This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (T ¥

° Table of Contents
. Index

. Reviews

° Reader Reviews
. Errata

° Academic

qgmail

By John lLevine

Stant Reading »
Publisher: O'Reilly
Pub Date: March 2004
ISBN: 1-56592-628-5
Pages: 248

gmail concentrates on common tasks like moving a sendmail setup to gmail, or setting up a "POP toaster," a system
that provides mail service to a large number of users on other computers sending and retrieving mail remotely. The
book fills crucial gaps in existing documentation, detailing exactly what the core gmail software does.

[Team LiB] (i ¥

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[T LiB]
. Table of Contents
° Index
. Reviews
. Reader Reviews
. Errata
° Academic
qmail
By John lLevine
Publisher: O'Reilly
Pub Date: March 2004
ISBN: 1-56592-628-5
Pages: 248
Copyright
Preface
What's Inside?
Style Conventions
Examples and Patches
Comments and Questions
Acknowledgments
F L1) mai
- I Emai
Secti Mail Basi
Secti > Mai
Secti 3. The S 3 ai
Chapter 2. How Qmail Works

Stan Reading » |

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
Copyright

Copyright © 2004 O'Reilly Media, Inc.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safari.oreilly.com). For more information, contact our corporate/institutional sales
department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of O'Reilly Media, Inc.
gmail, the image of the tawny owl, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and O'Reilly Media, Inc. was aware of a trademark claim, the
designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume no
responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Preface

Since its release in 1998, gmail has quietly become one of the most widely used applications on the Internet. It's
powerful enough to handle mail for systems with millions of users, including Yahoo Mail and VSNL (the largest ISP in
India), while being compact enough to work on even the smallest PC Unix and Linux systems. Its component design
makes it easy to extend and customize while keeping its key functions secure.

Qmail's design is rather different from its best-known predecessor, sendmail. People who are familiar with sendmail
often have trouble recasting their problems and solutions in gmail terms. In this book, I try first to help the reader

establish a gmail frame of mind, then show how the pieces of gmail work, and finally show how gmail can deal with
some more complex mailing tasks such as handling mail for multiple domains, mailing lists, and gateways to other

services.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
What's Inside?

This book is organized into two sections, consisting of the following chapters.

Part I: Introduction to Qmail

Chapter 1, provides an overview of Internet email and the terminology used to describe it.

Chapter 2, outlines how gmail works, and gives a description of its basic parts and the philosophy behind its design and
use.

Chapter 3, covers the basics of downloading, configuring and installing gmail, and other essential packages.
Chapter 4, finishes the job of configuring and starting gmail.

Chapter 5, addresses issues encountered when converting an existing sendmail system and its configuration files to
gmail.

Chapter 6, looks at the issues involved in accepting mail from users on the gmail host and other systems, including
cleaning up the sloppily formatted mail that most user mail programs send.

Chapter 7, describes the processing of incoming mail, various tricks to let users identify themselves as local users when
roaming away from the local network, and adding cryptographic security to mail transfers.

Chapter 8, covers sorting, reading, and otherwise dealing with local mailboxes.

Chapter 9, covers anti-virus and anti-spam techniques, both those that can be built into gmail and ways to call external
filters like Spamassassin.

Part ll: Advanced Qmail

Chapter 10, defines the way that gmail delivers mail to local addresses.
Chapter 11, defines the way that gmail delivers mail to remote addresses.

Chapter 12, describes gmail's simple but powerful abilities to handle domains with their own sets of addresses,
including building mail gateways to other services, and special routing for selected mail destinations.

Chapter 13, covers POP and IMAP, the standard ways that users pick up mail from PC mail programs, as well as "POP
toasters," dedicated POP servers with many mailboxes.

Chapter 14, details gmail's built-in mailing list features, the companion ezmlm mailing list manager, and offers some
advice on connecting gmail to other mailing list managers such as mailman and majordomo.

Chapter 15, describes gmail's built-in database of local mail addresses and subaddresses.
Chapter 16, describes log analysis tools and offers rules of thumb for tuning gmail for best performance.

Chapter 17, covers applications with multiple copies of gmail on one computer, copies of gmail cooperating on many
computers, and the mini-gmail package to run a mail hub serving many small client systems.

Chapter 18, shows many problems and solves them.

[Team LiB] [+ Fruvisus Jwant o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Style Conventions

This book uses the following typographical conventions:

Italic
Indicates the names of files, databases, directories, hostnames, domain names, usernames, email addresses,
sendmail feature names, Unix utilities, programs, and it is used to emphasize new terms when they are first
introduced.

Constant width

Indicates configuration files, commands and variables, m4 macros and built-in commands, and Unix command-
line options. It is used to show the contents of files and the output from commands. Keywords are also in
constant width.

Constant width bold

Used in examples to show commands or text that you would type.

Constant width italic

Used in examples and text to show variables for which a context-specific substitution should be made. (The
variable filename, for example, would be replaced by some actual filename.)

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Examples and Patches

The examples from this book and the author's source code patches for gmail and related packages are freely
downloadable from the author's web site at:

o
[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
Comments and Questions

We have verified the information in this book to the best of our ability, but you may find that features have changed (or
even that we have made mistakes!). Please let us know about any errors you find, as well as your suggestions for
future editions, by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You can access this
page at:

. . / .
To comment or ask technical questions about this book, send email to:
) dorei
You can sign up for one or more of our mailing lists at:
/el)

For more information about our books, conferences, software, Resource Centers, and the O'Reilly Network, see our web
site at:

http://www.oreilly.com
You may also write to the author directly at:

gmail@gurus.com

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
Acknowledgments

I wish to thank my reviewers, Mark Delany and Russell Nelson, for careful reading of the manuscript and many
suggestions to improve it. I particularly thank my editor Simon St.Laurent and the staff at O'Reilly for believing my
assurances that this book would in fact be finished, despite mounting evidence to the contrary.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Part I: Introduction to Qmail

The first nine chapters provide an introduction to Internet email and gmail. They describe installing and
configuring gmail, including advice on setting up a gmail system as a mail hub, converting an existing
system from sendmail, and filtering out viruses and spam from incoming mail:

Chapter 1

Chapter 2

Chapter 3

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 1. Internet Email

Despite being one of the oldest applications on the Internet, email remains the Net's "killer application" for most users.
For users' email to be sent and delivered, two kinds of programs have to work together, a mail user agent (MUA)Lll
that a person uses to send and read mail, and a mail transfer agent (MTA) that moves the mail from server to server.
Qmail is @ modern MTA for Unix and Unix-like systems.

[1] popular MUAs include pine and mutt on Unix systems, and Eudora, Netscape, Outlook, and Outlook Express on
PCs and Macs.

Before diving into the details of gmail, it's a good idea to closely examine some of the basics of Internet email that
apply to all MUAs and MTAs. Common terms like envelope and mailbox have special meanings in Internet mail parlance,
and both the structure of mail messages and the path that messages take through the mail system are carefully
defined. The essential documents are RFC 2821, which defines the Simple Mail Transfer Protocol (SMTP) used to move
mail from one place to another, and RFC 2822, which defines the format of mail messages. These RFCs were published
in April 2001, updating the original RFCs 821 and 822 published in 1982. (All RFCs are available online at

http://www.rfc-editor.org.

For many years, the only widely used MTA for Unix and Unix-like systems was the venerable sendmail, which has been
around in one form or another for 20 years. As a result, many people assume that whatever sendmail does is correct,
even when it disagrees with the RFCs or has unfortunate consequences. So even if you're familiar with sendmail
(indeed, especially if you're familiar with sendmail), at least skim this chapter so we all can agree on our terminology.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
1.1 Mail Basics

The Internet's SMTP mail delivers a message from a sender to one or more recipients. The sender and recipients are
usually people, but may also be mailing lists or other software agents. From the point of view of the mail system, the
sender and each recipient are addresses. The message is a sequence of lines of text. (RFC 2821 uses the word
"mailbox" as a synonym for "address" and "content" for the message.)

1.1.1 Addresses

All email addresses have the simple form /ocal-part@domain. The domain, the part after the at-sign, indirectly identifies
a host to which mail should be delivered (although the host rarely has the same name as the domain). The local-part,
the part before the at-sign, identifies a mailbox within that domain.

The set of valid domains is maintained by the Internet's Domain Name System (DNS). Every domain is a sequence of
names separated by dots, such as example.com. The names in email domains consist of letters, digits, and hyphens. (If
current efforts to internationalize domain names ever settle down, the set of valid characters will probably become
larger.)

The local-part is interpreted only by the host that handles the address's domain. In principle, the mailbox can contain
any characters other than an at-sign and angle brackets, but in practice, it is usually limited to letters, digits, and a
small set of punctuation such as dots, hyphens, and underscores. Upper- and lowercase letters are equivalent in
domains. It's up to the receiving mail host whether upper- and lowercase are equivalent in local parts, although most
mail software including gmail treats them as equivalent.

Addresses appear in two different contexts: "envelope" data that is part of an SMTP transaction defined by RFC 2821,
or in the header of a message defined by RFC 2822. In an SMTP envelope, addresses are always enclosed in angle
brackets and do not use quoting characters or permit comments. In message headers, the address syntax is
considerably more flexible. An address like "Fred.Smith"@example.com (Fred Smith) is valid in message headers but

not in SMTP. (The form Fred.Smith@example.com is valid in either.)Lzl

[2] sendmail has often confused the two address contexts and has accepted message header formats in SMTP,
both causing and masking a variety of bugs.

1.1.2 Envelopes

Every message handled by SMTP has an envelope containing the addresses of the sender and recipients). Often the
envelope addresses match the addresses in the To: and From: headers in the message, but they don't have to match.
There are plenty of legitimate reasons why they might not.

The envelope sender address is primarily used as the place to send failure reports (usually called bounce messages) if
message can't be delivered. If the sender address is null (usually written in angle brackets as <>), any failure reports
are discarded. Bounce messages are sent with null envelope senders to avoid mail loops if the bounce message can't be
delivered. The sender address doesn't affect normal mail delivery.

The envelope recipient address(es) control where a message is to be delivered. Usually a message starts out with the
envelope recipients matching the ones on the To: and Cc: lines, but as a message is routed through the network, the
addresses change. If, for example, a message is sent to able@example.com and baker@domain.com, the copy sent to
the host handling example.com will only have able's address in the envelope and the one sent to the host handling
domain.com will only have baker's address. In many cases a user will have a different internal than external address—
for example, mail to john.q.public@example.com is delivered to jgpublic@example.com, in which case the envelope
recipient address is changed at the place where the mail is received for the original address and readdressed to the new
one.

1.1.3 Messages

An Internet email message has a well specified format defined in RFC 2822. The message consists of lines of text, each
ended by a carriage-return line-feed pair. All of the text must be seven-bit ASCII. (The 8BITMIME extension to SMTP
permits characters with the high bit as well but still doesn't permit arbitrary binary data. If you want to send binary
material as email, you must encode it using MIME encodings.)

The first part of the message is the header. Each header line starts with a tag that says what kind of header it is,
followed by a colon, usually some whitespace, and then the contents of the header line. If a header is too long to fit on
one line, it can be split into multiple lines. The second and subsequent lines start with whitespace to identify them as
continuations. Every message must have From: and Date: header lines, and most have other headers such as To:, Cc:,
Subject:, and Received:. The contents of some headers (such as Date:) are in a strictly defined format, while the
contents of others (such as Subject:) are entirely arbitrary.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Some mail programs are more careful than others to create correct headers. (Many, for example, put invalid time zones
in Date: headers.) Qmail is quite careful when it creates headers at the time a new message is injected into the mail
system, but doesn't look at or change message headers on messages that are transported through the system. The
only change it makes to existing messages is to add Received: and Delivered-To: headers at the top, to chronicle the
message's path through the system.

The headers are separated from the body of the message by an empty line. The body can contain any arbitrary text,
subject to a rarely enforced limit of 998 characters per line. The message must end with CR/LF, that is, no partial line at
the end.

1.1.4 Lines

Every line in a message must end with CR/LF, the two hex bytes OD 0A. This simple sounding requirement has caused a
remarkable amount of confusion and difficulty over the years. Different computer operating systems use different
conventions for line endings. Some use CR/LF, including all of Microsoft's systems and a string of predecessors from
CP/M to the 1960s era TOPS-10. Unix and Unix-like systems use LF. Macintoshes use CR, just to be different.

Regardless of the local line-ending convention, messages sent and received via SMTP have to use CR/LF, and the MTA
has to translate from local to CR/LF when sending mail and back from CR/LF to local when receiving mail.
Unfortunately, a common bug in some MTAs has been to forget to make this translation, typically sending bare LFs
rather than CR/LF. Furthermore, RFC 822 said nothing about what a bare CR or LF in a mail message means. Some
MTAs (sendmail, notably) treat a bare LF the same as CR/LF. Others treat it as any other data character. Qmail rejects
incoming SMTP mail containing a bare CR or LF on the theory that it's impossible to tell what the sender's intent was,
and RFC 2822 agrees with gmail that a bare CR or LF is forbidden. (It's easy enough to tweak gmail's SMTP daemon to
accept bare LF, of course, if you really want to. See Chapter 6.)

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
1.2 Mailstore

The mailstore is the place where messages live between the time that gmail or another MTA delivers them and the user
picks them up. Often, it's also the place where the user saves messages after reading them.

I divide mailstores into two varieties: transparent and opaque. A transparent mailstore is one that an MUA can directly
access as files, while an opaque one requires a network protocol to access. (As you might expect, there's considerable
overlap between the two, with an MUA running on the system where the mail is stored using a user's mailstore as
transparent and one running on a PC elsewhere using the same mailstore as opaque.)

A mailstore has several jobs beyond receiving messages. It must:

® Maintain a little per-message status information, such as whether a message is read, answered, or deleted
® Make it possible to group messages into multiple folders

® Make it possible to delete messages and move them from folder to folder

1.2.1 Transparent Mailstore

Unix systems have had a variety of mailstore file formats over the years. The oldest and still most popular is mbox, a
format invented in two minutes in the 1970s for an early Unix mail program, and largely unchanged since then. An
mbox is just a text file with the messages one after another. Each message is preceded by a From line and followed by
a blank line. The From line looks like this:

From fred@example.com Wed Oct 06 19:10:49 1999

The address is usually (but not always) the envelope sender of the following message, and the timestamp is the time
the message was added to the mailbox. Although it's easy to add a new message to an mbox, it's difficult to manipulate
messages in the middle of a mailbox, and sharing a mailbox reliably between two processes is very tricky due to
problems with file locking on disks shared over a network. Mboxes have been surprisingly durable considering their
nearly accidental origins and their drawbacks, discussed in more detail in Chapter 10.

The MH mail system, developed at the RAND corporation in the 1980s, used a more sophisticated mailstore that made
each mailbox a directory, with each message a separate file in the directory. Separate files made it easier to move
messages around within mailboxes but still didn't solve the locking problems.

Qmail introduced Maildir, a mailbox format that uses three directories per mailbox to avoid any need for locking beyond
what the operating system provides. Maildirs are covered in detail in Chapter 10.

1.2.2 Opaque Mailstore

Opaque mailstores became popular when PCs started to gain dial access to the Internet, and users started running mail
programs on the PCs rather than using Telnet to connect to shared servers and running mail programs there. The two
popular opaque schemes are Post Office Protocol (POP3 for Version 3), and Internet Message Access Protocol, (IMAP4,
pronounced eye-map, for Version 4).

1.2.2.1 POP3

POP3 is by far the most popular scheme used to deliver mail to PC clients. It is a fairly simple scheme that lets client
systems download mail messages from servers. A client program connects to the POP server, sends user and password
information, and then usually downloads all the waiting mail and deletes it from the server. It is possible for the client
to leave the mail on the server, for people who check their mail from multiple places and want to receive all the mail on
their primary computer even if they've peeked at it from somewhere else. POP3 can also assign unique ID strings
(UIDs) to messages so that client programs can check to see which messages on the server haven't been seen before.
(Despite these features, IMAP is usually better suited for people who read mail from more than one place.)

Qmail comes with a POP3 server that uses Maildirs for its internal mailstore. You can also use Qualcomm's popular
gpopper that uses mbox mailboxes or the POP server from the Courier mail package that uses Maildirs. See Chapter 13.

1.2.2.2 IMAP4

IMAP is a scheme that lets client software manipulate messages and mailboxes on the mail server. It is much more

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

powerful than POP at the cost of being much more complex as well. The client can tell the IMAP server to copy
messages in either direction between client and server, create folders, move messages among folders, search for text
strings in messages and mailboxes, and just about any other function that a mail client could possibly do to a message
or mailbox.

The goal of IMAP is to allow client programs to manipulate mailboxes on the server just as though they were on the
client system. This makes it possible for users to leave all their mail on the server so that they see a consistent view of
their mail no matter from where they check it.

Qmail does not come with an IMAP server, but several IMAP servers work with gmail. The original IMAP server from the
University of Washington uses mbox mailboxes, while the Courier IMAP server, part of the Courier MTA package, and
the newer binc IMAP server use Maildirs.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
1.3 The Structure of Internet Mail

Now that we've seen all the pieces of Internet mail, let's put them together and watch the typical path of a message as
it's sent from one person to another.

First the sender runs a MUA, such as Pine or Eudora, and creates the message. Then a click of the Send button (or the
equivalent) starts it on its way by passing it to the MTA (most likely gmail if you're reading this book), a process known
as submitting the message. If the MUA is running on the same computer as the MTA, the MUA submits the message by
running the MTA's injection component with the message as an input file. If the MUA is running on a separate
computer, such as a Windows PC, the MUA makes a network connection to the computer running the MTA, and
transfers the message using SMTP or a minor variant of SMTP called SUBMIT that's specifically intended for host-to-host
message submission.

Either way, the MTA receives the message envelope with the sender and recipient addresses and the message text.
Typically the MTA fixes up the header lines in the submitted message so that they comply with RFC 2822, then looks at
the domain parts of each recipient address. If the domain is one that the MTA handles locally, the MTA can deliver the
message immediately. In the more common case that it's not, the MTA has to send the message over the Net.

To figure out where to send the message, the MTA consults the DNS. Every domain that receives mail has an MX (Mail
eXchanger) record in DNS identifying the host that receives mail for the domain.[31 Once the MTA has found the MX
host for a domain, it opens an SMTP connection to the MX host and sends the message to it. In some cases, the MX
host uses SMTP to forward the message again if, for example, the MX host is a firewall that passes mail between MTAs
on a private network and the rest of the Internet.

(3] Well, they're supposed to at least. For backward compatibility with pre-1980 mail systems, if a domain has no
MX record but does have an A record containing a numeric IP address, the mail system uses that instead.

Eventually the message arrives at a host where the MTA knows how to deliver mail to the recipient domain. Then the
MTA looks at the local part of the recipient address to figure out where to deliver the mail. In the simple case that the
address is a user mailbox, the MTA either deposits the message directly into the mailstore or, more likely, calls a local
delivery agent program to deliver the mail. (On Unix, a popular local delivery agent is procmail, which does mail sorting
and filtering as well as delivery.) Depending on the MUA that the recipient user has, the MUA may read the message
directly from a transparent mailstore on the mail server, or use POP or IMAP to read the mail on a client PC.

A domain can have more than one MX record in its DNS. Each MX record contains a numeric value known as the
preference or distance along with the name of a host. Sending systems try the MX host with the lowest distance first,
and if that MX host can't be contacted, successively higher distances until one answers or it runs out of MXes. If there
are several MX hosts at the same distance, it tries them all in any order before going on to hosts at a higher distance. If
the sending host can't contact any of the MXes, it holds onto the message and retries later.

When the Internet was less reliable, backup MXes with a higher distance than the main MX were useful to receive mail
for a domain when the main MX was unavailable, and then send it to the main MX when it came back. Now, backup
MXes are only marginally useful, because sending hosts retry mail for at least a few days before giving up. They wait
until the main MX is available and then deliver the mail. Multiple MXes at the same distance are still quite useful for
busy domains. Large ISPs often have a dozen or more MXes to share the incoming mail load.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 2. How Qmail Works

People who are familiar with other mail transfer agents (MTAs), notably sendmail, rarely receive satisfactory results
from gmail. Qmail was designed and written in a very different way from most other mail programs, so approaches
used to solve problems with other programs don't work with gmail and vice versa.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
2.1 Small Programs Work Together

Earlier MTAs were written as large monolithic programs. Sendmail, for example, is one large executable program that
listens for incoming SMTP connections, accepts locally generated mail, queues mail, attempts outgoing SMTP deliveries,
performs local deliveries, interprets .forward files, retries mail that for which earlier delivery attempts failed, and about
50 other functions. While this means that all of these functions can share utility routines and it's easy for one function
to call on another or pass a message to another, it also means that sendmail is a large program (300 KB of code on my
system, not including any libraries it uses) that is slow to start up and expensive to fork, and bugs anywhere in the
code can potentially make any of the functions misbehave or fail. Other monolithic MTAs, such as smail and exim, share
these problems.

Qmail, on the other hand, is about 10 small programs, none with as much as 30 KB of code, working together. This
design approach offers many advantages.

2.1.1 Each Program Does One Thing

Each of gmail's programs performs a single function. For example, gmail-Ispawn spawns (starts up) local deliveries, and
gmail-clean deletes the queue files of messages that have been completely processed. The various programs use
documented protocols to communicate, which makes it easier both to debug them and to substitute one version of a
program for another.

For example, on a local area network (LAN) with several workstations, the most common mail setup is for one server to
handle all of the incoming mail and deliveries. All the other workstations use that server as a "smarthost" and
immediately forward locally generated mail to the smarthost. In this arrangement, each workstation traditionally has a
complete implementation of the MTA, with configuration files set to forward mail to the smarthost. Note that about 90%
of the MTA's function is present but not used, and strange bugs often surface when the configuration files on the
workstations get out of sync with each other. The optional QMQP package makes it possible to install a tiny "mini-gmail"
package on the workstations, with the only configuration being the address of the smarthost. In a regular gmail
installation, the program gmail-queue takes a message and creates a queue entry so the message can be processed
and delivered. Several other programs call gmail-queue, including gmail-smtpd, which receives incoming mail via SMTP,
and gmail-inject, which receives locally generated mail. QMQP replaces gmail-queue with a small program that
immediately forwards incoming mail to the smarthost. There's no need to install the queueing and delivery part of gmail
on the workstations, but to the programs that call gmail-queue, mail works the same as it always did.

2.1.2 The Principle of Least Privilege

Most monolithic MTAs have to run as the super-user to open the "privileged" port 25 for SMTP service and deliver mail
to user mailboxes that are not world-writable. Qmail uses the principle of least privilege, which means it runs only the
program that starts local mail deliveries, gmail-Ispawn, as root. All of the other programs run as nonprivileged user IDs.
Different parts of gmail use different IDs—for example, only the parts that change the mail queue run as the user that
can write to the queue directories. This offers an extra level of resistance to accidental or deliberate errors.

Qmail also offers the very useful ability to delegate management of a virtual domain to a Unix user in a simple and
secure way. The user can manage all the addresses in the domain by adjusting his own files as needed without ever
having to bother the system manager or run super-user privileged programs.

2.1.3 Program Wrapping

Qmail makes extensive use of program wrapping to allow users and administrators to add and modify features.[11 A
wrapper program runs a second program, modifying the second program's action in some way. The syntax for wrapper
programs is:

[1]1 There's no standard name for this clever software design. Some people call it program chaining, and some
people call it Bernstein chaining or a djb pipeline because Dan Bernstein is one of its best-known users.

wrapper wrapargs program progargs
That is, first come any arguments the wrapper takes, then the name of the program to run.

For example, when gmail runs a program for local delivery, it does not normally insert a mailbox separator line at the
beginning of the message, but some programs, such as the procmail mail sorting package, require that line. The preline
wrapper program provides the needed line:

| preline procmail arguments

That is, preline runs the program given as its argument, inserting a separator line ahead of the input.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

In some cases, multiple wrappers can be cascaded, with several setup programs running each other in turn to create
the environment for a main program. For example, the gmail POP3 daemon is implemented in three parts. The
outermost, gmail-popup reads the username and password from the client. It then runs checkpassword, which validates
the username and password, and changes to the directory that contains the mail. Finally, it then runs gmail-pop3d,
which runs the rest of the POP3 session. By substituting different versions of checkpassword, it's easy to handle mail-
only users, addresses in virtual domains, or any other local mailbox and password conventions.

2.1.4 No New Languages

Qmail tries very hard not to create new configuration or command languages, in reaction to the baffling complexity of
the sendmail configuration-file language. Instead, gmail uses standard Unix features wherever possible. We saw
program wrapping, previously, as one way to make programs configurable. The other way is to use the standard Unix
shell. Rather than put a lot of options into the syntax of .gmail files, which control local deliveries, gmail builds in only
the two most common options: delivery to a mailbox and forwarding to a fixed address. For anything else, you put shell
commands in the .gmail file, generally using a few small helper programs such as forward, which sends a message to
the address(es) given as arguments. This has proven in practice to be very flexible, and it's usually possible to express
complex delivery rules in a few lines of shell script.

2.1.5 Configuration Files

Rather than put all of the configuration information into one huge file, gmail splits it up into multiple small files. The
global configuration information goes into files in /var/gmail/control, while per-user delivery instructions go into files in
each user's home directory.

Most of the files are simple lines of text, such as /var/gmail/localhosts, which lists the hostnames that should be treated
as local to the system on which gmail is running, one per line. As a concession to efficiency, files that could potentially
become large, such as the list of virtual domains, are compiled into CDB files that use a hashing technique to permit
programs to look up any entry with one or two disk reads. Each file contains only one kind of information, so there's no
need for a language to define file sections or subsections.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
2.2 What Does a Mail Transfer Agent (MTA) Do?

The Internet model of email delivery divides the process into several separate stages and the software into several
parts. The two important kinds of software are the Mail User Agent (MUA) and the Mail Transfer Agent (MTA). The MUA
is the program that permits a user to send and receive mail. Familiar mail programs such as Pine, EIm, and Gnus on
Unix and Eudora, Pegasus, Outlook, and Netscape or Mozilla on PCs are all MUAs. Each MUA has a rather complex user
interface, and has many features, such as composing and reading mail, moving mail among mailboxes, and selecting
the order in which to read mail. But an MUA doesn't deliver mail to other users; for that it hands its messages to an
MTA.

In the first stage of mail delivery, the message is submitted or injected to the MTA. Usually the message comes from an
MUA, but it can just as well come from another program, such as a mailing list manager. The MTA examines the
address(es) to which each message is sent, and either attempts to deliver the message locally if the address is local to
the current host, or attempts to identify a host to which it can relay the message, relaying the message to that host. (If
that last sentence sounds a little vague, it's deliberately so, because there are many different ways that mail relaying
happens.) Each of these steps could fail—a local address might not exist, it might exist but the MTA might be
temporarily or permanently unable to deliver the message to it, the MTA might be temporarily or permanently unable to
identify a relay host, or the MTA might be able to identify a relay host, but temporarily or permanently unable to relay
messages to it. In case of permanent failure, the MTA sends a failure report back to the message's sender. In case of
temporary failure, the MTA hangs on to the message and retries until either the delivery succeeds or eventually the
MTA treats the failure as permanent.

Although the basic idea of an MTA is simple, the details can be complex, particularly the details of handling errors.
Fortunately, gmail handles most of the details automatically, so administrators and users don't have to.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
2.3 The Pieces of Qmail

Qmail consists of five daemons that run continuously, and about ten other programs run either from those daemons or
from other commands, as shown in Figure 2-1.

Figure 2-1. How the gmail daemons connect to each other

The primary daemon is gmail-send, which manages the message queue and dispatches messages for delivery. It is
connected to two other daemons, gmail-Ispawn and gmail-rspawn, which dispatch local and remote deliveries,
respectively, using gmail-local and gmail-remote.

Once a message has been completely processed, with all deliveries having either succeeded or permanently failed,
gmail-send notifies gmail-clean to remove the files for the message. The fifth daemon, tcpserver is discussed next.

2.3.1 A Message's Path Through Qmail

A message enters gmail either from another program within the system or via incoming SMTP. Regardless of where the
mail originates, the originating program runs gmail-queue, which copies the message to a file in the queue directory,
copies the envelope sender and recipient to a second file, and notifies gmail-send. For locally originating mail, gmail-
queue is generally called from gmail-inject, or newinject, which adds missing header lines and cleans up address fields.
(It's entirely legitimate for programs to call gmail-queue directly if they create messages with all needed headers.
Mailing list managers such as Majordomo2 do for efficiency.) Most often, gmail-inject is run from sendmail, a small
program that interprets its arguments like the legacy sendmail and calls gmail-inject. It's a useful shim to maintain
compatibility with the many applications that call sendmail directly to send mail.

For mail arriving from remote systems, tcpserver runs as a daemon listening for incoming connections on the SMTP
port. Each time a connection arrives, it runs gmail-smtpd, which receives a message via SMTP and calls gmail-queue to
queue the message.

Regardless of where the message originates, gmail-queue writes the message to a temporary file in the queue/todo
directory, putting a new Received: line at the top, and also saves the envelope sender and recipient addresses to files.
Then it notifies gmail-send by writing a byte to a "trigger" socket file.

gmail-send takes the message out of queue/todo, and analyzes each recipient address to see if it's local, remote, or
virtual.

For local addresses, it notifies gmail-Ispawn to run gmail-local to do the local deliveries. For each local delivery, gmail-
local sets up the context of the user that controls the delivery address (user id, group id, home directory, and a few
environment variables) and then performs the actions listed in the address's .gmail file. Depending on the contents of
the .gmail file, the local delivery may store the message into a mailbox, provide a different address to which to deliver
the message, run a program to handle the message, or any combination of the three. Qmail doesn't provide any other
built-in facilities for local deliveries, instead using separate programs run from .gmail files.

For each remote address, gmail-send notifies gmail-rspawn to run gmail-remote to do the remote deliveries. Every
remote address is delivered through a separate SMTP session, even if there are several addresses in the same domain.
(This is one of the most controversial features of gmail. See Chapter 11 for some ways you can merge multiple
deliveries together and why you probably don't want to.)

For virtual addresses, gmail-send rewrites each virtual address as a modified local address, using the information from
the virtualdomains files. (See Chapter 12.) Once it's translated a virtual address to the corresponding local address, the

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

message is delivered the same as to any other local address.

For each delivery, local or remote, the spawn program writes back status reports to gmail-send. Each delivery can
succeed, fail temporarily, or fail permanently. A delivery that fails temporarily is retried later until the message is "too
old," by default a week, but usually configured to be less. A delivery that fails permanently, or that fails temporarily but
is too old, produces a bounce report that is mailed back to the message's envelope sender.

Once all of a message's addresses have succeeded or failed, gmail-send notifies gmail-clean to remove the message's
files from the queue, and gmail is done with it.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 3. Installing Qmail

Qmail probably doesn't come preinstalled on your machine. It probably isn't even shipped in source form with your
machine. You must go to the FTP server, download it, configure it, compile it, test it, and install it. If this sounds like a
huge amount of work, it's not—some of these steps can be a single command.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
3.1 Where to Find Qmail

The official place to get gmail is through Dan Bernstein's web and FTP server at http://cr.yp.to. (The .to domain is
actually the island nation of Tonga, but they'll sell a "vanity" address to anyone willing to pay, and Dan's professional

interests center around cryptography.) An alternate address is http://pobox.com/~djb/gmail.html.

Both URLs are currently redirected to Dan's FTP server, koobera.math.uic.edu, at the Math department of University of
Illinois at Chicago. For the rest of this book, we'll nickname that site koobera. The actual name of the site is subject to
change at any time, which is the whole point behind using cr.yp.to and pobox.com.

If you use a web browser or a graphical FTP program to open an FTP connection to koobera, the list of files you receive
may be scrambled. Dan uses an FTP server of his own creation, publicfile, which is good and bad. It's good because it's
a typical Dan Bernstein program: small, secure, and fast. It's bad because most web browsers and visual FTP programs
don't know how to parse the server's listing format.

Visual FTP programs without special support for anonftpd's file format (EPLF, Easily Parsed Listing Format) cannot give
you a listing of files. The standard command-line FTP that comes with BSD, Linux, and most versions of Unix has no
such troubles, nor does the FTP distributed with versions of Windows, because neither attempts to parse the listing. The
current version of squid, a popular proxy server, has support for EPLF, so if you're accessing the Net through a squid
FTP proxy, you should have no troubles.

Once you've made sure you can contact the FTP server, make a directory where you're going to download and build
your software such as /var/src or /usr/local/src, and FTP a copy of gmail there. Use gunzip and tar or pax to unpack it
into a subdirectory.

3.1.1 Copyright

Dan Bernstein reserves most rights when he distributes gmail. Copyright law lets him prohibit anyone from making
copies (except within fair use, which includes actually loading the software from disk into memory, memory into cache,
cache into processor, and disk onto backup media and back again). Dan has given users several permissions, however.
You can redistribute the source to any of gmail 1.00, 1.01, 1.02, and 1.03. This source must be unmodified, in the
original .tar.gz format, and match a certain checksum provided by Dan.

In addition to redistributing unmodified source, you can also redistribute certain derived works. An executable that is

equivalent to that which a user would create through the documented install process is also redistributable. In practice,
this means that you can download, compile, patch, install, and use gmail any way you want. The one thing you can't do
is to distribute modified versions of gmail. That's why all of the user modifications are distributed as patches relative to

the distributed 1.03, rather than as modified versions of gmail itself. L1l

[1] Disclaimer: this description undoubtedly has a different legal import than Dan's permissions. Read Dan's license
before you make any decisions about redistributing gmail yourself.

Netgmail

Three well-known members of the gmail user community, Charles Cazabon, Russell Nelson, and Dave Sill,
made a package called netgmail 1.05 that includes gmail 1.03, a small set of recommended patches, and a
script to create a patched version of gmail ready to build. It also contains a few recommended patches for
other packages often used with qma|I For people mstallmg gmail from scratch, netgmail is the best place
to start. It's on the web at

To use netgmail, download and unpack it, which will create a directory called netgmail-1.05. Go into that
directory and run ./collate.sh to unpack gmail 1.03 and apply the patches. Once you've done that, there
will be a second netgmail-1.05 directory within the first one containing a patched set of sources ready to
build as we describe in this chapter.

3.1.2 Should | Upgrade?

For better or worse, there's never been a good answer to that question. The best answer that I can offer is that in gmail
1.02 a user could crash the copy of gmail-smtpd she was running, by issuing a:

rcpt to: <>

However, this would only cause the user's copy to crash. Nobody else would be affected.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

A good answer might be "because there's a bug that prevents X from working." This has never happened. Another good
answer might be "because there's a security hole that endangers the security of your machine." This has also never
happened.

The only way to answer your question is to examine the CHANGES file that comes with gmail. If you see a change there
that affects you, then you should consider upgrading your version of gmail. Otherwise, the wise maxim "If it's not
broken, don't fix it" applies.

The most important reason to upgrade is that if you're running the same version as most other gmail users, it's easier
to ask them specific questions, pass patches and configuration tricks around, and otherwise be part of the gmail
community. For most people, this is the best reason to stay in sync with new versions. I assume that you're using
Version 1.03, the most recent as of the time this book was published, or netgmail 1.05, which is 1.03 with some
recommended patches.

3.1.3 Other Software You Should Fetch

As long as you're accessing koobera, there's some other software you should fetch. I'm going to leave the version
number out of the package name. Look for the current version when you're downloading.

Unpack most of these packages the same way you do gmail, with gunzip and tar or pax, each into its own subdirectory
of your download directory. Starting with Version 0.75 of daemontools and, presumably, new versions of other
packages, Dan has invented a new installation setup described at the end of this chapter.

ucspi-tcp

A package for servers that respond to incoming TCP connections, as an alternative to the old inetd daemon. It
used to be optional, but its tcpserver is now the only supported way to run gmail's SMTP daemon. If your
system has the newer xinetd, it's possible to run gmail's SMTP daemon from it, although I don't recommend it.

See http://www.barriebremner.com/gmailxinetd.html.

checkpassword

If you're using gmail's built-in POP3 server, you want Dan's checkpassword program, which validates user
logins as well. Even if you're installing an alternative checkpassword, it's nice to have Dan's checkpassword
installed for testing.

dot-forward

For compatibility with sendmail's .forward file. It interprets the contents of a .forward file, and forwards the mail
or deliver, it to a mailbox as needed.

fastforward

For compatibility with sendmail's /etc/aliases file and handling large tables of forwarding addresses. It converts
an aliases-format file into a CDB (Constant Data Base—another of Dan's packages) and forwards by a CDB
lookup, which is fast and efficient. If you have more than a thousand aliases, you'll probably want this package.

serialmail

To deliver mail on-demand. Qmail's queue is designed to deliver mail to hosts that should always be available.
Its queuing and scheduling policy presumes that domains' MX hosts are usually able to receive mail at any time
other than relatively short downtimes. If this is not the case for any reason, then serialmail should be used to
deliver mail when the host is able to receive it. Serialmail is also useful to single-thread deliveries to recipient
hosts that can't handle parallel deliveries.

mess822

Contains ofmipd, the Old-Fashioned Mail Injection Protocol (OFMIP) daemon. SMTP isn't supposed to fix up mail
that it transfers (a rule too widely ignored by sendmail and other MTAs). OFMIP is just like SMTP, except that
ofmipd rewrites any hostnames or headers in messages it handles into standard compliant form. Mail sent by
your users using desktop mail clients should be accepted using ofmipd.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
3.2 Creating the Users and Groups

Qmail uses a set of user ids and group ids to control access to various gmail facilities. Because Dan doesn't trust the
system libraries (history is on his side), he doesn't make system calls to determine these uids. Instead, the uids are
compiled into various programs. That means that the gmail users must exist prior to compiling the programs.

Some versions of Unix and Linux are distributed with the gmail users and groups already defined. If your /etc/passwd
(or equivalent) contains entries for alias, gmaild, gmaill, gmailp, gmailg, gmailr, and gmails, and your /etc/group
contains entries for gmail and nofiles, you're all set and can skip ahead to "Configuring and making the software."
Otherwise you must create the users and groups yourself. There are several ways to do this.

3.2.1 The adduser Script

Some Unices have a program called useradd or adduser to create users and groups. Often, use of this program is
mandatory, because the machine uses shadow passwords. To be safe, use the program when it exists. The INSTALL.ids
file has the necessary commands. Copy that file to /tmp/mu, locate the right set of commands, delete everything else,
delete the pretend root prompt characters in front of the commands, save it to a file, and run that file using sh
/tmp/mu.

3.2.2 Adding by Hand

Some Unices let you create groups by editing the /etc/group file and users by editing the /etc/passwd file, the latter
typically through the vipw program. Edit /etc/group and add the following two lines:

gmail:*:2107:
nofiles:*:2108:

Make sure that 2107 and 2108 are unique group id numbers. If you have to change them, also change them in the user
information in the next section.

Always edit /etc/passwd using the vipw program, if it exists. It ensures that your shadow password database (if you're
using one) is kept up to date. It also locks the password file against other programs changing it. If you have no vipw
program, then go ahead and edit with your favorite text editor.

Add the following set of lines to /etc/passwd:

alias:*:7790:2108::/var/gmail/alias:/bin/true
gmaild:*:7791:2108::/var/gmail:/bin/true
gmaill:*:7792:2108::/var/gmail:/bin/true
gmailp:*:7793:2108::/var/gmail:/bin/true
gmailq:*:7794:2107::/var/gmail:/bin/true
gmailr:*:7795:2107::/var/gmail:/bin/true
gmails:*:7796:2107::/var/gmail:/bin/true

Verify that 7790 through 7796 are unique user id numbers. If they're already in use, pick some other unused numbers.
The exact id numbers don't matter so long as they're all different from each other and different from every other user
on the system.

3.2.3 Nofiles Group Really Has No Files

The Unix "groups" concept makes it convenient to allow access to some files and deny it to others. One commonly
overlooked possibility is that some users do not need to have any group permissions. The Unix kernel requires that
each user belong to at least one group. However, obtain the effect of "no group" by a user-level discipline.

Qmail creates a group that no files ever use. This group is called nofiles, naturally enough. Qmail uses this group for
users who do not need group permissions. Users alias, gmaild, gmaill, and gmailp have no need to read or write files
other than some very specific ones, and each owns the files it needs to write. Some Unices have a "nogroup" or
"nobody" group; however, these cannot be used by a process and so cannot be used by gmail.

On most Unix systems, audit your system to see if any files are owned by "nofiles" using the following find command:

find / -group nofiles

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
3.3 Configuring and Making the Software

The vast majority of the gmail configuration occurs at runtime. There are, however, a few configuration options that can
only be changed at compile time. These options are, as you might expect, not often changed. If you're reading this
book front to back, skip this section and come back to it later, because most of the compile-time options won't make
any sense to you.

These configuration options are each in a separate file in the gmail source directory, the first line or lines of which are
the value. Lines beyond those have an explanation of the meaning of the value.

3.3.1 conf-break

Qmail permits users to have subaddresses, which gmail calls extensions. For example, nelson-gmail-book@crynwr.com
has an extension of "gmail-book" if the break character is a dash. By default it is a dash character, but some sysadmins

may wish to use a plus or equals character for compatibility with other software. (Sendmail uses a plus sign.m)

[2] One potential cause of confusion is the difference between the break character and the character that separates
the parts of extensions. conf-break specifies the break between the username and the extension. Extensions are
also split into parts; however, they are always split at a dash character. So, if you set your break character to a
plus, then nelson+list-gmail will be matched by ~nelson/.gmail-list-default if there's no better match. See Chapter
7 on local delivery for more information.

3.3.2 conf-cc

The compiler is not set in the makefile, as is typical for a Unix program. The makefile actually uses a generic compile
script. This script is created by the makefile. It combines conf-cc with some more information. If your C compiler needs
special optimization flags, this is the place to put them.

3.3.3 conf-groups

The first two lines of this file list the names of the groups that gmail uses. They are used in the building process to get
the group id (gid) for the install process. The first is the name of the group that several gmail users use to share
information through group permissions. The second is the name of the group used by the other gmail users who don't
need to use group permissions. Don't change this unless your system already has groups called gmail or nofile that
conflict with gmail's use of them.

3.3.4 conf-Ild

The first line of this file is the command used to link .o files into an executable. The most common change is to replace
the --s flag it contains with --g to preserve symbols for debugging. If your linker supports static shared libraries, which
start up faster than the more usual dynamic shared libraries, this is where you put the flags or command to use them.

3.3.5 conf-patrn

Qmail refuses to deliver mail to insecure accounts. If a user allows anyone to modify files in his home directory, anyone
can modify his .gmail files. And that means that anyone can execute any command as the user. So, giving away write
permission gives away everything.

An insecure account is identified by excess write permissions on the user's home directory and on the user's .gmail
files. The excess write permissions are given as an octal number in the first line of this file. The default (002) is that

other-write permission cannot be given. A stricter value would be 022, which disallows group-write in addition.[3]

[3]1 The Red Hat Linux useradd program creates a separate group for each user. In this context, group-write
permissions are not a security hole, so using a conf-patrn of 022 rather than 002 just causes extra work without
improving security.

3.3.6 conf-gmail

Qmail installs all its files (configuration, manpages, binaries, and mail queue) under a single directory, /var/gmail. This
is advantageous because gmail is not a special program (for example, it needs to be located at /usr/lib/sendmail, or to

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

own the qdeue at /var/spool/mqueue).

This directory (by default, /var/gmail) must be a local directory, not mounted via a network filesystem. Don't change it
unless you have a very good reason to do so. The most likely reason to do this is to create two copies of gmail to run in

parallel, as described in Chapter 17.
3.3.7 conf-spawn

This is one of the few static limits in gmail. It's imposed by the underlying operating system. A program can wait only
for so many children at one time, and this number is the limit. It's set to 120 for portability reasons. You would need to
increase it only if you need a concurrencylocal or concurrencyremote higher than 120, and if your operating system also
allows it. (This number has to be less than half the number of file descriptors that a select() system call can wait for. On
many Unix-like systems, it's possible to increase this limit at compile time. See Chapter 16.)

3.3.8 conf-split

The gmail queue is split into a number of hashed subdirectories, with one message in each of the subdirectories. The
default of 23 is chosen so that the typical queue doesn't make the subdirectories too large. If your queue isn't typical
(because, say, you run a big ISP or send mail to many customers) and has more than 10,000 messages in it, you might
want to increase this number to a larger prime value. See Chapter 16.

3.3.9 conf-users

The first eight lines of this file list the names of the users that gmail uses. They are used in the building process to get
the user ID (uid) for the install process. The first one (usually alias) is the user gmail uses when no other user matches.
The second (gmaild) is used for the SMTP daemon. The third (gmaill) is used to log information. The fourth (root) is
used to own binaries and documentation. The fifth (gmailp) is used to map a username into a uid/gid/homedir
combination. The sixth (gmailq) is used to own files in the queue. The seventh (gmailr) is used to make remote
connections as an SMTP client. The eighth (gmails) is used to schedule messages for delivery from the queue and
generate bounce messages. Don't change this file.

What About RPMs?

Most versions of Linux provide Red Hat Package Manager (RPM) files that automatically install a package,
doing whatever compilation and preprocessing is needed. Even if a gmail RPM is available, I recommend
building gmail from the gmail or netgmail source code. For one thing, it's critical that gmail be built using
the user and group IDs defined on your system. Building it yourself ensures this. All of the gmail RPMs
contain some patches, but unlike netgmail, they rarely document which ones. You'll probably want to
install some other patches and add-ons that are available to extend gmail, all of which involve recompiling
from source anyway. And finally, unlike most other packages, building gmail is so quick and
straightforward that using an RPM doesn't save much time.

3.3.10 Build Using make

To build gmail, simply run make. There's no separate configuration program as in some other packages. A number of
portability problems are solved by Dan's inclusion of his own library functions. His library is the same from host to host
and so are the calls to the library.

Because gmail uses less of the C library, gmail is less vulnerable to security holes in the C library. Unfortunately, some
functions cannot be rewritten, because they require internal knowledge about the OS. For example, to read a directory,
some versions of Unix require read() to be called and others require an internal interface routine to be called; there's no
alternative to readdir().

3.3.11 If the Build Fails

There are only three reasons why the build might fail. First, because you didn't create the gmail users listed previously;
seond, because a necessary external program—such as make, cc, or nroff—isn't present; or third, your platform isn't
close enough to Unix to support gmail.

If your build fails with complaints about errno, you've tripped over a compatibility problem between gmail and recent

versions of the C library. See Building with Recent GLIBC and Fixing the errno Problem later in this chapter for the
simple fix.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

3.3.12 Building the Other Packages

You must build at least the ucspi package, which includes tcpserver, to get gmail going. Fortunately, Dan's other
packages are even easier to set up than gmail, because none of them depend on user IDs. For each package, just unzip
and unpack the downloaded tar file into a work directory and type make. Normally all of the files in each package are
installed under /usr/local, with programs in /usr/local/bin. If that's not where you want them before you make the
package, edit the file conf-home and put the installation directory on the first line of the file.

Starting with daemontools 0.75, Dan has developed an extremely automatic and somewhat incompatible system to
install his programs, described at http://cr.yp.to/daemontools/install.html. All of the packages are built in the directory
/package, which you have to create, most likely as a symlink to a directory on a disk with more space than your root
partition. (I link it to /usr/package.) Packages are built in /package, with commands symlinked into the new directory
/command. For backward compatibility it also links them into /usr/local/bin. Documentation, if any, goes into /doc. See

http://cr.yp.to/unix.html for more details.

To install daemontools, FTP the package (or copy it if you've already FTP'ed it somewhere else) into /package and
unpack it, at which point the files will be in /package/admin/daemontools-0.76 (or whatever the current package name
and version are). Then chdir to admin/daemontools-0.76 and, as super-user, run the script package/install, which builds
and installs the whole thing, building the commands in commands and symlinking them into /command and
/usr/local/bin.

Finally, it creates /service and arranges to start svscan at boot time. It adds lines to /etc/inittab if it exists, otherwise to
/etc/rc.local to run svscanboot at boot time to startup svscan. If you have /etc/inittab, the build process pokes the init
process to start svscan for you; if not, it suggests that you reboot. Rather than rebooting, run the command it just
added to rc.local:

csh -cf '/command/svscanboot &'
If your system has a daemon command to run programs unattached to any terminal, use it:

daemon /command/svscanboot

3.3.13 Installing Qmail

First become the super-user. Change to the directory where you built gmail, and type make setup. This makes all of the
directories and installs all of the gmail files into /var/gmail. Now type make check, which checks to make sure that all of
the required files and directories are present. Assuming it reports success, gmail is installed and ready to go.

3.3.14 Installing Other Programs

To install the other programs, notably the ucspi package, change to the directory where you built each package and
type make setup to install the files into /usr/local (or if you changed conf-home, into the home directory you selected).
For daemontools and other packages using the new /package scheme, the build process already installed them.

[Team LiB] [+ Faaviava vt +]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (& Faavisva vt +]
3.4 Patching Qmail

Dan's license for gmail forbids the distribution of modified versions of gmail, so many people offer add-ons and patches
that you can apply to gmail yourself. Add-ons are distributed as installable packages that you download and install like
any other package, but patches are distributed as text files of differences between the original and the patched version
of gmail, as created by the diff utility. You don't need any patches to get gmail going (other than the errno patch for
recent Linux versions), but because so many useful changes are distributed as patches, nearly everyone uses a few of
them, so you should be prepared to use them.

The patch program, distributed with most Unix-like systems, reads the patch files and applies the changes. If your
system doesn't have it, it's available for download from the Free Software Foundation at

. To apply a patch to a package, be sure the source code for the package
is stored in a subdirectory of the current dlrectory with the package's usual name (such as gmail-1.03), then feed the
patch file to patch:

$ patch < some-patch.txt

patch produces a chatty report of its progress. Patch files invariably contain context diffs, so patch warns you if the file
you're patching appears not to match the one on which the patch is based. You must look at the rejected patches in the
source directory with filenames like filename.rej and figure out where the patches should go. Occasionally when you're
applying multiple patches to the same set of files, the patches can collide, but for the most part, the useful patches to
gmail apply without trouble. Once a patch is applied, rebuild and reinstall the package from the patched source code.

If you're installing the recommended netgmail package, you've already patched the source. Netgmail includes a patch
file called netgmail-1.05.patch that is automatically applied by ./collate.sh.If you want to try patching gmail, a good
patch to start with is the QMAILQUEUE patch, available at http://www.gmail.org/gmailqueue-patch. (Netgmail users
needn't bother, because it's already applied.) It's quite small but very useful. Once you've applied the patch, any gmail
component that calls gmail-queue to queue a mail message checks the QMAILQUEUE environment variable and if it's
set, uses it as the name of a program to run instead. This makes it easy to insert filters of various sorts into gmail's
processing without having to add special code to individual programs.

Now that you've built and installed gmail, daemontools, and perhaps other add-on packages, the next chapter tells you
how to start it all up.

Building with Recent GLIBC and Fixing the errno Problem

If your system uses the GNU GLIBC Version 2.3.1 or newer, gmail won't compile without some small
patches. This problem affects most recent versions of Linux. The gmail source code defines errno, the
place where system calls put error codes, to be an int variable, but in these libraries it's not, it's a macro.

In the source file errno.h, replace the line that declares errno with this:
#include <errno.h>

In the source files dns.c and cdb_seek.c, find any lines that declare errno or h_errno and delete them so
that the system errno is used instead. Then recompile.

The netgmail package available at http://www.gmail.org/netgmail includes the errno patch for gmail and,

in its other-patches subdirectory, the errno patch for four other packages.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 4. Getting Comfortable with Qmail

This chapter guides you through the basics of running gmail and delivering mail to users on your gmail host. It's quite
possible to run gmail in parallel with your old mail system, which is usually a good idea during a transition, so you can
do everything in this chapter while leaving your old mail system in place.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.1 Mailboxes, Local Delivery, and Logging

Before you start up gmail, you must make a few configuration decisions. None of these are irrevocable, but if you know
what you want, it's easier to set them that way at first than to change them later.

4.1.1 Mailbox Format

Qmail supports two mailbox formats: the traditional mbox and Dan's newer Maildir. I won't belabor the difference here
(see Chapter 10 for more details) other than to note that mbox stores all its messages in a single file and is supported
by all existing Unix mail software, while Maildir stores each message in a separate file in a directory, and is supported
by a reasonable set of software (including procmail, the mutt MUA, and several POP and IMAP servers) but not as many
as mboxes. If you're converting from an existing mail system that uses mboxes, it's easier to keep using mboxes, but if
you're starting from scratch, go with Maildirs.

4.1.2 Local Delivery

If you use mbox files, gmail normally puts the incoming mailboxes in users' home directories. That is, for user fred, the
mailbox would be ~fred/Mailbox. Older mail programs often put all of the mailboxes into /var/mail. For both security
and disk management reasons, it's better to put the mail in the user's home directory with his or her other files, but if
you have existing mailboxes in /var/mail, it's not hard to persuade gmail to continue delivering mail there.

If you're converting from an older MTA, you can either set up gmail to deliver into the same mailboxes as the old MTA
or, if you're feeling cautious, set gmail to deliver into Maildirs or home directory mboxes while the old MTA still delivers
to /var/mail. (The disadvantage is that once you're happy with gmail, you have to convert and merge the old
mailboxes. See Section 4.7 later in this chapter.)

