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Preface 

This book is a practical approach to engineering mathematics with an emphasis on visu-
alization and applications. This book is intended for undergraduate and introductory 
graduate courses in engineering mathematics and numerical analysis. It is aimed at stu-
dents in all branches of engineering and science. This book contains a comprehensive 
blend of fundamental physics, applied science, mathematical analysis, numerical compu-
tation, and critical thinking. It contains both theory and application, with the applica-
tions interwoven with the theory throughout the text. The emphasis is visual rather than 
procedural. 

This book covers some of the most important mathematical methods and tools used in 
applied engineering. After an introduction in Chapter 1, this book begins with a summary 
of the most important principles of physics in Chapter 2, followed by Chapter 3 dedicated 
to the proper mathematical modeling of physical processes. Then the basics of calculus are 
presented in Chapter 4, including a thorough treatment of numerical integration. Next the 
essentials of linear algebra are presented in Chapter 5. Then the topic of nonlinear algebra, 
with an emphasis on numerical methods, is presented in Chapter 6. The topic of the remain-
ing fve chapters is ordinary differential equations. An introduction is presented in Chapter 7, 
giving an overview and fundamental understanding of the origins and meaning of differen-
tial equations. Then the Laplace transform method is presented in Chapter 8. A thorough 
treatment of the numerical solution of ordinary differential equations is then described in 
Chapter 9. Chapters 10 and 11 are on frst-order and second-order ordinary differential 
equations, respectively, and cover some important examples and characteristics of frst- and 
second-order equations, including bifurcations. Although the chapters stand alone and can 
be studied in any order, the organization of this book is a logical sequence from mathemati-
cal modeling to solution methodology. 

A distinctive characteristic of the text is that the visual approach is emphasized as opposed 
to excessive proofs and derivations. The reader will take away insight and deeper under-
standing with the visual images and thus have a better chance of remembering and using 
the mathematical methods. Many of the fgures were created and computations performed 
with Mathematica, and the dynamic and interactive codes accompanying the examples are 
available for the reader to explore on their own. 

My style has been developed from experience as a long-time teacher and researcher in a 
variety of engineering and mathematical courses. My background includes the areas of heat 
transfer, thermodynamics, engineering design, computer programming, numerical analysis, 
and system dynamics at both undergraduate and graduate levels. Also, my experiences in 
various research areas have motivated some of the specifc topics and examples. 

I would like to express thanks to my wife Linda and our children Kristen, Kelsey, Alison, 
and Everett for all the great times we have had and all your patience with me. I am so blessed 
and I love you all. 
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Chapter 1 

Overview 

CHAPTER OBJECTIVES 

This chapter is an introduction to and overview of the educational philosophy employed in this 
book. The physical applications and mathematical methods are briefy summarized. 

Specifc objectives and topics covered are 

• Objectives 
• Educational philosophy 
• Physical processes: conservation laws, rate equations, and property relations 
• Mathematical models: algebraic equations, ordinary differential equations, and partial 

differential equations 
• Solution methods for algebraic and differential equations 
• Software 

1.1 OBJECTIVES 

This is a comprehensive book consisting of a blend of fundamental physics, applied sci-
ence, mathematical analysis, numerical computation, and critical thinking. It contains both 
theory and application, with the applications interwoven with the theory throughout the 
text. The emphasis is visual rather than procedural. 

The specifc goals consist of the following. 

• Physical Processes 
To gain a fundamental understanding of the physical processes, fundamental prin-

ciples, and mathematical formulations of physical problems. 
• Mathematical Methods 

To learn mathematical techniques for solving model equations. 
• Software 

To learn the use of software packages, such as Mathematica or MATLAB®, to 
program solutions, perform calculations, and create graphics. Computational studies 
and graphics enhance insight into the effect of important parameters in addition to 
building a fundamental understanding of physical mechanisms. 



  

 
   

 

   

   

 

 

 

  

 
 
 
 
 

 
 
 

 
 

2 Applied Engineering Mathematics 

• Insight and Critical Thinking 
To develop a sound foundation for problem-solving using critical thinking, inter-

pretation, and reasoning skills. Applications are used extensively to foster insight and 
intuition. 

1.2 EDUCATIONAL PHILOSOPHY 

The following guiding principles are fundamental to learning; 

• We learn by active participation, not by passive observation. That is, we learn by 
doing, not just by watching. 

• A picture is worth a thousand words. The human brain is made to process visual infor-
mation. More information can be assimilated in a few seconds by looking at graph-
ics than by studying that same information for months from a printout of numerical 
values. 

• We are all responsible for our own learning. You need to be self-motivated and have 
the desire to learn. 

An important issue is knowledge versus information. There is an old saying: 

Give me a fsh and I’ll eat for a day. Teach me to fsh and I’ll eat for a lifetime. 

With today’s information explosion resulting from the internet, this old saying is more 
relevant than ever. Knowledge and fundamental reasoning skills are giving way to an 
unmanageable amount of information consisting of seemingly unconnected facts and 
fgures. Hopefully, a greater emphasis can be placed on knowledge as opposed to just 
raw information. True progress requires a balance between raw information and basic 
knowledge. 

In this same vein, too much coverage of material at the expense of depth of understand-
ing can be the enemy of learning and leads to memorization and frustration. Depth of 
understanding is considered to be far more important than coverage of more topics. 

In addition to developing an appreciation for and mastering knowledge of the fundamen-
tal physical principles and mathematical techniques, a major goal of this course is to develop 
basic learning skills and strategies. These include 

• Reasoning and interpretive skills—the foundation of problem-solving 
• Pattern recognition skills 
• Adaptability—learning to recognize abstract concepts from specifc applications and 

conversely, learning to apply abstract concepts to specifc applications 
• Thinking for yourself 
• Motivation, enthusiasm, and passion 

Regardless of your potential, there is no substitute for hard work. One must persist and 
struggle with diffcult concepts until they are understood. Learning is a lifelong activity and 
is the key to success. Let’s make it fun and exciting! 



  

  

  

  
 
 
 
 
 

 

  
 
 
 
 
 
 
 

  

 
    
    
   
    

   

 

 
 

3 Overview 

1.3 PHYSICAL PROCESSES 

Observations of the physical world indicate that all processes are governed by a small num-
ber of fundamental principles. These are conservation principles, which are supplemented 
by rate equations and property relations. Together, they form a complete description of 
nature. Although there are only a handful of principles, there are countless applications and 
special cases. These principles are summarized in the following and are described in more 
detail in Chapters 2 and 3. 

• The conservation laws are: 
• Conservation of mass: continuity 
• Conservation of momentum: Newton’s second law 
• Conservation of energy: frst law of thermodynamics 
• Conservation of chemical species 
• Conservation of electrical charge 

These are general principles and are independent of the material. 

• The rate equations supplement the conservation principles. The most important ones are: 
• Heat conduction: Fourier’s law 
• Heat convection: Newton’s law of cooling 
• Thermal radiation 
• Viscous fuid shear: Newton’s viscosity law 
• Binary mass diffusion: Fick’s law 
• Electrical conduction: Ohm’s law 
• Stress-strain: Hooke’s law 

These are constitutive relations and are dependent on the material. 

• The property relationships are also needed to complete the mathematical model. A 
few such relationships are: 
• Constant properties 
• Density: ρ =ρ(T, P) 
• Viscosity: μ = μ(T, P) 
• Specifc heat: c=c(T, P) 
• Thermal conductivity: k= k(T, P) 

These are material-dependent characteristics. Many times, it can be justifed to assume 
constant properties. 

1.4 MATHEMATICAL MODELS 

The mathematical description of physical problems generally leads to an equation or set of 
equations involving either algebraic expressions or derivatives (i.e., differential equations). 
Differential equations that are a function of only one independent variable are referred to 
as ordinary differential equations. Those that depend on two or more independent variables 
are called partial differential equations. As displayed in the following fgures, these equations 
can be classifed according to the number of equations or dependent variables and whether 
they are linear or nonlinear. 



  

  

  

 
 

 
 

  

 

4 Applied Engineering Mathematics 

Figure 1.1 Classifcation of algebraic equations. 

1.4.1 Algebraic Equations 

Algebraic equations can be classifed according to the characteristics shown in Figure 1.1. 
Linear algebraic equations can be solved with procedures such as Gaussian elimination. 
Many practical problems are modeled with a well-behaved set of linear equations with a 
unique solution. On the other hand, nonlinear equations can have multiple solutions or no 
solutions at all and can be tricky to solve. 

1.4.2 Ordinary Differential Equations 

Differential equations are used to model the dynamical behavior of physical systems.They are 
rich in application and meaning. A brief summary of ordinary differential equations (ODEs) 
and partial differential equations (PDEs) is presented in Figures 1.2 and 1.3, respectively. 

ODEs can further be classifed as initial value problems or boundary value problems 
depending on the auxiliary conditions. Initial value problems typically involve time as the 
independent variable and require starting values for the dependent variables. On the other 
hand, boundary value problems typically have position as the independent variable and 
require conditions on all the boundaries of the dependent variables. 

1.4.3 Partial Differential Equations 

Many types of PDEs exist, exhibiting a wide variety of characteristics. The basic elliptic, 
parabolic, and hyperbolic equations are displayed in Figure 1.3. 



  

   

 
 
 

 

 
 
 
 
 
 

 

5 Overview 

Figure 1.2 Classifcation of ordinary differential equations. 

Many other variations of these basic PDEs can be formulated. In all cases, starting or 
initial conditions in time as well as boundary conditions in space are required. 

1.5 SOLUTION METHODS 

A wide variety of mathematical schemes have been proposed over the centuries to solve 
equations arising in engineering and applied physics. Some of the more popular and success-
ful ones are summarized in the following. 

Some commonly used methods for systems of linear algebraic equations are: 

• Gaussian elimination 
• LU decomposition 
• Gauss–Seidel iteration 

For nonlinear algebraic equations, root fnd methods are employed. They include: 

• Bisection 
• False position 
• Newton–Raphson 
• Secant methods 
• Golden search 
• Gradient methods 



  

 
 
 
 
 

 

 
 
 
 
 
 
 

 

6 Applied Engineering Mathematics 

Figure 1.3 Classifcation of Partial differential equations. 

Numerical methods are frequently used to solve differential equations. Some of the most 
successful methods are: 

• Runge–Kutta methods 
• Finite difference methods 
• Finite element methods 
• Boundary element methods 
• Cellular automata 

Numerous analytical methods have been developed for differential equations. Some of the 
most successful methods are: 

• Fourier series, orthogonal function expansion, and separation of variables 
• Fourier integrals and Fourier transforms 
• Green’s functions 
• Laplace transforms 
• Duhamel’s method 
• Integral methods 
• Similarity methods 



  

  

 
 

 

 

7 Overview 

1.6 SOFTWARE 

Some tremendous software packages are currently available. Two of the best and most pop-
ular choices are Mathematica and MATLAB®. 

• Mathematica is a powerful software package and programming language, which com-
bines numerical computations, symbolic manipulation, graphics, and text. Its sym-
bolic manipulation capabilities are the most powerful ever developed. Mathematica is 
built on the powerful unifying idea that everything can be represented as a symbolic 
expression. 

• MATLAB® is also a programming language that combines numerical computations 
with graphics. It also has symbolic manipulation capability. The basic data structure 
in MATLAB® (Matrix Laboratory) is the matrix. 

• Programming sophisticated software packages can be powerful tools only if one has 
the necessary skill to program them. This requires logical and structured programming 
skills. These can only be achieved through tremendous study, practice, and patience. 

The learning curve for a general, all-purpose, and powerful package such as Mathematica 
or MATLAB® can be steep. In the end, the rewards are well worth the effort required. 
Understanding and advancement of knowledge are greatly facilitated by the ability to pro-
gram a computer to perform numerical computations, manipulate symbolic expressions, 
and visualize graphics. 
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Chapter 2 

Physical Processes 

CHAPTER OBJECTIVES 

This chapter describes the basic principles of physics that govern processes in our world. These 
are postulates based on observation. 

Specifc objectives and topics covered are 

• Physical phenomena 
• Fundamental principles 
• Conservation laws governing mass, momentum, and energy 
• Rate equations relating potentials to fows for heat conduction, convection, radiation, 

viscous fuid shear, binary mass diffusion, electrical conduction, and stress 
• Diffusion analogies 

2.1 PHYSICAL PHENOMENA 

Physical processes occurring in nature have been categorized in many different ways. Some 
of the more common categorizes are the following. 

• Thermal 
• Mechanical 
• Chemical 
• Electrical 
• Biological 



  

 
 
 

 

 
 
 
 
 

 
 

   

 
 

 
 

 
 
 
 
 

 
   

 
 
 
 
 
 
 

10 Applied Engineering Mathematics 

In addition, processes involving the coupling or interaction of two or more of the previous 
basic processes are referred to by names such as 

• Thermomechanical 
• Electromechanical 
• Thermoelectric 

Examples of coupled processes are the thermoelectric effect in thermocouples and thermo-
mechanical effects that cause unusual behavior in shape memory alloys such as Nitinol (an 
alloy of approximately 50% nickel and 50% titanium). 

Some important applications are tribology (friction, wear, and lubrication), smart mate-
rials, lasers, computers, nanostructures, aircraft design, and countless more. One of the 
fascinating aspects of applied mathematics is the rich and diverse number of applications, 
all stemming from a few basic principles. 

In an attempt to understand our world, humans have classifed various observed physical 
phenomena into these categories. Similarly, we have also departmentalized our universities 
and companies into categories: Mechanical Engineering Department, Chemical Engineering 
Department, Biological Systems Department, and so on. However, nature does not recognize 
these artifcial divisions. During a physical process, heat and electricity fow, stresses form, 
friction and wear occur, and chemical reactions continually change the composition of the sys-
tem. As a result, the mathematical modeling of real-life systems can be challenging. Engineers 
and physicists must use intuition and experience, in addition to mathematical procedures, in 
order to accurately model complex processes in the natural world. The process of mathemati-
cally modeling complex processes involves science and art, and perhaps a bit of luck. 

2.2 FUNDAMENTAL PRINCIPLES 

Observations of the physical world indicate that all processes are governed by a small number 
of fundamental principles. These are conservation principles, which are supplemented by 
rate equations and property relations. Together, they form a complete description of nature. 

The conservation laws are based on the principle that the physical material making up the 
universe cannot be created or destroyed. The conservation laws are: 

• Conservation of mass: Continuity 
• Conservation of momentum: Newton’s second law 
• Conservation of energy: First law of thermodynamics 
• Conservation of chemical species 
• Conservation of electrical charge 

These are general principles, independent of the material. 
The rate laws relate the fow of a conserved quantity, like electric charge or energy, to a 

driving potential, like voltage or temperature. The rate equations are: 

• Heat conduction: Fourier’s law 
• Heat convection: Newton’s law of cooling 
• Thermal radiation 
• Viscous fuid shear: Newton’s viscosity law 
• Binary mass diffusion: Fick’s law 
• Electrical conduction: Ohm’s law 
• Stress-strain: Hooke’s law 
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These are constitutive relations, dependent on the material. 
Property relationships are the observed or derived relationships between physical proper-

ties. These include: 

• Constant properties 
• Density: ρ =ρ(T, P) 
• Viscosity: μ =μ(T, P) 
• Specifc heat: c= c(T, P) 
• Thermal conductivity: k = k(T, P) 

Here, T and P are considered to be the independent variables. Other combinations of intrin-
sic material properties could also be used. It should be noted that these laws and relation-
ships are derived from experimental evidence and observation in our natural world. As such 
they are postulates and thus unprovable. We accept them as truths, or at least as very good 
approximations. Although there are only a handful of principles, there are countless appli-
cations and special cases. These principles are described in the following sections. 

2.3 CONSERVATION LAWS 

The conservation principles are some of the most important and far-reaching principles of 
physics. We use them to try to understand the theoretical rationale for processes in nature as 
well as to guide us in the engineering design of structures, machines, and devices. 

The conservation principles are postulates and as such, are not provable. They originate 
from observations of our world. We accept them on blind faith and use them as a starting 
point to model physical processes of interest. There are no defnitive experimental observa-
tions contradicting the conservation principles. 

The conservation principles can be applied to any system, ranging from the whole uni-
verse down to a differential control volume. Part of the art of mathematical analysis is to 
choose the system that is most useful to achieve your desired objectives. Generally, we think 
in terms of the following types of systems: 

• Closed system or fxed mass—no mass fow in or out 
• Open system or control volume—mass can cross the system boundaries 

In the following sections, the conservation laws for open and closed systems will be described. 

2.3.1 Conservation of Mass: Continuity 

For closed systems no mass can enter or leave, thus conservation of mass requires no change 
in mass with time, or mass is constant. Thus, 

dm = Þ0 m = constant (2.1) 
dt 

For open systems, mass can enter or leave from various inlets and exits, as shown in Figure 2.1. 
A mass balance on the open system gives 

dm = m̃ - m̃ (2.2) 
dt å å  

inlets exits 
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Figure 2.1 Conservation of mass in an open system. 

2.3.2 Conservation of Momentum: Newton’s Second Law 

Newton’s second law is one of the most important and widely applied principles in all of 
physics and engineering. It states that the momentum of an object can only be changed by 
an external force. 

d (mV ) =åF (2.3) 
dt 

where 
V is the velocity vector 
F is a force vector 

This is a vector equation with components in three directions. The x-component is 

d (mVx ) =åFx (2.4) 
dt 

For closed systems, sometimes referred to as Eulerian systems, mass is constant and 
Equation 2.3 becomes 

d ( )  å (2.5) m V = ma = F 
dt 

The x-component is 

m
d ( )Vx = max = åFx (2.6) 
dt 

For open systems, sometimes referred to as Lagrangian systems, mass can enter or leave from 
various inlets and exits, carrying momentum with it, as indicated in Figure 2.2. Newton’s 
second law applied to an open system in the x-direction gives 

d 
mV = F + m V - m V( x ) å åx ( x )inlets å( x ) (2.7) 

exits dt 

Similar relations hold for the y- and z-directions. The application of this principle to a dif-
ferential fuid control volume produces the Navier–Stokes equations of fuid mechanics. 
The forces and velocities are related through an appropriate rate equation—Newton’s law 
of viscous shear in this case, as discussed in Section 2.4. 
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Figure 2.2 Conservation of momentum in an open system. 

2.3.3 Conservation of Energy: First Law of Thermodynamics 

A closed system is represented in Figure 2.3 showing various energy contributions. 
Conservation of energy requires that 

dE 
    (2.8)= Ein - Eout + Egen = qcond + qconv + qrad + Egen

dt 
where 

E = energy of the system (J) 
qcond = heat transfer due to conduction (W) 
qconv = heat transfer due to convection (W) 
qrad = heat transfer due to radiation (W) 
Egen = energy generation (resistance heating, chemical reactions, …) 

Note that E in - E out is the net heat transfer due to combined conduction, convection, and 
radiation. 

The conservation of energy principle is now extended to systems where mass can enter or 
leave from various inlets and exits, carrying energy with it, as indicated in Figure 2.4. 

dE = E in - E out + E gen + å(me ) - å(me )inlets exitsdt (2.9) 

= qcond + qconv + qrad + E gen + å(me ) - å(me )inlets exits 

where 
e = energy per mass or specifc energy (J/kg) 
m = mass fow rate at inlets or exits (kg/s) 

Figure 2.3 Conservation of energy in a closed system. 
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Figure 2.4 Conservation of energy in an open system. 

The conduction, convection, and radiation heat fow terms can be related to temperature 
using rate equations. The rate of energy storage can be related to temperature using the 
physical property specifc heat. 

2.4 RATE EQUATIONS 

2.4.1 Heat Conduction: Fourier’s Law 

Heat is conducted from high temperatures to low temperatures. Heat conduction in a plane 
²wall is shown in Figure 2.5, where qcond is heat fux due to conduction (W/m2), T is tempera-

ture (K or °C), k is thermal conductivity (W/m·K), and x is position (m). For one-dimensional 
heat conduction, experiments show 

² æ Thot -Tcold ö DT 
qcond ~ ç ÷ ~ 

è L ø L 

The proportionality may be converted to an equality by introducing the material property 
thermal conductivity, k. The heat fux is thus modeled as 

dT² (2.10) qcond = -k 
dx 

Figure 2.5 Heat fow in a plane wall. 
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Figure 2.6 Convection heat transfer. 

2.4.2 Heat Convection: Newton’s Law of Cooling 

Convection is the mode of heat transfer due to a combination of two mechanisms: conduc-
tion and bulk fuid motion. We are usually interested in convection heat transfer between a 
solid surface and a fowing fuid, shown in Figure 2.6. 

For heat exchange between a solid object at temperature T and a fuid at T∞, the heat fux 
is expressed in the form 

q ² = h(T T  (2.11) conv - ¥ ) 

where 
² qconv = heat fux due to convection (W/m2) 

h = convective heat transfer coeffcient (W/m2·K) 

h is a fow property that depends on thermal properties of the fuid, fow conditions (V), 
and geometry. Often, convection calculations are aimed at determining h. 

2.4.3 Thermal Radiation 

Thermal radiation is electromagnetic radiation emitted by virtue of temperature. Conduction 
and convection require the presence of a material for the transfer of energy, while radiation 
does not. A perfect or ideal emitter and absorber of thermal radiation is called a blackbody. 
The heat fux emitted from the surface of a blackbody is 

Eb = sTs 
4 (2.12) 

where 
Eb = Blackbody emissive power (W/m2) 
Ts = Surface temperature (must use K, not C) 
σ = Stefan–Boltzmann constant=5.67 × 10−8 W/m2 K4 

A real surface emits some fraction of the radiation of a blackbody at the same tempera-
ture; thus, 

E = e Eb = es Ts 
4 (2.13) 

where 
E = Emissive power (W/m2) 
ε = Emissivity (0 < ε < 1) 
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Figure 2.7 Radiation heat transfer. 

We are often interested in the special case where the surface receives radiation from a 
large enclosure at temperature Tsur, as shown in Figure 2.7. 

For heat exchange between an object and a relatively large enclosure, the net radiative 
fux is 

² 4 4qrad = es (T -Tsur ) (2.14) 

2.4.4 Viscous Fluid Shear: Newton’s Viscosity Law 

Consider a fuid confned between solid surfaces with a relative velocity V, as shown in 
Figure 2.8. 

The shear force in a moving fuid is postulated to be proportional to the velocity gradient 
in the form 

dVt = m (2.15) 
dy 

where 
τ = shear stress (N/m2) 
μ = viscosity (N·m/s) 
V = velocity (m/s) 

Figure 2.8 Fluid confned between solid surfaces with a relative velocity V. 
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2.4.5 Binary Mass Diffusion: Fick’s Law 

Now consider diffusion in a two-component mixture. The mass fux of component 1 through 
a mixture of components 1 and 2 is modeled as 

r 
m 1 

² = -rD12 
dw1 = -D12 

d 1 (2.16) 
dx dx 

where 
m 1 

² = mass fux of component 1 (kg/m2 s) 
ω1 = ρ1/ρ 
D12 = mass diffusivity of component 1 in component 2 (m2/s) 
ρ1 = concentration of component 1 (kg/m3) 

2.4.6 Electrical Conduction: Ohm’s Law 

In a process very similar to the conduction of heat caused by a temperature gradient, elec-
tricity is conducted due to a potential or voltage gradient. Experiments indicate that the 
current fow is predictable by the following relation, known as Ohm’s law: 

dV (2.17) J = -s 
dx 

where 
J = current density (A/m2) 
σ = electrical conductivity (A/m V) 
V = voltage (V) 

2.4.7 Stress-Strain: Hooke’s Law 

In an elastic material, the stress or force per area is observed to be proportional to the 
strain or relative displacement. The proportionality constant between stress and strain is 
the modulus of elastic or Young’s modulus, resulting in the following relation, referred to 
as Hooke’s law: 

s = ×e (2.18) E 

where 
σ = stress (N/m2) 
ε = strain (m/m) 
E = modulus of elasticity (N/m2) 

2.5 DIFFUSION ANALOGIES 

The transport or fow of a conserved substance from regions of high concentration to regions 
of low concentration is referred to as diffusion. All diffusion rate laws have the form 

df (2.19) J = -D 
dx 
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where 
J = fux=conserved quantity/time/area 
ϕ = concentration of a conserved quantity (amount per volume) 
x = position (m) 
D = diffusivity (m2/s) 

The application of this general concept to some fundamental processes is summarized in 
Table 2.1. These are all constitutive relations relating fows to potential gradients. 

Table 2.1 Diffusion rate laws for some selected physical processes 

Conserved Diffusivity 
Process Quantity Rate Equation (m2/s) 

Heat conduction: 
Fourier’s law 

Thermal 
energy ² dT

qcond = -k
dx

d (rcT )
= -a 

dx

ka = 
rc

Viscous fuid shear: 
Newton’s viscosity law 

Momentum 
dVt = m 
dy

d (rV )
= n 

dy

m n = 
r 

Binary mass diffusion: 
Fick’s law 

Mass of 
species-1 ² d 1w d 1r

m1 = -rD12 D= - 12
dx dx

D12 

Electrical conduction: 
Ohm’s law 

Electrical 
charge dV

J = -s 
dx

d C V( e )
= -ae

dx

s ae = 
Ce
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Chapter 3 

Modeling of Physical Processes 

CHAPTER OBJECTIVES 

This chapter describes the process of using the basic principles of physics, combined with appro-
priate boundary condition, initial conditions, and approximations, to form a complete and well-
posed mathematical model of a system. 

Specifc objectives and topics covered are 

• Cause and effect 
• Mathematical modeling 
• Complete mathematical models for classic vibrations and heat transfer problems 
• Dimensionless formulations 
• Inverse and parameter estimation problems 
• Mathematical classifcation of physical problems 

3.1 CAUSE AND EFFECT 

A physical system is characterized by its material properties and geometry as well as the 
physical processes occurring within the system. Action or displacement from equilibrium 
is caused by external forces or stimuli acting on the system. The response to these external 
stimuli is in the form of fows and potentials, for example, heat fow and temperature change 
in a thermal system or motion for a mechanical system. 

3.1.1 General Physical Process 

In general, a mathematical solution is an equation or rule that is represented in the form 

Independent System Forcing öæ
Dependent variables = function ÷

ø 
ç
è 

, ,
variables parammeters functions 

The dependent variables describe the response or state of the system. The independent vari-
ables are usually dimensions, such as location or time. The system parameters characterize 
the system’s properties or composition. The forcing functions are external stimuli acting on 
the system. Together, these ingredients form a mathematical model. 
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This relationship between the components of the model is depicted in the following cause 
and effect diagram for an arbitrary physical system. 

Forcing Functions System Response 
• Volumetric sources 
• Boundary conditions ⇒ 

• Physical processes 
• Geometry ⇒ 

Dependent variables 
• Flows 

• Initial conditions • Material properties • Potentials 

This is the fundamental relationship between cause (forcing functions) and effect (response). 
Forcing functions consist of three basic types: volumetric sources, boundary conditions, and 
initial conditions. All physical processes are caused by some combination of these forcing 
functions acting on the system. A system in equilibrium, with all forcing functions equal 
to zero, simply remains in equilibrium. Once stimulated by forcing functions, the system 
responds according to the physical laws of nature, as described in Chapter 2. The cause and 
effect schematics for thermal and mechanical systems are depicted in the following diagrams. 

3.1.2 Thermal Processes 

Forcing Functions Physical System Response 
Volumetric sources Thermal processes Dependent variables 

• Electrical Geometry • Temperature 
• Nuclear reactions Material properties • Heat fow 
• Chemical reactions • Thermal conductivity 

Boundary conditions • Specifc heat⇒ ⇒ 
• Specifed temperature • Density 
• Applied heat fux 
• Convection 

Initial conditions 
• Initial temperature 

3.1.3 Mechanical Processes 

Forcing Functions Physical System Response 
Volumetric sources Mechanical processes Dependent variables 

• Gravity Geometry • Displacement and velocity 
• Magnetic Material properties • Stress and strain 

Boundary conditions • ρ 
• Known displacements ⇒ • m ⇒ 
• Applied forces • E 
• Elastic attachment • k 

Initial conditions 
• Initial displacement 
• Initial velocity 

3.2 MATHEMATICAL MODELING 

For engineers and applied mathematicians, the ultimate purpose of mathematics is to 
describe and predict the behavior of physical systems. The basic steps involve the transla-
tion of the physical processes acting on a system into a mathematical model, followed by 
the solution of the model equations. This is represented schematically in the cause and effect 
diagrams in Section 3.1. 

Formulating a mathematical model for a complex system can be challenging. The ingre-
dients are shown in the schematic in Figure 3.1. 



  

 

 
 
 

 

 
 
 
 

 

Modeling of Physical Processes 21 

Figure 3.1 Overview of the mathematical modeling process. 

The selection of a meaningful and useful system for mathematical analysis is dependent 
on the problem objectives. Any system, from the entire universe to the smallest differential 
control volume, could be selected. When analyzing a power plant, the entire plant, a boiler, 
a boiler tube, or any other subsystem can be selected. 

No foolproof formula or procedure can be spelled out to select the best system to achieve 
the desired objectives. System selection is somewhat of an art form and requires experi-
ence. Most would agree that in addition to training in the standard surgical procedures, 
a skilled surgeon must have experience. Most of us, if it were our brain that needed the 
surgery, would not feel comfortable with an inexperienced surgeon fresh out of medical 
school. 

Using a sound knowledge of the fundamental principles of physics, the processes occurring 
in the system of interest should be identifed. Processes that are most important to the analy-
sis and those that can be safely neglected should be identifed. Knowing which processes 
are dominant requires a combination of experience and estimation. Order-of-magnitude or 
dimensional analysis can be used to perform this estimation. A classic example is boundary 
layer theory in fuid mechanics, where an order-of-magnitude analysis can be used to show 
that streamwise diffusion-type terms can be neglected compared with streamwise advection 
terms. 

A major component of the art of engineering is the ability to reduce a problem to its 
simplest yet still accurate form. Simply following a prescribed procedure or formula every 
time will not be suffcient to analyze challenging problems of engineering and applied 
mathematics. 

A variety of approximations can be made in order to simplify the mathematical represen-
tation of the system of interest. Some of these include 

• Spatially uniform or spatially distributed (zero-, one-, two-, or three-dimensional) 
• Spatially fnite or infnite 
• Steady or transient 
• Continuous or discrete 
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• Linear or nonlinear 
• Viewpoint: stationary (Eulerian) or moving (Lagrangian) 
• Symmetry 

One could always model every problem as generally as possible—as three-dimensional, 
transient, and nonlinear. However, this overkill approach would amount to a lot of unneces-
sary analysis and computation for most problems. More importantly, simply pounding out 
solutions with no insight or interpretation is a dangerous and scary way to approach engi-
neering and design problems. The best engineer utilizes a good balance of physical insight 
and mathematical skills. 

A complete mathematical description of problems involving spatially varying quanti-
ties requires the specifcation of appropriate conditions at the boundaries. These so-called 
boundary conditions are usually in the form of specifed potentials, specifed gradients, or 
a mixture of specifed potential and gradients. 

In thermal heat conduction problems where temperature is the unknown variable, the 
classical boundary conditions are 

1. Specifed temperature 
2. Specifed heat fux 
3. Convection exchange with a fuid 

In mechanical problems where displacement is the unknown variable, possible boundary 
conditions are 

1. Specifed displacement 
2. Specifed force 
3. Elastic attachment 

Problems with only time dependence and no spatial dependence are called lumped system or 
lumped capacity problems. Here, no boundary conditions are required. 

For transient or time-dependent problems, the initial state of the system must be specifed 
in order to give a unique or properly posed mathematical formulation. First-order differen-
tial equations in time require the initial position. Second-order differential equations, such 
as oscillators and wave equations, require the specifcation of both the initial position and 
the velocity. 

3.3 COMPLETE MATHEMATICAL MODEL 

For systems described by differential equations, a complete mathematical model must 
include the following: 

• Governing differential or algebraic equations 
• Boundary conditions (for spatially distributed systems) 
• Initial conditions (for transient problems) 

Problems with no spatial distribution, referred to as lumped parameter systems, have no 
mathematical boundary conditions. Any boundary effects will be included directly in the 
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differential equations. Likewise, steady-state problems do not require initial conditions, 
since all memory of past states is long forgotten. 

The complete mathematical models of two classic problems, mechanical vibrations and 
heat diffusion, are described next. 

3.3.1 Mechanical Vibrations 

Consider a mass attached to a linear spring with spring constant k and a damper with 
damping coeffcient c. The mass is acted on by an applied force. The initial displacement 
is x0, and the initial velocity is v0. The system and the free body diagram are displayed in 
Figure 3.2. The objective is to determine the displacement of the mass, x(t). The displace-
ment is measured from static equilibrium. 

Figure 3.2 Mechanical oscillator. 

The components are organized using a cause–effect diagram. 

Forcing Functions System Response⇒ ⇒f(t), x0, v0 m, k, c x(t) 

The goal is to fnd a solution of the form 

x = function t m k c f t x, ,  ( ), ,0 v0( , ,  ) 

In order to accomplish this goal, the equations governing the motion of the system must be 
formulated. Apply Newton’s second law using the free body diagram of the mass shown on 
the right in Figure 3.2 to deduce 

Mass Acceleration =åForces ´ 

2d x  dx 
m a× = m = -c - kx + f t( )  (3.1) 

dt2 dt 

The complete mathematical model of the system consists of the previous equation of motion 
along with the necessary initial conditions. The complete mathematical model is 

2d x  dx (3.2) m 2 + c + kx = f t( )
dt dt 
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x x0 ü= 
ï 

dx ý t = 0 (3.3) 
= v0 ïdt þ 

Since the governing differential equation is a second-order initial value problem in time, 
specifcation of both the initial displacement and velocity is required. There are no math-
ematical boundary conditions required, since the system is spatially lumped. That is, every 
position in the mass shares the same displacement and velocity. The applied forces are physi-
cally applied at the surface of the mass but show up mathematically in the spatially lumped 
differential equation. 

3.3.2 Heat Conduction 

We next examine the heat conduction problem displayed in Figure 3.3. 
The problem consists of transient heat transfer in a solid material under the following 

conditions and approximations: 

• rectangular region of length L with one-dimensional heat fow, that is, temperature 
gradients only in one direction 

• initially at uniform temperature T0 

• constant thermal properties 
• volumetric heat source, g(x,t) 
• applied heat fux, q ts 

²( ), at x = 0 
• constant temperature, TL, at x = L 

The objective is to derive the energy equation governing the transient temperature distribu-
tion and to formulate the complete mathematical model of the system including appropriate 
boundary and initial conditions. 

Figure 3.3 Heat conduction schematic. 
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In a manner similar to applying Newton’s second law to a free body diagram in a mechan-
ical system, we apply the conservation of energy principle to a control volume in a ther-
mal system. Since we are interested in the spatial distribution in the x-direction but are 
neglecting gradients in the other directions, the control volume of size Dx by A shown in 
Figure 3.4 is appropriate. 

Conservation of energy applied to our differential control volume requires 

¶e æ ¶q ö r × D = x - ç qx + x D ÷ + × ×A xA x q x g D (3.4) 
¶t è ¶x ø 

where 
e=specifc internal energy (energy/mass ~J/kg) 
qx = Aqx 

² =heat fow rate by conduction (energy/time ~W) 

Note that all terms have units of energy per time (W). Cancel the volume, A x× D  , in 
Equation 3.4 and simplify to get 

¶e qx¶ ² 

+ g (3.5) r = -

¶
¶ 

¶ 

¶ 

t x¶

¶
¶ 

We now have one equation in two unknown variables, e and qx 
² . We would like to express 

this energy equation in terms of a single, measurable variable. Thus, both e and qx 
²  are 

expressed in terms of temperature, T. Specifc internal energy is related to temperature 
through the physical property specifc heat as 

de = ×c dT (3.6) 

where c = specific heat energy/mass/temperature change J/kg/K~ )( 
As described in Section 2.4.1, heat fux is related to temperature using Fourier’s rate law via 

² ¶T 
qx = -k (3.7) 

¶x 

Substitute Equations 3.6 and 3.7 into the energy conservation equation (Equation 3.5) to 
obtain the heat diffusion equation 

T T 
t x x 

æ¶= ök (3.8) +rc g÷
ø

ç
è 

Figure 3.4 Control volume for the heat conduction equation. 
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For constant properties, the previous heat diffusion equation reduces to 

T T¶ 2 

x¶
a ¶= g+ (3.9) 2t 

2a = = thermal diffusivity m /s 
r 
k
c 

( ) 

The heat diffusion equation (Equation 3.9) has a second-order spatial derivative and thus 
requires two boundary conditions, one on each boundary. It also has a frst-order time 
derivative and thus requires one initial condition—the initial temperature distribution. 
Thus, the complete mathematical model consists of the following energy equation, bound-
ary conditions, and initial condition. 

¶ r c 

T a=¶ 2T g¶ + (3.10) 
r¶ 2t x c¶ 

¶T -k
¶x 

= ² 
s ( )q t , x = 0 

(3.11) 
=T TL, =x L  

T T= 0 x( ), t = 0 (3.12) 

Boundary and initial conditions are essential elements for a complete and well-posed mathemati-
cal model of a physical system. Without them, the problem is not uniquely specifed. On the other 
hand, extra and unnecessary boundary or initial conditions make the problem over specifed. 

3.4 DIMENSIONLESS FORMULATION 

3.4.1 General Procedure 

A general procedure to convert mathematical models to dimensionless form is outlined. 

Step 1: List all variables and parameters along with their units. 

Symbol Units 

Dependent variables θ 
… 

Independent variables x 
t 
… 

Parameters p1 
p2 
… 

Step 2: Count the number of independent dimensions (or units) in the problem. These are 
usually m, s, J, kg, etc. 

Step 3: Choose a number of independent reference parameters, pref,1, pref,2, pref,3,¼, equal 
to the number of dimensions. 
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Step 4: Form dimensionless variables from the reference parameters. 

e e1 2qref  = (pref,1 ) (pref,2 ) ¼ 

e e1 2 xref  = (pref,1 ) (pref,2 ) ¼ 

qDimensionless dependent variables: q + = 
qref

xDimensionless independent variables: x+ = 
xref

Step 5: Substitute dimensionless variables to obtain the dimensionless formulation. 
Identify dimensionless parameter groups that naturally emerge. Specifcally determine: 

• Dimensionless differential equation 
• Dimensionless boundary conditions 
• Dimensionless initial condition 
• Dimensionless parameters 

3.4.2 Mechanical Vibrations 

The general procedure outlined in the previous section is now applied to the classical mass-
spring-damper problem. The mathematical model is given by Equations 3.2 and 3.3 with a 
constant applied force. The model equations are 

2d x  dx (3.13) M + c + × = fk x  
dt2 dt 

0 

x x0 ü= 
ï 

t = 0 (3.14) dx ý 

dt 
= v0 

þï 

Step 1: List all the variables and parameters along with their units. 

Symbol Units 

Dependent variable Displacement x m 
Independent variable Time t s 
Parameters Mass M N

kg = 2m/s

2N s× 
= 

m

Damping 
coeffcient 

c N N s× 
= 

m/s m

Spring constant k N/m 
Applied force f0 N 
Initial displacement x0 m 
Initial velocity v0 m/s 
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Step 2: List and count the number of independent dimensions in the problem. 
Note that kg is related to N, s, and m and is not an independent dimension. We have 

three independent dimensions: N, m, and s. 
Step 3: Choose independent reference parameters equal to the number of dimensions. 

We have numerous choices as long as all three dimensions (N, m, and s) are 
included. Thus, the combination k, f0, and x0 would not be valid, since the dimension 
(s) is not included. We have to choose three parameters from a list of six. This gives 
6 × 5× 4=120 combinations. The combination k, f0, and x0 is invalid, leaving us with 
119 possible ways to normalize this problem! 

Let’s choose M, k, and f0. 
Step 4: Form the dimensionless variables. 

e1 e2 e3xref = M × k × f0 

e1 æ N ö
e2 

e3 
m ~ kg ÷ × N (3.15) (  ) × ç ( )

è m ø 

Consistent dimensions require e2 = - , e = , and 1 01 3 1  e = . Thus, 

f0x = ref 
k 

Similarly, we fnd 

tref = M / k 

+ x k
Now we form our dimensionless dependent variable: x = = x 

xref f0 

+and dimensionless independent variable: t = 
t = t k/M 

tref 

Step 5: Substitute and identify dimensionless parameters. 

2 + +d x( ref × x ) 1 d x( ref × x ) 1 +M + c + ×k x( ref × x ) = f0+2 2 +dt tref dt tref 

1
The chain rule was used. Divide by Mxref 2 . 

tref 

2 + + 2d x  tref  dx tref + 1 2+ c + k × x = f0 tref +2 +dt M dt M Mxref 

Use the defnitions of xref and tref and simplify. 

2 + +d x  c dx+ + x+ = 1+2 +dt Mk dt 
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A dimensionless damping coeffcient has emerged. 

c z = 
2 Mk 

The dimensionless formulation of Equations 3.13 and 3.14 is 

2 + +d x  dx + (3.16) + 2z + x = 1+2 +dt dt 

x+ = x0 
+ ü 
ï + (3.17) + t = 0dx + ý 

+ = v ï
dt 

0 
þ 

The dimensionless parameters are 

c + k + Mk z = , x0 = x0 , v0 = v0 (3.18) 
2 Mk f0 f0 

Our choice of reference parameters did not include the damping coeffcient. Thus, a dimen-
sionless damping parameter wound up in the transformed equations. This allows a clear and 
meaningful study of the effects of damping. 

