9 Cosets and Lagrange's Theorem

9.1 Cosets

9.1.1 Definition

If H is a subgroup of a group G and x is any element of G we call
Hx = {hx: he H} aright coset of Hin G
xH = {xh: he H} aleft coset of Hin G.

9.1.2 Example

Suppose G = {1, g, b, ab, ba, aba} where ® = b* = 1, aba = bab and let H be the
subgroup {1,6}. Then we have, for example,

Hba = {ba, bba} = {ba, a}.

Working through all the possible elements we find that there are three distinct right
cosets and three distinct left cosets. The right cosets are

Hl={1,b}=Hb

Ha = {a, ba} = Hba
Hab = {ab, aba} = Haba
The left cosets are
I1H={1,b} =bH

aH = {a, ab} = abH
baH = {ba, aba} = abaH

We note the following properties:

* In general left cosets are not the same as right cosets; (sometimes they are the same
- 1f this happens many useful theorems can be derived as we will see later).

* Every element belongs to its own coset. (i.e. ab € abH, abe Hab).

* ifge HthengH=H=Hg.

9.1.3 Example

We can also have cosets of subgroups of infinite groups. Suppose we have the
subgroup H of Z (with operation addition) and suppose H = {3x : xeZ}. Then there

are three distinct right cosets:

H+0=H={3x:xeZ}, H+ 1= {3x+1:xeZ}, H+2 = {3x+2 : xeZ}.
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Exercises 9.1

9.2

Let G =Z7 and let H be as in Example 9.1.3. What are the left cosets of H?

Write down two examples of subgroups where the left cosets and right cosets
are the same. What type of group always has identical left and right cosets.

Let G and H be as described below. Write down all the left and right cosets of
H in G: (the group elements and defining relations are as described in the table
in section 8)

a) G=D,H=/{1,a%},
b) G=D,, H={1,b},
c) G=Q., H=<a>,

d) G=A, H=<b>,

e) G=2Z,x7Z,, H=<a>

Write down any properties of cosets that you have observed.
Mark the following statements true or false. When a statement is true try to

explain why you think it is true; when you think a statement is false try to
produce a counter example.

a) all right cosets contain the same number of elements

b) if G is infinite then all cosets will contain an infinite number of
elements

c) every coset contains the identity element

d) if left cosets are always the same as right cosets then G is an abelian
group

e) if G is an abelian group then left cosets are always the same as right
cosets

) Hx~Hy = & unless Hx = Hy.

Properties of Cosets

Having seen examples of subgroups and their cosets we now attempt to prove some
properties of cosets. Our aim is to prove the following statements:

« theright (left) cosets of a subgroup H partition G into a number of distinct subsets
with no overlap of elements.

« all right (left) cosets contain the same number of elements.

The results below are stated for right cosets; it is an easy exercise for you to rewrite

them so that they apply to left cosets.
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Theorem 9.2.1

If x and y are any elements of G and H is a subgroup of G then
EITHER Hx=Hy OR HxnHy=0

Proof

The statement of the theorem allows two possibilities. Our strategy is to assume that
Hx " Hy # and to show that this means that the cosets are identical. We do this by
showing that Hx ¢ Hy and Hy < Hx.

If Hx " Hy = & then Hx and Hy have an element z in common. Thus
hx=z=hy for some elements h,, h, € H.

Hence hx=hy so x=h"hy, y=hhx

1. We now aim to show that Hx < Hy

Suppose we have an element h;x of Hx. Then
h;x = h;h,"'h,y.

But H is a subgroup so h;h,'h, € H as each of the h, ¢ H. But then h;x € Hy and so
Hx ¢ Hy.

2. We now aim to show that Hy < Hx.
Suppose we have an element h,y of Hy. Then
h.y = hsh,"'h x.

But H is a subgroup so h.h,'h, € H as each of the h, e H. But then h,y € Hx and so
Hy < Hx.

Hence we have shown that if the cosets have any elements in common then they must
be identical.

[ Note: This uses a standard mathematical technique; we aim to show
that two sets X and Y are equal by showing that X < Yand Y < X /]
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Theorem 9.2.2

Suppose H is a subgroup of a group G and suppose that H contains a finite number of
elements. Every right coset contains exactly the same number of elements; each coset
has |H| elements.

Proof

Suppose H={h,, h,, ..., h}. Then
Hx = {hx, hx, ..., hx}

and so Hx will contain |H| elements provided the hx are distinct. But
hx=hx =h =h,.

But the elements of H are distinct and so h; # h,. Hence the elements of Hx are distinct.
L)

The two results above lead to one of the most important theorems in group theory and
one which 1s very useful when we attempt to find possible subgroups of a group G.

Theorem 9.2.3 (Lagrange's Theorem)

If H is a subgroup of a group G then the order of H divides the order of G.
Proof

Every element of G lies in exactly one coset (Theorem 9.2.1) while each coset

contains the same number, |H|, of elements (Theorem 9.2.2). Hence we can write G as
the union of distinct right cosets:

G=HuUHauUHaU...U Ha,
Since all the cosets are distinct and contain |H| elements it follows that |G| = (q+1)[H].

