| CHAPTER
-| 5 The Derivative in

n-Space

. vi (=
15.1 Concepts Review . 165"{1): 6
1. real-valued function of two real variables
2. level curve; contour map d. n?sin(r?) = —4.2469
3. concentric circles e. 1.44sin[(3.1)(4.2)]=0.6311
4. parallel iines 4. a. 6
b. 12
Problem Set 15.1
c. 2
1. a. §
b. 0 d. (3cos6)/? +1.44=3.1372
c. 6 e. (-2c0s2)'?+9=99123
6 2
d. a +a 5. F(tcost, sec? 1) =1% cos? rsec’ =12, cos t#0

2
e. 2x%, x#0 6. F(f(t). g(t))=F(ni?, &'%)

f, Undefined =exp(lne?)+ (/2 =1* +¢ 120

The natural domain is the set of all (x, y) such 7. z=6is aplane.
that y is nonnegative. 24

2. a. 4

b. 17

17
16

d. l+az,a #0

e. x+xx%0

f. Undefined

The nawral domain is the set of all (x, y) such
that x is nonzero.

3. a. sinQ27)=0
b. 4sin(£) =2
6
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9. x+2y+z=61isaplane.

x2 }’2 2
12, —+=—+=—=1, 220 is a hemi-ellipsoid. x
4 16 16

17. x2+y2 =Zz;x2+y2 =2k

13. z=3-x*- y2 is a paraboloid.

18. x=zy,y20;x=ky, y20

’ 1

1
2
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19.

.r2=zy,y==0:x2=ky,y:t0

¥

+ 2
z= ;’,x;t-y
x+y
k=0 y=-x

Parabola except (0, 0) and (-1, -1)
k=1: x2+y=x+y2

2 2

1 1
—— | =ly-—=1| =0

(x 2) (y 2)

y=xory=-x+1

Intersecting lines except (0, 0) and (-1, -1)
k=2: x* +y=2x+?.y2

o (r-3)
yi 7

8 16
Hyperbola except (0. 0) and (-1, -1)
k=4 x* +y=4)t+4y2

=1

2
w22 (3 |

63 63
16 64
Hyperbola except (0, 0) and (-1, -1)

y
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22, y=sinx+zy=sinx+k

24, (x-2)+(y+3) = —

| a
=l —~1tx".ify=0.
(T )

¥

=

19—

|
3 L. 13
> 0w

a.

San Francisco and St. Louis had a
temperature between 70 and 80 degrees
Fahrenheit.

Drive northwest to get to cooler
temperatures, and drive southeast to get
warmer temperatures.

Since the level curve for 70 runs southwest
to northeast, you could drive southwest or
northeast and stay at about the same
temperature.

The lowest barometric pressure, 1000
millibars and under, occurred in the region
of the Great Lakes, specifically ncar
Wisconsin. The highest barometric
pressure, 1025 millibars and over, occurred
on the east coast, from Massachusetts to
South Carolina.

Driving northwest would take you to lower
barometric pressure, and driving southeast
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would take you to higher barometric
pressure.

c.  Since near St. Louis the level curves run
southwest to northeast, you could drive
southwest or northeast and stay at about the
same barometric pressure.

27. X +y2 +22 216 the set of all points on and

28,

29,

30.

31.

32.

33.

34,

714

outside the sphere of radius 4 that is centered at
the origin

The set of all points inside (the part containing
the z-axis) and on the hyperboloid of one sheet;

2 2 2
X Z o .
9 9 9
2 2 2
SN SN 1; points inside and on the
9 16 1
ellipsoid
Points inside (the part containing the z-axis) or on
[ R B
the hyperboloid of one sheet, LD AR
9 9 16

excluding points on the coordinate planes
Since the argument to the natural logarithm
function must be positive, we must have
x2+y? +2% >0. This is true for all (x,5.2)
except (x,y,z)=(0,0,0). The domain consists

all points in R3 except the origin.

Since the argument to the natural logarithm
function must be positive, we must have xy >0,
This occurs when the ordered pair (x,y) is in the

first quadrant or the third quadrant of the
xy-plane. There is no restriction on z. Thus, the

domain consists of all points (x, y,z) such thatx
and y are both positive or both negative.

x+y?+2% =k, k>0;setofall spheres
centered at the origin

100x% +16y2 +2522 =k, k>0;

x2 y2 2
T+T+ % = 1; set of all ellipsoids centered
100 16 25

at origin such that their axes have ratio

(T

Section 15.1

3s.

36.

37.

38.

39.

40,

2 2
XT ivl——il— =k; the elliptic cone
16 4
x2 y2 22
— ? = T and all hyperboloids (one and two

9
heets) with z-axis for axis such that a:b:c is

Qe

2

xT - yT - "T = k ; the elliptical cone

5 2

y2 2 42

?+% =— and all hyperboloids (one and two

sheets) with x-axis for axis such that a:b:c is
1 :(l):l or 2:3:6
3)\2

2 2
4t -9y% =k, kin Ry -2 =1, ifk#0;
79

planes y = i% (for k= 0) and all hyperbolic
cylinders parallel to the z-axis such that the ratio
a:bis (%)(%) or 3:2 (where g is associated
with the x-term)

e"z*""2+22 =k k>0

2
x- +y2 +22 =Ink
concentric circles centered at the origin,

a.  All (w,x,,z) except (0,0,0,0), which
would cause division by 0.

b. All (x,x,,...,x,) in n-space.

c. Al (x.x,....,x,) that satisfy

x]2 +.r% +-~-+x,2, <1; other values of
(x1.x3,...,x, ) would lead to the square

root of a negative number.

Ifz=0,thenx=0or x=i\/§y.
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41. a.
steep path between A4 and C since the level
curves are farthest apart along AC and
closest together along BC.

b, |4C| = (5750)% +(3000)% = 6490 ft
|BC| ~ /(580)% +(3000) = 3060 ft
C
I
3.oooi
1

A ®
5,750 580 5

42. Completing the squares on x and y yields the
equivalent equation

f(x,y)+25.25=(x-0.5)% +3(y+2), an
elliptic paraboloid.

43.
,.;.';;II,;';' =
Wity % 00,2029
TN,
-2 N ""' '.”
44,

1
0. s .{ff‘:";’;’;“&}.
SRR
' 9‘0 AR
X

IR
N >
LIS
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AC is the least steep path and BC is the most

45,

46.

sin(x2 + y2)

xz +y2

-2

-2 -1 0 1 2
2x-yH)exp(=x* - y?)

©

-1

-2

-2 -1 o0 1
sinxsin y

(1+).’2 +y2)

0.
0.
o

2 -0.1

Section 15.1
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15.2 Concepts Review

1.

2.

4.

i [/ G0+ 30) = £ (5o, ¥0))
h—0 h
derivative of f with respect to x

; partial

5.1

e*f

© Oydx

0

Problem Set 15.2

1.

716

So(x ) =8(2x = y)s £ (x, y) = -42x - y)?

Se(x, y)=6(4x - yH)'2;
fy(x y) = -3y(dx-y)'"?

)20 -2 -y ) _x+y?

Sx(x, y) o) 2y
£, (x, y) = A2 -(x; - )x)
()
_ &y
o
Jx(x,y) =€ cosy; f,(x, y)=~€"siny

Si(x, y) =€ cosx; f,(x, y) =€ sinx

fe(x )= (—%)(3):2 +yH) ™3 (6x)
= -2x(3x% + y2)™/3.

£y, ) =[-§)(3x2 +y)*32y)

_ (-—231)(3,9 + 2y

folx py=x(x? - yH)y V2,
/;,-(I, »= —y(;.:2 _yz)—l/2

fu(u, v)y=ve"; f,(u, v) = ue"

gx(x, y)=-ye . g,(x, y)= -xe”™

Section 15.2

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

fuls. ) =2s(s* -2y

fi(s. 1) ==2(s* -y

Se(x yy =41+ (@x =797
fy(x, y)= =T+ (4x=Ty)*]"

Fo(w, z)= w—l—(l) +sin”! [}—V)
(w2 \Z z

f2(x, y) = =2xpsin(x? + y?);
Sy(x y)= —2y2 sin(x? + y2)+cos(x2 +y2)

2.2 2_2
fi(s,0)==2s¢" 75 fi(s. ) =2 ~°

Fy(x, y)=2cosxcosy; Fy(x, y)=-2sinxsiny
£, (r, 8)=9r% cos20; fo(r, 6) =—6r"sin20

fe(x, y) =407 - 352
So(x, y)=12xy* ~15x%y*
fy(x.y)=6x7y? =557 y%;

Sye(x. y)=120% - 1522 y*

fe(x, ») =503 +y2)* 322,
Sy (x. )= 6027 (2 + %) (2y)
= l20x2y(x3 + y2 )3

£y ) =52+ ¥y @2y
Sye(x, p) = 40p(x> + y?)’(3x%)
=120 y(x* + y?)?

fo(x. y)=6e**cos y; Sox, ¥)= —6e**siny
fy(x »)y= —3¢** sin y; Six(x, y) = —6e** sin y

felx, py=y+x2y?yh
Sy 9y = (=2 y2 )1+ 222y
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Sz )= sl y) Silx y)=—= 9172 172
Sy ) ==y 1+ 2y 200x7 49y =367

fe2,1)=3
L) -Cr-p)») _ ¥ 1 s
21 F(x y)= o) EX AR 28. z=f(x. y)=(z)(16—x2)”2.
1
FG-2=5 felx. y) = (—%]x(lé-xzr”z
()= -Qx-p)x) _-2x* 2 5
F(x. y)= = =-—3 2,3)=-——=-0.7217
y ) NI Jx(2.3) WG
1
FG.-2=-3 29. V,.(r. h) = 2nrh;

; - V,(6,10) = 120n = 376.99 in.
22, Fi(x, ) =Q2x+y)x" +xy+y°)

30. T,(x, y) =3y T.(3,2)=12 degrees per ft
Fx(-l.4)=%=0.1538 y(& =37 1,6.2) grees pet

Fy(x, y)=(x+2y)x" + xy+y*) 7" 3. PV, T)zg
7
F,(-1,4) = — = 0.5385 k
yCL 4 13 PV.T)=—:
v
2. felx.p)=-y 2+l Pr(100, 300) = % Ib/in.2 per degree
f,(\/g,-z)=-i:—o.1905
21 32. VIR (V, T)]+TIA (V. T))
2 45-1,
fy(-"aJ’)=2-‘7y(x +y) 3 ___V(_kTV—2)+T(kV—|)=O
45 kT k\(V kT PV
¥5,-2)= -2 = —0.4259 PoVoTo =| =22 (_)(_)=__=__=_1
a T VIR T Tyt NP Nk) T PY T Py
24. f.(x, y)=¢’sinhx;
fx(-1. D =esinh(-]) = -3.1945 3. felx, ) =322y fulx y)=62y:
fy(x. y)=¢ coshx; fy(x, y) =2 =397 f(x, y)=-6xy
Sfy(=1. 1) =ecosh(-1) = 4.1945 Therefore, fi(x. y)+ f,,(x. y)=0.
2y 34, fo(x. y)=2x(x% +y2):
25, Lelz:f(x,y)=?+—4—. o JxX )= Yy
2.-
feelx p) =267 = Y2 4y
_Y _
L »=3 Syx p) =292 +y)7h
The slope is fy(3, 2)=1. fyy(x,y)=2(x2—yz)(x2+y2)"
26. Let z= f(x. y)=(1/3)(36 - 9x —4y})!/2. 3. Fy(x, y) =158y -6xty%;
4 -
fy(x, y)=[—ﬂy<36-9x2 -y F,y(x, y) = 60x*y* ~12:%y;
, 8 Fypp (2. ) =180x*y? — 12
The slope is I, -2) =—=—= = 0.8040.
peis f,(l.-2) Wi

36. fi(x, y) =[-sin(2x® - y?)|(4x)
2 f(x, y)= (%)(9;:2 +9y? —36)!/2,
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=—4Jcsin(2x2 —yz) 43, If f(x, y)=x4 +xy3 +12, f,(x, ¥) =3.xyz;

fe (x, y) = (4x)[cos(2x% — y*)](4x) £, (1, =2)=12. Therefore, along the tangent line
+[sin(2x% - y*))(—4) Ay=1=Az=12, s0 (0,1, 12) is a tangent
fn.y (x,y)= —16x° [~ sin(2)c2 - y2 )(=2y) vector (since Ax = 0). Then parametric equations
x=1
2 2
—4cos(2x” ~ y))(-2y) of the tangent line are ¢ y =-2+¢ ;. Then the
=—32Jr2ysin(2x2 —y2)+8ycos(2x2-y2) z2=5+12¢
3 point of xy-plane at which the bee hits is
37. 0. 2L (1,0,29) [since y=0=>r=2=>x=12=29].
J y3
44. The largest rectangle that can be contained in the
§3y circle is a square of diameter length 20. The edge
b. E of such a square has length 10\/5, so its area is
yox 200. Therefore, the domain of 4 is
PL {(x, y):0< x2 +y2 < 400}, and the range is
c. - (0, 200].
oy ox
45. Domain: (Case x <y)
38. a. Sy The lengths of the sides are then x, y — x, and
1 — y. The sum of the lengths of any two sides
b. f must be greater than the length of the remaining
il side, leading to three inequalities:
¢ Siyx x+(y—x)>1—y:>y>-;-
39, a.  fi(x,y,2)=6xy—-)yz y-x)+(1-y>x =>x<%
1
b. f,(x », z)=3x2—xz+2y22; x+(l-y)>y~-x :>y<x+§
£,(0,1,2)=8 y
1 A
- . /, !
c¢. Using theresultina, fi,(x, y, z2)=6x-2. R
d
R
2,3, .2, 3 S e -
40. a. 12x°(x"+y“ +2) : V7
L
b. fy(x,y,2)= 8y(x® +y? +2)%; E/,’
1
fy(oyl,l)=64 [IES
3 2 .3 The case for y < x yields similar inequalities
¢ f:(xp,2)=4(x"+y" +2); (x and y interchanged). The graph of D, the
S (x, ¥, 2)=12( 2 +yr+ z)? domain of 4 is given above. In set notation it is
D -{(x y)ix< l y> l y<x+ l}
_ A~ ) . a0 ) -
1. fi(x,y.x)= —yze ™ — y(xy—z%)"! 2 2 2

u{(x )'x>l <l x< +l}
ay . ,y 2, y 2 -

-172
1Y xy y). 2
2. Sy )= (5)(7] (;) Range: The area is greater than zero but can be
172 arbitrarily close to zero since one side can be
Sx(=2,-1,8)= (l)(lJ (_1) =1 arbitrarily small and the other two sides are
24 8 8 bounded above. It seems that the area would be

largest when the triangle is equilateral. An

equilateral triangle with sides equal to % has

718 Section 15.2 Instructor's Resource Manual



46.

