Preface

This Instructor’s Solutions Manual contains solutions for essentially all of the exercises in the
text that are intended to be done by hand. Solutions to Matlab exercises are not included.
The Student’s Solutions Manual that accompanies this text contains solutions for only selected
odd-numbered exercises, including those exercises whose answers appear in the answer key. The
solutions that appear in the students’ manual are identical to those provided in this manual,
and generally provide a more detailed solution than is available in the answer key. Although no
pattern is strictly adhered to throughout the student manual, the solutions provided there are
primarily to the computational exercises, whereas solutions that involve proof are generally not
included. None of the solutions to the supplementary end-of-chapter exercises are included in the
student manual.
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Chapter 1

Matrices and Systems of Equations

1.1 Introduction to Matrices and Systems of Linear Equations
1. Linear.
2. Nonlinear.
3. Linear.
4. Nonlinear.

5. Nonlinear.

6. Linear.

7. 21+3x2 = 7 1+3-2 = 7
dri—a9 = 2 4-1-2 = 2

8 Ob6x1—ax0+x3 = 14 6-2—(-1)+1 = 14
r1+2x+4zyg = 4 242-(-1)+4-1 = 4

9. r1+xT0 = 0 1+(—1) = 0
3x1+4xy = -1 3-14+4-(-1) = -1
—x1+ 20 = -3 —1—|—2-(—1) = -3

10. 329 =9, 3:3 = 9
41’1 = 8, 4.2 = 8

11. Unique solution.
12. No Solution

13. Infinitely many solutions.
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14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

No solution.

(a) The planes do not intersect; that is, the planes are parallel.

(b) The planes intersect in a line or the planes are coincident.

The planes intersect in the line x = (1 —t)/2,y =2,z = t.

The planes intersect in the line x =4 - 3t,y =2t — 1,z =t.

Coincident planes.

2 1 6
A= |: 4 3 8 ]
1 2 71
o133 1)
1 4 -3
Q=1|21 1
3 2 1
r1 +2x9 +Tx3 = 1
2x1 +2x9 +4x3 = 3
221 + a2 = ;o1 + 4dxy = =3
dry + 3z = 21 4+ x92 = 1
3r1 + 229 =
1 -1 1 -1 -1
A= [ 11 } » B= [ 1 1 3 ]
1 1 -1 1 1 -1 2
A_[Q —1]73_[20—11]'
1 3 -1 1 3 -1 1
A= 5 1|, B= 2 5 1 5
| 1 1 1 1 1 1 3
1 1 2 1 1 2 6
A= 3 4 -1 |, B= 3 4 -1 5
| -1 1 1 -1 1 1 2
[ 1 1 -3 1 1 -3 -1
A= 1 2 -5 |, B= 1 2 -5 =2
| -1 -3 7 -1 -3 7 3
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29.

30.

31.

32.

33.

1 11 1 1 11
A=12 3 1|,B=1]2 31 2
1 -1 3 1 -1 3 2

Elementary operations on equations: FEy — 2F7 .

21 + 3z = 6

Reduced system of equations: Ty = -5

Elementary row operations: R —2R; .

Reduced augmented matrix: { (2) _? _g }

Elementary operations on equations: Fo — Fy, F3+ 2F .

1+ 229 —23 = 1
Reduced system of equations: —22+3z3 = 1.
5%2 - 2:133 =

Elementary row operations: Ro — Ry, R3+ 2Ry .

1 2 -1 1
Reduced augmented matrix: | 0 —1 3 1
0 5 -2 6

Elementary operations on equations: FEj < Fo, E3 —2F; .

Tl —x9+2x3 = 1
Reduced system of equations: To+2x3 = 4.
31’2 — 53}3 = 4

Elementary row operations: R; <+ Rs, R3 —2R; .

1 -1 21
Reduced augmented matrix: | 0 1 1 4
0 3 -5 4

Elementary operations on equations: FEy — E1, F3 —3FE; .

r1+x0 = 9
Reduced system of equations: —2x9 = 2.
—2xy = =21

Elementary row operations: Ro — R, R3 —3R; .

1 1 9
Reduced augmented matrix: | 0 —2 -2
0 -2 =21
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34.

35.

36.

37.

38.

Elementary operations on equations: FEs + E1, F3+2FE; .
ryt+retaz—xg4 = 1
Reduced system of equations: 2y = 4.

3r9+3x3 —3x4y = 4
Elementary row operations: Ro + Ri, R34+ 2R; .

1 1 1 -1 1
Reduced augmented matrix: | 0 2 0 0 4
0 3 3 -3 4
Elementary operations on equations: FEy < Fy, E3+ Ep .
T+ 229 —x3+2x4 = 1
Reduced system of equations: Tot+x3—x4 = 3.
3rg+6x3 = 1

Elementary row operations: Ro < Rj, Rs+ R1 .

12 -1 11
Reduced augmented matrix: | 0 1 1 -1 3
03 6 01

Elementary operations on equations: Fs — Fy, E3 — 3E; .

1 +x2 = 0
Reduced system of equations: -2z = 0.
—2:132 = 0

Elementary row operations: Ro — R;, R3 —3R; .

1 10
Reduced augmented matrix: | 0 —2 0
0 -2 0

(b) In each case, the graph of the resulting equation is a line.

Now if aj; =0 we easily obtain the equivalent system

a21T1 + a22%2 by
ajpr2 = by

Thus we may suppose that a;; # 0. Then :

2171 + a2 = by =

a1z +aprs = by { E; — (ag1/a11)Eq

|
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a11x1 + apr2 = by a11b2 }
((—a21/a11)a1a + ag)re = (—az/a11)by + be -
a1121 + apre = by
(a11a22 — a12a21)r2 = —a21b1 + a11ba

Each of a;; and (aj1a22 — aj2a21) is non-zero. m

39. Let
A— { a11x1 + ajax2 = by }

a2171 + a2 = ba
and let

B— { a1121 + ajaw2 = by }
cao1x1 + cassry = cby
Suppose that £1 = s1, 9 = s9 is a solution to A . Then a1181 + a1282 = b1, and a1 s1 +
2282 = by. But this means that cas1s1 + cagzese = cby and so x1 = s1, xg = so is also a
solution to B . Now suppose that x1 = t1, x9 = t9 is asolution to B . Then a11t1+aq2to = by
and cagit1 + cagato = cby . Since ¢ # 0 | ag1x1 + agero = by . M

40. Let

a2171 + agrs = by

A:{ a11x1 + apr2 = by }

and let

{ a1171 + ajax2 = by }
(ag1 + caii)x1 + (age + carz)wa = ba + cby

Let 1 = s1 and 29 = s9 be a solution to A . Then a1151+a1252 = b1 and as151+ag252 = by so
a1181+a1282 = by and (ag1+cai1)si+(age+caia)se = ba+cby as required. Now if 1 = ¢; and
x9 = tg is a solution to B then aj1t1+a12te = by and (ag1 +cayy)t; +(age+caio)te = ba+cby,
S0 a11t1 + ajoto = b1 and a9t + ajoto = by as required. m

41. The proof is very similar to that of 45 and 46.

42. By adding the two equations we obtain: Qx% —2x1 = 4. Then 1 = 2 or 1 = —1 and
substituting these values in the second equation we find that there are three solutions:

r1=-1,20=0;21=2,22=V3, ;21 =2, 25 = —V3.
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1.2 Echelon Form and Gauss-Jordan Elimination

1. The matrix is in echelon form. The row operation Ry — 2R, transforms the matrix to

reduced echelon form [ é (1) ]

2. Echelon form. Ry — 2R; yields reduced row echelon form [ 10 -7 ]

01 3

3. Not in echelon form. (1/2)Ry, Re —4R1, (—1/5)Ry yields echelon form [ (1) 3{2 ;g }
123 ]

4. Not in echelon form. R; < R yields echelon form [ 01 1

5. Not in echelon form.

, 10 1/2 2
Ry < Ry, (1/2)Ry, (1/2)Ry yields the echelon form [ 00 1 32 ]

6. Not in echelon form.

(1/2)R; yields the echelon form L0 3/2 172 ]

00 1 2
7. Not in echelon form. Ry — 4Rs3, R; — 2R3, Ry — 3Rs yields the reduced echelon form

1 00 5
010 =2
001 1
1 —1/2 3/2
8. Not in echelon form. (1/2)R;, (—1/3)Rs3 yields the echelon form | 0 1 1
0 0 1
1 2 -1 =2
9. Not in echelon form. (1/2)Rs yields the echelon form | 0 1 —1 —3/2
00 0 1

1 -4 3 —4 —6
10. Not in echelon form —R;, (1/2)Rs yields the echelon form | 0 1 1/2 —-3/2 -3/2
0 0 0 1 2
11. T = 0, To = 0.
12. The system is inconsistent.

13. 1 = —2 4 b5x3, xo = 1 — 3z3, z3 is arbitrary.

14. T = 1—21‘3, T2 =0.
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15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.

37.

r1=0,29 =0, 23 =0.

1 =0,290 =0, 23 =0.

r1 = x3 = x4 = 0, xo is arbitrary.

The system is inconsistent.

The system is inconsistent.

r1 =3x4 —bx5 — 2, x9 = T4 + x5 — 2, 3 = —224 — T5 + 2, T4 and x5 are arbitrary.
x1=—1—(1/2)xa + (1/2)z4, x3 = 1 — x4, 22 and x4 arbitrary, x5 = 0.

x1 = (5 + 3x2)/2, xo arbitrary.

The system is inconsistent.

r1 = x3, T2 = —3 4 2x3, x3 arbitrary.

r1 = 2 — 9, T9 arbitrary.

x1 = 10 4+ x9, xo arbitrary, rz = —6.

r1 =2 — x9 + x3, T2 and x3 arbitrary.

xr1 = 2x3, xo = 1, x3 arbitrary.

r1 =3 — 2x3, xo = —2 + 3x3, T3 arbitrary.

r1 = —3x4 — 625, x0 = 1 4+ 314 + Tx5, x3 = —224 — S5, T4 and x5 arbitrary.

x1 = 3— (Twy — 1625)/2, x9 = (x4 +2x5)/2, v3 = =2+ (5xgy — 1225) /2, 24 and x5 arbitrary.
1 =2, x90 = —1.

The system is inconsistent.

x1 =1 — 2x9, xo arbitrary.

The system is inconsistent.

1+ 2x9 = -3 E+ Ey 1 +2x2 = -3
ary —2xy = 5 = (a+ 1Dz = 2
’Hence if @ = —1 there is no solution. ‘
1+ 39 = 4 Ey — 2F, r1+3xy = 4
2x1 +6x2 = a == 0 = a-—38

’ Thus, if a # 8 there is no solution. ‘
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38 201 +4x9 = a Ey — (3/2)E1 201 +4z0 = a
" 3r1+6x2 = 5 = 0 = 5—(3/2)a
I Thus, if a # 10/3 there is no solution. ‘
39 3z1+ars = 3 Es — (a/3)E; 3z1 +ars = 3
T ar1+3z2 = 5 — (a2/3—3)x2 = 5—a
‘ Thus, if a = +3 there is no solution. ‘
A0 r1+are = 6 Es — aFEq T +ary = 6
" ary+2ar9 = 4 = (2a —a*)zy = 4—6a

41. cosa =1/2 and sinf =1/2,s0 a = w/3 or « = 57/3 and = 7/6 or § = 57 /6.

42. cos’a = 3/4 and sin? 3 = 1/2. The choices for a are 7/6, 57/6, 7r/6, and 117/6. The
choices for  are w/4, 3w /4, 5w /4, and Tr /4.

43. x1 = 1 — 2x3, x2 = 2 + x3, w3 arbitrary. (a) z3 = 1/2. (b) In order for 1 > 0,22 > 0, we
must have —2 < z3 < 1/2; for a given 1 and z2,y = —6 — 7x3, so the minimum value is
y =8 at x3 = —2. (¢) The minimum value is 20.

R — (d/(b—cd)R
" [i Z] { RZ;:Rl } [é b—dcd} (lreCa”b—cdséoQ

o vt ] 4 0]

8 8
| IS
| —

S =

o8

—_ 8
| IS
| —

S =
oK
o8
—_
| — |
o O
O

—_ 8
—_ 1

|
o |
|

(1 =z 1 =z 0 1 00
46. ) |0 1|,]oo0],|o0 1o oo
_OO 0 0 0 0 0 0
[ 1 =z 2] 1 z =z 1 z = 1 z =z
mlo1az],lo1z|,]l0o01|,]000],
| 0 0 1 0 0 O 0 0 O 0 0 O
[0 1 x ] 01 =z 0 0 1 0 0 0
001,100 0}],1]00O0O(,[0 0 0/{.
(000 |00 O 000 000
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47.

48.

49.

50.

51.

1l 2 » «x 1l 2 = «x 1 2 = «x
¢c)l0 1 z2z|,{01 2z 2z|,|01 2z x|,
(001 2] [0001] 000 0]
(1 2 2 2] [1 2z 2z 2] [1 2 = =z
001 z|,]l001x|,l0001
l0o0oo01] [00o00] 000 0]
(1 2z 2 2] [0 1 2z 21 [0 1 = =z
0000|,l001=z]|,[l000 1],
lo0oo00] [0001] o000
[0 1 2z 2] [0 O 1 =z 001 x
ooo0o0f|,loo001],]0oo00 0],
(000 0] [0000 000 0
[0 0 0 1 0 0 0 O
00 O0O0O],]00 00O
| 00 0 0 0 0 0 O
1 2 2R, 1 2 Ry — Ry 1 2
2 3 = 4 6 = 3 4|
1 47 ( Ro—3R, | [1 4 Ri + (2/5)Rs

o SRR SIS

+ 2Ry 1 2
— 2 1

100z; + 10x9 + 23 = 15(w1 + 22 + 23)
100x3 + 1029 + 1 = 10021 + 1022 4+ x3 + 396
rs = x1+xo+1

x1=1,29=3,and 3 =5, so N = 135.

a—b+c = 6
at+b+c = 4
4a+2b+c¢c = 9

a=2,b=-1,¢c=3. Soy=2z%>—z+3.

Let x1, x9, z3 be the amounts initially held by players one, two and three, respectively.

Also assume that player one loses the first game, player two loses the second game, and
player three loses the third game. Then after three games, the amount of money held by
each player is given by the following table



10 CHAPTER 1. MATRICES AND SYSTEMS OF EQUATIONS

52.

93.

54.

95.

56.

Player Amount of money
1 4$1 — 4$2 — 4$3 =24
2 —2x1 + 6x9 — 223 = 24
3 —T] — X9+ Txz =24

Solving yields 21 = 39, x2 = 21, and z3 = 12.

The resulting system of equations is

r1+ax2+2x3 = 34
T1+x9 = 7
To+x3 = 22
The solution is 1 = 12, x9 = —5, x3 = 27.

If 21 is the number of adults, x5 the number of students, and x3 the number of children,
then 1 +xo + 23 =79, 621 + 322+ (1/2)x3 = 207, and for j = 1,2, 3, x; is an integer such
that 0 < x; <79. Following is a list of possiblities

Number of Adults 0 5 10 15 20 25 30
Number of Students 67 56 45 34 23 12 1
Number of Children 12 18 24 30 36 42 48

The resulting system of equations is

a+b+c+d = 5
b+2c+3d = 5
a+2b+ 4c+ 8d 17
b+4c+12d = 21.

The solution is a =3, b=1,c= —1,d =2. So p(z) =3 +z — 2% + 223.
By (7), 1 +2+3+4---+n=ain + an?. Setting n =1 and n = 2 gives

ar+a = 1
2a1 +4a2 = 3

The solution is a1 = a2 =1/2,s0 1+2+3+...+n=n(n+1)/2.

By (7), 12 4+22 + 32 +--- +n? = a1n + agn? + agn3. Setting n =1, n =2, n = 3, gives

ar+as+az = 1
2a1 + 4as 4+ 8ag =
3&1 + 9&2 + 27a3 = 14

The solution is a; = 1/6, az = 1/2 and a3 = 1/3, so 124+22+32+. . .4+n? = n(n+1)(2n+1)/6.
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11

o7.

58.

1.3

The system of equations obtained from (7) is

a1 +az +asz+aq+ as

2a1 + 4as + 8as + 16a4 + 32as5

3aq1 4+ 9as + 27as + 8lay + 242as

4a1 + 16as + 64as + 256a4 + 1024a5
5a1 + 25a9 + 125a3 + 625a4 + 3125a5

1
17
98
354
979

The solution is a1 = —1/30, az = 0, a3 = 1/3, ay = 1/2, a5 = 1/5. Therefore, 1* + 24 +
34+ 4+t =nn+1)2n+1)(3n% +3n —1)/30.

15425 4+3° 4. 4n® =n2(n+1)%(2n% +2n —1)/12.

Consistent Systems of Linear Equations

11
. 00
. The augmented matrix reduces to 0 0
| 0 0

n =3, r =2, xo is independent.
[1 0
. The augmented matrix reduces to | 0 1
1 0 0

n=2r=2.

[1 0
. The augmented matrix reduces to 1
1 0 0

n =4, r = 3, z3 is independent.
(1 2
. 00
. The augmented matrix reduces to 00
00

n=4,r =2 xy and x3 are indepen_dent.

unique solution.

5/6
2/3
0
0

o O = O

—3/2
2
0

4 0 13/2
-1 0 —3/2
0 1 1/2

1/3
1/3
0
0

O O O Ww
O O = O

By the corollary to Theorem 3, there are infinitely many solutions.

Infinitely many solutions.

.m=2andr<2sor=0,n—r=2;r=1,n—r=1,r=2 n—r =0. There could be a

.n=4andr<3sor=0n—-r=4r=1,n—r=3jr=2,n—r=2,r=3, n—r=1.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Infinitely many solutions.

. Infinitely many solutions, a unique solution or no solution.

Infinitely many solutions, a unique solution, or no solution.
A unique solution or infinitely many solutions.
Infinitely many solutions or a unique solution.
Infinitely many solutions.

Infinitely many solutions.

Infinitely many solutions or a unique solution.
Infinitely many solutions or a unique solution.
Infinitely many solutions.

Infinitely many solutions.

There are nontrivial solutions.

There are nontrivial solutions.

There is only the trivial solution.

There is only the trivial solution.

If a = —1 then when we reduce the augmented matrix we obtain a row of zeroes and hence
infinitely many nontrivial solutions.

1 0 2 —2b;+3by
(a) Reduced row echelon form of the augmented matrixis | 0 1 —1 by — b2
0 0 0 bg—b—2b
Hence, if b3 — by — 2by # 0 then the system is inconsistent. Therefore, the system of
equations is consistent if and only if bg — by — 2bs = 0.

(b) (i) The system is consistent. For example, a solution is 1 = —1, zo = 1 and x3 = 1.
(ii) The system is inconsistent by part (a). (i74) The system is consistent. For example,
a solution is x1 = 1, x9 = 0 and x3 = 1.

o O O %
o O % 8
O ¥ 8 8
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26.

27.

28.

29.

30.

31.

32.

(b) In the third row of the matrix of 25(a) for B, we need 0-x1+0-x2 = * and, in general,
this can’t be.

3a+b+c = 0
Ta+2b+c = 0
The general solution is a = ¢, b = -4c.

Thus z—4y+1 = 0 is an equation for the line.

The resulting system of equations is

2a+8b+c = 0
da+b+c = 0
The general solution is a = (-7/30)c, b = (-1/15)c.

The resulting system of equations is

Thus —7x—2y+30 = 0 is an equation for the line.
The resulting system of equations is
16a —4d+f = 0
da+4b+4c—2d—2e+f = 0
9c+3e+ f 0.
a+b+c+d+e+f = 0
16a +4d+f = 0

The general solution is:
a= (-1/16)f, b = (-71/144)f, c = (1/18)f, d = 0, e = (-1/2)f.
An equation is 922+ 7lay —8y> + 72y — 144 = 0.

The resulting system of equations is
16a —4b+c—4d+e+ f =
a—2b+4dc—d+2e+f =

9a +6b+4c+3d+2e+ f =
25a+bb+c+bd+e+ f =
490 —Tb+c+T7d—e+ f =

The general solution is:

a = (-3/113)f, b = (3/113)f, ¢ = (1/113)f, d = 0, e = (-54/113)f.

An equation is —3z2 4+ 3zy +y%> — 54y +113 = 0.

O O O OO

Using equation (4), the given points result in a system of 9 equations in 10 unknowns, with

the solution:
a= (~15/16);, 116)j, e = (7/8);,

b= (-
d=(15/16)j, e= ((—15/16)]’, f=(1/8)7,
h=(—

9= (15/8);. 15/16)j, i = (~15/8);.
An equation is: —152% — y% + 1422 4 152y — 1522 + 2yz + 302 — 15y — 152 +16 = 0.
Omitted

2a+b+c+d = 0
The resulting system of equations is: 5a+2b+c+d = 0.

13¢ +3b+2c+d = 0
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The general solution is: a = (1/6)d,b = (—=1/2)d,c = (—5/6)d.

Thus, 22 +y?>—-3xz—5y+6 = 0, is an equation for the circle.
25a4+4b+3c+d = 0
33. The resulting system of equations is: S5a4+b+2c+d = 0.
da+2b+d = O

The general solution is: a = (7/50)d,b = (—39/50)d, ¢ = (—23/50)d.

(_
Thus, 722+ 7y? — 39z — 23y + 50 0,

is an equation for the circle.

1.4 Applications

r1+x4 = 1200
r1+xo = 1000
L@ o = 600
To+x4 = 400
The solution is 21 = 1200 — 24, o = —200 + x4, x3 = 600 — 4.
(b) 1 = 1100, g = —100, 3 = 500.
(c) 200 < x4 <600 so 600 < z1 < 1000
z1 = 1200
r1+xo = 1000
20 () e = 1000

o +x3 = 800
The solution is 1 = 1200 — x4, o = —200 + x4, 3 = 1000 — 4.

(b) 2y = 1100, 5 = —100, 23 = 900.
(c) 200 < z4 < 1000 so 200 < z; < 1000.

3. x2 = 800, z3 = 400, x4 = 200.
4. x9 = 400, z3 = 700, x4 = 300, z5 = 500, xg = 100.

5. 41 + 31y = 2, 31y + 4I3 = 4, and I) + I3 = I5. Therefore, Iy = 1/20, I, = 3/5, and
I = 11/20.

6. [1+1, =7, 11+2I3 =3, and I + I3 = I5. Therefore, 1 = 18/5, I, = 17/5, and I3 = —1/5
7. 5/7,20/7,15/7

8. 7/4,15/8,—13/8,1/8,1/8,27/8.
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9. (a)

10.

1.5

1.

2.

10.

11.

r1T — T4 = a1 —Qay

r1—T2 = —by+b
—x3+x4 = di—do

Ty —T3 = —C+cC2

Let Iy, I>, ..., I5 be the currents flowing through Ry, Ro, ..., Rs, respectively. If Is = 0 then
=1, Is=14, [ Ry — I3R3 =0, and IbRy — I,R4 = 0. It follows that either all currents
are zero or R1 Ry = RoR3.

Matrix Operations

w23 i) 0]t 2el0s]

o[ 2ot 02 w21

-2 =2
0 0]
-2 1
0 —1
-1 -1
0 0]
2 4]
-2 —6
AHEIHEH
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12.

13.
14.
15.
16.
17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

0[] [ 2]
a1 =11/3, ay = —(4/3) .
a1 =0, ay = —2.
a1 = —2, ay = 0.

a; =4/11, as = 14/11 .

The equation has no solution.
The equation has no solution.
a; =4, ag = —(3/2).

a1 =9/11, ag = —(17/11) .

e [ [3 o [} 2o 3]
IR E PR
S S P |

3 —1
|15 30 |
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

5 16 4 11
AB_[5 18}’3’4_[6 19}

50 11
16 10

3 -2
28 4

11
Au= [ 13 ] , vA=1822].

uv:[2 4],vu:lll.

6 12
v Bu =66 .
7
Bu= [ 13 ] .
[ 5 10
8 12
CA= 15 20
| 8 17
3 8
4 8
CB = 7 12
| 5 14
27
28
C(B)u) = 43
47

w
=
o
I
w
\]
=
s
c
I
w
\]
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42.

43.

44

45.

46.

47.

48.

il
T2
T3
T4

r1
xT9 =
Zz3

I
Z2
x3
Zq

T
Z2
I3 =
T4
Ts5

x1
Z2

T4

3

S O OO
_l_

Z1
Z2
I3 =
T4
Ts5

z1
Z2
x3
Zq
Ts

Te B

[ 1+ 23+ 224 + 325 |

T3 + 214
—2x3 — 324
z3
T4

_—2+$3_ -2

3—2x3 = 3
X3 0

_—1-1-333- —

1

1 — 2z5 1
I3 0
1

T3 + x5
—2:133 — Iy
xs3 = I3
—x5
Ts

—2.%'3 — 3.%4 — 4.%5

x3
X4
x5 ]
1 2]
-2 -3
1|+ 24 0
0 1
0 0

3 + 224 + 3x5
—21‘3 — 33)4 — 4315
T3
Ty
5

T3 + x5 + 226
—2x3 — T5 — 214

T3 =

—T5 — Te
L6

1
—2
1 +
0
+ x3
+.’L’3
1
-2
1|+
0
0
+ 5
:[L‘g
[ 1
—2
1
I3 0
0
| 0

2
-3
0
1
1
-1
0
-1
1
2
-3
T4 0
1
0
C 1T
-1
0
xIs 1
1
L 0]

3

—4

x5 0

0

1

T o9
-2
0
L6 _1
0

- 1 -
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1 To + 224 1 2
xT9 o 1 0
49. €3 = —2xy = 29| 0 + x4 | —2
T4 T4 0 1
s 0 0 0

50. A(Bu) has 8 multiplications while (AB)u has 12 multiplications.

51. C(A(Bu)) has 12 multiplications, (CA)(Bu) has 16 multiplications, [C(AB)](u) has
20 multiplications, and C[(AB)u] has 16 multiplications.

2 1
2 3 2 0
1 3
3 6
0 4
D3 = e Dy= 1
1 2

(b) A; isin R’ Dy isin R*.

o e[ 3]s [ ap 320,

AB is a4 x 4 matrix. BA is a1 x 1 matrix.

53. (a) AB is a2 x 4 matrix, BA is not defined.
(b) AB is not defined, BA is not defined.
(¢c) AB is not defined. BA is a 6 x 7 matrix.
(d) AB is a2 x 2 matrix, BA is a 3 x 3 matrix.
(e) AB is a3 x 1 matrix, BA is not defined.
(f) A(BC) and (AB)C are 2 x 4 matrices.
)

(g

54. (AB)(CD) is a2 x 2 matrix, A(B(CD)) and ((AB)C)D are
2 x 2 matrices.

55. A? = AA provided A is a square matrix.

56. Since b # 0 is arbitrary in B, the equation has infinitely many solutions.

135,000 126,000
57. (a) Px = | 120,000 | is the state vector after one year and P?x = | 132,000 | is the
45,000 42,000

state vectore after two years.
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(b) Px

58. (a) Setting AB = BA yields the system of equations 3b — 2¢ = 0, 2a + 3b — 2d = 0, and

3a + 3¢ —3d = 0. The solution is a = —c+d and b = 2¢/3, so B = [ _C;—d 22/3 ]

(b) B = [ _g ? } and C' = [ (1) (1) ] are possible choices for B and C.

59. Let A be an (m x n) matrix and B be a (p x r) matrix. Since AB is defined, n = p and
AB is an (m X r) matrix. But AB is a square matrix, so m = r. Thus, B is an (n x m)
matrix, so BA is defined and is an (n X n) matrix.

60. Let B = [Bl,Bz, NN ,BS]. Then AB = [ABl,ABz, . ,ABS].

a i = 0 then the 7" column o is i =0.
If Bj = 6 then the j*® col f AB is AB; = 0
(b) If B; = B; then AB; = ABj.

61. (a) (i) A:[f _1yx:[§;yb:[§].

(C) (1) r1=2,20=12A1+A2=D.
(11) r1=2,20=123=2,2A1+A2+2A3=Db.

62 11 2 Ry — Ry 11 2
’ 1 2 3 — 01 1]/
Thus z1 =1land 29 =1 .

63. (a) We solve each of the systems

(i) sz[})],

m))Ax_[gy
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(b) B:[_f _HandABzszA.

64. The i*" component of Ax is the Z?:l a;;xj. Now the ith  components of z1A1, z2A2
s ooy TnAn o are x1a1, 2042 ..., Tpai, respectively. Thus the ith component of x1A1q
+20Ag+ -+ 2,A, i Z?:l aijx;

as required. m

-1 6

10

65. (a)B—[ R

. (b)No B exists. (¢) B=| 2 2.
| -

66. If A= (ai;) and B = (b;;) then

a11bir  aribiz + aizbe  ai11b13 + a12b23 + ai3bss
AB = 0 a2b22 a2b23 + a3bss
0 0 a33b33

67. Let A= (a;;) and B = (b;;) be upper triangular (n x n) matrices. Then the ij" entry
of AB equals Y, ajtbyj. Supposei > j. If k> j thenby; =0. If j >k theni >k so
a;r = 0. Thus the ij** component of AB equals zero.

1 [ 4 — 3x9 — 2225 4 -3 —22
xT9 T 0 1 0
68. | z3 | = 6 —9z5 = 6 | + w2 O+ 5| -9
T4 9 — x5 ) 0 —1
| T5 | L xIs 0 0 1
[z ] [ 5+ 2x4 — 35 ) 2 -3
T2 4 — 3.7}4 — 2.7}5 4 -3 —2
69. xr3 | = 2—x4 — x5 = 2 | 4+ x4 -1 | + 25| —1
T4 Tyq 0 1 0
| T5 L Is 0 0 1
[ 21 ] [ 2 — 29— 21¢ ]| [ 2] [ —1 ] [ —2 ]
€T T2 0 1 0
T3 3—xg 3 0 -1
[ I 2922 | | 2| T " o T T 2
Ts5 3 — bz 3 0 -5
| T6 L L6 | L 0 | | 0 | L 1 |

1.6 Algebraic Properties of Matrix Operations

8 15 9 9
1. DE_[H 18],EF_[5 5},(DE)F_D(EF)_
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23 23
29 29 |

5 9 12 27
2. FE_[5 9],ED_[ - 14},F(ED)_(FE)D_

19 41
19 41 |

3. DE:[ 8 15]’ED:[12 27}

11 18 7 14
9 9 5 9
4.EF_[5 5],FE_[5 9].

1 76
8.DT:[f H
9.ETF=[S g]
S|

1. (Fv)T=[0 0].
12, (EF)v:[O].

13. —6.
14. 0.
15. 36.
16. 0.

17. 2.
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18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

18.

V2.

3V/10.

V29.

4v/2.

0.

0.

2v/5

LetA:[g (1)] andletB:[(l) 8] Then(A—B)(A+B):[_(1) _(1)] and
AQ—BQ:[_(l] 8].

LetA:[(l) 8} andletB:{(l) (1)] Then A? = AB and A # B.

The argument depends upon the ”fact” that if the product of two matrices is O then
one of the factors must be @. This is not true. Let A = [ 8 (1) ] and B = { (1) 8 ]

Then A2 = ©® = AB and neither of A or B is O.

D and F are symmetric.

Let A = [ 1 (1) ] and let B = [ (1) 1 ] Then each of A and B are symmetric and
1 2. .
AB = [ 0 1 } is not symmetric.

If each of A and B are symmetric, then a necessary and sufficient condition that AB be
symmetric is that AB = BA.

11 T2
zero whenever x1 and xo2 are not simultaneously zero.

2 1
xT Gx = [ T1 o ] [ ] [ 1 ] = x% + (1 + x2)2. This term is always greater than

2 2
xT Dx = [x9, 19] [ 1 4 ] [ il ] = 23 + 322 + (z1 +x2)%. This term is always greater than
2

zero whenever 1 and x2 are not simultaneously zero.
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34. xT Fx = [x1, 2] [

35.

36.

37.

38.

39.

40.

41.

42.

43.

-3 3
3 =3
[0 0
0 0"
[ —27 —9
27 9 |-
9 3
-9 =3 |
[ —12 18 24 ]
18 —27 —36 |.
| 24 36 —48 |
[ —12 18 24 ]
12 —18 —-24
24 —36 —48 |

11
11

I

I
Z2

] = (21 +22)%. Then x' Fx=0 if and only if 1 + x5 = 0.

(a) xTa = 6 means that 21 + 2292 = 6 and xTb = 2 means that 3x; + 42 = 2. Thus

r1=—10, 29 =8 and x= [

—10
s |

(b) xT(a+b)= 12 and x Ta= 2 yields 421 + 629 = 12 and x; + 2x2 = 2. Thus

1 =06, 19 = —2 andx:[

1 3

0 1|
5 11

—7 |

14

(c) BCy = [ s

(b) A%u=2°u=32u=

] ,BiC=[6 8],(BC1)TC2=132, || CB2|=

32
96
64

<)

2+/337.

(c) A™u = 2™u. Property 3 is required. For example, A?u = A(Au) = A(2u) = 2(Au) =

2(2u) = 2%u.
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44.

45.

46.

47.

49.

50.

51.

52.

(a) By property (3) there exists an (m x n) matrix O such that A+ O = A.

(b) By property (4) there exists an (m x n) matrix D such that C + D = O. Thus,
A=A4+0=A+(C+D,).

(c) Since matrix addition is associative (property 2), A=A+ (C+ D) =(A+C)+ D.
Now A + C' = B + C by assumption so, by substitution, A = (B + C) + D.

(d) Since matrix addition is associative, this becomes A = B + (C' + D).
(e) By choice of D, C+D =0,s0 A= B+ 0.
(f) But B+ O =Bso A=B.

(a) Theorem 9, part(2)

(b) Theorem 8, part(3)

(c) Theorem 9, part(3)
Using Theorem 10, it can be seen that y'x = (xTy)T =0 =0. Thus [|[x—y | =
V=) 6= 3) = VT =3I 3) = VAT =Ty — ¥Tx +yTy= V/I=T + Tyl =

V2.
A+ AT = AT 4+ (ATY = AT + A= A+ AT,

(a) QT is a (n x m) matrix, QTQ is a n x n matrix and QQT is a m x m matrix. Now
QTQ)T = QT (QMT = QTQ so QTQ is symmetric. A similar argument shows that
QQT is symmetric.

(b) (ABC)T = ((AB)C)T = CY(AB)T = 0T(BTAT) = cTBT AT,
0 <[ @x|= (@x)T(Qx) =xTQT@x.

Property 2. Let A = (a;j), B = (b;j) and C = (¢;j). The (ij)" com-
ponent of (A + B) + C is (aij + b;j) + ¢;; whereas the (ij)'" component of A+ (B + C)
is a;; + (bij + c;j). The two are clearly equal.
Property 3. Let O denote the (m x n) matrix with all zero entries. Clearly A+ O= A for
every (m x n) matrix A.

Property 4. If A = (aj;) then set P = (—a;;). Clearly A+ P = O.
Let A = (aij),B = (bZ]),C = (Cij),AB = (dij)7 and BC = (eij). The (’I”S)th entry of
(AB)C is Y 7_, dykcs, where dyy = > i—1 arjbjr.  Thus the (rs)!" entry of (AB)C is
2:1(2;;1 arjbji)Crs =

et D=1 GribikCrs = D25y arj (3R bjkcrs) = 27— arjejs. The last sum is the (rs)th
entry of A(BC) so it follows that (AB)C = A(BC).



26 CHAPTER 1. MATRICES AND SYSTEMS OF EQUATIONS

93.

54.

55.

56.
o7.
58.
99.
60.

61.

1.7

Property 2: If A= (a;;) then the (ij)'" entry of r(sA) is r(sa;;).

Similarly the (i)"* entry of (rs)A is (rs)a;;. The two are clearly equal.
Property 3: Let A = (a;;) and B = (b;;). The (ij)" entry of r(AB) is 7Y p_; airbk;-
The (ij)" entry of (rA)B is Y p_,(ras)by;. Finally, the (ij)" entry of A(rB) is
> p—q aik(rbg;). The three are equal so r(AB) = (rA)B = A(rB).

Property 2: Let A = (a;;), B = (b;;) and C = (¢;;). The (rs)!" entry of A(B+ C) is

Sy @k (bks + Cks) = D op—q Arkbrs + > p—q @rkCrs. The last expression in the (rs)™
of AB+ AC so A(B+C)=AB+ AC.

Property 3: The (ij)™ entry of (r + s)A is (r + s)a;j. The (ij)" entry of rA + sA is
ra;; + sa;j. The entries are equal so (r + s)A =rA + sA.

Property 4: The (ij)*" entry of r(A + B) is r(a;; + bi;). The (ij)™"
entry of A+ rB is ra;j + rb;;. Since the entries are equal r(A+ B) =rA+rB.

entry

Property 1: Let A = (a;;), B = (bij), and A+ B = (c¢;j), where ¢;; = a;; +b;j. The (rs)th
entry of (A+ B)T is csr = asr + bsr. But ag is the (rs)!" entry of AT and by, is the
(rs)" entry of BT. Thus ag + b is the (rs)" entry of AT 4 BT.

Property 3: Let A = (aij),AT = (d;j). and (AT = (€ij). Thus e, = dgr = ars; that is,
(ATHT = A,

Linear Independence and Nonsingular
Matrices

. ;V1 + x2ve =6 has only the trivial solution so {v1, va } is linearly independent.

Linearly dependent. vz = 2vj.

Linearly dependent. vs = 3vj.

. 1V +x3vg =6 has only the trivial solution so {va, vz} is linearly independent.
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10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.

29.

Linearly dependent. vg = 2vy .
Linearly dependent. vg = 2vy —2vy4.

Linearly dependent. uy =4 us.

. 1ug +xoug =6 has only the trivial solution. So {ug, ug} is linearly independent.

. r1u1 +xouz+x3us=~0 hasonly the trivial solution so {uy, ug, us} islinearly independent.

Linearly dependent. uy =4 us.
Linearly dependent. ug = 4us.

xriug +xouz+r3ugs=0 has only the trivial solution so {u1, uz, us} islinearly independent.
Linearly dependent. ug = (16/5)ug +(12/5)us —(4/5)uz .
Linearly dependent. ug = (16/5)ug +(4/5)uz +(4/5)us.
Sets 5, 6, 13, and 14 are linearly dependent by inspection.

A is nonsingular.

B s singular, x1 = —2xs.

C  is nonsingular.

AB is singular, x1 = —2xs.

BA is singular, 721 = —10xs.

D is singular, x1 = x9 = 0, x3 arbitrary.

F  is nonsingular.

D + F  is nonsingular.

FE  is singular, a7 arbitrary, xo = 0 = x3.

EF s singular, z; arbitrary, xo =0 = x3.

DE is singular, z; arbitrary, zo = 0 = x3.

FT  is nonsingular.

{v1, va2} is linearly dependent if a = 3/2.

a = 6.
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30. {v1, v, vg} is linearly dependent if a = 1.
31. {v1, va, v} is linearly dependent if b(a — 2) = 4.
32. {v1, v2} is linearly dependent if 3a = b.

33. {v1, v2} is linearly dependent if ¢ = ab.

34, x— 1/8 ] L vi= (1/2)As.
35. x= : (1) :|,V3:A2.
36. x = _ _53 } , va= (—1/2)Cq1 +(1/2)Cx.
37, x— }ﬁ ] va= (1/2)(C1 + Cs).
- o3
38. x= 4/3 , U1 = (—2/3)F1 +(4/3)F2 —F3 .
. _1 -
- g/3 ]
39. x= —2/3 ug = (—8F1 —2F5 4+9F3 )/3
- 3 -

wr2][3]-[3]
S HEHEE!

(1] [ 2] [0
42.8_2_—4_3___4_
(1] [ 2] [0
43.0_2_+0_3__ 0
[ 1] [ 2] 1
44.1_2_+0_3__ 5

o s[1]2)-[3)
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46.

47.

48.
49.

50.

o1.

52.

53.
54.

55.

56.

o7.

1.8

(a) Since vg = —2vy the set S is linearly dependent for any value of a.

(b) If a = —3 then vg = v1 — va.

(a) The set S is linearly dependent for any value of a.

(b) The vector vg can be written as a linear combination of vq and vg for any value of a.

A nontrivial solution is: 1vq +0vg +0vg =16.

0=067T0 = (CL1V1 + agVvo +a3V3)T(a1V1 + asvo +CL3V3) = a% || A\l ||2 +a% || Vo H2 —HL% ”
v3||?,s0a; =0,i=1,2,3

If a1vy + agvse 4+ agvsy = 0, where some a; # 0, then a1vy + agvs + agvs + 0vy = 6.

If 0 = a1vy +az(vi+ve)+ag(vi+va+vs) then 8 = (a1 +az+az)vi + (a2 +a3)vay +azvs.
Since {v1,va,v3} are linearly iindependent, a; + as + a3z = 0, a2 + a3 = 0, and a3 = 0. It
follows that a1 = as = ag = 0.

AB = [ABy,...,AB,] = O, s0 AB; = 6 for 1 <i < n. Since A is nonsingular, B; = 0 for
1<i<n,soB=0.

If AB = AC then A(B — C) = O. By Exercise 50, B — C = O. Therefore, B = C.

Suppose, b = [by, ..., bn_l]T. Ifc=[b1,...,bn—1, —1]T then Bc = bjA1+---+bp_1A,_1—
Ab = Ab - Ab =0.

If x; is a nontrivial vector such that Bx; =6, then ABx; =
Ab= 0.

By Theorem 12, A = [wy,wz]| is a nonsingular matrix. By Theorem 13, Ax=Db has
a (unique) solution.

Let v be any vector such that ATv=6. By Theorem 13, there exists a vector w, such
that Aw=v. Then AT(Aw) = ATv=10, andsowT(ATAw)=wT 6§ =0. Then (Aw
V' (Aw) =wTATAw=0 and |[Aw| =0. Thus Aw=60, and since A is nonsingular,
w=10. Thus Aw=A# =6. Butthenv hadtobef and AT is nonsingular.

Data Fitting, Numerical Integration
& Differentiation

Cp(t) = (=1/2)t2 + (9/2)t — 1.
Cp(t) =t —4t+ 1.

. p(t) =2t+ 3.
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N

8. y=

10.
11.

12.
13.
14.
15.

16.
17.
18.
19.
20.
21.
22.

23.

.y=3e""

p(t) =3t + 2.

p(t) = 2t3 — 2t2 + 3t + 1.
p(t) =13 +1*+ 1.

y = 2e2% 4 37,

_6x—1 +2€3(x—1)‘

+ 4e* + 27,

y = 2e” — 4e? 4 €%,
03hf<t>dt ~ 32 Lf(R) + f(2R)].

+ 5 f(2h).
h) — & f(2h) +
—2£(0) + f(h)].

37/ (3h).

b—a

(b? —a?)/2
i 2 t2 b2 (b3 —a3)/3

a
1 1 1
0 b—a

0 2—a® b —a® (¥ —a®-3(b—
1
0
0

1 1

v —a? (b —a®—3(b—

(b + a® — 2ab) /2

b—a |

a)a*)/3 ]
b—a ]
b—a
a)a®)/3 |
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24.

25.

26.

27.

28.
29.
30.

31.

32.

(11 1 b—a 1 11 b—a

01 2 b—a 012 b-a

[0 0 (b—a)?/2 (b—a)?/12 00 6 b—a

[ 11 1 0 1 1 1 0
a—h a a+h 1 0 h 2h 1

| (a—h)? a* (a+h)? 2a 0 h(2a—h) 4ah 2a

(11 10

0 h 2h 1

| 0 0 2r% R

By Rolle’s Theorem there exist u; and us such that tg < u; < t; < ug < to and
pl(ur) = pl(ug) = 0. Since p/(u1) = p/(uz) =0, u; < ug, and p/(t) = 2at + b, it follows
that b=0=a. Finally, p(tg) =0 means ¢ = 0.

Suppose we have seen that a nonzero polynomial of degree n — 1 can have at most n — 1
distinct real zeros. Now assume that p(t) has n+1 zeros; that is there exist real numbers
to,t1,...,ty such that tg <t; <---<t, and p(t;) =0 for 0 < i <n. By Rolle’s Theorem

there are real numbers uq,...,u, such that ;1 < u; < t;, for 1 < i < n, and such
that p/(u;) = 0 for each i. Now p/(t) = na,t" ' +---+a; and p'(t) has n zeros. By
assumption p/(t) is the zero polynomial. Thus 0 = a3 = --- = a,. This leaves p(t) = ag;

but p(tgp) =0 so ap = 0. Therefore p(t) is the zero polynomial.

00 01
0010
We must solve the system Lx=Db where L = 111 1
3210
a 2
b 3 3 9
x= | , b= g .p(t) =2 + 2t 4+ 3t + 2.
d 10
p(t) =12+ 2t + 1.

p(t) =3+t + 4t + 3.
p(t) = 2t3 — 2t + 3.

By Rolle’s Theorem there exists a number s such that top < s < t; and p/(s) = 0. Thus
p/(t) has three zeros. By Exercise 25, p/(s) is the zero polynomial. It follows that p(t) is
the zero polynomial.

The coefficient matrix of p(t) = at® + bt? + ct +d must satisfy
Lx=Db
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33.

34.
35.

1.9

Bt
3t 2ty 1
B 4
32 2 1
Suppose Lxg=0, where xo= [a,b,c,d|T. If p(t) = at3+bt?> +ct +d then p(ty) = p(t1) =0
and p'(tp) = p'(t1) = 0. By Exercise 31 a = b = ¢ =d = 0; that is xg =6. This proves
that L is nonsingular so by Theorem 13, Lx=b has a unique solution.

where L = b= 50

O = O =
_Q O oL
<
—

First supppose that p(t;) = p/(t;)) = 0 for 0 < i < n. Since p(ti—1) = 0 = p(t;), it
follows from Rolle’s Theorem that there is a real number u; such that ¢;_1 < u; < t; and
p'(u;) = 0. Therefore p/(t) has 2n+1 zeros, to,t1,...,tn, u1,...,u,. By Exercise 26, p/(t)
is the zero polynomial and it follows that p(¢) is the zero polynomial.

Now set p(t) = ZZZSI apth and assume that p(t;) = y; and p'(t;) = s; for 0 < i < n.
These constraints yield a system of equations Lx=Db, where

i 2+l t2r ot 1]
(2n+ D)2 2ne2mt L1

t2n+1. t2n tn 1
| 2n+ 12 2p2nt 1

X = [a2n11,02n,-..,01,a0]" and b= [yo,50,...,Yn,5n] . Suppose Lxg =0, where xq
= [b2n+1, bgn, N bl, bo]T. If we set q(t) =

Ser i bth then it follows that g(t;) = ¢/(t;) = 0 for 0 <i < n. As we have shown above,
this implies that bay4+1 = bay, = --- = by = bg = 0. In particular xg =6 and it follows that
L is nonsingular. By Theorem 13 the system Lx=b has a unique solution.

S f()da ~ PDF(0) + ZF(h) + L F(2h) + L F(3h) + L F(4h) + 2 F(h)].
[(@) ~ glf(a— 2h) — 8f(a— h) +&f(a+h) — fla+20)]

Matrix Inverses and their Properties

(cf. Ex. 2)x:A_1b:Bb:[_; _;’Hg] = [1_2}

(cf. Ex. 1)x:A1b:Bb:[_§ _‘;Hg] = {_1”.

-1 -2 11 4 14
(cf. Ex. 3) x =B b= A4b = 1 3 -15 2| =] -20
0 —1 5 2 8



1.9. MATRIX INVERSES AND THEIR PROPERTIES 33

1 00 2 2
8. (cf. Ex. ) x=B"'b=4Ab=| 2 1 0 3| = 7
3 41 2 20

9. If Bis any 3 x 3 matrix, then the (1,1)" entry of AB is zero and so AB # I.
10. The (1,1)™ entry of BA is zero.

11. Let B = (v;;) be a (3 x 3) matrix and suppose that BA = I. Then the (1,1)" entry of
BA must be one and the (1,2)" entry of BA be must be zero. But each of these entries
equals 2x11 + x12 + 3713 and cannot simultaneously be one and zero.

12.  The (1,1)"" and the (2,1)" entry of AB cannot be simultaneously be zero and one.

3 -1
13. = 1}

[ —7/4  3/4
14. 32 _1/2 }

15. [ -1/3 2/3}

2/3 —1/3
[0 1 3
16. | 5 5 4
111
1 0 0]
7.1 =2 1 0
|5 —4 1|
(1 11 =7
18. | 0 -7 4
|0 2 —1 |
1 -2 0
19. 3 -3 -1
-6 7 2

-35 =16 26 -17

2. -1 -7 11 =7
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~1/2 -2/3 —1/6 7/6
1 1/3 1/3 —4/3
0 —1/3 —-1/3 1/3
~1/2 1 1/2  1/2

a1 -2
22. = {_1 3|
23. A=10 SOA_lzﬁ[_?) 2].

1 -3
=1
] 10

25. A =0 so A1 does not exist.

21.

