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Chapter 1

Introduction

The so-called Dirac delta function (on R) obeys §(z) = 0 for all x # 0 but
is supposed to satisfy ffooo §(x) dr = 1. (The § function on R? is similarly
described.) Consequently,

/_ " f(a) b(a) de = / T (F(@) — £(0)8(z) dx + £(0) / " (@) dz = £(0)

—00

because (f(x)—f(0)) 6(x) = 0 on R. Moreover, if H(z) denotes the Heaviside

step-function
0, <0
H(z) =4 °
1, >0,

then we see that H' = §, in the following sense. If f vanishes at infinity,
then integration by parts gives

/ " fe) B () de = [f(2) H(2)) ™, — / " P(@) Hix) de
_ / Y Ple) Hz) do

= _/000 f(z) dx
=-[f@)]y

= f(0)
_ /_ F(@)d(x) da

Of course, there is no such function § with these properties and we cannot
interpret [%_ f(x)d(z) dz as an integral in the usual sense. The ¢ function
is thought of as a generalized function.

However, what does make sense is the assignment f — f(0) = (J, f), say.
Clearly (0, af + Bg) = (6, f) + (0, ¢g) for functions f, g and constants «
and (. In other words, the Dirac delta-function can be defined not as a
function but as a functional on a suitable linear space of functions. The
development of this is the theory of distributions of Laurent Schwartz.
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One might think of §(x) as a kind of limit of some sequence of functions
whose graphs become very tall and thin, as indicated in the figure.

Figure 1.1: Approximation to the d-function.

The Dirac ¢ function can be thought of as a kind of continuous version of
the discrete Kronecker § and is used in quantum mechanics to express the
orthogonality properties of non square-integrable wave functions.

Distributions play a crucial role in the study of (partial) differential equa-
tions. As an introductory remark, consider the equations

0%u B 0%u

0 and

0.0, 9,0, O

These “ought” to be equivalent. However, the first holds for any function u
independent of y, whereas the second may not make any sense. By (formally)
integrating by parts twice and discarding the surface terms, we get

0%u 0%
/goaxay da;dy/uaxay dxdy.
2

3,0,

=0as

0%
U drdy=0
/ 2.0, "
for all ¢ in some suitably chosen set of smooth functions. The point is that
this makes sense for non-differentiable v and, since ¢ is supposed smooth,

So we might interpret

0% 0%
dx dy = dx d
/uaxay:cy /uayaxafy,
2 2
that is, Q = Ou in a certain weak sense. These then are weak or
0y 0y Oy Oy

distributional derivatives.
Finally, we note that distributions also play a central réle in quantum field
theory, where quantum fields are defined as operator-valued distributions.

ifwilde Notes
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Chapter 2

The spaces .¥ and .’

Let Z' denote the set of n-tuples (ai,...,a;,) where each «a; is a non-
negative integer and write Z for Z}. For o € I, let |a| = Y7 ; a; and let
Hlel
Ozt ... 0z
Q-

Finally, if z = (x1,...,2,) € R", let 2 denote the product z" ... xzg

D¢ denote the partial differential operator

Definition 2.1. The complex linear space of bounded continuous complex-
valued functions on R" is denoted Cj(R™). It is equipped with the norm

[flloo = sup [f(x)

z€R™

Theorem 2.2. For anyd € N, Cb(Rd) 1$ a complete normed space with respect
to the norm || - | oo-

Proof. Suppose (f,,) is a Cauchy sequence in Cy(R?), that is, || fo— fin|lco — 0
as m,n — oo. We must show that there is some f € Cy(RY) such that
lfn — flloo — 0 as n — oo. To see where such an f comes from, we
note that the inequality |g(z)| < ||g||ec implies that for each z € R?, the
sequence (fp(z)) is a Cauchy sequence in C and therefore converges. Let

f($) = lim, fn(x)

We claim that f € Cy(R%) and that ||f, — f|leoc — 0. Let € > 0 be given.
Since (f,) is a Cauchy sequence in Cy(R?) there is N € N such that

I fn = fnlloo < %5 (*)
for all n,m > N. But then, for any z € R?,

|fvsn(@)] < [fvsn(@) = fv(@)] + [ fn(@)] < e+ [ vl

by (x). Letting k — oo gives

[f(@)] < 32+ 1fnllos

which shows that f is bounded on R¢.

5
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Next, we note that for any z € R, |f,(z) — fm(2)] < ||fn — fmlleo and so
the inequality (*) implies that

|fn($) - fm($)| < %5

provided n,m > N. Letting m — oo, we see that

|fale) = fl2)] < 3¢ ()

for any = € RY, provided n > N. In other words, f,(z) — f(z) uniformly
on R%. However, each f, is continuous and so the same is true of f. But
then this means that f € Cy(R?). The inequality () gives

1fo— flle <ie<e

whenever n > N and so f, — f with respect to || - || and the proof is
complete. n

Definition 2.3. The linear space of infinitely-differentiable bounded functions
on R" is denoted by Cp°(R™). Evidently C;°(R™) C Cy(R™).

The space .(R") is the linear subspace of Cp°(R") formed by the set of
functions f on R™ such that 2 D? f(z) is bounded on R™ for each a, 8 € 7.

< (R™) is equipped with the family of norms

171

o = sup |z® D7 f(z)]
TER™?

for o, 8 € Z%. The elements of .(R") are said to be rapidly decreasing
functions.

Example 2.4. Evidently, the function f(x) = 2™ e~ belongs to . (R) for
any m € Z4. Indeed, .(R) contains all the Hermite functions.

For any polynomial p(z1, ..., z,) on R”, the function p(x1, . .., z,)e
belongs to .7 (R™).

s

Definition 2.5. We say that a sequence (f,) in .#(R?) converges to f in
S (RY) if, for each o, B € ZL, || fro — flla,g — 0 as n — oc.

The sequence (f,,) in .7 (R%) is said to be a Cauchy sequence in .7 (R?) if
I o — flla,g — 0 as n,m — oo, for each a, 3 € Z4.

Theorem 2.6. .7 (R?) is complete, that is, every Cauchy sequence in & (R?)
converges in . (R%).

Proof. First consider the case d = 1. So suppose that (f,) is a Cauchy
sequence in . (R). Fix a, f € Z4. Then we know that

I fr — fmlla,s — 0 as n,m — oo.

ifwilde Notes



The spaces . and .’ 7

In other words, the sequence z® D? fn(x) is a Cauchy sequence with respect
to the norm || - || and so converges to some function g, g, say.

We shall show that z® Dg = Ja,3- This follows from the equality

Ful@) = £2(0) + /0 Cpw)dt

Indeed, f! = D'f, — go,1 on R and so, letting n — oo, we may say that

90,0(%) = go,0(0) + /Ox go.1(t) dt.

Hence goo is continuously differentiable and 96’0 = go,1- Repeating this
argument, we see that go o is infinitely-differentiable and that DF 90,0 = 90,3

Now, DPf, — gog = DPgoo uniformly and so % D?f,(z) — 2 DPgoo(z)
pointwise. But we also know that z® D? f,, — 9o, uniformly and so it follows
that g, 3 = 2 Dﬂgo,o. We note that g, g is bounded and so goo € -7 (R).
Hence f, — go in /(R) and we conclude that .(R) is complete.

For the general d-dimensional case, suppose that (f,) is a Cauchy sequence
in .(R%). Then for each a,3 € Zi the sequence z® DPf, is a Cauchy
sequence in Cy(R?) and so converges; 2 DPf, — Ja,3 uniformly on R,
for some g, g € Cp(RY).

Fix x9,x3,...,24. Then as in the 1-dimensional argument above, we know
that for any aq, 31 € Z4, (all relevant partial derivatives exist and)

2 00 (@1, %2, .-, Ta) = G(a1.0...0),(81.0....0)(T1, T2, - . ., Ta)
=z 85119070(55*1, Ty, Xg) -
Considering now the function zp — z! 8511 fu(x1,29,...,24), We similarly
see that
:BSQ 8522 :E?l 8511 fo(@1,. . wa) — 9(a1,02,0,...,0),(81,62,0,...,0) (T1,.- -, Ta)
= 252 002 271 02 goo (21, . . ., w4)
for any ag, B2 € Z.
Repeating this for the function z3 — z5? 853 z? 8511 fo(z1,29,. .., 24), We
find that
9(a1,a2,03,0,...,0),(81,82,83,0,...,0) (T1,...,2q)
= $§3 853 1’32 8522 1’(111 8511g070(a:1, ey :Ed)

for a3, B3 € Z,. Continuing this way, we conclude that
a3 =2 DPgo0
for any o, 8 € Zi. It follows that f, — goo in 7 (R%). "

November 9, 2005
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Definition 2.7. Continuous linear functionals on .7 (R?) are called tempered
distributions. The linear space of tempered distributions is denoted by
Z'(RY). Thus T € .#/(R?) if and only if T : .7 (R%) — C is linear and
fn — f in Z(RY) implies that T(f,,) — T(f) in C.

Example 2.8. For fixed a € R?, let §, be the map on .#(R?) given by the
prescription &, : f + f(a). Evidently 6, € ./(R%). §, is called the Dirac
delta function (at a € R%).

Remark 2.9. Since T'(f,) — T(f) = T(fn — f) and f, — f in . if and only
if (fn —f) — 01in ., we see that a linear map on . is continuous if and
only if it is continuous at 0 € .%.

Proposition 2.10. Suppose that T : ¥ — . is linear and that there are
a, B € Zi such that

T(H < N fllas
for all f € . (R?Y). Then T € .7'(RY).

Proof. According to the remark above, we need only verify the continuity
of T"at 0. But if f, — 0 in .7, it follows, in particular, that | f,[la,s — 0
and so

T(fn)l <l fallas — 0

as n — oo. This means that T is continuous at 0, as required. n

To establish a converse, we shall introduce another family of norms on .7.

Definition 2.11. For each k,m € Z, and f € .7 (R%), set

k= lflas-

| <k
|B|<m

/1

These norms on . have the property of being directed, that is, for any
(K',m') and (k”,m") there is (k,m) such that

ax{ || fllwr s [ Nl 3 < A1F

forall f € .7 (R%). (Any (k,m) with k > max{ &', k" } and m > max{m/,m" }
will do).

‘k,m

Remark 2.12. It is clear that || f,, — f]la,s — O for each «, 3 € Z< if and only
if || fn = fllg,;m — O for each k,m € Z. It follows that a linear functional
T on .#(R?) is a tempered distribution if and only if 7'(f,) — 0 whenever
| fullem — 0 for all k,m € Z.

ifwilde Notes



The spaces . and .’ 9

Theorem 2.13. A linear functional T on .7 (R?) is a tempered distribution if
and only if there is C > 0 and some k,m € Z, such that

TN <Cllf

k,m
for all f € . (R?).

Proof. If such a bound exists, it is clear that T € .#/(R%). For the converse,
suppose that 7' € .#/(R%) but that there exists no such bound. Then for
any n € N, it is false that

TN < nllfllnn
for all f € .7(R%). In other words, there is a sequence (g,) in .# such that

1

T(gn)| > nllgnlln
Set fn = gn/n||gnllnn so that |T'(f,)| > 1. However,

Inllk, 1
1 fllern = W90l 1
nlgnllnn =~ n
whenever n > max{k,m}. It follows that f, — 0 in #(R%). This is a
contradiction because it is false that T'(f,,) — 0. The result follows. n

Proposition 2.14. Let g € L?>(R%). Then the linear map
7, 1 [ o) f(o) do

on .7 (RY) defines a tempered distribution.

Proof. For f € .(R%), we have |Ty(f)| = ‘fg(w)f(x) dz | < [lgllzz [[fllzz-
But

1913 = [ 1@ f@)] da
< 1fllo / ()] da

d ) 1
oo [(T[0+23) 176z Ture ©

j=1

<00 fllan [ o doydea...d

< 0.0/ N2d0 [ a1 o, ¢r1dr2...d%d
[Tir (1 +27)

=7 flloo 1 fl2d.0

d
<7 HfH%d,o .

This leads to the estimate

Ty ()] < llgllze 7 11 fll2a0
which shows that T' € .7 /(R%), as claimed. .

November 9, 2005
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The next result indicates that polynomially bounded functions determine
tempered distributions, via integration.

Theorem 2.15. Suppose that g(x) (is measurable and) is such that for some
m € N, H;l:l(l + x?)_mg(x) is bounded on R%. Then the map

7,1 [ gla) f(o) do

is a tempered distribution.