47.

area ﬁ Hence the range of 4 is [0 £:| (In

36 36

Sections 8 and 9 of this chapter methods will be
presented which will make it easy to prove that

the largest value of 4 will occur when the triangle

is equilateral.)

a.

u = cos (x) cos (cf):

u, = —sin(x)cos(ct)

u, = —ccos(x)sin(ct)

Uy, =—cos(x)cos(ct)

u, = -c? cos(x)cos(ct)
Therefore, czuu =uy,.

u = e cosh(ct):

u, = e” cosh(ct), u, = ce” sinh(cr)
uy, = e* cosh(ct), u, =c2e* cosh(ct)
Therefore, czun =uy,.
u=e"sin(x):

u, =e ' cosx

uy =—-e “sinx

u, = —ce sinx

Therefore, cu,, =u,.

2
u= t—ll2e—x /4ct .

172 -x2 x
e
2ct

"y = (x —2ct)
2

(4C’ 5/2 X /4Cl)

_ (x - 2ct)

= 2.

Therefore, cu,, =u,.

Moving parallel to the y-axis from the point
(1, 1) to the nearest level curve and

approximating E, we obtain
Ay

-5
125—1

fy(L )=

Moving parallel to the x-axis from the point
(-4, 2) to the nearest level curve and

approximating ~ we obtain

1-0

fi(-4,2)= YA

=2
>

Instructor's Resource Manual

Moving parallel to the x-axis from the point
(-5, -2) to the nearest level curve and

. Az .
approximately ot we obtain
X

1-0 2
-4, -5 x————— =2,
I ) -25-(-5) 5

Moving parallel to the y-axis from the point
(0, =2) to the nearest level curve and

oAz .
approximating e we obtain

e

\Vf'o:
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49, a. fy (x,y,z)
flx.y+Ay.2)- f(x. ).z

= lim
Ay—0 Ay
b. f.(xy.2)
- lim fx,y.z+Az)— f(x..2)
Az—0 Az

¢. Gy(wxy.z2)

im G(w.x+Ax,y.2)-G(w,x,¥,2)
Ax—0 Ax

0
d. —A(x,y.z.t

% (x.y.2.1)

= lim Alx,y.z+Az,8)— A(x.y,2,1)
Az—0 Az

15.3 Concepts Review

1. 3;(x,y) approaches (1. 2).
2. lim  f(x. y)=f(12)
(x, )1, 2)

3. contained in §

4. an interior point of S; boundary points

Problem Set 15.3

1. -18
2.3
3 lim [xcos2 Xy —sin (-xl)]
(x, y)(2, 71} 3
=2cos? 2n—sin(35) = 2-[3- ~1.1340
3 2
4. -2
2
5. 1
3

720 Section 15.3

50.

10.

11.

obs
S(by.by.by +8by.....b,)
= Ilm —S(b0~b].b) ..... b")
Aby >0 Aby

0, . .
a. —(sinwsinx cosy cosz)
v

= COS W SIinX oSy COSZ

b. %[xln(“x)z):i:x-m +1-In(woyz)

wxyz
=1+In(woz)
c. A(x,y.z,0)
(1+xyzt)cos x —1(cos x) xyz

(l+,xyzt)2

Ccosx

) (L+xyzr)

. tan(x2 +y2)
i o (P avd)
(x, )-(0,0) (x* +y%)

s;in(,wr2 +y2) 1

= lim
(x, ¥)—(0,0) (x2 +y2) cos()c2 +y2)

= =1

The limit does not exist since the function is not
defined anywhere along the line y = x. Thatis, .
there is no neighborhood of the origin in which
the function is defined everywhere except
possibly at the origin.

PN C a0 Gl )
(=000 x24y?
(x*-y*)=0

= lim
(x, y)—(0, 0)

. . 2 .
The entire plane since x? +y*© +1 is never zero.

. 2 .
Require 1 —x~ —y2 >0, x° +y2 <1. Sisthe
interior of the unit circle centered at the origin.

Require y - x% # 0. Sis the entire plane except

the parabola y = X2

Instructor's Resource Manual
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12,

13.

14.

15,

16.

17.

18.

The only points at which f might be
discontinuous occur when xy =0,

lim  Sn0w) _
(x, y)a,0) Xy

1= f(a, 0) for all nonzero

sinRandthen  Gim S o1 (0, b)
(x, y)=(0,5) Xy

for all b in R. Therefore, fis continuous on the
entire plane.

Requirex—y+1 2 0;y £ x + 1. S is the region
below and on the liney=x + 1.

Require 4-x° -y2 > 0; x* +y2 <4. Sisthe
interior of the circle of radius 2 centered at the
origin.

Along x-axis (y = 0): lim =0.

8 ¢=9 (5 9)0,0 x> +0
Alongy=ux:

2

lim o= lim  +=-.
(= 2(0.02x2 (xy)-0.02 2
Hence, the limit does not exist because for some
points near the origin fix, y) is getting closer to 0,

but for others it is getting closer to jlo__

Along y=0: lim =0. Alongy =x:
0x°+0
2 3
lim xX+x lim l+x=_1_.
—»0x24x2 20 2 2
. xz(m.x) . e
a. lim = lim =3
x—»Ox4+(m_x)2 =0 x4+ m?x
mx
= lim =0
10 5% 4 m?
2,.2 4
. 1
b. x(x) :hm-x—-zl —=.l_

x2y

(x 0,0 x +

2
;y 3 s\/x2+y2 < £ in some
x“+y

&neighborhood of (0, 0) since

lim \[xz + y2 = 0. Therefore,

(x, )0, 0)
m X 5= 0.
= 0.0 x? +y

does not exist.
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19,

20,

21,

22.

23,

The boundary consists of the points that form the
outer edge of the rectangle. The set is closed.

The boundary consists of the points of the circle
shown. The set is open.

The boundary consists of the circle and the
origin. The set is neither open (since, for
example, (1, 0) is not an interior point), nor
closed (since (0, 0) is not in the set).

The boundary consists of the points on the line
x =1 along with the points on the line x = 4. The
set is neither closed nor open.

si- i

1 1 1 11
-5

-5k

The boundary consists of the graph of

y =sin (l) along with the part of the y-axis for
x

Section 15.3 721



which y < 1. The set is open.
P4
2

24. The boundary is the set itself along with the
origin. The set is neither open (since none of its
points are interior points) nor closed (since the
origin is not in the set).

1 g

X
-4y’ (x+2y)(x-2)
x-2y x-2y
We want

g(x)=X+2(§)(ifx=2y,ory=%)=2x

25,

=x+2y (ifx # 2y)

26. Let L and M be the latter two limits,
U(x, »)+g(x MI-[L+M]|

<|f G )= L+|fGx ) - M| <242

for (x, y) in some &-neighborhood of (a, b) = &.
Therefore,

lim = [f(x, »)+8&(x y)]=L+M.
(x, y)—»(a,b)f »Te

27. Note: {x, y) = (0, 0) is equivalentto r = 0.

a. f(x, y)=(rc—osj)—%pﬂ=|r]sin0cose
r
_ !r‘sin?ﬂ

—0asr—0.

b, f(x y)= (rcos 9)2(r sind) _ sm229 which
r

does not approach 0 as r — Q.

7/3 COS7/3

¢ f(x,}’)=———-—r 3 8 rcos’78 -0 as
r

r—0.

722 Section 15.3

d.  f(x, y)=(rcos8)rsinf)(cos24) (See
introduction to this problem for third factor.)
_ rsin26cos26 _ r’sin4f
- 2 T4

—>0as r—0.

. 2
r* cos? @sin’ @

2 .
2 0529+ r*sin* o

2 cos? fsin’ @
=T 2p. .24
cos B+risin 8
2{ sin2 8
=r 22,2
{1+ r°sin®Gtan® 6
converges to 0 as » — 0 since the fraction is

bounded (the numerator is in [0, 1] and the
denominator is greater than or equal to 1). If

6= i-g,f(x, ¥)=0.

e, f(x,y):
r

Jif&z‘iz. This
2

f. This one is not easier in polar coordinates.
Here is a Cartesian coordinates solution.

Along curve x = y2 :

2 2y..2
2xy = (éy z)y 7 =l which does not
*+y° (Y +y
approach 0.

Conclusion: The functions of parts a, ¢, d, and e
are continuous at the origin. Those of parts b and
f are discontinuous at the origin.

28. fis discontinuous at each overhang. More
interesting, fis discontinuous along the
Continental Divide.

29. a. {(x,y, z):x2+y* =1,z in[l, 2]} [For
x4+ y2 <1, the particle hits the hemisphere
and then slides to the origin (or bounds
toward the origin); for 2+ y2 =1 it
bounces up; for x4 y2 > 1, it falls straight
down.]

b. {(x, ¥ 2) x2 y2 =1,z=1} (Asone moves
ata level of z =1 from the rim of the bowl
toward any position away from the bowl
there is a change from seeing all of the
interior of the bowl to seeing none of it.)

c. {(x.y. z):z2=1} [fx, y, z) is undefined
(infinite) at (x, y, 1).]

d. ¢ (Small changes in points of the domain

result in small changes in the shortest path
from the points to the origin.)
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30.

31.

33.

Instructor's Resource Manual Section 15.3 723

is continuous on anopen set D and B isin D isa dsuch that0 < < rand
P (]

implies that there is neighborhood of By with |f(p)- f(Ry)| < f(R) if Pisin the
radius r on which fis continuous. f'is continuous J-neighborhood of R). Therefore,
#h= i SB=1R) SR < J(P)~ (By) < f(Ry). s00<fip)

Now let € = f(R) which is positive. Then there

C.

(using the left-hand inequality) in that
&neighborhood of R.

2, 23172 -
STy Tfy #0 . Check discontinuities where y = 0,
|x-Y ify=0
Asy=0, (x* +yH)"2 +1=|x|+1, sofis continuous if |x|+1=|x - 1. Squaring each side and simplifying

yields |x| =—x, so fis continuous for x < 0. That is, fis discontinuous along the positive x-axis.

Let P=(u, v)and Q = (x, y).
|OP|+|0OQ| if P and Q are not on same ray from the origin and neither is the origin
S v.xy)= {|PQ| otherwise }
This means that in the first case one travels from P to the origin and then to Q; in the second case one travels

directly from P to Q without passing through the origin, so f'is discontinuous on the set
{(, v. x, p):(u, v) = k{x, y) for some k >0,{u, v)=0,(x, y)=0}.

(m?h .
2,.2
: h<+y . y(h -9
0. )= liml " | ym2VP oY)
/(0. ») Jim, p fim 2= y
\ )
(se?=i?) ) .
2.2 . )
Jy(x, 0) = lim _xT+hT =|lm&-_l).=x
h—=0 h h=0 x2+y2
\ J
0+h, y)- £,(0, _
f}w(oxo):]imfy( y) fy( y)= imh 0=1
h—0 h h=0 h

felr 0+ )= £, 0) _ . h=0

0,0)=1
Jo(0.0) Pt h =0 h

Therefore, fxy(O, 0= fyx(O, 0).

34, a.




interior of the set. The function is continuous at a
boundary point P of S if f(Q) approaches

f(P) as Q approaches P along any path through
points in § in the neighborhood of P.

37. If we approach the point (O, 0,0) along a straight

path from the point (x.x,x). we have

B lim %")—f lim —"—3=l
028 (6,5 0)(0,00) X +X° +X°  (xx,0)-(0,0,0 3x> 3
'0:5.35 ; Since the limit does not equal to f(0,0,0) , the
N s function is not continuous at the point (0,0,0).
x Y
1 -1
272 38. If we approach the point (0,0,0) along the
X-axis, we get
36. A function fof three variables is continuous at a lim +] *-0%) _ lim fi -
point (a,b,c) if f(a,b,c) is defined and equal to (2,0,0)—(0,0,0) (x? +0%)  (x,0,0-(0,0,0) x
the limit of f(x,y,z)as (x, y,z)approaches Since the limit does not equal f(0,0,0) ., the
(a,b,c). In other words, function is not continuous at the point (0,0,0).

lim x, y,2)= f(a,b,c).
(x'y’:)_’(a.b.c)f( 1.2)= S )

A function of three variables is continuous on an
open set S if it is continuous at every point in the

15.4 Concepts Review Problem Set 15.4

1. gradient 5
1. <2Ay+3y, X +3x>

2, locally linear

7] ., é . 2. . 2. (3x%y, x* -3y
3. L @i+ 2 i yPi+ 2 < >
ox dy

3. 9f(x )= (@) +()D), x¢7x)

4. tangent plane
= exy <xy + l, X2>

4, <2xy cos y, x* (cosy — ysin y))

5. x(x+ y)'2 <y(x +2), x2>

6. V/(x, y)=(3sin? (P)cos(r](2). Asin (2 p)lfcos(xy](*)) = xsin® (2 y)cos(x 1) 2, %)

7. (x2 +y2 +2° )'”2 (x, ¥, z)

8. <2>;y+22,x2+2yz,y2 +2xz>

724 Section 15.4 instructor's Resource Manual



10.

11.

12.

13.

Ve, ) = (2N + (N2, X2 Ky D) = xe™ (plx+ 2 x - 0)

<.\'z(1\'+y~1~z)-l +zIn(x+y+z), xz(x+y+z)-1, xz(x+y+z)'I +xIn(x+y+ z)>

v/ (x, ) =<2.1’y R —2.ry>: Vf(-2,3)=(-21,16)
2= f(-2,3)+(-21,16)-(x+2, y~3) =30+ (-21x - 42 +16y — 48)

z=-2lx+16y-60
v _< 2 2 3 _
f(x. y)={3x"y+3y°. x” +6xy). so Vf(2, -2)=(-12, -16).

