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Preface 

 
Here are my online notes for my Calculus III course that I teach here at Lamar University.  
Despite the fact that these are my “class notes” they should be accessible to anyone wanting to 
learn Calculus III or needing a refresher in some of the topics from the class.   
 
These notes do assume that the reader has a good working knowledge of Calculus I topics 
including limits, derivatives and integration.  It also assumes that the reader has a good 
knowledge of several Calculus II topics including some integration techniques, parametric 
equations, vectors, and knowledge of three dimensional space. 
 
Here are a couple of warnings to my students who may be here to get a copy of what happened on 
a day that you missed.   
 

1. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn 
calculus I have included some material that I do not usually have time to cover in class 
and because this changes from semester to semester it is not noted here.  You will need to 
find one of your fellow class mates to see if there is something in these notes that wasn’t 
covered in class. 
 

2. In general I try to work problems in class that are different from my notes.  However, 
with Calculus III many of the problems are difficult to make up on the spur of the 
moment and so in this class my class work will follow these notes fairly close as far as 
worked problems go.  With that being said I will, on occasion, work problems off the top 
of my head when I can to provide more examples than just those in my notes.  Also, I 
often don’t have time in class to work all of the problems in the notes and so you will 
find that some sections contain problems that weren’t worked in class due to time 
restrictions. 
 

3. Sometimes questions in class will lead down paths that are not covered here.  I try to 
anticipate as many of the questions as possible in writing these up, but the reality is that I 
can’t anticipate all the questions.  Sometimes a very good question gets asked in class 
that leads to insights that I’ve not included here.  You should always talk to someone who 
was in class on the day you missed and compare these notes to their notes and see what 
the differences are. 
 

4. This is somewhat related to the previous three items, but is important enough to merit its 
own item.  THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!!  
Using these notes as a substitute for class is liable to get you in trouble. As already noted 
not everything in these notes is covered in class and often material or insights not in these 
notes is covered in class. 
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Applications of Partial Derivatives 

 

 Introduction 
In this section we will take a look at a couple of applications of partial derivatives.  Most of the 
applications will be extensions to applications to ordinary derivatives that we saw back in 
Calculus I.  For instance, we will be looking at finding the absolute and relative extrema of a 
function and we will also be looking at optimization.  Both (all three?) of these subjects were 
major applications back in Calculus I.  They will, however, be a little more work here because we 
now have more than one variable. 
 
Here is a list of the topics in this chapter. 
 
Tangent Planes and Linear Approximations – We’ll take a look at tangent planes to surfaces in 
this section as well as an application of tangent planes. 
 
Gradient Vector, Tangent Planes and Normal Lines – In this section we’ll see how the 
gradient vector can be used to find tangent planes and normal lines to a surface. 
 
Relative Minimums and Maximums – Here we will see how to identify relative minimums and 
maximums. 
 
Absolute Minimums and Maximums – We will find absolute minimums and maximums of a 
function over a given region. 
 
Lagrange Multipliers – In this section we’ll see how to use Lagrange Multipliers to find the 
absolute extrema for a function subject to a given constraint. 
 
 

© 2007 Paul Dawkins 3 http://tutorial.math.lamar.edu/terms.aspx 
 



Calculus III 

 Tangent Planes and Linear Approximations 

Earlier we saw how the two partial derivatives xf  and yf  can be thought of as the slopes of 
traces.  We want to extend this idea out a little in this section.  The graph of a function 

 is a surface in (three dimensional space) and so we can now start thinking of the 
plane that is “tangent” to the surface as a point. 

( ,z f x y= )

)

3

 
Let’s start out with a point ( 0 0,x y  and let’s let  represent the trace to 1C ( ),f x y  for the plane 

0y y=  (i.e. allowing x to vary with y held fixed) and we’ll let  represent the trace to 2C ( ),f x y  

for the plane 0x x=  (i.e. allowing y to vary with x held fixed).  Now, we know that ( )0 0,xf x y  is 

the slope of the tangent line to the trace  and 1C ( )0 0,yf x y

1C
 is the slope of the tangent line to the 

trace .  So, let  be the tangent line to the trace  and let  be the tangent line to the trace 
. 

2C

2C
1L 2L

 
The tangent plane will then be the plane that contains the two lines  and .  Geometrically 
this plane will serve the same purpose that a tangent line did in Calculus I.  A tangent line to a 
curve was a line that just touched the curve at that point and was “parallel” to the curve at the 
point in question.  Well tangent planes to a surface are planes that just touch the surface at the 
point and are “parallel” to the surface at the point.  Note that this gives us a point that is on the 
plane.  Since the tangent plane and the surface touch at 

1L 2L

( )0 0,x y  the following point will be on 
both the surface and the plane. 
 ( ) ( )( )0 0 0 0 0 0 0, , , , ,x y z x y f x y=  
 
What we need to do now is determine the equation of the tangent plane.  We know that the 
general equation of a plane is given by, 
 ( ) ( ) ( )0 0 0 0a x x b y y c z z− + − + − =  

where ( 0 0 0, , )x y z  is a point that is on the plane, which we know already.  Let’s rewrite this a 
little.  We’ll move the x terms and y terms to the other side and divide both sides by c.  Doing this 
gives, 

 ( ) ( )0 0
a bz z x x y y
c c

− = − − − − 0  

 
Now, let’s rename the constants to simplify up the notation a little.  Let’s rename them as follows, 

 a bA B
c c

= − = −  

 
With this renaming the equation of the tangent plane becomes, 
 ( ) ( )0 0z z A x x B y y− = − + − 0  
and we need to determine values for A and B.   
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Let’s first think about what happens if we hold y fixed, i.e. if we assume that 0y y= .  In this case 
the equation of the tangent plane becomes, 
 ( )0 0z z A x x− = −  
 
This is the equation of a line and this line must be tangent to the surface at ( )0 0,x y  (since its part 

of the tangent plane).  In addition, this line assumes that 0y y=  (i.e. fixed) and A is the slope of 
this line.  But if we think about it this is exactly that the tangent to  is, a line tangent to the 

surface at (
1C

)0 0,x y  assuming that 0y y= .  In other words,  

 ( )0 0z z A x x− = −  

is the equation for   and we know that the slope of  is given by 1L 1L ( )0 0,xf x y .  Therefore we 
have the following, 
 ( )0 0,xA f x y=  
 
If we hold x fixed at 0x x=  the equation of the tangent plane becomes, 

 ( )0 0z z B y y− = −  
 
However, by a similar argument to the one above we can see that this is nothing more than the 
equation for  and that it’s slope is B or 2L ( )0 0,yf x y .  So, 

 ( )0 0,yB f x y=  
 
The equation of the tangent plane to the surface given by ( ),z f x y=  at ( )0 0,x y  is then, 

 ( )( ) ( )( )0 0 0 0 0 0, ,x yz z f x y x x f x y y y− = − + − 0  
 
Also, if we use the fact that ( )0 0 ,z f x y= 0  we can rewrite the equation of the tangent plane as, 

 
( ) ( )( ) ( )( )

( ) ( )( ) ( )(
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

, , ,

, , ,
x y

x y

z f x y f x y x x f x y y y

z f x y f x y x x f x y y y

− = − + −

= + − + − )
 

 
We will see an easier derivation of this formula (actually a more general formula) in the next 
section so if you didn’t quite follow this argument hold off until then to see a better derivation. 
 
Example 1  Find the equation of the tangent plane to ( )ln 2z x y= +  at ( )1,3− . 
 
