Apuntes de TOPOLOGÍA GENERAL

2001

Índice

0	INT	FRODUCCIÓN	ţ
	0.1	Espacio topológico	(
	0.2	Base de una topología	-
	0.3	Espacios seudométricos y métricos (Fréchet, 1906)	10
	0.4	Sub-base de una topología	12
	0.5	Aplicación continua y homeomorfismo	14
1	TOPOLOGÍAS INICIALES		17
	1.1	Definición. Caracterizaciones. Casos particulares	18

INTRODUCCIÓN

- 0.1 Espacio topológico.
- 0.2 Base de una topología.
- 0.3 Espacios seudométricos y métricos.
- $0.\,4\,$ Sub-base de una topología.
- 0.5 Aplicación continua y homeomorfismo.

0.1Espacio topológico

Definición 0.1 Un espacio topológico es un par (X,T) formado por un conjunto X y una familia T de subconjuntos de X tal que:

- 1. $X \in T$, $\emptyset \in T$
- 2. $\forall G, G' \in T \text{ es } G \cap G' \in T$
- 3. $\forall \{G_i\}_{i \in I} \subset T \text{ es } \bigcup_{i \in I} G_i \in T$

Si (X,T) es un espacio topológico, a T se le llama topología en X y a los elementos de T se los denomina abiertos de (X,T).

Observación 0.1 Sean X un conjunto y $\mathcal{M} = \{M_i \subset X, i \in I\}$. Es claro

que
$$\forall J \subset I$$
 es $\bigcup_{i \in J} M_i = \{x \in X \mid \exists i \in J \mid x \in M_i\}$. Asimismo
$$\bigcap_{i \in J} M_i = \{x \in X \mid x \in M_i \forall i \in J\}; \text{ por otra parte, si } J = \emptyset \text{ es } \bigcup_{i \in \emptyset} M_i = \emptyset \text{ y}$$
$$\bigcap_{i \in \emptyset} M_i = X.$$

Así se obtiene el siguiente resultado:

Proposición 0.1 Sean X un conjunto y $T = \{G_i \subset X, i \in I\}$ entonces

$$T \text{ es una topología en } X \Longleftrightarrow \left\{ \begin{array}{l} \mathbf{a}) \ \forall \ J \subset I \quad \bigcup_{i \in J} G_i \in T \\ \mathbf{b}) \ \forall \ F \subset I \text{ finito } \bigcap_{i \in F} G_i \in T \end{array} \right.$$

Dado un conjunto X, una topología T en X es un subconjunto de $\wp(X)$, es decir, $T \subset \wp(X)$. Todas las topologías posibles en un conjunto X constituyen un conjunto

$$\tau(X) = \{ T \subset \wp(X) \, | \, T \text{ es topología en } X \} \subset \wp(\wp(X)).$$

El par $(\tau(X), \subset)$, donde " \subset " es la relación de inclusión, constituye un conjunto ordenado con primer y último elemento. Si $T, T' \in \tau(X)$ y $T \subset T'$ se dice que "T es menos fina que T" o que "T' es más fina que T." El primer elemento de $(\tau(X), \subset)$ es la denominada topología trivial en X y se denota por $T_t = \{X,\emptyset\}$. El último elemento de $(\tau(X),\subset)$ se llama topología discreta en X y se denota por $T_D = \wp(X)$. $\forall T \in \tau(X)$ es $T_t \subset T \subset T_D$.

En general, $(\tau(X), \subset)$ no es un conjunto totalmente ordenado; en efecto, si X

es un conjunto con más de un elemento, es decir, $|X| \ge 2$ entonces $\exists a, b \in X$ con $a \ne b$. Sean las familias $T_1 = \{\emptyset, X, \{a\}\} \ \text{y} \ T_2 = \{\emptyset, X, \{b\}\}$; es claro que $T_1, T_2 \in \tau(X)$ pero $T_1 \not\subset T_2 \ \text{y} \ T_2 \not\subset T_1$, es decir, existen topologías en X que no son comparables, luego el orden no es total.

0.2 Base de una topología

Definición 0.2 Sea (X,T) un espacio topológico; se dice que la familia $\mathcal{B} = \{B_i\}_{i \in I} \subset \wp(X)$ es una base de T si cumple:

1.
$$\mathcal{B} \subset T$$

2.
$$\forall G \in T \quad \exists J \subset I \quad | \quad G = \bigcup_{i \in J} B_i$$

Proposición 0.2 Dado un espacio topológico (X,T) y una familia $\mathcal{B} \subset \wp(X)$ se tiene que

$$\mathcal{B}$$
 es base de $T \Longleftrightarrow \begin{cases} 1) \ \mathcal{B} \subset T \\ 2) \ \forall G \in T, \ \forall x \in G \ \exists B_x \in \mathcal{B} \mid x \in B_x \subset G \end{cases}$

Ejemplo 0.1 Dado un conjunto X y dada una familia $\mathcal{B} \subset \wp(X)$, en general, no siempre existe una topología T en X tal que \mathcal{B} es base de T.

