires made
of the same material and the same length, but
different diameters d.

Which graph should she plot to obtain a straight
line?

A Ragainstd’ B R against Vd

. 1 . 1
C R against — D R against — 1]
8 FE ag 7
5 A wire resistor has a resistance of R ohms. What
is the resistance of a wire of the same material,
but three times as long, with twice the diameter?

A—%R BER CiR DE-R (1]
3 4 3 2

6 A 50W heater is made from a metal wire of
resistivity 4.9 x 10”7 Qm and diameter 0.56 mm.
The heater is connected to a 12 V car battery.

What is the length of the wire?
A 012m B 048m € 14m D 58m [1]

7 A power cable consists of six strands of copper
wire, each of diameter 1.2 mm, The resistivity of
copper is 1.7 x 10°Qm.

©

What is the resistance of 1.0km of the cable?
A 0.10m B 04m € 25m D 15m [1]

8 A wire of resistance 5.0( is to be made by
extruding 1cm® of copper wire.

1 ch

The resistivity of copper is 1.7 x 10° Qm.

zlcm

-
lcm

Calculate:
(a) the length of the wire [2]
(b) the diameter of the wire. [2]

9 Two identical strain gauges, A and B, are
connected to the upper and lower surfaces of a
cantilever beam, as shown.

Straingauge A geam

\

Strain gauge B

Load

(a) Explain why the resistance of strain gauge A
increases when the load is applied. [2]

(b) The two strain gauges are connected in a
potential divider circuit, as shown.

Strain
gauge B

() The resistance of each strain gauge
changes by 10%. Calculate the ratio —*,

in

(i) Suggest a reason why it is better to use
two strain gauges rather than one. [4]



Direct current

= - AS 7.1-7.5 pages 104-113
CIrcu Its (d .c.) A 16.1 pages 234-236

O Recall and use appropriate circuit symbols.

O Draw and interpret circuit diagrams containing sources, switches, resistors, ammeters, voltmeters,
and other components referred to in the syllabus.

O Define electromotive force (e.m.f.) in terms of the energy transferred by a source in driving unit
charge round a complete circuit.

O Distinguish between e.m.f. and potential difference (p.d.) in terms of energy considerations.

O Understand the effects of the internal resistance of a source of e.m.f. on the terminal potential
difference.

O Recall Kirchhoff’s first law, and appreciate the link to conservation of charge.
O Recall Kirchhoff's second law, and appreciate the link to conservation of energy.

Derive, using Kirchhoff’s laws, a formula for the combined resistance of two or more resistors in
series, and solve problems using this formula.

|

Derive, using Kirchhoff’s laws, a formula for the combined resistance of two or more resistors in
parallel, and solve problems using this formula.

Apply Kirchhoff’s laws to solve simple circuit problems.

Understand the principle of a potential divider circuit as a source of variable p.d.

o o o

Recall and solve problems using the potentiometer as a means of comparing potential differences.

Understand that an electronic sensor consists of a sensing device and a circuit that provides an
output voltage.

O

Explain the use of thermistors, light-dependent resistors, and strain gauges in potential dividers
to provide a potential difference that is dependent on temperature, illumination, and strain,
respectively.

Practical circuits

Electromotive force (e.m.f.), potential difference (p.d.), and

internal resistance
Some key terms:

¢ [lectromotive force: The electromotive force (e.m.f.) E of a power voltage = energy

supply, such as a cell or a laboratory power pack, is the energy given ' charge

to each coulomb of charge as it passes through the supply. The name is 1 volt = 1 joule coulomb

slightly misleading as it is not a force at all! 1V=1JC"'
e [nfernal resistance: Some energy is needed to ‘push’ the charge through ;

the cell as the cell itself has some electrical resistance. The resistance of

the cell or power supply is called the internal resistance r. !EE;&?ACp\Qr

External

e [xternal potential difference: As charge moves around a circuit i3 resistance

it transfers energy to other forms (e.g., heat and light). The energy cell””
transferred by each coulomb as it passes through a component (such as a

lamp or resistor) is the potential difference (p.d.) across the component. A Figure 20.1 Electromotive
force, internal resistance, and
terminal potential difference

©

In the circuit shown in Figure 20.1:

E=Ir+IR




The precise meanings of terms such as e.m.f. and terminal p.d. are often
confused. Table 20.1 gives exact descriptions of what each term means.

¥ Table 20.1 Electromotive force, terminal potential difference, and ‘lost volts’

Symbol | Name Meaning

E e.m.f. energy supplied to each coulomb as it
passes through the cell

Ir the ‘lost’ volts energy lost by each coulomb in passing
through the cell

IR external p.d. potential difference across the external
resistor

E-Ir terminal p.d. potential difference between the
terminals of the cell or power supply

Worked example
A high-resistance voltmeter connected across a cell, as shown in Figure 20.2, S 4
reads 1.5V. When the switch is closed, the reading on the ammeter is
270mA.
"
a) For the cell calculate: C\D Bl_ B0
i) the em.f. ii) the internal resistance. T

b) Determine the reading on the voltmeter when the switch is closed.

Answer

A Figure 20.2
a) i) The e.m.f. of the cell is 1.5V - the switch is open so no current is
flowing (there are no ‘lost’ volts inside the cell). In this instance
the e.m.f. and the terminal p.d. are the same.
i) 1.5=027(5+71)
r= ﬁ—5 = 0.560)
0.27
b) The reading on the voltmeter when the switch is closed is the
terminal p.d.
terminal p.d. = e.m.f. - “lost volts’
=1.5-0.27 x0.56
=1.35V

Kirchhoff’s laws

Kirchhoff’s first law (conservation of charge)

: The total current flowing into a junction is equal to
the total current flowing out of the junction.

It is effectively a statement of the conservation of electric charge (see
Figure 20.3).

fl+f3+f5:fz+f4

A Figure 20.3 Kirchhoff’s
first law



Direct current circuits (d.c.)

Worked example

In the circuit shown in Figure 20.4, ammeter A, reads
38mA, ammeter A, reads 15 mA, and ammeter A, reads
12mA. Determine the readings on ammeters A, and A..

Answer

At junction P, the current divides with 38 - 12 = 26 mA
heading towards Q.

At junction Q, the current divides:

reading on ammeter A, = 26 — 15 = 11mA A Figure 20.4
reading on ammeter A, = 15 + 11 + 12 = 38 mA.
Kirchhoff’s second law (conservation of energy) E R
H——
Ry
[Kirehhott's second law: For any complete loop in ) £ LE
a circuit, the sum of the e.m.f.s round the loop is ;
equal to the sum of the potential drops around the R
|00p- | ]
Itis a statement of the conservation of energy in E + E, + Ey = IR, + IRy + IR,
L.electn'c:EtI circuits (see Figure 20.5). - R R )

P Figure 20.5 Kirchhoff’s
second law

Worked example

In the circuit shown in Figure 20.6, calculate
the currents I, and I,.

Answer

For the left-hand loop: 7=31+2( +1)

(eqn 1)

For the right-hand loop: S5=L+2(I +1) A Figure 20.6
(egn 2)

Re-arranging eqn 1 and eqn 2:
=8 & 2L and 5 =3 + 2]

Solving these equations gives I, = I, = 1A.

A useful way of thinking about Kirchhoff’s second law is to imagine a single
coulomb of charge going around the circuit. It gains energy passing through
a source of e.m.f (the voltage is the energy gained per coulomb) and loses
energy in passing through resistors (the p.d. across a resistor is the energy
lost per coulomb). By the time a coulomb completes a circuit, it will have lost
as much energy as it has gained.




Resistors in series

The current passing through several resistors connected in series must be the
same (see Figure 20.7).

I Yo
- I
| R
Ry Rs Ry
M I—I
R B e -
W Vs V3

A Figure 20.7 Resistors in series

From Kirchhoff’s second law: m

Vo=V + Y+ Vo=IR, +iIR + IR, For resistors in series:
V,=IR, +R, +R) R=R,+R,+R,+ ...
The single resistor of resistance R that is equivalent to the three resistors in This formula is provided in
parallel is: Exam Papers 1, 2, and 4,
but you need to be able to
B= R+ R + R derive it.
L. o

Resistors in parallel
The potential difference across a number of resistors connected in parallel is m

the same across each resistor (see Figure 20.8). F o T )
or resistors in parallel:
Vy 1 ( 1 1 1 )
I e e e e e e D
.~ R \R, R, R,
” ” When using this equation,
"1‘;}— don’t forget to turn your
v answer ‘upside-down’ to
find R.
L R
- — This formula is provided in
v, Exam Papers 1, 2, and 4,
s but you need to be able to
fQ— derive it.
Vo

A Figure 20.8 Resistors in parallel

From Kirchhoff’s first law:

I=Il+12+13=£+ﬁ+£
R, R, R

1 1 1
I=Vu(--—+--+-——)
R} RZ R3

The single resistor of resistance R that could replace the three resistors in
parallel is given by:

i 4 W T
R \R "R R

Resistors connected in parallel have a smaller combined resistance.

@




Direct current circuits (d.c.)

f A

Worked examples

1 Six equal resistors, each of resistance R, are connected as shown in
Figure 20.9.

A Figure 20.9

Determine the total resistance of this combination of resistors.

Answer
The three resistors in parallel combine to give a total resistance of %
Similarly, the two resistors in parallel combine to give a resistance of
R
5 The total resistance is then:

2 Calculate the resistance of the resistor that must be placed in parallel
with a resistor of resistance 15Q to have a combined resistance of 6.

Answer
1 1 1 1 1 1 5-2 3 1
_——— e — SD — e m— i e— i — S —
6 15 R R 6 15 30 30 10
R =100
\ 7
Potential dividers

Two or more resistors can be connected in series to form a potential divider
circuit. As the name suggests, a potential divider is a way of sharing, or
dividing up, a potential difference between the different resistors. Figure 20.10
shows a simple potential divider circuit.
V.
V.=V, +V,=I(R +R) suI-_-R_:R
2

1

Hence

R R
V=IR = ‘)V imi V,=1 -—-( Z)V
, = IR, (R]+R2 s similarly , =1IR, R+R s
If the resistors have the same resistance, half the supply voltage V. is across
each of the two resistors. If one resistor is twice as big as the other, the p.d.
across the larger resistor is twice as much as the p.d. across the smaller
resistor.

Ry Ivz

A Figure 20.10 Potential divider




4 ™

Worked examples
1 In the circuit shown in Figure 20.11, calculate the potential difference |
across the 5kQ resistor.
5k0)
Answer
The “fraction’ of the supply p.d. across the 5k() resistor is: Ve ]:
5 1 i 1
= —, so the p.d. across the 5kQ resistor = —x 12 =3V
(5+ 15) 4 ’ 1 15k0
2 The resistance of a negative temperature coefficient thermistor decreases |
as its temperature increases. When its temperature is 20 °C its resistance )
is 90kQ; when its temperature is 50°C its resistance is 30k. A Figure 20.11
For the circuit shown in Figure 20.12:
a) Determine the output p.d. V_, when the temperature is:
i) 20°C i) 50°C.
b) State how you would alter the circuit so that the output p.d.
decreased as the temperature increased.
Answer T
10 10 10k0 Vo
pv. = 10=1.0V i) V,= 10=25V e
a ) Vo (10 + 90)" 1 You (10 + 30)"
b) Swapping the thermistor and the fixed resistor around would A Figure 20.12
mean that V| would decrease as the temperature increased.
A continuously variable potential divider (Figure 20.13) can be made i
by replacing the fixed resistors with a variable resistor (e.g., a length of
resistance wire or a rheostat). P
The output p.d. V, can have any value from 0V to V,, by moving the sliding s ¢ f,/ ;

connector P up or down.

Vo = (%) VS ) e
l

Y

Potentiometers
A potential divider is also known as a potentiometer, particularly when A Figure 20.13 Continuously
used to compare potential differences. Figure 20.14 is an example of a simple  Variable potential divider
potentiometer circuit used to measure the e.m.f. E of a dry cell (the correct

name for a torch ‘battery’).

The e.m.f. of the driver cell is V and is known to a high degree of
accuracy. The slider is moved up or down until the reading on the
centre-zero galvanometer (a sensitive ammeter) reads zero - the

potentiometer is then balanced. The e.m.f. of the dry cell can be i Centre-zero
Driver cell @i galvanometar

found from:
VT 2 4 Dry cell
E- (f)vn iz

The advantages of this method of measuring potential differences are: *

- Resistance wirg

e itis a null method (the galvanometer only has to read ‘0" accurately)

* no current is drawn from the unknown p.d. so there are no ‘lost’
volts across the internal resistance of the dry cell A Figure 20.14 Potentiometer circuit

¢ the accuracy can be increased by using a longer resistance wire.

A disadvantage of this method is the apparatus is bulky and slow to use
compared to a digital voltmeter.

&




Direct current circuits (d.c.) |~ o

Worked example

A potentiometer is connected to a dry cell of unknown e.m.f. E as
shown in Figure 20.15. The balance length (when the galvanometer
reads zero) is 54.7 cm.

When the dry cell is replaced with another cell of e.m.f. 1.02V the
balance length changes to 37.4cm. Calculate the e.m.f. of the dry cell.

Diry cell

154.?cm B

A Figure 20.15

Answer
_E _547 _ 1.463 soF = 1.49V Note that neither the e.m.f.
1.02 374 of the driver cell, nor the
length of the resistance
wire, are needed to
answer this question.
L
Electronic sensors

Circuits designed to detect changes in the environment, such as temperature
or light intensity, depend on producing an output p.d. that changes with the
variable being monitored. The sensing device is a resistor which changes
resistance with changes in the variable, and is part of a potential divider
circuit.

Temperature sensor

The resistance of a negative temperature coefficient thermistor decreases
as the temperature increases. In the potential-divider circuit shown in
Figure 20.16, a temperature increase will reduce the resistance of a
thermistor and increase the output p.d. V_ . A decrease can be achieved
by either swapping the fixed resistor and the thermistor, or using a positive
temperature coefficient thermistor.

Light sensor

A light sensor (Figure 20.17) can be made in a similar way, replacing the
thermistor with a light-dependent resistor (LDR). As the incident light
intensity increases, the resistance of the LDR decreases and the p.d. across
the LDR decreases. The output V_ increases.
Strain gauge
A strain gauge is a long length of resistance wire embedded in plastic as shown
in Figure 20.18. The strain gauge is glued to the structure being tested. As loads
are applied to the structure the extension of the wire changes the resistance of
the strain gauge. From R = pL/A, if there is no change in the cross-sectional
area of the wire, the change in resistance of the wire is given by:

AR AL

R L
where L is the original length of the wire and R its resistance. When a wire
is stretched it also becomes thinner (the cross-sectional area of the wire

decreases) which also increases the resistance of the wire. If the volume of

AR 2AL
the wire stays roughly constant, it can be shown that "L In either

case, the change in resistance is directly proportional to the change in length,
which makes it ideal as a sensor.

The change in length of the wire can often be very small, producing a
correspondingly small change in V_,. The sensor can be improved by
connecting V__ to an operational amplifier to magnify the change. See
Unit 21 Electronics for more details.

L Megative termperatura
coefficient thermistor
N

s 17

L

A Figure 20.16 Temperature
sensor

resistor (LDR)

Vout

l Light-dependent
Q‘ 2

A Figure 20.17 Light sensor

Plaslic strip

z

i

2 7
/

Thin metal wire

A Figure 20.18 Metal-wire
strain gauge



', Raise your grade

(a) In relation to a cell, explain the meaning of: et s not e fome Theembls
‘ the electrical energy per unit charge
() electromotive force (e.m.f.) produced inside the cell.

The foree from the cell pushing the current x

L R R R R R R ]

(if) terminal potential difference (p.d.).

................................... difference between the two terminals of the cell. ..... [2]

(b) State Kirchhoff’s second law.
The sum of the emfs is equal to the sum of the po’mn‘fia\ dro[}s X

e R R S N

For the second mark, the candidate should have added ‘around any complete loopofa _[2]
circuit’.
(c) Adry cell, of eem.f. E and internal resistance r is connected to an external resistor of resistance
R. The current [ is recorded for two different values of R, as shown

R/Q I/A
10 0.5
18 0.3
(i) Show that the internal resistance ris 2 Q.
Using Kirchhoff's 27 law: € = 05 (r + 10) = 03(r + 18) v Metind:
05r +5=03r +54 v Calculation.
r=2(0)
(ii) Calculate the e.m.f. E.
Calculation.
E=05(+10)=05%12 = L0V v
E= .40....00‘. V [3]

(d) A different cell, of e.m.f. 9.0 V and internal resistance 0.50), is connected to a 4 Q) resistor.
Calculate:

(i) the terminal p.d.

2 A0 _
eurrent [ = e 20A

terminal pd. = emf. - "lost volts = 90 - (20 x 05) = 60V

v Method. v Calculation.

terminalp.d. =, 8.0 ...V

(ii) the energy per second dissipated in the 4 Q resistor.

P=rfR=20"v4=10W v Method. v Calculation.




Direct current circuits (d.c.)

9 Exam-style questions
1 The diagram shows different currents entering 4 A battery, of e.m.f. E and internal resistance r, is
or leaving a circuit junction. connected to a high-resistance voltmeter and a
variable resistor of resistance R as shown.
{:_l I E
—H T
15 ‘,4

R
Which statement is correct? i

A [ +L=L+1+1I
B I +L=L+1-1
C I+l=I-1-1I

When R = 1Q the voltmeter reading was 3 V.
When R = 30 the voltmeter reading was 6V.

Which line in the table gives the correct values of

D I +L=L-1+]I [1] Eand 2
2 For the circuit shown, which statement is correct? EN rQ
£ E A 6.0 15
| i B 6.0 3.0
C 12.0 15
R, R, R, D 12.0 3.0 (1]
5 A potentiometer circuit is used to measure the
I I output p.d. of a thermocouple using a uniform
resistance wire of length 99.6 cm and resistance
A E; = U] - Iz}RZ + I}RI 120, as shown.
B E=(+IL)R+IR 2060
| S
C E=LR+( +1)R M _ Resistance wire
D E=IR. - (I + Iz]Rz (1] ,/ 6 Centre-zera galvanometer
T 1
3 Acell, of em.f. 24V and internal resistance 4, 30V=—  996cm J .
is connected to two resistors, each of resistance I
82, as shown. IE =5 To thermacouple
80 Lo
—____ +——
The output p.d. of the thermocouple is known to
GD be between 0V and 15mV.
24V
| H%_QH (@) Explain why the 2.0k resistor is needed. [1]
5 (b) The centre-zero galvanometer reads zero
X when ¢ = 68.3 cm,
:jgo | Calculate:
th in the 2.0kQ resist
What is the change in the ammeter reading when [ cnnenn e resistor
switch S is closed? (i) the thermocouple p.d. [4]

A0S5A B10OA C15A D20A [1]



A Level

21 Electronics

Key points

A 16.2 pages 237-241
16.3 pages 242-244

] Recall the main properties of the ideal operational amplifier (op-amp).

O

amplifiers.

1 Understand the use of relays in electronic circuits.

L

[ Deduce, from the properties of an operational amplifier, its use as a comparator.
[l Understand the effects of negative feedback on the gain of an operational amplifier.
1 Recall the circuit diagrams for both the inverting and the non-inverting amplifier.

Understand the virtual earth approximation and derive an expression for the gain of inverting

[l Recall and use expressions for the voltage gain of inverting and of non-inverting amplifiers.

[l Understand that an output device may be required to monitor the output of an op-amp circuit.

[] Understand the use of LEDs as devices to indicate the state of the output of electronic circuits.

] Understand the need for calibration where digital or analogue meters are used as output devices.

Ideal operational amplifiers

An operational amplifier (op-amp) is one of the most useful electronic
devices. As the name suggests, it can amplify (enlarge) a voltage from a
sensor circuit, or carry out mathematical operations such as multiplication
and integration. In circuit diagrams it is represented by a triangle with two
input terminals (see Figures 21.1 and 21.2) called the inverting (V) and
non-inverting (V) inputs, and one output terminal.

To work, the op-amp needs a three-terminal power supply, typically +15V,
0V and +15V, though the connections to the power supply are usually
omitted from circuit diagrams for greater clarity. The output voltage can be
positive or negative, but cannot be greater than the supply voltage.

The key properties of an ideal operational amplifier are:
¢ infinite open-loop gain

* infinite input resistance

* zero output resistance

* infinite bandwidth

¢ infinite slew rate.

Used on its own (see Figure 21.2), the output of the op-amp is proportional to
the difference between the two input voltages:

Vo= AV, = V)
where A is the open-loop gain of the amplifier, typically equal to 10°.

Bandwidih: An infinite bandwidth means the op-amp amplifies all
alternating voltages by the same factor, regardless of the frequency of
the voltage.

Slew rate: An infinite slew rate means there is no delay between the input
voltage changing and the output voltage changing.

@

+15V

Inputs

Output

=15V

A Figure 21.1 Operational
amplifier

A Figure 21.2 Open-loop
gain

The input current to the
op-amp is so small it can
be considered as zero.




Operational amplifier circuits

Op-amp as a comparator

A very small difference between V_and V_ is amplified up to the maximum
output voltage called the saturation voltage. An op-amp used in this way is a
co - it compares the two input voltages. If V_is greater than V_then
the output is the positive saturation voltage; if V is less than V _ then the
output is the negative saturation voltage. In this way the op-amp can be used
as a switch or indicator.

In Figure 21.3, the LED comes on if V, is greater than V _, but goes off if the
reverse is true.

A Figure 21.3 Comparator

Inverting amplifier

For most applications of op-amps some negative feedback is introduced -
some of the output voltage is fed back and subtracted from the input voltage
- which reduces the size of the amplification but greatly increases stability
(reduces sudden fluctuations in the output voltage). Figure 21.4 shows an
op-amp with negative feedback.

As well as feedback from output to input through a resistor R, most op-amp
circuits also have an input resistor R, (see Figure 21.5).

This point is at OV —
‘a virtual earth’

aut

ov

A Figure 21.5 Inverting amplifier

The non-inverting input is connected to earth (0V) and V_=V_ so:
V=V_=0V

This means the point indicated with an arrow in the circuit in Figure 21.5 is
also at 0V - a ‘virtual earth’. The current going into the op-amp is very small
(= 15pA) and can be treated as zero. The current in the input resistor R is
the same as the current in resistor R..
Applying Kirchhoff’s second law to the two loops:

V,=IR, and IR +V,_=0 so V,=-IR

aut aut i
wi . aul R[
combining these two equations: =iy
IVill Rill
Vau is the voltage gain (the amplification) of the amplifier,

in
For the inverting amplifier the voltage gain is - —.

in

Electronics

The maximum output
voltage is called the
saturation voltage
(usually slightly less than
the supply voltage).

Feedback resistor

T
v :
v, ———+

A Figure 21.4 Negative
feedback

For an inverting amplifier,

the voltage gain:
Vor _ Rr
Mﬂ Rh




The voltage gain depends only on the relative sizes of the two resistors and
not on the gain or input resistance of the op-amp itself. The amplifier is an

inverting amplifier because V_ is the opposite sign to V (the output will be

in antiphase with the input) as shown in Figure 21.6 where an a.c. signal is

the input to an inverting amplifier.

Ry

'\, W

A Figure 21.6 Inverting amplifier with a.c.

Worked example
a) For the circuit shown in Figure 21.7, determine the potential

at point P.

b) Calculate:
10k

i) the current in the 10 k() resistor
ii) the current in the 200k} resistor.

c) Show that V =-10V.

V=05V

200k0
— 1+
AL |
: =

+

V('JL.t

Answer
a) V,=V_ =V =0V (a ‘virtual earth’)
V 0.5
b) i) [ =—-r= =5x107A il) =1 =5x10"A
) -) in Rin 1[] % ]04 o~ ) [ I
c) (5x 107°) x (200 x 10%) + v, =0 s0 v . =-10V

\

A Figure 21.7 Inverting amplifier circuit

Non-inverting amplifier

The non-inverting amplifier (see Figure 21.8) produces an amplified
output p.d. which is in phase with the input p.d.

VCIL.t
-+
Y R
VII"
Rin This point is
at potential ¥
L ov T

A Figure 21.8 Non-inverting amplifier

V=V, =V, so the potential between the two resistors R and R is V,

in®

The output is a potential divider circuit with:

. — — R
For the non-inverting input the voltage gain is 1 + —-.

in

For a non-inverting
amplifier, the voltage
gain:
Vou
Vm

=1+

EIE




Electronics

Output devices

Operational amplifier circuits are used in measurement, signal processing,
and control circuits. Light-emitting diodes (LEDs) can be used to monitor the
state of the voltage output in, for example, a comparator circuit.

Operating relays
Op-amp circuits cannot switch on appliances such as heaters and lights
directly as they use only very small currents; instead the output from an

op-amp circuit is usually connected to a relav (see Figure 21.9), which uses
an electromagnetic switch that turns on the power to the appliance.

When a small current from the op-amp output passes through the coil (the
rectangle in the symbol for a relay) it becomes an electromagnet (the core of
the coil is usually soft iron). The electromagnet closes a spring-loaded switch 4 Figure 21.9 Symbol for a
which completes the secondary (high-current) circuit. When the current from relay

the op-amp stops, the switch is pulled open again by the spring.

When using a relay, large e.m.f.s can be induced across the coil of the
relay when the switch is opening or closing. To avoid this, diodes are used
(see Figure 21.10).

[ /Diode 1
i ®
W
aut S
'S d.c. supply
4 \ |
Diode 2 Coil

A Figure 21.10 Diode protection

Suppose, for example, the output from an op-amp is used to control a large
electric motor. When the output from the op-amp is positive, a small current

passes through diode 1 and the relay coil, closing the switch and completing For more about Faraday’s
the motor circuit. law and Lenz’s law see

Unit 23 Electromagnetic
When the output from the op-amp is negative, the current stops flowing induction.

through the coil and the relay is switched off. The sudden drop in current
causes the magnetic field in the coil to collapse which can cause a large back
e.m.f. which could destroy the op-amp; diode 2 prevents this by effectively
short-circuiting the coil.

Calibrating output devices

Op-amp circuits can be used to monitor changes in a range of properties. This
is achieved by using an electrical component whose resistance varies with
the property being investigated. The resistance does not usually vary linearly
with the property being monitored, and so a calibration curve is needed.

See page 11 for more
details about calibration

curves.
Figure 21.11 shows how a thermistor in an op-amp circuit can be _
used to monitor temperature. TherTor i
This is an inverting amplifier, so:
Ry, Ry

R[ |""ur

=——_— VOLt

Vm.u i in
[th & Rl)

A Figure 21.11 Op-amp used as a thermometer



|, Raise your grade
(a) State three properties of an ideal operational amplifier.

|deal op-2mps have - infinite resistance X

seassevnbrossssesnnsnsnnsnsnsnsrnrasanenens R RRRRE RS TeesseRsRRREE

The input resistance is infinite.
fmﬂm‘icgamx The open-loop gain is very high. .....cccce0s

- infinite slew rate v

L R R R R ] [3]

(b) An ideal operational amplifier is connected as shown. The saturation voltage is 8.0V.

100k(}
50k0
-
U;r Vm_t
Calculate:
(i) the voltage gain of the circuit One mark for the correct calculation. One
mark for remembering the minus sign.
Vﬂ_“‘f = _ﬂ = _% atize v
Vo R, 50K voltage gain= -2 . v [2]

. The value obtained is greater than the
(ii) the output voltage when V,, =4.5V. saturation voltage. The correct answer is 8.0 V.

v
M9 sV =-2x45=4V Vou= ... 3.,V «1

in
(c) The input voltage V, is an alternating voltage of amplitude 5.0V as shown by the dotted line on
the graph.

Correct Iine/

Vv, is twice the input for
V <t40V.

V.. is in antiphase

(m out of phase) with V.

The output voltage
should not exceed 8.0V

(the saturation voltage).

Candidate's line

Va Lt

Draw the output voltage V, , on the same graph. [3]




. ' Exam-style questions
1 - in the context of operational amplifier circuits,
explain the meaning of the following terms:
(@) open-loop gain
(b) non-inverting
(c) negative feedback
(d) calibration curve. [4]

2 An operational amplifier can be used as a
comparator.

(a) Explain what is meant by the term
comparator. [2]

(b) In the circuit shown, calculate the

potential at point P, [1]
+15Vo
'y
1k0 ﬁ »
P -—
+
Ay
2k 5000 @2'
OVo

(c) In daylight the LDR has a resistance of 5000Q.
State whether the LED is on or off. Explain
YOUur answer. [2]

3 (a) State three properties of an ideal operational
amplifier. (3]
(b) (i) State the name of the circuit shown below.
(ii) Point Q is referred to as a “virtual earth’,

Explain what is meant by the term
virtual earth. [2]

R, .
——. Explain your
in in [2]

V]LLl
(c) Show that — =
working.

Electronics | "

4 (a) State what is meant by voltage gain. [1]
|‘/m.t
1 s 100kQ)
0.4V
50k
3 ov

(b) Calculate:
(i) the voltage gain of the circuit shown
(ii) the output voltage V. [2]

5 An electronic system can be divided into three stages:

y

Sensor Processor »

Output

An engineer is designing a system to make a
heater come on when the temperature falls
below a certain value.

+15V
L_H ”l2kO
P +
R [I]l8 KO ~ 230V a.c.
LT

Output

OV e

TR

Sensor iProcessor}

(a) (i) Name the components in the output.
(if) Explain the purpose of the processor.  [3]
(b) Calculate the potential at point P. [1]

(c) The graph shows the resistance of the
thermistor at different temperatures.
1004

804

604

Rlk€

401

201

O I L] T T T T 1
-20 0 2040 60 80100120
n°c
The heater must switch on when the temperature
falls below 0°C. Calculate the value of R
needed. [1]

(d) State the adjustment needed for the heater to
switch on at a higher temperature. [1]




& - A 18.1-18.5 pages 264-277
2 2 M ag netlc flel ds 22.1-22.2 pages 328~-331

24.3 pages 377-378

Key points

] Understand that a magnetic field is an example of a field of force produced either by
current-carrying conductors or by permanent magnets.