Proof. Let p(x) = H?Zl(l + x?) Then the hypotheses mean that for any
fe SR

l9(x) f(2)] = p(z)™™ |g(2)| p(x)™ [f(2)]
< Mp(x)™ |f(x)]

for some M > 0. It follows that g(x)f(x) is integrable and so Ty is well-
defined on .7 (RY).
To show that T € .7/ (R%), we estimate

T,(f) < M / p(z)™ | f(z)] da

_ M / p(a)™ | f ()] p(lx)

1

<M —
< M| haanino [~ do

=M ||f”2d(m+1),0 .

dzx

It follows that T, € .7 /(R%). .

Theorem 2.16 (Cauchy Principal Part Integral).
The functional

P(1): f—lim 1 f(z) dz

el0 |z|>e T

belongs to L' (R).

Proof. We first show that P(2) is well-defined on .(R). For f € .7 (R)

/$|28if(:c) dm:/amw da

|
Jla) = J=) — 2f'(0) as * — 0 and therefore J@) = f(=2) is

x x
integrable on [0,00) and P(1) is indeed well-defined.

However,

ifwilde Notes
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Clearly P(%) is linear and so we need only verify its continuity on . (R).
To do this, we observe that for x > 0

fl@) = f(=2)| |1
== e
si/ PRGN
<2 f oo -
Therefore
_ f(@) — f(=x) flz) — f(-=)
(f)] = ‘/ dx+/ da
s/o 2] £l dm+/1 {!f(w)|+|f(—x)\}w;
* dz
<2f s +2lef @l [ 5
The result follows. L]

Definition 2.17. A sequence (T},) in .#/(R?) is said to converge in .7’/ (R%)
if T,,(f) — T(f) for each f € .7 (R%). One also says that T}, converges to T
in the sense of distributions.

Example 2.18. Lebesgue’s Dominated Convergence Theorem implies that (if
each gy is measurable and) if g,(z) — ¢(z) pointwise and if |g,(x)| < ¢(x)
for some integrable function ¢, then [ g,(x)f(z) dz — [g(x)f(z) dx for
each f € .. In other words, the sequence T,, of tempered distributions
converges to T, in .7 /(RY).

We wish to discuss the well-known formula

lim— 1 — Pl

el0 T — xo + i€ z ‘00)_”5(%_%)'

We will see that this holds with convergence in the sense of distributions.
_r
z? + €2
Proof. Let f € (R) and let § > 0. Then

Theorem 2.19. Let g.(z) = . Then Ty, — P(L) in &'(R) ase | 0.

PO -1 | = | PO - [~ 5 4
| [t o [t e

November 9, 2005
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+/5 (p)fw)—xf(—w)‘ .

Now, w — 2f'(0) as z | 0 and so the first term on the right hand
side can be made arbitrarily small by choosing § sufficiently small. But for
fixed § > 0, the fact that W is integrable means that the second term
approaches 0 as e — 0. [Alternatively, one can set 6 = /¢ in the discussion
above. Another proof is to use Lebes%ue s Monotone Convergence Theorem
together with the fact that —= f(=2) ‘ 1 0on (0,00) as e | 0.] .

:r:2+52

The next theorem tells us that the Dirac delta function is the limit, in
the sense of distributions, of a sequence of functions whose graphs become
thin, tall peaks around = = 0.

Theorem 2.20. Let (¢,,) be a sequence of functions on R such that

(i) ¢n(z) >0 for all x € R.
) Jon(z)dz =1 for all n.
(iii) For any a > 0, flx\za on(z) dr — 0 as n — oo.
Then ¢n — 6 in #'(R) as n — oo (that is, T,, — 0 in /' (R)).

Proof. Fix f € .Z(R) (with f # 0). To show that [ ¢, (z) f(z) dz — f(0)
as n — 00, let € > 0 be given. Then, for any n > 0,

| [eat@ 1@) do— £0)| = | [ ala) (7(2) - £0)) s
< [ o) @) - 5O o
+ [ @) 1) - 10) d.

ifwilde Notes
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Fix n > 0 such that |f(z) — f(0)| < 3 for all |z| < 5. Then we can estimate
the first term on the right hand side by

D=

/ " on(@) |f(x) — (0)] dr < Le / " on() da

-n -n

<

D=

™

8

©

S
&

IS

8

D=

for all n. Furthermore, by hypothesis, there is N € N such that if n > N

then
€

/|x|>n o) 4T < s

So for n > N, the second term on the right hand side above is estimated
according to

/ on(@) |£(2) — F(O)] dr < 2] £l / on(x) da
x2>n

T>n

< se.

[N

Hence, for all n > N, we find that

| [enla) 1@y do— £0)| < 2

as required. -

Remark 2.21. If we replace (iii) by the requirement that f|x7x0|>a on(x) de —
0 as n — oo, then one sees that ¢, — d,, in //(R).
€

Corollary 2.22. For € > 0, let g- = m .
T — X0 9

Z'(R) as e — 0.

Then g — Tz, in

Proof. Clearly g-(xz) > 0 for all z € R and [ g.(z) dz = m. Also, for any

a >0,
* ¢
ge(x) do = / dx
/|:cx0>a : a x? 4 €2
-1

=2 [tan f} .

= 2(% —tan~! ’;)

— 0
as € — 0. The result now follows from the theorem (applied to % ge)- .

November 9, 2005
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1
Theorem 2.23. Fore >0, let h. = — . Then
T — xg+ 1€

he — P(-2—) — im0y

r—xo
in ' (R), as e — 0.
Proof. We have

he () 1 T — Ty — 1€
€Tr) = =
c r—x0+ic (v —1z0)?+ &2

(x—mo) ie
(x—x0)2+e%2 (v —z0)2+¢&2
— P(=L) —im by

T—x0

in #’(R) as € — 0, by the previous theorems. .

To motivate the next definition, consider the integral [¢'(z) f(z) dx
where f,g € Z(R). Integrating by parts, we find that

Using our notation introduced earlier, identifying a function g with the
distribution Ty, this equality becomes

Ty (f) = =T(9)(f).

If we think of T,/ as the derivative of T, then the following definition is
quite natural.

Definition 2.24. Let T € .%/(R?%) and o € Z%. The weak derivative DT
(or the derivative in the sense of distributions) is defined by

(DT)(f) = (=)l T(D*f)
for f € .7 (RY).

This corresponds to DT, = Tpa,. Note that a distribution always has
a weak derivative. Of course, we should verify that the weak derivative of a
tempered distribution is also a tempered distribution. We do this next.

Theorem 2.25. For any o € Z%, D* : .Z(R?) — .Z(R?) is continuous. In
particular, for any T € .7 (RY), DT € .7/ (RY) .

Proof. Suppose that f, — 0 in .#(R%). Let v, € Z1. Then
1D fullys = 127 D°D* full o

= |27 D% fullc

ifwilde Notes
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= |1/l

— 0

v,0+8

as n — oo. Hence D® : .7 (R%) — .#(R%) is continuous.

Now let T € .#/(R%). Evidently DT is well-defined and is a linear map on
S (RY). If £, — 0 in .Z(R?Y), then D¥f,, — 0 in .#(R?), by the first part.
Hence

(DT)(fa) = (=D T(Df,) —
and so D°T € . '(R9), as required. .

Examples 2.26.
1. We find that ¢, (f) = —d.(f) = —f'(a).

>0
2. Let g(z) = {(? i< 0

Then we know that T, € .#/(R) and

Ty(f) = =Ty(f")

——/Ooxfu
B / ‘o

/ fa
_ /_ H(@) () do

1, >0

is the Heaviside step-function.
0, z<0

where H(z) = {

So T, = Tx. Moreover,

and so Ty, = 0. Therefore Ty = Ty and T,/ = Ty = 6. Wesay ' = H
and ¢’ = H' = 4, in the sense of distributions.

November 9, 2005
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Remark 2.27. We notice that although § is not a function, it is the second
distributional derivative of a continuous function, namely g. We will see
that every tempered distribution is the weak derivative (of a suitable order)
of some continuous function.

Definition 2.28. The support of a function f on R?, denoted by supp f, is
the closure of the set where f does not vanish;

supp f = {z € R?: f(z) #0}.

Let C$°(R?) denote the linear subspace of C°°(R%) of those functions with
compact support. Clearly C°(RY) C .7 (R%).

Example 2.29. For x € R, let

—1/(1—22) <1
h(.f[,‘) = {e ’ ‘$| -

0, lz| > 1.

Then h is infinitely-differentiable and one finds that its n'" derivative has
the form A (z) = p,(z,1/(1 — 22)) h(x) for some polynomial p,(s,t) and
therefore h € C§°(R).

Let g(x) = [ _h(t) dt. Then g is infinitely-differentiable, g(z) = 0 for
x < —1 and g is constant for x > 1. Evidently g ¢ .7 (R).

Let gx(z) = g(Az), where A > 0. Then g, is zero for z < —1/X and constant
for z > 1/A. Now let gxo(z) = g(A(z—a)). Then gy, vanishes for z < a— 3

and is constant when = > a + %

Let a < b and suppose that A\, u are such that a < a + % <b-1<b Let
f(x) = gra(®) gu,—s(—2x). Then f € C*(R) and we see that f(;v) = 0 for
r<a-7, f(a:)zOforx>b—|—i and f is constant for a + 1 <x<b—i.

Evidently f € C§°(R) and supp f C [a — +,b+ it

:1:)/
T T T T
-1 1 a—x b+

I

Figure 2.1: The functions g(x) and f(z).

In d-dimensions, set f(z1,...,2q) = g(|z|*) where g € C®(R) is such that
g(t) =1for 0 <t < aand g(t) =0 for z > b, where 0 < a < b. Then
feCPRY), supp f C {z e RY: |z> < b} and f(z) =1 for |z|> < a®.

ifwilde Notes
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In particular, if N,(xg) denotes the open ball of radius r, centred at xg
in R%, then there exist functions f € C§°(R?) such that f = 1 on N, ja(wo)
and f vanishes outside N, (zo).

Theorem 2.30. Let K be compact and let A be an open set in R* with
KsubsetA. Then there exists a C*-function ¢ such that 0 < p(z) <1
for allz € RY, p(z) =1 for all z € K and p(x) =0 for x ¢ A.

Proof. For each x € K, there is 7(z) > 0 such that N, (z) C A. The
collection { N,(5)/2(7) : © € K } is an open cover of the compact set K and
so has a finite subcover, that is, there is xz1,...,x,, € K such that

K C Nr1/2(x1) U---u Nrm/Q(xm)

where r; = r(z;).

Let ¢; € C*°(R%) be such that 0 < ¢;(x) < 1, p;i(z) = 1 for x € N,, jo(x;)
and g;(z) = 0if x ¢ N,,(z). (Such functions can be constructed as in the
previous example.)

Set

pr) =1—(1—=@i(x)(1 —p2(2)) ... (1 = om(2)).

Then ¢ € C®(R?) and obeys 0 < p(x) < 1 for all z € R%. Furthermore,
for any x € K, there is some 1 < i < m such that x € N,, /5(z;) and so
vi(z) =1 and therefore p(x) = 1.

On the other hand, for any x ¢ A, it is true that x ¢ N, (x;) for all
1 < i< m (since Ny,(z;) C A). Hence p;(x) =0 for all 1 < i < m and so
o(z) =1 —1 = 0. Therefore ¢ satisfies the requirements and the proof is
complete. n

Theorem 2.31. C$°(R?) is dense in .7 (R?).

Proof. Let ¢ € Z(RY) and let f, € C°(RY) be a sequence of functions
such that supp f,, C {z € R : 2| < n+ 1}, fu(z) =1 for 2] < n—1
and such that the shape of the graph of f,, for || between n — 1 and n + 1
is independent of n. This means that for any given multi-index v € Z4
D7 f(x) is bounded uniformly in n. (Such functions can be constructed as
in example 2.29).

Let ¢n = ¢ fn. Then ¢, € C°(R?) and

len = ¢llas = lo(fn = Dllas
= sup | 2% D (@) (fula) = 1)) |

But for each v € Z%, || D”(f,(x) — 1)||oo is bounded uniformly in n and so it
follows by Leibnitz’ formula and the fact that ¢ € . that ||¢n — @[las — 0
asnﬂooforeacha,ﬁEZi. "
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Definition 2.32. Let G be an open set in R?. We say that a distribution T
vanishes on G if T'(¢) = 0 for each ¢ € .7 (R%) with supp ¢ C G.

