

Coursework Assignment 2 - Semester 2 2006/7

Module code:	MA2005N
Module title:	Graphs and Networks
Module leader:	Amir Khossousi

INSTRUCTION:

This <u>individual</u> coursework assignment has a 20% weighting. You are required to answer all questions. Up to 3 marks will be awarded for clarity of solution and presentation. Your solution need not be word-processed.

You must submit the following declaration as part of your assignment.

Surname:

Other Names:

ID No:

Course code_MA2005

Student Declaration: "I declare that the work submitted is solely my own".

Your Signature

Submit your answers (including this sheet) on A4 paper stapled together (not in folders).

To be submitted by <u>Tuesday 1st May 2007</u> at the <u>Undergraduate Registry</u>, Tower Building.

You are advised to keep a copy of your completed work before submission.

- 1. Let G be a simple connected plane graph with m edges, n vertices and f faces.
 - (i) Assuming that each vertex of G has degree of at least 3, show that

$$m \ge \frac{5}{2}n$$
 and $f \ge \frac{1}{2}n+2$.

(ii) Given that each face f_i of G has at least 5 bordering edges, show that $n \ge \frac{3}{5}m+2$, and that G must have at least 30 edges, 20 vertices and 12 faces.

(9 marks)

(6 marks)

2. By deleting and/or contracting appropriate edges, prove that the graphs G_1 and G_2 , given below, are non-planar.

3. The table below shows the distances (in km) between the towns A, B, C, D and E.

	Α	В	С	D	Ε
Α	-	10	6	12	4
B	10	-	5	14	10
С	6	5	-	11	7
D	12	14	11	-	8
Е	4	10	7	8	-

Use the *branch-and-bound* method to find a 5-cycle through the five towns with minimum total distance travelled. Summarize your results in a tree diagram.

(20 marks)