 $X = \mathbb{R}$ $\mathcal{B} = \{(\leftarrow, 1), (0, \rightarrow)\}$ Si existiera T topología en \mathbb{R} tal que \mathcal{B} es base de T entonces $\mathcal{B} \subset T \Longrightarrow (\leftarrow, 1) \in T$ y $(0, \rightarrow) \in T$ de donde $(\leftarrow, 1) \cap (0, \rightarrow) = (0, 1) \in T$ lo cual es absurdo, pues el intervalo (0, 1) no puede expresarse como unión de elementos de \mathcal{B} .

Proposición 0.3 Sean X un conjunto y $\mathcal{B} = \{B_i\}_{i \in I} \subset \wp(X)$ $\exists T$ topología en X tal que \mathcal{B} es base de $T \iff$

$$1. \ X = \bigcup_{i \in I} B_i$$

2.
$$\forall i, j \in I, \forall x \in B_i \cap B_j \quad \exists k \in I \text{ tal que } x \in B_k \subset B_i \cap B_j$$

Demostración:

$$\stackrel{``}{\Longrightarrow} "$$

 $\exists T \text{ topolog\'ia en } X \text{ tal que } \mathcal{B} \text{ es base de } T; \text{ como } X \in T, \quad \forall x \in X$ $\exists i_x \in I \mid x \in B_{i_x} \subset X \Longrightarrow X = \bigcup_{x \in X} \{x\} \subset \bigcup_{x \in X} B_{i_x} \subset \bigcup_{i \in I} B_i \subset X \Longrightarrow$ $X = \bigcup_{i \in I} B_i. \text{ Adem\'as, } \forall i, j \in I \text{ como } \mathcal{B} \subset T, \text{ se tiene que } B_i \cap B_j \in T \Longrightarrow$ $\forall x \in B_i \cap B_j \quad \exists k \in I \mid x \in B_k \subset B_i \cap B_j.$

" ___ ,

Sea $T = T(\mathcal{B}) = \{\bigcup_{i \in J} B_i \mid J \in \wp(I)\};$ veamos que $T = T(\mathcal{B})$ es topología en X y que \mathcal{B} es base de $T(\mathcal{B})$.

1.
$$I \in \wp(I) \Longrightarrow \bigcup_{i \in I} B_i = X \in T(\mathcal{B})$$

 $\emptyset \in \wp(I) \Longrightarrow \bigcup_{i \in \emptyset} B_i = \emptyset \in T(\mathcal{B}).$

2. Sea $\{G_k\}_{k\in K}\subset T(\mathcal{B})\Longrightarrow \forall\,k\in K\,\exists\,J_k\subset I\,\,\mathrm{tal}\,\,\mathrm{que}\,\,G_k=\bigcup_{i\in J_k}B_i\Longrightarrow$

$$\bigcup_{k \in K} G_k = \bigcup_{k \in K} \left(\bigcup_{i \in J_k} B_i \right) = \bigcup_{i \in \bigcup_{k \in K} J_k} B_i \text{ donde } \bigcup_{k \in K} J_k \in \wp(I)$$

y por tanto $\bigcup_{k \in K} G_k \in T(\mathcal{B})$.

3. Sean $G, G' \in T(\mathcal{B}) \Longrightarrow \exists J \subset I \text{ y } \exists J' \subset I \text{ tales que } G = \bigcup_{i \in J} B_i \text{ y}$ $G' = \bigcup_{j \in J'} B_j \Longrightarrow$

$$G \cap G' = \left(\bigcup_{i \in J} B_i\right) \cap \left(\bigcup_{j \in J'} B_j\right) = \bigcup_{\substack{i \in J \\ j \in J'}} (B_i \cap B_j);$$

Ahora bien, $\forall i \in J, \forall j \in J' \text{ y } \forall x \in B_i \cap B_j \quad \exists k_{ij}^x \in I \text{ tal que} x \in B_{k_{ij}^x} \subset B_i \cap B_j \Longrightarrow$

$$B_i \bigcap B_j = \bigcup_{x \in B_i \bigcap B_j} B_{k_{ij}^x} = B_{ij} \in T(\mathcal{B}) \Longrightarrow G \bigcap G' = \bigcup_{\substack{i \in J \\ j \in J'}} B_{ij} \in T(\mathcal{B}).$$

Veamos finalmente que \mathcal{B} es base de $T(\mathcal{B})$.

1.
$$\forall i \in I, \{i\} \in \wp(I) \Longrightarrow \bigcup_{j \in \{i\}} B_j = B_i \in T(\mathcal{B}), \text{ luego } \mathcal{B} \subset T(\mathcal{B}).$$

2. Sea
$$G \in T(\mathcal{B}) \Longrightarrow \exists J \subset I \mid G = \bigcup_{i \in J} B_i$$
; por tanto, $\forall x \in G \exists i_x \in J \subset I$ tal que $x \in B_{i_x} \subset G$.