Tangent plane:
2= f(2,-2)+9(2,-2)(x=2. y+2) =8+(-12,-16)-(x—2, p+2) =8+ (-12x + 24 - 16y - 32)

z=-12x- 16y
Vf (x. y) = (-nsin(mx)sin(ny), ncos(nx)cos(ny) + 2n cos(2my))

Vf(—l, %)=(0, -2n)
z= f(-l, %)+(0, —2rr)-<.r+l, y—%> =-1+(0-2ny+n);

4

2=2xy+(m -1
14. 9f(x, y)=<—,——2
Yoy
2= f(2, -D)+{-4,-4)-(x=2, y+1)

=4+ (4x+8-4y-4)
z=-4x-4y

Vf(x, y, 2) = <6x+ 22— 4y, 2xz>, so Vf(1, 2. -1)=(7, -8, - 2)

2
x X >:Vf(2, ~1)=(-4, -4)

15.
Tangent hyperplane:

w=f(, 2 -D)+Vf(1, 2 -1)-(x=1, y-2,z+1) =4+(7. -8, -2)-(x-L y-2, z+])
=4+ (Tx-T7-8y+16-22-2)

w=Tx-8y-2z+3

16. Vf(x, y, 2)={yz+2x, xz, 5y); Vf(2,0,-3)=(4,-6,0)
w=f(2,0,-3)+(4,-6.0)-(x-2,y, z+3) =4+ (4x -8 - 6y + 0)

w=4x-6y-4
17 v[i)=<gf’_fg"gfy 'fgy‘gfffg:) _ (/e £y fz)‘zf(ng £y 8:) ) gi_vag
4 g" g g

18. VU = St ot L) = S Sy £) =TS

we have the following system of equations:

19. Let F(x.y,z) = x> =6x+2y* —10y+2xy-2=0
veF - 7x 6 x7 4y 1oy2 X); T 2x+2y=6=0
(x.y.2)=(2x- >+ 2y, Gy —i0+ ,x’") 2x+4y-10=0
The tangent plane will be horizontal if Solving this system yields x =1and y =2. Thus,
VF(x.y,z)={0.0.k) . where k # 0. Therefore,
Section 15.4 725
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there is a horizontal tangent plane at

(x.y)=(1,2).

20. Let F(x,y.z)=x"-2z=0
VF(x,y.2) = <3x2,0,—l>

The tangent plane will be horizontal if
VF(x,y,z)={0.0.k) . where k # 0. Therefore,

we need only solve the equation 3x?> =0. There
is a horizontal tangent plane at (x,y)=(0.y).

(Note: there are infinitely many points since y
can take on any value).

21. a. The point (2,1.9) projects to (2.1.0) on the

xy plane. The equation of a plane
containing this point and parallel to the x-
axis is given by y =1. The tangent plane
to the surface at the point (2.1,9) is given
by
z= fD+VF2,D)(x-2.y-1)
=9+(12,10)(x-2.y-1)
=12x+10y-25
The line of intersection of the two planes is
the tangent line to the surface, passing
through the point (2,1,9) , whose projection
in the xy plane is parallel to the x-axis. This
line of intersection is parallel to the cross

product of the normal vectors for the
planes. The normal vectors are

(12,10,-1)and(0,1,0) for the tangent plane
and vertical plane respectively. The cross
product is given by

(12,10,-1)x(0.1,0) =(1,0,12)

Thus, parametric equations for the desired
tangent line are

x=2+t
y=1
z=9+12t

b. Using the equation for the tangent plane
from the previous part, we now want the
vertical plane to be parallel to the y-axis,
but still pass through the projected point
(2,1,0). The vertical plane now has
equation x = 2. The normal equations are
given by (12.10,~1)and (1,0.0) for the
tangent and vertical planes respectively.
Again we find the cross product of the
normal vectors:

(12,10,-1)x(1,0,0) =(0,10,10)

Thus, parametric equations for the desired

726 Section 15.4

tangent line are
x=2
y=1+10
z=9+10¢

Using the equation for the tangent plane
from the first part, we now want the vertical
plane to be parallel to the line y = x, but
still pass through the projected point
(2,1,0). The vertical plane now has

equation y—x+1=0. The normal
equations are given by (12, 10, —l) and
(1,—1,0) for the tangent and vertical planes

respectively. Again we find the cross
product of the normal vectors:
(12,10,-1)x(1,.-1.0) = (- 1,-1,-22)

Thus, parametric equations for the desired
tangent line are

x=2-t

y=1-t

z=9-22%

The point (3,2,72) on the surface is the
point (3,2,0) when projected into the xy
plane. The equation of a plane containing

this point and parallel to the x-axis is given
by y =2. The tangent plane to the surface

at the point (3,2.72) is given by

2= f(3.2)+Vf(3,2)-(x-3,y-2)
=72+(48,108)(x -3,y -2)
=48x+108y—288

The line of intersection of the two planes is
the tangent line to the surface, passing
through the point (3,2,72), whose
projection in the xy plane is parallel to the
x-axis. This line of intersection is parallel
to the cross product of the normal vectors
for the planes. The normal vectors are
(48.108,—1) and (0,2,0) for the tangent
plane and vertical plane respectively. The
cross product is given by
(48,108,-1)x(0.2,0) = (2,0,96)

Thus, parametric equations for the desired
tangent line are

x=3+2t

y=2

z=72+96¢

Using the equation for the tangent plane
from the previous part, we now want the

vertical plane to be parallel to the y-axis,
but still pass through the projected point

Instructor's Resource Manual



(3,2,72). The vertical plane now has plane to be parallel to the line x =-y, but
equation x =3. The normal equations are still pass through the projected point

given by (48,108,—1) and (3,0.0) for the (3.2,72) . The vertical plane now has

tangent and vertical planes respectively. equation y+x-5=0. The normal

Again we find the cross product of the equations are given by (48, 108, —l) and
normal vectors:

(48,108,-1)x(3,0,0) = (0.-3.-324)
Thus, parametric equations for the desired
tangent line are

(1,1,0) for the tangent and vertical planes

respectively. Again we find the cross
product of the normal vectors:

(48,108,-1)x{1,1,0) = (1,-1,-60)

x=3
y=2-% Thus, parametric equations for the desired
tangent line are
z=72-324 x=3+1
¢. Using the equation for the tangent plane y=2-t
from the first part, we now want the vertical z=T72-60¢

N S O Y O B ./ O A D la_a
23. Vf(x,y)= 10[2\4;| xny, 10[2 o] o x] _ID'IM (y. x) I:Notethat . _|a|.]
via, -1y=(-5,5)
Tangent plane:
z= f(L=D+V (L =D-(x=1 y+1) ==10+(-5,5)-(x-1, y+1) = =10+ (-5x+5+5y+5)
=-5x+ 5y

24. Let a be any point of S and let b be any other 27.
point of S. Then for some ¢ on the line segment
between a and b:

S(b)- f(a)=Vf(c)-(b—a)=0-(b-2a)=0, so
Ab) =fla) (for all b in S).

25. Vf(p)=Vgp)=V[f(p)-g@)]=0
= f(p)-g(p) is a constant.

26. Vf(p)=p=Vf(x, y)=(x. »)
= il y)=x fyx. )=y

N\

= f(x, y)=%x2+a(y) for any function of y, ;‘\

and f(x, y)=ly2+,8(x) for any function of x. t g

12 /4

1 o2 2 . /s
::f(x,y)-z(x +y“)+C forany CinR. P AN
VP G G N

a. The gradient points in the direction of
greatest increase of the function.

b. No. Ifit were, [0+ h|-|0=0+|h|5(h) where
S(h) — 0 as h — 0, which is possible.
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2. /«"5";;,
AR
3G R
BRI "0’0’00’0}:’.%::
" ‘o ‘ ’. .’.’, L '0.', ‘
~ 9\““'.“,"«. 0e2. do22s>
NS ot.::ozfz?’

