CHAPTER 9. ——

Chapter Nine
Section 9.1

2(a). Setting x = & " results in the algebraic equations

5—r —1 51 . 0
3 1-7)\&/) \o/)
For a nonzero solution, we must have det(A — r1) = r> — 67 + 8 = 0. The roots of
the characteristic equation are r;, = 2 and 7, = 4. For r = 2, the system of equations

reduces to 3¢, = &,. The corresponding eigenvector is £V = (1,3)". Substitution of
r = 4 results in the single equation & = &,. A corresponding eigenvector is

£¥ =(1,1)".
(b). The eigenvalues are real and positive, hence the critical point is an unstable node.

(c,d).
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3(a). Solution of the ODE requires analysis of the algebraic equations

(5 50 )E)=(6)

For a nonzero solution, we must have det(A — r1) = r> — 1 = 0. The roots of the

characteristic equation are , = 1 and r, = — 1. For r = 1, the system of equations
reduces to & = &,. The corresponding eigenvector is £ = (1,1)". Substitution of

r = — 1 results in the single equation 3¢, — & = 0. A corresponding eigenvector is
£ =(1,3)".

(b). The eigenvalues are real, with 7, 7, < 0. Hence the critical point is a saddle.

(c,d).
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5(a). The characteristic equation is given by

1—r -5 2 .
‘ 1 _3_r‘—r +2r+2=0.
The equation has complex roots r, = —1+d¢and r, = —1—14. Forr= —1+1,
the components of the solution vector must satisfy & — (2 4 )&, = 0. Thus the
corresponding eigenvector is € = (2 +4,1)". Substitution of » = — 1 — 4 results

in the single equation &, — (2 — )&, = 0. A corresponding eigenvector is
£ =(2—-14,1)".

(b). The eigenvalues are complex conjugates, with negative real part. Hence the origin
is a stable spiral.
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(c,d).
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6(a). Solution of the ODE:s is based on the analysis of the algebraic equations

i SR)E)-(6)

For a nonzero solution, we require that det(A — rI) = r> + 1 = 0. The roots of the
characteristic equation are » = 4. Setting r = 7, the equations are equivalent to
& — (2414)& = 0. The eigenvectors are £V = (2+i,1)" and €2 = (2 —1i,1)".

(b). The eigenvalues are purely imaginary. Hence the critical point is a center.
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(c,d).
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7(a). Setting x = £ " results in the algebraic equations

(i ) =(6)

For a nonzero solution, we require that det(A — 7 1) = r? — 2r +5 = 0. The roots
of the characteristic equation are » = 1 £ 2¢. Substituting » = 1 — 27, the two
equations reduce to (1 + )& — & = 0. The two eigenvectors are €0 = (1,1 +4)"
and €% = (1,1 —1i)".

(b). The eigenvalues are complex conjugates, with positive real part. Hence the origin
is an unstable spiral.
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8(a). The characteristic equation is given by

1—-7r -5
’ 1 _S_T‘—(r+1)(r+0.25)—0,
with roots 7, = — 1l and r, = — 0.25. For r = — 1, the components of the solution
vector must satisfy & = 0. Thus the corresponding eigenvector is £V = (1,0)".
Substitution of » = — 0.25 results in the single equation 0.75&, +& = 0. A

corresponding eigenvector is £? = (4, — 3)”.

(b). The eigenvalues are real and both negative. Hence the critical point is a stable
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9(a). Solution of the ODE:s is based on the analysis of the algebraic equations

L)) =6)

For a nonzero solution, we require that det(A — 71) = 7> — 2r + 1 = 0. The single
root of the characteristic equation is 7 = 1. Setting » = 1, the components of the
solution vector must satisfy &, —2¢&, = 0. A corresponding eigenvector is

£E=(2,1".

(b). Since there is only one linearly independent eigenvector, the critical point is an
unstable, improper node.
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10(a). The characteristic equation is given by

]_ — T 2 2 .
5 1, =T +9=0.
The equation has complex roots r,, = £ 3i. For r = — 31, the components of the

solution vector must satisfy 5 &, + (1 — 3¢)&, = 0. Thus the corresponding eigenvector
is € = (1 —3i, —5)". Substitution of r = 3i resultsin 5&, + (1 +3i)&, =0. A
corresponding eigenvector is £% = (143, —5)".

(b). The eigenvalues are purely imaginary, hence the critical point is a center.
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(c,d).
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12(a). Setting x = £ e" results in the algebraic equations

2—r —5/2 &\ (0

95 —1-r)\&) " \o)
For a nonzero solution, we require that det(A — 1) = r? — r +5/2 = 0. The roots
of the characteristic equation are » = 1/2+3i/2. Substituting » = 1/2 — 3i/2, the

equations reduce to (3 + 37)&; — 5&, = 0. Therefore the two eigenvectors are
€V =(5,34+3i)" and £€® = (5,3 — 34)".

(b). Since the eigenvalues are complex, with positive real part, the critical point is an
unstable spiral.

(c,d).
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14. Setting x’ = 0, that is,

(7 L))

we find that the critical point is X" = ( — 1,0)". With the change of dependent variable,
x = x’ + u, the differential equation can be written as

du [ —2 1
%— 1 _9 u.

The critical point for the transformed equation is the origin. Setting u = £ e" results in

the algebraic equations
—2—r 1 &\ (0
1 -2-rJ\&/) \o)

For a nonzero solution, we require that det(A — r1) = r? + 4r + 3 = 0. The roots
of the characteristic equation are » = — 3, — 1. Hence the critical point is a stable
node.

15. Setting x" = 0, that is,

-1 -1 < — 1
2 —-1)7 \=5)’
we find that the critical point is X" = ( — 2,1)". With the change of dependent variable,
x = x’ + u , the differential equation can be written as

du (-1 -1
it~ \ 2 —1)%
The characteristic equation is det(A — 1) = r? + 2r + 3 = 0, with complex conjugate

roots r = — 1=+ 2\/5 . Since the real parts of the eigenvalues are negative, the critical
point is a stable spiral.

16. The critical point x° satisfies the system of equations
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0 -8\, [ —«a
(¢ )=(57)
It follows that 2 = /6 and y° = /(3. Using the transformation, x = x" + u , the
differential equation can be written as

du 0o —-p

dt (6 0 )“'
The characteristic equation is det(A — 1) = r> + 36 = 0. Since 86 > 0, the roots
are purely imaginary, with » = +4,/(36 . Hence the critical point is a center.

20. The system of ODEs can be written as
d_X _ (G G X.
dt Qs A
The characteristic equation is 72 — pr + ¢ = 0. The roots are given by

pV/P —dg _pEt VA
2 2

T =

The results can be verified using Table 9.1.1.

21(a). If ¢ > 0 and p < 0, then the roots are either complex conjugates with negative
real parts, or both real and negative.

(b). If ¢ > 0 and p = 0, then the roots are purely imaginary.

(c). If ¢ < 0, then the roots are real, with r, - 7, > 0. If p > 0, then either the roots
are real, with r, - 7, > 0 or the roots are complex conjugates with positive real parts.
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Section 9.2

2. The differential equations can be combined to obtain a related ODE

dy 2

de  x
The equation is separable, with

dy  2dx

y oz

The solution is given by y = C x~2. Note that the system is uncoupled, and hence we
also have = = zye ! and y = y,e*.
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In order to determine the direction of motion along the trajectories, observe that for
positive initial conditions, x will decrease, whereas y will increase.
4. The trajectories of the system satisfy the ODE
dy  bx
de  ay’
The equation is separable, with
aydy = —bxdx.

Hence the trajectories are given by b z? + a y? = C?, in which C is arbitrary. Evidently,
the trajectories are ellipses. Invoking the initial condition, we find that C? = ab. The
system of ODEs can also be written as

dx 0 a
E— —b O X.

Using the methods in Chapter 7, it is easy to show that

T = \/ECOS\/@t
y= — \/gsin\/%t.
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4

Note that for positive initial conditions, x will increase, whereas y will decrease.

5(a). The critical points are given by the solution set of the equations

z(l—y)=0
y(1+2z)=0.
Clearly, (0,0) is a solution. Ifz # 0,theny = 1 and x = — 1/2. Hence the critical
points are (0,0) and (—1/2,1).
(D).
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(c). Based on the phase portrait, all trajectories starting near the origin diverge. Hence
the critical point (0,0) is unstable. Examining the phase curves near the critical point

(—1/2,1),
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the equilibrium point has the properties of a saddle, and hence it is unstable.

6(a). The critical points are solutions of the equations

1+2y=20
1-322=0.

There are two equilibrium points, ( —1//3, — 1/2) and (1/\/§, — 1/2).

(b).
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(c). Locally, the trajectories near the point < -1//3, -1/ 2) resemble the behavior near
a saddle. Hence the critical point is unstable. Near the point (1 /V3, -1 /2), the
solutions are periodic. Therefore the second critical point is stable.