26. A~! does not exist.
2. AN£2, —2

28. A\ #£2

o x-an=[ 2] [4]-] )
w )

nx=am=[3 4] [3]-[ 5]

e ] 1]

sox=amm= g [ ][] = [32]
woe=[ 53]

36. Q' =A"1C"1 = [ _3 g ] .
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37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

o, 12
@7 =B [ 2 1
_ _ 3/2 1/2
1_14-1_
Q=14 [ ’ 1]_
_ —1/10 1/10
1_ 1 1 _
@7 =C "[ 1/10 1/5 ]
3 11
-1 _ —1A4—-1) _
o —pean-[ 3 1]
8 —3
B:A”D:[_4 6 7}CEA1{ 1 0
3 —4 —4
-6 3
1 10
B=A"'D = wJQ,C:EAﬁ:[3128}
5 3 2 35
a#—1
2 35 1
(AB '=B'A"'=| 14 35 34

23 12 70
{ 1/3 2/3 5/3 ]
BAT=@1/At =] 1 1/3 2
2/3 8/3 1/3
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1 3
AN =@y =21
5 6

2
8
1

4 1 -1
50. A2=AB+2A=A(B+2[)so A=B+2[= { 0 5 2 ]

51. 1
52. (a) X =Tand X =—1
(d) The equation (X —I)(X+1) = O does not require that either X —I = O or X+1 = O.

T T,
53.ATA:[u1 UQ:||:U1 v1}:[uTu uTv }
V1 V2 U V3 uv Vv

54. AA= (I —uu")(I —uu") =I? —2uu’ +(uu" ) (uu') = (I — 2uu’ +u (u'u)u' = I — 2uu’
+uut =
I —uu' = A
55. I = AA™! = (AA)A™! = A(AA™Y) = AT = A,
56. Symmetry: AT = (I — avvl)T =17 — a(vvh)T =
I—a(vTT™T)y=T1—avv= A
AA = (I —avv' )(I — avvt) =T — 2avvl +a?(vvh)(vwh) =
I —2avvt +al2/vvt (v vl) =
I —2avv' +(2avvt) = 1.

57. Ax= Ix—a(vvl )x=x—av (vix) = x —a(vix )v=x—-Av where A = a(v'x).

58. || Ax|l= /(Ax)T(Ax) = /(xTAT)(Ax) = /xT(ATA)x =
VxTIx = vxTx =| x|

59. A(I —auv') = (I +uv' )(I —auv') = I? + uvt —auv’ —

a(uv)(uvl) = I + uvt —auv! —qu(viu)vl =

I+uvt —auv’ (1+vhu) =T +uvl —uvl = I.
60. AB=A(A?2 -2A+31)=A3—2A2+3A—-T+I1=0+1=1.

61. AB = A(—1/bo)[A+ b1 1] = (—1/bg)(A? + b1 A) + (—I1 + 1) =
(—1/b0)(A2 + b A+ bo[) +I=0+1=1.
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62.

63.

64.

65.

66.

67.

68.
69.

0= A2 + b1 A+ bl =
[9 5}+[2b1 b1]+[b0 0] [9+2b1+bo 5+b1]

25 14 5b1 3b; 0 by 25+ 5b; 144 3b1 + by
bo = 1,b; = —b.
3 -1 »
(—1/bo)[A+ b I] = s o= A1
11 -4 —3b1 2b b 0
_ A2 _ 1 1 0
A=A +b1A+boI—[_2 3}—#[ by b1]+[ 0 bo]

11—3b1+b0 —4 + 2by

[ 241 3+b1+b0} 0==5b
1 -2
1 -3

0 -—10 2by —2b
A2 _ 1 1
= A —l—blA—i—bof—[lO 5]—1—[261 3b1]+

bp O . 2b1 + by —10 — 2by
0 bp | | 10+2b1 5+3b1+bo

(—1/b0)[14+ b][] = 11—0 |:

(—1/bo)[A + by 1] = —(1/5) [ - ]:A—I.

} bo = 10,b; = —5.

3 2
-2 2

9=A2+b1A+bOI:[7 o}Jr[—bl +3b1}+[b0 0]2[7—b1+b0 3b1]
07 :

| =a,

2b by 0 bo 2by 7T+ b1+ bo
by = —7,b; = 0
(“1/b) A+t =1 23 —an
0 S A O
106.395 107.459
(a) Ax = by, has solution x =~ | —4909.194 |. Ax = by has solution x ~ | —4958.286
4979.886 5029.685

25.315 21.316 —59.764
(b) A=! =] —1100.002 —1028.428 2780.764
1114.405 1044910 —2820.572

(a)A:[O ﬂandB:[(l’ é]

1 0 0 0
(b)A:[O O}andgz[o 1].
(A =@ =4l
(a) (AB=0) = B = ATAB =A"10=0.
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70.

71.

72.

73.

74.

75.

76.

e

79.

(b)B:[_i _H

(AB = AC)=> B = IB = (A"'A)B = A"Y(4AB) =
A7L(AC) = C.

If either d # 0 or ¢ # 0 then
A [ _i ] =60 and so A is singular.

a b

Ifc=0=4d, then A = [O 0

],andAx: [O

1 ] does not have a solution so A is singular.

(AB)~! = B4,

The hypothesis of Theorem 17 is not satisfied; that is, Theorem 17 assumes that A and B
have inverses.
(a) (Bv=0) = (A(Bv) == (AB)v =0)
(= v =0) so B is singular.
(b) AB and B~! are nonsingular so A = (AB)B™" is nonsingular.
Suppose each of the systems Ax = ey is consistent and let by be a solution. If B =

[by,ba,...,by] then AB = [Aby, Aba,..., Aby,] = [e1,e2,...,ex] = I. Thus B = A™!
and A is nonsingular.

Clearly I=! = I, so by Theorem 1.5, I is non-singular.

Since AB is defined, ¢ = r and AB is a (p X s) matrix. Since BA is defined, s = p and BA
is a (r X ¢) matrix. But AB = BA, sop=rand q=s.

Suppose B and C' are inverses for A.
Then B = BI = B(AC) = (BA)C =IC =C.

1.10 Supplementary Exercises

1.

The augmented matrix for the system reduces to

1 0 1
0 (a—1)(a+2) (a—3)(a+2)

There are infinitely many solutions if a = —2, no solution if ¢ = 1, and a unique solution
in which 29 =0 if a = 3.
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10.

(a) The system is consistent if and only if —b; + 2b2 + b3 = 0 and in this case the solution
is 1 = by — by — 223, x9 = by — 2by — 3x3, x3 arbitrary.
(b) (i) inconsistent
(i)
(iii)
)

(iv) inconsistent

r1 = —3 — 2x3, r3 = —8 — 3x2, x3 arbitrary
r1 = —4 — 2x3, x93 = —11 — 3z, x3 arbitrary

(a) Reducing the matrix [A, b1, by, bs] yields: for by, 1 = —48, o = 11, 23 = 18; for b,

x1 =4, x9 =2, xz3 =1; and for by, z1 = -3, 15 = 2, x3 = 2.

—48 4 -3
by Cc=| 11 2 2
8 1 2

. Set C' = [c1, c2]. Reducing the matrix [A, C|] yields solution x; = 2 — x3, x9 = 1 + 2x3, 3

arbitrary, for the system Ax = c¢y. Similarly, the system Ax = c5 has solution z1 = —1—x3,

2—a —1-0
r9 = —3 + 2x3, x3 arbitrary. Therefore, if by = | 1+2a | and by = | —3+2b | for
a b

arbitrary a,b, then Ab; = c¢; and Aby = ¢y, B = [by,by] is the desired matrix since
AB =_C.

. By assumption, As + 3A; + 5A4 + 7TAs + 9A3 = b. Reordering the terms yield 3A; +

7TAs +9A3 +5A, + As = b so Ax = b has solution [3,7,9,5,1]7.

(a) z1 =2+ z3, x9 = 3 — 3x3, x3 arbitrary.
(b) x1 = x3, 9 = —3x3, T3 nonzero.
(a) x =[2,1,0]” is the unique solution.
(b) x = 0 is the unique solution.
Cx=[-1,0,1]"
-4 1 3
(a) At=| 4 -1 -2
-3 1 1
_1__ | cosf sinf
(b) A7 = [ —sin6 cos@]

A=A-4)A-1)+2=(A—-2)(A—3). Aissingular when A = 0; that is, when A =2 or
A = 3. When A is nonsingular

e 1 [A—l 1 ]
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1. A= [ _15//24 ‘31/{14]

3 4 1 2
12'A_[6 S}andB—[2 2]

13. A% = A; A0 =T
4. x=A"'"b=3-6-1"

28 —22 —17
15. (AB) ' =B 1A~ = {27 —1 49 ]
29 8 16
2/3 1 5/3
16. (34)"' = (1/3)A { 7/3 2/3 1/3 ]
4/3 —4/3 1

36 52 47
18 21 -1

17. (ATB)

15 =31 31]

B 70 —19 5
18. (A1 B ) '4-1B] =B 1)’ =| -39 44 21
11 8 22

1.11 Conceptual Exercises

1 2
1. Faulse.IfA:[2 3]andB:[1 4 5 14

bl ] then A and B are symmetric but AB = [ 39 }

is not symmetric.
2. True. (A+ A7) = AT 4+ (A7) = AT + A= A+ AT.
3. True. A=' = Aand B~' = Bso AB™! = B~'A~! = BA.

4. False. If A = [ (1) (1] ] and B = [ é _01 ] then A and B are nonsingular, but A + B =

2.0 is singular
00 guat:

5. False. The system

T2

T +x2 =
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10.

11.

12.

13.
14.
15.

16.(b)

clearly has a unique solution x1 =1, x5 = 2.

. True. Suppose A =[A1,As,...,A;]. Thenfor 1 <j<n, 6§ =Ae; = Aj.

False. If {uj,us} is linearly dependent then so is { Auj, Aus}. (cf. Exercise 12).

. True. Since AB is defined, n = p and AB is an (m x ¢) matrix. But AB is square, so

m = q. Thus BA is defined and is an (n x n) matrix.

. Q"' =RP.

AB = (AB)T = BTAT = BA.

First note that uZ-Tuj = (u;‘-Fui)T, since u]TuZ- is an (1 x 1) matrix. If @ = cju; + coug + c3us

then 0 = 9T9 = (Clul + coug + 63113)T(61111 + cous + 63113) = C% || u H2 +C§ ” us H2 —i—C% H
uz||?. If follows that ¢; = c3 = ¢35 = 0.

Suppose cjuj +coug = 0, where ¢; # 0 for i = 1 or i = 2. Then 8 = A0 = A(ciug +coug) =
c1Auy + cpAus.

| Ax||2= (Ax)T (Ax) = xTAT Ax = xTIx = xTx = x||2.
A2 =Also A=1.
(AB)? = (AB)(AB) = A(BA)B = A(AB)B = A%2B? = AB.

Since A*~1 £ O, there exists a vector b such that A¥*~1b # @ (cf. Exercise 6). If c = A*~'b
then Ac = A(A*~'b) = A*b = Ob = 0. It follows that A is singular.
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Vectors in 2-Space and 3-Space

2.1 Vectors in the Plane

1.

o

6.

For vector AB the x—component is —4 — 0 = 4 and the y—component is 3 — (—2) = 5. For
—

vector C'D the x—component is 1 —5 = —4 and the y—component is 4 — (=1) = 5. The

vectors are equal.

. For vector AB the x—component is 3 — (—1) = 4 and the y—component is —2 — 3 = —5.

For vector CD the x—component is 1 —5 = —4 and the y—component is 4 — (—1) = 5. The
vectors are not equal.

. For vector AB the x—component is 0 — (—4) = 4 and the y—component is 1 — (—2) = 3.

For vector CD the x—component is 3 — 0 = 3 and the y—component is 2 — (—2) = 4. The
vectors are not equal.

. For vector zTB the x—component is —1 — 3 = —4 and the y—component is —1 — 1 = —2.

For vector CD the r—component is —6 —0 = —6 and the y—component is 0 —3 = —3. The
vectors are not equal.

() For w [uf = /2= (—3)7+ @—BP = V2579 = V3L
For vi |v]| = (2= 32+ (7~ 47 = VB 9 = V3l.
Therefore ||ul|=||v|.

(b) Segment AB has slope: (2—-15)/(2 - (—3)) = —3/5.
Segment C'D has slope: (7—4)/(=2—3) =3/(-5).

(c¢) For vector AB the x—component is 2 — (—3) = 5 and the y—component is 2 —5 = —3.

—
For vector C'D the x—component is —2 — 3 = —5 and the y—component is 7 — 4 = 3.
The vectors are not equal.

D= (4,7)
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7. D= (-2,5)

8. D =(—1,6)

9. D=(-1,1)

11. v1 =5, v =3

12. v1 =5, v9 =—4

:—6,’02:5

13. V1

= —3, Vo = —4

14. U1

15. B = (3,3)

(_1’2)

16. B

17. A= (2,4)

18. A =(0,3)

~—~ —~
— (o]
~~
Sl _ _
— - - — -
= — =] — ™
-~ ~— ~— -
0 < _
S ) Il Il
O = P S O R
- (ap) <t (o] - - ™
— —~ —~ — —
N N = = g w1~ _
o3 f =~ <f _ I ==
~— ~— ~— ~— ~— ~— ~— ~— ~—
Il Il Il I I Il Il Il I
M R & " & nM P A
— ~— — ~— — — — — —
< < < < < &y < < <
~— ~— ~— N~— N~— ~— ~— ~— N~—
o O = & o 0 O =
— N [} Y [ (] a [} (o]
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31.

32.
33.
34.
35.

36.

37.

38.
39.

40.

2.2

u+v=2i+j u—3v=-2i+5j
u+v=4i+ju—3v=—4i—-7j

a

Note that given u = [ b

1 1
ThenW:—u:—[

=[] [ty

b b/vaZ + b2

a2 b2 \/a2+b2
= = = 1:
[[w ] \/a2+b2+a2—|—b2 a2 + b2 Vi

Vectors in Space
d(P,Q)=+/(0—-12+(2-22+2-1)2=+2
d(P,Q)=+/(0—-1)24+(0-1)2+(1-0)2=+/3
d(P,Q)=+/(0—-12+(0-0)2+(1-0)2=+2
dP,Q)=+/(0-12+(0-1)24+(0-1)2=+3
M = (1,4,4);d(M,0) = /(0 — 1)2 + (0 — 4)2 + (0 — 4)2
M = (2,1,4);d(M,0) = /(0 —2)2+ (0 — 1)2 + (0 — 4)2
B =(0,3/2,-3/2), C = (1,3,0), D = (2,9/2,3/2)

. plane
. line

} with either a # 0 or b # 0, gives ||u|| = Va? + b> # 0.
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10. line
11. plane

12. plane

17. (a) The length of the segment from P to R is \/(r1 —p1)2 + (r2 — p2)2 + (r3 — p3)? and
the length of the segment from R to S is v/(s1 —71)2 + (s2 — 72)2 + (s3 — r3)2. Let
a and b be the distances from P to R and R to S respectively and ¢ be the distance
from point P to S. Solving the equation a? + b? = ¢? for c yields the desired equality.

(b) This problem is worked similarly to part (a).

18. (a) v=| 3

19. (a) v=| 2

20. (a) v=| —2

(

0

21. (a) V! 5
(
0

22. A = (4,0,0)
23. A=(3,2,1)
2. A=(4,1,2)
95. A =(-2,3,—1)
9
26. (&) u+2v=1| 9
14
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27.

28.

29.

30.
31.

32.

33.

34.

7
(a) u+2v = { 7 ]

(b) fu—v]=3

1
(c) w= [ 1/2]
1

11
(a) u+2v= |:3]
4

() u—v|=v74

—4
(c) w= [ 3/2 ]
—1/2

—1
(a) u+2v = { 1 ]
2

(b) lu—v|=VI50

7/2
(c) w= [ -5 ]
1/2

u=2v=2i+2j
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-2
3. u=| —4
—1

2.3 The Dot Product and the Cross Product

1. -2
2.0
3.7
4. 0
11
5} COS(G)Z%
6 COS(G):_TZ)O
1
7 0) = -
cos (0) G
11
8 cos(@):ﬁ
T
9. 0=—
6
27
10. 0 = —
3
1. =12
2
12. =0

13. u=i+3j+4k

14. u=0i+0j+ 4k

15. u=3i+0j+ 4k

16. u=12i+4j+ 3k or u =12i — 4j + 3k
17. u= —1i+ 3j + 1k

18. u=1i+ 1j+ 2k

19. R = (33/10,11/10)
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20.
21.
22.

23.

24.

25.

26.

27.

28.

29.

30.

R=(8,2)
R=(-3-1)
R = (0,0)

u and q are perpendicular so w is the zero vector.

_[5 [ 2
u; = i 5 |’ uz = _9
u 2 u 4
1— 2 ) 2 — 4
F 91 S
uy = 4 , U2 = 0
- 2 - - _4 -
- g R
u; = 3 , Ug = —2
- 3 - - 3 -
U1
Ifu= | uy |, then u-u=u?+ v+ u3. Each term of this sum is a real number squared
us3

and therefore greater than or equal to zero, hence the sum is greater than or equal to zero.

Note that u-v = uiv1 + usvs + ugvs and v - u = vyuy + vouo + vzusz. By the commutative
property of multiplication, u;v; = v;u; for each value of ¢ and hence u-v =v - u.

(75} C U1
Note that wu-(ecv) = | ua | - | cv2
us C U3

= U] C V1 + U2 ¢ V2 + Uz C U3

= c(ulvl + ugvgy + Ugvg)

=c(u-v)
Uy V1] + wy
w(v+w)= | ug |- | va+ws
Uu3 v3 + w3

= u1(v1 + wi) + uz(v2 + we) + usz(vs + w3)
= w1v1 + u1Wwi + U2V + Ugwo + Uzv3 + uUzws
= (u1v1 + ugue + uzvs) + (urwi + usws + ugws)

=u-v+u-w
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31. With the given u and v the left-hand-side of equation (1) yields:

2= u? — 2uyvy + v? + ud — 2ugvg + v3

la = v [* = (u1 = v1)* + (u2 — v2)
The right-hand-side of equation (1) yields:
Fal+ [Iv][* = 2 [ful[|v]lcos (6) = uf + uj + vf + v — 2 [u] | v cos ()

Setting these expanded left and right hand sides equal to each other and then cancelling
terms yields:

—2ujv] — 2ugve = —2 ||ul| || v cos ()

Dividing the last equation by —2 gives the desired result, equation (2a).

[0
32. 0
| —11
[ —2
33. 2
| 8
[0
34. 0
| 0
[ 3
35. -1
| =5
e
36. w=| —1
- 2 -
o
37. w=| =5
- 4 -
-
38. w=| -1
__1_
o
39. w=| -3
- 1 -
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40.

41.

42.
43.

44.

45.
46.
47.
48.
49.
50.

o1.

52.

-9
w= | -9
__9_
R
W = 1
__4_

v/41 square units
4/6 square units

5V5 :
5 square units

6v11
2

22 cubic units

square units

24 cubic units
coplanar
NOT coplanar

Substitute the given values of x, y, and z into the left-hand-side of each of the two given
equations and simplify. This will show that for the given values, the left-hand-side of each
equation is zero and therefore the given values are a solution to the system.

0 0
By finding the two cross products (ixi)xj= | 0 | andix (ixj)=| —1 |, one can
0 0

see that they are not equal.

(a) Expanding and simplifying the right and left hand sides of the equations, one can see

that they are equal.
[ux v[? = (ugvs — ugva)? + (ugvy — u1v3)* + (wyv2 — ugvy)?
= U32(U12 + ’U22) — 2u1u3v1v3

—2u9v2(u1v1 + uzvs) + ut (v + vf) + u (ve + vf)

I u||2 HVH2 —(u- V)2 = (ugu3 — usvz)2 + (ugvy — u1v3)2 + (ujvg — U2U1)2

= U32(U12 =+ ’U22) — 2u1u3v1V3

—2uQv2(u1v1 + U31)3) + u22 (U12 + U32) + u12 (’1}22 + U32)
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(b) Substitute || u|| || v| cos (@) into the equation given in 10.(a) for u - v:
Jluxvi?= HUHz HVHz— H11\|22HV|!200S2 (0)
= [[ul® [v]%(1 - cos? (0)
— a2 |v]|2sin? (6)
Therefore, ||u x v =||ul||v|| cos ().

53. To see that [|u||cos () is the height of the parallelepiped, calculate the length of proj(y xwu.
Then the volume of the parallelepiped is (area of base)x (height) which is exactly the abso-
lute value of the triple product given.

2.4 Lines and Planes in Space
r=24+3t
1. y=4+2t
z=-—-3+4+4t
r=1+4+2t
2. y=1
z=—1+3t
1-0 1
3. As a direction vector for L weuse u= PyP; = | 2—4 | = | —2 |. Therefore, one set of
4—1 3
parametric equations for L are x =t, y =4 — 2t, z = 1 + 3t.
6—5 1
==
4. As a direction vector for L we use u = PyP; = 6—1 = | 5 |. Therefore, one set
4—(-3) 7
of parametric equations for L are x =5+t, y =1+ 5t, z = -3 + Tt.
2
5. The direction vector for the first line is u = | —1 |. The direction vector for the second
3
—4
line is v = 2 = —2u. Since the two direction vectors are scalar multiples of each
6
other, the lines are parallel.
6
6. The direction vector for the first lineisu = | 4 |. The direction vector for the second line
3
3
isv= 2 |. Since there is no real number k such that u = kv, the two lines are NOT

3
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10.

11.

12.

13.

14.

15.

parallel.
-2
The direction vector for the first line is u = 3 |. The direction vector for the second
-2
2
lineis v = | —3 |. Since there is no real number k£ such that u = kv, the two lines are
4
NOT parallel.
-1
. The direction vector for the first line is u = 2 |. The direction vector for the second
-3
3
lineis v= | —6 | = —3u. Since the two direction vectors are scalar multiples of each
9
other, the lines are parallel.
P
. The normal vector to the plane is n = 4 | . Therefore, the equation of the line is
. _1 -
r=14+3,y=2+4t, z2=1—1.
S
The normal vector to the plane is n = | —1 |. Therefore, the equation of the line is
2

r=2+4+t,y=0—1t, z = -3+ 2t

By substituting the parametric equations of the line into the equation for the plane, we find
that ¢ = —1. Thus P = (—1,4,1).

When substituting the parametric equations of the line into the equation for the plane, we
find a contradiction. Therefore, the line does not intersect the plane at any point. It can
also be noted that the normal vector to the plane and the direction vector of the line are
perpendicular so that the line is at least parallel to the plane. Then since the point Py is
not in the plane, the line is not in the plane either.

By substituting the parametric equations of the line into the equation for the plane, we find
that t = —4. Thus P = (-8, —13, 36).

By substituting the parametric equations of the line into the equation for the plane, we find
that ¢ = —2. Thus P = (-3,5,—3).

6z +y—2z=16
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16.

17.

18.

19.

20.

21.

22.

23.

T—2y+32=9
A normal vector to the plane can be found by taking the cross product of the vectors
. 1 . 0
PQ=|1|and PR=| 4
2 1

—_— =
n=PQxPR=-7i—j+4k.
Therefore, the equation of the plane is —7x — y + 4z = 5.

A normal vector to the plane can be found by taking the cross product of the vectors

. 1 . 2
PQ=| 8 |and PR=|1
-5 2

_— =
n=PQ x PR =21i—12j — 15k.

Therefore, the equation of the plane is 21x — 12y — 15z = —12
or equivalently 7z — 4y — bz = —4.

A normal vector to the plane can be found by taking the cross product of the vectors

. —2 [
PQ=| -1 |and PR=|0
1 2

— —
n= P x PR=-2i+7j+ 3k.
Therefore, the equation of the plane is —2x + 7Ty + 3z = 17.

A normal vector to the plane can be found by taking the cross product of the vectors

. ~1 . 1
PO=| 1 |and PR=| 0
1 1

—_— —
n=PQxPR=1i+2j—k.
Therefore, the equation of the plane is x + 2y — z = 6.

2/3
v=| 1/3
| —2/3
C 93 T
v=| —-2/3
| 1/3

T+ 2y —22=17
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24.

25.

26.

2.5

r+y+3z=11
r=4—1t
y=>5+t
z=1
r=-3+1
y=2-1
z=t
Supplementary Exercises
Solving the system of equations ciu+cov = x for ¢; and ¢ we find that ¢; = 3 and ¢co = —2.
Thus x1 = 3u = [ 165 } and xXg = —2v = [ __124 ]

. The island dock is at (5,5v/3). Assuming that the boat travels ¢ miles west and ¢ miles

north to get to the buoy, the buoy is at (5 — ¢,5v/3 +t). The distance from the mainland
dock to the buoy is /(5 — £)2 + (5v/3 + 1)2 = /262 + (10v/3 — 2)t + 100 miles.

. R=(13,-1)

|a]|?=a-a= (2u+3v)- (2u+ 3v)
=4(u-u)+12(u-v)+9(v-v)
— 4]jufl 2 +12(0) + 9 v
=4+9=13

Since ||a||2 = 13 then ||a| = v/13.
lal?=a-a=(u+v+w) (ut+v+w)
=(u-u)+2u-v)+2u-w)+2(v-w)+(v-v)+(w-w)

= 224+ 2(0) + 2(0) + 2(0) + 12 + 22
=4+1+4=9

Since ||a|/2 = 9 then | al| = 3.
(W=v)-(0+v) = (w-u)— (v-v)
=4-9=-5
Therefore (u —v) - (u+v) = —5.
Note that since u-v = 0 then u and v are perpendicular. So the angle between u and v,
0, is m/2.
Therefore, [|u x v || =||ul|[|v|sin () = 2-3 -1 =6.
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10.

11.

12.

. Note that since u and v are perpendicular then ||[u—v|/=[|lu+v| = v13.

Then [[(u—v)x (u+v)[|?=[[u—v[?[u+v|*sin*(0)

= 169(1 — sin? (9)
(u—v):-(utv)
[u—viflu+v]
Therefore, || (u —v) x (u+v)||? = 169(1 — (=5/13)%) = 169 — 25 = 144. Thus || (u — v) x
(u+v)|=12.

But cos (0) = and from Exercise 6 we have that (u —v-u+v) = —5.

x
. Unit vectors in the xz—plane are of the form v= | 0 | where vz2 + 22 = 1. For v to be
Y
3 x 3 ]
perpendicular to | —2 | requires that [ O | - | —2 | = 0 or 3= + 4y = 0. Hence, v is
4 Y 4 |
—4/3
of the form v =k 0 for some number k. Since v is a unit vector then k = +3/5.
1
—4/5 4/5
Therefore v = 0 or v= 0
3/5 -3/5
—a
——
Letting P, = (a,0,0), P, = (0,b,0) and P. = (0,0, ¢) then P, P, = b and
0
—a
—
P,P. = 0 |. Thus a normal vector to the plane is
c

_— ——
n=P,P, x P,P. = (bc)i+ (ac)j + (ab)k.
Then the equation of the plane is (ab)x + (ac)y + (ab)z = abc. Dividing through by abc the
equation of the plane can be rewritten as <—> ( ) < ) z=1.

Letting P = (1,1,2), P, = (2,3,9), P = (—2,1,—1) and P; = (1,2,5), then the equation
of the plane determined by P;, P» and Ps is —z—3y+2z = —2. Since P satisfies the equation
of this plane, i. e. —1(1) —3(2) + 1(5) = —2 then Pj is also in the plane. Therefore, all four
points lie in the plane —x — 3y + z = —2.

Consider a circle of radius r in the zy—plane centered at the origin. Letting A = (0,7),

B = (0,—r) and C = (x,y) where 22 + 32 = r2, then the vector AC = [ v . ] and the
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13.

2.6

. Xy

— — —
vector BC = [ } Since AC-BC = 2%+ (y+7)(y—7r) = (22 +y?)—r2 =12 —r2 =0

y+r
then the vectors A_C>’ and B—C)' are orthogonal and therefore, the triangle AABC' is a right
triangle.

Let the midpoints of the four sides of the quadrilateral ABC'D be P; = (a1 ;bl, % _2‘_ bz )

bi+c1 by+c cg+di co+d di+a1 do+a
P1=(12 17 22 2)7P1=(12 1, 22 2),andP1=( 12 1, 22 2). Then note

that the line segments P; P3 and P, P, share the same midpoint,
a1 +by+c+d; a2+bg+02+d2)
4 ’ 4 '

namely (

Conceptual Exercises

. False. For example, if u = 2i 4+ 4j and v = —2i + j then u- v = 0 while both u and v are

nonzero.

. False. For example, if u = 2i+ j+ 2k and v = 3u = 6i+ 3j+ 6k then u x v = 0 while both

u and v are nonzero.

uy vy
.Letu=| ug | and v=| vy
us U3

Then |lu+v|?+ [[u—v|?= u?+2ujvy + v} +ud + 2ugvy + v2 + w2 + 2uzvs + v?

—HL% — 2uiv1 + v% + ug — 2u9v9 + v% + u% — 2ugvsz + v%
= 2(uf +u3 + uf) + 2(vf + v + v3)
=2ul?+2(v|?

. The vectors u and v form the sides of a parallelogram while the vectors u4+ v and u—v

form the diagonals of the parallelogram. Thus, the parallelogram law states that the sum of
the squares of the sides of a parallelogram equals the sum of the squares of the diagonals. In
other words, the parallelogram law is the application of the law of cosines to a parallelogram.

. For example, u =i+j+k, v=2i—j+k,and w =i—2j—k. Then ux (v x w) = —6i+ 6]

and (uxv)xw=—-7Ti—j—5k. Thusux (vxw)#(uxv)xw.
A;i-b .
=44 fori=1,2,3.

It is equivalent to show that the columns of A form a linearly independent set (see Section
1.7). That is, if ¢; A1 + co Az + c3A3z = 0 then the only solution is ¢; = ¢; = ¢5 = 0. But

A;-0
due to Exercise 6. we have that ¢; = 1 . 1= 0. Therefore, the columns of A are linearly

independent and so A is nonsingular.
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8.

10.
11.

12.

Due to Exercise 7. the matrix A is nonsingular. Thus the solution of Ax = b can be written
as x = A~ 'b. From Exercise 6., we have that z; = 4;-b (since A;-A; = 1 for each 7). Then

a1l a2 a3 ;1
let A = a1 ag2 a3 SO Az = a;2 . Then xTr; = Az -b = Alibl + Agibg + Agibg.
asz1 a32 a33 a;3

This leads to the following system of equations for x1, zo and x3:
x1 = A11by + Aoiby + Asibs
xo = A1aby + Agoby + Asabs
w3 = A13by + Azzby + Assbs
ajl ag1 a3l
In matrix form these equations are written as x = | aj2 a92 ase | b= ATb.
a13 az3 as3
Since we already know that x = A~'b then it must be true that A=! = AT,

. Tt is equivalent to show that || Ax||? =||x||2. Recall that the dot product of u and v can

be expressed as (u-v) = u’v.

Then | Ax||? = (Ax) - (Ax)
— (Ax)T(Ax)
= xTAT Ax

=x'x =x-x=[x|?

(Au) - (Av) = (Au)T (Av) =ulATAv =ulv=u-v.

To show that the angle 61 between the vectors u and v equals the angle 65 between the
vectors Au and Av consider that
01) u-v Au- Av
cos (1) = =
faflivi [ Aull[[Av]
Since cos (A1) = cos (62) it follows that 6; = 6s.

= cos (03).

(u—v)-(u+v)=(u-u)— (v-v) =||u||?>~ ||v||* = 0 since ||u| =||v|. Therefore u and
v are orthogonal.



Chapter 3

The Vector Space R"

3.1

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Introduction

Geometrically, W consists of the points in the plane that lie on the line with equation
z+y=1

Geometrically, W consists of the points in the plane that lie on the line with equation
T = —3y.

Geometrically, W consists of the points in the plane that lie on the y—axis.

Geometrically, W consists of the points in the plane that have coordinates (z,y) satisfying
r+y=>0.

Geometrically, W consists of the points in the plane that lie on the line passing through
the origin and the point (1,3). [Let ¢ = 0 and ¢ = 1, respectively. If (x,y) is a point on the
line then x =t and y = 3t, so the equation for the line is y = 3x.

Geometrically, W consists of the points in the plane that lie on the circle with equation
2 2
x4+ y° = 4.

Geometrically, W consists of the points in three-space that lie on positive x—axis.

Geometrically, W consists of the points in three-space that lie on the plane with equation
r+y+2z=0.

Geometrically, W consists of the points in three-space that lie on the line which passes
through the origin and the point with coordinates (2,0, 1). The line can be represented by
the equations z = 2r, y =0, z = 7.

Geometrically, W consists of the points in three-space that are on or above the zy—plane
and that lie on the sphere with equation 22 + 32 + 22 = 1.
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22. W={x:x= Z ya—2b=1}.
23. W={x:x= g ,a any real number }.
2. W = {x:x= ‘g b >0}
25. W={x:x= ; ,a any real number }.
260 W={x:x= Z b= a?}.
T
27 W={x:x=| 3 | ,21 + 22 — 223 = 0}.
T3
2
28. W={x:x=t| —3 | ,t any real number}.
1
- 0
29. W={x:x= | x2 |,%s, v3 any real number }.
L T3
ey ]
30. W={x:x= 2 | ,z,, x5 any real number }.
[ 23

3.2 Vector Space Properties of R"

1. Clearly 0 is in W . Suppose u and v are in W , where u = [ Zl ] and v = [ 21 ]
2 2

Then u; = 2ug and v; = 2vs . If a is any scalar then u + v = [ U1t } and
U2 + v2

qu = [ Zzl ] But uy + v = 2ug + 2v9 = 2(u2 + v2) and auy = a(2uz) = 2(aus), so u+v
2

and au are in W. By Theorem 2, W is a subspace of R?. Geometrically, W consists of the
points on the line with equation x = 2y.
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. W is not a subspace of R?. Note for example that 6 is not in W. Alsoifu = [ 3 } andv =

[_g],thenu and v arein W, but u+v isnotin W.

1 1
. W is not a subspace of R? since, for example, u = [ 1 and v = | 1 } are in W

whereas u+ v is not in W. Note that W satisfies properties (s1) and (s3) of Theorem 2.

i is in W, but v2u is not in W.
Note that W satisfies properties (s1) and (s2) of Theorem 2.

. W is not a subspace of R?. For example, u =

Clearly, 0 = [0} isin W. Ifu= [ul} and v = [Ul] are in W, then u; =wv; = 0.
0 ug U2

Thus u+v = } is in W. Likewise, if a is any scalar, au = [ a?a ] is in W.
2

[ U + v2
By Theorem 2, W is a subspace of R%2. Geometrically, W consists of the points on the
y—axis .

Ifu= [zl] isin W, then |uj |+ |u2 |=0 sou; =uy=0. Thus W ={0} and W
2

is a subspace of RZ2.

. W satisfies none of the properties (s1) - (s3) of Theorem 2, so W is not a subspace of RZ.

Clearly, 0 = is not in W. Also, u = [ (1) } and v = { (1) } are in W whereas u + v

0
0
is not in W. Finally,

ifa#1 then av isnotin W.

. W is not a subspace of R?. For example u = [ (1) ] and v = [ (1) ]

are in W whereas u+ v is not in W. Note that W satisfies the properties (s1) and (s3)
of Theorem 2.

0 U1 U1
Clearly 6= | 0 isin W. Ifu= | ug and v = | vy are in W and a is any
0 u3 U3

scalar, then ug = 2u; —uz and vz = 2v1 — ve. Now ug +v3 = (2ug — ug) + (2v1 — v9) =
2(u1 +v1) — (u2 +v2) and aug = a(2u; — uz) = 2(au1) — aug. Therefore u+v and au
are in W. By Theorem 2, W is a subspace of R3. Geometrically, W consists of the points
on the plane with equation 2x —y — z = 0.
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0 Uy U1
10. Clearly 8 = | 0 isinW. If u= | us | and v= | v are
0 us V3
in W, it follows that ug +ve = (ug +v3) + (u1 +v1) and for any scalar a, auy = aus + au;.
Thus u+v and au are in W. By Theorem 2, W is a subspace of R3. Geometrically,
W' consists of the points in the plane with equation z — y + z = 0.
1 1
11. W is not a subspace of R3. For example, u = | 1 andv= |0
1 0
arein W but u+v isnotin W. Alsoifa# 1 and a # 0 then au is not in W.
0 U1 U1
12. Clearly 6= | 0 iIsin W. If u= | ug and v = | w9 are in W then u; = 2us
0 u3 U3
and vy = 2v3. Therefore u; + vy = 2(ug + v3) and, for any scalar a, au; = 2aus. Thus
u+v and qu arein W and by Theorem 2, W is a subspace of R3. Geometrically, W
consists of the points on the plane with equation = — 2z = 0.
1 2
13. W is not a subspace of R3. For example u = | 0 and v= | 2
0 0
arein W but u+v isnotin W. Also,ifa# 1 and a # 0 then au is not in W.
Ui
14. Clearly 0 is in W. Vectors u and v in W can be written in the form u = 0
u3
[ v U1 + v1
and v = 0 |. Thusu+v = 0 is in W. Likewise, for any scalar a, au
| U3 us + v3
aulq
= 0 is in W. Geometrically, W consists of the points in the zz— plane .
aug |
15. Clearly 6 isin W. If u and v are vectors in W then u and v can be expressed in

2a 2b 2(a+0)
thefomu= | —a | andv= | —=b |. Thenu+v = | —(a+b) |. Similarly, for
a b a+b
2ca
any scalar ¢, cu = | —ca |. By Theorem 2, W is a subspace of R3. Geometrically W
ca

consists of the points on the line with parametric equations © = 2t, y = —t, z = t.
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16.

17.

18.

19.

20.

21.

a
Clearly 6 is in W. FElements u and v in W can be expressed in the form u = | 2a
2a
b a+b
and v= | 2b | . Therefore u+v = | 2(a+0b)
2b 2(a+0b)
ca
isin W and, for any scalar ¢, ca = | 2ca | isin W.
2ca

By Theorem 2, W is a subspace of R?. Geometrically, W consists of the points on the
line with parametric equations z = t, y = 2t,

z = 2t.

Clearly 6 is in W. Moreover, any two elements u and v in W can be written in the

a b a+b
formu= | 0 and v= | 0 |. Therefore u+v = 0 is in W and for any
0 0 0
ca
scalar ¢, cu = 0 is in W+ By Theorem 2, W is a subspace of R®. Geometrically, W
0

consists of the points on the r— axis.

Clearly aT #=0 so# isin W: Ifu andv arein W then alu=0 and alv=10. It

follows that al(u+v) =atu+a®v=0, sou+v isin W. If ¢ is a scalar, then a* (cu
) =ca’u=0 and hence cu isin W. This proves that W is a subspace of R>.
uy
The vectoru = | up | isin W if and only if 0 = a®u= u;+2us+us3. Thus geometrically
u3

W consists of the points in R? which lie in the plane = + 2y + 3z = 0.

Ui
The vector u = | ug isin W if and only if 0 = a
Uu3
consists of thepoints in R3 which lie on the yz- plane.

Tu= u;. Thus geometrically W

Clearly, a’9=bT =10, so f isin W. Let alu= blu= al'v=blv= 0. It then follows
that al(u + v)= 0 and b'(u+ v)= 0. Therefore u+v isin W. Likewise, aT(cu) = c(a'u
)=0 and bT (cu) =

c(b'u) =0 for any scalar c. Therefore cu is in W. Thus W is a subspace of R3.
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22.

23.

24.

25.

27.

28.

29.

Ui
The vector u = U9 is in W if and only if 0 = a'lu= u; — us + 2u3 and 0 = b'u
us
= 2uj — uy + 3uz. Thus W is the set of points in R* formed by the intersecting planes
x—1y+22=0 and 2x —y+ 3z = 0. The parametric equations for the line are z = —t, y =
t, z =1.

Uy
The vector u = | wug is in W if and only if 0 = aTu= u; + 2uy + 2uz and 0 = bTu
u3
= uy + 3uz. Thus W is the set of points on the line formed by the intersecting planes
x+2y+2z=0 and x4+ 3y = 0. Solving yields x = —6z and y = 2z so the line has
parametric equations x = —6¢, y = 2t, z = t.

Uy
The vector u = | uo is in W if and only if 0 = aTu= u; + us + uz and 0 = bTu
u3
= 2u1 + 2ug + 2us. Clearly the latter condition is redundant so W consists of the points
on the plane x +y + z = 0.

U
The vector u = U9 is in W if and only if 0 = alu= u; —u3 and 0 = bTu
u3

= —2uj 4 2us. Clearly the latter condition is redundant so W consists of the points in the
plane z — z = 0.

Property (ml) is not satisfied. For example 3(2x) = 3 [ iil ] = [ ;iil } where 6x =
2 2
122, Also, (m4) is not satisfied since 1x = 201 # X
121’2 ’ ’ - 2:132 ’

Property (c2) is not satisfied. For example, if x = [ i } and a = —1 then x is in W but

ax is not in W. This also illustrates that (a4) is not satisfied.

a
The set of points on the line can be expressed as the set W = {¢ | b | : ¢ any real
c
a a
number }. Taking ¢ = 0 we see that @ isin W. Ifu=r| b | andv = s| b | then
c
a a
u+v=(r+s)| b | isin W. Likewise, if k£ is any scalar then ku = kr| b | isin W.
c c

Therefore W is a subspace of R3.
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30.

31.

32.

33.

34.

3.3

Since 6 isin both U and V, § =0+ 6 isin U+ V. Suppose x andy arein U+ V
and write x=u3 +vy1, y=u2+ve where uy,us arein U and vy, vo arein V. Then x
+y = (up+uz )+ (vi+ve)isin U+ V. If a is a scalar then ax = auj +avy isin U+ V.
It follows that U + V' is a subspace of R".

Clearly § isin UNV. Suppose x andy arein UNV. Then x andy arein U and
since U is a subspace, x+y 1isin U. Also for any scalar a, ax is in U. Similarly, x +y
and ax are in V. Therefore x +y and ax are in U NV. It follows that UNV is a
subspace of R".

1 0
The vector u = -1 isin U and the vector v = 1 isin V. Thusu and v
0 1

arein UUV but u+v isin neither U nor V.

(a) Clearly 0 isin UUV. Suppose x isin UUV and let a be a scalar. If x isin U,
then ax is also in U. Similarly, if x isin V, then ax isin V. In either case, ax is
inUUV.

(b) Assume that u+v isin U. Since —u isin U and U is closed under addition we

see that v= (u+v )+ (—u) isin U. This contradicts the assumption that v is not
in U. Similarly, u4+v is not in V.

Since W is non-empty, W contains a vector x. By (s3) the vector 0Ox=6 isin W. By
Theorem 2, W is a subspace of R".

Examples of Subspaces

By definition Sp(S) = {t [ 1 ] : t any real number }. Thus if x = [ il ] is in R?
- 2

, then x is in Sp(S) if and only if 1 + 29 = 0. In particular Sp(S) is the line with
equation = +y = 0.

By definition Sp(S) = {t [ ; ] : t any real number }. If x = [ il ] is in R? | then
2

x isin Sp(S) if and only if 3x; + 229 = 0. In particular Sp(S) is the line with equation
3z + 2y = 0.

. Sp(S) = {t [ 8 } : t any real number } = {e}.Sp(S) is the point (0,0).

. Sp(S) = {x in R? : x = kja+ kb for scalars k; and ks }. For an arbitrary vector x

x1

in R?, x =
Z2

Sp(S) = R”.

] , X =kija+ keb if k; = 3z; + 222 and ko = —x; — 2. It follows that
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10.

11.

12.

. Sp(8) = {x in R? : x = k;b + kec + ksd for scalars kj, ko, k3}. With x = [ 1 ] ,

. Sp(8) = {x in R?: x = kja+ ked for scalars k; and ke}. For an arbitrary vector x

. x
in R?, x = !

, the equation k;a + ksd = x has augmented matrix [ } (1) il ] .
- 2

This matrix reduces to
11 I

[ 0 1 z1+x

Sp(S) = R?.

} and backsolving yields k; = —z2, and kg = 7 + z2. It follows that

—2
If x = [ il ] the equation kja + kec = x has augmented matrix [ 1 ] .
2

-1 2 x9

—2 1
0 0 Tl + T2
x1 + x2 = 0. It follows that Sp(S) = {x: z1 + x2 = 0}; that is, Sp(S) is the line with

This matrix reduces to ] , so the equation has a solution if and only if

equation = +y = 0.

Sp(S) = {x in R? : x = k;b + kge for scalars k; and ks}. But k;b + kee = k;b so

Sp(S) = Sp({b}). It follows that Sp(S) = {t { g } : t any real number }. If x = { il }
- 2

is in R?, x is in Sp(S) if and only if 3z1 + 229 = 0. Thus, Sp(S) = {x : 37; + 2x2 = 0};
so Sp(S) is the line with equation 3x + 2y = 0.

If x = [ 21 } the equation k;a + kob + k3d = x has augmented matrix
2

1 2 1 = 1 2 1 T
-1 -3 0 xIo 0 -1 1 =z 1+ X2
It follows that the system is consistent for arbitrary x , so Sp(S) = R?.

] . This matrix reduces to [

T2
the equation k;b + koc + ksd = x has augmented matrix
2 -2 1 x
|: -3 20 i)
Sp(S) = R?.

]. The reduction reveals that the system is consistent for every x , so

Since kja + kob + kse = k;a + kob , Sp(S) = Sp{a, b} = R2.

Since kja+ kec+ kse = kja+ koc, Sp(S) = Sp{a,c}. But Sp{a,c} ={x : z; + 22 = 0}.
Thus Sp(S) is the line with equation x + y = 0. (cf. Exercise 6).

Sp(S) ={x : x=1tv,t ascalar} so Sp(S) is the line through (0,0,0) and (1,2,0). The
parametric equations for the line are x = ¢, y = 2t, z = 0. Equivalently, if x= [z1, 2, xg]T,
then Sp(S) = {x: —221 + 22 = 0 and x3 = 0}. Thus Sp(S) the line formed by the
intersecting planes —2x 4+ y =0 and z = 0.
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13. Sp(S) = {x in R3 : x=tw for some scalar ¢ }.Therefore Sp(S) is the line through (0, 0, 0)

and (0,—1,1). The parametric equations are x = 0, y = —t, z = t. If x= [z;, 20,23 |T
0 I 1 T3

then tw = x has augmented matrix | —1 o which reduces to | 0 9 + z3
1 T3 0 Tl

The system is consistent if xo+x3 =0 and x1 =0 so we have Sp(S) ={x: zo+x3 =0
and x; = 0}. Therefore Sp(S) is the line formed by the the intersecting planes y + z = 0
and x = 0.

14.  For x = [z1, 22, x3 ]T the equation k;v + kew = x is consistent if and only if —2x; +
x9 +x3 = 0. Thus Sp(S) = {x : =221 + 22 + 23 = 0} and is the plane with equation
—2x+y+z2=0.

15. Sp(S) = {u in R? :u = k;v+kox}. The equation k;v + kox = u has augmented matrix

1 1 ul

2 1w , which reduces to

0 -1 us
[ 1 1 (75}

0 1 2u; —ug | . A solution exists if and only if 2u; —us+u3 =0 ,so Sp(S) = {u
i 0 0 2u; —uo+us

: 2u; — ug +usz = 0}. Sp(S) is the plane with equation 2x —y 4+ z = 0.
16. For arbitrary u in R® the equation k;v + kew -+ k3x = u has a solution, so Sp(S) = R?.

17. Sp(S) = {u in R?® : u = k;w + kox + ksz}. For u = [u;,ug,u3]’ the equation
k;w + kox + k3z = u has augmented matrix

[ 0 1 1 Uy
-1 1 0 wug |. This matrix reduces to
1 -1 2wy
[1 -1 2 Ug
0 11 u; | . Since the system is consistent for every u in R3, Sp(S) = R’.
| 0 0 2 wus+ ug

18. For u = [uy, ug, Ug]T the system of equations k;v + kew + k3z = u is consistent if and
only if —2u; + ug + ug = 0. Therefore Sp(S) =
{u: —2u; + ug + us = 0} and Sp(S) is the plane with equation —2x +y + z = 0.

0 1 -2 Ul
19. The matrix | —1 1 -2 wuy reduces to
1 -1 2 ug
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20.

21.

22.
23.
24.
25.
26.

27.

28.

29.

1 -1 2 ug
0 1 -2 Uy so the system of equations k;w -+ kex + kgy = u is consistent
0 0 0 wup+ug
if and only if ug + uz = 0. Therefore Sp(S) = {u : uz + u3 = 0} and Sp(S) is the plane
with equation y 4+ z = 0.

By Exercise 14, Sp(S) = {x : —2z; + 22 + x5 = 0}. Then the vectors given in (a), (c)
and (d) are in Sp(S). Moreover when the system of equations k; v+ kew = x is consistent,
the unique solution is k; = z;, andks = z3. Thus in (a) [1,1,1]T = v+ w; in (c)
[1,2,0]T = v; and in (d), [2,3,1]T = 2v + w.

By Exercise 15, Sp(S) = {u in R?: 2u; — ugy + ug = 0}. Thus the vectors given in (b),
(c), and (e) are in Sp(S). From the calculations done in Exercise 15, it follows that when
the system of equations k;v + kox = u is consistent, the unique solution is k; = —u; + ug
and kg = 2u; — ug. Thus in (b), [1,1,-1]F = x; in (¢), [1,2,0]T = v; and in (e),
[-1,2,4T = 3v —4x.

