

800 East 96th Street, Indianapolis, Indiana, 46240 USA

James Foxall

SamsTeachYourself

24in

Hours

Visual C#®

2008
Complete Starter Kit

Sams Teach Yourself Visual C#®2008 in 24 Hours: Complete Starter Kit
Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or
transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is assumed with respect to the use of
the information contained herein. Although every precaution has been taken in the preparation of
this book, the publisher and author assume no responsibility for errors or omissions. Nor is any
liability assumed for damages resulting from the use of the information contained herein.

This material may be distributed only subject to the terms and conditions set forth in the Open
Publication License, v1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

ISBN-13: 978-0-672-32990-6
ISBN-10: 0-672-32990-5

Library of Congress Cataloging-in-Publication data is on file

Printed in the United States of America

First Printing June 2008

Trademarks
All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Visual C# is a registered trademark of Microsoft Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and accurate as possible, but no war-
ranty or fitness is implied. The information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any person or entity with respect to any
loss or damages arising from the information contained in this book or from the use of the CD or
programs accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when ordered in quantity for bulk pur-
chases or special sales. For more information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact

International Sales
international@pearson.com

Editor-in-Chief
Karen Gettman

Executive Editor
Neil Rowe

Development
Editor
Mark Renfrow

Managing Editor
Patrick Kanouse

Senior Project
Editor
Tonya Simpson

Copy Editor
Margo Catts

Indexer
Tim Wright

Proofreader
Kathy Ruiz

Technical Editor
Todd Meister

Publishing
Coordinator
Cindy Teeters

Multimedia
Developer
Dan Scherf

Book Designer
Gary Adair

http://www.opencontent.org/openpub/
http://www.informit.com/onlineedition

Contents at a Glance

Introduction. 1

Part I: The Visual C# 2008 Environment

HOUR 1 Jumping In with Both Feet: A Visual C# 2008 Programming Tour 7

2 Navigating Visual C# 2008 . 31

3 Understanding Objects and Collections . 59

4 Understanding Events . 81

Part II: Building a User Interface

HOUR 5 Building Forms—The Basics . 101

6 Building Forms—Advanced Techniques . 123

7 Working with Traditional Controls . 151

8 Using Advanced Controls . 177

9 Adding Menus and Toolbars to Forms . 197

Part III: Making Things Happen: Programming

HOUR 10 Creating and Calling Methods . 221

11 Using Constants, Data Types, Variables, and Arrays . 241

12 Performing Arithmetic, String Manipulation, and Date/Time

Adjustments . 267

13 Making Decisions in Visual C# Code . 285

14 Looping for Efficiency . 297

15 Debugging Your Code . 309

16 Designing Objects Using Classes . 333

17 Interacting with Users . 351

18 Working with Graphics. 371

Part IV: Working with Data

HOUR 19 Performing File Operations . 395

20 Working with Text Files and the Registry . 413

21 Working with a Database . 437

22 Controlling Other Applications Using Automation . 453

Part V: Developing Solutions and Beyond

HOUR 23 Deploying Applications . 469

24 The 10,000-Foot View . 479

Index . 487

Table of Contents

Introduction 1

Audience and Organization . 1

Conventions Used in This Book. 2

Onward and Upward! . 3

Part I: The Visual C# 2008 Environment

HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour 7

Starting Visual C# 2008 . 8

Creating a New Project . 9

Understanding the Visual Studio .NET Environment . 12

Changing the Characteristics of Objects . 13

Adding Controls to a Form . 18

Designing an Interface . 19

Writing the Code Behind an Interface . 23

Running a Project . 27

Summary . 29

Q&A. 29

Workshop . 30

HOUR 2: Navigating Visual C# 2008 31

Using the Visual C# 2008 Start Page . 32

Navigating and Customizing the Visual C# Environment . 34

Working with Toolbars. 39

Adding Controls to a Form Using the Toolbox . 40

Setting Object Properties Using the Properties Window . 42

Managing Projects . 47

A Quick-and-Dirty Programming Primer . 53

Getting Help . 55

Summary . 56

Q&A. 57

Workshop . 57

HOUR 3: Understanding Objects and Collections 59

Understanding Objects. 60

Understanding Properties . 60

Understanding Methods . 67

Building a Simple Object Example Project. 68

Understanding Collections . 73

Using the Object Browser . 76

Summary . 77

Q&A. 78

Workshop . 78

HOUR 4: Understanding Events 81

Understanding Event-Driven Programming . 81

Building an Event Example Project . 91

Summary . 95

Q&A. 95

Workshop . 96

Part II: Building a User Interface

HOUR 5: Building Forms—The Basics 101

Changing a Form’s Name. 102

Changing a Form’s Appearance . 103

Showing and Hiding Forms. 112

Summary. 119

Q&A . 120

Workshop . 120

vi

Sams Teach Yourself Visual C# 2008 in 24 Hours

HOUR 6: Building Forms—Advanced Techniques 123

Working with Controls . 123

Adding a Control by Double-Clicking It in the Toolbox . 124

Adding a Control by Dragging from the Toolbox . 125

Adding a Control by Drawing It . 125

Creating Topmost Nonmodal Windows. 141

Creating Transparent Forms . 141

Creating Scrollable Forms . 142

Creating MDI Forms . 143

Summary. 147

Q&A . 148

Workshop . 148

HOUR 7: Working with Traditional Controls 151

Displaying Static Text with the Label Control . 151

Allowing Users to Enter Text Using a Text Box . 153

Creating Buttons . 159

Presenting Yes/No Options Using Check Boxes . 161

Creating Containers and Groups of Option Buttons . 162

Displaying a List with the List Box . 166

Creating Drop-Down Lists Using the Combo Box . 172

Summary. 174

Q&A . 175

Workshop . 175

HOUR 8: Using Advanced Controls 177

Creating Timers . 178

Creating Tabbed Dialog Boxes. 181

Storing Pictures in an Image List . 184

Building Enhanced Lists Using the List View . 185

Creating Hierarchical Lists with the Tree View . 191

Summary. 194

Q&A . 195

Workshop . 195

Contents

vii

HOUR 9: Adding Menus and Toolbars to Forms 197

Building Menus . 198

Using the Toolbar Control. 209

Creating a Status Bar. 214

Summary. 216

Q&A . 216

Workshop . 217

Part III: Making Things Happen: Programming

HOUR 10: Creating and Calling Methods 221

Understanding Class Members . 221

Defining and Writing Methods . 223

Calling Methods . 229

Exiting Methods . 235

Creating Static Methods . 236

Avoiding Infinite Recursion. 237

Summary. 238

Q&A . 238

Workshop . 239

HOUR 11: Using Constants, Data Types, Variables, and Arrays 241

Understanding Data Types . 242

Defining and Using Constants. 246

Declaring and Referencing Variables . 249

Working with Arrays . 251

Determining Scope . 255

Naming Conventions. 258

Using Variables in Your Picture Viewer Project . 259

Summary. 263

Q&A . 264

Workshop . 264

viii

Sams Teach Yourself Visual C# 2008 in 24 Hours

HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments 267

Performing Basic Arithmetic Operations with Visual C# . 268

Comparing Equalities . 272

Understanding Boolean Logic . 272

Working with Dates and Times . 279

Summary. 282

Q&A . 283

Workshop . 283

HOUR 13: Making Decisions in Visual C# Code 285

Making Decisions Using if...else . 285

Evaluating an Expression for Multiple Values Using switch . 290

Summary. 294

Q&A . 295

Workshop . 295

HOUR 14: Looping for Efficiency 297

Looping a Specific Number of Times Using for . 297

Using while and do...while to Loop an Indeterminate Number of Times . . 302

Summary. 306

Q&A . 307

Workshop . 307

HOUR 15: Debugging Your Code 309

Adding Comments to Your Code . 310

Identifying the Two Basic Types of Errors. 312

Using Visual C# Debugging Tools. 314

Writing an Error Handler Using Try...Catch...Finally . 322

Summary. 329

Q&A . 329

Workshop . 330

Contents

ix

HOUR 16: Designing Objects Using Classes 333

Understanding Classes . 334

Instantiating Objects from Classes . 343

Summary. 348

Q&A . 349

Workshop . 349

HOUR 17: Interacting with Users 351

Displaying Messages Using the MessageBox.Show() Function . 351

Creating Custom Dialog Boxes . 357

Interacting with the Keyboard . 361

Using the Common Mouse Events . 364

Summary. 367

Q&A . 367

Workshop . 368

HOUR 18: Working with Graphics 371

Understanding the Graphics Object . 371

Working with Pens . 375

Using System Colors . 376

Working with Rectangles . 379

Drawing Shapes . 380

Drawing Text . 382

Persisting Graphics on a Form. 383

Building a Graphics Project Example . 383

Summary. 389

Q&A . 390

Workshop . 390

Part IV: Working with Data

HOUR 19: Performing File Operations 395

Using the OpenFileDialog and SaveFileDialog Controls . 395

Manipulating Files with the File Object . 401

x

Sams Teach Yourself Visual C# 2008 in 24 Hours

Manipulating Directories with the Directory Object . 409

Summary. 410

Q&A . 411

Workshop . 411

HOUR 20: Working with Text Files and the Registry 413

Working with the Registry . 414

Reading and Writing Text Files . 425

Summary. 434

Q&A . 435

Workshop . 435

HOUR 21: Working with a Database 437

Introducing ADO.NET . 438

Manipulating Data . 441

Summary. 451

Q&A . 451

Workshop . 452

HOUR 22: Controlling Other Applications Using Automation 453

Creating a Reference to an Automation Library . 454

Creating an Instance of an Automation Server . 455

Manipulating the Server. 456

Automating Microsoft Word . 460

Summary. 463

Q&A . 464

Workshop . 464

Part V: Developing Solutions and Beyond

HOUR 23: Deploying Applications 469

Understanding ClickOnce Technology. 469

Using the Publish Wizard to Create a ClickOnce Application . 471

Testing Your Picture Viewer ClickOnce Install Program . 474

Contents

xi

Uninstalling an Application You’ve Distributed . 474

Setting Advanced Options for Creating ClickOnce Programs . 475

Summary. 476

Q&A . 476

Workshop . 477

HOUR 24: The 10,000-Foot View 479

The .NET Framework . 480

Common Language Runtime . 480

Microsoft Intermediate Language . 481

Namespaces . 483

Common Type System . 484

Garbage Collection . 484

Further Reading . 485

Summary. 486

Index 487

About the Author

James Foxall is vice president of Tigerpaw Software, Inc. (www.tigerpawsoftware.com), a

Bellevue, Nebraska, Microsoft Certified Partner specializing in commercial database appli-

cations. He manages the development, support, training, and education of Tigerpaw CRM+,

an award-winning CRM product designed to automate contact management, marketing,

service and repair, proposal generation, inventory control, and purchasing. At the start of

2008, the current release of Tigerpaw CRM+ had more than 16,000 licensed users. Foxall’s

experience in creating certified Office-compatible software has made him an authority on

application interface and behavior standards of applications for the Microsoft Windows and

Microsoft Office environments.

Foxall has been writing commercial product code for more than 14 years, in both single-

programmer and multiple-programmer environments. He’s the author of numerous books,

including Practical Standards for Microsoft Visual Basic and MCSD in a Nutshell: The Visual Basic

Exams. He also has written articles for Access-Office-VBA Advisor and Visual Basic Programmer’s

Journal. Foxall has a bachelor’s degree in management of information systems (MIS). He is

a Microsoft Certified Solution Developer and an international speaker on Microsoft Visual

Basic. When not programming or writing about programming, he enjoys spending time

with his family, playing guitar, listening to amazing bands like Pink Floyd and OSI, and

playing computer games. You can reach him at www.jamesfoxall.com/forums.

www.tigerpawsoftware.com
www.jamesfoxall.com/forums

Dedication

This book is dedicated to my children, Ethan and Tess,
who constantly remind me to have fun.

Acknowledgments

I would like to thank Neil, Brook, and all the other top-notch people at Sams.

I also would like to thank all the readers of the previous editions who provided feedback to

make this book even better!

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value

your opinion, and we want to know what we’re doing right, what we could do better, what

areas you’d like to see us publish in, and any other words of wisdom you’re willing to pass

our way.

You can email or write me directly to let me know what you did or didn’t like about this

book—as well as what we can do to make our books stronger.

Please note that I cannot help you with technical problems related to the topic of this book, and

that because of the high volume of mail I receive, I might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as well as your name

and phone number or email address. I will carefully review your comments and share them

with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Neil Rowe

Executive Editor

Sams Publishing

800 East 96th Street

Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/title/9780672329906 for conve-

nient access to any updates, downloads, or errata that might be available for this book.

www.informit.com/title/9780672329906

This page intentionally left blank

Introduction

With Microsoft’s introduction of the .NET platform, a new, exciting programming language

was born. Visual C# is now the language of choice for developing on the .NET platform,

and Microsoft has even written a majority of the .NET Framework using Visual C#. Visual

C# is a modern object-oriented language designed and developed from the ground up with

a best-of-breed mentality, implementing and expanding on the best features and functions

found in other languages. Visual C# 2008 combines the power and flexibility of C++ with

some of the simplicity of Visual C#.

Audience and Organization
This book is targeted toward those who have little or no programming experience or who

might be picking up Visual C# as a second language. The book has been structured and

written with a purpose: to get you productive as quickly as possible. I’ve used my experi-

ences in writing applications with Visual C# and teaching Visual C# to create a book that I

hope cuts through the fluff and teaches you what you need to know. All too often, authors

fall into the trap of focusing on the technology rather than on the practical application of

the technology. I’ve worked hard to keep this book focused on teaching you practical skills

that you can apply immediately toward a development project. Feel free to post your sug-

gestions or success stories at www.jamesfoxall.com/forums.

This book is divided into five parts, each of which focuses on a different aspect of develop-

ing applications with Visual C# 2008. These parts generally follow the flow of tasks you’ll

perform as you begin creating your own programs with Visual C# 2008. I recommend that

you read them in the order in which they appear.

. Part I, “The Visual C# 2008 Environment,” teaches you about the Visual C# environ-

ment, including how to navigate and access Visual C#’s numerous tools. In addition,

you’ll learn about some key development concepts such as objects, collections, and

events.

. Part II, “Building a User Interface,” shows you how to build attractive and functional

user interfaces. In this part, you’ll learn about forms and controls—the user interface

elements such as text boxes and list boxes.

. Part III, “Making Things Happen: Programming,” teaches you the nuts and bolts of

Visual C# 2008 programming—and there’s a lot to learn. You’ll discover how to create

classes and procedures, as well as how to store data, perform loops, and make

www.jamesfoxall.com/forums

decisions in code. After you’ve learned the core programming skills, you’ll move into

object-oriented programming and debugging applications.

. Part IV, “Working with Data,” introduces you to working with graphics, text files, and

programming databases, and shows you how to automate external applications such

as Word and Excel. In addition, this part teaches you how to manipulate a user’s file

system and the Windows Registry.

. Part V, “Deploying Solutions and Beyond,” shows you how to distribute an applica-

tion that you’ve created to an end user’s computer. In Hour 24, “The 10,000-Foot

View,” you’ll learn about Microsoft’s .NET initiative from a higher, less-technical level.

Many readers of previous editions have taken the time to give me input on how to make

this book better. Overwhelmingly, I was asked to have examples that build on the examples

in the previous chapters. In this book, I have done that as much as possible. Now, instead

of learning concepts in isolated bits, you’ll be building a feature-rich Picture Viewer pro-

gram throughout the course of this book. You’ll begin by building the basic application. As

you progress through the chapters, you’ll add menus and toolbars to the program, build an

Options dialog box, modify the program to use the Windows Registry and a text file, and

even build a setup program to distribute the application to other users. I hope you find this

approach beneficial in that it enables you to learn the material in the context of building a

real program.

Conventions Used in This Book
This book uses several design elements and conventions to help you prioritize and reference

the information it contains:

2

Sams Teach Yourself Visual C# 2008 in 24 Hours

By the Way boxes provide useful sidebar information that you can read immedi-
ately or circle back to without losing the flow of the topic at hand.

Did You Know? boxes highlight information that can make your Visual C# pro-
gramming more effective.

Watch Out! boxes focus your attention on problems or side effects that can
occur in specific situations.

By the
Way

Did you
Know?

Watch
Out!

New terms appear italic for emphasis.

In addition, this book uses various typefaces to help you distinguish code from regular

English. Code is presented in a monospace font. Placeholders—words or characters that rep-

resent the real words or characters you would type in code—appear in italic monospace.

When you are asked to type or enter text, that text appears in bold.

Some code statements presented in this book are too long to appear on a single line. In

these cases, a line-continuation character (an underscore) is used to indicate that the fol-

lowing line is a continuation of the current statement.

Onward and Upward!
This is an exciting time to be learning how to program. It’s my sincerest wish that when

you finish this book, you feel capable of creating, debugging, and deploying modest Visual

C# programs, using many of Visual C#’s tools. Although you won’t be an expert, you’ll be

surprised at how much you’ve learned. And I hope this book will help you determine your

future direction as you proceed down the road to Visual C# mastery.

Introduction

3

This page intentionally left blank

PART I

The Visual C# 2008
Environment

HOUR 1 Jumping In with Both Feet: A Visual C# 2008
Programming Tour 7

HOUR 2 Navigating Visual C# 2008 31

HOUR 3 Understanding Objects and Collections 59

HOUR 4 Understanding Events 81

This page intentionally left blank

HOUR 1

Jumping In with Both Feet: A
Visual C# 2008 Programming
Tour

What You’ll Learn in This Hour:
. Building a simple (yet functional) Visual C# application
. Letting a user browse a hard drive
. Displaying a picture from a file on disk
. Getting familiar with some programming lingo
. Learning about the Visual Studio .NET IDE

Learning a new programming language can be intimidating. If you’ve never programmed

before, the act of typing seemingly cryptic text to produce sleek and powerful applications

probably seems like a black art, and you might wonder how you’ll ever learn everything

you need to know. The answer is, of course, one step at a time. The first step to learning a

language is the same as that of any other activity: building confidence. Programming is

part art and part science. Although it might seem like magic, it’s more akin to illusion:

After you know how things work a lot of the mysticism goes away, freeing you to focus on

the mechanics necessary to produce any given desired result.

Producing large, commercial solutions is accomplished by way of a series of small steps.

After you’ve finished creating the project in this hour, you’ll have a feel for the overall

development process and will have taken the first step toward becoming an accomplished

programmer. In fact, you will be building upon this Picture Viewer program in subsequent

chapters. By the time you complete this book, you will have built a distributable applica-

tion, complete with resizable screens, an intuitive interface including menus and toolbars,

and robust code with professional error handling. But I’m getting ahead of myself!

8 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

In this hour, you’ll complete a quick tour that takes you step by step through creat-

ing a complete, albeit small, Visual C# program. Most introductory programming

books start out with the reader creating a simple Hello World program. I’ve yet to

see a Hello World program that’s the least bit helpful (they usually do nothing more

than print hello world to the screen—oh, what fun). So, instead, you’ll create a

picture viewer application that lets you view Windows bitmaps and icons on your

computer. You’ll learn how to let a user browse for a file and how to display a select-

ed picture file on the screen. The techniques you learn in this chapter will come in

handy in many real-world applications that you’ll create, but the goal of this chap-

ter is for you to realize just how much fun it is to program with Visual C#.

Starting Visual C# 2008
Before you begin creating programs in Visual C# 2008, you should be familiar with

the following terms:

. Distributable component—The final, compiled version of a project.

Components can be distributed to other people and other computers, and they

don’t require the Visual C# 2008 development environment (the tools you use

to create a .NET program) to run (although they do require the .NET runtime,

which I discuss in Hour 23, “Deploying Applications”). Distributable compo-

nents are often called programs. In Hour 23, you’ll learn how to distribute the

Picture Viewer program that you’re about to build to other computers.

. Project—A collection of files that can be compiled to create a distributable

component (program). There are many types of projects, and complex appli-

cations might consist of multiple projects, such as a Windows application proj-

ect, and support dynamic link library (DLL) projects.

. Solution—A collection of projects and files that make up an application or

component.

Visual C# is part of a larger entity known as the .NET Framework. The .NET
Framework encompasses all the .NET technology, including Visual Studio .NET (the
suite of development tools) and the Common Language Runtime (CLR), which is
the set of files that make up the core of all .NET applications. You’ll learn about
these items in more detail as you progress through this book. For now, realize that
Visual C# is one of many languages that exist within the .NET family. Many other
languages, such as Visual Basic, are also .NET languages, make use of the CLR,
and are developed within Visual Studio .NET.

By the
Way

Creating a New Project 9

Visual Studio 2008 is a complete development environment, and it’s called the IDE

(short for integrated development environment). The IDE is the design framework in which

you build applications; every tool you’ll need to create your Visual C# projects is

accessed from within the Visual C# IDE. Again, Visual Studio 2008 supports develop-

ment in many different languages—Visual C# being one of the most popular. The envi-

ronment itself is not Visual C#, but the language you use within Visual Studio 2008 is

Visual C#. To work with Visual C# projects, you first start the Visual Studio 2008 IDE.

Start Visual Studio 2008 now by choosing Microsoft Visual C# 2008 Express Edition

on your Start/Programs menu. If you are running the full retail version of .NET, your

shortcut may have a different name. In this case, locate the shortcut on your Start

menu and click it once to start the Visual Studio .NET IDE.

Creating a New Project
When you first start Visual Studio .NET, you’re shown the Start Page tab within the

IDE. You can open projects created previously or create new projects from this Start

page (see Figure 1.1). For this quick tour, you’re going to create a new Windows

application, so open the File menu and click New Project to display the New Project

dialog box shown in Figure 1.2.

If your Start page doesn’t look like the one in Figure 1.1, chances are that you’ve
changed the default settings. In Hour 2, “Navigating Visual C# 2008,” I’ll show
you how to change them back.

By the
Way

FIGURE 1.1
You can open
existing proj-
ects or create
new projects
from the Visual
Studio Start
page.

10 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

The New Project dialog box is used to specify the type of Visual C# project to create.

(You can create many types of projects with Visual C#, as well as with the other sup-

ported languages of the .NET Framework.) The options shown in Figure 1.2 are lim-

ited because I am running the Express edition of Visual C# for all examples in this

books. If you are running the full version of Visual C#, many more options are

available to you.

Create a new Windows application by following these steps:

1. Make sure that the Windows Application icon is selected (if it’s not, click it

once to select it).

2. At the bottom of the New Project dialog box is a Name text box. This is where,

oddly enough, you specify the name of the project you’re creating. Enter

Picture Viewer in the Name text box.

3. Click OK to create the project.

Always set the Name text box to something meaningful before creating a project,
or you’ll have more work to do later if you want to move or rename the project.

When Visual C# creates a new Windows application project, it adds one form (the

empty gray window) for you to begin building the interface—the graphical windows

with which you interact—for your application (see Figure 1.3).

FIGURE 1.2
The New Project
dialog box
enables you to
create many
types of .NET
projects.

Did you
Know?

Creating a New Project 11

Within Visual Studio 2008, form is the term given to the design-time view of win-
dows that can be displayed to a user.

By the
Way

FIGURE 1.3
New Windows
applications
start with a
blank form; the
fun is just
beginning!

Your Visual Studio 2008 environment might look different from that shown in the

figures of this hour because of the edition of Visual Studio 2008 you’re using,

whether you’ve already played with Visual Studio 2008, and other factors such as

the resolution of your monitor. All the elements discussed in this hour exist in all

editions of Visual Studio 2008, however. (If a window shown in a figure isn’t dis-

played in your IDE, use the View menu to display it.)

To create a program that can be run on another computer, you start by creating a
project and then compiling the project into a component such as an executable (a
program a user can run) or a DLL (a component that can be used by other pro-
grams and components). The compilation process is discussed in detail in Hour
23, “Deploying Applications.” The important thing to note at this time is that when
you hear someone refer to creating or writing a program, just as you’re creating
the Picture Viewer program now, they’re referring to the completion of all steps up
to and including compiling the project to a distributable file.

By the
Way

12 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Understanding the Visual Studio .NET
Environment
The first time you run Visual Studio 2008, you’ll notice that the IDE contains a num-

ber of windows, such as the Solutions Explorer window on the right, which is used to

view the files that make up a project. In addition to these windows, the IDE contains

a number of tabs, such as the vertical Toolbox tab on the left edge of the IDE (refer

to Figure 1.3). Try this now: Click the Toolbox tab to display the Toolbox window

(clicking a tab displays an associated window). You can hover the mouse over a tab

for a few seconds to display the window as well. To hide the window, simply move

the mouse off the window (if you hovered over the tab to display it) or click on

another window. To close the window completely, click the Close (X) button in the

window’s title bar.

If you opened the toolbox by clicking its tab rather than hovering over the tab, the
toolbox does not automatically close. Instead, it stays open until you click on
another window.

You can adjust the size and position of any of these windows, and you can even

hide and show them as needed. You’ll learn how to customize your design environ-

ment in Hour 2.

Unless specifically instructed to do so, don’t double-click anything in the Visual
Studio 2008 design environment. Double-clicking most objects produces an entire-
ly different result than single-clicking does. If you mistakenly double-click an object
on a form (discussed shortly), a code window is displayed. At the top of the code
window is a set of tabs: one for the form design and one for the code. Click the
tab for the form design to hide the code window and return to the form.

The Properties window at the right side of the design environment is perhaps the

most important window in the IDE, and it’s the one you’ll use most often. If your

computer display resolution is set to 800×600, you can probably see only a few prop-

erties at this time. This makes it difficult to view and set properties as you create

projects. All the screen shots in this book are taken at 800×600 due to size con-

straints, but you should run at a higher resolution if you can. I highly recommend

that you develop applications with Visual C# at a screen resolution of 1024×768 or

higher because it offers plenty of work space. Keep in mind, however, that end users

might be running at a lower resolution than you are using for development. If you

need to change your display settings, right-click your desktop and select Personalize.

By the
Way

Watch
Out!

Changing the Characteristics of Objects 13

Changing the Characteristics of Objects
Almost everything you work with in Visual C# is an object. Forms, for instance, are

objects, as are all the items you can put on a form to build an interface such as list

boxes and buttons. There are many types of objects, and objects are classified by

type. For example, a form is a Form object, whereas items you can place on a form

are called Control objects, or controls. (Hour 3, “Understanding Objects and

Collections,” discusses objects in detail.) Some objects don’t have a physical appear-

ance but exist only in code, and you’ll learn about these kinds of objects in later

hours.

You’ll find that I often mention material coming up in future chapters. In the pub-
lishing field, we call these forward references. For some reason, these tend to
really unnerve some people. I do this only so that you realize you don’t have to
fully grasp a subject when it’s first presented; the material is covered in more
detail later. I try to keep forward references to a minimum, but teaching program-
ming is, unfortunately, not a perfectly linear process. There will be times I’ll have
to touch on a subject that I feel you’re not ready to dive into fully yet. When this
happens, I give you a forward reference to let you know that the subject is covered
in greater detail later on.

Every object has a distinct set of attributes known as properties (regardless of whether

the object has a physical appearance). You have certain properties about you, such

as your height and hair color. Visual C# objects have properties as well, such as

Height and BackColor. Properties define an object’s characteristics. When you create

a new object, the first thing you need to do is set its properties so that the object

appears and behaves the way you want it to. To display an object’s properties, click

the object in its designer (the main work area in the IDE).

First, make sure your Properties Window is displayed by opening the View menu and

choosing Properties Window. Next, click anywhere in the default form now (its title

bar says Form1) and check to see whether its properties are displayed in the

Properties window. You’ll know because the drop-down list box at the top of the

properties window contains the form’s name: Form1 System.Windows.Forms.Form.

Form1 is the name of the object, and System.Windows.Forms.Form is the type of

object.

Naming Objects
The property you should always set first for any new object is the Name property.

Scroll toward the top of the properties list until you see the (Name) property (see

Figure 1.4). If the Name property isn’t one of the first properties listed, your properties

Watch
Out!

14 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

window is set to show properties categorically instead of alphabetically. You can

show the list alphabetically by clicking the Alphabetical button that appears just

above the properties grid.

I recommend that you keep the Properties window set to show properties in alpha-
betical order; doing so makes it easier to find properties that I refer to in the text.
Note that the Name property always stays toward the top of the list and is referred
to as (Name). If you’re wondering why it has parentheses around it, that’s because
the parentheses force the property to the top of the list because symbols come
before letters in an alphabetical sort.

When saving a project, you choose a name and a location for the project and its

files. When you first create an object, Visual C# gives the object a unique, generic

name based on the object’s type. Although these names are functional, they simply

aren’t descriptive enough for practical use. For instance, Visual C# named your form

Form1, but it’s common to have dozens of forms in a project, and it would be

extremely difficult to manage such a project if all forms were distinguishable only

by a number (Form2, Form3, and so forth).

By the
Way

FIGURE 1.4
The Name prop-
erty is the first
property you
should change
when you add a
new object to
your project.

What you’re actually working with is a form class, or template, that will be used to
create and show forms at runtime. For the purpose of this quick tour, I simply
refer to it as a form. See Hour 5, “Building Forms—The Basics,” for more
information.

By the
Way

Changing the Characteristics of Objects 15

To better manage your forms, give each one a descriptive name. Visual C# gives you

the chance to name new forms as they’re created in a project. Visual C# created this

default form for you, so you didn’t get a chance to name it. It’s important to not

only change the form’s name but also to change its filename. Change the program-

mable name and the filename at the same time by following these steps:

1. Click the Name property and change the text from Form1 to ViewerForm.

Notice that this does not change the form’s filename as it’s displayed in the

Solution Explorer window located above the Properties window.

2. Right-click Form1.cs in the Solution Explorer window (the window above the

properties window).

3. Choose Rename from the context menu that appears.

4. Change the text from Form1.cs to ViewerForm.cs.

I use the Form suffix here to denote that the file is a form class. Suffixes are
optional, but I find they really help you keep things organized.

The Name property of the form is actually changed for you automatically when you

rename the file. I had you explicitly change the Name property because it’s some-

thing you’re going to be doing a lot—for all sorts of objects.

Setting the Text Property of the Form
Notice that the text that appears in the form’s title bar says Form1. Visual C# sets

the form’s title bar to the name of the form when it’s first created but doesn’t change

it when you change the form’s name. The text in the title bar is determined by the

value of the Text property of the form. Change the text now by following these

steps:

1. Click the form once more so that its properties appear in the Properties window.

2. Use the scrollbar in the Properties window to locate the Text property.

3. Change the text to Picture Viewer. Press the Enter key or click on a different

property. You’ll see the text in the title bar of the form change.

Saving a Project
The changes you’ve made so far exist only in memory; if you were to turn off your

computer at this time, you would lose all your work up to this point. Get into the

habit of frequently saving your work, which commits your changes to disk.

By the
Way

16 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Click the Save All button on the toolbar (the picture of a stack of disks) now to save

your work. Visual C# then displays the Save Project dialog box shown in Figure 1.5.

Notice that the Name property is already filled in because you named the project

when you created it. The Location text box is where you specify the location in

which to save the project. Visual C# creates a subfolder in this location, using the

value in the Name text box (in this case, Picture Viewer). You can use the default

location, or change it to suit your purposes. You can have Visual C# create a solu-

tion folder in which the project folder gets placed. On large projects, this is a handy

feature. For now, it’s an unnecessary step, so uncheck the Create Directory for

Solution box and then click Save to save the project.

FIGURE 1.5
When saving a
project, choose
a name and a
location for the
project and its
files.

Giving the Form an Icon
Everyone who has used Windows is familiar with icons—the little pictures that rep-

resent programs. Icons most commonly appear in the Start menu next to the names

of their respective programs. In Visual C#, you not only have control over the icon

of your program file, you can also give every form in your program a unique icon if

you want to.

The following instructions assume that you have access to the source files for the
examples in this book. They are available at www.samspublishing.com. You can
also get these files, as well as discuss this book, at my website at
http://www.jamesfoxall.com/books.aspx. When you unzip the samples, a folder is
created for each hour, and within each hour’s folder are subfolders for the sample
projects. You can find the icon in the folder Hour 1\Picture Viewer.

You don’t have to use the icon I’ve provided for this example; you can use any
icon of your choice. If you don’t have an icon available (or you want to be a rebel),
you can skip this section without affecting the outcome of the example.

To give the form an icon, follow these steps:

1. In the Properties window, click the Icon property to select it.

2. When you click the Icon property, a small button with three dots appears to

the right of the property. Click this button.

By the
Way

http://www.jamesfoxall.com/books.aspx
www.samspublishing.com

Changing the Characteristics of Objects 17

3. Use the Open dialog box that appears to locate the PictureViewer.ico file or

another icon file of your choice. When you’ve found the icon, double-click it,

or click it once to select it and then click Open.

After you’ve selected the icon, it appears in the Icon property along with the word

“Icon.” A small version of the icon appears in the upper-left corner of the form as

well. Whenever this form is minimized, this is the icon displayed on the Windows

taskbar.

Changing the Size of the Form
Next, you’re going to change the Width and Height properties of the form. The

Width and Height values are shown collectively under the Size property; Width

appears to the left of the comma, Height to the right. You can change the Width or

Height property by changing the corresponding number in the Size property. Both

values are represented in pixels (that is, a form that has a Size property of 200,350

is 200 pixels wide and 350 pixels tall). To display and adjust the Width and Height

properties separately, click the small plus sign (+) next to the Size property (see

Figure 1.6).

FIGURE 1.6
Some proper-
ties can be
expanded to
show more spe-
cific properties.

A pixel is a unit of measurement for computer displays; it’s the smallest visible
“dot” on the screen. The resolution of a display is always given in pixels, such as
800×600 or 1024×768. When you increase or decrease a property by one pixel,
you’re making the smallest possible visible change to the property.

By the
Way

18 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Change the Width property to 400 and the Height to 325 by typing in the corre-

sponding box next to a property name. To commit a property change, press Tab or

Enter, or click a different property or window. Your screen should now look like the

one in Figure 1.7.

FIGURE 1.7
Changes made
in the Properties
window are
reflected as
soon as they’re
committed.

You can also size a form by dragging its border, which you’ll learn about in Hour 2.
This property can also be changed by program code, which you’ll learn how to
write in Hour 5.

Save the project now by choosing File, Save All from the menu or by clicking the

Save All button on the toolbar—it has a picture of stacked disks on it.

Adding Controls to a Form
Now that you’ve set your form’s initial properties, it’s time to create a user interface

by adding objects to the form. Objects that can be placed on a form are called con-

trols. Some controls have a visible interface with which a user can interact, whereas

others are always invisible to the user. You’ll use controls of both types in this exam-

ple. On the left side of the screen is a vertical tab titled Toolbox. Click the Toolbox

tab now to display the Toolbox window and click the plus sign next to Common

Controls to see the most commonly used controls (see Figure 1.8). The toolbox con-

tains all the controls available in the project, such as labels and text boxes.

By the
Way

Designing an Interface 19

The toolbox closes as soon as you’ve added a control to a form and when the point-

er is no longer over the toolbox. To make the toolbox stay visible, click the little pic-

ture of a pushpin located in the toolbox’s title bar.

I don’t want you to add them yet, but your Picture Viewer interface will consist of

the following controls:

. Two Button controls—The standard buttons that you’re used to clicking in

pretty much every Windows program you’ve ever run

. A PictureBox control—A control used to display images to a user

. An OpenFileDialog control—A hidden control that exposes the Windows

Open File dialog box functionality

Designing an Interface
It’s generally best to design a form’s user interface and then add the code behind the

interface to make the form functional. You’ll build your interface in the following

sections.

FIGURE 1.8
The toolbox is
used to select
controls to build
a user inter-
face.

20 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Adding a Visible Control to a Form
Start by adding a Button control to the form. Do this by double-clicking the Button

item in the toolbox. Visual C# creates a new button and places it in the upper-left

corner of the form (see Figure 1.9).

FIGURE 1.9
When you
double-click a
control in the
toolbox, the
control is added
to the upper-left
corner of the
form.

Using the Properties window, set the button’s properties as follows. Remember, when

you view the properties alphabetically, the Name property is listed first, so don’t go

looking for it down in the list or you’ll be looking awhile.

Property Value

Name btnSelectPicture

Location 295,10 (Note: 295 is the x coordinate; 10 is the y coordinate.)

Size 85, 23

Text Select Picture

You’re now going to create a button that the user can click to close the Picture

Viewer program. Although you could add another new button to the form by double-

clicking the Button control on the toolbox again, this time you’ll add a button to

the form by creating a copy of the button you’ve already defined. This enables you

to easily create a button that maintains the size and other style attributes of the

original button when the copy was made.

To do this, right-click the Select Picture button and choose Copy from its shortcut

menu. Next, right-click anywhere on the form and choose Paste from the form’s

shortcut menu (you could have also used the keyboard shortcuts Ctrl+C to copy and

Ctrl+V to paste). The new button appears centered on the form, and it’s selected by

Designing an Interface 21

default. Notice that it retained almost all of the properties of the original button, but

the name has been reset. Change the new button’s properties as follows:

Property Value

Name btnQuit

Location 295, 40

Text Quit

The last visible control you need to add to the form is a PictureBox control. A

PictureBox has many capabilities, but its primary purpose is to show pictures,

which is precisely what you’ll use it for in this example. Add a new PictureBox con-

trol to the form by double-clicking the PictureBox item in the toolbox and set its

properties as follows:

Property Value

Name picShowPicture

BorderStyle FixedSingle

Location 8, 8

Size 282, 275

After you’ve made these property changes, your form will look like the one in Figure

1.10. Click the Save All button on the toolbar to save your work.

FIGURE 1.10
An application’s
interface
doesn’t have to
be complex to
be useful.

Adding an Invisible Control to a Form
All the controls that you’ve used so far sit on a form and have a physical appearance

when the application is run by a user. Not all controls have a physical appearance,

22 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

however. Such controls, referred to as nonvisual controls (or invisible-at-runtime con-

trols), aren’t designed for direct user interactivity. Instead, they’re designed to give

you, the programmer, functionality beyond the standard features of Visual C#.

To enable the user to select a picture to display, you need to make it possible to

locate a file on a hard drive. You might have noticed that whenever you choose to

open a file from within any Windows application, the dialog box displayed is

almost always the same. It doesn’t make sense to force every developer to write the

code necessary to perform standard file operations, so Microsoft has exposed the

functionality via a control that you can use in your projects. This control is called

the OpenFileDialog control, and it will save you dozens and dozens of hours that

would otherwise be necessary to duplicate this common functionality.

Other controls in addition to the OpenFileDialog control give you file functionali-
ty. For example, the SaveFileDialog control provides features for enabling the
user to specify a filename and path for saving a file.

Display the toolbox now and scroll down (using the down arrow in the lower part of

the toolbox) until you can see the OpenFileDialog control (it’s in the Dialogs cate-

gory), and then double-click it to add it to your form. Note that the control isn’t

placed on the form, but rather it appears in a special area below the form (see

Figure 1.11). This happens because the OpenFileDialog control has no form inter-

face to display to a user. It does have an interface (a dialog box) that you can dis-

play as necessary, but it has nothing to display directly on a form.

By the
Way

FIGURE 1.11
Controls that
have no inter-
face appear
below the form
designer.

Writing the Code Behind an Interface 23

Select the OpenFileDialog control and change its properties as follows:

Property Value

Name ofdSelectPicture

Filename <make empty>

Filter Windows Bitmaps|*.BMP|JPEG Files|*.JPG

Title Select Picture

Don’t actually enter the text <make empty> for the filename; I really mean delete
the default value and make this property value empty.

The Filter property is used to limit the types of files that will be displayed in the

Open File dialog box. The format for a filter is description|filter. The text that appears

before the first pipe symbol is the descriptive text of the file type, whereas the text after

the pipe symbol is the pattern to use to filter files. You can specify more than one

filter type by separating each description|filter value with another pipe symbol. Text

entered into the Title property appears in the title bar of the Open File dialog box.

The graphical interface for your Picture Viewer program is now finished. If you

pinned the toolbox open, click the pushpin in the title bar of the toolbox now to

close it.

Writing the Code Behind an Interface
You have to write code for the program to be capable of performing tasks and

responding to user interaction. Visual C# is an event-driven language, which means

that code is executed in response to events. These events might come from users,

such as a user clicking a button and triggering its Click event, or from Windows

itself (see Hour 4, “Understanding Events,” for a complete explanation of events).

Currently, your application looks nice but it won’t do a darn thing. Users can click

the Select Picture button until they can file for disability with carpel tunnel syn-

drome, but nothing will happen because you haven’t told the program what to do

when the user clicks the button. You can see this for yourself now by pressing F5 to

run the project. Feel free to click the buttons, but they don’t do anything. When

you’re finished, close the window you created to return to Design mode.

You’re going to write code to accomplish two tasks. First, you’re going to write code

that lets users browse their hard drives to locate and select a picture file and then

display the file in the picture box (this sounds a lot harder than it is). Second, you’re

By the
Way

24 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

going to add code to the Quit button that shuts down the program when the user

clicks the button.

Letting a User Browse for a File
The first bit of code you’re going to write enables users to browse their hard drives,

select a picture file, and then see the selected picture in the PictureBox control. This

code executes when the user clicks the Select Picture button; therefore, it’s added to

the Click event of that button.

When you double-click a control on a form in Design view, the default event for that

control is displayed in a code window. The default event for a Button control is its

Click event, which makes sense because clicking is the most common action a user

performs with a button. Double-click the Select Picture button now to access its

Click event in the code window (see Figure 1.12).

FIGURE 1.12
You’ll write all
code in a win-
dow such as
this.

When you access an event, Visual C# builds an event handler, which is essentially

a template procedure in which you add the code that executes when the event

occurs. The cursor is already placed within the code procedure, so all you have to do

is add code. Although this may seem daunting to you now, by the time you’re fin-

ished with this book you’ll be madly clicking and clacking away as you write your

own code to make your applications do exactly what you want them to do—well,

most of the time. For now, just enter the code as I present it here.

Writing the Code Behind an Interface 25

It’s important that you get in the habit of commenting your code, so the first state-

ment you’re going to enter is a comment. Beginning a statement with two forward

slashes designates the statement as a comment; the compiler doesn’t do anything

with the statement, so you can enter whatever text you want after the two forward

slashes. Type the following statement exactly as it appears and press the Enter key

at the end of the line:

// Show the open file dialog box.

The next statement you enter triggers a method of the OpenFileDialog control that

you added to the form. You’ll learn all about methods in Hour 3. For now, think of a

method as a mechanism to make a control do something. The ShowDialog()

method tells the control to show its Open dialog box and let the user select a file.

The ShowDialog() method returns a value that indicates its success or failure,

which you’ll then compare to a predefined result (DialogResult.OK). Don’t worry

too much about what’s happening here; you’ll be learning the details of all this in

later hours, and the sole purpose of this hour is to get your feet wet. In a nutshell,

the ShowDialog() method is invoked to let a user browse for a file. If the user selects

a file, more code is executed. Of course, there’s a lot more to using the

OpenFileDialog control than I present in this basic example, but this simple state-

ment gets the job done. Enter the following two code statements, pressing Enter at

the end of each line:

Capitalization is important. Visual C# is a case-sensitive language, which means
ShowDialog() is not the same as Showdialog(). If you get the case of even one
letter wrong, Visual C# doesn’t recognize the word and your code doesn’t work, so
always enter code exactly as it appears in this book!

if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

The opening brace (the { character) is necessary for this if statement because it

denotes that this if construct will be made up of multiple lines.

Time for another comment. Your cursor is currently on the line below the { that you

entered. Type this statement and remember to press Enter at the end of the code line.

// Load the picture into the picture box.

This next statement is the line of code that actually displays the picture in the pic-

ture box.

Enter the following statement:

picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);

By the
Way

26 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

In addition to displaying the selected picture, your program is also going to display

the path and filename of the picture in the title bar. When you first created the

form, you changed the form’s Text property in the Properties window. To create

dynamic applications, properties need to be constantly adjusted at runtime, and this

is done with code. Insert the following two statements (press Enter at the end of each

line):

// Show the name of the file in the form’s caption.

this.Text = string.Concat(“Picture Viewer(“ + ofdSelectPicture.FileName + “)”);

The last statement you need to enter is a closing brace (a } character). Whenever

you have an opening brace, you have to have a closing brace. This is how Visual C#

groups multiple statements of code. Enter this statement now:

}

After you’ve entered all the code, your editor should look like that shown in Figure 1.13.

FIGURE 1.13
Make sure that
your code exact-
ly matches the
visible code
shown here.

Terminating a Program Using Code
The last bit of code you’ll write terminates the application when the user clicks the

Quit button. To do this, you’ll need to access the Click event handler of the

btnQuit button. At the top of the code window are two tabs. The current tab has

the text ViewerForm.cs*. This is the tab containing the code window for the form

with the filename ViewerForm.cs. Next to this is a tab that contains the text

Running a Project 27

ViewerForm.cs [Design]*. Click this tab now to switch from Code view to the form

designer. If you receive an error when you click the tab, the code you entered con-

tains an error, and you need to edit it to make it the same as shown in Figure 1.13.

After the form designer appears, double-click the Quit button to access its Click

event.

Enter the following code in the Quit button’s Click event handler and press Enter at

the end of each statement:

// Close the window and exit the application

this.Close();

The this.Close(); statement closes the current form. When the last loaded
form in a program is closed, the application shuts itself down—completely. As you
build more robust applications, you’ll probably want to execute all kinds of clean-
up routines before terminating an application, but for this example, closing the
form is all you need to do.

Running a Project
Your application is now complete. Click the Save All button on the toolbar (it looks

like a stack of disks), and then run your program by pressing F5. You can also run

the program by clicking the button on the toolbar that looks like a right-facing tri-

angle and resembles the Play button on a DVD (this button is called Start, and it

can also be found on the Debug menu). Learning the keyboard shortcuts will make

your development process move along faster, so I recommend you use them when-

ever possible.

When you run the program, the Visual C# interface changes, and the form you’ve

designed appears floating over the design environment (see Figure 1.14).

By the
Way

FIGURE 1.14
When in Run
mode, your pro-
gram executes
the same as it
would for an
end user.

28 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

You are now running your program as though it were a standalone application run-

ning on another user’s machine; what you see is exactly what users would see if

they ran the program (without the Visual Studio 2008 design environment in the

background, of course). Click the Select Picture button to display the Select Picture

dialog box (see Figure 1.15). Use the dialog box to locate a picture file. When you’ve

found a file, double-click it, or click once to select it and then click Open. The select-

ed picture is then displayed in the picture box, as shown in Figure 1.16.

When you click the Select Picture button, the default path shown depends on the
last active path in Windows, so it might be different for you than what is shown in
Figure 1.15.

By the
Way

FIGURE 1.15
The
OpenFileDialog
control handles
all the details of
browsing for
files. Cool, huh?

FIGURE 1.16
What could be
prettier than a
1964 Fender
Super Reverb
amplifier?

Q&A 29

If you want to select and display a picture from your digital camera, chances are
the format is JPEG, so you need to select this from the Files of Type drop-down.
Also, if your image is very large, you’ll see only the upper-left corner of the image
(what fits in the picture box). In later hours, I’ll show you how you can scale the
image to fit the picture box, and even resize the form to show a larger picture in
its entirety.

Summary
When you’re finished playing with the program, click the Quit button to return to

Design view.

That’s it! You’ve just created a bona fide Visual C# program. You’ve used the toolbox

to build an interface with which users can interact with your program, and you’ve

written code in strategic event handlers to empower your program to do things.

These are the basics of application development in Visual C#. This fundamental

approach is used to build even the most complicated programs; you build the inter-

face and add code to make the application do things. Of course, writing code to do

things exactly the way you want things done is where the process can get complicat-

ed, but you’re on your way.

If you take a close look at the organization of the hours in this book, you’ll see that

I start out by teaching you the Visual C# (Visual Studio 2008) environment. I then

move on to building an interface, and later I teach you all about writing code. This

organization is deliberate. You might be a little anxious to jump in and start writing

serious code, but writing code is only part of the equation—don’t forget the word

Visual in Visual C#. As you progress through the hours, you’ll be building a solid

foundation of development skills.

Soon, you’ll pay no attention to the man behind the curtain—you’ll be that man (or

woman)!

Q&A
Q. Can I show pictures of file types other than BMP and JPG?

A. Yes. The PictureBox control supports the display of images with the exten-

sions BMP, JPG, ICO, EMF, WMF, and GIF. The PictureBox control can even

save images to a file using any of the supported file types.

By the
Way

30 HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour

Q. Is it possible to show pictures in other controls?

A. PictureBox is the control to use when you are just displaying images.

However, many other controls enable you to display pictures as part of the

control. For instance, you can display an image on a button control by setting

the button’s Image property to a valid picture.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What type of Visual C# project creates a standard Windows program?

2. What window is used to change the attributes (location, size, and so on) of a

form or control in the IDE?

3. How do you access a control’s default event (code)?

4. What property of a picture box do you set to display an image?

5. What is the default event for a button control?

Answers
1. Windows Forms Application

2. The Properties window

3. Double-click the control in the designer

4. The Image property

5. The Click event

Exercises
1. Change your Picture Viewer program so that the user can also locate and select

GIF files. (Hint: Change the Filter property of the OpenFileDialog control.)

2. Create a new project with a new form. Create two buttons on the form, one

above the other. Next, change their position so that they appear next to each

other.

HOUR 2

Navigating Visual C# 2008

What You’ll Learn in This Hour:
. Navigating Visual C#
. Using the Visual Studio 2008 Start Page to open and create projects
. Showing, hiding, docking, and floating design windows
. Customizing menus and toolbars
. Using the toolbox to add controls to a form
. Using the Properties window to view and change object attributes
. Working with the many files that make up a project
. How to get help

The key to expanding your knowledge of Visual C# is to become as comfortable as possi-

ble—as quickly as possible—with the Visual C# design environment. Just as a carpenter

doesn’t think much about hammering a nail into a piece of wood, performing actions

such as saving projects, creating new forms, and setting object properties should become

second nature to you. The more comfortable you are with Visual C#’s tools, the more you

can focus your energies on what you’re creating with the tools.

In this hour, you’ll learn how to customize your design environment by moving, docking,

floating, hiding, and showing design windows, as well as how to customize menus and

toolbars. You’ll even create a new toolbar from scratch. After you’ve gotten acquainted

with the environment, I’ll teach you about projects and the files that they’re made of (tak-

ing you beyond what was briefly discussed in Hour 1, “Jumping In with Both Feet: A

Visual C# 2008 Programming Tour”), and I’ll introduce you to the design windows with

which you’ll work most frequently. Finally, I’ll show you how to get help when you’re

stuck.

32 HOUR 2: Navigating Visual C# 2008

Using the Visual C# 2008 Start Page
By default, the Visual C# 2008 Start Page shown in Figure 2.1 is the first thing you

see when you start Visual C# (if Visual C# isn’t running, start it now). The Visual C#

2008 Start Page is a gateway for performing tasks with Visual C#. From this page,

you can open previously edited projects, create new projects, and get help.

FIGURE 2.1
The Start Page
is the default
entry point for
all .NET lan-
guages.

Creating New Projects
The Start Page consists of three category boxes. The Recent Projects category in the

upper-left corner is used to create new projects or open projects already created. To

create new projects, click the Create: Project link in the Recent Projects category. This

opens the New Project dialog box shown in Figure 2.2. The Templates list varies

from machine to machine, depending on which products of the Visual Studio .NET

family are installed. Of course, we’re interested only in the Visual C# Project types in

this book.

You can create many types of projects with Visual C#, but this book focuses most-
ly on creating Windows Forms applications, the most common of the project types
and the primary application type of the Express Edition of Visual C# 2008. You
will learn about some of the other project types as well, but when you’re told to
create a new project, make sure that the Windows Forms Application icon is
selected unless you’re told otherwise.

By the
Way

Using the Visual C# 2008 Start Page 33

When you create a new project, be sure to enter a name for it in the Name text box

before clicking OK or double-clicking a Templates icon. This ensures that the project

is created with the proper path and filenames, eliminating work you would other-

wise have to do to change these values later. After you specify a name, you can cre-

ate the new project either by double-clicking the icon that represents the Template

type of project you want to create or by clicking the template icon once to select it

and then clicking OK. After you’ve performed either of these actions, the New

Project dialog box closes and a new project of the selected type is created.

When you first create a project, the project files are virtual—they haven’t been saved

to the hard drive. When you click Save or Save All for the first time, you are prompt-

ed to specify a path in which to save the project. The name you give your project is

used as its folder name by default, but the path chosen depends on the last project

you created. If you’re on a team of developers, you might choose to locate your proj-

ects on a shared drive so that others can access the source files.

You can create a new project at any time (not just when starting Visual C#) by
choosing File, New Project from the menu. When you create or open a new proj-
ect, the current project is closed. Visual C# asks whether you want to save any
changes to the current project before it closes it, however.

After you enter a project name and click OK, Visual C# creates the project. Again,

nothing is saved to the hard drive until you click Save or Save All on the toolbar (or

use the menu equivalent).

FIGURE 2.2
Use the New
Project dialog
box to create
Visual C# proj-
ects from
scratch.

By the
Way

34 HOUR 2: Navigating Visual C# 2008

Opening an Existing Project
Over time, you’ll open existing projects more often than you create new ones. There

are essentially two ways to open projects from the Visual Studio Start Page:

. If it’s a project you’ve recently opened, the project name appears in the Recent

Projects category toward the upper-left corner of the Start Page (as Picture

Viewer does in Figure 2.1). Because the name displayed for the project is the

one given when it was created, it’s important to give your projects descriptive

names. Clicking a project name opens the project. I’d venture to guess that

you’ll use this technique 95% of the time.

. To open a project for the first time (such as when opening sample projects),

click the Open Project link on the Visual C# 2008 Start Page. This displays a

standard dialog box that you can use to locate and select a project file.

As with creating new projects, you can open an existing project at any time, not
just when starting Visual C#, by selecting File, Open. Remember that opening a
project causes the current project to be closed. Again, if you’ve made changes to
the current project, you’ll get a chance to save them before the project is closed.

Navigating and Customizing the Visual
C# Environment
Visual C# lets you customize many of its interface elements such as windows and

toolbars, enabling you to be more efficient in the work that you do. Create a new

Windows application now by opening the File menu and clicking New Project. This

project illustrates manipulating the design environment, so name this project

Environment Tutorial and click OK to create the project. (This exercise doesn’t cre-

ate anything reusable, but it will help you learn how to navigate the design envi-

ronment.) Your screen should look like the one shown in Figure 2.3.

Your screen might not look exactly like that shown in Figure 2.3, but it’ll be close.
By the time you’ve finished this hour, you’ll be able to change the appearance of
the design environment to match this figure—or to any configuration you prefer.

By the
Way

By the
Way

Navigating and Customizing the Visual C# Environment 35

Working with Design Windows
Design windows, such as the Properties window and Solution Explorer shown in

Figure 2.3, provide functionality for building complex applications. Just as your desk

isn’t organized exactly like those of your coworkers, your design environment does

not have to be the same as anyone else’s either.

A design window can be placed into one of four primary states:

. Closed—The window is not visible.

. Floating—The window appears floating over the IDE.

. Docked—The window appears attached to an edge of the IDE.

. Automatically hidden—The window is docked, but it hides itself when not

in use.

Showing and Hiding Design Windows
When a design window is closed, it doesn’t appear anywhere. There is a difference

between being closed and being automatically hidden, as you’ll learn shortly. To

display a closed or hidden window, choose the corresponding menu item from the

View menu. For example, if the Properties window isn’t displayed in your design

environment, you can display it by choosing View, Properties Window from the

menu (or by pressing its keyboard shortcut—Ctrl+W, P). Whenever you need a

FIGURE 2.3
This is pretty
much how the
integrated
development
environment
(IDE) appears
when you
first install
Visual C#.

36 HOUR 2: Navigating Visual C# 2008

design window and can’t find it, use the View menu to display it. To close a design

window, click its Close button (the button on the right side of the title bar with the X

on it), just as you would to close an ordinary window.

Floating Design Windows
Floating design windows are visible windows that float over the workspace, as

shown in Figure 2.4. Floating windows are like typical application windows in that

you can drag them around and place them anywhere you please, even on other

monitors when you’re using a multiple-display setup. In addition to moving a float-

ing window, you can also change its size by dragging a border. To make a window

float, click on the title bar of the docked window and drag it away from the edge

that is currently docked.

FIGURE 2.4
Floating win-
dows appear
over the top of
the design envi-
ronment.

Docking Design Windows
Visible windows appear docked by default. A docked window appears attached to the

side, top, or bottom of the work area or to some other window. The Properties win-

dow in Figure 2.3, for example, is docked to the right side of the design environment

(contrast this to where it’s floating in Figure 2.4). To make a floating window

become a docked window, drag the title bar of the window toward the edge of the

design environment to which you want to dock the window. As you drag the

Navigating and Customizing the Visual C# Environment 37

window, guides appear on the screen (see Figure 2.5). If you move the mouse over

one of the icons that appear as part of the guide, Visual C# shows a blue rectangle

where the window will appear if you release the mouse button. This is a quick and

easy way to dock a window. You can also drag the window to an edge and get the

same blue rectangle. This rectangle “sticks” in a docked position. If you release the

mouse while the rectangle appears this way, the window is docked. Although diffi-

cult to explain, this is very easy to do.

You can size a docked window by dragging its edge opposite the side that’s
docked. If two windows are docked to the same edge, dragging the border
between them enlarges one while shrinking the other.

To try this, you need to float a window that’s already docked. To float a window, you

“tear” the window away from the docked edge by dragging the title bar of the

docked window away from the edge to which it’s docked. Note that this technique

doesn’t work if a window is set to Auto Hide (which is explained next). Try docking

and floating windows now by following these steps:

1. Ensure that the Properties window is currently displayed. (If it’s not, show it by

choosing Properties Window from the View menu.) Make sure that the

Properties window isn’t set to Auto Hide by right-clicking its title bar and dese-

lecting Auto Hide from the shortcut menu (if it’s selected).

2. Drag the title bar of the Properties window away from the docked edge (drag it

to the left). When the window is away from the docked edge, release the

mouse button. The Properties window should now float.

3. Dock the window once more by dragging the title bar of the window toward

the right edge of the design environment. When the guides appear, mouse

over the bottom icon (see Figure 2.5). You’ll see a blue rectangle appear where

the Properties window will be docked. Release the mouse button to dock the

window.

If you don’t want a floating window to dock, regardless of where you drag it, right-
click the title bar of the window and choose Floating from the context menu. To
allow the window to be docked again, right-click the title bar and choose Dockable.

By the
Way

Did you
Know?

38 HOUR 2: Navigating Visual C# 2008

Auto-Hiding Design Windows
Visual C# windows have the capability to auto-hide themselves when you’re not

using them. Although you might find this a bit disconcerting at first, after you get

the hang of things, this is a productive way to work: Your workspace is freed up, yet

design windows are available if you simply move the mouse. Windows that are set

to Auto Hide are always docked; you can’t set a floating window to Auto Hide.

When a window auto-hides, it appears as a vertical tab on the edge to which it’s

docked—much as minimized applications are placed in the Windows taskbar.

Look at the left edge of the design environment. Notice the vertical tab titled

Toolbox. This tab represents an auto-hidden window. To display an auto-hidden

window, move the pointer over the tab representing the window. When you move

the pointer over a tab, Visual C# displays the design window so that you can use its

features. When you move the pointer away from the window, the window automati-

cally hides itself—hence the name. To make any window hide itself automatically,

right-click its title bar and select Auto Hide from its shortcut menu. You can also

click the little picture of a pushpin appearing in the title bar next to the Close but-

ton to toggle the window’s Auto Hide state.

Using the techniques discussed so far, you can tailor the appearance of your design

environment in all sorts of ways. There is no one best configuration. You’ll find that

FIGURE 2.5
The Guide
Diamond icons
make it easy to
dock a window.

Working with Toolbars 39

different configurations work better for different projects and in different stages of

development. Sometimes when I’m designing the interface of a form, for example, I

want the toolbox to stay visible but out of my way, so I tend to make it float, or I

turn off its Auto Hide property and leave it docked to the left edge of the design

environment. However, after the majority of the interface elements have been added

to a form, I want to focus on code. Then I dock the toolbox and make it auto-hide

itself; it’s there when I need it, but it’s out of the way when I don’t. Don’t be afraid

to experiment with your design windows, and don’t hesitate to modify them to suit

your changing needs.

Working with Toolbars
Toolbars are the mainstay for performing functions quickly in almost every

Windows program (you’ll probably want to add them to your own programs at

some point, and in Hour 9, “Adding Menus and Toolbars to Forms,” you’ll learn

how). Every toolbar has a corresponding menu item, and buttons on toolbars are

essentially shortcuts to their corresponding menu items. To maximize your efficiency

when developing with Visual C# 2008, you should become familiar with the avail-

able toolbars. As your skills improve, you can customize existing toolbars and even

create your own toolbars to more closely fit the way you work.

Showing and Hiding Toolbars
Visual C# includes a number of built-in toolbars you can use when creating projects.

One toolbar is visible in most of the figures shown so far in this hour: the Standard

toolbar. You’ll probably want this toolbar displayed all the time.

The toolbars you’ll use most often as a new Visual C# developer are the Standard,

Text Editor, and Debug toolbars, and each of these is discussed in this hour. You can

also create your own custom toolbars to contain any functions you think necessary.

To show or hide a toolbar, open the View menu and click Toolbars to display a list of

available toolbars. Toolbars that are currently visible have a check mark displayed

next to them (see Figure 2.6). Click a toolbar name to toggle its visible state.

You can also right-click any visible toolbar to quickly access the list of available
toolbars.

Did you
Know?

40 HOUR 2: Navigating Visual C# 2008

Docking and Resizing Toolbars
Just as you can dock and undock Visual C#’s design windows, you can dock and

undock the toolbars. Unlike the design windows, however, Visual C#’s toolbars don’t

have a title bar that you can click and drag when they’re in a docked state. Instead,

each docked toolbar has a drag handle (a vertical stack of dots along its left edge). To

float (undock) a toolbar, click and drag the grab handle away from the docked edge.

When a toolbar is floating, it has a title bar, which you can drag to an edge to dock

the toolbar. This is the same technique you use to dock design windows.

A shortcut for docking a floating toolbar, or any other floating window, is to double-
click its title bar.

Although you can’t change the size of a docked toolbar, you can resize a floating

toolbar (a floating toolbar behaves like any other normal window). To resize a float-

ing toolbar, move the pointer over the edge you want to stretch, and then click and

drag to the border to change the toolbar’s size.

Adding Controls to a Form Using the
Toolbox
The IDE offers some fantastic tools for building a graphical user interface (GUI) for

your applications. Most GUIs consist of one or more forms (Windows) with various

FIGURE 2.6
Hide or show
toolbars to
make your work-
space more effi-
cient.

Did you
Know?

Adding Controls to a Form Using the Toolbox 41

elements on the forms, such as text boxes and list boxes. The toolbox is used to

place controls onto a form. Figure 2.7 shows the default toolbox you see when you

first open or create a Visual C# project. These controls are discussed in detail in Hour

7, “Working with Traditional Controls,” and Hour 8, “Using Advanced Controls.”

FIGURE 2.7
The standard
toolbox con-
tains many use-
ful controls you
can use to build
robust inter-
faces.

You can add a control to a form in one of four ways:

. In the toolbox, click the tool representing the control that you want to place

on a form, and then click and drag on the form where you want the control

placed; you’re essentially drawing the border of the control. The location at

which you start dragging is used for one corner of the control, and the point

at which you release the mouse button and stop dragging becomes the lower-

right corner.

. Double-click the desired control type in the toolbox. When you double-click a

control in the toolbox, a new control of the selected type is placed in the

upper-left corner of the form if the form is selected. If a control is selected

when you do this, the new control appears slightly to the right and down

from the selected control. The control’s height and width are set to the default

height and width of the selected control type. If the control is a runtime-only

control, such as the Open File Dialog control you used in Hour 1, it appears

below the form.

42 HOUR 2: Navigating Visual C# 2008

. Drag a control from the toolbox and drop it on a form. If you hover over the

form for a second, the toolbox disappears, and you can drop the control on

the form anywhere you want.

. Right-click an existing control and choose Copy; then right-click the form and

choose Paste to create a duplicate of the control.

If you prefer to draw controls on your forms by clicking and dragging, I strongly
suggest that you dock the toolbox to the right or bottom edge of the design envi-
ronment or float it. The toolbar tends to interfere with drawing controls when it’s
docked to the left edge because it covers part of the form.

The first item in each category in the toolbox, titled Pointer, isn’t actually a control.

When the pointer item is selected, the design environment is placed in a select mode

rather than in a mode to create a new control. With the pointer item selected, you

can click a control on the form to display all its properties in the Properties window.

Setting Object Properties Using the
Properties Window
When developing the interface of a project, you’ll spend a lot of time viewing and

setting object properties in the Properties window (see Figure 2.8). The Properties

window contains four items:

. An object drop-down list

. A list of properties

. A set of tool buttons used to change the appearance of the properties grid

. A section showing a description of the selected property

Did you
Know?

FIGURE 2.8
Use the
Properties win-
dow to view and
change proper-
ties of forms
and controls.

Setting Object Properties Using the Properties Window 43

Selecting an Object and Viewing Its Properties
The drop-down list at the top of the Properties window contains the name of the

form with which you’re currently working and all the objects on the form (the form’s

controls). To view the properties of a control, select it from the drop-down list or find

it on the form and click it. Remember that you must have the pointer item selected

in the toolbox to click an object to select it.

Viewing and Changing Properties
The first two buttons in the Properties window (Categorized and Alphabetic) enable

you to select the format in which you view properties. When you select the

Alphabetic button, the selected object’s properties appear in the Properties window

in alphabetical order. When you click the Categorized button, all the selected

object’s properties are listed by category. The Appearance category, for example,

contains properties such as BackColor and BorderStyle. When working with prop-

erties, select the view you’re most comfortable with and feel free to switch back and

forth between the views.

The Properties pane of the Properties window is used to view and set the properties

of a selected object. You can set a property in one of the following ways:

. Type in a value.

. Select a value from a drop-down list.

. Click a Build button for property-specific options.

Many properties can be changed by more than one of these methods. For exam-
ple, color properties supply a drop-down list of colors, but you can enter a numeric
color value as well.

To better understand how changing properties works, follow these steps:

1. Add a new text box to the form now by double-clicking the TextBox tool in

the toolbox. You’re now going to change a few properties of the new text box.

2. Select the (Name) property in the Properties window by clicking it. (If your

properties are alphabetic, it is at the top of the list, not with the N’s.) Type in a

name for the text box—call it txtComments.

3. Click the BorderStyle property and try to type in the word Big. You can’t; the

BorderStyle property supports only values selected from a list, though you

can type a value that exists in the list. When you select the BorderStyle

By the
Way

44 HOUR 2: Navigating Visual C# 2008

property, a drop-down arrow appears in the value column. Click this arrow

now to display a list of the values that the BorderStyle property accepts.

Select FixedSingle and notice how the appearance of the text box changes.

To make the text box appear three-dimensional again, open the drop-down

list and select Fixed3D.

If you are running your display using the Windows XP Theme on XP or under Vista,
controls don’t take on a 3D appearance—they appear flat with a light blue border.
I’m a big fan of this newer interface, and all the figures in this book were captured
running with themes enabled on Vista.

4. Select the BackColor property, type the word guitar, and press the Tab key to

commit your entry. Visual C# displays a message telling you the property value

isn’t valid. This happens because although you can type in text, you’re restricted

to entering specific values. In the case of BackColor, the value must be a

named color or a number that forms an RGB value (Red, Green, Blue). For

example, to change the BackColor to blue, you could use the value 0,0,255 (0

red, 0 green, and full blue). Clear out the text and then click the drop-down

arrow of the BackColor property and select a color from the drop-down list.

(Selecting colors in the color palette is discussed later in this hour, and detailed

information on using colors is provided in Hour 18, “Working with Graphics”).

5. Select the Font property. Notice that a Build button appears (a small button

with three dots on it). When you click the Build button, a dialog box specific

to the property you’ve selected appears. In this instance, a dialog box that

enables you to manipulate the font of the text box appears (see Figure 2.9).

Different properties display different dialog boxes when you click their Build

buttons. Feel free to change the font and then close the window.

By the
Way

FIGURE 2.9
The Font dialog
box enables you
to change the
appearance of
text in a control.

Setting Object Properties Using the Properties Window 45

6. Scroll down to the Size property and notice that it has a plus sign next to it.

This indicates that the property has one or more subproperties. Click the plus

sign to expand the property, and you’ll see that Size is composed of Width

and Height.

By simply clicking a property in the Properties window, you can easily tell the type

of input the property requires.

Working with Color Properties
Properties that deal with colors are unique in the way in which they accept values,

yet all color-related properties behave the same way. In Visual C#, colors are

expressed as a set of three numbers, each number having a value from 0 to 255. A

given set of numbers represents the red, green, and blue (RGB) components of a

color, respectively. The value 0,255,0, for example, represents pure green, whereas

the value 0,0,0 represents black and 255,255,255 represents white. In some cases,

colors have also been given specific names that you can use. (See Hour 18 for more

information on the specifics of working with color.)

A color rectangle is displayed for each color property in the Properties window; this

color is the selected color for the property. Text is displayed next to the colored rec-

tangle. This text is either the name of a color or a set of RGB values that define the

color. Clicking in a color property causes a drop-down arrow to appear, but the

drop-down you get by clicking the arrow isn’t a typical drop-down list. Figure 2.10

shows what the drop-down list for a color property looks like.

FIGURE 2.10
The color drop-
down list
enables you to
select from
three sets of
colors.

46 HOUR 2: Navigating Visual C# 2008

The color drop-down list is composed of three tabs: Custom, Web, and System. Most

color properties use a system color by default. Hour 5, “Building Forms—The Basics,”

goes into great detail on system colors. I only want to mention here that system col-

ors vary from computer to computer; they’re determined by the user when he right-

clicks the desktop and chooses Properties from the desktop’s shortcut menu. Use a

system color when you want a color to be one of the user’s selected system colors.

When a color property is set to a system color, the name of the system color appears

in the property sheet.

The Custom tab, shown in Figure 2.11, is used to specify a specific color, regardless

of the user’s system color settings; changes to system colors have no effect on the

property. The most common colors appear on the palette of the Custom tab, but you

can specify any color you want.

FIGURE 2.11
The Custom tab
of the color
drop-down list
lets you specify
any color imagi-
nable.

The colors visible in the various palettes are limited by the number of colors that
can be produced by your video card. If your video card doesn’t support enough
colors, some appear dithered, which means they appear as dots of colors rather
than as a true, solid color. Keep this in mind as you develop your applications:
What looks good on your computer might turn to mush if a user’s display isn’t as
capable.

The bottom two rows in the Custom color palette are used to mix your own colors.

To assign a color to an empty color slot, right-click a slot in one of the two rows to

access the Define Color dialog box (see Figure 2.12). Use the controls on the Define

Color dialog box to create the color you want, and then click Add Color to add the

color to the color palette in the slot you selected. In addition, the custom color is

automatically assigned to the current property.

The Web tab is used in web applications to pick from a list of browser-safe colors.

You can, however, use these colors even if you’re not creating a web application.

By the
Way

Managing Projects 47

Viewing Property Descriptions
It’s not always immediately apparent just exactly what a property is or does—espe-

cially for new users of Visual C#. The Description section at the bottom of the

Properties window shows a simple description of the selected property. To view a

description, click a property or value area of a property. For a more complete

description of a property, click it once to select it and then press F1 to display Help

about the property.

You can hide or show the Description section of the Properties window at any time

by right-clicking anywhere within the Properties window (other than in the value

column or on the title bar) to display the Properties window shortcut menu and

choosing Description. Each time you do this, you toggle the Description section

between visible and hidden. To change the size of the Description box, click and

drag the border between it and the Properties pane.

Managing Projects
Before you can effectively create an interface and write code, you need to under-

stand what makes up a Visual C# 2008 project and how to add and remove various

components within your own projects. In this section, you’ll learn about the Solution

Explorer window and how it’s used to manage project files. You’ll also learn specifics

about projects and project files, including how to change a project’s properties.

FIGURE 2.12
The Define
Color dialog box
enables you to
create your own
colors.

48 HOUR 2: Navigating Visual C# 2008

Managing Project Files with the Solution Explorer
As you develop projects, they’ll become more and more complex, often containing

many objects such as forms and modules (grouped sets of code). Each object is

defined by one or more files on your hard drive. In addition, you can build complex

solutions composed of more than one project. The Solution Explorer window shown

in Figure 2.13 is the tool for managing all the files in a simple or complex solution.

Using the Solution Explorer, you can add, rename, and remove project files, as well

as select objects to view their properties. If the Solution Explorer window isn’t visible

on your screen, show it now by choosing View, Solution Explorer from the menu.

FIGURE 2.13
Use the
Solution
Explorer window
to manage all
the files that
make up a
project.

To better understand the Solution Explorer window, follow these steps:

1. Locate the Picture Viewer program you created in the Quick Tour by choosing

Open Project on the File menu.

2. Open the Picture Viewer project. The file you need to select is located in the

Picture Viewer folder that Visual C# created when the project was constructed.

The file has the extension .sln (for Visual C# Solution). If you’re asked

whether you want to save the current project, choose No.

3. Select the Picture Viewer project item in the Solution Explorer. When you do, a

button becomes visible toward the top of the window. This button has a pic-

ture of pieces of paper and has the ToolTip Show All Files (see Figure 2.14).

Click this button and the Solution Explorer displays all files in the project.

Your Solution Explorer should now look like the one in Figure 2.14. Be sure to widen

the Solution Explorer window so that you can read all the text it contains.

Managing Projects 49

Some forms and other objects might be composed of more than one file. By
default, Visual C# hides project files that you don’t directly manipulate. Click the
plus sign (+) next to the ViewerForm.cs form item, and you’ll see subitems titled
ViewerForm.resx and ViewerForm.Designer.cs. You’ll learn about these addi-
tional files in Hour 5. For now, click the Show All Files button again to hide these
related files.

By the
Way

FIGURE 2.14
Notice that the
form you
defined appears
as two files in
the Solution
Explorer.

You can view any object listed within the Solution Explorer in the object’s default

viewer by double-clicking the object. Each object has a default viewer but might

actually have more than one viewer. For instance, a form has a Form Design view

as well as a Code view. By default, double-clicking a form in the Solution Explorer

displays the form in Form Design view, where you can manipulate the form’s

interface.

You’ve already learned one way to access the code behind a form: double-click an

object to access its default event handler. You’ll frequently need to get to the code of

a form without adding a new event handler. One way to do this is to use the

Solution Explorer. When a form is selected in the Solution Explorer, buttons are visi-

ble at the top of the Solution Explorer window that can be used to display the code

editor or the form designer, respectively.

You’ll use the Solution Explorer window so often that you’ll probably want to dock it

to an edge and set it to Auto Hide, or perhaps keep it visible all the time. The

Solution Explorer window is one of the easiest to get the hang of in Visual C#, and

navigating the Solution Explorer window will be second nature to you before you

know it.

Working with Solutions
A project is what you create with Visual C#. Often, the words project and program

are used interchangeably, and this isn’t much of a problem if you understand the

important distinctions. A project is the set of source files that make up a program or

50 HOUR 2: Navigating Visual C# 2008

component, whereas a program is the binary file that you build by compiling source

files into something such as a Windows executable file (.exe). Projects always con-

sist of a main project file and can be made up of any number of other files, such as

form files or class module files. The main project file stores information about the

project—all the files that make up the project, for example—as well as properties

that define aspects of a project, such as the parameters to use when the project is

compiled into a program.

What, then, is a solution? As your abilities grow and your applications increase in

complexity, you’ll find that you have to build multiple projects that work harmo-

niously to accomplish your goals. For instance, you might build a custom user con-

trol such as a custom data grid that you use within other projects you design, or you

might isolate the business rules of a complex application into separate components

to run on isolated servers. All the projects used to accomplish those goals are collec-

tively called a solution. Therefore, a solution (at its most basic level) is really nothing

more than a grouping of projects. By default, when you save a project, Visual C#

creates a solution for the project. When you open the solution file, as you did in this

example, all projects in the solution get loaded. If the solution contains only one

project, then opening the solution is pretty much the same as opening that single

project.

You should group projects into a single solution only when the projects relate to
one another. If you’re working on a number of projects, but each of them is
autonomous, work with each project in a separate solution.

Understanding Project Components
As I stated earlier, a project always consists of a main project file, and it might con-

sist of one or more secondary files, such as files that make up forms or code mod-

ules. As you create and save objects within your project, one or more corresponding

files are created and saved on your hard drive. Each file that’s created for a Visual

C# source object has the extension .cs, denoting that it defines a Visual C# object.

Make sure that you save your objects with understandable names, or things will get

confusing as the size of your project grows.

All files that make up a project are text files. Some objects need to store binary

information, such as a picture for a form’s BackgroundImage property. Binary data

is stored in an XML file (which is still a text file). Suppose that you had a form with

an icon on it. You’d have a text file defining the form (its size, the controls on it,

and the code behind it), and an associated resource file with the same name as the

form file but with the extension .resx. This secondary file would be in XML format

and would contain all the binary data needed to create the form.

Did you
Know?

Managing Projects 51

If you want to see what the source file of a form file looks like, use Notepad to
open one on your computer. Don’t save any changes to the file, however, or it
might never work again (</insert evil laugh here/>).

The following is a list of some of the components you might use in your projects:

. Class modules—A class module is a special type of module that enables you

to create object-oriented applications. Throughout the course of this book,

you’re learning how to program in an object-oriented language, but you’re

mostly learning how to use objects supplied by Visual C#. In Hour 16,

“Designing Objects Using Classes,” you’ll learn how to use class modules to

create your own objects.

. Forms—Forms are the visual windows that make up your application’s inter-

face. Forms are defined in a special type of class module.

. User controls—User controls (formerly ActiveX controls, which themselves are

formerly OLE controls) are controls that can be used on the forms of other

projects. For example, you could create a user control with a calendar inter-

face for a contact manager. Creating user controls requires the skill of an

experienced programmer, so I don’t cover them in this book.

Setting Project Properties
Visual C# projects have properties, just as other objects such as controls do. Projects

have many properties, many of them relating to advanced functionality not covered

in this book. You need to be aware of how to access project properties, however, and

how to change some of the more commonly used properties.

To access the properties for a project, right-click the project name (Picture Viewer) in

the Solution Explorer window and choose Properties from the shortcut menu. You

could also double-click the project name in the Solution Explorer to accomplish the

same goal. Perform one of these actions now.

The properties for a project are presented as a set of vertical tabs (see Figure 2.15).

As you work through the hours in this book, I’ll refer to the Project Properties dialog

box as necessary, explaining pages and items in context with other material. Feel

free to take a look at your Picture Viewer properties, but don’t change any at this

time. You can close the Project Properties by clicking the small X in the upper-right

corner of the tab section in the IDE. You can also just click a different tab.

By the
Way

52 HOUR 2: Navigating Visual C# 2008

Adding and Removing Project Files
When you first start Visual C# 2008 and create a new Windows Application project,

Visual C# creates the project with a single form. You’re not limited to having one

form in a project, however; you can create new forms or add existing forms to your

project at will (feeling powerful yet?). You can also create and add class modules as

well as other types of objects.

You can add a new or existing object to your project in one of three ways:

. Choose the appropriate menu item from the Project menu.

. Click the small drop-down arrow that’s part of the Add New Item button on

the Standard toolbar, and then choose the object type from the drop-down list

that displays (see Figure 2.16).

. Right-click the project name in the Solution Explorer window and then choose

Add from the shortcut menu to access a submenu from which you can select

object types.

FIGURE 2.15
The Project
Properties are
used to tailor
the project as a
whole.

FIGURE 2.16
This tool button
drop-down is
one of three
ways to add
objects to a
project.

A Quick-and-Dirty Programming Primer 53

When you select Add ObjectType from any of these menus, a dialog box appears,

showing you the objects that can be added to the project. Your chosen item type is

selected by default (see Figure 2.17). Simply name the object and click Open to cre-

ate a new object of the selected type. To create an object of a different type, click the

type to select it, name it, and then click Open.

FIGURE 2.17
Regardless of
the menu option
you select, you
can add any
type of object
you want in this
dialog box.

Adding new forms and modules to your project is easy, and you can add as many

as you want. You’ll come to rely on the Solution Explorer more and more to manage

all the objects in the project as the project becomes more complex.

Although it won’t happen as often as adding project files, you might sometimes

need to remove an object from a project. Removing objects from your project is even

easier than adding them. To remove an object, right-click the object in the Solution

Explorer window and select Delete. This not only removes the object from the proj-

ect, it also deletes the source file from the disk!

A Quick-and-Dirty Programming Primer
Programming is complicated. Everything is so interrelated that it’s difficult, if not

impossible, to isolate each programming concept and then present the material in a

linear fashion. Instead, while learning one subject, you often have to touch on ele-

ments of another subject before you’ve had a chance to learn about the secondary

topic. I’ve made every effort to avoid such forward references, but there are some

concepts with which you’ll need to be at least slightly familiar before proceeding.

You’ll learn the guts of each of these topics in their respective lessons, but you need

to have at least heard of them before digging any deeper into this book.

54 HOUR 2: Navigating Visual C# 2008

Storing Values in Variables
A variable is an element in code that holds a value. You might create a variable that

holds the name of a user or the perhaps the user’s age, for example. Each variable

(storage entity) must be created before it can be used. The process of creating a vari-

able is known as declaring a variable. In addition, each variable is declared to hold

data of a specific type, such as text (called a string) for a person’s name or a number

for a person’s age. An example of a variable declaration is

string strFirstName;

This statement creates a variable called strFirstName. This variable is of type

String, which means it can hold any text that you choose to put into it. The con-

tents of a variable can be changed as often as desired.

The key primer point to remember: Variables are storage locations that must be

declared before use and that hold a specific type of data.

Using Procedures to Write Functional Units of
Code
When you write Visual C# code, you place the code in a procedure. A procedure is a

group of code statements that perform a specific function. You can call a procedure

from code in another procedure. For example, you might create one procedure that

totals the items on an order and another procedure that calculates the tax on the

entire sale. There are two types of procedures: procedures that don’t return values

and procedures that do return values. In addition, some procedures allow data to be

passed to them. For example, the tax calculation procedure mentioned previously

might allow a calling statement to pass a monetary total into the procedure and

then use that total to calculate tax. When a procedure accepts data from the calling

code, the data is called a parameter. Procedures don’t have to accept parameters.

A procedure that doesn’t return a value is declared using the keyword void, and

looks like this:

public void MyProcedure()
{

// The procedure’s code goes here.
}

Notice the beginning and ending braces—all Visual C# procedures use them to sur-

round the procedure’s code.

Getting Help 55

A procedure that returns a value is declared with a return data type specified before

the procedure name, which denotes the type of data returned by the procedure:

public string AuthorName()
{

return “James”;
}

Notice the word string. This is a data type. In this example, the function returns

text (the name “James”), which is a string.

If a procedure accepts a parameter, it is enclosed in the parentheses, like this:

public string AuthorName(string BookName)
{

// procedure code goes here
}

MessageBox.Show()
You’re almost certainly familiar with the Windows message box—it’s the little dialog

box used to display text to a user (see Figure 2.18). Visual C# 2008 provides a way to

display such messages using a single line of code: the MessageBox.Show() state-

ment. The following is a MessageBox.Show() statement in its most basic form:

MessageBox.Show(“Text to display goes here”);

FIGURE 2.18
Visual C#
makes it easy
to display sim-
ple message
boxes like this.

You’ll use message boxes throughout this book, and you’ll learn about them in

detail in Hour 17, “Interacting with Users.”

Getting Help
Although Visual C# was designed to be as intuitive as possible, you’ll find that you

occasionally need assistance in performing a task. In all honesty, Visual C# isn’t

very intuitive—with all the power and flexibility come complexity. It doesn’t matter

how much you know, Visual C# is so complex and contains so many features that

you’ll have to use Help at times. This is particularly true when writing Visual C#

56 HOUR 2: Navigating Visual C# 2008

code; you won’t always remember the command you need or the syntax of a com-

mand. Fortunately, Visual C# includes a comprehensive Help feature. Unfortunately,

it’s not as complete as it could be.

To access Help from within the design environment, press F1. Generally, when you

press F1, Visual C# shows you a Help topic directly related to what you’re doing.

This is known as context-sensitive help, and when it works, it works well. For example,

you can display help for any Visual C# syntax or keyword (functions, objects, meth-

ods, properties, and so on) when writing Visual C# code by typing the word into the

code editor, positioning the cursor anywhere within the word (including before the

first letter or after the last), and pressing F1. You can also get to Help from the Help

menu on the menu bar.

If your project is in Run mode, Visual C#’s Help isn’t displayed when you press F1.
Instead, the Help for your application appears—if you’ve created Help.

Summary
In this hour, you learned how to use the Visual C# Start Page—your gateway to

Visual C# 2008. You learned how to create new projects and how to open existing

projects. The Visual C# environment is your workspace, toolbox, and so much more.

You learned how to navigate this environment, including how to work with design

windows (hide, show, dock, and float).

Visual C# has many different design windows, and in this hour, you began learning

about some of them in detail. You learned how to get and set properties in the

Properties window, how to manage projects with the Solution Explorer, and how to

add controls to a form with the toolbox. You’ll use these skills often, so it’s important

to get familiar with them right away. Finally, you learned how to access Visual C#’s

Help feature, which I guarantee you’ll find important as you learn to use Visual C#.

Visual C# 2008 is a vast and powerful development tool—far more powerful than

any version that’s come before it. Don’t expect to become an expert overnight; that’s

simply impossible. However, by learning the tools and techniques presented in this

hour, you’ve begun your journey. Remember, you’ll use most of what you learned in

this hour each time you use Visual C#. Get proficient with these basics, and you’ll be

building useful programs in no time!

By the
Way

Workshop 57

Q&A
Q. How can I easily get more information about a property when the

Description section of the Properties window just doesn’t cut it?

A. Click the property in question to select it, and then press F1—context-sensitive

help applies to properties in the Properties window, as well.

Q. I find that I need to see a lot of design windows at one time, but I can’t find
that “magic” layout. Any suggestions?

A. Run at a higher resolution. Personally, I won’t develop in less than 1024×768.

As a matter of fact, all my development machines have two displays, both

running at 1152×864. You’ll find that any investment you make in having

more screen real estate will pay you big dividends.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. Unless instructed otherwise, you’re to create what type of project when build-

ing examples in this book?

2. To make a docked design window appear when you hover over its tab and dis-

appear when you move the mouse away from it, you change what setting of

the window?

3. What design window do you use to add controls to a form?

4. What design window is used to change an object’s attributes?

5. To modify a project’s properties, you must select the project in what design

window?

