
A First Course In Assembly Language

Programming

80 X 86 Assembly Language Computer Architecture

 Howard Dachslager, Ph.D.

i

TABLE OF CONTENTS

 .

WORKING WITH INTEGER NUMBERS

CHAPTER 1 NUMBER BASES FOR INTEGERS

CHAPTER 2 RELATIONS BETWEEN NUMBER BASES

CHAPTER 3 PSEUDO-CODE AND WRITING ALGORITHMS

CHAPTER 4 SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND
THE BASE 10

CHAPTER 5 IF-THEN CONDITIONAL STATEMENT

CHAPTER 6 THE WHILE CONDITIONAL STATEMENT

CHAPTER 7 COMPUTING NUMBER BASIS WITH ALGORITHMS

CHAPTER 8 RINGS AND MODULAR ARITHMETIC

CHAPTER 9 ASSEMBLY LANGUAGE BASICS

CHAPTER 10 ARITHMETIC EXPRESSIONS

CHAPTER 11 CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE
PART I

CHAPTER 12 BRANCHING AND THE IF-STATEMENTS

CHAPTER 13 CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE
PART II

CHAPTER 14 LOGICAL EXPRESSIONS, MASKS, AND SHIFTING

CHAPTER 15 INTEGER ARRAYS

CHAPTER 16 PROCEDURES

 WORKING WITH DECIMAL NUMBERS

CHAPTER 17 DECIMAL NUMBERS

CHAPTER 18 DIFFERENT NUMBER BASIS FOR FRACTIONS (optional)

CHAPTER 19 SIMPLE ALGORITHMS FOR CONVERTING BETWEEN DECIMAL NUMBER
BASES (optional)

CHAPTER 20 WORKING WITH DECIMAL NUMBERS IN ASSEMBLY LANGUAGE

CHAPTER 21 COMPARING AND ROUNDING FLOATING - POINT NUMBERS

CHAPTER 22 - DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS

WORKING WITH STRINGS

CHAPTER 23 DYNAMIC STORAGE: STRINGS

CHAPTER 24 STRING ARRAYS

CHAPTER 25 INPUT/OUTPUT

CHAPTER 26 SIGNED NUMBERS AND THE EFLAG SIGNALS

CHAPTER 27 NUMERIC APPROXIMATIONS FRACTIONS (optional)

A First Course In Assembly Language

Programming

80 X 86 Assembly Language Computer
Architecture

 Howard Dachslager, Ph.D.

Copyright Oc 2012 by Howard Dachslager. All rights

reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of
this publication may be reproduced or distributed in any
form or by any means, or stored in a database or
retrieval system, without the prior written permission of
the publisher, with the exception that the program
listings may be entered, stored, and executed in a
computer system, buy they may not be reproduced for
publication.

A First Course In Assembly

Language Programming

80 X 86 Assembly Language Computer Architecture

 Howard Dachslager, Ph.D.

 Irvine Valley College

i

I. Working with Integer
Numbers

CHAPTER 1 - NUMBER BASES FOR INTEGERS

INTRODUCTION

In order be become a proficient assembly language programmer, one needs to
have a good understanding how numbers are represented in the assembler. To
accomplish this, we start with the basic ideas of integer numbers. In later
chapters we will expand these numbers to the various forms that are needed.
We will also later, study decimal numbers as floating point numbers.

1.1 Definition of Integers

There are three types of integer numbers: positive , negative and zero.

Definition: The positive integer numbers are represented by the following
symbols: 1,2,3,4,...

Definition: The negative integer numbers are represented by the following
symbols: -1, -2, - 3, - 4, ...

Definition: The integer number zero is represented by the symbol: 0.

Definition: Integers are therefore defined as the following numbers: 0, 1, -1, 2,
-2,

Examples: 123, - 143, 44, 3333333333333,
 - 72

Although the study of these numbers will give us a greater understanding of
the types of numbers we are going to be concerned with when writing
assembler language program, the reality is that the only kind of numbers that
the assembler can handle are integers and finite decimals numbers. Further, we
need to understand that the assembler cannot work within our decimal number
system. The assembler must convert all numbers to the base 2. The number
system that we normally work with is in the base 10 and they will then be

1

converted by the assembler to the base 2. In this chapter we will define and
examine the various number bases including those that we need to use when
programming.

Numbers in the base 10

Definition: The set of all numbers whose digits are 0,1,2,3,4,5,6,7,8, 9 are
said to be of the base 10.

Representing positive integers in the base 10 in expanded form.

Definition: Decimal integers in expanded form: an an - 1 ... a1 a0 = an(10n + an -

1(10n - 1 + ... + a1(10 + a0

where ak = 0,1,2,3,4,5,6,7,8,9.

Examples:

a. 235 = 2(102 + 3(10 + 5 b. 56,768 = 5(104 + 6(103 + 7(102 + 6(10 +

8

Exercises:

1. Write the following integers in expanded form:

a. 56 b. 26,578 c. 23,556,891,010

�

The number system that we use is said to be in the base 10. This because we
only use the above 10 digits to build are decimal number system. . For the

2

following discussion all numbers will be integers and non- negative. The
following table shows how starting with 0, we systematically create numbers
from these 10 digits:

0 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36 37 38 39

:::::::: ::::::: :::::::: ::::::::
:

::::::::
::

::::::::
:

:::::::: ::::::::
:

::::::::
:

::::::::
::

90 91 92 93 94 95 96 97 98 99

100 101 102 103 104 105 106 107 108 109

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

::::::::
:

The way we wish to think about creating these numbers is best described as
follows:

First we list the ten digits 0 - 9 (row 1):

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

At this points we have run out of digits. To continue we start over again by
first writing the digit 1 and to the right place the digit 0 - 9: (row 2):

10 , 11, 12, 13, 14, 15, 16, 17, 18, 19 .

Again we have run out of digits. To continue we start over again by first
writing the digit 2 and to the right place the digit 0 - 9 (row 3):

20, 21, 22, 23, 24, 25, 26, 27, 28, 29 .

3

Continuing this way, we can create the positive integers as shown in the above
table.

1.2 Numbers in Other Bases:

Base 8 (N8)

Definition: Octal integers in expanded form: an an - 1 ... a1 a0 = an(10n + an -

1(10n - 1 + ... + a1(10 + a0

where ak = 0,1,2,3,4,5,6,7.

Examples:

a. 235 = 2(102 + 3(10 + 5 b. 56761 = 5(104 + 6(103 + 7(102 + 6(10 +
1

This number system is called the octal number system. In the early
development of computers, the octal number system was extensively used.
How do we develop the octal number system? In the same way we showed
how we developed the decimal system; by using only 8 digits: 0, 1, 2, 3, 4, 5,
6, 7.

Note: Integer numbers that are in a base, other than 10 will distinguished by a
subscript N.

08 18 28 38 48 58 68 78

108 118 128 138 148 158 168 178

208 218 228 238 248 258 268 278

308 318 328 338 348 358 368 378

:::::::: ::::::: :::::::: ::::::::: :::::::::: ::::::::: :::::::: :::::::::

4

708 718 728 738 748 758 768 778

1008 1018 1028 1038 1048 1058 1068 1078

::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: ::::::::: :::::::::

First, we list the eight digits 0 - 7 (row 1):

0, 1, 2, 3, 4, 5, 6, 7

At this points we have run out of digits. To continue we start over again by
first writing the digit 1 and to the right place the digit 0 -7 : (row 2):

10 , 11, 12, 13, 14, 15, 16, 17

Again we have run out of digits. To continue we start over again by first
writing the digit 2 and to the right place the digit 0 - 9 (row 3):
20, 21, 22, 23, 24, 25, 26, 27

Continuing this way, we can create the positive integers as shown in the above
table.
We can easily compare the development of the decimal and octal number
system:

DECIMAL
NUMBERS

OCTAL NUMBERS
(Base 8)

0 08

1 18

2 28

3 38

4 48

5 58

5

6 68

7 78

8 108

9 118

10 128

11 138

12 148

13 158

14 168

15 178

16 208

17 218

18 228

19 238

20 248

::::::::::::::::::::: ::::::::::::::::::::::::

Exercises:

1. Write an example of a 5 digit octal integer number.

2. In the octal number system, simplify the following expressions:

 a. 23618 + 48 b. 338 - 28 c. 7778 + 38

3. What is the largest 10 digit octal number ?

4. Add on 10 more rows to the above table .

6

We wish to create number system in the base 5 (N5).

5. What digits would makeup these numbers?

6. Create a 2 column, 21 row table, where the first column will be the decimal
numbers 0 - 20 and the second column will consists of the corresponding
numbers in the base 5, starting with the digit 0.

7. Write out the largest 7 digit number in the base 5.

8. In the base 5 number system simplify the following expressions:

n5 = a. 222125 + 35 b. 233335 + 25 c. 120115 - 25
�

Base 2(N2)

Definition: Binary integers in expanded form: an an - 1 ... a1 a0 = an(10n + an -

1(10n - 1 + ... + a1(10 + a0

where ak = 0,1.

Examples:

a. 101 = 1(102 + 0(10 + 1 b. 11011 = 1(104 + 1(103 + 0(102 + 1(10 +
1

This number system is called the binary number system. Binary numbers are
the most important numbers since all numbers stored in the assembler are in
the base 2. The digits that make these numbers are 0,1 and are called bits.
Numbers made from these bits are called the binary numbers.

How do we develop the binary number system? In the same way we showed
how to developed the decimal and the octal number system; by using only the
2 bits: 0, 1:

7

DECIMAL
NUMBERS

BINARY
NUMBERS

0 02

1 12

2 102

3 112

4 1002

5 1012

6 1102

7 1112

8 10002

9 10012

10 10102

11 10112

12 11002

13 11012

14 11102

15 11112

16 100002

17 100012

18 100102

19 100112

20 101002

::::::::::::::::::::: ::::::::::::::::::::::::

8

Exercises:

9. Extend the above table for the integer numbers 21 - 30.

10. Simplify (a). 100112 + 12 (a). 10112 + 112 (c). 101112 + 1112

11. Complete the following table:

OCTAL
NUMBERS

BINARY
NUMBERS

08

18

28

38

::::::::: ::::::::::::::

168

12. From the above table, what does it tell us about the relationship of the
digits of the octal system and the binary numbers?
�

Base 16 (N16)

Definition: Hexadecimal integers in expanded form:

an an - 1 ... a1 a0 = an(10n + an - 1(10n - 1 + ... + a1(10 + a0

where ak = 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Examples:

a. 2E5 = 2(102 + E(10 + 5 b. 56ADF = 5(104 + 6(103 + A(102 + D(10
+ F

9

The number system in the base 16 is called the hexadecimal number system.
Next to be binary number system, hexadecimal numbers are very important in
that these numbers are used extensively to help the programmer to interpret
the binary numeric values computed by the assembler. Many assemblers will
display the numbers only in hexadecimal.

We can easily compare the development of the decimal and hexadecimal
number system:

DECIMAL
NUMBERS

HEXADECIMAL
NUMBERS

0 016

1 116

2 216

3 316

4 416

5 516

6 616

7 716

8 816

9 916

10 A16

11 B16

12 C16

13 D16

14 E16

15 F16

10

16 1016

17 1116

18 1216

19 1316

20 1416

21 1516

22 1616

23 1716

24 1816

25 1916

26 1A16

27 1B16

28 1C16

29 1D16

30 1E16

31 1F16

32 2016

::::::::::: ::::::::::::::::
Exercises:
13. Extend the above table for the decimal integer numbers 33 - 50.

14. Simplify n16 = (a). A16 + 616 (a). FFFF16 + 116 (c). 10016 + E16

15. Complete the following table:

OCTAL
NUMBERS

HEXADECIMAL
NUMBERS

11

08

18

28

38

::::::::: ::::::::::::::

268

16. Complete the following table:

HEXADECIMAL
NUMBERS

BINARY
NUMBERS

016

116

216

316

::::::::: ::::::::::::::

FF16

17. What does the above table tell you about the relationship of the binary and
hexadecimal numbers ?
�

Project

12

In assembly language the basic binary numbers are made up of eight bits. A
binary number of this type is called a byte. Therefore, a bye is an 8 bit number.
For example, the decimal number 5 can be represented as the binary number
00000101.

Complete the following table. (Hint: First complete the hexadecimal byte
column .)

HEXADECIMAL
BYTE

BINARY
BYTE

DECIMAL
BYTE

0 0 0000 0000 0

 0 1
0000

0001 1

::::::::::

:::::::::: ::::::::
::

::::::::
::

::::::::::

F F

13

CHAPTER 2 - RELATIONS BETWEEN NUMBER BASES

INTRODUCTION

In this chapter we will study the one to one correspondence that exist between the various number bases. To
accomplish this we approach these number systems as sets.

2.1 Sets

Definition of a set:

A set is a well defined collection of items where

1. each item in the set is unique

and

2. the items can be listed in any order.

Examples:

1. S = {a,b,c,d}

2. A = {23, -8 , 23.3 }

3. N10 = {0,1,2,3,4,5, ...} (base 10)

4. N8 = {0,1,2,3,4,5,6,7,10,11,12,13,14,15,16,17,20, ...} (base 8)

5. N2 = {0,1,10,11,100,101,110,111,1000, ...} (base 2)

6. N16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19,1A,1B,1C,1D,1E,1F,20,...} (base 16)

Exercises:

1. For the following bases, write out the first 10 numbers as a set in natural order:

(a). N3 (b). N4 (c). N5 (d). N6 (e). N7

2. Assume we need to define a number system in the base 20 (N20) . Create N20 by using digits and capital
letters. Write out the first 40 numbers in their natural order.
����

2.2 One to One Correspondence Between Sets

Assume we have two sets, D, R. The set D is called the domain and the set R is called the range.

10

Definition of a one to one correspondence between sets:

We say there is a one to one correspondence between sets if the following rules hold:

Rule 1: There exists function f : D Y R

Rule 2: The function f is one to one

Rule 3: The function f is onto

Definition of a one to one function:

A function is said to be one to one, if the following is true:

if f(x1) = f(x2) then x1 = x2 where x1 ,x2 are contained in D.

Definition of an onto function:

A function is said to be onto, if the following is true:

if for every y in R, there exists a element x in D where f(x) = y .

Change in notation

For such functions we will use the notation: D Y R

and x Y y

If D Y R, we write

D] R,

meaning the two sets D and R are in one to one correspondence.

Examples:

1. Let D = {1,2,3,4,5,...} and R = {2,4,6,8,10,12,...}.

Show there is a one-to-one correspondence between these two sets.

Solution:

k Y 2k , where

k = 1,2,3,...

11

2. D = {1,2,3,4,5,...} and R = {1,-1,2,-2,3,-3, ...}

Show there is a one-to-one correspondence between these two sets.

Solution:

For the odd numbers of D:

2k + 1 Y k + 1

where k = 0,1,2,3,...

For the even numbers of D:

2k Y - k

k = 1,2,3,...

Combining these into one function gives:
1 Y 1
2 Y -1
3 Y 2
4 Y -2
5 Y 3
6 Y -3
7 Y 4
8 Y -4
:::::::::

Exercises:

1. If D = {2,4,6,8,10, ...} and R = {1,3,5,7,9,...}, show that D]R.

Finding the one to one correspondence Between Number Bases

It is important to be able to find the functions that establishes one to one corresponding between number bases.

To assist us, we establish the following laws about one to one correspondence:

1. If D] R then R] D (Reflexive law)

2. If A]B and B] C then A] C. (Transitive law)

We begin by finding the formula that gives a one - to - one correspondence

Nb Y N10

12

2.3 Converting numbers in any base b to its corresponding number in the base 10 (Nb YYYY N10):

Assume anan-1... a1a0 is a number in the base Nb. The following formula give us a one-to - correspondence

Nb Y N10 :

nb = anan-1... a1a0 Y anb
n

 + an-1b
n - 1 + ... + a1b + a0b

0 = n10

where

all computation are performed in the base 10.

Note: The above expansion is from right to left.

Examples:

1. n5 = 324125 Y 3(54 + 2(53 + 4(52 + 1(51 + 2(50 = 3(625) + 2(125) + 4(25) + 1(5) + 2 = 223210

Therefore, 324125 Y 223210 .

 n2 = 11101012 Y 1(26 + 1(25 + 1(24 + 0(23 + 1(22 + 0(21 + 1 = 64 + 32 + 16 + 4 + 1 = 11710

Therefore, 11101012 Y 11710 .

 2. n16 = 9B5F216 Y 9(164 + 11(163 + 5(162 + 15(161 + 2 = 589824 + 45056 + 1280 + 240 + 2 = 63640210

Therefore,

9B5F216 Y 63640210

Note: In the above example we needed to replace the hexadecimal digit B with the decimal number 11 and the
digit F with the decimal number 15.

The reason we are able to make a correspondence is that we can show there a one to one correspondence
between the hexadecimal digits and the corresponding numbers of the decimal system as shown in the
following table:

BASE 16 0 1 2 3 4 5 6 7 8 9 A B C D E F

BASE 10 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

13

Exercises:

Convert the following numbers to the base 10.

a. 20223016 b. 660619 c. 111011012 d. 7564028 e. A0CD816
�

2.4 Converting numbers in the base 10 to its corresponding number in any base b:

To convert a number in the base 10 to its corresponding number in any base b we use the famous Euclidean
division theorem:

Euclidean Division Theorem: Assume N, b are non- negative integers. There exist unique integers Q, R where

N10 = Qb + R, where 0 # R < b.

To compute Q and R, we use the following algorithm:

Step 1: Divide N by b which will result in a decimal value in the form integer. fraction.

Step 2: From Step 1, Q = integer

Step 3: R = N - Qb.

Example:

N10 = 3451, b = 34

Step 1: 3451/34 = 101.5

Step 2: Q = 101

Step 3: R = 3451 - 101(34 = 17

Step 4: Therefore, N = Qb + R = 101(34 + 17.

Using the Euclidean division theorem, we now show how to convert numbers in the base 10 to its corresponding
numbers in the base b.

We want to write N10 in the form: N10 = anb
n

 + an-1b
n - 1 + ... + a1b + a0

Step 1: Factor out the number b: N10 = (an b
n - 1

 + an-1b
n -2 + ... + a1)b + a0 = Qb + R where,

Q = an b
n - 1

 + an-1b
n -2 + ... + a2 b + a1

R = a0

14

Step 2: Set N = Q = an b
n - 1

 + an-1b
n -2 + ... + a2 b + a1 .

Q = Q1b + R1 = (an b

n - 2
 + an-1b

n -3 + ... + a2)b + a1 where

Q1 = an b
n - 2

 + an-1b
n -3 + ... + a2,

R1 = a1.

Step 4: Continue in this manner, until Qn = 0.

N10] (an an-1
 ... a1 a0)b

Examples:

Convert the following decimal numbers to the specified base.

1. 162510] N8

Step 1: 1625/8 = 203.125

a0 = 1625 - 203(8 = 1

Step 2: 203/8 = 25.375

a1 = 203 - 25(8 = 3

Step 3: 25/8 = 3.125

a2 = 25 - 3(8 = 1

Step 4: 3/8 = 0.375

a3 = 3 - 0(8 = 3

Since Q = 0, the algorithm is completed.

162510] (a3a2a1a0)8 = 31318

2. 8962910] N16

Step 1: 89629/16 = 5601.8125

a0 = 89629 - 5601(16 = 13] D

Step 2: 5601/16 = 350.0625

a1 = 5601 - 350(16 = 1

15

Step 3: 350/16 = 21.875

a3 = 350 - 21(16 = 14]E

Step 4: 21/16 = 1.3125

a4 = 21 - 1(16 = 5

Step 5: 1/16 = 0.0625

a5 = 1 - 0(16 = 1

Therefore, 89629] (a4a3a2a1a0)16 = 15E1D16

Exercises:

1. Convert the following:

a. 254560110] base 2 b. 1652382310] base 16 c. 532110] base 3 d. 8140110] base 8.

2 . Convert the number 22456] N4 (Hint: first convert 22456 to decimal) .
�

2.5 Expanding Numbers in the Base b (N b).

In the base 10 system (N10) ,

anan-1... a1a0 = an10n + an-1 10n -1
 + ... + a110 + a0 .

Does such an expansion hold for all numbers in the base b (N b) ? The answer is yes and the expansion can be
written as

(anan-1... a1a0)b = an10b
n + an-1 10b

n -1
 + ... + a110b

 + a0 .

The following explains the validity of this expansion.

First note that the digits of any number in a given base is

0,1,2,... b - 1.

Following these digits is the number 10:

 0,1,2,... b - 1, 10b

Now in the base b, the following arithmetic holds:

0 + 0 = 0, 0(0 = 0, 1 + 0 = 1, 1(1 = 1, ak (0 = 0, ak (1 = ak , ak (10 = ak 0

16

Therefore the following rules holds for any given base:

10(10n = 10n + 1

and

an10b
n + an - 1 10b

n -1
 + ... + a110b

 + a0 = an100...0b
 + ...+ a110b

 + a0 = an00...0b
 + ...+ a10b

 + a0 .

Examples:

1. 25628 : 2(10008
 + 5(1008

 + 6(108
 + 28 = 20008

 + 5008
 + 608

 + 28 = 25628

2. 101112 : 1(100002
 + 0(10002

 + 1(1002
 + 1(102 + 1 = 100002

 + 0002
 + 1002

 + 102 + 1 = 101112

3. 97FA16 : 9(100016
 + 7(10016

 + F(1016
 + A16 = 900016

 + 70016
 + F016

 + A16 = 97FA16

Exercises:

Find the expansions for the following numbers in their give bases:

(a) 43123225 (b) ABCDEF16 (C) 123224 (b) 1111011012

����

2.6 A Quick Method of Converting Between Binary and Hexadecimal numbers

 Of primary concern is to develop an easy conversion between binary and hexadecimal numbers without
multiplication and division. Later we see that the ability to convert quickly between binary and hexadecimal
decimal will be critical in learn to program in assembly language.

To perform this conversion we first construct a table comparing the 16 digits of the hexadecimal number
system and the corresponding binary numbers:

HEXADECIMAL DIGITS CORRESPONDING BINARY NUMBERS

0 00002

1 00012

2 00102

3 00112

4 01002

5 01012

6 01102

7 01112

17

8 10002

9 10012

A 10102

B 10112

C 11002

D 11012

E 11102

F 11112

Note: Each digit of the hexadecimal system, corresponds to a number of 4 bits in the binary number system.

Now we can convert between any binary number and hexadecimal number directly by the following rules:

Converting a binary number to its corresponding hexadecimal number:

Given any binary number the following steps will convert the number to hexadecimal:

Step 1: Group the binary number from right to left into 4 binary bit groups.

Step 2: From the table above, match the hexadecimal digit with each of the 4 binary bit group.

Example:

] 36D5D16

 3 6 D 5 D

Converting a hexadecimal number to its corresponding binary number:

Given any hexadecimal number the following steps will convert the number to binary:

From the table above, match each of digits of the hexadecimal number with the corresponding 4 bit binary
number.

Example:

34ABC02DE0F16 = 3 4 A B C 0 2 D E 0 F16]

 0011 0100 1010 1011 1100 0000 0010 1101 1110 0000 11112

 = 001101001010101111000000001011011110000011112

18

Exercises:

1. Complete the table below that matching the digits of the octal number system with its corresponding binary
numbers:

OCTAL DIGITS CORRESPONDING BINARY NUMBERS

0 000

1 001

2. From the tables above convert quickly the following numbers:

a. 11101101110001101010112] n8

b. 675741120148] n2

c. 2356211038] n16

d. A2B3C4D5E6D7F16] n2

e. 1101110101101110012] n16

3. Create a similar table to convert numbers of the base 4 to the base 2.

4. Using the tables, convert the following:

a. 1213014] n2 b. 1213018] n4 c. 100111001102] n4
�

2.7 Performing Arithmetic For Different Number Bases

Given any number base, one can develop arithmetic operations so that we can perform addition, subtraction, and

multiplication between integers numbers. For example ABC2316 + 516 = ABC2816. To perform operations such

as addition, subtraction and multiplication within the given number system can be very confusing and prone to

errors. The best way to do such computations is to convert the numbers to the base 10 and then perform

arithmetic operations only in the base 10. Finally convert the resulting computed number back to the original

19

base. The following theorem assures us that there is a consistency in arithmetic operations when we convert any
number to the base 10

Theorem: Invariant properties of arithmetic operations between bases:

1. Invariant property of addition: If Nb] Nc and Mb] Mc then Nb + Mb] Nc + Mc .

2. Invariant property of subtraction: If Nb] Nc and Mb] Mc then Nb - Mb] Nc - Mc .

3. Invariant property of multiplication: If Nb] Nc and Mb] Mc then Nb(Mb] Nc(Mc

The following algorithm will allow us to perform arithmetic operations using the above theorem.

Step 1: Convert each number to the base 10.

Step 2: Perform the arithmetic operation on the converted numbers.

Step 3: Convert the resulting number from Step 2 back to the original base.

Examples:

a. Perform 23678 + 4711238

Step 1:

23678] 2(83 + 3(82 + 6(8 + 7 = 127110

4711238 = 4(85 + 7(84 + 1(83 + 1(82 + 2(8 + 3 = 16033910

Step 2: 127110 + 16033910 = 16161010

Step 3: Through long division,

16161010] 4735128

Step 4: Therefore,

23678 + 4711238 = 4735128

b. Perform 56AF0216 (682FA16

Step 1:

56AF0216] 5(165 + 6(164 +10(163 + 15(162 + 0(161 + 2 = 568089810

682FA16] 42674610

20

Step 2: 568089810(42674610 = 2,424,300,497,90810

Step 3: Through long division,

2,424,300,497,90810] 2347391EBF416

Step 4: Therefore,

 56AF0216 (682FA16 = 2347391EBF416

c. Perform 10111011012 - 101010112

Step 1:

10111011012]74910

10101011] 17110

Step 2: 74910 - 17110 = 578 10

Step 3: Through long division,

578 10] 10010000102

Step 4: Therefore,

 10111011012 - 101010112 = 10010000102

Note: Since we are only working with integer number, we will postpone division for later chapters.

Exercise:

1. For each of the above examples, verify the result in Step 3.

2. Perform the following:

a. (2123 + 22223)(1013 b. (1011012 - 11012)(111012 c. AB2F16(23D16 + 2F516

3. Using the laws of arithmetic, show that for any number in the base b, Nb = an an - 1 ... a1 a0, ak < b

can be written in the expanded form

Nb = an(10b
n + an - 1(10b

n - 1 + ... + a1(10b + a0

4. Show that10n
b

 Y bn
10

�

21

Project

Show that the one-to-one function f - 1 : N10 Y Nb is the inverse of f: N Nb Y N10 .
(Hint: Show f - 1 (f(nb)) = nb)

22

The form of the assignment statement is:

VARIABLE := VALUE

where

VARIABLE is a name that begins with a letter and can be letters, digits.

VALUE is any numeric value of base 10, variable or a mathematical expressions.

CHAPTER - 3 PSEUDO-CODE AND WRITING ALGORITHMS

INTRODUCTION

In this chapter we will learn the basics of computer programming. This involves defining a set of
instructions, called pseudo-code that when written, in a specific order, will perform desired tasks. When
completed such a sequence of instructions are call a computer program. We used the word pseudo-code
in that the codes are independent of any specific computer language. Finally, we then use this code as a
guide to writing the desired programs in assembly language.

3.1 The Assignment Statement

Note. Frequently, instructions are referred to as statements

The assignment statement is used to assign a numeric value to a variable.

Rules of assignment statements

R1: The left-hand side of an assignment statement must be a variable.

R2: The assignment statement will evaluate the right-hand side of the statement first and will place the
result in the variable name specified on the left-side of the assignment statement. The quantities on the
right-hand side are unchanged; only the variable on the left-hand side is changed. Always read the
assignment statement from right to left.

Examples:

ASSIGNMENT
STATEMENTS

X X2 XYZ SAM TURNS

X2 := 3 3

XYZ := 23 3 23

TURNS := XYZ 3 23 23

X2 := 5 5 23 23

23

Exercises:

1. Complete the following table:

ASSIGNMENT
STATEMENTS

T YZ2 TABLE FORM TAB

YZ2 := 3

TABLE :=YZ2

YZ2 := 1123

FORM :=TABLE

 YZ2 := FORM

 2. Which of the following are illegal assignment statements. State the reason.

a. XYZ := XYZ b. 23 := S1 c. 2ZX := XZ d. MARY MARRIED := JOHN
�

Exchanging the Contents of Two Variables:

 An important task is swapping or exchanging the contents of two variable. The following example
shows how this is done:

Example:

ASSIGNMENT STATEMENTS X Y TEMP

X := 4 4

Y :=12 4 12

TEMP := X 4 12 4

X := Y 12 12 4

Y := TEMP 12 4 4

Note: To perform the swap, we needed to create an additional variable TEMP.

Exercises:

3. Assume we have the following assignments:

A B C D

10 20 30 40

24

Write a series of assignment statements which will rotate the values of A,B,C,D as show in the table
below:

A B C D

40 10 20 30

4. The instructions:

S := R
R :=T
T := S

will exchange the contents of the variables R and T. (a). True (b). False

5. The following instructions

A := 2
B := 3
Z := A
A := B
B := Z

will exchange the contents of the variables A and B. (a). True (b). False

6.

X := 5
Y := 10
Z := 2
Z := X
X := Y
Y := Z

The above sequence of commands will exchange the values in the variables __________ and
_________.
�

3.2: Mathematical Expressions

Our system has the following mathematical operators that can be used to evaluate mathematical
expressions:

Mathematical Operator Symbol Example Restrictions

Multiplication x(y 3(5 = 15 none

Integer Division x÷y 7÷2 = 3 y … 0

25

Mod x mod y 7 mod 2 = 1
7 = 2(3 + 1

y … 0

Addition x + y 2 + 4 = 6 none

Subtraction x - y 5 - 9 = - 4 none

IMPORTANT: All numbers are of type integer.
.
Order of Operations

The following are the order of operations:

C parenthesis, exponentiation, multiplication & division & integral division, addition & subtraction.

C When in doubt make use of parenthesis.

Examples:

ASSIGNMENT STATEMENTS X Y

X := 4 4

Y :=5 4 5

X := 2(X + 3(Y + X 27 5

ASSIGNMENT STATEMENTS X Y

X := 4 4

Y :=5 4 5

X := 2((X + Y)((X + Y) + X 166 5

Important: Remember to always evaluate assignment statements from right to left.

Iterative Addition

Addition of several numbers can be compute using repetitive addition:

S := S + X

Examples:

1. Add, using repetitive addition, the number 2, 4, 6, 8.

26

ASSIGNMENT STATEMENTS S X

S := 0 0

X := 2 0 2

S := S + X 2 2

X := 4 2 4

S := S + X 6 4

X : = 6 6 6

S := S + X 12 6

X := 8 12 8

S := S + X 20 8

2. Add the digits of 268: 2 + 6 + 8

INSTRUCTIONS N R SUM

N:= 268 268

SUM := 0 268 0

R := N MOD 10 268 8 0

SUM := SUM + R 268 8 8

N := N - R 260 8 8

N := N÷10 26 8 8

R := N MOD 10 26 6 8

SUM := SUM + R 26 6 14

N := N - R 20 6 14

N := N÷10 2 6 14

R := N MOD 10 2 2 14

SUM := SUM + R 2 2 16

N := N - R 0 2 16

N := N÷10 0 2 16

27

Exercises:

1. Complete the table:

ASSIGNMENT STATEMENTS X

X := 2

X := X(X

X := X + X

X := X(X

2. Complete the table:

ASSIGNMENT STATEMENTS X U W

X:=5

W:= 2

U := 4

W := W((W + U÷W)((W + U ÷W)

X := X(X + U

3. Complete the table below.

ASSIGNMENT STATEMENTS X T1 Z

X:=3

Z := 15

T1:=10

X:=Z+X(X

 Z:=X+Z+1

T1:=T1 + Z÷T1 + T1

4. Evaluate the following expressions:

a. 2 + 3(4
b. 2 + 2(2(2 ÷ 4 - 3
c. 2 + 2(2(2 ÷ (7 - 3)
d. 17 ÷ 2
e. 17 ÷ 2

28

f. 16 ÷2
g. 3 + 9 ÷ 3
h. 3 + 8 ÷ 3
I. 3 + 79 ÷ 3
j. 3 + 2(2(2 ÷ 8(2 - 5
k. 3 + 2(2(2 ÷(8(2 - 5)

5. Set up a table for evaluating the following sequence of instructions.

NUM1 := 0

NUM2 := 20

NUM3 := 30

SUM1 := NUM1 + NUM2

SUM2 := NUM2 + NUM3

TOTAL := NUM1 + NUM2 + NUM3

AVG1 := SUM1 ÷ 2

AVG2 := SUM2 ÷ 2

AVG := TOTAL ÷3

6. Set up a table for evaluating the following sequence of instructions:

X := 2

X := 2(X + X

X := 2(X + X

X := 2(X + X

X := 2(X + X

X := 2(X + X

X := 2(X + X

�

3.3 Algorithms and Programs

Definition of an algorithm: An algorithm is a sequence of instructions that solves a given problem.

Definition of a program: A program is a sequence of instructions and algorithms.

Examples:

1. Assume N and P are positive integers. We can write

N = QP + R where R < P .

The following algorithm and program will demonstrate how to compute and store Q and R.

29

Algorithm:

ASSIGNMENT STATEMENTS EXPLANATION

Q := N÷P COMPUTES AND STORES THE INTEGRAL PART

R := N MOD P COMPUTES AND STORES THE REMAINDER R

Task 1: Store the number 957

Task 2: Store the number 35

Task 3: Find Q and R for 957 = Q(35 + R

Program:

ASSIGNMENT STATEMENTS N P Q R

N := 957 957

P := 35 957 35

Q := N÷P 957 35 27

R := N MOD P 957 35 27 12

2. We define n- factorial:

N! = N((N - 1)((N - 2) ...((1)

for N, a positive integer.

The following algorithm uses the repetitive multiplication statement to compute N!

Algorithm:

ASSIGNMENT STATEMENTS EXPLANATION

NFACTORIAL := N SET THE INITIAL VALUE

N:= N-1 REDUCES N BY 1

NFACTORIAL:= NFACTORIAL(N

N:= N-1

NFACTORIAL:= NFACTORIAL(N

N:= N-1

NFACTORIAL:= NFACTORIAL(N

::::::::::::::::::::

N:= N-1

NFACTORIAL:= NFACTORIAL(N TERMINATES WHEN N = 1

30

The following program computes 5!

Program:

ASSIGNMENT STATEMENTS N NFACTORIAL

N:= 5 5

NFACTORIAL := N 5 5

N:= N-1 4 5

NFACTORIAL:= NFACTORIAL(N 4 20

N:= N-1 3 20

NFACTORIAL:= NFACTORIAL(N 3 60

N:= N-1 2 60

NFACTORIAL:= NFACTORIAL(N 2 120

N:= N-1 1 120

NFACTORIAL:= NFACTORIAL(N 1 120

3. The Fibonacci Sequence

To create a Finonacci sequence, we begin with the numbers

0, 1.

Step 1: Add the above 2 numbers (0 + 1 = 1) and insert the number in the above sequence:

0,1,1

Step2: Add the last 2 numbers (1 + 1 = 2) of the above sequence and insert the number in the above
sequence:

0,1,1,2

Step3: Add the last 2 numbers (1 + 2 = 3) of the above sequence and insert the number in the above
sequence:

0,1,1,2,3

Continue as often as desired.

The following algorithm uses the above steps will compute the Fibonacci sequence to a desired number
of members of the sequence.

31

Algorithm:

STATEMENTS EXPLANATION

FIBON_NUM1 := 0 FIRST VALUE OF THE SEQUENCE

FIBON_NUM2 : = 1 SECOND VALUE OF THE SEQUENCE

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST 2 VALUES OF THE SEQUENCE

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE SEQUENCE

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST 2 VALUES OF THE SEQUENCE

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE SEQUENCE

:::::::::::::::::::::::::::::::; ::::::::::::::::::::::::::::

SUM := FIBON_NUM1 + FIBON_NUM2 SUM OF THE LAST 2 VALUES OF THE SEQUENCE

FIBON_NUM1:= FIB_NUM2 PLACE THE NUMBER IN THE SEQUENCE

FIBON_NUM2 := SUM PLACE THE NUMBER IN THE SEQUENCE

The following program will generate the first 6 numbers of the Fibonacci sequence:

0,1,1,2,3,5,8

Program

ASSIGNMENT STATEMENT FIBON_NUM1 FIBON_NUM2 SUM

FIBON_NUM1 := 0 0

FIBON_NUM2 : = 1 0 1

SUM := FIBON_NUM1 + FIBON_NUM2 0 1 1

FIBON_NUM1:= FIB_NUM2 1 1 1

FIBON_NUM2 := SUM 1 1 1

SUM := FIBON_NUM1 + FIBON_NUM2 1 1 2

FIBON_NUM1:= FIB_NUM2 1 1 2

FIBON_NUM2 := SUM 1 2 2

SUM := FIBON_NUM1 + FIBON_NUM2 1 2 3

FIBON_NUM1:= FIB_NUM2 2 2 3

FIBON_NUM2 := SUM 2 3 3

32

SUM := FIBON_NUM1 + FIBON_NUM2 2 3 5

FIBON_NUM1:= FIB_NUM2 3 3 5

FIBON_NUM2 := SUM 3 5 5

SUM := FIBON_NUM1 + FIBON_NUM2 3 5 8

FIBON_NUM1:= FIB_NUM2 5 5 8

FIBON_NUM2 := SUM 5 8 8

Exercises:

1. Write a program that computes 10!

2. Write a program that will compute a Fibonacci sequence where each number in the sequence is less
than 50. �

3.4 NON-EXECUTABLE STATEMENTS

All assignment statement are executable statements: when the assembler encounter the statement, it will
be executed .

There are however, non-executable statements. The first one we will here introduce is the REM
statement.

Definition of the REM statement: The form of the rem statement is

REM: comment; where comment can be any words made up of alfa-numeric characters.

Example:

STATEMENTS X Y SUM

REM: THE FOLLOWING PROGRAM WILL
ASSIGN NUMBERS TO X, Y AND THEN ADD

THEM

X := 34 34

Y := 100 34 100

SUM := X + Y 34 100 134

33

PROJECT:

Assume the numbers n1 , n2 , ... nm

1. Write an algorithm that will perform iterative multiplication.

2. Using this algorithm write a program to compute n = 34(226(12(44(5

3. Define a^N = aN

 Write an algorithm to perform a^N.

34

CHAPTER - 4 SIMPLE ALGORITHMS FOR CONVERTING BETWEEN A NUMBER BASE AND
THE BASE 10

INTRODUCTION

In this chapter we will show how we write algorithms to convert a number in the base b (b <10) to its
corresponding number in the base 10 and from a number base 10 to its corresponding number in the
base b (b <10). These algorithms are based on the conversion methods developed in Chapter 2.To help us write
these algorithms, we first create a sample program from a specific example. Once the program is written, we
will use it as a guide to create the algorithm. In later chapters we will generalize these algorithms.

4.1 An Algorithm to Convert any Positive Integer Number In any Base b < 10 To Its Corresponding
Number in the Base 10.

To convert between integer number in any base b to its corresponding number in the base 10, we recall from
chapter 1 the following formula:

nb = anan-1... a1a0] anb
n
 + an-1b

n - 1 ... + a1b + a0 base 10 .

Example:

The following program will convert the number 2678 to its correspond number in the base 10:

n8 = 2678] 2(82 + 6(81 + 7(80 = 2(64) + 6(8) + 7 = 18310

Program

PSEUDO-CODE INSTRUCTIONS N8 P A N10 BASE

N10:= 0 0

N8 := 267 267 0

BASE := 8 267 0 8

P := 1 1 0 8

A := N8 MOD 10 267 1 7 0 8

N10 := N10+ A(P 267 1 7 7 8

N8 := N8 ÷ 10 26 1 7 7 8

P := P(BASE 26 8 7 7 8

A := N8 MOD 10 26 8 6 7 8

N10 := N10 + A(P 26 8 6 55 8

N8 := N8 ÷ 10 2 8 6 55 8

P := P(BASE 2 64 6 55 8

35

A := N8 MOD 10 2 8 2 55 8

N10 := N10+ A(P 2 2 183 8

N8 := N8 ÷ 10 0 2 183 8

Therefore, 2678] 18310

Using the above program as a model, the following algorithm will convert any positive integer number in the base
b < 10 to its corresponding number in the base 10:

Algorithm:

PSEUDO-CODE INSTRUCTIONS

P := P(BASE

A := NB MOD 10

N10 := N10+ A(BASE^K

NB := NB ÷ 10

::::::::::::::::::::

Exercises:

1. Modify the above program to convert the number 56328 to the corresponding number in the base 10.

2. Modify the above program to convert the number 11012 to the corresponding number in the base 10.

�

4.2 An Algorithm to Convert any Integer Number in the Base 10 to a Corresponding Number in the Base
b < 10.

Using the Euclidean division theorem explained in Chapter 1, we now review how to convert numbers in the base
10 to any in the base b < 10.

Step 1: We want to write n in the form: n = anb
n
 + an-1b

n - 1 ... + a1b + a0

Step 2: N = Qb + R = (an b
n - 1

 + an-1b
n -2 ... + a1)b + a0

Here, Q = an b
n - 1

 + an-1b
n -2 ... + a2 b + a1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 and R = a0

Step 3: Set N = Q.

Q = Q1b + R1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 where

Q1 = an b
n - 2

 + an-1b
n -3 ... + a2,

36

R1 = a1.

Step 4: Continue in this manner, until Qn = 0.

Example:

Convert the following decimal numbers to the specified base.

1. 1625] n8

Step 1: 1625 = 203(8 + 1

a0 = 1

Step 2: 203 = 25(8 + 3

a1 = 3

Step 3: 25 = 3(8 + 1

a2 = 1

Step 4: 3 = 0(8 + 3

a3 = 3

Therefore, n = 3(83 + 1(82 + 3(8 + 1] n8 = 3131

Program

Task: Convert the integer number 1625 to the base 8.

PSEUDO-CODE INSTRUCTIONS N10 Q N8 R BASE P TEN

N10 := 1625 1625

BASE := 8 1625 8

TEN := 10 1625 10

P := 10 1625 10 10

N8 := 0 1625 0 8 10 10

R := N10 MOD BASE 1625 0 1 8 10 10

Q:= (N10 - R) ÷ BASE 1625 203 0 1 8 10 10

N8:= N8 + R 1625 203 1 1 8 10 10

N10 := Q 203 203 1 1 8 10 10

R := N10 MOD BASE 203 203 1 3 8 10 10

N8 := N8 + R(P 203 25 31 3 8 10 10

37

P := P(TEN 203 25 31 3 8 100 10

N10 := Q 25 25 31 3 8 100 10

R := N10 MOD BASE 25 25 31 1 8 100 10

Q:= (N10 - R)÷ BASE 25 3 31 1 8 100 10

N8 := N8 + R(P 25 3 131 1 8 100 10

P := P(TEN 25 3 131 1 8 1000 10

N10 := Q 3 3 131 1 8 1000 10

R := N10 MOD BASE 3 3 131 3 8 1000 10

Q:= (N10 - R)÷BASE 3 0 131 3 8 1000 10

N8:= N8 + R(P 3 0 3131 3 8 1000 10

N10 := Q 0 0 3131 3 8 1000 10

1625] 31318

Algorithm:

PSEUDO-CODE INSTRUCTIONS

R := N10 MOD BASE

Q:= (N10 - R)÷ BASE

N8 := N8 + R(P

P := P(TEN

N10 := Q

:::::::::::::::::

Exercises:

1. Use the above algorithm to write a program to convert the decimal number 254310 to octal.

2. Write an algorithm to convert any decimal number a1a0 to the base 2.
�

PROJECT

a. Write a program that will convert the number 23567 Y nb where b = 9.
b. Write an algorithm that will convert a number nb to nc where b, c < 10.

38

The six relational operators are:

Operator Interpretation

1. = Equality

2. <> Inequality

3. < Less Than

4. > Greater Than

5. <= Less than or equal to

6. >= Greater than or equal to

CHAPTER - 5 THE IF-THEN CONDITIONAL STATEMENT

INTRODUCTION

The statements used so far are called unconditional statements. Each statement performs its task without any
conditions placed upon them. In this chapter , we will discuss conditional statements. The manner in which
these instructions are carried out will depend on various conditions in the programs and algorithms. We begin
by defining and explaining conditional expressions.

5.1 Conditional Expressions

We begin with the definition of conditional values:

Definition of Conditional Values: Conditional values take on the value TRUE or FALSE. Each conditional
value is determined by six relational operators preceded and followed by numeric values or variables.

Definition of Six Relational Operators:

Examples: Values:

5 = 2 + 3 TRUE

9 <> 3(3 FALSE

4 <= 4 TRUE

EXERCISES:

1. Evaluate the following conditional expressions:

a. 3 + 3 = 6 b. 8 >= 10 c. 7 <> 7

�

39

NOT TRUE FALSE

NOT FALSE TRUE

TRUE AND TRUE TRUE

TRUE AND FALSE FALSE

FALSE AND FALSE FALSE

TRUE OR TRUE TRUE

TRUE OR FALSE TRUE

FALSE OR FALSE FALSE

Definition of Conditional Expressions: Conditional expressions are conditional values connected by three
logical operators.

Definition of the Three Logical Operators:

Logical operators connect conditional expressions and return a value of TRUE or FALSE. The three logical
operators are:

 Operator Interpretation

1. NOT NOT conditional expression (TRUE if the conditional expression is FALSE;
 FALSE if the if the conditional expression is TRUE).

2. AND Conditional expression AND conditional expression (TRUE if all the conditional
 expressions are true).

3. OR Conditional expression OR conditional expression (TRUE if one or more of the
 conditional expressions are TRUE).

Values Returned by Operators

EXAMPLES:

CONDITIONAL EXPRESSIONS VALUE

(2 < 3) OR (5 = 7) TRUE

NOT (2 <= 2) FALSE

NOT ((2 > 0) AND (3 <> 2 + 1)) TRUE

40

The form of the IF - THEN statement is

IF conditional expression THEN

 BEGIN
statements
END

If the conditional expression is TRUE, then the

 BEGIN
 statements
 END

will be carried out.

If the conditional expression is FALSE, then the

 BEGIN
 statements
 END

will NOT be carried out and the program will go to the
instruction following the END.

The BEGIN and END statements are non-executable
statements.

The

 BEGIN
 statements
 END

is called a compound statement.

5.2 THE IF-THEN STATEMENT

Definition of the IF-THEN Statement:

41

EXAMPLES:

1. PROGRAM

PSEUDO-CODE INSTRUCTIONS X Y

X := 5 5

IF X = 5 THEN
BEGIN

X := 2(X
END

10

Y := 2 10 2

IF X = Y THEN
BEGIN

X := 2(X
END

10 2

X := 100 100 2

The following program will perform the following tasks:

Task 1: Assign three numbers.

Task 2: Count the number of negative numbers.

2. PROGRAM

PSEUDO-CODE INSTRUCTIONS X1 X2 X3 COUNT

X1 := 6 6

X2 := -5 6 -5

 X3 := -25 6 -5 -25

COUNT := 0 6 -5 -25 0

IF X1 < 0 THEN
BEGIN

COUNT := COUNT + 1
END

6 -5 -25 0

IF X2 < 0 THEN
BEGIN

COUNT := COUNT + 1
END

6 -5 -25 1

IF X3 < 0 THEN
BEGIN

COUNT := COUNT + 1
END

6 -5 -25 2

42

EXERCISES:

1. Modify the above program so that it performs the following tasks:

Task 1: Assign 4 numbers.

Task 2: Counts the number of positive numbers entered.

Task 3: Add the positive numbers.

2. Modify the above program so that it performs the following tasks:

Task 1: Assign 4 numbers.

Task 2: Multiplies the negative numbers.

�

EXAMPLES:

1. The following algorithm will perform the following task:

Task 1: Find the largest of three numbers

ALGORITHM

PSEUDO-CODE INSTRUCTIONS EXPLANATION

LARGEST := X1 We start by assuming X1 is the largest

IF X2 > LARGEST THEN
BEGIN

LARGEST := X2
END

If the contents of X2 is larger than the contents of LARGEST
replace LARGEST with the contents of X2

IF X3 > LARGEST THEN
BEGIN

LARGEST := X3
END

If the contents of X3 is larger than the contents of LARGEST
replace LARGEST with the contents of X3

The following program will perform the following tasks:

Task 1: Assign 3 numbers

Task 2: Find the largest of these three numbers.

43

PROGRAM

PSEUDO-CODE INSTRUCTIONS X1 X2 X3 LARGEST

X1 := 5 5

X2 := 6 5 6

X3 := 10 5 6 10

LARGEST := X1 5 6 10 5

IF X2 > LARGEST THEN
BEGIN

LARGEST := X2
END

5 6 10 6

IF X3 > LARGEST THEN
BEGIN

LARGEST := X3
END

5 6 10 10

2. The following program will perform the following tasks:

Task1 : Assign 2 numbers to variables.

Task2: If the number is negative, change it to its absolute value.

PROGRAM

PSEUDO-CODE INSTRUCTIONS X Y

X := 23 23

Y := -17 23 -17

IF X < 0 THEN
BEGIN

X := -1(X
END

23 -17

IF Y < 0 THEN
BEGIN

Y := -1(Y
END

23 17

EXERCISE:

3. Complete the table below

44

PSEUDO-CODE INSTRUCTIONS X Y Z

X := 2

Y := 5

Z := -4

IF (X + Y + Z) <> X(Y THEN
BEGIN

X : = (X - Y)÷X
Y := X + 2(Y

Z : = X - 2
END

IF (X - Y + Z) <> X +Y THEN
BEGIN

X : = 2((X - Y)÷X
Y := X - 3(Z
Z : = X + 2

END

4. Assume X is an integer Explain what the following algorithm does:

IF 2((X÷2) = X THEN
BEGIN
X : = 3(X - 1
END
IF 2((X÷2) <> X THEN
BEGIN
X := 2(X + 1
END

5. Write an algorithm to find the second largest number amongst 4 numbers.
�

5.3: THE IF-THEN- ELSE STATEMENT

Definition of the IF-THEN-ELSE Statement:

The form of the IF-THEN -ELSE statement is:

IF conditional expression THEN
 BEGIN
 statements 1
 END
ELSE
 BEGIN
 statements 2
 END

45

If the conditional expression is TRUE, statements 1 following the THEN will be carried out and the program
will skip statements 2.

