MA208 Solutions Week 1 Sem B2000

1)	All binary operations exc	ept b)	2) e),g) and i) are not closed.							
3)	a) $a*b=a+b+1$	b)	<i>a*b=ab/(a+b)</i>	<i>c)</i>	$a*b=a+_b+ab$					
4)	a) if $a = -2$ and it is conserved.		e see * not well defin t closed	ned on Z,Q o	or R (division b	y zero)				
			nd also closed on Z , Q or R							
	c) well defin	ed on Z , Q	and R , closed R , n	ot closed on	Z or Q					
Exe	rcise 1.6 page 6									
	c), d), e), j) and k) are $contained bare contained bare containe$	nmutative	a),	c), d), e), j) a	and k) are assoc	iative				
1)	c), d), c), j) and k) are co		· · ·							
1) 2)	c), u), c), j) und k) uic co.	a)	b)	c)	d)	e)				
	Commutative			c) N	d) Y	、 、				

4) d) *a* has inverse *a* e) there are no inverses

a) no identity

5) \emptyset is the identity with respect to union of sets. There are no inverses.

b) no identity

6) (a*b)*c = (a+b+ab)*c = (a+b+ab)+c + (a+b+ab)c = a + b + c + bc + ab + ac + abca*(b*c) = a*(b+c+bc) = a + (b+c+bc) + a(b+c+bc) = a + b + c + bc + ab + ac + abc

So (a*b)*c = a*(b*c) and hence * satisfies the assoc. law

Let e be the identity w.r.t. * $a^*e = a$ for all $a \in Z$ So a + e + ae = afor all $a \in Z$ \Rightarrow e(1 + a) = 0for all $a \in Z$ $\Rightarrow e = 0$ So 0 is the identity w.r.t. * If a has an inverse a then $a * \bar{a} = 0$ \Rightarrow $\overline{a}(1+a) = -a \Rightarrow \overline{a} = -a/(1+a)$ \Rightarrow a + a + aa = 0So every element except -1 has an inverse.

c) no identity

d) 0

e) 0

Exercise 2.2 page 8

3)

	+	—	×	÷
N	No inverses	Not associative, No identity	No inverses	Not well-defined
z	ABELIAN GROUP	Not associative, No identity	No inverses	Not well-defined
Q	ABELIAN GROUP	Not associative, No identity	No inverses	Not well-defined

	+	-	×	÷
Q – {0}	Identity not in set	Not associative, No identity	ABELIAN GROUP	Not associative, No identity
R	ABELIAN GROUP	Not associative, No identity	0 has no inverse	Not well-defined
R – {0}	Identity not in set	Not associative, No identity	ABELIAN GROUP	Not associative, No identity
m × n matrices	ABELIAN GROUP	Not associative, No identity	Not well-defined	
n × n matrices	ABELIAN GROUP	Not associative, No identity	Not all elements have inverses	
n × n non-sing. matrices	Not closed	Not associative, No identity	GROUP (not abelian)	

- 2. a) Not a group no identity or inverses
 - b) $\{5a : a \in \mathbb{Z}\}(+)$ (the set of multiples of 5 with the binary operation addition) $5a + 5b = 5(a+b) \in \mathbb{Z}$, $\forall a, b \in \mathbb{Z}$, so the set is closed w.r.t. + + of integers is associative, so addition of multiples of 5 is also associative. 5a + 0 = 0 + 5a = 5a $\forall a \in \mathbb{Z}$ so 0 is the identity 5a + (-5a) = (-5a) + 5a = 0, $\forall a \in \mathbb{Z}$ so -5a is the inverse of 5a

Hence $\{5a : a \in \mathbb{Z}\}$ (+) is a group.

- c) Not a group no inverses
- d) $\{z : z \in \mathbb{C} \text{ and } |z|=1\}$ (.) Let z_1 , and $z_2 \in \mathbb{C}$ such that $|z_1| = |z_2|=1$ Then $z_1 z_2 \in \mathbb{C}$ and $|z_1| |z_2|=1$. 1=1 so we have closure. Multiplication of complex numbers is associative. 1. z = z. $1 = z \quad \forall z \in \mathbb{C}$, hence the identity is 1 Let $z^{-1} = 1$ then $z^{-1} = 1/z$ so $|z^{-1}| = 1/1 = 1$ hence $z^{-1} \in$ the set Similarly $z z^{-1} = 1$. Hence z^{-1} is the inverse of z, $\forall z \in \mathbb{C}$ Hence $\{z : z \in \mathbb{C} \text{ and } |z|=1\}$ (.) is a group.
- e) Group
- f) Not a group not closed, no inverses
- g) Not a group not closed, no identity

Exercise 2.3 page 9

4.

