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Instructor's Manual
Solutions to Exercises

Chapter 0

1. Using MATLAB:
a. 2*x*cos (2/x) + 2*sin(2/x)

b. v (x* + vy x +y
—f mm—me——— + B ==—mm—————— - 2 emmmm————
(y'-x)* v - x)’ v - x)*
c. -exp(-x)*cos(b*x"2) - 2*exp(-x)*sin(b*x"~2) *b*x
d. 1/y°

2. From the TI92:
a. 2cos(2/x)x + 2s8in(2/x)

b. 2(y + 3y'¥x + 3yx + xX)

c. -e“cos(bx') - 2bxe’sin(bx")
da. 1/y°

3. Because the tick marks are spaced apart by 0.2, reading the zero is not
more accurate than estimating the minimum from Fig. 0.2. Using Fig 0.2 is
preferred because it avoids having to find the derivative.

4. On the TI92, there are no tick marks on the x-axis to use to estimate
the zero, but the correct zero can be found through F5, 2. It is similar
on the HP48G.

* An asterisk by the exercise number indicates the solution is in Answers
to Selected Exercises.
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5. This is a 3-D geometry problem. While it is possible to write
expressions that give L as a function of angle c, then solve dL/dc = 0,
there is better alternative. Project the ladder against ground level;
Figure 0.1b then represents this except Ll and L2 are now the lengths of
the projection. We observe that the maximum length of the tipped ladder
corresponds to the maximum length of the projection. Hence the optimum
angle is the value that maximizes L1 + L2: ¢ = 0.4677 radians as before.

We then compute the maximum length of the tipped ladder as the
hypotenuse of a right triangle with sides equal to 33.42 and 6 ft: 33.95
ft (about 6.4 in. longer).

6* L = 181.557

7. Answer is system dependent.

8. Answer is language dependent.

9* There is an endless loop at TOL = 1E-8. Stop with "BREAK".

10. Add, at end of program:
L=9 / SIN(.9946 - X3) + 7 / SIN(X3)
Ll =9 / SIN(.9946 - X1) + 7 / SIN(X1)
L2 = 9 / SIN(.9946 - X2) + 7 / SIN(X2)
PRINT "THE LENGTH OF THE LADDER IS ";
PRINT USING "##.#### "; L; " +/- ";
PRINT USING ".#### "; ABS((L1l - L2) / 2)

11.
a. From [-3,-4]: -3.221472, 19 iterations, TOL = 1E-6
From [-6,-7]: -6.279436, 19 iterations, TOL = 1E-6
b* From [0,1]: 0.453398, 19 iterations, TOL = 1E-6
c. From [1,2]: 1.850615, 19 iterations, TOL = 1E-6
From [3,4]: 3.584627, 19 iterations, TOL = 1E-6

12. Endless loop at TOL = 1D-17.
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13. Using the TI92,
a. From the graph: -6.279436, -3.22147
b. From F2, 1 (solve): 0.4533976
c. From the graph: 1.8506156, 3.5846277
Results from the HP48G are the same.

l4a. .12345678E4.

b. -.1020304E-2.
.1234567890E10.
d. .1E-8.

n

15a. 655,361 (includes zero).
b. .EFFF*16° = 983024,,.
c. -.EFFF*16° = -983024,,.
d. .1000*16™" = .95367E-6
e. -.1000*16™" = -.95367E-6.

l6*a. 180,001 (includes zero).

b. .9999Es.
c. —.9999E5,
d. .1000E-4.
e. -.1000E-4.

17. Answer is system dependent.

1g* Chopped Rounded
a. .123E2 .123E2
b. -.319E-1 -.320E-1
e. .I22E2 .123E2
d. -.288E3 -.289E3
e. .130E3 .130E3
f. -.156E5 -.156ES5
g. .123E-6 .123E-6

19. Answer is system dependent.
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20. Answer is system dependent.

21. Answer is system and language dependent.

h2- Chopped Rounded

abs err rel err abs err rel err
a. .0234 .00190  ----- Same -----
b. -.00126 .0395 = ——e—- Same -----
c. .0766 .00624 -.0234 -.00191
d. -.9 .00312 i | -.000346
e. .284 .00218 @ -——--- Same -----
£. -20.4 .00131 @ -———- Same --—---
g. .9E-10 .123E-6  -——-- Same ---—-—-

23. For the TI92: adding 1E-13 > 1.0, but adding 1E-14 gives 1.0. (The
result must be brought to the entry line to see this.) For the HP48G,
adding 1E-11 > 1.0, but adding 1E-12 gives 1.0. Both results agree with
the stated internal precision of the calculators.

24* Exact value = -1.297387.
Chopped, 3 digits gives -1.31,
abs, rel err = .0126, -.00972.
Rounded, 3 digits gives -1.30,
abs, rel err = .00261, -.00201.

25. Chopped, 3 digits gives -1.31,
abs, rel err = .0126, -.00972.

Rounded, 3 digits gives -1.30,
abs, rel err = .00261, -.00201.



Chapter 0 5

26. Chopped, 3 digits gives -1.32,

abs, rel err = .0226, -.0174.

Rounded, 3 digits gives -1.30,
abs, rel err = .00261, -.00201.

27. Using QBASIC, single precision:

True 00 0@ ————e———— Amount added ------------
sum 0.001 0.0001 0.00001
2 1 0.1 0.1000011 0.0999915
0.2 0.2000002 0.2000028 0.1999783
0.3 0.2999997 0.2999970 0.3000396
0.4 0.3999984 0.3999838 0.4001754
0.5 0.4999971 0.4999706 0.5003111
0.6 0.5999959 0.5999872 0.6004469
7 0.6999946 0.7000038 0.7005827
0.8 0.7999933 0.8000204 0.8007185
0.9 0.8999920 0.9000370 0.9008543
1.0 0.9999907 1.000054 1.000990
abs err 0.93E-5 -0.54E-4 -0.99E-4

28* The series converges because, for very large N, 1/N evaluates as zero.
29. The answer is system dependent.

30. If f(x) is discontinuous, it may change sign but have no root within
[a,b].

31* The answer depends on the spacing of the roots. If evenly spaced, we
obtain the middle one. Closely spaced roots act like a multiple root. If
f(x) > 0 beyond x = b, the root found tends to be larger than the middle
one.
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32. There are many examples. A typical one:

f(x) =1 + %/2 - %,
Starting with [1,2], the fifth iterate has a smaller error than the sixth.
Also the eleventh has a smaller error than the twelfth.

33. Answer is system dependent.
34. Since successive computations depend on the previous one, parallel
processors cannot help (except they may speed the evaluations of the

function).

35* Parallel processing is applicable when iterate n+l1 does not reqguire
the knowledge of iterate n.



Chapter 1 9

Chapter 1

1. After eight iterations, x, = 1.05078 (error 0.000735). The actual error
is always less than the bound. The error does not always decrease: the
error after five iterations is larger than after four.

2. Intervals are [-e,0.6], and [0.4,]. Starting with [0.5,1], we get
x3 = 0.615625. Error bound = 0.00781; actual error = 0.00156.

3* A graph indicates a root near -1.5. Beginning from [-2, -1], root is
-1.491644 in 19 iterations, tol = 1E-6.

4. Root Start from Iter. Rel acc
a 0.328125 [(0.3,0.5] 6 0.15%
b 1.390625 Fl; 1.5] 5 0.34%
c. 0.446875 [0.3,0.5] 6 0.39%
d 6.723294 [6.5,6.9] 3 *

* First iterate = 6.70, rel error = 0.34%, but next has error of 1.14%.
From iterate #3 on, error always < 0.5%

5. Roots at 1.222032, 1.649883, 1.774114, 1.833272.

6. Root Start from Iterations
a. 1.292696 L3 5] 3
b. 0.6180399 [0;0.9] 3
c. 0.244525 [0;0.5] 3
d. f(x) has no real root
7 e Root Start from Iterations
a. 1.292696 2 U R 6
b. 0.6180399 [0,0.9] 14
c. 0.244525 1050257 7
d. f(x) has no real root
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8. The plots intersect near x = 4.5, y about 56. Using regula falsi from
[4, 5], x = 4.53786 after 8 iterations, tol = 1E-5. The secant method,
from [4, 5] gets the same value in 5 iterations, tol = 1E-5. Substituting
this value into either equation gets y = 55.7978.

9. Bisection is slower because it doesn't recognize when an iterate is
near the root. Linear interpolation (Regula Falsi) can get "hung up" near
one end of the interval because it must always bracket the root.

10. Program.

11. Newton, starting with x = 1, gets 0.494193 in 4 iterations; this has a
relative error of 0.030%. The number of correct digits is:

Iter #: 1 2 3 4 5
No. digits: 0 <1 1+ 3 6

Bisection, starting from [0,1] gives results with these relative errors:
Iter #: 8 9 10 11 12 14

% rel error: 0.414 0.019 0.178 0.079 0.030 0.005

12 Start value Number of iterations required
for Newton's ———-mmmcmmmmmm -
Newton Bisection Reg. Falsi Secant

a 1 2 5 6 3
b. 0 3 6 14 3
. 0 2 8 7 3
d. (No real root).

13* Let f£(x) = x* - N =0, so f'(x) = 2x. Then:
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14. For N'?: x = ———-mcoeeo—v .

Por M™: 30 = sbsliocadsboo )

4
A+ B
15. If N = A*B, let x, = A, N/x, = B, then X, = ==—==- 3
2
(A + B)/2 + 2N/(A + B) A+ B N
X, & mmmmm e = mm—ee 4+ —————
2 4 A+ B

16. It is easiest to show this by an experiment. For N = 3:

A B A/B |Actual error| |Expression|
L5 2.0 Q=75 9.200E-5 5.206E-5
1.6 1.875 0.8533 8 .552E-6 4.903E-6
L. 1.763 0.9633 3.109E-8 1.521E-8
1.8 1.667 1.080 4 .457E-7 2.735E-7
1.8 1.579 1.203 1.582E-5 9.066E-6
b E 1.429 1.470 2.945E-4 1.639E-4
f2uD el 2.083 3.760E-3 1.905E-3
3.0 1.0 3.000 1.795E-2 7.812E-3

The error expression is conservative in this example.

17. From f(r) = £(x) + (x - r)f'(x), solve for r: r = x + Al £f ) IE

more terms are included, we can get the error term).

18* From x, = 0.9 or 1.1, converge in 3 iterations with x-tol = 1.E-6. From
X, = -0.9 or -1.1, it takes 18 iterations with x-tol = 1.E-6.
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19. The secant method, from [-0.9, -1.1], gets the root within 0.0004 in 9
iterations while Newton, from [-0.9], takes 13 iterations to achieve this
accuracy. Secant works well here because the function is nearly straight
near x = -1.

20*% f'(x) = 0 at x = -1.0 and x = 0.5.

2la. £'(x) = 0 at x -0.888912, -3.931893, -5.49672, and other negative

values.
b. £'({x}) =0 at x = 0.793700
c. £'(x) =0 at x = 0.0
d. £'(x) = 0 at x = -0.301220, x = 0.435335

22a. +1.414211i in 4 iterations, starting with x = i.
b. -0.5437, 0.7718 £ 1.115i in 3 iterations, starting with 1 + i.
c. 1, -0.4450, 1.2470, -1.80193 (there are no complex roots).
d. 0.4314 + 0.9786i in 3 iterations, starting with 0.5 + i.

23a. Errors are: 0.000533, 0.000001, 0.000000, starting from
[0.8,1.0,1.2].

b. Errors are: 0.000768, 0.000002, 0.000000, starting from
[6.0,6:2,6:4]-

Another root is at x = 1.173745.

c. Errors are: 0.000446, 0.000001, 0.000000, starting from
[3:5,3.7,3.9]-

d. Errors are: 0.000687, 0.000005 0.000000, starting from [4.1,4.3,4.5].

24* For parts (a), (b), and (c), Muller's method does get the root closest
to zero starting with [-0.5,0,0.5]. In part (d), [-0.5,0,0.5] fails but
[-1,0,1] works. There are cases where this technique does not find the
smallest root, such as for f(x) = (x + 0.3)(x - 0.2)(x - 0.3), or when
there is a root near to -0.5 or +0.5 in addition to a smaller root.
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25a.

26*

First root = -0.618034; then, after deflating, -1, 1.618034.
[-0.5,0,0.5] doesn't work to start (parabola doesn't cut axis).
[1,2,3] gives 1.648844; deflation fails because other roots are
complex.

First root = 0.2395827; then, after deflating, 1.4896300, -1.590191,
and 1.8019873.

If the parabola doesn't cut the x-axis, an attempt is made to get the

square root of a negative number. Try different starting values.

27a.
b.
c.
d.

28.

29 .

3%

[2,2.0001,2.0002) fails but [1.5,1.50001,1.50002] is OK.
[4,4.00001,4.00002] fails but [4,4.0001,4.0002] is OK.
Close spaced values near zero give a negative root.
Close spaced values near 2 fail.

Same answers as in Exercise 22.
V(e*/3) converges in 16 iterations to 0.91001 from x = 0.
-V(e*/3) converges in 9 iterations to -0.45896 from x = 0.

1n(3x%") converges in 17 iterations to 3.7331 from x = 3.

Converges to 0.618033 in 12 iterations. Acceleration gives 0.618034

after six iterations.

3.

After 18 iteratioms, result is 0.61803399. With acceleration, this

value reached after 6 iterations.

32

33*

34,

Converges for all starting values but to the positive root.

Starting from x = 1.2:

(1) ((6+4x-4x%) /2)"", 26 iterations (6 if accel).
(2) ((6+4x-2x") /4)**, 23 iterations (6 if accel).
(3) ((6+4x)/(2x+4))"*, 4 iterations (3 if accel).

None of the functions of Exercise 33 work to get roots near -2.3 or
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-0.9. However:
(2x’+4x’-6) /4 will get the root at -1.0;
(6-4x") / (2x-4) will get the root at -2.30177.

35, P(x) (x + 1) (x - 1.4)(x* + 5x + 10).

36* P(x) = (x + 4.56155) (x + 0.438447) (2%x* - 3x + 7).
(Roots of quadratic: 0.75 + 1.71391i).

37. Program.

38. Deflate from Roots obtained Avg. Error
x = 1.44504*.99 -0.246980, 2.80194 0.3808E-5
x = 2.80193*.99 1.44504, -0.246980 0.4048E-5
x = -.246979*_99 2.80194, 1.44504 0.1784E-5

The effect is surprisingly small.

39% Change in coefficient Max change in any root
2.00 -> 2.02 0.73%
7.00 -> 7.07 0.56%
4.00 -> 4.04 0.71%
29.00 -> 29.29 0.80%
14.00 -> 14.14 0.89%

40. Unless the sequential program is written specifically to take
advantage of the zero coefficients, parallel processors will speed up the
computation just as much.

41. Continued synthetic division does not give the higher derivatives
directly, but the remainders divided by n! give P"(a).

42. Quadratic factors are: (x'+2.2x-3.7), (x*-1.3x+3.2).

Roots are -3.315852, 1.115852, 0.65%+1.666583i.

43* (x' - 1.5x + 4.3) (¥ - 4.2x + 16.1);
(Roots: 0.75 + 1.933261, 2.1 + 3.41911).
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44. Roots: -1, 1.50122, -2.55061 + 2.0378i

45* (x* - 1.5x + 3.5) (2x" + 10x + 4);
(Roots: 0.75 + 1.7139i, -4.5616, -0.43845).

46. Six iterations required from [R,S] = [0,0] with tolerance on
AR, AS = E-6. Modulus of roots = 1.

47. Steps in the algorithm:
Get degree of polynomial, the coefficients, and starting values
for R and S from user.
Set up b and c arrays according to equations in Section 1.8.
Repeat:
Repeat:
Compute partial derivatives, ob/dr, db/ds,
Compute AR, AS, reset R, S,
Until Ar, AS < tolerance;
Print a factor.
Reduce polynomial,
Until degree = 2 or 1.
Print last factor.

48. Program.

49 a* After convergence, q's give roots: 1.8012, -1.2462, 0.4450.

b* There are two real roots: -0.6475 and -3.5526 and a quadratic

factor:
2

® = 2.1x + 3.1,
c. After 100 iterations, quadratic factors are:
2

X = 1.7183x + 4.5942 and x* + 2.7183s + 3.9667.
The true factors: x* - 1.7x + 4.6 and ¥ + 2.7x + 4.1

50. QD fails, gives division by zero even when roots are perturbed. QD
always fails if all coefficients are of the same magnitude!
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51. Steps in the algorithm:
Get degree of polynomial, coefficients from user.
If any a, = 0, perturb a's until no a = 0.
Compute initial row of g's and e's.
Repeat:
Compute new rows of g's and e's
Until values stabilize.
Have user read real roots from last row of q's; have user get
quadratic factors (and complex roots) from last two rows of are.

52. Graeffe's method gives magnitude of real roots easily
(0.64742, 3.5526 here), but converges more slowly to magnitude of the
complex pair (1.7606 here).

53* From -1, get -0.64742; from -4, get -3.5526. As described, Laguerre's
method does not get complex roots.

54. Bisection cannot get a double roots because the function does not
change sign at the root. This is true for any roots of even multiplicity.

55. The secant method can get both roots if starting values are fairly
close to the root. From (0,4), immediately get root at x = 3 because the
secant line crosses the x-axis at that point.

56. Newton's method "flies off into space" from x = 2. From x = 2.9, there
is linear convergence to the root; errors decrease in the ratio of 273

57* with TOL = 1E-6, Bairstow's method gives complex roots but with very
small imaginary parts. Real parts are 1, 2.99377; last real root is
-3.012453. This suggests that propagated errors are significant in this
example.

58. Starting values that are symmetrical about x = 1 gives the root at
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x = 1 immediately. Starting values far from x = 1 fail (such as -2,-1,0).
Starting values near x = 3 converge but convergence is slow unless they
are

symmetrical about x = 3. If starting values are all greater than x = 3,
the method fails.

59. The convergence is quadratic for both roots.
Starting from x = 1.8, with k = 2, errors are 0.2, 0.024, 0.004194.
Starting from x = 3.3, with k = 3, errors are 0.3, 0.024, 0.000188.

60* Starting from x = 1.2, errors are 0.2, 0.03636, 0.00103.
Starting from x = 3.3, errors are 0.3, 0.0224, 0.000172.
Quadratic convergence is seen in both cases.

6la. Errors: 0.09, 0.0405, 0.0162, 0.00503, 0.00084, 0.0000325,
0.0000000509. Conclusion: At start, convergence is faster than linear
but not quadratic; as root is approached closely, it becomes
quadratic.

b. Same conclusion as in part (a).
c. Iterates "fly off to infinity."
d. Same as part (c).

62. Root = 2.618014. Errors: 0.38199, 0.11450, 0.01398, 0.0002401,
0.00007236; convergence is quadratic.

63. Because slope of curve is -1.2735; at x = 3, slope is -23.05.

64* Slope at x
Slope at x

2.05 is -0.7886; converges to root at 0.
2.00 is -0.3561; converges to root at 9.41756.

]

65a. Regula falsi from [2,3) gives root = 2.618014, 19 iterations.
b. Secant from [2,3] gets this root in 9 iterations.
c. Muller from [2, 2.5, 3] gets it in 4 iterations.

66. One possibility: f(x) has a small jump discontinuity just to right of
the root.
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67a. starting from x = 1.1: errors are 0.1, 0.04737, 0.02311, 0.01142,
0.005677, 0.002830; linear convergence.
b. Starting from x = 6.5: errors are 0.2168, 0.1080, 0.05394, 0.02696,
0.01348, 0.006740; linear convergence.
c* Starting from x = 0.1, errors are 0.11, 0.06719, 0.04503, 0.03013,
0.02014, 0.01345; linear convergence.

68a. Using the derivative function, starting from x = 1.5, errors are 05,
0.125, 0.00781, 0.000305; quadratic convergence.
Using the k-factor, starting from x = 1.5, errors are 0.5, 0.1,
0.004762; quadratic convergence.
b. Using the derivative function, starting from x = 6.5, errors are
0.2168, 0.001695, 0.000000108; guadratic convergence.
Using the k-factor, starting from x = 6.5, errors are 0.2168,
-0.0008534, 0.000000107; quadratic convergence.
¢. Using the derivative function, starting from x = 0.1,
errors are 0.1, -0.00149, -0.0000003747; quadratic convergence.
Using the k-factor, starting from x = 0.1, errors are 0.1, 0.001559,
0.0000004044; guadratic convergence.

69. Starting from x = 0.5, errors are 0.06351, 0.0005122,0.0000000298;
faster than quadratic.

70. Using x = fzero('cos(x)-x*sin(x)',1): 0.8603

71* The soLve command does not find the roots, but using NEWTON as listed
in Section 10.1 of the DERIVE manual on programming finds a root at
0.86033 after three iterations from x = 1. (From x = -1, a root at -
0.86033 is found in three iterations.)
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72. Both MATLAB and DERIVE find -0.61803 and 1.61803.