If g € . vanishes on G (as a function) then evidently [ g(z)¢(x) dz =0
for all ¢ € . with supp ¢ C G, that is, T, vanishes on G as a distribution.

Remark 2.33. Suppose that 7' € ./(R?) vanishes on the open sets G and
G5 where G1 NGy = @. Then T also vanishes on GG; U GG3. To see this, let
w € . with supp ¢ C G1 U Gbs.

Now suppp N G is a closed set in G; and so there is an infinitely-
differentiable function f; such that fi = 1 on suppe NGy and f; = 0
outside some closed set F} containing supp ¢ N G1. Hence fi¢ has support
in (G1. Similarly, there is some fo such that fop has support in Gs.

But ¢ = fip + fap and therefore T'(p) = T(f1p) + T(fa) = 0 since the
distribution T' vanishes on both G and Gs.

This result has a satisfactory generalization, as follows.

Theorem 2.34. Suppose that T € .#'(R?) wvanishes on each member of a
collection { G } of open sets. Then T vanishes on |, Gq.

Proof. A proof of this result may be found in Rudin’s book!. "
Thanks to this theorem, the following (desirable) definition makes sense.

Definition 2.35. For any T € .%/(R%), let W denote the union of all open
sets on which T" vanishes. The support of T is defined to be suppT = W€,
the complement of W in RY.

Examples 2.36.
1. One sees that suppd, = {a}, for any a € R%

2. If H is the Heaviside function, then we see that supp H = [0, c0).

![Functional Analysis, by Walter Rudin, Tata McCraw-Hill, 1973]
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Chapter 3

The spaces 2 and 2’

In this section, we consider another space of functions and the associated
collection of continuous linear functionals.

Definition 3.1. Let  C R? be an open subset of RY. C$°(Q2) denotes the
linear subset consisting of those functions in C$°(R?) which have support
in Q. Suppose that () is a sequence in C$°(2) and let ¢ € C°(RY). We
say that ¢, — ¢ in C§°(Q) if

(i) there is some compact set K C €2 such that supp ¢, C K for all n,
and

(ii) D%p,, — D% uniformly as n — oo, for each o € Z%.

Note that it follows immediately that supp ¢ C K.

2(Q) is the space C§°(£2) equipped with this notion of convergence and we
say that ¢, — ¢ in Z2(Q).

Example 3.2. Let ¢ € C§°(R) be such that ¢(z) = 0 for |z| > 1. For each
n €N, let () = Y@ — 1)+ 1z —2) + -+ Lz —n) (so that ¢,
comprises n smaller and smaller smooth “bumps”).

Evidently, v, € C§°(R) and (¢,,) is a Cauchy sequence with respect to
the norm || - ||oo. Indeed, |1 — ¢lls — 0 Where p(z) = 3232, + ¢(z — k).
Clearly ¢ € C*°(R) but % does not converge to ¢ in Z(R) because the
supports of the 1, are not all contained in a compact set (and ¢ ¢ C§°(R),
anyway).

Continuing with this notation, let i, (z) = L 4(z—n). Then h, € C§°(R)
and ||hp|lcc — 0 but (hy,) does not converge to 0 in Z(R) (because there is
no compact set K such that supp h,, C K for all n).

The notion of convergence in & ensures its completeness, as we show next.

Definition 3.3. We say that (¢,) is a Cauchy sequence in 2(12) if there is
some compact set K C € such that supp ¢, € K for all n and such that
1D (prn, — ¢m)|loc — 0 as n,m — oo for every a € Zi.
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20 Chapter 3

Theorem 3.4. Z(Q2) is complete.

Proof. Exactly as in the proof of the completeness of ., we see that if (¢,)
is a Cauchy sequence in 2(f), then there is some f € C*(R?) such that
| D*(on — f)||loo — 0 for all @ € ZL. But if supp¢,, C K for all n, then it
follows that supp f C K also. Hence f € C3°(2) and ¢, — fin Z(2). =

Definition 3.5. A linear functional u : Z(2) — C is said to be continuous
if u(pn) — u(p) whenever ¢, — ¢ in Z(Q) as n — oco. Such a continuous
linear functional is called a distribution. The linear space of distributions is
denoted Z7'(Q).

The derivatives of a distribution are defined as for tempered distributions,
namely by the formula

Du(p) = (1) u(D*p)
for p € 2(2) and o € Z4.

Example 3.6. Clearly the map J, : ¢ — ¢(a) (Dirac delta “function”) is a
distribution (i.e., belongs to 2'(R%)) for any a € R%.

Example 3.7. Suppose u is a locally integrable function (that is, u € L'(K)
for each compact set K C R?). Then the map T, : ¢ — [pau(z) () da is
a distribution. (In particular, u(z) = ¢*” defines a distribution, T}, € Z'(R)
but T;, ¢ ./(R). Indeed, T, is not defined on every element of .7 (R).)

To see this, we first note that T, is well-defined because ¢ has compact
support if it belongs to 2(R?). Furthermore,

1.(0)] = | [ (@) pla) da]
< [ W@ lotw)] do. where i = supps

< ¢l /K ju()] da

From this, we see that if ¢, — ¢ in 2(R%), then certainly Ty, (¢n) — Tu(p)
so that T, € 2'(R%), as claimed.

Remark 3.8. It is sometimes convenient to identify u with T}, and to consider
the function u as being a distribution (namely that given by Ty,).

The next result tells us that every tempered distribution is a distribution.
(If this were not true then the terminology would be most inappropriate.)
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Theorem 3.9. Let T € ./ (R?). Then T | C*(RY) € 2'(RY).

Proof. Suppose that ¢, — ¢ in 2(R?). Then there is some compact set
K c R? such that supp ¢, C K for all n. So for any a, 3 € Zi

lon = @lla,s = 12D (¢ — )0

= sup | 2D’ (¢, — ) |
reK

< Cy sup | D (pn — )|
X
— 0, asn— oo,

where Cy, is some constant such that |z%| < C, for all x € K. It follows that
¢on — ¢ in Z(RY) and so T'(p,) — T(p). Hence ¢ +— T(y) is continuous
on 2(RY). n

Theorem 3.10. A linear functional v on C3°(2) is a distribution if and only
if for each compact subset K C ) there is a constant C' and an integer N
such that

lu(@)l < Cllelln,  for all ¢ € C°(K),

where [lolly = 355 1079l oo-

Proof. Clearly u is continuous on Z(f2) if such bounds hold. Conversely,
suppose that v € 2'(Q) but that no such bounds exist. Then there is some
compact set Ko C 2 and a sequence (¢y,) in Cg°(Ky) such that

[uej)| > jlleslly,  forall j €N.
Set f; = ¢j/u(yj) so that u(f;) =1 for all j. However, for any 8 € Zi,

5oy _ D79l
1D flle = Fr
ol
= Julg;)]
< % — 0, asj— oo.

, forall j >3],

Hence f; — 0 in 2(§2) which forces u(f;) — 0. This contradicts the fact
that, by construction, u(f;) =1 for all j. The result follows. "

Remark 3.11. Note that the same proof works if the norm |¢|n above is
redefined to be maxgi<n [[D’¢| oo

Definition 3.12. If the integer NV in theorem 3.10 can be chosen independently
of K, then the distribution u is said to of finite order. The smallest such N
is called the order of w.
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Example 3.13. Let u € 2'(R) be given by u = ¢, that is, u : ¢ — ¢'(0).
Then we see that w has order 1. On the other hand, if u = Y ° 5

(where 6,(7,")(@ = (=1)"¢™(n)), then u is an element of 2'(R) but its order
is infinite.

Note that in this latter case, suppu = {0,1,2,...}. We show next that
distributions with compact support must have finite order.

Theorem 3.14. Suppose that u € 9'(Q?) and that suppu is compact. Then u
has finite order. In fact, there is C > 0 and N € Z4 such that

()] < Cllelln

for all ¢ € C§°(Q) (i.e., C does not depend on ¢ nor on supp ¢ ).

Proof. Suppose that v € 2'(Q2) and that supp u is compact. Let W be an
open set with suppu C W and let ¢ € C§°(£2) be such that 1) = 1 on W.
For any ¢ € Cg°(Q2), we have

u(p) =u(@ o+ (1 —=1)p) =u(e)+u((l-9)p).

But (1—%)¢ =0on W and so u((1—1) ¢) = 0 and therefore u(p) = u(y ¢)
for all ¢ € C§°(€2). It follows by theorem 3.10 that there is some C’ > 0
and N € Z, such that

() = lu(p )| < C"lo¢lin

for all ¢ € C§° () (since supp ¢ ¢ C supp ). Note that C’ does not depend
on ¢ nor supp ¢ but may depend on supp. An application of Leibnitz
formula implies that

[u(@)] = lu(p )]
<C'lledln
<Clieln

for all p € C5°(2) for some C' > 0 which may depend on % but does not
depend on ¢ nor on supp . The result follows. "

Remark 3.15. The converse is false. Indeed, suppose that u(z) is a non-zero
constant, say u(z) = ¢ # 0, for all x € R. Then suppu = R which is not
compact. However, for any compact set K, and any ¢ € C§°(K), we have

u(p)| = | / c () da|
< | diam K ||| -

So u has order zero but its support is not compact.
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Theorem 3.16. Let T € .7/ (R?). Then T | 2(R?) is a distribution of finite
order.

Proof. We have already seen that T | 2(R%) is a distribution, so we need
only show that it has finite order. Since T € .%/(R?), there is Cp > 0 and
integers n, k € Z such that

IT(f)] < Col|fllng forall f e .7(R).

But if K C R? is compact, there is M > 0 such that |z®| < M for all a € Zi
with || <n and all x € K. Hence there is C’ > 0 such that

TN < C' N fllng, forall f € CG°(K).

It follows that
IT(p)] < C" llellk

for all ¢ € C§°(K), where k does not depend on K and so we see that the
order of T on 2(R?) is finite (no larger than k). .

Remark 3.17. Again, the converse is false. For example, the linear map
o [ ™’ p(z) dz defines an element of 2'(R) which does not extend to a
continuous functional on .(R). However, for any compact set K C R,

lu(@)l < Cllgllo

for all ¢ € C§°(K) so that u has order 0. There is no T € .#’/(R) such that
T 2R)=u.

Theorem 3.18. Let u € .@'(Rd) and suppose that supp u is compact. Then
u € .7 (RY), that is, there is a unique T € .7 (R?) such that T | 2(R?) = u.

Proof. Let W be an open ball in R? with suppu C W and let 1) € C§°(R%) be
such that W C supp® and ¢ = 1 on W. For any f € .7(R%), f¢ € C°(R?)
and so we may define the linear map T on .7 (R?) by

T(f) =u(fy) for f e S(RY).

Now, for any ¢ € C5°(R?), ¢ = ¢ on W and so supp(p ¢ — ¢) C W€ and
therefore u(p 1)) = u(yp). It follows that T'(¢) = u(y) for any ¢ € C°(RY).

Suppose that f, — 0 in .#(R9). Then (using Leibnitz’ formula) it follows
that f,1 — 0 in 7 (R%). But supp fn1p C supp ) for all n and so f,,ip — 0
in 2(RY). This means that T(f,) = u(f,¥) — 0 as n — oo and so T is
continuous on . (R?), that is, T € . '(R9).

To see that T is unique, suppose that S € .#/(R%) and S | 2(RY) = u.
Then S — T € .'(R?%) and vanishes on C§°(R?) which is dense in .7 (R9).
By continuity, it follows that S = T on .7 (R%). .
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We know that § and all its derivatives are distributions whose support is
the singleton set {0 }. The next theorem gives a precise converse.

Theorem 3.19. Let u € 9'(R?) be such that suppu = {0}. Then there is
N € Zy and constants a;j such that

u = Z aij5.

l7I<N

Proof. We will only give the proof for d = 1. The general case is similar.
So suppose that u € 2'(R) with suppu = {0}. Since {0} is compact, it
follows that w has finite order, NV, say. Then there is C > 0 such that

[u()| < Cllelln, forall p € Z(R).
Claim: if the derivatives o) (0) =0 for all 0 < j < N, then u(p) = 0.