4.1.3 Logging

The traditional way to make log files is with the system syslog facility. It turns out that syslog is a serious resource hog
and on a busy system can lose messages. On a small system this doesn't matter, but on a busy mail host, it sucks up
significant resources that otherwise could be devoted to something more useful. Dan Bernstein wrote a logging program
called multilog, part of the daemontools package, which is far faster and more reliable than syslog, but not particularly
compatible with it. If you're sure that syslog won't be a bottleneck, go ahead and use it, but if you might eventually
want to use multilog, you're better off starting with it because switching a running system is a pain in the neck.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
4.2 An Excursion into Daemon Management

A daemon is a program that runs in the background (that is, without interacting with a user) and is useful. On Unix
systems, there are two kinds of daemons: the ones that run continuously and the ones that run on demand. Familiar
Unix examples of continuous ones include named, the DNS server, and httpd, the Apache web server, while on-demand
ones include servers for network services, such as telnet and ftp, and cleanup scripts run once a day or once a week.
The on-demand ones are all started from continuous servers such as cron for time-based services, and inetd or
tcpserver (the gmail replacement for inetd) for network services.

The daemontools package provides a consistent way to run continuous daemons, optionally (but almost invariably) also
arranging to collect log information that the daemons produce. The two key programs are supervise, which controls a
single daemon, and svscan, a "superdaemon," which controls multiple copies of supervise and connects each daemon
with its logger.

For each daemon to be controlled, supervise uses a directory containing information about the daemon. The only file
that you must create in that directory is run, the program to run. Although it can be a link to the daemon, it's usually a
short shell script that sets up the environment and then exec's the daemon. The supervise program creates a
subdirectory also called supervise, where it stores info about what it's doing. Once supervise is running, you can use the
svc program to stop and start the daemon, and send signals to it. (This consistent way to signal daemons is one of
supervise's greatest strengths.)

To run supervise, follow these two steps: create /service, which you do with a regular mkdir command as the super-
user, and start svscan, which I cover in the next section. Once svscan is running, it looks at /service and starts a
supervise process in each of its subdirectories. Every five seconds it looks again and creates new processes for any new
subdirectories. If a subdirectory has a sub-subdirectory called /og, svscan arranges to log the output of the program. In
this case, it starts a pair of processes connected by a pipe, equivalent to:

supervise subdir | supervise subdir/log

The log subdirectory contains a run file that invariably runs multilog to write the output into a rotating set of log files.

4.2.1 Starting a Daemon

One of the least standardized aspects of Unix and Unix-like systems is the way that you start daemons at system boot
time. Even if you use supervise as I recommend, you still must start the svscan daemon to get everything else going.
Here are some hints to start svscan. If you ignore my advice and run daemons directly, start each of them the way I
recommend you start svscan.

Versions 0.75 and later of daemontools include a startup script for svscan called svscanboot, and the daemontools
installation process tries, usually successfully, to edit a call to that program into your system startup scripts. It sets up
the environment and runs svscan, piping its output into a new program called readproctitle that copies anything it reads
on top of its program arguments, which means that any error messages from svscan will show up in ps listings in the
arguments to readproctitle. This kludge makes it possible to see what's wrong if svscan has trouble starting up or
starting supervise for any of the directories under /service:

Single rc file

Solaris and some versions of BSD put all of the startup commands in a file called /etc/rc, usually with local
modifications in /etc/rc.local. If the daemontools installation hasn't already done so, add this line to either of
those files:

/command/svscanboot

If it's convenient to reboot your system, do so. If not, just run svscanboot from a root shell prompt, detaching it
from the terminal:

daemon /command/svscanboot # if you have the "daemon" command
csh -cf '/command/svscanboot &' # if not

Either way, check with ps to be sure that svscan is running.

SysV /etc/inittab

System V and its derivatives and clones, including most versions of Linux, start daemons from a file called
/etc/inittab. If the daemontools installation hasn't already done so, add this line to the end of it:

SV:123456:respawn:/command/svscanboot

Then, to tell the system to rescan inittab, type:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

kill -HUP 1

Again, check with ps to be sure that svscan is running.

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.3 Setting Up the Qmail Configuration Files

The final hurdle before starting up gmail is to create a minimal set of configuration files. The gmail distribution includes
a script called config that makes a set of configuration files that's usually nearly right. I suggest you run the config
script, then look at the files to see what it did and fix the files up as needed. All of the configuration files are in
/var/qmail/control. The ones you need to create include:

me
The name of this host, e.g., mail.example.com. This provides the default to use for many other configuration
files.

defaulthost

The hostname to add to unqualified addresses in submitted mail. If your email addresses are of the form
mailbox@example.com, this would contain example.com, so that mail to, say, fred is rewritten to
fred@example.com. (Note that this rewriting happens only to locally submitted mail sent via gmail-inject, not to
mail that arrives via SMTP.)

defaultdomain

The domain to add to unqualified domains in submitted mail addresses, usually your base domain, such as
example.com. This would rewrite fred@duluth to fred@duluth.example.com. (This rewriting also happens only
in locally submitted mail.)

locals
Domain names to be delivered locally, one per line. Mail to any domain listed in /ocals is delivered by treating
the mailbox part as a local address. This usually contains the name of the host and the name of the domain
used for user mailboxes, such as example.com and mail.example.com. Do not list virtual domains (domains
hosted on this machine but with their own separate sets of mailboxes) in /locals. I discuss them later.
rcpthosts

Domains for which this host should accept mail via SMTP. This generally contains all of the domains in /ocals, as
well as any virtual domains and any domains for which this host is a backup mail server. If rcpthosts does not
exist, gmail accepts and delivers mail for any domain, a severe misconfiguration known as an "open relay,"
which will be hijacked by spammers. Be sure your rcpthosts file exists before starting gmail. If you haven't
defined any virtual domains, just copy locals to rcpthosts.

There are over 20 more control files, but the rest can be left for later.

[Team LiB] 14 raavisus fliaxt o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.4 Starting and Stopping Qmail

Starting gmail is easy in principle. You run gmail-start and it starts the four communicating daemons that gmail needs.
Two details complicate the situation: the default delivery instructions, and connecting the daemons to whatever you
want to use for logging.

Because the daemontools package of which supervise is a part wasn't written until after gmail 1.03 was released, all of
the provided startup files use splogger to send the log information to syslog. I find daemontools greatly preferable, so I
primarily discuss how to set up gmail using supervise.

4.4.1 Choosing a Startup File

Qmail 1.03 comes with a selection of startup files you can use, either directly or as a starting point for a customized
startup file of your own. You can find the startup files in /var/gmail/boot. None of them are usable directly with
daemontools, but they're useful as templates. The differences among them only affect what happens when mail is
delivered to a user who has no .gmail file, because the only difference is the string to use as a default .gmail. They
include:

binm1

Default delivery using /usr/libexec/mail.local, the 4.4BSD mail delivery agent, which puts mail in
/var/spool/mail

binm1+df

Same as binm1, also providing dot-forward emulation

binm2

Default delivery using /bin/mail with SVR4 flags, which also puts mail in /var/spool/mail

binm2+df

Same as binm2, also providing dot-forward emulation

binm3

Default delivery using /bin/mail with flags for older versions of Unix; puts mail in /var/spool/mail

binm3+df

Same as binm3, also providing dot-forward emulation

home

Default delivery using gmail's internal gmail-local, which puts mail in the user's Mailbox
home+df

Same as home, also providing dot-forward emulation
proc

Default delivery using procmail, which puts mail wherever procmail puts it, usually /var/spool/mail unless you
patch procmail as I describe later

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

proc+df
Same as proc, also providing dot-forward emulation

Which flavor of startup depends mostly on your existing mail configuration. If you use procmail, keep using it. If you
have a lot of users with .forward files, use a dot-forward version. (If you only have a few .forward files, it's easier to
hand-translate them into .gmail files.) I don't recommend using any of the old mail delivery programs unless you really,
really want to keep delivering mail in /var/mail. For testing and usually for production, I suggest either plain home-
directory mailbox delivery or procmail.

Assuming that you've installed and started daemontools as suggested earlier in this chapter, you now must create a
pair of supervise directories for gmail. I use /var/gmail/supervise/gmail-send and /var/gmail/supervise/gmail-send/log
to be consistent with the widely used gmail setup instructions at http://www.lifewithgmail.org. Create them like this (as
the super-user, which is why the following command lines start with a # prompt):

mkdir /var/gmail/supervise/gmail-send
mkdir /var/gmail/supervise/gmail-send/log
chown root /var/gmail/supervise/gmail-send /var/gmail/supervise/gmail-send/log

mkdir /var/gmail/supervise/gmail-send/log/main
chown gmaill /var/gmail/supervise/gmail-send/log/main

The log directory contains a subdirectory main that contains the actual logs. It belongs to gmaill, the gmail log pseudo-
user.

Then create run files in both the main gmail and log directories, as in Example 4-1.

Example 4-1. gmail run

. #1/bin/sh

1

2.

3. limit open 1000
4. limit maxproc 100
5

6

7

. exec env - PATH="/var/gmail/bin:$PATH" \
gmail-start ./Mailbox

The two limit commands on lines 3 and 4 ensure that gmail can run many deliveries in parallel. Set maxproc to be larger
than the number of parallel remote deliveries permitted. (By default the number of deliveries is 20, but you'll probably
want to increase it unless you have a very slow or overloaded network connection, or handle a very small amount of
mail.) Also set open, the per process open-file limit, to be at least twice the greater of the number of simultaneous local
or remote deliveries permitted, because gmail-Ispawn and gmail-rspawn use two pipes per delivery subprocess. Then
the exec env command on line 6 clears out the environment, sets PATH to a known value, and runs gmail-start. The
argument to gmail-start is copied from the example in /var/gmail/boot/home to default deliveries to Mailbox in a user's
home directory. (You can copy the startup command from one of the other example files, such as boot/proc.)

Also create log/run to start up the logging process, as in Example 4-2.

Example 4-2. gqmail log/run

1. #!/bin/sh
2. exec setuidgid gmaill \
3. multilog t s4000000 ./main

The setuidgid command switches to the gmail log pseudo-user, then runs multilog to store gmail's output into rotating
log files. The arguments say to prefix each line with a time stamp, and to create log files of up to 4 MB in the
subdirectory main.

Supervise starts the run scripts directly, so they need to be executable:

chmod +x /var/gmail/supervise/gmail-send/run
chmod +x /var/gmail/supervise/gmail-send/log/run

Be sure the initial #!/bin/sh line is present in each of the scripts so they are self-running.

4.4.2 Fire 'er Up

Once you've created the run files, it's time to start gmail:
In -s /var/gmail/supervise/gmail-send /service

Assuming you have svscan running, within a few seconds of making the line, gmail will start. Look at the log file
/var/qgmail/supervise/gmail-send/log/main/current to be sure. It should contain a line similar to this:

status: local 0/10 remote 0/20

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now try telling gmail to send some local mail:

$ /var/gmail/bin/gmail-inject
To: me

my first gmail message
~D

(Use your own username instead of me, of course.) The log file should now contain lines logging the local delivery:

new msg 175283

info msg 175283: bytes 230 from <fred@example.com> gp 5524 uid 100
starting delivery 1: msg 175283 to local fred@example.com

status: local 1/10 remote 0/20

delivery 2: success: did_0+0+1/

status: local 0/10 remote 0/20

end msg 175283

Your file Mailbox should contain the message. If not, the log should contain evidence of the problem, which is usually
files or directories not created with the correct owner or permissions.

Now try a message to a nonexistent address:

$ /var/gmail/bin/gmail-inject
To: baduser

oops
D

In this case, gmail attempts to deliver the message, then finds it can't and sends back a failure notice, which should
end up in your mailbox. The log should look like this:

new msg 175283

info msg 175283: bytes 212 from <fred@example.com> gp 5690 uid 100
starting delivery 1: msg 175283 to local baduser@example.com
status: local 1/10 remote 0/20

delivery 1: failure: Sorry,_no_mailbox_here_by_that_name._(#5.1.1)/
status: local 0/10 remote 0/20

bounce msg 175283 gp 5695

end msg 175283

new msg 175284

info msg 175284: bytes 746 from <> qgp 5695 uid 124

starting delivery 2: msg 175284 to local fred@example.com

status: local 1/10 remote 0/20

delivery 2: success: did_0+0+1/

status: local 0/10 remote 0/20

end msg 175284

Finally, try a test message to a mailbox on a remote system. If you don't have a remote mailbox handy, use the
author's autoresponder at gmail@gurus.com. (It will send a response message telling you how clever you were to write
to it, with a blurb for my books.)

$ /var/gmail/bin/gmail-inject
To: gmail@gurus.com

boing
~D

The logs show the remote delivery, including the IP address of the remote system and the remote system's response:

new msg 175283

info msg 175283: bytes 223 from <me@example.com> qgp 6808 uid 100

starting delivery 3: msg 175283 to remote gmail@gurus.com

status: local 0/10 remote 1/20

delivery 3: success: 208.31.42.43_accepted_message./Remote_host_said:_250_ok_
993021663_qgp_16918/

status: local 0/10 remote 0/20

end msg 175283

If all three of these tests work, you have correctly installed gmail. Congratulations!

4.4.3 Stopping Qmail

When you're running gmail for real, you'll almost never want to stop it, but when debugging, just tell supervise to stop
gmail and mark it as down:

svc -td /service/gmail-send

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If there are deliveries in progress, gmail will wait for them to finish or time out. Then it exits. Use svc -u to bring gmail
back up.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.5 Incoming Mail

Next, install the SMTP daemon to receive incoming mail. If you have another mail system already running, set up
gmail's SMTP daemon for testing on a different port than the standard port 25.

4.5.1 Configuration Files

The SMTP daemon only needs one configuration file to run: /var/gmail/rcpthosts. For simple applications, rcpthosts can
contain the same list of domains as /ocals. It is very important that you set up rcpthosts before starting your SMTP
daemon. If you don't, your mail system will be an "open relay," which will transmit mail from anywhere to anywhere
and be abused by spammers and blacklisted.

A little later we'll also be setting up a control file to tell the daemon what IP addresses are assigned to local users
allowed to relay mail.

4.5.2 Setting Up the Daemons

Setting up SMTP involves three layers of daemons. Supervise runs tcpserver, which waits for incoming network
connections. Each time a remote system connects, tcpserver starts a copy of gmail-smtpd, which collects the incoming
message and passes it to gmail-queue for delivery. To run it under supervise, create a pair of directories, and call them
/var/qmail/supervise/qgmail-smtpd and /var/qmail/supervise/qmail-smtpd/log:

mkdir /var/gmail/supervise/gmail-smtpd
mkdir /var/gmail/supervise/gmail-smtpd/log
chown root /var/gmail/supervise/gmail-smtpd /var/gmail/supervise/gmail-smtpd/log

mkdir /var/gmail/supervise/gmail-smtpd/log/main
chown gmaill /var/gmail/supervise/gmail-smtpd/log/main

The run script eventually becomes rather complex as you add code to handle local versus remote users, spam filters,
and the like, but this is adequate to start (see Example 4-3).

Example 4-3. Running the SMTP daemon

1. #1/bin/sh

2. limit datasize 3m

3. exec tcpserver \

4. -u000-g000-v -p -R \

5. 026\

6. /var/gmail/bin/gmail-smtpd 2>&1

The limit command on line 2 defends against a denial-of-service attack in which the attacker feeds the SMTP daemon a
gargantuan message that fills up all of memory and crashes the machine. Then the tcpserver command on line 3 accepts
SMTP connections and runs gmail-smtpd for each one. The -u and -g flags on line 4 set the user and group numbers;
substitute the values on your system for gmaild. The -v flag does verbose logging (recommended, it's not that verbose)
and -p does "paranoid" validation of deduced hostnames of remote systems. The -R flag means to not try to collect ident
information from the remote host. (Ident information is rarely useful and a failed ident request can stall the daemon
startup for 25 seconds.) On line 5, host number 0 means to accept connections on any IP address assigned to this
machine, and 26 means to use port 26 rather than standard SMTP port 25, which allows you to run the daemon for
testing without interfering with an existing MTA on port 25. (If there's no other MTA running, you might as well use port
25.) Finally, line 6 has the command for tcpserver to run once a connection is open. At the end, 2>&1 combines any
output to standard error with the regular output so both appear in the log files.

The log/run file is the same as the one for gmail logging:
1. #!/bin/sh

2. exec setuidgid gmaill \

3. multilog t s4000000 ./main

Once you have all the files created, symlink the smtpservice directory so svscan starts it up:

chown +x /var/gmail/supervise/gmail-smtpd/run
chown +x /var/gmail/supervise/gmail-smtpd/log/run

In -s /var/gmail/supervise/gmail-smtpd /service

If you look at log/current, you should see this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

tcpserver: status: 0/40
Now try sending yourself some mail, using Telnet to talk to the SMTP server:

$ telnet localhost 26

Trying 127.0.0.1...

Connected to localhost.example.com.
Escape character is ']

220 example.com ESMTP

helo localhost

250 tom.example.com

mail from:<me@example.com>
250 ok

rcpt to:<me@example.com>
250 ok

data

354 go ahead

Subject: a message

hi

250 ok 993620568 qp 5602

quit

221 example.com

Connection closed by foreign host.

The log file for the SMTP daemon in /service/gmail-smtpd/log/main/current should show the connection to the daemon:

tcpserver: status: 1/40

tcpserver: pid 5582 from 127.0.0.1

tepserver: ok 5582 localhost:127.0.0.1:26 localhost:127.0.0.1::54044
tcpserver: end 5582 status 0

tcpserver: status: 0/40

Check the gmail log in /service/qmail-send/log/main/current to be sure the message has been delivered:

new msg 175297

info msg 175297: bytes 198 from <me@example.com> qgp 5845 uid 120
starting delivery 1: msg 175297 to local me@example.com

status: local 1/10 remote 0/20

delivery 1: success: did_0+0+1/

status: local 0/10 remote 0/20

end msg 175297

(The numbers vary somewhat; gmail uses the inode number of the spool file as the msg number.)

If this works, you now have a working mail system. If not, the gmail and tcpserver logs should give you hints about
what's wrong. The most likely problems are missing directories or configuration files, or incorrect file modes. Also be
sure you just didn't make a typing error while telnetting to the SMTP port.

If you want to stop the SMTP daemon, use svc -td just as you did to stop gmail. It's perfectly OK for the SMTP daemon
to be running while gmail isn't. In this case, incoming mail is queued but won't be delivered until gmail is started.

Once you believe that gmail works, kill any other mail daemon listening on port 25, change port 26 to 25 in the run file,
and restart the daemon with svc -t to start receiving mail on the standard port. The rest of the examples in this chapter
use port 25 rather than port 26, on the assumption that gmail is now your production mail system, but for testing, they
all work equally well on port 26.

4.5.3 Make Some Mail Aliases

Every mail system on the Internet should define a few standard addresses, such as postmaster, webmaster, and
mailer-daemon. (The last is the return address in the From: line of bounce messages.) To define an address, just create
a .gmail file for the address in the home directory of the alias user:

echo fred > /var/gqmail/alias/.qgmail-postmaster
echo fred > /var/gmail/alias/.qgmail-mailer-daemon

(If your login name isn't fred, adjust these examples appropriately.)

Now try using gmail to send mail to postmaster and check that it lands in your mailbox. On a busy system, postmaster
gets a lot of mail and you'll probably want to use procmail (discussed later) to sort it to some place other than your
personal mailbox.

4.5.4 Relaying for Local Users

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Your gmail system most likely is a mail hub for a bunch of PCs or workstations. You want to accept mail destined for
any address from your users so they can use your mail hub as a "smart host," but for security reasons, you want to
accept only mail destined for your own network from elsewhere. Setting up relay control involves two steps: defining
the list of locally handled domains for which you'll accept mail from outside and defining the addresses of hosts that are
allowed to relay. A third step is to treat mail from local PCs as "injected" mail that must have its headers validated and
completed. (As opposed to mail that's relayed from other systems that should already have valid headers, but I save
that for later in this chapter.)

You should have already put the list of locally handled domains into /var/gmail/rcpthosts. (If not, do so now.)

Arranging for your users to relay is a little more complicated, because tcpserver and gmail-smtpd provide a general
scheme that permits mail to be treated differently depending on what IP address it is received from. You create a file of
IP address ranges and environment variables to set and compile it into a CDB database that tcpserver reads. When it
receives a connection from an IP address in the database, it passes the corresponding environment variable to gmail-
smtpd. For relay control, the relevant variable is RELAYCLIENT. If it's set, gmail-smtpd permits mail to any address, not
just the ones in relayhosts, and appends the contents of RELAYCLIENT to each envelope recipient address.

Different people have different preferences for the location of the TCP rules file. I prefer to keep them with the rest of
the gmail files in a directory called /var/gmail/rules, so create a file called /var/gmail/rules/smtprules.txt with contents
like this (the # lines are comments):

allow relay from this host
127.:allow,RELAYCLIENT=""

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT=""
172.16.15.1-127.:allow,RELAYCLIENT=""

otherwise, allow connections but no relay
:allow

The first line says to accept connections from any address starting with 127, that is, the loopback pseudo-network used
for connections from the gmail host to itself, and to create an empty RELAYCLIENT variable. This permits any SMTP
connection from the host that gmail is running on to relay. The second and third lines permit relay from any address in
172.16.42.x, and in the range 172.16.15.1 through 172.16.15.127. Replace these lines with ones listing the IP range(s)
of your own network. You can have as many lines as you want; more lines don't make the lookup any slower once the
file is compiled into a CDB. The last line is the default, and permits connections from anywhere else, but without setting
any variables.

Now you must compile the rules into a CDB file, using tcprules. Although it's not hard to run tcprules by hand, it's a
pain to do it every time you update your smtprules file (which you will, to block IP addresses that send a lot of spam).
It's easy to automate the process using a Makefile to rebuild the CDB, as in Example 4-4.

Example 4-4. Makefile to rebuild the rules file for the SMTP listener

default: smtprules.cdb

smtprules.cdb: smtprules.txt
cat $> | /usr/local/bin/tcprules $@ $@.$$$$

(The odd looking $@.$$$$ is the temporary name of the new CDB, the real name with the PID of the make process
added to ensure uniqueness.) Finally, tell tcpserver to look at the rules file. Edit /var/gmail/supervise/qgmail-smtpd/run
and add an --x flag to the tcpserver line, as in Example 4-5.

Example 4-5. Running the SMTP listener

1. #1/bin/sh

2. limit datasize 2m

3. exec \

4. tcpserver -u000-g000-v -p -R '\

5. -x/var/gmail/rules/smtprules.cdb 0 25 \
6. /var/gmail/bin/gmail-smtpd 2>&1

You're all set. Finally, use svc -t /service/supervise/gmail-smtpd to restart tcpserver with the new arguments.

To test this, send mail from a computer on the local network to an address somewhere else (such as a Hotmail
account), and check the logs to verify that it's accepted and mailed back out.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
4.6 Procmail and Qmail

If you do any sorting or filtering of incoming mail, you should install the popular procmail mail filtering package.
Although procmail's filter definition language is terse to the point of obscurity, it's very powerful and easy to use once
you get the hang of it. In the past, procmail's default mailbox location was in /var/mail, and it didn't support Maildirs.
Recent versions of procmail work well with gmail. Version 3.14 added support for Maildirs, and it's now easy to compile
procmail to put the default mailbox in gmail's preferred place.

The source for procmail is available at http://www.procmail.org. Download it to a local work directory and unpack it. To
make its default delivery be to Mailbox, edit the file src/authenticate.c. Around line 47 find the definition of
MAILSPOOLHOME, remove the comment characters at the start of the line, and change the file name to Mailbox:

#define MAILSPOOLHOME "/Mailbox"

Or to make the default delivery to a user's Maildir, type:

#define MAILSPOOLHOME "/Maildir/"

(Note the slash after the directory name, which tells procmail that it's a Maildir rather than an mbox.)

Then make and install procmail as described in its INSTALL file. The procmail installation recommends that you install
procmail as set-uid to root. When working with gmail, it does not need set-uid to work correctly, and I recommend that
you don't do this. When used as the mail delivery agent for sendmail, procmail needs set-uid to run as the id of the
delivered-to user. Qmail switches to the correct user ID before running procmail, as it does for any delivery agent, so
procmail doesn't need to do so. Installing as set-uid won't cause any immediate problems, but it will pose a possible
security problem should there turn out to be lurking bugs in procmail.

To use procmail as your default delivery agent, use this in your gmail run file:

exec env - PATH="/var/gmail/bin:$PATH" \
gmail-start '|preline procmail'

(The preline command is a gmail component that inserts a From line that procmail needs at the front of the message.)
Alternatively, to make procmail the delivery agent for an individual user, put the procmail command into the user's
.gmail file:

|preline procmail

Sendmail systems often pass the address extension as an argument to procmail so it can be used as $1 in scripts.
That's easy enough to do in .gmail-default:

|preline procmail -a "$EXT"

Procmail makes most environment variables available in its rule files anyway, so if you're not converting from sendmail,
just use $EXT in your scripts.

It's frequently advantageous to use different procmail filter definitions for different gmail subaddresses. For example, if
you are user fred and use the address fred-lists for your mailing list mail, .gmail-lists could contain this:

|preline procmail procmaillists

to use procmaillists to sort list mail.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
4.7 Creating Addresses and Mailboxes

With the setup so far, every user in /etc/passwd automatically has a mailbox with the same name as the login name.t1}
If you're using mbox mailboxes, each mailbox is created the first time a message is delivered to it. If you're using
Maildirs, you must create the Maildirs yourself using maildirmake. If all of your home directories are stored in /usr/home
or /home, it's easy enough to give everyone a Maildir. Run a script like this as root to create them:

[1] That's not quite true; for security reasons qmail won't deliver mail to the root user.

cd /home
foruin *
do
maildirmake $u/Maildir
chown -R $u/Maildir
done

The chown is important so that each user owns his own Maildir.

If you have more than two or three mailboxes to create, use the convert-and-create script from http://www.gmail.org/.
It creates Maildirs for every user with a mailbox, and copies the mail from /var/mail mboxes into the new Maildirs.

Once you've created Maildirs for all of your existing users, creating them for new users is considerably easier. Just add
a line or two to your system's adduser script to create the Maildir as it creates the rest of the new user's files. On Linux
systems, use maildirmake to create /etc/skel/Maildir, a prototype that gives every subsequent new user a Maildir.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
4.8 Reading Your Mail

If you use mbox mailboxes, the only additional change you may have to make is to tell your mail program (and your
shell if it's one that reports new mail) that the mailbox is in ~/Mailbox rather than in /var/mail. Most mail programs
check the shell variable $MAIL. For testing, change the MAIL variable at your shell prompt:

% setenv MAIL ~/Mailbox (in csh)
$ export MAIL=~/Mailbox (ksh and bash)
$ export MAIL=$HOME/Mailbox (in sh)

Once you're committed to gmail and your mail is in /var/mail, you want to copy everyone's mailbox to their home
directory, using the convert-and-create script mentioned previously. Then, find the place in /etc/profile or /etc/cshrc
that sets MAIL and change it to refer to the new mailbox location.

If you use Maildirs, your options are simpler. The only mail program with built-in Maildir support is mutt. On gmail.org
there are some patches for pine to handle Maildirs, and a version of movemail for GNU Emacs users. If you use
something else, you can use the scripts distributed with gmail such as elg or ping that copy mail from a Maildir into an
mbox and then run elm or pine. Honestly, if a user normally uses a mail program that expects mbox mailboxes, it's
easier to tell gmail to use mboxes than to tell the program to use Maildirs.

An alternative that makes Maildirs available to most mail clients is to use an IMAP server such as Courier that handles
Maildirs (see Chapter 13). The IMAP server can retrieve mail from the Maildir and from any number of Maildir-format
subfolders. You can set up pine or Mozilla to use IMAP to deal with the Maildir folders, and use its built-in mbox support
to handle mboxes directly as files. This has the added advantage that you can check your mail using any IMAP client
from other computers if you're away from your usual computer.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.9 Configuring Qmail's Control Files

Qmail is controlled by a large set of control files stored in /var/gmail/control. Unlike some other MTAs that group
everything into one huge file that they have to parse to figure out what's what, gmail puts each different kind of
information into a separate file, so that each file needs little or no parsing. All files are lines of plain text (although a few
files are compiled into CDB databases before use). Some, noted below, allow comment lines with a # at the beginning
of the line. In files where each line contains multiple fields, the fields are separated by colons.

Most of the control files are optional, and gmail uses a reasonable default in most cases if a file isn't present. The only
files that are absolutely essential are me, which contains the hostname of the local host, and rcpthosts, which lists the
names of the domains for which this host accepts mail.

Here's a list of all the control files in alphabetical order, noting which component uses each one. Many of the optional
patches introduce new control files, which are discussed during the description of the patch.

Checking Your Configuration with gmail-showctl

Because gmail has a long and somewhat daunting set of configuration files, the package includes a
program to tell you what your current configuration is. Run /var/gmail/bin/gmail-showct! and pipe its
output through a pager like more to see a detailed narrative of the contents of all of the configuration files.
For missing files it tells you what defaulted values are in use.

If you receive the message I have no idea what this file does, it means that the file is not one that gmail-
showctl recognizes. You can put any extra files you want in the control directory and gmail doesn't care.
Occasionally, it's useful to leave notes to yourself or to save an old version of a file you're changing. There
is an exception: gmail-showctl looks at all the files and makes that complaint about the ones not in its list.
If you apply patches that use new configuration files, most of the patches don't bother to update gmail-
showctl, so it'll typically complain about those files too, which is equally harmless.

badmailfrom (gmail-smtpd)

Envelope addresses not allowed to send mail. If the envelope From address on an incoming message matches
an entry in badmailfrom, the SMTP daemon will reject every recipient address. Entries may be either email
addresses, or @dom.ain to reject every address in a domain. This is a primitive form of spam filtering. These
days, it's mostly useful to block quickly a mailbomb or flood of rejection messages.

bouncefrom (gmail-send)

Default: MAILER-DAEMON. The mailbox of the return address to put in bounce messages. I've never found any
reason to change it.

bouncehost (gmail-send)

Default: me. The domain of the return address to put in bounce messages. I've never found any need to change

it, although it's possible that if your mail host is mail.example.com, you might want to have the bounces come
from example.com.

concurrencylocal (gmail-send)

Default: 10. The maximum number of simultaneous local deliveries. Unless you have very slow delivery
programs, the default is adequate for all but very large systems. Keep in mind that if you have slow delivery
programs, it is quite possible to have all 10 or however many running as the same user, so be sure that the
per-user process limit is high enough to permit them all to run.

concurrencyremote (gmail-send)

Default: 20. The maximum number of simultaneous remote deliveries. The default is adequate for small
systems, but too low for large systems or systems that host mailing lists. You should adjust it so that gmail
uses as much of your outgoing bandwidth as you want it to. In the distributed version of gmail, you can
increase this up to 120, which is enough for a moderately busy system with mailing lists sharing a T1 with other
services. See Chapter 16 for advice on increasing it past 120 on large systems.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

defaultdomain (gmail-inject)

Default: the literal string defaultdomain. The domain to add to unqualified host names (names with no dot) on
outgoing mail. That is, if someone injects a message with a sender or recipient address of fred@bad and this file
contains example.com, the address is rewritten as fred@bad.example.com. You invariably want to set this to
the local domain. Note that only mail injected via gmail-inject has its header addresses rewritten. Addresses in
mail that arrives via SMTP or is injected directly via gmail-queue aren't modified.

defaulthost (gmail-inject)

Default: me. Similar to defaultdomain; the domain to add to addresses in outgoing mail that have no domain at
all. If defaulthost doesn't contain a dot, defaultdomain is added, too. Set this to the name of the local domain.

databytes (gmail-smtpd)

Default: 0, meaning no limit. The maximum message size to accept via SMTP. I usually set it to about 1/10 the
size of the typical amount of free space on the partition where the gmail queue resides, to keep a single bloated
incoming message from causing gmail to run out of disk space. The DATABYTES environment variable overrides
the control file, so if there are certain systems from which you want to accept huge messages, you can put
entries into the SMTP rules file to permit that. For example:

allow 50 megabyte powerpoints from the boss
209.58.173.10:allow,DATABYTES="50000000"

allow 20 meg outgoing mail from nearby hosts
172.16.15.1-127.:allow,RELAYCLIENT="",DATABYTES="20000000"

doublebouncehost (gmail-send)

Default: me. The domain to which to send double-bounce messages. There's rarely any reason to change it.

doublebounceto (gmail-send)

Default: postmaster. The mailbox to which to send double-bounce messages, that is, they go to
doublebounceto@doublebouncehost. You can also send these messages to a special mailbox that you examine
rarely, or because these days there are vast numbers of double bounces caused by spam with fake return
addresses, you can set it to nobody or some other address that just throws them away.

envnoathost (gmail-send)

Default: me. The domain to add to envelope recipient addresses with no domain. This value is used by gmail-
send, while defaultdomain is used by gmail-inject, so in practice this value is used to fix up mail received by
SMTP. The default value is fine, unless you receive a lot of spam with bare addresses, in which case you can set
it to something like invalid to make incoming mail with no domain bounce.

helohost (gmail-remote)

Default: me. The domain to use in the HELO command of outgoing SMTP sessions. The default is fine.

idhost (gmail-inject)

Default: me. The domain to use when creating Message-ID: lines in outgoing mail. The default is fine. If you
want to do something special with message ID's, you can provide them yourself on mail you send, in which case
gmail won't alter them.

localiphost (gmail-smtpd)

Default: me. When gmail-smtpd sees incoming mail to an address using a dotted quad rather than a domain
name, like fred@[10.11.12.99], and the IP address is one on this host, it substitutes in localiphost. The default
is usually fine unless you want to change it to the local mail domain.

locals (gmail-send)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Default: me. Domains to treat as local. Any addresses in domains listed in this file are considered to be local
and are routed using the local delivery rules. All local domains are equivalent; if foo.org and bar.com both
appear in locals, the addresses fred@foo.org and fred@bar.com are handled identically.m This file always
includes the name of the local host (the same as what's in me) and generally includes the local domain as well
and any other domains that may have been used for the same set of addresses. For example, the /ocals file on
my mail server tom.iecc.com also includes iecc.com (the current local domain), iecc.cambridge.ma.us (its old
name), and iecc.us (a trendy vanity equivalent.)

[2] A very perverse user could test $HOST in a delivery rule in a .gmail file to tell two local domains apart,
but I don't think I've ever seen anyone do so.

Note that local domains are not the same as virtual domains, nor are they the same as the SMTP recipient
domains listed in rcpthosts.

me (gmail-send)

Default: none; this file is required. The name of the current host. This should be the same as what the hostname
command returns.

morercpthosts (gmail-smtpd and gmail-newmrh)

Default: none. More domains for which this host accepts SMTP mail. The contents of this file are compiled into
morercpthosts.cdb by gmail-newmrh. The SMTP daemon consults the cdb file after it checks rcpthosts. If a host
accepts mail for more than about 50 domains, Dan suggests that you put the 50 busiest into rcpthosts and the
rest into morercpthosts.

percenthack (gmail-send)

Default: none. The "percent hack" is a primitive form of source routing introduced by sendmail in the early
1980s. If you send mail to user%in.side@out.side, the mail would be sent to out.side, where the address would
be rewritten to user@in.side and sent along to in.side. In the past 20 years, most of the connectivity problems
that require source routing have been solved, and for the ones that remain there are better tools such as
smtproutes (described later), so the percent hack is obsolete. If for some reason you absolutely need it (you
have an ancient mission-critical program for which all the source code has been lost that sends mail using the
percent hack, perhaps) any addresses in domains listed in percenthack are scanned for percent signs and
rewritten. In the previous example, out.side would have to be listed there.

If a domain listed in percenthack is also listed in rcpthosts, your system is an open relay, because spammers
can send mail anywhere through your system by putting the actual target address in percent form inside an
address in the listed domain. Yes, spammers actually do so. The solution is simple: don't do it.

plusdomain (gmail-inject)

Default: me. If the domain part of an address in an injected message ends with a plus sign, the contents of
plusdomain are appended to the end. In environments with many subdomains of a single main domain, say
east.bigcorp.com, west.bigcorp.com, and south.bigcorp.com, this lets people abbreviate addresses to
fred@south+. No longer widely used.

gmgpservers (gmail-gmaqpc)

Default: none. A list of servers to which messages can be queued using QMQP. See Chapter 17.

queuelifetime (gmail-send)

Default: 604800 seconds (a week). How long to keep trying to deliver a message. More precisely, if gmail tries
to send a message and the attempt fails with a temporary error, the error is treated as permanent if the
message is older than queuelifetime, in which case the message bounces.

The default time of a week is reasonable, but you might want to decrease it to three or four days if you'd rather
know sooner that a message isn't getting through, at the risk that the destination host might have come back to
life if you'd waited longer.

rcpthosts (gmail-smtpd)

Default: every domain. The list of domains for which this host accepts SMTP mail. It is extremely important that
this file exist. If it doesn't, gmail will accept mail destined for anywhere and will be an "open relay," and a
magnet for spammers.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you receive mail for more than 50 domains, see morercpthosts.

smtpgreeting (gmail-smtpd)

Default: me. When another hosts connects via SMTP to send you mail, the greeting string to send. The default
is fine.

smtproutes (gmail-remote)

Default: none. Explicit routes to use to deliver outgoing mail, overriding MX data. Each line is of one of these
forms:

domain: relay
domain: relay: port

domain is the domain in the destination email address, relay is the name of the host to which to deliver the mail,
and the optional port is the port number if not the standard port 25.

The domain can use wildcards; if it starts with a dot, it matches any target domain that ends with that domain. If
the domain is empty, it matches all addresses, providing "smarthost" routing to send all mail to a single
smarthost for delivery. If relay is empty, gmail uses the standard MX lookup, letting you override a broader
wildcard or smarthost route.

Most systems can get by without smtproutes, but there are three situations where it can come in handy. The
first is a smarthost, mentioned previously, if your computer is on a dialup, DSL, or cable modem, and the
smarthost is your ISP's outgoing mail server. The second is to temporarily patch around broken MX records or
mail relays. The third is to route mail for private domains within your network.

timeoutconnect (gmail-remote)

Default: 60 seconds. How long to wait for a remote server to accept the initial connection to send mail. Unless
you need to exchange mail with extremely slow and overloaded remote servers, don't change it.

timeoutremote (gmail-remote)

Default: 1200 seconds. Once a remote server is connected, how long to wait for each response before giving
up. The default of 20 minutes is extremely conservative, and can lead to all of your remote sending slots being
tied up while waiting for somnolent remote hosts to time out. Unless you communicate with extraordinarily slow
and overloaded remote servers, you can drop it to a minute.

timeoutsmtpd (gmail-smtpd)

Default: 1200 seconds. How long gmail-smtpd waits for each response from a remote client before timing out
and giving up. As with timeoutremote, you can decrease this to a minute unless you have some really slow
remote clients.

virtualdomains (qmail-send)

Default: none. The list of virtual users and domains for which this system receives mail. If you don't handle any
virtual domains, you don't need this file.

The virtual domain scheme works by taking the mailbox in the virtual domain, prepending a string and a
hyphen to create a local address, and redelivering the mail to the local address. The virtual domain file lists the
prepend string to use for each virtual user and domain. (See Chapter 12.) Each line is of one of these forms:

user@dom.ain:string (1)
dom.ain:string (2)
.domain:string (3)
domain: (4)

:string (5)

Form (1) controls mail to a specific address. Forms (2) and (3) control mail to any address in a domain or in
subdomains of a domain, respectively. Form (4), with an empty prepend, is used to create an exception to a
domain that would otherwise be handled by a line of form (3) or (5) and means to handle the domain normally,
not as a virtual domain. Form (5) is a catchall and controls all domains not listed in /ocals or elsewhere in
virtualdomains.

If a domain erroneously appears both in /ocals and virtualdomains, the listing in locals takes precedence. Don't
do that.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
4.10 Using ~alias

Although gmail automatically handles deliveries to most users with entries in the Unix password file (or gmail's adjusted
version of it; see Chapter 15), any useful mail setup also needs to deliver mail to addresses unrelated to entries in the
password file. Qmail handles this in a simple, elegant way with the alias pseudo-user. As part of the installation process,
create a user called alias and set its home directory to /var/gmail/alias. When gmail is running, if mail arrives for a local
mailbox that isn't in the normal list of users, gmail prepends alias- to the address and retries the delivery. This makes
any address not otherwise handled in effect a subaddress of alias, so you can handle addresses by putting .gmail files
into ~alias. For example, if you have a user robert and want mail addressed to bob to be forwarded to him, create
~alias/.gmail-bob and in it put &robert. Since gmail handles deliveries using the .gmail files in ~alias the same way that
it handles any other deliveries, you have all of the same options delivering to nonuser addresses that you do to user
addresses.

Because gmail doesn't deliver to root and other users that have a 0 user ID or that don't own their home directories,
you should arrange to send root's mail to the system manager by creating ~alias/.gmail-root. Also create .gmail-
postmaster, .gmail-abuse, .gmail-webmaster, and any other role addresses that you want to support.

The final default delivery is, not surprisingly, found in ~alias/.gmail-default. If that file doesn't exist, unknown
addresses bounce, often just what you want. The most common thing to put in that file is a line to run the fastforward
program (see the next section) to take delivery instructions from a file of addresses, roughly as sendmail does. You can
also implement other default delivery rules. For example, if you want to make mail to subaddresses of ~alias users
default to the base address, so mail to fred-foop is delivered to fred if it's not otherwise handled, put a line like this in
your default delivery file. (It appears wrapped here, but it has to be on one long line in the file.)

| case "$DEFAULT" in *-*) forward "${DEFAULT%%-*}" ;; *) bouncesaying
"Sorry, no mailbox here by that name. (#5.1.1)" ;; esac

This says that if an address contains a hyphen, strip off the hyphen and everything after it and redeliver it. Otherwise
bounce the message. The bouncesaying command lets you provide your own failure message, but a simple exit 100 would
do the trick as well, telling gmail to bounce.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
411 fastforward and /etc/aliases

Sendmail and other MTAs use configuration files such as /etc/aliases that contain lists of mailboxes and forwarding
instructions. While gmail doesn't have a built-in feature to do that, the add-on fastforward package (available at

provides both a mostly compatible way to handle existing /etc/alias files) and a more
general scheme to handle files with forwarding instructions and mailing lists.

4.11.1 Installing fastforward

You can download and install the fastforward package the same way you install Dan's other programs, as described in
Chapter 3. This section describes fastforward Version 0.51.

4.11.2 Using fastforward

The central program in the fastforward package is fastforward itself. It's designed to be run from a .gmail file. When
run, it gets the recipient address from $RECIPIENT or optionally $DEFAULT@$HOST, looks up the address in a delivery
database, and if it finds the address, follows the delivery instructions for the address.

fastforward takes its instructions from a CDB-format file. There are two ways to create the file: using newaliases to
create /etc/aliases.cdb from /etc/aliases, which is in sendmail format, or using setforward to create a CDB from an
arbitrary file, which is in a different, more flexible format. All of fastforward's CDB files have the same format,
regardless of which program created them.

The CDB file can refer to mailing list files of addresses; the difference is that the CDB file contains addresses and
delivery instructions, while a mailing list file just contains a list of addresses and other mailing list files, for use within a
delivery instruction. Mailing list files can be created by newinclude, which reads input containing a list of addresses in a
format similar to the one sendmail uses for :include: files, or by setmaillist, which reads input in a more flexible format.
Mailing list files created by either program have the same format, so you can use the input format that is more
convenient. Compiled mailing list files have the extension .bin. In this section, I describe /etc/alias compatibility and
leave the rest for the sections on virtual domains (Chapter 12) and mailing lists (Chapter 14).

The most common way to use fastforward is to call it from ~alias/.qmail-default so it can take a crack at any addresses
not handled otherwise:

| fastforward /etc/aliases.cdb

Or you can also combine it with other default rules. For example, to use fastforward and then redeliver mail to
subaddresses to the base address of the subaddress:

| fastforward -p /etc/aliases.cdb

| case "$DEFAULT" in *-*) forward "${DEFAULT%%-*}" ;; *) bouncesaying "Sorry, no
mailbox here by that

name. (#5.1.1)" ;; esac

The -p flag says to "pass through," that is, exit 99 if an address is found or exit O if not, so gmail goes on to the next
line in the .gmail file if fastforward didn't deliver it. (In the absence of -p, fastforward exits 0 if it forwards the message
and 100 otherwise to bounce the mail.)

4.11.3 Alias File Format

The format of /etc/alias is a sequence of forwarding instructions. The most common instruction forwards an address to
one or more other addresses:

bob: robert

ted: edward, edwin, eduardo
fred@example.com: frederick
fred@bad.example.com: nobody
@good.example.com: mary

Mail to ted is forwarded to edward, edwin, and eduardo. This form is useful for role accounts that are handled by
several people or tiny mailing lists that change rarely. If there are multiple names in localhosts for this host, distinguish
addresses by putting the domain of the address, and forward all addresses in a domain by using @domain. (This
feature is more often used to handle addresses in virtual domains; see Chapter 12.) As a concession to sendmail
compatibility, addresses can have comments and can be quoted as they are in To: and From: lines. Any line that starts
with # is a comment, and any line can be continued by starting continuation lines with whitespace:

bell: |ringthebell
klaxon: "|ringthebell --reallyloud"

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Any address that starts with a vertical bar is treated as a command for program delivery. If the command contains
whitespace or at-signs, it has to be quoted. fastforward runs the program as whatever user it's running as, which is
alias if it's called from ~alias/.gmail-default. (To run a program as another user, it has to be called from a .gmail file
belonging to that user. See Chapter 15.) The program is run as:

preline sh -c command
so that the message starts with a sendmail-style From line.

cephalopods: :include:/usr/fred/cephalopods
owner-cephalopods: fred

Any address that starts with :include: refers to the contents of a mailing list file. The mailing list file must have been
compiled by newinclude or setmaillist, so in the previous example, fastforward looks for /usr/fred/cephalopods.bin, and
the delivery is deferred if the file isn't available. If there is an entry for both listname and owner-listname, any
forwarded mail to listname has its envelope sender changed to owner-listname so bounces will go back to the owner of
the list.

Note that mailing list files are read by fastforward when they're needed, not by newaliases. This means that, in the
previous example, the addresses on the list belong to user fred, who can update the list file and rerun newinclude as
needed. Mailing list files can refer to other mailing list files, but for security reasons (and unlike sendmail), they cannot
contain program deliveries. This is not much of a problem in practice. In the previous example, if Fred wanted to, say,
fax list messages to someone using a fax program, he could add an address fred-squidfax to the mailing list, then
create ~fred/.qmail-squidfax with whatever program deliveries he wants, running as fred, not as alias.

fastforward lives up to its name when doing list deliveries, and it can dispatch messages to huge lists very quickly.
Nonetheless, if you have a large list with hundreds or thousands of recipients, it's better to use a mailing list manager
like ezmIm (Chapter 14) to provide automated bounce handling, and a partly or fully automated subscribe and
unsubscribe service for list members.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 5. Moving from Sendmail to Qmail

More often than not, a site that plans to run gmail is already running some other mail software on a Unix-ish server,
and more often than not, that software is sendmail. This chapter walks through the steps involved in moving a mail

system from sendmail to gmail.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.1 Running Sendmail and Qmail in Parallel

Users tend to be upset when they can't access their email, so it's rarely possible to shut down the old mail system,
spend a day getting the new system installed and tested, then turn the mail back on. Fortunately, you don't have to.
It's easy to run sendmail and gmail in parallel on the same machine, delivering mail into the same mailboxes, until
you're satisfied gmail is working properly, and then shut sendmail down.

Any MTA receives mail through two routes: local and remote. On Unix systems, local mail is injected via the sendmail
program, and remote mail is injected via SMTP. When you're running gmail and sendmail in parallel, as long as
/usr/lib/sendmail is a link to sendmail, local mail will go to sendmail, and as long as sendmail is listening on port 25,
remote mail will also go to sendmail. While you're testing, put gmail's version of sendmail somewhere else, say
/var/qgmail/bin/sendmail, and run gmail's SMTP daemon on port 26.

Once you're happy with your gmail installation, move the original /usr/lib/sendmail to /usr/lib/sendmail.old (and
similarly for any other links to it such as /usr/sbin/sendmail) and link the gmail version in its place. That will start
routing local mail to gmail.

For remote mail, kill the sendmail daemon, and restart the gmail SMTP daemon running on port 25. That will start
routing remote mail to gmail. Because sendmail probably still has some mail to flush out, restart the sendmail daemon
but without the -bd flag that makes it listen on port 25. A typical command would be sendmail -g30m to keep retrying
failed deliveries every 30 minutes. After a few days, or when the sendmail queue is empty, you can shut sendmail down
for good.

5.1.1 Sendmail Switching Systems

Some versions of BSD and Linux have their own schemes to handle multiple mail systems with different versions of
sendmail by providing a layer of indirection between the sendmail program that other applications call and the actual
program provided by the mail package. These schemes don't do anything that the direct approach can't also do, but
they document the setup better and are more likely to survive system upgrades, so you should use them when you can.

NetBSD and FreeBSD use a program called mailwrapper, which is installed where sendmail would usually go. It consults
a file called /etc/mail/mailer.conf, which has the names of the actual programs to run when sendmail is called under

any of its many aliases. (See Example 5-1.)
Example 5-1. Typical mailer.conf

sendmail /var/gmail/bin/sendmail
send-mail /var/gmail/bin/sendmail
newaliases /var/gmail/bin/newaliases

Debian and Red Hat Linux have an "alternatives" scheme that uses symlinks. In a typical alternatives setup,
/usr/sbin/sendmail is a symlink to /etc/alternatives/mta, which is in turn a symlink to the real sendmail program. You
can just symlink /etc/alternatives/mta to /var/qmail/bin/sendmail or use the alternatives (Red Hat) or update-
alternatives (Debian) command to make the links.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
5.2 User Issues

There are two important differences visible to mail users when moving from sendmail to gmail: mailbox format and
location, and .forward files. The standard gmail distribution includes some examples in /var/gmail/boot to set up for
various degrees of sendmail compatibility, discussed in Chapter 4.

5.2.1 Mailbox Format and Location

Sendmail invariably delivers mail into mbox format mailboxes, which are usually all located in /var/mail or
/var/spool/mail. Qmail can deliver to either mbox or Maildir files, but normally puts each user's mailbox in the user's
home directory. You have several options during a conversion.

The easiest option is to leave all the mailboxes in /var/mail or a similar shared directory. The disadvantage is that
/var/mail isn't a very good place to put mail, because mail doesn't count toward individual disk quotas, and minor
protection errors on mailboxes make it possible to snoop on mail. Because gmail doesn't have a built-in delivery agent
that puts mail in /var/mail, you must tell it to use an external one such as /usr/libexec/mail.local (4.4 BSD and
descendants) or /bin/mail (older versions of BSD, System V, and Linux).

It is not a good idea to leave mail in /var/mail other than for testing. A reasonable compromise is to have gmail deliver
to mbox files in the home directories, and leave sendmail delivering to /var/mail. Then when you're happy with gmail,
copy all the old mailboxes to the new location using scripts described later in this chapter. You must also adjust the
.profile and .login files so that they set the MAILBOX environment variable to point to the new location.

Although Maildir mailboxes have many operational advantages over mboxes, switching users over on systems with shell
users is painful due to the dearth of Maildir mail clients. On systems where most or all of your users pick up mail with
POP or IMAP, switching to Maildirs is easier, and I recommend it. Again, set up gmail with Maildirs, then when you stop
sendmail, copy the contents of the old mailboxes into the new ones, converting mbox to Maildir at that time.

Qmail comes with a pair of scripts called ping and elq, which copy the user's incoming mail from ~/Maildir to ~/Mailbox
and then run pine or elm. While they work fine, if a user is going to use a mail client that expects an mbox, it makes
more sense to deliver to the mbox in the first place. One semiplausible reason to use ping or elq is if the filesystem to
which the mail is delivered is on a different host than the one uses to read mail, with the files mounted using NFS.
Because NFS has locking problems with mboxes, it makes sense to do the deliveries into Maildirs, which work reliably.
Assuming the user runs only one copy of ping or elg at a time, it can safely copy mail from the Maildir into an mbox on
his local disk, and then run pine or elm.

5.2.2 Qmail and .forward Files

Sendmail shell users frequently have .forward files to handle their mail deliveries. The most common uses are to
forward mail to another address and feed incoming mail to procmail for filtering and sorting, but the .forward scheme is
quite general, albeit not very well specified.

Qmail offers two migration paths for .forward. The format of .gmail files is similar enough to .forward files that the most
common .forward files can be turned into .gmail files with little or no tweaking. If you have a small number of shell
users, turn them into .gmail files when you convert, to get rid of .forward files once and for all.

Alternatively, if you have a lot of .forward files, Dan has an add-on package called dot-forward that provides most of
the sendmail .forward features. You can run gmail and make the default delivery instructions to be to run dot-forward.
This means that anyone without a .gmail file will use dot-forward to interpret a .forward file, if any, while users who
have created .gmail files will use those instead. This is the best approach for larger shell setups.

Keep in mind that dot-forward doesn't do everything that sendmail does, so some .forward files, notably those that use
:include: to forward to a mailing list or group of people, won't work. The conversion to .gmail isn't hard, but someone
has to do it before stopping sendmail.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
5.3 System Issues

The sendmail.cf configuration file provides a fantastic amount of configurability to sendmail, some of which is quite
useful. Most of sendmail's tricks have straightforward equivalents in gmail. It may be useful to print out sendmail.cf so
you can check off each configuration option as you deal with it.