8(a). The critical points are solutions of the equations

—@-y(l-z-y)=0
z(24+y)=0.

frx=y,thenz=y=0o0orxz=y= —-2. frxr=1—y,thenx=0andy =1, or
x=3and y = — 2. It follows that the critical points are (0,0), (—2, —2),(0,1)
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and (3, — 2).
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Near the critical point (0, 1), the trajectories resemble those of a stable spiral. Hence the

(c). Near the origin, the trajectories resemble those of a saddle, and hence it is unstable.
equilibrium point is asymptotically stable.
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Closer examination reveals that the point ( — 2, — 2) is asymptotically stable, whereas

Based on the global phase portrait, it is evident that the other critical points are nodes.
the point (3, — 2) is unstable.
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9(a). The critical points are given by the solution set of the equations

y2—z—y)=0
—rz—y—2z2y=0.

Clearly, (0,0) is a critical point. If z = 2 — y, then it follows that y(y —2) = 1. The

additional critical points are (1 — V2,14 \/5) and (1 +42,1- \/2_)
(b).
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(c). The behavior near the origin is that of a stable spiral. Hence the point (0, 0) is
asymptotically stable.
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At the critical point (1 — \/5 , 1+ \/5 ), the trajectories resemble those near a saddle.
Hence the critical point is unstable.
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Near the point (1 + \/5 ,1— \/5 ) , the trajectories resemble those near a saddle.

Hence the critical point is also unstable.
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10(a). The critical points are solutions of the equations

theny = 0. If z = y, then either

The origin is evidently a critical point. Ifz = — 2,

y=0orx =y = —1lorz =y =2. Hence the other critical points are ( — 2,0),

(=1, —1)and (2,2).
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(c). Based on the global phase portrait, the critical points (0,0) and ( — 2, 0) have the
characteristics of a saddle. Hence these points are unstable. The behavior near the
remaining two critical points resembles those near a stable spiral. Hence the critical
points ( — 1, — 1) and (2, 2) are asymptotically stable.

11(a). The critical points are given by the solution set of the equations
z(1—2y)=0
y—a*—y*=0.

Ifz =0, theneithery =0ory =1. Ify = 1/2, thenz = +1/2. Hence the critical
points are at (0,0), (0,1), (—1/2,1/2)and (1/2,1/2).
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(c). The trajectories near the critical points ( — 1/2,1/2) and (1/2,1/2) are closed
curves. Hence the critical points have the characteristics of a center, which is stable.
The trajectories near the critical points (0,0) and (0, 1) resemble those near a saddle.
Hence these critical points are unstable.
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13(a). The critical points are solutions of the equations

2+ x)(y—x)=0
(4—2)(y+x)=0.

Ify=x,theneitherx =y=0o0orx=y=4. fxr = —2,theny=2. lfzr = —y,
then y = 2 or y = 0. Hence the critical points are at (0,0), (4,4) and ( — 2, 2).
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(c). The critical point at (4, 4) is evidently a stable spiral, which is asymptotically
stable. Closer examination of the critical point at (0, 0) reveals that it is a saddle,

which is unstable.
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The trajectories near the critical point ( — 2, 2) resemble those near an unstable node.
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14(a). The critical points consist of the solution set of the equations

It is easy to see that the only critical point is at (0, 0).

—P L T

E
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(c). The origin is an unstable spiral.

16(a). The trajectories are solutions of the differential equation

4x

dy

b

dx

Y

which can also be written as 4x dx + ydy = 0. Integrating, we obtain

+y? = C%

2

4x

Hence the trajectories are ellipses.
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Based on the differential equations, the direction of motion on each trajectory is
clockwise.

17(a). The trajectories of the system satisfy the ODE

dy 2rx+y
de y

which can also be written as (2x + y)dz — ydy = 0. This differential equation is
homogeneous. Setting y = x v(z), we obtain

dv 2
v+r—=-+1,
de v

that is,

dv  2+v—1°
r— = ——.

dx v
The resulting ODE is separable, with solution 23 (v + 1)(v — 2)> = C. Reverting back
to the original variables, the trajectories are level curves of

H(z,y) = (z+y)(y—22)"

page 519



CHAPTER 9. ——

N

x ,fflf \
| T T X
.-"f .ljr / e 44 // .-—""_'_‘_h":..,\\\ g

The origin is a saddle. Along the line y = 2z, solutions increase without bound. Along
the line y = — x, solutions converge toward the origin.

18(a). The trajectories are solutions of the differential equation

dy z+y

dr  x—vy

b

which is homogeneous. Setting y = = v(x), we obtain

that is,

The resulting ODE is separable, with solution

arctan(v) = In|z|v/ 1+ v2.

Reverting back to the original variables, the trajectories are level curves of

H(x,y) = arctan(y/z) — In\/ x> + 3% .
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The origin is a stable spiral.

20(a). The trajectories are solutions of the differential equation

dy — 2xy* + 62y
de 222y — 322 — 4y’

which can also be written as (2zy* — 6 xy)dz + (2z%y — 322 — 4y)dy = 0. The
resulting ODE is exact, with

OH OH
—— =2zxy® — 62y and — = 22%y — 3% — 4y.

ox 0y
Integrating the first equation, we find that H (z,y) = z*y* — 3z%y + f(y). It follows
that

OH
Dy =227y — 32" + f'(y).
Comparing the two partial derivatives, we obtain f(y) = — 23> + ¢. Hence

H(zx,y) = z*y* — 32y — 20/°.
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The associated direction field shows the direction of motion along the trajectories.
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22(a). The trajectories are solutions of the differential equation
@/_-—6x+x3
dr 6y
which can also be written as (6 x — 2°)dz + 6 ydy = 0. The resulting ODE is exact,
with
0H o0H

%:61/‘—%3 anda—y:(iy

Integrating the first equation, we have H(z,y) = 322 — x'/4 + f(y). It follows that

0H

8—y = f'(y).

Comparing the two partial derivatives, we conclude that f(y) = 3y*> + c. Hence
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Section 9.3

1. Write the system in the form x’ = Ax + g(x). In this case, it is evident that
d (z 1 0 T — 2
_ — + Yy .
i,)=( %) G+ ()

That is, g(x) = (-2 2?)". Using polar coordinates, ||g(x)|| = r2v/sin’0 + cos*6
and ||x|| = r. Hence

lir% HgH(xXH)H = lirr%] r/ sint0 + costd =0,

and the system is almost linear. The origin is an isolated critical point of the linear

system %(i) _ G _02) (i)

The characteristic equation of the coefficient matrix is 7> + r — 2 = 0, with roots
ry =1 and r, = — 2. Hence the critical point is a saddle, which is unstable.

2. The system can be written as

7= (20 200+ ()

Following the discussion in Example 3, we note that F'(x,y) = — = + y + 2xy and
G(x,y) = —4x —y + 2° — y>. Both of the functions F and G are twice differentiable,
hence the system is almost linear. Furthermore,

Fo=—-142y, Fy=1+2z,G, = —4+2z2,G, = —1-2y.

The origin is an isolated critical point, with
F.(0,0) F,(0,00\ (-1 1
G,(0,0) G,0,0)) \ -4 —1)°
The characteristic equation of the associated linear system is 72 + 27 + 5 = 0, with

complex conjugate roots 7, = — 1=£2¢. The origin is a stable spiral, which is
asymptotically stable.

5(a). The critical points consist of the solution set of the equations
24+2)(y—2x)=0
(4—z)(y+2x)=0.

As shown in Prob. 13 of Section 9.2, the only critical points are at (0,0), (4,4) and
( —2 ) 2)
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(b, c). Firstnote that F(z,y) = (2+z)(y —x) and G(x,y) = (4 —z)(y + x). The
Jacobian matrix of the vector field is

B Gac('r:y) Gy(xvy) B 4—y—23§‘ 4—x)

At the origin, the coefficient matrix of the linearized system is

J(0,0) = ( _42 i)

with eigenvalues r, =1 —+/17 and r, = 1+ /17 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point ( — 2, 2), the coefficient matrix of the linearized system is

s-2.2= (g o).

with eigenvalues r;, = 4 and r, = 6. The eigenvalues are real, unequal and positive,
hence the critical point is an unstable node. At the point (4 ,4), the coefficient matrix

of the linearized system is
—6 6
s =( 23 0):

with complex conjugate eigenvalues r,, = — 3 £171/39 . The critical point is a stable
spiral, which is asymptotically stable.

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

(d).
N I 7277
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7(a). The critical points are solutions of the equations
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1—y=0
(z—y)(z+y)=0.

The first equation requires that y = 1. Based on the second equation, z = 4+ 1. Hence
the critical points are (— 1,1) and (1,1).

(b,c). F(z,y) =1—1y and G(x,y) = 2> — y*. The Jacobian matrix of the vector

field is
At the critical point ( — 1, 1), the coefficient matrix of the linearized system is

J(—1,1):(_02 :;)

with eigenvalues r, = — 1 — /3 and 7, = — 1+ /3 . The eigenvalues are real, with
opposite sign. Hence the critical point is a saddle, which is unstable. At the equilibrium
point (1, 1), the coefficient matrix of the linearized system is

J(1,1) = ((2) :;)

with complex conjugate eigenvalues 7, = — 1 £¢. The critical point is a stable
spiral, which is asymptotically stable.
(d).
g IS
5 77
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f B
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i
ey
vy
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

8(a). The critical points are given by the solution set of the equations
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z(l—xz—y)=0
y(2—y—3x)=0.
Ifz =0, theneithery =0ory=2. fy=0,thenz =0o0rz=1. fy=1—-2x,

then eitherz = 1/2orz = 1. Ify =2 — 3z, thenz = 0 or x = 1/2. Hence the
critical points are at (0,0), (0,2), (1,0) and (1/2,1/2).

