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Preface 

 
Here are my online notes for my Calculus III course that I teach here at Lamar University.  
Despite the fact that these are my “class notes” they should be accessible to anyone wanting to 
learn Calculus III or needing a refresher in some of the topics from the class.   
 
These notes do assume that the reader has a good working knowledge of Calculus I topics 
including limits, derivatives and integration.  It also assumes that the reader has a good 
knowledge of several Calculus II topics including some integration techniques, parametric 
equations, vectors, and knowledge of three dimensional space. 
 
Here are a couple of warnings to my students who may be here to get a copy of what happened on 
a day that you missed.   
 

1. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn 
calculus I have included some material that I do not usually have time to cover in class 
and because this changes from semester to semester it is not noted here.  You will need to 
find one of your fellow class mates to see if there is something in these notes that wasn’t 
covered in class. 
 

2. In general I try to work problems in class that are different from my notes.  However, 
with Calculus III many of the problems are difficult to make up on the spur of the 
moment and so in this class my class work will follow these notes fairly close as far as 
worked problems go.  With that being said I will, on occasion, work problems off the top 
of my head when I can to provide more examples than just those in my notes.  Also, I 
often don’t have time in class to work all of the problems in the notes and so you will 
find that some sections contain problems that weren’t worked in class due to time 
restrictions. 
 

3. Sometimes questions in class will lead down paths that are not covered here.  I try to 
anticipate as many of the questions as possible in writing these up, but the reality is that I 
can’t anticipate all the questions.  Sometimes a very good question gets asked in class 
that leads to insights that I’ve not included here.  You should always talk to someone who 
was in class on the day you missed and compare these notes to their notes and see what 
the differences are. 
 

4. This is somewhat related to the previous three items, but is important enough to merit its 
own item.  THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!!  
Using these notes as a substitute for class is liable to get you in trouble. As already noted 
not everything in these notes is covered in class and often material or insights not in these 
notes is covered in class. 
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Multiple Integrals 

 

 Introduction 
In Calculus I we moved on to the subject of integrals once we had finished the discussion of 
derivatives.  The same is true in this course.  Now that we have finished our discussion of 
derivatives of functions of more than one variable we need to move on to integrals of functions of 
two or three variables. 
 
Most of the derivatives topics extended somewhat naturally from their Calculus I counterparts 
and that will be the same here.  However, because we are now involving functions of two or three 
variables there will be some differences as well.  There will be new notation and some new issues 
that simply don’t arise when dealing with functions of a single variable.   
 
Here is a list of topics covered in this chapter. 
 
Double Integrals – We will define the double integral in this section. 
 
Iterated Integrals – In this section we will start looking at how we actually compute double 
integrals. 
 
Double Integrals over General Regions – Here we will look at some general double integrals. 
 
Double Integrals in Polar Coordinates – In this section we will take a look at evaluating double 
integrals using polar coordinates. 
 
Triple Integrals – Here we will define the triple integral as well as how we evaluate them. 
  
Triple Integrals in Cylindrical Coordinates – We will evaluate triple integrals using cylindrical 
coordinates in this section. 
 .  
Triple Integrals in Spherical Coordinates – In this section we will evaluate triple integrals 
using spherical coordinates. 
 
Change of Variables – In this section we will look at change of variables for double and triple 
integrals. 
 
Surface Area – Here we look at the one real application of double integrals that we’re going to 
look at in this material. 
 
Area and Volume Revisited – We summarize the area and volume formulas from this chapter. 
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 Double Integrals 
Before starting on double integrals let’s do a quick review of the definition of a definite integrals 
for functions of single variables.  First, when working with the integral, 

 ( )
b

a
f x dx∫  

we think of x’s as coming from the interval a x b≤ ≤ .  For these integrals we can say that we are 
integrating over the interval a x .  Note that this does assume that b≤ ≤ a b< , however, if we 
have b  then we can just use the interval a< b x a≤ ≤ . 
 
Now, when we derived the definition of the definite integral we first thought of this as an area 
problem.  We first asked what the area under the curve was and to do this we broke up the 
interval  into n subintervals of width a x b≤ ≤ xΔ  and choose a point, *

ix , from each interval as 
shown below, 
 

 
 

Each of the rectangles has height of ( )*
if x  and we could then use the area of each of these 

rectangles to approximate the area as follows. 
 ( ) ( ) ( ) ( )* * * *

0 1 i nA f x x f x x f x x f x x≈ Δ + Δ + + Δ + + Δ  
To get the exact area we then took the limit as n goes to infinity and this was also the definition of 
the definite integral. 

 ( ) ( )*

1
lim

nb

ia n i
f x dx f x x

→∞
=

= Δ∑∫  

 
In this section we want to integrate a function of two variables, ( ),f x y .  With functions of one 
variable we integrated over an interval (i.e. a one-dimensional space) and so it makes some sense 
then that when integrating a function of two variables we will integrate over a region of (two-
dimensional space). 

2
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We will start out by assuming that the region in  is a rectangle which we will denote as 
follows, 

2

 [ ] [ ], ,R a b c d= ×  
 
This means that the ranges for x and y are a x b≤ ≤  and c y d≤ ≤ . 
 
Also, we will initially assume that ( ),f x y ≥ 0  although this doesn’t really have to be the case.  

Let’s start out with the graph of the surface S give by graphing ( ),f x y  over the rectangle R. 
 

 
 
Now, just like with functions of one variable let’s not worry about integrals quite yet.  Let’s first 
ask what the volume of the region under S (and above the xy-plane of course) is.   
 
We will first approximate the volume much as we approximated the area above.  We will first 
divide up a x  into n subintervals and divide up b≤ ≤ c y d≤ ≤  into m subintervals.  This will 
divide up R into a series of smaller rectangles and from each of these we will choose a point 
( * *,i j )x y .  Here is a sketch of this set up. 
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Now, over each of these smaller rectangles we will construct a box whose height is given by 
( * *,i j )f x y .  Here is a sketch of that. 

 

 
 
Each of the rectangles has a base area of AΔ  and a height of ( )* *,i jf x y  so the volume of each of 

these boxes is ( )* *,i jf x y AΔ .  The volume under the surface S is then approximately, 

 ( )* *

1 1

,
n m

i j
i j

V f x y
= =

A≈ Δ∑∑  

 
We will have a double sum since we will need to add up volumes in both the x and y directions. 
 
To get a better estimation of the volume we will take n and m larger and larger and to get the 
exact volume we will need to take the limit as both n and m go to infinity.  In other words, 
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y A ( )* *

, 1 1

lim ,
n m

i jn m i j

V f x
→∞

= =

= Δ∑∑  

 
Now, this should look familiar.  This looks a lot like the definition of the integral of a function of 
single variable.  In fact this is also the definition of a double integral, or more exactly an integral 
of a function of two variables over a rectangle. 
 
Here is the official definition of a double integral of a function of two variables over a rectangular 
region R as well as the notation that we’ll use for it. 

 ( ) ( )* *

, 1 1
, lim ,

n m

i jn m i jR

f x y dA f x y A
→∞

= =

= Δ∑∑∫∫  

 
Note the similarities and differences in the notation to single integrals.  We have two integrals to 
denote the fact that we are dealing with a two dimensional region and we have a differential here 
as well.  Note that the differential is dA instead of the dx and dy that we’re used to seeing.  Note 
as well that we don’t have limits on the integrals in this notation.  Instead we have the R written 
below the two integrals to denote the region that we are integrating over. 
 
Note that one interpretation of the double integral of ( ),f x y  over the rectangle R is the volume 

under the function ( , )f x y  (and above the xy-plane).  Or, 
 

( )Volume ,
R

f x y dA= ∫∫  

 
We can use this double sum in the definition to estimate the value of a double integral if we need 
to.  We can do this by choosing ( )* *,i jx y  to be the midpoint of each rectangle.  When we do this 

we usually denote the point as ( ),i jx y .  This leads to the Midpoint Rule, 

 

 ( ) ( )
1 1

, ,
n m

i j
i jR

f x y dA f x y A
= =

≈ Δ∑∑∫∫  

 
In the next section we start looking at how to actually compute double integrals. 
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 Iterated Integrals 
In the previous section we gave the definition of the double integral.  However, just like with the 
definition of a single integral the definition is very difficult to use in practice and so we need to 
start looking into how we actually compute double integrals.  We will continue to assume that we 
are integrating over the rectangle 
 [ ] [ ], ,R a b c d= ×  
We will look at more general regions in the next section. 
 
The following theorem tells us how to compute a double integral over a rectangle. 
 
Fubini’s Theorem 
If ( , )f x y  is continuous on [ ] [ ], ,R a b c d= ×  then, 

 ( ) ( ) ( ), , ,
R

b dd b

c aa c
f x y dA f x y dy dx f x y dx dy= =⌠ ⌠

⌡ ⌡∫∫ ∫ ∫  

These integrals are called iterated integrals. 
 
Note that there are in fact two ways of computing a double integral and also notice that the inner 
differential matches up with the limits on the inner integral and similarly for the out differential 
and limits.  In other words, if the inner differential is dy then the limits on the inner integral must 
be y limits of integration and if the outer differential is dy then the limits on the outer integral 
must be y limits of integration. 
 
Now, on some level this is just notation and doesn’t really tell us how to compute the double 
integral.  Let’s just take the first possibility above and change the notation a little. 
 

 ( ) ( ), ,
R

b d

ca
f x y dA f x y dy dx⎡ ⎤= ⎢ ⎥⎣ ⎦

⌠⎮
⌡∫∫ ∫  

 
We will compute the double integral by first computing  

 ( ),
d

c
f x y dy∫  

and we compute this by holding x constant and integrating with respect to y as if this were an 
single integral.  This will give a function involving only x’s which we can in turn integrate. 
 
We’ve done a similar process with partial derivatives.  To take the derivative of a function with 
respect to y we treated the x’s as constants and differentiated with respect to y as if it was a 
function of a single variable.   
 
Double integrals work in the same manner.  We think of all the x’s as constants and integrate with 
respect to y or we think of all y’s as constants and integrate with respect to x. 
 
Let’s take a look at some examples. 
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Example 1  Compute each of the following double integrals over the indicated rectangles. 
(a) 26

R

xy dA∫∫ ,  [ ] [ ]2, 4 1, 2R = ×    [Solution] 

(b) 32 4
R

x y dA−∫∫ ,  [ ] [ ]5, 4 0,3R = − ×    [Solution] 

(c) ( ) ( )2 2 cos sin
R

x y x yπ π+ +∫∫ dA ,  [ ] [ ]2, 1 0,1R = − − ×    [Solution] 

(d) 
( )2

1
2 3

R

dA
x y+

⌠⌠
⎮⎮
⌡⌡

,  [ ] [ ]0,1 1, 2R = ×    [Solution] 

(e) 
R

xyx dA∫∫ e ,  [ ] [ ]1, 2 0,1R = − ×    [Solution] 

 
Solution 
(a) 26

R

xy dA∫∫ ,  [ ] [ ]2, 4 1, 2R = ×  

 
It doesn’t matter which variable we integrate with respect to first, we will get the same answer 
regardless of the order of integration.  To prove that let’s work this one with each order to make 
sure that we do get the same answer. 
 