5.3.1 Deconstructing sendmail.cf

Much of the configuration information in a typical sendmail.cf needs no gmail equivalent. Since sendmail was written in
an era when it wasn't clear what mail system would predominate, it can handle a wide variety of long-dead mail
addressing formats, and much of sendmail.cf defines the syntax of email addresses, something that's built into gmail.

Nonetheless, sendmail.cf files usually do have some local customization that you need to translate. Because the
configuration language is so arcane, most sites use a set of m4 macros to generate the file. In the following discussion,
I mention primarily the m4 macros rather than the generated configuration codes.

5.3.2 Local Deliveries

Sendmail uses several macros starting with LOCAL_MAILER to define the local mail configuration. The gmail equivalent
is the default delivery agent set at startup time. The sample boot scripts described in Chapter 4 cover most of the
common cases.

If you want to deliver mail into mbox files in /var/spool, use one of the binm boot scripts, whichever one calls the same
mailer that sendmail is calling. If any of your users have .forward files, use the +df versions of the boot scripts.

If you want to deliver to mbox files in users' home directories, use the home or home+df boot script. If you want to
deliver into Maildirs, start with the home or home+df script, but change ./Mailbox to ./Maildir/. Don't forget the trailing
slash, which tells gmail that it's a Maildir. Qmail will not create Maildirs automatically, so you must create them yourself.
If your user directories are all under /home, running this script as root does the trick:

cd /home
foriin *
do

maildirmake $i/Maildir
chown -R $i $i/Maildir
done

If the sendmail configuration has FEATURE('local_procmail'), it's using procmail to deliver local mail. See Section 4.6 in
Chapter 4 for details on setting up procmail.

5.3.3 Hosthames and Masquerading

Sendmail provides an elaborate masquerading system to rewrite addresses on mail. Historically, people used
masquerading so that the syntax of mail addresses within an organization could be different from (generally simpler
than) the addresses visible outside. While this made some sense when mail systems had different, incompatible, and
mutually hostile addressing syntaxes, it's not a very good idea now that mail systems all use Internet-style addresses.
Not surprisingly, gmail provides only minimal help for masquerading.

The one function of masquerading that is still useful is to hide hostnames within a network. If your domain were
example.com with hosts named good.example.com and bad.example.com, you would probably like the return address
on your mail to be fred@example.com rather than fred@good.example.com or fred@bad.example.com. Qmail makes
this easy.

Several control files in /var/gmail/control set the hostnames to use:

The hostname of this host, such as good.example.com.

locals
A list of local domains. Lists the local domain and the machine's hostname, for example:

example.com
good.example.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The domains in the sendmail virtusertable and mailertable files are virtual domains, not local domains, so don't
list them here.

envnoathost

If gmail-send encounters an unqualified address without a domain, add this host name. Make this the domain,
such as example.com. Such addresses are only likely to occur in incoming SMTP mail.

defaulthost

If gmail-inject encounters an unqualified address without a domain, add this hostname. Make this the domain,
such as example.com. This handles addresses coming in via the sendmail compatibility program.

defaultdomain

If gmail-inject encounters an address where the host part does not contain a dot, add this hostname. Make this
the domain, such as example.com. This turns addresses like root@bad into root@bad.example.com, so on
networks with multiple mail subdomains, local users can abbreviate the addresses.

These aren't all of the control files that affect addressing, but all of the others have reasonable defaults, so there's no
need to create them.

Sendmail provides several ways to specify multiple names for the local host. If your sendmail setup has /etc/mail/local-
host-names, all the names in that file are names for the local host. Or you may have LOCAL_DOMAIN lines in the
configuration file, each specifying another name for the local host. In gmail, all of these turn into lines in the /ocals file.

5.3.4 Local and Virtual Domains

Sendmail and gmail handle domains somewhat differently. Qmail has a simple division into local, virtual, and remote
domains, whereas sendmail has many special cases. Fortunately, most of the special cases translate easily into virtual
or remote domains.

Qmail's local domains treat mailbox names as mailboxes on the local computer.

Virtual domains can handle any domains that are neither treated as local mailboxes (local) or sent elsewhere via SMTP
(remote). Virtual domains deliver to a set of mailboxes other than the standard set on the computer and route mail via
something other than SMTP.

The usual sendmail approach to virtual domains is with a virtusertable file that contains instructions on how to route
every address in every virtual domain. The easiest way to translate virtusertables is to use the add-on fastforward
program, as described in Chapter 12.

5.3.5 Remote Domains, and Primary and Backup MXes

Qmail's remote domains deliver mail to other hosts via SMTP. Anything that's not local (listed in /ocals) or virtual (listed
in virtualdomains) is remote.

Normally a host receives mail only for domains it handles itself, so the list in rcpthosts is the combination of local and
virtual domains. Mail hosts can also be "backup" or "secondary" MXes, receiving mail for domains handled elsewhere, to
provide a place to buffer the mail if the primary MX isn't available. To make gmail a backup MX, just add the domains to
back up to rcpthosts or morercpthosts. If an incoming message isn't handled locally, gmail will automatically forward it
to the primary MX when it can. Sendmail has some backup MX kludges, like the one that automatically provides backup
service for any domain that has an MX pointing at the host. For security reasons, gmail doesn't do that; the list of
domains has to be explicit. For systems that handle many domains, it's not hard to generate a suitable morercpthosts
automatically from whatever database maintains the DNS, and it's more secure than letting any random domain point
its MX at you and make you an unwilling relay.

5.3.6 Smarthosts

Many small systems deliver mail using a "smarthost," a larger or better-connected system that handles all outgoing
mail, typically a gateway system on the local network or at one's ISP. Qmail has a very simple, if not obvious, way to
specify a smarthost. Put the smarthost's name into smtproutes preceded by a colon, e.g.:

:mail.myisp.com

The syntax of each line in smtproutes is the name of the domain to route, colon, the name of the host to route it. A
missing domain makes the entry the default to use for all domains that don't have explicit routes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

5.3.7 Uucp and Other Specialized Deliveries

Sendmail can specify that mail to particular domains be routed specially, for example, if the sendmail system is acting
as a gateway to dialup uucp hosts. Qmail's virtual domain system is flexible enough that it can easily implement all
sorts of gateway and specialized routing. See Chapter 12.

5.3.8 Spam Filtering

Sendmail can configure DNS blacklists and other spam filters in sendmail.cf. Qmail can do all of the same filtering, but
it's set up completely differently because gmail's SMTP daemon, where the filtering happens, runs independently of the
core mail delivery system. See Chapter 9.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
5.4 Converting Your Aliases File

An important but tedious part of a transition from sendmail to gmail is to convert /etc/aliases. There are two general
strategies. The first is to create a .gmail file in ~alias corresponding to each entry, which works fine for small alias files
but becomes unwieldy after a few dozen entries. The other is to install the fastforward package (described at the end of
Chapter 4) which handles a version of /etc/aliases pretty close to sendmail's, and then just adjust the alias entries that
fastforward doesn't handle well.

When sendmail runs a program for a delivery from the aliases file, it uses a variety of heuristics to decide which user
runs the program. Qmail's model is much simpler: all programs run from ~alias, including fastforward when it does
/etc/aliases deliveries, are run as the alias user. In most cases that's fine for deliveries that don't store messages or
update files. For deliveries that do store messages or update files, you may need to rewrite the delivery rules to be sure
that they're run as the appropriate, user as described next.

5.4.1 Address Forwarding

The syntax for addressing forwarding is:

address1: address2
address1: address2, address3, address4

Alias entries that just forward one address to another can be left in aliases as is. To rewrite them as a .gmail file
instead, create ~alias/.qmail-address1 and put address?2 in it. If an address is forwarded to multiple addresses, put
each one on a separate line in the .gmail file.

5.4.2 Mailing Lists

The syntax for mailing lists is:

mylist: :include: /usr/fred/listfile
owner-mylist: fred

fastforward's aliases emulation supports sendmail-style lists directly. The only difference is that the included file has to
be compiled into a .bin file using newinclude, as described in Chapter 4.

Although included lists are most easily handled by fastforward, it's also possible to convert them to .gmail files. Copy
listfile to ~alias/.qmail-mylist, stripping out any address comments that aren't permitted in .gmail files, and create

~alias/.qmail-owner-mylist containing the address of the list owner. Qmail provides more facilities for list management,
including easy ways for users to handle their own lists. See Chapter 14.

5.4.3 Program Deliveries

The syntax for program deliveries is:

progaddr: "|someprogram -flags"

Program deliveries are supported by fastforward, so long as it's acceptable to run the programs as the alias user. To
run programs as any other user, rewrite the delivery instructions to forward to a subaddress of the desired user. If, for
example, this program should run as user fred, change the aliases entry to:

progaddr: fred-progaddr

Then as user fred, create ~fred/.gmail-progaddr with instructions to run the program:

|someprogram -flags

Program delivery lines in .gmail files start with a vertical bar and feed everything after the bar to the shell. See Chapter
10 for details of how gmail runs program deliveries.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
5.5 Trusted Users

Sendmail has trusted users who can perform certain mail actions not permitted to the hoi polloi. Depending on your
point of view, gmail either trusts all users or no users. Each user has full control over his own files and deliveries, but
no user has any special ability to masquerade as others, run programs, or anything else. If a sendmail setup depends
on trusted users (not many do), the setup must be redesigned to work with gmail.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 6. Handling Locally Generated Mail

Mail comes from two conceptual places: inside your system and outside it. In this chapter, we look at mail that
originates inside your system, mail generated locally on the host where gmail is running. We also take a first look at
mail injected by MUAs on computers running on the same LAN, and mail injected by "roaming" local users elsewhere on

the Net, which we address in detail in the next chapter.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
6.1 gmail-queue

The only way to pass a message into gmail is gmail-queue. All of the other relay and injection programs, for both local
and remote originated mail, call gmail-queue to queue a message and schedule it for delivery. This design has two
advantages: it's easy to write new frontends to inject mail because they only need to call gmail-queue to pass along the
mail, and by replacing gmail-queue with another program that offers the same interface, you can create interestingly
different systems, such as mini-gmail. (See Chapter 16 for details.) It also offers security advantages, because gmail-
queue is one of the few set-uid programs (to gmailg, not root) in the gmail package, so it can write files in the queue
directories.

gmail-queue is intended to be run from other programs, not from the command line, so it has an interface that only
another program could love. It takes no command-line arguments and reads its input from two file descriptors. The first
input is read from file descriptor and is the text of the message. gmail-queue treats the message as an uninterpreted
block of bytes and doesn't change it at all, other than prefixing a Received: line at the front. The received line includes
the PID, the message source, and a timestamp:

Received: (gmail pid invoked source); 4 Apr 2004 22:35:00 -0000

The source is by alias if the invoking user is the alias user; from network if the invoking user is gmaild, the daemon user
that means the caller was the SMTP daemon; for bounce if the user is gmails, the gmail-send user; or by uid NVNV
otherwise.

Then gmail-queue reads the envelope information from file descriptor 1 in a concise binary format. (In most programs,
that's the standard output, but this isn't most programs.)

Fsender@sender.com\0 Trcptl@rcpt.org\0 ... Trcptn@rcpt.net\0 \O

First is the letter F, the sender's address, and a null byte. Then there is a list of recipient addresses, each preceded by
the letter T and followed by a null byte. Finally there comes an extra null byte.

Once it has the message and the envelope, gmail-queue writes them in files in the queue directories and notifies gmail-
send to process queued messages.

The only output from gmail-queue is the return code, which is zero if the message could be queued, and any of a long
list of other values if not. (See the manpage for the list.) Because gmail-queue only queues a message, its return code
says nothing about whether the message could be delivered, only that it could be queued for the rest of gmail to do
something with it. If there are delivery problems, gmail reports them by sending bounce messages to the message's
sender address.

6.1.1 Passing Input to gmail-queue

gmail-queue reads two input files from two file descriptors, and more often than not both input files are pipes from the
calling program, so some care is needed to avoid deadlock. It's important to remember that gmail-queue reads the
message from fd O first, then the envelope from fd 1. This isn't an implementation accident; it's part of the spec.

If you're writing programs that call gmail-queue and use pipes, be sure that you write the entire message first, then
close the message pipe, and then write the envelope. If the structure of the program doesn't make that convenient,
write the envelope information to a file in /tmp. (You could write the message to a temporary file instead, but the
envelope is usually a lot smaller than the message.)

If you're writing programs that use the same interface as gmail-queue, read the entire input message before reading
the envelope. If you want to look at the envelope before doing anything with the message, you must stash the message
in a file first. In practice, this isn't often a problem, because the message needs to be stored in a file anyway.

6.1.2 Other Queueing Programs

Qmail comes with one other compatible queueing program, gmail-gmgpc, the mini-gmail QMQP client that queues the
mail on another host. Because the interface is so simple, it's quite simple to add a "shim" between the calling program
and gmail-queue to do tasks like making a copy of all the mail (just add the address of the log mailbox to the list of
recipients) or invoking spam filters. We'll see many of these elsewhere in the book.

6.1.3 Wrapping gmail-queue

If you want to replace gmail-queue, you have three alternatives. One is to move the real gmail-queue and rename or
symlink the replacement to /var/gmail/bin/gmail-queue. If you want to use the replacement every single time you
normally use gmail-queue, this is the easiest approach. Mini-gmail (see Chapter 16) does this because it moves the
entire mail queue to another system. More often, you only want to replace gmail-queue when a message is first

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

introduced into the system, not every time it's forwarded, so a more flexible approach is called for. One possibility is to
individually patch the code in gmail-inject and gmail-smtpd and new-inject, and whatever other programs you use to
inject mail. This turns out to be extremely messy programming, because all of the programs in the gmail package use a
single library routine to call gmail-queue, so you must create multiple versions of that routine.

A third approach, and the one I recommend, is the "gmailqueue" patch that takes the name of the program from the
environment. Once it's applied, if the variable QMAILQUEUE is defined, it names the program to run instead of gmail-
queue. There's a very short patch file at gmail.org (search for QMAILQUEUE on the home page) that's easy to apply to
the gmail source. If you use the netgmail-1.05 package, it's already had the patch applied.

Several of Dan's add-on packages also call gmail-queue, using the same gmail.c library file, so you can use the same
patch. These include dot-forward-0.71, fastforward-0.51, mess822-0.58, and serialmail-0.75. Either apply the patch to
each of them, or copy the patched copy of gmail.c from the gmail or netgmail source directory into the source
directories of the add-on packages. In each of the add-on packages, if you apply the patch file, the patch program will
complain that the patch failed on Makefile, which you can ignore because in all of the add-ons, only gmail.c needs
patching. Don't forget to recompile and reinstall all the packages you patched.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
6.2 Cleaning Up Injected Mail

Unlike some other MTAs, gmail distinguishes between injected mail, new messages entered into the mail system, and
relayed mail, which is delivered from somewhere else. The difference is that injected mail needs to have its headers
cleaned up, while relayed mail doesn't. Configuring gmail to clean up injected mail isn't hard, but depending on your
setup, there are several possible ways to handle it.

The new-inject package contains two programs: new-inject, which is a replacement for gmail-inject, and ofmipd (Old
Fashioned Mail Injection Protocol Daemon), an SMTP daemon that includes the functions of new-inject. Although you
can survive without new-inject, it's easy to install and I encourage you to use it.

6.2.1 Accepting and Cleaning Up Locally Injected Mail

The usual ways to inject local mail are to feed it to gmail-inject or sendmail. Both do the cleanup automatically. (The
gmail version of sendmail is a small wrapper that runs gmail-inject.)

Because new-inject is almost completely upward compatible with gmail-inject, use it in place of gmail-inject:

cd /var/gmail/bin
mv gmail-inject gmail-inject.old
In new-inject gmail-inject

(I've saved the old gmail-inject as gmail-inject.old in case there turned out to be some application that needed exactly
gmail-inject's features, but after a year, I have yet to need it.)

Some programs inject local mail by opening an SMTP connection to the loopback address 127.0.0.1. If you've installed
an SMTP listener following the instructions in Chapter 4, injecting mail via that route already works, but without any
cleanup. There are two alternatives to clean up mail injected by SMTP: adjusting the setup of the regular SMTP server
to detour locally injected mail through a cleanup program or setting up a separate SMTP daemon running ofmipd to
receive locally originating mail. I discuss both options later in the chapter.

The standard way to give a freshly created message to gmail for delivery is to use gmail-inject or its replacement new-
inject. Both programs accept a message from the standard input, clean up and complete the headers without modifying
the message body, construct the envelope information from the message and command arguments, and pass the result
to gmail-queue for delivery. A combination of flags on the command line and environment variables give you some
control over the header rewriting and control where it gets the envelope addresses. In the following discussion
capitalized names refer to environment variables passed to gmail-inject or new-inject.

The QMAILINJECT environment variable, if it exists, contains a string of letters from the set cfimrs that control the
header rewriting, as described later. new-inject also accepts the uppercase letters FIMRS with the equivalent meanings
and also accepts command-line --FIMRS flags.

For testing purposes, the --n flag causes the rewritten message to be copied to standard output rather than queued. To
show the envelope addresses, new-inject prefixes Envelope-Sender: and Envelope-Recipients: headers, while gmail-
inject puts the sender address in a Return-Path: line but doesn't do anything with the recipient addresses.

6.2.1.1 Setting the envelope addresses

Like sendmail, gmail-inject and new-inject can take the recipient addresses from the command line, from the message
itself, or both. In the absence of any flags or with the --A flag, they deliver the message to the addresses on the
command line if there are any, otherwise to the addresses in the To:, Cc:, Bcc:, and Apparently-To: (a sendmail-ism).
new-inject uses Envelope-Recipients: line(s), if any exist, in preference to those headers. The --a flag says to use only
command-line addresses, --h says to use only the header recipients, and --H says to use both. All addresses are
rewritten as described in Section 6.2.1.3.

The envelope sender address is taken from the --f flag if present. Otherwise, unless the environment flag "s" is set, it
uses Envelope-Sender: (new-inject only) or Return-Path:. If those headers aren't present, the user part of the sender is
taken from QMAILSUSER, QMAILUSER, MAILUSER, USER, or LOGNAME. The host part is taken from QMAILSHOST,
QMAILHOST, or MAILHOST, or if none of those are set, the defaulthost control file.

The environment flags "m" and "r" handle Variable Envelope Return Paths (VERP), a way to encode information about
the message and its sender in the envelope return address to aid bounce processing. (VERP is discussed at length in
Chapter 14.) If environment flag "m" is set, it appends a dash, the time in seconds, a dot, and the process ID as a per-
message VERP. If environment flag "r" is set, it rewrites the sender address for the per-recipient VERP (described in
Chapter 14). Either or both kinds of VERP can be present; for example, if the sender fred@example.com might be
turned into fred-1059105280.24559-@example.com-@[]. Note that neither kind of VERP is done if the sender is set
explicitly with --f; in that case it's up to you to put whatever you want into the sender string.

6.2.1.2 Header rewriting

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Both gmail-inject and new-inject rewrite most message headers:

From:

If environment flag "f" is set, any existing From: header is discarded; if not, an existing From: header is passed
through. When creating a From: header, the user part is taken from QMAILUSER, MAILUSER, USER, or
LOGNAME, and the host part is taken from QMAILHOST, MAILHOST, or the defaulthost control file. (Note that
QMAILSUSER and QMAILSHOST don't affect the From: line, providing the occasionally useful ability to concoct
different header and envelope return addresses.) The comment on the From: line is taken from QMAILNAME,
MAILNAME, or NAME. If the environment flag "c" is set, gmail-inject uses the address (comment) style;
otherwise it uses comment <address>. new-inject ignores the "c" flag and always uses comment <address>.

To: and Cc:

Addresses are rewritten as described in the next section, and put into standard format with commas between
the addresses and address comments in the preferred form. new-inject combines multiple To: lines or multiple
Cc: into one. If there are no To: or Cc: addresses at all, it adds a syntactically valid Cc: group address of
"recipient list not shown: ;".

Bcc: and Apparently-To:

These lines are deleted.

Notice-Requested-Upon-Delivery-To:, and Mail-Reply-To: and Reply-To:

The addresses are rewritten but otherwise don't affect delivery.

Date:
If there's an existing date header with a date that it can decode, the date is standardized into the form 23 Jun
2004 12:02:00 -0500. If not, it adds a Date: header with the current time and date.

Message-ID:

If there's an existing header, it's passed through, unless the environment variable "i" is set, in which case any
existing Message-ID: header is deleted. In the absence of a passed-through header, it creates a new one. The
domain part of the new Message-ID: comes from QMAILIDHOST if present, otherwise the idhost or me control
files. The user part is always a combination of the date and PID in the form 20020623170200.2345.gmail.

Resent- headers

new-inject moves these to the top of the message with the Received: headers but doesn't otherwise rewrite
them. If gmail-inject sees any of them, it adds Resent-Date: and Resent-Message-ID:, and treats the Resent-
To: as the header addresses to which the message is delivered. This is the most significant incompatibility
between gmail-inject and new-inject, although it rarely causes trouble in practice because MUAs tend to put
either a full set of Resent- headers on messages or none of them.

Mail-Followup-To:

If this header is not already present, and the environment variable QMAILMFTFILE is the name of a file that
contains a list of mailing list posting addresses, one per line, and one of those addresses appears in the To: or
Cc: line of the message, it adds a Mail-Followup-To: header containing all of the To: and Cc: addresses. This is
a little-used feature intended for some varieties of mailing list software.

Content-Length:

If this field is present, it's removed. Some MUAs attempt to use it to make it faster to scan mboxes, but it's not
useful in mail in transit.

6.2.1.3 Address rewriting

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Addresses in the message headers are rewritten into a standard form. (Envelope addresses aren't rewritten, other than
with the VERP options discussed earlier. If the envelope recipients are taken from the headers, it uses the rewritten
versions.)

The rewriting involves adding or completing the domain. Qmail's rewriting rules work best in an environment with
multiple subdomains, such as a university where each department has its own subdomain (so fred@alchemy.bigu.edu
and fred@phrenology.bigu.edu are different addresses, and on-campus users would likely abbreviate them as
fred@alchemy and fred@phrenology).

If an address has no host part at all, it adds a default hostname from QMAILDEFAULTHOST, or the contents of
defaulthost or me.

If the host part (whether it came from the previous step or was already present) contains no dot, it adds a dot and
QMAILDEFAULTDOMAIN, or the contents of defaultdomain or me.

If the host part ends with a plus sign, it changes the plus to a dot and adds QMAILPLUSDOMAIN, or the contents of
plusdomain or me.

In the usual case of "flat" addressing where all the addresses are in the second or third-level domain, both defaulthost
and defaultdomain should contain that domain. In the aforementioned campus example, defaulthost should contain the
name of the local subdomain (such as alchemy.bigu.edu), and defaultdomain should contain the main domain (such as
bigu.edu) so that short addresses like fred@alchemy and fred@phrenology work. Plus addresses are for the more
esoteric situation where there are multicomponent subaddresses, so a user can type fred@lead.alchemy+ and have
that turn into fred@lead.alchemy.bigu.edu.

new-inject has a more elaborate rewriting system controlled by patterns from rewrite (or if it exists, the file named by
QMAILREWRITE.) See the rewriting(5) manpage for details. I don't recommend doing more elaborate rewriting,
because that makes the addresses your users type into their MTAs different from the ones that the rest of the world
uses, causing great confusion when they tell their friends to write to jerry@boam and it doesn't work because that
address is locally rewritten into jerry@bo.am.bigcorp.com. However, rewriting is useful to compensate for users who
insist on writing to stevec@aol when they mean stevec@aol.com.

6.2.2 Passing in Large Numbers of Addresses

The simplest way to send mail to a list of addresses is to put all the addresses in a file, and then either directly or, more
likely, via a mailing list manager (such as ezmlm, majordomo, or mailman) type:

new-inject -a $(cat mylist) << EOF
To: mylist
Subject: Free beer

Look behind the coffee machine at 5 PM
EOF

This works as long as the list of addresses remains small enough to fit on a command line. The To: address in the
message, which is normally the address of the list, is ignored for delivery purposes. But what happens when the list
doesn't fit on a command line? A typical command-line limit is 20 K, which only fits a thousand 20-character addresses
—not a very big list.

The usual way to get around the command-line limit is to queue the message directly, either by running gmail-queue or
by connecting to the local port 25 SMTP daemon to send the mail. They both work, but they have the disadvantage of
doing no header cleanup. Can we run new-inject and give it thousands of addresses? Yes.

The obvious approach is to put all the addresses on Bcc: lines, because they're normally copied into the envelope and
deleted. But the problem is that addresses on the To: and Cc: lines are copied into the envelope as well. The To:

address is generally the address of the list itself, so this is a fairly efficient route to a mail Ioop.Lll Instead, put the
addresses into Envelope-Recipients: headers at the top of the message, either one huge line with addresses separated
by commas (like all parts of gmail, it allocates line buffers to be as big as they need to be so there's no limit on line
length) or in multiple header lines. Either way, all of the recipients will be extracted from those headers, and then the
rest of the message will be cleaned up and sent on its way to all the recipients.

(11 A mail loop, for the fortunate few who have never encountered one, is a chain of forwarding addresses that
forms a loop so that mail keeps recirculating forever, frequently growing at each stage as forwarders add headers
or comments to the message. Qmail breaks mail loops by scanning the Delivered-To: headers at delivery time and
bouncing any mail that has a Delivered-To: that's the same as the address it's delivering to now, but avoiding loops
is far preferable to breaking them.

[Team LiB] 14 raavisus fliaxt o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
6.3 Accepting Local Mail from Other Hosts

Most networks have a small number of mail servers that handle the mail for many users who use MUAs on their
individual PCs to read and send mail. Outgoing mail from these PCs is sent to the mail server using SMTP, at which
point it is the mail server's job to clean up the headers and send the mail on its way.

Locally injected SMTP mail presents two problems. One is to tell which SMTP mail is injected mail from local users
rather than the normal incoming mail. This is a crucial distinction, because local users can inject mail addressed
anywhere, while incoming mail should be accepted only for the domains that this server handles. (Hosts that
promiscuously accept and forward mail from third parties are known as "open relays" and tend to be quickly blacklisted,
because the third parties are invariably spammers.) The other, simpler problem is to arrange to clean up the headers in
the injected mail the way that gmail-inject or new-inject clean up locally injected mail.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
6.4 Distinguishing Injected from Relayed Mail

All of these techniques involve configuring and patching the SMTP daemons. They're discussed in detail in the next
chapter, but here is a short overview.

Hosts on the local network are easily recognized by their IP addresses. Each time tcpserver accepts a connection, it
consults a rule database indexed by IP address and marks each connection as local or remote. In the common case that
a network has a fixed, known set of IP addresses, and users on the network have PCs that use the gmail host to send
and receive mail, this is the only setup needed.

Most networks have at least a few "roaming" users who sometimes or always connect from outside the local network.
In order for the network to recognize their mail as local, the users have to provide a username and password. The most
common way is SMTP AUTH, an extension to SMTP defined in 1999 that adds password authentication to SMTP. Qmail
doesn't provide SMTP AUTH, but it's not hard to patch it into the SMTP daemon.

If you have old MUAs that don't handle SMTP AUTH, an older kludge called pop-before-smtp implicitly uses POP logins
to authenticate SMTP. Each time a user logs in for POP (or IMAP, for systems that run an IMAP server), the system
notes the IP address from which the user logged in. For an hour or so thereafter, SMTP connections from the IP address
are treated as local. Users only need to check their mail before sending new mail, so MUAs need no special features to
support it. Qmail doesn't support pop-before-smtp either, but add-on packages are available that fit in as "shims" that
can be configured to run between the standard parts of the gmail POP and SMTP daemons. These are covered in the
next chapter.

Most systems that support SMTP AUTH also support Transport Layer Security (TLS), the same cryptographic security
scheme known as SSL on the Web. TLS permits authentication in both directions; the client can check the server's TLS
certificate to be sure that the server is who it purports to be, and the client can also present a certificate to the server.
In practice, most TLS systems use self-signed certificates that provide no authentication, but like SSL it adds extra
security if the traffic passes through networks where it's subject to snooping. Patching gmail to use TLS is also
straightforward, but the steps required to set up MUAs with appropriately signed certificates that can be used for
authentication are a lot more difficult than setting up SMTP AUTH.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 7. Accepting Mail from Other Hosts

Unlike some other mail systems, gmail uses separate daemons for incoming and outgoing mail. Incoming mail is
handled primarily by gmail-smtpd. As discussed at the end of the previous chapter, local mail injected from MUAs on
other computers also arrives by SMTP, and it's important to distinguish the local from the incoming mail because they're

handled differently.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
7.1 Accepting Incoming SMTP Mail

Chapter 4 discussed the basic setup of the SMTP daemon in /service/gmail-smtpd. The supervise daemon runs
tcpserver, which listens for incoming connections, then runs gmail-smtpd to run the SMTP session and queue the
received mail. The control file rcpthosts lists the domains for which it accepts mail. (If that file doesn't exist, it accepts
mail for all domains and can be an open relay, which spammers see as an open invitation to abuse.)

The normal SMTP setup consults a tcprules file that lists the IP addresses from which to accept and deny connections.
The rules file is /var/qmail/rules/smtprules.txt, which is compiled into the binary /var/gmail/rules/smtprules.cdb that
tcpserver consults.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

7.2 Accepting and Cleaning Up Local Mail Using the Regular SMTP
Daemon

In the FAQ distributed with gmail 1.03, question 5.5 describes the classic technique for cleaning up remotely injected
mail. The smtprules.cdb file that tcpserver consults contains lines that set the RELAYCLIENT environment variable for
hosts allowed to inject and relay mail. If RELAYCLIENT is set, gmail-smtpd both skips the usual relay validation and
appends the contents of RELAYCLIENT to all envelope destination addresses. If RELAYCLIENT has the value @fixme,
mail addressed to fred@example.com is sent to fred@example.com@fixme. If you define fixme as a virtual domain, all
mail from these hosts is handled as virtual domain mail.

More concretely, start by creating a fixme virtual domain in virtualdomains:
fixme:alias-fixup
Then create ~alias/.qmail-fixup-default:

| bouncesaying 'Permission denied' ["@$HOST" = "@fixme"]
| gmail-inject -f "$SENDER" -- "$DEFAULT"

The first line checks that the mail is really sent to the fixme virtual domain, so that sneaky bad guys can't relay mail by
sending it to alias-fixup-victim@otherdomain@example.com (assuming example.com is your local domain.) The second
line feeds the mail through gmail-inject, preserving the original sender and remailing it to $DEFAULT, which was the
original destination address before @fixme was added. Finally, add the @fixme strings to the local network entries in
smtprules.txt and rebuild smtprules.cdb:

127.:allow,RELAYCLIENT="@fixme"
172.16.42.:allow,RELAYCLIENT="@fixme"
172.16.15.1-127:allow,RELAYCLIENT="@fixme"
:allow

Use svc -h /service/gmail-send to make gmail notice the new virtual domain.

Although as we see in the next section, this is no longer the best way to handle mail injection, the basic model for
treating mail depending on its source IP address remains useful. For example, I find that I receive certain spam from
AOL over and over again with very predictable strings in the message. So I route all mail from AOL to a pseudodomain
aoltrap in which commands in the .gmail file grep each message for the known spammy strings, forward the mail to an
abuse reporting script if they find any of the strings, and otherwise forward the mail to $DEFAULT to deliver it normally.
While I use a more general spam filter for other incoming mail, the stuff from AOL is different enough that it was worth
setting up a special filter, particularly because it only took 10 minutes to set the filter up.

7.2.1 Using Separate Relay and Injection Daemons

Since the new-inject package includes ofmipd, which combines an SMTP daemon and the same mail cleanup that new-
inject does, the best way to clean up incoming mail is to arrange for mail clients to inject mail through ofmipd rather
than gmail-smtpd. ofmipd doesn't do relay checking, so you have to ensure that only authorized clients can use it.

If you assign more than one IP address to your gmail host, run gmail-smtpd on one address and ofmipd on another. It's
also a good idea to run a copy of ofmipd on port 587, the SUBMIT port that is defined (and increasingly used) for mail
submission (another name for injection) from MUAs on other hosts.[1] And you must run ofmipd on 127.0.0.1 to accept
mail from programs that inject mail by setting up a local SMTP session (such as pine and some mailing list packages).
You must run separate copies of tcpserver, each bound to a separate IP address and port. First, change
/var/qmail/supervise/qgmail-smtpd/run to run tcpserver only on a single IP address, which should be the address in the
MX record pointing at the server, as in Example 7-1.

(11 1f you have roaming users who connect from hotels and the like, SUBMIT is particularly important. Many
networks block attempts to connect to port 25, but they permit connections to 587.

Example 7-1. The SMTP listening script for incoming mail

1. #!/bin/sh

2. limit datasize 2m

3. exec \

tcpserver -u000-g000-v -p -R '\
-x/var/qmail/rules/smtprules.cdb 10.1.2.3 25\
/var/gmail/bin/gmail-smtpd 2>&1

o vk

In the /og directory, create a subdirectory log/logfiles, chown it to gmaill (the log user), and create log/run, as in

Example 7-2.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Example 7-2. Log file script for SMTP and ofmip daemons

1. #!/bin/sh
2. exec setuidgid gmaill \
3. multilog t 1000000 ./logfiles

In line 3, s1000000 says to make each log file a megabyte. Depending on how much log traffic the server generates, you
may want to adjust this number up or down to adjust how far back the log data goes. The log setup for all of the
servers described in this chapter is the same, so I won't repeat it.

Second, create directories /var/gmail/supervise/ofmipd and /var/gmail/supervise/ofmipd/log to run ofmipd. Set up the
log directory the same as the one for gmail-send described in Chapter 4. Set the file modes the same as you did for
SMTP service and create ofmipd/run, as in Example 7-3.

Example 7-3. The ofmipd script, for SMTP mail injected from other hosts

1. #!/bin/sh

2. limit datasize 2m

3. exec\

4. tcpserver -u000-g000-v -p -R \

5. -x/var/gmail/rules/ofmipdrules.cdb 10.1.2.4 25\
6. /usr/local/bin/ofmipd 2>&1

Third, create /var/gmail/rules/ofmipdrules.txt to permit connections only from the local network and deny everyone
else, and create /var/gmail/rules/ofmipdrules.cdb from it:

172.16.42.:allow
172.16.15.1-127.:allow
:deny

Finally, symlink /var/qmail/supervise/ofmipd to /service and your injection daemon should start up. Telnet to your
injection daemon's address, port 25, and use HELO, MAIL FROM, RCPT TO, and DATA commands to send yourself a test
message.

Once that works, copy everything in /var/gmail/supervise/ofmipd to /var/qmail/supervise/ofmipdlocal, and
/var/qmail/supervise/ofmipd/log to /var/qmail/supervise/ofmipdlocal/log. Then edit the run file to use 127.0.0.1, as
shown in Example 7-4.

Example 7-4. The ofmipd script, for SMTP mail injected from this host

1. #!/bin/sh

2. limit datasize 2m

3. exec\

4. tcpserver -u000-g000 -v -p -R '\
5. 127.0.0.1 25\

6. /var/gmail/bin/ofmipd 2>&1

You can omit the -x flag because only processes on the local computer can connect to 127.0.0.1. Now symlink
/var/qgmail/supervise/ofmipdlocal to /service, and test your local daemon by telnetting to 127.0.0.1 port 25, and send
yourself another test message.

To create an ofmipd running on the SUBMIT port, create /var/qmail/supervise/ofmipdsubmit and
/var/qmail/supervise/ofmipdsubmit/log with the same contents as /var/gmail/supervise/ofmipd and
/var/qmail/supervise/ofmipd/log, except that the port number on line 5 is 587 rather than 25. It can (and should) share
the same ofmipdrules.cdb file because the rules for who you accept mail from are the same, regardless of which port a
client uses. Symlink /var/gmail/supervise/ofmipdsubmit to /service, telnet to your injection daemon's address, port
587, and send one more test message, and you're done setting up mail injection.

To someone familiar with sendmail, it may seem awfully complicated and perhaps slow to set up four separate daemons
just to receive mail, but the four are all configured slightly differently, and because tcpserver is small and fast, it
doesn't place an undue load on the system.

7.2.2 Deciding On the Fly Which Daemon to Use

Although I don't really recommend this approach, it's easy to arrange to run either gmail-smtpd or ofmipd on
connections to the same IP address depending on the remote address from which a connection arrives. Do this by
adding an environment variable to entries in smtprules that says which daemon to run, and testing that variable in the
programs run from tcpserver. Let's put the name of the server to use in the SERVER variable, so smtprules.txt looks
like this:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

127.:allow,SERVER="ofmipd"
172.16.42.:allow,SERVER="ofmipd"
172.16.15.1-127:allow,SERVER="ofmipd"
:allow,SERVER="smtpd"

Now adjust the run file to use SERVER to decide what to run, as shown in Example 7-5.

Example 7-5. The SMTP listening script for incoming mail

1. #!/bin/sh

2. limit datasize 2m

3. exec\

4. tcpserver -u000-g000-v -p -R '\

5. -x/var/gmail/rules/smtprules.cdb 10.1.2.3 25\
6. sh -c'case "$SERVER" in

7. smtpd) exec /var/gmail/bin/smtpd ;;

8. ofmipd) exec /usr/local/bin/ofmipd ;;

9. esac' 2>&1

When tcpserver receives an incoming connection, it runs the shell scriptf=2=1 on lines 6-9, which in turn exec's whichever
program SERVER tells it to. Be sure to use single and double quotes exactly as shown here, so that the value of
SERVER is expanded by the shell run from tcpserver, rather than by the shell that interprets the run script.

[2] Because the script is in single quotes, it doesn't need \ at the end of each line.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

7.3 Dealing with Roaming Users

The most difficult part of dealing with injected mail is to recognize mail from "roaming" users not located on the local
network. You can recognize them directly by requiring a user/password when they send mail or indirectly by noting
their IP when they log into the POP server, then treating mail from the same IP address as local. The former is SMTP
authorization, the latter is pop-before-SMTP.

Using an IP Tunnel

A different approach to the roaming user problem is to make the roaming user's computer logically part of
the local network by assigning it an IP address on the local network, and arranging to "tunnel” the traffic
over the Internet between the PC and the local network. Tunnels have the advantage that once they're set
up, they allow access to any local-only service, such as intranet web servers.

The most popular tunnelling systems are the IETF's IP security (IPSEC) and Microsoft's point to point
tunnelling protocol (PPTP). IPSEC is available on most recent Unix-like systems and on Windows 2000 and
XP. It is quite tedious to set up but is very secure in use, with strong encryption on both the login and all
the data that's passed through the tunnel. PPTP is built into all recent versions of Windows, and free Unix
servers called poptop and pptpd are available. It's considerably easier to set up than IPSEC but is much
less secure, passing data either unencrypted or at best using an encryption scheme that's known to be
easy to break.

The widely used ssh secure remote login system provides a per-port version of tunnelling called "port
forwarding." For example, users can specify that port 2025 on their remote machine is forwarded to port
25 on the mail host on the home network, then set up their mail application to use localhost:2025 for
outgoing mail, with the SMTP server seeing the ssh host on the local network as the source of the mail.
Even though it's possible to log into POP and IMAP servers directly from remote networks, it's also useful
to forward remote ports to ports 110 or 143 on the mail server so that the login passwords and retrieved
messages are transferred via ssh's encrypted connection rather than in the clear. ssh requires a shell login
for authentication on the home network, and must be set up (one time) for each port that's to be
forwarded. Regardless, ssh is often a good compromise, because it is easier to set up than IPSEC while
still being reasonably secure.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
7.4 SMTP Authorization and TLS Security

To use SMTP authorization with gmail, you must patch gmail-smtpd to handle the AUTH command for remote users to
log into the server. Although AUTH lets remote users prove who they are, it doesn't provide any security against third
parties snooping on the mail as it leaves whatever network the roaming users are on, nor does it provide security
against port redirection, where a network connects you to their own SMTP server rather than the one you asked for.
(AOL does port redirection, not for malicious purposes, but because it lets their users send out modest amounts of mail
as roamers without needing to reconfigure their MUAs, while blocking blasts of spam and viruses.)

The transport-level security (TLS) extension provides an encrypted channel for SMTP sessions similar to that used by
SSL secure web servers. TLS is based on certificates that include the host owner's name and address along with the
hostname and an email address. Each certificate is in two parts, the private key, which needs to be kept secret, and
everything else including the public key, which is not secret. For incoming SMTP sessions, SMTP clients start a secure
session, verify the server's certificate and check that the hostname in the certificate matches the name of the host that
the client thinks it's talking to. The client can optionally present a certificate to the server for which the server can make
the same checks. The server can also use the address in the client certificate to authenticate the user instead of a

separate AUTH step, as described later in Authenticating Client Hosts with TLS.

There's a combined patch for gmail-smtpd that adds both SMTP AUTH and TLS, and a doubly combined patch that adds
SMTP AUTH and TLS, as well as the badrcptto anti-spam patch described in Chapter 9 and some extra logging (the
version that I use). The two combined patches both add the same SMTP AUTH and TLS code, so they're the ones I
describe here. These are the largest patches described in this book, which makes it more likely that they contain bugs.
I've looked at the code and it appears OK to me, but if you're concerned about security, you should read through the
patch you use yourself.

For SMTP AUTH, the setup involves setting up a login/password checking program to validate the authorization values
that remote hosts present and adjusting the tcpserver invocation of gmail-smtpd. If you're using the gmail POP server,
use the same password validator. Users generally only need to set an option in their MUAs to use AUTH on outgoing
mail using the same userid/password pair they use for POP or IMAP.

TLS requires the openssl library (included with many but not all recent Unix-like systems) and a TLS certificate for the
SMTP server. If you happen to have an SSL web server with the same name as the mail server, use the same certificate
it uses. Otherwise, make a new certificate. All certificates are signed; you can sign yours yourself, but most MUAs
expect server certificates to be signed by a certificate authority (CA) that vouches for the authenticity of the certificate.
The MUA has a set of validation certificates from well-known CAs built-in (Outlook and Outlook Express share their list
with Internet Explorer), and if the signature isn't from one of the authorities in the list, the MUA at least warns the user
that the certificate isn't properly signed, and in many cases refuses to transfer any mail. There's generally some way for
the MUA's user to tell the MUA to accept the self-signed certificate from the server. If you have very sophisticated
users, you can set up your own miniature CA to sign your certificates and try to get your users to install your CA
certificate into their MUA's well-known lists. Alternatively, you can pay one of the well-known CAs to sign your
certificate, which costs between $50 and $300 depending on the CA. At this point, most TLS users are sophisticated
enough to get their MUA to accept one self-signed certificate for the smarthost they use regularly, but if you plan to
offer TLS to a less technical user community, your easiest course is to pay a well-known CA for a signature.

If this all sounds like more trouble than it's worth, build your patched gmail with the TLS code turned off, and worry
about it later if your users ask for it.

Authenticating Client Hosts with TLS

It's possible, albeit quite cumbersome, to use TLS to identify client hosts that are allowed to relay. If the
email address in a verified client certificate is listed in control/tisclients, gmail-smtpd lets the client send
mail to any address, as though RELAYCLIENT were set.

To do the verification, gmail-smtpd checks the signature on the client certificate against the signer
certificate(s) in control/clientca.pem. Although it would be possible in principle to have all of the client
certs signed by a commercial CA, at $50/cert it rapidly becomes expensive, so in practice you must set up
your own tiny CA. Fortunately, the script CA.p/ distributed with the openssl library lets you create a CA
with a certificate you can put in clientca.pem. Then for each client host create a signing request for the
host, sign it, and turn the signed certificate into the PKCS12 format that most PC MUAs need. See the
manpage for CA.pl for details.

For most purposes, using SMTP AUTH over a TLS link is adequately secure, and is a lot easier to set up
than making, distributing, and installing all those certificates.

7.4.1 Installing and Building SMTP AUTH and (Optionally) TLS

Download either of the combined SMTP AUTH/TLS patches (see www.gmail.org for links to the latest versions), and

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

apply the patch.

The TLS code depends on the open source openssl library. If you want to use TLS and your system doesn't have a
recent version of the openssl library (0.9.6 or later), download the source from http://www.openssl.org, and build and
install it. The configuration and installation procedure, documented in its INSTALL file, is straightforward.

If you don't want to use TLS, edit conf-cc to remove the option to compile in the TLS code. The patch changes the first
line of the file to something like this:

cc -02 -DTLS -I/usr/local/ssl/include
To turn off TLS, change it back to:
cc -02

(Because the compilation process uses only the first line of that file, add the simpler line in front of the patched one in
case you want to try TLS later.)

Before you rebuild gmail, if you're using the standard checkpassword 0.90 or any other password checker that doesn't
keep plain text passwords, you need to turn off one of the SMTP AUTH features. The patch supports three varieties of
AUTH known as LOGIN, PLAIN, and CRAM-MD5. The CRAM-MD5 variety needs plain text passwords, so you must

disable it if your password checker doesn't support them. (A modified checkpassword that supports CRAM-MD5 using a

separate password file with plaintext passwords is available at http://members.elysium.pl/brush/cmd5checkpw.) To
turn off CRAM-MDS5, edit gmail-smtpd.c and around line 40 is a definition of AUTHCRAM:

#define AUTHCRAM

Comment it out:

/* #define AUTHCRAM */

Now make to rebuild the patched gmail.

If you're using TLS, you must install a certificate for TLS to use. To create a self-signed certificate, become super-user
and make cert. It will ask for identifying information for the certificate, including the host's two-letter country code (US
for the United States), state name, company name, common name, and email address. Most of the info is merely for
display if someone checks the certificate, but the common name should be the SMTP server's hostname, and the email
address a contact address for the server's manager. It will put the public and private keys into control/servercert.pem,
and also link it to control/clientcert.pem for use in outgoing mail. This is all the setup you need if clients who use TLS
are willing to tell their MUAs to accept self-signed certificates. If you want a certificate signed by a CA, use make cert-
req instead. It puts a "certificate request" into req.pem, which you can submit to the CA. When the CA sends back the
signed version, add that to the end of control/servercert.pem.

Whether or not you're using TLS, now become super-user and make setup check to install the patched gmail. (If you
have the new configuration files set up, it's OK to install this over the running version of gmail because the AUTH and
TLS features do nothing until someone tries to use them.)

To configure AUTH, the run file for the SMTP server needs three new arguments to gmail-smtpd: the server's
hostname, the password checker, and a dummy program that the password checker can run, usually /bin/true. (See

Example 7-6.)

Example 7-6. The SMTP listening script for incoming mail

1. #!/bin/sh
2. limit datasize 2m
3. exec \
4. tcpserver -u000-g000 -v -p -R with SMTP AUTH \
5. -x/var/gmail/rules/smtprules.cdb 10.1.2.3 25\
6. /var/gmail/bin/gmail-smtpd \
6a. mail.example.com \
6b. checkpassword \

6¢c. /bin/true 2>&1

The hostname in line 6a is used only for CRAM-MD5 authorization, but the argument has to be there regardless of
whether CRAM is used. A common error is to leave out the hostname argument, making /bin/true the password
checker, which means that any user/password pair will be accepted, making the server an open relay.fr?’ﬂ1 After adding
the new arguments, restart tcpserver with svc -t, and test out AUTH by sending mail from client MUAs with both valid
and invalid logins, making sure that the invalid login is rejected. Because an invalid login doesn't end the SMTP session
(it just doesn't authorize) you must address the test messages to an address that wouldn't be permitted without AUTH.
If you're using TLS, test it from your favorite PC MUA. Just turn on the MUA option to use TLS on outgoing mail, send a
message, observe that the MUA complains about the server's self-signed certificate, tell the MUA to accept it anyway,
and check that the mail is delivered.

[31 So don't do that.

On outgoing mail, gmail-remote with TLS turned on automatically starts a TLS session whenever a server announces
that it has TLS available. If control/clientcert.pem exists, its contents are used as the client certificate in outgoing
sessions. Normally, make cert links the clientcert file to the servercert file, but if you're sending TLS mail to a smarthost

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

run by your ISP, the ISP may provide you a client certificate to use instead. If there are some SMTP servers to which
mail should only be sent using TLS connections with signed certificates, create the directory control/tishosts, and for
each server, put the CA certificates of the allowable signers in control/tishosts/hostname.pem. Usually all of the hosts
share the same set of signers, so all of the .pem files are links to the same file. In practice, the only host that you're

likely to verify this way is your ISP's smarthost.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
7.5 POP-before-SMTP

An older and more indirect scheme for roaming user authentication is POP-before-SMTP, first used in 1997. It's a very
simple idea and has been implemented many times. Whenever a user successfully logs in using POP or IMAP to pick up
mail, it notes the IP address where the user logged in. For the next hour or so, that IP address is allowed to use the
mail gateway. It has the practical advantage of working with any POP or IMAP MUA, merely by telling users to check
their mail before sending. For MUAs that support SMTP AUTH, which is now most of them, AUTH is better than POP-
before-SMTP because it doesn't require the extra mail check, and it identifies sent mail with a particular user, not just
an IP address. But for the benefit of users who never upgrade their MUA, it's worth keeping POP-before-SMTP around.

I wrote a homebrew POP-before-SMTP system with a daemon that updates the smtprules files, but I now prefer Bruce
Guenther's relay-ctrl package (http://untroubled.org/relay-ctrl/), which has the advantage of not needing any patches
to existing software and working reasonably well on clusters of multiple hosts running POP, IMAP, and SMTP servers.

POP-before-SMTP has three parts. The first part observes the POP and IMAP logins and notes the IP addresses. relay-
ctrl uses the filesystem for its database, so if a user logs in from address 10.1.2.3, it creates a file /var/spool/relay-
ctrl/allow/10.1.2.3. The second part checks the IP address on each incoming SMTP connection, and if the IP has a
corresponding file in /var/spool/relay-ctri/allow, it sets the environment to allow relay. The third cleans up stale entries
by deleting files in /var/spool/relay-ctrl/allow that are older than the window of time allowed for POP-before-SMTP. The
relay-ctrl documentation suggests 15 minutes, but I've used times as long as a day without trouble. To keep the relay
database reasonably secure, make /var/spool/relay-ctrl owned by root with mode 0500 so that only root can chdir into
it, but make /var/spool/relay-ctrl/allow mode 777 so that the unprivileged program that notes logins can write there.

For clusters of multiple hosts, whenever a user is authenticated on one host, relay-ctrl sends notices to the other hosts
about the IP that authenticated, using UDP packets.

To install relay-ctrl, download it from http://untroubled.org/relay-ctrl/. (This description is of Version 3.1.1.) Unpack it,
adjust the conf-cc, conf-Id and conf-man if you need to reflect your local commands for compiling and linking, and the
place to put the man files, then make. Become super-user and run ./installer to install the various programs. The
runtime configuration of the relay-ctrl package is almost entirely done through environment variables. I suggest
creating a directory /etc/relay-ctrl so you can use envdir from the daemontools package to set the environment. (Each
file in the directory is the name of a variable, the contents of the file becomes the value of the variable.) Files and
environment variables to create include:

RELAY_CTRL_DIR

The directory where the relay data goes, usually /var/spool/relay-ctrl/allow.

RELAY_CTRL_EXPIRY

The time in seconds to permit relay after a user is validated. Defaults to 900 (15 minutes), but I suggest 3600
(an hour.)

RELAY_CTRL_RELAYCLIENT

The value to use for the RELAYCLIENT variable when a user is allowed to relay. Defaults to the null string, but if
you're using the "fixme" trick to clean up headers on injected mail, make it @fixme, the same as the value in
RELAYCLIENT lines in the smtprules file.

RELAY_CTRL_LOG_IPS

If defined, print log messages when an SMTP connection is authenticated for relay. The messages goes the
same place as the log output from tcpserver and gmail-smtpd, typically the log files kept by multilog.

RELAY_CTRL_REMOTES

A comma-separated list of IP addresses to which UDP messages containing notices of IP addresses should be
sent when a host is authenticated. Not needed if you're not using multiple hosts.

RELAY_CTRL_PORT

UDP port number to use for notifications. Defaults to 811, and there is no reason to change it unless something
else on your network is using UDP port 811 packets.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

RELAY_CTRL_TIMEOUT

How many seconds to wait for each remote host to acknowledge a notification packet before retrying. Defaults
to one second, and there is no reason to change it unless your mail hosts are very slow.

RELAY_CTRL_TRIES

How many times to retry each notification if it doesn't get an acknowledgement. Defaults to 5, and there is no
reason to change it unless your network is extremely congested.

7.5.1 Adding POP-before-SMTP to the POP Server

Chapter 13 describes the procedure for setting up the gmail POP server. Example 7-7 shows the modifications to handle
POP-before SMTP, in the script /etc/popd/run.

Example 7-7. The POP listening script with POP-before-SMTP

1. #!/bin/sh

2. limit datasize 2m

3. exec \

3a. envdir /etc/relay-ctrl \

3b. relay-ctrl-chdir \

4. tcpserver \

5. -HRv -l pop.example.com \
6. -x /etc/popd/rules.cdb \
7. 0110

8. /var/gmail/bin/gmail-popup pop.example.com \
9. checkpassword
9a. relay-ctrl-allow \

9b. relay-ctrl-send \
10. /var/gmail/bin/gmail-pop3d Maildir 2>&1

Line 3a sets the environment from the files in /etc/relay-ctrl, and line 3b, which runs with root privileges, opens the
allow directory so that later nonroot programs can modify it. Line 9a creates the allow/nn.nn.nn.nn file noting that the
IP has authenticated, and line 9b sends UDP notifications to other local mail servers. (If you only have one server, leave
out line 9b.) The rest of the script is unmodified from the version in Chapter 13.

