MA208 Solutions Week 2 Sem B 2000

Groups 4.2 page 19 1. a) *t* b) *s* c) *e* d) q e) *t* f) *e* g) *p* 2. p(st) = pp = q and (ps)t = rt = qhence p(st) = (ps)t3. P 4. q 5. b) x c) y d) ei) e) *x* f) xa) *z* ii) • е х y Ζ. е е х v Ζ. iii) the table is closed, the identity is e, and x, y and z are x е *Z*. v х all self inverse. Composition of permutations is associative. е х y y Ζ. Ζ. Ζ. е Hence $\{e, x, y, z\}$ (.) form a group v х Groups 5.2 page 24 1. \Rightarrow If G is abelian then ab = ba for all $a, b, \in G$ So $(ab)^2 = abab = aabb = a^2b^2$ $(ab)^2 = a^2b^2$ If \leftarrow abab = aabbthen $a^{-1}ababb^{-1} = a^{-1}aabbb^{-1}$. SO " hence ba = abie G is abelian 2. $x^2 = x \implies x^{-1}x^2 = x^{-1}x \implies x = 1$ So x is idempotent \Rightarrow x is the identity. Since there is only one identity, there is only one idempotent element in G. If $(ab)^{-1} = a^{-1}b^{-1}$ for all $a, b \in G$ 3. $\Rightarrow (ab) (ab)^{-1} = (ab)a^{-1}b^{-1} \qquad \text{for all } a, b \in \mathbf{G}$ $1 = aba^{-1}b^{-1}$ for all $a, b \in G$ $b = aba^{-1}b^{-1}b$ for all $a, b \in G$ \Rightarrow $= aba^{-1}b \nu$ $b = aba^{-1}.1$ \Rightarrow for all $a, b \in G$ \Rightarrow $ba = aba^{-1}a$ for all $a, b \in G$ \Rightarrow ba =ab for all $a, b \in G$ Thus G is abelian \Rightarrow 4. If $x^2 = 1 \implies xy^{-1}yx = 1 \implies yxy^{-1}yx = y.1 \implies yxy^{-1}yxy^{-1} = y.y^{-1} \implies (yxy^{-1})^2 = 1$

If
$$(yxy^{-1})^2 = 1 \implies yxy^{-1}yxy^{-1} = 1 \implies yxxy^{-1} = 1 \implies yx^2y^{-1}y = 1.y$$

 $\implies yx^2 = y \implies y^{-1}yx^2 = y^{-1}y = 1 \implies x^2 = 1$
Hence $x^2 = 1$ if and only if $(yxy^{-1})^2 = 1$

5. Given some group G(.) where $a^3 b^3 = (ab)^3$ for all $a, b \in G$. Provei) $a^2 b^2 = (ba)^2$ $a^3 b^3 = (ab)^3 \implies aaabbb = ababab$ $\Rightarrow aabbb = babab$ (left cancellation, theorem 5.2.1) $\Rightarrow aabb = baba$ (right cancellation, theorem 5.2.1) $\Rightarrow a^2 b^2 = (ba)^2$ and hence deduce ii) $a^4 b^4 = (ab)^4$

LHS = $a^4 b^4 = (a^2)^2 (b^2)^2 = (b^2 a^2)^2$ (result i – which holds for all $a, b \in G$.) = $((ab)^2)^2$ (result i – which holds for all $a, b \in G$.) = $(ab)^4$ = RHS