	$ \frac{1}{r} \\ r^{2} \\ r^{3} $	$ \frac{1}{r} \\ r^{2} \\ r^{3} $	r r^{2} r^{3} r^{4} r^{5}	r^{2} r^{3} r^{4} r^{5}	r^3 r^4 r^5 1	r^4 r^5 1 r	r^{5} 1 r r r^{2}							
+ 0 , 0, 0, 0 0 5 . 0 , 1, 0, 1 0 0 , 0, 1, 1 0 0 , 1, 1, 0 0 0	r^{5} 0, 0,	r^{5} 0, 0,	1 0 G 0 G		r^{2} 1, 1,	r^{3} $0,$ $\overline{0,}$	r ⁴ 1 0 1 0 0 0	, 0,	1,	0 g 0 g	000	1, 0, 1,	1, 1, 1, 0, 0,	0 Q 0 Q 1 Q 0 Q

Exercise 3.2 page 12

1.	a)	•	0			, U		vith (-3 , (0,8), (•	3),			
	b)	anything of the form (a,a) together with (-31,-7), (-31,-4), (-31,8), (-17, 7), (-17,31), (-7,-4), (-7,8), (-4, 8), (0,3), (0,9), (3,9), (7,31)													
2.	a) c) e)	$\{ \dots, \\ \{ \dots, \\ \{ \dots, \\ \{ \dots, \\ \} \}$	-5, -3	3, -1, 1	, 3, 5,	, }		b) d) f)	$\{ \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	4, 7,	10, 13	, 16, .	}	ł	
3)	a)	[1] ₄	b)	[0]	3 c)		[2] ₄	d)	[2] ₇	e)	[5]	₅ f)		[3] ₅	
Exercise 3.3 page 15															
1)			I						\oplus	[0]	[1]	[2]	[3]	[4]	[5]
		⊕ 	[0]	[1]	[2]	[3]	[4]		[0]	[0]	[1]	[2]	[3]	[4]	[5]

[4]

[1]

[2]

[3]

[4]

[5]

[2]

[3]

[4]

[5]

[0]

[1]

[2]

[3]

[4]

[5]

[3]

[4]

[5]

[0]

[1]

[4]

[5]

[0]

[1]

[2]

[5]

[0]

[1]

[2]

[3]

[0]

[1]

[2]

[3]

[4]

[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[4] [0] [1] [2]	[1]
[3]	[3]	[4]	[0]	[1]	[2]
[4]	[4]	[0]	[1]	[2]	[3]

[1]

[2] [3]

[0] [0]

2)	a) f)	[1] ₂ [2] ₄	b) g)	[3] [0]	-		[2] ₅ [2] ₆	d)	[3] ₆	e)	[0]	2			
3)	a)							b)							
		\odot	[0]	[1]	[2]	[3]	[4]		⊙	[0]	[1]	[2]	[3]	[4]	[5]
		[0]	[0]	[0]	[0]	[0]	[0]	-		[0]	[+]	[-]	[0]	Γ.]	[0]
		F 1 1	501	F 1 1	[0]	[0]	E 4 3		[0]	[0]	[0]	[0]	[0]	[0]	[0]
		[1]	[0]	[1]	[2]	[3]	[4]		[1]	[0]	[1]	[2]	[3]	[4]	[5]
		[2]	[0]	[2]	[4]	[1]	[3]								
		[3]	[0]	[3]	[1]	[4]	[2]		[2]	[0]	[2]	[4]	[0]	[2]	[4]
		[5]	[0]	[5]	[1]	נדן	[2]		[3]	[0]	[3]	[0]	[3]	[0]	[3]
		[4]	[0]	[4]	[3]	[2]	[1]			501			503	F 43	
	c)								[4]	[0]	[4]	[2]	[0]	[4]	[2]
	•)								[5]	[0]	[5]	[4]	[3]	[2]	[1]
		۲	[0]	[1]	[2]										
		[0]	[0]	[0]	[0]										
		[1]	[0]	[1]	[2]										
		[2]	[0]	[2]	[1]										

4) a) Yes e.g. $[2]_6 \circ [3]_6 = [0]_6$ b) $[0]_m$ is possible only when m is not prime.

5) Prove the addition of congruence classes is associative.

Let $[x]_m$, $[y]_m$ and $[z]_m$ be congruence classes modulo m, where $m \in \mathbf{N}$ and $x, y, z \in \mathbf{Z}$ Then $([x]_m [y]_m) [z]_m = [x + y]_m [z]_m = [(x + y) + z]_m$ (i) And $[x]_m ([y]_m) [z]_m) = [x]_m [y + z]_m = [x + (y + z)]_m$ (ii)

but addition of integers is associative hence (x + y) + z = x + (y + z), thus (i) and (ii) are equal. Thus the addition of congruence classes is associative.