6. Which Help feature adjusts the links it displays to match what you are doing?

Answers
1. Windows Forms Application

2. Its Auto Hide settings

58 HOUR 2: Navigating Visual C# 2008

3. The toolbox

4. The Properties window

5. The Solution Explorer window

6. Dynamic Help

Exercises
1. Use the Custom Color dialog box to create a color of your choice and then

assign the color to a form’s BackColor property.

2. Move the toolbox to the right side of the IDE and dock it there. Make it Auto

Hide. When you’re finished, move it back.

HOUR 3

Understanding Objects and
Collections

What You’ll Learn in This Hour:
. Understanding objects
. Getting and setting properties
. Triggering methods
. Understanding method dynamism
. Writing object-based code
. Understanding collections
. Using the Object Browser

In Hour 1, “Jumping In with Both Feet: A Visual C# 2008 Programming Tour,” you were

introduced to programming in Visual C# by building a Picture Viewer project. You then

spent Hour 2, “Navigating Visual C# 2008,” digging into the integrated development envi-

ronment (IDE) and learning skills critical to your success with Visual C#. In this hour,

you’re going to start learning about an important programming concept, namely objects.

The term object as it relates to programming might have been new to you prior to this

book. The more you work with Visual C#, the more you’ll hear about objects. Visual C#

2008, unlike its early predecessors, is a true object-oriented language. This hour isn’t going

to discuss object-oriented programming in any detail—object-oriented programming is a

complex subject and well beyond the scope of this book. Instead, you’ll learn about objects

in a more general sense.

Everything you use in Visual C# is an object, so understanding this material is critical to

your success with Visual C#. For example, forms are objects, as are the controls you place

on a form; pretty much every element of a Visual C# project is an object and belongs to a

collection of objects. All objects have attributes (called properties), most have methods, and

60 HOUR 3: Understanding Objects and Collections

many have events. Whether creating simple applications or building large-scale

enterprise solutions, you must understand what an object is and how it works to be

successful. In this hour, you’ll learn what makes an object an object, and you’ll also

learn about collections.

If you’ve listened to the programming press at all, you’ve probably heard the term
object-oriented, and perhaps words such as polymorphism, encapsulation, and
inheritance. In truth, these object-oriented features of Visual C# are exciting, but
they’re far beyond Hour 3 (or Hour 24, for that matter). You’ll learn a little about
object-oriented programming in this book, but if you’re really interested in taking
your programming skills to the next level, you should buy a book dedicated to the
subject after you’ve completed this book.

Understanding Objects
Object-oriented programming has been a technical buzzword for quite some time.

Almost everywhere you look—the web, publications, books—you read about objects.

What exactly is an object? Strictly speaking, an object is a programming structure

that encapsulates data and functionality as a single unit and for which the only

public access is through the programming structure’s interfaces (properties, methods,

and events). In reality, the answer to this question can be somewhat ambiguous

because there are so many types of objects—and the number grows almost daily. All

objects share specific characteristics, however, such as properties and methods.

The most commonly used objects in Visual C# are the form object and the control

object. Earlier hours introduced you to working with forms and controls and even

showed you how to set form and control properties. In your Picture Viewer project

from Hour 1, for example, you added a picture box and two buttons to a form. Both

the PictureBox and the Button controls are control objects, but each is a specific

type of control object. Another, less-technical example uses pets. Dogs and cats are

definitely different entities (objects), but they both fit into the category of Pet objects.

Similarly, text boxes and buttons are each unique types of objects, but they’re both

considered control objects. This small distinction is important.

Understanding Properties
All objects have attributes used to specify and return the state of the object. These

attributes are properties, and you’ve already used some of them in previous hours in

the Properties window. Indeed, every object exposes a specific set of properties, but

not every object exposes the same set of properties. To illustrate this point, I’ll

By the
Way

Understanding Properties 61

continue with the hypothetical Pet object. Suppose that you have an object, and the

object is a dog. This Dog object has certain properties common to all dogs. These

properties include attributes such as the dog’s name, the color of its hair, and even

the number of legs it has. All dogs have these same properties; however, different

dogs have different values for these properties. Figure 3.1 illustrates such a Dog

object and its properties.

Dog Object

Properties

Name

Sex

Weight

HairColor

NumberofLegs

FIGURE 3.1
Properties are
the attributes
that describe an
object.

Getting and Setting Properties
You’ve already seen how to read and change properties in the Properties window.

The Properties window is available only at design time, however, and is used only

for manipulating the properties of forms and controls. Most getting and changing of

properties you’ll perform will be done with Visual C# code, not by in the Properties

window. When referencing properties in code, you specify the name of the object

first, followed by a period (.), and then the property name as in the following syntax:

{ObjectName}.{Property}

If you had a button object named btnClickMe, for example, you would reference

button’s Text property this way:

btnClickMe.Text

This line of code would return whatever value was contained in the Text property of

the button object btnClickMe. To set a property to some value, you use an equal

sign (=). To change the Button object’s Left property, for example, you’d use a line

of code such as the following:

btnClickMe.Left = 90;

62 HOUR 3: Understanding Objects and Collections

The following line of code places the value of the Text property of the button object

called btnClickMe into a temporary variable. This statement retrieves the value of

the Text property because the Text property is referenced on the right side of the

equal sign.

strText = btnClickMe.Text;

Variables are discussed in detail in Hour 11, “Using Constants, Data Types,

Variables, and Arrays.” For now, think of a variable as a storage location. When the

processor executes this statement, it retrieves the value in the Text property of the

button object and places it in the variable (storage location) titled strText.

Assuming that the button’s Text property is “Click Me”, the computer would

process the code statement like this:

strText = “Click Me”;

Just as in real life, some properties can be read but not changed. Think back to the

hypothetical pet object, and suppose that you have a Sex property to designate the

gender of a Dog object. It’s impossible for you to change a dog from a male to a

female or vice versa (at least I think it is). Because the Sex property can be retrieved

but not changed, it’s known as a read-only property. You’ll often encounter proper-

ties that can be set in Design view but become read-only when the program is

running.

One example of a read-only property is the Height property of the combo box con-

trol. Although you can view the value of the Height property in the Properties win-

dow, you can’t change the value—no matter how hard you try. If you attempt to use

Visual C# code to change the Height property, Visual C# simply changes the value

back to the default—eerie gremlins.

The best way to determine which properties of an object are read-only is to con-
sult the online help for the object in question.

Working with an Object and Its Properties
Now that you know what properties are and how they can be viewed and changed,

you’re going to experiment with properties by modifying the Picture Viewer project

you built in Hour 1. Recall from Hour 1 how you learned to set the Height and

Width properties of a form in the Properties window. Here, you’re going to change

the same properties with Visual C# code.

By the
Way

Understanding Properties 63

You’re going to add two buttons to your Picture viewer. One button enlarges the

form when clicked, whereas the other shrinks the form. This is a simple example,

but it illustrates well how to change object properties in Visual C# code.

Start by opening your Picture Viewer project from Hour 1 (you can open the project

or the solution file). If you download the code samples from my site, use the ending

project from Hour 1.

When the project first runs, the form has the Height and Width you specified in the

Properties window. You’re going to add buttons to the form that a user can click to

enlarge or shrink the form at runtime by following these steps:

1. Double-click ViewerForm.cs in the Solution Explorer window to display the

form designer.

2. Add a new button to the form by double-clicking the Button tool in the tool-

box. Set the new button’s properties as follows:

Property Set To

Name btnEnlarge

Location 338, 261

Size 21, 23

Text ^ (Note, this is Shift+6)

3. Now for the Shrink button. Again, double-click the Button tool in the toolbox

to create a new button on the form. Set this new button’s properties as follows:

Property Set To

Name btnShrink

Location 365,261

Size 21, 23

Text v

Your form should now look like the one shown in Figure 3.2.

To complete the project, you need to add the small amount of Visual C# code

necessary to modify the form’s Height and Width properties when the user

clicks a button.

4. Access the code for the Enlarge button now by double-clicking the button with

the text ^. Type the following statement exactly as you see it here. Do not

press the Enter key or add a space after you’ve entered this text.

this.Width

64 HOUR 3: Understanding Objects and Collections

When you type the period, or dot, as it’s called, a small drop-down list like the

one shown in Figure 3.3 appears. Visual C# is smart enough to realize that

this represents the current form (more on this in a moment), and to aid you

in writing code for the object, it gives you a drop-down list containing all the

properties and methods of the form. This feature is called IntelliSense. When

an IntelliSense drop-down box appears, you can use the up and down arrow

keys to navigate the list and press Tab to select the highlighted list item. This

prevents you from misspelling a member name, thereby reducing compile

errors. Because Visual C# is fully object-oriented, you’ll come to rely on

IntelliSense drop-down lists in a big way; I think I’d rather dig ditches than

program without them.

FIGURE 3.2
Each button is
an object, as is
the form on
which the
buttons sit.

FIGURE 3.3
IntelliSense
drop-down lists
(also called
auto-completion
drop-down lists)
make coding
dramatically
easier.

Understanding Properties 65

5. Use the Backspace key to completely erase the code you just entered and enter

the following code in its place (press Enter at the end of each line):

this.Width = this.Width + 20;

this.Height = this.Height + 20;

Notice that all Visual C# statements end with a semicolon. This semicolon is
required, and it lets the Visual C# compiler know that it has reached the end of a
statement.

Remember from before that the word this refers to the object to which the

code belongs (in this case, the form). this is a reserved word; it’s a word that

you can’t use to name objects or variables because Visual C# has a specific

meaning for it. When writing code within a form module, as you’re doing

here, always use the reserved word this rather than the name of the form.

Using this is much shorter than using the full name of the current form, and

it makes the code more portable (you can copy and paste the code into anoth-

er form module and not have to change the form name to make the code

work). Also, should you change the name of the form at any time in the

future, you won’t have to change references to the old name.

The code you’ve entered does nothing more than set the Width and Height

properties of the form to whatever the current value of the Width and Height

properties happens to be, plus 20 pixels.

6. Redisplay the form designer by selecting the tab named ViewerForm.cs

[Design] at the top of the designer window. Then double-click the button with

the caption v to access its Click event and add the following code:

this.Width = this.Width – 20;

this.Height = this.Height – 20;

This code is similar to the code in the btnEnlarge_Click event, except that it

reduces the Width and Height properties of the form by 20 pixels. Your screen

should now look like Figure 3.4.

As you create projects, it’s a good idea to save frequently. When an asterisk
appears to the right of a tab’s caption, it’s there to tell you that the file edited
within that tab has been changed but not saved. Save your project now by clicking
the Save All button on the toolbar.

By the
Way

Did you
Know?

66 HOUR 3: Understanding Objects and Collections

Once again, display the form designer by clicking the tab ViewerForm.cs [Design].

Your Properties Example project is now ready to be run! Press F5 to put the project in

Run mode. Before continuing, click the Select Picture button and choose a picture

from your hard drive.

Next, click the ^ button a few times and notice how the form gets bigger (see

Figure 3.5) .

FIGURE 3.4
The code you’ve
entered should
look exactly like
this.

FIGURE 3.5
What you see is
what you get—
the form you
created should
look just as you
designed it.

Understanding Methods 67

Next, click the v button to make the form smaller. When you’ve clicked enough to

satisfy your curiosity (or until you get bored), end the running program and return

to Design mode by clicking the Stop Debugging button on the toolbar.

Did you notice how the buttons and the image on the form didn’t resize as the

form’s size was changed? In Hour 6, “Building Forms—Advanced Techniques,” you’ll

learn how to make your forms resize their contents.

Understanding Methods
In addition to properties, most objects have methods. Methods are actions the object

can perform, in contrast to attributes that describe the object. To understand this dis-

tinction, think about the Pet object example. A Dog object has a certain set of

actions that it can perform. These actions, called methods in Visual C#, include

barking, tail wagging, and chewing carpet (don’t ask). Figure 3.6 illustrates the Dog

object and its methods.

Dog Object

Methods

Bark

WagTail

Eat

Walk

Fetch

FIGURE 3.6
Invoking a
method causes
the object to
perform an
action.

Triggering Methods
Think of methods as functions—which is exactly what they are. When you invoke a

method, code is executed. You can pass data to a method, and methods can return

values. However, a method is neither required to accept parameters (data passed to it

by the calling code) nor to return a value; many methods simply perform an action

in code. Invoking (triggering) a method is similar to referencing the value of a prop-

erty: You first reference the object’s name, and then a dot, and then the method

name as shown next:

{ObjectName}.{Method}

68 HOUR 3: Understanding Objects and Collections

For example, to make the hypothetical Dog object Bruno bark using Visual C# code,

you would use this line of code:

Bruno.Bark();

Method calls in Visual C# must always have parentheses. Sometimes they’ll be
empty, but at other times they’ll contain data to pass to the method.

Methods are generally used to perform an action using an object, such as saving
or deleting a record in a database. Properties, on the other hand, are used to get
and set attributes of the object. One way to tell in code whether a statement is a
property reference or method call is that a method call will have a set of parenthe-
ses after it, as in AlbumForm.ShowDialog();.

Invoking methods is simple; the real skill lies in knowing what methods an object

supports and when to use a particular method.

Understanding Method Dynamism
Properties and methods go hand in hand, and at times a particular method might

become unavailable because of one or more property values. For example, if you

were to set the NumberofLegs property on the Dog object Bruno equal to zero, the

Walk() and Fetch() methods would obviously be inapplicable. If you were to set

the NumberofLegs property back to four, you could then trigger the Walk() or

Fetch() method again.

Building a Simple Object Example
Project
The only way to really grasp what objects are and how they work is to use them.

Every project you’ve built so far uses objects, but you’re now going to create a sam-

ple project that specifically illustrates using objects. If you’re new to programming

with objects, you’ll probably find this a bit confusing. However, I’ll walk you

through step-by-step, explaining each section in detail.

You’re going to modify your Picture Viewer project to include a button that, when

clicked, draws a colored border around the picture.

Creating the Interface for the Drawing Project
Continuing on with the Picture Viewer project you’ve been using in this chapter, add

a new button to the form and set its properties as shown in the following table:

By the
Way

Building a Simple Object Example Project 69

Property Value

Name btnDrawBorder

Location 295, 69

Size 85, 23

Text Draw Border

Writing the Object-Based Code
You’re now going to add code to the Click event of the button. I’m going to explain

each statement, and at the end of the steps, I’ll show the complete code listing.

1. Double-click the Draw Border button to access its Click event.

2. Enter the first line of code as follows (remember to press Enter at the end of

each statement):

Graphics objGraphics = null;

Here you’ve just created a variable that will hold an instance of an object. Objects

don’t materialize out of thin air; they have to be created. When a form is loaded

into memory, it loads all its controls (that is, creates the control objects), but not all

objects are created automatically like this. The process of creating an instance of an

object is called instantiation. When you load a form, you instantiate the form object,

which in turn instantiates its control objects. You could load a second instance of the

form, which in turn would instantiate a new instance of the form and new instances

of all controls. You would then have two forms in memory, and two of each used

control.

To instantiate an object in code, you create a variable that holds a reference to an

instantiated object. You then manipulate the variable as an object. The variable dec-

laration statement you wrote in step 2 creates a new variable called objGraphics,

which holds a reference to an object of type Graphics (the type comes first, then the

variable name).

Next, enter the second line of code exactly as shown here:

objGraphics = this.CreateGraphics();

CreateGraphics() is a method of the form (remember, the keyword this is short-

hand for referencing the current form). Under the hood, the CreateGraphics()

method is pretty complicated, and I discuss it in detail in Hour 18. For now, under-

stand that the method CreateGraphics() instantiates a new object that represents

the client area of the current form. The client area is the gray area within the bor-

ders and title bar of a form. Anything drawn onto the objGraphics() object

70 HOUR 3: Understanding Objects and Collections

appears on the form. What you’ve done is set the variable objGraphics() to point

to an object that was returned by the CreateGraphics() method. Notice how values

returned by a property or method don’t have to be traditional values such as num-

bers or text; they could also be objects.

Enter the third line of code as shown next:

objGraphics.Clear(SystemColors.Control);

This statement clears the background of the form, using whatever color the user has

selected as the Windows Control color, which Windows uses to paint forms.

How does this happen? After declaring the objGraphics object, you used the

CreateGraphics() method of the form to instantiate a new graphics object in the

variable objGraphics(). With the code statement you just entered, you’re calling

the Clear() method of the objGraphics() object. The Clear() method is a method

of all Graphics objects used to clear the graphic surface. The Clear() method

accepts a single parameter: the color you want used to clear the surface.

The value you’re passing to the parameter might seem a bit odd. Remember that

“dots” are a way of separating objects from their properties and methods (properties,

methods, and events are often called object members). Knowing this, you can discern

that SystemColors is an object because it appears before any of the dots. Object ref-

erences can and do go pretty deep, and you’ll use many dots throughout your code.

The key points to remember are

. Text that appears to the left of a dot is always an object (or namespace).

. Text that appears to the right of a dot is a property reference or method call. If

the text is followed by a set of parentheses (), it’s a method call. If not, it’s

most likely a property.

. Methods can return objects, just as properties can. The only surefire ways to

know whether the text between two dots is a property or method are to look at

the icon of the member in the IntelliSense drop-down or to consult the docu-

mentation of the object.

The final text in this statement is the word Control. Because Control isn’t followed

by a dot, you know that it’s not an object; therefore, it must be a property or

method. Because you expect this string of object references to return a color value to

be used to clear the graphic object, you know that Control in this instance must be

a property or a method that returns a value (because you need the return value to

set the Clear() method). A quick check of the documentation would tell you that

Control is indeed a property, but you don’t even need to do that because there is no

Building a Simple Object Example Project 71

parenthesis at the end of Control, so it can’t be a method and therefore has to be a

property. The value of Control always equates to the color designated on the user’s

computer for the face of forms and buttons. By default, this is a light gray (often

fondly referred to as battleship gray), but users can change this value on their com-

puters. By using this property to specify a color rather than supplying the actual

value for gray, you’re assured that no matter the color scheme used on a computer,

the code will clear the form to the proper system color.

Enter the following statement. Note: Press Enter after each line. Remember, Visual

C# uses a semicolon to denote the end of a statement, so it considers all three lines

as being one code statement.

objGraphics.DrawRectangle(Pens.Blue,

picShowPicture.Left - 1, picShowPicture.Top - 1,

picShowPicture.Width + 1, picShowPicture.Height + 1);

This statement draws a blue rectangle around the picture on the form. Within this

statement is a single method call and five property references. Can you tell what’s

what? Immediately following objGraphics (and a dot) is DrawRectangle. Because

no equal sign is present, you can deduce that this is a method call. As with the

Clear() method, the parentheses after DrawRectangle are used to enclose values

passed to the method.

The DrawRectangle() method accepts the following parameters in the order in

which they appear here:

. A pen

. X value of the upper-left corner

. Y value of the upper-left corner

. Width of the rectangle

. Height of the rectangle

The DrawRectangle() method draws a prefect rectangle using the X, Y, Width, and

Height values passed to it. The attributes of the line (color, width, and so on) are

determined by the pen specified in the Pen parameter. I’m not going to go into

detail on pens here (see Hour 18). Looking at the dots once more, notice that you’re

passing the Blue property of the Pens object. Blue is an object property that returns

a predefined Pen object that has a width of 1 pixel and the color blue.

For the next two parameters, you’re passing property values. Specifically, you’re

passing the top and left values for the picture, less one. If you passed the exact left

and top values, the rectangle would be drawn on the form at exactly the top and

72 HOUR 3: Understanding Objects and Collections

left properties of the PictureBox, and you wouldn’t see them because controls by

default overlap any drawing performed on the form.

The last two property references are for the Height and Width of the PictureBox.

Again, adjust the values by one to ensure that the rectangle is drawn outside the

borders of the PictureBox.

Finally, you have to clean up after yourself by entering the following code state-

ment:

objGraphics.Dispose();

Objects often use other objects and resources. The underlying mechanics of an object

can be truly mind-boggling and are almost impossible to discuss in an entry-level

programming book. The net effect, however, is that you must explicitly destroy most

objects when you’re finished with them. If you don’t destroy an object, it might per-

sist in memory, and it might hold references to other objects or resources that exist

in memory. This means that you can create a memory leak within your application

that slowly (or rather quickly) munches system memory and resources. This is one of

the cardinal no-no’s of Windows programming, yet the nature of using resources

and the fact you’re responsible for telling your objects to clean up after themselves

makes this easy to do. If your application causes memory leaks, your users won’t

call for a plumber, but they might reach for a monkey wrench—in an effort to

smack you upside the head!

Objects that must explicitly be told to clean up after themselves usually provide a

Dispose() method. When you’re finished with such an object, call Dispose() on

the object to make sure that it frees any resources it might be holding.

For your convenience, here are all the lines of code:

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,

picShowPicture.Left - 1, picShowPicture.Top - 1,
picShowPicture.Width + 1, picShowPicture.Height + 1);

objGraphics.Dispose();

Click Save All on the toolbar to save your work before continuing.

Testing Your Object Example Project
Now the easy part: Run the project by pressing F5 or by clicking the Start button on

the toolbar. Your form looks pretty much as it did at design time. Clicking the but-

ton causes a blue rectangle to be drawn around the PictureBox (see Figure 3.7).

Understanding Collections 73

If you receive any errors when you attempt to run the project, go back and make
sure that the code you entered exactly matches the code I’ve provided.

By the
Way

FIGURE 3.7
Simple lines
and complex
drawings are
accomplished
with objects.

If you use Alt+Tab to switch to another application after drawing the rectangle, the
rectangle is gone when you come back to your form. In fact, this occurs anytime
you overlay the graphics with another form. In Hour 18, you’ll learn why this is so
and how to work around this behavior.

Stop the project now by clicking Stop Debugging on the Visual C# toolbar. What I

hope you’ve gained from building this example is not necessarily that you can now

draw a rectangle (which is cool), but rather an understanding of how objects are

used in programming. As with learning almost anything, repetition aids in under-

standing. That said, you’ll be working with objects a lot throughout this book.

Understanding Collections
A collection is just what its name implies: a collection of objects. Collections make it

easy to work with large numbers of similar objects by enabling you to create code

that performs iterative processing on items within the collection. Iterative processing

is an operation that uses a loop to perform actions on multiple objects, rather than

writing the operative code for each object. In addition to containing an indexed set

of objects, collections also have properties and might have methods. Figure 3.8 illus-

trates the structure of a collection.

By the
Way

74 HOUR 3: Understanding Objects and Collections

Continuing with the Dog/Pet object metaphor, think about what an Animals collec-

tion might look like. The Animals collection might contain one or more Pet objects,

or it might be empty (contain no objects). All collections have a Count property that

returns the total count of objects contained within the collection. Collections might

also have methods, such as a Delete() method used to remove objects from the col-

lection and an Add() method used to add a new object to the collection.

To better understand collections, you’re going to create a small Visual C# project

that cycles through the Controls collection of a form and tells you the value of the

Name property of every control on the form. To create your sample project, follow

these steps:

1. Start Visual C# now (if it’s not already loaded) and create a new Windows

Application project titled Collections Example.

2. Rename the form from Form1.cs to CollectionsExampleForm.cs, using the

Solution Explorer. If prompted to update all code references to use the new

name, select Yes. Next, set the form’s Text property to Collections Example

(you need to click the form once to display its properties).

3. Add a new button to the form by double-clicking the Button tool in the tool-

box. Set the button’s properties as follows:

Property Value

Name btnShowNames

Location 83, 112

Size 120, 23

Text Show Control Names

Collection

Objects

Properties

Methods

Properties

Methods

FIGURE 3.8
Collections con-
tain sets of like
objects, and
they have their
own properties
and methods.

Understanding Collections 75

4. Next, add some text box and button controls to the form. As you add the con-

trols to the form, be sure to give each control a unique name. Feel free to use

any name you want, but you can’t use spaces in a control name. You might

want to drag the controls to different locations on the form so that they don’t

overlap.

5. When you’re finished adding controls to your form, double-click the Show

Control Names button to add code to its Click event. Enter the following

code:

for (int intIndex = 0; intIndex < this.Controls.Count; intIndex++)

{

MessageBox.Show(“Control #” + intIndex.ToString() +

“ has the name “ + this.Controls[intIndex].Name);

}

Every form has a Controls collection, which might not contain any controls. Even if
no controls are on the form, the form still has a Controls collection.

The first statement (the one that begins with for) accomplishes a few tasks. First, it

initializes the variable intIndex to 0, and then tests the variable. It also starts a

loop executing the statement block (loops are discussed in Hour 14, “Looping for

Efficiency”), incrementing intIndex by one until intIndex equals the number of

controls on the form, less one. The reason that intIndex must always be less than

the Count property is that when referencing items in a collection, the first item is

always item zero—collections are zero-based. Thus, the first item is in location zero,

the second item is in location one, and so forth. If you tried to reference an item of a

collection in the location of the Count property’s value, an error would occur

because you would be referencing an index that is one higher than the actual loca-

tions within the collection.

The MessageBox.Show() method (discussed in detail in Hour 17, “Interacting with

Users”) is a class available in the .NET Framework that is used to display a simple

dialog box with text. The text that you are providing, which the

MessageBox.Show() method displays, is a concatenation of multiple strings of text.

(Concatenation is the process of adding strings together; it is discussed in Hour 12,

“Performing Arithmetic, String Manipulation, and Date/Time Adjustments.”)

Run the project by pressing F5 or by clicking Start on the toolbar. Ignore the addi-

tional controls that you placed on the form and click the Show Control Names but-

ton. Your program then displays a message box similar to the one shown in Figure

3.9 for each control on your form (because of the loop). When the program is fin-

ished displaying the names of the controls, choose Stop Debugging from the Debug

menu to stop the program and then save the project.

By the
Way

76 HOUR 3: Understanding Objects and Collections

Because everything in Visual C# 2008 is an object, you can expect to use numerous

collections as you create your programs. Collections are powerful, and the quicker

you become comfortable using them, the more productive you’ll be.

Using the Object Browser
Visual C# 2008 includes a useful tool that enables you to easily view members

(properties, methods, and events) of all the objects in a project: the Object Browser

(see Figure 3.10). This is useful when dealing with objects that aren’t well document-

ed because it enables you to see all the members an object supports. To view the

Object Browser, choose View, Other Windows, Object Browser from the menu.

FIGURE 3.9
The Controls
collection
enables you to
get to each and
every control on
a form.

FIGURE 3.10
The Object
Browser
enables you to
view all proper-
ties and meth-
ods of an
object.

The Browse drop-down list in the upper-left corner of the Object Browser is used to

determine the browsing scope. You can choose My Solution to view only the objects

referenced in the active solution, or you can choose All Components to view all

Summary 77

possible objects. You can customize the object set by clicking the drop-down arrow

next to the Object Browser Settings button to the far right of the Browse drop-down

list. I don’t recommend changing the custom object setting until you have some

experience using Visual C# objects as well as experience using the Object Browser.

The top-level nodes (each item in the tree is referred to as a node) in the Objects tree

are libraries. Libraries are usually DLL or EXE files on your computer that contain

one or more objects. To view the objects within a library, simply expand the library

node. As you select objects within a library, the list to the right of the Objects tree

shows information regarding the members of the selected object (refer to Figure

3.10). For even more detailed information, click a member in the list on the right,

and the Object Browser shows information about the member in the area below the

two lists.

Summary
In this hour, you learned a lot about objects. You learned how objects have proper-

ties, which are attributes that describe the object. Some properties can be set at

design time in the Properties window, and most can also be set at runtime in Visual

C# code. You learned that referencing a property on the left side of the equal sign

has the effect of changing a property, whereas referencing a property on the right

side of the equal sign retrieves a property’s value.

In addition to properties, you learned that objects have executable functions, called

methods. Like properties, methods are referenced through the use of a dot at the end

of an object reference. An object might contain many methods and properties, and

some properties can even be objects themselves. You learned how to “follow the

dots” to interpret a lengthy object reference.

Objects are often used as a group, called a collection. You learned that a collection

often contains properties and methods, and that collections let you easily iterate

through a set of like objects. Finally, you learned that the Object Browser can be

used to explore all the members of an object in a project.

The knowledge you’ve gained in this hour is fundamental to understanding pro-

gramming with Visual C# because objects and collections are the basis on which

applications are built. After you have a strong grasp of objects and collections—and

you will have by the time you’ve completed all the hours in this book—you’ll be

well on your way to fully understanding the complexities of creating robust applica-

tions with Visual C# 2008.

78 HOUR 3: Understanding Objects and Collections

Q&A
Q. Is there an easy way to get help about an object’s member?

A. Absolutely. Visual C#’s context-sensitive Help extends to code as well as to

visual objects. To get help on a member, write a code statement that includes

the member (it doesn’t have to be a complete statement), position the cursor

within the member text, and press F1. For instance, to get help on the int

data type, you could type int, position the cursor within the word int, and

press F1.

Q. Are there any other types of object members besides properties and
methods?

A. Yes. An event is actually a member of an object, although it’s not always

thought of that way. Although not all objects support events, most objects do

support properties and methods.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: Visual C# 2008 is a true object-oriented language.

2. An attribute that defines the state of an object is called a ____________.

3. To change the value of a property, the property must be referenced on which

side of an equal sign?

4. What is the term for when a new object is created from a template?

5. An external function of an object (one that is available to code that uses an

object) is called a _______________.

6. True or False: A property of an object can be another object.

7. A group of like objects is called a _____________.

8. What tool is used to explore an object’s members?

Workshop 79

Answers
1. True

2. Property

3. The left side

4. Instantiation

5. Method

6. True

7. Collection

8. The Object Browser

Exercises
1. Create a new project and add two text boxes and a button to the form. Write

code that, when a button is clicked, places the text in the first text box into

the second text box. Hint: Use the Text property of the TextBox controls.

2. Modify the collections example in this hour to print the height of all controls,

rather than the name.

This page intentionally left blank

HOUR 4

Understanding Events

What You’ll Learn in This Hour:
. Understanding event-driven programming
. Triggering events
. Avoiding recursive events
. Accessing an object’s events
. Working with event parameters
. Creating event handlers
. Keeping event names current

It’s easy to produce an attractive interface for an application with Visual C#’s integrated

design tools. You can create beautiful forms that have buttons to click, text boxes in which

to type information, picture boxes that display pictures, and many other creative and

attractive elements with which users can interact. However, that’s just the start of produc-

ing a Visual C# program. In addition to designing an interface, you have to empower

your program to perform actions in response to both how a user interacts with the pro-

gram and how Windows interacts with the program. You do this by using events. In Hour

3, “Understanding Objects and Collections,” you learned about objects and their mem-

bers—notably, properties and methods. In this hour, you’ll learn about object events and

event-driven programming, and you’ll learn how to use events to make your applications

responsive.

Understanding Event-Driven Programming
With traditional programming languages (often referred to as procedural languages), the

program itself fully dictates what code is executed as well as when it’s executed. When you

82 HOUR 4: Understanding Events

start such a program, the first line of code in the program executes, and the code

continues to execute in a completely predetermined path. The execution of code

might branch and loop on occasion, but the execution path is wholly determined by

the program. This often means that such a program is restricted in how it can

respond to the user. For example, the program might expect text to be entered into

controls on the screen in a predetermined order. This is unlike a Windows applica-

tion in which a user can interact with different parts of the interface—often in any

order the user chooses.

Visual C# incorporates an event-driven programming model. Event-driven applica-

tions aren’t bound by the constraints of procedural programs. Instead of the top-

down approach of procedural languages, event-driven programs have logical sec-

tions of code placed within events. There’s no predetermined order in which events

occur; the user often has complete control over what code is executed in an event-

driven program by interactively triggering specific events, such as by clicking a but-

ton. An event, along with the code it contains, is called an event procedure.

Triggering Events
In Hour 3, you learned that a method is simply a function of an object. Events, in a

sense, are really a special kind of method used by an object to signal state changes

that might be useful to clients (code using the object). In fact, the Visual C# 2008

documentation refers to events as methods quite frequently (something that will no

doubt cause confusion in new programmers). Events are methods that can be called

in special ways—usually by the user interacting with something on a form or by

Windows itself—rather than called from a statement in your code.

There are many types of events and many ways to trigger those events. You’ve

already seen how a user can trigger the event of a button by clicking it. User interac-

tion isn’t the only thing that can trigger an event; an event can be triggered in any

of the following four ways:

. Users can trigger events by interacting with your program. Clicking a button,

for example, triggers the Click event of the button.

. Objects can trigger their own events as needed. The Timer control, for exam-

ple, can trigger its Timer event at regular intervals.

. The operating system (whichever version of Windows the user is running) can

trigger events.

. You can trigger events by calling them much as you would invoke a method

when using Visual C# code.

Understanding Event-Driven Programming 83

Events Triggered Through User Interaction
The most common way an event is triggered is by a user interacting with a

program. Every form, and almost every control you can place on a form, has a set

of events specific to its object type. The Button control, for example, has a number

of events, including the Click event that you’ve already used in previous hours.

When the user clicks a button, the button’s Click event is triggered and then the

code within the Click event executes.

The Textbox control enables users to enter information from the keyboard, and it

also has a set of events. The Textbox control has some of the same types of events

as the Button control, such as a Click event, but the Textbox control also has

events not supported by the Button control, such as the MultilineChanged event.

The MultilineChanged event occurs when the text box’s Multiline property

changes. Because a user can’t enter text into a Button control, it doesn’t have a

Multiline property and therefore no MultilineChanged event. Every object that

supports events supports a unique set of events.

Each type of event has its own behavior, and it’s important to understand the events

you work with. The TextChanged event, for example, exhibits a behavior that might

not be intuitive to a new developer because the event fires each time the contents of

the text box change. Consider what would happen if you were to type the following

phrase into an empty text box in a project you created:

Ozric Tentacles!

Although it’s easy to think that the TextChanged event fires only when you commit

your entry, such as by leaving the text box or pressing Enter, this isn’t how it works.

Instead, the TextChanged event would be triggered 16 times during input of the pre-

vious phrase—once for each character typed—because each time you enter a new

character, the contents of the text box changes. Again, it’s important to learn the

nuances and the exact behavior of the events you’re using. If you use events without

fully understanding how they work, your program might exhibit unusual (which

usually means undesirable) results.

Triggering events (which are just a type of procedure) with Visual C# code is dis-
cussed in detail in Hour 10, “Creating and Calling Methods.”

Events Triggered by an Object
Sometimes an object triggers its own events. The most common example of this is

the Timer control’s Tick event. The Timer control is a nonvisual control like the

common dialog control; it doesn’t appear on a form when the program is running;

By the
Way

84 HOUR 4: Understanding Events

it appears at design time in the space reserved for nonvisual controls. The Timer

control’s sole purpose is to trigger its Tick event at an interval specified in its

Interval property.

By setting the Timer control’s Interval property, you control the interval (in mil-

liseconds) at which the Timer event executes. After firing its Timer event, a Timer

control resets itself and fires its Timer event again when the interval has passed.

This occurs until the interval is changed, the Timer control is disabled, or the Timer

control’s form is unloaded. A common use of timers is to create a clock on a form.

You can display the time in a label and update it at regular intervals by placing the

code to display the current time in the Timer event. You’ll create a project with a

Timer control in Hour 8, “Using Advanced Controls.”

Events Triggered by the Operating System
The third way an event can be triggered is by Windows itself. Often, you might not

even realize these events exist. For example, when a form is fully or partially

obstructed by another window, the program needs to know when the offending win-

dow is resized or moved so that it can repaint the area of the window that’s hidden.

Windows and Visual C# work together in this respect. When the obstructing window

is moved or resized, Windows tells Visual C# to repaint the form, which Visual C#

does. This also causes Visual C# to raise the form’s Paint event. You can place code

into the Paint event to create a custom display for the form, such as drawing

shapes on the form with a Graphics object. By doing so, your custom drawing code

executes every time the form repaints itself.

Avoiding Recursive Events
You must ensure that you never create code where an event can endlessly trigger

itself. An event that continuously triggers itself is called a recursive event. To illustrate

a situation that causes a recursive event, think of the Textbox control’s

TextChanged event discussed earlier. The TextChanged event fires every time the

text within the text box changes. Placing code into the TextChanged event that

alters the text within the text box causes the Change event to be fired again, which

could result in an endless loop. Recursive events terminate when Windows returns a

StackOverflow exception (see Figure 4.1), indicating that Windows no longer has

the resources to follow the recursion.

Recursive behavior can occur with more than one event in the loop. For example, if

Event A triggers Event B, which in turn triggers Event A, you can have infinite loop-

ing of the two events. Recursive behavior can take place among a sequence of many

events, not just one or two.

Understanding Event-Driven Programming 85

Uses for recursive procedures actually exist, such as when writing complex math
functions. For instance, recursive events are often used to compute factorials.
However, when you purposely create a recursive event, you must ensure that the
recursion isn’t infinite.

Accessing an Object’s Events
Accessing an object’s events is simple, and if you’ve been following the examples in

this book, you’ve already accessed a number of objects’ default events. To access an

object’s events, you double-click the object in Form Design view.

You’re now going to create a project to get a feel for working with events. Start

Visual C# 2008, create a new Windows Application project titled View Events, and

then follow these steps:

1. Right click Form1.cs in the Solution Explorer, choose Rename, and then

change the name of the form to ViewEventsForm.cs. Again, choose Yes if

prompted to update any code references.

2. Click the form once to display its properties and then change the Text proper-

ty to View Events Example.

3. Use the toolbox to add a picture box to the form. Change the name of the

picture box to picTest.

FIGURE 4.1
When you
receive a
StackOverflow
exception, you
should look for
a recursive
event as the
culprit.

By the
Way

86 HOUR 4: Understanding Events

You already know that you can access the default event for a control by double-

clicking the control in the form designer. However, controls often have dozens

of events. You access the list of events by clicking the Events button in the

Properties Window. The Events button has the image of a lightning bolt on it.

4. Click the Events button in the Properties window now to see a list of the events

supported by the picture box control (see Figure 4.2).

FIGURE 4.2
The events sup-
ported by a
control are
accessed in the
Properties
Window.

5. Scroll down in the list and locate MouseDown, and double-click it. This brings

up the code editor, ready for you to enter code in the MouseDown event (see

Figure 4.3)

Currently, you’re viewing the MouseDown event for the picTest object. The cursor is

placed within the MouseDown event procedure, ready for you to enter code. The code

statement above the cursor is the event declaration. An event declaration is a state-

ment that defines an event’s structure. Notice that this event declaration contains

the name of the object, an underscore character (_), and then the event name.

Following the event name is a set of parentheses. The items within the parentheses

are called parameters, which are the topic of the next section. This is the standard

declaration structure for an event procedure.

When you double-click an event in the Events list, Visual C# creates a new event

procedure for that event. The full event declaration and event structure are shown

here:

private void picTest_MouseDown(object sender, MouseEventArgs e)
{
}

Understanding Event-Driven Programming 87

The open and closed braces denote the beginning and ending of the procedure;
all code for the procedure needs to be placed between these two braces. Don’t
delete any of the braces!

Working with Event Parameters
As mentioned previously, the items within the parentheses of an event declaration

are called parameters. An event parameter is a variable that’s created and assigned a

value by Visual C#. These parameter variables are used to get, and sometimes set,

relevant information within the event. This data may be text, a number, an object—

almost anything. Multiple parameters within an event procedure are always sepa-

rated by commas. As you can see, the MouseDown event has two parameters. When

the event procedure is triggered, Visual C# automatically creates the parameter vari-

ables and assigns them values for use in this single execution of the event proce-

dure; the next time the event procedure occurs, the values in the parameters are

reset. You use the values in the parameters to make decisions or perform operations

in your code.

The MouseDown event of a form has the following parameters:

object sender

and

MouseEventArgs e

FIGURE 4.3
Visual C# cre-
ates an empty
event procedure
the first time
you select an
object’s event.

By the
Way

88 HOUR 4: Understanding Events

The first piece of text in a parameter indicates the type of data the parameter con-

tains, and the second piece of text is the name of the variable containing the data.

The first parameter, Sender, holds a generic object. Object parameters can be any

type of object supported by Visual C#. It’s not critical that you understand data types

right now; just be aware that different parameter variables contain different types of

information. Some contain text, others contain numbers, and still others (many

others) contain objects. In the case of the Sender parameter, it always holds a refer-

ence to the control causing the event.

The e parameter of the MouseDown event, on the other hand, is where the real action

is. The e parameter also holds an object, but in this case the object is of type

MouseEventArgs. This object has properties that relate to the MouseDown event. To

see them, type in the following code, but don’t press anything after entering the dot

(period):

e.

When you press the period, you get a drop-down list showing you the members

(properties and methods) of the e object (see Figure 4.4). Using the e object, you can

determine a number of things about the occurrence of the MouseDown event. I’ve list-

ed some of the more interesting items in Table 4.1.

TABLE 4.1 Commonly Used Members of MouseEventArgs

Property Description

Clicks Returns the number of times the user clicked the mouse button

Button Returns the button that was clicked (left, middle, right)

X Returns the horizontal coordinate at which the pointer was located
when the user clicked

Y Returns the vertical coordinate at which the pointer was located when
the user clicked

Each time the event occurs, the parameters are initialized by Visual C# so that
they always reflect the current occurrence of the event.

Each event has parameters specific to it. For instance, the TextChanged event

returns parameters that are different from the MouseDown event. As you work with

events—and you’ll work with a lot of events—you’ll quickly become familiar with

the parameters of each event type. You’ll learn how to create parameters for your

own functions and procedures in Hour 10.

By the
Way

Understanding Event-Driven Programming 89

Deleting an Event Handler
Deleting an event handler involves more than just deleting the event procedure.

When you add a new event handler to a class, Visual C# automatically creates the

event procedure for you and positions you to enter code within the event. However,

Visual C# does a little bit more “under the hood” to hook the event procedure to the

control. It does this by creating a code statement in the hidden code of the class.

Ordinarily, you don’t have to worry about this statement. However, when you delete

an event procedure, Visual C# doesn’t automatically delete the hidden code state-

ment, and your code doesn’t compile. The easiest way to correct this is simply to run

the project; when Visual C# encounters the error, it shows you the offending state-

ment, which you can delete. Try this now:

1. Delete the entire MouseDown procedure code shown here. (You have to delete

the open and close braces of the procedure, as well as any code between

them.)

private void picTest_MouseDown(object sender, MouseEventArgs e)
{

e.
}

2. Press F5 to run the project. You’ll receive a message that a build error has

occurred. Click No to return to the code editor.

FIGURE 4.4
IntelliSense
drop-down lists
alleviate the
need for memo-
rizing the make-
up of hundreds
of objects.

90 HOUR 4: Understanding Events

3. The Error List gets displayed, with details of the error that just occurred (see

Figure 4.5). Double-click the error and Visual C# will take you to the offending

statement, which looks like this (I show it here on two lines):

this.picTest.MouseDown += new
System.Windows.Forms.MouseEventHandler(this.picTest_MouseDown);

FIGURE 4.5
Visual C#
shows you
compile errors
(errors in your
code) in the
Error List
window.

4. Notice the procedure drop-down list in the upper-left corner says

InitializeComponent(). This is an event of the form (you can see the form

name in the object drop-down list to the left). You do not want to change any-

thing in this procedure unless you know exactly what you’re doing! In this

case, we want to delete a code reference to an event procedure that no longer

exists, so delete this entire statement. Now your code will compile and run.

Whenever you delete an event procedure, you’ll have to delete the corresponding

statement that links the procedure to its object before the code will run.

Now that you’ve learned the process of deleting an event handler, here’s the
quickest and easiest way: View the object in design view and click the Events but-
ton on the Properties window to view the object’s events. Then, highlight the event
name in the Properties window and press the Delete key. This leaves event code
that will remain in the class until you delete it, but it will no longer be used.

Did you
Know?

Building an Event Example Project 91

Building an Event Example Project
You’re now going to learn how to use the MouseMove event by modifying the Picture

Viewer project of Hour 3. You’re going to make it so that as a user moves the mouse

over a picture, the X and Y coordinates of the cursor are displayed on the form.

You’ll be using the e parameter to get the coordinate of the mouse pointer.

Creating the User Interface
Start with a copy of the Picture Viewer project that you completed in Hour 3. If you

don’t have this project, you can download it from my website.

You’ll need two label controls on the form: one for the X value and one for the Y

value. Label controls are used to display static text; users can’t type text into a label.

Follow these steps:

1. Double-click ViewerForm.cs in the Solution Explorer to display the form in

the designer.

2. Add a label control to the form by double-clicking the Label tool in the tool-

box. Set its properties as follows:

Property Value

Name lblX

Location 300, 110

Text X:

3. Use the toolbox to add one more Label control to the form. Set its properties as

follows:

Property Value

Name lblY

Location 300, 125

Text Y:

Your form should now look like the one in Figure 4.6. It’s a good idea to save fre-

quently, so save your project now by clicking the Save All button on the toolbar.

92 HOUR 4: Understanding Events

Creating Event Handlers
The interface for this example is complete—now on to the fun part. You’re now

going to create the event procedures that empower the program to do something.

The first event that we’re interested in is the MouseMove event. Follow these steps to

create the code:

1. Click the picture box on the form to select it, and then click the Event button

in the Properties Window (the button with the lightning bolt) to view a list of

the events supported by the picture box.

2. Scroll down and locate MouseMove, and then double-click it to create the new

MouseMove event (see Figure 4.7).

3. Enter the following code into the MouseMove event procedure:

lblX.Text = “X: “ + e.X.ToString();

lblY.Text = “Y: “ + e.Y.ToString();

This code is fairly simple, and may already make sense to you. If it’s still not clear, it

will be soon. Consider the first line (called a statement). lblX.Text is on the left of

the = sign, so Text is a property of the label, and we’re going to be setting it to some

value. The text “X: “ is a literal value that we’re placing in the Text property of the

label control. The reason you include this literal is that when you set the Text prop-

erty, you completely overwrite the current value of the property. So, even though

you entered X: as the property in the properties window, you need to include it

when setting the property as well. To make this useful, you also have to include the

actual value for X, which is stored in the X property of the e object. Again, you’re

concatenating the literal value of “X: “ with the value stored in e.X; the + sign

FIGURE 4.6
Label controls
display static
text to the user.

Building an Event Example Project 93

concatenates two strings. Notice the use of the ToString() method of the X proper-

ty. This is necessary because Visual C# concatenates only text (strings), but the X

and Y properties hold numbers. The ToString() method converts the number to a

string.

FIGURE 4.7
Each time you
select a new
event, Visual C#
creates an
empty event
procedure —if
one hasn’t been
created previ-
ously for the
control.

The second statement does the same thing, only with the Y value.

The nice thing about objects is that you don’t have to commit every detail about

them to memory. For example, you don’t need to memorize the return values for

each type of button (who wants to remember e.X, e.Y, or e.Button anyway?). Just

remember that the e parameter contains information about the event. When you

type e and press the period, the IntelliSense drop-down list appears and shows you

the members of e. Don’t feel overwhelmed by all the object references you’ll

encounter throughout this book. Simply accept that you can’t memorize them all,

nor do you need to; you’ll learn the ones that are important, and you’ll use Help

when you’re stuck. Also, after you know the parent object in a situation (such as the

e object in this example), it’s easy for you to determine the objects and members

that belong to it by using the IntelliSense drop-down lists.

Click Save All in the toolbar now to save your work (you wouldn’t want to lose it!).

Next, press F5 to run the project now and move the mouse over the picture box.

You’ll see the coordinates of the pointer (as it relates to the picture box) displayed in

the two label controls you created (see Figure 4.8).

94 HOUR 4: Understanding Events

Now, move the mouse pointer off the picture box. Notice that the labels display the

last coordinate at which the pointer was over the picture box. The MouseMove event

fires only when the mouse is moved over the control of the event to which it is

attached: the picture box in this example. Well, we can’t leave those numbers just

dangling there, can we?

The PictureBox just so happens to have another event you can use to fix this: the

MouseLeave event. Oddly enough, the MouseLeave event fires when the mouse

leaves the space of the control (yeah, something that’s actually intuitive!). Follow

these steps to clear the coordinates when the cursor leaves the picture box:

1. Stop the project if it’s still running by closing the Picture Viewer form.

2. Click the ViewerForm.cs [Design] tab to return to the form designer.

3. Click the picture box (if it’s not already selected) to view its events. Locate

MouseLeave in the list of events and double-click it to create a new event pro-

cedure.

4. Enter the following code into the MouseLeave event:

lblX.Text = “”;

lblY.Text = “”;

Press F5 to run the project again and move the mouse over the picture box and then

off it. Notice that the coordinates go away. Move the pointer over the picture box

again, and they reappear—perfect! Go ahead and stop the running project now.

There’s only one thing left to do. Did you notice that when you first start the project,

the labels have “X:” and “Y:” in them? Wouldn’t it be better to not display this text

until the user mouses over the picture box? You could set the Text properties of

FIGURE 4.8
The MouseMove
event makes it
easy to track
the pointer over
a control.

Q&A 95

these labels to empty in the Properties window. However, if you do this, you won’t

see the labels on the form in the designer and may place other controls over the top

of them. A better solution is to initialize their values when the form first loads. You

can do just that by following these steps:

1. Click the ViewerForm.cs [Design] tab once more to return to the form designer.

2. Click the form to select it and view its events.

3. In the event list for the picture box, locate the Load event and double-click it

to create a new event handler. The Load event executes automatically when

the form first loads—the perfect place to initialize the label controls.

4. Enter the following two code statements:

lblX.Text = “”;

lblY.Text = “”;

That’s it—you’re finished! Go ahead and Press F5 to run the project and give it a test

drive. When the form first loads, the coordinate labels should be empty (this makes

them appear invisible). When you mouse over the picture box, the coordinates are

displayed, and when you leave the confines of the picture box, the coordinates are

hidden once again. A little bit of code and the right event selection can go a long way.

Summary
In this hour, you learned about event-driven programming, including what events

are, how to trigger events, and how to avoid recursive events. In addition, you

learned how to access an object’s events and how to work with parameters. Much of

the code you write will execute in response to an event of some kind, and you’ll

often write code for multiple events of one control. By understanding how events

work, including being aware of the available events and their parameters, you’ll be

able to create complex Visual C# programs that react to a multitude of user and sys-

tem input.

Q&A
Q. Is it possible to create custom events for an object?

A. Yes, you can create custom events for your own objects (you’ll learn about

such objects in Hour 16, “Designing Objects Using Classes”), and you can also

create them for existing objects. Creating custom events, however, is beyond

the scope of this book.

96 HOUR 4: Understanding Events

Q. Is it possible for objects that don’t have an interface to support events?

A. Yes. To use the events of such an object, however, the object variable must be

dimensioned a special way or the events aren’t available. This gets a little

tricky and is beyond the scope of this book.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into

practice.

Quiz
1. Name three things that can cause events to occur.

2. True or False: All objects support the same set of events.

3. What is the default event type for a button?

4. Writing code in an event that causes that same event to be triggered, setting

off a chain reaction with the event triggered again and again, is called what?

5. What is the easiest way to access a control’s default event handler?

6. All control events pass a reference to the control causing the event. What is

the name of the parameter that holds this reference?

Answers
1. User input, system input, and other code

2. False

3. Click

4. Recursion

5. Double-click the control in the form designer

6. Sender

Workshop 97

Exercises
1. Use the knowledge you’ve gained so far to create a new project with a form

that is gray at design time but that appears blue when the form displays.

2. Create a project with a form and a text box. Add code to the TextChange

event to cause a recursion when the user types in text. Hint: Concatenate a

character to the end of the user’s text using a statement such as

txtMyTextBox.Text = txtMyTextBox.Text + “a”;

The + sign tells Visual C# to add the letter a to the end of the existing text box

contents. Notice how you eventually get a Stack Over-Flow error—not a good

thing!

This page intentionally left blank

PART II

Building a User Interface

HOUR 5 Building Forms—The Basics 101

HOUR 6 Building Forms—Advanced Techniques 123

HOUR 7 Working with Traditional Controls 151

HOUR 8 Using Advanced Controls 177

HOUR 9 Adding Menus and Toolbars to Forms 197

This page intentionally left blank

HOUR 5

Building Forms—The Basics

What You’ll Learn in This Hour:
. Changing a form’s name
. Changing a form’s appearance
. Displaying text on a form’s title bar
. Adding an image to a form’s background
. Giving a form an icon
. Preventing a form from appearing in the taskbar
. Specifying the initial display position of a form
. Displaying a form in a normal, maximized, or minimized state
. Changing the mouse pointer
. Showing and hiding forms

With few exceptions, forms are the cornerstones of every Windows application interface.

Forms are essentially windows, and the two terms are often used interchangeably. More

accurately, window refers to what’s seen by the user and what the user interacts with,

whereas form refers to what you see when you design. Forms enable users to view and

enter information in a program (such as the form you built in your Picture Viewer pro-

gram in Hour 1, “Jumping In with Both Feet: A Visual C# 2008 Programming Tour”). Such

information may be text, pictures, graphs—almost anything that can be viewed on the

screen. Understanding how to design forms correctly enables you to begin creating solid

interface foundations for your programs.

102 HOUR 5: Building Forms—The Basics

Think of a form as a canvas on which you build your program’s interface. On this

canvas, you can print text, draw shapes, and place controls with which users can

interact. The wonderful thing about Visual C# forms is that they behave like a

dynamic canvas: Not only can you adjust the appearance of a form by manipulat-

ing what’s on it, you can also manipulate specific properties of the form itself.

In previous hours, you manipulated a few basic properties of a form. The capability

to tailor your forms goes far beyond these basic property manipulations, as you’ll see.

There’s so much to cover about Windows forms that I’ve broken the material into

two hours. In this hour, you’ll learn the basics of forms—adding them to a project,

manipulating their properties, and showing and hiding them using Visual C# code.

Although you’ve done some of these things in previous hours, here you’ll learn the

nuts and bolts of the tasks you’ve performed. In the next hour, you’ll learn more

advanced form techniques.

Changing a Form’s Name
The first thing you should do when you create a new object is give it a descriptive

name, so that’s the first thing I’ll talk about in this hour. Start by opening the

Picture Viewer project you completed in Hour 4, “Understanding Events.” If you

don’t have this project, you can download it from my website.

Your Picture Viewer currently has some useful functionality, but it’s not very flexible.

In this hour, you’ll start building an Options dialog box for the program. Add a new

form for the dialog box by following these steps:

1. Choose Project, Add Windows Form from the menu to display the Add New

Item dialog box.

2. In the Name text box, enter OptionsForm.cs. This will be the name of your

form as well as the name of the file that defines the form on the hard drive.

3. Click the Add button (or double-click the Windows Form icon) to close the Add

New Item dialog box and add the form to your project (see Figure 5.1).

You can change a form’s name by using the (Name) property in the Properties win-

dow at any time, and doing so changes the form’s name property (but not the name

of the file on the hard disk). Whenever possible, give your forms solid names when

you first create them.

Changing a Form’s Appearance 103

Changing a Form’s Appearance
The Properties window can actually show two different sets of properties for a form.

Right now, it’s probably showing the form’s file properties (the properties that

describe the physical file(s) on the hard drive, as shown in Figure 5.2). If so, click the

form in the designer once again to view its development properties. Clicking the

form itself shows the form’s development properties, whereas clicking the name of

the form in the Solution Explorer shows you the physical file properties for the form.

This is why I usually tell you to click the form before setting its properties.

Take a moment to browse the form’s properties in the Properties window. In this

hour, I’ll show you how to use the more common properties of the form to tailor its

appearance.

FIGURE 5.1
Each new form
starts off as a
blank canvas.

FIGURE 5.2
File properties
can be useful,
but they don’t
allow you to do
much with the
form.

104 HOUR 5: Building Forms—The Basics

Displaying Text on a Form’s Title Bar
You should always set the text in a form’s title bar to something meaningful. (Note:

Not all forms have title bars, as you’ll see later in this hour.) The text displayed in

the title bar is the value placed in the form’s Text property. Generally, the text

should be one of the following:

. The name of the program—This is most appropriate when the form is the

program’s main or only form. You used the name of the program for your

main form when you defined it in Hour 1.

. The purpose of the form—This is perhaps the most common type of text dis-

played in a title bar. For example, if a form is used to select a printer, consider

setting the Text property to Select Printer. When you take this approach,

use active voice (for instance, don’t use Printer Select).

. The name of the form—If you choose to place the name of the form into the

form’s title bar, use the English name, not the actual form name. For instance,

if you’ve used a naming convention and named a form LoginForm, use the

text Login or Login User.

Change your form’s Text property to Picture Viewer Options. Your form should

now look like the one in Figure 5.3.

FIGURE 5.3
Use common
sense when
setting title bar
text.

As with most other form properties, you can change the Text property at any time
by using Visual C# code.

By the
Way

Changing a Form’s Appearance 105

Changing a Form’s Background Color
Although most forms appear with a gray background (this is part of the standard

3D color scheme in Windows), you can change a form’s background to any color

you want. To change a form’s background color, you change its BackColor property.

The BackColor property is a unique property in that you can specify a named color

or an RGB value in the format red, green, blue.

By default, the BackColor property is set to the color named Control. This color is a

system color and might not be gray. When Windows is first installed, it’s configured

to a default color scheme. In the default scheme for all Windows versions other than

XP or Vista, the color for forms and other objects is the familiar battleship gray. For

XP and Vista installations, this color is a light tan (although it still looks gray on

most monitors). As a Windows user, however, you’re free to change any system color

you want. For instance, some people with color blindness prefer to change their sys-

tem colors to colors that have more contrast than the defaults so that objects are

more clearly distinguishable. When you assign a system color to a form or control,

the appearance of the object adjusts itself to the current user’s system color scheme.

This doesn’t just occur when a form is first displayed; changes to the system color

scheme are immediately propagated to all objects that use the affected colors.

Try to use system colors whenever possible, to make your application behave as
closely as possible to what the user expects and to avoid problems such as using
colors that are indistinguishable from one another to someone who is color blind!

Change your form’s background color to blue now by deleting the word Control in

the BackColor property in the Properties window. In its place enter 0,0,255 and

press Enter or Tab to commit your entry. When you commit the entry, the RGB value

changes to the word Blue. If Visual C# has a named color that matches your RBG

values, it automatically switches to the name for you.

Your form should now be blue because you entered an RGB value in which you

specified no red, no green, and maximum blue (color values range from 0 to 255).

In reality, you’ll probably rarely enter RGB values. Instead, you’ll select colors from

color palettes. To view color palettes from which you can select a color for the

BackColor property, click the drop-down arrow in the BackColor property in the

Properties window (see Figure 5.4).

System colors are discussed in detail in Hour 18, “Working with Graphics.”

By the
Way

By the
Way

106 HOUR 5: Building Forms—The Basics

When the drop-down list appears, the color blue is selected on the Web tab. Again,

this happens because when you enter the RGB value 0,0,255, Visual C# looks for a

named color composed of the same values and finds blue. The color palettes were

explained in Hour 2, “Navigating Visual C# 2008,” so I’m not going to go into

detail about them here. For now, select the System tab to see a list of the available

system colors and choose Control from the list to change your form’s BackColor

property back to the default Windows color.

Adding an Image to a Form’s Background
In addition to changing the color of a form’s background, you can place a picture

on it. To add a picture to a form, set the form’s BackgroundImage property. When

you add an image to a form, the image is painted on the form’s background. All the

controls that you place on the form appear on top of the picture.

Add an image to your form now by following these steps:

1. Click on the form to select it.

2. Change the Size property of the form to 400,300.

3. Click the BackgroundImage property in the Properties window.

4. Click the Build button that appears next to the property (the small button

with three dots).

FIGURE 5.4
All color proper-
ties have
palettes from
which you can
choose a color.

Changing a Form’s Appearance 107

5. The Select Resource dialog box appears (see Figure 5.5). Click the Local

Resource option button.

6. Click Import and locate the file Options.bmp, which you can get from down-

loading the example files from my website.

7. You are returned to the Select Resource dialog box. Click OK to load the pic-

ture. The selected image then is displayed on the form’s background (see

Figure 5.6).

FIGURE 5.5
Images on your
hard drive are
considered local
resources.

FIGURE 5.6
A form can dis-
play a picture,
just like a pic-
ture box.

If the image you select is smaller than the form, Visual C# displays additional

copies of the picture, creating a tiled effect. The image you selected was specifically

made to be the same size as the form, so you don’t have to worry about this.

Notice that to the left of the BackgroundImage property in the Properties window is

a small box containing a plus sign. This indicates that there are related properties,

or subproperties, of the BackgroundImage property. Click the plus sign now to

expand the list of subproperties (see Figure 5.7). In the case of the BackgroundImage

108 HOUR 5: Building Forms—The Basics

property, Visual C# shows you a number of properties related to the image assigned

to the property, such as its dimensions and image format. Note that these subprop-

erties are read-only (with the exception of the Tag property); not all subproperties

are read-only.

FIGURE 5.7
The subproper-
ties show you
details about
the image.

Adding a background image to a form can add pizzazz to a program, but it can
also confuse users by making the form unnecessarily busy. Try to avoid adding
images just because you can. Use discretion and add an image to a form only
when the image adds value to the interface.

Removing an image from a form is just as easy as adding the image in the first

place. To remove the picture that you just added to your form, right-click the

BackgroundImage property name and choose Reset from the shortcut menu that

appears. Feel free to try this, but load the image once again before continuing.

You must right-click the Name column of the property or the Build button in the
value column, but not the Value column itself. If you right-click the value of the
property, you get a different shortcut menu that doesn’t have a Reset option.

Giving a Form an Icon
The icon assigned to a form appears in the left side of the form’s title bar, in the

taskbar when the form is minimized, and in the iconic list of tasks when you press

Did you
Know?

By the
Way

Changing a Form’s Appearance 109

Alt+Tab to switch to another application, as well as other places. The icon often rep-

resents the application; therefore, you should assign an icon to any form that a user

can minimize. If you don’t assign an icon to a form, Visual C# supplies a default

icon to represent the form when it’s minimized. This default icon is generic, unat-

tractive, and doesn’t really represent anything—you should avoid it.

In the past, it was recommended that every form have a unique icon that represent-

ed the form’s purpose. This proved difficult to accomplish in large applications con-

taining dozens or even hundreds of forms. Instead, it’s usually just best to set the

Icon property of all your forms to the icon that best represents your application.

You assign an icon to a form in much the same way that you assign an image to

the BackgroundImage property. Add an icon to your form now by clicking the form’s

Icon property in the Properties window, clicking the Build button that appears, and

selecting an icon file from your hard drive (use the same icon you used in Hour 1).

After you’ve selected the icon, it appears in the form’s title bar to the left.

Adding Minimize, Maximize, and Control Box
Buttons to a Form
Take a look at the title bar of the Picture Viewer Options form that you’ve created

and notice that it has three buttons on it (see Figure 5.8).

FIGURE 5.8
You control
which, if any, of
these buttons
are displayed.

110 HOUR 5: Building Forms—The Basics

The three buttons in the form’s title bar are

. Minimize

. Maximize

. Close

Also note that the form’s icon acts as a button as well, but only while running the

application, not in design mode. If the user clicks the icon, a drop-down menu

appears with some basic options.

The Minimize and Maximize buttons make it easy for a user to quickly hide a form

or make it fill the entire display, respectively. You’ve probably used these buttons on

applications you work with. You’ll be happy to know that you don’t have to write

code to implement this—it’s handled automatically by Windows. All you have to do

is decide whether you want a Maximize or Minimize button on a form. In the case

of this Options form, the contents aren’t resizable, so there’s no need for a Maximize

button. Also, you’re going to want the user to close the form when they’re finished

with it, so there’s no need for a Minimize button either. Remove these buttons now

by setting the following properties of the form:

Property Value

MinimizeBox False

MaximizeBox False

If you don’t want the user to be able to close the form with the Close button (the

button with the X in it in the upper-right corner of the form), you would set the

ControlBox property to False. Be aware, however, that the Minimize and Maximize

buttons are hidden automatically when ControlBox is set to False. If you want a

Minimize or Maximize button, you have to set ControlBox = True.

Changing the Appearance and Behavior of a
Form’s Border
You might have noticed while working with other Windows programs that the bor-

ders of forms can vary. Some forms have borders that you can click and drag to

change the size of the form, some have fixed borders that can’t be changed, and still

others have no borders at all. The appearance and behavior of a form’s border is

controlled by its FormBorderStyle property.

Changing a Form’s Appearance 111

The FormBorderStyle property can be set to one of the following values:

. None

. FixedSingle

. Fixed3D

. FixedDialog

. Sizable

. FixedToolWindow

. SizableToolWindow

Run your project now by pressing F5, and move the mouse pointer over one of the

borders of your main Picture Viewer form. This form has a sizable border, which

means that you can resize the form by dragging the border. Move the pointer over

an edge of the form and notice how the pointer changes from a large arrow to a

line with arrows pointing on either side, indicating the direction you can stretch the

border. When you move the pointer over a corner, you get a diagonal cursor that

indicates that you can stretch both of the sides that meet at the corner. Clicking and

dragging the border changes the form’s size.

Stop the project now by choosing Debug, Stop Debugging from the menu (or click

the Close button on the form) and change the OptionsForm form’s

FormBorderStyle property to None (you’ll need to double-click OptionsForm.cs in

the Solution Explorer to display the form in the form designer again). Notice that

the title bar disappears as well (see Figure 5.9). Of course, when the title bar is gone,

there’s no visible title bar text, no control box, and no Minimize or Maximize but-

tons. In addition, there’s no way to move or resize the form. It’s rarely appropriate to

specify None for a form’s FormBorderStyle, but if you need to do so (a splash screen

comes to mind), Visual C# 2008 makes it possible.

FIGURE 5.9
A form with no
border also has
no title bar.

112 HOUR 5: Building Forms—The Basics

Next, change the OptionsForm form’s FormBorderStyle property to

FixedToolWindow. This setting causes the form’s title bar to appear smaller than

normal and the text to display in a smaller font (see Figure 5.10). In addition, the

only thing displayed on the title bar other than the text is a Close button. Visual

C#’s various design windows, such as the Properties window and the toolbox, are

good examples of tool windows.

FIGURE 5.10
A tool window is
a special win-
dow whose title
bar takes up
the minimum
space possible.

The FormBorderStyle is a good example of how changing a single property can

greatly affect an object’s look and behavior. Set the FormBorderStyle of the form

back to FixedSingle before continuing.

Controlling the Minimum and Maximum Size
of a Form
Ordinarily, if a form can be resized, it can be maximized to fill the user’s entire dis-

play. The form can be minimized down to the taskbar as well. If you want to restrict

the minimum or maximum size of a form, set the MinimumSize or MaximumSize

properties, respectively. In general, you should avoid doing this, but it can be useful.

Be aware that setting a specific MinimumSize doesn’t stop the user from minimizing

the form, if it has a Minimize button.

Showing and Hiding Forms
Part III, “Making Things Happen—Programming,” is devoted to programming in

Visual C# 2008, and I’ve avoided going into much programming detail in this hour

so that you can focus on the concepts at hand. However, knowing how to create

forms does nothing for you if you don’t have a way to show and hide them. Visual

C# 2008 can display a single form automatically only when a program starts. To

display other forms, you have to write code.

Showing and Hiding Forms 113

Showing Forms
In Visual C# 2008, everything is an object, and objects are based on classes. Because

the definition of a form is a class, you have to create a new Form object, using the

class as a template. In Hour 3, I discussed objects and object variables and these

principles apply to creating forms.

As discussed in Hour 3, the process of creating an object from a class (template) is

called instantiation. The syntax you’ll use most often to instantiate a form is the fol-

lowing:

{ formclassname } {objectvariable} = new {formclassname()};

The parts of this declaration are as follows:

. formclassname—The name of the class that defines the form.

. objectvariable—The name for the form that you will use in code.

. The keyword new—Indicates that you want to instantiate a new object for the

variable.

Finally, you specify the name of the class used to derive the object—your form class.

If you have a form class named LoginDialogForm, for example, you could create a

new Form object by using the following code:

LoginDialogForm frmLogin = new LoginDialogForm();

After the form has been instantiated as an object, you can manipulate the Form

object by using the object variable. For example, to display the form, you call the

Show() method of the form or set the Visible property of the form to true, using

code such as this:

frmLogin.Show();

or

frmLogin.Visible = true;

Follow these steps to enable the Picture Viewer project to show the Options form:

1. Display the main form by double-clicking ViewerFrom.cs in the Solution

Explorer.

2. Add a new button to the ViewerForm form by double-clicking the Button item

on the toolbox. Set the button’s properties as follows:

114 HOUR 5: Building Forms—The Basics

Property Value

Name btnOptions

Location 295, 155

Size 85, 23

Text Options

3. Double-click the button to access its Click event and enter the following code:

OptionsForm frmOptionsDialog = new OptionsForm();

frmOptionsDialog.Show();

The first statement creates a new object variable called frmOptionsDialog and

instantiates an instance of the OptionsForm form. The second statement uses the

object variable (now holding a reference to a Form object) to display the form. Press

F5 to run the project, and click the Options button. (If the button doesn’t appear on

the form, you might have accidentally added it to the wrong form.) When you click

the button, a new instance of the second form is created and displayed. Move this

form and click the button again. Each time you click the button, a new form is cre-

ated. Stop the project now and click Save All on the toolbar.

Understanding Form Modality
You can present two types of forms to the user: modal and nonmodal forms. A non-

modal window is one that doesn’t cause other windows to be disabled. (When you

used Show() to display the Options form, you displayed it as a nonmodal form,

which is why you were able to click over to the main Picture Viewer form while the

Options form remained displayed.) Another example of a nonmodal window is the

Find and Replace window in Word (and in Visual C# 2008, as well). When the Find

and Replace window is visible, the user can still access other Windows.

On the other hand, when a form is displayed as a modal form, all other forms in

the same application become disabled until the modal form is closed; the other

forms don’t accept any keyboard or mouse input. The user is forced to deal with

only the modal form. After the modal form is closed, the user is free to work with

other visible forms within the program. If the form was displayed by another modal

form, that form retains the focus until closed, and so on. Modal forms are most

often used to create dialog boxes in which the user works with a specific set of data

and controls before moving on. The Print dialog box of Microsoft Word, for exam-

ple, is a modal dialog box. When the Print dialog box is displayed, you can’t work

with the document on the main Word window until the Print dialog box is closed.

Most secondary windows in any given program are modal windows.

Showing and Hiding Forms 115

You can display one modal form from another modal form, but you cannot display
a modeless form from a modal form.

The modality of a form is determined by how you show the form rather than by how

you create the form (both modal and nonmodal forms are created the same way).

You already learned that to show a form as a modeless window, you use the Show()

method of the form. To show a form as a modal form, you call the form’s

ShowDialog() method instead. Display the form in the designer and then double-

click the Options button to access its Click event. Next, change the code in your

button’s Click event to read:

OptionsForm frmOptionsDialog = new OptionsForm();
frmOptionsDialog.ShowDialog();

When your code looks like this, press F5 to run the project. Click the Options button

to display your Options form. Drag the form away from the main form just a bit,

and then try to click the main Picture Viewer form or some control on it; you can’t.

Close the modal form now by clicking the Close button in the title bar. Now, the

main Picture Viewer form is enabled again, and you can click the Options button

once more (or any other button of your choosing). When you’re finished testing this,

stop the running project.

You can test to see whether a form has been shown modally by testing the form’s
Modal property in code.

Specifying the Initial Display Position of a Form
The location on the display (monitor) where a form first appears isn’t random, but

rather it is controlled by the form’s StartPosition property. The StartPosition

property can be set to one of the values in Table 5.1.

TABLE 5.1 Values for the StartPosition Property

Value Description

Manual The value of the Location property at design time
determines where the form first appears.

CenterScreen The form appears centered in the display.

WindowsDefaultLocation The form appears in the Windows default location,
which is toward the upper left of the display.

By the
Way

Did you
Know?

116 HOUR 5: Building Forms—The Basics

WindowsDefaultBounds The form appears in the Windows default location, with
its bounds (size) set to the Windows default bounds.

CenterParent The form is centered within the bounds of its parent
form (the initial form that displayed the form in
question).

It’s generally best to set the StartPosition property of all your forms to
CenterParent unless you have a specific reason to do otherwise. For the first
form that appears in your project, you might consider using the
WindowsDefaultLocation (but I generally prefer CenterScreen).

To see how this property affects a form, try this:

1. Press F5 to run the project.

2. Move the Picture Viewer form and click the Options button. Notice where the

Options form appears.

3. Close the Options form.

4. Move the Picture Viewer form to the upper-right corner and click the Options

button again.

Did you notice that the Options form always appears in the same location, regard-

less of where the Picture Viewer form is placed when the Options button is clicked?

I’m not fond of this behavior. Stop the running project now and change the

StartPosition of the Options form to CenterParent now. Next, repeat the previ-

ous steps, and you’ll see that the Options form always appears centered over the

Picture Viewer form, regardless of where that form is positioned.

Displaying a Form in a Normal, Maximized, or
Minimized State
Using a form’s Size and Location properties in conjunction with its

StartPosition property enables you to display forms at any location and at any

size. You can also force a form to appear minimized or maximized. Whether a form

is maximized, minimized, or shown normally is known as the form’s state, and it’s

determined by its WindowState property.

TABLE 5.1 Continued

Value Description

By the
Way

Showing and Hiding Forms 117

Click the OptionsForm.cs [Design] tab to view the form designer. Look at your form’s

WindowState property now in the Properties window. New forms have their

WindowState property set to Normal by default. When you run the project, as you

have several times, the form displays in the same size as it appears in the form

designer and at the location specified by the form’s Location property. Now change

the WindowState property to Minimized. Nothing happens in the Form Design view,

but run your project by pressing F5 and then click the Options button. At first, you

might think the form didn’t get displayed, but it did. It just appeared minimized to

the taskbar.

Stop the project and change the WindowState property to Maximized. Again, noth-

ing happens in the Form Design view. Press F5 to run the project and then click the

Options button. This time, the Options form fills the screen. Notice too how the

image is tiled to fill the form, as explained when you added the image to the form

(see Figure 5.11).

FIGURE 5.11
Images placed
on a form are
tiled if its
Background-
ImageLayout
property is set
to Tiled.

When a form is maximized, it fills the entire screen, regardless of the current
screen resolution being used in Windows.

Stop the project and change the WindowState property back to Normal. You’ll rarely

set a form’s WindowState property to Minimize at design time (though you might

specify Maximize), but you’ll probably encounter situations in which you need to

By the
Way

118 HOUR 5: Building Forms—The Basics

change (or determine) the WindowState at runtime. As with most properties, you

can accomplish this in code. For example, the following statement would minimize

the Options form (but it would have to appear in the form’s class):

this.WindowState = FormWindowState.Minimized;

In Hour 3 you learned how this is used to reference the current Form object.

Because this represents the current Form object, you can manipulate properties and

call methods of the current form by using this. (this.Visible = false;, and so

forth).

You don’t have to remember the names of the values when entering code; you’ll get

an IntelliSense drop-down list when you type the equal sign.

Preventing a Form from Appearing in the Taskbar
Being able to display an icon for a minimized form is nice, but sometimes it’s neces-

sary to prevent a form from even appearing in the taskbar. If your application has a

number of tool windows that float over a main window, such as the Solution

Explorer and toolbox in Visual C# 2008, it’s unlikely that you’d want any but your

main form to appear in the taskbar. To prevent a form from appearing in the

taskbar, set the form’s ShowInTaskbar property to False. If the user minimizes a

form with its ShowInTaskbar property set to False, she can still get to the applica-

tion by pressing Alt+Tab, even though the program can’t be accessed via the

taskbar; Visual C# doesn’t allow the application to become completely inaccessible

to the user.

Unloading Forms
After a form has served its purpose, you’ll want it to go away. However, go away can

mean one of two things. First, you can make a form disappear without closing it or

freeing its resources (this is called hiding). To do so, you set its Visible property to

false or use the Hide method of the form. This hides the visual part of the form, but

the form still resides in memory and can still be manipulated by code. In addition,

all the variables and controls of the form retain their values when a form is hidden,

so if the form is displayed again, the form looks the same as it did when its Visible

property was set to False.

The second method completely closes a form and releases the resources it consumes.

You should close a form when it’s no longer needed so that Windows can reclaim all

resources used by the form. To do so, you invoke the Close method of the form like

this:

this.Close();

Summary 119

The Close() method tells Visual C# not to simply hide the form but to destroy it—

completely.

Follow these steps to create a button to close the Options form:

1. Select the OptionsForm.cs [Design] tab to display the form designer for the

Options form (if it isn’t displayed already).

2. Add a new button to the form by double-clicking the Button item on the tool-

box and set the button’s properties as follows:

Property Value

Name btnOK

Location 305, 12

Text OK

3. Next, double-click the OK button in the designer to access its Click event and

then enter the following statement:

this.Close();

4. Finally, run the project by pressing F5. Click the Options button to display the

Options form and then click OK to close the Options form. Again, the form

isn’t just hidden; the form is completely unloaded from memory and no

longer exists.

If you simply wanted to hide a form, but not unload it from memory, you would call
its Hide() method or set the form’s Visible property to False. This would preserve
the form’s state for the time you choose to show it again (by setting its Visible
property to True or by using a method to display the form).

Summary
In this hour, you learned the basics of creating forms. You learned how to add them

to your project, set basic appearance properties, and show and hide them by using

Visual C# code. In the next hour, you’ll learn more advanced functionality for work-

ing with forms. After you’ve mastered the material in this hour and in the next

hour, you’ll be ready to dig into Visual C#’s controls—that’s where the fun of build-

ing an interface really begins!

By the
Way

120 HOUR 5: Building Forms—The Basics

Q&A
Q. How many form properties should I define at design time as opposed to

runtime?

A. You should set all properties that you can at design time. First, it’ll be easier to

work with the form because you can see exactly what the user will see. Also,

debugging is easier because there’s less code.

Q. Should I let the user minimize and maximize all forms?

A. Probably not. First, there’s no point in letting a form be maximized if the form

isn’t set up to adjust its controls accordingly. About forms, print dialog boxes,

and spell check windows are examples of forms that should not be resizable.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: The text displayed in the form’s title bar is determined by the

value in the TitleBarText property.

2. The named color Control is what kind of color?

3. Name three places where a form’s icon is displayed.

4. A window with a smaller than normal title bar is called a what?

5. For a Minimize or Maximize button to be visible on a form, what other ele-

ment must be visible?

6. What, in general, is the best value to use for a form’s StartPosition property?

7. To maximize, minimize, or restore a form in code, you set what property?

8. What property do you set to make a hidden form appear?

Answers
1. False. The text displayed in the form’s title bar is determined by the value in

the form’s Text property.

2. A system color.

Workshop 121

3. In the title bar, on the task bar, and when the user presses Alt+Tab.

4. Tool window.

5. The ControlBox property of the form must be set to True.

6. CenterScreen for the main form and CenterParent for all other forms.

7. The form’s WindowState property.

8. Set the form’s Visible property to True.

Exercises
1. Create a Windows Application project with a single form that has two buttons

on it. One button, when clicked, should move the form to the left by two pix-

els. The other should move the form to the right by two pixels. Hint: Use the

form’s Left property.

2. Create a Windows Application project with three forms. Give the startup form

two buttons. Make the other two forms tool windows, and make one button

display the first tool window and the other button display the second tool

window.

This page intentionally left blank

HOUR 6

Building Forms—Advanced
Techniques

What You’ll Learn in This Hour:
. Adding controls to a form
. Positioning, aligning, sizing, spacing, and anchoring controls
. Creating intelligent tab orders
. Adjusting the z-order of controls
. Creating transparent forms
. Creating forms that always float over other forms
. Creating multiple document interfaces

A form is just a canvas, and although you can tailor a form by setting its properties, you

need to add controls to it to make it functional. In the previous hour, you learned how to

add forms to a project, set basic form properties, and show and hide forms. In this hour,

you’ll learn all about adding controls to a form, including arranging and aligning con-

trols to create an attractive and functional interface. You’ll also learn how to create

advanced multiple document interfaces (MDIs) as used in applications such as Photoshop.

After you complete the material in this hour, you’ll be ready to learn the details about the

various controls available in Visual C#.

Working with Controls
Controls are the objects that you place on a form for users to interact with. If you’ve fol-

lowed the examples in the previous hours, you’ve already added controls to a form.

However, you’ll be adding a lot of controls to forms, and it’s important for you to under-

stand all aspects of the process. After you learn about forms in this hour, the next two

hours teach you the ins and outs of the powerful controls provided by Visual C#.

124 HOUR 6: Building Forms—Advanced Techniques

Adding Controls to a Form
All the controls that you can add to a form can be found in the toolbox. The tool-

box appears as a docked window on the left side of the design environment by

default. This location is useful when you’re only occasionally adding controls to

forms. However, when doing serious form-design work, I find it best to dock the tool-

box to the right edge of the design environment, where it doesn’t overlap so much

(if any) of the form I’m working with.

Remember that before you can undock a toolbar to move it to a new location, you
must make sure that it isn’t set to Auto Hide.

There are category headings in the toolbox that you can expand and collapse. For

most of your design, you’ll use the controls in the Common Controls category. As

your skills progress, however, you might find yourself using more complex and high-

ly specialized controls found in the other categories.

You can add a control to a form in four ways, and you’re now going to use three pri-

mary methods (you’ve already used the forth, which is to paste a copy of a control

onto a form). Open the Picture Viewer project you created in the previous hour (or

open the starting project provided at my website) and double-click OptionsForm.cs

in the Solution Explorer window to view the Options form in the designer.

Adding a Control by Double-Clicking It
in the Toolbox
The easiest way to add a control to a form is to double-click the control in the tool-

box. Try this now: Display the toolbox and double-click the TextBox tool. Visual C#

creates a new text box in the upper-left corner of the form (you have to move the

mouse away from the toolbox to close the toolbox and see the new control). When

you double-click a control in the toolbox (excluding controls that are invisible at

runtime), Visual C# creates the new control on top of the control that currently has

the focus, with the default size for the type of control you’re adding. If no other con-

trols are on the form, the new control is placed in the upper-left corner as you’ve

seen here. After the control is added to the form, you’re free to move and size the

text box as you please. A text box cannot be vertically resized unless its Multiline

property is set to True. Set it to True now.

By the
Way

Adding a Control by Drawing It 125

Adding a Control by Dragging from the
Toolbox
If you want a little more authority over where a new control is placed, you can drag

a control to the form. Try this now: Display the toolbox, click the Button control,

and drag it to the form. When the cursor is roughly where you want the button cre-

ated, release the mouse button.

Adding a Control by Drawing It
The last and most precise method of placing a control on a form is to draw the con-

trol on a form. Follow these steps:

1. Display the toolbox and click the ListBox tool once to select it.

2. Move the pointer to where you want the upper-left corner of the list box to

appear and then click and hold the mouse button.

3. Drag the pointer to where you want the bottom-right corner of the list box to

be and release the button.

The list box is created with its dimensions set to the rectangle you drew on the form.

This is by far the most precise method of adding controls to a form.

If you prefer to draw controls on your forms by clicking and dragging, I strongly
suggest that you float the toolbox or dock it to the right or bottom edge of the
design environment. The toolbox interferes with drawing controls when it’s docked
to the left edge and set to Auto Hide because it obscures a good bit of the under-
lying form.

It’s important to note that the first item in each tool category is titled Pointer.

Pointer isn’t actually a control. When the pointer item is selected, the design envi-

ronment is placed in Select mode rather than in a mode to create a new control.

With the pointer chosen, you can select a control and view its properties simply by

clicking it in the designer. This is the default behavior of the development environ-

ment.

Manipulating Controls
Getting controls on a form is the easy part. Arranging them so that they create an

attractive and intuitive interface is the challenge. Interface possibilities are nearly

endless, so I can’t tell you how to design any given interface here (though I strongly

Did you
Know?

126 HOUR 6: Building Forms—Advanced Techniques

suggest you create forms that closely match the appearance and behavior of similar

commercial applications). I can, however, show you the techniques to move, size,

and arrange controls so that they appear the way you want them to. By mastering

these techniques, you’ll be much more efficient at building interfaces, freeing your

time for writing the code that makes things happen.

Using the Grid (Size and Snap)
You might have noticed as you worked with controls so far in this book that controls

seem to “snap” to an invisible grid. You’re not crazy— they actually do. When you

draw or move a control on a form in a project with grids enabled (which they are by

default in Visual C# 2008), the coordinates of the control automatically snap to the

nearest grid coordinate. This offers some precision when adjusting the size and loca-

tion of controls. In practical use, I often find the grid to be only slightly helpful

because the size or location I want often doesn’t fit neatly with the grid locations.

You can, however, control the granularity and even the visibility of the grid, and I

suggest you do both.

Grid settings are global to Visual C# 2008—you don’t set them for each individual

project or form. To display the grid settings on your computer, choose Tools, Options

from the menu to display the Options form. Next, select the check box named Show

All Settings, and then click Windows Form Designer in the tree on the left to view

the designer settings (see Figure 6.1).

FIGURE 6.1
Grid settings
are global to
Visual C#
2008.

The settings we’re interested in here are

. GridSize—This determines the granularity of the grid in pixels both horizon-

tally and vertically. A smaller grid size means that you have finer control over

control size and placement.

Adding a Control by Drawing It 127

. ShowGrid—This determines whether grid dots are displayed on forms in the

designer.

. SnapToGrid—This determines whether the grid is used. If this setting is false,

the grid size setting is ignored, and nothing is snapped to the grid.

. LayoutMode—Determines whether the designer snaps a control you are mov-

ing to the grid or aligns it with other controls.

Right now, you’re not using the grid for drawing controls, but you are using snap

lines when moving controls because your LayoutMode is set to SnapLines. I talk

about this in more detail later in this section. Right now, I want to show you how

grids work, so change your LayoutMode setting to SnapToGrid.

You’re now going to assign a higher level of granularity to the grid (the space

between the grid points will be smaller). I find that this helps with design because

edges aren’t so easily snapped to unwanted places.

To adjust the granularity of the grid, you change the GridSize setting. Setting the

Width or Height of the grid to a smaller number creates a more precise grid, which

allows for finer control over sizing and placement, whereas using larger values cre-

ates a much coarser grid and offers less control. With a larger grid, you’ll find that

edges snap to grid points more easily and at larger increments, making it impossible

to fine-tune the size or position of a control. Follow these steps:

1. Change the GridSize property to 6,6.

2. Change the ShowGrid property to True.

3. Click OK to save your changes and return to the form designer. Notice that

grid dots now appear (see Figure 6.2). Note: There is a bug in the release of

Visual C# 2008 that prevents the grid from appearing. If you can’t see the

grid, close down Visual C# and then restart it—the grid then appears.

Microsoft has acknowledged this problem, but they have not committed to

changing the behavior.

Try dragging the controls on your form or dragging their edges to size them (leave

the OK button alone). Notice that you have more control over the placement with

the finer grid. Try changing the GridSize to a set of higher numbers, such as 25,25

and see what happens. When you’re finished experimenting, change the GridSize

values back to 4,4. If you have a list box on your form, you might notice that the

list box doesn’t resize perfectly to match the grid. The list box always retains a

height that allows full rows of data to be displayed. It goes close to the grid, but

might not align perfectly with it.

