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Chapter Six
Section 6.1

3.
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The function f(¢) is continuous.

4.
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u 05 1i'5 2 25
The function f(t) has a jump discontinuity at t = 1.

7. Integration is a linear operation. It follows that

A 1 A
/ coshbt - e *'dt = —/ e e dt + / =0t o=ty
0 2.Jo 2
1 A
:_/ (b— sfdt / b+sfdt
2.Jo

1— e*(b‘FS)A

s+b

Hence

1
2

A b—s)A
1{1—elt)
/coshbt-e_‘gtdt:—lei
0 2 s—b

Taking a limit, as A— o,
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/ cosh bt - e 'dt =
0

Note that the above is valid for s > |b].

8. Proceeding as in Prob. 7,

A b—s)A
1|1—et9 1
/sinhbt-e_Stdt:— S I
0 2 S—b 2

Taking a limit, as A— o,

o 11 1 11 1
mh bt - e *'dt = = - =
/0 s ‘ 2|:S—b:| 2|:S—|—b:|

The limit exists as long as s > |b].

10. Observe that e sinh bt = (el — el@=0)) /2 It follows that

A _ latb—s)A _ —(b—a+s)A
1)1 1
/ e sinh bt - e ' dt = 3 [6— e—] .
0

1
s—a-+b 2 s+b—a

Taking a /imit, as A— oo,

o 1 1 1 1

@ sinhbt-edt = S| ———— | — - | =
/0 oo c 2[s—a+b] 2[s+b—a]
b
(s—a)* — b2

The limit exists as long as s —a > |b].

11. Using the /inearity of the Laplace transform,
1

. 1 ib —ib
L[sinbt] = Zﬁ[e - Zﬁ[e .
Since
/Ooe(a-i-ib)te—stdt — 1 _
0 s—a—1b
we have
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0 ) 1
/ eizbt efstdt — _
0 sF b

Therefore
1 1 1
Llsinbt] = — -
[sin b4 QiL—z’b s + ib
B b
s2 4027

12. Using the linearity of the Laplace transform,
1

L[cosbt] = 5,6[67:“] + %E[e_ibt].

oL 1
/ e:I: bt e—stdt — |
0 sFib

From Prob. 11, we have

Therefore
1 1 1
bt] = =
Lleos bl 2[s—ib+s+ib
B s
o242

14. Using the /inearity of the Laplace transform,
1 - 1 -
L]e"cosbt] = §£ [e(aﬂb)t] + §£ [e(“_“’)t] :

Based on the integration in Prob. 11,

00 ] 1
/ e(aizb)tefstdt: _
0 s—aFib
Therefore
1 1 1
Lle™cosbt] = =
[e cos ] 2[3—@—ib+s—a+ib
B s—a
(s—a)’ +b2°

The above is valid for s > a .

15. Integrating by parts,
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A A 1

+ [ e
0 0 S—a
1 — eA(a—s) + A(a _ S>€A(a,—s)

(5 —a)”

A _
/ te e dt = — tet
0

sS—a

Taking a limit, as A— o,

o0 1
/ te® . etdt = —.
0 (s —a)

Note that the limit exists as long as s > a.

17. Observe that t cosh at = (te™ +te ™)/2. For any value of ¢,

A (c—s)t |4 A
t 1
/ et . ety = — 25 +/ G
0 0 0 S—C

s—c
1 —ed9) 4 A(c — 5)ede?)

(s —c)’

Taking a limit, as A— o,

>0 1
/ te et = ——— .
0 (s —c)

Note that the limit exists as long as s > |c|. Therefore,

o0 : 1 1 1
/ tcoshat - e *tdt = = 5 + 5
0 2| (s—a) (s+a)

2+ a?
(s—a)(s+a)®

18. Integrating by parts,

A a—s)t
/ te e dt = — ey
0

A A
+ / B pntlas)t gy
S—a 0

0 sSs—a

n,—(s—a)A A
- _ w _|_/ n tn—le(a—s)tdt '
0

Ss—a sS—a

Continuing to integrate by parts, it follows that

page 257



CHAPTER 6. ——

A - — —
n_a —5 Ane(a 5)4 nA" 1@(“ 5)A
/te’t~e‘tdt:_ _ I
’ s—4a (s —a)
nlAelo—9)4 nl(ele=94 — 1)
(TL — 2)'(3 — CL)3 (S . a)n-l—l
That is,
. |
tneat . efstdt =, A . e(afs)A + n.: ’
A p ( ) (8 - a>n+1

in which p, (&) is a polynomial of degree n. For any given polynomial,

lim p,(A)-e =94 =0,

A—o0

as long as s > a. Therefore,
> , n!
/ tnea,t . e_“dt — — .
0 (s —a)

20. Observe that t?sinh at = (t?e® — t?e¢~%) /2. Using the result in Prob. 18,

o0 1 21 21
/ t’sinhat - e *tdt = = 5 — 3
0 2|(s—a)” (s+a)

2a(3s% + a?)

(" =)

The above is valid for s > |a|.

A A A
/ te ldt = —tet| + / e tdt
0 0 0

=1—e4 - Ae 4.

/ teldt=1—¢e4.
0

23. Based on a series expansion, note that for ¢ > 0,

22. Integrating by parts,

Taking a limit, as A— o,

Hence the integral converges .

el >1+t+1t2/2>1/2.
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It follows that for ¢ > 0,

t_2 t

Hence for any finite A > 1,

A
A—1
/ t2etdt > .
) 2

It is evident that the limit as A = oo does not exist.

24. Using the fact that |cost| < 1, and the fact that

/ e tdt =1,
0

it follows that the given integral converges.

25(a). Let p > 0. Integrating by parts,

A
/ e xldr = —e "zl
0

Taking a limit, as A— o,
/ e “xPdr = p/ e TP .
0 0
Thatis, I'(p+1) = pI'(p).

(b). Setting p=0,

(c¢). Let p=n. Using the result in Part (b),

I'(n+1) =nl(n)
= n(n —1)I'(n—1)

—n(n—1)(n—2)--2-1-T(1).
Since I'(1) =1, I'(n+ 1) =n!.

(d). Using the result in Part (b),
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F(p+n) =(p+n—1)T(p+n-1)
=(p+n—1(p+n-2T(p+n-—2)

=(@+n-1p+n-2)-(p+1)pl(p).
Hence

I'(p+n)
['(p)

Given that T'(1/2) = /7 , it follows that

=plp+Dp+1)---(p+n—-1).

and
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Section 6.2

1. Write the function as

3 3 2
s2+4  2s24+4
Hence £L7'[Y(s)] = 2 sin2t.
3. Using partial fractions,
2 21 1
s2+3s—4 5ls—1 s+4]

Hence LY (s)] = 2(e' — e ™).

5. Note that the denominator s? + 2s + 5 is irreducible over the reals. Completing the

square, s>+ 2545 = (s 4 1)> 4+ 4. Now convert the function to a rational function
of the variable £ = s+ 1. That is,

2s+2  2(s+1)
s24+254+5  (s+1)°4+4

We know that
2¢
-1 .
L [52 +4] = 2cos2t.
Using the fact that L[e® f(¢)] = L[f(#)],1s_y»
-1 ﬂ =2 ‘cos2t.
$2+2s+5
6. Using partial fractions,
2s—3 1| 1 7
2 1 T :
s—4 4|s—2 s+42

Hence £7![Y(s)] = 1(e* + 7e~"). Note that we can also write

25—3_2 S 3 2
s2—4 Ts2—4 282-—4

8. Using partial fractions,

832—4s+12_31+5 s 5 2
s(s2+4) s s2+4 s2+4
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Hence £1[Y(s)] =3+ 5cos2t — 2 sin2t.

9. The denominator s?> + 4s + 5 is irreducible over the reals. Completing the square,

s?+4s+5 = (s +2)” + 1. Now convert the function to a rational function of the
variable £ = s + 2. That s,

1-2s  5-2(s+2)
s?+45s4+5  (s+2)°%+1°

We find that
£ [£2i1 - 522_5 J =5Hsint —2cost.
Using the fact that L[e™ f(¢)] = L[f(t)] 5y »
-1 [%} = e (5sint — 2cost).

10. Note that the denominator s* + 2s + 10 is irreducible over the reals. Completing

the square, s? + 2s + 10 = (s + 1)2 + 9. Now convert the function to a rational
function of the variable £ = s+ 1. That s,

2s—3  2(s+1)-5
2 +25+10  (s+1)°+9°

We find that

T 2¢ 5
£ [§2+9_§2+9

Using the fact that L[e” f ()] = L[f(t)]
£ |:82 +2s+ 10

12. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) +3[s Y (s) — y(0)] +2Y(s) = 0.

] = 2cos 3t — gsin?)t.

S$s—a ?

e’ (2 cos 3t — g sin 3t) .