Además, si se cumplen 1. y 2. existe una única topología en X tal que \mathcal{B} es base suya, y ésta es la topología menos fina de todas las topologías en X

que contienen a \mathcal{B} . En efecto, se ha visto que $T(\mathcal{B})$ es una topología en X tal que \mathcal{B} es base de $T(\mathcal{B})$; veamos que es la única topología en X que tiene a \mathcal{B} por base; sea T' una topología en X tal que \mathcal{B} es base de T', veamos que $T' = T(\mathcal{B})$. Sea $G \in T'$; como \mathcal{B} es base de T', $\forall x \in G \exists i_x \in I \mid x \in B_{i_x} \subset G \Longrightarrow G = \bigcup_{x \in G} B_{i_x} \in T(\mathcal{B})$ puesto que $\mathcal{B} \subset T(\mathcal{B})$ y $T(\mathcal{B})$ es topología en X. Sea ahora $G \in T(\mathcal{B}) \Longrightarrow \exists J \subset I \mid G = \bigcup_{i \in J} B_i$; como $\mathcal{B} \subset T'$ y T' es topología en X se tiene que $G \in T'$ como queríamos demostrar. Finalmente, veamos que $T(\mathcal{B})$ es la topología en X menos fina de todas las que contienen a \mathcal{B} ; sea T' una topología en $X \mid \mathcal{B} \subset T'$, y sea $G \in T(\mathcal{B}) \Longrightarrow \exists J \subset I \mid G = \bigcup_{i \in J} B_i$. Como $\forall i \in J$, $B_i \in \mathcal{B} \subset T'$, y como T' es topología en X se tiene que $G \in T'$, luego $T(\mathcal{B}) \subset T'$ c.q.d.

Definición 0.3 Sean X un conjunto y $\mathcal{B} = \{B_i\}_{i \in I} \subset \wp(X)$; diremos que \mathcal{B} es base de topología en X si se cumplen:

$$1. \ X = \bigcup_{i \in I} B_i$$

2.
$$\forall i, j \in I, \ \forall x \in B_i \cap B_j, \ \exists k \in I \mid x \in B_k \subset B_i \cap B_j$$

Definición 0.4 Sean X un conjunto y \mathcal{B} y \mathcal{B}' bases de topología en X; diremos que \mathcal{B} y \mathcal{B}' son equivalentes, lo cual se denota por $\mathcal{B} \sim \mathcal{B}'$ si se cumple que $T(\mathcal{B}) = T(\mathcal{B}')$

Proposición 0.4 Sean X un conjunto y \mathcal{B} , \mathcal{B}' bases de topología en X. $\mathcal{B} \sim \mathcal{B}' \iff 1$ $\forall B \in \mathcal{B} \forall x \in B, \exists B' \in \mathcal{B}' \mid x \in B' \subset B$ 2 $\forall B' \in \mathcal{B}' \forall x \in B', \exists B \in \mathcal{B} \mid x \in B \subset B'$

Demostración:

"⇒"

 $\mathcal{B} \sim \mathcal{B}' \iff T(\mathcal{B}) = T(\mathcal{B}')$, por tanto, si $B \in \mathcal{B} \subset T(\mathcal{B}) = T(\mathcal{B}') \Longrightarrow \forall x \in B, \exists B' \in \mathcal{B}' \mid x \in B' \subset B$, ya que \mathcal{B}' es base de $T(\mathcal{B}')$; análogamente, si $B' \in \mathcal{B}' \subset T(\mathcal{B}') = T(\mathcal{B}) \Longrightarrow \forall x \in B' \exists B \in \mathcal{B} \mid x \in B \subset B'$ ya que \mathcal{B} es base de $T(\mathcal{B})$.

"\Lefta "

Sea $G \in T(\mathcal{B})$ y sea $x \in G \Longrightarrow \exists B \in \mathcal{B} \mid x \in B \subset G$, ya que \mathcal{B} es base de $T(\mathcal{B})$. Ahora bien, por 1) $\exists B' \in \mathcal{B}' \mid x \in B' \subset B \subset G$ y como $\mathcal{B}' \subset T(\mathcal{B}')$ y $T(\mathcal{B}')$ es topología en X, se tiene que $G \in T(\mathcal{B}')$. Análogamente se prueba que si $G \in T(\mathcal{B}')$ entonces $G \in T(\mathcal{B})$; en definitiva, $T(\mathcal{B}) = T(\mathcal{B}') \Longleftrightarrow \mathcal{B} \sim \mathcal{B}'$, c.q.d.

0.3 Espacios seudométricos y métricos (Fréchet, 1906)

Definición 0.5 Un espacio seudométrico es un par (X,d) donde X es un conjunto y

 $d: X \times X \longrightarrow \mathbb{R}$ es una aplicación que cumple:

- 1. $\forall x, y \in X$, es $d(x, y) \ge 0$
- 2. $\forall x \in X \text{ es } d(x,x) = 0$
- 3. $\forall x, y \in X \text{ es } d(x, y) = d(y, x)$
- 4. $\forall x, y, z \in X$ es $d(x, y) \leq d(x, z) + d(z, y)$

A la aplicación d se le denomina seudométrica en X.

Definición 0.6 Un espacio métrico es un par (X, d) donde X es un conjunto y d es una seudométrica en X tal que $\forall x, y \in X$ $d(x, y) = 0 \Longrightarrow x = y$.

Proposición 0.5 Sea (X, d) un espacio seudométrico, $\forall x \in X, \forall \varepsilon > 0$, $(\varepsilon \in \mathbb{R}^+)$ sea

 $B_{\varepsilon}^{d}(x) = \{ y \in X \mid d(x,y) < \varepsilon \}$ (bola abierta centrada en el punto x y de radio ε), y sea la familia $\mathcal{B}_{d} = \{ B_{\varepsilon}^{d}(x) \mid x \in X, \varepsilon \in \mathbb{R}^{+} \}$, veamos que \mathcal{B}_{d} es base de topología en X.