The vectors a, ¢, and e are in N'(A).

The vectors d and e are in N(A4) since by direct calculation, Ad =6 and Ae =6.
The vectors v,w, and z are in N/(A).

The vectors x and y are in N(A) since, by direct calculation Ax =6 and Ay =6.

The homogeneous system Ax =6 has solution z; = 2z2 , where x2 is arbitrary.

Thus N(A)={ x in R? : z; — 225 =0}. If b= {ZI ],
2

then Ax=b is consistent if and only if 3b; +by =0 , s0 R(A) = {b in R? : 3b; +by = 0}.

The matrix [A4 | b] is row equivalent to the matrix :
-1 3 b1
0 0 2b;+by |-
It follows that the homogeneous system Ax =6 has solution 1 = 3x2 whereas the system
Ax = b is consistent if and only if 2by + by = 0. Therefore N(A) = {x : 1 — 329 = 0}
and R(A) =

{b: 2b1+b2:0}
N(A) = {6} and R(A) = R?.

11 by
0 3 —2b;+ b3
x1 =22 =0 , so N(A)={6. Since the system Ax= b is consistent for every b in
R% R(A) = R”.

The matrix [4 | b] reduces to Setting b=6 and solving yields
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

N(A)={x inR? : 2z, =373 and 12 = —z3} and R(A) = R”.

1 21 by
0 0 1 —3b;+ by
yields ; = —2x5, 13 = 0 as the solution to Ax= 0. Thus N'(A)={x in R? : z;+2z5 = 0
and z3 = 0}. Since Ax=Db is consistent for arbitrary b in R?, R(A4)=R".

The matrix [A | b] reduces to . Setting b = § and backsolving

The homogeneous system Ax =f has only the trivial solution so N(A4) = { 6}. The
system Ax = b is consistent precisely when 3b; — 2bs + b3 = 0 so R(4) = {b in
R3 : 3by — 2by + b3 = 0}.

0 1 by
The matrix [A | b] reducesto | 0 0 —2b; 4+ bs |. Setting b=46
0 0 —3b; + bg
yields 1o = 0, z; arbitrary as the solution to Ax =60. Thus N'(A)= {x in R? : 2o = 0}.
The system Ax = b is consistent if and only if —2b; +by = 0 and —3b; +bs = 0. Therefore
R(A) =
{b in R3 : b2 == 2b1 and bg == 3()1}

N(A)={x inR3:2; = —Tr3 andzo = —3x3 } and R(A) = {b in R : 3b;—2by+b3 = 0}.

1 2 3 by
The matrix [A | b] reducesto | 0 1 —2 —b1 + by
0 O 0 —4by + 2by + b3

Setting b=20 and backsolving the reduced system yields N (4) = {x in R3: 2y = —7x3
and o = 2x3}. The system Ax = b is consistent if and only if —4b; + 2bs + b3 = 0 so
R(A) ={b in R3: —4b; + 2by + b3 = 0}.

N(A)= {0} and R(4)= R®.

2 1 by

1 2 —2b; + bp | . Setting b=6 and solving
0 1 by —bs+ bg

yields N(A) = { #}. The system Ax = b is consistent for all b so R(4) = R3.

The matrix [4 | b] reduces to

S O =

(a) The vectors b in (i), (iv), and (vi) are in R(A).

(b)  For (i), x = [1,0]T is one choice; for (iv), x = [-2,0]T is one choice; for (vi), x
=[0,0]” is one choice.

(¢) For (i), b=A; ;for (iv), b= —-2A1 , for (vi), b=0A;1+0A>.

(a) From the description of R(A4) obtained in Exercise 27 it follows that the vectors b
in (ii),(v), and (vi) are in R(A).
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(b)  When the system of equations Ax = b  is consistent, the calculations done in
Exercise 27 show that the solution is given by x; = —b; + 322 , where zo is arbitrary.
Thus for (ii), x = [1,0]T is one choice; for (v), x = [0,1]T is one choice; for (vi), x
=10,0]" is one choice.

(c) If Ax =b, where x= [z1,22]T , then b = 2;A; +22A5. Therefore for (i), b = Ay
; for (v), b= Ag; for (vi), b =0A; + 0As.

40. (a) The vectors b in (ii), (iii), (iv), and (vi) are in R(A4).
(b)  For (ii), x= [~1,—1,0]T is one choice; for (iii), x = [2,—1,0]T is one choice; for
(iv), x=[2,1,0]T is one choice; for (vi), x=[0,0,0]7 is one choice.
(c) For (i), b= —Aq1 —Ag; for (iii), b=2A; —Ag; for (iv), x=2A;+As ; for (vi),
X= OA1 +0A2 +0A3 .

41. (a) From the description of R(A) obtained in Exercise 35, the vectors b in (i), (iii),
(v), and (vi), are in R(A).

(b)  When the system Ax= b is consistent, the solution is given by x1 = 3by — 2by — 7Tx3
and x93 = —by + by +2x3 , where x3 is arbitrary. Thus for (i), x=[~1,1,0]" is one
choice; for (iii), x = [~2,3,0]T is one choice for (v), x=[-2,1,0]T is one choice; for
(vi), x=[0,0,0]T is one choice.

(c). If Ax=b, where x= [r1,22,23]" , then b = 21A| + 22A5 + 23A3.
Thus it follows from (b) that for (i), b= —A; +Az; for (iii), b= —2A; +3A5; for
(V), b= —-2A;1 +A5: for (Vi), b=0A; +0A5; +0Aj3,

42. A= -1 4 =2

43. A=[3 -4 2]

1 0 1
4. A=[v,w,x]=12 -1 1
0 1 -1
0 1 1
45. A=[w,x,z]=| -1 1 0
1 -1 2
46. Let A be the (3 x 3) matrix whose columns are the vectors given in S. Then AT reduces
1 0 -1
toBT=|0 2 3 |. Thenonzero columns of B, wy = [1,0,—1]T, and w2 = [0,2,3]T,
00 0

form a basis for Sp(9).
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47.

48.

49.

50.

o1.

52.

53.

54.

Let A be the (3 x 3) matrix whose columns are the vectors given in S. Then AT reduces
-2 1 3

to BT = 0 3 2 |. The nonzero columns of B, wy = [~2,1,3]" and wg = [0,3,2]"
0 00

form a basis for Sp(S).

w1 =[1,0,1]7 and wo=[0,1,1]7.

Let A be the (3 x 4) matrix whose columns are the vectors given in S. Then AT reduces
1 2 2
T 0 3 1 T T
to B+ = 00 0l The nonzero columns of B, wi = [1,2,2]* and wa=[0,3,1]" form
0 00
a basis for Sp(S).
(a) R(I) = R™ and N(I)={6}.

(b) R(O)={6} and N(O)= R".
(¢) R(A)=R"™ and N(A)={6}.

Let x bein N(A)NN(B). Then Ax=60 and Bx=40. Therefore (A + B)x= Ax+Bx
=0 + 0= 0. It follows that x is in N(4 + B).

(a) If Bx=0 then (AB)x= A(Bx) = A6=0.

(b) Suppose b= (AB)x for some vector x in R". Theny= Bx isin R and b
= A(Bx) = Ay.

Let 6,, and 8, denote the zero vectors in R™ and R"™ respectively. Then 6, isin W and
6, = A8,. Therefore 6,, isin V. Suppose u and v are in V. Then there exist vectors
x andz in W suchthat u= Ax and v= Az. Sincex+z isin W, u+v=Ax+Az
=A(x+z) isin V. If a is ascalar then ax isin W soau=a(Ax) = A(ax) isin V.
Thus V is a subspace of R™.

If A has row vectors a1,...,ag,...,am then B hasrow vectorsay,...,cax,...,am
Note that dja; +--- + dyax + -+ + dpam = dsag +--- + (di/c)cax + - + dpam . It
follows that :

Sp{ai,...,ax,...,am} =Sp{a1,...,cax,...,am }.
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3.4 Bases for Subspaces

1.  Backsolving the given system yields x1 = x5 — x4, and x2 = x4. Thus

T T3 — Ty 1 —1
xT9 . X4 . 0 1
r3 | 3 RCE I + 0
T4 T4 0 1
As in Example 5,{[1,0,1,0]T,[~1,1,0,1]T} is a basis for W.
2. Backsolving yields x1 = —x3 — 2z4 and x9 = 2x3 + 4.
It follows that {[—1,2,1,0]",[~2,1,0,1]T} is a basis for W.
3. Writing 1 = zo — z3 + 3x4 we have
T To — x3 + 314 1 -1 3
X9 . i) . 1 0 0
vy | s = T 0 +x3 1 + 24 0
T4 T4 0 0 1

Thus {[1,1,0,0]T,[~1,0,1,0]T,[3,0,0,1]7} is the desired basis.

4. Writing 1 = x2 — x3 and noting that 1,23 and x4 are unconstrained variables, we
obain {[1,1,0,0]T,[~1,0,1,0]T,[0,0,0,1]7} as the desired basis.

5. Since 1 = —x5 we have
T —T9 -1 0 0
i) . X9 . 1 0 0
o | o | T2 0 + 3 1 + 24 0
T4 T4 0 0 1

It follows that {[—1,1,0,0]",[0,0,1,0]T,[0,0,0,1]*} is a basis for W.

6. Backsolving yields x1 = 224,29 = 2x4, 23 = 4. Thus {[2,2,1,1]"} is a basis for W.

Y ) )

7. Backsolving yields x1 = —2x3 — x4 and x9 = —x3. Thus
I —2%3 — T4 —2 —1
o o —xI3 o —1 0
T3 o T3 - 1 + T 0
T4 T4 0 1

Therefore {[-2,—1,1,0]%,[~1,0,0,1]*} is a basis for W.
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8.

10.

11.

12.

Backsolving yields 1 = —x4 and xo = —x3. Therefore the set
{[-1,0,0,1]T,[0,~1,1,0]*} is a basis for W.

Let {w1,ws} be the basis found in Exercise 1. (a) x = 2w + wg (b) x is not in W. (c)
x = —3wy (d) x = 2w.

Let {w1,ws} be the basis found in Exercise 2. (a) x = w1 +wy (b) x =2w; — w3 (¢) x is
not in W. (d) x = —2wa.

1 2 3 -1
() B=|0 -1 -1 1

0O 0 0 o
(b) Backsolving the reduced system Bx =6 yields the solution 1 = —x3 — x4, 29 =
—x3 + x4 for the homogeneous system Ax =6. Thus x= [x1,$2,$3,l'4]T is in

N(4) if and only if

1 —T3 — T4 -1 -1
ro | | —w3+xg | -1 1
T3 a T3 - 1 + T 0
T4 T4 0 1

It follows that {[—1,—1,1,0]7, [~1,1,0,1]7} is a basis for N(A4).

(¢) It follows from (b) that 21 A1 +x2A2+2x3A3+x4A4= 6 ifand only if x1 = —x3—1x4
and 9 = —x3 + x4. Since x3 and x4 are unconstrained variables {A1, Ao} is a basis
for R(A). Setting 3 =1 and 24 =0 yieldsz; =—-1 and 29 =—-1 so —Aj—Ag
+Ag= 6. Therefore A3= Aj+Az. Similarly, setting x3 =0 and z4 =1 yields
Ay=A1—As.

(d) The nonzero rows of B form a basis for the row space of A
that is {[1,2,3,—1],[0, —1, —1, 1]} is the desired basis.

11 2
() B=|0 11
00 0

(b) The system Ax= 6 has solution 1 = —r3 and z3 = —x3. Therefore {[-1,—1,1]T}
is a basis for N'(4).

(¢c) {A1,A2} isabasisfor R(A) and A= A;+As.

(d) {[1,1,2],[0,1,1]} 1is a basis for the row space of A .

121 0
01 1 -1
@ B=|4 49 o
000 0
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14.

15.

16.

(b) The homogeneous system Ax= 6 has solution z
=123 — 224,79 = —x3 +24. Thus x= [21, 72,23, 24]7 isin
N(4) if and only if

T T3 — 2Ty 1 —2
- -1 1

T2 _ T3 + X4 ~ 2 .

T3 T3 1 0

T4 T4 0 1

The set {[1,—1,1,0]%,[~2,1,0,1]T} is a basis for N'(4).

(¢) Tt follows from (b) that in the equation z1A1 +x2As +r3A3+14A4=0,2x3 and x4
are unconstrained variables. Therefore {A1,A2} is a basis for R(A). Furthermore
Ay —As+A3=0, so Ag=—A1+A5. Likewise —2A1+As+A4=0, so Ay=2A,
—As.

(d) The nonzero rows of B, [1,2,1,0],[0,1,1,—1], form a basis for the row space of A.

2 20
() B=]0 -1 1
0 01

(b) The system Ax= 6 has only the trivial solution so N'(4) = {6}.

(c) Tt follows from (b) that the columns of A are linearly independent so {A1, A2, A3}
is a basis for R(A).

(d) The set {[2,2,0],]0,—1,1],][0,0,1]} is a basis for the row space of A.

1 2 1
(a) B=|0 0 —1
00 O

(b) The system Ax=46 has solution x1 = —2z5, 23 = 0.
Thus N(4) = {x:x=[-2x2,22,0]7} and {[-2,1,0]"} is a basis for N(A4).
(¢) In the equation x1A; +x2A2 +x3A3 = 60, x2 is an unconstrained variable, so
{A1,A3} isa basis for R(4).
Furthermore, —2A1 +A3 =60, so Ax=2A;.
(d) {[1,2,1],]0,0,—1]} is a basis for the row space of A.

2 1 2
(a) B=|01 -1
00 O

(b) x=[z1,72,73]" isin N(A) if and only if 71 = (—3/2)x3 and z2 = x3. Therefore
{[-3/2,1,1]T} is a basis for N'(4).
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17.

18.

19.

20.

21.

22.

23.

()
()

{A1,A2} isabasisfor R(A) and Agz= (3/2)A1 —A,.
{12,1,2],]0,1,—1]} is a basis for the row space of A.

1 3 1
T . - 0 -1 -1 . .
The matrix A is row equivalent to B+ = 0 0 0 The desired basis is
0 0 0
{[1,3,1%, [0,—-1,-1]T}, formed by taking the nonzero columns of B.
1 1 2
The matrix AT  is row equivalent to BT = 0 01 The desired basis is
0 00
{[1,1,2]T,[0,0,1]T}, formed by taking the nonzero columns of B.
12 20
The matrix AT is row equivalent to BT = 0 1 =21 SO
00 00
00 00
{[1,2,2,0]",]0,1,—2,1]T} is a basis for R(4).
[ 2 2 2
The matrix AT is row equivalent to BT = | 0 —1 1 SO
0 01

{12,2,2]7,[0,~1,1]7,[0,0,1]T} is a basis for R

(a)

(b)

—~

A).

For the given vectors u; and uz the equation xquy +xous =6  has solution
x1 = —2x9 where x3 is an unconstrained variable. Therefore {u; } is a basis for
Sp(S), where uy = [1,2]T.

1 2
If A= [ug,us] then AT is row equivalent to BT = [ 00

basis for Sp (.9).

]. Therefore {[1,2]7} is a

For the given vectors uj,us and ug the equation z1u; +zous +x3us =60 has
solution 1 = (—1/3)zs and xo = (—4/3)x3, where x3 is arbitrary. Thus {uy ,ug
} is a basis for Sp(S), where uy = [1,2]T and uz = [2,1]".

If A=[uj,uz,uz] then AT is row equivalent to BT =

1 2
0 —3 |. Therefore {[1,2]T,[0,—3]T} is a basis for Sp(S).
0 0

For the given vectors uy ,us,usg,us the equation xiuy +xous +x3usg +r4ug =0
has solution 1 = —x3 — 3x4, 29 = —x3 + x4. Since x3 and x4 are unconstrained
variables, {uy ,uz } is a basis for Sp(S), where u; = [1,2,1]T and uz=[2,5,0]T.
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26.

27.

28.

29.

30.

1 2 1
0 1 -2
(b) If A = [u;,uz,uz,uy] then AT is row equivalent to BT = 00 0
0 0 0

Therefore {[1,2,1]T,[0,1,—2]T} is a basis for Sp(S).

(a) For the given vectors uy ,uz,usg,uy, in the equation zqu; +xoug +x3u3 +24U4
=0 , x4 is an unconstrained variable. The desired basis is {u1 ,uz,ug}, where uy
=11,2,-1,3]T, ua=[-2,1,2, -], and ug=[-1,-1,1,-3]".

(b) If A=[uy,uz,usz,uy], then AT reducesto BT =

1 2 -1 3
01 00 ot -
00 05 Therefore {[1,2,—1,3]",[0,1,0,0]",
00 0 0

[0,0,0,5]T} is a basis for Sp(S).

(a) Let A denote the given matrix. The homogeneous system
Ax=60 has solution xy = 0,x9 is arbitrary, x5 = 0. Thus
{[0,1,0]T} is a basis for N'(A).

(b) Let A denote the given matrix. The system Ax =6 has solution 1 = —zo
where 5 and 23 are arbitrary. Thus {[—1,1,0]T, [0,0,1]T} is a basis for AN(A4).

(¢) The system Ax =6 has solution z; = —x9,23 = 0, where xz2 is arbitrary. The
set {[~1,1,0]T} is a basis for N'(4).

(a) {[L, 1%, [0,2]7} (b) {[L, 1T} (o) {[1.1]7, [0, 1]7}.

The equation x1vy +x2ve +x3vg3 =6 has solution x1 = —2x3,
r9 = —3x3,xr3 arbitrary. In particular, x1y = —2,292 = —3,23 = 1 is a nontrivial solution
and the set S is linearly dependent. Moreover, from —2vy —3vg +v3 =6 we obtain vg
=2vy1+3ve. If v isin Sp(S) then v= a;vy+aava +azvs= (a1 + 2a3)vi +(a2 + 3az)va
, sov isin Sp{vi,va}. It follows that Sp{vy,va,vs} =
Sp{vl , Vo }

The subsets {v1,va}, {v1,vs}, {va,v3} are bases for R
The subsets are {v1,va,vs}, {vi,vs,va}, and {vy,ve,vs}. Note that vqy = 3ve — v3.

By Theorem 12 of Section 1.8, the matrix V' = [v1,va,vg] is nonsingular. Thus, by
Theorem 13 of Section 1.8, the system of equations Ax=Db has a solution for each b in
R3; that is each vector b in R?® can be written in the form z1vq +29va +23vs = b. This
shows that R? = Sp(B) so B is a basis for R.
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31.

32.

33.

34.

35.

36.

37.

38.

39.

3.5

Set V = [v1,va2,vs]. By assumption the system Vx=b has a solution for every b in
R3? . By Theorem 13 of Section 1.8, V is a nonsingular matrix. Therefore, by Theorem
12 of Section 1.8, the set {vy1,va2,vg} is linearly independent.

The set S is linearly independent so, by Exercise 30, S is a basis for R3.
The set S is linearly dependent so S is not a basis for R3.
The set S is linearly dependent so S is not a basis for R3.

If u= [ug,u2,u3]” then u isin Sp(S) if and only if 4u; —2us +u3 = 0. In particular,
Sp(S) # R3 and S is not a basis for R3.

A vector w = [w1, ws, w3]T is in Sp{vy,ve} if and only if wy + w3 =
0. In particular w= [0,0,1]T is not a linear combination of vy
and vg .

(a) By Theorem 11 of Section 1.8, any set of three or more vectors in R? is linearly
dependent and is not a basis for R?.

(b) Suppose {v} is a basis for R2. Then e; = a;v and ez =ayv for some nonzero
scalars a; and ag. But then ase; —ajeq =0, contradicting the fact that {e;, ez }
is a linearly independent set. We conclude that {v } is not a basis for R2. It follows
that every basis for R?> contains exactly two vectors.

If vi= [z1,22,...,2,] then the constraints viuy;=0,1<i<p, yield a homogeneous
system of p equations in the unknowns x1,x2,...,z,. By Theorem 4 of Section 1.4 the
system has nontrivial solutions.

Suppose V= ajuy +aguz+ - - -+apup. Then ||v 1?2 = viv=vT(a1us +asus+ - - +apuy,) =
T

avTuy +agvTug +--- + apv Tup =0, contradicting that v is a nonzero vector.

By Theorem 11 of Section 1.8, any set of n +1 or more vectors in R® is linearly
dependent so it is not a basis for R"™. By Exercise 38, any set of less than n  vectors cannot
span R™. Therefore a basis for R must contain exactly n vectors.

Dimension

. S contains only one vector and dim(R?) = 2, so by property 2 of Theorem 9, S does not

span R2.

. S does not span R? by property 2 of Theorem 9

. Since S contains three vectors and dim(R?) =2, S is linearly

dependent by property 1 of Theorem 9.
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4. § is linearly dependent by property 1 of Theorem 9.
5. Since uy =6, S is a linearly dependent set; for example Quj +aug = 6 for any nonzero
scalar a. Also S does not span R? since
Sp{u1,us } = Sp{u; }.
6. S is linearly dependent since, for example, 3u; —ugz =4.
7. S contains two vectors and dim(R3) = 3 so by property 2 of Theorem 9, S does not span
R3.
8. S does not span R® by property 2 of Theorem 9.
9. Since S contains four vectors and dim(R3) = 3, S is linearly dependent by property 1 of
Theorem 9.
10. It is easily checked that S is a linearly independent set. Therefore, by property 3 of
Theorem 9, S is a basis for R.
11. It is easily checked that S is a linearly independent set. Since S
contains two vectors and dim(R?) = 2 it follows from property 3 of Theorem 9 that S is
a basis for R?.
12. The set S is linearly independent so, by property 3 of Theorem 9, S is a basis for R3.
13. It is easily shown by direct calculation that S is a linearly dependent set. Therefore S is
not a basis for R3.
14. The set S is linearly independent so, by property 3 of Theorem 9, S is a basis for R3.
15. If we write 1 = 2x9 — x3 + x4 then the procedure described in Example 5 of Section 2.4
yields a basis {[2,1,0,0]T,[~1,0,1,0]T, [1,0,0,1]T} for W. It follows that dim(W) = 3.
16. dim(W) = 3.
17. Following the procedure used in Example 5 of Section 2.4, we obtain a basis
{[1,-1,0,0]T,[2,0,—1,0]*} for W. In particular dim(W) = 2.
18. dim(W) = 2.
19. The set {[~1,3,2,1]} is a basis for W, so dim(W) = 1.
20. dim(W) = 1.
21. The homogeneous system Ax =6 has solution 1 = —2x,.

Therefore {[-2,1]T} is a basis for N'(A4) and nullity (A) = 1. Since 2 = rank (A4) +
nullity (A), it follows that rank (A) = 1.
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22.
23.

24.

25.

26.

27.

28.

29.

30.

The set {[2,1,1]} is a basis for N'(4). Therefore nullity (A) = 1 and rank (A4) = 2.

The homogeneous system Ax=6 has solution 2; = —5x3, 20 = —2x3. Thus {[-5, —2,1]T}
is a basis for N(A) and nullity (A) = 1. Since 3 = rank (A) + nullity (A), it follows that
rank (A) = 2.

The set {[2,—1,1,0]"} is a basis for A/(4). Therefore nullity (A) = 1 and rank (A4) = 3.

1 -1 1
AT reducesto BT = | 0 2 3 |. It follows that {[1,—1,1]T,
0 00
[0,2,3]T} is a basis for R(4). C
it follows that nullity (4) = 1.

onsequently rank (A) = 2. Since 3 = rank (A)+nullity (A4),

The matrix AT reduces to BT = . Therefore

o O O

2

2

0

0

{[1,2,2]7,[0,2,-1]T} is a basis for R(A), rank (4) =2 and nullity (A) = 2.
1 -1 1 2

(a) Following the methods of Example 7 in Section 2.4, let A = 1 -2 0 -1
-2 3 -1 0
Then AT reduces to BT =
1 1 -2
0 0 e It follows that { [1,1,—2]",[0,—1,1]",
0 0 0

[0,0,1]T } is a basis for W . In particular dim(W) = 3.
(b)  Following the procedure in (a), we obtain a basis {[1,2, —1,1]T,
[0,1,-1,1]%,[0,0,—1,4]T} for W. In particular, dim(W) = 3.

W ={x in R*: 2y + 229 — 3v3 — x4 = 0}. It follows that dim(W) = 3.

The constraints alx= 0,b’x=0 and c"x=0 yield the homogeneous system of equations
r1—x2 =0,21 —23 =0, and z9 —x3 = 0. Solving we obtain x1 = z3 and x2 = x3
where 23 and x4 are arbitrary. Thus {[1,1,1,0]",[0,0,0,1]T} is a basis for W and
dim(W) = 2.

Following the procedure described in the hint, suppose we have obtained a linearly in-
dependent subset Sy = {wy ,...,wyi } of W. If S spans W  we are done. If not
there exists a vector w1  in W such that wyiyq is not in Sp(Sg). Suppose a;wi
+ -+ apwk +ag+1Wk+1 =0. Now apy1 = 0 since otherwise we could solve for wyq ,
contradicting that wy,1 is not in Sp(Sk) . Since Sy is linearly independent, it follows
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31.

32.

33.

34.
35.
36.

37.

38.

39.
40.

41.

that a; = 0,1 < ¢ < k. This shows that the set S11 = {w1,...,Wk,Wky1 } is linearly
independent. A linearly independent subset of R™ contains at most n vectors, so the
process must eventually stop. That is, there is a linearly independent subset S, = {w1
s, Wy | such that S,, spans W. Thus S,, is a basis for W.

Suppose x = ajuy +aguz +--- +apup and x= bjug +boug +--- +byup. Then =x —x
= (a1 — by)ug +(ag — bo)ug +--- + (ap — bp)up. Since {uy ,uz,...,up } is linearly
independent, a; —b; = 0,a2—b2 =0, ...,a,—b, = 0. Therefore a; = b1,as = ba,...,ap = by.

Let B={u1,...,um} be a basis for U. Then B is a linearly independent subset of V'
so by property 1 of Theorem 9, m < dim(V')
Moreover if m = dim(V') then by property 3 of Theorem 9, B is also a basis for V. It
follows that V = W.

(a) rank (A) < 3 and nullity (A) > 0.

(b) rank (A) < 3 and nullity (A) > 1.

(c) rank (A) <4 and nullity (A) > 0.

Use Theorem 9, part(1). The columns of A are vectors in R3.
Use Theorem 9, part(1). The rows of A, when transposed, are vectors in R3.

Since n = rank (A) +nullity (A), it follows that rank (4) < n. Further, R(A) is a subset
of R™ so, by Exercise 32, rank (4) < m.

Clearly 2 = rank (A) <rank ([A | b]). By Exercise 36,
rank ([A | b]) <2. Therefore rank ([A | b]) =2 =rank (A) and,
by Theorem 11, the system Ax= b is consistent.

4 = rank (A) + nullity (4), so 3 =rank (A) <rank([A | b]). By Exercise 36, rank ([A | b
]) < 3. Therefore rank (A) =3 =
rank ([A | b]) and, by Theorem 11, the system Ax=b is consistent.

The matrix A is, by definition, nonsingular if and only if N (A) = { 0 }.

If x is in N(B) then (AB)x = A(Bx) = A8 = 0, so x is also in N (AB). Conversely, if x is
in N(AB) then 8 = (AB)x = A(Bx). Since A is nonsingular, Bx = 6 and x is in NV (B).

Suppose ciwy +--- 4+ ¢, Wp = 0 where ¢; # 0. Then w; = a1wy +--- + a;—1Wi—1
+ai+1Wit1 + - + apwp, where a; = —c¢;/¢;. If w  is any vector in W then w = bywy
+---+bywp for some scalars by,...,by,. Substituting for w; yields w= (b + b;a1)w1
+ o+ (bi—1 + biai—1)wi—1 +(bit1 + biair1)Wip1 + -+ - + (bp + biap)wp .

It follows that W = Sp{wy ,...,Wij_1,Wijt1,...,Wp }. By Theorem 8 any set of p
vectors in W is linearly dependent. This contradicts the assumption that dim(W) = p.
We conclude that ¢; =0 for each ¢ so S is a linearly independent set.
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42.

3.6

10.
11.

12.
13.

14.
15.

See the proof given in Exercise 30.

Orthogonal Bases for Subspaces

. ulTl.I2 = 1(—1) + 1(0) + 1(1) = 0;111T113 = 1(—1) + 1(2) + 1(—1) = 0; 112T113 = —1(—1) +

0(2) +1(—1) = 0.
T, T,

. Uj U2 = uj ug— UQTU3= 0.

cugtug = 1(2) + 1(0) + 2(—1) = 0;ugtuz = 1(1) + 1(=5) + 2(2) = 0; uztuz = 2(1) + 0(=5) +

(-1)2=0.
T, T

. Uj U2 = uUj ug— UQTU3: 0.

0=ujuz=a+b+c and 0=uzlug=2a+2b—4c. Solving yields a = —b, b arbitrary,
and ¢ = 0.

.a=(-1/2)e, b= (5/2)c, ¢ arbitrary.

=wlup= -3+a;0=ulug=4+b+¢0 = uxlug= —8 — b+ ac. Solving yields
=3,b=-5,c=1.

< O

0=ulug=20+20=ulus=2b+3—¢;0 = uglug = ab+ 3 — c. Solving yields
a=-1, ,b=0,c=3.

. V=ajuy +aguz +azug where a; = (uy'v /(ulTul) =2/3, a2 =

(u2'v)/(ugtug ) = —1/2, az = (ug'v)/(uzluz ) = 1/6.
vV=uj +ug.

V= ajuy +asuz +asug  where a; = (u;'v)/(usfuy ) = 9/3 = 3,

az = (uz'v)/(uzuz ) =0, a3 = (ug'v)/(ugtug) = 0.

v=(4/3)us +(1/3)us.

Denote the given vectors by, wy, wa, ws, respectively. Then uy = wy = [0,0,1,0]T. us
= Wwsg —ciuy, wherec; =

(u1™ws)/(uiuy ) = 2. Then uz = [1,1,0,1]T, ug = wg —bjus —bous where by = (u;'ws
)/(ulTul) =1 and
by = (ug'ws )/(ug'uz ) = 2/3. Therefore ug = [1/3,-2/3,0,1/3]".

u; =[1,0,1,2]T, ug =[1,1,-1,0]%, ug = [1/2,-1,-1/2,0]T.

Denote the given vectors by wy ,wa, W, respectively. Then uy = wy = [1,1,0]7, ug = wo
—ciuy, where ¢; = (u3'ws )/(uytuy ) = 2/2 = 1. Thus uz = [~1,1,1]7. uz= wz —bjuy
—bgllz, where b1 = (ulTW3 )/(ulTul ) = 2/2 =1 and b2 == (U2TW3 )/(U2Tll2) = 6/3 = 2.

Therefore ug = [2, —2,4]T.
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16. uy = [0,1,2]T, ua = [3,4, —2]Tus = [10, -6, 3] .

17. Denote the given system by w1, wo, ws, respectively. Then u; = wy = [0, 1,0,1]7, ug=
wo — cjug, where ¢; = (u'wa )/(u3tuy ) =2/2 =1. Thus ug = [1,1,0,—1]7, uz = w3 — by
u; — bouy, where by = (ui'ws )/(u1'uy ) = 2/2 = 1 and by = (uz'ws )/(u2 uz ) = 2/3.
Therefore uz = [-2/3,1/3,1,—1/3].

18. u; = [1,1,0,2] T ug = [-1,1,1,0 , ug = [-1/2,-1/6,-1/3,1/3]™.

19. If A denotes the given matrix then the homogeneous system Ax = 6 has solution
r1 = —3x3 — T4, Ty = —x3 — 3x4, Wwhere xr3 and x4 are arbitrary. It follows that
{[-3,-1,1,0]T,[-1,-3,0,1]T} is a basis for N(4) and {A;,Az2} is a basis for R(4) ,
where A1 =[1,2,1]T and A= [-2,1,—1]T. The Gram-Schmidt process yields orthogonal
bases {[-3,—1,1,0|T, [7/11,-27/11,—6/11,1]T} and {[1,2,1]T, [-11/6,8/6,—5/6]} for
N (A) and R(A) respectively.

20. A basis for N(A) is {[-1,-3,1,0,0]”, [-2,-3,0,1,0]T, [-3,-2,0,0,1]7}.

The Gram-Schmidt process yields the orthogonal basis

{[-1,-3,1,0,0]", [-1,0,—1,1,0]7, [-13/11,5/11,2/11, —1,1]T}.

A basis for R(A) is {[1,—1,2]%, [3,2,—1]T} and the Gram-Schmidt process yields the or-
thogonal basis {[1,—1,2]7, [19/6,11/6,—4/6]T}.

21. By Theorem 13 an orthogonal set of nonzero vectors is linearly independent. By property
1 from Theorem 9, Section 2.5, any set of four or more vectors in R? is linearly dependent.

22. It follows from Theorem 13 of Section 2.6 and Theorem 12 of Section 1.8 that A s
nonsingular. Note that ATA is the (3 x 3) matrix [¢;;] where ¢;; = ui'u;.  Since S is
orthogonal c;; = uiTuj =0 ifi#j andc; = uiu;=| u;||> fori=1,2,3. For the

300
vectors given in Exercise 1, ATA= |0 2 0
0 0 6

23. Since v isin W, 0 =v'v=(||v| )2 Therefore v= 6.

24. Suppose y # 6. For any scalar ¢,0 <|| x —cy ||?= (x —cy )"

(x—cy) = xx —exy —ey'x +y'y = (| x[|)? = 2exy +(||y|[)?. For c = x'y /y'y
this implies that 0 <[|x|| 2 — (xy )2/ ||y ||2. It follows that | Xy |[<||x|| |y ||. fy=6
then | xly |= ||| [[y ]| = 0.

25. |x+y|?=(x+y)(x+y)=[x]?+2(xy)+ [y[l* <
Il +2 |y |+ Iy 1* <lIx|?+2x] lyl+lyll* = (=] +[y])*

26. Note that [|y[|=[[x+(y —x)[| <|/x[|+ [[y =x[| so

(=l =1y =lyl = Ixl<lly =x=lx=y|. Similarly, [x]|=
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Il (x—y)+yl<lx—yl+Ilyl. Therefore, x|~ ||y | <|lx—y|. Itfollows that
il = Iyl <lx =y

27. IfW = Sp{w; }_ 11 then {u; f:_ll is an orthogonal basis for W Since {w; }!_; is linearly
dependent, wp isin W . Therefore up, isin W and upTui =0 forl1<i<p-—-1. TI¢t
follows that up'w= 0 for every vector w in W . By Exercise 23, up = 6.

28. ||[v|]|? = (arur + -+ apup ) (@ug +- -+ apup ) =

auta: =S 2ul P2 : .
Zlgingpalaju1 u; =) ;_,asuyuj= ) ;_;af since B is an orthonormal basis.

3.7 Linear Transformations from R" to R™
_ [0

=10

_ [ —1

=1 o

_ 1

=

2 |
2 |
3
| 1]
[ 2]
| 0]
[0 ]
| 0]

[\
—~
&
~
AAAA 7 N N N
\_/\_/\/\/ [T T G
Il
o O
| S

3. (a), (b), and (d) are in the null space of T.

4. T(x) =b requires 2x1 — 3z9 =2 and —z1 + 22 = —2. Solving yields x1 = 4,29 = 2,
so x = [4,2]T.

5. If b= [bl,bg]T then T'(x) = b requires that 2z1 — 329 = by and —x1 + x2 = bo.
Solving yields 21 = —b; — 3by and x3 = —by — 2by; that is x = [~b; — 3ba, —b; — 2bo] 7.

6. T(x) =b if and only if Ax=b. Solving yields ;1 = —2 + z9, x5 arbitrary. For
example, if x=[-2,0]7 then T(x)=b.

7. The system of equations Ax = b is easily seen to be inconsistent.
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8. Let u= [uj,us]t and v=[v1,v2]T. Then

Flu+v) = [ 2(u1 +v1) — (ug + v2) } _

(u1 +v1) + 3(uz + vo)

{21&1—“2 } i [ 201 — v2 ] = F(u) + F(v).

u1 + 3uo v1 + vz
Also Flau) = | 200 = @uz | _ | 20—z | g
| aup +3aus | up +3ug | '

This shows that F' is a linear transformation.
9. ' is a linear transformation.

10. F is not a linear transformation. For example if u= [uj,u2]’ and v = [v1,v2]T then
Flutv)= [ (w1 +v1) + (u2 + v2) ] whereas F(u)+ F(v) = [ (ur +v1) + (u2 + v2) ]

1 2
Likewise,

auy + aus

F(au):[ ! ] whereas aF(u) = [ ““1”“2 }

11. F is not a linear transformation. For example F' ([ L } + [ ]) F <[ 3 ]) = [ ) }

2 3 9
s ([ [) e ([ 7)) =[]+ [2] - [3]
12. If u :ul,UQ,U3]T and v= [vy,vo,v3]" then Flu+v) =

u1+v1 — (ug + v2) + (u3 + v3) _ Uy — ug + us v1 — U2 + U3
—(uy + 'Ul + 3(’LL2 + Ug) — 2(u?, + v3) —u1 + 3ug — 2us —v1 + 3vg — 2u3

= F(u)+ F(v). For any scalar a, F(au) = [ Gy — auy + aug ]

—auy + 3aus — 2ausg

[ up —ugtuz | aF(u). Thus F is a linear transformation.

—u1 + 3us — 2us
13. F' 1is a linear transformation.

14. If u= [ug,us]’ and v=[v1, )T then F(u+v) =

(ur +v1) — (ug + v2) Ul — U2 V1 — V2
—(ur4+v1)+(ue4ve) | = | —ur+us |+ | —v14+vy | =
U9 + v U2 V2
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15.

16.

17.

18.

19.

20.

21.

22.

aul — aus
F(u)+ F(v). Similarly, F(au) = | —au; +auy | =
auy
Ul — U2
a| —up+ug | =aF(u). It follows that F' is a linear transformation.
U2

F is a linear transformation.

Let u= [uj,uz]’ and v = [v1,v]T. Then Flu+v) = 2(us + v1) + 3(ug + v2) =
(2u1 4 3uz2) + (2v; + 3v2) = F(u) + F(v). Likewise

F(au) = 2auy + 3aus = a(2u; + 3uz) = a F(u). This means that F' is a linear transfor-
mation.

F' is not a linear transformation. For example note that

F(—e1)=1 whereas —F(e; )= —1.

The set {e; } is an orthonormal basis for W and T'(v) = (v'e; Je1 = [a,0,0]T.
= T(e1 +eo ) = T(e1 ) + T(62 ) =uj tug = [3, 1, —1]T.

) = T(2e1 —ez) = 2T(e1 ) - T(62 ) = 2111 —Uuz — [0, —1, —Q]T.

) =T(v1—2vy) =u; —2uz = [6,0]T.

= T(5vy —3va ) = 5uy —3uz = [-9,7|T.

Let up = [1,1]T and ug = [1,-1]T. If x= [21,29]7 then x=

[(z1 + z2)/2Jug +[(z1 — 22)/2]uz. Thus T'(x) =

a2 | 3 |4l g | =] 252 )
(1 + x2)/2

T(x)= 2x1
(3.1’1 — $2)/2



8 CHAPTER 3. THE VECTOR SPACE RY

23. Let u;=[1,0,1]T, ua=[0,-1,1]%, ug=[1,-1,0]T. Ifx=
[x1, 72, 23]T  then x = cjuy +coug +c3ug, where ¢ =
(r1 + 22+ 23)/2, co = (—x1 — w2 + x3)/2 and c3 = (x1 — 92 — x3)/2.
Therefore T'(x ) = ¢1[0, 1]T + c[1,0]T + ¢3[0,0]T; that is,

[ @1 ] . (—1'1 —w2+x3)/2
T( @2 )[ <x1+x2+x3>/2]‘

L T3
[z ] —1 — To + T3
24. T T = —x1 — T9 .
L *3 | I1
1 3 .
25. A=[T(e1),T(e2)] = [ 9 1 The homogeneous system of equations Ax = 6 has only

the trivial solution so N(T) = N(A) = {6} and nullity (') = 0. Since rank (T') =
2 — nullity (T) = 2, it follows that R(T) = R®.

1 -1
26. A= |1 1];N(T)N(A){9};R(T)R(A)
0 1

{[b1, b2, b3]T : b1 — by + 2b3 = 0}; nullity (T) = 0;rank (T) = 2.

27. A = [T(e1 ), T(e2)] = [3,2;N(T) = {x: 321 + 222 = 0}, R(T) = Rl;rank (T) =
I;nullity (T) = 1.

1
28. A=

_ O -

0
0 1LNUWJWM{QRMUMMR%
0 0
rank (7') = 3;nullity (7') = 0.
1 -1 0
0 1 -1
{x:21 = 13,290 = 13}; R(T) = R(A) = R?;rank (T) = 2;
nullity (7') = 1.

%whﬂﬂmhﬂwxﬂ%ﬂz[

30. A=[2, -1, 4 N(T) = {x: 221 — 22 + 423 = 0); R(T) = R';
rank (7') = 1;nullity (T') = 2.

3l. Foranyz andy in R, f(z+vy)=alz+y)=ax+ay= f(z)+ f(y).

If b is any real number then f(bx) = a(bx) = b(ax) = bf(x). Therefore f is a linear
transformation.
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32.

33.

34.

35.

36.

37.

38.

39.

40.

)

Since T' is a linear transformation and x can be viewed as a scalar, T'(x) = T'(z - 1) =
2T(1) = xa = ax for each x in R.

([ ])=] 2]
r([n])-1%]

For vectorsu and v in V,[F 4+ G|(u+v) =
Flu+v)+Gu+v)=[F(u)+ F(v)]+
[Gu)+G(v)] = [F(u)+ G)] +[F(v) +G(v)] =
[F+ G](u) + [F + G](v). Similarly, [F' + G](au) =
F(au)+G(au) =aF(u)+aG(u) =a[F(u) + G(u)] =
alF 4+ G](u) for every scalar a. This proves that F'+ G is a linear transformation.

x1
. o T1 + x2 + 3x3
2 | 221 + 529 — 223 |

3

2 -3 1 -1 4 2 1 1 3
(b)A_{Zl 2 5}’3_[2 3 3]’0_[2 3 3]

(a) (F+@G) (

)
b(aT(u)) =blaT)(u). This proves that aT' is a linear transformation.
z1
3r1 — 3T
(a) [3T] 9 — [ Sx; B 3; ]
I3 3
1

(b)A:{(l) 1 —01}’32[(?; ;3 —03]

Foru; and uz in U,[Go Fl(u; +uz) =G(F(u1 +uz)) =

G(F(uy) + F(uz)) = G(F(u1)) + G(F(uz)) = [G o Fl(u1 )+

[Go Fl(uz). Ifu isin U and a is any scalar then [G o F|(au) =

G(F(au)) = G(aF(u)) = aG(F(u)) = a[GoF](u). Thus GoF is a linear transformation.

1 —5.7}1 — 8.7}2 — 63}3
(a) [GoF| T2 = | z1+ 1622 — 1023
T3 3x1 + 3z + bxs
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41.

42.

43.

44.

45.

46.

47.

3 3 )

1 -2
32 |,
11

Write B = [B1,B2,...,Bn]. Then T(e;) = Be;j=B;, so A=
[T(el)’T(ez)v"'vT(en)] = B.

-5 -8 —6
1 16 -10

[GoFl(x)=G(F(x)) = G(Ax) = B(Ax) = BAx. By Exercise 41, BA is the matrix
for Go F.

A=le1,e2,...,en| =1, the (nzn) identity matrix.
a 0 0
0 a 0
A=[T(e1),T(ez2),...,T(en)] =[ae1,aez,...,aey]. Thus A= | . )
0 0 a
(a) A= ‘1) _é ]
[ 12 —v3)2
(b) 4= | V3/2 1/2}
[ -1/2 —V3)2
@a=| & ]
(a) =0 soA:[(l) _?];T(el):el;T(ez):—eg.
) 0=r soa=| 7y | [iTler) = —eriTler) —ea.
(c) 6 =m/2 soA—[(l] é];T(el)—ez;T(eg)—el.
@ 0=2n/3 so A= W2 V] Ter) = /2 VBT
T(ez) = [v3/2,1/2] .
Set u3 =T(e1) and ug=T(ez). By assumption ||u;| =[juz||=1

and uy'ug = 0. Moreover T(v) = auy +buy so || T(v) ||?=
(auy +buz )T (aug +bug) = a® +v? =|v||2. Thus | T(v) ||=

| v| and T' is orthogonal.
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48.

49.

3.8

u; Tuy  uy Tuy

Set uy=T(e;) and ug=T(ez). Then A =[u;,uz] and ATA = Wy up Tuy

It then follows from Theorem 16 that
ATA=1T.

AiTA; A TA,
ATA;, A TA,

A1 TA2 = A2 TAl =0. Thus

{A1,A2} is an orthonormal set.
(b) Now [[T(er) =]l Ar[l=1,[[T(ez) |=[ A2fl=1 and

T(e1) is perpendicular to T'(e2). By Theorem 16, T is orthogonal.

(a) ATA = so it follows that A; TA; = As TAs =1 whereas

Least-Squares Solutions to Inconsistent Systems

CATA = [ i li } and ATb = [ (15 } The system of equations AT Ax = ATb has unique
. N —5/13
solution x* = [ 713 ]
6 11 23] 1
.ATA = | 11 22 44 | and ATb= | 5 |. The system of equations ATAx = ATb has
23 44 90 | 7
-3 -2
solution x*= | 19/11 | +x3 | —1 |, where x3 is arbitrary.
0 1
11 16 17 10
.ATAx = | 16 30 18 | and ATb= | 17 |. The system of equations ATAx= ATb has
17 18 33 13
28/74 -3
solution x* = | 27/74 | + x3 1 | where z3 is arbitrary.
0 1
15 24 3 0
.ATA =124 39 3 | and ATb= 1 |. The system of equations ATAx = ATb has
3 3 6 -3
—8/3 -5
solution x* = 5/3 | +x3 3 | where z3 is arbitrary.

0 1
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5. ATA = 1428 and ATb= 52 . The system of equations AT Ax= ATb has solution
28 56 104
x* [ 26/7 ] [ ], where x5 is arbitrary.
11 1 1 21
6. ATA = 1 1 1| and ATb = 1 |. The system of equations ATAx = ATb has
1 1 1 1
2
solution x*= | —1 | +x3 | —1 | where z3 is arbitrary.
0 1
-1 1
. . 0 1 m
7. We must obtain the least-squares solution to Ax = b where A = 11 , X = el
2 1
0
] e, 602
and b= 9 LA A—[Q 4}and
4
A'b= _t The system of equations A" Ax= A" b has solution x* = 11l Therefore

y = (1.3)t + 1.1 is the least-squares linear fit.

8. y = (—19/35)t + 31/35 is the least-squares linear fit.
-1
9. We must obtain the least-squares solution to Ax = b where A = (1)
2
-1
B 1 . T._ | 6 2 T | 9
and b= 9 . In this case A A—[2 4}andA b—[5
3
13/10

AT Ax = ATb has solution x* = [

|

3/5

10. y = 4t — 3/2 is the least-squares linear fit.
1 -2
11. We must obtain the least-squares solution to Ax= b where A = 1 _1
1 2

—_ = =

] . The system of equations

so y = 2t + 1 is the least-squares linear fit.
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12.

13.

14.

15.

16.

17.

18.

(2) 4 0 10 5
and b = L In this case ATA = 0 10 0 | and ATb = 1 |. The system
5 10 0 34 17

of equations AYAx = ATb has solution x* = [0,1/10,1/2]T so y = ag + a1t + ast? =
(1/10)t + (1/2)#? is the least-squares quadratic fit.

y = —1/20 — (1/20)t + (1/4)t? is the least-squares quadratic fit.

1 -2 4
1 -1 1 @0
We must obtain the least-squares solution to Ax= b where A = 1 00X @ |
111 2
j’ 4 -2 6 ~1
and b= .Inthiscase ATA=| -2 6 —8 |and ATb= 10 |. The system of
0
6 —8 18 —10
3
equations AT Ax= ATb has solution x*= [9/20,43/20,1/4]T so y = 9/20+(43/20)t+(1/4)t

is the least-squares quadratic fit.
y = 31/55 — (4/55)t + (12/11)¢? is the least-squares quadratic fit.
Note that Ax —b= [f(t1) —y1, ..., [(tm) —ym]* so, by definition, || Ax —bl||?= Y72, [f(t:) —

y’i]g-

1 -1 0
2 1l a], |2
(a) A= 3 1 ,x—[@],b— 4
4 1 5
T 30 2 T 36 . T T
(b) AYA = 9 4 and A'b = 3 | The system of equations A Ax = A'b has
solution x* = [69/58,9/58]T. Therefore Q(a1,as) is minimized if f(t) = (69/58)v/t +
(9/58)cosmt.

Suppose that Ax =6, where x = [ag,a1,...,a,]T. If p(t) = ag + a1t + --- + a,t™ then
p(t;) = 0 for 0 < i < m; that is, p(¢t) has m 4+ 1 roots and m + 1 > n. It follows that
ap = a1 = --- = a, = 0. Thus nullity (4) = 0 and, consequently, rank (4) = n.