A

TNt -
~~~wipsss 0 T
R A A A
BORORELA AN
BN AN
ARSI
PRI A B B B B .
R T A U R T IR
29. a. (i)
of + 6 +g)., O(f +
vif+g)=2U 8, +8); A *8)y
ox ay oz
=_6_il+6g 6f a'fk+-agl(
ox Ox ay 6y &z oz
=zi+af 6fk+6g ag] ng
ox oz ox oy oz
=Vf+Vg
i vian-322);,321) CIN
oy oz
=aa[f1i+aatf1j+aa{f]k
ox oy oz
=aVf
(iii)

6(fg) LB . o(/g)
Vifl= Y = k

=(f LeoZ)o(Eee3)

+(f%+g5jz—‘]k

=f(%l+aai]+%k)

WEACA
x oy oz

=fVg+gYf

728 Section 15.4

@)
of +g) a(f +g)

VIif+gl=
f+gl o %3
o +g)
Ox,
Y %Y, 02,
axl 6):1 6x2 aXZ
oot g i+ %8 i,
axn axn
R S
axl axZ axn
+ég—11+—aii2+ +6g i,
ax ox, ox,
=Vf+Vg
(i)
Aafl,  dafl. Aaf].
v =— +—— o —==
laf)= =50 iy et
—aﬂ]—il a[f]l 4o +aa[f]i,,
1 axn
=aVf
(iii)

Vifg]= a(fg) a(fg)i2 o +6gg)i"

(fax, +g—§xf—l)lu (fafz +g%}z

(e ),

ox, ~ Ox,
= (£’|l+ig_i2+ +.2g_i")
o o ox,,
of . o . of
| L iy b ——
g(axl " oxy 2 ox, '
= fVg+gVf
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15.5 Concepts Review

L e+ - o)
h

2. fo(x, y)+up fi(x, y)

3. greatest increasc

4. level curve

Problem Set 15.5

L. D, f(x. y)=<2Ay. x2>-<3‘—%>; D,f(1,2)=

5

2. D f(x.y)= <.r" 32, 2yIn r>[[%)(l - 1)]:

D,f(l. 4)=8J2 =11.3137

3. Dyf(x,y)=f(x.y)u [where u= i]

la
~(4x+y, ,r_zy).“T‘z‘):
D, f(3,-2)=(10,7)- O'\él) = %z 2.1213
4. Dyf(x, y)
=(2x-3y, —3x+4y>-|i[%](2, —I)J;

D,f(-1,2)= -% ~—12.0748

5. D,f(x, y)=e"(siny,cos y)-[(%)(l, \/5)}

D, f(O, g) = (EZ—JE) ~ 0.9659

(.5

6. D,f(x.y) =<—ye"°' —X(’-xy>'——-

(“l’ ‘/§> —e—e\ﬁ
2 2

“

D, f(l, -1)=(e. —¢e)-
= -3.7132

Instructor's Resource Manual

7. Dyf(x,y. 2)=

= <3.\'2)7’ X3 _2)722' - 2}’22)[(%)0’ -2, 2)],

Dufi21.3)=2

. 1
8. Dy f(x, y.z)=(2x 2y, 22)-[[5)<\/—2-, -1, -1)];
Dyf(l,-1,2)=V2 -120.4142
9. fincreases most rapidly in the direction of the
gradient. Vf(x, y)= <3x2, - 5y4>;

Vf@2. - =(12. -5)

12. -5
( ) is the unit vector in that direction. The

rate of change of f{x, y) in that direction at that
point is the magnitude of the gradient.

12, -5)| =13

10. Vf(x, y) =<ey cos x, eysinx);

vf 5—“,0 = —ﬁl , which is a unit vector.
6 2 2

The rate of change in that direction is 1.

11. Vf(x, y. z) =(2xyz, X2z, x2y>:
fA,-1.2)=(4.2,-1)

A unit vector in that direction is

(L](_(; 2. -1). The rate of change in that

V21

direction is V21 = 4.5826.

12. fincreases most rapidly in the direction of the
gradient. Vf(x, y, z)= (e":, xze”* xye}'z>;
Vf(2.0,-4)=(1.-8,0)

(L.-8.0) . i
—————Is a unit vector in that direction.
V65

[(1. - 8. 0)| = V65 =~ 8.0623 is the rate of change
of flx, y. z) in that direction at that point.

13. -Vf(x, »)=2{x, y): -Vf(-1.2)=2(-1,2) is
the direction of most rapid decrease. A unit

vector in that direction is u =[L](—l, 2).

NG
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4. -Vf(x. y)=(-3cos(3x - y), cos(3x - ));

—Vf(%. g) = (\-};)(—3 1) is the direction of

most rapid decrease. A unit vector in that

direction is (J—:_O-)(—B 1).

15. The level curves are LZ =k. Forp=(l, 2),
x

2
X

k = 2, so the level curve through (1, 2) is DA

or y= 2x? (x = 0).
Vf(x. y) =<—2yx_3, x'2>
Vf(1, 2)=(—4. 1), which is perpendicular to the
parabola at (1, 2).
t

T TTTT TG

16. At(2, 1), x? +4y2 =8 is the level curve.
VI (x, »)=(2x, 8y)
Vf(2.1)=4(1. 2), which is perpendicular to the
level curve at (2, 1).
v

8 4,8)

J LR

17. u=<z,-3,l>
3 33

DL =2

. . .
18. [0, 3) is on the y-axis, so the unit vector toward

the origin is —j.

730 Section 15.5

19.

20.

21.

22,

Dy(x, y)= <—e" cosy, —e *sin y>-(0, -1)

=e *siny;
D, (O, 2) _W3
3 2
a. Hottest if denominator is smallest; i.e., at the
origin.
-200(2x, 2y, 22
b. VT(x, y z)= (2% 2y, 22)

(S+x?+y2 +24)2
vr(, -1, 1)=(-§)(1, -1,1)

(-1,1,-1) is one vector in the direction of

greatest increase.
¢. Yes
-VV(x, y, 2)
= —100e<x" " +e?) (-2x, -2y, - 22)

2,.2..2 . ..
=200 (F +y 4z )(x, y, z) is the direction of

greatest decrease at (x, y, z), and it points away
from the origin.

1

Vf(x,p,2)= x(xz +y? 422 )_2 cosm’

2l

y(x2 +y° +22) 2 cos\/x2 +y2+22,
1
z(x2 +y? +22) 2 cos\’xz +y% 422

i
= (x2 +y?+2? )_E cosyx? + y2 + 22 (x,5,2)

which either points towards or away from the
origin.

Let D= \]xz +y2 +22 be the distance. Then we

have
g7 (27 8T T\ _[dT 8D dr 3D a7 0D
\ax'oy oz dD 8x ' dD 8y ' dD &z
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| dry v2.e:2)2 (x.7.2 toxy =-2. VT(-2, 1) = (-4, -2), so the particle
=7 Yotz X, ¥, é) moves downward along the curve.
y
which either points towards or away from the 8::
origin. 4l
1
23. He should move in the direction of ,’I B
1o N
-V (p)=-(fx(P). fy(p))=—<——, ——> ~4
( 2 4 AV
1 -5 -2 B 5 X
=2 (2.1). Oruse (2. 1). The angle a formed L
with the East is tan™! (%) = 26.57° (N63.43°E). 27. VT(x, y)= (—4x, - 2y)
N & =—4x, @ =-2y
dt dr
& &
flx = _‘;—’y has solution |x| = 2y2. Since the
4%\7 : particle starts at (-2, 1), this simplifies to
Pe0 __i x=—2y2.
E 28. f{1,-1)=5(-1, 1) (See write-up of Problem 23,
Section 15.4.)
24. The unit vector from (2, 4) toward (35, 0) is
3 4 &9 ¢ Dy, 1) S = 1) = (uy, ) (=5, 5) = ~Suy + 5
[2.-2). e
3 4 a. (-1, 1) (in the direction of the gradient);
D,f(2.4)=(-3, 8)~<§, -§> =-8.2.

u= (%](-1, 1).

25. The climber is moving in the direction of

u= (L)<—1 1). Let b. (1, 1) (direction perpendicular to gradient);
NN 1
2 2 u=|+— (1, l)
f(x, y)=3000e*"+2y7)/100, %
2.5,2

t -5 = 2 2o,
£(10,10) = -600e7 (1, 2) want —5u; +3uy =1 and u +u; =1

She will move at a slope of Solutions are u =<%, %> and <_% _%>
1
D, (10,10) = 60073 (1, 2)-| — |(-1,1
,10.10)=-6006™ 1,20 - (1)

=(-300v2)e™ ~ -21.1229.
She will descend. Slope is about -21.

de dy

26. E=L;£=ﬂ;ln|x[=—ln|y|+c
2x 2y x -y
Atr=0: In[-2|=-In|l|+C = C=In2.

2

Injx{=—In|y|+In2 = In|~;|x] ==|: |0 = 2

2
y
Since the particle starts at (=2, 1) and neither x
nor y can equal 0, the equation simplifies
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29. a. VT(x,y,.2)= <—

30.

732

a.

10(2x) N 10(2y) B 10(2z)
(,\:2 +y2 +z2)2 ’ (x2 +y2 +22)2 , (x2 +y2 +z2)2
20
) _(x2 +y° +2%)? (. :2)
r(t) = (1 cos 771, t sin 7t, t) ,s0 (1) = (—1, 0, l) . Therefore, when 1 = |, the bee is at (-1, 0, 1), and

VT(-1,0.1)=-5(-1,0.1).

r'(r) ={cosms —arsint, sinme +mecosns, ). so r'(h=(-1, - 1).
' -1, -ml) .
= r'(l) = < > ) 1s the unit tangent vector at (-1, 0, 1).
|r'()| 241
D,T(-1,0,1)=u-VT(-1, 0, 1)
-1, -m 1)-(50, -5
(L om ) Lo 10 5906

B \/2—+1t2 __\/2+1r2

Therefore, the temperature is decreasing at about 2.9°C per meter traveled when the bee is at (-1, 0, 1); i.e.,
when:=1s.

Method 1: (First express T in terms of £.)
o 10 _ 10 o _s
x? +y2 +2z° (tcos m)2 +(¢sin m)2 + (z)2 22 72

TW)=5"2T'@)=-1031'1) =-10
Method 2: (Use Chain Rule.)

dT ds 10
DT(t)==——=(DyT)(|r'(1)]). so D,T(t)=[D,T(~1 0, H)(jr'())])=- (Jz +n ) =-10

ds dt ’2+n2
Therefore, the temperature is decreasing at about 10°C per second when the bee is at (-1, 0, 1); i.e., when
t=1ls.

3 4> In each case cos ¢ =sin Hor cos g=-sin 6,
D, f=(=.—=){fi f,)=—-6, so

o <5 5 <x }) so cos’ ¢ =sin? 6.

3/ _4fy =-30. Thus,

43 D+ Dy f)? = (- P +(v-Vf P
va:(?’ §>'<f"’fy>=l7’ e Ca oo

=|Vf]" cos” @ +|Vf]|" cos® ¢
4f, +3f, =85. 2. ,
= V =
The simultaneous solution is | 4 l (cos™ 8 +cos™ ¢)
fe =10, £, =15, so Vf =(10,15). =|V/|} cos? 8 +sin? 6 = |Vf[*.
Without loss of generality, let 31. Yoo
u=iandv =j.If @and ¢ are the angles o
between u and Vf, and between v and Vf, 100
then: 50%p E
T, - B‘l [
1. 0+¢ =—2- (if Vf is in the 1st quadrant). | 50 100 156 200 250  «
2.0= §+ ¢ (if Vf is in the 2nd quadrant). a.  A(100.120)
. .. b. !
3. 6+6= §2—7£ (f Vf is in the 3rd quadrant). B190,25)
4. ¢ = §+ @ (if Vf is in the 4th quadrant).
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20-30 1
© SO0 000 3P0
40-30 2
Dy f(Ey=——=7

32. Graph of domain of /

0, in shaded region
S(x, )=
1, elsewhere
¥
8 —
L y=i
| I I —l | T I
-5 R 5%
2

lim f(x, y) does not exist since
(x, y)—(0. 0)

(x, y)—(0,0):
along the y-axis, flx, y) = 0, but along the y = x?

curve, flix,y) = 1.
Therefore, f is not differentiable at the origin. But

D, f(0, 0) exists for all u since

. f(O+h,0)~-f(0,0) . 0-0
0.0)=1 =1
/:(0.0) hl—r:}) h hl—TO h
= lim(0)=0. and
h—0
£,(0.0) = lim L@ 0D SO0 _ iy 220
h—0 h h—0 h

= 1im(0) =0, so V(0. 0) =(0, 0) = 0. Then
h=—0

D, f(0.0)=Vf(0,0)-u=0-u=0.

15.6 Concepts Review

0 d 0z dy
Sxdi Sy dt

2. y2 cos! + 2xy(—sint)

. 2
=cos® t — 2sin” r cost

Instructor's Resource Manual

33. Leave: (0.1, -5)

AT
PIELLICS
2%

4//,;'\
/”’"',:o;o*:

35. Leave: (3,5)

36. (4.2,4.2)

Gz 8x Oz Oy

dx 8t Oy ot

4. 12

Section 15.6
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Problem Set 15.6

1. % = 2)3H)+ 33?2

=223+ 32 =12"
dv

2. 7:’ = (2xy - y2)=sint) +(x? - 2xy)(cost)

= (sinr+cost)(1-3sintcost)

3. % = (e sin y + &’ cos x)(3) + (e cos y + €’ sin x)(2) = 3e% sin 21 + 3¢ cos 3t + 2> cos 2t +2¢* sin 31
2 2, 2 a2
4. ﬂ=(l)seczm-(—l)aseczttant) == t-2tant s ! 2tan” { = I-tan’t
dt x y tant tant tant
dw
5. == =ly7 (cosligz i) + [+ cos(xyz?)}(21) +[ 23z cos(0z°)](1)

= Byz? + 2x2% + 2xyz)cos(ayz?) = (3t + 268+ 268)cos(e”) = 718 cos(¢”)

6. %tui= (y+2)20) +{(x+2)(-20)+(y + x)(-1) :2,(2_,_t2)_21(1_”12)_(1) -4’ 2
7. 2= @)+ () = 2515 -0 - =572 - 30)
8. % = 2x-x"'y)est )+ lnx)(s?) =52 [1_2,-3 _ln(f):l

2 2 2 2 2,2
9. ?=e" *¥" 2x)(scost) +e T (2y)sins) =2¢" *V (xscost + ysins)
i

= 2(.«;2 sin¢cost +1sin’ s) exp(s2 sin? £ +¢2 sin? s)

ow - - - _ 265D (st -1
10, 22ty - G-y I+ + G ™) =—’ﬁ)-
ow x(—ssinst) y(scosst) z(sz) 4 4.2.-112
11, —= =st(l+s7t%)
O Ry e)2 (Ray ) (i)
2
12. %‘tﬁ=(exy“y)(l)+(e’y+=x)(—1)+(e"y”)(2z) =P (y—x+2) =€ (0)=0
oz 2 2 2 (Oz
13. 22— 20)(2)+ (x2)=2s1) = 42 +s)(1 - 51%) = 202+ 5)2:[ = =72
ot ot a, -2)
14, _ﬁ_z =(y+ D)D) +{(x+1)(rt) = 1+rl(1+25+r+l);(-a—z-) =5
os sAa, -2
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r

dw

15. =" (2u — tan v)(1) + (~usec? v)(r) = 2x — tan nx — nesec? mx

dw =(l)_1_(£)=_l.ﬂ=_2.0708
axl, ! \2 2 2
4
16. % = (2xy)(-psin Osin @) + (x2)(pcosHsin ) +(22)(0) = p* cosBsin® g(-2sin” 9 + cos’ 0);

Gl

17. V(r.h)=mnr*h, % =0.5 in/yr,
!

%zSin./yr

dv dr 2. dh

—=(2nrh)| — [+ — |
dt (W)(dt] (nr )(dt)

=11200m in3/yr
(20, 400)

(%)

dr

_11200m in” 1 board ft
1yr 144 in?

=~ 244.35 board

fuyr

18. Let T=e ™.
ar
dr
= CDR)+e T (-3)2)
=g * Y
dr

dt (o, 0)
decreasing at 8°/min.

—e %y £+e—x-3y -3 f)_’
S -3,

= -8, so the temperature is

19. The stream carries the boat along at 2 fUs

with respect to the boy.
Boat
p y
Boy -
£=2,Q=4, 52 =x2+y2
dt dt
2s & =2x -di)+2y(ﬂ)
dt dt dt
ds _ (2x+4y)
dt s

Instructor's Resource Manual

20.

21.

22,

23.

24.

25.

Whent=3,x=6,y=12, s=6\/§. Thus,

(i‘—) =20 =~ 4.47 fus

dt (=3

V(r. h)= G) nrih, ‘;—': =3 in/min,

£=2 in./min

dt

dav (2) (dr) 1\ 2fdh
