Exercises 10.1

- 1. {1} and the whole group are always normal subgroups and so need to be added to the subgroups below in each case.
 - a) Non-trivial normal subgroups of Q_4 are

 $\{1, a, a^2, a^3\}, \{1, b, a^2, a^2b\}, \{1, ab, a^2, a^3b\}, \{1, a^2\}$

- b) $\{1, a, b^2ab, bab^2\}$
- c) {1, a, a^2 , a^3 , a^4 , a^5 }, {1, a^3 }, {1, a^2 , a^4 }, {1, a^2 , a^4 , b, a^2 b, a^4 b}, {1, a^2 , a^4 , ab, a^3 b, a^5 b},
- d) All subgroups of an abelian group are normal. Hence normal subgroups of $\{1, a, a^2, a^3, a^4, a^5, b, ab, a^2b, a^3b, a^4b, a^5b\}$ where $a^6 = b^2 = 1$, ab=ba are

 $\{1, a, a^2, a^3, a^4, a^5\}, \{1, a^2, a^4\}, \{1, a^3\}, \{1, b\}, \{1, ab, a^2, a^3b, a^4, a^5b\}$ $\{1, a^2b, a^4, b, a^2, a^4b\}, \{1, a^3b\}.$

2. Have seen in a previous exercise (7.3) that $A \cap B$ is a subgroup so need to show that the definition of a normal subgroup applies.

Suppose $x \in A \cap B$ and $g \in G$. Then

 $gxg^{-1} \in A$ as A is a normal subgroup; $gxg^{-1} \in B$ as B is a normal subgroup.

Hence $A \cap B$ is a normal subgroup.

3. Suppose
$$A = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
, $B = \begin{pmatrix} c & 0 \\ 0 & d \end{pmatrix}$ are two elements of H. Then

AB⁻¹ = $\begin{pmatrix} a/c & 0 \\ 0 & b/d \end{pmatrix}$. This is an element of H so H is a subgroup.

Suppose $A = \begin{pmatrix} p & q \\ r & s \end{pmatrix}$ is in G and that $X = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$ is in H. Thus $AXA^{-1} = \frac{1}{ps - rq} \begin{pmatrix} p & q \\ r & s \end{pmatrix} \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} s & -q \\ -r & p \end{pmatrix}$ $= \frac{1}{ps - qr} \begin{pmatrix} pas - qbr & pq(b - a) \\ rs(a - b) & sbp - raq \end{pmatrix}$ Since this is not (in general) an element of H it follows that H is not a normal subgroup.

Exercises 10.2

1. a) Consider the subgroup $H = \{1, a, a^2, a^3\}$ of Q_4 . Suppose $\alpha = H1$, $\beta = Hb$. Then the operation table is

	α	β
α	α	β
β	β	α

If $H = \{1, b, a^2, a^2b\}$ with $\alpha = H1$, $\beta = Ha$ then the induced operation is

	α	β
α	α	β
β	β	α

If $H = \{1, ab, a^2, a^3b\}$ with $\alpha = H1$, $\beta = Ha$ then the induced operation is

	α	β	
α	α	β	
β	β	α	

If H = {1, a^2 } with α = H1, β = Ha, γ = Hb, δ = Hab the induced operation table is

	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	δ	α	β
δ	δ	γ	β	α

b) If $G = A_4$ and $H = \{1, a, b^2ab, bab^2\}$ then there are three cosets $\alpha = H1$, $\beta = Hb$, $\gamma = Hb^2$. The operation table is

	α	β	γ
α	α	β	γ
β	β	γ	α
γ	γ	α	β

c) If $G = D_6$ and $H = \{1, a, a^2, a^3, a^4, a^5\}$ then there are two cosets $\alpha = H1$ and $\beta = Hb$. The operation table is

	α	β
α	α	β
β	β	α

	α	β	γ	δ	3	φ
α	α	β	γ	δ	3	φ
β γ	α β γ	γ	α	3	φ	δ
γ	γ	α	β	φ	δ	3
δ	δ	φ	3	α	γ	β
3	δ ε φ	δ	¢	β	α	γ
¢	φ	3	δ	γ	β	α