(b,c). Note that F(z,y) =2 — 2*> — 2y and G(x,y) = (2y — y*> — 3xy)/4. The
Jacobian matrix of the vector field is

1=(ain o) =(T8n" o)

At the origin, the coefficient matrix of the linearized system is

wo=(2 1)

with eigenvalues r; = 1 and r, = 1/2. The eigenvalues are real and both positive.
Hence the critical point is an unstable node. At the equilibrium point (0, 2), the
coefficient matrix of the linearized system is

02=(2y )

with eigenvalues r, = — 1 and 7, = — 1/2. The eigenvalues are both negative, hence
the critical point is a stable node. At the point (1,0), the coefficient matrix

of the linearized system is
-1 -1
0= (5" 7))

with eigenvalues 7, = — 1 and r, = — 1/4. Both of the eigenvalues are negative, and
hence the critical point is a stable node. At the critical point (1/2,1/2), the coefficient
matrix of the linearized system is

with eigenvalues , = —5/16 — /57 /16 and r, = — 5/16 + /57 /16. The
eigenvalues are real, with opposite sign. Hence the critical point is a saddle, which is
unstable.

OO D=

J(1/2,1/2) = (:

W D=

page 527



CHAPTER 9. ——

e ™ T
P et

-
—
-
/
7
7
-

3
-~
Z
7
7
f;w
gw

r
el I
T e | o e
el B aand
| o
e

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

9(a). Based on Prob. 8, in Section 9.2, the critical points are at (0,0),( —2, — 2),
(0,1)and (3, —2).

(b,c). Firstnotethat F'(z,y) = — (x —y)(1 —xz —y) and G(z,y) = (2 +y). The
Jacobian matrix of the vector field is
J— 20 —1 1—-2y
\2+y x

At the origin, the coefficient matrix of the linearized system is
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-1 1
with eigenvalues 7, = 1 and r, = — 2. The eigenvalues are real, with opposite sign.

Hence the critical point is a saddle, which is unstable. At the critical point (0, 1),
the coefficient matrix of the linearized system is

J(0,1) = ( _31 _01>,

with complex conjugate eigenvalues 7, = — 1/241i4/11 /2. The critical point is a
stable spiral, which is asymptotically stable. At the point ( — 2, — 2), the coefficient
matrix of the linearized system is

J<—2,—2>:(‘05 _52),

with eigenvalues r, = — 2 and r, = — 5. The eigenvalues are unequal and negative,
hence the critical point is a stable node. At the point (3, — 2), the coefficient matrix

of the linearized system is
5 9

with eigenvalues 7, = 3 and r, = 5. The eigenvalues are unequal and positive, hence
the critical point is an unstable node.

(d).

Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.
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11(a). The critical points are solutions of the equations

2z +y+ay’ =0
r—2y—xy=0.

Substitution of y = z/(z + 2) into the first equation results in
32" + 132° + 282 + 20z = 0.

One root of the resulting equation is z = 0. The only other real root of the equation is

¢ = é {(287 n 18\/2019>1/3 — 83 (287 n 18\/2019)1/3 . 13} .

Hence the critical points are (0,0) and ( — 1.19345...,1.4797...).

(b,c). F(z,y) = —2®> —zy and G(z,y) = (2y — y* — 3zy)/4. The Jacobian
matrix of the vector field is

J— (Fx(x,y) Fy(m,y)) _ (2+y3 1+3xy2).

At the origin, the coefficient matrix of the linearized system is

J(0,0):(? _12)

with eigenvalues 7, = \/g and r, = — \/g . The eigenvalues are real and of opposite
sign. Hence the critical point is a saddle, which is unstable. At the equilibrium point
(—1.19345...,1.4797...), the coefficient matrix of the linearized system is

—1.2399 — 6.8393)

J(—1.19345,1.4797) = ( — 24797  — 0.8065

with complex conjugate eigenvalues r,, = — 1.0232+£4.1125¢. The critical point is
a stable spiral, which is asymptotically stable.
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In both cases, the nonlinear terms do not affect the stability and type of the critical point.

12(a). The critical points are given by the solution set of the equations

(1+z)siny =0

1—x—cosy=0.

If x = — 1, then we must have cosy = 2, which is impossible. Therefore siny = 0,
which implies that y = nm,n =0,+1,2,.... Based on the second equation,

r=1-—cosnm.
It follows that the critical points are located at (0, 2k7) and (2, (2k + 1)m) , where
E=0,£1,2,....

(b,c). Giventhat F(z,y) = (1 +z)siny and G(x,y) =1 —x — cosy, the
Jacobian matrix of the vector field is

(siny (1+x)cosy)
J= . .
-1 siny

At the critical points (0, 2k), the coefficient matrix of the linearized system is

30, 2km) = ( Y é)

with purely complex eigenvalues 7, = &£ 4. The critical points of the associated linear
systems are centers, which are stable. Note that Theorem 9.3.2 does not provide a
definite conclusion regarding the relation between the nature of the critical points of the
nonlinear systems and their corresponding linearizations. At the points (2, (2k + 1)),
the coefficient matrix of the linearized system is

32, (2 + 1)7] = ( Y _03),
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with eigenvalues r; = \/§ and r, = — \/§ . The eigenvalues are real, with opposite
sign. Hence the critical points of the associated linear systems are saddles, which are
unstable.

(d).

/
I
|
i
\
\

As asserted in Theorem 9.3.2, the trajectories near the critical points (2, (2k + 1))
resemble those near a saddle.

———————
B T Ry

Upon closer examination, the critical points (0, 2k7) are indeed centers.

T T e e
T T e e

A
N
N
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S
~
~
.
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13(a). The critical points are solutions of the equations
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x—y2:O
y—z>=0.

Substitution of y = z? into the first equation results in
r—z'=0,

with real roots z = 0, 1. Hence the critical points are at (0,0) and (1,1).

(b, c). In this problem, F(x,y) = 2z —y* and G(x,y) = y — 2*. The Jacobian
matrix of the vector field is
_( 1 =2
J= ( — 2 1 )

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (é 2)

with repeated eigenvalues r;, = 1 and r, = 1. Itis easy to see that the corresponding
eigenvectors are linearly independent. Hence the critical point is an unstable proper
node. Theorem 9.3.2 does not provide a definite conclusion regarding the relation
between the nature of the critical point of the nonlinear system and the corresponding
linearization. At the critical point (1, 1), the coefficient matrix of the linearized system

J(1,1) = ( _12 _12)

with eigenvalues r;, = 3 and 7, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle, which is unstable.
(d).

o P e T A e e

Closer examination reveals that the critical point at the origin is indeed a proper node.
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14(a). The critical points are given by the solution set of the equations

l—2y=0

T — y3 =0.
After multiplying the second equation by y, it follows that y = £ 1. Hence the critical
points of the system are at (1,1) and (— 1, — 1).

b,c). Note that F(z,y) =1— 2y and G(z,y) = = — y*. The Jacobian matrix of
( y y y y

the vector field is
I N
J— ( R ) |

At the critical point (1, 1), the coefficient matrix of the linearized system is

-1 -1
= (51 25
with eigenvalues r, = — 2 and r, = — 2. The eigenvalues are real and equal. It is
easy to show that there is only ore linearly independent eigenvector. Hence the critical
point is a stable improper node. Theorem 9.3.2 does not provide a definite conclusion

regarding the relation between the nature of the critical point of the nonlinear system and
the corresponding linearization. At the point ( — 1, — 1), the coefficient matrix of the

linearized system is
1 1

with eigenvalues r, = — 14+ /5 and 7, = — 1 — /5 . The eigenvalues are real,
with opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable.

page 534



CHAPTER 9. ——

Closer examination reveals that the critical point at (1, 1) is indeed a stable improper
node, which is asymptotically stable.
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15(a). The critical points are given by the solution set of the equations
—2x—y—:c(a§2+y2) =0
a:—y+y(a;2+y2) =0.

It is clear that the origin is a critical point. Solving the first equation for y, we find that

— 141 — 822 — 44
y: 2 *
xr

Substitution of these relations into the second equation results in two equations of the
form f,(z) =0 and f,(x) = 0. Plotting these functions, we note that only fi(x) =0
has real roots given by =z ~ +0.33076 . It follows that the additional critical points are
at (— 0.33076,1.0924) and (0.33076, — 1.0924).
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(b, c¢). Given that
F(z,y) = —2:1:—y—x(:1:2+y2)
Gz,y)=z—y+y®+y°),

the Jacobian matrix of the vector field is

J— —2—32% — g —1—-2xy
N 1+ 2zy —14+22+3y% )

At the critical point (0, 0), the coefficient matrix of the linearized system is
-2 -1
s0.0-(77 21)

with complex conjugate eigenvalues r,, = ( -3+ z\/g ) /2. Hence the critical point

is a stable spiral, which is asymptotically stable. At the point ( — 0.33076,1.0924),
the coefficient matrix of the linearized system is

—3.5216 —0.27735
J(— 0.33076,1.0924) = ( 0.27735  2.6895 )

with eigenvalues r, = — 3.5092 and r, = 2.6771. The eigenvalues are real, with
opposite sign. Hence the critical point of the associated linear system is a saddle,
which is unstable. Identical results hold for the point at (0.33076, — 1.0924) .