Demostración:

1. $\forall x \in X, \forall \varepsilon \in \mathbb{R}^+ \quad B_{\varepsilon}^d \subset X \Longrightarrow$

$$\bigcup_{\substack{\varepsilon \in \mathbb{R}^+ \\ x \in X}} B_\varepsilon^d(x) \subset X$$

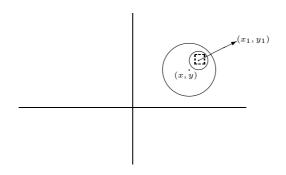
Sea $x \in X$, $\forall \varepsilon \in \mathbb{R}^+ x \in B_{\varepsilon}^d(x)$ ya que $d(x,x) = 0 < \varepsilon$, por tanto,

$$X = \bigcup_{\substack{\varepsilon \in \mathbb{R}^+ \\ x \in X}} B_\varepsilon^d(x)$$

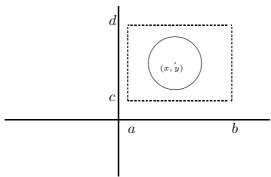
2. Sean $x, y \in X$, $\varepsilon, \rho \in \mathbb{R}^+$ y sea $z \in B^d_{\varepsilon}(x) \cap B^d_{\rho}(y)$; como $d(x, z) < \varepsilon$ y $d(y, z) < \rho$ consideremos $\delta = \min\{\varepsilon - d(x, z), \rho - d(y, z)\}$ y veamos que $z \in B^d_{\delta}(z) \subset B^d_{\varepsilon}(x) \cap B^d_{\rho}(y)$; sea $t \in B^d_{\delta}(z)$ entonces $d(t, x) \leq d(t, z) + d(z, x) < \delta + d(z, x) \leq \varepsilon - d(x, z) + d(z, x) = \varepsilon \Longrightarrow t \in B^d_{\varepsilon}(x)$; por otra parte, $d(t, y) \leq d(t, z) + d(z, y) < \delta + d(z, y) \leq \rho - d(y, z) + d(z, y) = \rho \Longrightarrow t \in B^d_{\rho}(y)$ c.q.d.

Así, $T_d = T(\mathcal{B}_d) = \{G \subset X \mid \forall x \in G, \exists \varepsilon > 0, \exists y \in X, x \in B_{\varepsilon}^d(y) \subset G\} = \{G \subset X \mid \forall x \exists \delta > 0, x \in B_{\delta}^d(x) \subset G\}$ es la topología asociada a la seudométrica d. $(\delta = \varepsilon - d(x, y))$

Ejemplo 0.2 Consideremos el espacio topológico (\mathbb{R}^2, T_u^2) y las familias $\mathcal{B} = \{B_{\varepsilon}^d((x,y)) \mid (x,y) \in \mathbb{R}^2, \varepsilon \in \mathbb{R}^+\}$ donde d es la métrica euclídea, y $\mathcal{B}' = \{(a,b) \times (c,d) \mid a,b,c,d \in \mathbb{R}, a < b, c < d\}$; pues bien, se tiene que \mathcal{B} y \mathcal{B}' son bases de la topología usual T_u^2 y además $\mathcal{B} \sim \mathcal{B}'$. En efecto, veamos que $T(\mathcal{B}) = T(\mathcal{B}')$. Sea un abierto básico de \mathcal{B} , $B_{\varepsilon}^d((x,y))$, donde $\varepsilon \in \mathbb{R}^+$ y $(x,y) \in \mathbb{R}^2$ son arbitrarios, y sea $(x_1,y_1) \in B_{\varepsilon}^d((x,y))$; como $B_{\varepsilon}^d((x,y)) \in \mathcal{B} \subset T(\mathcal{B}) \Longrightarrow \exists \varepsilon_1 > 0 \mid (x_1,y_1) \in B_{\varepsilon_1}^d((x_1,y_1)) \subset B_{\varepsilon}^d((x,y))$



Sean $a=x_1-\frac{\sqrt{2}}{2}\varepsilon_1,\quad b=x_1+\frac{\sqrt{2}}{2}\varepsilon_1,\quad c=y_1-\frac{\sqrt{2}}{2}\varepsilon_1,\quad d=y_1+\frac{\sqrt{2}}{2}\varepsilon_1$ entonces $(x_1,y_1)\in(a,b)\times(c,d)\subset B^d_{\varepsilon_1}((x_1,y_1))\subset B^d_{\varepsilon}((x,y));$ en efecto, $a< x_1< b\ y\ c< y_1< d;$ además, si $(z_1,z_2)\in(a,b)\times(c,d)\Longrightarrow x_1-\frac{\sqrt{2}}{2}\varepsilon_1< z_1< x_1+\frac{\sqrt{2}}{2}\varepsilon_1\ y\ y_1-\frac{\sqrt{2}}{2}\varepsilon_1< z_2< y_1+\frac{\sqrt{2}}{2}\varepsilon_1,\ y\ \text{por tanto},$ $d^2((z_1,z_2),(x_1,y_1))=(z_1-x_1)^2+(z_2-y_1)^2<\frac{\varepsilon_1^2}{2}+\frac{\varepsilon_1^2}{2}\Longleftrightarrow d((z_1,z_2),(x_1,y_1))<\varepsilon_1,\ \text{luego}\ (z_1,z_2)\in B^d_{\varepsilon_1}((x_1,y_1))\subset B^d_{\varepsilon}((x,y))\ y\ \text{asi}\ T(\mathcal{B})\subset T(\mathcal{B}').$ Veamos ahora que $T(\mathcal{B}')\subset T(\mathcal{B}).$ Sea $(a,b)\times(c,d)\in \mathcal{B}',\ \text{donde}\ a,b,c,d\in\mathbb{R}$ verifican $a< b\ y\ c< d;$ sea $(x,y)\in(a,b)\times(c,d)\ y\ \text{consideremos}$ $\varepsilon=\min\{d-y,y-c,x-a,b-x\}$ entonces $(x,y)\in B^d_{\varepsilon}((x,y))\subset(a,b)\times(c,d);$