Solution 
There really isn’t too much to do here other than taking a couple of derivatives and doing some 
quick evaluations. 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

0, ln 2 1,3 ln 1
2, 1,

2
1, 1,

2

x x

y y

f x y x y z f

f x y f
x y

f x y f
x y

= + = − = =

= −
+

= −
+

0

3 2

3 1

=

=

 

 
The equation of the plane is then, 

 
( ) ( )( )0 2 1 1 3

2 1
z x y

z x y
− = + + −

= + −
 

 
One nice use of tangent planes is they give us a way to approximate a surface near a point.  As 
long as we are near to the point ( )0 0,x y  then the tangent plane should nearly approximate the 
function at that point.  Because of this we define the linear approximation to be, 
 
 ( ) ( ) ( )( ) ( )( )0 0 0 0 0 0 0 0, , , ,x yL x y f x y f x y x x f x y y y= + − + −  
 
and as long as we are “near” ( 0 0, )x y  then we should have that, 
 
 ( ) ( ) ( ) ( )( ) ( )( )0 0 0 0 0 0 0 0, , , , ,x yf x y L x y f x y f x y x x f x y y y≈ = + − + −  
 

Example 2  Find the linear approximation to 
2 2

3
16 9
x yz = + +  at ( )4,3− . 

 
Solution 
So, we’re really asking for the tangent plane so let’s find that. 

 

( ) ( )

( ) ( )

( ) ( )

2 2

, 3 4,3 3 1 1
16 9

1, 4
8 2
2 2, 4
9 3

x x

y y

x yf x y f

xf x y f

yf x y f

= + + − = + + =

= −

= −

5

,3

,3

= −

=

 

 
The tangent plane, or linear approximation, is then, 

 ( ) ( ) ( )1 2, 5 4
2 3

L x y x y 3= − + + −  

 
For reference purposes here is a sketch of the surface and the tangent plane/linear approximation. 
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 Gradient Vector, Tangent Planes and Normal Lines 
In this section we want to revisit tangent planes only this time we’ll look at them in light of the 
gradient vector.  In the process we will also take a look at a normal line to a surface. 
 
Let’s first recall the equation of a plane that contains the point ( )0 0 0, ,x y z  with normal vector 

, ,n a b c=  is given by, 

( ) ( ) ( )0 0 0 0a x x b y y c z z− + − + − =  
 
When we introduced the gradient vector in the section on directional derivatives we gave the 
following fact. 
 
Fact 
The gradient vector ( 0 0, )f x y∇  is orthogonal (or perpendicular) to the level curve ( ),f x y k=  

at the point ( )0 0,x y .  Likewise, the gradient vector ( )0 0 0, ,f x y z∇  is orthogonal to the level 

surface ( , , )f x y z k=  at the point ( )0 0 0, ,x y z .   
 
Actually, all we need here is the last part of this fact.  This says that the gradient vector is always 
orthogonal, or normal, to the surface at a point. 
 
Also recall that the gradient vector is, 
 , ,x y zf f f f∇ =  
 
So, the tangent plane to the surface given by ( ), ,f x y z k=  at ( )0 0 0, ,x y z  has the equation, 

 ( )( ) ( )( ) ( )( )0 0 0 0 0 0 0 0 0 0 0 0, , , , , , 0x y zf x y z x x f x y z y y f x y z z z− + − + − =  
 
This is a much more general form of the equation of a tangent plane that the one that derived in 
the previous section.   
 
Note however, that we can also get the equation from the previous section using this more general 
formula.  To see this let’s start with the equation ( ),z f x y=  and we want to find the tangent 

plane to the surface given by ( ),z f x y=  at the point ( )00 0, ,x y z  where .  In 
order to use the formula above we need to have all the variables on one side.  This is easy enough 
to do.  All we need to do is subtract a z from both sides to get, 

( )0 0 ,z f x y= 0

 ( ), 0f x y z− =  
 
Now, if we define a new function  
 ( ) ( ), , ,F x y z f x y z= −  

 we can see that the surface given by ( ),z f x y=  is identical to the surface given by 

 and this new equivalent equation is in the correct form for the equation of the 
tangent plane that we derived in this section.   
( ), , 0F x y z =

© 2007 Paul Dawkins 8 http://tutorial.math.lamar.edu/terms.aspx 
 



Calculus III 

© 2007 Paul Dawkins 9 http://tutorial.math.lamar.edu/terms.aspx 
 

 
So, the first thing that we need to do is find the gradient vector for F. 
 , , , , 1x y z x yF F F F f f∇ = = −  
 
Notice that  

 
( )( ) ( )( )

( )( )

, ,

, 1

x x y

z

F f x y z f F f x y z f
x y

F f x y z
z

∂ ∂
= − = = −
∂ ∂

∂
= − = −
∂

y=
 

 
The equation of the tangent plane is then, 
 ( )( ) ( )( ) ( )0 0 0 0 0 0 0, ,x yf x y x x f x y y y z z− + − − − = 0  
 
Or, upon solving for z, we get, 
 ( ) ( )( ) ( )( )0 0 0 0 0 0 0 0, , ,x yz f x y f x y x x f x y y y= + − + −  
 
which is identical to the equation that we derived in the previous section. 
 
We can get another nice piece of information out of the gradient vector as well.  We might on 
occasion want a line that is orthogonal to a surface at a point, sometimes called the normal line.  
This is easy enough to get if we recall that the equation of a line only requires that we have a 
point and a parallel vector.  Since we want a line that is at the point  ( )0 0 0, ,x y z  we know that 

this point must also be on the line and we know that ( )0 0 0, ,f x y z∇  is a vector that is normal to 
the surface and hence will be parallel to the line.  Therefore the equation of the normal line is, 
 ( ) ( )0 0 0 0 0 0, , , ,r t x y z t f x y z= + ∇  
 
Example 1  Find the tangent plane and normal line to 2 2 2 30x y z+ + =  at the point ( ) . 1, 2,5−
 
Solution 
For this case the function that we’re going to be working with is, 
 ( ) 2 2, ,F x y z x y z2= + +  
and note that we don’t have to have a zero on one side of the equal sign.  All that we need is a 
constant.  To finish this problem out we simply need the gradient evaluated at the point. 

 
( )

2 ,2 ,2

1, 2,5 2, 4,10

F x y z

F

∇ =

∇ − = −
 

The tangent plane is then, 
 ( ) ( ) ( )2 1 4 2 10 5x y z 0− − + + − =  
 The normal line is, 
 ( ) 1, 2,5 2, 4,10 1 2 , 2 4 ,5 10r t t t t t= − + − = + − − +  
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 Relative Minimums and Maximums 
In this section we are going to extend one of the more important ideas from Calculus I into 
functions of two variables.  We are going to start looking at trying to find minimums and 
maximums of functions.  This in fact will be the topic of the following two sections as well. 
 
In this section we are going to be looking at identifying relative minimums and relative 
maximums.  Recall as well that we will often use the word extrema to refer to both minimums 
and maximums.   
 
The definition of relative extrema for functions of two variables is identical to that for functions 
of one variable we just need to remember now that we are working with functions of two 
variables.  So, for the sake of completeness here is the definition of relative minimums and 
relative maximums for functions of two variables. 
 
Definition 
1. A function ( , )f x y  has a relative minimum at the point ( ),a b  if ( ) (, , )f x y f a b≥  for 

all points ( ),x y  in some region around ( ),a b . 
 

2. A function ( , )f x y  has a relative maximum at the point ( ),a b  if ( ) (, , )f x y f a b≤  for 

all points ( ),x y  in some region around ( ),a b . 
 
Note that this definition does not say that a relative minimum is the smallest value that the 
function will ever take.  It only says that in some region around the point ( ),a b  the function will 

always be larger than ( , )f a b .  Outside of that region it is completely possible for the function to 

be smaller.  Likewise, a relative maximum only says that around ( ),a b  the function will always 

be smaller than ( , )f a b .  Again, outside of the region it is completely possible that the function 
will be larger. 
 
Next we need to extend the idea of critical points up to functions of two variables.  Recall that a 
critical point of the function ( )f x  was a number x c=  so that either ( ) 0f c′ =  or ( )f c′  
doesn’t exist.  We have a similar definition for critical points of functions of two variables. 
 