73.This M-file (named secant.m) does it:
function rtn = secant(fx,xa,xb,n)
% does the secant method n times
x=xa; fa=eval (fx);
x=xb; fb=eval (£x)
if abs(fa)>abs(fb)
xc=xa; xa=xb; xb=xc;
x=xa: fa=eval (fx); x=xb; fb=eval (fx);
end % of the if
for i=1l:n
xc=xa-fa* (xa-xb) / (fa-fb); x=xc; fc=eval (fx);
X = [i,xa,xb,xc,fc];
disp(X)
xa=xb; x=xa;fa=evl(fx);
xb=xc; x=xb; fb=eval (fx);
end % of the for loop

74. Modify the program as follows:

(1) In line 1: "bisec" becomes "regfls"
(2) In line 7: "xc=(xa+xb)/2) becomes
"xc=xa-fa* (xa-xb)/(fa-fb) "

(3) save the file as "regfls.m"
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75. In this, the first line is a declarative. Lines 2 and 3 are auxillary
functions that are used in the last line. The procedure is invoked by
first defining f(x), then authoring SECNT(a,b,n) (where a and b are the
starting values and n is the number of iterations to be done), and then
approXimating.

F(x) :=

vc:= v SUB 1 - F(v SUB 1)*(v SUB 1 - v SUB 2)/(F(v SUB 1) - F(v
SUB2))

SC(v) := IF ABS(F(v SUB 1)*(F(vc) < ABS (F(v SUB 2)*F(vc)),

[v SUB 1, ve], [vec, vSUB 2])
SECNT(a,b,n) := ITERATES(SC(v),v, [a,b],n)

76. In this, the first two lines are declaratives. Lines 3 and 4 are
auxillary functions that are used in the last line. Invoke in the same
manner as in Exercise 75.

F(x) :=

v o= []

vec:=v SUB 1l - F(v SUB 1)*(v SUBR 1 - v SUB 2)/(F(v SUB 1) - F(v
SUB2) )

RF(v) := IF (F(vSUB 1)*(F(ve) < 0, [v SUB 1,vc], [ve,v SUB 2])

REGFL(a,b,n) := ITERATES (RF(v), v, [a,bl, n)

To employ the ITERATE function, just replace "ITERATES" with that word.
Only the final iterate is then displayed.

77. These results are obtained with either calculator:
+(2)

1.46557, -0.23278+0.792661

-1.80194, -0.445042, 1.0, 1.246980

Has no real or complex roots

an ooe

78* From the graphs, using a command to get zeros:
1.1462718

6.1353472, 1.1737446

3.7333079, -0.4589623, 0.91000757

4.3026887 (and many others)

a0 oo
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79. The same answers are found either from the graph or from the equation:

a. 0.328625
b. -0.474627, 1.39534
c. *0.44865
d. -1.23709, 8.72329

80. (s - 1.4812)(S + 0.8111)(S + 2.1701).

81. -0.028997.

L
1}

82. A

0.1176 radians (6.74°).

B3. 5.12E-3

84. 4.7576.

85a. T, = 6.0096E-6, £ = 6848.9, duty cycle
b. R, = 15531 (and also 20629).
C. For f = 5000 and duty cycle of 10%, T,

4.12%.

I

1}

2E-5, T, = 1.8E-4.

86. 1.5707, 4.7123, 7.7252 (and negative roots, too).

87. Maximum at x = 0.95991 (found by a search program) .

88. Zeros at +0.2386, *0.6612, *0.9325.

8%a. Zeros at 2.2942, 0.41579, 6.2899.
b. Zeros at 1.7457, 0.32255, 9.3949, 4.5367.

90. Zeros are *0.26433, +0.70711, 0.96593.

91. The sphere sinks more than halfway, h/r = 1.1341.
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Chapter 2
la. | 9 0 6 -12| [30 36 12 -12| | 4]
3= |12 -9 3 6|; 2a+3B=| 8 2 6 16|; 2x-3y = |-18]|
[15 3 -3 6| | 8 6 -10 28| | -6]
|-16]
b* |-3 -9 -3 |12 [34]
A-B = | 4 -5 -1]; Ax = |19|; By = |28]
|3 o -4 | of |36]
e lo 8 4 12|
xy = |-6|; xy" = |0 -12 -6 -18|
lo o o o]
lo 4 2 -gf
d | 6 0 2
B=]9 2 1|
| 2 1 -2
-1 3 6|
2a* |-18 7 9| [-203 45 190| |14 -3 -1|
BA = |-15 -8 -1|; B = | -40 -28 55|; AA" = |-3 13  4].
| B 11  26] |-150 45 -58] -1 4 14|
b. det(a) = -47; det(B) = -113.
c |-3 0| |0 1 -2
| 2 o] + |0 3 o0].
[-1 2 3| lo o of
| 1 0] |-4 1 -2|
| 2 0] + |0 1 0}.
[-1 1] o @ -z
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3a. Both products = I,.
b. True.

c. -3 2 6]
p AC =] 9 5 6|;
| 4 3 5|
=k - @]
BC = | 3 -9 -6|;
| 4 -13 -7|
d. |o o o] |1
A=1]3 0 o] + |0
|2 0o o |o

4a. P(A) = x* - 6x - 7;

| 5 -2 4|
CA=|8-6 9|;
|13 -1 8|

| 3 6 =10}
CB = |-4 -6 13].

| 3 9 -1%|
0 0] |o-2 2|
1 0+ 0 0o 1].

o 1/ Jo o o]

P(B) = -x' + 8x" + Tx - 110.

b. eig(aA) = -1, 7; eig(B) = 5, 6.42442, -3.42442.

B 2%, + 4%, - x, = 2x; = 10
4x, +: ARk Sy = i
X o+ 3Ix, - 2%, = 3
3x, + 2x, + 5x, = 2
6* | 2 -6 1| |x]| | 11}
-5 1 -2| |y| = |-12]
|1 2 7| |z| | 20|
Ta. x, = 2; x, = (=10 + 6)/4 = -1; x, = (-11 -2 -3)/2 = -8.
b.x,=2; x = (3+86)/3=23; x, =(7~4%3)/2=23.

B, = (1,02 2 a1)

8. x= (1, -1, 3)
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10. Using elementary row operations (without pivoting) gives:

jl1 1 -2 3] |2 1 -2 3|
|4 -2 1 5] ==> |0-6 9 -7]|.
[3 -1 3 8] [0 o0 18 22|

Using back-substitution, we find: z = 11/9, Y= 3, 3% =22/9.

11* Elementary row operations reduce the augmented matrix to:

[3 2 -1 -2 10| |3 2 -1 -4 10|
[1-1 3 -1 -4| ==> |0 5 -10 -1 22].
[2 1 -3 o 16| [0 0 -45 39 162
[o -1 8 -5 3| [0 0 0 o0 435|

The last row leads to the contradiction: 0 = 435.

12. Elementary row operations reduce the augmented matrix to:

[3 2 -1 -2 2| [3 2 -1 -4 2|
[1 -1 3 -1 3] ==> |0 5-10 -1 -7]|.
[2 1 -3 o0 1| [0 0 -45 39 -12|
[0 -1 8 -5 3] [o o o o 0|

Then, for any x,, the solutions are: x, = (4 + 135) £15;
X = (-7 + x, +10x,)/5, x, = (2 + 4x, + x, - 2x,) /3.

13* R, + R, - 2R, = R, (The R's are rows of the coefficient matrix).

l4a. x = (1, 2, 2, -1)

b. det(a) = 75
c. |2 2 -0.5 -1.0 |
LU = |4 -8 -0.5 -0.625] (U has ones on its diagonal).

|1 1 -1.0 -1.625]
|3 -4 -0.5 4.688]

15* a. From back substitution: x, = 11/9; X, =3; x, = 22/9.
b. det(a) = -18.
c. | 1 0 0] |4 -2 1 |
L=1|1/4 1 0|, u=]|0 3/2 -9/4].
|3/4 1/3 1| |[o o 3 |
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16* a. x (1.30, -=1.35, -0.275).
b. x (1.45, -1.59, =0.276).
c. Calculated right-hand sides are:
(0.02, 1.02, -0.21) and (0.04, 1.03, -0.54).

17. The final augmented matrices are:

1 ¢ o 6 3 [1 0 0o 1] [1 0 o 11/9]

(X5): [0 1 0 0 2|; (X6): |0 1 O ~-1]; (x10): |0 1 O < o (9
|0 0 1 0 2 6 o &/ 3 [o o 1 22/9]
[0 0 0 1 -1

18. Augmenting A with all three b's, then doing Gaussian elimination,
gives, ready for back substitution:

|4 2 1 -3 N 9 4 |
|0 -5/2 5/4 25/4 5 5/4 -10 |
|0 0 5 8 13 5 -3 |

|0 0 0 53/10 53/10 0 -53/10]
The solutions are (1, 1, 1, 1), (2, 0, 1, 0), (-1, 12, 1, =1).

1%a. In col 1: n-1 rows, 1 div + n mult per row = (n-1) (n+l),

col 2: n-2 rows, 1 div + n-1 mult per row = (n-2) (n),
col n-1: 1 row, 1 div + 2 mult = (1)(3).
Summing over i: SUM[ (i) (i+2)] = SUM[i’+2i] (for i = 1 .. (n-1)). We

now need only use given formulas (n-1 replaces n) to get
(n-1) (2n-2+1) (n-1+1) /6 + 2*(n-1) (n+1-1)/2 which equals
n(n-1) (2n-1) /6 + n({n-1).
b. The development parallels part (a).
c. In general, the number of multiplications/divisions for the Gauss-

Jordan method is 0O(n’/2) versus 0(n'/3) for Gaussian elimination.
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20* a. Let A=B + Ci, z=x+yi, and b = p + gi; then 2z = b

can be written as (B+Ci) (x+yi) = p + gi, so we solve:
Bx - Cy = p B -c| |x| Ip|
Cx + By = g lc  B| |¥yI| |al

b. 2n"+2n versus 4n’+2n.

21. a. Using the answer in Exercise 20:

|3 1| | 1 2]
B=]0 2|, c=|-3 1],
| 3 1 -1 -2| | 6|
| 0 2 31 | 1]
so that A=|1 2 3 1|, with a right-hand side of | 2]|.
-3 1 0 2| [-1]

b*x = (1, 2), y= (1, 0), z = (1-i, 2).

22* Here is the matrix in compact form after pivoting, the b' vector from
forward substitution, and the solution vector:

|4.000 -0.50 0.25] |1.250] [2.444]|
[1.000 1.50 -1.50], |1.267], |3.000].
[3.000 0.50 3.00| [1.222] |1.222]

23. The answer is the same as for Exercises 8, 1l4a, and 17.

24. Use double precision in forming the sums that compute L(i,j) and
U(j,i), also in the back substitution.
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25. For both parts, because A = LU, Ax = LUx = b. Let Ux = y: solve Ly = b
by forward substitution to give y = L'b = b'. Then solve Ux = b' by
backsubstitution.

a. | 4 2 1 -3
LU = |1/4 3/2 -5/4 3/4|, b' = (4, 1, 20/3, 53),
|3/4 -5/3 -5/6 15/2| o= (U e 3D

| 0 4/3 -34/5 53|
(other solutions match Exercise 18)

b. |4 0.5 0.25 -0.75|
LU= |1 1.5 -0.833 0.5 |, b* = (1, 2/3, -8, 1),
|3 =2.5 =0.833 -9 | =1, 1; L, I):

o 2 5.667 5.3 |

26. a. x = (46.154, 84.615, 92.308, 84.615, 46.154).
b. During reduction: 3(n-1) multiply/divides, 2(n-1) subtracts:;
During back substitution 2(n-1)+1 m/d, 3(n-1) subtracts;
Total: 5(n-1) multiply/divides, 3 (n-1) subtracts.

27. One way to determine this is to get the determinants.
a. det(A) = 0, singular.
b. det(a)

21, nonsingular.

c. det(A) = 0, singular.
28. det(ad) = 7(x - ¥y + 2). Whenever (x - y) = -2, the matrix is singular
(such as (1,3), (2,4)) and whenever (x - y) # 2, it is nonsingular

(such as (1,2), (2,5)).

29. a. Rows as vectors are dependent: 2*R1 + 3*R2 - 1*R3 = 0
b* Columns as vectors are dependent: 13*Cl + 12*C2 - 5*C3 = 0.
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30a. A solution exists, x = -1, y = -1, z = 3, that satisfies all four
equations.

b* There is NO solution; the first three equations gives us a unique
solution: (1.5, -0.5, -1.5), but substituting this into the fourth
equation does not produce the correct result.

€. Matrix A is singular; 2*R1 - 2R2 = R3. There is no solution because
this not true for the.rhs.

d. Matrix A is singular; 2*R1l - 2R2 = R3. There is an infinity of
solutions since this relationship is also true for the rhs.

3la. det(H) = 1.65E-5. (A zero determinant means singular.)
b. (1.11, 0.228, 1.95, 0.797).
c. (0.988, 1.42, -0.428, 2.10).

32. The value of the determinant is 232.
33. The value of the determinant is -723.

34. |-26 33 46 -17|
A" = 1/75 | 44 -27 -49 23|, A'b = (1, 2, 2, -1).
| 53 -24 -88 26|

| -2 -9 -8 16|
35. x = (-2, 1, 0, 3).
36. Trying to get the inverse involves a division by zero.

37a. Det(H) = 1.653E-7.
b* | 16 -120 240 -140|
H' = |-120 1200 -2700 1680|
| 240 -2700 6480 -4200|

|-140 1680 -4200 2800]|
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38* Gauss Elimination: 25 mult/div; 11 add/subtracts.
Gauss-Jordan: 29 mult/div; 15 add/subtracts.

The system here is too small to illustrate the true difference between the
methods.

39. 1l-norm

17.45, 2-norm = 10.912, e-norm = 10.0
19, 2-norm = 9.9499, co-norm = 7.0
l-norm = 22, f-norm = 18.841, e-norm = 23
10.344, eo-norm = 11

1l-norm

a0 ooe

l-norm = 12, f-norm

40* 25/12, which is the sum of the elements of the first row.
41. 13,620, the sum of the elements of the third row of the inverse.

42a* (1592.61, -631.911, -493.62).
b. (-118, 47.1, 37.0) with pivoting; even with rounding there is a large
difference.
c. e = (1710, -697, -530), 2-norm is 1914.
d. Yes, there is a small element (about 0.020) on the diagonal after
reduction; also, arithmetic precision makes a large difference.

43a. (0.15094, 0.145246, -0.165916).
(0.153, 0.144, -0.166) with pivoting.
c. & = (-0.00206, 0.00125, 0.000084), 2-norm is 0.0309.
d. No, there is no small diagonal element after reduction; also the
arithmetic precision makes less difference.

44* x = (119.53, -47.14, -36.84). This is further evidence of
ill-condition, in that small changes in the coefficients make a large
change in the solution vector.

45. r = (-1.463, 0.434, -1.563) and (0.00149, 0.00247, -0.008811).

46. Cond(A)
Cond (A)

Il

55,228 for Exercise 42,
16.05 for Exercise 43.
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47. Exercise 42 Exercise 43
norm(r) 2.1844 0.009271
norm(a) 1914 15
norm (A7) 3682 1.0702
Left side 0.1456 0.000618
Right side 8042 0.0059921
norm(e) 1914 0.002411

In both cases, norm(e) falls between.

48* Lefthand side of Eq. (2.30) = 3,95E-5
Righthand side of Eg. (2.30) = 120,640
Central part = 1.07, falls between the two.

49. If 14 digits precison is used, the norms of both r and e are
essentially zero.

50. xbar
ebar

(=118;7-4%=3; 37.0), 2= (=1:463, (0434} =1.5633),
(1710, -679, -529) using 6-digit precision,

improved x = (1592, -632, -492) which much better.
(If one gets e with only 3-digit precision, there is very little
improvement.)

51* x = (0.153, 0.144,-0.166), r = (0.00149, 0.00247, -0.00881),

e (-0.00271, 0.00126, 0.00103) using 3-digit precision, improved
(0.15029, 0.14526, -0.16497) a much better result even though only
3-digits were used. (With 6-digits, there is 6-digit accuracy in the final
result.)

L1}

X

52. After interchanging rows 1 and 2, and starting with (0, 0, 0), Jacobi
gets (1, -1, 3) accurate to 5 digits in 11 iterations:; Gauss-Seidel gets

this in 5 iterations.

53. Converges to (46.1539, 84.6154, 92.3077, 84.6154, 46.1538)
in 9 iterations.

54* Both methods diverge; after 10 iterations, Jacobi gets
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(-76.76, -76.76), Guass-Seidel gets(201,551.9, 604,659.8).

55* After interchanging rows 2 and 3, and starting with (0, 0, 0):
a. In ten iterations, the Jacobi method produces the answer:
(-2.00000, 1.00000, -3.00000).

b. The Gauss-Seidel method produces the same result as in part (a),
but

does it in just five iterations.

56. x

I

(1 =0y 2
57. x = (=2, 1, 3).
58. The answers are the same as for Exercise 26a.
59* The two solutions are (0.72595, 0.50295) and (-1.6701, 0.34513).
60. (x,y,z) = (2.49137, 0.242745, 1.65351).
61l. (x,y) = (1.64303,-2.34978) and (-2.07929, -3.16174).
62. Using the analytical partials, there is convergence after just three
iterations to the answer:
x = 0.90223, y = 1.10035, z = 0.95013
63. In both exercises, the answers are the same but convergence is slower.

To match to four significant digits, it takes 8 iterations versus 4 in
Exercise 59 and 5 versus 3 in Exercise 62.

64a. Multiply P, .*A where P,, is the order-4 identity matrix with the
first and third rows interchanged.
b* Multiply P, ,*A where P, , is the identity matrix with the first and
fourth rows interchanged.

c* Multiply A*P, _ where P, , has columns 1 and 2 interchanged.
d* Do: P, *A*P,,

65. If P' = P, P should equal I. This is true.
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66. This is confirmed when the matrices are multiplied.

67. This is confirmed when the matrices are multiplied.

68. Both systems give the same answers as in Exercise 10. In either,

rref, solve, or linsolve can be used.

69. Operations on arrays are like operations on scalars in MATLAR. Maple
requires: “"with (linalg):", then operations are as for scalars.

70. with MATLAB, just perform the operations.
71. The same answers are obtained as in Exercise 10.
72. Answers are the same as for Exercise 4.
73. a. If a = hilb(4) and bt = right-hand sides as a column vector,
X = b\bt gives the answer: (1, 1, 1, 1).
b. cond(hilb(4)) gives 1.5514E4 for the condition number.
c. cond(hilb(10)) gives 1.6025E13.
74. After doing: with(linalg)
a. det(hilb(4)) gives 604800.
b. inverse(hilb(4)) gives the same matrix as in Exercise 37b.
75. The answers duplicate those of Exercise 59.
76. Using fsolve without specifying a range for (x,y) gives the leftmost

intersection: (-2.07930, -3.16174). If the range is {(x = 0..2,y = -3..0},
the intersection at (1.64304, -2.34978) is obtained.
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77. Making upper-triangular (see Exercise 19):
Multiply/divides = (n - 1)(2n - 1)(n)/6 + (n - 1) (n)
= (2n’ + 3n® - 5n)/6.
(n-1)(2n -2+ 1)n -1+ 1)/6 + (n -1)(n)/2
= (o’ - n)/3.

Back substitution:

Multiply/divides = (n - 1) (n)/2) + n = (n® - n)/2.

For subtracts, the same: (n° - n)/2).

Add/subtracts

78. Making diagonal: (n’ + 2n’ - 3n)/2 multiply/divides,

(n’ - n)/2 add/subtracts.
"Back substitution", n divides. This is 0O(n’/2) while Gaussian elimination
is only 0(n'/3).

79. Work on matrix A (N x N) augmented with the N x N identity matrix, and
use a Gauss-Jordan method, taking advantage of the zeros in the identity
matrix. Assign numbers (i,j), i =1 TOn, j = 1 TO n to the n’ processors.
For i =1 to N ' counts rows
{ON PROCESSOR (j,k-1i)}:
A(j,k) = A(j,k) - A(j.,i) / A(i,i) * A(i,k) FOR
j=1TON(j *i), k=1i+1TOoi+N
(Now divide by diagonals)
{ON PROCESSOR (25320
A(i,j+N) = A(i,j+N)/A(i,1i), FOR
i=1T0N, j =1 TO N.

80. When doing row i, all elements to the left of the diagonal will become
zero; we do not have to specifically calculate them. So we reassign one of
the processors from this set, say PROCESSOR(i,i-1) to replace

PROCESSOR (i,n+1). The n’ processors are adequate to perform the back
substitution phase.
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81. Number the processors: PROCESSOR(i,j), i =1 TOn, j =1 TO n and

assign PROCESSOR(i,i) to the corresponding variable. We can perform each

of the computations in the next iteration simultaneously according to the

assignment statement in the algorithm for Jacobi iteration:
new_x[i] = new x[i] - A[i,jl*old_xI[7].

82. The transformed vector is (1.965, 0.664, -2.672).

83a. Cond. no. = 9.870E7 using Euclidean norms.
b. The fifth component changes most but the system is so 1ll-
conditioned that the specific values are uncertain.

85. The system is overdetermined. Using the data for peaks 2, 3, 4, By
6 gives p = {2.17, 0.002, 6.611, 8.323, 4.348} and these values are
reasonably consistent with the sum and the value for peak 1.