3.4.3 Steady Heat Conduction 

The general procedure is now applied to a basic steady-state heat transfer problem. The 
model equations are the following: 

Variable shift 
θ(x) =T(x)−TL 

2d T
k g+ = 02dx

2d q
k g+ = 02dx

dT ² -k = q0 ,
dx

x = 0
dq ² -k = q0 , x = 0
dx

=T TL , =x L q = 0, =x L

Note that we have shifted or “grounded” the problem before starting any analysis by defn-
ing a new variable θ(x) as the temperature rise above the ground or sink temperature TL. 

Step 1: List all the variables and parameters along with their units. 

Symbol Units 

Dependent variable Temperature rise θ K 
Independent variable Position x m 
Parameters Region length L m 

Volumetric heat generation g W/m3 

Surface heat fux ² W/m2 
q0

Thermal conductivity k W/(m K) 
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Step 2: List and count the number of independent dimensions in the problem. 
We have three independent dimensions: K, m, and W. 

Step 3: Choose independent reference parameters equal to the number of dimensions. 
We must choose k, since it is the only parameter with K. Choosing k along with any 

two of the other three parameters gives us six combinations. 
Let’s choose: k, L, and q0 

² . 
Step 4: Form the dimensionless variables. 

e1 e2 ²e3qref = k × L q0 

1 3e e 

÷ × 
m K  

Consistent dimensions require e1 = - , e = , and 1 11 3 1  e = . Thus, 

²q Lqref = 0 

k 

ö
ø 

Similarly, we fnd 

× 

xref = L 

+ q k 
Now we form our dimensionless dependent variable: q = = q ²q Lqref 0

x xand dimensionless independent variable: x+ = = 
xref L 

Step 5: Substitute and identify dimensionless parameters. 

2 +d (q  q× 1ref )
k + =g 0+2 2dx xref 

The chain rule was used. Divide by kqref 
1 

2  and use the defnitions of θref and xref. xref 

d2q + L+ g = 0+2 ²dx q0 

A dimensionless volumetric heat generation has emerged. 

+ L 
g = g ² q0 

The dimensionless formulation and dimensionless parameters are 

d2q + 
+ (3.19) 

+2 + g = 0 
dx 

dq + 
+- = 1, x = 0 (3.20) dx+ 

q + = 0, x+ = 1 

W W ö
÷
ø 

æ
ç
è

( )e2 ×m æ
ç
è 

K ~ 2m 
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+ L 
g = g (3.21) ² q0 

Our choice of reference parameters did not include the heat generation. Thus, a dimension-
less heat generation wound up in the transformed equations. This allows for a clear and 
meaningful study of the heat generation. 

3.5 INVERSE AND PARAMETER ESTIMATION PROBLEMS 

The difference between direct, inverse, and parameter estimation problems is shown in the 
following cause and effect schematics. 

3.5.1 Direct Problem 

Forcing Functions Physical System Response⇒ ⇒✓ ✓ ? 

In this model, the system and all forcing functions are completely specifed. The task is to 
determine the system response. 

3.5.2 Inverse Problem 

Forcing Functions Physical System Response⇒ ⇒? ✓ ✓ 

In this model, it is assumed that the physical system is specifed. This time, however, the 
response is also known, or at least partially known in the form of measurements at discrete 
times and locations. The goal is to fnd some unknown forcing functions. 

3.5.3 Parameter Estimation Problem 

Forcing Functions Physical System Response⇒ ⇒✓ ? ✓ 

Here again, the system response is known, or at least partially known in the form of mea-
surements at discrete times and locations. The goal this time is to estimate some unknown 
system parameters, such as material properties. 

The inverse and parameter estimation problems are considerably more diffcult to solve than 
the direct problems due to, among other things, stability problems and lack of uniqueness. 

Example: Heat Conduction 

Consider the heat conduction problem from Section 3.3.2. The mathematical model is 
given by Equations 3.10–3.12. 

The direct problem is: 

Forcing Functions Physical System Response 
g, qs

² , TL, T0✓ ⇒ Geometry: L ✓ ⇒ Temperature, T(x,t)? 
Properties: k, c, α ✓ 

This is the typical problem encountered in engineering analysis. The forcing functions 
and system parameters are specifed, and the goal is to solve for the temperature response. 

https://3.10�3.12
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The inverse problem is: 

Forcing Functions Physical System Response 
g, TL, T0 ✓ ⇒ Geometry: L ✓ ⇒ Temperature, T(x,t) 

² ?qs 
Properties: k, c, α ✓ ✓ 

In this variation, the temperature response is known, usually from measurements at dis-
crete times and locations. The goal might be to fnd some unknown forcing function 

such as the boundary heat fux, qs 
² . This type of problem arises in the thermal analysis of 

spacecraft reentering the earth’s atmosphere. 

The parameter estimation problem is: 

Forcing Functions Physical System Response 
⇒ Geometry: L✓ ⇒ Temperature, T(x,t) ✓qs 

² , g, TL, T0 ✓ 
Properties: k, c, α? 

Here, the temperature response, geometry, and forcing functions are known. The goal 
is to estimate the physical properties. This type of problem is used to estimate unknown 
properties of some material, such as a new composite. 

3.6 MATHEMATICAL CLASSIFICATION OF PHYSICAL PROBLEMS 

A dynamical view of the world is shown in Figure 3.5. The various dynamical systems are 
categorized by the number of variables on one axis and linear versus nonlinear on the other 
axis. The shaded areas in the lower right could be regarded as the frontier of current research. 

PROBLEMS 

Problem 3.1 

Determine the solutions to the following problems. 

dq 1a) = - q
dt t 
q = 0, t = 0 

2d x  dxb) m + c + k x× = 0 
dt2 dt 

dx 
x = 0, = 0, t = 0 

dt 

¶2 2¶ T 
2

c) 0
T +2 = 

¶

¶ 

x 

T = 0 on all boundaries 

T T 

¶y 

2 

¶
a ¶= 

x 
d) 

2¶t 
¶T = 0, x = 0
¶x 
T = 0, x = L 

T = 0, t = 0 



  

 
 

Modeling of Physical Processes 33 

Fi
gu

re
 3

.5
 A

 d
yn

am
ic

al
 v

ie
w

 o
f t

he
 w

or
ld

. (
R

ep
ro

du
ce

d 
fr

om
 N

on
lin

ea
r 

D
yn

am
ic

s 
an

d 
Ch

ao
s,

 2
nd

 e
di

tio
n 

(2
01

4)
, b

y 
S.

H
. S

tr
og

at
z.

 C
ou

rt
es

y 
of

 T
ay

lo
r 

&
 F

ra
nc

is
 

B
oo

ks
.) 



  

 
   

   

34 Applied Engineering Mathematics 

Problem 3.2: Boundary and Initial Conditions 

Consider the following systems of equations. In each case, identify whether the mathemati-
cal model is formulated properly in order to allow the possibility of a unique solution. If the 
system is not properly formulated, what additions or changes are necessary? 

dq 1a) = - q + S 
dt t 

dq 1b) = - q + S 
dt t 
q q0, t == 0 

q q , = 1 = 1 t t  

2d x  dxc) m + c k x+ × = f t( )
dt2 dt 

x x t= 0, = 0 

2d x  dxd) m 2 + c k x+ × = f t( )
dt dt 

x x t= 0, = 0 

x x t t= 1, = 1 

¶T ¶2 g x t,
e) = a + , 0 < <T ( )

˝ x L
¶t ¶x2 rc 

¶T ² ( ) °, 0k q t- = =x

T 
x 

¶x 
0 

¶ 2 

¶ ¶t 
T g x t,( )¶f) ˝ 0 < <, x L+= a 2 rc 

= 
¶ 

- ¶T
k 

x 

T T0, t = 0= 

Problem 3.3: Coupled Spring-Mass-Dampers 

Consider the following system with two sets of mass-spring-dampers. A force f1 is applied 
directly to mass-1, while a force f2 is applied to mass-2. The spring constants are k1 and 
k2, and the damping coeffcients are b1 and b2.The equilibrium positions with f1= f2=0 cor-
respond to x1=x2=0. 

² (q t),0 0= =x 

T T (t), 0=x0 

Derive the complete mathematical model of this system. 
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Problem 3.4: A Series of Spring-Mass-Dampers 

A series of coupled spring-mass-dampers consisting of n masses in series are connected by 
springs and dampers. The masses are identical, the springs are identical, and the dampers 
are identical. Thus, we only need single values of m, k, and b. 

The initial conditions are 

éx1 ( )0 ù éx1 0, ù éx° 1 ( )0 ù év1 0, ù 
ê ú ê ú ê ú ê ú x2 ( )0 x2 0, x° 2 ( )0 v2 0,ê ú ê ú ê ú ê ú= annd = ê ˜ ú ê ˜ ú ê ˜ ú ê ˜ ú 
ê ú ê ú ê ú ê ú 
êxn ( )0 ú ëxn,0 û êx° n ( )0 ú ëvn,0 ûë û ë û 

Each mass has an individual external force applied, fi(t). The displacements are measured 
from static equilibrium with no applied forces. Derive the mathematical model of the system 
for the displacements xi, for i=1 to n. 

Problem 3.5 

Consider the motion of an elastic string. 

u(x,t)= transverse displacement (m) 
T=tension (N) 
ρ =density (kg/m3) 
Ac =cross-sectional area (m2) 
F(x,t)=distributed load (N/m) 

Assumptions 

• The motion takes place entirely in one plane, and in this plane, each particle moves at 
right angles to the equilibrium position of the string. 

• The defection of the string during the motion is so small that the resulting change in 
length of the string has no effect on the tension T. 

• The string is perfectly fexible; that is, it can transmit force only in the direction of its length. 
• The slope of the defection curve is small, so that sinθ can be replaced with tanθ, where 

θ is the inclination angle of the tangent to the defection curve. 
• Derive the equation governing the transverse displacement of the string, u(x,t). 
• State the complete mathematical model necessary to determine the motion of the string. 
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• For the special case where the distributed load is zero, F=0, and the string is initial 
in equilibrium (the initial displacement and velocity are zero), determine the solution 
u(x,t) for the displacement of the string. 

• What is the relationship between this mathematical model and the series of discrete 
spring-mass-dampers in Problem 3.4? 

Problem 3.6 

Consider transient heat transfer in a two-dimensional region (no temperature gradients in 
the z-direction), initially at temperature T0, with the boundary conditions shown. 

a) Formulate the mathematical model governing the transient temperature distribution, 
T(x,y,t). 

b) Assuming that temperature gradients are negligible in the x-direction, formulate the 
mathematical model governing the temperature distribution. 

c) Assuming that temperature gradients are negligible in the y-direction, formulate the 
mathematical model governing the temperature distribution. 

d) Assuming that temperature gradients are negligible in all directions (lumped capacity 
approximation), formulate the mathematical model governing the transient tempera-
ture distribution T(t). For this lumped capacity model only, determine the steady state 
temperature if qs ″ and g are constant. 
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Chapter 4 

Calculus 

CHAPTER OBJECTIVES 

First, the fundamental concept of a derivative is presented. This leads naturally to the chain rule, 
the product rule, and the concept of a partial derivative. The numerical evaluation of derivatives 
using Taylor series is presented. 

Next, the fundamental concepts of integrals are presented. Also, the practical aspects of 
evaluating integrals using numerical integration are presented. 

Specifc objectives and topics covered are 

• The basic concept of a derivative 
• The chain rule 
• Product rule 
• Partial derivatives 
• Numerical differentiation using the Taylor series expansion 
• The basic concept of an integral 
• The mean value theorem 
• Integration by parts 
• Leibniz rule—the derivative of an integral 
• The step, impulse, and delta functions 
• Numerical integration using the trapezoid rule, Simpson’s rules, and Gauss quadrature 
• Multiple integrals 

df 
ò 

t 
* *The derivative The integral g t( )dt

dt *
0t t= 

is the slope of the curve f(t). is the area under the curve g(t*). 
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Figure 4.1 The geometric concept of a derivative. 

4.1 DERIVATIVES 

4.1.1 Basic Concept of a Derivative 

In mathematics, the rate of change of a function is referred to as the derivative. For a func-
tion of a single variable, the derivative at a given point is the slope of the tangent, as visual-
ized in Figure 4.1. 

In order to estimate this slope, the function is evaluated at t and at a location Δt later. The 
secant between these points is then formed, as shown in the left portion of Figure 4.1. The 
slope of the secant is 

Df f t( + Dt ) - f t( )
slope » = (4.1)

Dt Dt 

As Δt becomes small, the slope of the secant and the slope of the tangent at t become indis-
tinguishable. The limit as Δt approaches zero produces an exact value for the rate of change 
and provides a formal defnition for the derivative as 

df æ f t( + Dt ) - f ( )t ö 
= derivative of f t( )  with respect to t = lim ç ÷ (4.2) 

dt Dt®0 è
ç Dt ÷ 

ø 

This is called the forward difference form, since we are using a point t and a point t+Δt in 
the forward direction. Since we are taking the limit as Δt approaches zero, we could use the 
equivalent centered or backwards difference forms given by 

df æ f t( + Dt / 2) - f t( - Dt / 2) ö 
= lim ç ÷

dt Dt®0 Dtè ø 
(4.3) 

æ f t( ) - f t( - Dt ) ö 
= lim ç ÷

Dt®0 Dtè ø 

4.1.2 Velocity from Displacement 

Derivatives are used throughout applied mathematics to describe the rate of change of one 
quantity with respect to another. A classic example is velocity, defned by 

dx æ x t( + Dt ) - x ( )t ö 
v = = lim ç ÷ (4.4)

dt Dt®0 Dtè ø 



  

  
  
  

  

 
 

  

 

  

  

  

  

  

  

  

  

  

Calculus 39 

where 
v is velocity 
x is position 
t is time 

In a case where the function x(t) is not known explicitly, but instead, numerical values of 
x are known at discrete times, the velocity can be estimated as 

dx Dx x t( + Dt ) - x ( )t 
v = @ = (4.5) 

dt Dt Dt 

Note that this relation is approximate. If the x-values are suffciently accurate, and the time 
interval Δt is suffciently small, the previous approximation would be extremely accurate. Such 
an estimate is called a fnite difference approximation. Various fnite difference approximations 
of derivatives and their associated accuracy are derived in Section 4.5 using Taylor series. 

4.1.3 Derivative of tn 

Consider the special case f(t)= tn. In calculus class, we are presented with the formula 

nd t( )
= ×n tn-1 (4.6) 

dt 

Can we derive such a formula, or is it some sort of defnition that must be memorized and 
accepted on blind faith? The most straightforward way to envision a derivative is with a fnite 
difference approximation. Let’s start with n=1 and use the fnite difference approximation 

1 1 1d t( )  (t + Dt ) - t
@ = 1 (4.7) 

dt Dt 

We have obtained the expected result. Now, for n=2, 

2 2 2d t( )  (t + Dt ) - t
@ = 2t + Dt (4.8) 

dt Dt 

In the limit as Δt→0, we get 

2d t( )
= 2t (4.9) 

dt 

In a similar manner, the general case is 

n n nd t( )  (t + Dt ) - t
@ = ×n tn-1 + terms involving Dt (4.10) 

dt Dt 

In the limit as Dt ® 0, we get the well-known result 

d tn( )  n-1= ×n t  (4.11) 
dt 

Derivatives of other well-known functions can be derived in this way. All mathematical for-
mulas come from a logical sequence or concept. Memorizing formulas with no idea of their 
origin or meaning should be avoided. 
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Figure 4.2 The geometric interpretation of the chain rule. 

4.1.4 Chain Rule 

There are many situations where we wish to fnd the derivative of a function with respect to 
t where the argument is a function of t. That is, 

df
f = f (z t( )) ® = ? (4.12) 

dt 

This derivative is most easily envisioned by approximating it as a fnite difference at discrete 
points in the form 

d fD fD zD(f z  t( ( ))) @ = × 
dt tD zD tD 

(4.13) 

Now, in the limit as Dt ® 0, we obtain the chain rule 

d df dz(f z  t( ( ))) = × 
dt dz dt 

(4.14) 

This logical extension of the basic concept of the derivative is known as the chain rule. The 
chain rule is visualized in Figure 4.2. 

4.1.5 Product Rule 

There are many applications where the derivative of the product of two functions is required. 
That is, 

d f( × g ) 
= ? (4.15) 

dt 

Sometimes, it is useful to expand this product. This procedure is easiest to understand by 
again using the fundamental notion of the fnite difference approximation of the derivative 
to deduce 

( × ( + t g t( + ) f t  g td f  g ) f t  D ) × Dt - ( ) × ( )
@ (4.16) 

dt Dt 

Now, use the discrete approximation for the derivative of f(t): 

f t( + Dt ) @ f ( )t + df Dt (4.17) 
dt 
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and a similar expression for g(t) to deduce 

d f( × g ) dg df df dg@ f + g + × Dt (4.18) 
dt dt dt dt dt 

In the limit as Dt ® 0, the term involving Δt vanishes, and the following product rule is 
obtained. 

d f( × g ) dg df (4.19) = f + g
dt dt dt 

4.1.6 Partial Derivatives 

For functions of more than one independent variable, we often need the derivative with 
respect to only one of the dependent variables. This is called the partial derivative. For 
instance, consider a function of two independent variables 

z f x y( , ) (4.20) = 

In many physical problems, x and y would be position coordinates. They could also repre-
sent space and time coordinates. The partial derivative with respect to x is 

æ f x + Dx y, ) - f x y, ö¶f ( ( )
= lim ç ÷ (4.21) 

¶x Dx®0 Dxè ø 

Note that the partial derivative with respect to x implies that the y value remains fxed. Also, 
the notation ∂/∂x is used to signify a partial derivative as opposed to d/dx for a total deriva-
tive. The partial derivative with respect to x at a given location (a,b) is shown geometrically 
in Figure 4.3. 

Figure 4.3 Partial derivatives. 
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In a similar fashion, the partial derivative with respect to y is 

¶ æ f x y + Dy) - f x y) öf ( , ( , 
= lim ç ÷ (4.22)

¶y Dy®0 Dyè ø 

4.2 NUMERICAL DIFFERENTIATION: TAYLOR SERIES 

4.2.1 Taylor Series Expansion 

The Taylor series expansion of the function f(x) gives the value of a function at a point x + Δx 
based on the function and its derivatives at point x. The general expression is 

df Dx2 d2f
f x( + Dx) = f ( )x + Dx × + × +˜ 

dx 2! dx2 

N NDx d f
+ × N 

+ RN (4.23)
N ! dx 

¥
Dxn d fn 

= ×å n! dxn 

n=0 

The remainder or truncation error for an N-term Taylor series is 

N +1 N +1Dx d f
RN = 

)
× N +1 (x + e × Dx) (4.24)

(N + 1 !  dx 

where 0 £ £ 1. This means that the Taylor series is accurate to the order of magnitude ofe 
DxN +1, written as O xN+1).(D 

Figure 4.4 shows the approximation of 

4 3 2f x( ) = - . x -0 15x -0 5x - . x +1 2. (4.25)0 1 . . 0 25 

at x =0 using a zero-order, frst-order, and second-order Taylor series expansion. Clearly, 
the higher the order, the better the Taylor series approximates the given function. There is a 
tradeoff between accuracy and computation time, which becomes an issue when developing 
numerical approximations, such as numerical integration, discussed later in Section 4.6. 

Let’s say you are currently at a known location when x =0. You wish to estimate where 
you will end up at x + Δx. If you only know the current location, the best you can do is use a 
zeroth-order approximation and remain at the current location. However, if you also know 
the frst derivative, you can use a frst-order approximation and get a better prediction. 
Continuing this line of reasoning, if you also know the second derivative, you can use a 
second-order approximation and improve your estimate further. Better and better estimates 
can be obtained at the expense of greater computation time. 
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Figure 4.4 Approximations using zero-order, frst-order, and second-order Taylor series. 

4.2.2 First Derivatives Using Taylor Series 

First derivatives can be derived using Taylor series for forward, backward, central differ-
ences, and three-point schemes as follows. 

The forward difference scheme can be obtained from a Taylor series as 

df
f x  Dx = f x + Dx × +O x( + ) ( )  (D 2 )

dx 

df f x( + Dx) - f ( )x 
= +O xD( )  (4.26) 

dx Dx 

Similarly, the backwards difference scheme is 

df
f x  - Dx = f x - Dx × +O x( ) ( )  (D 2 )

dx 

df f x( ) - f x( - Dx)
= +O xD (4.27) ( )

dx Dx 

The central difference scheme is obtained using both a forward and a backward Taylor 
series up to the second derivative as follows. 

df Dx d f 3f x  Dx) = f x + D × + × +O x( + ( )  x 
2 2 

(D )
dx 2! dx2 

df Dx2 d2f
f x  - Dx = f x - Dx × + × +O x3( ) ( )  2 (D ) (4.28) 

dx 2! dx 

Subtract these formulas and solve for df/dx to get 

df f x( + Dx) - f (x - Dx)
= + O x2(D ) (4.29) 

dx 2Dx 

Similarly, using algebraic combinations of Taylor series with additional points, other 
higher-order fnite difference approximations can be derived. The three-point formulas are 
examples. 
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Figure 4.5 Graphical depiction of forward, backward, and centered fnite difference approximations of a 
frst derivative. 

The three-point forward difference formula is 

df -3f x( ) + 4f x( + Dx) - f x( + 2Dx) 2= +O xD( ) (4.30)
dx 2Dx 

Similarly, the three-point backward difference formula is 

df f x( - 2Dx) - 4f x( - Dx) + 3f x( )  2= +O x(D ) (4.31)
dx 2Dx 

Backward and forward differences have truncation error O(Δx). Central differences and the 
three-point formulas have a truncation error O(Δx2). Figure 4.5 shows a graphical depiction 
of the forward, backward, and centered fnite difference approximations of the frst deriva-
tive. Usually, the centered difference gives greater accuracy. 

4.2.3 Second Derivatives Using Taylor Series 

Write a forward and backward Taylor series up to the third derivative: 

2 2 3 3df Dx d f Dx d f
f x  Dx = f x + Dx × + × + × +O x4( + ) ( )  (D )

dx 2! dx2 3! dx3 

(4.32) 
2 2 3 3df Dx d f Dx d f 4f x  - Dx = f x  - Dx × + × - × +O x( ) ( )  (D )

dx 2! dx2 3! dx3 

Add these and solve for d2f/dx2 to get 

d f2 f x( - Dx) - 2f x( ) + f (x + Dx) 2= +O x2 2 (D ) (4.33)
dx Dx 

Second derivatives are naturally centered and have truncation error O(Δx2). 
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An alternate derivation uses the fundamental defnition of a derivative to deduce 

æ ö
d f2 d æ df ö 1 æ df ö æ df öç ÷= = -2 ç ÷ ç ÷ ç ÷dx dx è dx ø Dx çè dx ø Dx è dx ø Dx ÷ 

x+ x-è 2 2 ø 

1 æ f x( + Dx) - f ( )x f x( ) - f x( - Dx) ö 
= ç - ÷ (4.34)
Dx Dx Dxè ø 

f x( - Dx) - 2f (x) + f x( + Dx)
= 

D 2x 

This is the same as Equation 4.33 derived using a Taylor series. 

4.3 INTEGRALS 

4.3.1 Basic Concept of an Integral 

In Section 4.1, the concept of rate of change of a function, referred to as the derivative, was 
discussed. The derivative was logically derived as the limit of a fnite difference. Now, suppose 
we know the derivative of a function, df/dt=g(t), but want to determine the function itself. If the 
function g(t) is known, how do we determine the function f(t)? We could refer to this process as 
fnding the anti-derivative. The situation is depicted schematically in Figure 4.6. 

In order to resolve this question, the derivative is approximated using a fnite difference 
over the interval from a starting time t0 to a fnal time t. The fnite difference approximation 
for a derivative is 

df t( )  f t - f t0( )  ( )
g t( ) = @ , Dt t t0 = - (4.35)

dt Dt 

If the function at the starting location f(t0) is known, the function at some time t is approxi-
mated as 

f t( ) - f t( )0 = g t( )Dt (4.36) 

Equation 4.35 uses a backward difference. A forward or centered difference could 
also be used. If the step size Δt is relatively small, this approximation will be accurate. 
However, for suffcient accuracy, it is usually necessary to advance the approximation in a 
series of relatively small steps, as shown in Figure 4.7. 

Figure 4.6 The objective of integration: determine the anti-derivative f(t). 
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n 0The solution is advanced from t0 to t = tn in n discrete steps, each of duration Dt = 
t - t 

. 
n 

The function g(t) is evaluated at the corresponding discrete points ti = t0 + i tD . The fnite 
difference approximation applied over each of the n intervals between t0 and t produces the 
following sequence: 

f t( ) - f t( ) @ g t( )Dt 

2 - ( )  g t  
1 0 1 

f t( )  f t1 @ ( )2 Dt 

 (4.37) 
f t( )i - f t( )i-1 @ g t( )i Dt 

 

f t( )  f t  g tn Dtn - ( n-1 ) @ ( )  

When these equations are added together, a telescoping cancellation of terms occurs, result-
ing in 

å 
n 

f t( ) - f t( ) @ g t( )i Dt (4.38)0 

i=1 

This is known as a Riemann sum. If Δt is suffciently small, the summation will produce an 
accurate value for f(t)− f(t0). In the limit as Δt approaches zero, the summation involves an 
infnite number of terms, since n approaches infnity. However, the estimate for f(t)− f(t0) 
becomes perfect. This limiting process is referred to as the integral and is represented with 
the symbol ∫ as follows: 

næ ö t 

f t( ) - f t( ) = lim ç g t( ) Dt ÷ = g t dti ( )* * (4.39)0 
Dt®0 çå ÷ ò 

i=1 *è ø t t0= 

Note that the variable t* is a dummy variable and could be replaced by any other symbol 
except those already used in the expression. In other words, 

t t 

* * g t( )dt = g (symbol)d (symbol)ò ò 
* t t= 0 symbol=t0 

4.3.2 Geometric Interpretation of an 
Integral: Area Under a Curve 

Referring to the image shown in Figure 4.7, each discrete interval represents a rectangle of 
area g t( )i Dt . An integral is the sum of all these rectangles and thus can be geometrically 
envisioned as the area under a curve. Consider the graph of the function g(t*) in Figure 4.8. 
The shaded area under the curve is the integral between t0 and t. 

Note that we have deduced that the concept of an integral (or anti-derivative) can be inter-
preted as the area under a curve. We did not start with this notion of area under the curve 
as the defnition of an integral. 
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Figure 4.7 Integration in discrete steps. 

Figure 4.8 Geometric interpretation of an integral as the area under a curve. 

Let’s return to the foundational application of calculus—displacement and velocity. If 
velocity dx dt = v t/ ( ) is specifed, we can calculate displacement x(t) from a known starting 
position using integration. If our known starting position is x0 at time t0, we get 

t 

x t( ) - x t0 = ò v t( )* dt* @åv ti Dt (4.40) ( )  
n 

( )  
* i=1t t= 0 

If the velocity is known only at discrete times, the second form in Equation 4.40 is used to 
approximate position. 

4.3.3 Mean Value Theorem 

The mean value theorem is stated as 

b 

g t ×dt = b a g x where a < < b (4.41) ò ( )  ( - ) ( )  x 
a 
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Figure 4.9 Geometric interpretation of the mean value theorem. 

The geometric interpretation of the mean value theorem is depicted in Figure 4.9. If g(ξ) is 
the mean value of g in the interval a< t< b, then the area of the rectangle (b− a)g(ξ) exactly 
equals the value of the integral. 

4.3.4 Integration by Parts 

Using the product rule for derivatives given by Equation 4.19, the differential of the product 
of two functions can be expanded and rearranged as 

d f(  )× g = ×f  dg + ×g df (4.42) 

f d× g d f g× g d= (  ) - × f 

Integrate both sides: 
b b b 

d f g  × ff d× g = ( × ) - g d  (4.43) ò ò ò 
a a a 

The frst term on the RHS can be directly evaluated to get 

b b 

× = ( ) ( )  × (4.44) f dg f b g b( )  ( ) - f  a g a - g dfò ò 
a a 

ò 
b 

This process is referred to as integration by parts and is useful if g d× f  is easier to evalu-

ò 
b a 

ate than f d× g. 
a 

4.3.5 Leibniz Rule: Derivatives of Integrals 

Consider a function of t defned in terms of an integral in the form 

b ( )t 

I t  = f x t d, x( )  ( ) (4.45) ò 
x=a ( )t 
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The independent variable t occurs in the integrand, f(x,t), as well as in the limits of integra-
tion, α(t) and β(t). The derivative of this function is 

b ( )t öædI ( )t d ç ÷= f x t dx( , ) (4.46)
dt dt ç ò ÷ 

è x=a ( )t ø 

There are many applications for a mathematical form of this type. Examples include phase 
change problems and boundary layer analysis in fuid mechanics. So, how do we evaluate 
such a function? To answer this question, the basic notion of a derivative is used in a visual 
manner. 

We begin with the following simpler case with constant limits of integration a and b, so 
that the t dependence is only found in the integrand. Equation 4.46 simplifes to 

æ b ödI t( )  d 
f x t d, ) x÷= ç (

dt dt ç ò ÷
è x a= ø 

æ b b ö 
@ 

1 
f x( ,t + Dt dx - f , )ç ) f x t d( x÷ (4.47)

Dt ç ò ò ÷
è x a= x a= ø 

b
f x( ,t + Dt ) - f x( ,t )

= dxò Dt 
x a= 

The derivative has been approximated with a fnite difference. The difference of the two 
integrals in this approximation is the shaded area in Figure 4.10. 

By taking the limit as Δt → 0, the derivative in question becomes 

dI t( )  
b 
æ f x( ,t + Dt ) - f x( ,t ) ö b 

¶f x( , t )
= lim ç ÷dx = dx (4.48)

dt Dt®0 ò Dt ò ¶t 
= è øx a  x a= 

Figure 4.10 The difference of two integrals from Equation 4.47. 
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Figure 4.11 The difference of two integrals from Equation 4.49. 

Next, we now examine the case where only the upper limit of integration varies with t, while 
the integrand and the lower limit of integration have no t dependence. Equation 4.46 reduces to 

b ( )t 
dI ( )t d 

æ ö 
= ç f x( )dx÷ 

dt dt çç ò ÷÷ 
x a= øè 

(4.49) 
b (t+Dt ) b ( )t b (t+Dt )æ ö 

@ 
1 ç f x( )dx - f x( )dx÷ = 

1 
f x( )dx

Dt ç ò ò ÷ Dt òç ÷ 
x a= x=a x=b ( )tè ø 

This integral is shown as the shaded area in Figure 4.11. 
By taking the limit as Δt → 0 in Equation 4.49, we conclude that 

b ( )t 
d æ ö æ b (t + Dt ) - b ( )t ö dbç ò f x( )dx÷ = lim ç f (b ( )t ) ÷ = f (b ( )t ) (4.50)
dt ç ÷ Dt®0 Dt dtè øè x a= ø 

A similar conclusion can be derived when the lower limit of integration is a function of time. 
Substituting Equations 4.48 and 4.50 into Equation 4.46 leads to the general expression 
known as the Leibniz rule. 

b ( )t 
dI ( )t d æ ö 

= f x t dxç ( , ) ÷ 
dt dt ç ò ÷ 

è x=a ( )t ø (4.51) 
b ( )t 

¶f x( ,t ) db da = dx + f (b ( )t ,t ) - f (a ( )t ,t )ò ¶t dt dt 
x=a ( )t 

Note that the derivation and visualization of this expression was facilitated by thinking in 
terms of fnite difference approximation of derivatives. 

4.4 SUMMARY OF DERIVATIVES AND INTEGRALS 

Starting with the fundamental concept of rate of change 

g t( ) = 
df 

(4.52)
dt 

the mathematical concepts of derivatives and integrals can be summarized and visualized as 
shown in Figure 4.12. 
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4.5 THE STEP, PULSE, AND DELTA FUNCTIONS 

4.5.1 The Step Function 

An important function for modeling forcing functions in physical problems is the unit step 
function, shown graphically in Figure 4.13. 

The step function is defned by the following logical expression: 

ì0, t < 0 
H t( ) = í (4.53)

1, t ³ 0î 

The step function is zero when its argument is negative and one when its argument is posi-
tive or zero. The step function models phenomena that suddenly change in magnitude, such 
as a light switch that suddenly turns on. 

4.5.2 The Unit Pulse Function 

Another important forcing function for modeling inputs that are pulsed in time or localized in 
space is the unit pulse function, shown in Figure 4.14. It has a magnitude of 1/Δt over an inter-
val from 0 to Δt and is zero everywhere else. The mathematical expression of this function is 

ì 0, t < 0 

I t( , Dt = 
1 (H t( ) -H t - Dt )) = íï1/Dt, 0 t t) ( £ < D (4.54)
Dt ï 0, t ³ Dtî 

The pulse function can be expressed as a difference in step functions or equivalently, as 
a multiple-part function. The representation in terms of a difference in step functions is 
shown graphically in Figure 4.15. 

The physical response to a pulsed forcing function usually involves various combinations 
of the integral of the pulse function. The integral of the pulse function, activated at to with 
a duration of Δt, is 

ì 0, t t< o 
t ï 

* * ït t- oq ( )t = I t - t , Dt dt = , o £ <  + Dt( o ) í t t toò Dt 
* ït =0 (4.55)ï 1, t t³ o + Dtî 

-t to=
Dt

( ( - o ) -H ( - o - Dt )) + H (t t - Dt )H t t t t  - o 

Figure 4.13 The unit step function. 
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Figure 4.14 The unit pulse function. 

Figure 4.15 Unit pulse function represented as a difference in step functions. 

Figure 4.16 The unit pulse function and the integral of the impulse. 

The integrand I and integral θ are displayed in Figure 4.16. 
Note that t* is the dummy variable of integration, while to is some particular value. This 

function can be expressed as a multiple-part function or equivalently, in terms of step func-
tions. The integral can be evaluated by considering the upper limit of integration in each of 
the three possible regions. 

Another important integral is that of the impulse function times a smoothly varying 
function: 

t t 

* * * * *f t  × I t - t , Dt dt f t  I t t , Dt dt = f t  ××q ( )t (4.56) ò ( )  ( o ) @ ( )o ò ( - o ) ( )o 

* * t =0 t =0 
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This approximation is justifed if ∆t is relatively small, such that f t( ) @ f t( )o  over the entire 
pulse, as is the case in Figure 4.17. 

4.5.3 The Delta Function 

The delta function is the limit of the pulse function as Δt → 0. It is written in the form 

d ( )t = lim (I t t  = I t,0 (4.57)( , D )) ( )
Dt®0 

As such, the delta is not a well-behaved function in the normal sense—it can only be defned 
as the limit of a well-behaved function. However, it is useful in modeling forcing functions 
or physical inputs that are very short in duration compared with the system’s time constant. 

Since the delta function has zero thickness and infnite height, it is impossible to plot. 
However, the graph is often represented as shown in Figure 4.18. 

Taking the limit of the pulse function produces the following important properties pecu-
liar to the delta function: 

t tæ ö 
* * ç * * ÷d (t - to )dt = lim I t( - to, Dt )dt = H t( - to ) (4.58)ò Dt®0 ç ò ÷ 

* * t =0 è t =0 ø 

t tæ ö 
* * * * * *f t  ×d t - t dt = lim ç f t  × I t - t , Dt dt ÷ = f t( ) ×H t( - t ) (4.59)ò ( )  ( o ) ò ( )  ( o ) o o

Dt®0 ç ÷ 
* * t =0 è t =0 ø 

Figure 4.17 The impulse function for relatively small Δt such that f t( ) @ f t( )o . 

Figure 4.18 The delta function. 
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Thus, the integral of the delta function sifts particular values of f(t). 
Over any interval of integration, Equations 4.58 and 4.59 can be generalized as 

b ì0, xo < a 
* * ïd ( - o ) = í , £ o £ (4.60) x  x dx 1 a x  bò 

* ï =x a  0, xo > bî 

b ì 0, xo < a 
* * * ï

f x d x - x  dx = f x( ), £ o £ bò ( ) ( o ) í o a x  (4.61) 
* ï x a  î 0, xo = > b 

Thus, it is shown that when integrated, the delta function sifts out particular values of a 
function. All of this can be extremely diffcult to understand unless one thinks in terms of 
the limit of the unit pulse function, which is completely understandable and straightforward. 

4.6 NUMERICAL INTEGRATION 

Numerical integration is the process of approximating the integral: 

b 

I = f  x d  (4.62) ( ) xò 
x a= 

The integral can be visualized as the area under the curve. This area can be approximated 
using a simple function to represent the integrand. The Newton–Cotes integration rules 
are obtained by approximating the integrand with a polynomial that interpolates f(x) at 
equally spaced points. Several possibilities are shown in Figure 4.19. The higher-order 
polynomials follow the curvature of the integrand more closely and give a more accurate 
estimate of the integral. 

The area estimate can also be improved by dividing the area into multiple segments. For 
instance, Figure 4.20 shows the approximate integral using three segments with the trap-
ezoid and Simpson’s rule. These are called the composite rules. 

Figure 4.19 (a) The trapezoid rule: linear interpolation, (b) Simpson’s rule: quadratic interpolation, (c) 
Simpson’s 3/8 rule: cubic interpolation. 
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Figure 4.20 (a) Composite trapezoid rule; (b) composite Simpson’s rule. 

A few selected examples of how integration is used to evaluate areas in engineering and 
scientifc applications are: 

a) A surveyor might need to know the area of a feld bounded by a meandering stream 
and two roads. 

b) A hydrologist might need to know the cross-sectional area of a river. 
c) A structural engineer might need to determine the net force due to a nonuniform wind 

blowing against the side of a skyscraper. 

4.6.1 Trapezoid Rule 

The trapezoid rule uses a linear interpolation to approximate f(x). An integral using the 
trapezoid rule approximation is shown in Figure 4.21. 

Replacing the function f(x) by a linear approximation gives 

b b 
æ f b( ) - f a( )  ö 

I = f ( )x dx @ ç f a( ) + x a)÷dx (4.63) ( -ò ò -b a  
a a è ø 

Although the exact integral may be diffcult to evaluate, the trapezoidal approximation is easy 
to evaluate. The result of carrying out the integration in Equation 4.63 is the trapezoid rule: 

)æ f a( ) + f b( ) ö 
I @ (b - a ç ÷ (4.64) 

2è ø 

Figure 4.21 The trapezoid approximation of an integral. 
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Figure 4.22 The composite trapezoid rule. 

Geometrically, this formula is interpreted as 

I = width ́  average height (4.65) 

In fact, due to the mean value concept of basic calculus, all numerical approximations to an 
integral can be interpreted as width× average height. 

One way to improve the accuracy of the trapezoid rule is to divide the interval into a 
number of segments and apply the method to each segment. This is known as the composite 
trapezoid rule. The idea is shown in Figure 4.22. 

If the entire region is divided into n segments, the width of each segment is h = b  a n) / .( -
The total integral is 

b x1 x2 xn 

I = f x dx = f x dx  f x dx  f x dx( )  ( ) + ( ) + + ( )ò ò ò ò 
x a x x0 1 n-1= x (4.66) 

f x( )0 + ( )1 f x( ) f x2 f x( n- ) + ( )n( f x  1 + ( )  1 f x
@ h + h + + h 

2 2 2 

where xi = + ×a i h, i = ¼n . Combining terms in Equation 4.66 produces the composite 0, 
trapezoid rule: 

æ n-1 ö 
I @ h ç f x( ) + 2 f xi + f x( )n ÷ (4.67) 

2 ç 0 å ( )  ÷
è i=1 ø 

This formula can also be interpreted as I=width× average height by writing Equation 4.67 as 

æ ö 
I = b - a 

1 ç ( ) + 2 
n-1 

f xi f x  (4.68) ( ) f x0 ( ) + ( )n ÷°̨̃  2n ç å ÷
è i=1 øwidth ˜˝˝˝˝˝̋ °˝˝˝˝˝˝̨  

average hheight 

We now turn to the accuracy of the trapezoid rule. When we approximate the area under a 
curve as the area under a simple straight line segment, there is some penalty in the form of 
error. Using Taylor series, an estimate for the error using a single trapezoid is 
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E = - b - a f ² x (4.69) 
1 ( )3 ( )

12 

where f ²(x ) is the second derivative and ξ lies somewhere in the interval a to b. Apply this 
error estimate to the composite trapezoid rule to fnd 

E = - h f ² x (4.70) 
1 3å 

n 

( )i
12 

i=1 

The mean value theorem of calculus implies that 

f ² = 
1 å 

n

f ² xi (4.71) ( )
n 

i=1 

å 
n 

( )  b a ² -
f ² xi = nf ² = f 

h 
i=1 

Thus, 

1 2E = - b - a h f ² (4.72) ( )
12 

The conclusion is that the error is of the order h2. The implication is that if we cut the mesh 
size by 2, we should expect the error to decrease by a factor of about 4. 

Example 

As an example, consider the integral 

b b 

-xI = f ( )x dx = xe dx (4.73) ò ò 
x a= x a= 

In this case, the exact integral can be determined as 

x b= -x -x -b -b -a -aIexact = -( xe - e )
x a  

= -( be - e ) - -( ae - e ) (4.74) 
= 

Choosing a =0 and b=4 gives Iexact =0.9084. 
Numerical approximations using one, two, four, and eight trapezoids are shown 

graphically in Figure 4.23. It can be seen that a single trapezoid signifcantly underesti-
mates the integral in this case. Using more trapezoids gives continually better estimates. 
One can always obtain greater accuracy at the expense of greater computational effort. 
Also, the error decreases by a factor of approximately h2, as anticipated from the error 
analysis given by Equation 4.72. 