If the conditional expression is FALSE, statements 1 following the THEN will not be carried out and the
program will execute statements 2.

EXAMPLES:

1. The following program will perform the following tasks:

Task1 : Assign 2 positive integer numbers to variables.

Task2: If the number is even, add a 1 to the number

Task3: If the number is odd, subtract a 1 to the number.

PROGRAM

PSEUDO-CODE INSTRUCTIONS X Y

X := 23 23

Y := 44 23 44

IF 2((X÷2) = X THEN
BEGIN

X := X + 1
END
ELSE

X := X - 1
END

22 44

IF 2((Y÷2) = Y THEN
BEGIN

Y := Y + 1
END
ELSE

Y := Y - 1
END

22 45

2. The following program will perform the following tasks:

Task1: Assign two numbers.

Task2: Find the smallest of the two number.

46

PROGRAM

PSEUDO-CODE INSTRUCTIONS X Y SMALLEST

X := 723 723

Y := 54 723 54

IF X < Y THEN 723 54

BEGIN 723 54

SMALLEST := X 723 54

END 723 54

ELSE 723 54

BEGIN 723 54

SMALLEST : = Y 723 54 54

END 723 54 54

PROJECT

The Bubble Sort Algorithm

Perhaps the most important application of computers is the ability to sort data. Data is either sorted in ascending
or descending order. For the following 4 numbers, we will state the tasks that show how the bubble sort
algorithm is applied using the IF-THEN statement to move the highest remaining numbers to the right:

List of numbers (unsorted).

X1 X2 X3 X4

w x y z

Task 1: Move the highest number to variable X4:

Task 2: Move the next highest number to variable X3:

Task 3: Move the next highest number to variable X2:

Write a program using the bubble sort tasks to sort the numbers below in ascending order.

X1 X2 X3 X4

23 17 3 1

47

CHAPTER - 6 THE WHILE CONDITIONAL STATEMENT

INTRODUCTION

So far, in our programs, we have not had the ability to perform repetitive operations. In this chapter we will
define the WHILE statement which will allow us to make such repetitive operations.

6.1 The While Statement

Definition of the WHILE statement

The form of the WHILE statement is

WHILE conditional statement
BEGIN
statements
END

where the statements enclosed in the BEGIN - END are repeated as long as the conditional expression is true.
If the conditional statement is false then the statement following the END will be executed.

Examples:

1. The following is an algorithm that will compute the sum of the numbers 1 to R.

Algorithm

PSEUDO-CODE INSTRUCTIONS EXPLANATION

N := 1 N Z 1

SUM := 0 SUM Z 0

WHILE N <= R

BEGIN

SUM := SUM + N SUM Z SUM + N

N := N + 1 N Z N + 1

END

49

Program: will compute the sum of the numbers 1 to 5.

PSEUDO-CODE INSTRUCTIONS CYCLE OF INSTRUCTIONS SUM N

N := 1 N := 1 1

SUM := 0 SUM := 0 0 1

WHILE N <= 5 WHILE N <= 5 0 1

BEGIN BEGIN 0 1

SUM := SUM + N SUM := SUM + N 1 1

N := N + 1 N := N + 1 1 2

SUM := SUM + N 3 2

N := N + 1 3 3

SUM := SUM + N 6 3

N := N + 1 6 4

SUM := SUM + N 10 4

N := N + 1 10 5

SUM := SUM + N 15 5

N := N + 1 15 6

END END 15 6

2. The following algorithm will sum all of the proper divisors of a positive integer number N > 1. A proper

divisor d of a integer number N is a number where 1 < d < N and N MOD d = 0. To find all the proper divisors

we only need to check all values of d # N÷2.

Algorithm

PSEUDO-CODE INSTRUCTIONS EXPLANATION

SUM := 0

D := 2 A DIVISOR

WHILE D <= N÷2

 BEGIN

IF N MOD D = 0 CHECK TO SEE IF D DIVIDES N

 BEGIN

 SUM := SUM + D IF D DIVIDES N ADD D TO SUM

END

D := D + 1

 END

50

Program: finds and adds the sum of all proper divisors of 18.

PSEUDO-CODE INSTRUCTIONS CYCLE OF INSTRUCTIONS N SUM D

N:= 18 N := 18 18

SUM := 0 SUM := 0 18 0

D := 2 D := 2 18 0 2

WHILE D <= N÷2 WHILE D <= N÷2 18 0 2

 BEGIN BEGIN 18 0 2

 IF N MOD D = 0 IF N MOD D = 0 18 0 2

 BEGIN BEGIN 18 0 2

SUM := SUM + D SUM := SUM + D 18 2 2

 END END 18 2 2

D := D + 1 D := D + 1 18 2 3

IF N MOD D = 0 18 2 3

 BEGIN 18 2 3

 SUM := SUM + D 18 5 3

END 18 5 3

D := D + 1 18 5 4

IF N MOD D = 0 18 5 4

 BEGIN 18 5 4

 SUM := SUM + D 18 5 4

END 18 5 4

D := D + 1 18 5 5

IF N MOD D = 0 18 5 5

 BEGIN 18 5 5

 SUM := SUM + D 18 5 5

END 18 5 5

D := D + 1 18 5 6

IF N MOD D = 0 18 5 6

 BEGIN 18 5 6

 SUM := SUM + D 18 11 6

END 18 11 6

51

D := D + 1 18 11 7

IF N MOD D = 0 18 11 7

 BEGIN 18 11 7

 SUM := SUM + D 18 11 7

END 18 11 7

D := D + 1 18 11 8

IF N MOD D = 0 18 11 8

 BEGIN 18 11 8

 SUM := SUM + D 18 11 8

END 18 11 8

D := D + 1 18 11 9

IF N MOD D = 0 18 11 9

 BEGIN 18 11 9

 SUM := SUM + D 18 20 9

END 18 20 9

D := D + 1 18 20 10

END END 18 20 10

3. Length of numbers:

Definition of the length of a number :

The length of a number is the number of digits that define the number.

Example:

2654 is of length 4

The following algorithm computes the length of any positive integer:

Algorithm

PSEUDO-CODE INSTRUCTIONS EXPLANATION

COUNT := 0 WILL COUNT # OF DIGITS

WHILE N <> 0 N IS THE POSITIVE INTEGER

BEGIN

COUNT := COUNT + 1 WILL COUNT # OF DIGITS

N := N÷10 REDUCES THE LENGTH OF N

 END

52

Program: will compute the length of the number 431:

PSEUDO-CODE INSTRUCTIONS CYCLE OF INSTRUCTIONS N COUNT

N: = 431 N := 431 431

COUNT := 0 COUNT := 0 431 0

WHILE N <> 0 WHILE N <>0 431 0

BEGIN BEGIN 431 0

COUNT := COUNT + 1 COUNT := COUNT + 1 431 1

N := N÷10 N := N÷10 43 1

COUNT := COUNT + 1 43 2

N := N÷10 4 2

COUNT := COUNT + 1 4 3

N := N÷10 0 3

END END 0 3

4. Adding digits

1. The following algorithm will sum the digits of an integer anan - 1...a0 : an + an - 1 + ... + a0.

Algorithm

PSEUDO-CODE INSTRUCTIONS EXPLANATION

SUM := 0 USED TO ADD THE DIGITS

WHILE N <>0

BEGIN

R := N MOD 10 R Z ak

SUM := SUM + R SUM Z an + an - 1 + ... + ak.

N := N - R NUMBER Z an ...ar0

N := N÷10

 END

53

Program: will add the digits of the number 579:

PSEUDO-CODE INSTRUCTIONS CYCLE OF INSTRUCTIONS N R SUM

N := 579 N := 579 579

SUM := 0 SUM := 0 579 0

WHILE N <>0 WHILE N <>0 579 0

BEGIN BEGIN 579 0

R := N MOD10 R := N MOD 10 579 9 0

SUM := SUM + R SUM := SUM + R 579 9 9

N := N - R N := N - R 570 9 9

N := N÷10 N := N÷10 57 9 9

R := N MOD10 57 7 9

SUM := SUM + R 57 7 16

N := N - R 50 7 16

N := N÷10 5 7 16

R := N MOD10 5 5 16

SUM := SUM + R 5 5 21

N := N - R 0 5 21

END END 0 5 21

�

Exercises:

1. Write an algorithm that performs the following tasks:

Task 1: Finds the proper divisors of a positive integer N

Task 2: Sum the proper divisors.

2. Write an algorithm that will multiply all of the proper divisors of a positive integer number N > 1.

3. A factorial number, written as N!, is defined as

N! = N(N - 1)(N –2)...(2)(1)

 where N is a positive integer > 1.

Write a program that will perform the following tasks:

54

Task 1: Enter a positive integer number N > 1

Task 2: Compute N!

4. For the following program, what is the final value assigned to S?

K := 2

S := 0

WHILE K < 10

BEGIN

S := S + 2(K + 1

K := K + 1

END

5. A positive integer greater than 1 is prime if it has no proper divisors. Write a program that will find all prime
numbers less than 25.

6. Find the final value R computed in the following program:

K := 0

R := 2258 - K(55

WHILE R > 0

BEGIN

K := K +1

R :=2258 -K(55

END

R := R + 55

7. For the following program below, what is the final value X:

K := 1
X : = 2

WHILE K <= 6

BEGIN

X := X + 3

K : = K + 1

END

8. For the following program below, what is the final value X:

K := 1

X : = 2

WHILE K <= 6

BEGIN
X := X(3
K : = K + 1
END

55

 ����

PROJECT:

1. A polynomial is defined as Pn(x) = an x
n + an - 1 x

n - 1 + ... + a1x + a0 where x is any number.

One way of evaluating P(x) without using exponents is to write

Pn(x) = (.... (((an x + an -1)x + an - 2) x + an - 2) x + ...+ a1)x + a0

Example:

P3(x) = ((a3x + a2)x + a1)x + a0

P6(x) = (((((a6x + a5)x + a4)x + a3)x + a2)x + a1)x + a0

Write an algorithm which will perform Pn(x) using the evaluation of P(x) without using exponents with the
following restrictions:

ak are integers and 0 # ak # 9 .

56

CHAPTER - 7 COMPUTING NUMBER BASIS WITH ALGORITHMS

INTRODUCTION

In this chapter we will show how to write algorithms and programs that will convert numbers from one base to
another. The methods used are based on the conversion formulas that have been developed in several of the
previous chapters.

7.1 Writing a Program and Algorithm to Convert numbers in the Base b < 10 to the Base 10:

From chapter 2, we saw that to convert numbers in any base b to its corresponding number in the base 10, we use
the following formula :

Nb = anan-1... a1a0 Y anb
n
 + an-1b

n - 1 ... + a1b + a0

Example:

N8 = 4671 Y 4(83 + 6(82 + 7(8 + 1 = 2048 + 384 + 56 + 1 = 248910

Program: will convert the number 46718 to the base 10.

INSTRUCTIONS CYCLE OF INSTRUCTIONS N8 N10 R P

N8 := 4671 N8 := 4671 4671

P := 0 P : = 0 4671 0

N10 := 0 N10 := 0 4671 0 0

WHILE N8 <> 0 WHILE N8 <> 0 4671 0 0

BEGIN BEGIN 4671 0 0

R := N8 MOD 10 R := N8 MOD 10 4671 0 1 0

N8 := N8 - R N8 := N8 - R 4670 0 1 0

N8:= N8÷10 N8:= N8÷10 467 0 1 0

N10 := N10 + R(8^P N10 := N10 + R(8^P 467 1 1 0

P := P + 1 P := P + 1 467 1 1 1

R := N8 MOD 10 467 1 7 1

N8 := N8 - R 460 1 7 1

N8:= N8÷10 46 1 7 1

N10 := N10 + R(8^P 46 57 7 1

P := P + 1 46 57 7 2

57

R := N8 MOD 10 46 57 6 2

N8:= N8 - R 40 57 6 2

N8:= N8÷10 4 57 6 2

N10 := N10 + R(8^P 4 441 6 2

P := P + 1 4 441 6 3

R := N8 MOD 10 4 441 4 3

N8:= N8 - R 0 441 4 3

N8:= N8÷10 0 441 4 3

N10 := N10 + R(8^P 0 2489 4 3

P := P + 1 0 2489 4 4

END END 0 2489 4 4

Algorithm: will convert a number in the base b < 10 to the base 10

INSTRUCTIONS

P := 0

N10 := 0

WHILE N8 <> 0

BEGIN

R := N8 MOD 10

N8 := N - R

N8:= N÷10

N10 := N10 + R(b^P

P := P + 1

END

Exercise:

1. Write a program and complete the table that will convert the number 2314 to the base 10 and complete a table as
above.
����

58

7.2 Writing an Algorithm to Convert Numbers in the base 10 to its Corresponding Number in the Base
b <10.

Example:

The following method will convert the number 523 to the base 8:

a0 = 523 mod 8 = 3
523 ÷ 8 = 65

a1 = 65 mod 8 = 1
65 ÷ 8 = 8

a2 = 8 mod 8 = 0
8÷8 = 1

 a3 = 1 mod 8 = 1
 1÷8 = 0

523 Y 10138

The following algorithm will convert any positive integer to any number to the base b < 10.

INSTRUCTIONS EXPLANATION

K : = 0

SUM := 0

WHILE N <> 0

BEGIN

A := N MOD B THE REMAINDER WHICH IS TO BE ADDED

SUM := SUM + A(10^K anb
n
 + an-1b

n - 1 ... + a1b + a0

N := N÷B B is the base

K := K + 1

END

59

Program:

The following program will convert the number 523 to the base 8.

INSTRUCTIONS CYCLE OF INSTRUCTIONS N10 A N8 K

N10 := 523 N10 := 523 523

K : = 0 K : = 0 523 0

N8 := 0 N8 := 0 523 0 0

WHILE N10 <> 0 WHILE N10 <> 0 523 0 0

BEGIN BEGIN 523 0 0

A := N10 MOD 8 A := N10 MOD 8 523 3 0 0

N8 := N8 + A(10^K N8 := N8 + A(10^K 523 3 3 0

N10 := N10÷8 N10 := N10÷8 65 3 3 0

K := K + 1 K := K + 1 65 3 3 1

A := N10 MOD 8 65 1 3 1

N8 := N8 + A(10^K 65 1 13 1

N10 := N10÷8 8 1 13 1

K := K + 1 8 1 13 2

A := N10 MOD 8 8 0 13 2

N8 := N8 + A(10^K 8 0 13 2

N10 := N10÷8 1 0 13 2

K := K + 1 1 0 13 3

A := N10 MOD 8 1 1 13 3

N8 := N8 + A(10^K 1 1 1013 3

N10 := N10÷8 0 1 1013 3

K := K + 1 0 1 1013 4

END END 0 1 1013 4

Exercises:

1. Write a program and complete the table that converts the decimal number 25 to base 2.

2. Write a program and complete the table that will print the first 100 numbers in the base 8.

60

�

PROJECT

Write a program that will convert the number 238 to the base 5.

61

CHAPTER 8 - RINGS AND MODULAR ARITHMETIC

INTRODUCTION

Modular arithmetic plays a major role when doing arithmetic in assembly language. We will see in the next
Chapter that the number systems we will be working with are not infinite in number. To perform arithmetic on
finite systems, we need to use modular arithmetic. We start with the definition of rings.

8.1 Rings

Definition of a ring:

A ring R is a set of numbers having two binary operations: addition r and multiplication q with the following
rules:

Rule 1: Closure under addition.

Rule 2: Closure under multiplication.

Rule 3: Contains an additive identity.

Rule 4: Contains a multiplicative identity.

Rule 5: For every number n there is an additive inverse -n.

Definition of the above rules:

Rule 1: If n, m are numbers in R, then c = n r m is in R.

Rule 2: If n, m are numbers in R, then c = nqm is in R.

Rule 3: Contains a number Θ in R, where for every number n in R, nrΘ = n.

Rule 4: Contains a number 1 in R, where for every number n in R, nq1 = n.

Rule 5: For every number n in R, there is a number -n in R where n r-n = Θ.

There are two general type of rings: infinite and finite.

Example of an infinite ring:

1. All integers: R = {0, 1, -1, 2, -2, 3, -3, ... }

Rule 1: Let r = +. The sum of 2 integer numbers is an integer number.

Rule 2: Let q = (. The product 2 integer numbers is an integer number.

63

Rule 3: Let Θ = 0. If n is a integer number then n + 0 = n.

Rule 4: The number 1 is an integer and n(1 = n

Rule 5: Assume n is in R . Let -n = -n. Therefore, n + -n = 0.

Important: For rings, there is no subtraction operation.

Example of a finite ring :

The following is a well known finite ring: the hourly clock time:
R = {1,2,3,4,5,6,7,8,9,10,11,12}

For addition or multiplication, we use the traditional system. For example:
 1r5 = 6, 2r11 = 1, 3 r12 = 3, 5 q2 = 10, 6 q3 = 6, etc.

Now we show that the R is a ring, by verifying the 5 rules:

Rule 1: If n, m are numbers in R, then c = n r m is in R.

Rule 2: If n, m are numbers in R, then c = nqm is in R.

Rule 3: Contains a number Θ = 12where for every number n in R, nr12 = n.

Rule 4: Contains a number 1 where for every number n in R, nq1 = n.

Clearly this rule is correct.

Rule 5: For every number n in R, there is a number -n where n r-n = 12.

To verify this rule, we the following table shows that every number of R has an additive inverse: n r-n = 12.

hour 1 2 3 4 5 6 7 8 9 10 11 12

- hour 11 10 9 8 7 6 5 4 3 2 1 12

hour r - hour 12 12 12 12 12 12 12 12 12 12 12 12

Exercises:

1. Assume R is clock time. Simplify the following:

a. 7r8r-7r11r-4.

b. 2q(6r -10)

c. -11q[(2 q-11) q(11r -9)]

64

2. Assume R is military time: R = {1,2,3,..., 24}

a. 7r18r-7r21r-23.

b. 22q(16r -10)

c. -21q[(2 q-21) q(11r -19)]

3. Show that the set R = {0, 1,-1, 2, -2, 4, -4, 6, -6, ...± 2n, ...} is not ring.

4. Show that the set R = {0, 1,3, -3, 5, - 7, ..., ± 2n + 1} is not a ring.

5. Assume R = {0, 1,2, -2, 3, -3, 4, -4, ...}. Define r and q are defined under the following rules:

R1. : n r m = n + m + 2.

R2: n qm = n(m

a. Find Θ.

b. For n in R find -n, the additive inverse of n.

c. Show R is a ring.
����

8.2: The Finite Ring R

For assembly language, the most important set of numbers are

R = {0,1,2,3,...,N - 1}, where N > 1.

We want R to be a ring. To do this we need to define operations of addition and multiplication:

Definition of addition arb: If a, b are members of R , then arb = (a + b)mod N.

Definition of multiplication aqb: If a, b are members of R , then aqb = (a (b)mod N.

Note: The mod operator is defined in chapter 3.

Examples:

R = {0,1,2,3,4,5,6,7}.

5r7 = (5 + 7)mod(8) = 12mod(8) = 4

5q6 = (5(6)mod(8) = 30mod(8) = 6

65

2r5 =(2 + 5) mod(8) = 7mod(8) = 7

(6q7)r6 = [(42)mod(8)]r6 = 0

Exercises:

1. For R = {0,1,2,3,4} ,simplify:

a. 4q4

b. [(4r2)q4r4]q3

c. 3q(3r4)

2. For R = {0,1,2,..., 7} , verify if the following are true:

a. 6q(7r5) = (6q7)r(6q5)

b. (4q3)q7 = 4q(3q7)

c. (4r3)r7 = 4r(3r7)

3. For R = {0,1,2,..., N-1} , what is the additive identity? What is the multiplicative identity?

4. For R = {0,1,2,..., 15} , find the additive identity of each of its numbers.

5. For R = {0,1}, find the additive identity of each of its numbers.

6. Show that R = {0,1,2,..., N} is a ring under the operations of ar b, arb.

8.3 Subtraction for R

How then do we subtract 2 numbers in R ? We accomplish this using the following definition:

Definition of subtraction assssb for a, b in R:

asb = (a + -b)mod(N), where

a and -b are values in the ring RN = {0,1,2,..., N - 1}

Examples:

6s3 = (6+ -3)mod(8) = (6 + 5)mod(8) = 11 mod(8) = 3

5s7 = (5 +-7)mod(8) = (5 + 1)mod(8) = 6 mod(8) = 6

-4s3 = (-4 + -3)mod(8) = (4 + 5) mod(8) = 9 mod(8) = 1

66

Exercises:

1. Are the following true or false for numbers in RN. Show examples of each.

a. --a = a ?

b. -(a - b) = b - a

c. -a + -b = -(a + b)
�

8.4 Rings in Different Bases

So far we have built our finite rings in the decimal number system. We will now define binary and hexadecimal
rings which plays an important role in the assembly language:

Definition of a binary finite ring: Assume we are in a binary number system. We define

R2 = {0,1,10,11,100,..., N }

Examples:

a. R2 = {000, 001, 010, 011, 100, 101, 110, 111}

b. R2 = {0000, 0001, 0010, 0011, 0100, 0101, 0110, 0111, 1000, 1001, 1010,1011,1100,1101,1110, 1111}

 Definition of a hexadecimal finite ring: Assume we are in a hexadecimal number system. We define

R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11..,. N}.

Examples:

a. R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

b. R16 =

{0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,11,12,13,14,15,16,17,18,19, 1A,1B,1C,1D,1E,1F }

Exercises:

1. For the finite ring R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F} find:

a. 9r8

b. 5qB

2. For the finite ring R2 = {00000000, 00000001, ..., 11111111} find:

67

a. 10010110r01010111

b. 11010111s10101010

c. 11010111q10101010

Modular arithmetic in the base b.

As in the decimal number system we define

rb = ab mod(nb) = where

ab = qb ((((nb + rb

and

 rb < n.

To easily perform such modular arithmetic, we will use the following results:

 rb = (ab)mod nb] r10 = (a10)mod n10

Similarly we have

ab rcb = (ab + cb)mod nb] (a10 + c10)mod n10

ab qcb = (ab ((((cb)mod nb] (a10 ((((c10)mod n10

Examples:

1. Octal numbers:

a. 7628 mod (528)] 49810 mod (4210) = 3610] 448

Therefore, 7628 mod (528) = 448

b. (7718 + 2368) mod (1068)] (50510 + 15810)mod (7010) = (66310) mod (7010) =
3310] 418

Therefore, (7718 + 2368) mod (1068) = 418

c. (7718 ((((2368) mod (1068)] (50510 ((((15810)mod (7010) = (7979010) mod (7010) =
6010] 748

Therefore, (7718 ((((2368) mod (1068) = 748

2. Binary numbers:

68

a. 1001102 mod (11012)] 3810 mod (1310) = 1210] 11002

Therefore, 1001102 mod (11012) == 11002

b. (1101112 + 110112) mod (11112)] (5510 + 2710)mod (1510) = (8210) mod (1510) =
710] 1112

Therefore, (1101112 + 110112) mod (11112) = 1112 .

c. (1101112 ((((110112) mod (11112)] (5510 ((((2710)mod (1510) = (148510) mod (1510) =
010] 02

Therefore, (1101112 ((((110112) mod (11112) = 0.

3. Hexadecimal numbers:

a. 9A23F16 mod (AD16)] 63135910 mod (17310) = 8210] 5216

Therefore, 9A23F16 mod (AD16) = 5216

b. (AC2301F16 + 27DD116) mod (AD16)] (18049846310 +16328110)mod (17310) = (18066174410) mod (
17310)

 9310] 5D16

Therefore, (AC2301F16 + 27DD116) mod (AD16) = 5D16 .

c. (AC2301F16((((27DD116) mod (AD16)] (18049846310 ((((16328110)mod (17310) =

(2947196953710310) mod (17310) = 13510] 8716

Therefore, (AC2301F16((((27DD116) mod (AD16) = 8716

Exercises:

Simplify the following:

a. 2516 mod(301F6) b. (235432 + 2516)mod(301F6) c. (235432((((2516)mod(301F6)
The additive inverse of a number

Recall the definition of an additive inverse:

Definition of an additive inverse: Assume a is a number in a ring. The additive inverse is a number ~ a in the
ring where ~a r a = 0 .

69

Example:

1. Assume we have the following ring:

R = {0,1,2,3,4,5,6, 7}

a. If a = 5, then ~ a = 3

since

5r- 5 =5r3 = 8 Mod 8 = 0.

8.5 The Additive Inverse of Numbers for the Rings Rb = {0...0, 0...1, 0...2, ..., β1β2 ..., βn}

Definition of β1β2 ..., βn :The number is a positive integer β1β2 ...βn where the digits are all equal and
βk = b - 1.

Examples:

a. R10 = {0000, 0001, 0002, 0003, 0004,..., 9999}

b. R2 = {0000, 0001, 00010, 0011, 0100, ..., 1111}

c. R8 = {000, 001,002,003,004,..., 777}

d. R16 = {00, 01,02,03,04, ... , FF}

For these types of rings, we can easily compute the additive inverse of a number by taking the compliment of a
number. The following is the definition of a compliment of a number:

Definition of a complement of a number aN = a1a2a3 ...anN in R:

Let R = {0...0,0...1,0...2 ,..., βββ...β}. The compliment of a number a in R is

aN = a1Na2Na3N ...anN

where akN = β - ak

The following tables give the digit compliments of important number systems for the assembly language:

binary

ak 0 1

 akN 1 0

ak + akN 1 1

decimal

70

 ak 0 1 2 3 4 5 6 7 8 9

ak N 9 8 7 6 5 4 3 2 1 0

ak + akN 9 9 9 9 9 9 9 9 9 9

octal

 ak 0 1 2 3 4 5 6 7

ak N 7 6 5 4 3 2 1 0

ak + akN 7 7 7 7 7 7 7 7

hexadecimal

 ak 0 1 2 3 4 5 6 7 8 9 A B C D E F

ak N F E D C B A 9 8 7 6 5 4 3 2 1 0

ak+ akN F F F F F F F F F F F F F F F F

Examples:

a. R10 = {00,01,02,03,..., 99}

25N = 74

b. R8 = {00,01,02,03,..., 77}

42N = 35

c. R16 = {000,001,002,003,..., FFF}

0C4N = F3B

d. R2 = {000, 001, 010, 011, 100,101,110,111}

101N = 010

The following rule, can be useful to compute the inverse of a number:

Rule: -a = aN + 1

Examples:

1. R2 = {000000,000001, ..., 111111}

71

 a = 1001012

 aN = 0110102

-1001012 = 0110102 + 1= 0110112

a r-a = (100101 + 011010 + 1) mod (1000000) = (111111 + 1)mod (1000000) = (1000000)mod (1000000) = 0

2. R16 = {00,01,02,03,..., FF}

a = 9C

9C N = 63

-9C = 63 + 1 = 64

9C r 64 = (9C + 63 + 1)mod 100 = (FF+ 1)mod 100 = 0

Question: Why doesn’t the assembly language allow us to do normal subtraction? It is not the assembly

language that prevents this, it is the way the computer circuitry is designed. To allow subtraction, would require

to double the circuitry. Since subtraction can be accomplished by the adding the additive inverse, the design of

computers are more simple and faster. Also, since only binary numbers are used to represent numbers, the

complement of a binary number is simply changing the 0s’ to 1s’ and the 1s’ to 0s’ . Therefore, the additive

inverse of a binary number is the complement plus 1.

Exercises:

1. For each of the following binary numbers, find their additive inverses:

a. 10011100110 b. 11011011 c. 10101010

2. For the octal ring R8 = {0,1,2,3,4,5,6,7,10,...,77} , compute the following:

a. 43s56 b. 55s55 c. -10s56 d. -43s-56

3. Assume we have the hexadecimal ring: R16 = {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F,10,...,FF}. Find the

following:

a. - AC b. A9s-55 c. -10s5E d. c. -10s-5E

72

�

 Modular arithmetic for rings Rb = {0...0, 0...1, 0...2, ..., β1β2 ... βn }, βk = b - 1.

In this section, we will study the modular arithmetic ab mod(β1β2 ... βn + 1).

First observe that β1β2 ... βn + 1 = 10b
n

Examples:

1. 778 + 1 = 1008 = 108
2

2. FFFFF16 + 1 = 100000 16 = 1016
5

3. 111111112 + 1 = 1000000002 = 102
8

Therefore, for Rb
 , the following examples will show how to evaluate

 ab mod(β1β2 ... βn + 1) = ab mod(10b
n).

Examples:

1. 2538 mod(77 + 1) = 2538 mod(108
2) = 2538 mod(1008)

Solution:

2538 = 2(1008
 + 538

Therefore,

2538 mod(778 + 1) = 538

2. AC23D16 mod(FFF + 1) = AC23D16 mod(100016)

Solution:

AC23D16 = AC16 (100016
 + 23D16

Therefore,

AC23D16 mod(FFF16 + 1) = 23D16

3. 1110011012 mod(11112 + 1) = 1110001012 mod(100002)

Solution:

1110011012 = 111002 *100002 + 11012

Therefore, 1110011012 mod(11112 + 1) = 11012

From these examples the following formula evolves:

73

(anan-1an-2...a1 a0)b = (anan-1...ak+1)10k + (akak-1-1...a1 a0)b

Therefore, (anan-1an-2...a1 a0)b mod(10k) = (akak-1-1...a1 a0)b

8.6 Special Binary Rings For Assembly Language

In assembly language we will need to be concerned about following three special binary rings:

THE BYTE RING
 (8 bits)

THE WORD RING
 (16 bits)

THE DWORD (32 bits)

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
::::::::::::::::
11111111

0000000000000000
0000000000000001
0000000000000010
0000000000000011
0000000000000100
0000000000000101
0000000000000110
0000000000000111
0000000000001000
::::::::::::::::::::::::::::
1111111111111111

00000000000000000000000000000000
00000000000000000000000000000001
00000000000000000000000000000010
00000000000000000000000000000011
00000000000000000000000000000100
00000000000000000000000000000101
00000000000000000000000000000110
00000000000000000000000000000111
00000000000000000000000000001000
::
11111111111111111111111111111111

To better understand these three rings, we will now study them as equivalent rings in the base 10:

THE BYTE RING
(8 bits)

THE WORD RING
(16 bits)

THE DWORD (32 bits)

0
1
2
3
4
5
6
7
8
9

::::::::::::::::
255

0
1
2
3
4
5
6
7
8
9

::::::::::::::::
65,535

0
1
2
3
4
5
6
7
8
9

::::::::::::::::
4,294,967,295

Exercises:

1. Convert the above each of the binary table to hexadecimal.

2. Assume we have a binary number n2 = a1 a2 a3 ...an = 111...1, consisting of n, 1 bits.

74

Show n2 Y N10 = 2n - 1

Hint: Show (2n - 1 + 2n - 2 + 2n - 3 + ... 2 + 1)(2 - 1) = 2n - 1

3. Using exercise 2 , show that

a. the largest decimal number in the byte ring is 255.

b. the largest decimal number in the word ring is 65,535.

c. the largest decimal number in the dword ring is 4,294,967,295.
�

Modular arithmetic for the byte ring (in decimal).

The modulus formula is r = m mod (256)

Examples:

1. 5r 254 = (5 + 254) mod(256) = 259 mod(256) = 3

2. 164q21 = (164(21)mod(256) = 5,442,444 mod(256) = 140

100s253 = (100 - 253)mod(256) = - 153 mod(256) = 103 mod(256) = 103

Exercises:

1. Compute:

a. 122r122 b. 162q31 c. 175q222q13 d. (175r222)q13

2. Find the additive inverse for the following:

a. 214 b. 0 c. 128
�

Modular arithmetic for the word ring (in decimal).

The modulus formula is r = m mod (65,536)

1. 5r254 = (5 + 254) mod(65,536) = 259 mod(65,536) = 259

2. 23,641q500 = (23,641(500) mod(65,536) = 11,820,500 mod(65,536) = 24,020

 Exercises:

1. Compute:

a. 122r122 b. 162q31 c. 175q222q13 d. (175r222)q13

75

2. Find the additive inverse for the following:

a. 214 b. 0 c. 128
�

Modular arithmetic for the dword ring (in decimal).

The modulus formula is r = m mod (4,294,967,296)

1. 3,000,000,000,r 4,254,256,111 = (7,254,256,111) mod(4,294,967,296) = 2,959,288,815

2. 2,323,641q3,200,241,001 = (2,323,641q3,200,241,001) mod(4,294,967,296) =

465,288,199,804,641mod(4,294,967,296) = 1,507,727,073

 Exercises:

1. Compute:

a. 127,567,222r 2,123,567,222 b. 127,567,222q 2,123,567,222 c. 175q222q13,000

 d. (175r222)q13

2. Find the additive inverse for the following:

a. 214 b. 0 c. 128

3. Convert the decimal number - 202 to a binary number in a

a. byte ring b. word ring c. dword ring .
�

8.7 Ordered Relations of Rings

Definition of an ordered relationship of a ring:

Assume we have the following ring R10 = {0,1,2,..., N - 1} containing N numbers. A set of ordered pairs of
these numbers is defined as {(a,b)}, where a and b are numbers in R and the order is defined by some given
rule. Such a set of ordered pairs of numbers is defined as an ordered relationship of the ring R10.

Examples:

R = {0,1,2,3,4}

A natural set of ordered pairs

Definition: A natural set of ordered pairs is where the numbers (a,b) are defined in the their order of magnitude:

76

A natural set of ordered pairs for ring R10 would be

{(0,0) (0,1), (0,2), (0,3), (0,4), (1,1), (1,2), (1,3), (1,4), (2,2), (2,3),(2,4), (3,3), (3,4), (4,4) }

Note in this example the ordered pair is defined as (a, b) where b is greater than a or b is equal to a.

For all ordered pairs of this type we will use the following symbols:

a equals to b: a = b

b is greater than a or a is less than b: a < b

These symbols will be used to describe the ordered pair relationships of the number in the ring:
The pair (a, a) will be written as a = a.

If a …b, the pair (a, b) will be written as a< b.

For example, the pair (2,2) will be written as 2 = 2 but the pair (3,4) will be written as 3 < 4.

Therefore we have 0 < 1 < 2 < 3 < 4

Other sets of ordered pairs:

The following is another example of a set of ordered pairs of the ring R:

{(4,0), (4,1), (4,2), (4,3), (4,4), (3,0), (3,1), (3,2), (3,3), (2,0), (2,1), (2,2),(1,0), (1,1),(0,0)}

Using our special symbols

=, <

we will still have (a,b) where

a = a , and a < b where a … b.

Therefore for our ordered pair the following will hold true:

4 < 0, 4 < 1, 4 < 2, 4 < 3, 4 = 4, 3 < 0, 3 < 1, 3 < 2, 3 = 3, 2 < 0, 2 < 1, 2 = 2),1 < 0, 1 < 1,0 =)

Laws of ordered relations

For the above special sets of ordered pairs, the following two laws apply:

1. Reflexive law: For each number a in the ring, a = a.

77

2. Transitive law: If a < b and b < c then a < c.

Exercises:

1. For the ring R = {0,1,2,3,4}, using the special symbols, write out the relations of the ordered pair:

{(0,0), (1,1), (1,0), (2,2), (2,1), (2,0), (3,3), (3,2), (3,1), (3,0), (4,4), (4,3),(4,2), (4,1),(4,0)}

2. Show for the ring R = {0,1,2,3,4}, that the above 2 laws hold for both the natural and the ordered pairs:

{(0,0), (1,1), (1,0), (2,2), (2,1), (2,0), (3,3), (3,2), (3,1), (3,0), (4,4), (4,3),(4,2), (4,1),(4,0)}
�

8.8 Special Ordering of Rings For Assembly Language

In assembly language we will need to be concerned about following three special binary rings: Bytes, words and
dwords. For each of these rings the assembly language will recognize two types of ordered pairs:

1. The natural order pairs

2. The signed order pairs.

For demonstration purposes all the rings will be represented as decimal integer numbers.

Ordered pairs for the byte ring

In decimal we will write the byte ring as R = {0,1,2,3, ..., 255}.

The natural order:

The natural order for R is {(0,0), (0,1), ..,(0,255), (1,1), (1,2), ..., (1,255), (2,2), (2,3) ..., (2,255), ... (255,255)}

which can be written as

0 1 2 3 4 5 6 ----- 251 252 253 254 255

where the order pairs can be seen as a list of numbers in their increasing order:

0 < 1 < 2 < 3 < ... < 254 < 255

For an example, we can write

5 < 214, 211 < 244, 255 = 255

The signed order:

78

128 129 ... 253 254 255 0 1 2 3 ... 126 127

where the order pairs can be seen as a list of numbers in their increasing order:

128 < 129 < 130 < ... < 255 < 0 < 1 < 2 < ... < 126 < 127

The following table give in the second row the “traditional” representation of additive inverse of the numbers

0, 1, 2, 3,... 126, 127.

128 129 ... 253 254 255 0 1 2 3 ... 126 127

-128 -127 -3 -2 -1 0 1 2 3 ... 126 127

The next table gives the binary representation:

128 129 ... 254 255 0 1 2 --- 126 127

10000000 10000001 ... 11111110 11111111 00000000 0000000100000010 --- . 01111110 01111111

Therefore, sticking to our rules on ordered relationships we have for example:

251 = 251,

251 < 0

5 < 122

254 < 15

Therefore, in decimal we have

128 < 129 < 130 < ... < 254 < 255 < 0 < 1 < 2 < 3 < ... < 126 < 127 .

Exercises:

1. Construct a natural order table for the values the word ring.

2. Construct a signed order table for the values of the word ring.

3. Construct a natural order table for the values the dword ring.

4. Construct a signed order table for the values of the dword ring.

PROJECT

Assume we want a program that will perform arithmetic in finite ring R = {0,1,2,..., N} base 10.

79

Write a program that given any two numbers x, y in R will perform xry, xsy, x qy .

80

 CHAPTER 9 - ASSEMBLY LANGUAGE BASICS

INTRODUCTION

A close examination of our pseudo-language programs reveals that such programs are made up of four
major components: numbers, arithmetic expressions, variables, and instructions. In this chapter we will
study at an elementary level how these four components are defined and used in the assembly language.
Also for this chapter, as well as several subsequent chapters, all numbers will be integers.

9.1 Data Types of Integer Binary Numbers

First we must understand that when programming in assembly language all numbers are converted by the
assembler into binary numbers of a well defined data type. Most assemblers will only recognize the
following three data types of binary integer numbers:

1. Eight bit binary numbers.

2. Sixteen bit binary numbers.

3. Thirty- two bit binary numbers.

Special names are given to each of these data types: bytes, words, and dwords.

Definition: A byte is a eight bit binary number.

Definition: A word is a sixteen bit binary number.

Definition: A dword (i.e. double word) is a thirty-two bit binary number.

Important: All numbers must be defined as a given data type by the programmer in order for the
assembler to process the program.

Examples:

1. byte (8 bits):
a.

0 1 1 0 1 1 1 0

b.

0 0 0 0 0 1 0 1

81

2. word: (16 bits)

a.

1 0 0 1 1 1 0 0 0 0 1 0 1 0 1 0

b.

0 0 1 1 0 0 1 1 1 0 0 1 0 1 0 1

3. dword:(32 bits)

a.

1 0 0 1 1 0 1 0 1 1 1 0 0 1 1 1 1 0 1 0 1 0 1 1 0 1 1 1 0 0 1 1

b.

0 1 0 1 1 0 1 1 0

Exercises:

For the examples above,

1. find the binary complements.

2. find the binary additive inverses.

3. find the equivalent numbers in the hexadecimal base.
�

9.2 Other Integers

Besides binary numbers, the assembler recognize three other number basis: decimal, octal, hexadecimal .
Except for the decimal numbers, all numbers must be followed by the following suffixes:

NUMBER SYSTEM BASE SUFFIX

hexadecimal 16 h

binary 2 b

octal 8 o

decimal 10 none (or d)

82

Examples:

a. e239ch b. 101101b c. 23771o d. 3499

Exercises:

1. For the examples above, convert each to decimal.

2. Which of the following are valid numbers:

a. 2397h b. 1011011o c. 01101101h
�

9.3 Variables

As in the pseudo language code, variables are names that will contain numbers. The following rules are
required when defining a variable name in assembly language:

1. The first character of the variable name must begin with either a letter (A, B, ..., Z, a, b, ..., z), a
underscore (_), @, ? or $.

The other characters can also be digits.

2. They are not case- sensitive.

3. The maximum number of characters in the name is 247.

Examples:

a. apple_of_my_eye b. S23x c. $money2 d. hdachslager@ivc e. X1_or_X2

f. X g. y h. $124 I. _ @yahoo j. z2

Variable types

As in binary numbers, variables are of three data types: BYTE, WORD, DWORD.

We will identify the data types as follows:

variable name byte

variable name word

variable name dword

Examples:

1. x byte

2. Number word

83

3. Large_Number_dword

Exercises:

Which of the following are legal variable names:

a. _apple_of_my_eye b. S_23x c. $money2& d. hdachslager@ivc.edu e. 1XorX2
����

9.4 Assigning Integers to Variables

 There are two ways to assign an integer to a variable:

C By initialing the variable when the variable’s data type is defined.

C By using the mov assignment instruction.

Initialing the variable

To initialize the variable we use the form:

variable name data type integer

Examples:

1.
x byte 1101101b

0110 1101

2.
y byte 5Ah

0101 1010

3.
z byte 250

1111 1010

4.
x word 10101101101b

0000 0101 0110 1101

84

 .
y word 1D5Ah

0001 1101 0101 1010

6.
z word 65500

1111 1111 1101 1100

 7.

x dword 110101111010101000110101101101b

0011 0101 1110 1010 1000 1101 0110 1101

8.
y dword 2ABC1D5Ah

 0010 1010 1011 1100 0001 1101 0101 1010

9.
z dword 4294967216

1111 1111 1111 1111 1111 1111 1011 0000

Exercises:

1. Verify that the conversions to binary are correct for examples 1 - 9.

2. For the above 9 examples above, convert each data type to their hexadecimal values.
�

Defining a variable without initialization

If you do not wish to initialize the variable, use the symbol ? in place of the integer.

Examples:

x byte ?

85

y word ?

z dword ?

Using the mov assignment instruction

The mov instruction is of the general form:

mov destination, source

where the destination must be a variable or register (discussed below) and the source can be an integer,
variable or register.

The mov instruction can be used in five ways:

MOVE INSTRUCTION ORDER OF ASSIGNMENT

mov register1, register2 register1 7 register2

mov register, variable register 7 variable

mov variable, register variable 7 register

mov register, integer register 7 integer

mov variable, integer variable 7 integer

Note: The definition of registers are defined in the next section.

Important: You cannot use the mov instruction to move data contained in one variable directly into
another variable: mov variable, variable is not a legal statement.

The following rules apply:

Rule 1. The destination and the source cannot both be variables.

Rule 2. If the source is a variable, then both the destination and the source must be of the same data type.

Rule 3: All hexadecimal numbers must begin with a digit (0 - 9)

86

Examples:

1.
x byte ?
 mov x, 1011010b

0101 1010

2.
z byte ?
mov z, 8Fh

1000 1111

3.
y byte ?
mov y, 252

1111 1100

4.
x word ?
 mov x, 10011001011010b

0010 0110 0101 1010

5.
z word ?
mov z, 1D8Fh

0001 1101 1000 1111

6.
y word ?
mov y, 65010

1111 1101 1111 0010

7.
x dword ?
 mov x, 10101110101010011001011010b

87

0000 0010 1011 1010 1010 0110 0101 1010

8.
z dword ?
mov z, 0ACEF1D8Fh

1010 1100 1110 1111 0001 1101 1000 1111

9.
y dword ?
mov y, 4194967096

1111 1010 0000 1010 0001 1110 0011 1000

Note:

C mov x, A23F h is not valid by Rule 3. However mov x, 0A23F h is valid.

C mov x,y is not valid by Rule 1.

Exercises:

1. Verify that the conversions to binary are correct for examples 1 - 9.

2. For the above 9 examples above, convert each data type to their hexadecimal values.
�

9.5 Registers

Registers are used by the programmer for storing data and performing arithmetic operations.

There are three types of registers that are used for arithmetic operations and storage: 32 - bit, 16 bit and
8-bit.

Important: All three types of registers are rings.

The 32- bit registers:

The 32-bit registers that we have are EAX, EBX, ECX, EDX

These 4 registers are used to store 32- bit binary numbers. They all can be used to perform arithmetic
operations. However, the recommended convention is to use only the EAX for arithmetic operations and
the other three 32-bit registers for temporary storage. These registers will be broken into 4 bytes
sections:

88

32 25 24 17 16 9 8 1

where each bye is divided into two 4 bits

Examples:

1.
mov eax, 5

EAX

0000 0000 0000 0000 0000 0000 0000 0101

2.
mov ebx, 101 01010010b

EBX

0000 0000 0000 0000 0000 0101 0101 0010

3.
mov ecx, 0A93F2CAh

ECX

0000 1010 1001 0011 1111 0010 1100 1010

4.
mov edx , 34577111o

EDX

0011 0100 0101 0111 0111 0001 0001 0001

Exercises:

1. Explain why the follow instructions will cause an error:

a. mov eax, D2h

b. x byte ?
mov eax, x

c. mov eax, 3ABDD12E1h

2. For exercise 1, what can be done so D2h can be stored in EAX?

89

3. Complete the following table, using only binary numbers in EAX:

ASSEMBLY CODE EAX

mov eax, 2D3Fh

mov eax, 3h

mov eax, 1 010101b

mov eax, 434789

mov eax, 4DFA1101h

mov eax 2675411o

����

It is important to realize, as we demonstrated, that only binary numbers are stored in the variables and
registers, irrespective of the number system we are using. However, since binary numbers are difficult to
read, most debuggers for the assembly language will display the contents of the registers as well as the
variables in the equivalent hexadecimal number system (base 16). The following table gives the
equivalent values between the binary digits and the hexadecimal digits:

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 2 3 4 5 6 7 8 9 A B C D E F

Examples:

1. mov edx, 9AB120h

EDX

BASE 2: 0000 0000 1001 1010 1011 0001 0010 0000

BASE 16: 0 0 9 A B 1 2 0

2. mov ecx, 5953189d

ECX

BASE 2: 0000 0000 0101 1010 1101 0110 1010 0101

BASE 16: 0 0 5 A D 6 A 5

Most of our mathematical experiences has been working with numbers in the base 10. Therefore, if our
debugger returns the numbers in our registers as well as variables in hexadecimal, frequently we will
need to translate these numbers into base 10. How do we do this? Well, we could use the methods we

90

have learned so far to find the equivalent hexadecimal numbers in the base 10. However, doing this is
not practical. It would be better to use a calculator that will quickly go from one base to another.
Microsoft Windows XP and Vista provides such a calculator.

Examples:

1. mov eax, 10001100b

EAX

BASE 2: 0000 0000 0000 0000 0000 0000 1000 1100

BASE 16: 0 0 0 0 0 0 8 C

BASE 10: 140

2. mov ebx, 0DF3h

EBX

BASE 2: 0000 0000 0000 0000 0000 1101 1111 0011

BASE 16: 0 0 0 0 0 D F 3

BASE 10 3,571

3. mov ecx, 0111 0111 1101 1110 1110 1110 1011 0111 b

ECX

BASE 2: 0111 0111 1101 1110 1110 1110 1011 0111

BASE 16: 7 7 D E E E B 7

BASE 10: 2,011,098,80

Exercises:

1. Complete the following:

a. mov eax , 278901

EAX

BASE 2:

BASE 16:

BASE 10:

91

b. mov eax , 3ABCD10Fh

EAX

BASE 2:

BASE 16:

BASE 10:

c. mov edx , 2772101o

EDX

BASE 2:

BASE 16:

BASE 10:

d. mov eax , 278901

EAX

BASE 2:

BASE 8:

BASE 10:

e. mov ecx , 3ABCD10Fh

ECX

BASE 2:

BASE 8:

BASE 10:

f. mov edx , 2772101o

EDX

BASE 2:

BASE 8:

BASE 10:

2. What is the largest number?:

a. binary integer of type BYTE ?

92

b. octal integer of type BYTE ?

c. decimal integer associated with type BYTE ?

3. What is the largest:

a. binary integer of type WORD ?

b. octal integer of type WORD ?

c. decimal integer associated with type WORD ?

4. What is the largest:

a. binary integer of type DWORD ?

b. octal integer of type DWORD ?

c. decimal integer associated with type DWORD ?
�

The 16- bit registers:

The 16-bit registers are AX, BX, CX, DX. Each of these registers occupy the right-most part of there
corresponding 32 bit - registers:

EAX AX

32 25 24 17 16 9 8 1

 EBX BX

32 25 24 17 16 9 8 1

ECX CX

32 25 24 17 16 9 8 1

 EDX DX

32 25 24 17 16 9 8 1

93

Example:

INSTRUCTIONS 32 25 24 17 16 9 8 1

mov eax, 3C293567h 3 C 2 9 3 5 6 7

mov ax, 9BCh 3 C 2 9 0 9 B C

mov ax, 56325d 3 C 2 9 D C 0 F

Note: When working with a 16-bit register, the other bits of the 32-bit register are not affected.

