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Introduction

In this Section we will reconsider the Gaussian elimination approach discussed in 8, and we
will see how rounding error can grow if we are not careful in our implementation of the approach. A
method called partial pivoting, which helps stop rounding error from growing, will be introduced.
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Prerequisites
Before starting this Section you should . . .

• revise matrices, especially matrix solution of
equations

• recall Gaussian elimination

• be able to find the inverse of a 2 × 2 matrix
	




�

�

Learning Outcomes
On completion you should be able to . . .

• carry out Gaussian elimination with
partial pivoting
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1. Gaussian elimination
Recall from 8 that the basic idea with Gaussian (or Gauss) elimination is to replace the matrix of
coefficients with a matrix that is easier to deal with. Usually the nicer matrix is of upper triangular
form which allows us to find the solution by back substitution. For example, suppose we have

x1 + 3x2 − 5x3 = 2

3x1 + 11x2 − 9x3 = 4

−x1 + x2 + 6x3 = 5

which we can abbreviate using an augmented matrix to




1 3 −5 2
3 11 −9 4

−1 1 6 5


 .

We use the boxed element to eliminate any non-zeros below it. This involves the following row
operations




1 3 −5 2
3 11 −9 4
−1 1 6 5


 R2 − 3 × R1

R3 + R1
⇒




1 3 −5 2
0 2 6 −2
0 4 1 7


 .

And the next step is to use the 2 to eliminate the non-zero below it. This requires the final row
operation




1 3 −5 2

0 2 6 −2
0 4 1 7




R3 − 2 × R2
⇒




1 3 −5 2

0 2 6 −2
0 0 −11 11


 .

This is the augmented form for an upper triangular system, writing the system in extended form we
have

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11

which is easy to solve from the bottom up, by back substitution.

HELM (2005):
Section 30.2: Gaussian Elimination

13



Example 5
Solve the system

x1 + 3x2 − 5x3 = 2

2x2 + 6x3 = −2

−11x3 = 11

Solution

The bottom equation implies that x3 = −1. The middle equation then gives us that

2x2 = −2 − 6x3 = −2 + 6 = 4 ∴ x2 = 2

and finally, from the top equation,

x1 = 2 − 3x2 + 5x3 = 2 − 6 − 5 = −9.

Therefore the solution to the problem stated at the beginning of this Section is



x1

x2

x3


 =




−9
2
−1


 .

The following Task will act as useful revision of the Gaussian elimination procedure.

TaskTask
Carry out row operations to reduce the matrix




2 −1 4
4 3 −1

−6 8 −2




into upper triangular form.

Your solution
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Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are
as follows


2 −1 4
4 3 −1

8 −2


 R2 − 2 × R1

R3 + 3 × R1
⇒




2 −1 4
0 5 −9
0 5 10




Next we use the 5 on the diagonal to eliminate the 5 below it:



2 −1 4
0 5 −9
0 5 10




R3 − R2
⇒




2 −1 4
0 5 −9
0 0 19




which is in the required upper triangular form.

2. Partial pivoting
Partial pivoting is a refinement of the Gaussian elimination procedure which helps to prevent the
growth of rounding error.

An example to motivate the idea
Consider the example

[
10−4 1
−1 2

] [
x1

x2

]
=

[
1
1

]
.

First of all let us work out the exact answer to this problem

[
x1

x2

]
=

[
10−4 1
−1 2

]−1 [
1
1

]

=
1

2 × 10−4 + 1

[
2 −1
1 10−4

] [
1
1

]

=
1

2 × 10−4 + 1

[
1

1 + 10−4

]
=

[
0.999800...
0.999900...

]
.

Now we compare this exact result with the output from Gaussian elimination. Let us suppose, for
sake of argument, that all numbers are rounded to 3 significant figures. Eliminating the one non-zero
element below the diagonal, and remembering that we are only dealing with 3 significant figures, we
obtain[

10−4 1
0 104

] [
x1

x2

]
=

[
1

104

]
.

