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Chapter 1

Preface

There are several excellent texts on differential topology. Unfortunately none of them
proved to meet the particular criteria for the new course for the civil engineering students
at NTNU. These students have no prior background in point-set topology, and many have
no algebra beyond basic linear algebra. However, the obvious solutions to these problems
were unpalatable. Most “elementary” text books were not sufficiently to-the-point, and it
was no space in our curriculum for “the necessary background” for more streamlined and
advanced texts.

The solutions to this has been to write a rather terse mathematical text, but provided with
an abundant supply of examples and exercises with hints. Through the many examples
and worked exercises the students have a better chance at getting used to the language and
spirit of the field before trying themselves at it. This said, the exercises are an essential
part of the text, and the class has spent a substantial part of its time at them.

The appendix covering the bare essentials of point-set topology was covered at the be-
ginning of the semester (parallel to the introduction and the smooth manifold chapters),
with the emphasis that point-set topology was a tool which we were going to use all the
time, but that it was NOT the subject of study (this emphasis was the reason to put this
material in an appendix rather at the opening of the book).

The text owes a lot to Bröcker and Jänich’s book, both in style and choice of material. This
very good book (which at the time being unfortunately is out of print) would have been
the natural choice of textbook for our students had they had the necessary background
and mathematical maturity. Also Spivak, Hirsch and Milnor’s books have been a source
of examples.

These notes came into being during the spring semester 2001. I want to thank the listeners
for their overbearance with an abundance of typographical errors, and for pointing them
out to me. Special thanks go to Håvard Berland and Elise Klaveness.
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Chapter 2

Introduction

The earth is round. At a time this was fascinating news and hard to believe, but we have
grown accustomed to it even though our everyday experience is that the earth is flat. Still,
the most effective way to illustrate it is by means of maps: a globe is a very neat device,
but its global(!) character makes it less than practical if you want to represent fine details.

This phenomenon is quite common: locally you can represent things by means of “charts”,
but the global character can’t be represented by one single chart. You need an entire atlas,
and you need to know how the charts are to be assembled, or even better: the charts overlap
so that we know how they all fit together. The mathematical framework for working with
such situations is manifold theory. These notes are about manifold theory, but before we
start off with the details, let us take an informal look at some examples illustrating the
basic structure.

2.1 A robot’s arm:

To illustrate a few points which will be important later on, we discuss a concrete situation
in some detail. The features that appear are special cases of general phenomena, and
hopefully the example will provide the reader with some deja vue experiences later on,
when things are somewhat more obscure.

Consider a robot’s arm. For simplicity, assume that it moves in the plane, has three joints,
with a telescopic middle arm (see figure).

9
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Call the vector defining the inner arm x, the second arm y and the third arm z. Assume
|x| = |z| = 1 and |y| ∈ [1, 5]. Then the robot can reach anywhere inside a circle of radius
7. But most of these positions can be reached in several different ways.

In order to control the robot optimally, we need to understand the various configurations,
and how they relate to each other.

As an example let P = (3, 0), and consider all the possible positions that reach this point,
i.e., look at the set T of all (x, y, z) such that

x + y + z = (3, 0), |x| = |z| = 1, and |y| ∈ [1, 5].

We see that, under the restriction |x| = |z| = 1, x and z can be chosen arbitrary, and
determine y uniquely. So T is the same as the set

{(x, z) ∈ R
2 ×R

2 | |x| = |z| = 1}
We can parameterize x and z by angles if we remember to identify the angles 0 and 2π.
So T is what you get if you consider the square [0, 2π]× [0, 2π] and identify the edges as
in the picture below.

A

A

B B
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In other words: The set of all positions such that the robot reaches (3, 0) is the same as
the torus.

This is also true topologically: “close configurations” of the robot’s arm correspond to
points close to each other on the torus.

2.1.1 Question

What would the space S of positions look like if the telescope got stuck at |y| = 2?

Partial answer to the question: since y = (3, 0) − x − z we could try to get an idea of
what points of T satisfy |y| = 2 by means of inspection of the graph of |y|. Below is an
illustration showing |y| as a function of T given as a graph over [0, 2π]× [0, 2π], and also
the plane |y| = 2.
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The desired set S should then be the intersection:
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It looks a bit weird before we remember that the edges of [0, 2π]×[0, 2π] should be identified.
On the torus it looks perfectly fine; and we can see this if we change our perspective a bit.
In order to view T we chose [0, 2π] × [0, 2π] with identifications along the boundary. We
could just as well have chosen [−π, π] × [−π, π], and then the picture would have looked
like the following:

It does not touch the boundary, so we do not need to worry about the identifications. As
a matter of fact, the set S is homeomorphic to the circle (we can prove this later).