The 8- bit registers:

The 8-bit registers are AH, AL, BH, BL, CH, CL, DH, DL . AH occupies the left most bits of AX and AL
occupies the right most 8 bits of AX, etc.:

 EAX AX

32 25 24 17 16 9 8 1

AH AL

EBX BX

32 25 24 17 16 9 8 1

BH BL

ECX CX

32 25 24 17 16 9 8 1

CH CL

EDX DX

32 25 24 17 16 9 8 1

DH DL

Examples:

INSTRUCTIONS 32 25 24 17 16 9 8 1

mov eax, 7293567h 0 7 2 9 3 5 6 7

mov ax, 9BCh 0 7 2 9 0 9 B C

94

mov ah, 5 0 7 2 9 0 5 B C

mov al, 0Eh 0 7 2 9 0 5 0 E

mov al, 251 0 7 2 9 0 5 F B

Note: When working with a 8-bit register, the other bits of the 16-bit and the 32-bit registers are not
affected

Mixing Registers

Rule: The assembler will not allow mixing of registers of different data types. The following are
examples of errors in programming:

mov eax, bx

mov cx, eax

mov dx, al

Exercises:

1. Complete the following tables using hexadecimal numbers only :

32 25 24 17 16 9 8 1

INSTRUCTIONS

mov eax, 293567h

mov ax, 9BCh

mov ax, 3D32h

mov ax, 5h

mov ax, 3h

mov eax, 1267

2. 32 25 24 17 16 9 8 1

INSTRUCTIONS

mov eax, 112937234

mov ax, 9BCh

mov al, 5

mov ah, 0Eh

mov al, 2

�

95

9.6 Transferring data between registers and variables

The following examples demonstrate how integer data is transferred using the mov instruction:

Examples:

1.
 x dword 23
mov eax, x

2.
x dword 23
y dword ?
mov ebx, x
mov y, ebx

3.
 x word 3A7Fh
mov ax, x

4.
x word 3A7Fh
y word ?
mov bx, x
mov y, bx

5.
 x byte 3Ah
mov ah, x

6.

x byte 3Ah
y byte ?
mov bl, x
mov y, bl

Transferring data from one variable to another variable

The above examples show how to transfer the contents of one variable to another variable. The
following algorithm demonstrates: x := y .

PSEUDO CODE AL PSEUDO CODE ASSEMBLY LANGUAGE CODE

X:= Y EAX := Y mov eax, y

X:= EAX mov x,eax

96

The following program will perform the following tasks:

Task 1: Store the number 23 into x

Task 2: Store the number 59 into y

Task 3: Store the contents of x into y.

AL PSEUDO CODE ASSEMBLY LANGUAGE CODE

X := 23 mov x, 23

Y := 59 mov y, 59

EAX := X mov eax, x

Y := EAX mov y,eax

EXERCISE:

1. Modify the above program by initializing the values in x, y without using the mov instruction.

2. Complete the following table:

AL PSEUDO CODE AL CODE X Y EAX EBX

X := 23 mov x, 23

Y := 59 mov y, 59

EAX := X mov eax, x

EBX := Y mov ebx, y

X := EBX mov x, ebx

 Y := EAX mov y, eax

2. In exercise 1, what does the code accomplish ?
����

9.7 Assembly Language Statements

In assembly language there are three basic statements: instructions, directives, and macros.

Definition of instructions:

An instruction is translated by the assembler into one or more bytes of object code which will be
translated into machine language. The general form of an instruction is:

label: (optional) mnemonic operand(s) ; comment (optional)

97

where

mnemonic is an instruction and operands can be numeric value, variable, register.

Example:

label: mov eax, 23h ; This is an instruction.

There are two kinds of instructions:

1. non-executable codes

2. executable codes.

Example of a non-executable instruction: The comment

Definition of a comment: A comment is any string of characters preceded by a semicolon (;)

The comment is ignored by the assembler.

Example:

 mov eax, 2 ; Transfer the number 2 into the register EAX.

The instruction mov eax, 2 will be executed by the assembler but the string following the semicolon will
be ignored by the assembler.

The label:

All instructions can be preceded by a label ending in a colon (:). The rules for the label are basically the
same as variables.

Example:

xyz: mov eax , -4

Later we will se how labels are used in programing.

Definition of a Directive:

A directive instructs the assembler to take a certain action.

Variable Data Type Declarations

A Variable has to be designated as one of the following type types: BYTE, WORD, DWORD.

Definition of a BYTE: A byte consists of 8 bits.

98

Definition of a WORD: A word consists of 2 bytes (16 bits).

Definition of a DWORD : A double word (DWORD) consists of 4 bytes (32 bits).

The form of the variable data type declarations is the following:

variable name data type numeric value assigned or ?

Examples:

Num BYTE 23 ;will define Num as a 8 bit byte and will convert the number 23 to binary and store
it into the variable Num.

Num WORD ? ;will define Num as a 16 bit word but will not assign a value to Num.

Num DWORD 0ACD35h ;will define Num as a 32 bits dword and will convert the number
0ACDE5h to binary and store it into the variable Num.

Note: You may place a label in front of the variable declaration but the colon (:) is not allowed.

Exercises:

1. What is the largest integer number base 10 that can be store in a variable of type BYTE.

2. What is the largest integer number base 10 that can be store in a variable of type WORD.

3. What is the largest integer number base 10 that can be store in a variable of type DWORD.

4. What is the largest integer number base 16 that can be store in a variable of type BYTE.

5. What is the largest integer number base 16 that can be store in a variable of type WORD.

6. What is the largest integer number base 16 that can be store in a variable of type DWORD.

7. What is the largest integer number base 8 that can be store in a variable of type BYTE.

8. What is the largest integer number base 8 that can be store in a variable of type WORD.

9. What is the largest integer number base 8 that can be store in a variable of type DWORD.
�

Exercise:
Assume the above program is run. For the table below, fill in the final values stored.

EAX EBX A B C D E F

�

99

9.8 A SAMPLE ASSEMBLY LANGUAGE WRITTEN FOR MASMA (Microsoft Assembler)

The following is a complete assembly language program written for the MASMA

(Microsoft Assembler)

; This program assigns values to registers
; Last update: 2/1/02

.386

.MODEL FLAT

.STACK 4096

.DATA
a byte 40
b byte 30
d dword 10
e byte 50
f word 20

.CODE ; start of main program code

_start:
 ;
 ; code inserted here
 ;
 mov eax, 10h
 mov ebx, 15h
 mov eax, d
 mov ax, f
 mov ah, e
PUBLIC_start

END ; end of source code

100

CHAPTER 9 - ASSEMBLY LANGUAGE BASICS

PROJECT

Write an assembly language program that will rearrange the numbers so that they are in increasing order
as shown below::

A B C D E

BEFORE 40 30 10 50 20

AFTER 10 20 30 40 50

Do not add any additional variables.

101

CHAPTER 10 - ARITHMETIC EXPRESSIONS

INTRODUCTION

Our next step in becoming assembly language programmers is to learn how to create arithmetic expressions.
Those who have studied higher level programming languages know that assigning arithmetic expressions to
variables generally follow the normal assignment statements. For example, in pseudo- code we can write such
instructions as X =: 2 + 3. However, in assembly language, it is not possible to directly write such an assignment
statement.
To be able to create arithmetic expressions in assembly language, we first study what are unsigned/signed
integer numbers, followed by the arithmetic operations that are available to us. We then learn how to build
arithmetic expressions using these types of numbers as needed.

10.1 Ring Registers

In Chapter 9, (9.6) we saw that there are three important rings in the assembly language: byte rings, word rings
and dword rings. The three type of registers EAX,(EBX,ECX, EDX), AX (BX,CX,DX) and AH, AL (BH,BL,
CH,CL, DH,DL) are rings, they conform to the modular rules of arithmetic. The modular formula is

 r = m mod N where

N = 25610 for the byte rings: AH, AL (BH,BL, CH,CL, DH,DL),

N = 65,53610 for the word rings: AX (BX,CX,DX),

N = 4,294,967,29610 for the dword rings: EAX,(EBX,ECX, EDX),

 Additive Inverses

Since the rings do not have negative numbers, as we have in ordinary numbers in the base 10, we need to
approach the creation of “negative” numbers in these rings by the following reasoning: in the ordinary base 10
number system, negative numbers are additive inverses of non negative numbers and non negative numbers are
additive inverses of negative numbers. Therefore, we can create additive numbers in the rings by associating
each number of the ring with its corresponding additive inverse. To accomplish this, we begin with the
definition of unsigned and signed integers. (See chapter 8, for the definition of additive inverse for a ring and
section 8.8 where we first introduce the concept of unsigned and signed binary integers).

 Unsigned and signed binary integers

We start with a arbitrary ring of binary integer numbers:

R = {0...00 , 0...01, 0...10, 0...11,....011...1, 10...00, 10...01, 10...10, 10...011, ..., 11...1}

For rings of this type we have the following definitions:

Definition of an unsigned binary integer number: An unsigned binary integer number has as its extreme left
most bit the bit number zero (0).

102

Definition of a signed binary integer: A signed binary integer number has as its extreme left most bit the bit
number one (1).

We see above that the ring R can be divided into two subsets consisting of those binary number that are
unsigned:

 {0...00 , 0...01, 0...10, 0...11,....011...1}

and those that signed:

{10...00, 10...01, 10...10, 10...011, ..., 11...1}

The 8 bit ring as unsigned binary and integer numbers.

The following table contains the integer numbers base 10 and their 8 bit unsigned binary representation:

NON-NEGATIVE INTEGERS BASE 10 UNSIGNED BINARY REPRESENTATION

0 00 00 00 00

1 00 00 00 01

2 00 00 00 10

3 00 00 00 11

4 00 00 01 00

5 00 00 01 01

6 00 00 01 10

7 00 00 01 11

8 00 00 10 00

9 00 00 10 01

::::: :::::

127 01 11 11 11

Next we need to convert the 8 bit binary numbers to their 8 bit additive inverse numbers. From chapter 8, we
use the following formula:

The additive inverse of a1a2a3a4a5a6a7 a8 equals (a1a2a3a4a5a6a7a8)N
 + 1 = a1Na2Na3Na4Na5Na6Na7Na8N + 1

where

ak
N

 = 1 if ak = 0

and

 ak
N

 = 0 if ak = 1.

103

The following table of unsigned and signed binary numbers are listed so that each of two columns are additive
inverses of each other:

INTEGERS BASE 10 BINARY
REPRESENTATION

INTEGERS BASE 10 BINARY
REPRESENTATION

0 00 00 00 00 0 00 00 00 00

1 00 00 00 01 255 11 11 11 11

2 00 00 00 10 254 11 11 11 10

3 00 00 00 11 253 11 11 11 01

4 00 00 01 00 252 11 11 11 00

5 00 00 01 01 251 11 11 10 11

6 00 00 01 10 250 11 11 10 10

7 00 00 01 11 249 11 11 10 01

8 00 0010 00 248 11 11 10 00

9 00 00 10 01 247 11 11 01 11

::::: ::::: :::: ::::

127 01 11 11 11 129 10 00 00 01

128 10 00 00 00 128 10 00 00 00

Note: in the above table, the binary numbers in each of the columns are additive inverses of each other.

Examples:

1. Convert the binary number representing 5 to its additive inverse.

Step 1: The integer number 5: 00000101

Step 2: The additive inverse of 00000101 equals 11111010 + 1 = 11111011

2. Convert the binary number representing 3 to its additive inverse.

Step 1: The integer number 3: 00000011

Step 2: The additive inverse of 00000011 equals 11111100 + 1 = 11111101

 The following table gives the representation of the above table as hexadecimal numbers. Most assemblers will
display the binary numbers in registers as their corresponding hexadecimal values.

104

 INTEGERS BASE 10 HEXADECIMAL
NUMBERS

 INTEGERS BASE 10 HEXADECIMAL
NUMBERS

0 00 0 00

1 01 255 FF

2 02 254 FE

3 03 253 FD

4 04 252 FC

5 05 251 FB

6 06 250 FA

7 07 249 F9

8 08 248 F8

9 09 247 F7

::::: ::::: :::: ::::

127 7F 129 81

128 80 128 80

Note: in the above table, the hexadecimal numbers in each of the columns are additive inverses of each other.

Exercises:

1. Find the additive inverse of the following numbers in binary as well as the number system given:

a. 100101b b. 2E h c. 222 d

2. Find in binary representation of the following numbers :

a. - 81h b. - 1010111b c. -28h
�

105

The 16 bit rings

The following table contains the 16 bit ring divided into columns which are additive inverses of each other.

INTEGERS
 BASE 10

BINARY REPRESENTATION INTEGERS
 BASE 10

BINARY
REPRESENTATION

0 00 00 00 00 00 00 00 00 0 00 00 00 00 00 00 00 00

1 00 00 00 00 00 00 00 01 65535 11 11 11 11 11 11 11 11

2 00 00 00 00 00 00 00 10 65534 11 11 11 11 11 11 11 10

3 00 00 00 00 00 00 00 11 65533 11 11 11 11 11 11 11 01

4 00 00 00 00 00 00 01 00 65532 11 11 11 11 11 11 11 00

5 00 00 00 00 00 00 01 01 65531 11 11 11 11 11 11 10 11

6 00 00 00 00 00 00 01 10 65530 11 11 11 11 11 11 10 10

7 00 00 00 00 00 00 01 11 65529 11 11 11 11 11 11 10 01

8 00 00 00 00 00 00 10 00 65528 11 11 11 11 11 11 10 00

9 00 00 00 00 00 00 10 01 65527 11 11 11 11 11 11 01 11

:::: :::: :::: :::

32767 01 11 11 11 11 11 11 11 32769 10 00 00 00 00 00 00 01

32768 10 00 00 00 00 00 00 00 32768 10 00 00 00 00 00 00 00

Note: in the above table, the binary numbers in each of the columns are additive inverses of each other.

The following table gives the representation of the binary numbers as hexadecimal numbers.

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

INTEGERS
BASE 10

HEXADECIMAL
NUMBERS

0 00 00 0 00 00

1 00 01 65535 FF FF

2 00 02 65534 FF FE

3 00 03 65533 FF FD

4 00 04 65532 FF FC

5 00 05 65531 FF FB

6 00 06 65530 FF FA

7 00 07 65529 FF F9

106

8 00 08 65528 FF F8

9 00 09 65527 FF F7

:::: :::: :::: ::::

32767 7F FF 32769 80 01

32768 80 00 32768 80 00

Note: in the above table, the hexadecimal numbers in each of the columns are additive inverses of each other.

Exercises:

1. Find the additive inverse of the following numbers in binary as well as the number system given:

a. 100101b b. 2E h c. 222 d

2. Find in binary representation of the following numbers :

a. - 81h b. - 1010111b c. -28h
�

The 32 bit rings

The following table contains the 32 bit ring divided into columns which are additive inverses of each other.

INTEGERS
 BASE 10

BINARY
 REPRESENTATION 32 bits

INTEGERS
BASE 10

BINARY
REPRESENTATION 32 BITS

0 00---00 00 00 00 0 00---00 00 00 00

1 00---00 00 00 01 4,294,967,295 11---11 11 11 11

2 00---00 00 00 10 4,294,967,294 11---11 11 11 10

3 00---00 00 00 11 4,294,967,293 11---11 11 11 01

4 00---00 00 01 00 4,294,967,292 11---11 11 11 00

5 00---00 00 01 01 4,294,967,291 11---11 11 10 11

6 00---00 00 01 10 4,294,967,290 11---11 11 10 10

7 00---00 00 01 11 4,294,967,289 11---11 11 10 01

8 00---00 00 10 00 4,294,967,288 11--- 11 11 00 00

9 00---00 00 10 01 4,294,967,287 11--- 11 11 01 11

:::: :::: :::: ::::

2,147,483,647 01---11 11 11 11 2,147,483,649 10---00 00 00 01

2,147,483,648 10---00 00 00 00 2,147,483,648 10---00 00 00 00

Note: in the above table, the binary numbers in each of the columns are additive inverses of each other.

107

The following table gives the representation of the binary numbers as hexadecimal numbers

INTEGERS
 BASE 10

HEXADECIMAL
 NUMBERS

INTEGERS
 BASE 10

HEXADECIMAL
NUMBERS

0 00 00 00 00 0 00 00 00 00

1 00 00 00 01 4,294,967,295 FF FF FF FF

2 00 00 00 02 4,294,967,294 FF FF FF FE

3 00 00 00 03 4,294,967,293 FF FF FF FD

4 00 00 00 04 4,294,967,292 FF FF FF FC

5 00 00 00 05 4,294,967,291 FF FF FF FB

6 00 00 00 06 4,294,967,290 FF FF FF FA

7 00 00 00 07 4,294,967,289 FF FF FF F9

8 00 00 00 08 4,294,967,288 FF FF FF F8

9 00 00 00 09 4,294,967,287 FF FF FF F7

:::: :::: :::: :::::::::

2,147,483,647 7F FF FF FF 2,147,483,649 80 00 00 01

2,147,483,648 80 00 00 00 2,147,483,648 80 00 00 00

Note: in the above table, the hexadecimal numbers in each of the columns are additive inverses of each other.

Exercises:

1. Find the additive inverse of the following numbers in binary as well as the number system given:

a. 100101b b. 2E h c. 222 d

2. Find in binary representation of the following numbers :

a. - 81h b. - 1010111b c. -28h
�

Computing a - b

In order to see how subtraction of numbers is handled by the assembler, we need to interpret a - b as
addition:

a - b = a + - b

We will interpret -b as the additive inverse of b.

For the following examples, we assume that the numbers are represented in 8 bit registers.

108

Examples:

1. Show 5 - 2 = 3

Solution:

Step 1: 5 - 2 = 5 + -2

Step 2: The binary representation of 5 is 00000101

Step 3: The binary representation of - 2 is the additive inverse of 2. The binary representation of -2 is

(00000010)N + 1 = 11111101 + 1 = 11111110

Step 4: The binary representation of 5 + - 2 is 00000101 + 11111110 = 00000011

Step 5: Since the leading bit is 0, 00000011 is the binary representation of 3.

2. Show 2 - 5 = - 3

Solution:

Step 1: 2 - 5 = 2 + -5

Step 2: The binary representation of 2 is 00000010

Step 3: The binary representation of - 5 is the additive inverse of 5. The binary representation of -5 is

(00000101)N + 1 = 11111010 + 1 = 11111011

Step 4: The binary representation of 2 + - 5 is 00000010 + 11111011 = 11111101

Step 5: To find The binary representation of 2 + - 5 we compute the additive inverse of 11111101:

 (11111101)N + 1 = 00000010 + 1 = 00000011

which is the binary representation of 3.

Step 6: Therefore the binary representation of 11111101 is -3

3. Show - 2 - 5 = - 7

 Solution:

Step 1: -2 - 5 = -2 + -5

109

Step 2: From the above table, the binary representation of -2 is 11111110.

Step 3: From the above table, the binary representation o of - 5 is 11111011

Step 4: The binary representation of - 2 + - 5 is 11111110 + 11111011 = 11111001

Step 5: From the above table we find that the additive inverse of 11111001 is -7 .

Exercises:

1. Perform the following operations:

a. 10011010b + 1010110b b. 244d + 177d + 8d c. 5Ah + FEh d. 78h - EBh

2. From example 1, we found

00000101 + 11111110 = 00000011

When adding how does one justify that when performing addition on these two numbers, the extreme left digit 1
disappears.

3. A mathematical system is said to be an integral domain if for all numbers a,b in the system where
a(b = 0, it follows that a = 0 or b = 0.

Is the 8 -bit ring an integral domain? Explain.

4. Which numbers, if any, are equal to its own additive inverse ?
�

Computing a((((b

As we did for addition and subtraction, we will show by example how multiplication of binary numbers is
accomplished.

Examples:

1. Show 2(3 = 6

Step 1: The binary representation of 2 is 00000010 .

Step 2: The binary representation of 3 is 00000011 .

Step 3: Using the standard method of multiplication:

 00000010
 00000011
 00000010
 00000010x
 00000110

110

From the above table, we see that

 00000110

is the binary representation of 6.

2. Show -2(3 = - 6

Step 1: The binary representation of -2 is 11111110 .

Step 2: The binary representation of 3 is 00000011 .

Step 3: Using the standard method of multiplication:

 11111110
 00000011
 11111110
 11111110x
 1011111010

 10111110102= Y 76210 mod 256 = 25010

From the above table, we see that 250 is the additive inverse of 6

Exercises:

 1. Perform the following operations:

a. 10011010b (1010110b b. 244d (177d + 8d c. 5Ah (FEh d. (78h - EBh)(2h

2. For each of the examples above, convert the final answers to hexadecimal.

�

10.2 ASSEMBLY LANGUAGE ARITHMETIC OPERATIONS FOR INTEGERS

The following is a list of the important arithmetic operations for integers:

Addition (+):

Definition: Form of the assembly language add instruction: add register, source

where the following rules apply:

Rule 1: The integers may be unsigned or signed.

Rule 2: The source can be a register, variable, or numeric value.

111

Rule 3: The resulting sum will be stored in the register.

Rule 4: Data types for the register and source must always be the same.

Examples :

1.

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY CODE

Z := 2h + 3h EAX := 2h mov eax, 2h

EAX := EAX + 3h add eax, 3h

Z := EAX mov z, eax

2.

ASSEMBLY CODE EAX AX AH AL X

x dword 2h 2

mov eax, 12345h 00 01 23 45 23 45 23 45 2

add eax, x 00 01 23 47 23 47 23 47 2

3.

ASSEMBLY CODE EAX AX AH AL X

x word 1h 1

mov ax, 0ffffh 00 00 ff ff ff ff ff ff 1

add ax, x 00 00 00 00 00 00 00 00 1

4.

ASSEMBLY CODE EAX AX AH AL X

x byte 2h 2

mov eax, 0 00 00 00 00 00 00 00 00 2

mov al, 0ffh 00 00 00 ff 00 ff 00 ff 2

add al, x 00 00 00 01 00 01 00 01 2

5.

112

ASSEMBLY CODE EAX AX AH AL X

x byte 2h 2

mov eax,0 00 00 00 00 00 00 00 00 2

mov ah, 0ffh 00 00 ff 00 ff 00 ff 00 2

add ah, x 00 00 01 00 01 00 01 00 2

6.

PSEUDO_COD
E

AL
PSEUDO-

CODE

AL CODE EAX AX X Y W

x word ?

Y := 223h Y := 223h y dword 223h 223

W := 79223h W := 79223h w dword 79223h 22379223

X:= 2h + 3h AX:= 2h mov ax, 2h 00 00 00 02 00 02 223 79223

AX := AX + 3h add ax, 3h 00 00 00 05 00 05 223 79223

X := AX mov, x, ax 00 00 00 05 00 05 5 223 79223

W := W + Y EAX:= W mov eax, w 00 07 92 23 92 23 5 223 79223

EAX := EAX
+Y

add eax, y 00 07 94 46 9446 5 223 79223

W := EAX mov w, eax 00 07 94 46 9446 5 22379446

Exercises:

1. Complete the following tables:

ASSEMBLY CODE EAX AX AH AL X

x dword 2h

mov eax, 12345h

add eax, x

.

ASSEMBLY CODE EAX AX AH AL X

x word 1h

mov eax, 0fffffh

add ax, x

113

ASSEMBLY CODE EAX AX AH AL X

x byte2h

mov eax, 12345h

add eax, x

2. Complete the table below:

PSEUDO CODE AL PSEUDO-CODE AL CODE EAX AX X Y W

x word ?
y dword 223h

w dword
79223h

W := W + Y

X := 2 + 3

�

Subtraction (-):

Definition: Form of the subtraction instruction: sub register, source

where the following rules apply:

Rule 1: The integers may be signed or unsigned.

Rule 2: The source can be a register, variable, or numeric value.

Rule 3: The resulting subtraction will be stored in the register.

Rule 4: Data types for the register and source must always be the same.

Examples :
1.

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY CODE

Z := 2h - 3h EAX := 2h mov eax, 2h

EAX := EAX - 3h sub eax, 3h

Z := EAX mov z, eax

114

2.

ASSEMBLY CODE EAX AX AH AL X

x dword 10h 10

mov eax , 12345678h 1234 5678 5678 56 78 10

sub eax, x 1234 5668 5668 56 68 10

3.

ASSEMBLY CODE EAX AX AH AL X

x word 5000h 5000

mov eax, 12345678h 1234 5678 5678 56 78 5000

sub ax, x 1234 0678 0678 06 78 5000

4.

ASSEMBLY CODE EAX AX AH AL X

x byte 70h 70

mov eax, 12345678h 1234 5678 5678 56 78 70

sub al, x 1234 5608 5608 56 08 70

Exercises:

1. Complete the following table:

PSEUDO-CODE AL PSEUDO-CODE AL CODE EAX X Y Z

x dword ?
y dword ?
z dword ?

X := CD2h - 2h EAX := OCD2h

EAX := EAX - 2h

X := EAX

X := 421h X := 421h

Y := 4E75h Y := 4E75h

Z:= X - Y EAX := X

EAX := EAX - Y

Z := EAX

115

2.

ASSEMBLY CODE EAX AX AH AL X

x dword 5677h

mov eax , 0C1234h

sub eax, x

3.

ASSEMBLY CODE EAX AX AH AL X

x word 0ab9h

mov eax, 0cca18h

sub ax, x

4.

ASSEMBLY CODE EAX AX AH AL X

x byte 0dh

mov eax, 12345678h

sub al, x

�

Multiplication ((((():

Definition: There are 2 multiplication instructions we can use: mul and imul.

C Form of the mul instruction: mul source

CForm of the imul instruction: imul source

where the following rules apply:

Rule 1: The register used for multiplication is alway EAX.

Rule 2a: For the mul instruction, the integers that are multiplied must be unsigned.

Rule 2b: For the imul instruction, the integers can be either unsigned, signed order or both.

Rule 3: The source can be a register or a variable. The source cannot be a numeric value .

Rule 4: The location of the other number (accumulator) to be multiplied it is in one of the following registers:

C AL, if the source is a byte.

116

C AX, if the source is a word.

C EAX, if the source is a double word.

Rule 5: The resulting product will be located in the accumulator under the following rules:

C If the data type is a byte (8 bits) , then the resulting product (8 bits) will be located in AL.

C If the data type is a word (16 bits), then the resulting product (16) bits it will be located in AX;

C If the data type is a dword (32 bits), then the resulting product (32) bits has its lower 16 bits will be located
in AX and higher order bits in the DX register.

C If the data type is a qword (64 bits)1, then the resulting product (64) bits its lower 32 bits will be located in
EAX and its higher order bits in the EDX register.

Examples :
1.

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY CODE

Z := 2h(3h EAX := 2h mov eax, 2h

EBX:= 3h mov ebx, 3h

EAX := EAX(EBX mul ebx

Z := EAX mov z, eax

2.

ASSEMBLY CODE EAX AX EDX X

x dword 10h 10

mov eax , 1234567h 01 23 45 67 10

mul x 45 67 01 23 10

3.

ASSEMBLY CODE AL AX X

x byte 10h 10

mov al, 23h 23 00 23 10

mul x 30 02 30 10

1 The qword will be discussed in chapter 20.

117

4.

ASSEMBLY CODE AX DX X

x word 100h 100

mov ax 1234h 12 34 100

mul x 34 00 00 12 100

5.

ASSEMBLY CODE EAX EDX X

x dword 100h 100

mov eax , 1234567h 01 23 45 67 10

mul x 23 45 67 00 01 10

Exercises:

1. Complete the following tables:
.

ASSEMBLY CODE EAX AX AH AL X

x dword 0edh

mov eax , 77bd55h

imul x

ASSEMBLY CODE EAX AX AH AL X

x byte 0bh

mov al, 2ch

imul x

�

118

Division (÷):

For this type of division, we are only performing integer division. The following is the definition of integer
division:

Definition of integer division n÷m : Given unsigned integers n, m, we say n is divided by m where

n = q(m + r, where

0 # r < m.

n÷m = q

n = (n÷m)(m + r

Note: The general terminology is:

n: dividend
m:divisor
q: quotient
r: remainder

Examples:

a. 9÷ 4: 9 = 2(4 + 1 where q = 2 and r = 1

9÷4 = q = 2

b. 356 ÷ 7: 356 = 50(7 + 6 where q = 50 and r = 6

356÷7 = q = 50

c. 78÷99: 78 = 0(99 + 78 where q = 0 and r = 78

78÷99 = 0

Exercises:

1. For the following integer division, find the division form: n = q(m + r:

a. 143÷ 3 b. 3,457÷55 c. 579÷2 d. 23÷ 40
�

There are 2 division instructions we will use: div and idiv.

 C Form of the div instruction: div source

119

 CForm of the idiv instruction: idiv source

where the following rules apply:

Rule 1: The register used for integer division is alway EAX.

Rule 2: The source is the divisor (m).

Rule 3: The source can be in a register or variable, but cannot be a numeric value.

Rule 4: The following gives us the locations of n,m,q,r.

C If the source (m) is a byte, then the dividend (n) is stored in the AX register. After execution, the quotient (q)

will be stored in the AL register and the remainder (r) in the AH register.

C If the source (m) is a word, then the dividend (n) is stored in the AX register. Before executing, the EDX

must be assign a numeric value. After execution, the quotient(q) will be stored in AX and the remainder (r) in

DX.

C If the source(m) is a double word, then the dividend (n) is stored in the EAX register. Before executing, the

EDX must be assign a numeric value. After execution, the quotient (q = n÷m) will be stored in the EAX

register and the remainder(r) in the EDX register.

Rule 5:

C The div instruction should only be used when the dividend and divisor are both unsigned.

C The idiv instruction can be used when the dividend and divisor can be either signed or unsigned or both .

The following table summaries Rule 3:

DIVIDEND (N) DIVISOR (M) N÷M REMAINDER

AX byte: register or variable AL AH

AX word: register or variable AX DX

EAX dword: register or variable EAX EDX

Important: When programming in Visual Studio, one must assign the number 0 to the EDX register
before each div or idiv instruction.

Examples:
1.

ASSEMBLY CODE EAX AX AH AL EDX X

x dword 10h 10

mov edx, 0h 00 00 00 00 10

mov eax, 378h 00 00 03 78 03 78 03 78 00 00 00 00 10

div x 00 00 00 37 00 37 00 37 00 00 00 08 10

120

2.

ASSEMBLY CODE EAX AX AH AL EDX X

x word 100h 100

mov edx,0 00 00 00 00 100

mov ax, 9378h 00 00 93 78 93 78 93 78 00 00 00 00 100

div x 00 00 00 93 00 93 00 93 00 00 00 78 100

3.

ASSEMBLY CODE EAX AX AH AL X

x byte 10h 10

mov ax, 456h 04 56 04 56 04 56 10

div x 06 45 06 45 06 45 10

Exercises:

Complete the following table:

1. The following program will cause an overflow. Explain why ?

 x byte 10h

mov ax,1456

idiv x

2. complete the following tables:

ASSEMBLY CODE EAX AX AH AL EDX X

x dword 22ch

mov edx, 0

mov eax, 0f3aah

div x

ASSEMBLY CODE EAX AX AH AL EDX X

x word 567h

mov edx,0

mov ax, 0d378h

121

div x

ASSEMBLY CODE EAX AX AH AL X

x byte 0fdh

mov ax, 0a56h

div x

�

10.3 Special Numeric Algorithms

In this section we will study how we can write assembly language algorithms for special numeric expressions.
To assist us, we will first use pseudo-codes as our guide. The following are several important algorithms :

C Interchanging values:

Algorithm:

PSEUDO CODE AL PSEUDO CODE AL CODE

TEMP:= X EAX:= X mov eax, x

TEMP:= EAX mov temp,eax

X:= Y EAX:= Y mov eax, y

X:= EAX mov x, eax

Y:= TEMP EAX:= TEMP mov eax, temp

Y := EAX mov y, eax

Example :

PSEUDO CODE AL PSEUDO CODE AL CODE X Y EAX T

X := 254d X := 254d mov x, 254d 254

Y := 100d Y := 100d mov y, 100d 254 100

T:= X EAX := X mov eax, x 254 100 254

T := EAX mov t, eax 254 100 254 254

X:= Y EAX:= Y mov eax, y 254 100 100 254

X:= EAX mov x, eax 100 100 100 254

122

Y:= T EAX:= T mov eax, t 100 100 254 254

Y := EAX mov y, eax 100 254 254 254

C The exponential operator: Although we define an exponential operator in assembly, the exponential operator
does not exist in the assembly language.

One way to create an exponential operation in assembly language is to perform repetitive multiplication of the
same number. The following algorithm will perform such a task:

Algorithm:

PSEUDO-CODE AL PSEUDO-CODE AL - CODE

P:= 1 P:= 1 mov p, 1

P:= X(P EAX:= X mov eax,x

EAX:= EAX(P mul p

P:=EAX mov p,eax

P:= X(P EAX:= X mov eax,x

EAX:= EAX(P mul p

P:=EAX mov p,eax

:::::::::: ::::::::::: :::::::::::::::::

P:= X(P EAX:= X mov eax,x

EAX:= EAX(P mul p

P:=EAX mov p,eax

Example: :

Compute x := 10^4

AL Pseudo-Code AL - CODE X EAX P

P := 1 mov p, 1 1

X:=10 mov x, 10 10 1

EAX:= X mov eax, x 10 10 1

EAX:= EAX(P mul p 10 10 1

P:= EAX mov p,eax 10 10 10

EAX:= X mov eax, x 10 10 10

EAX:= EAX(P mul p 10 100 10

P:= EAX mov p,eax 10 100 100

123

EAX:= X mov eax, x 10 10 100

EAX:= EAX(P mov p,eax 10 1000 100

P:= EAX mov eax, x 10 1000 1000

EAX:= X mov eax, x 10 10 1000

EAX:= EAX(P mov p,eax 10 10000 1000

P:= EAX mov eax, x 10 10000 10000

C Sum the digits of a positive integer a1a2a3...an

Example:
Sum the digits of 268.

PSEUDO-CODE AL PSEUDO-CODE N R EAX SUM EDX TEN

TEN := 10d TEN := 10d 10

N:= 268d N := 268d 268 10

SUM := 0d SUM := 0d 268 0 10

R := N MOD TEN EAX:= N 268 268 0 10

EAX:=EAX ÷ TEN
EDX:= EAX MOD TEN

268 26 0
8

10

R:= EDX 268 8 26 0 8 10

N:= N÷10d N:= EAX 26 8 26 0 8 10

SUM:= SUM + R EDX:= EDX + SUM 26 8 26 0 8 10

SUM:= EDX 26 8 26 8 8 10

R:= N MOD TEN EAX:= EAX÷ TEN
EDX:= EAX MOD TEN

26 8 2 8
6

10

R:= EDX 26 6 2 8 6 10

N:= N÷10d N:= EAX 2 6 2 8 6 10

SUM:= SUM + R EDX:= EDX + SUM 2 6 2 8 14 10

SUM:= EDX 2 6 2 14 14 10

R:= N MOD TEN EAX:= EAX÷ TEN
EDX:= EAX MOD TEN

2 6 0 14
2

10

R:= EDX 2 2 0 14 2 10

124

N:= N÷10d N:= EAX 0 2 0 14 2 10

SUM:= SUM + R EDX:= EDX + SUM 0 2 0 14 16 10

SUM:= EDX 0 2 0 16 16 10

PSEUDO-CODE AL PSEUDO-CODE AL CODE

TEN := 10d TEN := 10d mov ten,10

N:= 268d N := 268d mov n,268

SUM := 0 SUM := 0 mov sum,0

R := N MOD TEN EAX:= N mov eax,n

EDX:= 0
EAX:= EAX÷ TEN

mov edx,0
div ten

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

R:= N MOD TEN EDX:= 0
EAX:= EAX÷ TEN

mov edx,0
div ten

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

R:= N MOD TEN EDX:= 0
EAX:= EAX÷ TEN

mov edx,0
div ten

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

125

Algorithm:

PSEUDO-CODE AL PSEUDO-CODE AL CODE

SUM := 0 SUM := 0 mov sum,0

R := N MOD TEN EAX:= N mov eax,n

EDX:= 0 mov edx,0
div ten

EAX:= EAX÷ TEN

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

R:= N MOD TEN EDX:= 0
EAX:= EAX÷ TEN

mov edx,0
div ten

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

::::::::: ::::::::: :::::::::::

R:= N MOD TEN EDX:= 0
EAX:= EAX÷ TEN

mov edx,0
div ten

R:= EDX mov r,edx

N:= N÷10 N:= EAX mov n,eax

SUM:= SUM + R EDX:= EDX + SUM add edx,sum

SUM:= EDX mov sum, edx

C Factorial n! = n(n - 1)(n - 2)... (1)

Example :

126

5! = 5(4)(3)(2)(1) = 120

 AL PSEUDO-CODE AL CODE EAX EBX

EAX := 5d mov eax , 5 5

EBX := 5d mov ebx , 5 5 5

EBX := EBX - 1d sub ebx , 1 5 4

EAX := EAX(EBX mul ebx 20 4

EBX := EBX - 1d sub ebx , 1 20 3

EAX := EAX(EBX mul ebx 60 3

EBX := EBX - 1d sub ebx , 1 60 2

EAX := EAX(EBX mul ebx 120 2

EBX := EBX - 1d sub ebx , 1 120 1

EAX := EAX(EBX mul ebx 120 1

Note: See last page for the complete assembly language program.

Algorithm

PSEUDO-CODE ASSEMBLY LANGUAGE

EAX := N mov eax , n

EBX : = N mov ebx , n

EBX := EBX - 1 sub ebx , 1

EAX := EAX(EBX mul ebx

:::::::::::::::::::::: ::::::::::::::::::::

C P(x) = an x

n + an - 1 x
n - 1 + ... + a1x + a0

For simplicity, we will evaluate P(x) where n = 5 using the following formula:

P(x) = a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x + a0 = ((((a5 x + a4)x + a3)x + a2)x + a1)x + a0

P(x) = anx
n + an-1x

n-1 +... + a3x
3 + a2x

2 + a1x + a0 = (...(((an x + a4n-1)x +... + a3)x + a2)x + a1)x + a0

Example:

p(2) = 7(25 + 4(24 + 2(23 + 10(22 + 8(2 + 3 = ((((7(2 + 4)(2 + 2)(2 + 10)(2 + 8)(2 + 3 = 363

127

PSEUDO-CODE AL PSEUDO-CODE AL CODE P EAX X

X:= 2d X := 2d mov x, 2 2

P:= 7d P:= 7d mov p, 7 7 2

P:= P(X + 4d EAX:= P mov eax, p 7 7 2

EAX:= EAX(X mul x 7 14 2

EAX:= EAX + 4d add eax, 4 7 18 2

P:= EAX mov p, eax 18 18 2

P:= P(X + 2d EAX:= P mov eax, p 18 18 2

EAX:= EAX(X mul x 18 36 2

EAX:= EAX + 2d add eax, 2 18 38 2

P:= EAX mov p, eax 38 38 2

P:= P(X + 10d EAX:= P mov eax, p 38 38 2

EAX:= EAX(X mul x 38 76 2

EAX:= EAX + 10d add eax, 10 38 86 2

P:= EAX mov p, eax 86 86 2

P:= P(X + 8d EAX:= P mov eax, p 86 86 2

EAX:= EAX(X mul x 86 172 2

EAX:= EAX + 8d add eax, 8 86 180 2

P:= EAX mov p, eax 180 180 2

P:= P(X + 3d EAX:= P mov eax, p 180 180 2

EAX:= EAX(X mul x 180 360 2

EAX:= EAX + 3d add eax, 3 180 363 2

P:= EAX mov p, eax 363 363 2

Exercises:

1. In this section, change all the numbers in the tables to hexadecimal.

2. Write assembly language algorithms that will compute:

a. sum = a1
 + a2 + ... + an

b. Cn,m = n!/[(m!)(n - m)!]
�

128

Model Program

; This program computes 5!
.386
.model flat
.stack 4096
.data
factorial dword ?
.CODE
_start:
mov eax , 5
mov ebx, 5
sub ebx, 1
mul ebx
sub ebx, 1
mul ebx
sub ebx,1
mul ebx
sub ebx,1
mul ebx
mov factorial, eax
public _start
end

PROJECT

Write a general algorithm that can be used to convert any integer number N10 Y Nb where b < 10.

129

CHAPTER - 11 CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART 1

INTRODUCTION

In chapters 9 and 10 were given the basic of the assembly language code. From these basics we need to use the
syntax to construct complete programs in assembly language. Professional programmers use several different
methods for writing programs such as flow diagrams, pseudo-code, and several others. In this chapter we will
use pseudo-code to guide us in writing assembly language program. We will employ a three step process:

Step 1: Analysis the objectives of the program.

Step 2: Convert the objectives of the program into pseudo-code.

Step 3: Convert the pseudo-code into assembly language pseudo-code (AL pseudo-code).

Step 4: Convert the AL pseudo-code into assembly language code.

To demonstrate these four steps, we will write programs to convert integer numbers from one base to another .
In chapter 2, we developed the mathematics to convert bases. From chapter 2, we see that to convert numbers
from an arbitrary base to the base 10, we need to evaluate

anb
n + an-1b

n-1 +... + a3b
3 + a2b

2 + a1b + a0

which is a polynomial of one variable.

However, in assembly language, there is no syntax that will directly allow us the perform exponential
operations. The easiest way to evaluate the above expression is to linearize the polynomial.

Definition of linearizing a polynomial: Given a polynomial of one variable, we write:

 anb
n + an-1b

n-1 +... + a3b
3 + a2b

2 + a1b + a0 = (...(((anx + a4n-1)b +... + a3)b + a2)b + a1)b + a0

In the following number base conversions we will use the four steps, mentioned above.

11.1 An Assembly Language Program to Convert a Positive Integer Number In any Base b < 10 to its
Corresponding Number in the Base 10.

Step 1: Analysis the objectives of the program.

To convert between integer number in any base b to its corresponding number in the base 10, we recall from
chapter 2 the following formula:

Nb = anan-1... a1a0] anb
n
 + an-1b

n - 1 + ... + a1b + a0 base 10 .

Example:

The following manual method will convert the number 25678 to its correspond number in the base 10:

N8 = 25678] ((2(8 + 5)(8 +6)(8 + 7 = ((21)(8 +6)(8 + 7 = 174(8 + 7 = 1399

125

To convert the number 25678 to the base 10, we first need to write a sample program in pseudo-code and
assembly language to capture the digits 2,5, 6,7 from the number. The following programs will perform such a
task:

STEP 2: Convert the objectives of the program into pseudo-code.

Program: Capture the digits of 25678 .

PSEUDO-CODE N A D

N:= 2567 2567

D:= 1000 2567 1000

A:= N÷D 2567 2 1000

N:= N MOD D 567 2 1000

D:= 100 567 2 100

A:= N÷D 567 5 100

N:= N MOD D 67 5 100

D:= 10 67 5 10

A:= N÷D 67 6 10

N:= N MOD D 7 6 10

D:= 1 7 6 1

A:= N÷D 7 7 1

N:= N MOD D 0 7 0

Step 3: Convert the pseudo-code into assembly language pseudo-code (AL pseudo-code).

PSEUDO-CODE AL PSEUDO-CODE N A D EAX EDX

N:= 2567 N:= 2567 2567

D:= 1000 D:=1000 2567 1000

A:= N÷D EAX:= N 2567 1000 2567

EAX:= EAX÷D 2567 1000 2

EDX:= EAX MOD D 2567 1000 2 567

A:= EAX 2567 2 1000 2 567

N:= N MOD D N:= EDX 567 2 1000 2 567

D:= 100 D:= 100 567 2 100 2 567

126

A:= N÷D EAX:=N 567 2 100 567 567

EAX:=EAX÷D 567 2 100 5 567

EDX:= EAX MOD D 567 2 100 5 67

A:=EAX 567 5 100 5 67

N:= N MOD D N:= EDX 67 5 100 5 67

D:= 10 D:= 10 67 5 10 5 67

A:= N÷D EAX:=N 67 5 10 67 67

EAX:=EAX÷D 67 5 10 6 67

EDX:= EAX MOD D 67 5 10 6 7

A:=EAX 67 6 10 6 7

N:= N MOD D N:= EDX 7 6 10 6 7

D:= 1 D:= 1 7 6 1 6 7

A:= N÷D EAX:=N 7 6 1 7 7

EAX:=EAX÷D 7 6 1 7 7

EDX:= EAX MOD D 7 6 1 7 0

A:=EAX 7 7 1 7 0

N:= N MOD D N:= EAX 7 7 1 7 0

Step 4: Convert the AL pseudo-code into assembly language code.

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY LANGUAGE

N:= 2567 N:= 2567 mov n,2567

D:= 1000 D:=1000 mov d,1000

A:= N÷D EAX:= N mov eax,n

EAX:= EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a,eax

N:= N MOD D N:= EDX mov n,edx

D:= 100 D:= 100 mov d,100

A:= N÷D EAX:=N mov eax,n

EAX:=EAX÷D mov edx, 0

127

EDX:= EAX MOD D div d

A:=EAX mov a,eax

N:= N MOD D N:= EDX mov n,edx

D:= 10 D:= 10 mov d,10

A:= N÷D EAX:=N mov eax,n

EAX:=EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:=EAX mov a,eax

N:= N MOD D N:= EDX mov n,edx

D:= 1 D:= 1 mov d,1

A:= N÷D EAX:=N mov eax,n

EAX:=EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:=EAX mov a,eax

N:= N MOD D N:= EDX mov n,edx

Note: See model assembly language program.

Step 1: Analysis the objectives of the program.

Program: Writing a sample program to compute

N8 = 25678 Y N = ((2(8 + 5)(8 +6)(8 + 7 = 1399

Step 2: Convert the objectives of the program into pseudo-code.

PSEUDO-CODE N A SUM D

N:= 2567 2567

SUM:= 0 2567 0

D:= 1000 2567 0 1000

A:= N÷D 2567 2 0 1000

N:= N MOD D 567 2 0 1000

SUM:= SUM + A 567 2 2 1000

SUM:= SUM(8 567 2 16 1000

128

D:= 100 567 2 16 100

A:= N÷D 567 5 16 100

N:= N MOD D 67 5 16 100

SUM:= SUM + A 67 5 21 100

SUM:= SUM(8 67 5 168 100

D:= 10 67 5 168 10

A:= N÷D 67 6 168 10

N:= N MOD D 7 6 168 10

SUM:= SUM + A 7 6 174 10

SUM:= SUM(8 7 6 1392 10

DIVISOR:= 1 7 6 1392 1

A:= N÷D 7 7 1392 1

SUM:= SUM + A 7 7 1399 1

Step 3: Convert the pseudo-code into assembly language pseudo-code (AL pseudo-code).

PSEUDO-CODE AL PSEUDO-CODE N A SUM D EAX EDX E

N:= 2567 N:= 2567 2567

E:= 8 E:= 8 2567 8

SUM:= 0 SUM:= 0 2567 0 8

D:= 1000 D:= 1000 2567 0 1000 8

A:= N÷D EAX:= N 2567 0 1000 2567 8

EAX:= EAX÷D 2567 0 1000 2 8

EDX:= EAX MOD D 2567 0 100 2 567 8

A:= EAX 2567 2 0 1000 2 567 8

N:= N MOD D N:= EDX 567 2 0 1000 2 567 8

SUM:= SUM + A EAX:= SUM 567 2 0 1000 0 567 8

EAX:= EAX + A 567 2 0 1000 2 567 8

SUM:= EAX 567 2 2 1000 2 567 8

SUM:= SUM(E EAX:= SUM 567 2 2 1000 2 567 8

EAX:= EAX(E 567 2 2 1000 16 0 8

129

SUM:= EAX 567 2 16 1000 16 0 8

D:= 100 D:= 100 567 2 16 100 16 0 8

A:= N÷D EAX:= N 567 2 16 100 567 0 8

EAX:= EAX÷D 567 2 16 100 5 0 8

EDX:= EAX MOD D 567 2 16 100 5 67 8

A:= EAX 567 5 16 100 5 67 8

N:= N MOD D N:= EDX 67 5 16 100 5 67 8

SUM:= SUM + A EAX:= SUM 67 5 16 100 16 67 8

EAX:= EAX + A 67 5 16 100 21 67 8

SUM:= EAX 67 5 21 100 21 67 8

SUM:= SUM(E EAX:= SUM 67 5 21 100 21 67 8

EAX:= EAX(E 67 5 21 100 168 0 8

SUM:= EAX 67 5 168 100 168 0 8

D:= 10 D:= 10 67 5 168 10 168 0 8

A:= N÷D EAX:= N 67 5 168 10 67 0 8

EAX:= EAX÷D 67 5 168 10 6 0 8

EDX:= EAX MOD D 67 5 168 10 6 7 8

A:= EAX 67 6 168 10 6 7 8

N:= N MOD D N:= EDX 7 6 168 10 6 7 8

SUM:= SUM + A EAX:= SUM 7 6 168 10 168 7 8

EAX:= EAX + A 7 6 168 10 174 7 8

SUM:= EAX 7 6 174 10 174 7 8

SUM:= SUM(E EAX:= SUM 7 6 174 10 174 7 8

EAX:= EAX(E 7 6 174 10 1392 7 8

SUM:= EAX 7 6 1392 10 1392 7 8

D:= 1 D:= 1 7 6 1392 1 1392 7 8

A:= N÷D EAX:= N 7 6 1392 1 7 0 8

EAX:= EAX÷D 7 6 1392 1 7 0 8

EDX:= EAX MOD D 7 6 1392 1 7 0 8

A:= EAX 7 7 1392 1 7 0 8

130

SUM:= SUM + A EAX:= SUM 7 7 1392 1 1392 0 8

EAX:= EAX + A 7 7 1392 1 1399 0 8

SUM:= EAX 7 7 1399 1 1399 0 8

Step 4: Convert the AL pseudo-code into assembly language code.

PSEUDO-CODE AL PSEUDO-CODE AL CODE

N:= 2567 N:= 2567 mov n, 2567

E:= 8 E:= 8 mov e, 8

SUM:= 0 SUM:= 0 mov sum, 0

D:= 1000 D:= 1000 mov d, 1000

A:= N÷D EAX:= N mov eax, n

EAX:= EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

SUM:= SUM(E EAX:= SUM mov eax, sum

EAX:= EAX(E mul e

SUM:= EAX mov sum, eax

D:= 100 D:= 100 mov d, 100

A:= N÷D EAX:= N mov eax, n

EAX:= EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

131

SUM:= SUM(E EAX:= SUM mov eax, sum

EAX:= EAX(E mul e

SUM:= EAX mov sum, eax

D:= 10 D:= 10 mov d, 10

A:= N÷D EAX:= N mov eax, n

EAX:= EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

SUM:= SUM + A EAX:= SUM mov eax, sum

EAX:= EAX + A add eax, a

SUM:= EAX mov sum, eax

SUM:= SUM(E EAX:= SUM mov eax, sum

EAX:= EAX(E mul e

SUM:= EAX mov sum, eax

D:= 1 D:= 1000 mov d, 100

A:= N÷D EAX:= N mov eax, n

EAX:= EAX÷D mov edx,0

EDX:= EAX MOD D div d

A:= EAX mov a, eax

SUM:= SUM + A N:= EDX mov eax, sum

EAX:= SUM add eax, a

EAX:= EAX + A mov sum,eax

Exercises:

1. Modify the above assembly language program to convert the number 56328 to the corresponding number in
the base 10.

2. Modify the above assembly language program to convert the number 11012 to the corresponding number in
the base 10.
�

132

11.2 An Algorithm to Convert any Integer Number in the Base 10 to a Corresponding Number in the
Base b < 10.

Step 1: Analysis the objectives of the program.