The bottom equation gives x2 = 1, and the top equation therefore gives x1 = 0. Something has
gone seriously wrong, for this value for x1 is nowhere near the true value 0.9998. . . found without
rounding.The problem has been caused by using a small number (10−4) to eliminate a number much
larger in magnitude (−1) below it.

The general idea with partial pivoting is to try to avoid using a small number to eliminate much
larger numbers.
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Suppose we swap the rows
[

−1 2
10−4 1

] [
x1

x2

]
=

[
1
1

]

and proceed as normal, still using just 3 significant figures. This time eliminating the non-zero below
the diagonal gives

[
−1 2
0 1

] [
x1

x2

]
=

[
1
1

]

which leads to x2 = 1 and x1 = 1, which is an excellent approximation to the exact values, given
that we are only using 3 significant figures.

Partial pivoting in general
At each step the aim in Gaussian elimination is to use an element on the diagonal to eliminate all
the non-zeros below. In partial pivoting we look at all of these elements (the diagonal and the ones
below) and swap the rows (if necessary) so that the element on the diagonal is not very much smaller
than the other elements.

Key Point 3

Partial Pivoting

This involves scanning a column from the diagonal down. If the diagonal entry is very much smaller
than any of the others we swap rows. Then we proceed with Gaussian elimination in the usual way.

In practice on a computer we swap rows to ensure that the diagonal entry is always the largest
possible (in magnitude). For calculations we can carry out by hand it is usually only necessary to
worry about partial pivoting if a zero crops up in a place which stops Gaussian elimination working.
Consider this example




1 −3 2 1
2 −6 1 4

−1 2 3 4
0 −1 1 1







x1

x2

x3

x4


 =




−4
1
12
0


 .

The first step is to use the 1 in the top left corner to eliminate all the non-zeros below it in the
augmented matrix




1 −3 2 1 −4
2 −6 1 4 1

−1 2 3 4 12
0 −1 1 1 0




R2 − 2 × R1
R3 + R1

⇒




1 −3 2 1 −4

0 0 −3 2 9

0 −1 5 5 8
0 −1 1 1 0


 .

What we would like to do now is to use the boxed element to eliminate all the non-zeros below it.
But clearly this is impossible. We need to apply partial pivoting. We look down the column starting
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at the diagonal entry and see that the two possible candidates for the swap are both equal to −1.
Either will do so let us swap the second and fourth rows to give




1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9


 .

That was the partial pivoting step. Now we proceed with Gaussian elimination



1 −3 2 1 −4

0 −1 1 1 0

0 −1 5 5 8
0 0 −3 2 9




R3 − R2
⇒




1 −3 2 1 −4
0 −1 1 1 0
0 0 4 4 8
0 0 −3 2 9


 .

The arithmetic is simpler if we cancel a factor of 4 out of the third row to give



1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 −3 2 9


 .

And the eliminition phase is completed by removing the −3 from the final row as follows



1 −3 2 1 −4
0 −1 1 1 0

0 0 1 1 2

0 0 −3 2 9




R4 + 3 × R3

⇒




1 −3 2 1 −4
0 −1 1 1 0
0 0 1 1 2
0 0 0 5 15


 .

This system is upper triangular so back substitution can be used now to work out that x4 = 3,
x3 = −1, x2 = 2 and x1 = 1.

The Task below is a case in which partial pivoting is required.

[For a large system which can be solved by Gauss elimination see Engineering Example 1 on page
62].

TaskTask
Transform the matrix


1 −2 4

−3 6 −11
4 3 5




into upper triangular form using Gaussian elimination (with partial pivoting when
necessary).
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Your solution

Answer
The row operations required to eliminate the non-zeros below the diagonal in the first column are




1 −2 4
−3 6 −11

4 3 5


 R2 + 3 × R1

R3 − 4 × R1
⇒




1 −2 4
0 0 1
0 11 −11




which puts a zero on the diagonal. We are forced to use partial pivoting and swapping the second
and third rows gives




1 −2 4
0 11 −11
0 0 1




which is in the required upper triangular form.