Proof of Claim. Let h € C3°(R) be such that h(z) = 1 for || < 1 and
such that h(z) = 0 if || > 2. Set h,(x) = h(nx) so that hy,(z) = 1 if
2| < L but hy(z) = 0if [z > 2. Let pn(z) = hy(z)@(z). Evidently,
supp pp € {@ 1 2| <2}

We will show that [|¢n||y — 0 as n — co. Let k € Z. be fixed such that
0 <k < N and let € > 0 be given. Since gp(k) (0) = 0, there is p > 0 such
that [p®) (z)| < ¢ for all |z| < p. But then

0@ = | [ it <la e

for all |x| < p. Continuing in this way, we obtain

_ X
D)) <
. x|
()| < B

for all |z| < p. Using Leibnitz’ formula, we find that

| D¥u(@) | = | D (hn(2) (@) |

( <’“> D' hy(z) D¥ " (z) )

r

I
] =

Il
o

T

I
e

> (’“) " KO (na) @) |

0
k

k ‘n.ﬁU‘T (7‘)
Z(T) - D)l e

r=0

IN
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Hence

sup | D*pp(x)| = sup | D ()]
z lz|<2/n

<(C'e

for some constant C’ > 0 (which may depend on & but not on ¢,,) provided
2/n < p, that is, n > 2/p. It follows that sup, | D*¢,(z)| — 0 as n — oo
for each 0 < k < N and so |J¢n||n — 0, as required.

To complete the proof of the claim, we note that the bound for u implies
that u(¢,) — 0. However, ¢(x) — ¢n(x) = 0 if |z| < 1/n, and therefore
supp(¢ — ¢n) C {z : |x| > 1/n}. Since suppu = {0}, it follows that
u(p—n) = 0so u(yp) = u(py) for all n which forces u(¢) = 0 and the claim
is proved.

To continue with the proof of the theorem, let ¢ € C5°(R) be given and
define 9 by

o(x) = p(0) + 2 ¢/ (0) + L @ (0) + - + 27 o™M(0) +(z).
=p(x)

Then 1) is infinitely-differentiable and 1*)(0) = 0 for all 0 < k < N. Note,
however, that 1 ¢ C§°(R) — indeed, 9 is not even bounded.
Let g € C§°(R) be such that g(x) =1 if || < 1. Then u(p) = u(¢ g) and
pg=pg+vyg.
Now, ¢ g € C°(R) and (by Leibnitz’ formula) we see that (1 g)®*)(0) = 0
for all 0 < k < N and so u(v g) = 0, according to the claim above. Hence

u(p) = ulpg)
(pg)+u(g)
(rg)
©(0)u(g) + ¢ (0) u(zg) + - - + ™ (0) u(zNg/N)

N
= Zak Dk5
k=

where aj, = (—1)F u(z¥ g)/k!. .

Il
g g
3

Definition 3.20. For any ¢ € C3°(Q2) and u € 2'(Q), the product ¢ u is the
linear functional

vu:p—ule), forype P(Q).
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Theorem 3.21.

(i) For any ¢ € C3°(Q), the product Yu € ' ().

(ii) Suppose that v and its derivatives are polynomially bounded, that
is, for each multi-index o € Z2, there is some integer N, € N and
constant Cy, > 0 such that | D (z) | < Cy (14 |z|*)Ne for all z € R,
Then for any f € Z(RY), the function o f € Z(RY) and the map
YT : f—T(f) defines a tempered distribution.

Proof. (i) For any ¢ € C§°(£2), the product ¢ ¢ € C5°(2) also and so ¢ u is
a well-defined linear functional on 2(Q2). Now if ¢, — ¢ in Z(Q), it follows
from Leibnitz’ formula that ¢ ¢, — ¥ in 2(Q) and so Yu € 2'(Q), as
claimed.

(ii) If +) and its derivatives are polynomially bounded, then ¢ f € .#(R%)
for any f € .#(R?). Furthermore, again by Leibnitz’ formula, we see that if
fn — fin Z(R%), then also ¢ f,, — v f in #(R?) and so T € .7'(RY). w

ifwilde Notes



Chapter 4

The Fourier transform

We begin with the definition of the Fourier transform and the inverse Fourier
transform for smooth functions.

Definition 4.1. The Fourier transform of the function f € .#(R?) is the
function .Zf given by

tng()\) == W /Rd e—iAaz f(.’,U) d.’,U

where A € R? and Az = Z;l:1 \jzj for z € RY

The inverse Fourier transform of f € .%(R%) is the function .Z ~1f given by
FHN) = gl /Rd AT £(z) da.

It is often convenient to also use the notation f for Zf.

Of course, the terminology must be justified, that is, we must show that
these transforms really are inverses of each other.

Proposition 4.2. Let f € .7(RY). Then f € C®(R?) and for any o, 8 € zd
(N> DPF )N = (D*((=iz)” f(2))) ().
In particular, i\; [ () = (D;f) (A) and (D;f)(A) = (—iz; f(z)) (A).

Proof. Let e = (1,0,...,0), e2 = (0,1,0,...,0), ..., eg = (0,0,...,0,1)
denote the standard basis vectors for R?. For f € .7(R%) and h # 0,

f(/\+h€j)—f()\> 1 R
L + G /Rdzatje f(z) dm‘

(e—i()\—‘rhej)zr _e—i)\z) . e
=| & [ i + e} f(w) de

—0 ash—0
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since f € .7 (R%). In other words, differentiation under the integral sign is
justified. Repeated differentiation (since z;f(x) € .7 (R?)) shows that

~

(DN = b [ (=i e (@) da = (i) 1)) (V.

Furthermore,

= [0 (DR (i )

= % /Rd(—i)a e AT DS{(—Z’J;)’B f(z)} dz

(integrating by parts)

= [ e D (i) f@) da

so that R R
(N D)) = (D((—ix)” f(z))) (V)

and the proof is complete. "

Remark 4.3. Clearly, similar formulae also hold for the inverse Fourier
transform .# ~!f (replacing i by —i).

Theorem 4.4. Both # and .# ! are continuous maps on .7 (R%).

Proof. We first show that if f € .(R%), then so are .Zf and .% ~'f. For any
a, 3 € 7%, we have

0D PN = | [ e D (i) fia) de |
<G 100 p@) e

It follows that |||f|||a5 = Supyega | (\* D8 f )(A) | is finite for each pair of
multi-indices «a, § € Z and therefore f € .7(R%). A similar proof holds for
Z~1f (or one can simply note that (Z~1f)(\) = (Zf)(=\)).

To show that .# : .Z(R?) — Z(RY) is continuous, we use the estimate
obtained above. We have

17 ot < s [ 10°(a” @) | do
Rd

2 .2 2
xlxzxd

< 1
= (@mds /R (T4+2})(A +23)--- (1 +23)

| D (2 f(x)) | dz
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< C S llmn

by Leibnitz’ formula, for some constant C' > 0 and integers m,n € Z,
depending on « and . (In fact, we can take m = || + 2d and n = |a].)
From this, it follows that if f, — f in .#(R%), then f, — f in . (R%), that

is, the map .7 : ./ (R?) — .#(R?) is continuous.

Similarly, one sees that . ~!is continuous on . (R%). .

The next theorem justifies the terminology.
Theorem 4.5 (Fourier Inversion Theorem). For any f € .7 (R%),
FNF) = = AFY)

(so that the Fourier transform F is a linear bicontinuous bijection of .7 (R%)
onto . (RY) with inverse F~1).

Proof. For any f,g € .7 (R¢

~—

, we have

/]Rd 9 T () e d = Rd 9(\) { W /]Rd e f(x) da:} e dA

Therefore
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Letting € | 0, we obtain
90) [ Foverix=1) [ g ds.
R4 Rd

Now set g(z) = e *"/2. Then g(0) = 1 and one knows that § (u) = e %"/
and [pa g (u) du = (2m)%/2. Substituting this into the equation above gives

(7)) = fy),

that is, F~Y.Zf) = f. Similarly, one shows that .F(.Z ~!f) = f and the
result follows. "

Remark 4.6. We see that
(2 f)(@) = (Ff (@) = (F I )(=2) = f(=).

It follows that .Z*f = f so that .% and .% ~! have period 4.

Furthermore, writing the identity i); f()\) = (Djf)/\()\) obtained earlier as
iX;j (Zf)(N) = (FD;f)(A\) and replacing f by Zlf, we get the formula
i\ f(N) = (FD;Z~f)(\). This gives the identity

i\j = FD;F "

as operators on .7 (R9).
We also find that #~Y(i\;).# = D; and F(i\;).F 1= FD;F 2 = —D;
on .7 (R9).

Corollary 4.7 (Parseval’s formula). For any f,g € ./ (R9)

[T@a@ = [ 7@ o) do.

In particular, ||f ||z2 = || fllz2 (Plancheral’s formula).

Proof. We have seen that

/ o) F () e dx = / 3 (2) fy+ ) dr.
]Rd

Rd

Setting y = 0, we get

LanFoar=[ G s ds.

Rd

Replacing f by .# ~!f and using the identity .# ~'f (z) = f(—x), we obtain

| @ @ = [ 37 o ds.
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However, f (z) = (7)A(—a:), so putting h = f, we see that f(—z) =
(R) (—z) = h (z). Hence

[ @i de = [ G do.

as required. -

It is now easy to see that the Fourier transform is a unitary operator on
the Hilbert space L?(R?).

Theorem 4.8 (Plancherel). The Fourier transform F extends from .7 (R%)
to a unitary operator on L?(R%).

Proof. We have seen above (Plancherel’s formula) that the Fourier transform
Z: S (RY) — Z(R?) is isometric with respect to || - |2 (and maps . (R?)
onto .7 (R%)). However, .7 (R%) is dense in L?(RY) and so the result follows
by standard density arguments.

[ The details are as follows. Let h € L?(R?). Then there is a sequence (f,,) in . (R¢)
such that || f, — hll2 — 0. In particular, (f,) is L?-Cauchy. But [|@ |2 = ||¢]|2 for
¢ € .7(R%) and so f, is also L?-Cauchy and therefore converges to some element,

F, say, in L?(R?). We define .#h = F. Then
[Zhllz = lim || fn [lo = L[| frll2 = [[Al2 -
To see that that F' is independent of the particular sequence (f,,), suppose that

(9s) is any sequence in . (R?) such that g, — hllz — 0. Define a new sequence
(¢n) in Z(R?) by setting
fn, modd
Pn =

Ggn, T even.

Arguing as above (but with ¢, rather than f,,), we see that the sequence (&, )
converges in L?(R?). But then

Fh=L%lim f, = L*limp, = L*limg,
n n n
so that .Zh is well-defined and ||.Zhl|2 = ||h||2-
A similar argument holds for the inverse Fourier transform .# % Moreover,
Z.F ~Land .Z ~LZ are both equal to the identity operator on .#(R%) which is dense
in L2(R?) and so . 1= .7 'Z=1on L?(R%).] "

Corollary 4.9. For any f,g € L*(RY), we have
F@gle)de= | f(2)§(x)de.
R4 Rd
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Proof. The fact that . is unitary on L?(RY) means that
?ﬁ dr = fgdx.
R4 R4

Replacing f by f and g by § and using the facts that (Zf)(z) = (Zf)(—z)
and (#.%g)(x) = g(—x) we see that

Fl-z)g(~a)de= | f(2)§(z)dz
Rd R4
and the result follows. n

Remark 4.10. The unbounded self-adjoint operator —iD; on the Hilbert
space L?(R?) is unitarily equivalent to the operator of multiplication by Zj.
This follows because .F#(—i)D;.Z ~1 = z; on .#(R?) which is a core for the
multiplication operator x;.

Definition 4.11. The Fourier transform #T of the tempered distribution
T € .7'(R%) is given by

FT(f) =T(Zf) for fe S RY.
We often write 7 for .ZT. Similarly, the inverse Fourier transform .# ~'T is

given by
F(f)=T(F7Y) for f e LRY.

Remark 4.12. Note that .7.7(R%) — . (R?) is continuous and so the Fourier
transform .# maps .7 /(R?) into .#/(R%). Similarly, .Z~'T ¢ .%/(R?) for
every T € .7/ (RY). Evidently, F 9T =T = ZF'T.

If T is given by some element g of L?(R%), so T = Ty, then

FL) = TyF) = [ a@F (@) do= [ GG f@) do =Ty ().

Rd

This means that we can think of the Fourier transform on . ’(R?) as an
extension of that on L?(R?).