4.6.2 Trapezoid Rule for Unequal Segments 

When integrating a function for which we have a formula y = f(x), we can use the formula to 
determine f(x) at any x we wish. We can thus perform trapezoidal rule integration with any 
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Figure 4.23 The trapezoid rule for one, two, four, and eight trapezoids. 

step size. If we want to integrate discrete data, however, the values of x for which we have 
values of f are determined by the experimental procedure. Furthermore, these values of x 
may not even be spaced evenly, as is the case for the data shown in Figure 4.24. 

The trapezoidal rule can still be used in this case. The integral is still a sum of trapezoid 
areas, except now the trapezoids are not all of the same width. For n +1 pairs of x-f data 
points, the numerical approximation of the integral is obtained by simply applying the trap-
ezoid rule over each segment and adding the results: 

f x( ) + f x( )  f x( ) + f x( )  f x( ) + f x( )0 1 1 2 n-1 nI h1 + h2  n = + + h 
2 2 2 

(4.75) 

å 
n f x( )  

= hi
f i-1

2 

+ f x( )i 
i=1 

Figure 4.24 The trapezoid rule for uneven segments. 
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Here hi = xi - xi-1 is the width of segment i. For constant hi, this reduces to the normal com-
posite trapezoid rule, Equation 4.67. 

4.6.3 Simpson’s Rule 

Instead of a linear interpolation as used with the trapezoid rule, Simpson’s rules use higher-
order polynomials. The quadratic and cubic interpolating functions are shown in the fol-
lowing Figure 4.25. 

Simpson’s rule uses a quadratic polynomial to approximate the integrand. Using a sin-
gle panel, the integral from a = x0 to b= x2 is approximated using a Lagrange interpolating 
function: 

x2 

I = f ( )x dxò 
x0 

x æ x x1 ) x x- ) - 0 x - x )2 ( - ( 2 (x x )( 2@ ç )
f x( )0 + )

f x( )1 (4.76)ò (x0 - x1 )(x0 - x2 (x1 - x0 )(x1 - x2 
x0 
è
ç 

(x x- (x x1) - ) ö 
+ 0 f x( )÷dx÷(x2 - x0 )(x2 - x1 ) 2 

ø 

The result of the integration is 

h
I @ (f x( )0 + 4f x( )1 + f x( )) (4.77)

3
2 

where h = (b - a) /2 = (x2 - x0 ) /2. This is known as Simpson’s 1/3 rule, since h is multiplied 

by one-third. 

Figure 4.25 (a) Simpson’s rule: area under a parabola connecting three points. (b) Simpson’s 3/8 rule: area 
under a cubic equation connecting four points. 
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Just like the trapezoid rule, Simpson’s rule can be improved by dividing the interval into n 
segments of equal width h=(b −a)/n. The total integral is 

b x2 x4 xn 

( )  + f x dxI = f ( )x dx = f x dx f x d( ) x + + ( )ò ò ò ò 
x a x x= x0 2 n-2 

@
h

f x( ) + 4f x( ) + f x( ) + h
f x( ) + 4f x( ) + f x( ) +¼  (4.78)( 0 1 2 ) ( 2 3 4 )

3 3 

h+ (f x( n-2 ) + 4f x( n-1 ) + f x( )n )
3 

Grouping terms produces the composite Simpson’s 1/3 rule. 

n-1 n-2æ öh
I = ç f x  + 4å f x( ) + 2 f x  f xn ÷ (4.79)( )0 i å ( )i + ( )

3 ç ÷
è i=1 3, ,¼ i=2 4, ,¼ ø 

Note that the number of segments n must be a multiple of 2 in order to apply this rule. 
An error estimate can be obtained by a procedure similar to that used for the trap-

ezoid rule: 

1 5 ( )4 b a-
Single segment: E = - h f x , h =( )

90 2 
(4.80) 

1 1 4 ( )4 -
Composite rule: E = - ( - )h f , 

b a
b a  h = 

3 180 n 

The conclusion is that the error E is O(h4). This implies that by cutting h in half, the expected 
error decreases by a factor of 16. Also, the error is proportional to the fourth derivative; 
thus, the composite Simpson’s 1/3 rule gives an exact answer for polynomials of order three 
or lower. Comparing with the error analysis of the trapezoid rule, we would have expected 
the error to be proportional to only the third derivative. 

A numerical example is shown in Figure 4.26 for the case used previously for the trap-
ezoid rule displayed in Figure 4.23. 

b 4 

-xI = f ( )x dx = xe dx = 0.9084 (4.81)ò ò 
x a  x 0= = 

4.6.4 Simpson’s 3/8 Rule 

In a manner similar to the derivation of Simpson’s rule using Equation 4.76, a third-order 
Lagrange interpolating function can be used to obtain 

I = 
3h (f x( )0 + 3f x( )1 + 3f x( )2 + f x( )3 ) (4.82) 
8 
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Figure 4.26 Accuracy of Simpson’s rule. 

-b a  x3 - x0h = = 
3 3 

The error with this approximation is 

3 5 ( )4Single segment: E = - h f ( )x (4.83) 
80 

4.6.5 Gauss Quadrature 

The Newton–Cotes rules, such as the trapezoid and Simpson’s rules, use equally spaced 
function values. For example, as depicted in the left panel of Figure 4.27, the trapezoid 
rule uses the area under a straight line and uses the endpoints of the interval—resulting 
in a rather large error for the case shown. Now, suppose that the constraint of fxed base 
points is removed, and any points could be chosen to form a straight line, as shown in 
the right panel of Figure 4.27. By positioning these points wisely, we could get a straight 
line that could balance the positive and negative errors. This strategy is called Gauss 
quadrature. 

First we consider a two-point Gauss–Legendre formula. The idea is to approximate an 
integral using a formula of the type 

I c f x  + c f x( )  (4.84) = ( )0 0 1 1 
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Figure 4.27 Comparison of the trapezoid rule and two-point Gauss quadrature. 

where both the coeffcients, c0 and c1, as well as the function evaluation points, x0 and x1, 
are unknown. After scaling the limits of integration to the range [-1, 1], it can be shown that 

c0 = c1 = 1 (4.85) 

1 1 
x0 = - , x1 = 

3 3 

A graphical representation of the two-point Gauss–Legendre formula is depicted in 
Figure 4.28. 

In a similar manner, more accurate, higher-order approximations can be derived. For an 
n-point Gauss–Legendre formula, the numerical approximation for an integral is 

å 
n-1 

I = c f x( )  (4.86) n n 

i=0 

Figure 4.28 The two-point Gauss quadrature. 
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Figure 4.29 Weighting factors and function arguments for Gauss–Legendre formulas. 

The results using 1 through 5 points are summarized in Figure 4.29. The accuracy or trun-
cation error improves signifcantly with the higher-order approximations. 

4.7 MULTIPLE INTEGRALS 

A double integral can be written as 

d b b dæ ö æ ö 
I = f x y dx dy = , y d  (4.87)ç , ÷ f x y d  x 

ç 
( )

÷ 
ç ( ) ÷ò ò ò òç ÷ 

y c= x a= ø = y cè x a è = ø 

This integral is visualized as the volume under a two-dimensional surface, as shown in 
Figure 4.30. 

Multiple integrals can be computed numerically by extending the methods for a function 
of one variable. Methods such as the trapezoid or Simpson’s rule can readily be applied. 
First, a rule is applied in one dimension with each value of the second dimension held con-
stant. Then, the rule is applied in the second dimension to obtain a numerical integration of 
a double integral. 
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Figure 4.30 A double integral as the volume under a surface. 

PROBLEMS 

Problem 4.1 

Determine and plot the derivative of the step function, H(t). 

ì0, t < 0 
H t( ) = í

1, t ³ 0î 

Problem 4.2 

Determine and plot the derivative of the ramp function, Ramp(t). 

ì0, t < 0 
Ramp ( )t = ×t H t( ) = í 

t, t ³ 0î 

Problem 4.3 

Determine and plot the derivative of the pulse function. 

ì0, t < 0 

( )  ( ) ( ) í
ï 

tPulse t = H t -H t - Dt = 1, 0 £ £ Dt 
ï0, t > Dtî 
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Problem 4.4 

Determine and plot the derivative of the triangle function. 
ì 0, t < -1 
ï
ït +1, -1 t 

Triangle ( )t = í 
£ < 0 

1 - t, 0 £ t < 1ï 
ï 0, t ³ 1î 

Problem 4.5 

Consider the function f(t) shown. 

Evaluate and sketch the following integrals, I(t). 

3 

a) I t( ) = f t( )o dtoò 
to =0 

8 

b) I t( ) = f t( )o dtoò 
to =0 

t 

c) I t( ) = f t( )o dtoò 
to =0 

Problem 4.6 

Consider the pulse function f(t) shown. 
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Evaluate and sketch the following integrals. Note that the independent variable t can be 
less than t1 or greater than t1. Since the integrand f(t) is a two-part function, the integral I(t) 
is best evaluated as a two-part function. 

t 

a) I t( ) = f t( )o dtoò 
to =0 

ò 
t 

(t to )/tb) I t( ) = f t( )o e dto 

to =0 

Problem 4.7: Pulse Integral 

Consider the impulse function S(t). 

a) Determine the symbolic solution and sketch the functionF t  = S to dt . Examine 1 ( )  
t 

( )  oòto =0the limit as Δt → 0. 

2 ( )  
t 

( )o 
- -(t to )/t 

ob) Determine the symbolic solution and sketch the function F t = S t e dt .òto =0Examine the limit as Δt → 0. 
c) Evaluate the function F2 from part (b) using numerical integration. Use t1= 2, Δt =1, 

and τ=1. Plot both the analytical solution and the numerical solution on the same 
graph. 

Problem 4.8: Pulses 

Consider the function f(t) shown. 

Determine an expression for the integral I t  = f to dt  over the entire range 0 ≤ t≤ 3.( )  
t 

( )  oò 0to =Also, sketch I(t). 
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Problem 4.9 

What are the units of the following expressions? In all cases, t is in seconds(s) and x is in 
meters(m). 

a) δ(t) 
b) δ(x)δ(t) 
c) H(t)=Step function 
d) Ramp(x)=Ramp function 

Problem 4.10 

Evaluate the following integrals. H is the step function and δ(x) is the delta function. 

3 

a) H x( -1)dxò 
x=0 

3 

b) H x( -1)dxò 
x=2 

3 

c) d (x - 2)dx ò 
x=0 

3 

d) d (x - 5)dx ò 
x=0 

3 

e) ò f x( )d (x - 2)dx 
x=0 

3 

f) ò f x( )d (x - 5)dx 
x=0 

Problem 4.11 

Evaluate and sketch the following integrals. 

b 

a) f x( ) = d ( - ox x dx) oò 
x =ao 

b 

ò o ob) f x( ) = H x( - x d) x 
x =ao 
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b 

c) f x = x x dx ( )  ( - o ) oò 
x =ao 

t 

1 1 o 1 od) f t( ,t ) = ò d (t - t d) t 
to =0 

ò 
t 

e) f t, ) = f t t dt)2 ( t1 1 ( o, 1 o, where f1 is the function determined in part (d). 
to =0 

Problem 4.12 

2 z d d
The error function is erf z( ) = e -x2 

dx . Determine erf z( ) and erf z( )2 . 
p òx=0 dz dz 

Problem 4.13: Convolution Integral 

Two functions, f(t) and h(t), are shown in the fgure. 

A third function g(t) is related to the two functions plotted in the fgure using the follow-
ing integral: 

t 

g t( ) = h( )t f (t -t )dtò 
0 

This integral is the well-known convolution integral, used to determine how a signal f(t) will 
be fltered by a system’s impulse response h(τ). 

a) Determine the function g(t)for all values of t. 
b) Plot the function g(t). 

Hint: This integral is best undertaken by breaking the functions up into sections. 

Problem 4.14 

Why do we even need numerical integration? Why not simply evaluate all integrals in an 
exact, symbolic form? 
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Problem 4.15: Numerical Integration Basic 

Consider the integral I = ò 
4 

(1 - e -2x )dx. Evaluate this integral using the methods listed. 
x=0 

Rule Numerical Approximation % Error 

Exact 0 
Trapezoid, n=1 
Trapezoid, n=2 
Trapezoid, n=4 
Simpson’s 1/3, n=2 
Simpson’s 1/3, n=4 
Simpson’s 3/8, n=3 

Problem 4.16: erf 

a) Use the trapezoid rule to evaluate erf(1) for a sequence of increasing n (decreasing h): 
n=2p for p=1 to 10. 

b) Determine the n required to get an absolute error less than 10−7. 

Problem 4.17: Distance from Velocity 

The following velocity versus time data is available: 

t (s) 0 3 4 6 8 12 
v (m/s) 0 9 16 36 33 25 

Estimate the distance traveled using the trapezoid rule with 

a) n=1 (one trapezoid) 
b) n=2 (two trapezoids) 
c) all the available data 

Make sketches of the data and the various approximations. 

Problem 4.18: Ellipse 
p /2 

The perimeter P of an ellipse is given by P = 4aò
where 0 

a=major axis 
b=minor axis 

k d-1 2 2sin q q  

k a b a= +2 2 / 

Write a function that calculates the perimeter of an ellipse. The input arguments should 
be a and b, and the output argument should be P. Use your function to calculate the perim-
eter of the following ellipses: 

2 2 2 2 2 2x y x y x y
a) + = 1, b) + = 1, c) + = 12 2 2 2 2 25 2 4 7 100 2 
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Problem 4.19 

Consider the function F(x) shown. 

6 

We wish to compute the integral I t( )  F x( )dx= ò0 

a) Compute the exact value of the integral. 
b) Approximate the integral with the trapezoid rule using 1, 2, 3, 6, and 106 trapezoids. 
c) Approximate the integral with the Simpson’s 1/3 rule using one and two panels. 

Problem 4.20: Football 

To estimate the surface area of a football, the diameter of the ball is measured at different 
points along the ball. 

z (in) 0 1.5 3 4.5 6 
d (in) 0.0 2.9 4.8 5.8 6.2 

L 

The surface area can be determined from S = d × dzp ò0 

a) Use the composite trapezoid rule with the given data to estimate the surface area of the ball. 
b) Use the composite Simpson’s rule with the given data to estimate the surface area of 

the ball. 

Problem 4.21: Sailboat 

A cross section of a racing sailboat is shown. 
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H is the height of the mast and W is the distance to support cable attachment. Wind forces 
exerted per length of mast, f(z) (lb/ft), vary as a function of distance above the deck, z (ft). 
A good approximation of the wind force per length of mast is 

æ z ö -
2 

H
z 

f z( ) = 200ç ÷e (lb/ft)
è 5 + z ø 

Assume that the right support cable is completely slack and the mast joins the deck in a 
manner that transmits horizontal and vertical forces but no moments. The total force, F (lb), 
exerted by the wind on the mast is 

H 

F = f z d×( )  zò 
0 

Write a function that computes the total force, F (lb), and the tension in the left mast support 
cable, T (lb), as a function of H (ft) and W (ft). To compute T, sum the moments about the 

H 

base of the mast. The moment caused by the variable wind force is M = z × f z( ) × dz. Next, ò 
0 

write a separate fle to explore the system parameters. For H=30 ft and W=3 ft, compute F 
and T. Also, plot F and T versus H in the range 10 ft< H < 40 ft while keeping W=3 ft. 

Problem 4.22: Force on a Dam 

Water exerts pressure on the upstream face of a dam. The pressure increases linearly with 
depth and can be characterized by p z( ) = rg D - )( z 
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where 
p(z) is pressure in N/m2 exerted at an elevation z meters above the reservoir bottom 

ρ is density of water, which for this problem is assumed to be a constant 103 kg/m3 

g is acceleration due to gravity (9.81 m/s2) 
D is elevation (in m) of the water surface above the reservoir bottom 

Omitting atmospheric pressure (because it works against both sides of the dam face and 
essentially cancels out), the total force ft can be determined by multiplying pressure times 
the area of the dam face. Because both pressure and area vary with elevation, the total force 
is obtained by evaluating 

D 

ft = rg × D z w z ×dz( - )  ( )  ò 
0 

where w(z) is width of the dam face (m) at elevation z. The line of action can also be obtained 
by evaluating 

ò 
D 

z g  D z w z  dzr × ( - )  ( ) × 
d = 0 

D 

rg D z w- )  ( )z d× z× (ò0 

The following table contains data of stream width at various elevations. 

Elevation z (m) 0 10 20 30 40 50 60 
Width w (m) 122 130 135 160 175 190 200 

Write a function that accepts vectors containing the z locations and the corresponding w 
values on the dam face. The function should perform numerical integration using the trap-
ezoid rule for discrete data and return the values ft and d. Test your function using the 
specifc data given. 

Problem 4.23: Wind Force 

A wind force distributed against the side of a skyscraper is measured as 

Height z (m) 0 30 60 90 120 150 180 210 240 
Force F (N/m) 0 340 1200 1600 2700 3100 3200 3500 3800 

Compute the net force and line of action due to this distributed wind. The total force F 
exerted on the mast is 

H 

Ft = F z dzò ( )  
0 

The line of action can also be determined by integration: 

zF ( )z dz 
0d = 
ò
ò 

H

H 

F z( )dz 
0 
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Problem 4.24: Blackbody Radiation Function 

The thermal radiation emitted from an object is a function of its absolute temperature. A 
blackbody emitter is an ideal surface that emits radiation uniformly in all directions and 
absorbs all radiation that is incident on its surface. The variation of the emissive power, Eλ,b, 
as a function of wavelength for a blackbody emitter is described by the Planck distribution 

El b, = 
c1 

æ5 æ c2l exp ç ç
è è lT 

ö ö 
÷ -1÷ 
ø ø 

æ 
ç
è

2×W m  
mm 

ö 
÷ 
ø 

where 
λ = 
T = 

wavelength (µm) 
absolute temperature (K) 

c1 

c2 

= 
= 

3.7418 × 108 W*µm4/m2 

1.4388 × 104 µm*K 

The fraction of energy emitted in the wavelength band 0 £ £ * is the blackbody radia-l l  
tion function, 

*l T 

* El ,bF0®l* (l T ò 5 d T )) = (l 
sT 

0 

where σ = Stefan–Boltzmann constant=5.6696 × 10−8 W/m2 K4 

The integrand that defnes F  depends on the product T, not on and T separately. 0®l* 

a) Plot Eλ,b versus λ both on a linear scale and on the classical log-log scale. On each 
graph, plot various values of T from 50 K to 5800 K (surface of the sun). 

b) Create a function to evaluate F  as a function of the product λT. Please use this func-0®l* 

tion throughout the remainder of this problem. 
c) Plot F0®l* in the range λT=0 to 20,000 µm K. 
d) The range of visible light for a typical human is 0.4 to 0.7 µm. Determine the fraction 

of solar radiation in the visible range, assuming the sun as a blackbody at 5800 K. 
e) Emissivity is defned as the actual amount of radiation emitted by a real surface divided 

by the radiation that a blackbody would emit at the same temperature. 

ElSpectral emissivity = el = 
El ,b 

E E
Total emissivity = =  =e 

Eb sT 4 

ò
¥ 

E = e E ll l ,bd 
l=0 

f) Consider surfaces with the following spectral variations of emissivity. For each case, 
plot the total emissivity as a function of temperature in the range T =0 to 5000 K. 
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Problem 4.25: Volume Flow Rate 

The volume fow rate of a fuid fowing in a round pipe of radius r0 is 

r0 

Q = òv ( )r 2p r dr 
0 

The velocity can be approximated by 

1 6/ 
æ r ö 

v r( ) = 2 1-ç ÷
è r0 ø 

a) Create a function to compute Q as a function of r0. Evaluate the integral numerically. 
b) Use your function to plot Q versus r0 in the range 0< r0 < 6 cm. 



https://taylorandfrancis.com/


77 

 

 
 
 
 
 
 
 
 
 
 
 

Chapter 5 

Linear Algebra 

CHAPTER OBJECTIVES 

This chapter consists of the fundamental concepts and characteristics of simultaneous systems 
of linear algebraic equations. Numerical methods to evaluate linear systems are presented. 

Specifc objectives and topics covered are 

• Cause and effect 
• Selected applications 
• Geometric interpretations 
• Possibility of solutions 
• Characteristics of square, overdetermined, and underdetermined systems 
• Row operations 
• Determinants and Cramer’s rule 
• Gaussian elimination and LU factorization 
• Gauss–Seidel iteration 
• Matrix inversion 
• Least squares regression 
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5.1 INTRODUCTION 

We examine the general case of m simultaneous algebraic equations involving n unknown 
quantities, x x  x1, ,2 , ,n 

f x x, , , x ) =( ˜ 0 

f x x, , , x ) = 
1 1 2 n 

2 ( 1 2 ˜ n 0 (5.1) 

° 
f x x, , , xm ( 1 2 ˜ n ) = 0 

This system of equations can be either linear or nonlinear. The general form of m simultane-
ous linear equations involving n unknown quantities is 

a x + a x + ̃  + a x = b11 1 12 2  1n n  1 

a x + a x +˜ + a x = b (5.2)21 1 22 2  2n n  2 

° 
a x1 1 + a x +˜ + a x = bmm m2 2  mn n 

These simultaneous equations are usually written in the matrix form 

A x  b (5.3)* = 

where 

ùéùé
é a11 a12 ˜ a1n ù ê 

ê 
ê 
ê 
ê 
êë 

x1 

x2 

˛ 
xm 

ú 
ú 
ú 
ú 
ú 
úû 

, b = 

ê 
ê 
ê 
ê 
ê 
êë 

b1 

b2 

˛ 
bm 

ú 
ú 
ú 
ú 
ú 
úû 

ê
ê
ê
ê 

ú
ú
ú
ú 

a21 a22 ˜ a2n 

° 
A = (5.4), x = 

am1 am2 ˜ amnë û 

There are numerous general procedures to solve systems of equations, such as Gaussian 
elimination and LU decomposition. There are numerous other procedures designed to han-
dle special types of systems, such as the Thomas algorithm for tridiagonal systems and 
conjugate-gradient methods for sparse systems. A variety of iterative procedures, such as the 
Gauss–Seidel method, are also available to obtain approximate solutions. 

5.2 CAUSE AND EFFECT 

Systems of coupled, linear algebraic equations can be found in all branches of engineer-
ing and physics. Applications are numerous and of great importance. The general linear 
system has the form A*x = b. Usually, the matrix A contains the system parameters that 
represent how parts of the system interact with other parts. The vector b contains the forc-
ing functions or external stimuli acting on the system. The vector x represents the resulting 
unknown response or state of the system, which we are trying to determine. Systems of 
linear equations can thus be cast as a cause and effect relationship, as depicted in Figure 5.1. 

This cause–effect or stimuli–response relationship could also be expressed as 

System parameters Response = Stimuli[ ] { } { } 
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Linear Algebra 79 

Figure 5.1 Cause and effect relationship between variables in a system of algebraic equations. 

5.3 APPLICATIONS 

5.3.1 Networks 

Many systems of mechanical, electrical, and thermal systems can be modeled as a network of 
components. For example, consider the cooling of an integrated circuit (IC) package shown 
in Figure 5.2, where heat is generated in the electronic device at a rate Qc and dissipated by 
convection with the surrounding air and conduction through the wall. 
The objective here is to fnd the unknown response variables as a function of the system 
parameters and forcing functions. The equations required to determine the response are 
obtained by applying (1) energy conservation to each junction and (2) Q= ΔT/R in each leg 
of the thermal circuit. These equations are summarized in Table 5.1. 

The energy balance at node Tw can be used to equate Q2 =Q5 and immediately eliminate 
Q5 as an unknown. Thus, the seven remaining unknowns can be put in a matrix by isolating 
the unknowns to get 

R1 0 0 0 -1 1 0 0é éù Q1 éù ù 
ê
ê
ê
ê
ê
ê
ê
ê
ê 

ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

= 

ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
û 

ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
û 

0 2 0 0 0 -1 1 0R Q2 

Q3 

Q4 

Tc 

Tp 

0 0 3 0 1 0 0R - Ta 

0 0 0 4 0 -1 0R Ta 

0 5 0 0 0 0 1 

1 0 1 0 0 0 0 

R - -
Qc 

Ta 

1 1 0 1 0 0 0 0Twë 

Solving these equations gives the unknown heat fows and temperatures. 

- -

ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
û 

Forcing Functions 
Qc = heat generation (W) 

Ta = ambient air temperature (K) 

Physical System 
Ri’s = thermal resistances (K/W) 

Response 
Tc = chip temperature (K) 
Tp = plate temperature (K) 
Tw = wall temperature (K) 
Qi’s = heat flow rates (W) 

Figure 5.2 Thermal circuit modeling electronic cooling. The variables are defned and categorized in 
the cause–effect diagram. 
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Table 5.1 Equations for the thermal circuit 

Flow Rates Energy Balances 

T Q 1+: - c cR Q = T T /R Node : = Q Q31 1 ( c p ) 1

Node p : 1 = 2 4T Q Q + QR Q = T -T ) /R2 : 2 ( p w 2

Node w : 2 = 5
R Q: = T T R3 3 ( c - a ) / 3

T Q Q

R Q: = T -T R4 4 ( p a ) / 4

R Q = T -T Ra / 55: 5 ( w ) 

5.3.2 Finite Difference Equations 

Another major application of linear algebra occurs in the numerical solution of differential 
equations. Consider steady one-dimensional heat conduction in a region of length L with 
internal heat generation g(x). The ends are maintained at fxed temperatures. The model is 
displayed in Figure 5.3. 

The variables are categorized and defned in the following cause–effect diagram. 

Forcing Functions System Response 
g=heat generation rate (W/m3) L =region length (m) T(x)= temp distribution (K) ⇒ ⇒T0 = surface temp at x=0 (K) k=thermal conductivity (W/m·K) 

TL = surface temp at x=L (K) 

The mathematical formulation of this problem consists of the steady-state energy equation 
with both boundary temperatures specifed. These conditions are expressed with the follow-
ing mathematical model: 

2d T  g 
2 + = 0 (5.5) 

dx k 

T T0, x= = 0 
(5.6) 

T TL, x L= = 

The heat conduction equation is approximated at discrete points, xi = (i − 1)Δx (Figure 5.4). 

Figure 5.3 Steady-state, one-dimensional heat conduction problem. 

Figure 5.4 Finite difference grid for steady-state, one-dimensional heat conduction. 
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The fnite difference approximation of Equation 5.5 at a typical interior node i is 

æTi -1 - 2Ti +Ti +1 ök g 0 valid for i = 2 3, , , ii+ = ,  -1 (5.7)ç 2 ÷
è Dx ø 

This produces the following set of simultaneous linear algebraic equations for the unknown 
temperatures Ti, i=2, 3, …, ii − 1: 

˜2 1 

2 

- 0 0é éù T2 éù +S T0 ù 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

ú
ú
ú
ú
ú
ú
ú 

ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

= 

ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
û 

ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
û 

˜1 

0 

- 1 

° 

- 0 0 T3 

˛ 
Ti 

˛ 

S 

˛ 
S 

˛ 
S 

+S TL 

(5.8)0 0 -1 2 1 0 0-
˛ ° 

1 

0 ˜ 0 

- 2 -1 

1 2 

Tii 2-

Tii -
ú 
ú
û 1-

where S g= × Dx k2 / . The temperatures at both surfaces are known, so no fnite difference 
equation is need for nodes 1 and ii. This set of equations has a tridiagonal structure that can 
be used to solve the system of equations in an extremely effcient manner. This simple exam-
ple is reminiscent of the more general strategy where differential equations are discretized 
into a set of simultaneous linear algebraic equations suitable for computation on a computer. 

5.4 GEOMETRIC INTERPRETATIONS 

Simultaneous linear equations have direct geometric interpretations. For the purpose of 
visualization, we will consider two simultaneous equations in the form 

Equation 1 : a x + a x = b( )  11 1 12 2  1 
(5.9)

Equation 2 : a x + a x = b( )  21 1 22 2  2 

These can be expressed in matrix form as 

é éù éù b1 ùa a11 12 x1 (5.10)ú
û 
= ê
ë

ê
ë

ê
ë
ú
û

ú
ûb2a a21 22 x2 

These can be visualized using either a row or a column interpretation. 

5.4.1 Row Interpretation 

The simultaneous solution of these equations for x1 and x2 can be visualized graphically as 
the intersection of the two straight lines defned by Equations 5.9. The intersection of the 
two equations is visualized in Figure 5.5. 

5.4.2 Column Interpretation 

Rather than each row being interpreted as an equation, each column can be interpreted as a 
vector. Specifcally, Equation 5.10 is rewritten as 

C x + C x = b1 1  2 2  

é ù é ù éb1 ùa11 a12C1 = , C2 = , b =ê
ë

ú
û

ê
ë

ú
û

ê
ë

ú
ûb2a a2221 
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Figure 5.5 Row interpretation of two linear equations. 

Figure 5.6 Column interpretation of two linear equations. 

The graphical interpretation is shown in Figure 5.6. 
The solution for x1 and x2 must be the values that form the vector b as a linear combina-

tion of the column vectors C1 and C2. Although equations with more than three unknowns 
(n> 3) cannot be visualized graphically, the solutions can still be viewed with either the row 
or the column interpretation. 

5.5 POSSIBILITY OF SOLUTIONS 

• Linear Independence: An n-by-n system of linear equations has a unique solution only 
if the columns of the coeffcient matrix A are linearly independent. That is, no column 
can be obtained as a linear combination of other columns. 

• Rank: The rank of a matrix is the number of linearly independent columns of the coef-
fcient matrix A. 

• Consistency: A system of equations is consistent only if solutions exist. A and b are 
consistent if and only if A and the augmented matrix, A = [ , ], have the same rank. A b 

5.6 CHARACTERISTICS OF SQUARE MATRICES 

In engineering and applied physics, the most commonly occurring linear systems are those 
where the number of equations equals the number of unknowns (m=n). These are referred 
to as square systems. In order to graphically visualize and understand the range of behaviors 
that these square systems can exhibit, we again turn to a 2-by-2 system, given by Equation 
5.10. Although the following graphical depictions are for this 2-by-2 system, the same types 
of behavior are found in all n-by-n systems. 
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Figure 5.7 Typical behavior of a well-behaved set of simultaneous equations with a unique solution. 

(a) Unique solution 
When the rows and columns of the coeffcient matrix A are linearly independent, 

then Rank(A)= n, and a unique solution exists. An example is displayed graphically for 
this case, showing both the row and the column view (Figure 5.7). 

The row view shows that the two equations have a distinct intersection correspond-
ing to the unique solution at (x1, x2)= (1,1). The columns of the coeffcient matrix reach 
out in different directions and can be added in some combination to reach any point b 
in the vector space. 

(b) No solutions: Singular systems 
If the rows and columns are linearly dependent, then Rank(A)< n. In addition, if 

Rank(A )=Rank(A)+1, there can be no solutions. An example of this type of system is 
shown (Figure 5.8). 

The row view shows two parallel lines that never meet, and no combination of (x1, 
x2) can ever satisfy both equations at the same time. The column view shows that the 
columns are along the same line, while the b vector lies along a different line; thus, no 
combination of C1 and C2 can ever reach b. This is known as a singular system. 

(c) Infinite number of solutions 
This case occurs when the rows and columns are linearly dependent, so that 

Rank(A)< n. However, if also Rank(A )=Rank(A), the system is consistent, and an 
infnite number of solutions are possible. An example of this type of system is shown 
(Figure 5.9). 

Figure 5.8 A set of simultaneous equations with no solutions. 
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Figure 5.9 A set of simultaneous equations with an infnite number of solutions. 

The row view shows that since the equations are identical, any of the infnity of 
points along the single line is an allowable solution. The column view shows that since 
C1, C2, and b all lie in the same direction, an infnite number of combinations of C1 

and C2 can reach b. 
(d) Ill-conditioned systems 

Consider a system of equations that is nearly singular, such as 

é2 1 + éù éù 2ùe x1 (5.11) ê
ë

ê
ë
ú
û

ú
û 
= ê
ë
ú
û2 1 1x2

for ε << 1. Results for ε =0.1 are displayed. The solution is (x1, x2)= (−4.5, 10) 
(Figure 5.10). 

The row view shows that the slopes are so close that the point of intersection is dif-
fcult to detect visually. The two columns point in slightly different directions and can, 
in principle, be added to reach any point b. However, the solution is numerically sensi-
tive to small changes and round-off error. For instance, consider the following slightly 
different case with ε =–0.1. The solution has changed drastically to (x1, x2)= (5.5, −10). 
The main characteristic is that a small change in the coeffcient matrix has produced a 
signifcant change in the solution (Figure 5.11). 

Figure 5.10 Simultaneous ill-conditioned equations. 
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Figure 5.11 Simultaneous ill-conditioned equations. The coeffcients are close to those in the previous fg-
ure, but the solution is drastically different. 

5.7 SQUARE, OVERDETERMINED, AND 
UNDERDETERMINED SYSTEMS 

In addition to square systems of equations containing the same number of equations as 
unknowns (m = n), it is possible to have overdetermined systems containing more equations 
than unknowns (m > n) and underdetermined systems with more unknowns than equations 
(n > m). Examples of these are shown in the panels of Figure 5.12. 

5.7.1 Overdetermined Systems 

When there are more equations than unknowns, generally no solution can satisfy all the equa-
tions simultaneously. These cases are shown in the lower diagonal panels in Figure 5.12. For 
instance, the lower left panel shows the case of a single variable x1 taking on the impossible 
task of satisfying three equations at the same time (m=3, n=1). Similarly, the lower center panel 
shows two variables attempting to satisfy three equations at the same time. Except for special 
cases, the three lines representing these three equations will not pass through a single point. 

An important application involving overdetermined systems is curve ftting of experimental 
data. For instance, fnding the best polynomial ft to a large data set (regression analysis) involves 
a large number of equations (m >> 1) with only a small number of unknowns corresponding to 
the coeffcients of the polynomial (n=2 for a linear ft, n=3 for a quadratic ft, and so on). In such 
cases, a least squares optimization technique is often used to determine the best ft. 

5.7.2 Underdetermined Systems 

When there are more unknowns than equations, there are generally an infnite number 
of solutions that satisfy the system. These cases are shown in the upper diagonal panels 
in Figure 5.12. In the upper right panel, a single equation with three variables is shown, 
and any point on the plane defned by the single equation is a valid solution. Similarly, the 
middle right panel shows that for two equations with three unknowns, any point along the 
line of intersection of the two planes is a valid solution. For such cases, some optimization 
procedure is used to determine the best combination of unknowns. 

5.7.3 Square Systems 

Systems with the same number of equations as unknowns (m =n) generally lead to a unique 
solution, except for some special cases shown in the previous section. The diagonal panels of 
Figure 5.12 show such cases. A single equation defnes a unique point. Two equations defne 
two lines, and their intersection is the unique solution. Similarly, three equations defne 
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Figure 5.12 Square, overdetermined, and underdetermined systems of equations. 

three planes, and their intersection is the unique point satisfying all three. Characteristics of 
square systems are explored in more detail in the following section. 

5.8 ROW OPERATIONS 

Solutions of systems of simultaneous linear algebraic equations are obtained by manipula-
tion of matrices using row operations. Row operations consist of the following: 

• Multiplying a row by a constant 
• Adding or subtracting rows 
• Exchanging rows 

Clearly, any of these operations is mathematically legitimate. 
As described in the following sections, direct matrix solution methods such as Gaussian elimi-

nation and LU decomposition use row operations to manipulate the matrices in order to solve for 
the unknown variables. Other techniques, such as the Gauss–Seidel method, involve iteration. 
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5.9 THE DETERMINANT AND CRAMER’S RULE 

Cramer’s rule is a solution technique that is best suited to small numbers of equations. 
Consider a 2-by-2 matrix 

é éù éù b1 ùa a11 12 x1 (5.12)ú
û 
= ê
ë

ê
ë

ê
ë
ú
û

ú
ûb2a a21 22 x2 

By using row operations, it can be shown that each unknown in a system of equations can 
be expressed as the ratio of two determinants. 

b1 a12 

x1 = 
b2 a22 

Det 
= 

b a1 22 

a a11 22 

- b a2 12 

- a a21 12 
(5.13) 

a11 b1 

x2 = 
a21 b2 

Det 
= 

bb a2 11 - b a1 21 

a a11 22 - a a21 12 

The determinant Det is a single number composed of the elements of the coeffcient matrix 
A, defned as 

a a11 12Det = = a a  - a a  (5.14)11 22 21 12 
a a21 22 

Solutions for higher-order systems have solutions following this same pattern; however, the 
expressions quickly become unmanageable for large systems of equations, and other meth-
ods such as Gauss elimination are used. The determinant of a 3-by-3 matrix is 

a11 a12 a13 

D = a21 a22 a23 

a31 a32 a33 

a a22 23 = a11 
a a32 33 

- a12 

a a21 23 

a a31 33 

+ a13 

a a21 22 (5.15) 
a a31 32 

Determinants of higher-order matrices can all be expressed in terms of the determinants of 
lower-order systems. 

5.10 GAUSSIAN ELIMINATION 

5.10.1 Naïve Gaussian Elimination 

The Gaussian elimination algorithm consists of two basic steps: (1) eliminate the elements 
below the diagonal and (2) back substitute to get the solution. The technique will be dem-
onstrated for the 3-by-3 matrix 

é éù éù b1 ùa11 a12 a 

a21 a22 a 

a a a 

13 x1 
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ê 
ê 
êë 

=ú ú 
úû 

ú 
ú 
úû 

b2 

b3 

(5.16)23 

31 32 33 

x2 

x3 

(1) Forward Elimination of Unknowns 

Using row operations, we can eliminate the elements below the diagonal. Start by multiplying 
row 1 of Equation 5.16 by the factor f21 =a21/a11 and subtracting the result from row 2 to get 
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é éù éù ùb1a a a11 12 13 x1 
ê 
ê 
êë 

ú 
ú 
úû 

0 a22 
¢ a¢ ¢¢ (5.17)b2x223 

a a a31 32 33 x3 

ê 
ê 
êë 

ú 
ú 
úû 

ê 
ê 
êë 

=ú ú 
úû b3 

The frst element of row 2 is now zero. The other elements in row 2 have also changed and 
are designated with a prime. 

Next, multiply row 1 of Equation 5.17 by a31/a11 and subtract the result from row 3. 
Continue in this manner until all the elements below the diagonal are zero. The result is the 
following new but equivalent matrix with an upper triangular structure: 

é éù éù b1 ùa a a11 12 13 x1 
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ê 
ê 
êë 

=ú ú 
úû 

ú 
ú 
úû 

0 a22 
¢ ¢ ¢ (5.18)b2a x2 

x3 

23 

² ²0 0 b3a33 

(2) Back Substitution 

We now can start with the last row of Equation 5.18 to directly solve for x3 and back sub-
stitute to get 

b3 
² 

x = ²3 
a33 

b¢ - a¢ x2 23 3x2 = ¢ (5.19) 
a22 

b1 - a x - a13x12 2  3x = 1 
a11 

This procedure can be readily generalized to any n-by-n system of linear equations. 

5.10.2 Pivoting 

The previous technique is called naïve because during the elimination and back substitution 
processes, it is possible that a division by zero can occur. For example, consider the system 

é0 1 2ù éx1 ù é 5 ù 
ê ú ê ú ê ú5 3 2 x2 = -3 (5.20)ê ú ê ú ê ú 
ê2 -1 6ú êx ú ê 4 úë û ë 3 û ë û 

Since the pivot element a11 =0, the naïve Gaussian elimination algorithm results in division 
by zero. The way to avoid these diffculties is to switch the rows so that the coeffcient with 
the largest absolute value is the pivot element. In Equation 5.20, the frst two rows can be 
switched to get an equivalent but well-behaved system. 

5 3 2 ù é-3é éù ùx1
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ê 
ê 
êë 

=ú ú 
úû 

5 

4 

ú 
ú 
úû 

0 1 2 

2 -1 6 

(5.21)x2

x3

This is known as partial pivoting. If the columns are also switched to fnd the largest ele-
ment, the procedure is known as complete pivoting. Complete pivoting is rarely used, since 
it changes the order of the unknown xis; thus, partial pivoting only is used. 
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Numerical problems with round-off errors can also occur if the magnitude of a pivot ele-
ment is much smaller than the other elements in the matrix. For instance, switching rows 
would make the following system less prone to round-off errors: 

2 éù éù 2ù é 2 1 éù éù 1ùx1 x10 0001.é
Þ (5.22)ú

û 
= ê
ë

ú
û 
= ê
ë

ê
ë

ê
ë
ú
û

ú
û

ê
ë

ê
ë
ú
û

ú
û2 1 1 0 0001 2. 2x2 x2

5.10.3 Tridiagonal Systems 

A special form of the coeffcient matrix A, often encountered in fnite difference and fnite ele-
ment solutions of differential equations, has a banded structure with nonzero elements only on 
the diagonal, lower diagonal, and upper diagonal. The system A*x=b with this form is given by 

d1 u1 0 ˜ 0é éù éù ùx1 r1 
ê 
ê 
ê 
ê 
ê 
êë 

ê 
ê 
ê 
ê 
ê 
êë 

ú 
ú 
ú 
ú 
ú 
úû 

ê 
ê 
ê 
ê 
ê 
êë 

= 

ú 
ú 
ú 
ú 
ú 
úû 

ú 
ú 
ú 
ú 
ú 
úû 

l1 d2 u2 0 ° x2 

° 
r2 

°0 ˛ ˛ ˛ (5.23)0 

° 0 ln-2 d un xn rn 11 1 1- - - -n 

0 ˜ 0 l d xn rn1n- n 

A special version of the Gaussian elimination algorithm can easily be devised to solve 
Equation 5.23 using the minimum storage and number of arithmetic steps possible. Only 
the nonzero elements are stored, and unnecessary arithmetic with all the known zeros is not 
performed. Using row operations, the lower diagonal can be eliminated. Back substituting 
is then used to fnd the solution. 