128 HOUR 6: Building Forms—Advanced Techniques

An unfortunate side effect of a smaller grid is that the grid can become distracting.

Again, you’ll decide what you like best, but I generally turn the grids off on my

forms. In fact, I prefer the new Snap to Lines feature discussed next.

The ShowGrid property determines only whether the grid is drawn, not whether it’s
active; whether a grid is active is determined by the form’s SnapToGrid property.

Using Snap Lines
A new and useful feature is the Snap to Lines layout feature. Tell Visual C# to use

Snap to Lines now by following these steps:

1. Choose Tools, Options from the menu to display the Options dialog box.

2. Click Windows Forms Designer to display the layout settings.

3. Change the LayoutMode property to SnapLines.

4. Turn off the grid by setting the ShowGrid property to False.

5. Click OK to save your settings.

Snap lines is a feature designed to help you create better interfaces faster by “snap-

ping” control edges to imaginary lines along the edges of other controls. The easiest

way to understand this is to try it.

Follow these steps:

1. Drag your controls so that they are roughly in the position of Figure 6.3.

2. Click the ListBox to select it.

FIGURE 6.2
Grids don’t
have to be visi-
ble to be active.

By the
Way

Adding a Control by Drawing It 129

3. Click on the white square that appears on the left edge of the control and drag

it to the right. As the edge nears vertical alignment with the button above it, a

snap line appears, and the edge “snaps” to the line (see Figure 6.4). If you

don’t see this behavior, you’ve hit a Visual Studio bug and need to restart

Visual C# and reload the project.

FIGURE 6.3
Start from this
layout.

FIGURE 6.4
Snap lines
makes it easy
to align the
edges of
controls.

You’re free to continue dragging the edge, and as you do so Visual C# creates more

snap lines as you near vertical alignment with other controls. Controls also support

horizontal snap lines, and all snap lines work when dragging a control as well. This

may seem like a small feature to you now, but trust me when I say this is a great

addition to Visual C# and will save you many tedious hours over time.

Selecting a Group of Controls
As your skills increase, you’ll find your forms becoming increasingly complex. Some

forms might contain dozens, or even hundreds, of controls. Visual C# has a set of

features that make it easy to align groups of controls.

130 HOUR 6: Building Forms—Advanced Techniques

By default, clicking a control on a form selects it while simultaneously deselecting any

controls that were previously selected. To perform actions on more than one control,

you need to select a group of controls. You can do this in one of two ways, the first

of which is to lasso the controls. To lasso a group of controls, you first click and drag

the mouse pointer anywhere on the form. As you drag the mouse, a rectangle is

drawn on the form. When you release the mouse button, all controls intersected by

the rectangle become selected. Note that you don’t have to completely surround a

control with the lasso (also called a marquee); you have to intersect only part of the

control to select it. Try this now: Click somewhere in the lower-left corner of the form

and drag the pointer toward the upper-right of the form without releasing the but-

ton. Intersect or surround all controls except the OK button (see Figure 6.5). When

the rectangle has surrounded or intersected all the controls, release the button, and

the controls are selected (see Figure 6.6).

FIGURE 6.5
Click and drag
to create a
selection
rectangle.

FIGURE 6.6
All selected
controls appear
with a dotted
border and siz-
ing handles
(rectangles).

When a control is selected, it has a dotted border and a number of sizing handles

(squares located in the dotted border at the corners and midpoints of the control).

Pay careful attention to the sizing handles. The control with the white sizing

Adding a Control by Drawing It 131

handles is the active control in the selected group. When you use Visual C#’s tools to

work on a group of selected controls (such as the alignment and formatting tools),

the values of the active control are used. For example, if you were to align the left

side of the selected controls shown in Figure 6.6, each of the controls would have its

Left property value set to that of the active control (the control with the white han-

dles). When you use the lasso technique to select a group of controls, you really

don’t have much influence over which control Visual C# makes the active control.

In this example, you want to align all controls to the button, so you have to use a

different technique to select the controls. Deselect all the controls now by clicking

anywhere on the form (don’t click on a control).

Not all sizing handles are movable at all times. For example, Visual C# doesn’t
allow you to change the height of the text box until you set the Multiline proper-
ty of a text box to True, so the sizing handles at the left and right edges are the
only ones available when the control is selected.

The second technique for selecting multiple controls is to use the Shift or Ctrl key

while clicking controls (either can be used to the same effect). This method is much

like selecting multiple files in Explorer. Follow these steps:

1. Click the bottom control (the list box) to select it. (When only one control is

selected, it’s considered the active control.)

2. Next, hold down the Shift key and click the text box in the upper-left corner;

the list box and text box are now selected. The list box is the active control

because it is the first control you clicked on when selecting this group. Again,

when more than one control is selected, the active control has its sizing han-

dles set to white so that you can identify it.

3. Finally, with the Shift key still pressed, click the button control (not the OK

button) to add it to the group of selected controls. All the controls should now

be selected, and the list box should be the active control.

Clicking a selected control while holding down the Shift key deselects the control.

You can combine the two selection techniques when needed. For instance, you could

first lasso all controls to select them. If you happened to select a control that you

don’t want in the group, simply hold down the Shift key and click that control to

deselect it.

By the
Way

By the
Way

132 HOUR 6: Building Forms—Advanced Techniques

If you must click the same control twice, such as to deselect and then reselect it,
do so s-l-o-w-l-y. If you click too fast, Visual C# interprets your actions as a double-
click and creates a new event handler for the control.

Aligning Controls
Visual C# includes a number of formatting tools you can use to design attractive

interfaces. Most of these are accessed in the Layout toolbar. Display the Layout tool-

bar now by right-clicking a toolbar at the top of Visual C# and choosing Layout

from the shortcut menu that appears. (If it appears checked, it is already visible.)

The Layout toolbar includes options for aligning controls horizontally and vertically

to the controls’ edges or centers (see Figure 6.7).

Watch
Out!

FIGURE 6.7
The Layout
toolbar makes
it quick and
easy to align
controls.

Slowly move your pointer over the buttons on this toolbar to read their Tooltips—

move from left to right. Notice that with this toolbar you can

. Align the left edge, middle, or right edge of selected controls.

. Align the top edge, middle, or bottom edge of selected controls.

. Make the selected controls the same width, height, or both.

. Make horizontal or vertical spacing between the selected controls nice and

even.

. Move layering of the selected controls backward or forward.

. Set a Tab Order for the controls.

The first item simply aligns the selected controls to the grid—not much fun there.

However, the remaining buttons are very useful. Remember that Visual C# uses the

active control as its baseline when performing alignment. This is important. Click

the Align Tops button now and notice that the selected controls are now aligned

with the active control (see Figure 6.8).

Adding a Control by Drawing It 133

Making Controls the Same Size
In addition to aligning controls, you can also make all selected controls the same

size—height, width, or both. To do this, use the Make Same Size button on the tool-

bar. Make all your controls the same size now by clicking the Make the Same Size

button. This makes the selected controls the same size as the list box (rather large).

Now try this: In the Properties window, enter 75,25 in the Size property and press

Tab to commit the entry. Notice that your change affects all the selected controls.

Having the Properties window affect all selected controls like this makes it easy to

quickly modify a number of controls that need to share property values, and I talk

about this in a little more detail shortly.

Evenly Spacing a Group of Controls
As many a salesman has said, “…and that’s not all!” You can also make the spac-

ing between controls uniform by using the Layout toolbar. Try this now: Click the

Make Horizontal Spacing Equal button on the toolbar. All the controls are now

evenly spaced. Next, click the Decrease Horizontal Spacing button on the toolbar a

few times and notice how the spacing between the controls decreases slightly with

each click. You can also increase the horizontal or vertical spacing or completely

remove spacing from between controls, using buttons on the Layout toolbar. Save

your project now by clicking the Save All button on the toolbar.

Setting Property Values for a Group of Controls
The following is a technique that many experienced Visual C# developers seem to

overlook: You can change a property value in the Properties window when multiple

controls are selected. This causes the corresponding property to change for all select-

ed controls.

FIGURE 6.8
The selected
control is used
as the baseline
when aligning
groups of
selected
controls.

134 HOUR 6: Building Forms—Advanced Techniques

Make sure that all three controls are still selected and then display the Properties

window (if it’s not already displayed). When a group of controls is selected, the

Properties window appears with some modifications (see Figure 6.9):

. No Name property is shown. This occurs because you’re not allowed to have

two controls with the same name, so Visual C# doesn’t let you even try.

. Only properties shared by all controls are displayed. Because you have select-

ed controls of different types, only a small subset of common properties are

available. If you selected controls all of the same type, you’d see more proper-

ties available.

. For properties where the values of the selected controls differ (such as the

Location property in this example), the value is left empty in the Properties

window.

Entering a value in a property changes the corresponding property for all

selected controls. To see how this works, change the BackColor property to a

shade of yellow, and you’ll see that all controls have their BackColor set to

yellow.

FIGURE 6.9
You can view
the property
values of many
controls at
once, with
some caveats.

You’re not going to actually use the three controls you’ve been experimenting with

so far in this chapter, so press the Delete key on your keyboard now to delete all the

selected controls.

Adding a Control by Drawing It 135

Anchoring and Autosizing Controls
Some of my favorite additions to the new forms engine in Visual C# are the capabil-

ity to anchor controls to one or more edges of a form and the capability for controls

to size themselves appropriately when the user sizes a form. In the past, you had to

use a (usually cumbersome) third-party component or resort to writing code in the

form Resize event to get this behavior, but it’s an intrinsic capability of Visual C#

2008’s form engine.

The default behavior of all new controls is that controls are docked to the top and

left edges of their containers. What if you want a control to always appear in the

upper-right corner or lower-left corner of a form? You’re now going to learn how to

anchor controls so that they adapt accordingly when the form is resized.

Follow these steps:

1. Double-click ViewerForm.cs in the Solution Explorer window. This is the form

you’ll be modifying.

2. Press F5 to run the project.

3. Drag the lower-right corner of the form to make the form bigger. Notice that

the controls don’t follow the edge of the form (see Figure 6.10).

FIGURE 6.10
By default, con-
trols are
anchored to the
top-left corner
of the form.

4. Stop the running project now by choosing Debug, Stop Debugging from the

menu or by closing the form.

5. Click the Select Picture button to select it and, more importantly, deselect the

form.

136 HOUR 6: Building Forms—Advanced Techniques

6. Hold down the Shift key and click on the following additional buttons: Quit,

Draw Border, Options, ^, and v.

7. Next, click the Anchor property in the Properties window, and then click the

drop-down arrow that appears. A drop-down box appears that’s unique to the

Anchor property (see Figure 6.11).

FIGURE 6.11
You use this
unique drop-
down box to set
a control’s
Anchor property.

The gray square in the center of the drop-down box represents the control whose

property you’re setting. The thin rectangles on the top, bottom, left, and right repre-

sent the possible edges to which you can dock the control; if a rectangle is filled in,

the edge of the control facing that rectangle is docked to that edge of the form.

Follow these steps to see how the Anchor property works:

1. Click the rectangle on the left side of the control so that it’s no longer filled in,

and then click the rectangle to the right of the control so that it is filled in (see

Figure 6.12).

2. Click any other property to close the drop-down box. The Anchor property

should now read Top, Right.

3. Press F5 to run the project, and then drag an edge of the form to make it larger.

FIGURE 6.12
This setting
anchors the
controls to the
top and right
edges of the
form.

Adding a Control by Drawing It 137

Pretty interesting, huh? What Visual C# has done is anchored the right edge of the

buttons to the right edge of the form (see Figure 6.13). Really, anchoring means

keeping an edge of the control a constant, relative distance from an edge of the

form, and it’s an unbelievably powerful tool for building interfaces.

FIGURE 6.13
Anchoring is a
powerful feature
for creating
adaptable
forms.

Notice that the picture box and the coordinate labels still retain their original loca-

tions when the form is resized. No problem—you can address that with the Anchor

property as well. Start by changing the anchoring of the X and Y labels by following

these steps:

1. Stop the running project and then click the X label on the form designer to

select it.

2. Hold down the Shift key and click the Y label to select it.

3. Set the Anchor property just as you did for the buttons—deselect the left side

and select the right side (refer to Figure 6.12).

4. Click any other property to close the Anchor drop-down box.

Now the picture box is a bit of a different beast from the other controls in that you

want the top and left anchored the way they are now, but you want the right and

bottom edge to grow and shrink with the form. This is actually easy to accomplish.

Follow these steps:

1. Click the picture box to select it.

2. Open the Anchor property and select all four anchor points (all four rectan-

gles should be filled with solid gray; see Figure 6.14).

138 HOUR 6: Building Forms—Advanced Techniques

Now press F5 to run the project and drag the lower-right of the form to make it big-

ger. Notice that now the picture box sizes itself to match the form size (see Figure

6.15). You’ll find this is useful when viewing larger images.

FIGURE 6.14
This setting
anchors the
control relative
to all four sides
of the form.

FIGURE 6.15
Proper use of
the Anchor
property
enables you to
build flexible
forms.

Now that you know how to use the Anchor property, you can make forms that users

can resize with no code. One caveat: Depending on its Anchor setting, a control

might disappear if the form is shrunk quite small.

Creating a Tab Order
Tab order is something often (emphasis on often) overlooked by even seasoned

Visual C# programmers. You’re probably familiar with tab order as a user, although

you might not realize it. When you press Tab while on a form, the focus moves from

the current control to the next control in the tab order. This enables easy keyboard

navigation on forms. The tab order for controls on a form is determined by the

Adding a Control by Drawing It 139

TabIndex properties of the controls. The control with the TabIndex value of 0 is the

first control that receives the focus when the form first displays. When you press Tab,

the control with the TabIndex of 1 receives the focus, and so on. When you add a

control to a form, Visual C# assigns the next available TabIndex value to the new

control (making it last in the tab order). Each control has a unique TabIndex value,

and TabIndex values are always used in ascending order.

If the tab order isn’t set correctly for a form, pressing Tab causes the focus to jump

from control to control in no apparent order. This is a great way to frustrate a user.

In the past, the only way to change the tab order for controls on a form was to

manually change the TabIndex values in the Properties window. For instance, to

make a control the first control in the tab order, you would change its TabIndex

property to 0; Visual C# would then bump the values of all other controls according-

ly. This was a painful process—believe me. Although it can be handy to set a

TabIndex property manually, such as when you want to insert a control into an

existing tab sequence, there is a much better way to set the tab order of forms.

Press F5 to run the project now and notice that the Select Picture button has the

focus (it’s highlighted by a blue rectangle). If you press Enter now, the button would

be “clicked” because it has the focus. Now, press Tab, and the Quit button has the

focus. This happens because you added the Quit button to the form right after you

added the Select picture button. Press Tab once more. Did you expect the Draw

Border button to get the focus? So would a user. Instead, the ^ button receives the

focus because it was the next control you added to the form. You’re about to fix

that, so stop the project now by closing the form.

You’re now going to set the tab order of the form via the visual method of .NET:

1. The last button on the Layout toolbar is the Tab Order button. Click it now

and notice how Visual C# superimposes a set of numbers over the controls (see

Figure 6.16). The number on a control indicates its TabIndex property value.

Now it’s easy to see that the tab order is incorrect.

2. Click the Select Picture button. The background of the number changes from

blue to white to show that you selected the control. Had this control had a

TabIndex value other than 0, it would have been changed to 0 when you

clicked it.

3. Click the Quit button to designate it as the next button on the tab order.

4. Currently, the Draw Border button is fifth in the tab order. Click it now and

the number changes to 2.

5. Click the remaining controls in the following order: X label, Y label, Options

button, ^ button, and v button.

140 HOUR 6: Building Forms—Advanced Techniques

6. When you click the last button, all numbers change back to a blue back-

ground; the tab order is now set. Click the Tab Order button once more on the

Layout toolbar to take the designer out of Tab Order mode.

7. Press F5 to run the project once again and you’ll see that pressing Tab now

moves the focus logically.

FIGURE 6.16
The numbers
over each con-
trol indicate the
control’s
TabIndex
value.

You can move the focus programmatically via the tab order by calling the
SelectNextControl() method of a control or a form.

To remove a control from the tab sequence, set its TabStop property to False. When

a control’s TabStop property is set to False, users can still select the control with the

mouse, but they can’t enter the control by using the Tab key. You should still set the

TabIndex property to a logical value so that if the control receives the focus (such as

by being clicked), pressing Tab moves the focus to the next logical control.

Layering Controls (Z-Order)
Tab order and visual alignment are key elements for effectively placing controls on

forms. However, these two elements address control placement in only two

By the
Way

Creating Transparent Forms 141

dimensions—the x,y axis. Although it’s rare that you’ll need to do so, at times you

might need to have controls overlap. Whenever two controls overlap, whichever

control is added to the form most recently appears on top of the other. You can con-

trol the ordering of controls by using the Bring to Front or Send to Back buttons

found on the right side of the Layout toolbar.

You can move a control forward or backward using code by invoking the
BringToFront or SendToBack() methods of the control.

Creating Topmost Nonmodal Windows
As you’re probably aware, when you click a window it usually comes to the fore-

ground, and all other windows are shown behind it (unless it’s a modal window). At

times, you might want a window to stay on top of other windows, regardless of

whether it’s the current window (that is, it has the focus). An example of this is the

Find window in Visual C# and other applications such as Word. Regardless of which

window has the focus, the Find form always appears floating over all other win-

dows. Such a window is created by setting the form’s TopMost property to True. Not

exactly rocket science, but that’s the point: A simple property change or method call

is often all it takes to accomplish what might otherwise seem to be a difficult task.

Creating Transparent Forms
A new property of forms that I think is very cool is the Opacity property. This proper-

ty controls the opaqueness of the form as well as all controls on the form. The

default Opacity value of 100% means that the form and its controls are completely

opaque (solid), whereas a value of 0% creates a completely transparent form (no

real point in that). A value of 50% then, creates a form that’s between solid and

invisible, as shown in Figure 6.17. Microsoft Outlook 2003 and newer makes good

use of opacity in its alerts that pop up to tell you when you’ve received an email.

The Opacity of these alerts is cycled from 0 to 100, left at 100 for a short time, and

then cycled back down to 0 as it disappears. You can do this in your program by

using a simple loop as discussed in Hour 14, “Looping for Efficiency.”

Did you
Know?

142 HOUR 6: Building Forms—Advanced Techniques

Creating Scrollable Forms
A scrollable form is one that can display scrollbars when its contents are larger than

the physical size of the form. Earlier versions of the Visual C# form engine lacked

the capability to create scrollable forms. It seems odd that this has never been possi-

ble before, and I’m personally happy to see this feature added. Not only is this a

great feature, it’s also trivial to implement in your own applications.

The scrolling behavior of a form is determined by the following three properties:

Property Description

AutoScroll This property determines whether scrollbars will ever

appear on a form.

AutoScrollMinSize The minimum size of the scroll region (area). If the

size of the form is adjusted so that the client area of

the form (the area of the form not counting borders

and title bar) is smaller than the

AutoScrollMinSize, scrollbars appear.

AutoScrollMargin This property determines the margin given around

controls during scrolling. This essentially determines

how far past the edge of the outermost controls you

can scroll.

FIGURE 6.17
Ghost forms!

Creating MDI Forms 143

Press F5 to run your project now and size the form smaller than it is by dragging the

lower-right corner toward the upper-left. Notice that, although the controls adjust

themselves the best they can, some controls disappear from view completely as the

form gets smaller. The only way you can access these controls is to make the form

bigger again—unless you make this form a scrollable form.

Follow these steps:

1. If the project is still running, stop it now.

2. Set the AutoScroll property of the ViewerForm.cs form to True.

3. Press F5 to run the project.

4. Drag the lower-right corner of the form toward the upper-left to make the

form smaller. Notice that as you do so, a scrollbar appears on the form (see

Figure 6.18). You can use the scrollbar to scroll the contents of the form and

access controls that would otherwise be unavailable.

FIGURE 6.18
Without scroll-
bars, it’s possi-
ble to have con-
trols that can’t
be seen.

Stop the project now and save your work.

Creating MDI Forms
All the projects you’ve created so far have been single document interface (SDI) proj-

ects. In SDI programs, every form in the application is a peer of all other forms; no

intrinsic hierarchy exists between forms. Visual C# also lets you create multiple docu-

ment interface (MDI) programs. An MDI program contains one parent window (also

called a container) and one or more child windows. A classic example of an MDI

program is Adobe Photoshop. When you run Photoshop, a single parent window

appears. Within this parent window, you can open any number of documents, each

appearing in its own child window. In an MDI program, all child windows share the

same toolbar and menu bar, which appears on the parent window. One restriction

144 HOUR 6: Building Forms—Advanced Techniques

of child windows is that they can exist only within the confines of the parent win-

dow. Figure 6.19 shows an example of Photoshop running with a number of child

document windows open.

FIGURE 6.19
Le Collage! MDI
applications
consist of a sin-
gle parent win-
dow and one or
more child
windows.

MDI applications can have any number of normal windows (dialog boxes, for exam-
ple) in addition to child windows.

You’re now going to create a simple MDI project. Follow these steps to create the

project:

1. Choose File, New Project from the menu to display the New Project dialog box

(note how this is a modal form).

2. Enter the name MDI Example and click OK to create the project.

3. Right-click Form1.cs in the Solution Explorer window and choose Rename

from the shortcut menu. Change the name of the form to MDIParentForm.cs.

Next, change the form’s Text property to MDI Parent, and change its

IsMdiContainer property to True. (If you don’t set the IsMdiContainer prop-

erty to True, this example doesn’t work.)

The first thing you’ll notice is that Visual C# changed the client area to a dark

gray and gave it a sunken appearance. This is the standard appearance for

MDI parent windows, and all visible child windows appear in this area.

By the
Way

Creating MDI Forms 145

4. Create a new form by choosing Project, Add Windows Form from the menu.

Name the form Child1Form.cs and change its Text property to Child 1.

5. Add a third form to the project in the same way. Name it Child2Form.cs and

set its Text property to Child 2.

6. Click Save All on the toolbar.

7. Double-click MDIParentForm.cs in the Solution Explorer to show the parent

window in the designer.

8. Next, double-click the form to access its default event—the Load event. Enter

the following code:

Child1Form objChild = new Child1Form();

objChild.MdiParent = this;

objChild.Show();

By now, you should know what the first and last statements do: The first statement

instantiates a new object whose type is Child1Form. The last statement shows the

form nonmodally. What we’re interested in here is the second statement. It sets the

MdiParent property of the form to the current form (this always references the cur-

rent object), which is an MDI parent form because its IsMdiContainer property is

set to True. When the new form is displayed, it’s shown as an MDI child.

Press F5 to run the project now and notice how the child form appears on the client

area of the parent form. If you size the parent form so that one or more child win-

dows can’t fully be displayed, scrollbars appear (see Figure 6.20). If you were to

remove the statement that set the MdiParent property, the form would simply

appear floating over the parent form (because it wouldn’t be a child) and therefore

wouldn’t be bound by the confines of the parent.

Stop the project by choosing Debug, Stop Debugging from the menu and follow

these steps:

1. Display the Solution Explorer, and double-click the Child1Form form to dis-

play it in the designer.

2. Add a button to the form and set the button’s properties as follows:

Property Value

Name btnShowChild2

Location 105,100

Size 85, 23

Text Show Child 2

146 HOUR 6: Building Forms—Advanced Techniques

3. Double-click the button to access its Click event, and then add the following

code:

Child2Form objChild = new Child2Form();

objChild.MdiParent = this.MdiParent;

objChild.Show();

This code shows the second child form. Note that differences exist between this

code and the code you entered earlier. You can’t set the second child’s

MdiParent property to this because this refers to the current form

(Child1Form, which is not an MDI container). However, you know that

this.MDIParent references the parent form of a child because this is precisely

the property you set to make the form a child in the first place. Therefore, you

can simply pass the parent of the first child to the second child, and they’ll

both be children of the same form.

Any form can be a child form (except, of course, an MDI parent form). To make a
form a child form, set its MDIParent property to a form that’s defined as an MDI
container.

4. Press F5 to run the project now. You’ll see the button on the child form, so go

ahead and click it. (If you don’t see the button, you might have mistakenly

added it to the second child form.) When you click the button, the second

child form appears. Notice how this is also bound by the constraints of the

parent form (see Figure 6.21).

The MDI parent form has an ActiveMdiChild property, which you can use to get
a reference to the currently active child window.

FIGURE 6.20
Child forms
appear only
within the con-
fines of the par-
ent form.

By the
Way

Did you
Know?

Summary 147

To make the parent form larger when the project is first run, you would set the
form’s Size.Height and Size.Width properties either at design time or at run-
time in the form’s Load event.

One thing to keep in mind about forms is that you can create as many instances of

a form as you want. Managing multiple instances of the same form gets tricky, how-

ever, and is beyond the scope of this book.

If MDI forms still confuse you, don’t worry. Most of the applications you’ll write as a

new Visual C# programmer will be SDI programs. As you become more familiar

with creating Visual C# projects in general, start experimenting with MDI projects.

Remember, you don’t have to make a program an MDI program simply because

you can; make an MDI program if the requirements of the project dictate that you

do so.

Summary
Understanding forms is critical because forms are the dynamic canvases on which

you build your user interface. If you don’t know how to work with forms, your entire

application will suffer. Many things about working with forms go beyond simply set-

ting properties, especially as you begin to think about the end user. As your experi-

ence grows, you’ll get into the groove of form design and things will become second

nature to you.

FIGURE 6.21
Child forms are
peers with one
another.

By the
Way

148 HOUR 6: Building Forms—Advanced Techniques

In this hour, you learned how to do some interesting things, such as creating trans-

parent forms, as well as some high-end techniques, such as building an MDI appli-

cation. You also learned how to create scrolling forms (an interface element that

shouldn’t be overlooked), and you spent a lot of time on working with controls on

forms, which is important because the primary function of a form is as a place to

host controls. In the next two hours, you’ll learn the details of many of Visual C#’s

powerful controls that will become important weapons in your vast development

arsenal.

Q&A
Q. Do I need to worry about the anchoring and scrolling capabilities of every

form I create?

A. Absolutely not. The majority of forms in most applications are dialog boxes. A

dialog box is a modal form used to gather data from the user. A dialog box is

usually of a fixed size, which means that its border style is set to a style that

can’t be sized. With a fixed-size form, you don’t need to worry about anchor-

ing or scrolling.

Q. How do I know whether a project is a candidate for an MDI interface?

A. If the program is to open many instances of the same type of form, it’s a can-

didate for an MDI interface. For example, if you’re creating an image-editing

program and the intent is to enable the user to open many images at once,

MDI makes sense. Also, if you’ll have many forms that will share a common

toolbar and menu, you might want to consider MDI.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: The first control selected in a series is always made the active

control.

2. How many methods are there to add a control to a form from the toolbox?

3. If you double-click a tool in the toolbox, where on the form is it placed?

Workshop 149

4. Which property fixes an edge of a control to an edge of a form?

5. What do you change to hide the grid on a form?

6. Which toolbar contains the functions for spacing and aligning controls?

7. Which property do you set to make a form an MDI parent?

Answers
1. True.

2. There are four primary methods: double-clicking a tool in the toolbox, drag-

ging a tool from the toolbox, clicking a tool in the toolbox and then drawing

it on a form, and copying and pasting a control.

3. The control is placed over the currently selected control, or in the upper-left

corner if no control is selected.

4. The Anchor property.

5. The ShowGrid property found on the Options dialog box.

6. The Layout toolbar.

7. You set the IsMdiContainer property to True to make a form an MDI parent.

Exercises
1. Create a new Windows Application and add a button to the middle of the

form. Experiment with different values for the button’s Anchor property, run-

ning the project in between property changes.

2. Modify the MDI Example project in this hour so that the first child that

appears is Child2Form, which in turn shows Child1Form.

This page intentionally left blank

HOUR 7

Working with Traditional
Controls

What You’ll Learn in This Hour:
. Displaying static text with the Label control
. Allowing users to enter text using a text box
. Creating password fields
. Working with buttons
. Using panels, group boxes, check boxes, and option buttons
. Displaying lists with list boxes and combo boxes

The preceding two hours described in considerable detail how to work with forms. Forms

are the foundation of a user interface but are pretty much useless by themselves. To create

a functional interface, you need to use controls. Controls are the various widgets and doo-

dads on a form with which users interact. Dozens of different types of controls exist, from

the simple Label control, used to display static text, to the more complicated Tree View

control, used to present trees of data like those found in Explorer. In this hour, I’ll intro-

duce you to the most common (and simple) controls, which I call traditional controls. In

Hour 8, “Using Advanced Controls,” you’ll learn about the more advanced controls that

you can use to create professional-level interfaces.

Displaying Static Text with the Label
Control
Label controls are used to display static text to the user. By static, I mean that the user

can’t change the text directly (but you can change the text with code). Label controls are

one of the most commonly used controls, and, fortunately, they’re also one of the easiest.

152 HOUR 7: Working with Traditional Controls

Labels are most often used to provide descriptive text for other controls such as text

boxes. Labels are also great for providing status-type information to a user, as well

as for providing general instructions on a form.

You’ll build on the Picture Viewer project from Hour 6, “Building Forms: Advanced

Techniques,” for most of this hour. Although you’ll add the controls to the interface,

you won’t make them functional until you progress to Part III.

Start by following these steps:

1. Open the Picture Viewer you worked on in Hour 6.

2. Double-click OptionsForm.cs in the Solution Explorer window to display the

Options form in the designer.

3. Add a new Label control to the form by double-clicking the Label item in the

toolbox. The primary property of the Label control is the Text property,

which determines the text displayed to the user. When a Label control is first

added to a form, the Text property is set to the name of the control. This isn’t

very useful. Set the properties of the new Label control as follows:

Property Value

Name lblUserName

Location 40, 41

Text User Name:

Notice how the label resizes automatically to fit your text. To create a multiline

label, you would click in the Text property to display a drop-down arrow and then

click the arrow to access a text editor, as shown in Figure 7.1. You could then enter

text and separate the lines by pressing Enter. In most cases, it’s best to place label

text on a single line, but it’s nice to have the option.

FIGURE 7.1
Multiline labels
are created with
this text editor.

Allowing Users to Enter Text Using a Text Box 153

Another interesting aspect of the label control is that a label can have an associated

hotkey. A hotkey appears as an underlined character in the label’s text, as in First

Name:. When the user presses the Alt key in conjunction with the hotkey (Alt+F in

this example), the focus is moved to the next control in the tab order after the label.

To assign a hotkey to a label, you preface the hotkey in the label’s Text property

with an ampersand (&). For example, to create the F hotkey for the First Name

label, you would enter the following into the Text property of the label: &First Name:.

Allowing Users to Enter Text Using a
Text Box
A Label control is usually the best control for displaying text that a user can’t

change. However, when you need to allow users to enter or edit text, the text box is

the tool for the job. If you’ve ever typed information on a form, you’ve almost cer-

tainly used a text box. Add a new text box to your form now by double-clicking the

TextBox item in the toolbox. Set the text box’s properties as follows:

Property Value

Name txtUserName

Location 105, 38

Size 139, 20

Your form should now look like Figure 7.2.

FIGURE 7.2
Labels and text
boxes work well
together.

Although you’ll leave the Text property of a text box empty 99% of the time, cer-

tain aspects of the text box are easier to understand when it contains text. For now,

set the text box’s Text property to This is sample text. Remember to press Enter

or Tab to commit your property change.

154 HOUR 7: Working with Traditional Controls

Specifying Text Alignment
Both the Text Box and Label controls have a TextAlign property (as do many

other controls). The TextAlign property determines the alignment of the text within

the control, much like the justification setting in a word processor. You can select

from Left, Center, and Right.

Follow these steps to see how the TextAlign property works:

1. Change the TextAlign property of the text box to Right, and see how the text

becomes right-aligned within the text box.

2. Change TextAlign to Center to see what center alignment looks like. As you

can see, this property is pretty straightforward.

3. Change the TextAlign property back to Left before continuing.

Creating a Multiline Text Box
In Hour 6, I talked about the sizing handles of a selected control. I mentioned how

handles that can be sized are filled with white, and handles that are locked appear

with a gray center. Notice how only the left and right edges of the text box have

white sizing handles. This means that you can adjust only the left and right edges of

the control (you can alter only the width, not the height). The text box is defined as

a single-line text box, meaning that it displays only one line of text. What would be

the point of a really tall text box that showed only a single line of text?

To allow a text box to display multiple lines of text, set its Multiline property to

True. Set the Multiline property of your text box to True now, and notice how all

the sizing handles become white. Although you could set this in the Properties win-

dow, there is a nifty shortcut for setting a text box’s Multiline property. Select the

text box, and then click the little square with the arrow that appears above the text

box (refer to Figure 7.2). This displays a simple shortcut menu that shows the

Multiline property value. Click the check box next to the value, and then click off

the menu to close it. Most controls have such a shortcut menu, but the contents

depend on the type of control selected. Get used to opening these shortcut menus

when you see the little box with the arrow so that you can become familiar with the

properties each control makes available in its shortcuts.

Change the Text property of the text box to This is sample text. A multiline

text box will wrap its contents as necessary. Press Enter or Tab to commit

the property change. Figure 7.3 shows how the text box displays only part of what

you entered because the control simply isn’t big enough to show all the text.

Allowing Users to Enter Text Using a Text Box 155

Change the Size property to 139, 52, and you’ll then see the entire contents of the

text box, as shown in Figure 7.4.

FIGURE 7.3
A text box might
contain more
text than it can
display.

FIGURE 7.4
A multiline text
box can be
sized as large
as necessary.

There will be times when you won’t want a user to be able to interact with a control.

For example, you might implement a security model in an application, and if the

user doesn’t have the necessary privileges, you might prevent him or her from alter-

ing data. The Enabled property, which almost every control has, determines

whether the user can interact with the control. Change the Enabled property of the

text box to False, press F5 to run the project, and click Options to show the Options

form. Although no noticeable change occurs in the control in Design view, there’s a

big change to the control at runtime: The text appears in gray rather than black, and

the text box doesn’t accept the focus or allow you to change the text (see Figure 7.5).

Stop the project now by choosing Debug, Stop Debugging, and then change the con-

trol’s Enabled property back to True.

156 HOUR 7: Working with Traditional Controls

Adding Scrollbars
Even though you can size a multiline text box, there will still be times when the

contents of the control are more than can be displayed. If you believe this is a possi-

bility for a text box you’re adding to a form, give the text box scrollbars by chang-

ing the ScrollBars property from None to Vertical, Horizontal, or Both.

For a text box to display scrollbars, its Multiline property must be set to True.
Also, if you set the ScrollBars property to Both, the horizontal scrollbar doesn’t
appear unless you also set the WordWrap property to False. If you set WordWrap
equal to True, text will always wrap to fit the control, so there will never be any
text off to the right of the text box, and there will be no need for a horizontal
scrollbar.

Change the ScrollBars property of your text box to Vertical, and notice how a

scrollbar appears in the text box (see Figure 7.6).

FIGURE 7.5
You can’t inter-
act with a text
box whose
Enabled proper-
ty is set to
False.

By the
Way

FIGURE 7.6
If a text box
might contain a
lot of text, give
it a scrollbar.

Allowing Users to Enter Text Using a Text Box 157

If you set a text box’s AcceptsReturn property to true, the user can press Enter
to create a new line in the text box. When the AcceptsTabs property is set to
true, the user can press Tab within the control to create columns (rather than
moving the focus to the next control).

Limiting the Number of Characters a User Can
Enter
You can limit how many characters a user can type into a text box by using the

MaxLength property. All new text boxes are given the default value of 32767 for

MaxLength, but you can change this as needed. To see how this works, follow these

steps:

1. Change the text box’s properties as follows:

Property Value

Text Make empty (This means that you should clear out the

value.)

MaxLength 10

Multiline False

ScrollBars None

2. Press F5 to run the project.

3. Click the Options button to display the Options form.

4. Enter the following text into the new text box: So you run and you run.

Notice that you can’t enter more than 10 characters of text; all you’re allowed

to enter is So you run. The text box allows only 10 characters, whether you

use the keyboard or a Paste operation. The MaxLength property is most often

used when the text box’s content is to be written to a database, in which field

sizes are usually restricted. (Using a database is discussed in Hour 20,

“Working with a Database.”)

5. Stop the project, and change the MaxLength property of the text box to 0,

which effectively means that no maximum is defined.

Now would be a good time to save your work.

By the
Way

158 HOUR 7: Working with Traditional Controls

Creating Password Fields
You’ve probably used a password field: a text box that displays an asterisk for each

character entered. You can make any text box a password field by assigning a char-

acter to its PasswordChar field. Select the PasswordChar property of the text box,

and enter an asterisk (*) for the property value. Run the project once more, and dis-

play the Options form. Next, enter text into the text box. An asterisk is displayed for

each character you enter, as shown in Figure 7.7. Although the user doesn’t see the

actual text contained in the text box, referencing the Text property in code always

returns the true text.

FIGURE 7.7
A password
field displays its
password char-
acter for all
entered text.

A text box displays password characters only if its Multiline property is set to
False.

Stop the project by choosing Debug, Stop Debugging. Delete the asterisk from the

PasswordChar field, and then save the project by clicking Save All on the toolbar.

Understanding the Text Box’s Common Events
You’ll rarely use a label’s events, but you’ll probably use text box events quite a bit.

The text box supports many different events; Table 7.1 lists the ones you’re most

likely to use regularly.

TABLE 7.1 Commonly Used Events of the Text Box Control

Event Description

TextChanged Occurs every time the user presses a key or pastes text into the
text box. Use this event to deal with specific keypresses (such as
capturing specific keys) or when you need to perform an action
whenever the contents change.

By the
Way

Creating Buttons 159

Click Occurs when the user clicks the text box. Use this event to capture
clicks when you don’t care about the coordinates of the mouse
pointer.

MouseDown Occurs when the user first presses a mouse button over the text
box. This event is often used in conjunction with the MouseUp
event.

MouseUp Occurs when the user releases a mouse button over the text box.
Use MouseDown and MouseUp when you need more functionality
than provided by the Click event.

MouseMove Occurs when the user moves the mouse pointer over the text box.
Use this event to perform actions based on the cursor’s
movement.

Creating Buttons
Every dialog box that Windows displays has at least one button. Buttons enable a

user to invoke a function with a click of the mouse.

The form already has an OK button. Typically, an OK button accepts the user’s val-

ues and closes the form. Later in this book, you’ll make your OK button do just that.

When you have an OK button, it’s also a good idea to create a Cancel button, which

unloads the form but doesn’t save the user’s values.

Add a new button to the form by double-clicking the Button item in the toolbox. Set

the button’s properties as follows:

Property Value

Name btnCancel

Location 304, 38

Text Cancel

There’s no point in having a button that doesn’t do anything, so double-click the

button now to access its Click event, and then add the following statement:

this.Close();

Recall from Hour 5, “Building Forms—The Basics,” that this statement closes the cur-

rent form. Right now, the Cancel button does the same thing as the OK button, but

you’ll change that soon.

TABLE 7.1 Continued

Event Description

160 HOUR 7: Working with Traditional Controls

You can programmatically trigger a button’s Click event, just as though a user
clicked it, by calling the button’s PerformClick method.

Accept and Cancel Buttons
When creating dialog boxes, it’s common to assign one button as the default button

(called the Accept button). If a form has an Accept button, that button’s Click event

is fired when the user presses Enter, regardless of which control has the focus. This is

great for dialog boxes in which the user enters some text and presses Enter to com-

mit the data and close the form.

Follow these steps to designate the OK button as the Accept button:

1. Double-click OptionsForm.vb in the Solution Explorer window to show the

form in the designer once more.

2. Click the form to display its properties in the Properties window.

3. Click the form’s AcceptButton property in the Properties window; a drop-

down arrow appears. Click the arrow, and choose the button btnOK from the

list. Notice that the button now has a blue border on the form, indicating that

it is the default button for the form (see Figure 7.8).

FIGURE 7.8
Only one button
can be defined
as a form’s
Accept button.

4. Press F5 to run the project, and then click Options to display the Options form.

5. Click in the text box to make sure that it has the focus, and then press Enter;

the form closes. Again, pressing Enter on a form that has a designated Accept

button causes that button’s Click event to fire the same as if the user clicked

it with the mouse, regardless of which control has the focus. Actually, there is

Did you
Know?

Presenting Yes/No Options Using Check Boxes 161

one exception. If the control with the focus is a multiline text box, pressing

Enter creates a new line in the text box and doesn’t cause the Accept button’s

Click event to fire.

Generally, when you create an Accept button for a form, you should also create a

Cancel button. A Cancel button fires its Click event when the user presses the Esc

key (as opposed to the Enter key), regardless of which control has the focus.

Generally, you place code in a Cancel button to shut down the form without com-

mitting any changes the user made. Make your Cancel button an official Cancel

button by following these steps:

1. Stop the running project.

2. Change the form’s CancelButton property to btnCancel.

Use the following hints when deciding what buttons to assign as a form’s Accept

and Cancel buttons:

. If a form has an OK or Close button, that button probably should be assigned

as the AcceptButton.

. If a form has both an OK and Cancel button, assign the OK button as the

AcceptButton and the Cancel button as the CancelButton (yeah, this is pret-

ty obvious, but it’s often overlooked).

. If a form has a single Close or OK button, assign it to both the form’s

AcceptButton and CancelButton properties.

. If the form has a Cancel button, assign it to the form’s CancelButton

property.

Presenting Yes/No Options Using
Check Boxes
A check box is used to display true/false and yes/no values on a form. You’ve proba-

bly run into many check boxes as you’ve worked with different Windows applica-

tions. Clicking the check box control toggles it between checked and unchecked

(true/false, yes/no, and so on).

162 HOUR 7: Working with Traditional Controls

Add a new check box to the Options form now, and set its properties as follows:

Property Value

Name chkPromptOnExit

Location 105, 79

Text Prompt to confirm on exit

The CheckState property of the check box determines whether the check box is

checked. Try changing the value of this property and watch the effect on the form.

Notice that you can set the check box’s CheckState to Indeterminate, which shows

a big square in the control. You won’t often need to use this, but it’s good to know the

feature is available. Be sure to set the CheckState to Unchecked before continuing.

Your form should now look like Figure 7.9.

FIGURE 7.9
Use the check
box to indicate
a true/false or
yes/no state.

Creating Containers and Groups of
Option Buttons
In this section, you’ll learn how to create containers for groups of controls, using

panels and group boxes. You’ll also learn how to use the Option Button control in

conjunction with these container controls to present multiple choices to a user.

Using Panels and Group Boxes
Controls can be placed on a form because the form is a container object—an object

that can host controls. A form isn’t the only type of container, however. Some

controls act as containers as well, and a container can host one or more other

containers. The Panel and Group Box controls are both container controls that

serve a similar purpose, yet each is more suited to a particular application.

Creating Containers and Groups of Option Buttons 163

The Group Box is a container control with properties that let you create a border,

called a frame, and a caption. Add a new group box to your form now by double-

clicking the GroupBox item in the toolbox (you’ll find it in the Containers control

category). When you create a new group box, it has a border by default, and its

caption is set to the name of the control.

Try clicking in the center of the group box and dragging it around as you would

another type of control. You can’t. Think of the group box as a mini form—you

can’t click and drag a form to move it around. Clicking and dragging a group box

lassos any controls placed on the group box—the same behavior you experience on

a form. To drag a group box, click and drag the little image with the four arrows on

it, as shown in Figure 7.10.

FIGURE 7.10
Click and drag
this box to move
a group box.

Set the properties of the group box as follows:

Property Value

Name grpDefaultBackcolor

Location 105, 112

Size 200, 72

Text Default Picture Background Color

Your group box should now look like the one in Figure 7.10.

The Group Box is a fairly straightforward control. Other than defining a border and

displaying a caption, the purpose of a group box is to provide a container for other

controls. The next section demonstrates the benefits of using a group box as a

container.

For the most part, the Panel control is a slimmed-down version of the Group Box
control, so I won’t discuss it in depth. If you need a basic container control with-
out the additional features offered by the Group Box control (such as a border and
caption), use the Panel control. The primary exception to this is that the panel
offers scrolling capabilities just like those found on forms, which group boxes do
not support.

By the
Way

164 HOUR 7: Working with Traditional Controls

Working with Radio Buttons
Check boxes are excellent controls for displaying true/false and yes/no values.

However, check boxes work independently of one another. If you have five check

boxes on a form, each one can be checked or unchecked—in any combination.

Radio buttons, on the other hand, are mutually exclusive to the container on which

they’re placed. This means that only one radio button per container can be selected

at a time. Selecting one radio button automatically deselects any other radio but-

tons on the same container. Radio buttons are used to offer a selection of items

when the user is allowed to select only one item. To better see how mutual exclusivi-

ty works, you’ll create a small group of radio buttons for your Options form.

You can perform any of the following actions to place a control on a group box:

. Draw the control directly on the group box.

. Drop the control on the group box.

. Add the control to the form, cut the control from the form, select the group

box, and paste the control on the group box.

You’ll use the second method, dropping a new control directly on the group box.

Follow these steps:

1. Click the RadioButton item in the toolbox, and drag it to the group box.

2. Release the mouse button when you’re over the group box.

3. Move the radio button around by clicking and dragging it. Don’t drag the

radio button off the container, or it will be moved to the new container or

form over which it is placed when you release the mouse button.

Set the properties of the radio button as follows:

Property Value

Name optBackgroundDefault

Location 14, 19

Text Default Gray

Note that the Location property always refers to the container object. If the control

is on a form, it’s relative to the form’s upper-left corner. If the control is on a group

box, the location is relative to the upper-left corner of the group box. Now you’ll

copy this radio button and paste a copy of the control on the group box:

Creating Containers and Groups of Option Buttons 165

1. Right-click the radio button, and choose Copy from its context menu.

2. Click the group box to select it.

3. Right-click the group box, and choose Paste from its context menu to create a

new radio button. Set the properties of the radio button as follows:

Property Value

Name optBackgroundWhite

Checked True

Location 14, 42

Text White

Now that you have your two radio buttons, as shown in Figure 7.11, run the project

by pressing F5.

FIGURE 7.11
Radio buttons
restrict a user
to selecting a
single item.

Click the Options button to display your Options form and take a look at the radio

buttons. The second radio button is selected, so click the first radio button (Default

Gray). Notice how the second radio button becomes deselected automatically (its

Checked property is set to False). Two radio buttons are sufficient to demonstrate

mutual exclusivity, but be aware that you can add as many radio buttons to the

group box as you want to and the behavior is the same.

The important thing to remember is that mutual exclusivity is shared only by radio

buttons placed on the same container. To create radio buttons that behave independ-

ently of one another, you need to create a second set on another container. You can

easily create a new group box (or panel, for that matter) and place the second set of

radio buttons on the new container. The two sets of radio buttons behave independ-

ently of one another, but mutual exclusivity still exists among the buttons within

each set.

166 HOUR 7: Working with Traditional Controls

Stop the running project, change the Checked property of the

optBackgroundDefault radio button to True, and save your work.

Displaying a List with the List Box
A list box is used to present a list of items to a user. You can add items to, and

remove items from, the list at any time with very little Visual C# code. In addition,

you can set up a list box so that a user can select only a single item or multiple

items. When a list box contains more items than it can show because of the con-

trol’s size, a scrollbar appears automatically.

The cousin of the list box is the combo box, which looks like a text box with a
down-arrow button on its right side. Clicking a combo box’s button causes the con-
trol to display a drop-down list box. Working with the list of a combo box is pretty
much identical to working with a list box. Therefore, I discuss the details of list
manipulation in this section and then discuss the features specific to the combo
box in the next section.

You won’t add a list box or combo box to your Picture Viewer project at this time, so

follow these steps to create a new project:

1. Create a new Windows Forms Application project titled Lists.

2. Rename the default form (Form1.cs) to ListsForm.cs, and set its Text prop-

erty to Lists Example.

3. Add a new List Box control to the form by double-clicking the ListBox item

in the toolbox, and then set the list box’s properties as follows:

Property Value

Name lstPinkFloydAlbums

Location 64, 32

Size 160, 121

Every item in a list box is a member of the list box’s Items collection. You work with

items, including adding and removing items, by using the Items collection. You’ll

most often manipulate the Items collection with code (as I’ll show you a little later

in this hour), but you can also work with the collection at design time by using the

Properties window.

By the
Way

Displaying a List with the List Box 167

Manipulating Items at Design Time
The Items collection is available as a property of the list box. Locate the Items prop-

erty in the Properties window and click it to select it. The familiar button with three

dots appears, indicating that you can do advanced things with this property. Click

the button now to show the String Collection Editor. To add items to the collection,

simply enter the items into the text box—one item to a line.

Enter the following items:

. Atom Heart Mother

. Wish You Were Here

. Animals

. Echoes

. Meddle

. Dark Side of the Moon

When you’re finished, your screen should look like that shown in Figure 7.12. Click

OK to commit your entries and close the window. Notice that the list box contains

the items you entered.

FIGURE 7.12
Use this dialog
box to manipu-
late an Items
collection at
design time.

Manipulating Items at Runtime
In Hour 3, “Understanding Objects and Collections,” you learned about objects,

properties, methods, and collections. All this knowledge comes into play when you

manipulate lists at runtime. The Items property of a list box (and a combo box, for

that matter) is an object property that returns a collection. Collections in many

ways are like objects: They have properties and methods. To manipulate list items,

you manipulate the Items collection.

168 HOUR 7: Working with Traditional Controls

A list can contain duplicate values, as you’ll see in this example. Because of this,

Visual C# needs a mechanism other than an item’s text to treat each item in a list

as unique. You do so by assigning each item in an Items collection a unique index.

The first item in the list has an index of 0, the second an index of 1, and so on. The

index is the ordinal position of an item relative to the first item in the Items collec-

tion—not the first item visible in the list.

Adding Items to a List
New items are added to the Items collection using the Add() method of the Items

collection. Now you’ll create a button that adds an album to the list. Add a new but-

ton to the form, and set its properties as follows:

Property Value

Name btnAddItem

Location 96, 159

Size 100, 23

Text Add an Item

Double-click the button to access its Click event, and add the following code:

lstPinkFloydAlbums.Items.Add(“The Division Bell”);

Notice that the Add() method accepts a string argument—the text to add to the list.

Unlike items added at design time, items added through code aren’t preserved
when the program ends.

Press F5 to run the project and click the button. When you do, the new album is

added to the bottom of the list. Clicking the button a second time adds another item

to the list with the same album name. The list box doesn’t care whether the item

already exists in the list; each call to the Add() method of the Items collection adds

a new item to the list.

The Add() method of the Items collection can be called as a function. In that case it

returns the index (the ordinal position of the newly added item in the underlying

collection), as in the following:

int intIndex;
intIndex = lstPinkFloydAlbums.Items.Add(“The Division Bell”);

Knowing the index of an item can be useful, as you will see.

Stop the running project and save your work before continuing.

By the
Way

Displaying a List with the List Box 169

To add an item to an Items collection at a specific location in the list, use the
Insert() method. The Insert() method accepts an index in addition to text.
Remember, the first item in the list has an index of 0, so to add an item at the
top of the list you could use a statement such as lstPinkFloydAlbums.Items.
Insert(0,”The Division Bell”;).

Removing Items from a List
Removing an individual item from a list is as easy as adding an item. It requires

only a single method call: a call to the Remove() method of the Items collection.

The Remove() method accepts a string, which is the text of the item to remove. Now

you’ll create a button that removes an item from the list.

Display the form designer and create a new button on the form. Set the button’s

properties as follows:

Property Value

Name btnRemoveItem

Location 96, 188

Size 106, 23

Text Remove an Item

Double-click the new button to access its Click event, and enter the following

statement:

lstPinkFloydAlbums.Items.Remove(“The Division Bell”);

The Remove() method tells Visual C# to search the Items collection, starting at the

first item (index = 0), and to remove the first item found that matches the specified

text. Remember, you can have multiple items with the same text. The Remove()

method removes only the first occurrence. After the text is found and removed,

Visual C# stops looking.

Press F5 to run the project again. Click the Add an Item button a few times to add

The Division Bell to the list, as shown in Figure 7.13. Next, click the Remove an Item

button, and notice how Visual C# finds and removes one instance of the specified

album.

To remove an item at a specific index, use the RemoveAt() method. For example,
to remove the first item in the list, you would use the following statement:
lstPinkFloydAlbums.Items.RemoveAt(0);. Be aware that this code throws an
exception (an error) if there are no items in the list when it is called.

Did you
Know?

Did you
Know?

170 HOUR 7: Working with Traditional Controls

Stop the running project and save your work.

Clearing a List
To clear the contents of a list box, use the Clear() method. You’ll add a button to

the form that, when clicked, clears the list. Add a new button to the form, and set

the button’s properties as follows:

Property Value

Name btnClearList

Location 96, 217

Size 100, 23

Text Clear List

Double-click the new button to access its Click event and enter the following

statement:

lstPinkFloydAlbums.Items.Clear();

Press F5 to run the project, and then click the Clear List button. The Clear()

method doesn’t care whether an item was added at design time or runtime; Clear()

always removes all items from the list. Stop the project, and again save your work.

Remember that the Add(), Insert(), Remove(), RemoveAt(), and Clear() meth-
ods are all methods of the Items collection, not of the list box itself. If you forget
that these are members of the Items collection, you might be confused when you
don’t find them when you enter a period after typing a list box’s name in code.

FIGURE 7.13
The list box can
contain dupli-
cate entries,
but each entry
is a unique item
in the Items
collection.

Did you
Know?

Displaying a List with the List Box 171

Retrieving Information About the Selected Item in a List
Two properties provide information about the selected item: SelectedItem and

SelectedIndex. It’s important to note that these are properties of the list box itself,

not of the Items collection of a list box. The SelectedItem method returns the text

of the currently selected item. If no item is selected, the method returns an empty

string. It is sometimes desirable to know the index of the selected item. You obtain

this by using the text box’s SelectedIndex property. As you know, the first item in

a list has an index of 0. If no item is selected, SelectedIndex returns –1, which is

never a valid index for an item.

Now you’ll add a button to the form that, when clicked, displays the selected item’s

text and index in a message box. First, stop the running project and change the

form’s Size.Height property to 320 to accommodate one more button. As you build

your interfaces, you’ll often have to make small tweaks like this because it’s nearly

impossible to anticipate everything ahead of time.

Add a new button to the form, and set its properties as follows:

Property Value

Name btnShowItem

Location 96, 246

Size 100, 23

Text Show Selected

Double-click the new button to access its Click event and enter the following state-

ment (be sure to press Enter at the end of the first line):

MessageBox.Show(“You selected “ + lstPinkFloydAlbums.SelectedItem +

“ which has an index of “ + lstPinkFloydAlbums.SelectedIndex);

MessageBox.Show() is a Visual C# function used to show a message to the user.

You’ll learn about MessageBox.Show() in detail in Hour 17, “Interacting with

Users.”

Press F5 to run the project and click the Show Selected button. Notice that because

nothing is selected, the message box doesn’t read quite right, and it says that the

selected index is –1 (which indicates that nothing is selected). Click an item in the

list to select it, and then click Show Selected again. This time, you see the text of

the selected item and its index in the message box, as shown in Figure 7.14. Stop

the running project and save your work.

172 HOUR 7: Working with Traditional Controls

You can set up a list box to allow multiple items to be selected at once. To do
this, you change the SelectionMode property of the list box to MultiSimple
(clicking an item toggles its selected state) or MultiExtended (you have to hold
down Ctrl or Shift to select multiple items). To determine which items are selected
in a multiselection list box, use the list box’s SelectedItems collection.

Sorting a List
List boxes and combo boxes have a Sorted property. This property is set to False

when a control is first created. Changing this property value to True causes Visual

C# to sort the contents of the list alphabetically. When the contents of a list are sort-

ed, the index of each item in the Items collection is changed; therefore, you can’t

use an index value obtained prior to setting Sorted to True.

Sorted is a property, not a method. Realize that you don’t have to call Sorted to

sort the contents of a list; Visual C# enforces a sort order as long as the Sorted prop-

erty is set to True. This means that all items added using the Add() method or the

Insert() method are automatically inserted into the proper sorted location, in con-

trast to being inserted at the end of the list or in a specific location.

Stop the running project, and save your work.

Creating Drop-Down Lists Using the
Combo Box
List boxes are great, but they have two shortcomings. First, they take up quite a bit

of space. Second, users can’t enter their own values; they have to select from the

items in the list. If you need to conserve space, or if you want to enable a user to

enter a value that might not exist in the list, use the Combo Box control.

Combo boxes have an Items collection that behaves exactly like that of the List

Box control (refer to the preceding section for information on manipulating lists).

Here I’ll show you the basics of how a combo box works.

FIGURE 7.14
The
SelectedItem
and
SelectedIndex
properties
make it easy to
determine
which item in a
list is selected.

By the
Way

Creating Drop-Down Lists Using the Combo Box 173

Add a new combo box to the form by double-clicking the ComboBox item in the

toolbox. Set the combo box’s properties as follows:

Property Value

Name cboColors

Location 64, 5

Size 160, 21

Text Leave blank

The first thing you should note is that the combo box has a Text property, whereas

the list box doesn’t. This works the same as the Text property of a text box. When the

user selects an item from the drop-down list, the value of the selected item is placed

in the Text property of the text box. The default behavior of a combo box is to

allow the user to enter any text in the text box portion of the control—even if the

text doesn’t exist in the list. I’ll show you how to change this behavior shortly.

Select the Items property of the combo box in the Properties window, and click the

button that appears. Add the following items to the String Collection Editor, and

click OK to commit your entries:

. Black

. Blue

. Gold

. Green

. Red

. Yellow

Press F5 to run the project. Click the arrow at the right side of the combo box and a

drop-down list appears, as shown in Figure 7.15.

Try typing in the text Magenta. Visual C# lets you do this. Indeed, you can type any

text that you want. This may be the behavior you want, but more often you’ll want

to restrict a user to entering only values that appear in the list. To do this, you

change the DropDownStyle property of the combo box. Close the form to stop the

running project, and change the DropDownStyle property of the combo box to

DropDownList. Press F5 to run the project again, and try to type text into the combo

box. You can’t. The combo box doesn’t allow any text entry, so the user is limited to

selecting items from the list. As a matter of fact, clicking in the “text box” portion of

the combo box opens the list the same as though you clicked the drop-down arrow.

Stop the running project, and change the DropDownStyle back to DropDown. Next,

174 HOUR 7: Working with Traditional Controls

change the AutoCompleteSource property to ListItems and the

AutoCompleteMode property to Suggest. Run the project again, and type B in the

combo box. The combo box opens and suggests items starting with B. Try changing

AutoCompleteMode to Append and run the project again. This time, it fills the combo

box with the closest match as you type! This is a very handy interface to give users.

FIGURE 7.15
Combo boxes
conserve
space.

As you can see, the combo box and list box offer similar functionality; in fact, the

coding of their lists is identical. Each one of these controls serves a slightly different

purpose, however. Which one is better? That depends entirely on the situation. As

you use professional applications, pay attention to their interfaces; you’ll start to get

a feel for which control is appropriate in a given situation.

Summary
In this hour, you learned how to present text to a user. You learned that the Label

control is perfect for displaying static text (text the user can’t enter) and that the

text box is the control to use for displaying edited text. You can now create text

boxes that contain many lines of text, and you know how to add scrollbars when

the text is greater than what can be displayed in the control.

I don’t think I’ve ever seen a form without at least one button. You’ve learned how

to add buttons to your forms and how to do some interesting things such as add a

picture to a button. For the most part, working with buttons is a simple matter of

adding one to a form, setting its Name and Text properties, and adding some code

to its Click event—all of which you now know how to do.

Check boxes and option buttons are used to present true/false and mutually exclu-

sive options, respectively. In this hour, you learned how to use each of these controls

and how to use group boxes to logically group sets of related controls.

Workshop 175

Finally, you learned how to use list boxes and combo boxes to present lists of items

to a user. You now know how to add items to a list at design time as well as at run-

time, and you know how to sort items. The List Box and Combo Box are powerful

controls, and I encourage you to dig deeper into the functionality they possess.

Without controls, users would have nothing to interact with on your forms. In this

hour, you learned how to use the standard controls to begin building functional

interfaces. Keep in mind that I only scratched the surface of each of these controls.

Most do far more than I’ve hinted at here. Mastering these controls will be easy,

because you’ll be using them a lot. Also, as you progress through this book, you will

add code that makes these controls functional.

Q&A
Q. Can I place radio buttons directly on a form?

A. Yes. The form is a container, so all radio buttons placed on a form are mutual-

ly exclusive to one another. If you wanted to add a second set of mutually

exclusive buttons, they’d have to be placed on a container control. In general,

I think it’s best to place radio buttons in a group box rather than on a form.

The group box provides a border and a caption for the radio buttons. It’s also

much easier to move around the set of radio buttons when you’re designing

the form (you simply move the group box).

Q. I’ve seen what appear to be list boxes that have a check box next to each
item in the list. Is this possible?

A. Yes. In Visual C# 2008, you accomplish this by using an entirely different con-

trol: the checked list box.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. Which control would you use to display text that the user can’t edit?

2. What common property is shared by the Label control and text box and

whose value determines what the user sees in the control?

176 HOUR 7: Working with Traditional Controls

3. What property must be set to True before you can adjust the height of a text

box control?

4. What is the default event of a Button control?

5. A button whose Click event is triggered when the user presses Enter while

another control has the focus is called ______?

6. Which control would you use to display a yes/no value to a user?

7. How would you create two distinct sets of mutually exclusive option buttons?

8. To manipulate items in a list, you use what collection?

9. What method adds an item to a list in a specific location?

Answers
1. A label control.

2. The Text property.

3. The MultiLine property to True.

4. The Click event.

5. An Accept button.

6. You would use the check box.

7. Place the buttons on two different container controls.

8. The Items collection.

9. The Insert() method.

Exercises
1. Use the skills you learned in the previous hours to set the tab order for your

Options form. Make the user name text box the first in the tab order. Be sure

to select an item before clicking your button!

2. Create a form with two list boxes. Add a number of items to one list box at

design time by using the Properties window. Create a button that, when

clicked, removes the selected item in the first list and adds it to the second list.

HOUR 8

Using Advanced Controls

What You’ll Learn in This Hour:
. Creating timers
. Creating tabbed dialog boxes
. Storing pictures in an Image List control
. Building enhanced lists with the List View control
. Creating hierarchical lists with the Tree View control

The standard controls presented in Hour 7, “Working with Traditional Controls,” enable

you to build many types of functional forms. However, to create truly robust and interac-

tive applications, you must use the more advanced controls. As a Windows user, you’ve

encountered many of these controls, such as the Tab control, which presents data on tabs,

and the Tree View control, which displays hierarchical lists such as the one in Explorer. In

this hour, you’ll learn about these advanced controls and how to use them to make profes-

sional interfaces like those you’re accustomed to seeing in commercial products.

178 HOUR 8: Using Advanced Controls

Many of the examples in this hour show you how to add items to collections at
design time. Keep in mind that everything you can do at design time can also be
accomplished with Visual C# code.

Creating Timers
All the controls you used in Hour 7 had in common that the user can interact with

them. Not all controls have this capability—or restriction, depending on how you

look at it. Some controls are designed to be used only by the developer. One such

control is the Open File Dialog control you used in your Picture Viewer application

in Hour 1, “Jumping In with Both Feet: A Visual C# 2008 Programming Tour.”

Another control that’s invisible at runtime is the Timer control. The Timer control’s

sole purpose is to trigger an event at a specified time interval.

Follow these steps to build a timer sample project:

1. Create a new Windows Application titled Timer Example.

2. Right-click Form1.cs in the Solution Explorer, choose Rename, and change the

name of the form to TimerExampleForm.cs.

3. Set the form’s Text property to Timer Example. (Remember to click the form

itself to view its properties.)

4. Add a new Timer control to your form by double-clicking the Timer item in

the toolbox (it’s located in the Components toolbox category).

The Timer control is invisible at runtime, so it’s added to the gray area at the bot-

tom of the screen rather than placed on the form, as shown in Figure 8.1.

Set the properties of the Timer control as follows:

Property Value

Name tmrClock

Enabled True

Interval 1000

You probably noticed that the Timer control has very few properties compared to

the other controls you’ve worked with; it doesn’t need many. The most important

property of the Timer control is the Interval property. It determines how often the

Timer control fires its Tick event (where you’ll place code to do something when the

designated time elapses). The Interval property is specified in milliseconds, so a

By the
Way

Creating Timers 179

setting of 1,000 is equal to 1 second, which is exactly the Interval setting you use

for this example. As with many controls, the best way to understand how the Timer

control works is to use it. Now you will create a simple clock by using the Timer and

a Label controls. The way the clock works is that the Timer control fires its Tick

event once every second (because you’ve set the Interval property to 1,000 millisec-

onds). Within the Tick event, you update the label’s Text property to the current

system time.

FIGURE 8.1
Invisible-at-run-
time controls
are shown at
the bottom of
the designer,
not on a form.

Add a new label to the form, and set its properties as follows:

Property Value

Name lblClock

AutoSize False

BorderStyle FixedSingle

Location 95, 120

Size 100, 23

Text Make blank (literally make this property empty)

TextAlign MiddleCenter

The label’s AutoSize property determines whether the label automatically adjusts

its size when its Text property changes. Because the text is aligned to the middle of

the control, you don’t want it to autosize.

180 HOUR 8: Using Advanced Controls

Next, double-click the Timer control to access its Tick event. When a timer is first

enabled, it starts counting from 0 in milliseconds. When the number of milliseconds

specified in the Interval property passes, the Tick event fires, and the timer starts

counting from 0 once again. This cycle continues until and if the timer is disabled

(its Enabled property is set to False). Because you set the timer’s Enabled property

to True at design time, it starts counting as soon as the form on which it’s placed is

loaded. Enter the following statement in the Tick event:

lblClock.Text = DateTime.Now.ToLongTimeString();

The .NET Framework provides date/time functionality in the System namespace. The

Now property of the DateTime class returns the current time. Using the

ToLongTimeString method returns the time as a string with a format of hh:mm:ss.

This code causes the label’s Text property to show the current time of day, updated

once a second. Press F5 to run the project. You see the Label control acting as a

clock, updating the time once every second, as shown in Figure 8.2.

FIGURE 8.2
Timers make it
easy to execute
code at speci-
fied intervals.

Stop the running project, and save your work.

Timers are powerful, but you must take care not to overuse them. For a timer to

work, Windows must be aware of the timer and must constantly compare the cur-

rent internal clock to the timer’s interval. It does all this so that it can notify the

timer at the appropriate time to execute its Tick event. In other words, timers take

system resources. This isn’t a problem for an application that uses a few timers, but

I wouldn’t overload an application with a dozen timers unless I had no other choice

(and there’s almost always another choice).

Creating Tabbed Dialog Boxes 181

Creating Tabbed Dialog Boxes
Windows 95 was the first version of Windows to introduce a tabbed interface. Since

then, tabs have been widely adopted as a primary interface element. Tabs provide

two major benefits: a logical grouping of controls and a reduction of required screen

space. Although tabs might look complicated, they are actually easy to build and use.

You’ll add a set of tabs to your Options dialog box in your Picture Viewer program.

In this case, the tabs will be overkill, because you won’t have much on them, but

the point is to learn how they work, so follow these steps:

1. Start by opening the Picture Viewer project you completed in Hour 7.

2. Double-click OptionsForm.cs in the Solution Explorer to display it in the

designer.

3. Add a new Tab control to your form by double-clicking the TabControl item in

the toolbox (it’s located in the Containers toolbox category). The Tab control

defaults to having two tabs, which happens to be what you need for this

example. Set the Tab control’s properties as follows:

Property Value

Name tabOptions

Location 2, 2

Size 202, 94

4. The tabs that appear on a Tab control are determined by the control’s

TabPages collection. Click the TabPages property of the Tab control in the

Properties window, and then click the small button that appears. Visual C#

shows the TabPage Collection Editor. Your Tab control has two tabs by default,

as shown in Figure 8.3.

FIGURE 8.3
Use the
TabPage
Collection Editor
to define tabs.

182 HOUR 8: Using Advanced Controls

5. Each tab in the collection is called a page. Visual C# names each new page

TabPageX, where X is a unique number. Although you technically don’t have

to change the name of a page, it’s easier to work with a Tab control if you give

each tab a meaningful name, such as pgeGeneralPage,

pgePreferencesPage, and so forth. The page TabPage1 is selected for you by

default, and its properties appear to the right. Change the tab’s name to

pgeGeneral and set its Text property (which is what actually appears on the

tab) to General. (You might want to view the properties alphabetically to

make this easier.)

6. Click TabPage2 in the list on the left to select it. Change its Name property to

pgeAppearance and set its Text property to Appearance.

7. Click OK to save your changes.

Your Tab control now has two properly defined tabs (pages), as shown in Figure 8.4.

FIGURE 8.4
Each tab should
have meaningful
text.

A quick way to add or remove a tab is to use the shortcuts provided in the
description pane at the bottom of the Properties window.

Each page on a Tab control acts as a container, much like a Panel or Group Box

control. This is why you can’t drag the Tab control by clicking in the middle of it. To

drag a container control, you have to click and drag the small image with the four

arrows that appears over the General tab (refer to Figure 8.4). Follow these steps to

move the options controls you created in Hour 7 to your new tabs:

1. Click the group box to select it (be sure not to click one of the radio buttons);

then right-click it and choose Cut.

2. Click the Tab control to select it.

Did you
Know?

Creating Tabbed Dialog Boxes 183

3. Now that the Tab control is selected, click the Appearance page to switch to

the second page of the Tab control. Then click the center of the Appearance

page.

4. Right-click in the center of the Appearance page and choose Paste.

5. Click the General tab to return to the first page of the Tab control.

6. Get the Tab control out of the way by dragging the move image (the little

square with the directional arrows). Drag the tabs to the bottom of the form.

7. Click the User Name Label control to select it. Hold down the Shift key and

click the User Name text box, and then click the check box.

8. Press Ctrl+X to cut the selected controls from the form.

9. Click the Tab control to select it.

10. Right-click in the center of the General tab and choose Paste.

11. Set the Tab control’s Location property to 12, 12 and its Size property to

287, 145.

12. Click and drag the controls on the Appearance tab so that they appear rough-

ly centered on the tab, as shown in Figure 8.5.

FIGURE 8.5
Tabs make it
easy to group
related controls.

To wrap up the Tab control, click the Appearance tab to switch to the Appearance

page, and then move the group box to the middle of the page (by dragging and

dropping it). When you’re satisfied with its location, click the General tab again to

switch to the first page.

By understanding two simple programming elements, you’ll be able to do 99% of

what you need to with the Tab control. The first element is that you’ll need to know

which tab is selected at runtime. The control’s SelectedIndex property (not the

184 HOUR 8: Using Advanced Controls

TabIndex property) sets and returns the index of the currently selected tab: 0 for the

first tab, 1 for the second, and so forth. The second thing to know is how to tell

when the user switches tabs. The Tab control has a SelectedIndexChanged event,

which fires whenever the selected tab is changed. In this event, you can check the

value of SelectedIndex to determine which tab the user selected.

Perhaps the trickiest issue with the Tab control is that each tab page has its own set

of events. If you double-click the tabs themselves, you get a set of global events for

the Tab control (this is where you’ll find the SelectedIndexChanged event). If you

double-click a page on the tabs, you get a unique set of events for that page; each

page has its own set of events.

Feel free to run your project now and check out how your tabs work. When you’re

finished, be sure to save your project.

Storing Pictures in an Image List
Many of the controls I discuss in this hour can attach pictures to different types of

items. The Tree View control, which is used in Explorer to navigate folders, for

example, displays images next to each folder node. Not all these pictures are the

same; the control uses specific pictures to denote information about each node. It

would have been possible for Microsoft to make each control store its images inter-

nally, but that would be highly inefficient, because it wouldn’t allow controls to

share the same pictures. This would also cause a maintenance headache. For exam-

ple, say that you have 10 Tree View controls, and each displays a folder image for

folder nodes. Now, it’s time to update your application, and you want to update the

folder image to something a bit nicer. If the image were stored in each Tree View

control, you’d have to update all 10 of them (and risk missing one). Instead,

Microsoft created a control dedicated to storing pictures and serving them to other

controls: the Image List. When you put images in an Image List control, it’s easy

to share them among other types of controls.

You don’t use the Picture Viewer for this section, so follow these steps to create a new

project:

1. Create a new Windows Application named Lists and Trees.

2. Right-click Form1.cs in the Solution Explorer and rename it

ListsAndTreesForm.cs. Also, set its Text property to Lists and Trees.

3. Add a new Image List control by double-clicking the ImageList item in the

toolbox (it’s located in the Components toolbox category). As with the Timer

control, the Image List is an invisible-at-runtime control, so it appears below

the form, not on it. Change the name of the Image List to imgMyImages.

Building Enhanced Lists Using the List View 185

4. The sole purpose of an Image List control is to store pictures and make them

available to other controls. The pictures are stored in the control’s Images col-

lection. Click the Images property of the Image List control in the Properties

window, and then click the small button that appears. Visual C# displays the

Image Collection Editor. Notice that this editor is similar to other editors

you’ve used in this hour.

5. Click Add to display the Open dialog box, and use this dialog box to locate

and select a 16×16 pixel icon. If you don’t have a 16×16 pixel icon, you can

create a BMP in Microsoft Paint, or download samples I’ve provided at

http://www.samspublishing.com/ and http://www.jamesfoxall.com/

books.aspx. After you’ve added an image, click OK to close the Image

Collection Editor.

Take a look at the ImageSize property of the Image control. It should be 16,16. If it

isn’t, the bitmap you selected might not be 16×16 pixels. This property should be set

to the dimensions of the first picture added to the Image List, but I’ve seen it not

be set automatically. If you’re using images of a different size, you might have to

manually change the ImageSize property to the correct dimensions.

You can’t always rely on the background where a picture will be displayed to be

white—or any other color, for that matter. The Image List control therefore has a

TransparentColor property. By default, the TransparentColor property is set to

Transparent. Because you used an icon file here, and icon files maintain their own

transparency information, you’ll leave this property alone. If you were using a BMP

file, or some other format that doesn’t retain transparency information, you would

want to use this property to designate a color in the bitmap that would appear

transparent when used with another control.

That’s all there is to adding images to an Image List control. The power of the

Image List lies not in properties or methods of the control itself, but in its ability to

be linked to other controls so that they can access the pictures the Image List

stores. You’ll do this in the next section.

Building Enhanced Lists Using the List
View
The List View control is a lot like a list box on steroids—and then some. The List

View can be used to create simple lists, multicolumn grids, and icon trays. The right

pane in Windows Explorer is a List View. The primary display options available

for Explorer’s List View are Icons, List, Details, and Tiles. These correspond exactly

http://www.samspublishing.com/
http://www.jamesfoxall.com/books.aspx
http://www.jamesfoxall.com/books.aspx

186 HOUR 8: Using Advanced Controls

to the display options available for a List View by way of its View property. (You

might not know it, but you can change the appearance of the List View in

Explorer by right-clicking it and using the View submenu of the shortcut menu that

appears.) Now you’ll create a List View with a few items on it and experiment

with the different views—including showing a picture for the items by using the

Image List from the preceding section.

I can only scratch the surface of this great control here. After you’ve learned the
basics in this hour, I highly recommend that you spend some time with the List
View control, the help text, and whatever additional material you can find. I use
the List View all the time. It’s a powerful tool to have in your arsenal because
displaying lists is a very common task.

Add a List View control to your form now by double-clicking the ListView item in

the toolbox. Set the properties of the List View as follows:

Property Value

Name lstMyListView

Location 8, 8

Size 266, 97

SmallImageList imgMyImages

View Details

As you can see, you can attach an Image List to a control via the Properties win-

dow (and by using code as well, of course). Not all controls support the Image List,

but those that do make it as simple as setting a property to link to an Image List

control. The List View actually allows linking to two Image Lists: one for large

icons (32×32 pixels) and one for small images. In this example, you use only small

pictures. If you wanted to use the large format, you could hook up a second Image

List containing larger images to the List View control’s LargeImageList property.

Creating Columns
When you changed the View property to Details, the control wanted to display a

header for the columns in the list. But because you haven’t yet defined columns, the

header doesn’t appear. The contents of this header are determined by the columns

defined in the Columns collection.

Did you
Know?

Building Enhanced Lists Using the List View 187

Follow these steps to create columns in your List View:

1. Select the Columns property in the Properties window, and click the small

button that appears. Visual C# displays the ColumnHeader Collection Editor

window.

2. Click Add to create a new header, and change its Text property to Name and

its Width property to 120.

3. Click Add once more to create a second column, and change its Text property

to State. I haven’t had you change the names of the columns in this example

because you won’t refer to them by name.

4. Click OK to save your column settings, and close the window.

Your List View should now have two named columns, as shown in Figure 8.6.

FIGURE 8.6
Use List
Views to pres-
ent multicolumn
lists.

Adding List Items
Follow these steps to add two items to the List View:

1. Click the Items property in the Properties window, and then click the small

button that appears to display the ListViewItem Collection Editor dialog box.

2. Click Add to create a new item, and change the item’s Text property to James

Foxall.

3. Open the drop-down list for the ImageIndex property. Notice how the list con-

tains the picture in the linked Image List control, as shown in Figure 8.7.

Select the image from the list.

188 HOUR 8: Using Advanced Controls

An item’s Text property determines the text displayed for the item in the List

View. If the View property is set to Details and multiple columns have been

defined, the value of the Text property appears in the first column.

Subsequent column values are determined by the SubItems collection.

4. Click the SubItems property (located in the Data category of the

ListViewItem’s properties). Then click the small button that appears, which dis-

plays the ListViewSubItem Collection Editor.

5. Click Add to create a new subitem, and change its text to Nebraska.

6. Click OK to return to the ListViewItem Collection Editor.

7. Click the Add button to create another item. This time, change the Text prop-

erty to your name, and use the techniques you just learned to add a subitem.

For the Text property of the subitem, enter your state of residence. Go ahead

and give it an image, just as you did for my name.

8. When you’re finished, click OK to close the ListViewItem Collection Editor.

Your List View should now contain two list items, as shown in Figure 8.8.

9. Experiment with the View property of the List View control to see how the

various settings affect the control’s appearance. The Large Icons setting does

not display an icon because you didn’t link an Image List control to the

LargeImageList property of the List View. Be sure to set the View property

back to Details before continuing.

10. Press F5 to run the project, and try selecting your name by clicking your state.

You can’t. The default behavior of the List View is to consider only the click-

ing of the first column as selecting an item.

FIGURE 8.7
Pictures from a
linked Image
List are readily
available to the
control.

Building Enhanced Lists Using the List View 189

11. Stop the project, and change the FullRowSelect property of the List View to

True. Then run the project once more.

12. Click your state again. This time, your name becomes selected (actually, the

entire row becomes selected). I prefer to set up all my List Views with

FullRowSelect set to True, but this is just a personal preference. Stop the

project now, and save your work.

Manipulating a List View Using Code
You’ve just learned the basics of working with a List View control. Even though

you performed all the steps in Design view for this example, you’ll probably manip-

ulate your list items with code because you won’t necessarily know ahead of time

what to display in the list. Next, I’ll show you how to work with the List View in

code.

Adding List Items Using Code
Adding an item using Visual C# code is simple—that is, if the item you’re adding is

simple. To add an item to your List View, you use the Add() method of the Items

collection, like this:

lvwMyListView.Items.Add(“Monty Sothmann”);

If the item is to have a picture, you can specify the index of the picture as a second

parameter, like this:

lvwMyListView.Items.Add(“Mike Cook”,0);

If the item has subitems, things get more complicated. The Add() method enables

you to specify only the text and image index. To access the additional properties of

FIGURE 8.8
List Views
offer much
more functional-
ity than a stan-
dard list box.

190 HOUR 8: Using Advanced Controls

a list item, you need to get a reference to the item in code. Remember that new

items have only one subitem by default; you have to create additional items. The

Add() method of the Items collection returns a reference to the newly added item.

Knowing this, you can create a new variable to hold a reference to the item, create

the item, and manipulate anything you choose to about the item, using the vari-

able. (See Hour 11, “Using Constants, Data Types, Variables, and Arrays,” for infor-

mation about using variables.) The following code creates a new item and appends

a subitem to its SubItems collection:

ListViewItem objListItem;
objListItem = lvwMyListView.Items.Add(“Mike Saklar”, 0);
objListItem.SubItems.Add(“Nebraska”);

Determining the Selected Item in Code
The List View control has a collection that contains a reference to each selected

item in the control: the SelectedItems collection. If the MultiSelect property of

the List View is set to True (as it is by default), the user can select multiple items

by holding down the Ctrl or Shift key when clicking items. This is why the List

View supports a SelectedItems collection rather than a SelectedItem property. To

gather information about a selected item, you refer to it by its index. For example,

to display the text of the first selected item (or the only selected item if just one is

selected), you could use code like this:

if (lvwMyListView.SelectedItems.Count > 0)
MessageBox.Show(lvwMyListView.SelectedItems[0].Text);

You check the Count property of the SelectedItems collection because if no items

are selected, a runtime error would occur if you attempted to reference element 0 in

the SelectedItems collection.

Removing List Items Using Code
To remove a list item, use the Remove() method of the Items collection. The

Remove() method accepts and expects a reference to a list item. To remove the cur-

rently selected item, for example, you could use a statement such as

lvwMyListView.Items.Remove(lvwMyListView.SelectedItems[0]);

Again, you’d want to make sure that an item is actually selected before using this

statement.

Removing All List Items
If you’re using code to fill a List View, you’ll probably want to clear the contents of

the List View first. That way, if the code to fill the List View is called a second

Creating Hierarchical Lists with the Tree View 191

time, you don’t end up with duplicate entries. To clear the contents of a List View,

use the Clear() method of the Items collection, like this:

lvwMyListView.Items.Clear();

The List View control is an amazingly versatile tool. As a matter of fact, I rarely

use the standard List Box control; I prefer to use the List View because of its

added functionality (such as displaying an image for an item). I’ve just scratched

the surface here, but you now know enough to begin using this powerful tool in

your own development.

Creating Hierarchical Lists with the
Tree View
The Tree View control is used to present hierarchical data. Perhaps the most com-

monly used Tree View control is found in Windows Explorer, where you can use the

Tree View to navigate the folders and drives on your computer. The Tree View is

perfect for displaying hierarchical data, such as an organizational chart of employ-

ees. In this section, I teach you the basics of the Tree View control so that you can

use this powerful interface element in your applications.

The Tree View’s items are contained in a Nodes collection, much as items in a List

View are stored in an Items collection. To add items to the tree, you append them to

the Nodes collection. As you can probably see by now, after you understand the

basics of objects and collections, you can apply that knowledge to almost everything

in Visual C#. For instance, the skills you learned in working with the Items collec-

tion of the List View control are similar to the skills needed for working with the

Nodes collection of the Tree View control. In fact, these concepts are similar to work-

ing with list boxes and combo boxes.

Add a Tree View control to your form now by double-clicking the TreeView item in

the toolbox. Set the Tree View control’s properties as follows:

Property Value

Name tvwLanguages

ImageList imgMyImages

Location 8, 128

Size 266, 97

192 HOUR 8: Using Advanced Controls

Adding Nodes to a Tree View
Working with nodes at design time is similar to working with a List View’s Items

collection. So I’ll show you how to work with nodes in code. To add a node you call

the Add() method of the Nodes collection (which you do in this example). Add a

new button to your form, and set its properties as follows:

Property Value

Name btnAddNode

Location 8, 231

Size 75, 23

Text Add Node

Double-click the button to access its Click event, and enter the following code:

tvwLanguages.Nodes.Add(“James”);

tvwLanguages.Nodes.Add(“Visual C#”);

Press F5 to run the project, and then click the button. Two nodes appear in the tree,

one for each Add method call, as shown in Figure 8.9.

FIGURE 8.9
Nodes are the
items that
appear in a
tree.

Notice how both nodes appear at the same level in the hierarchy; neither node is a

parent or child of the other. If all your nodes will be at the same level in the hierar-

chy, consider using a List View control instead, because what you’re creating is

simply a list.

Stop the project and return to the button’s Click event. Any given node can be both

a parent to other nodes and a child of a single node. (The parent node of any given

node can be referenced via the node’s Parent property.) For this to work, each node

Creating Hierarchical Lists with the Tree View 193

has its own Nodes collection. This can be confusing, but if you realize that child

nodes belong to the parent node, it starts to make sense.

Now you’ll create a new button that adds the same two nodes as before but makes

the second node a child of the first. Return to the Design view for the form, and then

create a new button and set its properties as shown:

Property Value

Name btnCreateChild

Location 89, 231

Size 80, 23

Text Create Child

Double-click the new button to access its Click event, and add the following code:

TreeNode objNode;

objNode = tvwLanguages.Nodes.Add(“Matt Perry“);

objNode.Nodes.Add(“Visual C#”);

This code is similar to what you created in the List View example. The Add()

method of the Nodes collection returns a reference to the newly created node. Thus,

this code creates a variable of type TreeNode, creates a new node whose reference is

placed in the variable, and then adds a new node to the Nodes collection of the first

node. To see the effect this has, press F5 to run the project and click the new button.

You’ll see a single item in the list, with a plus sign to the left of it. This plus sign

indicates that child nodes exist. Click the plus sign, and the node is expanded to

show its children, as shown in Figure 8.10.

FIGURE 8.10
You can create
as deep a hier-
archy as you
need using the
Tree View
control.

194 HOUR 8: Using Advanced Controls

This example is a simple one—a single parent node having a single child node.

However, the principles used here are the same as those used to build complex trees

with dozens or hundreds of nodes.

Removing Nodes
To remove a node, you call the Remove() method of the Nodes collection. The

Remove() method accepts and expects a valid node, so you must know which node

to remove. Again, the Nodes collection works much as the Items collection in the

List View control does, so the same ideas apply. For example, the currently selected

node is returned in the SelectedNode property of the Tree View control. So, to

remove the currently selected node, you could use this statement:

tvwLanguages.Nodes.Remove(tvwLanguages.SelectedNode);

If this statement is called when no node is selected, an error occurs. In Hour 11,

you’ll learn all about data types and equalities, but here’s a preview: If an object

variable doesn’t reference an object, it’s equivalent to the Visual C# keyword null.

Knowing this, you could validate whether an item is selected with a bit of logic,

using code like the following. (Note that unlike with the List View control, only

one node can be selected at a time in a Tree View control.)

if (!(tvwLanguages.SelectedNode == null))
tvwLanguages.Nodes.Remove(tvwLanguages.SelectedNode);

Removing a parent node causes all its children to be removed as well.