Solution 1 
In this case we will integrate with respect to y first.  So, the iterated integral that we need to 
compute is, 

 2 2
4 2

12
6 6

R

xy dA xy dy dx= ⌠
⌡∫∫ ∫  

 
When setting these up make sure the limits match up to the differentials.  Since the dy is the inner 
differential (i.e. we are integrating with respect to y first) the inner integral needs to have y limits. 
 
To compute this we will do the inner integral first and we typically keep the outer integral around 
as follows, 

 

( ) 22 3

1

4

2

4

2

4

2

6 2

16 2

14

R

xy dA xy dx

x x dx

x dx

=

= −

=

⌠
⌡∫∫

∫

∫

 

 
Remember that we treat the x as a constant when doing the first integral and we don’t do any 
integration with it yet.  Now, we have a normal single integral so let’s finish the integral by 
computing this. 

 
42 2

2
6 7

R

xy dA x 84= =∫∫  
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Solution 2 
In this case we’ll integrate with respect to x first and then y.  Here is the work for this solution. 

 

( )

2 2

42 2

2

2

23

1

2 4

21

2

1

2

1

6 6

3

36

12

84

R

xy dA xy dx dy

x y dy

y dy

y

=

=

=

=

=

⌠
⌡

⌠
⌡

∫∫ ∫

∫  

 
Sure enough the same answer as the first solution. 
 
So, remember that we can do the integration in any order. 

[Return to Problems] 
 
(b) 32 4

R

x y dA−∫∫ ,  [ ] [ ]5, 4 0,3R = − ×  

 
For this integral we’ll integrate with respect to y first. 

 

( )

( )

3 3

34

0

42

5

4 3

05

4

5

4

5

2 4 2 4

2

6 81

3 81

756

R

x y dA x y dy dx

xy y dx

x dx

x x
−

−

−

−

− = −

= −

= −

= −

= −

⌠
⌡

⌠
⌡

∫∫ ∫

∫  

 
Remember that when integrating with respect to y all x’s are treated as constants and so as far as 
the inner integral is concerned the 2x is a constant and we know that when we integrate constants 
with respect to y we just tack on a y and so we get 2xy from the first term. 

[Return to Problems] 
 
 
(c) ( ) ( )2 2 cos sin

R

x y x yπ π+ +∫∫ dA ,  [ ] [ ]2, 1 0,1R = − − ×  

 
In this case we’ll integrate with respect to x first. 
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( ) ( ) ( ) ( )

( ) ( )

( )

( )

2 2 2 2

1
3 2

2

2

1
3

0

1 1

20

1

0

1

0

cos sin cos sin

1 1 sin sin
3

7 sin
3

7 1 cos
9
7 2
9

R

x y x y dA x y x y dx dy

x y x x y

y y dy

y y

π π π π

π π
π

π

π
π

dy

π

−

−

−

−
+ + = + +

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

= +

= −

= +

⌠
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫ ∫

 

 
Don’t forget your basic Calculus I substitutions! 

[Return to Problems] 
 

(d) 
( )2

1
2 3

R

dA
x y+

⌠⌠
⎮⎮
⌡⌡

,  [ ] [ ]0,1 1, 2R = ×  

 
In this case because the limits for x are kind of nice (i.e. they are zero and one which are often 
nice for evaluation) let’s integrate with respect to x first.   We’ll also rewrite the integrand to help 
with the first integration. 

 

( ) ( )

( )

( )

2 2

1
1

0

2

1

2 1

01

2

1

2

1

2 3 2 3

1 2 3
2

1 1 1
2 2 3 3

1 1 1ln 2 3 ln
2 3 3
1 ln 8 ln 2 ln 5
6

R

x y dA x y dx dy

x y dy

dy
y y

y y

− −

−

+ = +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

= − −
+

⎛ ⎞= − + −⎜ ⎟
⎝ ⎠

= − − −

⌠
⌡

⌠
⎮
⌡

⌠
⎮
⌡

∫∫ ∫

 

[Return to Problems] 
 
 
(e) 

R

xyx dA∫∫ e ,  [ ] [ ]1,2 0,1R = − ×  

 
Now, while we can technically integrate with respect to either variable first sometimes one way is 
significantly easier than the other way.  In this case it will be significantly easier to integrate with 
respect to y first as we will see. 
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2 1

1 0
R

xy xyx dA x dy dx
−

=∫∫ ∫ ∫e e  

 
The y integration can be done with the quick substitution, 
 u xy du x dy= =  
which gives 

 ( )
( )

2 1

01

2

1
2

1

2 1

2 1

1

2 1

3

R

xy xy

x

x

x dA dx

dx

x

−

−

−

−

−

=

= −

= −

= − − +

= − −

∫∫ ∫

∫

e e

e

e

e e

e e

 

 
So, not too bad of an integral there provided you get the substitution.  Now let’s see what would 
happen if we had integrated with respect to x first. 

 
1 2

0 1
R

xy xyx dA x dx dy
−

=∫∫ ∫ ∫e e  

 
In order to do this we would have to use integration by parts as follows, 

 1

xy

xy

u x dv dx

du dx v
y

= =

= =

e

e
 

The integral is then, 

 

1 2

10
1 2

2
10

1

2 2
0

2 2

1

1

2 1 1 1

R

xy xy xy

xy xy

y y y y

xx dA dx dy
y y

x dy
y y

dy
y y y y

−

−

− −

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛
= − − − −⎜ ⎟ ⎜

⎝ ⎠ ⎝

⌠ ⌠⎮ ⎮⎮ ⌡⌡

⌠
⎮⎮
⌡

⌠
⎮
⌡

∫∫ e e e

e e

e e e e ⎞
⎟
⎠

 

 
We’re not even going to continue here as these are very difficult integrals to do. 

[Return to Problems]
 
As we saw in the previous set of examples we can do the integral in either direction.  However, 
sometimes one direction of integration is significantly easier than the other so make sure that you 
think about which one you should do first before actually doing the integral. 
 
The next topic of this section is a quick fact that can be used to make some iterated integrals 
somewhat easier to compute on occasion. 
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Fact 
If ( ) ( ) ( ),f x y g x h y=  and we are integrating over the rectangle [ ] [ ], ,R a b c d= ×  then, 

 ( ) ( ) ( ) ( )( ) ( )( ),
R R

b d

a c
f x y dA g x h y dA g x dx h y dy= =∫∫ ∫∫ ∫ ∫  

 
So, if we can break up the function into a function only of x times a function of y then we can do 
the two integrals individually and multiply them together. 
 
Let’s do a quick example using this integral. 
 

Example 2  Evaluate ( )2cos
R

x y dA∫∫ , [ ]2,3 0,
2

R π⎡ ⎤= − × ⎢ ⎥⎣ ⎦
. 

Solution 
Since the integrand is a function of x times a function of y we can use the fact. 

 

( ) ( ) ( )

( )

( )

2 2

3
2

2

2

0

3
2

2 0

2
0

cos cos

1 1 1 cos 2
2 2

5 1 1 sin 2
2 2 2

5
8

R

x y dA x dx y dy

x y dy

y y

π

π

π

π

−

−

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎛ ⎞ ⎛ ⎞⎜ ⎟= +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟

⎝ ⎠

=

∫∫ ∫ ∫

∫
  

 
We have one more topic to discuss in this section.  This topic really doesn’t have anything to do 
with iterated integrals, but this is as good a place as any to put it and there are liable to be some 
questions about it at this point as well so this is as good a place as any. 
 
What we want to do is discuss single indefinite integrals of a function of two variables.  In other 
words we want to look at integrals like the following. 
 

 
( )2

3

sec 2 4
x
y

x y xy d

x dx
−

+

−⌠
⌡

∫

e

y
 

 
From Calculus I we know that these integrals are asking what function that we differentiated to 
get the integrand.  However, in this case we need to pay attention to the differential (dy or dx) in 
the integral, because that will change things a little.   
 
In the case of the first integral we are asking what function we differentiated with respect to y to 
get the integrand while in the second integral we’re asking what function differentiated with 
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respect to x to get the integrand.  For the most part answering these questions isn’t that difficult.  
The important issue is how we deal with the constant of integration. 
 
Here are the integrals. 

 
( ) ( ) ( )

( )

2 2

3 4

sec 2 4 tan 2 2
2

1
4

x x
y y

xx y xy dy y xy g x

x dx x y h y
− −

+ = + +

− = + +⌠
⎮
⌡

∫

e e
 

 
Notice that the “constants” of integration are now functions of the opposite variable.  In the first 
integral we are differentiating with respect to y and we know that any function involving only x’s 
will differentiate to zero and so when integrating with respect to y we need to acknowledge that 
there may have been a function of only x’s in the function and so the “constant” of integration is a 
function of x. 
 
Likewise, in the second integral, the “constant” of integration must be a function of y since we are 
integrating with respect to x.  Again, remember if we differentiate the answer with respect to x 
then any function of only y’s will differentiate to zero. 
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 Double Integrals Over General Regions 
In the previous section we looked at double integrals over rectangular regions.  The problem with 
this is that most of the regions are not rectangular so we need to now look at the following double 
integral, 
 ( ),

D

f x y dA∫∫  

where D is any region. 
 
There are two types of regions that we need to look at.  Here is a sketch of both of them. 
 

       
 

We will often use set builder notation to describe these regions.  Here is the definition for the 
region in Case 1 
 ( ) ( ) ( ){ }1 2, | ,D x y a x b g x y g x= ≤ ≤ ≤ ≤  
and here is the definition for the region in Case 2. 
 ( ) ( ) ( ){ }1 2, | ,D x y h y x h y c y d= ≤ ≤ ≤ ≤

)

 
 
This notation is really just a fancy way of saying we are going to use all the points, ( ,x y , in 
which both of the coordinates satisfy the two given inequalities. 
 
The double integral for both of these cases are defined in terms of iterated integrals as follows. 
 
In Case 1 where ( ) ( ) ( ){ }1 2, | ,D x y a x b g x y g x= ≤ ≤ ≤ ≤  the integral is defined to be, 

 ( ) ( )
( )

( )2

1
, ,

D

b g x

g xa
f x y dA f x y dy dx= ⌠⎮

⌡∫∫ ∫  

 
In Case 2 where ( ) ( ) ( ){ }1 2, | ,D x y h y x h y c y d= ≤ ≤ ≤ ≤  the integral is defined to be, 

 ( ) ( )
( )

( )2

1
, ,

D

d h y

h yc
f x y dA f x y dx dy= ⌠⎮

⌡∫∫ ∫  
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Here are some properties of the double integral that we should go over before we actually do 
some examples.  Note that all three of these properties are really just extensions of properties of 
single integrals that have been extended to double integrals. 
 
Properties 
 
1. ( ) ( ) ( ) ( ), , , ,

D D D

f x y g x y dA f x y dA g x y dA+ = +∫∫ ∫∫ ∫∫  

 
2. , where c is any constant. ( ) ( ),

D D

cf x y dA c f x y dA=∫∫ ∫∫ ,

 
3. If the region D can be split into two separate regions D1 and D2 then the integral can be written 

as 
( ) ( ) ( )

1 2

, ,
D D D

,f x y dA f x y dA f x y dA= +∫∫ ∫∫ ∫∫  

 
Let’s take a look at some examples of double integrals over general regions. 
 