86. Bi: x £ Pisl o f P % £
0.24 -1035 0.80 51 0.22 =707
=0..55 732 -0.78 1964 -0.45 500
0.12 =152 0.33 94 0.08 464
-0.56 =531 -0.80 =739 -0.53 =562
-0.32 -232 -0.73 -260 -0.45 72
0.10 469 0.60 1261 0.07 437
0.25 616 0.67 630 0.20 464
-0.42 268 -0.84 1036 -0.53 500
0.29 -378 0.84 1465 0.29 -707
87. Correct values are near (425, 351, 346, 167).

and
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Chapter 3
1.

(x - 0.5)(x - 3.1) (3 + 2. 3)x = 3.1)
———————————————————————— (2.1) + —————mmmmm e (-1.3)
(2.3 - 0.5)(-2.3 - 3.1) (0.5 + 2.3){0.5 = 3.1)

(x + 2.3)(x - 0.5)
F e e (4.2)
(3.1 + 2.3) (3.1 - D.5)
2* P,(x) = 0.08333x" - 1.125x" + 4.41667x - 1.375
3. P,(x) = -0.043596x" + 0.623429x - 0.379325.
M 1 2 3 4 5 6 7
P(x): 0.2005 0.6932 1.0986 1.4169 1.6479 1.7918 1.8485
error: 0.2005 0 0 0.0306 0.0385 0 0.0971
X: 8 9 10
P(x) : 1.8183 1.7007 1.4959
error: 0.2610 0.4965 0.8066
Conclusion: interpolation is good, extrapolation is poor.
4. Estimate = 1.22183, actual error = -4.31E-4.
Error bounds: -3.333E-4, -4.499E-4.
5. Estimate = 1.4894, actual error = 0.0024.
Error bounds: 0.00200, 0.00298.
6. 3.0 20.7180 75.4040 46.5355 53.7704 56.0694
50 130.0900 -40.0700 10.3609 39.9768
7.0 470.4100 312.9461 247 .2881
-2.0 -1.9817 94.0861
-3.0 -17.9930
P,(4) = 46.5355, P,(4) = 53.7704, P,(4) = 56.0694
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7. Table for x = 0.2:
0.1 1.1052 1.2276 1.2218
0.3 1.3499 1.2333
0.0 1.0000
P,(0.2) reproduces the result of Exercise 4.

8. Table for x = 0.4:

0.1 1.1052 1.4723 1.4894

0.3 1.3499 1.4665

0.0 1.0000
P,(0.4) reproduces result of Exercise 5, linear interpolation gives
1.4723.

9. From Neville table: P, (0.2) = 1.2276, P,(0.2) = 1.22183.
Lagrange interpolation gives the same results.

10. (Neglecting the cost of rearranging the data pairs.)
If there are (n+l) data pairs,
steps in sequential processing = (n) (n+l)/2:
steps in parallel processing = n.
Some values:

n 2 3 4 5 10 20

Sequential 3 6 10 35 55 210

Parallel 2 3 4 5 10 20
Ratio 0.667 0.500 0.400 0.333 0.182 0.095

11. 0.50 -1.1518 -2.6494 1.0955 1.0286 0.0036
-0.20 0.7028 -2.4303 0.6841 1.0267
0.70 -1.4845 -2.2251 0.8894
0.10 -0.1494 -2.8477
0.00 0. 1353

12. The polynomial is identical to that of Exercise 2.

13. Estimate = 1.22183, identical to that of Exercise 4.
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14. -0.3587
-0.2851
-0.28940
-0.28938
-0.28938

Because each polynomial is different

Hh O Q0 oo

15*

(vI]

o Abrx = 0.0, 0.1; Q.50 0.2
b. At x = -0.2; .0, 0.1
¢, At x = 0.%, 0.5, 0.7
16. Estimate = 1.4894, identical to that of Exercise 5.

17. P,(0.2) = -0.42672, error estimate = 0.00002

18* Bounds: -3.333E-4, -4.499E-4; actual error (-4.31E-4) falls between.

19. i x £ A A’ A A' A
1 1.200 0.1823 0.0408 -0.0015 -0.0001 0.0004 -0.0007
2 1.250 0.2231 0.0393 -0.0016 0.0003 -0.0003 0.0004
3 1.300 0.2624 0.0377 -0.0013 0.0000 0.0004
4 1.350 0.3001 0.0364 -0.0013 0.0001
5 1.400 0.3365 0.0351 -0.0012
6 1.450 0.3716 0.0339
7 1.500 0.4055

20. Sixth degree but third degree will almost fit because the third
differences are nearly constant.

21. Third differences are constant at 0.096. an'!h’ = 0.096.

22* A'f, = 0.3365 - 3(0.3001) + 3(0.2624) - 0.2231
= 0.0003 at x, = 1.25; agrees with value in the table.
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23. flx,,x,] = 0.7860,
£lax;,2x,.%] = -0.3200.
£lx,,%x,x,,%x,] = 0.4000.
A'f, 0.0003
From Exercise 22: f,! = ——-—- = e = 0.4000.
3tn’ (6) (0.05)

24. Estimate

0.3148, estimate of error = 1.7E-5.

n

25. Estimate -0.2305, estimate of error = 0.01458.
A larger error because we extrapolate outside the table.

26* P,(0.203) = 0.78024, estimate of error = 1.32E-3.
P,(0.203) = 0.78156, estimate of error = 7.2-5.
27. P,(0.612) = 0.66867, error = -6.99E-3.
F,(0.612) = 0.66168. No "next term" from x, = 0.375.
28. P,(0.612) = 0.72023, error = -6.370E-2.
P,(0.612) = 0.65654, error = 4.778E-3.

29. P,(0.54) = 0.166.
30* Fourth degree because the fourth differences are constant.

31. Each divided difference is the corresponding ordinary difference
divided by (h'n!), where n is the order of the differences.

32. From data rounded to 3 places, the third differences become:
-0.001, 0.003, 0.003.
From data chopped to three places, they are:
0.003, 0.000, 0.003.
Compare to the original:
0.001, 0.002, 0.002.
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33. B,(x) = 1 - X', maximum error = 0.9375.
P,(x) = 0, maximum error = 1.0.
P,(x) = 4x' - 5%’ + 1, maximum error = 0.703.
P,(x) = 0.65104x'- 0.88542x" + 0.23438, max error = 0.7656.
34* | 1.220 0.490 0.000 0.000 -1.326 |
| 0.490 1.240 0.130 0.000 =1.715 |
| 0.000 0.130 0.620 0.180 -0.829 |
| 0.000 0.000 0.180 2.440 -1.865 |
35. x4 0.15 0.27 0.76 0.89 107 2531
S-values: 0.000 -0.678 -1.018 -0.922 -0.696 0.000
a: -0.9413 -0.1159 0.1240 0.2087 0.1136
b: 0 -0.3389 -0.5092 -0.4609 -0.3482
Q3 1.0919 1.0512 10.6356° 0.5095 0.3639
d: 0.1680 0.2974 0.7175 0.7918 0.8698

The above are coefficients of a(x -

x) +bx-x)"+c(x-x) +4din

each interval. Interpolating with these polynomials:

x: 0.33 0.92
Interpolate: 0.3592 0.8067
True value: 0.3593 0.8067
Error: 0.0001 0
36. End >4 0.33 0.92
condition
2 0.3605 0.8067
3 0.3588 0.8066
4 0.3589 0.8067

2.05
0.9971
0.9963
-0.0008
2.05 Maximum
error
0.9961 -0.0012
1.0041 -0.0078
0.9953 0.0010

(End condition 1 gives best accuracy.)

37. Maximum error 0.607 at x

+0.25. Compare to maximum error of

P,(x) = 0.703. Note: evenly spaced points are not the best choice.
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38. With end condition 3: maximum error = 0.625 at x +0.25.
=0 .25,

Note: evenly spaced points are not the best choice.

With end condition 4: maximum error = 0.656 at x

39* Maximum error = 0.5938 at x = #0.25 with end slopes = 0.
Note: evenly spaced points are not the best choice.

40. n-2 equations are the same; one more equation is S8l =10.
The final equation, based on equal slopes at the end:
-2h,S, + h;s, - 4h s, + 3h,.,S,., = 6(flx, ., x,.,] - f[xn'xll)

41. Some representative values:
Time: 0.05 0.1 0.45 0.75 0.9 0.95
Data: 0.280 0.253 0.133 0.511 0.386 0.341
Interpolate: 0.278 0.252 0.133 0.511 0.385 0.343
(These are for end condition 1).

42. Multiply the matrices and compare terms.

43+ |4 -4 6 -4 -1
|-4 12 -12 4 0]

(', v', v, u, 1) | 6-12 6 0 0] (B P Bse B
-4 4 o0 0 0]
|szar 0 0y 0 o0)

44. Each p (for both Bezier and B-spline curves) is of the form Zap, and

each a, £ 0. On multiplying out and collecting terms we find, for each
curve, Xa, = 1.

L
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45*

The

46.
the
Its
any

dx/du = -(3/6) (1 - u)’x,, + (1/6) (6u* - 6u)x,
+ (1/6) (-9u® + 6u + 3)x,, + (3/6) (u)x
at u = 0, dx/du = (3/6) (x,, - %x.).
expression for dy/du is similar, so
dy ¥t ™ Vi
e R = slope between points adjacent to p,.

.
ie2 ¥

For both Bezier and B-spline curves, changing a single point changes
curve only within the intervals where that point enters the equations.
influence is localized in contrast to a cubic spline where changing
one point affects the entire curve.

47. A quadratic B-spline will have these conditions at the joints:

48.

49.

B (1) = B, (0),
B,' (1) = B,,'(0).

i+1
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50.

51. Value = 1.841 (as before).

52% £1(3:6;0:33) = 1.833.
53. £(1.62;0.2) =-1:128%;
£(1.62,0.4) = 2.3167,
£(1.62;0:3) = 1.6927;

from these, £(1.62,0.31) = 1.7491.

5%% £(1.1,0.71) = ©.,70725;
£(3.0,0.71) = 5.26137,
£(3.7,0.71) = B.00277,
£(5.2,0.71) = 15.80769;

from these, f(3.32,0.71) = 6.4435.

55. When u = 0.8736 and v = 0.9325, x = 3.70, y = 0.60,
£(3.70,0.60) = 8.8534.
56. When u = 0.6124 and v = 0.6327, x = 3.70, v = 0.60,

523853,

£(3.70,0.60)
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= i True value From curve From curve
of R by eye by least squares
765 7712758 771.798
826 814.45 813.216
873 875.50 875.345
942 956.20 950.714
1032 1034.95 1027.101
Sum(deviations)®  419.56 315.05
Maximum deviation 14.20 12178

58. From the normal equations:
NExy - IxZy IX'Ty - IxZy

NEX' - (Zx)? NEX® - (EZx)°
Using these in y = ax + b, and substituting v = Zy/N, x = Ix/N, we get
Zy/N = a(Xx/N) + b.

59% ¥y 2.908x + 2.02533.

60. x

0.34207y - 0.674347, or y = 2.923x + 1.9714.

61* Normal equations:
N Ix Zy zz
Ix IxX' Ixy Ixz
Iy Ixy Iy Zyz
z = 2.85297x - 1.91454y + 1.03987.

62. From two points: y = 0.5x + 2.

a. y = 0.5x + 2.333,

b. ¥ = 0.5x + 1.333,

c. ¥y = 0.5385x + 2

d. y = 0.6154x + 1.0769.

63. Multipliying shows A*A" = coefficient matrix, and A*y gives
{Ey‘, Exiyu Exlzyl, e )-
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64. A*A" = coefficient matrix, which is symmetric.

Proof of positive definite:
Consider x(AA")x" = (xA) (A'X") = v*v'where v = xA. For any vector, v, v*v® =
Zv’ 2 0 and zero only if v = zero vector; hence AA® is positive
definite.

65. Plot of 1n(S) versus T:

66. Plot of S versus T:

67* 1n(s) 0.009602T + 0.18396.

]

68. 1n(F) 3.4083 + 0.49101*1n(P), or F = 30.214 p™ot

]

69. F = -0.01341P" + 3.5836P + 62.149.
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70. Linear: y = 2.908x + 2.0253, S(dev)’ = 0.7832, variance = 0.1958.
Quadratic: 0.1036x" + 2.1830x + 2.9920, S(dev)® = 0.3829,
variance = 0.1276.

71. -8.408E-5*x’ - 3,.499E-3*x"' + 0.1366x - 1.0041x" + 5.1903x + 0.7208.
Plot of least squares line and quadratic:

Plot of interpolating polynomial:

T2. Maximum Minimum
slope slope
Linear: 2.908 2.908

Quadratic: 3.4262 2.3902

Fifth degree: 4.3258 2.4414

(These are slopes within [1,6]).

73* Degree: 2 3 4 5
Variance: 533:3 85.47 86.73 64.84
The cubic polynomial is preferred.
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74. Using points 1, 3, 5, ..., third degree is preferred:
Degree: 2 3 4 5
Variance: 544.1 21.97 24.56 21.76
Using points 2, 4, 6, ..., fifth degree is preferred:
Degree: 2 3 4 5 6

Variance: 629.3 123.6 99.45 66.36 79.63

75. The method is the same but the normal equations are now nonlinear.
If C is specified, the equations are then linear.

76. x{x = 1)(x = 2) (x + 1) (x- 1L)(x-=-2)
P(X) = —==——mmmmm (11) + === (-7)
6 2
(x + 1) (x) (x - 2) (x + 1) (x) (x - 1)
F o e (7) + == (-5)
2 6

= filx = 2)x + L)X = 7.
(There are many others).

77. magnitude of errors:

otz 3 4 6 7 8 9 10
Actual

error: 0.2005 0.0306 0.0385 0.0971 0.2610 0.4964 0.8066
Lower

bound: 0.0026 0.0374 0.0556 0.1166 0.2346 0.3440 0.4480
The upper bounds are so large as to be unhelpful.

78* Degree P(0.1) Error

2 .99 -0.39
3 0 0.60
4 0.9504 -0.3504
5 0.2256 0.3744

Cannot find bounds because f'(x) is discontinuous.
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79. Beginning value: 0.2, P,(x) = 0.2427x" + 0.2179x% - 0.02054,
P,(0.5) = 0.14908, Error = 0.0025, bounds: 0.0015, 0.0040.
Beginning value: 0.3, P,(x) = 0.0047x’ + 0.4321x - 0.06337.
P,(0.5) = 0.15384, Error = -0.0022, bounds: 0.0008, 0.0042.
Beginning value: 0.6, P,(x) = -0.1339x" + 0.6401x - 0.1383,
P,(0.5) = 0.14830, Error = 0.0033, bounds: 0.0012, 0.0066.

80. P,(x) = 2x - x'.
P,(x) = -0.3703x" + 2x - 0.6297.
P,(x) = 3.562x" - 4.562x" + 2x.
P,(x) = 2.049x" - 2.829x" - 0.2198
P, (x) = -10.397x" + 17.222x"' -7.824%" + 2x

(The odd degree polynomials miss the point at x = 0).
Plot of P,(x) and f(x):

Plot of P,(x) and f(x):
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82. It is easiest to compute one column at a time:
If the original data (in [1]) is
{{.5,1.0025},(-2,1.3940},(.7,1.0084}),{.1,1.1221},(0,1.1884}}
This request:
Table [(%1[[i+1,2]] - $1[[i,2]1])/(%1[(i+1,101-%1[[i,111),
{i,Length([%1]-1}]
produces the first column of differences as [2]:
{0.559286, -0.428444, -0.1895, -0.663)
and a similar request:
Table [(%2[[i+1]] - %2([[1]1])/(%1[[i+2,1]1]1-%1([i,1]]1),
{i,Length([%2]-1}]
produces the second column as [3]: {0.654206, 0.796481, 0.676429)
We get the third differences with:
Table [(%3[[i+1]] - %3[[4i]])/(%1[[i+3,1]1]-%1([i,1]1]1),
{i,Length[%3]-1)}], giving {-0.355688, -0.600265]
We can continue as far as desired.

83. As in Exercise 82, we elect to compute one column at a time.
We begin by defining a value for x in [1]. Then, in [2], we give the data:
{{2,3.4899},{5,21.7889},{6,31.3585}, {-1, .8726), {-2,3.4899}}
We get the first column with this:
Table [((x - %[[i+1,1]1])*%[[1,2]] + (®[[1,1))1-x)*%[[i+1,2]1])
/ (%[[1,11] - %[[i+1,1]1]), {i, Length[%] - 1}]
and Mathematica gives [2]: {9.5889, 2.6497, 18.2931, -9.5971}
The second column comes from the request:
Table [((x - %2[[i+2,111)*$[[1]1] + (%2[[i,1]] - x)*%[[i+1]1]1)
/ (%2[[1i,1]1] - %2[[i+2,1]]), (i, Length[%] - 1}]
which produces {7.8541, 7.86416, 7.83426}
An analogous request gives the third column: {7.85075, 7.85561})
It is possible to nest the above in a single DO statement in Mathematica
but the logic is then difficult to follow.
Note: these result differ from those of Exercise 6 because we used more
accurate f(x) values.



Chapter 3 47

B4. 16 13 119(-3 + x)
(=1 + X) (= (==) + (== = ==Sem=—us=e ) (2+x) )
3 15 120
47 59%  57%° 119x%°
e I
20 120 20 120
B5* 1.8407.
B6. 1.03987 + 2.85297x - 1.91454y.

87. In(S) = 0.183932 + 0.0096028T.

B8. Plot of spline curve:

89. The agreement cannot be better than three decimal places, not three
digits, because the accuracy of the original data is only that good.
Linear interpolation agrees with the formula except at T = 650 and

T = 750. Even a quartic does not agree at these points. This is because
the formula itself does not give three decimal agreement with the given
value for T = 700; the formula gives 0.0705, the table shows 0.067.

90. Dosage at 2.5 is 3.27. Both quadratic and cubic polynomials give this
result.
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91. N: 0 1 2 3 4 5

D: '0.93 3.12 3.05 2,75 2:43 +-2:09
These values are from a quadratic through the three nearest points. Values
at N = 0, 4, and 5 are uncertain.

93. v(0.7,1.2) 10.68.
u(l.6,2.4) 0.
u{0.65,0.82) = 9.40.
Quadratics in both directions were used.

]

94. Using a cyclic cubic spline with an assumed value of 7:92 at
phase = 120, we get
Phase: -100 -60 -20 20 60 100
Estimate: B8.23 9.79 11.56 10.58 8.74 7.93
Error: 0.14 -0.39 -0.17 0.26 -0.21 -0.04

95. The M-matrices are the same as those for the Bezier curves given in
Section 3.6. Setting u and v equal to 0 and 1 demonstrates that the
surface passes through the points on the periphery of the patch. The
surface can be forced through the inner points by specifying duplicates a
sufficient number of times.

96. The curves are shown in the text.
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Chapter 4
1. T11(x) = 1024x11 - 2816x% + 2816x7 - 1232x5 + 220x3 - 11x
T12(x) = 2048x12 - 6144x10 + 6912x8 - 3584x6 + 840x4 - 72x2 + 1
2. Substitute cos(8) for x; the integrand becomes -cos (nf)*cos(m@). The
integrations then are easy.
a. For (0,1): 0
b. For {1rl): 1‘.’/2
c. For (1,2): O
3. Maximum magnitudes on [-2,2]:
T1(x) = 2 (linear, symmetric about origin).
To(x) = 7 (parabola, symmetric about y = 0.
T3(x) = 26 (cubic, symmetric about origin).
4* The zeros are at 0, *0.5877852526, #0.951056162.
Analytically, these are 0, *[(5/8)- V(5/8)11/2, +[(5/8)+ V(5/8)]11/2,
5. Write cos(6x) as cos(3x + 3X) = cos(3x)*cos(3x) - sin(3x)*sin(3x)
= 2cos2(3x) - 1
= 2[4cos3 (x) - 3cos(x)]2 - 1
= 32c036(x) - 480054(x} + 180052(x) - 1.
6. eX is approximated by
1.0000434 + 0.9973958x + 0.4992188x2 + 0.1770833x> + 0.04375x4.
The maximum error is 0.00079051 at x = 1.
7. The maximum error for the fourth degree Taylor series is 0.0099485
at x = 1; for the fourth degree economized polynomial, 0.0007905 at x = 1.

8* The ninth degree Maclaurin series is very accurate near x = 0 but the

error increases very rapidly near x = %1 to 0.04952. The third degree
economized polynomial has a maximum error at x = +0.4 of 0.0349.
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9. The truncated Chebyshev series is 0Q(x) = 0.99985x% - 0.16650x3.
Comparing to the truncated Maclaurin series P(x)= x - x3/6,
we get these typical values:
%z - 4 0.2 0.6 1.0

Q(x): O 0.1982638 0.563946 0.833350

PAx) s 0 0.1986667 0.564000 0.8333333

Exact: 0 0.1986693 0.564625 0.8414710
The maximum error in P(x) is 0.008138 at x = *1 while the maximum error in
Q(x) is 0.008121 at x = +1.0.

10. The Chebyshev series of degree two is
0.99748Tg(x) + 0.10038T; (x) - 0.002532T5 (x)
= 1.000001 + 0.10038x - 0.005064x2.
Maximum errors: Chebyshev series = -0.000139 at x = -1, truncated Maclaurin
series = -0.000573 at x = -1. The Chebyshev series has a smaller error by
a factor of 4.1.