Using the Euclidean division theorem, we now review how, using the manual method to convert numbers in the
base 10 to any in the base b.

Step 1: We want to write N in the form: N = anb
n
 + an-1b

n - 1 ... + a1b + a0

Step 2: N = Qb + R = (an b
n - 1

 + an-1b
n -2 ... + a1)b + a0

Here, Q = an b
n - 1

 + an-1b
n -2 ... + a2 b + a1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 and R = a0

Step 3: Set N = Q.

Q = Q1b + R1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 where

Q1 = an b
n - 2

 + an-1b
n -3 ... + a2,

R1 = a1.

Step 4: Continue in this manner, until Qn = 0.

Example:

Convert the following decimal numbers to the specified base.

1. 1625 Y N8

Step 1: 1625 = (1625÷8)(8 + 1 = 203(8 + 1

a0 = 1

Step 2: 203 = (203÷8) (8 + 3 = 25(8 + 3

a1 = 3

Step 3: 25 = (25÷8)(8 + 1 = 3(8 + 1

a2 = 1

Step 4: 3 = (3÷8)(8 + 3 = 3

a3 = 3

Therefore, 1625 Y N8 = 3(83 + 1(82 + 3(8 + 1] N8 = 31318

Program: To convert the integer number 1625 to the base 8.

Step 2: Convert the objectives of the program into pseudo-code.

133

 PSEUDO-CODE N SUM TEN MUL BASE R

BASE := 8 8

N := 1625 1625 8

SUM := 0 1625 0 8

MUL := 1 1625 0 1 8

TEN := 10 1625 0 10 1 8

R := N MOD BASE 1625 0 10 1 8 1

N:= N÷BASE 203 0 10 1 8 1

R := R(MUL 203 0 10 1 8 1

SUM:= SUM + R 203 1 10 1 8 1

MUL:= MUL(TEN 203 1 10 10 8 1

R := N MOD BASE 203 1 10 10 8 3

N:= N÷BASE 25 1 10 10 8 3

R := R(MUL 25 1 10 10 8 30

SUM:= SUM + R 25 31 10 10 8 30

MUL:= MUL(TEN 25 31 10 100 8 30

R := N MOD BASE 25 31 10 100 8 1

N:= N÷BASE 3 31 10 100 8 1

R := R(MUL 3 31 10 100 8 100

SUM:= SUM + R 3 131 10 100 8 100

MUL:= MUL(TEN 3 131 10 1000 8 100

R := N MOD BASE 3 131 10 1000 8 3

N:= N÷BASE 0 131 10 1000 8 3

R := R(MUL 0 131 10 1000 8 3000

SUM:= SUM + R 0 3131 10 1000 8 3000

Step 3: Convert the pseudo-code into assembly language pseudo-code (AL pseudo-code).

134

 PSEUDO-CODE AL PSEUDO-CODE N S M R EAX EDX B T

B := 8 B := 8 8

N := 1625 N := 1625 1625 8

S:= 0 S:= 0 1625 0 8

M:= 1 M:= 1 1625 0 1 8

T:= 10 T:= 10 1625 0 1 8 10

R := N MOD B EAX:= N 1625 0 1 1625 8 10

EAX:= EAX÷B 1625 0 1 203 8 10

EDX:= EAX MOD B 1625 0 1 203 8 10

R:= EDX 1625 0 1 1 203 1 8 10

N:= N÷B N:= EAX 203 0 1 1 203 1 8 10

R := R(M EAX:= R 203 0 1 1 1 1 8 10

EAX:= EAX(M 203 0 1 1 1 1 8 10

R:= EAX 203 0 1 1 1 1 8 10

S:= S + R EAX:= S 203 0 1 1 0 1 8 10

EAX:= EAX+ R 203 0 1 1 1 1 8 10

S:= EAX 203 1 1 1 1 1 8 10

M:= M(T EAX:= M 203 1 1 1 1 1 8 10

EAX:= EAX(T 203 1 1 1 10 1 8 10

M:= EAX 203 1 10 1 10 1 8 10

R := N MOD B EAX:= N 203 1 10 1 203 1 8 10

EAX:= EAX÷B 203 1 10 1 25 1 8 10

EDX:= EAX MOD B 203 1 10 1 25 3 8 10

R:= EDX 203 1 10 3 25 3 8 10

N:= N÷B N:= EAX 25 1 10 3 25 3 8 10

R := R(M EAX:= R 25 1 10 3 3 1 8 10

EAX:= EAX(M 25 1 10 3 30 1 8 10

R:= EAX 25 1 10 30 30 1 8 10

S:= S + R EAX:= S 25 1 10 30 1 1 8 10

135

EAX:= EAX + R 25 1 10 30 31 1 8 10

S:= EAX 25 31 10 30 31 1 8 10

M:= M(T EAX:= M 25 31 10 30 10 1 8 10

EAX:= EAX(T 25 31 10 30 100 0 8 10

M:= EAX 25 31 100 30 100 0 8 10

R := N MOD B EAX:= N 25 31 100 30 25 0 8 10

EAX:= EAX÷B 25 31 100 30 3 0 8 10

EDX:= EAX MOD B 25 31 100 30 3 1 8 10

R:= EDX 25 31 100 1 3 1 8 10

N:= N÷B N:= EAX 3 31 100 1 3 1 8 10

R := R(M EAX:= R 3 31 100 1 1 1 8 10

EAX:= EAX(M 3 31 100 1 100 0 8 10

R:= EAX 3 31 100 100 100 0 8 10

S:= S + R EAX:= S 3 31 100 100 31 1 8 10

EAX:= EAX + R 3 31 100 100 131 1 8 10

S:= EAX 3 131 100 100 131 1 8 10

M:= M(T EAX:= M 3 131 100 100 100 1 8 10

EAX:= EAX(T 3 131 100 100 1000 0 8 10

M:= EAX 3 131 1000 100 1000 0 8 10

R := N MOD B EAX:= N 3 131 1000 100 3 0 8 10

EAX:= EAX÷B 3 131 1000 100 0 0 8 10

EDX:= EAX MOD B 3 131 1000 100 0 3 8 10

R:= EDX 3 131 1000 3 0 3 8 10

N:= N÷B N:= EAX 0 131 1000 3 0 3 8 10

R := R(M EAX:= R 0 131 1000 3 3 3 8 10

EAX:= EAX(M 0 131 1000 3 3000 0 8 10

R:= EAX 0 131 1000 3000 3000 3 8 10

S:= S + R EAX:= S 0 131 1000 3000 131 3 8 10

EAX:= EAX + R 0 131 1000 3000 3131 3 8 10

S:= EAX 0 3131 1000 3000 3131 3 8 10

136

1625 Y 31318

Step 4: Convert the AL pseudo-code into assembly language code.

 PSEUDO-CODE AL PSEUDO-CODE AL CODE

B := 8 B := 8 mov b, 8

N := 1625 N := 1625 mov n, 1625

S:= 0 S:= 0 mov s, 0

M:= 1 M:= 1 mov m, 1

T:= 10 T:= 10 mov t, 10

R := N MOD B EAX:= N mov eax, n

EAX:= EAX÷B

EDX:= EAX MOD B

mov edx,0

div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R(M EAX:= R mov eax, r

EAX:= EAX(M mul m

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M(T EAX:= M mov eax, m

EAX:= EAX(T mul t

M:= EAX mov m eax

R := N MOD B EAX:= N mov eax, n

EAX:= EAX÷B
EDX:= EAX MOD B

mov edx,0
div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R(M EAX:= R mov eax, r

EAX:= EAX(M mul m

137

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M(T EAX:= M mov eax, m

EAX:= EAX(T mul t

M:= EAX mov m eax

R := N MOD B EAX:= N mov eax, n

EAX:= EAX÷B
EDX:= EAX MOD B

mov edx,0
div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R(M EAX:= R mov eax, r

EAX:= EAX(M mul m

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M(T EAX:= M mov eax, m

EAX:= EAX(T mul t

M:= EAX mov m eax

R := N MOD B EAX:= N mov eax, n

EAX:=EAX÷B
EDX:= EAX MOD B

mov edx,0
div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R(M EAX:= R mov eax, r

EAX:= EAX(M mul m

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

138

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

Exercises:
1. Use the above algorithm to write a program to convert the decimal number 254310 to octal.

2. Write an algorithm to convert decimal number a1a0 to the base 2.
����

Model Assembly Language Program: Capture the digits of 25678 (See program in 11.1)

; This program Capture the digits of 25678

.386
.model flat

.stack 4096

.data
n dword ?
d dwoprd ?
a dword ?

.code
_start:
mov n, 2567
mov d, 1000
mov eax, n
div d
mov a, eax
mov n, edx
mov d, 100
mov eax, n
div d
mov a, eax
mov n, edx
mov d, 10
mov eax, n
div d
mov a, eax
mov n, edx

139

mov d, 1
mov eax, n
div d
mov a, eax
mov n, edx

public _start

end

Project

Modify the above pseudo-code programs with appropriate WHILE statements to make the programs as general
as possible.

140

 CHAPTER - 12 BRANCHING AND THE IF-STATEMENTS

We are now ready to study the necessary assembly language instructions to convert the While-Conditional and
If-Then pseudo-codes, defined in chapter 5, to assembly code. To do this conversion, we need two types of jump
instructions: conditional jump instructions and a unconditional jump instruction.

12.1 Conditional Jump Instructions for Signed Order:

The basic form in assembly language consists1 of 2 instructions:

CCCC The compare instructions:

cmp operand1, operand2,

CCCC The conditional jump instructions:

jump j condition label

The above instruction are always written in the above order.

The operands can be numeric values, registers, variables.

The Compare(cmp) Instructions

The following table gives the type of operand1, operand2 that are allowed.

OPERAND1 OPERAND2

register 8 bits (byte) numeric byte

 register 8 bits

variable byte

register 16 bits (word) numeric byte

numeric word

 register 16 bits (word)

variable word

register 32 bits (dword) numeric byte

numeric dword

 register 32 bits (word)

variable dword

1 There exists additional jump instructions in assembly language which will be discussed
in later chapters.

141

variable byte: 8 bits (byte) numeric byte

register 8 bits (byte)

variable word :16 bits (word) numeric byte

numeric word

register word

variable dword: 32 bits numeric byte

numeric dword

register 32 bits

AL
AX
EAX

numeric byte
numeric word

numeric dword

Note: The instruction cmp x,y are not valid in assembly language.

Examples:

1.
x dword 236
cmp eax, x

2.
 cmp ebx, eax

3.
cmp x, eax

4.
cmp x, 25767h

Exercises:

1. Which of the following are valid. If not indicate why.

a. b. c. d. e.
x dword 456h cmp eax, x cmp x, eax cmp x, 235 cmp 235, x
y dword 44444h
cmp x,y
�

The conditional jump instructions for signed order numbers.

To perform the pseudo-code WHILE statement in assembly language, we now introduce for signed order

142

numbers, the conditional jump instructions.

From Chapter 8, the following are the signed order of the numbers for the three types of rings:

C The binary ring (8 bits)

Y

R10 128 < 129 < 130 < --- 255 < 0 < 1 < 2 < --- 126 < 127

R8 80 < 81 < 82 < --- FF < 00 < 01 < 02 < --- 7E < 7F

C The word ring (16 bits)

Y

R10 32768 < 32769 < 32770 < --- 65535 < 0 < 1 < 2 < --- 32766< 32767

R16 80 00 < 80 01 < 80 02 < --- FF FF < 00 00 < 00 01 < 00 02 < --- 7F FE 7F FF

C The dword ring (32 bits)

Y

R10 2147483648< 2147483649< --- 4,294,967,295< 0 < 1 < ---2147483647

R32 80 00 00 00 < 80 00 00 01 < --- FF FF FF FF< 00 00 00 00 00< 00 00 00 01< --- 7F FF FF FF

The following is a table of the conditional jumps for the signed order of rings in assembly language:

Mnemonic1 Description

je jump to the label if operand1 = operand 2;
 jump if equal to

jne jump to the label if operand1 … operand 2;
 jump if not equal to

jnge jump to the label if operand1 < operand 2;
 jump if not greater or equal

jnle jump to the label if operand1 > operand 2;
 jump if not less than or equal

jge jump to the label if operand1 $ operand 2;
 jump if greater than or equal

jle jump to the label if operand1 # operand 2;
 jump if less than or equal

143

jl jump to the label if operand1 < operand 2;
 jump if less than

jnl jump to the label if operand1 $ operand 2;
 jump if not less than

jg jump to the label if operand1 > operand 2;
 jump if greater than

jng jump to the label if operand1 # operand 2;
 jump if not greater than

All of the above jump instructions must be preceded by the cmp instruction.

Examples:

1.

mov al,10 ; al is operand1

cmp al,2; 2 is operand2

je xyz ; since the contents of al is not equal to 2, a jump does not occur.

:::::::::::::::::: ; instructions

xyz: ; a label

2.

mov al, 10; al is operand1

cmp al,2 ; 2 is operand2

jne xyz ; since the contents of al is not equal to 2, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

3.

mov ax,32770 ; ax is operand1

cmp ax,2; 2 is operand2

jnge xyz ; since the contents of ax is not greater than 2, a jump does occur.

:::::::::::::::::: ; instructions

xyz: ; a label

4a.

mov eax,80000000h; eax is operand1,

cmp al,2; 2 is operand2

jge xyz ; since the contents of al is not greater than or equal to 2, a jump does not occur occurs.

:::::::::::::::::: ; instructions

144

xyz: ; a label

4b.

mov al,0 ; al is operand1

cmp al,129; 129 is operand2

jge xyz ; since the contents of al is greater than or equal to 129, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

5a.

mov al,255 ; al is operand1

cmp al,2; 2 is operand2

jle xyz ; since the contents of al is less than or equal to 2, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

5b.

mov al,2 ; al is operand1

cmp al,255; 255 is operand2

jle xyz ; since the contents of al is greater than 255, a jump does not occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

6.

mov al,10 ; al is operand1

cmp al,2; 2 is operand2

jnle al ; since the contents of al is not less than or equal to 2, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

7.

mov al,128 ; al is operand1

cmp al,255; 255 is operand2

jl xyz ; since the contents of al is less than 255, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

8.

mov al,10 ; al is operand1

cmp al,2; 2 is operand2

145

jnl xyz ; since the contents of al is not less than 2, a jump occurs.

:::::::::::::::::: ; instructions

xyz: ; a label

9.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
jg xyz ; since the contents of al is greater than 2, a jump occurs.
:::::::::::::::::: ; instructions

xyz: ; a label

10.

mov al,10 ; al is operand1
cmp al,2; 2 is operand2
jng xyz ; since the contents of al is greater than 2, a jump does not occur.
:::::::::::::::::: ; instructions
xyz: ; a label

Exercises: Assume al contains the number 5 and n also contains 5. Which of the following incomplete programs will
cause a jump:

1.
cmp al,n
je xyz
xyz:

2.
cmp al,n
jne xyz
xyz:

3.
cmp al,n
jnge xyz
xyz:

4.
cmp al,n
jge xyz.
xyz:

5.
cmp al,n
jle xyz .
xyz

6.
cmp al,n
jnle al
xyz

7.
cmp al,n
jl xyz
xyz

8.
cmp al,n
jnl xyz
xyz:

9.
cmp al,n
jg xyz
xyz:

10.
cmp al,n;
jng xyz.

����

The unconditional jump instruction:

The form of the unconditional jump instruction is

jmp label; a jump will automatically occur.

146

Example:

jmp xyz ;
:::::::::::::::::: ; instructions
xyz: ; a label

The conditional jump instructions for the natural order (unsigned) .

From Chapter 8, the following are the natural order of the numbers for the three types of rings:

C The binary ring (8 bits)

Y

R10 0 < 1 < 2 < ... 15 < 16 < 17 < ... 240 < ... 254 < 255

R8 00 < 01 < 02 < ... 0F < 10 < 11 < ... F0 < --- FE < FF

C The word ring (16 bits)

Y

R10 0 < 1 < 2 < ... 255 < 256 < ... 511 <... 65280 < --- 65534 < 65535

R16 00 00 < 00 01 < 00 02 < ... 00 FF < 01 00 < ... 01 FF <... FF 00 < --- FF FE FF FF

C The dword ring (32 bits)

Y

R10 0< 15< --- 255 < --- 65535 < 16777215 < 2147483647

R32 00 00 00 00 < 00 00 00 0F <--- 00 00 00 FF < --- 00 00 FF FF< --- 00 FF FF FF<--- FF FF FF FF

The following is a table of the conditional jumps for the natural order of rings (unsigned) in assembly language:

Mnemonic Description

je jump to the label if operand1 = operand 2;
 jump if equal to

jne jump to the label if operand1 … operand 2;
 jump if not equal to

jae jump to the label if operand1 $ operand 2;
 jump if greater than or eqaul

147

ja jump to the label if operand1 > operand 2;
 jump if greater than

jbe jump to the label if operand1 # operand 2;
 jump if less than or equal

jna jump to the label if operand1 # operand 2;
 jump if less than or equal

jb jump to the label if operand1 < operand 2;
 jump if less than

jnb jump to the label if operand1 $ operand 2;
 jump if greater than or equal

jnae jump to the label if operand1 < operand 2;
 jump if less than

jnbe jump to the label if operand1 > operand 2;
 jump if greater than

Examples:

1.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
je xyz ; since the contents of al is not equal to 2, a jump does not occur.
:::::::::::::::::: ; instructions
xyz: ; a label

2.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
jne xyz ; since the contents of al is not equal to 2, a jump occurs.
:::::::::::::::::: ; instructions
xyz: ; a label

3.
mov al,210 ; al is operand1
cmp al,2; 2 is operand2
ja xyz ; since the contents of al is greater than 2, a jump occurs.

:::::::::::::::::: ; instructions
xyz: ; a label

4.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
jae xyz ; since the contents of al is greater than or equal to 2, a jump occurs.

148

:::::::::::::::::: ; instructions
xyz: ; a label

5.
mov al,2 ; al is operand1
cmp al,2; 255 is operand2
jbe xyz ; since the contents of al is less than or equal to 2, a jump occurs.
:::::::::::::::::: ; instructions
xyz: ; a label

7.
mov al,128 ; al is operand1
cmp al,255; 255 is operand2
jbe xyz ; since the contents of al is less than 255, a jump occurs.
:::::::::::::::::: ; instructions
xyz: ; a label

8.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
je xyz ; since the contents of al is not equal to 2, a jump does not occurs.
:::::::::::::::::: ; instructions
xyz: ; a label

9.
mov al,10 ; al is operand1
cmp al,2; 2 is operand2
jne xyz ; since the contents of al is not equal to 2, a jump occurs.
:::::::::::::::::: ; instructions

xyz: ; a label

12.2: Converting the While-Conditional Statements to Assembly Language

We will use the pseudo-code examples from Chapter 6 to demonstrate how the jump instructions can be used to
convert While Statements.

Example:

Write a partial program that will sum the numbers from 1 to 6.

PSEUDO CODE CYCLE OF INSTRUCTIONS TOTAL N

N := 1 N := 1 1

TOTAL := 0 TOTAL := 0 0 1

WHILE N <= 6 WHILE N <= 6 0 1

149

BEGIN BEGIN 0 1

TOTAL := TOTAL + N TOTAL := TOTAL + N 1 1

N := N + 1 N := N + 1 1 2

TOTAL := TOTAL + N 3 2

N := N + 1 3 3

TOTAL := TOTAL + N 6 3

N := N + 1 6 4

TOTAL := TOTAL + N 10 4

N := N + 1 10 5

TOTAL := TOTAL + N 15 5

N := N + 1 15 6

TOTAL := TOTAL + N 21 6

N := N + 1 21 7

END END 21 7

PSEUDO CODE AL PSEUDO CODE CYCLE OF
INSTRUCTION

TOTAL N EAX

N := 1 N := 1 1

TOTAL := 0 TOTAL := 0 0 1

WHILE N <= 6 WHILE N <= 6 0 1

BEGIN BEGIN 0 1

TOTAL := TOTAL + N EAX := TOTAL 0 1 0

EAX:= EAX + N 0 1 1

TOTAL := EAX 1 1 1

N := N + 1 EAX := N 1 1 1

EAX := EAX + 1 1 2 2

N:= EAX 1 2 2

EAX := TOTAL 1 2 1

EAX:= EAX + N 2 2 3

TOTAL := EAX 3 2 3

150

EAX := N 3 2 2

EAX := EAX + 1 3 2 3

N:= EAX 3 3 3

EAX := TOTAL 3 3 3

EAX:= EAX + N 3 3 6

TOTAL := EAX 6 3 6

EAX := N 6 3 3

EAX := EAX + 1 6 3 4

N:= EAX 6 4 4

EAX := TOTAL 6 4 6

EAX:= EAX + N 6 4 10

TOTAL := EAX 10 4 10

EAX := N 10 4 4

EAX := EAX + 1 10 4 5

N:= EAX 10 5 5

EAX := TOTAL 10 5 10

EAX:= EAX + N 10 5 15

TOTAL := EAX 15 5 15

EAX := N 15 5 5

EAX := EAX + 1 15 5 6

N:= EAX 15 6 6

EAX := TOTAL 15 6 15

EAX:= EAX + N 15 6 21

TOTAL := EAX 21 6 21

EAX := N 21 6 6

EAX := EAX + 1 21 6 7

N:= EAX 21 7 7

END END 21 7 7

151

PSEUDO CODE AL PSEUDO CODE ASSEMBLY CODE

N:= 1 N := 1 mov n, 1

TOTAL:= 0 TOTAL := 0 mov total, 0

WHILE N <= 6 WHILE N <= 6 while: cmp n, 6

BEGIN BEGIN jg end

TOTAL:= TOTAL + N EAX := TOTAL mov eax, total

EAX:= EAX + N add eax, n

TOTAL := EAX mov total, eax

N:= N + 1 EAX := N mov eax, n

EAX := EAX + 1 add eax, 1

N:= EAX mov n, eax

END END jmp while
end:

Exercises:

1. Rewrite the above program in a AL pseudo-code where only registers (not variables) are used.

2. Modify the above program by replacing jg with jle .

3. Modify the above program by changing the pseudo code

T0TAL := TOTAL + N

with

N := N - 1

4. Modify the above program that would allow the user to sum an arbitrary number.

5. The number 1 + 2+ 3+ ... + n = n(n + 1)/2. Modify the above program to check if the program is add correctly and
inform the user if it is or is not working correctly.

6. Write a program to compute

12 + 22 + 32 + ... + N2

for a given positive integer N.
����

Example:

Program: will compute the length of the number 431

152

INSTRUCTIONS CYCLE OF INSTRUCTIONS N COUNT

N: = 431 N := 431 431

COUNT := 0 COUNT := 0 431 0

WHILE N <> 0 WHILE N <>0 431 0

BEGIN BEGIN 431 0

COUNT := COUNT + 1 COUNT := COUNT + 1 431 1

N := N÷10 N := N÷10 43 1

COUNT := COUNT + 1 43 2

N := N÷10 4 2

COUNT := COUNT + 1 4 3

N := N÷10 0 3

END END 0 3

PSEUDO CODE AL PSEUDO CODE
CYCLE

N COUNT EAX EDX TEN

TEN:= 10 TEN:= 10 10

N: = 431 N := 431 431 10

COUNT := 0 COUNT := 0 431 0 10

WHILE N <> 0 WHILE N <>0 431 0 10

BEGIN BEGIN 431 0 10

COUNT := COUNT + 1 EAX: = COUNT 431 0 0 10

EAX:= EAX + 1 431 0 1 10

COUNT:= EAX 431 1 1 10

N := N÷TEN EAX:= N 431 1 431 10

EAX:= EAX ÷TEN 431 1 43 10

EDX:= EAX MOD10 431 1 43 1 10

N:= EAX 43 1 43 1 10

EAX: = COUNT 43 1 1 1 10

EAX:= EAX + 1 43 1 2 1 10

COUNT:= EAX 43 2 2 1 10

153

EAX:= N 43 2 43 1 10

EAX:= EAX ÷TEN 43 2 4 1 10

EDX:= EAX MOD10 43 2 4 3 10

N:= EAX 4 2 4 3 10

EAX: = COUNT 4 2 2 3 10

EAX:= EAX + 1 4 2 3 3 10

COUNT:= EAX 4 3 3 3 10

EAX:= N 4 3 4 3 10

EAX:= EAX ÷TEN 4 3 0 4 10

N:= EAX 0 3 0 4 10

END END 0 3 0 4 10

PSEUDO INSTRUCTIONS AL PSEUDO CODE ASSEMBLY CODE

TEN:= 10 TEN:= 10 mov ten, 10

N: = 431 N: = 431 mov n, 431

COUNT := 0 COUNT := 0 mov count, 0

WHILE N <> 0 WHILE N <> 0 while: cmp n, 0

BEGIN BEGIN begin: je end

COUNT:= COUNT + 1
EAX: = COUNT mov eax, count

EAX:= EAX + 1 add eax, 1

COUNT:= EAX mov count, eax

N÷TEN EAX:= N mov eax, n

EAX:= EAX ÷TEN mov edx, 0

div ten

N:= EAX mov n, eax

END END jmp while
end:

Exercises:

1. Modify the above program so that it will perform the following tasks:

154

 Task 1: The user will enter a positive integer.

Task 2: The program will count the number digits of the integer.

Task 3: The number of digits will be outputted to the monitor.

2. Write a program that will perform the following tasks:

Task 1: The user will enter a positive integer N.

Task 2: The program will computer the sum: 1 + 22 + 32 + ... + N2 .

Task 3: The sum will be outputted to the monitor.
�

12.3: IF-THEN STATEMENTS

The assembly language does not have an If-THEN statement as defined in higher programming languages. However,

we can obtain many of the same results by using the jump instructions as defined above. The following table, gives the

instructions on how to emulate in many of the IF-THEN statements:

PSEUDO IF-THEN INSTRUCTIONS JUMP INSTRUCTIONS

IF operand1 > oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: jng end
(instructions)
end:

IF operand1 $ oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: jnge end
(instructions)
end:

IF operand1 = oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: jne end
(instructions)
end:

IF operand1 … oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: je end
(instructions)
end:

IF operand1 < oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: jnl end
(instructions)
end:

IF operand1 # oprand 2 THEN
BEGIN
(instructions)
END

cmp operand1,operand 2
begin: jg end
(instructions)
end:

155

Example:

1.

The following program will perform the following tasks:

Task 1: Check if the number 12103 is divisible by 7.

Task 2: If 7 divides, then place 0 in x

PSEUDO- INSTRUCTIONS Y X S

X := 12103 12103

S := 7 12103 7

Y := (X÷S)*S 12103 12103 7

IF X = Y THEN 12103 12103 7

BEGIN 12103 12103 7

X := 0 12103 0 7

 END 1203 0 7

PSEUDO- INSTRUCTIONS AL PSEUDO-CODE Y X S EAX EDX

X := 12103 X:= 12103 12103

S:= 7 S := 7 12103 7

Y := (X÷S)*S EAX:= X 12103 7 12103

EAX:= EAX÷S 12103 7 1729

EDX:= EAX MOD S 12103 7 1729 0

EAX:= EAX(S 12103 7 12103 0

Y:= EAX 12103 12103 7 12103 0

IF X = Y THEN EAX:= X 12103 12103 7 1729 0

CMP EAX, Y 12103 12103 7 1729 0

JNE END 12103 12103 7 1729 0

BEGIN BEGIN 12103 12103 7 1729 0

X := 0 X := 0 12103 0 7 1729 0

 END END 1203 0 7 1729 0

156

PSEUDO- INSTRUCTIONS AL PSEUDO-CODE AL INSTRUCTIONS

X := 12103 X:= 12103 mov x, 12103

S:= 7 S := 7 mov s, 7

Y := (X÷S)*S EAX:= X mov eax, x

EAX:= EAX÷S

 EAX := EAX*S

mov edx, 0

div s

mul s

IF X = Y THEN Y:= EAX mov y,eax

EAX:= X mov eax,x

CMP EAX, Y cmp eax, y

JNE END jne end

BEGIN BEGIN ;begin

X := 0 X := 0 mov x, 0

 END END end:

Exercises:

1.
From Chapter 5, we have the following algorithm.

PSEUDO - INSTRUCTIONS EXPLANATION

LARGEST := X1 We start by assuming X1 is the largest

IF X2 > LARGEST THEN
BEGIN
LARGEST := X2
END

If the contents of X2 is larger than the contents of LARGEST
replace LARGEST with the contents of X2

IF X3 > LARGEST THEN
BEGIN
LARGEST := X3
END

If the contents of X3 is larger than the contents of LARGEST
replace LARGEST with the contents of X3

Using the above algorithm, write an assembly language program that will perform the following tasks:

Task1: Assign 2 positive integer numbers.

157

Task2: Find the largest of the 2 numbers entered.

Task3: Output the largest number.

Write the assembly language code to replicate the pseudo-code:

2.
IF a < x # b THEN
BEGIN
::::::::::::::::
END

3.
IF x = a or x = b THEN
BEGIN
:::::::::::::::::
END
�

12.4: IF-THEN - ELSE STATEMENTS

Recall from Chapter 5 the form of this conditional statement:

IF conditional expression THEN
BEGIN statements 1
END
ELSE
BEGIN
statements 2
END

If the conditional expression is TRUE, statements1 following the THEN will be carried out and the program will skip
statements 2.

If the conditional expression is FALSE, statements 1 following the THEN will not be carried out and the program
will execute statements 2.

Since the assembly language does not have the IF-THEN-ELSE statements, the following table shows how the jumps
can be used to simulate this type of instruction:

158

IF-THEN-ELSE PSEUDO - INSTRUCTIONS JUMP INSTRUCTIONS

IF operand1 > operand 2 THEN
BEGIN
(instructions)
END
ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: jng end1

(instructions)

end1: jg end2

(instructions)

end2:

IF operand1 $ operand 2 THEN
BEGIN
(instructions)
END
ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: jnge end1

(instructions)

end1:jge end2

(instructions)

end2:

IF operand1 = operand 2 THEN
BEGIN
(instructions)
END
ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: jne end1

(instructions)

end1:je end2

(instructions)

end2:

IF operand1 … operand 2 THEN
BEGIN
(instructions)
END
 ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: je end1

(instructions)

end1:jne end2

(instructions)

end2:

IF operand1 < operand 2 THEN
BEGIN
(instructions)
END
ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: jnl end1

(instructions)

end1:jl end2

(instructions)

end2:

159

IF operand1 # operand 2 THEN
BEGIN
(instructions)
END
ELSE
BEGIN
(instructions)
END

cmp operand1,operand 2

begin1: jg end1

(instructions)

end1: jng end2

(instructions)

end2:

Example:

PSEUDO- INSTRUCTIONS ASSEMBLY CODE

N := 7 mov n, 7

M := 5 mov m, 5

IF N = 2 THEN
BEGIN

N = N + 5
END

begin1: cmp n, 2

jne end1

mov eax, n

add eax, 5

mov n, eax

end1:

ELSE
BEGIN

M = N + 5
END

begin2: je end2

mov eax, n

add eax, 5

mov m , eax

end2:

Exercise:

1. Assume n is a non-negative integer. We define n factorial as: n! = n(n -1)(n -2)... (2)(1) for n > 0

and 0! = 1.

2. Write an assembly language program that will compute the value 10! .

3. Modify the above problem for an arbitrary n integer program.

Application: Assume we have N distinct objects and r of these objects are randomly selected.

4. The number of ways that this can be done, where order is important is

NPr = N!/(N - r)!.

160

Write an assembly language program that will perform the following tasks:

Task1: Assign the integer N and r.

Task2: compute NPr = N!/(N - r)!.

Task3: Output NPr .

5. The number of ways that this can be done, where order is not important is

Write an assembly language program that will perform the following tasks:

Task1:Assign the integer N and r.

Task2: compute .

Task3: Output .

����

6. Write an assembly language program that will compute the absolute value of |x - y|.

12.5 Top Down Structured Modular Programming

To program using top down structured modular programming, we first begin with a list of tasks that we want to process
in the specified order:

Task 1: ------

Task 2: -------

Task3: --------

::::::::::::::::::::

Task n: -------

Next we write pseudo-code for each task in a given module as follows:

161

Task 1: Module 1
 ::::::::::::::::::::::::::

 \

Task 2: Module 2
 ::::::::::::::::::::::::::

 \

Task 3: Module 3
 ::::::::::::::::::::::::::

 \
::

Task n: Module n
 ::::::::::::::::::::::::::

Finally, we re-write the pseudo-code to assembly language.

Basic Rules:

1. After writing the tasks, first we write the code for Module 1 and check for errors. Once all errors, if any, are
corrected, we write module 2 and check for errors. We continue in this manner.

2. We only use to performs branching within the same module. If we need to jump to outside the module, we either
branch down to another module or if the program is menu driven we can jump to the module which contains the menu.

Exercise:

Write a structured program that will perform the following tasks:

Task 1: Assign a arbitrary positive integer.

Task 2: Count the number of digits that the integer is made of.

Task 3: Sum the digits of the integer.

PROJECT:

Write an assembly language program that will perform the following tasks:

Task 1: Assign an arbitrary positive integer and a integer 2 through 9.

162

Task 2: Convert the positive integer into a base 2 through 9.

Task 3: Store the converted integer as a single number

163

CHAPTER - 13 CONSTRUCTING PROGRAMS IN ASSEMBLY LANGUAGE PART II

Introduction

Now that we can create in assembly language, logical and while statements, we return to the programs and algorithms
in chapter 11, to rewrite them in the most general form. Therefore, the following algorithms and programs will be
modeled after those in chapter 11.

13.1 An Assembly Language Program to Convert a Positive Integer Number In any Base b < 10 to its
Corresponding Number in the Base 10.

Examples:

1. The following method will convert the number 25678 to its correspond number in the base 10:

N8 = 25678] ((2(8 + 5)(8 +6)(8 + 7 = ((21)(8 +6)(8 + 7 = 174(8 + 7 = 1399

To convert the number 25678 to the base 10, we first need to write a sample program in pseudo-code and assembly
language to capture the digits 2,5, 6,7 from the number. The following programs will perform such a task:

Program: Capture the digits of 25678 .

PSEUDO-INSTRUCTIONS N A D

N:= 2567 2567

D:= 1000 2567 1000

A:= N÷D 2567 2 1000

N:= N MOD D 567 2 1000

D:= D÷10 567 2 100

A:= N÷D 567 5 100

N:= N MOD D 67 5 100

D:= D÷10 67 5 10

A:= N÷D 67 6 10

N:= N MOD D 7 6 10

D:= D÷10 7 6 1

A:= N÷D 7 7 1

N:= N MOD D 0 7 0

164

PSEUDO-
CODE

CYCLE OF CODES AL PSEUDO CODE N A EAX EDX D T

N:= 2567 N:= 2567 N:= 2567 2567

T:= 10 T:= 10 T:= 10 2567 10

D:= 1000 D:= 1000 D:= 1000 2567 1000 10

WHILE N <> 0 WHILE N <> 0 WHILE N <> 0 2567 1000 10

BEGIN BEGIN BEGIN 2567 1000 10

A:= N÷D A:= N÷D EAX := N 2567 2567 1000 10

EAX := EAX ÷D
EDX:= EAX MOD D

2567 2
567

1000 10

A := EAX 2567 2 2 567 1000 10

N:= N MOD D N:= N MOD D N:= EDX 567 2 2 567 1000 10

D:= D÷T D:= D÷T EAX := D 567 2 1000 567 1000 10

EAX:= EAX÷T
EDX := EAX MOD T

567 2 100
0

1000 10

D := EAX 567 2 100 0 100 10

A:= N÷D EAX := N 567 2 567 0 100 10

EAX := EAX ÷D
EDX:= EAX MOD D

567 2 5
67

100 10

A := EAX 567 5 5 67 100 10

 N:= N MOD D N:= EDX 67 5 5 67 100 10

D:= D÷10 EAX := D 67 5 100 67 100 10

EAX := EAX ÷T
EDX := EAX MOD T

67 5 10
0

100 10

D := EAX 67 5 10 0 10 10

A:= N÷D EAX := N 67 5 67 0 10 10

EAX := EAX ÷D
EDX := EAX MOD D

67 5 6
7

10 10

A:= EAX 67 6 6 7 10 10

N:= N MOD D N:= EDX 7 6 6 7 10 10

D:= D÷10 EAX := D 7 6 10 7 10 10

165

EAX := EAX ÷T
EDX := EAX MOD T

7 6 1
0

10 10

 D:= EAX 7 6 1 0 1 10

A:= N÷D EAX := N 7 6 7 0 1 10

EAX := EAX ÷D
EDX := EAX MOD D

7 6 7
0

1 10

A := EAX 7 7 7 0 1 10

N:= N MOD D N:= EDX 0 7 7 0 1 10

END END END 0 7 7 0 1 10

PSEUDO-CODE AL PSEUDO CODE AL CODE

N:= 2567 N:= 2567 mov n, 2567

T:= 10 T:= 10 mov t, 10

D:= 1000 D:= 1000 mov d, 1000

WHILE N <> 0 WHILE N <> 0 while: cmp n, 0

je end

BEGIN BEGIN ;begin

A:= N÷D EAX := N mov eax, n

EAX := EAX ÷D
EDX := EAX MOD D

mov edx,0

div d

A := EAX mov a, eax

N:= N MOD D N:= EDX mov n, edx

D:= D÷T EAX := D mov eax, t

EAX := EAX ÷T
EDX := EAX MOD T

mov edx,0

div t

D := EAX mov d,eax

jmp while

END END end:

166

Exercise:

1. Write an assembly language program that will capture the digits of 4578
�

2. Program: Writing a sample program to compute

N8 = 25678 Y N10 = ((2(8 + 5)(8 +6)(8 + 7 = 1399

PSEUDO-INSTRUCTIONS N A SUM D T

N:= 2567 2567

SUM:= 0 2567 0

T:= 10 T:= 10 0 10

D:= 1000 2567 0 1000 10

A:= N÷D 2567 2 0 1000 10

SUM:= SUM + A 2567 2 2 1000 10

SUM:= SUM(8 2567 2 16 1000 10

N:= N MOD D 567 2 16 1000 10

D:= D÷T 567 2 16 100 10

A:= N÷D 567 5 16 100 10

SUM:= SUM + A 567 5 21 100 10

SUM:= SUM(8 567 5 168 100 10

N:= N MOD D 67 5 168 100 10

D:= D÷T 67 5 168 10 10

A:= N÷D 67 6 168 10 10

SUM:= SUM + A 67 6 174 10 10

SUM:= SUM(8 67 6 1392 10 10

N:= N MOD D 7 6 1392 10 10

D:= D÷T 7 6 1392 1 10

A:= N÷D 7 7 1392 1 10

SUM:= SUM + A 7 7 1399 1 10

167

PSEUDO-
CODE

CYCLE OF
CODES

AL PSEUDO
 CODES

N A S EAX EDX D E T

N := 2567 N:= 2567 N:= 2567 2567 8

E:= 8 E:= 8 E:= 8 2567 8

S := 0 S := 0 S := 0 2567 0 8

T:= 10 T:=10 T:= 10 2567 0 8 10

D := 1000 D := 1000 D := 1000 2567 0 1000 8 10

WHILE D <> 1 WHILE D <> 1 WHILE D <> 1 2567 0 1000 8 10

BEGIN BEGIN BEGIN 2567 0 1000 8 10

A:= N÷D A:= N÷D EAX := N 2567 0 2567 1000 8 10

EAX := EAX ÷D 2567 0 2 567 1000 8 10

A := EAX 2567 2 0 2 567 1000 8 10

S:= S + A S:= S + A EAX := S 2567 2 0 0 567 1000 8 10

EAX := EAX + A 2567 2 0 2 567 1000 8 10

S := EAX 2567 2 2 2 567 1000 8 10

S:= S(E S:= S(E EAX := S 2567 2 2 2 567 1000 8 10

EAX := EAX (E 2567 2 2 16 567 1000 8 10

S := EAX 2567 2 16 16 567 1000 8 10

N:= N MOD D N:= N MOD D EAX := N 2567 2 16 2567 567 1000 8 10

EAX := EAX ÷ D 2567 2 16 2 567 1000 8 10

N := EDX 567 2 16 2 567 1000 8 10

D:= D÷10 D:= D÷10 EAX :=D 567 2 16 1000 567 1000 8 10

EAX:= EAX ÷T 567 2 16 100 0 1000 8 10

D:= EAX 567 2 16 100 0 100 8 10

A:= N÷D EAX := N 567 2 16 567 0 100 8 10

EAX := EAX ÷D 567 2 16 5 67 100 8 10

A := EAX 2567 5 16 5 67 100 8 10

S:= S + A EAX := S 2567 5 16 16 67 100 8 10

EAX:= EAX + A 567 5 16 21 67 100 8 10

S:= EAX 567 5 21 21 67 100 8 10

168

S:= S(E EAX := S 567 5 21 21 67 100 8 10

EAX := EAX (E 567 5 21 168 0 100 8 10

S := EAX 567 5 168 168 0 100 8 10

N:= N MOD D EAX := N 567 5 168 567 0 100 8 10

EAX := EAX ÷ D 567 5 168 5 67 100 8 10

N := EDX 67 5 168 5 67 100 8 10

D:= D÷10 EAX :=D 67 5 168 100 67 100 8 10

EAX:= EAX ÷T 67 5 168 10 0 100 8 10

D:= EAX 67 5 168 10 0 10 8 10

A:= N÷D EAX := N 67 5 168 67 0 10 8 10

EAX := EAX ÷D 67 5 168 6 7 10 8 10

A := EAX 67 6 168 6 7 10 8 10

S:= S + A EAX:= S 67 6 168 168 7 10 8 10

EAX:= EAX + A 67 6 168 174 7 10 8 10

S:= EAX 67 6 174 174 7 10 8 10

S:= S(E EAX := S 67 6 174 174 7 10 8 10

EAX := EAX (E 67 6 174 1392 0 10 8 10

 S := EAX 67 6 1392 1392 0 10 8 10

N:= N MOD D EAX := N 67 6 1392 67 0 10 8 10

EAX := EAX ÷ D 7 6 1392 6 7 10 8 10

N := EDX 7 6 1392 6 7 10 8 10

D:= D÷10 EAX :=D 7 6 1392 10 7 10 8 10

EAX:= EAX ÷T 7 6 1392 1 0 10 8 10

D:= EAX 7 6 1392 1 0 1 8 10

END END END 7 6 1392 1 0 1 8 10

S:= S + A S:= S + A EAX := S 7 7 1392 1392 0 1 8 10

EAX:= EAX + A 7 7 1392 1399 0 1 8 10

S:= EAX 7 7 1399 1399 0 1 8 10

169

PSEUDO-CODE AL PSEUDO - CODES AL CODE

N := 2567 N:= 2567 mov n, 2567

E:=8 E:= 8 mov e, 8

S := 0 S := 0 mov sum, 0

T:= 10 T:= 10 mov t,10

D := 1000 D := 1000 mov d, 1000

WHILE D <> 1 WHILE D <> 1 while: cmp d,1
je end

BEGIN BEGIN ;begin

A:= N÷D EAX := N mov eax,n

EAX := EAX ÷D mov edx,0

div d

A := EAX mov a,eax

S:= S + A EAX := S mov eax,s

EAX := EAX + A add eax, a

S := EAX mov s,eax

S:= S(E EAX := S mov eax, s

EAX := EAX (E mul e

S := EAX mov s, eax

N:= N MOD D EAX := N mov eax, n

EAX := N ÷ D mov edx,0
div d

N := EDX mov n,edx

D:= D÷10 EAX :=D mov eax,d

EAX:= EAX ÷T mov edx,0

div t

D:= EAX mov d,eax

END END jmp while

S:= S + A EAX := S end: mov eax, s

EAX:= EAX + A add eax, a

170

S:= EAX mov s, eax

Exercise:

1. Write a assembly language program that will convert N4 = 23124 Y N N8 = 25678 Y N10
�

13.2 An Algorithm to Convert any Integer Number in the Base 10 to a Corresponding Number in the Base
b < 10.

Using the Euclidean division theorem, we now review how, using the manual method to convert numbers in the base
10 to any in the base b.

Step 1: We want to write N in the form: N = anb
n
 + an-1b

n - 1 ... + a1b + a0

Step 2: N = Qb + R = (an b
n - 1

 + an-1b
n -2 ... + a1)b + a0

Here, Q = an b
n - 1

 + an-1b
n -2 ... + a2 b + a1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 and R = a0

Step 3: Set N = Q.

Q = Q1b + R1 = (an b

n - 2
 + an-1b

n -3 ... + a2)b + a1 where

Q1 = an b
n - 2

 + an-1b
n -3 ... + a2,

R1 = a1.

Step 4: Continue in this manner, until Qn = 0.

Example:

Convert the following decimal numbers to the specified base.

1. 1625 Y N8

Step 1: 1625 = (1625÷8)(8 + 1 = 203(8 + 1

a0 = 1

Step 2: 203 = (203÷8) (8 + 3 = 25(8 + 3

a1 = 3

Step 3: 25 = (25÷8)(8 + 1 = 3(8 + 1

a2 = 1

Step 4: 3 = (3÷8)(8 + 3 = 3

a3 = 3

Therefore, 1625 Y N8 = 3(83 + 1(82 + 3(8 + 1] N8 = 31318

171

Program: Pseudo-Code to convert the integer number 1625 to the base 8.

 PSEUDO-CODE N SUM TEN MUL BASE R

BASE := 8 8

N := 1625 1625 8

SUM := 0 1625 0 8

MUL := 1 1625 0 1 8

TEN := 10 1625 0 10 1 8

R := N MOD BASE 1625 0 10 1 8 1

N:= N÷BASE 203 0 10 1 8 1

R := R(MUL 203 0 10 1 8 1

SUM:= SUM + R 203 1 10 1 8 1

MUL:= MUL(TEN 203 1 10 10 8 1

R := N MOD BASE 203 1 10 10 8 3

N:= N÷BASE 25 1 10 10 8 3

R := R(MUL 25 1 10 10 8 30

SUM:= SUM + R 25 31 10 10 8 30

MUL:= MUL(TEN 25 31 10 100 8 30

R := N MOD BASE 25 31 10 100 8 1

N:= N÷BASE 3 31 10 100 8 1

R := R(MUL 3 31 10 100 8 100

SUM:= SUM + R 3 131 10 100 8 100

MUL:= MUL(TEN 3 131 10 1000 8 100

R := N MOD BASE 3 131 10 1000 8 3

N:= N÷BASE 0 131 10 1000 8 3

R := R(MUL 0 131 10 1000 8 3000

SUM:= SUM + R 0 3131 10 1000 8 3000

172

 PSEUDO-
CODE

CYCLE
OF CODES

AL PSEUDO-CODE

N S M R EAX EDX B T

B := 8 B := 8 B := 8 8

N := 1625 N := 1625 N := 1625 162 8

S:= 0 S:= 0 S:= 0 162 0 8

M:= 1 M:= 1 M:= 1 162 0 1 8

T:= 10 T:= 10 T:= 10 162 0 1 8 10

WHILE N <> WHILE N <> 0 WHILE N <> 0 162 0 1 8 10

BEGIN BEGIN BEGIN 162 0 1 8 10

R := N MOD B R := N MOD B EAX:= N 162 0 1 1625 8 10

EAX:= EAX÷B 162 0 1 203 8 10

EDX:= EAX MOD B 162 0 1 203 1 8 10

R:= EDX 162 0 1 1 203 1 8 10

N:= N÷B N:= N÷B N:= EAX 203 0 1 1 203 1 8 10

R := R(M R := R(M EAX:= R 203 0 1 1 1 1 8 10

EAX:= EAX(M 203 0 1 1 1 0 8 10

R:= EAX 203 0 1 1 1 0 8 10

S:= S + R S:= S + R EAX:= S 203 0 1 1 0 0 8 10

EAX:= EAX + R 203 0 1 1 1 0 8 10

S:= EAX 203 1 1 1 1 0 8 10

M:= M(T M:= M(T EAX:= M 203 1 1 1 1 0 8 10

EAX:= EAX(T 203 1 1 1 10 0 8 10

M:= EAX 203 1 10 1 10 0 8 10

R := N MOD B EAX:= N 203 1 1 1 203 0 8 10

EAX:= EAX:÷B 203 1 1 1 25 3 8 10

R:= EDX 203 1 1 3 25 3 8 10

 N:= N÷B N:= EAX 25 1 10 3 25 3 8 10

R := R(M EAX:= R 25 1 10 3 3 3 8 10

EAX:= EAX(M 25 1 10 3 30 0 8 10

173

R:= EAX 25 1 10 30 30 0 8 10

S:= S + R EAX:= S 25 1 10 30 1 0 8 10

EAX:= EAX + R 25 1 10 30 31 0 8 10

S:= EAX 25 31 10 30 31 0 8 10

M:= M(T EAX:= M 25 31 10 1 10 0 8 10

EAX:= EAX(T 25 31 10 1 100 0 8 10

M:= EAX 25 31 100 1 100 0 8 10

R := N MOD B EAX:= N 25 31 100 1 25 0 8 10

EAX:= EAX÷B 25 31 100 1 3 0 8 10

EDX:= EAX MOD B 25 31 100 1 3 1 8 10

R:= EDX 25 31 100 1 3 1 8 10

N:= N÷B N:= EAX 3 31 100 1 3 1 8 10

R := R(M EAX:= R 3 31 100 1 1 1 8 10

EAX:= EAX(M 3 31 100 1 100 0 8 10

R:= EAX 3 31 10 100 100 0 8 10

S:= S + R EAX:= S 3 31 100 100 31 0 8 10

EAX:= EAX + R 3 31 100 100 131 0 8 10

S:= EAX 3 131 100 100 131 0 8 10

M:= M(T EAX:= M 3 131 100 100 100 0 8 10

EAX:= EAX(T 3 131 100 1 1000 0 8 10

M:= EAX 3 131 1000 1 1000 0 8 10

R := N MOD B EAX:= N 3 131 1000 1 3 0 8 10

EAX:= EAX÷B 3 131 1000 1 0 0 8 10

EDX:= EAX MOD B 3 131 1000 1 0 3 8 10

R:= EDX 3 131 1000 3 0 3 8 10

N:= N÷B N:= EAX 0 131 1000 3 0 3 8 10

R := R(M EAX:= R 0 131 1000 3 3 3 8 10

EAX:= EAX(M 0 131 1000 3 3000 0 8 10

R:= EAX 0 131 1000 3000 3000 0 8 10

S:= S + R EAX:= S 0 131 1000 3000 131 0 8 10

174

EAX:= EAX + R 0 131 1000 3000 3131 0 8 10

S:= EAX 0 3131 1000 3000 3131 0 8 10

M:= M(T EAX:= M 0 3131 1000 3000 1000 0 8 10

EAX:= EAX(T 0 3131 1000 3000 10000 0 8 10

M:= EAX 0 3131 10000 3000 10000 0 8 10

 END END END 0 3131 10000 3000 10000 0 8 10

1625 Y 31318

 PSEUDO-CODE AL PSEUDO-CODE AL CODE

B := 8 B := 8 mov b, 8

N := 1625 N := 1625 mov n, 1625

S:= 0 S:= 0 mov s, 0

M:= 1 M:= 1 mov m, 1

T:= 10 T:= 10 mov t, 10

WHILE N <> 0 WHILE N <> 0 while: cmp n, 0

BEGIN BEGIN begin: je end

R := N MOD B EAX:= N mov eax, n

EAX:= EAX÷B
EDX:= EAX MOD B

mov edx,0

div b

R:= EDX mov r, edx

N:= N÷B N:= EAX mov n, eax

R := R(M EAX:= R mov eax, r

EAX:= EAX(M mul m

R:= EAX mov r, eax

S:= S + R EAX:= S mov eax, s

EAX:= EAX + R add eax, r

S:= EAX mov s, eax

M:= M(T EAX:= M mov eax, m

EAX:= EAX(T mul t

175

M:= EAX mov m , eax

jmp while

END END end:

1625 Y 31318

Exercise:

1. Write a assembly language program that will convert 2567 Y N5

Note: See model program.