Definition 
The point (  is a critical point (or a stationary point) of ),a b ( ),f x y  provided one of the 
following is true, 

1.  (this is equivalent to saying that ( ),f a b∇ 0= ( ),xf a b 0=  and ), ( ), 0yf a b =

2. ( ,x )f a b  and/or ( ,y )f a b  doesn’t exist. 
 
To see the equivalence in the first part let’s start off with 0f∇ =  and put in the definition of each 
part. 
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( )

( ) ( )
, 0

, , , 0,0x y

f a b

f a b f a b

∇ =

=
 

The only way that these two vectors can be equal is to have  ( ),xf a b 0=  and ). In 
fact, we will use this definition of the critical point more than the gradient definition since it will 
be easier to find the critical points if we start with the partial derivative definition. 

( ),yf a b = 0

 
Note as well that BOTH of the first order partial derivatives must be zero at ( ),a b .  If only one 
of the first order partial derivatives are zero at the point then the point will NOT be a critical 
point. 
 
We now have the following fact that, at least partially, relates critical points to relative extrema. 
 
Fact 
If the point  is a relative extrema of the function ( ,a b) ( ),f x y  then ( ),a b  is also a critical 

point of ( ),f x y and in fact we’ll have ( ), 0f a b∇ = . 
 
Proof 
This is a really simple proof that relies on the single variable version that we saw in Calculus I 
version, often called Fermat’s Theorem. 
 
Let’s start off by defining ( ) ( ),g x f x b=  and suppose that ( ),f x y  has a relative extrema at 

.  However, this also means that ( ,a b) ( )g x  also has a relative extrema (of the same kind as 

( , )f x y ) at x a= .  By Fermat’s Theorem we then know that ( )g a′ 0= .  But we also know 

),b  and so we have tthat ′( ) (xf a=g a hat ( ), 0f a bx = . 
 
If we now define  and going through exactly the same process as above we will 

see that . 

( ) ( ),h y f a y=

, 0=( )yf a b
 
So, putting all this together means that ( ),f a b 0∇ =   and so ( ),f x y  has a critical point at 

.  ( ,a b)
 

 
 
 
 
Note that this does NOT say that all critical points are relative extrema.  It only says that relative 
extrema will be critical points of the function.  To see this let’s consider the function 
 ( ),f x y xy=  
 
The two first order partial derivatives are, 
 ( ) ( ), ,x yf x y y f x y x= =  
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The only point that will make both of these derivatives zero at the same time is (  and so 

 is a critical point for the function.  Here is a graph of the function. 

)0,0

(0,0)
 

 
 
Note that the axes are not in the standard orientation here so that we can see more clearly what is 
happening at the origin, i.e. at ( .  If we start at the origin and move into either of the 
quadrants where both x and y are the same sign the function increases.  However, if we start at the 
origin and move into either of the quadrants where x and y have the opposite sign then the 
function decreases.  In other words, no matter what region you take about the origin there will be 
points larger than  and points smaller than 

)0,0

( )0,0 0f = ( )0,0 0f = .  Therefore, there is no way 

that (  can be a relative extrema. )0,0
 
Critical points that exhibit this kind of behavior are called saddle points. 
 
While we have to be careful to not misinterpret the results of this fact it is very useful in helping 
us to identify relative extrema.  Because of this fact we know that if we have all the critical points 
of a function then we also have every possible relative extrema for the function.  The fact tells us 
that all relative extrema must be critical points so we know that if the function does have relative 
extrema then they must be in the collection of all the critical points.  Remember however, that it 
will be completely possible that at least one of the critical points won’t be a relative extrema. 
 
So, once we have all the critical points in hand all we will need to do is test these points to see if 
they are relative extrema or not.  To determine if a critical point is a relative extrema (and in fact 
to determine if it is a minimum or a maximum) we can use the following fact. 
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Fact 
Suppose that (  is a critical point of ),a b ( ),f x y  and that the second order partial derivatives are 

continuous in some region that contains ( ),a b .  Next define, 

 ( ) ( ) ( ) ( ) 2
, , , ,x x y y x yD D a b f a b f a b f a b⎡ ⎤= = − ⎣ ⎦  

 
We then have the following classifications of the critical point. 

1. If  and  then 0D > ( ),x xf a b > 0 ( ),a b  is a relative minimum. 

2. If  and  then 0D > ( ),x xf a b < 0 ( ),a b  is a relative maximum. 

3. If  then (  is a saddle point. 0D < ),a b

4. If  then (  may be a relative minimum, relative maximum or a saddle point.  0D = ),a b
Other techniques would need to be used to classify the critical point. 

 
Note that if  then both 0D > ( ,x x )f a b  and ( ),y yf a b  will have the same sign and so in the 

first two cases above we could just as easily replace ( ),x xf a b  with ( ),y yf a b .  Also note that 
we aren’t going to be seeing any cases in this class where 0D = .  We will be able to classify all 
the critical points that we find. 
 
Let’s see a couple of examples. 
 
Example 1  Find and classify all the critical points of ( ) 3 3, 4 3f x y x y xy= + + − . 
 
Solution 
We first need all the first order (to find the critical points) and second order (to classify the 
critical points) partial derivatives so let’s get those. 
 

  
2 23 3 3 3

6 6
x y

x x y y x y

f x y f y x

f x f y f

= − = −

= = 3= −

0

0

 
Let’s first find the critical points.  Critical points will be solutions to the system of equations, 

 
2

2

3 3

3 3
x

y

f x y

f y x

= − =

= − =
 

 
This is a non-linear system of equations and these can, on occasion, be difficult to solve.  
However, in this case it’s not too bad.  We can solve the first equation for y as follows, 
 2 23 3 0x y y− = ⇒ = x  
 
Plugging this into the second equation gives, 

 ( ) ( )22 33 3 3 1x x x x 0− = − =  
 
From this we can see that we must have 0x =  or 1x = .  Now use the fact that 2y x=  to get the 
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critical points. 

 
( )
( )

2

2

0 : 0 0 0,0

1: 1 1 1,1

x y

x y

= = = ⇒

= = = ⇒
 

 
So, we get two critical points.  All we need to do now is classify them.  To do this we will need 
D.  Here is the general formula for D. 

 

( ) ( ) ( ) ( )

( )( ) ( )

2

2

, , , ,

6 6 3
36 9

x x y y x yD x y f x y f x y f x y

x y
xy

⎡ ⎤= − ⎣ ⎦

= − −

= −

 

 
To classify the critical points all that we need to do is plug in the critical points and use the fact 
above to classify them. 
 
( )0,0 : 

 ( )0,0 9 0D D= = − <  
 
So, for  D is negative and so this must be a saddle point. (0,0)
 
( )1,1 : 

 ( ) ( )1,1 36 9 27 0 1,1 6 0x xD D f= = − = > = >  
 
For (  D is positive and )1,1 x xf  is positive and so we must have a relative minimum. 
 
For the sake of completeness here is a graph of this function. 
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Notice that in order to get a better visual we used a somewhat nonstandard orientation.  We can 
see that there is a relative minimum at ( )1,1  and (hopefully) it’s clear that at  we do get a 
saddle point. 

(0,0)

 
Example 2  Find and classify all the critical points for ( ) 2 3 2 2, 3 3 3f x y x y y x y 2= + − − +  
 
Solution 
As with the first example we will first need to get all the first and second order derivatives. 

 
2 26 6 3 3 6

6 6 6 6 6
x y

x x y y x y

f xy x f x y y

f y f y f

= − = + −

= − = − = x

0
0

 

 
We’ll first need the critical points.  The equations that we’ll need to solve this time are, 

 2 2

6 6
3 3 6

xy x
x y y

− =

+ − =
 

 
These equations are a little trickier to solve than the first set, but once you see what to do they 
really aren’t terribly bad. 
 