15x° -3x*
R, = =——————m———m
15 + 2x%°
b Ry, = 1.
This is a very poor approximation except near x = 0.
c. x3 + 12x2 + 60x + 120
R S8 me sl Dm0yl il il

-x3 + 12x2 - 60x + 120
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13. Maximum errors:
a. For R,, is 0.002191 (Taylor series: -0.003038).
b. For R,, is 0.4597 (Taylor series: 0.040302).
c. For R,, is -0.000028 (Taylor series: 0.000226).

1l4a. 4
l_ ________________
i
X+ 3 + =————-
x-— L
b 48
2X + 3 4 mmmmm e
19
dx = 9 = —em—memaa
4x + 5
c 4
2X + 3 4 e
6
X+ 5 + —=-m—mmmm e
8
X+ T # e
x + 9
15*
a 15
R, = -3x/2 = == .
4 + 30/x

b. R,, is already a "continued fraction!"
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(Exercise 15 continued)

x + 10/x%

l6a. Next term: -6.36E-3; actual error - -6.213E-3,
b. Next term: zero; actual error: -0.4597.
C. Next term: -1.7E-5; actual error: -2.8E-5.

17. 0.851632 - 0.14202T, + 0.001162T,
1 + 0.00518619T,

18. The expression is not minimax. If it were, the error curve would
have nine equal max/min on [0,1].

19a. Periodic, period = 2m.
b. Not periodic.

2m.

s

C. Periodic, period

d. Periodic, period

I

20. The plot is a series of "tent" functions going from f(x) = 0 at

0, #2r, ... to £(x) = 1 at #xm, +3x, ...
21. 12 cos (nmx) d
f(x) =2 4 ———- ¥ e + ——— £ (12 - 8n?n?)sin(npx),
n2 n2 n3

with the sums fromn = 1 to N, N being the number of terms.

23% i 4 cos (nmx) 4 sin(nmx)
£(X) = ——— 4 ===n T oo o oL E oo
3 n? n? 72 n
with the sums from n = 1 to N, N being the number of terms.
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23. Add the series for Exercises 21 and 22.

24. No. This is true only for f(x) or g(x) equal to a constant.

25a. Reflect about the y-axis.
b. Reflect about the origin.

26. Let ¥y = x + 1, then reflect f(y), finally, let x =y - 1.

27* a. £(x) = Ay cos (nmx/2), n =0, 1, 2, ..., where
N 0 1, 2 3 4
An: 0.09760 -0.25074 -0.30642 -0.094459 -0.062950
b. £i(x) = Bp sin (nmx/2), n =1, 2, 3, ..., where
n: 1 2 3 4 5

Bp: 0.19903 -0.15982 -0.17348 -0.13388 -0.094460

28a. f(x) = A, cos (nmx/4), n =0, 1, 2, ..., where
n: 0 1 2 3 4
A: 0.071659 0.079405 0.102211 0.068481 0.020304
b. f(x) = B, sin (nmx/4), n =1, 2, 3, ..., where
n: 1 2 3 4

B.: 0.0004739 0.031651 0.082033 0.072761
29* a. Maxima are 0.12 at x = 0 and 0.17 at x = #1.0;
minima are -0.1056 at x = +0.6892;
T,/8 has maxima of 0.125 and minima of -0.125.
b. Maxima are 0.126 at x = 0 and 0.086 at x = #1.0;
minima are -0.1444 at x = +£0.7211;
T,/8 has maxima of 0.125 and minima of -0.125.

30. Chebyshev polynomials have all their maxima/minima egqual 1 in

magnitude in [-1,1]. All Legendre polynomials have maxima/minima equal
to 1 at x = -1 or x = +1 but their intermediate maxima.minima are less

than 1 in magnitude.
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31. Using x = cos(6), dx = sin(0)d®, V(1-x2) = V(1-cos’(8)) = V(sin'(@))

= sin(@), T,(x) = cos(n@), T, (x) = cos(md). The integral in Eq. (4.3)
beccmes
0
| cos(nB)cos (mB)de
-7
because, at x = -1, 8 = -tandat x =1, 0 = 0.

If n =m = 0, the integrand equals 1; integration gives T.

If n = m# 0, the integrand equals cos’(n@); integration gives

0/2 + (sin(nB)cos(nB))/(2n). This evaluated between [-m,0] equals n/2.
If n # m, the integrand equals cos(n@)cos(m8) and cos (nB)cos (mB) =
cos((n-m)@) /2 + cos((n+m)0)/2. Integration gives sin(n-m)0/(2(n-m)) +
sin(n+m)@/(2 (n+m)) to be evaluated between § = - and 6 = 0. Both terms
are zero because sin(n®) = 0 for any integer value for n.

32. sin(nx/m) is orthogonal over [-1,1]. The graph of sin(5mx/2)

[n = 57°/2] has six maxima/minima each equal to +1 or -1 but these do
not occur at the same x-values as those for T,(x), except at x = -1,
x =0, and at x = +1.

33. cos(nx/m) is orthogonal over [-1,1]. The graph of cos(5mx/2)

[n = 51'/2] has five maxima/minima each equal to +1 or -1 but these do
not occur at the same x-values as those for T,(x); at x = -1 or x = +1,
cos(5mx/2) equals zero.

34. The Maple command is: orthopoly[T] (n,x); the results are precisely
the same as Egs. (4.1).

35. The Mathematica command is: LegendreP[n,x]. The results are:

L, =% L, = (-1 + 3x%)/2; L, = (-3x + 5x)/2;
L = (3 - 30x" + 35x')/8; L, = (15x - 70x’ + 63x°)/8;
L, = (-5 + 105x" - 315x' - 231x%) /16
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36. Using the file Tch.m from Section 4.6, we do:

f = 'xoxxx' % define the function
ts = symsub(taylor(f,7),'0(x*7)"')

¢cs = symop(Tch(é),'/','2"5",'*','C6"')
es = symsub(ts,cs)

vpa (collect (es),5)
which gives

%C6 = coeff of x* in ts

a. 1.0026 - x - 0.54609x° + 0.83333x’ - 2.0840e-3x' - 0.175%°
b. 0.15927 - x + 5.7635x" + 9.7029x’ - 12.778x' - 30.833x°
c. The Taylor series is just x for x > 0, -x for x < 0.

37. Using the results of
a. 1.0026 - 0.94531x
b. 0.15927 + B8.6353x%
c. The Taylor series

Exercise 36, we get
- 0.54609x + 0.61458x" - 2.0840e-3x"
+ 5.7635x" - 28.838x - 12.778%"

is just x for x > 0,

38~* Errors, part (a)
x TS(6) Econ (4)

-1.0 0.01414 0.00258

-0.5 0.00010 0.00591

0 0 0.00046

0.5 0.00007 0.00502

1.0 0.00724 0.00341

Observe that the maximum
both parts. In Part (b),
for Econ|(5).

39. Coefficients are:
Part(a)

a, b,

-1.4053

.8106 -0.1716

-3.2175 2.8648

1.1356 -2.6714

N =
()

-x for x < 0.

Errors, part(b)
Econ(4)

TS(6)
11.7154
0.2114
0
0.2899
30.1945

10.
0.
0.

L

27.

6291
0886
8407
.5144
4266

error is less for Econ(4) than for TS(6) in
the errors of Econ(4) are actually less than

Part (b)
a, b,
.0891
.3545 -1.8056
.2995 1.4054
.0312 -1.0087

Part (c)
a, b,
1
-0.8106
0

-0.0901
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40. With so few terms, the graphs in parts (a) and (b) do not match well
to the graphs of the functions. However, in part (c), the graphs do
match well. In parts (a) and (b), both series get the average values of
the function at x = n and at x = -x.

41. Let x log,(e) = ¢ + f where c is an integer and f is a fraction such
that 0 £ £ < 1. Then we have
g%l _ ac + f' or eX = 2C *» of

On digital computers, 2€ is simple shift of the binary point (an
adjustment to the exponent part of the value). We then are left with the
evaluation over the interval [0,1n(2)] = [0,0.69315], but we want zero
to be the center so we change the variable by subtracting 1n(2)/2 to get
an interval defined as [-1n(2)/2,1n(2)/2]. (Of course we need to reverse
the process when the Padé approximation is employed. [See Ralston,
(1965)].

42,43. Make sure that students do not bother the system personnel of
your computer center in researching these exercises. The best way to
avoid that is to have the necessary technical manuals available in the
library.

44. The size of the "ear" is about 9% above the sgquare wave regardless
of the size of n.

46. A good starting place for a literature search on the use of Lanczos
factors is Hamming, 1973.
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Chapter 5

1. £'(0.242) = 1.9754 - 3.9088(0.032 + 0.012) = 1.8034
(true value = 1.7946).

2. Error from next term = -0.0074, actual error = -0.0088.

3. The recomputed table is

0.15 0.1761 2.4350 -5.7500 15.6253
0.21 0.3222 19750 '=3.8750 8.1060
0.23 0.3617 1.7425 -2.9833 6.7359
0.27 0.4314 1.4740 -2.1750

0.32 0.5051 1.3000

0.35 0.5441

£'(0.242) = 1.9750 - 3.8750(0.032 + 0.012) = 1.8045. The error is -0.0099.

Truncation causes a greater error than does rounding.

4* Using the same quadratic as in Exercise 1:
x Computed Exact Error

£4i{x) value
0.21 2.0536 2.0681 0.0145
0.22 1.9754 1.9741 -0.0013
0.23 1.8972 1.8882 -0.0090
0.24 1.8190 1.8096 -0.0095
0.25 1.7409 1.7372 -0.0037
0.26 1.6627 1.6704 -0.0077
0.27 1.5845 1.6085 0.0240

The least error is at x = 0.22 because this is best centered among the

data used for the polynomial.
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5. X Computed Exact Error
£1() value

0.21 2.0525 2.0681 0.0156
0.22 1.9750 1.9741 -0.0009
0.23 1.8975 1.8882 -0.0093
0.24 1.8200 1.8096 -0.0104
0.25 1.7425 1.7372 -0.0053
0.26 1.6650 1.6704 -0.0054
0.27 1.5875 1.6085 0.0210

The average of the magnitudes of the errors is essentially the same as in
Exercise 4.

6. x Lower bound Upper bound
0.21 0.0088 0.0187
0.23 -0.0058 -0.0125
0.27 0.0177 0.0375

(These bracket the actual errors.)

7 x Next term Actual error
0.21 0.0105 0.0145
0.22 -0.0009 -0.0013
0.23 -0.0070 -0.0090
0.24 -0.0079 -0.0095
0.25 -0.0035 -0.0037
0.26 0.0061 -0.0077
0.27 0.0210 0.0240

8. x Next term Actual error
0.21 0.0097 0.0156
0.22 -0.0008 -0.0009
0.23 -0.0065 -0.0093
0.24 -0.0073 -0.0104
0.25 -0.0032 -0.0053
0.26 0.0057 -0.0054
0.27 0.0195 0.0210
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9. 1 = 0: 2.4355 -~ 0.124(5.7505) = 1.7224, error = 0.0722.
i =2: 1.7409 + 0.016(2.9464) = 1.7880, error = 0.0066.
i = 3: 1.4757 - 0.106(2.2307) = 1.7122, error = 0.0824.
(At 1 = 1, error is -0.0088).
10. Degree 1 2 3 4 5 Exact

Value 1.7409 1.8034 1.7960 1.7839 1.8217 1.7946
Error 0.0537 -0.0088 -0.0014 0.0107 -0.0271 =
Least error from P,(x).

1T* &a. 1.2502.

b. 1.0843.
c. 1529385,

12. a. Error = 0.0004.
b. Error = -0.0048.

c. Error = -0.0010, bounds: 4.8E-5, 1.0E-4.

. Next term Actual error
a. 0.00003 0.00044
b. -0.00050 -0.00485
(=% -0.00000 -0.0009

14* 1.2905, actual error

1}

0.0020, bounds: 0.0017, 0.0021.

15. 1.2745, actual error
bounds: 0.0160, 0.0215.

0.0180, next term = 0.0215,

16. 1.2960, actual error = -0.0035, next term = -0.0030,
bounds: -0.0003, -0.0005.

17. The recomputed table is only very slightly different, even up to the
fourth differences. Repeating the exercises produces insignificent
differences.
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18. Central difference Forward difference
h Value Error Value Error
0.3 -2.5433 0.0220 -2.8054 0.2840
0.01 -2.5216 2.3E-4 -2.5476 0.0262
0.001 ~2.5214 1E-5 -2.5240 0.0026
9. Central difference Forward difference
h Value  Error Value Error
0.1 -2.540 0.019 -2.800 0.279
0.01 -2.500 -0.021 -2.500 -0.021
0.001 -2.500 -0.021 -2.000 -0.521

20. 3rd deriv.
4th deriv.

(1/h3) (A3 -(3/2)A% +(7/4)A5 - (15/8)A6 + ...1£g
(1/h4) (A% - 2A5 +(17/6)A6 - (7/2)A7 + ... 1£p

"

21. From just the first term and using double precision:
£(3)(0.3) = 12.219, true value = 10.650.
£(4)0.3) = 22.936, true value = 19.560.

22* One term: -0.404148, error = -0.0007082, est. -0.007048
Two terms: -0.411988, error = -0.0000758, est. 0
Three terms: The same as with two terms with single precision.

]

23. The best formula will use function values between x_p and x5:
£.2 - 4f 1 + 6fy - 4f; + )
L U RS S + 0(h2).
hé
A symmetrical formula for f(3]{x0) will also use these same function
values.

24. Double precision arithmetic is required. Answer with h = 0.05 is
-0.0366428, error = 0.000504. With h = 0.025, answer is -0.0362647,

error = 0.000126. The ratio of the errors is 4.00, confirming O(h?) .

25. The equation for £'(xg) is confirmed with its error term.
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26* Forward: (1/h) (fq - fg) - (h/2)£"(x).
Backward: (1/h)(fy - £_1) - (h/2)f"(x).

27. Central: (1/h%)(f; - 2fg + £_1) + (h2/12)£(4) (x).
Forward: (1/h2)(f, - 2f; + f5) - hf(4) (x).

28. With h 0.2: 1.2060.

With h 0-4: 1.20175.
Extrapolated: 1.20742; (exact = 1.20720). Cannot extrapolate further, we
need £(0.1), £(1.7).

]

23. With step size h: fj' = (f7 - f£_1)/(2h) + Ch?.
With step size 2h: fg' = (f5 - £_7_5)/(2*2h) + C(2h2).
Then 4* (first equation) - (second equation) gives
1 £y = £ g - 2f1 + 2£.4 = : S
0! = == ( mmmemm m e )
h 2 12

which can be reduced to the formula.

30. with unevenly spaced data, extrapolation is virtually impossible. In
any event, the derivative based on three unevenly spaced points will be
only of O(h), where h is the average separation.

31* Using double precision, the Richardson table is
0.157021273
0.157217754 0.157283248
0.157266897 0.157283278 0.157283280
Exact = 0.157283; the estimate agrees to six places.

32. Using double precision, the Richardson table is
0.474222326
0.474518839 0.474617676
0.474592990 0.474617707 0.474617709
Exact = 0.474617; the estimate agrees to six places.
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33. Extrapolation formula: more accurate + (more - less).

A Richardson table (using double precision,) requires seven stages
(to h = 7.8125E-4) to get repeated values the same to five places:
(0.157275728 and 0.157281820).

34. Program.

35. Value = 0.28135, exact = 0.275294, error = -0.00606,
bounds: -0.1117, 0.03312.

36. Value = 0.269609, exact = 0.275294, error = 0.00569,
bounds: 0.00023, 0.01376.
37. value = 0.272742, exact = 0.275294, error = 0.00255,

bounds: 0.00105, 0.04643.

38* Using undetermined coefficients:
n = 4: (h/45) (149 + 64f; + 24f, + 64f3 + 14£4) + O(h7).
5: (h/288) (95f¢ + 375f; + 250f, + 250f3 + 375f, + 95f5) + o(h7).

]

n

[}

39 n

n

1: hELO) 4 [y - xg)/21€02) - pyp 1) o (h/2) (£g + £4).
2: 2n£l0) & [(x2 - x42)/2 - 2nxg)£(1] 4 [(x33 - x53)/3
- xg(xp2 - x02) /2 - xl(xz2 - x92)/2 + 2hxgxq]£ (2]
= (h/3) (fg + 4fy + £5).
For n = 3, operations are similar but messy.

B
n

40a. 1.7684.
b 17728,
c. 1.7904.

41* Errors equal about -0.147*h2.
a. -0.00143.
b. -0.0058.
c. -0.0234.
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42. Second differences range from 0.242 to 1.469. These predict values for
£* (x) from 6.075 to 36.725 (compare to exact values of 4.953 to 44.701).
From the second differences, bounds will be -0.016, -0.098.

43. With 1600 intervals (h = 0.001), value is 23.914454, error = -1.4E-6.
44. 0.874705.

45* The Romberg table:
0.70833
0.69702 0.69325
0.69412 0.69315 0.69315
(Compare 0.69315 to exact value of 0.693147).

46. The Romberg table:
h =0.1: 1.76845 1.76697 1.76697
h=20.2: 1.77286 1.76699
h = 0.4: 1.759047

(Compare 1.76697 to exact value of 1.76697).

47. h Value Extrapolations
0.25 0.340088 0.341358 0.341294
0.50 0.336275 0.341550
- 0.320450

48. h = 0.1: 1.76693.
h =0.2: 1.76693.
h =0.4: 1.76720.

49a. Error

I

4 .3E-5, bounds: -6.85E-7, -13.8E-7.
4 .3E-5, bounds: -1.10E-5, -2.21E-5.
c. Error = -2.3E-4, bounds: -1.76E-4, -3.54E-4.

b. Error

50* Using Simpson's 1/3 rule, h 0.125: 1.718284,
exact value = 1.71828182, error = -2.30E-6.
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51. For n an even integer, let Th, Top. be trapezoidal rule integrals with
step sizes h and 2h. It is easy to show that

Th - Tan = (b/2) (-fg + 2f7 - 2f5 + ... - f,), from which

Th + (1/3)(Tp - Tap) = (h/3) (fg + 4f7 + 2f3 + 4f3 + ... + f,)
which is Simpson's 1/3 rule.

52. h 0.5: 0.946146.
h 0.25: 0.946087, extrapolation: 0.9460831.
Analytical: 0.9460831.

1]

53. With 12 intervals, integral = 1.718283, error = -1.0E-6.

54. Range for 3/8 rule Integral Error
[3.0,4.5) 10.228808 -2.0E-4 (best)
[4.0,5.5] 10.228860 -2.6E-4
[5.0,6.:5] 10.228857 -2.5E-4

55* Let P3(x) = a + bx + cx? + ax3. By change of variable, the integration
can be from -h to h with midpoint at x = 0. The quadratic that fits at
three evenly spaced points is a + (b + dh?)x + cx2. The integral of this
and of P3(x) are both = 2ah + 2ch3/3.

56. 3h2fy + (9/2)h3Afg + 903 (2h-1)/4A2f, + 3h3(3n-2)2/8A3F, + ...
57. When limits are from s = -1 to s = 0, we must divide hAf, by
A+ (1/2)A% - (1/6)A3 + (1/12)A% - (1/20)A5 +
which gives hil + (1/2)A - (10/24)A2 + (9/24)A3 - (73/360)A% + ...1£,.
58. Integral = h[2A + (1/3)A% - (1/3)A3 + (29/90)A% - .. .1£,.
59* We want the coefficients of: Integral = afg + bfy. The limits can be

(0,h]. Using f(x) = 1, then f(x) X, we get two equations: a + b = h,
bh = h?/2, from which a = h/2, b = h/2.
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60. We want the coefficients of: Integral = afy + bf; + cfy. The limits
can be [-h,h]. Using f(x) = 1, then f(x) = x, and f(x) = x2, we get three
equations: a + b+ c =2h, -a+c =0, a+ c = 2h/3, from which a = h/3,
b = 4h/3, c¢ = h/3.

61. We want the coefficients of: f'(x) = af_1 + bf,. Using f(x) = 1, then
f(x) = x, we get two equations: a + b = 0, -ah + bh = 1, from which
a=-1/2h, b = 1/2h.

62* Value = 1.718281 which is accurate to six decimal places. Gauss
quadrature requires three function evaluations, Simpson's 1/3 rule
requires eight.

63. value = 0.9460831. Gauss three-point quadrature gives 0.9460832. We
get this same value with 12 intervals (h = 1/12) with Simpson's 1/3 rule.

64* Correct value is -0.700943. Even five terms in the Gaussian formula is
not enough. Simpson's 1/3 rule attains five digits of accuracy with 400
intervals. The result from an extrapolated Simpson's rule gets this in

seven levels, using 128 intervals.

65. The error of Guassian quadrature = 1/{4nn!)f[2n]{x) -- see Atkinson,
(1978) . Polynomial error bounds are usually smaller. For two-term Gauss
(n = 2), comparable error term [P3(x)] is about 1/6 as large. For three
terms (n = 3), Pg(x) has an error term about 1/2 as large.