En efecto, sea $(x', y') \in B_{\varepsilon}^d((x, y))$, veamos que $(x', y') \in (a, b) \times (c, d)$; se tiene que

$$|x'-x|^2 < |x'-x|^2 + |y'-y|^2 = d^2((x,y),(x',y')) < \varepsilon^2 \Longrightarrow |x'-x| < \varepsilon$$

y análogamente se deduce que $|y'-y| < \varepsilon$, luego $|x'-x| < \varepsilon \le x-a \Longrightarrow a-x < x'-x < x-a \Longrightarrow a < x'$ y por otra parte $|x'-x| < \varepsilon \le b-x \Longrightarrow x-b < x'-x < b-x \Longrightarrow x' < b$; por tanto, a < x' < b. Igualmente, $|y'-y| < \varepsilon \le y-c \Longrightarrow c-y < y'-y < y-c \Longrightarrow c < y'$ y $|y'-y| < \varepsilon \le d-y \Longrightarrow y-d < y'-y < d-y \Longrightarrow y' < d$ y así c < y' < d, luego $(x',y') \in (a,b) \times (c,d)$, lo cual implica que $B_{\varepsilon}^d((x,y)) \subset (a,b) \times (c,d)$ y como consecuencia $T(\mathcal{B}') \subset T(\mathcal{B})$ c.q.d.

0.4 Sub-base de una topología

Definición 0.7 Sea (X,T) un espacio topológico y sea $\Sigma = \{S_i\}_{i \in I} \subset \wp(X)$; se dice que Σ es una sub-base de T si $\mathcal{B}(\Sigma) = \left\{ \bigcap_{i \in F} S_i \mid F \subset I \text{ es finito} \right\}$ es una base de T.

Observación 0.2 Si Σ es sub-base de $T \Longrightarrow \Sigma \subset \mathcal{B}(\Sigma) \subset T$.

Ejemplo 0.3 En el espacio topológico (\mathbb{R}, T_u) la familia $\Sigma_u = \{(\leftarrow, x) \mid x \in \mathbb{R}\} \cup \{(y, \rightarrow) \mid y \in \mathbb{R}\}$ es sub-base de T_u . Se tiene que $\mathcal{B}(\Sigma_u) = \{\mathbb{R}\} \cup \{\emptyset\} \cup \{(x, y) \mid x, y \in \mathbb{R}, \text{ con } x < y\} \cup \Sigma_u$ es base de T_u ; téngase en cuenta que si $F = \emptyset \subset I$ entonces $\bigcap_{i \in \emptyset} S_i = \mathbb{R}$.

Proposición 0.6 Sea X un conjunto y $\Sigma = \{S_i\}_{i \in I} \subset \wp(X)$; existe una única topología en X, que designaremos por $T(\Sigma)$, tal que Σ es sub-base de $T(\Sigma)$. A esta topología se le denomina topología generada por Σ ; además $T(\Sigma)$ es la topología menos fina de todas las topologías en X que contienen a Σ .

Demostración:

Consideremos $\mathcal{B}(\Sigma) = \left\{ \bigcap_{i \in F} S_i \mid F \in \wp_{\mathcal{F}}(I) \right\}$; veamos que $\mathcal{B}(\Sigma)$ es base de topología en X.

- 1. Es claro que $\bigcup_{B \in \mathcal{B}(\Sigma)} B \subset X$; ahora, $\emptyset \in \wp_{\mathcal{F}}(I) \Longrightarrow$ $\bigcap_{i \in \emptyset} S_i = X \in \mathcal{B}(\Sigma) \Longrightarrow X \subset \bigcup_{B \in \mathcal{B}(\Sigma)} B$ y así $\bigcup_{B \in \mathcal{B}(\Sigma)} B = X$
- 2. Sean $B, B' \in \mathcal{B}(\Sigma)$ y sea $x \in B \cap B'$, veamos que $\exists B'' \in \mathcal{B}(\Sigma) \mid x \in B'' \subset B \cap B'$; como $B, B' \in \mathcal{B}(\Sigma)$ se tiene que $\exists F, F' \in \wp_{\mathcal{F}}(I)$ tales que

$$B = \bigcap_{i \in F} S_i \ y \ B' = \bigcap_{i \in F'} S_i \Longrightarrow B \cap B' = \left(\bigcap_{i \in F} S_i\right) \cap \left(\bigcap_{i \in F'} S_i\right) = \bigcap_{i \in F \bigcup F'} S_i$$

donde $F \cup F' \in \wp_{\mathcal{F}}(I)$, (partes finitas de I), y por tanto, $B \cap B' \in \mathcal{B}(\Sigma) \Longrightarrow \exists B'' = B \cap B' \in \mathcal{B}(\Sigma)$ tal que $x \in B'' \subset B \cap B'$. Sea entonces $T(\Sigma) = T(\mathcal{B}(\Sigma))$; como $T(\mathcal{B}(\Sigma))$ es la única topología en X de la cuál $\mathcal{B}(\Sigma)$ es base, es claro que $T(\mathcal{B}(\Sigma))$ es la única topología en X de la cuál Σ es sub-base.