(d).
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A closer look at the origin reveals a spiral:
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Near the point (0.33076, — 1.0924) the nature of the critical point is evident:
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Based on Table 9.3.1, the nonlinear terms do not affect the stability and type of each
critical point.

16(a). The critical points are solutions of the equations
y+x(1—x2—y2) =0
—x+y(1—x2—y2) =0.

Multiply the first equation by y and the second equation by x. The difference of the
two equations gives x? + y? = 0. Hence the only critical point is at the origin.

(b,c). With F(z,y) =y +x(1—2?—y*)and G(z,y) = —z +y(l —2*> - y?),
the Jacobian matrix of the vector field is

J— 1—3x% — 9 1 —2zy
S\ —1-2zy 1-22-32)°

At the origin, the coefficient matrix of the linearized system is

3(0,0) = ( ! })

with complex conjugate eigenvalues r,, = 1 +7. Hence the origin is an unstable
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spiral.

e T T e e e
T T T e e

mmmmmmx&j

17(a). The Jacobian matrix of the vector field is

0 1
J = (1+63:2 O)'

At the origin, the coefficient matrix of the linearized system is

30,0) = ((1) (f)

with eigenvalues r;, = 1 and r, = — 1. The eigenvalues are real, with opposite sign.
Hence the critical point is a saddle point.

(b). The trajectories of the linearized system are solutions of the differential equation

dy @
de vy’
which is separable. Integrating both sides of the equation z dx — y dy = 0, the solution
is 22 —y?> = C. The trajectories consist of a family of hyperbolas.
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e
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It is easy to show that the general solution is given by z(t) = c,e’ + c,e”? and
t

y(t) = cie! — c,e”!. The only bounded solutions consist of those for which ¢, = 0.

In that case, z(t) = c,e ™' = — y(t).

(c). The trajectories of the given system are solutions of the differential equation
dy =+ 213
de  y
which can also be written as (x + 223)dx — y dy = 0. The resulting ODE is exact,
with
0H

H
%:x-i-ng and%—y: — .

Integrating the first equation, we find that H (z,y) = 22/2 + z'/2 + f(y). It follows
that

OH ,
8—y = f'(y).
Comparing the partial derivatives, we obtain f(y) = — y?/2 + c¢. Hence the solutions

are level curves of the function
H(x,y) = */2 +a* )2 — /2.

The trajectories approaching to, or diverging from, the origin are no longer straight lines.
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19(a). The solutions of the system of equations

y=0
—W’sinz =0
consist of the points (£ n7,0),n=0,1,2,---. The functions F(x,y) = y and
G(x,y) = — w’sinx are analytic on the entire plane. It follows that the system is

almost linear near each of the critical points.

(b). The Jacobian matrix of the vector field is

0 1
J= ( — WPcosx 0>'

At the origin, the coefficient matrix of the linearized system is

s0.0=( ", o).

with purely complex eigenvalues 7, = +iw. Hence the origin is a center. Since the
eigenvalues are purely complex, Theorem 9.3.2 gives no definite conclusion about the
critical point of the nonlinear system. Physically, the critical point corresponds to the
state # = 0, 6’ = 0. That is, the rest configuration of the pendulum.

(c). At the critical point (7, 0), the coefficient matrix of the linearized system is

J(m,0) = <£2 é)

with eigenvalues 7, = £ w. The eigenvalues are real and of opposite sign. Hence the
critical point is a saddle. Theorem 9.3.2 asserts that the critical point for the nonlinear
system is also a saddle, which is unstable. This critical point corresponds to the state

6 =, 60" = 0. Thatis, the upright rest configuration.
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(d). Let w? = 1. The following is a plot of the phase curves near (0, 0).

PP . S S

e e e e e
1' e "

(€).

It should be noted that the phase portrait has a periodic pattern, since 6 = x mod 27 .

20(a). The trajectories of the system in Problem 19 are solutions of the differential
equation

2

dy  —wsinw
dr y ’
which can also be written as w?sin x dx + ydy = 0. The resulting ODE is exact,
with
on _ w’sinz and 8_H =
or oy v
Integrating the first equation, we find that H (z,y) = — w?cosx + f(y). It follows
that
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OH

3—y = f,(y)-

Comparing the partial derivatives, we obtain f(y) = y*>/2 + C'. Hence the solutions
are level curves of the function

H(z,y) = —w?cosx +y*/2.

Adding an arbitrary constant, say w?, to the function H (z ,y) does not change the nature
of the level curves. Hence the trajectories are can be written as

1
§y2 +w?(1—cosz) =c,

in which c is an arbitrary constant.

(b). Multiplying by mL? and reverting to the original physical variables, we obtain

1 A%
§mL2 (%> + mL**(1 — cos@) = mL’c.

Since w? = g/L, the equation can be written as

1, (do\>
§mL — ) +mgL(1 —cosf)=F,

in which E = mIL2c.

(c). The absolute velocity of the point mass is given by v = L df/dt. The kinetic
energy of the mass is 7' = mv?/2. Choosing the rest position as the datum, that is, the
level of zero potential energy, the gravitational potential energy of the point mass is

V =mgL(1 — cos ).

It follows that the total energy, I + V, is constant along the trajectories.

21(a). A=0.25
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A=025
0.27
X
0.1
3y 5 B
0.1
-0.24

Since the system is undamped, and y(0) = 0, the amplitude is 0.25. The period is
estimated at 7 ~ 3.16.

(b).

A=05
- /\ / :
1 2 3 5 [
-0.2
02 -0.4
-0.6
04 -0.5
A=148 A=20
13 2
0.69
D.fi:
02 ] 3 3 A ] ; i ’ ] 11 5 B
26, 4
14
-1.24
1.4 5
R T
A=0510513.20
A=1.0|1.013.35
A=15|151|3.63
A=2012014.17

(c). Since the system is conservative, the amplitude is equal to the initial amplitude. On
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the other hand, the period of the pendulum is a monotone increasing function of the
initial
position A .

3.4

32, o
04 0B 08 1 A1.'2 14 16 18 2

It appears that as A — 0, the period approaches 7, the period of the corresponding linear
pendulum (27 /w).

(d).

104

0 Z 4, B 5
The pendulum is released from rest, at an inclination of 4 — 7 radians from the vertical.
Based on conservation of energy, the pendulum will swing past the lower equilibrium
position (# = 27) and come to rest, momentarily, at a maximum rotational displacement
of Oppar = 3™ — (4 — m) = 4w — 4. The transition between the two dynamics occurs

at A = m, that is, once the pendulum is released beyond the upright configuration.

24(a). It is evident that the origin is a critical point of each system. Furthermore, it is
easy to see that the corresponding linear system, in each case, is given by

dr _
dt
dy _
dt

Y

—X.

The eigenvalues of the coefficient matrix are 7, = £ 4. Hence the critical point of the
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linearized system is a center.

(b). Using polar coordinates, it is also easy to show that

el
P x]

Alternatively, the nonlinear terms are analytic in the entire plane. Hence both systems
are
almost linear near the origin.

(c). For system (i), note that

dx dy
r— +y— =azy—2° (2 +y*) — 2y — y*(2* + ).
dt dt
Converting to polar coordinates, and differentiating the equation r* = x? + y? with
respect to ¢, we find that

dr  dx dy 9 . N2 4
Ta—xa—FyE— (3? +y) = .
Thatis, r' = — 73. It follows that r? = 1/(2t + ¢), where ¢ = 1/r2. Since r—0 as

t—0, regardless of the value of r,, the origin is an asymptotically stable equilibrium
point.

On the other hand, for system (i),

dr  dx dy 5 N2 4
T T i G

Thatis, ' = 73. Solving the differential equation results in

T —m

Imposing the initial condition r(0) = r,, we obtain a specific solution

2
2 Ty

= -2
272t —1

Since the solution becomes unbounded as t—1/2r? , the critical point is unstable.

25. The characteristic equation of the coefficient matrix is 7> + 1 = 0, with complex
roots 7, = * 1. Hence the critical point at the origin is a center. The characteristic
equation of the perturbed matrix is 7> — 2er + 1 + ¢ = 0, with complex conjugate
roots ., = e+ ¢. Aslongas e # 0, the critical point of the perturbed system is a
spiral point. Its stability depends on the sign of € .

26. The characteristic equation of the coefficient matrix is (r + 1)2 = 0, with roots
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r, =r, = — 1. Hence the critical point is an asymptotically stable node. On the
other hand, the characteristic equation of the perturbed systemis 7> +2r +1+¢ =0,
withroots 7, = — 1%,/ —€. Ife >0, then r,, = — 1+4,/€ are complex roots.
The critical point is a stable spiral. If e < 0,then r;, = — 1+ \/H are real and

both negative (|¢| < 1). The critical point remains a stable node.

27(d). Set k = sin(a/2) = sin(A/2) and g/L = 4.
Period T

16

141

121

107
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Section 9.4

1(a).
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(b). The critical points are solutions of the system of equations

(15 -z —-0.5y)=0
y(2—y—0.752) =0.