Applying the initial conditions,
s2Y(5)+3sY(s) +2Y(s) —s —3=0.
Solving for Y'(s), the transform of the solution is

Y(s) = 5+ 3

s243s+2°
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Using partial fractions,

s+ 3 2 1
2+35s+2 s+1 s+2°

Hence y(t) = L71[Y(s)] = 2e7t — e 2.

13. Taking the Laplace transform of the ODE, we obtain
s2Y(s) —sy(0) —y'(0) —2[s Y(s) —y(0)] +2Y(s) = 0.
Applying the initial conditions,
s°Y(s) —2sY(s) +2Y(s) —1=0.
Solving for Y'(s), the transform of the solution is

1

Y(s)= .
(5) §2—2s54+2

Since the denominator is irreducible, write the transform as a function of { = s — 1.

That is,

1 B 1
s2—25+2 (s—1)72+1

First note that

E_l[@il] = sint.

Using the fact that L[e® f(t)] = L[f(t)]

Ss—a ?

1
-1 ot
L |:—82—28—|—2:| =e'sint.

Hence y(t) = e'sint.

15. Taking the Laplace transform of the ODE, we obtain
S Y(s) = sy(0) = y'(0) = 2[s Y (s) — y(0)] = 2Y () = 0.
Applying the initial conditions,
s*Y(s) —25Y(s) —2Y(s) =25 +4 =0.
Solving for Y'(s), the transform of the solution is

2s — 4

Y(s)= -0 =
(5) §2 —25—2

Since the denominator is irreducible, write the transform as a functionof £ = s — 1.
Completing the square,
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2s -4 2(s—1)-2
2—2s—2 (s—1)°—3

First note that

£—1|:§22_§3 _ 522_3:| :2cosh\/§t— %Sinh\/gt.

the solution of the IVP is

Using the fact that L[e® f(t)] = L[f(¢)]

Ss—a ?

y(t) =1 {%] = ¢l (2008h \/§t— %Sinh \/§t> .

16. Taking the Laplace transform of the ODE, we obtain
s2Y (s) — sy(0) —y'(0) + 2[s Y(s) — y(0)] +5Y(s) = 0.
Applying the initial conditions,
s*Y(s) +25Y(s)+5Y(s) =25 —3=0.
Solving for Y'(s), the transform of the solution is

2s+3
Y = —
(5) s2+2s+5

Since the denominator is irreducible, write the transform as a function of £ = s+ 1.
That is,

2s+3 2(s+1)+1
s24+25+5  (s+1)7+4

We know that

Lt 2¢ + L —20082t+lsin2t
£2+4  £+4) 2 '

Using the fact that L[e® f(t)] = L[f(t)] the solution of the IVP is

S$s—a ?

2s+3 1
t) = = = -t —S7 .
y(t)=L [82+2s+5] e (20082254—28271225)

17. Taking the Laplace transform of the ODE, we obtain

'Y (s) = ’y(0) — s”y'(0) — sy"(0) —y"(0) = 4[s°Y (s) — s”y(0) — s3(0) —y"(0)] +
+6[s*Y(s) —sy(0) —y'(0)] —4[sY(s) —y(0)] + Y(s) =0

Applying the initial conditions,
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sV (5) —45°Y (s) + 65 Y (s) —4sY(s) + Y(s) — s> +4s —7=0.
Solving for the transform of the solution,

Y()— s2—4s+ 7T _82—48+7
VT 431652 —4s + 1 (s—1*

Using partial fractions,

Sods+7_ 42 1
s—1"  (s—=D" (s=1)° (s-1)7"
Note that £[#"] = (n!)/s""! and L[e* f(t)] = L[f(t)],., ,- Hence the solution
of the IVP is
2 4s+ T 2
O ] iy RN
y(t) [ 1) 3

18. Taking the Laplace transform of the ODE, we obtain
s'Y (s) = 5°y(0) — s°y"(0) — sy"(0) —y""(0) = Y(s) = 0.
Applying the initial conditions,
sV (s) = Y(s) —s*—s=0.

Solving for the transform of the solution,

s
s2—1"

Y(s) =

By inspection, it follows that y(t) = L[] = cosht.

s2—1
19. Taking the Laplace transform of the ODE, we obtain
s'Y(s) = s°y(0) — s°y"(0) —sy"(0) —y""(0) —4Y (s) = 0.
Applying the initial conditions,
sV (s) — 4Y(s) — s> + 25 = 0.

Solving for the transform of the solution,

S

Y(s)= — |
() s2+2

It follows that y(t) = £7![2%5] = cos V2t

20. Taking the Laplace transform of both sides of the ODE, we obtain
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S

s2Y (s) —sy(0) —y'(0) + w* Y (s) = R

Applying the initial conditions,

g ="
S Y(s)—l—w Y(s) S 24
Solving for Y(s), the transform of the solution is
S S

Y(s) =

(s2 +w?)(s% +4) T +w?’

Using partial fractions on the first term,

S B 1 S S
(82 +w?)(s24+4) 4—uw?|s2+w?  s244]
First note that

s
s2 44

Lt {L} = coswt and El{

PR }zcos?t.
s w

Hence the solution of the IVP is

1 1
y(t) = 1 coswt — 2 cos 2t + coswt

— W2 — w2

cos 2t .
4 — w2 —w?

21. Taking the Laplace transform of both sides of the ODE, we obtain
s
2417

sY (s) — sy(0) —y'(0) — 2[s Y (s) — y(0)] +2Y(s) =

Applying the initial conditions,

5 s
Y(s)—2sY 2Y(s) — 2=
s°Y(s) —2sY(s)+2Y(s) —s+ 71
Solving for Y'(s), the transform of the solution is
s s—2

Y(s) = .
(5) (2 —2s4+2)(s>+1) +32—23+2

Using partial fractions on the first term,

S 1 s—=2 s—4
(s2—25+2)(s2+1) 5|s2+1 s2—2s5+2]°

Thus we can write

page 266



CHAPTER 6. ——

1 s 2 1 +2 25 — 3
5241 58241 H5Hs2—2s+2°

Y{(s)

For the last term, we note that s> — 25+ 2 = (s — 1)> + 1. So that
25—3  2As—1)—1
s2—2s+2 (s—1)°+1

We know that

2¢ 1
-1 . .
L [£2+1—52+1}—2c03t—8mt.

Based on the translation property of the Laplace transform,

25 — 3
-1 ¢ o
L |:—82—28—|—2:| =e'(2cost — sint).

Combining the above, the solution of the IVP is

1 2 2
y(t) = gcost— gsmt+ get(2cost— sint).

23. Taking the Laplace transform of both sides of the ODE, we obtain

4

Y (s) = sy(0) = y'(0) +2[s Y (s) — y(0)] + Y (s) = pan

Applying the initial conditions,
4

2
Y 2sY Y —2s—3= .
s°Y(s)+2sY(s)+ Y(s) S po|

Solving for Y'(s), the transform of the solution is

4 n 2s+3
(s+1)°  (s+1)*

Y(s) =

First write

(s+1)  (s+1)7%  s+1  (s+1)*

2543 _2s+1)+1_ 2 1

We note that

c‘l{é+§+€—12} =282+ 2+¢.

So based on the translation property of the Laplace transform, the solution of the IVP is

page 267



CHAPTER 6. ——

y(t) =2t% " +te ' +2e".

25. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

SY(s) — sy(0) —y'(0) + Y(s) = LIF(1)].
Applying the initial conditions,
s*Y (s) + Y(s) = L[f(t)].

Based on the definition of the Laplace transform,

Clf(0) = / N

1
= / te Stdt
0

s? s s?
Solving for the transform,
1 s+ 1
Y(s) = o .
(s) s2(s?2+1) s2(s?2+1)
Using partial fractions,
1 1 1

and

We find, by inspection, that
1
LY ———
e
Referring to Line 13, in Table 6.2.1,
Lluc(t)f(t—c)] = e “LIf(?)].

] =t—sint.

Let

s+1 1 1 S 1

Llgt)]|=55—<=—+—5 — — :
L9(®)] s2(s2 4+ 1) s+s2 $24+1 s2+1
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Then g(t) = 1+t — cost — sint. It follows, therefore, that

s+1

L1 [es . m] =u(t)[1+(t—1)—cos(t—1)—sin(t—1)].

Combining the above, the solution of the IVP is
y(t) =t —sint —u (t)[1+ (t = 1) —cos(t — 1) — sin(t — 1)].

26. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace
transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) +4Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) + 4Y(s) = L[f(2)].

Based on the definition of the Laplace transform,

CIf(1) = / f) et

1 00
= / te Stdt + / e stdt
0 1

1 e’
2
Solving for the transform,
1 1
Y(s) = —e’ .
() s2(s?2+4) ¢ s2(s?2 +4)

Using partial fractions,

We find that

1 1 1
o S
L [32(32+4)} 4t Ssmt.

Referring to Line 13, in Table 6.2.1,
Lluc(t) f(t —c)] = e LI (1))
It follows that

page 269



CHAPTER 6. ——

c {e—s - m] — i (t) E(t - ésin(t - 1)}.