Clearing All Nodes
To clear all nodes in a Tree View, invoke the Clear() method of the Nodes collection:

tvwLanguages.Nodes.Clear();

As with the List View, I’ve only scratched the surface of the Tree View. Spend

some time becoming familiar with the basics of the Tree View, as I’ve shown here,

and then dig a bit deeper to discover the not-so-obvious power and flexibility of this

control.

Summary
Visual C# includes a number of controls that go beyond the standard functionality

of the traditional controls discussed in Hour 7. In this hour, I discussed the most

By the
Way

Workshop 195

commonly used advanced controls. You learned how to use the Timer control to trig-

ger events at predetermined intervals. You also learned how to use the Tab control to

create the tabbed dialog boxes with which you’re so familiar.

Also in this hour, you learned how to add pictures to an Image List control so that

other controls can use them. The Image List makes it easy to share pictures among

many controls, making it a useful tool. Finally, I taught you the basics of the List

View and Tree View controls—two controls you can use to build high-end interfaces

that present structured data. The more time you spend with all these controls, the

better you’ll become at creating great interfaces.

Q&A
Q. What if I need a lot of timers, but I’m concerned about system resources?

A. When possible, use a single timer for multiple duties. This is easy when two

events occur at the same interval—why bother creating a second timer? When

two events occur at different intervals, you can use some decision skills along

with static variables (discussed in Hour 11) to share Timer events.

Q. What else can I do with an Image List control?

A. You can assign a unique picture to a node in a Tree View control when the

node is selected. You can also display an image in the tab of a tab page in a

Tab control. Image List has many uses. As you learn more about advanced

controls, you’ll see additional opportunities for using images from an Image

List.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What unit of time is applied to the Interval property of the Timer control?

2. What collection is used to add new tabs to a Tab control?

3. What property returns the index of the currently selected tab?

4. True or False: You should use different Image List controls for storing images

of different sizes.

196 HOUR 8: Using Advanced Controls

5. To see columns in a List View control, the View property must be set to

what?

6. The additional columns of data that can be attached to an item in a List

View are stored in what collection?

7. What property of what object would you use to determine how many items

are in a List View?

8. Each item in a Tree View control is called what?

9. How do you make a node the child of another node?

Answers
1. Milliseconds

2. The TabPages collection

3. The SelectedIndex property

4. True

5. Details

6. The SubItems collection

7. You check the Count property of the SelectedItems collection.

8. A node

9. You add it to the Nodes collection of the parent node.

Exercises
1. Add a second Image List control to your project with the List View. Place

an icon (32×32 pixels) in this Image List, and set its ImageSize property to

32, 32. Next, link the Image List to the LargeImageList property of the

List View control. Change the View property to Large Icons or Tile, and see

how the large icons are used for these two views.

2. Create a new project, and add a List View, a button, and a text box to the

default form. Create a new item in the List View, using the text entered into

the text box when the button is clicked.

HOUR 9

Adding Menus and Toolbars to
Forms

What You’ll Learn in This Hour:
. Adding, moving, and deleting menu items
. Creating checked menu items
. Programming menus
. Implementing context menus
. Assigning shortcut keys
. Creating toolbar items
. Defining toggle buttons and separators
. Creating a status bar

Using a graphical user interface (GUI) to interact with and navigate programs is one of

the greatest features of Windows. Despite this, a number of Windows users still rely prima-

rily on the keyboard, preferring to use the mouse only when absolutely necessary. Data-

entry people in particular never take their hands off the keyboard. Many software compa-

nies receive support calls from angry customers because a commonly used function is

accessible only by using the mouse. Menus are the easiest way for a user who relies on the

keyboard to navigate your program, and Visual C# 2008 makes it easier than ever to cre-

ate menus for your applications. In this hour, you’ll learn how to build, manipulate, and

program menus on a form. In addition, I’ll teach you how to use the Toolbar control to

create attractive and functional toolbars. Finally, you’ll learn how to finish a form with a

status bar.

198 HOUR 9: Adding Menus and Toolbars to Forms

Building Menus
When I said that Visual C# 2008 makes building menus easier than ever, I wasn’t

kidding. Building menus is now an immediately gratifying process. I can’t stress

enough how important it is to have good menus, and now that it’s so easy to do,

there’s no excuse for not putting menus in an application.

When running an application for the first time, users often scan the menus before
opening the manual. (Actually, most users never open the manual!) When you pro-
vide comprehensive menus, you make your program easier to learn and use.

Creating Top-Level Menu Items
You add menus to a form by way of a control: the Menu Strip control. The Menu

Strip control is a bit odd. It’s the only control I know of (other than the Context

Menu Strip control, discussed later in this hour) that sits at the bottom of the form

in the space reserved for controls without an interface (like the Timer control) even

though it has a visible interface on the form.

Follow these steps to get started:

1. You’ll use the Picture Viewer project that you worked on in Hour 8, “Using

Advanced Controls,” so open that project now.

2. Double-click ViewerForm.cs in the Solution Explorer to display the main pic-

ture viewer form in design view.

3. You’ll need room at the top of the form, so change the form’s Size.Height

property to 375.

4. Change the PictureBox’s Location to 8, 52 and its Size to 282, 279.

5. Select all the controls on the form except the picture box by Shift-clicking them

or lassoing them. Be sure to get the X and Y labels as well! After they’re all

selected, click and drag the Select Picture button until its top aligns with the

picture box (when you drag, all controls should move with the Select Picture

button). Your form should now look like Figure 9.1.

6. Add a new Menu Strip control to your form by double-clicking the MenuStrip

item in the toolbox (located in the Menus & Toolbars category), and change

its name to mnuMainMenu. As shown in Figure 9.2, the control is added to the

pane at the bottom of the Form Designer. Take a look at the top of the form—

you see the text Type Here.

Did you
Know?

Building Menus 199

7. Click the text Type Here, type &File, and press Enter. As you begin typing,

Visual C# displays two new boxes that say Type Here, as shown in Figure 9.3.

Notice the Properties window (if it’s not visible, press F4 to show it). The text

you just entered creates a new menu item. Each menu item is an object, and

therefore, the item has properties. By default, Visual C# names the menu

FileToolStripMenuItem (you may need to click the new File menu item you cre-

ated to see its properties). It’s a long name, but it gets the job done for now.

FIGURE 9.1
You’ll need
space for
menus and tool-
bars at the top
of your form.

FIGURE 9.2
A menu has no
items when first
added to a
form.

200 HOUR 9: Adding Menus and Toolbars to Forms

You might be wondering why I had you enter an ampersand (&) in front of

the word File. Take a look at your menu now, and you’ll see that Visual C#

doesn’t display the ampersand; instead, it displays the text with the F under-

lined. The ampersand, when used in the Text property of a menu item, tells

Visual C# to underline the character immediately following it. For top-level

menu items, such as the File item you just created, this underlined character is

called an accelerator key. Pressing Alt plus an accelerator key opens the menu

as if the user had clicked it. You should avoid assigning the same accelerator

key to more than one top-level menu item on a form. To avoid conflicts, you

can make any character the accelerator character, not just the first character

(for example, typing F&ile would underline the i in File). When the menu

item appears on a drop-down menu (as opposed to being a top-level item),

the underlined character is called a hotkey. When a menu is visible (open), the

user can press a hotkey to trigger the corresponding menu item the same as if

it were clicked. Again, don’t use the same hotkey for more than one item on

the same menu.

8. Click the Type Here text that appears to the immediate right of the File item,

enter &Tools, and press Enter. Visual C# gives you two more Type Here items—

the same as when you entered the File item. Adding new menu items is just a

matter of clicking a Type Here box and entering the text for an item.

FIGURE 9.3
Creating a
menu item auto-
matically pre-
pares the con-
trol for more
items.

Building Menus 201

If you click a Type Here box below an existing menu item, you add a new item to
the same menu as the item above the box. If you click the Type Here box to the
right of a menu item, you create a submenu using the menu to the left of the box
as the entry point for the submenu. As you’ve seen, clicking the Type Here box
along the top of the menu bar creates a top-level menu.

Creating Menu Items for a Top-Level Menu
You can create as many top-level menus as you have room for on a form. For the

Picture Viewer, the File and Tools menus are adequate. Now, you need to create the

menu items that a user can select for these top-level menus. Follow these steps to

create the menu items:

1. Click the File item to display a Type Here box below it. Click this Type Here

box, enter &Open Picture..., and press Enter.

2. Click the item you just created to give it the focus, and change the name of

the new item to mnuOpenPicture.

3. Click the Type Here box below the Open Picture item you just created, type

&Quit, and then press Enter. Change the name of the new item to mnuQuit.

Now is a good time to save your work, so click Save All on the toolbar.

4. Click the Tools menu to select it. This displays a Type Here box to the right of

and below the Tools item. Click the Type Here box below the Tools menu, type

&Draw Border, and press Enter. Change the name of the new item to

mnuDrawBorder.

5. This part can be tricky. Hover the pointer over the Type Here box below the

Draw Border item. A small drop-down arrow appears. Click this arrow and

select Separator, as shown in Figure 9.4. This drop-down is used to specify

what type of item you want on the menu. You can create a combo box or a

text box or, as in this case, a separator to isolate groups of unrelated menu

items.

6. After you choose Separator, a line appears under Draw Border, and a new

Type Here box appears. Click this box to select it, enter the text &Options...,

and then press Enter to create the menu item. Change the name of this new

item to mnuOptions.

7. Click the picture box or some other control to stop editing the menu.

By the
Way

202 HOUR 9: Adding Menus and Toolbars to Forms

Moving and Deleting Menu Items
Deleting and moving menu items are even easier than adding new items. To delete

a menu item, right-click it and choose Delete from the context menu that appears.

To move an item, drag it from its current location and drop it in the location in

which you want it placed.

Creating Checked Menu Items
A menu item that isn’t used to open a submenu can display a check mark next to

its text. Check marks are used to create menu items that have state—the item is

either selected or it isn’t. Now you’ll create a checked menu item. Remember the

check box you created for the Options form in Hour 7? It was used to specify

whether the user should be prompted before the Picture Viewer closes. Now you’ll

create a menu item for this as well. Follow these steps:

1. Click the File menu to open it.

2. Click the Type Here box below the Quit menu item, enter Confirm on Exit,

and press Enter. Change the name of the new item to mnuConfirmOnExit.

3. Right-click Confirm on Exit, and choose Checked from the shortcut menu, as

shown in Figure 9.5. If your menu is different from the one shown in Figure

9.5, click a different menu item, and then right-click the Confirm on Exit item.

You also could click the menu item and change its Checked property in the

Properties window.

FIGURE 9.4
You can create
text boxes,
combo boxes,
and separators
in addition to
regular menu
items.

Building Menus 203

4. Click and drag the Confirm on Exit item, and drop it on the Quit menu item.

This moves the item above the Quit item. Your menu now looks like Figure 9.6.

FIGURE 9.5
Menu items can
be used to indi-
cate state.

FIGURE 9.6
Menus are cre-
ated in an inter-
active fashion.

Press F5 to run the project. The menu appears on your form, just as you designed it

(see Figure 9.7). Click the File menu to open it, and then click Quit; nothing hap-

pens. In fact, the checked state of your menu item doesn’t change even if you click

that item. In the next section, I show you how to add code to menu items to make

them actually do something (including changing their checked state).

Stop the project now, and save your work.

Programming Menus
Every menu item is a unique object. You could actually edit each item by clicking it

to select it and then changing the item’s properties in the Properties window.

Although individual menu items aren’t controls per se, adding code behind them is

similar to adding code behind a control. Now you’ll add code to menu items you

created.

204 HOUR 9: Adding Menus and Toolbars to Forms

Follow these steps to create the code for the menus:

1. Click the File menu now to open it.

2. Double-click the Open Picture menu item. Just as when you double-click a

control, Visual C# displays the code editor with the default event for the menu

item you’ve clicked. For menu items, this is the Click event.

3. Enter the following code:

// Show the open file dialog box.
if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

// Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);
// Show the name of the file in the form’s caption.
this.Text = string.Concat(“Picture Viewer(“ +

ofdSelectPicture.FileName + “)”);
}

This is the exact code you entered for the Select Picture button you created in

Hour 1, “Jumping In with Both Feet: A Visual C# 2008 Programming Tour,” so

I won’t discuss it here.

4. Double-click ViewerForm.cs in the Solution Explorer window to switch back

to the form designer for the Picture Viewer form.

5. Double-click the Confirm on Exit menu item to access its Click event. Enter

the following code statement:

mnuConfirmOnExit.Checked = !(mnuConfirmOnExit.Checked);

FIGURE 9.7
Menus appear
at runtime the
same as they
do at design
time.

Building Menus 205

When Confirm on Exit is clicked, this code sets the item’s checked state to the

opposite of the item’s current checked state. The function Not() is used to

negate a Boolean (true or false) value. Don’t worry; I discuss this in detail in

Hour 12, “Performing Arithmetic, String Manipulation, and Date/Time

Adjustments.” For now, realize that if the current value of the Checked proper-

ty is True, Not() returns False. If Checked currently is False, Not() returns

True. Therefore, the checked value toggles between True and False each time

the menu item is clicked.

6. Double-click ViewerForm.cs in the Solution Explorer window (or click the

ViewerForm.cs [Design] tab) to switch back to the form designer for the Picture

Viewer form again.

7. Double-click the Quit menu item to access its Click event, and enter the fol-

lowing code:

this.Close();

Again, recall from Hour 1 that this statement simply closes the form. This has

the effect of closing the application, because it’s the only form that’s loaded.

8. Return to the form viewer yet again, click Tools to display the Tools menu, and

then double-click the Draw Border menu item to access its Click event. Enter

the following code:

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,
picShowPicture.Left - 1, picShowPicture.Top - 1,

picShowPicture.Width + 1, picShowPicture.Height + 1);
objGraphics.Dispose();

This code is also directly from Hour 1, so refer to that hour for the specifics on

how this code works.

9. Return to the Form Designer, double-click the Options menu item, and enter

the following code in its Click event:

OptionsForm frmOptionsDialog = new OptionsForm();
frmOptionsDialog.ShowDialog();

You have just added all the code necessary for your menu to function. Follow these

steps to test your work:

1. Press F5 to run the project. Open the File menu by pressing Alt+F (remember,

the F is the accelerator key).

206 HOUR 9: Adding Menus and Toolbars to Forms

2. Click the Confirm on Exit button. The menu closes, so click File again to open

it; notice that the item is no longer checked. Clicking it again would check it.

3. Click all the menu items except Quit to make sure that they work as expected.

When you’re finished, choose File, Quit to close the running project.

If you selected Confirm on Exit, you might have noticed that you weren’t asked

whether you really wanted to quit. That’s because the quit code hasn’t been written

to consider the checked state of the Ask Before Closing button. You’ll hook up this

item, as well as all the other options, in Hour 11, “Using Constants, Data Types,

Variables, and Arrays.”

When designing your menus, look at some of the many popular Windows applica-
tions available, and consider the similarities and differences between their menus
and yours. Although your application might be unique and therefore have different
menus from other applications, there are probably similarities as well (such as
Cut, Copy, Paste, Open, and so on). When possible, make menu items in your
application follow the same structure and design as similar items in the popular
programs. This shortens the learning curve for your application, reduces user frus-
tration, and saves you time.

Implementing Context Menus
Context menus (also called shortcut menus) are the pop-up menus that appear when

you right-click an object on a form. Context menus get their name from the fact

that they display context-sensitive choices—menu items that relate directly to the

object that’s right-clicked. Most Visual C# controls have a default context menu

(also called a shortcut menu), but you can assign custom context menus if you want.

Creating context menus is much like creating regular menus. To create context

menus, however, you use a different control: the Context Menu Strip control.

Follow these steps to implement a custom context menu in your project:

1. Display the ViewerForm.cs form in the form designer.

2. Add a new context menu strip to the form by double-clicking the Context

Menu Strip item in the toolbox. Like the Main Menu control, the Context

Menu Strip control is placed in the pane below the Form Designer. Change its

name to mnuPictureContext.

3. When the Context Menu Strip control is selected, a context menu appears

toward the top for editing. Click the Type Here box, enter the text Draw

Border (see Figure 9.8), and press Enter to create the menu item. You’ve just

created a context menu with a single menu item.

Did you
Know?

Building Menus 207

4. Double-click the new menu item to access its Click event, and enter the fol-

lowing code:

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,
picShowPicture.Left - 1, picShowPicture.Top - 1,

picShowPicture.Width + 1, picShowPicture.Height + 1);
objGraphics.Dispose();

Yes, this is exactly the same code you entered for the Draw Border menu item

and the Draw Border button. It seems sort of redundant to enter the same code

in three places, doesn’t it? In Hour 10, “Creating and Calling Methods,” I’ll show

you how to share code so that you don’t have to enter it in multiple places!

5. Double-click ViewerForm.cs in the Solution Explorer to return to the designer

for the Picture Viewer form.

6. You link a control to a context menu by setting a property. Click the picture

box on the form now to select it, and then change the ContextMenuStrip

property of the picture box to mnuPictureContext; the context menu is now

linked to the picture box.

7. Press F5 to run the project and right-click the picture box. You see the context

menu shown in Figure 9.9. Go ahead and choose Draw Border, and the border

will be drawn.

FIGURE 9.8
Context menus
are edited much
as regular
menus are.

208 HOUR 9: Adding Menus and Toolbars to Forms

8. Stop the project and save your work.

Assigning Shortcut Keys to Menu Items
If you’ve spent any time learning a Microsoft application, you’ve most likely learned

some keyboard shortcuts. For example, pressing Alt+P in any application that prints

has the same effect as opening the File menu and choosing Print.

Add shortcuts to your menus now by following these steps:

1. Click the File menu at the top of the form to open it, and then click Open

Picture.

2. In the Properties window, click the ShortcutKeys property, and then click the

down arrow that appears. This drop-down, shown in Figure 9.10, allows you

to define a shortcut key for the selected menu item.

FIGURE 9.9
Context menus
make handy
shortcuts.

FIGURE 9.10
To assign a
shortcut key,
use the
ShortcutKeys
property of a
menu item.

3. Check Ctrl and then select O (for Open) from the Key drop-down menu; then

click another property to close the drop-down.

4. Press F5 to run the project once more. Next, press Ctrl+O. The application

behaves as though you opened the File menu and clicked the Open Picture item.

Using the Toolbar Control 209

Although it isn’t always possible, try to assign logical shortcut key combinations.
The meaning of F6 is hardly intuitive, for example. But, when assigning modifiers
such as Ctrl with another character, you have some flexibility. For instance, the key
combination of Ctrl+Q might be a more intuitive shortcut key for Quit than Ctrl+T.
Again, if the menu item is the same as or similar to a menu item in a commercial
application, use the same shortcut key as the commercial application.

Stop the running project, and save your work before continuing.

Using the Toolbar Control
Generally, when a program has a menu (as most programs should), it should also

have a toolbar. Using toolbars (called toolstrips in Visual C# 2008 for some reason) is

one of the easiest ways for a user to access program functions. Unlike menu items,

toolbar items are always visible and therefore are immediately available. In addi-

tion, toolbar items have ToolTips, which enable a user to discover a tool button’s

purpose simply by hovering the mouse pointer over the button.

Toolbar items are really shortcuts for menu items; every item on a toolbar should

have a corresponding menu item. Remember, some users prefer to use the keyboard,

in which case they need to have keyboard access to functions via menus.

The actual items you place on a toolbar depend on the features the application sup-

ports. However, the mechanics of creating toolbars and toolbar items are the same

regardless of the buttons you choose to use. Toolbars are created with the ToolStrip

control.

Follow these steps to add a toolbar to the main form in your Picture Viewer project:

1. Display the ViewerForm.cs form in the form designer (if it’s not already dis-

played).

2. Add a new ToolStrip control to your form by double-clicking the ToolStrip

item in the toolbox. A new toolbar is added to the top of your form. Change

the name of the toolbar to tbrMainToolbar.

3. Notice that the toolbar appears above the menu. Anyone who has used a

Windows application knows that a toolbar belongs below the menu bar. Right-

click the toolbar and choose Bring To Front from its shortcut menu. That caus-

es the toolbar to move below the menu. Your form should now look like

Figure 9.11.

Did you
Know?

210 HOUR 9: Adding Menus and Toolbars to Forms

Adding Toolbar Buttons Using the Buttons
Collection
Like many other controls you’ve already learned about, the ToolStrip control sup-

ports a special collection: Items. The Items collection contains the buttons that

appear on the toolbar. Click the Items property in the Properties window, and then

click the small button that appears; the Items Collection Editor appears. The list of

members shows the toolbar itself, but no buttons, because new toolbars have no

buttons.

You’ll add three images to your toolbar: one for Open, one for Draw Border, and
one for Options. You can download these images from my website,
http://www.jamesfoxall.com/books.aspx.

Take a moment to open the drop-down list in the upper-left corner, as shown in

Figure 9.12. This list contains the types of items that can be added to a toolbar.

FIGURE 9.11
New toolbars
have no
buttons.

By the
Way

http://www.jamesfoxall.com/books.aspx

Using the Toolbar Control 211

For this example, you will create buttons and separators. Feel free to experiment

with the different item types in another project. Follow these steps:

1. With Button selected in the drop-down list, click Add to create a new button.

Set its properties as follows (you might want to change the property display

sort order to Alphabetical):

Property Value

Name tbbOpenPicture

Text Open Picture

ToolTipText Open Picture

2. Click the Image property for the button, and then click the Build button that

appears. Click Import, and then browse and select the Open image.

3. Click OK to save the image in the button.

4. Click Add to create a new button, and set its properties as follows:

Property Value

Name tbbDrawBorder

Text Draw Border

ToolTipText Draw Border

5. Set the Image property of the Draw Border button to a valid image file.

FIGURE 9.12
Toolbars may
contain a num-
ber of different
types of items.

212 HOUR 9: Adding Menus and Toolbars to Forms

6. Click Add again to create the final button. Set its properties as follows:

Property Value

Name tbbOptions

Text Options

ToolTipText Options

7. Set the Image property of the Options button to a valid image file.

You’ve now created the buttons for your toolbar. There’s one last thing you should

do, however. Professional designers always separate related groups of tool buttons

with a separator. A separator is a vertical line that appears between two buttons. All

three of the buttons you’ve created are relatively unrelated, so now you’ll create sep-

arators to isolate them from one another. Follow these steps:

1. Choose Separator from the drop-down list, and click Add. The separator is

added to the bottom of the list. Click the up arrow that appears to the right of

the list twice to move the separator up between the Open button and the Draw

Border button.

2. Click Add again to create another separator, and click the up arrow once this

time to move the separator between the Draw Border button and the Options

button.

3. Click OK to save your toolbar definition. Next, click the form to deselect the

toolbar control. Your screen should look like Figure 9.13.

FIGURE 9.13
Your toolbar is
now ready for
some code to
make it work.

Using the Toolbar Control 213

You can add buttons to the ToolStrip control dynamically, just as you added
menu items by using the default button that appears on the toolstrip. I chose to
have you use the Items Collection Editor instead so that you can see that there
are often multiple ways to attack a problem.

Programming Toolbars
Programming toolbars is pretty much the same as programming menus. As you will

see, Microsoft has chosen to standardize things whenever possible. For example, in

early versions of .NET, you worked with a Toolbar control that had a Buttons col-

lection. In 2005, the Toolbar control was replaced with a ToolStrip control that

has an Items collection. The List View control has an Items collection, as does the

Tree View control. Seeing a pattern? After you learn how to work with the Items

collection of one control, it’s an easy transition to work with the Items collection of

other controls.

Follow these steps to make your toolbar functional:

1. Click the tbrMainToolbar control below the form to select it.

2. Double-click the Open button on the toolbar to access its Click event. Be sure

to click the button and not the toolbar. Double-clicking the toolbar accesses a

different event altogether. Enter the following code:

// Show the open file dialog box.
if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

// Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);
// Show the name of the file in the form’s caption.
this.Text = string.Concat(“Picture Viewer(“ +

ofdSelectPicture.FileName + “)”);
}

3. Click the ViewerForm.cs [Design] tab to return to Form Design view.

4. Double-click the Draw Border button, and add the following code to its Click

event:

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,

picShowPicture.Left - 1, picShowPicture.Top - 1,
picShowPicture.Width + 1, picShowPicture.Height + 1);

objGraphics.Dispose();

By the
Way

214 HOUR 9: Adding Menus and Toolbars to Forms

5. Click the ViewerForm.cs [Design] tab to return to Form Design view.

6. Double-click the Options button, and add the following code to its Click

event:

OptionsForm frmOptionsDialog = new OptionsForm();
frmOptionsDialog.ShowDialog();

Go ahead and save your work, and then press F5 to run the project. Clicking the

toolbar buttons should now perform the same actions as clicking the menu items. In

Hour 10, I’ll show you how the two controls can share code.

Creating Drop-Down Menus for Toolbar Buttons
Although you won’t use one in this project, be aware that you can create drop-down

menus on toolbars, as shown in Figure 9.14. Visual C# 2008 uses these in a number

of places. To create a menu like this, instead of adding a regular button to the tool-

bar, you add a DropDownButton. Doing so creates a submenu just as you did when

you defined regular menus earlier in this hour.

FIGURE 9.14
You can create
drop-down
menus like
these.

Creating a Status Bar
The last control I’ll show you is the Status Bar control. The Status Bar isn’t near-

ly as fancy, or even as useful, as other controls such as the ToolStrip or MenuStrip

(but it’s also not as difficult to work with, either). A status bar adds value to an

Creating a Status Bar 215

application in that it makes information available in a standard location, and users

have come to expect it. In its simplest form, a status bar displays a caption and siz-

ing grip—the dots to the right of the control that the user can drag to change the

form’s size.

If the form designer isn’t visible, double-click ViewForm.cs in the Solution Explorer to

display it. Next, add a new status bar to the form by double-clicking the StatusStrip

item in the toolbox (located in the Menus & Toolbars category). You need to use the

vertical scrollbar to the right in the designer to scroll down and see the status bar at

the bottom of your form. Change the name of the StatusStrip to

sbrMyStatusStrip. Because of how you have anchored your other controls, the sta-

tus strip overlays a few controls at the bottom of the form. Fix this now by following

these steps:

1. Click the PictureBox on the form, and change its Size property to 282, 256.

2. Change the Location.Y property of the Shrink and Enlarge buttons to 285.

Your form should now look like Figure 9.15.

FIGURE 9.15
Status bars
always appear
at the bottom of
a form.

Click the StatusStrip to select it, and take a look at its left edge. Does it look famil-

iar? It’s similar to the interface you have for adding menu items to MenuStrips and

buttons to toolstrips. Click the drop-down arrow, and choose StatusLabel. A new sta-

tus label appears. Change its properties as follows:

Property Value

Name lblStatus

Text No image loaded

216 HOUR 9: Adding Menus and Toolbars to Forms

You probably noticed when you opened the drop-down to create the status label that

you can place items of other types on the status strip as well. For now, the label will

do. In Hour 10, you’ll write code to display the name of the opened picture in the

label.

Press F5 to run the project. Move the mouse pointer over the small set of dots in the

status strip’s lower-right corner. The pointer changes to a sizing arrow. You can click

and drag to resize the form. However, the status strip isn’t smart enough to realize

when a form’s border can’t be resized (for example, when it’s set to Fixed or Fixed

Tool Window). You have to change the SizingGrip property of the status strip to

False to hide the grip.

Summary
Menus, toolbars, and status bars add tremendous value to an application by greatly

enhancing its usability. In this hour, you learned how to use the MenuStrip control

to build comprehensive menus for your applications. You learned how to add, move,

and delete menu items and how to define accelerator and shortcut keys to facilitate

better navigation via the keyboard. You also saw how toolbars provide shortcuts for

accessing common menu items. You learned how to use the ToolStrip control to

create functional toolbars, complete with bitmaps and logical groupings. Finally,

you discovered how to use a status strip to dress up the application. Implementing

these items is an important part of the interface design process for an application.

You now have the skills necessary to start putting them into your own programs.

Q&A
Q. I have a number of forms with nearly identical menus. Do I really need to

take the time to create menus for all these forms?

A. Not as much as you might think. Create a MenuStrip control that has the

common items on it, and then copy and paste the control to other forms. You

can then build on this menu structure, saving you a lot of time. Be aware,

though, that when you copy and paste a control, the corresponding code does

not get copied.

Q. I’ve seen applications that allow the end user to customize the menus and
toolbars. Can I do that with the Visual C# menus and toolbars?

A. No. To accomplish this behavior, you’ll have to purchase a third-party compo-

nent—or write a lot of code to make this happen. Personally, I think buying a

component that supports this functionality is a much better option.

Workshop 217

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: Form menu bars are created using the Context Menu Strip

control.

2. To create an accelerator, or hotkey, what do you preface the character with?

3. To place a check mark next to a menu item, you set what property of the

item?

4. How do you add code to a menu item?

5. Toolbar items are part of what collection?

6. True or False: Every button on a toolbar has its own Click event.

7. What control displays information to the user at the bottom of a form?

Answers
1. False. To create them you use the MenuStrip control.

2. An ampersand (&)

3. The Checked property

4. Double-click the menu item.

5. The Items collection

6. True

7. The StatusStrip control

Exercises
1. Create a new project, and build a toolstrip that has a drop-down button.

2. Using the ToolStrip control, figure out how to display status text in place of

a button. (Hint: A special type of item in the Items collection does this.)

This page intentionally left blank

PART III

Making Things Happen:
Programming

HOUR 10 Creating and Calling Methods 221

HOUR 11 Using Constants, Data Types, Variables, and Arrays 241

HOUR 12 Performing Arithmetic, String Manipulation, and
Date/Time Adjustments 267

HOUR 13 Making Decisions in Visual C# Code 285

HOUR 14 Looping for Efficiency 297

HOUR 15 Debugging Your Code 309

HOUR 16 Designing Objects Using Classes 333

HOUR 17 Interacting with Users 351

HOUR 18 Working with Graphics 371

This page intentionally left blank

HOUR 10

Creating and Calling Methods

What You’ll Learn in This Hour:
. Creating methods
. Calling methods
. Exiting methods
. Passing parameters
. Avoiding recursive methods
. Working with tasks

You’ve now spent about nine hours building the basic skills necessary to navigate Visual

C# 2008 and to create an application interface. Creating a good interface is important,

but it’s only one of many steps toward creating a Windows program. After you’ve created

the basic interface of an application, you need to enable the program to do something.

The program might perform an action all on its own, or it might perform actions based

on a user interacting with the GUI. Either way, you write Visual C# code to make your

application perform tasks. In this hour, you learn how to create sets of code, create isolated

code routines that can be executed (called methods), and invoke the methods you create.

Understanding Class Members
A class is a place to store the code you write. Before you can begin writing Visual C# code,

you must start with a class. As mentioned in previous hours, a class is used as a template

to create an object (which may have properties and/or methods). Properties and methods

of classes can be either instance members or static members. Instance members are associ-

ated with an instance of a class—an object created from a class using the keyword new.

On the other hand, static members belong to the class as a whole, not to a specific instance

of a class. You’ve already worked with one class using instance members to create a form

222 HOUR 10: Creating and Calling Methods

(refer to Hour 5, “Building Forms—The Basics,” for more information). When you

double-click an object on a form, you access events that reside in the form’s class

module.

Other languages, such as Visual Basic, differentiate between class methods and pub-

lic methods that are globally available outside a class. Visual C# requires all meth-

ods to exist in the context of a class, but a globally available method can be

achieved by defining static methods in your class. Static methods are always avail-

able regardless of whether an instance of the class exists. In fact, you can’t access a

static member through an instance of a class, and attempting to do so results in an

exception (error).

Although you could place all your program’s code into a single class module, the

best approach is to create different classes to group related sets of code. In addition,

it’s best not to place code that isn’t specifically related to a form within a form’s

class module. Instead, place such code in the logical class or, preferably, in a special-

ized class module.

The current development trend centers on object-oriented programming, which
revolves around class modules. I give you a primer on object-oriented program-
ming in Hour 16, “Designing Objects Using Classes,” but this is an advanced topic
so I don’t cover it in detail. I highly recommend that you read a book dedicated to
the topic of object-oriented programming after you are comfortable with the materi-
al in this book.

One general rule for creating methods is that you should build classes to group

related sets of code. This isn’t to say you should create dozens of classes. Rather,

group related methods into a reasonably sized set of classes. For example, you might

want to create one class that contains all your printing routines and another that

holds your data-access routines. In addition, I like to create a general-purpose class

in which to place all the various routines that don’t necessarily fit into a more spe-

cialized class.

Here, you build on the Picture Viewer application from Hour 9, “Adding Menus and

Toolbars to Forms,” so open that now.

If you wanted to create an entirely new class, you would choose Add Class from the

Project menu. However, for this example, you’re going to create methods in your

form class.

Start by clicking ViewerForm.cs in the Solution Explorer and then click the View

Code button that appears at the top of the Solution Explorer. You are now viewing

the code of the ViewerForm.cs class (see Figure 10.1). The arrow in the figure shows

By the
Way

Defining and Writing Methods 223

the opening brace below the class definition. This brace denotes the start of the class

code; there’s a closing brace at the bottom as well. Notice that all the event proce-

dures that you’ve created exist between the opening and closing braces of the class.

The methods you create are also placed between these braces.

FIGURE 10.1
You create your
methods within
a class.

Defining and Writing Methods
After you’ve created the classes in which to store your code (in this case, you’re

using an existing class), you can begin writing methods. A method is a discrete set of

code that can be called from other code. Methods are much like events, but rather

than being executed by a user interacting with a form or control, methods are exe-

cuted when called by a code statement.

Two types of code procedures are used in Visual C#:

. Methods that return a value

. Methods that do not return a value

There are many reasons to create a method that returns a value. For example, a

method can return true or false depending on whether it was successful in com-

pleting its task. You could also write a method that accepts certain parameters (data

passed to the method, in contrast to data returned by the method) and returns a

value based on those parameters. For instance, you could write a method that

224 HOUR 10: Creating and Calling Methods

enables you to pass it a sentence, and in return it passes back the number of spaces

within the sentence. The possibilities are limited only by your imagination. Just keep

in mind that a method doesn’t have to return a value.

Declaring Methods That Don’t Return Values
To create a method, you first declare it within a class. In the ViewerForm.cs class,

position the cursor to where the arrow appears in Figure 10.1 (position it right next

to the brace, on the right side), press Enter to create a new line, and then enter the

following three code statements:

private void OpenPicture()
{
}

You’ve just created a new method (see Figure 10.2).

FIGURE 10.2
The curly
braces denote
the beginning
and ending of
the method’s
code.

The declaration of a method (the statement used to define a method) has a number

of parts. The first word, private, is a keyword (that is, a word with a special mean-

ing in Visual C#). The keyword private defines the scope of this method (scope is

discussed in detail in Hour 11, “Using Constants, Data Types, Variables, and

Arrays”), designating that the method can be called from code contained in the cur-

rent class only. You can use the keyword public in place of private to allow access

to the method by code that resides in other classes. Because you’re going to be call-

ing this code from the Picture Viewer form only, make the procedure private.

Defining and Writing Methods 225

The word void is another Visual C# keyword. The void keyword is used to declare a

method that doesn’t return a value. Later in this hour, you learn how to create

methods that return values.

The third word, OpenPicture, is the name of the method and can be just about any

string of text you want it to be. Note, however, that you can’t assign a name that’s a

keyword, nor can you use spaces within a name. In the example you’re building,

the procedure performs the same function as the Open Picture menu item and the

Open Picture toolstrip button, hence the name. You should always give procedures

strong names that reflect their purpose. You can have two procedures with the same

name only if they have different scope (again, scope is discussed in Hour 11).

Some programmers prefer the readability of spaces in names, but in many
instances, such as when naming methods, you can’t use spaces. A common tech-
nique is to use an underscore (_) in place of a space, such as in Open_Picture,
but I recommend that you just use mixed case, as you have in this example.

Immediately following the name of the method is a set of parentheses. Within these

parentheses, you can define parameters (data to be passed to the method by the call-

ing program). In this example, there is no need to pass any data to the method, so

you leave the parentheses empty. If you wanted calling code to pass data into this

procedure, you would do so within these parentheses. I show you how to do that

later in this hour.

You have to supply parentheses, even when a procedure doesn’t accept any
parameters.

Add the following code to your OpenPicture() method (put the code between the

opening brace and closing brace):

// Show the open file dialog box.
if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

// Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);
// Show the name of the file in the form’s caption.
this.Text = string.Concat(“Picture Viewer(“ +

ofdSelectPicture.FileName + “)”);
// Show the name of the file in the status bar.
sbrMyStatusStrip.Items[0].Text = ofdSelectPicture.FileName;

}

Notice that this code is identical to the code you entered in the Open Picture button,

menu item, and toolstrip button from previous hours. You’ve already entered this

Did you
Know?

By the
Way

226 HOUR 10: Creating and Calling Methods

code (or a variation of it) in three places, so why another? Earlier, I alluded to the

idea that having duplicate code isn’t optimal and that we would be addressing this

issue. Whenever you find yourself duplicating code, you should immediately realize

that the duplicated code should be placed in a dedicated procedure. Then, rather

than have the code duplicated, you can just call the procedure as needed. This

approach has a number of advantages, including

. Reduction of errors—Each time you enter code, you run the risk of doing

something wrong. By entering code only once, you reduce the likelihood of

introducing errors.

. Consistency and maintainability—When you duplicate code, you often for-

get all the places where that code is used. You might fix a bug in one location

but not in another, or add a feature to one copy of the code but not another.

By using a single procedure, you only have to worry about maintaining one

instance of the code.

If you are paying close attention, you might have noticed that I snuck an additional

statement in the OpenPicture() method (the last statement in the listing). As prom-

ised in Hour 9, this statement displays the filename of the opened picture in the sta-

tus bar.

Now you are ready to create a procedure to draw a border around the picture box.

Position your cursor after the closing curly brace for the OpenPicture() method (see

Figure 10.3), press Enter, and then enter the following code:

private void DrawBorder(PictureBox objPicturebox)
{

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,

objPicturebox.Left - 1, objPicturebox.Top - 1,
objPicturebox.Width + 1, objPicturebox.Height + 1);

objGraphics.Dispose();
}

A few things introduced in this procedure may look new to you. The first is that text

appears within the parentheses of the procedure declaration. I mentioned earlier

that this is the place where you can define parameters. Parameters are data passed

into the procedure, as opposed to a value returned by the procedure. You’ve just cre-

ated a parameter of type picture box. I cover the specifics in Hour 11, but for now

I just want you to understand the following concept: Code that calls this procedure

passes into it a reference to a picture box object. The procedure then can work with

the reference just as though it were manipulating the object directly.

Defining and Writing Methods 227

Because this method exists in the form, you don’t really need to pass a reference to

the picture box, but I want you to see how this procedure works. You use the

objPictureBox parameter throughout the procedure in place of a hard-coded refer-

ence to the picture box object on your form. Because this new procedure accepts a

reference to a picture box by way of a parameter, the procedure can work with any

picture box on the form. The calling code simply has to pass a reference to the pic-

ture box in question, and the border is drawn around it. Your form class should now

look like Figure 10.4.

Declaring Procedures That Return Values
The procedure you’ve just created doesn’t return a value. You’re now going to

declare a method that returns a value. Here’s the general syntax of a method that

returns a value declaration:

scope datatype functionname(parameters)

Notice one key difference between declaring a method that doesn’t return a value

and declaring one that does: You specify a data type instead of using the keyword

void. Data types are discussed in detail in Hour 11, so it’s not important that you

understand them now. It is important, however, that you understand what’s

happening.

FIGURE 10.3
Start your new
procedure
where the arrow
is pointing.

228 HOUR 10: Creating and Calling Methods

The data type entered after the scope identifier denotes the type of data returned by

the method. You’re not going to create a method in your project at this time, but

consider the following example:

private int ComputeLength(string strText)
{

return strText.Length;
}

There are two things to note here:

. After the scope keyword private and before the method name is the keyword

int. This denotes that the method will return an integer value. If the method

were to return a string of text, the keyword string would be used instead. It’s

important that you declare the proper data type for your methods as discussed

in Hour 11.

. The keyword return accomplishes two tasks. First, it causes the method to

immediately terminate; no further code is executed in the method. Second, it

passes back as the return value whatever value you specify. In this code, the

method returns the number of characters in the supplied string.

Methods that return values are defined much like methods that don’t return values,

with the exceptions that you specify a return data type instead of void, and you use

a return statement to pass back a value as the result of the method call. By

FIGURE 10.4
Each method
exists as a sin-
gle entity, just
like event proce-
dures.

Calling Methods 229

remembering these key differences, you should have little trouble creating one over

the other as circumstances dictate.

Calling Methods
Calling a method is simple—much simpler than creating one! So far, I’ve had you

create two methods. Each of these methods contains code like that used in no fewer

than three places in your form! You’re now going to remove all that duplicate code,

replacing it with calls to the common methods you’ve just written. Follow these steps

to make this happen:

1. Double-click ViewerForm.cs in the Solution Explorer to view the form in the

Form Designer.

2. The first code to replace is the Open Picture code you’ve entered for the Open

Picture button on the toolbar. Double-click the Open Picture button on the tool-

bar to access its Click event. Delete all the code between the opening and

closing braces of the procedure (see Figure 10.5).

FIGURE 10.5
Delete this
code and
replace it with
the procedure
call.

3. With the old code deleted, enter the following statement:

this.OpenPicture();

230 HOUR 10: Creating and Calling Methods

That’s it! To call a custom method, you simply call it like you would a built-in

Visual C# method. If the method expected one or more parameters, you would

enter them between the parentheses (you do this shortly).

4. You still have two other places in which you used the Open Picture code.

Double-click ViewerForm.cs in the Solution Explorer to return to the design

view of the form, click the File menu to open your menu, and then double-

click the Open Picture menu item.

5. Delete the code in the Click event and replace it with the following:

this.OpenPicture();

Return to the Form Designer once more.

So far, you’ve created only methods that don’t return values. As you now know, call-

ing a method is as easy as referencing the class name, then a period, and then the

method name and parenthesis. For methods that return values, calling them is a lit-

tle different. Consider this little method:

private long AddTwoNumbers(int intFirst, int intSecond)
{

return intFirst + intSecond;
}

This method accepts two parameters, adds them together, and returns their sum.

When calling a method that returns a value, think of the method in terms of the

value it returns. For example, when you set a form’s Height property, you set it with

code like this:

MyForm.Height = 200;

This statement sets a form’s height to 200. Suppose that you want to use the

AddTwoNumbers() method to determine the height of the form. Thinking of the pro-

cedure in terms of the value it returns, you could replace the literal value with the

method, like the following:

MyForm.Height = this.AddTwoNumbers(1, 5);

In this example, the form’s height would be set to 6 because you passed 1 and 5 to

the parameters of the method, and the method added them together. In the next

section, I show you how to work with parameters in more detail.

When calling methods that return values, you must treat the method call as you
would treat the literal value returned by the method. This often means placing a
method call on the right side of an equal sign or embedding it in an expression.

By the
Way

Calling Methods 231

You’ve now created a procedure and called it from two locations; your application is

really taking shape! Now that you have a toolbar and a menu, you no longer need

the buttons that you first created in Hour 1, “Jumping In with Both Feet: A Visual

C# 2008 Programming Tour.”

Follow these steps to get rid of the buttons:

1. Double-click the Select Picture button on the right side of the form (you need

to return to the Form Designer first). Remove the entire event procedure,

including the procedure declaration that begins with private and the closing

brace (see Figure 10.6).

FIGURE 10.6
When deleting a
procedure, you
must delete the
declaration and
the closing
brace as well.

2. Go back to the Form Designer by clicking the ViewerForm.cs[Design]* tab at

the top of the work area. You’ve deleted the actual event procedure, but Visual

C# still has an internal reference to the event. Therefore, if you try to run your

code now, you get a compile error. In fact, run the project now to see the build

error. Click No when asked if you want to run the latest build.

3. You then return to the designer, and the Error List at the bottom contains a

single error. Double-click the error to go to it in code.

4. Notice that there is still a code reference to the procedure you just deleted (see

Figure 10.7). This is the statement that connects the clicking of the button to

the event procedure you deleted. When you delete an event procedure, Visual

C# doesn’t delete this reference automatically. To fix this, delete the entire

statement that references the deleted procedure. Your code will now run.

232 HOUR 10: Creating and Calling Methods

5. Return to the Form Designer and click the Select Picture button on the form to

give it the focus. Next, press Delete to delete the button.

6. Actually, this is an easier task if you don’t try to run the project. For the Quit,

Draw Border, and Options buttons, delete the procedures as you did for the

Select Picture button, but then delete the physical buttons before attempting to

run the project. Be sure to delete the procedures for each of them! Visual C# is

smart enough to delete the related code lines and not leave them in the project.

FIGURE 10.7
You have to
remove refer-
ences to an
event when you
delete the
event
procedure.

Your screen should now look like Figure 10.8.

FIGURE 10.8
The buttons are
no longer nec-
essary now that
you have
menus and
toolbars.

Calling Methods 233

7. Go ahead and clean up the form further. Set the Location property of the X

label to 336,256 and set the Location property of the Y label to 336,269.

Finally, set the Size of the Picture box to 322,257. Now your form should look

like Figure 10.9.

FIGURE 10.9
A better-looking
form!

Passing Parameters
Parameters are used within a procedure to allow the calling code to pass data into

the procedure. You’ve already seen how parameters are defined—within the paren-

theses of a method declaration. A parameter definition consists of the data type and

a name for the parameter, as shown here in bold (parameters always appear in

parentheses):

Private void MyProcedure(string strMyStringParameter)

After you read about variables in Hour 11, this structure will make much more
sense. Here, I just want you to get the general idea of how to define and use
parameters.

You can define multiple parameters for a procedure by separating them with a

comma, like this:

private void MyProcedure(string strMyStringParameter,
string strMyIntegerParameter)

A calling procedure passes data to the parameters by way of arguments. This is

mostly a semantic issue; when defined in the declaration of a method or event

By the
Way

234 HOUR 10: Creating and Calling Methods

procedure, the item is called a parameter. When the item is part of the statement

that calls the procedure, it’s called an argument. Arguments are passed within paren-

theses—the same way parameters are defined. If a procedure has multiple argu-

ments, you separate them with commas. For example, you could pass values to the

procedure just defined using a statement such as this:

MyProcedure(“This is a string”, 11);

The parameter acts like an ordinary variable within the procedure. Remember, vari-

ables are storage entities whose values can be changed. In the statement shown pre-

viously, you sent literal values to the procedure. You could have also sent the values

of variables like this:

MyProcedure(strAString, intAnInteger);

An important point to note about passing variables in Visual C# is that parameters

are passed by value rather than by reference. When passed by value, the procedure

receives a copy of the data. Changes to the parameter do not affect the value of the

original variable. When passed by reference, on the other hand, the parameter is

actually a pointer to the original variable. Changes made to the parameter within

the procedure propagate to the original variable. To pass a parameter by reference,

you preface the parameter definition with the keyword ref as shown here:

public void MyMethod(ref string strMyStringParameter,
int intMyIntegerParameter)

Parameters defined without ref are passed by value; this is the default behavior of

parameters in Visual C#. Therefore, in the preceding declaration, the first parameter

is passed by reference, whereas the second parameter is passed by value.

You already created a procedure that accepts a parameter. Now take another look:

private void DrawBorder(PictureBox objPicturebox)
{

Graphics objGraphics = null;
objGraphics = this.CreateGraphics();
objGraphics.Clear(SystemColors.Control);
objGraphics.DrawRectangle(Pens.Blue,

objPicturebox.Left - 1, objPicturebox.Top - 1,
objPicturebox.Width + 1, objPicturebox.Height + 1);

objGraphics.Dispose();
}

Follow these steps to hook up the procedure:

1. Display the ViewerForm form in the Form Designer.

2. Double-click the Draw Border button on the toolbar and delete the contents of

the procedure.

Exiting Methods 235

3. Enter the following statement in the Click event:

this.DrawBorder(picShowPicture);

4. Return to the Form Designer once more (you should know how by now), click

the Tools menu on your form, and then double-click the Draw Border item.

5. Replace all the code within the procedure with this statement:

this.DrawBorder(picShowPicture);

You’ve now hooked up your menus and toolstrip. Press F5 to run your program and

try the various menu items and tool buttons (see Figure 10.10). The Confirm on Exit

button still doesn’t work, but you hook that up in the next hour.

FIGURE 10.10
Professional
applications
demand good
procedure
design in addi-
tion to good
interface
design.

Go ahead and stop the running project and save your work.

Exiting Methods
Ordinarily, code within a method executes from beginning to end—literally.

However, when a return statement is reached, execution immediately returns to the

statement that made the method call; you can force execution to leave the method

at any time by using a return statement. If Visual C# encounters a return state-

ment, the method terminates immediately, and code returns to the statement that

called the method.

236 HOUR 10: Creating and Calling Methods

Creating Static Methods
I mentioned earlier in this hour that you can create two types of methods. Instance

methods are methods that belong to objects derived from a class. For example, the

OpenPicture() method you wrote earlier is an instance member; it’s a method that

belongs to an instance of a class—in this case, the form that is derived from the

form class. This is why you had to use this to call the member—

this.OpenPicture();.

In addition to instance members, you can also create static methods. Static methods

are methods that belong to the class as a whole, not to any given object derived

from the class. A good way to use static methods is as basic utility methods that

really don’t apply to a specific object. For example, say you created a method that

performs a complicated mathematical function. If you had a number of different

math functions, you might create a clsMath.cs class and put all the methods in

that class. But this would require that you have to create an object based on the

class before you could call the method. As I’ve mentioned before, creating objects

takes resources and time. A better solution might be to create a general class and

call it something like clsUtility.cs. Then you can create the method as a static

method. To create a static method, you use the static keyword after the scope des-

ignator like this:

public static int ComputeLength(string strText)
{

return strText.Length;
}

With instance members, you have to have an object to be able to call the member.

For example, if the previous method declaration didn’t use the keyword static, you

would have to first instantiate an object from the class and then call the method

using code similar to this (the mechanics of this is discussed in Hour 16):

clsUtility objUtility = new clsUtility();
int intResult;
intResult = objUtility.ComputeLength(“Sams Publishing”);

If you declare the method as a static member, you don’t need to instantiate an

object. You can just call the method by prefacing it with the class name, like this:

int intResult;
intResult = clsUtility.ComputeLength(“Sams Publishing”);

Static members are a great way to expose generic functions that don’t require an

object instance of a class, and you will create them often.

Avoiding Infinite Recursion 237

Avoiding Infinite Recursion
It’s possible to call procedures in such a way that a continuous loop occurs. Consider

the following two procedures:

public static void DoSomething()
{

DoSomethingElse();
}
public static void DoSomethingElse()
{

DoSomething();
}

Calling either of these procedures produces an infinite loop of procedure calls and

results in the error shown in Figure 10.11.

FIGURE 10.11
Infinite recur-
sion results in a
stack overflow
exception
(error).

This endless loop is known as a recursive loop. Without getting too technical, Visual

C# allocates some memory for each procedure call in an area known as the stack.

Only a finite amount of space is available on the stack, so infinite recursion eventu-

ally uses all the available stack space, and an exception occurs. This is a serious

error, and steps should be taken to avoid such recursion.

Legitimate uses exist for recursion, most notably in the use of algorithms such as

those used in calculus or those used to iterate through all the folders on a hard

drive. Deliberate recursion techniques don’t create infinite recursion, however; there

is always a point at which the recursion stops (before the stack is consumed, we

hope). If you have an interest in such algorithms, consider reading a book dedicated

to the subject.

238 HOUR 10: Creating and Calling Methods

Summary
In this hour, you learned how a method is a discrete set of code designed to perform

a task or related set of tasks. Methods are the places where you write Visual C# code.

Some methods might be as short as a single line of code, whereas others are pages

in length. You learned how to define procedures and how to call them; the ability to

create and call procedures is critical to your success in programming with Visual C#.

Be sure to avoid creating recursive procedures! Because you use procedures so often,

they’ll become second nature to you in no time.

Classes are used to group related procedures. In this hour, I focused on using the

form class you’ve been working with all along. In Hour 16, you build on your expe-

rience with classes and work with classes to create new objects, a process that

demands good segregation of discrete methods.

Keep in mind that every method should perform a specific function. Avoid creating
methods that perform many different tasks. For example, suppose that you want
to create a set of code that draws an ellipse on a form. Consider that you also
want to clear the form. If you placed both sets of code in the same method, the
ellipse would be drawn and then immediately erased. By placing each set of code
in its own method, you can draw the ellipse by calling one method and then erase
it at any time by calling the other method. By placing these routines in a new
class rather than attaching them to a specific form class, you also make the
methods available to any form that needs them.

Q&A
Q. Do I need to pay much attention to scope when defining my procedures?

A. You might be tempted to create all your methods as public, but this is bad

coding practice for a number of reasons. For one thing, you’ll find that in larg-

er projects, you have methods with the same name that do slightly different

things. Usually, these routines are relevant only within a limited scope.

However, if you create all public methods, you’ll run into conflicts when you

create a method with the same name in the same scope. If the method isn’t

needed at the public level, don’t define it for public access.

Q. What is a “reasonable” number of classes?

A. This is hard to say. There really is no right answer. Instead of worrying about

an exact count, you should strive to make sure that your classes are logical

and that they contain only appropriate methods and properties.

Did you
Know?

Workshop 239

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into prac-

tice.

Quiz
1. What are the entities called that are used to house methods?

2. True or False: To access methods in a class module, you must first create an

object.

3. Data that has been passed into a method by a calling statement is called a

_____.

4. To pass multiple parameters to a method, separate them with a _____.

5. What do you call the situation in which a method or set of methods continues

to call each other in a looping fashion?

Answers
1. Classes

2. False. If the method is declared as a static member, you do not need to instan-

tiate an object to call the member.

3. Parameter

4. Comma

5. Recursion

Exercises
1. Create a procedure as part of a form that accepts one string and outputs a dif-

ferent string. Add code to the TextChanged event of a text box to call the pro-

cedure, passing the contents of the text box as the argument. Pass back as the

result of the procedure the uppercase version of the string passed into it. (Hint:

Use the ToUpper method of the Text property of the input text box.)

2. Create a single procedure that calls itself. Call this procedure from the Click

event of a button and observe the resulting error.

This page intentionally left blank

HOUR 11

Using Constants, Data Types,
Variables, and Arrays

What You’ll Learn in This Hour:
. Understanding data types
. Determining data type
. Converting data to different data types
. Defining and using constants
. Declaring and referencing variables
. Working with arrays
. Determining scope
. Declaring static variables
. Using a naming convention

As you write your Visual C# procedures, you regularly need to store and retrieve various

pieces of information. As a matter of fact, I can’t think of a single application I’ve written

that didn’t need to store and retrieve data in code. You might want to keep track of how

many times a procedure has been called, for example, or store a property value and use it

later. Such data can be stored as constants, variables, or arrays. Constants are named val-

ues that you define at design time. Constants cannot be changed after that, but they can

be referenced as often as needed. Variables, on the other hand, are like storage bins; you

can retrieve or replace the data in a variable as often as you need to. Arrays act like

grouped variables, enabling you to store many values in a single array variable.

Whenever you define one of these storage entities, you have to decide what type of data it

will contain. For example, will the new variable hold a string value (text) or a number? If

it will hold a number, is the number a whole number, an integer, or something else entire-

ly? After you determine the type of data to store, you must choose the level of visibility

242 HOUR 11: Using Constants, Data Types, Variables, and Arrays

that the data has to other procedures within the project (this visibility is known as

scope). In this hour, you learn the ins and outs of Visual C# 2008’s data types. You

also learn how to create and use these storage mechanisms and how to minimize

problems in your code by reducing scope.

In this hour, you build on the Picture Viewer project from Hour 10, “Creating and
Calling Methods.” Here, you start the process for hooking up the features for
which you created controls on your Options form.

Understanding Data Types
Every programming language has a compiler. The compiler is the part of the Visual

Studio .NET Framework that interprets the code you write into a language the com-

puter can understand. The compiler must understand the type of data you’re

manipulating in code. For example, if you asked the compiler to add the following

values, it would get confused:

“Fender Strat” + 63

When the compiler gets confused, either it refuses to compile the code (which is the

preferred situation because you can address the problem before your users run the

application), or it halts execution and displays an exception (error) when it reaches

the confusing line of code. (These two types of errors are discussed in detail in Hour

15, “Debugging Your Code.”) Obviously, you can’t add the words “Fender Strat” to

the number 63 because these two values are different types of data. In Visual C#,

these two values are said to have two different data types. In Visual C#, constants,

variables, and arrays must always be defined to hold a specific type of information.

Determining Data Type
Data typing—the act of defining a constant, variable, or array’s data type—can be

confusing. To Visual C#, a number is not simply a number. A number that contains

a decimal value is different from a number that doesn’t. Visual C# can perform

arithmetic on numbers of different data types, but you can’t store data of one type

in a variable with an incompatible type. Because of this limitation, you must give

careful consideration to the type of data you plan to store in a constant, variable, or

array at the time you define it. Table 11.1 lists the Visual C# data types and the

range of values each one can contain.

By the
Way

Understanding Data Types 243

Visual C# supports two categories of data types: value types and reference types.
The main difference between these two types is how their values are stored in
memory. As you continue to create more complex applications, this difference may
have an impact on your programming. For this book, however, this distinction is
minimal.

TABLE 11.1 The Visual C# Data Types

Data Type—Value Value Range

bool True or False.

byte 0 to 255 (unsigned).

char A single Unicode character.

DateTime 0:00:00 (midnight) on January 1, 0001, through 11:59:59
p.m. on December 31, 9999.

decimal +/–7.9228162514264337593543950335 with 28 places
to the right of the decimal. Use this data type for currency
values.

double –1.79769313486231570E+308 through
1.79769313486231570E+308.

int –2, 147,483,648 to 2,147,483,647 (signed). This is the
same as the data type Int32.

long –9, 223,372,036,854,775,808 to
9,223,372,036,854,775,807 (signed). This is the same as
data type Int64.

sbyte –128 through 127 (signed).

short –32,768 to 32,767 (signed). This is the same as data type
Int16.

float –3.4028235e38 through 3.4028235e+8.

uint 0 through 4,294,967,295 (unsigned).

ulong 0 through 18,446,744,073,709,551,615 (1.8...E+19)
(unsigned).

ushort 0 through 65,535 (unsigned).

string 0 to approximately 2 billion Unicode characters.

Object Any type can be stored in a variable.

Visual C# supports unsigned data types for short, int, and long (the types prefaced

with u, such as uint). Because negative numbers are excluded (there is no sign), this

has the effect of doubling the positive values for a short, an int, or a long. Signed

By the
Way

244 HOUR 11: Using Constants, Data Types, Variables, and Arrays

data types are preferable and should be used unless you have a very good reason for

doing otherwise (such as declaring a variable that will never hold a negative value).

Tips for Determining Data Type
The list of data types might seem daunting at first, but you can follow some gener-
al guidelines for choosing among them. As you become more familiar with the dif-
ferent types, you can fine-tune your data type selection.

Following are some helpful guidelines for using data types:
. If you want to store text, use the string data type. The string data type can

be used to store any valid keyboard character, including numbers and nonal-
phabetic characters.

. To store only the value true or false, use the bool data type.

. If you want to store a number that doesn’t contain decimal places and is
greater than –32,768 and smaller than 32,767, use the short data type.

. To store numbers without decimal places, but with values larger or smaller
than short allows, use the int or long (an abbreviation for “long integer”)
data types.

. If you need to store numbers that contain decimal places, use the float
data type. The float data type should work for almost all values containing
decimals, unless you’re writing incredibly complex mathematical applications
or need to store very large numbers. In that case, use a double.

. To store currency amounts, use the decimal data type.

. If you need to store a date and/or a time value, use the DateTime data type.
When you use the DateTime data type, Visual C# recognizes common date
and time formats. For example, if you store the value 7/22/2008, Visual C#
doesn’t treat it as a simple text string; it knows that the text represents July
22, 2008.

. Different data types use different amounts of memory. To preserve system
resources, it’s best to use the data type that consumes the least amount of
memory and still provides the ability to store the full range of possible val-
ues. For example, if you’re storing only the numbers from 1 to 10, use an int
instead of a long.

The Object data type requires special attention. If you define a variable or array
as an Object data type, you can store just about any value you care to in it;
Visual C# determines what data type to use when you set the variable’s value.

Using Object data types has several drawbacks. First, Object data types take up
more memory than the other data types. In addition, Visual C# takes a little
longer to perform calculations on Object data types. Unless you have a specific
reason to do so—and there are valid reasons, such as when you don’t know the
type of data to be stored ahead of time—don’t use the Object data type. Instead,
become familiar with the explicit data types and use them appropriately.

By the
Way

Understanding Data Types 245

Casting Data from One Data Type to Another
Under most circumstances, Visual C# doesn’t allow you to move data of one type

into a variable of another type. The process of changing a value’s data type is

known as casting. Visual C# supports two types of casting: implicit and explicit.

Implicit conversions are done automatically by the compiler. These conversions guar-

antee that no data is lost in the conversion. For instance, you can set the value of a

variable declared as double to the value of a variable declared as float without an

explicit cast because there is no risk of losing data; the double data type holds a

more precise value than does a float, and this type of cast is called a widening cast.

Explicit casting is required when a potential exists for data loss or when converting a

larger data type into a smaller data type (a narrowing cast). If you tried to place a

value in a variable when the value was higher than the variable’s supported data

type, some data would be lost. Therefore, Visual C# requires that these types of con-

versions be explicitly written using the cast operator.

Table 11.2 lists some of the type conversions that can be done implicitly with no loss

of information.

TABLE 11.2 Safe Conversions

Type Can Be Safely Converted To

byte short, int, long, float, double, or decimal

short int, long, float, double, or decimal

int long, float, double, or decimal

long float, double, or decimal

float double

double decimal

To explicitly convert data from one type to another, you use one of the methods of

the Convert class. Table 11.3 lists these methods. The use of these methods is rela-

tively straightforward: Pass the data to be cast as the parameter, and the method

returns the value with the return type. For example, to place the value of a variable

declared as int into a variable declared as double, you could use a statement such

as the following:

dblVariable = Convert.ToDouble(intVariable);

246 HOUR 11: Using Constants, Data Types, Variables, and Arrays

TABLE 11.3 Some Common Type Conversion Methods of the Convert
Class

Function Converts To

ToBoolean(expression) bool

ToByte(expression) byte

ToChar(expression) char

ToDateTime(expression) DateTime

ToDecimal(expression) decimal

ToDouble(expression) double

ToInt16(expression) 16-bit signed integer

ToInt32(expression) integer

ToInt64(expression) long

ToSByte(expression) sbyte

ToSingle(expression) Single

ToString(expression) string

ToUInt16(expression) 16-bit unsigned integer

ToUInt32(expression) 32-bit unsigned integer

ToUInt64(expression) 64-bit unsigned integer

Defining and Using Constants
When you hard-code numbers in your procedures (such as in intVotingAge = 18),

a myriad of things can go wrong. Hard-coded numbers often are called magic num-

bers because they’re usually shrouded in mystery. The meaning of such a number is

obscure because the digits themselves don’t indicate what the number represents.

Constants are used to eliminate the problems of magic numbers.

You define a constant as having a specific value at design time, and that value

never changes throughout the life of your program. Constants offer the following

benefits:

. They eliminate or reduce data entry problems—It’s much easier to remember

to use a constant named c_pi than it is to enter 3.14159265358979 every-

where that pi is needed. The compiler catches misspelled or undeclared con-

stants (it can tell when a constant you’ve entered doesn’t match a constant

declaration), but it doesn’t care one bit what you enter as a literal value.

. Code is easier to update—If you hard-coded a mortgage interest rate at

6.785, and the rate changed to 7.00, you would have to change every

Defining and Using Constants 247

occurrence of 6.785 in code. In addition to the possibility of data entry prob-

lems, you would run the risk of changing a value of 6.785 that had nothing to

do with the interest rate—perhaps a value that represented a savings bond

yield (okay, a very high savings bond yield). With a constant, you change the

value once at the constant declaration, and all code that references the con-

stant uses the new value right away.

. Code is easier to read—Magic numbers are often anything but intuitive. Well-

named constants, on the other hand, add clarity to code. For example, which

of the following statements makes more sense to you?

decInterestAmount = ((decLoanAmount * 0.075M) * 12);

or

decInterestAmount = ((decLoanAmount * c_fltInterestRate) *
c_intMonthsInTerm);

Constant definitions have the following syntax:

const datatype name = value;

To define a constant to hold the value of pi, for example, you could use a statement

such as this:

const double c_pi = 3.14159265358979;

Note how I prefix the constant name with c_. I do this so that it’s easier to deter-

mine what’s a variable and what’s a constant when reading code. See the “Naming

Conventions” section later in this hour for more information.

After a constant is defined, you can use its name in code in place of its value. For

example, to output the result of 2 times the value of pi, you could use a statement

like this (the * character is used for multiplication and is covered in Hour 12,

“Performing Arithmetic, String Manipulation, and Date/Time Adjustments”):

Console.WriteLine(c_pi * 2);

Using the constant is much easier and less prone to error than typing this:

Console.WriteLine(3.14159265358979 * 2);

Constants can be referenced only in the scope in which they are defined. I discuss

scope in the section “Determining Scope” later in this hour.

You use what you learn in this hour to enable the options controls that you added

in Hour 7, “Working with Traditional Controls.” The first thing you’re going to do is

use constants to create default values for the options. Recall from Hour 7 that you

248 HOUR 11: Using Constants, Data Types, Variables, and Arrays

created an option form that allowed the user to manipulate the following three

options:

. The user’s name—This is displayed on the Options form only.

. Prompt to confirm on exit—This is used to determine whether users are

asked if they really want to shut down the Picture Viewer application.

. The default background color of the picture box—This can be set to gray

(the default) or white.

In the following steps, you create a constant for the default value of the Prompt on

Exit option. Start by opening the Picture Viewer project from Hour 10 and then fol-

low these steps:

1. Click ViewerForm.cs in the Solution Explorer to select it.

2. Click the View Code button at the top of the Solution Explorer to view the code

behind ViewerForm.cs.

3. The constants you are about to create will be class-level constants. That is,

they can be used anywhere within the class in which they are declared. This

means that they will not be placed in a specific procedure. The place to put

module constants is right after the declaration of the class (public partial

class classname). Position the cursor on the line following the opening

brace of the class declaration (see Figure 11.1), press Enter to create a new

line, and then enter the following constant declaration:

const bool c_defPromptOnExit = false;

FIGURE 11.1
Create your
class-level con-
stants below
this brace.

Declaring and Referencing Variables 249

In the next section, you learn how to use this constant to set the value of a

variable.

Declaring and Referencing Variables
Variables are similar to constants in that when you reference a variable’s name in

code, Visual C# substitutes the variable’s value in place of the variable name during

code execution. This doesn’t happen at compile time, though, as it does with con-

stants. Instead, it happens at runtime—the moment the variable is referenced. The

reason is that variables, unlike constants, can have their values changed at any

time.

Declaring Variables
The act of defining a variable is called declaring. (Variables with scope other than

local are dimensioned in a slightly different way, as discussed in the section on

scope.) You defined variables in previous hours, so a declaration statement should

look familiar to you:

datatype variablename = initialvalue;

You don’t have to specify an initial value for a variable, although being able to do

so in the declaration statement is useful. To create a new string variable and initialize

it with a value, for example, you could use two statements, such as the following:

string strName;
strName = “Matt Perry”;

However, if you know the initial value of the variable at design time, you can

include it on the declaration statement, like this:

string strName = “Matt Perry”;

Note, however, that supplying an initial value doesn’t make this a constant; it’s still

a variable, and the value of the variable can be changed at any time. This method

of creating an initial value eliminates a code statement and makes the code a bit

easier to read because you don’t have to go looking to see where the variable is

initialized.

It’s important to note that Visual C# is a strongly typed language; therefore, you

must always declare the data type of a variable. In addition, Visual C# requires that

all variables be initialized before they’re used.

Visual C# programmers should note that Visual C# does not default numeric vari-
ables to 0 or strings to empty strings.

By the
Way

250 HOUR 11: Using Constants, Data Types, Variables, and Arrays

For example, the following statements would result in a compiler error in Visual C#:

Use of unassigned local variable fltMyValue.

float fltMyValue;
System.Diagnostics.Debug.WriteLine (fltMyValue + 2);

You can’t use a reserved word to name a constant or a variable. For example, you
couldn’t use the word private or public as a variable name. There is a master
list of reserved words, and you can find it by searching the Help text for public
Keyword. You’ll naturally pick up most of the common ones because you’ll use
them so often. For others, the compiler will tell you when something is a reserved
word. If you use a naming convention for your variables, which consists of giving
the variable names a prefix to denote their type, you greatly reduce the chance of
running into reserved words.

Passing Literal Values to a Variable
The syntax of assigning a literal value (a hard-coded value such as 6 or “guitar”) to

a variable depends on the variable’s data type.

For strings, you must pass the value in quotation marks, like this:

strCollegeName = “Bellevue University”;

There is one caveat when assigning literal values to strings: Visual C# interprets

slashes (\) as being a special type of escape sequence. If you pass a literal string

containing one or more slashes to a variable, you get an error. What you have to do

in such instances is preface the literal with the symbol @, like this:

strFilePath = @”c:\Temp”;

When Visual C# encounters the @ symbol after the equal sign as shown in the pre-

ceding example, it knows not to treat slashes in the string as escape sequences.

To pass a literal value to a char variable, use single quotation marks instead of dou-

ble quotation marks, like this:

chrMyCharacter = ‘j’;

For numeric values, you don’t enclose the value in anything:

intAnswerToEverything = 42;

By the
Way

Working with Arrays 251

Using Variables in Expressions
Variables can be used anywhere an expression is expected. The arithmetic functions,

for example, operate on expressions. You could add two literal numbers and store

the result in a variable like this:

intMyVariable = 2 + 5;

In addition, you could replace either or both literal numbers with numeric variables

or constants, as shown here:

intMyVariable = intFirstValue + 5;

intMyVariable = 2 + intSecondValue;

intMyVariable = intFirstValue + intSecondValue;

Variables are a fantastic way to store values during code execution, and you’ll use

variables all the time—from performing decisions and creating loops to using them

as a temporary place to stick a value. Remember to use a constant when you know

the value at design time and the value won’t change. When you don’t know the

value ahead of time or the value might change, use a variable with a data type

appropriate to the variable’s function.

In Visual C# 2008, variables are created as objects. Feel free to create a variable
and explore its members (that is, the properties and methods). You do this by
entering the variable name and then a period (this works only after you’ve entered
the statement that declares the variable). For example, to determine the length of
the text within a string variable, you can use the Length property of a string vari-
able like this:
strMyVariable.Length

There are some powerful features dangling off the data type objects.

Working with Arrays
An array is a special type of variable; it’s a variable with multiple dimensions. Think

of an ordinary variable as a single mail slot. You can retrieve or change the contents

of the mail slot by referencing the variable. An array is like having an entire row of

mail slots (called elements). You can retrieve and set the contents of any of the indi-

vidual mail slots at any time by referencing the single array variable. You do this by

using an index that points to the appropriate slot.

Did you
Know?

252 HOUR 11: Using Constants, Data Types, Variables, and Arrays

Declaring Arrays
Arrays are declared in much the same way as ordinary variables, with one notable

exception. Consider the following statements:

string[] strMyArray;
strMyArray = new string[10];

The first statement declares strMyArray as an array (as denoted by the square

brackets), and the second statement defines the array as holding 10 string elements.

The number in brackets determines how many “mail slots” the array variable will

contain, and it can be a literal value, a constant, or the value of another variable.

It’s possible to create arrays that can be resized at runtime. However, this topic is
beyond the scope of this book.

Referencing Array Variables
To place a value in an array index, you specify the index number when referencing

the variable. Most computer operations consider 0 to be the first value in a series,

not 1, as you might expect. This is how array indexing behaves. For example, for an

array dimensioned with 10 elements—declared using [9]—you would reference the

elements sequentially using the indexes 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Notice that the upper index is the number specified when the array was declared.
Because 0 is a valid element, you end up with 1 more than the number you used
to declare the array. This can be confusing. To simplify your development, you
might consider just ignoring element 0 and using elements 1 through the declared
upper value.

To place a value in the first element of the array variable, you would use 0 as the

index, like this:

strMyArray[0] = “This value goes in the first element”;

To set the value of the second element, you could use a statement like this:

strMyArray[1] = strMyArray[0];

The data type specified for the array variable is used for all the elements in the
array. You can use the Object type to hold any type of data in any element, but
doing so isn’t recommended for all the reasons discussed earlier.

By the
Way

By the
Way

By the
Way

Working with Arrays 253

Creating Multidimensional Arrays
Array variables require only one declaration, yet they can store numerous pieces of

data; this makes them perfect for storing sets of related information. The array

example shown previously is a single-dimension array. Arrays can be much more

complex than this example and can have multiple dimensions of data. For exam-

ple, a single array variable could be defined to store personal information for differ-

ent people. Multidimensional arrays are declared with multiple parameters such as

the following:

int[,] intMeasurements;
intMeasurements = new int[3,2];

These statements create a two-dimensional array. The first dimension (defined as

having three elements: 0, 1, 2) serves as an index to the second dimension (defined

as having two elements). Suppose that you wanted to store the height and weight of

three people in this array. You reference the array as you would a single-dimension

array, but you include the extra parameter index. The two indexes together specify

an element, much like coordinates in the game Battleship relate to specific spots on

the game board. Figure 11.2 illustrates how the elements are related.

Single Dimension Array

Single Dimension

0 1 2 3 4 5 6 7

Two Dimensional Array

First Dimension

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

S
econd D

im
ension

FIGURE 11.2
Two-dimensional
arrays are like a
wall of mail
slots.

Elements are grouped according to the first index specified; think of the first set of

indexes as being a single-dimension array. For example, to store the height and

254 HOUR 11: Using Constants, Data Types, Variables, and Arrays

weight of a person in the array’s first dimension (remember, arrays are zero-based),

you could use code such as the following:

intMeasurements[0,0] = FirstPersonsHeight;
intMeasurements[0,1] = FirstPersonsWeight;

I find it helpful to create constants for the array elements, which makes array refer-

ences much easier to understand. Consider this:

const int c_Height = 0;
const int c_Weight = 1;
intMeasurements[0,c_Height] = FirstPersonsHeight;
intMeasurements[0,c_Weight] = FirstPersonsWeight;

You could then store the height and weight of the second and third person like this:

intMeasurements[1,c_Height] = SecondPersonsHeight;
intMeasurements[1,c_Weight] = SecondPersonsWeight;
intMeasurements[2,c_Height] = ThirdPersonsHeight;
intMeasurements[2,c_Weight] = ThirdPersonsWeight;

In this array, I’ve used the first dimension to differentiate people. I’ve used the sec-

ond dimension to store a height and weight for each element in the first dimension.

Because I’ve consistently stored heights in the first slot of the array’s second dimen-

sion and weights in the second slot of the array’s second dimension, it becomes easy

to work with these pieces of data. For example, you can retrieve the height and

weight of a single person as long as you know the first dimension index used to

store the data. You could print the total weight of all three people using the follow-

ing code:

Console.WriteLine(intMeasurements[0,c_Weight] + intMeasurements[1,c_Weight] +
intMeasurements[2,c_Weight]);

When working with arrays, keep the following points in mind:

. The first element in any dimension of an array has an index of 0.

. Dimension an array to hold only as much data as you intend to put in it.

. Dimension an array with a data type appropriate to the values to be placed in

the array’s elements.

Arrays are a great way to store and work with related sets of data in Visual C# code.

Arrays can make working with larger sets of data much simpler and more efficient

than using other methods. To maximize your effectiveness with arrays, study the

for loop discussed in Hour 14, “Looping for Efficiency.” Using a for loop, you can

quickly iterate (loop sequentially) through all the elements in an array.

Determining Scope 255

This section discussed the rectangular type of a Visual C# multidimensional array.
Visual C# also supports another type of multidimensional array called jagged.
Jagged arrays are arrays of one-dimensional arrays, each of which can be of differ-
ent lengths. However, teaching jagged arrays is beyond the scope of this book.

Determining Scope
Constants, variables, and arrays are useful ways to store and retrieve data in Visual

C# code. Hardly a program is written that doesn’t use at least one of these elements.

If you want to use them properly, however, it’s critical that you understand scope.

You had your first encounter with scope in Hour 10, with the keywords private and

public. You learned that code is written in procedures and that procedures are

stored in modules. Scope refers to the level at which a constant, variable, array, or

procedure can be “seen” in code. For a constant or variable, scope can be one of the

following:

. Block level

. Method level (local)

. Private

Scope has the same effect on array variables as it does on ordinary variables. For
the sake of clarity, I reference variables in this discussion on scope, but you
should understand that what I discuss applies equally to arrays (and constants,
for that matter).

Understanding Block Scope
In block scope, also called structure scope, a variable is declared within a structure,

such as a loop or condition.

Structures are coding constructs that consist of two statements as opposed to one. For

example, the standard do structure is used to create a loop; it looks like this:

Do
{

<statements to execute in the loop
}
while(i <10)

By the
Way

By the
Way

256 HOUR 11: Using Constants, Data Types, Variables, and Arrays

Visual C# uses the word structure to mean a user-defined type. However, when
you’re talking about code, structure is also used to mean a block of code that has
a beginning and an end. For the purpose of this discussion, it is this code block I
am referring to.

Another example is the for loop, which looks like this:

for (int i = 1; i<10;i++)
{

<statements to execute when expression is True>
}

If a variable is declared within a structure, the variable’s scope is confined to that

structure; the variable isn’t created until the declaration statement occurs, and it’s

destroyed when the structure completes. If a variable is needed only within a struc-

ture, think about declaring it within the structure to give it block scope. Consider the

following example:

if (blnCreateLoop)
{

int intCounter ;

for (intCounter=1; intCounter<=100; intCounter++)
{

// Do something
}

}

By placing the variable declaration statement within the if structure, you ensure

that the variable is created only if it is needed. In fact, you can create a block simply

by enclosing statements in opening and closing braces like this:

{
int intMyVariable = 10;
Console.WriteLine(intMyVariable);

}

The various structures, including looping and decision-making structures, are dis-
cussed in later hours.

Understanding Method-Level (Local) Scope
When you declare a constant or variable within a method, that constant or variable

has procedure-level or local scope. Most of the variables you’ll create will have method

scope. In fact, almost all the variables you’ve created in previous hours have had

method-level scope. You can reference a local constant or variable within the same

By the
Way

By the
Way

Determining Scope 257

method, but it isn’t visible to other methods. If you try to reference a local constant

or variable from a method other than the one in which it’s defined, Visual C#

returns a compile error to the method making the reference (the variable or con-

stant doesn’t exist). It’s generally considered best practice to declare all your local

variables at the top of a method, but Visual C# doesn’t care where you place decla-

ration statements within a method. Note, however, that if you place a declaration

statement within a structure, the corresponding variable has block scope, not local

scope.

Understanding Private-Level Scope
When a constant or variable has private-level scope, it can be viewed by all meth-

ods within the class containing the declaration. To methods in all other classes,

however, the constant or variable doesn’t exist. To create a constant or variable with

private-level scope, you place the declaration within a class but not within a

method. Class member declarations are generally made at the beginning of the

class (right after the opening brace of the class). Use private-level scope when many

methods must share the same variable and when passing the value as a parameter

is not a workable solution.

For all modules other than those used to generate forms, you can easily add code to

the declarations section; simply add the declaration statements just after the class

declaration line and prior to any method definitions, as shown in Figure 11.3.

FIGURE 11.3
The declara-
tions section
exists above all
declared
methods.

258 HOUR 11: Using Constants, Data Types, Variables, and Arrays

In general, the smaller (more limited) the scope, the better. When possible, make
your variables block or local variables. If you have to increase scope, attempt to
make the variable a private-level variable. You should use public variables only
when absolutely necessary. The higher the scope, the more the possibilities exist
for problems, and the more difficult it is to debug those problems.

Naming Conventions
To make code more self-documenting (always an important goal) and to reduce the

chance of programming errors, you need an easy way to determine the exact data

type of a variable or the exact type of a referenced control in Visual C# code.

Using Prefixes to Denote Data Type
Table 11.4 lists the prefixes of the common data types. Although you don’t have to

use prefixes, there are many advantages to be gained by doing so.

TABLE 11.4 Prefixes for Common Data Types

Data Type Prefix Sample Value

bool bln blnLoggedIn

byte byt bytAge

char chr chrQuantity

decimal dec decSalary

double dbl dblCalculatedResult

float flt fltInterestRate

int int intLoopCounter

long lng lngCustomerID

object obj objWord

short sho shoTotalParts

string str strFirstName

The prefix obj should be reserved for times when a specific prefix isn’t available.
You most commonly use this prefix when referencing automation libraries of other
applications.

Did you
Know?

By the
Way

Using Variables in Your Picture Viewer Project 259

You can hover the pointer over any variable in code, and a ToolTip shows you the
variable’s declaration.

Denoting Scope Using Variable Prefixes
Prefixes are useful not only to denote data types, but also to denote scope (see Table

11.5). In particularly large applications, a scope designator is almost a necessity.

Again, Visual C# doesn’t care whether you use prefixes, but consistently using pre-

fixes benefits you as well as others who have to review your code.

TABLE 11.5 Prefixes for Variable Scope

Prefix Description Example

g Global g_strSavePath

m Private to class m_blnDataChanged

(no prefix) Nonstatic variable, local to method fltInterestRate

Prefixes aren’t just for variables. All standard objects (including forms and controls)

can use a three-character prefix. There are simply too many controls and objects to

list all the prefixes here, although you’ll find that I use control prefixes throughout

this book. If you’re interested in learning more about naming conventions and cod-

ing standards in general, I recommend that you take a look at my book Practical

Standards for Microsoft Visual Basic.NET, Second Edition (Microsoft Press, 2002).

Using Variables in Your Picture Viewer
Project
You already added a module-level constant to your Picture Viewer project earlier in

this hour. In this section, you create variables to hold the values for the controls on

your Options form. In Hour 16, “Designing Objects Using Classes,” you complete

hooking up the options for your project.

Creating the Variables for the Options
In past hours, you defined three options for your Picture Viewer project. Let’s consid-

er each one now:

. User Name—This is the place where the users can enter their name. Think for

a moment about the type of data that will be stored for this option. If you said

string (which is text), you’re correct.

Did you
Know?

260 HOUR 11: Using Constants, Data Types, Variables, and Arrays

. Prompt to confirm on exit—This option has two possible values, true and

false, so you need to use a bool value to store this option.

. Default picture background color—This is actually a special case. I told you

about the common data types, but in addition to those, there are dozens of

other different data types, one of which is Color. Here, you use a variable of

the data type Color to store the user’s background color preference.

Follow these steps to create the variables:

1. Display the code for the ViewerForm.cs form (not the OptionsForm.cs form).

2. Locate the declarations section of the form’s module; it’s where you created the

constant c_defPromptOnExit.

3. Enter the following three variable declarations beginning on the line following

the constant definition:

string m_strUserName = “”;
bool m_blnPromptOnExit = c_defPromptOnExit;
Color m_objPictureBackColor;

Your code should look like Figure 11.4.

FIGURE 11.4
Class variables
go in the decla-
rations section,
before code
procedures.

Using Variables in Your Picture Viewer Project 261

Initializing and Using the Options Variables
Now that the variables have been created, you need to initialize them. Actually, you

initialized them when you declared them, but you will need to change their values

when your project starts up, so you’re going to add code that will allow you to do

that now by following these steps:

1. The best place to set up a form is usually in the form’s Load event. Start by

double-clicking ViewerForm.cs in the Solution Explorer to display the form in

the Form Designer and then double-click somewhere on the form (be sure not

to double-click a control).

2. Your load event already has two lines of code in it: the two statements you

entered to set the value of the X and Y labels. Add the following two state-

ments below the existing code:

m_blnPromptOnExit = c_defPromptOnExit;
m_objPictureBackColor = System.Drawing.SystemColors.Control;

The first statement simply sets the module variable that stores the user’s

Prompt on Exit setting to the value of the constant you created earlier. I set up

the example this way so that you can see how constants and variables work

together. If you wanted to change the default behavior of the Close on Exit

option, all you would have to do is change the value of the constant in the

declarations section.

The second statement sets the default back color to the default system color for

controls. I already explained how this works, so I don’t go into detail here.

Notice that I did not create an initialization statement for the module-level

variable m_strUserName. The reason is that I already initialized the string

when I declared it. I did this so you can see there are multiple approaches to

solving a problem.

3. So far, you’ve created variables for the options and initialized them in code.

However, the option values aren’t actually used in the project yet. The Prompt

on Exit option will be checked when the user closes the form, but the back

color of the picture box needs to be set before the form appears. Enter the fol-

lowing statement right below the two you just created:

picShowPicture.BackColor = m_objPictureBackColor;

Okay, all that’s left to do in this hour is to hook up the Prompt on Exit func-

tion. This takes just a tad more work because you created a menu item that

keeps track of whether the Prompt on Exit option is chosen. The first thing

you’re going to do is make sure that the menu item is in sync with the

262 HOUR 11: Using Constants, Data Types, Variables, and Arrays

variable; you don’t want the menu item checked if the variable is set to false

because this would give the opposite response from what the user expects.

Continue with these steps to hook up the Prompt on Exit variable.

4. Add this statement to your Form_Load event, right below the statement you

just entered to set the picture box’s back color. This statement ensures that

when the form loads, the checked state of the menu item matches the state of

the variable. Because you initialized the Boolean variable m_blnPromptOnExit

to false, the menu item appears unchecked.

mnuConfirmOnExit.Checked = m_blnPromptOnExit;

5. You already created a procedure for the menu item so that it physically

changes its Checked state when the user clicks it. You can scroll down the code

window and locate the procedure mnuConfirmOnExit_Click, or you can

switch to design view and double-click the menu item. Remember, there are

usually multiple ways to approach a problem in Visual C#! After you’ve found

the procedure, add this statement below the existing code:

m_blnPromptOnExit = mnuConfirmOnExit.Checked;

Did you notice that this statement is the exact opposite of the statement you

entered in step 4? You’ve just told Visual C# to set the value of the variable to

the checked state of the menu item, after the checked state has been updated

in the Click event.

6. Now that the variable will stay in sync with the menu item, you need to hook

up the actual Prompt on Exit code. Double-click ViewerForm.cs in the

Solution Explorer to view the Form Designer and then click the Events button

(the button with the lightning bolt on it) on the Properties window. Next,

locate the FormClosing event and double-click it. This creates a new event

handler for the FormClosing event. Enter the following code exactly as it

appears here:

if (m_blnPromptOnExit)
{

if (MessageBox.Show(“Close the Picture Viewer program?”, “Confirm Exit”,
MessageBoxButtons.YesNo, MessageBoxIcon.Question)
== DialogResult.No)

{
e.Cancel = true;

}
}

I’ve already mentioned the MessageBox() function (and I explain it in detail in

Hour 17, “Interacting with Users”). All that you need to understand here is that

when the user closes the Picture Viewer and the variable m_blnPromptOnExit is

Summary 263

true, the MessageBox.Show() function asks users whether they really want to quit.