7.5.2 Adding POP-Before-SMTP to the SMTP Server

The additions to the SMTP script in /var/qgmail/supervise/qmail-smtpd/run are similar to the ones for the POP server, as

shown in Example 7-8.

Example 7-8. The SMTP listening script, with POP-before-SMTP

1. #!/bin/sh

2. limit datasize 2m

3. exec \

3a. envdir /etc/relay-ctrl \

3b. relay-ctrl-chdir \

4. tcpserver -u000-g000 -v -p -R \

4a. relay-ctrl-check \

5. -x/var/gmail/rules/smtprules.cdb 10.1.2.3 25\
6. /var/gmail/bin/gmail-smtpd 2>&1

Lines 3a and 3b set environment variables and open the allow directory, as before. Line 4a checks to see if
allow/nn.nn.nn.nn exists and isn't too old (older than RELAY_CTRL_EXPIRY seconds), and if so sets RELAYCLIENT.

If you want to provide both POP-before-SMTP and SMTP AUTH, install the SMTP AUTH patches as described earlier in
this chapter, and then add in the POP-before-SMTP programs to the run script, as shown in Example 7-9.

Example 7-9. The SMTP listening script with POP-before-SMTP and SMTP AUTH

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1. #!/bin/sh

2. limit datasize 2m

3. exec \

3a. envdir /etc/relay-ctrl \

3b. relay-ctrl-chdir \

4. tcpserver -u000-g000 -v -p -R \
4a. relay-ctrl-check \

5. -x/var/gmail/rules/smtprules.cdb 10.1.2.3 25\
6. /var/gmail/bin/gmail-smtpd \
6a. mail.example.com \
6b. checkpassword \

6¢c. /bin/true 2>&1

7.5.3 Using POP-before-SMTP with ofmipd

If you use ofmipd to accept injected mail, it's a little harder to use POP-before-SMTP. The reason is that :deny rules
prevent relay-ctrl-check from running at all for IP addresses that aren't on the local network. There's a straightforward
workaround using the anti-spam program rblsmtpd, discussed in Chapter 9.

7.5.4 Other POP-before-SMTP Daemons

Every once in a while, you should delete expired files from the allow directory to avoid clutter. There's no great urgency
since relay-ctri-check checks each time it uses a file that the file isn't expired, so running the cleanup program once a
day is plenty. If your system has a daily or daily.local script that's run as root once a day, add a line to the end that
says:

envdir /etc/relay-ctrl relay-ctrl-age
If not, run that line directly from cron once a day.

Finally, if you have multiple mail servers, on each SMTP server you must run the UDP server that receives messages
about IP addresses that have authenticated. The server does no validation at all of source addresses, so if possible you
should adjust your router to discard all packets addressed to UDP port 811 (or whatever other port you use). Create
directories /var/qmail/supervise/relay-ctri/udp and /var/qgmail/supervise/relay-ctrl/udp/log. The run file just starts the

UDP listener as root, as in Example 7-10.
Example 7-10. The POP-before-SMTP UDP listener script

1. #1/bin/sh

2. exec \

3. envdir /etc/relay-ctrl \
4. relay-ctrl-udp 2>&1

IMAP Before SMTP

If you use the Courier IMAP server or the Courier POP server, relay-ctrl is designed to work with them as
well, using the Courier authorization library interface. See the relay-ctrl README file for more details.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 8. Delivering and Routing Local Mail

Mail isn't very useful unless it's delivered successfully. This chapter looks at delivering mail addressed to local
mailboxes, both for local delivery and for redelivery elsewhere.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
8.1 Mail to Local Login Users

Local login users usually receive mail in mbox format in ~/Mailbox and ~/.mail I or they receive mail in Maildir format
in ~/Maildir/.

(11 For historical compatibility, some still use /var/spool/mail/username, but in this chapter I assume that you have
at least moved your users' mailboxes into their home directories where they belong.

8.1.1 Local Delivery .gmail Files and Default Delivery Rules

In the simplest case, a user's .gmail file needs to contain only a single line to specify the user's mailbox, either the
mbox format mailbox:

deliver into $HOME/Mailbox
./Mailbox

or the Maildir:

deliver into a file in $HOME/Maildir/
./Maildir/

I suggest that every shell user should have a .gmail file (add it to the set of skeleton files that your adduser procedure
creates), but for users who don't, be sure to set a reasonable default as the argument to gmail-start in
/service/gmail/run, as described in Chapter 3.

8.1.2 Maildirs and Mail Clients

Although Maildirs have all sorts of advantages over mboxes, they are not supported in many mail clients. For the
popular elm and pine clients, gmail provides small scripts, elg and ping, which move mail from the Maildir into an mbox,
then run the client. These use the maildir2mbox utility, which requires three environment variables to be set. MAIL is
the mbox file, usually $HOME/Mailbox. MAILTMP is the name of a temporary file used to hold a copy of the updated
mbox, which must be on the same filesystem as $MAIL, usually $HOME/Mailbox.tmp. MAILDIR is the name of the
Maildir, usually $HOME/Maildir.

While these two scripts work adequately, in the long run if you're using Maildirs, you should use a Maildir client. Unix
and Linux command-line users can try mutt, a nice freeware client, Courier IMAP (see Chapter 13), and IMAP clients
including pine and the KDE mail client.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
8.2 Mail Sorting

Unless users receive very little mail, they generally want to sort it before they read it. While Windows mail users tend to
pick up all their mail from a single POP mailbox and sort it into local mailboxes in their mail client, Unix users often
arrange to sort the mail as it's delivered into mailboxes on the server, and use a client that can handle multiple
mailboxes either directly or using IMAP.

There are two general strategies to mail sorting: use multiple incoming addresses or use a filtering program on
incoming mail.

8.2.1 Mail Sorting with Subaddresses

The easiest way to sort mailing list mail is to subscribe to each list with a different subaddress. That is, if your address
is mary@example.com, you might sign up for three lists as mary-gold@example.com, mary-nade@example.com, and
mary-land@example.com.[2] If your system is set up with per-user subdomains as described in Chapter 12, the three
addresses could be written as gold@mary.example.com, nade@mary.example.com, and land@mary.example.com.
Then create three files ~mary/.qmail-gold, ~mary/.qmail-nade, ~mary/.gmail-land, each with the delivery instructions
for the list mail. If you are using a mail client that handles multiple mailboxes, either directly or through the Courier
IMAP server (see Chapter 13), deliver each list to its own mailbox.

[2] These are presumably lists about horticulture, cooking, and geography.

This scheme works very well when you only receive mail from a list and you can access the signup through a web site. I
use a unique address every time I buy something from a web site that wants an email address. That's useful for both
mail sorting and reminding me that a dubious looking piece of mail is in fact from a place to whom I gave the address.
It doesn't work so well on discussion lists to which you send as well as receive mail, because it's not easy to put the
subaddress on outgoing mail, either to set up the subscription or to send messages to the list. (I've occasionally been
reduced to running gmail-inject and typing mail headers to it.) It's possible to write a wrapper around gmail's sendmail
program or gmail-inject or, if you're using the QMAILQUEUE patch from Chapter 3, write a wrapper around gmail-queue
that looks up the destination addresses for a user's outgoing mail in a file and adjusts the return address for mail going
to lists. As far as I know, though, nobody's done so. The pragmatic approach is to subscribe both a subaddress and
your regular address to a list, and set your regular address to NOMAIL or alias the two together if the list management
software permits, so incoming mail from the list goes to the subaddress, while you send outgoing mail from your
regular address.

8.2.2 Mail Sorting with Filter Programs

For mail that's sent to a user's regular address, procmail and maildrop provide flexible script-driven mail sorting. They
both provide similar sets of features, with the largest difference being one of style. The procmail control language is
extremely terse with single-letter commands and options, while maildrop's language is more reminiscent of the Unix
shells or Perl. Maildrop includes some extra features to do simple text processing intended mostly for extracting and
handling email addresses, and an optional interface to GDBM keyed files. A significant practical difference is that
procmail reads an entire message into memory, which means it won't work on very large messages that don't fit.
Maildrop falls back to temporary files so it can handle even the largest messages, slowly.

I use procmail, mostly because I've been using it since before maildrop was available. The size limit isn't a problem in
practice, because I rarely get mail bigger than 10 MB (certainly not mail that I want), and the filtering I do doesn't need
the extra features in maildrop.

8.2.2.1 Mail sorting with procmail

Procmail works well when run from .gmail files. It expects an mbox-style From line at the beginning of the message, so
run it via preline:

| preline /usr/bin/procmail || exit 111

This tells procmail to read the standard control file .procmailrc, preceded by /etc/procmailrc if it exists. The exit 111 is
optional, but it's there to ensure that a message stays in the queue if procmail crashes, giving you a chance to fiddle
around and figure out what went wrong and try again. On the other hand, if your procmail script sets the EXITCODE

variable to return a particular value, you should leave off the exit so gmail sees your code.

The procmail documentation discusses special provisions for using procmail as a mail delivery agent, and the fine points
of its set-uid code. None of this applies to gmail. When procmail starts, whether it's run explicitly from a .gmail file or
implicitly as the default argument to gmail-start, it is like all delivery agents run under the recipient user's ID and home
directory. You should not install procmail as setuid, because you don't need it and it would be a potential security hole.

If you have multiple mailboxes, either mboxes or Maildir subfolders, procmail can deliver to them directly:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

catch messages that appear to be duplicates based on msgid
(this cryptic recipe cribbed from the procmail examples)

:0 Whc: msgid.lock

| formail -D 8192 msgid.cache

file them in a subfolder
:0a
Maildir/.duplicates/

deliver mail about breakfast to an mbox
:0

* Subject:.*breakfast

Mail/breakfast

deliver mail from the lunch list to a Maildir subfolder
use the List-ID: tag to identify it

:0

* List-ID:.*lunchlist.example.com

Maildir/.lunchlist/

bounce mail about dinner, we're on a diet
:0
* Subject:.*dinner

EXITCODE=100
¥

deliver everything else to my regular Maildir
:0
Maildir/

Note that the Maildir deliveries end with a slash to identify them as Maildirs rather than mboxes, just like in .gmail files.

It's quite possible and often useful to combine tagged addresses with procmail. You'll generally want to create separate
procmail files for the subaddresses, so put this in .gmail-color and tell it to use procmail-color:

| preline /usr/bin/procmail procmail-color

You can use all of gmail's environment variables in your procmail scripts, because procmail makes them available as
variables in the script and in the environment of any commands it runs. All but one, that is, because procmail has its
own (not very useful) definition of $DEFAULT, which overrides gmail's. Fortunately, this is easily circumvented by giving
it a different name. Put this in .gmail-color-default to refer to the default part of the address as $SUBADDR:

| preline /usr/bin/procmail procmail-color SUBADDR="$DEFAULT"

8.2.2.2 Mail sorting with maildrop

In principle, anything you can do with procmail, you can do with maildrop, just differently. In practice, I've found
maildrop's code to have severe portability bugs on non-Linux systems, so I can't recommend it for production use, at
least not on BSD systems.

To use maildrop, run it from your .gmail file:
| maildrop

The script comes from /etc/mailfilter if it exists, then .mailfilter in the user's home directory. With no arguments, it
delivers mail to the default place determined when maildrop was built, usually ~/Maildir. Here's the maildrop equivalent
of the delivery script:

catch messages that appear to be duplicates based on msgid
(this code from the maildrop manual)
*reformail -D 8192 duplicate.cache”
if(SRETURNCODE = = 0)
to Maildir/.duplicates

deliver mail about breakfast to an mbox
if(/Subject:.*breakfast/)
to Mail/breakfast

deliver mail from the lunch list to a Maildir subfolder
use the List-ID: tag to identify it
if(/List-ID:.*lunchlist.example.com/)

to Maildir/.lunchlist/

bounce mail about dinner, we're on a diet

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if(/Subject:.*dinner/)
{

EXITCODE=100
exit

}

deliver everything else to my regular Maildir
to Maildir

8.2.3 More Mail Sorting

Although procmail and maildrop are the most popular programs for mail sorting, it's not hard to roll your own. For
example, using gmail's condredirect program, you can sort mail based on text strings:

| condredirect fred-breakfast grep -q 'Subject:.*breakfast'
| condredirect fred-lunch grep -q 'List-ID:.*lunchlist.example.com’
Maildir/

Because gmail doesn't include separate programs to store mail into mailboxes, conditional deliveries need to use
separate subaddresses for each mailbox they use. If you have programs handy to do deliveries (mine's called mds for
Maildir Store, available at www.gmail.org), you can write these as short shell commands:

| if grep -q 'Subject:.*breakfast’; then mds Maildir/.breakfast; exit 99; else exit
0; esac
... and so forth ...

(The grep command reads through the input message, so any program like mds has to be sure to rewind its input so it
starts delivering the message from the beginning.) For most purposes, you're better off with procmail or maildrop, but
if you find you want to do some sorting that you can't easily express in procmail-ese, you can always roll your own.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 9. Filtering and Rejecting Spam and Viruses

Filtering spam and viruses out of incoming mail is an unfortunate necessity on today's Internet. It would be easy to
write a book on spam filtering techniques, but this chapter is designed to present techniques and examples rather than
a complete filtering strategy. (Even if it did have a complete strategy, by the time you read it, the character of spam
would have changed enough that you'd have to change your filters anyway.)

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

9.1 Filtering Criteria
Spam and virus filters can use any of a wide range of message characteristics for filtering. They include:

® The IP address from which the message is received

® The information sent in commands in the SMTP session, including the argument to the HELO or EHLO command,
the envelope sender in MAIL FROM, and the envelope recipients in RCPT TO

® The contents of message headers, including From:, To:, Subject:, and Received:
® The contents of the message body

It's also possible and often useful to make filtering decisions based on combinations of messages, such as the number
of messages received per minute from a particular IP address, or "bulkiness" scores based on the number of messages
seen with similar or identical contents.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
9.2 Places to Filter

Filtering can be applied at several places in the receipt and delivery process. The earlier a filter is applied, the more
quickly a message is dealt with. Filtering points include:

® At connection time, for IP address and rDNS-based filters

® During the SMTP session, before the message is received, for filters based on envelope information
® During the SMTP session, after the message is received, for filters based on message contents

® As the message is delivered, for user-customizable filters

Most systems use multiple filters applied at different points. The standard gmail SMTP daemon is very lightweight
compared to most other MTAs, and does as little work as possible to collect the message and queue it, leaving all of the
rest of the work for delivery time. Many of the spam filtering tools, such as Spamassassin, a complex filter that
computes a "spamminess" score based on multiple criteria, can run at either SMTP time or delivery time.

If you run it at SMTP time, the disadvantage is that it ties up an incoming SMTP process a lot longer than normal,
possibly causing mail to be rejected if tcpserver reaches its concurrency limit. Also, the SMTP daemon doesn't know
where the mail will be delivered, which makes it hard to apply per-user parameters. The advantages of filtering at SMTP
time are that mail can be rejected before it's queued, so the bounce goes back to the actual sending system rather than
a probably forged return address; a message addressed to multiple recipients can be processed once rather than
separately for each user; and in case of a barrage of spam, the tcpserver concurrency limits prevents mail from being

accepted faster than it can be delivered.F1]

[1] Hitting the concurrency limit and rejecting mail is good if the rejected mail is spam; it's not so good if the
rejected mail isn't spam. But legitimate mail software will retry the delivery, so real mail will only be delayed, not
lost.

I used to think that only lightweight filters, such as IP address lookups in DNS blacklists and envelope address lookups
in badmailfrom, should be run at SMTP time, but as the ratio of spam to real mail has grown, and I see blasts of spam
come in that flood the queue and can take hours to filter at delivery time, now I think that it makes sense to run
anything at SMTP time that isn't user-specific and doesn't need access to data that the SMTP daemon doesn't have.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
9.3 Spam Filtering and Virus Filtering

Although spam and virus filtering have historically been different applications, their implementations are as much
similar as different. The most important difference is that while nobody wants to get viruses (except perhaps the abuse
desk so they can figure out where they're coming from), users have varying taste in spam filters, and many filters
permit some user customization. The only way to detect a virus is to examine the body of a message and see if there's
a virus inside, which means it has to be done either at SMTP time after the message is received or as the message is
delivered. Virus-filtering vendors have come up with long, frequently updated lists to match all of the viruses that
they're aware of. While there are plenty of commercial anti-virus products available that can be plugged into gmail (see
gmail-scanner and Amavis), it's possible to catch just about every virus with a simple filter (see Russ Nelson's anti-virus
patch).

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (& Faavisva vt +]
9.4 Connection-Time Filtering Tools

The ucspi-tcp package contains a set of tools to accept, reject, or conditionally accept mail using rules that key on the
IP address or rDNS of the remote site.f2] Some rules are locally defined and used only on a single host, while others
are shared among multiple hosts. The standard way to handle shared rules is via DNS blacklists or blocklists (DNSBLs,
either way). Local IP and rDNS rules are handled by tcpserver, using a rule file created by tcprules. This is the same
rule file we set up in Chapter 8 to distinguish between local injection hosts and remote relay hosts. DNSBLs are handled
by rblsmtpd, which runs between tcpserver and gmail-smtpd.

[2] tepserver can also use info from an IDENT (port 113) server on the remote host. IDENT has almost disappeared
from the Net, so I won't say much about it beyond noting that if tcpserver receives IDENT data from the remote
host, it's put in the TCPREMOTEINFO environment variable. See the tcprules documentation for more details.

What Are DNSBLs and DNSWLs?

Many people keep recommended lists of IP addresses to block that they share with others. The standard
way to publish these lists is through DNS. The form of a DNSBL is very simple, a DNS zone with a name
like any other DNS zone, say badguys.example.com. For each IP address in the DNSBL, there's a pair of
records in the zone whose name is the components of the IP address in reverse order. One record is an A
record with a value of 127.0.0.2, the other is a TXT record with a string to use as the error message when
someone uses the record to block mail. For example, if the address 10.1.2.3 were in the zone, the records
would be named 3.2.1.10.badguys.example.com and the text record might contain Blocked due to abuse.
Some DNSBLs use the same text record for every entry; others include a URL for each address or range of
addresses blocked that provides more information about the entry. Reversing the components of the IP
address makes it easier to handle IP address ranges with wild cards, so that
*.2.1.10.badguys.example.com would cover all of 10.1.2.0-10.1.2.255. A few DNSBLs only have A records
and no TXT records. The standard rb/smtpd requires the TXT records, but a patch at
http://www.gmail.org/ucspi-rss.diff lets it simulate TXT data for zones without it.

A variant of a DNSBL is a DNS whitelist, or DNSWL, that lists IP addresses from which you should accept
mail. The structure of a DNSWL is the same as a DNSBL except that there are only A records, no TXT
records. The most common use of a DNSWL is for the operator of a cluster of SMTP servers to override
entries in public DNSBLs that the servers use. There are also a few public DNSWLs, such as the HUL from
habeas.com, that lists hosts that have committed to send mail in a responsible fashion. Earlier versions of
the ucspi-package had a separate antirbl program to handle DNSWLs, but as of Version 0.88, its function
has been folded into rb/lsmtpd, which now handles both DNSBLs and DNSWLs.

9.4.1 Using Local Filtering Rules

Local filtering rules go into the file that is used to build the CDB file used by tcpserver. If you set up your gmail system
as suggested in Chapter 4, the CDB file is called /var/gmail/rules/smtprules.cdb, and the source from which it's built is
/var/qmail/rules/smtprules.txt.

To refuse mail connections from hosts that you never want to accept any mail from, use a deny line:

10.1.2.3:deny
10.20.96-127.:deny

These rules reject connections from the single address 10.1.2.3 and the range 10.20.96.0 through 10.20.127.255.
(Omitted components are considered to be wildcards and match any value.) You can also match on the rDNS name of a
host. To reject connections from mail.imaspammer.com and any host whose rDNS ends with .dialup.badlyrunisp.net,
use these lines:

=mail.imaspammer.com:deny
=.dialup.badlyrunisp.net:deny

Each time tcpserver gets an incoming connection. It looks first for a rule with a name in the form IDENT@IP and
IDENT@=rDNS, if it's retrieved IDENT data for the connection, it looks for IP, then =rDNS, then wildcard IPs, then
wildcard rDNS, then just an equals sign if there's any rDNS, and finally, an empty catch-all rule. For example, if the
host IP is 10.1.2.3, its rDNS is mail.myvirt.com, and the IDENT info is fred, it looks for these rules in this order:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

fred@10.1.2.3
fred@=mail.myvirt.com
10.1.2.3
=mail.myvirt.com
10.1.2.

10.1.

10.

=.myvirt.com
=.com

_(empty rule)

If there's no IDENT info (there usually isn't), it doesn't look for the first two rules. If there's no rDNS, it doesn't look for
any of the rDNS rules with equals signs. Note the three different catchalls: a single dot that matches any IP address, a
single equals sign that matches any host that has rDNS, and an empty name that matches anything. The dot rule and
empty name both match everything, with the difference being that the dot rule takes precedence over rDNS wildcards.
(Or to put it another way, if there's a dot rule, it never looks at rDNS wildcards because the dot rule matches first.) The
actions in the rules can be :allow or :deny. An :allow action can be followed by any number of environment variable
assignments, separated by commas.

A typical rules file has a few :allow rules with RELAYCLIENT for hosts on the local network that inject mail, a few IP-
based :deny rules for hosts that send viruses or pure spam, often some rDNS :deny rules for IP ranges of retail dialup or
broadband hosts that have sent nothing but viruses, and a catchall :allow rule. It's a bad idea to use rDNS-based :allow
rules, because rDNS is technically easy to forge. If you're using POP-before-SMTP, described in Chapter 7, note that if
an address has a :deny rule, tcpserver will summarily reject the connection, never giving the POP-before-SMTP program
a chance. Fortunately, as we'll see in the next section, it's possible to use rblsmtpd to do the rejections in a way that
makes POP-before-SMTP work:

allow relay from this host
127.:allow,RELAYCLIENT=""

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT=""
172.16.15-18.:allow,RELAYCLIENT=""

reject all connections from spam source
10.10.88.99:deny

reject connections from badly managed DSL pool
=.dsl.ineptisp.com:deny

otherwise, allow connections but no relay
:allow

9.4.2 Using DNSBLs and DNSWLs

A rules file is a fine way to manage IP rejection rules for a single host. For a small network, it's practical to distribute
copies of rules of CDB to all of the hosts using scp or rdist that need it. But to share a set of rules among hundreds or
thousands of hosts, only a DNSBL will do. To use DNSBL, insert a call to rb/smtpd in between tcpserver and gmail-
smtpd. Early versions of rblsmtpd could only check one DNSBL per invocation (dating from the era when Paul Vixie's
RBL was the only DNSBL), but Version 0.88 checks any number, as shown in Example 9-1.

Example 9-1. Running the SMTP daemon

1. #!/bin/sh

2. limit datasize 2m

3. exec\

4. tcpserver -u000-g000-v -p -R '\

5. -x/var/gmail/rules/smtprules.cdb 0 25 \
5a. rblsmtpd -b \

5b. -ahul.habeas.com \
5c. -rsbl.spamhaus.org \
5d. -rcbl.abuseat.org \

6. /var/gmail/bin/gmail-smtpd 2>&1

rblsmtpd either runs the next program in line, generally gmail-smtpd, if the DNSBLs and DNSWLs don't tell it to block
mail from the connecting IP, or else turns into a tiny SMTP "rejection server" that only accepts HELO, EHLO, MAIL
FROM, and QUIT, returning an error message to anything else. With any luck, the SMTP client on the other end passes
the error message back to the sender so that a human sender realizes there's a problem and mailing list software takes
the address off its list. The message can be prefixed by either a 451 code, a temporary error that tells the sender to try
again later, or 553, a permanent error that tells the sender that it can't send mail to that address. It drops the
connection after 60 seconds if the client hasn't already done so. Normally it gives a temporary rejection unless it's run
with the --b flag, as in the previous example. (These days most rejections are for mail that you'll never want delivered,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

so there's no pbint in retrying.)

To decide what to do, rblsmtpd first checks the environment variable RBLSMTPD that might have been set by tcpserver
or the run script. If the variable is set to a null string, that's a whitelist entry so rb/smtpd runs the next program in the
chain. If it's set to a string, RBLSMTPD runs the rejection server, using the string as the error message. If the string is
prefixed with a hyphen, the rejection server gives permanent rather than temporary errors.

In the absence of RBLSMTPD, it then goes through the list of --r and --a flags, checking each DNSBL or anti-DNSWL in
turn. The argument to each --r or --a flag is the name of the list to check. If a DNSBL has a TXT entry for the IP in
TCPREMOTEIP, it starts the rejection server. If an anti-DNSWL has an A entry for the IP, it runs the next program. If it
gets to the end of the list of DNSBLs and anti-DNSWLs with no matching entries, it runs the next program.

For the most part, you need to select only the DNSBLs you want to use, add them to your run file, and restart the SMTP
daemon. Some of the DNSBLs I use in early 2004 include (all have web pages at the same address as the blocklist
unless otherwise noted):

sbl.spamhaus.org

The Spamhaus Block List, a manually maintained list of chronic spam sources

cbl.abuseat.org

The Composite Block List, created mechanically from spam received at some high-volume spam traps

relays.visi.com

A mechanically created list of open relays

opm.blitzed.org

The Open Proxy Monitor, a mechanically maintained list of abused open proxy servers

dul.dnsbl.sorbs.net

A manually maintained list of dynamically allocated IP addresses (mostly retail dialup ISP space) that shouldn't
be sending mail directly

The one public DNSWL I currently use is the Habeas Users List. It requires a no-charge license agreement; see

http://hul.habeas.com/services.html.

The list of effective DNSBLs and DNSWLs changes every month or two, and some of these may no longer be available
or may have been replaced by the time you read this.

Sometimes you'll find that you want to override a few of the entries in one of the DNSBLs you use because they block
mail from someone your users want to hear from. (If the listing is a mistake, most DNSBL maintainers take it out
reasonably promptly, but your user will of course want it fixed right away.) rb/smtpd looks at the environment before it
looks at any of the DNSBLs, so you can put override entries in your rules file. To whitelist an address, add an entry that
sets RBLSMTPD to an empty string. To block an address with a rejection message, add an entry that makes the
message the contents of RBLSMTPD:

accept mail from this address, overriding any DNSBL entries
10.20.1.2:allow,RBLSMTPD=""

send temporary rejections to this one
10.30.2.3:allow,RBLSMTPD="Please pay your bill to regain mail access"

reject this entirely
10.40.5.6:allow"RBLSMTPD="-All mail blocked due to pornographic spam".

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
9.5 SMTP-Time Filtering Tools

Once gmail-smtpd has started, filters can use the message envelope and data to trigger more filter rules. Some of the
filters require patching the filter code into gmail-queue, while others can use the QMAILQUEUE patch to run the filters
on the incoming message before queueing it for delivery.

9.5.1 Filtering in the SMTP Daemon

The three most useful checks in the daemon itself are MAIL FROM rejection, RCPT TO rejection, and Windows EXE virus
rejection.

The standard gmail control file badmailfrom lists addresses and domains to reject as MAIL FROM arguments. The
addresses are listed literally, domains preceded by @, so an address annoying@example.com is rejected if either
annoying@example.com or @example.com appears. The rejection actually happens at subsequent RCPT commands
because it's clearer to some SMTP clients that the mail can't be delivered.

I wrote a "badrcptto” patch, available at gmail.org, that lets you list recipient addresses to reject by putting them in
badrcptto or morebadcptto, which is compiled into morebadrcptto.cdb by the new program gmail-newbrt. It only lists
addresses; the way to reject recipient domains is to not put them in rcpthosts. The rejections happen after the DATA
command to deter dictionary validation attacks. (Typical dictionary attacks start by trying a garbage address or two, in
order to see whether the recipient MTA rejects them, and if they're not rejected, the attacker goes away.) The main
point of badrcptto is one of efficiency. My system has a lot of addresses that get nothing but spam, and it's much faster
to reject mail to those addresses at SMTP time than at delivery time. Also, if the message has multiple RCPT TO
recipient addresses, it's rejected and not delivered to any of them if any of the addresses appear in badrcptto, on the
theory that one can presume that any message sent to a known-to-be-bad address is spam even if it's also sent to a
valid address. Another minor point is that rejecting at SMTP time sends the rejection to the actual sending host, rather
than to the innocent return address, in the usual case that the return address is a fake.

There's a "goodrcptto" version of my patch floating around that flips the sense of the test and accepts mail only to listed
addresses. I don't suggest you use it, because it breaks mail sent to subaddresses and -default addresses, some of
gmail's most useful features.

The third daemon check deals with viruses. I observed in 2002 that all current viruses are Windows .exe files, and it's
rare for anyone to send mail with an individually attached .exe files that's not a virus. Russ Nelson wrote a simple and
extremely effective anti-virus patch, available at www.gmail.org, that recognizes the fixed code pattern present at the
beginning of each .exe file. I suggest you use it, and tell your users who just have to mail around .exe files to put them
in ZIP files before sending.

There are some other filtering patches for the SMTP daemon, none of which I recommend. One fairly popular one does
a DNS lookup on the domain of each MAIL FROM address and rejects any that don't resolve. Several years back, a lot of
spam used nonexistent fake addresses, but once the DNS checks became popular, spammers started forging genuine
domains to defeat the DNS check. Nowadays, the DNS check slows mail delivery, because it can require a round-trip
DNS lookup to a faraway DNS server, but stops almost no spam.

9.5.2 Separate Filters Called from the SMTP Daemon

Once gmail-smtpd has collected the incoming message, it normally runs gmail-queue to queue the message for
delivery. If you've installed the QMAILQUEUE patch recommended in Chapter 3, it will instead run whatever program is
named by the QMAILQUEUE environment variable. In practice you almost always run a shell script that calls the various
filtering programs. In the simplest case, run incoming mail through a filter and then queue it. For example, create
/var/qmail/bin/smtp-spa with the following contents, and chmod it 755 to make it executable, as shown in Example 9-
2.

Example 9-2. Excessively simple Spamassassin SMTP-time filter

#1/bin/sh
/usr/local/bin/spamassassin | /var/gmail/bin/gmail-queue
This works because gmail-queue first reads the body of the message from file descriptor 0, which is connected to the

pipe, and then reads the envelope from file descriptor 1, which the shell doesn't change because there's no output
redirection. Then add a line to the SMTP run script (line 2a in Example 9-3) that sets the environment variable.

Example 9-3. Running the SMTP daemon with an SMTP-time post-filter

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

1. #!/bin/sh

2. limit datasize 40m

2a. export QMAILQUEUE=/var/gmail/bin/smtp-spa
3. exec \

4. tcpserver -u000-g000-v -p -R '\

5. -x/var/gmail/rules/smtprules.cdb 0 25 \

5a. rblsmtpd -b \

5b. -ahul.habeas.com \
5c. -rsbl.spamhaus.org \
5d. -rcbl.abuseat.org \

6. /var/gmail/bin/gmail-smtpd 2>&1

Note line 2, where the data limit is increased to be large enough for Spamassassin to run. This example works,
assuming you have Spamassassin installed, but there are two reasons that you probably want to set up a slightly more
complex filtering script. One reason is that if Spamassassin fails, the mail disappears without a trace and gmail-queue
delivers an empty message instead. The other reason is that Spamassassin has quite a few user-adjustable parameters,
but when it's run here it has no access to the users' home directories where the parameter files live. The first problem
is easily solved by using gmail-gfilter (described next) in the shell script to run the filter programs, but the only way to
solve the second is to run at least some of the filtering code at delivery time if you let your users customize their filters.

It's possible to install extremely complex and slow spam and virus filters to run at SMTP time, but in my experience,
you quickly reach the point of diminishing returns. Most users don't customize Spamassassin very much, so I find it
reasonably effective to run Spamassasin at SMTP time, configured to add headers with a spam score, then use procmail
at delivery time to look at the score and decide what to do with it.

To do SMTP-time filtering, you need at least two parts. One is the program that runs the filters, such as gmail-gfilter or
gmail-scanner; the rest are the actual filters. This can go to a third level if you do virus filtering with amavis, which
unpacks a message into its individual parts and then passes each part to a third-party filter.

While gmail-gfilter is a fairly simple program that runs a message through a few filters you specify before handing it to
gmail-queue, gmail-scanner combines built-in message scanning with separate virus and spam filters to provide one-
stop mail filtering (which is fine if their stop is the one you want).

9.5.2.1 Filtering with gmail-qgfilter

You can download gmail-gfilter from http://untroubled.org/gmail-gfilter/, as either an RPM or a tar.gz file. Pay attention
to the note in the README file that points out that it defines TMPDIR in gmail-¢filter.c, the place to put temporary
copies of messages as /tmp, which you may want to change to /var/tmp or /usr/tmp if you have a small /tmp on a
ramdisk. Compile and install it like any other application; it's a separate program, not a patch. To use it, you must
apply the QMAILQUEUE patch to gmail, as described in Chapter 3.

When gmail-gfilter runs, it takes as arguments the names of the filters to which it will pass the mail message. If there's
more than one program, they're separated by - -arguments. gmail-gfilter runs the filters one at a time, using temporary
files to store the possibly modified message, and then if all of the filters succeeded (returned 0), passes the output of
the last filter to gmail-queue. The QMAILQUEUE patch only passes the name of a command, so in practice gmail-gfilter
is always run from a shell script. For example, Example 9-4 presents a script to run incoming mail through the popular
Spamassassin spam filter using gmail-gfilter.

Example 9-4. Run incoming mail through a spam filter

#1/bin/sh
spam filter incoming mail

exec /var/gmail/bin/gmail-gfilter \
/usr/local/bin/spamassassin

The version I use first runs mall through DCC, which counts similar messages to estimate bulkiness (see

: -), and then through Spamassassin, which already contains rules to use the info
that DCC adds to the mail header. DCC doesn't have built-in support for gmail, but I wrote gmaildcc (available as
always at www.gmail.org), a small Perl script intended to be run from gmail-gfilter, which passes incoming mail through
DCC and adds a header noting the DCC bulkiness score (see Example 9-5). DCC can optionally also perform greylisting,
temporary rejection of mail from unfamiliar sources, on the theory that real mailers will retry later but spamware won't.

Example 9-5. Run incoming mail through DCC and a spam filter

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

#1/bin/sh
greylist, bulk count and spam filter incoming mail

exec /var/gmail/bin/gmail-dfilter \
/usr/local/bin/gmaildcc -- \
/usr/local/bin/spamassassin

DCC can optionally whitelist based on incoming IP address. Because tcpserver provides the IP address in the
environment variable TCPREMOTEIP, gmaildcc can pass it along to DCC. Note the -- separating the DCC arguments from
the call to Spamassassin. If you use a separate virus filter like Clamav, add it here, too.

This script doesn't try very hard to do per-user customization. gmail-gfilter passes the list of recipient addresses to the
filter programs as the environment variable QMAILRCPTS, and gmaildcc has a little code that checks to see whether an
address is in a domain in /ocals, in which case it passes the mailbox to DCC as the username, or a domain in
virtualdomains in which it passes the first component of the corresponding address as the username. However, this only
works for the simplest user setups. For better per-user customization, see delivery-time filtering, described next.

To hook this script into gmail, the QMAILQUEUE variable needs to be set. Assuming the script is called dofilter, the
easiest approach is to set it in the run script, as we already did. In line 2, increase the datasize to be big enough to run
whatever filter software you're running. Spamassassin is pretty big, but 40 MB should be enough. As always, whenever
you change the run script, svc -t to reread the script and restart tcpserver (see Example 9-6).

Example 9-6. Running the SMTP daemon with an SMTP-time post-filter

1. #!/bin/sh

2. limit datasize 40m

2a. export QMAILQUEUE=/var/gmail/bin/dofilter
3. exec\

4. tcpserver -u000-g000-v -p -R '\

5. -x/var/gmail/rules/smtprules.cdb 0 25 \
5a. rblsmtpd -b \

5b. -a'hul.habeas.com' \
5c. -r'sbl.spamhaus.org’ \
5d. -r'cbl.abuseat.org' \

6. /var/gmail/bin/gmail-smtpd 2>&1

You can and probably should put some entries into the rules file to override QMAILQUEUE for some hosts, as shown in
Example 9-7. For example, you probably don't want to spam filter injected outgoing mail, unless you have extremely
unruly users, and there are probably some known friendly hosts that you can trust not to send unwanted mail, so
there's no point in running slow spam filtering software on their mail.

Example 9-7. Sample smtprules line

mail from a friend, no filtering needed
10.30.10.10:allow,QMAILQUEUE="/var/gmail/bin/gmail-queue"

allow relay from this host, but clean up the mail (see below)
127.:allow,RELAYCLIENT="",QMAILQUEUE="/var/gmail/bin/qinject"

allow relay from other hosts on this network
172.16.42.:allow,RELAYCLIENT="",QMAILQUEUE="/var/gmail/bin/ginject"
172.16.15-18.:allow,RELAYCLIENT="",QMAILQUEUE="/var/gmail/bin/ginject"

If your mail server handles injected mail, you can run the injected mail through new-inject to clean it up, like the
@fixme trick described in Chapter 6, but without needing an extra trip through the delivery queue. Create a script
called ginject (see Example 9-8).

Example 9-8. ginject: Using gmail-qgfilter to clean up injected mail

#1/bin/sh

unset potentially wrong env vars
unset MAILUSER; unset USER; unset LOGNAME; unset MAILNAME; unset NAME
unset MAILNAME

exec /var/gmail/bin/gmail-gfilter /var/gmail/bin/new-inject -n
This unsets the environment variables used to concoct a From: line, so that the mail won't seem to come from the

gmail daemon user, then it runs the message through new-inject. gmail-gfilter sets QMAILUSER and QMAILHOST from
the message's envelope sender, so new-inject can create a reasonable From: line if need be.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Create as many filtering scripts as you want and assign them to different hosts or sets of hosts via entries in the rules
file. A plausible setup would be to do spam and virus filtering (if you don't use the EXE patch to gmail-smtpd) for
incoming mail, just virus filtering for mail injected from local hosts that run Windows, and no filtering at all for mail
injected locally or from other Unix systems.

In the previous examples, the filtering programs always accept the mail, but they don't have to. If a filter program
returns a nonzero code, the code is passed back to gmail-smtpd, which returns an error message to the SMTP client.
Useful return codes include 31 for a permanent "554 mail server permanently rejected message" error, 71 for a
temporary "451 mail server temporarily rejected message" error, and 73 for a temporary "451 connection to mail
server rejected" error. As a special case, return code 99 discards the message without returning an error.

9.5.2.2 Filtering with gmail-scanner

gmail-scanner is a large Perl script, also run via QMAILQUEUE, which runs mail through a gauntlet of tests and filters.
Conceptually, gmail-scanner is simpler than using gmail-filter. You just download it from http://gmail-
scanner.sourceforge.net/, run the configuration script as root which builds the Perl script to call the tools that are
available, and plug it into QMAILQUEUE. In practice it's a little more complex.

Before you can use gmail-scanner, as well as the QMAILQUEUE patch, you must install maildrop (or at least the
reformime program from maildrop), some Perl modules described in the README file, and all of the spam and virus
filters you want it to call. You also need to create a separate user ID, usually called gscand, for it to run as. By default it
"quarantines" incoming viruses in ~gspamd/Maildir, so you must remember to look there from time to time and clean it
out.

gmail-scanner does work, but it's extremely slow (the suggested timeout in case something hangs is 20 minutes) and is
overkill for most gmail systems.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
9.6 Delivery Time Filtering Rules

The most practical way to do delivery time filtering is to call filter programs from procmail or maildrop. (All these
examples use procmail, but you can do the same things from maildrop.) Procmail is called in the context of the delivery
user, so it's straightforward to use the user's personal preferences for filtering. These procmail rules, for example, call
DCC and Spamassassin, both of which add X- message headers to the mail to report what they found. Tagged mail is
filed in a separate mailbox, in this case a spam subfolder of Maildir where it's visible as a subfolder in Courier IMAP. The
procmail rules can either go in /usr/local/etc/procmailrc, the global file used by default, or go in an individual user's
procmailrc for users who want to fiddle with their own rules (see Example 9-9).

Example 9-9. Filtering in procmail

filter through dcc using the user's whitelist
0f
| decproc -cCMN, 40 -ERw .dcc/whiteclnt

:0
* X-DCC-IECC-Metrics: .*bulk

LOG="Reject: tagged by DCC

:0
./Maildir/.spam/
b

filter through spamassassin for messages under 300K
:0 fw

* < 300000

| spamassassin

:0
* X-Spam-Status: Yes

LOG="Reject: tagged by spamassassin
:0

:/Maildir/.spam/
b

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
9.7 Combination Filtering Schemes

You can mix and match the pieces described previously to construct hybrid filtering schemes. For example, on one of
my servers I have some domains that deliver into a POP/IMAP "pop toaster," and other domains that deliver to a
variety of shell accounts, mailing lists, and mail forwarders. For the pop toaster domains, I want to do the filtering at
SMTP time, because all of the mailboxes are handled the same, while for the other domains I want to do it at delivery
time.

To arrange this, I assigned two different IP addresses to the server, and set up the DNS so that the MX records for the
pop toaster domains point to the first MX and the rest point to the second MX. Then I set up two separate SMTP server
setups under /service. The one for the pop toaster runs tcpserver with QMAILQUEUE set to point to the filtering script,
while the other one leaves QMAILQUEUE alone, so mail is queued directly. Hence mail for the pop toaster domains goes
to the first MX where it's handled by the first setup, filtered and then queued for delivery, and the .gmail files for
toaster domains just deliver the mail. The rest of the domains go to the second tcpserver setup where mail is not
filtered at SMTP time, but the .gmail files for the various recipients run procmail to do the filtering at delivery time.

In theory, a bad guy who knew the details of this setup could deliberately misroute mail for pop toaster accounts to the
second MX, thereby avoiding the spam filtering, but that's unlikely because there's no obvious connection between the
two sets of domains other than that the two IP addresses are numerically close. If it became a problem, I could set up
two completely separate instances of gmail with separate configurations and separate rcpthosts files, as described in

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Fruvigun fwant o]
Part II: Advanced Qmail

The last nine chapters build on the foundation in the first part. They start with detailed definitions of
gmail's local and remote mail delivery system, and then cover other topics, including virtual domains,
mail pickup from remote PCs, running mailing lists, system tuning, and ways to use gmail to solve
complex mail handling problems:

Chapter 10
Chapter 11
Chapter 12

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 10. Local Mail Delivery

The way that gmail delivers local mail is fundamentally quite simple but is extremely configurable. This chapter looks in
detail at the way that local mail is delivered, then looks at some common problems and applications.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
10.1 How Qmail Delivers Local Mail

Every local message is delivered to the local part of its target address, the part of the address to the left of the at-sign.
The local part may come directly from an incoming message, or it may be generated internally by gmail, particularly for
mail to virtual domains (see Chapter 12), which construct the local part from a combination of the incoming address
and information about the virtual domain.

If the local part of an address contains one or more hyphens, the part before the first hyphen is consider the user and
the rest is the extension. If the local part doesn't contain a dash (hyphen), the local part is the user and there's no
extension.

10.1.1 Identifying the User

The first step in a local delivery is to identify the user corresponding to the local part and retrieve several items about
the user. The items are:

® Username, that is, the login name that is usually but not necessarily the same as the gmail user.
® The numeric user ID.

® The numeric group ID.

® The home directory.

® The dash character, if the local part had an extension. This is almost always an actual dash, although for
maximum sendmail compatibility some people use a plus sign instead.

® The extension, usually the extension from the local part.

Qmail uses two techniques to retrieve the user information. First it checks the users database, which the gmail manager
can and usually should create. (I discuss it in more detail Chapter 15.) If there is no users database or an address
doesn't appear in the database, it runs gmail-getpw to get the information from the Unix password file. If both of those
fail, it prepends alias- to the address and tries again, so that unknown addresses are treated as subaddresses of the
alias user.

10.1.2 Locating the .gmail File

All local deliveries are controlled through a .gmail file. Once gmail has the user information corresponding to a local
part, selecting the gmail file is straightforward. All .gmail files are located in the user's home directory.frla1 If the local
part has no extension, the .gmail file is called .gmail. If Fred's home directory is /home/fred, mail for the address fred is
handled by /home/fred/.gmail. If there's an extension, it's .gmail-extension; for example, mail to fred-fishing would be
handled by /home/fred/.gmail-fishing. If the .gmail file for an address with an extension doesn't exist, gmail also looks
for a .gmail file, replacing the extension with -default, as in /home/fred/.qmail-default. If there are multiple levels of
extension, gmail searches for defaults one level at a time, and mail for fred-fishing-lures is now handled by
/home/fred/.qmail-fishing-lures, or /home/fred/.qmail-fishing-default, or /home/fred/.gmail-default. Notice that a single
extension is not defaulted to the plain .gmail file, so the final default for any address with an extension is .gmail-default,
not .gmail. To prevent funny business, any dots in the address are replaced by colons in the filename, so the .gmail file
for fred-fishing.stories is /home/fred/.qmail-fishing:stories.

[1] well, almost. If the extension contains slashes, the .gmail file will be in a subdirectory of the home directory.

If a .gmail file is empty, gmail uses the default delivery instructions passed to gmail-start at startup time. If there is no
plain .gmail file, gmail also uses the default delivery instructions. On the other hand, if .gmail-default doesn't exist, mail
to addresses with an extension bounces.

The alias user is handled the same as any other user. This means that mail to unmatched addresses is handled by
~alias/.gmail-address if it exists, otherwise ~alias/.gmail-default. That means you can handle arbitrary addresses by
creating .gmail files in ~alias. You can also handle arbitrary addresses by running fastforward from ~alias/.qmail-
default, to look up addresses in a sendmail-style /etc/aliases database. I cover that later in this chapter.

10.1.3 Processing the .gmail File

Once gmail has selected a .gmail file, it reads and processes the file one line at a time. The first character on the line

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

determines the type of line:

® |ines that start with a sharp sign (#) are comments and are ignored.

® |ines that start with a vertical bar (|) are commands. Qmail hands the command to the shell (/bin/sh,
regardless of what your login shell might be) in a known approximation to the recipient's login environment.
See Section 10.3 later for more detail on how gmail runs commands.

® | ines that start with a slash or a dot are mailboxes. The line is the filename of the mailbox. If the line ends with

a slash, it's the name of a Maildir mailbox, otherwise it's the name of an mbox mailbox. See Section 10.2 for
more details.

® [ines that start with an ampersand (&) are forwards. The entire line after the ampersand is taken to be an
envelope-format address to which the message is to be forwarded, with no comments, decorations, or extra
whitespace other than whitespace at the end of the line, which is ignored. That is, if you want to forward your
message to sarah@example.com, this line is correct:

&sarah@example.com
and these are all wrong:

&sarah@example.com (Sarah Bande)

&Sarah Nade <sarah@example.com>

&sarah (Sarah Pheem) @example.com
&sarah @ example.com

If you want to forward to more than one address, put each address on a separate line. If you want to forward to
addresses computed on the fly, use the forward program in a command line.

® |ines that start with a letter or digit are also taken to be forwarding addresses, as though they were preceded
by an ampersand. Again, the entire line is taken to be an envelope-format address, with no comments or
decorations.

® Completely blank lines are ignored, except at the beginning of a .gmail file where a blank line is an error.

A .gmail file can have any combination of these kinds of lines. The lines are interpreted one at a time. Command and
mailbox lines are interpreted in sequence. (Maildir and mbox deliveries are handled by internal routines in gmail-local
that return exit codes like commands do to indicate whether the delivery was successful.) If a command exits with a
failure code (anything other than 0 or 99), the delivery failed and gmail-local stops immediately. If a command exits
with code 99, the command is considered to have succeeded, but the rest of the .gmail file is ignored. If a command
exits with code 100, the failure is permanent and the message bounces. If with code 111, the failure is temporary and
gmail will retry the delivery (the entire .gmail file, not just the command that failed) later. For historical reasons, exit
codes 64, 65, 70, 76, 77, 78, and 112 are also considered permanent failures, any other nonzero exit code is
temporary failure, but for compatibility with future versions of gmail, programs should only return 0 for success, 99 for
success and skip the rest of the file, 100 for permanent failure, or 111 for temporary failure.

If you want gmail to continue interpreting a .gmail file if a command fails, the gmail documentation suggests putting
each command in a separate .gmail-whatever file and having the main .gmail file forward the mail to the subaddresses
corresponding to each of those files. A much easier approach is to just force the exit code of each command line to
zero:

| somecommand ; exit 0
The cabalistically inclined can abbreviate to:
| somecommand ;:

Forward lines are noted but not acted on until all of the lines in the .gmail have been interpreted. At the end of the file,
if there were any forward lines and no command or mailbox line has failed, gmail-local calls gmail-queue to requeue the
message to the forwarding addresses. If a command or mailbox delivery fails, gmail-local does no forwards, even if the
forward lines preceded the failing delivery line in the .gmail file.

10.1.4 Defensive Features in gmail-local

Mail deliveries can be fouled up in a remarkable number of ways. gmail-local has several features intended to prevent
mail foul-ups, or to limit the damage when a foul-up occurs:

® Fvery time gmail-local forwards a message or delivers it to a mailbox, it places a Delivered-To: line at the front
of the message. (The Delivered-To: line is available to program deliveries as the DTLINE environment variable
for programs that remail the message.) If a message already has a Delivered-To: line with the exact same
address as the current delivery, gmail-local won't deliver the message and fails permanently. This prevents mail
loops in which a circular chain of forwarding addresses keeps forwarding a message along forever.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

If the home directory in which the .gmail file resides is world-writable or the .gmail file itself is world-writable,
gmail-local won't deliver the message and fails permanently, on the theory that the .gmail file might have been
tampered with by someone other than the intended user.

If the sticky bit is set on the home directory, gmail-local fails temporarily. Qmail uses that bit as a flag that the
user is editing .gmail files. This allows a user to set the sticky bit, edit .gmail files, then turn off the sticky bit, to
be sure that gmail won't attempt to interpret a partially edited or partially rewritten file before the edits are
done.

If the first line of a .gmail file is blank, gmail-local fails temporarily. It's not clear to me what problem this
solves. Blank lines elsewhere in the file are ignored.

If the execute bit is set on a .gmail file, the file should contain only forward lines, and mailbox or command
lines will fail. This helps make mailing lists more secure, so even if a bad guy sneaks an address onto a list that
looks like a mailbox or command, it won't do any damage. If a .gmail file contains a +list line, subsequent lines
in the file must be forwards, which makes it possible to use mailing list files with a few commands at the front
to validate the message or reset bounce counters. (The +list feature is undocumented.)

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
10.2 Mailbox Deliveries

Qmail has two built-in delivery programs: one for mbox mailbox files and one for Maildir directories. In either case, the
delivery is attempted under the recipient's user ID and primary group ID, so the mailbox must be writable by the user.

If a line in a .gmail file starts with a dot or slash and doesn't end with a slash, it's taken to be the name of an mbox
mailbox file. To do the delivery, gmail-local opens the file for appending, creating it if it doesn't exist. It then locks the
file using the flock() or lockf() system call.L2] If it can't set the lock within 30 seconds, the delivery fails temporarily.
Once the file is opened and locked, gmail-local writes a traditional separator line, then the Return-Path: and Delivered-
To: lines to provide the message envelope information, then the message, and a newline at the end. Any message line
that starts with From, possibly preceded by some number of > angle brackets is quoted by preceding the line with an
angle bracket. (This makes it possible to recover the original message by deleting one bracket from any such line.) It
then calls fsync() to flush the file to disk and closes the file. The delivery fails if gmail-local can't create or lock the file,
or if any of the writes to the file or the fsync() fail.

[2] Some mail systems lock mailboxes in different ways, but qmail doesn't. If flock or lockf isn't adequate for
locking your mailboxes, you should switch to Maildirs, which don't need locks to work correctly.

If a line in a .gmail starts with a dot or slash and does end with a slash, it's taken to be the name of a Maildir directory.
First, gmail-local forks, and the child process does the delivery. The child makes the Maildir its current directory, then
creates a new file named tmp/t.p.h where tis the time in seconds since 1970 (the standard internal Unix time format), p
is the process ID, and his the hostname, so a typical name would be tmp/1012345678.34567.mail.example.com. It
then writes the Return-Path: and Delivered-To: lines to the file, followed by the message. Unlike mailbox format files,
the message is written literally and there is no need to quote lines. It then calls fsync() to flush the file to disk, closes
the file, links the file from tmp to new, and unlinks the tmp file. The delivery fails if gmail-local can't change directory to
the Maildir, create or lock the file, or if any of the writes to the file, the fsync, or the link fail. The delivery also fails
temporarily if the delivery subprocess doesn't complete in 24 hours, an error I have never seen but might occur with
deliveries to an unavailable NFS filesystem. Maildir deliveries do not need explicit locking because the operating system
has internal locks that make system calls to create and rename files atomic.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
10.3 Program Deliveries

Qmail defines a complex but well-specified environment in which to run the programs specified in .gmail command
lines. Each command is run under the user's user ID and primary group ID, in the user's home directory, via /bin/sh -c.
The command's standard input is the message file, while the standard output and standard error are a pipe back to
gmail-Ispawn, which logs anything the command writes to its output. If the program fails (exit 100), its output is mailed
back to the sender as part of the error report. The message file is guaranteed to be an actual file, so that programs can
read the message, seek back to the beginning, and read it again. (This isn't very useful for individual programs, but it's
quite useful for programs like condredirect that fork off a child program that reads and analyzes the message, then
when the child is done, reprocess the message itself.)