Example 1  Evaluate each of the following integrals over the given region D. 

(a) 
x
y

D

dA⌠⌠
⌡⌡

e ,  ( ){ }3, |1 2,D x y y y x y= ≤ ≤ ≤ ≤    [Solution] 

(b) 34
D

xy y dA−∫∫ ,  D is the region bounded by y x=  and 3y x= .   [Solution] 

(c) 26 40
D

x y dA−∫∫ ,  D is the triangle with vertices ( )0,3 , ( )1,1 , and .    (5,3)
      [Solution] 

Solution 

(a)  
x
y

D

dA⌠⌠
⌡⌡

e ,  ( ){ }3, |1 2,D x y y y x y= ≤ ≤ ≤ ≤  

Okay, this first one is set up to just use formula above so let’s do that. 

 

3
3

2

2

2
2

1
1

2 1

1

2
2 1 4 1

1

1 1 1 2
2 2 2

yx x
y y

D y

y

y

y

y

dA dx dy y dy

y y dy

y

= =

= −

⎛ ⎞= − = −⎜ ⎟
⎝ ⎠

⌠⌠⌠⌠ ⌠ ⎮⎮⌡⌡ ⌡ ⎮⌡ ⌡

∫

e e e

e e

e e e

x
y

e

 

[Return to Problems] 
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(b) 34
D

xy y dA−∫∫ ,  D is the region bounded by y = x  and 3y x= . 

 
In this case we need to determine the two inequalities for x and y that we need to do the integral.  
The best way to do this is the graph the two curves.  Here is a sketch. 
 

 
 

So, from the sketch we can see that that two inequalities are, 
 30 1x x y≤ ≤ ≤ ≤ x  
 
We can now do the integral, 

 
3

3

1
3 3

0

1

2 4

0

1
2 7 12

0

1
3 8 13

0

4 4

12
4

7 12
4 4

7 1 1 5
12 4 52 156

D

x

x

x

x
xy y dA xy y dy dx

xy y dx

x x x dx

x x x

− = −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= − +

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

⌠⎮
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫ ∫

5

 

[Return to Problems] 
 
(c) 26 40

D

x y dA−∫∫ ,  D is the triangle with vertices ( )0,3 , ( )1,1 , and ( )5,3 . 

 
We got even less information about the region this time.  Let’s start this off by sketching the 
triangle. 
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Since we have two points on each edge it is easy to get the equations for each edge and so we’ll 
leave it to you to verify the equations. 
 
Now, there are two ways to describe this region.  If we use functions of x, as shown in the image 
we will have to break the region up into two different pieces since the lower function is different 
depending upon the value of x.  In this case the region would be given by 1D D D2= ∪  where, 

 
( ){ }

( )

1

2

, | 0 1, 2 3 3

1 1, |1 5, 3
2 2

D x y x x y

D x y x x y

= ≤ ≤ − + ≤

⎧ ⎫= ≤ ≤ + ≤⎨ ⎬
⎩ ⎭

≤

≤
 

 
Note the ∪  is the “union” symbol and just means that D is the region we get by combing the two 
regions.  If we do this then we’ll need to do two separate integrals, one for each of the regions. 
 
To avoid this we could turn things around and solve the two equations for x to get, 

 

1 32 3
2 2

1 1 2 1
2 2

y x x y

y x x y

= − + ⇒ = − +

= + ⇒ = −
 

 
If we do this we can notice that the same function is always on the right and the same function is 
always on the left and so the region is, 

 ( ) 1 3, | 2 1, 1 3
2 2

D x y y x y y⎧ ⎫= − + ≤ ≤ − ≤ ≤⎨ ⎬
⎩ ⎭

 

 
Writing the region in this form means doing a single integral instead of the two integrals we’d 
have to do otherwise. 
 
Either way should give the same answer and so we can get an example in the notes of spiting a 
region up let’s do both integrals. 
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Solution 1 

 
( ) ( )

( ) ( )

1 2

2 2 2

51 3 32 2
1 12 30 1 2 2

51 3 32 2 2 2
1 12 30 1 2 2

1 5 222 3 2 1 1
2 20 1

4 10
3

6 40 6 40 6 40

6 40 6 40

6 20 6 20

12 180 20 3 2 3 15 180 20

3 180 3

D D D

x x

x x

x y dA x y dA x y dA

x y dy dx x y dy dx

x y y dx x y y dx

x x dx x x x dx

x x

− + +

− + +

− = − + −

= − + −

= − + −

= − + − + − + − + +

= − − −

⌠⌠ ⎮⌡ ⌡

⌠⌠ ⎮⌡ ⌡

∫∫ ∫∫ ∫∫

∫ ∫

∫ ∫

( )( ) ( )( )
51 33 4 33 40 1 1

4 3 2 2
0 1

2 5 180

935
3

x x x x x+ − + − + +

= −

 

 
That was a lot of work.  Notice however, that after we did the first substitution that we didn’t 
multiply everything out.  The two quadratic terms can be easily integrated with a basic Calc I 
substitution and so we didn’t bother to multiply them out.  We’ll do that on occasion to make 
some of these integrals a little easier. 
 
Solution 2 
This solution will be a lot less work since we are only going to do a single integral. 

 

( )

( ) ( )

( ) ( )( )

3 2 12 2
1 3

1 2 2

3 2 13
1 3

1 2 2
3 332 31

2 21
3442 3100 31 1

3 4 2 2
1

6 40 6 40

2 40

100 100 2 2 1 2

50 2 1

935
3

y

y
D

y

y

x y dA x y dx dy

x xy dy

y y y y

y y y y

−

− +

−

− +

− = −

= −

= − + − − − +

= − + − + − +

= −

⌠⎮
⌡

⌠
⎮
⌡

∫∫ ∫

∫ dy  

 
So, the numbers were a little messier, but other than that there was much less work for the same 
result.  Also notice that again we didn’t cube out the two terms as they are easier to deal with 
using a Calc I substitution. 

[Return to Problems]
 
As the last part of the previous example has shown us we can integrate these integrals in either 
order (i.e. x followed by y or y followed by x), although often one order will be easier than the 
other.  In fact there will be times when it will not even be possible to do the integral in one order 
while it will be possible to do the integral in the other order. 
 
Let’s see a couple of examples of these kinds of integrals. 
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Example 2  Evaluate the following integrals by first reversing the order of integration. 

(a) 
3

2

3 9 3

0

y

x
x dy dx⌠

⌡ ∫ e    [Solution] 

(b) 
3

8 2 4

0
1

y
x dx dy+⌠⎮

⌡ ∫    [Solution] 

 
Solution 

(a)  
3

2

3 9 3

0

y

x
x dy dx⌠

⌡ ∫ e  

First, notice that if we try to integrate with respect to y we can’t do the integral because we would 
need a y2 in front of the exponential in order to do the y integration.  We are going to hope that if 
we reverse the order of integration we will get an integral that we can do.    
 
Now, when we say that we’re going to reverse the order of integration this means that we want to 
integrate with respect to x first and then y.  Note as well that we can’t just interchange the 
integrals, keeping the original limits, and be done with it.  This would not fix our original 
problem and in order to integrate with respect to x we can’t have x’s in the limits of the integrals.  
Even if we ignored that the answer would not be a constant as it should be. 
 
So, let’s see how we reverse the order of integration.  The best way to reverse the order of 
integration is to first sketch the region given by the original limits of integration.  From the 
integral we see that the inequalities that define this region are, 

 2

0 3
9

x
x y
≤ ≤

≤ ≤
 

 
These inequalities tell us that we want the region with 2y x=  on the lower boundary and 9y =  
on the upper boundary that lies between 0x =  and 3x = .  Here is a sketch of that region. 
 

 
 
Since we want to integrate with respect to x first we will need to determine limits of x (probably 
in terms of y) and then get the limits on the y’s.  Here they are for this region. 
 

 0
0 9

x y
y

≤ ≤

≤ ≤
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Any horizontal line drawn in this region will start at 0x =  and end at x y=  and so these are 
the limits on the x’s and the range of y’s for the regions is 0 to 9. 
 
The integral, with the order reversed, is now, 

 
3 3

2

93 9 3 3

00 0

yy y

x
x dy dx x dx dy= ⌠⌠ ⎮⌡ ⌡∫ ∫e e  

and notice that we can do the first integration with this order.  We’ll also hope that this will give 
us a second integral that we can do.  Here is the work for this integral. 

 

( )

3 3

3

3

3

2

93 9 3 3

00 0

9

4

00

9
2

0

9

0

729

1
4

1
4

1
12
1 1

12

yy y

y
y

y

y

x
x dy dx x dx dy

x dy

y dy

=

=

=

=

= −

⌠⌠ ⎮⌡ ⌡

⌠
⎮
⌡

⌠⎮
⌡

∫ ∫e e

e

e

e

e

 

[Return to Problems] 
 

(b) 
3

8 2 4

0
1

y
x dx dy+⌠⎮

⌡ ∫  

 
 As with the first integral we cannot do this integral by integrating with respect to x first so we’ll 
hope that by reversing the order of integration we will get something that we can integrate.  Here 
are the limits for the variables that we get from this integral. 

 
3 2
0 8
y x

y
≤ ≤

≤ ≤
 

and here is a sketch of this region. 
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So, if we reverse the order of integration we get the following limits. 
 

 3

0 2
0

x
y x

≤ ≤

≤ ≤
 

The integral is then, 

 
3

3

3

28 2 4 4

00 0

2
4

00

32 3 4 2
0

1 1

1

11 17
6

x

x

y
x dx dy x dy dx

y x dx

x x dx

+ = +

= +

⎛ ⎞
1= + = −⎜ ⎟

⎝ ⎠

⌠⌠⎮ ⎮
⌡ ⌡

⌠⎮
⌡

∫ ∫

∫

 

[Return to Problems]
 
The final topic of this section is two geometric interpretations of a double integral.  The first 
interpretation is an extension of the idea that we used to develop the idea of a double integral in 
the first section of this chapter.  We did this by looking at the volume of the solid that was below 
the surface of the function  and over the rectangle R in the xy-plane.  This idea can 
be extended to more general regions. 

( ,z f x y= )

 
The volume of the solid that lies below the surface given by ( ),z f x y=  and above the region D 
in the xy-plane is given by, 
 ( ),

D

V f x y d= ∫∫ A  

 
Example 3  Find the volume of the solid that lies below the surface given by  
and lies above the region in the xy-plane bounded by 

16 200z xy= +
2y x=  and 28y x= − .  

 
Solution 
Here is the graph of the surface and we’ve tried to show the region in the xy-plane below the 
surface. 