If a user chooses No, the e.Cancel property is set to true, which cancels the form

from closing (you can read more about the e object for the FormClosing event in

the online help text).

Press F5 to run your project now and give it a try. When you first run the applica-

tion, the variable is false, and the menu item appears unchecked. If you click the

Close button in the upper-right corner of the form, the Picture Viewer closes. Run the

project again, but this time click the Confirm on Exit menu item to check it before

you close the form. This time, when you close the form, you are asked to confirm

(see Figure 11.5).

FIGURE 11.5
It’s nice to give
the users con-
trol over their
experience!

Summary
In this hour, you learned how to eliminate magic numbers by creating constants. By

using constants in place of literal values, you increase code readability, reduce the

possibilities of coding errors, and make it much easier to change a value in the

future.

In addition, you learned how to create variables for data elements in which the ini-

tial value isn’t known at design time, or for elements whose values will be changed

at runtime. You learned how arrays add dimensions to variables and how to declare

and reference them in your code.

Visual C# enforces strict data typing, and in this hour you learned about the vari-

ous data types and how they’re used, as well as tips for choosing data types and

functions for converting data from one type to another. Finally, you learned about

scope—an important programming concept—and how to manage scope within

your projects.

Writing code that can be clearly understood by those who didn’t write it is a worth-

while goal. Naming prefixes go a long way toward accomplishing this goal. In this

hour, you learned the naming prefixes for the common data types, and you learned

to use prefixes to denote scope.

264 HOUR 11: Using Constants, Data Types, Variables, and Arrays

In the end, you utilized all these concepts and created a constant and some vari-

ables to handle the options of your Picture Viewer program. You even added code to

make them work! The Options form is still not “hooked up,” but you fix that in

Hour 16.

Q&A
Q. Are any performance tricks related to the many data types?

A. One trick when using whole numbers (values with no decimal places) is to use

the data type that matches your processor. For instance, most current home

and office computers have 32-bit processors. The Visual C# Integer data type is

made up of 32 bits. Believe it or not, Visual C# can process an int variable

faster than it can process a short variable, even though the short variable is

smaller. This has to do with the architecture of the CPU, memory, and bus.

The explanation is complicated, but the result is that you should usually use

int rather than short, even when working with values that don’t require the

larger size of the int.

Q. Are arrays limited to two dimensions?

A. Although I showed only two dimensions (that is, intMeasurements[3,1]),

arrays can have many dimensions, such as intMeasurements[3,3,3,4]. The

technical maximum is 60 dimensions, but you probably won’t use more than

three.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What data type would you use to hold currency values?

2. Which data type can be used to hold any kind of data and essentially serves

as a generic data type?

3. What can you create to eliminate magic numbers by defining a literal value

in one place?

4. What type of data element can you create in code that can have its value

changed as many times as necessary?

Workshop 265

5. What are the first and last indexes of an array dimensioned using

string_strMyArray[5]?

6. What word is given to describe the visibility of a constant or variable?

7. In general, is it best to limit the scope of a variable or to use the widest scope

possible?

Answers
1. The decimal data type.

2. The Object data type.

3. Constants are used to eliminate magic numbers.

4. Variables can have their values changed as often as necessary, within their

scope.

5. The first index is 0, and the last index is 4.

6. Scope describes the visibility of a constant, variable, or procedure.

7. It is best to use the narrowest scope possible.

Exercises
1. Create a project with a text box, button, and label control. When the user

clicks the button, move the contents of the text box to a variable and then

move the contents of the variable to the label’s Text property. (Hint: A String

variable will do the trick.)

2. Rewrite the following code so that a single array variable is used rather than

two standard variables. (Hint: Do not use a multidimensional array.)

string strGameTitleOne;
string strGameTitleTwo;
strGameTitleOne = “Battlfield 2”;
strGameTitleTwo = “The Orange Box”;

This page intentionally left blank

HOUR 12

Performing Arithmetic, String
Manipulation, and Date/Time
Adjustments

What You’ll Learn in This Hour:
. Performing arithmetic
. Understanding the order of operator precedence
. Comparing equalities
. Understanding Boolean logic
. Manipulating strings
. Working with dates and times

Just as arithmetic is a necessary part of everyday life, it’s also vital to developing Windows

programs. You probably won’t write an application that doesn’t add, subtract, multiply, or

divide some numbers. In this hour, you learn how to perform arithmetic in code. You also

learn about order of operator precedence, which determines how Visual C# evaluates com-

plicated expressions (equations). After you understand operator precedence, you learn

how to compare equalities—something that you’ll do all the time.

Boolean logic is the logic Visual C# uses to evaluate expressions in decision-making con-

structs. If you’ve never programmed before, Boolean logic might be a new concept to you.

In this hour, I explain what you need to know about Boolean logic to create efficient code

that performs as expected. Finally, I show you how to manipulate strings and work with

dates and times.

268 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Performing Basic Arithmetic Operations
with Visual C#
You must have solid math skills to be a programmer; you’ll be performing a lot of

basic arithmetic when writing Visual C# applications. To get the results you’re look-

ing for in any given calculation, you must

. Know the mathematical operator that performs the desired arithmetic

function

. Understand and correctly use order of precedence

Using the correct mathematical operator is simple. Most are easy to commit to

memory, and you can always look up the ones you’re not quite sure of. I don’t go

into great detail on any of the math functions here (if you’ve made it this far, I’m

sure you have a working grasp of basic math), but I cover them all.

In Hour 15, “Debugging Your Code”, you learn about the
System.Diagnostics.Debug.WriteLine() method. This method prints text to
the Output window and is used in the examples throughout this hour. You are not
asked to create a project in this chapter, but you may want to try some of these
examples in a test project. Because you are going to use several debug state-
ments, it is helpful to declare the System.Diagnostics namespace in the header
of your class. This permits you to use the methods of the namespace without hav-
ing to qualify the entire namespace. You need to add the following at the begin-
ning of your class (put it with the other using statements created automatically by
Visual C#):
using System.Diagnostics;

Performing Addition
Simple addition is performed using the standard addition symbol, the + character.

The following line prints the sum of 4, 5, and 6:

Debug.WriteLine(4 + 5 + 6);a

You don’t have to use a hard-coded value with arithmetic operators. You can use

any of the arithmetic operators on numeric variables and constants. For example:

const int c_FirstValue = 4;
const int c_SecondValue = 5;
Debug.WriteLine(c_FirstValue + c_SecondValue);

This bit of code prints the sum of the constants c_FirstValue and c_SecondValue,

which is 9.

By the
Way

Performing Basic Arithmetic Operations with Visual C# 269

Performing Subtraction and Negation
You’re also probably familiar with the subtraction operator, like the addition opera-

tor, because it’s the same one you would use on a calculator or when writing an

equation: the – character. The following line of code prints 2 (the total of 6 – 4):

Debug.WriteLine(6 - 4);

As with written math, the – character is also used to denote a negative number. For

example, to print the value –6, you would use a statement such as the following:

Debug.WriteLine(-6);

Performing Multiplication
If you work with adding machines, you already know the multiplication operator:

the * character. You can enter this character by pressing Shift+8 or by pressing the *

key located in the top row of the keypad section of the keyboard. Although you ordi-

narily use a × when writing multiplication equations such as 3 × 2 = 6 on paper, you

receive an error if you try this in code; you have to use the * character. The following

statement prints 20 (5 multiplied by 4):

Debug.WriteLine(5 * 4);

Performing Division
Division is accomplished using the / operator. This operator is easy to remember if

you think of division as fractions. For example, one-eighth is written as 1/8, which

literally means 1 divided by 8. The following statement prints 8 (32 divided by 4):

Debug.WriteLine(32 / 4);

Visual C# overloads the division operator. This means that based on the input argu-

ments, the results may vary. For example, Visual C# division returns an integer

when dividing integers, but it returns a fractional number if a float, double, or

decimal data type is used. Hence, 32 / 5 returns 6, dropping the remainder (2, in

this case). If you wanted to return the actual value of the operation 32 / 5, you

would have to specify the numbers with decimal places (that is, 32.0 / 5.0).

Performing Modulus Arithmetic
Modulus arithmetic is the process of performing division on two numbers but keeping

only the remainder. Modulus arithmetic is performed using the Mod keyword, rather

than the / symbol. The following are examples of Mod statements and the values

they print:

270 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Debug.WriteLine(10 % 5); // Prints 0
Debug.WriteLine(10 % 3); // Prints 1
Debug.WriteLine(12 % 4.3); // Prints 3.4
Debug.WriteLine(13.6 % 5); // Prints 3.6

The first two statements are relatively easy to understand: 5 goes into 10 twice with

no remainder, and 3 goes into 10 three times with a remainder of 1. Visual C#

processes the third statement as 4.3 going into 12 two times with a remainder of 3.4.

In the last statement, Visual C# performs the Mod operation as 5 going into 13.6

twice with a remainder of 3.6.

Determining the Order of Operator Precedence
When several arithmetic operations occur within a single equation (called an expres-

sion), Visual C# has to resolve the expression in pieces. The order in which these

operations are evaluated is known as operator precedence. To fully understand opera-

tor precedence, you have to brush up a bit on your algebra skills (most of the math

you perform in code will be algebraic).

Consider the following expression:

Debug.WriteLine(6 + 4 * 5);

Two arithmetic operations occur in this single expression. To evaluate the expres-

sion, Visual C# has to perform both operations: multiplication and addition. Which

operation gets done first? Does it matter? Absolutely! If Visual C# performs the addi-

tion before the multiplication, you end up with the following:

Step 1: 6 + 4 = 10

Step 2: 10 * 5 = 50

The final result would be Visual C# printing 50. Now look at the same equation with

the multiplication performed before addition:

Step 1: 4 * 5 = 20

Step 2: 20 + 6 = 26

In this case, Visual C# would print 26—a dramatically different number from the

one computed when the addition gets performed first. To prevent these types of

problems, Visual C# always performs arithmetic operations in the same order—the

order of operator precedence. Table 12.1 lists the order of operator precedence for

arithmetic and Boolean operators. (Boolean operators are discussed later in this

hour.) If you’re familiar with algebra, you’ll note that the order of precedence that

Visual C# uses is the same as that used in algebraic formulas.

Performing Basic Arithmetic Operations with Visual C# 271

TABLE 12.1 Visual C# 2008’s Order of Operator Precedence

Category Operators

Multiplicative * / %

Additive + -

Equality == (equal), != (not equal)

Logical AND &

Logical XOR ^

Logical OR |

Conditional AND &&

Conditional OR ||

Conditional ?:

Notice that two equal signs are used to denote equality, not one as you might
expect.

All comparison operators, such as >, <, and = (discussed in the next section), have

equal precedence. When operators have equal precedence, they are evaluated from

left to right. Notice that multiplication and division operators have equal prece-

dence, so an expression that has both these operators would be evaluated from left

to right. The same holds true for addition and subtraction. When expressions con-

tain operators from more than one category (arithmetic, comparison, or logical),

arithmetic operators are evaluated first, comparison operators are evaluated next,

and logical operators are evaluated last.

Just as when writing an equation on paper, you can use parentheses to override the

order of operator precedence. Operations placed within parentheses are always eval-

uated first. Consider the previous example:

Debug.WriteLine(6 * 5 + 4);

Using the order of operator precedence, Visual C# evaluates the equation like this:

Debug.WriteLine((6 * 5) + 4);

The multiplication is performed first and then the addition. If you wanted the addi-

tion performed prior to the multiplication, you could write the statement like this:

Debug.WriteLine(6 * (5 + 4));

By the
Way

272 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

When writing complex expressions, you have to be conscious of the order of oper-
ator precedence and use parentheses to override the default precedence when
necessary. Personally, I try to always use parentheses so that I’m sure of what’s
happening and my code is easier to read.

Comparing Equalities
Comparing values, particularly variables, is even more common than performing

arithmetic (but you need to know how Visual C# arithmetic works before you can

understand the evaluation of equalities).

Comparison operators are most often used in decision-making structures, as

explained in the next hour. Indeed, these operators are best understood using a sim-

ple if decision structure. In an if construct, Visual C# considers the expression in

the if statement, and if the expression equates to true, the code statement(s) are

executed. For example, the following is an if operation (a silly one at that)

expressed in English, not in Visual C# code:

IF DOGS BARK, THEN SMILE.

If this were in Visual C# code format, Visual C# would evaluate the if condition,

which in this case is dogs bark. If the condition is found to be true, the code follow-

ing the expression is performed. Because dogs bark, you’d smile. Notice how these

two things (dogs barking and you smiling) are relatively unrelated. This doesn’t

matter; the point is that if the condition evaluates to true, certain actions (state-

ments) occur.

You’ll often compare the value of one variable to that of another variable or to a

specific value when making decisions. The following are some basic comparisons

and how Visual C# evaluates them:

Debug.WriteLine(6 > 3); // Evaluates to true
Debug.WriteLine(3 == 4); // Evaluates to false
Debug.WriteLine(3 >= 3); // Evaluates to true
Debug.WriteLine(5 <= 4); // Evaluates to false

Performing comparisons is relatively straightforward. If you get stuck writing a par-

ticular comparison, attempt to write it in English before creating it in code.

Understanding Boolean Logic
Boolean logic is a special type of arithmetic/comparison. Boolean logic is used to

evaluate expressions to either true or false. This concept might be new to you, but

By the
Way

Understanding Boolean Logic 273

don’t worry—it isn’t difficult to understand. Boolean logic is performed using a logi-

cal operator. Consider the following sentence:

If black is a color and wood comes from trees then print “ice cream”.

At first glance, this sentence might seem nonsensical. However, Visual C# could

make sense of this statement using Boolean logic. First, notice that three expressions

are actually being evaluated within this single sentence. I’ve added parentheses in

the following sentence to clarify the two most obvious expressions:

If (black is a color) and (wood comes from trees) then print “ice cream”.

Boolean logic evaluates every expression to either true or false. Therefore, substi-

tuting true or false for each of these expressions yields the following:

If (True) and (True) then print “ice cream”.

Now, for the sake of clarity, here’s the same sentence with parentheses placed

around the final expression to be evaluated:

If (True And True) then print “ice cream”.

This is the point where the logical operators come into play. The And (&) operator

returns true if the expressions on each side of the And (&) operator are true (see

Table 12.2 for a complete list of logical operators). In the sentence we’re considering,

the expressions on both sides of the And (&) operator are true, so the expression eval-

uates to true. Replacing the expression with true yields the following:

If True then print “ice cream”.

This would result in the words ice cream being printed. If the expression had evaluat-

ed to false, nothing would print. As you see in Hour 13, “Making Decisions in

Visual C# Code,” the decision constructs always evaluate their expressions to either

true or false, executing statements according to the results.

TABLE 12.2 Logical (Boolean) Operators

Operator Description

And (&&) Evaluates to true when the expressions on both sides are true.

Not (!) Evaluates to true when its expression evaluates to false; otherwise,
it returns false (the true/false value of the expression is negated,
or reversed).

Or (||) Evaluates to true if an expression on either side evaluates to true.

Xor (^) Evaluates to true if one, and only one, expression on either side eval-
uates to true.

274 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Using the And (&) Operator
The And (&) operator enables you to perform a logical conjunction. If the expressions

on both sides of the And (&) operator evaluate to true, the And (&) operation evalu-

ates to true. If either expression is false, the And (&) operation evaluates to false,

as illustrated in the following examples:

Debug.WriteLine(true & true); // Prints true
Debug.WriteLine(true & false); // Prints false
Debug.WriteLine(false & true); // Prints false
Debug.WriteLine(false & false); // Prints false
Debug.WriteLine((32 > 4) & (6 == 6)); // Prints true

Using the Not (!) Operator
The Not (!) operator performs a logical negation. That is, it returns the opposite of

the expression. Consider the following examples:

Debug.WriteLine(! (true)); // Prints false
Debug.WriteLine(! (false)); // Prints true
Debug.WriteLine(! (5 == 5)); // Prints false
Debug.WriteLine(!(4 < 2)); // Prints true

The first two statements are easy enough; the opposite of true is false and vice

versa. For the third statement, remember that Visual C#’s operator precedence dic-

tates that arithmetic operators are evaluated first (even if no parentheses are used),

so the first step of the evaluation would look like this:

Debug.WriteLine(! (true));

The opposite of true is false, of course, so Visual C# prints false.

The fourth statement would evaluate to

Debug.WriteLine(!(false));

This happens because 4 is not less than 2, which is the expression Visual C# evalu-

ates first. Because the opposite of false is true, this statement would print true.

Using the Or (|) Operator
The Or (|) operator enables you to perform a logical disjunction. If the expression to

the left or right of the Or (|) operator evaluates to true, the Or (|) operation evalu-

ates to true. The following are examples using Or (|) operations and their results:

Debug.WriteLine(true | true); // Prints true
Debug.WriteLine(true | false); // Prints true
Debug.WriteLine(false | true); // Prints true
Debug.WriteLine(false | false); // Prints false
Debug.WriteLine((32 < 4) | (6 == 6)); // Prints true

Understanding Boolean Logic 275

Using the Xor (^) Operator
The Xor (^) operator performs a nifty little function. I personally haven’t had to use

it much, but it’s great for those times when its functionality is required. If one—and

only one—of the expressions on either side of the Xor (^) operator is true, the Xor (^)

operation evaluates to true. Take a close look at the following statements to see

how this works:

Debug.WriteLine(true ^ true); // Prints false
Debug.WriteLine(true ^ false); // Prints true
Debug.WriteLine(false ^ true); // Prints true
Debug.WriteLine(false ^ false); // Prints false
Debug.WriteLine((32 < 4) ^ (6 == 6)); // Prints true

Manipulating Strings
Recall from Hour 11, “Using Constants, Data Types, Variables, and Arrays,” that a

string is text. Visual C# provides many functions for working with strings. Although

string manipulation isn’t technically arithmetic, the things that you do with strings

are similar to things you do with numbers, such as adding two strings together;

string manipulation is much like creating equations. Chances are you’ll be working

with strings a lot in your applications. Visual C# includes a number of functions

that enable you to do things with strings, such as retrieve a portion of string or find

one string within another. In the following sections, you learn the basics of string

manipulation.

Concatenating Strings of Text
Visual C# makes it possible to “add” two strings of text together to form one string.

Although purists may say it’s not truly a form of arithmetic, it’s very much like per-

forming arithmetic on strings, so this hour is the logical place in which to present

this material. The process of adding two strings together is called concatenation.

Concatenation is very common. For example, you may want to concatenate vari-

ables with hard-coded strings to display meaningful messages to the user, such as

Are you sure you wish to delete the user XXX?, where XXX is the contents of

a variable.

To concatenate two strings, you use the + operator as shown in this line of code:

Debug.WriteLine(“This is” + “a test.”);

This statement would print the following:

This isa test.

276 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Notice that there is no space between is and a. You could easily add a space by

including one after is in the first string or before the a in the second string, or you

could concatenate the space as a separate string, like this:

Debug.WriteLine(“This is” + “ “ + “a test.”);

Text placed directly within quotation marks is called a literal. Variables are concate-

nated in the same way as literals and can even be concatenated with literals. The

following code creates two variables, sets the value of the first variable to “Mike”,

and sets the value of the second variable to the result of concatenating the variable

with a space and the literal “Saklar”:

string strFullName;
string strFirstName = “Mike”;
strFullName = strFirstName + “ “ + “Saklar”;

The final result is that the variable strFullName contains the string Mike Saklar.

Get comfortable with concatenating strings of text; you’ll do this often.

Using the Basic String Methods and Properties
Visual C# includes a number of functions that make working with strings of text

considerably easier than it might be otherwise. These functions enable you to easily

retrieve a piece of text from a string, compute the number of characters in a string,

and even determine whether one string contains another. The following is a sum-

mary of the basic string functions.

Determining the Number of Characters Using Length
The Length property of the string object returns the variable’s length. The following

statement prints 26, the total number of characters in the literal string “Pink Floyd

reigns supreme.” Remember, the quotation marks surrounding the string tell

Visual C# that the text within them is a literal; they are not part of the string.

Debug.WriteLine((“Pink Floyd reigns supreme.”).Length); // Prints 26

Retrieving Text from a String Using the Substring() Method
The Substring() method retrieves a part of a string and can be used with the fol-

lowing parameters:

public string Substring(startposition,numberofcharacters);

For example, the following statement prints Queen, the first five characters of the

string:

Debug.WriteLine((“Queen to Queen’s Level Three.”).Substring(0,5));

Understanding Boolean Logic 277

The arguments used in this Substring() example are 0 and 5. The 0 indicates start-

ing at the 0 position of the string (beginning). The 5 indicates the specified length to

return (characters to retrieve).

The Substring() method is commonly used with the IndexOf() method (discussed

shortly) to retrieve the path portion of a variable containing a filename and path

combination, such as c:\Myfile.txt. If you know where the \ character is, you can

use Substring() to get the path.

If the number of characters requested is greater than the number of characters in
the string, an exception (error) occurs. If you’re unsure about the number of char-
acters in the string, use the Length property of the string to find out. (Exception
handling is reviewed in Hour 15.)

Determining Whether One String Contains Another Using the
IndexOf() Method
At times, you need to determine whether one string exists within another. For exam-

ple, suppose you let users enter their full names into a text box, and you want to

separate the first and last names before saving them into individual fields in a data-

base. The easiest way to do this is to look for the space in the string that separates

the first name from the last. You could use a loop to examine each character in the

string until you find the space, but Visual C# includes a string method that does this

for you, faster and easier than you could do it yourself: the IndexOf() method. The

basic IndexOf() method has the following syntax:

MyString.IndexOf(searchstring);

The IndexOf() method of a string searches the string for the occurrence of a string

passed as an argument. If the string is found, the location of the start of the string is

returned (with 0 being the first character, 1 being the second, and so on). If the

search string is not found within the other string, -1 is returned. You can use the

IndexOf() method with the following arguments (actually, there are additional

ways and these are listed in the online help text) :

. public int IndexOf(searchstring);

. public int IndexOf(searchstring, startinglocation);

. public int IndexOf(searchstring, startinglocation,

numberofcharacterstosearch);

By the
Way

278 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

The following code searches a variable containing the text “Monte Sothmann”,

locates the space, and uses the Substring() method and Length property to place

the first and last names in separate variables.

string strFullName = “Monte Sothmann”;
string strFirstName, strLastName;
int intLocation, intLength;

intLength = strFullName.Length;
intLocation = strFullName.IndexOf(“ “);

strFirstName = strFullName.Substring(0, intLocation);
strLastName = strFullName.Substring(intLocation + 1);

This code assumes that a space will be found and that it won’t be the first or last
character in the string. In your applications, your code may need to be more
robust, including checking to ensure that IndexOf() returned a value other than
-1, which would indicate that no space was found.

When this code runs, IndexOf() returns 5, the ordinal position of the first space

found (remember, 0 is the first character, not 1). Notice how I subtracted an addi-

tional character when using SubString() to initialize the strLastName variable;

this was to take the space into account.

Trimming Beginning and Trailing Spaces from a String
As you work with strings, you often encounter situations in which spaces exist at the

beginning or ending of strings. The .NET Framework includes the following four

methods for automatically removing spaces from the beginning or end of a string:

Method Description

String.Trim() Removes spaces from the beginning and end of a

string

String.TrimEnd() Removes spaces from the end of a string

String.TrimStart() Removes spaces from the beginning of a string

String.Remove () Removes a specified number of characters from a

specified index position in a string

Replacing Text Within a String
It’s not uncommon to have to replace a piece of text within a string with some other

text. For example, some people still put two spaces at the end of a sentence, even

though this is no longer necessary because of proportional fonts. You could replace

all double spaces with a single space using a loop and the string manipulation

Did you
Know?

Working with Dates and Times 279

functions discussed so far, but there is an easier way: the Replace() method of the

String class. A basic Replace() method call has the following syntax:

Stringobject.Replace(findtext, replacetext);

The findtext argument enables you to specify the text to look for within the

express (the Stringobject) and the replacetext argument enables you to specify

the text used to replace the findtext. Consider the following code:

string strText = “Give a man a fish”;
strText = strText.Replace(“fish”, “sandwich”);

When this code completes, strText contains the string “Give a man a sandwich”.

The Replace() method is a powerful function that can save many lines of code,

and you should use it in place of a “home-grown” replace function whenever

possible.

Working with Dates and Times
Dates are unique beasts. In some ways, they act like strings, where you can concate-

nate and parse pieces. In other ways, dates seem more like numbers in that you can

add to or subtract from them. You’ll often perform math-type functions on dates

(such as adding a number of days to a date or determining the number of months

between two dates), but you won’t use the typical arithmetic operations. Instead,

you can use functions specifically designed for working with dates.

Understanding the DateTime Data Type
Working with dates is common. No matter the application, you’ll probably need to

create a variable to hold a date using the DateTime data type. You can get a date

into a DateTime variable in several ways. Recall that when setting a string variable

to a literal value, you enclose the literal in quotation marks. When setting a numer-

ic variable to a literal number, you do not enclose the number in quotation marks:

string strMyString = “This is a string literal”;
int intMyInteger = 69;

The more common way to set a DateTime variable to a literal date is to instantiate

the variable passing in the date, like this (year, month, day):

DateTime dteMyBirthday = new DateTime(2008,7,22);

You cannot pass a string directly to a DateTime variable. For instance, if you let the

user enter a date into a text box and you want to move the entry to a DateTime

variable, you have to parse out the string to be able to adhere to one of the allowable

280 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

DateTime constructors. The DateTime data type is one of the more complicated data

types. This chapter exposes you to enough information to help you start, but this is

only the tip of the iceberg. I suggest reviewing the Microsoft Developers Network

(MSDN) documentation of this curious data type for more information.

It’s important to note that DateTime variables store a date and a time—always.

Look at the example in the following code:

DateTime dteMyBirthday = new DateTime(1969,7,22);
Debug.WriteLine(dteMyBirthday.ToString());

It produces this output:

7/22/1969 12:00:00 AM

Notice that this example prints the time 12:00:00 AM, even though no time was

specified for the variable. This is the default time placed in a DateTime variable

when only a date is specified. Although a DateTime variable always holds a date

and time, on occasion, you’ll be concerned only with either the date or time.

Adding to or Subtracting from a Date or Time
To add a specific amount of time (such as one day or three months) to a specific

date or time, you use methods of the DateTime class. Table 12.3 lists the methods as

described in MSDN. These methods do not change the value of the current DateTime

variable; instead, they return a new DateTime instance whose value is the result of

the operation.

TABLE 12.3 Common Available Data Adding Methods (Source: MSDN)

Method Description

AddDays Adds the specified number of days to the value of this instance

AddHours Adds the specified number of hours to the value of this
instance

AddMilliseconds Adds the specified number of milliseconds to the value of this
instance

AddMinutes Adds the specified number of minutes to the value of this
instance

AddMonths Adds the specified number of months to the value of this
instance

AddSeconds Adds the specified number of seconds to the value of this
instance

AddYears Adds the specified number of years to the value of this
instance

Working with Dates and Times 281

For example, to add six months to the date 7/22/1969, you could use the following

statements:

DateTime dteMyBirthday = new DateTime(1969,7,22);
DateTime dteNewDate = dteMyBirthday.AddMonths(6);

After this second statement executes, dteNewDate contains the date 1/22/1970

12:00:00 AM.

The following code shows sample addition methods and the date they would return:

dteNewDate = dteMyBirthday.AddYears(2); // Returns 7/22/1971 12:00:00 AM
dteNewDate = dteMyBirthday.AddMonths(5); // Returns 12/22/1969 12:00:00 AM
dteNewDate = dteMyBirthday.AddMonths(-1); // Returns 6/22/1969 12:00:00 AM
dteNewDate = dteMyBirthday.AddHours(7); // Returns 7/22/1969 7:00:00 AM

Retrieving Parts of a Date
Sometimes, it can be extremely useful to know just a part of a date. For example,

you may have let users enter their birth date, and you want to perform an action

based on the month in which they were born. To retrieve part of a date, the

DateTime class exposes properties such as Month, Day, Year, Hour, Minute, Second,

and so on.

The following code illustrates the retrieval of some properties of the DateTime class

(the instance date is 7/22/1969):

intResult = dteMyBirthday.Month; // Returns 7
intResult = dteMyBirthday.Day; // Returns 22
intResult = dteMyBirthday.DayOfWeek; // Returns Tuesday

The Hour property returns the hour in military format. Also, note that
DayOfWeek() returns an enumerated value.

Formatting Dates and Times
As I stated earlier, at times you may want to work with only the date or a time with-

in a DateTime variable. In addition, you probably want to control the format in

which a date or time is displayed. All this and more can be accomplished via the

DateTime class by way of the following:

. Using the DateTime methods to retrieve formatted strings

. Using standard-format strings

. Using custom-format strings

By the
Way

282 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

It’s impossible to show everything regarding formatting a DateTime value here, but

it is important to see how to use formatting to output either the date portion or time

portion of a DateTime variable.

The following code illustrates some basic formatting methods available with the

DateTime class. (Note that the instance date is still 7/22/1969 12:00:00 AM.)

dteMyBirthday.ToLongDateString(); // Returns Tuesday, July 22, 1969
dteMyBirthday.ToShortDateString(); // Returns 7/22/1969
dteMyBirthday.ToLongTimeString(); // Returns 12:00:00 AM
dteMyBirthday.ToShortTimeString(); // Returns 12:00 AM

Retrieving the Current System Date and Time
Visual C# enables you to retrieve the current system date and time. Again, this is

accomplished by way of the DateTime class. For example, the Today property

returns the current system date. To place the current system date into a new

DateTime variable, for example, you could use a statement such as this:

DateTime dteToday = DateTime.Today;

To retrieve the current system date and time, use the Now property of DateTime, like

this:

DateTime dteToday = DateTime.Now;

Commit DateTime.Today and DateTime.Now to memory. When you need to retrieve

the system date and/or time in an application, this is by far the easiest way to get

that information.

Summary
Being able to work with all sorts of data is crucial to your success as a Visual C#

developer. Just as you need to understand basic math to function in society, you

need to be able to perform basic math in code to write even the simplest of applica-

tions. Knowing the arithmetic operators, as well as understanding the order of oper-

ator precedence, will take you a long way in performing math using Visual C# code.

Boolean logic is a special form of evaluation used by Visual C# to evaluate simple

and complex expressions down to a value of true or false. In the following hours,

you learn how to create loops and how to perform decisions in code. What you

learned here about Boolean logic is critical to your success with loops and decision

structures; in your work you’ll use Boolean logic perhaps even more often than

you’ll perform arithmetic.

Workshop 283

Manipulating strings and dates takes special considerations. In this hour, you

learned how to work with both types of data to extract portions of values and to add

pieces of data together to form a new whole. String manipulation is straightforward,

and you’ll get the hang of it soon enough as you start to use some of the string

functions. Date manipulation, on the other hand, can be a bit tricky. Even experi-

enced developers need to refer to the online help at times. You learned the basics in

this hour, but don’t be afraid to experiment on your own.

Q&A
Q. Should I always specify parentheses to ensure that operators are evaluated

as I expect them to be?

A. Visual C# never fails to evaluate expressions according to the order of opera-

tor precedence, so using parentheses isn’t necessary when the order of prece-

dence is correct for an expression. However, using parentheses assures you that

the expression is being evaluated the way you want it to, and might make the

expression easier for other people to read. This really is your choice.

Q. I would like to learn more about the properties and methods available in
the DateTime structure. Where can I find all the members listed?

A. Look at the DateTime members documentation found within the .NET

Framework documentation. This is available on the MSDN site and as an

installable option when installing Visual C#.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. To get only the remainder of a division operation, you use which operator?

2. Which operation is performed first in the following expression—the addition

or the multiplication? x = 6 + 5 * 4

3. Which Boolean operator performs a logical negation?

4. The process of appending one string to another is called?

5. What property can be used to return the month of a given date?

284 HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time
Adjustments

Answers
1. The (%) operator.

2. 5 * 4 is performed first.

3. The Not operator (!).

4. Concatenation.

5. Month.

Exercises
1. Create a project that has a single text box on a form. Assume that the user

enters a first name, middle initial, and last name into the text box. Parse the

contents into three variables—one for each part of the name.

2. Create a project that has a single text box on a form. Assume that a user

enters a valid birthday into the text box. Use the date functions to tell the user

what day of the week he or she was born on.

HOUR 13

Making Decisions in Visual C#
Code

What You’ll Learn in This Hour:
. Making decisions using if statements
. Expanding the capability of if statements using else
. Evaluating an expression for multiple values using the switch statement

In Hour 10, “Creating and Calling Methods,” you learned to separate code into multiple

procedures so that they can be called in any order required. This technique goes a long

way in organizing code, but you still need a way to selectively execute code procedures or

groups of statements within a procedure. You can use decision-making techniques to

accomplish this. Decision-making constructs are coding structures that enable you to exe-

cute or omit code based on a condition, such as the value of a variable. Visual C# includes

two constructs that enable you to make any type of branching decision you can think of:

if...else and switch.

In this hour, you learn how to use the decision constructs provided by Visual C# to per-

form robust yet efficient decisions in Visual C# code. You’ll probably create decision con-

structs in every application you build, so the faster you master these skills, the easier it

will be to create robust applications.

Making Decisions Using if...else
By far the most common decision-making construct used in programming is the if con-

struct. A simple if construct looks like this:

if (expression)
... statement to execute when expression is true;

286 HOUR 13: Making Decisions in Visual C# Code

The if construct uses Boolean logic, as discussed in Hour 12, “Performing

Arithmetic, String Manipulation, and Date/Time Adjustments,” to evaluate an

expression to either true or false. The expression may be simple (if (x == 6)) or

complicated (if (x==6 && y>10)). If the expression evaluates to true, the state-

ment or block of statements (if enclosed in braces) gets executed. If the expression

evaluates to false, Visual C# doesn’t execute the statement or statement block for

the if construct.

Remember that compound statements, also frequently called block statements,
can be used anywhere a statement is expected. A compound statement consists
of zero or more statements enclosed in braces ({}). Following is an example of
the if construct using a block statement:
if (expression)

{
statement 1 to execute when expression is true;
statement 2 to execute when expression is true;
... statement n to execute when expression is true;

}

You’re going to create a simple if construct in a Visual C# project. Create a new

Windows application named Decisions Example and follow these steps:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and change the

name of the default form to DecisionsForm.cs. Next, set the Text property of

the form to Decisions Example.

2. Add a new text box to the form by double-clicking the Textbox icon in the

toolbox. Set the properties of the text box as follows:

Property Value

Name txtInput

Location 44, 44

3. Add a new button to the form by double-clicking the Button icon in the tool-

box. Set the button’s properties as follows:

Property Value

Name btnIsLessThanHundred

Location 156, 42

Size 100, 23

Text Is text < 100?

Your form should now look like the one in Figure 13.1.

By the
Way

Making Decisions Using if...else 287

You’re now going to add code to the button’s Click() event. This code uses a simple

if construct and the int.Parse() method. The int.Parse() method is used to con-

vert text into its numeric equivalent, and you use it to convert the text in txtInput

into an integer. The if statement then determines whether the number entered into

the text box is less than 100. Double-click the button now to access its Click event

and enter the following code:

if (int.Parse(txtInput.Text)< 100)
MessageBox.Show(“The text entered is less than 100.”);

This code is simple when examined one statement at a time. Look closely at the first

statement and recall that a simple if statement looks like this:

if (expression)
statement;

In the code you entered, expression is

int.Parse(txtInput.Text)< 100

What you are doing is asking Visual C# to evaluate whether the parsed integer is

less than 100. In this case, Parse is a method of the int (integer) class.

Int.Parse() converts a supplied string to an integer data type—which can be used

for numerical computations and evaluations. So, the value in the text box is cast to

an integer and then compared to see if it is less than 100. If it is, the evaluation

returns true. If the value is greater than or equal to 100, the expression returns

false. If the evaluation returns true, execution proceeds with the line immediately

following the if statement, and a message is displayed. If the evaluation returns

false, the line statement (or block of statements) following the if statement doesn’t

execute, and no message is displayed.

FIGURE 13.1
You use the if
statement to
determine
whether the
value of the text
entered into the
text box is less
than 100.

288 HOUR 13: Making Decisions in Visual C# Code

If the user leaves the text box empty or enters anything other than an integer, an
exception is thrown. You would normally implement exception handling around this
type of code or better yet add code that prevents the user from entering anything
other than a number to begin with. You learn about exception handling in Hour 15,
“Debugging Your Code.”

Executing Code When expression Is false
If you want to execute some code when expression evaluates to false, include the

optional else keyword, like this:

if (expression)
statement to execute when expression is true;

else
statement to execute when expression is false;

If you want to execute code only when expression equates to false, not when
true, use the not-equal operator (!=) in the expression. Refer to Hour 12 for more
information on Boolean logic.

By including an else clause, you can have one or more statements execute when

expression is true and other statements execute when the expression is false.

In the example you’ve built, if a user enters a number less than 100, the user gets a

message. However, if the number is greater than or equal to 100, the user receives

no feedback. Modify your code to look like the following, which ensures that the

user always gets a message:

if (int.Parse(txtInput.Text)< 100)
MessageBox.Show(“The text entered is less than 100.”);

else
MessageBox.Show(“The text entered is greater than or equal to 100.”);

Now, if the user enters a whole number less than 100, the message The text

entered is less than 100 is displayed, but nothing more. When Visual C#

encounters the else statement, it ignores the statement(s) associated with the else

statement. The statements for the else condition execute only when expression is

false. Likewise, if the user enters text that is greater than or equal to 100, the mes-

sage The text entered is greater than or equal to 100 is displayed, but

nothing more; when expression evaluates to false, execution immediately jumps

to the else statement.

By the
Way

By the
Way

Making Decisions Using if...else 289

Follow these steps:

1. Click Save All on the toolbar to save your work.

2. Press F5 to run the project.

3. Enter a whole number into the text box and click the button.

A message box appears, telling you whether the number you entered is less than or

greater than 100 (see Figure 13.2).

FIGURE 13.2
As implied with
this message
box, the if
statement gives
you great flexi-
bility in making
decisions.

Feel free to enter other whole numbers and click the button as often as you like.

When you’re satisfied that the code is working, choose Stop Debugging from the

Debug menu.

Get comfortable with if; chances are good that you’ll include at least one in
every project you create.

Nesting if…else Constructs
As mentioned earlier, you can nest if statements to further refine your decision

making. The format you use can be something like the following:

Did you
Know?

290 HOUR 13: Making Decisions in Visual C# Code

if (expression1)
if (expression2)
...
else

...
else

...

Evaluating an Expression for Multiple
Values Using switch
At times, the if construct isn’t capable of handling a decision situation without a

lot of extra work. One such situation occurs when you need to perform different

actions based on numerous possible values of an expression, not just true or false.

For instance, suppose that you wanted to perform actions based on a user’s profes-

sion. The following shows what you might create using if:

if (strProfession ==”programmer”)
...

else if (strProfession ==”teacher”)
...

else if (strProfession ==”accountant”)
...

else
...

As you can see, this structure can be a bit hard to read. If the number of supported

professions increases, this type of construction will get harder to read and debug. In

addition, executing many if statements like this is rather inefficient from a process-

ing standpoint.

The important point to realize here is that each else…if is really evaluating the

same expression (strProfession) but considering different values for the expres-

sion. Visual C# includes a much better decision construct for evaluating a single

expression for multiple possible values: switch.

A basic switch construct looks like the following:

switch (expression)
{

case value1:
...

jump-statement

default:
...

jump-statement

}

Evaluating an Expression for Multiple Values Using switch 291

default is used to define code that executes only when expression doesn’t
evaluate to any of the values in the case statements. Use of default is optional.

Here’s the Profession example shown previously, but this time switch is used:

switch (strProfession)
{
case “teacher”:

MessageBox.Show(“You educate our young”);
break;

case “programmer”:
MessageBox.Show(“You are most likely a geek”);
break;

case “accountant”:
MessageBox.Show(“You are a bean counter”);
break;

default:
MessageBox.Show(“Profession not found in switch statement”);
break;

}

The flow of the switch statement is as follows: When the case expression is

matched, the code statement or statements within the case are executed. This must

be followed by a jump statement, such as break, to transfer control out of the case

body.

If you create a case construct but fail to put code statements or a jump-
statement within the case, execution falls through to the next case statement,
even if the expression doesn’t match.

The switch makes decisions much easier to follow. Again, the key with switch is

that it’s used to evaluate a single expression for more than one possible value.

Building a switch Example
You’re now going to build a project that uses advanced expression evaluation in a

switch structure. This simple application displays a list of animals to the user in a

combo box. When the user clicks a button, the application displays the number of

legs of the animal chosen in the list (if an animal is selected). Start by creating a

new Windows application named Switch Example and then follow these steps:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and then

change the name of the form to SwitchExampleForm.cs. Next, set the form’s

Text property to Switch Example (you have to click the form once to view its

design properties).

By the
Way

By the
Way

292 HOUR 13: Making Decisions in Visual C# Code

2. Add a new combo box to the form by double-clicking the ComboBox item on

the toolbox. Set the combo box’s properties as follows:

Property Value

Name cboAnimals

Location 80, 100

3. Add some items to the list. Click the items property of the combo box and

then click the Build button that appears in the property to access the String

Collection Editor for the combo box. Enter the text as shown in Figure 13.3; be

sure to press Enter at the end of each list item to make the next item appear

on its own line.

FIGURE 13.3
Each line you
enter here
becomes an
item in the
combo box at
runtime.

4. Add a Button control. When the button is clicked, a switch construct is used

to determine which animal the user selected and to tell the user how many

legs the selected animal has. Add a new button to the form by double-clicking

the Button tool in the toolbox. Set the button’s properties as follows:

Property Value

Name btnShowLegs

Location 102, 130

Text Show Legs

Your form should now look like the one in Figure 13.4. Click Save All on the toolbar

to save your work before continuing.

Evaluating an Expression for Multiple Values Using switch 293

All that’s left to do is add the code. Double-click the Button control to access its

Click event and then enter the following code:

switch (cboAnimals.Text)
{

case “Bird”:
MessageBox.Show(“The animal has 2 legs.”);
break;

case “Dog”:
// Notice there is no code here to execute.

case “Horse”:
// Notice there is no code here to execute.

case “Cat”:
MessageBox.Show(“The animal has 4 legs.”);
break;

case “Snake”:
MessageBox.Show(“The animal has no legs.”);
break;

case “Centipede”:
MessageBox.Show(“The animal has 100 legs.”);
break;

default:
MessageBox.Show(“You did not select from the list!”);
break;

}

Here’s what’s happening:

. The switch construct compares the content of the cboAnimals combo box to a

set of predetermined values. Each case statement is evaluated in the order in

which it appears in the list. Therefore, the expression is first compared to

“Bird.” If the content of the combo box is Bird, the MessageBox.Show()

method immediately following the case statement is called, followed by the

break statement, which transfers control outside the switch construct.

FIGURE 13.4
This example
uses only a
combo box and
a Button
control.

294 HOUR 13: Making Decisions in Visual C# Code

. If the combo box doesn’t contain Bird, Visual C# looks to see if the content is

“Dog,” and so on. Notice that the Dog case contains no code. When a case

statement has no code, the execution of the code in the following case is exe-

cuted. In this situation, that would be (Horse), which also has no code. Visual

C# continues down the list of case statements until it finds one with code and

uses that. In this example, that would be the code for (Cat). This is known as

execution falling through, and it’s used to allow you to create one set of code

that can be used for multiple case situations. In this example, you end up

with the correct output. However, what happens if you move the Snake case in

front of Cat? You would end up telling the user that the dog has no legs!

When using this technique, you must be careful that all situations produce the

desired behavior.

. Each successive case statement is evaluated in the same way. If no matches

are found for any of the case statements, the MessageBox.Show() method in

the default statement is called. If there were no matches and no default state-

ment, no code would execute.

As you can see, adding a new animal to the list can be as simple as adding a case

statement.

Try it now by pressing F5 to run the project and then follow these steps:

1. Select an animal from the list and click the button.

2. Try clearing the contents of the combo box and clicking the button.

3. When you’re finished, choose Debug, Stop Debugging to stop the project, and

click Save All on the toolbar.

Summary
In this hour you learned how to use Visual C#’s decision constructs to make deci-

sions in Visual C# code. You learned how to use if statements to execute code when

an expression evaluates to true and to use else to run code when the expression

evaluates to false. For more complicated decisions, you learned how to use

else…if to add further comparisons to the decision construct and nest if structures

for more flexibility.

In addition to if, you learned how to use switch to create powerful decision con-

structs to evaluate a single expression for many possible values. Finally, you learned

how you can check for multiple possible values using a fall-through case statement.

Workshop 295

Decision-making constructs are often the backbone of applications. Without the

capability to run specific sets of code based on changing situations, your code would

be very linear and hence very limited. Become comfortable with the decision con-

structs and make a conscious effort to use the best construct for any given situation.

The better you are at writing decision constructs, the faster you’ll be able to produce

solid and understandable code.

Q&A
Q. What if I want to execute code only when an expression in an if statement

is false, not true? Do I need to place the code in an else clause, and no
code after the if?

A. In this situation, Boolean logic helps. What you need to do is make the

expression evaluate to true for the code you want to run. You accomplish this

using the not operator (!) in the expression, like this:

if (!expression)
. . .

Q. How important is the order in which case statements are created?

A. The answer depends on the situation. In the earlier example in which the

selected animal was considered and its number of legs was displayed, the

order of the Dog and Horse case was important. If all case statements contain

code, the order has no effect.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. Which decision construct should you use to evaluate a single expression to

either true or false?

2. Evaluating expressions to true or false for both types of decision constructs is

accomplished using ________ logic.

3. If you want code to execute when the expression of an if statement evaluates

to false, include an ____ clause.

296 HOUR 13: Making Decisions in Visual C# Code

4. Which decision construct should you use when evaluating the result of an

expression that may equate to one of many possible values?

5. Is it possible that more than one case statement may have its code execute?

Answers
1. The if construct

2. Boolean

3. else

4. switch

5. No, never.

Exercises
1. Create a project that enables users to enter text into a text box. Use an if con-

struct to determine whether the text entered is a circle, triangle, square, or

pentagon and display the number of sides the entered shape has. If the text

doesn’t match one of these shapes, let the users know that they must enter a

valid shape.

2. Rewrite the project you created in Exercise 1 so that it uses a switch construct

instead of an if construct.

HOUR 14

Looping for Efficiency

What You’ll Learn in This Hour:
. Looping a specific number of times using for statements
. Looping based on a condition using do...while and while statements

You will often encounter situations in which you need to execute the same code statement

or group of statements repeatedly. When that happens, you will need to execute some of

these statements a specific number of times, whereas others might need to be executed as

long as a certain condition persists (an expression is true) or until a condition occurs (an

expression becomes true). Visual C# includes constructs that enable you to easily define

and execute these repetitive code routines: loops. This hour shows you how to use the two

major looping constructs to make your code smaller, faster, and more efficient.

Looping a Specific Number of Times
Using for
The simplest type of loop to create is the for loop, which has been around since the earli-

est forms of the BASIC language. With a for loop, you instruct Visual C# to begin a loop

by starting a counter at a specific value. Visual C# then executes the code within the loop,

increments the counter by a defined incremental value, and repeats the loop until the

counter reaches an upper limit you’ve set. The following is the syntax for the basic for

loop:

for ([initializers]; [expression]; [operator]) statement

298 HOUR 14: Looping for Efficiency

Initiating the Loop Using for
The for statement both sets up and starts the loop. The for statement has the com-

ponents described in Table 14.1.

TABLE 14.1 Components of the for Statement

Part Description

initializers An expression that defines and initializes the loop variable.

expression An expression that can be evaluated using Boolean logic. This
expression is used to determine when to keep looping and
when to terminate the loop.

operator An expression statement that specifies how much to increment
or decrement the loop variable.

statement The embedded statement(s) to execute.

The operator is used to specify the amount to increment or decrement the loop.

Visual C# includes a number of operators, and they may seem foreign to you at

first. An operator is like a shortcut for a math function. The following lists the most

commonly used Visual C# operators and their effects:

. ++ increments the variable by one.

. -- decrements the variable by one.

. += adds the value on the right of the operator to the value on the left. For

example, x += Y has the same result as X = X + Y.

. -= subtracts the value on the right of the operator from the value on the left.

For example, X -= Y has the same result as X = X – Y.

The most common iterator used is loopvariable++, which increments the variable

loopvariable by one. To decrement the counter variable by one, you would use

loopvariable--. To use a value other than 1 for the amount to change the loop-

variable, you would use += (or -= for decrementing), followed by the value to

increment (or decrement) the variable by, like this:

loopvariable += 0.05

The following is a simple example of a for loop, followed by an explanation of

what it’s doing:

for (int intCounter = 1; intCounter <= 100; intCounter++)
Debug.WriteLine(intCounter);

Looping a Specific Number of Times Using for 299

This for statement initializes an Integer named intCounter at 1; the condition

intCounter <=100 is tested and returns true; therefore, the statement

Debug.WriteLine(intCounter) is executed. After the statements are executed, the

variable intCounter is incremented by one (intCounter++). This loop would exe-

cute 100 times, printing the numbers 1 through 100 to the Output debug window.

To use the Debug object, you need to include the System.Diagnostics
namespace.

To execute multiple statements within a for loop, you use braces ({}); a single-line

for statement does not require braces. Here is the preceding for loop written to exe-

cute multiple statements:

for (int intCounter = 1; intCounter <= 100; intCounter++)
{

Debug.WriteLine(intCounter);
Debug.WriteLine(intCounter-1);

}

Sometimes you might want to terminate a for loop before the expression evalu-
ates to true. To exit a for loop at any time, use the break statement.

Creating a for Example
You’re now going to create a procedure containing a for loop that counts backward

from 100 to 0 and sets the opacity of a form to the value of the loop variable (the

form will fade out).

Create a new Windows Application named Fading Form and then follow these steps:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and change the

name of the default form to FadingFormForm.cs. Next, set the form’s Text

property to Fading Form (you need to click the form once to access its design

properties).

2. Add a button to the form by double-clicking the Button item in the toolbox.

Set the button’s properties as follows:

Property Value

Name btnFadeForm

Location 105, 113

By the
Way

By the
Way

300 HOUR 14: Looping for Efficiency

Size 75, 23

Text Fade Form

Your form should look like the one shown in Figure 14.1.

Property Value

FIGURE 14.1
This simple
project does
something
pretty cool.…

All that’s left to do is to write the code. Double-click the button to access its Click

event and enter the following:

for (double dblOpacity = 1; dblOpacity > 0; dblOpacity += -0.05)
{

this.Opacity = dblOpacity;
// Let the form repaint itself.
this.Refresh();
// Create a delay.
System.Threading.Thread.Sleep(200);

}
// Show the form again.
this.Opacity = 1;

The code dblOpacity += -0.05 could also be written as dblOpacity -= 0.05.

Much of this code should make sense to you by now. Here’s what is happening:

. The first statement initializes the loop. It creates a variable of type double

called dblOpacity. You have to use double because Opacity works with val-

ues of 0 to 1 and Integers don’t support decimal places. The dblOpacity

By the
Way

Looping a Specific Number of Times Using for 301

variable is initialized to 1, and the loop expression is defined as

dblOpacity > 0. This means the loop will continue to execute as long as

dblOpacity is greater than 0. Finally, the last section dictates that each time

the loop completes, the variable dblOpacity is decremented by 0.05 (notice

the negative sign in front of the value in code). All this means that the loop

will start at 1 and decrement the counter variable by .05 until the variable

reaches 0, at which time the loop will no longer execute and code execution

will jump to the first statement following the closing brace of the loop.

. The second statement (after the opening brace for the loop code) sets the opac-

ity of the form to the value of the loop variable. The next line (after the com-

ment) calls the Refresh() method of the form, which forces it to repaint itself.

If you don’t do this, Windows might not get around to repainting the form

between iterations. Feel free to comment out the Refresh() statement (put a

comment character in front of the statement so Visual C# treats it as a com-

ment and doesn’t execute it) to see what happens after you’ve successfully

completed this example.

. The next statement (the Sleep() statement) tells Visual C# to pause. The

number in parentheses is the number of milliseconds to wait—in this case,

200. This is a nifty function! You could use another for loop to create a pause,

but then the duration of the pause would be dependent on the speed of the

user’s computer. By using Sleep(),you guarantee the pause to be the same on

every machine that executes this code.

. The closing brace sends execution back to the for statement, where the vari-

able is decremented and tested to make sure that you haven’t reached the stop

value.

. When the loop is finished, the form is invisible. The last statement simply sets

the Opacity property of the form back to 1, in effect showing the form.

Click Save All on the toolbar and press F5 to run the project. When the form first

appears, it looks normal. Click the button, though, and watch the form fade out (see

Figure 14.2)!

If you were to forgo a loop and write each line of code necessary to change the

opacity, you would have to duplicate the statements 20 times each! Using a simple

for loop, you performed the same task in just a few lines of code.

302 HOUR 14: Looping for Efficiency

Use a for loop when you know the number of times you want the loop to execute.

This doesn’t mean that you have to actually know the number of times you want

the loop to execute at design time; it simply means that you must know the number

of times you want the loop to execute when you first start the loop. You can use a

variable to define any of the parameters for the for loop, as illustrated in the fol-

lowing code:

int intUpperLimit=100;
for (int intCounter=1; intCounter<=intUpperLimit;intCounter++)

Debug.WriteLine(intCounter);

One of the keys to writing efficient code is to eliminate redundancy. If you find
yourself typing the same (or a similar) line of code repeatedly, chances are it’s a
good candidate for a loop.

Using while and do...while to Loop an
Indeterminate Number of Times
In some situations, you don’t know the exact number of times a loop must be per-

formed—not even when the loop begins. You could start a for loop specifying an

upper limit that you know is larger than the number of loops needed, check for a

terminating condition within the loop, and exit the loop using a break statement

FIGURE 14.2
This example
would take a lot
of code without
a loop!

Did you
Know?

Using while and do...while to Loop an Indeterminate Number of Times 303

when the condition is met. However, this approach is inefficient and usually imprac-

tical. When you need to create such a loop, using do...while is the answer.

Creating a do...while
The most basic form of a do...while has the following syntax:

do statement while (expression);

The following syntax is used to execute multiple statements:
do
{

[Statements]
} while (expression);

Ending a do...while Loop
A do...while loop without some sort of exit mechanism or defined condition is an

endless loop. In its most basic form, nothing is present to tell the loop when to stop

looping. At times you may need an endless loop (game programming is an exam-

ple), but more often, you need to exit the loop when a certain condition is met. As

with the for loop, you can use the break statement to exit a do...while loop at

any time. For example, you could expand the do...while loop to include a break

statement like the following:

do
{

Statements
if (expression)

break;
} while (x==x);

In this code, the loop would execute until expression evaluates to true. Generally,

the expression is based on a variable that’s modified somewhere within the loop.

Obviously, if the expression never changes, the loop never ends.

Another flavor of the while loop is the while...do loop. The following is a simple

while...do loop:

while (expression) statement

or

while (expression)
{

Statements
}

By the
Way

304 HOUR 14: Looping for Efficiency

As long as expression evaluates to true, the loop continues to occur. If expression

evaluates to false when the loop first starts, the code between the statement(s)

doesn’t execute—not even once.

The difference between the do...while and the while loops is that the code state-

ments within the do...while loop always execute at least once; expression isn’t

evaluated until the loop has completed its first cycle. Therefore, such a loop always

executes at least once, regardless of the value of expression. The while loop evalu-

ates the expression first; therefore, the statements associated with it may not execute

at all.

Creating a do...while Example
You’re now going to create an example using a do...while. In this project, you are

going to find the first 10 numbers that are evenly divisible by 3. Although you know

you want to find 10 numbers, you don’t know how many numbers you will have to

evaluate; therefore, the do...while is the best choice.

Create a new Windows application named No Remainders and then follow these

steps:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and then

change the name of the default form to NoRemaindersForm.cs. Next, set the

Text property of the form to No Remainders.

2. Add a button to the form and set the new button’s properties as follows:

Property Value

Name btnFindNumbers

Location 82, 39

Size 120, 23

Text Find Numbers

3. Add a ListBox control to the form and set its properties as follows:

Property Value

Name lstResults

Location 82, 68

Size 120, 160

Your form should now look like the one shown in Figure 14.3.

Using while and do...while to Loop an Indeterminate Number of Times 305

Double-click the new button to access its Click event and then enter the following

code:

int intSeek = 1;
int intFound = 0;

do
{

if ((intSeek % 3) == 0)
{

lstResults.Items.Add(intSeek.ToString());
intFound++;

}
intSeek++;

} while (intFound < 10);

Again, this code is more easily understood when broken down:

. The first two statements simply create a couple of integer variables. The vari-

able intSeek is the number you test to see whether it’s evenly divisible by 3

(meaning it has no remainder). The variable intFound is the counter; you

increment this by one each time you find a number evenly divisible by 3.

. The do statement starts the loop. There is no condition at the start of the loop

because you want the loop to execute at least once; you test the condition at

the end of the loop using while.

. In Hour 12, “Performing Arithmetic, String Manipulation, and Date/Time

Adjustments,” I mentioned how the % operator can be used to determine a

remainder. Here, you use % to determine if intSeek is evenly divisible by 3 by

seeing if there is a remainder when intSeek is divided by 3.

. If the number in question is evenly divisible by 3 (there is no remainder), the

number in intSeek is added to the results list box and intFound is increment-

ed by one.

FIGURE 14.3
What better
control to show
a list of results
than a list box?

306 HOUR 14: Looping for Efficiency

. The next statement is the closing curly brace for the if construct. After this,

intSeek is incremented by one. Notice that intSeek is incremented during

each pass of the loop because the statement is placed outside the if block.

. The last statement closes the loop. It also tests intFound and, and if fewer

than 10 numbers have been found, the loop code gets executed again.

Click Save All on the toolbar to save the project and then press F5 to run it. Click the

Find Numbers button and watch the results fill up—fast (see Figure 14.4)!

FIGURE 14.4
Visual C# per-
forms math
functions very
fast.

The do...while loop was the best choice here because you really didn’t know how

many numbers you were going to have to evaluate (that is, how many times to iter-

ate the loop). If you wanted to search only the numbers from 1 to 100, for example,

a for loop would have been better.

Summary
Looping is a powerful technique that enables you to write tighter code. Tighter code

is smaller, more efficient, and usually—but not always—more readable. In this

hour, you learned to write for loops for situations in which you know the precise

number of times you want a loop executed. Remember, you don’t need to know the

number of iterations at design time, but you must know the number at runtime to

use a for loop. You also learned how to use iterators to increment the counter of a

for loop and even how to exit a loop prematurely using break.

In this hour, you also learned how to use the powerful do...while loop, which

enables you to create flexible loops that can handle almost any looping scenario.

You learned how evaluating expression in a do...while loop makes the loop

Workshop 307

behave differently than when evaluating the expression in a while loop. If a for

loop can’t do the job, some form of the do...while or while loop can.

In addition to learning the specifics about loops, you saw firsthand how multiple

solutions to a problem can exist. Often, one approach is clearly superior to all other

approaches, although you may not always find it. Other times, one approach may

be only marginally superior, or multiple approaches may all be equally applicable.

Expert programmers are able to consistently find the best approaches to any given

problem. With time, you’ll be able to do the same.

Q&A
Q. Is there ever a situation in which you would want a loop to run indefinitely?

A. Game programmers often create a single loop that runs indefinitely, and all

logic and user input take place in this main loop. Other than such a very spe-

cific situation, all loops should terminate at some point.

Q. Should I be concerned about the performance differences between the two
types of loops?

A. With today’s fast processors, chances are good that the performance difference

between the two loop types in any given situation will be overshadowed by

the readability and functionality of the best choice of loop. If you have a situ-

ation in which performance is critical, write the loop using all the ways you

can think of, benchmark the results, and choose the fastest loop.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: You have to know the start and end values of a for loop at

design time to use this type of loop.

2. Is it possible to nest loops?

3. What type of loop would you most likely need to create if you didn’t have any

idea how many times the loop would need to occur?

308 HOUR 14: Looping for Efficiency

4. If you evaluate the expression in a do...while on the while statement, is it

possible that the code within the loop may never execute?

5. What statement do you use to terminate a do...while without evaluating the

expression on the do or while statements?

Answers
1. False. You can use a variable to define the start or end values of a for loop.

2. Yes, you can nest loops—even loops of different types.

3. A do...while loop.

4. No, the code always executes at least once.

5. You use a break statement.

Exercises
1. Create a text box in your No Remainders project and let the user enter a num-

ber. Find the first 10 numbers that are evenly divisible by the number entered

by the user. Use int.Parse() to convert the user’s input to an integer.

2. Use two for loops nested within each other to size a label in two dimensions.

Have the outer loop change the Width property of the label from 1 to 100 and

have the inner loop change the Height property from 1 to 100. Don’t be sur-

prised by the result; it’s rather odd. Be sure to call the Resize() method of the

label after setting its height and width.

HOUR 15

Debugging Your Code

What You’ll Learn in This Hour:
. Adding comments to your code
. Identifying the two basic types of errors
. Using the Output window
. Creating a structured error handler

No one writes perfect code. You’re most certainly familiar with those problems that pre-

vent code from executing properly; they’re called bugs. Because you’re new to Visual C#,

your code will probably contain a fair number of bugs. As you gain proficiency, the num-

ber of bugs in your code will decrease, but they will never disappear entirely. This book

can’t teach you how to debug every possible build or runtime error you might encounter;

debugging is a skill and an art. In this hour, you learn the basic skills necessary to trace

and correct most bugs in your code.

Before proceeding, create a new Windows application project named Debugging Example.

Next, follow these steps to build the project:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and then change the

name of the form to DebuggingExampleForm.cs. Next, set the form’s Text property

to Debugging Example (you need to click the form once to access its design properties).

2. Add a new text box to the form by double-clicking the TextBox item in the toolbox.

Set the text box’s properties as follows:

Property Value

Name txtInput

Location 79, 113

Size 120, 20

310 HOUR 15: Debugging Your Code

3. Add a new button to the form by double-clicking the Button item in the tool-

box and set its properties as follows:

Property Value

Name btnPerformDivision

Location 79, 139

Size 120, 23

Text Perform Division

Your form should now look like the one shown in Figure 15.1.

FIGURE 15.1
This simple
interface can
help you learn
debugging tech-
niques.

This little project is going to divide 100 by whatever is entered into the text box. As

you write the code to accomplish this, various bugs are introduced on purpose, and

you learn to correct them. Save your project now by clicking the Save All button on

the toolbar.

Adding Comments to Your Code
One of the simplest ways you can reduce bugs from the beginning—and make

tracking down existing bugs easier—is to add comments to your code. A code com-

ment is simply a line of text that Visual C# knows isn’t actual code and therefore

ignores. Comment lines are stripped from the code when the project is compiled to

create a distributable component, so comments don’t affect performance. Visual

C#’s code window shows comments as green text. This makes it easier to read and

understand procedures. Consider adding comments to the top of each procedure,

stating the procedure’s purpose. In addition, you should add liberal comments

throughout all procedures, detailing what’s occurring in the code.

Adding Comments to Your Code 311

Comments are meant to be read by humans, not by computers. Strive to make
your comments intelligible. Keep in mind that a comment that’s difficult to under-
stand isn’t much better than no comment at all. Also remember that comments
serve as a form of documentation. Just as documentation for an application must
be clearly written, code comments should also follow good writing principles.

To create a comment, precede the comment text with two forward slashes (//). A

simple comment might look like this, for example:

// This is a comment because it is preceded by double forward slashes.

Comments can also be placed at the end of a line of code:

int intAge; // Used to store the user’s age in years.

Everything to the right of and including the double slashes in this statement is a

comment.

Visual C# also supports a second type of comment, one that allows for comments to

span multiple lines without forcing you to add // characters to each line. Such a

comment begins with an open comment mark of a forward slash, followed by an

asterisk (/*), and the comment closes with a close mark of an asterisk followed by a

forward slash (*/). For example, a comment can look like this:

/* Hour 15 in Sams TY Visual C# 2008
focuses on debugging code; something most developers
spend a lot of time on. */

By adding comments to your code procedures, you don’t have to rely on memory to

decipher a procedure’s purpose or mechanics. If you’ve ever had to go back and

work with code you haven’t looked at in a while, or had to work with someone else’s

code, you probably already have a great appreciation for comments.

Double-click the Perform Division button now to access its Click event and add the

following two lines of code (comments, actually):

// This procedure divides 100 by the value entered in
// the text box txtInput.

Notice that after you type the second forward slash, both slashes turn green.

When creating code comments, do your best to do the following:

. Document the code’s purpose (the why, not the how).

. Clearly indicate the thinking and logic behind the code.

. Call attention to important turning points in the code.

Did you
Know?

312 HOUR 15: Debugging Your Code

. Reduce the need for readers to run a simulation of the code execution in their

heads.

. Comment your code as you are typing it. If you wait until the code is com-

plete, you probably won’t go back and add comments.

Visual C# also supports an additional type of comment denoted with three slash-
es (///). When the Visual C# compiler encounters these comments, it processes
them into an XML file. These types of comments are often used to create docu-
mentation for code. Creating XML files from comments is a bit advanced for this
book, but if these features intrigue you, I highly recommend that you look into this
topic.

Identifying the Two Basic Types of
Errors
Two types of errors can occur in code: build errors and runtime errors. A build error is

a coding error that prevents Visual C#’s compiler from being able to process the

code; Visual C# won’t compile a project that has a build error in it. A statement that

calls a procedure with incorrect parameters, for example, generates a build error.

Runtime errors are those that don’t occur at compile time but are encountered when

the project is being run. Runtime errors are usually a result of trying to perform an

invalid operation on a variable.

To illustrate, consider this next statement, which wouldn’t generate a compile error:

intResult = 10 / intDenominator;

Under most circumstances, this code wouldn’t even generate a runtime error.

However, what happens if the value of intDenominator is 0? Ten divided by 0 is

undefined, which won’t fit into intResult (intResult is an Integer variable).

Attempting to run the code with the intDenominator variable having a value of 0

causes Visual C# to return a runtime error. A runtime error is called an exception,

and when an exception occurs, it’s said to be thrown (that is, Visual C# throws an

exception when a runtime error occurs). When an exception is thrown, code execu-

tion stops at the offending statement, and Visual C# displays an error message. You

can prevent Visual C# from stopping execution when an exception is thrown by

writing special code to handle the exception, which you learn about later in this

hour.

By the
Way

Identifying the Two Basic Types of Errors 313

Add the following statements to the Click event, right below the two comment

lines:

long lngAnswer;
lngAnswer = 100 / Convert.ToInt64(txtInput.Text);
MessageBox.Show(“100/” + txtInput.Text + “ is “ + lngAnswer)

The missing semicolon in the MessageBox.Show() line is intentional. Type in the

preceding line of code exactly as it appears. Although you’ve missed the ending

semicolon, Visual C# doesn’t return an immediate error. However, notice how Visual

C# displays a wavy red line at the end of the statement. Note that you may have to

press Enter to move to a different line to get it to show up. Choose Error List from the

View menu now and notice that Visual C# displays an information tip explaining

the nature of the error (see Figure 15.2). All build errors in the current project appear

in the Error List. To view a particular offending line of code, double-click an item in

the Error List.

FIGURE 15.2
Visual C# high-
lights build
errors in the
code window by
using wavy
lines.

Press F5 to run the project. When you do, Visual C# displays a message that a build

error was found and asks whether you want to continue by running the last success-

ful build. Because the code won’t run as is, there’s no point in continuing, so click

No to return to the code editor.

Build errors are very serious because they prevent code from being compiled and

therefore prevent execution. Build errors must be corrected before you can run the

project. Double-click the build error in the Error List to go directly to the error.

314 HOUR 15: Debugging Your Code

Correct the problem by adding a semicolon to the end of the MessageBox.Show()

statement. After you’ve made this change, press F5 to run the project. Visual C# no

longer returns a build error; you’ve just successfully debugged a problem!

Click the Perform Division button now, and you receive another error (see Figure 15.3).

FIGURE 15.3
A runtime
exception halts
code execution
at the offending
line.

This time the error is a runtime error, or exception. If an exception occurs, you

know that the code compiled without a problem because build errors prevent code

from compiling and executing. This particular exception is a Format exception.

Format exceptions generally occur when you attempt to perform a method using a

variable, and the variable is of an incompatible data type for the specified opera-

tion. Visual C# denotes the offending statement with a yellow arrow (the arrow indi-

cates the current statement).

At this point, you know that the statement has a “bug,” and you know it is related

to data typing. Choose Debug, Stop Debugging to stop the running project and

return to the code editor.

Using Visual C# Debugging Tools
Visual C# includes a number of debugging tools to help you track down and elimi-

nate bugs. In the following sections, you learn to use break points, the Immediate

window, and the Error List window—the three primary tools that form the foundation

Using Visual C# Debugging Tools 315

of any debugging arsenal. There are more tools, such as the Watch window and

Locals window, and as you progress into more detailed development, you should

explore these tools.

Working with Break Points
Just as an exception halts the execution of a procedure, you can deliberately stop

execution at any statement of code by creating a break point. When Visual C#

encounters a break point while executing code, execution is halted at the break

statement before the statement is executed. Break points enable you to query or

change the value of variables at a specific instance in time, and they let you step

through code execution one line at a time.

You’re going to create a break point to help troubleshoot the exception in your

lngAnswer = statement.

Adding a break point is simple. Just click in the gray area to the left of the state-

ment at which you want to break code execution (you can also place the cursor on

the statement and press F9 to toggle the breakpoint on and off). When you do so,

Visual C# displays a red circle, denoting a break point at that statement (see Figure

15.4). To clear the break point, you click the red circle (but don’t do this now).

FIGURE 15.4
Break points
give you control
over code exe-
cution.

316 HOUR 15: Debugging Your Code

Break points are saved with the project. You don’t have to reset all your break
points each time you open the project.

Click the gray area to the left of the lngAnswer = statement to create a break point,

as shown in Figure 15.4. After you’ve set the break point, press F5 to run the pro-

gram. Click the Perform Division button again. When Visual C# encounters the

break point, code execution is halted—right before the statement with the break

point executes, and the procedure with the break point is shown. In addition, the

cursor is conveniently placed at the statement with the current break point. Notice

the yellow arrow overlaying the red circle of the break point (see Figure 15.5). This

yellow arrow marks the next statement to be executed. It just so happens that the

statement has a break point, so the yellow arrow appears over the red circle (the yel-

low arrow won’t always be over a red circle, but it will always appear in the gray

area aligned with the next statement that will execute).

By the
Way

FIGURE 15.5
A yellow arrow
denotes the
next statement
to be executed.

When code execution is halted at a break point, you can do a number of things.

Table 15.1 lists the most common actions. For now, press F5 to continue program

execution. Again, you get a Format exception.

Using Visual C# Debugging Tools 317

TABLE 15.1 Actions That Can Be Taken at a Break Point

Action Keystroke Description

Continue Code Execution F5 Continues execution at the current
break statement.

Step Into F11 Executes the statement at the break
point and then stops at the next
statement. If the current statement
is a function call, F11 enters the
function and stops at the first state-
ment in the function.

Step Over F10 Executes the statement at the break
point and then stops at the next
statement. If the current statement
is a function call, the function is run
in its entirety; execution stops at the
statement following the function call.

Step Out Shift+F11 Runs all the statements in the cur-
rent procedure and halts execution
at the statement following the one
that called the current procedure.

Stop Debugging Shift+F5 Stops debugging the project and
returns to design mode.

Using the Immediate Window
Break points themselves aren’t usually sufficient to debug a procedure. In addition

to break points, you’ll often use the Immediate window to debug code. The

Immediate window is a Visual Studio IDE window that generally appears only when

your project is in Run mode. If the Immediate window isn’t displayed, you can show

it by opening the Debug menu and then choosing Windows, Immediate. Using the

Immediate window, you can type in code statements that Visual C# executes imme-

diately (hence the name). You’re going to use the Immediate window now to debug

the problem statement example.

Type the following statement into the Immediate window and press Enter:

? txtInput.Text

Although it isn’t intuitive, the ? character has been used in programming for many

years as a shortcut for the word print. The statement you entered simply prints the

contents of the Text property of the text box to the Immediate window.

318 HOUR 15: Debugging Your Code

Notice how the Immediate window displays “” on the line below the statement you

entered. This indicates that the text box is empty. The statement throwing the excep-

tion is attempting to use Convert.ToInt64() to convert the contents of the text box

to a long (which is a 64-bit integer). The Convert.ToInt64() method expects data

to be passed to it, yet the text box has no data (the Text property contains an

empty string). Consequently, a Format exception occurs because

Convert.ToInt64() doesn’t know how to convert an empty string to a number.

You can take a number of steps to prevent this error. The most obvious is to ensure

that the text box contains a value before attempting to use Convert.ToInt64().

You’re going to do this now.

Visual C# now supports on-the-fly code editing—something that was sorely lacking

in earlier versions of .NET. This means that you can now modify code while debug-

ging it. You no longer have to stop the project to make changes and then run it once

more to test your changes.

Close the Exception window and put the cursor between the declaration statement

(long lngAnswer;) and the statement with the error and press Enter. Next, enter

the following code statements:

if (txtInput.Text.Length == 0) return;

Remember the yellow arrow used to show the next statement that will execute? It

indicates that if you continue code execution now, the statement that throws the

exception will run once more. You want your new statements to execute. Follow

these steps to designate the new code as the next code to be executed:

1. Click the yellow arrow and hold down the mouse button.

2. Drag the yellow arrow to the new if statement.

3. Release the mouse button.

Now, the yellow arrow should indicate that the next statement to execute will be the

if statement, as shown in Figure 15.6.

Press F5 to continue running the project. This time, Visual C# doesn’t throw an

exception, and it doesn’t halt execution at your break point because the test you just

created caused code execution to leave the procedure before the statement with the

break point was reached.

Using Visual C# Debugging Tools 319

Next, follow these steps:

1. Type your name into the text box and click the Perform Division button

again. Now that the text box is no longer empty, execution passes the state-

ment with the exit test and stops at the break point.

2. Press F5 to continue executing the code; again you receive an exception. This

time, however, the exception is an invalid cast exception; this is different from

the exception thrown previously.

3. Close the Exception window (click the little x in the upper-right corner), and

type the following into the Immediate window (be sure to press Enter when

you’re finished):

? txtInput.Text

The Immediate window prints your name.

Well, you eliminated the problem of not supplying any data to the

Convert.ToInt64() method, but something else is wrong.

Press F5 to continue executing the code and take a closer look at the description of

the exception. Toward the bottom of the Exception window is the text View Detail.

Click this link now. Visual C# displays a View Detail window with more information

about the exception (see Figure 15.7).

FIGURE 15.6
You can drag
the yellow arrow
to change which
statement gets
executed next.

320 HOUR 15: Debugging Your Code

The text on the View Detail window says {“Input string was not in a correct

format.”}. It apparently still doesn’t like what’s being passed to

Convert.ToInt64().

By now, it might have occurred to you that there’s no logical way to convert

alphanumeric text to a number; Convert.ToInt64() needs a number to work with.

You can easily test this by following these steps:

1. Click OK to close the View Detail window.

2. Choose Stop Debugging from the Debug menu.

3. Press F5 to run the project.

4. Enter a number into the text box and click the button. Code execution again

stops at the break point.

5. Press F11 to execute the statement only. No errors this time! Press F5 to contin-

ue execution. Visual C# displays the message box (finally). Click OK to dismiss

the message box and then close the form to stop the project.

You can use the Immediate window to change the value of a variable, by typing a
statement such as intAge = 12.

Because Convert.ToInt64() expects a number, but the text box contains no intrin-

sic way to force numeric input, you have to accommodate for this situation in your

code. You learn how to deal with exceptions later in this hour using a Catch

statement.

FIGURE 15.7
The View Detail
window gives
you important
information for
fixing exception
problems.

Did you
Know?

Using Visual C# Debugging Tools 321

Using the Output Window
Visual C# uses the Output window (see Figure 15.8) to display various status mes-

sages and build errors. The most useful feature of the Output window, for general

use, is the capability to send data to it from a running application. This is especially

handy when you’re debugging applications.

FIGURE 15.8
The Output
window displays
a lot of useful
information—
if you know
what you’re
looking for.

You’ve already used the Output window in previous hours, but you may not have

seriously considered its application to debugging. As you can see from Figure 15.8,

some data sent to the Output window by Visual C# isn’t that intuitive; in fact, you

can ignore much of what is automatically sent to the Output window. What you’ll

want to use the Output window for is printing data for debugging (as you have

done and will do throughout this book). Therefore, it’s no coincidence that printing

to the Output window is accomplished via the Debug object.

To print data to the Output window, use the WriteLine() method of the Debug

object, like this:

System.Diagnostics.Debug.WriteLine(“Results = “ + lngResults);

Whatever you place within the parentheses of the WriteLine() method is what is

printed to the Output window. Note that you can print literal text and numbers,

variables, or expressions. WriteLine() is most useful in cases where you want to

know the value of a variable, but you don’t want to halt code execution using a

break point. For instance, suppose you have a number of statements that manipu-

late a variable. You can sprinkle WriteLine() statements into the code to print the

variable’s contents at strategic points. When you do this, you should print some text

along with the variable’s value so that the output makes sense to you. For example:

System.Diagnostics.Debug.WriteLine
(“Results of area calculation = “ + sngArea);

322 HOUR 15: Debugging Your Code

You can also use WriteLine() to create checkpoints in your code, like this:

System.Diagnostics.Debug.WriteLine(“Passed Checkpoint 1”);
// Execute statement here
System.Diagnostics.Debug.WriteLine(“Passed Checkpoint 2”);
// Execute another statement here
System.Diagnostics.Debug.WriteLine(“Passed Checkpoint 3”);

Many creative uses exist for the Output window. Just remember that the Output

window isn’t available to a compiled component; calls to the Debug object are

ignored by the compiler when creating distributable components.

Writing an Error Handler Using
Try...Catch...Finally
Having Visual C# halt execution when an exception occurs can be useful. When the

code is halted while running in the IDE, you receive an error message, and you’re

shown the offending line of code. However, when your project is run as a compiled

program, an unhandled exception causes the program to terminate (crash to the

desktop). This is one of the most undesirable things an application can do.

Fortunately, you can prevent exceptions from stopping code execution (and termi-

nating compiled programs) by writing code specifically designed to deal with excep-

tions. Exception-handling code instructs Visual C# on how to deal with an exception

instead of relying on Visual C#’s default behavior of aborting the application.

Visual C# supports structured exception handling (a formal way of dealing with errors)

in the form of the try block. Creating structured error-handling code can be a bit

confusing at first, and like most coding principles, it’s best understood by doing it.

Create a new Windows application called Structured Exception Handling and fol-

low these steps to build the project:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and change the

name of the default form to ExceptionHandlingExampleForm.cs. Next, set

the form’s Text property to Structured Exception Handling.

2. Add a new button to the form and set its properties as follows:

Property Value

Name btnCatchException

Location 93, 128

Size 96, 23

Text Catch Exception

Writing an Error Handler Using Try...Catch...Finally 323

3. Double-click the button and add the following code to its Click() event:

try
{

Debug.WriteLine(“Try”);
}
catch (Exception ex)
{

Debug.WriteLine(“Catch”);
}
finally
{

Debug.WriteLine(“Finally”);
}
Debug.WriteLine(“Done Trying”);

4. The code doesn’t work at this time because you didn’t specify the full name-

space reference to the Debug object. As I mentioned in an earlier hour, you

can add a using statement at the top of the class so that you don’t have to

provide the full qualifier each time you use the Debug object. Scroll up to the

top of the class and locate the section with existing using statements and

then add the following using statement below the existing ones:

using System.Diagnostics;

As you can see, the try structure has starting and ending statements, much like

loops and decision constructs. The try structure enables you to wrap code that

might cause an exception and provides you the means of dealing with thrown

exceptions. Table 15.2 explains the parts of this structure.

TABLE 15.2 Sections of the try Structure

Section Description

try The try section is where you place code that might cause an excep-
tion. You can place all of a procedure’s code within the try section or
just a few lines.

catch Code within the catch section executes only when an exception
occurs; it’s the code you write to catch the exception.

finally Code within the finally section occurs when the code within the try
and/or catch sections completes. This section is where you place
your cleanup code—code that you always want executed, regardless
of whether an exception occurs.

324 HOUR 15: Debugging Your Code

There are three forms of try statements:
. A try block followed by one or more catch blocks.
. A try block followed by a finally block.
. A try block followed by one or more catch blocks, followed by a finally

block.

Press F5 to run the project and then click the button. Next, take a look at the con-

tents of the Output window. The Output window should contain the following lines

of text (among others):

Try
Finally
Done Trying

Here’s what happened:

1. The try block begins, and code within the try section executes.

2. The catch sections are used to trap exceptions. Because no exception occurs,

code within the catch section is ignored.

3. When all statements within the try section finish executing, the code within

the finally section executes.

4. When all statements within the finally section finish executing, execution

jumps to the statement immediately following the try, catch, and finally

statements.

Stop the project now by choosing Debug, Stop Debugging.

Now that you understand the basic mechanics of the try, catch, and finally

structure, you’re going to add statements within the structure so that an exception

occurs and gets handled.

Change the contents of the procedure to match this code:

long lngNumerator = 10;
long lngDenominator = 0;
long lngResult;

try
{

Debug.WriteLine(“Try”);
lngResult = lngNumerator / lngDenominator;

}
catch
{

Debug.WriteLine(“Catch”);
}

By the
Way

Writing an Error Handler Using Try...Catch...Finally 325

finally
{

Debug.WriteLine(“Finally”);
}

Debug.WriteLine(“Done Trying”);

Again, press F5 to run the project. Click the button and take a look at the Output

window. This time, the text in the Output window should read

Try
A first chance exception of type ‘System.DivideByZeroException’ occurred
in Structured Exception Handling.exe
Catch
Finally
Done Trying

Notice that this time the code within the catch section executes. The reason is that

the statement that sets lngResult causes a DivideByZero exception. Had this state-

ment not been placed within a try block, Visual C# would have raised the excep-

tion, and an error dialog box would have appeared. However, because the statement

is placed within the try block, the exception is caught. Caught means that when the

exception occurred, Visual C# directed execution to the catch section. (You do not

have to use a catch section. If you omit a catch section, caught exceptions are sim-

ply ignored.) Notice also how the code within the finally section executes after the

code within the catch section. Remember that code within the finally section

always executes, regardless of whether an exception occurs.

Dealing with an Exception
Catching exceptions so that they don’t crash your application is a noble thing to do,

but it’s only part of the error-handling process. You’ll usually want to tell the user

(in a friendly way) that an exception has occurred. You’ll probably also want to tell

the user what type of exception occurred. To do this, you must have a way of know-

ing what exception was thrown. This is also important if you intend to write code to

deal with specific exceptions. The catch statement enables you to specify a variable

to hold a reference to an Exception object. Using an Exception object, you can get

information about the exception. The following is the syntax used to place the

exception in an Exception object:

catch (Exception variablename)

Modify your catch section to match the following:

catch (Exception objException)
{

Debug.WriteLine(“Catch”);
MessageBox.Show(“An error has occurred: “ + objException.Message);

}

326 HOUR 15: Debugging Your Code

The Message property of the Exception object contains the text that describes the

specific exception that occurred. Run the project and click the button, and Visual C#

displays your custom error message (see Figure 15.9).

FIGURE 15.9
Structured
exception han-
dling enables
you to decide
what to do
when an excep-
tion occurs.

Handling an Anticipated Exception
At times, you may anticipate a specific exception being thrown. For example, you

might write code that attempts to open a file when the file does not exist. In such

an instance, you’ll probably want the program to perform certain actions when this

exception is thrown. When you anticipate a specific exception, you can create a

catch section designed specifically to deal with that one exception.

Recall from the previous section that you can retrieve information about the current

exception using a catch statement, such as

catch (Exception objException)

When you create a generic Exception variable like this one, this catch statement

catches any and all exceptions thrown by statements within the try section. To

catch a specific exception, change the data type of the Exception variable to a spe-

cific exception type. Remember the code you wrote earlier that caused a Format

exception when an attempt was made to pass an empty string to the

Convert.ToInt64() method? You could have used a try structure to deal with the

exception, using code such as this:

long lngAnswer;

try
{

lngAnswer = 100 / long.Parse(txtInput.Text);
MessageBox.Show(“100/” + txtInput.Text + “ is “ + lngAnswer);

}
catch (System.FormatException)
{
MessageBox.Show(“You must enter a number in the text box.”);
}
catch
{

MessageBox.Show(“Caught an exception that wasn’t a format exception.”);
}

Writing an Error Handler Using Try...Catch...Finally 327

Notice that this structure has two catch statements. The first catch statement is

designed to catch only a Format exception; it doesn’t catch exceptions of any other

type. The second catch statement doesn’t care what type of exception is thrown; it

catches all of them. The second catch statement acts as a catch-all for any excep-

tions that aren’t overflow exceptions because catch sections are evaluated from top

to bottom, much like case statements in the switch structure. You could add more

catch sections to catch other specific exceptions if the situation calls for it.

In this next example, you build on the Picture Viewer project last edited in Hour 11,

“Using Constants, Data Types, Variables, and Arrays,” so go ahead and open that

project now. First, I want you to see the exception that you’ll catch. Follow these

steps to cause an exception to occur:

1. Press F5 to run the project.

2. Click the Open Picture button on the toolbar to display the Select Picture

dialog box.

3. In the File Name: box, enter *.* and press Enter. This changes your filter so

that you can now select files that aren’t images. Locate a file on your hard

drive that you know is not an image. Files with the extension .txt, .ini, or

.pdf are perfect.

4. After you’ve located a file that isn’t an image file, click it to select it, and then

click Open.

You have caused an Out of Memory exception, as shown in Figure 15.10. This is the

exception thrown by the picture box when you attempt to load a file that isn’t a pic-

ture. Your first reaction might be something along the lines of “Why do I have to

worry about that? No one would do that.” Well, welcome to programming, my

friend! A lot of your time will be spent writing code to protect users from themselves.

It’s not fair and usually not fun, but it is a reality.

Go ahead and click Stop Debugging on the toolbar to stop the running project.

Rather than take you step by step through the changes, I am just going to show you

the code for the new OpenPicture() procedure—which is easier. Change your code

to the code shown here:

try
{

// Show the open file dialog box.
if (ofdSelectPicture.ShowDialog() == DialogResult.OK)
{

// Load the picture into the picture box.
picShowPicture.Image = Image.FromFile(ofdSelectPicture.FileName);
// Show the name of the file in the form’s caption.
this.Text = string.Concat(“Picture Viewer(“ +

328 HOUR 15: Debugging Your Code

ofdSelectPicture.FileName + “)”);
}

}
catch (System.OutOfMemoryException)
{

MessageBox.Show(“The file you have chosen is not an image file.”,
“Invalid File”, MessageBoxButtons.OK);

}

FIGURE 15.10
You never want
an unhandled
exception to
occur—ever.