5.11 LU FACTORIZATION 

LU decomposition or factorization is advantageous for solving systems that have the same 
coeffcient matrices A but multiple right-hand-side vectors b. LU decomposition is the pro-
cess of separating the time-consuming elimination part of the Gauss elimination method 
from the back substitution manipulations of the right-hand-side vector b. 

Any square matrix can be decomposed or factored into the product of a lower and upper 
diagonal matrix. 

A L= ×U (5.24) 

1 0 0é éù éù ùa a a11 12 13 u u u11 12 13 
ê 
ê 
êë 

ú 
ú 
úû 

, L = ê ê 
êë 

ú 
ú 
úû 

, U = ê ê 
êë 

ú 
ú 
úû 

A = 1 0 0 u u22 23 

0 0 u33 

la a a21 22 23 21 

32 1l la a a31 32 33 31 

From the Gauss elimination process, it can be shown that the upper and lower diagonal 
matrices are 

é 1 0 0 éù ùa a a11 12 13 
ê 
ê 
êë 

ú 
ú 
úû 

, U = êê 
ú 
ú 
úû 

¢ ¢L = 21 1 0 0 a (5.25)f a2322 

f f31 32 1 êë 0 0 a33
² 

where the fijs are the factors used in Gauss elimination to convert A to an upper triangu-
lar structure (i.e., f21 =a21/a11, …). U is the fnal upper triangular matrix obtained in the 
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Gaussian elimination process. Using A=LU, the system of linear equations A·x= b can be 
written as 

L U x b× × =
 

d 

L d× = b (5.26) 

The LU decomposition algorithm is 

• Decompose or factor A into LU. 
• Use forward substitution to solve L·d =b for d. 
• Use back substitution to solve U·x = d for x. 

5.12 GAUSS–SEIDEL ITERATION 

A whole class of solutions is based on iteration rather than direct matrix solutions. A popu-
lar method is the Gauss–Seidel iteration. For the 3-by-3 system given by Equation 5.15, the 
equations are rearranged in the form 

i-1 i-1 
i b - a12 2  - a 3x x1 13x = 1 

a11 

i -1 i -1b - a x - a xi 2 21 1  23 3x2 = (5.27) 
a22 

i-1 i-1 
i 3 31 1  32 2b - a x - a x 

x = 3 
a33 

0 0 0where i is the iteration counter. Starting from an initial guess x x x ) for the solution at( 1 , ,2 3 

i =0, we use Equation 5.27 to continue to improve our solution until answers change by less 
than a specifed accuracy. 

5.13 MATRIX INVERSION 

If a matrix A is square, there is a matrix A−1 called the inverse with the property that 

-1 -1A A´ = A ´ =A I (5.28) 

where I is the identity matrix. Once this inverse is known, the solution of a linear system 
A·x = b is 

x A= -1 × b (5.29) 

Computing the solution in this way using a full matrix inversion is more computationally 
intensive than other methods such as Gaussian elimination and LU factorization, discussed 
in previous sections. However, the inverse still has uses. For instance, the elements of the 
inverse matrix represent the response of a single part of a system to a unit stimulus in 
another part of the system. 
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The inverse provides a means to discern whether a system is ill-conditioned. Defne the 
matrix norm as 

A = 
= = 
åå 
i 

n 

j 

n 

ija
1 1 

2 (5.30) 

Then, the matrix condition number is 

A-1Cond A = A × (5.31)[ ]  

This number will be greater than or equal to 1. The larger the condition number, the more 
ill-conditioned the matrix is. 

5.14 LEAST SQUARES REGRESSION 

In statistics, linear regression is a linear approach to modeling the relationship between a 
scalar response or dependent variable and one or more independent variables. Regression is 
a method for curve ftting data. Linear regression is the best straight line or linear curve ft 
to some given data. That is, linear regression is the process of fnding the coeffcients a0 and 
a1 of the function 

y x( ) = a0 + a1x (5.32) 

that best ft some given data. 
Consider the general case of a data set containing M data points, shown in Table 5.2. 

The objective is to fnd the coeffcients a0 and a1 of the linear function that best ft the given 
data. We will defne a “best ft” in a least squares sense; that is, we will minimize the sum 
of the squares of the differences between this linear function and the data. The differences 
between the data and the linear curve ft are shown in Figure 5.13. 

The ordinary least squares norm or objective function is defned as 

å 
M 

å 
N 

S = (Ym - y x( m ))2 
= (Ym - (a0 + a xm ))2 

(5.33)1 

m=1 i=1 

The goal is to minimize this objective function. To fnd the values of a0 and a1 that minimize 
S, we set the derivatives equal to zero. 

M M M 

¶
¶ 
a
S 

0 
å 1 )) çå m a M a1å ÷ 

(5.34)= -2 (Ym - (a0 + a xm = -2 
æ
ç Y - 0 - xm 

ö
÷ = 0 

m=1 è m=1 m=1 ø 

Table 5.2 Typical data 

m xm Ym 

1 x1 y1 

2 x2 y2 

… … … 

M xM YM 
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Figure 5.13 Differences between data and a linear curve ft. 

M M M M
¶S 2 

¶a 
= -2å Y - (a + a x  ) x = -2 

ç
çåx Y - a åx - aåx 

÷
÷ = 0( m 0 1 m ) m 

æ 
m m  0 m 1 m 

ö 

1 m=1 è m=1 m=1 m=1 ø 

Equations 5.34 provide two equations for the two unknowns a0 and a1, which are expressed 
in matrix form as 

M Mé éù ù 
ê
ê
ê
ê
ê 

ú
ú
ú
ú
ú 

= 

ê
ê
ê
ê
ê 

ú
ú
ú
ú
ú 

M é ùa0åxm 

1 
åYm 

å 
1= 

x Ym m

ê 
ê 
êë 

ú 
ú 
úû 

1m= m 

M 

= (5.35)
M M 

ååx 2 a1xmm 

ë ëû û1 1= = m 

The solution of these two simultaneous equations gives the coeffcients a0 and a1. They 
represent the best straight line curve ft to the data. Using Equations 5.13 for Cramer’s 
rule, we fnd 

M M M M 

a = ç y x - x y  x ÷0 m m m m m 
1 æå å 2 å å

ö 

J ç ÷
è m=1 m=1 m=1 m=1 ø 

M M M 

a1 = çM xm m - xm ym ÷ (5.36)
1 
J ç

æ 
å y å å ÷

ö 

è m=1 m=1 m=1 ø 

M æ M ö
2 

J M  xm 
2 - m ÷= ç xå çå ÷ 

m=1 è m=1 ø 

The previous concept of a least squares curve ft could be applied to polynomials of any 
order. For instance, a quadratic curve ft would involve fnding the coeffcients a0, a1, and a2 

of the quadratic polynomial 

+ a x a x+y x( ) = a0 1 2 
2 (5.37) 

m m 
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The best ft minimizes the sum of the squares of the differences between this quadratic func-
tion and the data. The objective function is 

M N 
2S = Y - y x( ) 2 

= Y - a + a x  + a x  
2 

(5.38) å( m m ) å( m ( 0 1 m 2 m )) 
m=1 i=1 

The previous steps can be repeated to obtain three simultaneous linear equations for a0, a1, 
and a2. 

PROBLEMS 

Problem 5.1 

Consider the special cases of the systems of equations Ax=b listed. 

Case A b 

é 
ê
ë 

1 

1 

a 0 2éù ù 
ê
ë

ú
û

ú
û1 1 

b 1 1 2é éù ù 
ê
ë

ê
ë 

é
ê
ë 

é
ê
ë 

ú
û 

0 

0 

0 

0 

ú
û0 0 1 

c 1 1é ù ù 
ú
û 

ù 
ú
û 

ê
ë

ú
û0 0 

d 1 0é ù 
ê
ë

ú
û0 0 

e é1 1 éù 2ù 
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ú 
ú 
úû 

1 0 

0 1 

1 

1 

f é1 1 éù 1 ù 
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ú 
ú 
úû 

1 

1 

1 0 

0 1 

g 1 2 0 2 

0 1 3 4 

1 0 1 2 

4é éù ù 
ê 
ê 
êë 

ê 
ê 
êë 

ú 
ú 
úû 

ú 
ú 
úû 

4 

4 

h é1 2 3 1 ù é-1 

2 

ù 
ú 
ú 
úû 

-
ê 
ê 
êë 

ú 
ú 
úû-

2 1 

1 

ê 
ê 
êë 

0 1 -
1 0 1 1 
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For all cases: 

a) Determine the rank of the coeffcient matrix, A. 
b) Determine the rank of the augmented matrix, A = [A, b]. 
c) Determine whether the system is consistent. 
d) For each consistent system, give the solution. 

For cases (a)–(f), sketch the row and column interpretations. Summarize these sketches in 
a table. 

Problem 5.2: Equation of a Plane 

Consider the equation of a plane written as c x + c y + c = z .1 2 3 

a) Given three known points x y z  , ,  , and x y z , ,  , x y z  , ,  , derive the system of ( 1 1 1 ) (  2 2 2 ) ( 3 3 3 ) 
equations that determine c1, c2, and c3. 

b) Write a function “eq_plane” that determines the vector of coeffcients c = [c c c ], ,1 2 3 

given any three points. 
c) Test your function by fnding the equation passing through the points (1,0,0), (0,1,0), 

(0,0,1). What are the z values at (x,y)= (0, 0.5), (0.5, 0), (0.25, 0.25), and (0.5, 0.5)? 
Plot this plane. 

Problem 5.3: Gravel Pits 

A civil engineer involved in a construction process requires a volume Vs of sand, a volume 
Vfg of fne gravel, and a volume Vcg of course gravel. There are three pits from which these 
materials can be obtained. The composition of these pits is 

Sand Fraction Fine Gravel Fraction Course Gravel Fraction 
Pit 1 S1 FG1 CG1 
Pit 2 S2 FG2 CG2 
Pit 3 S3 FG3 CG3 

Develop the equations needed to determine the volumes V1, V2, and V3 that must be hauled 
from pits 1, 2, and 3 to exactly meet the construction needs. Put in matrix form. For the 
following special case, solve for the volumes V1, V2, and V3. 

Sand Fraction Fine Gravel Fraction Course Gravel Fraction 
Pit 1 1 0 0.25 
Pit 2 0 1 0.25 
Pit 3 0 0 0.5 

Vs =5000 m3, Vfg =5000 m3, Vcg =10,000 m3 

Problem 5.4: Heated Rod 

Consider a heated rod with convection from the sides. 
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a) Write a function to solve for the temperature along the rod for n equally spaced nodes. 
The function should accept n, L, T0, TL, h′, and Ta as inputs and output the vectors of 
the x locations and the computed temperatures. Here, L is the rod length and TL is the 
temperature at x= L (T5=200 in the example). 

b) Write a separate code to compute and plot the following cases: 
a. n = 6, L = 1, T0 = 40, TL = 100, h′ =0.01, Ta = 20 
b. n=10, L=1, T0 =100, TL =0, h′ =0, Ta =100 
c. n=100, L=1, T0 =100, TL =100, h′ =0, 10, and 100, Ta =10 (single graph with 

three curves for the three h′ values) 

Problem 5.5: Stage Extraction Process 

A stage extraction process is depicted. In such systems, a stream containing a weight frac-
tion yin of a chemical enters at a mass fow rate F1. Simultaneously, a solvent carrying a 
weight fraction xin of the same chemical enters from the other side at a fow rate F2. 

A mass balance at a typical interior stage can be represented as 

F y  + F x  = F y  + F x , i = 2 3, , ,n1 i-1 2 i+1 1 i 21 i ¼ -1 

This mass balance must be modifed at the frst and last stages. At each stage, equilibrium is 
assumed to be established between xi and yi as K =xi/yi, where K is a distribution coeffcient. 

a) Draw a cause–effect diagram. 
b) Write a function to solve for the concentrations along the stage extractor with n stages. 
c) Write a separate function to compute and plot the concentrations and determine yout 

and xout for the case F1 =500 kg/h, yin =0.1, F2=1000 kg/h, xin =0, and K=4. 



  

 

  

  

  
  

  

                     

  

   
  

    

    
    

x

ú

ú

n

1

ú

-
-

96 Applied Engineering Mathematics 

Problem 5.6: Pentadiagonal Solver 

A pentadiagonal system of equations is a special system with a bandwidth of 5. An n-by-n 
pentadiagonal system has the following form: 

f g h × × ×  01 1 1é éù éù ùx1 r1 
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
êë 

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
êë 

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
úû 

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
êë 

= 

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
úû 

ú
ú
ú
ú
ú
ú
ú 

e f g h2 2 2 2 x2 

x3 

× × ×  
xi 

r2 

r3 

× × ×  
ri 

d e f g h3 3 3 3 

× × ×× 

3 

× × ×  × × ×  × × ×  × × ×  × × ×  × × ×  
di ei f g hii i 

d e f g hi+1 × × × ú
ú
ú
ú
ú
ú
úû 

xi ri1 1 1 1 1 1i i i i+ + + + + + 

di ei f g hi xi ri2 2 2 2 +2 2 2i i+ + + + + + 

× × ×  × × ×  × × ×  × × ×  × × ×  × × ×  
dn-1 en-1 fn-1 gn xn rn-1 11- -

0 × × ×  d e f xn rnn n n 

a) Write a fowchart or pseudocode describing the logic required to solve this special 
system of equations. Only the diagonals and RHS should be input. Do not form a full 
matrix or perform a full matrix solution. 

b) Write a function to solve this pentadiagonal system. 
c) Test your function with the following special cases. 

Case 1: 

5é éù ùx1 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
ë 

ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê 
ê
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ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
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ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú 
ú
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2 

1 

1 

5 

8 -2 

2 9 

1 

4 

0 0é ù x2

x3

x4

x5

ê 
ê 
ê 
ê 
ê 
êë 

ú 
ú 
ú 
ú 
ú 
úû 

1 0- -
1 3 7 1 2- - - -

0 4 

-
2 12 

3 

5- - -
0 0 7 15-

Case 2: di΄s=−1, ei΄s=−3, fi΄s=8, gi΄s=−3, hi΄s=−1, ri΄s=1. Try n =10,000 and 100,000. 
Please plot your solutions rather than printing out all these numbers. For com-
parison, you should try to solve this problem using the standard full matrix solver: 
x=A\b. 

Problem 5.7: Cooling of an IC Package 

Consider the cooling of an IC package from Section 5.3.1. The purpose of this exercise is to 
write a function to solve for the unknown heat fows and temperatures and test this func-
tion. You are requested to: 

a) Write a function called “CoolingIC” that computes the heat fow rates and tempera-
tures in the IC package. The inputs should be: R=vector containing the fve thermal 
resistance values, Ta =ambient temperature, and Qc =power dissipated. The function 
returns two vectors: 

T =a vector containing the three unknown temperatures 
Q =a vector containing the four unknown heat fow rates 
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b) Test your “CoolingIC” function. This function assigns the input values, calls on 
“CoolingIC” to compute the T and Q vectors, and displays the output. Consider the 
following test cases. 

Case R1 (°C/W) R2 R3 R4 R5 Qc (W) Ta (°C) 

1 2 2 2 2 2 0 25 
2 2 2 2 2 2 10 25 
3 2 0.5 35 0.7 1 10 25 
4 1000 0.5 35 0.7 1 10 25 

Problem 5.8: Cooling of an IC Package, Parameter Study 

We will now use the function developed in the previous problem to perform a parameter 
study on the cooling arrangement of the IC system. The most important engineering result 
of this analysis is the chip temperature, Tc. This is particularly crucial, since electronic chips 
can fail if overheated. The cooling arrangement must maintain the chip temperature below 
a critical failure temperature, Tcrit. As electrical circuits become smaller and draw more 
power, overheating becomes a limiting constraint in their design. The purpose of this exer-
cise is to perform the following parameter studies. 

a) Study of chip temperature as a function of power. Create a plot of Tc versus Qc with 
Qc ranging from 0 to 100 W. On a single graph, put curves for R4 =R5 =0, 2, 4, and 6 
°C/W. Take other parameter values from Case 3 in the previous problem. What can 
you conclude about Tc versus Qc? If Tcrit =150 °C, what is the maximum allowable chip 
power, Qc, for each case? 

b) Study of chip temperature as a function of air fow (R4 and R5). The resistances R4 and 
R5 represent the effect of the air cooling; high resistance corresponds to low air veloc-
ity, and low resistance corresponds to high air velocity. Assume R4 = R5 and create a 
plot of Tc versus R4 with R4 = R5 ranging from 0 (hurricane) to 100 °C/W (stagnant air). 
On a single graph, put curves for Qc =0, 5, 10, and 15 W. Take other parameter values 
from Case 3 in the previous problem. If Tcrit =150 °C, what is the allowable range of 
resistance values for Qc =10 W? 

You should write a function to perform these studies. This function should call on the previ-
ously developed function from Problem 5.8. 

Problem 5.9: Voltage Range 

Consider the circuit shown in the fgure. 
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a) If all resistance and voltage values are considered known, derive the equations neces-
sary to determine the fve unknown currents. 

b) Compute the values of the currents given the following values of the resistances and 
the voltages: 
R1 =5 kΩ, R2 =100 kΩ, R3 =200 kΩ 
R4 =150 kΩ, R5 =250 kΩ 
v1 =100 volts, v2 =100 volts 

c) Suppose that each resistor is rated to carry a current of no more than 1 milliampere 
(=0.001 amperes). Determine the allowable range of positive values for the voltage v2. 
Use the resistances and v1 values from part (b). 

d) Suppose we want to investigate how the resistance R3 limits the allowable range for v2. 
Obtain a plot of the allowable limits on v2 as a function of R3 for 150≤ R3 ≤ 250 kΩ. 

Problem 5.10: Equilibrium Position of a 
System of Linear Springs and Masses 

Consider the system of masses and linear springs. The total length of each spring is equal to 
the upstretched length (Li) plus the stretched length (xi). The width of each block is W, and 
the total length of the system is LT. For a linear spring, the force is directly proportional to 
elongation, Fspring =kx. 

a) Considering all the ki, Li, and W as known, derive the mathematical model for the 
stretched lengths xi. 

b) Write a function to solve the system of equations in part (a). 
c) Use the function developed in part (b) to determine the xis for the following cases. 

Case 1 Case 2 

W =0.2 m W=0.2 m 
LT =8 m LT =8 m 
Li =1 m Li =1 m 
ki =2 N/m k1=1, k2=2, k3=3, k4=4 N/m 
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Chapter 6 

Nonlinear Algebra 
Root Finding 

CHAPTER OBJECTIVES 

The primary objective of this chapter is to learn how to solve nonlinear systems of algebraic 
equations. Numerical methods are presented to fnd the solution of a single nonlinear equation, 
referred to as root fnding. Numerical methods to solve simultaneous nonlinear equations are 
also presented. 

Specifc objectives and topics covered are 

• Introduction and selected applications 
• Graphical method 
• Bisection method 
• False position method 
• Newton–Raphson method 
• Secant method 
• Roots of simultaneous nonlinear systems 

6.1 INTRODUCTION 

Sometimes, we can solve algebraic equations directly using the rules of algebra. For instance, 
consider equations such as 

ax b 0+ =  (6.1) 

ax2 + bx + c = 0 (6.2) 
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Figure 6.1 Possible roots for various functions f(x). 

These can be solved directly for the variable x. However, many times, we encounter a non-
linear algebraic equation of the form 

f x( ) = 0 (6.3) 

Although a few nonlinear equations can be solved exactly, such as the quadratic equation, a 
direct expression for x is usually impossible to fnd. For the function f(x), we want to know 
the value xr for which f(xr)=0. The value xr is called the root or zero of the function f(x). The 
task of estimating xr numerically is called root fnding. 

Graphs of f(x) versus x for several different nonlinear versions of Equation 6.3 are shown 
in Figure 6.1. The function f(x) might have no root, one root, or several roots. Root fnd-
ing can be challenging for complicated nonlinear equations, since we are not sure even how 
many roots are possible. 

A few applications are described in the following section. These are but a small sample of 
nonlinear algebraic equations from engineering and applied physics. 

6.2 APPLICATIONS 

6.2.1 Simple Interest 

Consider the simple interest formula 

i (1 + i )n 

A P  n (6.4) = 
(1 + i ) -1 

where 
P = present worth 
A = annual payments 
n = number of years 
i = interest rate 

Computing A or P knowing the other parameters is easy. However, it is impossible to 
directly solve for i or n using the basic rules of algebra. To solve for i, for instance, a new 
function is defned as 

i (1 + i )n 

f i( ) = P - A (6.5) 
(1 + i )n -1 

The solution is the value of i for which f(i)=0. 
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6.2.2 Thermodynamic Equations of State 

The equation of state for an ideal gas is 

Pv = RT (6.6) 

where 
P = absolute pressure (Pa=N·m2) 
v = specifc volume (m3/kmole/K) 
R = universal gas constant (kJ/kmol/K) 
T = absolute temperature (K) 

This ideal gas law is accurate for relatively low pressures and high temperatures. It is easy 
to fnd v, P, or T once the other values are specifed, since this equation of state is linear in 
the variables v, P, and T. 

An equation of state that is more accurate over a larger pressure and temperature range is 
the van der Waal equation 

æ a öP + ÷(v b  RT (6.7) -ç ) = 
è v2 ø 

where a and b are empirical constants. Now, given P and T, it is impossible to fnd v explic-
itly, since the equation is nonlinear in the variable v. To fnd v, we defne the function 

æ a öf v = P + ( - -RT (6.8) ( )  
è
ç v2 ø

÷ v b) 

The value of v such that f(v)=0 is the solution we are looking for. The best we can do is to 
estimate v numerically. 

6.2.3 Heat Transfer: Thermal Radiation 

Consider a surface exposed to the sun with an insulated (no heat fow) bottom surface as 
shown in Figure 6.2. 

Figure 6.2 Control volume showing thermal processes for the plate in the sun. 
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The sun heats the surface, supplying an amount of heat per surface area Gs. Heat is lost 
from the plate to the environment by convection with air at temperature T∞ and by thermal 
radiation. These terms are 

q ² = a G = heat flux absorbed from the sun W/m2 
sun s s  ( ) 

qconv = h( - ¥ ) = h ( )² T T  heat flux by convection W/m2 

(6.9) 
² 4 2q = esT = heat flux by radiation W//m 

5 67 10´ 8 W/m K  = Stefan -

rad ( ) 
s = . - 2 4 Boltzmann constant 

The cause and effect relationship for this physical problem follows. 

Forcing Functions 
T∞ =air temperature (K) 

Gs = incident solar fux (W/m2) 
⇓ 

Physical System 
h =convection coeffcient (W/m2 K) 

ε =emissivity, a fraction between 0 and 1 
αs =absorptivity to solar radiation (0 < αs < 1) 

⇓ 
Response 

T=plate temperature (K) 

One of the most important principles in the thermal sciences is conservation of energy. As 
described in Section 2.3.3, a general statement of energy conservation is 

dE 
  = Ein - Eout + Eg (6.10) 

dt 

Apply this principle to the plate for steady-state conditions with no internal heat generation 
to get 

² ² ²0 = qsun  - qconv - qrad (6.11) 

Substitute the expressions in Equation (6.9) to get 

0 = as ×G h- ( - ¥ - × ×T 4 
s T T ) e s (6.12) 

The plate temperature T is impossible to fnd explicitly, since we have a nonlinear, fourth-
order algebraic equation for T. We need to use some numerical root fnding technique to 
estimate T numerically. 

6.2.4 Design of an Electric Circuit 

An important problem in electrical engineering involves the transient behavior of electric 
circuits. A typical LRC circuit is shown in Figure 6.3. 
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Figure 6.3 An LRC circuit. 

When the switch is closed, the current will undergo a series of oscillations until a new 
steady state is reached. The voltage drops across the basic electric components are: 

Resistor: VR = ×i R 

di
Inductor: VL = L (6.13) 

dt 

q
Capacitor: VC = 

C 

where 
i = current (A) 
q = charge (coulombs) 
V = voltage (V) 
R = resistance (Ohm) 
L = inductance (H) 
C = capacitance (F) 

Kirchhoff’s voltage law states that the sum of the voltage drops around a closed loop cir-
cuit is zero. After the switch is closed, we have 

di q
L R i  + = 0 (6.14) + ×  

dt C 

Since current is charge fow rate (i=dq/dt), the previous voltage drop equation can be 
expressed solely in terms of charge as 

2d q  dq q
L 2 + R + = 0 (6.15) 

dt dt C 

The mathematical solution to this equation subject to the initial condition q q0 = CV0 att = 0=  is 

æ 2 ö æ Rt ö 1 æ R öq t( ) = q0 expç- ÷cosç t - ç ÷ ÷ (6.16) 
è 2L ø ç LC è 2L ø ÷

è ø 

A typical electrical design problem might require the determination of the proper size resis-
tor to dissipate energy at a specifc rate such that q/q0 is below a specifed value in a specifed 
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time. In such a case, we would need to determine the value of R such that the function 
f(R)=0 where 

q æ Rt ö æ 1 æ R ö
2 ö 

f R  = - exp  - cos t( )  ç ÷ ç - ç ÷ ÷ = 0 (6.17) 
q0 è 2L ø ç LC è 2L ø ÷

è ø 

All parameters except R would have specifed numerical values. This is in the form of a typi-
cal root fnding problem. 

6.3 ROOT FINDING METHODS 

A nonlinear algebraic equation is typically impossible to solve explicitly. A few special cases, 
such as the quadratic equation, can be solved exactly, but these cases are the exception. We 
could, of course, use the graphical method to plot the function and visually estimate the 
solution. It is always good to visualize mathematical procedures; however, a more system-
atic procedure using the computer is needed. 

There are many possible algorithms for root fnding. In general, some initial guess is 
required to get started, and an iterative procedure must be implemented to estimate the solu-
tion numerically. The two major classes are bracketing methods and open methods, which 
are distinguished by the type of initial guess. 

The most widely used bracketing methods are the bisection method and the false posi-
tion method. These are based on two initial guesses that bracket or surround the root. The 
bracket is then iteratively refned until a satisfactory approximation is obtained. These meth-
ods always converge to a root but are slow to converge to an accurate solution. 

The most widely used open methods include fxed-point iteration, the Newton–Raphson 
method, and the secant method. They require one or more initial guesses, but they do not 
have to bracket the root. An iterative formula is then applied until a root is found to within 
an error tolerance. These methods do not always converge to a root, but when they work, 
they converge rapidly on the root. 

6.4 GRAPHICAL METHOD 

A simple method to estimate the root of the equation f(x)=0 is to make a plot of the function 
and observe where it crosses the x-axis. For instance, the function 

f x( )  x e  -x = 0 (6.18) = -

is shown in Figure 6.4. 
The frst graph shows that the root lies somewhere between 0.5 and 0.6. The second 

fgure is limited to the range 0.5 and 0.6 and shows a refned estimate for the root between 
0.56 and 0.57. 

This visual process of graphical refnement could be continued indefnitely. However, the 
process needs to be automated for a digital computer and is generally used to get a rough 
estimate or to get a starting guess for numerical methods. 
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Figure 6.4 Visualization of the root of f(x)=x−e−x using successively fner intervals. 

6.5 BISECTION METHOD 

The bisection method is one type of incremental search methods where the interval contain-
ing the root is refned by dividing into halves and retaining the subinterval containing the 
root. This process is repeated until some desired accuracy criterion is met. In order to start 
the search, an interval that brackets or surrounds the root must be located. In general, if f(x) 
is real and continuous in the interval from xl to xu, and f(xl) and f(xu) have opposite signs 
(i.e., f x f x  < 0 . The method is ( ) ( )  ), then there exists at least one real root between xl and xu 

depicted graphically in Figure 6.5. 
There are a number of different possible stopping criteria. One is based on the relative 

change between the most recent iterations of the root. Once a tolerance is specifed, the 
iteration stops once the following criterion is met. 

l u

new  old xr - xrRelative error: ea = < tol (6.19) 
xr 

new 

A second criterion is based on the absolute value of the function at the root. 

new Tolerance in  f x( ): < tol (6.20) f x( r )

In addition, it is good practice to terminate the search after a maximum number of iterations 
in order to avoid excessive computation times or infnite loops. 

6.6 FALSE POSITION METHOD 

False position is a variation of the bisection method. Rather than bisecting the interval, 
an improved estimate is located by joining a straight line or chord between f(xl) and f(xu). 
The improved estimate is the intersection of the straight line with the x-axis, as shown in 
Figure 6.6. 

Using similar triangles implies 

x - x x - xu r u l= (6.21) 
f x( )u - 0 f x( )u - f x( )l 
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Figure 6.5 Visualization of the bisection method. 

Figure 6.6 Visualization of the false position method. 



   

 

  

  

  

   

  

  

 

Nonlinear Algebra 107 

Thus, starting with xl and xu, the rule for an improved estimate is obtained by solving for 
xr to get 

æ xu - xl ö 
x = x - f x( )çç ÷÷ 

(6.22) 
r u u 

f xu - f x( )lè ( )  ø 

The bracket containing the root is retained. That is, if f(xl)f(xr)< 0, then the new bracket is 
[xl, xr]; otherwise, the new bracket is [xr, xu]. The procedure is then repeated until a specifed 
accuracy has been obtained or an iteration limit is reached. As with the previous bisection 
method, stopping criteria are given by Equations 6.19 and 6.20. 

6.7 NEWTON–RAPHSON METHOD 

A commonly used root fnding method is the Newton–Raphson method. This method for 
solving f(x)=0 uses the tangent to the graph of f(x) at any point and determines where the 
tangent intersects the x-axis. This intersection is usually an improved estimate of the root. 
The process is continued until some stopping criterion is met. The method is depicted in 
Figure 6.7. 

Consider that xi is the current estimate for the root and that xi+1 is an improved estimate 
for the root. Using the concept of a derivative, we have 

æ df ö f x( )i - 0 
ç ÷ = f x¢( )i = (6.23) 
è dx øx xi - xi+1i 

Solving for xi+1 produces the following Newton–Raphson iteration formula for an improved 
estimate: 

f x( )
x x i (6.24) 

i+1 = i - ¢f x( )i 

Figure 6.7 Visualization of the Newton–Raphson method. 
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This formula can also be derived using a Taylor series. The method requires one starting value, 
x1. The Newton–Raphson is effcient when it converges but is not always guaranteed to con-
verge. As a general-purpose algorithm for fnding zeros of a function, it has three drawbacks: 

• The function f(x) must be smooth. 
• It might not be convenient to compute the derivative f′(x). 
• The starting guess must be suffciently close to the root. 

As with all numerical approximations, caution must be exercised. Although the Newton– 
Raphson generally converges rapidly, it could also completely diverge from the root. This 
behavior is caused by the nature of the function and the initial guess. For instance, if the 
initial guess happens to be at a local maximum or minimum where the derivative is zero, the 
iteration formula suffers a division by zero error. 

Two stopping criteria are generally used: 

x - xi+1 iRelative error: ea = < tol (6.25) 
xi +1 

Tolerance in  f x( ): < tol (6.26) f x( i+1 )

6.8 SECANT METHOD 

For certain functions, the derivative required with the Newton–Raphson method may be 
inconvenient or impossible to evaluate. An alternative scheme is to use the secant rather than 
the tangent to locate an improved estimate, as shown in Figure 6.8. 

For this scheme, the derivative is estimated with a fnite difference approximation using 
the two most recent iterates: 

f x( )i - f x( i-1 )f x¢( )i @ (6.27) 
x - xi i-1 

Figure 6.8 Visualization of the secant method. 
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This approximation is used in the Newton–Raphson formula to get the secant method for 
an improved estimate: 

xi - xi-1xi+1 = xi - f x( )ç
æ 

÷
ö 

(6.28) 
i ç ÷
è f x( )i - f x( i-1 ) ø 

This method requires two initial guesses but does not require an explicit evaluation of the 
derivative. 

It should be pointed out that no single method is best for all situations. Even great, pro-
fessionally developed software such as Mathematica or MATLAB® is not always foolproof. 
Sophisticated users understand the strengths and weaknesses of the available numerical 
techniques and are able to select an appropriate strategy. 

6.9 ROOTS OF SIMULTANEOUS NONLINEAR EQUATIONS 

Up to this point, we have studied methods to solve for the roots of a single equation. 
The next logical question is to ask about the roots of a set of simultaneous equations in 
the form 

f x x1 ( 1 2 ˜ xn 0, , , ) = 

f x x2 1 2 ˜ xn ) = 0 (6.29) ( , , , 

° 
f x xm 1 2 ˜ x ) = 0( , , , n 

If these equations are linear, the methods of Chapter 5 for linear algebraic equations can be 
employed. Fortunately, the methods developed in this chapter for fnding the root of a single 
nonlinear equation can be extended to simultaneous sets of nonlinear equations. 

The Newton–Raphson method was based on following the derivative to the x-axis in 
order to obtain an improved estimate. This estimate was based on a frst-order Taylor series: 

¶fifi +1 fi (xi 1 - xi (6.30) = + + )
¶x 

where 
fi = f(xi) 

¶fi =
¶f x( )i 

¶x ¶x 

Since xi+1 is the point that intercepts the x-axis, fi+1 =0, and the previous expression can 
be rearranged to get 

xi+1 = xi -
fi (6.31) ¶fi 

¶x 



  

  

  

  

  

  

  

x

f

110 Applied Engineering Mathematics 

An iteration procedure for simultaneous equations can be derived in an identical fashion 
using multivariable Taylor series. Consider two simultaneous equations: 

f x y, 0( ) = 
(6.32)

g x y, 0( ) = 

A frst-order Taylor series can be written for both equations as 

¶fi ¶fifi +1 fi (xi+1 - xi + (yi +1 - yi )= +  )
¶x ¶y 

(6.33) 

¶
¶ 

¶

¶gi ¶gigi+1 = gi + (xi+1 - xi ) + (yi+1 - yi )¶x ¶y 

¶
¶ 

¶ 

The current estimate (xi+1, yi+1 ) corresponds to the values where fi+1 = gi +1 = 0. These equa-
tions provide a 2-by-2 linear system for (xi+1, yi+1 ). In matrix form, 

fi fi fi fi 

x y x y¶
¶g g g gi i i i

¶ 
¶
¶ 

¶ 

é ùf+ -xi y ú 
ú 
ú 
ú
û 

ê 
ê 
ê 
ê
ë 

ú 
ú 
ú 
ú
û 

i i
é

(6.34)=ú
û

ù 
ê
ë 

xi+1 

yi+1 + -xi y gi i¶ 

¶
¶ 

¶
¶ 

¶ 

¶ 

¶
¶

¶ 

¶x y x y¶ 

Solving this 2-by-2 system using Cramer’s rule and simplifying gives 

gi fifi gi 
y y 

fi gi 
i fi 

x x 

-
= -xi xi1+ 

Ji 
(6.35) 

-

= 

g 
= -y yi+1 i 

Ji 

¶ 
¶ ¶ 
¶¶ 

¶ ¶ 
¶ 
f g g fi 

x y x y 

This is the two-equation version of the Newton–Raphson method, and it can be used to 
iteratively hone in on the roots of two simultaneous equations. As with an equation of a 
single variable, the method can diverge if a suitable starting guess is not made. This often 
requires trial and error or a reasonable estimate based on intuition from the physical prob-
lem of interest. 

The technique can be extended to any number of simultaneous equations. 

Example 

Consider the task of fnding the values (x,y) such that the following simultaneous equa-
tions are satisfed: 

f x, y = x2 + xy -10( ) = 0 
(6.37) 

( ) = + xy2 57 0g x, y y 3 - = 

JacobianJ (6.36)= -

éù 
ê 
ê 
ê 
ê
ë 
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Figure 6.9 The functions f(x,y) and g(x,y). The plane corresponding to the zero is also shown. 

These equations are plotted in Figure 6.9 along with the zero plane. The simultaneous 
solution of Equations 6.37 appears to be approximately (x,y)= (2,3). 

For this case, the partial derivatives are 

¶f ¶f 
= 2x y+ , = x 

¶x ¶y 
(6.38) 

¶g ¶g
= 3y2, = +1 6xy

¶x ¶y 

Substituting Equations 6.38 into the iteration formulas (Equations 6.35) results in 

x2 + xy -10 1 6xy - y + 3 2 - 57 x( ) ( + ) ( xy ) ( )i i xi+1 = xi - i i 

Ji (6.39) 
2 2 2y + 3xy - 57 (2x + y) - x + xy -10 3y( ) i ( ) ( )

i i iyi+1 = yi -
Ji 

J = Jacobian = (2x + y 1 6xy) - 3y2 ( )x (6.40)) ( + ( ) 

After iteration of Equations 6.39 for a suffcient number of times, the iteration converges 
on the root of (x,y)= (2,3). This solution can be verifed by substituting it back into the 
original Equations 6.37. 

The classical bracketing methods, such as the bisection technique, and open methods, such 
as the Newton–Raphson technique, can be used for any number of simultaneous nonlinear 
equations. As with a single equation, reasonable initial guesses can make a difference in 
fnding the roots. The issues of convergence become more critical as the number of simulta-
neous equations increases. 
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PROBLEMS 

Problem 6.1 

Consider the equation e−x =x. Estimate the real root of this equation in the following ways: 

(a) Graphically by plotting the functions e−x and x. 
-x(b) Graphically by plotting the function f x( ) = e - x. 

(c) Using three iterations of the bisection method with initial guesses xl =0 and xu =2. 
(d) Using three iterations of the false-position method with initial guesses xl =0 and xu =2. 
(e) Using three iterations of the Newton–Raphson method with initial guess x0 =2. 

Summarize your results for parts (c) and (d) with a table: 

Iteration x x xl u r 

1 
2 
3 

Problem 6.2 

Determine the positive real root of the equation 

ln x2 = . :( ) 0 7  

(a) Graphically. 
(b) Using three iterations of the bisection method, with initial guesses xl = 0.5 and 

xu = 2. 
(c) Using three iterations of the false-position method, with initial guesses xl =0.5 and 

xu =2. 

Problem 6.3 

Consider a metal plate exposed to the sun with an insulated (no heat fow) bottom surface, 
as described in Section 6.2.3. 

a) Determine the plate temperature, T, on a day when Gs =900 W/m2 and h=15 W/m2 K. 
b) Compute a table of the plate temperature T for values of Gs ranging from 0 to 1200 W/ 

m2 in increments of 100 for h=15 W/m2 K. Make a plot of T versus Gs. 
c) Compute a table of the plate temperature, T, for values of the heat transfer coeffcient, 

h, ranging from 10 to 200 W/m2 K in increments of 10 when Gs =900 W/m2. Make a 
plot of T versus h. As h becomes extremely large, what is the plate temperature? 

Problem 6.4 

The Redlich–Kwong equation of state is given by 

RT a 
p = -

v b- v v + b T( ) 
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where 
R = gas constant 
T = absolute temperature (K) 
p = absolute pressure (kPa) 
v = specifc volume (m3/kg) 

The parameters a and b are calculated by 
2  2 5.R Tc Tca = 0 427. , b = 0 0866R. 
pc pc 

For methane, R=0.518 kJ/(kgK), pc =4580 kPa, and Tc =191 K. As a chemical engineer, you 
are asked to determine the amount of methane fuel that can be held in a 3 m3 tank at a tem-
perature of −50 degrees Celsius with a pressure of 65,000 kPa. 

a) Estimate v using the graphical method. 
b) Use a root locating method to calculate v, and then determine the mass of methane 

contained in the tank. 
c) How does the Redlich–Kwong equation of state compare with the ideal gas law? 

Problem 6.5: Depth of Water in a Tank 

You are designing a spherical tank to hold water. The volume of liquid in the tank is 
(3R h- )

V = p h2 

3 

where 
V = volume (m3) 
h = depth of water in the tank (m) 
R = tank radius (m). 

a) We wish to determine the required height h for given values of R and V. Derive the 
formula that uses the Newton–Raphson method to determine h. 

b) What is the range of h values that would physically make sense for an initial guess? 
c) Perform one iteration using your formula with parameters R=3 m, V=30 m3. Use an 

initial guess of h0 =1 m. 

Problem 6.6: Optimal Fin Spacing 

Heat sinks are often attached to electronic devices to increase the cooling effciency and 
thereby lower the temperature of the device. One common confguration of these heat sinks 
is an array of pin fns. Given the overall dimensions of a heat sink consisting of pin fns, 
it is desirable to know the optimal fn spacing, Sopt. The empirical formula for the optimal 
spacing is 

æ Sopt ö 2 + Sopt /D æ H ö
1 3/ 

-1 4/ 
ç ÷ 2 3  = 2 75 ÷ Ra/ . ç
è D ø (1 + Sopt /D) è D ø 

where 
D = diameter (m) 
H = height (m) 
Ra= Rayleigh number 
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a) Write a function to compute the optimal spacing given D, H, and Ra. Include your 
algorithm in the form of a fowchart or pseudocode. 

b) Use your function to plot Sopt/D versus Ra over the range 300< Ra< 10,000 for 
H/D=5, 10, 15, and 20. 

Problem 6.7: Friction Factor and Moody Diagram 

The Moody diagram is a classic found in virtually all books on fuid mechanics and heat 
transfer. It was originally published by L. F. Moody in the Transactions of the ASME in 
1944 and is one of those rare diagrams that have passed the test of time and are still used 
today. This diagram shows the friction factor f as a function of Reynolds number ReD for 
various values of the relative roughness ε/D. 