The matrix reduces to:

o O O
O O = O
S O~ N

So, rank A = 2.
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3.9 Fitting Data and Least Squares Solutions

1.

10.

11.

12.

13.

If uy = [2,1,0]" and uz = [~1,0,1]T then {uy,uz} is a basis for W. For A = [uy ,uz] the
system of equations ATAx= ATv is given by 5z — 229 = 4, —2x + 222 = 5. Solving we
obtain z; = 3 and w3 = 11/2. Thus w* = 3u; +(11/2)uz = [1/2,3,11/2]T.

. The system of equations AT Ax = ATv has solution 27 = 29 = 2. Thus w* = 2uy +2us

=12,2,2]T.

. The basis {u;,uz} is given in Exercise 1. The system AT Ax= ATv is given by 521 — 29 =

3, —2x1 + 2w = 0. The solution is 1 = 29 = 1, so w* = uy +uz = [1,1,1]T = v.

. R(B) has basis {uy,uz } where uy = [1,1,0]T and ug= [2,1,1]T. If A = [uy, uz] the system

ATAx = ATv is given by 2z + 3z = 2, 3x1 + 6x2 = 9. The solution is x; = —5, x2 = 4.
Thus w* = —5uy +4ug = [3,—1,4]T.

. R(B) has basis {uy,uz} where uy = [1,1,0]T and ug= [2,1,1]T. If A = [uy, uz], the system

AT Ax = ATv is given by 221 + 3z9 = 6, 321 + 629 = 12. Solving yields z; = 0, 2 = 2, s0
w* = 2ug = [4,2,2]T.

. The system of equations AT Ax = ATv has solution 1 = —3, 29 = 3. Thus w* = —3u;

+3uz = [3,0,3]T =v.

. R(B) has basis {uy ,uz } where u; = [1,—1,1]7 and uz = [2,0,1]*. If A = [u; ,uz], the

system AT Ax = ATv is given by 3x1 + 3z2 = 6, 321 + 5o = 8. Solving yields z; = z9 = 1,
so w*=uy +uz = [3,-1,2|T.

. The system of equations AT Ax = ATv has solution z; = —1, 2 = 2 so w* = —uy +2u2
=[3,1,1]T.
. W has basis {u} where u= [0, —1,1]*. If A = [u] then the system AT Ax= ATv is given

by 22 = —2. Thus z = —1 and w* = —u=[0,1, —1]T.
w*= —2u=0,2,—-2|".

An orthogonal basis for W is the set {uy ,uz } where u; = [2,1,0]"
and ug = [—1/5,2/5,1]*. The vector w* is given by w* = a,uj +a,uz where a; = u;'v
Juituy = 4/5 and az = ug'v Jugtuz = 11/2. Thus w* = [1/2,3,11/2]T.

w* = a,u1 +a,us where u; and ug are given in Exercise 11, a, = ug'lv /ulTul =6/5, and
a, = uz'v /ugtuz = 2. Thus w* = [2,2,2]T.

If up = [1,1,0]T and ug = [1/2, —1/2,1]T then {u;,uz } is an orthogonal basis for W. The
vector w* is given by w* = a,u; +a,us
where a, = u;'v /u;Tu; = 1 and a, = ua'v /us'us = 4. Thus w* = [3, —1,4]T.
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14. w* = a,u; +a,uz where u; and ug are given in Exercise 13, a, = uilv /ulTul = 3 and
a, = uz'v /ugtuz = 2. Thus w* = [4,2,2]T.

15. If u; = [1,-1,1]% and uz = [1,1,0]T then {uy ,uz } is an orthogonal basis for W. The
vector w* is given by w* = a,u; +-a,uz where a, = uy;'v /u;lu; = 2 and a, = uz'v /usiuy
= 1. Therefore w* = [3, —1,2]T.

16. w* = a,u; +a,uz where u; and ug are given in Exercise 15, a, = ugv /ulTul =1 and
a, = ua'v /ustus = 2. Therefore w* = [3,1,1]T.

3.10 Supplementary Exercises

1. Clearly 6 = [ 0 } is in W. Suppose x = { o } is in W. Then x1x9 = 0. If a is any scalar

0 X2
ax o
then ax = { Y| and (az1)(azs) = a2xi20 = 0, so ax is in W.
axs

Nowu:{(l) andv:{

does not satisfy (S2).

0] areinW,butu—i—v:[

1 ! } is not in W. Therefore, W

1

2. Clearly @ = [0,0]7 is in W. Let u and v be in W, where u = { Zl } and v = Zl } . Then
2 2
up > 0, ug > 0, v1 > 0, and vo > 0. If follows that u; +v; > 0 and ug + v9 > 0. Thus

utv= [u1+v1 isin W. If u= 1 } and a = —1 then u is in W but eu is not in W.
U + V9 1

Therefore W does not satisfy (S3).

3. (a) Ax =3xif and only if (A —3I)x = 0. Thus, W is the null space of the matrix A —31.

(b) The system of equations (A—3I)x = 0 has solution 1 = —z9+1x3, 2 and z3 arbitrary.
-1 1
Therefore 1 1,10 is a basis for W.
0 1

4. Let S = {uy,uz}, T = {v1,ve,vs}, and b = [bl,bg,bg]T. Reducing the matrices [uj, uz, b]

1 0 2by—0b1 1 0 3 b
and [vi,va,v3,b]yields | 0 1 b —bo and | 0 1 2 bo , re-
0 O —5by+T7by+ b3 0 0 0 —5by+ Tby+ b3
spectively. Thus Sp (S) = Sp(T") = {b : —5b; + 7by + b3 = 0}. Alternatively, reducing
1 0 5
the matrices [ul,ug]T and [vy, va, vg]T gives [ 0 5 } and | 0 1 =7 [, respectively.
01 -7 00 0

Therefore, {[1,0,5]", [0,1,—7]"} is a basis for both Sp (S) and Sp (7).
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1 -1 0 7
5. (a) A reduces to { 0 0 1 -2 ] so rank (A) = 2 and nullity (4) = 2.
0 0 0 O

(b) {[1,-1,0,7],[0,0,1, —2]}.
() {11,2,1",[2,5,0]"}.

(d) {[1,2,1],]2,5,0]} is a basis for the row space of AT and {[1,—1,0,7]%,[0,0,1,—-2]"} is
a basis for the column space of AT

(e) The homogenous system of equations Ax = 6 has solution z; = x9 — Ty, 3 = 224,
o and x4 arbitrary.A basis for N(A) is {[1,1,0,0]",[-7,0,2,1]"}.

1 01
6. (a) The matrix A = [vy,va,vs] reducesto | 0 1 2 |. If follows that {vy,va} is a basis
0 0O
for Sp (95).
3 0 1
(b) AT reducesto | 0 3 —2 | so {[3,0,1]7,[0,3,—2]"} is a basis for Sp ().
0 0 O

(2b1 — ba)/3

(b1 +02)/3

(—b1 + 2by — 3b3)/3
Therefore, Sp () = {b : —by + 2by — 3b3 = 0}. If follows that {[2,1,0]7,[3,0,1]"} is a
basis for Sp (.9).

1 01
(¢) Let b = [b1,ba, b3]". The matrix [A,b] reduces to | 0 1 2
000

t

7. The matrix A is row equivalent to the (m x n) martrix

1 1 ... 1 1

1 ... n—2 n-1
0O 0 ... 0 0
L0 0 ... 0 0 |

Thus, rank (4) = 2, nullity (A) =n—2, and {[1,1,...,1,1],[0,1,...,n—2,n—1]} is a basis
for the row space of A.

10. T(el) = T(Xl) - 2T(X2) = |:
the matrix of T.

—33 ] and T(es) = 2T (x) + T(x3) = [‘11] “ [ —33 ﬂ y
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[ —5 —8u 3-8
11. (a) x3=| 243u | andx2= | —1+3v |, where v and v are arbitrary.
L wu v
[ —8w
(b) x3 = | 3w | for any nonzero w.
w

(c) Taking u=v=0and w =1 in (a) and (b) gives
B = {x1,%x2,x3} = {[-5,2,0",[3,-1,0]",[-8,3,1]"}.
The set B is linearly independent, so is a basis for R3.

(d) e1 = x1 + 2% 50 T(er) = T(x1) + 2T(x2) = [ . ] +2[H _ [ : } e3 = 3x1 + 5%a

soT(eQ):3T(xl)+5T(xQ):3{H+5[H _ [g] es = —x; + Xz + X3 50

T(e3) = —T(x1)+T(x2)+T(x3) = — [ ! }+ [ 0 } + [ 0 ] = [ -1 ] If follows that

0 1
13 —1
A‘[25 1]'

12. {[1,0,2,0,-3,1],[0,1,—1,0,2,2],[0,0,0,1, —1, —2]} is a basis for the row space of A. There-
fore rank (A) = 3 and nullity (4) = 3.

13. b = [a, b, ¢, d]T is in R(7T) if and only if —16a — 7b + 9c + d = 0. Therefore, w;, ws, and
wy are in R(T).

[ 1—2u+3v—w ] [ 4—2u+3v—w ]
u—2v — 2w T4+u—2v—2w
14. For wy, x1 = v—l—u2w ; for ws, x3 = _3+Z+2w ; for wy, x4 =
v v
- w - - w -

[ 1—2u+3v—w ]
1+u—2v—2w
U
v+ 2w
v
w

In each case, u, v, and w are arbitrary.

15. See the solution to Exercise 14. T'(x;) = w; if and only if Ax; = w;.

16. (a) In the solutions to Exercise 14, take u = v = w = 0. This gives w1 = Ax; = Ay
wg = Axg = 4A1 +TAy — 3A4, and wy = Axy = A1 + Ao,

(b) {A1, Az Ay}
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(¢) The homogenous system of equations, Ax = 6, has solution x1 = —2z3 + 325 — s,
To = x3 — 2T5 — 2x¢, T4 = T5 + 2x¢, T3, T5, T arbitrary. Setting z3 =1, 5 = x4 =0
yields 1 = =2, o = 1, and x4 = 0. If follows that —2A; + As + A3 = 0, so
A3 =2A; — A,. Similarly, A5 = —3A1 +2A5 — Ay and Ag = A1 +2A5 — 2A4.

(d) b is in the column space of A since, by the condition established in the solution to
Exercise 13, b is in R(7T) . The system of equations Ax = b has solution z; = 0,
ro=-5,23=0,24=2,25=0, 24 =0,s0 b=—5A5 +2A4,.

(e) Ax =2A1+3A2+A3— A4+ A5+ Ag. Substituting for A3, Az, and Ag the expressions
obtained in (c) gives Ax = 2A1 + 6As — 4A4.

17. (a) If b = [a,b,¢,d]” then R(T) = {b : —16a — Tb+ 9¢c + d = 0} (cf. the solution to
Exercise 13.). The set {u;,up,uz} is the basis for R(T), where u; = [1,0,0,16]",
uy = [0,1,0,7)7, and us = [0,0,1,—9]". Moreover, if b is in R(T) then b =
[a,b, ¢, 16a + Tb — QC]T = auy + bus + cus.

(b) b = u; + 2uy + 3us.

18. (a) If vi = [-2,1,1,0,0,0)", vo = [3,-2,0,1,1,0]", and v3 = [-1,-2,0,2,0,1]", then

(b)

{v1,va,vs} is a basis for N (T') (cf. the solution to Exercise 16(c)).

Moreover,if x = [z, 132,.I3,$4,$5,£L’6]T is in N (T') then

x = [—2x3 + 325 — w6, x3 — 225 — 226, X3, T5 + 2X6, T, xG]T, where x3, x5, xg are arb-
itrary. Thus, x = z3v] + x5Ve + x4V3.

X =Vq]+ 2vy — 2v3.

3.11 Conceptual Exercises

1.

AR

® N

False

. In R? let W = {[a, a]T : a arbitrary }. Then e; + ey is in W but neither e; nor ey is

n W.

True.

False

True.

True.

False
False

False

False.

Since ax is in W, a"!(ax) = x is in W.
. {0} is a linearly dependent subset of R".
cf. Theorem 9(1).
cf. Theorem 9(2).
. Consider S = {[0,0]”,[1,0]",[3,0]"} in R2.
. Consider S; = {[1,1)7} and {[1,0]”,[0,1)"} in R2.
. The sets {[1,0]”,[0,1]"} and {[2,0]",[1,1]7} are both bases for R2.

A basis for W must contain exactly k vectors but if W # {6} then W contains

infinitely many vectors.
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10.

11.

12.

13.

14.

False. Let B = {[1,0]”,[0,1]"}. Then B is a basis for R? but no subset of B is a basis for
W = {[a,a]” : a arbitrary }.

True. A basis for W must also be a basis for R™.

False. By = {[1,1,0]%,[1,0,1]7} is a basis for Wy = {[b+¢,b,¢]" : b,c arbitrary } and
By ={[2,1,0]",[=1,0,1]"} is a basis for Wy = {[2b — ¢, b,¢]” : b, ¢ arbitrary }. BiNBy =0
but W, N Wy = {[3¢, 2¢,¢]” : ¢ arbitrary }.

No. 6@ is not in V.

B need not be a subset of W.



Chapter 4

The Eigenvalue Problems

4.1

1.

Introduction
. 1—A 0 - . .
The matrix A — A\ = 5 3. is singular if and only if 0 = (1 — A)(3 — A).
Thus A =1 and A = 3 are eigenvalues for A. The eigenvectors corresponding to A = 1
(A—1I)x=40. Solving yields 1 = —z2, o arbitrary. Therefore any vector of the form x

=a [ _1 ],a =% 0, is an eigenvector for A = 1. Similarly the eigenvectors corresponding
to A =3 are the nontrivial solutions to (A —3I)x=40. Solving yields 21 = 0,z arbitrary,
so any vector of the form x=a [ (1) ] ,a # 0, is an eigenvector for A = 3.

The matrix A — A\ = [ 2 _3 1 _)1\ ] is singular if and only if 0 = (2 — \)(—=1 — A).
Therefore A has eigenvalues A =2 and A = —1. For A = 2 the corresponding eigenvectors

are X=a [ é } ,a# 0. For A = —1 the corresponding eigenvectors are x = a _;) ] ,

a # 0.

2—A -1
-1 2—-A

A2 — 4\ +3 = (A—1)(A —3). Therefore A has eigenvalues A =1 and A = 3: Solving

The matrix A — A = [ } is singular if and only if 0 = (2—\)(2—)\) -1 =
(A—I)x=0 yields x; = x9, 2 arbitrary, so any vector of the form x= a [ i } ,a # 0, is an
eigenvector corresponding to A = 1: Solving (A — 3I)x =6 yields x1 = —z9,z2 arbitrary,

-1
so any vector of the form x= a [ 1 } ,a # 0, is an eigenvector for A = 3.

2 -1

.Az?,xza[_l],a#();)\:?),x:a[ 1},(1750.
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. 2—-A 1] . . : .

5. The matrix A — A\ = L 9| B singular if and only if 0 = (2—-X)(2—\) —1 =
A2 —4X+3 = (\—1)(\ —3). Therefore A has eigenvalues A =1 and A =3 . Solving
(A—ID)x=0 yields x1 = —x9,x9 arbitrary, so any vector of the form x=a [ _1 ] ,a # 0,
is an eigenvector for A = 1.  Solving (A — 3I)x =6 yields 1 = x9,x2 arbitrary, so any
vector x=a [ 1 ] ,a # 0, is an eigenvector for A = 3.

1
6. )\—2,X—a[ 1 },a;éO
. 1—A o] . . . . 2 .

7. The matrix A -\ = 9 1| B singular if and only if 0 = (1—X)%, soA=1 is
the only eigenvalue for A. Solving (A — I)x =6 yields z; = 0,29 arbitrary, so any vector
X=a { (1) },a # 0, is an eigenvector for A = 1.

1
8. )\:2,x:a[0 },a;«éo
: 2—-A 2 - . .

9. The matrix A— X\ = 5 5 | B singular if and only if 0 = (2—=X)(3—\)—6 =
A?2 =5\ = A(A—5). Therefore A has eigenvalues A = 0 and A = 5. Solving Ax=40 yields
x1 = —x9,x2 arbitrary, so x=a [ _i } ,a # 0, is an eigenvector for A = 0. Solving

. . 2
(A—51)x=46 yields z; = (2/3)xa,x2 arbitrary, so x=a [ 3 } ,
a # 0, is an eigenvector for A\ = 5.
-2 1

10. A=0,x=a 1 ,aZ0A=9x=aqa 4 ,a % 0.

. 1—A -1] . . : .

11.  The matrix A — A\ = L 3| singular if and only if 0 = (1 = A\)(3—A)+1 =
A2 —4)\+4 = (A —2)2. Therefore A = 2 is the only eigenvalue for A. Solving (A — 2I)x
=0 yields 1 = —x9, sox=a [ _1 } ,a # 0 is an eigenvector for A = 2.

—1
12. )\:3,x:a[ 1 ],a;&().
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13.

14.

15.

16.

17.

18.

19.

4.2

—2-=A -1

The matrix A— A\ = [ 5 9

} is singular if and only if 0 = (—=2—X)(2—\)+5 =
A2 4+ 1. Solving yields A = +i.
The matrix A — A is singular if and only if A? + 1 = 0: Solving yields A = +i.

- -1
1 2-=-A
A2 —4)\ + 5. Solving we obtain A = 2 4.

The matrix A — A\ = [ 2 } is singular if and only if 0 = (2= \)(2—)\)+1 =

A — X is singular if and only if A> — 2\ +2 = 0. Solving yields A = 1 4.

b d—A
A — (a+d)A+ (ad — b*). Note that (a +d)? — 4(ad — b?) = (a — d)? + 4b*> > 0, so the

equation has real roots.

The matrix A— X = [ @A b } is singular if and only if 0 = (a — \)(d— \) — b? =

The matrix A—\I is singular if and only if A2—2aA+(a?+b%) = 0. Since (2a)?—4(a?+b%) =
—4b% < 0 the equation has no real roots.

Let A = [CCL 2] ThematriXAT—)\I:[

0=(a—A)(d—X\) —bc=\—(a+dI

(ad — bc). Therefore the eigenvalues of AT are roots of (5); so

a— A

cl . . . .
bod— ) } is singular if and only if

coincide with the eigenvalues of A.

Determinants and the Eigenvalue Problem

1 3 -1
.My =1 2 4 1 (. Ay :det(Mll):
2 0 -2
4 1 2 1 2 4
‘0 —2‘_3‘2 —2‘_’2 0‘_18‘
[ -1 3 1]
. Mle 2 4 1 . A21:—d6t<M21):—18.
- 2 0 - -
[ -1 3 1]
Mz = 1 3 -1 Az = det(Mgl) =
20 -2 |
3 —1 1 -1 1 3
A PR P
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[ -1 3
4. My = 1 3 —1 Ay = —det(M41) = 18.
24 1
[2 -1 3
5. M3y = | 4 1 3 Agy = —det(M34) =
2 20
1 3 4 3 4 1
_2‘ 2 0 '_‘ 2 0 ‘_3‘ 2 2 '_0'
2 -1 1
6. M43 = 4 1 -1 A43 = —det(M43) = —18.
6 2 1
7. det(A) = 2417 + 4A9 + 6A31 + 244 =
2(18) +4(—18) 4+ 6(0) + 2(18) = 0.
8. det(A) = 5; A is nonsingular.
9. det(A) =0; A is singular
10. det(A) =0; A is singular.
11. det(A) = —1; A is nonsingular.
12. det(A) = 0; A is singular.
-2 1 -1 1 -1 . .
13. det(A) = 2’ 1 1 ‘ + ‘ 5 1 ’ —1—2’ 3 6; A is nonsingular.
14. det(A) =0; A is singular.
3 2 . .
15. det(A) = 2’ 1 4 ‘: 20; A is nonsingular.
16. By Theorem 4, det(A) =2(1)(2) =4; A is nonsingular.
300
17. Expansion along the first column of A yields det(A)=| 4 1 2
3 1 4
Now expansion along the first row gives det(A) =3 ‘ Z ‘ =6.
A is nonsingular.
18. det(A) = 1; A is nonsingular.
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19. Expansion along the first column in successive steps yields
0 0 2 0 2

det(A)=-3|0 3 =(-3)(2) ’ 3 1|7 (—3)(2)(—6) = 36. A is nonsingular.
21

1
2
20. (a) The described algorithm yields
(11022033 + 12023031 + 13021032 — (31022013 — (32023411 — G33a21a12 Which equals
det(A).

(b) Note that for a (4 x 4) matrix, A = (a;;), the definition of det(A) yields a sum of

products with 24 terms, whereas the “basketweave algorithm” yields an expression
1 11

with only eight summands. For A = , the basket weave algorithm

— =
N DN DN
W W N
IS JURE R

gives 7, but det(A) = 1.
21. Det (A) = 4z — 2y — 2, so A is singular when 42 — 2y — 2 = 0, that is when y = 2z — 1.

22. Det (A) = (x —2)(y + 1), so A is singular if either x =2 or y = —1.

d 1 d 11 d 1
23. For n = 2, =d*-1=({d-1)(d+1). Forn=3,|1d 1|=4d —
1 d 1 d
1 1 d
11 1 d
‘1 d’+’1 1‘—d(d—l)(d+1)—(d—1)+(1—d)
d clz 1 i d 1 1 111 1 d 1
= (d—1)%(d +2). For n = 4, L1 g4 1|4 td -1 d 1+ 111 -
111 4 1 1 d 11 d 11 d

1 d 1
1 1 d|=dd—-1)2%d+2)—-3(d—1)2=(d—1)3(d+3).
111

24. (a) If A is singular then det(A4) =0 so det(AB) = det(A)det(B) = 0. Therefore AB
is singular. Similarly if B is singular then so is AB.

(b) If AB is singular then 0 = det(AB) = det(A) det(B). Therefore either det(A) =0
or det(B) = 0; that is either A or B is singular.

25. 1 =det(I) = det(AA™1) = det(A) det(A~!). Therefore det(A~!) = 1/det(A).
26. det(AB) = det(A) det(B) = det(B)det(A) = det(BA).

27. Det (ABA™1) = det(A) det(B)/ det(A) = det(B) = 5.
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28

29.

30.

31.

32.

33.

34.

Det (A2B) = [det(A))* det(B) = 325 = 45.
Det (A~1B~1 42) = [det(A)]?/[det(A) det(B)] = det(A)/ det(B) = 3/5.
Det (AB~1A™1B) = [det(A)/ det(B)][det(B)/ det(A4)] = 1.

(a) H(n) =n!/2.
(b) n =2, 3 secs; n =5, 3 min; n = 10, 63 days.

If U = [ui;] and V = [v;;] then, by Theorem 4, det(U) =
UP1U2 * + - Upy, and det(V) = v11v99 - - - Uny. By Exercise 59, Section 1.6, UV is an upper
triangular matrix. Moreover UV is the (n x n) matrix [aij] where a11 = u11V11, .-+ Qpn =
UnnUnn. 1t follow that det(UV) = (u11v11)(u22v22) - - - (Upnvnn) = det(U) det(V).

Suppose that V' is a lower triangular matrix with diagonal entries t1,%9,...,%,. Then
VT is an upper triangular matrix with the same diagonal entries so det(V) = det(V"') =
tito -t

= t11t29. Assume that if T' is a
0 too

(k x k) matrix then det(T) = ty1tog - tgg.c Now assume that T is a [(k+1) x (k+1)]
tin tie 0tk
tao -+ tok4a

For n = 2,det(T') = ’ fi1 t12

matrix. Thus T =

0 0o ... Tet1,k11
Expansion along the first column yields det(7") =
tag -+ logkt
tin] : . Since the result holds for (k x k) matrices, we have det(T") =

0 - lryrp+
t11toz - - - tg+1 k+1. It follows by induction that for any integer n > 2, det(T") = t11to2 - - - tyn.-

4.3 Elementary Operations and Determinants

1 2 1 Ry — 3Ry 1 2 1
det(A) = 3 0 2 Rs+ Ry 0 -6 —-1| =
-1 1 3 = 0 3

-6 —1
‘ X 4‘ a1,
det(A) =20
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|

Ry — Ry
Rs — Ry

{

™M — O

— o

-2 =2 | =36.

0

4. det(A) = —24.

—
i
Rl
- s
|
™
o
S s
o
— _
Il
m o< T
| — o b~
Al
e
N © N bl
— \2}
ﬂ ~
— i
NI S~—
—
Il Qs
Il
™M <t
_ ™ o -
_1
< N ™
2324%1_A
Il N o o
—~
N N
+ ~
©
o =
Yo

6. det(A) = —21.

—

[\g)

) ~

T nm

~ I

O -

- C

—

oo o .
A oo oA

S M — AN nﬁ
(iR SR

OO — <A ||
AN — — O

— AN —~

. — = = A o mm©

— 6

1_A o ™mo

e < e == ’ ,

—~— ~—~ <t ™

N - N oo Q0O

C S~—

T = = b

—~ A

) = OO

C N~— N—

— ——
o= A oo oa — - A o Mm M ©
oo oa oo~ < Mmoo N~ — 0
oo — <t O Mm— ™ o - o™ oo <t -
— AN = — N O N O O O O O N

.- o0 =

2 000

= (=D2)B3)4)(2) = —48.

S O

o <

™ M

—

5 6 1 2
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. 0 ;MmO < o
0
—
1_A — O —H O |
Il <+ N o o Il
MmN O W ae e e c oo
— = - O U SO N M
,
Nn oo ~ o ™Mo
—~
— o oo Dmo — = A
RU. —~
= T n @
j : z
~ ~ 1
Il — — Il
<t
~—
—~
o Mmoo ™ SmL Y o O mo
~—~
— O — o o O O O N
—~
oNOoO ™ ot o & A&~
—~
—
o—- oo coao co ™
~—
S — ~
— — —

3det(A) = 6.

13. det(B)

= det(A) = 2.

14. det(B)

—det(A4) = —2.

15. det(B)

= det(A) = 2.

16. det(B)

17. det(B) = —2det(A) = —4.

18. det(B) = det(A) = 2.

0 0 0 4

1 3 21

2 4 26

21 2 3

{R1 —2R4}
21 2 3
1 2 11

1 3 21
1 2 11

19.

2
-2
-1

™M 0O
(.
— O O
—~~
<t
L
—
Al
Rl
~
[
G
(\
5 & I~
—
v |
Il
NN o —
(eI ]
M o=
— N s
= -
_ ~~
~— <t
I L

0 41 3

1
2
0

2
3
—4

0
1

{R4s — 2R3}

02 21
1 3 1 2

21.

-1

0

2 21 4
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4 1 3 0 0 3
2 21 {RlJ_“R?’} 2 21 _(3)'—421
—4 -1 0 - —4 -1 0
22. 4
1 a a? Ry — Ry 1 a a?
23. |1 b b R — R, 0 b—a b —ad
1 ¢ 2 = 0 c—a 2 —ad2

1 a a®
=0b—-a)(c—a)|0 1 b+ {RS:RQ}
0 1 c+a -
1 a a®
(b—a)(c—a)| 0 1 b+a
0 0 c—b
1 a a’

=(b—a)(c—a)(c—0)
0 0 1

24. (b—a)(c—a)(c—"0b)(d—a)(d—b)(d—c).

0 1 b4+a|=((b-a)c—a)(c—0).

., Gin] is the i row

Ay
A>
25. Write A = . where A= [a;1, a2, ..
A, |
[ CA1
CA2
of A. Then cA = ) so0, by Theorem 7, det(cA) = ¢" det(A).
| cAn

26. Suppose the i* and j** rows of A are identical and let B denote the matrix obtained

by interchanging these two rows. By Theorem 6 det(B) =

det(A) = det(B).

10

27.A—[0 0

} and B = [ 00 ] is one possibility.

01

But AT = —A
Therefore det(A) = (—1)" det(A).

28. By Theorem 5, det(A) = det(AT).
(—1)™det(A).
—det(A).

so by Exercise 25,

—det(A). But B = A
It follows that det(A) = —det(A), so det(A) =0.

det(AT)
In particular if n is odd then det(A) =
It follows that det(A) =0 and hence A is singular.

SO
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4.4 Eigenvalues and the Characteristic
Polynomial
1. p(t) = (1—t)(3—1t). The eigenvalues are A =1 and A = 3, each with algebraic multiplicity
1.
2. p(t) = (2 —1t)(—1 —t). The eigenvalues are A = 2 and A = —1 each with algebraic
multiplicity 1.
2t -1 ) .
3. p(t) = 1 94 |7 2—-t)2—t)—1=t"—4t+3=(t—1)(t — 3). The eigenvalues
are A =1 and A = 3, each with algebraic multiplicity 1.
4. p(t) = (t — 1)2. The only eigenvalue is A = 1 and it has algebraic multiplicity 2.
1—¢ -1 ) ) . .
5. p(t) = 13—y =(1—-t)3—t)+1=1t>—4t+4=(t—2)°. The only eigenvalue is
A =2 and it has algebraic multiplicity 2.
6. p(t) =t(t —5). The eigenvalues are A =0 and A =5, each with algebraic multiplicity 1.
—-6—-t -1 2
7. p(t) = 3 2—t 0 |=-t3+t2+t—1=—(t—1)%(t+1). The eigenvalues are
—-14 -2 5-t
A =1 with algebraic multiplicity 2 and A = —1 with algebraic multiplicity 1.
8. p(t) = —t(t + 1)2. The eigenvalues are A = 0 with algebraic multiplicity 1, and A\ = —1
with algebraic multiplicity 2.
3—t —1 -1
9. p(t)=| —12 —t 5 =-t3+22+t-2=
4 -2 —-1-t
—(t—2)(t —1)(t +1). The eigenvalues are A =2, A =1, and A = —1 each with algebraic
multiplicity 1.
10. p(t) = —(t — 1)3.The only eigenvalue is A = 1 and it has algebraic multiplicity 3.
2—-t 4 4
1. pt)=| 0 1-t -1 —(2—t)' 1It 3__1t ‘—
0 1 33—t
(2—1t)(t? —4t+4) = —(t—2)3. The only eigenvalue is A\ = 2 and it has algebraic multiplicity
3.
12.

(t) = (t — 5)%(t + 1)(t — 15). The eigenvalues are A\ = 5 with algebraic multiplicity 2,

p
A = —1 with algebraic multiplicity 1, and A = 15 with algebraic multiplicity 1.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

5—t 4 1 1

4 59—t 1 1

e T T
1 1 2 4—1
10). The eigenvalues are A = 1, A = 2, A = 5, \ = 10, each with algebraic multiplicity 1.

=4 — 18134+ 97t% — 180t +100 = (t—1)(t—2)(t —5)(t —

p(t) = (t—2)3(t+2). The eigenvalues are A = 2 with algebraic multiplicity 3, and A = —2
with algebraic multiplicity 1.

Let x be an eigenvector corresponding to A. Thus x #60 and Ax = Ax . Multiplication
by A7! yields x= A~}(\x) = M ~!x. Since A is nonsingular A\ # 0 (cf. Theorem 13).
Thus multiplication by A1 gives A= lx= A"1x.

If Ax=Ax then (A4 al)x= Ax+alx=Ix+ax= (A + a)x.

Let x be an eigenvector corresponding to A and suppose A¥x = \x for some integer
k> 2. Then A" lx= A(AFx) =
A(NFx) = M (Ax) = M(A\x) = M+1x. Tt follows by the principle of induction that A™x
= A\"x for each positive integer n,n > 2.

(a) q(H)x= (H® - 2H? — H +2])x= H3x —2H?x —Hx +2[x =
A3x —2A%x —Ax +2x = (A3 — 202 — A\ + 2)x = ¢(M\)x.

(b) The eigenvalues for ¢(A) are ¢(1) =0 and ¢(—1) = 0. The eigenvalues for ¢(B) are
q(0) =2 and ¢(—1) =0.

35 -3 —15
qC)=C3-20?-C+2I=| —44 2 19 | -
68 —6 —29
7 -1 -7 3 -1 -1 2 00
2| -16 2 7|-|-12 0 5|+|020|=0
32 -2 —13 4 -2 -1 00 2

a) Suppose B =[B1,B2,B3]|. Then = Be; =By ,0=

Bes =By, and = Beg=Bs. Thus B = O.
(b) Since Au; = \ju; for ¢ =1,2,3, it follows, as in Exercise 18a, that p(A)u; = p(\;)u;
= (0)u; =6. By property 3 of Theorem 9 in Section 2.5, {uy ,uz,ug} is a basis for
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R3. Therefore every vector x in R? can be expressed in the form x = aju; +agus
+asug . It follows that p(A4)x =
arp(A)uy +azp(A)u +agp(A)yug = 0. By part (a), p(A) = O.

a2+ bc ab+bd
ca+dec cb+ d?

—(a+d)[i §]+(ad—bc)[(1) 2]:[8 8]

26. Expansion yields p(t) = —[t3 — (a+b+c)t? + (ab+ ac+ bc)t — abc]. Similarly the properties
of matrix multiplication imply that —(A — al)(A —bI)(A —cl) = —[A% — (a+ b+ c)A? +
(ab+ ac+ bec)A — abel] = p(A). Therefore
p(A)=—(A—al)(A-bl)(A—cl) =

25. p(A) = A?2 — (a+d)A + (ad — be)l = [

0 d f a—b d f a—c d f
0 b—a e 0 0 e 0 b—c e
0 0 c—a 0 0 c—b 0 0 0

—a1 —t —ap

27. (a) Forn:2,det(A—tI):‘ ]:t2+a1t+a0:

1 —t
—as —t —a; —agp
q(t). Forn = 3, det(A —tI) = 1 —t 0 |. Expanding along the third
0 1 —t

column and applying the case n = 2

yields det(A — tI) = —ag Lt ‘t‘ —a2 —t —ap } _

0 1 1 —t

—t(t* + ast + a1) — ag = —q(2)

-3 1 -2 2
1 0 0 0 .. . .
(b) A = 01 0 o | The characteristic polynomial for A is det(A — tI) =

00 1 0
-3t 1 -2 2
1 —t 0 0

0 1 -t o9
0 0 1 —t¢

(¢c) For some integer k > 2, assume that if

—Qak—-1 —Qg-2 -+ —a1 —ao
1 0 0 0

A— 0 1 - 0 0
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then det(A — tI) = (=1)*(t* + ap_1t* "1 + -+ + a1t + ap). If A is the [(k+ 1) x

—a—1 —ap—1 -+ —a1 —ao

1 -1 e 0 0

(k+1)] companion matrix then det(A —¢I) = 0 1 o 0 0
0 0 1 —t

Expanding along the
(k4 1)t column and using the case n = k yields det(A — tI) =

1 =t --- 0 —a —t —ag—1 --- —a1
(L1yk+ o 1 --- 0 . 1 —t -+ 0
- ao | . T . =
o o0 --- 1 0 0o - —t

(=D lag — t(=D)F(t* 4+ apt* ' + -+ + ast + a1) = (—1)*1q(t). By mathematical
induction det(A — tI) = (—1)"q(t) for all n,n > 2.

28. xo=[1,1,1]T,x1 = [1,-7,1]T,x2 = [9, -7, 17T, x3 = [17, —23, 33] %,
x4 = [41,-39,81]T x5 = [81, -87,161]T.5y = —5/3 ~
—1.667, 31 = 75/51 ~ 1.471, 3 = 875/419 = 2.088, 33 = 4267/1907
~ 2.238, B4 = 19755/9763 ~ 2.023.

29. Note that x;= Alxq so by property (a) of Theorem 11,x5=c1 A{ul +02)\%uz + e Niup
. Set aj = Aj/A,1 <j<n. Then a; =1 whereas |a;|< 1 for 2 < j <n. In particular

limy, o0 af = 0 if j # 1. It follows that x X1 = 3 cicpA AN iy =
1<i,5<n
AR (2 Tag ), where g, = 37 cicjafa?JrluiTuj In particular
1<i,5<n
(1,5) # (1,1).

limy,_oo 7, = 0. Similarly xx = A\ (ciuTuy +t;) where
limg_ o tp = 0. Therefore limy_ o B = A1.

30. Let A and AT have characteristic polynomials p(t) and q(t),
respectively. Note that (A —tI)T = AT —tI. Tt follows that p(t) =
det(A —tI) = det(A — tI)T = det(AT — tI) = q(t).

31. Suppose p(t) = t?>+ait+ag. Then p(0) = ag = det(A—0I) =4 and p(1) =1+a;+ag =
det(A — I) = 1. Thus we have

aq = 4
ap+ar = 0°

Solving yields ag = 4,a; = —4. Therefore p(t) = t2 — 4t + 4.
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32. p(0) = ap = det(A —0[) =0 and p(1) = 1+ a1 + a9 = det(A — I) = —4. Therefore
ao=0,a; = —4, and p(t) = t> — 5t.

33.  Suppose p(t) = —t3 + agt? + ai;t + ap. Then p(—1) = 1 +az — a3 +ag = det(A+ 1) =
0,p(0) = ap =det(A—0I) = —1, and p(1) = =14+ as+a; +ap = det(A—1I) = 0. It follows
that ap = —1,a; = 1, and ag = 1. Therefore p(t) = —3 + >+t — 1.

34. p(—1) = 14a2—a1+ap = det(A+I) = 0,p(0) = ap = det(A—0I) =0, and p(1) = —1+az+
ai + ag = det(A — I) = —4. Therefore ag = 0,a1 = —1,a2 = —2, and p(t) = —t3 — 2t> —¢.

4.5 Eigenvalues and Eigenvectors
1. (A—3I)x=§6 is the system
—X1 — T9 = 0
—Xr1 — T9 = 0 )

The solution is 1 = —xz9,xo arbitrary, so E) consists of the vectors of the form
x9 [ _1 } Thus {[-1,1]*} is a basis for E\. The eigenvalue A\ = 3 has algebraic and
geometric multiplicity 1.

2. The system (A — I)x=0 has solution z1 = x2,v9 arbitrary. {[1,1]T}
is a basis for Fy. The eigenvalue A = 1 has algebraic and geometric multiplicity 1.
3. (B—2[)x=40 is the system
—X1 — T9 = 0
r1+x2=0"

The solution is 1 = —x9, xo arbitrary, so F/y consists of the vectors of the form xo { _} ] .
Thus {[~1,1]T} is a basis for E). The eigenvalue A = 2 has algebraic multiplicity 2 and
geometric multiplicity 1.

4. The system (C' — I)x =6 has solution z; = (1/2)z3,x2 = (—3/2)z3,
x3 arbitrary. The set {[1,—3,2]T} is a basis for ). The eigenvalue A = 1 has algebraic
multiplicity 2 and geometric multiplicity 1.

5. (C+I)x=0 is the system

—5r1 — To + 2x3 = 0
31‘1 + 3332
—14z1 — 229 + 6x3 = 0

I
o
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The solution is 1 = (1/2)x3, x9 = (—1/2)x3, x3 arbitrary, so E)

1

consists of vectors of the form a | —1 | where a is an arbitrary scalar. Thus {[1, —1,2]T}
2

is a basis for F\. The eigenvalue A = —1 has algebraic and geometric multiplicity 1.

6. The system (D — I)x=46 has solution z1 = (1/2)xy — (3/8)z3,x2 and z3 arbitrary. The
set {[1,2,0]%,[—3,0,8]"} is a basis for E\. The eigenvalue A = 1 has algebraic multiplicity
3 and geometric multiplicity 2.

7. (E+ I)x=40 is the system

Tr1 + 4x9 + 4dx3 + x4 = 0
dr1 + Txo + x3 4+ 4dxy = 0
dxy + w9 4+ Trg + 4dxy = 0
r1 + 4x9 + 4dx3 4+ Txy = 0
The solution is x1 = x4, T2 = —x4,x3 = —x4, x4 arbitary, so E)
1
-1
consists of vectors of the form x4 1 Thus {[1,-1,-1,1]T}
1
is a basis for F. The eigenvalue A = —1 has geometric and alge-
braic multiplicity 1.
8. The system (E —51)x=46 has solution 1 = —z4, 29 = —x3,23 and x4 arbitrary. The set

{[~1,0,0,1]%,[0,~1,1,0]"} is a basis for Ej.
The eigenvalue A = 5 has algebraic and geometric multiplicity 2.

9. (E—15I)x=48 is the system

921 + 420 + 43 + x4 = 0

4ry — 9r2 + w3 + 4dxy = 0

41 4+ a9 — 923 + 4dxy = 0

r1 + 4zy + 41‘3 — 924 =0

The solution is 1 = x2 = x3 = x4, x4 arbitrary so E) con-

1
1

sists of vectors of the form x4 e Thus {[1,1,1,1]*} is a basis
1

for E. The eigenvalue A = 15 has algebraic and geometric multi-
plicity 1.
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10. The system (F' 4 2I)x =46 has solution x; = x9 = x3 = 24,24 arbi-
trary. The set {[1,1,1,1]T} is a basis for E). The eigenvalue
A = —2 has algebraic and geometric multiplicity 1.
11. (F —2I)x=#0 is the system
-r1 — T2 — x3 — x4 = 0
—1'1—1'2—1'3—1'4:0
-1 — x3 — x3 — x4 = 0
—$1—$2—$3—$4=0
The solution is x1 = —x9 — T3 — x4, T2, T3, T4 arbitrary so E), consists of vectors of the
-1 -1 -1
form xo 0 + x3 1 + x4 0| Thus {[-1,1,0,0]"*,[-1,0,1,0]*,[-1,0,0,1]" }
0 0 1
is a basis for Ey. The
eigenvalue A = 2 has algebraic and geometric multiplicity 3.
12.  The characteristic equation is p(t) = —(t — 1)2(t — 2) = 0 so the eigenvalues are \ = 1
T
and A = 2. The eigenvectors for A = 1 are the nonzero vectors of the form | z3 | =
3
1 0
1| 0 [ + a3 | 1 |. The eigenvectors for A = 2 are the nonzero vectors of the form
0 1
xI9 1
r9 | =xo | 1 |. The matrix is not defective.
0 0
13.  The characteristic equation for the given matrix A is 0 =

2—1 1 2
det(A —tI) = 0 3—t 2 | = —(t—2)2%(t—3).
0 0 2—-t¢
The eigenvalues are A =2 and A = 3. The system (A — 2I)x =46 is given by

To + 223 =0
To+2x3=0"
In the solution x1 is arbitrary, zo = —2x3, and x3 is arbitrary. The eigenvectors for A = 2
€1
are the nonzero vectors of the form | —2z3

3
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14.

15.

16.

17.

1 0
=x1| 0| +x3| —2 |. Therefore A = 2 has algebraic and geometric multiplicity 2.
0 1

The system (A — 3I)x=46 is given by
—x1+ T2+ 223 =0

2563 =0.
—xT3 = 0
The solution is &1 = w9, x2 arbitrary, xs = 0. The eigenvectors for A = 3 are the nonzero
xT9 1
vectors of the form | w9 | =xz9 | 1
0 0

Therefore A = 3 has algebraic and geometric multiplicity 1. The matrix is not defective.

The characteristic polynomial is p(t) = —(t — 1) so A = 1 is the only eigenvalue. The
il 1
eigenvectors for A = 1 are the nonzero vectors of the form O |=21| 0. ThusA=1
0 0
has algebraic multiplicity 3 and geometric multiplicity 1. The matrix is defective.

The given matrix A has characteristic equation 0 = det(A — tI) = —(t — 2)%(t — 1)
so the eigenvalues are A = 1 and A = 2. The system of equations (A — I)x =6 has
solution x1 = —3xs, xo = —x3,x3 arbitrary so the eigenvectors for A = 1 are the nonzero
vectors of the form x = [~3x3, —x3,23]T. For the system (A — 2I)x =60, z; and xy are
arbitrary and z3 = 0. The eigenvectors for A = 2 are the nonzero vectors of the form x

1 0
=z1| 0| +a22| 1 |. The matrix is not defective.
0 0

The characteristic polynomial is p(t) = —(t — 3)2(t +4) so the eigenvalues are A = 3 and
A = —4. The eigenvectors for A = 3 are the nonzero vectors of the form x= [5x3, 33, 23]
The eigenvectors for A = —4 are the nonzero vectors of the form x = [—2x3, (2/3)z3, 23]T.
Since A = 3 has algebraic multiplicity 2 and geometric multiplicity 1, the matrix is defective.

The given matrix A has characteristic polynomial p(t) =
—(t+1)(t—1)(t —2) so the eigenvalues for A are A = —1, A = 1,\ = 2. The system of
equations (A+ I)x=40 has solution z1 = (1/2)x3, x2 = x3,x3 arbitrary so the eigenvectors

for A = —1 are the nonzero vectors of the form x = [(1/2)x3,z3,23]T. The system of
equations (A—I)x=46 has solution x1 = —3x9,zo arbitrary,zs = —7x2 so the eigenvectors
for A =1 are the nonzero vectors of the

form x = [~3xa, z2, —722]T. The system of equations (A — 2I)x =6

has solution 1 = (1/2)x3, 29 = (—1/2)x3 so the eigenvectors for
A =2 are the nonzero vectors of the form
x = [(1/2)x3, (—1/2)x3,23]T. The matrix is not defective.
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18. uz = [1,1]T is an eigenvector for the eigenvalue A = 2 and ug = [2,5]T is an eigenvector
for the eigenvalue A = —1. Moreover x = —6uy +3uz so A% = —6(2)%uy +3(—1)Puy
= [-6138,—6129]T.

19. The characteristic polynomial for A is p(t) = —(t — 1)%(t — 2) so the eigenvalues for A
are A\ =1 and A = 2. The vectors uy = [1,0,0]" and uz = [0,1,2]" are the eigenvectors
for A\ =1 and ug= [1,2,3]" is an eigenvector for A = 2. Moreover x = uy +2uz +us 5o
A% = (1)1%; +2(1)'%z +(2)%ug = [1025, 2050, 3076] ™.

20. Since A\ is an eigenvalue for H,nullity (H — AI) > 1. It follows that rank (H — \I) < 3.
But a,b and ¢® are nonzero so the first three columns of H — AI are linearly independent.
Therefore
rank (H — AI) > 3. Thus rank (H — AI) = 3 and, hence,
nullity (H — AI) = 1. This proves that A has geometric multiplicity 1.

21. P=Plp2=p-lp—1.

22.  Suppose Px= Ax,x# 6. Then \?>x= P?x= Px=)x so (A2 —\)x=0. Since x #0,
0=X2—X= )\ —1). Therefore either A\ =0 or A = 1.

23. P? = (ud")(ud") = u(utu)ut = uu’ = P,

24, (I -Q?=1*-1Q-QI+Q*>=1-Q. Also (I —2Q)?>=1%—-2IQ —2QI +4Q?* =1 so
(I-2Q)~t=1-2Q.
25. P? = (ud" + vvh)(uu + vvl) = u (utu)u® + u (u'v)v? +

v viu)ul + v (viv)vT = uu® +vvt = P.

26. P(au+bv) = aPu+bPv = a(uu’ +vvh)u +b(uu +vvl)v =
au(uu) + av (viu) + bu(u'v) + bv(vlv) = au+bv.

27. (a) A has eigenvalues A =1 and A =3 with corresponding eigenvectors

u; = [1/v/2,1/v2]T and ug = [-1/v/2,1/v2|T, respectively,

where || uy || =||uz|| = 1. It is easily checked that uju;® +3ugus’ = A.
(b) A has eigenvalues A = —1 and A =3 with corresponding eigenvectors
ug = [-1/v2,1/V2]T and uz = [1/v2,1/V2]T, respec-
tively, where ||uy || =||uz|| = 1. It is easily checked that
—u1u1T +3U2U2T = A.
(¢) A has eigenvalues A = 4 and A = —1 with corresponding eigenvectors u; =
[2/v/5,1/4/5]T and ug = [1/v/5,—2//5]T, respec-
tively, where ||uy || =||uz|| = 1. It is easily checked that

4u1u1T — U2LI2T = A.
28. f(uv) =uT(Bv) =uT(Av) = (Av)lu=vTATu=vT(4u) =
vI(Au) = A(vlu) = A(u'v). Since 8 # A it follows that u'v = 0.
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29.

4.6

10.

11.

12.

13.

14.

15.

16.

17.

18.

Set B= A —C. For each i,1 <i <n, Buj= Au; —Cu; = Au; —Ajug (ugTug ) — - — Ay
(uilu; ) — -+ — Apup (uguy ) = Ay —\u;=0. If x isin R then x may be written in
the form x = ajuy +--- + ayun, so Bx=a;Buy +- -+ + a,Buy, =0. In particular Be; =0
for 1 <j<n. If B=[By,...,By]then Bej=Bj, so Bj=60for 1 < j <n. This shows
that A—C =0s0o A=C.

Complex Eigenvalues and Eigenvectors

u =3+ 2i.

Z=1-1.

. u+v="7-3i.

. Z4+w=3-2.

u+u=~6

s —§ = 4.

v = 17.

. ut =10 — 114,

.82 —w= -5+ bi.

22w =2+ 4.

uw? = 17 — 6i.

s(u? 4 v) = 31 + Ti.

w/v = (uv)/(vT) = 10/17 — (11/17)i.
v/u? = 8/169 + (53/169)i.

s/z = (s2)/(2z) = 3/2 + (1/2)i.
(w+7)/u=22/13+ (6/13)i.
w+iz=1.

s —w =0.
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19.