—=| = |mrh| — [+] = [nr®| —
dt 3 dt 3 dr

_ 20.800n

=~ 21,782 in.3/min
(40, 100) 3

(%)

Let F(x, y)=x>+2x’y-y> =0.

then & _TE __ (P +an) 37 +4ny
dx %;; 2x2—3y2 3y2—2x2'

Let F(x, y)=ye *+5x-17=0.

d SRS §
LA +5_)=Y—Sex

dx o

Let F(x,y)=xsiny+ycosx=0.
Q__(siny—ysinx)_ ysinx—-siny
dx XCOSy+Cosx

XCOS y+COosx

Let F(x, y)=x2 cosy-yzsinx=0.

Then d_y__%‘g_ —(2xcosy -y’ cosx)
%{- —xzsiny—2ysinx

_ 2xcosy-y2 cosx

x2 siny+2ysinx

Let F(x, y, 2)= 3xzz+y3 —)ryz3 =0.
oz _ (6xz—y23)_ y23—6xz
ox 3x? —3xyz2 3x? —3)cyz2

Section 15.6
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|[enuepy 92In0SaY S JOJoNIIsu| 9°GL Uojjo9g 9e/

2

0vs02(qo+q,0)- ,qq+ 00
"] JO SUONDUNJ AT I PUE ‘ ‘D I3YM (SAUISOD) JO MET) oQpSOIGUT — G+ 0= .0 EE

=,9 05 ,0ps03(,97 +q,0)7 — 49T +,P0T = 27T

“Jnsal1 palisap ay) Pk [ =7 Buime] q = () f+(n),f ](%] =
(A %) f = [ 1) Y+ [X][(@ x) ] ¢
StieuL [(o)(n).f—(o-)(n).f](%—)= e

p P

(A" = ¢ —_

[(£x) /1] > [(4x) f] B
uayy (A XY fi=(4 xa)f J1 "T€

'SEIR0 = UTPE - TPOI=

[<n>,f-<n>,n(§-)=

[(9)(4),f+(0—)(n),j](%)= ”

(zr)©-(z2)6=(zp).d [@)./ + (n).f]G) -
f(my\soouy\) t7(11@/\ugs)+6 - z
OWEINOW) ](T) =
(D) (N+6f = . .
usA1g uonouny Jenonued oy 10j ‘sny ], [(a),f+ (n)'f](T) =[(1)(a), [+ (l)(n)'f][T) =

W4+ X=A"0—X=n31ym

(0,313 f - () f = z
wl wr_ P s Hn)f](_j:‘ o
sy 1
OO S +(),3(x)f-= “omo pmg mp
usyL (1= ,509+9 uis
"y =

A Suisn pue Juipuedxa )+ _(¥2) =
‘(1)3=r9.|aqm ‘ﬂp(ﬂ)ij'— = "p(n)f;] -Mm 19.1 .Is H p .p ) z( ) z( )
650 24+ guis*z-)+
0= [ous €z 4+gs00%z) = 02)(, )+ (2
((1-) s+ (D) "] + , A g
snyl ‘gsod ‘z+guisz—= 0z s
(=) s+ (D ]+ [(1-) " + (1) ] =

. q X £ Y _ @~
(“z°m+ 2%m) + 0s ((gs094)%z+(guisu—)*z = 04"z + Ox¥z = 6z
4 Xy _ dflm | dyXo _ 4
(a%m + SEm) + (S + ) = 4w+ m guis “z+9s007z = Alz4 iz ="z
. 49
ugLs—i=2 == 1oj uoneiou “z oy asnom ‘8T

G—s=A‘s—s=x210ym (' C'x)f =M 197 °*0¢ z

Sg Mo se2¢ sg Ao sg xp  s@

St 1

—
Mg 1o 20 10 Kéz..o xg 1o 1@

xs03z— , 2 xS00z+ , - zp

x uis T xus—- | xg
o=xuisz+ , ad =(z A x)f 197 ‘97



When a =200 and b = 150, ¢% = (200)2 + (150)2 —2(200)(150)cos 40° = 62,500 ~ 60,000 cos 40°.

Itis given that a' =450 and b' =400, so at that instant,
o= (200)(450) + (150)(400)—[(450)(150) + (200)(400)]cos 40°

{62,500 - 60,000cos 40°

288.

Thus, the distance between the airplanes is increasing at about 288 mph.

34. r = (x, ¥. Z),SO r2 ='r|2 =12+y2+22

GMm
F=—2 > S0
xX“+y“+z

F'(t)=F,m' (1) + F.x'(t)+ Fyy'(t) +F,z'(t)

GMm'(t) 2GMmxx'(1)
2

~x2+y2+z (xz+y2+22)2
_ 2GMmyy'(1) . 2GMmzz'(t)
(x2 +y2 +22)2 (x2 +y2 +zz)2

_GMI( + y? +22)m' (1) = 2m(ax'(6) + yy'(0) + 22'(0)]

(Jc2 +y2 +z2)2

15.7 Concepts Review

1. perpendicular
2. (3.1,-1)

3. x—+4(y—-1)+6(z-1)=0

o Ly
ox oy

Problem Set 15.7

1. VF(x, y,2)=2{x y, z);

vF(2,3,43)=2(2,3,V3)

Tangent Plane:

2(x-2)+3(y—3)+J§(z-J§)=o, or
2x+3y+3z=16

2. VF(x, y,z)=2(8x,y, 8z);
VF(I, 2, [2-]=4(4, 1, 2J5)
2

Tangent Plane:

4(x—l)+1(y—2)+2\/§[z—g), or
4x+y+2\/§z =8.

3. Let F(x, y, z)=x2—y2+22+1=0.
VF(x, y,2)= (2x, -2y, 2z)= Z(x, -y z)

instructor's Resource Manual

vF(1,3.47)=2(1,-3,47), so (1, -3, J7) is

normal to the surface at the point. Then the
tangent plane is

l(x—l)—3(y—3)+\ﬁ(z—s/‘7)=0, or more
simply, x—3y+~/’72=—l.

. Vf(x, y, z)=2(x, ¥, —z);

VA2, 1, 1)=2(2,1,-1)
Tangent plane:
2(x-2)+i(y-)-1(z-1)=0,0r 2x+ y—z=4.

L ) =] = (x99 @ D= (0, 1)
2

Tangent plane: z-2 =1(x-2)+1(y-2), or
x+y-z=2.

. Let f(x, y)=xe .

VF(x, y)= <e'2y ,—2xe” )

VF(1.0)=(1, -2)
Then (1, -2, -1}is normal to the surface at

(1,0, 1), and the tangent plane is
(x-1)-2(y-0)-1(z-1)=0,0rx-2y-z=0.

. Yf(x, y)= (—4e3y sin 2x, 6¢°” cos 2x>;

v(3.0)=(25.-3)

Section 15.7 737



10.

11,

12,

13.

14.

738

Tangent plane: z+1= 243 (x - g) -3(y-0),

or 2\/'3-x+3y+z=(i\/§—:——3).

=2\ L, (L1
Vf(x,))—(2)<x~ y>. v/ (L 4) <2‘ 8>
Tangent plane: z-3 = (%)(x— l)+(%)()"4)‘

] ]
or —x+—y—-z=-2.
2 y

. Let z= f(x, y)=2x2y3:

dz= 4xy3dr+ 6x2y2dy. For the points given,
dx=-0.01, dy=0.02,

dz = 4(=0.01) +6(0.02) = 0.08.

Az = £(0.99, 1.02)- f(1, 1)

= 2(0.99)2(1.02)* - 2(1)*(1)* = 0.08017992

dz = (2x-5y)dx+(-5x+1)dy
= (=11)(0.03) + (-9)(-0.02) =-0.15
Az = £(2.03,2.98) - f(2,3) =-0.1461

dz = 2x"'dx + y ldy = (-1)(0.02) + (%)(—0.04)

=-0.03
Az = f(~1.98, 3.96) - f(-2.4)

= In[(-1.98)% (3.96)] - In 16 =~ -0.030151

Let z= f(x. y)= tan”! Xy,
y X
dz = dx+ dy;
1+x2 y2 1+ y2
_ (~0.5)(-0.03) + (-2)(=0.01) _
1+ (4)(0.25)

Az = f(-2.03.-0.51) - f(-2,-0.5) = 0.017342

0.0175.

Let

F(x, y, z)=x2 —ny—y2 -8x+4y-z=0;
VF(x, y, 2)=(2x-2y -8, -2x -2y +4, -1)
Tangent plane is horizontal if VF =(0, 0, k) for
any k0.

2x—-2y—-8=0and -2x-2y+4=0ifx=3and
y=-1.Thenz=-14. Thereis a horizontal
tangent plane at (3. -1, -14).

(8,-3,-1) is normal to 8x -3y -z=0.

VF(x, y, z) = (4x. 6y, -1} is normal to

Section 15.7

15.

16.

17.

18.

z=2x? +3y2 at (x, y, z). 4x =8 and

6y =-3,ifx=2and y=—%: then

-

z=8.75at (2, ——;—, 8.75).

For F(x, y. z)=x2 +4y+z2 =0,

VF(x, y.2)={(2x, 4, 2z) =2(x. 2, 2).
F(0,-1,2)=0, and

VF(0,-1.2)=2(0, 2, 2) =4(0, 1. 1).

For G(x. y. z)=x2+y2+z2 —-6z+7=0,
VG(x, y, 2)={2x, 2y, 22 -6)=2(x. y, z-3).
G(0.-1,2)=0, and

VG(0, -1,2)=2{0, -1, —1) =-2(0, 1, 1).
(0.1, 1y is normal to both surfaces at

(0. -1, 2) so the surfaces have the same tangent
plane; hence, they are tangent to each other at
0,-1,2).

(1. 1, 1) satisfies each equation, so the surfaces
intersect at (1, 1, 1). For

z= flxy) =2y Vf(x, y)=<21y, xz):

vr(, 1)={2,1), so (2. 1, -1) is normal at

(1,1, 1).

For F(x, y, z)=x2 -4y +3=0;

Vf(x, y, 2)=(2. -4, 0):

V(L 1L 1)=(2,-4,0) so (2, -4, 0) is normal at

(1. 1).
(2.1, -1)-(2, -4, 0)=0, so the normals, hence

tangent planes, and hence the surfaces, are
perpendicular at (1, 1, 1).

Let F(x, y. z)=x2 +2y2 +322-12=0;
VF(x, y, 2)=2{x, 2y, 3z) is normal to the

plane.
A vector in the direction of the line,

(2.8, - 6) = 2(1, 4, -3}, is normal to the plane.
(x. 2y,3z) = k(l,4, -3) and (x, y, z) is on the

surface for points (1, 2. 1) [when k=1] and
(-1, -2, 1) [when k=-1].

Instructor's Resource Manual



19.

20.

21.

22,

23.

The tangent plane at (xg, g, Zp) is

xo(x—xo)+y0(y—y0)+zo(z—zo) -0
2 B2 2 -

a

a c a c
Xp- .
Therefore, —O,-+y°y+ 0° —1, since
2 2 2
a c
x 2 2
g +y—2+%=1
b ¢

Vf(x, y. 2)=2(9x, 4y, 4z);

VFQ, 2,2)=2(9,8,8)

Vg(x, y. 2)=2(2x, -y, 3z);

V(1. 2,2)=4(1.-13)

(9, 8, 8)x(1, -1,3)=(32, -19, -17)
Line: x=1+32¢,y=2-19t,2=2-17t

Let f(x,y, z)=x—zz, and g(x, y. z)=y—z3.
Vf(x, y, 2)={(1, 0, -2z) and

Vg(x, y, 2) =(0, 1, —322>
VAL, 1)=(1,0,-2) and
vg(l, 1, 1)=(0.1,-3)
(1,0,-2)x(0.1,-3) = (2,3.1)
Line:x=1+21,y=1+3t,z=1+¢

as = SAdA +SWdW

w A _ —WdA+ AdW

- 7a4+ ) 2
(4-W) (4-%) (A-W)
At W=20,4=236:
s - —20d4+36dW __5dA+9dW
256 64
SldA| +9]dW]| _ 5(0.02) +9(0.02)
64

64

Thus, |dS|<
= 0.004375

V=Iwh, dl=dw=—,dh=—, =72, w=43,

h=36
dV = whdl + lhdw + lwdh = 3024 in.3 (1.75 fi%)

L
27 4

V = nrlh, dV = 2nrhdr + nrdh

|dV| < 2mrh|dr| + nr? |dh| < 21rh(0.02r) + 7r (0.03h)

=0.04rr2h +0.03nr2h = 0.07V
Maximum error in Vis 7%.

Instructor's Resource Manual

24,

25.

26.

T=f(L,g)=27t\/Z
g

dT = fidL+ f,dg

—on| L (l)dum ‘ (—%)dg
ZJZ g 2\/Z 4
g g
_Megdl-Ldg)
g =
g
dT  n(gdlL-Ldg) _ gdL-Lldg

TR

Therefore,
Iﬂi <l |-dil +1%81| = L0.5%+0.3%) = 0.4%.
Ty 2L g 2
Solving forR, R = —ﬁBZ—- 50
R] + Rz
AR R} AR R}
= and

SR (R +R,)? ORy (R +Ry)*
R3dR, + RYdR,
(R +Ry)? ’
2
RZ|dR)|+ R |dR, |
(R +Ry)?

Therefore, dR =

ldR| < . Then at R, =25,

(25)(100) _
254100
(100)%(0.5) + (25)%(0.5)
(125)>

R, =100,dR, =dR, =0.5, R=

and |dR| < =0.34.

Let F(x, y,2)= x* +y2 +22°.
VF(x, y, 2)={2x, 2y. 4z);

VF 1 22
VF(I, 2, l)=2(1, 2. 2); ﬁ=<§‘ §’§>

Thus, u = l Z E is the unit vector in the
333
direction of flight, and
5
(x, y, 2)=(1. 2, 1)+4t <§ é -§—> is the location

of the bee along its line of flight 1 seconds after
takeoff. Using the parametric form of the line of
flight to substitute into the equation of the plane
yields 7 = 3 as the time of intersection with the

Section 15.7 739



plane. Then substituting this value of 7 into the | 1 b 1 -0
equation of the line yieldsx =S5,y = 10,z=9 so0 2 (x-a)+ b (x-b)+ c (x-c)=0, or

the point of intersection is (5. 10, 9).

x y z
—+=4+—=3.
27. Let F(x,y,z) =xyz = k; let (a, b, c) be any point a b c
on the surface of F. Points of intersection of the tangent plane on the
k k k coordinate axes are (3a. 0, 0), (0, 3b, 0), and
VF(x, y, 2)=(yz. xz, X) = <;~ = :> (0.0, 3c).
y 2 The volume of the tetrahedron is

1 11
k(LLl 1 N
<x ) z> (3](area of base)(altitude)= 3(2 |3a”3b|)(l3cl)
VF(a.b,c)= k<— % l> 9|abcl I I (a constant).
¢ 2

An equation of the tangent plane at the point is

28. If F(x, y,2)= Jx + y+\/— then VF(x, y, z) = 05< 7_— > The equation of the tangent is

SI

os{ o e i) oyl °°’f‘ ’f= “ro el ce

Intercepts are a,/ .a\Jyg.a\zg; sothe sumis a( Xo + J

29. f(x. y)=(2+y)2 13, 4)=5

S =3+ )2 £, 4) =§= 0.6

£y = )=y +y7V % 3. 4) =i =0.8

Sulx. )=y 22 +y172; £,6. 4)—1765=0128

- 12
S ) =y 4y [ 3,4 = -0 = 0,09

_ 9
Sy =By [0, 8 = 2= 0072

Therefore, the second order Taylor approximation is
f(x, y)=5+0.6(x—3)+0.8(y —4) +0.5[0.128(x - 3)% +2(-0.096)(x - 3)(y — 4) +0.072(y - 4)2]

a. First order Taylor approximation: f(x,y)=5+0.6(x-3)+ 0.8(y-4).
Thus, £(3.1,3.9) = 5+ 0.6(0.1) + 0.8(-0.1) = 4.98.

b. f(3.1,3.9) = 5+0.6(-0.1)+0.8(0.1) +0.5[0.128(0.1)% + 2(~0.096)(0.1)(=0.1) + 0.072(-0. 1)2]=4.98196

c. f(3.1,39) = 49819675
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15.8 Concepts Review

1.

2

1.

closed bounded

. boundary; stationary:; singular

Vf(x0. y0)=0

(X020 Sy (X0 ¥0) = £, (0. ¥0)

Problem Set 15.8

Vf(x, y)={2x-4, 8y) =(0, 0) at (2, 0), a stationary point.
D= fufy —fé, =(2X8) —(0)2 =16>0 and f, =2>0. Local minimum at (2, 0).

Vf(x, y)={2x-2,8y+8)=(0, 0) at(l, 1), a stationary point. D = [ f,, -ffy =(2)(8)-(0)2=16>0 and

S« =2>0. Local minimum at (1, -1).

Vf(x, ) = (8x3 ~2x.6 y> = <2x(4x2 ~1),6 y>
= (0, 0), at (0,0),(0.5,0).(-0.5,0) all stationary points.
foe =24x2 =2 D= fofyy — 3 = (2457 = 2)(6) - (0)?

=12012x% -1).
At(0,0): D=-12,s0 (0, 0) is a saddle point.
At (0.5,0)and (-0.5,0): D =24 and fy, =6, SO local minima occur at these points.

Vf(x, y)= ( y2 —12x, 2xy—6 y> = (0, 0) at stationary points (0,0).(3,-6) and (3.6)

D= fiufyy - 3 = -12)2x-6)-(2y)*

=—4(y* +6x-18), f =12
At(0,0)%: D=72,and f,, =-12. so local maximum at (0, 0).
At (3,#6): D =-144, so (3.1y) are saddle points.

Vf(x, y)={(p, x)=(0, 0) at (0, 0), a stationary point.
D= fufyy -2 =(0)(0) - (1) =-1, s0 (0, 0) is a saddle point.

Let Vf(x, y)= <3x2 -6y.3y° - 6x> =(0, 0). Then 3x* ~6y =0 and 3y” -6 = 0. Solving simultaneously, obtain

solutions (0, 0) and (2, 2).