Combining the above, the solution of the IVP is

1 1

o) =4t gsmt—ul(t)E(t— 1) - ésin(t— 1)}.

28(a). Assuming that the conditions of Theorem 6.2.1 are satisfied,

Fi(s) = 2 / e f (1)t

/ g5 I
= [ 1= tes)ar

(b). Using mathematical induction, suppose that for some k& > 1,
FOs) = [ et rw)]ar
0
Differentiating both sides,
d o0

Fl(s) = - 0 et [(—t)k f(t)}dt

- /OOO% e (= 0 1 (1) at

:/OOO[—te—S’f(—t)’“f(t)}dt

29. We know that

Based on Prob. 28,
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Therefore,
1
Llte"] = 5
s—a)
31. Based on Prob. 28,
n d"
LI 0)"] = S]]
_4a1
Cds" | s |
Therefore,
" o (=1)"n!
o) = (-
n!
= gntl ’

33. Using the translation property of the Laplace transform,

b

L [@(Lt sin bt] = m .

Therefore,

L [t e sin bt] =

d [ b
2b(s — a)
(s2 — 2as + a2 4 b2)*

34. Using the translation property of the Laplace transform,

,C[e“t cos bt] = # )
(s —a)” + b2
Therefore,
d _
E[te”tcosbt] = — — %
ds | (s —a)” + b2
(s —a)*—b2

(s — 2as + a? + b2)*

35(a). Taking the Laplace transform of the given Bessel equation,
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Llty"]+L[y'T+L[ty] =0.

Using the differentiation property of the transform,

~ Ly ely) - ely) =0,

That is,
~ 12V (5) — 59(0) ' (O)] + ¥ (5) — y(0) ~ V() = 0
ds ds
It follows that
(1+s°)Y'(s) +sY(s) =0.
(b). We obtain a first-order linear ODE in Y (s):
Y’ —Y(s)=0
(5) + V() =0,
with integrating factor
_ 5 as) =211
w(s) = exp ayids)=Vs +1.
The first-order ODE can be written as
d
%[ s2+1 -Y(s)} =0,
with solution
c
Y(5) = —/—.
() o
(c). In order to obtain negative powers of s, first write
1 1 1772
S N {1 n _} |
s?+1 s s?
. NV .
Expanding (1 + ?> in a binomial series,
1 1 1-3 1-3-5
]ty 0 -6, ...
V14 (1/s?%) 2 ° +2-4S 2.4-6° T

valid for s72 < 1. Hence, we can formally express Y (s) as

Y() 1 11+1-31 1-3-51+
S)=¢Cc|l—— — — —_—  _
s 28 248 2.4.6s7
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Assuming that term-by-term inversion is valid,
0 . 1t2+1-3t4 1-3-5t6+
= C R — _ [— “oe
y 2921 2441 2-4-6 6
{ 2! ¢2 4! 4 6! 6 }
=c

rat e en 2. oea

It follows that

1, 1 4 1
y(t) :C|:1_2_2t +22,42t _22,42,62

S (_1)ﬂ 2n
= CZ 2”(n!)2 .

The series is evidently the expansion, about z = 0, of J,(¢).

t6_|_...:|

[\

36(b). Taking the Laplace transform of the given Legendre equation,
Lly"—L[Py"] —2L[ty']+ala+1)L[y] =0.

Using the differentiation property of the transform,

Ly =L ety + 29 20yl + ala+ 1)Lly] = 0.

ds? ds
That is,
(2 () — 59(0) ~ y/(0)] — 5 [*¥ (5) — 53(0) ~y'(0)] +
+ 2%[3 Y(s) = y(0)] + a(a+1)Y(s) =0

Invoking the initial conditions, we have

s°Y(s) —1— % [s°Y(s) — 1] + 2%[3 Y(s)|+ala+1)Y(s) =0.

After carrying out the differentiation, the equation simplifies to

., d 2 _
1 [s°Y (s)] — 2£[s Y(s)] = [s°+ala+1)]Y(s)= —1.
That is,
s2d—Y(s) + 2s iY(s) — [ +ala+1)]Y(s)= —1.

ds? ds

37. By definition of the Laplace transform, given the appropriate conditions,
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00 t
L[g(t)] :/ e st {/ f(T)dT:| dt
0 0
oo pt
= / / e S f(r)drdt.
0o Jo
Assuming that the order of integration can be exchanged,
L[g(t)] :/ f(r) [/ eStdt] dr
0 T
o0 6757'
= /0 f(r) [ . :|d7'.

[Note the region of integration is the area between the lines 7(¢) =t and 7(¢) = 0.]
Hence

£lo0) = - / Cfm) e dr
Lerren
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Section 6.3

o
—
kA
IRy
=
[y}
o

104
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0.5

0.6

0.4

0.2

7. Using the Heaviside function, we can write
F(8) = (¢ =2)" us(t).
The Laplace transform has the property that
Llu(t)f(t —c)] = e “LIf(1)].
Hence

2 6728
5 -

L[(t—2)us(t)] =

S

9. The function can be expressed as
f(t) = (t —m)[ug(t) — ugr(t)]-
Before invoking the translation property of the transform, write the function as
f@) = (t —m)ug(t) — (t — 2m) ugr(t) — wuar(t).
It follows that

10. It follows directly from the translation property of the transform that

3s —4s

128 6% .
S S S

e’ e

LLF@)] =

11. Before invoking the translation property of the transform, write the function as

F@) = (t = 2) ug(t) — ua(t) — (¢ = 3) ua(t) — us(t).
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It follows that

12. It follows directly from the translation property of the transform that

1 e ?
RO
13. Using the fact that L[e™ f(t)] = L[f(t)] sy »

SEE
8 JR—

15. First consider the function

2(s—1

Gls) = 52(—284?2'
Completing the square in the denominator,

G(s) = 2(s —21) .

(s—1)"+1

It follows that

LG (s)] =2¢€ cost.
Hence

L7 e #G(s)] =2 e eos (t — 2) uy(t) .

16. The inverse transform of the function 2/(s? — 4) is f(t) = sinh 2t. Using the
translation property of the transform,

‘|

2 —2s
¢ 4} — sinh 2(t — 2) - us(t).

s2 —

17. First consider the function

Completing the square in the denominator,
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(s =2

G(s) = m

It follows that
L7G(s)] = e* cosht.

Hence

— Ne

18. Write the function as

It follows from the translation property of the transform, that

. e S + 6—28 _ 8—35 _ 6—48

S

L

]zuﬂw+wa%wMU—wﬁf

19(a). By definition of the Laplace transform,
L[ f(ct)] = / e f(ct)dt.
0

Making a change of variable, 7 = ct, we have

clrten) = [ et pmar
L e [
| et

Cc

Hence L] f(ct)] =1 F(2), where s/c > a.

C

(b). Using the result in Part (a),

Hence
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(c). From Part (b),
£V F(as)] = %f(é)

Note that as + b = a(s + b/a). Using the fact that L[e“ f(¢)] = L[f(¢)]

S—¥s—c ?

LV [F(as+b)] = e Ly (3> |

a a

20. First write

n!
(é)n+1'
2

Let G(s) = n!/s"*1. Based on the results in Prob. 19,

1o [o(3)] -

F(s) =

in which ¢(¢) = ¢". Hence
LF(s)] =2 (2t)" = 2",

23. First write

Now consider

24. By definition of the Laplace transform,
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That is,

25. First write the function as f(t) = uo(t) — w1 (t) + ua(t) — us(t)

1 3
L[ f(t)] :/0 e dt +/2 e ®ldt.

That is,
1—¢ 5 6—25 _ 6—38
LIf)] =
F(B) = ——+
B 1—e 5+ 6723 _ 6735
N S

. It follows that

26. The transform may be computed directly. On the other hand, using the translation

property of the transform,

2n+1 ks
S

L] =+ Y (-
k=1

e

5 k=0

1 1 _ ( _ e_s)2n+2
s 14+e3

That is,

1 o (6728)71/-&-1

LU0 = 1 7o

29. The given function is periodic, with T' = 2. Using the result of Prob. 28,

1

2 1
LIFW] = 1 / R — / oty

That is,
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1—e
s(1—e %)
1
s(1+e9)"

31. The function is periodic, with T' = 1. Using the result of Prob. 28,

1
LIf#)] = : _168/0 te dt.

It follows that

£ = i o

32. The function is periodic, with T' = 7. Using the result of Prob. 28,

L[f(t)] = ;/ﬂsmt e tdt .
0

- 1 — e~ TS

We first calculate

T 14+e™
/ sint-e Stdt = ——— .
0

1+ s2
Hence
1+e™™
£[f(t)] = (1 _ e,ﬂs)(l + 82) :
33(a).
1 ¥ = fit)
LIf(#)] = L[1] = Llua (2)]
_ 1 e
s s

page 281



CHAPTER 6. ——

(b).
y = oft)
14
0.5
0.6
0.44
024
d 05 1 15 32 25 3

LUO 1 — ul(T)]dT} = F(s) = ! _326
(c).
. ¥ = hi)
Let G(s) = L[g(t)]. Then
LIA()] = G(s) — > G(s)
_ 1—¢e* e 1—¢e*
(1—e)?
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34(a).