2.1.2 Dependence on the telescope’s length

Even more is true: we notice that S looks like a smooth and nice picture. This will not
happen for all values of |y|. The exceptions are |y| = 1, |y| = 3 and |y| = 5. The values 1
and 5 correspond to one-point solutions. When |y| = 3 we get a picture like the one below
(it really ought to touch the boundary):
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In the course we will learn to distinguish between such circumstances. They are qualita-
tively different in many aspects, one of which becomes apparent if we view the example
with |y| = 3 with one of the angles varying in [0, 2π] while the other varies in [−π, π]:

–3

–2

–1

0

1

2

3

t

0 1 2 3 4 5 6
s

With this “cross” there is no way our solution space is homeomorphic to the circle. You
can give an interpretation of the picture above: the straight line is the movement you get
if you let x = z (like the wheels on an old fashioned train), while on the other x and z
rotates in opposite directions (very unhealthy for wheels on a train).

2.1.3 Moral

The configuration space T is smooth and nice, and we got different views on it by changing
our “coordinates”. By considering a function on it (in our case the length of y) we got that
when restricting to subsets of T that corresponded to certain values of our function, we
could get qualitatively different situations according to what values we were looking at.
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2.2 Further examples

—“Phase spaces” in physics (e.g. robot example above);

—The surface of the earth;

—Space-time is a four dimensional manifold. It is not flat, and its curvature is
determined by the mass distribution;

—If f : R
n → R is a map and y a real number, then the inverse image

f−1(y) = {x ∈ R
n|f(x) = y}

is often a manifold. Ex: f : R
2 → R f(x) = |x|, then f−1(1) is the unit circle S1 (c.f.

the submanifold chapter);

—{All lines in R
3 through the origin}= “The real projective plane” RP2 (see next

chapter);

—The torus (see above);

—The Klein bottle (see below).

2.2.1 Charts

Just like the surface of the earth is covered by charts, the torus in the robot’s arm was
viewed through flat representations. In the technical sense of the word the representation
was not a “chart” since some points were covered twice (just as Siberia and Alaska have
a tendency to show up twice on some maps). But we may exclude these points from our
charts at the cost of having to use more overlapping charts. Also, in the robot example we
saw that it was advantageous to operate with more charts.

Example 2.2.2 To drive home this point, please play Jeff Weeks’ “Torus Game” on

http://humber.northnet.org/weeks/TorusGames/

for a while.

The space-time manifold really brings home the fact that manifolds must be represented
intrinsically: the surface of the earth is seen as a sphere “in space”, but there is no space
which should naturally harbor the universe, except the universe itself. This opens up the
fascinating question of how one can determine the shape of the space in which we live.
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2.2.3 Compact surfaces

This section is rather autonomous, and may be read at leisure at a later stage to fill in the
intuition on manifolds.

To simplify we could imagine that we were two dimensional beings living in a static closed
surface. The sphere and the torus are familiar surfaces, but there are many more. If you
did example 2.2.2, you were exposed to another surface, namely the Klein bottle. This has
a plane representation very similar to the Torus: just reverse the orientation of a single
edge.

a a

b

b

A plane repre-

sentation of the

Klein bottle:

identify along

the edges in

the direction

indicated.

A picture of the Klein bottle forced into our three-

dimensional space: it is really just a shadow since it

has self intersections. If you insist on putting this two-

dimensional manifold into a flat space, you got to have

at least four dimensions available.

Although this is an easy surface to describe (but frustrating to play chess on), it is too
complicated to fit inside our three-dimensional space: again a manifold is not a space inside
a flat space. It is a locally Euclidean space. The best we can do is to give an “immersed”
(with self-intersections) picture.

As a matter of fact, it turns out that we can write down a list of all compact surfaces.
First of all, surfaces may be diveded into those that are orientable and those that are not.
Orientable means that there are no paths our two dimensional friends can travel and return
to home as their mirror images (is that why some people are left-handed?).
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All connected compact orientable surfaces
can be gotten by attaching a finite number
of handles to a sphere. The number of han-
dles attached is referred to as the genus of the
surface.
A handle is a torus with a small disk removed
(see the figure). Note that the boundary of
the holes on the sphere and the boundary of
the hole on each handle are all circles, so we
glue the surfaces together in a smooth manner
along their common boundary (the result of
such a gluing process is called the connected
sum, and some care is required).

A handle: ready to be attached to

another 2-manifold with a small disk

removed.

Thus all orientable compact surfaces are surfaces of pretzels with many holes.

An orientable surface of genus g is gotten by gluing g handles (the smoothening out

has yet to be performed in these pictures)

There are nonorientable surfaces too (e.g. the
Klein bottle). To make them consider a
Möbius band. Its boundary is a circle, and
so cutting a hole in a surface you may glue in
a Möbius band in. If you do this on a sphere
you get the projective plane (this is exercise
2.2.6). If you do it twice you get the Klein
bottle. Any nonorientable compact surface
can be obtained by cutting a finite number
of holes in a sphere and gluing in the corre-
sponding number of Möbius bands.

A Möbius band: note that its bound-

ary is a circle.