S =65 D= frrfyy — £ = (6x)(6) - (=6)% =36 (xy—1) At (0, 0): D <0, s0 (0, 0) is 2 saddle point.

At(2,2): D>0, f, >0, soalocal minimum occurs here.

Yy
D= fiufyy -2 = (4x-3)8y-3)- ()7

= 32.::'3y"3 -Lfx= ax3
At(l1,2): D>0,and f, >0. soalocal minimum at (1. 2).

2. 2 _
Vf(x. y)=<x - 2 X - 4>=(o, 0) at (1, 2).
X
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10.

11.

12.

742

Vf (x. y) = ~2exp(-x2 - y* +4y)(x. y-2) = (0,0) at (0.2).
D= fefyy=f3 =exp2(-x* - 32 +41)(4x2 - 2)(4y* - 16y +14) - (4xy -8x)%],

S = (437 = )exp(-x2 — y* +4y)

At (0,2): D>0.and f,, <0, so local maximum at (0, 2).

Let Vf(x. y)
= (—sin x —sin(x+ y), - sin y —sin{x + y))

=(0.0)

Then (—smx—sm(x-i-y) =0

. . . Therefore,
sin y+sin(x+y) =0

. . L
sinx=siny,so x=y= e However, these

values satisfy neither equation. Therefore, the
gradient is defined but never zero in its domain,
and the boundary of the domain is outside the
domain, so there are no critical points.

Vf (x, y) =(2x - 2acos y, 2axsin y) = (0, 0) at

(o, :g) (a. 0)

D= fufyy - 3 = (2)(2axcos y) - (2asiny)*,
fx_x =2
At (O, tg): D =—4a <0, so [0, ig) are

<~

saddle points.
At(a,0): D= 4a% >0 and S >0, solocal

minimum at (a,0).

We do not need to use calculus for this one. 3x is
minimum at 0 and 4y is minimum at —1. (0, -1) is
in S, so 3x + 4y is minimum at (0, -1); the
minimum value is —4. Similarly. 3x and 4y are
each maximum at 1. (1, 1) isin S, so 3x + 4y is
maximum at (1, 1); the maximum value is 7. (Use
calculus techniques and compare.)

We do not need to use calculus for this one. Each
of x? and y? is minimum at 0 and (0, 0) is in S,

so x° +y2 is minimum at (0, 0); the minimum

value is 0. Similarly, x* and y2 are maximum at
x =3 and y = 4, respectively, and (3, 4) is in §, so
x? +y2 is maximum at (3, 4); the maximum

value is 25. (Use calculus techniques and
compare.)

Chapter 15: The Derivative in n-Space

13.

14.

15.

Vf(x, ) =(2x, -2y)=(0, 0) at (0, 0).

D= fufyy—f2 =(2)(=2)-(0)2<0, 50(0,0) is
a saddle point. A parametric representation of the
boundary of Sisx =cos t, y =sin ¢, ¢ in

[0.27]).

f(x. y)=f(x(0). yt)) = cos? 1 —sin? r+1
=cos2r-1

cos 2t — 1 is maximum if cos 2¢ = 1, which occurs
fort=0, , 27 . The points of the curve are

(£1,0).f(£1,0)=2
fx, ¥) = cos2t —1is minimum if cos 2¢ = -1,

which occurs for ¢ = g 377‘ The points of the

curve are (0,£1). f(0,£1) = 0. Global minimum
of 0 at (0, + 1); global maximum of 2 at (%1, 0).

Vf(x, y)=(2x-6, 2y -8)=0 at (3, 4), which is
outside S, so there are no stationary points. There
are also no singular points.

x=cos t,y=sin ¢, in [0,27]is a parametric
representation of the boundary of S.

Sf(x )= f(x(0), y(1))

=cos?t—6cost+sin? ¢ —8sint+7

=8—6¢cost—8sint = F(2)
F'(t)=6sint —8cost =0 if tant =§. t can be
in the 1st or 3rd quadrants. The corresponding

bl

3 4\ _gg (24
A3

Global minimum of -2 at (% %) global

points of the curve are (i% ii)

maximum of 18 at (—2 -i)
5 5

Let x, y, z denote the numbers, sox +y+z=N.
Maximize

P=xyz=xy(N-x-y)= Ny~ x*y - /.
Let VP(x, y) = <Ny “2xy -y Nx—x* - 2xy>
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=(0. 0). V7 (x, ) =<y—V0x'2,x—V0 y'2> =(0. 0) at

Ny-2xy-y2=0
Then( y 22 y ] (V”3 Vl/3)
- ~2xy =
Ne-x" -2 =0 D= ffyy - S =¥y -,

N(x,_y)=x2_y2=(x+y)(x—y). x=y or 1, =3
N=x+y. xx 0
Therefore, x = y (since N = x + y would mean that At (VOHB'VOIB): D=3>0, foe=2>0. 50

P =0, certainly not a maximum value). local minimum

e e 2 _
Then, substituting into Nx—x" -2xy =0, we Conclusion: The box is a cube with edge V01/3.

obtain Nx—x% - 2x% = 0, from which we obtain
N 18. Let L denote the sum of edge lengths for a box of
x(N-3x)=0,s0 x= 3 (sincex=0 = P=0). dimensions x, y, z. Minimize L = 4x + 4y + 4z,

subject to Vy = xyz.
Py = -2y; ] 0 =Xz

4V,
_ 2 Lix, y)=4x+4 +—2 x>0.y>0
D=P.P "‘ny (x, ) Yy o - ¥

= (2y)=2x) - (N -2x-2y)* = 4xy - (N —2x-2y)? Let

2 VL(x, y)=4x"'y! TNy =vo) y (P - )
At x= y—ﬁ D—N— O,Pn=—ﬂ<0 (so Y ( y=rony 0)
3 3 3 =(0,0).

local maximum) ) )
Then x*y =¥, and xy° =¥, from which it

N N
If x=y=—, then z=—. 1/3
3 3 follows that x = y. Therefore x=y=z=V;"".
Conclusion: Each number is g (If the intent is L= 8_;/0_;
X
to find three distinct numbers. then there is no Y ,
maximum value of P that satisfies that 2 8V0 8V, 4V, .
condition.) D=Llyuly -Ly=|5_|| 75|7| 2.2
xy x‘y
16. Let s be the distance from the origin to (x, y, z) on At (VO'/J, V0”3): D>0, L >0 (so local
the plane. s? = x* +y2 +2° and . .
N minimum).
x+2y+3z=12. Minimize There are no other critical points, and as
=fy, 2)= (12—2y—32)2 +y2 +22, gc, y? - blc:undary, L — . Hence, the optimal
Vf(y, z) =(—48+12x+10y, - 72+12y +20z) OX 15 @ cube.
12 18 19. Let S denote the area of the sides and bottom of
- (O 0) at = the tank with base / by w and depth A.
5 S=lw+2lh + 2wh and Iwh = 256.
D= —f%=56>0and f,,=10>0;
Sz Iy ” S, w)= 1w+21(256) +2w (-215—6) w>0,1>0.
Iw w

12 18
local maximum at
7 7

sy w)=<w-512r2,l—512w'2>=(0, 0) at

504 . .
s = g 50 the shortest distance is (8, 8). h =4 there. At (8,8) D>0and 5;; >0,
so local minimum. Dimensions are 8’ x 8 x 47,

614 3.2071.
§= 7 = 20. Let ¥ denote the volume of the box and (x, y, z)
denote its 1st octant vertex.
17. Let S denote the surface area of the box with V = (2x)(2y)(22) = 8xyz and 24x2 + y2 +22=9
dimensions x, y, z.
S=2xy+ 2xz +2yzand V = xyz, s0 p2 - 64[[%‘:)(9-}12 _ z2)])/222

s=2(xy+V0y"+V0x'l). L. b 2, 2.2
Maximize f(y.2)=09-y -z")y"z°, y>0,

Minimize f(x, y)=xy+W y e Vox'l subject 250

tox>0,y>0.
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21,

22,

23,

9,

744

Vi(y, 2)= 2(),22 ©-2y% - 2%), yzz(9—y2 _222> Sy <0, so local maximum. The greatest

- o2
=(0, 0) at (v/3,V3). x=£ possible volume is 8(72)(\/3)(\/5)=6\/§

4
AL (V3.VB), D=f,f.. - % >0 and

Let (x. Y, z) denote the vector; let S be the sum of its components.
2 +y+22 =81 so z=(81-x% - y*)I'2.

Maximize S(x. y)=3r+y+(81—):2 -yz)”z, 0<x? +y2 <9.

Let VS(x, y)=(l—x(8l—x2 —yy M2 1 y@1-x2 -y2)'”2>=(0, 0).

Therefore, x = (81 -x2 —yz)”2 and y = (81—x2 —y2 )”2. We then obtain x=y = 343 asthe only stationary

point. For these valuesof x and y, z = 33 and S =93 ~15.59.
The boundary needs to be checked. It is fairly easy to check each edge of the boundary separately. The largest

value of § at a boundary point occurs at three places and turns out to be % =12.73.
Conclusion: the vector is 3v/3 (1, I, l).

Let (x, y, z) denote a point on the cone, and s denote the distance between (x, y, z) and (1, 2, 0).
s?= (x—l)2 +(y—2)2 +22 and 2% = x? +y2. Minimize s = flx, y)= (Jc—l)2 +(y—2)2 +(x2 +y2)‘ x.yinR.

Vf(x, y)=2(2x-1,2y-2)=(0, 0) at (—;— 1). At (—;—,l], D>0and f,, >0, so local minimum.

Conclusion: Minimum distance is s = \/g ~1.5811.

A= (%J[y+(y+2xsin a)l(xcosa) and
2x +y = 12. Maximize A(x, @) =12xcosa ~2x2 cosa-&{%)xz sin2a, xin (0, 6], a in (0, g)
A(x, a) = <12cosa —4xcosa +2xsinacosa, — 12xsina + 2x* sina + x° cos 2a> = (0, 0) at (4, %)

At (4, -g) D>0and 4, <0, solocal maximum, and 4 = 1243 = 20.78. At the boundary point of x = 6, we get

a= % A =18. Thus, the maximum occurs for width of tumed-up sides = 4", and base angle = §+% = %

The lines are skew since there are no values of s and # that simultaneously satisfy t — | = 3s, 2r=s5+2, and
1+ 3 =25 - 1. Minimize f, the square of the distance between points on the two lines.

f(s, )=Cs—1+1)2 +(s+2-21)2 + (25 —1-1-3)?
Let
Vf (s, 1) = (235 =1 +1)(3) + 2(s — 2+ 2)(1) + 225 — 1 — 4)(2), 235 ~ £ + 1)(=1) + 2(s = 2¢ + 2)(=2) + 2(2s — 1 - 4)(~1))

=(28s-141-6,-14s+121-28) = (0,0).
Solve 28s - 14t -6 =0, -145s + 121 - 2 = 0, obtaining s=%,t =1.

D= fi o fu —fﬁ = (28)(12) - (-14)? > 0; Sfss = 28> 0. (local minimum)
The nature of the problem indicates the global minimum occurs here.
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B

Conclusion: The minimum distance between the lines is > ~ 4.2258. (For another way of doing this problem

see Problem 21, Section 14.4.)

25. Let M be the maximum value of f{x, y) on the The edges of P are segments of the lines:
polygonal region, P. Thenax + by + (c - M} =0 l.y=0
is a line that either contains a vertex of P or 2.4x+y=28
divides P into two subregions. In the latter case 3.2x+ 3y =14, and
ax + by + (c - M) is positive in one of the regions 4.x=0
and negative in the other. ax + by + (c - M) >0
contradicts that M is the maximum v?lue of 27, z(x, y) = y* - x*
ax + by + c on P. (Similar argument for
minim):xm.) ( ’ 2(x, y) =(-2x, 2y) =(0, 0) at (0, 0).
There are no stationary points and no singular
a. x y x+3y+4 points, so consider boundary points.
-1 2 8 4
0 1 7 "
1 0 6 1
-3 0 -2 ¥3)]
0 4 -8 L——
Maximum at (-1,2) |
(3)
b. x y 3x+2y+1 B
-3 0 10 On side 1:
0 5 1 y=2,s0 z=4x* —x? =3x?
2 3 1 Z'(x)=6x=0 ifx=0.
4 0 -1 Therefore, (0, 0) is a candidate.
1 -4 -10 On side 2:
Minimum at (4,0) y=-4x+6,s0
7= (-4x+6)% —x? =15x% —48x +36.
Z'(x)=30x-48=0 ifx=1.6.
26. x y xc+y Therefore, (1.6, —0.4) is a candidate.
On side 3:
0 0 0 5 2
2 0 4 y=-x,50 z=(-x)"-x"=0.
1 4 6 Also, all vertices are candidates.
0 14/3 14/3
Maximum of 6 occurs at (1,4) X ¥ -
s 0 0 0
1.6 —0.4 -2.4
2 -2 0
1 2 3

4) Minimum value of -2.4; maximum value of 3

hH 2
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n
8 a & Z—a—(y,-—mx,-—b)z

om par om

= 22”: (yi —mx; =b)(-x;)
=l

n
= —ZZ(xi i — m.\ti2 —bxi)
i=l
Setting this result equal to zero yields

0= —Zi(xiyi - rrv:,-2 —bx,-)
i=]

0= i(x,-yi —m.vc,-:Z —bx,-)

i=1
or equivalently,

n n 2 n
Zx,-y,- = min +b2xi
i=1 i=1 i=]

of &0 2
g Ny —mx —b
o~ i~ )

=23 (v =mx; =b)(=1)
i=1

Setting this result equal to zero yields

S

i=1

n
0= Z(Yi - mx; ‘b)
i=1
or equivalently,

mix,- +nb= iy,-
i=| i=l

n n
b. nb= Zy,- -mZx;
i=1 i=l
Therefore,
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n n n
Z.Xiyi = II‘IZX"Z +bef
i=l i=] i=]

This simplifies into

n l n n
inyi—;ZXiZYi

i=l i=] _i=l

2
n 2 l n
in - i
i=1 ni=1

2 n
C ?—22" = 22 X,'z
om i=1
2
% =2n
ob
aZf n
=2 .
omodb ;x'

Then, by Theorem C, we have
n 2 1 n 2
D=4n Zx,- -—— Zx,-
i=1 n\i=

Assuming that all the x; are not the same, we find that

2
D>0 and -a—j;>0
om

Thus, f(m,b) is minimized.

29. Xi Vi xf XiYi y
3 2 9 6
4 3 16 | 12 1
5 4 25 20
6 a | 36 | 24 2 4 *
7 5 49 35 On vertical side: x =0
I, 25 18 | 135 97 z(y)=y2—2y+5, y=[0,1]. Z'(y»)=2y-2, so
m(135) + B(25) = (97) and m(25) + (5)b = (18). 2'(y) =0 ify = 1. Hence, no additional critical
Solve simultaneously and obtain m = 0.7, 5= 0.1. point.
The least-squares line is y = 0.7x + 0.1. On horizontal side: y =0
2, 2(x) =2x% —4x+5, xin [0, 4]. 2'(x) =4x—4, so
30. z=2x"+y" —4x-2y+3, 50 z'(x) =0 if x = 1. Hence, an additional critical