If H = {1, a³} there are 6 cosets α = H1, β =Ha, γ = Ha², δ = Hb, ϵ = Hab, ϕ = Ha²b. The operation table is

If H = {1, a^2 , a^4 } there are 4 cosets α = H1, β = Ha, γ = Hb, δ = Hab and the operation table is

	α	β	γ	δ
α	α	β	γ	δ
β	β	α	δ	γ
γ	γ	δ	α	β
δ	δ	γ	β	α

If H = {1, a^2 , a^4 , b, a^2b , a^4b } there are 2 cosets α = H1, β = Ha and the operation table is

	α	β
α	α	β
β	β	α

If H = {1, a^2b , a^4 , b, a^2 , a^4b } there are 2 cosets α = H1, β = Ha and the operation table is

	α	β
α	α	β
β	β	α

d) If H={1, a,
$$a^2$$
, a^3 , a^4 , a^5 } is a subgroup of Z₆ x Z₂ there are two cosets $\alpha = H1$ and $\beta = Hb$. The operation table is

	α	β
α	α	β
β	β	α

If H = {1, a^2 , a^4 } there are 4 cosets α = H1, β = Ha, γ = Hb, δ = Hab and the operation table is

	α	β	γ	δ
α	α	β	γ	δ
β	α β	α	δ	γ
γ	γ	δ	α	β
δ	δ	γ	β	α

If H = {1, a³} there are 6 cosets α = H1, β =Ha, γ = Ha², δ = Hb, ϵ = Hab, ϕ = Ha²b. The operation table is

_		α	β	γ	δ	3	φ	_
_	α	α	β	γ	δ	3	φ	-
	β	β	γ	α	3	φ	δ	
	γ	γ	α	β	φ	δ	3	
	δ	δ	3	φ	α	β	γ	
	3	3	φ	δ	β	γ	α	
	ø	φ	δ	3	γ	α	β	

If H = {1, b} there are 6 cosets α = H1, β =Ha, γ = Ha², δ = Ha³, ϵ = Ha⁴, ϕ = Ha⁵. The operation table is

	α			δ	3	φ
α	α	β	γ	δ	3	¢
β	β	γ	δ	3	φ	α
γ	γ	δ ε	3	φ	α	β
δ	δ	3	φ	α	β	γ
3	3	3 φ α	α	β	γ	δ
ø	φ	α	β	γ	δ	3

If H = {1, ab, a^2 , a^3b , a^4 , a^5b } there are 2 cosets α = H1, β = Ha and the operation table is

	α	β
α	α	β
β	β	α

If H = {1, a^2b , a^4 , b, a^2 , a^4b } there are 2 cosets α = H1, β = Ha and the operation table is

	α	β	
α	α	β	
β	β	α	

If H = {1, a³b} there are 6 cosets α = H1, β =Ha, γ = Ha², δ = Ha³, ϵ = Ha⁴, ϕ = Ha⁵. The operation table is

	α	β	γ	δ	3	ø
α	α	β	γ	δ	3	¢
β	α β γ	γ	δ	3	φ	α
γ	γ	δ	3	φ	α	β
δ	δ ε φ	3	φ	α	β	γ
3	3	φ	α	β	γ	δ
φ	φ	α	β	γ	δ	3

- 2. a) True. If G is an abelian group and H is a normal subgroup then aHbH = abH = baH = bHaH for all a,b in G.
 - b) False. For example $\{1, a, a^2, a^3\}$ in Q_4 has induced operation table that is cyclic of order 2 and so is abelian.
 - c) True. If G has order n and H is a normal subgroup of order m then G/H has order n/m.
 - d) False. For example if G is the integers under addition and H is the set of even integers then G/H has order 2.
 - d) False. For example a has order 6 in the group $\{1, a, a^2, a^3, a^4, a^5\}$ where $a^6 = 1$. But if $H = \{1, a^3\}$ then a has order 3 in G/H. (Note the order of Ha in G/H always divides the order of a in G but is not necessarily equal to it).
- 2. The problem is with the choice of elements of G/H. The elements of the quotient group G/H are cosets and so if we want to select two elements we should say "Suppose Ha and Hb are elements of G/H. We aim to show that HaHb = HbHa".