0.584
0.6
0.44

0.24

(b). The given function is periodic, with T'= 2. Using the result of Prob. 28,

i) = — /O eI p(t)dt

= 1— 6—25

Based on the piecewise definition of p(t),

2 1 2
/e—“p(t)dt :/te_Stdt—l—/ (2 —t)e 'dt
0 0 1

= éu —e %)%
Hence
(=€)
‘C[p(t)] - 82(1 +€—s) :

(c). Since p(t) satisfies the hypotheses of Theorem 6.2.1,
Lp'(t)] = s L[p(t)] - p(0).
Using the result of Prob. 30,

We note the p(0) = 0, hence
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Section 6.4

2. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

'Y (s) = sy(0) —y'(0) + 2[s Y (s) — y(0)] +2Y (s) = L[ (t)].
Applying the initial conditions,
s2Y(s) +25Y(s) +2Y(s) — 1 = L[h(t)].
The forcing function can be written as h(t) = u,(t) — ug.(t) . Its transform is

—TSs __ e—27rs

Solving for Y'(s), the transform of the solution is

1 e~ 6727r5

82+23—|—2+s(52+28+2)'

Y(s) =

First note that

1 1
s2+254+2  (s+1)7°+1

Using partial fractions,

1 111 (s+1)+1

s(s2+254+2) 25 2(s+1)7%4+1

Taking the inverse transform, term-by-term,

1 1 S
——— | =L|————| = ¢ 'sint.
s2+2s+2 (s+1)%+1
Now let
1
G(s) = .
() s(s? +2s+2)
Then
1 1 1
L7G(s)] = 3~ §e*tcost — —e'sint.
Using Theorem 6.3.1,
—11,—cs _ l _ 1 —(t—c) _ . _
L e “G(s)] = 2uc(t) 5¢ [cos(t — ¢) + sin(t — ¢)]u.(t) .

Hence the solution of the IVP is
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y(t) = e 'sint + 1u7r(1f) — %e(t”) [cos(t — ) + sin(t — m)|ux(t) —

2
1 1
— §u27r(t) + 56_@_2”) [cos(t — 2m) + sin(t — 27)]ua. (1) .

That is,

1 1
y(t) = e 'sint + i[uﬁ(t) — ug(t)] + 56_(’5_”) [cost + sint]u,(t) +
1

+ 567(“%) [cost + sintlug,(t) .

hit)

0.8

0.6

0.44

0.21

0.587

0.47

0.3

0.21

0.11

0 24 6 (8 t0 12 14

The solution starts out as free oscillation, due to the initial conditions. The amplitude
increases, as long as the forcing is present. Thereafter, the solution rapidly decays.

4. Let h(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

Y (s) = sy(0) — y'(0) +4Y (s) = L[h(?)].

Applying the initial conditions,
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s2Y (s) +4Y(s) = L[h(t)].
The transform of the forcing function is

LIh@®)] =

1 + €_7TS
s24+1 s241°

Solving for Y'(s), the transform of the solution is

1 6777'8
D)2 +1) (A1)

Y(s) =

Using partial fractions,

1 B 1 1 B 1
(s2+4)(s2+1)  3|s2+1 s24+4]
It follows that
1 1 1
_1 _ - . - .
{(32—#4)(324—1)} —3[smt 5 sm2t].

Based on Theorem 6.3.1,

£ [ e Z); K 1)} _ % {sz’n(t - % sin(2t — 27)} un(t)

Hence the solution of the IVP is

() = S sint— = sin2t| — | sint+ = sin2t|u.(t)
= —|stnt — — stn — — | Sth — Sin Ur .
YW=3 2 3 2
hit)

1_

0.84

0.6

0.44

0.2
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0.4

¥it)
0.3
0.2
0.1
o 2 4 B : 10 12
0.1
0.2
0.3

Since there is no damping term, the solution follows the forcing function, after which
the response is a steady oscillation about y = 0.

5. Let f(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s Y (s) = sy(0) —y'(0) + 3[s Y(s) — y(0)] +2Y (s) = LIf(1)].
Applying the initial conditions,
s2Y(s) +3sY(s) +2Y(s) = L[f(t)].

The transform of the forcing function is

Solving for the transform,

v 1 67105
() = s(s24+3s+2) s(s2+3s+2)°

Using partial fractions,

Hence

Based on Theorem 6.3.1,

—10s
-1 € 1 —2(t-10 —(t—10)
£ {S(S2+3s+2)} = 5 (L e —2e7 Wy (1),

Hence the solution of the IVP is
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1)

0.8

0.6

0.47

0.21

U T 10 12 14 16 18 20

yit)
054
0.4
0.3
024

0.1

a 2':iéé=1t'u1'21'41ia1'82i3

The solution increases to a temporary steady value of y = 1/2. After the forcing ceases,
the response decays exponentially toy = 0.

6. Taking the Laplace transform of both sides of the ODE, we obtain

Y (s) — s(0) — y'(0) +3[s Y(s) — y(0)] +2Y(s) = & :

s
Applying the initial conditions,

6—25

s2Y(s)+3sY(s) +2Y(s) — 1=

S

Solving for the transform,
1 6725

82+3s+2+s(82+38+2)'

Y(s) =

Using partial fractions,
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1 1 1
$24+35+2 s+1 s+2

and

1 A, 2
s(s24+35+2) 2|s s+2 s+1]

Taking the inverse transform. term-by-term, the solution of the IVP is

1 1
y(t) =e ' —e 2+ {5 —e 72 4 562@2)} us(t) .
fit)
1_
0.5
067
0.4
0.2]
0 1 2 ? 4 5 5
¥t
0.5
0.4
0.3
0.2
0.1
g 2 1, 6 ! 10

Due to the initial conditions, the response has a transient overshoot, followed by an
exponential convergence to a steady value of y, = 1/2.

7. Taking the Laplace transform of both sides of the ODE, we obtain

6737&9

Y (s) = sy(0) —y'(0) + Y (s) =

S

Applying the initial conditions,
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6737rs
S2Y(s)+ Y(s)—s =
S
Solving for the transform,
—37s
s e
Y(s) = .
(s) s2+1  s(s2+1)
Using partial fractions,
1 1 S
s(s2+1) s s2+1

Hence

Y(s) =

S _*_67371'51_ S
s2+1 s 8241

Taking the inverse transform, the solution of the IVP is

y(t) = cost+ [1 — cos(t — 3m)]us,(t)
= cost + [1 + cost|us,(t).

fit)

0.51

067

0.47

0.24

g ﬁfiéE'i1iJ1'2t1'41'E1'82'02'22'4

il

o \Ué v 12 13@1'8 QEWQA
t
14

Due to initial conditions, the solution temporarily oscillates about y = 0. After the
forcing is applied, the response is a steady oscillation about y,, = 1.
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9. Let g(t) be the forcing function on the right-hand-side. Taking the Laplace transform
of both sides of the ODE, we obtain

s*Y (s) — sy(0) —y'(0) + Y (s) = L[g(t)].
Applying the initial conditions,
s*Y (s) +Y(s) — 1 = L[g(t)].

The forcing function can be written as

o) = 2[1 — ug(t)] + 3ug(t)

t 1
- — _(t— t
9 9 (t = 6)ug(t)
with Laplace transform
1 6765
Llgt)] = — —
[g( )] 282 282
Solving for the transform,
1 1 e %

Y(s) = — .
(s) s2+1 * 2s2(s24+1)  2s2(s?2+1)

Using partial fractions,

1 11 1
252(s2+1)  2|s2 s2+1)
Taking the inverse transform, and using Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = sint + 5[75 — sint] — 5[(1& —6) — sin(t — 6)]ug(t)

1 _ 1 :
= 5[75 + sint] — 5[(15 —6) — sin(t — 6)]ug(t).

art)
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yt)

U754 % E'=1t|1'2t1}11i31'82'u2'2214

The solution increases, in response to the ramp input, and thereafter oscillates about a
mean value of y,, = 3.

11. Taking the Laplace transform of both sides of the ODE, we obtain

e~ T 6737r5
2Y(s) = 5y(0) = y'(0) +4Y(s) = —— = &
Applying the initial conditions,
—ms —3ms
9 e e
Y 4Y (s) = —

SV () +4Y () = =

Solving for the transform,
e~ TS efSTrs

Using partial fractions,
1 11 s
s(s24+4)  4|s s24+4]
Taking the inverse transform, and applying Theorem 6.3.1,

y(t) = iu — cos(2t — 2m)|us(t) — 3[1 — cos(2t — 67)]ug(£)

1

= Z[Uﬂ'(t) - USW(t)] - iCOS 2t - [uﬂ'(t) - u37"(t)] ’
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0.8

0.6

0.4

0.24

0.5

0.4

0.3

0.2

0.1

A D A - R T T RV

Since there is no damping term, the solution responds immediately to the forcing input.
There is a temporary oscillation about y = 1/4.