20.

21.

22.

23.

For the given matrix A the characteristic polynomial is p(t) = t2 — 8t + 20 and the
eigenvalues are A =4+ 2i and A =4 — 2i. The system of equations (A — (4 + 2:)I)x =0
is given by

(2 — 21)$1 + 8rsg = 0
—r1 + (—2 — 2i)$2 = 0
The solution is z1 = (—2 — 2i)x9, xo arbitrary. Thus the eigenvectors for A = 4 + 2i are

the nonzero vectors of the form
X = [(—2 — 2i)z2, 22]T. By Theorem 16, X is an eigenvector corresponding to \.

The characteristic polynomial is p(t) = t? + 4 so the eigenvalues are A = 2i and \ = —2i.
The eigenvectors for A = 2i are the nonzero vectors of the form x = [(—1 — i)zo, z2]T. By
Theorem 16, X is an eigenvector for A = —24.

The given matrix A has characteristic polynomial p(t) = t2 4+ 1 so the eigenvalues are
A =1 and A = —i. The system (A —il)x =6 is given by
(—2 — i)l‘l - o = 0

or1 + (Z—i).fg = 0

The solution is x; = ((—2 +4)/5)x2, so the eigenvectors for
A =i are the nonzero vectors of the form x = [((—2 +4)/5)x2, 23] .

By Theorem 16, X is an eigenvector for A = —i.

The characteristic polynomial is p(t) = —(t — 2)(t? — 4t + 5). The eigenvalues are
Al = 2,0 = 2+14, and \o = 2 —i. The eigenvectors for \; = 2 have the form x
= [0, —z3,73]T, 23 # 0. The eigenvectors for Ay = 2 +4 have the form x = [z3,(—2/5 —
(1/5)i)1}3,$3]T, L
x3 # 0 and X is an eigenvector for Ay = 2 — 3.

The given matrix A has characteristic polynomial p(t) =
—(t —2)(t? — 4t + 13) so the eigenvalues for A are \; = 2, \y =
2+ 3i, and Ay = 2 — 3i. The system (A —2I)x =40 is given by

—r1 — 4.%2 — xr3 = 0
3T + 3x3 = 0.
r1 + a2 + w3 = 0
The solution is 1 = —x3,x2 = 0,x3 arbitrary so the eigenvectors corresponding to A\; = 2

are of the form x = [~z3,0,23]T. The system [A — (2 + 3i)I|x =6 is given by
(—1 — 3i).%'1 — 4$2 — r3 = 0
3r1 — 3dixze + 3rs = 0.
r1 + To + (1 — 3@).21?3 =0
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24.

25.

26.

27. x

28. X

29. x

30. X

31.

32.

33.

The solution is 1 = (—=5/2 + (3/2)i)xs and x2 = (3/2 + (3/2)i)x3

so the eigenvectors for A\ = 2 4 3¢ are the nonzero vectors of the form x = [(—5/2 +
(3/2)i)xs3, (3/2 + (3/2)i)x3, z3)T. By Theorem 16, X is an eigenvector for Ay = 2 — 3.

The characteristic polynomial is p(t) = (t* — 2t + 26)(t> — 2t +5) so the eigenvalues are
M =145, =1—05i,Ay =1+ 2i,\y =1—2i. Eigenvectors for \; are the nonzero
vectors of the form x = [ixg, z2, 0, O]T and X is an eigenvector for Al Eigenvectors for Ay
are the nonzero vectors of the form x = [0,0,iz4, 24]7 and X is an eigenvector for \o.

r=2—14,y=3—2i.

=1,y =2.
=(1—i)(1+i)+2(2) =6 so|x]|=+6.
:(3 )B+i)+(2+19)(2—i)=10+5=15 so ||x] = V15.
=(1+2i)(1—2i)+ (—9)(i) + B—14)(3+i) =5+1+4+10=16. Thus || x||= V16 = 4.
=(=20)(20))+(14+9)(1—-i)+30B)=4+2+9=15 so ||x|= V15.
0.5835 — 0.14603
A1 = —1.4937 + 1.2616¢, x; = 0.1650 — 0.47621 i Ao = —1.4937 — 1.2616¢, xo =
—0.4369 + 0.4397¢
0.5835 + 0.14601 —0.4486
0.1650 + 0.4762¢ |; A3 = 10.9873, x3 = | —0.7312 |. In each case, the eigenvectors
—0.4369 — 0.4397¢ —0.5139

are chosen to have length 1.

—0.0558 — 0.6977i

Al = —3.6884 + 2.8416i, x; — | —0.4571+0.1436i |: Ay — —3.6884 — 2.8416i, x5 —
0.3948 + 0.3532i
—0.0558 + 0.6977i —0.4184
04571 — 0.1436 |; A3 = 13.3769, x5 = | —0.7889 |. Fori=1,2,3,||x;] = 1.
0.3948 — 0.3532i —0.4501
[ _0.0781 — 0.6033i |
A = 11857 + 2.68850, x; — | 03495+ 0.5754d

0.1199 — 0.1125; |’
| 0.1963 4 0.3334i |
[ —0.0781 + 0.6033i |

—0.3495 — 0.5754i |

0.1199 4+ 0.1125i |’

0.1963 — 0.3334i

A2 = 1.1857 — 2.68851, x5 =
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—0.5484
—0.0550
Ny = 16.8037, x5 = | _ 00 |
—0.8160
0.7046
—0.6728 .
Ay = 4.8249, x4 = 02027 |- Fori=1,2,3,4,|x;]|=1.
—0.0995
[ —0.2742 + 0.1318; ]|
. —0.6251 — 0.1139¢
34. A\ = 0.2617 4 2.00761, x; = 0.1594 + 0.2495i |’
| 0.5871—0.2672i |
[ —0.2742 — 0.1318; ]|
_ . | —0.6251 4+ 0.1139: |
Ao = 0.2617 — 2.00761, x9 = 0.1594 — 0.2495i |’
| 0.5871 +0.2672:
0.5848
0.5644
A3 = 16.6911, x3 = 0.1660 |’
0.5585
—0.4955
0.6192
i = 3.7856, x4 = | 0o
—0.5659
35. Let z=a+bi and w = c+ di.
(a) z+w=(a+c)+(b+d)i soztw=(a+c)— (b+d)i=Zz+w.
(b) zw = (ac — bd) + (ad + be)i so zw = (ac — bd) — (ad + bc)i.  Therefore Zw =
(a — bi)(c — di) = (ac — bd) — (ad + be)i = zZw.
(c) z4+Zz = (a+bi)+ (a — bi) = 2a.
(d) z—z=(a+bi) — (a—bi)=2b.
(e) 2z = (a+ bi)(a — bi) = a® — b*i* = a® + b2
36. If A= [a;] and B = [b;;] then AB is the (n x p) matrix [c;;] where ¢;; = > ¢ aipby;-
Likewise A B is the (n x p) matrix [d;;] where d;j = > p_; Gkbr; = Y peq Gikbrj =
> kheq @ikbr; = Cj. Thus A B = AB. If A is a real matrix and x is an (n x 1) vector
then Ax = Ax = AX.
37. (AB)* = (AB) = (AB)' =B A" = B*A*".
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38. (a) First note that for vectors x and y,y*x = y*x** =
(x*y)* = x*y. Now suppose that Ax = Ax where x #0. Then X [ x| * = AX'x
Ax*x = x*(Ax) = x*(4Ax) = (Ax)*x = (x*4A*)x = x*(4x) = x*(AX) = AX*X
Xlx|* =

Alx||?. Since ||x||?# 0,A =X and )\ is a real number.

(b) A* is the (n x n) matrix [b;;] where b;; = @j;. Since A = A*, a;; =aj; for 1 <i,5 <n.
In particular, a;; = a;; for 1 <i <n, so a;; is a real number.

39. (a) Sincep(r)=0 wehave 0=0=p(r) =ao +ar + -+ a7 = ag+ar 7+ - -+a,r" =
ag + a7 + -+ a, 7" = p(7T).

(b)  Write p(t) = ¢(t — r1)(t — r2)(t — r3) where ¢ is a real number and ry, 79,73 are the
(not necessarily distinct) roots of p(t). If all three roots are real numbers then there
is nothing to prove, so assume that 71 = a + bi, b # 0. By (a) we may also assume

that ro = 71 = a—bi. Thus p(t) = c(t—r1)(t—r2)(t—r3) = c[t? —2at+(a®+b%)](t—7r3).
Since the coefficients of p(t) are real numbers, it follows that r3 is a real number.

(¢) The characteristic polynomial p(t) = det(A—tI) has degree three and real coefficients.
By (b) p(t) has a real root so A has at least one real eigenvalue.

40.  For any vector x, | 4Ax [|2= (AX)TAX = (A%)T(4x) = xTATAx = xTx =|| x||2. In
particular if Ax = Ax,x # 6, then ||x||2=
[ Ax][2= 2% (Ax) = A (XTx) = I\ [ x||2. Thus 2\ = 1.

41. Let A be an eigenvalue for A (note that A is real by Theorem 17) and suppose x in R"

is a corresponding eigenvector. Then x#6 and 0 < x TAx=xT(Ax) = \xTx = \ || x| 2
Since || x|/ ? > 0 it follows that A > 0.

42. cf. Exercise 40.

4.7 Similarity Transformations and
Diagonalization

1. A has eigenvalues A = 1 and \ = 3 with corresponding eigenvectors u; = [1,1]7 and uz

= [-1,1J%, respectively. If S = [u; ,uz] then S~'AS = D where D = [ (1) g ] Now

0 243

1 0 122 —121
5 5 _ 5a-1 _
D—[ :|SOA =S5D~S —[_121 122}

[T 1] ease (00 5 ofO 07o, [ 16 —16
N e P ) P )
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3. A has only one eigenvalue, A = —1. The corresponding eigenvectors are the nonzero
vectors of the form x = [z, 22]T. Since we cannot find a linearly independent set {uy ,uz }
of eigenvectors for A, A is not diagonalizable.
4. A has eigenvalue A = 1 with associated eigenvectors of the form x = [z1,0]", 21 # 0. A is
not diagonalizable,
5. A has eigenvalues A =1 and A\ = 2 with corresponding eigenvectors uy = [1, —10]T and
uz = [0,1]7, respectively. If S = [uy ,uz]
then S™'AS = D where D = [ (1) g ] Thus A5 = SD?S~1 =
1 0 1 1 0
S[O 32]5 _[310 32]‘
6. ForS—[O 2],5’ AS—[ 0 1} Thus A° =
(=1 0] [-1 77
S[ 0(1)55— 0o 1]~
7. A has eigenvalue A = 1 with algebraic multiplicity 3. The eigenvectors for A = 1 have
the form x = [z + 2$3,$2,$3]T. In particular we cannot obtain 3 linearly independent
eigenvectors so A is not diagonalizable.
8. A has eigenvalue A = 1 with algebraic multiplicity 3 and geometric multiplicity 1, so A is
not diagonalizable.
9. A has eigenvalues 1,2, and —1 with corresponding eigenvectors uy = [~3,1, —7]T, ug
=[-1,1,-2]%, uzg = [1,2,2]T, respectively. If S = [uy,uz,us] then
2 0 -1 10 0
St=116/3 1/3 7/3 | and ST'AS=D,whereD=|0 2 0
5/3 1/3 —-2/3 0 0 -1
163 —11 —-71
A =8D°S~ 1= | —172 10 75
324 =22 —141
10. A has eigenvalues A\ =1 and A =2. For A =1, uy = [1,0,0]T and uz=[0,1,1]T are

07 )
linearly independent eigenvectors. A = 2 has corresponding eigenvector ug = [1,1,0]T. If

1 00
S =[uy,uz,uz] then S7'1AS= |0 1 0 | =D. Moreover A% = SD?S~! =
0 0 2
1 31 -31
0 32 -31

0 0 1
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11. A has eigenvalue A = 1 with algebraic multiplicity 2 and geometric multiplicity 1 so A is
not diagonalizable.

1 0 3 1 00
12 IfS=]0 —1 4| then S7'AS=|0 1 0 |.A°=
0 10 005
1 0 0 1 2343 2343
S{o1 oS t=|0 3125 3124
0 0 5° 0 0 1

13. qi'q2=0 and q1'q1 = q2'qz =1 so @ is orthogonal.

14. @ is orthogonal.

15. qi'q1 =5 so @ is not orthogonal.

16. qi'qy = 13 so @ is not orthogonal.

17. 0 = q1'q2 = qi'qs = g2'qs and 1 = q1’q1 = q2'q2 = qs’qs so Q is orthogonal.

18. qi'q1 =6 so @ is not orthogonal.

19. IfQ is orthogonal then 202 = 1,63% = 1, a>+b*+c? = 1, aa+ac = 0, and Ba+28b—pFc = 0.

This implies that o = 1/v/2,3 = 1/V6,a = —c and b = ¢, where ¢ = £1/+/3. Thus we
one choice for ) is

1/vV2  1/V/6 —1/V3
Q= 0 2/V6 1/V3
1/vV2 —1/V/6  1/V3

20. If Q is orthogonal then o = 1/v/3, 8 = 1/v14, a = (=5/4)¢, and b = (1/4)c where
c=+4/V42.

[ —0.8807 0.4332 0.1918 0.5048 2.9498 —1.4966
21. Q= 0.1849 0.6870 —.7028 | T' = 0.0 83443 0.2429
| 0.4361 0.5835 0.6851 0.0 0.0 —2.8491
0.5892 —0.7155 —0.3754 —0.5223 —-7.6134 —8.2480
22. Q= 0.7516  0.6559 —0.0703 | T' = 0.0 —5.6251 0.0735
| —0.2965 0.2407 —0.9242 0.0 0.0 7.1474
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[ —0.5276 —0.5463 —0.6406 0.1130
93, (Q = —0.4235 —0.4440 0.6477 —0.4516
—0.3315 0.0292  0.3989  0.8545
| —0.6576 0.7096 —0.1044 —0.2306
[ 19.2422  1.4541 —3.5019 0.0983
T 0.0 —3.8383 —3.4646 —0.5055
0.0 0.0 4.8409  3.5148
0.0 0.0 0.0 0.7552
[ 0.5118 —0.5287 0.6725 —0.0794
2. Q= 0.6815 —0.2030 —0.6454 0.2788
) 0.3517 0.3331 —0.1083 —0.8681
| 0.3871 0.7539  0.3457  0.4029
[ 19.1640 5.4524 1.6686 —1.9529
T— 0.0 2.9467 —2.5265 —2.3201
0.0 0.0 —3.8881 0.9528
0.0 0.0 0.0 —2.2226

25. (a) (S~1AS)? = (S1AS)(S1AS) = STTA(SS1)AS = S~LA2S.
(S7LAS)3 = (S~TAS)2(S~LAS) = (S~1A2S)(S—TAS) = S~1A2(SS1)AS = S~1438.

(b)  Suppose (S71AS)" = S71A"S for some integer n > 1. Then (S71AS)" ! =
(STTAS)(S7LAS) = (S71A"S)(S71AS) = S71An(SS~1)AS = S~1A"FLS. By in-
duction (S71AS)* = S71AFS for any positive integer k.

26. Suppose S'AS = D, where D is a diagonal matrix, and suppose W 1AW = B. If
T =W~LS then T is invertible and T~'BT = ST'WBW 1S = S71AS = D. Therefore
B is diagonalizable.

27.  Suppose that S71AS = B.

(a) STH(A+al)S=S5S"1AS+ S5 (al)S = B+aS IS = B+ al.
(b) Set Q= (S™HT = (ST)"L. Then Q1ATQ = STAT(S )T = (8-148)T = BT,

(¢c) A product of nonsingular matrices is nonsingular so if A is nonsingular then so is
B. Moreover B~! = (§71A9)~! =
S71A-1(S 1)~ = 8§71 A-1S. Therefore B~! is similar to A~

28. For (b) if x,y arein R" then (Qx)"(Qy)=xTQ"Qy=x"Iy =xly.

For (c) let t = det(Q). Recall that from Theorem 5 of Section 3.3 that det(QT) =
det(Q). Since QTQ = I, Theorem 2 of Section 3.2 gives 1 = det(I) = det(QTQ) =
det(QT) det(Q) = t2. But t> =1 implies that ¢ = +1.
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29.

30.

31.

32.

33.

34.

35.

36.

First note that QT = (I — 2uu™)? = [T — 2uTTu® =
I —2uuT = Q, so Q is symmetric. Thus QTQ = QQ =

(I —2uu" (I —2uu)=1%2—-2uu’l - 2/uu’ +4u(u'u)ut =

I. Thus @ is orthogonal. Moreover Qu = (I —2uu')(u) = Iu —2u(u'u) = u—2u = —u,
so u s an eigenvector corresponding to the eigenvalue A = —1.

(AB)T(AB) = BT(ATA)B = BB =1.

y = [b/Va? + b2, —a/va? + b2 is one choice. —y is another choice.

T T
T~ | wu uv | |1 0 .
Q' Q= [ Va vy ] = [ 0 1 ] so (Q is orthogonal. Now
T T
QT AQ is the product [ 3T } Alu,v] = [ ET ] [Au, Av] =

ut u, Av] = Aulu uTAv A ulAv
vt ’ T awha vTAav | T 0 vTAav |

If u=[1/v2,-1/v2]T then Au=2u and vlu=1. Ifv=
[1/v2,1/v/2]T then u'v=0 and viv=1. If Q = [u,v] then QTAQ =

b
0o 2|
If u=[1/v5,2/v5]T then Au=u and ulu=1.If v=
2/v5,—1/+/5]T then u'v=0 and viv= 1. If Q = [u,v] then QTAQ = [ (1) g ]
Similarly if u= [2/4/13,3/v/13]7 and v=

[3/v13,-2/v/13]T then Au= 2u,u'u=vlv=1, and u'v=0. IfQ = [u,v] then

(1)

Ifu=[1/v2,1/v2]T then Au=u and uu=1. If v=
[1/v2,-1/V/2]T then u'v=0 and viv=1. If Q = [u,v] then

o[} 3]

[ -1v2 12 (o1 e~ [ 2/V13  3/V13
IfQ—{ 1/\/§ 1/\/5} thenQTAQ—[O 5} Also if Q = 3/\/ﬁ RYNGT]

thenQTAQ:[g (1)}
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37. Note that AR; is the 4t column of AR and R s the ith row of RT. Thus R AR;
is the ij"" entry of RTAR.

38. It is an consequence of Exercise 37 that

uTdu uTAv uTAw
QTAQ = | vTAu vTAv vTAw
wlAu wldv wlAw

But Au= \u,u'u=1,vlu=0=whu, so QTAQ has the desired form.

39. The matrix B has characteristic polynomial p(t) = det(B — tI).
Expansion along the first column gives p(t) = (A —t) det(A; — tI) =

(A—1t)q(t) where g(t) is the characteristic polynomial for A;. Since every root of ¢(t) is also
a root of p(t), each eigenvalue for A; is also an eigenvalue for B. Since ) is an orthogonal
matrix QT = Q! and B is similar to A. Thus A and B have the same eigenvalues. In
particular B has only real eigenvalues. It follows that Ay has only real eigenvalues.

40. (a) It is straightforward to show that

1 | 0 0
RT=|— + — —
0 ST
0
and that
1| 0 0
R'R=| —— +t —— ~—~ | =1I
8 STs

A a b
—_ + — —_— _
0 STa, S
A | a b
_ _I_ _ _
0 | T
0 |

Since T} is upper triangular so is RT BR.
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41.  Assume that Theorem 22 is true for any [(k-1) x (k-1)] matrix with only real eigenvalues.

Now let A be a (k x k) matrix with only real eigenvalues and suppose Au= Au where

u'u= 1. By the Gram-Schmidt process there is an orthonormal basis {uy,uz,

... ug t for RF such that u; = u. The matrix Q =

[ug,uz,...,ux] is orthogonnal and
I A ‘ ulTAuz ulTAuk i
- + - - -
QTaQ=1] 0 | :
: | A
L 0| 1

where A; is a [(k-1) x (k-1)] matrix. If B = QTAQ then B has characteristic polynomial
p(t) = det(B — tI). Expanding along the first column yields p(t) = (A — t) det(A; — tI) =
(A —t)q(t) where ¢(t) is the characteristic polynomial for A;. Thus every eigenvalue for
Aj is also an eigenvalue for B. But B is similar to A (since QT = Q_IS so B has only
real eigenvalues and, therefore A; has only real eigenvalues. By assumption there exists a

[(k-1) x (k-1)] orthogonal matrix S such that STA;S = T where T} is upper triangular.
If R is the (k x k) matrix

0

|
+
|
|
|

0

0

then R is orthogonal and P = QR is orthogonal. Furthermore
PTAP = RT"QTAQR = R"BR and RTBR has the form
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Since T is upper triangular so is RT BR. The theorem now follows by induction.
42. Auy= (2—n)uy while A(e; —e;) = Ae; —Aej= Ay —A;=[2,0,...,0,-2,0,...,0]T =2(eq
—ej), for 2 <i<n.
43. Since A is symmetric we have B(u'v) = uT(fv) =uTAv=
u'Al'v = (Au)lv= (Au)'v=Aulv. Since 8 # A, ulv=0.
4.8 Applications
L[4 [2 T4 T2
- X1 = 9 , X2 = 4 , X3 = 2 , X4 = 4 |
2. X1 =Xg=Xg3=X4= 12
FX1=X2=Xg=Xg= | o
3 = [ 80 [ 68 [ 65 [ 64.25
ST 12 [0 a2 7T | nar 0T 12775 |
4 xi— 5 o 11 X 29 q— 83
. 1— I _1 b 2 — _7 9 3 — _25 9 4 — _79 .
I 1 [ 43 [ 119
‘Xl_-l 7X2_ 8 7X3_ 19 7X4_ 62 .
6X_'6 o | 26] o _[126] [ 626
PT84 T T 248 0T T 1248 |

7. A has eigenvalues A\; = 1 and Ay = —1 with corresponding eigenvectors uy = [1,1]T and
uz = [—1,1]T, respectively. xo = 3u; +uz so xx = 3(1)*uy +(—1)*uz = 3+ (—1)*1,3 +
(—=1)*]T. In particular x4 = [2,4]7 = x10 . The sequence {x) } has no limit but || xy ||
=+/20 for all £.

8. A has eigenvalues \; = 1 and A\ = 0 with corresponding eigenvectors u; = [1,1]T and
uz = [—1,1]T, respectively. xg = 12u; —4us so xx = 12uy . In particular x4 = X390
= [12,12]T. The limit of the

sequence {xy } is x* = [12,12]T.
9. A has eigenvalues \; = 1 and Ay = 0.25 with corresponding eigenvectors uy = [1,2]T

and uz = [—1,1]T, respectively. x¢ = 64u; —64us so x = 64(1)*u; —64(0.25)%uy
= [64 + 64(0.25)%, 128 — 64(0.25)*]T. In particular x4 = [64.25,127.75]T and x10 =

[64.00006, 127.99994]T. The sequence {xy } converges to x* =
[64,128]T.
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10

11.

12.

13.

14.

A has eigenvalues \; = 3 and Ay = 1 with corresponding eigenvectors uy = [~1,1]T and
uz = [1,1]T, respectively. xg = —uy +2uz, so xx = —3"u; +2us = 2+ 3%,2 — 3*]T. In
particular x4 = [83, —79]T

and x19 = [59051, —59047]*. The sequence {xy } has no limit and limy_., || xx|| = oo.
A has eigenvalues A\; = 3 and Ay = —1 with corresponding eigenvectors uy = [2,1]7 and
uz = [-2, 1], respectively. x¢ =
(3/4)u1 +(5/4)uz  so xx = (3/4)(3)Fuy +(5/4)(—1) uz =
(1/4)[2(3)FF1 — 10(—1)*,3%L + 5(—1)¥]T. In particular x4 =
[119,62]T and x10 = [88571,44288]T. The sequence {x) } has no limit and limy . || Xy ||

= Q.

A has eigenvalues A\; = 5 and Ay = 1 with corresponding eigenvectors uy = [1,2]7 and
uz = [1,—2]T, respectively. xg = u; +us so xx = 5*u; +ug = [5F + 1,2(5)% — 2]T. In
particular, x4 = [626,1248]T and x10 = [390626, 781248]T. The sequence {x) } has no limit
and

limg o0 || Xk || = 00.
A has eigenvalues \y = 2,2 = 1,A3 = —1 with corresponding eigenvectors u; =
[1,-1,2]T, ug = [3,-1,7]7, and uz=[1,2,2]T, re-

spectively. xo = 2u; +2us —5ug, so

xy = 28T 1uy +2ug +5(—1)Flug;

2k+1 +6+5(—1)k+1
thus: x = | —2FF1 —2 4 10(—1)k+!
2FH2 14 + 10(—1)F !
In particular x4 = [33, —44,68]T and x19 = [2049, —2060,4100]".
The sequence {xx } has no limit and limy_, || Xk || = o0.
A has eigenvalues \y = 4, 2 = 1,A3 = —1 with corresponding eigenvectors u; =
[14,11,43]T,uz = [1,1,2]T, and uz =
[1,—1,2]", respectively. xo = —0.2uy +3.5u2 +0.3uz S0 X} =
—0.2(4)*uy +3.5uz +0.3(—1)*us ; that is
(—2.8)4% +3.5+0.3(~1)k

Xk = | (-2.2)4F +3.5-0.3(-1)F
(—8.6)4% + 7+ 0.6(—1)*

In particular x4 = [~713, =560, —2195.2]" and x1¢ =
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[—2936009, —2306864, —9017746]*.  The sequence {x)x } has no limit and limy_ . || Xk ||

= Q.

15. If x(t) = [ Zég ] then x'(t) = Ax(t) for A = [ g :2

eigenvectors for A are A\y = 2, u; = [ i } and \g = —1, ug = [ i } Setting x(t) =

. Figenvalues and corresponding

111 ] yields @ = 3 and b = —2. Thus, x(t) = 3e?'u; — 2eu,.

Equivalently, u(t) = 6e* — 2e~t and v(t) = 3e?! — 2e7".

ae?u; + be tuy and x(0) =

1

16. Tf x(t) = [ u(?) ] then x/(£) = Ax(t) for A — { -

v(t)
. 1 —1 .
eigenvectors for A are A\ = 3, u; = [ 1 ] and Ao = —1, ug = { 1 ] Setting x(t) =

} Eigenvalues and corresponding

a3ty + be~tuy and x(0) = [ ; ] yields @ = 3 and b = 2. Thus, x(t) = 3e3u; + 2e tu,.

Equivalently, u(t) = 33! — 2e7t and v(t) = 3e3! + 271,

1 11
17. The matrix A = 0 3 3 | has eigenvalues Ay = 0, Ao = 2, A3 = 3. Corresponding
-2 1 1
eigenvectors are u; = [0,—1,1]7, uy = [-2,-3,1]7, uz = [1,2,0]7, respectively. The
solution is x(t) = 2u; —e?'uy +e3us. Equivalently, u(t) = 2e% +¢3, v(t) = —2+43e% 423,

and w(t) = 2 — e*.

-2 2 =3
18. The matrix A = 2 1 —6 | has eigenvalues Ay = 5 and Ay = —3, where Ay has
-1 -2 0
algebraic multiplicity 2. An eigenvector for A\; isu; = [-1, -2, 1]T. Further, ug = [-2,1,0
and us = [3,0,1]7 are linearly independent eigenvectors for Ap. The solution is x(t) =
ePuy + e 3tug + 2e 3y, Equivalently, u(t) = —ed + 4e73 v(t) = —2e% + 73 w(t) =
e5t + 2673t_

}T

19. (a) The eigenvectors corresponding to A = 1 have the form x= [a, 0], a # 0. In particular
=1 has algebraic multiplicity 2 and geometric multiplicity 1. Thus A is defective.
(b) For k=0 we have xo=[1,1]7 =[2(0) + 1,1]T. Suppose
Xm = [2m + 1,1]T for some integer m > 0. Then Xpy 1=
Axpm=[2m +3,1]T = [2(m + 1) + 1, 1JT. Tt follows that
xi = [2k +1,1]% for each k > 0.

20. a = —0.5. For each k > 0,x) = Xg 50 limy_. xx = [1,1]T.
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21.

22.

23.

24.

25.

26.

27.

28.

29.

For o = —0.18 A has eigenvalues A\; = 1 and Ay = —0.18 with corresponding eigenvectors
u; = [3,10]T and uz = [10, —6]T, respectively. Moreover x¢ = (16/118)uy +(7/118)uy .
Therefore xj = (16/118)uy +(7/118)(—0.18) uy . It follows that lim, ... xx = (16/118)uy .

Note that uy = Aug= Avg= v1. Suppose we have shown that uy,, = vy, for some m > 1.
Then uym11 = Auy = Aviy = Vi1 - It follows by induction that uyx = vy for all k.
Bw is the vector [c1,ca,...,cn]T where ¢; = b + b + -+ +

bin = 1. Therefore Bw = w and A = 1 is an eigenvalue for B with corresponding
eigenvector w .

Suppose u = [u1, us, ..., u,|T and choose i so that |u;|=
maxi<;j<p{| U1 |,.-.,| un|}. Set @ = 1/u; and v = au. Then v = [v1,ve,...,v,]T where
v; =1 and |vj |<1 for 1 <j < n. Note also that Bv=v. Equating the ith component
yields b;1v1 4+ - -+ binvn, = v; = 1. But b;1+- - -+b;,, = 1 so it follows that v =--- = v, = 1.

Thus v=w=au, sou=a 'w.

Suppose Bu = Au,u # 6. As in Exercise 24, define v = [v1,...,v,]" such that Bv = \v
,v; =1 for some 4, and |v;|<1 for 1 <j <mn. The it" component of \v is A whereas
the 3" component of Bv is bj1vy + - - + binv,. Therefore | N|=|bj1v1 + - - - + binvn |<
bir |vi] + -+ 4 bin |vn < big + -+ 4 bin = 1.

The matrix AT is a stochastic matrix. Moreover A and AT have the same eigenvalues
so we may apply Exercises 23 and 25.

If au+bv =0 then = A= A(au+bv) = aAu+bAv = alu+

b(Av+u) = A(au+bv ) + bu= bu. Since u#0 it follows that b = 0. Thus au=6 and
a = 0. This proves that {u,v} is a linearly independent set.

The formula holds for k = 1 by Exercise 27. Suppose A™v = A™v +mA™ 'u for some
m > 1. Then A" lv = A(A™v) = ANV +mA™ lu) = \mAv +mA™ L Au = \?(\v
+u) +mA" Au= A"y +(m + 1)\™u. By induction the given formula holds for every
integer k > 1.

(a) The vector u= [1,0]T is an eigenvector for A = 1 and v = [0,1/2]" satisfies the
equation (A —I)v=u.

(b) xo=u+2v.

(c) AFxg= AF(u+2v) = AFu+24Fv = u+2(v +ku) =
(2k+1)u+2v.

(d) Tt follows immediately from (c) that A¥x¢= [2k + 1,1]T.
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4.9

10.
11.
12.
13.
14.

Supplementary Exercises

. Det (A4) = 2% — 9 so A is singular when z = +3.

x> —1/4.
[1,1]7 is an eigenvector for the eigenvalue A = 2.

(a) det(A~'B?) = (det B)*/det A = 81/2.
(b) det(3A4) = 33 det(A) = 54.
(c) det(AB2A~1) = (det B)* = 81.

.x#0.
L A% = 344 Iso A%u= —3Au+u=|[-5,0]7. 43

[17,1)7.

= —3A4%2 4+ A so A3u= —3A4%2u+ Au =

Suppose Ax = 0. Then A%x = —3Ax + x (cf. Exercise 6), so 6 = x.

M=—1, A =—2.
M =2, )\ = 3.

r=2y=3.

4.10 Conceptual Exercises

. False. A = [ -1 O].

0 1

. True. If Ax = Ax then A~!'x = (1/\)x.
. True. Det (A%) = (det A)™.

.False.A:[l 1].

01

I =A%24+3A=A(A+3I)so A~ = A+ 3]. Thus A 'u = Au+ 3u = [5,10]".
A2 = —3A41; A3 =10A —3I; A* = —33A + 101; A®> = 109A — 331.

True. ||Ax||2 = (4x)”7 (4Ax) = xTATAx = xTx =|| x| 2.
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10.
11.
12.

13.

14.

. True. Det (S71AS — tI) = det[S™L(A — tI)S] = det(A — tI).

10 2 0
False.A—[O 2]andB—[O 1].

.False.A:[l O].

0 0
(2) Qx (b) QTu.
If Ax = Ax then A3x = A3x. But 43 = O.
If P"'AP =1 then A= PP ' =1.
A"Y(AB)A = BA.

Suppose S~1AS = B. Then S71A425 = (S71AS)(S71AS) = B2 Similarly, S71A3S =
(S71A29)(S71AS) = B2B = B? and S71A%S = (S71435)(S~1AS) = B3B = B*.

) )T:IT—QuuT:I—ZuuT:A.

) Yes. AAT = A2 = (I — 2uuT)2 =1 —4uu? + 4u(uTu)u’ =I.
(c) Au= (I —2uu’)u=u—2u(u’u) = —u.
(d)

)

Aw = (I —2uu’)w = w — 2u(u’w) = w.



Chapter 5

Vector Spaces and Linear
Transformations

5.1 Introduction (No exercises)

5.2 Vector Spaces

0o -7 5 12 -22 38
1. u—2v= { 11 -3 _19 ],u—(2v—3w)— [ 50 —6 —15 |

Couvagwe | T 2 28
HTVTIWE L 40 7 14 )
2. u—2v=—2? —dz;u—(2v-3w) = —2% + 27 + 3;

—2u—v+43w= —322 + 4z + 8.

3. u—2v=e”—2sinz; u—(2v-3w) = e* —2sinz+3vVz? + 1; —2u—v+3w= —2¢* —sinz +
Ve +1;

4. Foru,v, and w in Exercise 2 we may take c¢; = c3,co = —c3, c3 arbitrary. For example,
c1 =1,c9 = —1,c3 =1 is one choice. For u,v, and w in Exercise 1, ciu+cov +csw =40
if and only if ¢; = ¢y =c3 =0.

5. Note that cju+cov +csw = (c1 + c2)2? + (22 + 2¢3)x + (—2¢1 — 2 + ¢3). Thus ciu+-cav
+csw = 22 + 62 + 1 if and only if

c1 + Cco =1
2c0 + 2c3 = 0
—2c1 — c + cg = 0.

Solving yields ¢; = —2 + ¢3,¢c2 = 3 — ¢3,c3 arbitrary. One choice is
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c1 = —2,c9 =3,c3 =0 and a direct calculation shows that —2u+
3v=2?+ 62+ 1. Similarly c;u+cav +cgw = 2?2 if and only if
c1 + ¢ =1
2c0 + 2c3 = 6
—2c1 — ¢ + c3 = 1.
The system is easily seen to be inconsistent.
6. S is a vector space.
7. S is not a vector space. None of properties (cl), (c2), (a3), and (a4) of Definition 1 is
satisfied. For example v = [1,0,0,0]T and
w=[0,0,0,1]7 are in S but u+w is not in S.
8. P is a vector space.
9. P is not a vector space. Properties (cl), (c2), and (a3) of Definition 1 fail to hold in P.
For example p(r) = 1+ 222 and q(z) = x — 222 are in P but p(z) + q(x) is not in P.
10. P is a vector space.
11. P is not a vector space (cf. Exercise 9).
12. S is a vector space.
13. S is a vector space.
14. S is not a vector space. For example the (3 x 4) zero matrix is not in S.
15. S is not a vector space. Properties (c1), (¢2), and (a3) of Definition 1 fail to hold in S.
16. S is not a vector space. For example if A = [a;;] is a nonzero matrix in S then v2 A is
not in S. Thus property (c2) of Definition 1
fails to hold. Note that S satisfies the remaining properties of Defini-
tion 1.
10 01 . : .
17. Let A= 0 1 and let B = 1ol Then A and B arein Q but A+ B is not in
Q. Also 0A, the (2 x 2) zero matrix, is not in Q.
. . 10 0 0
18. @ is not a vector space. For example, if A = and B = then A and B

are in ) but A + B is nonsingular.
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19.

20.

21.

22.
23.

24.

25.

26.
27.

The set of all (2 x 2) matrices is a vector space so axioms (al), (a2), (ml), (m2), (m3),
and (m4) are satisfied by any subset. Now let A and B be (2 x 2) symmetric matrices;
that is A = AT and B = BT. Therefore (A+ B)T = AT + BT = A+ B, so A+ B is
symmetric. This verifies that property (c1) holds. For any scalar ¢, (cA)T = cAT = cA, so
cA is symmetric and (c2) is satisfied. Clearly the (2 x 2) zero matrix is symmetric so (a3)
holds. Finally if A is symmetric then so is —A, so (a4) holds. Therefore @) is a vector
space.

Suppose u, v, and w are vectors in a vector space V' such that u+ v=u+w. By
property (a4) of Definition 1, V' contains a vector -u such that u+(-u)=60. By property
(al),(-u)4+u=460. Applying properties (al), (a3), and (a2) yields v=v+ 0= 0+v=

[((u)+u]+ v= (-u)+(u+ v)= (-bfu)+(u+w)= [(-u)+u]+w=
0 +w= w+ 0 =w. Similarly, vu=w-+u implies

that v=w.

Let u and w Dbe inverses for v. Thus u+ v=v+u=0 and w+ v=v +w =0.
Therefore u=u+60=u+(v+w)=(u+v)+w=0+w=w.

Note that 0v+6 = 0v= (0 + 0)v= 0v +0v. By the cancellation laws, § = Ov .

If a =0 then we are done, so suppose that a #20. Then v=1v=
(a ta)v=a"(av) = a 10 =0.

We show as illustrations that properties (a2) and (m1) hold.

Thus 0 +(04+6) =0+0=0=0+60= (0+6)+6, so (a2) holds. If a and b are scalars
then a(bf) = al =60 = (ab)f so (ml) is satisfied.

F is a vector space. Since F' is a subset of C[—1,1] and C[—1,1] is a vector space,
properties (al), (a2), (ml), (m2), (m3), and (m4) hold in F. Now let g(x),h(z) be in F;
that is g(z) and h(x) are continuous, g(—1) = ¢g(1) and h(—1) = h(1). It follows that
(9 + h)(x) = g(z) + h(z) is continuous and (g + h)(—1) = g(—1) + h(—1) = g(1) + h(1) =
(g + h)(1). Therefore (g + h)(x) isin F' and property (cl) holds. If a is a scalar then
(ag)(x) = ag(x) is continuous and (ag)(—1) = ag(—1) = ag(1) = (ag)(1), so (ag)(x) isin
F'. This verifies that (c2) holds. The zero vector in C[—1,1] is the function # defined by
O(x) =0 forall z, -1 < x < 1. In particular (—1) =0 = 6(1) so 6(z) isin F. Thus
O(x) is also the zero vector for ' and (a3) is satisfied. Property (a4) is an immediate
consequence of (¢2) since —g(z) = (—1)g(x) for g(x) in C[—1,1]. Since F satisfies the
properties of Definition 1, F' is a vector space.

F' is a vector space.

F is not a vector space. For example set f(z) =2z — 1 and g(z) = 222 — 1. Then f(x)
and g(z) are in F' whereas f(x) + g(x) = 222 + 2x — 2 is not.
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28.
29.

30.

31.

32.

33.

F is a vector space.

F' is a vector space. As in Exercise 25, it suffices to check that properties (c1), (c2), (a3),

and (a4) of Definition 1 are satisfied. To check (c1) for example, let f(z) and g(x) be in
1 1 1 .

F . Then [*,[f(z)+g(zx)lde = [, f(x)dz+ [, g(x)de =04+0=0, so f(zx)+g(x) is

in F' .

If f(z) and g(z) arein C2[a,b] then (f +g)(x) = f(x)+g(z) is continuous on [a, b], (f +
9)'(z) = f'(z)+4'(z) is continuous on [a,b], and (f+¢)"(z) = f"(z)+¢"(x) is continuous
on [a,b]. Similarly if ¢ is a scalar then the functions (cf)(x) = cf(x), (cf) (z) = cf'(x),
and (cf)"(x) = cf"(z) are all continuous on [a,b]. It follows that C?[a, b]

is a vector space.

(a) F is a vector space. Since F is a subset of C?[—1,1] and
C?[—1,1] is a vector space by Exercise 30, properties (al), (a2), (m1), (m2), m(3), and
(m4) hold in F: Now let g(z), h(z) bein F . Thus ¢"(z)+g(z) = 0 and h”(z)+h(x) =
0. It follows that (g+h)"(x)+ (¢9+h)(x) = [¢"(z) + g(z)]+ [ () + h(x)] =040 =10
for =1 < 2 <1. Therefore (g + h)(z) isin F' and property (cl) is satisfied. If a is
any scalar then (ag)”(z) + (ag)(x) = a[¢g"(z) + g(z)] =a0 =0 for —1 <z < 1. Thus
(ag)(x) is in F and property (c2) is satisfied. The zero vector in C?[—1,1] is the
function 6 defined by #(z) = 0,—1 < x < 1. In particular 0”(z) +0(z) =0+0=0
for —1 <x <1 so#(z) isin F. Therefore §(x) is the zero vector in F' and (a3) is
satisfied. Property (a4) follows from (c2) since —f(z) = (—1)f(x) for every f(z) in
C?[-1,1].

(b) F is not a vector space. For example suppose that g(x) and h(xz) arein F' ; that is,
assume that ¢”(z)+g(x) = 22 and h”'(z)+h(z) = 2. Then (¢+h)"(z)+ (g+h)(z) =
[¢" () + g(z)] + [W'(x) + h(z)] = 222. Therefore (g + h)(x) is not in F .

Let p(z) and g(z) be in P. Then we may write p(z) = ag + a1 + -+ + apz™ and
q(x) = by + byz + -+ + bpa™ where for 0 < i < n,a; and b; are real numbers. (By using
zero coefficients as necessary we may list the same terms for both p(x) and ¢(z).) Thus
p(x) + q(z) = (ap + bo) + (a1 + b1)z + -+ + (an + by)z™ and for any scalar ¢, cp(z) =
cag + carx + - - - + canx™. It is now straightforward to verify that P is a vector space.

The proof that F(R) is a vector space requires checking all ten properties of Definition 1.
We illustrate by verifying properties (a2), (a3) and (ml). If f(z),g(x),h(x) are in F(R)
then [f + (g + h)|(z) = f(z) + [g + hl(x) = f(z) + [9(x) + h(z)] = [f(2) + g(z)] + h(z) =
[f + g](x) + h(z) = [(f + g)) + h](x). Thus property (a2) holds. Define § : R — R by
O(x) =0 forallz in R. If f(z) isin F(R) then (f+0)(x) = f(x)+0(x) = f(zx); f+0=f
so 6 is the zero of F(R). Therefore property (a3) is satisfied. To check (ml) let ¢ and
b be scalars and suppose f(z) is in F(R). Then [a(bf)](x) = al(bf)(x)] = a[b(f(x))] =
ab(f(x)) = [(ab) f](x).
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34. (a) We will show that the given operations satisfy (a3) and (a4) of Definition 1. Note
that z=[~1,1]T isin V and u+z=u for every element u in V. Thus z is the
zero of V. If u= [u1,ug]’ then w= [~uj; —2,—us+2] isin V and u+w=2z. Thus
w is an additive inverse for u.

(b) Note that 2(ej +e2) = [4,0]T whereas 2e; +2ea = [3,1]T. Simil-
arly, e; +ey = [3, —1]T whereas (1 + 1)e; = 2e; = [2,0]".

35. To check (m2) as an illustration, note that a(u+ v) =0= 6+60=au+av for any u,v
in V' and scalar a. Iff u#6 then lu=6 and (m4) fails.

36. The zero of V' is the vector z= [0,1]T. If u= [uj,us] isin V then w= [—uq, 1/ug] is in
V and u+w=2z. Thus w is the inverse of u. To show that (m2) holds let u= [u,us]*
and v = [v1,v2]T bein V andlet a be a scalar. Then

a(u+v) —u |: ul + U1 :| _ |: a(ul—l—vl) :| _ |: au] + avy :| _

U9V (ugv9)® ugvg

auq avq
e | T | T au+ av.
1

5.3 Subspaces

1. W is not a subspace of V. None of the properties (s1), (s2), and (s3) of Theorem 2 is

10 0] andB:{O 0 1] then A and B are in

satisfied. For example, if A = { 0 00O 000

W but A+ B is not in W.
2. W is a subspace of V.

3. W is a subspace of V. Clearly the (2 x 3) zero matrix is in W. Let A = [a;;] and B = [b;;]
be in W. Therefore a11 —a12 = 0,a12 +a13 = 0,a03 = 0,b11 —b12 = 0,b12 +b13 = 0, bog = 0.
Now A+ B is the (2 x 3) matrix A+ B = [¢j;], where ¢;j = a5 + b;j;. Thus ¢11 — c12 =
(@11 4 b11) — (@12 + b12) = (@11 — a12) + (b11 — bi2) = 0.Similarly, c12 +c13 =0 and cp3 = 0.
This shows that A+ B is in W. If k is a scalar then kA is the (2 x 3) matrix kA = [d;}]
where d;; = ka;j. Consequently di1 — di2 = ka1 — kaiz = k(a1 —ai2) = k0 = 0. Likewise
di2 +di3 =0 and dos = 0. Therefore kA is in W. It follows from Theorem 2 that W is
a subspace of V.

1 00 011
0 0 O] andB—[O 0 0} then A
and B arein W but A+ B is not in W. Note that properties (s1) and (s3) of Theorem

2 are satisfied.

4. W is not a subspace of V. For Example if A = {
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10.

11.

12.

13.

14.

15.

. W is a subspace of P,. If f(x) = 0+ Ox + 022 is the zero polynomial then clearly

0(0)+0(2) =0, so @(x) isin W. Suppose g(z) and h(x) are in W3 that is g(0) 4+ g(2) =0
and h(0) + h(2) = 0. Then (g + h)(0) = +(g + h)(2) = [g(0) + h(0)] + [9(2) + h(2)] =
[9(0) + g(2)] + [h(0) + h(2)] =0+ 0 =0 and it follows that g(x) + h(z) isin W. If ¢ is a
scalar then (cg)(0) + (cg)(2) = c[g(0) + g(2)] = 0 and hence (cg)(x) is in W. By Theorem
2, W is a subspace of P,.

. W 1is a subspace of P..

W is not a subspace of P, . For example if p(z) = 22 + x — 2 and ¢(z) = 22 — 9 then
p(r) and q(z) arein W but p(z)+q(x) = 222+ 2 — 11 is not in W. Note that properties
(s1) and s(3) of Theorem 2 are satisfied.

. W is a subspace of P, .

. F' is a subspace of C[—1,1]. First recall that the zero of C[—1,1] is the function § defined

by 6(z) =0 for —1 < 2z < 1. Since (—1) =0 = —6(1),0(z) isin F. Now assume that
g(z) and h(x) arein F. Thus g(—1) = —g(1) and h(—1) = —h(1). It follows that

(g+h)(=1) = g(=1) + h(=1) = —g(1) = h(1) = —(g + h)(1).
Therefore (g + h)(z) isin F. If ¢ is a scalar then (cg)(—1) =

c(g(=1)) = c(—g(1)) = —(cg)(1) so (cg)(z) isin F. by Theorem 2, F' is a subspace of
C[-1,1].

F' is not a subspace of C[—1,1]. If f(z) is a nonzero function in F' and ¢ < 0 then cf(z)
is not in F' . Note that properties (s1) and (s2) of Theorem 2 are satisfied.

F is not a subspace of C[—1,1]. None of the properties (s1), s(2), (s3) of Theorem 2 is
satisfied. For example if g(z) and h(x) are in F' then (g + h)(—1) = g(—1) + h(—1) =
—2+4+(=2)=—4 so (g+ h)(x) isnotin F .

F' is a subspace of C[—1,1].

F is a subspace of C?[—1,1]. If §(z) is the zero function then 8"(z) = 6(z) = 0 for
—1 <z <1. In particular #"(0) =0 so f(x) isin F. Let g(z) and h(x) be in F; that
is ¢"(0) =0 = K" (0). Therefore (g4 h)"(0) = ¢"(0)+h"(0) =0, so (¢+ h)(z) isin F .
If ¢ is a scalar then (cg)”(0) = cg”(0) =0 and (cg)(x) isin F . By Theorem 2, F is a
subspace of C?[-1,1].

F is a subspace of C?[—1, —].

F is not a subspace of C?[—1,1]. None of the properties (s1), (s2), s(3) of Theorem 2 is
satisfied. For example suppose g(z) and h(z) arein F . Then ¢" () + g(x) = sinz and

B’ (z)+h(x) =sinz for —1 <z < 1. But (g+h)" (z)+(g+h)(z) = 2sinz for -1 <z < 1.
Therefore (g + h)(x) is not in F' .
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16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

F is a subspace of C?[—1,1].