The program's environment variables are inherited from the gmail-start command that originally started gmail, with
quite a few added variables to help manage the delivery:

USER
The delivery username
HOME
The user's home directory
LOCAL
The local part of the recipient address
HOST
The domain part of the recipient address
RECIPIENT
The envelope recipient address, $LOCAL@$HOST
DTLINE
The Delivered-To: line, Delivered-To: $RECIPIENT\n; any newlines within the recipient address are changed to
underscores
SENDER
The envelope sender address
NEWSENDER
The envelope sender, modified for mailing list deliveries; see Section 10.5
RPLINE
The Return-Path: line, Return-Path: $SENDER\n; any newlines within the sender address are changed to
underscores
UFLINE

The uucp From line, the separator line that would be written to an mbox file, From $SENDER Thu Nov 29 21:33:09
1973\n. If the sender is null, it uses MAILER-DAEMON, and any spaces, tabs, or newlines within the sender
address are changed to dashes (not underscores)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

EXT
The address extension, the part of $LOCAL that follows the first dash; if there's no dash, the null string

EXT2
The second address extension, the part of $LOCAL that follows the second dash; if there's no second dash, the
null string

EXT3
The third address extension, the part of $LOCAL that follows the third dash; if there's no third dash, the null
string

EXT4
The fourth address extension, the part of $LOCAL that follows the fourth dash; if there's no fourth dash, the null
string.

DEFAULT
If the .gmail file is a default file, the part of the local part that matched the default (see Section 10.4); not set if
this is not a default file

HOST2
The part of $HOST preceding the last dot

HOST3
The part of $HOST preceding the penultimate dot

HOST4

The part of $HOST preceding the antepenultimate dot

Other than the translations of whitespace to underscores or dashes, there's no attempt to defend against strange or
hostile characters in environment variables, so scripts should be sure to double-quote variable references and
remember that hostile senders can put any characters they want, including punctuation and spaces, into a message's
envelope. Programs called from .gmail files should be equally cautious if they use the environment variables either
directly or as program arguments. For example, if a Perl script uses a subaddress to select a file to use, be sure it does
something reasonable when a sender sends you a message where the subaddress is |rm -f.

There is no provision for continuation lines in a .gmail file, so each command has to be on a single line. There's no limit
to the length of that single line, so you can put arbitrarily complex shell commands in your .gmail file. In practice, if the
shell script is more than about 100 characters, it's easier to put the script in a separate file and call the script file from
the .gmail file.

Any program run from .gmail files should run to completion and exit. If it forks and continues in the background, the
results are unpredictable, because all program and mailbox deliveries from a .gmail file share the same input file
descriptor, and the program's file reads are intermixed with those of other commands run from the same .gmail file.
(gmail-local resets the seek pointer to the beginning of the file before each delivery.)

Delivery programs should not take very long to complete. Qmail normally limits itself to 10 simultaneous local
deliveries, so 10 long-running delivery programs lock out all other local deliveries.

10.3.1 Delivery Utilities

Qmail provides a small set of programs intended for use in deliveries.

10.3.1.1 forward

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The most useful of the programs is forward, which remails the input message to all of the addresses given on the
command line, as though the addresses were each on a forward line in the .gmail file. This is useful both because
forward can be embedded in shell scripts to be run conditionally and the addresses can be calculated at runtime. For
example, to forward a message to a different address depending on what the day of the week is, type:

| forward "day-$(date +%a)@example.com"
Or to route mail from one sender specially, type:

| case "$SENDER" in fred@domain.com) forward fredflame ;; *) forward inquiries ;; esac

10.3.1.2 bouncesaying

Bounce a message back to the sender either unconditionally or if a program succeeds. Most often, bouncesaying is used
to turn off addresses that are no longer active:

| bouncesaying "Sorry, this employee has left the company"
It's occasionally useful as a simple mail filter:

| bouncesaying "No tropical fruit, please" grep -q "guava|mango|papaya"
./Maildir/

This scans the message for forbidden words and bounces the message if the grep succeeds. Otherwise it delivers the

message to the user's Maildir. Note that the -q flag keeps the grep command from producing unwanted output that
would be mailed back with the bounce message.

10.3.1.3 condredirect

Conditionally remail a message to a different address. The arguments are the new address and a shell command to run.
If the command succeeds and exits 0, the message is mailed to the new address, and condredirect exits 99, telling
gmail to ignore any subsequent lines in the .gmail file. If the command exits 111, so does condredirect. If the command
exits with any other code, condredirect exits 0:

| condredirect subscriptions grep -q -i "Subject:.*subscribe"
./Maildir/

Except in the most simple applications, it's usually easier to use procmail.

10.3.1.4 except

Reverse the exit code of a program:

| bouncesaying "Tropical fruit required here" except grep -q "guava|mango|papaya"
./Maildir/

The except command reverses the sense of the grep so the mail is bounced if the magic words don't appear in the
message.[31

(3] Yes, I could have used --v in the grep command. It's an example.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
10.4 Subaddresses

Qmail provides each user with an unlimited number of subaddresses, which are the user's address followed by a dash{4]
and the address extension. Subaddresses are most useful with virtual domains, where gmail maps each address in the
virtual domain to a domain-specific subaddress, but subaddresses are useful for regular users as well. Their primary use
is for mail sorting. If you use a different subaddress for every mailing list to which you subscribe, you can use .gmail
files to sort list mail into separate mailboxes or to reformat incoming mail. I also find it handy to use a unique
subaddress every time I register on a web site so in case one of the site owners misuses the address, I know who to
blame.

[4] 1t's possible to use a character other than a dash, but I ignore that option for now.

Remember that subaddressed mail must be handled by a .gmail file or it will bounce. Here's a handy one-liner to put in
.gmail-default:

| sed "s/~Subject:/Subject: [$DEFAULT]/" | forward username

It puts the address extension in the Subject line of the message to make it easier to see in your mail program. (It will
also have a Delivered-To: line showing the subaddress, but most mail programs don't display that.)

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
10.5 Special Forwarding Features for Mailing Lists

Qmail has some relatively obscure features that make it easier to use .gmail files to manage mailing lists. They rewrite
the envelope sender on forwarded messages that are remailed to forwarding addresses in .gmail files, so that bounces
come back to the list owner, who can do something about them, rather than to the original sender, who can't. They can
also rewrite the sender address in a special form that tells gmail-send to create per-recipient sender addresses, known
as Variable Envelope Return Paths (VERPs). The rewritten sender address is used on any forwards, and is also placed in
the NEWSENDER variable for command deliveries. Although these features are mostly used by automated list
management packages such as ezmIm (see Chapter 14), they can also be useful for small manually maintained lists.

If the local part of the recipient address is user-ext and there is a file .gmail-ext-owner, gmail-local changes the sender
address to user-ext-owner. If there is both .gmail-ext-owner and .gmail-ext-owner-default, gmail-local changes the
sender address to user-ext-owner-@ host-@[]. This latter address will be rewritten again by gmail-send.

Assume as an example that you're user fred@example.com, and you have a list fred-fishing. You list all of the recipients
in .gmail-fishing, and set the execute bit on that file to tell gmail that it's a list so all of the entries are forwards. Now
any mail sent to fred-fishing@example.com is forwarded to all of the people listed in the gmail file. But what if one of
the recipient addresses bounces? The bounce goes back to the original sender. To fix that problem, create a file .gmail-
fishing-owner, which stores responses in a mailbox or forwards them to someone who can read and act on them. (A
simple &fred puts them in your regular mailbox.) Now mail to the list is resent with an envelope sender of fred-fishing-
owner@example.com, which will be handled by .gmail-fishing-owner. For manually handled lists that's probably
adequate, but to finish the example, let's also create .gmail-fishing-owner-default and put these lines in it:

| echo "$DEFAULT" | sed 's/=/@/' >> badaddrs
./fishingbounces

Now mail to the fishing list is queued with an envelope sender of fred-fishing-owner-@example.com-@[]. When gmail-
send processes each recipient address, it further translates the sender address so that a message sent to, say,
margaret@domain.com is sent to the recipient host with a sender address of fred-fishing-owner-
margaret=domain.com@example.com. If that message bounces, the bounce is handled by .gmail-fishing-owner-
default. The first line in that file takes $DEFAULT, which in this case is margaret=domain.com, changes the equals sign
back to an at-sign, and appends the bouncing address to badaddrs. Then it saves the bounce in a mailbox, in case a
person wants to look at it. In a more realistic case, the address from the bounce is used to remove the bad address
from the list. A complete bounce handler is also needed to analyze mail to fred-fishing-owner-@example.com (that is,
with a null $DEFAULT) since mail addresses for which gmail can't even attempt a delivery bounce differently. I cover
that in more detail in Section 10.7.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
10.6 The Users Database

We now return to the question of how gmail figures out what user handles each local delivery. Each local address is
mapped to a set of user data including:

® Username

® Numeric user ID

® Numeric group ID

® Home directory

® Character to separate parts of a subaddress, usually a dash
® Extension, used to find an appropriate .gmail file

Qmail provides two schemes to find the user data. The preferred scheme is to use a static lookup table known as the
users file. The table is a CDB file (Dan's Constant Data Base, designed for quick lookups) in /var/gmail/users/cdb, which
is created from /var/gmail/users/assign by gmail-newu. For every local delivery, gmail-Ispawn looks up the local part of
the address in that file. If there's no match or the file doesn't exist (which it doesn't unless you create it), as a fallback
it calls gmail-getpw, which invents user data on the fly from the system password database using the getpwnam()
system library routine. Either way, gmail obtains an appropriate users entry for an address, which gmail-Ispawn uses to
perform the delivery.

See Chapter 15 for more details on the users database.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
10.7 Bounce Handling

Sometimes a message can't be delivered to the intended address. The process of dealing with an undeliverable
message is known as bouncing the message, and a message sent back to report a delivery failure is known, somewhat
ambiguously, as a bounce. Sometimes a bounce message can't be delivered, leading to a double bounce and, if a
double bounce can't be delivered, occasionally to a triple bounce.

Bounces can originate in two ways. A message sent to a local address can bounce either because the address doesn't
exist or because a program run from a gmail file exits with code 100 to tell gmail to bounce it. (There is considerable
overlap between these two causes. Many gmail systems have a global default gmail file ~alias/.qgmail-default that runs
fastforward to look up the address in a sendmail-style /etc/aliases file. If the address isn't in the file, fastforward exits
with code 100, which causes a bounce. From the point of view of the sender, the two kinds of local bounces look the
same.) A message sent to a remote address may have an invalid domain with no DNS information, or the server(s) that
handle that domain aren't available or won't complete an SMTP delivery, or the remote server may explicitly reject the
recipient address or the entire delivery using a 4xx or 5xx error code.

In each case, gmail usually generates a bounce message and mails it back to the envelope sender of the original
message. If the envelope sender is null, which is the case if the bouncing message is itself a bounce message, gmail
handles it as a double bounce and treats it specially, as discussed next.

10.7.1 Single Bounces

If a message delivery attempt bounces, gmail sends a bounce message back to the sender. If a single message is sent
to multiple addresses, all of the bounce reports are sent back in a single message.m Qmail produces bounce messages
in gmail-send Bounce Message Format (QSBMF) that Dan Bernstein designed as a much simpler alternative to the
rather baroque Delivery Status Notices (DSNs) defined in RFCs 1892 and 1894. (Qmail does use the three-part error

numbers defined in RFC 1893, though.) QSBMF is defined in detail at http://cr.yp.to/proto/gsbmf.txt. Here's a typical
QMSBF bounce message:

[5] A message can have multiple addresses if it is injected locally with multiple recipients, if a .gmail file remails it
to multiple addresses, or if the message arrives via SMTP from a system that, unlike gmail, delivers to multiple
recipients in a single SMTP transaction. If a message is sent from gmail system A to multiple invalid recipients on
system B, system A sends a separate copy of the message to each recipient, so system B sees all the copies as
separate messages. If system B rejects invalid addresses in the SMTP transaction, as sendmail systems usually do,
the rejections are all be collected by system A into a single bounce message. But if system B accepts the messages
and bounces them later, as gmail does, it sends back its own separate bounce messages for each address that
bounces in whatever format B's mail system produces.

Return-Path: <>

Received: (gmail 17296 invoked for bounce); 19 Jul 2003 11:30:58 -0400
Date: 19 Jul 2003 11:30:58 -0400

From: MAILER-DAEMON@tom.iecc.com

To: ChrissyFoster52@yahoo.com

Subject: failure notice

Hi. This is the gmail-send program at tom.iecc.com.
I'm afraid I wasn't able to deliver your message to the following addresses.
This is a permanent error; I've given up. Sorry it didn't work out.

<regan@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<scarlett@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<scorpio@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<shay@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

<shelton@iecc.com>:
Sorry, no mailbox here by that name. (#5.1.1)

--- Below this line is a copy of the message.
[a complete copy of the bounced message appeared here]
The message is a sequence of paragraphs separated by blank lines. The first paragraph starts with the string Hi. This is

the to identify the message as a QMSBF report. (Yes, Dan has an odd sense of humor.) Subsequent paragraphs start
with < to report failing addresses. Each failed address appears in angle brackets on the first line of the paragraph. A

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

paragraph that starts with a hyphen is the break paragraph, which indicates that the rest of the bounce meésage is a
copy of the message that bounced. Each paragraph can and usually does include explanatory text for the benefit of
people reading the bounce, so the computer doesn't need to try to interpret the rest of the text.

QMSBF messages are designed to be extremely easy for computer programs to parse, so that mailing list software can
tell what list addresses are bouncing and do something about it. (See Chapter 14.)

You can control the return address in the From: line of single bounces if you want, although in practice the defaults are
invariably fine. The local part defaults to MAILER-DAEMON but is overridden by the contents of bouncefrom in
/var/qmail/control if that file exists. The domain defaults to the local hostname from me but is overridden by
bouncehost if that file exists.

10.7.2 Double Bounces

Single-bounce messages have a null envelope sender address, because the sender is a computer program that is
unlikely to understand a response. If a message with a null sender bounces, that's a double bounce. In practice, most
double bounces are due to incoming spam with forged return addresses.

Qmail normally sends double bounces to postmaster at the local host, but the local part and domain of the double-
bounce target address can be overridden by the contents of doublebounceto and doublebouncehost. The From: line
return address is set the same as in single bounces, but the envelope sender is set to the impossible address #@[].

The vast majority of double bounces are now due to spam with forged return addresses, so some system managers find
that wading through them is more trouble than it's worth. To get rid of double bounces, create an address "nobody"
that discards all mail sent to it by putting a line with a single # into ~alias/.gmail-nobody. Then put nobody into
doublebounceto to send the bounces there. If your system generates many double bounces, there's a small patch to
gmail-send at www.gmail.org called doublebounce-trim that discards double bounces directly if doublebounceto exists
but contains a blank line.

10.7.3 Triple Bounces

If a double-bounce message bounces, which should never happen because postmaster is supposed to be an address
that's always valid, gmail logs the failure and discards the message. This means that if you want to send mail within
your gmail system that doesn't provoke bounce messages if it's undeliverable, set the envelope sender to #@[].

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 11. Remote Mail Delivery

Remote mail delivery is actually somewhat simpler than local mail delivery, because there's really only one way to
deliver remote mail: locate a suitable host for the message and deliver the mail to that host.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
11.1 Telling Local from Remote Mail

Any domain that is listed in locals or virtualdomains is local. Anything else is remote. Note in particular that whether a
domain appears in rcpthosts or morercpthosts has no bearing on whether it's local or remote. (If a domain is in
rcpthosts but isn't local, that makes this host a backup or secondary MX for the domain, which I discuss later in this

chapter.)

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
11.2 gmail-remote

As we saw in Chapter 2, the main gmail-send daemon passes remote deliveries to gmail-rspawn, which runs gmail-
remote to attempt each delivery. The arguments to gmail-remote are the remote hostname, the envelope sender, and
the envelope recipients, with the message to send on its standard input. Within gmail, gmail-remote is always run with
a single recipient, and the host is the domain part of the recipient address. Other applications can use gmail-remote as
a simple mail sending application, with as many recipients per message as desired.

Once gmail-remote has attempted delivery, it writes recipient report(s) and a message report to its standard output.
The format of the reports is documented in the gmail-remote manpage.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
11.3 Locating the Remote Mail Host

gmail-remote can identify the remote host for a message in two ways. If the smtproutes control file has an entry for the
recipient domain, that entry determines the remote host, and gmail-remote pretends it found a single MX record for
that host with distance zero and makes a list of the IP addresses for that host. The list usually has one entry, unless the
host has multiple IP addresses.

Failing that, the usual way is through DNS. First, it looks up the hostname and retrieves any MX records, randomizing
the order of multiple MX records with the same distance, then finds the IP addresses for each of the MX hosts.

Once it has the list of IP addresses, DNS goes down the list, starting at the lowest distance, trying to contact each host.
Once it finds a host that answers, that's the host used for the SMTP delivery. (This description is slightly oversimplified;
the omitted details are covered shortly.)

11.3.1 The smtproutes File for Outbound Mail

It's sometimes useful to override MX data with explicit routes for particular domains. The smtproutes control file
consists of a list of two- or three-field lines, with the fields separated by colons. The first field is the domain to route,
the second is the name or IP address of the host to which to deliver mail for that host, and the optional third field is the
port to contact on the delivery host, defaulting to port 25.

The three primary uses for smtproutes are to override MX data that's known to be wrong, or at least suboptimal, to
route mail to private pseudo-domains, and to send outgoing mail to a smarthost. The first situation occurs if a domain
has several equal-distance MX hosts, one of which accepts SMTP connections but doesn't actually accept mail on those
connections. An smtproutes entry forces mail to a host that's working.

Within a local network, it can often be useful to have private pseudo-domains for special applications. For example, I
set up a mail-to-news gateway on my news host in the pseudo-domain news so that mail addressed to
comp.whatever@news is posted to the appropriate newsgroup. The news gateway isn't accessible to outside users and
doesn't appear in the DNS, so I use entries in smtproutes on other hosts to route the news pseudo-domain to the
gateway machine. (The gateway's rcpthosts doesn't list news, so gateway mail from outside is automatically rejected.)

If an entry in smarthosts has an empty domain field, that is, it starts with a colon, that entry is taken to be the default
route for remote domains. This feature can be useful to send outgoing mail to a gateway host on a local network, or to
an ISP's mail server for dialup or consumer broadband users.

When gmail-remote looks up domains in smtproutes, it looks for successive tails of the recipient domain; if the target
domain is bad.example.com, an entry for example.com matches it, unless there's also a more specific entry for
bad.example.com.

11.3.2 Secondary MX Servers for Inbound Mail

The DNS makes it possible to list multiple MX hosts for a domain. If the hosts don't have the same distance value, the
ones with greater distances are known as secondary servers. The server with the smallest distance is the primary
server. A large domain can have several primary servers, and the primaries all have the same MX distance.

The SMTP specification requires that senders check closer hosts first, so secondary servers receive mail only if the
closer servers are all unavailable. Qmail automatically handles secondary mail service for incoming mail. If a domain
lists the gmail server as an MX for a domain but the domain isn't in /ocals or virtualdomains, gmail assumes it's a
secondary server for that domain. When gmail-remote looks for a host to deliver mail to, it always checks servers
starting with the ones at the smallest distance, but if it's a secondary for the domain, it ignores any MX with an equal or
greater distance than its own, so that it always forwards the mail to a closer server.

If there is no lower distance server for a nonlocal domain, mail to the domain fails with the message Sorry. Although I'm
listed as a best-preference MX or A for that host, it isn't in my control/locals file, so I don't treat it as local. This always indicates a
configuration error. If there is supposed to be a different primary server, the DNS configuration is wrong. If the gmail
system is supposed to be the primary server, the domain should be listed in locals or virtualdomains.

For outbound mail, gmail-remote's strategy, contacting the lowest-distance server for a domain, delivers to a primary
server if one is available, otherwise to a secondary.

11.3.3 TCP Time-Outs

Sometimes an MX host is unavailable, either because the host itself isn't working or because there's a network failure
somewhere between that host and yours. It can take a while for an attempted TCP connection to time out and tell a
calling program that there's no answer at the other end, so an SMTP client should avoid trying to contact remote hosts
that don't answer.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

gmail-remote uses a simple scheme to track TCP failures. In the queue directory, the file queue/lock/tcpto contains a
set of up to 64 entries of 16 bytes, each representing a failed remote host. (This makes the file size 1024 bytes, which
generally fits in a single disk block that can be read or written in one operation.) Each entry in the file contains an IP
address, the time the host was last tried, and the number of consecutive times it tried and failed to contact the host,
capped at 10.

After gmail-remote makes its list of MX records to contact, before it tries to contact each MX, it looks up the host's IP
address in tcpto. If the IP is present and has been tried at least twice, and it's been less than about an hour since the
last try, it skips the host and goes on to the next. The exact wait time is randomized for each gmail-remote process, in
the range of 60 to 90 minutes, to avoid having a whole bunch of simultaneous attempted connections when the time-
out is up. Whenever gmail-remote connects successfully to a host, its IP is removed from tcpto. If it tries and fails to
contact a host, it updates the host's record, incrementing the retry count and resetting the last contact time (unless the
last contact time is less than two minutes old). If the host isn't already in tcpto, and tcpto is full, it discards an old
entry, using a heuristic that looks for an entry that was last tried a long time ago and has a low retry count.

The overall effect of this scheme is to track unavailable remote hosts and retry each host no more than about once an
hour. Once a host starts responding again, connections are tried whenever needed. If gmail-remote finds that all of the
MX hosts for a delivery are unavailable, either because it tried and failed to contact them or because they're listed in
tcpto as recently tried, the delivery attempt fails, and gmail-send will reschedule the delivery later using its quadratic
backoff rule.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

11.4 Remote Mail Failures
Remote delivery attempts can fail in a myriad of ways. Failures fall into two general categories: temporary, which
means that the delivery might work later and should be retried, or permanent, which means that the message can't be

delivered at all. On a temporary failure, gmail-send retries the delivery later, while on a permanent failure, it
immediately sends back a bounce message with whatever error report gmail-remote produced. Errors include:

Connected to host but greeting failed

Temporary. The remote server accepted the connection but never sent the initial SMTP greeting.

Connected to host but my name was rejected

Temporary. The remote host rejected the HELO command.

Connected to host but sender was rejected

Temporary or permanent. The remote host rejected the MAIL FROM command. If the remote code was 4xx it's
a temporary error, if 5xx a permanent error.

Host does not like recipient

Temporary or permanent. The remote host rejected the RCPT TO command. If the remote code was 4xx it's a
temporary error, if 5xx a permanent error.

Failed on DATA command

Temporary or permanent. The remote host rejected the DATA command. If the remote code was 4xx it's a
temporary error, if 5xx a permanent error.

Failed after I sent the message

Temporary or permanent. The remote host accepted the DATA command and the text of the mail message, but
returned an error code after the message was accepted. If the remote code was 4xx it's a temporary error, if
5xx a permanent error.

Qmail only delivers mail to one recipient at a time, but gmail-remote accepts multiple recipient arguments, and tries to
deliver to multiple recipients. It returns separate status codes for each RCPT TO and sends the message if any of the
recipients were accepted.

QMQP and QMTP

Dan has invented two host-to-host protocols for people who aren't thrilled with SMTP. Despite their similar
names, QMQP and QMTP are not compatible with each other and are intended for very different purposes.
Qmail comes with servers for both, called gmail-gmgpd and gmail-gmtpd. Both run from tcpserver and are
set up the same way as gmail-smtpd.

The simpler one is Quick Mail Queueing Protocol (QMQP) described at

QMQP is currently used only by mini-gmail, a stripped-down version of qmall that passes all mail dlrectly
to a smarthost for delivery. It has no queueing, no secondary hosts, and no internal security. To avoid
creating open spam relays, the TCP rules for tcpserver must permit connections only from known friendly
hosts and deny connections from everywhere else.

Mini-gmail is primarily useful to pass incoming mail across a firewall, and to run on clusters of computers
that share a single smart host (running regular gmail) for mail queueing and delivery. It's also occasionally
useful for mailing list load sharing with ezmIm running on one host, passing messages for delivery to a
smarthost. See Chapter 17 for details of setting up mini-gmail.

QMQP does not require or encourage single recipient deliveries; if a message has many recipients, the
message and all of the recipient addresses can be transferred quickly via QMQP. This means that for
mailing list load sharing, there's no need to split or cache the subscriber database on the smarthost. For
each message distributed to a list, ezmlIm can send the message and all of the recipient addresses quickly

via QMQP, even if there are many recipients.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Quick Mail Transfer Protocol (QMTP) is intended as a replacement for SMTP. It's much simpler than SMTP,
and just transfers a messages along with an envelope sender and a set of envelope recipients. To receive
QMTP mail, set up gmail-gmtpd the same way you set up gmail-smtpd. To control mail relay, it uses the
same rcpthosts and morercpthosts files and RELAYCLIENT tcpserver variable as gmail-smtpd.

The only QMTP client currently available is in the serialmail package, maildirgmtp, which is invoked exactly
the same way as maildirsmtp. Although QMTP indisputably transfers mail faster than SMTP, almost nobody
uses it. Partly this is because the QMTP client isn't integrated into gmail (and isn't available at all in other
MTAs), but mostly this is because there's no standard way for a server to announce that it has a QMTP
server available, analogous to a DNS MX record for SMTP. Dan proposed in 1997 to redefine the distance
value in MX records to encode both the server distance and the service (smtp, gmtp, etc.), and Russ
Nelson offers a patch to make gmail-remote use both gmtp and smtp, but QMTP remains an oddity not in
general use.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
11.5 Serialmail

Qmail was designed for an environment with fairly fast network connections, where the roundtrip delay on a connection
dominates the data transfer time, so it's faster to have multiple single-recipient deliveries in progress that can share the
connection. In environments where this is not true, the serialmail add-on package delivers one message at a time. It's
also useful to deliver mail to hosts via intermittent dialup connections.

To use serialmail, first configure gmail to deliver mail to a Maildir, then run programs from the serialmail package to
take mail out of the Maildir and send it across the Net. You can run it on a schedule to push out mail to a slow host or
on demand to send mail when a dialup host connects.

The serialmail package is installed the same way as other DIB software. It depends on the tcpclient program that is in
the UCSPI package. (That's the same package that contains tcpserver, so you should already have it installed.) The
most useful programs in the package include:

maildirserial

The driver program that selects messages from a Maildir, calls another program to try to deliver them, and
deals with the results

serialsmtp

The actual SMTP client called indirectly from maildirserial

maildirsmtp

A shell wrapper that calls maildirserial to deliver the files in a directory via SMTP

setlock
Runs a program with a file locked to ensure that multiple copies of the program aren't running simultaneously

To deliver mail to a domain with serialmail, first define the domain as a virtual domain and deliver all its mail into a
Maildir. If you want to handle the domain bad.example.com, add a line to virtualdomains like this:

bad.example.com:alias-badex

Then create ~alias/.qmail-badex-default, containing ./bemaildir/, to deliver all of the mail for that domain into
bemaildir.

Then, when it's time to deliver the mail, run a command like this:

setlock bemaildir.lock \
maildirsmtp bemaildir alias-badex- 10.2.3.4 my.example.com 2>&1 |
splogger serial

The setlock command uses bemaildir.lock as a semaphore to keep a new delivery session from starting if a previous one
hasn't finished yet. It runs maildirsmtp to do the deliveries. To find messages to deliver, it looks in bemaildir for files
with Delivered-To: lines starting with alias-badex-, which is the string that the virtual domain alias prefixes to mail
delivered there. (It ignores files with other Delivered-To: lines, so you can store mail for several different domains in
the same Maildir, running maildirsmtp with different address prefixes.) It connects to IP address 10.2.3.4 to deliver the
mail, and in the SMTP session uses my.example.com as the argument to the HELO command, which should be the
name of this machine. The messages are sent by SMTP, with the envelope recipient addresses being the ones in the
Delivered-To: lines with the alias-badex- removed, so the mail is redelivered to the original addresses.

All of the details are handled by maildirserial: finding the files, passing their names to smtpserial, checking the return

codes and deleting the files if the delivery was successful, sending back a bounce if the delivery failed and the file has
been there too long, and leaving the file for another try otherwise.

11.5.1 Using Serialmail

If you're delivering to a slow host at a fixed address, the easiest way to push out the mail is to run maildirsmtp from
cron on a suitable schedule. Run it once an hour, or if the remote host is busier at some times of day than others, run
hourly during the slow part of the day.

If you're delivering to a host that connects intermittently via dialup, start maildirsmtp from the script that runs when

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the remote host connects. Typically the script will have a variable like $REMOTE with the current IP address of the
remote, which you can use in the call to maildirsmtp. If the host stays connected for a long time, you may want to push
out mail periodically while it's connected. There's no elegant way to do that, but see Chapter 18 for an example of a
serviceable approach.

If your host is one that dials into a hub, you can also use maildirsmtp. In virtualdomains set a catch-all route to put all
outgoing mail into a Maildir:

:alias-catchall
with ~alias/.gmail-catchall delivering into the maildir. Then run maildirsmtp from the dialout startup script to send your

mail to the hub. Again, if you stay connected for a long time, you may want to run it periodically while you're
connected.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
Chapter 12. Virtual Domains

In gmail-speak, a virtual domain is one handled locally but with a different set of mailboxes from the home domain.
Qmail's virtual domain handling is one of its strongest features, thanks to a simple and clean design.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
12.1 How Virtual Domains Work

Qmail turns addresses in a virtual domain into subaddresses of a local user, then handles the subaddressed message
like any other local message. The translation from virtual to local addresses is in the control file virtualdomains.
Assume, for example, that it contained the line:

myvirt.com:virtuser

Then mail addressed to marvin@myvirt.com is translated to virtuser-marvin, and then delivered normally. If there's a
user virtuser, it checks for ~virtuser/.gmail-marvin or ~virtuser/.gmail-default. If there's no such user (which is often
the case), the address is turned into alias-virtuser-marvin and delivered under the control of ~alias/.gmail-virtuser-
marvin or ~alias/.qmail-virtuser-default or ~alias/.gmail-default.

When gmail translates the mailbox part of a virtual domain address, it does not change the domain. That is, in the
previous example, marvin@myvirt.com is translated to virtuser-marvin@myvirt.com. This seems like a mistake,
because this is not Marvin's address, until you realize that the translated address is used only within gmail. The virtual
domain remains with the address throughout the delivery process, so delivery programs can check $HOST or
$RECIPIENT to tell whether a message was addressed to a virtual domain or to the (nearly) equivalent local address.
Later in this chapter, fastforward makes good use of this ability.

Don't Forget the DNS

If you want the outside world to be able to send mail to your virtual domains, they all need MX records in

the DNS. If your local tests all work fine, but people elsewhere can't send you mail, DNS misconfiguration

is a likely problem. If people can send you mail but your server rejects it, you forgot to put the domains in
rcpthosts or morercpthosts.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
12.2 Some Common Virtual Domain Setups

Although gmail's virtual domain mechanism is extremely flexible, most of its applications fall into a few common
models.

In each case, you must pick a local user or subaddress to assign the virtual domain to. It can be a real user in
/etc/passwd, or if you use gmail's users mechanism (see Chapter 15), a gmail-only user. If you handle several virtual
domains in the same way, all the domains can share a user, with delivery programs distinguishing among them by
checking $HOST or $RECIPIENT. If you're only forwarding mail, you can handle virtual domains under ~alias;
otherwise, it's a good idea to set up separate user IDs per virtual domain or per kind of virtual domain so that the
programs you run can only smash that user's files when they break. Also, if you want to delegate the management of a
virtual domain to someone else, make a separate Unix user account for the domains so the manager can log in as that
user and change the domain's mail setup.

If you want people outside your network to be able to send mail to the virtual domain, you must list the domain in
rcpthosts. If you're using a virtual domain as a service gateway for your own users to a fax server or the like, don't put
it in rcpthosts.

Finally, each time you change the contents of virtualdomains or locals, you must tell gmail to reread them by sending a
hang-up signal. Assuming you're running gmail under daemontools, use:

svc -h /service/gmail

12.2.1 Mapping a Few Addresses with .gmail Files

In the simplest case, you can just create a .gmail file per address. Assume you have the domain myvirt.com, with
addresses william, wilbur, and wilfred, which you want to forward to local addresses biff, buddy, and butch,
respectively. This example doesn't do any special processing on the mail, so just set it up as a subuser of alias. Add this
to virtualdomains:

myvirt.com:alias-myvirt

(Don't forget to signal gmail to reread the configuration.) Now you need to create only three .gmail files in ~alias and
you're done:

.gmail-myvirt-william &biff
.gmail-myvirt-wilbur ~ &buddy
.gmail-myvirt-wilfred &butch

That's it. Mail to the three addresses is now forwarded to the three mailboxes.

In a realistic example, you'll probably want to define a few more standard addresses such as postmaster and abuse.
Either you can create individual control files like .gmail-myvirt-abuse, or you can make a catchall file to collect mail to
all other addresses in the domain, .gmail-myvirt-default. A catchall file catches mail to misspelled versions of the three
explicit addresses as well as to other administrative addresses such as webmaster, hostmaster, and support.
Unfortunately, the majority of mail to other addresses is likely to be spam. If you have a spam filter, aim the default file
at a filtering program and deliver whatever survives the process, or do nothing about the process and bounce the mail.
If you have no .gmail-myvirt-default in ~abuse, but there is a global catchall .gmail-default, the global catchall will
handle all of the misaddressed myvirt mail, which you do not want. To bounce any misaddressed mail, put something
like this in .gmail-myvirt-default:

| bouncesaying "Not a valid address at myvirt.com."

12.2.2 Mapping Many Addresses with fastforward

If you have more than a handful of addresses to forward, rather than creating dozens or hundreds of .gmail files, it's
easier to put the forwarding instructions in one file and use fastforward to forward the mail. The table for fastforward is
created by either newaliases (from /etc/aliases) or setforward (from any file you want). For virtual domains, setforward
is more convenient.

If you have several virtual domains, either put the forwarding rules for each domain into a separate file or put the rules
for several domains into a single file. Unless the rules for all the domains are identical or nearly so, it's easier to have a
file per domain.

First, set up the virtualdomains line(s) for the domain in question. Each fastforward file needs a different user or
subuser. Again, the forwarding can be via subaddresses of ~alias or else delegated to a different user. Here are some
lines for three domains handled in a single file and a fourth domain handled separately, all in ~alias:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

example.com:alias-example
example.org:alias-example
example.net:alias-example
myvirt.com:alias-myvirt

Then create the .gmail files. In .gmail-example-default, put:
| fastforward -d example.cdb

And in .gmail-myvirt-default, put:

| fastforward -d myvirt.cdb

The --d flag tells fastforward to use $DEFAULT@$HOST as the address to forward rather than the normal $RECIPIENT.
The difference is that with --d the user prefix is stripped off, so that even though mail to, say, fred@example.com is
delivered to alias-example-fred@example.com, the address that fastforward uses is stripped back to
fred@example.com.

Put the forwarding instructions in files called example and myvirt, and set up Makefile to make the CDBs:

makefile for two fastforward files
example.cdb: example
/var/gmail/bin/setforward $@ $@.tmp < example

myvirt.cdb: myvirt
/var/gmail/bin/setforward $@ $@.tmp < myvirt

Finally, make the files of forwarding instructions. As described in Chapter 4, the instructions are either addresses to
forward or programs to run. In the single-domain file, each address is just a mailbox:

fred: phred

In the multidomain file, each address is just a mailbox if it applies to all of the domains, or it can include the domain if
the address is handled differently in the various domains:

fred@example.com, fred@example.org, and fred@example.net all same
fred: phred@realdomain.com

robert handled differently

robert@example.com: bob

robert@example.org: robbie

robert@example.net: | bouncesaying "No such mailbox. Go away."

One thing that fastforward cannot do is deliver directly to a Maildir or mailbox. If a few of the addresses in a domain go
to mailboxes, you can create .gmail files for those addresses, but handle everything else with fastforward. If, say, you
want to put all the abuse mail in a mailbox, create .gmail-myvirt-abuse or .gmail-example-abuse containing:

./abuse.mbx

You can't distinguish among domains without running a command that tests the value of $HOST, so you can't
distinguish domains and deliver to a mailbox in one step. If you want to deliver the three example abuse addresses to
separate mailboxes, forward each of them to a different local address, then make .gmail files for each of those local
addresses.

12.2.3 Per-User Subdomains

Although gmail makes it possible to give users an unlimited number of subaddresses using hyphens, some people
dislike hyphenated addresses, either because they confuse their correspondents or because it's too easy to "untag" the
address by removing the part after the hyphen. Using virtual domains, you can give each user a separate subdomain,
so that, for example, if user ella has a subscription to the "mental" list and wanted to use a tagged address, she could
use mental@ella.myvirt.com, which gmail could internally handle as the subaddress ella-mental.

This trick turns out to be extremely easy to set up. First, put wildcard subdomain entries into virtualdomains (note the
leading dot):

.myvirt.com:alias-sub

and into rcpthosts:

.myvirt.com

Then create .gmail-sub-default containing:
| forward "$HOST3-$DEFAULT@myvirt.com"

You may want to treat a few administrative addresses specially, so that the system manager still gets all of the mail to
postmaster and abuse. That's easily arranged (all on one line, although it's split here):

| case "$DEFAULT" in postmaster|abuse) forward $DEFAULT ;;
*) forward "$HOST3-$DEFAULT@myvirt.com" ;; esac

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Now mail to any subdomain of myvirt.com is handled as a virtual domain, and the .gmail file takes the subdomain
($HOST3, because it's the third component of the hostname from the right) sticks it in front of the existing mailbox
name, and then forwards to that address.

This trick works well so long as all subdomains of a given domain are to be treated as mailbox addresses. If some
subdomains are used for other purposes, such as hostnames or web server names, I find the results confusing,
particularly if some of the hostnames appear in /locals. Either use a virtual domain for mail that isn't used for anything
else or, if the number of users is small, list the individual user subdomains in virtualdomains or rcpthosts, so mail to
subdomains you don't use won't be accepted:

in virtualdomains
alan.myvirt.com:alias-sub
barb.myvirt.com:alias-sub
chad.myvirt.com:alias-sub
debi.myvirt.com:alias-sub
ella.myvirt.com:alias-sub
fred.myvirt.com:alias-sub

in rcpthosts
alan.myvirt.com
barb.myvirt.com
chad.myvirt.com
debi.myvirt.com
ella.myvirt.com
fred.myvirt.com

12.2.4 Service Gateways

Virtual domains provide an elegant mechanism for gateways from SMTP email to other services. They're useful both for
sending mail by other means such as uucp, and for nonmail services such as mail-to-usenet and mail-to-fax. The
mailbox part of the address tells the gateway how to pass the message to the other service. For uucp, it is the
username on the remote system, for a usenet gateway, the newsgroup, for a fax server, the phone number to fax to.
It's also possible to encode other information in the address; in my local mail-to-news gateway, I encode hints about
moderated groups and bounce handling of unforwardable messages, as described in the next section.

The general strategy for a service gateway is to create a virtual domain, then deliver all the mail for that domain to a
program that performs the gateway function. Depending on how long the gateway program takes to run and how
quickly you want messages passed along, you can either set up the gateway program to run each time a message
arrives or collect all the messages in a Maildir and run the gateway program every once in a while to process all the
messages in a batch.

12.2.4.1 Gateway design

When setting up gateways, take a few minutes to be sure that your setup will work well for your users. Most
importantly, be sure that the gateway setup makes sense from the point of view of users, and not just for the
convenience of the gateway administrator. One of the worst mistakes of sendmail's design is that the syntax of
addresses depends on the scheme used to transport the mail to a remote system, a detail that users rarely care about.
When setting up service gateways, be sure not to recreate the same mistake. If you're setting up a gateway to forward
mail by uucp, don't create a local virtual domain called uucp with addresses like fred@faraway.uucp or
faraway!fred@uucp, thereby forcing remote users to use awful hacks like fred%faraway.uucp@example.com or
faraway!fred%uucp@example.com. Instead, use a naming system that reflects the details that matter to the user. If
faraway is a system that sends and receives mail, integrate its addresses into the rest of the mail addressing system,
something like fred@faraway.example.com. This means, among other things, that if the remote system switches to a
different mail system, user addresses don't have to change.

It's not hard to arrange your virtual domain setup so that the choice of the remote service is entirely handled by the
virtualdomains file. Assume you have three uucp peers called faraway, distant, and pluto. Then you could set them up
like this, and have the gateway program check $HOST or, more likely, $HOST3 to pick out just the hostname:

faraway.example.com:alias-uucp
distant.example.com:alias-uucp
pluto.example.com:alias-uucp

As discussed in the next section, you can easily handle all three with a single gateway.

12.2.4.2 Gateway addressing

A little planning when setting up your gateway can make it both easier for people to use and easier for you to
implement. If the gateway is to another email system, the only sensible approach is to give the other system a domain
name so mail to its users looks like mail to any other domain on the Net.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If the gateway is to another service, try to arrange for addresses to be easy to remember. For example, a fax gateway
would take addresses like 13115552368@fax, but you might as well also accept 1-311-555-2368@fax and 311-555-
2368@fax and, if all the users are in the same area code, 555-2368@fax. For a mail-to-news gateway, use addresses
like alt.flame@news.

Sometimes it makes sense to embed some options into the gateway address. For example, in my mail-to-news
gateway, I sometimes want the gateway to add an Approved: header to the posted article, and sometimes I want to
avoid sending bounce messages about failed posts (newsgroups that log filtered spam, for example, which mostly has
fake return addressesm). The easiest way to encode flags into the address is with a prefix like approve-
alt.flame@news and nobounce-local.spamtrap@news. You can also encode the flags into the domain, like
alt.flame@approve.news, but I've found prefixes to be easier to use.

[1] 1f you create a local moderated newsgroup corresponding to a mailing list, set the moderator's address for that
newsgroup to the list's submission address, and route incoming mail from the list to the mail-to-news gateway
address with the approval option, you get a pretty good two-way gateway.

12.2.4.3 Per-message service gateways

Running the gateway program for each message is usually the easiest approach to implement. Create a .gmail-default
file that runs the program, and either pass the value of $DEFAULT as a program argument or have the program pick it
up from the environment.

To continue the uucp example, a simple gateway for a single system could be set up in virtualdomains like this:
faraway.example.com:alias-faraway

In ~alias/.gmail-faraway-default, it would be:

| uux -p "faraway!rmail" "$DEFAULT"

To generalize this for multiple uucp hosts, route all the uucp domains to alias-uucp, and create ~alias/.gmail-uucp-
default containing:

| uux -p "$HOST3!rmail" "$DEFAULT"

Now the hostname, which precedes .example.com in the domain name, is picked out and handed to uucp. If you have a
variety of mail gateways, you need to adjust only the lines in virtualdomains to control which domains are sent through
which gateways.

For a gateway to a different kind of service, such as net news or fax, you must write your own gateway program in C or
Perl to read through the message headers to pick up any lines the gateway needs, such as Subject or Date (not To, that
comes from $DEFAULT), and pass the body to the program for the other service.

In the special but fairly common case that the gateway looks up an address in a database of some sort and remails the
message, your gateway program can run gmail's forward program to do the remailing; there's no need to write your
own if you don't want to.

If your gateway encodes options into the address (such as approve- in the previous section), you can easily handle
them with an extra .gmail file, such as .gmail-approve-default, that calls the gateway program with whatever extra
arguments it needs to implement the option.

12.2.4.4 Batched service gateways

Sometimes it's easier to run the gateway program periodically, either from cron or when some other event happens,
such as when a remote system connects via PPP. In that case, you can have all of the mail for a virtual domain or group
of virtual domains delivered into a Maildir, then have the gateway program take the messages out of the Maildir and do
whatever it does with them, looking at the Delivered-To: line at the front of each message to tell what the message's
recipient address is.

The serialmail package, discussed in Chapter 9, provides a general purpose framework for building batched gateways.
The maildirserial program looks through a Maildir for files with a Delivered-To: line that matches a specified pattern
(this lets several similar gateways share a Maildir), passes the names of matching files to a gateway program, reads
delivery reports from the gateway, and optionally sends bounce reports for undeliverable messages.

When you run maildirserial, you give it the name of the Maildir, the address prefix, and the name of the gateway
program to run. When it runs the gateway program, it sends to the gateway the names of files to process, and the
gateway sends back delivery reports. The gateway program should process all the files that maildirserial gives it, but if
it doesn't, maildirserial reruns the gateway until it either produces a delivery report for each file or makes no further
progress.

The gateway program runs with the Maildir as its current directory, and pipes to and from maildirserial. The names of

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

files to process arrive on the standard input, separated by nulls. It sends delivery reports to standard output. Each
report consists of the filename and a null, as received from stdin, followed by a one-letter status code, an optional line
of descriptive text for the logs or bounce message, and a newline. The status code is K if the message was delivered
successfully, Z if the delivery failed temporarily and should be tried later, and D if the delivery failed permanently and
the message should be bounced. If either the delivery succeeded or it failed permanently and a bounce message was
sent, mailderserial will delete the file; otherwise the file stays so the delivery can be tried again.

As a concrete example, here's the framework of a Perl gateway program. It takes one command-line argument, the
target address prefix. It reads null-separated filenames, opens the files, picks up the envelope sender and recipient
addresses from the Return-Path: and Delivered-To: lines, does something with the file, and sends back a delivery
report:

$prefix = shift or die "need prefix";

while(!eof STDIN) {
{ local $/ = "\0"; # read null separated file names
$fn = <STDIN>;
chop $fn;
}

open(MSG, $fn) or die "cannot open 'fn\n";

if(<MSG> =~ m{Return-Path: <(.*)>}) {
$sender = $1;

}else {
close MSG;
print "$fn\0Dno sender address\n";
next;

¥
if(<MSG> =~ m{Delivered-To: $prefix(.*)}) {
$recip = $1;
Yelse {
close MSG;
print "$fn\0Dno recipient address\n";
next;

}
do something with the message here

close MSG;
print "$fn\OKmessage delivered\n";

}

If this script were called ~/bin/gate, the local address is alias-myvirt, and the Maildir is called myvirtmail, then invoke it
as:

setlock myvirtmail.lock \
maildirserial -b -t604800 myvirtmail alias-myvirt- \
~/bin/gate alias-myvirt- 2>&1 | \
splogger serial

The call to setlock prevents two copies of maildirserial from running at once, and piping through splogger sends the
results to syslog. Note that alias-myvirt- occurs twice, once for maildirserial and once for gate, and that it ends with a
hyphen to prune off everything before the virtual domain mailbox. The --b flag tells maildirserial to bounce mail in case
of a permanent failure, and the --t flag tells it to treat a temporary failure as permanent after a week. Other than for
debugging, you should always include them, perhaps adjusting the time limit for temporary failures. Run maildirserial
from cron if you want to push stuff through the gateway on a fixed schedule, or if the gateway depends on a network or
dialup connection that's not always available, start it from the script that starts the connection, as described in Chapter
9.

When debugging your gateway program, rather than firing up maildirserial, mail a few test messages to your gateway
that will land in your Maildir files, then use a text editor to create a file containing the names of those files, each
followed by a null character (typed as Ctrl-V Ctrl-@ in vi, or Ctrl-Q Ctrl-@ in emacs). Then run your gateway with input
redirected from that file. You can rerun it as often as you need to, because your gateway program doesn't delete its
input files.

If your gateway program uses a TCP/IP connection to a remote system, place tcpclient between maildirserial and your
gateway program to open the connection, like this:

setlock maildir.lock \

maildirserial -b -t 1209600 maildir prefix \
tcpclient -RHIO host port \
gatewayprogram prefix

The gateway program reads and writes from and to the network on file descriptors 6 and 7, still using 0 (stdin) and 1
(stdout) for filenames and delivery reports. See Appendix A for a mail-to-news gateway using maildirserial and
tcpclient. To debug programs running under maildirserial and tcpclient, 1 usually redirect the network connection to my
tty so I can manually play the part of the remote server and step through the sequence of commands. To do that, use
some shell redirections for the input file mentioned previously and the terminal:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

gatewayprogram <listofinputfiles 6</dev/tty 7>/dev/tty

Internet services including SMTP and NNTP require a return character before the line feed at the end of each line, while
input from /dev/tty just has a newline. To work around that, I write my scripts so they strip out the \r and work either
way. Alternatively, if the server needs to send more input than you can easily type, put a sequence of input messages
in a file, edit in the \r at the end of each line, and run the gateway program redirecting file descriptor 6 from that file.

The example code shown here handles the messages sequentially, one at a time in order, but maildirserial doesn't
require that you do so. Your gateway can process the files it passes in any order, individually or all at once, so long as it
sends back an appropriate status report for each file that it's processed. The status reports do not need to be sent in
the same order that the filenames were received, and the program can receive as many filenames as it wants before
sending back any reports. (maildirserial runs as two independent processes: one reading the Maildir and sending the
filenames, and the other receiving the reports, deleting processed files, and sending bounces.)

If your gateway won't ever bounce back messages sent to invalid addresses or have a temporary gateway failure, you
don't need to use maildirserial. Just run your program as needed (from cron or otherwise). It should read the Maildir's
new subdirectory and process all the files it finds there, deleting each one as it's done. You should still use setlock or
the equivalent so that you don't get multiple copies of the gateway running at once.

If you encode options into your gateway address or domain, your gateway program must decode the address from the
Delivered-To: line to pick out the options. I write most of my gateway programs in Perl, so the decoding takes only a
few lines of code.

12.2.5 Mapping Individual Addresses

A rarely used virtual domain option maps individual addresses in a virtual domain. It's primarily useful to short-circuit
mail to local users who also have addresses in other places. Let's say you're at the two-person East Podunk office of
your company, connected by a slow dialup line, with user addresses fred@epodunk.example.com and
ethel@epodunk.example.com, but the company uses a standardized addressing scheme so to the outside world the
addresses are fred@example.com and ethel@example.com. If Fred sent a message to ethel@example.com, it has to go
out over the dialup link and be forwarded back, probably a lot later. To avoid that, you can special-case the two
addresses to be local:

fred@example.com:alias
ethel@example.com:alias

This routes these two addresses locally to alias-fred and alias-ethel, which you can handle with .gmail files, while
leaving the rest of the example.com domain to be routed normally.

It's not very useful to override individual entries in local virtual domains, because you receive almost exactly the same

effect by using .gmail files; that is, if the mail for fred is to be handled differently from everyone else's and everyone
else's mail is handled by ~myvirt/.qmail-default, you can put Fred's special rules in ~myvirt/.gmail-fred.

12.2.6 POP Toasters

A POP toaster is a virtual domain in which all (or nearly all) of the mailboxes are routed to mailboxes that users can
retrieve via POP and other remote access services. POP toasters are covered in detail in Chapter 13.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
12.3 Some Virtual Domain Details

Finally, here are a few virtual domain odds and ends.

12.3.1 gmail-foo Versus gmail-alias-foo

After gmail rewrites a virtual domain address into a local address, the local address is then handled just like any other
address. In particular, if there's no match for the rewritten address, it's handled by ~alias. This means that if there's no
local user myvirt, these two lines are equivalent:

myvirt.com:myvirt
myvirt.com:alias-myvirt

Use the latter version, to make it explicit that you're not expecting the user to exist. That way if someone later creates
a user myvirt, mail to that virtual domain won't mysteriously start failing.LZl

[2] Guess how I learned about this trick.

12.3.2 Local-Only Domains

If you provide a service gateway, such as mail-to-fax or mail-to-news, you'll probably want to let users on the local
network use it, but not outsiders. To ensure that, create a subdomain for the gateway, (e.g., fax.example.com), but
don't put the domain in the DNS. (If you have split-horizon DNS, with internal hosts seeing different data than external
hosts, it's OK to put the gateway domain in the DNS visible to local hosts.) Also be sure not to put the gateway domain
in rcpthosts, so that the only people who can send mail to the gateway domain are local users and authorized SMTP
users who can send to nonlocal domains. Finally, in the gateway delivery program, check that the mail was sent to the
virtual domain, not to the equivalent local address. If you do individual deliveries, that's easily handled in the .gmail
file:

| case "$HOST" in fax|fax.example.com) exit O ;; *) bouncesaying "Not authorized." ;;
esac
| gatewayprogram "$DEFAULT"

If you do batched delivery via a Maildir, this trick also works, because gmail treats a Maildir delivery as a program
delivery using an internal program:

| case "$HOST" in fax|fax.example.com) exit O ;; *) bouncesaying "Not authorized." ;;
esac ./faxmaildir/

In either case, the delivery program can check the domain itself, by checking $HOST in individual deliveries or by
checking the domain in the Delivered-To: line in batched gateways, but it's usually easier to check in the .gmail file so
the gateway doesn't have to be coded to know what domain it's handling.

An alternate approach is to make all addresses virtual. That is, create a virtual domain for all the local mailboxes, and
put something like localdomain in locals but not rcpthosts for miscellaneous, locally generated mail. If you have many
local users, this approach is painful because you have to map all the users' mail from the virtual domain into their
mailboxes, but it's not a bad idea on systems that are supposed to be POP toasters or gateways without local shell
users.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 13. POP and IMAP Servers and POP
Toasters

If you want to access your mailbox across a network using mail user agents (MUAs) such as Eudora, Microsoft
Exchange, Pegasus, mutt and fetchmail, you must run the gmail POP server. The gmail POP server allows these clients
to read and delete mail from their mailbox, but doesn't include a method for sending email; use gmail-smtpd or ofmipd
for that.

Consistent with gmail's component design, the gmail POP server is actually three separate programs that cooperate to
create the POP service. (Traditional POP servers such as gpopper are typically implemented as a single large program.)