The four critical points are (0,0), (0,2), (1.5,0) and (0.8,1.4).

(¢). The Jacobian matrix of the vector field is

_(3/2—2x—y/2
J_< —3y/4

—x/2
2—-3x/4—-2y

)

At the critical point (0, 0), the coefficient matrix of the linearized system is

3(0,0) = (3(/)2 g)

The eigenvalues and eigenvectors are

ro=3/2, &Y = (

The eigenvalues are positive, hence the origin is an unstable node.

At the critical point (0, 2), the coefficient matrix of the linearized system is

3(0,2) = ( _1{9)2/2 _02)

The eigenvalues and eigenvectors are
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1 0
g (1): * = — (2>:
rn=1/2, & (—0.6)’ Ty 2, €& (1)

The eigenvalues are of opposite sign. Hence the critical point is a saddle, which is
unstable.

At the critical point (1.5 ,0), the coefficient matrix of the linearized system is

~15 —0.75
J(L.5,0) = ( 0  0.875 )

The eigenvalues and eigenvectors are

n=—15, &Y= <(1)) 7y =0.875, €2 = (_0'?1579).

The eigenvalues are of opposite sign. Hence the critical point is also a saddle, which is
unstable.

At the critical point (0.8, 1.4), the coefficient matrix of the linearized system is

~08 —04
J(0.8,1.4) = ( o 1'4).

The eigenvalues and eigenvectors are

11 B ) 11 Bl ey 1
Tl—*EJFTag =\ 3-y51 | > TQ—*E*Tag = 3+2/5_1 .

4

The eigenvalues are both negative. Hence the critical point is a stable node, which is
asymptotically stable.

(d,e).

21 Lol
1.8 “}_{l&
1.6 a4
1.4 );' ’
1.2 f; f
f 1
0.6 A
0.5 /
0.4 ;’r

¥
—

0.2

=L I '\ —_—

02 04 06 08 1, 12 14 16 18 2

(f). Except for initial conditions lying on the coordinate axes, almost all trajectories
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converge to the stable node at (0.8 ,1.4).

2(a).
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(b). The critical points are the solution set of the system of equations

(1.5 —2—0.5y)=0
y(2—-05y—15x)=0.

The four critical points are (0,0), (0,4), (1.5,0) and (1,1).

(c). The Jacobian matrix of the vector field is

3/2—2x—y/2 —x/2
J:( —3y/2y 2—3w/2—y)'

At the origin, the coefficient matrix of the linearized system is

3(0,0) = (362 g)

The eigenvalues and eigenvectors are

r=3/2, &Y = (é); r,=2, &% = (2)

The eigenvalues are positive, hence the origin is an unstable node.

At the critical point (0, 4), the coefficient matrix of the linearized system is

J(0,4) = ( __1é2 _O2>.

The eigenvalues and eigenvectors are
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n=—1/2, &Y= (_14); ry=—2, ¥ = ((1))

The eigenvalues are both negative, hence the critical point (0, 4) is a stable node, which
is asymptotically stable.

At the critical point (3/2, 0), the coefficient matrix of the linearized system is

J(3/2,0) = ( _5’/2 :i’;i).

The eigenvalues and eigenvectors are

rn=—3/2, &Y= <(1)); = —1/4, €9 = (_35)

The eigenvalues are both negative, hence the critical point is a stable node, which is
asymptotically stable.

At the critical point ( 1, 1), the coefficient matrix of the linearized system is
B -1 —1/2
J(l’l)_(—3/2 —1/2)'

The eigenvalues and eigenvectors are

—3+4/13 1 3+ /13 0
7“1:74\/7,§<1):<_1+\/ﬁ>97"2:— f,§(2)2<1+¢ﬁ>-
2

2

The eigenvalues are of opposite sign, hence ( 1, 1) is a saddle, which is unstable.

(d,e).

(f). Trajectories approaching the critical point (1, 1) form a separatrix. Solutions on
either side of the separatrix approach either (0,4) or (1.5,0).
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(b). The critical points are solutions of the system of equations

z(1.5—-05z—y)=0
y(0.75 —y — 0.1252) = 0.

The four critical points are (0,0), (0,3/4), (3,0) and (2,1/2).
(c). The Jacobian matrix of the vector field is
¥y 3/2—xz—y -z
N —y/8 3/4—x/8—2y )’
At the origin, the coefficient matrix of the linearized system is

3(0,0) = (362 3(/)4).

The eigenvalues and eigenvectors are

ro=3/2, &Y = (é) s ry=3/4, €9 = ((1))

The eigenvalues are positive, hence the origin is an unstable node.
At the critical point (0, 3/4), the coefficient matrix of the linearized system is

3/4 0
3(0,3/4) = ( —3/32 —3/4)'

The eigenvalues and eigenvectors are

The eigenvalues are of opposite sign, hence the critical point (0, 3/4) is a saddle, which
is unstable.
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At the critical point (3, 0), the coefficient matrix of the linearized system is

J(3,0) = ( _5’/2 3_/;)’>

The eigenvalues and eigenvectors are

mn=—3/2, &Y = (é) r=23/8, £¥ = (;8)

The eigenvalues are of opposite sign, hence the critical point (0, 3/4) is a saddle, which
is unstable.

At the critical point (2, 1/2), the coefficient matrix of the linearized system is

J(2,1/2) = ( __1/116 —_132)'

The eigenvalues and eigenvectors are

~3+/3 1 3+/3 0
= 4f7€(1):<_1+8ﬁ>9r2:_ 4\/a§(2>:<1§\/§)'

The eigenvalues are negative, hence the critical point (2, 1/2) is a stable node, which
is asymptotically stable.

(d,e).
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(f). Except for initial conditions along the coordinate axes, almost all solutions
converge
to the stable node (2,1/2).
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7. It follows immediately that
(1X + 0,Y)? —40,0,XY = 02X + 20,0, XY + 02Y? — 40,0, XY
= (0’1X — O'QY)Q.
Since all parameters and variables are positive, it follows that
(UlX + UQY)2 — 4(0102 — Oéloég)XY 2 0.

Hence the radicand in Eq.(39) is nonnegative.

10(a). The critical points consist of the solution set of the equations

x(e; — o —ayy) =0
y(e; — oy — ) = 0.

If x =0, theneithery =0ory = ¢€,/0,. If ¢, — 012 — a;y = 0, then solving for
results in © = (€, — ayy)/o;. Substitution into the second equation yields

(0109 — 061042>y2 - (‘7152 - 61042)3/ =0.

Based on the hypothesis, it follows that (e, — € ,05)y = 0. Soif 016, — €, # 0,
then y = 0, and the critical points are located at (0,0), (0, ¢€,/0,) and (¢, /0y, 0).

For the case 0,€, — € ,a,, = 0, y can be arbitrary. From the relation x = (¢, — ayy) /o,
we conclude that all points on the line o,x + o,y = €, are critical points, in addition to
the point (0, 0).

(b). The Jacobian matrix of the vector field is

J— € — 200 — Yy — oz
o — auy € — 205y — x|’

At the origin, the coefficient matrix of the linearized system is

u0ﬁ>=(3 2),

with eigenvalues r, = ¢; and r, = ¢, . Since both eigenvalues are positive, the origin
1S an unstable node.

At the point (0, €,/ ), the coefficient matrix of the linearized system is

Jm@wa=<@%—m@m2 0>,

62042/0'2 — €2

with eigenvalues 7, = (6,0 — 016;)/ay and 7, = — €,. If 0,6, — €, > 0, then
both eigenvalues are negative. Hence the point (0, €,/0,) is a stable node, which is
asymptotically stable. If o,e, — €,y < 0, then the eigenvalues are of opposite sign.
Hence the point (0, €,/0,) is a saddle, which is unstable.
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At the point (¢, /01, 0), the coefficient matrix of the linearized system is

J(el/al,O):(_Oel ( —an/o )

016 — 61062)/01

with eigenvalues r, = (0,6, — €,y) /oy and 7, = — ¢, If 0,6, — €,y > 0, then

the eigenvalues are of opposite sign. Hence the point (¢, /0,,0) is a saddle, which is
unstable. If o,€; — €, < 0, then both eigenvalues are negative. In that case the point
(€,/01,0) is a stable node, which is asymptotically stable.

(c). Asshown in Part (a), when o,€;, — €, = 0, the set of critical points consists of
(0,0) and all of the points on the straight line o,z + o,y = ¢, . Based on Part (b), the
origin is still an unstable node. Setting y = (¢, — 0,2)/a, , the Jacobian matrix of the
vector field, along the given straight line, is

J— — O X — T
—052(61—0'11')/0&1 042:6—61042/01 '

The characteristic equation of the matrix is

2

€10 — Q01X + 07X

r? + Zlr=0.
01

Using the given hypothesis, (€,a, — auo17 + 02x) /oy = €, — aux + 0. Hence the
characteristic equation can be written as

ey — ux + o) = 0.

First note that 0 < z < ¢,/0,. Since the coefficient in the quadratic equation is linear,
and

€y, at =0

€y — QX + 0T =
€, at x =¢€ /o,

it follows that the coefficient is positive for 0 < x < €, /o,. Therefore, along the straight
line o, + o,y = €, one eigenvalue is zero and the other one is negative. Hence the
continuum of critical points consists of stable nodes, which are asymptotically stable.