    
Here is a sketch of the region in the xy-plane by itself. 
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By setting the two bounding equations equal we can see that they will intersect at  and 

.  So, the inequalities that will define the region D in the xy-plane are, 
2x =

2x = −

 2 2

2 2
8

x
x y x
− ≤ ≤

≤ ≤ −
 

 
The volume is then given by, 

 ( )
2

2

2

2

2 8

2
2 82

2
2 3 2

2
2

4 3 2

2

16 200

16 200

8 200

128 400 512 1600

400 1280032 256 1600
3 3

D

x

x

x

x

V xy dA

xy dy dx

xy y dx

x x x dx

x x x x

−

−

−

−

−

−

= +

= +

= +

= − − + +

⎛ ⎞= − + + =⎜ ⎟
⎝ ⎠

⌠
⌡

⌠⎮
⌡

∫∫

∫

∫

 

 
Example 4  Find the volume of the solid enclosed by the planes 4 2 10x y z+ + = , 3y x= , 

, . 0z = 0x =
 
Solution This example is a little different from the previous one.  Here the region D is not 
explicitly given so we’re going to have to find it.  First, notice that the last two planes are really 
telling us that we won’t go past the xy-plane and the yz-plane when we reach them. 
 
The first plane, , is the top of the volume and so we are really looking for the 
volume under, 

4 2 10x y z+ + =

10 4 2z x y= − −  
and above the region D in the xy-plane.  The second plane, 3y x=  (yes that is a plane), gives one 
of the sides of the volume as shown below. 
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The region D will be the region in the xy-plane (i.e. 0z = ) that is bounded by 3y x= , , 
and the line where 

0x =
4 2 10z x y+ + =

0
 intersects the xy-plane.  We can determine where 

 intersects the xy-plane by plugging 4 2 1z x y+ + = 0z =  into it. 
 
 0 4 2 10 2 5 2 5x y x y y+ + = ⇒ + = ⇒ = − +x  
 
So, here is a sketch the region D. 
 

 
 

The region D is really where this solid will sit on the xy-plane and here are the inequalities that 
define the region. 

 
0 1

3 2
x

5x y x
≤ ≤

≤ ≤ − +
 

Here is the volume of this solid. 
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 ( )

1

0

1 2 52

30
1 2

0
1

3 2

0

2 5

3

10 4 2

10 4 2

10 4

25 50 25

25 2525 25
3 3

D

x

x

x

x

V x y dA

x y dy dx

y xy y dx

x x dx

x x x

− +

− +

= − −

= − −

= − −

= − +

⎛ ⎞= − + =⎜ ⎟
⎝ ⎠

⌠
⌡

∫∫

∫ ∫

∫

 

 
The second geometric interpretation of a double integral is the following. 
 

Area of 
D

D d= A∫∫  

 
This is easy to see why this is true in general.  Let’s suppose that we want to find the area of the 
region shown below. 

 
 
From Calculus I we know that this area can be found by the integral, 

 ( ) ( )2 1

b

a
A g x g x dx= −∫  

 
Or in terms of a double integral we have, 

 
( )

( )

( )
( ) ( ) ( )

2

1

2

1
2 1

Area of 
D

g x

g x

g x

g x

b

a

b b

a a

D dA

dy dx

y dx g x g x dx

=

=

= = −

⌠⎮
⌡

∫∫

∫

∫ ∫

 

 
This is exactly the same formula we had in Calculus I. 
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 Double Integrals in Polar Coordinates 
To this point we’ve seen quite a few double integrals.  However, in every case in region D could 
be easily described in terms of simple functions in Cartesian coordinates.  In this section we want 
to look at some regions that are much easier to describe in terms of polar coordinates.  For 
instance, we might have a region that is a disk, ring, or a portion of a disk or ring.  In these cases 
using Cartesian coordinates could be somewhat cumbersome.  For instance let’s suppose we 
wanted to do the following integral, 
 
  ( ), ,  is the disk of radius 2

D

f x y dA D∫∫
 
To this we would have to determine a set of inequalities for x and y that describe this region.  
These would be,  

 
2 2

2 2

4 4

x

x y x

− ≤ ≤

− − ≤ ≤ −
 

 
With these limits the integral would become, 

 ( ) ( )
2

2

2 4

42
, ,

x

x
D

f x y dA f x y dy dx
−

− −−
= ⌠⎮
⌡∫∫ ∫  

 
Due to the limits on the inner integral this is liable to be an unpleasant integral to compute. 
 
However, a disk of radius 2 can be defined in polar coordinates by the following inequalities, 

 
0 2
0 2r
θ π≤ ≤
≤ ≤

 

 
These are very simple limits and, in fact, are constant limits of integration which almost always 
makes integrals somewhat easier.   
 
So, if we could convert our double integral formula into one involving polar coordinates we 
would be in pretty good shape.  The problem is that we can’t just convert the dx and the dy into a 
dr and a dθ .  In computing double integrals to this point we have been using the fact that 

 and this really does require Cartesian coordinates to use.  Once we’ve moved into 
polar coordinates 
dA dx= dy

dA dr dθ≠  and so we’re going to need to determine just what dA is under 
polar coordinates. 
 
So, let’s step back a little bit and start off with a general region in terms of polar coordinates and 
see what we can do with that.  Here is a sketch of some region using polar coordinates. 
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So, our general region will be defined by inequalities, 

 ( ) ( )1 2h r h
α θ β
θ θ

≤ ≤

≤ ≤
 

 
Now, to find dA let’s redo the figure above as follows, 
 

 
 
As shown, we’ll break up the region into a mesh of radial lines and arcs.  Now, if we pull one of 
the pieces of the mesh out as shown we have something that is almost, but not quite a rectangle.  
The area of this piece is .  The two sides of this piece both have length AΔ o ir r rΔ = −  where  
is the radius of the outer arc and  is the radius of the inner arc.  Basic geometry then tells us that 
the length of the inner edge is 

or

ir

ir θΔ  while the length of the out edge is or θΔ  where θΔ  is the 
angle between the two radial lines that form the sides of this piece. 
 



Calculus III 

Now, let’s assume that we’ve taken the mesh so small that we can assume that  and 
with this assumption we can also assume that our piece is close enough to a rectangle that we can 
also then assume that, 

i or r r≈ =

A r rθΔ ≈ Δ Δ  
 
Also, if we assume that the mesh is small enough then we can also assume that, 
 dA A d dr rθ θ≈ Δ ≈ Δ ≈ Δ  
 
With these assumptions we then get dA r dr dθ≈ . 
 
In order to arrive at this we had to make the assumption that the mesh was very small.  This is not 
an unreasonable assumption.  Recall that the definition of a double integral is in terms of two 
limits and as limits go to infinity the mesh size of the region will get smaller and smaller.  In fact, 
as the mesh size gets smaller and smaller the formula above becomes more and more accurate and 
so we can say that, 
 

dA r dr dθ=  
 
We’ll see another way of deriving this once we reach the Change of Variables section later in this 
chapter.  This second way will not involve any assumptions either and so it maybe a little better 
way of deriving this. 
 
Before moving on it is again important to note that dA dr dθ≠ .  The actual formula for dA has 
an r in it.  It will be easy to forget this r on occasion, but as you’ll see without it some integrals 
will not be possible to do. 
 
Now, if we’re going to be converting an integral in Cartesian coordinates into an integral in polar 
coordinates we are going to have to make sure that we’ve also converted all the x’s and y’s into 
polar coordinates as well.  To do this we’ll need to remember the following conversion formulas, 
 2 2cos sin 2x r y r rθ θ= = x y= +  
 
We are now ready to write down a formula for the double integral in terms of polar coordinates. 
 

( ) ( )
( )

( )2

1

, cos , sin
h

h
D

f x y dA f r r r dr d
β θ

θα
θ θ θ= ⌠⎮

⌡∫∫ ∫  

 
It is important to not forget the added r and don’t forget to convert the Cartesian coordinates in 
the function over to polar coordinates. 
 
Let’s look at a couple of examples of these kinds of integrals. 
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Example 1  Evaluate 
(a)

the following integrals by converting them into polar coordinates. 
 2

D

x y dA∫∫ , D is the portion of the region between the circles of radius 2       

      and radius 5 centered at the origin that lies in the first quadrant.   [Solution] 
 

(b) , D is the unit circle centered at the origin.   [Solution 
2 2

D

x y dA+∫∫e ] 

tion 
(a)

 
Solu

D

 2x y dA∫∫ , D is the portion of the region between the circles of radius 2 and radius 5 

entered at the origin that lies in the first quadrant. 

e 
y .  We want the region between them

llowing inequality for r. 

c
 
First let’s get D in terms of polar coordinates.  The circle of radius 2 is given by 2r =  and th
circle of radius 5 is given b  5r =  so we will have the 
fo
 2 5r≤ ≤  
 
Also, since we only want the portion that is in the first quadrant we get the following range of 
θ ’s. 

 0
2
πθ≤ ≤  

 
Now that we’ve got these we can do the integral. 

 ( )( )
52

20
2 2 cos sin

D

x y dA r r r dr d
π

θ θ θ= ⌠⌡∫∫ ∫  

 
Don’t forget to do the conversions and to add in the extra r.  Now, let’s simplify and make use of 
the double angle formula for sine to make the integral a little easier. 

 

( )

( )

( )

( )

52 3

20

52
4

20

2

0

2

0

2 sin 2

1 sin 2
4

609 sin 2
4

609 cos 2
8

609
4

D

x y dA r dr d

r d

d

π

π

π

π

θ θ

θ θ

θ θ

θ

=

=

=

= −

=

⌠
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫ ∫

 

[Return to Problems] 
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(b) 
D
∫∫e , D is the unit circle centered at the origin. 

 

2 2x y dA+

In
to do i

 this case we can’t do this integral in terms of Cartesian coordinates.  We will however be able 
t in polar coordinates.  First, the region D is defined by, 

1
 

0 r
0 2θ π≤ ≤

≤ ≤
 

 
In terms of polar coordinates the integral is then, 

 
2 2 22 1x y rdA r dr d

π

00D

θ+ = ⌠⌡∫∫ ∫e e  

 
Notice that the addition of the r gives us an integral that we can now do.  Here is the work for this 
integral. 

 

( )

( )

2 2 2

2

2 1

00

2 1

00

2

0

1
2

1 1
2

1

D

x y r

r

dA r dr d

d

d

π

π

π

θ

θ

θ

π

+ =

=

= −

= −

⌠
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫ ∫e e

e

e

e

 

[Return to Problems]
 
Let’s not forget that we still have the two geometric interpreta  integrals as wtions for these ell. 

 2 
 
Example  Determine the area of the region that lies inside 3 2sinr θ= +  and outside 2r = . 
 
Solution 
Here is a sketch of the region, D, that we want to determine the area of. 
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To determine this area we’ll need to know that value of θ for which the two curves intersect.  We 
can determine these points by setting the two equations and solving. 
 

 
3 2sin 2

1 7sin ,

θ
11

6 62
π π

+ =

=
 

Here is a sketch of the figure with these angles added. 
 

θ θ= − ⇒

 

 
 
Note as well that we’ve acknowledged that 6

π−  is another representation for the angle 11
6
π .

e 
  This 

is important since we need the range of θ  to actually enclose the regions as we increase from th
wer limit to the upper limit.  If we’d chosen to use lo 11

6
π  then as we increase from 7

6
π  to 11

6
π  we 

would be tracing out the lower portion of the circle and that is not the region that we are after. 
 

o, here are the ranges that will define the region. S

 
7

6 6
2 3 2sinr

π πθ

θ

− ≤ ≤

≤ ≤ +
 

 

o get the ranges for r the function that is closest to the origin is the lower bound and the function 
he upper bound. 