What you’ve just done is wrapped the procedure in an error-handler that watches

for and deals with an Out of Memory exception. Press F5 to run the project and follow

the steps outlined earlier to load a file that isn’t an image. Now, instead of receiving

an exception from the IDE, your application displays a custom message box that is

much more user friendly and that won’t crash the application to the desktop!

Although you have eliminated the possibility of the user’s generating an Out of

Memory exception by choosing a file that isn’t a valid picture, there are some

caveats you should be aware of regarding the code changes you made:

. If some other code in the procedure caused an Out of Memory exception, you

would be misleading the user with your error message. You could address this

by wrapping only the statement in a question within its own try...catch

structure.

. If an exception of another type was encountered in the procedure, that error

would be ignored. You can prevent this by creating a generic catch block to

catch any additional exceptions.

Q&A 329

As you can see, the mechanics of adding a try structure to handle exceptions is rel-

atively easy, whereas knowing what specifically to catch and how to handle the situ-

ation when an exception is caught can prove to be challenging.

Summary
In this hour, you learned the basics of debugging applications. You learned how

adding useful and plentiful comments to your procedures makes debugging easier.

However, no matter how good your comments are, you’ll still have bugs.

You learned about the two basic types of errors: build errors and runtime errors

(exceptions). Build errors are easier to troubleshoot because the compiler tells you

exactly what line contains a build error and generally provides useful information

about how to correct it. Exceptions, on the other hand, can crash your application if

not handled properly. You learned how to track down exceptions using break points

and the Immediate window, and you learned how to send text to the Output win-

dow at runtime. Finally, you learned how to make your applications more robust by

creating structured error handlers using the try structure.

No book can teach you everything you need to know to write bug-free code.

However, this hour taught you the basic skills you need to track down and eliminate

many types of errors in your programs. As your skills as a programmer improve, so

will your debugging abilities.

Q&A
Q. Should I alert users that an exception has occurred or just let the code

keep running?

A. If you’ve written code to handle the specific exception, there’s probably no

need to tell users about it. However, if an exception occurs that the code

doesn’t know how to address, you should provide users with the exception

information so that they can report the problem accurately and you can fix it.

Q. Should I comment every statement in my application?

A. Probably not. However, consider commenting every decision-making and

looping construct in your program. Such sections of code are usually pivotal to

the procedure’s success, and what they do isn’t always obvious.

330 HOUR 15: Debugging Your Code

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What type of error prevents Visual C# from compiling and running code?

2. What is another name for a runtime error?

3. What characters are used to denote a single comment line?

4. To halt execution at a specific statement in code, what do you set?

5. Explain the yellow arrow and red circles that can appear in the gray area in

the code editor.

6. What IDE window would you use to poll the contents of a variable in break

mode?

7. True or False: You must always specify a catch section in a try structure.

Answers
1. A build error

2. An exception

3. Two forward slash characters (//)

4. Breakpoint

5. The yellow arrow denotes the next statement to be executed during debug-

ging. The red circles denote break points—statements where code execution

halts when reached.

6. The Immediate window

7. False. If you omit a catch section, the exception is ignored.

Exercises
1. In the code example that sets lngAnswer to the result of a division expression,

change lngAnswer from a long to a single. Next, remove the if statements

that test the contents of the text box before performing the division. Do you

Workshop 331

get the same two exceptions that you did when the variable was a long? Why

or why not?

2. Rewrite the code that sets lngAnswer to the result of a division expression so

that the code is wrapped in a try...catch structure. Remove the if state-

ments that perform data validation and create catch sections for the excep-

tion that might be thrown.

This page intentionally left blank

HOUR 16

Designing Objects Using
Classes

What You’ll Learn in This Hour:
. Encapsulating data and code using classes
. Creating an object interface
. Exposing object attributes as properties
. Instantiating objects from classes
. Binding an object reference to a variable
. Releasing object references
. Understanding object lifetimes

You learned about what makes an object an object in Hour 3, “Understanding Objects and

Collections.” Since that hour, you’ve learned how to manipulate objects such as forms and

controls. The real power of leveraging objects, however, comes from being able to design

and implement custom objects of your own. In this hour, you learn how to create your

own objects by using classes. You also learn how to define the template for an object and

how to create your own custom properties and methods.

334 HOUR 16: Designing Objects Using Classes

There is simply no way to become an expert on programming classes in a single
hour. However, after you’ve finished with this hour, you’ll have working knowledge
of creating classes and deriving custom objects from those classes. Consider this
hour a primer on object-oriented programming. I strongly encourage you to seek
out other texts that focus on object-oriented programming after you feel comfort-
able with the material presented in this book.

Understanding Classes
Classes enable you to develop applications using object-oriented programming

(OOP) techniques (recall that I discussed OOP briefly in Hour 3). Classes are tem-

plates that define objects. Although you might not have known it, you’ve been pro-

gramming with classes throughout this book. When you create a new form in a

Visual C# project, you’re actually creating a class that defines a form; forms instan-

tiated at runtime are derived from the class. Using objects derived from predefined

classes (such as a Visual C# Form class) is just the start of enjoying the benefits of

OOP. To truly realize the benefits of OOP, you must create your own classes.

The philosophy of programming with classes is considerably different from that of

traditional programming. Proper class-programming techniques can make your pro-

grams better, in both structure and reliability. Class programming forces you to con-

sider the logistics of your code and data more thoroughly, causing you to create

more reusable and extendable object-based code.

Encapsulating Data and Code Using Classes
An object derived from a class is an encapsulation of data and code; that is, the

object comprises its code and all the data it uses. Suppose that you need to keep

track of employees in an organization, for example, and that you must store many

pieces of information for each employee, such as name, date hired, and title. In

addition, suppose that you need methods for adding and removing employees, and

that you want all this information and functionality available to many functions

within your application. You could use standard modules to manipulate the data,

but doing so would most likely require many variable arrays as well as code to man-

age those arrays.

A better approach is to encapsulate all the employee data and functionality (adding

and deleting routines and so forth) into a single, reusable object. Encapsulation is

the process of integrating data and code into one entity: an object. Your application,

as well as external applications, could then work with the employee data through a

By the
Way

Understanding Classes 335

consistent interface—the Employee object’s interface. (An interface is a set of exposed

functionality—essentially, code routines that define methods, properties, and

events.)

Creating objects for use outside your application is beyond the scope of this book.
The techniques you learn in this hour, however, are directly applicable to creating
externally creatable objects.

The encapsulation of data and code is the key idea of classes. By encapsulating the

data and the routines to manipulate the data into a single object by way of a class,

you free application code that needs to manipulate the data from the intricacies of

data maintenance. For example, suppose that company policy has changed so that

when a new employee is added to the system, a special tax record must be generat-

ed and a form must be printed. If the data and code routines weren’t encapsulated

in a common object but instead were written in various places throughout your

code, you would have to modify every module that contained code to create a new

employee record. By using a class to create an object, you need to change the code

in only one location: within the class. As long as you don’t modify the object’s inter-

face (as discussed shortly), all the routines that use the object to create a new

employee instantly have the policy change in effect.

Comparing Instance Members with Static
Members
You learned in Hour 10, “Creating and Calling Methods,” that Visual C# supports

only class methods; it does not support global methods. By creating static methods,

you create methods that can be accessed from anywhere in the project through the

class itself—without needing to instantiate an object from the class.

Instance methods are similar to static methods in how they appear in the Visual C#

design environment and in the way in which you write code within them. However,

the behavior of classes at runtime differs greatly from that of static members. With

static members, all static data is shared by all members of the class. In addition,

there are never multiple instances of the static class data. With instance member

classes, objects are instantiated from a class and each object receives its own set of

data. Static methods are accessed through the class, whereas nonstatic methods

(also called instance methods) are accessed through instances of the class.

Instance methods differ from static methods in more ways than just how their data

behaves. When you define a static method, it is instantly available to other classes

within your application. However, instant member classes aren’t immediately

By the
Way

336 HOUR 16: Designing Objects Using Classes

available in code. Classes are templates for objects. At runtime, your code doesn’t

interact with the code in the class per se, but it instantiates objects derived from the

class. Each object acts as its own class “module” and thus has its own set of data.

When classes are exposed externally to other applications, the application contain-

ing the class’s code is called the server. Applications that create and use instances of

objects are called clients. When you use instances of classes in the application that

contains those classes, the application itself acts as both a client and a server. In this

hour, I refer to the code instantiating an object derived from a class as client code.

Begin by creating a new Windows application called Class Programming Example

and then follow these steps to create your project:

1. Rename the default form ClassExampleForm.cs and set its Text property to

Class Programming Example.

2. Add a new class to the project by choosing Project, Add Class. Save the class

with the name clsMyClass.cs, as shown in Figure 16.1.

FIGURE 16.1
Classes are
added to a proj-
ect just as
other object
files are added.

Understanding Constructors and Destructors
Notice that Visual C# added the public class declaration class clsMyClass. All

code, including methods, variables, and property procedures, goes between the

opening and closing braces of the class declaration.

Understanding Classes 337

Objects consume system resources. The .NET Framework (discussed in Hour 24,
“The 10,000-Foot View”) has a built-in mechanism to free resources used by
objects. This mechanism is called the garbage collector (and it is discussed in
Hour 24 as well). Essentially, the garbage collector determines when an object is
no longer being used and then destroys the object. When the garbage collector
destroys an object, it calls the object’s destructor method. If you aren’t careful
about how you implement a destructor method, you can cause problems.

Creating an Object Interface
For an object to be created from a class, the class must expose an interface. As I

mentioned earlier, an interface is a set of exposed functionality (properties, methods,

and events). An interface is the means by which client code communicates with the

object derived from the class. Some classes expose a limited interface, and others

expose complex interfaces. The content and quantity of your class’s interface are

entirely up to you.

The interface of a class consists of one or more of the following members:

. Properties

. Methods

. Events

For example, assume that you’re creating an Employee object (that is, a class used

to derive employee objects). You must first decide how you want client code to inter-

act with your object. You need to consider both the data contained within the object

and the functions that the object can perform. You might want client code to be able

to retrieve the name of an employee and other information such as sex, age, and

the date of hire. For client code to get these values from the object, the object must

expose an interface member for each of these items. Recall from Hour 3 that values

exposed by an object are called properties. Therefore, each piece of data discussed

here would have to be exposed as a property of the Employee object.

In addition to properties, you can expose functions, such as Delete or AddNew.

These functions may be simple or complex. The Delete function of the Employee

object, for example, might be complex. It would need to perform all the actions nec-

essary to delete an employee, including such things as removing the employee from

an assigned department, notifying the accounting department to remove the

employee from the payroll, notifying the security department to revoke the employ-

ee’s security access, and so on. Publicly exposed functions of an object, as you

should again remember from Hour 3, are called methods.

By the
Way

338 HOUR 16: Designing Objects Using Classes

Properties and methods are the most commonly used interface members. Although

designing properties and methods might be new to you, by now using them isn’t.

You’ve used properties and methods in almost every hour so far. Here, you learn the

techniques for creating properties and methods for your own objects.

For even more interaction between the client and object, you can expose custom

events. Custom object events are similar to the events of a form or text box.

However, with custom events you have complete control over the following:

. The name of the event

. The parameters passed to the event

. When the event occurs

Creating custom events is complicated, and I cover only custom properties and
methods in this hour.

Properties, methods, and events together make up an object’s interface. This inter-

face acts as a contract between the client application and object. Any and all com-

munication between the client and object must transpire through this interface, as

shown in Figure 16.2.

By the
Way

FIGURE 16.2
Clients interact
with an object
via the object’s
interface.

Luckily, Visual C# handles the technical details of the interaction between the client

and the object by way of the object’s interface. Your responsibility is to define an

object’s properties, methods, and events so that its interface is logical and consistent

and exposes all the functionality a client must have available to use the object

productively.

Exposing Object Attributes as Properties
Properties are the attributes of objects. Properties can be read-only, or they can allow

both reading and writing of their values. For example, you might want to let a

Understanding Classes 339

client retrieve the value of a property containing the path of the component but not

let the client change it, because the path of a running component can’t be changed.

You can add properties to a class in two ways. The first is to declare public variables.

Any variable declared as public instantly becomes a property of the class (actually,

it acts like a property, but it isn’t technically a property). For example, suppose that

you have the following statement in the Declarations section of a class:

public int Quantity;

Clients could read from and write to the property using code like the following:

objMyObject.Quantity = 139;

This works, but significant limitations exist that make this approach less than

desirable:

. You can’t execute code when a property value changes. For example, what if

you wanted to write the quantity change to a database? Because the client

application can access the variable directly, you have no way of knowing

when the value of the variable changes.

. You can’t prevent client code from changing a property because the client

code accesses the variable directly.

. Perhaps the biggest problem is this: How do you control data validation? For

instance, how could you ensure that Quantity is never set to a negative

value?

It’s simply not possible to work around these issues using a public variable. Instead

of exposing public variables, you should create class properties using property proce-

dures.

Property procedures enable you to execute code when a property is changed, to vali-

date property values, and to dictate whether a property is read-only, write-only, or

both readable and writable. Declaring a property procedure is similar to declaring a

standard method, but with some important differences. The basic structure of a

property procedure looks like this:

private int privatevalue;

public int propertyname
{

get
{
return privatevalue; // Code to return the property’s value.

}

340 HOUR 16: Designing Objects Using Classes

set
{
privatevalue = value; // Code that accepts a new value.

}
}

The first word in the property declaration simply designates the scope of the proper-

ty (usually public or private). Properties declared with public are available to

code outside the class (they can be accessed by client code). If the application expos-

es its objects to other applications, public procedures are visible outside the applica-

tion. Properties declared as private are available only to code within the class.

Immediately following the scope identifier is the data type of property value. Next

comes the property name.

Type the following two statements into your class (between the two braces that

define class clsMyClass:

private int m_intHeight;

public int Height
{

get
{
}
set
{
}

}

After entering the statements, press Enter to commit them (see Figure 16.3).

FIGURE 16.3
Property proce-
dures have a
unique format.

Understanding Classes 341

You might be wondering why you just created a module-level variable along with

the property procedure. After all, I just finished preaching about the problems of

using a module-level variable as a property. The reason is that a property has to get

its value from somewhere, and a module-level variable is usually the best place to

store it. The property procedure acts as a wrapper for this variable. Notice that the

variable is declared as private rather than as public. This means that no code out-

side the class can view or modify the contents of this variable; as far as client code is

concerned, this variable doesn’t exist.

Between the property declaration’s opening and ending braces are two constructs:

the get construct and a set construct. These constructs are discussed next.

Creating Readable Properties Using the get Construct
Think of the get construct as a function (a method that returns a value); whatever

you return as the result of the function becomes the property value. Add the follow-

ing statement between the get brackets:

return m_intHeight;

All this statement does is return the value of the variable m_intHeight when client

code requests the value of the Height property.

Creating Writable Properties Using the set Construct
The set construct is where you place code that accepts a new property value from

client code.

Add the following statement between the braces of the set portion of the property:

m_intHeight = value;

The set clause uses a special variable called value, which is provided automatically

by Visual C# and always contains the value being passed to the property by the

client code. The statement you just entered assigns the new value to the module-

level variable.

As you can see, the property procedure is a wrapper around the module-level vari-

able. When the client code sets the property, the set construct stores the new value

in the variable. When the client retrieves the value of the property, the get construct

returns the value in the module-level variable.

So far, the property procedure, with its get and set constructs, doesn’t do anything

different from what it would do if you were to simply declare a public variable (only

the property procedure requires more code). However, look at this variation of the

same set construct:

342 HOUR 16: Designing Objects Using Classes

set
{
if (value >=10)

m_intHeight = value;
}

This set construct restricts the client to setting the Height property to a value

greater than or equal to 10. If a value less than 10 is passed to the property, the

property procedure terminates without setting m_intHeight. You’re not limited to

just performing data validation; you can pretty much add whatever code you want

and even call other procedures. Go ahead and add the verification statement to

your procedure so that the set construct looks like this one. Your code should now

look like the procedure shown in Figure 16.4.

FIGURE 16.4
This is a proper-
ty procedure,
complete with
data validation.

Creating Read-Only or Write-Only Properties
Sometimes you will want to create properties that can be read but not changed.

Such properties are called read-only properties. In the fictitious Dog object from Hour

3, I talked about creating a property called NumberOfLegs. With such an object, you

might want to expose the property as read only; code can get the number of legs

but cannot change it. To create a read-only property, you simply leave out the set

construct (the set statement and its braces). For example, if you wanted the proper-

ty procedure you just created to define a read-only procedure, you might declare it

like this:

Instantiating Objects from Classes 343

public int Height
{

get
{

return m_intHeight;
}

}

Although far more rare, it is possible to create a write-only property, in which the
property can be set but not read. To do so, you specify a set construct but omit a
get construct.

Exposing Functions as Methods
Unlike a property that acts as an object attribute, a method is a function exposed by

an object (you learned how to create methods in Hour 10). Create the following

method in your class now. Enter this code on the line right below the class variable

declaration for m_intHeight:

public long AddTwoNumbers(int intNumber1, int intNumber2)
{

return intNumber1 + intNumber2;
}

Recall that methods defined with a data type return values, whereas methods

defined with void don’t. To make a method private to the class and therefore invisi-

ble to client code, declare the method as private rather than public.

Instantiating Objects from Classes
After you obtain a reference to an object and assign it to a variable, you can manip-

ulate the object using an object variable. Let’s do so now.

Click the ClassExampleForm.cs Design tab to view the Form Designer and add a

button to the form by double-clicking the Button item in the toolbox. Set the but-

ton’s properties as follows:

Property Value

Name btnCreateObject

Location 100, 120

Size 88, 23

Text Create Object

Did you
Know?

344 HOUR 16: Designing Objects Using Classes

Next, double-click the button to access its Click event and enter the following code:

clsMyClass objMyObject = new clsMyClass();
MessageBox.Show(objMyObject.AddTwoNumbers(1,2).ToString());

The first statement creates a variable of type clsMyClass. (Declaring variables was

discussed in Hour 11, “Using Constants, Data Types, Variables, and Arrays.”) The

new keyword tells Visual C# to create a new object, and the text following new is the

name of the class to use to derive the object (remember, classes are object tem-

plates). So, this first step creates a variable holding a reference to a new object based

on clsMyClass. The last statement calls the AddTwoNumbers() method of your class

and displays the result in a message box after converting the return value to a

string.

Go ahead and run the project by pressing F5, and then click the button to make sure

that everything is working correctly. When finished, stop the project and save your

work.

Binding an Object Reference to a Variable
An object can contain any number of properties, methods, and events; every object

is different. When you write code to manipulate an object, Visual C# has to under-

stand the object’s interface; otherwise, your code won’t work. The interface members

(the object’s properties, methods, and events) are resolved when an object variable is

bound to an object. There are two forms of binding: early binding, which occurs at

compile time, and late binding, which occurs at runtime. It’s important that you

have at least a working understanding of binding if you’re to create code based on

classes. Although I can’t explain the intricacies and technical details of early bind-

ing versus late binding in this hour, I can teach you what you need to know to per-

form each type of binding.

Both types of binding have advantages, but early binding generally is superior to
late binding. Code that uses late-bound objects requires more work by Visual C#
than code that uses early-bound objects.

Late Binding an Object Variable
When you dimension a variable as data type Object, as shown in the following

code sample, you’re late binding to the object:

object obj;
obj = new clsMyClass();
MessageBox.Show(obj.AddTwoNumbers(1, 2).ToString());

By the
Way

Instantiating Objects from Classes 345

When you late bind an object, the binding occurs at runtime when the variable is

set to reference an object. For a member of the object to be referenced, Visual C#

must determine and use an internal ID of the specified member. Fortunately,

because Visual C# handles all the details, you don’t need to know the ID of a mem-

ber. Just be aware that Visual C# does need to know the ID of a member to use it.

When you late bind an object variable (dimension the variable As Object), the fol-

lowing steps occur behind the scenes:

1. Visual C# obtains a special ID (the Dispatch ID) of the property, method, or

event that you want to call. This takes time and resources.

2. An internal array containing the parameters of the member, if any, is created.

3. The member is invoked using the ID obtained in step 1.

The preceding steps require a great deal of overhead and adversely affect an appli-

cation’s performance. Therefore, late binding isn’t the preferred method of binding.

Late binding does have some attractive uses, but most of them are related to using

objects outside your application, not to using objects derived from classes within the

project.

One of the main drawbacks of late binding is the compiler’s inability to check the

syntax of the code manipulating an object. Because the ID of a member and the

parameters it uses aren’t determined until runtime, the compiler has no way of

knowing whether you’re using a member correctly—or even if the member you’re

referencing exists. This can result in a runtime exception or some other unexpected

behavior.

Early Binding an Object Variable
If Visual C# can determine a Dispatch ID for a member at compile time, there’s no

need to look up the ID when the member is referenced at runtime. This results in

considerably faster calls to object members. Not only that, but Visual C# can also

validate the member call at compile time, reducing the chance of errors in your

code.

Early binding occurs when you dimension a variable as a specific type of object,

rather than just as Object. When a variable is early bound, Visual C# looks up the

Dispatch IDs of the object’s members at compile time, rather than at runtime.

The following are important reasons to use early binding:

. Speed.

. More speed.

346 HOUR 16: Designing Objects Using Classes

. Objects, their properties, and their methods appear in IntelliSense drop-down

lists.

. The compiler can check for syntax and reference errors in your code so that

many problems are found at compile time, rather than at runtime.

For early binding to take place, an object variable must be declared as a specific

object type (that is, not as Object).

Creating a New Object When Dimensioning a Variable
You can instantiate a new object on the declaration statement by including the key-

word new, as you did in this example. This approach alleviates the need for a sec-

ond statement to create a new instance of the object. However, if you do this, the

variable will always contain a reference to an object. If a chance exists that you

might not need the object, you should probably avoid using the new keyword on the

declaration statement. Consider the following:

clsMyClass obj;

if (condition)
{

obj = new clsMyClass();
// Code to use the custom object would go here.

}

Remember that instantiating an object takes resources. In this code, no object is cre-

ated when condition is false. If you were to place the word new on the declara-

tions statement, a new object would be instantiated whenever this code was execut-

ed, regardless of the value of condition.

Releasing Object References
When an object is no longer needed, it should be destroyed so that all the resources

used by the object can be reclaimed. Objects are destroyed automatically when the

last reference to the object is released. There are two primary ways to release an

object reference; one is clearly better than the other.

One way to release a reference to an object is simply to let the object variable hold-

ing the reference go out of scope. As you might recall from Hour 11, variables are

destroyed when they go out of scope. This is no less true for object variables.

However, you can’t necessarily be assured that an object is fully released and that

all the memory being used by the object is freed by letting the object’s variable go

out of scope. Therefore, relying on scope to release objects isn’t a good idea.

Instantiating Objects from Classes 347

To explicitly release an object, set the object variable equal to null, like this:

objMyObject = null;

When you set an object variable equal to null, you’re assured that the object refer-

ence is fully released. Again, just because the reference is released does not mean

the object is destroyed! The garbage collector periodically checks for unused objects

and reclaims the resources they consume, but this may occur a considerable length

of time after the object is no longer used. Therefore, you should add a Dispose()

method to all your classes. You should place cleanup code within your Dispose()

method and always call Dispose() when you are finished with an object. One thing

to keep in mind is that it’s technically possible to have more than one variable refer-

encing an object. When this occurs, calling Dispose() may cause cleanup code to

execute and therefore cause problems for the code using the second object variable.

As you can see, you need to consider many things when programming objects.

If you don’t correctly release object references, your application might experience

resource leaks, become sluggish, and consume more resources than it should.

Understanding the Lifetime of an Object
An object created from a class exists as long as a variable holds a reference to it.

Fortunately, Visual C# (or, more specifically, the .NET Framework, as discussed in

Hour 24) handles the details of keeping track of the references to a given object; you

don’t have to worry about this when creating or using objects. When all the refer-

ences to an object are released, the object is flagged and eventually destroyed by the

garbage collector.

The following are key points to remember about an object’s lifetime and what they

mean to your application:

. An object is created (and hence referenced) when an object variable is declared

using the keyword new. For example:

clsMyClass objMyObject = new clsMyClass();

. An object is created (and hence referenced) when an object variable is assigned

an object using the keyword new. For example:

objMyObject = new clsMyClass();

. An object is referenced when an object variable is assigned an existing object.

For example:

objThisObject = objThatObject;

348 HOUR 16: Designing Objects Using Classes

. An object reference is released when an object variable is set to null (see the

section “Releasing Object References” earlier in this hour).

. An object becomes eligible for garbage collection after the last reference to it is

released. Many factors, including available system resources, determine when

the garbage collector executes next and destroys unused objects (see Hour 24

for more information on the garbage collector).

Understanding the lifetime of objects is important. You’ve now seen how and when

object references are created, but you also need to know how to explicitly release an

object reference. Only when all references to an object are released is the object

flagged for destruction, and the resources it uses are reclaimed.

Summary
Object-oriented programming is an advanced methodology that enables you to cre-

ate more robust applications, and programming classes is the foundation of OOP.

In this hour, you learned how to create classes, which are the templates used to

instantiate objects. You also learned how to create a custom interface consisting of

properties and methods and how to use the classes you’ve defined to instantiate and

manipulate objects by way of object variables.

You also learned how you should implement a Dispose() method for classes that

consume resources and how it is important to call Dispose() on objects that imple-

ment it to ensure that the object frees up its resources as soon as possible. Finally,

you learned how objects aren’t destroyed as soon as they are no longer needed;

rather, they become eligible for garbage collection and are destroyed when the

garbage collector next cleans up.

In this hour, you learned the basic mechanics of programming objects with classes.

Object-oriented programming takes considerable skill, and you’ll need to master the

concepts in this book before you can really begin to take advantage of what OOP

has to offer. Nevertheless, what you learned in this hour will take you further than

you might think. Using an OOP methodology is as much a way of thinking as it is a

way of programming. Consider how things in your projects might work as objects,

and before you know it, you’ll be creating robust classes.

Workshop 349

Q&A
Q. Should I always try to place code in instance classes rather than static

classes?

A. Not necessarily. As with most things, there are no hard and fast rules.

Correctly programming instance classes takes some skill and experience, and

programming static classes is easier for beginners. If you want to experiment

with instance classes, I encourage you to do so. However, don’t feel as though

you have to place everything into instantiated classes.

Q. I want to create a general class with a lot of miscellaneous methods—sort
of a “catchall” class. What’s the best way to do this?

A. If you want to create some sort of utility class, I recommend calling the class

something like clsUtility. Then you can use this class throughout your

application to access the utility functions.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. To create objects, you must first create a template. What is this template

called?

2. One of the primary benefits of object-oriented programming is that objects

contain both their data and their code. What is this called?

3. With static classes, public variables and routines are always available to code

via the static class in other modules. Is this true with public variables and rou-

tines in classes?

4. True or False: Each object derived from a class has its own set of module-level

data.

5. What must you do to create a property that can be read but not changed by

client code?

6. What is the best way to store the internal value of a property within a class?

7. Which is generally superior, early binding or late binding?

350 HOUR 16: Designing Objects Using Classes

8. If an object variable is declared as Object, is it early bound or late bound?

9. What’s the best way to destroy an object reference?

Answers
1. A class

2. Encapsulation

3. No, an object would first have to be instantiated before the variables and

methods would be available.

4. True

5. Omit the set construct in the property procedure.

6. Store the internal value in a private class-level variable.

7. Early binding is almost always superior to late binding.

8. The object is late bound.

9. Set the object variable equal to null.

Exercises
1. Add a new property to your class called DropsInABucket. Make this property

a Long and set it up so that client code can read the property value but not set

it. Finally, add a button to the form that, when clicked, prints the value of the

property to the Immediate window (it will be 0 by default). When this is work-

ing, modify the code so that the property always returns 1,000,000.

2. Add a button to your form that creates two object variables of type

clsMyClass(). Use the new keyword to instantiate a new instance of the class

in one of the variables. Then set the second variable to reference the same

object and print the contents of the Height property to the Output window or

display it in a message box.

HOUR 17

Interacting with Users

What You’ll Learn in This Hour:
. Displaying messages using the MessageBox.Show() function
. Creating custom dialog boxes
. Interacting with the keyboard
. Using the common mouse events

Forms and controls are the primary means by which users interact with an application

and vice versa. However, program interaction can and often does go deeper than that. For

example, a program can display customized messages to a user, and it can be fine-tuned

to deal with certain keystrokes or mouse clicks. In this hour, you learn how to create func-

tional and cohesive interaction between your application and the user. In addition, you

learn how to program the keyboard and mouse so that you can expand your program’s

interactivity beyond what a form and its controls natively support.

Displaying Messages Using the
MessageBox.Show() Function
A message box is a small dialog box that displays a message to the user (just in case that’s

not obvious). Message boxes are often used to tell the user the result of some action, such

as “The file has been copied” or “The file could not be found.” A message box is dismissed

when the user clicks one of its available buttons. Most applications have many message

boxes, but developers often don’t display messages correctly. It’s important to remember

that when you display a message to a user, you’re communicating with the user. In this

section, I teach you not only how to use the MessageBox.Show() function to display mes-

sages, but also how to use the statement to communicate effectively.

352 HOUR 17: Interacting with Users

The MessageBox.Show() function can be used to tell the user something or ask the

user a question. In addition to its displaying text, which is its primary purpose, you

can use this function to display an icon and display one or more buttons that the

user can click. Although you’re free to display whatever text you want, you must

choose from a predefined list of icons and buttons.

The MessageBox.Show() method is an overloaded method. This means that it was

written with numerous constructs supporting various options. When you code in

Visual C#, IntelliSense displays a drop-down scrolling list showing any of the 21

overloaded MessageBox.Show() method calls to aid in coding. The following are a

few ways to call MessageBox.Show().

To display a message box with specified text, a caption in the title bar, and an OK

button, use this syntax:

MessageBox.Show(MessageText, Caption);

To display a message box with specified text, a caption, and one or more specific

buttons, use this syntax:

MessageBox.Show(MessageText, Caption, Buttons);

To display a message box with specified text, a caption, buttons, and an icon, use

this syntax:

MessageBox.Show(MessageText, Caption, Buttons, Icon);

In all these statements, MessageText is the text to display in the message box,

Caption determines what appears in the title bar of the message box, Buttons

determines which buttons the user sees, and Icon determines what icon (if any)

appears in the message box. Consider the following statement, which produces the

message box shown in Figure 17.1:

MessageBox.Show(“This is a message.”, “Hello There”);

FIGURE 17.1
A simple
message box.

As you can see, if you omit Buttons, Visual C# displays only an OK button. You

should always ensure that the buttons displayed are appropriate for the message.

Displaying Messages Using the MessageBox.Show() Function 353

Specifying Buttons and an Icon
Using the Buttons parameter, you can display one or more buttons in the message

box. The Buttons parameter type is MessageBoxButtons. Table 17.1 shows the

allowable values.

TABLE 17.1 Allowable Enumerators for MessageBoxButtons

Member Description

AbortRetryIgnore Displays Abort, Retry, and Ignore buttons

OK Displays an OK button only

OKCancel Displays OK and Cancel buttons

YesNoCancel Displays Yes, No, and Cancel buttons

YesNo Displays Yes and No buttons

RetryCancel Displays Retry and Cancel buttons

Because the Buttons parameter is an enumerated type, Visual C# gives you an

IntelliSense drop-down list when you specify a value for this parameter. Therefore,

committing these values to memory isn’t all that important; you’ll commit to mem-

ory the ones you use most often fairly quickly.

The Icon parameter determines the symbol displayed in the message box. The Icon

parameter is an enumeration from the MessageBoxIcon type. Table 17.2 shows the

most commonly used values of MessageBoxIcon.

TABLE 17.2 Common Enumerators for MessageBoxIcon

Member Description

Exclamation Displays a symbol consisting of an exclamation point in a triangle
with a yellow background

Information Displays a symbol consisting of a lowercase letter i in a circle

None Displays no symbol

Question Displays a symbol consisting of a question mark in a circle

Stop Displays a symbol consisting of a white X in a circle with a red
background

Warning Displays a symbol consisting of an exclamation point in a triangle
with a yellow background

The Icon parameter is also an enumerated type; therefore, Visual C# gives you an

IntelliSense drop-down list when you specify a value for this parameter.

354 HOUR 17: Interacting with Users

The message box shown in Figure 17.2 was created with the following statement:

MessageBox.Show(“I’m about to do something...”,”MessageBox sample”,
MessageBoxButtons.OKCancel,MessageBoxIcon.Information);

FIGURE 17.2
Assign the
Information icon
to general
messages.

The message box shown in Figure 17.3 was created with a statement almost identi-

cal to the previous one, except that the second button is designated as the default

button. If a user presses the Enter key with a message box displayed, the message

box acts as though the user clicked the default button. You need to give careful con-

sideration to the default button in each message box. For example, suppose the

application is about to do something that the user probably doesn’t want to do. It’s

best to make the Cancel button the default button in case the user is a bit quick

when pressing the Enter key. Following is the statement used to generate the mes-

sage box shown in Figure 17.3:

MessageBox.Show(“I’m about to do something irreversible...”,
“MessageBox sample”,
MessageBoxButtons.OKCancel,MessageBoxIcon.Information,
MessageBoxDefaultButton.Button2);

FIGURE 17.3
The default but-
ton has a dark
border and
appears
shaded.

The Error icon, shown in Figure 17.4, is best used in rare circumstances, such as

when an exception has occurred. Overusing the Error icon is like crying wolf: When

a real problem emerges, the user might not notice. Notice here how this figure dis-

plays only the OK button. If something has already happened and there’s nothing

the user can do about it, don’t bother giving the user a Cancel button. The following

statement generates the message box shown in Figure 17.4:

MessageBox.Show(“Something bad has happened!”,”MessageBox sample”,
MessageBoxButtons.OK, MessageBoxIcon.Error);

Displaying Messages Using the MessageBox.Show() Function 355

In Figure 17.5, a question is posed to the user, so the message displays the Question

icon. Also note how the message box assumes that the user would probably choose

No, so the second button is set as the default. In the next section, you learn how to

determine which button the user clicks. Here’s the statement used to generate the

message box shown in Figure 17.5:

MessageBox.Show(“Would you like to format your hard drive now?”,
“MessageBox sample”,MessageBoxButtons.YesNo,MessageBoxIcon.Question,
MessageBoxDefaultButton.Button2);

FIGURE 17.4
If users have no
control over
what has
occurred, don’t
give them a
Cancel button.

FIGURE 17.5
A message box
can be used to
ask a question.

As you can see, designating buttons and icons isn’t all that difficult. The real effort

comes in determining which buttons and icons are appropriate for a given situa-

tion.

Determining Which Button Is Clicked
You’ll probably find that many of your message boxes are simple, containing only

an OK button. For other message boxes, however, you must determine which button

a user clicks. Why give the user a choice if you won’t act on it?

The MessageBox.Show() method returns the button clicked as a DialogResult enu-

meration. The DialogResult has the values shown in Table 17.3.

TABLE 17.3 Enumerators for DialogResult

Member Description

Abort The return value is Abort. Usually sent from a button labeled Abort.

Cancel The return value is Cancel. Usually sent from a button labeled Cancel.

Ignore The return value is Ignore. Usually sent from a button labeled Ignore.

356 HOUR 17: Interacting with Users

No The return value is No. Usually sent from a button labeled No.

None Nothing is returned from the dialog box. The modal dialog continues
running.

OK The return value is OK. Usually sent from a button labeled OK.

Retry The return value is Retry. Usually sent from a button labeled Retry.

Yes The return value is Yes. Usually sent from a button labeled Yes.

Note the phrase “Usually sent from” in the descriptions of the DialogResult val-
ues in Table 17.3. When you create custom dialog boxes (as shown later in this
hour), you can assign a DialogResult to any button of your choosing.

Performing actions based on the button clicked is a matter of using one of the deci-

sion constructs. For example:

if (MessageBox.Show(“Would you like to do X?”, “MessageBox sample”,
MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{
// Code to do X would go here.

}

As you can see, the MessageBox.Show() method gives you a lot of bang for your

buck; it offers considerable flexibility.

Creating Good Messages
The MessageBox.Show() method is surprisingly simple to use, considering all the

different forms of messages it lets you create. The real trick is providing appropriate

messages to users at appropriate times. In addition to considering the icons and

buttons to display in a message, you should follow these guidelines for crafting

message text:

. Use a formal tone. Don’t use large words, and avoid using contractions. Strive

to make the text immediately understandable and not overly fancy; a mes-

sage box is not a place to show off your literary skills.

. Limit messages to two or three lines. Lengthy messages not only are more dif-

ficult for users to read, but also can be intimidating. When a message box is

used to ask a question, make the question as succinct as possible.

TABLE 17.3 Continued

Member Description

By the
Way

Creating Custom Dialog Boxes 357

. Never make users feel as though they’ve done something wrong. Users will,

and do, make mistakes, but you should craft messages that take the sting out

of the situation.

. Spell-check all message text. The Visual C# code editor doesn’t spell-check for

you, so you should type your messages in a program such as Microsoft Word

and spell-check the text before pasting it into your code. Spelling errors have

an adverse effect on your users’ perception of the program.

. Avoid technical jargon. Just because people use software doesn’t mean they

are technical. Explain things in plain English (or whatever the native lan-

guage of the GUI happens to be).

. Be sure that the buttons match the text! For example, don’t show the Yes/No

buttons if the text doesn’t present a question to the users.

Creating Custom Dialog Boxes
Most of the time, the MessageBox.Show() method should be a sufficient means to

display messages to a user. At times, however, the MessageBox.Show() method is

too limited for a given purpose. Suppose that you want to display a lot of text to the

user, such as a log file of some sort, for example, so you want a message box that

the user can size.

Custom dialog boxes are nothing more than standard modal forms, with one

notable exception: One or more buttons are designated to return a dialog result, just

as the buttons on a message box shown with the MessageBox.Show() method

return a dialog result.

Now you’re going to create a custom dialog box. Begin by creating a new Windows

application titled Custom Dialog Example and then follow these steps to build the

project:

1. Rename the default form MainForm.cs and set its Text property to Custom

Dialog Box Example.

2. Add a new button to the form and set its properties as follows:

Property Value

Name btnShowCustomDialogBox

Location 67, 180

Size 152, 23

Text Show Custom Dialog Box

358 HOUR 17: Interacting with Users

3. Create the custom dialog box. Add a new form to the project by choosing

Project, Add Windows Form. Save the new form with the name

CustomDialogBoxForm.cs.

4. Change the Text property of the new form to This is a custom dialog box

and set its FormBorderStyle to FixedDialog.

5. Add a new text box to the form and set its properties as follows:

Property Value

Name txtCustomMessage

Location 8, 8

Multiline True

ReadOnly True

Size 268, 220

Text Custom message goes here

For a custom dialog box to return a result like a standard message box does, it

must have buttons that are designated to return a dialog result. This is accom-

plished by setting a button’s DialogResult property, as shown in Figure 17.6.

FIGURE 17.6
The
DialogResult
property
determines the
return value of
the button.

Creating Custom Dialog Boxes 359

6. Add a new button to the form and set its properties as shown in the following

table. This button will act as the custom dialog box’s Cancel button.

Property Value

Name btnCancel

DialogResult Cancel

Location 201, 234

Size 75, 23

Text Cancel

7. You need to create an OK button for the custom dialog box. Create another

button and set its properties as follows:

Property Value

Name btnOK

DialogResult OK

Location 120, 234

Size 75, 23

Text OK

Specifying a dialog result for one or more buttons is the first step in making a

form a custom dialog box. The second part of the process is in how the form is

shown. As you learned in Hour 5, “Building Forms—The Basics,” forms are

displayed by calling the Show() method of a form variable. However, to show

a form as a custom dialog box, you call the ShowDialog() method instead.

When a form is displayed using ShowDialog(), the following occurs:

. The form is shown modally.

. If the user clicks a button that has its DialogResult property set to

return a value, the form is immediately closed, and that value is

returned as a result of the ShowDialog() method call.

Notice how you don’t have to write code to close the form; clicking a button

with a dialog result closes the form automatically. This simplifies the process

of creating custom dialog boxes.

8. Return to the first form in the Form Designer by double-clicking MainForm.cs

in the Solution Explorer.

360 HOUR 17: Interacting with Users

9. Double-click the button you created and add the following code:

CustomDialogBoxForm frmCustomDialogBox = new CustomDialogBoxForm();

if (frmCustomDialogBox.ShowDialog() == DialogResult.OK)
MessageBox.Show(“You clicked OK.”);

else
MessageBox.Show(“You clicked Cancel.”);

frmCustomDialogBox = null;

When you typed the equal sign and then a space after ShowDialog(), did you

notice that Visual C# gave you an IntelliSense drop-down list with the possible dia-

log results? These results correspond directly to the values you can assign a button

using the DialogResult property. Press F5 now to run the project, click the button to

display your custom dialog box (see Figure 17.7), and then click one of the available

dialog box buttons. When you’re satisfied that the project is working correctly, stop

the project and save your work.

FIGURE 17.7
The
ShowDialog()
method enables
you to create
custom mes-
sage boxes.

If you click the Close (X) button in the upper-right corner of the form, the form
closes, and the code behaves as if you’ve clicked Cancel because the else code
occurs.

The ability to create custom dialog boxes is a powerful feature. A call to

MessageBox.Show() is usually sufficient, but when you need more control over the

appearance and contents of a message box, creating a custom dialog box is the way

to go.

By the
Way

Interacting with the Keyboard 361

Interacting with the Keyboard
Although almost every control on a form handles its own keyboard input, on occa-

sion you might want to handle keyboard input directly. For example, you might

want to perform an action when the user presses a specific key or releases a specific

key. Most controls support three events that you can use to work directly with key-

board input. They are listed in Table 17.4.

TABLE 17.4 Events That Handle Keyboard Input

Event Name Description

KeyDown Occurs when a key is pressed while the control has the focus.

KeyPress Occurs when a key is pressed while the control has the focus. If the
user holds down the key, this event fires multiple times.

KeyUp Occurs when a key is released while the control has the focus.

These events fire in the same order in which they appear in Table 17.4. For example,

suppose that the user presses a key while a text box has the focus. The following list

shows how the events would fire for the text box:

1. When the user presses a key, the KeyDown event fires.

2. While the key is down, the KeyPress event fires. This event repeats as long as

the key is held down.

3. When the user releases the key, the KeyUp event fires, completing the cycle of

keystroke events.

Now you’re going to create a project that illustrates handling keystrokes. This project

has a text box that refuses to accept any character that isn’t a number. Basically,

you’re creating a numeric text box. Start by creating a new Windows application

titled Keyboard Example and then follow these steps to build the project:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, change the

name of the default form to KeyboardExampleForm.cs, and set its Text

property to Keyboard Example.

2. Add a new text box to the form and set its properties as shown in the follow-

ing table:

362 HOUR 17: Interacting with Users

Property Value

Name txtInput

Location 25, 56

Multiline True

Size 235, 120

3. You’re going to add code to the KeyPress event of the text box to “eat” key-

strokes made with the letter k. Select the text box on the form and click the

Events button on the Properties window to view the text box’s events.

4. Locate and double-click KeyPress in the event list to create a new KeyPress

event procedure. Your code editor should now look like Figure 17.8.

FIGURE 17.8
The KeyPress
event is a good
place to handle
keyboard entry.

As you learned in Hour 4, “Understanding Events,” the e parameter contains infor-

mation specific to the occurrence of this event. In keyboard-related events, the e

parameter contains information about the key being pressed; it’s what you use to

work with the user’s keystrokes.

The key being pressed is available as the KeyChar property of the e parameter. Now

you’re going to write code that handles the keystroke when the pressed key is the

letter k.

Interacting with the Keyboard 363

Add the following code to the KeyPress event:

if (e.KeyChar == ‘k’)
e.Handled = true;

Be sure to surround the ‘k’ with single quotation marks, not double quotation
marks, because you’re dealing with a single character (char), not a string.

I imagine that you’re curious about the Handled property of the e object. When you

set this property to true, you’re telling Visual C# that you handled the keystroke,

and that Visual C# should ignore it (that is, not add it to the text box). To see the

effect this has, press F5 to run the project and enter the following text into the

text box:

Heard any good jokes lately?

What you end up with is the text shown in Figure 17.9. Notice how the letter k was

“eaten” by your code.

By the
Way

FIGURE 17.9
The keyboard
events enable
you to handle
keystrokes as
you see fit.

Go ahead, try to enter another k—you can’t. Next, try to enter an uppercase K;

Visual C# allows you to do this because uppercase and lowercase characters are con-

sidered different characters. Want to catch all K’s regardless of case? You could do so

by adding the OR (||) operand to your decision construct, like this:

if (e.KeyChar == ‘k’|| e.KeyChar == ‘K’)
e.Handled = true;

364 HOUR 17: Interacting with Users

When you paste data from the Clipboard, the KeyPress event isn’t fired for each
keystroke. It’s therefore possible that a k could appear in the text box. If you
absolutely needed to keep the letter k out of the text box, you would need to use
the TextChanged event as well.

It’s not often that I need to catch a keypress, but every now and then I do. The
three keystroke events listed in Table 17.4 have always made it easy to do what I
need to do, but if there’s one caveat I’ve discovered, it’s that you need to give
careful consideration to which event you choose (such as KeyPress or KeyUp, for
example). Different events work best in different situations, and the best thing to
do is to start with what seems like the most logical event, test the code, and
change the event if necessary.

Using the Common Mouse Events
As with keyboard input, most controls support mouse input natively; you don’t have

to write code to deal with mouse input. At times, you might need more control than

that offered by a control’s native functionality, however. Visual C# supports a num-

ber of events that enable you to deal with mouse input directly. These events are list-

ed in Table 17.5 in the order in which they occur.

TABLE 17.5 Events That Handle Mouse Input

Event Name Description

MouseEnter Occurs when the pointer enters a control

MouseMove Occurs when the pointer moves over a control

MouseHover Occurs when the pointer hovers over a control

MouseDown Occurs when the pointer is over a control and a button is pressed

MouseUp Occurs when the pointer is over a control and a button is released

MouseLeave Occurs when the pointer leaves a control

MouseClick Occurs between the MouseDown and MouseUp events, after the Click
event

Click Occurs between the MouseDown and MouseUp events

Now you’re going to build a project that illustrates interacting with the mouse using

the MouseMove event. This project enables a user to draw on a form, much like you

can draw in a paint program. Begin by creating a new Windows application titled

Mouse Paint and then follow these steps to create the project:

By the
Way

Using the Common Mouse Events 365

1. Right-click Form1.cs in the Solution Explorer and choose Rename. Then

change the name of the default form to MainForm.cs and set its Text proper-

ty to Paint with the Mouse.

2. Double-click the form to access its default event, the Load event. Enter the fol-

lowing statement into the Load event:

m_objGraphics = this.CreateGraphics();

You’ve already used a graphics object a few times. What you’re doing here is

setting a graphics object to the client area of the form; any drawing performed

on the object appears on the form. Because you’re going to draw to this

graphics object each time the mouse pointer moves over the form, there’s no

point in creating a new graphics object each time you need to draw to it.

Therefore, you make m_objGraphics a module-level variable, which is instan-

tiated only once—in the Load event of the form.

3. Enter this statement below the opening curly brace after the public partial

class MainForm : Form class declaration:

private Graphics m_objGraphics;

As mentioned previously, you should always destroy objects when you’re done

with them. In this case, you want the object to remain in existence for the life

of the form. Therefore, you destroy it in the form’s FormClosed event, which

occurs when the form is unloaded.

4. Return to the MainForm.cs[Design] tab, open the events list in the Property

window, and double-click the FormClosed event to create and open the code

window to the FormClosed event. Enter the following statement in the

FormClosed event:

m_objGraphics.Dispose();

Your class should now look like the one shown in Figure 17.10.

The last bit of code you need to add is the code that will draw on the form.

You place code in the form’s MouseMove event to do this. First, the code makes

sure that the left mouse button is held down. If it isn’t, no drawing takes

place; the user must hold down the mouse button to draw. Next, a rectangle is

created. The coordinates of the mouse pointer are used to create a small rec-

tangle that is passed to the DrawEllipse method of the graphics object. This

has the effect of drawing a tiny circle where the mouse pointer is positioned.

366 HOUR 17: Interacting with Users

5. Return to the Mainform.cs[Design] tab, open the events list in the Property

window (if it’s not currently displayed) and double-click the MouseMove event

to create a new MouseMove event procedure. Add the following code to the

MouseMove event:

Rectangle rectEllipse = new Rectangle() ;

if (e.Button != MouseButtons.Left) return;

rectEllipse.X = e.X - 1;
rectEllipse.Y = e.Y - 1;
rectEllipse.Width = 2;
rectEllipse.Height = 2;

m_objGraphics.DrawEllipse(System.Drawing.Pens.Blue, rectEllipse);

Like all events, the e object contains information related to the event. In this exam-

ple, you’re using the X and Y properties of the e object, which are the coordinates of

the pointer when the event fires. In addition, you’re checking the Button property of

the object to make sure that the user is pressing the left button.

Your project is now complete! Save your work by clicking Save All on the toolbar,

and then press F5 to run the project. Move the mouse pointer over the form—noth-

ing happens. Now, hold down the left mouse button and move the mouse. This

time, you draw on the form, as shown in Figure 17.11.

FIGURE 17.10
Code in many
places often
works together
to achieve one
goal.

Q&A 367

Notice that the faster you move the mouse, the more space that appears between

circles. This shows you that the user can move the mouse faster than the MouseMove

event can fire, so you can’t catch every single movement of the mouse. This point is

important to remember.

Summary
Forms and controls allow a lot of flexibility in how a user interacts with an applica-

tion. However, solid interactivity goes beyond just what is placed on a form. In this

hour, you learned how to use the MessageBox.Show() function to create informa-

tional dialog boxes. You learned how to specify an icon and buttons and even how

to designate a specific button as the default button. You also learned some valuable

tips to help create the best messages possible. You’ll create message boxes frequently,

so mastering this skill is important.

Finally, you learned how to interact with the keyboard and mouse directly through

numerous events. A control’s mouse or keyboard capabilities sometimes fall short of

what you want to accomplish. By understanding the concepts presented in this hour,

you can go beyond the native capabilities of controls to create a rich, interactive

experience for your users.

Q&A
Q. Is it possible to capture keystrokes at the form level rather than capturing

them in control events?

A. Yes. For the form’s keyboard-related events to fire when a control has the

focus, however, you must set the form’s KeyPreview property to true. The

control’s keyboard events will still fire, unless you set

KeyPressEventArgs.Handled to true in the control’s KeyPress event.

FIGURE 17.11
Capturing
mouse events
opens many
exciting possi-
bilities.

368 HOUR 17: Interacting with Users

Q. You don’t seem to always specify a button in your MessageBox.Show() state-
ments throughout this book. Why?

A. If you don’t explicitly designate a button or buttons, Visual C# displays the OK

button. Therefore, if all you want is an OK button, you don’t need to pass a

value to the Buttons argument.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What argument must you always supply a value for when calling

MessageBox.Show()?

2. If you don’t supply a value for the Caption parameter of MessageBox.Show(),

what is displayed in the title bar of the message box?

3. How many icons can you show in a message box at once?

4. Which event fires first, the KeyUp or KeyPress event?

5. How do you determine which button is being pressed in a mouse-related

event?

Answers
1. The prompt and the dialog title (caption). Actually, technically the caption is

optional, but it’s such a bad idea to leave it off that I consider it required.

2. Nothing gets displayed; the title bar is empty.

3. Only one icon can be shown at once.

4. The KeyPress event fires before the KeyUp event.

5. By using the e.Button property in the event.

Workshop 369

Exercises
1. Modify your custom dialog box project so that the OK button is the form’s

Accept button. That way, the user must only press Enter to dismiss the dialog

box. Next, make the Cancel button the form’s Cancel button so that the user

can also press the Escape key to dismiss the form.

2. Modify your mouse paint project so that the form clears each time the user

starts drawing. Hint: Clear the graphics object in the MouseDown event to the

form’s BackColor.

This page intentionally left blank

HOUR 18

Working with Graphics

What You’ll Learn in This Hour:
. Understanding the Graphics object
. Working with pens
. Using system colors
. Working with rectangles
. Drawing shapes
. Drawing text
. Persisting graphics on a form

Visual C# provides an amazingly powerful array of drawing capabilities. However, this

power comes at the price of a relatively steep learning curve. Drawing isn’t intuitive; you

can’t sit down for a few minutes with the online Help text and start drawing graphics.

However, after you learn the basic principles involved, you’ll find that drawing isn’t that

complicated. In this hour, you learn the basic skills for drawing shapes and text to a form

or other graphical surface. You learn about pens, colors, and brushes (objects that help

define graphics that you draw). In addition, you learn how to persist graphics on a form—

and even how to create bitmaps that exist solely in memory.

Understanding the Graphics Object
At first, you might not come up with many reasons to draw to the screen, preferring to use

the many advanced controls found within Visual C# to build your interfaces. However, as

your applications increase in size and complexity, you’ll find more and more occasions to

draw your own interfaces directly to the screen. When you need this functionality, you

really need this functionality. You might even choose to design your own controls (which

372 HOUR 18: Working with Graphics

you can do with Visual C#). In this hour, you learn the basics of drawing and print-

ing to the screen. Using the skills you acquire in this hour, you can build incredibly

detailed interfaces that look exactly how you want them to look.

The code within the Windows operating system that handles drawing everything to

the screen, including text, lines, and shapes, is called the Graphical Device Interface

(GDI). The GDI processes all drawing instructions from applications as well as from

Windows itself and generates the output for the current display. Because the GDI

generates what you see onscreen, it is responsible for dealing with the particular dis-

play driver installed on the computer and the driver’s settings, such as resolution

and color depth. This means that applications (and their developers) don’t have to

worry about these details; you write code that tells the GDI what to output, and the

GDI does whatever is necessary to produce that output. This behavior is called device

independence because applications can instruct the GDI to display text and graphics

using code that’s independent of the particular display device.

Visual C# code communicates with the GDI primarily via the Graphics object. The

basic process is as follows:

. An object variable is created to hold a reference to a Graphics object.

. The object variable is set to a valid Graphics object (new or existing).

. To draw or print, you call methods of the Graphics object.

Creating a Graphics Object for a Form or Control
If you want to draw directly to a form or control, you can easily get a reference to

the drawing surface by calling the CreateGraphics() method of the object in ques-

tion. For example, to create a Graphics object that draws to a text box, you could

use code such as this:

System.Drawing.Graphics objGraphics;
objGraphics = this.textBox1.CreateGraphics();

When you call CreateGraphics(), you’re setting the object variable to hold a refer-

ence to the Graphics object of the form or control’s client area. The client area of a

form is the gray area within the form’s borders and title bar, whereas the client area

of a control is usually the entire control. All drawing and printing done using the

Graphics object are sent to the client area. In the code shown previously, the

Graphics object references the client area of a text box, so all drawing methods exe-

cuted on the Graphics object would draw directly to the text box.

Understanding the Graphics Object 373

When you draw directly to a form or control, the object in question doesn’t persist
what’s drawn on it. If the form is obscured in any way, such as by a window cover-
ing it or the form’s being minimized, the next time the form is painted, it won’t
contain anything that was drawn on it. Later in this hour, I teach you how to per-
sist graphics on a form.

Creating a Graphics Object for a New Bitmap
You don’t have to set a Graphics object to the client area of a form or control; you

can also set a Graphics object to a bitmap that exists only in memory. For perform-

ance reasons, you might want to use a memory bitmap to store temporary images

or as a place to build complex graphics before sending them to a visible element

(such as a form or control). To do this, you first have to create a new bitmap.

To create a new bitmap, you dimension a variable to hold a reference to the new

bitmap using the following syntax:

Bitmapvariable = new Bitmap(width, height, pixelformat);

The width and height arguments are exactly what they appear to be: the width

and height of the new bitmap. The pixelformat argument, however, is less intu-

itive. This argument determines the bitmap’s color depth and might also specify

whether the bitmap has an alpha layer (used for transparent portions of bitmaps).

Table 18.1 lists a few of the common values for pixelformat. (See Visual C#’s online

Help for the complete list of values and their meanings.)

TABLE 18.1 Common Values for pixelformat

Value Description

Format16bppGrayScale The pixel format is 16 bits per pixel. The color information
specifies 65,536 shades of gray.

Format16bppRgb555 The pixel format is 16 bits per pixel. The color information
specifies 32,768 shades of color, of which 5 bits are red,
5 bits are green, and 5 bits are blue.

Format24bppRgb The pixel format is 24 bits per pixel. The color information
specifies 16,777,216 shades of color, of which 8 bits are
red, 8 bits are green, and 8 bits are blue.

To create a new bitmap that’s 640 pixels wide by 480 pixels tall and has a pixel

depth of 24 bits, for example, you could use this statement (assuming you had a

variable named objMyBitMap declared):

objMyBitMap = new Bitmap(640, 480,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);

By the
Way

374 HOUR 18: Working with Graphics

After the bitmap is created, you can create a Graphics object that references the

bitmap using the FromImage() method, like this:

objGraphics = Graphics.FromImage(objMyBitMap);

Now any drawing or printing done using objGraphics would be performed on the

memory bitmap. For the user to see the bitmap, you would have to send the bitmap

to a form or control. You do this later in this hour in the section “Persisting Graphics

on a Form.”

Disposing of an Object When It Is No Longer
Needed
When you’re finished with a Graphics object, you should call its Dispose() method

to ensure that all resources used by the Graphics object are freed. Simply letting an

object variable go out of scope doesn’t ensure that the resources used by the object

are freed. Graphics objects can use considerable resources, so you should always

call Dispose() when you’re finished with any graphics-related object (including

Pens and other types of objects).

Visual C# also supports a way of automatically disposing object resources. This can

be accomplished utilizing the Visual C# using statement. The using statement

wraps a declared object or objects in a block and disposes of those objects after the

block is done. As a result, after the code is executed in a block, the block is exited

and the resources are disposed of on exit. Following is the syntax for the using

statement and a small sample:

using (expression | type identifier = initializer)
{

// Statements to execute
}

Example:

using (MyClass objClass = new MyClass())
{

objClass.Method1();
objClass.Method2();

}

One point to keep in mind is that the using statement acts as a wrapper for an

object within a specified block of code; therefore, it is useful only for declaring

objects that are used and scoped within a method (scope is discussed in Hour 11,

“Using Constants, Data Types, Variables, and Arrays”).

Working with Pens 375

Earlier in the book you learned how to use a using statement to include a name-
space, such as System.Diagnostics. Note that the use of using in this case is
different; the same keyword is used for multiple purposes.

Working with Pens
A pen is an object that defines characteristics of a line. Pens are used to define color,

line width, and line style (solid, dashed, and so on). Pens are used with almost all

the drawing methods you learn about in this hour.

Visual C# supplies a number of predefined pens, and you can also create your own.

To create your own pen, use the following syntax:

penvariable = new Pen(color, width);

After a pen is created, you can set its properties to adjust its appearance. For exam-

ple, all Pen objects have a DashStyle property that determines the appearance of

lines drawn with the pen. Table 18.2 lists the possible values for DashStyle.

TABLE 18.2 Possible Values for DashStyle

Value Description

Dash Specifies a line consisting of dashes.

DashDot Specifies a line consisting of a pattern of dashes and dots.

DashDotDot Specifies a line consisting of alternating dashes and double dots.

Dot Specifies a line consisting of dots.

Solid Specifies a solid line.

Custom Specifies a custom dash style. The Pen object contains properties
that can be used to define the custom line.

The enumeration for DashStyle is part of the Drawing.Drawing2D namespace.

Therefore, to create a new, dark blue pen that draws a dotted line, you would use

code like the following:

Pen objMyPen = new Pen(System.Drawing.Color.DarkBlue, 3);
objMyPen.DashStyle = System.Drawing.Drawing2D.DashStyle.Dot;

If System.Drawing was declared with a using statement, you would not need to
use the fully qualified names here.

By the
Way

By the
Way

376 HOUR 18: Working with Graphics

The 3 passed as the second argument to create the new pen defines the pen’s

width—in pixels.

Visual C# includes many standard pens, which are available via the

System.Drawing.Pens class, as in

objPen = System.Drawing.Pens.DarkBlue;

When drawing using the techniques discussed shortly, you can use custom pens or

system-defined pens; it’s your choice.

Using System Colors
At some point, you might have changed your Windows theme, or perhaps you

changed the image or color of your desktop. What you might not be aware of is that

Windows enables you to customize the colors of almost all Windows interface ele-

ments. The colors that Windows allows you to change are called system colors. To

change your system colors, right-click the desktop and choose Personalize from the

shortcut menu to display the Personalize Appearance and Sounds page. Next, click

the Window Color and Appearance link to display the Appearance Settings dialog

box and then click Advanced. This displays the Advanced Appearance dialog box,

shown in Figure 18.1. In this dialog box, you click an item in the picture whose

color you want to change, and then you choose a new color at the bottom. (If you’re

running a version of Windows other than Windows Vista, your dialog box might be

slightly different.)

FIGURE 18.1
In the Advanced
Appearance dia-
log box, you can
select the col-
ors of most
Windows inter-
face elements.

Using System Colors 377

When you change a system color using the Advanced Appearance dialog box, all

loaded applications should change their appearance to match your selection. In

addition, when you start any new application, it should also match its appearance

to your selection. If you had to write code to manage this behavior, you would have

to write a lot of code, and you would be justified in avoiding the whole mess.

However, making an application adjust its appearance to match the user’s system

color selections is actually easy, so there’s no reason not to do it. For the most part,

it’s automatic, with controls that you add to a form.

To designate that an interface color should stay in sync with a user’s system colors,

you assign a system color to a color property of the item in question, as shown in

Figure 18.2. If you wanted to ensure that the color of a button matches the user’s

system color, for example, you would assign the system color Control to the

BackColor property of the Button control. Table 18.3 lists the most common system

colors you can use. For a complete list, consult the online Help.

FIGURE 18.2
System colors
are assigned
using the
System
palette tab.

TABLE 18.3 System Colors

Enumeration Description

ActiveCaption The color of the background of the active caption bar
(title bar).

ActiveCaptionText The color of the text of the active caption bar (title bar).

Control The color of the background of pushbuttons and other
3D elements.

378 HOUR 18: Working with Graphics

ControlDark The color of shadows on a 3D element.

ControlLight The color of highlights on a 3D element.

ControlText The color of the text on buttons and other 3D elements.

Desktop The color of the Windows desktop.

GrayText The color of the text on a user interface element when
it’s disabled or dimmed.

Highlight The color of the background of highlighted text. This
includes selected menu items as well as selected text.

HighlightText The color of the foreground of highlighted text. This
includes selected menu items as well as selected text.

InactiveBorder The color of an inactive window border.

InactiveCaption The color of the background of an inactive caption bar.

InactiveCaptionText The color of the text of an inactive caption bar.

Menu The color of the menu background.

MenuText The color of the menu text.

Window The color of the background in a window’s client area.

When a user changes a system color using the Advanced Appearance dialog box,

Visual C# automatically updates the appearance of objects that use system colors.

You don’t have to write a single line of code to do this. Fortunately, when you create

new forms and add controls to forms, Visual C# automatically assigns the proper

system color to the appropriate properties, so you don’t usually have to mess with

them.

Be aware that you aren’t limited to assigning system colors to their logically associ-

ated properties. You can assign system colors to any color property you want, and

you can also use system colors when drawing. This enables you to draw custom

interface elements that match the user’s system colors, for example. Be aware, how-

ever, that if you do draw with system colors, Visual C# doesn’t update the colors

automatically when the user changes system colors; you would have to redraw the

elements with the new system colors. In addition, if you apply system colors to prop-

erties that aren’t usually assigned system colors, you run the risk of displaying odd

color combinations, such as black on black, depending on the user’s color settings.

TABLE 18.3 Continued

Enumeration Description

Working with Rectangles 379

Users don’t change their system colors just for aesthetic purposes. I work with a
programmer who is color-blind. He has modified his system colors so that he can
see things better on the screen. If you don’t allow your applications to adjust to
the user’s color preferences, you might make using your program unnecessarily
difficult, or even impossible, for someone with color blindness or visual acuity
issues.

Working with Rectangles
Before learning how to draw shapes, you need to understand the concept of a rec-

tangle as it relates to Visual C# programming. A rectangle is a structure used to

hold bounding coordinates used to draw a shape. A rectangle isn’t necessarily used

to draw a rectangle (although it can be). Obviously, a square can fit within a rectan-

gle. However, so can circles and ellipses. Figure 18.3 illustrates how most shapes can

be bound by a rectangle.

By the
Way

Square Rectangle

Circle Ellipse

To draw most shapes, you must have a rectangle. The rectangle you pass to a draw-

ing method is used as a bounding rectangle. The proper shape (circle, ellipse, and so

on) is always drawn within the confines of the bounding rectangle. Creating a rec-

tangle is easy. First, you dimension a variable as Rectangle, and then you set the X,

Y, Width, and Height properties of the object variable. The X, Y value is the coordi-

nate of the upper-left corner of the rectangle. The Height and Width properties are

self-explanatory.

The following code creates a rectangle that has its upper-left corner at coordinate

0,0, has a width of 100, and has a height of 50. Note that this code simply defines a

rectangle in code; it doesn’t draw a rectangle to the screen:

FIGURE 18.3
Rectangles are
used to define
the bounds of
most shapes.

380 HOUR 18: Working with Graphics

Rectangle rectBounding = new Rectangle();
rectBounding.X = 0;
rectBounding.Y = 0;
rectBounding.Width = 100;
rectBounding.Height = 50;

The Rectangle object enables you to send the X, Y, Height, and Width values as

part of its initialize construct. Using this technique, you could create the same rec-

tangle with only a single line of code:

Rectangle rectBounding = new Rectangle(0,0,100,50);

You can do a number of things with a rectangle after it’s defined. Perhaps the most

useful is the ability to enlarge or shrink the rectangle with a single statement. You

enlarge or shrink a rectangle using the Inflate() method. Here’s the most common

syntax of Inflate():

object.Inflate(changeinwidth, changeinheight);

When called this way, the rectangle width is enlarged (the left side of the rectangle

remains in place), and the height is enlarged (the top of the rectangle stays in

place). To leave the height or width unchanged, pass 0 as the appropriate argu-

ment. To shrink a side, specify a negative number.

If you’re planning to do much drawing, you’ll use a lot of Rectangle objects, so I

strongly suggest that you learn as much about them as you can.

Drawing Shapes
Now that you’ve learned about the Graphics object, pens, and rectangles, you’ll

probably find drawing shapes to be fairly simple. You draw shapes by calling meth-

ods of a Graphics object. Most methods require a rectangle, which is used as the

shape’s bounding rectangle, as well as a pen. In this section, you learn what you

need to do to draw different shapes.

I’ve chosen to discuss only the most commonly drawn shapes. The Graphics
object contains many methods for drawing additional shapes.

Drawing Lines
You draw lines using the DrawLine() method of the Graphics object. DrawLine() is

one of the few drawing methods that doesn’t require a rectangle. The syntax for

DrawLine() is

object.DrawLine(pen, x1, y1, x2, y2);

By the
Way

Drawing Shapes 381

object refers to a Graphics object, and pen refers to a Pen object, both of which

have already been discussed. x1, y1 is the coordinate of the line’s starting point,

whereas x2, y2 is the coordinate of the ending point. Visual C# draws a line

between the two points using the specified pen.

Drawing Rectangles
You draw rectangles (and squares, for that matter) using the DrawRectangle()

method of a Graphics object. As you might expect, DrawRectangle() accepts a pen

and a rectangle. Here’s the syntax for calling DrawRectangle() in this way:

object.DrawRectangle(pen, rectangle);

If you don’t have a Rectangle object (and you don’t want to create one), you can

call DrawRectangle() using the following format:

object.DrawRectangle(pen, X, Y, width, height);

Drawing Circles and Ellipses
You draw circles and ellipses by calling the DrawEllipse() method. If you’re famil-

iar with geometry, you know that a circle is simply an ellipse that has the same

height and width. This is why no specific method exists for drawing circles:

DrawEllipse() works perfectly. Like the DrawRectangle() method, DrawEllipse()

accepts a pen and a rectangle. The rectangle is used as a bounding rectangle. The

width of the rectangle is the width of the ellipse, and the height of the rectangle is

the height of the ellipse. DrawEllipse() has the following syntax:

object.DrawEllipse(pen, rectangle);

If you don’t have a Rectangle object defined (and you don’t want to create one),

you can call DrawEllipse() with this syntax:

object.DrawEllipse(pen, X, Y, Width, Height);

Clearing a Drawing Surface
To clear the surface of a Graphics object, call the Clear() method, passing it the

color to paint the surface like this:

objGraphics.Clear(Drawing.SystemColors.Control);

When using the Graphics object of a form, you could use the following code to clear

the form using the BackColor of the form:

objGraphics.Clear(this.BackColor);

382 HOUR 18: Working with Graphics

Drawing Text
Drawing text on a Graphics object is similar to drawing a shape. The method name

even contains the word Draw, in contrast to Print. To draw text on a Graphics

object, call the DrawString() method. The basic format for DrawString() looks like

this:

object.DrawString(stringoftext, font, brush, topX, leftY);

A few of these items are probably new to you. The argument stringoftext is self-

explanatory: It’s the string you want to draw on the Graphics object. The topX and

leftY arguments represent the coordinate at which drawing will take place; they

represent the upper-left corner of the string, as illustrated in Figure 18.4.

The coordinates are in reference to the upper-left corner of the text.

X, Y FIGURE 18.4
The coordinate
specified in
DrawString()
represents the
upper-left cor-
ner of the print-
ed text. The arguments brush and font aren’t so obvious. Both arguments accept objects. A

brush is similar to a pen, but whereas a pen describes the characteristics of a line, a

brush describes the characteristics of a fill. For example, both pens and brushes

have a color. But where pens have an attribute for defining a line style such as

dashed or solid, a brush has an attribute for a fill pattern such as solid, hatched,

weave, or trellis. When you draw text, a solid brush is usually sufficient. You can

create brushes in much the same way as you create pens, or you can use one of the

standard brushes available from the System.Drawing.Brushes class.

A Font object defines characteristics used to format text, including the character set

(Times New Roman, Courier, and so on), size (point size), and style (bold, italic, nor-

mal, underlined, and so on). To create a new Font object, you could use code such

as the following:

Font objFont;
objFont = new System.Drawing.Font(“Arial”, 30);

The text Arial in this code is the name of a font installed on my computer. In fact,

Arial is one of the few fonts installed on all Windows computers. If you supply the

name of a font that doesn’t exist on the machine at runtime, Visual C# uses a

default font that it thinks is the closest match to the font you specified. The second

parameter is the point size of the text. If you want to use a style other than normal,

Building a Graphics Project Example 383

you can provide a style value as a third parameter, like this (note the logical OR, as

discussed in Hour 12, “Performing Arithmetic, String Manipulation, and Date/Time

Adjustments”):

objFont = new System.Drawing.Font(“Arial Black”, 30,
FontStyle.Bold | FontStyle.Italic);

In addition to creating a Font object, you can use the font of an existing object,

such as a form. For example, the following statement prints text to a Graphics

object using the font of the current form:

objGraphics.DrawString(“This is the text that prints!”,
this.Font, System.Drawing.Brushes.Blue, 0, 0);

Persisting Graphics on a Form
Sometimes you might find it necessary to use the techniques discussed in this hour

to draw to a form. However, you might recall from earlier hours that when you

draw to a form (actually, you draw to a Graphics object that references a form), the

things you draw aren’t persisted. The next time the form paints itself, the drawn ele-

ments disappear. If the user minimizes the form or obscures the form with another

window, for example, the next time the form is painted, it will be missing all drawn

elements that were obscured. You can use a couple of approaches to deal with this

behavior:

. Place all code that draws to the form in the form’s Paint event.

. Draw to a memory bitmap and copy the contents of the memory bitmap to

the form in the form’s Paint event.

If you’re drawing only a few items, placing the drawing code in the Paint event

might be a good approach. However, consider a situation in which you have a lot of

drawing code. Perhaps the graphics are drawn in response to user input, so you

can’t re-create them all at once. In these situations, the second approach is clearly

better.

Building a Graphics Project Example
Now you’re going to build a project that uses the skills you’ve learned to draw to a

form. In this project, you use the technique of drawing to a memory bitmap to per-

sist the graphics each time the form paints itself.

384 HOUR 18: Working with Graphics

The project you’re about to build is perhaps the most difficult yet. I explain each
step of the process, but I don’t spend time explaining the objects and methods
that have already been discussed.

To make things interesting, I’ve used random numbers to determine font size as well

as the X, Y coordinate of the text you’re going to draw to the form. The Random class

and its Next() method are used to generate pseudo-random numbers. To generate a

random number within a specific range (such as a random number between 1 and

10), you use the following:

randomGenerator.Next(1,10);

Start by creating a new Windows application titled Persisting Graphics and then

follow these steps to build the project:

1. Right-click Form1.cs in the Solution Explorer and choose Rename. Change the

name of the default form to MainForm.cs and set the form’s Text property to

Persisting Graphics Example.

2. Your form’s interface will consist of a text box and a button. When the user

clicks the button, the contents of the text box will be drawn on the form in a

random location and with a random font size. Add a new text box to your

form and set its properties as follows:

Property Value

Name txtInput

Location 56, 184

Size 100, 20

3. Add a new button to the form by double-clicking the Button item in the tool-

box and set its properties as follows:

Property Value

Name btnDrawText

Location 162, 182

Text Draw Text

Time for the code to fly!

As mentioned earlier, all drawing will be performed using a memory bitmap,

which then will be copied to the form. You’ll reference this bitmap in multiple

places, so you’ll make it a module-level variable.

By the
Way

Building a Graphics Project Example 385

4. Double-click the form to access its Load event.

5. Locate the statement public partial class MainForm : Form and position

your cursor immediately after the left bracket ({) on the next line.

6. Enter the following statement:

private Bitmap m_objDrawingSurface;

7. For the bitmap variable to be used, it must reference a Bitmap object. A good

place to initialize things is in the form’s Load event, so put your cursor back in

the Load event now and enter the following code (see Figure 18.5):

// Create a drawing surface with the same dimensions as the client
// area of the form.
m_objDrawingSurface = new Bitmap(this.ClientRectangle.Width,

this.ClientRectangle.Height,
System.Drawing.Imaging.PixelFormat.Format24bppRgb);

InitializeSurface();

FIGURE 18.5
Make sure that
your code
appears exactly
as it does here.

The first statement creates a new bitmap in memory. Because the contents of

the bitmap are to be sent to the form, it makes sense to use the dimensions

of the form’s client area as the size of the new bitmap—which is exactly what

you’ve done. The final statement calls a procedure that you haven’t yet

created.

8. Position the cursor after the closing bracket (}) of the MainForm_Load event

and press Enter to create a new line. Now you’ll write code to initialize the

386 HOUR 18: Working with Graphics

bitmap. The code will clear the bitmap to the system color named Control

and then draw an ellipse that has the dimensions of the bitmap. (I’ve added

comments to the code so that you can follow along with what’s happening; all

the concepts in this code have been discussed already.) Enter the following in

its entirety:

private void InitializeSurface()
{

Graphics objGraphics;
Rectangle rectBounds;

// Create a Graphics object that references the bitmap and clear it.
objGraphics = Graphics.FromImage(m_objDrawingSurface);

objGraphics.Clear(SystemColors.Control);

//Create a rectangle the same size as the bitmap.
rectBounds = new Rectangle(0, 0,

m_objDrawingSurface.Width,m_objDrawingSurface.Height);
//Reduce the rectangle slightly so the ellipse
// won’t appear on the border.
rectBounds.Inflate(-1, -1);

// Draw an ellipse that fills the form.
objGraphics.DrawEllipse(Pens.Orange, rectBounds);

// Free up resources.
objGraphics.Dispose();

}

Your procedure should now look like the one shown in Figure 18.6.

FIGURE 18.6
Verify that your
code is entered
correctly.

Building a Graphics Project Example 387

If you run your project now, you’ll find that nothing is drawn to the form. The

reason is that the drawing is being done to a bitmap in memory, and you

haven’t yet added the code to copy the bitmap to the form. The place to do

this is in the form’s Paint event so that the contents of the bitmap are sent to

the form every time the form paints itself. This ensures that the items you

draw always appear on the form.

9. Create an event handler for the form’s Paint event by first returning to the

Form Designer and selecting the form. Click the Event icon in the Properties

window and then double-click Paint to create a new Paint event procedure.

Add the following code to the Paint event:

// Draw the contents of the bitmap on the form.
e.Graphics.DrawImage(m_objDrawingSurface, 0, 0,

m_objDrawingSurface.Width,
m_objDrawingSurface.Height);

e.Graphics.Dispose();

The e parameter of the Paint event has a property that references the form’s

Graphics object. You can’t modify the Graphics object using the e parameter,

however, because it’s read-only. This is why you’ve created a new Graphics

object to work with and then set the object to reference the form’s Graphics

object. The method DrawImage() draws the image in a bitmap to the surface

of a Graphics object, so the last statement simply sends the contents of the

bitmap that exists in memory to the form.

If you run the project now, you’ll find that the ellipse appears on the form.

Furthermore, you can cover the form with another window, or even minimize

it, and the ellipse will always appear on the form when it’s displayed again—

the graphics persist.

10. The last thing to do is write code that draws the contents entered into the text

box on the form. The text will be drawn with a random size and location.

Return to the Form Designer and double-click the button to access its Click

event. Add the following code:

Graphics objGraphics;
Font objFont;
int intFontSize, intTextX, intTextY;

Random randomGenerator = new Random();

// If no text has been entered, get out.
if (txtInput.Text == “”) return;

// Create a graphics object using the memory bitmap.
objGraphics = Graphics.FromImage(m_objDrawingSurface);

388 HOUR 18: Working with Graphics

// Create a random number for the font size. Keep it between 8 and 48.
intFontSize = randomGenerator.Next(8,48);
// Create a random number for the X coordinate of the text.
intTextX = randomGenerator.Next(0,this.ClientRectangle.Width);
// Create a random number for the Y coordinate of the text.
intTextY = randomGenerator.Next(0,this.ClientRectangle.Height);

// Create a new font object.
objFont = new System.Drawing.Font(“Arial”, intFontSize, FontStyle.Bold);
// Draw the user’s text.
objGraphics.DrawString(txtInput.Text, objFont,
System.Drawing.Brushes.Red, intTextX, intTextY);
// Clean up.
objGraphics.Dispose();
// Force the form to paint itself. This triggers the Paint event.
this.Invalidate();

The comments I’ve included should make the code self-explanatory. However, the

last statement bears discussing. The Invalidate() method of a form invalidates the

client rectangle. This operation tells Windows that the form’s appearance is no

longer accurate and that the form needs to be repainted. This, in turn, triggers the

form’s Paint event. Because the Paint event contains the code that copies the con-

tents of the memory bitmap to the form, invalidating the form causes the text to

appear. If you don’t call Invalidate() here, the text doesn’t appear on the form

(but it is still drawn on the memory bitmap).

If you draw elements that are based on the form’s size, you need to call
Invalidate() in the form’s Resize event; resizing a form doesn’t trigger the
form’s Paint event.

The last thing you need to do is make sure you free up the resources used by your

module-level Graphics object. Using the Properties window, add an event handler

for the FormClosed event of the form now and enter the following statement:

m_objDrawingSurface.Dispose();

Your project is now complete! Click Save All on the toolbar to save your work and

then press F5 to run the project. You’ll notice immediately that the ellipse is drawn

on the form. Type something into the text box and click the button. Click it again.

Each time you click the button, the text is drawn on the form using the same brush,

but with a different size and location, as shown in Figure 18.7.

By the
Way

Summary 389

Summary
You won’t need to add drawing capabilities to every project you create. However,

when you need the capabilities, you need the capabilities. In this hour, you learned

the basic skills for drawing to a graphics surface, which can be a form, control,

memory bitmap, or one of many other types of surfaces. You learned that all draw-

ing is done using a Graphics object. You now know how to create a Graphics object

for a form or control and even how to create a Graphics object for a bitmap that

exists in memory.

Most drawing methods require a pen and a rectangle, and you can now create rec-

tangles and pens using the techniques you learned in this hour. After learning

about pens and rectangles, you’ve found that the drawing methods themselves are

relatively easy to use. Even drawing text is simple when you have a Graphics object

to work with.

Persisting graphics on a form can be a bit complicated, and I suspect this will con-

fuse many new Visual C# programmers who try to figure it out on their own.

However, you’ve now built an example that persists graphics on a form, and you’ll

be able to leverage the techniques involved when you have to do this in your own

projects.

I don’t expect you to be able to sit down for an hour and create an Adobe

Photoshop knockoff. However, you now have a solid foundation on which to build.

If you want to attempt a project that performs a lot of drawing, dig deeper into the

Graphics object.

FIGURE 18.7
Text is drawn on
a form, much
like ordinary
shapes.

390 HOUR 18: Working with Graphics

Q&A
Q. What if I need to draw a lot of lines, one starting where another ends? Do I

need to call DrawLine() for each line?

A. The Graphics object has a method called DrawLines(), which accepts a series

of points. The method draws lines connecting the sequence of points.

Q. Is there a way to fill a shape?

A. The Graphics object includes methods that draw filled shapes, such as

FillEllipse() and FillRectangle().

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What object is used to draw to a surface?

2. To set a Graphics object to draw to a form directly, you call what method of

the form?

3. What object defines the characteristics of a line? A fill pattern?

4. How do you make a color property adjust with the user’s Windows settings?

5. What object is used to define the boundaries of a shape to be drawn?

6. What method do you call to draw an irregular ellipse? A circle?

7. What method do you call to print text on a Graphics surface?

8. To ensure that graphics persist on a form, they must be drawn on the form in

what event?

Answers
1. The Graphics object

2. The CreateGraphics() method

3. Lines are defined by Pen objects; fill characteristics are defined by Brush

objects.

Workshop 391

4. Use system colors.

5. A Rectangle object

6. Both shapes are drawn with the DrawEllipse() method.

7. The DrawString() method

8. The form’s Paint event

Exercises
1. Modify the example in this hour to use a font other than Arial. If you’re not

sure what fonts are installed on your computer, click the Start menu and

choose Control Panel. Click the Appearance and Personalization link, and

you’ll find a link to the system fonts.

2. Create a project that draws an ellipse that fills the form, much like the one

you created in this hour. However, draw the ellipse directly to the form in the

Paint event. Make sure that the ellipse is redrawn when the form is sized.

(Hint: Invalidate the form in the form’s Resize() event.)

This page intentionally left blank

PART IV

Working with Data

HOUR 19 Performing File Operations 395

HOUR 20 Working with Text Files and the Registry 413

HOUR 21 Working with a Database 437

HOUR 22 Controlling Other Applications Using Automation 453

This page intentionally left blank

HOUR 19

Performing File Operations

What You’ll Learn in This Hour:
. Using the OpenFileDialog and SaveFileDialog controls
. Manipulating files with System.IO.File
. Manipulating directories with System.IO.Directory

It’s difficult to imagine any application other than a tiny utility program that doesn’t use

the file system. In this hour, you learn how to use controls to make it easy for a user to

browse and select files. In addition, you learn how to use the System.IO.File and

System.IO.Directory objects to manipulate the file system more easily than you might

think. Using these objects, you can delete files and directories, move them, rename them,

and more. These objects are powerful, but remember: Play nice!

Using the OpenFileDialog and
SaveFileDialog Controls
In Hour 1, “Jumping In with Both Feet: A Visual C# 2008 Programming Tour,” you used

the OpenFileDialog control to enable a user to browse for pictures to display in your

Picture Viewer program. In this section, you move beyond those basics to learn important

details about working with the OpenFileDialog, as well as its sister control, the

SaveFileDialog.

396 HOUR 19: Performing File Operations

You’re going to build a project to illustrate most of the file-manipulation concepts

discussed in this hour. Begin by creating a new Windows application called

Manipulating Files and then follow these steps:

1. Right-click Form1.cs in the Solution Explorer, choose Rename, and change the

name of the default form to MainForm.cs. Next, set the form’s Text property

to Manipulating Files.

2. Add a new text box to the form and set its properties as shown in the follow-

ing table:

Property Value

Name txtSource

Location 95, 8

Size 184, 20

Using the OpenFileDialog Control
The OpenFileDialog control is used to display a dialog box that enables the user to

browse and select a file, as shown in Figure 19.1. Be sure to note that usually the

OpenFileDialog doesn’t actually open a file, but it allows a user to select a file so

that it can be opened by code within the application.

FIGURE 19.1
The
OpenFileDialog
control enables
a user to
browse for a
file.

Add a new OpenFileDialog control to your project now by double-clicking the

OpenFileDialog item in the toolbox. The OpenFileDialog doesn’t have an inter-

face per se, so it appears in the area below the form rather than on it, as shown in

Using the OpenFileDialog and SaveFileDialog Controls 397

Figure 19.2. For the user to browse for files, you have to manipulate the

OpenFileDialog using its properties and methods.

FIGURE 19.2
The Open File
dialog box is
hosted below
the form, not
on it.

Now you are going to add a button to the form that, when clicked, enables a user to

locate and select a file. If the user selects a file, the filename is placed in the text

box you’ve created.

1. Add a button to the form and set its properties as follows:

Property Value

Name btnOpenFile

Location 9, 6

Size 80, 23

Text Source:

2. Double-click the button and add the following code to its Click event:

openFileDialog1.InitialDirectory = @”C:\”;
openFileDialog1.Title = “Select a File”;
openFileDialog1.FileName = “”;

The first statement specifies the directory to display when the dialog box is first

shown. If you don’t specify a directory for the InitialDirectory property, the

active system directory is used (for example, the last directory browsed to with a dif-

ferent Open File dialog box).

398 HOUR 19: Performing File Operations

The Title property of the OpenFileDialog determines the text displayed in the title

bar of the Open File dialog box. If you don’t specify text for the Title property,

Visual C# displays the word Open in the title bar.

The FileName property is used to return the name of the chosen file. If you don’t set

this to an empty string before showing the Open File dialog box, the name of the

control is used by default—not a desirable result.