Note that c1p1(x) + capa(x) + c3ps(z) = (1 + 2¢o + 3c3) + (2¢1 + 5ea + 8c3)x + (1 — 2¢3) 2.
Therefore cip1(x) + capa(z) + c3p3(r) = —1 — 32 + 322 requires that ¢ + 2c3 + 3c3 =
—1,2¢1 + 5¢o + 8¢s = —3, and ¢; — 2¢3 = 3. Solving we obtain ¢y = —1,¢9 = 3,¢3 = —2
and it is easily verified that p(z) = —p1(x) + 3p2(z) — 2p3(x).

p(z) = 32+ eipi(z) if and only if ¢; = —1 —2¢3, ¢ = 2+ 3c3, ¢3 is arbitrary, and ¢4 = —3.
For example p(z) = —pi1(x) + 2p2(z) — 3pa(z).

From the matrix equation A = 2?21 ¢; B; we obtain the system of equations

ca + ¢ — ¢33 + ¢ = 2
cg — 3c3 + 2¢4 = —4
2c1 + des — ¢4 = 1°
1+ 2c — 4de3 + ¢4 =
The solution is ¢; = —1 — 2¢3,co = 2 + 3c¢3,c3 arbitrary, and ¢4 = —3. Taking c3 =0 we

see that A = —B;1 + 2By — 3B4.

e® = sinh x + cosh x.

cos2z = (—1)sin?z + (1) cos® z.

1 1 00
0o -1}’ 10 '
Let p(z) = ag+ajr+azr®+azx® bein W. The constraints p(1) = p(—1) and p(2) = p(—2)
imply that ag+a1+as+as = ag—a1+az—a3 and ag+2a; +4as+8as = ag—2a; +4as—8as.

This forces a; = a3 = 0 while ag and as are arbitrary. Thus {1,22} is a spanning set for
W.

{-3+ 2z + 2223z + 23}

For Exercise 2, a matrix A = [a;;] is in W if and only if A has the form A =

alp — 2a1 a2 ai .
3 3 ] , where aq9, a3, as1, a2, as3 are arbitrary. Therefore

110 —2 0 1
W_Sp{{ooo]’ [ 000}’

a21 a22 423
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For Exercise 3, A = [a;;] isin W if and only if A =

@i man } , where ajj,a01, and agy are arbitrary.

as G2 0
Therefore

1 1 -1 0 00 0 00
W_Sp{ [0 0 0}’ {1 0 0]’ [0 1 0] }

For Exercise 5 let p(x) = ag + a1z + asxz®. The condition p(0) 4+ p(2) = 0 implies that
2ag + 2a1 + 4as = 0. Therefore p(z) = (—a; — 2a2) + a1x + azz? where a; and ay are
arbitrary. It follows that W = Sp{—1 + x, —2 + x2}.

For Exercise 6, W = Sp{ 1, —4x + 22}.
For Exercise 8, W = Sp{ z,1 — z%}.
26. That W is a subspace follows from Theorem 2 and from the properties of the transpose
given in Theorem 10 of Section 1.6.
1 00 0 0 0 0 00
W = Sp 000 1 00 0 :
0 00 0 0 01
010 0 0 1 0 00
1 00 0 00 0 01
0 0 0 1 00 010
27. Tt is straightforward to show that tr(A + B) = tr(A) + tr(B) and tr(cA) = ctr(A). It
then follows easily from Theorem 2 that W is a subspace of V. f A isin W  then A
has the form A =
—Q22 —a33 a2 a3
a1 a9 ags . It fOHOWS that W = Sp{Bl, BQ, Elg, E13, Egl, E23, E31, E32}
asi az2 ass
-1 0 0 -1 0 0
where B = 010 and By = 0 0O
0 0 0 0 01
28. BT = [(1/2)(A+ AT)]T = (1/2)(AT + ATT) = (1/2)(A + AT) = B, so B is symmetric.
Similarly CT = [(1/2)(A — AT)]T =
(1/2)(AT — A) = —C and C is skew-symmetric.
29. For any (n x n) matrix A, A= B+ C where B and C are the matrices given in Exercise

28.
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30. The vector space of all (3 x 3) matrices is spanned by the set

010
{EH,EQQ,Egg,Al,AQ,Ag,Bl,BQ,Bg} where A1 = 1 0 0 5
000
0 01 0 00 010
A2=10 0 0 |,A43=|001|,Bi=|-1 0 0 [,
1 00 010 0 00
0 01 0 00
By = 001 |,Bg= |0 0 1]|. IfA=]ay] isa (3x3) matrix then A =
-1 0 0 0 -1 0

a11Ev1 + ago B + azzEzz + (1/2)(a12 + a21) A1 + (1/2)(a13 + azi) Az + (1/2) (a3 + az2) Az +
(1/2)(a12 — a21)B1 + (1/2)(a13 — az1) B2 + (1/2)(a23 — as2) Bs.

0 a2 a3
31. (a) A isin W ifand only if A has theform A= | 0 0 aes |, where ajs, a3, a0
0 0 0
are arbitrary. Thus W = Sp{E12, E13, Eo3}.
(b) A isin W if and only if A has form A =
—ag2 —a3z3 —az3 ai3
0 ass asz | . Therefore
0 0 ass
-1 0 O -1 0 0 0 -1 0
W = Sp 01 0|, oool, o o1],
0 0 0 0 0 1 0 0 0
0 0 1
0 0 0 .
0 0 0
ailr aix ais
(¢) A isin W if and only if A has the form A = 0 a9 aiz |.. Therefore
0 0 as9
1 1 0 0 0 1
W =Sp 0 0 0], 0 0 1/,
0 0 0 0 0 0
0 0 0
010
0 0 1

(d) A isin W if and only if A has the form A =

a1l —az3 aiy
0 a11 ag3 | . Therefore W = Sp
0 0 all

O O =

0 0
10|,
01
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0 -1 0 00 1
0 01|, {000
0 0 0 000

32. p(z) = (ap — a1 + a2)(1) + (a1 — 2as)(z + 1) + az(z + 1)2. In particular ¢(x) = 4(1) — 5(z +
1)+ 2(x+1)% and 7(x) = 6(1) — 5(x + 1) + (z + 1)2.

33. The equation A = Z?Zl x;B; implies that

1 + 2x9
X2

rr + X2
—2.%'1 — 2.%2

x3
3%3
3I3
6.733

T4
ry4 =
21y
51’4 =

|+
|+ +

Il
QU o oL

+
+

Solving we obtain x1 = —6a+5b+37c+15d, xo = 3a—2b—17¢c—7d, x3 = —a+b+5c+2d, x4 =
2c¢+d. Therefore C' = —12B1 + 6By — B3 — B4 and D = 8By — 3By + Bg + By.

5.4 Linear Independence, Bases, and Coordinates

.. —b—c—d b -1 1
1. IfA isin W thenA—[ . d]_b[ 0 0}4—

-1 0 -1 0 -1 1
c[ 1 0}+d[ 0 1]. Theset{[ 0 0],
-1 0 -1 0 . .
{ 1 0], [ 0 1} } is a basis for W.

2.  The set { [ :; ? ] } is a basis for W.

3. The set {F19, E91, F22} is a basis for W.

11 0 —1 . .
4. Theset{ [0 2}, {1 1] } is a basis for W.

5. For p(z) in W,p(x) = ag + a1z + (ap — 2a1)x? = ag(1 + x2)+
ai(z —22%). The set {1 + 22,2 — 222} is a basis for W.

6. The set {3 —x + 22} is a basis for W.
7. The set {z,2?} is a basis for W.

8. The set {1 — 2z + 22} is a basis for W.
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9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

Let p(x) = Z?:o a;z' be in V. The given constraints are as follows:
p(0)=0: ap=0
pl(l):0: a1 + 2as + 3asz +4as =0 .
p(=1)=0: 2a5 — 6az 4+ 12a4 =0
Solving yields ag = 0,a1 = —9as + 8a4,a2 = 3as — 6ay,a3 and aq4 arbitrary. Thus

{9z + 322 + 23,82 — 622 + 2*} is a basis for V.

1 0 0 0 01 . .
Theset{ [0 O]’ [O 1], [1 O]} is a basis for the subspace of (2 x 2)

symmetric matrices.

If A= Jai;] is a (2 x 2) matrix then A = a1 E11 + a12E12 + a21E21 + agaF22 so B spans
V. Tt is easy to see that B is a linearly independent set, so B is a basis for W.

(a) [1,-1,1]T, (b) [-1,4,1]T (c) [5,2,0].
(a) [2,—-1,3,2]T (b) [1,0,—1,1]T (c) [2,3,0,0]T.

Set p(z) = ap + a1z + --- + a,z™ and assume p(z) = O(z). Then p™(z) = O(z) so

nla, = 0. It follows that a,, = 0. Suppose we have seen that a;,11 =+ =a, =0 where
0 <m < n. Then p(™(z) = 6(z) somla, =0. Thus a,, = 0. By continuing the process
we see that a; = 0,0 < i <n. Therefore the set {1,z,...,2"} is linearly independent.

The given matrices have coordinate vectors uy = [2,1,2,1]7,

uz = [3,0,0,2]7,us = [1,1,2,1]T, respectively. The equation x1u; +z2us +x3uz =60 has
only the trivial solution so {u;,uz,us} is a linearly independent subset of R*. By property
(2) of Theorem 5, the set {A;, Ay, A3} is a linearly independent subset of the vector space
of (2 x 2) matrices.

The set is linearly dependent. For example —2A4; — Ay + A3 = O.

The given matrices have coordinate vectors uy = [2,2,1,3]7,
uz = [1,4,0,5]T, ug = [4,10,1,13]T, respectively. The set
{uy ,uz,ug} is linearly dependent in R*. For example —u; —2ug +ug=0. It follows that
{A;, Ag, A3} is linearly dependent; indeed —A; — 245 + A3 = O.

The set is linearly independent.

The polynomials pi(x), p2(x), ps(z), have coordinate vectors
u; = [-1,2,1,0/T,us = [2,-5,1,0T,ug = [0,—1,3,0]T, respectively. The set {u; ,us
,ug } is linearly dependent; for example —2u; —ugz +ug =6. It follows that the set
{p1(x),p2(z),ps3(x)} is linearly dependent; indeed —2p;(x) — pa(x) + p3(z) = 0.
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The set is linearly dependent; for example —pi(x) — p2(x) — p3(z) + pa(z) = 0.

The given polynomials have coordinate vectors uy = [1,0,0,1]T,
uz = [1,0,1,0]7, ug = [1,1,0,0]", us = [1,0,0,0]T, respectively.

Since {uy,uz,uz,us} is a linearly independent subset of R*, the given set of polynomials
is a linearly independent subset of P;.

A basis for Sp(S) is {1 + 2z + 2%,z — 222},

The given polynomials have coordinate vectors uy = [1,2,1]T,

uz = [2,5,0T,us = [3,7,1]%,us = [1,1,3]T, respectively. In the equation zjuy +zous
+xzsug +r4ug =0, x3 and x4 are arbitrary. It follows that {u;,uz} is a basis for Sp{uy
,uz,ug,uy }. Therefore {pi(x),pa(z)} is a basis for Sp (5).

1 2 0 1 0 0 . .
Theset{ [_1 3}, [0 0}, [0 1] } is a basis for Sp (.9).

The given matrices have coordinate vectors u; = [1,2, —1,3]T, uz = [-2,1,2, —1]T, us3
= [-1,-1,1,-3]% uy = [-2,2,2,0]T, respectively. In the equation ziuy +zous +x3u3
+xzgug =0, x4 is arbitrary so {uj,uz,ug} is a basis for Sp{u; ,uz,ug,uy }. It follows
that {A;, As, A3} is a basis for Sp (S).

The coordinate vectors uy = [—1,1,2]T,uz = [0,1,3]T, us =

[1,2,8]T form a linearly independent set in R3. Since dim(R3) = 3 the set {u; ,uz,us }
is a basis for R3. By the Corollary to Theorem 5, ) is a basis for P,.

p(z) = —4p1(z) + 11pa(z) — 3ps(x) so [p(x)lg = [~4,11, -3]".

[p(x)]q = [-2a0 — 3a1 + ag,4ag + 10a1 — 3az, —ag — 3a; + as]t.

The coordinate vectors for the given matrices are uy = [1,0,0,0]T,

uz = [1,-1,0,0/T,uz =[0,2,1,0]T, ug = [-3,0,2,1]T. It is easily verified that {uy ,uz,us
,uq} is a basis for R*. It follows from the Corollary to Theorem 5 that @ is a basis for V.

[Alg =19, -5, -1, —-1]T.

A=(a+b—2c+Td)A1 + (=b+2c—4d)As + (¢ — 2d)A3 + dAy so [Alg =[a+b—2c+
7d, —b + 2¢ — 4d, c — 2d, d]".

The suggested constraints yield the following system of equations:

p(—l) = 0: ap—ay1+ay = 0
p(0) = 0: aqa = 0
p(1) = 0: ap+ai+ay = 0

Solving we obtain a9 = a1 = a2 = 0 as the unique solution.
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Let f(x) = cisinx + cacosz  and suppose f(z) = 6(z). Then f(0) = co = 0 and
f(m/2) =c1 =0. It follows that {sinxz,cosz} is a linearly independent set.

The conditions 2(0) = &'(0) = A" (0) = 2" (0) = 0 yield the system of equations

c1 + ¢ + c3 + cgy = 0
1+ 2c 4+ 3¢ + 4dey = 0
cit + 4o + 93 + 16y = O
1 4+ 8co 4+ 27c3 + 64cy = 0

The system has only the trivial solution so B is a linearly independent set. Since
V = Sp(B) by definition, B is a basis for V.

Note that [g1(z)]p = [1,0,0,=1]T = w1 ,[g2(2)]p = [0,1,1,0]" = uz, and [g3(2)]p =
[<1,0,1,1]T = us. It is easy to verify that {uy,us,ug} is a linearly independent subset
of R*. By Theorem 5 the set {g1(z), g2(z),g3(z)} is linearly independent in V.

It follows from the note that w #6. Suppose that a1vi+ -+ + apmvm +dw=0. If b #0
then we can solve for w, contradicting the assumption that w is not in Sp(@Q). Thus
b = 0. This leaves a1vi +- - + a;vmm =60. But the set Q is linearly independent so
a3 =+-+ = ay =0. This proves that Q U {w} is linearly independent.

Suppose a1vy + -+ + apvp =0, where a; #0. Then v; = byvy+ -+ +bi—1Vi_1 +bit1Vis1
+---4+byvn, where bj = —aj/a;, for 1 <j<mn,j#i.

A set of two vectors is linearly dependent if and only if one of the vectors is a scalar
multiple of the other. The sets given in (a) and (b) are linearly independent whereas the
sets given in (c), (d), and (e) are linearly dependent.

5.5 Dimension

1.

(a) We show that V; is a subspace. The proof that V5 is a subspace is similar. Clearly
the (3 x 3) zero matrix is lower-triangular so it is in V3. Now let A and B be in V7,

ail 0 0 b11 0 0
A= a1 a9y 0 and B = b21 b22 0
az1 asz as3 b31 b3z b33
ai1 + b1 0 0
Then A+ B = ao1 + b1 agg + bao 0,

as1 +b31 azx +b32 azz + b33

so A+ B isin Vi. If ¢ is any scalar then
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Ca11 0 0
cA= | caz cag 01,
casy casy cass
so cA isin Vi. By Theorem 2 of Section 4.3, V is a subspace of V.
(b) The set {F11, E21, Eao, E31, E32, F33} is a basis for V; and
{E117 Elg, Elg, E22, E23, E33} s a basis fOl" VQ.
(¢) dim(V') = 9;dim(V;) = 6;dim(V3) = 6.

2. Since V7 and V5 are subspaces of V,0 isin V3 NVa. Suppose u and v are vectors in
ViNVs. Thenu and v arein Vi and V; is a vector space. Therefore u+ v isin V;
and for any scalar a, au is in Vi. Similarly,
u+ v and au are in V5. This shows that u+ v and au are in V31 NV, so by Theorem
2 of Section 4.3, V1 N V5 is a subspace of V.

Set Vi = {[a,0]T : @ any real number } and let V5 = {[0,b]T : b any real number }. Then
Vi and Vo are subspaces of R? but V3 U Vs is not a subspace. For example u= [1, O]T
and v=[0,1]T arein V; UV, but u+ v is not in V3 U V5.

3. Let A =[a;] bein V1 NVs Since A isin Vi,a;; =0 for ¢ < j. Likewise A is in V5
so ajj =0 fori>j. Thusa;; =0 ifi# j and Vi NV, is the set of (3 x 3) diagonal
matrices. dim(V; NVa) = 3.

4. dim(W) = 6.

010 0 01 0 00
5. The set -1 0 0], 0 0 0], 0 01 is a basis for W so
000 -1 0 0 0 -1 0
dim(W) = 3.

6. dim(W) =

7. p(x) = Z?:o a;xt isin W if and only if ag = 4ay, as = —5ay,
ai,as,as arbitrary. A basis for W is {z, 23,4 — 522 + 2*} so
dim(W) = 3.

8. The set S does not span V' by property (1) of Theorem 9.

9. S contains 4 elements and dim(P2) = 3. By property (1) of Theorem 8, S is linearly
dependent.

10. The set S is a basis for V' by property (2) of Theorem 8.
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S contains only two vectors and dim(V') = 4. By property (1) of Theorem 9, S does not
span V.

The set S is a basis for V' by property (2) of Theorem 8.

The set S contains 5 elements whereas dim(V') = 4. By property (1) of Theorem 8, S is a
linearly dependent set.

dim(W) = 2.

(a) First note that since V' is not a subset of an already familiar vector space, we must
check all the properties of Definition 1 given in Section 4.2. The closure properties
(c1) and (c2) are evident. As illustrations we will check (a2), (a3), and (m2).

Let x={x;}3°,,y={vi}2;, and z= {2;}32; bein V. Then x+(y+z) = {z; + (v +
zi) ity = (@i +yi) + 212, = (x+y )+

z. Therefore (a2) is satisfied. If = {6;}3°,, where §; =0 for each ¢ then 6 is the
zero for V' and property (a3) holds. To check (m2) let a be a scalar. Then a(x +y
) =A{alzi + i) 121 = {awi + ayi}2y = {awi}2) +{ayi}2, = ax +ay .

(b) Ifx=ajs1+---+aysn then x is the sequence {x;}5°, where z; = a;,1 <i < n,
and z; = 0 for ¢ > n. In particular if 0= ays; +--- + apsn (where 6 is the zero
sequence described in (a)) then a;j = --- = a, = 0. It follows that {s1,s2,...,8n} 1is
a linearly independent subset of V. Since n is arbitrary, it follows from property (1)
of Theorem 8 that V' has infinite dimension.

Apply property (1) of Theorem 8.

Suppose dim(V) =n and let wi bein W, wi#6. If {w;1} spans W then it is a basis.
If not then by Exercise 36, Section 4.4, there is a vector wg in W such that {wq,wga} is
a linearly independent set. In general suppose we have constructed a linearly independent
subset S, = {w1,wa,...,wx} of W. If W = Sp(Sj;) then Sy is a basis and we are done.
If S does not span W then, by Exercise 36, Section 4.4, there is a vector wi4+1 in W
such that Sy = {w1,..., w,

Wk+1 | is linearly independent. This process must stop since, by property (1) of Theorem
8, any set of n+1 vectors in V' is linearly dependent. Therefore there exists an integer m,
1 <m < mn, and a linearly independent subset S,, = {w1,..., Wy } of W such that
W = Sp(Sp). Thus S, is a basis for W and dim(W) =m < n.

The set T = {[u1]B,...,[uk |} contains k vectors in RP, where k > p+ 1. Thus T
is a linearly dependent subset of RP. By Theorem 5, {uy,...ux } is a linearly dependent
subset of V.

Since B is a linearly independent subset of V' containing p vectors and ) is a basis of
V' containing m vectors, Theorem 6 implies that p < m. Reversing the roles of B and @
gives m < p. Therefore
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5.6

m =Dp.

Property (1) of Theorem 8 is a direct consequence of Theorem 6. To prove property (2)
let B be a basis for V' and let S = {uq,...,up} be alinearly independent subset of V. By
property (2) of Theorem 5 the set 7' = {[u1]p, ..., [up]p} is a linearly independent subset
of RP. Thus T is a basis for RP. If v isin V' then [v]p isin Sp(7T). By property 1 of
Theorem 5, v is in Sp(S). It follows that S spans V, so S is a basis for V.

Note that [w]p = [d1,...,d,])T and [w]c = [c1,...,cn)T. Thus

Awlc=cm g+ +epunlp =[ciur+-- -+ cyun|p = [W]B.

1 -1 1
(a) A=]0 1 -2
0 0 1

(b) [p(x)lc = [8,4,1]" and [p(x)]s = Alp(z)]c = [5,2,1]".

(a) p(z) = —4+(z+1)+(z+1)2. (b) p(z) = 15-9(x+1)+2(x+1)%. (c) p(z) = 4—(z+1)%
(d) p(x) = =10+ (z + 1).

1 11
Al=101 2
0 01

(a) p(z) =6+ 11z + 722 (b) p(z) =4+22 — 2. (c) p(z) =5+ .

(d) p(z) =8 — 2z — 2.

1 0 00
01 11
A= 001 3
0 001

(a) p(z) = -9+4dr+z(z— 1)+ z(z —1)(z — 2).
(b) p(z) = =2+ 8z + z(z — 1).

) plx)=14+2+3z(zx—1)+z(z—1)(z—2)
(d) p(x) =345z +bx(z—1)+z(z—1)(z—2)

Inner-products

(1) <x,x>=4m%+x%20 and <x,x>=0 if and only if 1 = 29 = 0.
2) <x,y>=4x1y1 + 22y2 = dy171 + Y212 =<y, X>.

4) Let z= [z1,22)". Then <x,y +2z>=4x1(y1 + 21) + 22(y2 + 22) = (dx1y1 + 22y2) +

(2)
(3) <ax,y>=4dazr1y1 + aray2 = a(4z1y1 + x2y2) = a <X,y >.
(4)
(4r121 + wo29) =<X,y >+ <X,Z>.
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(1) <x,x>= 3" a;x? > 0 with equality if and only if x; = 0 for each i.
(2) <x,y>= Z?zl a;iTiYi = Z?:l a;YixT; =<y,X>.
(3) <ax,y>=>1",a,a%;iYi = @y oy QLY = a <X,y >.
(4) <x,y +2>= 30" awi(yi + 2i) = D1 @ity + )i itz =
1=1 1=1 =1
<X,y >+ <X,z2>.

(1) is immediate since A is positive definite.
(2) <x,y>=x Ay = (x' Ay)T = yT ATxIT =
ylAx =<y, x>.
(3) <ax,y>= (ax T Ay = a[x Ay = a <x,y>.
(4) <x,y+z>=xTA(y +2) =x"Ay + x' Az =<x,y >+
<X,2>.

CxVAx = 22 + 2my20 + 223 = (z1 + x2)? + 23.

(1) <p,p>=a% + a2 + a3 > 0 with equality if and only if a; =0 for 0 <i < 2.
(2) <p,q>= agbg + a1b1 + asby = boag + biai + boas =<q,p> .

(3) <ap,q>= aagby + aa1by + aasby = a(aobo +ai1b; + agbg) =
a<p,q>.

(4) Let 7(x) = co + c1z + cax®. Then <p,q+7>= ag(bo + co) +ai(by +c1) +az(bzs +c2) =

(aobo + a1by + ang) + (CLQCO +ajct + GQCQ) =
<p,q>+ <p,r>.

Clearly < p,p >= p(0)? + p(1)? + p(2)? > 0. Suppose 0 =< p,p >= a2 + (ap + a1 +

a2)2 + (CLO + 2a1 + 4@2)2. Then 0 = a9 = ag + a1 + as = ag + 2a1 + 4ay. It follows that

ag = a1 = az = 0. The remaining properties of Definition 7 are straightforward to verify.

(1) <A, A>= a2, + a2, + a3, + a3, > 0 with equality if and only if A = O.

(2) <A, B>= aj1bi1+a12bia+az1ba1 +agebas = bi1arn +bizaia+borag; +basage =< B, A> .

(3) <aA, B>= aai1b11 +aaiabia+aag1bai +aaznbe = a(ai1bii +ai2bia + a1 bor + agbas) =

a<A,B>.

(4) Let C = [¢ij]. Then <A, B+ C >= a11(bi1 + c11) + a12(bi2 + c12) + a21(ba1 + ¢c21) +
aga(b22 + c22) = (a11b11 + a12b12 + a21ba1 + agebaa) + (ar1c11 + ar2cia + agico1 + azacee) =<

A B>+ <A, C>.

C<x,y>=-2%x[|=2v2|ly| = L;||x — y| = V13.
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1 2 1
xTAx=5 so | x|= V5illy| = vV2ix —y=[1,-3" and
Ix—y|2=(x—yfA(x—y)=13. Thus [|[x —y| = V13.
<p,g>=—1;|pll=V6;|lall= V6;|lp — al = V4.

<p,g>= (D14 2)2+7(7) =52;|pl|2 =<pp>= (-1)2+22+ 72 =54 so | pl=
3V6; | qlP=<q,q>=12+22+ 7 =54 so ||q||=3V6;|lp—ql]*=<p—q,p— q¢>=2? so
lp—ql=2.

L <x,y>=1[1,-2] [ bl ] [O ] = -3 ||x]|? =<x,x>=

With the inner product defined in Exercise 5, <1,z >=<1,2?>=
<z, 22>=0 so {1,z,2%} is an orthogonal set. With the inner product defined in Exercise

6, <1l,r>=3so {1,z,2%} is not an orthogonal set.

For <x,y>=x'y the graph of S is the circle with equation 2% + %> = 1. For <x,y >
= 4z1y; + Toys the graph of S is the ellipse with equation 422 + y% = 1.

u; = [1,0]7,ug = [-1,1]7.

vV = ajuj +agugz where a; =<u3,v>/<uj,u;>=7 and
ag =<ug,v>/ <ug,uz>=4.

po(z) = 1,p1(z) =2 — 1, pa(x) = 2% — 22+ 1/3.

q(x) = agpo(z) + a1p1(z) + agpa(x) where ag =<po,q> / <po,po>= —5/3,a1 =<p1,q>
/<p17p1 >= _57 and
ag =<p2,q> | <p2,p2>= —4.

For every scalar ¢, if p(z) = 2cx — 3ca? + ca® then <p,p>= 0.

po(z) = 1,p1(w) = x — appo  where ag =<, po>/<po,po>= 0.
Thus p1(x) = z. p2(x) = 2% — bopg — bip1r Where by =

<x2,po>/<po,po>=2 and by =<22,p; >/<p1,p1>=0. Thus pa(x) = 22 — 2. p3(z) =
zd — copg — c1p1 — cap2 where ¢y =

<x3,po>/<po,po>=0,c1 =<3, p1 >/<p1,p1>=17/5, and co =<23,py>/<pa, p2>=
0. Therefore p3(z) = 2% — (17/5)z.

pa(z) = 2* — dopo — d1p1 — dops — d3ps where dy =
<zt po>/ <po,po>=34/5,d1 =<zt,p1 >/ <p1,p1>=0,dy =

< axtpy >/ <pa,py >= 31/7,d3 =< x*,p3 > / < p3,p3 >= 0. Therefore py(z) =
x* — (31/7)x? 4 72/35.
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<v,0>=<v,04+0>=<v.0> + <v,0>. Therefore <v.,0>= 0.

By assumption ||u|? =<u,u>= 0. Therefore u=¥.

lav]= v/<av,av> = \/a? <v,v> =|al|v].

Suppose a1vy +agve + -+ apvi=0. Foreach:,1 <i<k, 0=
k k
Vi 0>=<vi, > 0 aivi>= 30 4 <Vi, Vj>=

a; <vi,vi>= a; ||vi||2. Thus a; =0 and the set is linearly independent.

Suppose u= > "_,; a;vj. Then <vj,u>=<vj,> 7,

a;Vi>=
Z?Zl aj <vi,vj>= a; <vj,vi>. Therefore a; =

<vi,u> [/ <vi,vi>.

From Examples 4 and 5,po(x) = 1,p1(2) = 7 — (1/2), pa(z) = 2 — & + (1/6), < po, po >=
1,<p1,p1 >= 1/12, and < pg,pz >= 1/180. Moreover < x3 py>= 1/4, <23 ,p; >= 3/40,
and <3, py>=1/120. By Theorem 13,p*(z) = (1/4)po(x)+
(9/10)p1 (z) + (3/2)p2(x) = (3/2)2* — (3/5)x + (1/20).

The required constants are < pg,z* >=1/5, < py,z* >=1/15,
< po,z* >=1/105, and < p3,x* >= 1/1400. The remaining constants have already been
calculated in Examples 4, 5, and 7. If follows that py(x) = x*—223+(9/7)22—(2/7)x+1/70.

With p3(z) as determined in Example 7 and with the calculations done in Example 6 we
obtain p*(x) ~ 0.841471py(x)—

0.467544p; () — 0.430920p2(z) + 0.07882p3 ().
To(z) = 1,11 (z) = 2, To(z) = 222 — 1,T3(z) = 423 — 3a.

(a) Clearly Ty(cosf) =1 = cos (00) and Ti(cosh) = cosf =
cos (10). Suppose we have seen that T (cost) = cos(kf) for
0 <k <n, where n > 1. Then T,41(cosf) = 2cos T, (cosb)—

Th-1(cosf) = 2cosfcos(nh) — cos(n—1)0 = cos(n+1)§ [ since cos(a+ ) =
2cosacos 3 — cos (a — fB)].

(b) <3, T3 >= (2/m) 24 [Ti(@) () VT = a?da =
—(2/m) [ cos (i) cos (j8)d8 = 0 if i # j.

(c) To(x) = 1 has degree zero and Ti(x) = x has degree one. Suppose Tji(x) has
degree k for 0 < k < n, where n > 1. Thus T,(x) = apz™ + -+ + a1x + ap
and T),_1(z) = by_12™ ' + -« + bz + by, where a, # 0. Using (R) we obtain
Thi1(x) = 2a,2" T + - - + (2a9 — by)x — by. In particular, Ty, 1(z) has degree n + 1.
It follows by induction that T (z) is a polynomial of degree k for each integer k > 0.
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(d) Ty(x) =222 — 1, T3(z) = 42 — 3z, Ty(v) = 8z — 822 + 1, Ty(x) = 1625 — 2023 + 5z.

30. It follows from Exercise 29 that {Ty(z),T1(x),...,Tn(x)} is an orthogonal basis for Py.
Moreover <1y, Ty >= 2 whereas <T},7;>= 1 for j > 1. The given formula is now an
immediate consequence of Theorem 13.

32. By property (2) of Definition 7, < e;,e; >=< e;, e; > for unit vectors, ey, es,..., e, in R?.
But < e;,e; >= e;fFAej = a;j, whereas < ej,e; >= efAei = aj;. It follows that a;; = aj;,
so A is symmetric. If x is a nonzero vector in R” then x’ Ax =< x,x >> 0 by property
(1) of Definition 7. Therefore, A is positive definite.

5.7 Linear Transformations
10 00

1. Let A= [ 0 0} and B = [0 1]. Then T(A+ B) =
det(A+ B) = det(I) =1 whereas T(A) + T'(B) = det(A) + det(B) = 0. Therefore T' is
not a linear transformation.

2. T is a linear transformation.

3. T is a linear transformation. If A and B are (2 x 2) matrices it is straightforward to see
that tr(A+ B) = tr(A) + tr(B); thus
T(A+ B) =T(A)+T(B). Likewise if ¢ is a scalar, tr(cA) =
ctr(A) so T(cA) =cT(A).

. . . . 10 0 1

4. T is not a linear transformation. For example if A = [ 0 0 ] and B = [ 0 0 ] then
T(A)=T(B) =0 whereas T(A+ B) =1.

5. Let f and g be in C[—1,1] and let ¢ be a scalar. Then T(f +g) = (f + ¢)'(0) =
f(0)+4'(0) =T(f) +T(g), and T'(cf) = (cf)'(0) =
cf'(0) = ¢T'(f). Therefore T is a linear transformation.

6. T is a linear transformation.

7. T is not a linear transformation. For example T'(1 + 6(z)) = T(1) = 2+ + 22 whereas
T()+TO)=2+x+2%)+(1+2+2%) =3+ 2z + 222

8. T is a linear transformation.

9. (a) T(p) =3T(1) — 2T (x) + 4T (2?) = 3(1 + 22) — 2(2? — 23)+

4(2 + 23) = 11 + 22 + 623.
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(b) T(ap+arz+azax?) = agT(1)+arT(z)+aT(2?) = ag(1+2%) +ay (2? —23) +az(2+23) =
(ao + 2a2) + (ap + a1)z® + (—a1 + ag)z>.
10. p(x) = (=5)1+3(x + 1) + (2 + 22 + 1) so T(p(x)) = —5x*+
3(z® — 2x) + 2 = —5a* + 323 — 5z. Similarly, ¢(z) = (=3)1+
T(x+1)+ (22 + 22 +1) so T(q(x)) = —3x* + 723 — 13.

11. (a) T(A) = —2T(E11) + 2T (E12) + 3T (Ea1) + AT (E2) = 8 + 14z — 922,

(b) T <[ i 2 D = aT(En) + 0T (Ew2) + cT'(En) + dT'(Ey) =

(a+b+2d)+ (—a+b+2c+d)z+ (b—c— 2d)z?

12. (a) Let A =Ja;;] and B = [b;;] be (2 x 2) matrices. Then
(a11 + b11) + 2(az2 + b2o) } _

T(A+ B) =T([ai; + b)) = [ (a12 + b12) — (a1 + bay)

[ a1l + 2a99 ] n [ b11 + 2b22o ]

=T(A)+T(B).
a2 — a1 bi2 — ba1 (4) (B)

If ¢ is a scalar then T'(cA) = T'([ca;j]) = { EZH + 2222 } =c [ ZH + 222 ] = cT'(A).
12 — ca2y 12 — @21

Therefore T' is a linear transformation.

(b) N(T)= {[ CCL 2 ] —2d,b = ¢, canddarbltrary}

() {[_g HH H} is a basis for N'(T).

(d) nullity (T) =2 and rank (T") = 2.
(e) is a subspace of R? and 2 = dim(R?) = rank (T) = dim(R(T) ). Therefore R(T)
= R2.
(f) T(A) =v where A is any matrix of the form
| r—2d y+ec
A= [ c d
is one choice for A.

] , where ¢ and d are arbitrary. For example, A = [ ?) ?é }

13. (a) By property 1 of Theorem 15, R(7T) =
Sp {T(1),T(z),T(z?),T(x3),T(z*)} =Sp{0,0,2,6z,122%} =
Sp{2, 6x,122%}. It follows that rank (T) = 3. Since R(T) C P
and dim(P3) = 3, we have R(T)= Px.

(b) By property 3 of Theorem 15, nullity (T") =
dim(Py) —rank (7)) = 5 — 3 = 2. Since nullity (') > 0,7 is not one to one.
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14.

15.

16.

17.

18.

19.

20.

(c)  We wish to determine q(z) = by + bz + box? + b3a® + byz* in Py such that
ao + a1z + agx® = T(q) = 2by + 6bsz + 12by22.
Equating coefficients gives by = ag/2,bs = a1/6,bs = a2/12, b
and by arbitrary. In particular,q(x) = (ag/2)x?+ (a1/6)z3+ (az/12)x* is one choice.

R(T)=Sp{l —x+2x%+3x3, -1 +3x —3x? —x3,2 = 2x + 5x? + 7x>, —1 +3x — x>+ 2x3, 1 —
x +x2 +2x3}. Utilizing the spanning set we obtain the basis {1 — x + 222 + 323,22 — 22 +
223,22 + 23,23} for R(T). In particular, rank (T') = 4. Thus nullity (T) =1 and T is
not one to one.
N(T)={p(z) = ap + a17 + asz? : ap + 2a; + 4az = 0}. Tt

follows that nullity (7') = 2. Consequently rank (7') =1 and
R(T)= R'.

/Y(R :/;) = {f in C[0,1] : [y f(t)dt =0}. Foranya in R',T(2az) = [ 2atdt = a, so R(T)
(a) Let u, v be vectors in V' and let ¢ be a scalar. Then
I(u+v)=u+v=1I(u)+I(v) and I(cu) = cu= cl(u).
Therefore I is a linear transformation.
(b) The vector v isin N(I) if and only if 6= I(v) = v. Thus N (I) = {#}. For each v
inV,I(v)=v soR(I)=V.

(a) Let uz,uz bein U and let a be a scalar. Then T(u; + uz) =
Oy =0y+0y = T(ul) + T(uz) and T(aul) =0y =aby =

aT(uy ). This proves that T' is a linear transformation.

(b) N(T)=U and R(T)= {0y }.

Recall that 5 = dim(P4) = rank (7") + nullity (T"). Moreover
R(T)C Py sorank (T) < 3. The possibilities are:

rank (7)) 3 2 1 0
nullity (T) 2 3 4 5.
Since nullity (") > 2,7 cannot be one to one.

By property 3 of Theorem 15, dim(U) = rank (T") + nullity (7). But R(7) C V so
rank (7') < dim(V) < dim(U). It follows that

nullity (7') > 0 and, hence, T' cannot be one to one.
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21.  Recall that 3 = dim(R?3) = rank (T') + nullity (T'). Moreover
N(T)C R? so nullity (T') < 3. The possibilities are:

rank (7")

3 2
nullity () 0 1

10

2 3.
Since dim(P3) =4 and rank (7)) < 4,R(T)= Ps is not a possibility.

22. By property 3 of Theorem 15, dim(U) = rank (7') + nullity (7). In particular, rank (T") <
dim(U) < dim(V) so R(T)=V is not possible.

23. It follows from property 1 of Theorem 14 that 6y is in R(7T). Sup-

pose that vi and vg are in R(T); thus there exist vectors u; and

uz in U such that T'(u;) = vi and T(uz) = va. Therefore vq +vg =
T(up)+T(uz)=T(u1+uz2) sovy+ve isin R(T). If a is a scalar
then avi =aT(u; ) =T(auy ), and avy isin R(T). This proves
that R(T) is a subspace of V.

24.  Suppose T is one to one and let u be in N (7). It follows from property 1 of Theorem
14 that T(u) =0y = T(Ay). Since T is one to one, u=0y so N(T)={6v}.

25. (a) Ifrank(7T) =p then, in the notation of Theorem 15, C' =

{T'(u1),...,T(up)} is a basis for R(T) [cf. property 2 of Theorem 9 in Section 4.5
|. In particular the set C' is linearly independent. By property 2 of Theorem 15, T' is
one to one so, by property 4 of Theorem 14, nullity (7') = 0.

(b) Ifrank (7) =0 then R(T)= {0y} and T is the zero linear transformation defined
by T(u) =60y for allu in U. Thus N(T)=U and nullity (T) = dim(U) = p.

26. T is one to one if and only if N(T)= {6}. Thus T is one to one if and only if Ax =40
has only the trivial solution, that is, if and only if A is nonsingular.

27. (a) Let A and B be (2 x 2) matrices. Then T(A + B) = (A+ B)T = AT + BT =
T(A)+T(B). If ¢ is a scalar then T'(cA) = (cA)T = cAT = ¢T'(A). This proves that
T is a linear transformation.
(b) If A isin N(T) then T(A) = AT = O. Tt follows that A = O and that nullity () = 0.
Therefore rank (T') = 4. Consequently T' is one to one and R(T)=V.

(c) Let B bein V and set C = BT. Then T(C) = C* = BTT = B. Therefore R(T)
=V.
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5.8 Operations with Linear Transformations

1. (S+T)(p)=Sp)+T(p)=p(0)+ (x+2)p(x). In particular, (S+7T)(z) =14 (z+2)z =
224+ 22+1 and (S+ T)(2?) =0+ (z + 2)2? = 23 + 222

2. (2T)(p) =2[T(p)] = 2(z + 2)p(z) = (2x + 4)p(x). Therefore
(2T)(z) = 222 + 4z.

3. (HoT)(p) = H(T(p)) = H((z+2)p(x)) = [(x+2)p(2)]'+2p(0) = (x+2)p' () +p(x)+2p(0).
The domain for H oT is P3 and
(HoT)(x) =2x+2.

4. (To H)(p) = (z+2)[p'(x) + p(0)];T o H has domain Py; (T'o H)(z) = x + 2.

5. (a) Ifp(x) = Z?:o a;z’ then T(p) = 2ag+ (ap+2a1)x+ (a1 +2az)x®+ (az+2a3) x> +azz?.

In particular T'(p) = 6(x) if and only if p(x) = (). Therefore T' is one to one. Now
rank (7') = dim(P3) — nullity (7)) = 4. Since R(T) C Py and dim(Ps) = 5, R(T)
% Py; that is, T is not onto.

(b) It is easy to verify that T'(p) = = is impossible. Therefore
T—'(x) is not defined.

6. (a) R(H)=Sp {H(1), H(x), H(z*), H(z"), H(z")} =

Sp{ 1,1,2z,322, 423} = Sp{ 1,2z, 322, 423}. It follows that
rank (H) =4 and nullity (H) = 1. Therefore H is onto but not one to one.

(b) Note that H((1/2)2%) =2 = H((1/2)z? + 2 —1). Therefore H~!(z) is not uniquely
determined.

7. Let p(z) = ae® + be?®* + ce3 be in V. Then T(p(x)) = p'(z) = ae® + 2be®® + 3ce®®.
Since B = {e%,e?*,e3*} is a linearly independent set, it follows that T(p(z)) = 6(z) if
and only if a = b=c¢=0. Thus N(T)= {0(z)} and T is one to one. The set B is a
basis for V' so dim(V') = 3. Thus rank (T') = dim(V) — nullity (T") = 3. It follows that
T is onto. Therefore T is invertible. Moreover T—1(e*) = e*, T~ !(e?*) = (1/2)e?*, and
T—1(e3%) = (1/3)e3®. This implies that T~ (ae® + be?* + ce®*) = ae® + (b/2)e** + (c/3)e3?.

8. T (sinx) = —cosx, T (cosx) =sinz, and T~ !(e7%) = —e~~.

Therefore T~ (asinz + bcosz + ce ™) = —acosx + bsinx — ce ™ *.

9. If Aisin N(T) then T(A) = AT = O. Therefore A = O, so N(T)= {O}. It follows that
T is one to one. Further rank (7') = dim(V') — nullity (T") =4 so T is onto. Therefore T
is invertible. In fact 7! =T since (AT)T = A.

10. T71(A) = QAQ 1.
11. (a) Since dim(V) =4,V is isomorphic to R* by Theorem 17.
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12.

13.

14.

15.

16.

17.

18.

(b) Since dim(P3) =4 = dim(V'), V and Ps are isomorphic by the corollary to Theorem
17.

c¢) It is easily shown that T : V — P3 defined by T a b =a+br+ cx?® + da?
c d

is an isomorphism.

(a) Note that dim(U) = 3.
(b) dim(U) = 3 = dim(Ps).

a b

(¢) Define T :U — Py byT<[ b C})za—kbx—kcx?

Ifu andw arein U then S(u+w)=T;(u+w)+ To(u+w) =
Ti(u)+ T1(w) + To(u) + To(w) = T1(u) + To(u) + Ty (w)+
To(w) = S(u) + S(w). If ¢ is a scalar then S(cu) = T;(cu)+
To(cu) = cTi(u) + cTo(u) = ¢[T1(u) + T2(u)] = cS(u).

This proves that S is a linear transformation.

Let u and w bein U.[aT](u+w) = a[T(u+w)] =
al[T(w)+T(w)]=alT(w)]+ a[T(w)] =[aT]|(u) + [aT](w). If ¢ is a scalar then
[aT](cu) =a[T(cu)] = a[cT(u)] = c[aT(u)] = c[aT](u). There-

fore a1’ is a linear transformation.

Suppose that T7!(v) =u. Then T(u) =v and T(cu) =
cl'(u) = cv. Therefore T~!(cv) = cu= T 1(v).

By formula 1, (T~')~!(u) =v where v is chosen so that T71(v) =
u. But T-}(v) =u precisely when T(u) = v. Therefore (T1)~!
=T

Letu bein U andset T(u)=v. Then T-}(v)=u so
(T 'oT)(u)=T"YT(u)) =T v)=u. It follows that
T~ 'oT = Iy. Likewise (ToT Y (v)=T(T Yv))=T(u)=v, so
ToT ! =1Iy.

(a) Suppose S and T are both one to one and let u be in N (7T o 5).

Thus Oy = (T'oS)(u) =T(S(u)). Since T is one to one it follows that S(u) =0y .
But S is also one to one so u=~0y.
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(b) Suppose that S and T' are onto and let w be in W. By assumption there exists v
in V' such that T(v) = w. Likewise, S is onto
so there exists u in U such that S(u) = v. Therefore (T05)(u)
=T(S(u)) = T(v) =w. It follows that T'o S is onto.

(¢) S and T are both one to one and both onto so by (a) and (b) T'0 .S is one to one
and onto. Therefore T o S is invertible. To see that (T0S)™t =S 1oT~! let w be
in W. Since T'oS is onto there exists u in U such that (T'0S)(u) = w. Therefore
(ToS)"Y(w)=u. Nowset v=S(u). Then T(v)=w so
T-'(w)=v and S7'(v) =u. Therefore (S~1oT 1) (w)=
STHTYw)) =S v)=u=(To8) Hw).

19. Let S:U — V be an isomorphism and let T : V — W be an isomorphism. By Exercise
18, ToS:U — W is an isomorphism.

20. (a) Since T is one to one, nullity (') = 0. Therefore rank (T') = n — nullity (') =n so

R(T)=V. Since T is onto, T is invertible.

(b) By assumption rank (7)) = n. Thus nullity (7)) =n —rank (') =0 and T is one to
one. Therefore T' is invertible.

21. It is easy to show that T'(p(x)) = 6(z) if and only if p(x) = 0(z).

Thus N(T)={0(x)} and T is one to one. Clearly there exists no polynomial p(x) in P

such that T'(p(z)) = 1. Therefore T' is not onto. This does not contradict Exercise 20(a)
since P has infinite dimension.

22. Let g(x) = bo+bix+---+byz™ bein P and set p(z) = box+(b1/2)z%+ - +[bn/(n+1)]z" L
Then S(p) = p'(x) = q(z) so S 1is onto. Note that N(T) is the set of all constant
polynomials. In particular, N'(T)# {6(z)} so T is not one to one. This does not contradict
Exercise 20(b) since P has infinite dimension.

23. Ifu isin N(S) then S(u) = 0y. Therefore (T'o S)(u) =
T(S(u)) =T(0y) =0w andu isin N(T o S). If ToS is one to one then N'(T o S) = {0y }.
Therefore N'(S) = {fy} and S is one to one.

24. Ifw isin R(T o S) then there exists u in U such that w=
(ToS)(u). Set v=_S(u). Thenv isinV and T'(v) =T(S(u)) =
(T'o S)(u) =w. This shows that w isin R(T). If ToS is onto we have R(T' o S) =V
and R(T o S) CR(T)C V. It follows that R(T)=V and T is onto.

25.  Assume that T'o S is invertible. Then T o S is one to one so, by Exercise 23, S is one

to one. Exercise 20(a) now implies that S is invertible. Since 70 S is also onto, Exercise
24 implies that T' is onto. Exercise 20(b) now implies that T is invertible.
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26.

27

28.

29.

5.9

Define S : R® — RP by S(x) = Bx and define T : RF — R™ by T(y ) = Ay
. Then T oS : R — R™ is defined by (T o S)(x) = ABx. Therefore nullity (B) =
nullity (S), nullity (AB) =

nullity (7o S),rank (4) = rank (T'), and rank (AB) = rank (T o 5).

Now apply Exercises 23 and 24.

It follows from Exercise 20(a) that 7' is invertible if and only if 7' is one to one. Now
apply Exercise 26 of Section 4.7.

Define S : R — R"by S(x) = B(x) and define T : R — R" by T'(x) = Ax. Then
ToS:R"— R"is defined by (T'o S)(x) = ABx. If AB is nonsingular then 7o S is
invertible by Exercise 27. By Exercise 25, both T" and .S are invertible. Applying Exercise
27 again, we see that A and B are nonsingular.

To prove that L(U, V) is a vector space requires checking all ten properties of Definition
1 in Section 4.2. We shall verify only properties (c1), (¢2), (a2), (a3), (ad), and (m2).

If S and T are in L(U,V) and c is a scalar then S + T and ¢TI are in L(U, V') by Exercises
13 and 14. Thus properties (c1) and (c¢2) hold. Now let R be in L(U,V). To show that
R+(S+T) = (R+S5)+T we must show that each of the transformations has the same action
on any vector u in U. But addition is associative in V' so [R+ (S + T)](u) = R(u) + (S +
T)(u) = R(u)+(S(u)+T(u)) = (R(u)+S(u))+7T(u) = (R+S)(0)+T(u) = [(R+S)+T](u).
Recall that the zero linear transformation Ty : U — V is defined by Ty(u) =6y for every u
in U. Thus (T + Tp)(u) = T'(u) + Tp(u) = T'(u)+6y = T'(u). It follows that T+ Ty = T,
so Tp is the zero of L(U,V). For T in L(U,V) it is easily seen that T+ (—1)T = Ty, so
(=1)T = —T and property (a4) of Definition 1 is satisfied,

To check (m2) let a be a scalar and let S and T" be in L(U, V). For any win U [a(S+T)](u) =
al(S+T)(u)] = alS(u) + T'(u)] = aS(u) + aT'(u) = [aS](u) + [aT](u) = [aS + aT](u). It
follows that a(S 4+ T') = aS + aT.