12. Taking the Laplace transform of the ODE, we obtain

S (s) — $25(0) — s%'(0) — 5" (0) — y"(0) — Y(s) = — —

Applying the initial conditions,

—5 —2s
4 e e
Y(s)— Y(s) = —
Y (s) = Vis) = = &
Solving for the transform of the solution,
e s 6*28

Yis) = s(st—1) s(st—1)"

Using partial fractions,

It follows that
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1 1

Based on Theorem 6.3.1, the solution of the IVP is

1
y(t) = = [ur(t) —ua(®)] + 5 [e=0Y D 1 2cos(t — 1)]us(t) —
1
~1 [e_(t_Q) +e2 £ 2cos(t — 2)]ua(t) .
ft)
1_
0.8]
0.6
0.4
0.21
0 27, 3 4 g
yit)
B_
E-
d_
2-
u 1 2 4 3 4 g

The solution increases without bound, exponentially.

13. Taking the Laplace transform of the ODE, we obtain
'Y (s) = s°y(0) — sy’ (0) — sy"(0) —y""(0) +
1
+ 5[82Y(s) —sy(0) —y'(0)] +4Y(s) = . ¢

—TSs

S

Applying the initial conditions,

6*7’1’8

s'Y (s) + 55%Y (s) + 4Y(s) = % -

Solving for the transform of the solution,
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1 6771'8
Y(s) = - .
() s(s*+5s2+4)  s(st+5s2+4)

Using partial fractions,

1 13 . s 4s
s(s* +5s2+4) 12|s s2+4  s24+1]°
It follows that
£t ! = i[34—005215—400515]
s(s* 4+ 5s% +4) 12 '
Based on Theorem 6.3.1, the solution of the IVP is
(1) = 211~ up(8)] + - [cos 2t — 4 cos ]
y(t) = 1 Uy 12 cos cos

— %[cos 2(t — ) — 4 cos(t —m)]ur(t).

That 1s,
(1) = ~[1 = un(t)] + — [cos 2% — dcos ]
y(t) =5 Un 15 lcos cos
1
— —[cos2t + 4 cost|u(t).
12
ft)
1
0.8
0.6
0.41
0.2
S TR - D T T AT
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yit)
0.6
0.4
0.24
2 ] : ]

By ooz

After an initial transient, the solution oscillates about y,, = 0.

14. The specified function is defined by

0, 0<t<t
f)=3 2t—t), ty<t<t +k
h, t>t +k

which can conveniently be expressed as
h

P = 00— to) i (8) = (0t — K g (0).

15. The function is defined by

0, 0<t<t
(1) = Lt —t), ty<t<t,+k
TIOZN bty —2k), ty+k<t<ty+2k
0, t>t, + 2k
which can also be written as
h 2h h
g(t) = E(t — to) Uto(t) — ?(t — to — k’) Ut0+k(t) + E(t — to — 2]{7) Ut0+2k(t).

16(d). From Part (c), the solution is

Mﬂzz#nwxwh(t—g)—ﬂMuwxﬂh(t—§),

where

1
4 84 8 4

7 37t 1 37t
— £ e”%in(—) — e M3¢cos (%)

Due to the damping term, the solution will decay to zero. The maximum will occur
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shortly after the forcing ceases. By plotting the various solutions, it appears that the
solution will reach a value of y = 2, aslong as k > 2.51.

(e).
uft)y [k=21]

163

1.4]

123

“I_

063

06

043

023

ool 2 U 10 th 18,20 22 24726 28 30
0.4

0.6
0.8
RE

Based on the graph, and numerical calculation, |u(t)| < 0.1 for ¢ > 25.6773.

17. We consider the initial value problem

Y+ Ay = %[(t S5 us(t) — (t— 5 — k) us (b)),
with y(0) =y'(0) =0.

(a). The specified function is defined by

0, 0<t<5
ft)=1< z(t=5), 5<t<5+k
1, t>5+k
fit
1_
081
06
0.44
0.2
o 2004 6 48 w12 14

(b). Taking the Laplace transform of both sides of the ODE, we obtain
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9 e
£Y(s) = sy(0) = y'(0) +4Y(s) = S5 —
Applying the initial conditions,

—5s e—(5+k)s

92 o e
s7Y(s)+4Y(s) = 2 he?

Solving for the transform,
—5s e—(5+k)s

ks2(s>+4)  ks?(s2+4)°

1 1
s s244]

Y(s) =

Using partial fractions,
1
s2(s2+4) 4
It follows that
1
S Frsey
Using Theorem 6.3.1, the solution of the IVP is

y(t) = LIh(t — 5)us(t) — h(t — 5~ K usa )]

1 1

in which h(t) = §t — §sin2t.

(c). Note that for ¢ > 5 + k, the solution is given by

1 1 1

= - — —sin(2t —1 — sin(2t — 10 — 2

y(t) 1 8k8m< t—10) + % sin(2t — 10 — 2k)

1 sink

= - — 2t — 10 — k).
1 P cos(2t — 10 — k)

So for t > 5 + k, the solution oscillates about y,, = 1/4, with an amplitude of
|sin (k)|
A= )
4k
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0.44

0.31

0.21

0.11

k=3

0.2624
0.26
0.2587
0.2569
0.2544
0.2524
0.254
0.2487
0.246
0.2444
0.2424
0.244
0.2384

10 12 14

0.281

0.26

0.241

0.22

16 18 20
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18(a).

fit) [k=2]

0.243
0.224

0187
0.167
0147
0124

0.084
0.064
0.047
0.024

(b). The forcing function can be expressed as

Fult) = g (1) — (1)

Taking the Laplace transform of both sides of the ODE, we obtain
—(4—k)s

e ef(
s Y (s) — sy(0) —y'(0) + %[s Y(s)— y(0)] +4Y(s) = ST

4+k)s

Applying the initial conditions,

—(4—k)s

1 e 67(
2 L _ _
s°Y(s) + 3SY(3) +4Y(s) T T

4+k)s

Solving for the transform,
3 67(4*]6)8 3 67(4+k‘)s

Y(s) = - .
() 2ks(3s2+s+12)  2ks(3s® + s+ 12)

Using partial fractions,

1 1 1+ 3s
s(3s2+s54+12) 12 352 4+ 5+ 12

Let

It follows that
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vV 143

143t
5 .
Based on Theorem 6.3.1, the solution of the IVP is
y(t) =h(t —4+k)us 4 (t) —h(t —4 — k) ug 1 (2) .

0.17
0.054
0.06 4
0.041
0.0z /\

0 A5 20
o] \/ E‘\/ V15 B 2

1 el 143 ¢
h(t) = £7H(s)] = o - e8k [ sm< . ) + cos

-0.044

A Lo

0 R
ool v \)q 1V14 YE 1820

0.1

0157

0.39

0.2 /\
0.1

2 va\?/\vﬁ\w 1820
0.1

[

0.21

As the parameter k decreases, the solution remains null for a longer period of time.
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Since the magnitude of the impulsive force increases, the initial overshoot of the
response also increases. The duration of the impulse decreases. All solutions eventually
decayto y = 0.

19(a).

0737788 8 0 1z 14 1B 18
t

(c). From Part (b),

u(t) =1—cost + 2&( — D1 = cos(t — k)] (t).
k=1

304
204

10+

-104

ﬁh/\EJ\ﬂD o, [ ko) | g0
vv\/\/

204

-301
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21(a).

189
167
1.4
124

0.84
064
0.49
0.2

R M R T T TR TR
t

2_
1.84
1.6
1.44
1.24

1
0.8
0.6
0.4
024

D777 46 8 10 12 14 16 18
t

(b). Taking the Laplace transform of both sides of the ODE, we obtain

n - keflmrs
SU(s) - su(0) —u'(0) + U(s) = L4 2D

S h—1 S

Applying the initial conditions,

n k_—kns
32U(s)+U(s)=§+Zﬂ
k=1

. .
Solving for the transform,

n _ ke_kﬁs
U(S) — ; + ZL .

s(s2+1)

Using partial fractions,

Let
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h(t) = L‘l[s( !

T]_):| =1—-cost.

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

u(t) = h(t) + zn:( — DFR(t — k) (t).
k=1

Note that
h(t — km) = u(t — km) — cos(t — k)
= u,(t) — (= DFcost.
Hence
u(t) =1—cost+ Z( — )"y (t) — (cos t)Zuk.W(t) .
k=1 k=1
(c).

164
144
124

.y
[ =
TR

on Bors
TR

A AT
AT

10
121
14
164

The ODE has no damping term. Each interval of forcing adds to the energy of the
system.