ReD = u D/nm 

Variable defnitions are: 

f = friction factor = - dP 
D/ (r um 

2 /2)
dx 

where 
P = pressure (N/m2) 
x = distance along pipe (m) 
  = roughness (m) 
D = pipe diameter (m) 
ReD = umD/v 
um = mean fuid velocity (m/s) 
ν = viscosity (m2/s) 
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A correlation between f, ReD, and ε/D was developed by Colebrook for fully developed 
turbulent pipe fow: 

æ .1 e /D 2 51 ö = -2log10 ç + ÷çf 3 7. Re f ÷è D ø 

This equation is valid for ReD > 3000. For ReD < 3000, the fow is laminar fow, and the fric-
tion factor for all ε/D values is f=64/ReD. 

a) Write a function to compute the friction factor as a function of ε/D and ReD. For 
ReD> 3000, the Colebrook correlation should be used. An initial guess at the root can 
be obtained from 

æ æ 1 11 öö
-2 

6 9. æ /D ö 
. 

f = ç1 8. log ç + ÷÷10 ç ÷ç ç ReD è 3 7. ø ÷÷
è è øø 

For ReD< 3000, the laminar fow formula, f=64/ReD, should be used. 
b) Use your function to plot the friction factor data on a log-log scale, just like the Moody 

diagram. Use the ε/D values shown in the fgure. 

Problem 6.8: Enzyme Kinetics 

The Michaelis–Menten model describes the kinetics of enzyme-mediated reactions: 

dS S = -vm
dt ks + S 

where 
S = substrate concentration (moles/L) 
vm = maximum uptake rate (moles/L/d) 
ks = half saturation constant, which is the substrate level at which uptake level is half 

of the maximum (moles/L) 

If the initial substrate level at t=0 is S0, this differential equation can be solved to get 

S S= - v t + k ln S /S0 m s ( 0 ) 

a) Develop a function to determine S as a function of t, S0, vm, and ks. 
b) Use your function to plot S versus t for S0 =0, 10, and 20 moles/L. Use vm =0.5 moles/ 

L/d and ks =2 moles/L. Experiment with the maximum time so that a steady state is 
reached. Put all three curves on a single graph. 

Problem 6.9: Basics 

a) Determine all the roots of f x( )  = -14 - 20x + 19x2 - 3x3 graphically. 
b) Determine the frst root of the function with the bisection method. 
c) Determine the frst root of the function with the false position method. 

For parts (b) and (c), use initial guesses of xl =−1 and xu =0, and a stopping criterion of 
£ 1%.ea 
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Problem 6.10: Fixed Points of an Ordinary 
Differential Equation (ODE) 

Consider the frst-order ODE dx/dt=ex −cos(x). 

a) Can you fnd the fxed points (steady state) explicitly? 
b) Show the location of the fxed points graphically. 
c) For this problem, what is the iteration formula needed to fnd the fxed points using the 

Newton–Raphson method? 
d) Starting with an initial guess of x0 =10, what result would the Newton–Raphson con-

verge to after many iterations? 

Problem 6.11: Projectiles 

Aerospace engineers sometimes compute the trajectories of projectiles such as rockets. A 
related problem deals with the trajectory of a thrown baseball. The trajectory of a ball 
thrown by a felder is defned by the (x, y) coordinates displayed in the fgure. 

The trajectory can be derived as 

g 2y y0 +x tan( )q0 - 2 
x= 

v0 cos( )22 q0 

a) Derive this formula from physical principles. 
b) Create an animation of y versus x with controls for the parameters. 
c) Create an animation of a parametric plot of y(t) versus x(t), where t is a parameter, 

along with the other system parameters. This is a “shooting star” animation. 
d) Create a function to compute the initial angle θ0 as a function of the other variables. 
e) Use your function to study the effect of a baseball thrown by a felder to home plate. 

Create a plot of θ0 (in degrees) versus x. Use an x-range of 1 to 130 m (deep outfeld). 
On a single graph, plot curves corresponding to v0 =25, 35, and 45 m/s. Note that 45 
m/s is about 100 mph, which is the limit for a top major league baseball player. Also 
assume that the felder releases the ball at an elevation of 2 m and the catcher receives 
it at 0 m. 

Problem 6.12: Simultaneous Equations 

Consider the following equations. Sketch solutions to each of these equations in the x-y 
plane and indicate the x, y points that are solutions to both equations. Apply one step of the 
Newton–Raphson formula using initial guess ( ,0 0) (0 0, ).x y  = 
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a) f x( , y) = 2x - y = 0 

g x y(  ) = +x y - =, 3 0  

b) f x,y = - = ( ) y 2 0  

g x y, x2 - 0( ) = y = 

Problem 6.13: Graphical Solutions 

Consider the function 

f x( ) = ax + b - sin( )x 

a) Graphically show the roots of f(x)=0 when a=b=0. What are the roots? 
b) Graphically show the roots f(x)=0 when a=0 for various values of b. Show the roots 

by plotting f(x) versus x. On a separate plot, show the roots by plotting both ax+ b and 
sin(x) versus x. What is the range of b for which roots exist? 

c) Graphically show the roots when b=0 for various values of a. Are roots always pos-
sible? Are there any ranges of a for which multiple roots exist? 

d) Find the root of f(x)=0 for 
• a=0.1 and b=0 with an initial guess of x0 =4 
• a=0.5 and b=1 with an initial guess of x0 =4 
• a=0.5 and b=1 with an initial guess of x0 =−4 

Problem 6.14: Simple Interest 

The formula for simple interest is 

A P
i (1 + i )n 

= 
(1 + i )n -1 

where 
P = present worth 
A = annual payments 
n = number of years 
i = interest rate 

a) Write a function to compute i as a function of A, P, and n. 
b) For P=$25,000, A=$5000, and n=30 years, determine i. 
c) With P=$25,000, plot i versus n for A=$1000 to $10,000. 

Problem 6.15: Nonlinear Springs 

Consider the spring and block system shown with nonlinear springs: 
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Nonlinear springs can be described by Fspring = kx  + g x3, where x is the displacement of 
the spring from its equilibrium length and k and γ are dependent upon the properties of the 
spring. For relatively small values of x, the nonlinear term is small, and the spring behaves 
as a linear spring, that is, Fspring = kx. If γ > 0, the spring is called a hardening spring, because 
it takes more force to cause the same displacement. If γ < 0, the spring is called a softening 
spring, meaning that it loses its strength after being stretched or compressed. 

a) Considering all the ki, γi, Li, and W as known, derive the mathematical model for the 
stretched lengths xi. 

b) Write a function to solve the system of equations in part (a). 
c) Use the function developed in part (b) to determine the xis in the following cases. 

Case 1 Case 2 Case 3 

W= 0.2 m W=0.2 m W=0.2 m 
LT = 8 m LT =8 m LT =8 m 
Li = 1 m Li =1 m Li =1 m 
ki = 2 N/m ki =2 N/m k1 = 1, k2 = 2, k3 = 3, k4 =4 N/m 
γi = 0 N/m3 γ1 = 0.1, γ2 =0.2, γ3 =0.3, γ4 = 0.4 N/m3 γ1 = 0.1, γ2 = 0.2, γ3 =0.3, γ4 =0.4 N/m3 
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Chapter 7 

Introduction to Ordinary 
Differential Equations 

CHAPTER OBJECTIVES 

The primary objectives of this chapter are to present a logical classifcation of ordinary differ-
ential equations, to visualize their behavior using phase portraits, and to motivate the study of 
them through physical applications. 

The selected topics are 

• Classifcation of ordinary differential equations (ODEs) 
• Initial versus boundary value problems 
• Phase portraits for frst-order ODEs 
• First-order linear ODEs with application to thermal and electrical models 
• First-order nonlinear ODEs with application to population models 
• Phase portraits for second-order ODEs 
• Second-order linear ODEs with application to mechanical vibrations and electrical 

circuits 
• Second-order nonlinear ODEs with application to pendulums and predator–prey models 
• Second-order boundary value problems typical of steady-state heat conduction 

7.1 CLASSIFICATION OF ORDINARY DIFFERENTIAL EQUATIONS 

An ordinary differential equation (ODE) is a differential equation where the dependent vari-
able or variables depend on only one independent variable (usually time or space). The order 
of an ODE refers to the highest derivative or equivalently, to the number of simultaneous 
equations. ODEs can be classifed by the order of the equation as well as whether the system 
is linear or nonlinear. Figure 7.1 shows the mathematical forms of these various types of 
ordinary differential equations. 



  

 

 

  
 

 

 

  

  

  

  

  

 

120 Applied Engineering Mathematics 

Figure 7.1 Classifcation of ordinary differential equations. 

7.1.1 Autonomous versus Nonautonomous Systems 

In general, the derivative of the dependent variable can be an explicit function of both t and 
θ, such as the frst-order equation d dq / t f t( , )= q . This is referred to as nonautonomous. 
On the other hand, when the derivative has no explicit t dependence, the system is called 
autonomous. The frst-order equation now has the form dθ/dt= f(θ). With the linear frst-
order ODE, this means that a and b do not depend on t. 

An autonomous system evolves in time but without external sources or interference. The 
same can be said for all other types of systems listed in Figure 7.1. 

7.1.2 Initial Value and Boundary Value Problems 

A unique solution for any system of differential equations requires auxiliary conditions. The 
need for auxiliary conditions can be seen by considering the simplest differential equation, 

dq = 8 (7.1) 
dt 

Multiply by dt and integrate ò dq = 8 ò dt . The result is q = 8t c+ , where c is some unknown 
constant. A unique solution can only be obtained if an initial condition is specifed at the 
start of the process. For instance, if the process starts at t=0, at which time θ has the value 
3, we require 

q = 3, t = 0 (7.2) 

In order to satisfy this initial condition, c must be 3, and now the unique solution is 

q = 8t + 3 (7.3) 
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Figure 7.2 Initial versus boundary value problems. 

In general, an nth-order system requires n conditions. That is, one condition is required for 
a frst-order equation, two conditions are required for second-order systems, and so on. 

First-order equations always require a single initial condition. However, for second-order 
or higher systems, the required conditions can be either initial conditions or boundary con-
ditions. If all the conditions are specifed at the same value of the independent variable, then 
we have an initial value problem. In contrast, if conditions are known at different locations 
of the independent variable, then we have a boundary value problem. Figure 7.2 contrasts 
these two scenarios for second-order systems. 

The independent variable in the initial value problem is t, and it usually represents time in 
a transient problem. The independent variable in the boundary value problem is x, since it 
usually represents position in a spatially distributed problem. These various types of systems 
are introduced in the following sections. 

7.2 FIRST-ORDER ORDINARY DIFFERENTIAL EQUATIONS 

7.2.1 First-Order Phase Portraits 

Phase portraits are used to show qualitative behavior. Consider a frst-order autonomous 
differential equation. 

dq = f ( )q (7.4) 
dt 

For now, we will consider only autonomous systems, where the function f does not depend 
explicitly on time. Time-dependent or nonautonomous equations of the form d dq / t f= t q( ,  ) 
are more complicated, because two pieces of information, θ and t, are needed to predict the 
future state of the system. These will be discussed later. 

Pictures are often more helpful than formulas, especially for analyzing nonlinear systems. 
We will use a basic technique from dynamics: interpreting a differential equation as a vec-
tor feld. Consider any autonomous differential equation of the form dθ/dt= f(θ). We wish 
to develop a graphical interpretation of the behavior of this equation. To do this, we simply 
plot dθ/dt versus θ, as shown in Figure 7.3. 

We think of t as time, θ as the position of an imaginary particle moving along the real 
line, and dθ/dt= f(θ) as the velocity of the particle. Then, the differential equation represents 
a vector feld on the line: it indicates the velocity vector dθ/dt at each θ. The direction of the 
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Figure 7.3 Phase portrait for dθ/dt= f(θ). 

arrows represents the direction of the motion. At points where dθ/dt =0, there is no motion. 
Such points are called fxed points. Note the following features shown on this graph. 

1. Arrows to the left are drawn in regions where f(θ)< 0, since θ is getting smaller. 
2. Arrows to the right are draw in regions where f(θ) > 0, since θ is getting bigger. 
3. Fixed points θ* are values where f(θ*)=0. This particular case has two fxed points, q1

* 

and q2
*. 

4. From this diagram, we conclude that the fxed point q1
* is stable, since initial θ values 

on either side move toward or are attracted to q1
*. Stable fxed points are indicated by 

a solid black dot. 
5. On the other hand, q2

* is an unstable fxed point, since points on either side move away 
from or are repelled by q2

*. Unstable fxed points are indicated by an open circle. 

This diagram is called a phase portrait. From it, we can deduce qualitatively the behavior 
of the differential equation, including the curvature, starting from any initial condition. 
A sketch of solution θ(t), starting from several different initial conditions, must look like 
Figure 7.4. Note that the correct curvature can be deduced from the phase portrait. 

Figure 7.4 Anticipated solution based on phase portrait for dθ/dt = f(θ). 
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Figure 7.5 Phase portrait and solution for the nonlinear system dθ/dt=sin(θ). 

As another example, we tackle a nonlinear frst-order ODE subject to a prescribed initial 
condition. 

dq = qsin ( )
dt 

q q , t = 0 (7.5) = 0 

This is a rare nonlinear system in that we can actually solve it analytically. The solution is 

csc ( ) + cot ( )qq0 0t = ln (7.6) 
csc  ( ) + qq cot ( )  

Although this result is exact, it is still extremely diffcult to envision the nature of the solu-
tion. Could you start from some known initial condition and qualitatively sketch the fea-
tures of the solution, especially as t→∞? The answer is almost surely no! 

In contrast, the graphical analysis is simple and clear, as shown in the following plot of 
d dq / t= sin( )q  versus θ in Figure 7.5. Some solutions, θ(t) versus t, are also plotted. Note that 
except for specifc numerical values, all the qualitative behavior is contained in the phase portrait. 

7.2.2 Nonautonomous Systems 

The previous discussion dealt with autonomous systems, where the function f does not depend 
explicitly on time. We now turn to time-dependent or nonautonomous equations of the form 

dq = f t( ,q ) (7.7) 
dt 

This type of differential is a bit more complicated, because two pieces of information, θ and 
t, are needed to predict the future state of the system. The time dependency usually results 
from external sources acting on the system Figure 7.6. 

In order to visualize the solution, we would need a three-dimensional graph of f(t,θ) ver-
sus θ and t. An alternative visualization is to plot the slope feld. That is, for each point (θ, 
t), the differential equation gives the slope dθ/dt of the solution passing through that point. 
The solution always follows a path that is tangent to the local slope. 

Some examples are displayed in Figure 7.6. In each case, we can sketch the approximate 
solution by following the slope at any location. 

7.2.3 First-Order Linear Equations 

A frst-order linear ODE has the specifc form 

dq (7.8) a q b= - × +  
dt 
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Figure 7.6 Slope felds for some selected ODEs. 

If there is no explicit time dependence in the right-hand side (i.e., a and b are constants, 
independent of t), the system is called autonomous. For autonomous systems, the deriva-
tive can be plotted as a function of the right-hand side to get a phase plot or phase 
portrait. 

Note that the value of θ where dθ/dt=0 is the steady state or fxed point. Setting the right-
hand side of the differential equation to zero reveals that the fxed point is q * = b a/ . Since 
θ increases when dθ/dt is positive and decreases when dθ/dt is negative, the solution for θ(t) 
must look something like the graph in Figure 7.7(b). 

Linear ODEs have applications in all branches of physics and engineering, including the 
lumped thermal model described next. 

7.2.4 Lumped Thermal Models 

Consider an object heating up or cooling down due to exposure to a fuid at temperature T∞ 

with heat transfer coeffcient h and a heat source g(t) (Figure 7.8). 
The key assumption is that at any time, the object’s temperature T(t) is spatially uniform. 

This is known as the lumped capacity approximation. 
An energy balance on the object requires that 

Rate of change of energy = -Rate of heat loss to the fluid 

+Raate of heat added by the source 

r cV 
dT = -hAs (T T- ¥ ) + gV (7.9) 
dt 

This frst-order linear ODE describes the transient temperature history of the object. A 
unique solution requires knowledge of the initial temperature at the start of the process. 

T T , t = 0 (7.10) = 0 
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Figure 7.7 (a) Phase portrait and (b) anticipated solution for a linear frst-order autonomous ODE. 

Figure 7.8 Schematic for the transient thermal analysis of a lumped mass. 

Now recast this differential equation in the form 

dq 1 = - q + S (7.11) 
dt t 

The new variables are: 

q ( )t = T ( )t -T¥ = temperature rise 

rcVt = = time constant 
hAs 

g t( )
S t( ) = = source 

rc 

For a constant S, this equation has only one fxed point at q * = T* -T¥ = t S . The phase por-
trait and anticipated solution are qualitatively exactly like those shown in Figure 7.7. 

Note that regardless of the starting temperature, the system always gravitates toward the 
stable fxed point, T* = T¥ +t S . This point could be called an attractor for the system. In 
the absence of any external heat source, S=0, the object always cools down to or heats up 
to room temperature T∞. In the following chapters, methods to derive the exact analytical 
solutions and numerical solutions are presented. The purpose here, however, is visualization 
and insight. 

7.2.5 RC Electrical Circuit 

Consider the series RC circuit with a battery of constant direct current (dc) voltage V shown 
in Figure 7.9. 
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Figure 7.9 An RC circuit: (a) schematic, (b) phase portrait. 

Kirchhoff’s law applied around the closed loop gives the following equation for the charge 
Q in the circuit: 

dQ 1
R + Q V= (7.12) 

dt C 

This relation can be rearranged in the form 

dQ 1 V
Q + = f Q= - ( )  (7.13) 

dt RC R 

Equation 7.13 is plotted in Figure 7.9b.The only fxed point is Q* =CV, and from Figure 7.9b, 
this can be identifed as a stable fxed point, as expected from the physics of this elementary 
circuit. 

7.2.6 First-Order Nonlinear Equations 

A frst-order nonlinear ODE has the general form 

dq = f t( ,q ) (7.14) 
dt 

Although the right-hand side can be any arbitrary and possibly complicated function, the 
differential equation still simply expresses the rate of change of the dependent variable θ for 
any t and current value of θ. Thus, for the autonomous case with no explicit t dependence, 
a phase portrait and anticipated solution can be drawn. 

Unlike linear frst-order equations with one fxed point, a nonlinear equation might have 
anywhere from zero to an infnite number of fxed points. In addition, the behavior could 
possibly be much more complex due to bifurcations, as explored in detail in Section 10.4. 

7.2.7 Population Dynamics 

A classic example is the modeling of population dynamics. Although population dynamics is 
an inexact science, many reasonable models have been proposed. Consider the population, P 
(number of individuals), of a particular species. A population balance suggests that 

Rate of change of  P = Birth rate Death rate +- Immigration rate 
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Plausible models for the various terms are: 

Birth rate=a P 
Death rate=b P2 

Immigration rate=S 

where a and b are the birth rate and death rate constants, respectively. The population bal-
ance becomes 

dP = aP - bP2 + S (7.15) 
dt 

We also need to specify the initial population at time t=0 to obtain a unique solution. 

P P= 0, t = 0 (7.16) 

We now have a candidate mathematical model to predict the population as a function of time. 
The simplest model for growth is dP/dt= rP, where r is the growth rate. This model pre-

dicts exponential behavior, which cannot go on forever. An improved model incorporates 
the growth rate as a function of P in the form r(1− P/K), where K is the carrying capacity 
or maximum sustainable population of the species. This produces the so-called logistic 
equation, 

dP æ P ö= ×r P  1 - (7.17) ç ÷dt è K ø 
This is similar to the previous model but based on a different line of reasoning. The phase 
portrait and anticipated solution, considering only positive values of P (no anti-people), are 
as shown in Figure 7.10. 

There are two fxed points: 

• P* =0: unstable 
• P* = K: stable 

Based on the phase portrait, we can deduce the qualitative nature of the solution. For any 
nonextinct starting population, the population will always grow or die toward the carrying 
capacity; P* = K. If the population starts below K/2, the growth rate is slow at frst and grad-
ually accelerates until P reaches K/2. The growth rate then slows as the population gradually 
approaches K. In the language of mathematics, the approach to steady state is asymptotic. 

Figure 7.10 Phase portrait and anticipated solution for the logistic equation. 
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7.3 SECOND-ORDER INITIAL VALUE PROBLEMS 

7.3.1 Second-Order Phase Portraits 

First, we consider an autonomous second-order system. 

dq1 = f1 (q q1, 2 )
dt (7.18) 

dq2 = f2 (q q1, 2 )
dt 

This system can be linear or nonlinear. For frst-order autonomous ODEs, it was possible 
to clearly visualize the dynamics using phase portraits as shown in the previous sections. In 
principle, this is possible with all systems of ODEs. The diffculty is that for second-order 
autonomous systems, it is necessary to plot both derivatives as a function of both dependent 
variables (θ1,θ2). This is diffcult on a two-dimensional surface. 

An alternative is to visualize trajectories moving in the (θ1,θ2) plane, referred to as the 
phase plane. We can visualize the general solution (θ1(t),θ2(t)) by thinking of the vector feld 
in terms of the motion of an imaginary fuid. Then, to fnd the trajectory starting at some 
point (θ1,0,θ2,0), we place an imaginary particle at that point and watch how it is carried 
around by the fow. The vector feld indicates the trajectories that our imaginary particle 
would follow. These trajectories are the parametric representation of the solution (θ1(t),θ2(t)), 
called the phase portrait. This shows the overall picture of trajectories in phase space. It is 
a valuable tool in understanding the fundamental characteristics and getting a feel for the 
qualitative behavior of second-order systems, particularly nonlinear systems where analytical 
solutions are usually impossible. 

Equations 7.18 can be written as a vector feld on the phase plane in matrix form as 

dq
= f ( )q

dt 
(7.19) 

éq1 ù é f1 ù q = , f =ê ú ê úq2 f2ë û ë û 

The vector θ represents a point in the phase plane, and dθ/dt represents the velocity of that 
point in the phase plane. By fowing along the vector feld, a phase point traces out a solu-
tion, θ(t), corresponding to a trajectory winding through phase space. Furthermore, the 
entire phase plane is flled with trajectories, since each point can play the role of an initial 
condition. 

Just as in the case of frst-order systems, the steady-state or fxed points are crucial. They 
are determined from the solution of the algebraic equations 

f1 (q q2 )1
*, * = 0 

(7.20) 
f2 (q q2 )1

*, * = 0 

The rigorous mathematical analysis of the stability of the fxed points is presented later. 
The nullclines are defned as the curves where either dθ1/dt =0 or dθ2/dt =0. The trajec-

tories in the phase plane are parallel to the θ2-axis when dθ1/dt =0 and are parallel to the 
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θ1-axis when dθ2/dt=0. The intersections of the nullclines are the fxed points. Graphing the 
nullclines can be a helpful start in trying to form a phase portrait. 

At each point (θ1,θ2) in the phase plane, the differential equations defne the velocity. 
Thus, the velocity vector feld, indicating the direction and magnitude of the trajectories at 
each point, can be directly plotted from the system of differential equations. The solution 
follows the velocity vectors. 

A complete phase portrait shows the trajectories moving in the phase plane. To get a 
feel for the dynamics, begin with a velocity vector feld plot. Include the fxed points and 
nullclines on this plot. Trajectories can be drawn approximately by hand or directly from 
numerical solutions of the governing equations. 

Example 

As an example, consider the following system and corresponding phase portrait (Figure 7.11). 
* *This system has only one fxed point: q q, = 0 0, . Graphing the nullclines can be ( 1 2 ) (  )

a helpful start in trying to form a phase portrait. The system assigns a vector (dθ1/dt, 
dθ2/dt) at each point (θ1,θ2) and therefore represents a vector feld. The vector feld can be 
directly plotted from the system of differential equations, as shown. Starting from any 
location in the plane, the trajectory is shown by the arrows, and the solution of the system 
can be anticipated. Several linear and nonlinear applications are described next. 

7.3.2 Second-Order Linear Equations 

A typical second-order linear ODE has the form 

d2q dq (7.21) 
2 + c1 +  × =c2 q F 

dt dt 
An equivalent form for an arbitrary second-order system is 

dq1 = a q + a q + b11 1  12 2  1
dt (7.22) 

dq2 = a q1 + a q + 221 22 2  b 
dt 

Figure 7.11 Phase portrait (vector feld). 
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It is evident that these two forms are equivalent by defning the new variables 

q1 = q 

(7.23) dq1 = q2
dt 

The original second-order ODE can be decomposed into simultaneous frst-order equations 
by substituting the variables defned by Equations 7.23 into Equation 7.21 to get 

dq1 = q2
dt 

(7.24) 
dq2 = -c1 2q - c2 ×q1 + F 
dt 

7.3.3 Mechanical Vibrations 

Consider a mass-spring-damper system with an applied force f(t), shown in Figure 7.12. 
Apply Newton’s second law to the associated free body diagram. 

m a× =  Forceså 
2d x  dx 

m 2 + c k x  f t+ × = ( )  (7.25) 
dt dt 

The initial position and velocity need to be specifed to complete the mathematical model. 

x x0 ü= 
ï 

dx ý t = 0 (7.26) 
= v0 ïdt þ 

This differential equation and the two initial conditions describe the motion of the mass. 
This type of problem is an initial value problem, since two conditions at the start of the 
process are specifed. 

7.3.4 Mechanical and Electrical Circuits 

Figure 7.13 shows a variety of mechanical and electrical second-order systems with identical 
mathematical structure. 

Figure 7.12 Schematic and free body diagram of a mass-spring-damper system. The variables are: x(t) = dis-
placement measured from static equilibrium (m), m=mass (kg), c=damping coeffcient (N∙s/m), k=spring 
constant (N/m), f(t)=applied force (N). 
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Figure 7.13 The mathematical connection between mechanical and electrical circuits. 

7.3.5 Second-Order Nonlinear Equations 

Second-order nonlinear systems can be visualized using trajectories in the phase plane, 
just like linear equations. The equations and resulting dynamics of nonlinear systems can 
be much more complex, however. There can be several fxed points, and bifurcations can 
occur. These issues are discussed in detail in Section 11.8. Several nonlinear applications 
are presented next. 

7.3.6 The Pendulum 

A damped pendulum with an applied torque is pictured (Figure 7.14). 
Apply Newton’s law for rotational motion. 

Mass moment of inertia Angular acceleration =åMoments´ 

2 d2q dq (7.27) L m  2 = -b - × × × sin ( ) + G( )tm g L q
dt dt 

The initial position and angular velocity need to be specifed. 

q q0 ü= 
ï 

dq ý t = 0 (7.28) 
= v0 ïdt þ 
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Figure 7.14 The pendulum. 

This is a second-order, nonlinear ODE. This differential equation, along with the two initial 
conditions, describes the motion of the pendulum. 

For highly damped conditions, such as a pendulum swinging in molasses, the damping 
term dominates the angular acceleration term and Equation 7.27 reduces to 

dq
b = -m g L × sin q× ×  ( ) + G( )t (7.29) 

dt 

This reduces to a frst-order, nonlinear ODE. 

2 d2q dq
L m  = -b m g L q t2 - × × × + G( )  (7.30) 

dt dt 

This reduces to the linear spring-mass system with the same mathematical structure as 
Equation 7.26. 

7.3.7 Predator–Prey Models 

Consider the population dynamics of two interdependent species of animals. One species, 
the prey, is the primary food source for the other species, the predator. For instance, we 
might have rabbits and wolves. One plausible mathematical model is 

dR = a1R -d1R ×W 
dt 

(7.31) 
dW 
dt 

= -d2W +a2R ×W 

where 
R =population of the prey (Rabbits) 
W =population of the predator (Wolves) 
α1 and α2 are the growth rate coeffcients 
δ1 and δ2 are the death rate coeffcients. 

If left to themselves, the rabbits would grow in proportion to the number of rabbits, while 
the wolves would starve at a rate proportional to the current population. However, both 
species could coexist, since the nonlinear interaction terms cause the rabbits to perish and 
the wolves to thrive in proportion to the product R·W. 
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This system is a second-order system, since two independent variables (R and W) evolve 
simultaneously. It is a nonlinear set of equations due to the interaction terms. Once the ini-
tial populations R0 and W0 are specifed, the system of ODEs is properly formulated. 

7.4 SECOND-ORDER BOUNDARY VALUE PROBLEMS 

Consider a plane wall shown in Figure 7.15 with some heat generation g(x). Steady-state 
conditions exist, and heat fows in only one direction. 

Applying the conservation of energy principle to a differential control volume with con-
stant thermal conductivity leads to the following steady-state heat conduction equation: 

2d T  g (7.32) 
2 + = 0 

dx k 

To complete the mathematical model, boundary conditions at both surfaces must be speci-
fed. Specifed temperature boundary conditions are 

T T , x = 0= 0 (7.33) 
T TL, x L= = 

Specifed heat fux or convection boundary conditions could also be used. In any case, this 
system is a boundary value problem, since one condition at each boundary is specifed, as 
opposed to two conditions at the same starting point required for initial value problems, 
such as the spring-mass system. 

7.5 HIGHER-ORDER SYSTEMS 

Simultaneous systems of differential equations with any number of equations have applica-
tions in physics and engineering. Higher-order systems are diffcult to visualize using tools 
such as phase plots employed earlier for frst- and second-order systems, since too many 
variables need to be graphed. However, much of the intuition developed for linear systems 
using phase plots is still applicable. The amount of computational expense increases greatly 
for large numbers of simultaneous equations, but the dynamics are well understood. 

Figure 7.15 Steady heat conduction in a plane wall. 
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On the other hand, simultaneous systems of nonlinear equations with three or more vari-
ables can have surprisingly complex behavior compared with systems with one or two equa-
tions. For example, consider the Lorenz equations: 

=s -x y  
dx ( + )
dt 

dy 
r x y x  (7.34) = × - - × z 

dt 

dz 
x y  b z= × - ×  

dt 

This system of equations has only two nonlinear terms (x·z in the y equation and x·y in 
the z equation). However, it has extremely complex dynamics once the driving parameter r 
crosses a certain threshold. The behavior is termed chaotic. 

PROBLEMS 

For each of the frst-order ODEs in problems 7.1–7.6: 

a) Find all fxed points and classify their stability (stable or unstable). 
b) Sketch the phase portrait (dθ/dt vs. θ) 
c) Sketch the anticipated solution (θ(t) vs. t), starting from several initial conditions. 

Clearly label your sketches. 

Problem 7.1 

dq = b b,  is a  constant. 
dt 

Draw sketches for b < 0, b = 0, and b > 0. 

Problem 7.2 

dq = -q
dt 

Problem 7.3 

dq = -a ×q
dt 

Draw sketches corresponding to a zero, a low, and a high value of the parameter a. 

Problem 7.4 

dq 
a q b= - × +  

dt 

Draw sketches corresponding to zero, low and high values of the parameter b. 
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Problem 7.5 

dq = ×r q (1 -q ), r is a positive constant 
dt 

Draw anticipated solution (θ(t) vs. t) starting from several initial conditions. 

Problem 7.6 

dq = ×r q (1 -q ) + S, r is a positive constant 
dt 

Are there any critical values of S? Draw sketches starting from different initial positions. 

Problem 7.7 

Consider the linear frst-order ODE 

dq 1+ (q q¥ = Sc - )
dt t 

q q , t = 0= 0 

The parameters τ, θ∞, and Sc are constants. Assume τ > 0. 

a) Find and classify the stability of the fxed points. 
b) Sketch the phase portrait for Sc =0 and Sc> 0. 
c) Sketch the solution based on the phase portrait for different initial conditions. Consider 

Sc =0 and Sc > 0. 
d) Based on the previous fndings, sketch the anticipated solution for θ∞ =0 with a pulsed, 

time-dependent source 

S t( ) = S H t -H t t ))c ( ( )  ( - 1 

Problem 7.8: Tumor Growth 

The growth of cancerous tumors can be modeled by the Gompertz law: 

dN 
a N  × ln (bN )= - × 

dt 

where 
N(t) is proportional to the number of cells in the tumor 
a, b > 0 are parameters 

a) Interpret a and b biologically. 
b) Sketch the phase portrait. 
c) Sketch N(t) for various initial values. 
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Problem 7.9 

Consider the model chemical reaction 

k1 

®
A X  2X+ 

¬ 
k-1 

in which one molecule of X combines with one molecule of A to form two molecules of X. 
This means that the chemical X stimulates its own production, a process called autocataly-
sis. This positive feedback process leads to a chain reaction, which eventually is limited by 
a “back reaction” in which 2X returns to A+ X. 

According to the law of mass action of chemical kinetics, the rate of an elementary reac-
tion is proportional to the product of the concentrations of the reactants. We denote the 
concentrations by lowercase letters x=[X] and a=[A]. Assume that there’s an enormous 
surplus of chemical A, so that its concentration a can be regarded as constant. Then, the 
equation for the kinetics of x is 

dx 2 

dt 
1 -1 = k ax k- x 

where k1 and k−1 are positive parameters called rate constants. 
a) Sketch the phase portrait. 
b) Find all the fxed points and classify their stability. 
c) Sketch the solution based on the phase portrait for different initial conditions. 

Problem 7.10: Chemical Kinetics 

Consider the chemical reaction system 

k1 

®
A X  2X+ 

¬ 
k-1 

k2 

X B  C+ ®  

This is a generalization of Problem 7.9. The new feature is that X is used up in the produc-
tion of C. 

a) Assuming that both A and B are kept at constant concentrations a and b, show that 
the law of mass action leads to an equation of the form dx/dt = c x  2

2 
1 - c x  , where x is 

the concentration of X, and c1 and c2 are constants to be determined. 
b) Find and classify all the fxed points. Show that x * = 0 is stable when k2b > k1a, and 

explain why this makes sense chemically. 
c) Sketch the phase portraits and anticipated solutions for all the qualitatively different 

possibilities. 
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Problem 7.11: Allee Effect 

For certain species of organisms, the effective growth rate  /N N  is highest at intermediate 
N. This is called the Allee effect. For example, imagine that it is too hard to fnd mates 
when N is very small, and there is too much competition for food and other resources 
when N is large. 

a) Show that N 
r a ( - 2  provides an example of the Allee effect if r, a, and b sat-

 
= - N b)

N 
isfy certain constraints, to be determined. 

b) Find all the fxed points of the system and classify their stability. 
c) Sketch the solutions N(t) for different initial conditions. 
d) Compare the solutions N(t) with those found for the logistic equation. What are the 

qualitative differences, if any? 

Problem 7.12: Slope Fields 

Consider an autonomous frst-order ODE: 

dx = f x( )
dt 

The slope feld is shown. 

a) Sketch the solution x(t) versus t starting from x0 =−2, −1, 0, 1, and 2. 
b) Sketch the phase portrait, dx/dt versus x. 
c) Propose a possible function f(x) consistent with the slope feld. 



https://taylorandfrancis.com/
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Chapter 8 

Laplace Transforms 

CHAPTER OBJECTIVES 

The basics of the Laplace transform are described. The Laplace transform is a powerful method 
for solving linear ordinary and partial differential equations. 

Specifc objectives and topics covered are 

• The basic defnition of the Laplace transform 
• Laplace transform pairs 
• Properties of the Laplace transform 
• Inverting Laplace transforms using partial fraction expansion 
• Solutions of ordinary differential equations using Laplace transforms 
• Transfer functions 

8.1 DEFINITION OF THE LAPLACE TRANSFORM 

The Laplace transform method is a mathematical technique that can be used to obtain 
solutions to linear, time-invariant systems of differential equations. The advantage is that 
the method reduces the differential equation in time to an algebraic equation, which can be 
inverted to get the solution. 

The Laplace transform of a function f(t) is defned as 

¥ 

ë û = -st éf t( )ù F s( ) = f t( )e dt (8.1) ò 
t=0 
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The inverse Laplace transform recovers the function f(t): 
g j+ ¥  

- 1 stf t( ) =  1 éF s( )ûù = F s( )e ds (8.2)ë 2p j ò 
s g j= - ¥ 

j = -1 

We seldom use this inversion integral. Usually, the inverse is obtained by matching the trans-
form to known Laplace transform pairs. 

8.2 LAPLACE TRANSFORM PAIRS 

Some important cases of Laplace transform pairs are listed in Table 8.1. The value of hav-
ing this table is that if we can match the Laplace transform F(s) with one of these cases, we 
immediately know the function f(t). 

8.3 PROPERTIES OF THE LAPLACE TRANSFORM 

There are some useful properties of Laplace transforms. One of these is the addition of 
functions given by 

ò
¥ 

-st éf t( ) + f t( )ù (f t( ) + f t e d( )) t =  éf ( )t ]+[ f ( )t ù (8.3)ë 1 2 û = 1 2 ë 1 2 û 
t=0 

Table 8.1 Laplace transform pairs 

Inverse Laplace Transform Laplace Transform 
-f t( ) =  1[F s( )] F s( ) = [f t( )] 

Delta function, δ(t) 1 
Unit step, H(t) 1/s 
Ramp, t 1/s2 

e−at 
1

a s+ 

te−at 
1

(a s+ )2

tne−at 
n !

) +1(a s
n+ 

Sin(ωt) w 
2 2s +w 

Cos(ωt) s
2 2s +w 

-ate Sin ( )wt w 

(a s
2 +w+ ) 2

e-at t +Cos ( )w a s

(a s+ )2 +w2
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Another useful property is the translation of functions. Consider a translated function 
defned using the step function in the form 

f t( - t Ho ) (t t- o ) (8.4) 

The Laplace transform is 

ò
¥ 

é -st -sto
ë - ù ( o ( t e  F s f t t H( - o ) (t to )û = f t t H- ) t t e d- o ) = ( )  (8.5) 

t=0 

This property is useful for forcing functions that are applied at times other than t=0. 
Sometimes we have a function multiplied by e−at. For this case the Laplace transform 

becomes 

at -at -st (s a t) e f t( )ù e f t e d( )  t = ( )  dt = F s + a)é - û = ò
¥ 

ò
¥ 

f t e- +  ( (8.6)ë 
t=0 t=0 

An extremely important property for solving differential equations is the Laplace transform 
of derivatives. For frst and second derivatives the relationships are 

First Derivative 

 ù éf t( )û = s éëf ( )t ùû - f ( )0 (8.7)ë 

= sF ( )s - f ( )0 

Second Derivative 

 2 éf t( )ù = s  éf t( )ù - sf ( )0 - f ¢( )0 (8.8)ë û ë û 

2= s F  s( ) - sf ( )0 - f ¢( )0 

This is the important property of Laplace transforms, since it makes the solution of ordinary 
differential equations (ODEs) possible. 

8.4 THE INVERSE LAPLACE TRANSFORMATION 

The inverse Laplace transform is the process of fnding the time function f(t) from the cor-
responding transform F(s). The methods of fnding the inverse Laplace transform are to 

• Use the basic defnition, Equation 8.2. This is usually diffcult and is seldom used. 
• Use tables of functions f(t) corresponding to given Laplace transforms F(s). Some 

important cases are listed in Table 8.1. 
• Use the partial-fraction expansion method. This method is emphasized in many books. 
• Use Mathematica’s “InverseLaplaceTransform” command. 

8.4.1 Partial-Fraction Expansion Method 

For problems involving dynamical systems, F(s) frequently occurs in the form 

B s( )
F s( ) = (8.9)

A s( )  
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where A(s) and B(s) are polynomials in s. The degree of B(s) is not higher than that of A(s). 
The advantage of the partial-fraction approach is that the individual terms of F(s) resulting 
from the expansion are simple functions of s that have well-known inversions and can be 
found in standard Laplace transform tables such as Table 8.1. 

In order to apply the partial-fraction approach, the roots of the denominator polynomial 
must be determined. Then, Equation 8.9 for F(s) can be written as 

B s( )
F s( ) = (8.10) 

s p  s p)( + ) s p )( + 1 n2 ( + 

The parameters p p ¼ p, , ,  are called poles. They may be real or complex. Complex poles 
always occur as a pair of complex conjugates, that is, a+ bj and a− bj. 

1 2 n 

8.4.2 Partial-Fraction Expansion for Distinct Poles 

Cases with distinct poles always allow a simple expansion: 

B s( )  a1 a2 anF s( ) = = + + + (8.11)
A s  s p+ 1 + 2 s pn( )  s p  + 

where the constants ak, k=1, …, n are called the residues. A typical residue ak can be found 
by multiplying both sides by s+ pk and evaluating the resulting expression at s=−pk. 

æ B s( )  ö 
ç s pk )÷ç ( + 

A s( )è ø
÷ 

s=-pk 

æ a1 ak an ö 
= k ) ( + (8.12)ç (s p+ ) + + (s p+ k + + s pk )÷ s p  s p+ s p+è + 1 k n øs=-pk 

0  + ak + + = ak= +  0 

From Table 8.1 of Laplace transforms, we fnd 

æ a ö æ 1 ö-1 k -1 -p tk ç ÷ = ak ç ÷ = a ek (8.13) 
s p+ k ø + øs pkè è 

Now, we can invert the entire polynomial. 

f t( ) = -1 éF s( )ùë û 

1 é a1 a2 an ù 
= - + + +  (8.14)···ê ú

ë s p+ 1 s p+ 2 s pn û+ 

é ù é a ù é ù-1 a1 -1 2 -1 an=  ê ú + ê ú +¼+ ê ú s + p û ë s p2 + n û1 + ë s pë û 
-p t1 -p t2 -p tnf t  a e  +a e  +¼+ a e  (8.15)( ) = 1 2 n 

Note that when a quadratic factor in the denominator has a pair of complex roots, it is bet-
ter not to factor the quadratic portion. 
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8.4.3 Partial-Fraction Expansion for Multiple Poles 

Consider a denominator with multiple roots such as 

B s( )  2s + 3
F s( ) = = (8.16)

A s( )  (s +1)2 

The partial-fraction expansion involves two terms. 