11(a). The critical points are solutions of the system of equations

z(l—z—y)+d6a=0
y(0.75 —y —0.5x) + 6b = 0.

Assume solutions of the form

T =x)+ 1,6 + 16° + -
Y=y +y6+16”+ -

Substitution of the series expansions results in
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To(1 — 20 — yo) + (21 — 23129 — Toyy — T1Yo + )0+ --- =0

(b). Taking a limit as 6 = 0, the equations reduce to the original system of equations.
It follows that z, =y, = 0.5.
(c). Setting the coefficients of the linear terms equal to zero, we find that

-y /2—2,/24a=0

—n /4=y /2+b=0,
with solution z, =4a — 4b and y, = — 2a + 4b.
(d). Consider the ab - parameter space. The collection of points for which b < a
represents an increase in the level of species 1. At points where b > a, x,0 < 0.

Likewise, the collection of points for which 2b > a represents an increase in the level
of species 2. At points where 2b < a, y,6 < 0.

104 /

81 -~

It follows that if b < a < 2b, the level of both species will increase. This condition is
represented by the wedge-shaped region on the graph. Otherwise, the level of one
species

will increase, whereas the level of the other species will simultaneously decrease. Only
for a = b = 0 will both populations remain the same.

13(a). The critical points consist of the solution set of the equations
—y=0
—yy—xz(zx—0.15)(z —2) =0.

Setting y = 0, the second equation becomes x(z — 0.15)(x — 2) = 0, with roots = 0,
0.15 and 2. Hence the critical points are located at (0,0), (0.15,0) and (2,0). The
Jacobian matrix of the vector field is
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, 0 ~1
o\ —=3224432-03 —o /)

At the origin, the coefficient matrix of the linearized system is

on-( % ~))

with eigenvalues

1
iy = — %iﬁx/2572+30 .

Regardless of the value of +, the eigenvalues are real and of opposite sign. Hence (0, 0)
18 a saddle, which 1s unstable.

At the critical point (0.15, 0), the coefficient matrix of the linearized system is

0o -1
J(0.15,0) = (0.2775 ~ 7),

with eigenvalues

s = — %i %\/10072 — 111,
If 100y% — 111 > 0, then the eigenvalues are real. Furthermore, since 7,7, = 0.2775,
both eigenvalues will have the same sign. Therefore the critical point is a node, with its
stability dependent on the sign of . If 100y — 111 < 0, the eigenvalues are complex
conjugates. In that case the critical point (0.15,0) is a spiral, with its stability dependent
on the sign of .

At the critical point (2, 0), the coefficient matrix of the linearized system is

o= 1)

7 1
y = — —+ —1/25~2 + .
T12 210 54+ 370

with eigenvalues

Regardless of the value of +y, the eigenvalues are real and of opposite sign. Hence (2, 0)
is a saddle, which is unstable.
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gamma = 0.8

It is evident that for v = 0.8, the critical point (0.15,0) is a stable spiral.

gamma=1.5
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(c). Based on the phase portraits in Part (b), it is apparent that the required value of -y
satisfies 0.8 < v < 1.5. Using the initial condition x(0) = 2 and y(0) = 0.01, itis
possible to solve the initial value problem for various values of . A reasonable first

guess is 7 = 4/ 1.11 . This value marks the change in qualitative behavior of the critical
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gamma =12

point (0.15,0). Numerical experiments show that the solution remains positive for

v~ 1.20.
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Section 9.5
1(a).
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(b). The critical points are solutions of the system of equations

2(1.5—0.5y) =0
y(— 05+ z)=0.

The two critical points are (0,0) and (0.5, 3).

(¢). The Jacobian matrix of the vector field is

y_ (3/2—y/2 — /2 )

Y —-1/2+x

At the critical point (0, 0), the coefficient matrix of the linearized system is

J(0,0) = (362 _2/2).

The eigenvalues and eigenvectors are

r=23/2, &Y = <(1)) sy = —1/2, &9 = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (0.5, 3), the coefficient matrix of the linearized system is

J(0.5,3) = (g _3/4)

The eigenvalues and eigenvectors are

VB o (0N B (1
ZT’§<)_(—2i\/§>’ 7“2—"7’5”—(2@- 3)-

r =
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The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(d,e).
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(f). Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5, 3).

2(a).
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(b). The critical points are the solution set of the system of equations

z(1—-05y)=0
y(—0.254+052)=0.

The two critical points are (0,0) and (0.5, 2).

(c). The Jacobian matrix of the vector field is

J= (1 ;/%/2 - 174%29;/2)'

At the critical point (0, 0), the coefficient matrix of the linearized system is
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J(0,0):((l) _2/4).

The eigenvalues and eigenvectors are

r=1, &Y= ((1)), ry= —1/4, ¥ = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (0.5, 2), the coefficient matrix of the linearized system is
(0 —1/4
J(O.5,2)—(1 0 )

The eigenvalues and eigenvectors are

The eigenvalues are purely imaginary. Hence the critical point is a center, which is
stable.

(d,e).

e T e e T T T

S

02040608 1 12141618 2 22 24 25
¥

(f). Except for solutions along the coordinate axes, almost all trajectories are closed
curves about the critical point (0.5, 2).
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(b). The critical points are the solution set of the system of equations

z(9/8 —x—y/2) =0
y(—1+ 2)=0.

The three critical points are (0,0), (9/8,0) and (1,1/4).

(¢). The Jacobian matrix of the vector field is

J— <9/8 — 2;« —y/2 _—13;42%)'

At the critical point (0, 0), the coefficient matrix of the linearized system is

3(0,0) = (9(/)8 _01)

The eigenvalues and eigenvectors are

r=9/8, £V = ((1)), ry= —1, &Y = ((1))

The eigenvalues are of opposite sign, hence the origin is a saddle, which is unstable.

At the critical point (9/8,0), the coefficient matrix of the linearized system is

J(9/8,0) = ( _3/8 _1%16).

The eigenvalues and eigenvectors are
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The eigenvalues are of opposite sign, hence the critical point (9/8,0) is a saddle, which
is unstable.

At the critical point (1,1/4), the coefficient matrix of the linearized system is

J(1,1/4) = (;/i _3/2).

The eigenvalues and eigenvectors are

i o () e o ()

r = 1

The eigenvalues are both negative. Hence the critical point is a stable node, which is
asymptotically stable.

(d, e).
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(f). Except for solutions along the coordinate axes, all solutions converge to the critical
point (1,1/4).
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(b). The critical points are solutions of the system of equations

z(—-1+252-03y—2°)=0
y(—1.54+ z)=0.

The four critical points are (0,0), (1/2,0), (2,0) and (3/2,5/3).

(¢). The Jacobian matrix of the vector field is

—1+5x—32*—3y/10 —3x/10
J = .
Y —-3/2+4+x

At the critical point (0, 0), the coefficient matrix of the linearized system is

J(0,0) = ( _01 _%/2)

The eigenvalues and eigenvectors are

rn= -1, &Y= (é); ry= —3/2, €% = ((1))

The eigenvalues are both negative, hence the critical point (0, 0) is a stable node, which
is asymptotically stable.

At the critical point (1/2,0), the coefficient matrix of the linearized system is

3(1/2.0) = (3(/)4 —3/120).

The eigenvalues and eigenvectors are

3 1 3
= — (1> == N = — (2) ==
T 4 ’ £ (O) s T 1 ) § (35)

The eigenvalues are of opposite sign, hence the critical point (1/2,0) is a saddle, which
is unstable.

At the critical point (2, 0), the coefficient matrix of the linearized system is
(-3 —=3/5
J(2,0)—( 0 1/2 )

The eigenvalues and eigenvectors are

1 6
r= -3, f(l): (0> ; ry=1/2, 5(2): <_35)'

The eigenvalues are of opposite sign, hence the critical point (2, 0) is a saddle, which
is unstable.
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At the critical point (3/2,5/3), the coefficient matrix of the linearized system is

J(3/2,5/3) = ( _5%4 B %/20).

The eigenvalues and eigenvectors are

./ —9+1i3+/39 ./ —9-13+/39
1 ] s s 2 ] 5 .

1 1

The eigenvalues are complex conjugates. Hence the critical point (3/2,5/3) is a stable
spiral, which is asymptotically stable.

(d,e).

02040608 1 12141618 2 2224 25
X

(f). The single solution curve that converges to the node at (1/2,0) is a separatrix.
Except for initial conditions on the coordinate axes, trajectories on either side of the
separatrix converge to the node at (0, 0) or the stable spiral at (3/2,5/3).

6. Given that ¢ is measured from the time that x is a maximum, we have

c cK
r=—+ — cos(y/ac t)
Y Y
y:g—f—Kg Esin( act).
Qo al a

The period of oscillation is evidently 7" = 27 /,/ac . Both populations oscillate about
a mean value. The following is based on the properties of the cos and sin functions

The prey population (z) is maximum att = 0 and t = T'. Itis a minimum att =T/2.
Its rate of increase is greatest at t = 37 /4. The rate of decrease of the prey population

is greatestat t = 1'/4.