Examples 4.13.
1. We compute 0, for b € R%. For any ¢ € Z(RY)

3 () = 6(?)
= (b)

- W /Rd e bz o(x) dz

etz
= /Rd e o(z) dx

so that &, = Ty, where 1(z) = e~ /(27)%2. In particular, with b = 0,
we find that 6 = (2m)~ %2,
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2. We shall determine the Fourier transform .%#(J;). As above,

and therefore 57 = jze 7 /(2m)/2.
Theorem 4.14. .% and .7 ! are continuous on . '(RY).

Proof. Suppose that T,, — T in .#/(R%). Then T} (p) — T(y) for every
¢ € .7 (R%). Hence

T () =Tu(@) = T(@) =T (¢)

soT, — T in .7’ (RY). A similar argument holds for the inverse Fourier
transform. .

Theorem 4.15. For any T € .'(R%) and multi-indices o, 3 € 72,
(iz)* T = (DO‘T)A and DT = ((—ix)ﬁT)A.

In general, (iz)® DPT = {Da((—ix)ﬁT)}A.

Proof. Let ¢ € .#(R%). Then

Similarly,

The general case is proved in the same way. "
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Chapter 5

Convolution

Definition 5.1. Let f,g € .#(R%). The convolution of f and g, denoted by

f * g, is the function
(fxg9)(y / fly—x)

Theorem 5.2. f * g € .7 (R%) for any f,g € #(R?). Moreover,

—

(@m)"?fg=F+g and 2§ =Fxg.
Furthermore, fxg = gxf and f*(gxh) = (fxg)*h for any f, g, h € Z(R?).
Proof. We have

n) " Fa o) = [ e fla)gla) do.
But we know that [$ ¢ dz = fgozjb\ dzx, for any ¢, € Y(Rd) If we let ¢
denote . 1y, then, replacing ¢ by 90, we get [ dr= [ gow dx.

Now, for ﬁxed y € R? let p(z) = e f(x) and set ¥)(x) = g(x). Then
we have

/Rdtp d:[:—/ Pa
/{ d/Q/ it o=yt £(4) dt}g(x) dx
e
=(f =

() dz

giving

as required.
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Replacing f by .#~!f and g by .# ~lg in this identity, we find that

@m)¥P A F T F ) = fxg
which shows that f * g € .7 (R%) (because this is true of the left hand side).
The left hand side is unaltered if we interchange f and g and therefore
frg=g*[.
Next, taking the Fourier transform once again gives

F(f * 9)(y) = 2m)*? ZF(F ) (F 9))(v)
m) 2 (F)(F9) (~y)
= (2m)2 F 7 f(—y) F ()
= (2m)2 Ff(y) Fy(y)

and so Z(f  g) = (2m)¥? (Ff)(Fg), as claimed.

Finally, we have

Ff* (g« h) = (2m)* [ gxh
= @) fgh
= F((f*g)=h)
and therefore (taking the inverse Fourier transform) fx(g+h) = (f*g)*h. =

Corollary 5.3. If p,1 € C°(RY), then p x 1 € C§°(R?). Moreover,

supp ¢ * ¢ C supp ¢ + supp .

Proof. Tt follows from the theorem that ¢ x 1 € .7(R?) for ¢, € C5°(RY).
Now

() = [ oly—a)vo) da

which certainly vanishes if it is false that y—x € supp ¢ for some x € supp 9,
that is, if it is false that y = x1 + a2 for some z; € supp ¢ and x5 € supp .
Hence supp ¢ * 1 C supp ¢ + supp ¢, as required.

Moreover, each of supp¢ and supp® is compact and so therefore is
supp ¢ * 9. We conclude that ¢ x ¢ € C§°(R?). "

Corollary 5.4. For fized f € .#(R?), the mapping g — f * g is continuous
from #(RY) into .7 (RY).

Proof. Fix f € #(R?) and suppose g, — 0 in Z(R%). Then also g, — 0
in .7(R%) and so (by Leibnitz’ formula) fgn — 0in.7 (R%). But then
frgn=2m)Y2.Z74f ) — 0in .2 (RY) and the result follows. .
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Definition 5.5. For any function u on R%, we define the translation 7,u and
the inversion © by the formulae

(Tzu)(y) = w(y —x) and w(y) =u(-y).
Then (7,4 )(y) = @ (y — z) = u(z — y) and for u,v € .7 (R%), we have

weo)) = [ u@oly—o)do= [ (@) (75)(a) do.

R4

One readily checks that for fixed z € R?, 7, and  are continuous maps from
2(R?) onto 2(R?) and from .7 (R%) onto .7 (R?).

Definition 5.6. For v € 2/'(R%) and ¢ € 2(R?), the convolution u * ¢ is the
function

(uxp)(x) = u(rap) = ulp(z —)).
For T € #'(R%) and f € .%(R%), the convolution T * f is the function

(T f)(@) = T(raf ) =T(f(z —-)).

Note that u(y) can be expressed as a convolution. Indeed, we see that
v = (¢) = m((¢)). Hence u(p) = u(ro((¢))) = (u*¢)(0). Similarly,
T(f) = (T f)(0).

Lemma 5.7. For f € Y(Rd) and k # 0, set fq(z) = f($+”e’i) — f(z)

where e; = (1,0,...,0), ..., eq = (0,0,...,0,1) are the standard basis
vectors of R%. Then f, — 0;f in S (RY) as k — 0.

Proof. We shall show that ||f; — 9;flla,s — 0 for each o, 3 € Z%. Since
DP(f. — 0;f) = gx — 0;9 where g = DP f, we may assume that 3 = 0.

For notational simplicity, let h = 9;f € .#(R%) and let ||z||; = 2?21 | ;]
for x € R%. Let |s| < 1. By the Mean Value Theorem, for each z € R? there
is some 6 € R (depending on z) with |#] < 1 such that f.(x) = h(x + Oke;)
and so

sup |2%(fo(z) — 0;f(x))| = sup |2%(h(z + Ore;) — h(z))|

z€Rd zeR?
< sup |z%(h(xz+ Okej) — h(z))|
lzlh <M
+ sup |z%h(x + Okej) |
lllla>M
+ sup [z%h(z)]. (%)
]l >

We shall estimate each of the three terms on the right hand side. Let £ > 0
be given. Since h € .7 (R%), the third term on the right hand side is smaller
than %5 for all sufficiently large M.

November 9, 2005



38 Chapter 5

To estimate the middle term, note that |z;| < |z; + 0x|+|0k| < |z; + Ok|+1
and so
2 < (TTheal™ ) (1l + sl )
i
Furthermore, if ||| > M, then ||z + frej|[y > M — 1. Combining these
remarks, it follows that

sup |z%h(z + Oke;) |
ll[lx>M

< sup (TTwal) (Ut fay +651) | e + e |
llz|l>M i£j

<  sup (H |25 ) (1 +[zi[)* | h(z) |

lz]|y>M—-1 itj

<ie
provided M is sufficiently large (again because h € .7 (R%)).

Fix M sufficiently large (according to the discussion above) so that each of
the second and third terms on the right hand side of the inequality () is
smaller than %5. The function h is uniformly continuous on the compact
set {x € R?: ||z||; < M} and so the first term on the right hand side of (%)
is smaller than 1 ¢ for all |s| sufficiently small. The result follows. .

Lemma 5.8. For any f € .7 (R?), 7.f — f in .#(R?) as a — 0 in R%.

Proof. Fix a € Z% and suppose that [|a|; < 1. Then

sup| 2% (f(z —a) = f(2))[ < sup [2%(f(z —a) = f(2))]

l[zflx <M

+ sup |z%f(z—a)]
llzlli>M

+ sup [ f(2)]
el >

Since f € .7 (R%), for any given € > 0, we may fix M sufficiently large that
the second and third terms on the right hand side are each smaller than % €.
But then for all sufficiently small a, the first term is also smaller than %5
because f is uniformly continuous on {z € R%: ||z||; < M }. Tt follows that
sup, |2 (f(x —a) — f(x))| — 0 as a — 0. Replacing f by D?f, we see that
I7af — flla,g — 0 as @ — 0 for any a, 8 € Z4, that is, 7,f — f in .7 (R?) as
a— 0. u
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Corollary 5.9. Suppose that ¢ € Z(R?). Then

(i) ¢k — Ojp in 2(R?) as k — 0, and
(i) Tap — ¢ in 2(RY) asa — 0.

Proof. We have seen that ¢,, — 9;¢ in . (R%) as k — 0 and that 7,50 — ¢ in
Z(R%) as a — 0. However, for all || < 1, say, there is some fixed compact
set K such that each supp ¢, C K (and suppd; C K) which means that
¢r — Ojp in Z2(R?) as k — 0.

Similarly, for all ||a|; < 1, say, the supports of ¢ and 7,¢ all lie within
some fixed compact set and so 7,0 — ¢ in Z(R?) as a — 0. "

Theorem 5.10. Let u € 2'(R?) and let ¢ € 2(R?). Then ux p € C®(R?)
and

D(ux* ) = (D%) x o = ux (D%p)
for any o € Zi. Furthermore, supp(u * ¢) C supp u + supp ¢.

Proof. By the corollary, it follows that 7,5 — 7,$ in 2(R%) if y — x in R%.
Hence u(ry@ ) — u(m@ ), that is, (u* ¢)(y) — (u* ¢)(z) if y — = which
shows that u * ¢ is continuous on R

Again, using the corollary, we see that for fixed z € R¢,

(u* ) (x + ’fej) — (ux* p)(x) u( TernejSZ —Tzp )

:u(Tm (Tﬁej& _95)>

—u(1:(=Djp)), ask—0,
u(1e(Djp))

= (ux* Djp)(x)

Hence the partial derivative D;(u * ¢)(z) exists at each € R? and it is
equal to (u* Djp)(z). Furthermore, for fixed z,

u(2(=D;jp)) = —u(DjT:¢)
= (Dju)(12¢)
= ((Dju) * ¢)(2)

and therefore
Dj(uxp) =uxDjp = (Dju) * ¢,

as required. The general case follows by induction.
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For the last part, we note that (u*)(x) = 0 if suppuNsupp 7, = &, that
is to say, if suppu Nsupp p(x —-) = &. Hence

supp(u * ) € {x € R’ : suppu Nsupp p(x —-) # & }
= {z : there is y € suppu such that x —y € suppy }

={z:x €suppu+suppy }

and the proof is complete. "

Corollary 5.11. For u € 2'(R?) and ¢ € 2(RY), ux ¢ € Z'(R?).

Proof. The function u* ¢ belongs to C*° and so is bounded on each compact
subset of R%. Hence ¢ — [pa(u* ¢)(x)1(z) dz is a continuous linear map
on Z(R?), that is, it is a distribution. .

There is an analogous result for . and .&7’.
Theorem 5.12. Let u € ./ (R%) and f € S (RY). Then ux f € C* and
D?(us f) = (D°u) % f = ux (D)

for any a € Z‘j_. Furthermore, u x f is polynomially bounded and hence
determines a tempered distribution.

Proof. The first part is just as for 2(R%). We need to show that u * f
is polynomially bounded. Since u € ./(R%), it follows that there is some
constant C' > 0 and integers k,n such that

[u(g)| < Cllgllkn

for all g € .#(R?). Hence, for 2 € R?,

(ux f)(@)| = |u(raf) |
< C\raf lom
=C Z sup |y“| |Dyﬁf($_y)|

la|<k Y
18/<n

=C Y sup|(-y+x)?| | D f(y)|
lo|<k Y
|B]<n

which is polynomially bounded in z. "
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Proposition 5.13. Let T € .7/ (RY) and suppose that f, — f in .Z(RY) as
n — oo. Then (T * f,)(z) — (T * f)(z) uniformly on compact sets in R?.

Proof. By replacing f, by f, — f, we may assume that f = 0. Now, since
T ¢ ' (RY), there is C > 0 and k,n € Z, such that

1T() 1 <C Y lglas

|o|<k
1B1<n

for all g € .(R?). Therefore

(T f) (@) | = [ T(rafu )| S C Y li7afal

a,B -
|o| <k
1B]<n
However, if ||z||; < M, say, then
I72fo llas = sup [y* Dy fu(x = y) |
y
< sup|(—y +2)*|[D? fu(y)|
y
d
<sup( [T M + i)™ ) 1D° fulw)
Y=t

— 0

as n — oo (because f, — 0 in #(R9)). It follows that (T * f,)(z) — 0
uniformly on {z : ||z|; < M} for any fixed M > 0 which establishes the
result. .