Matrix Representations for Linear Transformations

. S(1) =0,8(z) = 1,5(2%) =0, and S(z3) = 0. Thus [S(1)]c = [S(z?)]c = [S(2?)]c =

C
0100
0 00O
The matrix for S is [ 0 0 0 0
0 000
0 00O
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2. The matrix for T is

SO O~ N
S O = N O
SO = N OO
_ N O OO

3. (a) (S+T)1)=2+2,(S+T)(z) =1+2r+2% (S +
223 4+ z1. Therefore [(S+T)(1)]c = [2,1,0,0,0%, |
7))@ = [0,0,2,1,0]%, and (S +T)(a*)]c = [o,

)(2?) = 222 + 2® (S +T)(a 3) =
+T)(a)le = [1.2,1,0,0/7, (S +
0,2,1

O = N OO

2 1
1 2

The matrix for S + T is the matrix | 0 1
00
0

(b) By Theorem 19 the matrix for S+ 7T is the sum of matrices for S and 7. This is
easily verified.

4. The matrix for 27T is

OO O N
O O N = O
O N = O O
N O OO

5. H(1) = 1,H(x) = 1,H(2?) = 2z, H(2®) = 32%, and H(2%) = 423. Therefore [H(1)]p =
[H ()]s = [1,0,0,0]", [H(2?)]5

=10,2,0,0]T, [H(z*)]5 = [0,0,3,0]T, and [H(z*)]5 = [0,0,0,4]T.

1 1.0 00
. . . 00 200
The matrix for H is the matrix 00030
00 0 0 4
32 00
. . . 0 2 40
6. (a) The matrix for H o T is the matrix 00 3 6
0 0 0 4

(b) Denote by D,E, and F the matrices in Exercises 5,2, and 6(a), respectively. By
Theorem 20, F' = DFE and it is easily verified that this is the case.

7. (a) (ToH)1) =2+ az,(ToH)(z) =2+z,(T o H)(z?) = 4z + 222, (T o H)(2?) =
622 + 323, (T o H)(x*) = 823 + 42*. Therefore
(T o H)(1)]c = (T o H)(z)lc = [2,1,0,0,0]", [(T o H)(z*)]c
=[0,4,2,0,0]",[(T o H)(x3)]c = [0,0,6,3,0]T, and
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[(T o H)(z%)]c =[0,0,0,8,4]T. Thus the matrix for T o H is the matrix

22000
11400
00260
0 00 3 8
000 0 4

(b) Let D, E, and F denote the matrices for 7', H, and T o H, respectively (cf. Exercises
2, 5, and 7(a)). By Theorem 20, FF = DE and it is easily verified that this the case.

0

( [p]B = [a07a17a2’a3]T7 S(p):al S0 [S(p)]c = [al,O,O,O,O]T.

9. (a) [pls = [ao, a1, az2,a3]; T(p) = 2a¢ + (ag + 2a1)x + (a1 + 2a2)x? + (az + 2a3)z® + azz*
so [T(p)]c = [2a0, ap + 2a1, a1 + 2az, as + 2as,as)’.

a)
a)

10. [¢lc = [ao0,a1,a3,a4)Y; H(q) = (ap + a1) + 2a0z + 3azx?® + dasx® so [H(q)]lp = [ao +
ai,2as,3a3,4ay4]T. Tt is easily seen that N[q]c = [H(q)]5.

1 0 0
11. (a) Q=[0 2 0
| 0 0 3
1 0 0
(b P=|0 1/2 0
0 0 1/3
(c) Clearly P=Q !
[0 —1 0]
12 ) Q=|1 0 0
0 0 -1 |
01 0]
(b P=| -1 0 0 |.
00 —1 |

(c) Clearly P =Q !

13. Eq

7(
1
0
0
0

(a)
(b) If A= [aij] is a (2 X 2) matrix then [A]B = [an,alg, asy, GQQ}T
whereas [AT]p = [a11, 21, a12, a2]T. Clearly Q[A]s = [AT]5.

Ell,T(Elg) = EQl,T(Egl) = Elg, and T(EQQ) = E22. Therefore Q =

O = O O —

0
0
0
1
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14.

15.

16.

17.

18.

19.

20.

21.

-1
0

O O O W
w
o w o o

S(z+1)=3+3r—2% S(x+2) =6+ 3z — 2%, and S(2?) = 322. Therefore [S(z +1)]c =
3,3,—1,0/Y, [S(x + 2)]c = [6,3,—1,0]",

and [S(z?)]c = [0,0,3,0]T and the matrix representation for S

3 60
i 3 30
-1 -1 3
0 00
1 00
010
0 01
000
1 0 0
T(1) = | 0 |, T(x) = | 3|, and T(z?) = | 6 |, so the matrix for T is given by
0 1 4
1 0 0
0 3 6.
| 01 4
[0 -2 -2
-1 1 4
|1 2 2
T(Vl) = 0vy+1ve+0vsz+0vy, T(Vz) = 0v14+0ve+1vg+0vy, T(Vg) = 1v1+1va+0vg+0vy,
0 011
. . 1 010
and T'(vq) = 1vy + 0vg + 0vg + 3vy4, so the matrix of T' is 010 0
0 0 0 3

T(e1) = Aey = [ é ] ,T(eg) = Aea = [ (2) ] and T'(eg ) = Aeg = [ i . Therefore the

matrix for T is the given matrix A.

| S

T(1) = -4+ 32 — 22, T(v) = —2 + 3z + 222, and T(2?) = 322 so the matrix for T' is
-4 -2 0
3 30
—1 2 3
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. [plB = [a0,a1,a2)t and [T(p)]p = [—4ao — 2a1,3ap + 3a1, —ag + 2a1 + 3az]t. Tt is easily
verified that Q[p|p = [T'(p)]|s.

. T(1 =3z +72%) = 2(1 — 32 + 722), T(6 — 3 + 22%) = —3(6 — 3z + 222), and T(2?) = 32°.

2 00
Therefore the matrix of T is | 0 -3 0
0 0 3

Let P =[P1,P2,...,Px]| be a matrix such that Plu]p = [T(u)]¢

for every vector u in U. Since [u]p isin R" and [T'(u)]¢ isin R™,
P is necessarily an (mxn) matrix. Therefore k = n. Suppose Q =
[Q1,Q2,...,Qn] and assume that B = {uj,uz2,...,un}. Then for 1 <j <n,P;= Pe;
= Pluj|p = [T(w)]c = Qu;]p = Qej = Q. It follows that P = Q.

Let B={uj,u2,...,uy} and C ={vy,va,...,viy }. Suppose

Ti(u1) = ay;vi+agivea+--+ Gnivm

Ti(uz) = ajevi+ ageva+ -+ Gpavm

Ty (un) = appVi+ agpv2 + - -+ GmpVm
Also assume that

Tr(u1) = bygvi+bava+ -+ byivm

To(ug) = bigvi+ boava+ -+ bpevm

TQ(un) = b]nvl + b2nv2 +---+ bmnvm

Then T} and T5 are represented by the (mxn) matrices Q1 = [a;]
and Q2 = [b;;], respectively. To obtain the matrix for 77 + 7> note that
(T1 +T2)(a1) = Ti(ur) + To(ur ) =
(a11 +bi1)vi +(a21 +b21)va +- - + (@m1 + bim1)Vm
(Ty +T3)(uz ) = Ti(uz) + To(ug ) =
(a12 + b12)v1 +(az2 + ba2)va + - + (am2 + bm2)Vm

(Tl + TQ)(un ) = Tl(un) + T2(un ) =
(aln + bln)vl +(a2n + bZn)V2 +- (amn + bmn)vm
Therefore the matrix for T + 75 is the (mxn) matrix

[aij + bij] = Q1 + Q2.
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26. Let B={ui,...,un} and C={vy,...,vm}. T (u;)=

Yot qijvi for 1 <j <n, then the matrix for T' is the (mxn)
matrix @ = [gi;]. Moreover [aT)(u;) = ad ;" ¢ijvi= yiri(agy)vi for 1 < j < n.
Therefore the matrix for aT' is the (mxn) matrix [ag;;] = aQ.

27. By assumption Q[u]p = [T'(u)]¢ for every vector u in U. If P is the matrix for a7 then P is
the unique matrix such that P[u|p= [(aT)(u)]c for every vector u in U. But (aQ)[u]p =
a(Qulp) = a[T'(u)]c = [aT'(u)]c = [(aT')(u)]c. It follows that P = aQ.

28. If B={vi,v2,...,vn} isabasis for V then Iy(vj) =v; for 1 < j <n. Therefore
[Iv(vj)]B = e; and the matrix representation for Iy is [e1,e2,...,en] = 1.

29. If B={vq1,v2,...,Vn} is abasis for V then Ty(v;) =60y = 0vy+0vge +--- +0vy, for
1 <j <n. Thus [To(vj)p =0 (the zero vector in R™ ) and the matrix for T is the
(nxn) zero matrix.

30. It is an immediate consequence of Theorem 20 and Exercise 28 that PQ = I and QP = 1.
Therefore P = Q~'.

31. IfQ is the matrix for T then T(1) = 1—22,T(z) = v +22,T(2?) = 2, and T(23) = 2 —22.
Therefore T'(ag+ a1z + asz? +azz®) = agT (1) + a1 (T (z) + aoT(z?) + a3T(z®) = (ap+2a2) +
(a1 + a3)x + (—ag + a1 — a3)x?.

32. S(ap + a1r + axx?) = G0 — @z 01+ Gg

2ag ai — as
33. To see that v is one to onelet T': U — V be a linear transformation and assume that

T isin N (¢); that is ¢(T) is the (mxn) zero matrix.

Let B={uj,u2,...,up} and C ={vy,va,...,viy } be the given bases for U and V,
respectively. By assumption, T'(u;) = > .2, Ov; =6y for each vector u; in B,1 < j < mn.
It follows that T'(u) =0y for each u in U. Therefore T' = Ty, where Ty is the zero
transformation from U to V' (cf. Exercise 29). But T is the zero vector in the vector
space L(U, V), and N (¢) ={Tp}. This proves that ¢ is one to one.

5.10 Change of Basis and Diagonalization

1.

2.

T(uy) =uy and T(uz) = 3uz. Therefore u; and ug are eigenvectors for T' corresponding
to the eigenvalues Ay = 1 and Ay = 3, respectively. The matrix of T' with respect to C is

o3

The matrix for T' with respect to C' is

S O N
SO = O
_ o O
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3. T(Al) = 2A1,T(A2) = —2A2,T(A3) = 3A3, and T(A4) = —3A4.

Therefore Ay, A2, A3 and A, are eigenvectors for T corresponding to the eigenvalues
Al =2, =—-2,23 =3, and \y = —3, respectively. The matrix for T' with respect to C

2 00 O
is given by 0 =20 0
0 03 O
0 00 -3
. . . “1/2 12 .
4. The transition matrix is the matrix P = [ 12 1/2 } Note that Pa = [—1,3]" = [a]c.

Therefore a= —uj +3uz. Similarly b= u; —uz2,c= —2u; +7uz, and d= (—a/2+b/2)u;y
+(a/2+b/2)uy.

1 -1 -1
5. The transition matrix is the matrix P = 1 -1 0
-1 2 1

Now [p(z)]p = [2,1,0]T and Plp(z)]p = [1,1,0]T = [p(z)]c. Denote the polynomials
in C' by g1(x),g2(x),g3(x), respectively. It follows that p(x) = g1(x) + g2(x). Similarly
s(z) = —2g1(x) — g2(z) + 293(2), q(x) = —5g1(x) — 3g2(x) + Tg3(x), and r(z) =

(ap — a1 — a2)g1(x) + (ap — a1)g2(x) + (—ao + 2a1 + az)gs(x).

0 0 0 1
.. .. 00 1 0
6. The transition matrix is P = 01 -1 0 A = 4A1 + 3Ay — A3 — 3A4 B =
10 0 —1
3A1 + A3 —4A4;,C = dA1 + cAs + (b — C)Ag + (a — d)A4

7. Since u; = (1/3)wy1 +(1/3)wa  and uz = (5/3)w1 —(1/3)wz, the transition matrix is

1 1/3 5/3
P=|1s 1)
- 5/3 2/3
5 P= [ —4/3 —1/3 }
-1 1 2 3
.. .. _ 1 0 0 -3
9. The transition matrix is P = 00 1 0
0 00 1
Since [p(x)]s = [2,-7,1,0]T, Plp(x)]g = [~7,2,1,0]T = [p(z)]c. Let the polynomials in

C be denoted by gi(x),g2(x),g3(z), and gs(x), respectively. It follows that p(z) =
—7g1(x) +2g2(x) + g3(z). Similarly ¢(x) = 13g1(x) — 4g2(x) + ga(z) and r(z) = —7g1(z) +
392(x) — 293(x) + ga(x).
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1 00
10. The transition matrixis P= | 0 1 1 [.p(z) = -3+ 6z+
0 0 1
z(x—1);q(x) =8 —dx+2zx(x — 1);7r(z) = -5+ +z(x —1).
11.  Note that T(e1) = [2,1]7 = 2e; +e2 and T(ez) = [1,2]T = e; +2e2. Therefore the
matrix of T' with respect to B is the matrix @1 = ? ; ] . The transition matrix from
. . -1 1 | -1/2 1)/2
B to C is the matrix P = [ 11 } and P7* = [ 1/2 1/2].By Theorem 24 the
matrix of T with respect to C' is the matrix Qo given by Qo = P~'Q P = [ (1) g ] .
2 -1 -1
12.  The matrix for T' with respect to B is Q1 = 1 0 —1 |. The transition matrix
-1 1 2
111 1 -1 -1
from C to B is P = 1 01 and P! = 1 —1 0 |. By Theorem 24 the
-1 10 -1 2 1
2 00
matrix of 7 with respect to C' is the matrix Q2 = P~'QiP=|{ 0 1 0
0 01
-3 0 05
. . . 03 =50 o .
13.  The matrix of T' with respect to B is Q1 = 00 -2 0| The transition matrix
00 0 2
1 0 01 00 0 1
. 10110 1+ _ (00 1 0
from C' to B is P = 010 0 and P~ = 01 —1 0 By Theorem 24
1 000 10 0 —1
2 00 0
. : . . 1 0 -2 0 0
the matrix of T' with respect to C is the matrix Qo = P7'Q1 P = 0 03 o0
0 00 -3
14.

-3 1
1 -2

(c) C={-3+=z,1—2zx}.

(b) IfS—[ } then S~1QS =R WhereR—{3 O].

0 -2
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15.

—2/5 —1/5
@r=| 25 e )
(e) [wi1lp =12,3]Y so[wi]c = Plwi]p=[-7/5,—11/5]*. There-
fore [T'(w1)]c = Rlw1]c = [-21/5,22/5]T. Tt follows that T(wy ) = (—21/5)[—-3 +
x] 4+ (22/5)[1 — 22] = 17 — 13x. Similarly [T(wz )¢ = [3/5,4/5]7 so T(ws ) =
(3/5)[=3 + 2] + (4/5)[1 — 2x] = —1 — 2. Finally, [T(w3)]c = [-3/5,6/5]T so T(ws
) =(=3/5)[-3+ ]+ (6/5)[1 — 2z] = 3 — 3.

(a) T(1) =1,T(z) = 1+ 22, and T(z?) = 4z + 322
110
Therefore Q = | 0 2 4
0 0 3
(b) @ has characteristic polynomial p(t) = —(t — 1)(t — 2)(t — 3).
Therefore () has eigenvalues A\; = 1, Ao = 2, A3 = 3. The corresponding eigenvectors
are uy = [1,0,0]",uz = [1,1,0]7 and uz = [2,4,1]T, respectively. If S = [uy,uz,us]
then S™'QS =R

(c) C ={v1,va,v3} where [vi]p = u;, the " column of S. Thus [vy]s = [1,0,0]"
sovi=1;[vz]p =1[1,1,0]T sovy=
1+z;[vslp =[2,4,1]7 so vz=2+4x + 2.

10
where R=| 0 2
0 0

w o o

(d) 1 = vi,z = —vy +va, and 22 = 2vy; —4vy +v3 so the transition matrix is
1 -1 2
P=10 1 —4
0 0 1
(e) [wilp=1[-8,7,1]F and [w1]c = P[w1]p = [-13,3,1]T. There-

fore [T'(w1)]c = Rlw1]c = [~13,6,3]T. It follows that T'(wq) =
—13vy +6va +3vz = —1 + 18z + 322, Similarly [T(wz)]c =
[7,—8,3]T so T(wg) = 7vy —8va +3v3 =5+ 4z + 322

Finally, [T'(w3)]c = [11,-22,6]T so T(ws) =
11vq —22vg +6v3 = 1 + 2z + 62°.

1 -1 0 O

0 2 =2 0
@Q@=1, ¢ 5 _3
0 0 0 10

1 -1 1 -3 1 00 O

o 1 -4 27 e o200 o0

(b) IfS= 0 0 6 —108 then ST QS = R where R = 005 0

0 0 0 180 0 0 0 10
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ae-{[se] 4] [
] )

11 1/2 1/6

01 2/3 1/4
(A P=14 1/6  1/10
00 0 1/180
@ Ton) = | 75 g [T = | 2 ]

o= 22 4]

17. Let @ be the matrix of Iy with respect to C' and B. Since P is the matrix of I}y with
respect to B and C it follows from Theorem 20 in Section 4.9 that PQ is the matrix of
Iy o Iyy = Iy with respect to C. Thus PQ = I. Similarly, QP is the matix of I}y with
respect to B, so QP = I. Therefore Q = P~' and P is nonsingular.

18. (a) By assumption T'(v) = Av. Therefore Q[v]|p =[T(v)]|p =
A\V]p = Alv]B.
(b) By assumption @x = Ax and x= [v]|p. Thus Qx= Q[v]p = [T(v)]|s. It follows
that [T(v)]p = Ax= A[v]|p = [\V]B.
Therefore T'(v) = Av.

19. Let v be an eigenvector for T corresponding to A\. Then T%(v) = T(T(v)) = T(\(v) =
AT(v) = A(\v) = A2v.

20. Suppose T is one to one and let v be a vector in V' such that T(v) = Ov. Then T'(v) = 0
so v is in N(T). But N(T) = {6} so v = 0. Therefore 0 is not an eigenvalue for 7" (since
eigenvectors must be nonzero). Next assume that 0 is not an eigenvalue for 7" and let u
be in N(T'). Then T'(u) = 6 = Ou. Since 0 is not an eigenvalue, it must be the case that
u = 6. Therefore N (T) = {0} and T is one to one.

21. Suppose v is an eigenvector for T corresponding to A. Thus T(v) = Av and T~ !(\v) = v.
But T 1(Av) = AT~}(v) so it follows that T-1(v) = A~ v.
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5.11 Supplementary Exercises

1. V is not a vector space. For example, if A = [

N

10.

1 1
1 1}then1A7éA.

(a) For arbitrary ¢, —2cA; — 3cAy + cAg = O. In particular, with ¢ = 1, Az = 2A4; 4+ 3As.
(b) Asin (a), ps(z) = 2p1(z) + 3p2(x)
(C) V3 = 2V1 + 3V2.

2 1 -3 0 -1 0 . .
(a) B:{[ 0 0},[ 1 0],[ 0 1 }}moneba&sforW.
2 1 -3 0 -1 0 3 2

wsaa=]2 ][ 3 0] e[ 0] =[3 2]

(a) Sp(S) = {a+bx+ cz?: Ta—3b—5¢c=0}.

(b) q1(x), g3(x), ga(x) are in Sp (9).

(c) A polynomial p(z) = a+ bz + cx? is in Sp (9) if and only if ¢ = (7/5)a — (3/5)b. Thus,
p(r) = al[l + (7/5)2?] + bz — (3/5)x2]. The set B = {1+ (7/5)2%,x — (3/5)x?} is one
choice of a basis for Sp (S). Moreover, for this choice of B, [p(z)]5 = [a, b]".

(d) [aa(@)]s =[5, 5]"; [as(@)]p =10, =5]" ; [aa(a)]s =[5, O]"

(a) The dependence relation x1A; + x2As + 2343 + 24 A4 + x5A45 = O has solution z; =
—x3 — 2x5, x9 = x3 — 3x5, T4 = —4xs, 3 and xs arbitrary. {Aj, Ag, Ay} is a basis
for Sp (S). Setting x3 = 1 and x5 = 0 yields —A; + Ay + A3 = O, so A3 = A; — A,.
Setting, x3 = 0 and x5 = 1 gives —24; —3A5—4A4+ A5 = O, 80 A5 = 2A1+3A5+4A,.

(b) Using the same calculations as in (a), {p1(x), p2(x), pa(z)} is a basis for Sp (S5), ps(x) =
p1(x) — pa(z), and ps(x) = 2p1(x) + 3pa(z) + 4ps(x).

(c) {fi(z), fa(x), fs(x)} is a basis for Sp (), fs(x) = fi(x) — fa(x) and f5(x) = 2fi(z) +
3f2(.73) +4f4($).

AL AL 3 e

- Ap1(z),p2(x), ps(x)}

A polynomial p(z) = a + bx + cx? + d3 is in Sp (9) if and only if a — 3b — c+d = 0 and in
this case q(z) = (4da — 3b—2¢)p1(x) + (—3a + 3b+ ¢)p2(x) + (—2a + 2b+ ¢)ps(x). Therefore,
q(x) is in Sp (S) and q(x) = 2pa(z) + p5(z).

Sp(S):{[Cc‘ Z}:a—:sb—cjud:o}. {[3 H“ 8},[_01 ?],},isabasis

for Sp (.5).
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11. (a) The matrix of T"is A.
(b) rank (T") = 3 and nullity (T") = 3.
(¢) R(T)={p(x) =a+bzx+cz?+dz®:a—3b—c+d=0}.
The set {3+ x,1+ x? —1+ 2%} is a bais for R(T). (cf Exercise 10).

(d) If B = [ 8 ! 8 ] then T(B) = q(z) (cf. Exercise 9).

a1 @ a3
2a21 — 3as3, age = —2as3, a13, as1, a3 arbitrary.

-2 11 -3 -2 0 1 -3 0 . .
Therefore,{[ 0 0 0]’[ 1 o 0},[0 . 1]}1saubauslsforj\/'(T).

3] eon 8] o[ 3o (3]) -2 ) -

(b+a)(1+2z+2%) —al2—x)=(b—a)+ (3a+2b)x + (a+b)a>.

(e) T <|: o1 diz 613 ]) = 9(.@) if and only if all = —2&13 — 3&21 + a3, 412 = a13 —

13. If T(1) = [ Z; ] then T(a + bz + cx?) = aT (1) + bT(z) + T (2?) = { ZZ;::_-[C) } In

particular, T(a + bx + cz?) = [ lc) ] is one such linear transformation.
1 -1 1 —4
4. (2) |0 1 1 3
1 0 2 -1
(b) R(T) = {u+ ve + wr? : u+v —w = 0}. Moreover, if ¢(z) = u + vo + wr? is
in R(T) then T ({ utv—2+d v-c—3d ]) = ¢(x) for arbitrary ¢ and d. If

c d
q1(z) =1+ 2% and ¢o(z) = o + 22, then S = {q1(7), g2(x)} is a basis for R(T).

(c) If Ay = [ (1) 8 ] and Ay = [ (1) (1) ] then T'(A1) = q1(z) and T'(A2) = qa2(x).

d) N(T)= a b ta=—2c+dand b= —c— 3d,c and d arbitrary . Therefore, if
c d
-2

N
w
Il

|: . —01 :| and A4 = |: é _13 :| then B2 = {A37A4} is a basis fOI"N(T)
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5.12 Conceptual Exercises

1.

2.

10.

11.

True. u=a !(au) = a (av) =v.

True. (a—b)v=0and v#6,s0a—b=0.

. False. Each vector v in V has a unique inverse —v in V, but as v varies, so does —v.
. False. If n =1 then p(z) =1 — 2 and ¢(x) = 1+« are in V but p(z) + ¢(z) is not in V.
. True. Every basis for W is also a basis for V.

. True. If dim(W) = k then a basis B for W is a linearly independent susbset of V' containing

k vectors. Therefore, k < n.

True. a@ = @ for every nonzero scalar a.

. True.

. False. In R? let S = {[1,0]7,[0,1]7} and S2{[1,0]%, [0, 1]7,[1,1]T}.

True. Since V' = Sp(S1), dim(V) < k. Since S is a linearly independent subset of V,
[ < dim(V).

u=(1/2)(u+v)+(1/2)(u—v) and v=(1/2)(u+v) — (1/2)(u —v)



Chapter 6

Determinants

6.1 Introduction (No exercises)

6.2 Cofactor Expansion of Determinants
1. det(A) = 1(1) — 3(2) = —5.
2. det(A) = —31.

3 det(A):2(8)—4(4):O,x:a[_12},a750
4. det(A) = 2.
5. det(A) = 4(7) — 3(1) = 25

7. det(A) = 4(1) — 1(—2) = 6.
-3
8 det(A):O,x:a[ 1 ],a#o
1 3 0 3
_1)\2 — —(—_1)3 — @
9. An = (-1)?| | 1' 2 A = (-1)°| 1‘ 6;
01 1 2
__(_1\4 _ _(_1\6 —
A= (=D 1'_ 2 A5 = (-1°| 1‘_1.
10 AH == —2;A12 == 4;A13 == 1,A33 = —4.
2 2 -1 2
11. AH—‘2 1’——27A12—— 1’—7,
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0.

3; A1z = —1; Ass

12. Ay = —1; Apo

—

=4.

0; Azs

6; A1 = —8; A3

14. Ay

A+ 2412+ A3 =—-2+2(6) + (—2) = 8.

15. det(A)

= 14.

16. det(A)

2(—2) — 7+ 3(—8) = —35.

2411 — A2+ 3453

17. det(A)

18. det(A) = 1.

A1 +Ap—A3=-3-6—-2=-11.

19. det(A)

— O A

S~

M AN M

=
_
I
A~
—
e
SN—
—~
g - =
l_l
— o O
— ™
l_l
A N
_ — <f
l_l
- [ ]
e« — ™M
— .
(o] (o]
o I I
~—~ ~~
-~ T Z
A +2 +
5} 5}
N o
(o] (o]

24. det(A) = 4.
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25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

det(A) = a11A11 + a12412 + a13413 =
aggAsz = (—1)(=5)+(4)(—1) +(1)(4)
(3)(7) =5.

det(A) = a11A11 + a12412 + a13413 = (2)(—7) + (4)(0) + (1)(7) = —7; asnAs1 + agn Ay +
agzAzz = (3)(=5) + (1)(2) + (3)(2) = —7; az1Az1 + azaAzz + a3z Aszz = (2)(11) 4 (3)(=3) +
(2)(=10) = 7.

a1z + a1242 + a13A23 = (1)(=5) + (3)(—=1) + (2)(4) = 0; a1 431 + a12432 + a13433 =
(D(=5) + (3)(—1) + (2)(7) = 0.

a11421 + a12422 + a13423 = (2)(=5) + (4)(2) + (1)(2) = 0; a11431 + a12A32 + a13As3 =

(10) + (3)(5) + (2)(=10) = 5; az1Aa1 + az Az +

(1)
= 5; az1 Az + a3 Az +azz3Aszz = (2)(—=5) +(2)(—3) +

(2)(11) + (4)(=3) + (1)(=10) = 0.
10 5 -—10 5 0 O
C=|-5 -1 4 |,CTA=]0 5 0 | =][det(A)]].
-5 -3 7 0 0 5
So A=t = (1/5)CT = [1/ det(A)]CT.
-7 0 7 -7 0 0
C=|-5 2 2 |,CTA=| 0 -7 0 | =[det(A)]I. So At = —(1/7)CT =
11 -3 -10 0 0o -7
[1/ det(A)]CT.
_ 0 as3 0 a9 -
det(A) = —aj2 0 ass + a3 ‘ 0 as | 0.
Ugo U3 U4 0 w23 w2y
det(U) =u11| 0 wusz asza | —wi2| 0 uzs wuss |+
0 0 wuyy 0 0 w4
0 wuze w2 0 w2 s
uz| 0 0 wugg |—una| 0 0 wgz |=
0 0 wuyq 0 0 0
U2 U3 U2y uss Uss
U1y 0 w3z w34 | = uiiuge 0 = U11U22U33U44.
Ugsq
0 0 U4g4

AT = [ a2 :| SO det(AT) = aii1agy — ag1a12 = det(A).
a2 a2
(a) If A is positive definite then 0 < e;TAe; = a11. Ifx= [u,v]T and x#6 then 0 < x'Ax
= ayju? +2a10uv + axgv? (since A is symmetric ajo = a1 ). In particular if u = a2
and v = —aill Then 0 < alla%Q — 2@%20,11 + agga% == a11(a11a22 — G%Q) = al det(A)
It follows that det(A) > 0.



178 CHAPTER 6. DETERMINANTS

(b)

an(xTAX) = a%1u2 + 2a11a12uv + a11a22U2 =

Suppose aj; >0 and det(A4) > 0. For x= [u,v]

T we have

(CLHU + CL12U)2—|-

v2(a11a92 — a3y) = (a11u + a12v)? + v? det(A). For x #60 it follows

that xTAx > 0.

35.

For n =3 and n =4, H(n) = n!/2. For some integer k > 4 suppose we have seen

that H(k) =k!/2. If A isa ((k+1) x (k+1)) matrix then det(A) can be obtained
by evaluating k + 1 (k x k) determinants. Thus the number of (2 x 2) determinants

in the expansion of det(A) is (k+ 1)H (k) =

(k+1)!/2. Tt follows by induction that

H(n) =n!/2 for every positive integer n,n > 2.

plications and one subtraction.

2 1
) 60
10 1,814,400

Note that evaluating a single (2 x 2) determinant requires 3 operations, two multi-

Time required
3 seconds

3 minutes
1512 hours.

6.3 Elementary Operations and Determinants

1 21| C—20, |1 0 0 »
L2 01| CG-C |2 -4 —1 :‘_3
1 -1 1 = 1 -3 0
2 4 2] C,—2C, |2 00 )
2 0 2 3 Cs+ C4 0 2 3 :2‘_1
11 2 = 1 -1 3
01 0 2
303 12| 7% |1 39 B2
2 0 3 - 02 3 -
30
_‘23’__9.
2 2 2 0 0
4010 1|=1 -1 —1|=2
2 1 2 -1 -2
01 3 103
502 1 2] V7% 1 g o] B73G
11 2 - 11 2 -




6.3. ELEMENTARY OPERATIONS AND DETERMINANTS 179

-1
-1

2
1

0
-1
-1

10
1 2

11

1| Co—C4
2

1
1

-1
-3

Cs—Cy

—1

3

—2det(A) = —6.

7. det(B)

—6det(A) = —18.

8. det(B)

= det(A) = 3.

9. det(B)

2det(A) = 6.

10. det(B)

= det(A) = 3.

11. det(B)

Adet(A) = 12.

12. det(B)
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o o o
S O ==
w
|
—_

22. IfA= [ (1) 8 ‘ and B = [ 8 (1) ] then det(A) = det(B) = 0 whereas det(A+ B) = 1.
1 0 0 1
If A= { 00 ] and B = [ 00 } then det(A) = det(B) =0 and det(A+ B) =0 =

det(A) + det(B).
a+1 a+4 a+7 {0302} a+1 3 3

23. |a+2 a+5 a+38 = a+2 3 3 |=0;
a+3 a+6 a+9 Cy—Cq a+3 3 3

a 4a Ta C3— 0y a 3a 3a

2a ba 8a = 2a 3a 3a | =0;
3a 6a 9a Cy — C4 3a 3a 3a

a a* o 1 1 1

a2 @ a® |=(a)(a*)a")| a a a |=0
a’ a® o’ a’> a®> a?

2
24. (a) Set B = [B17B2,B3]. Then AB = [ABl,ABQ,ABg] where AB1 =A 3 = 2A1 +
1

0 0
3Ao + A3, ABo=A| -1 | =—As+3A3, AB3=A| 0 | =4A3.
3 4

(b)
det(AB) = det[2A; +3A2+ A3, —Ay + 3A3,4A3]

(C3/4): = (4)det[2A1 +3A2+ A3, —As + 3A3, A3
(CQ — 303) D= (4) det[2A1 4+ 3As + Ag,— Ao, Ag]
(=Ca): = (—4)det[2A1 4+ 3As + A3, Ay, A
(C1—C3): = (—4)det[2A; + 3A3, As, Aj]
(C1—3C): = (—4)det[2A1, Ag, As]
(C1/2): = (—8)det[A;, Ag, As] = (—8)det(A).

(c) det(B) = —8, so det(AB) = det(A) det(B).

25. It follows from Theorem 3 (with ¢ = 0 ) that if A has a zero column then det(A) = 0.
Since the first column of Uy; contains only zeros for 2 < j < n,det(U;;) = 0.
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2. IfU i i i = | M2 =
. is a (2 x 2) upper triangular matrix then U = 0 u and det(U) = ui1ugs.
22
Suppose we have seen that det(U) = ujjugg - - - ugg
for a (kxk) upper triangular matrix U. IfU isa ((k+1)x(k+1))
upper triangular matrix then det(U) = u11U11 + u12Ur2 + -+ - +
U2 U2z - U2 k+1
0 wuzz --- U3 k+1
Ul k+1U1 k41 = v11Ur1. But Upg = : =
0 0 - Upy1ps1
UgoU33 - - - Uk+1 k+1 Dy assumption. Thus det(U) =
U1U22 * - - U1 k+1- 1t follows by induction that if U = (u;;) is an (nxn) upper triangular
matrix, n > 2, then det(U) = ujjug2 - - Unp.
z y 1
27. First note that | z;1 1 1 | = 0 is a linear equation in x and y. It follows from
r2 y2 1
Theorem 5 that * = x1,y = y1 and x = 2,y = y2 are solutions. Consequently the
equation describes the line through the points (z1,y1) and (x2,y2).
28. Consider the case represented by the figure below.
Clearly area (ABC') = area (ADEC) + area (CEF B)—
area( ADF B). Therefore area (ABC) = (1/2)(xz3 — z1)(v1 +y3)+ (1/2)(z2 — 23)(y2 + y3) —
(1/2)(z2 — z1)(y1 +92) =
zr oy 1
(1/2)[r1y2 — 21y3 — Tay1 + Toys + 2391 — w3y2] = (1/2) | 22 32 1
3 ys 1
29. Let x= [z1,70,23]7 and y = [y1,92,%3]" and let B = xy' =

[B1, B2, B3] where B; = [zy1,;y2, 7;y3]T. Then A =

[B1 + e1,B2 + e2,Bs + e3]’.  Repeated applications of Theorem 4 yield; det(A) =
det[Bl, B, B3] + det[Bl, B, 63] +
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30.

31.

32.

6.4

2.

det[Bl,ez,B3] + det[el,Bz,Bg] + det[Bl,ez,eg] +
det[el,Bg,eg] +det[e1,e2,B3] +det[e1,e2,e3].

Since each Bj, 1 < j < 3, is a scalar multiple of y, Theorem 5 implies that
det(A) = det[By, ez, e3] + det[e1, B2, e3 ]| + det[eq, ez, Bg |+
detler, ez, €3] = z1y1 + T2y2 + a3y3 + 1 =1+ y'x.

1 a a®| C3—aCy |1 0 0
1 b bv¥| Cy—aCy |1 b—a bb—a) |=
1 ¢ ¢ = 1 ¢c—a clc—a)
(b—a)(c—a) 1 ':(b—a)(c—a)(c—b)
1 a a2 a®| C4—aC3 | 1 0 0 0
1 b v | C3—aCy |1 b—a blb—a) b*(b—a)|
1 ¢ & 3| C—aCy |1 c—a clc—a) cEc—a)|
1 d & & - 1 d—a dd—a) d*(d—a)
1 b b
(b—a)(c—a)(d—a)| 1 c & |=
1 d &

(b—a)(c—a)(d—a)(c—0b)(d—Db)(d—c).

Write A = [A1,Aqg,...,Ay]. Then cA = [cAq,cAq, ..., cAy).
By Theorem 3, det(cA) = ¢ det[A1, cAa,...,cAy] =

62 d€t[A1,A2, SN CAn] =...=c" det[Al,Az, .. .,An] =

c™ det(A).

Cramer’s Rule

01 3 10 3

341 - 431 -
10 0 100
21 o5 | 1OEBCE gy g2y
43 —11 - 43 4
121 10 0

24 3|=-|21 0]|=3

21 3 2 1 -3
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2 2 4 Cy—C 2 00
3.1 1 3 4 { Cs — 204 } 12 2 {03:02}
-1 2 1 = -1 3 3 N
200
1 2 0|=0.
-1 3 0
1 01 100
4. 12 1 11=2/01 0|=2.
1 21 0 01
1 0 -2 1 00 1 0 O
5003 1 3| 1GH200 g g | 1G9,
0 1 2 N 01 2 N 01 -7
100
- 0 1 1 -
100 100
~703 1 0 {01:302} ~710 1 0|=-7.
0 01 N 0 01
6. A is singular.
7. (a) det(AB) = det(A4) det(B) = (2)(3) = 6 (b) det(AB?) = det(A)[det(B)]* = (2)(9) = 18
(c) det(A71B) = det(B)/det(A) = 3/2 (d) det(2A7!) = 8det(A~!) = 8/det(A4) = 4
(e) det (24) 7" = det((1/2)A~1) = (1/8) det(A™1) = 1/[8 det(A)] = 1/16.
8. Both matrices have determinant sin?# + cos? @ = 1, so the matrices are nonsingular for all
values of 6.
9. det(B()\)) =2\ — A2 = X\(2 — )\); B()\) is singular provided A =0 or A = 2.
10. det(B()\)) = A2 — 1; B(\) is singular for A = +1.
11. det(B()\)) =4 — A\?; B(\) is singular for A = £2.
12. det(B(N)) =2(1 — A)(3 — A); B(\) is singular provided A =1 or A = 3.
13. det(B(\)) = (A — 1)2(A +2); B()\) is singular provided A =1 or A = —2
14. det(B(N\)) = A(A = 3)(A+1); B(\) is singular provided A = 0,A =3, or A\ = —1.
1 3 1
15. det(A) —’ 1 1 ’——Q,det(Bl) —’ 1 1 ‘ —2;
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16.

17.

18.

19.

20.

21.

1 3
1 -1

x1 = det(By)/det(A) = 1; 29 = det(Bz)/ det(A) = 2.

det(B3) = ‘ ’ = —4.

.%‘1:1’2:1.

1 -2 1 -1 -2 1
det(A)=|1 0 1 |=-2;det(B;)=| 3 0 1 |=-8;
1 -2 0 0 -2 0
1 -1 1 1 -2 -1
det(B2)=|1 3 1|=—-4det(Bs)=|1 0 3 |=2.
1 00 1 -2 0
T = det(Bl)/det(A) =439 = det(Bg)/det(A) = 2;
xg = det(Bs3)/det(A) = —1
T = —1,332 = O,$3 =
11 1 -1 21 1 -1
01 -1 1 1 1 -1 1
det(A) = 00 1 -11° 3;det(By) = 00 1 -11° 3;
00 1 2 30 1 2
12 1 -1 11 2 -1
01 -1 1 011 1
det(Ba)| o g 1 _p |=HdetBs) =], o o 1 |=%
03 1 2 003 2
11 1 2
01 -1 1
det(B4) =10 o 1 0l7 3.
00 13
I = det(Bl)/det(A) = 1;332 = det(Bg)/det(A) = 1;
x3 = det(B3)/det(A) = 1524 = det(By)/ det(A) =1

[oH

@

-+

~—~

s

no

S~—

Il
o O =
o o
— =

1 1 a
=b—cdet(Bs)=|0 1 b|=c
0 0 ¢

ri=a—bxo=b—c,x3=c.
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22. det(A)? = det(A?) = det(I) =1 so det(A) = 1.
23.  Suppose B is produced by interchanging the i* and the j™ columns of B. Thus
AB=A[By,...,By,...,B;,..., By =
[ABy,...,AB;j,...,AB;.... ,AB, ] = C where C' is obtained by interchanging the i'"
and j* columns of C' = AB.
Suppose B is produced by replacing B; with B; +aBj. Then
AB =[ABy,...,AB;+aAB;j, ..., AB,] = C where C = AB and C' is obtained by adding
a times the j** column of C' to the i*" column of C.
Finally suppose B is produced by replAacing B; with aB;. Then AB = [AB1,...,aAB;
,...,ABL] = C where C = AB and C is obtained by multiplying the i*"* column of C
by a..
24. det(AB) = det(A) det(B) = det(B) det(A) = det(BA).
25. det(B) = det(SAS™!) = det(S) det(A) det(S~1) =
det(S) det(S) ! det(A) = det(A).
26. Either det(A) =0 or det(A) = 1.
27. det(A%) = det(A)® = 3° = 243.
28. Set x = det(A). Then x~! = det(A~!). Moreover, since A and A~! both have only integer
entries, both det(A) and det(A~!) are integers. It follows that z = +1.
1 9 1 2 2
29. det(Q) = —33 = (—3)(11) :‘ ‘ 3 5 1
2 1
1 4 1
1 9 1 2 27
30. If A= [ 5 1 ] and B=| 3 5 1 | then det(A4)det(B)=(—3)(11) = —33 = det(Q).
1 4 1

6.5 Applications of Determinants

12 1] (Re—2R | |1 21

3 2 {&+m} 0 —1 o Vet 6R2}
141 - 0 6 2 =
121
0 -1 0|=-2
0 0 2
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31 1 21
1 2 1[(=-]03 1|=-6
2 -2 2 00 2
01 3 12 2
12 2 {R“jR?} 01 3 {33__3Rl}
10 - 310 -
12 12 2
e I ) O IV S s
0 -5 —6 - 009
101 10 1
02 4|=|02 4|=-12
3.2 1 00 —6
o [ a4 =271 a1 4 -2
adk](A)—[_3 1],det(A)— 2, A7 = ( 1/2)[_3 1].
. d —
adJ(A):[_C ];det(A):ad—bc;

[0

adj (A) = | —2
|1

~1

adj(A) = | -3
3

A7l = (-1/5) {
—4

adj (A) = 1
1

A7l =(-1/2) {

;det(A) = 1; A~ = adj (4).
;det(A) = —b;
1

-2 .

-3

] ;det(A) = —2;
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1 -2 1
10. adj(A)=| 0 1 —2 |;det(A) =1;471 = adj(A).
0 0 1
1z 22
11. W(z)=]0 1 2z |=2. Since W(0) =2 the given set of
0 0 2
functions is linearly independent.
e e e 1 11
12. W(z) = | e® 2e* 3e3® | = €52 1 2 3 | = 2e%. Since W(0) = 6 # 0, the set of
et 4e?  9e3® 1 49
functions is linearly independent.
1 cos? x sin? x
13. W(x)=|0  —2coszsinx 2cosxsinx =
0 2sin®z —2cos?x 2cos’z — 2sin’x
1 cos’z sin’z
4dcosxsinxcos2x| 0 —1 1 = 0. The Wronskian gives no information, but 1 —
0 -1 1
cos? x — sin? x = 0 so the set is linearly dependent.
14. W(x) = 4sinx cos 2z — 2sin 2z cosz.W(mw/4) # 0 so the set of functions is linearly inde-
pendent.
15. Note that z |z |= 22 for x > 0 and x |z |= —2? for x < 0. Therefore W(x) =
v if 2 >0 and W R Since W for all
9 o =0 ifz >0 an (z) = 9r —9p when x < 0. Since W(z) =0 for a
r,—1 < x <1, the Wronskian test is inconclusive. Thus suppose that ci2? + cox |2 |= 0
for all z, —1 < x < 1. Then for x =1 we have ¢1 +¢c3 = 0 and for x = —1 we obtain
c1 —ca = 0. Tt follows that ¢; = co =0 and the set {z%,z |z|} is linearly independent.
16. W(x) =0 for all 7, —1 < x < 1. The set is linearly dependent since 3x2 —2(1 +22) + (2 —
2?) = 0.
17.  The column operations C7 < Cy,C3 — 3C1,C3 + 2C5 reduce A to the matrix L =
1 010 1 0 -3
2 10 0|,Eo=101 0],
2 0 01 0 0 1

0 0
1 0 | . Therefore Q = F1FEsFE3 where Fh =
2 —1
1
and E3 = 0
0

O = O
N O
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18.

19.

20.

21.

22.

01 2
Multiplication yields @ = | 1 0 —3 | . It is easily seen that
0 0 1
det(Q) = det(QT) = —1.
010 1 0 2 1 0 0
Et=|10 0 |;E5=|010]|;E35=|01 -5 |;
0 01 0 01 0 0 1
01 =5 -1 00
Q:E1E2E3: 1 0 2 ;AQ:L: 3 10 5
00 1 210

Il
|
=

det(Q) = det(Q")

1 0 0
The column operations Cy —2C1, C3+C4, C3+4Cy transform A to L = |: 3 -1 0 ] .
4 -8 —26

1 -2 0 1 01
KFE,=|0 10]|,E= 010],
0 01 0 01
1 00 1 -2 -7
E3: 01 4 5 andQ:ElEgEgz 0 1 4]
0 01 0 O 1

then AQ = L and det(Q) = det(QT) = 1.

1 -2 0 10 3 100
Er=10 1 0|;E 01 0|;E; 014];
0 01 00 1 00 1
1 -2 -5 2 0 0
Q=EFEBE;=|0 1 4 ,AQL!ll 0],
0 0 1 3 -4 —6

det(A(z)) = 22+ 1 > 0 for all real x. adj (A(x)) = { v _; ] so A7t = [1/(z% +
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23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

det(A(z)) = 422 + 8 > 0 for all real z. adj (A) =
r?+4 27 z?
2z 4 —2x | so A7!=[1/(422 + 8)]adj (A).
2 2z 2% +4
sinz 0 —cosx

det(A(x)) =1 for all z.A~! = adj (A) = 0 1 0

cosx 0 sinzx

1 0 0
—a 1 0|.det(U) =1 soU™! =adjU) =
ac—b —c 1

det(L) =1 so L™' = adj (L) =

1 —a ac—b
0 1 —c
0 O 1

Let L = [l;;] be a (4 x 4) nonsingular, lower-triangular matrix. Direct calculations show
that adj (L) is also a lower-triangular matrix. By Theorem 14, L~! is lower-triangular.

Clearly each cofactor, A;; of A is an integer. Therefore A=t =

adj (A) contains only integer entries.

(a) Let A=[A41,...,A,]. By assumption
E=ley,...,ej,...,€i,...,ey]. Therefore
AE = [Aey ..., Aej, ..., Ae;, ..., Aey] =

[Aq, .. Ay A AL

(b) Let E = [e,s|. If suffices to note that e,s = es, when s # r. If (r,s) # (i,j) and
(r,s) # (j,i) then e,s =es =0. But e;j =ej; =1 so E is symmetric.

If A isan (nxn) skew symmetric matrix then det(AT) = det(—A) = (—1)" det(A4). But
det(A) = det(AT) so det(A) — det(AT) = det(A) — (=1)" det(A) = . For n odd this
implies that 2det(A) = 0. Therefore det(A) =0 and A is singular.

Let « = det(A). Then z = det(A”) = det(A™') = 1/2. Thus, 22 = 1 and it follows that
r = =£1.

Set ¢ = det(A). Since A is nonsingular, ¢ # 0. Moreover, Adj(A) = det(A)A~! = cA~!, so
det[Adj (A)] = det(cA™!) = c"det(A7) = "/ det(A) = ¢"/c = L.

(a) I =AA™ = Al Adj (A)] = [ Al Ad (4).
Therefore, [Adj (A)] ™' = [1/ det(A)]A.

(b) A= (A_l)*1 = [1/det(A™1)] Adj (A™") = det(A) Adj (A™'). Therefore, Adj(A™!) =
[1/ det(A)]A.
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6.6

Supplementary Exercises

ail a2 ail a2 bi1  bio b1 b2
+ + .
a1 G2 bar  bao a1 G2 ba1  bao
. Note that if [A,,_2,...,A;] can be obtained from [Ay,..., A, _s] with m column inter-

changes, then [Aj, A,—1,...,A2, A,] can be obtained from [A1, Asg,..., A,] with m col-
umn interchanges. Thus, m + 1 column interchanges yields [A,, A,_1,...,A1]. Therefore,
if n = 4k or n = 4k 4+ 1 then an even number of column interchanges is required and
det(B) = det(A). If n = 2k or n = 2k + 1, where k is odd, then an odd number of column
interchanges is required and det(B) = — det(A).

. Ifz=det(A) then 23 =xsor=0,z=1,0or x = —1.

. Let = det(A). Then z # 0, z = det(A”), and if A is a (2 x 2) matrix, det(cA) = c’z.

From z = c?z it follows that ¢ = &1. Similarly, if A is a (3 x 3) matrix, ¢ =1 s0 c = 1.

AB =

N OO
o N O
S O N

. Det (A) = a11411 + a12412 + a13A13 = —1 and A7l = (1/det(A))AdJ (A) = —CT. There-

1 2 -1
fore, A=(—CT) '=|3 1 4
2 2 1

. Det (B+1I)=detlb+e;,b+es,....b+e,] =>",det(A;) +det(I) =by + -+ b, + 1.