; This program converts 1625 Y 31318
.386

.MODEL FLAT

.STACK 4096

.DATA
n dword ?
s dword ?
m dword ?
r dword ?
b dword ?
t dword ?

.CODE

_start:

;start assembly language code

mov b, 8

mov n, 1625

mov s, 0

mov m, 1

mov t, 10

while: cmp n, 0

begin: je end

176

mov eax, n

mov edx,0

div b

mov r, edx

mov n, eax

mov eax, r

mul m

mov r, eax

mov eax, s

add eax, r

mov s, eax

mov eax, m

mul t

mov m , eax

jmp while

end:

;end of assembly language code

PUBLIC_start

END

PROJECTS

1. An integer number N is said to be prime if it is only dividable evenly by 1 or N.

Write an assembly Language program to determine if 2,346,799 is prime.

2. The Fibonacci Numbers

The Fibonacci numbers is a sequence of integer numbers generated as follows:

Step 1: Start with 0,1

177

Step 2: The next number is generated by adding the last 2 numbers: 0,1,1 .

Step 3: To generate the next number, continue by adding the last 2 numbers:

0,1,1,2,3,5, 8, 13, 21,

Write an assembly language program that will generate a sequence N Fibonacci numbers.

178

CHAPTER- 14 LOGICAL EXPRESSIONS, MASKS, AND SHIFTING

14.1: Logical Expressions

Logical expressions and values are similar to conditional expressions as defined in Chapters 5 and 6. However,
due to the nature of the applications, we will use a different terminology in this chapter.

Definition of logical values: Logical values are of two types: true, false.

Definition of logical identifiers: Logical identifiers are identifiers (variables) that are assigned only values true,
false.

Definition of logical operators: There are three binary logical operators and one unary logical operator:

The binary logical operators are .AND., .OR., .XOR. .

The unary logical operator is .NOT. .

Definition of Logical Expressions: A logical expression is made up of logical values, logical identifiers
connected by logical operators.

The following table gives the logical values which result from the four logical operators:

OPERATORS RESULTING VALUE

.OR. true .OR. true = true
 true .OR. false = true
 false .OR. true = true

 false .OR. false = false

.AND. true .AND. true = true
 true .AND. false = false
false. AND. true = false

 false .AND. false = false

.XOR. true .XOR. true = false
true .XOR. false =true
false .XOR. true = true

 false .XOR. false = false

.NOT. .NOT. true = false
.NOT. false = true

Examples:

a. logical value:

5 = 2 + 3

takes on the value true.

179

b. logical identifiers: X

where

X := (5 = 1 - 4)

X takes on the value false.

c. true .AND. (X = false)

takes on the value false.

d. Y:= 5

VALUE := true

(.NOT. (VALUE = true)) .OR. (Y < 3)

The above expression takes on the value false .OR. false = false.

e. Z := 0

Y = true

NOT. ((Z < 2) .XOR. (Y = false))

takes on the value false.

Relational Operators
The following six relational operators connect the logical values and identifiers:

Definition of Six Relational Operators

The six relational operators are:

Operator Interpretation
1. = Equality

2. <> Inequality

3. < Less Than

4. > Greater Than

5. <= Less than or equal to

6. >= Greater than or equal to

180

Examples: Values:

5 = 2 + 3 true

9 <> 3(3 false

4 <= 4 true

-17 < -7 true

(7 = 2 + 3) .OR. (4 < 1) false

LOGICAL EXPRESSIONS VALUES

(5 = 2 - 4) .OR. (2 <> 3) false .OR. true = true

(5 = 2 - 4) .AND. (2 <> 3) false .AND. true = false

(5 = 2 - 4) .XOR. (2 <> 3) false .XOR. true = true

.NOT. (5 = 2 - 4) .NOT. (5 = 2 - 4) = true

Logical Statements

Definition of logical statements: A logical statement is a an instruction where the variables are declared to be

logical identifiers and these variables can be assigned logical values resulting from logical expressions.

Example:

PSEUDO - CODE X Y L Z

X := 4 4

Y := 6 4 6

 L:= (X + Y = 10) 4 6 true

Z := L .XOR. (X - Y <> 0) 10 6 true false

Z := Z .AND. L 10 6 true false

Exercise:

1. Complete the following:

PSEUDO - CODE X Y L Z

X := 2

Y := 5

 L:= (X + 2(Y > 2)

Z := .NOT. (L .OR. (.NOT. (X - Y <> 0)))

 Z := (.NOT.(L .AND. (Z .OR. L)) .XOR. Z

181

�

Example:

The following program demonstrates how these logical expressions can be used in a program.

Task1: Assign three integer numbers

Task2: If the sum of these numbers is greater than 10 but less than 20 divide the sum by 2 ; otherwise compute

the average of these numbers.

For the following program, assume the numbers 3,4,9 are assigned.

PSEUDO - CODE X Y Z S L

X:= 3 3

Y:= 4 3 4

 Z:= 9 3 4 9

S := X + Y + Z 3 4 9 16

L: = (S > 10) .AND. (S < 20) 3 4 9 16 true

IF L = true THEN 3 4 9 16 true

BEGIN 3 4 9 16 true

S:= S÷2 3 4 9 8 true

END 3 4 9 8 true

ELSE 3 4 9 8 true

BEGIN 3 4 9 8 true

S:= S÷3 3 4 9 8 true

END 3 4 9 8 true

Exercises:

1. In the following program, indicate if the following statements are correct or incorrect.

 X: = 2

Z := true

V := .NOT. (true .OR. false)

V:= (.NOT.(V .OR. V)) .AND. V

182

2. Evaluate the following expressions:

a. (.NOT.(true .XOR true)) .AND. (.NOT.(false .OR. true))

b. (. NOT.(true .XOR false)) .OR. (.NOT.(true .OR. false))

c. .NOT. ((NOT.(true .XOR. false)) .AND. ((true .OR. false)))

3. Evaluate the following expressions:

a. (.NOT. (true .AND. true) = false) .OR. false

b. (.NOT. (false .AND. true) = true).XOR. false

c. (.NOT. (false .AND. false) = true) .OR. true

d. (.NOT. (true .OR. true) = false).AND. false

e (.NOT. (false .OR. true) = true) .AND. false

f. (.NOT. (false .OR false) = true) .AND. true

4. Is the following statement true or false: (.NOT. (false .XOR. true) = true) .AND. false ?

�

14.2: Logical Expressions In Assembly Language.

In assembly language the value true is associated with the integer number 1 and the value false is associated

with the integer number 0. The four logical operations in assembly are given by the following table:

PSEUDO-LANGUAGE LOGICAL
OPERATORS

ASSEMBLY LANGUAGE LOGICAL
OPERATORS

.AND. and

.OR. or

.XOR. xor

.NOT. not

 The following table gives the logical values in the assembly language which result from the above four logical

operators:

183

ASSEMBLY LANGUAGE
LOGICAL OPERATORS

RESULTING VALUE

and 1 and 1 = 1

1 and 0 = 0

0 and 1 = 0

0 and 0 = 0

or 1 or 1 = 1

1 or 0 = 1

0 or 1 = 1

0 or 0 = 0

xor 1 xor 1 = 0

1 xor 0 = 1

0 xor 1 = 1

0 xor 0 = 0

not not 1 = 0

not 0 = 1

The format of the assembly language logical operators

The following are the formats of the four assembly language logical operators:

and destination, source

or destination, source

xor destination, source

not destination

where destination is a register where the logical value is assigned and source is a logical identifier, logical

value (0 or 1), or register containing a logical value. If the source is a identifier (variable), the register and the

identifier must be of the same data type.

Important: The not logical instruction will change, in the register, the o bits to the 1 bits and the 1 bits to the 0

bits.

184

Examples:

The and operator

ASSEMBLY LANGUAGE Al

mov al, 1 00 00 00 01

and al,1 00 00 00 01

and al, 0 00 00 00 00

mov al,0 00 00 00 00

and al,0 00 00 00 00

The or operator

ASSEMBLY LANGUAGE AL

mov al,1 00 00 00 01

 or al,1 00 00 00 01

 or al,0 00 00 00 01

mov al,0 00 00 00 00

 or al,0 00 00 00 00

The xor operator

ASSEMBLY LANGUAGE AL

mov al,1 00 00 00 01

xor al ,1 00 00 00 00

xor al,0 00 00 00 00

xor al,1 00 00 00 01

185

 The not operator

ASSEMBLY LANGUAGE AL

mov al,1 00 00 00 01

not al 11 11 11 10

not al 00 00 00 01

mov al,0 00 00 00 00

not al 11 11 11 11

not al 00 00 00 00

Exercise:

1. Change the following pseudo-code program to a partial assembly program .

EAX := true

EBX := false

EAX := (.NOT. (EAX .AND EBX)) .XOR. (EAX)

PSEUDO-LANGUAGE ASSEMBLY LANGUAGE EAX EBX

EAX := true

EBX := false

EAX := (.NOT. (EAX .AND EBX)) .XOR. (EAX)

�

14.3: Assigning to Logical Expressions a Logical Value in Assembly Language.

When programming in assembly language, we can not use logical statements directly. To perform logical

statements, we need to use the compare and jump statements described in Chapter 12. This is done by assigning

values 1 or 0 so that the compare and the appropriate jump statements can properly evaluate and carry out the

logical statements desired. The following examples show how this is done.

Example:

We wish to write an assembly language program that will perform the following tasks:

186

Task1: Assign two numbers into x, y.

Task2: If both numbers are greater than 10, compute the sum of the two numbers.

Task3: If at least one of the numbers is less than or equal to 10, compute the product of the two numbers.

PSEUDO-CODE X Y Z LOG

X:= 5 5

Y:= 60 5 60

LOG:= (X > 10) .AND. (Y > 10) 5 60 false

IF LOG = true THEN 5 60 false

BEGIN 5 60 false

Z:= X + Y 5 60 false

END 5 60 false

ELSE 5 60 false

BEGIN 5 60 false

Z:= X(Y 5 60 300 false

END 5 60 300 false

PSEUDO-CODE AL X Y Z LOG EAX EBX

X:= 5 mov x, 5 5

Y:= 60 mov y, 60 5 60

LOG := (X > 10) .AND. (Y > 10) mov eax, 0 5 60 0

mov ebx, 0 5 60 0 0

cmp x, 10 5 60 0 0

jng L1 5 60 0 0

mov eax, 1 5 60 0 0

L1: cmp y,10 5 60 0 0

jng L2 5 60 0 0

mov ebx, 1 5 60 0 1

L2: and eax, ebx 5 60 0 1

mov log, eax 5 60 0 0 1

187

IF LOG = true THEN cmp log, 1 5 60 0 0 1

BEGIN begin1: jne end1 5 60 0 0 1

Z:= X + Y mov eax, x 5 60 0 0 1

add eax, y 5 60 0 0 1

mov z, eax 5 60 0 0 1

END end1: 5 60 0 0 1

ELSE je end2 5 60 0 0 1

BEGIN begin2: 5 60 0 0 1

Z:= X(Y mov eax, x 5 60 5 0 1

mul y 5 60 5 300 1

mov z, eax 5 60 300 5 300 1

END end2: 5 60 300 0 300 1

Exercises:

1. For the above program, assume x = 20 and y = 30. With these values, change the above table.

2. For the above program, assume x = 2 and y = 3. With these values, change the above table.

3. Write an assembly language program that will perform the following tasks:

Task1: Assign two positive integer numbers x, y.

Task2: If x > 10 and y > 10 than compute x + y.

Task3: If x > 10 and y # 10 than compute x(y.

Task4: If x # 10 and y > 10 than compute 2((x + y).

Task5: If x # 10 and y # 10 than compute 3((x + y).

�

14.4: Masks

Definition of a mask: A mask is a binary integer number (BYTE, WORD, DWORD) used with a selected logical

operator (and, or, xor) that will be matched bit-by-bit with binary number contained in a selected register.

188

The mask instruction

Definition of the mask instruction:

logical operator destination, source

where the destination and source is defined above. If the source is an identifier, the destination and the source must be

of the same data type.

For this matching the following resulting values will hold:

ASSEMBLY LANGUAGE
LOGICAL OPERATORS

RESULTING VALUE

and 1 and 1 = 1

1 and 0 = 0

 0 and 1 = 0

 0 and 0 = 0

or 1 or 1 = 1

1 or 0 = 1

0 or 0 = 0

xor 1 xor 1 = 0

1 xor 0 = 1

 0 xor 1 = 1

0 xor 0 = 0

Examples:

Assume AX and BX contains the following binary numbers:

AX: 0110 1110 1100 0011

BX: 1001 1100 0101 1011

Here BX will be the mask.

We will now show, by the following examples, how the mask works, resulting in changing of bits in AX:

and ax, bx; AX: 0110 1110 1100 0011

 BX: 1001 1100 0101 1011

189

 \

 AX: 0000 1100 0100 0011

::::::::::::::::::::::::::::

or ax, bx; AX: 0110 1110 1100 0011

 BX: 1001 1100 0101 1011

 \

 AX: 1111 1100 1101 1011

:::::::::::::::::::::::::::

xor ax, bx; AX: 0110 1110 1100 0011

 BX: 1001 1100 0101 1011

 \

 AX: 1111 0010 1001 1000

Exercises:

Assume CX contains an arbitrary number. For the following assembly instructions, explain what changes to CX, if any,

result from the following masks:

1. and cx, cx

2. or cx, cx

3. xor cx, cx

4. and cx, (not cx)

5. or cx, (not cx)

6. xor cx, (not cx)

�

14.5: Shifting Instructions

There are two types of shifting instructions: the shift instructions and the rotation instructions.

The shift instructions

The shift instructions move the bits in a register to the left or to the right by a designated number. The following are the

190

shift instructions:

shl register, n; will shift the bits in the register to the left by n places. The extreme left bits will fall out of the register.

Added bits will be the bit 0. The added bit(s) will be in bold.

shr register, n; will shift the bits in the register to the right by n places. The extreme right bits will fall out of the

register but the left added bits will be the bit 0 . The added bit(s) will be in bold.

Examples:

For the following examples assume the register AX contains 1011 0100 1110 1011 .

shl ax, 1 ; 1011 0100 1110 1011

 Z

 0110 1001 1101 0110

::::::::::::::

shl ax, 4 1011 0100 1110 1011

 Z

 0100 1110 1011 0000

:::::::::::::

shr ax, 1 ; 1011 0100 1110 1011

 Y

 0101 1010 0111 0101

::::::::::::

shr ax, 4 1011 0100 1110 1011

 Y

 0000 1011 0100 1110

Multiplication and division applications.

One important application of the left shift results in multiplying the original number by a power of 2.

Examples:

1. Assume AX contains 0000 0000 0000 0011 which is equal to the number 3d.

shl ax, 1 will result in AX changed to 000 0000 0000 00110 which is equal to the number 6d.

2. Assume AX contains 0000 0000 0000 0011 which is equal to the number 3d.

191

shl ax, 2 will result in AX changed to 0000 0000 0000 1100 which is equal to the number 12d.

One important application of the right shift results in dividing the original number by a power of 2.

3. Assume AX contains 0000 0000 0000 0110 which is equal to the number 6d.

 shr ax, 1 will result in AX changed to 0000 0000 0000 0011 which is equal to the number 3d.

The rotation instructions

There are two types rotation instructions:

rol destination, n; rotate the bits to the left n places. The bits that are shifted off the left hand side replace the bits that

are added on the right hand side.

ror destination, n; rotate the bits to the right n places. The bits that are shifted off the right hand side replace the bits

that are added on the left hand side.

 Examples:

1: Assume AX contains 1100 0000 0000 0101.

rol ax, 2 will result in AX changed to 0000 0000 0001 0111

2: Assume AX contains 1100 0000 0000 0101

ror ax, 3 will result in AX changed to 1011 1000 0000 0000

192

;This is the above program.

.386

.model flat

.stack 4096

.data

n dword ?

s dword ?

m dword ?

r dword ?

b dword ?

t dword ?

.code

_start:

;start assembly language code

mov x, 5

mov y, 60

mov eax, 0

mov ebx, 0

cmp x, 10

jng L1

mov eax, 1

L1: cmp y,10

jng L2

mov ebx, 1

L2: and eax, ebx

mov log, eax

cmp log, 1

begin1: jne end1

193

 mov eax, x

add eax, y

mov z, eax

end1:

je end2

begin2:

mov eax, x

mul y

mov z, eax

end2:

;end of assembly language code

public _start

End

Project

Two positive different integer numbers are said to be relatively prime if both numbers have no common divisors other

than the number 1.

Examples:

The numbers 51, 32 are relatively prime since they have no common divisors.

The numbers 22, 40 are not relatively prime since 2 divides both numbers.

Write an assembly language program that will perform the following tasks:

Task1: Enter a positive number N > 1.

Task2: Find the number of relatively prime numbers # N

194

 CHAPTER 15 - INTEGER ARRAYS

INTRODUCTION

So far we have seen that we can save integer numeric values in variables such as x, y, z, etc. Restricting
ourselves to only variables of this type do not allow us to effectively store large amount of data. To accomplish
this we need to define arrays (tables). We first introduce one dimensional arrays in pseudo-code.

15.1 Representing One-Dimensional Arrays in Pseudo-Code.

Definition of a one-dimensional arrays

A one dimensional array is a collection of cells all of which have the same name, but are distinguished from one
another by the use of subscripts. A subscript is a positive integer number in parentheses which follows the
array’s name.

Examples:

1. a(1), a(2), a(3), ..., a(99), a(100)

2. num(1), num(2), ..., num(999), num(1000)

In the first example, the array named a can store 100 pieces of data and the in the second example, the array
named num can store 1,000 pieces of data.

Rules for arrays

1. The array name is a valid identifier

2. Each subscript must be a positive integer

3. Integer numeric values can be stored in these array cells.

Examples:

a(10) := 3

num(100) := -7

sum := a(10) + num(100)

Programming examples:

The following program, in pseudo-code, will perform the following tasks:

Task1: Stores the numbers 2, 4, 6, ..., 1000 in array cells.

Task2: Add the numbers in the cells.

Task3: Compute the average

194

Task4: Store all the numbers that are greater than the average.

TASK1:

k : = 1

j := 0

WHILE j # 1000

BEGIN

j := 2(k

num(k) = j

k := k+1

END

TASK2:

total:= 0

k := 0

WHILE k # 500

k := k + 1

total := total + num(k)

END

TASK3:

average : = total/500

TASK4:

k := 0

WHILE k # 500

k := k + 1

IF num(k) > average THEN

Store(k) := num(k)

END

Exercises:

 1. Write a pseudo- code program that will perform the following tasks:

Task1: Stores the numbers 2, 22, 23, ..., 2n in array cells.

Task2: Add the numbers in the cells.

Task3: Compute the integer average. (The average without the remainder.)

2. Finding the largest value.

 Write a pseudo- code algorithm that will perform the following tasks:

195

Task1: Store n non-negative integers into an array.

Task2: Find the largest value.

3. Converting positive decimal integers into binary.

Write a pseudo- code algorithm that will perform the following tasks:

Task1: Store a non-negative integer number.

Task2: Convert this number into binary and store the binary digits into an array.

4. Writing numbers backward.

Task1: Store a positive integer number.

Task2: Store the digits into an array backward.

5. A proper divisor of a positive integer N is an integer that is not equal to 1 or N and divides N without a
remainder.

For example the proper divisors of 210 are 2, 3,5,7 .

Write a program that perform the following tasks:

Task1: Store a positive integer number N.

Task2: Find and store in array all the proper divisors of N.

6. The Fibonacci number sequence

The Fibonacci numbers are the following:

0,1,1,2,3,5,8,13,...

where 0 + 1 = 1, 1 + 1 = 2, 1 + 2 = 3, 2 + 3 = 5, etc.

The general rule is to add the last two numbers in the sequence to get the next number.

Write a pseudo-code program that will perform the following tasks:

Task1: Store a positive integer N.

Task2: Compute and store in an array, all Fibonacci numbers less than or equal to N.
�

196

15. 2 Creating One Dimensional Integer Arrays In Assembly Language.

Ther are several ways to create a one dimensional integer array. We begin by starting an array at the location of
a given variable. We define an array using the directive instructive in the data portion of the program. We will
use the directive

variable name byte ?

to establish the location in memory of the cell a(1).

Since the assembler will determine the beginning location of the first cell of the array, we can capture the
location with the lea instruction. The following is the definition of the lea instruction in the instruction portion
of the program:

 The lea 32 bit register, variable name of the array instruction.

Definition of the lea instruction:

The lea instruction will store into any 32 bit register, the first byte location of a variable.

Example:

x byte ?

lea ebx, x

In this example the lea instruction will store into ebx, the first byte location of the variable x.

Before we discuss arrays in assembly language, we need to better understand how data is stored in main

memory. All integer data are represented as bytes, words or dwords. All of these are made up of bytes: the

double word (DWORD) is made up of 4 bytes (32 bits); the word (WORD) is made up of 2 bytes and the byte

(BYTE) is made up of 1 byte. We can think of the main memory as large memory table made up of columns

and rows and where each cell of the table is a byte, each identified with a numeric location :

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

:::::::::::::::: :::::::::::::::: :::::::::::::::: :::::::::::::::: :::::::::::::::: :::::::::::::::: :::::::::::::::: ::::::::::::::::

197

For example, assume the identifiers x, y are defined as double words and assigned the values 3h and 5875h
respectively:

x dword 3h

y dword 5875h

Assume the assembler selects in memory cell locations 1-4 for x and 13-16 for y. Our memory table would look
something like:

1

0 0

2

 0 0

3

 0 0

4

 0 3

:::: :::: :::: :::: :::: :::: :::: ::::

13 14 15 16

 0 0 0 0 5 8 7 5

:::: :::: :::: :::: :::: :::: :::: ::::

Creating a one dimensional array of a given data type.

When we create an array, we can store the array elements as three types of data: bye, word, dword.

The following steps will define and set up the array.

Step 1: Define the variable name and its data type byte.

Step 2: Using the lea instruction, store the first byte location in a 32 bit register.

Examples:

1.
x byte ?
lea ebx, x

2. y word ?
lea eax, y

3. z dword ?
lea edx, z

198

Storing data in the array using a variable’s location.

 The following definition is the assignment statement that will allow us to perform data assignments to and from
memory cells:

mov [register], source instruction.

where

the register must be a 32 bit register and the source can be a register of the same data type as the variable. .

Definition: mov [register], source

The mov [register], source instruction will store the number in the source register directly into the memory
location indicated by the contents of the register,

where the following rules apply:

Rule 1: The lea instruction will establish the first byte location.

Rule 2: The register must be EAX, EBX, ECX, or EDX.

Rule3: The source can be a register of the same data type as the variable.

Rule4: The [register] indicates the cell location where the bytes are to be located.

The [register] is call the indirect register.

For all examples in this chapter, we assume all numbers are represented as hexadecimals.

Examples:

The following examples show how arrays of different data types are created and data is stored.

1.

AL CODE AL X

x byte 68h 68

lea ebx, x 68

mov al, 9Ah 9A 68

mov [ebx], al 9A 9A

199

2.

AL CODE AX X

x word 35A8h 35A8

lea ebx, x 35A8

mov ax, 237Ah 237A 35A8

mov [ebx], ax 237A 237A

3.

AL CODE EAX X

x dword 17223FDh 17223FD

lea ebx, x 17223FD

mov eax, 0A637Ah A637A 17223FD

mov [ebx], eax A637A A637A

4. The following program will store numbers 13h, 29h,25h into the array X of type BYTE.

PSEUDO CODE AL CODE AL X

Array X x byte ?
lea ebx,x

byte 1 byte 2 byte 3

X(1) := 13h mov al, 13h 13

mov [ebx], al 13 13

add ebx,1 13 13

X(2):= 29h mov al,29h 29 13

mov [ebx],al 29 13 29

add ebx,1 29 13 29

X(3):= 25h mov al,25h 25 13 29

mov [ebx],al 25 13 29 25

Important: Since we are storing into individual byes, we increment by 1.

5. The following program will store numbers 13h, 29h,25h into the array of type WORD.

200

PSEUDO CODE AL CODE AX X

Array X x word ?
lea ebx,x

word 1 word 2 word 3

X(1) := 13h mov ax, 13h 0013

mov [ebx], ax 0013 00 13

add ebx,2 0013 00 13

X(2):= 29h mov ax,29h 0029 00 13

mov [ebx],ax 0029 00 13 00 29

add ebx,2 0029 00 13 00 29

X(3):= 25h mov ax,25h 0025 00 13 00 29

mov [ebx],ax 0025 00 13 00 29 00 25

Important: Since we are storing into individual byes for each word, we increment by by 2.

6. The following program will store numbers 13h, 29h,25h into the array of type DWORD.

PSEUDO CODE AL CODE EAX X

Array X x dword ?
lea ebx,x

dword 1 dword 2 dword 3

X(1) := 13h mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 1300 00 00 13

add ebx,4 00 00 00 13 00 00 00 13

X(2):= 29h mov eax,29h 00 00 00 29 00 00 00 13

mov [ebx],eax 00 00 00 29 00 00 00 1300 00 00 29

add ebx,4 00 00 00 29 00 00 00 13 00 00 00 29

X(3):= 25h mov eax,25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx],eax 00 00 00 25 00 00 00 13 00 00 00 2900 00 00 25

Important: Since we are storing into individual byes for each dword, we increment by 4.

Exercise:

Write a assembly language program that will store the first 50 positive odd numbers.
����

201

Storing data in the array without a variable’s location.

Arrays can also be created without using a variable location by simply using the

mov [register], source instruction

where the source is a register, containing the location where the first byte of

the array is to be stored.

For this instruction the following rules apply:

Rule 1: The register must be EAX, EBX, ECX, or EDX.

Rule2: The source can be a register of any data type.

Rule3: The [register] indicates the cell location where the bytes are to be located.

The [register] is call the indirect register.

Examples:

1.

AL CODE EBX AL [EBX]

mov ebx,403030h 403030

mov al, 9Ah 403030 9A

mov [ebx], al 403030 9A 9A

 2.

AL CODE EBX AX [EBX]

mov ebx,403030h 403030

mov ax, 569Ah 403030 569A

mov [ebx], ax 403030 569A 569A

 3.

AL CODE EBX EAX [EBX]

mov ebx,403030h 403030

mov eax, 2AC67569Ah 403030 2AC67569A

mov [ebx], eax 403030 2AC67569A 2AC67569A

202

4.

AL EAX EBX BYTE 1 2 3 4 5 6 7 8

mov eax, 1h 1

mov ebx, 7D712Eh 1 0007D712E

mov [eax], ebx 1 007D712E 0 0 7 D 7 1 2 E

mov eax, 5h 5 007D712E 0 0 7 D 7 1 2 E

mov ebx, 568923h 5 00568923 0 0 7 D 7 1 2 E

mov [eax], ebx 5 00568923 0 0 7 D 7 1 2 E0 0 5 6 8 9 2 3

mov ebx, 3h 5 00000003 0 0 7 D 7 1 2 E 0 0 5 6 8 9 2 3

mov [eax], ebx 5 00000003 0 0 7 D 7 1 2 E0 0 0 0 0 0 0 3

Exercise:

Complete the table below.

AL INSTRUCTIONS eax ebx BYTES 1 2 3 4 5 6 7 8

mov eax, 2

mov ebx, 7D12Eh

mov [eax], ebx

mov eax, 4

mov ebx, 568923h

mov [eax], ebx

mov ebx, 3

mov [eax], ebx

2. Write a assembly language program that will perform the following tasks:

Task 1: store the first 50 positive odd numbers.

Task 2: retrieve the first 50 positive odd numbers stored in task 1.
�

203

Retrieving data from an array.

The array elements of an array can be retrieved using the following instruction:

mov source, [register]

The mov source, [register] instruction will retrieve the number in the array at its beginning location and store it into
the source where the following rules apply:

Rule 1: The register must be EAX, EBX, ECX, or EDX.

Rule2: The source must be a register of the same data type as the original array.

Rule3: The [register] indicates the cell location where the bytes are to be located.

The [register] is call the indirect register.

Examples:

1.

AL CODE EBX AL [EBX] CL

mov ebx,403030h 403030

mov al, 9Ah 403030 9A

mov [ebx], al 403030 9A 9A

mov cl, [ebx] 403030 9a 9A 9A

2.

AL CODE EBX AX [EBX] CX

mov ebx,403030h 403030

mov ax, 569Ah 403030 569A

mov [ebx], ax 403030 569A 569A

mov cx,[ebx] 403030 569A 569A 569A

 3.

AL CODE EBX EAX [EBX] ECX

mov ebx,403030h 403030

mov eax, 2AC67569Ah 403030 2AC67569A

mov [ebx], eax 403030 2AC67569A 2AC67569A

mov ecx, [ebx] 403030 2AC67569A 2AC67569A2AC67569A

204

The following example is an extension of the above example and shows how the data from the array can be retrieved.
4.

AL CODE AL X

x byte ?
lea ebx,x

byte 1 byte 2 byte 3

mov al, 13h 13

mov [ebx], al 13 13

add ebx,1 13 13

mov al,29h 29 13

mov [ebx],al 29 13 29

add ebx,1 29 13 29

mov al,25h 25 13 29

mov [ebx],al 25 13 29 25

 sub ebx,2; Retrieving data 25 13 29 25

mov al,[ebx] 13 13 29 25

add ebx,1 13 13 29 25

mov al,[ebx] 29 13 29 25

add ebx,1 29 13 29 25

mov al,[ebx] 25 13 29 25

Exercise:

Extend the following program so that the array data stored can be retrieved in the register bx.

AL CODE EAX X

x dword ?
lea ebx,x

dword 1 dword 2 dword 3

mov eax, 13h 00 00 00 13

mov [ebx], eax 00 00 00 1300 00 00 13

add ebx,4 00 00 00 13 00 00 00 13

mov eax,29h 00 00 00 29 00 00 00 13

mov [ebx],eax 00 00 00 29 00 00 00 1300 00 00 29

add ebx,4 00 00 00 29 00 00 00 13 00 00 00 29

205

mov eax,25h 00 00 00 25 00 00 00 13 00 00 00 29

mov [ebx],eax 00 00 00 25 00 00 00 13 00 00 00 2900 00 00 25

�

Array lists

An alternative way to create one dimensional arrays is to list the array elements in the following directive:

variable name data type n1 ,n2,... , nm ,

where the list is of the same data type.

There are 3 directives of this type:

variable name byte type n1 ,n2,... , nm

variable name word type n1 ,n2,... , nm

variable name dword type n1 ,n2,... , nm

Examples:

The following examples show how to retrieve listed arrays.

1.

AL CODE AL X

byte 1 byte 2 byte 3

x byte 3h, 7dh, 99h 3 7d 99

lea ebx,x 3 7d 99

mov al, [ebx] 3 3 7d 99

add ebx,1 3 3 7d 99

mov al, [ebx] 7 3 7d 99

add ebx,1 7 3 7d 99

mov al, [ebx] 99 3 7d 99

206

2.

AL CODE AX X

word 1 word 2 word 3

x word 37f2h,723dh, 0defah 37f2 723d defa

lea ebx, x 37f2 723d defa

mov ax, [ebx] 37f2 37f2 723d defa

add ebx,2 37f2 37f2 723d defa

mov ax, [ebx] 723d 37f2 723d defa

add ebx,2 723d 37f2 723d defa

mov ax, [ebx] defa 37f2 723d defa

3.

AL CODE EAX X

dword 1 dword 2 dword 3

x dword 4437f2h,21723dh, 0d276efah 4437f2 21723d d276efa

lea ebx, x 4437f2 21723d d276efa

mov eax, [ebx] 4437f2 4437f2 21723d d276efa

add ebx,4 4437f2 4437f2 21723d d276efa

mov eax, [ebx] 21723d 4437f2 21723d d276efa

add ebx,4 21723d 4437f2 21723d d276efa

mov eax, [ebx] d276efa 4437f2 21723d d276efa

207

15.3: Reserving Storage for an Array Using the DUP Directive.

There are times when it is important to set aside a block of memory that array values will be stored in. The reason is

that without reserving a block of memory, data or code can be destroyed when cells are fill by an array. In fact it is

recommended ,where possible, that the DUP directive always be used when creating arrays. To accomplish this we

define an array A(dimension) using the following directive instructive in the data portion of the program:

variable name type dimension DUP (?)

Examples:

1. x byte 100 dup (?)

will create an array with a dimension of 100 byte cells:

2. x word 100 dup (?)

will create an array with a dimension of 100 WORD cells, consisting of 200 bytes.

3. x dword 100 dup (?)

will create an array with a dimension of 100 DWORD cells, consisting of 400 bytes.

Note: The lea instruction will still be use to determine the first byte position of the array.

Exercise:

Write a program that will perform the following tasks:

Task 1: Store in a dimensioned array the first 50 positive odd numbers.

Task 2: Store in another dimensioned array the first 50 positive even numbers.

Note: See model program below.
����

15.4 Working with Data

The following instruction will allow data to be directly stored into an array cell:

mov DATA TYPE PTR.

In order to avoid ambiguity about the data type, this instruction informs the assembler that the numeric value to be
stored is to be identified as a given data type.

This instruction is defined as

208

mov data type PTR [register], numeric value.

For this move instruction, the following are the three different forms of the instruction: :

C mov byte PTR [register], numeric value;

will define the size of the numeric value to be stored as a byte.

C mov word PTR [register], numeric value;

will define the size of the numeric value to be stored as a word.

C mov dword PTR [register], numeric value;

will define the size of the numeric value to be stored a dword.

Note: mov [register],source does not modify the contents of the register in question.

Examples:

1.

AL CODE EBX [EBX]

mov ebx,403030h 403030

mov byte ptr [ebx], 9ah 403030 9a

2.

AL CODE EBX [EBX]

mov ebx,403030h 403030

mov word ptr [ebx], 679ah 403030 679a

3.

AL CODE EBX [EBX]

mov ebx,403030h 403030

mov dword ptr [ebx], 231abc9ah 403030 231abc9a

Arithmetic operators using [register]

For the following two integer arithmetic operators: addition, subtraction: the indirect register [register] can be a source
for the following arithmetic instructions:

C add register, [register]

C add [register], register

209

C sub register, [register]

C sub [register], register

Examples:
1.

AL CODE EAX X

x byte 6 6

lea ebx, x 6

mov eax, 2 2 6

add eax, [ebx] 8 6

2.

AL CODE EAX X

x byte 2 2

lea ebx, x 2

mov eax, 8 8 2

sub eax, [ebx] 6 6

Exercises:

1. Complete the following table:

AL INSTRUCTIONS eax ebx BYTES: 9 10 11 12 13 14 15 16 17

mov eax, 2ACD16 h

mov ebx, 10

add ebx, 1

mov [ebx], eax

add [ebx], ebx

add eax, ebx

2. Assume we have two arrays x, y containing the elements:

x: 2, 7, 9, 10

y: 123, 56, 11, 9

210

Write an assembly language program that will multiply the corresponding array elements and store the resulting product
in an array z.
����

The cmp using [register]

The cmp instruction can be used to compare array elements. The instruction is of the following forms:

cmp [register], register

cmp register, [register]

Example:
.

AL CODE EAX X

x byte 6 6

lea ebx, x 6

mov eax, 7 7 6

cmp eax, [ebx] 7 6

ja bigger 7 6

jp not_bigger 7 6

bigger: mov eax, 0 0 6

jmp finished 0 6

not_bigger: mov eax, 1 0 6

finished: 0 6

15.5 Representing Two-Dimensional Arrays in Pseudo-Code.

Definition of a two-dimensional arrays name(r,c)

A two dimensional array is a collection of cells all of which have the same name, but are distinguished from one
another by the use of 2 subscripts. A subscript is a positive integer number in parentheses which follows the array’s
name. The two dimensional array can be indicated by name(r,c) where r is the number of rows and c the number of
columns.

Example: a(1,1), a(1,2), a(1,3) ,..., a(1,50),

 a(2,1), a(2,2), a(2,3),..., a(2,50),

 :::

 a(100,1), a(100,2), a(100,3), ...a (100,50)

Such an array is said to have

211

r = 100 rows and

c = 50 columns.

Programming example:

The following program in pseudo - code will perform the following task:

Task: Assign array values a(j ,k) = j + k, for 1 # j # 100; 1 # k # 10

Program:

j : = 1

WHILE j # 100

BEGIN

k := 1

WHILE k # 10

 BEGIN

 a(j , k) := j + k

 k := k + 1

 END

j := j + 1

END

The following table shows the values stored in the array:

row/col 1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11

2 3 4 5 6 7 8 9 10 11 12

3 4 5 6 7 8 9 10 11 12 13

::::::::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

j j + 1 j + 2 j + 3 j + 4 j + 5 j + 6 j + 7 j + 8 j + 9 j + 10

::::::::: :::: :::: :::: :::: :::: :::: :::: :::: :::: ::::

100 101 102 103 104 105 106 107 108 109 110

However, we have one small problem: the assembly language really only provides storing of data for one - dimensional
arrays. Therefore, to program two dimensional arrays, we need to go back to the pseudo- code for one dimensional
arrays where we can create the same results of a two dimensional array. To do this we define the two dimensional array
a(j , k) as a one dimensional array as:

a(j, k) := a(4(c((j - 1) + 4(k - 3)

where

212

1 # j # r = 100 ,

1 # k # c = 10,

Example:

For the above table and a(j, k) = j + k, where

r = 100

c = 10

1 # j # 100

1 # k # 10

a(j,k) := a(4(10((j - 1) + 4k -3) = a(40((j - 1) + 4(k - 3)

a(1,1) := a(1)
a(1,2) := a(5)
a(1,3) := a(9)
a(1,4) := a(13)
a(1,5) := a(17)
a(1,6) := a(21)
a(1,7) := a(25)
a(1,8) := a(29)
a(1,9) := a(33)

a(1,10) := a(37)

a(2,1) := a(41)
a(2,2) := a(45)
a(2,3) := a(49)
a(2,4) := a(53)
a(2,5) := a(57)
a(2,6) := a(61)
a(2,7) := a(65)
a(2,8) := a(69)
a(2,9) := a(73)

a(2,10) := a(77)

:::::::::::::::::

:::::::::::::::::

:::::::::::::::::

a(100,1) := a(3961)
a(100,2) := a(3965)
a(100,3) := a(3969)
a(100,4) := a(3973)
a(100,5) := a(3977)
a(100,6) := a(3981)
a(100,7) := a(3985)
a(100,8) := a(3989)
a(100,9) := a(3993)

a(100,10) := a(3997)

Our pseudo-code program will now be changed to:

Program:

j : = 1

WHILE j # 100

BEGIN

k := 1

WHILE k # 10

BEGIN

a(40((j - 1) + 4(k - 3) := j + k

 k := k + 1

 END

j := j + 1

END

213

Program

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY LANGUAGE CODE

J:= 1 J:= 1 mov j, 1

WHILE J # 100 WHILE J # 100 begin_row: cmp j,100
jg end_row

BEGIN BEGIN begin:

K := 1 K:= 1 mov k, 1

WHILE K # 10 WHILE K # 10 begin_col: cmp k, 10
jg end_col

 BEGIN BEGIN begin_col:

a(40((J - 1) + 4(K - 3) := J + K EAX:= J mov eax, j

EAX := EAX -1 sub eax, 1

EAX := 40(EAX mov f, 40

mul f

TEMP:= EAX mov temp, eax

EAX:= 4 mov eax, 4

EAX:= EAX(K mul k

EAX:= EAX - 3 sub eax, 3

EAX:= EAX + TEMP add eax, temp

EBX:= J mov ebx, j

EBX:= EBX + K add ebx, k

[EAX] := EBX mov [eax], ebx

K := K + 1 EAX: = K mov eax, k

EAX:= EAX + 1 add eax, 1

K:= EAX mov k, eax

END END jmp begin_col

end_col: mov eax, j

J := J + 1 EAX: = J
EAX:= EAX + 1

J:= EAX

mov eax, j
add eax, 1
mov j, eax

jmp begin_row

END END end_row :

214

Exercise:

1. Modify the above program to allow the creation of the two dimensional array using the directive

a dword dimension dup (?)

����

Model Program

; The following program is a partial program that will store numbers 2,4,6,..., 10,000 into an array a.

.386

.MODEL FLAT

.STACK 4096

.DATA

a dword 5000 dup (?) ; Array a(dim 5000)

.CODE
_start:
lea ebx, a
mov k, 1
while: cmp k, 5000
begin: jg end
; begin
mov eax, k
mul 2
mov [ebx], eax
mov eax, k
add eax, 1
mov k, eax
add ebx, 4
jmp while
end:
;end of assembly language code

PUBLIC_start

end

PROJECTS

1. A numeric conversion table is a table made up of decimal , hexadecimal and octal numbers in increasing order:

215

DECIMAL
0
1
2
3
4
5
6
7
8
9
10

::::::::
N

OCTAL
0
1
2
3
4
5
6
7
10
11
12

:::::::::::
N8

Write a program in assembly language that will create and a store the above table for any given value N.

2. Write a program that will find and store the first 50 prime numbers in an array.

216

CHAPTER 16 PROCEDURES

16.1 Pseudo-code Procedures

As in higher programming languages, we will need to use procedures (subroutines), repeatedly in many of our assembly
language programs. These procedures in a sense can be thought as algorithms, in that they can stand alone and be used
repeatedly in different programs. For pseudo-code, the following will be our the definition of the main body of the
procedure:

Definition of pseud-code procedures:

PROCEDURE name of procedure
BEGIN

(instructions)

END

We will assume the following rules will apply to procedures:

Rule1: All procedures will be local to the main program.

Rule2: All procedures will be located at the end of the main program.

Rule3: All variables are global.

Rule4: The procedure will be ignored by the assembler, unless it is called by the Call instruction

Definition of the Call instruction:

CALL name of procedure

We will assume the following rules will apply to the call instruction:

Rule1: All call instructions can be inserted anywhere inside the main program.

Rule2: When the call instruction is activated, transfer is made to the first instruction of the procedure.

Rule3: The END at the end of the procedure, will transfer back to the instruction immediately following the call
instruction.

Examples :

1. The exponential operator p = aN. Although we define an exponential operator in pseudo-code, the exponential
operator does not exist in the assembly language. Therefore we need to create a procedure that will perform the
exponential operator that we have in our pseudo-code. For the following procedure we will compute p = an, where

a> 0
n $ 0

217

PROCEDURE exponential
BEGIN
P := 1
K:= 1
WHILE K # N
BEGIN
P:= A(P
K:= K + 1
END
IF N:= 0 THEN
BEGIN
P:= A
END

The following program will use the above procedure and will perform the following task:

Task: Compute and store 57, 210 .

PSEUDO-CODE A N EXP1 EXP2 EXP3

A:= 5 5

N:= 7 5 7

CALL EXPONENTIAL 5 7

EXP1:= P 5 7 78125

A:= 2 2 7 78125

N:= 10 2 10 78125

CALL EXPONENTIAL 2 10 78125

EXP2:= P 2 10 78125 1024

PROCEDURE EXPONENTIAL
BEGIN
P := 1
K:= 1

WHILE K # N
BEGIN
P:= A(P

K:= K + 1
END

IF N:= 0 THEN
BEGIN

P:= 1
END

218

2. The following procedure will perform the following tasks:

Task1: Compare the relative size of two different integer numbers x, y.

Task2: Returns the larger of the two numbers.

PROCEDURE compare
BEGIN
IF x > y THEN
BEGIN
larger := x
ELSE
BEGIN
larger := y
END

 Write a program using the above procedure that will perform the following task:

Task1: Compare two pair of different integer numbers and store the larger in different varialbes.

PSEUDO-CODE X Y LARGER LARGER1 LARGER2

X := 5 5

Y := 10 5 10

CALL COMPARE 5 10

LARGER1:= LARGER 5 10 10 10

X : = 12 12 10 10 10

Y : = 7 12 7 10 10

CALL COMPARE 12 7 10 10

LARGER2:= LARGER 12 7 12 10 12

PROCEDURE COMPARE
BEGIN

IF X > Y THEN
BEGIN

LARGER := X
ELSE

BEGIN
LARGER := Y

END

3. The following procedure will perform the following task:

219

Task: For any positive integer N, compute the value sum = 1 + 2 + 3 + ... + N.

PROCEDURE sum
BEGIN
total := 0
k : = 1
WHILE k # N
BEGIN
total := total + k
k := k + 1
END
END

Write a program using the above the procedure that will perform the following tasks:

Task1: Store the sum of the numbers 1,2,3,..., 100

Task2: Store the sum of the numbers 1,2,3,..., 150

Task3: Store the sum of the numbers 1,2,3,...., 250

PSEUDO-CODE N TOTAL TOTAL1 TOTAL2 TOTAL3

N := 100 100

CALL SUM 100

TOTAL1:= TOTAL 100 5050 5050

N:= 150 150 5050 5050

CALL SUM 150 11325 5050

TOTAL2:= TOTAL 150 11325 5050 11325

N := 250 250 11325 5050 11325

CALL SUM 250 11325 5050 11325

TOTAL3:= TOTAL 250 125500 5050 11325 125500

PROCEDURE SUM
 BEGIN

TOTAL := 0
K : = 1

WHILE K # N
BEGIN

TOTAL := TOTAL + K
K := K + 1

END
 END

220

4. The following procedure will perform the following tasks:

Task1: Compare four array integer values.

Task2: Find and return the smallest integer value.

PROCEDURE array

BEGIN
smallest := a(1)

IF a(2) < smallest THEN
 BEGIN
 smallest := a(2)
 END

IF a(3) < smallest THEN
 BEGIN smallest := a(3)
 END

IF a(4) < smallest THEN
 BEGIN
 smallest := a(4)
 END

END

Write a program using the above the procedure that will perform the following tasks:

Task1: Find and store the smallest of the number: 5, 7, 2, 10

Task2: Find and store the smallest of the number, 57, 1001, 2222, 43

PSEUDO-CODE A(1) A(2) A(3) A(4) SMALLEST S1 S2

A(1) := 5 5

A(2) := 7 5 7

A(3) := 2 5 7 2

A(4) := 10 5 7 2 10

CALL ARRAY 5 7 2 10

S1:= SMALLEST 5 7 2 10 2

A(1) := 57 57 7 2 10 2

A(2) := 1001 57 1001 2 10 2

221

A(3) := 2222 57 1001 2222 10 2

A(4) := 43 57 1001 2222 43 2

CALL ARRAY 57 1001 2222 43 2

S2:= SMALLEST 57 1001 2222 43 43

PROCEDURE ARRAY
 BEGIN

SMALLEST := A(1)

IF A(2) < SMALLEST THEN
 BEGIN

 SMALLEST := A(2)
 END

IF A(3) < SMALLEST THEN
BEGIN

SMALLEST := A(3)
 END

IF A(4) < SMALLEST THEN
BEGIN

SMALLEST := A(4)
 END

 END

EXERCISES:

1. Write a procedure that will perform the following tasks:

Task1: Store the following positive integer numbers in an array:

n, n + 1, n + 2, n + 3, ..., n + m, m > 0.

Task2: Add the numbers stored in the array.

2. Write a procedure that will perform the following tasks:

Task1: Store n integers in an array.

Task2: Find the largest number of this array.
�

16.2 Writing procedures in Assembly Language

The assembly language syntax is very similar to pseudo-code:

222

Body of the procedure:

identifier PROC NEAR 32 ; identifier: the procedure’s name

(instructions)

ret ; will jump to the code following the call instruction.

identifier ENDP ; Terminates the body of the procedure.