The reader might wonder what happens if we mix handles and Möbius bands, and it is a
strange fact that if you glue g handles and h > 0 Möbius bands you get the same as if
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you had glued h + 2g Möbius bands! Hence, the projective plane with a handle attached
is the same as the Klein bottle with a Möbius band glued onto it. But fortunately this is
it; there are no more identifications among the surfaces.

So, any (connected compact) surface can be gotten by cutting g holes in S2 and either
gluing in g handles or gluing in g Möbius bands. For a detailed discussion the reader may
turn to Hirsch’s book [H], chapter 9.

Plane models

If you find such descriptions elusive, you may find com-
fort in the fact that all compact surfaces can be de-
scribed similarly to the way we described the torus.
If we cut a hole in the torus we get a handle. This
may be represented by plane models as to the right:
identify the edges as indicated.
If you want more handles you just glue many of these
together, so that a g-holed torus can be represented by
a 4g-gon where two and two edges are identified (see

http://www.it.brighton.ac.uk/staff/
jt40/MapleAnimations/Torus.html

for a nice animation of how the plane model gets glued
and

http://www.rogmann.org/math/tori/torus2en.html

for instruction on how to sew your own two and tree-
holed torus).

a

a

b

b

the boundary

a a

b

b

Two versions of a plane

model for the handle:

identify the edges as indi-

cated to get a torus with a

hole in.

a

a’

a

a’

b

b

b’

b’

A plane model of the orientable surface of genus two. Glue corresponding edges

together. The dotted line splits the surface up into two handles.
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It is important to have in mind that the points on the
edges in the plane models are in no way special: if we
change our point of view slightly we can get them to
be in the interior.
We have plane model for gluing in Möbius bands too
(see picture to the right). So a surface gotten by glu-
ing h Möbius bands to h holes on a sphere can be
represented by a 2h-gon, where two and two edges are
identified.

Example 2.2.4 If you glue two plane models of the
Möbius band along their boundaries you get the pic-
ture to the right. This represent the Klein bottle, but
it is not exactly the same plane representation we used
earlier.
To see that the two plane models give the same sur-
face, cut along the line c in the figure to the left below.
Then take the two copies of the line a and glue them
together in accordance with their orientations (this re-
quires that you flip one of your trangles). The resulting
figure which is shown to the right below, is (a rotated
and slanted version of) the plane model we used before
for the Klein bottle.

a a

the boundary

A plane model for the

Möbius band: identify the

edges as indicated. When

gluing it onto something

else, use the boundary.

a a

a’a’

Gluing two flat Möbius

bands together. The dot-

ted line marks where the

bands were glued together.

a a

a’a’

c a

a’

a’

c

c

Cutting along c shows that two Möbius bands glued together is the Klein bottle.

Exercise 2.2.5 Prove by a direct cut and paste argument that what you get by adding a
handle to the projective plane is the same as what you get if you add a Möbius band to
the Klein bottle.
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Exercise 2.2.6 Prove that the real projective plane

RP2 = {All lines in R
3 through the origin}

is the same as what you get by gluing a Möbius band to a sphere.

Exercise 2.2.7 See if you can find out what the “Euler number” (or “Euler characteristic”)
is. Then calculate it for various surfaces using the plane models. Can you see that both
the torus and the Klein bottle have Euler number zero? The sphere has Euler number 2
(which leads to the famous theorem V −E +F = 2 for all surfaces bounding a “ball”) and
the projective plane has Euler number 1. The surface of exercise 2.2.5 has Euler number
−1. In general, adding a handle reduces the Euler number by two, and adding a Möbius
band reduces it by one.

2.2.8 Higher dimensions

Although surfaces are fun and concrete, next to no real-life applications are 2-dimensional.
Usually there are zillions of variables at play, and so our manifolds will be correspondingly
complex. This means that we can’t continue to be vague. We need strict definitions to
keep track of all the structure.

However, let it be mentioned at the informal level that we must not expect to have a such
a nice list of higher dimensional manifolds as we had for compact surfaces. Classification
problems for higher dimensional manifolds is an extremely complex and interesting business
we will not have occasion to delve into.
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Chapter 3

Smooth manifolds

3.1 Topological manifolds

Let us get straight at our object of study. The terms used in the definition are explained
immediately below the box. See also appendix 10 on point set topology.

Definition 3.1.1 An n-dimensional topological manifold M is

a Hausdorff topological space with a countable basis for the topology which is

locally homeomorphic to R
n.

The last point (locally homeomorphic to R
n) means

that for every point p ∈M there is

an open neighborhood U containing p,

an open set U ′ ⊆ R
n and

a homeomorphism x : U → U ′.

We call such an x a chart, U a chart domain.
A collection of charts {xα} covering M (i.e., such that⋃
Uα = M) is called an atlas.

Note 3.1.2 The conditions that M should be “Hausdorff” and have a “countable basis for
its topology” will not play an important rôle for us for quite a while. It is tempting to just
skip these conditions, and come back to them later when they actually are important. As
a matter of fact, on a first reading I suggest you actually do this. Rest assured that all

21
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subsets of Euclidean space satisfies these conditions.