Exercise 5.3A page 24

- 1. In $\{\mathbf{Z}_5 [0]\}(\mathbf{O})$ with element [2] we have the pattern [2], [4], [3], [1], [2], [4], [3], [1], ... (repeats every 4)
- In {Z₅−[0]}(⊙) with element [4] we have the pattern [4], [1], [4], [1], . . . (repeats every 2)
- 3. In {1,-1,i,-i} with element i we have i, -1, -i, 1, i, -1, -i, 1, . . . (repeats every 4)
- 4. In {1,-1,i,-i} with element -i we have -i, -1, i, 1, -i, -1, i, 1, ... (repeats every 4)
- In Z₆(⊕) with element [2] we have
 [2], [4], [0], [2], [4], . . . (repeats every 3)
- 6. In $\mathbb{Z}_{6}(\oplus)$ with element [3] we have [3], [0], [3], [0], [3], ... (repeats every 2)
- In Z₆(⊕) with element [5] we have
 [5], [4], [3], [2], [1], [0], [5], [4]... (repeats every 6)
- 8. In S₃ with composition of permutations and element $\begin{bmatrix} 2 & 3 \\ 3 & 1 \end{bmatrix}$ we have

2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 2 3 7 3 1 2 3 1

(repeats every 3- see also notes page 26)

- 9. In **Z**(+) with element 3 we have 3, 6, 9, 12, 15, 18, 21, . . . (no repetition)
- 10. In R-{0}, (.) with element 2 we have 2, 4, 8, 16, 32, . . . (no repetition)

Exercise 5.3B page 28

so the element has order 3

3. $\{\mathbf{Z}_7 - [0]\}(\mathbf{O})$

.

a) [2] has order 3

	E J	
b)	[5] has order 6 since:	
	[5]	
	[5] 🖸 [5]	= [25] =[4]
	[5] 🛛[5] 🖸 [5]	= [4] • [5] = [20] = [6]
	[5] ⊙[5] ⊙ [5] ⊙ [5]	= [6] • [5] = [30] = [2]
	[5] ⊙ [5] ⊙ [5] ⊙ [5] ⊙ [5]	$= [2] \odot [5] = [10] = [3]$
	[5] ⊙ [5] ⊙ [5] ⊙ [5] ⊙ [5] ⊙ [5]	= [3] ③ [5] = [15] = [1]

4. a)

	1	a	b	ab	ba	aba
1	1	а	b	ab	ba	aba
а	a	1	ab	b	aba	ba
b	b	ba	1	aba	а	ab
а	ab	aba	a	ba	1	b
ba	ba	b	aba	1	ab	а
aba	aba	ab	ba	а	b	1

b) 1 has order 1, a, b, aba have order 2, ab, ba have order 3
c) a, b, aba are self inverse, ab has inverse ba, ba has inverse ab

5. 1 has order 1,
$$c, c^3$$
 have order 4, all other elements have order 2

6. a) Let *a* have order n and a^{-1} have order m.

So $a^{n} = 1$, multiplying by $a^{-1} \Rightarrow a^{-1} a^{n} = a^{-1} 1 \Rightarrow a^{n-1} = a^{-1}$ multiplying again by $a^{-1} \Rightarrow a^{-1} a^{n-1} = a^{-1} a^{-1} \Rightarrow a^{n-2} = (a^{-1})^{2}$ $\dots \dots \qquad \Rightarrow 1 = (a^{-1})^{n}$ $\Rightarrow m$ the order of a^{-1} is $\le n$ Similarly $(a^{-1})^{m} = 1$ multiplying by $a \Rightarrow a (a^{-1})^{m} = a \Rightarrow (a^{-1})^{m-1} = a \Rightarrow \dots \dots \Rightarrow 1 = a^{m}$ $\Rightarrow n$ the order of a is $\le m$

So $m \le n$ and $n \le m$ and hence n = m

b). Suppose *ab* has order m and *ba* has order n. Then

 $(ab)^{m} = 1$ and so $ababab \dots ab = 1$ (m times) Hence $a^{-1}(ababab \dots ab)a = a^{-1}1 a = 1$ and so $(ba)^{m} = 1$.

Hence n the order of $ba \leq m$.

Similarly $(ba)^n = 1$ and so $bababa \dots ba = 1$ (n times) Hence $b^{-1}(bababa \dots ba)b = b^{-1} 1 \ b = 1$ and so $(ab)^n = 1$.

Hence m the order of $ab \le n$. So m \le n and n \le m and hence n = m