Finalmente, si T es una topología en X tal que $\Sigma \subset T \Longrightarrow T(\Sigma) \subset T$; en efecto, sea $G \in T(\Sigma)$, $\forall x \in G$, $\exists B \in \mathcal{B}(\Sigma) \mid x \in B \subset G \Longrightarrow \exists F \in \wp_{\mathcal{F}}(I) \mid B = \bigcap_{i \in F} S_i$; pero como $\forall i \in F$ es $S_i \in \Sigma \subset T \Longrightarrow B \in T$ y por tanto, $G \in T$.

Observación 0.3

$$T(\Sigma) = \left\{ \bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} S_i \right) \mid \mathcal{J} \subset \wp_{\mathcal{F}}(I) \right\}$$

Aplicación continua y homeomorfismo 0.5

Definición 0.8 Sean (X,T) y (X',T') espacios topológicos y $f:X\longrightarrow X'$ una aplicación; se dice que la aplicación $f:(X,T)\longrightarrow (X',T')$ es continua si $\forall G' \in T' \text{ es } f^{-1}(G') \in T$

El siguiente resultado será útil en los capítulos posteriores:

Proposición 0.7 Sean (X,T),(X',T') espacios topológicos, Σ' una sub-base de T' y $f: X \longrightarrow X'$ una aplicación; entonces: $f:(X,T)\longrightarrow (X',T')$ es continua $\iff \forall\,S'\in\Sigma'$ es $f^{-1}(S')\in T$

 $"\Longrightarrow"$

Evidente, puesto que $\Sigma' \subset T'$

Si $\Sigma' = \{S_i'\}_{i \in I} \subset \wp(X')$, como Σ' es sub-base de T', $\forall G' \in T'$,

$$\exists \mathcal{J} \subset \wp_{\mathcal{F}}(I), |G'| = \bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} S_i' \right) \implies f^{-1}(G') = f^{-1} \left(\bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} S_i' \right) \right) = f^{-1} \left(\bigcap_{i \in F} S_i' \right)$$

Si
$$\mathcal{L} = \{S_i\}_{i \in I} \subset \wp(X')$$
, como \mathcal{L}' es sub-base de I' , $\forall G' \in I'$, $\exists \mathcal{J} \subset \wp_{\mathcal{F}}(I), |G'| = \bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} S_i'\right) \Longrightarrow f^{-1}(G') = f^{-1} \left(\bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} S_i'\right)\right) = \bigcup_{F \in \mathcal{J}} \left(\bigcap_{i \in F} f^{-1}(S_i')\right)$; ahora bien, $\forall i \in F$, es $f^{-1}(S_i') \in T$, y como $F \subset I$ es finito se tiene que $\forall F \in \mathcal{J}$ es $\bigcap_{i \in F} f^{-1}(S_i') \in T \Longrightarrow f^{-1}(G') \in T$ c.q.d.

Definición 0.9 Sean (X,T),(X',T') espacios topológicos, y $f:X\longrightarrow X'$ una aplicación; se dice que $f:(X,T)\longrightarrow (X',T')$ es un homeomorfismo si f es biyectiva y tanto $f:(X,T)\longrightarrow (X',T')$ como su inversa $f^{-1}:(X',T')\longrightarrow (X,T)$ son aplicaciones continuas. Se dice que el espacio topológico (X,T) es homeomórfico u homeomorfo a (X',T') lo cual se denota por $(X,T) \approx (X',T')$ si existe un homeomorfismo $f:(X,T) \longrightarrow (X',T')$.

Proposición 0.8 La relación binaria " \approx " (homeomórfico a) es una relación de equivalencia.

Demostración:

- 1. Reflexiva: $(X,T) \approx (X,T)$ ya que $1_X: (X,T) \longrightarrow (X,T)$ es homeomor-
- 2. Simétrica: $(X,T)\approx (X',T')\Longrightarrow \exists\,f:(X,T)\longrightarrow (X',T')$ homeomorfismo $\Longrightarrow f^{-1}: (X',T') \longrightarrow (X,T)$ es homeomorfismo $\Longrightarrow (X',T')\approx (X,T)$

3. Transitiva: $(X,T) \approx (X',T')$ y $(X',T') \approx (X'',T'') \Longrightarrow$ $\exists f: (X,T) \longrightarrow (X',T')$ homeomorfismo y $\exists g: (X',T') \longrightarrow (X'',T'')$ homeomorfismo $\Longrightarrow g \circ f: (X,T) \longrightarrow (X'',T'')$ es homeomorfismo \Longrightarrow $(X,T) \approx (X'',T'')$

Observación 0.4 La composición de aplicaciones continuas entre espacios topológicos es una aplicación continua.