Lagrange's theorem allows us to determine the subgroup structure of particular
groups. For example D, (the dihedral group) has order 8 (see Section 8.3). Hence any
proper subgroup must have order 2 or 4 and these can be easily determined:

1. We have a subgroup {1, x} of order 2 whenever x has order 2. In D, we have
five elements of order 2 - a%, b, a’b, ab, a’b; these give rise to 5 subgroups of
order 2.

2. We have a cyclic subgroup {1, x, X%, x*} of order 4 whenever x has order 4.

There is one subgroup of this type in D,, generated by a.
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There may be subgroups of order 4 which have the structure of the Klein 4-
group. These have two generating elements (x and y say) each of order 2
which commute with each other (xy = yx). By inspection we see that a’
commutes with both b (giving rise to a subgroup {1, 2% b, a’b}) and with ab
(giving rise to a subgroup {1, ab, a, a’b}). Since these are the only pairs of
elements of order 2 that commute we know that there are no more subgroups
of this type.

(W8}

These are the only possible subgroups since Lagrange's theorem tells us that no
subgroups of order 3 (for example) can possibly exist.

Definition 9.2.4:

Suppose that G is a group and that H is a subgroup of G. If H has k right (or left)
cosets in G we say that H is a subgroup of index k.

For example if G has order 12 and H has order 3 then H is a subgroup of index 4.

93 Important Corollaries of Lagrange's Theorem

Corollary 9.3.1

A group of prime order has no proper subgroups.

Proof

If G has order p for some prime p then any subgroup must have order dividing p. But
the only divisors of p are 1 (where the subgroup is the trivial group) or p itself (where

the subgroup is G itself). Thus both possibilities can only give rise to improper
subgroups.

®

Corollary 9.3.2

If G is a finite group then the order of any element divides the order of the group.

Proof

If x is an element of order n then x will generate the subgroup
<x>={l,x,x%...,x""}

which has order n. By corollary 13.labove the order of this subgroup (which is n) must
divide the order of G.
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Corollary 9.3.3
Any group of prime order must be cyclic.

Proof
Suppose that x is a non-identity element of G and that G has order p. Then the order
of x is not equal to 1 (as it is non-identity) and so it must be p (as these are the only

divisors of p). But then <x> contains p elements and so it must be the whole of G.
Hence G is generated by the single element x and so is cyclic.

The theorems and corollaries of this section give us help when we want to construct
all possible right (or left cosets) of a subgroup H. We illustrate by finding all right
cosets of the subgroup H = {1, 2°, b, a'b} in the group

Ds={1,a, @, @, a%, a’, b, ab, a’b, a’b, a‘b, a’b} where a° = b? = 1 ba =a’b.
1. We know that H is itself a coset and so one coset is
Hl = {1, 2, b, a’®b}

2. We know that every element is in its own coset and also that cosets are either
identical or completely disjoint. Hence we have

Ha’ = Hb = Ha’b = {1, a’, b, a’b}.

3. We now choose an element of G that does not appear in any coset we have
already written and find its right coset. For example, choosing a gives

Ha= {a, a‘, ba, a’ba} = {a, a*, a’b, a’b}
But, as above this tells us that Ha = Ha* = Ha’b = Ha’b = {a, a*, a’b, a’b}.

4. We know that every coset has four elements and that different cosets have no
elements in common. Hence the four elements we have yet to write down must
form the third coset. These are a2, a’, ab, a*b and so we have

Ha®=Ha’=Hab = Ha‘b = {a2, a’ ab, a'b}.

We have therefore found the cosets of all twelve elements but have only had to
calculate one of these directly; the others all follow immediately from the theorems.
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Exercises 9.3

1.

b

(V'S

N

Rewrite theorems 9.2.1 and 9.2.2 and their proofs so that all references to right
cosets are replaced by left cosets.

Suppose G = Q, and let H be the centre of G. Find all

1) right cosets
11) left cosets
of Hin G.

Repeat question 2 when G is

1) Ss,
11) Q47
iy D,
v) A,.

What can you say about the left and right cosets of the centre of a group?

Suppose G = {1, a, b, ab, ba, aba} where a?=b*= 1, aba = bab,
H= {1, ab, ba}. Write down all left cosets and right cosets of H in G.

Suppose H = {4k : keZ} is a subgroup of Z(+). What are the left and right
cosets of H in G?

a 0
Suppose G = {(O b): a,beR- {O}} with operation matrix multiplication

and let H be the subgroup consisting of all elements of G with determinant 1.

1 0
Describe the right coset of the element (O ) .

Suppose H is a subgroup of a group G and that a and b are elements of G.
Prove that

Ha=Hb < ab' e H
[Hint: Prove 1) if Ha = Hb then ab' € H
ii) If ab' € H then Ha < Hb and Hb < Ha ]
H is a subgroup of a group G and a and b are elements of G. Prove that
ae Hb = Ha=Hb

[Once again prove that Ha ¢ Hb and Hb < Ha].
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9. Suppose a is an element of a group G and that a has order k. Prove that x'ax
also has order k for every element x. Hence prove that if G has exactly one
element b of order 2 the gb = bg for every g in G (i.e. prove that b belongs to
the centre of G).

10. Suppose G has order 2* for some k. Show that G contains no proper subgroups
of odd order.
11. Write down four groups of order > 4 that have no subgroups of order 3.

MS208 — Group Notes 1999/2000 page 53