 
The area of the region D is then, 

T
that is farthest from the origin is t
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( )

( )

7 6 3 2sin

6 2

7 6 3 2sin
2

26

7 6
2

6

7 6

6

7
6

6

1
2

5 6sin 2sin
2

7 6sin cos 2
2

7 16cos sin 2
2 2

11 3 14 24.187
2 3

D

A dA

r drd

r d

d

d

π θ

π

π θ

π

π

π

π

π

π

π

θ

θ

θ θ θ

θ θ θ

θ θ θ

π

+

−

+

−

−

−

−

=

=

=

= + +

= + −

⎛ ⎞= + −⎜ ⎟
⎝ ⎠

= + =

⌠
⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

∫∫

∫ ∫

 
 
Example 3  Determine the volume of the region that lies under the sphere , 
above the plane  and inside the cylinder 

2 2 2 9x y z+ + =
0z = 2 2 5x y+ = . 

 
Solution 
We know that the formula for finding the volume of a region is, 
 ( ),

D

V f x y d= ∫∫ A

)

 

In order to make use of this formula we’re going to need to determine the function that we should 
be integrating and the region D that we’re going to be integrating over. 
 
The function isn’t too bad.  It’s just the sphere, however, we do need it to be in the form 

.  We are looking at the region that lies under the sphere and above the plane  ( ,z f x y=
0z =  (just the xy-plane right?) and so all we need to do is solve the equation for z and when 

taking the square root we’ll take the positive one since we are wanting the region above the xy-
plane.  Here is the function. 

 2 29z x y= − −  
 
The region D isn’t too bad in this case either.  As we take points, ( ),x y

x y

, from the region we need 
to completely graph the portion of the sphere that we are working with.  Since we only want the 
portion of the sphere that actually lies inside the cylinder given by 2 2 5+ =  this is also the 
region D.  The region D is the disk 2 2 5x y+ ≤  in the xy-plane.  
 
For reference purposes here is a sketch of the region that we are trying to find the volume of. 
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So, the region that we want the volume for is really a cylinder with a cap that comes from the 
sphere. 
 
We are definitely going to want to do this integral in terms of polar coordinates so here are the 
limits (in polar coordinates) for the region, 

 
0 2

0 5r

θ π≤ ≤

≤ ≤
 

and we’ll need to convert the function to polar coordinates as well. 

 ( )2 29 9z x y 2r= − + = −  
 
The volume is then, 

 ( )

2 2

2 5 2

00

2 53
2 2

00

2

0

9

9

1 9
3

19
3

38
3

D

V x y dA

r r dr d

r d

d

π

π

π

θ

θ

θ

π

= − −

= −

= − −

=

=

⌠⎮
⌡

⌠
⎮⎮
⌡

⌠⎮
⌡

∫∫

∫
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Example 4  Find the volume of the region that lies inside 2z x y2= +  and  below the plane 
. 16z =

 
Solution 
Let’s start this example off with a quick sketch of the region. 

       
 
Now, in this case the standard formula is not going to work.  The formula 
 ( ),

D

V f x y d= ∫∫ A  

finds the volume under the function ( ),f x y  and we’re actually after the area that is above a 
function.  This isn’t the problem that it might appear to be however.  First, notice that  
 16

D

V d= A∫∫  

will be the volume under  (of course we’ll need to determine D eventually) while  16z =
  2 2

D

V x y d= +∫∫ A

2is the volume under , using the same D. 2z x y= +
 
The volume that we’re after is really the difference between these two or, 
 ( )2 2 2 216 16

D D D

V dA x y dA x y= − + = − +∫∫ ∫∫ ∫∫ dA  

Now all that we need to do is to determine the region D and then convert everything over to polar 
coordinates. 
 
Determining the region D in this case is not too bad.  If we were to look straight down the z-axis 
onto the region we would see a circle of radius 4 centered at the origin.  This is because the top of 
the region, where the elliptic paraboloid intersects the plane, is the widest part of the region. We 
know the z coordinate at the intersection so, setting 16z =  in the equation of the paraboloid 
gives,  
 2 216 x y= +  
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which is the equation of a circle of radius 4 centered at the origin. 

tegrating in terms of polar 

he volume is then, 

 

 
ere are the inequalities for the region and the function we’ll be inH

coordinates. 
 20 2 0 4 16r z rθ π≤ ≤ ≤ ≤ = −  
 
T

( )

( )

2 2

2 4 2

00

42
2 4

0 0

2

0

16

16

18
4

64

128

D

V x y dA

r r dr d

r r d

d

π

π

π

θ

θ

θ

π

= − +

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

=

⌠
⌡

⌠
⎮
⌡

∫∫

∫

∫

 

 
 both of the previous volume problems we would have not been able to easily compute the 

dea 

we need to look at before moving on to the next section.  

ntegral by first converting to polar coordinates. 

In
volume without first converting to polar coordinates so, as these examples show, it is a good i
to always remember polar coordinates. 
 

here is one more type of example that T
Sometimes we are given an iterated integral that is already in terms of x and y and we need to 
convert this over to polar so that we can actually do the integral.  We need to see an example of 
how to do this kind of conversion. 
 

xample 5  Evaluate the following iE

 ( )
21 1 2 2cos

y

00
x y dx dy

−
+⌠⎮ ∫  

⌡
olution 

e that we cannot do this integral in Cartesian coordinates and so converting to polar 

 that can be 
s 

S
First, notic
coordinates may be the only option we have for actually doing the integral.  Notice that the 
function will convert to polar coordinates nicely and so shouldn’t be a problem. 
 

et’s first determine the region that we’re integrating over and see if it’s a regionL
easily converted into polar coordinates.  Here are the inequalities that define the region in term
of Cartesian coordinates. 

 
2

0 1y

0 1 y

≤ ≤

x≤ ≤ −
 

ow, the upper limit for the x’s is, 
 
N

21x y= −  
and this looks like the right side of the circle of radius 1 centered at the origin.  Since the lower 
limit for the x’s is 0x =  it looks like we are going to have a portion (or all) of the right side of 
the disk of radius 1 centered at the origin.  
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we are only going to have positive y’s.  This means 
at we are only going to have the portion of the disk of radius 1 centered at the origin that is in 

he inequalities that will define this region in terms of polar coordinates are 
en, 

 
The range for the y’s however, tells us that 
th
the first quadrant. 
 
So, we know that t
th

 0
2

0 1r

πθ≤ ≤

≤ ≤
 

Finally, we just need to remember that, 
 

 dx dy dA r dr dθ= =  
 and so the integral becomes, 

 ( ) ( )
21 1 12 2 22

00 0 0
cos cos

y
y dx dy r r dr d

π

x θ
−

+ = ∫ ∫  

ote that this is an integral that we can do.  So, here is the rest of the work for this integral. 

 

⌠⎮
⌡ ∫

 
N

( ) ( )

( )

( )

00 00

2

0

2

1 sin 1
2

sin 1
4

2 11 21 2 2 21cos sin
y

x y dx dy r d

d

π

π

θ

θ

π

=

=

⌡ ⌡

⌠⎮
⌡

 

−
+ =

⌠⌠⎮ ⎮∫

 
 



Calculus III 

 Triple Integrals 
Now that we know how to integrate over a two-dimensional region we need to move on to 
integrating over a three-dimensional region.  We used a double integral to integrate over a two-
dimensional region and so it shouldn’t be too surprising that we’ll use a triple integral to 
integrate over a three dimensional region.  The notation for the general triple integrals is, 
 ( ), ,

E

f x y z dV∫∫∫  

 
Let’s start simple by integrating over the box, 
 [ ] [ ] [ ], , ,B a b c d r s= × ×  
Note that when using this notation we list the x’s first, the y’s second and the z’s third. 
 
The triple integral in this case is, 

 ( ) ( ), , , ,
B

s d b

r c a
f x y z dV f x y z dx dy dz=∫∫∫ ∫ ∫ ∫  

 
Note that we integrated with respect to x first, then y, and finally z here, but in fact there is no 
reason to the integrals in this order.  There are 6 different possible orders to do the integral in and 
which order you do the integral in will depend upon the function and the order that you feel will 
be the easiest.  We will get the same answer regardless of the order however. 
 
Let’s do a quick example of this type of triple integral. 
 
Example 1  Evaluate the following integral. 
 8

B

xyz dV∫∫∫ ,    [ ] [ ] [ ]2,3 1, 2 0,1B = × ×  

Solution 
Just to make the point that order doesn’t matter let’s use a different order from that listed above.  
We’ll do the integral in the following order. 

 

2 3 1

1 2 0

2 3 12

01 2

2 3

1 2

2 32

21

2

1

8 8

4

4

2

10 15

B

xyz dV xyz dz dx dy

xyz dx dy

xy dx dy

x y dy

y dy

=

=

=

=

= =

∫∫∫ ∫ ∫ ∫

∫ ∫

∫ ∫

∫

∫

 

 
Before moving on to more general regions let’s get a nice geometric interpretation about the triple 
integral out of the way so we can use it in some of the examples to follow. 
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Fact 
The volume of the three-dimensional region E is given by the integral, 
 

E

V d= V∫∫∫  

 
Let’s now move on the more general three-dimensional regions.  We have three different 
possibilities for a general region.  Here is a sketch of the first possibility. 
 

 
In this case we define the region E as follows, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z x y D u x y z u x y= ∈ ≤ ≤  

where ( ),x y D∈  is the notation that means that the point ( ),x y  lies in the region D from the 
xy-plane.  In this case we will evaluate the triple integral as follows, 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u x y

u x y
f x y z dV f x y z dz dA⎡ ⎤= ⎢ ⎥⎣ ⎦

⌠⌠⎮⎮
⌡⌡∫∫∫ ∫  

where the double integral can be evaluated in any of the methods that we saw in the previous 
couple of sections.  In other words, we can integrate first with respect to x, we can integrate first 
with respect to y, or we can use polar coordinates as needed. 
 
Example 2  Evaluate 2

E

x dV∫∫∫  where E is the region under the plane 2 3x y z 6+ + =  that lies 

in the first octant. 
 
Solution 
We should first define octant.  Just as the two-dimensional coordinates system can be divided into 
four quadrants the three-dimensional coordinate system can be divided into eight octants.  The 
first octant is the octant in which all three of the coordinates are positive. 
 
Here is a sketch of the plane in the first octant. 
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We now need to determine the region D in the xy-plane.  We can get a visualization of the region 
by pretending to look straight down on the object from above.  What we see will be the region D 
in the xy-plane.  So D will be the triangle with vertices at ( )0,0 , ( )3,0 , and ( .  Here is a 
sketch of D. 

)0, 2

 
 
Now we need the limits of integration.  Since we are under the plane and in the first octant (so 
we’re above the plane ) we have the following limits for z. 0z =
 
 0 6 2 3z x y≤ ≤ − −  
 
We can integrate the double integral over D using either of the following two sets of inequalities. 