The gmail POP server only handles Maildirs, not mbox mailboxes or anything else. If you are installing gmail on an
existing mail system, you must convert any existing mailboxes to Maildir if you want to use the gmail POP service. (If
you want to keep using mboxes, you can use the popular gpopper POP server, which is not covered here.)

POP Mail Versus Local Mail Clients

If you want to be able to read your mail both with a local mail client running on your mail host and with
POP, you have a few options, described in Section 4.8 in Chapter 4. If you're using Maildirs, your best bet
is to use either the freeware mutt MUA or Courier IMAP, described later in this chapter, and an IMAP client
such as pine. Or you can deliver to mboxes, using gpopper for POP and any of the many MUAs that handle
mboxes.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
13.1 Each Program Does One Thing

The gmail POP server consists of a set of three cooperating programs (or four if you include the copy of tcpserver that
runs the rest of the server):

gmail-popup

Read the username and password from the network connection

checkpassword

Validate the username and password

gmail-pop3d

Handle requests to read and delete mail from the user's Maildir

13.1.1 The Flow of Control

In detail, a POP session proceeds as follows:

® tcpserver listens for network connections on the POP3 port 110 and spawns gmail-popup.

® gmail-popup inherits the environment variables and the socket created by tcpserver. (gmail-popup actually has
no idea that it is connected to a socket; it merely reads from stdin and writes to stdout—knowing this comes in
handy when we want to test the POP Server.) gmail-popup performs one very simple function. It understands
just enough of the POP protocol to read the username and password sent across the network. Once this data is
read, gmail-popup spawns checkpassword, passing it the username and password. gmail-popup has now
completed its part in this session.

® checkpassword checks the username and password against the password file. (It uses getpwnam() which
usually reads /etc/passwd, but this detail varies considerably from one version of Unix to the next.) If the
password is correct, checkpassword extracts information about that user from the password file, does enough of
a login process to permit gmail-pop3d to do its work, and now spawns gmail-pop3d.

® gmail-pop3d handles the rest of the POP3 session with the client. When gmail-pop3d exits, the POP session is
completed.

13.1.2 Functional Partitioning

Using four programs to establish each POP session might seem like a lot of needless work. But each program is small
and consequently easy to understand, easy to test, and creates very little load on a Unix system.

Clean functional partitioning is not just a theoretical ideal. It has two very practical benefits: flexibility and testability.

13.1.2.1 Flexibility

The clean functional boundary between the different parts makes it very easy to replace any part with a program that
meets your specific needs.

checkpassword is the most obvious and popular candidate for replacement, especially by large installations that tend to
use a network directory service such as LDAP or a proprietary database such as Oracle for their repository of username
and password information. (See POP Servers and POP-before-SMTP later in this chapter.) Given that the core of
checkpassword is less than 150 lines of C code, writing a replacement program is not hard. Anything you might want to
do on a per-user basis is possible by replacing one small program, checkpassword.

13.1.2.2 Testability

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The gmail POP server is very stable and very reliable. When installed correctly it does work and it does work well.
Almost invariably, a new installation doesn't work because the installation instructions haven't been followed precisely.

The gmail POP server consists of four components rather than just one, so each component can be tested individually to
identify problems. For example, test checkpassword separately from the network, test gmail-pop3d separately from
checkpassword, and so on.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
13.2 Starting the Pop Server

Setting up the POP server is similar to setting up the gmail SMTP server.

13.2.1 Prerequisite Packages

The POP server depends on the daemontools and ucspi-tcp packages. If you've set up gmail as described in Chapter 3,
these tools are already installed and available. You also need a checkpassword package. If you want to use the same
passwords that you use for shell logins, the standard checkpassword package at http://cr.yp.to/checkpwd.html will do
the trick. The checkpassword section of www.gmail.org has a long list of other versions to handle virtual domains,
retrieve passwords from databases, support multiple mailboxes per user, and other options. The discussion here
presumes that you're using the standard version, but the component design of the POP server means that you can
substitute your own version without changing the rest of the setup.

13.2.2 Directories

Two directories need to be created: one that contains the scripts and data files used to run the POP server, and the
directory that will contain the log files. (You can put these directories anywhere you want, but the following names are
chosen to match the names used in the widely used "Life With Qmail" setup.)

As root, create the script and data file directories, and the log directory (see Example 13-1).

Example 13-1. Creating the POP server directories

mkdir /var/gmail/supervise/qmail/pop3d
mkdir /var/gmail/supervise/qmail/pop3d/log
chmod u=rwx,go= /var/gmail/supervise/gmail/pop3d

mkdir /var/gmail/supervise/gmail/pop3d/log

mkdir /var/gmail/supervise/gmail/pop3d/log/main

chown gmaill /var/gmail/supervise/gmail/pop3d/log/main
chmod u=rwx,go= /var/gmail/supervise/gmail/pop3d/log

13.2.3 The Listening Script

Example 13-2 has been purposely written to be as flexible as possible and will work for most situations. It goes into
/var/qgmail/supervise/gmail-pop3d/run.

Example 13-2. The listening script

1. #!/bin/sh

2. limit datasize 2m

3. exec \

4. tcpserver \

5. -HRv -l pop.example.com \

6. -x /var/gmail/supervise/gmail-pop3d/rules.cdb \
7. 0110 \

8. /var/gmail/bin/gmail-popup pop.example.com \
9. checkpassword

10. /var/gmail/bin/gmail-pop3d Maildir 2>&1

Once created, the script needs to be made executable with:
chmod +x /var/gmail/supervise/gmail/pop3d/run

The beginning of this script should be familiar from the SMTP daemon setup, from the exec on line 3 to the rules file on
line 6, and the IP address and port number on line 7. (If you want to run the new POP server in parallel with an old
copy of gpopper for a while, pick a specific IP address not used by gpopper instead, or temporarily run the server on a
port other than 110.) Line 8 runs gmail-popup with a single command-line option of pop.example.com, the domain name
used in the POP protocol to get the username and password. Line 9 is the command that gmail-popup runs once it has
the username and password. In this case it is checkpassword. There are no command-line options for checkpassword. Line
10 is the command that checkpassword runs once it has verified the username and password. In this case it is gmail-
pop3d. gmail-pop3d uses the supplied command-line option as the path of the Maildir to access. checkpassword switches

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

to the user's home directory, so this will be the user's own Maildir.

There are variations possible with this script. Here are a few of the most likely ones:

® The limit set on line 2 may need to be increased if the mailboxes have a very large number of messages (more
than 10,000) because the POP server uses a small amount of memory to keep track of each message.

® Removing the "HR" options from line 5 provides more information for logging at the expense of increasing the
time it takes to establish a connection. See the tcpserver manpage for details.

® If you allow POP connections from anywhere on the Internet, then you can remove line 6. Note that the
username and password are sent over the POP connection in the clear, which makes these connections
vulnerable to snooping. So be careful when making the decision to allow POP connections from networks
outside of your control.

13.2.4 The Logging Script

The second script needed as part of the POP server is the script that runs multilog to log the connection details (see
Example 13-3). Put this script into /var/qmail/supervise/qmail-pop3d/log/run.

Example 13-3. POP log/run

1. #!1/bin/sh

2. exec setuidgid gmaill \

3. multilog t s4000000 ./main

Once created, the script needs to be made executable with:

chmod +x /var/gmail/supervise/gmail-pop3d/run

This script is the same as the ones used for gmail-send and gmail-smtpd.

13.2.5 tcpserver Rules

The last step before putting this all together is to populate the rules.cdb file with the networks that are allowed to
access the POP server. The discussion of setting up SMTP servers in Chapter 7 explains, how to create rules files and
run tcprules, so just populate the file with a rule that allows access from everywhere, as shown in Example 13-4.

Example 13-4. Populating rules.cdb

cd /var/gmail/supervise/gmail-pop3d
echo :allow >rules.txt
tcprules rules.cdb rules.tmp <rules.txt

13.2.6 Putting It All Together

It is finally time to start the POP server.l1] with svscan running, link the newly created service directory into /service:

(11 1f you have another POP server running, you must stop that first of course, or else run the POP server on a
different IP address.

In -s /var/gmail/supervise/gmail-pop3d /service

Within five seconds, svscan will notice the new entry in /server and start the POP server.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
13.3 Testing Your POP Server

The easiest way to test the POP server is to connect to it with your favorite MUA. Can you retrieve mail? If so,
congratulations.

If the POP server doesn't work, check the log file /service/gmail-pop3d/log/main/current if that file exists. If it doesn't
exist, multilog isn't running, probably due to a protection error or typo in the log/run file, so do a ps and look for clues
in the readproctitle line. If the log file exists, it may contain a diagnostic message that identifies the problem. If this
doesn't work, check each installation step to diagnose the problem. There are two major categories of problems. Either
you can connect to the POP server and then "something" goes wrong or you cannot connect to the POP server at all.

13.3.1 You Cannot Connect to the POP Server

If you cannot connect to the POP server at all but the other parts of gmail are running, it is likely that there's a typo or
protection error in the run file.

As root run:
svstat /service/gmail-pop3d /service/gmail-pop3d/log
You should see something like this:

/service/gmail-pop3d: up (pid 37197) 5021 seconds
/service/gmail-pop3d/log: up (pid 37198) 5022 seconds

showing "up" as the status for both. If not, check the permissions and contents of the failing run file.

13.3.2 You Can Connect, but Then Something Fails

This is actually a good sign as it means that the supervise processes are running and the run scripts are at least
partially correct. There are two primary reasons for a connection starting and then failing; a good way to find out the
precise nature of the problem is to use telnet to manually step through the POP session to see exactly what happens.

First connect to the POP server with telnet like this:
telnet localhost 110

(If the POP server is running on a particular IP address or different port, telnet to the appropriate place.) After a few
seconds you should see a banner from the POP server, something like this:

Connected to example.com.
Escape character is '*]'.
+0K <54559.982199402@example.com>

If you don't get the "+OK" line, then check the run script for typos. Most likely the gmail-popup line is wrong in some
way. If that looks right check that the tcprules (/service/popd/rules.cdb) has been created with the correct entries.

If you receive the +OK line, tcpserver has successfully started gmail-popup. The next step is to try and log in by
entering the login and password like this:

USER yourlogin
PASS yourpassword

(Substitute a valid login and password for "yourlogin" and "yourpassword.")
If the output is like this:

-ERR authorization failed
Connection closed by foreign host.

and you are sure you entered the login and password correctly, then the problem is likely to be that checkpassword is
unable to check the login and password.

For debugging purposes, run it directly from the shell:

perl -e 'printf "someuser\000topsecret\000123456\000"'>foo
./checkpassword sh 3<foo

$id

uid=174(someuser) gid=84(somegroup) groups=84(somegroup)
$ pwd

/home/someuser

$

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The input to checkpassword is on file descriptor 3, consisting of a username, password, and timestamp, or other added
info, each terminated by a null byte. (The standard version of checkpassword ignores the contents of the timestamp,
but the field has to be present.) In this example, the Perl line puts the input into a file. Be sure to put double quotes
inside single quotes. Then, as superuser, so it can change to another user ID, run checkpassword opening the file on
descriptor 3, and tell it to run the shell as the next program. Then use id and pwd to verify that the user, group, and
home directory are correct. This test isn't very useful for the standard version of checkpassword but can be a major
timesaver when you're debugging a custom version for a POP toaster, as I explain later in this chapter.

POP Servers and POP-before-SMTP

The POP-before-SMTP relay control scheme, discussed in Chapter 7, requires a few extra items in the
listening script in order to track the IP addresses from which users have logged in for POP mail. The
modified version of the listening script with the extra steps is described in Chapter 7.

Qmail and LDAP

Lightweight Directory Access Protocol (LDAP) is the most common system used to handle address book-
style data shared over a network. It's far more complex than what gmail needs to drive a POP toaster, but
for organizations that already use LDAP to keep the company directory, gmail-ldap at
http://www.nrg4u.com/ (described in "Life with gmail-ldap" at http://www.lifewithgmail.org/ldap/) does a
good job of integrating gmail with LDAP. The LDAP directory keeps all of the information for user accounts
such as its email addresses, the username, what host it's on in a clustered system, and a variety of gmail-
like delivery options such as deliver to a Maildir, forward to another address, or run a program.

Installing and integrating gmail-Idap is considerably more work than any of the other patches mentioned in
this book, both because the LDAP directory has to be adjusted to include the fields that gmail-Ildap needs,
and because the patch itself is very extensive and has a lot of options that the system manager needs to
understand and configure. The patch does work, and it's reported to be in use in mail systems that support
millions of users, so for a really big system, it's definitely worth a look.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (& Faavisva vt +]
13.4 Building POP Toasters

A POP toaster is a system that provides POP mail service for a potentially large set of mailboxes. Rather than create
each mailbox as a Unix user account, a POP toaster generally runs as a single user, puts all of the mailboxes in virtual
domains, keeps its own database of usernames, and arranges for mail deliveries and POP/IMAP sessions to use that
database for validation.

The widely used vpopmail package (previously called vchkpw) is available from

It provides all of the POP toaster functions, along with some nice additions, such as POP-before-SMTP relay va||dat|on
for roaming users, database interfaces so the user information can be kept in a MySQL, Pgsql, or Oracle database, and
a design that makes it straightforward to create clustered mail servers for added performance or reliability. At the time
of this writing, the current version of vpopmail is 5.3.16.

13.4.1 Installing Vpopmail

Vpopmall uses the conventional autoconf configuration scheme. Download it from

, and unpack it into a directory. Don't try to build it yet; you must create the
vpopmail user ID first. It depends on UCSpI tcp (the package that contains tcpserver) so be sure you've installed that
already, as described in Chapter 3.

All of vpopmail's mailboxes and control files belong to the same Unix user. The usual user and group IDs are vpopmail
and vcheckpw. If you can, create them with numeric user and group IDs of 89. (Some versions of FreeBSD may already
have them defined as 89.) If your vpopmail setup expands to multiple machines, you want to have the same numeric
IDs on all of them, and 89 is as good a number as any. Be sure that the disk partition on which you create the vpopmail
home directory has sufficient space for all of the mail directories you plan to create. In some cases, you can move
directories around later and use symlinks to splice the subtrees together, but you might as well allocate enough space
in the first place and avoid the trouble.

If you plan to have many thousands of mailboxes, you should put them on a separate partition. Since Maildirs put each

message in a separate file, the average file size on a mail partition is smaller than on general purpose partitions, so you
must build the partition with extra inodes. You can estimate that average messages are about 5K, so divide the size of

the partition by 5K and allocate that many inodes.

In the following examples, I use /var/vpopmail as the home directory for the mailboxes. It doesn't matter for
vpopmail's configuration whether it's a partition mount point or not.

Before you configure vpopmail, you have to make a few decisions:

® Do you want to handle mailboxes not in virtual domains? If your system has shell users that get their mail in
Maildirs in their home directories, yes. Otherwise, if your system is just a POP toaster or the shell users don't
pick up their mail remotely, no.

® Do you want to allow roaming users to send mail through your SMTP server? Usually yes.

® Do you want to enforce mailbox quotas at delivery time? Probably, unless you don't have many mailboxes or
use a different way to clean out mailboxes.

® Do you want to allow mailbox extensions? If you do, mail to fred-foo will be delivered to fred if fred-foo doesn't
exist. If not, hyphens aren't treated specially. Extensions and subaddresses are a useful feature to let users
track places to which they've given their addresses, so unless you have a strong reason to allow users to select
mailbox names with hyphens, you should allow extensions.

To configure vpopmail, become the super-user (it needs to look at password files to figure out your mail setup), and in
the vpopmail directory, run configure:

./configure --enable-passwd \
--enable-roaming-users=y \
--enable-defaultquota=50000000 \
--enable-gmail-ext=y

Leave out the options you're not using. The number after defaultquota is the default mailbox quota to use, in bytes.
Quotas can also be written in the form 1000000S,400C to set limits on both the mailbox total size in bytes and
maximum message count. After configure runs, leave super-user and type make (or gmake if your system's normal
make program isn't GNU make) to build all the programs. Then become user again and make (or gmake) install.

13.4.2 Setting Up Vpopmail

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

To get your mail going, create the virtual domain(s) the mailboxes will use, create user mailboxes in those domains,
and start up the POP server to let people pick up their mail.

13.4.2.1 Creating virtual domains

Use vadddomain to create a domain. As the super-user:

cd ~vpopmail
bin/vadddomain myvirt.com topsecret

The arguments are the name of the virtual domain, and the password to assign to the postmaster mailbox in that
domain. A few options are available for unusual situations:

-e address

Normally, mail to a nonexistent mailbox in a virtual domain bounces. The -e flag specifies an address that
delivers mail to nonexistent addresses.

-q quota

The mailbox quota for the postmaster mailbox.

-d directory
Create the domain's files in this directory, rather than ~vpopmail/domain.
(See the manpages in ~vpopmail/doc.)

When you create a vpopmail virtual domain, it creates a directory for the domain under ~vpopmail/domains, and
(somewhat disconcertingly) automatically updates the files in /var/qmail/control and /var/gmail/users. It adds a line to
/var/qmail/users/assign creating a gmail user with the same name as the domain, adds a line to
/var/qmail/control/virtualdomains routing mail to the domain to the user it just created, and adds a line to rcpthosts or
morercpthosts to accept mail for the domain. It doesn't do is to create DNS MX records to tell the world to send mail for
the domain to your mail host. You have to do that yourself by editing zone files or your DNS server's equivalent.

If you create a lot of domains at once, use the -O flag for all but the last vadddomain to speed up creation. In practice,
it's unlikely that you'll create enough domains to worry about it.

13.4.2.2 Creating mailboxes

You create individual mailboxes with vadduser, running as either vpopmail or root. The arguments are the address of
the mailbox to create and optionally the password. If you supply no password, it prompts you to type one. You can
optionally supply a password on the command line, or let it generate a random one:

$ vadduser able@myvirt.com dontguess
$ vadduser -r baker@myvirt.com
Random password: LMd%tusw

Arguments include:

-r
Generates a random password.
-n
Uses no password.
-c 'user info'

Sets the "gecos" field in the user file, which usually contains the user's real name.

-q quota

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Set the user's quota, if different from the domain's default.

-s
Doesn't regenerate the password database. Use in all but the last of a series of vadduser commands for speed.
If you have a file with usernames and password pairs, it's easy enough to use a script to add them all:

(read lastuser lastpass
while read user pass
do
vadduser -s $user $pass
done
do the last one without -s to force database rebuild
vadduser $lastuser $lastpass
) < userfile

Once the database is rebuilt by a command without -s, the mailbox exists and is ready to use. You can change
passwords or other mailbox parameters with vmoduser and delete mailboxes with vdeluser. Run each with no
arguments to see what the options are. (There's an online manual, but it is way out of date.)

13.4.2.3 Starting the POP service

Starting the vpopmail POP server is a minor variation on starting the regular gmail POP server, mostly involving
replacing the standard password checker with the vpopmail version. If all of your POP-able accounts are managed by
vpopmail, you can make another small change to run the whole POP server as the vpopmail user, which is somewhat
more secure. Assuming you've already set up the POP listening script as described earlier in this chapter, the changes

for vpopmail are minimal (see Example 13-5).

Example 13-5. The listening script

1. #1/bin/sh

2. limit datasize 2m

3. exec \

4. Jusr/local/bin/tcpserver \

5. -HRv -l pop.example.com \

6. -x /var/vpopmail/rules.cdb \

7. 0110

8. /var/gmail/bin/gmail-popup pop.example.com \
9. /var/vpopmail/bin/vchkpw

10. /var/gmail/bin/gmail-pop3d Maildir 2>&1

On line 6, move the rules.cdb file into the vpopmail home directory, and on line 9, use the vpopmail password checker
rather than the standard one. If you've enabled roaming users, ~vpopmail/etc/tcp.smtp contains the fixed tcpserver
relay rules, so put the info there to permit local users to relay; for example:

allow from localhost
127.:allow,RELAYCLIENT=""

allow from local network
10.1.2.:allow,RELAYCLIENT=""

Then modify your SMTP listening script, which is in /var/gmail/supervise/qgmail-smtp/run, so that it uses the vpopmail

rules, as in Example 13-6.
Example 13-6. Change the SMTP server rules

5. -x/home/vpopmail/etc/tcp.smtp.cdb 0 25 \
Then start or restart your SMTP server, and you're all set.

The /etc/passwd users can log in with their usernames and system passwords, while vpopmail users log in with their full
email address, such as myname@myvirt.com and their vpopmail passwords. For the benefit of people using mail clients
that don't like to put at-signs in their configuration data, vpopmail also accepts a percent or slash, for example,
myname%myvirt.com or myname/myvirt.com. If you are only picking up vpopmail mailboxes, run the POP server as

the vpopmail user, as shown in Example 13-7.
Example 13-7. Change the POP server rules

4. Jusr/local/bin/tcpserver -u89 -g89 \

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Substitute in the actual user and group IDs, if they're not both 89. This makes it somewhat more secure in the face of
unexpected bugs.

13.4.2.4 Roaming users

Vpopmail includes support for POP-before-SMTP that is very easy to set up. Assuming you've set up tcp.smtp as
described in the previous section, vchkpw automatically adds each address that logs in for POP to ~vpopmail/etc/open-
smtp and rebuilds tcp.smtp.cdb to include those addresses, and if you've modified your SMTP tcpserver commands as
described previously, it lets POP-before-SMTP users relay mail.

The only other thing you have to do is to run the clearopensmtp daemon that removes out of date entries from the
open-smtp list. Run it from cron once an hour, with an entry like this in /etc/crontab:

Q % * *x % root /var/vpopmail/bin/clearopensmtp

If your POP server only picks up vpopmail mailboxes and runs as the vpopmail user, run clearopensmtp as vpopmail.
Otherwise you have to run it as root, because vchkpw writes the open-smtp file as root.

13.4.3 Some Handy Vpopmail Tricks

Although vpopmail's normal setup delivers mail only to individual mailboxes, you can configure it to do just about
anything that gmail can do.

13.4.3.1 Handling unknown users

When mail arrives for a mailbox that doesn't exist, it can bounce the message, discard it, or deliver it to a default
mailbox either in the domain or elsewhere. When you create a domain with vadddomain, the -e flag sets the default,
but it's easy to change later. In the domain's directory, usually ~vpopmail/domains/domainname, the .gmail-default
line controlling deliveries to the domain looks like this:

| /var/vpopmail/bin/vdelivermail " defaultinstruction

The second argument (the first, the two quotes, is just a placeholder) is the instruction to control the default behavior.
If the instruction is the string bounce-no-mailbox, mail to undefined addresses bounces. If the instruction is the string
delete, mail to undefined mailboxes is discarded. If the instruction is anything else, it's taken to be the email address to
forward the mail to. If you want to deliver unknown mail to a default mailbox within the domain, you must write out the
full address, e.qg., catchall@myvirt.com. An unqualified address is treated as a local gmail address, which is rarely what
you want. To change the default behavior, just edit .gmail-default as needed.

13.4.3.2 Forwarding a user's mail and other per-user special handling

For each mailbox, vpopmail creates a directory with the same name as the mailbox and, in that directory, a Maildir.
Usually the mailbox directory is in the domain's directory; in very large domains the directory is split up using
intermediate directories named with small numbers. When vdelivermail, the vpopmail delivery program, delivers a
message, it normally deposits it into the Maildir. But if the mailbox directory contains a .gmail file, vdelivermail
processes that .gmail file using a subset of the gmail rules. Lines ending in /Maildir/ are taken to be Maildir names to
which the message is delivered. Lines starting with a vertical bar are commands run by the shell. Anything else is
treated as an email address, perhaps preceded by an ampersand. As a special case, if the mailbox's own address
appears in the .gmail file, it's ignored to prevent mail loops. (Use ./Maildir/ to deliver the message.) Neither comment
lines nor mbox deliveries are supported, but the features that are supported are quite adequate to handle forwarding to
other addresses, vacation programs, and other common mailbox features.

13.4.3.3 Enforcing mail quotas

Vpopmail allows you to set a per-mailbox disk quota. If mail arrives for a mailbox that's over quota, it's bounced rather
than delivered. You can customize the bounce message, and you can also arrange to deliver a warning message to a
recipient when a mailbox is about to be over quota.

When you build vpopmail, the --enable-defaultquota sets the quota for each mailbox. When you create a domain, the -q
flag to vadddomain can override the quota for the postmaster mailbox, and when you create a mailbox, the -q flag to
vadduser can override the quota for that user. You can change the quota for an individual user or a whole domain with
vsetuserquota:

$ vsetuserquota @myvirt.com 25M # 25 megs all user
$ vsetuserquota fred@myvirt.com 20M # 20 megs for fred

In each case, the quota can be a plain number that is the total size of messages in the mailbox; 10MS,999C, to set limits
on the total size and count of messages; or the string NOQUOTA to turn off quota checking. In the message size limit,

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

the letters K and M have the usual meaning.[2]
[2] The binary meaning, 1024, and 1024*1024.

When a message arrives for a user who is over quota, it is bounced back to the sender. If a file named .over-quota.msg
exists in the domain's directory or in ~vpopmail/domains, the contents of that file is used in the bounce message in
place of user is over quota, permitting per-domain customized bounce text. In addition, if a file named .quotawarn.msg
exists in either of those two places, its contents is delivered to the user. That file should be a complete mail message
with headers, saying something like "your mailbox is over quota and you won't get any more mail until you delete some
of it." The delivery program remembers when it's delivered the over-quota message and won't deliver it to a user more
than once a day.

13.4.3.4 Mail bulletins

A useful service originated by the gpopper POP server is bulletins, messages sent to all users in a domain. Vpopmail
provides vpopbull to deliver bulletins to all mailboxes in a domain or all mailboxes in all domains, by copying or linking
the bulletin message into everyone's Maildir. To use it, create the bulletin in a file, formatted as an email message
called something like bulletini. (If you plan to copy rather than make links to the file, omit the To: line, because it'll be
added to each copy automatically.)

From: support@myvirt.com (Support)

To: Myvirt Users :;
Subject: Mail server interruption

Due to a server upgrade, you won't be able to pick up your mail
between 3:00 and 5:00 PM on Saturday. But if you come by the
office, there'll be free beer.

The Management

Then distribute it. As vpopmail, run:

$ vpopbull -s -f bulletin1 myvirt.com

You can list one or more domains to distribute the bulletin to users in those domains, or no domain at all to distribute
the bulletin to all vpopmail users. A few useful options include:

-f file
The message file to distribute
-n
Don't distribute a bulletin; either -f or -n is required
-e file
Exclude list, a file containing addresses that are not to get the bulletin
-C
Copy the message file into each Maildir
-h
Hard link message file into each Maildir
-
Soft link the message file into each Maildir
-V

Verbose; list all the mailboxes affected

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you know that the total number of mailboxes is less than the per-file hard link limit on your system (usually 32767), -
h will run the fastest. If you have more mailboxes than that, use -s. Only copy the file if you need to put each user's
address on the To: line—for example, to defeat overenthusiastic spam filters.

A Cheap Trick to List All Your Vpopmail Mailboxes

If you run vpopbull with -n and -V, to do nothing verbosely, it'll list all the mailboxes in the domains you
specify, or in the absence of any specific domains, all of the domains that vpopmail manages.

13.4.3.5 Storing user data in a database

Normally, vpopmail stores the user info for each domain in a file called vpasswd in the domain's directory, compiled into
vpasswd.cdb for fast access. For large mail setups, the user info can instead go into a SQL database. While this is
slower than direct access to a CDB file, it's considerably more flexible, and makes it easier to distribute mail and POP
service across multiple hosts. There are database interfaces for Pgsql, Oracle, Sybase, but by far, the most popular
database used with vpopmail is MySQL, so that's the one covered here.

Before building a MySQL version of vpopmail, you must define a MySQL database for vpopmail to use, along with a
MySQL user that has full access to that database and a password for that user. Edit vmysgl.h and put in the server
name, username, and password into the definitions near the beginning of the file. There are two sets of definitions, one
for the server from which to read data and the other for the server to which to send updates. Unless you turn on MySQL
replication, the READ versions are ignored, but you might as well make them the same:

/* Edit to match your set up */

#define MYSQL_UPDATE_SERVER "localhost"
#define MYSQL_UPDATE_USER "vpopmail"
#define MYSQL_UPDATE_PASSWD "verysecret"

#define MYSQL_READ_SERVER "localhost"
#define MYSQL_READ_USER "vpopmail"
#define MYSQL_READ_PASSWD "verysecret"
/* End of setup section*/

Vpopmail manages the database tables itself, but you must make one decision about how it should do so, the so-called
"many-domains" option. Normally, when many-domains is on, it puts all the user information for all domains into a
single table called vpopmail, with the key being the combination of the pw_name field, the mailbox name, and
pw_domain, the domain name. If many-domains is off, vpopmail can make a table of the mailboxes in each domain, with
the table having the same name as the domain,m and the table key is just the mailbox name. If you have a small
number of domains each with a large number of mailboxes, turning off many-domains can save space because the
domain names don't need to be stored in the database tables. Unless you have many thousands of mailboxes, accept
the default that is to turn many-domains on.

[3] Actually, the table name replaces dots and hyphens with underscores for SQL compatibility, so myvirt.com
becomes myvirt_com.

Now become super-user and rerun the configuration script, adding --enable-mysqgl=y to the arguments. If the MySQL
include files and shared library aren't in the default places, you must provide arguments to tell vpopmail where to look
for them. Here's the configuration command for our system:

./configure --enable-gmail-ext=y --enable-roaming-users=y \
--enable-defaultquota=50 --enable-passwd \
--enable-mysqgl=y \
--enable-incdir=/usr/local/mysgl/include/mysql \
--enable-libdir=/usr/local/mysql/lib/mysql

To turn off many-domains, add --enable-many-domains=n. Then rebuild and reinstall vpopmail as previously described.

If you already have created virtual domains with mailboxes, the vconvert program can convert the CDB database into
MySQL. Run it, giving it the list of domains to convert:

$ vconvert -c -m myvirt.com ...

The --c and --m flags say to convert from CDB to MySQL. The various vpopmail programs work the same as always.

13.4.3.6 Data replication and other MySQL tricks

The MySQL support in vpopmail is considerably more extensive than I have room to describe here. Using MySQL's
database replication features, you can build multi-host systems with the SMTP server on one set of hosts and the POP
servers on another set of hosts. See Chapter 17 for more details.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

The MySQL module also supports mailbox aliases, a pseudo-mailbox that is delivered to one or more real mailboxes.
This is handy when a user changes his email address but wants to keep getting mail to the old address.

You can use MySQL for logging, with an entry added for every POP login attempt, successful or not.

And finally, with modest programming effort, you can add your own fields to the database tables (edit vmysqgl.h).
Vpopmail won't use them, but your own programs can use them for other user maintenance purposes.

vmailmgr

vmailmgr is another virtual domains package similar to vpopmail, written in C++. It runs only on Linux
and doesn't have any database support. Each domain can be controlled by a different user, which can be

handy on a shared system with domains managed by different people. It also has a web console and
supports Courier IMAP and SqWebMail.

If you're running Linux, it's a reasonable alternative to vpopmail if you want separately managed virtual
domains. It's available from http://www.vmailmgr.org.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
13.5 Picking Up Mail with IMAP and Web Mail

Although POP is by far the most common way for users to collect their mail, many mail servers also offer IMAP and web
mail. IMAP is conceptually similar to POP except that the client program has a full set of tools to manipulate the mailbox
on the server. The advantage of IMAP over POP is that the mailbox remains on the server, so the user can use different
mail programs from different locations, seeing consistent mailbox contents at all times. While gmail provides no IMAP
server of its own, the IMAP server from the Courier mail package uses Maildirs as its mailbox format and works well
with gmail. I describe its setup below.

Web mail provides access to a mailbox using a web browser as the mail client. Many web mail packages are available
on the Net that use POP or IMAP to access the user mailboxes. They're not specific to gmail, so I don't describe them
here. The Courier package includes a web mail component called SqWebMail that uses Maildirs as its mailbox format. I
describe its installation later in this chapter.

Maildirs don't have to be locked while a client reads or updates them, so the POP and IMAP servers and SqWebMail can
access the same mailbox simultaneously without trouble. Systems based on mboxes can't do that. I routinely have my
mailbox open in pine on a BSD system, Pegasus and Opera 7 on a Windows laptop, and SqWebMail on a web browser,
all at the same time without any trouble. You can download the sources for Courier IMAP and SqWebMail by following

the links from http://www.courier-mta.org/download.php. As of the time this book was written, the current version of
Courier IMAP is 1.7.0 and of SqWebMail is 3.5.0.

Courier IMAP and SqWebMail share the same user validation scheme, an "auth" framework that calls out to a variety of
authorization modules to handle everything from passwd files to vpopmail to MySQL (different from the vpopmail
flavor) to LDAP. Once you have it set up for one, it's easy to transfer to the other. Courier IMAP includes a POP server
that provides no more function than the gmail one but uses the Courier authentication scheme, letting your POP and
IMAP login rules be consistent.

Unpacking bz2 Files

The various parts of the Courier package are distributed as tar files compressed with the bzip2 data
compressor. While bzip2 is a fine compression package, it's probably not one for which you have the
decompressor installed, which is called bzcat.

Fortunately, bzip2 is easy to install. At http://sources.redhat.com/bzip2/, you can find executable versions
for Linux and a few other Unix variants, and the source code (in tar.gz format.) Download it, compile it,
and install it. By default it installs itself into /usr/bin, so if you'd rather have it in /usr/local/bin, make
PREFIX=/usr/local install does the trick.

13.5.1 Courier's Extended Maildir++

All of the pieces of the Courier package support an upwardly compatible extended version of Maildirs known as
Maildir++. The extensions allow subfolders within a Maildir and provide a convention for folders that can be shared
among multiple users (a feature used by the IMAP server).

A subfolder is merely a Maildir that exists within another Maildir. For example, a subfolder called spam would be
Maildir/.spam and spam.mmf would be Maildir/.spam.mmf. Even though folders can be logically nested, all subfolder
directories are directly located in the main Maildir. Each subfolder has the usual tmp, cur, and new directories, as well
as a zero-length file named maildirfolder that tells programs that it's a subfolder and to look in the parent directory for
quota files and the like. From gmail's point of view, a subfolder is just a Maildir, and gmail can deliver messages to
them the same as to any other Maildir. This comes in handy for delivery-time mail sorting. If, say, you want mail
tagged by your spam filter to go into a separate subfolder, your .gmail or .procmailrc can deliver the spam to
Maildir/.spam/, and the rest of the mail to Maildir/.

A shared Maildir is one that's world-readable. By convention, the file shared-maildirs in a regular Maildir contains a list
of shared Maildirs, each on a line in the form:

nickname tab path-to-shared-Maildir

Courier IMAP and SqWebMail create symlinks as needed to make the messages in folders in the shared Maildirs look like
they're in folders in the user's own Maildir.

The Courier programs create a lot of other files in the Maildirs, such as the signature and address book for SqWebMail.
Qmail ignores everything but the three defined directories, so the extra files cause no compatibility trouble.

13.5.2 Installing Courier IMAP

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Once you've downloaded the Courier IMAP source, unpack it into a directory (see Unpacking bz2 Files). The
configuration for Courier IMAP is intended to be almost entirely automatic, detecting whether you have packages such
as OpenSSL, MySQL, and vpopmail installed and, if so, compiling optional subpackages for them. When the automated
scheme works, it's great. When it doesn't quite work, it's a pain in the neck.

Read the INSTALL file carefully before building and installing the package, because the installation instructions may
have changed from the ones here. First configure it by running configure. The configuration process runs recursively in
a long set of subdirectories, so it can take several minutes. Then build it with make. (The instructions say to use GNU
gmake on BSD systems, but I've found that the configuration files are built for the BSD make.) Assuming that works,
become super-user and type make install to install the files, and then type make install-configure to configure the
installed files. This installs the package into /usr/lib/courier-imap.

Courier's Authorization Daemon

The usual configuration for the Courier package uses an authorization daemon to handle login
authorization. The idea is to keep a pool of daemons running and to call them to do the authorization
rather than running a separate program each time. For relatively slow authorizers that need to connect to
remote databases, this can speed the login process, but the authorization daemon is notoriously hard to
get working correctly. If your system looks up authorization in /etc/passwd or another local file or
database, the daemons offer little speed advantage. You can turn off the daemon by configuring Courier-
IMAP and SqWebMail with --without-authdaemon to run each authorization program as needed. If speed isn't
a problem or you have trouble getting the daemon to work, reconfigure to turn it off and get IMAP and
SgWebMail working without it.

Once it's installed, you have some more setup to do before you start up the servers. There are separate servers for POP
and IMAP. If you have OpenSSL installed, there are two more servers for POP-SSL and IMAP-SSL. To add to the
confusion, some clients connect to the regular server on the regular POP or IMAP port, and then use a "starttls"
command to switch to secure mode, while other clients connect to different ports (993 for IMAP, 995 for POP) and start
the secure mode negotiation immediately. Courier IMAP supports both modes, but you have to start them separately.

If you're using SSL, this is a good time to generate your SSL certificates. The certs that Courier generates are self-
signed, which makes most MUAs pop up warning messages, but they're adequate for debugging. To get rid of the
warnings, you must get your certificates signed by one of the signing services that signs web server certs, at about
$100 per signature. The files etc/imapd.cnf and etc/pop3d.cnf contain the info needed to create the certificates. You
must change the CN line from the default localhost to the name of your mail server or some MUAs, including Eudora,
won't talk to you at all. While you're at it, you might as well update the C (Country), ST (State), L (Locality), O
(Organization), and emailAddress lines so that when users check the certificate, which they will when their MUAs
complain about it, the values look reasonable:

[reg_dn]

C=US

ST=NY

L=Trumansburg

O=The Example Organization
OU=Automatically-generated IMAP SSL key
CN=mail.example.com
emailAddress=postmaster@example.com

Once you've fixed up the certificate data, run share/mkimapdcert and share/mkpop3dcert to create the SSL certificates.

Now check the server configuration files etc/imapd, etc/imapd-ssl, etc/pop3d, and etc/pop3d-ss/ (each is a shell script
that sets variables imported into the startup scripts), and make any needed adjustments. The most likely variables to
use are ADDRESS and SSLADDRESS if you want your servers to run on a specific IP address, and use MAXDAEMONS to
limit the number of simultaneous sessions. Also check authdaemonrc, which controls the authorization daemon that
validates logins, in particular the authmodulelist line, which lists all of the authorization modules it'll use. You'll often want
to remove some of them. See man/man7/authlib.7, which describes all the modules. Now you're ready to start up the
daemons:

cd /usr/lib/courier-imap/libexec

./imapd.rc start # start imap on 143

./pop3d.rc start # start pop3 on 110

./imapd-ssl.rc start # start ssl imap on 993
./pop3d-ssl.rc start # start ssl pop3 on 995

Check that you can log into your new server. To test the POP server, telnet into it as described earlier in this chapter in
the discussion of the gmail POP server. IMAP is an extremely complex protocol, but fortunately the commands to log in
and check a mailbox are pretty simple. In this example, you literally type c1, c2, and c3, which are transaction
identifiers used to match up responses with requests:

$ telnet yourserverimap

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

Trying 10.31.42.80...

Connected to yourserver.

Escape character is ']

* OK Courier-IMAP ready. Copyright 1998-2003 Double Precision, Inc. See COPYING for
distribution information.

c1 login yourname yourpassword

c1 OK LOGIN Ok.

c2 select INBOX

* FLAGS (\Draft \Answered \Flagged \Deleted \Seen \Recent)

* OK [PERMANENTFLAGS (\Draft \Answered \Flagged \Deleted \Seen)] Limited
* 31 EXISTS

* 0 RECENT

* OK [UIDVALIDITY 1043726086] Ok

c2 OK [READ-WRITE] Ok

c3 logout

* BYE Courier-IMAP server shutting down

c3 OK LOGOUT completed

To check that SSL is working, log into the various servers from MUAs and check that it works. If your MUA supports
SSL, it will complain about the self-signed certificates before it lets you log in. Assuming you're happy with the results,
add the previous startup lines to one of the /etc/rc files on BSD systems. On System V and Linux systems, see the
courier-imap.sysvinit script created in the build directory but not installed. Again, read the lengthy INSTALL for the
most up to date installation instructions.

13.5.3 Courier IMAP and Pop-Before-SMTP

Although Courier IMAP supports about 15,000 different features, a general purpose POP-before-SMTP is not one of
them unless you're using vpopmail. If you are, build Courier IMAP without authdaemon, and add -
DHAVE_OPEN_SMTP_RELAY to the DEFS line in the authlib Makefile to have it include the relay code. The vpopmail FAQ at
http://www.inter7.com/vpopmail/FAQ.txt has more details at question 34.

For other authorization schemes, this oversight is easily remedied. Each of the .rc files, when it starts a server, runs
couriertcpd, a TCP daemon similar to tcpserver. Like tcpserver, it takes as its arguments a cascade of programs to run
whenever an incoming connection arrives. Also like tcpserver, salient facts about the connection are placed in the
environment, including TCPREMOTEIP for the remote host. In imapd.rc, for example, this rather complex command
starts the server:

/usr/bin/env - /bin/bash -c " set -a ;

prefix=/usr/lib/courier-imap ;

exec_prefix=/usr/lib/courier-imap ;

bindir=${exec_prefix}/bin ;

libexecdir=/usr/lib/courier-imap/libexec ;

. ${prefix}/etc/pop3d ; \

. ${prefix}/etc/pop3d-ssl ; \

TLS_PROTOCOL=$TLS_STARTTLS_PROTOCOL ; \

export TLS_PROTOCOL ;

/usr/lib/courier-imap/libexec/couriertcpd -address=$ADDRESS \
-stderrlogger=/usr/lib/courier-imap/libexec/courierlogger \
-stderrloggername=imapd \
-maxprocs=$MAXDAEMONS -maxperip=$MAXPERIP \
-pid=$PIDFILE $TCPDOPTS \
$PORT ${exec_prefix}/sbin/imaplogin $LIBAUTHMODULES \

${exec_prefix}/bin/imapd Maildir"

This sets variables, reads two configuration scripts from etc, and runs couriertcpd. When a connection arrives, it runs
imaplogin, which after validating the login, runs imapd. If you're using relay-ctrl, the instructions for integrating it with
Courier IMAP are in the ANNOUNCEMENT file. First you make a symlink in /usr/lib/courier-imap/libexec/authlib to
/usr/sbin/relay-ctrl-allow. Then add relay-ctrl-allow to the end of the list of AUTHMODULES in the file /usr/lib/courier-
imap/etc/imapd, which tells IMAP to run that program every time someone logs in. Finally, insert this line in front of the
couriertcpd line in the startup script:

envdir /etc/relay-ctrl relay-ctrl-chdir \

and restart Courier IMAP. You must modify all four .rc scripts to do POP-before-SMTP, but you can add the same line to
each of them to use the same openrelay script.

Binc IMAP

Although Courier IMAP is the most widely used Maildir IMAP server, a worthy alternative is Andreas
Hanssen s Blnc IMAP (Binc Is Not Courier), available at http://www.bincimap.org/ or

. It is designed to be smaller and faster than Courier IMAP,
and more compatible with gmail's design and use the same tools as the gmail POP server. It can run under
tcpserver and uses checkpassword for its authentication. It can use Maildir++ subfolders, the same as
Courier does, and notes on the web site tell how to use it with relay-ctrl and vmailmgr.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Binc isn't as mature as Courier, but if you're setting up an IMAP server, it's definitely worth a look because
it's a lot easier to set up.

13.5.4 Installing SqWebMail

Once you have Courier-IMAP installed, SqWebMail is a snap to install. Unpack the bzipped file, configure, and install.
SqWebMail runs from your web server, so the main program is installed in a cgi-bin directory and run on demand from
the web server. If you're planning to run it from a virtual domain, create the web server directories for the domain's
home page and cgi-bin if you haven't already done so. The installation process creates a directory of icon files that must
be the webmail subdirectory of the domain and a directory tree of auxiliary files that shouldn't be visible via the web
server at all, usually in /usr/local/share/sqwebmail. If you're not using Courier-IMAP, and you're using the authorization
daemon, you must add a line to your system startup scripts to start the daemon. If you are using Courier-IMAP, use the
same daemon it uses. The configuration script has an enormous set of options, but the ones you most likely need are
the ones to set the location of the cgi-bin and image directories. If you've installed Courier-IMAP with authdaemon, you
also must tell SqWebMail to use the same authdaemon directory:

./configure \
--enable-cgibindir=/var/www/cgi-sqweb \
--enable-imagedir=/var/www/sqwebmail/webmail \
--with-authdaemonvar=/usr/lib/courier-imap/var/authdaemon \
--disable-autorenamesent

The last option to the configure command turns off a feature that automatically creates monthly subfolders of sent mail,
which I don't find useful. Once the lengthy configuration process completes, build and install the program following the
INSTALL instructions:

$ make configure-check

$ make

$ make check

$ su # installation must be superuser

make install # or make install-strip to strip symbols
make install-configure

Start authdaemon if needed, following the hints displayed by the install program, and then try sgwebmail with a URL
like http://mail.myvirt.com/cgi-bin/sqwebmail.

The installation program lists many further possible customizations. One you should install is
/usr/local/share/sqwebmail/sendit.sh, the script that actually sends outgoing mail from SqWebMail. The version I use is
this, to send mail using gmail-inject:

$1 is the return address, $2 is the logged in sqwebmail user

{
echo "Received: from [$REMOTE_ADDR] ($2); via SqWebMail 3.5.0"
cat

} | /var/gmail/bin/gmail-inject -f "$1"

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 14. Mailing Lists

The original impetus for writing gmail was to send out list mail faster than existing MTAs, so it's not surprising that
gmail has excellent built-in support for mailing lists. The first part of this chapter looks at its list handling support, which
is quite adequate for small and medium-sized lists. Then it covers ezmlm, the automated mailing list package designed
to work with gmail, and other gmail-compatible list management software.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
14.1 Sending Mail to Lists

The easiest and most common way to handle a small list is to put the list in a .gmail file. To reiterate an example from
Chapter 10, assume a user's name is fred, and the list is about fishing. Then the list goes into ~fred/.gmail-fishing, one

address per line like any other .gmail file (see Example 14-1).
Example 14-1. Fred's fishing list

fred@example.com
jim@example.org
mary@myvirt.com
&/fn=hunt/In=dash/@bigcorp.com

Note that the third address, an X.509 address that contains slashes, is preceded by an ampersand to keep it from being
interpreted as a filename. Also, Fred's address is in the list so he gets copies of messages sent to it. To send mail to this
list, one needs only to send a message to fred-fishing, and it's redistributed to all of the list members.

14.1.1 Maintaining List Files

Qmail provides a small but useful set of functions to maintain list files. To edit a file safely, set the otherwise unused
"sticky" bit in the user's home directory, edit the file, then unset the sticky bit:

$ cd

$ chmod +t .

$ emacs .gmail-fishing
$ chmod -r .

Should any mail arrive for addresses handled by a .gmail file in the directory while the sticky bit is set, gmail-local
notices the sticky bit and exits with code 111 so the delivery is retried later.

This list file example highlights a possible security hole when an address looks like a filename.[1] There are three ways
to solve the problem. The simplest, but most error prone, is to put an ampersand in front of each name, or at least in
front of each name that might look like a filename or command. The second is to set the owner execute bit on the file,
which tells gmail-local that the file should only contain forwarding addresses, so any file or program deliveries fail. The
third (undocumented) is to put a line containing +list in the file, which tells gmail-local that subsequent lines have to be
forward addresses. This permits a few setup lines at the beginning before the addresses. For example, to require that
each message's subject line has a keyword, see Example 14-2.

(1] This isn't a new problem; in some ancient versions of Unix you could send mail to /etc/passwd and it'd add your
message to the end of the password file.

Example 14-2. Fred's fishing list with subject checking

| egrep -gi "~Subject:.*(largemouth|smallmouth|squid)" || bouncesaying "Not fishy enough."
+list

fred@example.com

jim@example.org

mary@myvirt.com

&/fn=hunt/In=dash/@bigcorp.com

In the examples so far, the list has an address that is a subaddress of a user address. List files can equally well live in
~alias in which case they have regular addresses; the list file ~alias/.qmail-fishing has the address fishing.

14.1.2 Bounce Handling and VERP

One of the most tedious and difficult parts of mailing list management is bounce handling, identifying and removing
addresses that are no longer valid. The most difficult aspect of bounce management turns out to be identifying the
address that's bouncing, and a secondary problem is getting the bounces sent to an address that can do something
useful with them.

When a message bounces, the host doing the bounce, which may be the one where the message was injected or

another one to which the message was relayed by SMTP, sends back a failure report to the message envelope sender
address. On gmail systems, all the bounces from the injecting system are sent back in one message in QSBMF (gmail-
send Bounce Message Format, described at http://cr.yp.to/proto/qsbmf.txt). Bounces from remote systems arrive one

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

per bouncing address, because gmail sends remote mail to one address at a time. Remote bounces arrive in whatever
format the remote system chooses to use. Qmail systems use QSBMF; some MTAs use DSNs (delivery status notices), a
complex format originally described in RFCs 3461-3464; and a lot of systems use ad-hoc formats not standardized or
documented anywhere. Also, the envelope address on outgoing list mail needs to be the address of the mailing list
manager (human or software), not the address of the original sender—only the list manager can update the list.

14.1.2.1 Manual bounce handling

The way to set up a gmail list for manual bounce handling is simply to create an owner mailbox. That is, if the list's
gmail file is .gmail-fishing, create .gmail-fishing-owner and set it up to deliver mail someplace that the owner will see it,
usually either forwarding to the owner's regular address or putting the mail in an mbox or Maildir.

When gmail-local processes .gmail-fishing, it checks to see if .gmail-fishing-owner exists, and if so, changes the
envelope sender to fred-fishing-owner@example.com, or more generally to LOCAL-owner@ HOST where LOCAL and
HOST are the local and host part of the original address. When bounces arrive, it's up to the list owner to read them
and update the list appropriately by removing addresses that consistently bounce.

14.1.2.2 Automated bounce handling

For a list of any size or with a significant amount of traffic, manual bounce handling is an impossible amount of work.
Fortunately, software does as good a job of bounce handling as people can, particularly when it uses gmail's VERP to
identify the bouncing addresses.

Variable Envelope Return Path (VERP) encodes the recipient's address in the envelope sender of each message sent
out, so if a message bounces, the address that bounced can be recovered from the address the bounce message is sent
to. The recipient's address is placed at the end of the mailbox part with the @ sign changed to an = sign. For example,
VERP would arrange that mail from Fred's fishing list to recipient mary@myvirt.com has return address fred-fishing-
owner-mary=myvirt.com@example.com. If her mail bounces, the bad address is recovered from the bounce address by
picking out the text at the end of the local part and changing the = back to an @ sign.

To use automated bounce handling, along with a -owner file, create a -owner-default file, which delivers to the bounce
handling program. If gmail-local sees both of those files,Lzl it rewrites the sender to LOCAL-owner-@HOST-@]]. This
peculiar sender address turns on VERP, by telling gmail-send to rewrite the address again on each remote delivery to
RUSER@RHOST so the envelope sender is LOCAL-owner-RUSER=RHOST@HOST. The overall effect of this is that all
bounce mail is delivered to the -owner-default address, with local bounces delivered to LOCAL -owner- (note that
trailing hyphen).

[2] Both files have to be present, even though nothing will be delivered to the plain -owner address. This is
debatably a buglet, although the owner address should exist anyway for humans to write to.

The bounce script can now easily determine the bouncing addresses, by parsing the QSBMF message in local bounces
and picking the return address out of the address in remote addresses. The code to do so isn't very complex. It's wordy
in C because of all of the string processing, so Example 14-3 shows it in Perl.

Example 14-3. Sample Perl code to handle bounces

$addr = $ENV{DEFAULT} # set by gmail-local
if ($addr) {
$addr =~ s/=/\@/; # VERP bounce, pick up address
while(<>) {
ignore bounces that aren't really bounces
exit 99 if /THIS IS A WARNING MESSAGE ONLY/;
exit 99 if /~Subject: WARNING: message delayed at/;
exit 99 if /~ASubject: Returned mail: Deferred/;

b
dobounce($addr);
}else {
locally generated bounce, must be QSBMF
$/=""; # slurp up a paragraph at a time
$_=<>; # get rid of the email header.
$_=<>; # get the QSBMF
/~Hi. This is the/ || die "This is not a gmail bounce message";
while(<>) { # handle each address section

last if /~-/;
/N<(.*¥)>/ || die "No recipient address";
dobounce($1);

b
¥

Once the bounce code has the address, it should remove addresses from the list that bounce too often, for an
appropriate definition of "too often" that has to depend on the nature of the traffic to the list.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

This scheme won't handle 100% of all bounce mail, because some MTAs act in hostile ways, sending bounces other
than to the envelope sender, but this gets about 90% of the effect of more comprehensive bounce handlers with about
5% of the work.

14.1.2.3 Bounce handling for mail without .qmail file forwarding

Mailing list software that doesn't keep the list in a .gmail file can also take advantage of gmail's automated bounce
handling by setting the return address appropriately. No matter how mail is injected into gmail, whether it's via gmail-
inject, by SMTP, or by calling gmail-queue directly, any envelope return address that ends with -@[] receives
automatic VERP handling. (It's also possible for list software to generate 100 messages with 100 return addresses for
100 recipients, but that's pointless unless the messages differ in more than the envelope address.) At the moment the
only mailing list software that takes advantage of gmail's automated VERP are ezmIm[3] and majordomoZ,[Al but it
wouldn't be hard to add it to other list management software.