66. The values are readily confirmed.

67. The values are confirmed.

68. If computed without adaptive integration, value = 4.00001, if
extrapolated from computations with 64 and 128 intervals. Using adaptive

integration, value = 4.00001 requiring 45 function evaluations. Adaptive
Simpson's rule gets this from 17 evaluations.
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69* With TOL set at 0.4, the result is 3.657243; this differs from the
exact answer by 0.003% and requires 9 function evaluations. With TOL set
at 0.5, the accuracy criterion is not met.

70. Break the interval into subintervals: [0,1], [ %/27.

71. Program.

72. The same result is obtained.

73a* 2 o A
Ax Ay 4.8 18 &
—— = 2 4 4 2
3 2 4 B8 8 4
R Gl S
b. L 4 2 4 1
Ax Ay 4 16 8 16 4
—-_— -— 2 8 4 8 2
3 3 4 16 8 16 4
1 4 2 4 1
c. 1 3 3 20733 1
TR I R R B
3Ax 3Ay 3 9 9 6 9 9 3
—————— 26 6 4 b5 6 2
8 8 3 9 9 3 § 9 3
3 99 3 99 3
L 3 3 2 3 3Ta

d* for a: Any number in the y-direction, even number in the X-direction.
for b: Even number in both direction.
for c¢: Divisible by 3 in both directions.

74. Bnalytical value = -1/6. This is confirmed by Simpson's rule.

5. Top plane: 18 4 2 f
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Middle plane: 4
16

Bottom plane: i

16

4

16 4
64 16
16 s
4 1
16 B
4 1

The final sum is to be multiplied by (Ax/3) (Ay/3) (Az/3).

76a. 0.408064.

b. 0.408065.

c. 0.408088.
Analytical value = 0.4

77. h
h

"

0.2: 0.408058.
0.1: 0.408063.

]

08064.

Extrapolated: 0.408065.

78* Analytical value =
Ax Ay Int
.5 0.5 0
.25 0.5 0
8 0.25 0
<25 0.25 0

0.125 0.125 ©
(*using the avera

oo O O

79. a. 0.27704 (error
b. 0.28118 (error

2/3.

egral Error
w45 -0.0833 =0'.3333
.7185 -0.05208 =0 3333 %
.7185 -0.05208 -0.3333*
.6875 -0.0208 ~-0.3333
.6719 -0.0052 ~0.3333

Error/h2

ge of the squares of the h-values.)

0.00404),
-0.00010)

]

analytical

0.281081.
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80. Answers are the same as for Exercise 79.

8l. Integrating with x constant and using 16 y-intervals, then varying x
from -1 to 1 with Ax = 0.125, the integral is 1.29205. Exact answer =
1.29199; error is -6E-5.

82. Procedure:
(1) Locate the Gauss points on the y-axis between[0,1].
(2) For each of these y-values, locate the Gauss points for x between
x = 0 and the x-value on the circle.
(3) For each y-value in (1), compute the weighted sum of function
values at each of the Gauss points in (2): divide the sum by 2.
(4) Compute the weighted sum of the sums in (3); divide this by 2.
Results: (a) 0.28108 (b) same result Analytical value = 0.28108

83. (2.755,4.397), (4.545,4.397), (2.755,6.302), (4.545,6.302).

84. End condition: Exact Central diff.
x i § 3 4 value (h = 0.1}
1.5 -0.0841 -0.0823 -0.0819 -0.0816 -0.0817
f'(x): 2.0 -0.0627 -0.0630 -0.0632 -0.0625 -0.0625
2.5 -0.0489 -0.0497 -0.0494 -0.0494 -0.0494
1. 0.0596 0.0467 0.0440 0.0466 0.0466
£%(x) s 2.0 0.0257 0.0307 0.0310 0.0313 0.0313
2.5 0.0296 0.0227 0.0240 0.0219 0.0220

85. As indicated by the answers to Exercise 84, the plots are very close
to the plots of the analytical values.
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86. With polynomials formed from f(x) at values with Ax = 0.25. For the
cubic, values from x, to x, were used.

-== Degree --——— Exact

X 3 B value

1. -0.0814 -0.0819 -0.0816

Evix) s 2. -0.0633 -0.0633 -0.0625
2 -0.0470 -0.0475 -0.0494

1.5 0.0484 0.0611* 0.0466
E*lx} s 2.0 0.0398 0.0412* 0.0313
2.5 0.0290 0.0225 0.0219
* These values distorted from round-off.

87* X: L5 2.0 2.5
f'(x): -0.0844 -0.0619 -0.0512
()i 0.0653 0.0245 0.0272

88* Value = 1.29919; Simpson's rule: 1.30160; exact: 1.30176.

89. End condition: 2 3 4
Value: 1.30177 1.30160 1.30030

90. Best agreement with exact value from end condition 2: 1.30177.

91. a. By Trapezoid rule Analytical
N A B A B
0 4.0100 4.0000
1 1.2259 -2.1385 1.2156 -2.1595
2 0.3142 -1.1827 0.3040 -1.2249
3 0.1456 -0.7708 0.1351 -0.8245
4 0.0868 -0.5458 0.0760 -0.6306
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(Exercise 91 continued)

92* Results with

93,

94.

95,

b. By Trapezoid rule

N A B

0 2.6800

1 -2.5255 -1.6345
2 -0.4189 1.2311
3 0.7850 0.1941
4 0.1158 -0.5506

c. By Trapezoid rule
A B
0.0889

.1332 0.0527
0.0495 -0.0355
0.0001 0.0337

= W NP o 2
[
o

-0.0192 -0.0115

part (a)

N A B

0 4.0000

1 1.2156 -2.1595
2 0.3031 -1.2259
3 0.1330 -0.8384
4 0.0716 -0.6409
a. About 2100 panels.
b. About 1600 panels.
c. About 1100 panels.
a. About 160 panels.
b. About 140 panels.
c. About 60 panels.
Multiply

Wl ag Wk mod

2

-2

=0.
0.
0.

0

0.
0.
0.

-0

Simpson's rule.

part
A

.6667
.5466
.4041

0.8530
0.0954

Analytical

A B
6667
.5465 -1.6211
4053 1.2732
8488 0.1801
1013 -0.6366
Analytical

A B
.0890

1229 0.0524
0508 -0.0363
0002 0.0361
0220 -0.0130

(b)
B

-1.6209
1.2744
0.1773

-0.6474

part (c)
A B
0.0890
=0.1339 0.0524
0.0509 -0.0364
0.0002 0.0363
-0.0225 -0.0133

the matrices, add exponents of (Wi)(wj). write w0

B

, then unscramble the rows.

(see Exercise 91 for analytical values.)

1, write



7 &

Chapter 5

3

X2

Xy

X0

96.

43

6-7

After

N

stage

4 2 & 15 3 7T O 6 4 @0 06 040
8 412 210 614 1 9 5

0
0

3" 1% |7 115

13
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8. 0: 0000 -> 0000 = O 8: 1000 -> 0001 =
1: 0001 -> 1000 = 8 9: 1001 -> 1001 =
2: 0010 -> 0100 = 10: 1010 -> 0101 =
3: 0011 -> 1100 = 12 11: 1011 -> 1101 = 13
4: 0100 -> 0010 = 2 12: 1100 -> 0011 = 3
5: 0101 -> 1010 = 10 13: 1101 -> 1011 = 11
6: 0110 -> 0110 = 6 14: 1110 -> 0111 = 7
7: 0111 -> 1110 = 14 15% 111%1s=> 1331 "= 15
99. fo -f4 h
£'(xg) = —======- s T i) .
h 2
fo - 2f7 + £,
B R — + h £03) (x).
h2
100. same results as Exercise 99.
101. Same results as Exercise 99.
102. n = 4: -(8/945)h7£(6) (x) .
n = 5: -(275/12096)h7£(6) (x) .
103. Integrate s(s - 1)(s - 2) ... (s - n)ds from 0 to n. This will be
zero when n is even. This is apparent when a plot of the integrand is
studied -- every loop above the x-axis has a matching partner that goes

below the x-axis.
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104* Suppose f(x) = eX. To get the local error, integrate over two panels:
Limits h Integral Error Error/h>
1,2 0.5 4.67235 -1.575E-3 -0.0504
[1,.1.5] 0.25 1.76344 -3.802E-5 -0.0389
[1,1.2%] 0.125 0.77206 -9.938E-7 -0.0326
[1,1.125] 0.0625 0.36194 -2.884E-8 -0.0302
To get the global error, integrate between limits of [1,2] with varying h:
h Integral Error Error/h4
0.5 4.67235 -1.575E-3 -0.0252
0.25 4.67088 -1.00BE-4 -0.0258
0.125 4.67078 -6.388BE-6 -0.0259
0.0625 4.67078 -6.662E-7 -0.0259

105. Demonstrations confirm the statement.

106. Derivative at x 0.5; single precision:

h £ () Error £ (x) Error
0.10000 0.495574445 0.000524402 0.959482014 0.001546979
0.01000 0.496093184 0.000005662 0.961124957 -0.000095963
0.00100 0.496089488 0.000009358 0.968575597 -0.007546604
0.00010 0.496134222 -0.000035375 2.980232716 -2.019203663
0.00001 0.496581256 -0.000482410 74.505821228 -73.544792175
Double precision:

0.10000 0.495574397 0.000524436 0.959450062 0.001548921
0.01000 0.496093649 0.000005185 0.961013529 0.000015455
0.00100 0.496098782 0.000000052 0.961028829 0.000000155
0.00010 0.496098833 0.000000001 0.961028982 0.000000002
0.00001 0.496098834 0.000000000 0.961029144 -0.000000160
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107. Derivative at x

0
0
0
0
0

h
.10000
.01000
.00100
.00010
.00001

o o o O O

£ ()

.543548524
-500898838
-496573776
-496283233
.496953785

Double precision:

0

0
0
0
0

.10000
.01000
.00100
.00010
.00001

0

108. Single

o O ©o o

.10000
.01000
.00100
.00010

0.00001
Double precision:

0.10000 0.01099408
0.01000 0.01066511
0.00100 0.01066182

0.00010 0.

.543548401
0.500898717
0.
0
0

496579296

.496146885
.496103639

precision:

Integral
.01099408
.01066511
.01066179
.01066950
0.01065880

o O o o

0.00001 0.01066898
The optimum step size is the same as for differentiation.

0.

=0.
-0.
={) .
~0.
=0.

41
2
6
0
2

1
4
5

010661792

5

Error
047449678
004799992
000474930
000184387
000854939

.047449567
.004799883
.000480463
.000048051
-000004805

Error

-0.000332289
-0.000003320
-0.000000004
-0.000007708

0.000002990

-0.000332289
-0.000003322
-0.000000033

0.000000000
-0.000007193

5; single precision:

£ (x)

.917188048

0.857772195
0.961125016

o O O O O

.980232716
.000000000

917293131
-957808611
.960716863
-960997871
.961025397

o O o o o

Error

.043840945
.003256798
-000096023
.941261768
.961028993

-043837853
.003220373
.000312121
.000031113
-000003587
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109. single precision:

h Integral Error
0.10000 0.01066171 0.00000008
0.01000 0.01066179 -0.00000000
0.00100 0.01066180 -0.00000000
0.00010 0.01066180 -0.00000001
0.00001 0.01066179 0.00000000

Double precision:

0
0
0.00100 oO.
0.00010 0.
0.00001 O.

.10000 0.01066171 0.00000008
.01000 0.01066179 -0.00000000

01066179 -0.00000000
01066179 -0.00000000
01066179 -0.00000000

The optimum step size is larger than for Exercise 108.

110. Procedure

Answers:
Exercise
Exercise
Exercise

Exercise

111. Procedure:

The analytical
Exercise
Exercise
Exercise
Exercise

112. Procedure

: (1) Define f(x) as symbolic expression;
(2) Issue command: diff(f, 'x')

2: 1/x/log(l)

11: 1 + 1/3*cos(x)

18: exp(x)/(x-2) = exp(x)/(x-2)"2
31: sin(1/2*x)*cos (1/2*x)

(1) Define f(x) as a symbolic expression:

(2) Issue command: int(f,'x',a,b) where a,b are limits.

answers are complicated. Numerical values are:

353 '0.2753
41: 1.7670
50: 1.7183
52: Si(1) (This is the sine integral; wvalue is 0.9406.)

: Define f = '(x - x*2/2 + x*3/3 - x*4/4)/h', then use

symmul (£, f). The results agree with those of Exercise 16 but the terms are
not in the same order.
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113. The MATLAB command: legendre(n,'x') does not give a symbolic
expression but: legendre (n,x), where x has a value, gives the numerical
value of L (x) as the first element of a vector.

114. The first differences of log(At) will be constant when the values
are linear. For the given data, a fairly straight line occurs between 9.5
and 13 min, and a second straight line is from 15 min to the end of the
data. It is not clear which line segment should be considered indicative
of the completion of the reaction; perhaps there two reactions occurring.
The numerical method is more quantitative and less subjective but is more
influenced by errors in the data that would be smoothed out by the
graphical procedure.

115. Assuming that the reaction ceases at 15 min (see comments in

Exercise 114), the integral is 166.4, Simpson's 1/3 rule would be
preferred (adjusted if necessary for an uneven number of panels). Gaussian
quadrature is not appropriate for tabulated data.

116. Using Simpson's 1/3 rule, the integral is 6.1245.

117. The effect of precision of the data is most noticeable on S for the
second point for end conditions 1 and 3 and on S for the first point for
end condition 4.
Values for S at the second point:
End condition: L 3 4
3 digits 0.9664 .7605 0.6640
4 digits 0.9709 .7641 0.6664
5 digits 0.9714 .7644 0.6666
6 digits 0.9714 0.7644 0.6666
For end condition 3, values of S at the first point are
1.12%5; 1.31333,.'9.31332, aAnd 1.1325.

L=> B = B =)
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Chapter 6

la. y(x) =1

+

X+ 3/2 x2 +5/6 x3 + 7/12 x% + 17/60x5 + 0(x6)

y(0.1) = 1.11589, y(0.5) = 2.02448

b. y(x) =1+ x+ x% +1/3 x3 + 1/12 x4 + 1/60 x5 + 0(x5)
y(0.1) = 1.11034, y(0.5) = 1.79740

c. y(x) =1+ 1/2 x2 -3/8x% + o(x6)
y(0.1) = 1.00496, y(0.5) = 1.10156

d. y(x) =1 + 2x/5 + 3x'/50 + x'/500 + 3x‘/10000 + x*/250000

2. For y(1) = 0: y(x) = 0.

]

For y(0) 1L, wx) =1 +1/3 x3 + 1/9 x8 + 1/27 x9 +

The analytical solution is y = 3/(3 - x2)
For x = 0.1 0.2 0.3 0.4
Series: 1.00033 1.00267 1.00908 1.02179
Analytic: 1.00033 1.00267 1.00908 1.02180

3. y(x) =1 +x + x3/6 + x4 + x5/180 + x7/504
x = 0.2 0.4 0.6
v = 1.20147 1.41283 1.64704

4. x(t) =1 - 3t2/10 + 3t4/250 - 3t6,as

5. a* With h = 0.01, y(0.1) = 1.11418. Error is 0.00171. To reduce error
to 0.00005 (34-fold), one must reduce h 34-fold, to about 0.00029.
b. Error = 0.001096, reduce 22-fold, to about 0.00034.
Error 0.000489, reduce 10-fold, to about 0.001.
0.00006, almost good enough, reduce to about 0.008.

n

d. Error

L}

6. y(1) = 1.38556 with h = 0.1, y(1) = 1.35504 with h = 0.2.
Extrapolating, we get
y(1) = 1.38556 + (1/(1))(1.38556-1.35504) = 1.41608 (versus 1.41421).
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7. With modified Euler, all results are already accurate to four decimals.
a* y(0.1) = 1.11587. The simple Euler method would require about 340
steps and 340 function evaluations compared to 4 steps and 8
function evaluations here.

b. ¥v(0.1) = 1.110319, 4 steps here versus 220.
c. y(0.1) = 1.004963, 4 steps here versus 100.
d. ¥(0.1) = 1.040600, 4 steps here versus 12.

8. y(2) = 6.15633 with h = 0.1; yv(2) = 6.51879 with h = 0.05.
Extrapolating (error = O(h')) gives 6.63961 (versus analytical of
6.703888) . Estimate of error is 0.12082, actual error is 0.18509 when h =
0.05.

- Sl 0.1 0.2 0.3 0.4 0.5
v 2.2150 2.4630 2.7473 3.0715 3.4394

10. Equation is dv/dt = 32.2 - cv3/2, v(0) = 0. At 80 mi/hr
(117.333 ft/sec) dv/dt = 0, giving ¢ = 0.025335.
o3 0.2 0.4 0.6 0.8 10 1.2
v: 6.3986 12.6822 18.7997 24.7198 30.4209 35.8883

t: 1.4 1.6 1.8 220
v: 41.1127 46.0888 50.8149 55.2919

11. y(0.1) = 1.11589, which is correct to 5 decimals. With the simple
Euler formula, about 3400 steps would be required (3400 function
evaluations). With the modified Euler method, about 16 steps would be
required

(32 function evaluations) while with the Runge-Kutta method, only 4
evaluations are needed.

12; R 0.2 0.1 0.05
y(0.2): 6.61982 6.69432 6.70305

13. Be: 0.2 0.4 0.6
y: 2.09327 2.17549 2.24927
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14. Interpolating linearly between v(6.0) and v(6.5), v = 105.60 ft/sec at
= 6.36 sec. Distance traveled is about 435 ft.

t

15.

At

Using h = 0.3, 90% of the terminal velocity is reached in 6.305 sec.

t = 6.0, the two results agree to 6 digits, so that level of accuracy
is assured. Accuracy is improved about 8-fold with h = 0.3 because

(0.5/0.3)% = 7.72
16. Using h = 0.1 for each result:
For Exercise 11: y(0.1) = 1.11589465
For Exercise 12: vy(2.0) = 6.705276
For Exercise 13: y(0.6) = 2.249272
17. Using h = 0.1 for each result:
For Exercise 1: y(0.1) = 1.115895, y(0.5) = 2.027337
For Exercise 6: y(1.0) = 1.414214
For Exercise 9: y(0.5) = 3.443299
18* The exact answer is: y(x) = -5 X + 2x2 -4x + 4
x v (RKF) Analytical
D.00 -1.000000 -1.000000
0.10 -0.904187 -0.904187
0.20 -0.813654 -0.813654
0.30 -0.724091 -0.724091
1.80 2.453505 2.453506
1.90 2.872157 2.872157
2.00 3.323325 3.323324
19. From Exercise 10 we have: dv/dt = 32.2 - 0.025178 v3/2.

With RKF, v(2.0)

= 55.32416
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20* a. -0.28326.

b. -0.28387.
c. -0.28B396.
21. E: 0.8 1.0 1.2

y: 2.0146 2.2822 2.5207
analytical: 2.0145 2.2817 2.5199

22. Exact results are obtained because dy/dt is a quadratic.

23. y(1.2) = 2.5199 versus 2.5199 (analytical).

24. v(4) = 4.1149 (predicted), y(4) = 4.2229 (corrected). The error
estimate is -0.0031; the corrected value should be correct to three

digits, but the actual error is -0.0998. The original data must be correct
to at least 3-digits.

25. By RKF: ¥ 0.2 0.4 0.6
y: 1.06268 1.24601 1.51691
By Milne: x: 0.8 1.0
y: 1.74687 1.95374
26* x: 0.8 L0 D2 G ) 250
Y: 2.3163 2.3780 2.4350 2.5380 2.6294
est. error: 0.0003 <5E-5 0 -5E-5 -<2E-5

(h was increased to 0.4 at x = 1.2).

27. 3 0.8B 1.0 1.2
Ve 2.0145 2.2817 2.5199
(These match the analytical results.)

28. X 0.8 250
v: 1.74687 1.95374
(y(0.8) is more accurate than by Milne, v(1.0) is less accurate) .
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29* TUsing Runge-Kutta:
x: 0 0.2 0.4 0.6
y: 0 0.0004 0.0064 0.0324
Using Adams-Moulton:
x: 0.8 0.9 1.0 1.1 1.2 1.25 13 1.35 1.4
y: 0.1025 0.1644 0.2513 0.3704 0.5321 0.6340 0.7544 0.8990 1.0772
(The step size was was halved after x = 0.8 and again after x = 1.2).

30. One relatively easy technique is the method of undetermined
coefficients.

3la. £ = sin(x) so h(max) = (24/9)/1 = 2.67.

b. With h = 0.267, D cannot exceed 10E-N for N-decimal place accuracy.
c. For D = 14.2E-N, h cannot exceed (1/14.2)h(max) = 0.188h(max) .

32a. fy = 2y = 0.30 near (1.0,0.15), so h(max) = (24/9)/0.3 = 8.89.
b. With h = 0.889, D cannot exceed (24/9)/(0.3*0.889)E-N = 10E-N.
c. For D = 14.2E-N, h cannot exceed (1/14.2)h(max) = 0.626h(max) .

33a. h(max) 3L = 3=
b. with h 0.3, D must be less than 3/0.3/1 = 10E-N.
c. For D = 29E-N, h must be less than (1/29)h(max) = 0.103.

I

34. The derivation parallels that for Adams-Moulton with 24/9 replaced by

3 as shown by Eg. (6.8) compared with Eq. (6.16).