First, let’s notice that we can factor out a 6x from the first equation to get, 
 ( )6 1x y 0− =  
So, we can see that the first equation will be zero if 0x =  or 1y = .  Be careful to not just cancel 
the x from both sides.  If we had done that we would have missed 0x = . 
 
To find the critical points we can plug these (individually) into the second equation and solve for 
the remaining variable. 
 

0x =  : 
 ( )23 6 3 2 0 0,y y y y y y− = − = ⇒ = = 2

1

 
1y =  : 

 ( )2 23 3 3 1 0 1,x x x− = − = ⇒ = − =x  
 
So, if  we have the following critical points, 0x =
 ( ) ( )0,0 0, 2  
and if  the critical points are, 1y =
 ( ) ( )1,1 1,1−  
 
Now all we need to do is classify the critical points.  To do this we’ll need the general formula for 
D. 
  ( ) ( )( ) ( ) ( )2 2 2, 6 6 6 6 6 6 6 36D x y y y x y x= − − − = − −
 
( )0,0 : 
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 ( ) ( )0,0 36 0 0,0 6 0x xD D f= = > = − <  

( )0, 2 : 

 ( ) ( )0, 2 36 0 0,0 6 0x xD D f= = > = >  

( )1,1 : 

 ( )1,1 36 0D D= = − <  

( )1,1− : 

 ( )1,1 36 0D D= − = − <  
 
So, it looks like we have the following classification of each of these critical points. 

  

( )
( )
( )
( )

0,0 : Relative Maximum

0, 2 : Relative Minimum

1,1 : Saddle Point

1,1 : Saddle Point−
 
Here is a graph of the surface for the sake of completeness. 
 

   
 
Let’s do one more example that is a little different from the first two. 
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Example 3  Determine the point on the plane 4 2 1x y z− + =  that is closest to the point 
. ( )2, 1,5− −

 
Solution 
Note that we are NOT asking for the critical points of the plane.  In order to do this example we 
are going to need to first come up with the equation that we are going to have to work with. 
 
First, let’s suppose that ( , , )x y z

( 2, 1,5− −

 is any point on the plane.  The distance between this point and 

the point in question, , is given by the formula, )

 ( ) ( ) ( )2 22 1d x y z= + + + + − 25  
 
What are then asking is to find the minimum value of this equation.  The point ( ), ,x y z  that 
gives the minimum value of this equation will be the point on the plane that is closest to 

. ( )2, 1,5− −
 
There are a couple of issues with this equation.  First, it is a function of x, y and z and we can only 
deal with functions of x and y at this point.  This is easy to fix however.  We can solve the 
equation of the plane to see that, 
 1 4 2z x y= − +  
 
Plugging this into the distance formula gives, 

 
( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

2 1 1 4 2

2 1 4 4 2

d x y x y

x y x y

= + + + + − + −

= + + + + − − +

2

2

5

22

 

 
Now, the next issue is that there is a square root in this formula and we know that we’re going to 
be differentiating this eventually.  So, in order to make our life a little easier let’s notice that 
finding the minimum value of d will be equivalent to finding the minimum value of . 2d
 
So, let’s instead find the minimum value of  
 ( ) ( ) ( ) ( )2 22, 2 1 4 4f x y d x y x y= = + + + + − − +  
 
Now, we need to be a little careful here.  We are being asked to find the closest point on the plane 
to (  and that is not really the same thing as what we’ve been doing in this section.  In 
this section we’ve been finding and classifying critical points as relative minimums or maximums 
and what we are really asking is to find the smallest value the function will take, or the absolute 
minimum.  Hopefully, it does make sense from a physical standpoint that there will be a closest 
point on the plane to ( .  Also, this point should be a relative minimum.  

)

)

2, 1,5− −

2, 1,5− −
 
So, let’s go through the process from the first and second example and see what we get as far as 
relative minimums go.  If we only get a single relative minimum then we will be done since that 
point will also need to be the absolute minimum of the function and hence the point on the plane 
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that is closest to ( ) . 2, 1,5− −
 
We’ll need the derivatives first. 

 

( ) ( )( )
( ) ( )( )

2 2 2 4 4 4 2 36 34 16

2 1 2 2 4 4 2 14 16 10

34

10

16

x

y

x x

y y

x y

f x x y x y

f y x y

f

f

f

= + + − − − + = + −

= + + − − + = − − +

=

=

−

x y

 

 
Now, before we get into finding the critical point let’s compute D quickly. 
 ( ) ( )234 10 16 84 0D = − − = >  
 
So, in this case D will always be positive and also notice that 34 0x xf = >  is always positive and 
so any critical points that we get will be guaranteed to be relative minimums. 
 
Now let’s find the critical point(s).  This will mean solving the system. 

 
36 34 16 0
14 16 10 0

x y
x y

+ − =
− − + =

 

 
To do this we can solve the first equation for x. 

 ( ) ( )1 116 36 8 18
34 17

x y y= − = −  

 
Now, plug this into the second equation and solve for y. 

 ( )16 2514 8 18 10 0
17 21

y y y− − − + = ⇒ = −  

 
Back substituting this into the equation for x gives 34

21x = − . 
 
So, it looks like we get a single critical point : ( )34 25

21 21,− − .  Also, since we know this will be a 
relative minimum and it is the only critical point we know that this is also the x and y coordinates 
of the point on the plane that we’re after.  We can find the z coordinate by plugging into the 
equation of the plane as follows, 
  

 34 25 1071 4 2
21 21 21

z ⎛ ⎞ ⎛ ⎞= − − + − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
So, the point on the plane that is closest to ( )2, 1,5− −  is ( )34 25 107

21 21 21, ,− − . 
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 Absolute Minimums and Maximums 
In this section we are going to extend the work from the previous section.  In the previous section 
we were asked to find and classify all critical points as relative minimums, relative maximums 
and/or saddle points.  In this section we are want to optimize a function, that is identify the 
absolute minimum and/or the absolute maximum of the function, on a given region in .  Note 
that when we say we are going to be working on a region in  we mean that we’re going to be 
looking at some region in the xy-plane. 

2

2

 
In order to optimize a function in a region we are going to need to get a couple of definitions out 
of the way and a fact.  Let’s first get the definitions out of the way. 
 
Definitions 
1. A region in  is called closed if it includes its boundary.  A region is called open if it 2

doesn’t include any of its boundary points. 
2. A region in  is called bounded if it can be completely contained in a disk.  In other 2

words, a region will be bounded if it is finite. 
 
Let’s think a little more about the definition of closed.  We said a region is closed if it includes its 
boundary.  Just what does this mean?  Let’s think of a rectangle.  Below are two definitions of a 
rectangle, one is closed and the other is open. 
 

 
Open Closed

5 3 5 3
1 6 1 6

x x
y y

− < < − ≤ ≤
< < ≤ ≤

 

 
In this first case we don’t allow the ranges to include the endpoints (i.e. we aren’t including the 
edges of the rectangle) and so we aren’t allowing the region to include any points on the edge of 
the rectangle.  In other words, we aren’t allowing the region to include its boundary and so it’s 
open.   
 
In the second case we are allowing the region to contain points on the edges and so will contain 
its entire boundary and hence will be close. 
 
This is an important idea because of the following fact. 
 
Extreme Value Theorem 
If ( , )f x y  is continuous in some closed, bounded set D in  then there are points in D, 2

( )1 1,x y  and ( )2 2,x y  so that ( 1 1, )f x y  is the absolute maximum and ( )2 2,f x y  is the absolute 
minimum of the function in D. 
 
Note that this theorem does NOT tell us where the absolute minimum or absolute maximum will 
occur.  It only tells us that they will exist.  Note as well that the absolute minimum and/or 
absolute maximum may occur in the interior of the region or it may occur on the boundary of the 
region. 
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The basic process for finding absolute maximums is pretty much identical to the process that we 
used in Calculus I when we looked at finding absolute extrema of functions of single variables.  
There will however, be some procedural changes to account for the fact that we now are dealing 
with functions of two variables.  Here is the process. 
 