Vz=(4x-4,2y- 2)=0. point is (1, 0).
Vz =0 at (1, 1) which is outside the region. On hypotenuse: x = 4 — 4y
'I'herefor.e: extreme values occur on the boundary. 2(y)=2(4-4 y)? + yt—4(4-4y)-2y+5
Three critical points are the vertices of the 2 )
triangle, (0, 0), (0, 1), and (4, 0). Others may =33y° -50y+2l, yin[0,1].

occur on the interior of a side of the triangle.
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. 25
Z'(¥)=66y-50, so z'(y)=0 1fy=§. Hence,

an additional critical point is (EE)
33 33

x y z

0 0 5

4 0 2]

0 I 4

1 0 3
32/33 25/33 2.06

Maximum value of z is 21; it occurs at (4, 0).
Minimum value of z is about 2.06: it occurs at

(22
33'33)

31 T(x, y)=2x*+y* -y

748

VT =(4x,2y-1)=0
Ifx=0 and y=%, so (O. %) is the only interior

critical point.

2=

AR
ANV

2r

On the boundary x2=1- y2, so T is a function
of y there,

- 2 2 _ 2
T(y)=21-y )+y " —py=2-y-y",
y=[-1.1]

T'(y)=-1-2y=0 ify=—%, so on the

boundary, critical points occur where y is

-1, —l,l.
2

Thus, points to consider are (O. %) (0,-1),

ﬁ, 1 , —ﬁ, 1 and (0, 1). Substituting
2 2 2 2
these into T(x, y) yields that the coldest spot is

(0, %) where the temperature is —-‘1;, and there

Section 15.8

32.

1
is a tie for the hottest spot at [i?, —5] where

.9
the temperature is 7

Let x%, y2, 2% denote the areas enclosed by the
circle, and the two squares, respectively. Then

the radius of the circle is — , and the edges of
Jn

the two squares are y and z, respectively. We

wish to optimize A(x, y, z) = X+ yz + 22,

subject to 21'!(—L)+4y+4z =k, or

7

equivalently Wnx+4 y+4z =k, with each of x,

y, and z nonnegative. Geometrically: we seek the
smallest and largest of all spheres with center at
the origin and some point in common with the
triangular region indicated.

Since _k_ > % the largest sphere will intersect

2Jrn

the region only at point (L 0, 0) and will

2Jn

thus have radius L Thus 4 will be maximum

2Jn

k
if x=—=, y=2z=0 (all of the wire goes into
24 ®

the circle). The smallest sphere will be tangent to
the triangle. The point of tangency is on the
normal line through the origin,

(x, ¥, z) = t<\/; 2, 2). Substituting x = Jr,
y = 2, z=2 into the equation of the plane yields

so the minimum value of

kJn

the value 1 = ——,
2(m+8)

A 1s obtained for the values of x =

2(n+8)’
y=z= . Thus the circle will have radius
T+
kvn ]
2(n+8
(:7: A 0 k 5’ and the squares will each
T n+

instructor's Resource Manual



have sides . Therefore, the circle will use

(n+8)

units and the squares will each use

units.
(n1+8)

[Note: sum of the three lengths is £.]

(n+

33. Without loss of generality we will assume that

a £ f <y. We will consider it intuitively clear
that for a triangle of maximum area the center
of the circle will be inside or on the boundary
of the triangle; i.e., @, 8, and y are in the

interval [0,7]. Along with a+ f+y = 2n, this
implies that ¢+ f 2 m.

Domain of A

The area of an isosceles triangle with congruent sides of length r and included angle 8 is %rz sin 4.

Area(AABC) = %rz sina -k%r2 sin g +%r2 siny

] rz(sina +sin f+sin[2n - (a + F)]

%rz[sina +sin f-sin(a + B)]

Area(A4BC) will be maximum if (*) A(a. B) =sina +sin f-sin{a + B)

Restrictions are 0<a < f<n and a+f2n.

Three critical points are the vertices of the triangular domain of A4 :(g,%
for others.

Ad(a, B)= (cosa -cos(a+ B), cos f — cos(a + A)=0if

cosa = cos(a + ) =cos f.

Therefore, cosa = cos 3,50 a = f [due to the restrictions stated]. Then

2 2
cosa =cos(a+a)=cos2a =2cos“a—1, so cosa=2cos"a-1.

Solve for a: 2cos’a-cosa—1=0:; (2cosa +1)cosa-1)=0;

1 27
cosaz—; or cosa=l:a=T ora=0.

2n 2n

373
There are no critical points in the interior of the domain of 4.

(We are still in the case where a = f.) [ ) is a new critical point,

On the B =mn edge of the domain of 4;
A(e) = sina —sin(a — ) = 2sina so A'(a@) = 2cosa.

Al@)=0ifa= % [-TZE n) is a new critical point.

On the B =mn—a edge of the domain of 4:
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is maximum.

), (0, ®), and (i, m). We will now search

but (0, 0) is out of the domain of 4.
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A(a) = sina +sin(n —a) —sin(2a — 1) = 2sina +sin 2a, so

A(a)=2cosa+2cos2a = 2[cosa +(2cos2 a-1)]=2Q2cosa-1)cosa+1l).

. I n
A'(a)=0 if cosa = or cosa =-1, so a=§ ora=r.

P4

T 2n . .
=,=— | and (#,0) are outside the domain of 4.

3

[#5)

(The critical points are indicated on the graph of the domain of 4.)

a Jij A
HNERE
0 T 0
T T 0
2—3" % 3{3 Maximum value of 4. The triangle is equilateral.
3 7 2

34. If the plane through (a, b, c¢) is expressed as
1

111
4'B'C

owmmetens /(5] (35 5)](&)- e

To maximize ¥ subject to 4a + Bb + Cc =1 is equivalent to
maximizing z = ABC subjectto Aa + Bb+ Cc = 1.

Ax + By + Cz = 1, then the intercepts are ; volume

C= ]_aA_bB.soz= AB(l—aA—bB).
c c

vz =(l)<3-2aAB—b32, A—2bAB—aA2> 0ifd=—,
c 3a’
[—31— %) is the only critical point in the first quadrant. The second partials test yields that z is maximum at this
a
point. The plane is lJ:+Ly+—l—z =1l,0r Ze2iZos
da 3% 3¢ a b ¢

The volume of the first quadrant tetrahedron formed by the plane is [

(L@ 2

35. Local max: f{1.75,0)=1.15 39, Global max: f{1.13, 0.79) =f1.13,-0.79) = 0.53
Global max: f{-3.8,0)=2.30 Global min: f{-1.13, 0.79) = -1.13,-0.79)
=-0.53
36. Global max: f{0, 1) =0.5
Global min: fl0, -1) =-0.5 40. No global maximum or global minimum
37. Global min: A0, 1) =10, -1) =-0.12 41. Global max: f(3,3) = f(-3,3) = 74.9225

38, Global max: f(0,0)=1 Global min: f(1.5708,0) = f(~1.5708,0) = -8

Global min: f(2,-2)= f(-2.2)=¢" 42. Global max: f{1, 43, 0) =0.13
~0.00012341 Global min: f-1.82, 0) = -0.23
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43, Global max: f{0.67, 0) = 5.06
Global min: f{-0.75. 0) = -3.54

44. Global max: f{-5.12, —4.92) = 1071
Global min: f{5.24, —4.96) = -658

46 8 @)= [8051na+605m B +48sin(27 —a - B)]

= 4OSina +30sin B - 24sin(a + )
L(a.B) = (164-160cosa)'’? + (136 —120cos B)'/?
+(100-96cos(a + £))/2

b. (1.95,2.04)

e (2.26,2.07)

15.9 Concepts Review
1. free; constrained
2. parallel
3. gx,y)=0
4. (2.2)

Problem Set 15.9

1. (Zx, 2y) =l(y, x)
2x=Ay,2y=Ax, xy =3
Critical points are

(3, £43), £ (£3,£43) =

It is not clear whether 6 is the minimum or
maximum, so take any other point on xy = 3, for
example (1, 3). f(1, 3) = 10, so 6 is the minimum
value.

2. {y. x) =A(8x, 18y)
y=8Ax,x= 184y, 4x2 +9y* =36

3 2 3 2
Critical points are (— i—),(——, t—).
V2T 2 J

Maximum value of 3 occurs at (

;/N

2 T
3. Let Vf(x, y)=AVg(x. y), where

g(x, y)=x*+yt-1=0.
(8x-4y,~4x+2y) = ).(21:, 2y)
1.4x-2y=Ax

Instructor’s Resource Manual

45. Global max: f{2.1,2.1)=3.5

Global min: f{4.2, 4.2) = -3.5

2.-2x+y=2y
3. x2+y? =1
4.0 = Ax + 24y (From equations 1 and 2)
51=00rx+2y=0 4)
A=0: 6.y=2% (1)
1
7. x=t— 6,3
5 (6,3)
2
8. y=t—5 (7,6)
x+2y=0: 9.x=-2
10. y=t—  (9,3)
5
2
1]. X=— ]ng)
NG (
Critical pointS'( ) ( ! —2—)
B BSUB B

G-5) (59

fix, ) is 0 at the first two critical points and 5 at
the last two. Therefore, the maximum value of

fix,y)is 5.

(2x+4y,4x+2y) = A{1,-1)

2x+4y=A,4x+2y=-A, x-y=6
Critical point is (3, -3).

. <2x,2y,22) = 2(1,3,-2)

2x=2,2y=34,2z=-21,x+3y-2z=12
Critical point is (g —, -—].
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752

6 18 12 72 . ‘.
—, —, —— |=— 1s the minimum (e.g.,
f(7 7 7) 7 (2
f12,0,0) = 144).

. Let Vf(x, y, z) = AVg(x. y, z), where

glx, y.2)= 2x? +y2 -3z=0.
(4,-2,3) = A{4x.2y,-3)

1.4 =44
2.-2=22y

3.3=-34

4. 2x%+y?-3:=0
5.A=-1 3)
6.x=-1,y=1 5. 1,2)
7.z=1 (6.4)

Therefore, (-1, 1, 1) is a critical point, and

A=1, 1, 1)==3. (-3 is the minimum rather than
maximum since other points satisfying g = 0 have
larger values of /. For example, g(1, 1, 1) =0, and
AL 1L, 1)=5)

. Let/and w denote the dimensions of the base, 4

denote the depth. Maximize V(/, w, k) = Iwh
subject to g(/, w, h) = lw + 2[h + 2wh = 48,
(Wh,ih,iw) = A{w+2h.1+2h,2] +2w)

wh = A(w+2h), lh = A+ 2h), Iw= A2 + 2w),
Iw+2lh+2wh =48

Critical point is (4, 4, 2).

V(4, 4, 2) = 32 is the maximum. (V(11, 2, 1) =22,
for example.)

. Minimize the square of the distance to the plane,

f(x, y, 2)= x2 +y2 + zz, subject to
x+3y-2:2-4=0.

(2x,2y,2z) = A(1. 3, -2)
x=4,2y=34,2z=-24,x+3y-2z=4

Critical point is E E, —i . The nature of the
77 7

problem indicates that this will give a minimum

rather than a maximum. The least distance to the

1/2 172
26 4 8
lane i S - ={-| =1.0690.
P lS[f(77 7)] (7)

Let / and w denote the dimensions of the base. A
the depth. Maximize V(/, w, h) = Iwh subject to
0.601w + 0.20(/w + 2/h + 2wh) = 12, which
simplifies to 21w + Jh + wh =30, or

g, w, h)=2lw+lh+ wh-30.

Let VV (. w, h)=AVg(l, w, h):

(wh,ih,iw) = 22w+ h, 21+ h1+w).

1. wh=2A2w+h)
2.lh=21+h)

L hw=Al+w)
4.2lw+ lh+wh=30

Section 15.9

10.

S5.(w=Dh=24(w-1)
6.w=lorh=21

(1,2)

w=1:

7.1=2A=w (3)Note: w=0, forthenV =0.
8.h=44 (7.2)

9, A=§ (7.8,4)
10. I=w=+5h=2J5 9.7.8)
h=24:

11.A=0 (2)
12.1=w=h=0 (11,1-3)

(Not possible since this does not satisfy 4.)

(J§ Js. 2\/5) is a critical point and
v (V5. 5, 245) =105 = 22.36 3 is the

maximum volume (rather than the minimum
volume since, for example, g(1, 1, 14) = 30 and
K(1, 1, 14) = 14 which is less than 22,36).

Minimize the square of the distance,
flx,y.z2)= x? +y2 + 22, subject to

g(x, y, 2) =.t2y—22 +9=0.

(2x, 2y, 2:) = 1(2:9’, xz, - 22)
2x=2Axy, 2y=Ax?. 2z=_24,

xzy ~z249=0

Critical points are (0, 0, +3) [case x = 0]:
(t 2, -1, iﬁ) [casex#0,A=-1); and

(¢3§/2/9, -3o72, o) [case x# 0,4 % 1].

Evaluating fat each of these eight points yields 9
(case x =0), 10 (case x#0,A=-1), and

2
%%(%) (case x# 0,4 #—1). The latter is
the smallest, so the least distance between the

origin and the surface is 3?/% = 2.8596.

. Maximize f{x, y, z) = xyz, subject to

g(x, y, 2)= B2l + azczy2 +a

=0
(yz, xz, xy) = l<2b2(:2x. Zazczy. 202b22>

22,2 ;2,2 2

yz =2b%c%x. xz = 2azc2y, xy = 2a%b%z,
b2 x? + a2(:2y2 +a?b2z% = a2

Critical point is ( a b ]

BBSB
a b ¢ 8abc
V| —.—=, —=|=——=, whichis the
(\/3 V3 ﬁ) 3T
maximum.
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12.

13.

15.

Maximize W(x. y, z) = xyz, subject to

g(x, y, :)=£+X+i—l =0. Let
a b ¢
VV(x.y, z)=4Vg(x. y, z), so
|
iz, xz, xy)=A{—, —. —). Then
<) x)) <a b c>
Ax _Ay Az
a b
A # Osince A=0 would implyx=y=:=0
which would not satisfy the constraint.

(each equals xyz).

Thus. X =2 = 2. These along with the

a b ¢
a b c
constraints yield x=—. y=—, z=—.
3 3 3

The maximum value of V = a_bc

A different hint, which will be used here, is to let
Ax + By + Cz = | be the plane. (See write-up for