[3] Because it was written to work with gmail

[4] Because I wrote the gmail VERP code myself.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
14.2 Using EzmIm with gmail

The most popular list manager used with gmail is ezmIim-idx, an extended version of Dan Bernstein's ezmim. The
original ezmlm has a very solid core of mailing list functions: subscription and unsubscription, message distribution and
bounce management, and simple message archiving and retrieval. Unlike most list managers, ezmlm lets individual
users run automatically managed private lists using subaddresses of their user addresses, as well as the more
conventional arrangement where the system manager sets up a list with an address of its own. EzmIm-idx adds more
complex features such as digests, moderated lists, remote list management, and distributed lists with sublists. Nearly
all ezmIm users use ezmIm-idx, because the basic ezmIm lacks now-essential abilities such as letting only list members
post to a list. The following discussion all applies to ezmlm-index.

14.2.1 Installing EzmIim-idx

EzmIm-idx is a little bit tricky to install, because you have to combine the original ezmIm with the additions and patches
for ezmlIm-idx yourself. The easiest place to find the ezmlm and ezmlIm-idx tarballs is http://www.ezmlm.org, where
you can click the Download link near the top of the page to find a nearby archive with ezm/m-0.53.tar.gz and ezmim-
idx-0.40.tar.gz (or a newer version if available). While you're there, if you plan to run large lists (tens of thousands of
addresses), you might also want to patch gmail, as discussed in Chapter 16, to increase the number of parallel
deliveries above 255.

To install ezmIim-idx once you've installed the two archives:

1. Unzip and untar ezm/m-0.53.tar.gz into a directory in any convenient place, creating a subdirectory ezm/im-0.53
containing the ezmIm files.

2. Unzip and untar ezm/m-idx-0.40.tar.gz in the same directory, creating an adjacent subdirectory ezm/m-idx-
0.40.

3. Move all of the ezmIim-idx files, which include both new files and patching instructions for existing files, into the
ezmlm directory:

$ mv ezmlm-idx-0.40/* ezmIm-0.53

4. Go into the ezm/m directory and apply the patches. The patch program should report that all of the patches
succeeded. (If not, either you have an obsolete patch program and need to install the current GNU version, or
the files in the ezm/m-0.53 directory were already modified, so delete the directory and recreate it from the .gz
file.)

$ cd ezmim-0.53
$ patch <idx.patch
Hmm... Looks like a unified diff to me...
The text leading up to this was:
|--- ezmim-warn.1 1998/02/17 00:32:45 1.1
|+++ ezmlm-warn.1 1998/12/21 04:35:16 1.5
Patching file ezmlm-warn.1 using Plan A...
Hunk #1 succeeded at 3.
Hunk #2 succeeded at 21.
... more patch reports ...
|--- ezmlm-weed.1 1999/08/01 16:45:46 1.1
|+++ ezmim-weed.1 1999/12/19 16:53:18 1.3
Patching file ezmim-weed.1 using Plan A...
Hunk #1 succeeded at 7.
Hunk #2 succeeded at 35.
Hunk #3 succeeded at 113.
done

5. Look at the conf-* files, and adjust them if needed for your local C compiler and gmail installation. One file not
present in other packages is conf-cron, the location of the crontab program used to schedule commands for
periodic execution. You may also want to change conf-bin from the default /usr/local/bin/ezmim to a directory
that's in the standard search path, such as /usr/local/bin, to make it easier to type the commands to your shell.
For now you can ignore conf-sglcc and conf-sqlld, which are used to build a version of ezmlm-idx that stores its
data in SQL databases. Now type make to build ezmIm and make man to format the manpages.

If you want to test ezmlm-index before installing it, INSTALL.idx has test instructions. Briefly, create a user account
called eztest (or if you already have a test account set up for other purposes, edit the ezmIm-test script to set EZTEST
to the account name), then su to the test account, and in the ezmlm-index build directory, run ./ezmim-test:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$./ezmim-test

testing ezmim-idx: ezmlm-idx-0.40
Using FQDN host name:

your host name

ezmim-make (1/2): OK

Using RDBMS support: No.

testing for gmail: >=1.02
ezmlm-reject: OK
ezmlm-[un]is]sub[n]: OK
ezmlm-send (1/2): OK
ezmlm-tstdig: OK
ezmim-weed: OK
ezmlm-make (2/2): OK
ezmlm-clean (1/2): removed mod queue entry 3 that wasn't due

Assuming it worked, become the super-user and make setup to install all the pieces you just built.

14.2.2 EzmIm List Names

Every ezmIm list has a list name, which is an email address. The list's address is the submission address to which list
mail is sent, with subaddresses used for subscription management, fetching archived articles, and bounce management.
If an individual user has set up the list, the list address is a subaddress of the user's address, and all of the list's .gmail
files and list-specific files are in a subdirectory of the user's home directory. Or the list can have an address of its own
in the local domain, in which case its files are in ~alias because addresses that are neither user addresses nor
subaddresses are treated as subaddresses of alias. Or the list can have an address in a virtual domain, using gmail's
normal virtual domain features.

It's probably easiest overall to put public lists into a virtual domain, so the lists belong to the virtual domain's owner
rather than to ~alias.

14.2.3 Creating an EzmIm List

The ezmim-make command creates and manages ezmlm mailing lists. It's not hard to use, but it's fussy about its
arguments, particularly file and directory names that have to be specified as absolute paths. The information for each
ezmlm list is stored in a directory full of files and subdirectories. (The ezmIm(5) manpage describes the directory's
contents, nearly all of which is maintained automatically.) The directory name need not have any relation to the list
name, although it's hard to think of a good reason to name the directory anything else. The directory is usually in the
owning user's home directory or a subdirectory, although it can be anywhere so long as the user has write access.

Create a list with a user's subaddress; if the list were called joe-fishing@example.com:

$ # log in as joe
$ ezmim-make -u ~/fishing ~/.gmail-fishing joe-fishing example.com

The arguments are flags, the full pathname of the directory (abbreviated here with ~ that the shell expands), the full
pathname of the list's .gmail file, the mailbox for the list, and the domain. The --u flag only permits subscribers to post
to the list, and is highly recommended. Other options include --m to moderate the list and --d to create a digest version.
See the ezmlm-make manpage for the entire huge list of options.

Along with the directory, ezmlm-make creates .gmail-fishing, .gmail-fishing-default, .gmail-fishing-owner, and .gmail-
fishing-return-default, all linked to newly created files in the ~/fishing directory. If the list is moderated or has a digest
version, there will be two more .gmail files for each of those options.

To create a list with a name in the local domain, become alias and run ezmlim-make:

$ # su to alias
$ ezmlm-make -u ~alias/fishing ~alias/.gmail-fishing fishing example.com

Whoever administers this list has to su to alias to run administrative commands, which can be a security problem.

14.2.4 Ezmim Lists in Virtual Domains

Not surprisingly, ezmlm meshes easily with gmail's virtual domains. If individual users want to run lists, each user who
runs lists can have a virtual domain. Or a system that hosts a lot of lists can set up a master list management account
controlling many lists in multiple domains. (Or both, of course.) To extend this example, assume that user joe wants to
run a set of lists about fish. Create a virtual subdomain, add appropriate MX records in the DNS, and route the
subdomain's mail with an entry in /var/gmail/control/virtualdomains:

ichthy.myvirt.com:joe

Now Joe can make as many lists as he wants:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$ # log in as joe
$ ezmim-make -u ~/flounder ~/.gmail-flounder flounder ichthy.myvirt.com
$ ezmlm-make -u ~/tilapia ~/.gmail-tilapia tilapia ichthy.myvirt.com

This makes two lists, flounder@ichthy.myvirt.com and tilapia@ichthy.myvirt.com, both managed by Joe.

A larger system with multiple lists in multiple domains isn't much harder to set up. Create a user lists to be the list
manager, and then map each virtual domain to a subaddress of the lists user:

fish.myvirt.com:lists-fish
fowl.myvirt.com:lists-fowl
fare.myvirt.com:lists-fare

To make it a little easier to keep track of all of the lists, each domain has a directory to hold its list directories:

$ # log in or su to lists

$ mkdir fish fowl fare

$ ezmim-make -u ~/fish/scrod ~/.gmail-fish-scrod scrod fish.myvirt.com
$ ezmim-make -u ~/fowl/duck ~/.gmail-fowl-duck duck fowl.myvirt.com
$ ezmlm-make -u ~/fare/stew ~/.gmail-fare-stew stew fare.myvirt.com

This creates three lists, one in each domain: scrod@fish.myvirt.com, duck@fowl.myvirt.com, and
stew@fare.myvirt.com. This scheme scales up very well, easily handling a hundred domains each with a hundred lists.
(Whether one host could handle the traffic for 10,000 lists is another question, although if the per-list traffic is modest
and the computer is fast, the performance could be fine.)

One problem is that all of the .gmail files are in the home directory, and each list has four .gmail files, so that's 40,000
files in one directory, which most Unix systems won't handle well. If the lists are moderated or digested, it could be as
many as 80,000 files. A small change to the virtual domain setup solves the problem by putting each domain's .gmail
files in a separate directory:

fish.myvirt.com:lists-fish/q
fowl.myvirt.com:lists-fowl/q
fare.myvirt.com:lists-fare/q

Now the .gmail file for scrod@fish.myvirt.com, rather than being .gmail-fish-scrod, is .qmail-fish/q-scrod. Create
directories .gmail-fish, .gmail-fowl, and .gmail-fare, each of which contains the .gmail files for a single domain with
names like g-scrod, g-scrod-default, g-scrod-return, and g-scrod-return-default. Or if you want to put the .gmail files in
the same directory as the list directories, rather than creating separate directories, just symlink the names:

In -s fish .gmail-fish
In -s fowl .gmail-fowl
In -s fare .gmail-fare

I prefer this last approach. With a hundred lists, the domain's directory has a hundred list directories each with between
400 and 800 .gmail files, depending on list configuration, which is still a very manageable number.

14.2.5 Sending Mail to and Testing an EzmIm List

To send mail to an ezmlIm list, just send a message to the list's address. If you've used --u and haven't subscribed
yourself, the message should bounce back with an error saying Sorry, only subscribers may post. Now subscribe to your list
by sending mail to the list's subscription address. If the list is fishing@example.com, the subscription address is fishing-
subscribe@example.com. Ezmlm should respond to your request with a confirmation message including a return
address with a long random string to deter signup forgery. Respond to that message, and you should get a welcome
message confirming that you're on the list. Now send another message to the list itself, which should show up shortly in
your mailbox. You can check that it came through ezmim by looking at the message headers that should include
headers such as Mailing-List: and List-Post:. Now the list is ready to go, and anyone can subscribe and post to it.
Unsubscribing works just like subscribing, so to get off the list, write to fishing-unsubscribe@example.com and respond
to the confirmation message.

If you created a digest version of the list, the digest acts like a separate list whose name is the list name with -digest
added, such as fishing-digest@example.com. Subscriptions work the same way, fishing-digest-subscribe @example.com
and fishing-digest-unsubscribe@example.com. Subscribers to either version of the list post messages to
fishing@example.com. The list of subscribers to the main list and the digest are kept separately so it's possible and
occasionally useful to subscribe to both the regular list and the digest.

If you made the list moderated, you have to add the moderators' addresses using ezmIim-sub before anyone can post to
the list. (See the next section.) Whenever someone posts a message to the list, the message is forwarded to all of the
moderators in a message with instructions containing two return addresses, one to accept the message and one to
reject it.

14.2.6 Configuring and Maintaining an EzmIm List

EzmIm comes with a long list of programs, some intended to be run from gmail when mail arrives, some to be run by
list managers, and in a few cases, either way. To add addresses to a list, use ezmlm-sub:

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$ ezmim-sub ~/fishing mary@example.com fred@myvirt.com

For lists that allow posts only by subscribers, the subdirectory allow contains additional addresses that are allowed to
post to the list, typically variant versions of subscriber addresses:

$ ezmim-sub ~/fishing/allow mary.nade@example.com

If a list has a digest version, the digest subscribers are stored in the subdirectory digest:
$ ezmim-sub ~/fishing/digest edgar@example.org

If a list is moderated, the moderators are stored in the subdirectory mod:

$ ezmim-sub ~/fishing/mod jane@myvirt.com

(The list of moderators is unrelated to the list of subscribers. If a moderator should be subscribed to the list, add the
address separately to the list and the moderator list.)

To take people off a list, use ezmlm-unsub:

$ ezmim-unsub ~/fishing mary@example.com # leave the list

$ ezmim-unsub ~/fishing/allow mary.nade@example.com # alternate address, too
$ ezmim-unsub ~/fishing/digest edgar@example.org # leave the digest

$ ezmlm-unsub ~/fishing/mod jane@myvirt.com # stop moderating

The boilerplate messages used by ezmlm for subscription request responses, bounce probes, and so forth are kept in
files in the text subdirectory of the list directory. The standard messages aren't bad, but to customize them for a
particular list, just edit the text files. The files contain codes like <#I#> for the list name that are expanded each time
one of the boilerplate messages is sent.

Addresses that bounce are automatically tracked. If an address bounces consistently, ezmlm sends a final probe
message and, if the probe bounces, removes the address from the list. In most cases, the bounce management works
completely automatically. The only exception is for remote mail systems that mangle the VERP envelope return address
so that ezmIm cannot figure out what address is bouncing.

14.2.7 Other EzmIim Tricks and Features

EzmlIm has provisions for list administration by email for managers without shell access; for message archives, including
both mail-based and web-based indexes and retrieval; and a wide variety of other list options, such as rejecting some
or all MIME attachments and adding boilerplate text to messages or digests. EzmIm, like gmail, is built from a collection
of small programs run from shell scripts, so even if a particular feature isn't present, it's often possible to adapt the
existing programs to do what you want.

For further information, consult the included documentation, which includes manpages for all 30 ezmIim programs, as
well as http://www.ezmlm.org where there is both a FAQ and a 30-page printable manual.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
14.3 Using Other List Managers with Qmail

Although ezmiIm is the list manager most often used with gmail, any list manager that's written to work with sendmail
can easily be adapted to work with gmail. The most popular freeware packages are GNU Mailman, which has gmail
config advice in README.QMAIL, and the Majordomo2 list manager, which has gmail support for lists in virtual domains

built-in.[5]

[5] Majordomo1 is obsolete, and anyone thinking of using it should use majordomo2 instead. The commercial
packages such as LISTSERV and Lyris include their own SMTP engine so they can run in parallel with gmail on a
different virtual IP address, but they don't connect to gmail, or any other local MTA, directly.

14.3.1 Incoming Mail to List Managers

Mail sent to a list manager includes both the messages for the lists and the administrative mail to - -request addresses
and the like. Systems with a small number of lists usually put sendmail alias entries for all of the entries into
/etc/aliases. That also works with gmail, but can get unwieldy as the number of lists grows and if there are collisions
between list names and usernames. Systems with lots of lists usually put the lists into virtual domains. Sendmail
handles virtual domains differently from gmail, so the setup for gmail has to be a little different. List manager software
is usually set-uid because it would difficult to control the UID for programs run from sendmail's /etc/aliases. With gmail,
the virtual domain(s) for the list manager should belong to the list manager user, removing the need for set-uid except
perhaps on CGI scripts for web interfaces. The individual list and administrative addresses can each be a .gmail file, or
it might be easier to put them all in one file and use fastforward as described in Chapter 12.

14.3.2 Outgoing Mail from List Managers

List managers can hand mail to the MTA in two ways, by calling sendmail or SMTP. Using sendmail makes sense for
administrative mail sent to a single recipient. It's a problem for list mail because the operating systems set a maximum
total argument size in a call to sendmail or any other program, typically 64 K characters, which would limit lists to
under 4,000 names. To get around this limit, the list manager can break the list up into sections and call sendmail
multiple times or, more often, open an SMTP session to localhost, which permits an unlimited number of RCPT TO
recipients. Either of these techniques works with gmail, although of course calling gmail-queue directly works better if a
list manager has code to support it.

Some list managers can sort recipient addresses by domain and pass all the addresses in a domain together. This
speeds up sendmail, which does domain or MX sorting internally, but doesn't help gmail. In fact, it can lead to
somewhat unfortunate behavior; if gmail processes a message with a hundred recipients all in the same domain, it will
open a large number of SMTP connections to that domain's mail server, which system managers misinterpret as an
attempt to overload their system. If you can prevent your list manager from sorting its addresses by domain, do so.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
14.4 Sending Bulk Mail That's Not All the Same

Qmail does a magnificent job of sending identical copies of a single message to thousands of recipients.LGJ It does a
considerably less magnificent job of sending thousands of messages all of which are different each to a single recipient.
The overhead of passing a message to gmail-queue, storing it in the queue/todo directory, then moving it into the
delivery queue, is substantial. When large numbers of messages arrive quickly, gmail-send can fall behind to the point
where it's so busy dealing with injected mail it doesn't schedule deliveries as fast as it should, the so-called "silly gmail
syndrome." The big-todo patch discussed in Chapter 16 helps somewhat, but the fastest way to deliver lots of unique
messages is to avoid asking gmail to deal with them in the first place. To test this theory out, I wrote a small Perl

module Qspam, available as http://www.iecc.com/Qspam.pm, to send lots of unique messages fast.
[6] 1dentical except for the VERP envelope, of course.

The program sending the mail starts by calling gspam_start(N, &donefunc), where N is the number of deliveries to handle
at once (analogous to concurrencyremote) followed by a callback routine that's called each time a delivery attempt
finishes. To send a message, the program calls gspam_send("to", "from", mfile, code), where to and from are the envelope
addresses, mfile is the name of a file containing the entire message to send, headers and body, and code is an optional
code string that identifies the message. When the delivery is done, it calls the callback as donefunc(mfile, code, resultflag,
resultmsg) where mfile and code are from gspam_send, and resultflag is "y" if the message was delivered, "n" if the
delivery failed (in which case resultmsg is the error message), or a null string if the delivery was deferred until later. At
the end of the program, gspam_flush() waits for all of the delivery attempts to complete.

How does this all work? Qspam_send forks and calls gmail-remote to deliver the message. The module keeps a table of
all of the deliveries in progress and won't start more than the delivery limit at once. When an instance of gmail-remote
completes, if it either delivered the mail or got a permanent error, the delivery is done. If there was a temporary error,
Qspam forks again to call gmail-queue to use the standard gmail delivery scheme, which always succeeds (from
Qspam's point of view). Because gmail-remote can't deliver local mail, gspam_send checks the delivery address of each
message against /ocals and virtualdomains to see if an address is local, and if so calls gmail-queue immediately. In
practice, most remote delivery attempts succeed or fail on the first try, so only a small fraction of the messages need to
be queued. Some mail is accepted by the remote MTA only to be bounced back later, and gmail returns its usual bounce
messages if a queued delivery eventually fails, so the application needs to use envelope return addresses that can be
handled by a companion bounce processor, just like list mail sent directly through gmail.

Although Qspam wasn't written for maximum efficiency (it opens and closes temporary files rather than using pipes),
it's pretty fast. On a modestly sized PC sending lightly customized mail to a list of several thousand users selected from
a MySQL database, it has no trouble keeping 100 simultaneous deliveries going at once. The entire application is written
in Perl, but it spends nearly all of its time waiting for gmail-remote processes to finish so there's little reason to rewrite
it to be faster. This approach, try one delivery attempt before queueing, has proven to be a simple but effective way to
handle customized list mail.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
Chapter 15. The Users Database

In Chapter 10, we saw that local deliveries all look up the mailbox in gmail's users database to determine both where to
deliver a message, and what user and group ID and home directory to use when making the delivery. Although the
most common setup of users is to deliver to the users in /etc/passwd, the users database is considerably more flexible
than a mere mirror of the password file.

The users database maps each local address to a set of user data including:

® Username

® Numeric user ID

® Numeric group ID

® Home directory

® Character to separate parts of a subaddress, usually a dash
® Extension, used to find an appropriate gmail file

The gmail-Ispawn program changes to the user and group ID and home directory before starting a delivery, then uses
the separator character and extension to locate a .gmail file to control the delivery, as covered in Chapter 10.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
15.1 If There's No Users Database

If you don't create a users database, gmail calls gmail-getpw, which implements a default mapping from login users to
gmail users for each local delivery. It takes the local part, passed as its argument, and looks that up using the standard
getpwnam() routine. If the user exists and meets some safety criteria (discussed in a moment), it returns user
information for the user, uid, gid, and home directory from the password file, and null dash and extension. If the name
is of the form user-extension and the username exists, it returns the user information with the dash being a literal dash
and the extension the part of the local part after the dash. If the user doesn't exist, it falls back to the default user alias
with the dash being a dash and the extension being the entire local part, so in that case the delivery is controlled by

~alias/.qmail- localpart.t11

(11 You can replace the dash with another character by adjusting the contents of conf-break at the time you build
gmail.

To avoid security problems, gmail-getpw only returns user information if a user account has a nonzero uid (isn't the
super-user), and the account's home directory exists, is readable, and belongs to the user. It also ignores any account
with capital letters in the name or with a name more than 32 characters long.

Do You Need a Users Database?

Experienced gmail users have widely varying opinions about whether to create a users database. I've
always used one, but my system has only a handful of shell users and (mostly for historical reasons) many
mail-only users with addresses in the same domain as the shell users. A more typical system either has a
lot of shell users, nearly all of whom receive mail, or runs a system where all the addresses are in virtual
domains controlled by a few dedicated user IDs. If the list of users in your passwd file is nearly the same
as the list of addresses that should get mail, you may be happier with no users database so users can get
mail as soon as they're added to the passwd file.

A setup with a users database is somewhat faster, because a lookup in the users CDB is faster than
running gmail-getpw, and marginally more secure, because gmail-getpw depends on the system
getpwnam() library routine, which can be complex and fragile. But unless you're trying to squeeze every
bit of speed out of a mail server, the more compelling argument is what you find more convenient.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
15.2 Making the Users File

The format of /var/gmail/users/assign is fairly simple. It's a sequence of lines with two slightly different formats, one
for an exact match and one for wildcards. An exact match line starts with an equals sign:

=local:user:uid:gid:homedir:dash:ext:

This means that mail to address local is delivered to user with user and group IDs uid and gid and home directory
homedir, using a gmail file named .gmail dashext. (Usually dash and ext are null.)

A wildcard line starts with a plus sign:
+loc:user:uid:gid:homedir:dash:pre:

In this case, any address that starts with /oc is handled by the given user, with pre inserted in front of the rest of the
address to determine the name of the gmail file. (In this case dash is usually a dash, and pre is usually null.)

Here's a snippet from a real assign file:

+:alias:121:105:/var/gmail/alias:-::
=carol:carol:108:102:/usr/home/carol:::
+carol-:carol:108:102:/usr/home/carol:-::

In this case, mail to carol is handled by the second line, and delivered using /usr/home/carol/.qmail, while mail to carol-
ina is handled by the third line and delivered using /usr/home/carol/.gmail-ina. Any address not starting with carol is
handled by the first catchall line so that mail to, say, fred is delivered using /var/qmail/alias/.qgmail-fred. Note the
hyphen in the third line in carol-, so that line matches any of carol's subaddresses, but not plain carol.

Usually the list of users in assign is more or less the same as the list in /etc/passwd, so gmail provides the gmail-pw2u
utility to create your assign file. I use this Makefile to control the process:

cdb: assign
../bin/gmail-newu

assign: /etc/passwd append exclude
cp assign assign.old
../bin/gmail-pw2u < /etc/passwd > assign

When creating assign, gmail-pw2u uses approximately the same rules as gmail-getpw, ignoring any users that have a
zero uid, don't own their home directory, or contain capital letters. For each user, the output contains two lines, with
the username, user and group IDs, and home directory from the password file, as in the "carol" example.

Several command-line flags to gmail-pw2u modify the default behavior and are documented in the manpage, but I've
never found the flags very useful. The only ones I've ever used are -h, fail if a user's home directory doesn't exist, and -
¢, change the separator character from a hyphen to something else, usually a plus sign for compatibility with the
subaddressing in sendmail and postfix. What is useful is a set of auxiliary files in /var/gmail/users that modify the
generated assign file:

exclude
A list of users to omit, either because they shouldn't get mail or because their mail setup isn't the default. It
should include accounts such as bin, daemon, and uucp that don't have human readers to read the mail. (You

can and should create gmail files in ~alias to forward mail sent to any of those addresses that are likely to get
interesting mail, of course.)

include

A list of users to include. If this file exists, only users in the file have lines generated in the output.

append

The contents of this file are literally appended to the output. This is usually a combination of mail-only users not
in the password file and modified info for specially handled users, e.g., users that don't use subaddresses.

mailnames

Mail aliases. A line of the form jim:jim:james:jimmy makes the second and subsequent fields aliases for the
first, and creates a pair of output lines for each alias. Note that if the username doesn't appear as one of the
aliases, there will be no entries for the user itself. Most system managers prefer to use .gmail files in ~alias or

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

entries in /etc/aliases instead.

subusers

Users implemented as subaddresses of other users. A line of the form jim:fred:jf: creates a pair of lines so that
mail to fred is treated as mail to jim-jf and mail to fred-ext as mail to jim-jf-ext. Except for the simplest setups,
again I prefer gmail files in ~alias or entries in /etc/aliases.

Assuming you use the Makefile shown previously, you just need to run make in /var/gmail/users every time to add or
delete a user to or from the password file. Qmail rechecks cdb for every local delivery so there's no need to restart
gmail.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
15.3 How Qmail Uses the Users Database

Once you've created the users database, gmail checks it for each local delivery. First it checks for an exact match of the
mailbox as a nonwildcard address. If that doesn't work, it tries for the longest match against a wildcard, starting with
the full mailbox and shrinking a character at a time until there's a match. (To speed up this process, gmail-newu makes
a list of the final characters used by all the wildcard entries and stores it in the CDB file. When looking up a mailbox,
gmail-Ispawn only checks substrings where the last character of the substring is one of those final characters.) The
wildcard match always succeeds, either against one of the subuser entries, or else against the default wildcard entry
created by gmail-newu, which looks like this:

+:alias: uid: gid: /var/gmail/alias:-::

Once gmail-Ispawn has the user data, either from the database or from gmail-getpw, it changes to the user ID, group
ID, and home directory, then runs gmail-local to read the .gmail file and perform the delivery.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
15.4 Typical Users Setup

The simplest arrangement makes a gmail user for all of the live users in the passwd file. In that case, in
/var/gmail/users create an exclude file that lists all of the passwd entries that don't correspond to people, such as root,
bin, daemon, uucp, ftp, and Ipd. Then create a Makefile as described earlier in this chapter, and as the super-user type
make. This creates a CDB with an entry for all of the un-excluded users.

Having excluded root, bin, and so forth from your users file, be sure to arrange for mail sent to those addresses to be
delivered somewhere, because daemons tend to send reports to those addresses. Either create individual gmail files like
~alias/.gmail-root or, if you use fastforward, put the instructions in /etc/aliases.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
15.5 Adding Entries for Special Purposes

If your system acts as a mail server for more than the people with shell accounts, you'll probably want to add some
entries to the users database.

15.5.1 Adding a Few Mail-Only Accounts

In many cases, a host serves a mix of shell and mail-only accounts. If the number of mail-only accounts is small, it's
not worth installing an entire virtual domain POP system. To handle my mail-only users, I created a user maildrop that
owns all of the Maildirs for the mail-only users. Each user has a Maildir, so that if fred is a mail-only user, his Maildir is
~maildrop/fred/ and his mail is delivered via ~maildrop/.gmail-fred, which contains either just the name of the Maildir,
./fred/, or more likely a call to procmail to filter out viruses and spam before delivery. Fred is a subuser of maildrop, so
his address would be maildrop-fred rather than fred. To make his plain address work, you can forward his mail via a
gmail file ~alias/.qmail-fred or an entry in /etc/aliases forwarding to maildrop-fred. Or what I do is to use the subusers
file, with entries like this:

fred:maildrop:fred:

(Also modify the Makefile to add subusers to the end of the line starting with assign:, so that it rebuilds the users
database if the subusers file changes.) This has exactly the desired result, to treat mail to fred as though it were
addressed to maildrop-fred. 1t also routes subaddressed mail, so if you want Fred's subaddresses to work, you should
create ~maildrop/.gmail-fred-default, which in a simple case can be a link to .gmail-fred to deliver all of fred's
subaddressed mail the same as his regular mail.

You must also arrange for the POP server to know about the mail-only users. See Chapter 13 for advice on doing so.

15.5.2 Preparing for the POP Toaster

If you have a more complicated mail setup, you may want to add a few custom lines to the users database by putting
them in append. If you run a POP toaster, a mail server for POP users with mailboxes in virtual domains, and the user
mailboxes belong to user pop, but you want to put the mailboxes in /var/popmail rather than in ~pop, just add a line
like this to append:

+popmail-:popmail:111:222:/var/popmail:-::
(Use the user and group IDs for pop rather than 111 and 222, of course.) Once you've rebuilt the users database, any
mail addressed to popmail-something will be delivered via /var/popmail/.qmail-something or /var/popmail/.gmail-

default, running as user pop. I find this a convenient way to work, so I can put files of software and notes to myself in
pop's home directory, and keep the mailboxes on a separate large filesystem.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

Chapter 16. Logging, Analysis, and Tuning

Although gmail performs well in its standard configuration, it's often possible to tune it to work better, particularly for
very large or very small installations.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
16.1 What Qmail Logs

Qmail logs quite a lot of information about what it's doing, although it can be daunting to collect it all together. If you're
using daemontools, each daemon has its own set of logs, kept in a rotating set of log files maintained by multilog,
usually with a TAI64N timestamp (see TAI64 Time Stamps). The gmail-send process logs each message queued and
each delivery attempt. The gmail-smtpd process logs each incoming SMTP connection, although it won't describe what
happened during the connection. tcpserver logs every connection denied due to entries in the connection rules file, and
rblsmtpd logs every connection it blocked due to a DNSBL entry. If you use QMAILQUEUE to run other programs at
SMTP time, anything they send to stderr is logged, and if you've added other patches to gmail-smtpd, anything they
write to stderr is logged, too.

A system can be set up to do logs analysis on the fly, every time multilog switches to a new log file or once a day in a
batch. It often makes sense to combine the two, doing some work at switching time and the rest daily. Although it's
usually more convenient to keep the logs for each application separate, it's not hard to create combined logs for
analysis or just to keep around in case someone needs to look at them later. If a set of logs from different programs all
have TAI64N timestamps, merge them using the standard sort program sort -m. TAI64N timestamps are fixed-length
hex strings, so merging them in alphanumeric order is the same as date order.f1] Once they're merged, tai64local can
make the timestamps readable by people. So to merge a set of log files, all of which have the standard multilog TAI64N
names that start with an at-sign:

[1] well, unless your system uses EBCDIC rather than ASCII. Unless you're running an obscure mainframe Unix
version from the 1970s, it doesn't, so we won't worry about it.

sort -m \@* | tai6é4nlocal > merged-log

TAI64 Time Stamps

TAI stands for International Atomic Time, an extremely precise standard maintained by the International
Bureau of Weights and Measures (BIPM). The BIPM is in France, so the acronyms are for Temps Atomique
Inernational and Bureau International des Poids et Measures. Dan Bernstein noted that Unix has no
generally accepted way to store times at a granularity of less than a second, and the standard 32-bit
timestamps can't represent times before 1970 or after 2038, so he devised a new set of TAI-based
timestamp conventions for his logs.

A TAI64 label is a 16-digit hex number that represents a 64-bit number of seconds. 4000000000000000 is
the beginning of 1970, the same time as a zero Unix timestamp. Smaller or larger numbers represent
earlier or later times. A TAI64N label is a timestamp in nanoseconds represented as a 12-digit hex
number, which is a TAI64N label followed by another four-digit hex number representing the number of
nanoseconds within the second. TAI64N labels are conventionally preceded by an @ sign, like
@400000003ff4ccf806d0f4fc. The multilog program can prefix TAI64N timestamps to each line of the
information that it logs, and tai64nlocal translates those timestamps to readable dates and times.

See http://cr.yp.to/libtai/tai64.html for more detail.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http:

www.colorpilot.com

[Team LiB] (& Faavisva vt +]
16.2 Collecting and Analyzing Qmail Logs with Qmailanalog

The gmailanalog package extracts statistics from the logs created by gmail-send. It consists of matchup, which
preprocesses the gmail logs; some scripts such as zoverall and zddist, which collect and print statistics; a second set of
scripts, such as xsender, for picking out subsets of messages to analyze; and a few other auxiliary programs and
scripts. The only C programs are matchup and columnt, an auxiliary program that neatens up the columns in the
reports. Everything else in the package is short awk or shell scripts that are not hard to edit.

Using gmailanalog is more painful than it should be because it expects its input log files to use an older decimal
timestamp format used by the now obsolete splogger and accustamp rather than the TAI64N format used by multilog. 1
have a patch to matchup to translate TAI64N to the older format as the logs are read at
http://www.iecc.com/gmailanalog-date-patch. The rest of the discussion here assumes that matchup has that patch. To
build the gmailanalog package, download the current version (0.70 as of this writing) from http://cr.yp.to, download
and apply the patch, do the usual make, then become super-user and make setup check. Normally gmailanalog installs
itself in /usr/local/qmailanalog. To change the installation directory, edit conf-home. The setup instructions advise
against installing the programs in /usr/local/bin because some of the names may collide with other unrelated programs.

To use gmailanalog, first you pass the raw logs through matchup to create a condensed file with one line per message
and one line per delivery. Then the analysis scripts read the condensed files and produce reports. matchup writes both
the condensed file and a second file listing messages that haven't been completely processed. The next time matchup
runs, it needs that second file to pick up where it left off. The condensed file is written to standard output, and the
second file to file descriptor 5.

16.2.1 Log Analysis at Rotation Time

The condensed files produced by matchup are about half the size of the raw gmail logs and matchup is fairly fast, so it
makes sense to call matchup from multilog to create the condensed logs each time it switches log files, as shown in

Example 16-1.
Example 16-1. Qmail log run with analysis

1. #!/bin/sh
2. exec setuidgid gmaill \

3. multilog t 4000000 \
4. !'cat /dev/fd/4 - | /usr/local/gmailanalog/bin/matchup’ \
5. ./main

Line 4 in this modified run file creates the condensed logs, using the short quoted shell script as the log processor.
Because matchup was written before multilog, their file descriptor conventions almost, but not quite, agree with each
other. When multilog runs the log processor, it opens the existing log file as standard input and as a file of saved data
from the previous run on file descriptor 4. The standard output is saved as the old log file, named with the current
TAI64N timestamp, and any output on file descriptor 5 is stored away for the next time the processor runs. Although
matchup does write information about partially processed messages to file descriptor 5, the next run reads that
information from the previous run from the standard input along with the next log file. Hence use cat /dev/fd/4 - to
read from the two file decriptors and pipe it all to matchup. The result of all of this is a set of condensed log files in
/service/gmail-send/log/main.

16.2.2 Log Analysis Once a Day

It's equally possible to do the log analysis once a day from cron or /etc/daily. If the original logs have to be saved, you
should do all of the processing at once. In this case, be sure that the file rotation options for multilog make the log files
it creates large enough and that it saves enough of them to keep a full day's log files. I use "s 4000000" so that each
log file is up to four megabytes or a total of 40 MB before multilog starts overwriting them.

Example 16-2, to be run once a day, saves the logs as gmail-send.yyyymmdd and a preprocessed version as gmail-
summary.yyyymmdd.

Example 16-2. Daily log save and analyze

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

. #1/bin/sh

. cd /var/log # or wherever logs are archived

a=$(date +'%Y%m%d") # yyyymmdd

. svc -a /service/gmail-send/log # force log rotation

sleep 5 # give rotation a moment to happen

. cat /service/gmail-send/log/main/@* > gmail-send.$a

. cat gmail-send.yesterday gmail-send.$a | \

/usr/local/gmailanalog/bin/matchup > gmail-summary.$a 5>gmail-send.tomorrow
. mv gmail-send.tomorrow gmail-send.yesterday

10. gzip gmail-send.$a gmail-summary.$a # log files are big, save space

COENOUT A WN =

The file of incompletely processed deliveries is saved to gmail-send.tomorrow, then it is renamed to gmail-
send.yesterday for the next run. This creates a new pair of log files every day, so you need some provision for deleting
old logs now, e.g., to delete logs over a month old:

$ find . \(-name gmail-send.[0-9]* -name gmail-summary.[0-9]* \) \
-mtime +30 -execrm{ }\;

16.2.3 Getting Statistics with Qmailanalog

Once the summary files are created, you can run the various summary scripts, all of which have names starting with z,
to get mail system statistics. All of the scripts read the summary file from their standard input:

Summaries created at rotation time log directory

$ cat /service/gmail-send/log/main/@* |
/usr/local/gmailanalog/bin/zoverall

Daily summaries in /var/log

$ gzcat /var/log/gmail-summary.yyyymmdd.gz |
/usr/local/gmailanalog/bin/zoverall

The most useful report is zoverall, which as its name suggests produces overall statistics. Example 16-3 is from my
main mail server, which hosts some mailing lists, a few dozen personal mailboxes, and the abuse.net message
forwarding service.

Example 16-3. A zoverall report

Basic statistics
gtime is the time spent by a message in the queue.

ddelay is the latency for a successful delivery to one recipient---the
end of successful delivery, minus the time when the message was queued.

xdelay is the latency for a delivery attempt---the time when the attempt
finished, minus the time when it started. The average concurrency is the
total xdelay for all deliveries divided by the time span; this is a good
measure of how busy the mailer is.

Completed messages: 56013

Recipients for completed messages: 65158

Total delivery attempts for completed messages: 66940
Average delivery attempts per completed message: 1.19508
Bytes in completed messages: 309400658

Bytes weighted by success: 349381796

Average message gtime (s): 31.3781

Total delivery attempts: 75035
success: 66080
failure: 974
deferral: 7981
Total ddelay (s): 2353455.027418
Average ddelay per success (s): 35.615240
Total xdelay (s): 437123.420922
Average xdelay per delivery attempt (s): 5.825594
Time span (days): 0.631722
Average concurrency: 8.00874

In this case, the summary file covers about 15 hours (0.631 days), long enough to be interesting but perhaps not
typical of a full 24-hour period. The system is moderately busy with an average of eight messages in transit at once,
and the average message dealt with in 31 seconds and the average delivery taking about 35 seconds. (This is unusually
slow, probably because abuse.net sends messages to very overloaded recipient hosts via long international links.) This
system is configured to permit 110 remote deliveries at a time, but the average concurrency is only 8, so increasing the
maximum probably wouldn't make much difference.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Another useful summary is zsuids, summary by numeric sender ID, as shown in Example 16-4.

Example 16-4. Log summary by sender user IDs

One line per sender uid. Information on each line:

* mess is the number of messages sent by this uid.

* bytes is the number of bytes sent by this uid.

* shytes is the number of bytes successfully received from this uid.
* rbytes is the number of bytes from this uid, weighted by recipient.
* recips is the number of recipients (success plus failure).

* tries is the number of delivery attempts (success, failure, deferral).
* xdelay is the total xdelay incurred by this uid.

mess bytes sbytes rbytes recips tries xdelay uid

21 27319 27319 27319 21 21 3.736360 0

13 25340 25340 25340 13 13 9.240442 9

1608 6597028 30396182 31342313 6143 7233 129119.309333 85
27052 156054190 167640496 168084828 30104 30392 53368.913426 120
113 1552110 1552110 1552110 113 119 120.743584 121

838 7325053 7256425 7325053 838 900 2406.317767 124

4 18179 18179 18179 4 4 64.632176 130

233 1113023 1208518 1210043 299 308 3266.386563 143
1955 6336818 8803216 8968141 2714 2758 20493.535539 162
1028 6983187 6985508 7248128 1120 1155 4744.157863 166
23060 123111117 125207318 129722143 23698 23945 87628.298410 170
24 224755 224755 224755 24 24 11.962693 172

64 32539 36430 36430 67 68 327.511405 32767

In this system, user 85 is majordomo, so most of its messages are to mailing lists. (Note that it sent 1608 messages to
6143 recipients, an average of almost four recipients per message, which is very high.) User 120 is gmaild, which is
considered responsible for all mail arriving via SMTP. User 162 is the spam trap, sending out many semiautomatic
abuse reports; user 166 is the POP toaster for the individual mail users; and 170 is abuse.net, forwarding third-party
messages. It's easy to see that abuse.net accounts for the largest part of the mail traffic, followed by majordomo, the
POP toaster, and the spam trap with about equal traffic.

Another level of filters makes it possible to look at just mail to or from a particular address. Use xsender to pick out just
mail sent from a particular address:

assume /usr/local/gmailanalog/bin is in $PATH
$ cat gmail-summary | xsender fred@example.com | zoverall

Use xrecipient to pick out mail just to a particular address. The summary file prefixes each address by local. or remote.,
depending on whether deliveries are local or remote, and virtual addresses are expanded out to the full local address:

assume /usr/local/gmailanalog/bin is in $PATH

local user

$ cat gmail-summary | xrecipient local.fred@example.com | zoverall

virtual user

$ cat gmail-summary | xrecipient local.myvirt-fred@myvirt.com | zoverall
remote user

$ cat gmail-summary | xrecipient remote.fred@domain.com | zoverall

There's also xgp to pick out particular message numbers, which I don't find very useful.

The full set of analysis programs includes:

zddist

Reports a percentage distribution showing how long mail deliveries take. If 90% of deliveries aren't done within
a few seconds, there's probably a network problem.

zdeferrals

Reports delivery deferrals with reasons and can be useful if there are particularly recalcitrant remote hosts.

zfailures

Reports delivery failures with reasons, if you want to see all the bounce messages.

zoverall

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Overall summary.

zrecipients

Summarizes all deliveries by recipient, with message counts and sizes.

zrhosts

Summarizes remote deliveries by recipient hosts, with counts and sizes.

zrxdelay

Summarizes deliveries by recipients, sorted by how fast mail to them is delivered.

zsenders

Summarizes messages by envelope sender, with counts and sizes.

zsendmail

A log report that is similar to sendmail's log report, for people who like that sort of thing.

zsuccesses

All successful deliveries, with the log messages and delivery delays.

zsuids
Summarize by numeric user ID.

It can be enlightening to run these programs from time to time to see if there are senders or recipients with
inexplicably large amounts of mail, remote hosts that consistently reject large amounts of mail, or other anomalies.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

16.3 Analyzing Other Logs

There's nothing like gmailanalog for the gmail-smtpd logs, mostly because the useful information in them varies so
much depending on what auxiliary programs and what patches are in use. I've written some Perl scripts that read
through the logs and count the rejection messages for each DNSBL in use, but they rarely reveal anything interesting
beyond the dismayingly large amount of spam that's showing up at my mail servers.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
16.4 Tuning Qmail

More often than not, gmail doesn't need any tuning. It's designed to work well on typical Unix systems. For local
deliveries, gmail is usually disk-bound, because it syncs files and directories to disk to avoid losing mail if the system
crashes. Although it's possible on some systems to set filesystem parameters to subvert the syncs, that's usually a poor
economy. If you want your local mail delivered faster, get a faster disk.[21 1f your system has a lot of unusually slow
local delivery programs, or it runs really slow spam filters (Spamassassin can fall into that category), it's possible that
local deliveries could be CPU-bound. The easiest way to find that out is with a utility like top that shows what's running.
Much of the slowness in slow spam filters is due to DNSBL lookups, which are in fact network bound. Modern CPUs are
so fast that it's a rare mail system that is even occasionally compute-bound.

(21 1f you haven't priced 15K RPM SCSI disks or 10K RPM ATA disks on eBay, you may be amazed how cheap they
are. Be sure to get a drive cooler, too.

Remote deliveries are invariably network-bound. If the goal is to deliver mail as fast as possible, crank the concurrency
up as high as possible. Looking at the zoverview results, it completed deliveries of 309400658 to 65158 recipients, for
an average of a little under 5 Kbps per message. The average xdelay was 5.8 seconds, so each delivery was sending
under 1 Kbps. This system happens to be on a T1 line, which can transmit 192 Kbps (that's 1.5 megabits divided by 8
bits per byte). So if each delivery sends 1 Kbps and the channel is 192 Kbps, it takes about 192 simultaneous deliveries
to fill up the T1. Note that the ddelay, the time from when a message enters the queue to when a delivery finishes, is
35 seconds, while the average xdelay, the time from the beginning to end of a delivery, is only 5 seconds, which means
messages wait 30 seconds to get a delivery slot. The mail traffic on this system is very bursty; a message comes in for
a majordomo list and is queued for delivery to the 900 members of the list. The remote concurrency is 110, so the 110
slots immediately fill up and the other 790 deliveries have to wait for slots to be available as deliveries finish. Increasing
the concurrency speeds overall deliveries. (I don't do this, because there are web and other servers on the network,
and I don't want to squeeze them out every time there's a mailing list message.)

These numbers are fairly typical; if the channel ran at an Ethernet-like 10 megabits, the useful concurrency would be
over 1000. Of course, most networks aren't entirely dedicated to email, but these sorts of estimates remain useful for
setting up a system to use as much email bandwidth as the system manager wants to use.

16.4.1 Tuning Small Servers

Usually the only tuning needed on a small server is to adjust concurrencylocal and concurrencyremote. On very small
systems with slow deliveries (Spamassassin run from procmail), it may be useful to decrease concurrencylocal to limit
the hit on system performance from a lot of incoming mail, at the cost of slower deliveries. Set concurrencyremote
using 1 K per second per delivery so that, for example, a DSL connection with 256 Kbits/sec of outbound bandwidth is
64 Kbytes/sec, so it would make sense to set concurrencyremote to 64 to use all of the bandwidth or to 32 to use up to
half of it.

16.4.2 Tuning Large Servers

Large servers can be tuned and patched to increase the concurrency past what's normally possible. All of the necessary
patches are at www.gmail.org in the section "Patches for high-volume servers."

For systems with a very large number of injected messages, the big-todo patch improves performance. In gmail's mail
queue, most of the queues are divided into 23 subdirectories, with the files distributed pseudo-randomly into the 23
directories, but incoming mail goes into a single todo directory. If mail is injected at a high enough rate, the todo
directory becomes inefficiently large and gmail-send falls behind. The big-todo patch by Russ Nelson and Charles
Cazabon splits todo and the parallel intd directory into 23 subdirectories. The patch changes the format of todo but not
the rest of the queue, so to install it without losing mail, you must ensure that nothing's queued in todo. After applying
big-todo and rebuilding, use svc -td to stop gmail-smtpd and stop any local daemons likely to inject mail, then use svc -
td to stop gmail-send, then make setup check to install the patched gmail, and use svc -u to restart gmail-send and
gmail-smtpd.

An alternative, more complex, big-todo patch by André Oppermann is available at http://www.nrg4u.com/. (Look for
the "silly gmail syndrome" patch.) It was written for use with gmail-Idap, described in Chapter 13, but it works equally
well with regular gmail. It splits the gmail-send daemon into two separate processes, gmail-todo, which processes
newly queued messages, and gmail-send, which schedules local and remote deliveries. This patch doesn't change the
queue file format, so it can be installed merely by building the patched version, stopping gmail, make setup check to
install the new version, and restart gmail. Normally I prefer simpler patches to more complex ones, but in this case, the
Oppermann patch does a better job of dealing with a lot of incoming mail, so it's a better choice for systems busy
enough that todo is an issue.

Normally gmail is built with a maximum delivery concurrency of 120 local deliveries and 120 remote deliveries. For
large servers on fast networks, that's nowhere near enough remote deliveries. To raise the concurrency limit to 255,
edit conf-spawn and change the 120 to 255, and recompile. This doesn't change the queue format, so to install it, stop
gmail-send, install, and restart gmail-send. You don't need to stop gmail-smtpd.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

If you need concurrency of more than 255, another patch found at www.gmail.org increases the maximum concurrency
to 65,000. As distributed, the components of gmail pass delivery numbers to each other as single bytes. This patch
changes them to pass the components as two-byte numbers. It doesn't change the queue format, so to install it, apply
the patch, rebuild gmail, stop gmail-send, install the patched version, and restart gmail-send. The patch sets the
concurrency limit to 1,000, which should be enough for most systems. As the patch file notes, if the concurrency limit is
1,000 and a message has 1,000 recipients in the same domain, gmail might try to open 1,000 simultaneous
connections to the same server, which managers of some recipient systems might misinterpret as a denial-of-service
attack. It's not likely in practice unless you happen to have a mailing list with all of the recipients in the same domain.
(Recall that deliveries are made in random order, so a list with 1000 recipients in each of 10 domains does about 100
deliveries at time to each of the 10 domains.)

The final patch for large systems makes the queue bigger. If your system sends a lot of mail that takes a long time to
deliver, you may need to enlarge the queue directories. Most Unix filesystems perform poorly with more than 1,000
files in a directory, so the default 23-way split will have trouble with more than 23,000 queued files. If you find yourself
in this condition, the code change is easy; just edit conf-split to a larger prime number (at least as great as 1/1000 of
the number of queued files you expect) and rebuild. But this changes the queue format, so the new version won't work
with the existing queued files. Qmail.org tells how to make a smooth transition: before changing the split, stop gmail,
move the existing set of gmail files from /var/qgmail to /var/gmail2, edit conf-qmail to refer to /var/qmail2, and build
and install a new temporary copy of gmail with make setup. Run /var/gmail2/rc to start up the temporary version, which
will continue delivering mail out of the old queue. Now change conf-gmail back to /var/gmail, edit conf-split to increase
the split, build and install it with make setup, and restart gmail. All future mail will be handled by the new copy of
gmail. After a week or so all the mail in the old copy of gmail will be delivered, at which point you can kill off the gmail-
send started from /var/qgmail2/rc and delete /var/gmail2.

[Team LiB] 14 raavisus [l o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
16.5 Tuning to Deal with Spam

The vast amount of spam sent from forged return addresses to nonexistent recipients causes correspondingly vast
numbers of bounces and doublebounces when gmail bounces the spam and finds that it can't deliver the bounce to the
nonexistent return address. Because nearly all doublebounces are now due to spam, there's little point in doing
anything with them. To throw them away, change the configuration file doublebounceto to nobody, and if you haven't
already done so, create ~alias/.gmail-nobody containing a single comment line to throw the mail away. (The file can't
be empty, because that's treated as a default delivery, but just # will do.)

This still queues and delivers doublebounces. To throw them away without queueing them, apply the small patch at

http://www.gmail.org/doublebounce-trim.patch, which adds a special case to gmail-send so that if doublebounceto

contains a blank line, doublebounces are just discarded.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
16.6 Looking at the Mail Queue with gmail-qread

It's not a bad idea to look at the contents of your mail queue every week or two just to see if there's anything strange.
The two utility programs to do that are gmail-gstat and gmail-qread.

For a two-line summary of your queue, run gmail-gstat as the super-user:

messages in queue: 21
messages in queue but not yet preprocessed: 0

The first line is the number of messages that have been queued but not delivered yet. On most systems the number
should be small, less than a hundred. If your system hosts mailing lists, the number of messages can reasonably be
larger because each list message stays in the queue until every recipient address is either delivered or bounces, and on
any list of significant size, there will be a few addresses that have gone bad but take a long time to bounce.

The number of messages not preprocessed should always be zero or close to it. If you have many messages waiting to
be preprocessed, it means that gmail can't deliver the mail as fast as it's arriving. If you have a very large mail system
you may need to install one of the big-todo patches discussed earlier in this chapter. If not, you should look at the
queue in more detail and see what's clogging it up. There's no convenient tool to look at the waiting messages, but if
you simply look at the files in queue/todo with more, you can easily make out the envelope information for each
message. The text of the message is stored in a file in a subdirectory of mess with the same filename as the todo file.
To find the message that goes with todo/123456, the easiest approach is more mess/*/123456. Don't change or delete
files in any of the queue directories while gmail is running, because gmail-send does not expect to have files changed or
deleted while it's running.

To look at the messages in the queue, run gmail-gread, also as super-user. If you don't use mailing lists, its report will
probably be quite short, while if you do use lists, it can be enormous. On the host I use for individual user mail, its
output is about 50 lines, while on the mailing list host, its output is over 29,000 lines, because the gread output
contains a line for every recipient of every message including the ones that have already been delivered, which with
mailing lists can add up fast.

30 Dec 2003 20:49:34 GMT #1222959 2113 <mary@example.com>
done remote aaron@myvirt.com

remote zelda@somewhere.aq
4 Jan 2004 04:18:44 GMT #1223051 11419 <>

remote userl@bogus.com

In this gread output, the first message from mary@example.com has been delivered to aaron@myvirt.com, but not yet to
zelda@somewhere.aq. The second message, which is a bounce because it has a null sender, has not yet been delivered to
userl@bogus.com. Deliveries to local recipients say local rather than remote. If some of the deliveries have failed, the
report will say bouncing. The number after the # sign in each report is the message number in the queue, so you can
find the file for the second message with more mess/*/1223051. The number after the message number is the size of
the message in bytes.

When looking at the queue content for hosts with mailing lists, it is useful to leave out the addresses that are done:
/var/gmail/bin/gmail-gread | grep -v 'done'
On my list host, that gets the report down from 29,000 lines to 1500.

The results of gread are rarely very interesting, but when they are, if say you see a whole lot of large messages queued
to addresses that you don't recognize, they can be the key to tracking down otherwise hard to detect problems.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [ravisus] it o]
Chapter 17. Many Qmails Make Light Work

Qmail is well-suited for environments with multiple computers working together, as well as multiple copies of gmail
dividing up work in various ways. This chapter starts by looking at the aspects of gmail useful for multiple operation and

then explains some common applications.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Faivisin] iy o]
17.1 Tools for Multiple Computers and Qmail

Here's a quick rundown of the tools in our multisystem toolbox.