1 Represent a magnetic field by field lines.
] Appreciate that a force might act on a current-carrying conductor placed in a magnetic field.

[ Recall and solve problems using the equation F=Bllsin 8, with directions found by using
Fleming’s left-hand rule.

[l Define magnetic flux density and the tesla.

] Understand how the force on a current-carrying conductor can be used to measure the flux
density of a magnetic field using a current balance.

[l Predict the direction of the force on a charge moving in a magnetic field.
1 Recall and solve problems using F = Bgqusin 6.
Bl
"1 Derive the expression V,, = -FE for the Hall voltage, where ¢ is the thickness and n is the
density of charge carriers.

[l Describe and analyse qualitatively the deflection of beams of charged particles by uniform
electric and uniform magnetic fields.

Explain how electric and magnetic fields can be used in velocity selection.

Explain the main principles of one method for the determination of v and e/m,, for electrons.

Sketch flux patterns due to a long straight wire, a flat circular coil, and a long solenoid.

|
| .

Understand that the field due to a solenoid is influenced by the presence of a ferrous core.

Explain the forces between current-carrying conductors and predict the direction of the forces.

] Describe and compare the forces on mass, charge, and current in gravitational, electric, and
magnetic fields, as appropriate.

[l Explain the main principles behind the use of nuclear magnetic resonance imaging (NMRI)
to obtain diagnostic information about internal structures.

] Understand the function of the non-uniform magnetic field, superimposed on the large
constant magnetic field, in diagnosis using NMRL

e -

Magnetic fields

A magnetic field is the space around a magnet or a current-carrying wire in

which magnetic forces (on a ferrous metal, another magnet or another wire

carrying a current, for example) can act. The shape, size and direction of a

magnetic field can be illustrated using magnetic field lines (see Figure 22.1).  The field inside a long

solenoid is uniform

S T—

o)

a Bar magnet b Uniform magnetic field ¢ Long coil (solencid)

&

A Level

= =2 2 2 2 2]
L i
[ v v w wv |




Magnetic fields

Iron core
5 Rt ehaheeh e v pha ok ek W T e

R

d Current carrying wire e Solenoid with iron core f Flat coil

A Figure 22.1 Magnetic field patterns

The corks . - can be used to find the direction of the magnetic
field lines due to a current in a long straight wire. To make the corkscrew
(current) move down, turn the corkscrew (field lines) clockwise (see
Figure 22.2)

Current

Key points to remember about magnetic fields:

* the closer together the field lines, the stronger the field

Direction of magnetic

s the direction of a field line is the direction a small plotting compass field lines
would point (its north pole would point to the south pole of another :
magnet, so field lines always point from N to §) A Figure 22.2 Corkscrew rule

* inserting a ferrous metal core into a coil or solenoid (e.g., iron) can
increase the strength of the field many thousands of times.

Force on a current-carrying conductorina
magnetic field

A wire of length [ carrying a current [ at right angles to a magnetic field B
experiences a force F at right angles to both the direction of the current and
the magnetic field, as shown in Figure 22.3. =
The Sl unit of magnetic
field strength is the tesla
(T). A magnetic field
strength of 1T is the
strength of the magnetic
field normal to a long
straight wire carrying a
current of 1A that would
produce a force of 1 Nm-!

Current T

on the wire.
v auvrnv 1T=1NA'"m"
\ - N
: ¥ Y Magnetic field strength
T is also called magnetic
Magnetic field strength B flux density (see Unit 23

Electromagnetic induction
to see why), and so can

The force F is given by the equation: F = BIl also have units of Wb m-=.
“ S

A Figure 22.3 Force on a current-carrying wire

Re-arranging this equation gives: B =%



This Equatmn dehnes the 1 ( I B (also called the

netic flux tv) as the force per unit current—length on a wire
placed at rlght angles to the magnetic field. The SI unit of magnetic field
strength is the tesla (T). A magnetic field strength of 1T is the strength of the
magnetic field nnrmal to a long straight wire carrying a current of 1 A that
would produce a force of 1N m™ on the wire.

The direction of the force can be found using Fleming’s left-hand rule (see
Figure 22.4). The thumb, first finger and secund hnger are hrst helcl at right
angles to each other. The First finger is then aligned with the direction of the
magnetic Field and the seCond finger made to point in the direction of the
Current. The Thumb then automatically shows the force (Thrust) on the wire.

The equation F = BIl only applies if the current and the magnetic field are at
right angles to each other. If the magnetic field and the current are at an angle
@ to each other, as shown in Figure 22.5, the magnetic field B can be resolved
into two perpendicular components B cos 6 and Bsin 6.

F=Bi{sing

Bros @

A
N

NG

T

b

A

[
Y

1Bsing

A Figure 22.5 Force on a wire at an angle 6 to the B-field

The component of the magnetic field parallel to the current has no effect.
Only the component of the magnetic field perpendicular to the wire exerts a
force. In this case:

F=DBIlsin 6

Force F
{thumb - thrust)

Field B
(first finger)

Current
(SeCond finger)

A Figure 22.4 Fleming’s
left-hand rule

-

Worked examples
1 In the UK, the magnetic field strength of the Earth

Consider a 1.0m length of the copper cable. Its weight
would be:

mg=nx (0.5x 107)? x 1.0 x 8900 x 9.81 = 0.069N
For the cable to be self-supporting:
Bilsin 6 = 0.069

0.069

= - - =960 A!
1.7x107 x1.0x sin25

is 1.7 x 10T in a direction making 25° to the vertical Magnetic field " L
(Figure 22.6). NN Y
Calculate the current needed in a copper cable of \\_ 3
diameter 1 mm for the cable to be self-supporting in Ay Nt
the Earth’s magnetic field. \25%,
Ly
[The density of copper is 8900kgm~.]. N
Answer A Figure 226

Notice it is the horizontal
component of the
magnetic field which
produces a vertical force
on the cable.




Magnetic fields |

-

2 Two thin aluminium strips are suspended vertically and held close to

each other. They are connected in series to a d.c. supply as shown in
Figure 22.7.

Describe and explain what happens when the switch is closed.

Answer

When viewed from above, the current is descending (®) in the left-hand
strip of aluminium and ascending (@) in the right-hand strip. The magnetic
field around the left-hand strip is circular, and (using the corkscrew rule) the
field lines rotate clockwise (Figure 22.8).

F
@)) ) e

A Figure 22.8

Using the left-hand rule, the force on the right-hand strip, due to the
magnetic field of the left-hand strip, is outwards, towards the right.
Applying the same analysis to the left-hand strip shows it will be pushed
out to the left - the two strips appear to repel each other. If the currents
in the two strips are in the same direction, the strips will appear to attract
each other.

Aluminium strips

.

A Figure 22.7

Measuring magnetic field strength B using
a current balance

Figure 22.9 shows a simple current balance,

Uniform magnetic field, B
‘Knife-edge’ pivats

Small ?ﬁs \/

-
+

A\ >
l /ﬂ Current, I
Weight force

A Figure 22.9 Current balance

Slab magnet

Magnetic farce

A pair of slab magnets provide a uniform magnetic field. When a current is
passed through the rectangular wire frame (via the knife edges) the balance
is deflected down. The deflecting force can be found by balancing the wire
frame using small weights (e.g., small pieces of graph paper) and the strength

of the magnetic field calculated using B = I_I; where [ is the length of the

conductor in the magnetic field and I the current in the wire.




Force on a charged particle moving ina
magnetic field

Force F

e Current {

Electrons

e

Area A

e mmmmmm

P R ——

Magnetic field strength B

A Figure 22.10 Force on a charged particle in a magnetic field (F = Bgv)
The magnetic force on a wire of length [ carrying a current I perpendicular to
a magnetic field B (Figure 22.10) is given by F = BIl. The current I is:

I=nAqu

where 1 is the density of charge carriers, A the cross-sectional area of the
wire, ¢ the charge on an individual charge carrier and v the drift velocity.

Combining these two equations:
F = B(nAqu)l = Bq(nAl)v

nAl is the total number of charge carriers, N, in the conductor of length [.
The force on N charge carriers is:

F = BgNv
So the force on a single charge carrier is:
F = Bgv
If the angle between the field and the velocity is @the force F is given by:
F=Bqvsiné

Current flow and electron
flow.

In Figure 22.10 the direction
of the conventional current
is from left to right. If

the charge carriers are
electrons (e.g., in metal
wires), they will be flowing
) from right to left.

See Unit 19 Current
of electricity for more
information about I = nAgqv

If a particle of charge g is
moving at a speed vina
direction at an angle 6 to a
magnetic field B, the force
on the particle is:

F=Bgvsing
You must be able to recall

§ and use this equation.

-

Worked example
300mT, at an angle of 40° to the field, as shown in Figure 22.11.

', S 3 L
L R . T T |
\ ,

40;/ NN TN \ \‘-\V:B.O x 107 ms™1
G SO e
B:S(,‘Q.mT_‘ \ \,\ oo N

a) Calculate the force on the proton.
b) State the direction of the force.

Answer
a) F=Bqv=(300x 10 xsin40%) x 1.6 x 107" x 3.0 x 10°=9.3 x 10" =N

A proton, travelling horizontally at a speed of 3.0 x 10°ms ', enters a uniform magnetic field of strength

A Figure 22.11 Force on a charged particle moving in a magnetic field

b) Using Fleming’s left-hand rule, the first finger (the magnetic field) points downwards, the second finger
(the current) goes from left to right, leaving the thumb (the thrust or motion) pointing towards the paper.

Notice that only the
vertical component
of the magnetic field
(Bsin 6) is used in the
calculation.




Magnetic fields [~

Deflecting charged particles in a magnetic field

A beam of electrons passing through a magnetic field, with a component Eqi{:ﬁém mﬂﬁ”ﬁic

o s o : . into t
of the field in a direction perpendicular to the path of the electrons, will Beampf « 'R0 ERI0 NS FRREE
experience a force at right angles to the direction in which they are travelling. geaions

In Figure 22.12 the symbol x indicates a magnetic field into the paper (we are
seeing the back of an arrow). The electron beam is moving left to right which
means the conventional current flow is right to left. Using the left-hand rule,
the force on the electron beam is downwards. As the beam deflects downwards
the force alters direction so that it is always at right angles to the path of the
electrons. The speed of the electrons does not change, only the direction.

3 x

Force on electrons

A Figure 22,12 Force on
a beam of electrons in a
magnetic field

For a beam of electrons, with each electron moving at speed v, and a uniform
magnetic field B, the force on each electron will be Ber in a direction at right
angles to the path of the beam. While the beam is in the magnetic field the
electrons will follow a circular path.

~

Worked example
Electrons are accelerated from rest across a p.d. of 5kV in an electron ‘gun’ (Figure 22.13a). They then

enter a region with a uniform magnetic field of magnetic flux density 4.0mT and travel in a circular path.
The direction of the magnetic field is perpendicular to the path of the electrons, as shown in Figure 22.13b.

+5kV Bt Magnetic field direction
is into the paper p =
4 % ® & & % Electrons are produced
“OVE 3w o oy — I . in an electron ‘gun’ by
G iy v ‘--K\ - heating a metal plate
y W to release electrons -
a Electron ‘gun’ ) a process called
Electron ‘gun’ ! o 3 x LX thermionic emission.
: ! They then accelerate
X - towards the positive
% x * o anode
‘\‘ lfl L 3 _J
x e gt ® ®

b Electrons in a uniform magnetic field
A Figure 22.13 Electrons moving in circles

a) Calculate the speed of the electrons leaving the electron ‘gun’. [Charge on an electron is 1.6 x 10~ C;
mass of an electron is 9.11 x 10 "' kg.]

b) Explain why the electrons travel in circles. ¢) Calculate the radius of the circle.

Answer
1, ) —
a) Eﬁ’w =eV See Unit 7 Motion in a
- circle for more details
2eV 2x1.6x107" x5x10° i
s } £ =J » L X“ * = A By 1 e about cerlwtrlpeml
m 9.11x 10~ acceleration.

b) The force on an electron is always at right angles to its direction of motion.
X

c) Using F = ma, where a is the centripetal acceleration ¥,

r
2
Beu=mv
T
—31 7
oM 9.11x 107 x4.2x10 — 0.060 m(6.0cm)

Be 4.0x10° x1.6x10™"




Measuring e/m_, the charge-to-mass ratio of an electron

The charge-to-mass ratio for electrons e/m, can be found by making electrons
move in circles in a fine beam tube filled with a gas such as hydrogen at low
pressure.

Electron ‘gun’

Anode
voltage
+1/0Q

<)

¥ Voltage

supply for
filament

x = b3

\ Unifarm magnetic field

B 'into the paper’

A Figure 22.14 Measuringe/m,

Electrons are accelerated by the anode voltage V and emerge from the
electron ‘gun’ with a velocity v, as shown in Figure 22.14. Using the principle
of the conservation of energy:

%mcvZ =eV (eqn 1)

where m, is the mass of an electron. The electrons then experience a force
Bev at right angles to the direction of travel, causing them to move in a circle
of radius r. Using F = ma:
UZ
Bev =m, = (eqn 2)
Combining eqn 1 and egn 2 to eliminate v:

£
m, B

The path of the electrons can be seen because they collide with the gas atoms
in the tube, causing them to emit light.

Worked example

Find the ratio of e/m, from the following results:

V=200V,B=1.2mT, r=4.0cm.

Answer

= 2x 200 =1.74 x10"Ckg™ [Theiruevalue is 1.76><10”Ckg—‘.]

e
m, (1.2x107) x(4.0x107)




Magnetic fields [~

Separating particles with different velocities

A uniform magnetic field set at right angles to a uniform electric field can
be used as a way of separating charged particles with different energies and

velocities.
+ + + + + + + +
Beam of positively- B y . &
charged particles Uniform electric field
moving with different E acting downwards
velocities \ X X Bav ®
s ® y ® d
Uniform magnetic ‘?E
field B into the paper x * *
® ® ®
y

A Figure 22.15 Separating charged particles moving with different velocities

Positively charged particles, moving with different velocities, enter a region
with a uniform B-field and a uniform E-field, as shown in Figure 22.15. The
magnetic field exerts a force Bqu upwards and the electric field exerts a force
gV /d downwards. These forces will cancel out and the particle will travel in a
straight line, undeflected by either field, if:

v

Bqv =q—
q Q‘d
o

~ Bd

Particles travelling faster than this will be deflected upwards; particles slower
than this will be deflected downwards. The experiment illustrates how
particles moving with different speeds can be selected.

Hall effect

A thin slice of a semiconductor such as germanium is placed at right angles
to a magnetic field of flux density B as shown in Figure 22.16,

The charge carriers in the thin slice are positively charged. If a current I
passes through the slice the charge carriers will feel a force pushing them
towards the back of the slice.

Uniform B-field

-

A Figure 22.16 Hall effect

A potential difference V, (the Hall voltage) builds up between the front and the
back of the slice, creating an electric field similar to the electric field between
two oppositely-charged parallel plates. This is known as the Hall effe




The electric field tries to push the positively-charged particles back towards
the front of the slice while the magnetic field continues to push the positively
charged particles towards the back of the slice. A balance is achieved when

the magnetic force on each particle (Bqv) is equal to the electric force (Eg), as
shown in Figure 22.17.

Eq = Bvg
VH
But E = = s0: V, = Bvd
For a current-carrying conductor, [ = nAqv. Combining these equations to
eliminate v:

_Bid _ Bl
nAg ntg

as the cross-sectional area of the slice, A = dt, where t is the thickness of the
slice and d the depth.

This equation shows why the Hall effect is most easily observed using:
* 3 thin slice of material (so that the value of ¢ is small)

* asemiconductor material such as germanium or silicon, as the value of
n, the density of charge carriers, is much smaller for a semiconductor
than a conductor like copper.

Using a Hall probe

A Hall probe uses the Hall effect to measure the strength of magnetic fields,
the Hall voltage being directly proportional to the magnetic field strength B.
Figure 22.18 shows a Hall probe being used to investigate how the magnetic
field strength inside a solenoid varies with distance from the centre of the
solenoid.

Solenoid

A
B

Hall probe

Slice of semiconductar
perpendicular ta the
magnetic field

-
>

Distance from centre of solenoid

A Figure 22,18 Using a Hall probe

In order to measure a magnetic flux density the Hall probe must first be
calibrated using a known magnetic field. The probe is placed with the
semiconductor slice perpendicular to a uniform magnetic field of known
magnitude. A current [ is passed through the slice and the Hall voltage V,
recorded. For a constant current [

V,=kB

The constant k can be found from the measurements taken.

d ®+a

You may be asked to
Ldr—;riw: this equation.

1 OOOOO®

|Bqu
|EQ

vy QOO0

A Figure 22,17 Hall voltage

The Hall effect can be
used to measure the
strength of magnetic
fields and as magnetic
field sensors; for example,
some computer printers
use Hall effect sensors to
detect whether there is
missing paper or the cover
is open.

Key points to remember
when using a Hall probe:

* The semiconductor
slice must be
perpendicular to the
magnetic field being
investigated.

= The probe can only
measure magnetic
fields which do not
vary with time.




Magnetic fields

Comparing the forces in different types of field
Figure 22.19 compares the forces on mass, charge, and current in
gravitational, electrical, and magnetic fields:

* All three forces are examples of ‘action at a distance’.

¢ All three fields can be represented by field lines which show the direction
of the force at points along the line.

* The density of the field lines indicates the strength of the field

* The field strength is defined as the force per unit ... mass

(for gravitational fields), charge (electric fields), or current-length
(for magnetic fields).

Magretic field
Gravitational field E!edric field Strength B
strength|g | strength R

a Gravitational field b Electric field c Magnetic field

A Figure 22.19 Forces in gravitational fields, electric fields, and magnetic fields

-

Worked example
a) Calculate:

i) the electric force Protan
Electron

i) the gravitational force

between an electron and a proton in a hydrogen atom (Figure 22.20).
Assume the radius of a hydrogen atom is 0.5 x 107 m.

b) Calculate the ratio of these two forces.

c) State what this ratio would be if the proton and electron were: L

i) 1m apart i) 1 light-year apart. A Figure 22.20 Hydrogen atom
[Charge on an electron = 1.6 x 10 C; mass of an electron = 9.1 x 10-* kg;

mass of a proton = 1.7 x 10-¥ kg.]

Answer
. , (Lex10™Y
a) i) Using Coulomb’s law: F, = k 2% _ 9 10° x M =9.2x10°N
r (0.5x107)
—-31 =27
ii) Using Newton’s law: F, = ™% = .67 x 107" x 210 x L7 X107 )y 10N
8 r (0.5x107°F
F, 9.2x10° ;
by =fs meq.zxmﬂ"
F, 41x10

c) i) and ii) In both cases the ratio would be the same. Both Coulomb’s law and Newton’s law are inverse
square laws; the ratio of the two is independent of the distance between the two masses/charges.




Nuclear magnetuc resonance imaging

- 1gnetic resonar : (NMRI, or sometimes simply MRI)
isa methud Df Dbtammg detaﬂed mechcal images of the internal organs and
soft tissue of a patient using radio-frequency electromagnetic waves (RF). The
human body is mostly water, and so contains many hydrogen atoms. NMRI
relies on a property of the nuclei of hydrogen atoms called spin. The nucleus
of a hydrogen atom is a proton, and because it spins, it behaves like a small
magnet, with north and south poles,

When the protons are subjected to a strong magnetic field, most of the
protons align themselves along the magnetic field lines (in the same way that
plotting compasses line up along magnetic field lines) and are in a low energy
state, though a few line up the other way, which is an (unstable) higher
energy state (see Figure 22.21).

00
NOOCCo

DOV

A Figure 22.21 Hydrogen nuclei in a strong magnetic field

Protons

Strong electromagnet

The protons do not line up exactly with the magnetic field lines. Instead, Precession

each proton spins about its own axis, and its axis turns around the direction CD

of the magnetic field (precesses), as shown in Figure 22.22. The precession \\5
S5 Spin

frequency depends on the strength of the magnetic field. In an NMRI scanner

the magnetic field strength of the superconducting magnet is approximately —
1.5T. Superimposed on this field is a gradually increasing magnetic field e
(called the gradient field) produced by two perpendicular coils which

‘ripples’ through the patient.

Magnetic

The protons are exposed to a burst of radio waves. Where the precession ,/ Tled I
frequency (determined by the strength of the magnetic field) matches the : :
frequency of the radio waves, the protons resonate; that is they absorb an RF ;
photon, which flips them into a higher energy state - hence the term ‘nuclear q ;
magnetic resonance’. The gradient field ensures that only a small region of the

patient has exactly the correct magnetic field value for resonance to occur.

A Figure 22.22 Precession

The protons that have been excited into a higher energy state gradually ‘relax’,
returning to the lower energy state by emitting a radio frequency photon. The
time taken to do this depends on the type of molecules around the proton:

e watery tissues have relaxation times of several seconds

s fatty tissues have relaxation times which are less than a second (e.g., grey
matter in the brain has a relaxation time of 0.37s compared to 0.30s for
white matter)

* cancerous tissues have relaxation times in between these two extremes.

A radio-frequency receiving coil (the same coil that produces the pulses of radio
waves) detects the emitted radio waves and hence the relaxation times. All this

information is passed to a computer which builds an image of the ‘slice” of the

patient. The patient moves slowly through the coils, enabling the computer to A Figure 22.23 NMRI scan of
produce a complete body or brain scan of the patient (see Figure 22.23). the brain




Magnetic fields

.\ Raise your grade

(a) Define the tesla.

--------------------------------------------------------- e TETYTIT] R RIS T ST Y

------------------------------------------------------------------------------------------------------------

A conductor carrying a current of 1A in a direction normal to the magnetic field
experiences a force of 1N per metre length of the wire. S |

An experiment is carried out to measure the strength of a uniform magnetic field between two
magnets by measuring the force on a current-carrying wire. The magnets are repelling each other.
The wire is supported by two clamps and connected to a d.c. power supply as shown.

d.c. power supply
s o

(b) (i) When the switch is closed a force acts on the wire. State the direction of this force.

reeeeeerennnnnens. JONONACAS. .. Y (Using Fleming’s left-hand rule.)

(ii) The reading on the electronic balance decreases. Explain why.

From Newfon'a.2rd law,.if. foe magnets. exect. 2 dowoward foree. on.tbe wice, the.wire. .. ¥,

exerts an equal and opposite (upwards) force on the magnets (which tries to lift’ them). (3]

------------------------------------------------------------------------------------------------

(¢) The results of the experiment are shown in the table.

Length of wire in magnetic field 8.0cm
Electric current 2.7A
Initial reading on balance 9549
Reading on balance when switch is closed 89.7g

() Show that the force acting on the wire due to the magnetic field is approximately 5.6 x 10-2N.

Change in force on balance = (454 - 897) x 107 x 481 = 559 x 107N

v v
(i) Calculate the strength of the magnetic field between the two magnets.

~ _ F slbxlo™ P The correct equation, re-arranged correctly
F=Bl=B=—=———=206x10"T tofind B, but the value of ¢ should be
il 21x%0 v X converted to m. Correct answer is 0.26T.

strength of magnetic field = 2L X107 T [4]

---------------

A




Exam-style questions

[Charge on an electron is 1.6 x 107 C; mass of
electron is 9.11 x 10" kg.]

1 A rectangular wire loop ABCD, with dimensions
10.0cm x 8.0cm, lies with its plane parallel to
a uniform magnetic field of strength 0.50T. The
loop carries a current of 2.4 A, as shown.

10 0Tm

Lt =i

>
A f \{2_4 A D

(a) State the direction of the force on:
(i) AB (i) CD. [2]

(b) Calculate the magnitude of the force on:
(i) AB (i) BC. [2]

(c) Calculate the total torque acting on the
loop in this position. [2]

(d) Describe and explain what would happen
if the loop was in a vertical plane. [2]

2 A [(-particle, travelling at a speed v, enters a
region with a uniform magnetic field of flux
density 0.25mT and a uniform electric field. The
[(-particle is undeflected, travelling in a straight,
horizontal line, as shown.

Uniform magnetic field =0.25mT

b o ®
+300V
b * %
p-particle 50cm Vv
FEAQENCHOROR N 8 . i | R
b4 o ®
|
% % X ol

(a) Using information in the diagram, state the
direction of:
(i) the electric field

(ii) the magnetic field. [2]
(b) Show that the electric field strength is

6kV/m. (2]
(c) Calculate the velocity of the B-particle. [3]

(d) Describe and explain what would happen
to the path of the B-particle if it was
moving faster. [2]

3 A charged particle of mass m and charge -e is
travelling in a vacuum with velocity v. It enters a
uniform field of flux density B as shown.

/

Mass m,

. [

charge -e
v =

[ Uniform magnetic field B

(a) State the direction of the magnetic field. [1]

(b) (i) Calculate the magnetic force on the
charged particle as it enters the uniform
magnetic field.

(i) State the direction of this force. [3]

(c) (i) Explain why the speed of the charged
particle does not change.
(i) The charged particle travels along the

arc of a circle. Show that the radius r

. . mv
of the circle is —.
Be

(iii) Describe how the path of the charged
particle would change if its velocity
decreased. [4]

4 The diagram shows the track of a negatively
charged particle, of mass m and charge -¢, in
a cloud chamber. A cloud chamber is a device
containing air saturated with a vapour at low
temperatures. As the particle travels through the
chamber it creates ions on which droplets can form.

Track of negatively
charged particle -g

The track is curved because there is a uniform
magnetic field of flux density B perpendicular
to the plane of rotation of the charged particle.
The particle travels clockwise and the radius
decreases.

(a) State whether the direction of the magnetic
field is ‘down’ (into the paper) or ‘up’
(out of the paper). [1]
(b) Suggest a reason why the track spirals

inwards (i.e., why the radius decreases). [1]

(c) Calculate the momentum of the particle
when it is moving with speed v and the
radius of the track is r. [2]



Electromagnetic
induction
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A 19.1-19.2 pages 280-285

O

Define magnetic flux and the weber.
Recall and use ¢ = BA.

|50}

d

Define magnetic flux linkage.

O

Infer from appropriate experiments on electromagnetic induction:

- that a changing magnetic flux can induce an e.m.f. in a circuit

- the factors affecting the magnitude of the induced e.m.f.

O

Explain simple applications of electromagnetic induction.

- that the direction of the induced e.m.{f. opposes the change producing it

[ Recall and solve problems using Faraday’s law of electromagnetic induction and Lenz’s law.

Electromagnetic induction

When a wire ‘cuts through’ a magnetic field, an e.m.f. is induced across the
ends of the wire. This is an example of eleciromagnetic induction.

Uniform magnetic
field B

A Figure 23.1 Electromagnetic induction

A wire of length [ moving perpendicular to a magnetic field B with velocity
v (See Figure 23.1.) will have an e.m.f. E induced between the ends of the
wire. Experiments show that the e.m.f. induced can be increased by:

¢ moving the wire faster
e increasing the magnetic field strength B
¢ increasing the length of wire in the magnetic field.

If a second wire is connected between the two rails to complete a circuit, a
current I will flow and a force will act on the wire which is perpendicular to
both the direction of the current and the magnetic field. The force will act in
the opposite direction to the direction the wire is moving (i.e., it opposes the
motion which produces it).

External work must be done against this force for the wire to move.
From F = BIl, and using the principle of the conservation of energy,

electrical power generated = work done/second
IE= (BIl) x v
E=Blv

The force F always acts in
a direction which opposes
the motion producing the
force.

The magnetic field
strength B (T) is also
called the magnetic flux
density ¢ (Wom-2)

in one second’. Think of
the wire as a brush - v
is the area of floor that
would be swept in one
second.

' ™)
lv is the *area swept out

w

&

A Level
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Worked examples

1 A car radio has a vertical aerial 0.5m long. The car is travelling at a
constant speed of 25m s, and the horizontal component of the Earth’s

magnetic field in the direction of the road is 4.0 x 10T,

a) Calculate the induced e.m.f. between the ends of the aerial.

b) State and explain what the reading on a voltmeter connected to the

ends of the aerial would be.
Answer
a) Induced em.f. E=Blv=4.0x10°x0.5x25=5.0x 10"V

b) The reading on the voltmeter would be zero - the wires
connecting the meter to the aerial would be cutting the same
field. The number of magnetic field lines ‘enclosed’ by the
electric circuit does not change (see Figure 23.2).

2 A rectangular loop ABCD of metal wire, of dimensions 20.0cm x
40.0cm and electrical resistance 50, is held perpendicular to a

Magnetic field lines enclosed
by area is constant so no
induced e.m.f.

uniform magnetic field of strength 150 mT, as shown in Figure 23.3. A Figure 23.2
The loop is pulled out of the field at a steady speed of 0.10ms™".
f N
_ Magretic field x This symbol indicates
5 & % i 5 a magnetic field going
A B into the paper (we see
o the back of an arrow).
- o3 2 0.10ms! : A~
@ This symbol indicates
PR a magnetic field coming
X i A * up out of the paper (the
¥oo front of an arrow).
X bl x X 19 )
- 40.0cm '

A Figure 23.3 Induced e.m.f.s
Determine:
a) the induced e.m.f. c) the direction of the current in the loop

b) the current in the loop d) the force needed to pull the loop.