The call instruction is simply :

call identifier

Examples:

1. From example 1 above, complete the table below:

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY LANGUAGE CODE

A:= 5 A:= 5 mov a, 5

N:= 7 N:= 7 mov n, 7

CALL EXPONENTIAL CALL EXPONENTIAL call exponential

EXP1:= P EAX:= P mov eax, p

EXP1:= EAX mov exp1, eax

A:= 2 A:= 2 mov a, 2

N:= 10 N:= 10 mov n,10

CALL EXPONENTIAL CALL EXPONENTIAL call exponential

EXP2:= P EAX:= P mov eax,p

EXP2:= EAX mov exp2, eax

PROCEDURE EXPONENTIAL PROCEDURE EXPONENTIAL exponential PROC NEAR 32

BEGIN BEGIN begin:

P := 1 P:= 1 mov p, 1

K:= 1 K:= 1 mov k, 1

WHILE K # N WHILE K# N while: cmp k, n

jg end1

BEGIN BEGIN begin1:

P:= A(P EAX:= P mov eax, p

223

MUL A mul a

P:= EAX mov p, eax

K:= K + 1 EAX:= K mov eax, k

EAX:= EAX + 1 add eax, 1

K:= EAX mov k, eax

END END jmp while

end1:

IF N:= 0 THEN IF N:= 0 THEN cmp ebx,0

jg end2

BEGIN BEGIN begin2:

P:= 1 P:= 1 mov p, 1

END END end2:

ret
 expontential ENDP

2. From example 3 above, complete the table below:

PSEUDO-CODE AL PSEUDO-CODE ASSEMBLY LANGUAGE CODE

N := 100 N:= 100 mov n, 100

CALL SUM CALL SUM call sum

TOTAL1:= TOTAL TOTAL1 := TOTAL mov eax, total
mov total1, eax

N:= 150 N:= 150 mov n, 150

CALL SUM CALL SUM call sum

TOTAL2:= TOTAL TOTAL2:= TOTAL mov eax, total
mov total2, eax

N := 250 N:= 250 mov n,250

CALL SUM CALL SUM call sum

TOTAL3:= TOTAL TOTAL3:= EBX mov eax, total
mov total2, eax

224

PROCEDURE SUM
 BEGIN

TOTAL := 0
K : = 1

WHILE K # N
BEGIN

TOTAL := TOTAL + K
K := K + 1

END
 END

PROCEDURE SUM
 BEGIN

TOTAL := 0
K:= 1

WHILE TOTAL # N
BEGIN

EAX:= TOTAL
EAX:= EAX + 1
TOTAL:= EAX

END
 END

sum PROC NEAR 32
mov total, 0

mov k, 1

cmp total, n

begin:

mov eax, total

 add eax, 1

mov total, eax

jle begin

ret

sum ENDP

 Exercises:

1. For the remaining examples in 16.1, write appropriate assembly language codes.

2. Modify the a procedure that will compute an where n is a integer and the value a is a non-negative floating point
number. .
�

PROJECT:

Write a program to compute

P(x) = anx
n + an-1x

n-1 +... + a3x
3 + a2x

2 + a1x + a0 = (...(((an x + a4n-1)x +... + a3)x + a2)x + a1)x + a0

using the following tasks:

Task 1: Store the integers ak in an array.

Task 2: In a procedure, compute P(x).

225

II. WORKING WITH DECIMAL NUMBERS

226

 CHAPTER 17 - DECIMAL NUMBERS

INTRODUCTION

So far we have only worked with integers in assembly language. For many assembly language compilers,
decimal numbers are also available. In order be become a proficient assembly language programmer, one needs
to have a good understanding how decimal numbers are represented in the assembler. To accomplish this, we
start with the basic ideas of decimal numbers in the base 10. In later chapters we will expand these numbers to
the various forms that are needed.

17.1 Definition of Decimal Numbers and Fractions.

Definition of Decimal Numbers Base 10: Decimal numbers are numbers of the following forms

m.a1a2 a3 .. an

or

m.a1a2a3 ... an a1a2a3 ... an ... a1a2a3 ... an ...

where m is a integer and a1,a2,a3 ... are non-negative integers.

There are three types of decimal numbers: positive , negative and zero.

Examples: 0.123, - 0.06143, 4.54, 33.248248..., - 72.77777777777

Definition of Fractions: Fractions are defined as ± N/M, where N and M represent arbitrary integers, with the
restriction that M … 0.

2/3, - 4/7, 1/3, 124/456, - 7/7, 0/4, 400/200

There are two types of fractions: proper and improper.

Definition: A proper positive fraction N/M is a fraction where 0 < N < M.

Examples:

2/3, - 4/7, 1/3, 124/456

Definition: An improper positive fraction N/M is a fraction where N $ M > 0.

5/2, - 7/6, 10/ 5

Note: In this chapter we are primarily interested in positive proper fractions.

227

Exercises:

1. Which of the following fractions can be reduced to integer numbers:

a. 1446/558 b. 12356/2333 c. 458/3206 d. 1138/569

2. Rewrite the following numbers as fractions:

a. (1/2)/(5/7) b. (212/124)/(5) c. (1/3)/(2/3)

3. Which of the following fractions are proper:

a. 3/2 b. 234/567 c. 1/2
�

Note: For the following presentation, we will only consider decimal numbers that are generated from positive
fractions.

17.2 Representing positive decimal numbers corresponding to proper fractions in expanded form.

Any fraction can be represented by a decimal number. Since we are mainly interested in fractions that are

proper, this means that all corresponding decimal numbers we study will be less than 1.

There are two types of decimal numbers: finite and infinite:

Definition of finite decimal numbers: Finite decimal numbers are written in the form: 0.a1a2a3 .. an

where

0.a1a2a3 .. an = a1/10 + a2/102 + a3/103 + ... + an/10n

and

ak (k = 1, 2, ..., n) are non- negative integers.

Note: Finite decimal numbers can also be negative numbers.

Examples:

0.579 = 5/10 + 7/100 + 9/1000

0.3579 = 0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000

 0.49607 = 4/10 + 9/100 + 6/1000 + 0/10000 + 7/100000

0.005411 = 0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =

228

 5/1000 + 4/10000 + 1/100000 + 1/1000000

Definition of infinite decimal numbers : Infinite decimal numbers are written in the form:

0.a1a2a3 ... an a1a2a3 ... an ... a1a2a3 ... an ...

where

0.a1a2a3 ... an a1a2a3 ... an ... a1a2a3 ... an ... =

 a1/10 + a2/102 + a3/103 + ...+ an/10n + a1/10n + 1 + a2/10n + 2 + a3/10n + 3 +... + an/102n + ...

and

 ak (k = 1, 2, ...,) are non- negative integers.

To avoid the complications of working with infinite expansions, we will use the following notation:

 0.a1a2a3 ... an a1a2a3 ... an ... a1a2a3 ... an ... =

Also, we will assume that all the laws of arithmetic work when applied to infinite decimal numbers.

Examples:

0.798798... =

0.015981598 ... =

 0.66... = ,

 0.13241324... =

0.25897897897... =

Examples:

, , ,

 ,

Exercises:

1. Expand the following in the form: = 0.a1a2a3 ... ana1a2a3 ... an ... a1a2a3 ... an ...

a. b.

229

2. Expand the following in the form 0.a1a2a3 ... an a1a2a3 ... an ... a1a2a3 ... an .. =

a. 0.0768907689 ... b. 0.00235559055590 ...

3. Write the following fractions as decimal numbers using the upper bar notation where necessary:

 a. 5/12 b. - 7/8 c. 5/6 d. 1/7 e. - 3/7

�

17.3 Converting Decimal Numbers to Fractions:

Finite decimal numbers can easily be converted to fractions by writing them first in the form:

0.a1a2a3 .. an = a1/10 + a2/102 + a3/103 + ... + an/10n = (a1 (10n - 1 + a2 (10n - 2 + ... + ak (10n - k +... + a1)/10n.

and then sum the terms with a common denominator.

Examples:

0.5 = 5/10

0.579 = 5/10 + 7/100 + 9/1000 = (5(100 + 7(10 + 9)/1000 = 579/1,000

0.3579 = 0.3579 = 3/10 + 5/100 + 7/1000 + 9/10000 = (3(1000 + 5(100 + 7(10 + 9)/10000 = 3,579/10,000

 0.49607 = (4/10 + 9/100 + 6/1000 + 0/10000 + 7/100,000) = - 49607/100,000

0.005411 = 0/10 + 0/100 + 5/1000 + 4/10000 + 1/100000 + 1/1000000 =

(5(1000 + 4(100 + 1/10 + 1)/1000000 = 5411/1,000,000

Exercises:

1. Write the decimal numbers as fractions:

a. 0.0235 b. 0.1111215 c. 0.999999
�

Infinite decimal numbers of type can also be converted into a fraction. The following algorithm1

will demonstrate how this is done:

Step 1: Let x =

1. An algorithm is a finite set of rules to compute a specific result.

230

Step 2: 10n (x = a1a2 a3. ... an .

Step 3: 10n
(x - x = a1a2 a3. ... an . - = a1a2 a3. ... an

Step 4: 10n (x - x = 99...9x = a1a2 a3. ... an

Step 5: x = a1a2 a3. ... an / 99...9

Step 6: = = a1a2 a3. ... an / 99...9

Example:

Convert to a fraction :

Step 1: Let x = = 0.216572165721657 ...

Step 2: 105 (x = 100,000(0. 2165721657... = 21657

Step 3: Subtract the equation in step 1 from the equation in step 2:

100,000(x - x = 21657. 2165721657... - 0.216572165721657 ... = 21657

Step 4: 100,000(x - x = 99,999x = 21657

Step 5: x = 21657/99999

Step 6: = 21657/99999

We can incorporate the above algorithm into a single basic formula:

Example:

 Convert to a fraction:

Exercises:

1. Write the following decimal numbers as fractions:

231

a. b. c. d. e.

g. 23.468 h. 2.0078 I. 0.246

2. Write the following decimal numbers as a single fraction p/q where p, q are integers:

a. + b. - c. (d. /

3. Write the following decimal numbers as a decimal number :

a. + b. - c. (d. /
�

17.4 Converting Fractions to Decimal Numbers:

Assume that N/M is a positive proper fraction. We define the decimal representation of N/M as

M/N = a1 /10 + a2 /102 + a3 /103 +

where ak are non-negative integers.

The following example will demonstrate the conversion from a fraction to a decimal number:

Example:

Convert 3/7 to its decimal representation.

3/7 = a1 /10 + a2 /102 + a3 /103 + a4 /104 + a5 /105 + a6 /106 + a7 /107 + ...

Step 1: 10(3/7) = 30/7 = (28 + 2)/7 = 4 + 2/7 = a1 + a2 /10 + a3 /102 + a4 /103 + a5 /104 + a6 /105 + a7 /106 + ...

a1 = 4

2/7 = a2 /10 + a3 /102 + a4 /103 + a5 /104 + a6 /105 + a7 /106 + ...

Step 2: 10(2/7) = 20/7 = (14 + 6)/ 7 = 2 + 6/7 = a2 + a3 /10 + a4 /102 + a5 /103 + a6 /104 + a7 /105 + ...

a2 = 2

6/7 = a3 /10 + a4 /102 + a5 /103 + a6 /104 + a7 /105 + ...

Step 3: 10(6/7) = 60/7 = (56 + 4)/ 7 = 8 + 4/7 = a3 + .a4 /10 + a5 /102 + a6 /103 + a7 /104 + ...

a3 = 8

4/7 = a4 /10 + a5 /102 + a6 /103 + ...

232

Step 5: 10(4/7) = 40/7 = (35 + 5)/ 7 = 5 + 5/7 = a4 + a5 /10 + a6 /102 + ...

a4 = 5

5/7

 = a5 /10 + a6 /102 + ...

Step 6: 10(5/7) = 50/7
 = (49 + 1)/7 = 7 + 1/7 = a5 + a6 /10 + a7 /102 + ...

a5 = 7

1/7 = a6 /10 +a7 /102 +
...

Step 7: 10(1/7) = 10/7 + (7 + 3)/7 = 1 + 3/7 = a6 +a7 /10 +
...

a6 = 1

3/7 = a7 /10 +
...

Since we cycled back to 3/7 we can write:

3/7 = 0.42857142857142857142857142857143 ... =

Exercise:

Convert the following fractions to decimal:

1. 4/9

2. 3/8

3. 67/5

�

 17.5 Representation of Decimal Numbers

Every finite decimal number has 2 representations.

Examples:

a.

Step 1: x = = 0.99....

Step 2: 10x = 9.99....

233

Step 3: Subtract the equation in step 1 from the equation in step 2:

 9x = 9

Step 4: x = = 1.

b. 0.00

Step 1: 0.00 = /100 = 1/100 = 0.01

c.

 = 24 + = 24 + 1 = 25

d. 0.2354

 0.2354 = 0.2354 + 0.0000 = 0.2354 + 0.0001 = 0.2355

Exercises:

1. Convert the following into integer form:

a. 281. b. 41256.

2. Write the following into fraction form:

a. 0.23 b. 0.00 c. 0.

3. Explain why we cannot convert, using our above algorithm, the following number into a fraction:

0.272772777277772777772...

From your analysis, does such a number exist ?
�

Project

We assume in this chapter that we can apply the ordinary rules of decimal arithmetic to infinite decimal numbers.
For the following infinite decimal numbers, find the fraction that presents p/q where p, q are integers.

1.

a. 10n (= p/q

b. + = p/q

234

c. - = p/q

d. (= p/q

e. / = p/q

2. Show the following is true:

a. a1/10 + a2/102 + a3/103 + ... + an/10n = (a1a2 ... an)/10n

b. a1/10 + a2/102 + a3/103 + ...+ an/10n + a1/10n + 1 + a2/10n + 2 + a3/10n + 3 +... + an/102n + ... =

(a1a2 ... an)/10n + (a1a2 ... an)/102n + (a1a2 ... an)/103n + ...

3. Write an assembly language program that will perform the following tasks:

Task1: Assume n/m = =

Compute the values ak of and store them in an array.

235

CHAPTER 18 - DIFFERENT NUMBER BASIS FOR FRACTIONS (OPTIONAL)

INTRODUCTION

In Chapter 2, we restricted our studies to integer numbers of different bases. We now move on to the study of
decimal numbers of different bases. It is important to understand that to become a successful assembly programmer
one has to have a complete understanding how both integer and decimal numbers work within the assembler
system.

18.1 Definition of Decimal and Fractions

In Chapter 17, we defined finite and infinite decimal numbers in the base 10 as

0.a1a2a3...an = a1/10 + a2/102 + ... + an/10n

0.a1a2a3...an a1a2a3...an ... = = a1/10 + a2/102 + ... + an/10n + a1/10n + 1 + a2/10n + 2 + ... + an/102n +...

Examples:

0.25 = 2/10 + 5/102

0.0625 = 6/102 + 2/103 + 5/104

0.3333... = 3/10 + 3/102 + 3/103 +...

 = 2/10 + 8/102 + 5/103 + 7/104 + 1/105 + 4/106 + 2/107 + 8/108 + 5/109 + 7/1010 + 1/1011 + 4/1012 + ... +
 In a similar manner we can define finite and infinite decimal numbers, less than 1, for any base b in expanded form:

Definition: A finite non negative decimal number less than 1 can be written in the base b as:

 (0.a1a2a3...an)b = a1/10 + a2/102 + ... + an/10n

where

0 # ak < b (k = 1, 2, ...,n),

a1/10b + a2/10b
2 + ... + an/10b

n = 0.a1 + 0.0a2 + ... + 0.00...0an

Definition: An infinite decimal number less than 1 can be written in the base b as :

(0.a1a2a3...an ...)b = a1/10b + a2/10b
2 + ... + an/10b

n + ...

where

0 # ak < b (k = 1, 2, ...)

a1/10b + a2/10b
2 + ... + an/10b

n + ... = 0.a1 + 0.0a2 + ... + 0.00...0an + ...

236

Note: We are only using these decimal expansions to indicate the various position of the decimal point; not for
computational values.

Examples:

0.111012 = 1/102 + 1/102
2 + 1/102

3 + 0/102
4 + 1/102

5

0.027568 = 0/108 + 2/108
2 + 7/108

3 + 5/108
4 + 6/108

5

16 = 9/10 + 8/102 + C/103 + 7/104 + D/105 + F/106 + ...

Exercises:

1. Write the following numbers in expanded form:

a. 0.2311204 b. 0.111111012 c. 0.2323238 d. 0.ABC216
�

18.2 Converting Decimal Numbers Between The base 10 and an Arbitrary Base

As we stated in Chapter 4, it is important to be able to convert integer numbers from a given
number base to corresponding integer numbers in any other base. Similarly , we wish to do the
same for fractions. First we will define the corresponding decimal number (Nb < 1) that
corresponds to a unique decimal number in the base 10.

Converting finite decimal numbers in any base b to its corresponding decimal numbers in
the base 10:

The following formula gives a one - to - one correspondence from a finite decimal number in the
base b to a unique finite decimal number in the base 10:

Nb = 0.a1a2... an] a1/b + a2/b
2 + ... + an/b

n
 = N10

Note: All computation is done in decimal.

Examples:

0.3214] 3/4 + 2/42 + 1/43 = 3/4 + 2/16 + 1/64 = 0.75 + 0.125 + 0.015625 = 0.89062510

0.110112] 1/2 + 1/22 + 1/24 + 1/25 = 0.5 + 0.25 + 0.0625 + 0.03125 = 0.8437510

237

0.9AF16] 9/16 + 10/162 + 15/163 = 0.5625 + 0.0390625 + 0.003662109375 =

0.60522460937510

Exercises:

1. Convert the following numbers to the base 10:

a. 0.2311204 b. 0.111111012 c. 0.2323238 d. ABC216
�

Converting infinite decimal numbers in any base b to its corresponding decimal numbers in
the base 10:

The following formula will convert any infinite decimal number in the base b to its corresponding
decimal number in the base 10:

Assume

Let ab = 0.a1a2...an] a10 = a1/b + a2/b
2 + ... + an/b

n
 then

Examples:

a. Find 4] N10

Step 1: b = 4

Step 2: n = 1

Step 3:

Step 4: a4 = 0.3

Step 5: a10 = 3/4

Step 6: Substituting in the above formula gives

238

] (3/4)([4/(4 - 1)] = 3/4(4/3 = 1

b. Find 2] N10

Step 1: b = 2

Step 2: n = 3

Step 3:

Step 4: a2. = 0.101

Step 5: a10 = 1/2 + 0/22 + 1/23 = 4/8 + 1/8 = 5/8

Step 6: Substituting in the above formula gives

 = (5/8) ([23/(23 -1)] = 5/7

Exercises:

1. Convert the following numbers to the base 10:

a. b. c. d.

�

Converting finite decimal numbers in the base 10 to its corresponding decimal numbers in
any base b:

N10 = (a1/b + a2/b
2 + ... + an/b

n) + (a1/b
n + 1

 + a2/b n + 2 + ... + an/b 2n) + ... +] (.a1a2... an ...)b

The following examples will demonstrate how to solve the values ak:

Examples:

Convert the following decimal numbers to the indicated base.

a. Convert 0.2 to the base 4.

Step 1: 0.2 = a1/4 + a2/4
2 + an/4

3 + ...

Step 2: 4((0.2) = 0.8 = a1 + a2/4 + a3/4
2 + ...

239

Step 3: Since a1 is an integer, a1 = 0.

Step 4: 0.8 = a2/4 + a3/4
2 + ...

Step 5: 4((0.8) = 3.2 = a2 + a3/4 + ...

Step 6: a2 = 3

Step 7: 0.2= a3/4 + a4/4
2 + ...

Since we are back to Step 1, the decimal number in the base 4 can be written as

0.210] N4 = 0.0303... = =

b. Convert 0.9 to the base 16.

Step 1: 0.9 = a1/16 + a2/162 + an/163 + ...

Step 2: 16((0.9) = 14.4 = a1 + a2/16 + a3/162 + ...

Step 3: Since a1 is an integer, 14] a1 = E

Step 4: 0.4 = a2/16 + a3/162 + ...

Step 5: 16((0.4) = 6.4 = a2 + a3/16 + ...

Step 6: a2 = 6

Step 7: 0.4= a3/16 + a4/162 + ...

Step 8: Since we are back to Step 4, the decimal number can be written as

0.910] N16 = 0.E666... =

c. Convert 0.8 to the base 2.

Step 1: 0.8 = a1/2 + a2/2
2 + an/2

3 + ...

Step 2: 2((0.8) = 1.6 = a1 + a2/2 + a3/2
2 + ...

Step 3: a1 = 1

240

Step 4: 0.6 = a2/2 + a3/2
2 + ...

Step 5: 2((0.6) = 1.2 = a2 + a3/2 + ...

Step 6: a2 = 1

Step 7: 0.2= a3/2 + a4/2
2 + ...

Step 8: 2((0.2) = 0.4 = a3 + a4/2 + ..

Step 9: a3 = 0

Step 10: 0.4= a4/2 + a5/2
2 + ...

Step 11: 2((0.4) = 0.8 = a4 + a5/2 + ..

Step 12: a4 = 0

Step 13: 0.8 = a5/2 + a6/2
2 +

At this point we are back to Step 1:

Step 12: Therefore 0.8] =

Checking out computation.

By applying the above formula :

we can check to see if we correctly converted the finite decimal number.

Example:

Let us check to see that we correctly converted 0.810 to binary .

Step 1:

Step 2: a10 = 1/2 + 1/22 = 1/2 + 1/4 = 3/4

241

Step 3: b = 2

Step 4: n = 4

Step 5: Substituting in the above formula gives

] (3/4) ([24/(24 -1)] = (3/4)(16/15) = 0.8

Exercises:

1. Convert 0.55 to the

a. base 2. b. base 4 c. base 8 d. base 16

and check your results.

4. Show] 0.1510

5. Show] 0.910

�

Converting infinite decimal numbers in the base 10 to its corresponding decimal numbers in
any base b:

We will use the same method of converting a finite decimal number in the base 10 to any number
in the base b
by replacing the finite decimal number by an infinite decimal number.

Example.

Convert]]]] N2

Step 1: = 0.888888... = a1/2 + a2/2
2 + an/2

3 + ...

Step 2: 2((0.8888...) =1.77777... = a1 + a2/2 + a3/2
2 + ...

Step 3: a1 = 1

0.77777 ... = a2/2 + a3/2
2 + ...

Step 4: 2((0.77777...) = 1.55555... = a2 + a3/2 + a4/2
2 ...

242

Step 5: a2 = 1

0.55555...= a3/2 + a4/2
2 + ...

Step 6: 2((0.55555...) = 1.1111... = a3 + a4/2 + a5/2
2..

Step 7: a3 = 1

0.1111... = a4/2 + a5/2
2 + ...

Step 8: 2((0.1111...) = 0.2222... = a4 + a5/2 + a6/2
2 + ...

Step 9: a4 = 0

0.2222... = a5/2 + a6/2
2 + ...

Step 10: 2((0.2222...) = 0.4444... = a5 + a6/2 + a7/2
2 + ...

Step 11: a5 = 0

0.4444... = a6/2 + a7/2
2 + ...

Step 12: 2((0.4444...) = 0.8888... = a6 + a7 /2 +

Step 13: a6 = 0

0.8888... = a7 /2 + ...

Step 14: Since step 13 returns to the original value in step 1, we are finished and conclude:

] 0.a1a2 a3a4a5a6 0.a1a2 a3a4a5a6 ... = (111000111000...)2 =

Checking out computation.

By applying the above formula :

we can check to see if we correctly converted the infinite decimal number .

243

Assume

Let a2 = 0.111000] a10 = 1/2 + 1/22 + 1/23 = 0.5 + 0.25 + 0.125 = 0.875
 then

b = 2

n = 6

] (0.875)(26/(26 - 1) =

Exercises:

6. Convert and check your results:

Convert: to a. base 2 b. base 8 c. base 16

�

Alternative Method for Converting Infinite Decimal Numbers in the Base 10 to its
Corresponding Decimal Numbers in any base b:

Rather then working with infinite decimal numbers in the base 10, first convert the number to a
fraction N/M and then write

N/M = a1/b + a2/b
2 + ... + an/b

n + ...] (.a1a2... an)b

and solve for ak (k = 1,2,3,...).

Example:

 = 1/3 to the base 4.

Step 1: 1/3 = a1/4 + a2/4
2 + ... + an/4

n + ...

Step 2: 4((1/3) = 1 + 1/3 = a1+ a2/4
 + ... + an/4

n + ...

a1 = 1 and 1/3= a2/4
 + ... + an/4

n + ...

Since the fraction 1/3 has repeated:

244

]

Exercises:

1. Using the alternative method, convert]]]] N2 .

�

18.3 Converting Decimal Numbers In a Given Base To Fractions In the Same Base:

Finite decimal numbers in a base b can easily be converted to fractions by writing them first in the
form:

(0.a1a2a3 .. an)b = a1/10 + a2/102 + a3/103 + ... + an/10n = [(a1 (10n - 1 + a2 (10n - 2 + ... + ak (10n - k

+... a1)/10n]b.

Examples:

0.58 = (5/10)8

0.10112 = 1/10 + 0/100 + 1/1000 + 1/10000 = (1(1000 + 1(10 + 1)/10000 = (1011/10000)2

0.3DF216 = 3/10 + D/100 + F/1000 + 2/10000 = (3(1000 + D(100 + F(10 + 2)/10000 =

(3DF2/10000)16

Exercise:

1. Write the decimal numbers as fractions:

a. 0.02358 b. 0.1101112 c. 0.99999916

�

Infinite decimal numbers of type can also be converted into a fraction by using the

basic formula developed in Chapter 17:

where 10n - 1 = d1d2 ... dn

245

where dk = b - 1 (k = 1,2, ..., n), the largest digit in the base b.

Examples:

 = 723/(1000 - 1) = 723/777 8

 = 10/(100 - 1) = 10/11 2

 = 3FA9/(10000 - 1) = 3FA9/FFFF 16

Exercise:

1. Write the decimal numbers as fractions in the same base:

a. 0.01012 b. c. d.

�

18.4 Converting Numbers Between Different Bases

There exists a one to one correspondence between different bases. This can be shown by
converting a number in one base to the base 10 and then convert this number to the other base.

Examples:

a. 0.24] N6

0.24] N10 = 2/4 = 0.5

0.5 = a1/6 + a2/6
2 + a3/6

3 + ...

6(0.5 = a1 + a2/6 + a/62 + ... = 3.0

a1 = 3, a2 = 0, a3 = 0, ..

0.5] 0.36

0.24] 0.36

b. 0.68] N2

0.6] N10 = 6/8 =.75

246

0.75 = a1/2 + a2/2
2 + a3/2

3 + ...

2((0.75) = a1 + a2/2 + a3/2
2 + ... = 1.5

a1 = 1

0.5 = a2/2 + a3/2
2 + ...

2(0.5 = a2 + a3/2 + ... = 1

a2 = 1, a3 = 0, a4 = 0, ...

0.5] 0.112

0.68] 0.112

c. 0.A16] N2

0.A] N10 = 10/16 = 0.62510

0.625 = a1/2 + a2/2
2 + a3/2

3 + ...

2((0.625) = a1 + a2/2 + a3/2
2 + ... = 1.25

a1 = 1

2((0.25) = a2 + a3/2
 + ... = 0.5

a2 = 0

2((0.5) = a3 + a4/2 + ... = 1

a3 = 1

0.62510]0.1012

0.A16] 0.1012

Exercises:

1. Convert the following:

a. 0.AB16] N4 b. 0.25816] N8 c. 0.012] N16
�

247

Quick conversions between the base 2 and base 16.

With no computation we can convert a number in the base 2 to its corresponding number in the
base 16.

To convert from base 2 to base 16 or conversely, we need to construct the following table:

BASE2
DIGITS
Binary

BASE
16DIGITS

Hexadecimal

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 A

1011 B

1100 C

1101 D

1110 E

1111 F

Converting a finite decimal number less than one

The following 2 rules show how to convert a finite binary number to a hexadecimal number:

1. From left to right, group the digits of the binary number in groups of 4; adding zeros at the end
if necessary .

248

2. Match each group of these 4 digits with the corresponding hexadecimal digits from the about
table.

Example: Convert 11011110112 to its corresponding hexadecimal digit.

We first write:

Next we match from the above table the corresponding hexadecimal digit:

] 0.DEC16

 0. D E C16

To convert a finite hexadecimal number to a binary number just match each hexadecimal digit
with the corresponding binary digits in the above table:

Example: Convert 0.F3DB16 to its corresponding binary number.

0.F3DB16 = 0. F 3 D B] 0.1111 0011 1101 10112
 0. 1111 0011 1101 1011
Exercises:

1. Using this quick conversion, convert the following binary numbers to hexadecimal:

a. 0.0110101012 b. 0.00011111012

2. Using this quick conversion, convert the following hexadecimal numbers to binary:

a. 0.562316 b. 0.ACF230A2

3. In the example above, we converted]]]] 0.DEC16. Use another conversion method.

Is the result the same.

5. Set up a quick conversion system between the base 2 and base 8.

6. Convert a. 0.1101110112 to the base 8. b. Convert 0.234618 to the base 2.

7. Use quick conversion, to convert 0.761238 to the base 16.
�

249

Converting an infinite decimal number less than one

When converting an infinite binary number to hexadecimal we to use the following rules:

1. From left to right, group the digits of the binary number in groups of 4; adding zeros at the end
if necessary .
If we cannot group the digits in groups of 4, expand the binary number to a minimal number of
digits that wil allow the grouping.

2. Match each group of these 4 digits with the corresponding hexadecimal digits from the about
table.

Example:

Convert to hexadecimal.

16

 0. 9 9 9 ...

Example: Convert to hexadecimal.

16
 0. D B D B D B ...
Example:

 Convert to hexadecimal.

Since we don’t have a multiple of 4 digits, we expand:

= = 0.1010 1010 1010 1010 ...] 16

 0. A A A A
Example:

Convert to hexadecimal.

Since we don’t have a multiple of 4 digits, we expand:

16

 0. B 6 D

250

Example:

Convert to binary.

Exercises:

1. Let . Write each of the following as a single infinite decimal number:

a. 2(b. 3(c. 4(d. 5(e. 6(f. 7(g. 8(h. 9(

2. Convert the following binary numbers to hexadecimal:

a.

b.

c.

3. Convert the following hexadecimal numbers to binary.

a. b.

4. Show that the largest positive 32 bit number 0.1111...12 corresponds to the decimal number
1 - 1/232.
�

18.5 Performing Arithmetic On Finite Decimal Numbers In Different Number Bases

From Chapter 2, we can extend the invariant theorem to apply to decimal numbers. This theorem
can also be extended to division:

Theorem: Invariant properties of arithmetic operations between bases:

1. Invariant property of addition: If Nb] Nc and Mb] Mc then Nb + Mb] Nc + Mc .

2. Invariant property of subtraction: If Nb] Nc and Mb] Mc then Nb - Mb] Nc - Mc .

251

3. Invariant property of multiplication: If Nb] Nc and Mb] Mc then Nb(Mb] Nc(Mc

4. Invariant property of division : Assume Mb … 0, Nb] Nc , and Mb] Mc then

Nb/Mb] Nc /Mc

Working with finite decimal numbers in the base given can be confusing and difficult. A better
way is use the following algorithm:

Step 1: Write (0.a1 a2 ... an)b = (a1 a2 ... an)b/10n

Step 2: Write (0.b1 b2 ... bm)b = (b1 b2 ... bm)b/10m

Step 3: (a1 a2 ... an)b/10n] N10/b
n

Step 4: (b1 b2 ... bm)b/10m] M10/b
m

Step 5: N10/b
n u M10/n

m, where u is one of the above operations.

Step 6: Convert N10/b
n u M10/n

m to the corresponding decimal number in the base b.

Examples:

a. Perform 0.2378 + 0.338

Step 1: 0.2378 = (237/1000)8

Step 2: 0.338 = (33/100)8

Step 3: (237/1000)8] 159/83

Step 4: (33/100)8] 27/82

Step 5: 159/83 + 27/82 = 159/83 + 27(8/83 = 375/83

Step 6: 375/83] 5678/1000 = 0.5678

Step 7: 0.2378 + 0.338 = 0.5678

b. Perform 0.2378 (0.338

Step 1: 0.2378 = (237/1000)8

Step 2: 0.338 = (33/100)8

252

Step 3: (237/1000)8] 159/83

Step 4: (33/100)8] 27/82

Step 5: (159/83)
((27/82) = 4293/85

Step 6: 4293/85] 103058/100000 = 0.0.103058

Step 7: 0.2378 (0.338 = 0.103058

c. Perform 0.2378 - 0.338

Step 1: 0.2378 = (237/1000)8

Step 2: 0.338 = (33/100)8

Step 3: (237/1000)8] 159/83

Step 4: (33/100)8] 27/82

Step 5: 159/83 - 27/82 = 159/83 - 27(8/83 = - 57/83

Step 6: - 57/83] - 578/1000 = - 0.578

Step 7: 0.2378 - 0.338 = - 0.578

d. Perform : 0.2378 / 0.338

Step 1: 0.2378 = (237/1000)8

Step 2: 0.338 = (33/100)8

Step 3: (237/1000)8] 159/83

Step 4: (33/100)8] 27/82

Step 5: (159/83)10
 / (27/82)10 = /8

Step 6: We now convert to octal:

step 1: = 0.888888... = a1/8 + a2/8
2 + an/8

3 + ...

253

step 2: 8((0.8888...) = 7.1111111111 = a1 + a2/2 + a3/2
2 + ...

step 3: a1 = 7

step 4: 0.111111 ... = a2/8 + a3/8
2 + ...

step 5: 8((0.11111111...) = ... 0.888888888888 = a2 + a3/8 + a4/8
2 ...

step 6: a2 = 0

Step 7: Since step 5 returns to the original value in step 1, we are finished and conclude:

]

/8] (/10)8 =

Step 8: 0.2378 / 0.338 =

Exercises:

Perform the following operations:

1. a. 0.10112 + 0.001112 b. 0.10112 - 0.001112 c. 0.10112(0.001112

d. 0.1011/ 0.00111

2. a. 0.9AB216 + 0.029E16 b. 0.9AB216 - 0.029E16 c. 0.9AB216(0.029E16

e. 0.9AB216/ 0.029E16
����

PROJECT

Develop the formula:

254

CHAPTER - 19 SIMPLE ALGORITHMS FOR CONVERTING BETWEEN DECIMAL NUMBER
BASES (OPTIONAL)

INTRODUCTION

In this chapter we will show how we write algorithms to convert decimal numbers from one base to another by
writing algorithms . At this time we will only write these algorithms for specific types of numbers. To write an
algorithm, we first create a sample program from a specific example. Once the program is written, we will use it
to create the algorithm.

19.1 An Algorithm to Convert a Positive Finite Decimal Number in any Base b < 10 to its Corresponding
Number in the Base 10.

To convert between decimal numbers in any base b to its corresponding number in the base 10, we recall from
chapter 2 the following formula:

Nb = 0 .a1a2... an] a1/b + a2/b
2 + ... + an/b

n
 = N10

Example:

N4 = 0.321] 3/4 + 2/42 + 1/43 = 3/4 + 1/8 + 1/64 = 0.75 + 0.125 + 0.015625 = 0.89062510

Program: Convert the number the number 0.3214 to the base 10.

INSTRUCTIONS SUM A FRACTION TEMP E BASE

FRACTION := 0.321 0.321

BASE:= 4 0.321 4

SUM := 0 0 0.321 4

E := 0 0 0.321 0 4

TEMP := FRACTION(10 0 0.321 3.21 0 4

E := E + 1 0 0.321 3.21 1 4

A := TEMP÷1 0 3 0.321 3.21 1 4

SUM := SUM + A/(BASE)^E 0.75 3 0.321 3.21 1 4

FRACTION := TEMP - A 0.75 3 0.21 3.21 1 4

TEMP := FRACTION(10 0.75 3 0.21 2.1 1 4

E := E + 1 0.75 3 0.21 2.1 2 4

A := TEMP÷1 0.75 2 0.21 2.1 2 4

SUM := SUM + A/BASE^E 0.875 2 0.21 2.1 2 4

255

FRACTION := TEMP - A 0.875 2 0.1 2.1 2 4

TEMP := FRACTION(10 0.875 2 0.1 1 2 4

E := E + 1 0.875 2 0.1 1 3 4

A := TEMP÷1 0.875 1 0.1 1 3 4

SUM := SUM + A/BASE^E 0.8906 1 0.1 1 3 4

0.3214] 0.890625

Algorithm:

INSTRUCTIONS

SUM := 0

E:= 0

TEMP := FRACTION(10

E := E + 1

A := TEMP÷1

SUM := SUM + A/(BASE)^E

FRACTION := TEMP - A

::::::::::::::::::

Exercises:

1. Using this algorithm, write a program to convert the following numbers to the base 10.

a. 0.77778 b. 0.11012
�

19.2 An Algorithm to Convert any Decimal Number in the Base 10 to a Corresponding Number in the
Base b < 10.

In Chapter 3 we saw to convert a decimal number in the base 10 to its corresponding number in a given base b
we use the following formula:

N10 = a1/b + a2/b
2 + ... + an/b

n] (0.a1a2... an)b

The following example will demonstrate how to solve the values ak:

 Convert 0.8 to the base 2.

Step 1: 0.8 = a1/2 + a2/2
2 + an/2

3 + ...

256

Step 2: 2((0.8) = 1.6 = a1 + a2/2 + a3/2
2 + ...

Step 3: Since a1 is an integer, a1 = 1 and 0.6 = a2/2 + a3/2
2 + ...

Step 4: 2((0.6) = 1.2 = a2 + a3/2 + ...

Step 5: a2 = 1 and 0.2= a3/2 + a4/2
2 + ...

Step 6: 2((0.2) = 0.4 = a3 + a4/2 + ..

Step 7: a3 = 0 and 0.4= a4/2 + a5/2
2 + ...

Step 8: 2((0.4) = 0.8 = a4 + a5/2 + ..

Step 9: a4 = 0 and 0.8 = a5/2 + a6/2
2 +

Step 10: 2((.8) = 1.6 = a5 + a6/2 + ..

Therefore, 0.8]

Example:

Program: Convert to the base 2 the decimal number 0.8 to 4 places.

INSTRUCTIONS N SUM DIGIT TEMP E BASE

N := 0.8 0.8

BASE := 2 0.8 2

SUM := 0 0.8 0 2

E := 1 0.8 0 2

TEMP := N(BASE 0.8 0 1.6 0 2

DIGIT := TEMP÷1 0.8 0 1 1.6 0 2

SUM := SUM + DIGIT/(10^E) 0.8 0.1 1 1.6 1 2

N := TEMP - DIGIT 0.6 0.1 1 1.6 1 2

E := E + 1 0.6 0.1 1 `1.6 2 2

TEMP := N(BASE 0.6 0.1 1 1.2 2 2

DIGIT := TEMP÷1 0.6 0.1 1 1.2 2 2

SUM := SUM + DIGIT/(10^E) 0.6 0.11 1 1.2 2 2

N := TEMP - DIGIT 0.2 0.11 1 1.2 2 2

257

E := E + 1 0.2 0.11 1 1.2 3 2

TEMP := N(BASE 0.2 0.11 1 0.4 3 2

DIGIT := TEMP÷1 0.2 0.11 0 0.4 3 2

SUM := SUM + DIGIT/(10^E) 0.2 0.110 0 0.4 3 2

N := TEMP - DIGIT 0.4 0.110 0 0.4 3 2

E := E + 1 0.4 0.110 0 0.4 4 2

TEMP := N(BASE 0.4 0.110 0 0.8 4 2

DIGIT := TEMP÷1 0.4 0.110 0 0.8 4 2

SUM := SUM + DIGIT/(10^E) 0.4 0.1100 0 0.8 4 2

N := TEMP - DIGIT 0.8 0.1100 0 0.8 4 2

0.8]

Algorithm:

INSTRUCTIONS

SUM := 0

E := 1

TEMP := N(BASE

DIGIT := TEMP÷1

SUM := SUM + DIGIT/(10^E)

N := TEMP - DIGIT

E := E + 1

::::::::::::::::::::

Exercise:

1. Write a program that convert, to 4 places, the number 0.9 to the base 8.
�

PROJECT

1. Using iterative addition, write an algorithm that will convert to 4 places any decimal number in base b
 to its corresponding value (d1d2d3d4)c where c … b and c, b < 10.

2. Using this algorithm, write a program that will convert to 4 places 0.25468 to (d1d2d3d4)2 .

258

 CHAPTER 20 - WORKING WITH DECIMAL NUMBERS IN ASSEMBLY

20.1: Representation of Decimal Numbers

So far in assembly language, we have only worked with integer numbers. We will now study how we
can represent and work with fractions represented as numbers with a decimal point. These numbers will
be called decimal numbers. When such numbers are used in assembly language programming they are
frequently represented as ordinary decimal numbers or scientific notation.

Definition: Ordinary decimal numbers

An ordinary decimal number is of the form ± a0.a1a2 ... an ,

where ak are non negative integers

Examples:

23.4, -55.0101, 0.00154 9.0

Definition: Scientific Representation of Decimal Numbers:

The representation of a decimal number in a scientific format is of the form ± n(10 k .

where n is an integer, (represents the multiplication operation and k is always a non-positive integer.
The value k is called the exponent and the integer n is called the mantissa.

Definition: Floating Point Representation of Decimal Numbers:

In assembly language, decimal numbers represented in the form

± a0.a1a2 ... an .×E ± n

 are called floating point numbers

where a0 is a positive digit.

Examples:

ORDINARY DECIMAL NUMBER
 REPRESENTATION

SCIENTIFIC
REPRESENTATION

FLOATING POINT
REPRESENTATION

23.4 234(10-1 2.34 E1

-55.0101 -550101(10 -4 -5.50101E 1

0.00154 154(10 -5 1.54 E -3

- 79.0 - 79 (100 -7.9 E -1

9.0 9 (100 9 E 0

259

Exercises

Write the following in scientific and floating point representation:

0.00234 45.356 - 32
����

20.2: Arithmetic Operations Using Scientific Representation.

Multiplication

To multiply two numbers in scientific notation, we simply multiply the integer numbers and add the
exponents :

(N E n1) (M E n2) = N(M E (n1 + n2)

Examples:

(0.234)(0.05667) = (234(10-3)(5667(10-5) = (234)(5667)(10-8 = 1326078(10-8 = 1326078 E -8

The following partial assembly language code will compute (0.234)(0.05667):

mov eax, 234

mov ebx, -3

mul 5667

add ebx, -5

Exercises:

1. Write the following using scientific representation.

- 575.345(0.00234 678(0.03(2.135 0.0034(0.221

2. Write assembly language codes that will compute the above.
����

Addition and Subtraction

To add or subtract two numbers using scientific representation, the exponents must be equal:

 N E n ± M E n = (N ± M) E n

Example:

0.234 + 0.05667 = 234(10-3 + 5667(10-5 = 23400(10-5 + 5667(10-5 = (23400+ 5667)(10-5 =

260

29067(10-5 = 29067 E -5

The following assembly language code will compute 0.234 + 0.05667:

mov eax, 23400
mov ebx, -5
add eax, 5667

Exercises:

Write the following using scientific representation :

1. - 575.345 + 0.00234 678 + 0.03 + 2.135 0.0034 - 0.221

2. Write assembly language codes that will compute the above.
����

Long Division

To divide two decimal numbers N/M using scientific representation, we have the following form :

(N (10n)/M (10m = (N/M)(10 n - m = (N/M) E (n - m)

Example:

1/0.6 = 1/(6(10-1) = 10/6 = (1/6)(101 . (0.16666)(101 = (16666 (10 - 5)(101= 16666(10 - 4

Since N/M is not always an integer, we need to use the long division algorithm to convert N/M to a

decimal value. We first show how to develop an algorithm to convert 1/N to a decimal value.

We define the decimal representation of 1/N as

1/N = a1 /10 + a2 /102 + a3 /103 + = 0.a1a2a3 a1 /10 + a2 /102 + ... a3 /10n

where N … 0 .

Example:

Convert 5/6 to a 5 place decimal representation.

1/6 = a1 /10 + a2 /102 + a3 /103 + a4 /104 + a5 /105 + (a6 /106 + a7 /107 + ...)

Step 1: 10(1/6) = 10/6 = 1 + 4/6 = a1 + a2 /10 + a3 /102 + a4 /103 + a5 /104 + (a6 /105 + a7 /106 + ...)

a1 = 1

4/6 = a2 /10 + a3 /102 + a4 /103 + a5 /104 + (a6 /105 + a7 /106 + ...)

261

Step 2: 10(4/6) = 40/6 = (36 + 4)/ 6 = 6 + 4/6 = a2 + a3 /10 + a4 /102 + a5 /103 + (a6 /104 + a7 /105 + ...)

a2 = 6

4/6 = a3 /101 + a4 /102+ a5 /103 + (a6 /104 + a7 /105 + ...)

Step 3: 10(4/6) = 40/6 = (36 + 4)/ 6 = 6 + 4/6 = a3
 + a4 /10 + a5 /102 + (a6 /103 + a7 /104 + ...)

a3 = 6

4/6 = a4 /10+ a5 /102 + (a6 /103 + a7 /104 + ...)

Step 4: 10(4/6) = 40/6 = (36 + 4)/ 6 = 6 + 4/6 = a4
 + a5 /10 + (a6 /102 + a7 /103 + ...)

a4 = 6

4/6 = a5 /10 + (a6 /10 + a7 /102 + ...)

Step 5: 10(4/6) = 40/6 = (36 + 4)/ 6 = 6 + 4/6 = a5 + (a6
 + a7 /10 + ...)

a5 = 6

Therefore,

1/6 = 1/10 + 6 /102 +6 /103 + 6 /104 + 6 /105 + (a6 /106 + a7 /107 + ...) . 1/10 + 6 /102 +6 /103 + 6 /104 +
6 /105 =

0.1 + 0.06 + 0.006 + 0.0006 + 0.00006 = 0.16666 .

Now,

5/6 = 5((1/6) . 5((0.16666) = (5(100) (16666(10 - 5 = 83330(10 - 5 = 83330E -5

Example:

The following pseudo-language program that will compute 1/6 . 16666(10-5.

PSEUDO-CODES N A SUM E MUL R

E:= 0 0

SUM:= 0 0 0

MUL:= 10000 0 0 10000

N:= 1 1 0 0 10000

262

N:= N(10 10 0 0 10000

A:= N÷6 10 1 0 0 10000

R:= N MOD 6 10 1 0 0 10000 4

SUM:= SUM + A(MUL 10 1 10000 0 10000 4

E:= E - 1 10 1 10000 -1 1000 4

MUL:= MUL÷10 10 1 10000 -1 1000 4

N:= R 4 1 10000 -1 1000 4

N:= N(10 40 1 10000 -1 1000 4

A:= N÷6 40 6 10000 -1 1000 4

R:= N MOD 6 40 6 10000 -1 1000 4

SUM:= SUM + A(MUL 40 6 16000 -1 1000 4

E:= E -1 40 6 16000 -2 1000 4

MUL:= MUL÷10 40 6 16000 -2 100 4

N:= R 4 6 16000 -2 100 4

N:= N(10 40 6 16000 -2 100 4

A:= N÷6 40 6 16000 -2 100 4

R:= N MOD 6 40 6 16000 -2 100 4

SUM:= SUM + A(MUL 40 6 16600 -2 100 4

E:= E - 1 40 6 16600 -3 100 4

MUL:= MUL÷10 40 6 16600 -3 10 4

N:= R 4 6 16600 -3 10 4

N:= N(10 40 6 16600 -3 10 4

A:= N÷6 40 6 16600 -3 10 4

R:= N MOD 6 40 6 16600 -3 10 4

SUM:= SUM + A(MUL 40 6 16660 -3 10 4

E:= E - 1 40 6 16660 -4 10 4

MUL:= MUL÷10 40 6 16660 -4 1 4

N:= R 4 6 16660 -4 1 4

N:= N(10 40 6 16660 -4 1 4

A:= N÷6 40 6 16660 -4 1 4

263

R:= N MOD 6 4 6 16660 -4 1 4

SUM:= SUM + A(MUL 4 6 16666 -4 1 4

E:= E - 1 4 6 16666 -5 1 4

MUL:= MUL÷10 4 6 16666 -5 0 4

N:= R 4 6 16666 -5 0 4

Exercises:

1. Rewrite the above program in pseudo-code using a while statement. From this program write an
assembly language.

2. Using the above algorithm, convert 1/7 to a 7 place decimal representation.

3. Write the following in a scientific notation form.

a. 5/7 b. 0.23/0.035

4. Convert 1/3 to binary.
�

20.3: 80X86 Floating-Point Architecture

The MASM compiler has the ability to handle ordinary and floating - point decimal numbers.
The following are definitions of the representation given by MASM for decimal numbers:

Definition float: An ordinary decimal representation. The number is represented as a 32 bit number.

Definition double-decimal: An ordinary decimal representation. The number is represented as a 64 bit
number.

Definition long-double: floating point representation. The number is represented as a 80 bit number.

 The following are data - type registers that are available : TBYTE, REAL4, REAL8, REAL10. The table
below gives the specifications for each of these data-types:

DIRECTIVE # OF BYTES Number type

REAL4 4 float - decimal

REAL8 8 double - decimal

REAL10 10 long double - floating-point

QWORD 8 integer

TBYTE 10 long double - floating-point

264

Along with these data-types, we still can use the integer data-types: BYTE, WORD, DWORD .

Important: Except the QWORD data type, all the above data types are only represented in the base 10.
The QWORD follows the data type representation for integer numbers.

Examples:

.DATA

w TBYTE 0.236; will assign the number 2.36 to the identifier w as 2.36E-1.

x real4 2.34; will assign the number 2.34 to the identifier x as 2.34 .

y real8 0.00678; will assign 0.00678 to the identifier y as 0.00678

z real10 23554.5678 will assign 23554.5678 to the identifier z as 2.35545678E 4

q qword 10 will assign 10 to the identifier q as a .

Rules for Assigning floating point numbers.

The following rules for assigning floating point numbers:

C All identifiers are initially assigned floating point numbers, where they are defined in the data part of
the program.

C All other assignments are done by passing the contents of the variables to the various floating-point
registers.

Floating-point registers

The registers EAX, EBX, ECX, EDX can not be used directly when working with floating-points

numbers. Instead, we have eight data registers, each 80 bits long. Their names are ST or ST(0) , ST(1),

ST(2), ST(3), ST(4), ST(5), ST(6), ST(7). These eight registers are shown stacked vertically top down

and should be visualized as following:

ST

ST(1)

ST(2)

ST(3)

ST(4)

ST(5)

265

ST(6)

ST(7)

Exercise:

1. What is the largest value (base 10) that can be stored in ST(k)?
�

The operands of all floating-point instructions begin with the letter f. The following will give the most

important floating-point instructions according to their general functions. Additional floating-point

instructions will be discussed in a later chapter of this book.