 
0 3 30 3

220 2 0 23

x x y
y x y

≤ ≤
≤ ≤ − +

≤ ≤ − + ≤ ≤
 

 
Since neither really holds an advantage over the other we’ll use the first one.  The integral is then, 
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( )

( )

6 2 3

0

6 2 3

0

23 2
3

00

23 22 2 3
00

3
3 2

0

3
4 3 2

0

2 2

2

2 6 2 3

12 4 3

4 8 12
3

1 8 6
3 3

9

x y

E D
x y

D

x

x

x dV x dz dA

xz dA

x x y dy dx

xy x y xy d

x x x dx

x x x

− −

− −

− +

− +

⎡ ⎤= ⎢ ⎥⎣ ⎦

=

= − −

= − −

= − +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

x

=

⌠⌠⎮⎮
⌡⌡

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

∫∫∫ ∫

∫∫

∫

 

 
Let’s now move onto the second possible three-dimensional region we may run into for triple 
integrals.  Here is a sketch of this region. 

 
For this possibility we define the region E as follows, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z y z D u y z x u y z= ∈ ≤ ≤  
So, the region D will be a region in the yz-plane.  Here is how we will evaluate these integrals. 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u y z

u y z
f x y z dV f x y z dx dA⎡ ⎤= ⎢ ⎥⎣ ⎦

⌠⌠⎮⎮
⌡⌡∫∫∫ ∫  

 
As with the first possibility we will have two options for doing the double integral in the yz-plane 
as well as the option of using polar coordinates if needed. 
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Example 3  Determine the volume of the region that lies behind the plane  and in 

front of the region in the yz-plane that is bounded by 

8x y z+ + =
3
2z y=  and 3

4z y= . 
 
Solution 
In this case we’ve been given D and so we won’t have to really work to find that.  Here is a 
sketch of the region D as well as a quick sketch of the plane and the curves defining D projected 
out past the plane so we can get an idea of what the region we’re dealing with looks like. 

      
 
Now, the graph of the region above is all okay, but it doesn’t really show us what the region is.  
So, here is a sketch of the region itself. 
 

        
 
Here are the limits for each of the variables. 

 

0 4
3 3
4 2
0 8

y

y z y

x y z

≤ ≤

≤ ≤

≤ ≤ − −

 

 
The volume is then, 
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8

0

4 3 2

3 40

4 3
2

2

3
40

4 1 3
22 2

0

43 5
2 32 2

0

8

18
2

57 3 3312
8 2 32

57 3 11 498
16 5 32 5

y z

E D

y

y

y

y

V dV dx dA

y z dz dy

z yz z dy

y y y y dy

y y y y

− −⎡ ⎤= = ⎢ ⎥⎣ ⎦

= − −

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

= − − +

⎛ ⎞
= − − + =⎜ ⎟
⎝ ⎠

⌠⌠⎮⎮
⌡⌡

⌠⎮
⌡

⌠
⎮
⎮
⌡

⌠
⎮
⌡

∫∫∫ ∫

∫

 

 
We now need to look at the third (and final) possible three-dimensional region we may run into 
for triple integrals.  Here is a sketch of this region. 

 
In this final case E is defined as, 
 ( ) ( ) ( ) ( ){ }1 2, , | , , , ,E x y z x z D u x z y u x z= ∈ ≤ ≤  
and here the region D will be a region in the xz-plane.  Here is how we will evaluate these 
integrals. 

 ( ) ( )
( )

( )2

1

,

,
, , , ,

E D

u x z

u x z
f x y z dV f x y z dy dA⎡ ⎤= ⎢ ⎥⎣ ⎦

⌠⌠⎮⎮
⌡⌡∫∫∫ ∫  

where we will can use either of the two possible orders for integrating D in the xz-plane or we can 
use polar coordinates if needed. 
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Example 4  Evaluate 2 23 3
E

x z dV+∫∫∫  where E is the solid bounded by 22 2 2y x z= +  and 

the plane . 8y =
 
Solution 
Here is a sketch of the solid E. 

         
 
The region D in the xz-plane can be found by “standing” in front of this solid and we can see that 
D will be a disk in the xz-plane.  This disk will come from the front of the solid and we can 
determine the equation of the disk by setting the elliptic paraboloid and the plane equal. 
  2 2 2 22 2 8x z x z+ = ⇒ + = 4
 
This region, as well as the integrand, both seems to suggest that we should use something like 
polar coordinates.  However we are in the xz-plane and we’ve only seen polar coordinates in the 
xy-plane.  This is not a problem.  We can always “translate” them over to the xz-plane with the 
following definition. 
 cos sinx r z rθ θ= =  
 
Since the region doesn’t have y’s we will let z take the place of y in all the formulas.  Note that 
these definitions also lead to the formula, 
 2 2 2x z r+ =  
 
With this in hand we can arrive at the limits of the variables that we’ll need for this integral. 

 

2 22 2
0 2

0 2

x z y
r
θ π

8+ ≤ ≤
≤ ≤
≤ ≤

 

 
The integral is then, 
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 ( )
( ) ( )( )

2 2

2 2

82 2 2 2

8
2 2

2 2

2 2 2 2

2 2
3 3 3 3

3 3

3 8 2 2

E D

x z
D

D

x z
x z dV x z dy dA

y x z dA

x z x z

+

+
⎡ ⎤+ = +⎢ ⎥⎣ ⎦

= +

= + − +

⌠⌠⎮⎮
⌡⌡

⌠⌠
⎮⎮
⌡⌡

∫∫∫ ∫

∫∫ dA

 

 
Now, since we are going to do the double integral in polar coordinates let’s get everything 
converted over to polar coordinates.  The integrand is, 

( ) ( )( ) ( )
( )

( )

2 2 2 2 2 2

2

3

3 8 2 2 3 8

3 8 2

3 8 2

2x z x z r

r r

r r

+ − + = −

= −

= −

r

 

The integral is then, 

 

( )

( )

2 2 3

2 2 3

00

2 2
3 5

00

2

0

3 3 3 8 2

3 8 2

8 23
3 5

1283
15

256 3
15

E D

x z dV r r dA

r r r dr d

r r d

d

π

π

π

θ

θ

θ

π

+ = −

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

=

=

⌠
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫∫ ∫∫

∫

 

 
 



Calculus III 

 Triple Integrals in Cylindrical Coordinates 
In this section we want do take a look at triple integrals done completely in Cylindrical 
Coordinates.  Recall that cylindrical coordinates are really nothing more than an extension of 
polar coordinates into three dimensions.  The following are the conversion formulas for 
cylindrical coordinates. 
 
 cos sinx r y r z zθ θ= = =  
 
In order to do the integral in cylindrical coordinates we will need to know what dV will become in 
terms of cylindrical coordinates.  We will be able to show in the Change of Variables section of 
this chapter that, 

dV r dz dr dθ=  
 
The region, E, over which we are integrating becomes, 

 
( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ({ }

1 2

1 2 1 2

, , | , , , ,

, , | , , cos , sin cos , sin

E x y z x y D u x y z u x y

r z h r h u r r z u r r )θ α θ β θ θ θ θ θ θ

= ∈ ≤ ≤

= ≤ ≤ ≤ ≤ ≤ ≤
 

 
Note that we’ve only given this for E’s in which D is in the xy-plane.  We can modify this 
accordingly if D is in the yz-plane or the xz-plane as needed. 
 
In terms of cylindrical coordinates a triple integral is, 

( ) ( )( )
( )

( )
( )2 2

1 1

cos , sin

cos , sin
, , cos , sin ,

E

h u r r

h u r r
f x y z dV r f r r z dz dr d

β θ θ θ

α θ θ θ
θ θ θ=∫∫∫ ∫ ∫ ∫  

  
Don’t forget to add in the r and make sure that all the x’s and y’s also get converted over into 
cylindrical coordinates. 
 
Let’s see an example. 
 
Example 1  Evaluate 

E

y dV∫∫∫  where E is the region that lies below the plane  above 

the xy-plane and between the cylinders 

2z x= +

2 2 1x y+ =  and 2 2 4x y+ = . 
 
Solution 
There really isn’t too much to do with this one other than do the conversions and then evaluate 
the integral. 
 
We’ll start out by getting the range for z in terms of cylindrical coordinates. 
 0 2 0 cosz x z r 2θ≤ ≤ + ⇒ ≤ ≤ +  
Remember that we are above the xy-plane and so we are above the plane 0z =  
 
Next, the region D is the region between the two circles 2 2 1x y+ =  and 2 2 4x y+ =  in the xy-
plane and so the ranges for it are, 
 0 2 1 r 2θ π≤ ≤ ≤ ≤  
 

© 2007 Paul Dawkins 45 http://tutorial.math.lamar.edu/terms.aspx 
 



Calculus III 

© 2007 Paul Dawkins 46 http://tutorial.math.lamar.edu/terms.aspx 
 

Here is the integral. 

 

( )

( )

( )

( )

( )

( )

2 2

0 1 0

2 2 2

0 1

2 2 3 2

0 1

2 2
4 3

10
2

0

2

0

cos 2
sin

sin cos 2
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Just as we did with double integral involving polar coordinates we can start with an iterated 
integral in terms of x, y, and z and convert it to cylindrical coordinates. 
 

Example 2  Convert 
2 2 2

2 2

1 1

1 0

y x y

x y
xyz dz dx dy

−

−

+

+∫ ∫ ∫  into an integral in cylindrical coordinates. 

 
Solution 
Here are the ranges of the variables from this iterated integral. 

 2

2 2 2 2

1 1

0 1

y

x y

x y z x y

− ≤ ≤

≤ ≤ −

+ ≤ ≤ +

 

 
The first two inequalities define the region D and since the upper and lower bounds for the x’s are 

21x y= −  and  we know that we’ve got at least part of the right half a circle of radius 1 
centered at the origin.  Since the range of y’s is 

0x =
1 y 1− ≤ ≤ we know that we have the complete 

right half of the disk of radius 1 centered at the origin.  So, the ranges for D in cylindrical 
coordinates are, 

 2 2
0 1r

π πθ− ≤ ≤

≤ ≤
 

 
All that’s left to do now is to convert the limits of the z range, but that’s not too bad. 
 2r z r≤ ≤  
On a side note notice that the lower bound here is an elliptic paraboloid and the upper bound is a 
cone.  Therefore E is a portion of the region between these two surfaces. 
 
The integral is, 
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( )( )
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 Triple Integrals in Spherical Coordinates 
In the previous section we looked at doing integrals in terms of cylindrical coordinates and we 
now need to take a quick look at doing integrals in terms of spherical coordinates. 
 
First, we need to recall just how spherical coordinates are defined.  The following sketch shows 
the relationship between the Cartesian and spherical coordinate systems. 

 
 
Here are the conversion formulas for spherical coordinates. 
 

 2 2 2 2

sin cos sin sin cosx y z
x y z

ρ ϕ θ ρ ϕ θ ρ

ρ

= =

+ + =

ϕ=
 

 
We also have the following restrictions on the coordinates. 
 0 0ρ ϕ π≥ ≤ ≤  
 
For our integrals we are going to restrict E down to a spherical wedge.  This will mean that we 
are going to take ranges for the variables as follows, 
 

 
a bρ
α θ β
δ ϕ γ

≤ ≤
≤ ≤
≤ ≤

 

 
Here is a quick sketch of a spherical wedge in which the lower limit for both ρ  and ϕ  are zero 
for reference purposes.  Most of the wedges we’ll be working with will fit into this pattern. 
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From this sketch we can see that E is really nothing more than the intersection of a sphere and a 
cone. 
 