The predator population (y) is maximum att = T'/4. It is a minimum att = 3T /4.
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The rate of increase of the predator population is greatest at ¢ = 0 and ¢ = I". The rate
of decrease of the predator population is greatest at t = 7'/2.

In the following example, the system in Problem 2 is solved numerically with the initial
conditions z(0) = 0.7 and y(0) = 2. The critical point of interest is at (0.5, 2).
Since a = 1 and ¢ = 1/4, it follows that the period of oscillationis 7" =4 7.

Frey Predator
0.7

231
065

221
0.6

0559 21
057

0.457 193

0.44 189

0.357 173

Predator vs Prey

2.3
2.2
2.1
Yo
1.91

1.87

1.71

03 04 045 05, 05 06 085 07

8(a). The period of oscillation for the linear system is T = 27/ /ac . In system (2),
a=1andc=0.75. Hence the period is estimated as T = 27/+/0.75 ~ 7.2552.

(b). The estimated period appears to agree with the graphic in Figure 9.5.3 .

(c). The critical point of interest is at (3,2). The system is solved numerically, with
y(0) =2 and x(0) = 3.5,4.0,4.5,5.0. The resulting periods are shown in the table:

2(0) =35 | 2(0) = 4.0 | #(0) = 4.5 | 2(0) = 5.0
T | 7.26 7.29 7.34 7.42

The actual amplitude steadily increases as the amplitude increases.
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9. The system

4 e(-143)

is solved numerically for various values of the parameters. The initial conditions are
z(0) =5, y(0) =2.

(a). a=land b=1:
a=1,b=1

3.24

2849
2564
2.44
y 2.2

1.8
1.6
1.49
1.249

3 oE 3,35 4 45 5

The period is estimated by observing when the trajectory becomes a closed curve. In this
case, '~ 6.45.

(b). a=3anda=1/3,withb=1:

a=1,b=1 a=13 b=1
32

3 4]

28

253

2.4 3

y22 ¥

2

1.8 ey

1.6

1.4

1.24 "

225 3,35 445 s 228 3,35 4 4 s

Fora =3, T~ 3.69. Fora=1/3, T ~ 11.44.
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(¢). b=3andb=1/3,witha =1

a=1,b=3 a=1,b=143

2 25 3,35 4 445 5 2 25 3,35 4 445 4

Forb=3, T~ 3.82. Forb=1/3, T~ 11.06.

(d). Tt appears that if one of the parameters is fixed, the period varies inversely with
the other parameter. Hence one might postulate the relation

"=

10(a). Since T' = 27/+/ac , we first note that

A+T A4T
/ cos(\/act-l—qb)dt:/ sin(y/ac t + ¢)dt =0.
A

A

Hence

(b). One way to estimate the mean values is to find a horizontal line such that the area
above the line is approximately equal to the area under the line. From Figure 9.5.3, it
appears that * ~ 3.25 and y ~ 2.0. InExample 1,a=1,¢c=0.75, a« = 0.5 and

~v = 0.25. Using the result in Part (a), T =3 and y = 2.

(c). The system
dx Y
“r _ (1 - _>
at " ( 2
dy 3 =
'a—ﬂ<‘z+z>
is solved numerically for various initial conditions.

xz(0) =3 and y(0) =2.5:
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387
2.4
36
349 22]
329
x] v5]
28
26 18
24
16
b2 & 6 w1z D B0 1z 1
x(0) =3 and y(0) =3.0:
189 34
16
443 28
12
4] 26
381
243
367
34 22
321
33 27
281
257 18
2.4 16
22
23 143
183
A A T R R T V1 0 B 1z 1
x2(0) = 3 and y(0) = 3.5:
3.4
324
5 3
28
o 261
2.4
x v2.2]
e %
1.8
16
2 1.4
12
vz 18 n 2 18 D 5 10 1z 1

t

1
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It is evident that the mean values increase as the amplitude increases. That is, the mean
values increase as the initial conditions move farther from the critical point.

12. The system of equations in model (1) is given by

dx
%—x(a—ay)

Based on the hypothesis, let the death rate of the insect population and the predators be
px and qy, respectively. The modified system of equations becomes

d_x— (_ )_
dt—xa Oéy pl’
d
3%=M—c+7@—q%

in which p > 0, ¢ > 0. The critical points are solutions of the system of equations

zla—p—ay)=0
y(—c—q+y2z)=0.
It is easy to see that the critical points are now at (0, 0) and (% , %”) Furthermore,
since (¢ + q)/~v > ¢/, the equilibrium level of the insect population has increased.
On the other hand, since (a — p)/a < a/a, equilibrium level of the predators has
decreased. Indeed, the introduction of insecticide creates a potential to significantly
affect the predator population (a = p).
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Section 9.6

2. We consider the function V (z,y) = ax? + cy?. The rate of change of V along any
trajectory is

. dx dy
V =V,— +V,—
dt + Ydt

1
= 2@3:( - 5:1:3 + Qxyz) + QCy( — y3)

= —az’ + daz?y® — 2cy’.

2

Letu=2%,v=9y>,a= —a,B =4a,andy = — 2c. We then have

— az + dax’y® — 2cyt = au® + fuv + 02

Ifa > 0and ¢ > 0, then V (z,y) is positive definite. Furthermore, « < 0. Recall that
Theorem 9.6.4 asserts that if 4ay — 3% = 8ac — 16 a®> > 0, then the function

au® + Buv + v

is negative definite. Hence if ¢ > 2a, then V (x,) is negative definite. One such
example is V (z,y) = 2® + 3y?. It follows from Theorem 9.6.1 that the origin is an
asymptotically stable critical point.

4. Given V(x,y) = ax® + cy?, the rate of change of V along any trajectory is

i dx dy
= 2ax (:1:3 — y3) + 2cy(23:y2 + da’y + 2y3)

= 202" + (4¢ — 2a)xy® + 8c x*y* + 4cy’.
Setting a = 2c,

V =dcat + 8ca’y? + dey?
> dext + eyt

As long as a = 2¢ > 0, the function V (z, y) is positive definite and V (z,y) is also
positive definite. Tt follows from Theorem 9.6.2 that (0, 0) is an unstable critical point.

5. Given V (z,y) = c(z? + y?), the rate of change of V along any trajectory is

. dx dy
VeV
=2cxly —xf(x,y)] + 2cy[ —z — yf(z,y)]

= —2c(z® +9*) f(z,y).

If ¢ > 0, then V(x,y) is positive definite. Furthermore, if f(x,y) is positive in some
neighborhood of the origin, then V' (x,y) is negative definite. Theorem 9.6.1 asserts that
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the origin is an asymptotically stable critical point.

On the other hand, if f(z,y) is negative in some neighborhood of the origin, then

Vi(z,y)
and V (x, y) are both positive definite. Tt follows from Theorem 9.6.2 that the origin is an
unstable critical point.

9(a). Letting x = u and y = u’, we obtain the system of equations

dz _
dt
dy _
dt

y
—g(z) —y.

Since g(0) = 0, it is evident that (0, 0) is a critical point of the system. Consider the
function

L,

Viz,y) = 3Y +/Omg(8)d8-

It is clear that V' (0,0) = 0. Since g(u) is an odd function in a neighborhood of u = 0,
/ g(s)ds > 0for x >0,
0

and

T 0
/ g(s)ds = — / g(s)ds >0 forz < 0.
0 x

Therefore V (z,y) is positive definite.

The rate of change of V' along any trajectory is

i dx dy
V=V—-+V-=
dt + Ydt

=g(@) - (y) +y[— g(z) —y]
_ 2
= —y".
It follows that V' (z,y) is only negative semidefinite . Hence the origin is a stable critical
point.
(b). Given
1

1 T
Viz,y) = §y2 + Y sin(z) —i—/o sin(s)ds,

It is easy to see that V' (0,0) = 0. The rate of change of V along any trajectory is
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i dx dy
V=V—+V-2
dt+ Ydt

. Yy I .
= sznx+§cosx](y)+ Y+ 5N [— sinx — Y]

1 1
= §y2 cos T — 537)712

T — ysin:v — 9
5 :

For — /2 < x < /2, we can write sinx =z — ax?/6 and cosx =1 — 31?/2,
in which o = a(z), 8 = f(z). Note that 0 < o, 3 < 1. Then

2 2 3\ 2 3
; _ Yy BEr\ 1 axt\T oyl ezt

Using polar coordinates,

2
V(r,0) = — %[1+sin60039+h(r,9)]

T2

1
= —— |14 =sin2 .
5 [ +28'm 9—|—h(7’,9)]

It is easy to show that

1 1
< —r? 4 —rt

So if 7 is sufficiently small, then |h(r,0)| < 1/2 and |}sin20 + h(r,6)| < 1. Hence
V(x,y) is negative definite.

Now we show that V' (x, y) is positive definite. Since g(u) = sinu,

1 1
Viz,y) = §y2 + §y sin(z) +1—cosz.
This time we set
x? x?
-1 i
CcoS T 5 + 51

Note that 0 < v < 1 for — /2 < x < w/2. Converting to polar coordinates,

2 2 2
Vir,8) = 5 [1 + sinfcosf — Esin 0 cos®0 — v ﬁcos40]
2 1 2 2
= % [1 + §sin 20 — %sinﬁ cos®0 — ;—400840] .
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Now
2 2 1
—I—Qsinﬁcos39—7;—400549> —gforr< 1.
It follows that when r > 0,
r[7 1 372
"l Zsin20] > 25 > 0.
V(r,0) > 5 [8+28m 9] 2 15 >

Therefore V (x, y) is indeed positive definite, and by Theorem 9.6.1, the origin is an
asymptotically stable critical point.