The conditions are there in order to exclude some pathological creatures that are locally
homeomorphic to R

n, but are so weird that we do not want to consider them. We include
the conditions at once so as not to need to change our definition in the course of the book,
and also to conform with usual language.

Example 3.1.3 Let U ⊆ R
n be an open subset. Then U is an n-manifold. Its atlas needs

only have one chart, namely the identity map id : U = U . As a sub-example we have the
open n-disk

En = {p ∈ R
n| |p| < 1}.

Example 3.1.4 The n-sphere

Sn = {p ∈ R
n+1| |p| = 1}

is an n-manifold.

We write a point in R
n+1 as an n+1 tuple as

follows: p = (p0, p1, . . . , pn). To give an atlas
for Sn, consider the open sets

Uk,0 ={p ∈ Sn|pk > 0},
Uk,1 ={p ∈ Sn|pk < 0}

UU

U U

0,0 0,1

1,0 1,1

for k = 0, . . . , n, and let

xk,i : Uk,i → En

be the projection

(p0, . . . , pn) 7→(p0, . . . , p̂k, . . . , pn)

=(p0, . . . , pk−1, pk+1, . . . , pn)

(the “hat” in p̂k is a common way to indicate
that this coordinate should be deleted).

U

D1

1,0

[The n-sphere is Hausdorff and has a countable basis for its topology by corollary 10.5.6
simply because it is a subspace of R

n+1.]
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Example 3.1.5 (Uses many results from the point set topology appendix). We shall
later see that two charts suffice on the sphere, but it is clear that we can’t make do with
only one: assume there was a chart covering all of Sn. That would imply that we had a
homeomorphism x : Sn → U ′ where U ′ is an open subset of R

n. But this is impossible
since Sn is compact (it is a bounded and closed subset of R

n+1), and so U ′ = x(Sn) would
be compact (and nonempty), hence a closed and open subset of R

n.

Example 3.1.6 The real projective n-space RPn is the set of all straight lines through
the origin in R

n+1. As a topological space, it is the quotient

RPn = (Rn+1 \ {0})/ ∼

where the equivalence relation is given by p ∼ q if there is a λ ∈ R \ {0} such that p = λq.
Note that this is homeomorphic to

Sn/ ∼
where the equivalence relation is p ∼ −p. The real projective n-space is an n-dimensional
manifold, as we shall see below.

If p = (p0, . . . , pn) ∈ R
n+1 \ {0} we write [p] for its equivalence class considered as a point

in RPn.

For 0 ≤ k ≤ n, let
Uk = {[p] ∈ RPn|pk 6= 0}.

Varying k, this gives an open cover of RPn. Note that the projection Sn → RPn when
restricted to Uk,0 ∪ Uk,1 = {p ∈ Sn|pk 6= 0} gives a two-to-one correspondence between
Uk,0 ∪ Uk,1 and Uk. In fact, when restricted to Uk,0 the projection Sn → RPn yields a
homeomorphism Uk,0 ∼= Uk.

The homeomorphism Uk,0 ∼= Uk together with the homeomorphism

xk,0 : Uk,0 → En = {p ∈ R
n| |p| < 1}

of example 3.1.4 gives a chart U k → En (the explicit formula is given by sending [p] to
|pk|
pk|p|

(p0, . . . , p̂k, . . . , pn)). Letting k vary we get an atlas for RP n.

We can simplify this somewhat: the following atlas will be referred to as the standard atlas
for RPn. Let

xk : Uk →R
n

[p] 7→ 1

pk
(p0, . . . , p̂k, . . . , pn)

Note that this is a well defined (since 1
pk

(p0, . . . , p̂k, . . . , pn) = 1
λpk

(λp0, . . . , λ̂pk, . . . , λpn)).

Furthermore xk is a bijective function with inverse given by

(
xk
)−1

(p0, . . . , p̂k, . . . , pn) = [p0, . . . , 1, . . . , pn]
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(note the convenient cheating in indexing the points in R
n).

In fact, xk is a homeomorphism: xk is continuous since the composite Uk,0 ∼= Uk → R
n is;

and
(
xk
)−1

is continuous since it is the composite R
n → {p ∈ R

n+1|pk 6= 0} → Uk where
the first map is given by (p0, . . . , p̂k, . . . , pn) 7→ (p0, . . . , 1, . . . , pn) and the second is the
projection.

[That RPn is Hausdorff and has a countable basis for its topology is exercise 10.7.5.]

Note 3.1.7 It is not obvious at this point that RPn can be realized as a subspace of an
Euclidean space (we will show in it can in theorem 7.5.1).

Note 3.1.8 We will try to be consistent in letting the charts have names like x and y.
This is sound practice since it reminds us that what charts are good for is to give “local
coordinates” on our manifold: a point p ∈M corresponds to a point

x(p) = (x1(p), . . . , xn(p)) ∈ R
n.

