13 Homomorphisms and Quotient Groups

Homomorphisms of groups are very closely connected to the idea of quotient groups
as we shall see shortly. To establish the connection we need a couple of definitions:

13.1.1 Definition
Suppose 6: G — G’ is a homomorphism. We define

1) the kernel of © to be the set

Ker(0) = {geG: g6 =15}
(i.e. the set of all elements that get mapped to the identity element)

11) the image of O is the set

Im(8) = {xeG’: x = gb for some geG}

(i.e. the set of all elements of G’ that are the image of something in G).
Theorem 13.1.2
Suppose 6 is a homomorphism from G to G’. Then Ker(8) is a normal subgroup of G.
Proof:

We begin by showing that Ker(8) is a subgroup. Suppose g,, g, belong to the kernel.
Then

g0 =1, g0=1¢

But 6 is a homomorphism and so by Theorem 11.3.1 (which we know can be applied
to homomorphisms)

(80 =(g0)'=(ls)' = 1o
But then
280 =(g.0)(g,'0) = lo1s = 1¢
Hence g,g," belongs to the kernel and so by Theorem 7.3.1 Ker(8) is a subgroup.
We aim to show that ker(B)is a normal subgroup by showing that
xeker(0) = g'xg € ker(8) for every g in G.
If xeker(6) and geG then
(g'x2)0 = (2"0)(x6)(g0) = (2'0) 1. (26) = (26)"(g6) = Lo

Hence g'xg € ker(8) so we have a normal subgroup.
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Corollary 13.1.2

If © is an isomorphism then ker(8) = {1;}.

Proof

0 1s a one-one and onto function and so exactly one element is mapped to the identity
of G’. But we know (Theorem 11.3.1) that the identity element of G is mapped to 1

and so this is the only element in the kernel.

.
Theorem 13.1.3

Im(0) is a subgroup of G’.
Proof

Suppose x and y belong to Im(6) with x = g,6, y = g,0; we aim to show that xy" is also
in the image.

But xy'= (2,0)(g:0)" = (2:0)(g.'0) = (g.2.")0 and so xy"' € Im(8) as required.
[ ]
13.2 The Fundamental Theorem of Homomorphisms

We complete our study of homomorphisms with one of the most important theorems
of group theory and one which connects the idea of homomorphism with the idea of
quotient groups. We know that ker(6) is a normal subgroup and so we can form
quotient groups. The structure of these quotient groups is described as follows:

Theorem 13.2.1

Suppose 6 : G — G’ is a homomorphism with kernel K. Then
G/K = Im(6)

Proof

To show that two structures are isomorphic we need to find an isomorphism. We
define

@:G/K—->Im@®) by (aK)p=ab

and because we are mapping cosets by choosing coset representatives we have to
convince ourselves that the mapping is well-defined (i.e is independent of coset

> representative). We do this by supposing be aK so that b = ak, for some k, in the
kemnel (i.e. b is another possible coset representative). But then
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a'b=k, andso 1=k =(a'b)0 = (a'0)(b8) = (aB)"'(b6)

and so (ab) = (b6). Hence whatever coset representative we choose we still end up
with the same image under the operation ¢. In other words ¢ is well-defined.

We now aim to show that ¢ is one-one:
(aK)p = bKo = ab = b0.

But then
1= (aB)"(b0) = (a'b)b

and so a'b is in the kernel. But a'b € K = be aK and so bK = aK. Hence our cosets
were the same thing all along and ¢ is one-one.

Clearly o is onto by definition and so we only have to check the homomorphism
property:

[(@K)(K)]e = (abK)e = (ab)6 = (a8)(b6) = [(aK)][(bK)¢]

This is precisely what we need and so ¢ is an isomorphism and the structures G/K and
Im®6 are identical.
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