12(a). We consider the linear system

2\’ [ an ap x

Yy Qo1 Q2 Yy '
Let V(z,y) = Az? + Bzy + Cy?, in which

2 2
ay + ay, + (a1 — a15a2)

A= —
2A
Q12020 + Q1109
B = 202 T Gulxn
A
C = _ a3, + a3, + (41102 — a1pa2)
2A ’

and A = (ay; + ax)(aas — apa,). Based on the hypothesis, the coefficients A and
B are negative. Therefore, except for the origin, V' (x, y) is negative on each
of the coordinate axes. Along each trajectory,

V = (2Az + By)(an & + any) + (2Cy + Br)(ax & + axny)

= — 22—

Hence V (z,y) is negative definite. Theorem 9.6.2 asserts that the origin is an unstable
critical point.

(b). We now consider the system
4 /: (au a12)<x) n (Fl(xay))
y Gy Gz )\ y Gi(z,y))’
in which Fi(z,y)/r—0 and G,(x,y)/r—0 as r—=0. Let

Viz,y) = Az® + Bxy + C’yQ,

in which
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2 2
a5, + A5 + (a11a22 — algagl)
2A

Q12099 + Q1109
A
a’%l + a%a + (1102 — a12a9;)
2A ’
and A = (ay; + ay)(anas — apay ). Based on the hypothesis, A, B > 0. Except
for the origin, V' (x, y) is positive on each of the coordinate axes. Along each trajectory,

V =2+ ¢’ + (24z + By)Fi(z,y) + (2Cy + Bz)Gi(z,y) .

A=

O =

Converting to polar coordinates, for r # 0,
V =1?+r(2Acos0 + Bsin®) F, + r(2Csin 6 + Bcos ) G,

F
=72 fr? [(QACOS 0 + Bsin®) — + (2Csin 6 + Bcos b) ﬁ] .

T

r

Since the system is a/most linear, there is an R such that

F G 1
‘(2A0059+Bsz’n9) 71 + (2Csin 6 + Bcos0) 71 < 3
and hence
F) G 1
(2Acos 6 4+ Bsin6) 71 + (2Csin 6 + Bcos ) 71 > -5

for r < R. It follows that

. 1
V>
5"
aslongas 0 <7 < R. Hence V is positive definite on the domain
D ={(z,y)|2* +y* < R*}.

By Theorem 9.6.2, the origin is an unstable critical point.
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Section 9.7

3. The equilibrium solutions of the ODE
dr

= =r(r—1)(r—23)

are givenby 7 = 0,7, =1 and r; = 3. Note that

%>Ofor0<r<1andr>3; %<Ofor1<r<3.

r = 0 corresponds to an unstable critical point. The equilibrium solution r, = 1 is
asymptotically stable, whereas the equilibrium solution 73 = 3 is unstable. Since the
critical values are isolated, a limit cycle is given by

r=1 , 0=t + to
which is asymptotically stable. Another periodic solution is found to be
T = 3 5 9 - t + tU

which is unstable.

5. The equilibrium solutions of the ODE

dr )

— = Sinmr

dt
are givenby r = n, n=0,1,2,---. Based on the sign of r'in the neighborhood of
each critical value, the equilibrium solutions » = 2k, k =1,2,--- correspond to

unstable periodic solutions, with § = t + t,. The equilibrium solutions r» = 2k + 1,
k=0,1,2,--- correspond to stable limit cycles, with § =t + t,. The solution r = 0
represents an unstable critical point.

10. Given F(z,y) =anx + apy and G(z,y) = ay x + ay y, it follows that
Fx+Gy:a11+a22.

Based on the hypothesis, F;, + G, is either positive or negative on the entire plane.
By Theorem 9.7.2, the system cannot have a nontrivial periodic solution.

12. Given that F(z,y) = — 2z — 3y — xy? and G(x,y) = y + 2° — 2%y,
F,+G,= —1—a2® -y

Since F, + G, < 0 on the entire plane, Theorem 9.7.2 asserts that the system cannot
have a nontrivial periodic solution.
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14(a). Based on the given graphs, the following table shows the estimated values:

p=02|T~=6.29
pw=10|T = 6.66
pw=>50|T=11.60

(b). The initial conditions were chosen as z(0) = 2, y(0) = 0.

mu=0.5

2+ mu =05
R
\\J;/ B 8\\;;/0 14\<i//8 20
t
14
24
T~ 6.38.
mu=20
24
H1A
14
a4
T~ T7.65.
mu=3.0 mu =30
24
14 /_\
2 B
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T ~ 8.86.

mu=4.0

®14

-2

T~ 10.25.

(c). The period, T', appears to be a quadratic function of 1.

117

104

91 -

15(a). Setting z = v and y = u’, we obtain the system of equations

ar _
ar ~ Y

dy 1,
Y 1- -2 )y.
T x+u( 3y>y

(b). Evidently, y = 0. It follows that z = 0. Hence the only critical point of the system
is at (0,0). The components of the vector field are infinitely differentiable everywhere.
Therefore the system is almost linear.
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The Jacobian matrix of the vector field is

0 1
J= .
(—1 u—mf)

At the critical point (0, 0), the coefficient matrix of the linearized system is
0 1
s0.0=( " )

w1
==+ 24,
7“132 2 2 I[L

with eigenvalues

If = 0, the equation reduces to the ODE for a simple harmonic oscillator. For the case
0 < p < 2, the eigenvalues are complex, and the critical point is an unstable spiral. For
1 > 2, the eigenvalues are real, and the origin is an unstable node.

(¢). The initial conditions were chosen as 2:(0) = 2, y(0) = 0.

=110 mu=1.0

2
H /\ /\ /\ [\
T T T T T T T T T T T T }
45&1\10/214U20vzaz n 24 B8 1 12U182U2425U
-1
2

mu=1.0

(3]

=

ra

A~216 and T ~ 6.65.

(d).
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mu =02

*14

< ]
g I
-<;
b
<§
o
<§>
q

24

A=~2.00and T =~ 6.30.

mu=05

A T
I <

A=~204 and T ~ 6.38.

[gul

14

mu=2.0

| //\\ //W\ //q\
\75 g 110 12) 14 15V ] QU 30
t

A~26and T =~ 7.62.

[gul

ra
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rmu =150
ru = 5.0
41 54
*21 ¥1
10 20 E 40
t
2
44
A=~437and T ~ 11.61.
(e).
A T
=02 ]2.00]6.30
(=05 204638
=1.0]216 | 6.65
1 =20]26 |7.62
w=>5.01437|11.61
4.4
Aii 11
38
367 10
34
2323 k]
7]
281 8
257
249 7
221 .
21 : :
1 2 i g 1 3 4 g
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Section 9.8

6. r = 28, with initial point (5,5, 5):

16

o & ko

12
14
16

r = 28, with initial point (5.01,5,5):

16
14
12
10

*g

S N g ]

20 & b R

10
12
14
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9(a). r =100, initial point ( — 5, —13,55) :

H40
20
00 4
50
.30 20 10 D e, 0
204
E
104
| . 3 4 5
-10
20
-30

The period appears tobe 7'~ 1.12.

(b). 7 =99.94, initial point (— 5, — 13,55) :

30 20 -10 0 oo, 0

The periodic trajectory appears to have split into two strands, indicative of a period-
doubling. Closer examination reveals that the peak values of z(¢) are slightly different:
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140

1204

z 100

a0

B0

— —
o
—
[}
[
=

r = 99.7, initial point (— 5, —13,55) :

140

120

2 100

80

Sy
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(¢). r=99.6, initial point (— 5, — 13,55) :

s 2 o ﬁ L S0
The strands again appear to have split.
140+
120+
L 100
30+

60

® 17 s 1w M
t

Closer examination reveals that the peak values of z(t) are different:
1457

144.57

144 7

z 14354

143

14257

1427595 17 1B 19 20
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10(a). r = 100.5, initial point ( — 5, — 13,55 ) :

140
120
100 z
60
‘a0 200 Ao o0 1i:|'x"2i:|
140
120
z 1004
a0
B0
15 17 t1'8 19 20
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r = 100.7, initial point (— 5, — 13,55) :

140

30 20 0 010 Ig il
140
120
z 100
80
B0
16 17 18 19
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(b). » =100.8, initial point (— 5, — 13,55) :

140

r = 100.81, initial point (— 5, — 13,55 ) :

140

40 o 40 0 w20

The strands of the periodic trajectory are beginning to split apart.
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r = 100.82, initial point (— 5, — 13,55 ) :

140
1201
z 1001

a0-

ED:

15

19
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r = 100.83, initial point (— 5, — 13,55 ) :

1404
1201
7 1007

80

B0

15 15 17 18 15
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r = 100.84, initial point (— 5, — 13,55 ) :

140

1204

z 100

a0 1

B0

15 16 17 18 19
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