The general philosophy when studying manifolds is to refer back to properties of Euclidean
space by means of charts. In this manner a successful theory is built up: whenever a defini-
tion is needed, we take the Euclidean version and require that the corresponding property
for manifolds is the one you get by saying that it must hold true in “local coordinates”.

3.2 Smooth structures

We will have to wait until 3.3.4 for the official definition of a smooth manifold. The idea is
simple enough: in order to do differential topology we need that the charts of the manifolds
are glued smoothly together, so that we do not get different answers in different charts.
Again “smoothly” must be borrowed from the Euclidean world. We proceed to make this
precise.

Let M be a topological manifold, and let x1 : U1 → U ′
1 and x2 : U2 → U ′

2 be two charts on
M with U ′

1 and U ′
2 open subsets of R

n. Assume that U12 = U1 ∩ U2 is nonempty.

Then we may define a chart transformation

x12 : x1(U12)→ x2(U12)

by sending q ∈ x1(U12) to

x12(q) = x2x
−1
1 (q)
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(in function notation we get that

x12 = x2 ◦ x−1
1 |x1(U12)

where we recall that “|x1(U12)” means simply restrict the domain of definition to x1(U12)).

This is a function from an open subset of R
n to another, and it makes sense to ask whether

it is smooth or not.

The picture of the chart transformation above will usually be recorded more succinctly as

U12
x1|U12

zzvv
vv

vv
vv

v x2|U12

$$H
HH

HH
HH

HH

x1(U12) x2(U12)

This makes things easier to remember than the occasionally awkward formulae.

Definition 3.2.1 An atlas for a manifold is differentiable (or smooth, or C∞) if all the
chart transformations are differentiable (i.e., all the higher order partial derivatives exist
and are continuous).

Definition 3.2.2 A smooth map f between open subsets of R
n is said to be a diffeomor-

phism if it is invertible with a smooth inverse f−1.

Note 3.2.3 Note that if x12 is a chart transformation associated to a pair of charts in an
atlas, then x12

−1 is also a chart transformation. Hence, saying that an atlas is smooth is
the same as saying that all the chart transformations are diffeomorphisms.
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Example 3.2.4 Let U ⊆ R
n be an open subset. Then the atlas whose only chart is the

identity id : U = U is smooth.

Example 3.2.5 The atlas

U = {(xk,i, Uk,i)|0 ≤ k ≤ n, 0 ≤ i ≤ 1}

we gave on the n-sphere Sn is a smooth atlas. To see this, look at the example

x1,1
(
x0,0
)−1 |x0,0(U0,0∩U1,1)

First we calculate the inverse: Let p =
(p1, . . . , pn) ∈ En, then

(
x0,0
)−1

(p) =
(√

1− |p|2, p1, . . . , pn

)

(the square root is positive, since we consider
x0,0). Furthermore

x0,0(U0,0∩U1,1) = {(p1, . . . , pn) ∈ En|p1 < 0}

Finally we get that if p ∈ x0,0(U0,0 ∩U1,1) we
get

x1,1
(
x0,0
)−1

(p) =
(√

1− |p|2, p̂1, p2, . . . , pn

)

This is a smooth map, and generalizing to
other indices we get that we have a smooth
atlas for Sn.

How the point p in x0,0(U0,0 ∩ U1,1

is mapped to x1,1(x0,0)−1(p).

Example 3.2.6 There is another useful smooth atlas on Sn, given by stereographic pro-
jection. It has only two charts.

The chart domains are

U+ ={p ∈ Sn|p0 > −1}
U− ={p ∈ Sn|p0 < 1}

and x+ is given by sending a point on Sn to the intersection of the plane

R
n = {(0, p1, . . . , pn) ∈ R

n+1}

and the straight line through the South pole S = (−1, 0, . . . , 0) and the point.

Similarly for x−, using the North pole instead. Note that both maps are homeomorphisms
onto all of R

n
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S

p

x (p)+

(p  ,...,p  )1 n

p
0

p

(p  ,...,p  )1 n

p
0

x (p)-

N

To check that there are no unpleasant surprises, one should write down the formulas:

x+(p) =
1

1 + p0
(p1, . . . , pn)

x−(p) =
1

1− p0

(p1, . . . , pn)

We need to check that the chart transformations are smooth. Consider the chart transfor-
mation x+ (x−)

−1
defined on x−(U− ∩ U+) = R

n \ {0}. A small calculation yields that if
q = (q1, . . . , qn) ∈ R

n \ {0} then

(
x−
)−1

(q) =
1

1 + |q|2 (|q|2 − 1, 2q)

(solve the equation x−(p) = q with respect to p), and so

x+
(
x−
)−1

(q) =
1

|q|2 q

which is smooth. Similar calculations for the other chart transformations yield that this is
a smooth atlas.

Exercise 3.2.7 Check that the formulae in the stereographic projection example are cor-
rect.