16

TOPOLOGÍAS INICIALES

- 1.1 Definición. Caracterizaciones. Casos particulares.
- 1.2 Producto de espacios topológicos. Propiedades.
- 1.4 Continuidad parcial.
- 1.5 Problema de seudometrización.
- 1.6 Límite proyectivo de espacios topológicos.

1.1 Definición. Caracterizaciones. Casos particulares

Observación 1.1 Sean X un conjunto, $\{(X_i, T_i)\}_{i \in I}$ una familia de espacios topológicos, y

 $\forall i \in I \quad f_i : X \longrightarrow X_i$ una aplicación. Si tomamos en X la topología discreta $T_D = \wp(X)$ se tiene que $\forall i \in I \quad f_i : (X, T_D) \longrightarrow (X_i, T_i)$ es continua; esta observación pone de manifiesto que existe alguna topología en X que hace continuas a todas las aplicaciones f_i ; pues bien, a la topología menos fina de entre todas ellas se la denomina topología inicial en X para la familia de aplicaciones dada.

Definición 1.1 Sea X un conjunto y sea $\mathcal{F} = \{(f_i, (X_i, T_i))\}_{i \in I}$ donde $\forall i \in I \ f_i : X \longrightarrow X_i$ es una aplicación; se llama topología inicial en X para la familia \mathcal{F} , y se denota por $T_{\mathcal{F}}$, a la topología que tiene por sub-base $\Sigma_{\mathcal{F}} = \{f_i^{-1}(G_i) \mid G_i \in T_i, i \in I\}$ Teniendo en cuenta que si $i_0 \in I$ y $G_{i_0}^1, \ldots, G_{i_0}^p \in T_{i_0}$, entonces $f_{i_0}^{-1}(G_{i_0}^1) \cap \cdots \cap f_{i_0}^{-1}(G_{i_0}^p) = f_{i_0}^{-1}(G_{i_0}^1) \cap \cdots \cap G_{i_0}^p)$ donde $G_{i_0}^1 \cap \cdots \cap G_{i_0}^p \in T_{i_0}$, resulta que $\mathcal{B}(\Sigma_{\mathcal{F}}) = \mathcal{B}_{\mathcal{F}} = \left\{\bigcap_{i \in F} f_i^{-1}(G_i) \mid F \in \wp_{\mathcal{F}}(I), G_i \in T_i \, \forall i \in I\right\}$ y así $T_{\mathcal{F}} = T(\Sigma_{\mathcal{F}}) = \{G \subset X \mid \forall x \in G \, \exists \, F \in \wp_{\mathcal{F}}(I), \, \forall \, i \in F, \, \exists \, G_i \in T_i \, \text{con}$ $x \in \bigcap_{i \in F} f_i^{-1}(G_i) \subset G\}$

Proposición 1.1 Sea X un conjunto, $\mathcal{F} = \{(f_i, (X_i, T_i))\}_{i \in I}$ con $f_i : X \longrightarrow X_i$ aplicación $\forall i \in I$ y T una topología en X, entonces $T = T_{\mathcal{F}} \Longleftrightarrow \begin{cases} 1) \forall i \in I \ f_i : (X, T) \longrightarrow (X_i, T_i) \text{ es continua} \\ 2) \forall T' \text{ topología en } X \text{ tal que } \forall i \in I \text{ es} \\ f_i : (X, T') \longrightarrow (X_i, T_i) \text{ continua} \Longrightarrow T \subset T' \end{cases}$

Demostración:

" \Longrightarrow " Sean $i \in I$ y $G_i \in T_i$ y veamos que $f_i^{-1}(G_i) \in T$; ahora bien, $f_i^{-1}(G_i) \in \Sigma_{\mathcal{F}} \subset T_{\mathcal{F}} = T$, luego $\forall i \in I$, $f_i : (X,T) \longrightarrow (X_i,T_i)$ es continua. Sea ahora T' una topología en X tal que $\forall i \in I$, es $f_i : (X,T') \longrightarrow (X_i,T_i)$ continua, y veamos que $T \subset T'$; sea $G \in T = T_{\mathcal{F}}$, entonces $\forall x \in G$, $\exists F \in \wp_{\mathcal{F}}(I) \mid \forall i \in F, \exists G_i \in T_i \text{ con } x \in \bigcap_{i \in F} f_i^{-1}(G_i) \subset G$. Pero $\forall i \in F$, es $f_i^{-1}(G_i) \in T'$ y puesto que $F \subset I$ es finito se tiene $\bigcap_{i \in F} f_i^{-1}(G_i) \in T'$ y así $G \in T'$ c.q.d.

 $T_{\mathcal{F}}$ es una topología en X tal que $\forall i \in I, f_i : (X, T_{\mathcal{F}}) \longrightarrow (X_i, T_i)$ es continua, luego por 2) $T \subset T_{\mathcal{F}}$. Veamos que $T_{\mathcal{F}} \subset T$. Sea $G \in T_{\mathcal{F}} \Longrightarrow \forall x \in G \exists F \in \mathcal{P}_{\mathcal{F}}(I), \forall i \in F \exists G_i \in T_i \text{ con } x \in \bigcap_{i \in F} f_i^{-1}(G_i) \subset G$. Por 1), $\forall i \in F, f_i^{-1}(G_i) \in T$, luego como $F \in \mathcal{P}_{\mathcal{F}}(I)$, es $\bigcap_{i \in F} f_i^{-1}(G_i) \in T$, y por tanto, $G \in T$ c. q. d.