Theorem 5.14. Let u € 2'(R?) and let p, € D(RY). Then

(ux @) x1h =ux(pxi).

Proof. We first observe that the statement of the theorem makes sense
because u * p € C* and ¢ * 1 € CF°(RY).
Let € > 0 and consider the Riemann sum

fe(w) = D plw — re) p(re).
KEZY

This is always a finite sum because the functions ¢ and ¢ have compact
support. Furthermore, supp f- C supp ¢ + supp® and f. € Z(R%). Now,
using the uniform continuity of D%y, we see that

D*f(x) =& Y D(x — ke) (ke) — (D) * ) (x) = D*(p * ) ()

KEZ4
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uniformly as ¢ — 0. Hence f. — ¢ * v in 2(R?%) as ¢ — 0 and therefore
Tofe = To(pxv) in 2(R?) as € — 0. Tt follows that

wx (pxP)(@) = u(To(@* )
::££%147ij2)

:ii_r)%sd Z u(p(x — - —ke)P(ke))

KEZL

= lim ¢ Z (uxp)(x— ke)p(ke)

e—0
KEZD
= ((ux @) xv)(z)

and the proof is complete. "
Corollary 5.15. Let T € ./(R%) and let f,g € /(RY). Then
(Txf)xg=Tx(f*g).

Proof. Since C$°(R?) is dense in .7 (R?), there are sequences (y,) and (¢,
in C§°(RY) such that ¢, — f and ¥, — g in (R?). Furthermore, since
T | C*(RY) € 9'(RY), it follows from the theorem that

(Tx@p)*xtpy =T (pp*1y).

However, we know that (7' *,)(x) — (T * f)(x) uniformly on compact sets
in R? and so, for fixed y € R,

(T )+ 91)(0) = (T * o)y
= [ (T ity —a) de.

since T * @, € C®(R?) (and is polynomially bounded),
= [T D@ vty —a) do.

since supp ¥, is compact,
= (T f) * r(y) -
On the other hand, @, * 1, — f * 1}, as n — oo in .#(R%) and so
(T * @n) % b, =T * (pn x b)) = T * (f x1hy).

It follows that (T * f) * g = T * (f * 1) for each k. But ¢, — g in .7 (RY),
S0

(T * f) % Pily) = (T * f)ryn ) — (T* f)(7,9) = (T f) * g(y)

and
T (f* ) (y) = T(ry(F#0n)) = T(7y(Frg)) =T (f  9)(y) -
Hence (T * f)* g =T * (f * g), as required. "
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Theorem 5.16. Let g € (RY) be such that [p4g(x) dz =1 and for e # 0
set ge(x) = e~ 9g(x/e). Then for any f € S (RY), ge x f — f in L (RY),
as € — 0.

Proof. Tt is enough to show that (g. * f)A — f in. (R%) (the result then
follows by taking the inverse Fourier transform). However, we know that
(ge * f)/\ = (2n)%% g, f so we must show that (2m)¥2 g — 1) f —0in
S (R?), as e — 0.

Using Leibnitz’ formula together with the fact that A*DAf (A) € .%(R%)
for any o, 8 € Z2, it is enough to show that

(D*( 2m)¥% g —1) )¢ — 0 uniformly on R?, as e — 0,

for any ¢ € .#(R%) and o € Z%1. Note that
~ o 1 —i\x zy 1 —
gE()‘)_(Qﬂ.)d/Q/Rde g(g);ddﬂb‘—g(E)\)-

(So we see that g (\) — g (0) = (2m) %2 as € — 0.)
We consider two cases.
(i) Suppose |a| = 0. Fix ¢ € .#(R9). Then
(@M g (V) = 1) o) | = (212G () = 1) (N |
=1 [ o) (7 = 1) da ()|

< [ la@llexal de o)

_. /Rd|xg(33)! dz |\ (M)
<eM

for some constant M > 0 independent of . So ((27)%2 g (A)—1)@(\) — 0
uniformly in A, as € — 0.

(ii) Suppose that |a| > 0. For fixed ¢ € .#(R?), we have

| (D22 g —1))(\) e\ | = | @) 72l (DG (eX) p(N) |
< eled pp

for some constant M’ > 0, since both DG and ¢ are bounded on RY.

The result follows. [
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Theorem 5.17. Let T € .#'(R?) and let g € S (R?) with [gqg(x)dz = 1.
Then T % ge — T in .#'(RY) as e | 0, where g.(z) = e~ g(x/e).

Ifu e 2'RY) and ¢ € D(RY) with [pap(z)de = 1, then ux p. — u in
P'(RY) as e | 0, where p.(z) = e~ p(x/e).

Proof. Fix f € (R9). Then

(Tx ge)(f) = (T + g2) + f (0)

=T * (ge = £ )(0)

= T * f(()) , by the previous theorem,
£—

=T(f)

which proves the first part.

Next, we note that for given 1) € C$°(R?) and 0 < € < 1, say, the supports
of pzx1) and ¢ all lie in some fixed compact set (independently of ). Hence
e %1 — 1 in Z(R?) as € | 0. Arguing now as above, we deduce that for any
u € 2'(RY) and o € D(RY), (u*pe)(¥) — u(h) as € | 0, that is, u* g — u
in 2'(R%). .

Remark 5.18. The infinitely-differentiable function T * g. is called the regu-
larization of T". This is easier to deal with than T itself, but of course, one
must eventually take the limit € | 0 in order to recover the distribution 7.

Theorem 5.19.

(i) Cg(RY) is dense in ' (RY), that is, for any u € 2'(RY) there is
some sequence (fn) in 2(RY) such that f, — u in 2'(RY).

(ii) C§°(RY) is dense in .7 (R?), that is, for any T € .#'(RY) there is
some sequence (fn) in .Z(R?) such that f, — T in 7' (R%).

Proof. (i) Fix u € 2'(R%) and let ¢ € C§°(R?) be such that [ p(z)dr =1
and set ¢.(x) = e~%p(z/¢). For n € N and ¢ > 0, let the function \,(t) be
as shown in the diagram.

A(t)
1

Figure 5.1: The function A(t).
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For z € R?, let 7, () = An(|z]). Evidently, v, € C§°(RY) and v, (z) =1 for
|z| < n and v, (z) = 0 when [z| > n + 1. Now, 7, u has compact support
and 80 7y, u* p1/, € C3°(RY). We claim that Y, Uk P1yy — uin 7' (R?) as
n — 00.

Indeed, for ¢ € 2(R?), we have

(V1 P1/m) () = (7,0 % @1/n) * ¢ (0)
= 7,05 (P1m % ) (0)
= VHU(@l/n * 1))
=u(y,(P1/n *¥))
=u(Py/y x1p), for all sufficiently large n,
=u((eryn*¥) )
—u((¥) )
= u(1),

as required.

(ii) The functions A, are supposed to be smooth and obey the requirements
that Ap(t) = 1 when 0 < ¢t < mn, \(t) =0 for ¢t > n+ 1 and \11(t) =
A(t—1) for n+1 <t <n-+2. As n increases, so the graph of \,, extends
out but maintains its general shape as it decreases from 1 to 0. The point is
that the \,s and any derivatives are bounded independently of n. That is,
for any £ =0,1,2,..., there is My > 0 such that sup,, sup;>g |)\£Lk)(t)| < M.

Let T € .#'(R%) and let f € .#(RY). Then, with notation as in part (i), we
note that v T x ¢y, € Cs°(RY). We claim that Y, L * 1/ — T in S (RY)
as n — oo.

To see this, first we observe that v _(p1/, * f) — f in 7 (RY). This follows
from the inequalities

17, (P1/n * ) = fllas < 117, (01/n * f = Pllag + 117, f = fllas

for o, B € Z4, together with (Leibnitz’ formula and) the bounds on D™, Iloo
for each fixed 7 € Z‘j uniformly in n.
Similarly, v, (g1 * f) — fin 7 (R?) and therefore

(7, T*o10)(f) =Ty, (91 * f) ), asin part (i),

asn — oo, that is, v T'* 1/, — T in Z'(R%) and the proof is complete. m
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Remark 5.20. This result ties up the approach to distributions taken here
with the “generalized function” approach in which distributions are defined
via sequences of functions in .#(R%). If T € #/(R%) and f, € .7 (R%) is
such that f, — T in .#/(R%), then the generalized function approach would
be to consider T' to be the sequence (f,) (or strictly speaking, equivalence
classes of such sequences so as to allow for different sequences in .7 (R%)
which converge in .#/(R?) to the same distribution). This is in the same
spirit as defining real numbers via Cauchy sequences of rational numbers.

The next result tells us that, under the Fourier transform, convolution
becomes essentially multiplication.

Theorem 5.21. For any T € /' (R%) and f € ./ (RY),
(G) Z(T * f) = 2m)¥? Zf FT and
(i) FT + Ff = 2n)Y2 F(fT).

Proof. (i) We know that there is a sequence (p,) in C§°(R?) such that
¢on — T in .#'(R%). So for given g € .7(R%), we have

~

(T*f) (9 =T*f)G)=(T*f)=g (0)
=T+ (fxg )O)=T((f*g ) )
)

that is, (T * f)A = (2m)9/? F T, as required.

The second part can be established in a similar way. "
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Fourier-Laplace Transform

We have seen that any tempered distribution has a Fourier transform which
is also a tempered distribution. We will see here, however, that the Fourier
transform of a distribution with compact support is actually given by a
function. By way of motivation, we note that the Fourier transform of an
integrable function u, say, is given by

1) =0 [ e u(w) do

Rd

where e, denotes the function z — e~% for x € RY, We cannot write this in
the distributional sense as Ty, (ey) because the function e, does not belong to
P(RY) (or #(RY)). However, if u has compact support, then we can write

@ (y) = (2m)~ /2 /

Rd

ey () u(x) do = (2m) =42 / ey(z) Y(x) u(z) do

Rd

where 1 € C$°(R?) is chosen such that ¢ = 1 on some open set containing
supp u. In this case, we see that

i (y) = (2m) " Tu(ey v) -

This formula makes sense if y € R is replaced by any z € C%. The following
definition seems appropriate.

Definition 6.1. Suppose that u € 2’ (Rd) and that v has compact support.
The Fourier-Laplace transform of u is the function % (-) on C? given by

i (z) = 2m) " ule. )
where e, () = %% and ¢ € C§°(R?) is such that ¢) = 1 on some open

set W with suppu C W.
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We note straightaway that e,y € 2(R?) and that if W; and Wy are
open sets with suppu C Wy and suppu C Wy and if ¢ € Cgo(Rd) and
Yo € C°(RY) are such that ¢y = 1 on Wy and ¢p = 1 on Wa, then it
follows that u(e, 1) = u(e, 102) so that 4 is a well-defined function on C.
Furthermore, if u is given by an integrable function, then, as discussed above,
u (y) is the Fourier transform of w.

Now, any element of &’ (]Rd) with compact support determines a tempered
distribution and for any u € .#/(R?) we have already defined its Fourier
transform as the tempered distribution u : f — wu(f). We can then ask
whether there is any relationship between the tempered distribution © and
the function @ (z), z € R% If u is given by a square-integrable function, then
by Plancherel’s Theorem, Corollary 4.9, we find that for any f € .7(R9),

u(F) = [ute) F@) do= [0 fa) do.

This shows that in this case, the tempered distribution 7 is indeed given by
the function @ (z). This is true in general, as we now show.

Theorem 6.2. Let u € 2'(R?) and suppose that u has compact support. Then
the Fourier-Laplace transform u (z) is an entire function whose restriction
to R determines the tempered distribution U , that is, u € .#'(RY) is given
by the function @ (-) | R%.

Proof. Let ¢ € C§° be such that ¢» = 1 on some open set W C R? with
suppu C W. Then @ (z) = (27) %2 u(e, 1) for z € C% and

() Y(y) = e y(y) = Y EF 2y g(y)

d
anJr

for any y € R%. Since supp ) is compact, it follows that for fixed z € C¢
the partial sums converge uniformly in ¢ and the same is true of any partial

derivatives (with respect to y). In other words, the partial sums converge
in 2(R%) and so

ulezv) = Y 5 2u(ga)

d
a€Zs

where g, € 2(R?) is the function g, (y) = y* ¥ (y).