Note 3.2.8 The last two examples may be somewhat worrisome: the sphere is the sphere,
and these two atlases are two manifestations of the “same” sphere, are they not? We
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address this kind of questions in the next chapter: “when do two different atlases describe
the same smooth manifold?” You should, however, be aware that there are “exotic” smooth
structures on spheres, i.e., smooth atlases on the topological manifold Sn which describe
smooth structures essentially different from the one(s?) we have described (but only in
dimensions greater than six). Furthermore, there are topological manifolds which can not
be given smooth atlases.

Example 3.2.9 The atlas we gave the real projective space was smooth. As an example
consider the chart transformation x2 (x0)

−1
: if p2 6= 0 then

x1
(
x0
)−1

(p1, . . . , pn) =
1

p2

(1, p1, p3, . . . , pn)

Exercise 3.2.10 Show in all detail that the complex projective n-space

CPn = (Cn+1 \ {0})/ ∼

where z ∼ w if there exists a λ ∈ C \ {0} such that z = λw, is a 2n-dimensional manifold.

Exercise 3.2.11 Give the boundary of the square the structure of a smooth manifold.

3.3 Maximal atlases

We easily see that some manifolds can be equipped with many different smooth atlases.
An example is the circle. Stereographic projection gives a different atlas than what you get
if you for instance parameterize by means of the angle. But we do not want to distinguish
between these two “smooth structures”, and in order to systematize this we introduce the
concept of a maximal atlas.

Assume we have a manifold M together with a smooth atlas U on M .

Definition 3.3.1 Let M be a manifold and U a smooth atlas on M . Then we define D(U)
as the following set of charts on M :

D(U) =





charts y : V → V ′ on M

∣∣∣∣∣∣∣∣∣∣∣∣

for all charts
x : U → U ′ in U

the maps
x ◦ y−1|y(U∩V ) and
y ◦ x−1|x(U∩V )

are smooth





Lemma 3.3.2 Let M be a manifold and U a smooth atlas on M . Then D(U) is a differ-
entiable atlas.



3.3. MAXIMAL ATLASES 29

Proof: Let y : V → V ′ and z : W →W ′ be two charts in D(U). We have to show that

z ◦ y−1|y(V ∩W )

is differentiable. Let q be any point in y(V ∩W ). We prove that z ◦ y−1 is differentiable
in a neighborhood of q. Choose a chart x : U → U ′ in U with y−1(q) ∈ U .

We get that

z ◦ y−1|y(U∩V ∩W ) =z ◦ (x−1 ◦ x) ◦ y−1|y(U∩V ∩W )

=(z ◦ x−1)x(U∩V ∩W ) ◦ (x ◦ y−1)|y(U∩V ∩W )

Since y and z are in D(U) and x is in U we have by definition that both the maps in the
composite above are differentiable, and we are done. �

The crucial equation can be visualized by the following diagram

U ∩ V ∩W
y|U∩V ∩W

uukkkkkkkkkkkkkk

x|U∩V ∩W

��

z|U∩V ∩W

))SSSSSSSSSSSSSS

y(U ∩ V ∩W ) x(U ∩ V ∩W ) z(U ∩ V ∩W )

Going up and down with x|U∩V ∩W in the middle leaves everything fixed so the two functions
from y(U ∩ V ∩W ) to z(U ∩ V ∩W ) are equal.

Note 3.3.3 A differential atlas is maximal if there is no strictly bigger differentiable atlas
containing it. We observe that D(U) is maximal in this sense; in fact if V is any differential
atlas containing U , then V ⊆ D(U), and so D(U) = D(V). Hence any differential atlas is
a subset of a unique maximal differential atlas.
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Definition 3.3.4 A smooth structure on a topological manifold is a maximal smooth atlas.
A smooth manifold (M,U) is a topological manifold M equipped with a smooth structure
U . A differentiable manifold is a topological manifold for which there exist differential
structures.

Note 3.3.5 The following words are synonymous: smooth, differential and C∞.

Note 3.3.6 In practice we do not give the maximal atlas, but only a small practical
smooth atlas and apply D to it. Often we write just M instead of (M,U) if U is clear from
the context.

Exercise 3.3.7 Show that the two smooth structures we have defined on Sn are contained
in a common maximal atlas. Hence they define the same smooth manifold, which we will
simply call the (standard smooth) sphere.

Exercise 3.3.8 Choose your favorite diffeomorphism x : R
n → R

n. Why is the smooth
structure generated by x equal to the smooth structure generated by the identity? What
does the maximal atlas for this smooth structure (the only one we’ll ever consider) on R

n

look like?