Proposición 1.2 Sean X un conjunto, $\mathcal{F} = \{(f_i, (X_i, T_i))\}_{i \in I}$ una familia de espacios topológicos donde $\forall i \in I$ es $f_i : X \longrightarrow X_i$ una aplicación, y sea T una topología en X, entonces:

$$T = T_{\mathcal{F}} \Longleftrightarrow \left\{ \begin{array}{l} \forall (X', T') \text{ espacio topológico, } \forall g : X' \longrightarrow X \text{ aplicación, es} \\ g : (X', T') \longrightarrow (X, T) \text{ continua } \Leftrightarrow f_i \circ g : (X', T') \longrightarrow (X_i, T_i) \\ \text{es continua } \forall i \in I \end{array} \right\}$$

Demostración:

" \Longrightarrow " Si $g:(X',T')\longrightarrow (X,T)$ es continua, como por hipótesis $T=T_{\mathcal{F}}$ es $\forall i\in I,\ f_i:(X,T)\longrightarrow (X_i,T_i)$ continua, y así $\forall\,i\in I,$ $f_i\circ g:(X',T')\longrightarrow (X_i,T_i)$ es continua. " \Leftarrow "

Para probar que $g:(X',T') \longrightarrow (X,T)$ es continua, al ser $T=T_{\mathcal{F}}$ es suficiente probar que dado un abierto sub-básico arbitrario de $\Sigma_{\mathcal{F}}$, su imagen inversa por g es abierto en T'; sean, pues, $i \in I$, $G_i \in T_i$; es $f_i^{-1}(G_i) \in \Sigma_{\mathcal{F}}$, y es claro que $g^{-1}(f_i^{-1}(G_i)) = (f_i \circ g)^{-1}(G_i) \in T'$, ya que $f_i \circ g:(X',T') \longrightarrow (X_i,T_i)$ es continua por hipótesis.

Tomemos el espacio topológico (X',T')=(X,T) y la aplicación identidad en X, es decir, $g=1_X$; es $g=1_X:(X,T)\longrightarrow (X,T)$ continua, luego por hipótesis $\forall\,i\in I,\,f_i\circ g=f_i\circ 1_X=f_i:(X,T)\longrightarrow (X_i,T_i)$ es continua, y así $T\subset T_{\mathcal{F}}$. Consideremos ahora el espacio topológico $(X',T')=(X,T_{\mathcal{F}})$ y la aplicación $g=1_X;\,\forall\,i\in I,\,f_i\circ g=f_i\circ 1_X=f_i:(X,T_{\mathcal{F}})\longrightarrow (X_i,T_i)$ es continua, luego por hipótesis $1_X:(X,T_{\mathcal{F}})\longrightarrow (X,T)$ es continua de donde $T\subset T_{\mathcal{F}}$; en definitiva, $T=T_{\mathcal{F}}$

Proposición 1.3 Sea X un conjunto y $\mathcal{F} = \{(f_i, (X_i, T_i))\}_{i \in I}$ una familia de espacios topológicos donde $\forall i \in I$ es $f_i : X \longrightarrow X_i$ una aplicación; sea $\forall i \in I, \Sigma_i$ una sub-base de T_i , entonces $\Sigma_{\mathcal{F}}' = \{f_i^{-1}(S_i) | i \in I, S_i \in \Sigma_i\}$ es una sub-base de $T_{\mathcal{F}}$.

Demostración:

$$\forall i \in I, \ \Sigma_i \subset T_i \Longrightarrow \Sigma_{\mathcal{F}}' \subset \Sigma_{\mathcal{F}} \subset T_{\mathcal{F}}. \ \text{Sea} \ G \in T_{\mathcal{F}} \ \text{y sea} \ x \in G \Longrightarrow$$

 $\exists F \in \mathcal{P}_{\mathcal{F}}(I) \text{ y } \forall i \in F \,\exists \, G_i \in T_i \,|\, x \in \bigcap_{i \in F} f_i^{-1}(G_i) \subset G \Longrightarrow \forall \, i \in F,$ $f_i(x) \in G_i \in T_i \Longrightarrow \forall \, i \in F \,\exists \, S_i^{j_1}, \dots, S_i^{j_{p_i}} \in \Sigma_i \text{ tales que } f_i(x) \in \bigcap_{k=1}^{p_i} S_i^{j_k} \subset G_i,$ $\text{y por tanto } x \in \bigcap_{i \in F} \left(\bigcap_{k=1}^{p_i} f_i^{-1}(S_i^{j_k})\right) \subset \bigcap_{i \in F} f_i^{-1}(G_i) \subset G \text{ donde los}$ $f_i^{-1}(S_i^{j_k}) \in \Sigma_{\mathcal{F}}', \text{ donde } F \text{ es finito y } \forall \, i \in F \,\{1, \dots, p_i\} \text{ es finito, por lo que}$ $\bigcap_{i \in F} \left(\bigcap_{k=1}^{p_i} f_i^{-1}(S_i^{j_k})\right) \in \mathcal{B}(\Sigma_{\mathcal{F}}') \text{ c. q. d.}$