Answer
a) Using E = Blv: E =150 x 10 x 20.0 x 10 x 0.10 = 3.0mV
-3
b) Tl o 302107 10 A (60 A)
R 50

c) The force on the wire must oppose the motion (from the
conservation of energy). The force acts to the left on the vertical
wire AD (as this is the only wire which is perpendicular to the
magnetic field). Using the left-hand rule (the motor effect) the
current must be from D to A (i.e., clockwise around the loop).

d) Mechanical work done per second = electrical power generated
Fxv=VxI
Fx0.10=3.0x 10" x 60 x 10-°
F=18x10"°N




Electromagnetic induction (1

Faraday’s law
The equation E = Blv can be re-written:

bw RO
dt
where dA/dt is the ‘area swept out’ each second. The equation is a special

case of Faraday’s law of electromagnetic induction:

B

where ¢ = BA
dt

113 states that the induced e.m.f. in a circuit is
pmpnrtmnal to the rate of change of flux linkage through the circuit.

Magnetlc flux and flux linkage (

- is defined by the equation:
&= BA

where A is the area perpendicular to the magnetic field B (see
Figure 23.4). It is measured in webers (Wh)

Re-arranging this equation:

.
A

Uniform magnetic
field B

A Figure 23.4 Magnetic flux ¢ = BA

Component of the
magnetic field
perpendicular to

Uniform magnetic
field B

which explains why the magnetic field strength is also called

the n 'nsity, and can be measured in Wbm—.
Note IWbm‘z = 1T

Magnetic flux can be thought of as the total number of magnetic field
lines passing perpendicularly through an area. If the magnetic field
lines are at an angle other than 90°, the component of the magnetic
field perpendicular to the area is used.

The magnetic flux in this case is ¢ = BA cos 8 (see Figure 23.5).

The greater the density of magnetic field lines, the greater the
magnetic field strength. The greater the number of field lines enclosed
by an area, the greater the magnetic flux.

If there were two wires moving in Figure 23.1, the induced e.m.f. would be

twice as much; if there were N wires, the induced e.m.f. would be N times as

much. The general form of Faraday’s law is:

A(N9¢)
At

¢, measured in webers (Wb). The

where N¢ is the magnetic {
symbol A means ‘change in’,

The e.m.f. E induced is equal to the rate at which the flux linkage changes.
The minus sign in the equation indicates that the induced voltage acts in
such a way as to oppose the change producing the voltage (see Lenz’s law,
below).

For an e.m.f. to be induced, the magnetic flux must be changing. In
question 2 of the previous worked example, an e.m.f. only occurs when the
total number of field lines enclosed by ABCD is increasing or decreasing - if

all the loop is inside the magnetic field (or all outside) no e.m.f. is produced.

The faster the magnetic flux is changing, the greater the e.m.f. induced.
Faraday’s law explains how generators, motors, and transformers work.

the areais Beoos 0

Area A

A Figure 23.5 Magnetic flux
¢=BAcos 8

magnetic flux ¢ = BA
Sl unit: Wb or Tm?

magnetic flux density
g%
A
Sl unit: Wo m=Zor T
magnetic flux linkage
N¢ = NBA

Sl unit: Wb




Worked example

A 20-turn circular coil of diameter 8.0cm is held with its plane
perpendicular to a uniform magnetic field of strength 1.4 T =
(see Figure 23.6). It is rotated 90° in 2.8 ms. -

a) Calculate the flux linkage:
i} Dbefore the coil is rotated

ii) after the coil is rotated.

b) Determine the average e.m.f. between the ends of the coil while
the coil is being rotated. A Figure 23.6

Answer
a) 1) fluxlinkage=N¢=20x1.4x mx (4.0x 107)° =0.14 Wb
ii) fluxlinkage =0
A(N¢) 0.14

b) Average em.f. = TSR T T =50V

LN

Lenz’s law

7's law states that the direction of the induced e.m.f. or current is such as

Faraday’s law: the
to oppose the change that produces it. .

induced e.m.f. is
proportional to the rate of

It is a statement of the principle of conservation of energy applied to induced
change of flux linkage.

e.n.f.s.
Lenz’s law: the direction
of the induced e.m f.

ot current is such as to

In Figure 23.7a the north-seeking pole of a magnet is moving downwards and
the flux inside the coil is increasing - more field lines are enclosed by (‘link’
with) the coil.

oppose the change that
The induced voltage across the ends of the coil causes a current to flow hproduces it.
anticlockwise when viewed from above. This makes the top of the coil a
north pole, repelling the north pole of the magnet. l
If the induced current flowed the other way, the top of the coil would become T

a south pole, attracting the magnet and causing it to move faster. The rate
of change of flux linking the coil would increase, inducing a larger induced
e.m.f. This in turn would create a larger current making the magnetic pole of N
the coil even stronger, causing the magnet to move even faster. The magnet
would be gaining extra kinetic energy (more than it would gain by just falling =
without the coil of wire present); this would contradict the principle of
conservation of energy.

seeking pole
moves down

In Figure 23.7b, as the north-seeking pole of the magnet moves up, the flux
linking the coil decreases - fewer and fewer lines ‘link’ with the coil. I

The e.m.f. induced causes a current to flow clockwise when viewed from

above. This makes the top of the coil a south-seeking pole. This south pole b North-
tries to pull the magnet down,; it tries to prevent the magnet moving up. seeking pole
moves up

<>

—

A Figure 23.7 Lenz’s law




Electromagnetic induction

‘Flux cutting’, ‘flux linking’ and induced e.m.f.

As the magnet falls into the coil, the field lines are being ‘cut’ by the coil
(more and more field lines ‘link” with the coil). The total magnetic flux
inside the coil is increasing in order to produce an e.m.f, across the ends of
the coil.

As the magnet is pulled up from the coil, the number of magnetic field lines
linking with the coil is decreasing, and so an e.m.f. is again induced, but in
the opposite direction.

If the magnet is moved more quickly into the coil, the rate of change of flux
linking with the coil would be greater, and so the e.m.f. induced across the
ends of the coil would be larger.

If a stronger magnet is used (more field lines per unit area), and the magnet
moved into the coil at the same speed, the number of field lines linking with
the coil would increase more rapidly, inducing a greater voltage.

¥ B’
Worked example

An aluminium disc of diameter 30.0cm is connected Ao
to an electric motor and rotates at a constant
speed of 120 r.p.m. in a vertical plane, as shown
in Figure 23.8. A constant magnetic field of flux
density 0.30T acts horizontally and perpendicular 30.0cm|| 1.
to the plane of the disc. A voltmeter is connected
to points O and P using sliding contacts.

a) Calculate the potential difference between

points O and P. +—L
b) Determing thep.d.: A Figure 23.8 e.m.f. induced on a rotating
i) between O and Q aluminium disc

ii) between P and Q.
Justify your answers.

c) Describe and explain what happens to ‘free’ conduction electrons in the
aluminium disc.

Answer
a) Consider OP as a thin metal strip. It completes two rotations each * x
second (120 r.p.m.) so ‘sweeps out’ an area of 2 x area of the disc
in1s. Force on % X
Secknn Current
e.m.f. between O and P = magnetic flux ‘swept’ per second & :/ R
; Q 4.
=0.30x 2% (mx0.15%) = 0,042V X
b) i) 0Q is ‘cutting’ or sweeping flux at the same rate as OP. The p.d. x B
between O and Q will be the same as the p.d. between O and P. - Al
ii) P and Q will be at the same potential, so the p.d. between P and "
Q will be zero.
c) An electron moving downwards at one instant is equivalent to a A Figure 239

conventional current moving upwards, as shown in Figure 23.9,
Using Fleming’s left-hand rule, the force on the electron is to the left
(i.e., towards the centre). A similar argument applies to electrons in
other positions on the disc - they all move towards the centre.




) Raise your grade
(a) State Faraday’s law of electromagnetic induction.

The induced emf is proportional to the flux linkage x x

L R R TR )

... The correct answer is ‘The induced e.m.f. is proportional to the rate of change of
flux linkage’.

Y [2]

sesssnsee

(b) Along solenoid of length 42.0cm, has 200 equally-spaced turns. A search coil, of diameter
2.0cm and consisting of 5000 turns of thin insulated copper wire, is placed at the centre of the
solenoid, with its axis parallel to the axis of the solenoid, as shown.

Search coil Long solenoid

A
I

The magnetic flux density at the centre of the solenoid is given by the equation
B=punl

where 1, is a constant, called the permeability of free space (47 x 107Hm™), n is the number of
turns per metre, and [ is the current.

Calculate:

(i) the magnetic flux density at the centre of the coil when the current is 6.0 A

B=pnl=4r X107 x 200 b0 =30x107T vV
042

Correct substitutions and calculation of n in turns / metre.

Correct calculation.

-3
magnetic field strength =?b XIOT 2]

(if) the flux linkage in the search caoil.

Flux linkage = N = NBA=5000 X 3. X 107 X n X (1.0 X 107%)* =51 X 107 Wb ¥ v
Correct calculation of cross-sectional area of search coil.

Correct calculation of N¢g.

-3
flux linkage = 212510 Wb [2]

(c) The current in the solenoid now begins to decrease linearly with time, as shown in the graph.




Electromagnetic induction

Current/A

O T L I L I L I L 1
0 2 4 6 8 w0 12 14 16 18
Time/ms

(i) Explain why an e.m.f. is induced across the ends of the search coil

As the curcent decreases, the magnetic flux linking with the search coil decreases

.....................................................................................................

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

..................................................................................................... [2]
A good answer
(ii) Calculate the e.m.f. across the caoil.

induced emf. equals the rate of change of flux linkage

the flux linkage falls from 577 X 107 Wb 1o zero in 15 X 107 5. v
Ix107

induced emf. = ‘STX_O? =03V v CarrRet Mt
5x10” Correct calculation. =033V [2

(d) The search coil is now moved to one end of the solenoid and the experiment repeated.
Explain why the induced e.m.f. is now half the value calculated in (c)(ii).

The magnetic field strength at the end of the solenoid is half as big, so the

-----------------------------------------------------------------------------------------------------

induced emf. is half as big, v X

L R [2]

The statement is correct, but not a complete answer. The magnetic flux density at one
end of the solenoid is half the magnetic flux density in the middle (imagine measuring the
flux density in the middle of a long solenoid and then removing one half of the solenoid —
the remaining half solenoid would produce half the flux density at the end).

As the maximum magnetic field strength is half as much as before, and the current
changes exactly as previously, the rate of change of the magnetic flux must be half as
much, so the induced e.m.f. is half as much.
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' Exam-style questions

An aeroplane has a wingspan of 60m and is
travelling horizontally at a speed of 900 kmh-*,
The aeroplane is flying in a region where the
vertical component of the Earth’s magnetic field
is 6.4 x 10° T.

(@) Show that the e.m.f. induced between the two
wing tips is 0.96V. [2]

(b) Explain why a voltmeter connected to the two
wing tips would read zero volts. [2]

A sliding rod AB, supported by two conducting
rails, is pulled at a steady speed of 3.0ms™!
through a magnetic field of flux density 40mT,
as shown.

A D
. ‘ Q

0.-40\':”\%\\\\33-0 - 1 \\\“\

( Sa{J e
B C
I Magnetic flux
density = 50 mT
L
Y

(@) Calculate:
(i) the area ‘swept’ by the rod in one second

(li) the magnetic flux ‘cut’ by the rod each
second

(iii) the induced e.m.f. across the rod. [4]

(b) A second rod CD is placed across the rails
and an electric current is induced in the loop
ABCD.

(i) State and explain the direction of the
current in rod AB.

(i) Suggest a reason why the current in AB
increases as it approaches rod CD. [3]

A small bar magnet is dropped through a coil of
wire which is connected to a voltage sensor and
datalogger as shown.

To datalogger
and computer

—————

The voltage sensor records the induced e.m.f.
across the cail, which is then displayed on a
computer screen as shown.

%

Time

Induced e.m.f.

(a) Explain, with reference to Faraday’s law:

(i) why the induced voltage is first positive
and then negative

(if) why the negative maximum voltage is
larger than the positive maximum. [4]

(b) On a copy of the screen above, sketch the
output that would be obtained if the magnet
was dropped from a greater height. [3]

(c) Explain what the area under the graph
represents. [2]

A horizontal flat circular coil of diameter 30.0cm,
consisting of 200 turns of wire, is perpendicular
to a uniform magnetic field acting vertically
downwards, as shown. The magnetic flux density
increases linearly from 2.0 T to 5.0T in 600 ms.

/

Q ‘

(a) Calculate the induced e.m.f. between the ends
of the coil. [3]

(b) The ends of the coil are connected to a 200
resistor.

(i) Calculate the current in the resistor.

{if) Viewed from above, state the direction of
the induced current in the coil. Explain
your reasoning. [3]

(c) The current in the coil induces a magnetic
field. State the direction of the induced
magnetic field inside the coil. Explain your
reasoning. [2]



Alternating

24 currents (a.c.)
 Key points.

A 19.3-19.4 pages 286-291

[ Understand and use the terms period, frequency, peak value, and root-mean-square value as
applied to an alternating current or voltage.

[l Deduce that the mean power in a resistive load is half the maximum power for a sinusoidal
alternating current.

O

Represent a sinusoidally alternating current or voltage by an equation of the form x = x sin wt.

O

Distinguish between r.m.s. and peak values, and recall and solve problems using I =1 /2.

[l Understand the principle of operation of a simple laminated iron-cored transformer, and recall and

solve problems using No W5 _0o for an ideal transformer.
P P 5

Understand the sources of energy loss in a practical transformer.

E: O

Appreciate the practical and economic advantages of alternating current and of high voltages for
the transmission of electrical energy.

O

Distinguish graphically between half-wave and full-wave rectification.

(|

Explain the use of a single diode for the half-wave rectification of an alternating current.

H

Explain the use of four diodes (bridge rectifier) for the full-wave rectification of an alternating current.

Analyse the effect of a single capacitor in smoothing, including the effect of the value of

capacitance in relation to the load resistance.
- »

Alternating currents and voltages (a.c.)

Alternating currents and voltages vary sinusoidally. They are used throughout the
world when generating and transmitting electrical energy. Figure 24.1 shows

A Level

an example of alternating current. Justas for SHM: o
Current, PP TP 03:2751':?
The general equation
for a quantity x varying

sinusoidally with time t is:

X =X, sin ot

It was also met in Unit 13

Oscillations. This equation

is provided in Exam
LPapers 1,2,and 4.

_/

P wvarns ocis

Alternative expressions are:

The maximum (peak) value of the current is I,. The frequency fof the 1=1,cos(2nft)
alternating current is 1/T where T is the period. The current I at time ¢ is
8 / ' V=V, cos(@nf)

given by the equation:
for the case when I and

V are at their peak values
where @ = 2xf, and wis the angular frequency in rad s'. : whent = 0.

A Figure 24.1 Alternating current (a.c.)

I1=1,sinxft) = I, sin ot

Similarly, for an alternating voltage:
V=V, sin(2xft)

&



Worked example
Determine, from Figure 24.2:
a) the period b) the frequency c) the peak voltage
400 -
300 B A £
200 o
100 +
§ . cPl-—0p2 0. 0
=100 4
—200-
—300 4
_4004
A Figure 24.2
Answer
a) period, T=0.02s b) frequency f = % = 50Hz
peak-to-peak _ range of — 680V
voltage voltages

L

d) the peak-to-peak voltage.

he peak-to-peak voltage

¢) peak voltage = 340V

If an alternating voltage V =V, sin(2xft) is connected across a resistor of
resistance R (see Figure 24.3 a and b), an alternating current passes through
the resistor. At time ¢ the current is I = I sin(2=ft), so P, the power dissipated
in the resistor, is:

P =Vl = VI, sin’(2xft) = % [1 - cos(4xft)]

Max. power £,V

a Variation of current I, voltage V, and power P with time

A Figure 24.3 Power dissipated in a resistor R

IV

The maximum poweris I V.

IV
The average power over a complete cycle is half this: =%

The direct current and voltage that would give the same power output are
called the re (rm.s.) values.
ke, Yo

V2 V2
a.c. ammeters and voltmeters are calibrated to measure the r.m.s. values of
current and voltage. The r.m.s. values of current and voltage can be used
in the same equations already used for analysing d.c, circuits, such as the
equation for power.

Vo

LS. IS,

cos20=1-2sin’6@

b a.c. current across
a resistor

The r.m.s. value of an
alternating current is the
value of the direct current
that would give the same
heating effect when
connected to the same
resistor.

i

FIM.S.

Iy

J2
For a.c. circuits:
P.=1..V

rm.s. rm.s.

V,
v. =20
M. il2

vE‘

rms

R

o x Vg
2

2
- Irm.s.

R=

=




Alternating currents (a.c.)

Transformers

: are used to increase (step-up) or decrease (step-down) a.c.
VO ltages If a voltage is increased, the alternating current will decrease, and
vice versa. Figure 24.4 shows the main components of a transformer.

M '

P S
turns turns

Laminated
iron core

Secondary

Primary :
coil coil

A Figure 24.4 Transformer

An alternating voltage V, across the primary coil causes an alternating
current to pass through the primary coil which induces a changing magnetic
flux inside the coil and the iron core. This changing flux passes around the
iron core and ‘links” with the secondary coil. The changing flux inside the
secondary coil induces an alternating voltage V, in the secondary coil.

From Faraday’s law, it can be shown that:

VS NS

v, N,
Where N, and N, are the number of turns on the primary coil and the
secondary coil respectively.

If the transformer is 100% efficient (i.e., no energy losses) the power out
must equal the power in:

LV, =1V,
For an ideal transformer: E = ﬂ = I—‘
T N

Energy losses in transformers

Practical transformers are almost 100% efficient, but there are some energy
losses. Table 24.1 shows the main energy losses.

¥ Table 24.1 Energy losses in transformers

Step-up transformers

increase (step-up) voltages
(and decrease currents).

Step-down transformers
decrease (step-down)
voltages (and increase

currents).
L -
o O
o O

A Figure 24.5 Symbol
for a transformer

'8 ™

The core of a transformer
is usually made of ‘soft’
iron (iron with a low
carbon content) making
it easy to magnetise and
demagnetise, reducing

§ hysteresis losses.

For an ideal transformer:

Loss Cause

Method of reducing

The coils of wire have
resistance. Energy is lost
through heating of the coils.

‘Copper losses’

Using low resistance windings (e.g., large
diameter copper wire).

‘Iron losses’ Eddy currents (‘loops’ of current
induced in the iron core by the
changing magnetic field) cause

heating of the core.

Laminating the iron core - the core is
made of thin sheets of iron separated by
layers of insulating material. The core then
has a high resistance in the direction of the
eddy currents.

Magnetic hysteresis Energy lost through
repeated magnetisation and

demagnetisation of the iron

The core is made of ‘soft iron’ (iron with
a low carbon content) which is easily
magnetised and demagnetised without
core. much energy loss.




Using transformers

Transformers are an essential part of an electricity supply system, enabling
electrical energy to be transferred efficiently from power stations to
consumers. Once electrical energy is generated at a power station, the
potential difference of the electricity generated is then increased in a step-up
transformer. This decreases the current in the distribution cables, making the
energy lost in the cables much smaller. Near the consumer, the p.d. of the
electrical supply is decreased (using a series of step-down transformers) to
provide suitable voltages for consumers to use with electrical appliances.

-
Worked example

A power station generates 2000MW at a p.d. of 25kV (Figure 24.6). The cables connecting the power
station to the consumer have a combined resistance of 0.20Q.

J’::'h

Il
/ S00MW & 1 To consumer
25kV ;

Total resistance of
bath cables =0.20

A Figure 24.6

a) Calculate:
i) the current in the cables ii) the power lost as heat in the cables.

b) The p.d. from the power station is now ‘stepped-up’ using a transformer with a turns ratio of 1:16.

1:16 /
S00MW & To consumer
25kV ; ‘é ?

Total resistance of
both cables =0.20Q

A Figure 24.7
Calculate:

i) the current in the cables 1i) the power lost as heat in the cables.

16% of the energy
P 500 x10° transmitted is lost as heat

a) i) P=1Iv R o R R Y : 2
) ) S0 Vo mx10° * | in the transmission cables. |

Answer

ii) Power lost = I’R = (2 x 10Y)? x 0.2 = 8.0 x 10’ W (80 MW) (
Less than 01% of the

B § Do e Da 000 R iat / o e e

¥V 16x25x10° station is lost as heat in
i) Power lost = I’R = (1.25 x 1092 x 0.2 = 3.1 x 10°W (0.31 MW) _the transmission cables.




Alternating currents (a.c.) J. N

Rectification

Half-wave rectification

Some electrical appliances can operate using either a.c. or d.c. - for example
electric heaters, toasters or irons - but many other appliances require a direct
current supply.

A single diode can be used to convert a.c. into d.c (see Figure 24.8), The A Figure 24.8 Half-wave
diode is connected between the a.c. input and the load resistor R. In the rectification

first half of the a.c. cycle the diode is forward-biased, a current flows in the

circuit, and there is a p.d. across the resistor R. In the second half of the a.c.

V
aut
cycle the diode is reverse-biased and no current flows. The p.d. across R is
zero (see Figure 24.9). /\ /\

This is called half-wave fification. Although the output p.d. varies, it is |
never negative, though for half the time the output p.d. and the current A Figure 24.9 Half-wave
are zero. rectification output

=E L=

t

Full-wave rectification (the bridge rectifier)

ave rec 1 can be achieved by combining four diodes in the
form of a square, as shown in Figure 24.10.

¥

{a.c. SII.I.—DDh'] T
A Figure 24.11 Full-wave

A Figure 24.10 Full-wave rectification rectification output

When V, is positive, current flows through diode 1, downwards through
resistor R and returns via diode 3; when Vin is negative, current flows through
diode 2, downwards through resistor R and returns via diode 4. In both
halves of the a.c. cycle the current is passing downwards through R. The
output is shown in Figure 24.11.

Smoothing

Some electrical appliances, such as mobile phone chargers, require a steady
d.c. supply to work properly. The ‘bouncy’ d.c. output from a half-wave or
full-wave rectifier circuit can be ‘smoothed’ by the addition of a capacitor in
parallel with the external load, as shown in Figure 24.12.

i
(a.c. supply) T
A Figure 24.13 Ripple of smoothed

A Figure 24.12 Smoothing output - ~
The value of the time
When the p.d. across the load resistor is rising, the capacitor charges up. constant CR should

As the p.d. across the load resistor starts to fall, the capacitor maintains the be much greater than
output p.d. by only discharging slowly. When the p.d. from the rectifier rises the time period of the
again, the capacitor will charge up again and the process is repeated. a.c. supply. If the load

resistance is quite small
the smoothing capacitor
! must be larger.

The output p.d. is not completely smooth - it has ‘ripple’, as shown in
Figure 24.13. The amount of ripple depends on the value of CR (called the
time constant) - the larger the value of CR, the smoother the output.




., Raise your grade
A student investigating electromagnetic induction sets up the experiment shown.

——— Centre-zero
galvanometer

Coil

When the student closes the switch the galvanometer moves briefly to the right and then returns
to zero.

(@) Explain, with reference to Faraday’s law of electromagnetic induction, why the galvanometer
briefly deflects one way and then returns to zero.

The first coil becomes magnc‘nssd. This magne’risbs the second coil, which creates a current.

L N R R ]

xx

sssssenm

When the switch is pressed the current in the first coil increases (from zero) causing an
increasing magnetic field/flux in the first coil. This flux ‘links” with the second coil. From
Faraday’s law, a changing flux in the second coil will induce a p.d. across the coil, so the ........ [2]
galvanometer deflects. When the current in the first circuit is constant, there is no

changing flux, and so no induced e.m f. across the second coil.

b

—

Describe and explain what will happen when the switch is opened.

.....................................................................................................

had been pulled out of the second coil. The changin maanetic field induces 2 vol‘fagb VX

L R e R T T Y P P

The deflection of the galvanometer is in the opposite direction because the
... magnetic field inside the second coil is decreasing rather than increasing. [2]

HEsssBsEERRREERRERE S

(c) The student now passes an iron bar between the two coils, as shown and repeats the expetriment.

(T

Explain why there is a much larger deflection on the galvanometer.

The iron bar makes the magnc’fic field 51r0n95r. This makes the induced emf. iarg&r. v X

L N R R R R Y

.. A better answer would be ‘The iron increases the maximum magnetic field strength by Vesas
several thousand times, so the rate of change of magnetic flux when the switch is opened [2]
** or closed is much greater, inducing a much greater p.d. across the second coil’. foree




Alternating currents (a.c.)

(d) The student now replaces the cell with a ‘slow’ a.c. supply from a signal generator, as shown.
She decides to replace the centre-zero galvanometer with a double-beam oscilloscope.

l To cscillosoope input 1 To oscilloscope input 2
'Slow’ a.c.
=HHz

o~

AR

Suggest a reason why monitoring the p.d. across the second coil using an oscilloscope is
preferable to using the centre-zero galvanometer.

The voltage is changing direction too fast - the galvanometer cannot keep up. v
™" The needle of the galvanometer has inertia — it does not reach its maximum oo nonsneetarmee
... Vvaluein one direction by the time the induced p.d. changes direction. T Y|

(e) The output from the oscilloscope is shown.

Input 2
(p-d. across second cail)

Input 1

(i) Explain why input 1 is proportional to the current in the first coil.

Input 1 is displaying the p.d. across a resistor, which is proportional fo the current v/ (1)
(if) Explain why the potential difference across the second coil reaches a maximum when the
current in the first coil is zero.

When the current in the first coil is zero it is changing rapidly, so the magnetic field in

e e e R R R R R R ]

the first coil is momentarily zero, but changing rapidly. This means that the magnb’ric field

R R e T R A R PR TR )

(flux) inside the second coil is changing rapidly so, from Faraday's law, there is a large

T e R R R TR A )

emf induced across the second coil. v v 2]

T R R R RN R RSN TARRR TR}

A good answer.




. Exam-style questions

1

An alternating voltage is displayed on an
oscilloscope.

The y-gain of the oscilloscope is set to 0.1V /div.
The time-base setting is 100ps/ div.

(@) Determine:
() the maximum voltage V__

(i) therm.s. voltage V.

Lm.s.

(3]

(ili) the peak-to-peak voltage.
(b) Calculate:

(i) the period
(2]

(ii) the frequency of the a.c. voltage.

(c) Write an equation which describes the
variation of voltage with time.

(2]

An alternating potential difference has a peak
value of 325V and a frequency of 50Hz.

(1]

(@) Determine the r.m.s. voltage V,

rm.s."

(b) The alternating p.d. is connected to a 100Q
resistor. Calculate:

(i) ther.m.s. current in the resistor
(il) the average current

{iii) the average power dissipated in the
resistor.

(3]

(c) Sketch a graph of the power dissipated in the
resistor against time for two complete cycles
of the alternating voltage. [3]

An ideal transformer has a primary coil of 1200
turns and a secondary coil of 300 turns. A resistor
of resistance 48() is connected to the secondary
coil. An alternating p.d. of r.m.s. value 240V is
connected to the primary coil.

Calculate:

(@) the rm.s. p.d. across the resistor [1]
(b) the secondary current I, [1]
(c) the primary current I, [1]
(d) the power dissipated in the resistor. [1]

4 The diagram shows the electrical circuit of a voltage
adaptor used for charging a laptop computer. The
diagram has been divided into three sections.

230V ac.

1 m
B L

_| I
c |
3
R

Lo

e
Vo ut

(a) Describe the purpose of section 1 of the
circuit.

(2]

(b) Section 2 of the circuit is a bridge rectifier.

(i) State one advantage of using a bridge
rectifier rather than a single diode

(i) Explain how the bridge rectifier
works,

(3]

(c) Section 3 of the circuit is responsible for
smoothing the voltage output.

(i) Describe what is meant by smoothing.

(i) Explain how the capacitor achieves
smoothing. [3]
(d) The output p.d. will have some ripple.
() Describe what is meant by ripple.

(ii) Explain how the amount of ripple can be
reduced. [3]



- A 22,5-22.9 pages 336-345
¥2-3 Quantum physics

O

Understand the particulate nature of electromagnetic radiation.

Recall and use E = hf as the energy of a photon.

|50}

d

Understand that the photoelectric effect provides evidence for a particulate nature of electromagnetic
radiation, while phenomena such as interference and diffraction provide evidence for a wave nature.

1 Recall the significance of threshold frequency.
[0 Explain photoelectric phenomena in terms of photon energy and work function energy.

[ Explain why the maximum photoelectric energy is independent of intensity, whereas the photoelectric
current is proportional to intensity.

[0 Recall, use, and explain the significance of hf = ¢ + %mvzm.
[l Describe the evidence provided by electron diffraction for the wave nature of particles.
[ Recall and use the relation for the de Broglie wavelength A = h/p.

' Show an understanding of the existence of discrete electron energy levels in isolated atoms
(e.g., atomic hydrogen), and deduce how this leads to spectral lines.

[ Distinguish between emission and absorption line spectra.

1 Recall and solve problems using the relation hf = E - E,.

[ Understand that, in a simple model of band theory, there are energy bands in solids.

[ Understand the terms valence band, conduction band, and forbidden band (band gap).

Use simple band theory to explain the temperature dependence of the resistance of metals
and of intrinsic semiconductors.

=

Use simple band theory to explain the dependence on light intensity of the resistance of an LDR.

]

Explain the principles of the production of X-rays by electron bombardment of a metal target.

O

Describe the features of an X-ray tube, including control of the intensity and hardness of the X-ray beam.

[ Understand the use of X-rays in imaging internal body structures, including a simple analysis
of the causes of sharpness and contrast in X-ray imaging.

[ Recall and solve problems by using the equation I = [ ™" for the attenuation of X-rays in matter.
[l Understand the purpose of computed tomography or CT scanning.

[0 Understand the principles of CT scanning.