Problem 34, Section 15.8.)

Maximize flA4, B, C) = ABC subject to

g(A,B,C)=ad+bB+cC-1=0.

Let (BC,AC,BA4) = Afa.b.c).

Then BC = Aa, AC= Ab, BA = Ac,
aAd+bB+cC=1.

Therefore, lad = 1B = AcC (since each equals
ABC), so ad = bB = ¢C (since A = 0 implies

A = B = C=0 which doesn’t satisfy the
constraint equation).

Leta+ S+y=1,a>0, 4>0,and y>0.

14.

Then3ad=1,s0 A= i; similarly B = L and
3a 3b

1
C= 3— The rest follows as in the solution for
c

Problem 34, Section 15.8.

It is clear that the maximum will occur for a
triangle which contains the center of the circle.
(With this observation in mind, there are
additional constraints: 0 < a< 7. 0< 8< 1,
0>y< 7))

Note that in an isosceles triangle, the side
opposite the angle & which is between the
congruent sides of length r has length

2rsin [g) Then we wish to maximize

P(a, B, 7)=2r[sin[%]+sin('§J+sx (%H

subjecttog(a, B, ) =a+f+y-27=0 =0.

Let r<cos(%), cos(g), cos(§)> =2(L1, 1.
Then 4 = rcos(%) - rcos[—‘g) - rcos(%), s0

-p= B.r
arﬂy(smce2 2n.
2n

Jaa=2nm,s0 a=2Tn: then ,B=y=7.

Maximize P(x. y, z)= chayﬁz’. subjectto g(x. y. z)=ax+ by +cz-d=0.
Let VP(x, y. 2) = AVg(x. y, 2). Then (kax®"'yP =7 kBx® P27 kyx®yP27 ') = 2(a b, ).

Therefore, Aax _Aby A 2 (since each equals kx®yPz").
a B 7

A #0 since A=0 would implyx=y=

Therefore, Z. b = E(*).
a 4

The constraints ax + by + cz = d in the form a(£)+ ﬁ(—
a

a(ﬁ)+ ﬂ(£)+}'(£) =d. using (*).
a o a

Then (a+ﬂ+}’)(ﬂj=d, or £ =4 (since a+ f+y=1).
a a

rd
C

ﬂand =
b

x= ﬁ‘i(“‘): y=
a
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= 0 which would imply P=0.

J+ % (E) =d becomes
Y

then following using (*) and (**).
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16.

17.

18.

Since there is only one interior critical point, and since P is 0 on the boundary, P is maximum when

ad _pd_yd
a b c

Let (x, v, z) denote a point of intersection. Let
fix, y, 2) be the square of the distance to the origin.
Minimize f(x. y, 2)= x? +y2 +22 subject to
g(x,y,z)=x+y+z-8=0and
h(x,y.2)=2x-y+32-28=0.

Let Vf(x. y. z) = AVg(x. y. 2)+ uVh(x. y. 2).
(2x.2y,22) = 2(1L11) + u(2.-1,3)

1. 2x=4+2u

22y=A-u

3.2z2=A+3u

4.x+y+z=38

5.2x-y+3z=28

6.3A+4u=16 (1,2.3,4)

722+ Tu=28

8.A=0,u=4 6.7)
9.x=4,y=-2,z=6 (8,1-3)
f4,-2, 6) = 56, and the nature of the problem
indicates this is the minimum rather than the
maximum.

Conclusion: The least distance is \/33 =~ 7.4833.

(-1.2,2) = A{2x,2,0) +p(0,1,2)
S1=24x2=2Ay+p, 2=2u xE 4yt =2,
y+t2z=1

Critical points are (=1, 1, 0) and (1, -1, 1).
fi-1,1,0) =3, the maximum value;

A1, -1, 1) = -1 the minimum value.

a. Maximize
W(X), X1 cvus Xy ) = X)X ey Xp. (X7 > 0)
subject to the constraint
g(x), X3, ooy Xp) =X+ X ..+ X, —1=0.Let
VWX, X3, .evs X)) = AVE(X), X3, el Xp)-
(%30 -%p, XX3.00 X, X)
Therefore, Ax; = Axy =...= Ax, (since each
equals xjx,...x,). Then xy=x =...=x,.
(If A=0,some x; =0, sow=0.)

Therefore, nx; = 1: x; = l
n

n
. (1
The maximum value of w is (— , and occurs
n

1
when each x; =—.
n

754 Section 15.9

)= AL L ).

] n
b. From part a we have that xx;...x, € (—) .

n
1
Therefore, ",/x,xz...x,, <-—.
n

a; .
=—L for each i, then

19. Let (), a, ...a, ) = A(2x), 253, 0. 2%,).

20.
21,

22,

Therefore. a; =22x;, foreachi=1,2,....n
(since A =0 implies a; =0, contrary to the
hypothesis).

. ¥
% =7 forall ij (since each equals —l)
a; aj 24

The constraint equation can be expressed

2 2 x 2
x x
af| | +a3| 22 +o.+a| 2| =1
a az ay

2
x
Therefore, (a|2 +a§ + .. +a,2,)(_1) =1.
aq

af

xlz = - similar for each other x;z.

2
ay +...+a,

The function to be maximized in a hyperplane
with positive coefficients and constant (so
intercepts on all axes are positive), and the
constraint is a hypersphere of radius 1, so the
maximum will occur where each x; is positive.
There is only one such critical point, the one
obtained from the above by taking the principal
square root to solve for x;.

Then the maximum value of w is

a) ar a, A J—
a| == |+a;| == |+...+a,| = |=—F==V4
'(ﬁ] Z(ﬁ] (&) 4
where A=a|2+azz+...+a,2,.

Max: -0.71,0.71) = f-0.71, - 0.71) = 0.71
Min: f{4,0)=—4

Max: f{1.41, 1.41) = fl-1.41, -1.44) = 0.037

23. Min: f{0, 3) = A0, -3) = -0.99
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#  15.10 Chapter Review
Concepts Test

1. True: Except for the trivial case of 2 =0,

which gives a point.

2. False:  Usef0,0)=0; f(x, y)= 2"” ;
x‘+y
elsewhere for counterexample.
3. True Since g'(0) = £;(0, 0)
4, True It is the limit along the path, y = x.
5. True Use “Continuity of a Product”
Theorem.
6. True Straight forward calculation of partial
derivatives
7. False: See Problem 25, Section 15.4.
8. False: It is perpendicular to the level curves
of f. The gradient of
F(x, y, 2) = fx, y) — z is perpendicular
P to the graph of z =f(x, y).
9. True: Since (0, 0,—1) is normal to the
tangent plane
10. False: C% : For the cylindrical surface
f(x. )=, fip)=0foreveryp on
the x-axis, but f{p) is not an extreme
value.
11, True: It will point in the direction of greatest
increase of heat, and at the origin,
VT(0, 0)=(1, 0) is that direction.
12. True: It is nonnegative for all x, y, and it has
a value of 0 at (0, 0).
13. True: Along the x-axis, f(x, 0) — o as
X —> 1o,
14. False:  |Dyf(x »)|=|(4 4)-u|<4V2
- 1
(equality if u = (—) L1
eq N;] (L1)
~ 15. True: =Dy f(x, y) =-{Vf(x, y)-u]

=Vf(x ) (-u)=D_, f(x, ¥)
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16.

17.

18,

19.

20,

1.

True: The set (call it S, 2 line segment)

contains all of its boundary points
because for every point P notin S
(i.e., not on the line segment), there is
an open neighborhood of P (i.e., 2
circle with P as center) that contains
no point of S.

True: By the Min-Max Existence Theorem

False: (xg, Yo) could be a singular point.

False: f (; 1) =sin (g) =1, the maximum
value of f, and (7 /2, 1) is in the set.

False: The same function used in Problem 2

a.

provides a counterexample.

Sample Test Problems

x% +4y% 10020

] LR

& | I |
R - .
i » -IOF - -
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10.

756

;

folx y) =12 +14xy"
foc(x, y) =36x2p% +14y7
foy(x, ¥) =245y +98°

fi(x, y) = —2cosxsinx = —sin2x
S (X, ¥)=-2xc0s2x

Sy (x. y)=0

fe(x, y)=e¥sec? x

Sc(x, y)y=2¢7 sec? xtan x

Sy )=—€"” sec® x

fe(x, yy=-€e"siny

S (x y)=€""siny

S (x, y)=—e"cosy

Fy(x, y)=30xy® -7
Fyy (x, y) =150 y* - 42x°
Fype (x, ) = 450x%y* —42y°

fulx, y, 2)=y* ~1002"
1y(x, y, 1) =30% —5x%2"

fi(x, y, 2) = =20y

Therefore, f,(2,-1,1)=19;

£, -L ) =-14; £,(2,-1,1)=80
_Y _2_

zy(-xv }’)—'2_ Zy(z, 2)—5—]

Everywhere in the plane except on the parabola
2
x° =y

Section 15.10

11.

12.

13.

14.

15.

No. On the pathy =x, hm——O On the
0x+x

-0
thy=0, i . )
Py = S x+0

x2 —2y_4 4

a. lim
2 Dx2+2y 4+4

.. -4
b. Does not exist since | ——|.
-0

(% +2y")(x% - 2y%)

c. lim
(x. »)-(0,0) 22 +2y°
= lim (x - y2) =0
(x, y)—=(0,0)

a. Vf(x,y,2)= <2xyz3, X223, 3x2yzz>
£(1,2,-1)=(-4.,-16)

b. Vf(x, y,2)
= <y2zcosxz, 2ysin xz, xy2 cos xz)
V£ (1, 2, -1) = —4(cos(1), sin(1). —cos(1))

= (~2.1612,-3.3659,2.1612)
D, f(x, y) =<3y(1+9x2y2)'1, 3x(1 +9x2y2 )'l>-u
12\ /¥3 1
Puf G- D)= (ﬁ 5‘77><75>
(3v3-6)

577

= -0.001393

z= f(x, y)=x2 +y2
(l, - \/5 , 0> is horizontal and is normal to the

vertical plane that is given. By inspection,
<\/§ L 0) is also a horizontal vector and is

perpendicular to (l. - \/5 , 0) and therefore is

parallel to the vertical plane. Then u = <12—3— %>

is the corresponding 2-dimensional unit vector.
Dy f(x. y)=Vf(x, y)u

=(2x, 2y )<‘/— > Vx+y

D,f(1,2) =3 +2=3.7321 is the slope of the
tangent to the curve.
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16. In the direction of Vf(l. 2) = 4(9. 4)

" x2 )’2
17. a. 4,1)=9,s0 —+ =9, or —+—=
R4 D= 2 v 18" 9

b.  Vf(x, y)={x.2y).s0 f(4.1)=(4,2).

18. F.=Fu,+Fy,

_ v y u 1
T eudy 2\/,1; 1+u?v? 24x
_ wy+tu

T2+ uv W

Fy=Fu,+Fyv,

u

v X -1
= +
1+u3? 20y 14032 2y

__wx-u
21+ uv )J—
2 F_39b_ 5492 _,
dt dr dt

Area = A(b.c, a) = [%)c(bsin a)

19.

20.

21.

1= i iy =125 Joo

v
= x—zy_lz’l(x2 +3y-4z2)

Sy = futty + fivy = (’)(—3)+[—v%)(xz)

=—x"'y 2 (x4 42)

So= L+ [y, = (l)(‘i)""(‘%‘](xy)
\4

v
dF _Fdsx Fdy

dt x dt y dt
= (3x% = Y2 )(=6sin 31) + (<2xy - 4y> Y2 cos?)

t=0 = x=2andy=0, so [d—FJ
dt =0

F=Fx+ Fyy, +F,z,

_(100Y( 32 [ 56% )1 15xy S
(% )(z)“[z—s(:)* R

15xy\/_ 5x2 45x2ye3'

23 23f Z4

dA by, . de cy, . db b da
- [(E)(sm a)(—‘;l—)+ (5] (sin a)(z) + [EJ(bc cosa)(E—)]

dt

(‘1_") - (7_+4_‘/—3_) ~6.9641 in.2/s
8,10 ) 2

23, Let F(x, y, z)=9x> +4y> +9z2 -34=0

VF(x, y, z) =(18x, 8. 18z), so Vf (1,2, -1)=2(9, 8, -9).
Tangent plane is 9(x — 1) +8(y —2) —9(z+ 1) =0, or 9x + 8y - 9z = 34.

2. V=nrlh dV =V.dr+Vydh=2nrhdr+nr’dh
Ifr=10, |dr] £0.02, h=6, |dh|=0.01, then

|a¥| < 2nrh|dr|+nr? |dh| < 27 (10)(6)(0.02) + 7 (100)(001)=3.4 7
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25,

26.

27

28,

758

1(10. 6) = 7 (100}(6) =6007
Volume is 6007 £ 347 =~ 1884.96 + 10.68

df = Y21+ 28 e+ 201+ 22) " dy - 2% 2(1 4 2%) P dz

Ifx=1.y=2,z=2 dx=001.dy=-0.02,dz=0.03, then df = -0.0272.
Therefore. f{1.01, 1.98, 2.03) = f{1.2,2) +df = 0.8 - 00272 = 0.7728

Vf(x, y)= <2xy—6x, x* - l2y> =(0, 0)
at (0. 0) and (6, 3).
D= fufyy - 3 =2y -6)(-12)-(2x)}

=4(18-6y-x%). fr =2y-3)
A1(0,0): D=72>0and f,, <0, so local

maximum at (0, 0).
At (26, 3): D <0, so (£6, 3) are saddle points.

Let (x. y, z) denote the coordinates of the 1st
octant vertex of the box. Maximize

Ax, y, 2) = xyz subject to

g(x, y. 2)=36x% +4y* +9z2 -36=0
(where x, y, z> 0 and the box’s volume is
Vix,y, z) = fix. y. 2).

Let Vf(x, y. z)=AVg(x, y, 2).

(yz,xz, xy) 8= A(72x, 8y,1 82)

1. 8yz=72Ax
2. 8xz =84y
3.8xy =181z
4. 36x* +4y? +922 =36
yz T2Ax 2 2
5. %= : =9x%. 1,2
xz 81y Y * (.2)
6. o PAX o 24y (1,3)
xz 184y
7. 36x2 +36x2 +36x2 =36, 50 x = —=.
NEY
(5,6, 4)
3 2
8. y=—=,z=—% (1.5, 6)
Y= 3
2
&5 5 EEE
3733 sABAS
16
=— =9.2376
NG

The nature of the problem indicates that the
critical point yields a maximum value rather than
a minimum value.

(For a generalization of this problem, see
Problem 11 or Section 15.9.)

(y,x) =/l(2x,2y)
y=2Ax=24y, x* +y =1

Section 15.10

29,

1 1
Critical points are | —, *—=| and
P [Ji JE)

(*ﬁ’%}

+

Si- 8-

). Maximum of% at

I+

- 5~ -

+

. . 1
: minimum of —5 at

Maximize V(r, h) = nrzh, subject to

S(r, h)= 2nr +2nrh—24n =0,

(2rh,2r?) = 2(azr + 22h,227)
rh=AQr+h),r=22, rPerh=12

Critical point is (2, 4). The nature of the problem
indicates that the critical point yields a maximum

value rather than a minimum value. Conclusion:
The dimensions are radius of 2 and height of 4.
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