Hence the amplitude will increase. Forn = 15, g(¢) = 0 when ¢ > 157 . Therefore the
oscillation will eventually become steady, with an amplitude depending on the values of
u(157) and w'(157).

(d). As n increases, the interval of forcing also increases. Hence the amplitude of the

transient will increase with n. Eventually, the forcing function will be constant. In fact,
for large values of ¢,

1, neven
g(t) = {0, n odd

Further, for t > n,
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1—(-1)"
u(t)zl—cost—ncost—%

Hence the steady state solution will oscillate about 0 or 1 , depending on n, with an
amplitude of A =n+1.

In the limit, as n— oo, the forcing function will be a periodic function, with period 27 .
From Prob. 27, in Section 6.3,

1

Llg(t)] = sAte )

As n increases, the duration and magnitude of the transient will increase without bound.

22(a). Taking the initial conditions into consideration, the transform of the ODE is

k —k7rs
s2U(s) +0.1sU(s) + ——-I-Z
Solving for the transform,
1 ( . 1)k —kms
Ul(s) =
O = P ots+ 1) Z: (2+01s+1)
Using partial fractions,
1 1 5+0.1

s(s?+0.1s+ 1) T s S2401ls+1°

Since the denominator in the second term is irreducible, write

s+0.1  (s+0.05)+0.05
s2+0.1s+1  (s+0.05)* + (399/400) -

Let

Ay (3-50.05) - 0.05 ]
s (s+0.05)% +(399/400) (s 4 0.05)% + (399/400)

Lt/ v/ 399 1 . v/ 399
= e cos| ——t | + sin t]]|.
20 \/399 20

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

= h(t) + Z( — 1)*h(t — k) u(t) .
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For odd values of n, the solution approaches y = 0.

n==5a

/\A/\/\f\r\
vvvyvm

)

For even values of n, the solution approaches y = 1.

n=6

| /\1\ |
i

(b). The solution is a sum of damped sinusoids, each of frequency w = /399 /20 ~ 1.
Each term has an 'initial' amplitude of approximately 1. For any given n, the solution
contains n + 1 such terms. Although the amplitude will increase with n, the amplitude
will also be bounded by n + 1.

(c). Suppose that the forcing function is replaced by ¢(t) = sint. Based on the

methods
in Chapter 3, the general solution of the differential equation is

c cos( /399 t) + ¢y sin( /399 t)

+ u,(t).

_ /20
u(t) = e 20 20

Note that u,(t) = Acost + B sint. Using the method of undetermined coefficients,
A= —10 and B = 0. Based on the initial conditions, the solution of the IVP is
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\/ 1 \/
u(t) =10 e 20 cos 399 t] + sin 399 t —10cost.
20 \/399 20

Observe that both solutions have the same frequency, w = 1/399/20 ~ 1.
urt)

—_
o
1 1

—
——

e B = I S e
R

I
=
=
=
[}
-

L,
=]
o

23(a). Taking the initial conditions into consideration, the transform of the ODE is

k e~ (11k/4)s
s*U(s)+U(s) = = + 2 Z
Solving for the transform,
k o—(11k/4)s
U 2
(s) = + Z 82 +1)

Using partial fractions,

Let
— | =1 t.
332+1)} cos

Applying Theorem 6.3.1, term-by-term, the solution of the IVP is

D425 (= fnfe- BE Uya(t)
EEPNESI(EE < PO

That is,
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u(t) =1 — cost + 2;”:( —1)* [1 — cos (t - %)] Uy (t) .

=1

n=235

bk
=

/ .
AR

!

(c). Based on the plot, the 'slow period' appears to be 88. The 'fast period' appears to
be about 6. These values correspond to a 'slow frequency' of w, = 0.0714 and a 'fast
frequency' w; = 1.0472.

(d). The natural frequency of the system is wy, = 1. The forcing function is initially
periodic, with period T'= 11/2 = 5.5. Hence the corresponding forcing frequency is
w = 1.1424 . Using the results in Section 3.9, the 'slow frequency' is given by

g = 2 =0.0712
2
and the 'fast frequency' is given by
Wy = |w—;w0| = 1.0712.

Based on theses values, the 'slow period' is predicted as 88.247 and the 'fast period' is
given as 5.8656.
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Section 6.5

2. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) 4+ 4Y (s) = e ™ — 2™,
Applying the initial conditions,
s2Y(s) +4Y(s) = e ™ — e 2,
Solving for the transform,

. CI 6727rs e~ T 6727rs

Y(s) = — - .
(5) s2+4 s24+4 s244

Applying Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = ism(% — 2m)u,(t) — isin(% — A7) Uy, (1)
1
= §sin(2t)[u,r(t) — Uy (t) ]
yit)

0.4+

0.2

0.2

-0.49

4. Taking the Laplace transform of both sides of the ODE, we obtain
Y (s) —sy(0) —y'(0) = Y(s) = —20e .
Applying the initial conditions,
2 Y(s) —Y(s) —s= —20e ™.
Solving for the transform,

S 20 3%

Y(S)ZSQ—l_ s2—1"

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
y(t) = cosht — 20 sinh(t — 3)us(t) .
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40

301

20

6. Taking the initial conditions into consideration, the transform of the ODE is
s*Y(s) +4Y(s) — /2 = e 1™,
Solving for the transform,

8/2 6747rs

Y = )
(5) s2+4+32+4

Using a table of transforms, and Theorem 6.3.1, the solution of the IVP is
1 1
y(t) = 5608 2t + §sin(2t — 87y, (t)

1 1
= 5c0s 2t + §sin(2t) U (1) .

¥it)

0.69

0.4
0.2
P G la] 1 12 14 (6|18 20 F2 |24
0 !
0.4

-0.61

]

8. Taking the Laplace transform of both sides of the ODE, we obtain
S2Y(s) — sy(0) —y'(0) + 4Y(s) = 2~ ™/D5,
Applying the initial conditions,
S2Y(s) +4Y (s) = 2e /s,

Solving for the transform,
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2 e—(7/4)s
Yo =31

Applying Theorem 6.3.1, the solution of the IVP is

y(t) = sin (275 - g)uﬂm(t) = —cos(2t) uz(t).

¥t)
1.
0.5
0.6
0.47
0.2
o 2 i, 16 B 10
-0.21
0.4
0.6
-0.8
-14

9. Taking the initial conditions into consideration, the transform of the ODE is

—(7/2)s —27s
€ (/2 + 36—(37r/2)s . €
S S

Y (s)+Y(s) =

Solving for the transform,
e—(w/Q)s 3 e—(37r/2)s e—2ms

@11 #11 s(E1D)

Y(s) = .

Using partial fractions,

1 1 S

s(s24+1) s s2+1°

Hence

ef(ﬂ/Z)s Sef(ﬂ/Z)s N 367(37r/2)s e—2ms N g e 2ms
s s24+1 s24+1 s s24+1°

Based on Theorem 6.3.1, the solution of the IVP is

Y(s) =

3T

y(t) = u,p(t) — cos(t - g)um(t) +3sin (t - E)U?ﬂ/g(t) -
g (t) + cos(t — 2m)us (1)
That is,
y(t) = [1 — sin(t)] wye(t) + 3 cos(t) uso(t) — [1 — cos(t)] ua ().
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10. Taking the transform of both sides of the ODE,

25°Y (s) + sY(s) +4Y (s) = / e 6(75 — %)sintdt
0

_ % o (w/6)s.
Solving for the transform,
e—(m/6)s
Yis) = 2282 +s+4)°
First write
1 _ i
2024548 (5127 8

It follows that

0.144
0124

014
0.034
0.087

0.043
0.02

0 S SN SN N 4
ol 2L AR e T
-0.043

-0.06
-0.03-
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11. Taking the initial conditions into consideration, the transform of the ODE is
s
s2+1

sY(s)+2sY(s) +2Y(s) = T e (/s

Solving for the transform,
S e—(m/2)s

(s24+1)(s2+ 25+ 2) +52+23—|—2'

Y(s) =

Using partial fractions,

S 1 S 2 s+ 4

(2+1)(s2+25+2) 5 S2+1+S2+1_S2+28+2 '

We can also write

s+4  (s+1)+3
$2+25+2  (s+1)7+1
Let
S
Yi(s) = .
) = Fr D 1255 2)
Then

1 2 1
L7HY1(s)] = R cost + = sint — 5 e '[cost + 3 sint].

Applying Theorem 6.3.1,
o~ (7/2)s

s24+25+2

-1

= ¢ (5) sz’n(t - g)um(t) .