Key Point 4

When To Use Partial Pivoting

1. When carrying out Gaussian elimination on a computer, we would usually always swap rows
so that the element on the diagonal is as large (in magnitude) as possible. This helps stop
the growth of rounding error.

2. When doing hand calculations (not involving rounding) there are two reasons we might pivot

(a) If the element on the diagonal is zero, we have to swap rows so as to put a non-zero on
the diagonal.

(b) Sometimes we might swap rows so that there is a “nicer” non-zero number on the
diagonal than there would be without pivoting. For example, if the number on the
diagonal can be arranged to be a 1 then no awkward fractions will be introduced when
we carry out row operations related to Gaussian elimination.
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Exercises

1. Solve the following system by back substitution

x1 + 2x2 − x3 = 3

5x2 + 6x3 = −2

7x3 = −14

2. (a) Show that the exact solution of the system of equations

[
10−5 1
−2 4

] [
x1

x2

]
=

[
2
10

]
is

[
x1

x2

]
=

[
−0.99998
2.00001

]
.

(b) Working to 3 significant figures, and using Gaussian elimination without pivoting, find an

approximation to

[
x1

x2

]
. Show that the rounding error causes the approximation to x1 to be

a very poor one.

(c) Working to 3 significant figures, and using Gaussian elimination with pivoting, find an

approximation to

[
x1

x2

]
. Show that the approximation this time is a good one.

3. Carry out row operations (with partial pivoting if necessary) to reduce these matrices to upper
triangular form.

(a)




1 −2 4
−4 −3 −3
−1 13 1


 , (b)




0 −1 2
1 −4 2

−2 5 −4


 , (c)




−3 10 1
1 −3 2

−2 10 −4


 .

(Hint: before tackling (c) you might like to consider point 2(b) in Key Point 4.)

Answers

1. From the last equation we see that x3 = −2. Using this information in the second equation
gives us x2 = 2. Finally, the first equation implies that x1 = −3.

2. (a) The formula

[
a b
c d

]−1

=
1

ad − bc

[
d −b

−c a

]
can be used to show that

x1 = −50000

50001
= −0.99998 and x2 =

200005

100002
= 2.00001 as required.

(b) Carrying out the elimination without pivoting, and rounding to 3 significant figures we
find that x2 = 2 and that, therefore, x1 = 0. This is a poor approximation to x1.

(c) To apply partial pivoting we swap the two rows and then eliminate the bottom left element.
Consequently we find that, after rounding the system of equations to 3 significant figures,
x2 = 2 and x1 = −1. These give excellent agreement with the exact answers.
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Answers

3.

(a) The row operations required to eliminate the non-zeros below the diagonal in the first
column are as follows




1 −2 4
−4 −3 −3
−1 13 1


 R2 + 4 × R1

R3 + 1 × R1
⇒




1 −2 4
0 −11 13
0 11 5




Next we use the element in the middle of the matrix to eliminate the value underneath
it. This gives




1 −2 4
0 −11 13
0 0 18


 which is of the required upper triangular form.

(b) We must swap the rows to put a non-zero in the top left position (this is the partial
pivoting step). Swapping the first and second rows gives the matrix




1 −4 2
0 −1 2

−2 5 −4


 .

We carry out one row operation to eliminate the non-zero in the bottom left entry as
follows




1 −4 2
0 −1 2

−2 5 −4




R3 + 2 × R1
⇒




1 −4 2
0 −1 2
0 −3 0




Next we use the middle element to eliminate the non-zero value underneath it. This
gives




1 −4 2
0 −1 2
0 0 −6


 which is of the required upper triangular form.

(c) If we swap the first and second rows of the matrix then we do not have to deal with
fractions. Having done this the row operations required to eliminate the non-zeros below
the diagonal in the first column are as follows




1 −3 2
−3 10 1
−2 10 −4


 R2 + 3 × R1

R3 + 2 × R1
⇒




1 −3 2
0 1 7
0 4 0




Next we use the element in the middle of the matrix to eliminate the non-zero value
underneath it. This gives




1 −3 2
0 1 7
0 0 −28


 which is of the required upper triangular form.
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