[ Understand how the image of an 8-voxel cube can be developed using CT scanning.

Photoelectric effect

Electromagnetic radiation incident on a metal can cause electrons (called
photoelectrons) to be emitted from the surface. This is known as the
photoelectric effect. For electrons to be emitted from the metal, the
frequency of the electromagnetic radiation must be above a certain frequency,
known as the threshold frequency f . The effect can be demonstrated using a
gold-leaf electroscope as shown in Figure 25.1.

A Level



Electrons a Visible light incident on a zinc

Vigibleight Ultraviolet emitted plate produces no photoelectrons.
The negatively-charged gold-leaf
electroscope remains charged and the

- - gold leaf does not fall.

Megatively-charged
gold-leaf
electroscope

Electroscope , .
T aradualy b Ultraviolet light causes electrons

"l dischargesand  to be emitted (called photoelectrons).
. the gold leaffalls  The negatively-charged electroscope
\ discharges and the gold leaf falls.

A Figure 25.1 Photoelectric effect demonstrated using
a gold-leaf electroscope

r '
Key points about the photoelectric effect:

¢ Below the threshold frequency f, no electrons are emitted; this frequency depends on the metal being
used.

e The greater the frequency of the radiation, the greater the maximum kinetic energy of the
photoelectrons.

e A more intense (brighter) source of radiation produces more photoelectrons but does not change the
maximum energy of the photoelectrons.

¢ Photoelectric emission occurs instantaneously, regardless of the intensity of the source of radiation

provided that the frequency is above the threshold frequency for the metal.
L9 J

These observations cannot be explained using the wave model of light. With
the wave model, eventually enough energy would arrive to be able to free an
electron from the surface, regardless of the frequency of the radiation or the
type of metal being used.

To explain the photoelectric effect, Einstein proposed that light could be

thought of as a stream of particles called photons, each with a packet or -
quantum of energy hf, where f is the frequency of the radiation and h is the Energy of a photon E = hf
Planck constant (6.63 x 10-**Js). The value of the Planck

constant h is provided in

An incident photon delivers an amount of energy fif to an electron on the Exam Papers 1, 2, and 4,

surface of the metal. The electron needs a minimum amount of energy ¢

(called the work function, which is different for different metals) to escape
from the surface of the metal; the remaining energy appears as kinetic energy = MVmax
Phat

of the photoelectron. en:r;’; i At %855 t(bjoules
needed 1w

The maximum kinetic energy of the photoelectrons (see Figure 25.2) is — escape from the

found from the equation: mefal's surface

E man = hf-¢
. ; ; ¢ Electron
Some of the photoelectrons will have less than the maximum kinetic energy )
because they need more than the minimum energy ¢ to escape from the A Figure 25.2E,  =hf-¢

surface of the metal.

The threshold frequency f, which allows electrons to just escape from the
surface without any additional kinetic energy is given by:

hf,— ¢=0

fu = %
The wavelength corresponding to the threshold frequency f, is called the
threshold wavelength 4, = ¢/A, where ¢ is the speed of light. Above the

maximum wavelength A, no photoelectrons will be emitted.

A,
190

e



Quantum physics [~

Worked example

The work function ¢ for aluminium is 6.85 x 10-*]. The speed of light is
3.00 x 10°m s~ and Plank’s constant is 6.63 x 10~*7Js.

a) Calculate: i) the threshold frequency i) the threshold wavelength.

b) If radiation of wavelength 200nm is incident on a sheet of aluminium,
calculate the maximum kinetic energy of the electrons.

Angmar ¢ 6.85x107" i
a) i) fu =E=W=1.03x10 Hz
c 3.0x10°
il === -291x10"m
b == Toax10° )
3 3.0x10° e
b) Ek[um] =hf-¢=6.63x10 4 X(W) —6.85%x107"
=3.1x10™"]
\

Light - particle or wave?

The photoelectric effect can only be satisfactorily explained by treating light
as a stream of photons, delivering energy in ‘lumps’; the diffraction and
interference of light can only be explained by treating light as waves. Light
exhibits either wave-like or particle-like behaviour, according to circumstances -
it has a dual nature. This is described as wave ticle dualit

Matter waves

Light has particle-like properties, and matter has wave-like properties. Evidence
for this includes a beam of electrons passing through a thin crystal of graphite -
the electrons appear to ‘diffract’, producing a pattern of rings (see Figure 25.3).

Pattern of rings observed

on a screen \\

/

Beam of
electrons

¥
A

Thin graphite or \
metal target
A Figure 25.3 Diffraction of electrons

The wavelength associated with the electrons is found from de Broglie's [ '

De Broglie’s equation:

my = —
A

where mv is the momentum of the electron and & is Planck’s constant.

When electrons are detected, they are detected as particles, with mass and
velocity. The de Broglie wavelength associated with the electron enables

the location of the electrons to be calculated. When the p.d. accelerating the
electrons in the diffraction experiment is increased, the momentum of the
electrons increases, and so the wavelength associated with the electrons
decreases. The diameters of the rings observed when electrons are diffracted
are seen to decrease.




Worked example -

Calculate the de Broglie wavelength for:

Stating that an electron

a) an electron (m = 9.11 x 10" kg) has a wavelength of

b) an alpha particle (m = 6.64 x 10-*"kg) 1.4 x 10-°*m does not

; mean the electron is an

c) atennis ball (m = 60 g) % photar
i t d of 1.5 x 10°m.

nove R speRC e = When an electron is

Answer detected it is detected as

-3 —i0 ; :
From de Broglie’s equation A = h _ _6.6x10 = 44 x10 a particle. The associated
my mx1.5x10 m wavelength provides
44%x10™" 4.4 %10 ” information about where
a) 1= - = ollx10™ - 4.8x10""m electrons will appear after
’ passing through graphite,
b) A= 4.4 %107 _ 44 1™ ST for example, which acts
m 6.64x107 | like a diffraction grating.
44x10™ 44x10™
g a=22%F AR 73x%10®m
m 6.0x10™
L J
Electron energy levels A O -
An electron in an isolated atom (e.g. an atom of hydrogen or helium gas) can g;: ::i
only have certain specific amounts of energy; the energy of the electron is
nantised, This can be represented on an energy level diagram - Figure 25.4 15— =3
shows the different energy levels for the electron in a hydrogen atom. By Energy Ih eV s
convention, an electron which is completely free of the atom has zero energy. 30— -2
An electron inside the atom requires energy to ‘escape’ so it has less than zero
energy (it has negative energy).
An electron with the lowest possible energy is in its ground state (n=1). If an — -

electron absorbs energy it can jump to a higher energy level - itistheninan 4 Figure 25.4 Electron energy
excited state, as shown in Figure 25.5. After a short time, an electron in a higher |gyelsina hydrogen atom
energy state (E ) will fall back down to a lower energy level (E,). In doing so it

emits an amount of energy E, - E, as a photon of frequency f, where:
hf=E, - E,.
The movement of an electron from one energy level to another is called a

El
& Photon of
Energy levels of electrons in atoms are usually measured in electronvolts (V). MMMEQUEHW femitted
1 electronvolt is the energy gained by an electron in moving across a p.d.
of 1V. £
. 1eV=1.6x10"J A Figure 255 hf=E, — E,
© '

Worked example

Determine the wavelength of light emitted when the electron in a hydrogen gy
atom falls from the n = 4 state to the n = 2 state. L

Remember to convert

Answer energies in electronvolts
Using Figure 25.4: hf=E, - E, = [(-0.85) - (-3.39)] x 1.6 x 10 to joules in any
19 calculations.
o BOBRLD s it
6.63 %107 ' The value of e is provided
5 in Exam Papers 1, 2,
_£=%= 4,90 x 107" m(490 nm) Land ¢ v
f 6.12x10




Quantum physics

If an electron absorbs enough energy to reach the zero energy level (n = ) it

will have escaped the atom (the atom has been ionised).
Emission spectra and absorption spectra A os
0.85 n=4
The electron in an atom of hydrogen can make a number of different |50 1 .
transitions from a higher energy level to a lower energy level. Each transition w;ﬁgﬁ
corresponds to a specific wavelength of electromagnetic radiation being S = s
emitted, as illustrated in Figure 25.6. Energy ineV wavelengths
Each chemical element has its own specific set of electron energy levels and
consequently a unique set of wavelengths of electromagnetic radiation.
Emission spectra — 1
If the light emitted from excited hydrogen gas atoms (e.g., from a gas discharge i
tube, as shown in Figure 25.7) passes through a diffraction gra-tmg Or a prism, a A Figure 25.6 Electron
series of bright lines is observed, called an emi: ( (Figure 25.8). transitions in hydrogen
44
UV Violet BIuefGreen Red
Gas at low

A Figure 25.8 Emission line spectrum of hydrogen

/pressure
Q ~
+5KV
Absorption spectra o

If white light passes through hydrogen gas, for example, some frequencies
of the white light will be absorbed by the gas. The frequencies are the same
as those observed in an emission spectrum, but in this case electrons are
absorbing energy in moving from a lower energy level to a higher energy
level. The spectrum observed is called an absorp ipectrum and the A Figure 25.7 Gas discharge
frequencies corresponding to the electron transitions appear as dark lines in tube

an otherwise continuous spectrum (Figure 25.9).

o
[E9]
[ta]

Wavelength &/ nm

410
434
486

A Figure 25,9 Absorption line spectrum of hydrogen

Line spectra are only produced by isolated atoms such as the atoms of a gas.
When atoms combine to form molecules, or are closer together (e.g, in a solid
or liquid, or a gas at high pressure) the interactions produce a greater number
of possible electron energy levels leading to an energy level diagram with
many energy levels close together, and gaps where there are no permitted
energy levels, as shown in Figure 25.10a. The energy level diagram is usually
drawn as a number of bands, as shown in Figure 25.10b.

Forbidden band

Ener;
(band gap) bandgsy
Many energy
levels

A Figure 25.10 Energy bands



Band theory

The highest energy band is called the conduction band; the band below the
conduction band is referred to as the valence band. The gap between these
two bands is called the energv gap or the forbidden band, Electrons cannot
have energies in the forbidden band, in the same way as an electron in an
isolated atom cannot have energies between two adjacent energy levels.

Metals

In metals, the conduction band is only partially filled (see Figure 25.11). The
electrons in this band are the ‘free’ electrons responsible for the conduction of
electricity. When a metal is connected to an electrical supply these electrons gain
energy (they move into higher energy levels within the conduction band) - they
now have enough energy to break away from atoms and can move through the
metal. The electrons in the valence band are firmly attached to individual atoms.

When a metal is heated, its resistance increases. No more electrons are
released to become conduction electrons (electrons in the valence band are
still tightly held by atoms). The charge density does not change, but the
increased vibrations of the metal atoms cause the conduction electrons to
collide more frequently with them.

Insulators

In insulators there are no electrons in the conduction band and there is a
large gap between the conduction band and the valence band (the forbidden
band), as shown in Figure 25.12.

When an electrical supply is connected to an insulator there is insufficient
energy to ‘lift" any electrons from the valence band into the conduction band
(the energy gap is too large), so there are no electrons free to move through
the material - it is does not conduct electricity.

Semiconductors

Semiconductor materials such as silicon and germanium only conduct a very
small amount of electricity. As with insulators, its conduction band is empty
and its valence band is full, but the gap between the valence band and the
conduction band is much smaller (Figure 25.13).

When a potential difference is applied across a semiconductor, a few of the
most energetic electrons have enough energy to move from the valence band
to the conduction band. These electrons are then free to form an electric
current.

If a semiconductor is heated, more of the valence band electrons can
acquire enough extra energy to move into the conduction band so the
current increases. This is the reason why the resistance of many thermistors
decreases as their temperature increases.

A light-dependent resistor (LDR) is made from a semiconductor material
such as cadmium sulphide. In the dark it can have resistances of several
megaohms. In bright light, photons of light energy give electrons in the
valence band of the semiconductor enough energy to move into the
conduction band, and so the resistance of the LDR decreases.

Partially-filled
conduction band
band

Forbidden band

(band gap) -

Conduction

Valence
band

A Figure 25.11 Energy bands
in metals

Empty
conduction
band
&
Forbidden band
(band gap)
Valence
band
Insulator

A Figure 25.12 Energy bands
in insulators

Empty
conduction
// band
Narrow forbidden| 4,
band
band

ane! ga) Valence

band

A Figure 25.13 Energy bands
in semiconductors



Quantum physics

X-rays

X-rays are high-frequency electromagnetic waves, with wavelengths in the
range 10*m to 10-" m. They are produced by bombarding a metal target with
high-energy electrons - the rapid deceleration of the electrons causes the
emission of X-rays. Figure 25.14 illustrates how an X-ray tube works.

OV 4+200kV
o O
Vacuum tube
Anode Motor
/1
o
~ 6V ac.
o]
\-/\/|"7""""“?h
Cathode +
filament
Electron
beam Lead shield
K-rays

A Figure 25.14 X-ray tube

Electrons are emitted from the hot filament (the cathode) by thermionic
emission. They are then accelerated towards the anode by a p.d. of up to
200kV. The anode is a small target made of tungsten (or other metal with a
high melting point).

Approximately 1% of the kinetic energy of the electrons is converted into
X-rays; the rest is converted to heat energy in the metal target. The tungsten
target can be rotated rapidly by a motor so that a much greater area of
tungsten is heated.

The X-rays are emitted through a thin ‘window’ surrounded by lead shielding.
Metal tubes beyond the window collimate the beam (to make it parallel and
not spread out like a fan).

The X-rays emitted have a continuous range of frequencies up to a maximum
frequency f,, , determined by the magnitude of the accelerating potential.

If an electron is accelerated across a p.d. V, the energy of the electron is eV,
where e is the electronic charge. If all this energy is converted into a single
X-ray photon:

hf . =eVv

4
£ = BE
h

max

Worked example

An X-ray machine has an accelerating potential of 50kV. Calculate the
shortest possible X-ray wavelength that can be emitted. [The speed of
light is 3.00 x 10°ms™, eis 1.6 x 10-¥C, and Plank’s constant is

6.63 x 10-4Js.]

Answer
h 6.63x 107 x 3.0 x 10"
‘:Jl'mll'l = L = _C = s 19 z = e 25 X 10_11]'[1
fome €V 1.6x107" x50x10




Intensity and ‘hardness’ of X-rays

The intensity of an X-ray beam is a measure of the amount of energy emitted
per second per unit area. The intensity can be increased by:

* increasing the accelerating potential

* increasing the number of electrons hitting the metal target. This can be
achieved by increasing the current in the filament. The filament gets
hotter, releasing more electrons each second.

The hardness of X-rays is a measure of their penetrating power. ‘Hard” X-rays
have higher energies (shorter wavelengths) than ‘soft’ X-rays, and so are
more penetrating. When used to produce an X-ray image of an internal body
structure, the soft X-rays are more easily absorbed, increasing the exposure of
the patient to hazardous radiation - it is often better to use hard X-rays, using
a metal filter to absorb the longer wavelength X-rays.

The hardness of X-rays can be increased by:
* yusing a filter to absorb the low energy, ‘softer’ X-rays

* increasing the accelerating potential. This increases the relative amounts
of higher frequency (shorter wavelength) X-rays produced, as shown in
Figure 25.15.

X-ray imaging
Sharpness

The sharpness of an X-ray image is a measure of how clearly the edges of an
object are defined. This depends on the area of the tungsten anode, as shown
in Figure 25.16.

Anode

X-ray detector
Tungsten target SEdi
Bane

Full shadow

" Partial shadow

Electron beam

A Figure 25.16 Sharpness

If the target area is too large, some of the X-ray detector screen (or film) will
only be in partial shadow from the X-rays, and so the image appears blurred.
If the target is too small, the target can overheat. To prevent this, the tungsten
target can be mounted on a copper block with pipes containing a cooling
liquid such as oil or water.

/ Partial shadow |

100KV

S0kV

Relative intensity

A Figure 25.15 X-ray spectra

Compare the advantages
and disadvantages of
X-ray imaging with NMR
imaging in Unit 22
Magnetic fields.
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Some of the X-rays are scattered in different directions by atoms of body
tissue. These X-rays may fall on the shadow areas, blurring the image. To
prevent this, a lead grid is placed between the patient and the detector
screen, as shown in Figure 25.17. Lead is a good absorber of X-rays and any
scattered X-rays will be absorbed by the grid - only the unscattered X-rays
can reach the detector screen.

Scattered X-rays

absorbed by lead Lead grid Detector screen

|1
ry vy

In
X

|
i
y

2

Patient

A Figure 25.17 Using a lead grid to absorb scattered X-rays

Contrast

X-ray images of bones and teeth have good contrast - bones and teeth are
good absorbers of X-rays so there is a clear difference between the exposed
parts of the detector screen and the unexposed parts.

In order to obtain a clear image of softer body tissues such as the stomach, a

ontrast n ' is used. If a patient has a drink containing barium sulphate
befnre a stomach X-ray, the image of the stomach is much clearer as barium
sulphate is a good absorber of X-rays. A contrast medium can also be injected,
enabling blood flow to be observed more clearly.

The contrast of an X-ray image is reduced if:

* the exposure time is too long - the light and dark areas both become
darker

* the X-rays are too penetrating - more X-rays would pass through the
denser tissues, reaching the shadow areas

* too much scattering of the X-rays occurs. m—

Absorption of X-rays The intensity of an
L ) ) X-ray beam decreases
As an X-ray beam passes through matter it is attenuated - the intensity of the exponentially with
beam decreases. For a parallel beam with initial intensity [ , the transmitted thickness of absorber.
intensity I after passing through a thickness x of a material is given by: o
= g
I=]g+ L

The half-thickness of a
where pt is the attenuation coefficient of the material. (The SI unit of gt is m! material is the thickness
though it is often given in cm™.) of the material needed to

halve the intensity.

The attenuation coefficient is proportional to the density of the material. \ J




Worked example

A metal plate of thickness 5.0 mm reduces the intensity of an X-ray beam
by 40% . Determine:

a) the attenuation coefficient b) the half-thickness of the metal.

Answer

a) As the intensity has been reduced by 40%, the intensity must be
0.61 , where [ is the initial intensity:

0.6 = I g=0005
Re-arranging this equation and ‘taking natural logs’ of both sides:
-0.005u = log_ 0.6
p=100m™" (1.0cm™)

See Appendix: Maths skills
for more about exponential

quncﬁon S.

In any calculations
involving half thickness
and attenuation
coefficients, always
ensure that the units you
 are using are consistent.

Notice the similarities
between this equation
and the equation for the
half-life of radioactive
isotopes:

log,2

Twz =

I
b) When the thickness of the metal is the ‘half thickness’x, ,, I = %
s0:
I
—-= Jrn":'l_PIL
2
Re-arranging this equation:
et = 2.50....... X, = log. 2 _ 0.69cm
U
L9 A

Computed tomography (CT) scanning

Ordinary X-ray images are two-dimensional ‘shadow’ pictures of a patient.
The medical imaging technique called ( = (also known as CAT
scanning - computed axial tomography) is a way of obtaining much more
detailed images (see Figure 25.18), including 3D images.

Figure 25.19 illustrates the main principles of CT scanning. An X-ray tube
mounted on a gantry is able to rotate 360° around a patient. Several hundred
X-ray sensors are mounted on a ring. The X-ray tube produces a narrow beam
of X-rays which are detected by the sensors opposite the tube and the data
sent to a computer. As the X-ray tube rotates, a detailed image is gradually
built up and a cross-section of the patient can be displayed on a computer
screen. If the patient is gradually moved along the axis of the ring, several
‘slices’ of the body can be obtained and combined to give a 3D image.

A-ray tube

Stationary ring of
*-ray detectors

Marrow beam
of X-rays

A Figure 25.19 CT scanning

A

A Figure 25.18 CT images of
a brain

For a CT scanner to
produce a clear image:

e the X-ray beam must
be collimated (not
spread out like a fan)

¢ the detecting elements
must be as small as

possible.
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Constructing an image

The section (or slice) through a body is divided up into a series of small
cubes called voxels. The intensity detected by a detector depends on the
absorption of X-rays as they pass through different voxels.

Imagine an object consisting of four voxels with absorption ‘densities’ 2, 3, 5,
and 1, as shown in Figure 25.20a. The beam of X-rays is directed horizontally
at the object and the detector readings recorded (see Figure 25.20b).

Object Detector Image voxels

X-rays -===q==- ; S [ B P 2 ﬂ 5 g

----- DL U WL RN o m 6 6

a X-rays are directed at the body b The intensities are matched to
from one direction and the the voxels (the amount each

detectors record the intensity individual voxel contributes is

unknown at this stage)

A Figure 25.20 Voxels: first scan

This process is repeated from a new direction and the results added on to the
earlier values in the image voxels, as shown in Figure 25.21.

W

N
\\

A Figure 25.21 Voxels: second scan




The process is repeated in two more directions, as shown in Figure 25.22,
each time adding the detector values to the image voxels.

ﬂ)(-rays J){-ray
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A Figure 25.22 Voxels: third and fourth scans

The final image voxels contain the information to be able to ‘work back’ to
find the values of the object voxels. Each image voxel has the value of its
corresponding object voxel added to it four times (once for each direction)
and the value of each of the other object voxels added once.

The values of the image voxels added up is 7(a + b + ¢ + d). In this example,
7la+b+c+d)=17+204+26+14=77 so a+b+c+d=1
This value is the background value for each of the four image voxels.

Subtracting the background from the values of the image voxels leaves:

15 3

A Figure 25.24

These values are three times the pixel values, so the values of the object
voxels must be:

A Figure 25.25

This 2 x 2 voxel array is in two dimensions; for a real object we would need
to consider a three-dimensional 2 x 2 x 2 array, called an 8-voxel cube. The
object is divided into a very large number of small 8-voxel cubes, which are
exposed to X-rays from multiple directions. The large amount of numerical
information obtained is then analysed by powerful computers to obtain the
detailed images we see in CT scans.

image voxels

da+b | db+a
+c+d|+c+d

dc+a | dd+a
+b+d|+b+c

Y

Add up the four totals and divide by 7 to find
the background value (a + b+ c+ o)

Subtract the background value from
each of the voxels

y
3a | 3b

3c | 3d

k
Divide each value by 3 |

Y

al|b
c|d
A Figure 25.23 Finding the

values of the object voxels



Quantum physics (.-

_ ) Raise your grade

A student is investigating the photoelectric effect using a photocell.

Metal plate
b

Photocell

T
W

)

Paotential divider

Electromagnetic radiation is incident on a metal plate inside an evacuated tube. Photoelectrons are
emitted and a small current flows. A potential divider circuit provides a potential difference opposing
this current. As the p.d. is increased, the current decreases and eventually falls to zero. The minimum
potential difference needed to reduce the current to zero is called the stopping potential.

The student measures the stopping potential for different wavelengths of electromagnetic radiation:

Wavelength #./10"m | Stopping potential V./V | /37 %« 10* m™ v Cplumn hr—;lading cor!‘ect
with quantity and unit
5.00 0.6 £ 0.05 2.00 separated by /.
4.29 1.0+ 0.05 233
3.75 1.4+ 0.05 2.1 v Calculations correct
333 182005 and recorded to same
: BT .00 number of sig. figs. as
3.00 2240.05 333 the raw data.
(a) Complete the third column in the table by calculating values of 1/A. 2]

(b) (i) Plot a graph of V, on the y-axis against 1/4 on the x-axis.
Include error bars for V.. 2]
(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph.
Both lines should be clearly labelled. 2]

(ili) Determine the gradient and the y-intercept of the line of best fit.

Read-offs correct and substituted

) 2100 — 07125 into gradient calculation correctly.
gradient = (325 —21) x 10" =120 X107 Nm v v Hypotenuse of triangle for calculating
| . gradient larger than half the length of
the line drawn. Units correct.
Using point (3.00 X 10%, 1.8) iny =mx + ¢ gradient 20,2107 Nm (2]
y-intercept = ¢ =y — mx Read-off correct and substituted

=18 — (120 X 10%) X (300 x 109 WMSKSWEEECorScly:

=—18Vvv y-intercept A [2]




2.5 4 | warst acceptable

straight line

2.0

1.5

VAV

1.0+

0.5

X

Line of best
fit

0 T T T
2.0 25 30 35
/A7 » 1P m!
; hc ¢
c) Theo redicts that: V=—-=
() ry p Sy

v Points plotted correctly.

v

v Error bars
drawn correctly.

The ‘worst acceptable’
straight line is the
steepest (or the least
steep) straight line which
still passes through all the
error bars.

where e is the charge on the electron (1.6 x 10-'® C) and ¢ is the speed of light (3.0 x 108ms™").

Use your answers to (b)(iii) to determine h and ¢.

he
gradicn’f =—=120X 10"y

e
&
h=120x 107" X —
C
1Ll X 107
=120 X 107" X Mox 0™
% X 10
h=04 X107y
y-intercept = —E =— 18\ v yintercept= —g

p=18X1Xx10M"=288 X 10 x

, hc
Gradient = =

Correct calculation
of h.

(2]

Units for ¢ omitted (J or V C).




Exam-style questions

[e=30%10% M5 =1 6% 107G
h=6.63 x 10*Js]

1

Electromagnetic radiation of wavelength 4.5 x
10-"m is incident upon a metal surface which
then emits electrons with a maximum kinetic
energy of 4.2 x 10-*J. Radiation of wavelength
3.0 x 100"m incident on the same metal produces
electrons with a maximum kinetic energy of
2.63 % 107"7].

Calculate:
(@) the frequencies of the two radiations [3]
(b) the value of Planck’s constant. [2]

Electromagnetic radiation of frequency 2.5 x
10" Hz is incident on a clean magnesium surface.
The work function for magnesium is 3.68eV.

(@) Calculate:

(i) the maximum kinetic energy of the
photoelectrons emitted

(i) the threshold frequency of magnesium. [3]

(b) Determine the stopping potential (the p.d.
needed to prevent the photoelectrons from
escaping). [2]

Electrons, initially at rest, are accelerated across a
potential difference of 40kV.
(a) Calculate:

(i) the speed of the electrons

(ii) their momentum. [3]

(b) State what is meant by the de Broglie
wavelength. [2]

(c) Calculate the de Broglie wavelength
associated with these electrons. (2]

The energy levels for electrons in a helium atom
are given by the equation:

E = "%‘4 eV
Tt

(@) Explain why electron energy levels are
negative, [1]

(b) Calculate the wavelength of the radiation

emitted by an electron falling from level n =5
ton=2. [3]

(c) State which region of the electromagnetic
spectrum this wavelength belongs to. [1]

Quantum physics [~

The diagram shows the energy levels for the
electron in a hydrogen atom.

A 0— T =uoo
-0.54 n=5
-0.85 n=4
-1.51 n=3
Energy in eV
-3.39 n=2
-13.59 n=1

(a) Calculate the longest and shortest possible
wavelengths that could be produced by a
transition from an excited state to the ground
state (m = 1). [3]

(b) Determine the number of spectral lines
produced by transitions between the lowest
four states. [1]

(a) State the difference between a gamma-
ray of wavelength 10-" m and an X-ray of
wavelength 10-" m. [1]

(b) Describe how X-rays can be produced. Include
a labelled diagram in your answer. [4]

(a) Describe what happens to:

(i) the hardness (ii) the intensity

of X-rays emitted by an X-ray tube if the
accelerating potential is increased. [2]

(b) Explain why longer wavelength X-rays are
filtered out when using X-rays for medical
imaging. [2]

(a) Show that the *half-thickness’ x, , of an
absorber of X-rays is related to the attenuation

coefficient u by the equation:

In2
x — —

coon 2]

(b) The attenuation coefficient of bone for one
frequency of X-rays is 0.60cm™".

() Determine the half thickness of bone for
these X-rays.

{if) Calculate the thickness of bone needed to
absorb 90% of these X-rays. [3]




Particle and

- AS 10.1-10.6 pages 148-161
nUCIear phVSlcs A 23.1-23.6 pages 348-364

O Infer from the results of the o-particle scattering experiment the existence and small size
of the nucleus.

O

Describe a simple model for the nuclear atom to include protons, neutrons, and orbital
electrons.

Distinguish between nucleon number and proton number.
Understand that different isotopes of an element have different numbers of neutrons.

Use the usual notation for the representation of nuclides.

O 0O o o

Know that nucleon number, proton number, and mass-energy are all conserved in nuclear
processes.

O

Show an understanding of the nature and properties of o-, B-, and y-radiations
(including B~ and B’).

O State that (electron) antineutrinos and (electron) neutrinos are produced during B~ and

B -decay.
O Know that protons and neutrons are not fundamental particles since they consist of quarks.
O Describe a simple quark model of hadrons in terms of up, down, and strange quarks, and

their antiquarks.
O Describe protons and neutrons in terms of a simple quark model.
O Know that there is a weak interaction between quarks, giving rise to B-decay.
O Describe B - and B -decay in terms of a simple quark model.
O Know that electrons and neutrinos are leptons.
[ Know the link between energy and mass, E = mc”. Recall and use this relationship.
[l Understand the significance of the terms mass defect and mass excess in nuclear reactions.
1 Represent simple nuclear reactions by nuclear equations of the form }N + jHe — 50+ H.
[l Define and understand the terms mass defect and binding energy.
1 Sketch the variation of binding energy per nucleon with nucleon number.
1 Explain what is meant by nuclear fusion and nuclear fission.
] Explain the relevance of binding energy per nucleon to nuclear fusion and to nuclear fission.
[ Infer the random nature of radioactive decay from the fluctuations in count rate and be

aware of the spontaneous and random nature of nuclear decay.
[l Define the terms activity and decay constant, and recall and solve problems using A = AN.
[l Infer and sketch the exponential nature of radicactive decay and solve problems using

the relationship x = xne““, where x could represent activity, number of undecayed nuclei,

or measured count rate.
1 Define half-life.