Finding Absolute Extrema 

 
1. Find all the critical points of the function that lie in the region D and determine the function 

value at each of these points. 
 

2. Find all extrema of the function on the boundary.  This usually involves the Calculus I 
approach for this work. 
 

3. The largest and smallest values found in the first two steps are the absolute minimum and the 
absolute maximum of the function. 
 

 
The main difference between this process and the process that we used in Calculus I is that the 
“boundary” in Calculus I was just two points and so there really wasn’t a lot to do in the second 
step.  For these problems the majority of the work is often in the second step as we will often end 
up doing a Calculus I absolute extrema problem one or more times. 
 
Let’s take a look at an example or two. 
 
Example 1  Find the absolute minimum and absolute maximum of 

 on the rectangle given by ( ) 2 2 2, 4 2f x y x y x y= + − + 4 1 1x− ≤ ≤  and 1 1y− ≤ ≤ . 
 
Solution 
Let’s first get a quick picture of the rectangle for reference purposes. 

 
 
The boundary of this rectangle is given by the following conditions. 
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right side : 1, 1 1
left side : 1, 1 1
upper side : 1, 1 1
lower side : 1, 1 1

x y
x y
y x
y x

= − ≤ ≤
= − − ≤ ≤
= − ≤ ≤
= − − ≤ ≤

 

These will be important in the second step of our process. 
 
We’ll start this off by finding all the critical points that lie inside the given rectangle.  To do this 
we’ll need the two first order derivatives. 
 22 4 8 2x yf x xy f y x= − = −  
 
Note that since we aren’t going to be classifying the critical points we don’t need the second 
order derivatives.  To find the critical points we will need to solve the system, 
 

 2

2 4
8 2

x xy
y x

0
0

− =

− =
 

 
We can solve the second equation for y to get, 

 
2

4
xy =  

 
Plugging this into the first equation gives us, 

 ( )
2

3 22 4 2 2
4
xx x x x x x

⎛ ⎞
− = − = −⎜ ⎟

⎝ ⎠
0=  

 
This tell us that must have  or 0x = 2 1.414...x = ± = ± .  Now, recall that we only want 
critical points in the region that we’re given.  That means that we only want critical points for 
which 1 1x− ≤ ≤ .  The only value of x that will satisfy this is the first one so we can ignore the 
last two for this problem.  Note however that a simple change to the boundary would include 
these two so don’t forget to always check if the critical points are in the region (or on the 
boundary since that can also happen). 
 
Plugging  into the equation for y gives us, 0x =

 
20 0

4
y = =  

 
The single critical point, in the region (and again, that’s important), is ( )0,0 .  We now need to 
get the value of the function at the critical point. 
 ( )0,0 4f =  
Eventually we will compare this to values of the function found in the next step and take the 
largest and smallest as the absolute extrema of the function in the rectangle. 
 
Now we have reached the long part of this problem.  We need to find the absolute extrema of the 
function along the boundary of the rectangle.  What this means is that we’re going to need to look 
at what the function is doing along each of the sides of the rectangle listed above.  
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Let’s first take a look at the right side.  As noted above the right side is defined by  
 1, 1 1x y= − ≤ ≤  
 
Notice that along the right side we know that 1x = .  Let’s take advantage of this by defining a 
new function as follows, 
 ( ) ( ) ( )2 2 2 21, 1 4 2 1 4 5 4 2g y f y y y y y= = + − + = + −  
 
Now, finding the absolute extrema of ( ),f x y  along the right side will be equivalent to finding 

the absolute extrema of  in the range ( )g y 1 1y− ≤ ≤ .  Hopefully you recall how to do this from 

Calculus I.  We find the critical points of ( )g y  in the range 1 y 1− ≤ ≤  and then evaluate ( )g y  
at the critical points and the end points of the range of y’s. 
 
Let’s do that for this problem. 

 ( ) 18 2
4

g y y y′ = − ⇒ =  

 
 This is in the range and so we will need the following function evaluations. 

 ( ) ( ) 1 191 11 1 7 4.75
4 4

g g g ⎛ ⎞− = = = =⎜ ⎟
⎝ ⎠

 

 
Notice that, using the definition of ( )g y  these are also function values for ( ),f x y . 

 
( ) ( )
( ) ( )
1 1, 1 11

1 1,1 7

1 1 191, 4.75
4 4 4

g f

g f

g f

− = − =

= =

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
We can now do the left side of the rectangle which is defined by, 
 1, 1 1x y= − − ≤ ≤  
 
Again, we’ll define a new function as follows, 
  ( ) ( ) ( ) ( )2 22 21, 1 4 2 1 4 5 4 2g y f y y y y y= − = − + − − + = + −
 
Notice however that, for this boundary, this is the same function as we looked at for the right 
side.  This will not always happen, but since it has let’s take advantage of the fact that we’ve 
already done the work for this function.  We know that the critical point is 1

4y =  and we know 
that the function value at the critical point and the end points are, 

 ( ) ( ) 1 191 11 1 7 4.75
4 4

g g g ⎛ ⎞− = = = =⎜ ⎟
⎝ ⎠

 

 
The only real difference here is that these will correspond to value of ( ),f x y  at different points 
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than for the right side.  In this case these will correspond to the following function values for 
( ),f x y . 

 
( ) ( )
( ) ( )
1 1, 1 11

1 1,1 7

1 1 191, 4.75
4 4 4

g f

g f

g f

− = − − =

= − =

⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
We can now look at the upper side defined by, 

1, 1 1y x= − ≤ ≤  
 
We’ll again define a new function except this time it will be a function of x. 
 ( ) ( ) ( ) ( )2 2 2,1 4 1 2 1 4 8h x f x x x x= = + − + = − 2  
 
We need to find the absolute extrema of ( )h x  on the range 1 1x− ≤ ≤ .  First find the critical 
point(s). 
  ( ) 2 0h x x x′ = − ⇒ =
 
The value of this function at the critical point and the end points is, 
 ( ) ( ) ( )1 7 1 7 0 8h h− = = =h  

and these in turn correspond to the following function values for ( ),f x y  

 
( ) ( )
( ) ( )
( ) ( )

1 1,1

1 1,1 7

0 0,1

h f

h f

h f

7

8

− = − =

= =

= =

 

 
Note that there are several “repeats” here.  The first two function values have already been 
computed when we looked at the right and left side.  This will often happen. 
 
Finally, we need to take care of the lower side.  This side is defined by, 
 1, 1 1y x= − − ≤ ≤  
 
The new function we’ll define in this case is, 
  ( ) ( ) ( ) ( )22 2, 1 4 1 2 1 4 8 3h x f x x x x= − = + − − − + = + 2

=

 
The critical point for this function is, 
  ( ) 6 0h x x x′ = ⇒
 
The function values at the critical point and the endpoint are, 
 ( ) ( ) ( )1 11 1 11 0 8h h− = = =h  

and the corresponding values for ( ),f x y  are, 
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( ) ( )
( ) ( )
( ) ( )

1 1, 1

1 1, 1 11

0 0, 1 8

h f

h f

h f

11− = − − =

= − =

= − =

 

 
The final step to this (long…) process is to collect up all the function values for ( , )f x y  that 
we’ve computed in this problem.  Here they are, 
 

 

( ) ( ) ( )

( ) ( )

( ) ( )

0,0 4 1, 1 11 1,1 7

11, 4.75 1,1 7 1, 1 11
4
11, 4.75 0,1 8 0, 1 8
4

f f f

f f f

f f f

= − =

⎛ ⎞ = − = − −⎜ ⎟
⎝ ⎠

⎛ ⎞− = = − =⎜ ⎟
⎝ ⎠

=

=

)
)

 

 
The absolute minimum is at  since gives the smallest function value and the absolute 

maximum occurs at (  and  since these two points give the largest function value. 