B s( )  2s + 3 b2 b1F s( ) = = 2 = + (8.17)
A s( )  (s +1) (s +1)2 s +1 

The coeffcients b1 and b2 are determined by multiplying by (s + 1)2. Now, evaluate at s =−1. 

æ 2 B s( ) ö 
ç(s +1) ÷ = (b2 + b1 (s +1)) (8.18)ç A s ÷ s=-1
è ( ) øs=-1 

1 = b2 

Next, take the derivative of Equation 8.18. 

æd )2 B s( ) ö d 
çç(s +1 ÷÷ = (b2 + b1 (s +1)) (8.19)

dt A s( )  dtè ø 

d d(2s + 3) = (b2 + b1 (s + 1))
dt dt 

2 = b1 

We thus have obtained the partial-fraction expansion. 

( )  2s + 3 1 2
F s( ) = 

B s  
= = + (8.20)

A s( )  (s +1)2 (s +1)2 s +1 

Now, we can invert the entire polynomial. 

é ù é ù 
-1 -1 1 2 -1 1 -1 é 2 ùf t( ) =  éF s( )ùû =  ê 2 + ú =  ê 2 ú + (8.21)úë ê (s +1) s +1ú ê (s +1) ú êë s +1ûë û ë û 

-t -t -tf t( ) = te + 2e = e (t + 2) (8.22) 

8.5 SOLUTIONS OF LINEAR ORDINARY DIFFERENTIAL EQUATION 

8.5.1 General Strategy 

Now, we can address the most important use of the Laplace transform method—solving 
linear differential equations. The basic objective is to fnd the solution to a differential equa-
tion with associated initial conditions. We would like to go directly from a mathematical 
model to the solution. However, it is often not clear how to take this giant step. Often, a 
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Figure 8.1 Steps in the Laplace transform method. 

direct solution is quite diffcult, as indicated in Figure 8.1. Thus, the Laplace transform 
method is used. It yields the complete solution (both homogeneous and particular) of linear, 
time-invariant differential equations. The steps involved in the Laplace transform method 
are outlined in Figure 8.1. 

8.5.2 First-Order Ordinary Differential Equations 

Mathematical Model 

Consider the following classic frst-order ODE and initial condition. 

x = -ax 
(8.23) 

x ( )0 = x0 

Note that the derivative has several commonly used designations: 

dx 
x t ( ) = x t= ¢( )  (8.24) 

dt 

This is a frst-order ODE in time and thus requires one initial condition for a unique solu-
tion. The objective is to fnd and examine the solution, x(t). 

The frst step in the solution process is to take the Laplace transform.  Keep in mind the 
important properties of the derivative: 

 éx t( )ùû = X s( )  (8.25) ë 

 é  ( )ù sX ( ) - xx t  û = s 0ë 

The Laplace transform of the differential equation is 

[  + x x a ] = [ ]0 (8.26) 

[ ]x  ax = 0 + [ ]  

(sX ( )s - x0 ) + aX ( )s = 0 
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Solving this algebraic equation for X(s) gives 

X s( ) = x0 
1 

(8.27) 
s a+ 

The solution can now be determined by taking the inverse Laplace transform: 

-x t( ) =  1 éX s( )ù (8.28) ë û 

This inverse can be obtained directly from the table of Laplace transform pairs in 
Table 8.1 or by using Mathematica’s “InverseLaplaceTransform” command. Either way, 
the result is 

-atx t( ) = x e0 
(8.29) 

This solution summary is shown in Figure 8.2, and the effects of parameters a and x0 are 
displayed in Figure 8.3. 

Figure 8.2 Solution summary for Equation 8.24. 

Figure 8.3 Classic behavior of a frst-order ODE. 
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8.5.3 Second-Order Ordinary Differential Equations 

A specifc mathematical model is selected in order to demonstrate the procedure. The objec-
tive is to fnd the solution of the following system of equations: 

x + 3x + 2x = 0 

x ( )0 = x0 
(8.30) 

x ( )0 = v0 

This is a second-order ODE in time and thus requires two initial conditions for a unique 
solution. 

The Laplace transform of the differential equation is 

 éëx + 3x + 2x ]= [0ùû (8.31) 

2(s X  s( ) - sx0 - v0 ) + 3(sX s( ) - x0 ) + 2X s( ) = 0 

Solve this algebraic equation for X(s). 

sx0 + v0 + 3x0X s( ) = 2s + 3s + 2 

The solution is determined by taking the inverse Laplace transform: 

-x t( ) =  1 éëX s( )ûù (8.32) 

This inverse can be obtained by using the partial fraction expansion method (Section 8.5.2) 
or by using Mathematica’s “InverseLaplaceTransform” command. 

-t -2tx t  = 2x + v e - x + v e( )  ( 0 0 ) ( 0 0 ) 
or (8.33) 

-t -2t -t -2tx t  = x 2e - e + v e  - e )( )  0 ( ) 0 (˜ ° ˝ ˜ ° ˝˛ ˛˛ ˛ ˛˛ 
due to x0 due to v0 

Note that without Mathematica, the inverse Laplace transform is diffcult and requires a lot 
of partial fractions and such. The solution is displayed in Figure 8.4. 

8.6 THE TRANSFER FUNCTION 

In system dynamics, transfer functions are used to characterize the input–output rela-
tionships of components or systems. They are useful for linear, time-invariant differen-
tial equations. The transfer function is the ratio of the Laplace transform of the output 
(response) to the Laplace transform of the input (driving function) for the case of zero 
initial conditions. 
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Figure 8.4 Solution of Equations 8.30. 

Consider a general linear, time-invariant, nth-order differential equation where y(t) is the 
output and x(t) is the input. 

n (n-1 ( )  m )( )  ) m ( -1 

a y a y +… + + n = + +… + b x- ° + b xm 
(8.34)0 + a y a y  b x b x° 0 m 11 n-1 1 

The transfer function G(s) for this system is 

m m-1[output ( )  0 b s  m-1] Y s  b s  + 1 + + b s + bmG s( ) = 
]
= = n n-1 

(8.35) 
[ a s1 + ainput X s( )  a s0 + a s1 + + n- n 

The solution for the dynamic response is 

y t( ) = -1 Y s  -1 é ( )  ( )  (8.36)é ( )ù G s X s ùë û = ë û 

Observe that this is simply the Laplace transform method cast in a different form. The 
advantage is that we can determine the transfer function once for a given system and 
use it to solve for and examine the solution for a variety of different special cases of the 
input. 

8.6.1 The Impulse Response 

The impulse response is the response to an impulse (Delta function) force. The impulse 
response is the most fundamental behavior that the system can exhibit. All other responses 
can be derived by adding (or integrating) the impulse response function. 

Specifcally, consider the situation where the input function is the impulse function (Delta 
function): 

x t( ) = d ( )t (8.37) 

Take the Laplace transform: 

ò
¥ 

-st 0X s( ) =  éx t( )ûù = d ( )t e  dt = e = 1 (8.38)ë 
t=0 
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The solution for the dynamic response, referred to as the impulse response, is 

-1 -1y t( ) =  ëéY s( )ùû =  éëG s( ) ×1ùû = g t( )  (8.39) 

8.6.2 First-Order Ordinary Differential Equations 

Consider the frst-order ODE with a forcing function, x(t). 

y a + × y x ( )  (8.40) = t 

y ( )0 = 0 (8.41) 

In order to determine the transfer function, take the Laplace transform of Equation 8.40 
and use initial condition (Equation 8.41) to get 

 ] x[y a+ y =  é ( )t ùë û 

sY ( )s + aY s( ) = X s( )  

Solve this algebraic equation for the transfer function, G(s). 

Y s( )  1
G s( ) = (8.42) = 

X s( )  s a+ 

The impulse response is the special case where x(t)=δ(t). 

-1 -1 -1 é 1 ù yimpulse ( )t =  éY s( )ûù =  éG s( ) ×X s( )ûù =  ×1 (8.43) ë ë ê úë s a+ û 

The inversion gives the solution. 

-atyimpulse ( )t = e H  ( )t (8.44) 

This solution is one of the all-time classics and is shown in Figure 8.5. 
The impulse response is exactly the same solution as an initial condition with x0 =1, as 

shown in Figure 8.2. This special case is also the Green’s function for this problem. 
The step response is the solution to an applied step force, x(t)=H(t). 

-1 -1 -1 é 1 1ù ystep ( )t =  éëY s( )ùû =  éëG s( ) ×X s( )ùû =  ê × ú (8.45) 
ë s a s+ û 

Inverting this gives the solution as 

1 
ystep ( )t = (1 - e -at )H ( )t (8.46) 

a 
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Figure 8.5 The impulse response. 

Figure 8.6 The unit step response. 

This important case is shown in Figure 8.6 for various values of the parameter a. 
The advantage of the transfer function is that the same transfer function can be used for 

any special case of the forcing function, as demonstrated in the previous two examples of an 
impulse and a step forcing function. 

PROBLEMS 

Problem 8.1 

Consider the linear frst-order ODE where τ is constant. 

dq 1
+ q ( )t = f ( )t 

dt t 
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q q0, t == 0 

1. Determine the analytical solution using the Laplace transform method when f(t)=0. 
Create a meaningful plot of this solution. 

2. Determine the transfer function G(s). 
3. Apply the results from part (2) to determine the solution for the following forcing func-

tions with θ0 =0. Plot each case. 
a. Step input, f t( ) = c ( - 0)f H t t  

b. Pulsed input, f t  c ( ( - 1 ) -H t( - t2 ))( ) = f H t t  

c. Impulse or Delta function, f t( ) = fc d (t - t1) 

d. Harmonic forcing, f t( )  = fc sin(w t) 

Problem 8.2 

Consider the linear second-order ODE where k is constant. 

x k + x t( ) = f t( )  

x ( )0 = x0 

x ( )0 = v0 

1. Determine the analytical solution using the Laplace transform method when f(t)=0. 
Create a meaningful plot of this solution. 

2. Determine the transfer function G(s). 
3. Apply the results from part (2) to determine the solution for the following forcing func-

tions with zero initial conditions. Plot each case. 
a. Step input, f t  = c ( - 0)( )  f H t t  

f H t t( 1 ) -b. Pulsed input, f t( ) = c ( - H t( - t2 )) 
c. Impulse or Delta function, f t( ) = fc d (t - t1) 

d. Harmonic forcing, f t( )  = fc sin(w t) 
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Chapter 9 

Numerical Solutions of Ordinary 
Differential Equations 

CHAPTER OBJECTIVES 

The objective of this chapter is to develop approximate numerical solutions for ordinary dif-
ferential equations using the family of solutions known as Runge–Kutta methods. 

Specifc topics covered are 

• Euler’s method (frst-order Runge–Kutta method) 
• Heun’s method (second-order Runge–Kutta method) 
• General Runge–Kutta methods 
• Coupled ordinary differential equations 
• Second-order initial value problems 
• Second-order boundary value problems 
• Implicit methods 
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9.1 INTRODUCTION TO NUMERICAL SOLUTIONS 

Consider a typical frst-order ordinary differential equation (ODE) and initial condition in 
the form 

dy = f t( , y)
dt (9.1) 

y y= 0, t = 0 

As depicted in Figure 9.1 for the special case dy/dt = -a y× , the solution can be derived ana-
lytically using methods of calculus or numerically using a computer. 

The analytical method produces an exact mathematical formula for the solution y(t) as a 
function of t. In contrast, the numerical method results in approximate values yi of the solu-
tion only at discrete values ti. The exact analytical solution in the form of a mathematical 
function for all t values is certainly more desirable than a sequence of approximate solu-
tion values at a limited number of t values. However, the exact solution is often diffcult or 
impossible to fnd, and numerical solutions are the only alternative. Generally, exact solu-
tions can only be found for certain linear differential equations. 

In the numerical solution, the independent variable t and dependent variable y are dis-
cretized as shown in Figure 9.2. The frst element has subscript 1 instead of 0, since matrices 
do not have a 0th element. 

Starting from the known initial state y= y0 at t=0, a series of approximations for the 
solutions at ensuing times is developed in the form of algebraic expressions. A whole family 
of approximations, referred to as Runge–Kutta methods, can be developed. The simplest 
method is called the Euler method. 

Figure 9.1 Analytical versus numerical solution of ordinary differential equations. 

Figure 9.2 Time discretization. 
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9.2 RUNGE–KUTTA METHODS 

9.2.1 Euler’s Method 

Euler’s method, depicted in Figure 9.3, is the simplest but lowest order of the Runge–Kutta 
methods. The frst derivative provides a direct estimate of the slope. 

Using a forward fnite difference scheme to approximate Equation 9.1 at ti gives 

æ dy ö yi+1 - yi yi+1 - yi 
÷ @ = = f t( i , yi ) (9.2) ç

è dt øi ti+1 - ti h 

where the time step is h ti+1 - ti D . Solve Equation 9.2 for yi+1 to get = = t 

= i h f t y, (9.3) yi+1 y + × ( i i ) 

This scheme, known as Euler’s method, can be rewritten as 

k = f  t yi )1 ( i , 
(9.4) 

yi+1 = yi + h k× 1 

Starting from the initial condition, y0, a time marching scheme can be executed by the recur-
sive use of Equation 9.3 to compute approximate solutions at times t2, t3, t4, … . The solution 
is computed only at the discrete values ti. 

Accuracy is of order h, designated as O(h). That is, when the step size h is cut in half, we 
expect approximately half the numerical error. 

Although the Euler scheme is simple and easy to program, numerical stability can be a 
problem. On the other hand, the implicit schemes presented in Section 9.5 are uncondition-
ally stable but are generally more diffcult to use. 

9.2.2 Heun’s Method 

A fundamental problem with Euler’s method is that the derivative at the beginning of an 
interval is assumed to apply across the entire interval. One possible improvement of Euler’s 
method is called Heun’s method. It involves the determination of two derivatives for the 

Figure 9.3 Euler’s method. 
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Figure 9.4 Heun’s method. 

interval—one at the beginning and one at the end, as shown in Figure 9.4. The two deriva-
tives are then averaged. 

The slope in the interval ti to ti +1 = +ti h is estimated as the average of the slopes at ti and ti+1 as 

æ dy ö æ dy ö 
ç ÷ + ç ÷ pred

dy dt dt f t( i , yi ) + f (ti+1, yi+1 )æ ö è øi è øi+1@ = (9.5)ç ÷
è dt øave 2 2 

Since we do not know the slope yi+1 at ti+1, the Euler method at ti is used as a predictor or 
estimated value for yi+1. 

Predictor: yi+ = y + × i 
(9.6)1 i h f t y( , i ) 

The differential Equation 9.1 is discretized in the interval ti to ti+1 using the following aver-
age derivative estimate: 

f t  , y f t , ypred 
æ dy ö y - y ( i i ) + ( i+1 i+1 )i+1 i@ = (9.7)ç ÷
è dt øave h 2 

Solving Equation 9.7 for yi+1 provides an improved estimate or corrector. 

Corrector: y +1 = yi + 
h (f t y, i ) + ( , ypred ) (9.8)

i ( i f ti+1 i+1 )2 

This method is one of the predictor–corrector schemes. The numerical solution must be exe-
cuted as a two-step process whereby frst the predictor and then the corrector are computed. 
Since yi+1 is on both the left- and the right-hand side of the corrector formula, it provides a 
recursive formula for iteration. 

We can rewrite Equations 9.6 and 9.8 in the Runge–Kutta format as 

k = f t y,1 ( i i ) 

k2 = f t( i + h y, i + hk1 ) (9.9) 

æ k1 + k2 ö yi+1 = yi + h ÷ç
è 2 ø 
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In this formulation, 

• k1 is the slope at ti 

• k2 is the slope at ti+1 estimated using k1 

• yi+1 is computed by averaging these two slopes 

9.2.3 Higher-Order Runge–Kutta Methods 

The Euler and Heun algorithms are actually special cases of a more general class of solutions 
called Runge–Kutta methods. They are derived using a combination of Taylor series and 
intelligent choices. The general form is 

i i ) (9.10) yi+1 = y + h ×f (ti y h, ,  

where f (t y hi , ,i ) is called the increment function, which can be interpreted as a representa-
tive slope over the interval. The increment function has the general form 

i , ,  2 2  k (9.11) f (t y hi ) = a1 1k + a k +  + an n  

where 
n is the order of the method 
the ais are constants 
the kis are 

k = f t y,1 ( i i ) 

k2 = f ti + × , + × 11( h p y1 i h q k1 ) 
(9.12) 

k3 = f (ti × 2, + × 21 22+ h p yi h q k + h × 2 )1 h q  k 

¼ 

Note that the kis are recursive. That is, k1 appears in k2, which appears in k3, and so on. 
Figure 9.5 summarizes the Runge–Kutta schemes up to the fourth order. The order of the 
method corresponds to the approximate global truncation error. Thus, decreasing h by a fac-
tor of 2 in the Euler method would result in approximately 1/2 the error. Similarly, decreasing 
h by a factor of 2 in the fourth-order scheme would result in approximately 1/24 =1/16 the 
error. The fourth-order scheme can be shown to be the most effcient in terms of accuracy per 
arithmetic operation. Thus, the fourth-order scheme is often used in practice. 

9.2.4 Numerical Comparison of Runge–Kutta Schemes 

Consider the differential equation and initial condition 

dy 
t 2y= -

dt (9.13) 

y = 1, t = 0 

Euler’s method given by Equation 9.3 applied to this special case gives 

yi+1 = yi + h t( - 2yi ) (9.14) 
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Figure 9.5 Summary of Runge–Kutta methods. 

This example is selected to test accuracy, since the exact analytical solution can be derived 
using an integrating factor, as described in Section 10.3.3. The solution is 

-2ty t( ) = (2t -1 + 5e ) /4 (9.15) 

Figure 9.6 shows the solution using Euler’s method, Heun’s method, the fourth-order 
Runge–Kutta, and the exact solution for several step sizes. The higher-order methods clearly 
produce a more accurate solution. Also, a smaller step size produces more accurate results. 
Of course, higher-order methods and smaller step sizes require greater computation times. 

9.3 COUPLED SYSTEMS OF FIRST-ORDER 
DIFFERENTIAL EQUATIONS 

With small modifcations, the same algorithms used for single frst-order ODEs work for 
coupled systems. Consider two coupled frst-order ODEs: 

= f t y y
dy
dt 

1
1 ( , ,1 2 ) 

(9.16) 

= f t y y  )dy
dt 

2
2 ( , ,1 2 
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Figure 9.6 Comparison of the exact solution (solid line) with Euler (+), Heun (o), and fourth-order Runge– 
Kutta (◊) methods for various step sizes. 

Since we now have two dependent variables, initial or starting conditions are required for 
both variables. 

y1 = y1 0, , t = 0 
(9.17) 

y2 = y2 0, , t = 0 

A direct extension of Euler’s method for a single ODE, given by Equation 9.3, leads to the 
following discretized solution of Equations 9.16: 

h f  t y  , yy1,i+1 = y1,i + × 1 ( i , 1,i 2,i ) 
(9.18) 

h f  t y  , yy2,i+1 = y2,i + × 2 ( i , 1,i 2,i ) 

All the Runge–Kutta schemes summarized in Figure 9.5 can be extended to coupled sys-
tems of frst-order equations. Any number of simultaneous equations can be solved in this 
manner. 

9.4 SECOND-ORDER INITIAL VALUE PROBLEMS 

Second-order equations can be solved by decomposing them into a system of two, coupled, 
frst-order equations. For instance, consider the classical mass-spring-damper system 

2d x  dx 
m + c + k x× = F t( )  (9.19) 

dt2 dt 
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This equation is often expressed as 

2 F td x  dx 2 ( )  
2 + 2zwn +wn × x = (9.20) 

dt dt m 

w = k m = natural frequency /  

z = 
c = damping ratio 

2 km 

Using the defnition of velocity, dx/dt= v, the original second-order ODE can be written as 
an equivalent set of coupled frst-order equations in the form 

dx = v (9.21) 
dt 

dv = -( cv - kx + F t( )) /m (9.22) 
dt 

In matrix form, the previous equations can be written as 

vd éxù é ù 
ê (9.23) ê ú = ú

dt ëvû êë(- - kx F t  ) /múûcv + ( )  

The two initial conditions required to complete the mathematical model are 

dx 
x x  , = v0, t = 0 (9.24) = 0 

dt 

Numerical results for some important cases are shown in Figures 9.7 and 9.8. 

9.5 IMPLICIT SCHEMES 

The Euler scheme and other versions of the Runge–Kutta method are plagued by stability 
problems—that is, for a time step that is too large, nonphysical oscillations occur in the 
solutions. The implicit method is often used to avoid these problems. 

The basic idea is to estimate the derivative at the new time level. Our frst-order differen-
tial equation is 

dy 
= f t( , y) (9.25) 

dt 

Discretize using a backwards difference scheme. That is, evaluate the function f(t,y) at the 
new time level i+1. 

æ dy ö yi+1 - yi 
ç ÷ @ = f t( i+1, yi+1 ) (9.26) 
è dt ø hi+1 

Solve for the current value yi+1. 

y = yi + × +1, yi 
(9.27) 

i+1 h f t( i +1 ) 
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Figure 9.7 Solutions of the classical spring-mass system with harmonic forcing for ζ =0 (zero damping) and 
ζ =1 (critically damped), m =20 kg, k=20 N/m, and x0 = v0 =0. 

Figure 9.8 Solutions of the classical spring-mass system with initial displacement x0 =1, zero forcing, ζ =0 
(zero damping) and ζ =0.1 (underdamped), m=20 kg, k =20 N/m, and v0 =0. 
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The solution at the new time level i+1 is not an explicit function of the solution at the old 
time level i; thus, we call this the implicit method. If the function f(t,y) is linear in y, we can 
solve directly for yi+1; otherwise, iteration is required. 

As an example, consider the classical linear frst-order system 

dy 
= -a y× (9.28) 

dt 

Discretize this equation in a fully implicit fashion. 

yi+1 = yi - × × i+1 (9.29) h a y 

Solve for yi+1. 

yi+1 = yi 
æ
ç
è 

1 
1 + ×h a  

ö
÷
ø 

(9.30) 

This numerical solution scheme is unconditionally stable. 

9.6 SECOND-ORDER BOUNDARY VALUE 
PROBLEMS: THE SHOOTING METHOD 

The idea behind the shooting method is to convert a boundary value problem into an initial 
value problem. An iterative scheme using standard initial value solvers, such as the Runge– 
Kutta method, is then used to obtain a solution. 

To illustrate the method, the fn equation from heat transfer with specifed boundary 
temperatures is considered. 

d2q 2-m q = 0 (9.31) 
dx2 

q q0, x == 0 
(9.32) 

q q= , = L x L  

The variable θ(x) is the temperature rise above the ambient temperature. This boundary 
value problem is converted to an initial value problem by defning the derivative as a new 
variable. 

y1 = q (9.33) 

dy1 = y2 (9.34) 
dx 

Substituting the variables defned by Equations 9.33 and 9.34 into Equation 9.31 transforms 
the original second-order ODE into a frst-order equation. The resulting equation is 

dy2 2= m y  (9.35) 
dx 

1 

Equations 9.34 and 9.35 form a system of frst-order ODEs that can be solved for y1(x) 
and y2(x). If we knew the values of both y1 and y2 at x = 0, the problem could be solved as 
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Figure 9.9 The shooting method. 

an initial value problem by the techniques described in previous chapters. However, we 
only have the value for one of the variables at x = 0. Thus, we guess the other and perform 
the computations. This guess is iteratively improved until the boundary condition at x = L 
is satisfed. 

A typical example is shown in Figure 9.9. The terminology shooting method is now clear. 
Just as you would adjust a cannon to hit a target, you adjust the initial guess to hit the 
boundary condition at x=L. This technique can be applied to any linear or nonlinear dif-
ferential equation and to any combination of the boundary conditions. 

PROBLEMS 

Problem 9.1: Runge–Kutta Basics 

Solve the following initial value problem over the interval from t =0 to 2 with a =1.1 and 
y0=1. Display all your results on a single graph. 

dy = ×y t2 - ×a y
dt 

a) Analytically. 
b) Using Euler’s method with h=0.5 and 0.25. 
c) Using Heun’s method with h=0.5. 

Problem 9.2: Euler’s Method 

Consider the differential equation 

dy = -y + 2 
dt 

a) Sketch the phase diagram (dy/dt vs. y) and the anticipated solution (y(t) vs. t). 
b) Starting with the initial condition y0 =0, manually perform three steps of Euler’s 

method using a step size of h=0.5. 
c) Using Euler’s method, compute and plot the solution starting from initial conditions 

y0 =−2, 0, 2, 4, and 6. Put all the curves on a single graph. Use a time range 0 ≤ t ≤ 5. 
Experiment with the required step size in order to get accurate and smooth-looking 
plots. Report the step size you decided upon. 
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Problem 9.3: Lumped Thermal Mass 

Consider the cooling of a hot object initially at temperature T0 in cold air at T∞ with heat 
transfer coeffcient h. Assume that the lumped thermal capacity model, as described in the 
previous chapter, is valid. The differential equation is 

rcV 
dT = -hAs T T  ) +( - ¥ gV
dt 

a) Draw the cause–effect diagram for this physical problem. 
b) Write a function to numerically solve for temperature as a function of time. The sys-

tem parameters and forcing functions should be inputs, and the time and temperature 
vectors should be outputs. 

c) Explore the effect of the heat transfer coeffcient. Plot temperature versus time for 
h=10 W/m2 °C (still day), 25 W/m2 °C (typical day), and 75 W/m2 °C (hurricane). Put 
all curves on a single graph. Carry out time long enough that the temperature begins 
to level out at steady state. The other parameters are V=10−6 m3, As =10−4 m2, ρ =1000 
kg/m3, c=500 J/kg °C, T∞ =25 °C, T0 =400 °C, g=0. 

d) Explore the effect of the heat source strength. Plot the solution for g=0, 105, 2× 105, 
and 3× 105 W/m3. Put all curves on a single graph. Use parameter values from part (b) 
with h=25 W/m2 °C. 

Problem 9.4: Population Model 

The earth’s population can be estimated using the following simplifed model: 

dP 2= aP - bP 
dt 

where a is the birth rate parameter and b is the death rate parameter. 

a) Determine the steady-state population. 
b) Sketch the phase plot, dP/dt versus P. Using the phase plot, sketch the anticipated 

population history, P(t) versus time. Draw a single graph with several curves corre-
sponding to different starting populations. 

c) When the time variable t is measured in years, experimental evidence suggests that the 
parameters a and b in the population model are approximately a=0.028 1/year and 
b=2.9 × 10−12 1/(people*year). Starting from a population of approximately P0=100 
million people in the year 1800, compute and plot the earth’s population as a function 
of time in years. Run your simulation until the population appears to level off. Using 
these parameters, how many people will we eventually have on this earth? At what year 
will we have reached 99% of our maximum population? 

d) Estimating population is an inexact science. Examine the effect of the birth rate 
parameter by plotting the earth’s population for a=0.025, 0.03, and 0.035 with 
b=2.9× 10−12. Put all curves on a single graph. 

e) Examine the effect of the death rate parameter by plotting the earth’s population for 
b=2.5× 10−12, 3× 10−12, and 3.5× 10−12 with a=0.029. Put all curves on a single graph. 
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Problem 9.5: Linear Oscillator, Effect of Damping 

Consider the spring-mass-damper system with zero forcing, described by the following dif-
ferential equation and initial conditions: 

2d x  dx 
m 2 + c + k x× = 0 

dt dt 

=x x0 üï 
dx ý t = 0 

dt 
= v0 

þï 

a) Draw the cause–effect diagram for this system. 
b) Write a function to numerically solve this differential equation. 
c) Use your function to solve and plot x(t) and v(t) versus t. Use the following parameters: 

x0 =1 m, v0 =0, m=20 kg, k =20 N/m, c =0, 8, and 40 N·s/m. Create separate plots for 
x(t) and v(t) versus t. Put all three curves for different c values on a single graph (see 
Figure 9.7 for an example). 

Problem 9.6: Linear Oscillator with Forcing 

Consider the forced spring-mass-damper system, described by the following differential 
equation and initial conditions: 

2d x  dx 
m 2 + c + k x× = F t( )

dt dt 

x x v v , when t = 0= 0, = 0 

a) Draw the cause–effect diagram for this system. 
b) Write a function to numerically solve this differential equation. 
c) Use your function to compute the displacement and velocity for the following special 

cases. For each case, create a three-part graph containing F(t), x(t), and v(t) versus t. 
For all cases, m=20 kg, c=4 N·s/m, k=20 N/m, and x0=v0=0. See Figure 9.6 for an 
example. 

Forcing: F(t) (N) 

Constant forcing F(t)=F0 
F0 =10 N 

Harmonic forcing F t( ) = F0sin(wt)

F0 =5 N/kg, ω =1 rad/s 
Pulsed forcing F t = F H( ) - (t t )( ) 0 ( t H - on ) 

F0 =10 N, ton =40 s 
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Problem 9.7: Pendulum 

The oscillations of an undamped pendulum can be simulated with the following nonlinear 
equation: 

d2q g q2 + sin ( ) = 0 
dt L 

where 
θ = angle of displacement 
g = gravitational constant=9.81 m2/s 
L = pendulum length 

For small angular displacements, sin q » , and the model can be linearized as ( )  q 

d2q g 
2 + q = 0 

dt L 

a) Reformulate these equations as two frst-order equations for θ and v=dθ/dt. 
b) Draw the cause–effect diagram. 
c) Create a function to compute the solution as a function of the input parameters. 
d) Using the function you developed, solve for θ and v as functions of time for both the 

linear and nonlinear models with L=0.6 m and initial conditions θ0 =π/8 and v0 =0. 
Plot the linear and nonlinear solutions on the same graph. Also, plot results for θ0 = π/2, 
θ0 =0.99π, and θ0 =π. 

Problem 9.8: Van der Pol Equation 

The van der Pol equation is a model of a nonlinear circuit that arose back in the days of 
vacuum tubes: 

d y  dy2 

(  )- y + =y 0+ m 1 2 

dt2 dt 

a) Reformulate these equations as two frst-order equations for y1 = y and y2 =dy/dt. 
b) Create a function to compute the solution as a function of the input parameters. 
c) Using your function from part (b), solve for y1 and y2 as functions of time with µ =1 

and initial conditions y1 =0.1 and y2 =0. Create the following graphs: 
• y1 versus t and y2 versus t 
• phase plot: y1 versus y2 

d) Repeat part (c) with µ =0 and 10. 
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Problem 9.9: Sky Diver 

The free-fall velocity of a parachutist can be estimated using the force balance 

dv cd 2g v= -
dt m 

where 
v = velocity (m/s) 
t = time (s) 
g = 9.81 m/s2 =acceleration due to gravity 
cd = drag coeffcient (kg/m) 
m = mass (kg) 

For an 80 kg parachutist, we wish to solve this differential equation given that v = 0 
at t = 0. During free fall, cd = 0.25 kg/m. However, at t = topen, the chute opens, whereupon 
cd = 5 kg/m. 

a) What would be the steady-state velocity if the chute was not opened? What is the 
steady-state velocity after the chute opens? 

b) Sketch the phase diagram (dv/dt versus v) and the anticipated solution for v(t) versus t 
based on the phase diagram. 

c) Write a function to solve this differential equation numerically from t = 0 to 30 s. 
Create a plot of v(t) versus t for topen = 0, 5, 10, and 20 s, putting all curves on a single 
plot. 

Problem 9.10: Coupled Oscillators 

Two masses are attached to a wall by linear springs. 

Force balances based on Newton’s second law can be written as 

2 

m
d x  

2
1 = -k x -L ) + k x - x -w -L1 

dt 
1 ( 1 1 2 ( 2 1 1 2 ) 

2d x2 
2 

dt2 2 ( 2 1 1 2 )m = -k x  - x -w -L 
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where 
ki = the spring constants (N/m) 
mi = masses (kg) 
Li = the length of the unstretched springs (m) 
wi = the widths of the masses (m) 

Initially, the masses are at locations x1,0 and x2,0. 

a) Draw the cause–effect diagram for this system. 
b) Determine the steady-state or fxed points. 
c) Write a function to numerically solve this system of differential equations. 
d) Compute the positions of the masses as a function of time over the range t=0 to 20 

using the following parameters: k1=k2 =5, m1=m2 =2, w1=w2 =5, and L1= L2 =2. Set 
the initial conditions as x1,0 =L1 and x2,0 = L1+ w1 +L2+6 with zero velocity. Construct 
time-series plots of both the displacements and the velocities. Indicate the fxed points 
on your graph. In addition, produce a phase-plane plot of x1 versus x2. 

Problem 9.11: An Epidemic 

The following ODEs have been proposed as a model of an epidemic: 

dS = -aSI 
dt 

dI = aSI - rI 
dt 

dR = rI 
dt 

where 
S = the number of susceptible individuals 
I = the number of infected individuals 
R = the number of recovered individuals 
a = infection rate 
r = recovery rate 

A city initially has 10,000 people, all of whom are susceptible. Then, a single infectious 
individual enters the city at t =0. Use the following estimates for the parameters: a =0.002/ 
(person week) and r =0.15/day. 

a) Compute the progression of the epidemic. At what time does the number of infected 
individuals drop back to 10? Create time-series plots of all the state variables over a 
time range from 0 until the number of infected individuals falls below 10. Also, create 
a three-dimensional phase plot of S versus I versus R. 

b) Suppose that after recovery, there is a loss of immunity that causes recovered individu-
als to become susceptible. This reinfection mechanism can be modeled as ρR, where 
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ρ =the reinfection rate =0.03/day. Modify the model to include this mechanism and 
repeat the computations in (a). 

c) Suppose that some of the infected people recover and some die. F is the number of dead 
people. Also consider that there is an infux of susceptible individuals moving to the 
city at the rate of Q people/day. Modify the model to include these possibilities and 
repeat the computations in (a). 



https://taylorandfrancis.com/
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Chapter 10 

First-Order Ordinary 
Differential Equations 

CHAPTER OBJECTIVES 

The primary objective of this chapter is to analyze the behavior of frst-order ordinary differ-
ential equations. 

Specifc objectives and topics covered are 

• Stability analysis of the fxed points 
• Characteristics of linear systems 
• Linear frst-order systems using proportionality and superposition 
• Integrating factors for linear equations 
• Nonlinear frst-order systems 
• Saddle-node, transcritical, supercritical pitchfork, and subcritical pitchfork bifurcations 

10.1 STABILITY OF THE FIXED POINTS 

In Section 7.2, we deduced the stability of the fxed points using graphical methods. How 
about a quantitative measure of stability? We can gain this sort of information by linear-
izing a small perturbation about a fxed point. This is the mathematical equivalent of 
nudging a physical system slightly away from a steady or fxed point and observing the 
resulting behavior. 
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Consider the frst-order autonomous differential equation 

dq = f ( )q (10.1) 
dt 

The fxed points are the state where the system comes to equilibrium and are defned by 
f ( )q * = 0. Consider a small perturbation away from θ* defned as 

h q  t -q * (10.2) = ( )  

To see whether the perturbation grows or decays, we derive a differential equation for the 
perturbation η. The derivative of Equation 10.2 is 

dh d * dq *( - = = f q = f q h (10.3) = q q ) ( )  ( + )
dt dt dt˜˛˛̨°˛˛̨˝ 

q * is a constant 

Now use a Taylor series expansion, retaining only the frst-order term. 

* *df q df ( )( )  q
* *) q +hf (q +h @ f ( )  =h (10.4) 
 dq dq 

=0 

Using Equation 10.4 in Equation 10.3 gives 

dh df q *( )
=h (10.5) 

dt dq 

This is a linear ordinary differential equation (ODE) for η. The solution subject to a starting 
perturbation of η0 at t=0 is 

æ df q * ö 
h ( )t =h × expç t ÷ (10.6) 

( )  
0 ç

è 
dq ÷

ø 
Based on Equation 10.6, the following conclusions concerning stability can be made. 

df ( )* q
1. If > 0, then η grows exponentially and θ* is unstable. 

dq 

df ( )* q
2. If < 0, then η decays exponentially and θ* is stable. 

dq 

df ( )* q
3. If = 0, then the O(η2) terms in the Taylor series given by Equation 10.4 are not 

dq 

negligible, and a nonlinear analysis is needed to determine stability. 

The conclusion is that the sign of df ( )* /d  determines stability, as we saw graphically from q q 
the phase portraits in Section 7.2. This analysis provides a quantitative measure of stability 
for fxed points. 
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10.1.1 RC Electrical Circuit 

Reconsider the series RC circuit with a voltage source V shown in Figure 7.8. The only fxed 
point is Q* = CV . Taking the derivative of Equation 7.13 gives 

df 1 = - < 0 (10.7) 
dQ RC 

The physical properties R and C are always positive, thus df /dQ < 0. Thus, stability analysis 
indicates that Q* is a stable point, as expected from the phase portrait in Figure 7.8 as well 
as from the physics of this circuit. 

10.1.2 Population Model 

Returning to the logistic model of population growth of Section 7.2.4, the phase portrait in 
Figure 7.9 shows that the fxed point P*=0 is unstable, while P*=K is stable. Let’s see if linear 
stability theory produces the same conclusions. Taking the derivative of Equation 7.18 produces 

dP æ P ö df æ P ö = f P  = r 1 - P, = r 1 - 2 (10.8) ( ) ç ÷ ç ÷dt è K ø dP è K ø 
Analysis of the fxed points leads to the following conclusions: 

• P* =0: df/dP = r > 0 → P* is unstable 
• P* =K: df/dP =−r < 0 → P* is stable 

Although we reached these same conclusions using the phase portrait shown in Figure 7.9, 
the graphical approach is often not possible for higher-order systems, and the linearized 
stability analysis presented in this section is required. 

10.2 CHARACTERISTICS OF LINEAR SYSTEMS 

A differential equation of the form dθ/dt = f(t,θ) is linear if the function f(t,θ) is a linear func-
tion of θ. Linear, frst-order systems are thus restricted to the special form d dq / t a+ ×q = b. 
Here, a(t) is a coeffcient that could vary with t, and b(t) is a general time-dependent source 
term. The cause and effect diagram for this system is 

Linear System
Forcing Functions dq Response+ ×a q = bSource, b(t) ⇒ ⇒dt θ(t)Initial condition, θ0 

q q , t = 0= 0

Linear mathematical systems have two important properties: proportionality and 
superposition. 

Proportionality means that the response or output of the system is a linear combination of 
the applied forcing functions. That is, 

Response Constant ́  Forcing Function = 
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Superposition means that the total response or output of the system is the sum or superposi-
tion of the outputs due to individual forcing functions acting alone. 

Total Response =åResponses due to each forcing function acting alone 

Linearity means that the rule that determines what a piece of a system is going to do next is 
not infuenced by what it is doing now. 

Consider a linear system with forcing function or stimulus f and output or response θ(f), 
shown in the following cause–effect diagram. 

Forcing Function Response or OutputLinear System→ →f θ(f) 

If the input to a linear system is 

f = c1 1f + c2 2f (10.9) 

then, by virtue of the proportionality and superposition properties, the response is 

q c f  + c f  = c q f + c q f (10.10)( 1 1  2 2 ) 1 ( )1 2 ( )2 

ResponseForcing Function → Linear System → ( 1 f fq c f1 1 + c f2 2 ) = cq ( )1 + c2q ( )2f = c1 1f + c2 2f

An important consequence is that we can construct solutions to “hard” problems in terms 
of “easy” problems using superposition and proportionality. 

10.3 SOLUTION USING INTEGRATING FACTORS 

Consider the following linear frst-order ODE, where the coeffcient a is a constant. 

dq + ×a q = b ( )t (10.11) 
dt 

The required initial condition is 

q q0, t == 0 (10.12) 

where a is constant but b(t) is a general time-varying source. The solution is obtained by 
multiplying Equation 10.11 by the integrating factor, eat, and rewriting it as 

d at at(e q ) = e b t( )  (10.13)
dt 

Change the independent variable from t to to and integrate from to =0 to t to get 
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t t 
d ato atoe q t dt = e b( )dt (10.14) ( )  b tò dto 
( o ) o ò o o 

to =0 to =0˜˛˛˛̨°˛˛˛˛̋  
at 0e q ( )t -e q0 

Multiply by e−at and rearrange to obtain the solution as 

t 

-at a t t )( - o ( )o oq ( )t = q0e + e b t dt (10.15) ò 
to =0 

For the special case of a constant source term, b(t)=b, Equation 10.15 reduces to 

b-at -at (10.16) q ( )t = q0e + (1 - e )
a 

Equation 10.16 is plotted in Figure 10.1, demonstrating the effects of the initial condition, 
the source, and the decay rate. These are three classical and important physical effects with 
a multitude of important applications. 

Next, consider Equation 10.11, where both the coeffcient a and the source b can vary with t. 
The mathematical model is 

dq (10.17) a t  q b t+ ( ) × =  ( )
dt 

This solution is obtained by multiplying the previous differential equation by the integrating 
t ö

÷
ø 
, and rewriting it as 

æ òt ç
è 

a t( *) *factor, exp dt 
* =0 

t tæ æ ö ö æ öd ç ç * * ÷ ÷ ç * * ÷exp a t  dt q t = exp a t dt (10.18) ( ) ( )  ( ) t b t( )
dt ç ç ò ÷ ÷ ç ò ÷ç ÷* *è è t =0 ø ø è t =0 ø 

Changing the independent variable from t to and integrating from to =0 to t gives the solu-
tion as 

Figure 10.1 (a) Solution starting at various initial conditions with b=0 and a=1. (b) Solution for various 
sources: a=1, b=0, 1, 2. (c) Solution for various decay rates: a=0, 1, 2, 3, b=0. 
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tæ ö 
ç * * ÷q t = q exp - a t dt( )  0 ( )ç ò ÷ 

*è t =0 ø 
(10.19) 

t t toæ ö æ ö 
ç * * ÷ ç * * ÷+ exp - a t( )dt exp a t( )dt b t( )o dto ç ò ÷ ò ç ò ÷ 

* *è t =0 ø to =0 è t =0 ø 

10.4 FIRST-ORDER NONLINEAR SYSTEMS AND BIFURCATIONS 

In dynamical systems, the stability as well as the number of fxed points can change as 
parameters change. This is known as a bifurcation and is accompanied by a qualitative 
change in the solution. Bifurcation theory is the study of stability changes in nonlinear 
problems as system parameters are changed. Bifurcation points or critical values are values 
of parameters at which the qualitative or topological nature of the dynamics changes. 