: ; 0.693
[l Solve problems using the relation A = =5
1
2




Particle and nuclear physics

Atoms, nuclei, and radiation

Alpha-particle scattering - developing the nuclear model

of the atom

At the beginning of the 20th century it was known that atoms contained both
positively and negatively-charged parts, but not how these were organised
inside the atom.

An experiment carried out by Geiger and Marsden was key to beginning to
reveal the structure of the atom.

Source of alpha

particles Microscope

Zinc sulphide

Gold foil i

Vacuum

A Figure 26.1 Geiger and Marsden’s experiment

A thin piece of gold foil was bombarded by a collimated (narrow and
parallel) beam of alpha particles in an evacuated chamber (see Figure 26.1).
Geiger and Marsden counted the number of alpha particles deflected at
different angles by the gold foil by observing small flashes of light as the
alpha particles hit a zinc sulphide screen. They found that:

* most of the alpha particles passed straight through the gold foil
undeflected, or only deflected by a small angle

e afew were deflected by a large angle, sometimes greater than 90°.

Rutherford described the large angle deflection of a small number of alpha
particles as “quite the most incredible event that has ever happened to me

in my life. It was almost as incredible as if you fired a 15-inch shell at a
piece of tissue paper and it came back and hit you." He showed that these
observations could be explained by the atom being mostly empty space, with
most of the mass of the atom concentrated in a (positively) charged nucleus
(see Figure 26.2).

Most alpha
Afew alpha particles
particles are deflected are undeflected
through a large angle \ //A; ar deflected
through a very
small angle
°*‘--.\___ Positively-charged

nucleus
A Figure 26.2 Alpha particle scattering

Later experiments showed that there were two types of particle in the
nucleus: positively-charged protons and uncharged neutrons with electrons
‘in orbit’ around the nucleus. There were an equal number of protons and
electrons, with the charge on each proton being +e.




Nucleon number, proton number and isotopes

The planetary model of the atom consists of a nucleus formed of pretons and
neutrons, surrounded by electrons, as shown in Figure 26.3.

1 A: the total number of particles in the nucleus
(neutrons + protons).

. '+ Z: the number of protons in the nucleus (equal to the
number of electrons orbiting the nucleus).

The number of neutrons in the nucleus is A - Z. The proton number Z is
different for each element (Figure 26.4). For example, if Z is 3, the element
is lithium.

es are different versions of the same element. Their nuclei have the
same number of protons but different numbers of neutrons. For example,
“C and ',C are different isotopes of carbon with exactly the same chemical
properties - they both have six protons in their nuclei, but ;C has six
neutrons and ,C has seven neutrons.

A Figure 26.3 Planetary
model of the atom

MNucleon

number\ Symbol far
/chemical
A x/ element
/Z
Proton
number

A Figure 26.4 Proton number
and nucleon number

"
Worked example

% Co is an isotope of cobalt. State how many:

\

a) protons b) neutrons c) nucleons d) electrons there are in an atom of this isotope.
Answer
a) There are 27 protons (the proton number). b) There are 60 — 27 = 33 neutrons.

c) The total number of particles in the nucleus is 60. d) The number of electrons is the same as the
proton number, 27.

In any nuclear process both the nucleon number and the proton number are
conserved; for example:

9 4 12 1
Be+ He— C+ n

The total number of nucleons remains constant (13) as does the total number
of protons (6). The nuclei of some isotopes are unstable - at some point they
will ‘decay’ by emitting an alpha particle, beta particle or gamma ray. Some of
the mass of the nucleus is converted to energy of the emitted radiation (e. g the
kinetic energy of the alpha particle). This process is called ecay

o-, -, and y-decay
Alpha (o) decay

An alpha particle consists of two protons and two neutrons (identical to a
3H nucleus). The proton number of a nuclide emitting an alpha particle will
decrease by two and the nucleon number will decrease by four.

For example, radium-226 decays into radon-222 by emitting an alpha particle:
“sRa — “;Rn + jHe +energy

The mass of the radon-222 nucleus added to the mass of the helium-4
nucleus is slightly less than the mass of the radium-226 nucleus. The mass
lost (called the mass defect) has been ‘converted’ into energy (the o-particle
has kinetic energy, for example), but the total mass—energy is the same.

Both nucleon number
and proton number are
conserved in nuclear
reactions, as is mass—
energy.
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Beta (}) decay
There are two types of bet

. decav occurs when a neutron in the nucleus changes into a proton and
an electron. The electron is emitted as a fast-moving B -particle. A very
light, electrically-neutral a “le, called an electron antineutrino, is
also emitted.

For example, carbon-14 decays or ‘transmutes’ into nitrogen-14 by
B -decay:

14 14 L =
sC— N+ |e+V+energy

v is the symbol for an electron neutrino, a neutral particle with almost
no mass. U is the symbol for an electron antineutrino.

e |[I-decay occurs when a proton decays into a neutron and a positron
Je) and an electron neutrino (v) are emitted. The positron is emitted as
a fast-moving [-particle. The electron neutrino is a very light, electrically
neutral particle.

A positron is the antimatter equivalent of an electron - if a positron and
an electron were to meet they would annihilate each other, becoming
electromagnetic energy.

For example, carbon-10 decays into boron-10 by '-decay:

1 i} a
;C— B+ je+v+energy

Gamma (}) decay

Gamma decay occurs when a y-ray is emitted (a high-frequency
electromagnetic wave). There is no change in either the proton number or
the nucleon number. Gamma decay can occur alongside alpha or beta decay,
when an unstable nucleus adjusts to a more stable energy level.

Properties of alpha, beta, and gamma radiations

The Table 26.1 lists some important properties of o-, B-, and y-radiations.

¥ Table 26.1 Properties of -, B-, and y-radiations

Alpha (o) Beta () Gamma (y)
Nature 2 protons +  fast-moving electron high-frequency
2 neutrons (or positron for electromagnetic
(He nucleus) B -decay) wave
Charge +2e —e (or +e for no charge
B’-decay)
Range in a few cm ~1m unlimited
air
Stopped afew sheets several milimetres of several centimetres
by ... of paper aluminium of lead

===

Matter and antimatter:

For every known
type of particle,
such as an electron
or proton, there is
a corresponding

with
the same mass and
opposite charge (e.g.,
an antielectron called
a positron) and an
antiproton.

If a particle collides
with its antiparticle,
they annihilate each
other, producing
photons. Equally, a
photon of sufficient
energy can create
a particle and its
corresponding
antiparticle.




Alpha particles and beta particles are deflected in opposite directions in a
uniform electric field, but gamma rays are undeflected as they have no charge
(see Figure 26.5). The force on an alpha particle is twice as large as the force
on an electron moving at the same speed, but the deflection of the alpha
particle is much smaller due to its much greater mass (m, = 7000m,.)

Uniform electric: field

[3 particle

Radioactive source
emitting o, fand y

A Figure 26.5 Deflections of o, B-, and y radiation in an electric field

When alpha particles and beta particles enter a magnetic field they are
deflected in opposite directions; gamma rays are undeflected, as shown in
Figure 26.6.

Fundamental particles

Electrons, neutrons, and protons were once thought to be fundamental
particles (i.e., they did not consist of combinations of other particles). It was
later discovered that, although electrons are still believed to be fundamental
particles, protons and neutrons consist of combinations of smaller particles.
These particles were given the name quarks,

The standard model of particle physics asserts that there are 12 fundamental
particles, which can be divided into two groups, according to their properties,
as shown in Table 26.2.

Quarks: there are six types of quark. Protons and neutrons are made up of
different combinations of quarks.

Leptons: there are six types of lepton. An electron is one example of a lepton.
All leptons have very small masses (lepton means light in Greek).

¥ Table 26.2 Quarks and leptons

Charge/e
2
up, u charm, c top, t +§
Quarks :
down, d strange, s bottom, b =3
electron, e muon, [ tau, © -1
Leptons electron- muon- tau-neutrino, v_ 0
neutrino, v, neutrino, v,

Quarks occur in groups of two or three, never separately. The top quark is the
heaviest with a mass approximately 200 times the mass of a proton. As well
as the 12 fundamental particles, there are 12 equivalent antiparticles.

&

y-ray
® ®
o particle
® @
® @
B particle
@ / ®

Uniform magnetic field
downwards (into paper)

Radioactive sour-:e/

emitting o, p~, and y

A Figure 26.6 Deflections
of o, -, and y radiation in a
magnetic field

See Unit 22 Magnetic
fields for more about the
deflections of moving
charged particles in
magnetic fields.




Particle and nuclear physics

There are four fundamental forces that control the interactions between

fundamental particles, as shown in Table 26.3. @ @ @ @

V¥ Table 26.3 Fundamental forces @ @
Force Range Acts on Prolon (uud) A7 (add)
Gravity no limit all objects
Electromagnetic no limit charged objects @ @ @ @
Strong nuclear force 10""m quarks and antiquarks @ @
Weak nuclear force 10" m fundamental particles St e AT tuuy)

A Figure 26.7 Some baryons

- meson (0d)

5

K® meson (d5)

A proton consists of two up quarks and one down quark (uud), held together
by the strong nuclear force. A neutron consists of one up quark and two
down quarks (udd). Particles that consist of combinations of quarks and
antiquarks are called ! (hadrons are defined as particles held together
by the strong nuclear force). Baryons are particles consisting of three quarks
(Figure 26.7). They include protons and neutrons. Mesons (Figure 26.8) are
particles consisting of one quark and one antiquark. Antibaryons consist of
three antiquarks (Figure 26.9).

~

A

Worked example

One type of hadron consists of two down quarks and one strange quark.

State the charge on this hadron. A Figure 26.8 Some mesons

Answer

Mesons

cansistaof a quark and

1
Both the down quark and the strange quark have a charge ——e, so the
3 an antiguark e.g., Us

total charge must be —e.

L. "y

Baryans

Quarks and beta decay Harrans

consist af 3 guarks,
eg. uud for a protan

In B -decay, a down quark changes into an up quark in one of the neutrons

in a nucleus, making it a proton, and in doing so emits an electron (the
B -particle) and an electron antineutrino. In B'-decay, one of the protons in

Antibaryons

consist of 3 antiguarks,
e.g, 00 for an antipratan

a nucleus changes into a neutron by one of the up quarks changing into a

down quark, emitting a positron (the B'-particle) and an electron neutrino
in the process.

A Figure 26.9 Hadrons

The force (or interaction) responsible for beta decay, causing a neutron to
change into a proton (or a proton into a neutron), is the ]
(or weak interaction).

Mass defect, mass excess, and binding energy

===

The mass of an atomic nucleus is slightly less than the total mass of the
separate nucleons. For example, a helium-4 nucleus consists of two protons
and two neutrons. Table 26.4 gives the masses of a proton, a neutron, and a
helium-4 nucleus in u (atomic mass units).

¥ Table 26.4 Masses of proton, neutron, and a helium-4 nucleus

Mass/u
Proton 1.00728
Neutron 1.00867
Helium-4 nucleus 4.00150

The tomi
(u) is defined
1

as 1 of the mass of

a "°C atom (including its
electrons).

1u=1661x10"kg




The mass of a helium<4 nucleus (Figure 26.10) is less than the combined mass
of 2 protons and 2 neutrons. The difference is called the mass defect Am.

Am =2 x1.00728 + 2 % 1.00867 — 4.00150 = 0.0304u
=5.046 x 10kg

Einstein showed that mass m and energy E are related by the equation:
E=mc

where ¢ is the speed of light (3.0 x 10°ms™). For a mass change Am, the
corresponding change in energy is:

AE = ¢*(Am)
For a helium nucleus, AE = (3.0 x 10")? % 5.046 x 107 = 4.54 x 107"°]J

This is the energy that is needed to completely separate a helium nucleus
into individual protons and neutrons, and is called the binding energy. The
value of the binding energy expressed in joule is very small and so bmdlng
energies are usually expressed in electronvolts (eV]).

o : ; 454 x10™" .
Binding energy of a helium-4 nucleus in eV = ——————=2.84 x10"eV
1.6 x10
7
The binding energy per nucleon = w =7.1MeV

Figure 26.11 shows how the binding energy/nucleon varies with nucleon
number.

10 -
IBES G 1415

AL Ama

Binding energy per nucleon/MaV

1 1 1 T 1 1 1
0 20 40 €0 80 100 120 140 1e0 180 200 220 240 260
Mass number

A Figure 26.11 Binding energy per nucleon

Nuclear fission

In nuclear fis 1 a heavy nucleus splits into two lighter nuclei, together
with a few lnl:llvu:lual neutrons. A large amount of energy is released,
principally as kinetic energy of the fission fragments.

zs)) ™

l}ﬂ Ba

A Figure 26.12 Nuclear fission

./ Neutron

A Figure 26.10 Binding
energy of helium-4

AE = c*(Am)

The greater the binding
energy per nucleon, the
more stable the nucleus
because more energy
is needed to remove a

L nucleon from the nucleus. )




Particle and nuclear physics (2

Figure 26.12 illustrates one example of nuclear fission. A “°U nucleus absorbs
a slow-moving (‘thermal’) neutron, momentarily becoming “*°U which is
unstable, and splits into a nucleus of “Kr and '*'Ba, together with three
neutrons. The binding energy/nucleon for “Kr and "*'Ba is greater than the
binding energy per nucleon for **U. Each nucleon is now more tightly bound
to the nucleus, requiring more energy to ‘escape’ from the nucleus than
before the fission reaction, and so these nucleons must have lost energy (only
the three ‘free’ neutrons have gained energy). This energy appears mainly as
kinetic energy of the fission fragments (they are ‘hot’!).

Energy released in nuclear fission

-~

Worked example ¥ Table 26.5

Calculate the energy released by one fission reaction in the example given

in Figure 26.12, using the BE per nucleon values given in Table 26.5. BE pe;ﬂr;:cleon!
Answer U 7.6
Energy released per fission reaction: “'Ba 8.3
AE=141 x (8.3-7.6) +92 % (8.5-7.6) — 2 x 7.6 = 166 MeV K 8.5

L

Mass excess

The mass of a nuclide in atomic mass units is very close to the nucleon
number A. For example, the mass of U-238 is slightly more than 238u
(238.050788u). The difference between the two is known as the

mass excess = mass (in u) — nucleon number

Nuclear fusion

\ occurs when two light nuclei join together to form a larger,
more stable nucleus. In one of the fusion reactions taking place in the Sun,
two “He nuclei combine to form *He as shown in Figure 26.13.

zHe \ /
zHe / \ Iy

*He + °He — “He + 2 'H + energy

' gHe

A Figure 26.13 Nuclear fusion

Energy released in nuclear fusion

Four of the nucleons finish in a more stable nucleus so have lost energy; the
other two have become single, “free’ protons so have gained energy.



Worked example ¥ Table 26.6

Calculate the energy released per fission reaction in the example given BE |
in Figure 26.13, using the binding energy per nucleon values given in per nucleon/
MeV
Table 26.6.
*He 2.6
Answer 7
He 7.1

Energy released per fission reaction:

AE=4x% (7.1 —=2.6) - 2% 2.6 = 12.8MeV

Radioactive decay ¢

The exact time an unstable nucleus will decay cannot be predicted - The activity is measured in
radioactive decay is a random process - but the rate of decay of a very large bequerels (Bq).

number of atoms of any particular radioactive isotope can be calculated
accurately. The activity A (the number of decays per second) is given by:

1Bq = 1 disintegration per
second

A=AN

where N is the number of undecayed nuclei and A is a constant called the _
de C . A is the probability of a nucleus decaying in unit time | —~
(the fractu:m Df atoms that decay in unit time) and has a different value for The decay constant is the

different radioactive isotopes. probability of a nucleus
decaying per unit time.
The activity A is the number of nuclei decaying per second (the count rate)
WV so:
de” ™
dN
— = -AN
dt

The minus sign occurs because the number of undecayed nuclei is decreasing
with time. The solution to this equation is:

N=Ne™
where N, is the number of undecayed atoms at time ¢ = 0 (see Figure 26.14).

As the rate of decay is proportional to N:

A=Ae"

o T(O |
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5 4

o
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=
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Time I 1 I 1 Tiriﬂe f I f I

A Figure 26.14 Exponential decay of the number A Figure 26.15 Exponential decay of activity

of undecayed nuclei

The activity A (the number of disintegrations per second) also decreases
exponentially (Figure 26.15).
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A useful measure of the rate of decay is the hali-life t, , - the time it takes for

K B

the number of undecayed nuclei to fall by half (and for the activity to halve). . )
5 The half-life t, , is the
From N= N e™ time it takes for half the
N, A i, radioactive nuclei to
oo N 12 y =2 ' i
2 o€ 70 ¢ decay (and the time it
At ,=In2=0.693 takes for the activity to
_ 0.693 _halve). i
1/2 Fy

In Figure 26.16 the activity falls from 12 kBq to 6kBq in 10s. It then falls from
6kBq to 3kBq in the next 10s, from 3 kBq to 1500Bq in the next 10s, and so on.

12 4

Activity/ kBq
o

T SRR eI ===

o 4 I leIUS i
EE LYY CF oL ™ T
' 1= H
0 T 1 T T T : T 1
0 5 10 15 20 25 30 35 40

A Figure 26.16 Half-life

Half-lives of radioactive isotopes vary from fractions of a second to many
millions of years.

~

Worked examples
1 An isotope of radon has a half-life of 3.83 days. If a sample of the gas has a mass of 12.0g at time t =0,
determine how much of the sample remains after:

a) 1day b) 1 week c) 1 year.
Answer
0.693
The decay constant A= ——= 0698 0.181 days™
L 3.83

a) Fraction remaining after 1 day = N _e*s e = 0.834

a

Mass of radon gas remaining = 12.0 x 0.834 = 10.0g

b) Fraction remaining after 1 week = ™ = ™% = 0.282
Mass of radon gas remaining = 12.0 x 0.282 =3 4¢

¢) Fraction remaining after 1 year = ™ = ¢ *""*® = 203 x 10

Mass of radon gas remaining = 12.0 x 2.03 x 10" =2.44 x 10*g.
2 Uranium-235 has a half-life of 7.1 x 10° years. Calculate the activity of a sample of 1.0g of U-235.

Answer
23
1.0g of U-235 contains 1.0 XM =2.56 x 10" atoms of uranium.
235
0.693

—= 9.76 x 107" years™
7.1x10

The activity A = 2.56 x 10" x 9.76 x 107" = 2.50 x 10" disintegrations/year = 8.1 x 10" Bq

The decay constant = A=




' ', Raise your grade

2

In Geiger and Marsden’s a-particle scattering experiment a collimated beam of alpha particles is
fired at a thin gold foil. Most of the w-particles pass straight through the foil, or are deflected by a
small angle. About one in 8000 w-particles are deflected by an angle greater than 90°.

(@) (i) State what is meant by collimated.

A parallel beam of o-particles v i.e., not ‘fanning out' in all directions.

R T T T R T e

i) S t why a thin foil i d.
(i) Suggest why a thin foil is use Though the statement is true, more

If the foil was too thick the o-particles  detail is needed. Ideally the foil is a
T P T few atoms -{hick — o-therwise 1h_e alpha Y
would not go -fnmugh X particles would be deflected several

e L LY 1HIIES. u’t[11

(b) State two deductions about the structure of the atom that can be drawn from the results of
Geiger and Marsden’s experiment.

1. The atom is mostly emply space v A good answer.

T L R e Y

Y P Y]

2. Most of the mass of the atom is The candidate should have added *...

essensnnsn s R harged ...’ for the
concentrated in the nucleus v X second mark. [3]

R N Tl ressnwan

TR YTy

(c) Alpha particles of fixed energy are used in the experiment. Suggest what would happen if
alpha particles with greater energy are used.

More of the o-particles would be deflected by more than 90°  x

R Y] [1]

Just the opposite — a smaller proportion of the o-particles would be deflected by a large
angle. As they have more kinetic energy, they are moving faster, and so the repulsive
force from a gold nucleus will act for a shorter time.

A neutron may decay into a proton together with two other particles.

(@) (i) The equation for this decay is shown below. Complete the equation.

; Lo 0 e o
e [3]
(i) State the name of the particle V. ¥ js the symbol for an electron antineutrino — the
An electron neutrino  x bar above the symbol indicates an antiparticle. 1]
(iii) State two quantities that are conserved during the decay.
1. The_profon number v/ :
Other valid answers: mass—energy, charge, and
2. The nucleon number v momentum. o [2]

(iv) State the force that gives rise to this decay.

The strona nuclear foree The weak nuclear force (or interaction) is
The strong nuclear force  x_ L [1]
(b) State the quark composition of

@ aneutron Udd.. v ... .. (ii) aproton..l.lU.d ..... A 2]




. Exam-style questions
Which statement is supported by the scattering of
alpha particles by gold foil? [1]

A The atom contains electrons in orbit around
the nucleus.

B The atom is mostly empty space.
C The nucleus is held together by strong forces.

D The nucleus of an atom contains positively
charged particles and electrically neutral
particles.

Which statement about the nuclei of two different
isotopes of a substance is correct? [1]

A The two nuclei contain equal numbers of
neutrons.

B The two nuclei contain equal numbers of
nucleons.

C The two nuclei contain equal numbers of
protons and neutrons.

D The two nuclei contain equal numbers of
protons.

“*Po, an isotope of polonium, decays into an
isotope of lead by emitting an alpha particle.
The lead decays into an isotope of bismuth by
emitting a B~ particle:

218 X 214y
, PO — Pb — " UBi

B4
What are the values of X and Y? [1]
X Y

A 214 81

B 214 83

C 218 81

D 218 83
How many nucleons are there in a nucleus of an
atom of [ Na? (1]
All B 12 C 23 D 34

The isotope niobium-86 ({Nb) decays by
3" -decay into an isotope of zirconium (Zr).
Which equation describes the decay? [1]

Bb B LY
A Nb—=j Zr+ le+v
86 86 Ll
B [ Nb— Zr+ ‘e+v
C INb—y Zr+ je+7V
D

B B L1} ==
WNb = Zr+ e+ 7

Particle and nuclear physics
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The A™ hadron has a charge +2e and consists of
three quarks. If two of the quarks are up quarks
what is the third quark? [1]

Ad B d Cu D i

Which one of the particles listed is not a
fundamental particle? [1]

A an electron B a neutrino

C aquark D a proton

The half-life of an isotope of radium is 1620 years.

(a) Explain what is meant by isotope. [2]

(b) Define radioactive half-life. [2]

(c) Show that the decay constant is 4.28 x 10~
per year. [2]

(d) A sample of this isotope has an activity of
6.2 x 10’ Bq. Calculate the number of radium
atoms in the sample, [2]
A thermal neutron collides with a uranium
nucleus %, U, which undergoes nuclear fission.
The fission products are 3;Sr and '3 Xe, together
with two neutrons;:

135 1 93 140 1
U+ 1 —, 5r + Xe+3,n+energy

(@) Explain what is meant by a

thermal neutron. [1]
(b) State what is meant by nuclear fission. [2]
(©)
Mass/u
&0 235.04393
aor 92.91399
T Xe 139.92162

Using the masses given in the table, calculate:
(i) the mass defect, in atomic mass units

(if) the energy released in the reaction, in
MeV. (5]

An isotope of rubidium, {7 Ru, decays by
B -decay into 5 Sr, which is a stable isotope.

The half-life of 5 Ru is 4.9 x 10" years.

The ratio of *’Sr to *Ru in a sample of rock is
found to be 0.0060.

Assuming that there was no *'Sr when the rock
was formed, calculate the age of the rock. [4]



»y A Practical assessment

Paper 3: Advanced practical skills

There are two questions on Paper 3 Advanced practical skills, each question
lasting 1 hour and each worth 20 marks. The two questions are set in
different areas of physics. They are designed to test your practical skills - no
prior knowledge of the theory is needed.

Question1

The first question usually requires you to set up some simple apparatus,
such as an electrical circuit, or a beam supported by springs or an oscillating
system. You will then make a number of simple measurements, such

as measuring length using a rule with a millimetre scale, angle using a
protractor, or time using a stopwatch.

Once you've taken your measurements (the raw data) you will be asked to
calculate other quantities from them, and then to plot a graph. You will then
find values from the graph, such as the gradient and the y-intercept, and use
these values to find constants in an equation.

Question 2

You could also be asked
to measure force using a
newton-meter, a volume of
liquid using a measuring
cylinder, or temperature
with a thermometer. Other
quantities, such as the
mass on a mass hanger, or
the number of paperclips
used to balance a wooden
beam, may also need to

The second question involves carrying out an experiment using apparatus
that you may need to assemble, and taking a number of measurements.
You will be asked to estimate the percentage uncertainty in one these
measurements and to consider the appropriate number of significant figures
for any calculated values.

You will record a set of measurements for two values of the independent
variable, and be asked whether the results you've obtained support a
hypothesis. Some of the readings are designed to be difficult to measure
accurately, and you will be asked to identify any limitations or sources of
uncertainty in the experiment, and to suggest improvements.

Marking and assessment

Tables 27.1 and 27.2 give details of how marks are allocated for
each question.

¥ Table 27.1 Mark allocation for Question 1

q be recorded.

PR oo

The independent variable
is the one you change
and control; for example,
the length of a resistance
wire or the number of
masses hung on a spring.

The dependent variable

is the one that is altered

by the change you make;

for example, the current in

a circuit or the extension
_ofa spring.

Question 1 (20 marks)

Skill Mark Skills needed Mark allocation*
Manipulation, measurement | 7 marks | Collecting data successfully 5
and obserabon Selecting a suitable range of values 1

Ensuring good quality data 1
Presentation of data and 6 marks | Compiling a table of results
cbservatians Recording data, observations, and 2

calculations

Drawing a graph 3
Analysis, conclusions and 4 marks | Interpreting the graph 2
evaluation Drawing conclusions

*The remaining 3 marks are allocated across the skills in the table.

@




Practical assessment

¥ Table 27.2 Mark allocation for Question 2

Question 2 (20 marks)

Skill Mark Skills needed Mark allocation*
Manipulation, measurement | 5 marks | Collecting data successfully 4
and obsarvation Ensuring good quality data 1
Presentation of data and 2 marks | Recording data, observations and 2
observations calculations
Analysis, conclusions and 10 marks | Drawing conclusions 1
evaluation Estimating uncertainties 1

Identifying limitations

Suggesting improvements

*The remaining 3 marks are allocated across the skills in the table.

Key skills

Measuring length
Using a metre rule

When using a metre, half-metre, or 30 cm rule with a millimetre
scale, all the raw measurements should be recorded to the nearest
millimetre. The mean value should normally be recorded to the
same number of significant figures as the raw measurements (or one

significant figure more). :

||||||||rrl-rm]uuluul-rrn

8 5

nn|||||||rr|-|-m1|||||||||r

10 11 12

rrn-||||||||||[rrrr-lm||||||||rrr[nn|||

12 14 15 16

Diameters can be measured using a rule together with two set
squares, as shown in Figure 27.1.

Using vernier calipers

If the measurement to be made is less than 15-20cm in length, then a pair
of vernier calipers can be used to obtain a more accurate value. The value

of a length measured using vernier calipers can usually be recorded to the
nearest 0.1 mm (0.01 cm). Very high quality vernier calipers can give readings
accurate to the nearest 0.02 mm.

To read a vernier scale (see Figure 27.2):

e first read the value on the main scale that is just before the zero line on

the vernier scale

* then read the value on the vernier scale in line with a marking on the

main scale and add this to the first reading.

Main scale
cm 0 1 2 3 4 5 /
0 1C\Vernier scale

A Figure 27.2 Using a vernier scale

A Figure 27.1 Measuring diameters

E
In

Figure 27.2:

main scale reading:
2.1cm

reading on vernier
scale coinciding with
reading on main scale:
0.8mm (0.08cm)

final reading=2.1 +
0.08 =2.18cm.




Using a micrometer

If available, a screw-gauge micrometer (see Figure 27.3) can be used to
measure lengths up to 2-3 cm, to an accuracy of 0.01 mm. The resistance
wires used in electrical circuits often have diameters less than 1.00mm, and
so particular care needs to be taken to read the micrometer correctly:

¢ the reading on the barrel gives the length to the nearest 0.5mm

e the reading where the centre line meets the thimble gives the value to be
added on between 0.00 mm and 0.50mm (one complete rotation of the
thimble moves one jaw of the micrometer by 0.50mm).

Spindle Barrel Thimble

A Figure 27.3 Reading a micrometer scale

Measuring angle

Readings of angle using a protractor should normally be recorded to the
nearest degree (°). For example, the angle a beam makes with the bench can
be measured by sliding the protractor along the bench so that the L of the
protractor is level with the lower edge of the beam, as shown in Figure 27.4.
The angle the beam makes with the horizontal is 47°.

Bench

A Figure 27.4 Measuring angle using a protractor

Measuring time

Measurements of time usually need a judgement about when a particular
event or cycle has been completed. For this reason, time measurements
should always be repeated and a mean value calculated. The precision of
many stopwatches is +0.01 s, but this does not mean the accuracy of the
measurement is £0.01s. The accuracy depends on the reaction time of the
experimenter (typically £0.2s) and the ability to judge, for example, the start
and finish of a complete oscillation of a mass oscillating on a spring.

The raw readings of time can be recorded to the precision of the stopwatch
and then a mean value calculated.

@

=
In Figure 27.3:

* reading on the barrel is
7.00mm

* reading on the thimble
is0.27mm

» final reading = 7.00 +

027 =7.27 mm.

In Figure 27 4, the angle
the beam makes with the
horizontal is 47°.