(0,0

)1, 1− ( 1, 1− −
 
Here is a sketch of the function on the rectangle for reference purposes. 

     
 
As this example has shown these can be very long problems.  Let’s take a look at an easier 
problem with a different kind of boundary. 
 
Example 2  Find the absolute minimum and absolute maximum of  ( ) 2 2, 2 6f x y x y y= − +  

on the disk of radius 4,  2 2 16x y+ ≤
 
Solution 
First note that a disk of radius 4 is given by the inequality in the problem statement.  The “less 
than” inequality is included to get the interior of the disk and the equal sign is included to get the 
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boundary.  Of course, this also means that the boundary of the disk is a circle of radius 4. 
 
Let’s first find the critical points of the function that lie inside the disk.  This will require the 
following two first order partial derivatives. 
 4 2x y 6f x f y= = − +  
 
 To find the critical points we’ll need to solve the following system. 

 
4 0

2 6
x

y 0
=

− + =
 

 
This is actually a fairly simple system to solve however.  The first equation tells us that  
and the second tells us that .  So the only critical point for this function is (  and this is 
inside the disk of radius 4.  The function value at this critical point is, 

0x =
3y = )0,3

 ( )0,3 9f =  
 
Now we need to look at the boundary.  This one will be somewhat different from the previous 
example.  In this case we don’t have fixed values of x and y on the boundary.  Instead we have, 
 2 2 16x y+ =  
 
We can solve this for 2x  and plug this into the 2x  in ( ),f x y  to get a function of y as follows. 

 2 216x y= −  
 ( ) ( )2 2 22 16 6 32 3 6g y y y y y y= − − + = − +  
 
We will need to find the absolute extrema of this function on the range 4 y 4− ≤ ≤  (this is the 
range of y’s for the disk….).  We’ll first need the critical points of this function. 
 ( ) 6 6g y y y′ 1= − + ⇒ =  
 
The value of this function at the critical point and the endpoints are, 
 ( ) ( ) ( )4 40 4 8 1 3g g− = − = = 5g  
 
Unlike the first example we will still need to find the values of x that correspond to these.  We 
can do this by plugging the value of y into our equation for the circle and solving for y. 

 

2

2

2

4 : 16 16 0 0
4 : 16 16 0 0

1 : 16 1 15 15 3.87

y x x
y x x

y x x

= − = − = ⇒ =

= = − = ⇒ =

= = − = ⇒ = ± = ±

 

 
The function values for  then correspond to the following function values for ( )g y ( ),f x y . 

 
( ) ( )
( ) ( )
( ) ( ) ( )

4 40 0, 4 40

4 8 0,4 8

1 35 15,1 35 and 15,1 35

g f

g f

g f f

− = − ⇒ − = −

= ⇒ =

= ⇒ − = =
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Note that the third one actually corresponded to two different values for ( ),f x y  since that y also 
produced two different values of x. 
 
So, comparing these values to the value of the function at the critical point of ( , )f x y  that we 

found earlier we can see that the absolute minimum occurs at ( )0, 4−  while the absolute 

maximum occurs twice at ( )15,1−  and ( )15,1 . 

 
Here is a sketch of the region for reference purposes. 
 

 
 
In both of these examples one of the absolute extrema actually occurred at more than one place.  
Sometimes this will happen and sometimes it won’t so don’t read too much into the fact that it 
happened in both examples given here. 
 
Also note that, as we’ve seen, absolute extrema will often occur on the boundaries of these 
regions, although they don’t have to occur at the boundaries.  Had we given much more 
complicated examples with multiple critical points we would have seen examples where the 
absolute extrema occurred interior to the region and not on the boundary. 
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 Lagrange Multipliers 
In the previous section we optimized (i.e. found the absolute extrema) a function on a region that 
contained its boundary.  Finding potential optimal points in the interior of the region isn’t too bad 
in general, all that we needed to do was find the critical points and plug them into the function.  
However, as we saw in the examples finding potential optimal points on the boundary was often a 
fairly long and messy process.   
 
In this section we are going to take a look at another way of optimizing a function subject to 
given constraint(s).  The constraint(s) may be the equation(s) that describe the boundary of a 
region although in this section we won’t concentrate on those types of problems since this method 
just requires a general constraint and doesn’t really care where the constraint came from. 
 
So, let’s get things set up.  We want to optimize (find the minimum and maximum) of a function, 
( , , )f x y z , subject to the constraint ( ), ,g x y z k= .  Again, the constraint may be the equation 

that describes the boundary of a region or it may not be.  The process is actually fairly simple, 
although the work can still be a little overwhelming at times. 
 
Method of Lagrange Multipliers 

1. Solve the following system of equations. 

 
( ) ( )
( )

, , , ,

, ,

f x y z g x y z

g x y z c

λ∇ = ∇

=
 

 
2. Plug in all solutions, ( ), ,x y z , from the first step into ( ), ,f x y z  and identify the 

minimum and maximum values, provided they exist. 
 

The constant, λ , is called the Lagrange Multiplier. 
 
Notice that the system of equations actually has four equations, we just wrote the system in a 
simpler form.  To see this let’s take the first equation and put in the definition of the gradient 
vector to see what we get. 
 , , , , , ,x y z x y z x y zf f f g g g g g gλ λ λ= = λ  
 
In order for these two vectors to be equal the individual components must also be equal.  So, we 
actually have three equations here. 
 x x y y z zf g f g f gλ λ λ= = =  

These three equations along with the constraint, ( ), ,g x y z c= , give four equations with four 
unknowns x, y, z, and λ . 
 
Note as well that if we only have functions of two variables then we won’t have the third 
component of the gradient and so will only have three equations in three unknowns x, y, and λ . 
 
As a final note we also need to be careful with the fact that in some cases minimums and 
maximums won’t exist even though the method will seem to imply that they do.  In every 
problem we’ll need to go back and make sure that our answers make sense. 
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Let’s work a couple of examples. 
 
Example 1  Find the dimensions of the box with largest volume if the total surface area is 64 
cm2. 
 
Solution 
Before we start the process here note that we also saw a way to solve this kind of problem in 
Calculus I, except in those problems we required a condition that related one of the sides of the 
box to the other sides so that we could get down to a volume and surface area function that only 
involved two variables.  We no longer need this condition for these problems.  
 
Now, let’s get on to solving the problem.  We first need to identify the function that we’re going 
to optimize as well as the constraint.  Let’s set the length of the box to be x, the width of the box 
to be y and the height of the box to be z.  Let’s also note that because we’re dealing with the 
dimensions of a box it is safe to assume that x, y, and z are all positive quantities. 
 