Hence the solution of the IVP is

1 2 1
y(t) = gcost+ 5sint— ge_t[cost—f—?)smt] -

— e (75) cos(t) Unpa(t) -
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0.4
0.2
o 2 4 5,8 L 10 14
.0.24
.0.44

12. Taking the initial conditions into consideration, the transform of the ODE is

'Y (s) = Y(s) =e ",

Solving for the transform,

Using partial fractions,

It follows that

1
st—1

= 1 sinht — = sint
—QSZ’H 282’”.

aes
Applying Theorem 6.3.1, the solution of the IVP is

y(t)

yit)

— i

%[smh(t —1) —sin(t — 1)]u,(t) .
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14(a). The Laplace transform of the ODE is

s*Y(s) + %s Y(s)+ Y(s) =e".

Solving for the transform of the solution,

678

Y(s)= — .
(s) s2+s/2+1

First write

1 1

s2+s/2+1: (S+i)2+%'

Taking the inverse transform and applying both shifting theorems,

4 v/ 15
t) = e~ t=/4 gin
y( ) \/175 4

(t—1)w(t).

0.67
0.4

0.27

0 R L AT AT
0.2

(b). As shown on the graph, the maximum is attained at some ¢, > 2. Note that for
t>2,

4
y(t) = ﬁ

Setting y'(t) = 0, we find that ¢, ~ 2.3613. The maximum value is calculated as
y(2.3613) ~ 0.71153.

v 15
e =D/ gip

(t—1).

(c). Setting v = 1/4, the transform of the solution is

e—S

Y(s) = —o .
(s) s2+s/4+1

Following the same steps, it follows that
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t) = m—— (t —1 t
y(t) = ——= sin g (t = 1) w(t)
¥l

0.8
0.6
0.4
0.2 /\
0 3 N “RET
0.2
-0.44

Once again, the maximum is attained at some ¢, > 2. Setting y'(¢) = 0, we find that
t, ~ 2.4569, with y(¢,) ~ 0.8335.

(d). Now suppose that 0 < v < 1. Then the transform of the solution is

—S

e
Y(s) = R
First write
1 B 1
s2+ys+1 (s+7/2)° 4+ (1—~2/4)
It follows that
At = £ [32 + is + 1] RVZ 2— v? B_WQSM(\/W ' t)'

Hence the solution is
y(t) = h(t — 1) u(t).

The solution is nonzero only if ¢ > 1, in which case y(t) = h(t — 1). Setting y'(t) =0

5

we obtain
1
tcm[\/l —2/4 - (t— 1)] = —y/4—72,
Y
that is,

tan[y/1—~2/4 - (t —1)]
Ny

2
.
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As y—0, we obtain the formal equation tan(t — 1) = oco. Hence ¢, »1+ 7. Setting
t =7/2 in h(t), and letting v— 0, we find that y; - 1. These conclusions agree with
the case v = 0, for which it is easy to show that the solution is

y(t) = sin(t — 1) u,(t) .

15(a). See Prob. 14. It follows that the solution of the IVP is

4k Vv 15

y(t) = ——=e D/ gip
V15 4

This function is a multiple of the answer in Prob. 14(a). Hence the peak value occurs at

t; ~ 2.3613. The maximum value is calculated as y(2.3613) ~ 0.71153 k. We find
that the appropriate value of k is &k, = 2/0.71153 ~ 2.8108.

(t—1)u(t).

(b). Based on Prob. 14(c), the solution is

8k 37

y(t) = —=e DB gip V7
37

Since this function is a multiple of the solution in Prob. 14(c), we have ¢, ~ 2.4569,

with y(¢,) ~ 0.8335 k. The solution attains a value of y = 2, for k;, = 2/0.8335,
that is, k; ~ 2.3995.

(t—1)u(t).

(c). Similar to Prob. 14(d), for 0 < v < 1, the solution is
y(t) = h(t = 1w (t),

in which

2k

h(t) = ﬁ eﬂt/zsin<\/ 1-— ’}/2/4 . t) .
-

It follows that ¢, — 1 -7 /2. Setting ¢t = 7/2 in h(t), and letting y— 0, we find that

y, — k. Requiring that the peak value remains at y = 2, the limiting value of £ is

k, = 2. These conclusions agree with the case v = 0, for which it is easy to show

that the solution is

y(t) = ksin(t — 1) u(t).

16(a). Taking the initial conditions into consideration, the transformation of the ODE is

1 —(4—k)s —(4+k)s
s2Y(s)+ Y(s) = o7 [e ¢ :

S S

Solving for the transform of the solution,
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1 —(4—k)s —(4+k)s
Y(s)= — | < _° .
2k | s(s2+1)  s(s2+1)
Using partial fractions,
1 1 S

Now let

h@)::ﬁ]{gggijj}::l—cost

Applying Theorem 6.3.1, the solution is

B, k) = S bt~ 4+ k) i (t) — bt — 4 — K) (1)

That is,
ot k) = i[uzlk(t) — wgip(t)] —
1
- ﬁ[cos(t — 44+ k)u, 1 (t) — cos(t —4 — k) uy i (2)].

(b). Consider various values of ¢. For any fixedt < 4, ¢(t,k) =0, as long as
4—k>t Ift>4,thenfor4+k<t,

o(t, k)= — %[cos(t—él%—k) —cos(t—4—k)].

It follows that

, L cos(t —4+ k) —cos(t —4 — k)
fimoit.4) = fn, i
=sin(t —4).
Hence

l}er}) ot k) = sin(t —4) uy(t) .

(c). The Laplace transform of the differential equation
y' +y=0(t—4),
with y(0) =y’(0) =0, is
7Y (s)+ Y(s) = e ™.

Solving for the transform of the solution,
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6—45

Y(s) = .
(S) 82+1

It follows that the solution is

do(t) = sin(t — 4) uy(t) .

0.6
0.6
0.4
0.2

0.2
0.4
il
0.6

12

18(b). The transform of the ODE (given the specified initial conditions) is

20

SY(s)+ Y(s) =) (-1 et
k=1
Solving for the transform of the solution,
1 2L k+1 —krs
Y(s) = o ;(—1) ehms,

Applying Theorem 6.3.1 , term-by-term,

y(t) = Z( — )" sin(t — k) u (t)

20

= —sin(t) - Z Ui (1) -

k=1
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101

-20+

204

104

m/\/\/\/\

=

\ffh\;’f{u/ UauU :ti 5 N

19(b). Taking the initial conditions into consideration, the transform of the ODE is

Solving for the transform of the solution,

20
82 Y(S) + Y(S) — ZB_(IW/Q)S_
k=1

Y(s) =

52

Applying Theorem 6.3.1 , term-by-term,

1.4

1.2

0.8

0.6

0.4

0.2

y(t) = :Zolszn (t - %”) U (£)

1 220 (km/2)
—(km/2)s
e .
+1 i

10

0

a0

40
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20(b). The transform of the ODE (given the specified initial conditions) is

20
Y (s Z k+1 —(km/2)s
Solving for the transform of the solution,
20 —(km/2)s
Y(s) = L .
0= (-0

Applying Theorem 6.3.1 , term-by-term,

20 Lk
= Z( - 1)k+15in (t - 7) /U/kﬂ—/g(t) .
k=1

0.8
0.61
0.4
0.24

0.2
0.4
067
0.8

22(b). Taking the initial conditions into consideration, the transform of the ODE is

k L~
SQY +1,-(11k/4)s

” Mo

Solving for the transform of the solution,

—(11k/4)s

40
_ Z( . 1)k+1€—
— s2+1 7

Applying Theorem 6.3.1 , term-by-term,
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23(b). The transform of the ODE (given the specified initial conditions) is

SY(s)+01sY(s)+ Y(s) = > (=1 et
k=1

Solving for the transform of the solution,

20 eflmrs
Y(s) = —_—
(=) kleQ—f—O.ls—{—l
First write
1 B 1
2 - 1\2 | 399 °

It follows that

20

s2+0.1s+1

E_l[ 1 } _ 2 e_t/Qosin< 399 t).
v/ 399

Applying Theorem 6.3.1, term-by-term,
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20
y(t) = (= D" h(t — k) un(t),
k=1
in which
20 v/ 399
h(t) = t/20 t].
(t) =90 sin 50
(c).

24(b). Taking the initial conditions into consideration, the transform of the ODE is
15
s2Y (s) +0.1s Y (s) E: (2k=1)m

Solving for the transform of the solution,

15 —(2k—1)7s
Y(s) = .

-
= +0.1s+1

As shown in Prob. 23,

E_l[ 1 } = 20 e 1 gin (ﬂ t).

s24+0.1s+1 \/399

Applying Theorem 6.3.1, term-by-term,

th— (2k — 1)) wapr)x (1)

in which
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25(a). A fundamental set of solutions is ¥, () = e ‘cost and y,(t) = e 'sint .
Based on Prob. 22, in Section 3.7, a particular solution is given by

~ [Ty(8)ya(t) = yi(t)ya(s)
w)= | Wy 9)(5)

f(s)ds.

