12 Homomorphisms

We have seen that two groups G and G' are identical in structure if there is a one-one
and onto function 8 : G—G' such that

(xy)0 = xBy6 #

In this section we consider what happens if we relax the condition that 8 is one-one
and onto and concentrate only on the property (#). We call a mapping satisfying this
condition a homomorphism and note that a homomorphism is an isomorphism if and
only if O is one-one and onto. Homomorphisms are important because much of the
structure of G is retained (they are called structure preserving maps and the word
homomorphism comes from the Greek words meaning same or similar shape). They
are also closely connected with quotient groups of the sort we saw in the previous
section.

Example 12.1.1

Suppose we take the groups Z with operation addition and Z, with operation addition
modulo n. We define the map 6:Z — Z, by mapping the integer m to the natural
number r (0<r<n) where [1] is the name of the congruence of m modulo n. Clearly this
map is not an isomorphism since 0 is not one-one. It is however a homomorphism

since we have seen in the section earlier on congruence classes that
(m,+m,)0 = [m, + m,] = [m,] © [m,] = m,0 ® m,0
Example 12.1.2

Suppose G = {1, x, X%, X%, X%, X’, x°, X’} where x* = |

G ={1,y,y%, v’} wherey*=1

Then the mapping
1660 = 1g, x0 =y, X0 =y, x0 =y*
X0 =14, X0 =y, X0 =y, X0 =y’

is a homomorphism. We will not check every pair of elements (as we will see shortly
that this is not necessary) but for example we have

(X*x)8=x0=x0 = y =yy*=(x*)0 (x)0

and so property(*) (which we will call the homomorphism property) is satisfied for
this pair of elements.

Exercise 12.1

1. 0 defined above is an onto homomorphism from G to G'. Try to find another
onto homomorphism.
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12.2  How to find a homomorphism between two groups

Given two groups G and G' we will always be able to find at least one homomorphism
from G to G’ since the mapping 6 that sends every element of G to the identity
element of G' will always satisfy the homomorphism property since

(xy)0 = 1o = 151 = (x6)(y0)

However, this mapping, which we call the trivial homomorphism, is not often of
much interest; what we want to find are non-trivial homomorphisms. For example,
suppose

G={l,a,2a’} wherea’=1,G' = {1, b} where b*= 1
We check the possibilities:

1. if ab = b we have 2’0 = (aB)(a0) = b* = 1. But then

a’0 =(ab)(a®0)=b.1 =b
a'0 = (a9)(a0)=1.1 =1

But a* = a and a0 = b so this mapping leads to inconsistencies.

2. ifaf =1thena®® = (aB)(a0)=1.1=1, 16 =20 =(aBy =1.1.1=1
So the only consistent possibility is the trivial homomorphism.
Clearly this is not a process we want to go through when our groups are any larger
than this so we need a little theory. We begin by reviewing our ideas for isomorphism:

* anisomorphism is completely determined by its action on a generating set.

This result was really just a consequence of the homomorphism property - it didn't
rely on the fact that 6 was one-one and onto. Hence it also applies to
homomorpmisms.

Hence in finding homomorphisms we begin by deciding what happens to a
generating set and use that to decide what happens to all other elements.

* inan isomorphism the identity gets mapped to the identity and inverses get mapped
to inverses. Again this was just a consequence of the homomorphism property and
so also applies here.

Hence if 8 : G—>G' is a homomorphism then 1,0 = 1,
(a')0 = (ab)"!

* inan isomorphism the order of a is equal to the order of a0. The proof of this result

did use the fact that 8 was one-one so we can't apply it directly to general
homomorphisms. However a similar result is true:

Theorem 12.2.1
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Suppose 8: G—>G' is a homomorphism. Then the order of a8 divides the order of a for
every a in G.

Proof
Suppose a has order n (so that a° = 1) and that a0 has order m. Hence
le= (16)6 = (a6 = (aby

Hence by theorem *.* it follows that n must be a multiple of m.

Hence when we construct a homomorphism we choose elements from a
generating set for G, calculate their orders, and map them to elements of G'
that have orders that divide them.

* the defining equations of the group G must map onto equations of G'. Again this is
a consequence of the homomorphism property and applies even if  is not an
1somorphism.

Exercise 12.2

1. Explain why the following mapping from Z3(®) to Z»(®) is not a
homomorphism:
[01=[0L [1I->[1], [21->[0]

2. Suppose G = Z¢(®) and that G' is the cyclic group with three elements.
Construct all possible homomorphisms from G to G'

Suppose G = {Zs ~ [0]}(®) and G' is the Klien 4-group. Construct all possible
homomorphisms from G to G'

(8]

4. Prove that G 1s abelian if and only if the mapping 6 : G — G defined by
a®=a'isa homomorphism.

5. If 6:G — G'is a homomorphism show that the set GO = {x0 : x ¢ G}isa
subgroup of G'.

6. Suppose that G is the Klein 4-group and that G' is the group {1, -1, i, —i}
where # =-1. Show by construction that iti is not possible to find an
isomorphism from G to G'. Is it possible to find a non-trivial homomorphism?

7. Prove that the mapping 6 : Z(®) to Z,(®) defined by x0 = [x] is a
homomorphism for every m > 2. What is the kernel of 62

8. If G =Z(®) and G' is the group {1, -1, i, —i} where i* = —1, show that the
mapping 6 : G — G’ given by n8 =" is a homomorphism. What is the kernel
of 67

9. Show that G = {1, a, b, @, ab, ba } where a=p= 1, a*b = ba and
G'={1,c,d, cd, dc, cdc} where c=d= 1, ede = dcd are isomorphic.
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