17.1.1 Multiple Copies of Qmail

Normally, all of gmail is installed in /var/gmail. That directory is specified at build time in conf-gmail. If you change the
contents of conf-gmail to, say, /var/gmail2 and rebuild and install gmail, you'll create a complete second copy of gmail
along with its queue directories. You can send mail into it using /var/gmail2/bin/gmail-queue or any of the programs
that call it, such as /var/gmail2/bin/forward, or by using tcpserver to run a SMTP service with /var/qmail2/bin/qmail-
smtpd. Outbound mail works normally, although you can control it using the standard mechanisms such as
concurrencyremote and smtproutes.

Remember that gmail's queue cannot be on a shared or remote disk; a single local copy of gmail-send has to manage
each queue.

To pass mail for particular domains from one copy of gmail to the other, you can use either SMTP or virtualdomains. To
use SMTP, set up a SMTP daemon for the second copy of gmail on localhost (127.0.0.1), but listening on port 26 or any
other unused port. Then in the control/smtproutes/ in the first copy, route the mail for each domain to that SMTP
daemon:

bad.example.com:localhost:26
To route using virtual domains, add virtualdomain entries to assign all the domains to a pseudo-user called gmail2:

example.com:gmail2
myvirt.com:gmail2

Then in ~alias/.qmail-other-default, forward the mail to the other copy of gmail:
| /var/gmail2/bin/forward "$DEFAULT@HOST"

The gmail2 version of forward will use the gmail2 version of gmail-queue to queue the mail in the second copy of gmail.
If you've applied the QMAILQUEUE patch, you can set QMAILQUEUE to /var/qgmail2/bin/gmail-queue in any command
that queues mail to force the mail into the second copy of gmail.

17.1.2 mini-gmail

mini-gmail is a stripped-down gmail package. It uses QMQP, a faster and simpler scheme than SMTP, to send all mail to
another host running regular gmail. Because mini-gmail makes neither local nor remote mail deliveries, and has no mail
queue (all mail is sent to the QMQP server immediately), it's useful on client hosts in a mail cluster. The details of
setting up mini-gmail are discussed later in this chapter.

17.1.3 Shared Mail Folders

Maildir format mailboxes can safely be shared read/write using NFS. Each message is written as a separate file, so the
hosts creating the files use their hostnames as part of the files they create to avoid name collisions, and NFS does a
reasonably good job of making file rename operations atomic; delivery to and retrieval from remote Maildirs works well.
This means that one host can deliver the mail into a mailbox and another can pick it up, such as when one is the SMTP
server and the other is the POP server. Or several hosts can use a shared Maildir as a gateway to a single host or
service.

Sharing mboxes is much less reliable, because it depends on the NFS lock daemon to keep multiple writers in sync.
People who share mboxes via NFS usually regret having done so.

17.1.4 Multi-Host POP Toasters

If you use vpopmail, described in Chapter 13, it's straightforward to expand to multiple mail servers for both incoming

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

and outgoing mail. The mail system uses three conceptual parts: the SMTP server(s), the POP server(s), and the mail
store. In the simplest case, all three parts reside on a single computer, but it's equally workable to put them on
separate computers. The mail store resides on one or more computers running NFS servers, and the SMTP and POP
servers mount the NFS partition. The SMTP servers receive the mail and deliver it to the mail store, and the POP
servers retrieve user mail from the mailstore. Because Maildirs don't require file locking to work correctly, NFS with all
its faults is quite adequate for a reliable system. If there's a single POP server, the CDB user database can reside on the
POP server (where it can be updated as needed) with the SMTP servers having read-only access. Or better, build
vpopmail using MySQL to keep the user database. All of the hosts can access a single MySQL database to track users,
mail quotas, and POP-before-SMTP data. If that becomes a bottleneck, MySQL has built-in database mirroring so that
there can be a local copy of MySQL on each server that needs it, mirroring the master database, with all updates fed
back to the master. This is a very flexible design that should scale to a huge number of mailboxes and servers.

Another alternative for a multi-host system is gmail-Idap. Either it can use NFS for deliveries from multiple SMTP
servers to user mailboxes, or the servers can be configured as a cluster in which each user entry in the LDAP database
assigns the user's mailbox to a single server. The SMTP servers use QMQP to pass mail that arrives on the wrong server
to the right one. Normally, users' MUAs are configured to log into their home server to pick up mail, but if a user logs
into the wrong server for POP or IMAP, the session is transparently forwarded to the right one. It's all pretty slick.

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
17.2 Setting Up mini-gmail

Installing mini-gmail requires two steps: installing a QMQP server or two, and then installing the mini-gmail QMQP
client.

17.2.1 Setting Up a QMQP Server

If you already have an SMTP server running, setting up QMQP is easy, because its configuration is much simpler. The
only pitfall is that QMQP has no relay protection at all, so you have to make sure that only your own QMQP clients
connect to the servers. QMQP doesn't queue, which means that clients discard mail if they can't deliver it to a server
immediately, so you should set up at least two QMQP servers if possible.

First, create the rules file to permit connections only from your network. Create /var/gmail/rules/gmqprules.txt:
only allow connections from our network

:deny

172.16.42.:allow

Replace the 172.16.42. line with your own network range(s), of course. If you created a Makefile for your SMTP rules file,
add the QMQP rules file to it, too, and then run make to create gmgprules.cdb:

default: smtprules.cdb gmgprules.cdb

smtprules.cdb: smtprules.txt
cat $> | /usr/local/bin/tcprules $@ smtprules.tmp

gmgprules.cdb: gmgprules.txt
cat $> | /usr/local/bin/tcprules $@ gmgprules.tmp

Now it's time to create the directories for the QMQP service:

mkdir /var/gmail/supervise/gmail-gmgpd
mkdir /var/gmail/supervise/gmail-gmqpd/log

mkdir /var/gmail/supervise/gmail-gmqgpd/log/main
chown gmaill /var/gmail/supervise/gmail-gmqgpd/log/main

And create /var/gmail/supervise/gmail-qmqgpd/run:

1. #1/bin/sh

2. limit datasize 3m

3. exec tcpserver \

4. -u000-9000-v -p R\

5. -x/var/gmail/rules/gmgprules.cdb 0 628 \
6. /var/gmail/bin/gmail-gmgpd 2>&1

In line 4, use the values on your system for gmaild. Note on line 5 that the service is running on port 628. Finally,
create /var/qmail/supervise/qgmail-gmqpd/log/run. It's identical to its smtpservice equivalent:

#1/bin/sh
exec setuidgid gmaill \
multilog t s4000000 ./main
Once you have all the files created, symlink the supervise/qmail-gmqpd directory so svscan starts it up:
In -s /var/gmail/supervise/gmail-gmqpd /service
If you look at log/current you should see the initial tcpserver status line:

tcpserver: status: 0/40

If you're using more than one QMQP server, repeat this exercise on the other server(s). If you use the same directory
structure on each server, you might be able to use cp -Rp to copy the whole thing over rather than recreating each file
and directory by hand.

17.2.2 Setting Up QMQP Clients

Once you have the server set up, the QMQP client is easy. mini-gmail does no queueing and no local delivery, so what
little it does do all runs as whatever user calls it. As a result, you don't need to define any user or group IDs, nor do you
need to create the queue or ~alias directories. Usually the easiest thing to do is to build gmail on the server, then copy
the pieces to the QMQP client machines.

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

All of the QMQP files are read-only, so if you have multiple client systems, all of these files can be shared except for
idhost, which must have different contents for each host.

What you should install includes:

® In /var/gmail/bin, include gmail-gmgpc and gmail-inject (or new-inject, linked to gmail-inject). You should also
install the sendmail program, and if you plan to use them, other programs including forward, predate, datemail,
mailsubj, gmail-showctl, maildirmake, maildir2mbox, maildirwatch, qail, elg, and pinq. If you want, install all of
the usual programs in /var/qmail/bin and delete gmail-queue, the one program that's not used.

® Symlink gmail-gmgpc to gmail-queue, so that all injected mail is sent out using QMQP. Also, as on full gmail
systems, install gmail's version of sendmail as described in Section 5.1.1 in Chapter 5.

® 1n /var/gmail/control, copy the files me, defaultdomain, and plusdomain from the QMQP server. Create idhost
with the name of the QMQP client to be used in message IDs. Create gmgpservers with the numeric IP
addresses of the QMQP servers, one per line. (Use IP addresses, not domain names.)

Once these files are installed, and assuming you've started your QMQP servers, you should be able to send mail using
Mail or any other mail application. Send yourself a message, make sure it's delivered, and check that it includes a
header like this one:

Received: from client.example.com (172.16.42.201)
by server.example.com with QMQP; 13 Feb 2003 01:37:41 -0500

The QMQP client produces no logs at all, but you can check the logs on the QMQP server to see what incoming
connections have occurred.

17.2.3 Using QMIQP

QMQP has three common uses: on a cluster of machines with a mail smarthost, on a network firewall, and for load-
sharing with mailing lists.

17.2.3.1 Using a smarthost

On a network with multiple machines, it usually makes sense to use one or two of them as the mail hosts. That makes
the mail system easier to administer, because you only have to manage the configuration on the mail hosts. The rest of
the hosts, even if they're doing only one thing, such as running a database or serving web pages, usually send out a
little bit of mail with status reports, logs of daily cleanup jobs, and the like. On the machines that aren't mail servers,
install mini-gmail, being sure to install gmail's version of sendmail to catch all the mail sent by daemons and cron jobs.
Be sure to disable any startup scripts that attempt to run sendmail as a daemon, because the mini-gmail version of
sendmail doesn't do that.

17.2.3.2 Setting up a mail firewall

If you have a firewall or bastion host separating your internal network from the outside world, good security design
mandates that you run as few services on the bastion host as possible. If that host is the only one visible to the outside
world, it has to run an SMTP daemon, but you can use mini-gmail to pass incoming mail directly to the smarthost,
minimizing the processing on the bastion host.

On that host, install mini-gmail and ucspi-tcp. Set up tcpserver and gmail-smtpd in the usual way described in Chapter
3 and Chapter 4. In /var/qgmail/control, create the files me with the name of the host, rcpthosts with the domain names
for which the host receives mail, and gmgpservers with the address of the internal mail host. You can also create
databytes if you want to limit the size of incoming messages.

Even though this setup provides no queueing on the bastion host, if the internal mail host doesn't respond to QMQP
when an incoming message arrives, gmail-gmgpc (masquerading as gmail-queue) will fail, and that will make gmail-
smtpd fail with a 451 temporary error, which should make the sending host hold on to the message and try it again
later.

In most cases, you'll want to do some spam filtering at the gateway using DNSBLs and perhaps gmail-filter. See
Chapter 9 for details.
17.2.3.3 Mailing list load sharing

Mailing list software needs a specialized kind of load sharing. A typical mailing list message is delivered to the list

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

manager program, which validates it in various ways, and then remails it to the potentially very large set of addresses
on the list. Most list managers also have management interfaces that accept commands via email or a web page to add
and remove list members, create and reconfigure lists, and otherwise maintain the lists. It makes sense to run the list
management software on one host or set of hosts, and the mail deliveries on another. Fortunately, this is really easy to
arrange.

For list managers that interface directly to gmail (ezmlm/ezmim-index and majordomo?2 at this point), outgoing list mail
is sent by running gmail-queue. To move the delivery work to another computer, it needs only to run gmail-gmqgpc
rather than gmail-queue. Ezmlm supports this directly; if the list's directory contains the file gmgpservers, outgoing
mail uses QMQP. If gmail-gmgpc is patched appropriately (the patch comes with ezmIim-idx), it can read the list of
QMQP servers from that file rather than the default in /var/gmail/control/gmgpservers. Majordomo2 has no direct
support for QMQP, but because it's written in Perl, it takes about 10 seconds to find the place in the file QQEnvelope.pm
that refers to gmail-queue and change it to gmail-gmgpc. I use a two-host majordomo2 setup, and it works very well
for me.

Other list managers that aren't aware of gmail either inject mail with sendmail or via SMTP. For mail sent by SMTP,
merely configure the package so that the SMTP connection is to the other computer rather than to localhost. Most
packages don't send list mail via sendmail due to the argument size limits, using it only to send administrative
messages to single users that don't put a lot of load on the mail system. If you do want to reroute the mail injected by
sendmail, and you've installed the QMAILQUEUE patch, you only need to ensure that the QMAILQUEUE environment
variable is set to /var/gmail/bin/qmail-gqmgpc whenever the list package runs, something like this:

#1/bin/sh

export QMAILQUEUE=/var/gmail/bin/gmail-gmgpc
exec /usr/lib/listmanager "$@"

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 rxaviss] firaxt +]
Chapter 18. A Compendium of Tips and Tricks

The good thing about gmail is that there are simple ways to perform a wide variety of mail handling tasks, even though
gmail doesn't have as many task-specific features as other MTAs. The bad thing is that the simple ways are often a less
than obvious combination of more basic gmail features. Here is a list some common problems, and some of those tasks
and combinations.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [Pavisua]f T o]
18.1 Qmail Won't Compile

You have unpacked the gmail sources and typed make, but it won't compile. If you're receiving error messages about
errno, you've run into a compatibility problem between gmail and recent versions of the GNU C library. The fix is very

simple. See Building with Recent GLIBC and Fixing the errno Problem in Chapter 3.

(This is the number one question on the gmail mailing list, so frequent that there's an autoresponder that mails back
the answer to any message that contains the word "errno".)

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
18.2 Why Qmail Is Delivering Mail Very Slowly

If gmail seems to wait about half a minute to do anything when you inject mail, the problem is almost certainly that the
lock/trigger file used to communicate between gmail-queue and gmail-send is messed up. That file should be a named

pipe:

Is -l /var/gmail/queue/lock/trigger
prw--w--w- 1 gmails gmail 0 Nov 7 03:02 /var/gmail/queue/lock/trigger

If it's a regular file or anything other than a pipe, you have a problem. Fortunately, it's a problem that's easy to fix:

svc -td /service/gmail-send # shut gmail down for a minute

tail -f /service/gmail-send/log/main/current

wait until the log says that it's exited

rm /var/gmail/queue/lock/trigger # remove bogus trigger

cd wherever you built gmail from source

make setup check # recreates all the crucial files including trigger
svc -u /service/gmail-send # restart gmail

This is the second most frequently asked question on the gmail mailing list, and tends to get aggrieved responses
pointing out that the answer is in the archives about a hundred times. So don't ask it, because now you know the
answer.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
18.3 Stuck Daemons and Deliveries

Some of the most frustrating problems are due to background daemons that don't do what they're supposed to do.
Fortunately the daemontools package makes daemon debugging relatively straightforward.

18.3.1 Daemons Won't Start, or They Start and Crash Every Few Seconds

Starting a daemon under svscan and supervise is simple in concept, although the details can bite you. The super-
daemon is started at system boot time by running /command/svscanboot. It runs svscan to control daemons and the
useful but obscure readproctitle, which takes any error messages from svscan and puts them into its command area so

that ps will show it.[11

[1] This odd way of displaying error messages is intended to work even in the presence of serious configuration
screwups like disks that should be mounted but aren't and directories that are supposed to be writable but aren't.

Every five seconds svscan looks at all of the subdirectories of /service and starts up a supervise process on any that
don't have one running. In the usual case that the subdirectory in turn has a subdirectory called /og, it starts a second
supervise process in the subdirectory and pipes the output from the first process to the second.

When supervise starts up a daemon, it runs the file run in the daemon's directory. That file has to be a runnable
program that either is or, more commonly, exec's the daemon itself. That means that run has to have its execute bits
set and, if it's a shell script, start with #!/bin/sh so that it's runnable. If either of those isn't the case, there is a failed
attempt to start the daemon every five seconds. A ps / that shows readproctitle should reveal the error messages and
give hints about what needs to be fixed.

The run script generally sets up the program environment and then exec's the actual daemon. If you become super-
user and type ./run, the daemon should start. If that works, the daemon still doesn't start, and you don't use full
program paths in the run file, the problem is most likely that the search path that supervise uses isn't the same as the
one you're using. Look at /command/svscanboot to see the search patch that it uses. Most notably, it does not include
/var/qmail/bin unless you edit the file yourself to include it.

18.3.2 Nothing Gets Logged

Sometimes the daemon runs but nothing's going into the log files. This generally is due to either file protection
problems or an incorrect set of multilog options. The usual way to run multilog is to create a subdirectory called main in
which it rotates log files. It's safer to run daemons as a user other than root, so when possible, use gmaill, the gmail log
user. A common error is to forget to change the ownership of the log file directory to gmaill (or whatever the log user
is). When multilog starts successfully, it creates a current log file in the directory, so if there's no main/current, the
most likely problem is directory ownership or protection.

If multilog is running but there's nothing logged, the most likely problems are that the daemon isn't sending anything to
log, or that multilog's options are telling it to discard everything. Because the daemon and the logger are connected
with a regular Unix pipe, only messages sent to the daemon's standard output go to the logger. In particular, anything
sent to standard error shows up in readproctitle, not the log. If, as is usually the case, you want to log the errors a
daemon reports, just redirect the error output to the standard output in the run script with the standard shell redirect
2>&1. (That redirect is at the end of just about every run script example in this book.)

If the daemon is a program originally intended to run as a standalone daemon rather than under daemontools, it
probably sends its reports to syslog, not to standard output or standard error. In most cases, there is an option to send
messages to stdout or stderr.

If you are using multilog options to select what to log, be sure that you're selecting what you think you are. In
particular, its pattern language resembles shell wildcards but is in fact considerably weaker because it doesn't move
ahead or back up on a failed match. (Patterns do resemble shell wildcards closely enough that they should always be
quoted to keep the shell from messing with them.) The pattern must match the whole line, and stars stop matching the
moment they see the following character in the pattern. If a pattern is, say, +'+*: status: *', it will match one: status: two,
but it will not match one: two: status: three, because the star will stop at the first colon and won't look for the second one.
If the pattern didn't have the star at the end, it wouldn't match anything useful because it wouldn't match any lines with
anything after the status:. In practice, most log file messages have a pretty simple syntax, and it's not hard to come up
with adequate patterns if you keep in mind the limitations of the pattern-matching language. For debugging, start with
no patterns to be sure that the stream of messages going into the log files contains what you expect, then add one or
two patterns at a time and restart multilog with svc -t and see what's going into main/current each time until it looks
right.

18.3.3 Daemons Are Running but Making No Progress

One of the most baffling problems occurs when the daemon seems OK, the logger seems OK, but the daemon's not

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

doing anything. What's wrong? Usually the problem is that the disk to which the log files are written has filled up or is
mounted read-only. Because multilog is designed not to lose any log data, if it can't write to the disk, it just waits and
retries until it can. This means that the pipe between the daemon and multilog fills up and the daemon stalls waiting to
be able to write to the pipe. The solution is to delete some files and fix whatever it was that filled up the disk so it
doesn't happen again. If the disk is full of files written by various multilog loggers, adding or adjusting s and n options
to set the maximum size and number of log files can help.

18.3.4 Mail Rejected with Stray Newline Reports

The SMTP spec says that the way that each line of text in an SMTP session ends is with a carriage return/line feed pair
(0d 0a in hex or \r\n in C.) Some buggy MUAs and MTAs only try to send mail that contains linefeeds with no preceding
carriage return. Qmail's SMTP daemon normally rejects such mail with a log message like Stray newline from 10.2.3.4
because there's no way to tell whether the bare linefeed is just missing a carriage return or it's some kind of malformed
binary data.

If you're seeing stray newline entries in your logs and you're reasonably sure that they're being sent by MTAs or MUAs
that intend them to be handled as an end-of-line, use the fixcrio program from the ucspi-tcp package to placate the
SMTP daemon. Modify the run script for gmail-smtpd so that it pipes mail through fixcrio, as shown in Example 18-1:

Example 18-1. SMTP daemon that forgives stray newlines

1. #!/bin/sh

2. limit datasize 3m

3. exec tcpserver \

4. -u000-g000-v -p -R '\

5. 025\

6. /usr/local/bin/fixcrio | /var/gmail/bin/gmail-smtpd" 2>&1

Line 6 is the modified one, starting up fixcrio and gmail-smtpd. When fixcrio runs, it passes the input and output of

gmail-smtpd through pipes so it can add missing carriage returns in front of newlines as needed. In the longer run, see
if you can persuade your correspondents to upgrade their SMTP clients to newer, less buggy versions.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] 14 raavisus fliaxt o

18.4 Mail to Valid Users Is Bouncing or Disappearing

If you use users/assign as described in Chapter 15, a common mistake is to add a user to the system without updating
the users file. Fortunately, this oversight is easily remedied:

cd /var/gmail/users; make

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
18.5 Mail Routing

Qmail lets you build very complex routing strategies on top of its three basic delivery paths: local, virtual, and remote.

18.5.1 Sending All Mail to a Smarthost

If your gmail system has a full-time Internet connection, route all mail to a smarthost with a default entry in
smtproutes, e.g., :mail.myisp.com. If you have a dialup or other intermittent connection, use a default virtual domain to
route all outgoing mail into a Maildir, then when you connect to your ISP, use maildirsmtp to take the mail out of the
directory and send it to the smarthost. See Chapter 11.

If you have a few locally connected systems to which you can send mail directly, you can also put specific entries for
them in smtproutes, overriding the smarthost default. If you use virtualdomain delivery, you also need not-virtual
entries for each of them in virtualdomains, e.g., nearby.com:. See Chapter 12.

18.5.2 Treating a Few Remote Addresses as Local

If you have local users who use addresses at another system as their return address on mail, you can "short circuit"
mail to them and handle mail to them as local, by creating individual address virtualdomains entries for them. See

Chapter 12.
18.5.3 Slowing Mail Delivery to Certain Domains

Some mail servers have an unfortunate habit of accepting more incoming SMTP connections than they can handle, and
then collapsing. The simplest way to limit the number of connections to a server is to route all the mail destined to it
into a Maildir using lines in virtualdomains, then run maildirserial from cron to deliver the mail one at a time. Another
approach is to install two copies of gmail, the main one with the usual high concurrencyremote level, and a second one
with a very low concurrencyremote level of 5 or so. Then in the main system, for any domains that need to be fed mail
slowly, use either virtual domains or smtproutes to hand mail for those domains to the secondary copy of gmail. See

Chapter 17.
[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
18.6 Local Mail Delivery Tricks

Even though gmail's local mail delivery design is pretty simple, it still has the flexibility to handle all sorts of situations.

18.6.1 Using a Subaddress Separator Character Other than Hyphen

Some people prefer to use a plus sign rather than a hyphen in subaddresses, so they like caro/+prunes rather than
carol-prunes. If you can't persuade them that their life will be easier if they use a hyphen like everyone else, it's not
hard to arrange if you use users for local mail delivery. Create /var/gmail/users/assign if it doesn't exist yet, and then
in the user's wildcard entry, change the first hyphen to a plus:

+carol-:carol:108:108:/home/carol:-::
+carol+:carol:108:108:/home/carol:-::

Then run gmail-newu to rebuild the users database. That's all it takes. The plus sign only affects the separator between
the name and extension, not the name of .gmail files, which will still be .gmail-prunes in this case, nor the character
that separates subextensions.

In the usual case that the users file changes from time to time as the password file is updated, put the user's name in
exclude and put the two lines for that user (the modified line that starts with a plus and the unmodified line that starts
with an equals sign) in append so they'll be included automatically each time gmail-pw2u runs.

18.6.2 Customized Bounce Messages for Virtual Domains

Often a virtual domain belongs (logically at least) to a different organization than the main domain on the mail server.
When mail to a bad address at the virtual domain bounces, it is nice to give an error specific to that domain. Say the
domain myvirt.com is routed to the myvirt user. If addresses in that domain are handled by individual .gmail files,
anything that lands in .gmail-default is a bad address, easily handled by bouncesaying:

| bouncesaying "Not a valid user at myvirt.com. Call 617-637-VIRT for information."

If addresses are handled by an alias file created by setforward, set -p to tell fastforward not to fail on an unknown
address so you can handle it yourself. Put these two lines in .gmail-default:

| fastforward -p myvirt.cdb
| bouncesaying "Not a valid user at myvirt.com. Call 617-637-VIRT for information."

[Team LiB] [+ Faaviava vt +]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [vy Jlri v
18.7 Delivering Mail on Intermittent Connections

If your gmail system is a hub host for remote systems that connect intermittently by dialup, it is straightforward but
messy to deliver the mail while the remote systems are connected.

One approach is to create a flag file in a known directory when a host connects and delete the file when the host
disconnects. Then run a script periodically from cron that loops over all of the flag files to push out mail to currently
connected hosts.

To flesh out this example, assume there are three dialup hosts called red.example.com, blue.example.com, and
green.example.com. Create virtualdomains that give them different virtual domain prefixes:

red.example.com:alias-dial-red
blue.example.com:alias-dial-blue
green.example.com:alias-dial-green

You can put all of the alias-dial mail into one Maildir since the Delivered-To: prefixes keep them separate. To put all the
mail for the three hosts into ~alias/dialmail/, create ~alias/.qmail-dial-default containing the line ./dialmail/.

To track the currently connected hosts, put the flag files into ~alias/dialflags and have the dialup connection script
create a file with the host's simple name (red, blue, or green) in that directory containing the host's current IP address.
Then run this script from cron to push out the mail to whichever hosts are currently connected:

#1/bin/sh
run this every 15 minutes from cron to push out the mail

cd /var/gmail/alias/dialflags

for hn in *
do
ip=$(cat $hn) # IP address in the flag file

setlock ../$hn.lock \ # lock deliveries to this host
maildirsmtp /var/gmail/alias/dialmail \
alias-dial-$hn- $ip my.example.com 2>&1 |
splogger serial
done

If you also want to push out any waiting mail as soon as a host connects, also put a call to maildirsmtp into the host's
connection script. Be sure to use the same lock file to avoid confusion if the cron job happens to run at the same time.
If you add another host called purple, you only need to add another line to virtualdomains:

purple.example.com:alias-dial-purple

The remote hosts can use a similar setup to forward their mail to the main host, using a single smarthost entry in
virtualdomains. See the discussion of serialmail in Chapter 11.

[Team LiB] [+ Faaviava vt +]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
18.8 Limiting Users' Mail Access

Some organizations grant different amounts of access to email to different users. In particular, some are allowed to
send mail outside the organization and some can't. There are a lot of different ways to set this up, but one of the
simplest to set up is to create two parallel copies of gmail on the same host, one for restricted users and one for
general users. Following the instructions in Chapter 17, create two instances of gmail; the regular one for unrestricted
users and incoming mail in /var/gmail, and the restricted one in /var/rgmail. Create accounts for all of the users so that
every user has a mailbox, and set up a POP (and IMAP if you want it) server.

Set up SMTP daemons for both instances on separate IP addresses, and set up the users' PCs so that the restricted
users send their outgoing mail to the restricted server and the unrestricted users to the general server. To keep the
restricted users from sending any mail through the general server, add their addresses to
/var/qmail/control/badmailfrom. To keep them from sending external mail from the restricted server, put this line to fail
all remote deliveries into /var/rqgmail/control/smtproutes:

:[127.0.0.0]
(This is a deliberately bad address that will refuse all connections.)

Another approach that's a little harder to set up but easier to administer is to use a single copy of gmail but to check
the mail as users send it. If you use the old-fashioned fixup scheme described at the beginning of Chapter 7 to handle
injected mail, you can check whether a user is allowed to send external mail in the fixup script. Modify ~alias/.gmail-
fixup-default to something like this:

| bouncesaying 'Permission denied' ["@$HOST" = "@fixme"]
| ./checkrestrict
| gmail-inject -f "$SENDER" -- "$DEFAULT"

Example 18-2 checks whether the sender is in a list of authorized users.

Example 18-2. checkrestrict script for .qmail-fixme

#1/bin/sh
inherit $SENDER and $DEFAULT from the .gmail file

case "$DEFAULT" in
*@example.com) # our domain, always permitted
exit 0 ;;
@) # external address
if egrep -q "~($SENDER)$" authorized-users
then
exit 0
else
bouncesaying "You cannot send external mail."
fi;;
*) # local mail, always permitted
exit 0 ;;
esac

This script needs to be ruggedized a little, because mail from user fred might have a sender of fred or
fred@example.com depending on how his mail program is set up, and a local recipient address might be
mary @EXAMPLE.COM in uppercase, but the checking remains quite simple.

If you use ofmipd, you can't easily use the fixup trick, but assuming you've applied the QMAILQUEUE patch, you can
run gmail-gfilter and use a similar script that checks $QMAILUSER and $QMAILRCPTS and returns an exit code of 31 to
reject the mail or 0 to permit it. (Remember that if you accept the mail, you have to copy the message from stdin to
stdout, too, or the message you accept will always be empty.) Call the checking program, which can most easily be
write in Perl or Python, /var/gmail/bin/checkauth, then create this script called /var/qgmail/bin/authfilter to run it. See

Example 18-3.

Example 18-3. Run injected mail through authorization checker
#1/bin/sh

check incoming mail

exec /var/gmail/bin/gmail-gfilter \
/var/gmail/bin/checkauth

Then set QMAILQUEUE to /var/gmail/bin/authfilter. If you provide web mail for your users, be sure to set QMAILQUEUE

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

when running the web mail application so it also calls the filtering script to check whether a user is allowed to send
mail.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
18.9 Adding a Tag to Each Outgoing Message

Some organizations want to add a footer to every message with text that identifies the company, includes disclaimers,
or makes implausible claims about the legal status of messages. This is another problem that's easily solved with gmail-
dfilter, in this case so easily that it doesn't even need a program of its own, just a two-line script I'll call addtag, as

shown in Example 18-4.
Example 18-4. addtag script to add a tag to messages

#1/bin/sh
exec /var/gmail/bin/gmail-gfilter \
cat - /etc/mailtag

Put the tag in /etc/mailtag, and set QMAILQUEUE to run the tagging script in ofmipd and anywhere else that mail is
injected. If local programs inject mail with sendmail, you might want to rename /var/qgmail/bin/sendmail to
realsendmail and put this in its place:

#1/bin/sh
QMAILQUEUE=/var/gmail/bin/addtag exec /var/gmail/bin/realsendmail "$@"

If you use the older fixup approach to inject mail, you can add the tag in .gmail-fixup-default, as shown in Example 18-
5.

Example 18-5. .qmail-fixup that adds a tag

| bouncesaying 'Permission denied' ["@$HOST" != "@fixme"]
| cat - /etc/mailtag | gmail-inject -f "$SENDER" -- "$DEFAULT"

[Team LiB] [« Fruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
18.10 Logging All Mail

Some organizations need to log all email passing in or out of their system. An obscure feature called QUEUE_EXTRA
makes this quite straightforward. Every time gmail-queue enqueues a message, it adds the string QUEUE_EXTRA to the
recipient addresses. Normally that string is empty, but you can edit extra.h in the gmail source code to be whatever
you want. The usual change (recommended in the gmail FAQ) is to make it add a recipient called /og to each message.
Change QUEUE_EXTRA to be the exact string to add to the recipient string including the leading T and trailing null, and
set QUEUE_EXTRALEN to be the length of the string. Then rebuild and reinstall gmail. See Example 18-6.

Example 18-6. Code in extra.h to copy everything to log

#define QUEUE_EXTRA "Tlog\0"
#define QUEUE_EXTRALEN 5

Now every message will be copied to the address log, so you can create ~alias/.gmail-log to save the mail:
./logmaildir/

The .gmail file must save the mail but cannot forward it. Why not? Because forwarding mail invokes gmail-queue again,
which will redeliver the mail to /og, creating a nasty mail loop.

[Team LiB] [« rruvisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
18.11 Setting Mail Quotas and Deleting Stale Mail

Because gmail's mailboxes are normally in each user's home directory, any quota scheme that applies to the user's files
automatically includes the file(s) in the mailbox. For many purposes, this is all the mail quota that's needed. You may
want to apply Jeff Hayward's quota exceeded patch to gmail-local that recognizes an over quota error and treats it as a
hard error so mail is bounced back to the sender, rather than a soft error so mail stays in the queue.

For POP toasters, the vpopmail package discussed in Chapter 13 includes code to enforce mail quotas. If you build your
own simpler POP-only system, use the mailquotacheck script in .gmail files to check quotas as mail is delivered. (All

these have links at www.gmail.org.)

You may also want to set a policy for stale mail, so that mail is deleted from the server after some period of time. If you
use Maildirs, this is very easy to implement, because each message is in a separate file with a timestamp. In each
Maildir, messages in the new subdirectory haven't been read, and messages in cur have been read and left on the
server. My policy is to delete unread mail after a month, on the theory that if you don't look at your mail once a month,
you'll probably never look at it at all, and to delete read mail after three months. This is easily arranged with a couple of
shell commands to run every day or every week. While you're at it, you might as well delete mail that's been marked
deleted (the T flag in the filename) or moved into the Trash subfolder. If all the user directories are under /home:

cd /home

unread mail over a month old
find /home/*/Maildir/new -type f -mtime +30 -p
read mail over three months
find /home/*/Maildir/cur -type f -mtime +90 -p
any mail marked deleted
find */Maildir -type f -name "*:2,*T*" -print
any mail in Trash/new or cur
find */Maildir/.Trash/??? -type f -print
} | xargs -t rm

If your Maildirs are somewhere else, modify the find commands appropriately to look where they are. By adding a few
more commands, you can add policies like deleting mail from a spam subfolder after a week and other subfolders after
some other amount of time. With slightly fancier programming, probably in Perl, it's also straightforward to delete the
oldest files from a Maildir until the user is under quota. The elegance of the Maildir design makes this all much easier
than with mboxes because nothing has to be locked or rewritten, and the cleanup can proceed safely while mail
deliveries are going on.

[Team LiB] [« rravisus Jwaxt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
18.12 Backing Up and Restoring Your Mail Queue

The bad news about backing up and restoring your mail queue in /var/gmail/queue is that it's nearly impossible. The
good news is that it's rarely necessary.

The filenames in gmail's queue directory are numbers that depend on the inode number of the file containing the text of
the message. Backup and restore programs don't restore files using the same inodes that the files used when they were
backed up, which means that if you back up the queue and then restore it, it won't work.

If you're moving your gmail queue from one disk to another, there are two general strategies. If you can run your
system with both disks for a while, rename the old queue to something like /var/old-gmail, build two copies of gmail as
described in Chapter 17 (one for the old queue and one for the new one) start up both copies so that new mail goes
into the new queue while mail in the old queue is eventually delivered or bounces, and then delete the old queue and its
copy of gmail. The other is just to bite the bullet and move the queue. To do that, first shut down both gmail-send and
anything that might put mail into the queue, preferably by shutting down the system to single user. Then copy the
queue to /var/gmail/queue.old on the new disk, and use Harald Hanche-Olsen's script at http://www.gmail.org/queue-
rename to rename the files to their correct names based on their current inode numbers. You can also use the more
complex queue-fix program for www.gmail.org, but for this purpose you don't need anything that fancy.

If your disk fails and you restore from backups, it's usually more trouble than it's worth to restore the queue. If your
backup is more than a few minutes old, nearly all of the messages in the queue when it was dumped will have been
delivered, and the only ones not delivered are likely to bogus addresses that will never be delivered. To clean out the
queue, shut down gmail and anything that might try to queue mail, then delete any queued mail with rm -rf
/var/gmail/queue/* (be sure to type that correctly), go to the directory where you built gmail and make setup check to
recreate an empty queue, and then restart gmail.

[Team LiB] T [

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

Appendix A. A Sample Script

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (4 Paivisus]fimxT o]
A.1 A Mail-to-News Gateway

This is my batch news gateway, run every five minutes from cron. The incoming messages to the gateway are stored in
a Maildir ~alias/newsdir, using a virtual domain setup that sends mail to the pseudo-domains news and
news.example.com to alias-news, which is delivered by ~alias/.gmail-news-default.

My news gateway handles news from multiple hosts on my network by the simple trick of symlinking newsdir, which is
exported over the LAN by NFS, into ~alias on each host, so that all the hosts store messages into the same directory. I
find this easier and faster than running a copy of the gateway on each host.

The script run from cron uses maildirserial to select mail messages, and tcpclient to open an NNTP connection to the
local news server, as shown in Example A-1.

Example A-1. Script called from cron to push out news

#1/bin/sh

exec setlock newsdir.lock \
maildirserial -b -t 345600 newsdir alias-news- \
tcpclient localhost 119 \
/var/gmail/alias/newsgate alias-news-

The actual mail to news script is fairly long, but nearly all of it is devoted to cleaning up headers, as shown in Example
A-2.

Example A-2. Mail to news gateway script

#!/usr/bin/perl
-*- perl -*-
process batched messages from maildirserial into news

use Getopt::Std;
use FileHandle;

options

-d debug, use tty for I/O

-s don't use date from incoming messages
to avoid complaints about stale news

getopts('ds');
$linelimit = 2000; # truncate long msgs after this many lines
$l=1;

get prefix to strip off Delivered-To:
$prefix = shift or die "need prefix";

read null terminated input for file names
msgloop:
while(!eof STDIN) {

my ($from, $sender, $replyto);

{

local $/ = "\0";
$fn = <STDIN>;
chop $fn;

open(MSG, $fn) or die "cannot open '$fn"\n";

if(<MSG> =~ m{Return-Path: <(.*)>}){
$sender = $1;

}else {
close MSG;
print "$fn\0ODno sender address\n";
next;

}

invent fake sender since news forbids null return addrs

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

$sender = "MAILER-DAEMON\@somewhere.local" if $sender eq "";

if(<MSG> =~ m{Delivered-To: $prefix(.*)}) {
$recip = $1;
}else {
close MSG;
print "$fn\0Dno recipient address\n";
next;
}
my $approve = 0;
my $nobounce = 0;
my ($newrecip, $domain) = ($recip =~ m{(.*)\@(.*)}); # dump domain

make sure sent to something@news to prevent
outside mail from sneaking in
if($domain =~ /~news/) {
$recip = $newrecip;
}else {
print "$fn\ODYou cannot send mail to this address.\n";
close MSG;
next;
b

$newsgroups = Ic $recip;

pick off approve- and nobounce- prefixes
while(1) {
if($newsgroups =~ /~approve-(.*)/) {
$newsgroups = $1;
$approve = 1;
} elsif($newsgroups =~ /~nobounce-(.*)/) {
$newsgroups = $1;
$nobounce = 1;
}else{
last;
b
¥

slurp up the header and regularize some of the lines
my @headers = ();
$from ="";
while(<MSG>) {
last if /°$/;

chomp;

skip blank subject
next if /~Subject:\s*$/;

if(/~From:/io) {
s/ MAILER-DAEMON / MAILER-DAEMON\@somewhere.local /;
s/<MAILER-DAEMON>/<MAILER-DAEMON\@somewhere.local>/;
s/<>/<MAILER-DAEMON\@somewhere.local>/;
s/:\s*\(\)/: <MAILER-DAEMON\@somewhere.local>/;
s/<postmaster>/<postmaster\@somewhere.local>/;

}
if(/™M\s/) {
s/™M\s+//;
$_ = pop(@headers) ."".$_;
push @headers, $_;
Yelse {
s/:(\S)/: $1/; # force a space after the colon
push @headers, $_;

b

$subject = $1 if /~Subject: *(.*)/ois;

print STDERR "found subject $subject\n" if /ASubject: *(.*)/ais;
$from = $1 if /~From: +(.*)/ois;

$replyto = $1 if /~Reply-To: +(.*)/0is;

$sender = $1 if /~ASender: +(.*)/ois;

b
figure out who it's from

$from = $replyto if $replyto;
$from = $sender unless $from;

$from =~ s/\s+$//;
$subject =~ s/\s+$//;

now strip out the crud

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

if($from =~ /<(*)>/s) {

$from = $1;
}else {

$from =~ s'\s*\([~)]*\)\s*"sg; # strip comments
b

check for bogus addresses
unless ($from =~ m/.*\@.*\.[a-z]{2,8}$/i0) {
print "$fn\0ZInvalid return address '$from', discarded\n";
close MSG;
next msgloop;

¥

start up an NNRP session on open tcp socket
startnews();

tell news server we're going to post something
print NOUT "post\r\n";
$l = <NIN>;
$l =~ s/\r2\n$//;
unless($l =~ /7340 /) {
print "$fn\0ZCannot post $I\n";
close MSG;
next;

b

now send the nessage headers, cleaning up as we go
print NOUT "Newsgroups: $newsgroups\r\n";
print NOUT "Approved: news-to-mail\r\n" if $approve;
unless($subject) {
print NOUT "Subject: (no subject)\r\n";
b

$didmsgid = 0;
$diddate = 0;
$didcte = 0;
$didmv = 0;
$diddate = 0;
$didsubject = 0;
$didreply = 0;
$didfrom = 0;
$didref = 0;
$didcc = 0;
$didto = 0;

foreach $_ (@headers) {

next if /~(Newsgroups|Sender|Status|Received|Approved|nntp\S+):/io;
next if /~(Via|X-Mailer|Path|Return-Path|Distribution|X-Status|Xref):/io;
next if /~(Apparently-To|X-Trace|X-Complaints-To):/io;

inews freaks on long headers
$_ = substr($_, 0, 500) if length($_) > 500;

really freaks on long references

lose blank subject
next if m/~Subject:\s*$/io;

some headers can only appear once
next if m/~date:/io && $diddate++;
next if m/~Content-Transfer-Encoding:/io && $didcte++;
next if m/”~Mime-Version:/io && $didmv++;
next if m/~Date:/io && $diddate++;
next if m/~Subject:/io && $didsubject++;
next if m/~From:/io && $didfrom++;
next if m/~Reply-To:/io && $didreply++;
next if m/~References:/io && $didref++;
if(m/~Cc:/io) {

print NOUT "X-" if $didcc++;

}
if(m/~To:/io) {

print NOUT "X-" if $didto++;
}

turn Date: into X-Date: if -s
print NOUT "X-" if $opt_s and /~(Date):/io ;
print NOUT "X-Old-" if /~(Sender|x-complaints):/io ;

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

only one message ID, and it has to be a good one
if(/~Message-ID:/io) {
if bad msgid, let it gen a new one
next unless /~AMessage-ID: +<(.*@[*@]+)>$/io;
next if $didmsgid;
$didmsgid = 1;

}
print NOUT "$_\r\n";

}
print NOUT "From: $sender\r\n" unless $didfrom;
print NOUT "Subject: [probably spam, from $sender]\r\n" unless $didsubject;

end of header
print NOUT "\r\n";

my $didbody = 0;

copy the body, split overlong lines
my $linecount = 0;
while(<MSG>) {

if(++$linecount > $linelimit) {
print NOUT "\r\n[message too long, truncated]\r\n";
last;
}
chomp;
S/™\/-./;
while(m/”({5003)(.+)3$/) {
print NOUT "$1\r\n";
$_="+%2"

}
print NOUT "$_\r\n";
$didbody++;

¥
print NOUT "[empty message]\r\n" unless $didbody;
close MSG;

end of message, see if the server liked it and report back
print NOUT ".\r\n";
$l = <NIN>;
$I =~ s/\r?\n$//;
if($l =~ /7240 /) {
print "$fn\OKposted to $newsgroups\n";
} elsif($nobounce) {
print "$fn\OKfailed to $newsgroups (ignored) $I\n";
} elsif($l =~ /7441 435 /) {
print "$fn\0D$I\n"; # perm fail, duplicate
}else {
print "$fn\0Z$I\n"; # temp fail, anything else

done with this message

}

end news session
stopnews();

exit 0;
HUBHHHH B R RH AR R R RH AR R RHH AR RH AR R RHH B R RHHAH B R RHHA BB RHAH B RHHHRRRHHH

sub startnews {
my ($fn) = $_;
my $l;

return if $newsstarted;

if($opt_d) {
open(NIN, "</dev/tty");
open(NOUT, ">/dev/tty");
Yelse {
open(NIN, "<&=6");
open(NOUT, ">&=7");

}
autoflush NOUT 1;

wait for prompt

$l = <NIN>;

$l =~ s/\r?\n$//;

unless($l =~ /7200 /) {

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

print "$fn\0Z$\n";
exit;

¥

print NOUT "mode reader\r\n";
$l = <NIN>;
$l =~ s/\r?\n$//;
unless($I =~ /7200 /) {
print "$fn\0Z$I\n";
exit;

¥

$newsstarted = 1;

}

sub stopnews {
return unless $newsstarted;

print NOUT "quit\r\n";
¥

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

Appendix B. Online Qmail Resources

Qmail is well supported by its online community of users. Here are some places to look.

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Femvisus it o]
B.1 Web Sites

There are several excellent sources of gmail information online.

http://cr.yp.to

Dan Bernstein's web site, the official source for gmail and all of his ad-on packages.

http://www.gmail.org

Russ Nelson's gmail resource site, intended to have links to all of the other resources on the Web.

. ,

The author's companion site for this book, containing scripts, updates and corrections, links to other resources,
and ordering info for more copies.

. ifewi .
Dave Sill's Life with gmail, an online guide to setting up and using gmail. It offers specific advice about where to
install gmail, and where to put all of the files and directories that gmail needs. This is by far the most widely

used setup and the one that gmail experts are the most familiar with, so it's the one you should use. The file
and directory locations used in this book are consistent with these.

/) ifewi :

Henning Brauer's Life with gmail-ldap, a guide to setting up gmail-ldap. Indispensable for gmail-ldap users.

http://www.ezmlm.org

The home page for the ezmIim-idx mailing list manager, with software and documentation.

http://tinydns.org

Russ Nelson's site for Dan Bernstein's djbdns, a DNS package that relates to BIND roughly as gmail relates to
sendmail. Not required for gmail, but if you're setting up a DNS server along with your mail server, it's probably
the software you want to use.

[Team LiB] [+ Faavisvs vt o]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] (& Faavisva vt +]
B.2 Mailing Lists

The gmail community has a variety of mailing lists. While it's possible to get excellent advice on them, the givers of
advice can be rather impatient with questions from people who appear not to have checked the list archive to see if
their question has been asked and answered a dozen times before, or who ask questions without giving enough detail
to provide a useful answer. So be sure to read a list's archives both to look for your question and to get the tone of the
list before asking.

Needless to say, all the lists about gmail are maintained in ezmIm or ezmim-idx so that you subscribe to any of them by
writing to the list address with -subscribe appended and then respond to the challenge. For anti-spam purposes, Dan
Bernstein's lists at list.cr.yp.to also use a program called gsecretary that sends a confirmation challenge each time you
send something to the list.

The gmail list gmail@list.cr.yp.to
A discussion list about gmail is maintained. Archives are available at http://www.ornl.gov/lists/mailing-
.Stslq a. .

The gmail announcement list gmailannounce@list.cr.yp.to

Announcements about new versions of gmail. Very low volume.

The ezmIm list ezmIm@list.cr.yp.to

Discussions about ezmIm and ezmIm-idx. Partial archive at

http://madhaus.utcs.utoronto.ca/ezmlm/archive/maillist.html.

[Team LiB] 14 raivisv =t o

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB] [+ Privisi]

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution channels.
Distinctive covers complement our distinctive approach to technical topics, breathing personality and life into potentially
dry subjects.

The animal on the cover of gmail is a tawny owl. Generally, it's dark brown and streaked with black and buff, but
occasionally, it is grey. The tawny owl is the most common owl in Britain, and its distribution extends from Europe to
North Africa and eastward to Iran and western Siberia. It is also found in India, southern China, Korea, and Taiwan.

The tawny owl does not built its own nest, rather it nests in natural holes and in the abandoned nests of crows,
magpies, and even the nests of buzzards. It remains within its nesting territory all year round and pairbonds last for
life. The female tawny owl will stay with her nestlings while the male gathers food. While the male hunts for rabbits,
moles, mice, shrews, and other rodents, the female defends her territory passionately with threatening behavior and
erratic flying. Occasionally, a human is attacked; in Britain, at least two people are known to have lost an eye, including
Eric Hosking, the famous bird photographer.

The tawny owl is best known for its distinctive song. The normal song of the male owl announces territory, courtship,
and food. The song begins with a drawn out hooo and then is followed by a pause before the male owl abruptly sings
out ha, followed immediately by huhuhuhooo. Occasionally, the female tawny owl makes a similar hooting sound in
response to the male's call. However, unlike the clear, resonant sound of the male song, the female's song possesses a
wailing quality of wowowhooo. The duet that is performed between the two has led to a myriad of names for the tawny
owl, including Billy hooter and Jenny howlet.

Sarah Sherman was the production editor and the copyeditor for gmail. Genevieve d'Entremont was the proofreader.
Reg Aubry and Mary Anne Weeks Mayo provided quality control. Tom Dinse wrote the index.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover image is a 19th-
century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with QuarkXPress 4.1 using
Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Joe Wizda to FrameMaker 5.5.6 with a format
conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and Jessamyn Read using
Macromedia FreeHand 9 and Adobe Photoshop 6. This colophon was written by Sarah Sherman.

The online edition of this book was created by the Safari production group (John Chodacki, Becki Maisch, and Madeleine
Newell) using a set of Frame-to-XML conversion and cleanup tools written and maintained by Erik Ray, Benn Salter,
John Chodacki, and Jeff Liggett.

[Team LiB] 14 paivisus]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I7 [L] [M] [N][Q] [P][Q] [R] [S] [T] [U] [V] [W] [Z]

accessory packages
-

))
accessory software
addresses

aliases

mapping
users database
without users database
message headers 2nd
) . fiquri
aliases
)
oali)
) .
aliases file

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

Cc header (rewriting)
CDB file
local filtering rules
users database
certificates
SSL, Courier IMAP
TLS security 2nd
creating self-signed
checkpassword 2nd

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

Courier
IMAP

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I7 [L] [M] [N] [Q] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

daemons
defined
SMTP
configuring
supervise
svscan, running
troubleshooting
empty logs
no progress
no start/crash conditions

databases

defaultdomain control file 2nd
masquerading hostnames
defaulthost control file 2nd
masquerading hostnames
delivery
T .
-
; .
to ezmlm
local mail
addresses
bounce handling 2nd
bounce handling, double bounces

remote
failure error messages
secondary MX servers
ICP fai)
) . fi)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

dialup connections
))
))
))
directories
log
POP server, configuration
supervise, creating
DNS (Domain Name System)
virtual domains
DNS Domain Name System
purpose of
DNSBL

DNSWL
domains
addresses
-)) (i
))
remote
routing, uucp hosts

virtual

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

forwarding
- i .
E (iting)

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [Q] [P] [Q] [R] [S] [T] [UT [V] [W] [Z]

IDENT) filteri
) i
IMAP 2nd

Binc

Courier

injected mail [See received mail]
installation

Courier IMAP

ezmlm

fastforward package

mini-gmail

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

. .
DAP (Li ight Di ; p)i .

limit commands

local users
mailbox
format
ifvi
. .
. fi
locals control file 2nd
masquerading hostnames
log directory
logging
. .

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

logs

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]
. Maildi .

. .
mail sorting

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

maintenance
. i ina f .
make gmail
) .

masquerading

MX servers
M e
secondary servers
))

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

netgmail

new-inject

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [Q] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

ofmipd

optimization [See performance optimization]
output, gmail-queue

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

packages
-

fastforward

POP server
compared to local clients
component programs

configuring

troubleshooting
ion fai
failure
POP . . filteri
POP toasters
configuring

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

procmail
))
) :
preline wrapper
procmail command
program deliveries
:)
- i)
program wrapping
))

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]
gmail
compared to sendmail
components 2nd
. .

.gmail files
local delivery

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

gumailqueue patch 2nd
quotas

forcing (il
setting

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

rblsmtpd

logs
rc file, svscan, running
rcphosts control file
rcpthosts (control file)

virtual domains
rcpthosts control file
received mail

address rewriting

cleaning

relaying mail
local users
fi))

remote delivery

roaming users
authentication, POP-before-SMTP
.
vpopmail

routing

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

rules file

))) i)
) filteri
run files
creating
run_ scripts
o

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

security

sendmail
aliases file

serialmail package
batched service gateways
implementing

serialmail,

serialsmtp

service gateways
local-only
mail-to-news script
virtual domains 2nd

smarthost
QMQP and
))
smarthosts
SMTP daemon

i)

SMTP servers, adding POP-before-SMTP
SMTP Simple Mail Transfer Protocol
ization. TLS)
REC
. filteri
SMTP-ti filteri SMTP
smtpgreeting control file 2nd

smtproutes (control file)

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

TAI (I ' Atomic Time) file i
1CP. fai :
. .

tcpserver

testing
fi .
ezmlm
gateway program

mail deliverytesting

troubleshooting
bounces to valid users
compiling
daemons
empty logs
no progress
no start/crash conditions
GLIBC errno problem
POP server
connection failure
failure
slow delivery
trusted users, sendmail
tuning [See performance optimization]

[Team LiB]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

roaming
.
vpopmail

users database

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

) fiquri) ins (i)
VERP (Variable Envelope Return Path)

))

virtual domains

address aliases

address mapping

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]
[A] [B] [C] [D] [E] [E] [G] [H] [I] [L] [M] [N] [Q] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

web mail
web sites

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot
http://www.colorpilot.com

[Team LiB]

[A] [B] [C] [D] [E] [F] [G] [H] [1] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [Z]

http://www.colorpilot.com/chm2pdf.html

This document is created with a trial version of CHM2PDF Pilot

http://www.colorpilot.com

Brought to You by

Like the book? Buy it!

http://www.colorpilot.com/chm2pdf.html