Moreover, u has finite order by Theorem 3.14, so that |u(¢)| < C'|¢|l~
for some constants C' > 0 and N € Z, and any ¢ € 2(R%). It follows that
lu(ga)| < C'RI®l for constants €’ and R (depending, of course, on u and
suppu). The series above for u(e, 1)) therefore converges absolutely for all
z € C? and so u(e, 1) is entire.
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We must now show that @, the tempered distribution, is given by the
function @ (x), z € RY.

Now, u = w1 as distributions, that is,
u(p) = (Yu)(p) = u(¥ ¢)
for all ¢ € .7(R%) and so
U =@u)" =2r) Y0« .

It follows that

)

(o) = / (2m) 2 (@ * D) () () dy.

that is, u is determined by the C*°-function (2m)~42 (T « J)(az) Our aim
is to show that (2m)~%2 (4 * ¢ )(x) = 4 (z). To see this, let ¢ € . (R?) be
such that ¢ = 1. Then

o~ ~

(u * ) () =

I
g

Il
AiA
D

8
)

and the result follows. n

Next we consider the relationship between the support of u and growth
properties of the function @ (z). We need a preliminary result.

Lemma 6.3. Suppose that f is analytic on C* and vanishes on R®. Then
f =0 everywhere.

Proof. Let z1,22,...,2¢ € C% Fix as € R,..., ag € R and consider the
map z — f(z,ag,...,aq). This is entire and vanishes on R and so vanishes
everywhere on C, by the Identity Theorem. Since as € R is arbitrary,
we may say that f(z1,a2,...,aq) = 0 for all a € R. But then the map

z+— f(z1,2,a3,...,aq) is entire and vanishes on R and so vanishes on C. In
particular, f(z1,z29,as,...,aq) = 0 for any a3 € R.

Continuing in this way, we see that f(z1,22,...,24) = 0 and the result
follows. n

For the following, let K, denote the closed ball K, = {z € R?: |z| <r}.
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Theorem 6.4.
(a) Suppose that ¢ € C*(RY) and that supp ¢ C K,..
Then

(1) f(z) = (2n)~ Y2 / e " o(t) dt, for z € C, is entire
R4

and there are constants v, such that
(2)  [fR) <y 1+ |z])~N er ™2l for 2 € C4 and N =0,1,2,....

(b) Conversely, if an entire function f satisfies (2), then there is some
¢ € C°(RY) with supp ¢ C K, such that (1) holds.

Proof. (a) First note that if z =  + iy € C¢, then
|€f'izt| — eyt < e|y\|t| < er|Imz|

for all t € R? with [t| < r (and where |Imz| = (47 + - + ¢y2)/?). Tt
follows that e~ ©(t) is integrable for each z € CZ. Moreover, for each fixed
z € C?, the power series expansion for e~ #** converges uniformly for ¢t € K,
and therefore

f(z) = (2m) =2 /Rdso(t) > CEI g

a!
d
aGZ+

= > en 2 [ (SR

Rd Oé'
aEZi
Now
\/w(t)ta dt ( < /|¢(t)| POl o gy

=l ]|

and so we see that the series expression for f(z) converges absolutely for all
z € C? and so f is analytic on the whole of C.

Next, integrating by parts, we find that
i 2% f(2) = (2m) Y2 / o(t) (iz)* e ™ dt
= (27r)*d/2 /(Do‘cp)(t) e dt

and so
2% 1£(2)] < (2m) =2 | D] 1 €.

ifwilde Notes



Fourier-Laplace Transform o1

This, together with the inequality (1+|z|)N < (1+4|z1]|+---+]|zq|)" implies
that

(L+ 2DV I ()] < 7y e
for a suitable constant ,;, which is (2).

(b) Suppose that f is entire and satisfies the inequalities (2). For t € R?, let
o) = @r) 2 [ fz)et do.
Rd

Since (1 + |z|)V f(z) is bounded on R? for any N (by (2)), it follows that ¢
is a well-defined function and that ¢ € C>(R%).

We wish to show that it is possible to replace x by x + iy in this formula
for ¢ without any other changes. To see this, let

1(77) = /OO f(l‘ +in, 29, ..., Zd) e(tl(95+i77)+t2z2+--~+tdzd) dx
—o0

where t1,...,t4 € R, 29,...24 € C and n € R.

We shall show that I(n) = I(0) which shows that, in fact, I does not
depend on 7. Let I' be the (closed, simple) rectangular contour in C with
vertices at the points £X and +£X + in, where X > 0. Since the function
Cr f(C 2, .., 2q) etiCH2z2tHaza) is analytic, it follows that

/f(Cvzm ovyzg) eliettE ) 4 = 0, (%)
r

by Cauchy’s Theorem. Now we use (2) to estimate the integrand along the
vertical sides of the rectangular contour I'.
We have, with z = (£X + iy, 29, ..., 24),

} f(EX + iy, z2,...,24) it (EX+iy)+tazo 4 Haza) ‘
I —t —to| I —tq|1

< PYN €T| mz‘e lye 2‘ mz?'...e d‘ mzd‘

- . N
(L4 (1 X+ iy + [zl + -+ [2d*)1/?)

< TN eT\Irnz| ety e—t2|lmz2\ . e—td|lmzd|
(14 ]+ X +ay|)V

< ’YiN er\Imz| e*tly 67t2|1m22\ . eftd|lmzd|
(1+X)N

< 77]\[ er\Imz| e—tly e—t2|lm22\ . e—td|lmzd|
(1+X)N

— 0

as X — oo for all |y| < |n|. It follows that the part of the contour integral
along the vertical sides of T' converges to zero, as X — oo and so from (x)
we conclude that 1(0) — I(n) = 0, as required.
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Repeating this argument coordinate by coordinate, we deduce that
o(t) = (2m) 42 / / f(z) e day dxsy ... dxy
R o
= (2m) %2 / . / f(x +iy) W) dry day ... dag

for any y € R%.

Now, let N € N be such that (1 + |z|)™ € L'(R?). Then, using (2),
together with the inequality (14 |z +dy|)™ < (1 + |z| )™, we find that

o(t)] < (2m) Y2 / (14 |2 e e do
]Rd
< (2m) W2 ) [ (14 Jaf) ™ do
R

for all y € RY. That is, there is some constant C' > 0 such that
lp(t)] < C eI~

for any y € R?. We shall show that this implies that supp ¢ C K,. Indeed,
let t € R? be fixed such that [t| > r. Setting y = At with A\ > 0, it follows
that ty = A|t|* and we see that

lp(t)] < € MH=It)

for any A > 0. Letting A — oo, it follows that ¢(¢) = 0 and so we conclude
that supp ¢ C K, as claimed.
By the Fourier inversion theorem, we have

f@) = 20" [ pt)e i at.

It follows that the entire function z — g(z) = [ ¢(t) e % dt agrees with f
on R? and so, by the Lemma, f = g on C%, that is, f is given as in (1) and
the proof is complete. "

There is a version of this result for distributions, as follows.

Theorem 6.5.
(a) Suppose that u € 2'(R?) and that suppu C K,. Then the Fourier-
Laplace transform f(z) = @ (z) is entire, its restriction to R? is the

Fourier transform of u, and there is a constant v > 0 such that
FE <y 1+ [2))Y et (*)

where N 1is the order of u.
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(b) Conversely, if f is entire and satisfies (x) for some N € N, some v > 0
and r >0, then f(z) = U (z) for some u € 2'(R?) with suppu C K.

Proof. (a) We have already proved everything except for the estimate (x).
Let h € C*°(R) be such that h(s) = 1 when s < 1 and h(s) = 0 for all s > 2.
For given z € C? (with 2 # 0), let

x(x) = h(|z|[z] = 7lz]).

Then y € C*°(R) and x(x) = 0 whenever |z||z| -7 |z| > 2, that is x vanishes
whenever |z| > é‘ +7. So x € C§°(R) with supp x C K, 9/|.|- Furthermore,
if x| <r+ \Zl’
open set W with supu C W).

By hypothesis, supp u is compact and so u has finite order, say N. Then
there is C' > 0 such that

lu(e:x) [ < C ) IID*(e ™ x(@)) oo -
la|<N

then x(x) = 1 and so u (z) = u(e,x) (since x = 1 on some

Now 0h/0x; = || L B (|z||z| — 7 |2|) and so for any a, 3 € Z%, we have

]

.’E
|z ‘\ﬂl

< |21 || DIBIR ||, eltm=lr2/12])

}(Da zzm Dﬁ { _ } )e o 12T |Z|I5\ DAl ‘

(since ]z;lj\ < |2|% and if = € supp x then |z| < r+2/]z|)
< |Z||a\+|ﬂ| || D‘ﬁlh ||ooer|lmz\+2

(since |Im z| < |z]).
Hence, by Leibnitz’ formula, we conclude that
()] < 7 (1+]2])N
for a suitable constant ~.

(b) Suppose that f satisfies |f(z)| < v(1 + |z|)Ve"™? for some constants
v, r >0 and some N € N. Then the map from . — C given by

o o) = [ @)

is a tempered distribution. Hence there is some T € .#/(R%) such that
T = f (namely, T = Z~1f). We will show that supp7 C K, and that
f(z) = T (z). The idea is to regularize T and apply the Paley-Wiener
theorem for functions.
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Let g € Cg°(RY) be such that suppg C K; and [ g(z) dz = 1. For £ > 0,
set ge(r) = e 4 g(z/e). Then suppg. C K. and we have seen that for any
tempered distribution S € .#/(R?), it is true that S * g. — S in .#/(R?) as
€] 0. Now

Txg. =(F'f) xg- = F ((2m)"G: f)
since (S * gp)A = (2m)%23 S, for any ¢ € .(R?) and S € .7/(R%). Since
supp g- C K., the Paley-Wiener Theorem implies that g. is entire and that

for any integer k there is a constant 7, such that

@) =1 [ ay
<y (L [2] ) H et
for any z € C?. But, by hypothesis,
F)] <y 1+ 2N er e
and so, for any integer m,

19 (2) F(2) | S vy (L [2])7 N=m (] 4 |z| )N lrte) Imz|
= 7N+mfy (1 + ‘Z| )— e(r-‘ra) [Im z|

for z € C4.
Again, by the Paley-Wiener Theorem, it follows that there is . € C5°(R?)
with supp ¢ C K, such that

@ () f(2) = (2m) 2 / e~ o, (1) dt

In particular, g: (7) f(x) € #(R?) and is the Fourier transform of ¢.. That
is, Z Y g: f) = . as functions and so therefore as tempered distributions.

Now, let 1 € .7 (R%) be such that suppt N K, = @. Then, for all £ > 0
sufficiently small, supp ¢ N K,;. = & and therefore [ ¢.(z)(z) dz = 0 for
small . It follows that

T(4) = m T » go(1)

= lim (2 d/g/
o (2 el
:O

and so supp T C K,, as required.

It remains to verify that T (z) = f () on Ce. However, T is entire and
f(x) is the Fourier transform of T, T( ) = f(z) for z € RY. But, by
hypothesis, f is entire and so T = f on R? means that T = f on C? and
the proof is complete. n
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Structure Theorem for Distributions

Any polynomially bounded continuous function certainly determines a tem-
pered distribution. It turns out that such functions, together with their
distributional derivatives exhaust .#/(R%), as we discuss next.

Theorem 7.1. Let T € .#/(R%). Then there is a continuous polynomially
bounded function F(z) and a multi-index o € Z< such that T = D*F.

Proof. For notational convenience, we shall only consider the one-dimensional
case, d = 1. So let T' € .#(R) be given. Then we know that there exist
k,m € N and C' > 0 such that

T < Clliflem =C D N fllas
a<k
B<m

for all f € #(R). It follows that there is C’ > 0 such that

IT())] < C" ) sup| (1+2*)* DF f(x)]

pg<m

for all f € .7(R). Now, if ¢ € C§°(R), then ¢(z) = [*__ ¢/(t) dt and so

()| s/x &) dts/m O] dt = /)11

—00 —00

Hence, for any ¢ € C§°(R), sup, |p(x)| < ||¢||: and so

T <C" Y | D((1+2%) ' Dp()) ||
B<m

since (14 22)*DPp € C3°(R). Using the inequality
D+ 22k = k2214 22)P 1 < k(1 + )k
we get

| D((1+2°)"DPp()) | < k| (1+2*)*DPp(2) | + | (1 +2*)* D () |
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and so there is C” > 0 such that

T(p)| <C" > (142 Dip(a) | (%)
j<m+1
for ¢ € C°(R).
Let J : C°(R) — LY(R) @ - -+ & LY(R) (with (m + 2) terms) be the map
given by

J() = 1+ z2Hke(z)® 1+ 22)*Dp(z) @ - @ (1 + ) D™ p(z) .