Storing data from memory to the registers

For demonstration purposes, we will assume the registers have the numbers:

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will store data from memory to a given register.

CCCC fld

MNEMONIC OPERAND ACTION

fld memory variable (real) The real number from memory is stored in ST
and data is pushed down.

Example:

.DATA

x REAL4 30.0

266

 fld x; stores the content of x into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 30.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

CCCC fild

MNEMONIC OPERAND ACTION

fild variable memory (integer) The integer number from memory is stored in ST,
converted to floating- point and data is pushed down.

Example:

.DATA
x DWORD 50

 fild x; stores the content of x (integer value) into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 50.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

267

CCCC fld

MNEMONIC OPERAND ACTION

fld st(k) The number in st(k) is stored in ST and data is pushed down.

Example:

fld st(2) ; stores the contents of register st(2) into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 20.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be lost. Also
the finit instruction will clear all the values in the register.

Copying data from the stack

We will assume the registers have the numbers:

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

268

The following are the floating-point instructions that will copy data from stack.

CCCC fst

MNEMONIC OPERAND ACTION

fst st(k) Makes a copy of ST and stores the value in ST(k).

Example:

 fst ST(2) ; stores the content of ST into ST(2)

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 10.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fst

MNEMONIC OPERAND ACTION

fst memory variable (real) Makes a copy of ST
and stores the value in a real memory location

Example:

.DATA
x real4 ?

fst x ; stores the content of ST into x. The stack is not affected.

269

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fist

MNEMONIC OPERAND ACTION

fist memory variable (integer) Converts to integer a copy of ST
and stores the rounded value in a integer memory location .

Example:

.DATA
x DWORD ?

fist x ; stores the content of ST as an integer number into x.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

270

Exchanging the contents of the two floating-point registers.

We will assume the registers have the numbers

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will exchange the contents of two floating-point
registers.

CCCC fxch

MNEMONIC OPERAND ACTION

fxch none Exchanges the content of ST and ST(1).

Example:

fxch ; exchanges the content of ST and ST(1).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 10.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

271

CCCC fxch

MNEMONIC OPERAND ACTION

fxch st(k) Exchanges the content of ST and ST(k).

Example:

fxch st(3) ; exchanges the content of ST and ST(3).

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 25.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 10.0

ST(4)

ST(5)

ST(6)

ST(7)

Adding contents of the two floating-point registers.

We will assume the registers have the numbers

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will add the contents of two floating-point
registers.

272

CCCC fadd

MNEMONIC OPERAND ACTION

fadd st(k), st Adds ST(k) and ST;
then ST(k) is replaced by the sum.

Example:

fadd st(3), st ; adds ST(3) and ST; then ST(3) is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 35.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fadd

MNEMONIC OPERAND ACTION

fadd st, st(k) Adds ST and ST(k);
then ST is replaced by the sum.

Example:

fadd st, st(3) ; adds the content of ST and ST(3) then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 35.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

273

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fadd

MNEMONIC OPERAND ACTION

fadd memory variable (real)

Adds ST and the contents of a real variable;
then ST is replaced by the sum.

Example:

x REAL4 12.0

fadd x ; adds the content of ST and x; then ST is replaced by the sum.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 22.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

C fiadd

MNEMONIC OPERAND ACTION

fiadd memory variable (integer)

Adds ST and the contents of a integer variable;
 then ST is replaced by the sum.

Example:

x DWORD 70

fadd x ; adds the content of ST and x then ST is replaced by the sum.

274

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 80.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Subtracting the contents of the two floating-point registers.

The following are the floating-point instructions that will subtract the contents of two floating-point
registers.

C fsub
C fsbur

MNEMONIC OPERAND ACTION

fsub st(k), st Computes ST(k) - ST;
then ST(k) is replaced by the difference.

 fsbur st(k), st Computes ST - ST(k);
then ST(k) is replaced by the difference.

Example:

fsub st(3), st ; computes ST(3) - ST; then ST(3) is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 15.0

ST(4)

275

ST(5)

ST(6)

ST(7)

C fsub
C fsubr

MNEMONIC OPERAND ACTION

fsub st, st(k) Computes ST - ST(k) ;
then ST is replaced by the difference.

 fsubr st, st(k) Computes ST(k) - ST;
then ST is replaced by the difference

Example:

fsub st , st(1) ; computes st - st(1) ; then st is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 5.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

C fsub
C fsubr

MNEMONIC OPERAND ACTION

fsub memory (real)

Calculates ST - real number ;
 then ST is replaced by the difference.

 fsubr memory (real) Calculates real number - ST;
then ST is replaced by the difference.

276

Example:

x REAL4 12.0

fsub x ; calculates st - x ; then st is replaced by the difference.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 2.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

C fisub
C fisubr

MNEMONIC OPERAND ACTION

fisub memory (integer)

Calculates ST - integer number;
then ST is replaced by the difference

 fisubr memory (integer) Calculates integer number - ST;
then ST is replaced by the difference

Example:

x DWORD 70

fisub x ; calculates st - x; then st is replaced by the difference

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 60.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

277

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers.

The following are the floating-point instructions that will multiply the contents of two floating-point
registers.

C fmul

MNEMONIC OPERAND ACTION

fmul st(k), st Multiplies ST(k) and ST;
then ST(k) is replaced by the product.

Example:

fmul st(3), st ; multiplies st(3) and st; then st(3) is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 10.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 250.0

ST(4)

ST(5)

ST(6)

ST(7)

C fmul

MNEMONIC OPERAND ACTION

fmul st, st(k) Multiplies ST(k) and ST;
then ST is replaced by the product.

278

Example:

fmul st, st(3) ; multiplies st(3) and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 250.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

C fmul

MNEMONIC OPERAND ACTION

fmul memory variable (real) Multiplies ST and real variable ;
then ST is replaced by the product.

Example:

x REAL4 35.0

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 350.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

279

ST(7)

C fmul

MNEMONIC OPERAND ACTION

fmul memory variable (integer) Multiplies integer variable and ST;
then ST is replaced by the product.

Example:

x DWORD 45

fmul x ; multiplies x and st; then st is replaced by the product.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 450.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers.

The following are the floating-point instructions that will divide the contents of floating-point
registers.

CCCC fdiv
CCCC fdivr

MNEMONIC OPERAND ACTION

fdiv st(k), st Computes ST(k)/ ST;
then ST(k) is replaced by the quotient.

280

 fdivr st(k), st Computes ST/ ST(k);
then ST(k) is replaced by the quotient.

Example:

 fdiv st(1), st ; computes st(1)/st; then st(1) is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 5.0

ST(1) 15.0 3.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fdiv
CCCC fdivr

MNEMONIC OPERAND ACTION

fdiv st, st(k) Computes ST/ ST(k) ;
then ST is replaced by the quotient.

 fdivr st, st(k) Computes ST(k)/ ST;
then ST is replaced by the quotient.

Example:

fdiv st, st(2) ; computes st/ st(2) ; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 0.25

ST(1) 15.0 15.0

ST(2) 20.0 20.0

281

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fdiv
CCCC fdivr

MNEMONI
C

OPERAND ACTION

fdiv memory variable (real)
 e

Computes ST/ real variable ;
then ST is replaced by the quotient.

fdivr memory variable (real)

Computes real variable/ST ;
then ST is replaced by the quotient.

Example:

x real4 10.0

fdiv x ; computes st/ x ; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 0.5

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

CCCC fidv
CCCC fidvr

MNEMONIC OPERAND ACTION

282

fidiv memory (integer) Computes ST/ integer variable ;
then ST is replaced by the quotient.

fidivr memory (integer) Computes integer variable /ST ;
then ST is replaced by the quotient.

Example:

x DWORD 5

fdiv x; computes st/ x ; then st is replaced by the quotient.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 1.0

ST(1) 15.0 15.0

ST(2) 20.0 20.0

ST(3) 25.0 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Summary Tables of Floating Point Arithmetic Operations

Store data from memory to a given register

MNEMONIC OPERAND ACTION

fld variable memory (real) The real number from memory is stored in ST and
data is pushed down.

fild variable memory (integer) The integer number from memory is stored in ST,
converted to floating- point and data is pushed down.

fld st(k) The number in st(k) is stored in ST and data is
pushed down.

Copying data from the stack

MNEMONIC OPERAND ACTION

fst st(k) makes a copy of ST and stores the value in ST(k).

283

fst memory variable (real) makes a copy of ST and stores the value in a real
memory location.

fist memory (integer) Converts to integer a copy of ST and stores the rounded
value in a integer memory location.

Exchanging the contents of the two floating-point registers

MNEMONIC OPERAND ACTION

fxch (none) Exchanges the content of ST and ST(1).

fxch st(k) Exchanges the content of ST and ST(k).

Adding contents of the two floating-point registers

MNEMONIC OPERAND ACTION

fadd st(k), st Adds ST(k) and ST; then ST(k) is replaced by the sum.

fadd st, st(k) Adds ST and ST(k); then ST is replaced by the sum.

fadd memory variable (real) Adds ST and the contents of a real variable; then ST is
replaced by the sum.

fiadd memory variable (integer)

Adds ST and the contents of a integer variable; then ST
is replaced by the sum.

Subtracting the contents of the two floating-point registers.

MNEMONIC OPERAND ACTION

fisub memory (integer)

Calculates ST - integer number;
then ST is replaced by the difference

 fisubr memory (integer) Calculates integer number - ST;
then ST is replaced by the difference

 fsbur st(k), st Computes ST - ST(k);
then ST(k) is replaced by the difference.

fsub memory (real) Calculates ST - real number ;
then ST is replaced by the difference.

fsub st, st(k) Computes ST - ST(k) ;
then ST is replaced by the difference.

284

fsub st(k), st Computes ST(k) - ST;
then ST(k) is replaced by the difference.

 fsubr st, st(k) Computes ST(k) - ST;
then ST is replaced by the difference

 fsubr memory (real) Calculates real number - ST;
then ST is replaced by the difference.

Multiplying the contents of the two floating-point registers

MNEMONIC OPERAND ACTION

fmul st, st(k) Multiplies ST(k) and ST;
then ST is replaced by the product.

fmul st(k), st Multiplies ST(k) and ST;
then ST(k) is replaced by the product.

fmul memory variable (real)

Multiplies ST and real variable ;
then ST is replaced by the product.

fmul memory variable (integer)

Multiplies integer variable and ST;
then ST is replaced by the product.

 Dividing the contents of floating-point registers

MNEMONIC OPERAND ACTION

fdiv st(k), st Computes ST(k) / ST;
then ST(k) is replaced by the quotient.

fdiv st, st(k) Computes ST / ST(k) ;
then ST is replaced by the quotient.

fdiv memory variable (real) Computes ST / real variable ;
then ST is replaced by the quotient.

 fdivr st(k), st Computes ST / ST(k);
then ST(k) is replaced by the quotient.

 fdivr st, st(k) Computes ST(k) / ST;
then ST is replaced by the quotient.

 fdivr memory variable (real) Computes real variable / ST;
then ST is replaced by the quotient.

 fidiv memory variable (integer) Computes ST / integer variable ;
then ST is replaced by the quotient.

285

 fidivr memory variable (integer) Computes integer variable / ST;
 then ST is replaced by the quotient.

Miscellaneous floating point instructions

1.

MNEMONIC OPERAND ACTION

fabs (none) replaces the contents of ST with it absolute value.

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST - 10.0 10.0

2.

MNEMONIC OPERAND ACTION

fchs (none) replaces the contents of ST with - ST

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 10.0

3.

MNEMONIC OPERAND ACTION

frndint (none) rounds ST to an integer value

Example:

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 12.754 12.0

Example:

A harmonic sum is defined by the sum

1 + 1/2 + 1/3 + ... + ... + 1/n

The following pseudo-code programs will compute

286

1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6.

PSEUDO CODE CYCLE OF INSTRUCTIONS SUM N ONE

SUM := 0.0 SUM:= 0.0 0.0 1

N := 1 N := 1 0.0 1

ONE:= 1 ONE:= 1 0.0 1 1

WHILE N <= 6 WHILE N <= 6 0.0 1 1

BEGIN BEGIN 0.0 1 1

SUM := SUM + 1/N SUM:= SUM+1/ N 1 1 1

N := N + 1 N := N + 1 1 2 1

SUM:= SUM+1/ N 1.5 2 1

N := N + 1 1.5 3 1

SUM:= SUM+ 1/N 1.8333...33333 3 1

N := N + 1 1.833...33333 4 1

SUM:= SUM+ 1/N 2.0833....33333 4 1

N := N + 1 2.0833....33333 5 1

SUM:= SUM+ 1/N 2.2833...33333 5 1

N := N + 1 2.2833...33333 6 1

SUM:= SUM+ 1/N 2.45 6 1

N := N + 1 2.45 7 1

END END 2.45 7 1

PSEUDO CODE AL PSEUDO CODE ASSEMBLY CODE

SUM := 0.0 SUM := 0.0 sum real4 0.0

N := 1 N := 1 n byte 1

ONE:= 1 0NE:= 1 one byte 1

WHILE N <= 6 WHILE N # 6 while: cmp n, 6
jg end

SUM := SUM + 1/N
N:= N + 1

ST := ONE fld one

ST:= ST/N fidiv n

ST:= SUM + ST fadd sum

287

SUM:= ST fst sum

EAX := N mov eax, n

EAX := EAX + 1 add eax, 1

N:= EAX mov n, eax

END END jmp while

end:

Exercises:

1. Modify the above three tables to compute the sum:

12 + 1/22 + 1/32 + 1/42 + 1/52 + 1/62 .
����

For problems 2 - 5, assume ST(k) (k = 0 , 1, ..., 7) contain pre-assigned values. Write assembly language
programs that will perform the following tasks:

2. Task: Compute and store the value ST(0) + TS(1) + ... + TS(7).

3. Task: Compute and store the value ST(0)2 + 2ST(1)2 + 3ST(3)2 + 4ST(4)2 + 5ST(5)2 + 6ST(6)2 +
7ST(7)2

4. Task: Find and store the largest value.

5. Task: Find and store the smallest value.

6. Write an algorithm that will compute and store the number: 1 + 2 + ... + N .

7. Write an algorithm that will compute and store the 1 + 22 + ... + N2 .

8. The determinate of a square table plays a major rule in mathematics. The following is a definition of a
2 by 2 determinate:

 ∆ =

Write an algorithm that will compute an arbitrary 2 by 2 determinate.

Cramer’s Rule

Assume we wish to solve the following 2 by 2 system of equations:

 a11x + a12y = b1

 a21 x + a22y = b2

The following Cramer’s Rule’s give us a solution of the above system of equations:

288

8. Write a algorithm that will compute an arbitrary 2 by 2 system of equations. Make certain that ∆ … 0.

A 3 by 3 determinate is defined as

 ∆ =

9. Write a algorithm that will compute an arbitrary 3 by 3 determinate.
�

Interchanging integer and floating point numbers.

The following table will demonstrate how integer numbers and floating pont numbers are interchanged
(all numbers are decimal).

AS CODE N X Y Z ST(0)

n dword ?

x real4 2.0 2.0

y real4 23.7 2.0 23.7

z real4 55.4 2.0 23.7 55.4

fld x 2.0 23.7 55.4 2.0

fist n 2 2.0 23.7 55.4 2.0

fld y 2 2.0 23.7 55.4 23.7

fist n 24 2.0 23.7 55.4 23.7

fld z 24 20 23.7 55.4 55.4

fist n 55 20 23.7 55.4 55.4

289

Model Program

; This program will compute the harmonic sum

;1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6

.386

.model flat

.stack 4096

.data

sum real4 0.0
n byte 1
one byte 1

.code

_start:

;start assembly language code

while: cmp n, 6

jg end

fild one

fidiv n

fadd sum

fst sum

mov eax, n

add eax, 1

mov n, eax

jmp while

end:

;end of assembly language code

public _start

end

290

Project:

The solution of a 3 by 3 system of equations

a11 x + a12 y + a13 z = b1

a21 x + a22 y + a23 z = b2

a31 x + a32 y + a33 z = b3

x =

y =

Write an algorithm that solves any 3 by 3 system of equations. Make certain to check that ∆ ………… 0.

291

 CHAPTER 21 COMPARING AND ROUNDING FLOATING - POINT NUMBERS

21.1: Instructions that Compare Floating-Point Numbers

When we are comparing floating-point numbers, we cannot use the instruction cmp. Instead we have the following
instructions that allow us to compare the register ST to a second operand:

MNEMONIC OPERAND ACTION

fcom (none) compares ST and ST(1)

fcom st(k) compares ST and ST(k)

fcom variable memory (real) compares ST and a real number in memory

ficom variable memory (integer) compares ST and a integer number in memory

ftst (none) compares ST and 0.0

The status word register

When one of the comparison instructions is made , the contents of a special 16-bit register, called the status word
register is modified. The comparison instruction will assign bits (0 or 1) to the bits 9, 11, 15 of the status word.

The status word register cannot be directly accessed. In order the evaluate the bits in the status word, we can with the
following two instructions, copy the contents of the status word to a memory variable or the AX register:

MNEMONIC OPERAND ACTION

fstsw variable (word) memory (integer) copies status register into memory

fstsw AX copies status register into AX

Examples:

x dword ?

fstsw x

fstsw ax

Interpretation of the contents of the status word

When a comparison is made, the table below give the bit values that are assigned to the status word by the comparison
instructions:

COMPARISON STATUS WORD

BIT POSITION 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

ST > second operand x 0 x x x 0 x 0 x x x x x x x x

292

ST < second operand x 0 x x x 0 x 1 x x x x x x x x

ST = second operand x 1 x x x 0 x 0 x x x x x x x x

where the values x are either 0 or 1.

Since we are not sure what the other bits are in the status word, we need to create a mask that will convert the bits
represented above by xs’ to the bit 0. By doing this we can make correct comparisons. The following mask will be
used:

BIT POSITION 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

MASK (binary) 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0

MASK (hex) 4500h

The following codes will show the effect of the mask on the possible contents of the status word resulting from a
comparison instruction:

ST > second operand

AL CODE AX MASK

mov mask, 0100010100000000 b 0100010100000000

fstsw ax ; stores the contents of the status word into ax. x0xxx0x0xxxxxxxx 0100010100000000

and ax, mask 0000000000000000 0100010100000000

or

AL CODE AX MASK

mov mask, 4500h 4500h

fstsw ax ; stores the contents of the status word into ax. x0xxx0x0xxxxxxxx 4500h

and ax, mask 0h 4500h

ST < second operand

AL CODE AX MASK

mov mask, 010001010000000 b 0100010100000000

fstsw ax ; stores the contents of the status word into ax. x0xxx0x1xxxxxxxx 0100010100000000

and ax, mask 0000000100000000 0100010100000000

293

or

AL CODE AX MASK

mov mask, 4500h 4500h

fstsw ax ; stores the contents of the status word into ax. x0xxx0x1xxxxxxxx 4500h

and ax, mask 100h 4500h

ST = second operand

AL CODE AX MASK

mov mask, 0100010100000000 b 0100010100000000

fstsw ax ; stores the contents of the status word into ax. x1xxx0x0xxxxxxxx 0100010100000000

and ax, mask 100000000 0100000000000000 0100010100000000

or

AL CODE AX MASK

mov mask, 4500h 4500h

fstsw ax ; stores the contents of the status word into ax. x1xxx0x0xxxxxxxx 4500h

and ax, mask 100000000 4000h 4500h

Performing Jumps

From above, we see that comparison instructions only sets the status word. Therefore, to make our jump instructions
from Chapter 12 work, we need to check the contents of the status word. In order to make the comparison we must first
store the status word into a variable (word) or the ax register and then use the above mask, as shown above. The
following example should give us a clear idea of how this is done:

EXAMPLES:

1. Assume each of the registers in the stack have been previously assigned values.

The following pseudo-code, and al pseudo-code will perform the following tasks:

Task1: If y is larger than x , then assign the contents of y to the memory location z.

Task2: If y is smaller than x, then assign contents of x to the memory location z.

Task3: If y is equal to x , then assign zero to the memory location z.

294

PSEUDO-CODE AL PSEUDO-CODE

MASK:= 4500h MASK:= 4500h

IF Y > X THEN ST:= Y

COMPARE ST, X

AX:= STATUS- WORD

AX:= AX .AND. MASK

IF AX = 0h THEN

BEGIN BEGIN

Z:= Y EAX:= Y

Z:= EAX

END END

IF Y < X THEN IF AX = 100h THEN

BEGIN BEGIN

Z:= X EAX:= X

Z:= EAX

END END

IF Y = X THEN IF AX:= 4000h THEN

BEGIN BEGIN

Z:= 0 Z:= 0

END END

Using the above pseudo-code and al pseudo-code, the below partial assembly language program will find the larger of

x, y where x = 7 and y = 2.

AL PSEUDO-CODE AL CODE Y X Z ST AX EAX

M:= 4500h mov m, 4500h

X:= 7 mov x, 7 7

Y:= 2 mov y, 2 2 7

ST:= Y fild y 2 7 2

COMPARE ST, X fcom x 2 7 2

295

AX:= STATUS- WORD fstsw ax 2 7 2 x0xxx0x1xxxxxxxx

AX:= AX .AND. M and ax,m 2 7 2 100h

IF AX = 0h THEN cmp ax, 0h 2 7 2 100h

jne L1 2 7 2 100h

BEGIN begin: 2 7 2 100h

EAX:= Y mov eax, y 2 7 2 100h

Z:= EAX mov z, eax 2 7 2 100h

END end: jmp end2 2 7 2 100h

IF AX =100h THEN L1: cmp ax, 100h 2 7 2 100h

 jne begin2 2 7 2 100h

BEGIN begin: 2 7 2 100h

EAX:= X mov eax, x 2 7 2 100h 7

Z:= EAX mov z, eax 2 7 7 2 100h 7

END end: jmp end2 2 7 7 2 100h 7

IF AX:= 4000h THEN 2 7 7 2 100h 7

BEGIN begin2: 2 7 7 2 100h 7

Z:= 0 mov z, 0 2 7 7 2 100h 7

END end2: 2 7 7 2 100h 7

2. The following program will compute the harmonic sum

1 + 1/2 + 1/3 + ... + 1/n

until

1/n < e,

where 0 < e < 1

Assume e = 0.00001 .

Note: See Model Program below.

296

PSEUDO CODE AL PSEUDO CODE ASSEMBLY CODE

E:= 0.00001 E:= 0.00001 e real4 0.00001

F:= 1.0 F:= 1.0 f real4 1.0

SUM := 0.0 SUM:= 0.0 sum real4 0.0

N := 1 N:= 1.0 n real4 1.0

ONE:= 1 ONE:= 1.0 one real4, 1.0

MASK:= 4500h MASK:= 4500h mov mask ,4500h

WHILE F $ E WHILE: SK:= F while: fld f

FCOM E fcom e

AX:= STATUS WORD fstsw ax

AX:= AX .AND. MASK and ax, mask

IF AX = 100h THEN comp ax, 100h

JUMP END je end

BEGIN BEGIN: begin:

SUM:= SUM + F SK:= SUM fld sum

SK:= SK + F fadd f

SUM:= SK fst sum

N:= N + ONE SK:= N fld n

SK:= SK + ONE fadd one

N:= SK fst n

F:= ONE/N SK:= ONE fld one

SK:= SK/N fdiv n

F:= SK fst f

JUMP WHILE jmp while

END END end:

����

297

21.2 - Rounding Floating Point Numbers

In order to write such programs we need to be able to truncate decimal values. The contents of the control register (see
below) determines how data is to be rounded when data in the ST register is transferred to an integer variable. There
are four types of rounding:

C normal rounding of the number to an integer

C rounding the number up to the nearest integer

C rounding the number down to the nearest integer

C truncating the number to its integer value.

The following table gives the hexadecimal representation of the contents of the control register that is needed to
perform rounding in ST:

BYTE POSITION 2 1

 Round the number to the
nearest integer

00 00

Round the number up to the
nearest integer

08 00

Round the number down to the
nearest integer

04 00

Truncate the number to its
integer value

06 00

Examples:

1. 23.678 Y 24, normal rounding to an integer.

2. 23.678 Y 24, rounded up to the nearest integer

3. 23.678 Y 23, rounded down to the nearest integer

4. 23.678 Y 23, truncated to its integer value.

The control register

The control register is a 16 bit register that determines the kind of rounding that is to take place. When copying a value
from the ST register to an integer variable, the 11th and 12th bits of the control register has to be modified to determine
what type of rounding is to take place. This can be accomplished by transferring to the control register one of the bytes

298

in the table above.

The table below are the instructions that will copy the contents of an integer variable from and to the control register:

MNEMONIC OPERAND ACTION

fstcw memory variable (integer) Copies the contents of the control register to a memory variable

fldcw memory variable (integer) Copies the contents of the memory variable to the control register

To round a number to the desired type, the following order has to be followed.

1. Copy the desired byte, from the table above, to the control register..

2. Copy the contents of ST to a given integer variable.

Examples:

1. Normal Rounding

; 2.9 Y 3

.data

n word ?

x real4 2.9

round word 0h

.code

_start :

fld x ; 2.9 Y st(0)

fldcw round; 0h Y control

register

fist n; 3 Y n

public _start

299

2.Rounding Down

; 2.9 Y 2

.data

n word ?

x real4 2.9

round word 0400h

.code

_start :

fld x ; 2.9 Y st(0)

fldcw round; 0400h Y control

register

fist n ; 2 Y n

public _start

3. Rounding Up

; 2.1 Y 3

.data

n word ?

x real4 2.1

round word 0800h

.code

_start :

fld x ; 2.1 Y st(0)

fldcw round; 0800h Y control

register

fist n ; 3 Y n

public _start

300

4.Truncating

; 2.9 Y 2

.data

n word ?

x real4 2.9

round word 0600h

.code

_start :

fld x ; 2.9 Y st(0)

fldcw round; 0600h Y control

register

fist n ; 2 Y n

public _start

Exercise:

1. Write a AL program that will perform the following:

1. Store in a variable the decimal representation of the number 1/7

2. Round the number to 5 places of accuracy.
�

Model Program

; This program will compute the harmonic sum

;1 + 1/2 + 1/3 + ... + 1/n
;until
;1/n < e,
;where 0 < e < 1

;Assume e = 0.00001

.386

.MODEL FLAT

.STACK 4096

.DATA

301

2

.CODE
 e real4 0.00001
 f real4 1.0
 sum real4 0.0
 n real4 1.0
 one real4, 1.0

_start:

;start assembly language code

mov mask ,010001010000000 b

while: fld f
fcom e
fstsw ax
and ax, mask
comp ax, 0000000010000000b
je end
begin:
fld sum
fadd f
fst sum
fld n
fadd one
fst n
fld one
fdiv n
fst f
jmp while
end:

;end of assembly language code

PUBLIC_start

END

Project:

1. Write a program that will round the floating-point representation of the fraction n/m to k places of accuracy.

 2. Write a program that will convert a decimal - point number to its scientific representation.

302

 CHAPTER 22 - DYNAMIC STORAGE FOR DECIMAL NUMBERS: STACKS

INTRODUCTION

In Chapter 15, we say how arrays in assembly language allows the programmer to store a large amount of
integer numeric data sequentially in memory locations. In this chapter we will study two other types of
instructions in assembly that performs dynamic storage for decimal numbers: the push and pop instructions.

Definition of the push instructions: Push instructions will insert data into registers or memory locations.

Definition of the pop instructions; Pop instructions may remove data from registers or memory locations and
insert data into registers or memory locations. .

22.1 Floating Point Push and Pop Instructions.

The following instructions will bring about push and pops’ that are used in floating point programming. They
are part of the instruction set which were first introduced in Chapter 18.

As you will recall, the operands of all floating-point instructions begin with the letter f. When storing or
changing data in the registers, the following floating point instructions will cause the data that is replaced in the
register to be pushed down to the registers below or up to the registers above.

Storing data from memory to the registers

We will assume the registers have the numbers

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will store data from memory to a given register.

MNEMONIC OPERAND ACTION

fld memory (real) the real number from memory is stored in ST and data is pushed down.

303

Example:

.DATA
x REAL4 30.0

fld x; stores the content of x (real) into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 30.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fild memory (integer) the integer number from memory is stored in ST, converted to
floating- point and data is pushed down.

Example:

.DATA
x DWORD 50

fild x; stores the content of x (integer) into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 50.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

304

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fld st(k) the number in st(k) is stored in ST and data is pushed down.

Example:

fld st(2) ; stores the number 20.0 into register ST and pushes the other values down.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 20.0

ST(1) 15.0 10.0

ST(2) 20.0 15.0

ST(3) 25.0 20.0

ST(4) 25.0

ST(5)

ST(6)

ST(7)

Important: Once the stack is full, additional stored data will cause the bottom values to be lost. Also the finit
instruction will clear all the values in the register.

Copying data from the stack

We will assume the registers have the numbers

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

305

ST(7)

MNEMONIC OPERAND ACTION

fstp st(k) makes a copy of ST and stores the value in ST(k) and then ST is popped
off the stack by moving the data up.

Example:

fstp ST(2) ; stores the content of ST into ST(2) and then pops ST off the stack by moving the data up.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 10.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fstp memory (real) makes a copy of ST and stores the value in a real memory location . ST
is popped off the stack.

Example:

.DATA
x real4 ?

fstp x ; stores the content of ST into x. ST is popped off the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

306

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fistp memory (integer) Converts to integer a copy of ST and stores the value in a integer
memory location. ST is popped off the stack.

Example:

.DATA
x DWORD ?

fistp x ; stores the content of ST as an integer number into x.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Adding contents of the two floating-point registers.

We will assume the registers have the numbers

ST 10.0

ST(1) 15.0

ST(2) 20.0

ST(3) 25.0

ST(4)

307

ST(5)

ST(6)

ST(7)

The following are the floating-point instructions that will add the contents of two floating-point registers.

MNEMONIC OPERAND ACTION

fadd none First it pops both ST and ST(1); next it adds ST and ST(1); finally the
sum is pushed onto the stack.

Example:

fadd ; first it pops both st and st(1); next it adds st and st(1); finally the sum is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 45.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

faddp st(k), st Adds ST(k) and ST; ST(k) is replaced by the sum and ST is popped
from the stack.

Example:

faddp st(2), st ; adds ST(2) and ST; ST(2) is replaced by the sum and ST is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 30.0

ST(2) 20.0 25.0

308

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Subtracting the contents of the two floating-point registers.

The following are the floating-point instructions that will subtract the contents of two floating-point registers.

MNEMONIC OPERAND ACTION

fsub none First it pops ST and ST(1) ;next is calculates ST(1) - ST; next it pushes
the difference into ST.

 fsubr none First it pops ST and ST(1) ;next is calculates ST - ST(1) ; next it pushes
the difference into ST.

Example:

fsub ; first it pops st and st(1) ;next is calculates st(1) - st; next it pushes the difference into st.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 - 2.0

ST(1) 15.0 27.0

ST(2) 27.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fsubp st(k), st computes ST(k) - ST; replaces ST(k) by the difference; finally pops ST
from the stack

 fsubpr st(k), st computes ST - ST(k) ; replaces ST(k) by the difference; finally pops ST
from the stack

309

Example:

fsubp st(1), st ; computes st(1) - st; replaces st(1) by the difference; finally pops ST from the stack

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 5.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Multiplying the contents of the two floating-point registers.

The following are the floating-point instructions that will multiply the contents of two floating-point registers.

MNEMONIC OPERAND ACTION

fmul none First it pops both ST and ST(1) ; next it multiplies ST and ST(1);
finally the product is pushed onto the stack.

Example:

fmul ; first it pops both st and st(1); next it multiplies st and st(1); finally the product is pushed onto the
stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 500.0

ST(1) 15.0 20.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

310

MNEMONIC OPERAND ACTION

fmulp st(k) , st multiplies ST(k) and ST; ST(k) is replaced by the product and ST is
popped from the stack.

Example:

fmulp st(3), st ; multiplies st(3) and st; then st(k) is replaced by the product and st is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 10.0 15.0

ST(1) 15.0 20.0

ST(2) 20.0 250.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

Dividing the contents of floating-point registers.

The following are the floating-point instructions that will divide the contents of floating-point registers.

MNEMONIC OPERAND ACTION

fdiv none First it pops both ST and ST(1) ; next it computes ST(1)/ ST; finally
the quotient is pushed onto the stack.

 fdivr none First it pops both ST and ST(1) ; next it computes ST/ ST(1); finally
the quotient is pushed onto the stack.

 Example:

fdiv ; first it pops both st and st(1); next it computes ST(1)/ ST ; finally the quotient is pushed onto the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 1.25

ST(1) 15.0 20.0

ST(2) 20.0 25.0

311

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

MNEMONIC OPERAND ACTION

fdivp st(k), st computes ST(k) /ST ; then ST(k) is replaced by the quotient. Next
ST is popped from the stack.

fdivpr st(k), st computes ST /ST(k) ; then ST(k) is replaced by the quotient. Next
ST is popped from the stack.

Example:
 fidivp st(2) ; computes st(2) /st ; then st(2) is replaced by the quotient and ST is popped from the stack.

REGISTER BEFORE EXECUTION AFTER EXECUTION

ST 5.0 15.0

ST(1) 15.0 4.0

ST(2) 20.0 25.0

ST(3) 25.0

ST(4)

ST(5)

ST(6)

ST(7)

 Instructions that Compare Floating-Point numbers

MNEMONIC OPERAND ACTION

fcomp (none) compares ST and ST(1); then pops the stack

fcomp st(k) compares ST and ST(k); then pops the stack

fcomp memory (real) compares ST and a real number in memory; then pops the stack

fcomp memory (integer) compares ST and a integer number in memory; then pops the stack

fcompp (none) compares ST and ST(1) and then pops the stack twice

312

 22.2 The 80x86 Stack

The directive

.STACK 4096

in the assembly language has the assembler reserve 4096 byes of storage. This will allow the programmer to
temporarily store integer data in this location. The instruction to store data sequentially is the push instruction.

The push instruction

The syntax of the push instruction is

push source

where the source can be any of the following:

C 16 bit register (AX, BX, CX, DX)

C 32 bit register (EAX, EBX, EDX, EDX)

C a declared word or doubleword variable

C a numeric byte, word or doubleword

The push instruction will sequentially store data in the stack starting at the initial location.

Note: For simplicity, we will only push 32 bit registers or numeric values.

EXAMPLE

AL CODE EAX STACK

mov eax, 52B6h 52B6

push eax 52B6 00 00 52 B6

mov eax, 23A7h 23A7 00 00 52 B6

push eax 23A7 00 00 23 A7 00 00 52 B6

mov eax, 72346711h 72346711 00 00 23 A7 00 00 52 B6

push eax 72346711 72 34 67 11 00 00 23 A7 00 00 52 B6

313

Other push instructions

CCCC pushw

When a numeric integer is to be pushed into the stack, to prevent confusion, the assembler needs to
be informed as to its data type. The following push instructions perform this task:

CCCC pushw source

where

source is a numeric value.

 This push instruction will identify the numeric value to be stored as a word.

C pushd source

where

source is a numeric value.

 This push instruction will identify the numeric value to be stored as a doubleword.

The pop instruction

The pop instruction will copy data from the stack, using the rule: “ last in first copied”, and store the data at the
designated destination. The data copied will be popped from the stack and the remaining data will be push up the
stack. .

 The syntax of the pop instruction is

pop destination

where the destination can be any of the following:

C 16 bit register (AX, BX, CX, DX)

C 32 bit register (EAX, EBX, EDX, EDX)

C a declared word or doubleword variable

314

EXAMPLE:

AL CODE EAX EBX STACK

mov eax, 52B6h 52B6

push eax 52B6 00 00 52 B6

mov eax, 23A7h 23A7 00 00 52 B6

push eax 23A7 00 00 23 A7 00 00 52 B6

pop ebx 23A7 000023A7 00 00 52 B6

pop ebx 23A7 000052B6

Note: Perhaps the best use of the push, pop instructions is to give the programmer additional temporary storage.

PROJECT:

Write an assembly language program that will find and store in the stack all positive integer numbers between 1
and N that are prime.

315

 WORKING WITH STRINGS

316

 CHAPTER 23 - DYNAMIC STORAGE: STRINGS

INTRODUCTION

So far in this book, we have only been working with numeric data. In this chapter we will define and work with
string data . Strings are very important in that they can be used to communicate with the programmer and user.
We start with the definition of a string and its numeric representation: the ASCII code.

23.1 The ASCII Code

Definition of a string: A string is a sequence of printable characters such as numbers, letters, spaces and
special symbols : $, *, etc enclosed in single quotes: N N.

 Examples:

0000 Hello!0 , 0Sam lives here0 , 0 To Be Or Not To Be.0 , 0 x = 2y + 3z.0

Now all data entered must be represented as numeric values. In assembly language, as well as many computer
languages the numeric representation of the ASCII code is used.

ASCII (American Standard Code for Information Interchange), is a character encoding based on the English
alphabet. ASCII codes represent text in computers, communications equipment, and other devices that work
with text. Most modern character encoding systems have a historical basis in ASCII.

ASCII was first published as a standard in 1967 and was last updated in 1986. It currently defines codes for 33-
non-printing, mostly obsolete control characters that affect how text is processed, plus 95 printable characters
(starting with the space character).

ASCII is strictly a seven-bit code; meaning that it uses the bit patterns representable with seven binary digits (a
range of 0 to 127 decimal) to represent character information. For example three important codes are the null
code (00), carriage return (0D) and line feed (0A).”

 The following is a table of the ASCII code along with each string’s symbol associated with its hexadecimal
number value:

ASCII Table

ASCII
SYMBOL

HEX DECIMAL NAME ASCII
SYMBOL

HEX DECIMAL NAME

 00 0 Null @ 40 64 At

SOH 01 1 Start of Header A 41 65

STX 02 2 Start of Text B 42 66

ETX 03 3 End of Text C 43 67

317

EOT 04 4 End of
Transmission

D 44 68

ENG 05 5 Enquire E 45 69

ACK 06 6 Acknowledge F 46 70

BEL 07 7 Bell G 47 71

BS 08 8 Backspace H 48 72

HT 09 9 Horizontal Tab I 49 73

LF 0A 10 Line Feed J 4A 74

VT 0B 11 Vertical Tab K 4B 75

FF 0C 12 Form Feed L 4C 76

CR 0D 13 Carriage Return M 4D 77

SO 0E 14 Shift Out N 4E 78

SI 0F 15 Shift In O 4F 79

DLE 10 16 Data Link Escape P 50 80

DC1 11 17 Device Control 1 Q 51 81

DC2 12 18 Device Control 2 R 52 82

DC3 13 19 Device Control 3 S 53 83

DC4 14 20 Device Control 4 T 54 84

NAK 15 21 Negative
Acknowledge

U 55 85

SYN 16 22 Synchronous Idle V 56 86

ETB 17 23 End of
Transmission

Block

W 57 87

CAN 18 24 Cancel X 58 88

EM 19 25 End of Medium Y 59 89

SUB 1A 26 Substitute Z 5A 90

ESC 1B 27 Escape [5B 91 Open
Square

Bracket

FS 1C 28 File Separator \ 5C 92 Back
Slash

318

GS 1D 29 Group Separator] 5D 93 Close
Square
Bracket

RS 1E 30 Record Separator ^ 5E 94 Circumfle
x

US 1F 31 Unit Separator _ 5F 95 Underscor
e

SP 20 32 Space or Blank 0 60 96 Single
Quote

! 21 33 Exclamation Point a 61 97

" 22 34 Quotation Mark b 62 98

23 35 Number sign
(Pound sign)

c 63 99

$ 24 36 Dollar Sign d 64 100

% 25 37 Percent Sign e 65 101

& 26 38 Ampersand f 66 102

' 27 39 Apostrophe
(Single quote)

g 67 103

(28 40 Opening
Parenthesis

h 68 104

) 29 41 Close Parenthesis i 69 105

“*” 2A 42 Asterisk(Star sign) j 6A 106

“+” 2B 43 Plus Sign k 6B 107

, 2C 44 Comma l 6C 108

- 2D 45 Hyphen (Minus) m 6D 109

. 2E 46 Dot (Period) n 6E 110

/ 2F 47 Forward Slash o 6F 111

0 30 48 Zero p 70 112

1 31 49 q 71 113

2 32 50 r 72 114

3 33 51 s 73 115

4 34 52 t 74 116

5 35 53 u 75 117

319

6 36 54 v 76 118

7 37 55 w 77 119

8 38 56 x 78 120

9 39 57 y 79 121

: 3A 58 Colon z 7A 122

; 3B 59 Semi Colon { 7B 123 Open
Curly

Bracket

< 3C 60 Less Than | 7C 124 OR (Pipe)

“=” 3D 61 Equality } 7D 125 Close
Curly

Bracket

> 3E 62 Greater Than ~ 7E 126 Equivalen
ce

(tilde)

? 3F 63 Question Mark DEL 7F 127 Delete

Note: The associated ASCII codes are always in hexadecimal.

23.2 Storing Strings

In this chapter we will find that there are several instructions to store strings in registers as well as defined
variables.

CCCC mov register , string

CCCC mov variable , string

The register and the variable can be of any data type.

When a string is stored, each character of the string is converted to its hexadecimal ASCII code. For example
the string N- x3N is made up of 4 characters (counting the space but not the single quotes).The assembler will
convert the 4 characters into its corresponding ASII code:

Examples:

ASSEMBLY CODE EAX

mov eax, '- x3' 2D 20 78 33

320

ASSEMBLY CODE X

x byte ?

mov x , '/ ' 2F

Exercise:

Convert the following strings to its ASCII codes:

ASSEMBLY CODE EAX

mov eax, '+ YZ '

mov eax, '/'

mov eax, '* %'
�

CCCC The string variables:

Since all strings are converted by the assembler into integer bytes, we use the normal directives to define the
variables as bytes, words or double words.

Examples:

1.

x BYTE 20 DUP (?) ; This directive will assign 20 blank bytes to the variable x.

2.

Hamlet BYTE 'To be or not to be'; The assembler will set aside 18 bytes containing the ASC codes.

54 65 20 62 65 20 65 72 20 6E 65 54 20 54 65 20 62 65

3.

array_x DWORD 5 DUP '- 23'; The assembler will set aside 5 dwords containing the ASC code '- 23' .

2D 20 32 33 2D 20 32 33 2D 20 32 33 2D 20 32 33 2D 20 32 33

Exercise:

Complete the following tables:

Hamlet BYTE 'Brevity is the soul of wit'

321

����

A natural question should be raised: how does the programmer assign strings to registers and variables without

using directly the above type of directives ? For example the above x variable has 20 blank bytes assigned to it

for storage. Therefore, we should be able to assign any string of length 20 characters or less to the variable x.

Since string data are changed to ASCII code by the assembler, we can use, as shown above, the mov instruction

to assign a string to a register or a variable. However, there are times when we want to copy strings stored in one

variable to another variable. We should note that transferring some strings through a register may not be

possible due to the size of the string. The following sections will give the necessary instructions to perform such

tasks.

23.2 The movs instructions.

To move strings from one variable to another variable, we define the following 3 movs instructions:

Definition movsb: The movsb will move the byes of a variable, byte by byte to another variable. The movsb
instruction has no operands.

Definition movsw: The movsw will move the words of a variable, word by word to another variable. The
movsw instruction has no operands.

Definition movsd: The movsd will move the dwords of a variable, dword by dword to another variable. The
movsd instruction has no operands.

Since the three movs instructions have no operands, the assembler has to know which variable is the source of
the string and which variable is the destination. The location of these variables are to be stored in the ESI and
the EDI registers.

The ESI and EDI registers

Definition ESI: The ESI register must contain the location of the source variable.

Definition EDI: The EDI register must contain the location of the destination variable.

CThe lea instruction

In order to store the locations in these two registers, we use the lea instruction:

Definition lea: The form of the lea instruction is

lea register, variable name

where, for this application, the registers are esi or edi.

Once the esi and edi are initialized the movs instructions will increment these register under the following rule:

322

1. The movsb will cause the esi and edi to be incremented to the next byte.

2. The movsw will cause the esi and edi to be incremented to the next word.

3. The movsd will cause the esi and edi to be incremented to the next dword.

Example:

ASSEMBLY CODE X Y

x dword '- x3' 2D 20 78 33

y dword ? 2D 20 78 33

lea esi, x 2D 20 78 33

lea edi, y 2D 20 78 33

movsb 2D 20 78 33 33

movsb 2D 20 78 33 78 33

movsb 2D 20 78 33 20 78 33

movsb 2D 20 78 33 2D 20 78 33

�

Exercises:

1. Hamlet DWORD 'To be or not to be'

Write a program that will move the string in variable Hamlet to the variable Shakespeare DWORD ?
�

23.3 More String Instructions

The following are additional string instructions that can be very useful when working with strings.

The stos instruction

There are three stos instruction:

C Definition: stosb copies a byte stored in the AL register to the destination variable.

Example:

AL CODE AL (Byte is in ASCII symbols) X (Byte is in ASCII symbols)

x byte ?

323

mov al, '&' &

lea edi, x &

stosb & &

C Definition: stosw copies a word stored in the AX register to the destination variable.

Example:

AL CODE AX (Word is in ASCII symbols) X (Word is in ASCII symbols)

x word ?

mov ax, '-9' -9

lea edi, x -9

stosw -9 -9

C Definition: stosd copies a word stored in the EAX register to the destination variable.

Example

AL CODE EAX (DWord is in ASCII symbols) X (DWord is in ASCII symbols)

x dword ?

mov eax, 'home' home

lea edi, x home

stosd home home

1. In the above 3 examples change the ASCII symbols to their corresponding hexadecimal values.
����

The lods instruction

There are three lods instruction:

 C Definition: lodsb copies a source stored in the byte variable to the AL register .

Example:

AL CODE AL (Byte is in ASCII symbols) X (Byte is in ASCII symbols)

x byte '#' #

lea esi, x #

324

lodsb # #

C Definition: lodsw copies a source stored in the word variable to the AX register .
Example:

AL CODE AX (Word is in ASCII symbols) X (Word is in ASCII symbols)

x word '$7 ' $7

lea esi, x $7

lodsw $7

C Definition: lodsd copies a source stored in the word variable to the EAX register

Example:

AL CODE EAX (Word is in ASCII symbols) X (DWord is in ASCII symbols)

xdword 'Bach ' Bach

lea esi, x Bach

lodsd Bach

Exercise:

1. In the above 3 examples change the ASCII symbols to their corresponding hexadecimal values.
����

The rep instruction

C Definition: The rep instruction is a prefix to several other instructions to perform a given repetitive task. The
number of repetitions is a given number stored in the ECX register. When completed the ECX register will
contain zero (0).

Examples:

1.

AL CODE ECX AL (Byte is in ASCII symbols) X (Dword is in ASCII symbols)

x dword ?

mov al, '^' ^

lea edi, x ^

325

mov ecx, 4 4 ^

rep stosb 4 ^ ^ ^ ^ ^

 2.

AL CODE ECX AX (Words in ASCII symbols) X (Words in ASCII symbols)

x word 5 dup (?)

mov ax, 'WA' WA

lea edi, x WA

mov ecx, 5 5 WA

rep stosw 5 WA WA WA WA WA WA

3.

AL CODE ECX EAX (Words in ASCII symbols) X (DWords in ASCII symbols)

x dword 4 dup (?)

mov eax, '1234' 1234

lea edi, x 1234

mov ecx, 4 4 1234

rep stosd 4 1234 1234 1234 1234

Exercises:

1. In the above 3 examples change the ASCII symbols to their corresponding hexadecimal values.

2. Complete the table below:

AL CODE ECX Y
(DWords in ASCIIsymbols)

X
(DWords in ASCIIsymbols)

x dword 4 dup (?)

Y dword '123456789abcde'

mov ecx, 4

lea esi, y

lea edi, x

326

rep movsd

3. Complete the table below:

AL CODE ECX Y
(DWords in hex symbols)

X
(DWords in hex symbols)

X dword 4 DUP (?)

Y dword '123456789abcde'

mov ecx, 4

lea esi, y

lea edi, x

rep movsd

�

Other repeat instructions

Depending on the suffix, the following are additional versions of the rep instruction:

C Definition: the repe prefix is to repeat while ECX > 0 and the suffix operation compute a value equal 0.

C Definition: the repz prefix is to repeat while ECX > 0 and the suffix operation compute a value equal 0.

C Definition: the repne prefix is to repeat while ECX > 0 and the suffix operation compute a value not equal 0.

C Definition: the repnz prefix is to repeat while ECX > 0 and the suffix operation compute a value not equal 0.

Note: repz/repe and repnz/repne pairs are equivalent instructions. Also all repeat instructions can be used in
conjunction will procedures. In this way multiple instructions can be repeated.

The cmps instruction

There are three cmps instructions:

C Definition: cmpsb compares the binary source and binary designation strings. It does not have operands.

C Definition: cmpsw compares the word source and word designation strings . It does not have operands.

C Definition: cmpsd compares the double word and double word designation strings . It does not have operands.

Note: The cmps instructions should be use in conjunction with the jump instructions of Chapter 11.
The following is a table of the conditional jumps for the signed order of rings in assembly language:

327

Mnemonic1 Description

je jump to the label if source = destination;
 jump if equal to

jne jump to the label if source … destination;
 jump if not equal to

jnge jump to the label if source < destination;
 jump if not greater or equal

jnle jump to the label if source > destination;
 jump if not less than or equal

jge jump to the label if source $ destination;
 jump if greater than or equal

jle jump to the label if source # destination;
 jump if less than or equal

jl jump to the label if source < destination;
 jump if less than

jnl jump to the label if source $ destination;
 jump if not less than

jg jump to the label if source > destination;
 jump if greater than

jng jump to the label if source # destination;
 jump if not greater than

Note. Remember, that the string comparisons are actually the comparisons of the numeric values associated
with the strings.

The scas instruction

The scan string instruction is used to scan a string for the presence of a given string element. The scan string is
the designation string and the element that is being searched for is in a given register .

There are three scas instructions:

C Definition: The scasb requires the element being searched for is in the AL register.

C Definition: The scasw requires the element being searched for is in the AX register.

CCCC Definition: The scasd requires the element being search for is in the EAX register.