A stop clock showing:
00:05:28

is reading 5.28s, not
0.0528s
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Precision and accuracy

The acc of a measurement is an indication of how close the
measurement is to the ‘true’ value. Accurate values are obtained by using
properly calibrated instruments correctly and adjusting the readings for

any systematic errors such as zero error. The accuracy can be improved by
repeating readings and finding a mean value. Calculating half the difference
between the smallest and largest values obtained (half the range) is a
reasonable estimate of the random uncertainty in the measurement.

The precision of a measurement is indicated by the ‘exactness’ of the
measurement - the smallest division that can be read on the instrument.

A value of 0.53 mm for the diameter of a wire measured using a micrometer
is a very precise value (it is to the nearest 0.01 mm) but it might not be very
accurate, particularly if the micrometer has a zero error.

Uncertainty

The us tainty in a reading is an indication of the confidence in the
reading. If a reading from an ammeter is recorded as 23.7 + 0.2mA, this
indicates that the reading lies somewhere between 23.9 mA and 23.5mA.

The percentage uncertainty can be found from the equation:

absolute uncertainty
mean value

percentage uncertainty = x 100%

Significant figures

Any calculated values from your raw data should be recorded to the same
number of significant figures as, or one more than, the significant figures
of the quantity used in the calculation with the least number of significant
figures.

Significant figures: a special case

In Table 27.3, although h, and h, are both recorded to three significant
figures, their difference is used in the calculation, and (i, - i) is only to one
significant figure. This means the values of 1/(h, — h,) can only be expressed
to one or two significant figures.

¥ Table 27.3
h,/ h,/ 1 sem”
,/cm ./ em (h.—h)
23.5 22.9 1.7
Calculations

Any calculated values should be rounded correctly, and to an appropriate
number of digits. For example, 3.745 can be recorded as 3.75, 3.7 or 4.

When carrying out a series of calculations it is important to carry forward
an appropriate number of digits at each stage; a calculator normally has
more than enough digits for this. Do not round intermediate steps in your
calculation, otherwise you may lose precision in your final answer.

Never add extra zeros
to your data to make
the readings look more
precise.

Worked example

Calculate the density of
steel from measurements
of the diameter d and mass
m of a ball-bearing, using
the equation:

6m
=
Answer
¥V Table 27.4
m/g|d/em|p/gem™
12.8 1.4 8.91
~ ™)

d is recorded to the
smallest number of
significant figures (2)
so p (the density) can
be expressed to two or

three significant figures. )




Good practice

Repeating measurements

There are many occasions when measurements should be repeated and mean
values calculated. For example, if you are measuring the period of oscillation
of a pendulum, it is difficult to judge exactly when a complete oscillation
begins and ends. It makes sense to measure the time for, say, 10 oscillations
at least three times and then calculate a mean value (don’t forget to divide
the mean value by 10 to find the mean time for one oscillation!).

In general, measurements that are only available to measure momentarily
(and may need good reactions) such as the time it takes for a ball-bearing to
fall a fixed distance through a liquid, or the height an object bounces, should
be repeated. Likewise, any measurement which could vary significantly, such
as the diameter of a metal wire, should be repeated two or three times and a
mean value found.

Recording results

Results should always be collated and displayed in a clear table, with
columns of readings (not rows). Key points to remember:

* Range of values: The range of values of the independent variable (e.g.,
the length of a resistance wire or the mass suspended on a spring) should
be as large as possible, with the measurements at approximately equal
intervals.

* Column headings: Each column heading should have the quantity that
has been measured with the appropriate unit.

* (Consistency: Raw readings (the measurements you actually make)
should all be recorded to the same degree of precision. This sometimes
means that a set of data will include values with different numbers of
significant figures (e.g., 11.7cm and 5.3 cm). The precision is determined
by the instrument you are using.

| su ccessfully.

-

You may be penalised one
or, at most, two marks

for any help you receive
(out of a total of 40 for

the paper), but it will

help you to complete the
experiment and its follow-up

-

Measurements from

a metre rule should

be recorded to the
nearest millimetre, but
measurements using
vernier calipers should all
recorded to the nearest
0.1mm.

L(u:m), time (s), or angle &(°)). )

The quantity and its unit
should be separated by

a ‘/" (called a ‘solidus’)

or by placing the units in
brackets (e.g., length / cm,
time /s or 8/°, or length

r 3
Worked example
This experiment investigates how the angle of tilt of a runway affects the
time taken for a cylinder to roll down it (Figure 27.5).
Adjust the position of the clamp on the stand so that 6, the angle the
runway makes with the horizontal, is 30°.
Wooden |
cylinder
Rod of clamp
Runway e
Boss
1
A Figure 27.5
Place the wooden cylinder at point A, release the cylinder, and measure
the time T taken to reach point B.
Change 6 and repeat the experiment until you have six values of 8 and T.
Record your results in a table and include values of 1/vsin 8 in your table.
Values of @ should be no greater than 60°.
\h J




Practical assessment

e ™
Answer
¥ Table 27.5
_ 1
er° T,/s T,/s T,/s T/s JM
7 1.15 1.10 1.11 1.12 29
15 0.78 0.77 0.74 0.76 1.97
29 0.58 0.53 0.52 0.54 1.44
43 0.46 043 0.49 0.46 1.21
51 0.40 0.47 0.44 0.44 1.13
60 0.41 0.40 0.43 0.41 1.07
L »

To achieve high marks:

* Column headings: All the quantities have the correct unit with the quantity and the unit separated by /.
1/y/sin 8 has no units; note also that the angle 6 has a unit (°).

* Collecting data: Six sets of values of 8 and T are recorded, showing the correct trend (T decreases as
# increases).

* Range: A good range of values of 6 chosen, including a very small value and a very large value.

* Consistency: All the values of ¢ are recorded to the nearest degree; all the raw values of T are
recorded to the same precision (the nearest 0.01s).

+ Significant figures: The mean values of T are recorded to the same number of significant figures
as the raw values of T. The values of 1/y/sin 8 are recorded to one significant figure more than the
significant figures of 6.

Drawing graphs
Choosing scales

When choosing scales for the x- and y-axes:

* choose scales so that the plotted points occupy more than half the grid
of the graph

. L R e | 1 |
scales do not have to start at zero - in many cases it is important that o VV 5 P o 1

they do not start at zero, otherwise the plotted points will be compressed

a Avoid a ‘break’ in the scale
to include zero. This is an
example of a false origin

into a small area of the graph paper
* the scales must be linear

* the scales must be ‘sensible’ (e.g., increasing in twos, fives or tens).
Scales that increase by a factor of three or seven, for example, make
plotting the points accurately much more difficult and can lead to errors

in taking read-offs for calculating a gradient or intercept value : i 1
60 70 80 90 100

* scale markings should occur no more than three large squares apart.

A good rule is to put a scale value every two large squares
* the scales should be labelled with the quantities being plotted

* avoid ‘springs’ on your graphs (see Figure 27.6).

b The scale is linear and
continuous. A ‘zero’ value at
the origin is not necessary

A Figure 27.6 Avoid ‘springs’
On your axes



Plotting points

Points should be small, sharp pencil crosses (x), or dots with a circle around
them (@). If one of the points appears to be anomalous - not following the
trend of the other points - it is a good idea to repeat the measurements you
made for this value to check, for example, that you didn’t mis-read a meter.

Drawing lines of best fit
Drawing a good line of best fit (almost always a straight line) can be

challenging, but can be achieved with practice. Look at the examples in
Figure 27.7.

Always use a 30 cm rule in good condition and a sharpened pencil. Try to
ensure that there is a good balance of points above and below the line. The
first and last points are of no greater importance than the points in between -
sometimes the best line does not go through any of the points that have been
plotted.

If one point appears to be anomalous, draw a ring around it and then draw
the line of best fit based on the remaining points.

Calculating a gradient

To calculate the gradient, mark two points on the line you have drawn. The
distance between the two points should be greater than half the length of the
line drawn - the bigger, the better.

If possible, it is a good idea to choose points, like point A in Figure 27.8,
which lie on the line, but also lie on both a horizontal and a vertical grid line.
This makes reading the x and y values correctly a lot easier.

Calculating an intercept

The y-intercept can be found in one of two ways:

* Directly from the graph: but only if the scale on the x-axis does not
have a false origin (i.e., the scale on the x-axis starts at zero).

* Using y = mx + c: Select a point on the line you have drawn (again
it is easier to judge the read-off if you select a point that lies on both
a horizontal and a vertical grid line). Read off the x and y values and
substitute them into the equation for a straight line, together with your
value for the gradient (m). Then rearrange the equation to find the
intercept c.

See the Raise your grade example on pp. 226-7 for more on calculating
gradients and intercepts.

Answering Question 2

Identifying uncertainties

A physical quantity can never be measured exactly. s arise

due to the limitations of the instrument you are using (how accurate it is),
your skill at using it, and changes in the environment (e.g., the effects of
draughts or a change in temperature). Random fluctuations in what you are
trying to measure (e.g. the activity of a radioactive source) will also give
rise to uncertainty and the act of measuring can affect the measurement
itself - when a thermometer at room temperature is placed in a warm liquid
it will cool the liquid slightly. Physicists try to estimate these uncertainties to
calculate the degree of confidence they can have in a calculated value.

2.5 -
2 J
1.5

1 4

0.5 1

X
0 1 T 1

0 5 10 15

a A better line can be drawn
by moving the candidate’s
line downwards

b A better line can be drawn
by rotating the line clockwise.
The candidate has joined the
first and last points without
taking into account the other
points

251
2
15 -
L v

0.5 1

0 . T |
0 5 10 15
¢ A good attempt at drawing
the straight line of best fit,
with points above and below
the line

A Figure 27.7 Plotting the
line of best fit

A Figure 27.8 Choosing a
point



Practical assessment

Worked example

a 30cm rule.
ii) Estimate the percentage uncertainty in your value,
b) Measure the mass m of the ball (an electronic balance is available).

c) i) Calculate the density p of the modelling clay, using the equation:

6m
= _;rd-*
ii) Justify the number of significant figures you have given for your
value of p.
Answer
a) i) d/mm: 26 27 30

Mean value for d = 28mm

4
i) Ad =4 mm, percentage uncertainty = 7 x 100=14%

a) i) Measure the diameter d of a small ball made of modelling clay, using

The precision of the rule is £1 mm, but the accuracy of the
measurement is much less than this. The accuracy is affected by:

e parallax error due to the distance between the rule and the edges
of the ball

e variation in the diameter of the ball as it is a rolled piece of
modelling clay which is not perfectly spherical.

For these reasons, a better estimate of the absolute uncertainty is
2-5mm. The percentage uncertainty is found from the equation:
absolute uncertainty . 100

mean diameter

percentage uncertainty =

ii) The value of p can be quoted to the same number of significant
figures as the least number of significant figures in the raw data (or
one more). In this example, p is calculated from the raw data of m
(2 sig. figs.) and d (2 sig. figs.), and so p can be quoted to two or
three significant figures.

L A
b) m=21g
o ) po ST 6><21+=1.Sgcm"*

ad®  wx2.§

The diameter of the

ball is likely to vary in
different directions,

and so it is sensible to
measure the diameter in
three different directions
; and find a mean.

Use consistent units in
calculations.
\

It’s not enough to say

that the answer is

consistent with the ‘raw
! data’.

Testing hypotheses, sources of uncertainty and limitations
of the procedure

The experiment in Question 2 will normally require you to obtain two sets
of experimental results which are used to test the validity of a theoretical
equation. The last section of the next worked example looks at sources of
uncertainty and possible improvements.




-
Worked example S

A student investigates the terminal speed of a ball-bearing of diameter d s
falling through a liquid (see Figure 27.9). He measures the time ¢ taken for Liquid —p=
each ball to fall from A to B, repeating each measurement and finding a i Za
mean value for t (see Table 27.6). ”l[
¥ Table 27.6 Ball-bearing —1——4)
Diameter d of Time to fall from
ball / mm AtoB/s 1 ¥
T8
30 2.2 '
38 1.4
It is suggested that the relationship between t and d is:
k .
t=— where kis a constant A Figure 27.9 Ball-bearing
d falling in liquid

a) Using your data, calculate two values of k.

b) Explain whether your results support the suggested relationship.

Answer
a) k=td
50 k,=2.2x(30x107)"=1.98 x 107 m’s
-3 -3 2
k,=14x(38x107)"=2.02x 10" m’s A aich ok
' 2.02-1.98 values are quite close’
b)  percentage difference between k values = - x 100 =2% o' valiias of k 4t far
: apart’ are not good

This is less than my estimate of the overall uncertainty in the experiment of

. > ; ; enough.
10%, and so the two results are consistent with the suggested relationship. g

.

-

Worked example
Continues from the previous worked example

c) Describe four sources of uncertainty or limitations of the procedure.
Answer

c) 1. While two readings may be consistent with a particular relationship, they are not conclusive proof.
More readings are needed using ball-bearings with other diameters.

2. The diameters were measured with a 30cm rule, leading to parallax error.

3. Itis not certain that the ball-bearings had reached their terminal velocity by the time they reached
point A.

4. The time taken to fall from A to B is very short, and so there is a large percentage uncertainty in
the value of t.

\

Identifying improvements

The last section of Question 2 looks at improvements. These can address the
problems identified earlier, but this is not essential.

Some of the limitations, sources of error and possible improvements are
specific to a particular experiment. Table 27.7 lists some potential limitations
and sources of error that you may be able to use, together with possible
improvements.

&)



Practical assessment

¥ Table 27.7 Sources of error and suggestions for improvements

Limitations and sources of error

Improvements

Only two sets of data recorded — not enough to
draw a valid conclusion.

Take more readings (with different values of the
independent variable), and either calculate further values
of k and compare them, or plot a graph.

Large percentage uncertainty in using a 30cm

or 0.5m rule to measure small distances such as

the diameter of a wire or the thickness of a coin.

Use vernier calipers or a micrometer.

Difficult to measure a small change in length
(e.g. when stretching a metal wire).

Use a travelling microscope.

Difficult to check whether a rule is vertical.

Hold a set-square on the bench against the rule.

Difficult to check whether a wooden strip is
horizontal.

Use a spirit level, or measure the height of the strip above
the bench at both ends and check they are the same.

Difficult to hold a rule or a protractor steady
when making a measurement.

Clamp the rule or protractor using a clamp and stand.

Difficult to judge the start or end of an
oscillation.

Place marker (e.g. a pencil mounted on a stand) at the
centre of the oscillation (the equilibrium position). Start
and stop a stopwatch when the oscillator passes the
equilibrium position.

Difficult to time an event accurately because
the time is short or there is a large percentage
uncertainty in the value of time.

Video the experiment, then play back frame-by-frame
and use the camera’s clock (or a stopwatch filmed next
to the experiment) to measure the time. It should be
clear how the measurement is to be made (e.g. include a
metre rule in the picture when filming so that changes in
height can be measured).

Difficult to release an object (e.g. a ball) without
exerting some external force.

Hold the object against a stop (e.g. a piece of card) and
release.

Difficult to calculate the volume of a ball as its
diameter varies.

Partially fill a measuring cylinder with water, place the
sphere in the water and measure the change in volume.

Difficult to measure volume of liquid in
beaker/ measuring cylinder as liquid is clear/
transparent/ difficult to see meniscus.

Add coloured dye to the liquid.

* Avoid describing improvements that you should do as part of a good scientific technique, such as
repeating measurements or reading instruments by viewing in a direction perpendicular to the scale

(to reduce parallax errors).

* Answers such as using ‘better equipment’, ‘computers’ or ‘requesting an assistant’ do not receive

any marks.

and measure the time at the same time’.

without further explanation.

have been made for this.

e Avoid ‘inventing’ problems such as a damaged rule, or ‘it was difficult to drop the ball-bearing
e Vague answers, such as ‘systematic error’, ‘random error’, or ‘parallax error’ do not gain credit

s ‘Measurements not repeated’ is not a valid answer as, where appropriate, measurements should
have been repeated. Similarly, ‘zero error in a micrometer’ is not valid, as a correction should




) Raise your grade

1 (a) Set up the circuit shown. Make sure the positive terminal of the multimeter is
connected to the positive side of the d.c. supply.

Digital multimeter set on
the 0-200 mA range

b Flying' lead S
A

X

- — v
- |

‘Approximately’ means within 0.5cm.

Attach the flying lead S so that the distance x is approximately 50 cm.

(b) Measure and record x. Close enough to 50cm and has X = 46” [Auld [1]
(c) (i) Close the switch. the correct unit.
(ii) Measure and record the reading I on the ammeter. 1= AKX 1]
(iii) Open the switch. I recorded in A not mA.

(d) Repeat (b) and (c) for different values of x until you have six values of x and I.

Include the values of 1? in your table. [10]

v v v v v 6sets of readings of x and I showing
the correct trend (I increasing as

X increases)
w/em I/mA vI/ N — il dmealimn
headings have
v |figesd range 5 109 1.0 the quantity and
of results, ;
including values 202 I %55 an.appropnate
of xclose (0 %o | wb | % i
the largest o 3 oA :
ane s.tr:’llalle:Ti . - X This value
E?iSI S vailcs Te.2 159 2% of 1/I has
: P45l 195 5.13 been rounded
incorrectly — it
should be 6.29.
X All the values of x must be v All the values of 1/ have
recorded to the nearest mm been recorded to the same
(the precision of the metre rule). number of sig. figs. as /.

No mark for consistency — the
first value should be 5.0.




Practical assessment

(e) (i) Plotagraph of} on the y-axis against x on the x-axis.
(ii) Draw the straight line of best fit.
(iii) Determine the gradient and y-intercept of this line. [8]

Poor choice of scale for the y-axis (the scale is ‘compressed’
so the points only occupy 3 large squares vertically). X

10.0 1
8.0
—~ 604
=L
E =
= ha A good ‘best
All 6 points ) line’, with
plotted some points
correctly 2.0 above and
with small some below
crosses. v the line. v
O 1 T T 1
0 25 50 75 100
x/cm
All the points are within + 0.4 mA™" of the line. v
Y 56b—%3

gradient = — = ——————=—0.043 mA"cm” v
A 8875 — 1375

Using the point (51.25,7.2) in y = mx + ¢:
y-infercept = ¢ =12 — (—0.043 X 5125) = 9.4 mA~ v
(f) The quantities x and } are related by the equation:

1

+ =-P+Q
Don’t forget to include the

Using your answers to (e(iii), determine the values of P and Q. units for P and Q - use the
_ — equation and the graph
P =— gradient = 0.047 axes to work out what

Q =y-intercept = 94 they should be.

As a check, see if your calculated value of the y-intercept
is the same as the direct read-off from the graph.

One mark for matching P to -gradient and Q to the intercept. v/
Does not score mark for units (should be mA™ cm™ for P and mA™ for Q). X




9 Exam-style questions

1

Estimate the absolute uncertainty in measuring:

(@) the diameter of a copper wire of approximate
diameter 0.5mm using a micrometer [1]

(b) the period of a pendulum of approximate
period 2.0s using a stopwatch with a
precision of 0.01s. [1]

Determine the reading on the vernier scale. [1]

em 0 1 ) 3 4 5//"“"8'n aeale

\\-’emier scale

0 10

The resistance of a length of wire has a
percentage uncertainty of 1.0%. The percentage
uncertainty in measuring the diameter of the
wire is 5% and the percentage uncertainty in
measuring the length of the wire is 2 %.

Calculate the percentage uncertainty in
calculating the resistivity of the wire. [2]

Describe the difference between systematic errors and
random errors, and give one example of each. [4]

A student carries out an experiment to measure
the time ¢ taken for a table-tennis ball to fall to
the ground, bounce several times and finally
come to rest, when released from a height h.

h/cm|t/s|t,/s|t/s| mean |Vh/cm®
t/s
96.5 52 | 55 | 54
87.3 50 | 49 | 4.8
69.5 45 | 43 | 43
54.4 36 | 38 | 3.7
40.0 33 | 33 | 31
29.8 27 | 28 | 29
Copy and complete the table. (3]

The table shows the results of an experiment in
which the period of oscillation T of a compound
pendulum is recorded for different values of a
variable x.

x/cm T/s
25 28
2.3 33
1.8 57
1.5 7.8
1.3 10.2
1.1 14.7

(a) Plot a graph of T° on the y-axis against x on
the x-axis. [2]

(b) Draw the straight line of best fit. [1]

(c) Determine the gradient and y-intercept of
this line. [2]

The table shows the results of an electrical
experiment, recording the current I in a circuit for
different values of a resistor of resistance R,

R/Q 1/ mA
100 35.4
220 19.0
330 14.4
470 13.7
560 10.7
820 9.0

(@) Plot a graph of I on the y-axis against 1/R on
the x-axis. [2]

(b) Identify the anomalous result and draw a
circle around it. Draw the straight line of best
fit for the remaining five points. [2]

(c) Determine the gradient and y-intercept of
this line. [2]

Measurements of the viscosity 1 of a gas are
made at two different temperatures.

T/K n/10°Pas
323 18.9
373 21.2

It is suggested that the relationship between T
and n is:

T=kn
where T is the absolute temperature and k is a

constant.

(a) Using the data in the table, calculate two
values of k. [2]

(b) The overall uncertainty in the measurements
used to calculate k is estimated to be 10%.
State and explain whether the measurements
support the suggested relationship. [1]



Practical assessment

Paper 5: Planning, Analysis and Evaluation

This paper, together with Paper 4, are A level papers, taken after completing
the whole course. There are two questions on Paper 5 Planning, Analysis
and Evaluation, which lasts 1 hour 15 minutes. There are 15 marks for
each question. The first question is designed to test your ability to plan

an investigation and is likely to be concerned with a topic that you have
not seen before. The second question looks at analysing the results of

an experiment, identifying relationships, and evaluating the reliability of
experimental evidence.

Question 1

The question will ask you to design a laboratory experiment to test a

mathematical relationship between two variables. It may also list some of the

apparatus that is available to you. You need to describe the procedure to be
followed and the measurements to be taken.

Defining the problem (2 marks)

Start by identifying the independe: 1ble, the dej variable, and
any other relevant variables that cou d affect the results ancl S0 need to be
kept constant. Some simple examples are given in Table 27.8.

V¥ Table 27.8 Identifying variables

Investigation Independent | Dependent | Variables to
variable variable | keep constant

How does the resistance diameter resistance | temperature,
of a metal wire vary with length of wire
diameter?
How does the period of mass period spring stiffness,
oscillation of a mass on a amplitude
spring vary with mass?
How does the viscosity of | temperature | viscosity
oil vary with temperature?

Outlining the procedure (4 marks)

Draw a clear, labelled diagram of the apparatus you intend to use; if the
question is an electrical one, draw a circuit diagram. Qutline in detail the
measurements you intend to make. Draw the column headings (with units)
of the table that you will use to record your results

Some key points to consider:
* How will you vary the independent variable?
* How will you measure the dependent and independent variables?

= What is the range of measurements you intend to make? What are the
largest and smallest values of the independent variable?

* What is the precision of your measurements?

s [s it necessary to repeat your measurements and calculate an average? If
so, when?

IM
The

is the one you change
and control; for example
the length of a resistance
wire or the number of
masses hung on a spring.

The

is the one that is altered

by the change you make;

for example the current in

a circuit or the extension
of a spring.

It is a good idea to leave a
couple of ‘spare’ columns
in your table for any
calculated quantities you
might need to test the

\ relationship.

For more on precision
see Unit 2 Measurement
technigues.




Analysing the data (3 marks)

A mathematical relationship between the dependent and independent
variables will be suggested in the question. You should state the graph you
would plot to test whether the relationship is valid. Normally you should
plot the graph that would give you a straight line. See Figure 27.10 for some

strategies.
Graph to plot
Linear ¥
y=mx+cC gradient =m
————>
where mand ¢ are c =
constants c= yintercept
x
Graph to plot
Exponential law Take natural logs of both sides lny
— A o= kxy — ke
y : Inp=nae )=:;ﬁil;2(e b gradient=k
where A and k are
constants Plot a graph of In y on the y-axis, .
against x on the x-axis. yntercept =In A

Graph to plot
Take logs to base 10 of both sides
Power law g By
y=RE lgy=lg(Ax=1gA+Igx" gradient=n
———> —IgA+ngx —— >
where A and 7 are lg A -
constants Plot a graph of Ig y on the y-axis, yintercept = Ig A
against |g x on the x-axis.

g x

A Figure 27.10 Which graph?

Additional details, including safety (6 marks)

Up to six marks are awarded for additional details. This might include a
description of:

* how specific variables are to be kept constant
* initial experiments to establish a suitable range of values

* the use of an oscilloscope (or storage oscilloscope) to measure voltage,
current, time, and frequency

* how to use light gates connected to a data logger to determine time,
velocity, and acceleration

* how other sensors, such as motion or pressure sensors, can be used with
a data logger.




Practical assessment | 7

Additional marks are also awarded for identifying any potential hazards in
the experiment and the safety procedures that should be followed. Table 27.9

gives some examples.

¥V Table 27.9 Examples of safety precautions

Activity

Hazard

Safety procedure

Stretching metal wires

Wires break and hit eyes

Wear safety spectacles/goggles

Measuring radioactive
decay

Exposure to harmful
radiation

Handle the radioactive source using
tongs; replace the source in a lead-lined
box when not in use

Using heavy weights Weights fall onto feet/

floor

Ensure the weights are as near to the
ground as possible; place a sand tray
or foam rubber block underneath the
weights

Use ear defenders/switch off
loudspeaker(s) when not in use

Investigating sound
waves

Damage to ears

Investigating diffraction
using a laser

Damage to eyes Do not look directly at the laser

Worked example

A student is investigating how the resistance of a particular type of thermistor varies with temperature. It is
suggested that:
k

R = Ae”
where R is the resistance of the thermistor at temperature T, and A and k are constants.

Design a laboratory experiment to test the relationship between R and T. Explain how your results could
be used to determine values for A and k. You should draw a diagram showing the arrangement of your
equipment, In your account pay particular attention to the:

s procedure to be followed,

* measurements to be taken,

e control of variables,

* analysis of the data,

s safety precautions to be taken.
Answer

Defining the problem

The independent variable is the temperature of the thermistor; the dependent variable is the resistance of
the thermistor.

Method

e Fill a 250ml beaker with approximately 200cm” of cooking oil. Place a thermometer in the oil
and gently heat the oil over a Bunsen burner (or using an electrical immersion heater) until the
temperature reaches approximately 120°C.

e Place the thermistor (supported by a wooden board resting on the top of the beaker) into the oil.
s Use a stirrer to ensure all the oil is at the same temperature.

* After a few minutes (allowing the oil, the thermistor, and the thermometer to reach the same temperature)
record the temperature on the thermometer, and the resistance as measured by the digital ohmmeter.




T
L

To digital ochmmeter

Thermometer —;—n >
| il Ja |

Wooden board

Cooking oil

Thermistor / i
Stirrer

A Figure 27.11

Resuits
Record the results as shown in Table 27.10.

V¥ Table 27.10

T/K R/Q In(R/Q) 1,51 Include columns
i forIn R and 1?

Analysis
Plot a graph of In R on the y-axis against 1/T on the x-axis. The gradient of the graph is k and the
y-intercept is In A.

Safety

Wear safety goggles (in case the hot oil splashes). Remove the heat source before placing the thermistor
inside the beaker of oil (to avoid connecting wires being melted).

Question 2

This question provides you with a set of results for analysis and evaluation.
A graph is plotted (with error bars) and a line of best fit is drawn together
with the worst acceptable straight line so that a calculation of the absolute
uncertainty in the gradient or the y-intercept of the graph can be calculated.

Data analysis (1 mark)

Table 27.11 shows the different relationships you will need to be familiar with.

¥V Table 27.11 Relationships between two variables

Relationship Graph to plot Gradient y-intercept Ig = log,, (‘logs to base 10’)
Linear (y = mx +c) y against x m g In = log, (‘natural logs’)
Exponential (y = ae") Iny against x k Ina For more about logs see
Power law (y = ax") Ig y against Ig x n Iga Appendix: Maths skills.




Practical assessment

Worked example

When a load is suspended from a metal wire such as copper, the wire
stretches. If the load is left on the wire it stretches further over time, a
process known as creep.

; Travelling microscope
Wire clamped focused on fiducial mark
at one end (point of reference)

/

Load

A Figure 27.12 Creep of copper wire

It is suggested that the relationship between the extension x of a wire
(excluding the initial extension) and the time t measured from when the load
is first placed on the wire, is given by the expression:

x=At
where A and n are constants.

A graph is plotted of lgt on the x-axis against lgx on the y-axis. Determine
expressions for the gradient and y-intercept.

Answer
Taking logs of both sides of the equation:

lgx =lg(At") = 1gA + 1g(t") = 1gA + nlgt

The gradient m = n1; the y-intercept c = IgA.

-

Table of results (1 mark)

A table of results will need to be completed, following the same guidelines as
for Paper 3 Advanced practical skills:

e every column should have a heading, and each heading should have
a quantity and a unit, separated by / or with the units in brackets; for
example, [ / cm or [ {cm)

* calculated values should be recorded to the same number of significant
figures (s.f.) as (or one more than) the s.f. of the raw value(s) recorded
to the least number of s.f.

* where appropriate, uncertainty estimates, in absolute terms, should be
recorded beside every value in the table of results

* calculated values should be rounded correctly.



Worked example

Answer

Include the absolute uncertainties in lgx.

The results of the experiment on creep, described earlier are given in bold Table 27.12.

Calculate and record values of 1g (¢/s) and lg (x/mm) in Table 27.12.