In the next section we will show that  

2 sindV d d dρ ϕ ρ θ ϕ=  
 
Therefore the integral will become, 

( ) ( )2, , sin sin cos , sin sin , cos
E

b

a
f x y z dV f d d d

β γ

α δ
ρ ϕ ρ ϕ θ ρ ϕ θ ρ ϕ ρ θ=∫∫∫ ∫ ∫ ∫ ϕ  

 
This looks bad, but given that the limits are all constants the integrals here tend to not be too bad. 
 
Example 1  Evaluate  where E is the upper half of the sphere . 16

E

z dV∫∫∫ 2 2 2 1x y z+ + =

Solution 
Since we are taking the upper half of the sphere the limits for the variables are, 

 
0 1
0 2

0
2

ρ
θ π

πϕ

≤ ≤
≤ ≤

≤ ≤

 

 
The integral is then, 
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Example 2  Convert 
2 2 2

2 2

3 9 2 2 2

0 0

18y x y

x y
x y z dz dx dy

− −−

+
+ +∫ ∫ ∫  into spherical coordinates. 

Solution 
Let’s first write down the limits for the variables. 

 2

2 2 2

0 3

0 9

18

y

x y
2x y z x y

≤ ≤

≤ ≤ −

+ ≤ ≤ − −

 

 
The range for x tells us that we have a portion of the right half of a disk of radius 3 centered at the 
origin.  Since we are restricting y’s to positive values it looks like we will have the quarter disk in 
the first quadrant.  Therefore since D is in the first quadrant the region, E, must be in the first 
octant and this in turn tells us that we have the following range for θ  (since this is the angle 
around the z-axis). 

 0
2
πθ≤ ≤  

Now, let’s see what the range for z tells us.  The lower bound, 2 2z x y= + , is the upper half of 
a cone.  At this point we don’t need this quite yet, but we will later.  The upper bound, 

218z x= − − 2y , is the upper half of the sphere, 

 2 2 2 18x y z+ + =  
and so from this we now have the following range for ρ  

 0 18 3ρ≤ ≤ = 2  
 
Now all that we need is the range for ϕ .  There are two ways to get this.  One is from where the 
cone and the sphere intersect.  Plugging in the equation for the cone into the sphere gives, 
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( )2
2 2 2

2 2

2

18

18
9
3

x y z

z z
z
z

+ + =

+ =

=
=

 

 
Note that we can assume z is positive here since we know that we have the upper half of the cone 
and/or sphere.  Finally, plug this into the conversion for z and take advantage of the fact that we 
know that 3 2ρ =  since we are intersecting on the sphere.  This gives, 

 

cos 3

3 2 cos 3

1 2cos
2 42

ρ ϕ

ϕ

πϕ ϕ

=

=

= = ⇒ =

 

 
So, it looks like we have the following range, 

 0
4
πϕ≤ ≤  

 
The other way to get this range is from the cone by itself.  By first converting the equation into 
cylindrical coordinates and then into spherical coordinates we get the following, 

 cos sin

1 tan
4

z r
ρ ϕ ρ ϕ

πϕ ϕ

=
=

= ⇒ =

2

 

 
So, recalling that 2 2 2x y zρ = + + , the integral is then, 
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 Change of Variables 
Back in Calculus I we had the substitution rule that told us that, 

 ( )( ) ( ) ( ) ( )where   
b d

a c
f g x g x dx f u du u g x′ = =∫ ∫  

 
In essence this is taking an integral in terms of x’s and changing it into terms of u’s.  We want to 
do something similar for double and triple integrals.  In fact we’ve already done this to a certain 
extent when we converted double integrals to polar coordinates and when we converted triple 
integrals to cylindrical or spherical coordinates.  The main difference is that we didn’t actually go 
through the details of where the formulas came from.  If you recall, in each of those cases we 
commented that we would justify the formulas for dA and dV eventually.  Now is the time to do 
that justification. 
 
While often the reason for changing variables is to get us an integral that we can do with the new 
variables another reason for changing variables is to convert the region into a nicer region to work 
with.  When we were converting the polar, cylindrical or spherical coordinates we didn’t worry 
about this change since it was easy enough to determine the new limits based on the given region.  
That is not always the case however.  So, before we move into changing variables with multiple 
integrals we first need to see how the region may change with a change of variables.  
 
First we need a little notation out of the way.  We call the equations that define the change of 
variables a transformation.  Also we will typically start out with a region, R, in xy-coordinates 
and transform it into a region in uv-coordinates. 
 
Example 1  Determine the new region that we get by applying the given transformation to the 
region R. 

(a) R is the ellipse 
2

2 1
36
yx + =  and the transformation is 

2
ux = , 3y v= .   [Solution] 

(b) R is the region bounded by 4y x= − + , 1y x= + , and 
4

3 3
xy = −  and the  

                  transformation is ( )1
2

x u= + v , ( )u v1
2

y = − .   [Solution] 

 
Solution 

(a) R is the ellipse 
2

2 1
36
yx + =  and the transformation is 

2
ux = , 3y v= . 

 
There really isn’t too much to do with this one other than to plug the transformation into the 
equation for the ellipse and see what we get. 

 

( )22

2 2

2 2

3
1

2 36
9 1

4 36
4

vu

u v

u v

⎛ ⎞ + =⎜ ⎟
⎝ ⎠

+ =

+ =
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So, we started out with an ellipse and after the transformation we had a disk of radius 2. 
[Return to Problems] 

 

(b) R is the region bounded by 4y x= − + , 1y x= + , and 
4

3 3
xy = −  and the 

transformation is ( )1
2

x u v= + , ( )1
2

y u v= − . 

 
As with the first part we’ll need to plug the transformation into the equation, however, in this case 
we will need to do it three times, once for each equation.  Before we do that let’s sketch the graph 
of the region and see what we’ve got. 
 

 
 
So, we have a triangle.  Now, let’s go through the transformation.  We will apply the 
transformation to each edge of the triangle and see where we get. 
 
Let’s do 4y x= − +  first.  Plugging in the transformation gives, 

 

( ) ( )1 1 4
2 2

8
2 8

4

u v u v

u v u v
u
u

− = − + +

− = − − +
=
=

 

The first boundary transforms very nicely into a much simpler equation. 
 
Now let’s take a look at 1y x= + , 

 

( ) ( )1 1 1
2 2

2
2 2

1

u v u v

u v u v
v
v

− = + +

− = + =
− =

= −

 

Again, a much nicer equation that what we started with. 
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Finally, let’s transform 4
3 3
xy = − . 

 

( ) ( )1 1 1
2 3 2

3 3 8
4 2 8

2
2

u v u v

u v u v
v u

uv

⎛ ⎞ 4
3

− = +⎜ ⎟
⎝ ⎠

− = + −
= +

= +

−

 

So, again, we got a somewhat simpler equation, although not quite as nice as the first two. 
 
Let’s take a look at the new region that we get under the transformation. 

 
 
We still get a triangle, but a much nicer one. 

[Return to Problems] 
 
Note that we can’t always expect to transform a specific type of region (a triangle for example) 
into the same kind of region.  It is completely possible to have a triangle transform into a region 
in which each of the edges are curved and in no way resembles a triangle. 
 
Notice that in each of the above examples we took a two dimensional region that would have 
been somewhat difficult to integrate over and converted it into a region that would be much nicer 
in integrate over.  As we noted at the start of this set of examples, that is often one of the points 
behind the transformation.  In addition to converting the integrand into something simpler it will 
often also transform the region into one that is much easier to deal with. 
 
Now that we’ve seen a couple of examples of transforming regions we need to now talk about 
how we actually do change of variables in the integral.  We will start with double integrals.  In 
order to change variables in a double integral we will need the Jacobian of the transformation.  
Here is the definition of the Jacobian. 
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Definition 
The Jacobian of the transformation ( ),x g u v= , ( ),y h u v=  is 

 ( )
( )

,
,

x x
x y u v

y yu v
u v

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

 

 
The Jacobian is defined as a determinant of a 2x2 matrix, if you are unfamiliar with this that is 
okay.  Here is how to compute the determinant. 

 
a b

ad bc
c d

= −  

 
Therefore, another formula for the determinant is, 

 ( )
( )

,
,

x x
x y x y xu v

y yu v u v v u
u v

∂ ∂
∂ y∂ ∂ ∂ ∂∂ ∂= = −

∂ ∂∂ ∂ ∂
∂ ∂

∂ ∂
 

 
Now that we have the Jacobian out of the way we can give the formula for change of variables for 
a double integral. 
 
Change of Variables for a Double Integral 
Suppose that we want to integrate ( ),f x y  over the region R.  Under the transformation 

( ),g u v= )x ,  the region becomes S and the integral becomes, ( ,y h u v=

 ( ) ( ) ( )( ) ( )
( )

,
, , , ,

,D
S

x y
f x y dA f g u v h u v du dv

u v
∂

=
∂

⌠⌠
⎮⎮
⌡⌡

∫∫  

 
Note that we used du dv instead of dA in the integral to make it clear that we are now integrating 
with respect to u and v.  Also note that we are taking the absolute value of the Jacobian. 
 
If we look just at the differentials in the above formula we can also say that 

 ( )
( )

,
,

x y
dA du dv

u v
∂

=
∂

 

 
Example 2  Show that when changing to polar coordinates we have dA r dr dθ=  
 
Solution 
So, what we are doing here is justifying the formula that we used back when we were integrating 
with respect to polar coordinates.  All that we need to do is use the formula above for dA. 
 
The transformation here is the standard conversion formulas, 
 cos sinx r y rθ θ= =  
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The Jacobian for this transformation is, 

 

( )
( )

( )
( )

2 2

2 2

,
,

cos sin
sin cos

cos sin

cos sin

x x
x y r

y yr
r

r
r

r r

r

r

θ
θ

θ
θ θ
θ θ

θ θ

θ θ

∂ ∂
∂ ∂ ∂=

∂ ∂∂
∂ ∂

−
=

= − −

= +

=

 

 
We then get, 

 ( )
( )

,
,

x y
dA dr d r dr d r dr d

r
θ θ θ

θ
∂

= = =
∂

 

 
So, the formula we used in the section on polar integrals was correct. 
 
Now, let’s do a couple of integrals. 
 
Example 3  Evaluate 

R

x y dA+∫∫  where R is the trapezoidal region with vertices given by 

, ( ) , ( )0,0 5,0 ( )5 5
2 2,  and ( 5 5

2 2,− )  using the transformation 2 3x u v= +  and 2 3y u v= − . 
 
Solution 
First, let’s sketch the region R and determine equations for each of the sides. 
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Each of the equations was found by using the fact that we know two points on each line (i.e. the 
two vertices that form the edge).   
 
While we could do this integral in terms of x and y it would involve two integrals and so would be 
some work. 
 