Note 3.3.9 You may be worried about the fact that maximal atlases are frightfully big.
If so, you may find some consolation in the fact that any smooth manifold (M,U) has
a countable smooth atlas determining its smooth structure. This will be discussed more
closely in lemma 7.3.1, but for the impatient it can be seen as follows: since M is a
topological manifold it has a countable basis B for its topology. For each (x, U) ∈ U with
En ⊆ x(U) choose a V ∈ B such that V ⊆ x−1(En). The set A of such sets V is a countable
subset of B, and A covers M , since around any point on M there is a chart containing
En in its image (choose any chart (x, U) containing your point p. Then x(U), being open,
contains some small ball. Restrict to this, and reparameterize so that it becomes the unit
ball). Now, for every V ∈ A choose one of the charts (x, U) ∈ U with En ⊆ x(U) such
that V ⊆ x−1(En). The resulting set V ⊆ U is then a countable smooth atlas for (M,U).

3.4 Smooth maps

Having defined smooth manifolds, we need to define smooth maps between them. No
surprise: smoothness is a local question, so we may fetch the notion from Euclidean space
by means of charts.
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Definition 3.4.1 Let (M,U) and (N,V) be smooth manifolds and p ∈ M . A continuous
map f : M → N is smooth at p (or differentiable at p) if for any chart x : U → U ′ ∈ U with
p ∈ U and any chart y : V → V ′ ∈ V with f(p) ∈ V the map

y ◦ f ◦ x−1|x(U∩f−1(V )) : x(U ∩ f−1(V ))→ V ′

is differentiable at x(p).

We say that f is a smooth map if it is smooth at all points of M .

The picture above will often find a less typographically challenging expression: “go up,
over and down in the picture

W
f |W−−−→ V

x|W

y y

y
x(W ) V ′

where W = U ∩ f−1(V ), and see whether you have a smooth map of open subsets of
Euclidean spaces”. Note that x(U ∩ f−1(V )) = U ′ ∩ x(f−1(V )).

Exercise 3.4.2 The map R→ S1 sending p ∈ R to eip = (cos p, sin p) ∈ S1 is smooth.

Exercise 3.4.3 Show that the map g : S
2 → R

4 given by

g(p0, p1, p2) = (p1p2, p0p2, p0p1, p
2
0 + 2p2

1 + 3p2
2)

defines a smooth injective map
g̃ : RP2 → R

4
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via the formula g̃([p]) = g(p).

Exercise 3.4.4 Show that a map RPn →M is smooth iff the composite

Sn → RPn →M

is smooth.

Definition 3.4.5 A smooth map f : M → N is a diffeomorphism if it is a bijection,
and the inverse is smooth too. Two smooth manifolds are diffeomorphic if there exists a
diffeomorphism between them.

Note 3.4.6 Note that this use of the word diffeomorphism coincides with the one used
earlier in the flat (open subsets of R

n) case.

Example 3.4.7 The smooth map R → R sending p ∈ R to p3 is a smooth homeomor-
phism, but it is not a diffeomorphism: the inverse is not smooth at 0 ∈ R.

Example 3.4.8 Note that
tan: (−π/2, π/2)→ R

is a diffeomorphism (and hence all open intervals are diffeomorphic to the entire real line).

Note 3.4.9 To see whether f in the definition 3.4.1 above is smooth at p ∈M you do not
actually have to check all charts! We do not even need to know that it is continuous! We
formulate this as a lemma: its proof can be viewed as a worked exercise.

Lemma 3.4.10 Let (M,U) and (N,V) be smooth manifolds. A function f : M → N is
smooth at p ∈M if and only if there exist charts x : U → U ′ ∈ U and y : V → V ′ ∈ V with
p ∈ U and f(p) ∈ V such that the map

y ◦ f ◦ x−1|x(U∩f−1(V )) : x(U ∩ f−1(V ))→ V ′

is differentiable at x(p).

Proof: The function f is continuous since y ◦ f ◦ x−1|x(U∩f−1(V )) is smooth (and so contin-
uous), and x and y are homeomorphisms.

Given any other charts X and Y we get that

Y ◦ f ◦X−1(q) = (Y ◦ y−1) ◦ (y ◦ f ◦ x−1) ◦ (x ◦X−1)(q)

for all q close to p, and this composite is smooth since V and U are smooth. �

Exercise 3.4.11 Show that RP1 and S1 are diffeomorphic.
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Lemma 3.4.12 If f : (M,U) → (N,V) and g : (N,V) → (P,W) are smooth, then the
composite gf : (M,U)→ (P,W) is smooth too.

Proof: This is true for maps between Euclidean spaces, and we lift this fact to smooth
manifolds. Let p ∈M and choose appropriate charts

x : U → U ′ ∈ U , such that p ∈ U ,

y : V → V ′ ∈ V, such that f(p) ∈ V ,

z : W → W ′ ∈ W, such that gf(p) ∈ W .

Then T = U ∩ f−1(V ∩ g−1(W )) is an open set containing p, and we have that

zgfx−1|x(T ) = (zgy−1)(yfx−1)|x(T )

which is a composite of smooth maps of Euclidean spaces, and hence smooth. �

In a picture, if S = V ∩ g−1(W ) and T = U ∩ f−1(S):

T

x|T
��

f |T // S

y|S
��

g|S //W

z|W
��

x(T ) y(S) z(W )

Going up and down with y does not matter.