Units: When the logarithm of a quantity is
calculated, the units should be shown
with the quantity; for example, Ig (t/s) and
Ig (x/mm). The logarithm itself does not

Uncertainty: To calculate the

have a unit).

uncertainty (lgx__ —lgx_, )2

V Table 27.12
Timet/s Extension x / mm Ig (t / s) Ig (x / mm) ]
10 2.60 + 0.05 1.00 0.415 +0.008)
20 3.35+ 0.05 1.30 0.525 + 0.006
30 3.90 + 0.05 1.48 0.591 + 0.006
40 4.30 + 0.05 1.60 0.633 + 0.005
50 4.65+ 0.05 170 0.667 + 0.005

be 0.667 (3 s.f) or 0.6675 (4 s.f))

Decimal places: When calculating the
logarithmic value of a quantity, the number of
decimal places should be the same as (or one
more than) the number of s.f. of the quantity itself.
(e.g., if x/mm is 4.65 (3 s.f.) then Ig (x/mm) should

Graph (2 marks)

The axes of the graph will already be labelled with the quantities to be
plotted, and the scales marked on the axes. You will need to:

* plot the points on the graph correctly, including error bars

s draw a straight line of best fit and a straight worst acceptable line
through the points on the graph when the trend on the graph is linear

* draw a curved trend line and a tangent to the curve where appropriate.

The worst acceptable line
can be either the steepest
possible line or the
shallowest possible line
that still passes through
the error bars of all the
data points. Draw this as a
Lbrokr—:n line and label it.




Practical assessment

Error bars

When plotting measurements on a graph, the uncertainty in the
measurements can be shown by including error bars (‘uncertainty bars’ is a
better name for them).

Suppose, for example, you are plotting a value of y = 6.2 + 0.1 s (see Figure 27.13).
The bar should extend 0.1 s (using the scale on the y-axis) either side of the
nominal value of 6.2 s (the bar should always be the same height above and
below the plotted point). If the uncertainty in both the x values and y values
are known, error bars can be drawn both vertically and horizontally.

This question may ask you to plot the log of a quantity. To calculate the
uncertainty, calculate the log of the largest value and the log of the measured
value - the difference is the uncertainty. Alternatively, calculate:

(log (max value) — log (min value))
2

A best fit line should pass through all the error bars, with an even and
balanced distribution of points above and below the line. To estimate the
uncertainty in the gradient, a worst ac > (e.g., the steepest
line that just passes through all the error bars should also be drawn). The
uncertainty in the gradient is then:

gradient of steepest line — gradient of best fit line

Conclusion (3 marks)

You will need to:

¢ find the gradient and y-intercept of a straight-line graph or a tangent to a
curve,

e derive quantities that equate to the gradient and the y-intercept

* draw conclusions from these quantities.

Treatment of uncertainties (3 marks)

You need to be able to convert absolute uncertainty estimates of a quantity
into fractional or percentage uncertainty estimates and vice versa. A quantity
should be expressed as a value, with an uncertainty estimate and a unit
(e.g.,64+0.2V).

You may also need to calculate uncertainty estimates in derived quantities.

Absolute uncertainty _ gradient ofline ~ gradient of worst
in the gradient - of best fit acceptable line
Absolute uncertainty _  y-interceptof =~ y-intercept of worst
in the y-intercept ~~ line of best fit acceptable line
- J

Remaining marks (5 marks)

The remaining five marks for this question are allocated across the different
skill areas, and their allocation will vary.

634

6:2-- IBQiO_l

A Figure 27.13 Plotting error
bars

Use the same rules as
in Paper 3 Advanced
practical skills.




Worked example
For the data in Table 27.12 (p. 234) plot a graph of lg (x /mm) against lg (t/s). Include error bars for x.

Draw the straight line of best fit and a worst acceptable straight line on your graph. Both lines should be
clearly labelled.

Determine the gradient and the y-intercept of the line of best fit.

Use your answers to determine the values of A and n.

0.650 4 Best line of fit | ;’l

05825 - 04375 /7
Gradient of best fit line = 83 Agmi

146 -1.06
0.600 + =0.363 72

Worst acceptable line

— 05504
E
£
=
50
0.500 4
7/ Gradient of worst _ 0.6075 - 0.4515
/- acceptableline ~ | 154-109
2/ =(.347
0.450 4
L
.-"4
)”
0.400 : ; . ; ; . .
1.0 1.1 1.2 1.3 1.4 15 16 1.7
lg (t/s)

A Figure 27.14
Answer

The best fit line is the solid line and the worst acceptable line is the dotted line.
Using the point (1.35, 0.5425) in y = mx + ¢: y-intercept =c=y — mx
=0.5425 - 0.363 x 1.35
=525 R0
n=m=03631gA=c=0.0525 so A=10=1.13x=1.13:"%
Determine the percentage uncertainty in the value of n.
Since n = m, the uncertainty in n is the same as the uncertainty in the gradient.
Absolute uncertainty in the gradient = 0.363 - 0.347 = 0.016

_0.016

absolute uncertainty in n : % 100 = 4.4%

x 100

% uncertainty in n = :
nominal value of n




Exam-style questions

In the style of Question 1

A student is investigating the deflection of a
cantilever beam when a load is suspended from
one end of the beam.

.

s
-

He varies the length [ of the beam and measures
the deflection d in each case.

(a) State the dependent and independent
variables in this experiment. [1]

(b) State any other variables that should be
controlled. [1]

(c) It is suggested that:
d = kP

State the graph you would plot to test this
relationship. Explain how the value of k could
be found from your graph. [3]

(d) State any safety precautions that should be
taken when carrying out the experiment. [2]

An experiment is carried out to investigate the
factors affecting the time taken for a capacitor
to discharge through a resistor, using the circuit
shown.

q

When the switch is closed the reading on the
ammeter is . When the switch is opened the
capacitor gradually discharges through the
resistor of resistance R.

y

Practical assessment |

The time t taken for the initial current to fall
to I,/2 (half its original value) is measured. The
experiment is repeated for different values of R.

Theory suggests that:
t = kCR
where k is a constant.

(a) State which graph you would plot to test this
relationship. [1]

(b) Explain how the value of k could be
determined from your graph. [2]

The variables x and y are believed to be related

by an equation of the form:
y=Ax" (a power law)

where A and n are constants.

x 10 | 1.7 | 21 | 28 | 35 | 3.9
y 30 | 66 | 9.0 | 141 | 19.5 | 23.1

(a) Plot a suitable graph using the results shown
in the table

(b) Determine the value of n.

A student is investigating how the count rate C
from a radioactive source emitting y-rays varies
with distance d from the source.

Geiger-Muller tube
y-ray source

Counter

It is suggested that the count rate is related to the
distance d between the radioactive source and the
Geiger-Miiller tube by the equation:

c=4
e

where A is a constant.

Design a laboratory experiment to test the
relationship between C and d. Explain how your
results could be used to find a value for A,

In your account, you should pay particular
attention to:

* the procedure to be followed
* the measurements to be taken
s the control of variables

s the analysis of the data

* any safety precautions to be taken. [15]




5

In an investigation to measure the absorption
of B-rays by aluminium, different thicknesses of
aluminium were placed in front of a B-emitting
radioactive source and the count rate measured,
as shown. The measurements were adjusted for
background radiation.

Radioactive Geiger-Mdller tube
source

Aluminium

The count rate C and the thickness of aluminium
x are related by the equation:

- L
C=C,e
where C, and p are constants.

(@) A graph is plotted of In C on the y-axis against
x on the x-axis. Determine expressions for the
gradient and intercept. [1]

(b) Values of C and x are given in the table.

C/countsmin™” | x/mm |In(C/counts
min™’'
2284 1.0+ 0.2
1987 1.9+02
1682 28+0.2
1326 41+0.2
1145 49+ 0.2
982 6.0 + 0.2

Calculate values of In (C/counts min™).
Record your values on a copy of the table. [1]

(c) (i) Plot a graph of InC on the y-axis against x
on the x-axis.

(il) Draw the straight line of best fit and a worst

acceptable straight line on your graph. Both
lines should be clearly labelled.

(iii) Determine the gradient of the line of best
fit. Include the absolute uncertainty in
yOur answer.

(iv) Determine the y-intercept of the line of
best fit. Include the absolute uncertainty
in your answer. [8]

(d) (i) Using your answers to (c)(iii) and (c)(iv),
determine the values of C, and p. Include
appropriate units.

(li) Calculate the percentage uncertainty in
your value of p. [4]

E o

6 A student investigates how the stiffness of a spring

varies with the diameter d of the wire.

A fixed weight is suspended from a spring
and the extension x of the spring is measured.
The experiment is repeated using springs with
different diameters.

Theory suggests that x and d are related by the
equation;

x=kd"
where k and n are constants.

(a) A graph is plotted of lgx on the y-axis against
lgd on the x-axis. Determine expressions for
the gradient and intercept. [1]

(b) Values of d and x are given in the table.

d/mm| x/cm |[Ig{d/mm)| Ig(x/cm)
64 |58+0.2
7.0 |40+02
76 [29+02
82 |21+02
88 |16+02
95 [12+02

Calculate values of 1g(x/cm) and lg (d / mm).
Record your values on a copy of the table.
Include the absolute uncertainties in

lg (x/cm). [2]

(c) (i) Plot a graph of lgx on the y-axis against
lgd on the x-axis. Include error bars for
lg (x/cm).
(if) Draw the straight line of best fit and a worst

acceptable straight line on your graph.

(ili) Determine the gradient of the line of best
fit. Include the absolute uncertainty.

(iv) Determine the y-intercept of the line
of best fit. Include the absolute
uncertainty. [8]

(d) (i) Using your answers to (c)(iii) and (c)(iv),
determine the values of n and k.

(if) Calculate the percentage uncertainty in
your value of n. [4]



28 Exam-style questions

Paper 1 style questions: Multiple 4 A stone is thrown vertically down from the top
of a tall building. It passes one window travellin
choice at a speed of 7.{glms". It then passes a lower §
The actual paper will have 40 multiple choice window travelling at a speed of 11.0ms™".
questions and you will have 1 hour 15 minutes
to answer them. You should aim to answer the “
questions in this sample paper in about 40 minutes. 7.0ms l
The exam paper will include the standard list of
data and formulae, and you will be provided with a h
separate answer sheet.
1 The Reynolds number Re is a dimensionless - Omgll “
constant used in studying the flow of liquids in ’
pipes. It is given by the equation:
_ pvD
T What is the height h between the two windows? [1]
where p is the density of the liquid, v its velocity, A 0.82m B 1.6m
and D the diameter of the pipe. What are the SI C 37m D 73m

base units of p, the viscosity of the liquid? 1 _
ve i ¥ RS e 1] 5 Aforce of 120N is needed to operate a foot pedal

A kgms B kgm's brake, as shown.
C kgms™ D kgm's

2 Forces p and q are represented by two vectors.

Connecting link

e Y
p b < >
What is the force F in the connecting link? [1]
A 120N B 210N
Which dlagl'ﬂ.l'ﬁ shows p—q? C 280N D 480N

6 Alorry of mass 3.0 x 10° kg is moving at a
constant speed of 18 ms™' up a slope. The slope is
inclined at an angle of 10° to the horizontal. The

frictional forces exert a force of 6.0kN down the

slope.
3 In an experiment to measure the resistivity of

; : . . ; 18ms
nichrome using a long thin wire, the following S 2
measurements were made: 6.0kN

- H

length of wire / 99.5+ 0.4cm

diameter of wire d 0.38 £ 0.01 mm -

resistance of wire B 49+10 What is the output power of the lorry’s engine? [1]

h s i leul W A 92.0kW B 108kW
The resistivity p was calculated using the C 101kW D 200kW

. RA . .
equation p =7 where A is the cross-sectional 7 A deep-sea submersible used for exploring the
bottom of the deepest oceans can withstand
pressures up tol50 MPa. What is the maximum

area of the wire.

What is the percentage uncertainty in the value depth the submersible can descend? [1]
of p? 1

P L A 10km B 15km
A 42% B 5.0% C 69% D 7.7% C 20km D 30km

©




8 A loudspeaker connected to a signal generator

emits a single frequency of sound waves. It is
placed above a closed pipe, as shown. The pipe
is filled with water. When a valve is opened the
water level gradually falls.

Tosignal generator
?Loudspea ker

Water

Fixed line

]

A louder sound is first heard when the length {
above a fixed line, drawn on the pipe, is 67.0cm.
A second louder sound is heard when [ =42.0cm.
The speed of sound is 330ms .

What is the frequency of the sound emitted from
the loudspeaker? [1]

A 330Hz B 660Hz
C 990Hz D 1300Hz

An oil drop with charge —q is held stationary in
the uniform electric field between two parallel
plates. The potential difference between the
plates is V and the distance between the two
plates is d.

What is the mass m of the drop? [1]
dg dq 4
A qu B P C qd D

qv
dg

10 The siren of an ambulance emits two notes,

the higher note having a frequency of 960 Hz.
What is the frequency of the higher note heard
by a stationary observer when the ambulance
is moving directly away from him at a speed of
30ms?

(1]
[The speed of sound in air is 330ms™".]

A 870Hz B 880Hz
C 1050Hz D 1060Hz

11 Two cells, with em.f.s of 14V and 10V and

12

13

14

negligible internal resistance, are connected to

three 1( resistors, as shown.

(1]

I 14V 10V I
< |I ] l b
I 1 | L=
10
10 10
1 — +——
What are the values of I, and 1,2
IL./A L/A
A 2 10
B 3 8
C 5 4
D 6 2

A dry cell, with internal resistance r, is connected
to a 50 resistor and an ammeter, as shown.

— (»)
2

The reading on the ammeter is 2.0A. When

the 50 resistor is replaced by a 7 Q resistor, the

reading on the ammeter falls to 1.5A.

What is the value of r?

A 050

214

B 1.00 C

1.50

« Bi is a radioactive isotope of bismuth which

(1]

D 200

decays by B~ -decay into an isotope of polonium.
The polonium decays by a-decay into an isotope

of lead.

What are the proton number and the nucleon
number of the isotope of lead?

proton number

nucleon number

A 81 210

B 81 214

C 82 210

D 82 214
Which elementary particle is not a lepton?
A an electron B a neutrino
C a positron D aquark

(1]

(1]



Exam-style questions @

Paper 2 style questions: AS structured questions

You should aim to complete this sample paper in 1 hour 15 minutes. In the actual exam, the paper will
include the standard list of data and formulae, and there will be spaces in the paper for you to write your
answers.

1 (a) Explain what is meant by work done. [1]

(b) A lorry of total mass 2000kg is travelling along a road with a constant uphill gradient, as shown. The
angle of the road to the horizontal is 6°.

s B

Calculate the component of the weight of the lorry down the slope. [2]

(c) The lorry is travelling at a speed of 20ms™ when the driver applies the brakes. The braking force
resisting the motion of the lorry is 7200N.

(i) Show that the deceleration of the lorry when the brakes are applied is 4.6ms . [2]

(ii) Calculate the distance travelled by the lorry from the moment the brakes are applied until it
comes to rest. [2]

(d) (i) Calculate:

1. the kinetic energy lost by the lorry [1]

2. the work done by the braking force. 1]

(ii) Explain why your answers to (d)(i) 1. and (d)(i) 2. are not the same. 1]

2 (a) (i) State the principle of conservation of momentum. [2]
(ii) Explain what is meant by an elastic collision. [1]

(b) A snooker ball of mass m, travelling at speed u, collides elastically with a second, stationary ball
of equal mass, as shown. The speed of the first ball after the collision is % The speed of the

second ball after the collision is v at an angle @ to the original direction of the first ball.

30°
u
2
QO 0
v
Before the collision After the collision
(i) State expressions for:

1. the kinetic energy of the first ball before the collision [1]
2. the kinetic energy of the first ball after the collision [1]
3. the kinetic energy of the second ball after the collision. 1]
(i) Hence show that v = % (1]
(c) Using the principle of conservation of momentum, determine the value of 8. [3]




3 (a) Define, for a metal wire:

(i) stress (1]
(i) strain [1]
(iii) Young modulus. (1]

(b) An aluminium wire, of diameter 0.28 mm, is fixed at one end and passes over a pulley at the other end.
A mark is made on the wire 1.50 m from the fixed end and a travelling microscope is placed above the
mark, as shown,

Travelling microscope

Mark on wire

=h

Aluminium wire

When a load of 3.5 N is hung on the free end of the wire, the mark moves 1.24 mm.
() Show that the stress on the wire is 5.7 x 10" Pa. (2]
(i} Calculate the Young modulus of aluminium. [3]

(c) A student suggests that a wire of aluminium of the same length, but with diameter 0.14 mm, will
stretch four times as far with the same load.

State whether, or not, the student is correct. Explain your answer. [2]
4 (a) Explain what is meant by the terms:

(i) diffraction [2]

(i} interference. [1]

(b) A student attempts to measure the wavelength of blue light using Young’s double-slits experiment, as
shown. The two slits are 0.60mm apart.

Single slit Double slit

Screen
| ! l Slit spacing = 0.60mm |_- Brightand
| l:'.fi dark fringes
Light source : :
Blue filter 3.0m e
(i) The light emerging from the two slits is coherent. Explain what is meant by coherent. [1]

(iiy Bright and dark fringes are observed on a screen placed 3.0m away from the double slits. Explain
why bright and dark fringes are observed. [2]

(c) The distance between adjacent bright fringes is 2.4 mm. Calculate the wavelength of the blue light. [2]

(d) State what would happen to the fringes if the blue filter is replaced by a red filter. Explain
YOUr answer. [1]

@
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5 (a) (i) State Kirchhoff’s first law. [1]
(ii) Kirchhoff’s first law is linked with the conservation of a physical quantity. State this quantity.  [1]

(b) A 9.0V dry cell, with an internal resistance of 0.5, is connected to a network of resistors, as shown.

Show that the reading on the ammeter is 2.0A. [2]
(c) Calculate:

(i) the current in the 6 resistor (1]

(i) the power dissipated in the 2() resistor [2]

(iii) the potential difference across the terminals of the cell. [2]

6 (a) The radioactive decay of an isotope of cobalt is shown by the nuclear equation:

$9Co — SNi+ X

(i) Explain the meaning of the term isotope. [2]
(ii) State
1. the number of protons in the cobalt nucleus, [1]
2. the number of neutrons in the nickel nucleus. 1]
(b) (i) Xis a type of radiation. State the name of this radiation. [2]
(ii} Describe two properties of this radiation. [2]

(c) The mass of the cobalt (Co) nucleus is greater than the combined mass of the nucleus of nickel (Ni)
and X. Use a conservation law to explain how this is possible. [3]




Paper 3 style questions: Advanced practical skills

The actual exam will last for 2 hours, but in this sample paper you are not expected to complete the practical
work; you are provided with specimen results. You should aim to complete this sample paper in 1 hour.

1 Part (a) of this question asks candidates to set up the electrical circuit shown. The movable lead is first
placed approximately half-way along the resistance wire. The potential difference V across the fixed resistor
and the value of x are recorded. The experiment is then repeated for different values of x — a set of specimen
results is provided for you.

Crocadile clips

Metre rule
Z,

|

Resistance wire

(b) Change x and repeat the experiment until you have six sets of values of x and V.

1
Record your results in a table. Include values of 7 in your table.

x/em v/v % /v
5.1 | 43 0.1
b5 |24 0.20l
3.1 101 0.990
5% 0.1 115
123 020 1.25
1.3 0712 1.9
(c) (i) Using graph paper, plot a graph of % on the y-axis against x on the x-axis. [3]
(ii) Draw the straight line of best fit. [1]
(iii) Determine the gradient and y-intercept of this line. [2]

(d) It is suggested that the quantities % and x are related by the equation:

1
—=DPx+
v Q
where P and Q are constants.
Using your answers in (c)(iii), determine the values of P and Q.
Give appropriate units. [2]

2 In this experiment, you will investigate the deflection of a thin wooden beam when a load is suspended
from it, Specimen results are provided when needed.

(@) (i) Set up the apparatus as shown.

G-clamp

X

Wooden blocks \
Thin wooden beam

Adjust the beam so that the length L is approximately 90cm.
(ii) Measure and record L. L=_%Tcm



(b) (i) Suspend the mass M from the beam, as shown below.

Mass M
Adjust the position of M so that x is approximately 50 cm.
(ii) Record x. x= 507'““
(c) (i) Calculate the value of P, where:
P=x"(3L-x) (1]
(i} Justify the number of significant figures that you have given for your value of P. [1]
(d) (i) Measure and record the deflection d of the end of the beam.
d=.mm
(i) Estimate the percentage uncertainty in your value of d. [1]

(e) Without changing L, change the position of the mass M so that x is approximately 80cm.
Repeat (b) (i), (¢)(i) and (d) (i). x=.1Mbem

(f) Itis suggested that the relationship between d and P is

d=kP
where k is a constant.
(i) Using your data, calculate two values of k. [1]
(i) Explain whether your results in (f)(i) support the suggested relationship. [1]
(iii) Using your first value of k, estimate the deflection of the beam when x = 65 cm. [1]
(g) (i) Describe four sources of uncertainty or limitations of the procedure for this experiment. [4]

(ii} Describe four improvements that could be made to this experiment. You may suggest the use
of other apparatus or different procedures. [4]




Paper 4 style questions: A Level structured questions

You should aim to complete this sample paper in 2 hours. In the actual exam, the paper will include the
standard list of data and formulae, and there will be spaces in the paper for you to write your answers.

1 (a) State Newton's law of gravitation. [2]
(b) A satellite orbits the Earth at a constant speed, at a height of 220km above the Earth’s surface.

A student states that ‘the satellite is travelling at constant speed, so the net force on the satellite must
be zero’. Explain why the student is incorrect. [2]

(c) The mass of the satellite is 2.5 x 10°kg. The mass of the Earth is 6.0 x 107 kg. The radius of the
Earth is 6570 km.

Show that:
(i) the gravitational force acting on the satellite is 2.2 x 10°N [2]
(i) the centripetal acceleration of the satellite is 8.7 ms ™. [1]

(d) Determine:

(i) the speed of the satellite [2]

(ii) the time taken for one complete orbit of the Earth. [1]

(e) Suggest one use of this type of satellite. [1]

2 (a) Define simple harmonic motion. [2]

(b) A torsion pendulum consists of a long, thin metal wire supporting a horizontal bar of length 6.0cm, as
shown. The bar is twisted in a horizontal plane through an angle of 20° and released. The bar rotates
back and forth with simple harmonic motion. The period T of the oscillation is 1.2s.

(i) Calculate the frequency of the oscillation. [2]
(ii) Show that the angular frequency of the oscillation is 5.2rads ™. [1]
(ili) Determine the position of the bar 5.7s after it is released. [1]
(c) Calculate the maximum speed of one end of the bar. Assume the oscillation is undamped. [3]

(d) The graph shows the variation of the kinetic energy of the bar and wire over half a cycle.

On a copy of the axes, sketch:

(i) the variation of potential energy with time over % a cycle [1]
(ii) the variation of total energy of the bar and wire with time over % a cycle. [1]
&
é Kinetic energy

0 72
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3 (a) Define capacitance. [1]
(b) A student says that ‘capacitors are for storing charge’ Explain why the student is incorrect. [2]

(c) Three parallel-plate capacitors are connected to a 12V d.c. supply, as shown.

12.0v
il
1]
20uF
30pF
40uF
(i) Calculate the combined capacitance of the three capacitors. [2]
(ii) Show that the potential difference across the 301F capacitor is 8.0V. [2]
(ili) Determine the charge on one plate of the 20uF capacitor. [1]
(d) (i) Calculate the energy stored in the 40 pF capacitor. [2]
(ii) Describe how energy is stored in a capacitor. [1]
(iii) Suggest one use of capacitors as energy storage devices. [1]

4 (a) An experiment is carried out to calibrate a negative temperature coefficient thermistor as a thermometer.
What is meant by the term negative temperature coefficient? [1]

(b) The circuit used is shown.

out

() What is the name given to this type of circuit? [1]
(ii) At 30°C the output p.d. V_ is 4V. Show that the resistance of the thermistor at 30°C is 40kQ2.  [2]
(c) The calibration curve for the thermistor is shown.
6 -
5o
4 -

Va L.t"I v
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() Explain what is meant by calibration curve. [1]
(ii) Determine the output p.d. when the temperature is 70°C. [2]

(iii) Determine the temperature of the thermistor when V_ is 0.8 V. [1]

(d) Suggest a reason why the thermistor is a less reliable thermometer when used at high temperatures. [1]




5 (a) (i) State Faraday's law. (1]
(ii) Define magnetic flux. (2]

(b) A metal bar of length [is moving at a constant speed v along a frictionless wire loop. The bar is pulled
by a weight W connected to the bar by a string passing over a frictionless pulley, as shown. A uniform
magnetic field B acts vertically downwards.

Uniform magnetic field B

(i) State the area ‘swept out” by the bar in one second. [1]
(ii) Hence show that the e.m.f. E induced across the ends of the bar is given by the equation E= Blv. [1]

(c) The electrical resistance of the bar is R ohms. Determine:

(i) the current I in the bar [1]
(ii) the direction of the current [1]
(iii) the magnitude and direction of the magnetic force F on the bar. [2]

(d) State what would happen to the direction of the magnetic force if the direction of the magnetic
field was reversed. [1]

(3]

(e) Show that the speed v of the bar is given by the equation: v = BF

Paper 5 style questions: Planning, analysis, and evaluation

The actual exam will last for 1 hour 15 minutes; you should aim to complete this sample paper in the
same time. There will be spaces in the exam paper for you to write your answers.

1 A student is investigating the stiffness of metal springs.
L@
It is suggested that the spring stiffness k of the spring is related to the diameter d of the coils of the spring
by the equation:
S~
where C is a constant.

Design a laboratory experiment to test the relationship between k and d. Explain how your results could be
used to determine the value of C. You should draw a diagram showing the arrangement of your equipment.
In your account you should pay particular attention to:

e the procedure to be followed

e the measurements to be taken

e the control of variables

e the analysis of the data

e any safety precautions to be taken. [15]



Exam-style questions |~ :

2 A student is investigating how the time taken for a water tank to empty is related to the initial height i of

water in the tank, as shown.

Area A~

T Ty

M~

4

Theory suggests that i and t are related by the equation:

t=—

thl’i
8

\_/:B\Areaa

The student records the time ¢ taken for the tank to empty from different heights.

where A is the cross-sectional area of the tank and a is the area of the water outlet. g is the acceleration of

free fall and n is a constant.

(@) A graph is plotted of 1g t on the y-axis against 1g h on the x-axis.

Determine expressions for the gradient and y-intercept.

(b) Values of h and t are given in the table.

h/cm t/s Ig (h/cm) Ig(t/s)
75.4 98 + 2
63.6 86 + 2
51.5 74 +2
46.9 702
37.1 59+2
25.7 45 + 2

Calculate and record values of lg (h/cm) and lg (t/s).

Include the absolute uncertainties in lg (t/s).
(c) (i) On graph paper, plot a graph of 1g (t/s) against Ig (h/cm). Include error bars for 1g (t/s).

(ii) Draw the straight line of best fit and a worst acceptable straight line on your graph.

Both lines should be clearly labelled.

(iii) Determine the gradient of the line of best fit. Include the absolute uncertainty in your answer.

(2]

(3]
(2]

(2]
(2]

(iv) Determine the y-intercept of the line of best fit. Include the absolute uncertainty in your answer. [2]

(d) Using your answers to (a), (c](iii) and (c)(iv), determine the values of n and A :

Take g=981cms™

a

(2]



Appendix: Maths skills for

AS and A Level Physics

Signs and symbols
You will need to be familiar with the meanings of the symbols in Table A.1.
¥ Table A.1 Symbols

Symbol | Meaning | Symbol Meaning Symbol Meaning
< is less >> is much 53] the sum of
than greater than
> is more = is Ax asmall
than approximately amount of
equal to or a change
in
< is less / is divided by ax an
than or infinitesimal
equal to change in
= is greater oe is proportional v square root
than or to of
equal to
<< ismuch | <x> or x | mean value of
less than
Standard form (scientific) notation £ )

Examples:
Physics is often concemned with very large and very small numbers (e.g.,

. . charge on an electron =
the mass of the Earth or the diameter of a nucleus). For convenience, these 9

1.6x107"°C
numbers are usually written in standard form (also called scientific notation).
: ; . . . diameter of Sun =
A number written in standard form consists of a number with one digit only 139%10°m
before the decimal point, multiplied by a power of 10. - ~

An alternative way of recording very large or very small values is to use
prefixes such as m (milli}, p (pico), M (mega) and G (giga).

A full list of prefixes and
Perimeters, areas, and volumes their meanings is given
in Table 1.4 in Unit 1
Physical quantities and
units, p.4.

Make sure you know how to calculate the quantities shown in Figure A.1.

b
area = %bh circumference = 2ar surface area = 471~
area =’ volume = %—ﬁﬁ
area A
a a
“____r__-r
- »
a
volume = Al
N =:'rr2£foracylinderwith volume = xyz
area='y4 circular cross-section

A Figure A.1 Calculating perimeters, areas, and volumes

&




Appendix: Maths skills for AS and A Level Physics

Trigonometry

Measuring angles
Angles can be measured in degrees (°) or radians (rad).