35. The development parallels that in Section 6.8 with the factor 9/24

replaced by 1/2 as shown by comparing Eq. (6.4) with Eg. (6.18). There is

no accuracy criterion because the predictor and corrector formulas are the

same and we do not have two different error terms to compare.

37* Let y' = z so that y" = z'. Then we have
v' z, yv(0) =0
EIz' = M(1 + 22)3/2, z(0) = 0

1}
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38. Let yq' = Y3:, ¥2' = ¥4- Then we have

¥3' = (-k1¥1- kpyq + kpyp)/m;, y3(0) =B
Yg' = (kpyy - kpyp)/mgy, ya(0) =D
Yi' = ¥3. yi1(0) =&
Y2' = ¥4, y2(0) =¢C
39* t: 0 0.2 0.4 0.6
y: 1 0.982 0.934 0.865
x 0 0.022 0.093 ©.221
40. t: 0.8 1.0

y: 0.780 0.699
X: 0.407 0.660

41. o 0.8 .0
: 0.786 714
X: 0.411 0.672

o

42* Starting with a Taylor series with terms through x56:

x: 0 0.1 0.2 0.3
y: 1 0.8950 0.7802 0.6561
¥z -1 =-=1.0995 -1.1956 -1.2847
With Adams-Moulton: X3 0.4 0.5 0.6

y: 0.5236 0.3840 0.2389
y': -1.3629 -1.4263 -1.4715

43. t y ¥ i
0.2 0.2003 1.0053 0.0793
0.4 0.4042 1.0418 0.3095

0.6 0.6210 1.1380 0.6733
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44, t Yy y' ¥E

0.8 0.8651 1.3186 1.1530

1.0 1.1555 1.6058 1.7374
At £t = 1.0, Ye- Yp = 2.1E-4 giving an estimated error of 1E-5. However,
the value at t = 1.0 using RK4 with h = 0.1 gives y = 1,15558. The
difference is probably due to round-off of the previous values.

45. Using At = 0.0625:

= x 3t Y "
0.4 0.0 .0 2.0
0.3044 -0.3180 .4314 1.6550
.1191 -0.4040 .6370 1.1637
-0.4095 -0.0866 .0839 0.6640
-0.3277 -0.3516 .3412 0.0419

N P2 O o
o i © nn o
o
N N B O O

o

B: 0.0409 0.8056 -1.0651 -1.4210

5.5 0.4277 0.7247 -1.6518 -0.9285

6.0 0.7540 0.5027 -2.0650 -0.2784
The motion is not purely periodic but the maxima in x and y reoccur about
ever 8.3 time units.

46* Using RKF to start the solution:

£: 0 .3 0.2 0.3
x: 0 0.0717 0.1998 0.2028
x(anal) : 0 0.0717 0.1999 0.2026
Values by Egq. (6.28):
{ 0.4 0.5 0.6 0.7 0.8
x: -0.0196 -0.3532 -0.5676 -0.4489 0.0898
x(anal): -0.0233 -0.3784 -0.5977 -0.4419 0.0932

47. The results depart greatly from the analytical.

48. a. L > 2
b. L >1
c. L > 20
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49. a. ¥ -y’ -x + ¥’ = |v) -¥!| = |y, - vllv. + v.|, so that
L > |y, + y,] €2 on the unit square.
b. Does not satisfy the Lipschitz condition since
[£(x, v1) - £(x, ¥3)| = x2/|y; v2||v1 - ¥3| is unbounded at y = 0.
c. |xt, - xt,| = |x||t, - t,| so that L > max|x| = 5.

50. Whenever x # 1.

51* Examine f(x,y) = x|y| on the unit square. In general, consider the
integral of a bounded function with a finite number of discontinuities.

52* Parts (b) and (c¢) are stable; parts (a) and (d) are unstable.

53. Using Eq. (6.42) with K = 1, M = 2, we get this table.

x Egq. (6.24) Actual error

0 0 ;. VO

0.02 0.00404 0.000403

0.04 0.000816 0.000822

0.06 0.001237 0.001257

0.08 0.001666 0.001710

0.10 0.002103 0.002180

54* Est. Actual

x Y £ 1+ hfy hzy'fz error error
1.0 1.000 1.000 1.200 0.015 0 0
2 ¥ 1.100 I 331 1.242 0.022 0.019 0..017
1.2 1.233 1.825 1.296 0.035 0.052 0.049
1.3 1.416 2.605 1.368 0.058 0.118 0112
1.4 1.676 31933 1.469 0.106 0.256 0.247
1.5 2.069 6.423 1.621 0.221 0.578 0.597
1.6 2.712 11.765 1.868 0.547 1.464 1.833
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55. Using s = 1+hK, the equation for e, in Section 6.11 can be written as
this approximate inequality:

en < (h2/2)(1 + 8 + 82 + ... + s8-l)yn(x)
< [(h2/2) (SP-1)/(8-1) Jy" (x).

Now, using M as the bound for abs(y" (x)) and noting that
SR = (1+hK)D < enhK,

56.

57

58.

59%

en < [(h2/2) ((1+hK)P-1)/ (hK) ]M
= [(hM)/(2K)] (ePhK_1)
and nhK - (xnﬁxolK.

Since Ax is contant, the differences can be written in terms of
ordinary differences.
Same as for (a).

- By change of variable: x = x, + ht. Then (x - x_,) becomes

h(t+3), (x - x,,) becomes h(t+2), and ds becomes h dt.

MATLAB commands are:

a. dsolve ('Dy = x"2+x*y','y(1l)=2') resulting in a complicated
expression involving both exponentials and ERF.

b. dsolve('Dy = sin(t)', x(0)=1') giving ans = -cos(t) + 2.

c. dsolve('Dy = 2 - x - ¥y') gives 3 - x + exp(-x) + Cl.

a. The plot resembles that of cubic polynomial; there is one real zero
at about x = -2.06, a maximum near (-1.2, 1.2) and a minimum near
(0,0.86).

b. The plot is a cosine curve: maxima at y = 3, minima at y = 1.

C exp(x"2/2)

exp(x) - C exp(x"2/2)
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60. The commands to Maple are of this form:

dsolve ({deq, y(x0) = y0}, y(x), series);

a. y(x) =2 + 3(x-1) + 7/2(x-1)" + 5/2(x-1)* + 3/2(x-1)* + 4/5(x-1)°
v(2) = 16.3

b. x(t) = -1 + t%/2 - t*/24 + o(t")
x(2) = 2.3333

c. y(x) = -3 + 3(x-2) - 2(x-2)" + 2/3(-2)" - 1/6(x-2)" + 1/30(x-2)°
y(2) = -3

61. All of these match the analytical values.

a. y(2) = 13.962
b. x(2) = 2.416
e. ¥(2) =3

62* y(x) =1 - x + 3/2x" - 7/6x + 19/24x' - 9/24%"
yvi(2)

-3.6667 (which is far from correct!)

63. y(2) = 1.9313. (If the Taylor series of Exercise 62 is carried to s
v(2) = 1.93134 from it)

64. The plot slopes downward from (1, 0.743) to (2.-3.667), crossing the
x-axis at x = 1.529

65. The plots are the same as Fig. 6.12

66. Take M(x) constant, so the simplified equation is

y" = M(x)/(EI) = C.
The analytical solution at x = 1 (y(1l) = C/2) is to be compared to the
numerical solution of the nonlinear equation in Exercise 37. One finds
that, at C = 0.198, y(1) = 0.0999 which is 1% different from Cc/2 = 0.0990.

67 - 70 are programs.
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71. Some representative values:

t (sec): 0 0.01
I (amp): 0 1.366
g/C (V): 0 9.6

(I(max) is about 1.37 amp at about t

72. Representative values with h = 0.002:

t (sec): 0.01
I (amp): 0.428
g/C (V): 5.99

0.401 -0.279

0.009 sec.

.10
-0.049 0.

014

= D

0.10
-0.851
-0.611

A plot of g/C versus t appears very much like a sine curve for t in

[0.083,0.10].

74. Set up as four first-order equations by eliminating one second

derivative from each equation. Then, if iy =w, iq"

we get
w' = x,

y' =z,

3%, i2' = v, iz' = z,

x' = (ep' + 2eq' + 67.3z + 150000y - 91x)/0.0055,

z

(e;' + 6ep’' + 213x + 550000w - 113.2z - 200000y)/0.0055.

76. After stabilizing, the flux resembles a sine curve of amplitude about

7.5E-4 but the maxima and minima themselves oscillate. It is about 180

degrees out of phase with the exciting voltage. With the parameter values

given, the values of phi never exceed 1.5E-3 in magnitude so neglecting

the (phi)3 term makes no difference up to six significant figures.

78. The simplest way to handle the varying "constant" is by incorporating

a look-up table in the program. If we use a subroutine that interpolates

from the table using a cubic polynomial with the x-values centered, and

using

h = 0.2, RK4 gives:
T: 0.0 0.2 0.4
N: 100 115 133

Observe that N reaches a maximum at about T
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Chapter 7

1. Rate of heat leaving is -[k + k'dx][A + a'dx] [du/dx + u"dx]; equating
rates in and out, canceling like terms, and dropping the (dx)® term results
in Bg. (7.3).

2* The temperatures are linear within each portion. The gradient from x =
0 to x = X is proportional to A/k,; from x = X to x = L, it is proportional
to A/k,. From these, the temperature at the junction is

U = 100kx/[k (L - X) + kX].

3. Take u,, =u, + (du,/dx)dx. Substitute a + bu + cu’ for the k's, expand,
cancel common terms, and drop terms in (dx)?; the result:
(@ + bu + cu’) (d'u/dx’) + (b + 2cu) (du/dx)® = Qp/A.

4. In addition to the substitution in Exercise 3, take A, = A, + mdx.
After expanding, canceling common terms, and dropping terms in (dx)® and
(dx)’, we get:
(a2 + bu + cu’) (mx + n) (du/dx’) + (b + 2cu) (mx + n) (du/dx)’
+ (a + bu + cv’) (m) (du/dx) = Qp.

5* With modified Euler method: y'(l) = 5.48408.
With Runge-Kutta-Fehlberg: y'(l) = 5.50012.
With Runge-Kutta : y'(1) = 5.49872.
Analytical (exact): y' (1) = 5.50000.

6. Runge-Kutta-Fehlberg method was used, with h = 0.25.

Computed from Interpolated
% ¥ {1} =ik y'(1l) = 6 (y'(1) = 5.50012)
1.0 1.5000 1.5000 1.5000
1.25 3.1421 3.4204 3.2813
1.50 5.7008 6.2991 6.0000
175 9.3790 10.3083 9.8438

2.00 14.3871 15.6126 15.0000
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7* Truncation errors cause the modified Euler results to be inexact. With
h = 0.01, we match to 6 digits for y(2) when y' (1) = 5.5.

8. The same y values are obtained.

9. Runge-Kutta-Fehlberg was used with h = 0.2.
Initial slopes Interpolated slope yvi(1l)
2.:5; 1.0 0.91383 3.0008
0.91383, 0.913 0.9111393 3.0000
It is more difficult to get the correct result because the problem is
nonlinear (but this one is not strongly nonlinear.)

10. with Runge-Kutta-Fehlberg method and h = 0.05, y' (1) = 0.910804 gives
the correct results. Reducing h does not change this.

11. Using Runge-Kutta fourth order method and h = -0.2, y'(1) = -0.5106,
gives y(0) = 0. Intermediate results:
e ;8 1.6 1.4 L2 1.0 0.8 0.6 0.4 0.2

y: -0.9109 -0.8891 -0.9648 -1.1147 -1.2642 -1.3104 -1.1677 -0.8282 -
0.3843

12* a. © v $error
0 0 0
x/4 0.77015 0.625
/2 1.42153 0.518
3m/4 1.85370 0.321
n 2 0
b. With h = n/5, largest error is 0.404%.

c. Shooting has a maximum error <0.5% with h = m/2.

13. The results with 64 intervals match those from RK4 (h = 0.25) to four
digits. These also match to RKF (h = 0.25) which is more accurate.
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14. Extrapolated results:
t 0.2 0.4 0.6 0.8
x 0.520865 0.062106 -0.355993 -0.715310
These agree to 5 digits with results from RKF with h = 0.1.

15* It requires 32 intervals, h = 0.03125.

16. Using four intervals:
t: <1.0 -0.5 0.0 0=5 1.0
y: 2.000 2.338 2.522 2.717 3.000
RKF: 2.000 2.367 2.598 2.804 3.000

7. A t Yy error
0.00 -2.0398 0.0398
0.25 -1.8825 0.0348
0.50 -1.4349 0.0207
0.75 -0.7661 0.0007
1.00 0.0210 -0.0210

b. With 8 intervals, the largest error is 0.0097 at t = 0, 0.48%.
c. RKF with four intervals matches the analytical to 5 digits.

18. The solution obtained is the trivial solution, viE 0.
19% 3 0 n/8 n/4 3n/8 /2
v: 1.5000 1.5828 1.4215 1.0410 0.5000

Anal: 1.5000 1.5772 1.4142 1.0360 0.5000

20. Computer program.
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21. Index the nodes in [0, 1] as i =1, 2, 3, 4, 5, 6. Add fictitious
points at xp and x7. We can write six equations, one at each interior
point. The boundary conditions add two more. The augmented matrix is:

-1.000 0.400 1.000 0.000 0.000 -1.000 0.400 1.000 1.6000
1.000 -2.000 1.000 0.000 0.000 0.000 0.000 0.000 0.0000
0.000 1.020 -1.998 0.980 0.000 0.000 0.000 0.000 0.0003
0.000 0.000 1.040 -1.994 0.960 0.000 0.000 0.000 0.0026
0.000 0.000 0.000 1.060 -1.986 0.940 0.000 0.000 0.0086
0.000 0.000 0.000 0.000 1.080 -1.974 0.920 0.000 0.0205
0.000 0.000 0.000 0.000 0.000 1.100 -1.960 0.900 0.0400
1.000 0.400 -1.000 0.000 0.000 1.000 0.400 -1.000 1.2000

12. The augmented matrix (with two rows from the boundary conditions):

10.000 -12.000 6.000 -1.000 0.000 0.000 0.0195
2.040 0.000 -2.040 1.000 0.000 0.000 0.0239
-1.000 2.040 0.000 -2.040 1.000 0.000 0.0292
0.000 -1.000 2.040 0.000 -2.040 1.000 0.0356
0.000 0.000 0.000 0.000 1.000 0.000 1.0000
0.000 0.000 0.000 -1.000 0.000 1.000 0.0000

The solution is (0, 0.417, 0.706, 0.884, 0.978, 1).
By Runge-Kutta: (0, 0.3552, 0.6363, 0.8389, 0.9602, 1).

23. If we replace the second derivative with a central difference
approximation, the typical equations is
Y., + (4h'y,/sin?(x) - 2)y, + y,, = 2.
A fictitious node must be added at the left of x = 1; for this:
Y, =y, - 2h(0.9093).

24. a. The analytical solution is y = A cosh(kx) + B sinh(kx). y(0) =0
implies A = 0 and y(1) = 0 implies B = 0 (since k # 0) so y = 0.
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(Exercise 24 continued)
b. The set of equations is (A + kI)y = 0. If 2 = 2 + 0.04k2, we
evaluate this determinant:
| 2 -1 o o
det| -1 2z -1 0] =12%- 322 4 1,
| 0 -1 2z -1
| O @ =i %]
Solving for Z and substituting Z = 2 + 0.04k2 gives only complex
values for k.
c. The shooting method finds y = 0.

25* The exact answer is 2.46166.

a. (h= 1/2): k =2.0000,
b. (h = 1/3): k = 2.25895,
o (h = 1/4): k= 234974,
d. Extrapolated: k = 2.46366.

26. h = 1/4 gives k

+5.37981; with h = 1/5, k = £5.44068.

27. Analytical solution: C e3X%/2 sin(px). Typical values (for C = 1) .
x: 0 0.25 0.50 0.75 il
y: 0 1.02883 2.11700 2.17804 0

28. We cannot use the exact eigenvalue. With h = 1/4, the computed value
of the second eigenvalue is k = 10.8111, k* = 116.88. When the values for k
and k' are substituted into the three equations, the system is redundant;
we can chose any value for one of the unknowns. Taking x, = 1, we find that
x, = 0.0809 and x, = 0.1149. The eigenvector is then any nonzero multiple
of (0.0809, 1, 0.1149).

29* We cannot get the second eigenvalue with h = 1/2.
With h = 1/3: 3.59125,
with h = 1/4: 4.00000,
with h = 1/5: 4.19885.

I
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30a.

o an o

31a.

32a.
. One eigenvalue

33.

34* Characteristic polynomial is -w3 - 7w? + 58w + 319 whose roots are
-4.6241, 7.2024, -9.5783. From the inverse matrix,

n o0 o e

9.3166; vector
8; wvector (0.5,

(0.1583, 1).
1).

3.6056; vector (1, 0.5352) and -3.6056; vector (-0.5352, 1).

7.2702; vector
4.8845; vector

Intervals that
Matrix A: [-8,

Matrix B: Circles: Center at -4 + 2i, radius = 6; center at 7 + i,

radius = 4;

Eigenvalue = 0.

. One eigenvalue

(1, 0.6351, 0.0768).
(1, 0.6601, 0.8547).

contain the eigenvalues:
_2]# ["'11: "'?]: [4, 10]-

center at 4 - i, radius = 3.

= 0, the other is -1.73206, vector (-0.5774, 1).

= 0, others are

-1.31101 (vector (-0.4545, 0, 1),
-2.62202 (vector (0.4545, -0.9535, 1).

Each eigenvalue

c o o ©

. Neither is singular but Gerschgorin's theorems cannot tell this.

is the reciprocal; the vectors are the same.

- ‘310723 vector (0.1583, 1)
ddbzvector ({0.5; %)
.277350; wvector

(1, 0.5352) and -0.277350; vector (-0.5352, 1).
-137548; wvector (1, 0.6351, 0.0768).
.204729; vector (1, 0.6601, 0.8547).

the characteristic

polynomial is (-319w' - 58w’ + 7w + 1)/319, whose roots are the

reciprocals.
35. -9.5782, -4.6241, 7.2017.
36. For a,: |-5/4

|-17a

| o

1/a 0
-5/d 0 where d = V(26).
0 1]

(Exercsie 36 continued)
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For a,: |-5/d 0 2/4|
| o 1 0 | where d = V(29).
|-2/@ 0 -5/4]

For a,: |1 0 0 |
lo -97/@a -1/4| where d = V(82).
lo  1/a -9/4|

37. After 102 rotations, A is
|-9.5783 -0.3816 0.9160]
| 0.00007 7.2024 1.0076]
|-0.00007 0.00008 -4.6241|
The cdiagonal elements match the eigenvalues of Exercise 34.

38. The upper Hessenberg matrix:
|3 21 -2.375 7 |
fd 0 0.625 -1 |
|o 8 =-2.125 5 |
|0 0 =54828%) 7325

39. With rows and columns 2 and 3 interchanged, the upper Hessenberg
matrix is:

|3 §.25 30.5 7 |
|4 2 6.5 1 |
|0 -0.5 -4.125 -1.25 |
lo o 23.3125 7.125]

40* Upper Hessenberg matrix is

|-5 -1.7889 -1.416]|
|-2.2361 3 -7 |
| o -7 -5 |

After & rotations, the eigenvalues are 7.2024, -9.5783, -4.6241. (Without
getting the upper Hessenberg matrix, 102 rotations were required. )

41. We use the subscript notation for partial derivatives. When the
thickness (t) is variable, the rate of flow out is
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“k*(t + t.dx)*dy*(u, + u_dx) - k*(t + tvéty}‘*cix*(u)r + u dy) + Q dx dy.
Equating to the rate of flow in and canceling terms gives Eg. (7.9).

42. We use the subscript notation for partial derivatives. When both t and
k vary, the rate of flow out is
-(k + kdx)*(t + tdx)*dy*(u, + u_dx)
= (k' + kdv)*(t + tydy}*d.x*{u, +u,dy) + Q dx dy.
Equating to the rate of flow in and canceling terms gives Eq. (7.10).

43. We use the subscript notation for partial derivatives and V’u for the

Laplacian.
ktViu + (kt, + tk)u, + (kt, + tk)u, + (kt, + tk)u, = Q.

44. Substitute a + bu + cu’ for k in the development. After canceling
common terms and dropping terms in (dx)®, this is added to the net flow:
(b + 2cu) [u’ + uj’].

45. u, = (uj 441 - Vi,§-1)/(2h)

Uy = (U341, 541 ~ Wis1,5-10/(2h) = (ui_9 441 - uvj-1,5-17/=

Ui+l,j+1 * Wi-1,3-1 - Yi+l,5-1 - Bi-1,5+1

which is the same as the given operator.
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46* =1
1 16
----- -1 16 -60 16 -1  uy 4
12h? 16
-1

47. If we look at the grid tilted 45°, we see five points with a spacing of
V(2)*h. Laplace's equation for this five point star is:

W T |
V2u; 5 = 0 -4 1 u; 2/(2h2) =0
1570 1,3 .

Yol |

If we use a weighted average of this operator (weight = 1/3) and the
standard operator (weight = 2/3), we get the nine point operator of
Equation (7.13).

