6 Generating Sets and Cyclic Groups

6.1 Generating Sets

Examples 5.3.3, 5.3.4 and 5.3.5 concerned themselves with finding the order of a specific element of $\mathbb{Z}_6(\oplus)$. These examples can also be put to another purpose. We notice in 5.3.5 that every element of $\mathbb{Z}_6(\oplus)$ can be calculated by repeatedly combining the element [5] with itself.

We say that [5] generates the group $\mathbb{Z}_6(\oplus)$ and can write this by saying $\mathbb{Z}_6(\oplus) = < [5] >$.

Notice that neither [2] nor [3] generate the whole of $\mathbb{Z}_6(\oplus)$.

What would happen if we considered the remaining elements of $\mathbb{Z}_6(\oplus)$, ie [0], [1], [4]?

We should observe that [0] which is the identity element for $\mathbf{Z}_6(\oplus)$ will only generate itself, [1] will generate all the elements of $\mathbf{Z}_6(\oplus)$ and [4] will generate [2], [0] and itself.

So we also have $\mathbb{Z}_6(\oplus) = <[1]>$

Example 6.1.1

In
$$\{1, -1, i, -i\}$$
(.) where $i^2 = -1$
$$i = i$$
$$i \times i = -1$$
$$i \times i \times i = -i$$
$$i \times i \times i \times i = 1$$

i has order 4 and also generates the group

$$\begin{array}{rcl}
-i & = & -i \\
-i \times -i & = & -1 \\
-i \times -i \times -i & = & i \\
-i \times -i \times -i \times -i & = & 1
\end{array}$$

-i has order 4 and also generates the group

$$\begin{array}{rcl}
-1 & = & -1 \\
-1 \times -1 & = & 1
\end{array}$$

-1 has order 2 and does not generate the group

1 has order 1 and can only generate itself

So
$$\{1, -1, i, -i\}(.) = \langle i \rangle = \langle -i \rangle$$

In the above example and the discussion examples relating to $\mathbb{Z}_6(\oplus)$, we notice that each of these groups could be generated by a single element.

We notice also that the order of the generating element is the same as the order of the group. However the Klein 4 group, $K_4 = \{1, a, b, ab\}$ where $a^2 = b^2 = 1$ and ab = ba, clearly cannot be generated from a single element. It can however be generated from two elements.

$$K_4 = \langle a, b \rangle$$
 since $a^2 = 1$ and $a.b = ab$, and a and b are generators

Also

$$K_4 = \langle a, ab \rangle$$
 since $a^2 = 1$ and $a.ab = a^2 b = 1$ $b = b$, and a and ab are generators

and

$$K_4 = \langle ab, b \rangle$$
 since $b^2 = 1$ and $ab.b = ab^2 = a.1 = a$, and ab and b are generators

So
$$K_4 = \langle a, b \rangle = \langle a, ab \rangle = \langle ab, b \rangle$$

All of this can be formalised with the following definition

6.1.2 Definition

A set of elements is said to generate a group if every element of the group can be expressed as a product of powers of these elements.

If G is generated by
$$\{g_1, g_2, \dots, g_n\}$$
 then we write $G = \langle g_1, g_2, \dots, g_n \rangle$

Note

- A generating set can never contain the identity element. This is because the identity can only generate itself. ie $1 = 1^2 = 1^3 = \dots$
- In this course we will usually only concern ourselves with groups that have generating sets containing either one or two elements.

Exerccise 6.1

- 1. Find all the generating sets containing one element which generate each of the following groups.
 - a) $\mathbf{Z}_{7}(\oplus)$

- b) $\mathbf{Z}_{8}(\oplus)$
- c) $\{Z_5 [0]\} (\odot)$
- d) $\{Z_7 [0]\} (\odot)$
- 2. Find all the generating sets of each of the following groups
 - a) $\{1, -1, i, j, k, -i, -j, -k\}$ where $i^2 = i^2 = k^2 = -1$ ii = k = -i

where
$$i^2 = j^2 = k^2 = -1$$
, $ij = k = -ji$, $jk = i = -kj$, $ki = j = -ik$

- b) $\mathbf{Z}_2 \times \mathbf{Z}_3$ (*) where * is defined by (a, b) * (c, d) = $(a \oplus_2 c, b \oplus_3 d)$ where \oplus_2 is addition mod 2 and \oplus_3 is addition mod 3.
- b) { 1, a, a^2 , b, ab, ba } where $a^3 = b^2 = 1$ and $a^2b = ba$
- 3. Find a generating set for S_3 .