Note: To scan the entire string for the given elements, the repne prefix is used with the scas instruction.

Algorithm: Checks to see if a string has a given element of a byte size.

328

ASSEMBLY LANGUAGE CODE COMMENTS

stringlocation byte ‘string’

mov al, 'byte element'

lea edi,stringlocation ' string' is the sting to check if it contains the byte element

mov ecx, n the number of bytes containing sting.

mov eax,ecx will contain the location of the element

repne scasb checks byte by byte . Will stop checking if the byte is found.

sub eax,ecx location of the element if it exists in the string.

Exercise:

1. Write a program that will find the position location of “f” in the of the string 'I live in California '

PROJECT

1. Write an assembly language program that will convert an arbitrary string “a1a2a3...an” to it number value

a1a2a3...an .

2. Write an assembly language program that will convert an arbitrary integer number a1a2a3...an to the string

“a1a2a3...an”.

329

CHAPTER 24 - STRING ARRAYS

INTRODUCTION

In Chapter 15, we created one and two dimensional integer arrays. In this chapter we will create arrays that
contain strings. We will see that the string arrays and integer arrays share many of the same rules.

24.1 Storing Stings in the Directive

The following are the ways string(s) can be stored using the directive in the data portion of the program. We
can use the following directives:

C variable name data type ?

C variable name data type string

C variable name data type string_1, string_2, ..., string_n

variable name data type dimension dup(?)

Examples:

variable name data type ?

1. x byte ?

will allow a one character string to be stored in x.

2. x word ?

will allow a two character string to be stored in x.

3. x dword ?

will allow a four character string to be stored in x.

 variable name data type string

1. x byte a string of any length

will allow any size string to be stored in an array starting in location x.

x byte ‘abcde’

2. x word string

will allow a string of 2 characters to be stored in x

330

x word ‘ab’

3. x dword string

will allow a string of 4 characters to be stored in x

x dword ‘abcd’

variable name data type string_1, string_2, ..., string_n

1. x byte string_1, string_2, ..., string_n

will allow a list of strings of any length starting in location x.

x byte ‘a’, ‘b’, ‘c’, ‘d’

2. x word string_1, string_2, ..., string_n

 will allow a list of strings of 2 characters each starting in location x.

x word ‘ab’, ‘cd’, ‘ef’, ‘gh’

3. x dword string_1, string_2, ..., string_n

will allow a list of strings of 4 characters each starting in location x.

x dword ‘abcd’, ‘efgh’, ‘ijkl’, ‘mnop’

 variable name data type dimension dup(?)

will create a string array with a given dimension and data type.

Note: As in Chapter 14, The lea instruction will still be use to determine the first byte position of the array.

Retrieving strings stored in the variable

The following examples will demonstrate how strings are retrieved from the variables:

Examples:

1.

AL CODE AL byte 1 byte 2 byte 3

x byte ‘abc’ a b c

lea ebx,x a b c

mov al,[ebx] a a b c

331

add ebx,1 a a b c

mov al,[ebx] b a b c

add ebx,1 b a b c

mov al,[ebx] c a b c

2.

AL CODE AL byte 1 byte 2 byte 3

x byte ‘a’, ‘b’, ‘c’ a b c

lea ebx,x a b c

mov al,[ebx] a a b c

add ebx,1 a a b c

mov al,[ebx] b a b c

add ebx,1 b a b c

mov al,[ebx] c a b c

3.

AL CODE AX word 1 word 2 word 3

x word ‘ab’, ‘cd’, ‘ef ’ ab cd ef

lea ebx,x ab cd ef

mov ax, [ebx] ab ab cd ef

add ebx,2 ab ab cd ef

mov ax, [ebx] cd ab cd ef

add ebx,2 cd ab cd ef

mov ax, [ebx] ef ab cd ef

4.

AL CODE EAX dword 1 dword 2 dword 3

x dword ‘abcd’, ‘ef’, ‘ghi’ abcd ef ghi

332

lea ebx,x ab cd ef

mov ,[ebx] abcd ab cd ef

add ebx,4 abcd ab cd ef

mov al,[ebx] ef ab cd ef

add ebx,4 ef ab cd ef

mov al,[ebx] ghi ab cd ef

Exercise:

For the four examples above, fill in the appropriate cells with the ASCII code.

Creating a one dimensional string array using the dup(?) directive .

The following steps will define and set up the array.

Step 1: Define the directive variable name data type dimension dup(?)

Step 2: Useing the lea instruction, store the first byte location in a 32 bit register.

Example:

x byte 10 (?)

lea ebx, x

Storing data in the array.

 In the assembler we can use any of the registers EAX, EBX, ECX and EDX. The following definition is the
assignment statement that will allow us to perform data assignments to and from memory cells:

mov [register], source instruction.

Definition: mov [register], source

where the following rules apply:

Rule1: The registers must be EAX, EBX, ECX, or EDX.

Rule2: The source can be any register, or variable.

Rule3: The [register] indicates the cell location where the bytes are to be located.

The [register] is call the indirect register.

Rule4: The lea instruction will establish the first byte location.

333

The mov [register], source instruction will store the sting in the source register or variable into the memory
location indicated by the contents of the register.

For all examples in this chapter, we assume all numbers are represented as hexadecimal.

Examples:

The following examples show how string arrays are created and stored.

1. The following program will store the strings ‘a’, ‘b’, ‘c’ into the array of type BYTE.

PSEUDO CODE AL CODE AL X

Array X x byte 10 dup(?)
lea ebx,x

byte 1 byte 2 byte 3

X(1) := ‘a’ mov al, ‘a’ a

mov [ebx], al a a

add ebx,1 a a

X(2):= ‘b’ mov al, ‘b’ b a

mov [ebx],al b a b

add ebx,1 b a b

X(3):= ‘c’ mov al,’c’ c a b

mov [ebx],al c a b c

Important: Since we are storing into individual byes, we increment by 1.

2. The following program will store numbers ‘ab’, ‘cd’, ‘ef’ into the array of type WORD.

PSEUDO CODE AL CODE AX X

Array X x word ?
lea ebx,x

word 1 word 2 word 3

X(1) := ‘ab’ mov ax, ‘ab’ ab

mov [ebx], ax ab ab

add ebx,2 ab ab

X(2):= ‘cd’ mov ax, ‘cd’ cd ab

334

mov [ebx],ax cd ab cd

add ebx,2 cd ab cd

X(3):= ‘ef’ mov ax, ‘ef’ ef ab cd

mov [ebx],ax ef ab cd ef

Important: Since we are storing into individual byes for each word, we increment by by 2.

3. The following program will store numbers ‘abcd’, ‘efgh’, ‘ijk’ into the array of type DWORD.

PSEUDO CODE AL CODE EAX X

Array X x dword ?
lea ebx,x

dword 1 dword 2 dword 3

X(1) := ‘abcd’ mov eax, ‘abcd’ abcd

mov [ebx], eax abcd abcd

add ebx,4 abcd abcd

X(2):= ‘efgh’ mov eax,’efgh’ efgh abcd

mov [ebx],eax efgh abcd efgh

add ebx,4 efgh abcd efgh

X(3):= ‘ijk’ mov eax,’ijk’ ijk abcd efgh

mov [ebx],eax ijk abcd efgh ijk

Important: Since we are storing into individual byes for each dword, we increment by 4.

mov register, [register]

Definition: mov register, [register]

where the following rules apply:

Rule1: The registers can be EAX, EBX, ECX, and EDX.

Rule2: The [register] indicates the cell location where the bytes are located.

where the following rules apply:

The mov register, [register] instruction will store the number contained in the address location in [register] into
the register.

335

Example:

AL INSTRUCTIONS eax cl X

x byte ‘abcdef’ abcdef

lea ebx,x abcdef

mov eax, [ebx] abcd abcdef

mov cl, [ebx] abcd a abcdef

add ebx,1 abcd a abcdef

mov cl,[ebx] abcd b abcdef

add ebx,1 abcd b abcdef

mov cl , [ebx] abcd c abcdef

add ebx,1 abcd c abcdef

mov cl, [ebx] abcd d abcdef

add ebx,1 abcd d abcdef

mov cl, [ebx] abcd e abcdef

add ebx,1 abcd e abcdef

mov cl, [ebx] abcd f abcdef

AL INSTRUCTIONS eax ebx BYTES: 1 2 3 4 5 6 7 8

mov eax, 2

mov ebx, 7D12Eh

mov [eax], ebx

mov eax, 4

mov ebx, 568923h

mov [eax], ebx

mov ebx, 3

mov eax, [ebx]

2. Write a assembly language program that will perform the following tasks:

336

Task 1: store the ASC codes of the alphabet a to z into an array x.

Task 2: retrieve the ASC codes from the array x.
�

PROJECTS

Write an assembly language program that will store all the ASC codes into an array x.

337

CHAPTER 25 - INPUT/OUTPUT

INTRODUCTION

The 80/86 MASM assembler provides the Kernel32 library of program utilities which includes input/out
instructions. In this chapter we will examine programs that will perform the following functions:

C Output strings to the monitor

C Input strings from the keyboard

25.1 Outputting Strings to the Monitor

The following is a complete program that will output to the screen the message: “Good morning America!”

The following directives are used to input and output string data:

C ExitProcess PROTO NEAR32 stdcall, dwExitCode: DWORD

where

PROTO is a directive that prototypes the function ExitProcess

and

 ExitProcess is a directive that is used to terminate a program.

C GetStdHandle

The GetStdHandle returns in EAX a handle for the I/O device.

Examples:

Program:

; A complete program that will output to the screen the message: “Good morning America!”

.386

.MODEL FLAT
ExitProcess PROTO NEAR32 stdcall, dwExitCode: DWORD

338

;Setup for Writing to the Monitor

GetStdHandle PROTO NEAR32 stdcall, nStdHandle:DWORD

WriteFile PROTO NEAR32 stdcall,
 hFile:DWORD, lpBuffer:NEAR32, nNumberOfCharsToWrite:DWORD,

lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_OUTPUT EQU -11

cr EQU 0dh ; carriage return character

lf EQU 0ah ; line feed

.STACK 4096

.DATA

message BYTE 'Good morning America!'; This is the message that will be displayed on the monitor
size DWORD 21 ; Number of characters in message
written DWORD ?
message_out DWORD ?

.CODE
; The following instructions will print the message “Good morning America!”
_start:

INVOKE GetStdHandle, ; Prepare output

 STD_OUTPUT ; -- to screen

 mov message_out, eax

 INVOKE WriteFile, ; Initial output

 message_out, ; screen hardware location

 NEAR32 PTR message, size, ; size of message

 NEAR32 PTR written, ; bytes written

 0 ; overlapped mode

INVOKE ExitProcess, o ; exit with return code o

PUBLIC _start

END

339

25.2 Inputting Strings from the keyboard

The following complete program will perform the following tasks.

Task 1: A message to the monitor will prompt the user to enter a message.

Task 2: Allow the user to enter a message.

Example:

; A complete program that will allow the user to enter a message and enter data from the keyboard.
.386

.MODEL FLAT
ExitProcess PROTO NEAR32 stdcall, dwExitCode:DWORD

GetStdHandle PROTO NEAR32 stdcall,

 nStdHandle:DWORD

ReadFile PROTO NEAR32 stdcall,

 hFile:DWORD, lpBuffer:NEAR32, nNumberOFCharsToRead:DWORD,

 lpNumberOfBytesRead:NEAR32, lpOverlapped:NEAR32

WriteFile PROTO NEAR32 stdcall,

 hFile:DWORD, lpBuffer:NEAR32, nNumberOFCharsToWrite:DWORD,

 lpNumberOfBytesWritten:NEAR32, lpOverlapped:NEAR32

STD_INPUT EQU -10

STD_OUTPUT EQU -11

.STACK 4096

.DATA
request BYTE "Please enter a message ? "

CrLf BYTE 0ah, 0dh

Enter_message BYTE 80 DUP (?)

read_in DWORD ?

written_out DWORD ?

handle_Out DWORD ?

handle_In DWORD ?

340

.code
; The following instructions will print the message “Please enter a message”

_start:
; WRITE REQUEST
 INVOKE GetStdHandle, ; get handle for console output

 STD_OUTPUT

 mov handle_In, eax

 INVOKE WriteFile,

 handle_In,

 NEAR32 PTR request,

 80,

 NEAR32 PTR written_out,

 0

; The following instructions will allow a message to be entered from the keyboard.
; INPUT DATA

 INVOKE GetStdHandle, ; get handle for console output

 STD_INPUT

 mov handle_In, eax

 INVOKE ReadFile,

 handle_In,

 NEAR32 PTR Enter_message,

 80,

 NEAR32 PTR read_in ,

 0

 INVOKE ExitProcess, 0

INVOKE ExitProcess, o ; exit with return code o

 PUBLIC _start
END

341

PROJECT

Write a program that will perform the following two tasks:

C an arbitrary number of hexadecimal numbers can be entered from the keyboard and stored in a array.

C the numbers can be retrieved from the array, converted to decimal and display onto the monitor.

342

 CHAPTER 26 SIGNED NUMBERS AND THE EFLAG SIGNALS

INTRODUCTION

It is important to keep in mind that when working with integers numbers, that the numbers are contained in a
ring of a given data type. When we preform arithmetic operations, it is possible that the resulting computations
do not always return the expected value as they would appear in the ordinary integer number system. For
example we would expect the simple expression 2 - 3 to return a value of -1. But if our number system is a 8 bit
ring we will obtain the result 255 which is the additive inverse of -1. Let us assume for further discussion that
the register we will work with in this chapter is the register AL, which is a 8 bit ring. Further we will assume the
following table is a signed order representation of this ring in decimal (See chapter 8)

128 129 ... 253 254 255 0 1 2 3 ... 126 127

-128 -127 ... -3 -2 -1 0 1 2 3 ... 126 127

where the bottom row represents the additive inverse of the above values.

If we wish to write a program that will print out the true value -1, how is this done when the instructions

move al, 2
sub al, 3

will return the value 255 in the register al?

To print the correct -1 we need to write al instructions that will perform the following tasks:

Task 1: Test what value resulted in the subtraction: 255.

Task2: Convert 255 into is additive inverse: 1

Task3: Store in a variable the ASCII code for -1: 2D31 (See Chapter 23).

Task4: Print this ASCU code (See Chapter 25).

Performing operations such as Task1 is the main emphasis of ths chapter.

 26.1 THE EFLAGS

The EFLAG is a 32 bit register where some of its 32 bits indicated three types of flag signals resulting from
arithmetic or logical operations:

C the sign flag

C the carry flag

C the overflow flag.

343

Before defining these important flags, we make the following observation: when performing arithmetic or
logical operations we first assign a numeric integer to a byte register that has a 0 or 1 bit at its left most bit
position . If after the operation, the resulting binary value will have a 0 or 1 in its left most bit position. If this bit
is the same or different than the left most bit of the original value, a change may occur in the various flags
listed above.

Addition and Subtract

Examples:

1.

AL CODE AL (decimal) AL (binary)

move al, 1 1 0000 0001

add al, 2 3 0000 0011

Comment: The left-most bit of the original number 0000 0001 is a 0 and the left-most bit the resulting number
0000 0011 is also 0, Therefore the left-most bit has not changed.

2.

AL CODE AL (decimal) AL (binary)

move al, 1 1 0000 0001

sub al, 2 255 1111 1111

Comment: The left-most bit of the original number 0000 0001 is a 0 and the left-most bit the resulting number
1111 1111 is 1, Therefore the left-most bit has changed.

3
.

AL CODE AL (decimal) AL (binary)

move al, 254 254 1111 1110

add al, 10 8 0000 1000

Comment: The left-most bit of the original number 1111 1110 is a 1 and the left-most bit the resulting number
0000 1000 is 0, Therefore the left-most bit has changed.

4.

AL CODE AL (decimal) AL (binary)

move al, 128 128 1000 0000

add al, 128 0 0000 0000

344

Comment: The left-most bit of the original number 1000 0000 is a 1 and the left-most bit the resulting number
0000 0000 is 0, Therefore the left-most bit has changed.

Exercises:

Complete the tables below:

1.

AL CODE AL (decimal) AL (hex) AL (binary)

move al, 1 1 0000 0001

add al, 2 3 0000 0011

2.

AL CODE AL (decimal) AL (hex) AL (binary)

move al, 1 1 0000 0001

sub al, 2 255 1111 1111

3.

AL CODE AL (decimal) AL (hex) AL (binary)

move al, 254 254 1111 1110

add al, 10 8 0000 1000

4..

AL CODE AL (decimal) AL (hex) AL (binary)

move al, 128 128 1000 0000

add al, 128 0 0000 0000

����

Definition of the sign flag:

After an arithmetic or logical operation on a integer value in a byte register, if the resulting binary number has
at its left-most position a 1, then the sign flag will be assigned a value 1; otherwise a number 0.

Examples:

1.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 250 250 11111010

345

add al,1 251 11111011

mov sign,’yes’ 251 11111011 yes

Comment: The resulting number 251 has as its associated binary number a 1 as it left most bit.

2.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 120 120 01111000

add al,10 130 10000010

mov sign, ‘yes’ 150 10000010 yes

Comment: The resulting number 150 has as its associated binary number a 1 as it left most bit.

3.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 220 220 11011100

add al,40 260 00000100

mov sign, ‘no’ 260 00000100 no

Comment: The resulting number 260 has as its associated binary number a 0 as it left most bit.

4.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 22 22 00010110

add al,40 62 00111110

mov sign, ‘no’ 62 00111110 no

Comment: The resulting number 260 has as its associated binary number a 0 as it left most bit.

Exercises

Complete the tables below.
1.

AL CODE AL (decimal) AL (binary) AL (hex) SIGN

mov al, 250 250 11111010

346

add al,1 251 11111011

mov sign,’yes’ 251 11111011 yes

2.

AL CODE AL
(decimal)

 AL (binary) AL (hex) SIGN

mov al, 120 120 01111000

add al,10 130 10000010

mov sign, ‘yes’ 150 10000010 yes

3.

AL CODE AL
(decimal)

 AL (binary) AL (hex) SIGN

mov al, 220 220 11011100

add al,40 260 00000100

mov sign,’no’ 260 00000100 no

4.

AL CODE AL
(decimal)

 AL (binary) AL(hex) SIGN

mov al, 22 22 00010110

add al,40 62 00111110

mov sign, ‘no’ 62 00111110 no

Definition of the carry flag:

Assume the original number has a left-most 0 binary bit. After an arithmetic or logical operation if the resulting
binary number has at its left-most position a 0, then the carry flag will be assigned a value 1; otherwise it will be
assigned a numeric bit 0.

Examples:

1.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 250 250 11111010

347

add al,1 251 11111011

mov sign,’no’ 251 11111011 no

Comment: 250 has a 1 as its left-most binary bit. The resulting number 251 has as its associated binary number
a 1 as it left most bit. Therefore, the left most bit it is still a 1.

2.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 120 120 01111000

add al,10 130 10000010

mov sign, ‘no’ 150 10000010 no

Comment: The original binary number has as its left-most bit a 0. Therefore ,the carry flag is set to 0.

3.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 220 220 11011100

add al,40 260 00000100

mov sign, ‘yes’ 260 00000100 yes

Comment: 220 has a 1 as its left-most binary bit. The resulting number 260 has as its associated binary number
a 0 as it left most bit. Therefore, Therefore, the carry bit is set to 1..
.
4.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 22 22 00010110

add al,40 62 00111110

mov sign, ‘no’ 62 00111110 no

Comment: The original binary number has as its left-most bit a 0. Therefore ,the carry flag is set to 0.

348

Exercises:

Complete the tables below.

1.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 250

sub al,1

mov sign,’no’

2.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 120

sub al,10

mov sign, ‘no’

3.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 220

sub al,40

mov sign, ‘yes’

4.

AL CODE AL (decimal) AL (binary) SIGN

mov al, 22

add al,40

mov sign, ‘no’

349

Definition of the overflow flag:

 C ------------>---------------- > ------------------------> -------->---------> C OF

X X 128 129 ... 254 255 0 1 2 3 ... 126 127 X X

 OF C < ---------<----------------<---------------------------<-----------------------C

The above table shows that when performing arithmetic or logical operations, if the resulting value falls in the X
areas an overflow(OF) will occur. If it falls between the X areas no overflow will occur.

Examples:

1.

AL CODE AL (decimal) SIGN

mov al, 127 127

add al,1 128

mov sign,’yes’ 128 yes

Comment: Even though 128 is a value in al, it resulted by adding 1 to 127 and 128 fell in the X area. Therefore,
an overflow occurred.

2.

AL CODE AL (decimal) SIGN

mov al, 128 128

sub al,1 127

mov sign, ‘yes’ 127 yes

Comment: Even though 127 is a value in al, it resulted by subtracting 1 from 128 and 127 fell in the X area.
Therefore, an overflow occurred.
.

3.

AL CODE AL (decimal) SIGN

mov al, 127 127

sub al, 200 83

mov sign, ‘no’ 83 no

Comment: Since 83 is a value in al, therefore, no overflow occurred.

350

4.

AL CODE AL (decimal) SIGN

mov al, 255 255

add al,1 0

mov sign, ‘no’ 0 no

Comment: Since 0 is a value in al, therefore, no overflow occurred. .

26.2 EFLAG JUMP INSTRUCTIONS

The eflag bits cannot be directly accessed. However, the following jump instructions can be used to jump to a
designated instruction:

Jump Instruction Result

js Jump if sign bit is turned on

jns Jump if sing bit is turned off

jc Jump if carry bit is turned on

jnc Jump if carry bit is turned off

jo Jump if overflow bit is turned on

jno Jump if overflow bit is turned off

Examples:

1.

AL CODE AL (decimal) SIGN

mov al, 254 254

add al, 3 1

js label1 1

mov sign, ‘no’ 1 no

jmp end 1 no

label1: mov sign, ‘yes’ 1 no

end: 1 no

351

2.

AL CODE AL (decimal) SIGN

mov al, 253 253

add al, 1 154

js label1 154

mov sign, ‘no’ 154

jmp end 154

label1: mov sign, ‘yes’ 154 yes

end: 154 yes

3.

AL CODE AL (decimal) CARRY

mov al, 254 254

add al, 3 1

jc label1 1

mov carry, ‘no’ 1

jmp end 1

label1: mov carry, ‘yes’ 1 yes

end: 1 yes

4.

AL CODE AL (decimal) OVERFLOW

mov al, 254 254

add al, 3 1

jo label1 1

mov overflow, ‘no’ 1 no

jmp end 1 no

label1: mov sign, ‘yes’ 1 no

end: 1 no

352

 Exercises:

Complete the table below:

AL CODE AL (decimal) SIGN CARRY OVERFLOW

mov al, 258

sub al, 7

js sign

mov sign, ‘no’

jmp endsign

sign: mov sign, ‘yes’

endsign:

mov al, 4

add al, 127

jc carry

mov carry, ‘no’

jmp endcarry

carry: mov carry, ‘yes’

endcarry:

mov al, 254

sub al, 234

jof overflow

mov overflow, ‘no’

jmp endoverflow

overflow: mov overflow, ‘yes’

endoverflow:

Multiplication

There are 2 types of multiplication operations: mul and imul (See Chapter 10). The mul instruction is when the
numbers are considered as unsigned (natural order) and the imul instruction is when the numbers are considered
as signed. The mul instruction will set the carry and overflow flags depending on the value of the left most bit.
The imul instruction will set the carry if the resulting number is too large. This will result in the edx resgister no
being equal to zero.

353

MUL

Examples:

1.

AL CODE AL (decimal) CARRY

mov al, 7 7

mov x,12 7

mul x 84

mov carry, ‘no’ 84 no

Comment: Since left most bit for 7 is a 0, there is no carry.

 2.

AL CODE AL (decimal) CARRY

mov al, 128 128

mov x,2 128

mul x 0

mov carry, ‘yes’ 0 yes

Comment: Since left most bit for 128 is a 1 and after multiplication the left most bit changed to 0, there is a
carry .

3.

AL CODE AL (decimal) CARRY

mov al, 255 255

mov x,255 255

mul x 36

mov carry, ‘yes’ 36 yes

Comment: Since left most bit for 255 is a 1 and after the left most bit changed to 0, there is a carry .

354

4.

AL CODE AL (decimal) OVERFLOW

mov al, 255 255

mov x,255 255

mul x 36

mov overflow, ‘yes’ 36 yes

Comment: Since 255(255 mod 256 > 0 , there is an overflow from the natural order .

4.

AL CODE AL (decimal) OVERFLOW

mov al, 110 110

mov x,2 110

mul x 220

mov overflow, ‘no’ 220 no

Comment: Since 110(2 mod 256 = 0 , there is no overflow from the natural order .

IMUL

1.

AL CODE AL (decimal) CARRY

mov al, 7 7

mov x,12 7

imul x 84

mov carry, ‘no’ 84 no

Comment: Since left most bit for 7 is a 0, there is no carry.

 2.

AL CODE AL (decimal) CARRY

mov al, 128 128

mov x,2 128

imul x 0

mov carry, ‘yes’ 0 yes

355

Comment: Since left most bit for 128 is a 1 and after multiplication the left most bit changed to 0, there is a
carry .

3.

AL CODE AL (decimal) CARRY

mov al, 129 129

mov x,2 129

imul x 2

mov carry, ‘yes’ 2 yes

Comment: Since left most bit for 129 is a 1 and after the left most bit of 2 is 0, there is a carry .

4.

ASSEMBLY CODE EAX AX AH AL DX X

x word 100h 100

mov eax 123456h 00 12 34 56 34 56 34 56 100

imul x 00 12 56 00 56 00 56 00 34 100

Comment: Since DX > 0 this resulted in a carry (see example 5, Chapter 10).

 5.

AL CODE AL (decimal) OVERFLOW

mov al, 2 255

mov x,255 255

imul x 36

mov overflow, ‘yes’ 36 yes

Comment: The multiplication resulted in moving from 2 past 255 resulting in an overflow.

6.

AL CODE AL (decimal) OVERFLOW

mov al, 110 110

mov x,2 110

imul x 220

mov overflow, ‘no’ 220 no

356

Comment: Going from 110 to 220 does not result in an overflow. .

Project

Write a procedure in assembly language that will perform the following task:

In a program, assume an operation is performed. Convert the resulting value to its appropriate decimal value.

For example the following code will generate the decimal value 252:

mov al, 4

sub al, 8

However, the correct value in ordinary arithmetic is 4 - 8 = -4.
The subroutine needs to find the ASCII code for the symbol - and 4:

 - : 2Dh

 4: 34h

The number 2D34 is stored.

The procedure will perform this conversion on any integer number.

357

CHAPTER 27- NUMERIC APPROXIMATIONS (OPTIONAL)

INTRODUCTION

Numeric approximations play an important rule in assembly language programming. The assembler that you

use will provide some numeric algorithms but in most cases the programmer will have to program several

necessary numeric algorithms. For, example, at this point we cannot even approximate the square root of a

number. Unless the assembler provides a square root approximation algorithm, the programmer will have to

write such an algorithm in the usually in the form of a procedure. At this point, in passing, we should note the

following additional floating-point instructions that are provided by the 80x86 assembler language:

27.1 Assembler Floating Point Numeric Approximations

The following floating point instructions are provided by the assembler to compute approximations for a
specific functions:

1.

MNEMONIC OPERAND ACTION

fsin (none) Replaces the contents of ST by sin(ST) .

2.

MNEMONIC OPERAND ACTION

fcos (none) Replaces the contents of ST by cos(ST).

3.

MNEMONIC OPERAND ACTION

fsincos (none) Replaces the contents of ST by sin(ST), pushes the stack down and then
replaces the contents of ST by cos(ST)

4.

MNEMONIC OPERAND ACTION

fptan (none) Replaces the contents of ST by tan(ST)

5.

MNEMONIC OPERAND ACTION

fldpi (none) Replaces the contents of ST by π.

358

6.

MNEMONIC OPERAND ACTION

fld12e (none) Replaces the contents of ST by log2 (e).

7.

MNEMONIC OPERAND ACTION

fld12t (none) Replaces the contents of ST by log2 (10).

8.

MNEMONIC OPERAND ACTION

fldlog2 (none) Replaces the contents of ST by log10 (2).

9.

MNEMONIC OPERAND ACTION

fldln2 (none) Replaces the contents of ST by loge (2).

10.

MNEMONIC OPERAND ACTION

fsqrt (none) replaces the contents of ST by its square root

27.2 Special Approximations

Although the above are useful, we will need more powerful algorithms that we can call as procedures in our
assembly language. We begin with the Newton Interpolation Method.

Newton Interpolation Method

The Newton interpolation method is a powerful method for approximation solving solutions of equations. First
we will show, how it can be used to write an algorithm f or computing an approximating the square root of any
non-negative number. Then we will apply the Newton’s method to approximate the n-root of any appropriate
number.

Roots of an equation.

Assume you have an equation y = f(x), represented by the graph below. The root(s) of the equation is (are) the

value(s) of x where the graph crosses the x-axis (f(x) = 0). . First we start with an initial value x0 . Next, we

compute the tangent line of the curve at x0. We next find the point x1 where the tangent line crosses the x-axis.

Continuing, we compute the tangent line of the curve at x1 and we find the point x2 where the tangent line

crosses the x-axis. From he graph we see that t his will lead a sequence to numbers x0, x1, x2, ..., xn , that will

converge to one of the roots of the equation.

359

The Newton interpolation method gives us the following sequential formulas:

where f N(xk) are the slopes of the tangent lines.

Using the Newton Interpolation Method to approximate of a number where a > 0 .

Assume we wish to approximate the nth root of a number a, , using Newton’s interpolation method. We
start by defining f(x) as

f(x) = xn - a

which has a root

It can be shown that f N(x) = n xn - 1 which gives use a formula for the slopes of the tangent lines.

We therefore have:

f(xk) = xk
n - a

f N (xk) = nxk
n - 1

Example:

Assume we wish to approximate the using Newton’s approximation method.

Step 1: f(x) = x2 - 5

Step 2: f N(x) = 2x

Step 3: ; k = 0, 1,2, ...

Step 4: First we set x0 = 3.

360

 = 3 - 2/3 = 7/3 = 2.333...

 . 2.236067978...

Since . 2.236067978 is accurate to 8 places we see that if we let x2 = 2.236067978...

will give us at least 8 places of accuracy.

A pseudo-code algorithm for approximating the square root , where a $$$$ 0.

INSTRUCTIONS EXPLANATION

X := A + 1 X IS LARGER THAN ROOT OF A.

WHILE N > 0 N IS THE POSITIVE INTEGER

BEGIN

N := N - 1

 END

Exercises:

1. Using the above pseudo-code algorithm for approximating the square root , where a $ 0,

write an assembly language program that will approximate the square root.

2. Modify the above pseudo-code algorithm by replacing the number a by its absolute value.

3. We say that two numbers x, y are at least equal to the nth place if | x - y | < 1/ 10n

For example, the 2 numbers 7.12567890435656 and 7.12567890438905 are at least equal to the 10th place
since

 | 7.12567890435656 - 7.12567890438905 | = 0.00000000003249 < 1/1010

4. Modify the above pseudo-code algorithm that will terminate the computation x n+1 when

| xn + 1 - xn | < 1/10n.

361

Explain why this would be the better way of estimating the square root .

5. For problem 4, write an assembly language program.

6. Write a pseudo-code algorithm that will approximate the nth root .

7. From problem 6, write an assembly language program.

8. Write an assembly language program that will approximate am/n, where m, n are positive integers.

����

Using Polynomials to Approximate Transcendental Functions and Numbers

As you may recall, real polynomials are of the form an x
n + an - 1 x

n - 1 + ... + a1x + a0 , where ak

are real numbers (k = 0,1,...n).

The following important transcendental functions and numbers can often play an important part in any
assembly language program:

Transcendental functions:

ex , ln(x), sin(x), cos(x), tan-1(x) .

Transcendental numbers: e, π.

The following are polynomial approximations of transcendental functions:

, - 4 < x < 4; n = 0, 1, 2, ...

, - 4 < x < 4; n = 0,1,2, ...

, - 4 < x < 4; n = 0,1,2, ...

, -1 # x # 1; n = 0,1,2,...

; 0 < x < 1; n = 1,2,...

362

 1 # x; n = 1,2,...

Using the above approximations, the following transcendental numbers e, π can be approximated:

; n = 0,1,2,...

; n = 0,1,2,...

Therefore,

Pseudo-code Algorithms for Approximating Transcendental Functions and Numbers.

The following pseudo-code algorithm will estimate :

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_EX := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

BEGIN

SUM_EX := SUM_EX + XK/K! X K WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K := K + 1

 END

The following pseudo-code algorithm will estimate :

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_SIN := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

363

BEGIN

SUM_SIN := SUM_SIN + (-1)K*X 2K + 1/(2K + 1)! XK WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K := K + 1

 END

The following pseudo-code algorithm will estimate :

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_COS := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

BEGIN

SUM_COS := SUM_COS + (-1)K*X 2K /(2K)! XK WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K := K + 1

 END

The following pseudo-code algorithm will estimate :

INSTRUCTIONS EXPLANATION

K := 0 COUNTER

SUM_INTAN := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

BEGIN

SUM_INTAN := SUM_INTAN + (-1)K*X 2K + 1 /(2K+1))! XK WRITTEN AS A PROCEDURE
K! WRITTEN AS A PROCEDURE

K := K + 1

364

 END

The following pseudo-code algorithm will estimate :

; 0 < x < 1; n = 1,2,...

 1 # x; n = 1,2,...

INSTRUCTIONS EXPLANATION

IF 0 < X < 1 THEN

BEGIN

K := 1 COUNTER

SUM_LN := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

 BEGIN

SUM_LN := SUM_LN - (1 - X)K /K XK WRITTEN AS A PROCEDURE

K := K + 1

 END

ELSE

 BEGIN

SUM_LN := 0 WILL SUM POLYNOMIAL

WHILE K # N WILL COMPUTE N TIMES

BEGIN

SUM_LN := SUM_LN + (1 - 1/X)K /K XK WRITTEN AS A PROCEDURE

K := K + 1

 END

END

Exercises:

1. Using the above algorithm, write a pseudo-code to estimate the number e.

2. Using the above algorithm, write a pseudo-code to estimate the number π.

365

3. For each of the above algorithms, write an assembly language program.

4. The error created by using the above polynomial approximation is written as

E(x) = transcendental function - polynomial

For the sin(x), cos(x), tan-1(x) functions, |E(x)| #

5. Modify the above algorithms so that the program terminates when |E(x)| # 1/10n.

Also, write an assembly language program for each of these algorithms.

Monte Carlo Simulations

Monte Carlo simulations solve certain types of problems through the use of random numbers. These problems
can be broken down into sampling models which will give us an approximation to the solution of the given
problem. In order apply these simulation techniques, we need to develop algorithms that will generate random
numbers. In most cases these generated random numbers will have a uniform distribution.

Definition: A uniform distribution of random numbers is a sequence of numbers, where each has equal
probability of occurring and the numbers are generated independently of each other.

Example: if we toss a die 100 times, we will generate a sequence of 100 numbers where each number
(1,2,3,4,5,6) has the probability of 1/6 of appearing.

Since we have to generate the random sequence internally in the assembler, we cannot generate independently
the numbers. The best we can do is generate sequences that correlate very closely to independent uniform
distributions. These types of generated sequences are called pseudo random number generators (PRNG).

For our Monte Carlo simulation problems, we will use two types of pseudo random number generators:

C John Von Neumann’s Middle Square method

C D.H. Lehmer’s Linear Congruence method

John Von Neumann’s Middle Square Method

Description This method was very simple: take any given number, square it, and remove the middle digits of
the resulting number as your "random number", then use it as the seed for the next iteration. For example,
assume we start with the number “seed” number 1111. Squaring the number 1111 would result in 1234321,
which we can write as 01234321, an 8-digit number. From this number, we extract the middle 4 digits 2343 as
the "random" number. Repeating this process again would give 23432 = 05489649. Again extracting the
middle 4 digits will be 4896. Repeating this process will give a sequence of pseudo random numbers.

To write an assembly language program, we will follow the following steps:

Step 1: Store a 4 digit decimal number into EAX

Step 2: Square this number.

366

Step 3: Integer divide the number in EAX by 1,000

Step 4: Integer divide the number in EAX by 100000 .

Step 5: Move the remainder in EDX to EAX

Step 6: Repeat Steps 2 - 5

The following partial assembly language program, will perform these steps an undetermined number of times:

ASSEMBLY LANGUAGE EAX EDX

mov eax, 6511 6511

mul eax 42393121

div 100 423931 21

div 10000 42 3931

mov eax, edx 3931 3931

(repeat above following instructions)

Example: The following pseudo-code will simulate the tossing of a die 100 times.

INSTRUCTIONS EXPLANATION

N:= 100 NUMBER OF TOSSES

EAX := 6511 SEED

LABEL: EAX := EAX* EAX SQUARE SEED

EAX := EAX/100

EDX := EAX/10000 SEED

SEED := EDX

DIE := EDX / 6 + 1

N := N - 1 COUNT

EAX := SEED

IF N <> 0 THEN

BEGIN

JUMP LABEL

END

367

Exercises:

1. Write a partial assembly language program from the die pseudo-code program.

2. Write a partial assembly language program that will perform the following tasks:

Task1: Toss a die 100 times

Task2: compute the number of times the number 6 occurs.

3. Write a partial assembly language program that will perform the following tasks:

Task1: Toss a pair of dice 100 times.

Task2: Sum the resulting numbers for each toss.

Task3: Compute the number of times the number 7 occurs.

4. Write a partial assembly language program that will perform the following tasks:

Task1: Toss a coin 100 times

Task2: Count the number of times “heads” appear.

5. Write a partial assembly language program that will compute 100 random numbers x where 0 # x # 1.
�

D.H. Lehmer’s Linear Congruence Method

The linear congruence method for generating pseudo random numbers uses the linear recurrence relation:

xn + 1 = axn + b (mod m) where n = 0,1,2,....

Lehmer proposed the following values:

m = 108 + 1
a = 23
b = 0
x0 = 47594118

These values will result a repetition period of 5,882,352

Using these values the following partial program will compute a undermined number of random numbers x
where 0 # x # 108 + 1:

ASSEMBLY LANGUAGE CODE

mov m, 100000001; number m = 108 + 1

mov x , 47594118

368

mov a, 23

mov eax, x

mul a

div m; remainder stored in edx

mov eax, edx

mul a

div m

:::::::::::::::

(repeat the above in bold)

Monte Carlo Approximations

Random sampling from a population can be applied in solving simple and complex mathematics and scientific
problems . This type of applications are known as Monte Carlos approximations. To best illustrate this method,
assume we wish to approximate by random sampling the number π. One method is to use a unit square that
contains a circle of radius 1.

We know that the area of a circle of radius 1 is π. However, for simplicity we will only examine one quadrant as
shown in the figure below , where r = 1 and the area is π/4.

The following steps will approximation π.

Step 1: Generate a pair of random numbers (x,y) where 0 # x, y # 1. To generate these numbers we will use
linear congruence method in the following form:

xn + 1 = a1 xn + b1 (mod m1) where n = 0,1,2,....

yn + 1 = a2 yn + b2 (mod m2) where n = 0,1,2,....

x = xn + 1 /m1

y = yn + 1 /m2

Step 2: If x2 + y2 # 1 then (x,y) lies in the circle of the first quadrant and we will assume success.

Step 3: Generating N pairs (x,y), the law of large number states that #successes/N Y π/4, for large values of N.

The following pseudo-code algorithm will perform this sampling and approximate π:

369

INSTRUCTIONS

K := 1

SUCCESS := 0

WHILE K # N

BEGIN

X := (A1*X + B1) MOD M1

Y := (A2*Y + B2) MOD M2

IF (X2 + Y2) # 1 THEN

 BEGIN

SUCCESS := SUCCESS + 1

 END

K := K + 1

END

PIE := 4*(SUCCESS/ N)

Exercises:

1. From the above pseudo-code algorithm, write a assembly language algorithm.

2. To test the above assembly language algorithm, write a assembly language program for different values of
m, a, b.
�

3. The Gambler’s Ruin

Assume a gambler with initial capital of n dollars plays against game against a casino. Assume the following
rules of the game:

C For each bet, he bets one dollar

C The gambler will play until he wins m dollars where m > n or goes broke.

C For each bet, the gambler’s chance of winning is p where 0 < p < 1.

For different values of p, write a assembly language program that will compute the number of times he bets.
�

PROJECT Bose-Einstein Statistics.

In physics, the Bose-Einstein statistics deals with the number of ways of placing m indistinguishable particles
into n distinguishable cells. This is analogous of placing m indistinguishable balls into n distinguishable urns.

370

 The number of distinguishable arrangement is

 where each distinguishable arrangement has equal probability.

Assume that m < n. Write a assembly language program, using Monte Carlo approximations, that will
approximate the probability that at each cell has at most one particle.

Note:

371

About The Author

Howard Dachslager received a Ph.D. in mathematics from the University of California, Berkeley where he

specialized in real analysis and probability theory. Prior to beginning his doctoral studies at the University of

California, Berkeley, he earned a masters degree in economics from the University of Wisconsin.

After graduation from the University of Wisconsin in 1956, he went to work for Remington Rand Co. as a

machine language program. For the next two years he worked on various mathematical applications such as

missile guidance systems, and tracking systems of naval sea vessels. In 1958, he was admitted as a graduate

student to the department of mathematics, UC Berkeley. To finance his education, he worked for the first year

as a programmer and programming consultant for the astronomy department, at UC Berkeley. During that year

he also work, during the summer, as a machine language programmer for Lockheed Corp., Palo Alto, Calif.

 His main duty was to find and correct errors in existing programs. Starting his second year at UC Berkeley,

he received a teaching assistantship in the mathematics department. His main duties was to teach courses in

numerical analysis and programming. He also worked several professors in this field. .

 Since completing his Ph.D. in mathematics, he has taught mathematics and programming to a diverse student

population on many levels. As a faculty member of the Department of Mathematics at the University of Toronto

he prepared and presented undergraduate level courses in mathematics. Later he returned to the mathematics

and computer science department, UC Berkeley, where he taught for several years undergraduate mathematics

and programming courses.

While working in the State Department's Alliance for Progress program, he taught advanced mathematics

courses at a statistics institute in Santiago, Chile. Other teaching experience includes presenting undergraduate

and community college mathematics courses.

Throughout his teaching career in mathematics and computer science , he has always attempted to find and use

the most effective teaching methodologies to communicate an understanding mathematics and programming.

. Unable to find an appropriate text for use in his courses in assembly language programming, and drawing on

his own extensive teaching experience, education and training, he developed an assembly language text that

has significantly improved the understanding and performance of students in this language..

372

 APPENDEX

To support Assembly language programming in Visual Studio 2005/2008 or Visual C++
Express Edition 2005/2008 you will need to configure the project properties by following
the instructions provided.

Visual C++ Express Edition 2008 is available for free from Microsoft and includes both
SP1 for Visual C++ Express Edition and MASM 9.0 in the installation of Visual C++
Express Edition 2008 to support assembly language program development.

If you are using Visual Studio 2005:

If you have not already done so, install SP1 for Visual Studio 2005. MASM 8.0
will be installed with this service pack.

If you already have Visual C++ Express Edition 2005 installed but have not installed
MASM 8.0, download and install the following resources:

 SP 1 for Visual C++ Express Edition 2005:

� Search Microsoft.com for file “VS80sp1-KB926748-X86-
INTL.exe”

� Select Download details: Visual Studio® 2005 Express Editions
SP1 from search results

� Follow instructions to download/install file VS80sp1-KB926748-
X86-INTL.exe

 MASM 8.0:

� Search at Microsoft.com for “MASM 8.0”
� Select Download Details: Microsoft Macro Assembler 8.0

(MASM) Package (x86) from search results
� Follow download/installation instructions

If you have installed Visual Studio 2008, MASM 9.0 will also have been installed and
you may begin.

If you wish to use Visual C++ Express Edition 2008:

� Navigate to http://www.microsoft.com/express/download/
� Select Visual C++ Express Edition 2008. Both SP1 and MASM

9.0 will automatically install with this edition.

Start Visual Studio

If you are using Visual C++ Express Edition 2005/2008 select File from the menu, then
select New, then select Project.

When the New Project dialogue box appears, select or enter the following:

Select General from Visual C++ in Project types:

 Select Empty Project from Templates
 Enter project Name:

Select Browse... to find project Location: or key in location if not accepting
default Location:

 Close New Project Dialogue box

Select General from
Visual C++ in
Project types:

Select Empty Project
from Templates

Enter project Name:

Select Browse... to find project
Location: or key in location if
not accepting default Location:

From the VS Editor main menu:

Select Project
 Select Custom Build Rules…

Select Microsoft Macro Assembler from list in Visual C++ Custom Build Rule
file dialogue box

Select Project

Select Custom Build
Rules...

Select Microsoft Macro Assembler from
list in Visual C++ Custom Build Rule file
dialogue box

Close after updating

Select References from Common Properties in Property Pages
Click Add Path… button on Property Pages
When Add Reference Search Path dialogue box appears, browse to the appropriate
location for Visual Studio 2005 or Visual Studio 2008 editions.

c:\Program Files\Microsoft Visual Studio 8\Common7\IDE (VS2005 editions)
c:\Program Files\Microsoft Visual Studio 9\Common7\IDE (VS2008 editions)

Select Project

Select Properties

Select References from Common
Properties in Property Pages
 Click Add Path… button on

Property Pages

Select Debugging from Linker menu on Property Pages
Set Generate Debug Info to YES
Set Generate Map File to YES
Enter Map File Name

If you are using VS2005 or Visual C++ Express Edition 2005:
In Add Reference Search Path dialogue box Browse to location
c:\Program Files\Microsoft Visual Studio 8\Common7\IDE

If you are using VS2008 or Visual C++ Express Edition 2008:
In Add Reference Search Path dialogue box Browse to location
c:\Program Files\Microsoft Visual Studio 9\Common7\IDE

Select Debugging from Property Pages

Set Generate Debug Info to YES

Set Generate Debug Info to YES

Enter Map File Name

Select System in Property Pages
Set SubSystem to Console

Select Advanced
Enter the name of your Entry Point (usually start)
Set Target Machine to MachineX86 (/MACHINE:X86)

Select System

Set SubSystem to Console

Select Advanced

Enter the name of your
Entry Point (usually
start)

Set Target Machine to
MachineX86 (/MACHINE:X86)

In Solution Explorer right click the mouse on Source Files
Select Add
Select New Item

Select Code in Add New Item dialogue box
Select C++ in Add New dialogue box
Enter name of file. Be sure to us a .asm extension

In Solution Explorer right click the
mouse on Source Files

Select Add

Select New Item

Select Code in Add
New Item dialogue box Select C++ in Add New

dialogue box

Enter name of file. Be sure to us a .asm extension

 APPENDEX

Start Visual Studio 2010

Select File from the menu, then select New Project.

When the New Project dialogue box appears, select or enter the following:

Select General from Visual C++ in Installed Templates:

 Select Empty Project
 Enter project Name:

Select Browse... to find project Location: or key in location if not accepting default
Location:

 Select OK in New Project Dialogue box

Select Empty Project
from Templates

Select Browse... to find project
Location: or key in location if
not accepting default Location:

Select General from
Visual C++ in
Project types:

Enter project Name:

From the VS Editor main menu:

Select Project
 Select Build Customizations…

Select masm(.targets, .props) from Available Build Customization Files:

Select Project

Select Build
Customizations...

Select masm(.targets, .props) from
Available Build Customization Files:

Select OK

Select Debugging from Linker menu on Property Pages
Set Generate Debug Info to YES
Set Generate Map File to YES
Enter Map File Name

Select Project

Select Properties...

Select Debugging from Property Pages

Set Generate Debug Info to YES

Set Generate Map File to YES

Enter Map File Name

Select System in Property Pages
Set SubSystem to Console

Select Advanced
Enter the name of your Entry Point (usually start)
Set Target Machine to MachineX86 (/MACHINE:X86)

Select System

Set SubSystem to Console

Select Advanced

Enter the name of your
Entry Point (usually
start)

Set Target Machine to
MachineX86 (/MACHINE:X86)

In Solution Explorer right click the mouse on Source Files
Select Add
Select New Item

Select Code in Add New Item dialogue box
Select C++ in Add New dialogue box
Enter name of file. Be sure to us a .asm extension

In Solution Explorer right click the
mouse on Source Files

Select Add Select New Item

Select Code in Add
New Item dialogue box Select C++ in Add New

Item dialogue box

Enter name of file. Be sure to us a .asm extension

	COVER
	TABLE OF CONTENTS
	COPY RIGHTS
	CHAPTER 1 - NUMBER BASES
	CHAPTER 2 - RELATIONS
	CHAPTER 3 PSEUDOCODE AND WRITING ALGORITHMS
	CHAPTER 4 SIMPLE ALGORITHMS FOR CONVERTING
	CHAPTER 5 DECISION STATEMENTS
	CHAPTER 6 THE WHILE
	CHAPTER 7 ALGORITHMS NUMBER BASIS
	CHAPTER 8 RINGS
	CHAPTER 9 AL BASICS
	CHAPTER 10 ARITH EXP-R
	CHAPTER 11 ASSEMBLY LANGUAGE CONVERSION
	CHAPTER 12 BRANCHING AND THE IF-STATEMENTS
	CHAPTER 13 PART2
	CHAPTER 14_ LOGICAL R2011
	CHAPTER 15 ARRAYS_R
	CHAPTER 16 PROCEDURES
	CHAPTER 17 DECIMAL_REV
	CHAPTER 18 REPRESENTING FRACTIONS AS DECIMALS
	CHAPTER 19 SIMPLE ALGORITHMS FOR DECIMAL CONVERTING
	CHAPTER 20 BASIC FLOATING POINT NUMBERS
	CHAPTER 21 ROUNDING NUMBERS
	CHAPTER 22_R_DYNAMIC STORAGE STACKS
	CHAPTER 23 DYNAMIC STOREAGE STRINGS
	CHAPTER 24 STRING ARRAYS
	CHAPTER 25 INPUT
	CHAPTER 26 E FLAG
	CHAPTER 27 NUMERIC APPROX
	APPENDEX AssemblyEditConfig-1
	APPENDEX AssemblyEditConfig_2010-2
	About Author