48* The gradient is 100/L where L is the width of the plate. Let h L/n.
Nodes are at x; = i*h, for i = 0 .. n, measured from the left end. (For
points on the insulated boundaries, add fictitious points with the same

gradient.) Then u; = 100 + ih(100/L). This gives uj_q1 + Ujuq = 2uy and
Uj-2 + Uj4p = 2uy. From these we have

a. 1 2ujy - 2uy
1 -4 1 ui‘j/hz = e = 0.
1 h2
1 4 1 12uj - 12u4
4 -20 4 wuj, 4/(6h?) = e - ).
1 4 1 6h2
b. )
16 -2u; + 32uy - 30u;
-1 16 -60 16 -1 uy 4§/(12h%) = —cmmmmmme = 0.
16 12h2
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49. Interior temperatures:
58.53 70.87 70.87 658.53
43.24 54.08 54.08 43.24
40.35 48.14 48.14 40.35

50* Interior temperatures:
64.21 105.20 146.65 186.41
61.63 89.94 114.99 134.00
52.39 77.93 89.38 84.59

51. Temperatures at interior nodes:
63.45 104.32 145.95 186.09
60.81 88.53 113.79 133.58
51.87 76.42 88.05 84 .52

52* 3(up, - 2up + ug) 2(up - 2up + up)
Uy + 2Uyy = mmmmmmmmmmsmseee FRlgeassiatityrdhomcr
h? h2
2
= 3-10 3 uj 4/m% =0
2

53. Temperatures at interior nodes:
89.35
£7.39 :5%.39 6l.4% '52.87
32248 2132 35470

54. The temperatures are the same as for Exercise 50. A
0.00001 was used. With initial wvalues all equal to zero,

tolerance value of
31 Iterations

were needed. With initial all equal to 300, 22 iterations were needed.

With initial values all equal to 93.89 (the average of the boundary

temperatures), 27 iterations were needed. The final values are not exactly

the same for these three cases.
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55. wWith Wopt = 1.293, we converge (TOL = 0.00001) to the same values as
in Exercise 54 after 17 iterations. This started with all interior nodes
at zero. Liebmann's method took 31 iterations.

56* a. With h 2/3, £ = 0.444 at each point.
b. With h 1/3. there are 25 interior points. The values are
symmetrical about the center point. Values in upper left quadrant:
0.2115 0.3120 0.3419
0.3120 0.4722 0.5214
0.3419 0.5214 0.5769

57. There is symmetry about the center point. Values in first octant:
-1.794
-3.134 -2.337
-2.859 -3.119 -2.357
-2.099 -2.814 -2.223
-1.909 -2.690 -2.159

58. Values at interior nodes:
-0.087 -0.166 -0.226 -0.251 -0.202
-0.120 -0.226 -0.304 -0.327 -0.251
-0.116 -0.217 -0.288 -0.304 -0.226
-0.088 -0.165 -0.217 -0.226 -0.166
-0.047 -0.088 -0.116 -0.120 -0.087
There is symmetry about the line v

]
g

59. Starting with all values equal to zero, and w = 1.35, we converge in
12 iterations to the same values as in Exercise 56. The predicted value
for wopt is 1.333. It takes 14 iterations with w = 1.34 or w = 1.36.

60* Iterations required with varying values of w (TOL = 0.00001):
w: 1307 132 X3¢ L35 136 1L40 - 1550
Iterations: 21 189 16 15 17 18 .
Eguation (7.15) does not apply because the region is not a rectangle.

Bl. Values at interior points, laid out as in the figure:
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93.40
82.13 73.62 67.56 54.39
54.91 51..359 42.23
36.13 34.72

62. There is no unigue solution; if u(x,y) is a solution, so is ulx,y) +
C where C is any constant.

63.
0.431 0.557 1.010 2.056 4.317 9.163 19.668 43.212
0.609 0.787 1.426 2.897 6.050 12.668 26.296 53.180
0.431 0.557 1.010 2.056 4.317 09.163 19.668 43.212
64.

9.501 13.092 14.906 16.502 18.944 23.729 33.851 56.198
4.910 7.961 10.031 12.158 15.545 22.122 35.478 62.088
2.180 3.810 5.099 6.554 8.958 13.733 23.852 46.198

65* The same answers as in Exercise 50 are obtained after 27 iterations.
Exercise 54 required 27 iterations; in Exercise 55, only 18 were needed.

66. a. With p = 1, converge to exact answer on second iteration.
b. Optimum value of p is 1.72, but converges (TOL = 0.001) in nine
iterations, giving results that match those of Exercise 56.

67. There are 6 "layers" of nodes; each layer has 6*6 = 36 nodes; the
total number of nodes is 6*36 = 216 so there are 216 eguations. There
are 3 sets of these, one or each direction (x, y and z). Even though
each system is tridiagonal, getting a convergent solution is not done
quickly.
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68. In addition to the "layers" of nodes as described for Exercise 67,

the surface where there is a temperature gradient must also be included
as an additional layer. There are then three sets with 8*36 = 288

eguations in each set.

69*

1/ (hA (hA+hB))

2* 1/(hL(BL+hR))  ========mmom = —mmmeoo 1/ (hR (hL+hR) )

hL*hR (hL+hR)

hA*hB (hA+hB)

1/ (hB (hA+hB))

70. Values in the first octant (other values are symmetrical):

a. Uneven star:

37.421

56.325

60.893
b. Distorted boundary:

42.837
60.597
64.772

9.
18
26.
30.

12.
25
34.
3

259
517
587
922

531
077
778
843

0.402
2.183
8.822

10.156
15.545
17.246

71. Because of radial symmetry, all nodes equally distant from the

center have the same wvalue
in one dimension. Using h
[2,5.5]:

- W
n o
v W

S .

This means that the problem can be solved

0.5, there are 8 nodes at x-values within
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72. With nodes on a uniform grid, 1.5 cm between each, and using an
uneven start near the circumference, values in the first octant are:
5.535 3.425
5.394 6.323
5.220 5.592
There is eight-fold symmetry.

73. There are 28 nodes in the quarter circle within [0,4] and there is
two-fold symmetry. The coefficient matrix will then be 28 X 28. The
first seven elements on the diagonal of the matrix are:

=12.186;, -4.546, -3.132, -2.363, =2.408, =2.283, -2.208,
and this is repeated three times for the 28 elements.

74. Equations for 49 nodes can be set up in the quarter circle within
[0,4] (taking advantage of symmetry).

75. All have unique solutions even though the condition is violated at:-:
= -1.

n o e
nowoXN
1

76* Augmented matrices:

a. |-2.125 1.37s 0 0.4375|
| 0.750 -2.250 1.250 -0.2500| , det = -6.5820.
| o0 0.875 -2.375 -1.3125|

b. |-1.625 0.875 0 1.4375|
| 1.250 -1.750 0.750 0.2500| , det = -3.0352.
| 0 1.375 -1.875 -0.3125|

e. |-1.750 0.750 0 1.125)
| 1.125 -2.000 0.750 0 | , det = -4.3359.
[

0 1.250 -~2.250 0.625|
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T7. ' (=1) y(1)
0.0 2.65933
0.5 2.85196

0.88424 2.99067

Passing a parabola through these points suggests y'(-1) = 0.91094. Using
this value gives y(1) = 3.000047.

78. Using y'(-1) values of 0.5, 0.88424, 0.91094, a parabola suggests
y'(-1) = 0.910081 which is less accurate that linear interpolation after
three trials which gets y (1) = 3.000000 from y'(-1) = 0.9108056.

79. The value of A™ does not converge to c1A1™x;™ but to a combination
involving the two largest eigenvalues and their vectors.

80* a. 19.333
b. 6.001

81. Multiplying gives
L2 o | L3 o |
T2 = | . ™= | |
|2Lx L2 |3L2x L3|
so, if |L| < 1, L® -> 0 and T™ -> zero matrix.

82 a. Multiply out.
b. Use mathematical induction.
c. Use mathematical induction.

83* Largest eigenvalue with Wopt from
Wopt W = Wopte we= 1 Eg. (7.15)
a. 1.01s612 0.01524 0.0625 1.01613
b. 1.20377 0.2038 0.5625 1.21 (see note)
? 0.0486 0.125 1.0334

Note: In part (b), Equation (7.15) does not apply. Value obtained by
trials.
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84. For Jacobi, Wopt = 0.932; maximum change after nine iterations is

3.45E-5. For Gauss-Seidel, Wopt = 0.967; maximum change after nine
iterations is 1.4E-5.

85. For Jacobi, modulus of largest eigenvalue with w = 0.932 is 0.2689,
versus 0.2874 with w = 1. For Gauss-Seidel, largest eigenvalue with
w = 0.967 is 0.0951, versus 0.1372 with w = 1.

86. For both parts (a) and (b), the values at interior nodes are:
1.25 3175
125 3.75

The principle is confirmed.

87. Take the origin at the lower left corner with nodes:
#1 at (h,h), #2 at (2h,h), #3 at (h,2h) and #4 at (2h,2h).
a. Equation for uj is u; = uy + uz - hz*f(x,yl; the others are

similar.
b. h f(x,y) uq us us3 uy
1 0 1.25 375 1.25 375
2 0 1.25 3.78 1.25 35518
1 1 101.25 103:75 rlol.25 2 103L75
2 1 401.25  403.75 401.25 403.75
1 x 126.25 178.75 126.25 178515
2 y 1001.25 1003.75 1401.25 1403.75
1 xy 159.6 220.4 217.9 312.1

88. MATLAB's ode23 (and oded45 as well) sets the step size automatically
and this is not under user control so At # 0.2. With the default
tolerance of 1.E-3, the results at t = 3.0 differ from Table 7.1 in the
fourth decimal place. With tolerance = 1.E-5, the results at t = 3.0 do
match the table. (There is a way to make At = 0.2 without modifying the
M-file. Challenge the sutdents to find it.)

89. The final results at t = 3.0 match those in Table 7.1.

90. The results at £ = 3.0 match those in Table 7.2.
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91. After defining matrices: M = coefficients, B = right-hand sides,
a. x = inv(M)*B gives (0.5520, -0.4244, -0.9644).
b. vpa(linsolve(M,B,4) gives the same values.
€. x = rref([M B]) gives the same values in the fourth column.

92* Create matrix B as symbolic: B = sym('[5,3,2;-2,6,3;3,2,4]1")
Then: vpa(eigensys(B),5) gives 3.6431, 3.8080, 8.0489

93. After creating the modified matrix (B1l) as symbolic:
vpa (eigensys((B1),5) gives 3.4520 * 0.13468i, B8.3961

94. Eigenvalue Eigenvector
3.6431 (-0.3306, 0.6225, -0.7094)
8.0489 (0.7021, 0.2759, 0.6565)
3.3080 (0.2516, -0.6310, 0.7339)
95. charpoly(B) = -w3 - 15w2 + 68w + 104
96. o 1 1] |1 0o o
Let M= |1 0 1, A= Jo 2 of,
|2 1 8] [o o 3]
|5 1 -1
then wMaM1l = 1/2 |2 4 -2 |.
|2 -1 3 |

Both have the same eigenvalues but the eigenvectors are different.

97. Start the solution from the right-hand end, stepping x backward. Using
units of 1b and in, I = 10.6667 in? if the 4 in dimension is vertical and
2.6667 if it is horizontal. Since the problem is linear, only two trials
are needed. With RK4:
a. (4 in dimension vertical): y(L) = 3.4665, at midpoint, y = 2.19867.
b. (4 in dimension horizontal): y(L) = 9.12485, at midpoint, v = 5.5077.

98a. Using h = 12 in (the same as in Exercise 97), y(120) = 3.50138 in.
With h = 6, y(120) = 3.47520; extrapolating gives y(120) = 3.4665 in.
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b. Using h = 12 in, y(120) = 9.22189 in. With h = 6, y(120) = 9.14912;
extrapolating gives y(120) = 9.11430 in.

99. The distance from the end of the beam to the wall is 0.37 in less than
120 in under the loads (4 in edge horizontal). Using the exact equation
and allowing for the shorter distance, y(120) = 9.0546 in.

100. The equation is linear so two trials by the shooting method are
sufficient. With y'(1l) = -779.06, we get these results (RK4 with h = 0.1):
T 1.0 1.2 1.4 1.6 1.8 2.0
T: 540.0 403.2 287.6 187.4 99.0 20.0

101. Set y'(2) equal to 0.83(T(2) - 20) and solve with a negative step
from r = 2 to r = 1. With t(2) = 486.34, we get T(1l) = 540, and these
intermediate values:

h 6+ 1.0 L2 1.4 16 1.8 2.0

T: 540.0 525.9 514.0 503.6 494.5 486.3

102. This is not a characteristic problem because it is not linear. (This
is easy to see if we approximate the differential equation by finite
differences.) If we attempt to linearize by moving the nonlinear terms to
the right-hand side, it then is no longer homogeneous.

103. For F(x) = 4dx(m - x}/nz (a parabolic curve) with h = n/8, a
y-dimension of 20h is adequate (rather than infinity). The agreement
with the analytical solution depends on the size of h.
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Chapter 8

1. a. Hyperbolic
b. Parabolic
c. When k, m, and a are nonzero scalars, it is hyperbolic if k and a
are
of the same sign. When they have opposite signs, it is parabolic if
|4ka| = m’, elliptic if |4ka| > m’, hyperbolic if |dka| < m’.
d. Parabolic. This is an eigenvalue problem.

2* The discriminant is 4(1-x') + 4(l+y) (1-y). When set to zero, this
describes a hyperbola whose center is at (1,0) and whose vertices are at
(1,1) and (1,-1). The equation is parabolic at points on this curve. Above
the upper branch and below the lower branch, it is elliptic. Between the
two branches, it is hyperbolic.

3. The discriminant is 4x'(y-1). The equation is parabolic on the y-axis
and the line y = 1. It is hyperbolic above the line ¥y = 1 (but not for

x = 0). It is elliptic below the line y = 1 (but not for x = 0).

4. For t measured in seconds, units of the other parameters are
BTU/sec BTU/1b 1b

ft2 (°F/ft) oF £t3
5. (ku), + Q(x) = c(x)p(x)u,.
6* Using k = 2.156 BTU/(hr*in*°F)
a. -29.53 °F/in.
b. -75.59 °F/in.

c. -34.91 °F/in.

7. u, = Tgu_/(W(x) + W/2).
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8. With r = 0.5:
x: 0 0.25 0.50 0.75 1.00

u: 0 17.34 32.04 41.86 45.31 (symmetrical to right of x = 1.0).
anal: 0 17.72 32.74 42.78 46.30
5% With © = L=

x: 0 .25 0.50 0.75 1200

u: 0 17.85 32.98 43.09 46.64 (symmetrical to right of x = 1.0).
10. with r = 1:

x: 0 0.25 0.50 0.75 1.00

8= 2/3 a: O 18.19 33:.61 43.92 .47.53
0 = 0.878 u: 0 18.61 34.38 44.92 48.62
0= 1 u: 0 18.82 34.82 45.49 49.24

For this problem, Crank-Nicolson is more accurate; if @ = 0.435, there is
even less error.

11. with units of BTU, 1lb, in, sec, °F, k = 0.00517, c = 0.0919,

p = 0.322. With Ax = 1 in., At = 2.862 sec. Using r = 0.5, at t = 28.62:
X: 0 1 o 3 4 5 6 7 8
u: 100 85.94 73.44 60.94 50.00 39.06 26.56 14.06 O

12. At t = 28.62 sec (At = 0.7155), and with r = 0.5:
5 1 3 6
u, Ax = 0.5: 85.70 60.70 27.54
u, Ax = 1.0: 85.94 60.94 26.56

13. At t = 28.62 sec,

No. Calc/
x: il 3 6 steps step At 5 2l
Exercise 13: 85.70 60.70 27.54 20 7 143 '0.25

Exercise 12: B85.70 60.70 27.54 40 14 0.72 0.5
Exercise 11: 85.94 60.94 26.56 10 T 2.86 0.5

[ = E
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14. The formula gives f = 444.03 cycles/sec. If the string is divided into
seven equal segments, displacements repeat every 14 time steps. Since
At = 1.6086E-4, computations show that f = 1/(14At) = 444.03.

15. a. At = 3 sec. Displacements versus time:
£ x = 0 6 12 18 24 30 36 42 48

0.00 0.00 -0.11 -0.19 -0.23 -0.25 -0.23 -0.19 -0.11 0.00
3.00 0.00 -0.09 -0.17 -0.22 -0.23 -0.22 -0.17 -0.09 0.00
6.00 0.00 -0.06 -0.13 -0.17 -0.19 -0.17 -0.13 -0.06 0.00
9.00 0.00 -0.03 -0.06 -0.09 -0.11 -0.09 -0.06 -0.03 0.00
12.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
15.00 0.00 0.03 0.06 0.09 0.11 0.09 0.06 0.03 0.00
18.00 0.00 0.06 0.13 0.17 0.19 0.17 0.13 0.06 0.00
45.00 0.00 -0.09 -0.17 -0.22 -0.23 -0.22 -0.17 -0.09 0.00
48.00 0.00 -0.11 -0.19 -0.23 -0.25 -0.23 -0.19 -0.11 0.00

b. At = 3 sec.

o+
"
]
o
o

12 18 24 30 36 42 48

0.00 0.00 1.00 2.00 0.00 -2.00 -4.00 -2.67 -1.33 0.00
3.00 0.00 1.00 0.50 0.00 -2.00 -2.33 -2.67 -1.33 0.00
6.00 0.00 -0.50 -1.00 -1.50 -0.33 -0.67 -1.00 -1.33 0.00
9.00 0.00 -2.00 -2.50 -1.33 -0.17 1.00 0.67 0.33 0.00
12.00 0.00 -2.00 -2.33 -1.17 0.00 1.17 2.33 2.00 0.00
15.00 0.00 -0.33 -0.67 -1.00 0.17 1.33 2.50 2.00 0.00
18.00 0.00 1.33 1.00 0.67 0.33 1.50 1.00 0.50 0.00
45.00 0.00 1.00 0.50 0.00 -2.00 -2.33 -2.67 -1.33 0.00

48.00 0.00 1.00 2.00 0.00 -2.00 4.00 -2.67 -1.33 0.00
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(Exercise 15 continued)

c.
t

w o W o

12.
5.
18.

48.
51.

v v W O

12.
5,

45.
48.

16* The computed values

X =

.00
.00
.00
.00

00
00
00

00
00

.00
.00
.00
.00

00
00

00
0o

At = 3 sec.
x=0 6
0.00 0.00
0.00 0.33
0.00 0.56
0.00 0.70
0.00 0.75
0.00 0.70
0.00 0.56
0.00 0.00
0.00 0.33
At = 3 sec.
x=0 6
0.00 0.25
0.00 -0.50
0.00 -1.25
0.00 -2.00
0.00 -3.00
0.00 -2.50
0.00 1.00
0.00 0.25

0.5.

o o o o o rt
v s s v s

w o N = o

some values:

1/8

.383
354
e
.383
.354

12 18 24
0.00 0.00 0.00
0.56 0.700 0:75
1.03, =531 141
1:3%. F73 1.88
1.41 1.88 2.06
1.3%1 1,73 188
1.03, 1,33 . 1.47%
0.00 0.00 0.00
0.56 0.70 0.75

12 18 24

0.50 0.75 1.00
=1.00 -1.50 =2.25
-2.50 -4.00 -4.00
=425 =h,0 =5 75
-4.50 -6.00 -6.00
-4.75 -5.50 -6.25

2.00 3.00 3.75

0.50 0.75 1.00

agree with the
-value ---—====---
1/4 3/8 1/2
0.707 0.924 1.000
0.653 0.854 0.924
0.500 0.633 0.707
0.707 -0.924 -1.000
0.653 -0.854 -0.924

30
.00
.70
- 3T
S
.88
i3
-3

L e ==

(=]

.00
0.70

0:75
=180
-4.00
-5.00
-6.00
=5+50

3.00
Q.75

3

e = = =

6

.00
.56
.03
31
.41
<31
.03

0.00

.56

.50
.00
=50
)
-0
8

.00
.50

analytical.

42 48
0.00 0.00
0.33 10,00
0.56 0.00
0.70 0.00
Q.75 0.00
0.70 0.00
0.56 0.00
0.00 0.00
0.33 0.00

42 48

0.25 0.00
-0.50 0.00
-1.25 0.00
-2.00 0.00
-3.00 0.00
-2.50 0.00

1.00 0.00

0.25 ; 0.00
There is symmetry about
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17. Number the nodes from 0 to N and put v (N)
backward difference for the derivative, v (N-1)
At = 0.2. Some representative values (they repeat after 32 time steps):

t X =
.00
.20
.40
.60
.80
.00
.20
.40
.60
.80

H P R E B O o o o o
O 0O 0 OO0 OO0 o0 oo o

.60
.80
.00
.20

w o 3
c O O o

0

.000
-000
.000
.000
.000
.000
.000
.000
.000
.000

.000
.000
.000
.000

o C O O O 0O O o o O

0.2

.000
.000
.000
.000
-156
309
.298
B
.253
.221
.000
.000
.000
.000

0.4
0.000
0.000
0.000
0.156
0.309
0.454
0.588
0.551
0.500
0.437
0.000
0.000
0.000
0.000

0.6
0.000
0.000
0.156
0.309
0.454
0.588
0.707
0.809
0.735
0.642

=0.15%6
-0.000
-0.000
-0.000

0.8
0.000
0.156
0.309
0.454
0.588
0.707
0.809
0.891
0.951
0.988

-0.309
-0.156
-0.000

0.156

(= == S == S = B = N - B = J = N = Y = |

=0-.