We want to find the largest volume and so the function that we want to optimize is given by, 
 ( ), ,f x y z xyz=  
 
Next we know that the surface area of the box must be a constant 64.  So this is the constraint.  
The surface area of a box is simply the sum of the areas of each of the sides so the constraint is 
given by, 
  2 2 2 64 3xy xz yz xy xz yz+ + = ⇒ + + = 2

)

 
Note that we divided the constraint by 2 to simplify the equation a little.  Also, we get the 
function  from this. ( , ,g x y z

 ( ), ,g x y z xy xz yz= + +  
 
Here are the four equations that we need to solve. 
 ( ) ( )x xyz y z f gλ λ= + =  (1)

 ( ) ( )y yxz x z f gλ λ= + =  (2)

 ( ) ( )z zxy x y f gλ λ= + =  (3)

 ( )( )32 , , 32xy xz yz g x y z+ + = =  (4)
 
There are many ways to solve this system.  We’ll solve it in the following way.  Let’s multiply 
equation (1) by x, equation (2) by y and equation (3) by z.  This gives, 
 ( )xyz x y zλ= +  (5)

 ( )xyz y x zλ= +  (6)

 ( )xyz z x yλ= +  (7)
 
Now notice that we can set equations (5) and (6) equal.  Doing this gives, 
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( ) ( )

( ) ( )
( )

0

0 0 or

x y z y x z

xy xz yx yz

xz yz xz yz

λ λ

λ λ

λ λ

+ = +

+ − + =

− = ⇒ = =

 

 
This gave two possibilities.  The first, 0λ =  is not possible since if this was the case equation (1) 
would reduce to  

0 0yz y z= ⇒ = or 0=  
Since we are talking about the dimensions of a box neither of these are possible so we can 
discount 0λ = .  This leaves the second possibility. 
 xz yz=  
 
Since we know that  (again since we are talking about the dimensions of a box) we can 
cancel the z from both sides.  This gives, 

0z ≠

 x y=  (8)
 
Next, let’s set equations (6) and (7) equal.  Doing this gives, 

 
( ) ( )

( )
( )

0

0 0 or

y x z z x y

yx yz zx zy

yx zx yx zx

λ λ

λ

λ λ

+ = +

+ − − =

− = ⇒ = =

 

As already discussed we know that 0λ =  won’t work and so this leaves, 
 yx zx=  
We can also say that since we are dealing with the dimensions of a box so we must have, 0x ≠
 z y=  (9)
 
Plugging equations (8) and (9) into equation (4) we get, 
 

 2 2 2 2 323 32 3.266
3

y y y y y+ + = = = ± = ±  

 
However, we know that y must be positive since we are talking about the dimensions of a box.  
Therefore the only solution that makes physical sense here is  
 
 3.266x y z= = =  
 
So, it looks like we’ve got a cube here. 
 
We should be a little careful here.  Since we’ve only got one solution we might be tempted to 
assume that this is dimensions that will give the largest volume.  The method of Lagrange 
Multipliers will give a set of points that will either maximize or minimize a given function subject 
to the constraint, provided there actually are minimums or maximums.   
 
The function itself, ( ), ,f x y z xyz=  will clear have neither minimums or maximums unless we 
put some restrictions on the variables.  The only real restriction that we’ve got is that all the 
variables must be positive.  This, of course, instantly means that the function does have a 

© 2007 Paul Dawkins 29 http://tutorial.math.lamar.edu/terms.aspx 
 



Calculus III 

minimum, zero. 
 
The function will not have a maximum of all the variables are allowed to increase without bound.  
That however, can’t happen because of the constraint,  
 
 32xy xz yz+ + =  
 
Here we’ve got the sum of three positive numbers (because x, y, and z are positive) and the sum 
must equal 32.  So, if one of the variables gets very large, say x, then because each of the products 
must be less than 32 both y and z must be very small to make sure the first two terms are less than 
32.  So, there is no way for all the variables to increase without bound and so it should make 
some sense that the function, ( ), ,f x y z xyz= , will have a maximum. 
 
This isn’t a rigorous proof that the function will have a maximum, but it should help to visualize 
that in fact it should have a maximum and so we can say that we will get a maximum volume if 
the dimensions are : . 3.266x y z= = =
 
Notice that we never actually found values for λ  in the above example.  This is fairly standard 
for these kinds of problems.  The value of λ  isn’t really important to determining if the point is a 
maximum or a minimum so often we will not bother with finding a value for it.  On occasion we 
will need its value to help solve the system, but even in those cases we won’t use it past finding 
the point. 
 
Example 2  Find the maximum and minimum of ( ), 5 3f x y x y= −  subject to the constraint 

. 2 2 136x y+ =
 
Solution 
This one is going to be a little easier than the previous one since it only has two variables.  Also, 
note that it’s clear from the constraint that region of possible solutions lies on a disk of radius 

136  with is a closed and bounded region and hence by the Extreme Value Theorem  we know 
that a minimum and maximum value must exist. 
 
Here is the system that we need to solve. 

 
2 2

5 2
3 2

136

x
y

x y

λ
λ

=
− =

+ =

 

 
Notice that, as with the last example, we can’t have 0λ =  since that would not satisfy the first 
two equations.  So, since we know that 0λ ≠ we can solve the first two equations for x and y 
respectively.  This gives, 

 5 3
2 2

x y
λ λ

= = −  

 
Plugging these into the constraint gives, 
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 2 2 2

25 9 17 136
4 4 2λ λ λ

+ = =  

 
We can solve this for λ .  

 2 1 1
16 4

λ λ= ⇒ = ±  

 
Now, that we know λ  we can find the points that will be potential maximums and/or minimums. 
 

If 
1
4

λ = −  we get, 

  10 6x y= − =

and if 
1
4

λ =  we get, 

  10 6x y= = −
 
To determine if we have maximums or minimums we just need to plug these into the function.  
Also recall from the discussion at the start of this solution that we know these will be the 
minimum and maximums because the Extreme Value Theorem tells us that minimums and 
maximums will exist for this problem. 
 
Here are the minimum and maximum values of the function. 

 
( ) ( )
( ) ( )

10,6 68 Minimum at 10,6

10, 6 68 Maximum at 10, 6

f

f

− = − −

− = −
 

 
In the first two examples we’ve excluded 0λ =  either for physical reasons or because it 
wouldn’t solve one or more of the equations.  Do not always expect this to happen.  Sometimes 
we will be able to automatically exclude a value of λ  and sometimes we won’t. 
 
Let’s take a look at another example. 
 
Example 3  Find the maximum and minimum values of ( ), ,f x y z xyz=  subject to the 

constraint 1x y z+ + = .  Assume that . , , 0x y z ≥
 
Solution 
First note that our constraint is a sum of three positive or zero number and it must be 1.  
Therefore it is clear that our solution will fall in the range 0 , , 1x y z≤ ≤ .  Therefore the solution 
must lie in a closed and bounded region and so by the Extreme Value Theorem  we know that a 
minimum and maximum value must exist. 
 
Here is the system of equation that we need to solve. 
 yz λ=  (10)
 xz λ=  (11)
 xy λ=  (12)
 1x y z+ + =  (13)
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Let’s start this solution process off by noticing that since the first three equations all have λ  they 
are all equal.  So, let’s start off by setting equations (10) and (11) equal. 
 
 ( ) 0 0 oryz xz z y x z y x= ⇒ − = ⇒ = =  
 
So, we’ve got two possibilities here.  Let’s start off with by assuming that 0z = .  In this case we 
can see from either equation (10) or (11) that we must then have 0λ = .  From equation (12) we 
see that this means that .  This in turn means that either 0xy = 0x =  or 0y = .   
 
So, we’ve got two possible cases to deal with there.  In each case two of the variables must be 
zero.  Once we know this we can plug into the constraint, equation (13), to find the remaining 
value. 
 

0, 0 : 1
0, 0 : 1

z x y
z y x
= = ⇒ =
= = ⇒ =

 

 
So, we’ve got two possible solutions ( )0,1,0  and ( )1,0,0 . 
 
Now let’s go back and take a look at the other possibility, y x= .  We also have two possible 
cases to look at here as well. 
 
This first case is .  In this case we can see from the constraint that we must have 0x y= = 1z =  
and so we now have a third solution ( )0,0,1 . 
 
The second case is .  Let’s set equations (11) and (12) equal. 0x y= ≠
 ( ) 0 0 orxz xy x z y x z y= ⇒ − = ⇒ = =  
 
Now, we’ve already assumed that 0x ≠  and so the only possibility is that .  However, this 
also means that, 

z y=

 x y z= =  
 
Using this in the constraint gives, 

13 1
3

x x= ⇒ =  

So, the next solution is 
1 1 1, ,
3 3 3

⎛ ⎞
⎜ ⎟
⎝ ⎠

. 

 
We got four solutions by setting the first two equations equal.   
 