Creating File Filters
Different types of files have different extensions. The Filter property determines

what types of files appear in the Open File dialog box (refer to Figure 19.1). A filter

is specified in the following format:

Description|*.extension

The text that appears before the pipe symbol (|) describes the file type to filter on,

whereas the text after the pipe symbol is the pattern used to filter files. For example,

to display only Windows bitmap files, you could use a filter such as the following:

control.Filter = “Windows Bitmaps|*.bmp”;

You can specify more than one filter type. To do so, add a pipe symbol between the

filters, like this:

control.Filter = “Windows Bitmaps|*.bmp|JPEG Files|*.jpg”;

You want to restrict your Open File dialog box to show only text files, so enter this

statement in your procedure:

openFileDialog1.Filter = “Text Files (*.txt)|*.txt”;

When you have more than one filter, you can specify which filter appears selected

by default using the FilterIndex property. Although you’ve specified only one filter

type in this example, it’s still a good idea to designate the default filter, so add this

statement to your procedure:

openFileDialog1.FilterIndex = 1;

Unlike most other collections, the FilterIndex property is 1-based, not 0-based,
so 1 is the first filter listed.

Showing the Open File Dialog Box
Finally, you need to show the Open File dialog box and take action based on

whether the user selects a file. The ShowDialog() method of the OpenFileDialog

By the
Way

Using the OpenFileDialog and SaveFileDialog Controls 399

control acts much like the method of forms by the same name, returning a result

that indicates the user’s selection in the dialog box.

Enter the following statements into your procedure:

if (openFileDialog1.ShowDialog() != DialogResult.Cancel)
txtSource.Text = openFileDialog1.FileName;

else
txtSource.Text = “”;

This code just places the selected filename into the text box txtSource. If the user

clicks Cancel, the contents of the text box are cleared.

Press F5 to run the project and click the button. You get the same dialog box shown

in Figure 19.1 (with different files and directories, of course). Select a text file and

click Open. Visual C# places the name of the file into the text box.

By default, the OpenFileDialog doesn’t let the user enter a filename that doesn’t
exist. You can override this behavior by setting the CheckFileExists property of
the OpenFileDialog to False.

The OpenFileDialog control can allow the user to select multiple files. It’s rare
that you need to do this (I don’t recall ever needing this capability in one of my
projects), so I don’t go into the details here. If you’re interested, take a look at the
Multiselect property of the OpenFileDialog in the Help text.

The OpenFileDialog control makes allowing a user to browse and select a file

almost trivial. Without this component, you would have to write an astounding

amount of difficult code and probably still wouldn’t come up with all the function-

ality supported by this control.

Using the SaveFileDialog Control
The SaveFileDialog control is similar to the OpenFileDialog control, but it’s used

to allow a user to browse directories and specify a file to save, rather than open.

Again, it’s important to note that the SaveFileDialog control doesn’t actually save

a file; it’s used to allow a user to specify a filename to save. You have to write code

to do something with the filename returned by the control.

Here, you use the SaveFileDialog control to let the user specify a filename. This

filename will be the target of various file operations that you learn about later in

this hour. Follow these steps to create the File Save dialog box:

Did you
Know?

By the
Way

400 HOUR 19: Performing File Operations

1. Create a new text box on your form and set its properties as follows:

Property Value

Name txtDestination

Location 95, 34

Size 184, 20

2. Now you’re ready to create a button that, when clicked, enables the user to

specify a filename to save a file. Add a new button to the form and set its

properties as shown in the following table:

Property Value

Name btnSaveFile

Location 9, 31

Size 80, 23

Text Destination:

3. Of course, none of these steps work without your adding a Save File dialog

box. Double-click the SaveFileDialog item in the toolbox to add a new con-

trol to the project.

4. Double-click the new button you just created (btnSaveFile) and add the fol-

lowing code to its Click event:

saveFileDialog1.Title = “Specify Destination File Name”;
saveFileDialog1.Filter = “Text Files (*.txt)|*.txt”;
saveFileDialog1.FilterIndex = 1;

saveFileDialog1.OverwritePrompt = true;

The first three statements set properties identical to those of the

OpenFileDialog. The OverwritePrompt property, however, is unique to the

SaveFileDialog. When this property is set to true, Visual C# asks users to

confirm their selections when they choose a file that already exists, as shown

in Figure 19.3. I highly recommend that you prompt users about replacing

files by ensuring that the OverwritePrompt property is set to true.

FIGURE 19.3
It’s a good idea
to get confirma-
tion before
replacing an
existing file.

Manipulating Files with the File Object 401

If you want the Save File dialog box to prompt users when the file they specify
doesn’t exist, set the CreatePrompt property of the SaveFileDialog control to
true.

5. The last bit of code you need to add places the selected filename in the

txtDestination text box. Enter the code as shown here:

if (saveFileDialog1.ShowDialog() != DialogResult.Cancel)
txtDestination.Text = saveFileDialog1.FileName;

Press F5 to run the project, and then click each of the buttons and select a file.

When you’re satisfied that your selections are being sent to the appropriate

text box, stop the project and save your work. If your selected filenames aren’t

being sent to the proper text box, compare your code against the code I’ve

provided.

The OpenFileDialog and SaveFileDialog controls are similar in design and

appearance, but each serves a specific purpose. You’re going to use the interface

you’ve just created throughout the rest of this hour.

Manipulating Files with the File Object
Visual C# includes a powerful namespace called System.IO (the IO object acts like

an object property of the System namespace). Using various properties, methods,

and object properties of System.IO, you can do just about anything you can imag-

ine with the file system. In particular, the System.IO.File and

System.IO.Directory objects provide you with extensive file and directory (folder)

manipulation capabilities.

In the following sections, you continue to expand the project you’ve created. You

write code that manipulates the selected filenames by using the OpenFileDialog

and SaveFileDialog controls.

The code you’re about to write in the following sections is “the real thing.” For
example, the code for deleting a file really does delete a file. Don’t forget this as
you test your project; the files selected as the source and destination will be
affected by your actions. I provide the cannon, and it’s up to you not to shoot your-
self in the foot.

By the
Way

Watch
Out!

402 HOUR 19: Performing File Operations

Determining Whether a File Exists
Before you attempt any operation on a file, such as copying or deleting it, it’s a

good idea to make certain the file exists. For example, if the user doesn’t click the

Source button to select a file but instead types the name and path of a file into the

text box, the user could type an invalid or nonexistent filename. Attempting to

manipulate a nonexistent file could result in an exception—which you don’t want

to happen. Because you’ll work with the source file selected by the user in many

routines, you’re going to create a central function that can be called to determine

whether the source file exists. The function uses the Exists() method of the

System.IO.File object to determine whether the file exists.

Add the following method to your form class:

bool SourceFileExists()
{
if (!System.IO.File.Exists(txtSource.Text))

{
MessageBox.Show(“The source file does not exist!”);
return false;

}
else

return true;
}

The SourceFileExists() method looks at the filename specified in the text box. If

the file exists, SourceFileExists() returns true; otherwise, it returns false.

Copying a File
Copying files is a common task. For example, you might want to create an applica-

tion that backs up important data files by copying them to another location. For the

most part, copying is pretty safe—as long as you use a destination filename that

doesn’t already exist. You copy files using the Copy() method of the

System.IO.File class.

Now you’re going to add a button to your form. When the user clicks this button,

the file specified in the source text box is copied to a new file with the name given

in the destination text box. Follow these steps to create the copy functionality:

1. Add a button to your form and set its properties as shown in the following table:

Property Value

Name btnCopyFile

Location 95, 71

Size 75, 23

Text Copy

Manipulating Files with the File Object 403

2. Double-click the Copy button and add the following code:

if (!SourceFileExists()) return;
System.IO.File.Copy(txtSource.Text, txtDestination.Text);
MessageBox.Show(“The file has been successfully copied.”);

The Copy() method has two arguments. The first is the file that you want to copy,

and the second is the name and path of the new copy of the file. In this example,

you’re using the filenames selected in the two text boxes.

Press F5 to run the project and test your copy code by following these steps:

1. Click the Source button and select a text file.

2. Click the Destination button to display the Save File dialog box. Don’t select

an existing file. Instead, type a new filename into the File Name text box and

click Save. If you’re asked whether you want to replace a file, click No and

change your filename; don’t use the name of an existing file.

3. Click Copy to copy the file.

After you see the message box telling you the file was copied, you can use Explorer

to locate the new file and open it. Stop the project and save your work before

continuing.

Moving a File
When you move a file, it’s taken out of its current directory and placed in a new

one. You can specify a new name for the file or use its original name. You move a

file using the Move() method of the System.IO.File object. Follow the steps listed

next to create a button on your form that moves the file selected as the source to the

path and the filename selected as the destination.

I recommend that you use Notepad to create a text file and use this temporary
text file when testing from this point forward. This code, as well as the rest of the
examples presented in this hour, can permanently alter or destroy a file.

1. Add a new button to the form and set its properties as follows:

Property Value

Name btnMove

Location 95, 100

Size 75, 23

Text Move

Did you
Know?

404 HOUR 19: Performing File Operations

2. Double-click the Move button and add the following code to its Click event:

if (!SourceFileExists()) return;
System.IO.File.Move(txtSource.Text, txtDestination.Text);
MessageBox.Show(“The file has been successfully moved.”);

Go ahead and press F5 to test your project. Select a file to move (again, I recom-

mend you create a dummy file in Notepad) and supply a destination filename.

When you click Move, the file is moved to the new location and given the new

name. Remember, if you specify a name for the destination that isn’t the same as

that of the source, the file is given the new name when it’s moved.

Renaming a File
When you rename a file, it remains in the same directory, and nothing happens to

its contents; the name is just changed to something else. Because the original file

isn’t altered, renaming a file isn’t as risky as performing an action such as deleting

it. Nevertheless, it’s frustrating trying to determine what happened to a file when it

was mistakenly renamed. To rename a file, use the Move() method of

System.IO.File, specifying a new filename but keeping the same path.

Deleting a File
Deleting a file can be a risky proposition. The Delete() method of System.IO.File

deletes a file permanently. It does not send the file to the Recycle Bin. For this reason,

take great care when deleting files. First and foremost, this means testing your code.

When you write a routine to delete a file, be sure to test it under many conditions.

For example, if you referenced the wrong text box in this code, you would inadver-

tently delete the wrong file! Users aren’t forgiving of such mistakes.

Follow these steps to add a button to your project that deletes the source file when

clicked. Remember: Be careful when testing this code.

1. Add a button to the form and set its properties as follows:

Property Value

Name btnDelete

Location 95, 129

Size 75, 23

Text Delete

Manipulating Files with the File Object 405

2. Double-click the button and add the following code to its Click event:

if (!SourceFileExists()) return;

if (MessageBox.Show(“Are you sure you want to delete the source file?”,
“Delete Verification”,MessageBoxButtons.YesNo,
MessageBoxIcon.Question) == DialogResult.Yes)

{
System.IO.File.Delete(txtSource.Text);
MessageBox.Show(“The file has been successfully deleted.”);

}

Notice that you’ve included a message box to confirm the user’s intentions. It’s a

good idea to do this whenever you’re about to perform a serious action that can’t be

undone. In fact, the more information you can give the user, the better. For exam-

ple, I suggest that if this was production code (code meant for end users), you should

include the name of the file in the message box so that the user knows without a

doubt what the program intends to do. If you’re feeling brave, press F5 to run the

project and then select a file and delete it.

Retrieving a File’s Properties
Although many people don’t realize it, files have a number of properties, such as

the date the file was last modified. The easiest way to see these properties is to use

the Explorer. View the attributes of a file now by starting the Explorer, right-clicking

any file displayed in the Explorer, and choosing Properties. Explorer shows the File

Properties dialog box, with information about the file (see Figure 19.4).

FIGURE 19.4
Visual C# pro-
vides a means
to easily obtain
most file prop-
erties.

406 HOUR 19: Performing File Operations

The System.IO.File object provides ways to get at most of the data displayed on

the General tab of the File Properties dialog box, shown in Figure 19.4. Some of this

data is available directly from the File object, whereas other data is accessed using

the FileAttributes object.

Getting Date and Time Information About a File
Getting the date the file was created, the last date it was accessed, and the last date

it was modified is easy. The System.IO.File object supports a method for each of

these dates. Table 19.1 lists the applicable methods and what they return.

TABLE 19.1 File Object Methods to Retrieve Data Information

Property Description

GetCreationTime Returns the date and time the file was created

GetLastAccessTime Returns the date and time the file was last accessed

GetLastWriteTime Returns the date and time the file was last modified

Getting the Attributes of a File
The attributes of a file (refer to the bottom of the dialog box shown in Figure 19.4)

aren’t available as properties of the System.IO.File object. How you determine an

attribute is complicated. The GetAttributes() method of System.IO.File returns

a FileAttributes enumeration. This enumeration acts as a set of flags for the vari-

ous attributes. The first step in determining the attributes is to get the

FileAttributes containing the flags for the attributes of the file. To do this, you

would create a FileAttributes variable and call GetAttributes(), like this:

System.IO.FileAttributes objFileAttributes ;
objFileAttributes = System.IO.File.GetAttributes(txtSource.Text);

After you retrieve the file attributes into the variable objFileAttributes, you can

use one of the members of the FileAttributes enumeration shown in Table 19.2 to

determine whether a particular attribute is set.

TABLE 19.2 Common File Attribute Flags

Attribute Meaning

Archive The file’s archive status. Applications use this attribute to mark files
for backup and removal.

Directory The file is a directory.

Hidden The file is hidden and therefore isn’t included in an ordinary directory
listing.

Manipulating Files with the File Object 407

Normal The file is normal and has no other attributes set.

ReadOnly The file is a read-only file.

System The file is part of the operating system or is used exclusively by the
operating system.

Temporary The file is a temporary file.

Writing Code to Retrieve a File’s Properties
Now that you know how to retrieve the properties of an object, you’re going to

modify your Picture Viewer project so that users can view file properties of a picture

file they have displayed. Start by opening the Picture Viewer project you last modi-

fied in Hour 15, “Debugging Your Code,” and then follow these steps to add the file

attributes functionality:

1. Add a new tool button to the toolstrip (the toolbar) of the ViewerForm.cs

form and set its name to tbbGetFileAttributes.

2. If you have downloaded the sample code, set the image to Properties.png.

Next, set the ToolTipText property to Get File Attributes.

The code you enter into the Click event of this button is a bit longer than

most of the code you’ve entered so far. Therefore, I show the code in its entire-

ty and then explain what it does.

3. Double-click the new button and add the following code to the button’s Click

event:

// Make sure a file is open.
if ((ofdSelectPicture.FileName) == “”)
{

MessageBox.Show(“There is no file open”);
return;

}

// Create the string builder object to concatenate strings.
System.Text.StringBuilder stbProperties = new
_System.Text.StringBuilder(“”);
System.IO.FileAttributes fileAttributes;

// Get the dates.
stbProperties.Append(“Created: “);
stbProperties.Append(System.IO.File.GetCreationTime(

ofdSelectPicture.FileName));
stbProperties.Append(“\r\n”);

stbProperties.Append(“Accessed: “);
stbProperties.Append(System.IO.File.GetLastAccessTime(

TABLE 19.2 Continued

Attribute Meaning

408 HOUR 19: Performing File Operations

ofdSelectPicture.FileName));
stbProperties.Append(“\r\n”);

stbProperties.Append(“Modified: “);
stbProperties.Append(System.IO.File.GetLastWriteTime(

ofdSelectPicture.FileName));

// Get File Attributes
fileAttributes = System.IO.File.GetAttributes(ofdSelectPicture.FileName);
stbProperties.Append(“\r\n”);

// Use a binary AND to extract the specific attributes.
stbProperties.Append(“Normal: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes & System.IO.FileAttributes.Normal)
== System.IO.FileAttributes.Normal));

stbProperties.Append(“\r\n”);

stbProperties.Append(“Hidden: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes & System.IO.FileAttributes.Hidden)
== System.IO.FileAttributes.Hidden));

stbProperties.Append(“\r\n”);

stbProperties.Append(“ReadOnly: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes &
_System.IO.FileAttributes.ReadOnly)

== System.IO.FileAttributes.ReadOnly));
stbProperties.Append(“\r\n”);

stbProperties.Append(“System: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes & System.IO.FileAttributes.System)
== System.IO.FileAttributes.System));

stbProperties.Append(“\r\n”);

stbProperties.Append(“Temporary File: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes &
System.IO.FileAttributes.Temporary)
== System.IO.FileAttributes.Temporary));

stbProperties.Append(“\r\n”);

stbProperties.Append(“Archive: “);
stbProperties.Append(

Convert.ToBoolean((fileAttributes & System.IO.FileAttributes.Archive)
== System.IO.FileAttributes.Archive));

MessageBox.Show(stbProperties.ToString());

This procedure first sees whether the user is viewing a file. You look at the

OpenFileDialog control for this—because that is where you got the filename from

the user. If the OpenFileDialog control has no filename, the user hasn’t viewed a

file yet.

Manipulating Directories with the Directory Object 409

All the file’s various properties are appended to the StringBuilder variable

stbProperties. The “\r\n” denotes a carriage return and a linefeed, and append-

ing this into the string ensures that each property appears on its own line.

The first statement declares an empty StringBuilder variable called

stbProperties. The StringBuilder object was designed for optimizing string con-

catenation and essentially just used to add strings together. You’re using the append

method of the StringBuilder class to create the file properties text (each append

adds new text to the existing string). The second set of statements calls the

GetCreateTime(), GetLastAccessTime(), and GetLastWriteTime() methods to

get the values of the date-related properties. These methods are self-explanatory.

Next, the attributes are retrieved using the GetAttributes() method and the

FileAttributes enumeration. The Convert.ToBoolean() method is used when

concatenating each attribute in the final result string so that the words True and

False appear.

Press F5 to run the project, open a picture file to display it, and then click the Get

File Attributes button on the toolbar. If you entered the code exactly as shown, the

attributes of the image file should appear in the text box as they do in Figure 19.5.

FIGURE 19.5
The System.
IO.File object
enables you to
look at a file’s
properties.

Manipulating Directories with the
Directory Object
Manipulating directories (folders) is similar to manipulating files. However, instead

of using System.IO.File, you use System.IO.Directory. If any of these method

calls confuse you, refer to the previous section on System.IO.File for more detailed

information. The following are the method calls:

. To create a directory, call the CreateDirectory() method of

System.IO.Directory and pass the name of the new folder, like this:

System.IO.Directory.CreateDirectory(@”c:\my new directory”);

410 HOUR 19: Performing File Operations

. To determine whether a directory exists, call the Exists() method of

System.IO.Directory and pass it the directory name in question, like this

(recall that the @ character tells C# not to treat the slash as an escape

character):

MessageBox.Show(Convert.ToString(System.IO.Directory.Exists(@”c:\temp”)));

. To move a directory, call the Move() method of System.IO.Directory. The

Move() method takes two arguments. The first is the current name of the

directory, and the second is the new name and path of the directory. When

you move a directory, its contents are moved also. The following illustrates a

call to Move():

System.IO.Directory.Move(@”c:\current directory name”,
@”d:\new directory name”);

. Deleting directories is even more perilous than deleting files, because when

you delete a directory, you also delete all files and subdirectories within the

directory. To delete a directory, call the Delete() method of

System.IO.Directory, and pass it the directory to delete. I can’t overstate that

you have to be careful when calling this method; it can get you in a lot of trouble.

The following statement illustrates deleting a directory:

System.IO.Directory.Delete(@”c:\temp”, true);

Summary
The OpenFileDialog and SaveFileDialog controls, coupled with System.IO,

enable you to do many powerful things with a user’s file system. In this hour, you

learned how to let a user browse and select a file for opening and how to let a user

browse and select a file for saving. Determining a user’s file selection is only the first

part of the process, however. You also learned how to manipulate files and directo-

ries, including renaming, moving, and deleting, by using System.IO. Finally, you

learned how to retrieve a file’s properties and attributes.

With the techniques shown in this hour, you should be able to do most of what

you’ll need to do with files and directories. None of this material is difficult, but

don’t be fooled by the simplicity; use care whenever manipulating a user’s file

system.

Workshop 411

Q&A
Q. What if I want to perform an operation on a file, but something is preventing

the operation, such as the file might be open or I don’t have rights to the
file?

A. All the method calls have one or more exceptions that can be thrown if the

method fails. These method calls are listed in the online Help. You can use the

techniques discussed in Hour 15 to trap the exceptions.

Q. What if the user types a filename into one of the file dialog boxes but does
not include the extension?

A. By default, both file dialog controls have their AddExtension properties set to

true. When this property is set to true, Visual C# automatically appends the

extension of the currently selected filter.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. True or False: The Open File dialog box automatically opens a file.

2. What symbol is used to separate a filter description from its extension?

3. What namespace is used to manipulate files?

4. What arguments does System.IO.File.Copy() expect?

5. How would you rename a file?

6. True or False: Files deleted with System.IO.File.Delete() are sent to the

Recycle Bin.

7. What object is used to manipulate folders?

Answers
1. False

2. The pipe symbol (|)

3. System.IO

412 HOUR 19: Performing File Operations

4. The name and path of the source file and a name and path for the copy

5. Use the Move() method while retaining the path.

6. False. The files are permanently deleted.

7. System.IO.Directory

Exercises
1. Create a project that enables the user to select a file with the OpenFileDialog

control. Store the filename in a text box. Provide another button that, when

clicked, creates a backup of the file by making a copy of it with the extension

.bak.

2. Create a project with a text box on a form in which the user can type in a

three-digit file extension. Include a button that shows an Open File dialog box

when clicked, with the filter set to the extension that the user entered.

HOUR 20

Working with Text Files and
the Registry

What You’ll Learn in This Hour:
. Using the Registry object to create and delete Registry keys and values
. Using a StreamWriter and StreamReader objects to open, read, and edit

text files
. Modifying your Picture Viewer program to use a text file and the Registry

Text files have been around since the early days of computing, and even today they are a

useful method of storing data. For robust applications, a database is the way to go, but for

storing simple sets of data, it doesn’t get much easier than using a text file.

In the first edition of this book, I neglected to cover working with text
files because I thought that most users were moving to databases.
After many emails from readers, I got the point: Text files are still used
regularly, and they aren’t going anywhere. This hour teaches you the
basics of creating, opening, reading, and editing text files.

Another common method of storing data—particularly user settings and program configu-

ration options—is the Windows Registry. The Registry is a database-like storage entity in

Windows that resembles a tree with nodes. Accessing the Registry is fast, is handled

through a consistent interface, and is often preferred over the old method of using INI text

files. In this hour, you learn how to store data in and get data from the Windows Registry.

By the
Way

414 HOUR 20: Working with Text Files and the Registry

Working with the Registry
The Windows Registry is a repository used to store application, user, and machine-

specific information. It’s the perfect place to store configuration data such as user

preferences, database connection strings, file locations, and more. Before you start

mucking with the Registry, however, you must first be aware that changes to the

Registry can cripple an application or even cause Windows to crash! Be sure to know

what you are changing and the ramifications of the change before modifying the

Windows Registry.

Don’t pollute the Registry! I’m constantly amazed by the amount of junk that a
program stores in the Registry. Keep in mind that the Registry is not your personal
database. In fact, if your application uses a database, it’s often a better idea to
store information in the database.

Understanding the Structure of the Windows
Registry
The Registry is organized in a hierarchical structure—like a tree. The top nodes in

the tree (called hives) are predefined; you can’t add to, modify, or delete them. Table

20.1 lists the hives (top levels) of the Registry.

TABLE 20.1 Top Nodes of the Windows Registry

Node Description

HKEY_CLASSES_ROOT Contains information that associates file types with pro-
grams and configuration data for COM components.

HKEY_CURRENT_USER Contains configuration information for the user currently
logged on to Windows.

HKEY_LOCAL_MACHINE Contains configuration information specific to the comput-
er, regardless of the user logged in.

HKEY_USERS Contains all user profiles on the computer. When a user
logs in, HKEY_CURRENT_USER is set as an alias to a spe-
cific user in HKEY_USERS.

HKEY_CURRENT_CONFIG Contains information about the hardware profile used by
the local computer during startup.

Under each hive listed in Table 20.1 are a number of keys. Figure 20.1 shows what

the Registry looks like on my computer. Notice how Assistance is a subkey that

belongs to the Microsoft key, which in turn is a subkey of the Software key, which

belongs to the HKEY_CURRENT_USER hive.

By the
Way

Working with the Registry 415

Keys can contain one or more values. In Figure 20.1, notice that the Assistance key

has one value (it appears in the list view on the right). Keys are used to provide a

framework for storing data; values actually hold the data in question. Value items

have specific data types, although they are different from the data types in Visual

C#. Table 20.2 lists the possible data types for Registry values.

TABLE 20.2 Common Registry Value Data Types

Data Type Description

REG_SZ The primary type of string data. It is used to store fixed-length
string data or other short text values.

REG_EXPAND_SZ An expandable string value that can hold system variables
whose values get resolved at runtime.

REG_MULTI_SZ Holds multiple text strings formatted as an array. Each “ele-
ment” string is terminated by a null character.

REG_BINARY Stores binary data.

By far, the most commonly used data type is the REG_SZ string data type. You can

store all sorts of things in a REG_SZ value, such as text (obviously), True, False, 0,

1, and more. In fact, this is usually the only data type I use for my applications.

When saving Boolean values, I just format them as either 1 or 0.

FIGURE 20.1
The Registry is
a hierarchical
structure of
hives, keys, and
values.

416 HOUR 20: Working with Text Files and the Registry

Accessing the Registry with Registry and
RegistryKey
The easiest way to work with the Registry from within Visual C# is to use the

Registry object. This object is part of the Microsoft.Win32 namespace. To use the

objects, you have two options.

You can preface each object reference with Microsoft.Win32, as in the following

example:

Microsoft.Win32.RegistryKey key =
Microsoft.Win32.Registry.LocalMachine.OpenSubKey(“Software”, true);

Or you can create a using statement in the top of the class accessing the Registry so

that you can use a short reference like this:

RegistryKey key = Registry.LocalMachine.OpenSubKey(“Software”, true);

You have created a using statement in the past. To do so, you find the existing

using statements at the top of the class and add the following using statement

below them:

using Microsoft.Win32;

You do this in the example that you build in this hour.

Creating Registry Keys
The Registry object has a number of properties. Among them are object properties

that relate to the hives of the Registry shown in Table 20.1. Table 20.3 lists the prop-

erties that reference the Registry’s hives.

TABLE 20.3 Common Top-Node Properties of the Registry Object

Property What It’s Used to Access

ClassesRoot HKEY_CLASSES_ROOT

CurrentConfig HKEY_CURRENT_CONFIG

CurrentUser HKEY_CURRENT_USER

LocalMachine HKEY_LOCAL_MACHINE

Users HKEY_USERS

Creating Registry keys using Registry is a snap. First, you have to identify the hive

under which you want to create the key. When you know the hive, you just call the

Working with the Registry 417

CreateSubKey() method of the corresponding hive object property, passing it the

name of the key to create. For example, consider this statement:

Registry.CurrentUser.CreateSubKey(“UserSettings”);

This statement would create the Key UserSettings under HKEY_CURRENT_USER.

Realize that an application rarely creates a key directly under a hive. You can use

many subkeys for each hive, but perhaps the most common is the \Software key.

Most applications create a corporate-named key under \Software and then create

product keys below the corporate subkey. For example, suppose that your company

name is CleverSoftware, you’re planning to ship the Picture Viewer program, and

you want to store some application settings in the Registry (in fact, you’re going to

modify your Picture Viewer to do this later in this hour). You want to end up with a

key structure that looks like this:

HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer

Fortunately, the CreateSubKey() method allows you to specify multiple levels of

keys in one method call. To create this structure, you would use the following

statement:

Registry.CurrentUser.CreateSubKey(@”Software\CleverSoftware\PictureViewer”);

Remember, Visual C# treats the slash character (\) in a string as an escape char-
acter. By prefacing the string with the @ symbol, you tell Visual C# to use the
string as a literal value.

Visual C# would parse this statement by first locating the hive HKEY_CURRENT_USER

and then looking for a \Software key. It would find one, because all Windows

machines have this key, but it would not overwrite this key. It would then look for

CleverSoftware. Assuming that Visual C# does not find this key, it would create the

key and subkey that you specified. Note that if Visual C# finds an existing subkey

that you defined in your statement (all subkeys are separated by a backslash \), it

does not overwrite it.

Why HKEY_CURRENT_USER instead of HKEY_LOCAL_MACHINE? In general, it’s best to
save application settings in HKEY_CURRENT_USER so that all users who use your
application can have their own settings. If you store your settings in
HKEY_LOCAL_MACHINE, the settings will be global to all users who run the applica-
tion from the computer in question. Also, some administrators restrict access to
HKEY_LOCAL_MACHINE, and your application will fail if it attempts to access
restricted keys.

By the
Way

By the
Way

418 HOUR 20: Working with Text Files and the Registry

Deleting Registry Keys
You can use two methods to delete a Registry key: DeleteSubKey() and

DeleteSubKeyTree(). DeleteSubKey() deletes a key and all its values as long as the

key contains no subkeys. DeleteSubKeyTree() deletes a key, its values, and all sub-

keys and values found below it. Use this one with care!

Here’s a statement that could be used to delete the key created with the previous

sample code:

Registry.CurrentUser.DeleteSubKey(@”Software\CleverSoftware\PictureViewer”);

DeleteSubKey() throws an exception if the key you specify does not exist. Whenever
you write code to work with the Registry, try to account for the unexpected.

Getting and Setting Key Values
The ability to create and delete keys is useful, but only in the sense that keys provide

the structure for the important data: the value items. You’ve already learned that

keys can have one or more value items and that value items are defined as a specif-

ic data type. All that’s left is to learn the code used to manipulate Registry values.

Unfortunately, the task of getting and setting key values isn’t as easy as defining

keys. When you define keys, the Registry object makes it easy to work with hives

by giving you an object property for each hive. There are properties for getting and

setting values for each of these hive properties, but they don’t work as expected. To

create a new value item or to set the value of an existing value item, you use

Registry.SetValue(). The SetValue() method has the following syntax:

SetValue(keypath, itemname, value)

Unfortunately, you have to specify the hive name in keypath, as you will see. Notice

that you do not specify the data type; Visual C# sets the data type according to the

value that is passed to the method. For example, to create a RegistrationName

value item for the Registry key discussed in the preceding section, you would use a

statement like this:

Registry.SetValue(@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“RegistrationName”, “James”);

This statement would produce a value item as shown in Figure 20.2.

To change the value, you would call SetValue() again, passing it the same key and

item name, but a different value—nice and easy!

Did you
Know?

Working with the Registry 419

To retrieve a value from the Registry, you use the GetValue() method. This method

also requires a full hive/key path. The format of GetValue() is this:

GetValue(keypath, itemname, defaultvalue)

The parameters keypath and itemname are the same as those used with

SetValue(). Sometimes, when you go to retrieve a value from the Registry, the

value and perhaps even the key don’t exist. There are a number of reasons for this.

Another application might have deleted the value, a user might have manually

deleted the value, or the user might have restored a backup of his or her Registry

from before the value was created. The defaultvalue parameter is used to define

what GetValue() returns if it is unable to find the value item. This eliminates the

need to catch an exception if the value item is missing. The following statement dis-

plays the value in the RegistrationName as created in the previous example:

string strRegName;
strRegName = Convert.ToString(

Registry.GetValue(@”HKEY_CURRENT_USER\Software\
CleverSoftware\PictureViewer\”,
“RegistrationName”, “”));

MessageBox.Show(strRegName);

Modifying Your Picture Viewer Project to Use the
Registry
In this section, you modify your Picture Viewer project so that the user’s settings in

the Options dialog box are saved to the Registry. When the user first starts the

Picture Viewer program, the settings are loaded from the Registry. Start by opening

FIGURE 20.2
Values appear
attached to
keys.

420 HOUR 20: Working with Text Files and the Registry

the Picture Viewer project you last worked on in Hour 19, “Performing File

Operations.”

Follow these steps to create the using statement so that you don’t have to preface

every Registry instance with Microsoft.Win32:

1. Double-click the OptionsForm form to access its Load event.

2. Scroll to the top of the class and locate the existing using statements.

3. Add the following statement below the existing using statements:

using Microsoft.Win32;

Displaying Options from the Registry
Next, you need to show the current user’s settings when the Options form is dis-

played. Follow these steps to display the options stored in the Registry:

1. Scroll down and locate the OptionsForm_Load procedure.

2. Add the following code statements to the Load event:

txtUserName.Text = Convert.ToString(Registry.GetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“UserName”, “”));

chkPromptOnExit.Checked = Convert.ToBoolean(Registry.GetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“PromptOnExit”, “false”));

if (Convert.ToString(Registry.GetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“BackColor”, “Gray”)) == “Gray”)

optBackgroundDefault.Checked = true;
else

optBackgroundWhite.Checked = true;

All this code should be familiar to you by now. The first statement is used to set the

value of the txtUserName text box to the username stored in the Registry. The first

time the Options form loads, there is no entry in the Registry, so an empty string is

used. Notice that you wrap the Registry call in Convert.ToString() so that whatev-

er value you pull from the Registry will be converted to a string, which is what a

text box accepts.

The second statement sets the checked state of the Prompt on Exit check box to the

value stored in the Registry. If no value is found, as is the case the first time the

Options form is loaded, the Checked property is set to false. Once again, you have

to wrap the result of GetValue() with a conversion function—in this case,

Convert.ToBoolean()—to convert the value to a Boolean.

Working with the Registry 421

The next statement starts an if...else construct that looks for a color name in the

Registry and sets the appropriate option button’s Checked property to true. Because

you’re comparing the Registry result to text, you wrap the result in

Convert.ToString() to cast the result as a string.

Saving Options to the Registry
Now that the Options form displays the current values stored in the Registry, you can

add the code to save the changes the user makes to these values. Follow these steps:

1. Use the scrollbar to locate the btnOK_Click procedure.

2. Enter the following code into the btnOK_Click event. Be sure to put the code

before the existing statement this.Close():

Registry.SetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“UserName”, txtUserName.Text);

Registry.SetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“PromptOnExit”, chkPromptOnExit.Checked);

if (optBackgroundDefault.Checked)
Registry.SetValue(

@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“BackColor”, “Gray”);

else
Registry.SetValue(

@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“BackColor”, “White”);

This code is essentially the opposite of the code you entered in the Load event; it

stores the values from the controls in the Registry. You should be able to follow this

code on your own.

Using the Options Stored in the Registry
You’re now allowing the user to view and change the settings stored in the Registry,

but you’re not actually using the user’s preferences. Follow these steps to use the val-

ues stored in the Registry:

1. Double-click ViewerForm.cs in the Solution Explorer window to display the

main Picture Viewer form in the designer.

2. Double-click the form to access its Load event.

3. Scroll to the top of the procedure and add the following statement to the end

of the using block:

using Microsoft.Win32;

422 HOUR 20: Working with Text Files and the Registry

4. Scroll down to the ViewerForm.Load event. This event currently contains six

lines of code. Look first for the following statements:

m_blnPromptOnExit = c_defPromptOnExit;
mnuConfirmOnExit.Checked = m_blnPromptOnExit;

Recall that you keep track of the Prompt On Exit flag as a module variable.

The first statement sets this flag to the constant you defined as the default

value. The second statement sets the checked state of the menu item to the

variable.

5. Delete the statement m_blnPromptOnExit = c_defPromptOnExit; and

replace it with this:

m_blnPromptOnExit = Convert.ToBoolean(Registry.GetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“PromptOnExit”, “false”));

This is almost identical to the statement you created on the Load event of the

Options form. It retrieves the Prompt on Exit flag from the Registry, but this

time it sets the module variable instead of a check box on the form.

6. The next statement you’re going to replace is this:

m_objPictureBackColor = System.Drawing.SystemColors.Control;

This statement sets the default back color of the picture box to the system

color Control, which by default is a shade of gray. Replace this statement

with the following code:

if (Convert.ToString(Registry.GetValue(
@”HKEY_CURRENT_USER\Software\CleverSoftware\PictureViewer\”,
“BackColor”, “Gray”)) == “Gray”)

m_objPictureBackColor = System.Drawing.SystemColors.Control;
else

m_objPictureBackColor = System.Drawing.Color.White;

Testing and Debugging Your Picture Viewer Project
Press F5 to run the project. Next, click the Options button on the toolbar to display

the Options form. Nothing looks different yet. Follow these steps to see the effect of

your new code:

1. In the User Name text box, enter your name.

2. Click the Prompt to Confirm Exit check box to check it.

3. Click the Appearance tab and then click the White option button to select it.

4. Click OK to close the Options dialog box.

Working with the Registry 423

5. Click the Options button on the toolbar again to display the Options dialog

box. Notice that White is now chosen as the Default Picture Background color.

6. Click the General tab. Notice that your name is in the User Name text box

and that the Prompt to Confirm on Exit check box is selected.

7. Click OK to close the Options dialog box.

8. Close the Picture Viewer.

Notice that you weren’t prompted to confirm exiting. The reason is that the main

Picture Viewer form is not being updated to reflect the changes made to the Registry.

Now you can use the skills you learned for creating procedures to make your code

work properly. Follow these steps:

1. Double-click ViewerForm.cs in the Solution Explorer window to show the

form in the designer.

2. Double-click the form to show its Load event.

3. Highlight all the code except the first two statements, as shown in Figure 20.3,

and press Ctrl+X to cut the code.

FIGURE 20.3
Cut the high-
lighted code.

4. Enter the following statement:

LoadDefaults();

424 HOUR 20: Working with Text Files and the Registry

5. Position the cursor at the end of the closing brace that completes the defini-

tion of the ViewerForm_Load event and press Enter to create a new line.

6. Type the following statements and press Enter:

private void LoadDefaults()
{

7. Press Ctrl+V to paste the code you deleted from the Form_Load event.

8. Enter the following and press Enter:

}

Your code window should look like that in Figure 20.4. You now have a proce-

dure that you can call when the user saves new settings to the Registry.

FIGURE 20.4
Procedures are
all about group-
ing related sets
of code.

9. Scroll to the procedure mnuOptions_Click() and enter the following state-

ment after the current two statements:

LoadDefaults();

10. Scroll to the procedure tbbOptions_Click() and enter the following state-

ment after the current two statements:

LoadDefaults();

Reading and Writing Text Files 425

11. Press F5 once again to run the project.

12. Click the Options button on the toolbar to display the Options form and

change the default background color to Default Gray on the Appearance tab.

When you click OK to save the settings and close the Options form, the back-

ground of the picture box changes to gray immediately.

The Registry is a powerful tool to have at your disposal—if used properly! In this sec-

tion, you learned all the necessary techniques to implement Registry functionality in

your applications.

To view your Registry, hold down the Shift key and right-click the desktop. You see
a shortcut menu with the item Open Command Window Here. (If you don’t see
this item, you probably aren’t holding down the Shift key.) When you click this
menu item, a command prompt appears. Type regedit and press Enter to launch
the Registry Editor (you can also type regedit in the Search box on the Start
menu). Be careful. Making inappropriate changes to the Registry can foul up your
computer to the point where it won’t boot!

Reading and Writing Text Files
The Registry is a handy place to store user options and program configuration set-

tings. It’s not a good place, however, to store a lot of data such as a text document.

If you have a lot of text data to store and retrieve, a good old-fashioned text file is

probably the best place to put it (assuming that a real database such as Microsoft

SQL is not an option). Visual C# includes two classes that make it relatively easy to

manipulate text files: StreamWriter and StreamReader. Notice that the tasks of

reading and writing text files are performed by two different objects, only one of

which can access a file at any given time. If you want to simultaneously read and

write to a single file, you’re probably better off using a real database.

Writing to a Text File
You write to text files using the StreamWriter class. The first step of using this class

is to declare an object of type StreamWriter, like this:

System.IO.StreamWriter objFile = new System.IO.StreamWriter(@”C:\test.txt”);

Or like this:

System.IO.StreamWriter objFile =
new System.IO.StreamWriter(@”C:\test.txt”, true);

Did you
Know?

426 HOUR 20: Working with Text Files and the Registry

There are actually seven different forms of StreamWriter usage. Here, I show you
the most common, but if you plan to do serious work with text files, you should
read the Microsoft Developer Network (MSDN) document on the StreamWriter
class.

As you can see, the second parameter is optional, and it determines whether you

want to append to the text file if it already exists. If you omit this second parameter

or supply false as its value, a new text file is created. If the text file already exists,

it gets replaced with a new file of the same name. If you pass true, as in the second

example, the file is opened, and any write operations you perform on the file are

tacked on to the end of the file.

If you pass a file path/filename that doesn’t exist, Visual C# creates a new text
file for you when you write data to the StreamWriter object.

If you attempt to access a folder or file but you don’t have permissions to do so,
you will get a runtime error. If you choose to enter this code (which you don’t need
to do; I show it only for illustrative purposes), you will have to use a different path
if Vista is restricting your access to the root of the C: drive.

After you have an object that points to a StreamWriter object, you can store data

in the text file using one of the following two methods:

. WriteLine() sends a single line of text to the file and automatically appends

a carriage return to the end of the line. Each call to WriteLine() creates a

new line.

. Write() sends data to the file but does not automatically append a carriage

return to create a new line.

These two methods are best understood by example. Consider the following code

snippet:

System.IO.StreamWriter objFile = new System.IO.StreamWriter(@”C:\test.txt”);
objFile.WriteLine(“text1”);
objFile.WriteLine(“text2”);
objFile.WriteLine(“text3”);
objFile.Close();
objFile.Dispose();

By the
Way

Did you
Know?

Watch
Out!

Reading and Writing Text Files 427

This snippet would produce the following data in the text file:

text1
text2
text3

Notice the next-to-last statement, objFile.Close(). It’s vital that you close a text
file when you’re finished with it, and the Close() method does this. In addition,
you should also call objFile.Dispose() to make sure that the file is fully
released.

Now, consider the same code snippet that uses Write() instead of WriteLine():

System.IO.StreamWriter objFile = new System.IO.StreamWriter(@”C:\test.txt”);
objFile.Write(“text1”);
objFile.Write(“text2”);
objFile.Write(“text3”);
objFile.Close();
objFile.Dispose();

This snippet produces a text file that contains the following:

text1text2text3

See how WriteLine() creates lines of data, whereas Write() simply streams the

data into the file? This distinction is incredibly important, and understanding the

difference is crucial to your success with writing text files. Which method you choose

depends on what you are trying to accomplish. I think perhaps WriteLine() is the

more common way. The following code illustrates how you could use WriteLine()

to store a list of albums (assuming that you have the list in a list box titled

lstAlbums):

System.IO.StreamWriter objFile = new System.IO.StreamWriter(@”C:\albums.txt”);

for (int intCounter = 0; intCounter <= lstAlbums.Items.Count -1; intCounter++)
{

objFile.WriteLine(Convert.ToString(lstAlbums.Items[intCounter]));
}

objFile.Close();
objFile.Dispose();

Reading a Text File
Reading a text file is handled by the StreamReader class, which behaves similarly to

the StreamWriter class. First, you need to define an object of type StreamWriter,

like this:

System.IO.StreamReader objFile = new System.IO.StreamReader(@”C:\test.txt”);

By the
Way

428 HOUR 20: Working with Text Files and the Registry

A key difference in declaring a StreamReader object versus a StreamWriter object is

how the code behaves if the file is not found. The StreamWriter object is happy to

create a new text file for you if the specified file isn’t found. If StreamReader can’t

find the specified file, it throws an exception—something you need to account for in

your code.

Just as StreamWriter lets you write the data to the file in many ways,

StreamReader has multiple ways to read the data as well. The first of the two most

common ways is to use the ReadToEnd() method, which reads the entire file and

places the contents of the file into a variable. You would use ReadToEnd() like this:

System.IO.StreamReader objFile = new System.IO.StreamReader(@”C:\test.txt”);
string strContents;
strContents = objFile.ReadToEnd();
objFile.Close();
objFile.Dispose();
MessageBox.Show(strContents);

The ReadToEnd() method can be handy, but sometimes you just want to get a sin-

gle line of text at a time. For example, consider the text file created by the previous

example, the one with a list of albums. Say that you wanted to read the text file

and place all the albums found in the text file into a list box named lstAlbums.

The ReadToEnd() method would allow you to get the data, but then you would

have to find a way to parse each album name. The proper solution for reading one

line at a time is to use the ReadLine() method. The following code shows how you

could load the Albums.txt text file, one line at a time, and place each album name

in a list box:

System.IO.StreamReader objFile = new System.IO.StreamReader(@”C:\albums.txt”);
string strAlbumName;

strAlbumName = objFile.ReadLine();

while (strAlbumName != null)
{

lstAlbums.Items.Add(strAlbumName);
strAlbumName = objFile.ReadLine();

}
objFile.Close();
objFile.Dispose();

A couple of important concepts in this example need discussing. The first question

is, How do you know when you’ve reached the end of a text file? The answer is that

the return result will be null. So, the first thing this code does (after creating the

StreamReader object and the string variable) is get the first line from the text file.

Reading and Writing Text Files 429

It’s possible that the text file could be empty, so the while loop tests for this. If the

string is null, the file is empty, so the loop doesn’t execute. If the string is not null,

the loop begins. The first statement in the loop adds the string to the list box. The

next statement gets the next line from the file. This sends execution back to the

while statement, which again tests to see whether you’re at the end of the file. One

thing this code doesn’t test for is a zero-length string (“”). If the text file has a blank

line, the string variable will hold a zero-length string. You might want to test for a

situation like this when working with text files in your code.

That’s it! Text files are not database files; you’ll never get the power and flexibility

from a text file that you would get from a real database. With that said, text files

are easy to work with and provide amazing and quick results within the context of

their design.

Modifying Your Picture Viewer Project to Use a
Text File
In this section, you modify your Picture Viewer project to use a text file. You have

your Picture Viewer update a log (a text file) every time the user views a picture. You

then create a simple dialog box that the user can open to view the log file. If you no

longer have the Picture Viewer project open from earlier, open it now.

Creating the Picture Viewer Log File
In this section, you modify the Picture Viewer project to create the log file. Follow

these steps to implement the log functionality:

1. Double-click ViewerForm.cs in the Solution Explorer window to display the

form in the designer.

2. Recall that you created a single procedure that is called from both the menu

and the toolbar to open a picture. This makes it easier to change because you

only have to add the log code in one place. Double-click the Open Picture but-

ton on the toolbar to access its Click event.

3. You now need to go to the OpenPicture() function. Here’s an easy way to do

this: Right-click the code this.OpenPicture(); and choose Go To Definition

from the shortcut menu, as shown in Figure 20.5. Whenever you do this to a

procedure call, Visual C# displays the code of the procedure being referenced.

430 HOUR 20: Working with Text Files and the Registry

4. Take a look at the OpenPicture() procedure. Where would you place the

code to create a log file? Would you enter all the log file code right into this

procedure? First, the log file should be updated only when a picture is success-

fully loaded, which would be in the try block, right after the statement that

updates the sbrMyStatusStrip control. Second, the log code should be isolat-

ed from this procedure, so you add just a single function call. Add this state-

ment at the end of but still in the try block:

UpdateLog(ofdSelectPicture.FileName);

Your code should now look like that in Figure 20.6.

5. Position the cursor after the closing brace of OpenPicture() procedure, press

Enter to create a new line, and then enter the following procedure code:

private void UpdateLog(string strFileName)
{

System.IO.StreamWriter objFile = new System.IO.StreamWriter(
System.AppDomain.CurrentDomain.BaseDirectory +
@”\PictureLog.txt”, true);

objFile.WriteLine(DateTime.Now + “ “ + strFileName);
objFile.Close();
objFile.Dispose();

}

Most of this code should be recognizable, but consider this snippet:

System.AppDomain.CurrentDomain.BaseDirectory + @”\PictureLog.txt”

FIGURE 20.5
Go To Definition
is a quick way
to view a proce-
dure being
called in code.

Reading and Writing Text Files 431

The method BaseDirectory() returns the path of the running program. This is a

great trick to know! What you’ve done here is append the filename PictureLog.txt

to the application path so that the log file is always created in the application path.

This makes it easy for the user to find the log file. In a robust application, you might

let the user specify a path, perhaps storing it in the Registry. For purposes of this

example, the application path works just fine.

When you’re debugging an application in the Visual C# IDE, the application path
might not be exactly what you expect. When you compile and test your application,
Visual C# creates a bin\Debug folder under the folder containing your project.
This is where it places the temporary .exe file it creates for debugging, and this
is your application path. If you go looking for the log file in your project folder, you
won’t find it. You need to drill down into the \bin\Debug folder to get it.

Displaying the Picture Viewer Log File
In this section, you modify the Picture Viewer project to include a dialog box that

the user can display to view the log file. Follow these steps to implement the log

viewer functionality:

1. Choose Project, Add Windows Form to display the Add New Item dialog box.

Enter LogViewerForm.cs as the new form name and click Add to create the

form.

FIGURE 20.6
It’s always a
good idea to
isolate code
into cohesive
procedures.

By the
Way

432 HOUR 20: Working with Text Files and the Registry

2. Set the properties of the new form as follows:

Property Value

MaximizeBox False

MinimizeBox False

Size 520, 344

Text Picture Viewer History Log

3. Add a new button to the form and set its properties as follows:

Property Value

Name btnOK

Anchor Top, Right

Location 425, 275

Text OK

4. Add a new text box to the form and set its properties as follows:

Property Value

Name txtLog

Anchor Top, Bottom, Left, Right

Location 12, 12

Multiline True

ReadOnly True

Size 488, 257

5. Double-click the OK button to access its Click event and enter the following

statement:

this.Close();

6. Add the code that actually displays the log. Double-click LogViewerForm.cs

in the Solution Explorer. Then double-click the form to access its Load event.

7. Enter the following code into the Form_Load event:

try
{

System.IO.StreamReader objFile = new System.IO.StreamReader(
System.AppDomain.CurrentDomain.BaseDirectory +
@”\PictureLog.txt”);

txtLog.Text = objFile.ReadToEnd();

Reading and Writing Text Files 433

objFile.Close();
objFile.Dispose();

}
catch

{
txtLog.Text = “The log file could not be found.”;

}

This code is just like the code discussed earlier on reading text files. It uses

ReadToEnd() to load the entire log into the text box. The whole thing is

wrapped in a Try...End Try block to handle the situation of there being no

log file.

8. All that’s left is to add a button to the toolbar of the Picture Viewer to display

the log. Double-click ViewerForm.cs in the Solution Explorer to display the

form in the designer.

9. Click the toolstrip to select it and then click the Items property in the

Properties window.

10. Click the build button in the Items property in the Property window to access

the Items Collection Editor and then click Add to create a new button on the

toolbar. Set the new button’s properties as follows:

Property Value

Name tbbShowLog

Image Log.png (found with the samples on my website)

Text View Picture Log

ToolTipText View Picture Log

11. Click OK to save the new button. Then double-click the new button on the

toolbar and add the following code:

LogViewerForm objLog = new LogViewerForm();
objLog.ShowDialog();

Testing Your Picture Viewer Log
Save your project and press F5 to run it. Follow these steps to test the project:

1. Click the View Picture Log button on the toolbar to display the Picture Viewer

History Log. Notice that the text box displays The log file could not be

found. This means the try block worked!

2. Click OK to close the form.

434 HOUR 20: Working with Text Files and the Registry

3. Click the Open Picture button on the toolbar, browse to a picture file, and dis-

play it.

4. Click the View Picture Log button again. Notice that the log now displays a

log entry, as shown in Figure 20.7.

FIGURE 20.7
Text files make
creating logs
easy.

Summary
In this hour, you learned how to use the Registry to store and retrieve user settings.

You learned about the structure of the Registry and how to use hives, keys, and val-

ues. The Registry is a powerful tool, and you should use it when applicable.

Remember: The Registry isn’t your personal repository; respect the Registry!

Windows relies on certain data in the Registry, and if you mess up the Registry, you

can actually prevent a computer from booting to Windows. As you saw firsthand

with the Picture Viewer project, the task of saving data to and retrieving data from

the Registry is relatively easy, but how you handle the data is the real trick.

Next, you learned about the power (and limitations) of working with text files. You

can read and write text files, but you can’t do both to a single text file at the same

time. If you need that functionality, a database is the way to go. However, you

learned that it’s relatively easy to store and retrieve sequential information in a text

file, such as a log file. Finally, you used what you learned to implement log func-

tionality for the Picture Viewer project.

Workshop 435

Q&A
Q. Can I use a text file to save configuration information?

A. Yes, you could do that. You would need some way to denote the data element.

How would you know that the first line was the BackColor setting, as opposed

to a default file path, for example? One method would be to append the data

element to a caption, as in BackColor=White. You would then have to parse

the data as you read it from the text file. The Registry is probably a better

solution for something like this, but a text file could be useful if you wanted to

transfer settings to a different computer.

Q. Can I store binary data instead of text to a file?

A. Visual C# includes classes designed to work with binary files: BinaryWriter

and BinaryReader. You would need to use objects based on these classes,

instead of using StreamWriter and StreamReader objects.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. Under what hive should you store a user’s confirmation information in the

Registry?

2. What is the full object/method used to create a key in the HKEY_CURRENT_USER

hive of the Registry?

3. What are the two methods used to delete a key from the Registry, and what is

the difference between the two?

4. What classes do you use to write and read text files?

5. What method of the StreamReader class do you use to read the entire con-

tents of a text file at once?

6. What happens if you attempt to use the StreamReader class to open a file

that doesn’t exist?

436 HOUR 20: Working with Text Files and the Registry

Answers
1. You should store user configuration in the HKEY_CURRENT_USER hive.

2. Microsoft.Win32.Registry.CurrentUser.CreateSubKey();

3. The method DeleteSubKey() deletes a key, but only if no subkeys exist for the

specified key. The method DeleteSubKeyTree() deletes a key and any subkeys

of the specified key.

4. The StreamWriter class is used to write to a text file, whereas the

StreamReader class is used to read data from a text file.

5. The ReadToEnd() method

6. An exception is thrown.

Exercises
1. Every toolbar item should have a corresponding menu item. Create a menu

item on the Tools menu for displaying the log. While you’re at it, create one

for viewing the file properties to match the toolbar item you created in Hour

19. (You should move the code in tbbGetFileAttributes_Click to its own

procedure so that it can be called from both the menu and toolbar.) Finally,

go back and add images to your menu items so that they match the toolbar

items.

2. Create a button called btnClearLog on the Log Viewer form. Change the text

of the button to Clear. When the user clicks the button, delete the log file from

the hard drive and close the Log Viewer form.

HOUR 21

Working with a Database

What You’ll Learn in This Hour:
. Introduction to ADO.NET
. Connecting to a database
. Understanding DataTable objects
. Creating a DataAdapter
. Referencing fields in a DataRow
. Navigating records
. Adding, editing, and deleting records
. Building an ADO.NET example

You’ve heard this expression so many times that it’s almost a cliché: This is the

Information Age. Information is data, and managing information means working with

databases. Database design is a skill unto itself, and entire books are devoted to database

design and management. In this hour, you learn the basics of working with a database

using ADO.NET, Microsoft’s newest database technology. Although high-end solutions are

built around advanced database technologies such as Microsoft’s SQL Server, the Microsoft

Jet database used by Microsoft Access is more readily available and easier to learn, so you

are going to build working examples that use a Jet database. Be aware, however, that 99%

of what you learn here is directly applicable to working with SQL Server as well.

438 HOUR 21: Working with a Database

You learn a lot in this hour, but you need to realize that this material is really the
tip of the iceberg. Database programming is often complex. This hour is intended
to get you writing database code as quickly as possible, but if you plan to do a lot
of database programming, you should consult a book (or two) dedicated to the
subject.

Begin by creating a new Windows application named Database Example. Right-

click Form1.cs in the Solution Explorer window, choose Rename, and then change

the name of the default form to MainForm.cs. Next, set the form’s Text property to

Database Example.

Now that you’ve created the project, follow the steps in the next sections to build

your database project.

Introducing ADO.NET
ADO.NET is the .NET platform’s database technology, and it builds on the older

Active Data Objects (ADO) technology. ADO.NET provides DataSet and DataTable

objects that are optimized for moving disconnected sets of data across the Internet

and intranets, including through firewalls. At the same time, ADO.NET includes the

traditional connection and command objects, as well as an object called a

DataReader (which resembles a forward-only, read-only ADO RecordSet, in case

you’re familiar with ADO). Together, these objects provide the best performance and

throughput for retrieving data from a database.

In short, you learn about the following objects as you progress through this hour:

. OleDBConnection is used to establish a connection to an OLEDB data source.

. SqlConnection is used to establish a connection to a SQL Server data source.

. DataSet is a memory-resident representation of data. There are many ways of

working with a DataSet, such as through DataTable objects.

. DataTable holds a result set of data for manipulation and navigation.

. DataAdapter is used to populate a DataSet.

Connecting to a Database
To access data in a database, you must first establish a connection using an

ADO.NET connection object. Multiple connection objects are included in the .NET

Framework, such as the OleDbConnection object (for working with the same OLE

By the
Way

Introducing ADO.NET 439

DB data providers you would access through traditional ADO) and the

SqlConnection object (for optimized access to Microsoft SQL Server). Because these

examples connect to the Microsoft Jet Database, you use the OleDbConnection

object here. To create an object variable of type OleDbConnection and initialize the

variable to a new connection, you could use a statement like this:

OleDbConnection cnADONetConnection = new OleDbConnection();

To use ADO.NET, you first need to add the proper namespace to your project.

Double-click the form now to access its events. Scroll to the top of the class and add

the following using statement on the line below the other using statements:

using System.Data.OleDb;

You’re going to create a module-level variable to hold the connection, so place the

cursor below the left brace ({) that follows the statement public partial class

MainForm : Form and press Enter to create a new line. Then enter the following

statement:

OleDbConnection m_cnADONetConnection = new OleDbConnection();

Before using this connection, you must specify the data source to which you want to

connect. This is done through the ConnectionString property of the ADO.NET con-

nection object. The ConnectionString contains connection information such as the

name of the provider, username, and password. The ConnectionString might con-

tain many connection parameters; the set of parameters available varies, depending

on the source of data you’re connecting to. Table 21.1 lists some of the parameters

used in the OLE DB ConnectionString. If you specify multiple parameters, separate

them with a semicolon.

TABLE 21.1 Possible Parameters for ConnectionString

Parameter Description

Provider The name of the data provider (Jet, SQL, and so on) to use.

Data Source The name of the data source (database) to connect to.

User ID A valid username to use when connecting to the data source.

Password A password to use when connecting to the data source.

DRIVER The name of the database driver to use. This isn’t required if a
data source name (DSN) is specified.

SERVER The network name of the data source server.

The Provider= parameter is one of the most important at this point; it is governed

by the type of database you’re accessing. For example, when accessing a SQL Server

440 HOUR 21: Working with a Database

database, you specify the provider information for SQL Server, and when accessing a

Jet database, you specify the provider for Jet. In this example, you access a Jet

(Microsoft Access) database, so you use the provider information for Jet.

In addition to specifying the provider, you also specify the database. I’ve provided a

sample database on this book’s website. This code assumes that you’ve placed the

database in a folder called C:\Temp. If you’re using a different folder, you need to

change the code accordingly. Follow these steps:

1. Specify the ConnectionString property of your ADO.NET connection by plac-

ing the following statement in your form’s Load event:

m_cnADONetConnection.ConnectionString =
@”Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\temp\contacts.mdb”;

2. After the connection string is defined, you establish a connection to a data

source by using the Open() method of the connection object. Add the follow-

ing statement to the Load event, right after the statement that sets the connec-

tion string:

m_cnADONetConnection.Open();

Refer to the online documentation for information on connection strings for
providers other than Jet.

When you attach to an unsecured Jet database, you don’t need to provide a user-

name and password. When attaching to a secured Jet database, however, you must

provide a username and password. This is done by passing the username and pass-

word as parameters in the ConnectionString property. The sample database I’ve

provided isn’t secured, so you don’t need to provide a username and password.

Closing a Connection to a Data Source
You should always explicitly close a connection to a data source. That means you

shouldn’t rely on a variable going out of scope to close a connection. Instead, you

should force an explicit disconnect via code. This is accomplished by calling the

Close() method of the connection object.

Now follow these steps to write code to explicitly close the connection when the form

is closed:

1. Click the MainForm.cs [Design] tab to return to the Form Designer.

2. Click the Events button (the lightning bolt) on the Properties window to access

the list of events for the form.

By the
Way

Manipulating Data 441

3. Double-click the FormClosing event to create a new event handler. Enter the

following statements in the event:

m_cnADONetConnection.Close();
m_cnADONetConnection.Dispose();

Manipulating Data
The easiest way to manipulate data using ADO.NET is to create a DataTable object

containing the result set of a table, query, or stored procedure. Using a DataTable

object, you can add, edit, delete, find, and navigate records. The following sections

explain how to use DataTable objects.

Understanding DataTable Objects
DataTable objects contain a snapshot of data in the data source. You generally start

by filling a DataTable, manipulating its results, and finally sending the changes

back to the data source. The DataTable is populated using the Fill() method of a

DataAdapter object, and changes are sent back to the database using the Update()

method of a DataAdapter. Any changes made to the DataTable appear only in the

local copy of the data until you call the Update() method. Having a local copy of

the data reduces contention by preventing users from blocking others from reading

the data while it’s being viewed. If you’re familiar with ADO, you’ll note that this is

similar to the Optimistic Batch Client Cursor in ADO.

Creating a DataAdapter
To populate a DataTable, you must create a DataAdapter. The DataAdapter you

create will use the connection you’ve already defined to connect to the data source

and then execute a query you’ll provide. The results of that query are pushed into a

DataTable.

As mentioned earlier, the .NET Framework has multiple connection objects. It also

has multiple ADO.NET DataAdapter objects. You use the OleDbDataAdapter

because you will be connecting to Microsoft Access Database.

The constructor for a DataAdapter optionally takes the command to execute when

filling a DataTable or DataSet, as well as a connection specifying the data source

(you could have multiple connections open in a single project). This constructor has

the following syntax:

OleDbDataAdapter cnADONetAdapter = new
OleDbDataAdapter([CommandText],[Connection]);

442 HOUR 21: Working with a Database

To add a DataAdapter to your project, follow these steps:

1. Add the following statement immediately below the statement you entered to

declare the m_cnADONewConnection object (in the class header, not in the Load

event) to create a module-level variable:

OleDbDataAdapter m_daDataAdapter;

2. Add the following statement at the bottom of the Load event of the form

(immediately following the statement that opens the connection) :

m_daDataAdapter =
new OleDbDataAdapter(“Select * From Contacts”,m_cnADONetConnection);

Because you’re going to use the DataAdapter to update the original data

source, you must specify the insert, update, and delete statements to use to

submit changes from the DataTable to the data source. ADO.NET lets you cus-

tomize how updates are submitted by enabling you to manually specify these

statements as database commands or stored procedures. In this case, you have

ADO.NET generate these statements automatically by creating a

CommandBuilder object.

3. Enter this statement in the class header (with the other two variable declara-

tions) to create the CommandBuilder module-level variable:

OleDbCommandBuilder m_cbCommandBuilder;

The CommandBuilder is an interesting object in that after you initialize it, you

no longer work with it directly. It works behind the scenes to handle the

updating, inserting, and deleting of data. To make this work, you have to

attach the CommandBuilder to a DataAdapter. You do so by passing a

DataAdapter to the CommandBuilder. The CommandBuilder then registers for

update events on the DataAdapter and provides the insert, update, and delete

commands as needed.

4. Add the following statement to the end of the Form_Load event to initialize

the CommandBuilder object:

OleDbCommandBuilder m_cbCommandBuilder =
new OleDbCommandBuilder(m_daDataAdapter);

When you’re using a Jet database, the CommandBuilder object can create the
dynamic SQL code only if the table in question has a primary key defined.

Your code should now look like that shown in Figure 21.1.

By the
Way

Manipulating Data 443

Creating and Populating DataTable Objects
The next task is to create a module-level DataTable in your project. Follow these

steps:

1. Create the DataTable variable by adding the following statement in the class

header to create another module-level variable:

DataTable m_dtContacts = new DataTable();

2. You use an integer variable to keep track of the user’s current position (row)

within the DataTable. To do this, add the following statement immediately

below the statement you just entered to declare the new DataTable object:

int m_rowPosition = 0;

3. You now have a DataAdapter that allows access to a data source via the con-

nection. You’ve declared a DataTable that will hold a reference to data. Next,

add the following statement to the form’s Load event, after the existing code,

to fill the DataTable with data:

m_daDataAdapter.Fill(m_dtContacts);

Because the DataTable doesn’t hold a connection to the data source, you don’t need

to close it when you’re finished. Your class should now look like the one shown in

Figure 21.2.

FIGURE 21.1
You jump
around a lot in
this example.
Be sure to fol-
low the steps
exactly!

444 HOUR 21: Working with a Database

Referencing Fields in a DataRow
DataTable objects contain a collection of DataRow objects. To access a row within

the DataTable, you specify the ordinal (index) of that DataRow. For example, you

could access the first row of your DataTable like this:

DataRow m_rwContact = m_dtContacts.Rows[0];

Data elements in a DataRow are called columns. For example, the Contacts table I’ve

created has two columns: ContactName and State. To reference the value of a col-

umn, you can pass the column name to the DataRow like this:

// Change the value of the column.
m_rwContact[“ContactName”] = “Bob Brown”;

or

// Get the value of the column.
strContactName = m_rwContact[“ContactName”];

If you misspell a column name, an exception occurs when the statement executes
at runtime; no errors are raised at compile time.

FIGURE 21.2
This code
accesses a
database and
creates a
DataTable that
can be used
anywhere in the
class.

By the
Way

Manipulating Data 445

Now you create a procedure that’s used to display the current record in the data

table. Follow these steps:

1. Position the cursor after the right brace that ends the MainForm_FormClosing

event and press Enter a few times to create some blank lines.

2. Enter the following procedure in its entirety:

private void ShowCurrentRecord()
{

if (m_dtContacts.Rows.Count==0)
{

txtContactName.Text = “”;
txtState.Text = “”;
return;

}
txtContactName.Text =

m_dtContacts.Rows[m_rowPosition][“ContactName”].ToString();
txtState.Text = m_dtContacts.Rows[m_rowPosition][“State”].ToString();

}

3. Make sure that the first record is shown when the form loads by adding this

statement to the Form_Load event, after the existing statements:

this.ShowCurrentRecord();

You’ve now ensured that the first record in the DataTable is shown when the

form first loads. To display the data, you must add a few controls to the form.

4. Switch to the Form Designer, create a new text box, and set its properties as

follows (you may have to switch back to view the properties if the events are

still visible):

Property Value

Name txtContactName

Location 48, 112

Size 112, 20

5. Add a second text box to the form and set its properties according to the fol-

lowing table:

Property Value

Name txtState

Location 168, 112

Size 80, 20

6. Press F5 to run the project. You see the first contact in the Contacts table dis-

played in the text box, as shown in Figure 21.3.

446 HOUR 21: Working with a Database

Navigating Records
The ADO.NET DataTable object supports a number of methods that can be used to

access its DataRow objects. The simplest of these is the ordinal accessor that you used

in the ShowCurrentRecord() method. Because the DataTable has no dependency

on the source of the data, this same functionality is available regardless of where

the data comes from.

Now you’re going to create buttons that the user can click to navigate the

DataTable. The first button will be used to move to the first record in the

DataTable. Follow these steps:

1. Stop the running project and display the Form Designer for MainForm.

2. Add a new button to the form and set its properties as follows:

Property Value

Name btnMoveFirst

Location 12, 152

Size 32, 23

Text <<

3. Double-click the button and add the following code to its Click event:

// Move to the first row and show the data.
m_rowPosition = 0;
this.ShowCurrentRecord();

4. A second button will be used to move to the previous record in the DataTable.

Add another button to the form and set its properties as shown in the follow-

ing table:

FIGURE 21.3
Displaying data
takes quite a
bit of prep
work.

Manipulating Data 447

Property Value

Name btnMovePrevious

Location 48, 152

Size 32, 23

Text <

5. Double-click the button and add the following code to its Click event:

// If not at the first row, go back one row and show the record.
if (m_rowPosition != 0)
{

m_rowPosition---;
this.ShowCurrentRecord();

}

6. A third button will be used to move to the next record in the DataTable. Add

a third button to the form and set its properties as shown in the following

table:

Property Value

Name btnMoveNext

Location 86, 152

Size 32, 23

Text >

7. Double-click the button and add the following code to its Click event:

// If not on the last row, advance one row and show the record.
if (m_rowPosition < m_dtContacts.Rows.Count-1)
{

m_rowPosition++;
this.ShowCurrentRecord();

}

8. A fourth button will be used to move to the last record in the DataTable. Add

yet another button to the form and set its properties as shown in the following

table:

Property Value

Name btnMoveLast

Location 124, 152

Size 32, 23

Text >>

448 HOUR 21: Working with a Database

9. Double-click the button and add the following code to its Click event:

// If there are any rows in the data table,
// move to the last and show the record.
if (m_dtContacts.Rows.Count != 0)
{

m_rowPosition = m_dtContacts.Rows.Count-1;
this.ShowCurrentRecord();

}

Editing Records
To edit records in a DataTable, you change the value of a particular column in the

desired DataRow. Remember, though, that changes aren’t made to the original data

source until you call Update() on the DataAdapter, passing in the DataTable con-

taining the changes.

Now you add a button that the user can click to update the current record. Follow

these steps:

1. Add a new button to the form and set its properties as follows:

Property Value

Name btnSave

Location 162, 152

Size 40, 23

Text Save

2. Double-click the Save button and add the following code to its Click event:

// If there is existing data, update it.
if (m_dtContacts.Rows.Count !=0)
{

m_dtContacts.Rows[m_rowPosition][“ContactName”]= txtContactName.Text;
m_dtContacts.Rows[m_rowPosition][“State”] = txtState.Text;
m_daDataAdapter.Update(m_dtContacts);

}

Creating New Records
You add records to a DataTable much like you edit records. However, to create a

new row in the DataTable, you must first call the NewRow() method. After creating

the new row, you can set its column values. The row isn’t actually added to the

DataTable, however, until you call the Add() method on the DataTable object’s

RowCollection.

Now you’re going to modify your interface so that the user can add new records. You

use one text box for the contact name and a second text box for the state. When the

Manipulating Data 449

user clicks the button you provide, the values in these text boxes are written to the

Contacts table as a new record. Follow these steps:

1. Start by adding a group box to the form and setting its properties as shown in

the following table:

Property Value

Name grpNewRecord

Location 16, 192

Size 256, 58

Text New Contact

2. Add a new text box to the group box (not to the form) and set its properties as

follows:

Property Value

Name txtNewContactName

Location 8, 24

Size 112, 20

3. Add a second text box to the group box and set its properties as shown:

Property Value

Name txtNewState

Location 126, 24

Size 80, 20

4. Finally, add a button to the group box and set its properties as follows:

Property Value

Name btnAddNew

Location 210, 22

Size 40, 23

Text Add

5. Double-click the Add button and add the following code to its Click event:

DataRow drNewRow = m_dtContacts.NewRow();
drNewRow[“ContactName”] = txtNewContactName.Text;
drNewRow[“State”] = txtNewState.Text;
m_dtContacts.Rows.Add(drNewRow);
m_daDataAdapter.Update(m_dtContacts);
m_rowPosition = m_dtContacts.Rows.Count-1;
this.ShowCurrentRecord();

450 HOUR 21: Working with a Database

Notice that after the new record is added, the position is set to the last row, and the

ShowCurrentRecord() procedure is called. This causes the new record to appear in

the display text boxes you created earlier.

Deleting Records
To delete a record from a DataTable, you call the Delete() method on the DataRow

to be deleted. Follow these steps:

1. Add a new button to your form (not to the group box) and set its properties as

shown in the following table:

Property Value

Name btnDelete

Location 206, 152

Size 56, 23

Text Delete

2. Double-click the Delete button and add the following code to its Click event:

// If there is data, delete the current row.
if (m_dtContacts.Rows.Count !=0)
{

m_dtContacts.Rows[m_rowPosition].Delete();
m_daDataAdapter.Update(m_dtContacts);
m_rowPosition=0;
this.ShowCurrentRecord();

}

Your form should now look like the one shown in Figure 21.4.

FIGURE 21.4
A basic data
entry form.

Q&A 451

Running the Database Example
To run the project, press F5. If you entered all the code correctly and you placed the

Contacts database in the C:\Temp folder (or modified the path used in code), the

form should be displayed without errors, and the first record in the database will

appear. Click the navigation buttons to move forward and backward. Feel free to

change the information of a contact; click the Save button, and your changes will

be made to the underlying database. Next, enter your name and state into the New

Contact section of the form and click Add. Your name will be added to the database

and displayed in the appropriate text boxes. Note that there is no provision in the

code to deal with duplicate records, so attempting to add a duplicate name will gen-

erate an error.

Summary
Most commercial applications use some sort of database. Becoming a good database

programmer requires extending your skills beyond just being a good Windows pro-

grammer. There’s so much to know about optimizing databases and database code,

creating usable database interfaces, creating a database schema—the list goes on.

Writing any database application, however, begins with the basic skills you learned

in this hour. You learned how to connect to a database, create and populate a

DataTable, and navigate the records in the DataTable. In addition, you learned

how to edit records and how to add and delete records. Although the information

covered here just scratches the surface of database programming, it is all you need

to begin writing your own small database application.

Q&A
Q. If I want to connect to a data source other than Jet, how do I know what

connection string to use?

A. Different connection information is available not only for different types of

data sources, but also for different versions of different data sources. The best

way to determine the connection string is to consult the documentation for the

data source to which you want to attach.

Q. What if I don’t know where the database will be at runtime?

A. For file-based data sources such as Jet, you can add an Open File Dialog con-

trol to the form and let the user browse and select the database. Then concate-

nate the filename with the rest of the connection information (such as the

provider string).

452 HOUR 21: Working with a Database

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What is the name of the data access namespace used in the .NET Framework?

2. What is the name given to a collection of DataRow objects?

3. How do you get data into and out of a DataTable?

4. What object is used to connect to a data source?

5. What argument of a connection string contains information about the type of

data being connected to?

6. What object provides update, delete, and insert capabilities to a DataAdapter?

7. What method of a DataTable object do you call to create a new row?

Answers
1. System.Data

2. A DataTable

3. You use a DataAdapter.

4. There are multiple connection objects. You have to use the connection object

appropriate for the type of data you are accessing.

5. The Provider argument

6. A CommandBuilder object

7. The Add() method is used to create the row. The Update() method saves your

changes to the new row.

Exercises
1. Create a new project that connects to the same database used in this example.

Instead of displaying a single record in two text boxes, put a list box on the

form and fill the list box with the names of the people in the database.

2. Right now, the code you created in this hour saves an empty name to the

database. Add code to the Click event of the Add button so that it first tests to

see whether the user entered a contact name. If not, tell the user that a name

is required and then exit the procedure.

HOUR 22

Controlling Other Applications
Using Automation

What You’ll Learn in This Hour:
. Creating a reference to an automation library
. Creating an instance of an automation server
. Manipulating the objects of an automation server
. Automating Microsoft Word

In Hour 16, “Designing Objects Using Classes,” you learned how to use classes to create

objects. In that hour, I mentioned that objects could be exposed to outside applications.

Excel, for example, exposes most of its functionality as a set of objects. The process of

using objects from another application is called automation. The externally accessible

objects of an application comprise its object model. Using automation to manipulate a pro-

gram’s object model enables you to reuse components. For example, you can use automa-

tion with Excel to perform complex mathematical functions using the code that’s been

written and tested within Excel instead of writing and debugging the complex code

yourself.

Programs that expose objects are called servers, and programs that consume objects are

called clients. Creating automation servers requires advanced skills, including a thorough

understanding of programming classes. On the other hand, creating clients to use objects

from other applications is relatively simple. In this hour, you learn how to create a client

application that uses objects of an external server application.

To understand automation, you are going to build two projects. The first is a Microsoft

Excel client—a program that automates Excel via Excel’s object model. The second project

automates Microsoft Word.

454 HOUR 22: Controlling Other Applications Using Automation

These exercises are designed to work with Microsoft Excel 2007 and Microsoft
Word 2007. You must have these programs installed for the examples to work.

Begin by creating a new Windows application named Automate Excel. Right-click

Form1.cs in the Solution Explorer, choose Rename, and then change the name of

the default form to MainForm.cs. Next, set the form’s Text property to Automate

Excel.

Add a button to the form by double-clicking the Button item in the toolbox and set

the button’s properties as follows:

Property Value

Name btnAutomateExcel

Location 90, 128

Size 104, 23

Text Automate Excel

Creating a Reference to an Automation
Library
To use the objects of a program that supports automation (a server), you have to ref-

erence the program’s type library. A program’s type library (also called its object

library) is a file containing a description of the program’s object model. After you’ve

referenced the type library of an automation server (also called a component), you

can access the server’s objects as though they were internal Visual C# objects.

You create the reference to Excel’s automation library much like you created a refer-

ence to the System.Data namespace in Hour 21, “Working with a Database.” To

create a reference to the Excel library, follow these steps:

1. Display the Add Reference dialog box by choosing Project, Add Reference.

2. Click the COM tab to display the available COM components (programs that

have a type library) on your computer.

3. Scroll the list and locate the Microsoft Excel 12.0 Object Library (see Figure

22.1). Double-click the Excel item to create a reference to it and close the dia-

log box.

By the
Way

Creating an Instance of an Automation Server 455

If you don’t see Microsoft Excel 12.0 Object Library in your list of available COM
references, you probably don’t have Excel 2007 installed, and this example will
not work. If you find Microsoft Excel 11.0 Object Library in the list, that refers to
Excel 2003. You can use the code in this chapter with Excel 2003, but not with
versions earlier than that.

Creating an Instance of an Automation
Server
Referencing a type library allows Visual C# to integrate the available objects of the

type library with its own internal objects. After this is done, you can create object

variables based on object types found in the type library. Excel has an object called

Application, which acts as the primary object in the Excel object model. In fact,

most Office programs have an Application object. How do you know what objects

an automation server supports? The only sure way is to consult the documentation

of the program in question or use the Object Browser, as discussed in Hour 3,

“Understanding Objects and Collections.”

In this example, you use about a half-dozen members of an Excel object. This
doesn’t even begin to scratch the surface of Excel’s object model, nor is it intend-
ed to. What you should learn from this example is the mechanics of working with
an automation server. If you choose to automate a program in your own projects,
consult the program’s developer documentation to learn as much about its object
model as you can. You’re sure to be surprised at the functionality available to you.

FIGURE 22.1
Creating a refer-
ence to a COM
library allows
Visual C# to
understand and
use its objects.

By the
Way

By the
Way

456 HOUR 22: Controlling Other Applications Using Automation

To use the COM reference you created, you need to add a using statement to your

class. Begin by double-clicking the button to access its Click event; then scroll up to

the top of the class and add this using statement, right below the existing using

statements:

using Excel = Microsoft.Office.Interop.Excel;

This using statement is a bit different from those you’ve used before, in that it has

an equal sign in it. This statement performs a standing using statement, but it

aliases the word Excel so that when you enter Excel in code, the compiler will act as

though you entered Microsoft.Office.Interop.Excel. This reduces the amount

of typing you need to do when programming Excel’s Automation library.

Next, enter the following code, which creates a new Excel Application object into

the btnAutomaticeExcel_Click event:

Excel.Application objExcel = new Excel.Application();

Notice that Visual C# includes Excel in its IntelliSense drop-down list of available

objects. It can do this because you referenced Excel’s type library. Excel is the refer-

ence to the server, and Application is an object supported by the server. This state-

ment creates a new Application object based on the Excel object model.

Manipulating the Server
After you have an instance of an object from an automation server, you manipulate

the server (create objects, set properties, call methods, and so forth) by manipulating

the object. In the following sections, you manipulate the new Excel object by setting

properties and calling methods, and in so doing you manipulate Excel itself.

Forcing Excel to Show Itself
When Excel is started using automation, it’s loaded hidden; the user can’t see the

user interface. By remaining hidden, Excel allows the developer to use Excel’s func-

tionality and then close it without the user’s even knowing what happened. For

example, you could create an instance of an Excel object, perform a complicated

formula to obtain a result, close Excel, and return the result to the user—all without

the user’s seeing Excel. In this example, you want to see Excel so that you can see

what your code is doing. Fortunately, showing Excel couldn’t be any easier. Add the

following statement to make Excel visible:

objExcel.Visible = true;

Manipulating the Server 457

Creating an Excel Workbook
In Excel, a workbook is the file in which you work and store your data; you can’t

manipulate data without a workbook. When you first start Excel from the Start

menu, an empty workbook is created for you. When you start Excel via automation,

however, Excel doesn’t create a workbook; you have to do it yourself. To create a

new workbook, you use the Add method of the Workbooks collection. Enter the fol-

lowing statements to create a new workbook and reference the default worksheet

(explained in the next section) :

//start a new workbook and a worksheet.
Excel.Workbook objBook =

objExcel.Workbooks.Add(System.Reflection.Missing.Value);
Excel.Worksheet objSheet = (Excel.Worksheet)objBook.Worksheets.get_Item(1);

Working with Data in an Excel Workbook
Workbooks contain a single worksheet by default. In this section, you manipulate

data in the worksheet. The following describes what you do:

1. Add data to four cells in the worksheet.

2. Select the four cells.

3. Total the selected cells and place the sum in a fifth cell.

4. Bold all five cells.

To manipulate cells in the worksheet, you manipulate the ActiveCell object, which

is an object property of the Application object. Entering data into a cell involves

first selecting a cell and then passing data to it. You select a cell by calling the

Select method of the Range object; the Range object is used to select one or more

cells. The Select method accepts a starting column and row and an ending column

and row. If you want to select only a single cell, as you do here, you can omit the

ending column and row. After the range is set, you pass data to the FormulaR1C1

property of the ActiveCell object (which references the cell specified by the Range

object). Setting the FormulaR1C1 property has the effect of sending data to the cell.

Sound confusing? Well, it is to some extent. Programs that support automation are

often vast and complex, and programming them is usually far from intuitive.

458 HOUR 22: Controlling Other Applications Using Automation

If the program you want to automate has a macro builder (as most Microsoft prod-
ucts do), you can save yourself a lot of time and headaches by creating macros of
the tasks you want to automate. Macros are actually code, and in the case of
Microsoft products, they’re VBA code, which is similar to Visual Basic 6 code.
Although this code doesn’t port directly to Visual C# 2008, it’s rather easy to
migrate in most cases, and the macro builder does all or most of the work of
determining objects and members for you.

The following example uses the techniques just described to add data to four cells.

Follow these steps now to automate sending the data to Excel:

1. Enter this code into your procedure:

Excel.Range objRange;

objRange = objSheet.get_Range(“A1”, System.Reflection.Missing.Value);
objRange.Value2 = 75;

objRange = objSheet.get_Range(“B1”, System.Reflection.Missing.Value);
objRange.Value2 = 125;

objRange = objSheet.get_Range(“C1”, System.Reflection.Missing.Value);
objRange.Value2 = 255;

objRange = objSheet.get_Range(“D1”, System.Reflection.Missing.Value);
objRange.Value2 = 295;

The next step is to have Excel total the four cells. You do this by using the

Range object to select the cells, activating a new cell in which to place the

total, and then using FormulaR1C1 again to create the total by passing it a

formula rather than a literal value.

2. Enter this code into your procedure:

objRange = objSheet.get_Range(“E1”, System.Reflection.Missing.Value);
objRange.set_Value(System.Reflection.Missing.Value, “=SUM(RC[-4]:RC[-1])”
_);

3. Select all five cells and bold them. Enter the following statements to accom-

plish this:

objRange = objSheet.get_Range(“A1”, “E1”);
objRange.Font.Bold=true;

The last thing you need to do is destroy the object reference by setting the

object variable to null. Excel remains open even though you’ve destroyed the

automation instance (not all servers do this).

4. Add this last statement to your procedure:

objExcel=null;

Did you
Know?

Manipulating the Server 459

To help ensure that you entered everything correctly, Listing 22.1 shows the proce-

dure in its entirety.

LISTING 22.1 Code to Automate Excel
private void btnAutomateExcel_Click(object sender, EventArgs e)

{
Excel.Application objExcel = new Excel.Application();

objExcel.Visible = true;

// Start a new workbook and a worksheet.
Excel.Workbook objBook =
objExcel.Workbooks.Add(System.Reflection.Missing.Value);

Excel.Worksheet objSheet =
(Excel.Worksheet)objBook.Worksheets.get_Item(1);

// Use a Range object to select cells and set data.
Excel.Range objRange;

objRange = objSheet.get_Range(“A1”,
_System.Reflection.Missing.Value);

objRange.Value2 = 75;

objRange = objSheet.get_Range(“B1”,
_System.Reflection.Missing.Value);

objRange.Value2 = 125;

objRange = objSheet.get_Range(“C1”,
_System.Reflection.Missing.Value);

objRange.Value2 = 255;

objRange = objSheet.get_Range(“D1”,
_System.Reflection.Missing.Value);

objRange.Value2 = 295;

// Use a Range object to select cells and sum them.
objRange = objSheet.get_Range(“E1”,
_System.Reflection.Missing.Value);

objRange.set_Value(System.Reflection.Missing.Value,
“=SUM(RC[-4]:RC[-1])”);

objRange = objSheet.get_Range(“A1”, “E1”);
objRange.Font.Bold=true;

objExcel = null;
}

Testing Your Client Application
Now that your project is complete, press F5 to run it, and click the button to auto-

mate Excel. If you entered the code correctly, Excel starts, data is placed in four cells,

the total of the four cells is placed in a fifth cell, and all cells are made bold, as

shown in Figure 22.2.

460 HOUR 22: Controlling Other Applications Using Automation

Automating Microsoft Word
Now you’re going to build another simple application that automates Microsoft

Word 2007. Begin by creating a new project titled Automate Word. Right-click

Form1.cs in the Solution Explorer, choose Rename, and then change the default

form’s name to MainForm.cs. Next, change the form’s Text property to Automate

Word.

Creating a Reference to an Automation Library
To automate Microsoft Word, you have to reference Word’s object library, just like

you did for Excel. Follow these steps to reference the library:

1. Display the Add Reference dialog box by choosing Project, Add Reference.

2. Click the COM tab to display the available COM components (programs that

have a type library) on your computer.

3. Scroll the list and locate the Microsoft Word 12.0 Object Library (see Figure

22.3). Double-click the Excel item to create a reference to it and close the dia-

log box.

FIGURE 22.2
You can control
almost every
aspect of Excel
using its object
model.

Automating Microsoft Word 461

If you don’t see Microsoft Word 12.0 Object Library in your list of available COM
references, you probably don’t have Word 2007 installed. As with the Excel example,
you can use the 11.0 Object Library of Word if you have Word 2003 installed.

By the
Way

FIGURE 22.3
All COM
libraries are ref-
erenced with
this dialog box.