Bifurcation literally means “splitting into two branches.” A bifurcation occurs as a sys-
tem parameter crosses a bifurcation point or critical threshold. The fxed points and char-
acter of the dynamic response depend on whether the parameter is above or below the 
bifurcation point. 

For example, consider the buckling of a beam shown in Figure 10.2. If a small force is 
applied to the top of the beam, the beam can support the load and remain vertical. But as 
more force is applied, the load crosses a critical threshold beyond which the vertical position 
then becomes unstable and the beam may buckle. This situation is the proverbial “straw that 
breaks the camel’s back.” 

In the following sections, the classical saddle-node, transcritical, supercritical pitchfork, 
and subcritical pitchfork bifurcations are examined. 

Figure 10.2 Buckling of a beam. 
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10.4.1 Saddle-Node Bifurcation 

The saddle-node bifurcation is the basic mechanism by which fxed points are created and 
destroyed. As a parameter is varied, two fxed points move toward each other, collide, and 
mutually annihilate. The prototypical example of a saddle-node bifurcation is the following 
frst-order system: 

dx 
f x( )  r x  (10.20) = = +  2 

dt 

Setting dx/dt=0 in Equation 10.20 indicates that the fxed points are at x * = ±  -r . Real-
valued fxed points exist only for r≤ 0, while no real-valued fxed points exist for r> 0. Thus, 
the bifurcation point or critical threshold for this classical saddle-node is rc =0. 

The phase portraits and numerical solutions are shown in Figure 10.3 for various values 
of the parameter r relative to the bifurcation point, rc =0. 

As derived in Section 10.1, stability of the fxed points is determined by the sign of 
f x( )* /dx = 2x *. Thus, the conclusions regarding stability are: 

• r< rc: two fxed points, stable at x * = - -r , unstable at x * = -r 
• r= rc: one fxed point, half-stable at x*=0 
• r> rc: no fxed points 

The fxed points and dynamical response depend on whether the parameter r is above, 
below, or at the bifurcation point. 

The same conclusions can be made by examining the phase portraits in Figure 10.3. The 
top fgures show the phase portrait, dx/dt versus x, with stable fxed points indicated by 
solid disks and unstable fxed points as open circles. A frst-order ODE can be envisioned 
as a vector feld on a line, and the arrows on the phase portraits indicate the fow direction. 

The bottom panels in Figure 10.3 show the solutions, x(t) versus t, starting from a number 
of initial states. The solutions were computed using numerical procedures (Runge–Kutta 
methods), as described in Section 9.2. Also shown are stable fxed points, indicated by solid 
lines, and unstable fxed points, indicated by dashed lines. Note how the fxed points and 

Figure 10.3 Phase portraits and numerical solutions for the typical saddle-node bifurcation. 
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Figure 10.4 Bifurcation diagram for the typical saddle-node bifurcation. 

solutions change as bifurcations occur when the parameter r crosses the bifurcation point 
at r= rc =0. 

The bifurcation diagram shown in Figure 10.4 can be deduced from the phase portraits. 
The solid line represents the stable fxed point at x * = - -r , while the dashed line represents 
the unstable fxed point at x * = -r . The arrows in the bifurcation diagram indicate the 
direction and magnitude of the velocity of the state variable x for any combination of x and 
r. At any given r, the arrows represent the vector feld for this frst-order autonomous system. 

10.4.2 Transcritical Bifurcation 

There are certain scientifc applications where a fxed point exists for all values of a param-
eter and can never be destroyed. However, it may change its stability as a parameter is var-
ied. The transcritical bifurcation is the standard mechanism for such changes in stability. 
The normal form for a transcritical bifurcation is 

dx = f x( ) = ×r x  - x2 (10.21) 
dt 

Setting dx/dt=0 in Equation 10.21 indicates that there are two fxed points at x * =0 and 
x * = r. Examining df ( )* / x r  *x d = - 2x  indicates that these two fxed points exchange stability 
at r= rc =0. 

The phase portraits and numerical solutions are shown in Figure 10.5 for the various 
ranges of the parameter r. As in Figure 10.3, the top panels show the phase portraits with 
the stable fxed point as a solid disk and the unstable point as an open circle. The bottom 
panels show the dynamical solution starting from various initial conditions. The phase por-
traits indicate that for r< rc, x * = r is unstable, while x * =0 is stable. However, when r= rc, the 
fxed points collapse into a single half-stable point. Then, for r> rc, the fxed points exchange 
stability, with x * = r stable and x * =0 unstable. 

The bifurcation diagram in Figure 10.6 shows this exchange as r crosses rc =0. The arrows 
represent the vector feld with fow toward the solid stable fxed points and away from the 
dashed unstable points. 
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Figure 10.5 Phase portraits and numerical solutions for the typical transcritical bifurcation. 

Figure 10.6 Bifurcation diagram for the typical transcritical bifurcation. 

10.4.3 Example of a Transcritical Bifurcation: Laser Threshold 

Consider a solid-state laser, consisting of a collection of special “laser-active” atoms embed-
ded in a solid-state matrix, bounded by partially refecting mirrors. An external energy source 
is used to excite or “pump” the atoms out of their ground state. A schematic is shown in 
Figure 10.7. 

The growth rate of photons is physically modeled as 

dn - = × ×G n N k  ×n (10.22) = gain loss -
dt 

where 
n(t) is the number of photons in the laser feld 
N(t) is the number of excited atoms 
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Figure 10.7 Components of a typical laser: (1) solid-state matrix or gain medium; (2) laser pumping energy; 
(3) high refector; (4) output coupler; (5) laser beam. 

Gain is due to stimulated emission: photons stimulate atoms to emit more photons with 
a gain coeffcient G. Loss is due to escape of photons through the end faces with a rate con-
stant k. The typical lifetime of a photon in the laser is thus 1/k. 

The key idea needed in this model is that after an excited atom emits a photon, it drops 
down to a lower energy level and is no longer excited. To capture this effect, we assume 

N t( ) = N0 -a ×n (10.23) 

where 
N0 is the number of exited atoms in the absence of laser action 

α is the rate at which atoms drop back to ground state 

Substitute Equation 10.23 into Equation 10.22 to get 

dn 
G n N( - ×a n - × = G N× 0 - k n - × ×G n2 (10.24) = ×  0 ) k n  ( ) a 

dt 

We have a transcritical bifurcation with (G N× 0 - k) playing the role of the parameter r in 
the normal transcritical form defned by Equation 10.21. The phase portrait and bifurcation 
diagram for Equation 10.24 are displayed in Figure 10.8. 

Figure 10.8 Phase portraits and bifurcation diagram for the laser model. 
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Note the possible dynamics of this system: 

• N0 < k/G 
n * =0 is a stable fxed point. There is no stimulated emission, and the laser acts like a 

lamp. 
k

• N = =laser threshold 0 
G 

System undergoes a transcritical bifurcation. 
• N0 > k/G 

* (GN0 - k)
n * =0 loses stability, and a new fxed point appears at n = > 0. 

a 

Below the laser threshold, the laser acts like an ordinary lamp, and the atoms oscillate indepen-
dently and emit random phased light waves. Above the laser threshold, the atoms begin to oscil-
late in phase, and the lamp has turned into a laser, producing a beam of radiation much more 
coherent and intense than that produced below the laser threshold. The process is self-organizing! 

Although many real-world physical effects have been omitted, the model correctly pre-
dicts the existence of a threshold. 

10.4.4 Supercritical Pitchfork Bifurcation 

The pitchfork bifurcation is common in problems that have symmetry. For instance, a beam 
is stable if the load is small. But if the load exceeds the buckling threshold, the beam may 
buckle either left or right. The vertical position has become unstable, and two new symmet-
ric fxed points have been born. There are two very different types of pitchfork bifurcations: 
the supercritical and subcritical types. 

The normal form of the supercritical pitchfork bifurcation is 

dx = f x( ) = ×r x  - x3 (10.25) 
dt 

This equation is invariant under the change of variable x → −x. Invariance is the mathemati-
cal expression of physical symmetry. 

The fxed points x * = 0 and ± r  are found from setting dx/dt=0. Stability is ascertained 

df x *( )
from the sign of = -r 3x *2. The bifurcation point is rc =0, since real fxed points 

dx 

x * = ±  r  exist only for r≥ 0. The conclusions about stability are: 

• r< rc: one fxed point, stable at x* =0 
• r= rc =0: one fxed point, stable at x*=0, but weakly stable 
• r> rc: three fxed points, unstable at x*=0, stable at x * = - r , and stable at x * = r 

The phase portraits and numerical solutions are shown in Figure 10.9 for the various ranges 
of the parameter r. As in Figure 10.4, the top panels show the phase portraits, while the bot-
tom panels show the dynamical solution for a collection of initial conditions. 

Figure 10.10 shows the corresponding bifurcation diagram with velocity vectors. The 
reason for the name “pitchfork” bifurcation is now evident. The phase portraits, solutions, 
and bifurcation diagram reveal the dynamics of this system. 

10.4.5 Subcritical Pitchfork Bifurcation 

The normal form of the subcritical pitchfork bifurcation is 

dx = f x( ) = ×r x  + x3 (10.26) 
dt 



  

 

 

 
   

  

 

 

180 Applied Engineering Mathematics 

Figure 10.9 Phase portraits and numerical solutions for a typical supercritical pitchfork bifurcation. 

Figure 10.10 Bifurcation diagram for a typical supercritical pitchfork bifurcation. 

Note that in the supercritical case, the cubic term is stabilizing; that is, it pulls x back toward 
0. On the other hand, the cubic term in the subcritical bifurcation is destabilizing, since it 
repels x away from 0. The phase portraits are plotted in Figure 10.11, while the bifurcation 
diagram is shown in Figure 10.12. 

In real physical systems, the explosive instability caused by the cubic term is usually 
opposed by the stabilizing infuence of higher-order terms. Assuming that the system is still 
symmetric under the transformation x → −x, the frst stabilizing term is x5. Thus, consider the 
system 

3 5 (10.27) dx 
= f x( ) = ×r x  + x - x 

dt 

The phase portraits are shown in Figure 10.13 and bifurcation diagram is shown in 
Figure 10.14. 
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Figure 10.11 Phase portraits and numerical solutions showing a subcritical pitchfork bifurcation 

Figure 10.12 Bifurcation diagram for a subcritical pitchfork bifurcation. 

1 + 1 + 4r
There are fve fxed points: x * =0 and x * = ±  . The system has two bifurcation 

2 

points: a saddle-node bifurcation at rc1 =−0.25, where two pairs of fxed points are born, 
and a subcritical pitchfork at rc1 =0. 

The range rc1 < <r rc2 is particularly interesting, since two qualitatively different stable 

states coexist: the origin and the large-amplitude fxed points at x * = ±  

initial condition will determine which of these stable states is approached as time becomes 
large. In rc1 < <r rc2, the origin is locally stable to small disturbances but not globally stable, 
since large perturbations can send the system to one of the large-amplitude fxed points. 

Another interesting feature is the existence of jumps and hysteresis due to the existence of 
multiple stable fxed points. As the parameter r is varied across the range rc1 < <r rc2, the sys-
tem will exhibit hysteresis and jump to a new steady state as the bifurcation points are crossed. 

r+ +1 1 4 
2 

. The 

https://rc1=�0.25
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Figure 10.13 Phase portraits and numerical solutions for a subcritical pitchfork bifurcation with a ffth-order 
stabilizing term. 

Figure 10.14 Bifurcation diagram for a subcritical pitchfork bifurcation with a ffth-order stabilizing term. 

PROBLEMS 

Problem 10.1 

The functions ψ1(t)and ψ2(t) are the solutions of the following simple, elementary problems. 

ψ1(t) ψ2(t) 

dy1 1
= - y1 +1

dt t

y1 = 0, t = 0

dy 2 1
= - y 2

dt t

y 2 =1, t = 0
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Express the solutions to the following problems in terms of the ψ1 and ψ2 functions. Be 
specifc about the arguments. Do not actually solve for ψ1 and ψ2. A few cases are given as 
examples in order to clarify the objectives. 

dq 1 = - q + S t( )
dt t 

q q0, t == 0 

Case Source, S(t) Initial condition, θ0 Solution in terms of ψ1(t) and ψ2(t) 

Ex. 1 
Ex. 2 
1 
2 
3 

0 
8H(t− to) 

Sc 

0 
3 

4 
0 
0 
θ0 

7 

4ψ2(t) 
8ψ1(t− to) 

4 
5 

Sc 

I t t( o, , tD ) 
θ0 

0 

6 RepPulse ( , cyclet t , ton ) 0 

7 Arbitrary S(t) 0 

H(t) is the step function. 

H t - to H t t- - Dt( ) - ( o )
I t t, ,  Dt ) = impulse function =( o Dt 

RepPulse(t t, cycle,ton ) = repetitive pulse 

Problem 10.2 

Consider the nonlinear problem 

dq 1 2= - q
dt t 

q q , t = 0= 0 

Can the solution be expressed in terms of the ψ1 and ψ2 functions defned in the previous 
problem? If not, what is the diffculty? 

Problem 10.3 

A basic population dynamics model is 

dP 2 += aP  - bP  S 
dt 

P P0, t == 0 
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Can the general solution be expressed as the superposition of the simpler solutions in the 
form 

P t( ) = P t1 ( ) + P t2 ( )  

where 
P1(t) is due to P0 only with S=0 
P2(t) is due to S only with P0=0. 

List the governing equations for P1(t) and P2(t) if this superposition attempt is successful. 

Problem 10.4 

Consider the thermal system described by the equations 

rcV 
dT = -hA - ) + gV
dt 

s (T T¥ 

T T , t = 0= 0 

Show that the general solution can be expressed as the superposition of the simpler solutions 

T t( ) = T t( ) +T t( )1 2 

where 
T1(t) is due to T0 only with g=0 
T2(t) is due to g only with T0=0 

List the governing equations for T1(t) and T2(t). 

Problem 10.5 

A lumped thermal system with radiation and heat generation is described by the equations 

dT 4 4rcV = -Ases (T -Tsur ) + g ( )t V  
dt 

T T , t = 0= 0 

Can the general solution be decomposed as the superposition of the simpler solutions 

T t = T t  T t( )  1 ( ) + 2 ( )  

where 
T1(t) is due to T0 only with g=0 
T2(t) is due to g only with T0= 0? 

List the governing equations for T1(t) and T2(t) if this superposition attempt is 
successful. 
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Problem 10.6 

Consider the linear frst-order ODE where τ is constant. 

dq 1 = - q + S t( )
dt t 

q q0, t == 0 

a) Determine the analytical solution for S(t)=0. Create a meaningful plot of this solution. 
b) Determine the analytical solution for S(t)=Sc =constant with θ0 =0. Create a meaning-

ful plot of this solution. 
c) Show that the general solution to this linear problem can be expressed as the superpo-

sition of effects due to the initial condition θ0 and source S(t). 
d) Determine the analytical solution for S(t)=Sc =constant and initial condition, θ0, using the 

superposition principle demonstrated in part (c) and the results found in parts (a) and (b). 
e) Consider the case where θ0 =0 with a fnite pulse source, defned by 

S t( ) = 
Sc (H t( - t1 ) - ( - 1 - Dt ))H t t  
Dt 

Determine the analytical solution. Create a meaningful plot of this solution. Consider the 
effect of Δt for a fxed Sc. Examine the limit as Δt⇒ 0. 

Problem 10.7 

A square silicon chip of length L=10 mm on a side and thickness δ =5 mm is embedded in 
a well-insulated substrate. 

The chip draws P=0.5 W of electrical power and is cooled by convection from the top 
surface to air at T∞ =30 °C with a heat transfer coeffcient h=40 W/m2 K. Assume that 
radiation effects are negligible and that the lumped capacity approximation is valid. The 
chip has the following thermal properties: 

ρ =2000 kg/m3, c=700 J/kg K, k=150 W/m K 

1. The chip is initially at the ambient temperature of T∞ with the power off. At t=0, the 
power is switched on. 
a. Sketch the temperature as a function of time for this process. 
b. Derive the energy equation for this case (symbolic form). 
c. Determine the eventual steady-state temperature of the chip (numerical value). 

2. After the steady condition in Part 1 has been reached, the power is shut off. 
a. Sketch the temperature history as a function of time for this process, starting from 

the time the power is initially switched on, all the way to a new steady state after 
the power is switched off. 
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b. What does the energy equation reduce to for this case (symbolic form)? 
c. Determine how long it takes for the chip temperature to drop to 35 °C after the 

power is shut off (numerical value). 
3. After the steady condition in Part 1 has been reached, the system suffers a loss of coolant, 

causing the heat transfer from the surface due to convection to become negligibly small. 
a. Sketch the temperature history as a function of time for the entire process, starting 

from the time the power is initially switched on, all the way to the time the chip 
reaches its failure temperature. 

b. What does the energy equation reduce to for this case (symbolic form)? 
c. Determine how long it takes for the chip to reach its failure temperature of 300 °C 

after loss of coolant. 

Problem 10.8 

Consider a thin plate of area A and thickness L with material properties k, c, and ρ. The 
plate is exposed to convection on the bottom side and to a specifed heat fux, qs ″(t), on the 
top side. In addition, the plate is subjected to a volumetric heat source, g(t) (W/m3). The ini-
tial temperature is T0. Assume that the lumped capacity approximation is valid. 

a) Derive the energy equation. Formulate the complete mathematical model of the system. 
b) Sketch the solution assuming g and qs ″ are constant. Consider T0 =T∞. On a single 

graph, put curves for a zero, medium, and large value of h. On another graph, show the 
effect of the volumetric heat source, g. Try to create a meaningful graph that highlights 
the effect of g only. 

c) Consider the mathematical model from part (a) in the form 

dq 1 = - q + S 
dt t 

q q0, t == 0 

1. What are the temperature rise, θ(t), the initial temperature, θ0, the time constant, τ, 
and the source term, S? 

d) Using the model from part (c), solve for the transient temperature solution, θ(t) when 
S(t) is a constant. Plot your solution. 

e) Using the model from part (c), solve for the transient temperature solution, θ(t) when 
S(t) is a pulse: 

S t( ) = S H t0 ( ( ) -H (t - Dt )) 
where 

S0 is a constant 
Δt is the pulse time 
Plot your solution. 
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f) Show that due to the linear nature of this problem, the solution can be constructed 
as a superposition or summation of two simpler solutions, one due to the heat source 
S(t) only and another due to the initial condition θ0 only. Do not simply examine the 
mathematical solution to verify that this works (zero credit for this approach). Instead, 
try the superposition q( )t = qs( )t +qic( )t directly in the governing equations. What equa-
tions govern the functions θs and θic? 

Problem 10.9 

Consider a large, thin plate of area A and thickness L with material properties k, c, and ρ. 
The plate is exposed to convection at different environments on the top and the bottom. 
In addition, the plate is subjected to a constant volumetric heat source, g W/m3. The initial 
temperature is T0. Assume that the lumped capacity approximation is valid. 

a) Derive the energy equation. 
b) What is the steady-state temperature? 
c) Solve for the transient temperature solution, T(t). 
d) Transform the energy equation into dimensionless form. 
e) Sketch the anticipated solution for h1 >> h2, h1 =h2, and h1 << h2 with g=0, 

T0=(T1+ T2)/2, and T1> T2. Put all curves on a single graph. 
f) On another graph, show the effect of the volumetric heat source, g. Try to create a 

meaningful graph that highlights the effect of g only. 

Problem 10.10 

A long, thin copper wire of diameter D and length L has an electrical resistance per length 
of wire R′ e (Ω/m), density ρ, specifc heat c, and total emissivity ε. The wire is initially at 
steady state at temperature T0. At time t=0, an electric current I (amps) is passed through 
the wire, causing electrical resistance heating. As the wire temperature rises, heat is dis-
sipated by convection to the air at temperature T∞ with a heat transfer coeffcient h and by 
radiation to the walls at temperature Tsur. 



  

 
 

  
 

  
  

  

  

 
 

         
       
     
     
       

  

  
 

  
  

         
  

  

188 Applied Engineering Mathematics 

Assumptions 

• Constant thermal and electrical properties 
• Lumped capacity, valid for low Bi. That is, spatially uniform temperature at any time, 

T= T(t). 
• Negligible conduction from the ends or stand 

a) Derive the mathematical model governing the transient temperature of the wire. 
b) For the case where T0 = T¥ = Tsur , sketch the anticipated temperature versus time 

behavior of the wire. On a single graph, sketch curves corresponding to free con-
vection, mild forced convection, and strong forced convection. Clearly label your 
graph. 

c) Neglecting radiation effects, derive an analytical solution for the transient tem-
perature of the wire. What is the steady temperature of the wire for this case? 

d) Create a function to evaluate the solution numerically. Plot temperature versus 
time using the following parameters. Put all three curves on a single graph. 
h values of 5, 25, and 100 W/m2 K 
T0 = T¥ = Tsur = 300 K 

D=diameter =0.001 m, L=length =0.4 m 
ρ =density =8933 kg/m3, k=400 W/m K 
c =specifc heat=385 J/kg K 
ε =emissivity =0.9 
I=6 amps, ρ =electrical resistivity =80 µΩ-cm e 

Problem 10.11: Canister Wall 

A spherical, stainless steel (AISI 302) canister is used to store reacting chemicals that pro-
vide for a uniform heat fux qi 

² to its inner surface. The canister is suddenly submerged in a 
liquid bath of temperature T∞< Ti, where Ti is the initial temperature of the canister wall. 

a) Assuming negligible temperature gradients in the canister wall and a constant heat 
fux qi 

², develop an equation that governs the variation of the wall temperature with 
time during the transient process. 

b) Develop an expression for the steady temperature of the wall. 
c) The convection coeffcient depends on the velocity of the fuid and whether or not the 

wall temperature is large enough to induce boiling in the liquid bath. For the param-
eters listed in the following, compute and plot the steady-state temperature as a func-
tion of h for the range 100 < h< 10,000 W/m2 K. Include curves for qi 

² =105, 2× 105, 
and 3× 105 W/m2. Put all three curves on a single graph. 

d) Is there any value of h below which operation would be unacceptable? 
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Problem 10.12 

Consider the system dx/dt r x x < 0 r = 0, and r > 0:= × - 3. For r , 

a) Use linear stability analysis to classify the fxed points. 
b) Plot the phase portraits and the anticipated solutions, x(t) versus t. 

Problem 10.13: Bifurcations 

Consider the following frst-order ODEs: 

dx æ r ö = x 1 +ç 2 ÷dt è 1 + x ø 

dx x = -rx + 
dt 1 + x 

a) Find all the fxed points. 
b) Find any critical values rc at which bifurcations occur. What type of bifurcations occur 

(saddle-node, transcritical, supercritical pitchfork, or subcritical pitchfork)? 
c) Classify the stability of the fxed points. Collect your results in a table. 
d) Sketch the bifurcation diagram: x* versus r. 
e) Sketch the phase portraits and corresponding solutions for each qualitatively different 

behavior. 

Problem 10.14: Transient Parameter 

Consider a frst-order ODE of the form 

dx = f x( ,r )
dt 

where r is a parameter. The phase diagrams for two different values of the parameter r are 
shown. 

Consider a process where the parameter r is at a value r1 for quite some time and then 
changes to a new value r2. Sketch the resulting dynamic response of the system (x(t) versus 
t) starting from initial states x0 =−4, −2, 0, and 2. 
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Problem 10.15: Improved Laser 

An improved model of a laser is 

dn = GnN kn-
dt 

dN = -GnN fN p+-
dt 

dN
a) Assuming » 0, derive a differential equation for n. 

dt 
b) Show that n*=0 becomes unstable for p> pc. Determine pc. 
c) What type of bifurcation occurs at pc? 

dN
d) For what range of parameters is it valid to assume that » 0? 

dt 

Problem 10.16: Biochemical Switch 

Zebra stripes and butterfy wing patterns are two of the most spectacular examples of bio-
logical pattern formation. Explaining the development of these patterns is one of the out-
standing problems of biology. 

As one ingredient in a model of pattern formation, consider a simple example of a bio-
chemical switch, in which a gene G is activated by a biochemical signal substance S. For 
example, the gene may normally be inactive but can be “switched on” to produce a pigment 
or other gene product when the concentration of S exceeds a certain threshold. Let g(t) 
denote the concentration of the gene product, and assume that the concentration so of S is 
fxed. The model is 

dg k g2 

1 o 2 = k s  - k g + 3 

dt k4 + g2 

where the ks are positive constants. The production of g is stimulated by so at a rate k1 and 
by an autocatalytic or positive feedback process (the nonlinear term). There is also a linear 
degradation of g at a rate k2. 

a) Show that the system can be put in the dimensionless form 

dx x2 

s rx += -
dt 1 + x2 

where r> 0 and s≥ 0 are dimensionless groups. What are the dimensionless variables 
and parameters? 

b) For s=0, fnd and classify all the positive fxed points x*. Is there any critical value rc? 
Determine and plot the fxed points for all r and s. 

c) Find the parametric equations for the bifurcation curves in (r, s) space and classify the 
bifurcations that occur. Plot the stability diagram in (r, s). 

d) Assume that initially there is no gene product, that is, g(0) =0, and suppose s is slowly 
increased from zero (the activating signal is turned on); what happens to g(t)? What 
happens if s then goes back to zero? Does the gene turn off again? Support your fnd-
ings using phase plots and numerical solutions of the x versus τ behavior. 
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Problem 10.17: Trout Fishing in Stocked Streams 

Fishing in stocked trout waters usually involves a sudden addition of fsh on stocking days 
immediately followed by lots of fsherman feverishly trying to catch them. The rate of fsh 
caught is usually proportional to the number of fsh still available. Assuming no natural 
reproduction, the following model is proposed: 

dN = -rN + S t( )
dt 

The stocking function is modeled as a periodic sequence of regularly spaced pulse functions 
as shown where 

Nst =number of fsh per stocking 
tst = time between stockings 
Δt=time required for each stocking 

a) Express the stocking function S(t) in mathematical form. 
b) Determine the analytical solution for a single stocking event. Name this function 

N t, Dt )  where i=1,2,3,… is the ith stocking event. i (
c) Determine the general solution for a sequence of stocking events in terms of the func-

tion N t, Dt ) .i ( 
d) Determine the limit as Δt→ 0. 
e) Plot your solution from part (d). Use parameter values that make sense. 

Problem 10.18: Model of a Fishery 

The equation 

dN æ N ö = rN 1 - ÷ -Hçdt è K ø 

provides a simple model of a fshery. Here, N(t) is the number of fsh. In the absence of fsh-
ing, the population is assumed to grow logistically. The effects of fshing are modeled by 
the term –H, which says that fsh are caught or “harvested” at a constant rate H> 0, inde-
pendently of the fsh population N. This assumes that the fshermen are not worried about 
fshing the population dry; they simply catch the same number of fsh every day. 
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a) Show that the system can be rewritten in dimensionless form as 

dx = x (1 - x) - h 
dt 

What are the dimensionless variables x, τ, and h? 
b) Determine the fxed points. Classify the stability of the fxed points. Show that a bifur-

cation occurs for a certain critical value hc. What type of bifurcation is this? Plot a 
bifurcation diagram (x* versus h). 

c) Plot separate phase portraits for 0 < h< hc, h=hc, and h> hc. 
d) Plot the solutions x(t) versus τ for 0 < h< hc, h=hc, and h> hc. Create three plots, one 

corresponding to each range of h. Include several initial conditions on each plot. 
e) Discuss any unrealistic aspects of this model. Can you suggest an improved model? 

Sketch the anticipated solution for your improved model. 

Problem 10.19: Improved Model of a Fishery 

The equation 

dN æ N ö N = rN 1 - Hç ÷ -dt è K ø +A N  

provides a model of a fshery. Here, N(t) is the number of fsh. In the absence of fshing, the 
population is assumed to grow logistically. The effects of fshing are modeled by the term 

N
H , where H> 0 and A> 0, which says that fsh are caught or “harvested” at a rate 

A N+ 

that decreases with the fsh population N. This is plausible, since it gets harder to catch fsh 
as the population decreases. 

a) Show that the system can be rewritten in dimensionless form as 

dx = x (1 - x) - h
x 

dt a x+ 

What are the dimensionless quantities x, τ, a, and h? 
b) Determine the fxed points. Classify the stability of the fxed points using linear stabil-

ity analysis. Collect your fndings in an organized table. What types of bifurcations 
occur? 

c) Plot the stability diagram in (a, h) space. Can hysteresis occur in any of the regions? 
d) For each qualitatively different behavior, plot 

æ dx ö• The phase diagram vs. xç ÷
è dt ø 

• The transient responses (x vs. τ) starting from various initial conditions 
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Chapter 11 

Second-Order Ordinary 
Differential Equations 

CHAPTER OBJECTIVES 

The primary objective of this chapter is to develop solutions for and understand the behavior of 
second-order initial and boundary value differential equations. In order to develop an intuitive 
feel, solutions will be visualized using phase portraits—graphical depictions of the trajectories in 
the phase plane. First, linear problems are studied in detail. Then, the insights gained from linear 
problems are extended to the rich world of nonlinear problems. 

Specifc objectives and topics covered are 

• Solutions and classifcation of linear systems 
• Behavior of linear mechanical oscillators 
• Stability analysis of the fxed points 
• The pendulum 
• Competition models (rabbit versus sheep) 
• Limit cycles 
• Bifurcations 
• Coupled oscillators 

11.1 LINEAR SYSTEMS 

The analytical solution to the second-order linear autonomous systems is described next. 
The system of differential equations and initial conditions are 

dx 
= ×a x  + ×b y

dt (11.1) 
dy 

c x  d y= × + ×  
dt 
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x x0 = ü
ý
þ 

t = (11.2) 0 
y y0 

In matrix form, 

dx 

= 

A x  

0 (11.3) 

×= 
dt 

tx x  

a b 

= = ,0

é éù éù ùx x0A = ê
ë

ú
û 
, x = ê

ë
ú
û 
, x0 = ê

ë
ú
ûc d y y0 

*Note that x = [0 0, ]T  is the only fxed point for any A. Based on our success with exponen-

tial solutions for single, linear frst-order ordinary differential equations (ODEs), we try to 
fnd a solution in the form 

ltx = e v 

(11.4) é
= 

é ùx 
ú
û

ù 
ê
ë 

vx 

vy 

= eigenvector, l = eigenvalue x = ê
ë
ú
û 

, v 
y 

Figure 11.1 depicts a solution in the form suggested by Equation 11.4. 
This proposed solution is composed of a vector v in the phase plane that either grows, 

shrinks, or oscillates according to the nature of the eigenvalues, λ. If appropriate eigenvalues 
and eigenvectors can be determined, we have a valid solution. Note that a single eigenvector 
restricts the solution to one direction in the phase plane. Thus, we expect or hope that two 
eigenvalues with two eigenvectors in linearly independent directions will be found. 

Substitute our proposed solution, Equation 11.4, into the original system of ODEs given 
by Equation 11.3 and cancel the exponent to get 

A v  l v× = × 

(A - ×l I v) = 0 (11.5) 

I = identity matrix 

Figure 11.1 Solution composed of an eigenvector scaled by an exponent. 
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This is the traditional eigenvalue problem from linear algebra. The eigenvalues are the solu-
tions of the characteristic equation 

éa - l b ù
det (A - × I = det ê úl ) 

d - lë c û (11.6) 

= l2 - (a d+ )l + (ad - bc) = l2 -t l× + D = 0 

where the trace and determinant of the coeffcient matrix A are defned as 

trace A = = a d+( ) t 
(11.7) 

det A = D = ad -( )  bc 

The solution of this quadratic Equation 11.6 gives the desired eigenvalues 

t + t 2 - 4D t - t 2 - 4Dl1 = , l2 = (11.8) 
2 2 

The system (A - × I v = 0 now allows us to determine the eigenvectors. The two equations l ) 
represented by this system are not linearly independent; thus, the eigenvectors can be found 
only to within an undetermined constant. The general solution thus takes on the form 

l1t l2t (11.9) x ( )t = c1e v1 + c2e v2 

To determine the constants c1 and c2, force the solution to satisfy the initial condition. 

x0 = c1v1 + c2v2 (11.10) 

The general analytical solution is now complete for any linear system of two autonomous, 
frst-order ODEs. Linear systems consisting of any number of coupled frst-order ODEs can 
be solved in a similar manner. Note that the solution in general involves a combination of 
two linearly independent eigenvectors, as shown in Figure 11.2. Thus, we have the possibil-
ity of following the solution as it travels about the phase plane. 

Figure 11.2 Visual representation of Equation 11.9. 
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11.2 CLASSIFICATION OF LINEAR SYSTEMS 

All the information needed to classify second-order equations is contained in the eigenvalues 
given by Equations 11.8. The various types of behavior and corresponding stability of the 

*fxed point x = [0 0, ]T  are summarized in Table 11.1. 

Some observations are: 

• Δ< 0, eigenvalues are real and have opposite signs: hence, the fxed point is a saddle 
point. 

• Δ> 0, eigenvalues are either real with the same sign (nodes) or complex conjugates 
(spirals). 
• Nodes satisfy t 2 - 4D > 0. 

• Spirals satisfy t 2 - 4D < 0. 
• t 2 - 4D = 0 is the border between nodes and spirals. Star nodes and degenerate nodes 

are found here. 
• Stability of the nodes and spirals is determined by τ. 

• τ < 0, both eigenvalues have negative real parts and are stable. 
• τ > 0, both eigenvalues have positive real parts and are unstable. 
• τ =0, eigenvalues are purely imaginary. 

The eigenvalues are the key to determining the type of behavior to expect. All these types of 
behaviors are pictured on the τ versus Δ diagram in Figure 11.3. 

11.3 CLASSICAL SPRING-MASS-DAMPER 

Figure 11.4 shows an all-time classic—the damped spring-mass system. Applying Newton’s 
second law produces Equation 7.26. For zero applied force, this equation reduces to 

2d x  dx 
m + c + k x× = 0 (11.11) 

dt2 dt 

This equation can be expressed in terms of natural frequency and damping ratio as 

2d x  dx 2 
2 + 2zwn +wn x = 0 (11.12) 

dt dt 

Table 11.1 Classifcation of linear second-order systems 

Conditions 
Eigenvalues 
λ1 and λ2 

Stability of fxed point 
x * = [0,0]TΔ τ τ2 − 4Δ 

<0 all values >0 real, one positive, one negative Saddle 
>0 <0 >0 real, negative Stable node 

<0 complex conjugates, negative real parts Stable spiral 
=0 <0 complex conjugates, purely imaginary Center 
>0 <0 complex conjugates, positive real parts Unstable spiral 

>0 real, positive Unstable node 



  

  

  

  

 

ë

Second-Order Ordinary Differential Equations 197 

Figure 11.3 Classifcation of linear second-order systems. 

wn = k m  natural frequency/ = 

z = 
c = damping ratio 

2 km 

We can use the defnition of velocity to write Equation 11.11 as an equivalent coupled set of 
frst-order equations. 

ù 
ú
û 

é 
ê
ë 

ù 
ú
û-w-

é 
ê
ë 

ù 
ú
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ê
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úû 
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ê 
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êë 

×
dv 2wn n -

= 
dx 

v Matrix Form 
dt 

dx 
dt x 0 1 x 

= -2zw v x A = 
dt dv v n 

2 2zwn v 
dt 

(11.13) 
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Figure 11.4 The spring-mass-damper system with variable defnitions. x(t)=displacement from static equilib-
rium (m), m =mass (kg), c =damping coeffcient (N s/m), and k =spring constant (N/m). 

The initial position and velocity need to be specifed in order to obtain a unique solution. 

x x0 ü= 
ï 

dx ý t = 0 (11.14) 
= v0 ïdt þ 

We could obtain an exact solution for this system in terms of sines and cosines. However, as 
soon as we get to nonlinear equations, exact solutions are impossible to fnd. As a result, we 
want to frst deduce the behavior without actually solving the equations. 

The motion in the phase plane is determined by a vector feld that comes directly from the 
differential equations given by Equations 11.13. These trajectories are the parametric repre-
sentation of the solution (x,v). The nature of the solution is determined by the eigenvalues. 
From the matrix form of Equation 11.13, we have 

é 0 1 ù
A = (11.15) ê 2 ú-wn -2zwnë û 

trace A = =t 2zwn( )  -
(11.16) 

det A = D = w2( )  n 

Then, from Equations 11.8, we get the eigenvalues 

t + t 

t

2 - 4D 2l1 = = wn (-z + z -1)2 
(11.17) 

t - 2 - 4Dl2 = 
2 

= wn (-z - z 2 -1) 
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The complete solution can be obtained by enforcing the initial conditions. The solution is 
l1t l2tx t( ) = c e  + c e1 2 

l1t l2tv t  = c e  + c l e (11.18)( )  1 1l 2 2  

v - l2 0x l x - v00 1 0c1 = , c2 = 
l1 - l2 l1 - l2 

Some interesting and important special cases can be obtained, depending on the magnitude 
of the dimensionless damping coeffcient. 

(a) ζ =0: Zero Damping, Center 

The eigenvalues from Equations 11.17 reduce to 

l1 = iwn , l2 = -iwn (11.19) 

This case is a center with pure imaginary eigenvalues. Figure 11.5 shows the phase portrait 
on the left with the specifc trajectory starting from the initial condition (x v, 0 0 1)0 ) = ( , 
highlighted with a thick line. The time trace of position and velocity starting from this same 
initial condition is shown on the right. 

(b) ζ< 1: Underdamped, Stable Spiral 

The eigenvalues from Equations 11.17 reduce to 

2 2l1 = wn (-z + i 1 -z ), l2 = wn (-z - i 1 -z ) (11.20) 

This case is a stable spiral, since the eigenvalues are complex conjugates with a negative real 
part. The phase portrait and a typical trajectory are shown in Figure 11.6. 

Figure 11.5 Phase portrait and typical solution for zero damping. 

Figure 11.6 Phase portrait and typical solution for an underdamped system. 
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Figure 11.7 Phase portrait and typical solution for critical damping. 

Figure 11.8 Phase portrait and typical solution for an overdamped system. 

(c) ζ =1: Critically Damped, Degenerate Node 

The eigenvalues from Equations 11.17 reduce to 

l1 = l2 = -wn (11.21) 

This case is a degenerate node. The eigenvalues are repeated negative real numbers. The 
behavior is demonstrated in Figure 11.7. 

(d) ζ> 1: Overdamped, Stable Node 

The eigenvalues from Equations 11.17 reduce to 

2 2l1 = wn (-z + z -1), l2 = wn (-z - z -1) (11.22) 

This case is a stable node or an overdamped system. Both eigenvalues are real and negative 
and the behavior is plotted in Figure 11.8. 

Note that a negative damping coeffcient would produce unstable spirals and unstable 
nodes. However, it has no meaning for classical linear oscillators and is not considered in 
this example. 

11.4 STABILITY ANALYSIS OF THE FIXED POINTS 

The linearized stability technique developed for one-dimensional systems in Section 10.1 is 
extended to two-dimensional systems. An autonomous system is one with no external driving 
forces and thus, no explicit time dependence. The general form for a second-order system is 

dx = f x( , y)
dt (11.23) 
dy 

= g x( , y)
dt 
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Suppose our system has a fxed point at (x *, y *). This means that 

* *f x( , y ) = 0 
(11.24) 

* * g x( , y ) = 0 

¶ 
¶
¶ 
¶ 

Now, we place the system at the fxed point, perturb it slightly, and examine the subsequent 
behavior to deduce stability. This process is the mathematical counterpart of building the 
physical system, placing it carefully at equilibrium, giving it a slight nudge, and observing 
the behavior. If stable, the system will return to its equilibrium point. If unstable, the system 
will fy away to some other location.

To see whether the disturbance grows or decays, we derive the differential equations govern-

¶
¶ 

¶
¶ 

Let small disturbances or perturbations from the fxed point be defned as 

u x x * = -
(11.25) 

v y y * = -

ing the dynamics of the perturbations by taking the derivatives: 

du d x( - x * ) dx * = = Ü since x is constant 
dt dt dt 

* * = f x( + u y, + v) Ü use a  Tayllor series 

(11.26)
* * ¶f * * ¶f * * 2 2= f x y( , ) + u (x y, ) + v (x y, ) + O u( ,v , uv)˛ ˝  ¶ ¶y˜°˛ x 
0 

¶f * * ¶f * *@ u (x y, ) + v (x y, )
¶x ¶y 

A similar relation can be derived for the y perturbation. 

dv ¶g * * ¶g * *@ u (x y, ) + v (x y, ) (11.27)
dt ¶x ¶y 

These two equations provide two linear ODEs for the dynamics of the perturbations, writ-
ten in matrix form as 

f f 
x y 

g g 
x y )( 

ù 
ú 
ú 
ú 
ú
û 

é 
ê 
ê 
ê 
ê
ë 

== 
ù 
ú
û 

é 
ê
ë 

= 

ù 
ú 
ú 
ú 
úû 

é 
ê 
ê 
ê 
êë 

, where J Jacobian (11.28) 

* *  x y, 

u 

v 
J 

du 

dv 
dt 

dt 

The matrix J is called the Jacobian at the fxed point (x *,y *). This is the multivariable analog 
of the derivative df(x *)/dx for one-dimensional systems. The dynamics of this system can 
now be surmised using the Jacobian matrix at a fxed point. We could encounter all the 
types of fxed points shown in Figure 11.3. 
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Example 

Consider the following system: 

dx -yx e  = f x( y)= +  ,
dt 

(11.29) 
dy 

= -y g= (x y, )
dt 

This system has only one fxed point at (x *,y *)= (−1,0). The Jacobian matrix is 

(11.30) 

Saddle point 

(-1 0, 

= -1 
1 

1 

0 
J = 

ù 
ú
û 

1 

1 

The eigenvalues of a 2-by-2 matrix are given by Equation 11.8. The Jacobian matrix given 
by Equation 11.30 thus has eigenvalues 

-

l
l2 

Since the eigenvalues are real with one positive and one negative, linear stability analy-
sis indicates that the fxed point is a saddle, as verifed in the phase portrait shown in 
Figure 11.9. 