To completely finish this problem out we should probably set equations (10) and (12) equal as 
well as setting equations (11) and (12) equal to see what we get.  Doing this gives, 

 
( )
( )

0 0 or

0 0 or

yz xy y z x y z x

xz xy x z y x z y

= ⇒ − = ⇒ =

= ⇒ − = ⇒ =
 

=

=
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oth of these are very similar to the first situation that we looked at and we’ll leave it up to you to 

show that in each of these cases we arrive back at the four solutions that we already found. 
B

 
So, we have four solutions that we need to check in the function to see whether we have 
minimums or maximums. 

 
( ) ( ) ( )0,0,1 0 0,1,0 0 1,0,0 0 All Minimums

1 1 1 1, ,f ⎛ ⎞
⎜ ⎟

 
Maximum

3 3 3 27

f f f= = =

=
⎝ ⎠

o, in this case the maximum occurs only once while the minimum occurs three times. 
 

ote as well that we never really used the assumption that  in this problem.  This 
um of the 

nction.  Without this assumption it wouldn’t be too difficult to find points that give both larger 

 
S

N , , 0x y z ≥
assumption is here mostly to make sure that we really do have a maximum and a minim
fu
and smaller values of the functions.  For example. 

 
( )100, 100, 1 : 100 100 1 1 100,100,1 10000

50, 50, 101 : 50 50

x y z f

x y z

= − = = − + + = − = −

= − = − = − − ( )1 50, 50,101 252500f= − − =
 

101+
 
With these examples you can clearly see that it’s not too hard to find points that will give larger 
and smaller function values.  However, all of these examples required negative values of x, y 
nd/or z to make sure we satisfy the constraint.  By eliminating these we will know that we’ve got a

minimum and maximum values by the Extreme Value Theorem. 
 
To this point we’ve only looked at constraints that were equations.  We can also have constraints 
that are inequalities.  The process for these types of problems is nearly identical to what we’ve 

een doing in this section to this point.  The main difference between the two types of problems is 

xample 4  Find the maximum and minimum values of 

b
that we will also need to find all the critical points that satisfy the inequality in the constraint and 
check these in the function when we check the values we found using Lagrange Multipliers. 
 
Let’s work an example to see how these kinds of problems work. 
 

( ) 2 2, 4 10f x y x y= +E  on the disk 

Note that the constraint here is the inequality for the disk.  Because this is a closed and bounded 
gion the Extreme Value Theorem

2 2 4+ ≤ . x y
 
Solution 

re  tells us that a minimum and maximum value must exist. 

s 

0=

 

 
The first step is to find all the critical points that are in the disk (i.e. satisfy the constraint).  This i
easy enough to do for this problem.  Here are the two first order partial derivatives. 

 
20 20 0 0

x

yf y y y= ⇒ = ⇒ =
 

8 8 0f x x x= ⇒ = ⇒
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So, the onl
 

y critical point is  and it does satisfy the inequality. 

t this point we proceed with Lagrange Multipliers and we treat the constraint as an equality 
y need

( )0,0

A
instead of the inequality.  We onl  to do deal with the inequality when finding the critical 
points. 
 
So, here is the system of equations that we need to solve. 

8 2
 

2 2 4
20 2

x x
y y

x y

λ
λ

=
=  

+ =
 

rom the first equation we get, 
 

raint gives us

F
( )2 4 0 0 or 4x xλ λ− = ⇒ = =  

 
If we have 0x =  then the const  2y = ± . 
 
If we have 4λ =  the second equation gives us, 
 20 8 0y y y= ⇒ =  
The constraint then tells us that 2x = ± . 
 
f we’d perf sis on the second I

 
ormed a similar analy equation we would arrive at the same points. 

s four p nts to check :So, Lagrange Multipliers gives u oi ( )0, 2 , ( )0, 2− , ( )2,0 , and 

 
 this case, the minimum was interior to the disk and the maximum was on the boundary of the 

disk. 

( )2,0− . 
 

o find the maximum and minimum we need to simply plug these four points along with the T
critical point in the function. 

( )0,0 0 inf =

 ( ) ( )
( )
2,0 2,0 16f f

f

= − =  

( )

M imum

0,2 0, 2 40 Maximumf= − =

In

 
he final topic that we need to discuss in this section is what to do if we have more than one 

than two constraints. 

T
constraint.  We will look only at two constraints, but we can naturally extend the work here to 
more 
 
We want to optimize ( ), ,f x y z  subject to the constraints ( ), ,g x y z c=  and ( ), ,h x y z k=
The system that we need to solve in this case is, 

.  

 
( ) ( ) ( )

( )

, ,

, ,
( )

, , , ,

, ,

f x h x y z

h x y z k

λ μ∇ = ∇ + ∇

=

 

y z g x y z

g x y z c= 
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so, note that the first equation really is three 

uations as we saw in the previous examples.  Let’s see an example of this kind of optimization 
problem. 
 

So, in this case we get two Lagrange Multipliers.  Al
eq

Example 5  Find the maximum and minimum of ( ), , 4 2f x y z y z= −  subject to the constraints

2 2x y z− − =  and 2 2 1x y+ = . 
 

 

olution 
um value here is a lit

because of the second constraint we’ve got to have 1

S
Verifying that we will have a minimum and maxim tle trickier.  Clearly, 

0 ,x y≤ ≤ .  

inimum 

With this in mind there must 
lso be a set of lim z in order to make sure that the first constraint is met.  If one really 

 determine that range you could find the m and maximum values of 
a its on 
wanted to 2x y−  
subject to 2 2 1x y+ =  and you could then use this to determine the minimum and maximum 
values of z.  We won’t do that here.  The point is on wledge that once again the 
possible solutions must lie in a closed and bounded region and so minimum and maximum va
must exist by the 

ly to ackno
lues 

Extreme Value Theorem. 
 
Here is the system of equations that we need to solve. 
 ( )0 2 2 x x xx f g hλ μ λ μ= + = +  (14)

 ( )y y4 2 yy f g hλ μ= +λ μ= − +  (15)

 ( )z z2 zf g hλ= +λ− = − μ  (16)
2 2x y z− − =  (17)

 2 2 1x y+ =  

irst, let’s notice that from equation (16) we get 

(18)
 
F 2λ = .  Plugging this

uation (15) and solving for x and y respectively gives, 
 into equation (14) and 

eq

 

2x0 4 2 xμ

34 2 2 y y

μ

μ
μ

= + ⇒

 
ow, plug these into equation (18). 

 

= −

= − + ⇒ =
 

N

2 2 2

4 9 13 1 1μ
μ μ μ

+ = = ⇒ = ±  3

.  First, let’s see what we get when 
 
So, we have two cases to look at here 13μ = .  In this case 

e know that, w

 2 3
13 13

x y= − =  

Plugging these into equation (17) gives, 

© 2007 Paul Dawkins 35 http://tutorial.math.lamar.edu/terms.aspx 
 



Calculus III 

 4 3 72 2
13 13 13

z z− − − = ⇒ = − −  

So, we’ve got one solution. 
 
Let’s now see what we get if we take 13μ = − .  Here we have, 

 2 3
13 13

x y= =  −

s, Plugging these into equation (17) give

 4 3 72 2
13 13 13

z z+ − = ⇒ = − +  

and there’s a second solution. 
 
N thow all that we need to is check the two solutions in the function to see which is e maximum 
and which is the minimum. 
 

 

2 3 7 26, , 2 4 11.2111f ⎛ ⎞− − − = + =⎜ ⎟
⎝ 13 13 13 13

2 3 7 26, , 2 4 3.2111
13 13 13 13

f

⎠
⎛ ⎞− − + = − = −⎜ ⎟
⎝ ⎠

 

So, we have a maximum at 
 

( )3 72
13 13 13

, , 2− − −  and a minimum at ( )3 72
13 13 13

, , 2− − + . 
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