Note that J is one-one, because if J(¢) = J(¢), then, in particular, the
first components agree and so (1 + z2)¥¢(x) = (1 + 22)*y)(z) which means
that ¢ = 4. It is also clear that J is a linear map. Now we define the map
A J(C§°(R)) — C by setting

Then A is well-defined, since J(¢) is uniquely determined by ¢, and is linear.
Moreover, the bound (x) implies that A is a bounded linear functional on
J(C§(R)) when considered as a subspace of (L!(R))™*2.

By the Hahn-Banach theorem, A has an extension to a bounded linear
functional on the whole of (L!(R))™*2. But then A must have the form

m+1

Afo® Fr @ frusr) = ;/Rgm fi(z) de

for suitable go, ..., gm+1 € L>(R). Hence

m+1
T() = AJ9) = 3 [ 0,(0) 1+ %) Dila) do.
=0
and so, as distributions,
m—+1 ) '
T = (-1 D/((1+2°)g;(x))
=0

on C§°(R). But C§°(R) is dense in .(R) and therefore T' has this same
form on .7 (R).
For each j, set

hyta) = [+ ) 0) .

Evidently h; is continuous and polynomially bounded (because g; is bounded)

and
m+1

T=> (-1)/D*'h;.
=0
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To obtain the stated form for 7', define f; by

T t2
f](:lj') = /0 dtm_H_j .. A dtl hj(tl)

i.e., by integrating h; (m+1—j) times. Then f; is continuous, polynomially
bounded and D™ 2 f;(x) = D’*1h; and so

T= 3 (-1D"y,.

j<m+1

Set F(z) = Zj§m+1(—1)jfj(a:). Then F is continuous, polynomially bounded
and T = D™ F2F. .

Theorem 7.2. Let u € 2'(2). Then for any compact set K C ), there exists
a continuous function F and a multi-index o such that w = D*F on C§°(K).

Proof. Let u € 2'(Q) and let K C Q with K compact. Let x € C§°(Q2)
be such that K C W C supp x for some open set W with x = 1 on W.
Then v = yu on C§°(K). However, xu has compact support and so defines
a tempered distribution and therefore has the form yu = D*F for some
continuous function F and « € Z4. Hence, for all ¢ € C§°(K),

u(p) = xu(p) = D F(p),

as required. "
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Chapter 8

Partial Differential Equations

We will make a few sketchy remarks in this last chapter. We have seen that
every distribution is differentiable (in the distributional sense) and so we can
consider (partial) differential equations satisfied by distributions. Indeed, we
might expect a differential equation to have a distribution as solution rather
than a function.

Example 8.1. Consider the differential equation v’ = H where
0, <0
H(z) = v
1, z>0

is the Heaviside step-function. For x < 0, u/(x) = 0, so u(z) = a and
for x > 0, u/(z) = 1 giving u(z) = x + b, for suitable constants a and b.
However, continuity of u at # = 0 would require u(0) = a = b and so

a, =<0
u(x) =
1, x4+a>0.

But such w is not differentiable at x = 0 and so cannot satisfy the original
differential equation at this point. However, for any ¢ € #(R), we see
that u/(¢) = H(p), that is, u is a distributional solution to the differential
equation. Indeed, integrating by parts, we get
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Notation. Suppose that P(x1,...,x4) is a polynomial in d-variables. Then
the symbol P(D) denotes the partial differential operator obtained after the
substitution D; = %j for z; in the polynomial expression P(x, ..., x4). For
example, if P(x1,...,74) = 23 + x374, then P(D) = 8‘% + %j;u .

For a given function g on R% and polynomial P, a distributional solution
u € 2'(RY) to the partial differential equation P(D)u = g is called a weak
solution. We have seen above that a partial differential equation may possess
a weak solution but no solution in the classical sense. Notice that a partial
differential equation such as P(D)u = g is meaningful even if g € 2'(R%).
Of particular interest is the case for which g = 4.

Definition 8.2. A distribution £ € 2'(R?) satisfying the partial differential
equation P(D)E = ¢ is said to be a fundamental solution for the partial
differential operator P(D).

The importance of fundamental solutions is their part in the solution of
inhomogeneous partial differential equations of the form P(D)u = g, with
g € C§°(RY). Indeed, if we set u = E % g, where E is a fundamental solution
for P(D), then u € C§°(R?%) and we find that

P(D)u= P(D)(E *g)
= (P(D)E) xg
=dxg
=9,
that is, P(D)u = g. So E * g is a solution in the classical sense.

Example 8.3 (Poisson’s Equation). Consider Au = g (in R?).
We claim that a fundamental solution for A is F = —

let ¢ € C§°(R?). Then e
(AE)(p) = E(Ap)

1
:_/RS - _ Ap day dey day

\/x% +x§ + x3

1
:—/ —— Apr?cosfsin ¢ drdf do
R

3 4mr

To see this,

1
= lim — — Apr?drdS
el0 r>e 4mr

where dS = cos0sin ¢ df dp. Integrating by parts with respect to r, one
finds (after some manipulation) that

E(r)r? Ap dr = AE(r)or? dr —r?E(r) 8¢ + 1200, E(r)
r=¢€

r>e r>e = r=e
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But AEF = 0 for x # 0, so the first term on the right hand side above
vanishes and we have

(AE) (¢ —hm // E(r) 0y r* dS — // wOrE(r rdS}
>e

Now, the first term in brackets gives zero in the limit ¢ | 0 (9, is bounded)
and the second can be written as

i [ 009
://gp( 4ﬂd0d<b+hm// (e,0,¢) = ¢(0)) 77 df dg
=¢(0)+0

since ¢ is continuous at 0. We have shown that (AFE)(¢) = ¢(0) for any
¢ € C°(R3), so that AE = § as required.

r? df do

Example 8.4. The heat operator (or diffusion operator) is P(D
where A is the Laplacian in R? (so we are working with (x,t)
One checks that

m\_/
%H

1 1 -
E(x,t) = H(t) 5 ()2 e lzl7/4t

satisfies P(D)E = 0 on R? x (R\ {0}). We claim that E is a fundamental
solution for P(D).
To see this, let p € C5°(R? x R). Then

(P(D)E)(¢) = ((9: — A)E)(p)
= —E((0: + A)p)
= —/E(ac,t) (Orp + Ayp) dxdt
noting that F is locally integrable,

=— hfn E'(a: t) (Orp + Ap) dx dt

= hfg E(:n g)o(x,e) dr

1ntegrating by parts and using P(D)E =0
on RY x (R\ {0}),
1 . ul?
=~ 11m/g0(251/2y,5) e W™ dy

changing variable, x = 251/ 2
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1
=z /V?(an) el ay

= #(0),
so P(D)E =6, as claimed.

Of course, one might enquire as to the existence of fundamental solutions.
We state the following theorem, without proof.

Theorem 8.5 (Malgrange-Ehrenpreis). For every constant coefficient partial
differential operator P(D) on R, there is a distribution E € 2'(R?) such
that P(D)E = 6.

Suppose now that we can show that a particular partial differential equation
has a weak solution. Is it possible to show that under certain circumstances
this solution is actually a solution in the classical sense? A result in this
vein is the following.

Theorem 8.6. Let Q C R? be an open set and suppose that u and f are
continuous on ) and that Dju = f as distributions. Then Dju = f in the
classical sense, that is, Dju exists (as a function) and is equal to f on ).

Proof. Let W be any open ball in  and let x € C§°(€2) be such that y =1
on W. Then xu is continuous and has compact support. Also, for any
p € C5°(9),
(Dj(xuw)(p) = =(xu)(D;e)

= —u(xDjep)

= —u(Dj(x¢)) +u(D;x ¢)

= (Dju)(xe) +u(Djx »)

= (xDju)(¢) + (Djx)u)(¥) ,
that is, Dj(xu) = (Djx)u + x(Dju), as distributions.

Let v = xu and g = Djv = (Djx)u + x(Dju). Then g = (Djx)u+ xf

since Dju = f. So g is continuous, as is v and both v and g have compact

support. We have shifted the problem to the case of compact support.
Let ¢ € C§°(R?) be such that ¢ > 0 and [ ¢(y) dy = 1. For € > 0 let

vela) = [ vla = ey) olw) dy
= [ v(y)e(*FY) dy.
Then v, € C*®(R?) and v, — v uniformly as € | 0. Also,

@%m=;/wwmﬂm%@
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= —4 [ v(y) Dy, p(*2) dy

— 4 [Dw) o) dy
integrating by parts,

=4 [ 9(y) o(*Z4) dy

= ge.

It follows that g. = Djv. — g uniformly as ¢ | 0. Let eq,...,eq denote the
usual orthonormal basis vectors for R? (so that e; =(0,0,...,0,1,0,...,0),
with the 1 in the j'" coordinate position). Then

xj+)\
ve(x + Nej) —ve(x) = / Djve(y) dy,

j
(tj—‘r)\
= / 9=(y) dy; .
zj
Letting € | 0, we deduce that

zi+A
oz + Aej) - v(z) = / o(y) dy;

Ty

= 9(
v(z) = x(z)u(z) = u(z) and Djv(zr) = Dju(z) and g(x) = f(x). It follows
that Dju exists on W and Dju = f on W. Since W is arbitrary, the result
follows. "

and hence Djv exists and Djv(z) x). But for any z € W, we have
U

Definition 8.7. Let P(D) = }_, <, aaD” be a linear differential operator

of order m, with constant coefficients, defined on R?. Then the polynomial
P = Z\a|§m a, €% is called the symbol of P. The sum of those terms of
order m in P(£) is called the principal symbol of P, denoted op, that is,

(fp(f) = Z aaéa-

|a|=m

Note that op is homogeneous of degree m. The differential operator P(D)
is said to be elliptic if op(&) # 0 for all 0 # ¢ € R?.

Examples 8.8.
1. A is elliptic on R,

2. 01 + 10, is elliptic on R2.
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Theorem 8.9 (Elliptic Regularity). Let Q C RY be an open set and let P(D)
be an elliptic differential operator (constant coefficients). If v € C*(Q2) and
u € 2'(Q) is a weak solution to P(D)u = v, then u € C>®(Q).

In particular, every weak solution to the homogeneous partial differential
equation P(D)u = 0 belongs to C>(2).

We will not prove this here.

Example 8.10. Suppose that P(D) is elliptic (constant coefficients) and that
E is a fundamental solution: P(D) = §. Then P(D)E = 0 on R\ {0},
that is (P(D)E)(¢) =0 for all p € CP(R?\ {0}). So E € C(R?\ {0}).

Example 8.11. Let 2 be an open set in R? and suppose that u € 2'(Q)
satisfies (01 + i02)u = 0 on Q. Since 0; + i0s is elliptic, the theorem tells
us that v € C§°(2). But then (01 + i02)u = 0 is just the Cauchy-Riemann
equations and so we conclude that u is analytic in Q. (Note that d;u and dyu
are continuous because u € C*°.) In other words, an analytic distribution
is an analytic function.

Definition 8.12. For s € R, the Sobolev space %@(I@d) is defined to be the
set of tempered distributions 7" € .7 (R9) such that T is a function with the
property that [ |T (A)[2(1 + [A]*)* d\ < co. Evidently, 5% D 4 if s < t.

¢, is a Hilbert space with respect to the inner product
(11 = [T VE () L+ NP dA.

Definition 8.13. Let Q2 C R? be an open set. The local Sobolev space (1),
for s € R, is the set of distributions u € 2/(Q2) such that pu € J4(R?) for
all ¢ € C3°(Q).

The Sobolev spaces are used in the proof of the elliptic regularity theorem.
In fact, one can prove the following stronger version.

Theorem 8.14 (Elliptic Regularity). Let Q C R? be open and let P(D) be an
elliptic operator of order N. Suppose that P(D)u = v where v € () for
some s € R. Then u € 7 n(92).

The theorem says that u is “better behaved” than v (by order N).

If v € C™(), then pv € C§() for all p € C°(Q). Hence pv € .7 (RY)
and so (¢v) € .(R%) and therefore pv € #5(9) for all s. Hence u € J(Q)
for all s. One then shows that this implies that v € C*°(Q) (Sobolev’s
Lemma).

ifwilde Notes