11.5 PENDULUM 

A damped pendulum with a constant applied torque is pictured in Figure 11.10. 
The equation of motion of the pendulum is obtained from Newton’s second law for a 

rotational body. Summing moments about the pivot point gives 

dq
I = åM = -b m g L sin qa - × × ×  ( ) + G (11.31)

dt 

-ê
ë 

1 
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= 
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ú
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Figure 11.9 Phase portrait for Equations 11.29. 
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Figure 11.10 Schematic of a pendulum. m = mass (kg), I = mL2 = mass moment of inertia, L = pendulum length 
(m), b = viscous damping coeffcient (N·m·s), g = gravitational acceleration (m/s2), and Γ = applied torque 
(N·m). 

d2qa = 2 = angular acceleration 
dt 

The resulting equation of motion is 

d2q dq2 (11.32) L m  + b +m g× ×L × sin q = G2 ( )
dt dt 

Often, the small angle approximation, sin q( ) @ q , is made, reducing the equation of motion 
to a linear system. How about the large angle behavior? 

We next nondimensionalize Equation 11.32 using the procedure presented in Section 3.4. 
Choosing g, L, and m as reference quantities, the dimensionless equation of motion becomes 

d2q dq+ B + sin q = g (11.33) +2 + ( )
dt dt 

where the dimensionless parameters are 

+ g b G 
t = t , B = , g = (11.34) 1 2/ 3 2/L m g× L mgL 

The second-order system given by Equation 11.34 can be decomposed into the following 
equivalent system of frst-order equations: 

dq = w 
dt+ 

(11.35) 
dv 

B w sin( ) + g= - × - q
dt+ 
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11.5.1 Fixed Points: No Forcing, No Damping 

For this restricted case, the fxed points of Equations 11.35 are at (θ*,ω*)= (kπ,0), where k 
is any integer. There’s no difference between angles separated by multiples of 2π, so we can 
concentrate on the two fxed points (0,0) and (π,0). The Jacobian is 

é ¶f ¶f ù 
ê ú é 0 1ù¶q ¶vJacobian = =J ê ú = ê ( )  ú (11.36) 
¶g ¶g -cos q 0ê ú ë û 
ë¶q ¶v ûê ú 

é 0 1ù
• At (0, 0), J = , τ =0, Δ =1> 0: center ê

ë
ú
û-1 0 

é0 1ù
• At (π, 0), J = , τ =0, Δ −1 < 0: saddle point ê

ë
ú
û 

= 
1 0 

11.5.2 Fixed Points: General Case 

The more general case has fxed points when 

v * = 0 
(11.37) * or arcsin ( )g = q 

Note that the formal “arcsin” function on most sin(θ*)= γ computers is usually restricted 
between −π/2 and π/2. This equilibrium condition can be visualized graphically by plotting 
sin(θ) and γ and noting the intersections. In Figure 11.10, we see that for |γ|< 1, two fxed 
points exist. For |γ| > 1, no fxed points exist, since the driving torque is so strong that it can 
never be balanced by gravity—the pendulum continually whirls over the top (Figure 11.11). 

The fxed points are classifed according to ranges of the driving torque parameter as sum-
marized in Table 11.2. 

Figure 11.12 shows a collection of phase portraits for different values of the dimensionless 
damping coeffcient and driving torque. Figure 11.13 displays the solutions obtained with a 
numerical solver for some selected combinations of damping coeffcient, driving torque, and 
initial conditions. 

Figure 11.11 Graphical visualization of the fxed points of Equations 11.35. 
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Table 11.2 Classifcation of the stability of a pendulum 

|γ|< 1 |γ|=1 |γ|> 1 

* * * *arcsin ( )g = q1 p - arcsin ( )g = q2 q1 = q1 = p /2

Neutrally stable. No fxed points.The t = -B < 0 t = -B < 0
driving torque is too 

D = cos q1
* 0 D = cos q 2

* 0 strong. ( ) > ( ) < 

B =0 → center Saddle point 
B < 2→ stable spiral 
B > 2→ stable node 

Figure 11.12 Phase portraits for the pendulum. 

11.6 COMPETITION MODELS 

Competition-type models of interacting populations are based on the idea that competing 
species do not directly kill each other but rather, hurt each other indirectly by competing 
for the same resources. The populations might be rabbits and sheep. One such model is the 
Lotka–Volterra competition model, which has the mathematical form 

dx æ x ö = a x  1 - b x× × y1 ç ÷ - 1
dt è K1 ø (11.38) 
dy æ y ö = a y  1 - b x× × y2 ç ÷ - 2
dt è K2 ø 
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Figure 11.13 Dynamical responses of the pendulum. Position is the solid line, and velocity is the dashed line. 

The following physical assumptions are incorporated into this model: 

1. Each population in the absence of the other will grow according to the logistic model 
with growth rates a1 and a2 and carrying capacities K1 and K2. 

2. The negative effect of competition for the same limited resources is modeled with a 
term proportional to the product of the populations. 

If this model were applied to rabbits and sheep, the growth rate a and carrying capacity 
K for the rabbit population would be greater than the corresponding values for the sheep. 
Also, the competition parameter b would be larger for the rabbits than the sheep, since the 
sheep are larger and could simply push the rabbits out of their way. 

11.6.1 Coexistence 

Let’s examine the dynamics of the following coupled system of equations: 

dx 
= f x y) = x 3 2 - )( , ( - x y

dt (11.39) 
dy = g x y) = y 2 - - )( , ( x y
dt 

In an attempt to understand the dynamics of this system, we will 

• locate the fxed points 
• investigate the stability of the fxed points 
• draw the phase portrait 
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The fxed points are the (x *,y *) locations where 

* * * * * * * *f x , y = x - x - y = Þ x = 0 or - x( ) (3 2  ) 0 (3 2  - y ) = 0 
(11.40)

* * * * * * * * g x  y, = y 2 - x - y = Þ y = 0 or 2 - x - y = 0( ) ( ) 0 ( ) 

Thus, there are four fxed points (x *,y *) at locations (0,0), (0,2), (1.5,0), and (1,1). Figure 11.14 
clarifes the existence and locations of these four fxed points. 

The two solid lines are the values where dx/dt= f(x,y)=0, while the dashed lines are the 
locations where dy/dt=g(x,y)=0. The intersections of the solid and dashed lines are the loca-
tions of the fxed points. 

In order to analyze stability of the fxed points, we examine the Jacobian at each fxed 
point. 

f ù¶ 

ù---3 4x yé x 
(11.41)= ú

û---ê
ë y 2 x 2y 

y ú ú 
ú 
ú 

¶ 

g¶ 

f¶é 
x

J = 
¶ê ê 
ê 
ê

g¶ 

ë û¶x y 

Using linear stability analysis, the conclusions summarized in Table 11.3 can be drawn 

¶ 

about the stability of this system. 
The complete phase portrait, as shown in Figure 11.15, is beginning to emerge. 

Figure 11.14 Visualization of the fxed points for Equations 11.39. 

Table 11.3 Classifcation of the stability of the fxed points of 
Equations 11.39 

(x * ,y *)= (0,0) (x * ,y *) = (3/2,0) (x * ,y *)= (0,2) (x * ,y *)= (1,1) 

ù 
ú
û 

é 
ê
ë 

3 0
J = 

0 2
é 1 0 ù

J = ê ú-2 -2ë û 

é-3 -1 5. ù
J = ê ú0 0 5.ë û 

é-2 - ù1
J = ê ú1- 1-ë û 

l1 = 3 l1 =1 l1 3= - l1 0 38= - .

l2 = 2 l2 2= - l2 = 0 5. l2 2 6= - .

Unstable node Saddle point Saddle point Stable node 
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Figure 11.15 Phase portrait for Equations 11.39. 

11.6.2 Extinction 

Let’s examine the dynamics of a system of coupled equations similar to the previous case 
but with slightly different coeffcients. 

dx dy= x (3 - x - 2y), = y (2 - x - y) (11.42) dt dt 

A stability analysis on the fxed points yields 

(x *, y *) Stability 

(0, 0) Unstable node 
(0, 2) Stable node 
(3, 0) Stable node 
(1, 1) Saddle point 

The phase portrait is shown in Figure 11.16. 
For this type of competition model, one species drives the other to extinction. This is seen 

as basins of attraction. The basins for each species are separated by a ridge line or basin 
boundary. In the language of nonlinear dynamics, this boundary line is called the stable 
manifold of the saddle point. 

11.7 LIMIT CYCLES 

A limit cycle is an isolated closed trajectory. Isolated means that neighboring trajectories are 
not closed: they spiral either toward or away from the limit cycle. Figure 11.17 displays the 
notion of a stable, unstable, and half-stable limit cycle. They are characterized as: 

• Stable or attracting limit cycle: all neighboring trajectories approach the limit cycle. 
• Unstable limit cycle: all neighboring trajectories are repelled. 
• Half-stable limit cycle. 
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Figure 11.16 Phase portrait for Equations (11.42). 

Figure 11.17 The idea of a limit cycle. 

Applications of limit cycles include: 

• Beating of a heart 
• Periodic fring of a pacemaker neuron 
• Daily rhythms in human body temperature and hormone secretion 
• Chemical reactions that oscillate spontaneously 
• Dangerous self-excitations in bridges and airplane wings 

In each case, there is a standard oscillation of some period, amplitude, and waveform. If 
the system is perturbed, it returns to the standard oscillation. Limit cycles are inherently 
nonlinear phenomena: they cannot occur in a linear system. A linear system can have closed 
orbits, but they won’t be isolated. 

Using a simple example in cylindrical coordinates, it is easy to construct limit cycles. In 
the following system, the radial and angular dynamics are uncoupled and can be analyzed 
separately. 

dr 
= r (1 - r2 )

dt 
(11.43) 

dq = 1 
dt 
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The angle is simply θ(t)= θ0 + t. The radius has a stable fxed point at r*=1, as seen by 
the phase portrait in Figure 11.18. Thus, the dynamics are easy to predict—all trajectories 
except r0 =0 monotonically approach the circle r*=1. We verify this expectation by examin-
ing the solution in the phase plane. The conversion to rectangular coordinates is 

x t( ) = r t( )cos(q0 + t ) 
(11.44) 

y t( ) = r t( )sin(q + t )0 

The following solutions are for several initial conditions. In all cases, the solutions tend 
toward a limit cycle on the circle r*=1 (Figure 11.19). 

Figure 11.18 Phase portrait of Equation 11.43. 

Figure 11.19 Phase portrait of Equation 11.44. 
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11.7.1 van der Pol Oscillator 

A system that played a central role in the development of nonlinear dynamics is the van der 
Pol equation, given by 

d x  2 dx2 

+ m (  )x -1 + =x 0 (11.45) 
dt2 dt 

where μ > 0 is a parameter. Historically, this equation arose in connection with the nonlin-
ear electrical circuits used in the frst radios. 

This equation is similar to a simple harmonic oscillator but with a nonlinear damping 
term. That is, 

• |x|> 1, normal positive damping 
• |x|< 1, strange negative damping 

Let’s examine some solutions shown in Figure 11.20 for several values of the parameter µ. 
For μ =0, the linear, undamped oscillator is recovered. For m  1, the nonlinear damping 

term becomes strong. The limit cycle consists of an extremely slow buildup followed by a 
sudden discharge, followed by another slow buildup, and so on. Oscillations of this type 
are often called relaxation oscillations, because the “stress” accumulated during the slow 
buildup is “relaxed” during the sudden discharge. 

11.7.2 Poincare–Bendixson Theorem 

This theorem is one of only a few methods to establish that a closed orbit exists in a particu-
lar system. Suppose that: 

1. R  is a closed, bounded subset of the plane. 
2. dx/dt= f(x) is continuously differentiable. 

Figure 11.20 Solutions of the van der Pol equation. 
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3. R  contains no fxed points. 
4. There exists a trajectory C that is confned in R . 

Then, the theorem states that either C is a closed orbit or it spirals toward a closed orbit. 
The Poincare–Bendixson theorem is one of the key results in nonlinear dynamics. It says 

that if a trajectory is confned to a closed, bounded region that contains no fxed points, 
then that trajectory must approach a limit cycle. Nothing more complex can occur—chaos 
is not possible. 

11.8 BIFURCATIONS 

The types of bifurcations found in frst-order systems discussed in Section 10.4 have direct 
analogs in second-order systems as well as in all dimensions. Yet, it turns out that nothing 
really new happens when more dimensions are added: 

• All the action is confned to a one-dimensional subspace along which bifurcations 
occur. 

• In the extra dimensions, the fow is either simple attraction or repulsion from that 
subspace. 

In the following sections, the various types of bifurcations are examined. You may explore 
further on your own using the Mathematic Demo: “A Tour of Second-Order Ordinary 
Differential Equations.nb.” This demo is published in the Wolfram demo site at http://dem 
onstrations.wolfram.com/ATourOfSecondOrderOrdinaryDifferentialEquations/. 

This demo was developed to explore various types of behavior exhibited by second-order 
ordinary differential equations including linear systems, limit cycles, and bifurcations. 

11.8.1 Saddle-Node Bifurcation 

The saddle-node bifurcation is the basic mechanism for the creation and destruction of fxed 
points. The prototypical example is 

dx 
= f x( , y) = - x2m 

dt (11.46) 
dy 

= g x( , y) = -y
dt 

In the x-direction, one-dimensional bifurcation behavior occurs. In the y-direction, expo-
* * nential decay occurs. Fixed points for exist when μ > 0 at (x y, ) = ±( m ,0), while no real-

valued fxed points exist when μ < 0. Stability analysis of the fxed points: 

/ ¶ ¶f y/ ù é 2 * ïl1 = - x *é¶ ¶f x  - x 0 ù ì 2
Jacobian = = ê = ê úÞ íJ (11.47)

¶ ¶  ú 
, - û ï 2g x/ ¶ ¶g y/ û * *  ë 0 1 î l = -ë (x y ) 1 

The fndings from our fxed point analysis are summarized in a logical manner in Table 11.4. 

http://demonstrations.wolfram.com
http://demonstrations.wolfram.com
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Table 11.4 Stability of the fxed points of a saddle-node 
bifurcation 

μ<μc =0 μ>μc =0 

Does not exist Saddle point * *(x y, ) = -( m , 0) 
Does not exist Stable node* *( x y, ) = ( m , 0) 

Note that μ = μc = 0 is a critical value of the parameter μ at which a bifurcation occurs. 
Phase portraits for the possible ranges of μ values are shown in Figure 11.21. The stable 
fxed point is shown as a solid disk, while the unstable saddle is shown as an open circle. 
Even after the fxed points have annihilated each other (μ < μc), they leave a ghost or 
bottleneck that sucks trajectories in and delays them before allowing passage out the 
other side. 

11.8.2 Transcritical Bifurcation 

The prototypical transcritical bifurcation example is 

dx dy2 (11.48) = × -m x x  , = -y
dt dt 

As in the previous saddle-node case, the fxed points are identifed, and a stability analysis 
is performed. The results are summarized in Table 11.5. 

As the parameter μ crosses the critical value μc =0, a bifurcation occurs with the two fxed 
points switching stability (Figure 11.22). 

Figure 11.21 Phase portraits for the saddle-node bifurcation. 

Table 11.5 Stability of the fxed points for a 
transcritical bifurcation 

μ<μc =0 μ>μc =0 

(x *,y *)= (0,0) Stable node Saddle point 
(x *,y *)= (μ,0) Saddle point Stable node 
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Figure 11.22 Phase portraits for the transcritical bifurcation. 

11.8.3 Supercritical Pitchfork Bifurcation 

The classical or prototypical supercritical pitchfork bifurcation example is 

dx 3 dy (11.49) = × -m x x  , = -y
dt dt 

The fxed points and their stability are summarized in Table 11.6 As the parameter μ drops 
below zero, a bifurcation occurs with the two stable fxed points at (± m ,0)  coalescing into 

a stable fxed point at (0,0). This behavior is shown in Figure 11.23. 

11.8.4 Subcritical Pitchfork Bifurcation 

The classical or prototypical subcritical pitchfork bifurcation example is 

dx 3 dym x x  , = -y= × + (11.50) 
dt dt 

The fxed points and their stability are summarized in Table 11.7. 
The bifurcation point is μc =0. For positive values of the parameter μ, the only fxed point 

is an unstable saddle at the origin. For negative values of μ, the origin becomes stable, and 
two unstable saddle points come into existence (Figure 11.24). 

11.8.5 Hopf Bifurcations 

For a second-order ODE, the linearized stability analysis from Section 11.4 reveals that 
the stability of a fxed point is determined by the eigenvalues of the Jacobian matrix. If the 

Table 11.6 Stability of the fxed points for a 
supercritical pitchfork bifurcation 

μ<μc =0 μ>μc =0 

(x *,y *)= (0,0) Stable node Saddle point 
Does not exist Stable node* *(x y, ) = -( m , 0) 
Does not exist Stable node* *( x y, ) = ( m , 0) 



  

 

 

 

        

  

 

Second-Order Ordinary Differential Equations 215 

Figure 11.23 Phase portraits for the supercritical pitchfork bifurcation. 

Table 11.7 Stability of the fxed points for a subcritical 
pitchfork bifurcation 

μ<μc =0 μ>μc =0 

(x *,y *)= (0,0) Stable node Saddle point 
Saddle point Does not exist* *x y, = - -m , 0( ) ( ) 
Saddle point Does not exist* *( x y, ) = ( -m , 0) 

Figure 11.24 Phase portraits for the subcritical pitchfork bifurcation. 

fxed point is stable, the real parts of both eigenvalues must be negative. Thus, the eigenval-
ues must both be negative real numbers or complex conjugates with negative real parts, as 
shown in Figure 11.25. 

If the fxed point is to lose stability as a parameter changes, one or both of the eigenvalues 
must cross into the right half of the complex plane, where the real part is positive. 

11.8.6 Supercritical Hopf Bifurcation 

Here, a stable spiral changes into an unstable spiral surrounded by a small limit cycle. A 
mathematical example of such behavior is easiest to construct if we use polar coordinates. 
For instance, consider the following system (Figure 11.26). 
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Figure 11.25 Real and imaginary parts of the eigenvalues. 

Figure 11.26 Supercritical Hopf bifurcation. 

dr dq3 2 (11.51) = × -m r r  , = w + ×b r  
dt dt 

μ < 0: Origin is a stable spiral. 
μ =0: Origin is a half-stable spiral. 
μ > 0: Origin is an unstable spiral. A limit cycle exists at r = 

As an example, consider the system 

dx 2 dy 3= × - +m x y  xy , = + × +x m y y (11.52) 
dt dt 

The origin is the only fxed point: (x*, y*)= (0, 0). The Jacobian at the origin and eigenvalues 
are 

ém -1ù ì 1 = + il m 
Jacobian = = ê ú Þ (11.53) J í m = - i1 l më û î 2 

These eigenvalues are complex conjugates. As μ crosses 0, a bifurcation occurs. The real 
part changes sign, characterizing the Hopf bifurcation. The origin changes from a stable 
spiral for μ < 0 to an unstable spiral for μ > 0, as shown in the accompanying phase portraits 
(Figure 11.27). 

m . 
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Figure 11.27 Phase portraits for the supercritical Hopf bifurcation. 

Our other types of bifurcations—saddle, transcritical, and pitchfork—are characterized 
by real valued eigenvalues that change sign at some critical value of a system parameter. 

11.8.7 Subcritical Hopf Bifurcation 

The subcritical case is characterized by a jump to a distant attractor after bifurcation. This 
is much more dramatic than the supercritical Hopf bifurcation. An example is 

dr 3 5 dq 2 (11.54) = × +  w b rm r r  - r , = + × 
dt dt 

In this model, the cubic term is destabilizing, as it pushes trajectories away from the origin. 
The dynamics are restrained by the r5 term. 

11.9 COUPLED OSCILLATORS 

Consider the coupled system 

1 = f q q, d
dt 
q 

1 ( 1 2 ) 
(11.55) 

dq2 = f (q q, )2 1 2
dt 

The functions f1and f2 are periodic in (θ1,θ2). An example is 

dq1 = w1 -K1 sin (q1 -q2 )
dt (11.56) 

dq2 = w2 + K2 sin (q1 -q2 )
dt 

where 
θ1,θ2 are the phases of the oscillators 
ω1,ω2 are the natural frequencies of the oscillators 
K1,K2 are the coupling coeffcients between the oscillators 
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Rather than work with each oscillator individually, we can derive a differential equation for 
the phase difference between the two oscillators: 

f q  q= 1 - 2 = phase difference (11.57) 

df dq1 dq2= - = (w1 -w2 ) - (K1 +K2 )sin ( )f (11.58) 
dt dt dt 

The fxed points are determined as follows. 

df * w1 -w2= Þ0 sin f( ) = (11.59) 
dt K1 +K2 

w1 -w2 > K1 + K2 Þ no fixed points 

* æ w1 -w2 ö w -w £ K1 + K2 Þ stable fixed point at f = ArcSineç ÷
è K1 + K2 ø 

1 2 

Figure 11.28 shows the dynamics of this particular bifurcation. 
Let’s explore the conditions for the frequencies to become equal or “phase locked” at 

some value ω*. Using Equations 11.56, we have 

dq1 * * 
1 sin f= w = w -K1 ( )

dt (11.60) 
dq2 * * 

2 sin f= w = w +K2 ( )
dt 

Eliminate sin(ϕ*) from the previous equations to get 

K w + K w* 1 2  2 1w = (11.61) 
K1 + K2 

Thus, for w1 -w2 £ K1 + K2, phase locking is possible. 

Figure 11.28 Phase portraits for coupled oscillators. 
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PROBLEMS: LINEAR SYSTEMS 

Problem 11.1.1 

The motion of a linear damped harmonic oscillator is described by 

2d x  dx 
m 2 + c + k x× = 0 

dt dt 

dx 
x x  , = v0, t = 0= 0 

dt 

where c≥ 0 is the damping coeffcient. 

a) Rewrite this equation as simultaneous frst-order equations. 
b) Classify the fxed point at the origin, and plot the phase portrait. Be sure to show all 

the various cases that can occur depending on the relative sizes of the parameters. 
c) How do your results relate to standard notions of overdamped, critically damped, 

underdamped, and undamped vibrations? 

Problem 11.1.2 

Consider the following system of linear ODEs: 

dx dy= ay + b, = x 
dt dt 

a) Determine the fxed points. 
b) Determine the eigenvalues and the corresponding eigenvectors. 
c) Classify the fxed point for various values of parameters a and b. 
d) Sketch phase portraits showing all the qualitatively different behaviors. 
e) Determine the solution x(t) and y(t) for a=0, x0 =0, and y0 =1. 

Problem 11.1.3 

Consider the system of linear ODEs 

dx 
a x  b y= × + × + p

dt 
dy 

c x  d y= × + × + q
dt 

This system is nonhomogeneous due to the presence of the terms p and q. 

a) Determine the fxed points (x *,y *). 
b) What variable change would transform this to a homogeneous system (one with p and 

q zero)? 
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c) Are the eigenvalues and stability of the system affected by the presence of the nonho-
mogeneous terms p and q? If your answer is yes, explain how. 

d) Let’s say that for a certain combination of parameters, the homogeneous problem is 
a center. With the presence of the nonhomogeneous terms p and q, the fxed point is 
determined to be (x *,y *)= (1,0). Sketch the phase portrait. 

Problem 11.1.4 

Consider a series LRC circuit equation: 

d I2 dI 1
L +R + × = 0I 

dt2 dt C 

where L, C> 0 and R≥ 0. 

a) Rewrite the equation as a two-dimensional linear system. 
b) Show that the origin is asymptotically stable if R> 0 and neutrally stable if R=0. 
c) Classify the fxed point at the origin. Plot the phase portrait in all cases. 

Problem 11.1.5 

Consider the two-dimensional system of equations 

dx dy= -a x( - y), = a x( - y)
dt dt 

=
= 

x x  

y y0 

a) Express the system in matrix form. 

0ü
ý
þ 

t = 0 

b) Determine the eigenvalues of this system. 
c) Classify the behavior of this system. 
d) Sketch the phase portrait. 
e) Sketch a typical solution. 

Problem 11.1.6 

For each of the following cases: 

a) Classify the stability of the fxed point based on the eigenvalues. Identify all the differ-
ent possible types of behavior depending on the parameters a and b. 

b) Determine the analytical solution using eigenvalues/eigenvectors. Carefully examine 
the case where sign(ab) =0. 

c) For each different type of behavior identifed in part (a), plot the phase diagram. Also, 
plot the corresponding solution for the special case R0 =1, J0 =0. 

Case 1: Jerry Springer 

dR dJ
J, = R J= - +  

dt dt 
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Case 2: Out of Touch with Their Own Feelings 
Suppose Romeo and Juliet are out of touch with their own feelings, such that they 

react to each other but not to themselves. 

dR 
a J= × ,

dt 
dJ 

b R= ×  
dt 

Case 3: Fire and Water 

dR dJ= ×  + ×  b Ra R  b J, = - × - ×a J  
dt dt 

Problem 11.1.7 

Suppose we have a system of three linear, frst-order ODEs. The eigenvalues and eigenvec-
tors are 

λ1 =2+ i V1 = [1 0 0, , ] 
λ2 =2− i V2 = [0 1 0, , ] 
λ3 =−1 V3 = [0 0 1, , ] 

Sketch the phase portraits in the x-y plane, the x-z plane, and the y-z plane. 

Problem 11.1.8: Nonhomogeneous Linear System 

Consider the linear system of linear ODEs 

dx 
a x  b y= × + × + p

dt 
dy 

c x  d y= × + × + q
dt 

This system is nonhomogeneous due to the presence of the terms p and q. 

a) Determine the fxed points (x *,y *). 
b) What variable change would transform this to a homogeneous system (one with p and 

q zero)? 
c) Are the eigenvalues and stability of the system affected by the presence of the nonho-

mogeneous terms p and q? If your answer is yes, explain how. 
d) Let’s say that for a certain combination of parameters, the homogeneous problem is 

a center. With the presence of the nonhomogeneous terms p and q, the fxed point is 
determined to be (x *,y *)= (1.0). Sketch the phase portrait. 

PROBLEMS: NONLINEAR SYSTEMS 

Problem 11.2.1 

The phase plot for a second-order system is shown. 
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a) Speculate on the location and stability of the fxed points. 
b) Sketch solutions x(t) and y(t) starting from initial conditions (x0,y0)= (1,1). 

Problem 11.2.2 

Consider the following nonlinear second-order systems: 

dx dx 3x y= - = y - 4x 
dt dt 

dy 2 dy 3= x - 4 = y - y - 3x 
dt dt 

a) Determine all the fxed points. 
b) Classify the stability of the fxed points. 
c) Sketch the phase portrait. 
d) Sketch the solution starting from the initial conditions x0 =1, y0 =0 when t=0. 

Problem 11.2.3 
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Consider an undamped pendulum of mass m driven by a constant torque, T (N m). 

a) Derive the equation of motion for the angular position, θ(t). 
b) Change variables in order to express the equation of motion in the form 

d2q 
2 + sinq = g

dt 

What are the variables τ and γ? 

c) Find all the equilibrium points and classify them as γ varies. 
d) Is the system conservative? If so, fnd a conserved quantity. 
e) Using computer-generated solutions, plot phase portraits for various values of γ. 
f) Find the approximate frequency of small oscillations about any centers in the phase 

portrait. 

Problem 11.2.4 

Consider the system 

dx 
y 2x= -

dt 

dy 2= + x - ym 
dt 

a) Determine all the fxed points. What is the critical value μc at which a bifurcation 
occurs? 

b) Classify the stability of the fxed points. 
c) Sketch a phase portrait for μ < μc and one for μ > μc. 

Problem 11.2.5: Bead on a Wire 

Consider a bead of mass m constrained to slide along a wire. Suppose that the motion is 
opposed by a viscous damping force bdx/dt. 
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x=coordinate along wire, measured from closest point to the spring support 
m=mass 
k=spring stiffness 
L0 =relaxed length 
a=distance between support point and wire 

a) Derive Newton’s law for the motion of the bead. 
b) Transform the equation of motion into the following dimensionless form: 

2 öd X  dX æ 1 = -B × -X ç1 -
dt 2 dt è 

Determine these dimensionless variables and parameters. 
c) Find all possible equilibrium points (fxed points). Identify any bifurcations and 

determine critical parameter values. 
d) Consider the highly damped case. 

1. Under what conditions can we neglect the acceleration term (second derivative 
term) compared with the damping term? 

2. Classify the stability of all the fxed points for this case. 
3. Plot the bifurcation diagram (X* vs. A). What kind of bifurcation do we have? 
4. Plot phase portraits for A> 1, A=1, and A< 1. Plot some solutions correspond-

ing to each of these phase portraits. 
e) Now consider the general case. 

1. Classify the stability of all the fxed points. 
2. Plot phase portraits A> 1, A=1, and A< 1. Plot some solutions corresponding 

to each of these phase portraits. Create a set of plots for B=0 and another set 
for B=0.1. 

f) Now consider an inclined wire. 
1. Derive Newton’s law for the motion of the bead. 
2. Determine and classify all the fxed points for this case. 

Problem 11.2.6 

Consider the bead of mass m constrained to slide along a wire as described in Problem 
11.2.5. A constant force f is applied, and the motion is opposed by a viscous damping force 
bdx/dt. 

a) Derive Newton’s law for the motion of the bead. 
b) Transform the equation of motion into the following dimensionless form: 

2 öd X  dX æ 1 = -B -X ç1 - ÷ + F 
dt 2 dt è A2 + X2 ø 

Determine these dimensionless variables and parameters. 
c) For F=0, 

1. Find and classify all possible fxed points. 
2. Plot the bifurcation diagram (X* vs. A). 
3. Plot phase portraits for each qualitatively different behavior. 

A X2 2+ ø 
÷ 
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d) For any F, 
1. How do you fnd the fxed points? Create a function to determine them. 
2. Classify the fxed points. 
3. Plot bifurcation diagrams (X* vs. A) for F=0.01, F=0.1, F =0.5, and F=1. Also, 

plot a three-dimensional bifurcation diagram showing X* as a function of A and 
F. 

4. Plot phase portraits and some solutions for each qualitatively different behavior. 

Problem 11.2.7 

The Kermack–McKendrick (1927) model of an epidemic is 

dx = -kxy
dt 

dy 
= kxy - ry

dt 

where 
x =number of healthy population 
y=number of sick population 
r =death rate constant for sick people 
k =infection rate constant 

The equation for the deaths plays no role in the model and is omitted. 

a) Find and classify all the fxed points. 
b) Sketch the nullclines and vector feld. 
c) Find a conserved quantity for the system. 
d) Plot the phase portrait. What happens as t→∞? 
e) Let (xo,yo) be the initial condition. An epidemic is said to occur if y(t) increases ini-

tially. Under what conditions does an epidemic occur? 

Problem 11.2.8 

Odell (1980) considered the system 

dx
Prey: = x x( (1 - x) - y)

dt 

dy
Predator: = y x( - a)

dt 

where 
x ≥ 0 is the dimensionless population of the prey 
y≥ 0 is the dimensionless population of the predator 
a≥ 0 is a control parameter 

a) Plot the nullclines in the frst quadrant x, y ≥ 0. 
b) Find the fxed points. Classify the stability of these fxed points. 
c) Plot the phase portrait for a> 1, and show that the predators go extinct. 
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d) Show that a Hopf bifurcation occurs for at ac = 1/2. Is it subcritical or supercritical? 
e) Estimate the frequency of the limit cycle oscillations for a near the bifurcation. 
f) Plot the topologically different phase portraits for 0< a < 1. 

Problem 11.2.9 

Consider the predator–prey model. 

dx æ y öPrey: = x b  - x -ç ÷dt è 1 + x ø 

dy æ x öPredator: = y - ayç ÷dt è 1 + x ø 
where 

x, y≥ 0 are the populations 
a, b > 0 are parameters 

a) Sketch the nullclines and discuss the bifurcations that occur as b varies. 
b) Show that a positive fxed point x*> 0, y*> 0 exists for all a, b> 0. (Don’t try to fnd 

the fxed point explicitly; use a graphical argument instead.) 
c) Show that a Hopf bifurcation occurs at the positive fxed point if 

4(b - 2)
a ac = = 2b b( + 2) 

and b > 2. (Hint: A necessary condition for a Hopf bifurcation to occur is τ =0, where 
τ is the trace of the Jacobian matrix at the fxed point. Show that τ =0 if and only if 
2x*= b – 2. Then, use the fxed point conditions to express a in terms of x*. Finally, 
substitute x*=(b – 2)/2 into the expression for a, and you’re done.) 

d) Using a computer, check the validity of the expression in (c) and determine whether the 
bifurcation is subcritical or supercritical. Plot typical phase portraits above and below 
the Hopf bifurcation. 

Problem 11.2.10 

In Problem 10.15, an improved model of a laser was introduced. 

dn = GnN kn-
dt 

dN = -GnN fN p+-
dt 

where 
N(t) = number of excited atoms 
n(t) = number of photons in laser feld 
G = gain coeffcient for stimulated emission 
k = decay rate of the photons 
f = decay rate for spontaneous emission 
p = pump strength 
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All parameters are positive. 

a) Nondimensionalize the system. Use photon parameters as reference quantities. 
b) Find the fxed points. Classify the fxed points using linear stability analysis. 
c) Plot the stability diagram for the system. What types of bifurcation occur? 
d) Plot all the qualitatively different phase portraits and transient responses. 

Problem 11.2.11 

A two-mode laser produces two different kinds of photons with numbers n1 and n2. By anal-
ogy with the simple laser model, the rate equations are 

dn1 

dt 
1 1 = G Nn - k1 1n 

dn2 = G Nn - k n2 2 2 2
dt 

where 
N t( ) = N0 -a1n1 -a 2n2 is the number of excited atoms 
n1 and n2 are the number of photons. The parameters G1, G2, k1, Gk2, α1, α2, and N0 are 

all positive. 

a) Find and classify all the fxed points. 
b) Depending on the values of the parameters, how many qualitatively different phase 

portraits can occur? For each of the qualitatively different phase portraits, what does 
the model predict about the long-term behavior? 

Problem 11.2.12 

S=Average size of trees 
E=Energy reserve; a measure of health 
B=constant budworm population 

dS æ S KE öTrees: = r S  1 -s ç ÷dt è Ks E ø 

dE æ E ö B
Energy: = r E  1 - PE ç ÷ -dt è KE ø S 

a) Interpret the terms in the model biologically. 
b) Nondimensionalize the system. 
c) Plot the nullclines. Show fxed points. Identify the type of bifurcation that occurs. 
d) Plot the phase portraits. 

Problem 11.2.13 

A (dumb) dog, instead of seeking to head off the duck, swims at constant speed in a circu-
lar pond straight at the (even dumber) duck. The duck, deciding not to fy, makes no other 



  

 
 
 

228 Applied Engineering Mathematics 

attempt at escape from the dog beyond swimming (at constant speed) in a circle the radius 
of the pond. 

Parametrically determine the path of the (previously admittedly dumb) dog. Develop a 
nondimensionalization that minimizes the number of parameters necessary for character-
ization of this solution. 

Parameters: 

• Pond radius, R, m 
• Angular velocity of (again, very dumb) duck, ω, rad/s 
• Speed of (dumb) dog, Vdog, m/s 
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Index 

A 

Approximations, 21 
Autonomous versus nonautonomous systems, 120 

B 

Basic concept of a derivative, 38 
Basic concept of an integral, 45 
Bifurcations 

frst-order nonlinear systems, 174–182 
second-order nonlinear systems, 212–217 

Binary mass diffusion: Fick’s law, 17 
Bisection method, 105 
Blackbody radiation, 15 
Boundary conditions, 22 

Cause and effect, 19–20, 78 
general physical process, 19 
mechanical processes, 20 
thermal processes, 20 

Chain rule, 40 
Competition models, 205–208 
Complete mathematical model, 22 
Conservation laws, 11–14 
Conservation of energy: frst law of 

thermodynamics, 13 
Conservation of mass: continuity, 11 
Conservation of momentum: Newton’s second 

law, 12 
Coupled oscillators, 217–218 
Cramer’s rule, 87 

D 

Delta function, 54 
Derivatives, 38–41 
Determinant, 87 
Diffusion analogies, 17 
Dimensionless formulation 

general procedure, 26 
mechanical vibrations, 27–29 
steady heat conduction, 29–31 

E 

Educational philosophy, 2 
Electric circuits, 130 

design, 102 
RC electrical circuit, 125, 171 

Electrical conduction: Ohm’s law, 17 
Euler’s method, 153 

F 

False position method, 105 
Finite difference, 39 
First-order linear equations, 123 
First-order nonlinear equations, 126 
First-order ODEs, 169–182 

characteristics of linear systems, 171–172 
integrating factors, 172–174 
Laplace transform solution, 144–145 
nonlinear systems and bifurcations, 174–182 
stability of fxed points, 169–170 
transfer function, 148–149 

Fundamental principles, 10 

G 

Gauss quadrature, 62 
Gaussian elimination 

naïve Gaussian elimination, 87 
pivoting, 88 

Gauss–Seidel iteration, 90 
Geometric interpretation of an integral: area 

under a curve, 46 
Geometric interpretations of algebraic equations 

column interpretation, 81 
row interpretation, 81 

Graphical method, 104 

H 

Heat conduction, 24–26 
Heat conduction: Fourier’s Law, 14 
Heat convection: Newton’s law of cooling, 15 
Heat diffusion, 24–26 
Heat fux, 14 



  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

230 Index 

Heat transfer: thermal radiation, 101 
Heun’s method, 153 
Higher-order Runge–Kutta methods, 155 
Higher-order systems, 133 
Hopf bifurcations, 214

 Supercritical, 215 
Subcritical, 217 

I 

Implicit schemes, 158 
Initial conditions, 22 
Initial value and boundary value problems, 120 
Integrals, 45–49 
Integrating factors, 172 
Integration by parts, 48 
Inverse Laplace transformation, 141 
Inverse and parameter estimation problems, 31 

J 

Jacobian, 201–202 

L 

Laplace transforms, 139–148 
defnition, 139 
Laplace transform pairs, 140 
properties, 140 
solutions of linear ordinary differential 

equation, 143 
Laser threshold, 177 
Least squares regression, 91 
Leibniz rule: derivatives of integrals, 48 
Limit cycles, 208–212 
Linear algebra, 77–92 

applications, 79 
characteristics of square matrices, 82 
geometric interpretations, 81 
possibility of solutions, 82 
row operations, 86 

Linear ODEs, characteristics, 171 
Logistic equation, 127 
LU factorization, 89 

M 

Mass fux, 17 
Mathematica, 7 
Mathematical classifcation of physical 

problems, 32–33 
Mathematical models, 3–5, 20–25 

heat conduction, 24 
mechanical vibrations, 23 

MATLAB, 7 
Matrix inversion, 90 
Mean value theorem, 47 
Mechanical and electrical circuits, 130 
Mechanical processes, 20 

Mechanical vibrations, 23, 130, 196–200 
Multiple integrals, 64 

N 

Networks, 79 
Newton–Raphson method, 107 
Nonautonomous systems, 123 
Nonlinear algebra, 99–111 
Nonlinear ODEs, 174–182 
Nullclines, 129 
Numerical differentiation: Taylor series, 42–44 
Numerical integration, 55–63 
Numerical solutions of ODEs, 151–160 

coupled systems, 156–157 
implicit schemes, 158–160 
Runge–Kutta methods, 153–156 
second-order boundary value problems, 

160–161 
second-order initial value problems, 157–158 

O 

Ordinary differential equations, 4, 119–133 
classifcation,119 
frst-order equations, 121 
second-order initial value problems, 128 

Oscillators, coupled, 217 
Overdetermined systems, 85 

P 

Parameter estimation problems, 31 
Partial derivatives, 41 
Partial differential equations, 4 
Partial-fraction expansion method, 141 

distinct poles, 142 
multiple poles, 143 

Pendulum, 131, 202–205 
Phase portraits 

frst-order, 121 
second-order, 128 

Physical phenomena, 9–10 
Physical processes, 3 
Poincare–Bendixson theorem, 211 
Population dynamics, 126, 171 
Possibility of solutions, 82 
Predator–prey models, 132 
Product rule, 40 
Property relationships, 11 
Pulse function, 52 

R 

Radiation, 16 
Rank, 82 
Rate equations, 14–17 
Riemann sum, 46 
Root fnding, 99–111 
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Root fnding methods, 104 
Row operations, 86 

S 

Saddle-node bifurcation, 175, 212 
Secant method, 108 
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