MA208 - Solutions Week 4 Semester B 2005

Exercises 7.1

1.

\oplus	0	6
0	0	6
6	6	0

\oplus	0	4	8
0	0	4	8
4	4	8	0
8	8	0	4

\oplus	0	3	6	9
0	0	3	6	9
3	3	6	9	0
6	6	9	0	3
9	9	0	3	6

\oplus	0	2	4	6	8	10
0	0	2	4	6	8	10
2	2	4	6	8	10	0
4	4	6	8	10	0	2
6	6	8	10	0	2	4
8	8	10	0	2	4	6
10	10	0	2	4	6	8

•	1	12
1	1	12
12	12	1

•	1	3	9
1	1	3	9
3	3	9	1
9	9	1	3

•	1	5	8	12
1	1	5	8	12
5	5	12	1	8
8	8	1	12	5
12	12	8	5	1

•	1	3	4	9	10	12
1	1	3	4	9	10	12
3	3	9	12	1	4	10
4	4	12	3	10	1	9
9	9	1	10	3	12	4
10	10	4	1	12	9	3
12	12	10	9	4	3	1

- 2. a) Subgroups are {0}, {0,4}, {0, 2, 4, 6} and whole set.
 - b) Subgroups are {1}, {1, 10}, {1, 3, 4, 5, 9} and whole set.
 - c) Only subgroups are {0} and the whole set.
 - d) Subgroups are {1}, {1, 18}, {1,7,11}, {1, 7, 8, 11, 12, 18}, {1, 4, 5, 6, 7, 9, 11, 16, 17} and the whole set.
- 3. The number of elements in a subgroup divides the number of elements in a group.
- 4. If H is a subgroup of G and a, $b \in H$ then ab = ba since both a and b are elements of G and G is abelian.

Exercises 7.2

$$2. \qquad \text{If } e = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \, p = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \, q = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}, \, r = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix},$$

$$s = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \ t = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$$
 then the subgroups are

$$\{e\}, \{e, p, q\}, \{e, r\}, \{e, s\}, \{e, t\} \text{ and } \{e, p, q, r, s, t\}.$$

3. If
$$e = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}$$
, $p = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{pmatrix}$, $q = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix}$, $r = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{pmatrix}$, $s = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}$, $t = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{pmatrix}$ then the subgroups are

 $\{e\}$, $\{e, p, q, r\}$, $\{e, q\}$, $\{e, s\}$, $\{e, t\}$, $\{e, u\}$, $\{e, v\}$, $\{e, q, s, t\}$, $\{e, q, u, v\}$ and $\{e, p, q, r, s, t, u, v\}$.

Exercises 7.3

The set of odd integers does not form a subgroup with respect to addition as it doesn't contain the identity element 0.

The set of even integers is a subgroup since if a = 2k and b = 2l are even integers then a - b = 2k - 2l = 2(k-l) is an even integer. Hence $ab^{-1} \in H$ and H is a subgroup.

- 1. The set H does not form a subgroup as it is not closed. If z_1 and z_2 are elements of H then $|z_1z_2| = |z_1||z_2| = 4$. Hence $z_1z_2 \notin H$.
- 2. a) If $a, b \in H$ then $a = 3k_1$, $b = 3k_2$ for some k_1 , k_2 . But then $ab^{-1} = a b = 3(k-1)$ so ab^{-1} is an element of H so H is a subgroup.
 - b) If $a, b \in H$ then $a = 2^m$, $b = 2^n$ for some m, n. But then $ab^{-1} = 2^m/2^n = 2^{m-n} \text{ so } ab^{-1} \text{ is an element of } H \text{ so } H \text{ is a subgroup.}$
 - c) If $a, b \in H$ then $gag^{-1} = a$, $gbg^{-1} = b$. But then $(gbg^{-1})^{-1} = b^{-1}$ and so $gb^{-1}g^{-1} = b^{-1}$

Hence $gab^{-1}g^{-1} = gag^{-1}gb^{-1}g^{-1} = ab^{-1}$ so ab^{-1} is an element of H. So H is a subgroup.

d) If $a, b \in H$ then $a^n = 1$, $b^n = 1$. But then

$$(ab^{-1})^n = a^n b^{-n}$$
 (as G is abelian)
= $1_G 1_G = 1_G$

So ab-1 is an element of H and so H is a subgroup.

e) If $a, b \in H$ then ka = ak for all k in K, bk = kb for all k in K. But then

$$b^{-1}bkb^{-1} = b^{-1}kbb^{-1}$$
 and so $kb^{-1} = b^{-1}k$.

Hence $k(ab^{-1}) = (ka)b^{-1} = (ak)b^{-1} = a(kb^{-1}) = a(b^{-1}k) = (ab^{-1})k$ for all k in K. Hence ab^{-1} is in H and so H is a subgroup.

- 3. Suppose a and b belong to $H \cap K$. Then $a \in H$, $a \in K$, $b \in H$, $b \in K$. But H is a subgroup so $ab^{-1} \in H$. Similarly $ab^{-1} \in K$. Hence $ab^{-1} \in H \cap K$ and so $H \cap K$ is a subgroup.
- 5. $H \cup K$ is not always a subgroup. For example take $G = \{1, a, a^2, a^3, a^4, a^5\}$ where $a^6 = 1$, $H = \{1, a^3\}$, $K = \{1, a^2, a^4\}$.
- 6. a) $\{1, a^2\}$
 - b) {1}
 - c) {1}

Suppose a, b belong to the centre of G. Then ga = ag, gb = bg for all g in G. But then

$$b^{-1}gbb^{-1} = b^{-1}bgb^{-1}$$
 and so $b^{-1}g = gb^{-1}$

for every g in G. Hence

$$g(ab^{-1}) = (ga)b^{-1} = (ag)b^{-1} = a(gb^{-1}) = a(b^{-1}g) = (ab^{-1})g$$

and so ab⁻¹ is in the centre of G as it commutes with every element.

If we have an operation table for our group then an element x belongs to the centre provided the row and column labelled x contain the same elements in the same order.