In the given problem,

Yp(1)

_ /O ¢ eos(s)sin(t) — sinls)eos®)]

exp( — 2s)
= /te(ts)sin(t —s)f(s)ds.
0

Given the specified initial conditions,

(b). Let f(t) = 6(t — ). Itiseasytoseethatift < m, y(t)=0. If t >,
¢
/ e sin(t — 5)6(s — m)ds = e sin(t — 7).
0

Setting t = m + £, and letting ¢ » 0, we find that y(7) = 0. Hence
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y(t) = e T sin(t — 1) up(t) .

(c). The Laplace transform of the solution is

6*71'5

2+ 25+ 2

6*7'!'5

(s+1)°+1

Y(s) =

Hence the solutions agree.
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Section 6.6

1(a). The convolution integral is defined as

Frot= [ 't = Dg(r)dr

Consider the change of variable v =t — 7. It follows that

/Otf@—f dT—/f ot — u)( — du)

- / g(t — u) f (u)du

0

=gxf(t).

(b). Based on the distributive property of the real numbers, the convolution is also
distributive.

(c). By definition,

f*(gxh)(t /ft—T [gxh (T)ldT

_ / se=n| [ atr = mncninas
= /Ot/OTf(t —7)g(T —n)h(n) dndr.

The region of integration, in the double integral is the area between the straight lines
n=0,n=7 and 7 =t. Interchanging the order of integration,

/OtATf(t — 7)g(r — n)h(n) dndr = /Ot/ntf(t — P)g(r — )h(n) drdy

-/ | =)0t e ey an
Now let 7 —n = w. Then

/ft—T T—n dT_/ ft—n—u)g(u)du
=[xg(t—mn).

Hence

[s6-mlg=ntar = [ 17490~ mine)ar.
0 0

page 326



CHAPTER 6. ——

2. Let f(t) =¢'. Then

3. It follows directly that
t
fxf(t) = / sin(t — 7) sin(7) dr
0

- /O [cos(t — 27) — cos(t))dr
_ %[sin(t) — teos(t)).

The range of the resulting function is R .

5. Wehave Lle '] =1/(s+ 1) and L[sint] = 1/(s*>+1). Based on Theorem 6.6.1,
! 1 1
L[/ e~ sin(r) dT:| = :
0

s+1 s2+1
1

(s+1)(s2+1)

6. Let g(t) =t and h(t) = e'. Then f(t) = gxh (t). Applying Theorem 6.6.1,
! 11
c| [ gt — () dr| = =
[ote=nnmar] =51
B 1
S os2(s—1)°

7. Wehave f(t) = gxh (t),in which g(t) = sint and h(t) = cost. The transform
of the convolution integral is

c Uotg(t — P)h(r) dT} _ ! s

241 s2+1
B S
(s2+1)°

9. Itis easy to see that
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L_l[ 1 ]:e_t and E‘l{

} = cos 2t.
s+1

s2+4
Applying Theorem 6.6.1,

¢
~1 S _ —(t—7)
L [(3+1)(32+4)] /Oe cos 2T dT .

10. We first note that

1
(s+1)°

-1

1 1
=te ! and £‘1{ 2+4} :§8in2t.
S

Based on the convolution theorem

1 1/
£t 5 = —/ (t —m)e " sin2r dr
(s+1)7°(s*+4)]  2Jo
1

t
= —/ Te "sin(2t — 27)dT.
2.Jo

11. Let g(t) = L7YG(s)]. Since L7'[1/(s> +1)] = sint, the inverse transform of

the product is
t
£t [ G(s) ] = / g(t — 1) sinTdr
0

= /Otsm(t —7)g(T)dT.

12. Taking the initial conditions into consideration, the transform of the ODE is
s2Y(s) — 14+ W’ Y(s) = G(s).
Solving for the transform of the solution,

1 G(s)

Y = .
(5) s24w? s 4 w?

As shown in a related situation, Prob. 11,

cl[ G(s) ] _ l/otsinw(t—T) o(r)dr.

52 + w? w

Hence the solution of the IVP is
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1 1
y(t) = — sinwt + —/ sinw(t — 1) g(T)dT.
0

w w
14. The transform of the ODE (given the specified initial conditions) is
45 Y (s) +4sY (s) + 17Y (s) = G(s).
Solving for the transform of the solution,

G(s)
452 4 4s + 17"

Y(s) =

First write
1 _
482 +4s+ 17 (s+ 1) +4°

Based on the elementary properties of the Laplace transform,

t/2

= —e "“sin2t.

1 1
482 +4s+ 17 8
Applying the convolution theorem, the solution of the IVP is

1

t
y(t) = 3 / e 2 sin 2(t — 1) g(7) dr.
0

16. Taking the initial conditions into consideration, the transform of the ODE is
s2Y(s) — 25 +3+4[sY(s) — 2] +4Y(s) = G(s).
Solving for the transform of the solution,

2545 G(s)
YO = T et

We can write

25+ 5 2 1

= + .
(s+2)° s+2 (s+2)°

It follows that

1
(s +2)°

El{ ~2|—2} =22 and £7!
s

Based on the convolution theorem, the solution of the IVP is
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t
y(t) = 2% f e+ / (t — T)€_2(t_T)g(T) dr.
0

18. The transform of the ODE (given the specified initial conditions) is

'Y (s) — Y(s) = G(s).

Solving for the transform of the solution,

First write

It follows that

_ G(s)
st

1

s2—1 s241]

1
[,1[ ! 1] =§[sinht—sint].

Based on the convolution theorem, the solution of the IVP is

y(t) = %/0 [sinh(t — ) — sin(t — 7)]|g(T) dT .

19. Taking the initial conditions into consideration, the transform of the ODE is

'Y (s) — s +552Y(s) — bs +4Y (s) = G(s).

Solving for the transform of the solution,

s> + bs

Y(s) =

G(s)

Using partial fractions, we find that

s3 + 5s
(s2+1)(s>+4)

and

1
(s2+1)(s>+4)

It follows that

(s2+1)(s>+4)

i

3

ir

3

(s24+1)(s2+4)

4s s
|s2+1 244
1 1
(241 244
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1
= —cost — = cos2t,
3

= e |-3

T2+ 4] 3
and
1 1 1
-1 e — Zsinot.
£ [(32+1)(52+4)} gomt g

Based on the convolution theorem, the solution of the IVP is

4 1 L[
y(t) = 3 cost — 3 €08 2t + 6/ [2sin(t — 1) — sin2(t — 7)]g(7) dT.
0

21(a). Let ¢(t) = u”(t). Substitution into the integral equation results in
¢
u”(t) + / (t—&u"(€&)dé = sin2t.
0

Integrating by parts,
=t

/ (t—&u"(©)de = (t—Ou'(©)| + / W (€) de
0 £=0 0
= —tu'(0) + u(t) — u(0).

Hence

u"(t) +u(t) — tu'(0) — u(0) = sin2t.

(b). Substituting the given initial conditions for the function wu(t),
u”(t) + u(t) = sin2t.

Hence the solution of the IVP is equivalent to solving the integral equation in Part (a).

(¢). Taking the Laplace transform of the integral equation, with ®(s) = L[¢(¢)],

1 2
@(8)4—8—2-(1)(8): R

Note that the convolution theorem was applied. Solving for the transform ®(s) ,

252
(s2+1)(s2+4)

d(s) =

Using partial fractions, we can write
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(s2+1)(s>+4) 3

25 o[ 4 1
244 241\

Therefore the solution of the integral equation is

4 2
o(t) = gsin%— gsint.

(d). Taking the Laplace transform of the ODE, with U(s) = L[u(t)],

2
2 _
SU(S)"‘U(S)—m

Solving for the transform of the solution,

2

Ve =erneEra

Using partial fractions, we can write

2 [ 2 2
(s24+1)(s24+4) 3|s2+1 s24+4]

It follows that the solution of the IVP is

(1) = Zsint — - sin2t
u(t) = —sint — = sin2t.
3 3

We find that u”(t) = — %sint + 5 sin2t.

22(a). First note that

b
fly 1
/ ) dy = x f | (b).
0 vVb—y VY
Take the Laplace transformation of both sides of the equation. Using the convolution
theorem, with F(s) = L[f(y)],

Hence
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with

(b). Combining equations (i) and (iv),

2
29 T02 — 1 + d_ﬂ? .
T2y dy

Solving for the derivative dz/dy,

dz 200 — y

dy y

in which « = gT? /7.

(¢). Consider the change of variable y = 2 sin®(6/2). Using the chain rule,

dy . do

%9 _ 9 9 2). 27

o asin(f/2)cos(0/2) .
and

dx 1 dx

dy ~ 2a sin(0/2)cos(6/2) do -

It follows that

i . cos?(6/2)
o =2 sin(60/2)cos(60/2) sin?(0/2)
=2« 0082(9/2)
—a+acost.

Direct integration results in

z(0) =ab+asinfd+C.

Since the curve passes through the origin, we require y(0) = z(0) = 0. Hence C' = 0,
and z(0) = a0 + asinf. We also have
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y(0) = 2asin*(0/2)
=a—«acost.
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