6.2 Cyclic Groups

Groups which can be generated by a single element are called cyclic groups.

6.2.1 Definition

A group is called cyclic if every element can be written in the form a^k for some group element a and some positive integer k. The cyclic group of order n is written C_n

The element a is said to generate the group. We write $C_n = \langle a \rangle$ where $a^n = 1$

It is clear that there is a cyclic group of every possible order.

$$\mathbb{C}_{a} = \langle a \rangle = \{ 1, a, a^{2}, a^{3}, a^{4}, \dots, a^{n-1} \}$$
 where $a^{n} = 1$

We also observe that the same cyclic group may be generated by a number of different elements.

 \mathbf{Z}_{6} (\oplus) was generated by [1] and [5]

Example 6.2.2

Find all the generating sets of $C_8 = \{1, a, a^2, a^3, a^4, a^5, a^6, a^7\}$ $a^8 = 1$ Clearly $C_8 = \langle a \rangle$, however we must also consider what each of the other elements generates.

a^2 :	a^2	$(a^2)^2 = a^4$	$(a^2)^3 = a^6$	$(a^2)^4 = a^8 = 1$

a^3 :	a^3	$(a^3)^2 = a^6$	$(a^3)^3 = a^9 = a$	$(a^3)^4 = a^{12} = a^4$
-	$(a^3)^5 = a^{15} = a^7$	$(a^3)^6 = a^{18} = a^2$	$(a^3)^7 = a^{21} = a^5$	$(a^3)^8 = a^{24} = 1$

 a^3 generates the whole of \mathbb{C}_8

$$a^4: a^4 = a^4 = a^8 = 1$$

<i>a</i> ⁵ :	a^5	$(a^5)^2 = a^{10} = a^2$	$(a^5)^3 = a^{15} = a^7$	$(a^5)^4 = a^{20} = a^4$
***************************************	$(a^5)^5 = a^{25} = a$	$(a^5)^6 = a^{30} = a^6$	$(a^5)^7 = a^{35} = a^3$	$(a^5)^8 = a^{40} = 1$

a⁵ generates the whole of C₈

$$a^6$$
: a^6 $(a^6)^2 = a^{12} = a^4$ $(a^6)^3 = a^{18} = a^2$ $(a^6)^4 = a^{24} = 1$

a^7 : a^7	$(a^7)^2 = a^{14} = a^6$	$(a^7)^3 = a^{21} = a^5$	$(a^7)^4 = a^{28} = a^4$
$(a^7)^5 = a^{35} = a^3$	$(a^7)^6 = a^{42} = a^2$	$(a^7)^7 = a^{49} = a$	$(a^7)^8 = a^{56} = 1$

 a^7 generates the whole of C_8

Thus $C_8 = \langle a \rangle = \langle a^3 \rangle = \langle a^5 \rangle = \langle a^7 \rangle$, hence C_8 has 4 possible generating sets.

We can also make some interesting observations about the other elements

$$= = \{1, a^2, a^4, a^6\}$$
 and $= \{1, a^4\}$

Note both $\{1, a^2, a^4, a^6\}$ and $\{1, a^4\}$ are also groups. the first one has the form \mathbb{C}_4 generated by either a^2 or a^6 and the second one has the form C_2 generated by a^4 .

Exercise 6.2

Find all the generating elements of the following cyclic groups 1.

- a) $\mathbf{Z}_{5}(\oplus)$ b) $\mathbf{Z}_{4}(\oplus)$ c) $\{\mathbf{Z}_{11} [0]\}(\Theta)$ d) $\{\mathbf{Z}_{7} [0]\}(\Theta)$
- Can you make any observations between the number of generators for a cyclic 2. group and the order of that group?
- Show that Exercise 6.1 No 2b) is cyclic Show that
- **4.** $\lambda Z_2 \times Z_2$ (*) where * is defined in a similar fashion to Exercise 6.1 No 2b) is not cyclic
- G(.) = $\{1, x, y, y^2, y^4, xy, xy^2, xy^4\}$ where $x^2 = y^5 = 1$ and xy = yx. Prove that G is 5. cyclic.