Creating an Instance of an Automation Server
As with the previous example, all the code for automating Word is placed in a but-

ton’s Click event. Follow these steps to create the button and instantiate a Word

object:

1. Add a button to the form by double-clicking the Button item in the toolbox

and set the button’s properties as follows:

Property Value

Name btnAutomateWord

Location 90, 128

Size 104, 23

Text Automate Word

2. Double-click the button to access its Click event.

3. Scroll to the top of the class and add this statement right below the existing

using statements:

using Word = Microsoft.Office.Interop.Word;

462 HOUR 22: Controlling Other Applications Using Automation

4. To work with Word’s object model, you need an instance of Word’s

Application object. Enter the following statement in the Click event of the

button to create a variable that contains an instance of Word’s Application

object (the rest of the code you enter will be placed in the Click event of the

button):

Word.Application objWord = new Word.Application();

5. As with Excel, Word starts hidden, so the user doesn’t know it’s running.

Because you want to see the fruits of your labor, add this statement to force

Word to show itself:

objWord.Visible = true;

6. You need to have Word create a new document. This is accomplished using

the Add() method of the Documents collection. This method expects four

optional parameters. Because they’re optional, you’re not going to pass them

any data. However, you still have to include the arguments in your call to the

method. Rather than use System.Reflection.Missing.Value for each

optional parameter, which is essentially like leaving out an argument like you

did in the Excel example, you create a variable to hold this value and use the

variable in the call to Add(). Enter these statements to declare the variables

and create the new document:

Word.Document objDoc;
object objMissing = System.Reflection.Missing.Value;

objDoc = objWord.Documents.Add(ref objMissing, ref objMissing,
ref objMissing, ref objMissing);

7. There are many ways to send text to Word. Perhaps the easiest is to use the

TypeText() method of the Selection object. The Selection object refers to

currently selected text in the Word document. When a new document is creat-

ed, there is no text, and the selection object simply refers to the edit cursor at

the start of the document. Sending text to Word using Select.TypeText()

inserts the text at the top of the document. Enter this statement to send text to

Word:

objWord.Selection.TypeText(“This is text from a C# 2008 application.”);

8. The last statement you need to enter sets the Word object to null to release

the reference to it:

objWord = null;

Summary 463

Automating applications, particularly Office products such as Excel and Word,
requires a lot of system resources. If you intend to perform a lot of automation,
you should use the fastest machine with the most memory that you can afford.
Also, be aware that for automation to work, the server application (Excel or Word
in this case) has to be installed on the user’s computer in addition to your appli-
cation.

Summary
In this hour, you learned how a program can make available an object model that

client applications can use to manipulate the program. You learned that the first

step in automating a program (server) is to reference the server’s type library. After

the type library is referenced, the server’s objects are available as though they’re

internal Visual C# objects. As you’ve seen, the mechanics of automating a program

aren’t that difficult; they build on the object-oriented programming skills you’ve

already learned in this book. The real challenge comes in learning the object model

of a given server and in making the most productive use of the objects available.

FIGURE 22.4
A simple but
effective
demonstration
of automating
Word.

By the
Way

Now, press F5 to run the program. You should see Word start, and then a new docu-

ment is created using the text you specified with TypeText() (see Figure 22.4).

464 HOUR 22: Controlling Other Applications Using Automation

Q&A
Q. What are some applications that support automation?

A. All the Microsoft Office products, as well as Microsoft Visio, support automa-

tion. You can create a robust application by building a client that uses multi-

ple automation servers. For example, you could calculate data in Excel and

then format and print the data in Word.

Q. Is it possible to create an Automation server so that my application can be
controlled by others?

A. Yes, it is possible to create .NET components that can be used by other applica-

tions. If this interests you, I suggest you seek out an advanced text on the

subject.

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. Before you can early bind objects in an automation server, you must do what?

2. What is the most likely cause of not seeing a type library listed in the Add

References dialog box?

3. For Visual C# to use a COM library, what must it create?

4. To manipulate a server via automation, what do you manipulate?

5. To learn about the object library of a component, what should you do?

Answers
1. Add a reference to the server’s type library.

2. The application is not installed.

3. A wrapper around the COM library.

4. An object that holds an instantiated object from the server.

5. Consult the programmer’s help file for the component.

Workshop 465

Exercises
1. Modify the Excel example to prompt the user for a filename to save the work-

book. (Hint: Consider the Save() method of the Application object.)

2. Modify your Excel example so that after summing the four cells, you retrieve

the sum from Excel and then send the value to a new Word document.

This page intentionally left blank

PART V

Developing Solutions and
Beyond

HOUR 23 Deploying Applications 469

HOUR 24 The 10,000-Foot View 479

This page intentionally left blank

HOUR 23

Deploying Applications

What You’ll Learn in This Hour:
. Understanding ClickOnce technology
. Using the Publish Wizard to create a ClickOnce program
. Testing a ClickOnce install program
. Uninstalling an application you’ve distributed
. Setting advanced options when creating ClickOnce programs

Now that you’ve learned how to create a Visual C# 2008 application, you’re probably

itching to create a project and send it to the world. Fortunately, Visual C# 2008 includes

the tools you need to create a setup program for your applications. In this hour, you’ll

learn how to use these tools to create a setup program that a user can run to install an

application you’ve developed. In fact, you’ll create a setup program for the Picture Viewer

application you’ve been working on since Hour 1, “Jumping In with Both Feet: A Visual

C# 2008 Programming Tour.”

Understanding ClickOnce Technology
Microsoft can’t seem to settle on a deployment technology. Before .NET, serious developers

were forced to use third-party applications to build installation programs. Then Microsoft

introduced Windows Installer Technology, in which developers created an MSI file that

installed an application. With Visual C# 2005, Microsoft introduced yet another technolo-

gy: ClickOnce. ClickOnce technology has its drawbacks, mostly in its lack of flexibility, but

it does have some significant improvements over earlier technologies, and Microsoft has

470 HOUR 23: Deploying Applications

continued to improve it. Many of the improvements will be appreciated mostly by

experienced developers who have been battling install technology for some time.

This hour covers the highlights of ClickOnce technology. After you understand what

the ClickOnce technology offers, I’ll walk you through creating a ClickOnce pro-

gram that installs your Picture Viewer program on a user’s computer.

The following points are highlights of the new ClickOnce technology:

. ClickOnce is designed to bring the ease of deploying a web application to the

deployment of desktop applications. Traditionally, to distribute a desktop

application you had to touch every client computer, running the setup pro-

gram and installing the appropriate files. Web applications, on the other

hand, need to be updated in only one place: on the web server. ClickOnce pro-

vides desktop applications with update functionality similar to web applica-

tions.

. Applications deployed with ClickOnce can update themselves. They can check

the web for a newer version and install the newer version automatically.

. ClickOnce programs update only necessary files. With previous installation

technologies, entire applications had to be reinstalled to be updated.

. ClickOnce allows applications to install their components in such a way that

they don’t interfere with other installed applications. In other words, they are

self-contained applications. With Windows Installer deployments (that is, the

“old way”), applications shared components such as custom controls. If one

application mistakenly installed an older version of a component, deleted a

component, or installed an incompatible version of a component, it would

break other installed applications that used the shared component.

. ClickOnce programs do not require the user to have administrative permis-

sions. With Windows Installer deployments, users needed administrative per-

missions to install an application. Trust me—this is a serious issue, and I’m

glad to see ClickOnce address it.

. A ClickOnce application can be installed in one of three ways: from a web

page, from a network file share, or from media such as a CD-ROM.

. A ClickOnce application can be installed on a user’s computer, so it can be

run when the user is offline. Or it can be run in an online-only mode, where it

doesn’t permanently install anything on the user’s computer.

Using the Publish Wizard to Create a ClickOnce Application 471

Using the Publish Wizard to Create a
ClickOnce Application
Now it’s time to create a ClickOnce program that installs the Picture Viewer program

you’ve been building throughout this book. Begin by opening the Picture Viewer

project from Hour 19, “Working with Text Files and the Registry,” and then follow

these steps:

1. Choose Build, Publish Picture Viewer. This displays the Publish Wizard, shown

in Figure 23.1. This page is used to specify where you want the ClickOnce file

created.

FIGURE 23.1
The Publish
Wizard is used
to create
ClickOnce
programs.

2. Specify the location for the ClickOnce install files. Be aware that you must

enter a path that already exists; Visual C# does not create a path for you. If

you specify an invalid path, you get a Build error at the end of the wizard.

Notice the examples listed on this page; you can specify a file path, a file

share, an FTP server, or a website. After you’ve supplied a valid path, click

Next.

3. On the next page of the Publish Wizard, shown in Figure 23.2, specify the

method users need to employ to install your program. Although you can spec-

ify a website or UNC share, choose From a CD-ROM or DVD-ROM for this

example and click Next.

472 HOUR 23: Deploying Applications

4. The next page of the Publish Wizard, shown in Figure 23.3, asks you whether

the application will check for updates. If your application supports this fea-

ture, select the appropriate option button, and specify a location where the

update files will be placed. The Picture Viewer is a simple application and does

not need this level of functionality, so leave the option The Application Will

Not Check for Updates selected, and click Next.

FIGURE 23.2
Users can
install your
application in
one of three
ways.

FIGURE 23.3
ClickOnce appli-
cations can
update them-
selves if you
design them to
do so.

5. The final page of the Publish Wizard, shown in Figure 23.4, is simply a confir-

mation page. Verify that the information displayed is how you want it. Don’t

Using the Publish Wizard to Create a ClickOnce Application 473

be concerned about the formatting applied to your path. Visual C# will modi-

fy it to create a valid UNC path. Click Finish to create the install.

FIGURE 23.4
Make sure that
everything is
correct before
you finish the
wizard.

When you click Finish, the Publish Wizard creates the ClickOnce application and

opens the folder containing the install files, as shown in Figure 23.5. To distribute

this application, you would simply burn the contents of this folder, including the

subfolder and its contents, to a CD-ROM or DVD-ROM and send it to a user.

FIGURE 23.5
These files (and
the subfolder)
make up the
ClickOnce
program.

474 HOUR 23: Deploying Applications

Testing Your Picture Viewer ClickOnce
Install Program
Run the Setup.exe file in your designated ClickOnce folder to start the install. You

might notice a quick window that shows an animated dialog indicating that the

computer is being checked for a valid Internet connection. The first dialog you can

interact with is a security warning, as shown in Figure 23.6. The publisher of the

component is listed as unknown because the file isn’t digitally signed.

FIGURE 23.6
All ClickOnce
programs
launch with a
security
warning.

Digitally signing a file is beyond the scope of this book, but if this is important to
you, you can learn more at http://www.verisign.com/ (search for “code signing”).

Click Install to install the Picture Viewer.

That’s it! There are no additional dialog boxes to deal with. In fact, the Picture

Viewer launches automatically when the install completes.

Now, open your Start menu and you will see a new folder. It most likely will be the

company name you used to register Visual C# 2008. In that folder is the Picture

Viewer application shortcut the user can click to run the program.

Uninstalling an Application You’ve
Distributed
All Windows applications should provide a facility to easily be removed from the

user’s computer. Most applications provide this functionality in the Add/Remove

Programs dialog box, and yours is no exception. In fact, all ClickOnce programs

automatically create an entry in the Uninstall or Change a Program dialog box.

Follow these steps to uninstall the Picture Viewer program:

Did you
Know?

http://www.verisign.com/

Setting Advanced Options for Creating ClickOnce Programs 475

1. Choose Start, Control Panel.

2. Locate the Uninstall a Program link, and click it.

3. Scroll down in the dialog box until you find the Picture Viewer program, as

shown in Figure 23.7.

FIGURE 23.7
Your program
can be unin-
stalled in the
Uninstall or
Change a
Program
dialog box.

4. To uninstall the program, click to select it, and then click Uninstall/Change.

Setting Advanced Options for Creating
ClickOnce Programs
The Publish Wizard is the easiest way to create a ClickOnce program, but it doesn’t

give you access to all the features of ClickOnce. To view all the available settings,

right-click the project name in the Solution Explorer and choose Properties. Next,

click the Publish tab, and you see a page of publishing options, as shown in Figure

23.8. Using this page, you can specify prerequisites, such as whether to install the

.NET Framework, which is required to run any .NET application. (By default, the

Publish Wizard creates your ClickOnce application so that it installs the .NET

Framework from the web if the user performing the install doesn’t have the

Framework installed.) The Publish Wizard walks you through many of these

options, but you gain the most control by setting your options here and clicking the

Publish Now button, which appears at the bottom right of the Publish page.

476 HOUR 23: Deploying Applications

Summary
In this hour, you learned about ClickOnce and why Microsoft is moving to

ClickOnce from Windows Installer technology. You also learned how to use the

Publish Wizard to create a ClickOnce program to distribute an application you’ve

built with Visual C# 2008. Creating installs for robust applications requires a lot

more effort and, in many cases, more tools. But the skills you learned in this hour

enable you to distribute most projects that you’ll build as a beginner with Visual C#

2008.

Q&A
Q. How can I create the great installation wizards I see other install applica-

tions use?

A. If you want to create robust installations that gather user input in wizards,

make changes to the Registry, enable you to include additional files, create

shortcuts, and so on, you need to use a tool that uses the Windows Installer

technology.

FIGURE 23.8
Advanced
ClickOnce set-
tings can be set
on the Publish
tab of the
Project
Properties.

Workshop 477

Q. Should I assume that a user will always have the .NET Framework on her
computer?

A. Generally, no. When distributing updates to your project, it’s probably a safe

bet that the user has installed the .NET Framework. For an initial installation,

you should specify the .NET Framework as a prerequisite (note that this is set

by default).

Workshop
The Workshop is designed to help you anticipate possible questions, review what

you’ve learned, and get you thinking about how to put your knowledge into practice.

Quiz
1. What is the name of the new install technology?

2. True or False: ClickOnce programs can be self-updating.

3. True or False: ClickOnce programs have more flexibility than Windows

Installer programs.

4. What are the three ways a user can install a ClickOnce program?

5. What wizard is used to create a ClickOnce program?

Answers
1. ClickOnce

2. True

3. False. Windows Installer technology provides much more flexibility than

ClickOnce programs.

4. From a web page, from a network file share, or from media such as a

CD-ROM

5. The Publish Wizard

478 HOUR 23: Deploying Applications

Exercises
1. Use the Publish Wizard to create an install for the Automate Excel project in

Hour 22, “Controlling Other Applications Using Automation.” Try installing

the ClickOnce program on a computer that doesn’t have Excel, and see what

happens when you run the program.

2. If you have access to a web server, use the Publish Wizard to deploy the

Picture Viewer to the web server, and then install the application on a differ-

ent computer from the web server.

HOUR 24

The 10,000-Foot View

What You’ll Learn in This Hour:
. Understanding the .NET Framework
. Understanding the common language runtime
. How Visual C# 2008 uses the Microsoft Intermediate Language
. Using Visual Studio .NET namespaces
. Understanding the common type system
. Understanding garbage collection

You know a lot about Visual C# 2008 now. You can create projects, you can use forms and

controls to build an interface, and you know how to add menus and toolbars to a form.

You’ve also learned how to create modules and procedures and how to write code to make

things happen. You can use variables, make decisions, perform looping, and even debug

your code. Now you might be wondering, “Where to next?” In fact, this is the number one

question I receive from readers via emails.

Throughout this book, I’ve focused my discussions on Visual C#. When it comes to

Microsoft’s .NET Framework, however, Visual C# is just part of the picture. This hour pro-

vides an overview of Microsoft’s .NET Framework so that you can see how Visual C#

relates to .NET as a whole. After completing this hour, you’ll understand the various pieces

of .NET and how they’re interrelated. I hope you’ll be able to combine this information

with your current personal and professional needs to determine the facets of .NET that you

want to explore in more detail.

480 HOUR 24: The 10,000-Foot View

The .NET Framework
The components and technology that make up Microsoft .NET are collectively called

the .NET Framework. The .NET Framework is composed of numerous classes and

includes components such as the common language runtime, Microsoft

Intermediate Language, and ADO.NET. The following sections explain the various

pieces that make up the .NET Framework.

Common Language Runtime
A language runtime allows an application to run on a target computer; it consists of

code that’s shared among all applications developed in a supported language. A

runtime contains the “guts” of language code, such as code that draws forms to the

screen, handles user input, and manages data. The runtime of .NET is called the

common language runtime.

Unlike runtimes for other languages, the common language runtime is designed as

a multilanguage runtime. For example, both C# and Visual Basic use the common

language runtime. In fact, currently more than 15 language compilers are being

developed to use the common language runtime.

Because all .NET languages share the common language runtime, they also share

the same Integrated Development Environment (IDE), forms engine, exception-

handling mechanism, garbage collector (discussed shortly), and much more. One

benefit of the multilanguage capability of the common language runtime is that

programmers can leverage their knowledge of a given .NET language.

For example, some developers on a team might be comfortable with Visual Basic,

whereas others are more comfortable with C#. Because both languages share the

same runtime, both can be integrated to deliver a single solution. In addition, a

common exception-handling mechanism is built into the common language run-

time so that exceptions can be thrown from code written in one .NET language and

caught in code written in another.

Code that runs within the common language runtime is called managed code

because the code and resources that it uses (variables, objects, and so on) are fully

managed by the common language runtime. Visual Basic is restricted to working

only in managed code, but some languages (such as C++) can drop to unmanaged

code—code that isn’t managed by the common language runtime.

Microsoft Intermediate Language 481

Another advantage of the common language runtime is that all .NET tools share

the same debugging and code-profiling tools. In the past, Visual Basic was limited in

its debugging tools, whereas applications such as C++ had many third-party

debugging tools available. All languages now share the same tools. This means that

as advancements are made to the debugging tools of one product, they’re made to

tools of all products, because the tools are shared. This aspect goes beyond debug-

ging tools. Add-ins to the IDE such as code managers, for example, are just as readi-

ly available to Visual C# as they are to Visual Basic—or any other .NET language,

for that matter.

Although Microsoft hasn’t announced any official plans to do so, it’s possible that
it could produce a version of the common language runtime that runs on other
operating systems, such as Macintosh OS or Linux (in fact, there’s an opensource
tool that allows.NET applications to run on Linux to a limited extent). If this
occurs, the applications that you’ve written for Windows should run on a newly
supported operating system with little or no modification.

Microsoft Intermediate Language
As you can see in Figure 24.1, all .NET code, regardless of the language syntax used,

compiles to Intermediate Language (IL) code. IL code is the only code that the com-

mon language runtime understands; it doesn’t understand C#, Visual Basic, or any

other developer syntax. IL gives .NET its multilanguage capabilities; as long as an

original source language can be compiled to IL, it can become a .NET program. For

example, people have developed a .NET compiler for COBOL—a mainframe lan-

guage with a long history. This compiler takes existing COBOL code and compiles it

to IL so that it runs within the .NET Framework, using the common language run-

time. COBOL itself isn’t a Windows language and doesn’t support many of the fea-

tures found in a true Windows language (such as a Windows Forms engine), so you

can imagine the excitement of COBOL programmers when they first learned of

being able to leverage their existing code and programming skills to create powerful

Windows applications.

A potential drawback of IL is that it can be susceptible to reverse compilation.
This has many people questioning the security of .NET code and the security of
the .NET Framework in general. If code security is a serious concern for you, I
encourage you to research this matter on your own.

By the
Way

By the
Way

482 HOUR 24: The 10,000-Foot View

IL code isn’t the final step in the process of compiling and running an application.

For a processor (CPU) to execute programmed instructions, those instructions must

be in machine language format. When you run a .NET application, a just-in-time

compiler (called a JITter) compiles the IL to machine-language instructions that the

processor can understand. IL code is processor-independent, which again brings up

the possibility that JITters could be built to create machine code for computers that

use something other than Intel-compatible processors. If Microsoft were to offer a

common language runtime for operating systems other than Windows, many of the

differences would lie in how the JITter would compile IL.

As .NET evolves, changes made to the common language runtime will benefit all

.NET applications. For example, if Microsoft finds a way to further increase the

speed at which forms are drawn to the screen by making improvements to the com-

mon language runtime, all .NET applications will immediately benefit from the

improvement. However, optimizations made to a specific syntax compiler, such as

the one that compiles Visual C# code to IL, are language-specific. This means that

even though all .NET languages compile to IL code and use the common language

runtime, it’s possible for one language to have small advantages over another

because of how the language’s code is compiled to IL.

Visual Basic .Net
Source Code

Visual Basic .Net
Syntax Compiler

C# Source Code

Intermediate Level code (IL)

Processor-Specific Machine-Level Instructions

C# Syntax
Compiler

Just-in-time Compiler (JIFter)

Language XXX
Source Code

Language XXX
Syntax Compiler

FIGURE 24.1
These are the
steps taken to
turn developer
code into a run-
ning component.

Namespaces 483

Namespaces
As mentioned earlier in this book, the .NET Framework is composed of classes—

many classes. Namespaces are used to create a hierarchical structure of all these

classes, and they help prevent naming collisions. A naming collision occurs when

two classes have the same name. Because namespaces provide a hierarchy, it’s pos-

sible to have two classes with the same name, as long as they exist in different

namespaces. Namespaces, in effect, create scope for classes.

The base namespace in the .NET Framework is the System namespace. The System

namespace contains classes for garbage collection (discussed shortly), exception

handling, data typing, and much more. The System namespace is just the tip of the

iceberg. There are literally dozens of namespaces. Table 24.1 lists some of the more

common namespaces, many of which you’ve used in this book. All the controls

you’ve placed on forms and even the forms themselves belong to the

System.Windows.Forms namespace. Use Table 24.1 as a guide; if a certain name-

space interests you, I suggest that you research it further in the Visual Studio .NET

online help.

TABLE 24.1 Commonly Used Namespaces

Namespace Description

Microsoft.VisualBasic Contains classes that support compilation and code
generation using Visual Basic.

System Contains fundamental classes and base classes that
define commonly used value and reference data types,
event handlers, interfaces, attributes, and exceptions.
This is the base namespace of .NET.

System.Data Contains classes that constitute the ADO.NET
architecture.

System.Diagnostics Contains classes that enable you to debug your appli-
cation and to trace the execution of your code.

System.Drawing Contains classes that provide access to the Graphical
Device Interface (GDI+) basic graphics functionality.

System.IO Contains classes that allow reading from and writing to
data streams and files.

System.Net Contains classes that provide a simple programming
interface to many of the protocols found on the net-
work.

System.Security Contains classes that provide the underlying structure
of the common language runtime security system.

484 HOUR 24: The 10,000-Foot View

System.Web Contains classes that provide interfaces that enable
browser/server communication.

System.Windows.Forms Contains classes for creating Windows-based applica-
tions that take advantage of the rich user interface
features available in the Microsoft Windows operating
system.

System.Xml Contains classes that provide standards-based support
for processing XML.

All Microsoft-provided namespaces begin with either System or Microsoft. Other
vendors can provide their own namespaces, and it’s possible for you to create
your own custom namespaces as well, but that’s beyond the scope of this book.

Common Type System
The common type system in the common language runtime is the component that

defines how data types are declared and used. The common language runtime’s

capability to support cross-language integration to the level it does is largely due to

the common type system. In the past, each language used its own data types and

managed data in its own way. This made it difficult for applications developed in

different languages to communicate, because no standard way existed for passing

data between them.

The common type system ensures that all .NET applications use the same data

types. It also provides for self-describing type information (called metadata) and con-

trols all the data manipulation mechanisms so that data is handled (stored and

processed) in the same way among all .NET applications. This allows data (includ-

ing objects) to be treated the same way in all .NET languages.

Garbage Collection
Although I’ve talked a lot about objects (you can’t talk about anything .NET-related

without talking about objects), I’ve avoided discussing the underlying technical

details of how .NET creates, manages, and destroys objects. Although you don’t need

to know the complex minutiae of how .NET works with objects, you do need to

understand a few details of how objects are destroyed.

TABLE 24.1 Continued

Namespace Description

By the
Way

Further Reading 485

As discussed in previous hours, setting an object variable to Nothing or letting it go

out of scope destroys the object. However, as mentioned in Hour 16, “Designing

Objects Using Classes,” this isn’t the whole story. The .NET platform uses a garbage

collector to destroy objects. The specific type of garbage collection that .NET imple-

ments is called reference-tracing garbage collection. Essentially, the garbage collector

monitors the resources a program uses. When consumed resources reach a defined

threshold, the garbage collector looks for unused objects. When the garbage collec-

tor finds an unused object, it destroys it, freeing all the memory and resources the

object was using.

An important thing to remember about garbage collection is that releasing an

object by setting it to null or letting an object variable go out of scope doesn’t mean

that the object is destroyed immediately. The object isn’t destroyed until the garbage

collector is triggered to go looking for unused objects.

Further Reading
Readers often ask me what books they should read next. I do not have a specific

answer to this question, because it depends entirely on who is asking. Chances are,

you’re learning .NET for one of the following reasons:

. School

. Professional requirements

. Personal interest or as a hobby

Your reasons for learning Visual C# have a lot to do with where you should proceed

from here. If you’re just learning Visual C# as a hobby, take a route that interests

you, such as web development or database development. If you’re looking to

advance your career, consider the companies you want to work for. What types of

things are they doing—security, databases, web development? How can you make

yourself more valuable to those companies? Instead of just picking a direction,

choose a goal, and move in that direction.

If a subject simply does not jump out at you, my recommendation is that you learn

how to program databases. Get a book dedicated to your database of choice (mine is

Microsoft SQL Server). Most applications these days use databases, and database

skills are always a plus! Database programming and database design are really two

different subjects. If you really want to make yourself valuable, you should learn

how to properly design, normalize, and optimize databases, in addition to program-

ming them for users to access.

486 HOUR 24: The 10,000-Foot View

Summary
Now that you’ve completed this book, you should have a solid working understand-

ing of developing applications with Visual C#. Nevertheless, you’ve just embarked

on your journey. One of the things I love about developing applications for a living

is that there’s always something more to learn, and there’s always a better approach

to a development problem. In this hour, you saw the bigger picture of Microsoft’s

.NET platform by seeing the .NET Framework and its various components. Consider

the information you learned in this hour a primer; what you do with this informa-

tion and where you go from here is entirely up to you.

I wish you the best of luck with your programming endeavors!

SYMBOLS

+ (addition) operator, 268

& (ampersands)

accelerator keys, 200

And operator, 274

* (asterisks)

multiplication operator, 269

saving projects, 65

{ } (braces), block statements,

286

^ (Xor) operator, 275

/ (division) operator, 269

= (equal sign), setting properties,

61

! (Not) operator, 274

() (parentheses), methods, 68,

225

. (periods), writing code, 64

| (Or) operator, 274

; (semicolons), statements, 65

\ (slashes) as escape sequences,

250

- (subtraction) operator, 269

A

accelerator keys, 200

Accept buttons, 160

AcceptButton property, 160

ActiveCell object

FormulaR1C1 property, 457

ActiveCell objects, 457

ActiveMdiChild property, 146

Add() method

Application objects, 462

DataTable objects, 448, 450

Items collection, 168, 170

list boxes, 172

List View, 189

Tree View control, 192-193

AddDays method

DateTime class, 280

AddHours method

DateTime class, 280

Index

adding

files

to projects, 52-53

items to lists

via code, 189

via List View, 187-189

nodes

to tree view, 192-193

addition (+) operator, 268

AddMilliseconds method

DateTime class, 280

AddMinutes method

DateTime class, 280

AddMonths method

DateTime class, 280

AddSeconds method

DateTime class, 280

AddTwoNumbers() method, 230

AddYears method

DateTime class, 280

ADO.NET, 438

databases

closing data source con-
nections, 440

connecting to, 438, 440

creating records, 448,
450

DataAdapter objects,
441-442

DataRow objects,
444-445

DataTable objects, 441,
446-448, 450

deleting records, 450

editing records, 448

navigating records,
446-448

running, 451

updating records, 448

Advanced Appearance dialog

system colors

changing, 376-377

aligning

controls, 132

ampersand (&)

accelerator keys, 200

Anchor property, 136-137

anchoring controls, 135, 137-138

And (&) operator, 274

Application objects, 455-456,

462

ActiveCell objects, 457

Add() method, 462

Archive flag (file attributes), 406

arguments

defining, 234

passing, 234

arithmetic operators, 268

addition (+) operator, 268

division (/) operator, 269

expressions

operator precedence,
270-271

modulus arithmetic, 269

multiplication (*) operator,
269

operator precedence,
270-271

subtraction (-) operator, 269

arrays

declaring, 252

defining, 241, 251

dimensions of, 254

jagged arrays, 255

multidimensional arrays,
253-254

two-dimensional arrays, 253

variables

referencing, 252

asterisks (*)

saving projects, 65

AutoCompleteMode property

combo boxes, 174

AutoCompleteSource property

combo boxes, 174

automatically hiding design win-

dows, 35, 38

automation, 453

clients

defining, 453

Excel, 459

adding cell data, 457-458

bold cells, 458

creating library references,
454

selecting cells, 458

server creation, 455-456

testing, 459

viewing, 456

workbook creation, 457

servers

adding Excel cell data,
457-458

bold Excel cells, 458

creating Excel workbooks,
457

creating instances of,
455-456, 461, 463

defining, 453

Excel, 459

488

adding

Excel server creation,
455-456

selecting Excel cells, 458

viewing Excel, 456

Word server creation,
461, 463

type libraries

creating references to,
454, 460

Word

creating library references,
460

server creation, 461, 463

AutoScroll property

scrollable forms, 142

AutoScrollMargin property

scrollable forms, 142

AutoScrollMinSize property

scrollable forms, 142

AutoSize property

Timer control, 179

autosizing controls, 135, 137-138

B

BackColor property, 44, 105, 377

BackgroundImage property,

106-109

backgrounds (forms)

adding images to, 106-108

changing color, 105

removing images from, 108

Backspace key, erasing code, 65

BaseDirectory() method, 431

binding

early binding, 344-345

late binding, 344-345

objects

creating via variable
dimensioning, 346

variable references,
344-345

bitmaps, creating Graphic

objects, 373-374

block scope, 255-256

block statements, braces ({ }),

286

bold cells (Excel), 458

bool data type, 244

Boolean logic, 272-273

And (&) operator, 274

if statements, 285

Not (!) operator, 274

Or (|) operator, 274

Xor (^) operator, 275

borders (forms), customizing,

110-112

BorderStyle property, 43

braces ({ }), block statements,

286

break points

actions in, 316-317

debugging code, 315

break statements, breaking

loops, 302-303

BringToFront method, layering

controls, 141

browsing

files, 24-25

scope, 76

btnAutomateExcel Click events,

456

build errors, 312-314

Button control, 83, 377

buttons

Accept button, 160

Cancel button, 161

Click events, 160

creating, 159

forms, adding to, 109-110

message boxes

determining which button
is clicked, 355-356

displaying in, 353

OK button, 159

PerformClick method, 160

Picture Viewer project

adding to, 63

Draw Border button, 68-72

Enlarge button, 63, 66

Show Control Names
button, 74-75

Shrink button, 63, 66

radio buttons, 164-165

separators, 212

toolbars

adding to, 210, 212

drop-down menus, 214

Buttons property,

MessageBox.Show() function,

352

C

calling

methods, 229-231

procedures, 229-231

Cancel buttons, 161

How can we make this index more useful? Email us at indexes@samspublishing.com

Cancel buttons

489

CancelButton property, 161

Caption property,

MessageBox.Show() function,

352

case statements, 293-294

case-sensitivity (code state-

ments), 25

casting

data types, 245

explicit casting, 245

implicit casting, 245

catch statements, 323-324, 327

Exception objects, Message
property, 325

Exception variables, 326

cells (Excel)

adding data to, 457-458

bold cells, 458

selecting, 458

character limits (text), setting in

text boxes, 157

check boxes, 161-162

checked menu items, creating,

202

Checked property, radio buttons,

165

CheckFileExists property,

OpenFileDialog control, 399

CheckState property, 162

circles, drawing, 381

class modules, project manage-

ment, 51

classes

clients, 336

data/code encapsulation,
334-335

defining, 221, 334

instance members, defining,
221

instantiating objects, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

methods

declaring procedures that
do not return values,
224-227

declaring procedures that
return values, 227-228

object interfaces

client interaction with,
338

custom events in, 338

elements of, 337

exposing functions as
methods, 343

methods in, 338

properties in, 338-342

servers, 336

static members, defining,
221

ClassesRoot property, Registry

object, 416

Clear() method, 70

Graphics object, 381

Items collection, 170

List View, 190

Tree View control, 194

clearing

items from lists via code,
190

nodes from tree view, 194

click events, 23, 159

buttons, 160

Cancel buttons, 161

Items collection, 168-170

mouse, 364

ClickOnce technology, 469-470

advanced settings, 475

application creation, 471-472

Picture Viewer project installa-
tion, 474

clients, 336

defining, 453

object interfaces

exposing functions as
methods, 343

interaction with, 338

properties, 339-342

Close() method, 119, 440

closed design windows, 35

CLR (Common Language

Runtime), 480-481

COBOL, IL code, 481

code

debugging

adding comments to code,
310-312

break points, 315

build errors, 312-314

catch statements,
323-325

error handlers, 323-325

finally statements,
323-325

Immediate window,
317-320

Output window, 321

runtime errors, 312-314

490

CancelButton property

structured exception han-
dling, 322, 325-329

try blocks, 323

try statements, 323-325

encapsulating via classes,
334-335

erasing, 65

file properties, retrieving,
407-409

IL code, 481-482

IntelliSense, 64

managed code, defining, 480

periods (.), 64

procedures, writing via, 54-55

simple object build example,
69-72

unmanaged code, defining,
480

code statements, writing, 25-26

collections (objects), 73-76

color

BackColor property, 44

form backgrounds, changing
in, 105

object properties, 45-46

system colors

assigning, 378

changing, 376-377

syncing interface colors
with user system colors,
377-378

color drop-down list (Properties

window), 46

columns

DataRow objects, 444

lists, creating in, 187

Columns property, List View con-

trol, 187

combo boxes, 166

AutoCompleteMode property,
174

AutoCompleteSource proper-
ty, 174

drop-down lists, creating,
172-174

DropDownList property, 173

DropDownStyle property, 173

Insert() method, 172

Items collection, 172

Items property, 173

Sorted property, 172

Text property, 173

CommandBuilder objects, 442

comments, adding to code,

310-312

comparison operators, 271-272

compilers

defining, 242

JITers, 482

reserved words, determining,
250

components (distributable), defin-

ing, 8

concatenation strings, 275

ConnectionString property, 439

constants

benefits of, 246

defining, 241, 246-247

Prompt on Exit option (Picture
Viewer project), 248

referencing, 247

reserved words, 250

constructor methods, 337

container objects, forms as, 162

container windows, MDI forms,

143

Context Menu Strip control,

206-207

context menus, 206-207

context sensitive help, 56

ContextMenuStrip property,

Context Menu Strip control, 207

Control Box button, adding to

forms, 109-110

control objects, 60

controls

aligning, 132

anchoring, 135-138

autosizing, 135-138

defining, 18

forms, 18

adding invisible controls
to, 21-23

adding to via toolbox,
40-42, 124

adding visible controls to,
20-21

drawing on, 125-140

Snap to Lines layout fea-
ture, 128

Graphics objects, creating,
372

grid settings, 126-127

groups of

selecting, 129-131

setting property values in,
133-134

layering, 140

OpenFileDialog control, 22,
25, 28

Picture Viewer project, adding
to, 18-23

properties, setting in grouped
controls, 133-134

How can we make this index more useful? Email us at indexes@samspublishing.com

controls

491

SaveFileDialog control, 22, 25

sizing, 133

spacing, 133

tab order

creating, 138-140

removing controls from,
140

Convert class, common conver-

sion methods, 245

Convert.ToBoolean() method

Registry object, 420

System.IO.File objects, 409

Convert.ToString() method,

Registry object, 420-421

Copy() method, System.IO.File

objects, 402-403

copying files, 402-403

Count property, SelectedItems

collection, 190

Create: Project link (Recent

Projects category), 32

CreateDirectory() method,

System.IO.Directory objects,

409

CreateGraphics() method, 69-70

CreatePrompt property,

SaveFileDialog control, 401

CreateSubKey() method, Registry

object, 417

CTR (Common Type System), 484

CurrentConfig property, Registry

object, 416

CurrentUser property, Registry

object, 416

custom dialog boxes, creating,

357-360

custom events, object interfaces,

338

Custom tab (Properties window

color drop-down list), 46

customizing forms

background colors, 105

background images, 106-108

borders, 110-112

button additions, 109-110

icons, 108-109

sizing, 112

D

DashStyle property, Pen objects,

375

data encapsulation via classes,

334-335

Data Source parameter,

ConnectionString property, 439

data storage

text files, 413

Picture Viewer Project,
429-434

reading, 427-429

writing, 425-427

Windows Registry, 413

accessing, 416

HKEY_CLASSES_ROOT
node, 414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER
node, 414, 417

HKEY_LOCAL_MACHINE
node, 414, 417

HKEY_USERS node, 414

Picture Viewer Project,
419-424

Registry key creation,
416-417

Registry key deletion, 418

Registry object, 416

REG_BINARY data type,
415

REG_EXPAND_SZ data
type, 415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

retrieving Registry key val-
ues, 419

setting Registry key val-
ues, 418

structure of, 414-415

using statements, 416

viewing, 425

data types

casting, 245

defining, 242

determining, 244

prefixes, 258

reference types, 243

signed types, 244

unsigned types, 243

value range of, 243

value types, 243

DataAdapter objects, 438,

441-442

databases

ADO.NET connections,
438-440

data source connections,
closing, 440

DataAdapter objects,
441-442

492

controls

DataRow objects

Add() method, 448-450

columns, 444

Delete() method, 450

field references in,
444-445

ShowCurrentRecord()
method, 446-448

Update() method, 448

DataTable objects, 441

records

creating, 448-450

deleting, 450

editing, 448

navigating, 446-448

updating, 448

running, 451

DataReader object, 438

DataRow objects

Add() method, 448-450

columns, 444

Delete() method, 450

field references in, 444-445

ShowCurrentRecord() method,
446-448

Update() method, 448

DataSet object, 438

DataTable objects, 438, 441

DateTime class

AddDays method, 280

AddHours method, 280

AddMilliseconds method, 280

AddMinutes method, 280

AddMonths method, 280

AddSeconds method, 280

AddYears method, 280

dates/times, formatting, 282

Day property, 281

Hour property, 281

Minute property, 281

Month property, 281

Now property, 180, 282

parts of dates, retrieving, 281

Second property, 281

Today property, 282

Year property, 281

DateTime data type, 244

DateTime variable, 279

DayOfWeek() property, 281

formatting dates/times,
281-282

Hour property, 281

strings, passing to, 279

Day property, DateTime class,

281

DayOfWeek() property, DateTime

variable, 281

debugging

code

adding comments,
310-312

break points, 315

build errors, 312, 314

catch statements,
323-325

finally statements,
323-325

Immediate window,
317-320

Output window, 321

runtime errors, 312-314

structured exception han-
dling, 322, 325-329

try blocks, 323

try statements, 323-325

writing error handlers,
323-325

Picture Viewer Project,
Windows Registry, 422-424

decimal data type, 244

decision statements

else statements, 288-289

false expressions, 288

if statements, 285-286

false expressions, 287

nesting, 289

switch statements, 290-294

declaring variables, 249

Define Color dialog (Custom tab),

46

Delete() method

DataTable objects, 450

System.IO.Directory objects,
410

System.IO.File objects,
404-405

DeleteSubKey() method, Registry

object, 418

DeleteSubKeyTree() method,

Registry object, 418

deleting

database records, 450

event handlers, 89

event procedures, 232

files, 52-53, 404-405

graphics from forms, 383

items from lists via code,
190

menu items from top-level
menus, 202

objects, 374

procedures, 231-232

How can we make this index more useful? Email us at indexes@samspublishing.com

deleting

493

deploying applications

ClickOnce technology,
469-470

advanced settings, 475

application creation,
471-472

Picture Viewer project
installation, 474

uninstalling distributed appli-
cations, 474-475

Description section (Properties

window), 47

design windows

closed windows, 35

displaying, 35

docking, 35-37

floating, 35-36

hiding, 35, 38

destructor methods, 337

dialog boxes

buttons

Accept button, 160

Cancel button, 161

custom dialog boxes, creat-
ing, 357-360

OK button, 159

tabbed dialog boxes, creating,
181-184

DialogResult property,

MessageBox.Show() function,

355-359

Directory flag (file attributes),

406

displaying

design windows, 35

object properties, 13

static text via Label control,
151-153

toolbars, 39

Dispose() method, 72, 347, 374

distributable components, defin-

ing, 8

distributed applications, unin-

stalling, 474-475

division (/) operator, 269

do…while loops, 303-305

docking

design windows, 35-37

toolbars, 40

double data type, 244

double-clicking Visual Studio

2008, 12

drag handles (toolbars), 40

Draw Border button, adding to

Picture Viewer project, 68-72

DrawEllipse() method, Graphics

object, 381

DrawImage() method, 387

drawing

circles, 381

controls on forms, 125

aligning controls, 132

anchoring controls,
135-138

autosizing controls,
135-138

grid settings, 126-127

grouping controls,
129-131

setting grouped control
property values,
133-134

sizing controls, 133

Snap to Lines layout
feature, 128

spacing controls, 133

tab order, 138-140

ellipses, 381

rectangles, 381

DrawLine() method, Graphics

object, 380

DrawRectangle() method, 71, 381

DrawString() method, Graphics

object, 382

DRIVER parameter,

ConnectionString property, 439

drop-down lists, creating in

combo boxes, 172-174

drop-down menus, toolbar but-

tons, 214

DropDownButton property,

ToolStrip control, 214

DropDownList property, combo

boxes, 173

DropDownStyle property, combo

boxes, 173

dynamism (methods), 68

E

early binding, 344-345

editing database records, 448

ellipses, drawing, 381

else statements

false expressions, 288

nesting, 289

Enabled property

multiline text boxes, 155

Timer control, 180

494

deploying applications

encapsulating data/code via

classes, 334-335

ending programs, 26-27

endless loops, 303

Enlarge button, adding to Picture

Viewer project, 63, 66

Environment Tutorial project, 34

design windows

closed windows, 35

displaying, 35

docking, 35-37

floating, 35-36

hiding, 35, 38

object properties, 42

changing, 43-45

color properties, 45-46

viewing, 43

viewing descriptions of,
47

toolbars

displaying, 39

docking, 40

hiding, 39

sizing, 40

toolbox, adding controls to
forms, 40-42

equal sign (=), setting properties,

61

erasing code, 65

error handlers, writing

catch statements, 323-325

finally statements, 323-325

try blocks, 323

try statements, 323-325

Error icon, message boxes, 354

Error List, 90

errors

build errors, 312-314

runtime errors, 312-314

escape sequences, slashes (\) as,

250

event handlers

creating, 92-95

defining, 24

deleting, 89

event-driven programming, 82

events

build example

event handler creation,
92-95

user interface, 91

choosing, 364

Click events, 23

custom events, object inter-
faces, 338

event handlers

creating, 92-95

deleting, 89

event procedures, 82

event-driven programming, 82

invoking, 82

via objects, 83

via OS, 84

via user interaction, 83

objects, accessing events via,
85-86

parameters, 87-88

procedures, deleting, 232

recursive events, avoiding, 84

Events button (Properties

Window), 86

Excel

ActiveCell objects, 457

Application objects, 455-457

automation

adding cell data, 457-458

bold cells, 458

creating library references,
454

selecting cells, 458

server creation, 455-456

testing, 459

viewing via, 456

workbook creation, 457

workbooks, creating, 457

worksheets

adding cell data, 457-458

bold cells, 458

selecting cells, 458

exception handling, structured

exception handling, 322,

325-329

Exception objects, Message prop-

erty, 325

Exception variables, catch state-

ments, 326

execution falling through, 294

Exists() method

System.IO.Directory objects,
410

System.IO.File objects, 402

exiting methods, 235

explicit casting, data types, 245

How can we make this index more useful? Email us at indexes@samspublishing.com

explicit casting

495

expressions

false expressions

else statements, 288

if statements, 287

operator precedence,
270-271

variables, uses in, 251

F

false expressions

else statements, 288

if statements, 287

FileAttributes variable,

GetAttributes() method, 406

FileName property,

OpenFileDialog control, 398

files

browsing, 24-26

copying, 402-403

deleting, 404-405

log files, Picture Viewer
Project, 429-434

moving, 403-404

OpenFileDialog control, 396

CheckFileExists property,
399

FileName property, 398

Filter property, 398

FilterIndex property, 398

InitialDirectory property,
397

Multiselect property, 399

ShowDialog() method, 399

Title property, 398

projects

adding to, 52-53

removing from, 52-53

properties, retrieving, 405

Archive flag, 406

date/time, 406

Directory flag, 406

Hidden flag, 406

Normal flag, 407

ReadOnly flag, 407

System flag, 407

Temporary flag, 407

writing code for, 407-409

renaming, 404

SaveFileDialog control, 399

CreatePrompt property,
401

OverwritePrompt property,
400

source file existence, deter-
mining, 402

System.IO.Directory objects,
401

CreateDirectory() method,
409

Delete() method, 410

Exists() method, 410

Move() method, 410

System.IO.File objects, 401

Convert.ToBoolean()
method, 409

Copy() method, 402-403

Delete() method, 404-405

Exists() method, 402

GetAttributes() method,
406, 409

GetCreationTime()
method, 406, 409

GetLastAccessTime()
method, 406, 409

GetLastWriteTime()
method, 406, 409

Move() method, 403-404

SourceFileExists() method,
402

text files, Picture Viewer
Project, 413

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

reading, 427-429

writing, 425-427

Fill method, DataAdapter objects,

441

Filter property, 23, 398

FilterIndex property,

OpenFileDialog control, 398

finally statements, 323-325

float data type, 244

floating design windows, 35-36

Font object, 382

Font property, 44

for loops, 297-302

for statements

components of, 298

for loops, 298-299

form objects, 60

Form_Load events, 442, 445

formatting dates/times, 281-282

FormBorderStyle property, 111

FormClosed events, 365, 388

FormClosing events, 441

496

expressions

forms

BackgroundImage property,
106-109

backgrounds

adding images to,
106-108

changing color, 105

removing images from,
108

borders, customizing,
110-112

buttons

Accept button, 160

adding to, 109-110

Cancel button, 161

OK buttons, 159

check boxes, 161

combo boxes, 166, 172

container objects as, 162

controls, 18

adding invisible controls
to, 21-23

adding to via toolbox,
40-42, 124

adding visible controls to,
20-21

drawing on, 125-140

Snap to Lines layout fea-
ture, 128

defining, 11-13, 101-102

display position, specifying,
115-116

FormBorderStyle property,
111

graphics, removing, 383

Graphics objects, creating,
372

group boxes, 162-163

hiding, 118

Icon property, 109

icons, adding to, 16-17,
108-109

instantiating, syntax of, 113

list boxes, 166-167

Add() method, 172

adding items to lists, 168

clearing lists, 170

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Sorted property, 172

MaximumSize property, 112

MDI forms, 143-147

menus

accelerator keys, 200

adding, 198-200

assigning shortcut keys to
menu items, 208

checked menu items, 202

context menus, 206-207

creating menu items, 201

creating top-level menus,
198-200

deleting menu items, 202

hotkeys, 200

moving menu items, 202

programming, 203-206

Type Here boxes, 200

MinimumSize property, 112

modality, 114-115

naming, 102

nonmodal forms, 114-115

nonmodal windows, creating
topmost nonmodal win-
dows, 141

panels, 162-163

Picture Viewer project

adding controls, 18-23

sizing, 17

project management, 51

properties, viewing via
Properties window, 103

radio buttons, 164-165

scrollable forms, 142

showing, 113

ShowInTaskbar property, 118

Size.Height property, 171

sizing, 17, 112, 116-117

StartPosition property,
115-116

taskbar, preventing from dis-
playing in, 118

text boxes, adding to, 153

Text property, changing, 15

title bars, displaying text on,
104

toolbars

adding, 209

adding buttons to,
210-212

button drop-down menus,
214

programming, 213-214

transparent forms, creating,
141

Visible property, 113, 118

windows versus, 101

WindowState property,
116-117

How can we make this index more useful? Email us at indexes@samspublishing.com

forms

497

FormulaR1C1 property, ActiveCell

object, 457

frames, 163

FromImage() method, Graphics

object, 374

FullRowSelect property, List View

control, 189

functions, exposing methods as,

343

G

garbage collection (.NET

Framework), 484-485

garbage collector, 337

GDI (Graphical Device Interface),

372

get construct

read-only properties, creating
via, 342

readable properties, creating
via, 341

GetAttributes() method,

System.IO.File objects, 406,

409

GetCreationTime() method,

System.IO.File objects, 406,

409

GetLastAccessTime() method,

System.IO.File objects, 406,

409

GetLastWriteTime() method,

System.IO.File objects, 406,

409

GetValue() method, Registry

object, 419

graphics

bitmaps, creating for,
373-374

circles, drawing, 381

controls, creating for, 372

ellipses, drawing, 381

forms

creating for, 372

removing from, 383

GDI, 372

lines, drawing, 380

pens, 375-376

project example, 383-388

rectangles

creating, 379

drawing, 381

sizing, 380

removing, 374

text as, 382

Graphics objects

bitmaps, creating for,
373-374

Clear() method, 381

controls, creating for, 372

Dispose() method, 374

DrawEllipse() method, 381

DrawLine() method, 380

DrawRectangle() method, 381

DrawString() method, 382

forms, creating for, 372

FromImage() method, 374

grids

controls, 126-127

GridSize property, 126-127

LayoutMode property, 127

ShowGrid property, 127-128

SnapToGrid property, 127-128

Group Box controls, 162-163

grouping controls, 129-131

H

Height property, sizing forms, 17

help

context sensitive help, 56

finding, 55-56

Run mode, 56

Hidden flag (file attributes), 406

Hide() method, 119

hiding

design windows, 35, 38

forms, 118

toolbars, 39

HKEY_CLASSES_ROOT node

(Windows Registry), 414

HKEY_CURRENT_CONFIG node

(Windows Registry), 414

HKEY_CURRENT_USER node

(Windows Registry), 414, 417

HKEY_LOCAL_MACHINE node

(Windows Registry), 414, 417

HKEY_USERS node (Windows

Registry), 414

hotkeys, 153, 200

Hour property, 281

498

FormulaR1C1 property

I

Icon property, 16, 109

icons

forms, adding to, 16-17,
108-109

message boxes

displaying in, 353-354

Error icon, 354

Question icon, 355

Picture Viewer project, adding
to, 16

IDE (Integrated Development

Environments)

Properties window, 12

displaying object proper-
ties in, 13

Height property, 17

Icon property, 16

Name property, 13-15

Size property, 17

Text property, 15

Width property, 17

Start page, 9-10

Toolbox window, 12

Visual Studio 2008 as, 9

windows, sizing, 12

if statements, 285-286

false expressions, 287

nesting, 289

IL (Intermediate Language) code,

481-482

Image control, ImageSize proper-

ty, 185

Image List control, 184-185

Image property, ToolStrip control,

211

ImageIndex property, List View

control, 187

images, form backgrounds

adding to, 106-108

removing from, 108

ImageSize property, Image con-

trol, 185

Immediate window, debugging

code, 317-320

implicit casting, data types, 245

IndexOf() method, strings, 277

infinite recursion procedures, 237

Inflate() method, Rectangle

object, 380

InitialDirectory property,

OpenFileDialog control, 397

InitializeComponent() event, 90

Insert() method

combo boxes, 172

Items collection, 169-170

instance members, defining, 221

instance methods versus static

methods, 335

instantiating

forms, syntax of, 113

objects via classes, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

int data type, 244

int.Parse() method, 287

IntelliSense, 64, 88

interface design

files, browsing, 24-26

terminating programs, 26-27

visible controls, adding to
forms, 20-23

interfaces (objects)

client interaction with, 338

custom events in, 338

defining, 335

elements of, 337

functions, exposing as meth-
ods, 343

methods in, 338

properties in, 338-340

read-only property cre-
ation, 342

readable property creation
via get construct, 341

writable property creation
via set construct, 341

write-only property cre-
ation, 342

Interval property, Timer control,

178

Invalidate() method, 388

invisible controls, adding to

forms, 21-23

IsMdiContainer property, 145

Items collection

Add() method, 168-170, 189

Clear() method, 170, 190

Click events, 168-170

combo boxes, 172

Insert() method, 169-170

list boxes, 166

adding items to lists, 168

clearing lists, 170

How can we make this index more useful? Email us at indexes@samspublishing.com

Items collection

499

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Remove() method, 169-170,
190

RemoveAt() method, 169-170

SelectedIndex method, 171

SelectedItem method, 171

ToolStrip control, 210,
213-214

DropDownButton property,
214

Image property, 211

Items property, 173, 433

J - K - L

jagged arrays, 255

JITers (just-in-time compilers),

482

keyboards

KeyDown events, 361

KeyPress events, 361-363

KeyUp events, 361

KeyChar property, 362

Label control

static text, displaying,
151-153

TextAlign property, 154

LargeImageList property, List

View control, 186-188

lasso tool, adding control groups

to forms, 130-131

late binding, 344-345

layering controls, 140

Layout toolbar

aligning controls, 132

Make Horizontal Spacing
Equal button, 133

Make the Same Size button,
133

Save All button, 133

LayoutMode property, 127

Left property, 131

Length property, strings, 276

libraries, 77

lines, drawing, 380

List Box control, 166, 191

list boxes

Add() method, 172

Items collection, 166-167

adding items to lists, 168

clearing lists, 170

manipulating items at
design time, 167

removing items from lists,
169

retrieving item information
from lists, 171

Location property, 166

MultiExtended property, 172

MultiSimple property, 172

Name property, 166

SelectionMode property, 172

Size property, 166

Sorted property, 172

List View control, 185, 191

Columns property, 187

FullRowSelect property, 189

ImageIndex property, 187

Items collection

Add() method, 189

Clear() method, 190

Remove() method, 190

LargeImageList property,
186-188

SelectedItems collection, 190

SubItems property, 188

Text property, 188

View property, 188

lists

adding items to

via code, 189

via List View, 187-189

clearing, 190

clearing items from via code,
190

columns, creating, 187

creating, 186

removing items from via
code, 190

selected items, determining
in code, 190

literal values, passing variables

to, 250

Load event, 95, 385

local scope, 256-257

LocalMachine property, Registry

object, 416

Location property

buttons, 159

Group Box control, 163

list boxes, 166

radio buttons, 164

Tab control, 183

500

Items collection

log files, Picture Viewer Project

creating for, 429-431

displaying in, 431-433

testing in, 433-434

logical (Boolean) operators, 273

And (&) operator, 274

Not (!) operator, 274

Or (|) operator, 274

Xor (^) operator, 275

long data type, 244

loops

breaking, 302-303

do…while loops, 303-305

endless loops, 303

for loops, 297-302

recursive loops, procedures,
237

M

m_cnADONewConnection objects,

442

magic numbers, 246

MainForm Load event, 385

MainForm_FormClosing events,

445

Make Horizontal Spacing Equal

button (Layout toolbar), 133

Make the Same Size button

(Layout toolbar), 133

managed code, defining, 480

managing projects

adding/removing files, 52-53

class modules, 51

components of, 50-51

forms, 51

setting project properties, 51

solutions, 50

user controls, 51

via Solution Explorer, 48-49

marquee tool, adding control

groups to forms, 130

math operators

addition (+) operator, 268

division (/) operator, 269

expressions, 270-271

modulus arithmetic, 269

multiplication (*) operator,
269

operator precedence,
270-271

subtraction (-) operator, 269

Maximize button, adding to

forms, 109-110

MaximumSize property, 112

MaxLength property, text box

characters, 157

MDI (Multiple Document

Interface) forms, 143-147

MdiParent property, 145-146

Menu Strip control, 198-206

menus

accelerator keys, 200

context menus, 206-207

drop-down menus, toolbar
buttons, 214

forms, adding to, 198-200

hotkeys, 200

top-level menus

assigning shortcut keys to
menu items, 208

checked menu items, 202

creating, 198-200

creating menu items, 201

deleting menu items, 202

moving menu items, 202

programming, 203-206

Type Here boxes, 200

message boxes, 351

buttons

determining which is
clicked, 355-356

displaying, 353

displaying, 352

Error icon, 354

icons, displaying, 353-354

message text guidelines,
356-357

Question icon, 355

Message property, Exception

objects, 325

MessageBox.Show() function,

171, 357, 360

Buttons property, 352

Caption property, 352

DialogResult property,
355-356, 358-359

MessageBoxButtons property,
352-353

MessageBoxIcon property,
353-354

MessageText property, 352

ShowDialog() method, 359

MessageBox.Show() method, 75

MessageBox.Show() statements,

55

MessageBoxButtons property,

MessageBox.Show() function,

352-353

How can we make this index more useful? Email us at indexes@samspublishing.com

MessageBoxButtons property

501

MessageBoxIcon property,

MessageBox.Show() function,

353-354

MessageText property,

MessageBox.Show() function,

352

method-level scope. See local

scope

methods, 223

calling, 229-231

constructor methods, 337

declaring

components of, 224

procedures that do not
return values, 224-227

procedures that return val-
ues, 227-228

destructor methods, 337

dynamism, 68

exiting, 235

exposing functions as, 343

instance methods versus sta-
tic methods, 335

invoking, 67-68

naming, spaces in, 225

object interfaces, 338

parameters, defining,
225-226

parentheses (), 68

procedures

calling, 229-231

creating, 226

declaring procedures that
do not return values,
224-227

declaring procedures that
return values, 227-228

deleting, 231-232

infinite recursion, 237

passing parameters,
233-234

recursive loops, 237

properties versus, 68

static methods, 236, 335

Microsoft.VisualBasic name-

spaces, 483

Minimize button, adding to forms,

109-110

MinimumSize property, 112

Minute property, DateTime class,

281

modality, forms, 114-115

modulus arithmetic, 269

monitors, system colors

assigning, 378

changing, 376-377

syncing interface colors with
user system colors,
377-378

Month property, DateTime class,

281

mouse

click events, 364

MouseClick events, 364

MouseDown events, 86-88,
159, 364

MouseEnter events, 364

MouseHover events, 364

MouseLeave events, 94, 364

MouseMove events, 94, 159,
364-367

MouseUp events, 159, 364

Move() method

System.IO.Directory objects,
410

System.IO.File objects,
403-404

moving

files, 403-404

top-level menu items, 202

multidimensional arrays, 253-254

MultiExtended property, list

boxes, 172

Multiline property, 131, 154

multiline text boxes, creating,

154-155

MultilineChanged event, 83

multiplication (*) operator, 269

MultiSelect property

OpenFileDialog control, 399

SelectedItems collection, 190

MultiSimple property, list boxes,

172

N

Name property, 13-15

buttons, 159

control groups, 134

Group Box control, 163

list boxes, 166

radio buttons, 164

namespaces, commonly used

namespaces table, 483-484

naming

forms, 102

methods, spaces in, 225

objects, 13-15

Picture Viewer project, 15

projects, 10

naming conventions

data type prefixes, 258

variable prefixes, 259

502

MessageBoxIcon property

navigating database records,

446-448

nesting

else statements, 289

if statements, 289

.NET Framework, 480

CLR, 480-481

CTR, 484

garbage collection, 484-485

IL code, 481-482

namespaces, 483-484

New Project dialog, 10, 33

Next() method, Random class, 384

nodes, tree view, 77

adding to, 192-193

clearing from, 194

removing from, 194

Nodes collection, 191

Add() method, 192-193

Clear() method, 194

Remove() method, 194

nonmodal forms, 114-115

nonmodal windows, creating, 141

nonstatic methods. See instance

methods versus static methods

nonvisual controls. See invisible

controls

Normal flag (file attributes), 407

Not (!) operator, 274

Now property, DateTime class,

180, 282

O

Object Browser, 76

Object data type, 244

objects, 59

binding

creating objects via vari-
able dimensioning, 346

references to variables,
344-345

collections, 73-76

control objects, 60

controls

adding to forms, 18-23

defining, 18

OpenFileDialog control,
22, 25, 28

SaveFileDialog control, 22,
25

defining, 13

events

accessing, 85-86

invoking, 83

form objects, 60

forms, instantiating as, 113

garbage collector, 337

instantiating via classes, 343

binding object references
to variables, 344-345

object creation via vari-
able dimensioning, 346

object lifetimes, 347-348

releasing object refer-
ences, 346-347

interfaces

client interaction with,
338

custom events in, 338

elements of, 337

exposing functions as
methods, 343

methods in, 338

properties in, 338-342

libraries. See type libraries

lifetime of, 347-348

methods

dynamism, 68

invoking, 67-68

parentheses (), 68

properties versus, 68

models, 453

naming, 13-15

object-oriented programming,
defining, 60

properties

color properties, 45-46

defining, 13, 61

displaying, 13

Filter property, 23

Height property, 17

Icon property, 16

methods versus, 68

Name property, 13-15

Picture Viewer project
usage example, 63-66

read-only properties, 62

setting, 42-45, 61

Size property, 17

syntax of, 61

Text property, 15

Title property, 23

viewing descriptions of,
47

Width property, 17

Properties window, selecting
in, 43

How can we make this index more useful? Email us at indexes@samspublishing.com

objects

503

references, releasing,
346-347

simple object build example,
68-72

objFileAttributes variable,

GetAttributes() method, 406

objGraphics() object, 69-70

OK buttons, 159

OleDBConnection object, 438

Opacity property, 141

Open File Dialog control, 178

OpenFileDialog control, 22, 25,

28, 395-396

CheckFileExists property, 399

FileName property, 398

Filter property, 398

FilterIndex property, 398

InitialDirectory property, 397

Multiselect property, 399

ShowDialog() method, 399

Title property, 398

OpenPicture() function, 429-430

OpenPicture() method, 225-226,

236

operator precedence, 270-271

Or (|) operator, 274

OS (Operating Systems), invoking

events, 84

Output window, debugging code,

321

OverwritePrompt property,

SaveFileDialog control, 400

P

Paint event, 84, 387-388

Panel controls, 162-163

parameters

defining, 54, 226

methods, defining in, 225

passing between procedures,
233-234

parameters (events), 87-88

parentheses (), methods, 68,

225

Parse method, 287

passing

arguments, 234

parameters in procedures,
233-234

Password parameter,

ConnectionString property, 439

PasswordChar property, 158

passwords, adding to text boxes,

158

Pen objects, 375

pens, 375-376

PerformClick method, 160

periods (.), writing code, 64

peripherals

keyboards

KeyDown events, 361

KeyPress events, 361-363

KeyUp events, 361

monitors

assigning system colors,
378

changing system colors,
376-377

syncing interface colors
with user system colors,
377-378

mouse

click events, 364

MouseClick events, 364

MouseDown events,
86-88, 159, 364

MouseEnter events, 364

MouseHover events, 364

MouseLeave events, 94,
364

MouseMove events, 94,
159, 364-367

MouseUp events, 159,
364

Picture Viewer project

buttons

adding, 63

Draw Border button, 68-72

Enlarge button, 63, 66

Show Control Names but-
ton, 74-75

Shrink button, 63, 66

ClickOnce install program,
474

files, browsing, 24-26

forms

adding controls, 18-23

sizing, 17

icons, adding to, 16

naming, 15

picture format, selecting, 29

Prompt on Exit option, creat-
ing constants for, 248

running, 27-28

saving, 16

terminating programs, 26-27

text files

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

504

objects

variables

creating, 259-260

initializing, 261-262

Windows Registry, 419

debugging, 422-424

displaying options of,
420-421

saving options of, 421

stored options of,
421-422

testing, 422-424

pixelformat arguments, 373

pixels, defining, 17

precedence (operators), 270-271

prefixes

data types, 258

variables, 259

private-level scope, 257

procedure level scope. See local

scope

procedures

calling, 229-231

creating, 226

declaring

procedures that do not
return values, 224-227

procedures that return val-
ues, 227-228

deleting, 231-232

infinite recursion, 237

parameters, 54, 233-234

recursive loops, 237

stacks, 237

writing code via, 54-55

processor independent code. See

IL (Intermediate Language)

code, 482

programming

MessageBox.Show() state-
ments, 55

procedues, writing code via,
54-55

variables, storing values in,
54

programs

creating, 11

terminating, 26-27

Project Properties dialog

(Solution Explorer), 51

projects

creating, 10, 32-33

defining, 8

existing projects, opening, 34

graphics project example,
383-388

managing

adding/removing files,
52-53

class modules, 51

components of, 50-51

forms, 51

setting project properties,
51

solutions, 50

user controls, 51

via Solution Explorer,
48-49

naming, 10

opening, 9

properties, setting, 51

running, 27-28

saving, 14-16

Prompt on Exit option (Picture

Viewer project), 248

properties

controls, setting grouped con-
trols 133-134

forms, viewing via Properties
window, 103

object interfaces, 338-340

read-only property cre-
ation, 342

readable property creation
via get construct, 341

writable property creation
via set construct, 341

write-only property cre-
ation, 342

objects

color properties, 45-46

defining, 13, 61

descriptions, viewing, 47

displaying, 13

Filter property, 23

Height property, 17

Icon property, 16

methods versus, 68

Name property, 13-15

Picture Viewer project
usage example, 63-66

Properties window, 42-45

read-only properties, 62

setting, 61

Size property, 17

syntax of, 61

Text property, 15

Title property, 23

Width property, 17

projects, setting in, 51

Properties window, 12

BackColor property, 105

color drop-down list, 46

How can we make this index more useful? Email us at indexes@samspublishing.com

Properties window

505

Description section, 47

Events button, 86

form properties, viewing, 103

object properties, 42

changing, 43-45

color properties, 45-46

displaying, 13

Height property, 17

Icon property, 16

Name property, 13-15

Size property, 17

Text property, 15

viewing, 43

viewing descriptions of,
47

Width property, 17

Properties pane, setting
object properties, 43

Provider parameter,

ConnectionString property, 439

Publish Wizard, ClickOnce

Applications, 471-472, 475

Q - R

Question icon, message boxes,

355

radio buttons

Checked property, 165

Location property, 164

Name property, 164

Text property, 164

Random class, Next() method,

384

Range objects, 457-458

read-only properties, 62, 342

readable properties, creating via

get construct, 341

ReadOnly flag (file attributes),

407

ReadToEnd() method, 428-429,

433

Recent Projects category (Start

page)

Create: Project link, 32

existing projects, opening, 34

RecordSet object, 438

Rectangle object, 379-380

rectangles, drawing, 381

recursive events, avoiding, 84

recursive loops, procedures, 237

reference data types, 243

reference tracing garbage collec-

tion (.NET Framework), 485

Registry (Windows), 413

accessing, 416

HKEY_CLASSES_ROOT node,
414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER node,
414, 417

HKEY_LOCAL_MACHINE node,
414, 417

HKEY_USERS node, 414

Picture Viewer Project, 419

debugging, 422-424

displaying Registry
options, 420-421

saving Registry options,
421

stored Registry options,
421-422

testing, 422-424

Registry keys

creating, 416-417

deleting, 418

retrieving values of, 419

setting values of, 418

Registry object

ClassesRoot property, 416

Convert.ToBoolean()
method, 420

Convert.ToString() method,
420-421

CreateSubKey() method,
417

CurrentConfig property,
416

CurrentUser property, 416

DeleteSubKey() method,
418

DeleteSubKeyTree()
method, 418

GetValue() method, 419

LocalMachine property,
416

SetValue() method, 418

Users property, 416

REG_BINARY data type, 415

REG_EXPAND_SZ data type,
415

REG_SZ data type, 415

structure of, 414-415

using statements, 416

viewing, 425

506

Properties window

REG_BINARY data type (Windows

Registry), 415

REG_EXPAND_SZ data type

(Windows Registry), 415

REG_MULTI_SZ data type

(Windows Registry), 415

REG_SZ data type (Windows

Registry), 415

Remove() method

Items collection, 169-170

List View, 190

Tree View control, 194

RemoveAt() method, Items collec-

tion, 169-170

removing

controls from tab order, 140

database records, 450

files, 52-53, 404-405

graphics from forms, 383

items from lists via code,
190

nodes from tree view, 194

objects, 374

renaming files, 404

Replace() method, strings, 279

reserved words, determining, 250

Resize event, 135

return statements, exiting meth-

ods, 235

Run mode, help in, 56

running projects, 27-28

runtime errors, 312-314

S

Save All button (Layout toolbar),

133

SaveFileDialog control, 22, 25,

399

CreatePrompt property, 401

OverwritePrompt property,
400

saving

Picture Viewer project, 16

projects, 14-16, 65

Windows Registry options,
Picture Viewer Project, 421

sbrMyStatusStrip control, 430

scope

block scope, 255-256

browsing, 76

defining, 255

local scope, 256-257

private-level scope, 257

variable prefixes, denoting
via, 259

scrollable forms, 142

scrollbars, adding to text boxes,

156

ScrollBars property, 156

Second property, DateTime class,

281

Select method, Range objects,

457

SelectedIndex method, Items col-

lection, 171

SelectedIndex property, text

boxes, 171

SelectedIndexChanged events,

Tab control, 184

SelectedItem method, Items col-

lection, 171

SelectedItem property,

SelectedItems collection, 190

SelectedItems collection, List

View control, 190

selecting

multiple controls, 129-131

objects in Properties window,
43

Selection objects, TypeText()

method, 462

SelectionMode property, list

boxes, 172

SelectNextControl() method, 140

semicolons (;), statements, 65

SendToBack() method, layering

controls, 141

separators, 212

SERVER parameter,

ConnectionString property, 439

servers, 336

creating instances of,
455-456, 461-463

defining, 453

Excel automation

adding cell data, 457-458

bold cells, 458

selecting cells, 458

server creation, 455-456

testing, 459

viewing, 456

workbook creation, 457

Word automation, server cre-
ation, 461-463

set construct, creating writable

properties via, 341

How can we make this index more useful? Email us at indexes@samspublishing.com

set construct

507

SetValue() method, Registry

object, 418

shapes

circles, drawing, 381

ellipses, drawing, 381

rectangles

creating, 379

drawing, 381

sizing, 380

short data type, 244

shortcut keys, assigning to menu

items, 208

shortcut menus. See context

menus

ShortcutKeys property, 208

Show Control Names button,

adding to Picture Viewer pro-

ject, 74-75

Show() method, 113-115

ShowCurrentRecord() method,

DataTable objects, 446-448

ShowDialog() method, 115, 359,

399

ShowGrid property, 127-128

showing forms, 113

ShowInTaskbar property, 118

Shrink button, adding to Picture

Viewer project, 63, 66

signed data types, 244

Size property, 45

forms, sizing, 17

Group Box control, 163

list boxes, 166

Size.Height property, 147, 171

Size.Width property, 147

sizing

controls, 133-138

forms, 17, 112, 116-117

rectangles, 380

toolbars, 40

windows (IDE), 12

SizingGrip property, Status Bar

control, 216

slashes (\) as escape sequences,

250

Snap to Lines layout feature,

drawing controls on forms, 128

SnapToGrid property, 127-128

Solution Explorer

managing projects via, 48-49

Project Properties dialog, 51

solutions

defining, 8

project management, 50

Sorted property, 172

SourceFileExists() method,

System.IO.File objects, 402

spaces

methods, naming, 225

strings, trimming from, 278

spacing controls, 133

SqlConnection object, 438

StackOverflow exceptions, 84

stacks, 237

Start page, 9

New Project dialog, 33

New Project page, 10

Recent Projects category

Create: Project link, 32

opening existing projects,
34

starting Visual Studio 2008, 9

StartPosition property, 115-116

statements

block statements, braces
({ }), 286

semicolons (;), 65

static members, defining, 221

static methods, 236, 335

static text, displaying via Label

control, 151-153

Status Bar control, 214

SizingGrip property, 216

StatusStrip property, 215

status bars, creating, 214-215

storing data, 413

text files

Picture Viewer Project,
429-434

reading, 427-429

writing, 425-427

Windows Registry

accessing, 416

HKEY_CLASSES_ROOT
node, 414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER
node, 414, 417

HKEY_LOCAL_MACHINE
node, 414, 417

HKEY_USERS node, 414

Picture Viewer Project,
419-424

Registry key creation,
416-417

Registry key deletion, 418

Registry object, 416

REG_BINARY data type,
415

508

SetValue() method

REG_EXPAND_SZ data
type, 415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

retrieving Registry key val-
ues, 419

setting Registry key val-
ues, 418

structure of, 414-415

using statements, 416

viewing, 425

StreamReader object

ReadToEnd() method,
428-429

text files, reading, 427-429

while loops, 429

StreamWriter object

text files, writing, 425-427

Write() method, 426

WriteLine() method, 426-427

strFirstName variable, 54

String Collection Editor, adding

items to, 167

string data type, 244

string manipulation

concatenation, 275

DateTime variable, passing
strings to, 279

IndexOf() method, 277

Length property, 276

Replace() method, 279

spaces, trimming, 278

String.Remove() method, 278

String.Trim() method, 278

String.TrimEnd() method, 278

String.TrimStart() method,
278

Substring() method, 276

text, replacing, 278

String.Remove() method, strings,

278

String.Trim() method, strings, 278

String.TrimEnd() method, strings,

278

String.TrimStart() method, strings,

278

StringBuilder variable, 409

structure scope. See block scope

structured exception handling,

322, 325-326

anticipated exceptions,
326-329

SubItems property, List View con-

trol, 188

Substring() method, strings, 276

subtraction (-) operator, 269

switch statements, 290-294

system colors

assigning, 378

changing, 376-377

syncing interface colors with
user system colors,
377-378

System flag (file attributes), 407

System namespaces, 483

System palette tab, 377

System.Data namespaces, 483

System.Diagnostics namespaces,

483

System.Drawing namespaces,

483

System.IO namespaces, 483

System.IO.Directory objects, 401

CreateDirectory() method,
409

Delete() method, 410

Exists() method, 410

Move() method, 410

System.IO.File objects, 401

Convert.ToBoolean() method,
409

Copy() method, 402-403

Delete() method, 404-405

Exists() method, 402

GetAttributes() method, 406,
409

GetCreationTime() method,
406, 409

GetLastAccessTime() method,
406, 409

GetLastWriteTime() method,
406, 409

Move() method, 403-404

SourceFileExists() method,
402

System.Net namespaces, 483

System.Security namespaces,

483

System.Web namespaces, 484

System.Windows.Forms name-

spaces, 484

System.XML namespaces, 484

How can we make this index more useful? Email us at indexes@samspublishing.com

System.XML namespaces

509

T

Tab control, 177, 182

Location property, 183

SelectedIndexChanged
events, 184

TabPages property, 181

tab order (controls)

creating, 138-140

removing controls from, 140

tabbed dialog boxes, creating,

181-184

TabIndex property, 138-140

TabPages property, Tab control,

181

TabStop property, 140

taskbar

forms, preventing from dis-
playing in, 118

ShowInTaskbar property,
forms, 118

tbrMainToolbar control, 213

Temporary flag (file attributes),

407

terminating programs, 26-27

testing

Excel automation, 459

form modality, 115

log files, Picture Viewer
Project, 433-434

objects, simple object build
example, 72

Picture Viewer Project,
Windows Registry, 422-424

text

as graphics, 382

character limits, setting in
text boxes, 157

Font property, 44

form title bars, displaying on,
104

static text, displaying via
Label control, 151, 153

strings

concatenation, 275

replacing within, 278

Text Box control, 153

Click events, 159

MaxLength property, 157

MouseDown events, 159

MouseMove events, 159

MouseUp events, 159

MultiLine property, 154

PasswordChar property, 158

ScrollBars property, 156

TextAlign property, 154

TextChanged events, 158

text boxes

character limits, setting, 157

forms, adding to, 153

multiline text boxes, creating,
154-155

password fields, 158

scrollbars, adding to, 156

SelectedIndex property, 171

text files, 413

Picture Viewer Project

displaying log files,
431-433

log file creation, 429-431

testing logs, 433-434

reading, 427-429

writing, 425-427

Text property, 145

buttons, 159

combo boxes, 173

forms, changing in, 15

Group Box control, 163

labels, 152-153

List View control, 188

multiline text boxes, 154

radio buttons, 164

text boxes, 153

TextAlign property, 154

Textbox control, 83

TextChanged event, 83-84, 88

TextChanged events, 158, 364

this.Close() statements, 27

Tick events, Timer control, 179

time/date. See DateTime vari-

able

Timer control, 83

AutoSize property, 179

Enabled property, 180

Interval property, 178

Tick events, 179

Timer event, 84

title bars (forms), displaying text

on, 104

Title property, 23, 398

Today property, DateTime class,

282

ToLongTimeString method, 180

toolbars

buttons

adding to, 210-212

drop-down menus, 214

separators, 212

displaying, 39

docking, 40

drag handles, 40

forms, adding to, 209

hiding, 39

510

Tab control

Layout toolbar

aligning controls, 132

Make Horizontal Spacing
Equal button, 133

Make the Same Size but-
ton, 133

Save All button, 133

programming, 213-214

sizing, 40

Tooltips, 132

toolbox, adding controls to forms,

40-42, 124

Toolbox window (IDE), 12

ToolStrip control, Items collection,

209-210, 213

DropDownButton property,
214

Image property, 211

Tooltips (toolbars), 132

ToolTipText property, 407

top-level menus

creating, 198-200

menu items

assigning shortcut keys
to, 208

checked menu items, 202

creating, 201

deleting, 202

moving, 202

programming, 203-206

topmost nonmodal windows, cre-

ating, 141

TopMost property, 141

ToString() method, 93

transparent forms, creating, 141

TransparentColor property, Image

List control, 185

tree view, nodes, 77

adding to, 192-193

clearing from, 194

removing from, 194

Tree View control, Nodes collec-

tion, 177, 191

Add() method, 192-193

Clear() method, 194

Remove() method, 194

troubleshooting, help

context sensitive help, 56

finding, 55-56

Run mode, 56

true/false values. See check

boxes

try blocks, 323

try statements, 323-325

two-dimensional arrays, 253

Type Here boxes, menus, 200

type libraries, creating references

to

Excel, 454

Word, 460

TypeText() method, Selection

objects, 462

U - V

unmanaged code, defining, 480

unsigned data types, 243

Update() method

DataAdapter objects, 441

DataTable objects, 448

updates, database records, 448

user controls, project manage-

ment, 51

User ID parameter,

ConnectionString property, 439

User Name Label control, 183

Users property, Registry object,

416

using statements, 374

automation server instances,
creating, 456

structured exception han-
dling, 323

Windows Registry, 416

value data types, 243

variables

arrays

declaring, 252

defining, 251

dimensions of, 254

jagged arrays, 255

multidimensional arrays,
253-254

referencing variables, 252

two-dimensional arrays,
253

binding object references to

early binding, 345

late binding, 344-345

creating, 251

declaring, 249

defining, 62, 241

expressions, uses in, 251

literal values, passing to, 250

object creation via variable
dimensioning, 346

Picture Viewer project

creating for, 259-260

initializing in, 261-262

How can we make this index more useful? Email us at indexes@samspublishing.com

variables

511

prefixes, denoting scope via,
259

reserved words, 250

storing values in, 54

View property, List View control,

188

visible controls, adding to forms,

20-21

Visible property, 113, 118

Visual Studio 2008 as IDE, 9-12

W

Web tab (Properties window color

drop-down list), 46

while loops, StreamReader

objects, 429

Width property, sizing forms, 17

windows

forms versus, 101

nonmodal windows, 141

sizing, 12

Windows Registry, 413

accessing, 416

HKEY_CLASSES_ROOT node,
414

HKEY_CURRENT_CONFIG
node, 414

HKEY_CURRENT_USER node,
414, 417

HKEY_LOCAL_MACHINE node,
414, 417

HKEY_USERS node, 414

Picture Viewer Project, 419

debugging, 422-424

displaying Registry
options, 420-421

saving Registry options,
421

stored Registry options,
421-422

testing, 422-424

Registry keys

creating, 416-417

deleting, 418

retrieving values of, 419

setting values of, 418

Registry object, 416

Convert.ToBoolean()
method, 420

Convert.ToString() method,
420-421

CreateSubKey() method,
417

DeleteSubKey() method,
418

DeleteSubKeyTree()
method, 418

GetValue() method, 419

SetValue() method, 418

REG_BINARY data type, 415

REG_EXPAND_SZ data type,
415

REG_MULTI_SZ data type,
415

REG_SZ data type, 415

structure of, 414-415

using statements, 416

viewing, 425

WindowState property, 116-117

Word, automation

library references, 460

server creation, 461-463

workbooks (Excel), 457

worksheets (Excel), cells

adding data, 457-458

bold cells, 458

selecting, 458

writable properties, creating via

set construct, 341

Write() method, StreamWriter

object, 426

write-only properties, creating,

342

WriteLine() method, 321,

426-427

writing text files, 425-427

X - Y - Z

Xor (^) operator, 275

Year property, DateTime class,

281

yes/no values. See check boxes

z-order, layering controls, 140

512

variables

	Sams Teach Yourself Visual C# 2008 in 24 Hours
	Table of Contents
	Introduction
	Audience and Organization
	Conventions Used in This Book
	Onward and Upward!

	Part I: The Visual C# 2008 Environment
	HOUR 1: Jumping In with Both Feet: A Visual C# 2008 Programming Tour
	Starting Visual C# 2008
	Creating a New Project
	Understanding the Visual Studio .NET Environment
	Changing the Characteristics of Objects
	Adding Controls to a Form
	Designing an Interface
	Writing the Code Behind an Interface
	Running a Project
	Summary
	Q&A
	Workshop

	HOUR 2: Navigating Visual C# 2008
	Using the Visual C# 2008 Start Page
	Navigating and Customizing the Visual C# Environment
	Working with Toolbars
	Adding Controls to a Form Using the Toolbox
	Setting Object Properties Using the Properties Window
	Managing Projects
	A Quick-and-Dirty Programming Primer
	Getting Help
	Summary
	Q&A
	Workshop

	HOUR 3: Understanding Objects and Collections
	Understanding Objects
	Understanding Properties
	Understanding Methods
	Building a Simple Object Example Project
	Understanding Collections
	Using the Object Browser
	Summary
	Q&A
	Workshop

	HOUR 4: Understanding Events
	Understanding Event-Driven Programming
	Building an Event Example Project
	Summary
	Q&A
	Workshop

	Part II: Building a User Interface
	HOUR 5: Building Forms—The Basics
	Changing a Form’s Name
	Changing a Form’s Appearance
	Showing and Hiding Forms
	Summary
	Q&A
	Workshop

	HOUR 6: Building Forms—Advanced Techniques
	Working with Controls
	Adding a Control by Double-Clicking It in the Toolbox
	Adding a Control by Dragging from the Toolbox
	Adding a Control by Drawing It
	Creating Topmost Nonmodal Windows
	Creating Transparent Forms
	Creating Scrollable Forms
	Creating MDI Forms
	Summary
	Q&A
	Workshop

	HOUR 7: Working with Traditional Controls
	Displaying Static Text with the Label Control
	Allowing Users to Enter Text Using a Text Box
	Creating Buttons
	Presenting Yes/No Options Using Check Boxes
	Creating Containers and Groups of Option Buttons
	Displaying a List with the List Box
	Creating Drop-Down Lists Using the Combo Box
	Summary
	Q&A
	Workshop

	HOUR 8: Using Advanced Controls
	Creating Timers
	Creating Tabbed Dialog Boxes
	Storing Pictures in an Image List
	Building Enhanced Lists Using the List View
	Creating Hierarchical Lists with the Tree View
	Summary
	Q&A
	Workshop

	HOUR 9: Adding Menus and Toolbars to Forms
	Building Menus
	Using the Toolbar Control
	Creating a Status Bar
	Summary
	Q&A
	Workshop

	Part III: Making Things Happen: Programming
	HOUR 10: Creating and Calling Methods
	Understanding Class Members
	Defining and Writing Methods
	Calling Methods
	Exiting Methods
	Creating Static Methods
	Avoiding Infinite Recursion
	Summary
	Q&A
	Workshop

	HOUR 11: Using Constants, Data Types, Variables, and Arrays
	Understanding Data Types
	Defining and Using Constants
	Declaring and Referencing Variables
	Working with Arrays
	Determining Scope
	Naming Conventions
	Using Variables in Your Picture Viewer Project
	Summary
	Q&A
	Workshop

	HOUR 12: Performing Arithmetic, String Manipulation, and Date/Time Adjustments
	Performing Basic Arithmetic Operations with Visual C#
	Comparing Equalities
	Understanding Boolean Logic
	Working with Dates and Times
	Summary
	Q&A
	Workshop

	HOUR 13: Making Decisions in Visual C# Code
	Making Decisions Using if...else
	Evaluating an Expression for Multiple Values Using switch
	Summary
	Q&A
	Workshop

	HOUR 14: Looping for Efficiency
	Looping a Specific Number of Times Using for
	Using while and do...while to Loop an Indeterminate Number of Times
	Summary
	Q&A
	Workshop

	HOUR 15: Debugging Your Code
	Adding Comments to Your Code
	Identifying the Two Basic Types of Errors
	Using Visual C# Debugging Tools
	Writing an Error Handler Using Try...Catch...Finally
	Summary
	Q&A
	Workshop

	HOUR 16: Designing Objects Using Classes
	Understanding Classes
	Instantiating Objects from Classes
	Summary
	Q&A
	Workshop

	HOUR 17: Interacting with Users
	Displaying Messages Using the MessageBox.Show () Function
	Creating Custom Dialog Boxes
	Interacting with the Keyboard
	Using the Common Mouse Events
	Summary
	Q&A
	Workshop

	HOUR 18: Working with Graphics
	Understanding the Graphics Object
	Working with Pens
	Using System Colors
	Working with Rectangles
	Drawing Shapes
	Drawing Text
	Persisting Graphics on a Form
	Building a Graphics Project Example
	Summary
	Q&A
	Workshop

	Part IV: Working with Data
	HOUR 19: Performing File Operations
	Using the OpenFileDialog and SaveFileDialog Controls
	Manipulating Files with the File Object
	Manipulating Directories with the Directory Object
	Summary
	Q&A
	Workshop

	HOUR 20: Working with Text Files and the Registry
	Working with the Registry
	Reading and Writing Text Files
	Summary
	Q&A
	Workshop

	HOUR 21: Working with a Database
	Introducing ADO.NET
	Manipulating Data
	Summary
	Q&A
	Workshop

	HOUR 22: Controlling Other Applications Using Automation
	Creating a Reference to an Automation Library
	Creating an Instance of an Automation Server
	Manipulating the Server
	Automating Microsoft Word
	Summary
	Q&A
	Workshop

	Part V: Developing Solutions and Beyond
	HOUR 23: Deploying Applications
	Understanding ClickOnce Technology
	Using the Publish Wizard to Create a ClickOnce Application
	Testing Your Picture Viewer ClickOnce Install Program
	Uninstalling an Application You’ve Distributed
	Setting Advanced Options for Creating ClickOnce Programs
	Summary
	Q&A
	Workshop

	HOUR 24: The 10,000-Foot View
	The .NET Framework
	Common Language Runtime
	Microsoft Intermediate Language
	Namespaces
	Common Type System
	Garbage Collection
	Further Reading
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J - K - L
	M
	N
	O
	P
	Q - R
	S
	T
	U - V
	W
	X - Y - Z