- (2° + 2¥)e”.

Conceptual Exercises

. True. A is nonsingular so B = A~}(AB) = A71(AC) = C.

. True. Det (AB) = det(A) det(B) = det(B) det(A) = det(AB).
. False. If A = I, then det(cl,, — A) = (¢ —1)".

. False. Det (cA) = " det(A).

. True. 0 = det(A4%) = (det(A))*, so det(A) = 0.

. True. 0 # det(B) = det(A1) - - - det(Ayy,), so det(A4;) # 0 for 1 <i < m.

True. If C' = [A;j] is the cofactor matrix for A then C is symmetric.
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8. True. A~! = Adj (A).
9. If x = det(A) and A2 = —TI then 2% = —1, which is not possible.
10. A is nonsingular (cf. Exercise 6) so A~! exists. Thus [ = A~'TA = A~Y(AB)A = BA.
11. AT — el = (A—e)”.
12. (a) Det (B™'AB—cI) = det[B~!(A—cI)B] = det(B~') det(A —cI) det(B) = det(A—cI).
(b) Det (AB — cI) = det(B~Y(BA)B — cI) = det(BA — cI).
13. A[Adj (A)] = (det(A))I so, by Exercise 6, Adj (A) is nonsingular.
14. (a) If A is nonsingular then B = IB = A Y(AB) = A7'O = O. Similarly, if B is
nonsingular, then A = O. If follows that A and B are both singular.
(b) If A is singular then det(A) =0 so A[Adj(A)] = O. By (a), Adj (A) is singular.
15. AT = A~ = (1/det(A)) Adj (4) so Adj (A)T = (det(A))A.



Chapter 7

Eigenvalues and Applications

7.1 Quadratic Forms

(2 2
La-[? 2]
[ —1 3
2a-[ 18]
1 1 -3
3. A= 1 -4 4
-3 4 3
1 1 5 =2
1 0 2 -1
4 A= 5 2 4 3
| -2 -1 3 -1
[2 2
5A__2 1}
(1 4 2
6. A=1]4 2 3
|2 31

7. q¢(x) = x"Ax where A = [ g 3 . A has eigenvalues \; = 5, \o = —1 with corresponding

eigenvectors a [ 1 } ,b [ _} ], respectively, where a # 0 and b # 0. In particular Q =

(1/v/2) [ } _1 } The form is indefinite.
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10.

11.

12.

Cq(x) =xTAx for A = [

5 =2

_9 5 }A has eigenvalues \; =7 and A2 = 3. We may take

Q= (1/V?2) [ _} i ] The form is positive definite.

1 2 2
.q(x) =x'Ax for A= | 2 1 2 |. The eigenvalues for A are Ay =5 and \y = —1
2 21

(algebraic multiplicity 2). An eigenvector for A\; = 5 is u; = [1,1,1]T. The vectors wa
=[-1,1,0]T and wg=[-1,0,1]T

are eigenvectors for Ao = —1. The Gram-Schmidt process yields orthogonal eigenvectors
uz=wy=[-1,1,0]T and uz=[-1,-1,2]T.

We form @ by normalizing the set {uy ,uz,us } of eigenvectors;

1/vV3 —1/vV2 —1/V6
Q=|1/VvV3 1/vV2 -1/v6
1/v/3 0 2/V6

The form is indefinite.

1 11
q(x) =x'Ax for A= |1 1 1 |.A has eigenvalues \; = 3 and Ay = 0 (algebraic
1 11

multiplicity 2). One choice for @ is

1/vV3 —1/v2 —1/V6
Q=1|1/VvV3 1/vV2 -1/V6
1/v3 0 2/V6

The form is positive semidefinite.

3 -1
-1 3
corresponding eigenvectors uy = [1,1]T and ug =

q(x) = x"Ax  where A = [ ].A has eigenvalues \;y = 2 and Ay = 4 with

[-1,1]T, respectively. The set {u; ,uz } is orthogonal. We normalize u; and uz to

obtain Q; Q = (1/v2) [ -

1 } . The form is positive definite.

1 -1 -1 -1
-1 1 -1 -1
-1 -1 1 -1
-1 -1 -1 1

q(x) = x' Ax where A = . A has eigenvalues \; = 2 (with algebraic
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13.

14.

15.

16.

17.

18.

—1/vV2 —1/V/6 —1/2v/3 1/2
1/vV2 —1/V/6 —1/2V3 1/2

multiplicity 3) and Ay = —2. We may take Q = 0 2/V6 —1/2v3 12 |° The
0 0 3/2v3 1/2
form is indefinite.
Set q(x) = 222 +v/3xy + y%. Then ¢(x) = x'Ax for A =
[ /3 /3 v3/ ? } . A has eigenvalues A\; = 1/2, Ao = 5/2 with corresponding eigenvectors
u; = [-1,v/3]T and uz = [v/3,1]T, respect- ively. Since {u; ,uz} is an orthogonal set
we may normalize and
. —1/2 V/3)2 i :
obtain() [ V3/2 1/2 } The substitution x = Qy yields
q(x) = (1/2)u? + (5/2)v? = 10. The graph corresponds to the ellipse
u?/20 +v?/4 = 1.
1 -1 .
Q= (1/V?2) 11 and the graph corresponds to the ellipse
u?/2+v?/4 = 1.
2 2 T I3
Set q(x) = z* + 6xy — 7Ty*. Then ¢(x) = x" Ax where A = 5 |
A has eigenvalues \; = —8 and Ay = 2 with corresponding eigenvectors uy = [—1,3]T

and uz = [3,1]T, respectively. Since {u; ,up} is an orthogonal set we may normalize to

obtain Q = (1/v/10) [ _; ’ ]

The substitution x = Qy yields g(x) = —8u? + 2v? = 8. The graph corresponds to the
hyperbola v2/4 — u? = 1.

Q= (1/V?2) [ 1 _i ] and the graph corresponds to the ellipse u? + v?/5 = 1.
0 1
1 0

Q= (1/v2) [ i 71 ] and Q'AQ = D = [ (1) _(1) } The substitution x = Qy yields

2

If ¢(x) = vy then ¢(x) = x' Ay where A = [ ] . The mat- rix A is diagonalized by

q(x) = u? —v? = 4. The graph corresponds to the hyperbola u?/4 — v?/4 = 1.

Q- [ V3/2 1/2

1/2 —/3)2 } . The transformed equation is the parabola v = —2u? — /3 u + 2.
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2 2 T 3 —1
19. If g(x) = 32° — 22y + 3y* then ¢(x) = x" Ax where A = 1 3l
. . 11 - 40
A is diagonalized by Q = (1/v/2) 11 and Q" AQ = D where D = 0 2 |- The
transformed equation is the ellipse 4u? + 2v% = 16, or u?/4 +v?/8 = 1.
1 -1 o

20. Q = (1/v/2) 11 and the transformed equation is 2u® = —1.

21. Note that a;; = e;' Ae;j=e;' Cej=c¢;; for 1 <i <n. Forr # s set x= e, +es. Then
XPAX = Gy + Qrg + Qg + Qg5 = Qpr + 20,05 + a5, since A is symmetric. Similarly x' Cx
= Cpr + 2¢75 + g5 1t follows that a,s = ¢;s.

22. (a) Suppose that Ax= \;x where x#6#. Then 0 < x' Ax= \;x'x =

A || x||2. Tt follows that A\; > 0.
(b) By Equation (3) q(x) = A\y? + Xoy2 + -+ + Ay2 where y = [y1,...,yn]7 and x
=Qy. If x#60 then y #60 so q(x) > 0.

23.  See Exercise 22.

24.  See Exercise 22.

25. If q(x) = x' Ax is indefinite then it follows from properties (a) - (d) of Theorem 2 that
A has positive and negative eigenvalues. Conversely assume that A has eigenvalues Ay > 0
and Ay < 0 and let x; and xo be corresponding eigenvectors, respectively. Then X1t Axq =
A1 |[2]|2> 0 and xa" Axa = Ay || z||3< 0. This shows that g(x) is indefinite.

26. Following the hint we obtain R(x) = (31, a3\;)/ (> a?). There-

fore Ay = (A1 321, 67)/ (301 af) < (30 afh) /(30 af) =
R(x) < (A 2o af)/ (1 af) = An.

27. If||x||=1 then R(x) =x"Ax= q(x) [cf. Exercise 26]. By Exercise 26, \; < R(x) < Ap.
Let u; and u, be eigenvectors corresponding to A1 and A,, respectively, where ||uy ||
=[lun||=1. Then R(uy) = u;' Auy = \; and, similarly, R(un) = An.

28. (a) BT = (STAS)T = STATSTT = §TAS = B.

(b)  Suppose that ¢q; is positive definite and assume x #6. Since S is nonsingular y
= Sx#0. Therefore q2(x) = x' Bx=x1"STASx= (Sx)TA(Sx) = y' Ay = ¢1(y) > 0.
This shows that gs is positive definite. The reverse argument is similar.
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7.2 Systems of Differential Equations

1.

The given system has matrix equation x ' (t) = Ax (t) where

5 —2

x (t) = [u(t),v(t)]T and A = [ 6 _9

} . The eigenvalues for A

are A\ = 1 and A\ = 2 and the corresponding eigenvectors are uy = [1,2]T, uz = [2,3]".
Thus x1 (t) = efu; and X2 (t) = e**uy  are solutions. The general solution is given by x
() = bixa (t)+

boxa (t); that is x (t) = byet [ ; ] + boet { ‘3, ] . It is easily seen that

1 2
B . _ ot 2t =
Xo = uz +2uz so the solution x (t) = e [ 9 } + 2e [ ] - [ 2et + 6e?t

3 ] satisfies the

initial condition.

-1 2

A= { 2 -1 } The general solution is x (t) = bye’ [ i ] + boet [ _1 ] The solution

that satisfies the initial condition is x (t) = (1/2)e! [ 1 ] — (3/2)e3 [ _1 ]

11

The system is x '(t) = Ax (t) where A = { 5 o

}A has eigen- values Ay = 0 and
A2 = 3 with corresponding eigenvectors uy =

[~1,1]T and ug = [1,2]T. The general solution is given by x (t) =

by [ _i ] + bye®t [ ; ] The particular solution that satisfies the

e B -1 s 1] _ [ 3+2¢%
initial condition is x (¢) = 3{ 1]+26 [2}—{_34_46&& :

A= { > 0 ] The general solution is x (t) = bye? [ ? ] +

3 —4

1
—t
b26 |: 1

2 1 2e2t + et
B2t —t _
x(t)=e [1}4-6 [1]—[ 2 4 et |
0.5 0.5
—-0.5 0.5
and A2 = 0.5 — 0.5i with corresponding eigenvectors uy = [—i,1]T and ug = [i,1]T. The

general solution is x (t) = bieMtuy +bge*?tuy  where ettt = (051050t —
et2[cos (t/2) +isin (t/2)] and et = e(0-5-059 — ¢t/2[cos (¢/2) —isin (t/2)]. The equation

] . The solution that satisfies the initial condition is

The system is x (t) = Ax(t) where A = [ ] .A has eigenvalues \; = 0.540.5¢
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Xg = biuy +bouz has solution by = 2+ 2¢ and by = 2 — 2¢ so the particular solution that
satisfies the initial condition is x (t) = 4e(*/?) cos (£/2) +sin (¢/2)
cos (t/2) —sin (t/2) |’
6 8 L
6. A=1| 1 9| The general solution is
x () = bpe(+20t [ _21_ 2 } + boeld=20)t [ -2 ;_ 2 ] The solution that satisfies the initial
condition is x (t) = 2ie(4+20)t [ _21_ 2 ] -
97 6(4—20)t 242 | _ el 2cos2t + 4sin 2t .
1 —sin2¢
4 0 1
7. The system is x (£) = Ax(t) where A= | —2 1 0 |.A has eigenvalues \; = 1, Ay = 2,
-2 0 1
and A\3 = 3 with corresponding eigenvectors u; = [0,1,0]T,uz = [1,-2,-2]T, and us
=[-1,1,1]T, respectively. Therefore the general solution is x () =
0 1 [ —1 ]
biet | 1 | + boe?t | —2 | + bgedt 1 [. Since xg = uj +ug +2uz the solution x
0 —2 1]
0 1 [ —1 7
(t)=e | 1 | +e?| -2 | + 2% 1 satisfies the initial condition.
0 —2 1
3 1 =2
8. A= | —1 2 1 |. The general solution is
4 1 -3
1 7 1 1
x(t)=biet | 0 | +boe™t | —2 | +b3e®* | 1 |. The solution x (¢) =3e! | 0 | —
1 13 1 1
7 1
et =2 | +22| 1 satisfies the initial condition.
13 1

9. (a) The system is x (t) = Ax(t) for A = [

1 -1
1 3
with corresponding eigenvector u = [1, —1]%.

] . A has only one eigenvalue, A = 2,

1 . .
Therefore x4 (t) = % [ 1 } is a solution for the system.
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(b)

Set x5 (t) = teMu+eMyg. Then x2 (1) = eM(tAu+u + \yo)

whereas Axz (t) = eM(tAu+Ayq). Therefore we require that

Ayo=u-+Ayo; thatis (A— Al)ypo=u. One choice is yg=

[2,1]T.  Thus x5 (t) = te* { _1 } + 2t [ _? ] is a solution.

If y (t) = c1x1 (t) + cax2 (t) note that y (0) = cipu+cayo. Since {u,yo} is a linearly
independent set for every xg in R? we may find ¢; and co such that xg = ciu+cayo

10. (a)A:[i ‘é] andxl(t):e‘“[ 1}

-2
(b)  One choice for yo is yo=[0,—1]T. In this case x2 (t)

1 0
4t at
te |:2:|+6 [1]

atq
(¢c) The solution x (t) = x1 (t) — 3x2 () = [ 24t8 + 23 ] satisfies the initial condition.

()

7.3 Transformation to Hessenberg Form

1. The desired elementary row operation is R3 — 4Rs. Performing this operation on the (3
1 00
x 3) identity matrix yields @1 = | 0 1 0
0 —4 1
1 00 -7 16 3
Q! 0 1 0| and QAQ;'=H = 8 9 3
0 4 1 0 1 1

1 00 —6 31 —14
2.Q:1=10 1 0 |;H=0Q:4Q;'| -1 6 -2 |.
021 0 2 1
1
0

0 0
3. Let ()1 denote the permutation matrix ()1 = 0 1 ] . Then Q1 = Ql_l and Q14
0 10
interchanges the second and third rows of A. Further (Q1A4)Q: interchanges the second
11 3
and third columns of Q1 A. Therefore H = QlAQl_l = |: 1 3 1
0 4 2

1 00 1 4 -1
4.Q1=10 1 0| and H=Q:4Q;'=|3 0 1
02 1 0 -5 5
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5. The desired elementary row operation is R3 + 3Ry. Performing this operation on the (3

100 1 00
x 3) identity matrix yields @ = | 0 1 0 |.Q;'=[0 1 0| and H=Q14Q;"' =
0 3 1 0 -3 1
3 2 -1
4 5 =2
0 20 —6

1 00 430
6. Q1 =10 0 1| and H=Q4Q;" =3 1 2
010 021

7. Performing the elementary row operations R3 — Ry and R4y — Re on the (4 x 4) identity

M1 0 0 0 1 0 0 O
. 10 1 00 1 _ |01 00 B 1
matrix yields Q1 = 0 -1 1 0 Q7 = 01 1 0 and H = Q1AQ; =
|0 -1 0 1 0101
1 =3 -1 —11
-1 -1 -1 -1
0 0 2 0
O 0 0 2 |
1 00O 10 00
o 100 o1 00 B PN
8. Let Q1 = 0 -4 1 0 and Qo = 0 0 10 Then H = Q2Q14Q; Q5 =
0 -4 0 1 00 -1 1
6 33 8 4
1 38 8 4
0 —-120 —-25 -—15
0 0 0 5
1 0 0 O
00 01 ] .
9. If @1 = 0010 then Q1 = @7 and Q1A interchanges the second and
01 00
fourth rows of A whereas (Q1A4)Q; interchanges the second and fourth columns 0f Q1 A.
Therefore

Q1AQ1 =

S O = =
N~ N W
— = O =
_= W NN
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10 00
. . 0 1 00
Now the desired elementary row operation is Ry — 2R3 so set Qs = 0 0 10
00 -2 1
1 0 0O
1 |10 1T 00
Then Q, " = 00 1 0 and
0 0 2 1
(1 3 5 2
1 2 4 2
_ -1n-1 _
| 0 0 —-11 -5
1 0 0 0] 1 0 0 0
01 00 0 1 0 0
10. Ile— 0210 and QQ— 0 0 10 Then
010 1] 0 0 =5/3 1
2 -1 -5/3 -1
_ 141 | 1 2 —1/3 1
0 0 0 0
11. Since A is an eigenvalue for H, the matrix H — Al is singular; that is nullity (H —\I) > 1.
al—)\ b1 C1 dl
Tt follows that rank (H — \I) < 3. But H—A[ = | %2 2= A e d> and
0 b3 C3—)\ d3
0 0 cy4 dy — A\

clearly the first three columns of H — Al are linearly independent. Therefore
rank (H — AI) > 3. Thus rank (H — AI) = 3 and so, nullity (H — A\) = 1. Hence, A has
geometric multiplicity equal to 1.

12.  Since H is similar to a symmetric matrix, H is diagonizable. Therefore the algebraic
multiplicity for A equals the geometric multiplicity. Now apply Exercise 11.

p(t) = (t —2)3(t + 2) is the characteristic polynomial for H. Since H and A are similar,
p(t) is also the characteristic polynomial for A. Therefore A has eigenvalues A\; =2 and
A2 = —2 and A\; =2 has algebraic (and hence geometric) multiplicity 3 (cf. Exercise 12).

14. p(t)

13.

(t—5)2(t—15)(t+1) so A has eigenvalues \; = 5, Ay = 15, and A3 = —1.

15. [elyeZa 83], [61783, 62]7 [ezyela 83], [32,83, el]? [e37e1a 62]7

le3, ez, e1].
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16. [e1,e2,e3,e4], [e1,€2,€4,€3],[e1,€3,€2,€4], [€1, €3, €4, €2],
[e1,e4,e2,e3], [e1,e4, 3, €2], [e2, €1, €3, €4], [€2, €1, €4, €3],
[e ,€3,€e1,¢€ 4],[8 ,€3,€4,€ l]a[e ,€4,€1,€ 3],[9 ,€4,€3,€ 1]7
[e ,€1,€2,¢€ 4],[6 ,€1,€4,€ 2],[@ ,€2,€1,¢€ 4],[6 ,€2,€4,€ 1]7
[e ,€4,€1,€ 2],[9 ,€4,€2,€ 1]7[9 ,€1,€2,€ 3],[6 ,€1,€3,€ 2]7
[e4,e2,€1, €3], [es, €2, e3,€1], [eq, €3,€1, €2], [€4, €3, €2, €1].

17.  There are n! (nxn) permutation matrices.

18.  Since the columns of P are some ordering of e1,e2,...,e,, they form an orthonormal
set.

19. AP = Aley, ej,€x,...,er] = [Ae;, Aej, Aey, ..., Ae, | =
[Aj, Aj, Ay, ..., Ay

al
a2
20. Let A= ) where a; is the Gt row of A.
an
o]
aj
By Exercise 19, ATP = [a;T,a;T,a,",...,a, ]. Therefore PTA = (ATP)T = | ak
- ar -

21.  Apply Exercise 19.

22. By Exercise 21 each of the matrices P!, P?, P3,... is a permutation matrix. By Exercise
17 there are n! distinct (nxn) permutation matrices. Therefore there exists integers r
and s such that r > s and P" = P®. Since P is nonsingular this implies that P"~° = I.

7.4 Eigenvalues of Hessenberg Matrices
1. Note that the given matrix H 1is in unreduced Hessenberg form. We have wg = e;

[1,0]Y, w1 = Hwo = [2,1]T, and wo = Hw; = [4,3]". The vector equation agwq +a;wy
= —wg is equivalent to the system

ag + 201 = —4
ay = *3'

The system has solution ag = 2,a; = —3 so p(t) = 2 — 3t + t2.
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. wo = e1 = [1,0]%;wy = [0,3]T; wa = [0,0]T, The vector equation agwg +a; w3 = —ws
has solution ag = a; = 0, so p(t) = 2.

. Note that the given matrix H 1is in unreduced Hessenberg form. We have wg = ey
=[1,0,0]T, w1 = Hwo = [1,2,0]T, wo = Hwy = [1,4,2]%, and wz= Hwa= [3,6,8]T. The
vector equation

a9Wo + a; W1 + apwg = —w3 is equivalent to the system of equations
ag + a1 + ay = -3
201 + 4as = —6 .
2@2 = -8

The system has unique solution ag = —4,a1 = 5,as = —4 so p(t) = —4 + 5t — 4t? + 3.

. wo=-e1=[1,0,00% w1 =[1,1,0]T; wa = [3,4,1]"; wg = [12, 14, 6] .
The vector equation agwg +a1 w1 +aswg = —wg has solution

ag = —4,a; = 10,a3 = —6, so p(t) = —4 + 10t — 6t% + t3.

. Note that the given matrix H is in unreduced Hessenberg form. We have wg = e;
= [1,0,0]", w1 = Hwo = [2,1,0]T, wo = Hwy = [8,3,1]T, and w3z = Hwy = [29,14,8]T.

The vector equation agwg +a1 w1 +aowe = —wg is equivalent to the system of equations
ag + 2a1 4+ 8as = -29
ai + 3ay = -—14 .
ay = —8

The system has unique solution ag = 15,a; = 10,a2 = —8 so p(t) = 15 + 10t — 8¢ + 3.

. Wg = e1; W1 = e3; W = e3,wg = e1. The vector equation aywg+ +a; w1 + aswg = —W3
has solution ag = —1,a; = ag = 0. Therefore p(t) = —1 + 3.

. Note that the given matrix H 1is in unreduced Hessenberg form. We have wg = ey
=[1,0,0,0]", wy; = Hwo = [0,1,0,0]%,
wo = Hwy=[1,2,1,0]", wg = Hwa = [2,6,2,2]T, and wy=

Hwsz=[8,18,8, 6]T. The vector equation agwg+ a; w1+ aswWa—+a3wg = —wy is equivalent
to the system of equations

a1 + as + 2a3 = =8
ar + 2a2 + 6ag = -—18

as + 2a3 = -8 °

2&3 = —6

The system has unique solution a9 = 0,a1 = 4,a2 = —2,a3 = —3, sop(t) = At —2t2 —3t3+t4.
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8. wo = e; = [1,0,0,0]", wq = [0,1,0,0]T, wa = [2,0,2,0]", ws = [2,4,0,2]T, and wy =
[12,0,12,2]". The vector equation agwq +
a1wW1 +asws +a3wg = —wy4 has solution ag = 2,a1 = 4, a9 = —6,
az = —1. Therefore p(t) = 2 + 4t — 6t2 — 3 + ¢,
[ Bu B 1 -1 [ 14 o2 -1
9H—|: O B22:|Whel‘eB11—|:1 3:|,Blg—|:_2 1:| andB22—|:_1 2:|
Bj1 has eigenvalue A\; =2 (with algebraic multiplicity 2) with corresponding eigenvector
u; = [~1,1]7.Boy has eigenvalues Ay = 1, \3 = 3 with corresponding eigenvectors
ve=[1,1]T and vz= [~1,1]T, respectively. Thus H has eigenvalues \; = 2, Ao = 1, A3 = 3.
The vector x1 = [ 1101 = [~1,1,0,0]" is an eigenvector for H corresponding to
A1 = 2. The system of equations (B3 — I)u= —Bjave has solution ug = [-9,5]T, so
Xo = { vu2 } = [-9,5,1, 1]T is an eigenvector of H corresponding to Ay = 1. Similarly
2
(B11 — 3I)u= —Bjavs has solution ug = [-3,9]T so x5 = [ :3 ] =[-3,9,-1,1]T is an
3
eigenvector of H corresponding to A3 = 3.
11 30 .

10. By = 11 and Boy = 1 4 . B11 has eigenvalues Ay = 0 and Ao = 2 and Boy
has eigenvalues A3 = 3, \4 = 4. The corresponding eigenvectors are x; = [—1,1,0,0]", x2
=[1,1,0,0]T,x3=1[0,1,-1,1]T and x4 =[3/4,5/4,0,1]T.

-2 0 -2 1
11. H = [ B(;l g” ] where Bjy = | =1 1 -2 | ,Bia=1| 3 |,
22 01 -1 —2
and Bgs = [2]. B11 has eigenvalues A\ = 0 and Ao = —1 (algebraic multiplicity 2) with
corresponding eigenvectors uy = [—1,1,1]T and uz = [~2,0,1]". By has eigenvalue A3 = 2
with corresponding eigenvector vg = [1]. Thus H has eigenvalues A\; = 0,\o = —1, and
A3 = 2. The vectors xq = [ 1191 ] = [-1,1,1,0]7 and x5 = 1102 = [-2,0,1,0]T are
eigenvectors for H corresponding to Ay = 0 and Ay = —1, respectively. The system of
equations (B1; — 2I)uy = —Bjavs has solution ug = [1/6,15/6,1/6]T so xg= [ 33 ] =
3
[1/6,15/6,1/6,1]T is an eigenvector for H corresponding to A3 = 2.
2 3 30 .
12. By1 = 3 9 and Bgy = 13| Bi1 has eigenvalues A\; =5 and Ay = —1 and

Bso has eigenvalue A3 = 3. The corresponding eigenvectors for H are x3 = [1,1,0,0]T, x5
=[-1,1,0,0]T, and x3=[-7/8,-13/8,0,1]T.
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13.

14.

15.
16.
17.

18.

19.

20.

21.

22.

det(B) = afwz — afyr — ebwz + ebyx = (af — eb)(wz — yx) = det(B11) det(Baa).

det(H):“ _; x| 27 ‘:(4)(3):12.
P =lez,e3,e1].

P =lez,e3,eq4,€1].

P =lez,e3,...,e,,€1].

Write P = [P1,P2,...,Py] where, as shown in Exercise 17,

P, =e3,P32=e€3,...,.P,_1 =€, and P, =e;. Thus wg = e1,w; = Pwg = Pe; =
P1 = €2, W2 — PWl = P82 = P2 = €e3,..., Wp_1 — PWn_2 = Pen_1 = Pn—l = €q,
and w, = Pwy_1 = Pey, = P, = e;. Obviously the vector equation agwqg + a;wi+
-+++0ap_1Wn_1 = —Wy hassolution ag = —1,a; = --- = ap,—1 = 0. Therefore p(t) = t"—1.

Let H = [hi;] and let A be an eigenvalue for H, Then

[ hin— A hio .o hin—1 hin
ha1  haa — A h2.m—1 han
0 h32 h3mn-1 h3n
H - )\ = . . . .
0 0 hn—1n-1—XA hp_1n
L 0 0 hn,nfl hnn - A |
Since ha1, h32, ..., hyn—1 are nonzero, the first n —1 columns of

H — M\ form a linearly independent set. Therefore rank (H — A\I) >
n — 1. It follows that nullity (H — M) < 1. Since A is an eigenvalue for H it follows that
nullity (H — AI) = 1; that is, A has geometric multiplicity 1.

Since H is symmetric, it is diagonalizable. Therefore the algebraic multiplicity of A equals
the geometric multiplicity. It follows from Exercise 19 that A has algebraic multiplicity 1.
Therefore H neces-
sarily has n distinct eigenvalues.

If H is unreduced then b # 0. Thus p(t) = t?> — (a +c)t — b*>. The eigenvalues for H are
[(a+c)+ +/(a+ c)? +4b3]/2. Since

A =
(a+¢)? +4b*> > 0, H has two distinct eigenvalues.

Set u= [uy,us,...,u,]" and assume that u, = 0. Set H = [hy, ha,

.. hp]. Thus A\u = Hu = ushy + ughg + -+ + u,—shy_1.  There-
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fore the nt component of Hu is up—1hyp—1. Since hy 1 #0 it
follows that u,_; = 0. Repetition of this argument yields
Uy =uUg =-+-=u, = 0, sou=40. Therefore if u #6 then u, # 0.
23. Let k be an integer, 1 < k < n, and suppose we have shown that wy_7 has the form
Wi 1= lar...,a;,0,...,0]T, where ay # 0. If H = [hy,...,h,] then wy = Hwy_1
= aphy +---+azhyx. But H is in Hessenberg form so h;; =0 when ¢ > j + 1. Therefore

the £+ 1 component of wy is arhi41, and is nonzero since H is unreduced. Thus wy
has the form wi = [by,...,bg11,0,...,0]T, where

b1 # 0.

7.5 Householder Transformations
1. Qx=x—vyu where v = 2u'x /ulu= (-2)(2)/4 = —1. Thus Qx= [4,1,6,7]".
2. Qx=[4,-3,5,4[T.

3. Set yy = 2u'A; /ulu= —1 and v, = 2ufAs /ulu= —2. Then QA; = A; — y1u
=3,5,5,1]T and QAs = As —you=[3,1,4,2]T.

3 3

Therefore QA = g i

1 2
2 31
TOY T
1 5 3

5. Set v =2u'x /ulu= —1. Then Qx=x—yu=x+u=[4,1,3,4]T.
Thus x' Q = (Qx)T = [4,1,3,4].

6. x'Q= 12,2,3,1].
7. Set x=2,1,2,1]T and y=[1,0,1,4]". Then QAT = Q[x,y] =

1 2
[Qx,Qy]| = ? _; . Therefore AQ = (QAT)T =
2 3
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

1/2 5/2 7/2 5/2
6 0 -1 -1

- BQ = —7/2 13/2 11/2 5/2

3 =7 1 )

Set u; = 0. If a = —v/44+44+1= -3 then us = vo —a = 2+ 3 = 5. Finally take
u3 =v3 =2 and uy = vy = 1. Thus u=[0,5,2,1]".

a=-2u=[3,1,1,1]T.

= V42 4+3%2 = -5u; =uy =0uz3 =v3—a=4+5= 9 uys = vgs = 3. Therefore u
[0,0,9,3]".

=

a=3;u=1/0,0,-52,1]7T.

=/ (-3)2+442 =5u; = uy = ug = Ojug = vy —a = —8;u; = v5 = 4. Therefore u
[0,0,0,—8,4]T

e

a=—4;u=[0,0,8,0,0]T.

We want QA; = [1,a,0]T. Therefore a = —/32 +42 = -5 and

u=[uy,uz,u3]’ where u; = 0,uy =3 — (=5) =8, and ug = 4.

Then u= [0,8,4]".

u=[0,-5,5]T.
0
We want QA1 = | a |. Therefore a = \/m =5 and
0
u= [u1,uz,u3]’ where u; = 0,us = —4—5=—9, and uz = 3.
Thus u= [0, -9, 3]T.
u=[0,0,8,4]".
1
We want QA2 = 3 soa=+/(-3)2+42=5.u=
0
[u1, ug, uz, ug)t where u; = us = 0,u3 = —3 —5 = —8, and uy = 4.

Thus u= [0,0, —8,4]T.
u=1[0,0,—1,1]"%.

QY = —buu")T = 1T — (buu")T =T —bu™u" =T — buu™ = Q.
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22.

23.

24.

25.

7.6

1.

2. X

3.

4. x* =

Set b =2/ufu. Then Qu= (I —buul)u= Iu—(buu’ Ju=
u—bu(uu) =u—2u=—u. Ifu'v=0 then Qv= (I — buul)v=
Iv—bu(uv)=v.

Let {u,wa,...,wn} be as given in the hint. By Exercise 22, Qu= —u and Qw; = wj
for 2 < ¢ < n. Thus R™ has a basis consisting of eigenvectors for @); that is @ is
diagonalizable. Moreover @) is similar to the (nxn) diagonal matrix D with diagonal

entries di; = 1,dogo = -+ - = dp, = —1. Since @ and D have the same eigenvalues, () has
eigenvalues 1 and —1.

To prove (a) note that Q! (Qn 9 QaQ1)7 ! =
Q'R Q. =QTQT - Qp_y = (Qnz---Q2Q1)T = Q. To
prove (b) assume that A is symmetric. Thus H' = (QAQ™)T =
QTTATQT = QAQT = H and H is symmetric.
(a) Set BT [V17 V2,Vs, V4] Then QBT [QV17 Qv27 Qv?n QV4]
and for 1 < j <4,Qvj =vj—~ju, where v; is a constant. Since u= [0, a,b, ot it

follows that @Qv; and v; have the same first coordinate. Thus BT and QBT have
the same first row. It follows that B and BQ = (QBT)T have the same first column.

(b) It follows from (a) that x = [b11,b12,0,0]T is the first column of BQ. Thus Qx is
the first column of QBQ. But Qx = x —yu where v = 2u'x /ufu= 0; that is Qx
=x.

QR Factorization & Least-Squares

2
1

ES

1
x* is the unique solution to Rx=c, where R = [ 0 ] and

c= { i’ } Thus x* = [1,1]T.
=[2,—-1]".

x* is the unique solution to Rx=c¢ where R= | 0 and

O = N
N W

c=| 7. Thusx*=[2,1,2]T.
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10.

11.

12.

cu= 22,4 R = [

We require that SAj = [a,0]T. Therefore a = £1/a?, + a2, =
—5,u1 = a1 —a =38, and uy = as; = 4. Consequently u= [8,4]T and SA; = A; —u

= [5,0]". SAz = A —2u=[-11,2]", s0 SA = R = [ R }

cu=[1,1]TR= [ L= }

0 -3

We require that SA; = [ g ] so take a = —y/a}, + a3y = —4,
up = a3 —a=4, and up = ag; = 4. Thus u= [4,4]T and SA; =

A; —u=[-4,0]T. Also SAy= Ay —2u=[-6,—-2|T. Therefore SA= R = [ —4 =6 ]

0 -2

5 —22
0 4 |

We require that SAs = [2,a,0]T soset a = —/a3, + a§2 =—1;u1 =0,us = ags —a =1,
and u3 = azz = 1. Therefore u= [0,1,1]T,SA; = A1 ,SA3 = Ay —u=[2,-1,0]T, and

1 2 1

SA3= Az —14u=[1,-8,—6]T. Consequently SA=R=|0 -1 -8

0 0 —6
3 1 2
u=1[0,84%R=|0 -5 -11
0 0 2

We first require Q7 such that Q1A; = [a,0,0,0]T so take uy = [6,2,2,4]T. Then Q1A4
= Ay —u;=[-5,0,0,0]T and Q;Az=

Ay —3u=[-59/3,6,2,3]T. We now require Q2 such that
Q2(Q1A2) =[-59/3,a,0,0]T. Thus set uz = [0,13,2,3]T. Then
Q2(Q1A1) = Q1A1 and Q2(Q1A2) = Q1A2 —uz=

-5 —59/3
[~59/3,—7,0,0]T. Therefore Q2Q1A = 8 —g
0 0

u; =[3,1,1,1]7 and Q14 = uz=10,3,0,3]T and

O O O N
W o O
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-2 =7
0 -3
Q201 A = 0 0
0 0
13.  We require a matrix @ such that QAs = [4,a,0,0]T. Thus u= [0,8,0,4]7 and QA =
2 4
0 -5
0 0
0 0
3 5
. 0 -3
14. u=1[0,5,1,2]" and QA = 0 0
0 0

15.  Let Q1,uy,Q2,uz be as in Exercise 11. Then Q1b= b —u; = [-5,8, -2, -3]T and
Q2(Q1b) = Q1b—uz = [-5, -5, -4, —6]".

The least-squares solution is the unique solution x* to Rx= ¢ where R = [ _g _591 i }
and ¢ = [-5, —5]T. Thus x* =
[-38/21,15/21]T.
. . . -2 =7
16. Q2Q1b=[—4,2,—1,3]. x* is the unique solution to Rx=c where R = [ 0 3 } and

c=[-4,2]T. Thus x* = [13/3,-2/3] .

17. With Q and u as in Exercise 13, Qb=b —(12/5)u=
[2,—56/5,16,—8/5]*. Therefore x* is the unique solution to

2 4
0 -5

yields x* = [-87/25,56/25]T.

Rx=c where R = [ } and c= [2,-56/5]T. Solving

18. Qb = [5,-10/3,-19/3,—8/15]T. x* is the unique solution to Rx = ¢ where R =

[ 3 _g ] and c= [5,—10/3]T. Solving yields

x* = [-5/27,10/9]*.
19. Write [A1,A2,...,Ay], where {A1,Aq2,..., Ay} is a linearly independent subset of R".

Now SA =[SA1,S5A2,...,SA,]. Suppose ¢, ¢, ..., ¢, are scalars such that 0=c; SA; +
caSAg+ -+ ¢, SA,L.
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7.7

Then 0= S(c; A1+ c2Az+ -+ ¢, An) and S is nonsingular. There-

fore 0= c; A1+ cosAg+---+ ¢, Ay, It follows that ¢ = co = --- = ¢, = 0 and hence, the
set {SA1,SA3,...,SAL} is linearly independent. For each j,1 < j < n,SA;= [ ]':;j }
where R; is the 4t column of R and # isin R™ ™. Therefore the set {R1,Ra2,...,

Ry} is linearly independent in R™ and the matrix R is nonsingular.

Matrix Polynomials & The Cayley-Hamilton Theorem

.q(A):A2—4A+3I:[_(1) _H;q(B):B2—4B+3I=[8 8];(1((}'):(}'2—404-
15 -2 14
31 = 5 =2 10
-1 -4 6
(a) p(A) =(A—1)? =0; p(B) = (B—-1)> = 0;
p(C)=(C—-I1P=0;pI)=(I—-1*=0°=0

(b)  Set q(t) = (t—1)2=#>—2t+1.

(a) q(t) = s(t)p(t) +r(t) where s(t) =t>+t—1 and r(t) =t + 2.

(b) q(B) = s(B)p(B)+r(B) = r(B) since p(B) = O. Thus ¢(B) = B+2I = [ 7411 _le ]

Note that H? = (SAS™1)(SAS™!) = (SA2S~!). For some positive integer k > 2 sup-
pose we have shown that H* = SA*S~!. Then H**! = H*H = (SA*S~1)(SAS™!) =
SAk+18=1 Tt follows by induction that H™ = SA"S~! for each positive integer n. Now
let ¢(t) = apt™+an_1t" '+ - -+ait+ag. Then ¢(H) = ayH"+a, 1H" '+ -+arH+agl =
anSA"S™ 4 a, 1 SAT IS 4o a1 SAST 4 pSIST! = S(ap A" 4 ap 1AV 4+
a1A +apl)S™1 = Sq(A)S~L.

Since u;T Aug is a (1 x 1) matrix, u3" Aug = (u;T Aug)T =
ud ATuy™T = ugt Auy. Now uif Aug = AaugTus whereas
U2TA111 = )\1112T111 = )\1111T112. Therefore )\1111T112 = )\2111TU2.

Since A\; # Ay it follows that uyTug = 0.
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7.

7.8

(a)

By assumption, Axg is in W. For some positive integer k, suppose we have shown

that AFxq isin W. Then AFtlxg= A(AFxq) is in W by the assumed property of
A. By induction, A"xq is in W for each positive integer n.
0= m(A)xo= (A —rl)s(A)xp. Since s(t) has degree k — 1,
S(A)xg #60. Thus if u = S(4)xe then (A —rl)u =60. It follows that u is an
eigenvector of A corresponding to the eigenvalue r. Now if s(t) = bj_1t* 14 - -+bit+bg
then S(A)xg = bp_; A*"Ixqg + --- + by AXg + byXg. Since 7 is an eigenvalue for A, r
is real. It follows that b, ...,bx_1 are real. Thus S(A)x is a linear combination of
the vectors A¥1xq,..., Axg, xo in W.

Hence S(A)xq is in W.

Let x and y bein W; that is, xu;’ =0 and yuiy' =0 for 1 <i < k. Therefore
(x+yu =xu’ +yu;T =0+0=0 for 1 <i < k. Consequently, x+y isin W.
Likewise if ¢ is a scalar then (ex)uil = c(xui’) = c¢0 = 0, for 1 <i <k, so cx isin

W. Certainly 0 is in W, so W is a subspace of R™.

Suppose that Au; = \juy, 1 < i <k, and let x bein W. Thus x'u;=0 for 1 <i < k.
Now (Ax)Tu; = xF ATuy = xP Auy = xF (\jug) = A\j(xtug) = 0 for 1 <4 < k. Therefore
Ax is in W. It now follows from Exercise 7 that A has an eigenvector uyx,q in W.
By definition of W, {u1,us,...,uk, ux+1} is an orthogonal set of eigenvectors for A.

Generalized Eigenvectors & Differential
Equations

(a)

The given matrix H has characteristic polynomial p(t) =

(t —2)2, so A = 2 is the only eigenvalue and it has algebraic multiplicity 2. The
vector vy = [1,—1]T is an eigenvector corresponding to A = 2. If we solve the system
of equations (H — 2I)x = vi we see that x = [~1 — a,a]T, where a is arbitrary.
Taking a = 0 we obtain a generalized eigenvector vo = [—1,0]".

The given matrix H has characteristic polynomial p(t) =
t(t +1)2. The eigenvalue A = —1 has corresponding eigenvector vy = [—2,0,1]".
Solving the system (H — (—1)I)x = v; yields x= [2—2a,1,a]" where a is arbitrary.
Thus va = [0,1,1]7 is a generalized eigenvector for A = —1. The eigenvalue A = 0
has corresponding eigenvector wy = [—1,1,1]T.

The given matrix H has characteristic polynomial p(t) =
(t —1)2(t +1). The eigenvalue A = 1 has corresponding eigenvector vy = [-2,0,1]T.
Solving (H — I)x = vy yields x = [(5/2) — 2a,1/2,a]T, where a is arbitrary. Thus
va=[5/2,1/2,0]" is a generalized eigenvector of A = 1. The eigenvalue A = —1 has
corresponding eigenvector wy = [—9, —1,1]T.
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2.

3.

For A,A = 1 is the only eigenvalue. Corresponding generalized eigenvectors are vi

= [07 07 07 1]T7 V2 = [07 07 17 O]Tv V3 = [07 17 07 O]Ta

and v4 = [1,0,0,0]".
For B generalized eigenvectors are vq = [—3, —5, —1,2]%,vo =
[0,0,0,1]%, v = [0,1/2,0,1/2]T, and v4 = [1/4,1/4,0,1/4]T.

(a)

1 00 1 00
Q=01 0| thenQ'=[0 1 0| and H=
0 3 1 0 -3 1
8 —69 21
QAQ™! = |: 1 —10 is in unreduced Hessenberg form. H has characteristic
0
polynomial p(t t+1 —1). The eigenvalue A = —1 has corresponding eigenvector
vi=[3,1,2]T.

Solving the system (H — (—1)])u = vy yields u=
[—(7/2) + (3/2)a, (—=1/2) + (1/2)a,a]T, where a is arbitrary.
Therefore vo = [~2,0,1]T is a generalized eigenvector for A = —1. The eigenvalue
A = 1 has corresponding eigenvector wy = [-3,0,1]T.  Set y(t) = Qx(t) and
yo = @xo = [-1,-1,-2]T.
The system y = Hy has general solution y(t) = ¢;e " ‘vi+
coe t(va +tvy) + cselwy and yg =y (0) = c1v1 +cava +c3wy . Solving we obtain
c1=—-1,c0=2,c3=-2, soy(t)=
“Het—17) + 6e
(2t —1) . Therefore
—t(4t) — 2¢t
e t(6t — 7) + 6et

1 00 1 0 0
fQ=1]101 0| then@*'=[0 1 0| and
0 3 1 0 -3 1
2 4 -1
H=QAQ'=| -3 —4 1 | isinunreduced Hessenberg form. H has character-
0 3 -1
istic polynomial p(t) = (t+1)3. The eigenvalue A = —1 has corresponding eigenvector

vi=[1,0,3]T. The system (H — (—1)I)u = v; has solution u= [~1+ (1/3)a,1,a]7T,

where a is arbitrary. Therefore va = [0,1,3]T is a generalized eigenvector of order 2
for A = —1. The system (H — (—1)I)u = v has solution u= [(—4/3) + (1/3)a, 1,a]*
so vz =1[0,1,4]T is a generalized eigenvector of order 3 for A = —1.
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Set y (1) = Qx (t) and yo = Qxo = [-1,—1,—2]T. The system y = Hy has
general solution y(t) = c;e vy + coe (v +tvi) + cze”(va + tva + (12 /2)vy) and
yo = y(0) = ¢;v1 + c2va + csvs. Solving we obtain ¢; = —1,c0 = —5,c3 =4, soy
e t(2t? — 5t — 1) e t(2t? — 5t — 1)
(t)=| e t(4t —1) . Therefore x (t) = Q 1y (t) = | e (4t —1)
e t(6t2 — 3t — 2) e t(6t? — 15t + 1)
1 00 1 00
Q=01 0| thenQ'=[0 1 0| and H=
0 3 1 0 -3 1
1 4 -1
QAQ '=| -3 —5 1 is in unreduced Hessenberg form. H has characteristic
0 3 -2

polynomial p(t) = (¢t + 2)3. The eigenvalue A = —2 has eigenvector vy = [1,0,3]7T,
generalized eigenvector vo = [0,1,3]T  of order two, and generalized eigenvector v3 =
[0,1,4]T of order 3.

Set y(t) = Qx(t) and yo = Qxo = [—1,—1,—2]7. The system y' = Hy has

general solution y(t) = e ?[c;v1 + ca(va + tv1) + c3(vs + tva + (t?/2)v1)] and

yvo =y(0) = ¢;v1 + cova + cgvs. Solving yields ¢; = —1,¢0 = —5, and c3 =4, so
e 2 (2t2 — 5t — 1)

y(t) = | e ?(4t - 1) . Therefore

e 2 (6t2 — 3t — 2)
e 2 (212 — 5t — 1)
x(t)=Q ly(t)= | e (4t - 1)
e 2 (612 — 15t + 1)

t

€'Cq
el(cqt + c3)
4ox(t) = et (cat? /2 + cst + c2)
el (cat? /6 + c3t? /2 + cot + c1)
5. We see that from part(c) of Exercise 1 that x(t) =

cretvy +eget(va +tvy ) + czetwy =

—2 5/2 —2 -9
cret 0 | + coet 1/2 | +t 0 +eget | =1
1 0 1 1

Note that (H — Al)ve #6 since vi #6. But (H — \I)?vy =

(H — M)vy =60, so va is a generalized eigenvector of order 2. Suppose we have seen
that vj is a generalized eigenvector of order j for 1 < j < k where 1 < k < m. Then

(H — M)Fviyq = (H — AP 1vy #60 whereas (H — M) vy = (H — M)Fvy =6.
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Therefore vi 1 is a generalized eigenvector of order k + 1. It follows by induction that
vy is a generalized eigenvector of order r for 1 < r < m.

Clearly the set {v1} is linearly independent since vi #6. Suppose we have seen that
the set {v1,...,vk} is linearly independent for some k,1 < k < m. Now assume that
C1V1 + -+ Cp Vit

Ckt1Vii1 =0. Note that (H — A)*v; =6 for 1 <j <k whereas
(H — M)*vy 41 = vy. It follows that 0 =

(H — ADk0=(H — XD)*(c;vy + - 4 cpvie + cry1Vip1) = cre1vi.  Therefore ¢ g = 0.
Since the set {v1,...,vk} is linearly independent, ¢; = --- = ¢, = 0. This proves that
{v1,...,Vk, Vks1} is a linearly independent set. It follows by induction that {vi,...,vm}
is linearly independent.

. Note that Hvj; = Avj+vj_1 for 2 < j <r whereas Hvy = Avy. It is straightforward to
see that x; ' (t) = Hx(t).

. First note that ¢(H)(H — A\ 1)™ ™! = (H — M\ I)™~q(H). Tt follows from the equations
in (5) that if Eq.(9) is multiplied by

(H — M\ I)™~! then we obtain a,,q(H)vy =0. Since vi is an eigenvector corresponding

to A1, q(H)vi = q(A\1)v1 #0 since vi #0 and q(\1) # 0. Therefore a,,, = 0. By a similar

argument, multiplication of (9) by (H —A11)™ =2 shows that a,,, 1 = 0. We may continue

the process to show that a; = 0 for each j,1 < j < mj.
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7.9 Supplementary Exercises

—

1 a .
A_{Z%—a 1 },aarbltrary.

2. a=0o0r a=—6.

&0

(a) If x =[1, —1]7 then ¢(x) = —2.

(b) The matrix B is not symmetric.

1 00
.(a)L:[g (1)] (b)Lh : ?]

t

7.10 Conceptual Exercises

1. Let A have characterstic polynomial p(t) = t3 + ut? 4 vt +w. Since A is nonsingular, A = 0
is not an eigenvalue for A. Therefore, w # 0. Since A% + uA? + vA + wl = O, it follows

that [(—1/w)A? — (u/w)A — (v/w)I|A = I.

2. If B = P7'AP then B" = (P~'AP)" = P71A"P. 1t follows that p(B) = p(P~'AP) =
P~1p(A)P.

3. For 1 <i<n, ay :e;fFAei > 0.



