MA208 Solutions Week 8

Exercise 12.1

$1_{G}\theta = 1_{G'},$	$\mathbf{x}\mathbf{\Theta}=\mathbf{y}^{3},$	$x^2\theta = y^2$,	$x^3\theta = y$
$x^4 \theta = 1_{G'},$	$x^5\theta = y^3$,	$x^{6}\theta = y^{2},$	$x^7 \theta = y$

Exercise 12.2

or

1 Let θ be the mapping from $Z_3(\oplus)$ to $Z_2(\oplus)$. For θ to be a homomorphism $(ab)\theta = a\theta.b\theta$ Then $([1] \oplus [2])\theta = [0]\theta = [0]$ But $[1]\theta \oplus [2]\theta = [1] \oplus [0] = [1]$ since these give different results θ is NOT a homorphism

2. $G = Z_6(\bigoplus) = \{[0], [1], [2], [3], [4], [5]\}$ and $G' = \{1, \varphi, \varphi^2\}$ where φ is a rotation of 120° *orders* 1 6 3 2 3 6 1 3 3 there are 2 possible non-trivial homomorphisms:

e die 2 possible non t	in the normonorphisms.	
$[0], [3] \rightarrow 1,$	$[1], [4] \rightarrow \varphi,$	$[2], [5] \rightarrow \varphi^2$
$[0], [3] \rightarrow 1,$	$[1], [4] \rightarrow \varphi^2,$	$[2], [5] \rightarrow \varphi$

3. $G = \{Z_5 - [0]\}(\otimes) = \{[1], [2], [3], [4]\}$ orders 1 4 4 2 $G' = \{1, a, b, ab\}$ (see page 5)

there are 3 possible non-trivial homomorphisms:

$[1], [4] \rightarrow 1,$	$[2], [3] \rightarrow a$
$[1], [4] \rightarrow 1,$	$[2], [3] \rightarrow b$
$[1], [4] \rightarrow 1,$	$[2], [3] \rightarrow ab$

4 If G is abelian then

 $(ab)\theta = (ab)^{-1} = b^{-1}a^{-1} = a^{-1}b^{-1} = a\theta b\theta \Rightarrow \theta \text{ is a homomorphism}$ Conversely, if θ is a homomorphism then $(ab)\theta = a\theta b\theta \Rightarrow (ab)^{-1} = a^{-1}b^{-1} \Rightarrow a (ab)^{-1} = a a^{-1}b^{-1} \Rightarrow a(ab)^{-1} = b^{-1} \Rightarrow ba(ab)^{-1} = bb^{-1}$ $\Rightarrow ba(ab)^{-1} = 1 \Rightarrow ba (ab)^{-1} (ab) = 1.ab \Rightarrow ba = ab \Rightarrow G \text{ is abelian}$

5. If x, y, \in G θ then $a\theta = x$ and $b\theta = y$ where a, b \in G so $xy^{-1} = a\theta . (b\theta)^{-1} = a\theta . (b^{-1})\theta = (ab^{-1})\theta \Rightarrow xy^{-1} \in$ G θ and so G θ is a subgroup of G'

6. $G = \{1, a, b, ab\}$ $a^2 = 1, b^2 = 1$ ab = ba and $G' = \{1, -1, i, -i\}$ *orders 1 2 2 2* If two groups are isomorphic the corresponding elements have the same orders. There are no elements in G of order 4, ie there is nothing that will map onto i or -i. Thus G and G' are not isomorphic. The possible homomorphisms are:

The possible homomorphisms are:

1, $ab \rightarrow 1$,	a, b $\rightarrow -1$
$1, a \rightarrow 1,$	ab, b $\rightarrow -1$
$1, b \to 1,$	a, ab $\rightarrow -1$

- 7 $(x + y)\theta = [x + y] = [x] \oplus [y] = x\theta \oplus y\theta \Rightarrow \theta$ is a homomorphism ker $\theta = \{x : [x] = [0]\} = [0] \mod m$
- 8. $(n+m) \theta = i^{n+m} = i^n i^m = n\theta.m\theta$ $\ker \theta = (n:n\theta = 1) = \{n:i^n = 1\} = \{4k: k \in Z\}$
- 9. $1 \rightarrow 1$, $a \rightarrow cd$, $b \rightarrow c$, $a^2 \rightarrow dc$, $ab \rightarrow cdc$, $ba \rightarrow d$ is an isomorphism.