MA2008 Groups and Graphs

Answer ALL questions

- 1. For all $a, b \in G(.)$ prove that $(bab^{-1})^3 = 1$ if and only if $a^3 = 1$
- 2. a) Find all the generating sets for the group $Z_8 (\oplus)$ which contain a single element
 - b) List all the **proper** subgroups of the group $Z_8 (\oplus)$.

7 Marks

3 Marks

3 Show the group G = { 1, a, a^2 , b, ab, a^2b } where $a^3 = b^2 = 1$ and ab = ba is cyclic

6 Marks

4. Find four different cyclic subgroups of order 3 of the group $C_3 \times C_3 = \{ 1, a, a^2, b, b^2, ab, a^2b, ab^2, a^2b^2 \}$ where $a^3 = b^3 = 1$ and ab = ba.

8 Marks

5. If G is the group $C - \{0\}$ (.) and H is the subset of G defined by

 $H = \{ z : z \in C \text{ and } |z| = 1 \}$

then use the Subgroup Theorem to prove that H is a subgroup of G.

6 Marks

Sample Progress Test 2

contain a single