360° is equivalent to 2n rad (see Figure A.2), and so to convert an angle in

degrees to radians:

2T
f(in rad) = 6 (in degrees) x =l

360° or 2x radians

(&)

360
O(in rad) = i
r
Right-angled triangles only
Sin, cos, and tan
For all right-angled triangles (see Figure A.3):
Gind = opposite  _ b _
hypotenuse a ‘ <
cosp = 2djacent ¢ SOH Sin = Opp/Hyp
Nypotenlee @ CAH Cos = Adj/Hyp
o opposite _ b » sin@ TOA Tan = Ooo/Ad
adjacent ¢ cos@ LS e
Pythagoras’ theorem
For all right-angled triangles (see Figure A.3):
a'=b+c = a=b' +c
All triangles
For any triangle (see Figure A.4):
cos rule: a’=b"+c - 2bccosA
. a b c
sin rule: = =
sinA  sinB  sinC
A+B+C=180°
Trigonometric identities
These statements are true for all values of &
5in (90° - 6) = cos @ 5in (90° + 6) = cos @
cos (90° — @) =sin@ cos (90° + @) = —sin O
5in(180° — @) =sin@ sin (180° + @) = —sin @
cos (180° — @) = —cos 6 cos(180° + 8) = —cos 6
sin2@ = 2sinfcos@ cos28 =cos’ 6 —sin’@
=2co0s° 8 -1

cos’ @ +sin’@=1 =1-2sin"@

-
A Figure A.2 Converting
degrees to radians

c

A Figure A3 Right-angled
triangle

A Figure A.4 Any triangle



Small angles

For small angles, with # measured in radians:
6 =sinf@=tan@ cos@=1.
Similar triangles

A [#) A c

A Figure A.5 Similar triangles

Two triangles are similar if one is a simple magnification of the other (see

Figure A.5). The three angles, A, B and C will be the same in both triangles.

Vectors

Vector quantities, such as force and velocity, have both magnitude and
direction, so can be represented by arrows, the length of the arrow
representing the magnitude of the quantity and the direction of the arrow
indicating the direction of the quantity.

Adding vectors

Two vectors can be added by sliding one vector so that the arrowhead of
one of the vectors coincides with the start of the other. The resultant vector
is represented by a line from the start of one vector to the arrowhead of
the other (see Figure A.6a). Figure A.6b shows how two vectors can be
subtracted.

Resolving vectors
It is often useful to be able to resolve vectors - to split them into two
perpendicular components: vsin @ and v cos 8 (see Figure A.7).

Wsing
parallel to
the slope

Wcosg
perpendicular
to the slope
vsing

“-/
Y

VoS @

A Figure A.7 Resolving vectors into two perpendicular components

The resultant of the two perpendicular components can be found using
Pythagoras” theorem:

v =v[(vcos 6)° + (vsin8)?] = V[’ (cos’ 8+ sin’B)] =W’ =v

You can test this by
switching your calculator
to radian mode and then
calculating sin, cos, and
tan of 0.1 rad, 0.01 rad,

kand 0.001 rads.

a Adding

.

L

b Subtracting

A Figure A.6 Adding and
subtracting vectors



Appendix: Maths skills for AS and A Level Physics

Graphs

Direct proportionality

Some important relationships in physics, such as Hooke’s law and Ohm's
law, involve direct proportionalitv. If one quantity is directly proportional
to the other, then doubling one will double the other. A graph of one
quantity plotted against the other will be a straight line through the origin
(see Figure A.8).

The symbol = means ‘proportional to’,

Linear relationships
Linear relationships take the form:

o L R
y=mx+c 005 115 2 25 3 %

where m is the gradient of the line and ¢ is the intercept of the line on the A Figure A.8 Direct

y axis (see Figure A.9). proportionality

YA

n fi
101

0]

L 1

0 02040608 1 12141618 2 222426 *

A Figure A.9 Linear relationship

Linear relationships

Figure A.10 gives examples of some non-linear graphs that you may
encounter.

2.5 g
B
154t
i i
054

L

354
kL
2549
24
154
14
05+

154 !

13 ——— T
005 115 228 3 35 *

A Figure A.10 Important non-linear graphs




Tangents, gradients, and areas
Tangents and gradient

It is often informative to find the gradient of a graph at a particular
point (e.g., if a graph of the velocity of an object against time is
plotted, its gradient at any time is the acceleration at that moment).

When drawing a tangent, the tangent line should just touch but not
‘cut’ the curved line at one point and the ‘angle’ between the tangent

and the curved line should be about the same on either side (see
Figure A.11).

Ay

To find the gradient draw a large triangle and then calculate ==

Ax”
Area under a graph
It’s also sometimes useful to find the area underneath a graph
between two points (e.g., for a graph of the velocity of an object

against time, the area under the graph between two times is the
displacement of the object in that time) (see Figure A.12).

To find the area under a graph between two points, either:

* count the number of squares underneath the graph, counting part
squares that are more than half a square as ‘1’ and squares which
are less than half a square as ‘0, or

* divide the area up into a series of rectangles and triangles - the
smaller the squares and triangles, the more accurate the value.

Logarithms

If y = a’ then x = log,y; that’s to say “x is the logarithm, to
base a, of v

Common logarithms (logs to base 10)

The most commonly used logarithms are common logarithms to base
10; written as log,, or lg. For example:

1000 = 10° 0 log,,1000 = 3

0.01 = 107 50 lg 0.01 = -2

28.7 = 10"** s0 lg 28.7 = 1.458

If p =107, then x = Igp; similarly if g =10, then y = lgq so
pg=10*x 10" = 10*"’
50 Igpg=x+y=Igp +18q

It can similarly be shown that lg[g] =lgp - lgq

4 4 eradient= % =3.04

=38

4.8-10

1.60-0.35=1.25

____________________

0

T T T T T T T 1
0 02040608 1 121416 18

A Figure A_.11 Calculating the tangent
at a point

107
9 -
8 |
7 =g
6 ]
-
5 8
=5
4 ]
]
3 -
i
24 E
H
14 8
g8

0 PR R T S S
0 02040608 1 12141618

A Figure A_.12 Calculating the area
under a graph

log(a xb)=loga + logb
Iog(%): loga - logb

Logarithms are particularly useful when testing if the relationship between
two variables, say x and y, is in the form of a power law y = Ax" where A and

n are constants. ‘Taking logs’ of both sides of this equation:
logy = log (Ax") = log A + logx"
logy = nlogx + log A

Compare this equation
with y = mx + ¢, the
equation for a straight line.




Appendix: Maths skills for AS and A Level Physics

If the relationship is correct, the graph of logy on the y-axis against logx

on the x-axis (a log-log graph) should be a straight line, with the gradient
equal to nn and the y-intercept equal to logA. Note that the base of the
logarithms has not been specified - the method would work using any base
of logarithms - though it is usual to use base 10 logs.

Natural logarithms (logarithms to base e)

The of a number is its logarithm to base e, where ¢

is the irrational constant 2.71828... Many physics phenomena, such as
radioactive decay, the absorption of y-rays by lead, and the discharge of a
capacitor through a resistor, are described by the mathematical function e,
where k is a constant which can be negative (exponential decay) or positive
(exponential growth). Logarithms to base e are usually written In.

Natural logarithms are particularly useful when testing for an exponential
relationship between two variables e.g., vy = Ae™, where x and y are the two
variables, and A and k are constants. ‘Taking natural logs’ of this equation:

Iny=In(Ae™) =InA + Ine”
Iny=kx+InA

If the relationship between x and y is exponential, then the graph of Iny on
the y-axis against x on the x-axis (a log-linear graph) should be a straight
line, with gradient k and y-intercept InA.

Summary

Table A.2 summarises which graph to use for which relationship.

¥ Table A.2 Which graph?

Relationship Graph to plot Gradient and

y-intercept
p=mq+c p on y-axis, g on x-axis m is the gradient, c is
the y-intercept
p=Aq" logp on y-axis, logqg on x-axis | n is the gradient, logA is
the y-intercept
p =Ae™ Inp on y-axis, g on x-axis B is the gradient, InA is

Compare this equation
with y = mx + ¢, the
equation for a straight line.

Logarithms are also
useful when describing
guantities with values
which range over several
orders of magnitude, such
as noise levels, electronic
amplification and
earthquakes (the Richter
scale is an example of a

the y-intercept

Uncertainties and significant figures

Measurements taken during an experiment may vary when the experiment is
repeated. Suppose, for example, five measurements of the time ¢ taken for an
object to fall a fixed distance through a viscous liquid are measured as 7.1 s,
7.4s,6.8s, 6.7s, and 7.5s, The average time is 7.1s with a range (largest
value - smallest value) of 0.8s. The value of t can be expressed as 7.1 + 0.4s.

As well as random variations, uncertainties arise both from the limitations

of the instrument being used (both its accuracy and its precision) and the
difficulty in judging the measurement (e.g., deciding when an oscillation

of a pendulum is completed). If a metre rule is calibrated in millimetres, it

is tempting to judge the uncertainty in a measurement made with the rule

as = 1mm, but if it is used to measure the length of a resistance wire, for
example, there may be kinks in the wire. The actual overall uncertainty in the
measurement may be 2-5 mm.

logarithmic scale).

If a calculation involves a
number of stages, or uses
several different measured
values, do not ‘round’ any
intermediate values in the
calculation. Instead, only

round the final answer.
L

-




When calculating a quantity using measured values, the calculated quantity
also has an uncertainty. For example, the resistance of a resistance wire is
found by measuring the current I through the wire and the p.d. V across it.

1=015%£0.01A V=154+0.02V

V154

The nominal resistance of the wire, R = — = — =10.2667 (2
V .
largest value of R = /== = Lol 11.1Q
1, 0.4
v 1.52
1 lueof R=—10 = —"— =950
smallest value o I_ 016

The large range of possible values of R (between 9.50 and 11.1Q) means the
resistance cannot be known as precisely as 10.2667 (1! Instead, the value of R
should be given as:

R=103 £0.80Q

Calculating percentage uncertainties

If the absolute uncertainty in a measurement of x is Ax, then the percentage
uncertainty is:

percentage uncertainty = _i_x X 100%

For example, the inside diameter d of a glass tube is measured using Vernier
calipers. In this case the absolute uncertainty is just the precision of the
calipers (+ 0.1mm), as the tube is likely to have the same diameter all the
way along its length.

d =14.3mm

The percentage uncertainty = A?d x 100% = % % 100 = 0.7%

EEEm

As a general rule, express
a calculated value to

the same number of
significant figures as,

or one more than, the
significant figures of the
least precise value used
in the calculation.

In this example, the
current I is expressed

to only two significant
figures, and so the
resistance R should be
expressed to two or three

significant figures.

and 14.34mm.

{d lies between 14.25mm ]




0

absolute (thermodynamic) scale 78

absolute zero 78

absorption spectra 193
absorption spectrum 193

acceleration 15

accuracy 12, 219

acoustic impedance 103

activity 212

air columns 108-9

alpha particles 206

alpha radiation 206, 207-8

alpha-particle scattering 205

alternating currents (a.c.) 181, 186-8
alternating currents and voltages 181-2
rectification 185
wransformers 183-4

amplitude 90,99

amplitude modulation (AM) 115, 115-16
comparing FM and AM transmission 117

analogue meters 9

analogue signals 115
amplitude modulation (AM) 115-16
comparing FM and AM transmission 117
frequency modulation (FM) 116-17

analogue-to-digital converters (ADCs) 118

angles 9, 218

angular displacement 41

angular frequency 90

angular velocity 51

anomalies 12, 222

antinodes 101, 107, 108

antiparticles 207

antiphase 91, 156

atoms 193
developing the nuclear model of the

atom 205
nucleon number, proton number and
isotopes 206-7

attenuation 121, 197

average speed 15

Avogadro’s constant 5, 70

Avogadro’s number 70

o

band theory 194
insulators 194
metals 194
semiconductors 194
bandwidth 116, 154
beta radiation 206, 207-8
beta decay 207
quarks and beta decay 209
binding energy 210
boiling point 82
bridge rectifiers 185
Brownian motion 70
buoyancy 34-5

o

calculations 219
calibration curves 11
calorimeters 84
capacitance 131, 136-7
energy stored in capacitors 134
parallel-plate capacitors 131-4
uses of capacitors 134-5
capacitors 131, 131-2
calculating energy stored in
capacitors 134
capacitors in parallel 1334

capacitors in series 132-3
uses 134-5
cathode-ray oscilloscopes 10, 89
time-base 10
y-gain 10
Celsius scale 78
centre of gravity 36
centripetal acceleration 52
centripetal force 52-3
charge 138, 138-9, 169
charge density 194
Kirchhoff's first law 146-7
circular motion 51, 54-5
angular velocity 51
centripetal acceleration 52
centripetal force 52-3
radians and angular displacement 51
coaxial cables 119
coherence 110, 111
collimation 205
collisions 28-9
collisions in two dimensions 29-30
communications 115, 122-3
analogue signals 115-17
attenuation 121
digital signals 118-19
transmitting information 119-21
comparators 155
compressive forces 62
conduction band 194
conservation of charge 146-7
conservation of energy 86
Kirchhoff’s second law 147
principle of conservation of energy 43
conservation of linear momentum 27-30
constant acceleration 18
constant-volume gas thermometers 77
constructive interference 106
contrast 197
contrast medium 197
cooling by evaporation 82-3
corkscrew rule 161
Coulomb’s law 126
coulombs 138, 139
couples 37
critically damped oscillators 94
CT (computed tomography) scanning 198
constructing an image 199-200
current 138
current balance 163
current-length 169
current of electricity 138, 143-4
current and charge 138-9
potential difference and the volt 139-40
resistance and the ohm 140-1
resistivity 141
sensing devices 142

direct current circuits (d.c.) 145, 152-3
Kirchhoff's laws 146-9
potential dividers 149-51
practical circuits 145-6

damping 94

de Broglie's equation 191, 191-2

decay constant 212

decibels 121

deformation of solids 62, 67-8
elastic and plastic deformation 66
force and solid materials 62
permanent deformation 64
stress and strain 64
stretching materials 64

stretching springs 62-3
Young modulus 65-6
density 39
dependent variables 216, 229
destructive interference 106
diffraction 110
diffraction gratings 112
digital meters 9
digital signals 118
advantages of digital transmission
118-19
digital-to-analogue converters
(DACs) 118
direct proportionality 253
direction 34
displacement 15, 51, 89
displacement nodes and
antinodes 101, 108
displacement of a particle 99
displacement-time graphs 15-16, 90
Doppler effect 101, 101-2
Dappler shift 102
downlinks 120
driver cells 150
dry cells 150
dynamics 24, 32-3
conservation of linear momentum 27-30
dynamic friction force 35
momentum and Newton's laws of
motion 24-6
non-uniform motion 31

o

efficiency 46, 46-7
elasticity 62
elastic collisions 28
elastic deformation 66
elastic limit 63, 64
electric current 138, 138-9, 1434
potential difference and the volt 139-40
resistance and the ohm 140-1
resistivity 141
sensing devices 142
electric fields 124, 129-30
change in potential energy in an electric
field 47
electric field between two parallel
plates 125
electric field strength 34, 124, 126
electric field strength between point
charges 126
electric field strength of a point charge
126-7
electric potential 127, 127-8
motion of charged particles in a uniform
electric field 126
electric potential 127
comparing electrical and gravitational
fields 128
electric field and potential gradient 128
electrical quantities 9
electromagnetic induction 173, 173-4,
178-80
Faraday’s law 175
flux cutting, flux linking and induced
em.f 177
Lenz's law 176
magnetic flux and flux linkage 175,
175-6
electromagnetic spectrum 100
electromotive force (e.m.f.) 145, 145-6
flux cutting, flux linking and induced

em.f. 177



electronics 154, 158-9
electronic sensors 151
ideal operational amplifiers 154
operational amplifier circuits 155-6
output devices 157
electrons 206
electron energy levels 192-3
photoelectrons 189
emission spectra 193
emission line spectrum 193
energy 43, 49-50
change in potential energy in a
gravitational field 47
change in potential energy in an electric
field 47
conservation of energy 86
efficiency 46-7
electron energy levels 192-3
energy gap 194
energy released in nuclear fission 211
energy released in nuclear fusion 211-12
energy stored in capacitors 134
gravitational potential energy 44
internal energy of a gas 71
internal energy of a system 86
kinetic energy of a gas molecule 72
principle of conservation of energy 43
simple harmonic motion (SHM) and
energy 93-4
springs 63
types of energy 44-5
equations of motion 18
using the equations of motion 19
equilibrium 37, 37-8
equilibrium position 89
equilibrium under three forces 38-9
errors 11
escape velocity 59
excited state 192
external potential difference 145, 145-6

Faraday’s law 175, 176
farads 131
filament lamps 141
first harmonic 107
first law of thermodynamics 86
Fleming's left-hand rule 162
forbidden band 194
forces 34, 41-2
centre of gravity 36
deformation of solids 62
electrical forces 34
equilibrium of forces 37-9
frictional and viscous forces 35-6
gravitational forces 34
urning effects of forces 36-7
upthrust (buoyancy) forces 34-5
forward-bias 141
free fall and air resistance 31
frequency 90, 95, 99, 181, 189, 189-90
frequency modulation (FM) 116, 116-17
comparing FM and AM transmission 117
friction 35, 35-6
full-wave rectification 185
fundamental mode of vibration 107
fundamental particles 208, 208-9
quarks and beta decay 209

gamma radiation 207-8
gases 40, 46, 71, 72, 81
see ideal gases
geostationary satellites 58, 120
gradient 15
graphs 4, 253-4
displacement-time graphs 15-16

drawing graphs 221-2

using graphs to analyse simple harmonic

motion (SHM) 93
velocity-time graphs 17
gravitational fields 56, 60-1
comparing electrical and gravitational
fields 128
geostationary satellites 58
gravitational field and gravitational
potential difference 59
gravitational field strength 34, 57
gravitational potential 58, 58-9
gravitational potential energy 44
Newton’s law of gravitation 56
orbital motion 57-8
gravity 19-20
centre of gravity 36
ground state 192

o

hadrons 209
hali-life 213
half-thickness 197
half-wave rectification 185
Hall effect 167, 167-8

Hall voltage 167

using a Hall probe 168
hardness 196
heat 75

see specific heat capacity; specific

latent heat

homogeneity 3
Hooke's law 63

Hooke's law limit 64

@

I-V characteristics 140-1
ideal gases 69, 69-70, 73-4
Brownian motion 70
equation of state for an ideal gas 69
internal energy of a gas 71
kinetic energy of a gas molecule 72
kinetic theory of gases 71-2
ideal operational amplifiers 154
in phase 106
independent variables 216, 229
inelastic collisions 29
inertia 24
insulators 194
intensity 100
intensity reflection coefficient 103
X-rays 196
interference 106
two-source interference 110-12
internal energy of a system 86
internal resistance 145, 145-6
inverting amplifiers 155-6
inverting inputs 154
ionisation 193
isotopes 206

o

key points
alternating currents 181
capacitance 131
circular motion 51
communications 115
current of electricity 138
direct current circuits (d.c.) 145
deformation of solids 62
dynamics 24
electric fields 124
electromagnetic induction 173
electronics 154
forces, density and pressure 34
gravitational fields 56

ideal gases 69
kinematics 15
magnetic fields 160
measurements 8
oscillations 89
particle and nuclear physics 204
physical quantities and units 1
quantum physics 189
superposition 106
temperature 75
thermal properties of materials 81
waves 98
work, energy and power 43
kinematics 15, 22-3
describing motion 15
equations of motion 18-19
motion under gravity 19-20
projectiles 20-1
uniform circular motion 51
using graphs 15-17
kinetic energy 45
kinetic theory of gases 70-2
Kirchhoff's laws 146-9
first law (conservation of charge) 146-7
second law (conservation of
energy) 147

(L]

length 8-9
Lenz’s law 176
leptons 208
light 191
matter waves 191-2
light sensors 151
light-dependent resistors (LDRs) 142
limiting friction force 35
liquid-in-glass thermometers 76, 77
liquids 40, 81, 84, 85
logarithms 254
common logarithms 254, 254-5
natural logarithms 255
longitudinal (compression) waves 99

magnetic fields 160, 160-1, 171-2
comparing the forces in different types
of field 169
deflecting charged particles in a
magnetic field 165
force on a charged particle moving in a
magnetic field 164
force on a current-carrying conductor in
a magnetic field 161-3
Hall effect 167-8
magnetic field strength 162, 173
measuring e/m, 166
measuring magnetic field strength using
a current balance 163
nuclear magnetic resonance imaging
(NMRI) 170
separating particles with different
velocities 167
magnetic flux 175
flux cutting, flux linking and induced
ean.f 177
magnetic flux density 161, 162,
173,175
magnetic flux linkage 175
magnitude 34
mass 9, 169
mass and inertia 24
mass and weight 26
molar mass 5
mass defect 206, 210
mass excess 211
materials 64



maths skills 250
graphs 253-4
logarithms 254-5
trigonometry 251-2
uncertainties and significant figures
255-6
vectors 252
maxima 112
maximum (peak) value 181
maximum displacement 89
measurements 8, 13-14
angles 9, 218
calibration curves 11
electrical quantities 9
errors 11
length 8-9, 217-18
mass and weight 9
measuring the wavelength of sound
using stationary waves 101
precision and accuracy 12, 219
repeating measurements 220
temperature 9, 75-7
time 10, 218
uncertainty 12, 219
using a calibrated Hall probe 10
volume 9
melting point 82
metal resistance thermometers 76, 77
metals 83, 194
metre rules 217
micrometers 9, 218
microwaves 109, 120
moles 5, 70
molar mass 5
mole (mol) 5
moments 36
principle of moments 36, 36-7
momentum 25
conservation of linear momentum
27-30
motion 15
Brownian motion 70
equations of motion 18-19
motion in a circle 51-5
motion of charged particles in a uniform
electric field 126
motion sensors 90
motion under gravity 19-20
Newton's laws of motion 24-6
non-uniform motion 31
orbital motion 57-8
MRI scans 170

o

natural frequency 925
negative feedback 155
negative temperature coefficient
thermistors 142
neutrons 206
Newton’s law of gravitation 56
Newton's laws of motion 24-6
first law 24-5
second law 25
third law 26
nodes 101, 107, 108
non-inverting amplifiers 156
non-inverting inputs 154
nuclear fission 210, 210-11
energy released in nuclear
fission 211
nuclear fusion 211
energy released in nuclear
fusion 211-12
nuclear magnetic resonance imaging
(NMRI) 170
nucleon number 206
number density 138

Ohm’s law 140
ohmic resistors 140
ohms 140
open-loop gain 154
operational amplifiers 154
inverting amplifiers 155-6
non-inverting amplifiers 156
op-amp as a comparator 155
optic fibres 120
orbital motion 57-8
oscillations 89, 96-7
critical damping 94
damped oscillations 94
displacement-time graphs 90
forced oscillations and resonance 95
free oscillations 90
investigating the motion of an
oscillator 89
key terms 90
phase differences 91
simple harmonic motion (SHM) 91,
91-4
using a motion sensor 90
output devices 157
calibrating output devices 157
operating relays 157
overdamped oscillators 94

Paper 1 questions 239-40
Paper 2 questions 241-3
Paper 3 216
good practice 220-2
identifying improvements 224-5
identifying uncertainties 222-3
key skills 217-19
marking and assessment 216-17
Question 1 216
Question 2 216, 222-8
questions 244-5
testing hypotheses, sources of
uncertainty and limitations of the
procedure 223-4
Paper 4 questions 246-8
Paper 5 229-32
Question 2 232-8
questions 249
parallel-plate capacitors 131-4
particle and nuclear physics 204, 214-15
atoms, nuclei, and radiation 205-8
fundamental particles 208-9
mass defect, mass excess, and binding
energy 209-12
radioactive decay 212-13
path difference 110, 111
percentage uncertainty 12, 219
calculating percentage uncertainties 256
period 90,99, 181
phase differences 21, 100
photoelectric effect 189, 189-91
photons 190
physical quantities 1
making estimates 1-2
piezo-electric transducers 102, 142
pipes 108-9
closed pipe 108
open pipe 108
plasticity 62
plastic deformation 66
point charges 126
electric field strength of a point charge
126-7
polar-orbiting satellites 121
positive charge 34, 124
potential difference 139, 139-40

potential divider circuits 142, 149,
149-50
electronic sensors 151
potentiometers 150, 150-1
potential energy 43, 44-5
change in potential energy in a
gravitational field 47
change in potential energy in an electric
field 47
potentiometers 150, 150-1
power 48, 49-50
electric current 139
precession 170
precision 12, 219
repeatable measurements 12
pressure 39, 39-40
pressure in liquids and gases 40
pressure nodes and antinodes 101
principle of conservation of energy 43
principle of moments 36, 36-7
principle of superposition 106
progressive waves 98, 98-9
projectiles 20-1
protons 206
proton number 206
pulse amplitude modulation
(PAM) 118
pulse code modulation (PCM) 118

quantisation 138, 192
quantities 1-7
quantum physics 189, 201-3
band theory 194
electron energy levels 192-3
emission spectra and absorption
spectra 193
light - particle or wave? 191-2
photoelectric effect 189-91
quantums 190
X-rays 195-200
quarks 208
quarks and beta decay 209

radians 51
radio waves 119
sky waves 119-20
space waves 119-20
surface waves 119-20
radioactive decay 206, 212-13
alpha decay 206
beta decay 207
gamma decay 207
random errors 11
raw data 216
recording results 220-1
rectification 185
regenerators 121
relays 157
repeaters 121
resistance 140
filament lamps 141
1-V characteristics 140-1
ohmic resistors 140
semiconductor diodes 141
resistivity 141
resistors 89, 140, 142
resistors in parallel 148-9
resistors in series 148
resonance 95
resultant force 24
reverse-bias 141
root-mean-square (r.m.s.)
values 182
rulers 8




resultant vector 5
vector quantities 4,52
velocity 15, 35, 51, 59
separating particles with different
velocities 167
velocity-time graphs 17

tensile forces 62

terminal velocity 35

teslas 161, 162

thermal properties of materials 81, 87-8
cooling by evaporation 82-3
finding the specific heat capacity of a

satellite communications 120
geostationary satellites 120
polar-orbiting satellites 121

saturation voltage 155

scalars 15 liquid using a calorimeter 84 vernier calipers 8, 217
scalar quantity 4 finding the specific heat capacity of a viscous (drag) forces 35, 35-6
scales 8, 78 metal 83 viscosity 35

finding the specific latent fusion of a
solid 84-5

finding the specific latent heat of
vaporisation of a liquid 85

internal energy and the first law of

voltage 139-40
alternating currents and voltages 181-2
voltage gain 155, 155-6

volume 9

voxels 199, 199-200

second order (second harmonic) 107

semiconductors 139, 194
semiconductor diodes 141

sensing devices 142, 151

sharpness 196, 196-7

SIunits 2 thermodynamics 86
expressing derived units in terms of base melting and boiling 82 @
units 2-3 solids, liquids and gases 81

thermistors 76, 77, 142

thermocouples 76, 76-7

thermometers 75-7
comparing different types of

watts 140
wave-particle duality 191
waves 98, 104-5

displacement of a particle 99

using prefixes 3-4

using SI base units to check equations 3
significant figures 219, 255-6
simple harmonic motion (SHM) 91, 91-2

SHM and energy 93-4
using graphs to analyse SHM 93
slew rate 154
sliding friction force 35
smoothing 185
solar constant 1
solids 81
sound 101
Doppler effect 101, 101-2
speed 15
specific heat capacity 82
finding the specific heat capacity of a
liquid using a calorimeter 84
finding the specific heat capacity of a
metal 83
specific latent heat of fusion 82
finding the specific latent fusion of a
solid 84-5
specific latent heat of vaporisation 82
finding the specific latent heat of
vaporisation of a liquid 85
spin 170
springs 62-3
energy considerations 63
spring constant 63
stability 155
standard form 250
stationary waves 101, 106, 106-7
air columns 108-9
microwaves 109
stretched strings 107
step-down transformers 183
step-up transformers 183
stopwatches and stop clocks 10
strain 64
strain gauges 142, 151
stress 64
strong nuclear force 209
superposition 106, 113-14
diffraction 110
diffraction gratings 112
interference 106
principle of superposition 106
stationary waves 106, 106-9
two-source interference 110-12
systematic errors 11

@

tables 4

temperature 9, 75, 78-80
heat and temperature 75
temperature scales 78
temperature sensors 151
thermometers 75-8

thermometer 77-8
thermometric properties 75
threshold frequency 189, 189-90
threshold wavelength 190
time 10, 218

displacement-time graphs 15-16, 90
time constants 185
velocity-time graphs 17
torque 37
transducers 102, 142
transformers 183
energy losses in transformers 183
using transformers 184
transitions 192
transmitting information 119
coaxial cables 119
microwaves 120
optic fibres 120
radio waves 119-20
satellite communications 120-1
twisted wire pairs 119
transverse waves 98
trigonometry 251-2
triple point of water 78
twisted wire pairs 119
two-source interference 110
Young’s double-slits experiment
111-12

O

ultrasonic waves (ultrasound) 102
absorption of ultrasonic waves 103
transmission and reflection of

ultrasound waves 103

uncertainty 12, 219, 222, 255-6
identifying uncertainties 222-3
sources of uncertainty 223-4

underdamped oscillators 94

unified atomic mass unit 209

uniformity 34, 57
uniform circular motion 51
uniform electric fields 125-6

units 1-7

uplinks 120

upthrust 34, 34-5

w

valence band 194
vaporisation 82, 85
variable resistors 89
vectors 15, 252

adding and substracting vectors 4, 252

represenling a vector as two

perpendicular components (resolving

vectors) 5, 252

Doppler effect 101, 101-2

electromagnetic waves 100

intensity of a wave 100

measuring the wavelength of sound
using stationary waves 101

phase difference 100

progressive waves 98, 98-9

ultrasonic waves (ultrasound) 102,
102-3

wave equation 99

wavelength 99, 190

weak nuclear force

(weak interaction) 209

weight 9

mass and weight 26

work 43, 49-50

work and energy types 43-4
work done by an expanding gas 46
work function 190

&

X-rays 195

absorption of X-rays 197-8

computed tomography (CT) scanning
198-200

contrast 197

intensity and hardness 196

sharpness 196, 196-7

&

Young modulus 65, 65-6
Young's double-slits experiment 111

analysing Young’s slits experiment
111-12

Q

zero-order 112
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