=0
~0

0.

= sin(nt/4), also, using a

= ViN).

1.0

.000
<156
.309
.454
.588
.707
-809
.891
-95%
.988

309
-4ob
.000
156

If Ax = 0.2,

18* For part (c), a full period is still 16 time sSteps (48 sec).

Values change when Eq.

0
0
0

(d) :

t:
Eg. (B8.26):
Eq. (8.19):
For part

5
Eg. (8.26):
Eq. (B8.19):

0

3 6
0.734 1.375
0.750 1.406

3

1.000 -2.000 -4.
1.000 -2.250 -4.

9

1.828

12

2.000 1.828
1.875 2.063

9

12

15

(B8.26) is used. Comparison of values:
18
1.375

1.875 1.406

15

18

000 -5.500 -6.000 -6.000 -5.000
000 -5.750 -6.000 -6.250 -5.000

then
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19. For part (c), no difference because the initial velocities are a
quadratic in x and Simpson's rule is exact for a quadratic. For part (d),
Simpson's rule is exact except at the midpoint (because velocities are
linear in x except at that point). At the midpoint, the exact integral of

the velocity is -10.5; we get this value with 4, 8, 12, ... intervals
within [18,30] but not with 2, 6, 10,
Number of intervals: 2 4 6 8 10 12

Value of integral: -11.0 -10.5 -10.555 -10.5 =10.52 -10.5

20. wWith Ax = 0.3, At 0.003344 sec. After three time steps
(t = 0.01003), ¥(1.5) 0.0067334 ft = 0.0808B in. (same as analytical).
Other values agree with the series solution.

21+ 34.722 38.589 50.744 70.106 100.00
29.644 33.296 45.066 65.376 100.00
19.495 21.816 30.152 49.058 100.00
0.000 0.000 0.000 0.000 ——
These values are within 3.5° of the steady-state values.

22. Let the faces that lose heat be the top face, the front face, and the
left side. Looking at the cube from the front, we see four "layers" Of
nodes where the temperatures vary with time. The top face is one of these.
Each layer has 16 nodes so there are 64 equations but each can be solved
explicitly. Fictitious nodes are assumed outside the surface nodes where
heat is being lost and these have u-values that are related to the values
at the surface node and the node immediately inside. The basic equation
is:

wt = r(u, vy, +u, +u +ou, +u)" + (1-6x)uf
The maximum value for r is 1/6. using ¢ = 0.226, p = 0.0975, k = 0.00291
(c.g.s. units), and Ax = 1, At is 1.26 sec. It takes 12 steps to reach
t = 15.12 sec.

23. There are still 64 equations. These are not tridiagonal but they are
banded. After getting the LU equivalent, solving the system amounts to two
multiplications of a matrix times a vector. Since r can be 1, only two
time steps are needed to reach t = 15.12.
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24. The answer is the same as that of Exercise poic B

25. There are three sets of equations with 64 in each set but these are
tridiagonal. Getting the LU equivalent requires at most 3*63 = 189
multiplications/divisions and this needs to be done only once. Using the
LU's to solve the equations for the next time step requires only

63*2 + 1 = 127 multiplications/divisions in each set after the right-hand
sides have been updated. Since r can be 1, only two time steps are needed
to reach t = 15.12 sec, but more accurate results are obtained after every
third time step.

26. Values laid out in nodal positions:

t = .2041301
0.000 0.000 0.000 0.000 0.000
0.000 0.029 0.077 0.086 0.000
0.000 0.077 0.204 0.230 0.000
0.000 0.086 0.230 0.258 0.000
0.000 0.000 0.000 0.000 0.000
t = .4082603
0.000 0.000 0.000 0.000 0.000
0.000 0.077 05359 0.153 0.000
0.000 0.159 0.306 0.274 0.000
0.000 0.153 0.274 0.230 0.000
0.000 0.000 0.000 0.000 0.000
£t = .6123904
0.000 0.000 0.000 0.000 0.000
0.000 0.131 0.191 0.131 0.000
0.000 0.191 0.230 0-E15 0.000
0.000 0.131 0.115 0.016 0.000
0.000 0.000 0.000 0.000 0.000
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(Exercise 26 continued)

t

o
LI} o O O o o i

o 0 O O O

.8165205
.000 0
.000 0
.000 0
.000 0
.000 0

1.020651
.000 0.
.000 -0.
.000 -0.
.000 -o0.
.000 0.

.000
e G
.086
.000
.000

000
045
134
131
000

0.000
0.086
0.000
-0.086
0.000

0.000
-0.134
-0.230
~0.172

0.000

27. Nodal displacements:

At

o O 0 O o

A

"

o o o o o

At

o o o o o

t' =

.000
.000
.000
.000
.000

t

.000
.000
.000
.000
.000

t

.000
.000
.000
.000
.000

0

o O O O

0

0

-000
-141
S if
.422
.000
.2041301
038
0.
0.
0.
0.
.4082603
.000

000
188
391
375
000

0.250

c O o

<281
%09
.000

-000
e
.000
wELD
.000

2P PR oD

.000
=391
.750
.672
-000

[ =0 S o B = S = N = |

0.000
0.281
0.063
-0.281
0.000

0.000
0.000
-0.086
-0 11S
0.000

0.000
=0..1:3%
-0.172
=0.102

0.000

0.000
0.422
1.125
1.266
0.000

0.000
0.375
0.672
0.563
0.000

0.000
0.109
-0.281
-0.594
0.000

c O o o o o O O O o o0 o o o o O ©o O o

o O O O O

.000
.000
.000
.000
.000

.000
.000
.000
.000
.000

.000
-000
.000
.000
.000

.000
.000
.000
.000
.000

.000
.000
.000
-000
.000
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(Exercise 27 continued)
At t = .6123904
0.000 0.000 0.000 0.000 0.000

0.000 0.094 -0.180 -0.375 0.000
0.000 -0.180 -0.750 -0.883 0.000
0.000 -0.375 -0.883 -0.844 0.000
0.000 0.000 0.000 0.000 0.000

There is no repetitive pattern.

28. We assumed that the initial displacements form a pyramid with flat
faces whose peak is at (1,1). Using Ax = 0.5, At is 0.00544 sec. There
appears to be no repetitive pattern.

The initial displacements:

0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.500 0.500 0.500 0.500 0.250 0.000
0.000 0.500 1.000 0.750 0.500 0.250 0.000
0.000 0.500 0.500 0.500 0.500 0.250 0.000
0.000 0.000 0.000 0.000 0.000 0.000 0.000
Some values for the node at (2,1):
Steps: 0 i | 2 4 6 8 10 14

u(2,1): 0.500 0.500 0.250 -0.234 -0.625 0.313 0.897 -0.932
29. At becomes 0.00172 sec (reduced by a factor of ¥(10).

30. The initial displacements are similar to those in Exercise 28 except
the ridge from (1,1) to (3,2) is horizontal. There is no repetitive
pattern.

The initial displacements:

0.000 0.167 0.333 0.500 0.667 0.833 1.000
0.000 0.500 0.667 0.833 1.000 0.875 0.750
0.000 0.500 1.000 0.875 0.750 0.625 0.500
0.000 0.500 0.500 0.500 0.500 0.375 0.250
0.000 0.000 0.000 0.000 0.000 0.000 0.000
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(Exerxcise 30 continued)
Some values for the node at (2,1):
Steps: 0 53 2 4 6 8 10 14
u(2,1): 0.750 0.750 0.542 -0.070 -0.188 0.595 1.081 -0.443

31. After 22 time steps, a single error grows to become larger than the
original error and then continues to grow by a factor of 1.0485 at each
succeeding time step.

32. After 7 time steps, the maximum error has decreased to 0.1167 times
the original error. This is larger than the factor in Table 8.9, but the
maximum error continues to decrease by a factor of 0.8538 at each
succeeding time step.

33. After 7 time steps, the maximum error has decreased to 0.219 times the
original error. As time increases, the maximum error decreases by a factor
of 0.875 for two time steps and this factor gets smaller as time
progresses.

34* After 7 time steps, the maximum error has decreased to 0.234 times the
original error. The maximum error at each succeeding time step is about
0.85 times the previous error.

35. The errors damp out very rapidly. After four time steps, the maximum
error is less than 0.02% of the original error.

36. N: 4 4 5 5
r: 0.5 0.6 0:5 0.6
Eigenvalue: 0.8090 -1.1708 0.8660 -1.2392
The statement is confirmed.

37. With N = 4, the largest eigenvalue with r = 1.0 is 0.679285; with
r = 2.0, it is -0.566915. The statement is confirmed.
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38. N: 3 3 3 3
Tk 055 1.0 2.0 3.0
Eigenvalue: 0.7735 0.6306 0.4605 0.3627
N: B 4 - 4
0.5 1.0 2.0 3.0

Eigenvalue: 0.8396 0.7236 0.5669 0.4660

39. a. The errors develop a complicated pattern and sometimes are larger
than the original error but they ever are more than 1.5 times the
original error.

b. The method is unstable when the ratio is 2. Errors grow rapidly;
after 9 time steps the largest is 8.6E5 times the original error.
Eventually they get so large as to cause overflow.

40. The table resembles Table 8.11 except the errors are reflected
earlier.

41. When r = Tg(At)2 /[w(Ax)2] = 1, the equation becomes
j+1

¥Yi = [¥is1 + ¥{-1 - (2 - 8)y;1%7(1 + 8)

where S = BAt/2. For the first time step, substitute (yl -2v,At) for
y‘l, giving this equation to initiate the computations:

Yi' = (Yis1 + ¥vi-1)°/2 + (1 - S)vp(At).

With Ax = 1, At is 0.0114 sec. The values show typical damped behavior,

the largest y-values at x = 3 occur at time steps 0, 10, 20, ... and each
of these is 0.8925 times the previous:
t: 0 0.1138 0.2275 0.3413 0.4550
yi3):s 3.0 2.677 2.390 2.133 1.904

42. Using the A.D.I. method with Ax = 1 in. = 2.54 cm and r = 0.2 so that
At = 8.52 sec, the center point is above 2000° after only 11 time steps
(in 93.7 sec). If this were a real-world problem, it would be pointless to
solve as a three-dimensional problem.
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43. One way to cope with the nonlinearity of radiant heat transfer is to
convert to a boundary condition with heat flowing according to

hA (Ugyrface - 2350) and equate this to the rate of heat flow given by the
radiation formula. In effect, we use a value of h that varies with the
surface temperature. If a table of such values is computed, a program can
use this table to evaluate h as time progresses. The variation of h with
surface temperature is less than might be expected — from 45.5 at 500° to
116 at 2250°.

44. Using finite differences, with Ax = L/4, At is 5.50E-4 sec.
Some representative values:
x/L= 0 0.25 0.50 0.75 1.00

(Time 0 0 0 0 0 0.700
steps) 1 0 0 0 0.350 0.700
3 0 0.350 0.700 0.700 0.700
6 0 0 0.350 0.700 0.700

45. Since there is radial symmetry, the derivative with respect to q
vanishes and the equation reduces to one involving only r and t — a one-
dimensional problem.

47. This is a lengthy and challenging project!
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Chapter 9
1. Let G(x,u,u') = (u')2 - Qu2 + 2Fu, the integrand. The Euler-Lagrange
condition is G, = d[Gy]/dx. Compute: Gy = -2Qu + 2F and Gy« = 2u', giving
d[G,:]1/dx = 2u". From the Euler-Lagrange condition, we have
-2Qu + 2F = 2u", which is the same as u" + Qu = F.
2* Let u(x) = C(x)(x - 1). The Rayleigh-Ritz integral gives

2c/3 + 0 = -2(5/12), so c = 5/4. Some values:

x: 0 0.2 0.4 0.6 0.8 1.0

u: 0 -0.200 -0.300 -0.300 -0.200 0
anal: 0 -0.176 -0.288 -0.312 -0.242 0

I

3. Iy (4a + 2b - 5)/6 = 0,

Iy (52 + 4b - 7)/15 = 0.
Solving, we get a = 1, b = 1/2. which gives u(x) = x3/2 + x2/2 - x,
matching the analytical solution.

4. I, = (4a - 2b - 5)/6 = 0,
I, = (-10a + 8b + 11)/30 = 0.
Solving, a = 3/2, b = 1/2, giving

wix) = x3/2 + x2/2 - X, the analytical solution.

5. Change variable: v = y - 2x - 1 so that v = 0 at x =0 and at x = 1. The
equation becomes v* = 3x +1. v(0) = 0, v(1) = 1. Solution is
u(x) = (x* + x* + 2x +2)/2.

6* Rix) = ¥y = 3% = 1. Tf.a.= cx(x - 1), u" = 2c. Since there is only one
constant, set R = 0 at x = 1/2. We then have 2c - 3(1/2) - 1 = 0 giving
c = 5/4. This is identical to the answer of Exercise 2.

7. If we set R(x) = 0 at x = 1/4, 1/3, 2/3, and 3/4, in turn, we get
c=7/8, 1, 3/2, 13/8. None of these is as closze to the analytical
solution (which has ¢ = 5/4) obtained with Rix) = 0 at x = 1/2.
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8. The residual is 2a - 2b + (6b - 3)x - 1. This equals zero for any value
of x if a =1, b =1/2. This means that any pair of points in [0,1] gets
the same answer as in Exercise 3.

9* Integral is [[x(x - 1)][2¢c - 3x - 1] dx between x = 0 and x = 1. This
gives ¢ = 5/4, identical to the answers of Exercises 2 and 6.

10. The two integrals evaluate to
5/12 - a/3 - b/6 = 0 and
7/30 - a/6 - 2b/15 = 0.
From these, a = 1, b = 1/2, giving the analytical solution:
u(x) = x3/2 + x2/2 - x.

lla. N, = (0.45 - x)/0.12, Ng = (x - 0.33)/0.12.
b. (1/0.12)[(0.45 - x) (u" + u sin(x) - %2 - 2) dx, limits [0.33,0.45],

and (1/0.12)J(x - 0.33) (u" + u sin(x) - x2 - 2) dx, same limits.
c. Eguations are

8.3181 cp, - 8.3409 cg = -0.1291,
-8.3409 cp, + 8.3181 cg = -0.1291.
d. Quy = sin(0.39), F, - 2.1521.

12a. For element between [0.21, 0.33]:

Ny = (0.33 - x)/0.12, Ng = (x - 0.21)/0.12.

For element between [0.45, 0.71]:

Np, = (0.71 - x)/0.26, Ng = (x - 0.45)/0.26.

b. Coefficients are

|a  B|
lc Db
(1/0.12)J(0.33 - x) R(x) dx, limits [0.21, 0.33]
B = (1/0.26)J(0.71 - x) R(x) dx , limits [0.45, 0.71]
C = (1/0.12)f(x - 0.21) R(x) dx , limits [0.21, 0.33]
D = (1/0.26)f(x - 0.45) R(x) dx , limits [0.45, 0.71]
R(x) = u" + u sin(x) - x2 - 2.

I

where A
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(Exercise 12 continued)
C. 8.323c¢p, - 8.339cy = -0.1244,
-8.339cy, + B.323cg = -0.1244.
3.798¢y, - 3.870cg = -0.3037,
-3.870cy, + 3.799cg = -0.3037.
d. Qay = 0.2667, Fuy = 2.0729.
Oavy 0.5480, Fuy = 2.3364.

13. Call the values at the nodes C1. €2, 3, cg4. The system is

| 8.3227 -8.3387 | leq] [-0.1244|
|-8.3387 16.6408 -8.3409 | lea] = | 0.2535].
| -8.3409 12.1168 -3.8699| |c3| | 0.4328|
| -3.8699 3.7987| |cg4] [-0.3037]
14* - RN W, SR I 1.8 1.75 2
u(x): -1 -0.2307 0.9174 1.9197

anal: -1 -0.2267 0.9167 1:9196

15: x: 1.0 1.2 ¢ e 1.75 2
u(x): -1.1281 -0.3425 0.8402 1.8791 3
anal: -1 -0.2267 0.9167 1.9196 3

The solution should be identical to that of Exercise 14. The FE method is
not very accurate with a derivative boundary when y(x) is steep near that
boundary.

16. The errors range from 1.75E-4 to 1.36E-3. The average error is 41% as
large as the average error in Exercise 14.

17. Multiply the matrices; the product is the identity matrix.
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18a. | 0.753 -0
M1l= | 0.613 -o0.
|-0.158 0

N = (0.753 + 0.613x
0.475 - 0.
u(-1,0) = 10.704.

b. |-0.333
M1l = | o 0
| 0.033 -0

N = (-0.333 + 0.033y,
u(20,20) = 10.033.

.228 0.475| | 2.534|
534 -0.079| (a}) = |-8.170]| ,
.280 -0.123| | 3.945|

- 0.158y, -0.228 - 0.534x + 0.280y,
079x - 0.123y),

0 1.333] |9.300 |
.022 -0.022| {a} = |-0.087| ,
.011 -0.022| |0.123 |

0.022x - 0.011y, 1.333 - 0.022x - 0.022y),

c* |-4.650 3.982 1.668] |405.16|
M1l =| o0 -0.217 0.217| {a} = |-32.17| ,
| 0.500 -0.120 -0.380]| | 9.30]

N = (-4.650 + 0.500y,

3.982 - 0.217x - 0.120y,

1.668 + 0.217x - 0.380y),

u(l0.6,9.6) = 153.44.

19. The sum of the elements in the top row of M’ is NOT the area (it
always equals 1). It is the sum of the elements in the top row of the

matrix in Eg. (9.45) that equals twice the area.

a. Area = 5.71.
b. Area = 675,
c. Area = 4.60.

20* The augmented matrix is:

|-974.54 -488.12
|-488.12 -975.41
|-488.72 -487.85

-488.72 1.738|
-487.85 1.738].
-974.81 1.738|
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21. The is some ambiguity about what temperatures to assign to the corner
nodes at the right end. One choice is to set these at 50°, the average of
the temperatures on the adjacent edges. The alternative is to use a double
node, with one of these paired nodes at 0°, the other at 100°. Results:
With nodes at the average temp. 2.007, 23.084. 60.076.
With a pair of nodes: 1.460, 16.788, 43.691.
Answers from Example 7.14: 1.289; 12.654, 53.177.
Neither choice gives close match but the second alternative is better.

22. The answers are the same as for Exercise 21.
23* The element equations are formed from:
Cj,j = 0.2825 if 1 =9, 0.1412 1Ff 4 s
k*A | 0.489 0.089 -0.573]
[K] = ===== | 0.089 0.196 -0.285|, (A is area, 1.695)
cp |—0.573 -0.285 0.857|

by = 0.565 Fav-

24. Equation (8.9) has no heat generation, so the element equations are
(1/At) [C] {u}™1 = ((1/A€) [C] - (k/cp) [KI}{u}™ + (b},

where
Hywe|1 ™ g k | 1 -1]
[l = —=—= | [, [K] = —=—=- | |,
2 o 1 cphy -1 1|
luj-1q] [0]
{u} = | | and b = | |.
lug | [0}

(When there are derivative end conditions, b is modified.)
These element equations are assembled in the usual way.
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25. Number the nodes 0, 1, 2, ... and number the elements 1, 2, 3,
starting from the left end. Consider element n with nodes n-1 and n. The
element equation for node n comes from

[Ny ep ax = - ofN'y N'pg epq dx - afN'g N, o dx
and is (hy/24t) (cy™1 - ¢ ) = [(a/hy) cp_q - (@/hy)cyI™.

Element n+l1 (that has nodes n and n+l) contributes another equation for
node n:

(hne1/24t) (€™ - e ) = [—(@/hpy1)cy + (0/hpeq)cpep ™.
If hy = hpye1 = h, these assemble to give
(2h/24t) (eg™1 - ¢ ) = [(a/h)cy_q - 2(a/h)ey + (@/h)cp,q]™.

Collecting terms gives an equation that matches that for the explicit
method:

™1 = [repg + (1 - 2r)epy + repepl™.

When applied to solve the exercise, identical results are obtained as
expected.

26, 27. Use a commercial FE program.

28. (2 + r){c™) (2 - r){c"} + 2r[K']{(b}.

29. (1 - x0) {c™}

(1 - (1-8){c"} + r[K']{b}.
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30. The element equations can be reduced to

|2 1] -2 8] |2 1|

| | (cym+l = | | ted® - | | {cym-1

FEY | 8 -2 1 2]
After assembly, the equations form a tridiagonal matrix with all diagonal
elements equal to 4 and all off-diagonal elements equal to 1. The right-
hand sides are 4(yj_q + yj,1)™ - 3(yj-q + yi+1}m‘1.

31. The element equations for t = t; are

|2 1] |-2 8|
| | (e}l = (1/2)| | )0
(1 2| | 8 -2

32* This will always be true.

33, 34, 35, 36. Use a commercial FE program.

37, 38, 39, 40. Programs.
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