Let’s use the transformation and see what we get.  We’ll do this by plugging the transformation 
into each of the equations above. 
 
Let’s start the process off with y x= . 

 
2 3 2 3

6 0
0

u v u
v
v

v− = +
=
=

 

 
Transforming y x= −  is similar. 

 
( )2 3 2 3

4 0
0

u v u v
u
u

− = − +

=
=

 

 
Next we’ll transform . 5y x= − +

 
( )2 3 2 3

4 5
5
4

u v u v
u

u

5− = − + +

=

=

 

 
Finally, let’s transform 5y x= − . 

 
2 3 2 3

6 5
5
6

u v u v
v

v

5− = + −
− = −

=

 

The region S is then a rectangle whose sides are given by 0u = , 0v = , 5
4u =  and 5

6v =  and so 
the ranges of u and v are, 

 5 50 0
4 6

u v≤ ≤ ≤ ≤  

 
Next, we need the Jacobian. 

 ( )
( )

2 3,
6 6 12

2 3,
x y
u v

∂
= = − − = −

−∂
 

 
The integral is then, 
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( ) ( )
5 5
6 4

00

5 5
6 4

00

5 5
6 2 4

00

5
6

0

5
6

0

2 3 2 3 12

48

24

75
2
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2
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4

R

x y dA u v u v du dv

u du dv

u dv

dv

v

+ = + + − −

=

=

=

=

=

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

⌠⎮
⌡

∫∫ ∫

∫

 

 
Example 4  Evaluate 2 2

R

x xy y dA− +∫∫  where R is the ellipse given by  and 

using the transformation 

2 2 2x xy y− + =

2
32x u v= − , 2

32y u v= + . 
Solution 
The first thing to do is to plug the transformation into the equation for the ellipse to see what the 
region transforms into. 

 

2 2

2 2

2 2 2 2 2 2

2 2

2

2 2 22 2 2 2
3 3 3

4 2 2 4 22 2 2
3 3 33 3

2 2

x xy y

u v u v u v u v

u uv v u v u uv v

u v

= − +

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛
= − − − + + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝

⎛ ⎞= − + − − + + +⎜ ⎟
⎝ ⎠

= +

2
3

⎞
⎟⎟
⎠  

 
Or, upon dividing by 2 we see that the equation describing R transforms into 
 2 2 1u v+ =  
or the unit circle.  Again, this will be much easier to integrate over than the original region. 
 
Note as well that we’ve shown that the function that we’re integrating is 
 ( )2 2 22 2x xy y u v− + = +  
in terms of u and v so we won’t have to redo that work when the time to do the integral comes 
around. 
 
Finally, we need to find the Jacobian. 
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 ( )
( )

22
, 2 2 43
, 3 322

3

x y
u v

−
∂

= = +
∂ 3

=  

 
The integral is then, 

 ( )2 2 2 2 42
3R

S

x xy y dA u v du dv− + = +⌠⌠
⎮⎮
⌡⌡∫∫  

 
Before proceeding a word of caution is in order.  Do not make the mistake of substituting 

 or  in for the integrands.  These equations are only valid on the 
boundary of the region and we are looking at all the point interior to the boundary as well and for 
those points neither of these equations will be true! 

2 2 2x xy y− + = 2 2 1u v+ =

 
At this point we’ll note that this integral will be much easier in terms of polar coordinates and so 
to finish the integral out will convert to polar coordinates. 

 

( )

( )

2 2 2 2

2 1 2

00

2 1
4

00

2

0

42
3

8
3

8 1
43

8 1
43

4
3

R
S

x xy y dA u v du dv

r r dr d

r d

d

π

π

π

θ

θ

θ

π

− + = +

=

=

=

=

⌠⌠
⎮⎮
⌡⌡

⌠
⌡

⌠
⎮
⌡

⌠⎮
⌡

∫∫

∫

 

 
Let’s now briefly look at triple integrals.  In this case we will again start with a region R and use 
the transformation ( ), ,x g u v w= , ( ), ,y h u v w= , and ( ), ,z k u v w=  to transform the region 
into the new region S.  To do the integral we will need a Jacobian, just as we did with double 
integrals.  Here is the definition of the Jacobian for this kind of transformation. 

 ( )
( )

, ,
, ,

x x x
u v w

x y z y y y
u v w u v w

z z z
u v w

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
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In this case the Jacobian is defined in terms of the determinant of a 3x3 matrix.  We saw how to 
evaluate these when we looked at cross products back in Calculus II.  If you need a refresher on 
how to compute them you should go back and review that section.   
 
The integral under this transformation is, 

 ( ) ( ) ( ) ( )( ) ( )
( )

, ,
, , , , , , , , , ,

, ,R
S

x y z
f x y z dV f g u v w h u v w k u v w du dv dw

u v w
∂

=
∂

⌠⌠⌠
⎮⎮⎮
⌡⌡⌡

∫∫∫  

 
As with double integrals we can look at just the differentials and note that we must have 

 ( )
( )

, ,
, ,

x y z
dV du dv dw

u v w
∂

=
∂

 

 
We’re not going to do any integrals here, but let’s verify the formula for dV for spherical 
coordinates. 
 
Example 5  Verify that 2 sindV d d dρ ϕ ρ θ ϕ=  when using spherical coordinates. 
 
Solution 
Here the transformation is just the standard conversion formulas. 
 sin cos sin sin cosx y zρ ϕ θ ρ ϕ θ ρ= = ϕ=  
 
The Jacobian is, 

 

( )
( )

( ) (

2 3 2 2 2 2

2 3 2 2 2 2

2 3 2 2 2 2 2 2

2 3 2

sin cos sin sin cos cos
, ,

sin sin sin cos cos sin
, ,

cos 0 sin

sin cos sin cos sin 0
sin sin 0 sin cos cos

sin cos sin sin cos sin cos

sin sin

z y z
ϕ θ ρ ϕ θ ρ ϕ θ
ϕ θ ρ ϕ θ ρ ϕ θ

ρ θ ϕ
ϕ ρ ϕ

ρ ϕ θ ρ ϕ ϕ θ

ρ ϕ θ ρ ϕ ϕ θ

)ρ ϕ θ θ ρ ϕ ϕ θ

ρ ϕ ρ

−
∂

=
∂

−

= − − +

− − −

= − + − +

= − −

( )
2

2 2 2

2

cos

sin sin cos

sin

ϕ ϕ

ρ ϕ ϕ ϕ

ρ ϕ

= − +

= −

θ  

Finally, dV becomes, 
 2 2sin sindV d d d d d dρ ϕ ρ θ ϕ ρ ϕ ρ θ ϕ= − =  
 
Recall that we restricted ϕ  to the range 0 ϕ π≤ ≤  for spherical coordinates and so we know that 
sin 0ϕ ≥  and so we don’t need the absolute value bars on the sine. 
 
We will leave it to you to check the formula for dV for cylindrical coordinates if you’d like to.  It 
is a much easier formula to check. 
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 Surface Area 
In this section we will look at the lone application (aside from the area and volume 
interpretations) of multiple integrals in this material.  This is not the first time that we’ve looked 
at surface area   We first saw surface area in Calculus II, however, in that setting we were looking 
at the surface area of a solid of revolution.  In other words we were looking at the surface area of 
a solid obtained by rotating a function about the x or y axis.  In this section we want to look at a 
much more general setting although you will note that the formula here is very similar to the 
formula we saw back in Calculus II. 
 
Here we want to find the surface area of the surface given by ( ),z f x y=  where ( ),x y  is a 
point from the region D in the xy-plane.  In this case the surface area is given by, 
 

[ ] 22 1x y

D

S f f⎡ ⎤= + +⎣ ⎦
⌠⌠
⌡⌡

dA  

 
Let’s take a look at a couple of examples. 
 
Example 1  Find the surface area of the part of the plane 3 2 6x y z+ + =  that lies in the first 
octant. 
 
Solution 
Remember that the first octant is the portion of the xyz-axis system in which all three variables 
are positive.  Let’s first get a sketch of the part of the plane that we are interested in.   

    
 
We’ll also need a sketch of the region D. 
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Remember that to get the region D we can pretend that we are standing directly over the plane 
and what we see is the region D.  We can get the equation for the hypotenuse of the triangle by 
realizing that this is nothing more than the line where the plane intersects the xy-plane and we 
also know that  on the xy-plane.  Plugging 0z = 0z =  into the equation of the plane will give us 
the equation for the hypotenuse. 
 
Notice that in order to use the surface area formula we need to have the function in the form 

 and so solving for z and taking the partial derivatives gives, ( ,z f x y= )
  6 3 2 3 2x yz x y f f= − − = − = −
 
The limits defining D are, 

 30 2 0
2

3x y x≤ ≤ ≤ ≤ − +  

 
The surface area is then, 

 

[ ] [ ]2 2

32 3
2

0 0

2

0

2
2

0

3 2 1

14

314 3
2

314 3
4

3 14

D

x

S d

dy dx

x dx

x x

− +

= − + − +

=

= − +

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

=

∫∫

∫ ∫

∫

A

 

 
Example 2  Determine the surface area of the part of z xy=  that lies in the cylinder given by 

. 2 2 1x y+ =
 
Solution 
In this case we are looking for the surface area of the part of z xy=  where ( ),x y  comes from 
the disk of radius 1 centered at the origin since that is the region that will lie inside the given 
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cylinder. 
 
Here are the partial derivatives, 
 x yf y f x= =  
 
The integral for the surface area is, 

 2 2 1
D

S x y= + +∫∫ dA  

 
Given that D is a disk it makes sense to do this integral in polar coordinates. 

 ( )

2 2

2 1 2

0 0

2 13
2 2

00

2 3
2

0

3
2

1

1

1 2 1
2 3

1 2 1
3

2 2 1
3

D

S x y dA

r r dr d

r d

d

π

π

π

θ

θ

θ

π

= + +

= +

⎛ ⎞= +⎜ ⎟
⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⎛ ⎞
= −⎜ ⎟

⎝ ⎠

⌠
⎮
⌡

⌠
⎮
⌡

∫∫

∫ ∫
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 Area and Volume Revisited 
This section is here only so we can summarize the geometric interpretations of the double and 
triple integrals that we saw in this chapter.  Since the purpose of this section is to summarize 
these formulas we aren’t going to be doing any examples in this section.   
 
We’ll first look at the area of a region.  The area of the region D is given by, 
 

Area of 
D

D d= A∫∫  

 
Now let’s give the two volume formulas.  First the volume of the region E is given by, 
 

Volume of 
E

E d= V∫∫∫  

 
Finally, if the region E can be defined as the region under the function  and above 
the region D in xy-plane then, 

( ,z f x y= )

 
( )Volume of ,

D

E f x y dA= ∫∫  

 
Note as well that there are similar formulas for the other planes.  For instance, the volume of the 
region behind the function  and in front of the region D in the xz-plane is given by, ( ,y f x z= )
 

( )Volume of ,
D

E f x z dA= ∫∫  

 
Likewise, the the volume of the region behind the function ( ),x f y z=  and in front of the 
region D in the yz-plane is given by, 
 

( )Volume of ,
D

E f y z dA= ∫∫  
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