Exercise 3.4.13 Let f : M → N be a homeomorphism of topological spaces. If M is a
smooth manifold then there is a unique smooth structure on N that makes f a diffeomor-
phism.

Definition 3.4.14 Let (M,U) and (N,V) be smooth manifolds. Then we let

C∞(M,N) = {smooth maps M → N}

and

C∞(M) = C∞(M,R).

Note 3.4.15 A small digression, which may be disregarded by the categorically illiterate.
The outcome of the discussion above is that we have a category C∞ of smooth manifolds:
the objects are the smooth manifolds, and if M and N are smooth, then

C∞(M,N)
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is the set of morphisms. The statement that C∞ is a category uses that the identity map
is smooth (check), and that the composition of smooth functions is smooth, giving the
composition in C∞:

C∞(N,P )× C∞(M,N)→ C∞(M,P )

The diffeomorphisms are the isomorphisms in this category.

Definition 3.4.16 A smooth map f : M → N is a local diffeomorphism if for each p ∈M
there is an open set U ⊆M containing p such that f(U) is an open subset of N and

f |U : U → f(U)

is a diffeomorphism.

Example 3.4.17 The projection Sn → RPn

is a local diffeomorphism.
Here is a more general example: let M be a
smooth manifold, and

i : M →M

a diffeomorphism with the property that
i(p) 6= p, but i(i(p)) = p for all p ∈ M (such
an animal is called a fixed point free involu-
tion).
The quotient space M/i gotten by identify-
ing p and i(p) has a smooth structure, such
that the projection f : M → M/i is a local
diffeomorphism.
We leave the proof of this claim as an exercise:

Small open sets in RP2 correspond

to unions U ∪ (−U) where U ⊆ S2 is

an open set totally contained in one

hemisphere.

Exercise 3.4.18 Show that M/i has a smooth structure such that the projection f : M →
M/i is a local diffeomorphism.

Exercise 3.4.19 If (M,U) is a smooth n-dimensional manifold and p ∈ M , then there is
a chart x : U → R

n such that x(p) = 0.

Note 3.4.20 In differential topology we consider two smooth manifolds to be the same if
they are diffeomorphic, and all properties one studies are unaffected by diffeomorphisms.

The circle is the only compact connected smooth 1-manifold.

In dimension two it is only slightly more interesting. As we discussed in 2.2.3, you can
obtain any compact (smooth) connected 2-manifold by punching g holes in the sphere S2

and glue onto this either g handles or g Möbius bands.
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In dimension three and up total chaos reigns (and so it is here all the interesting stuff is).
Well, actually only the part within the parentheses is true in the last sentence: there is a
lot of structure, much of it well understood. However all of it is beyond the scope of these
notes. It involves quite a lot of manifold theory, but also algebraic topology and a subject
called surgery which in spirit is not so distant from the cutting and pasting techniques we
used on surfaces in 2.2.3.

3.5 Submanifolds

We give a slightly unorthodox definition of submanifolds. The “real” definition will appear
only very much later, and then in the form of a theorem! This approach makes it possible to
discuss this important concept before we have developed the proper machinery to express
the “real” definition. (This is really not all that unorthodox, since it is done in the same
way in for instance both [BJ] and [H]).

Definition 3.5.1 Let (M,U) be a smooth n+ k-dimensional smooth manifold.

An n-dimensional (smooth) submanifold inM
is a subset N ⊆ M such that for each p ∈ N
there is a chart x : U → U ′ in U with p ∈ U
such that

x(U ∩N) = U ′ ∩R
n × {0} ⊆ R

n ×R
k.

In this definition we identify R
n+k with R

n ×R
k. We often write R

n ⊆ R
n ×R

k instead
of R

n×{0} ⊆ R
n×R

k to signify the subset of all points with the k last coordinates equal
to zero.

Note 3.5.2 The language of the definition really makes some sense: if (M,U) is a smooth
manifold and N ⊆ M a submanifold, then we give N the smooth structure

U|N = {(x|U∩N , U ∩N)|(x, U) ∈ U}

Note that the inclusion N →M is smooth.

Example 3.5.3 Let n be a natural number. Then Kn = {(p, pn)} ⊆ R
2 is a differentiable

submanifold.
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We define a differentiable chart

x : R
2 → R

2, (p, q) 7→ (p, q − pn)

Note that as required, x is smooth with smooth inverse given by

(p, q) 7→ (p, q + pn)

and that x(Kn) = R
1 × {0}.

Exercise 3.5.4 Prove that S1 ⊂ R
2 is a submanifold. More generally: prove that Sn ⊂

R
n+1 is a submanifold.

Example 3.5.5 Consider the subset C ⊆ R
n+1 given by

C = {(a0, . . . , an−1, t) ∈ R
n+1 | tn + an−1t

n−1 + · · ·+ a1t+ a0 = 0}

a part of which is illustrated for n = 2 in the picture below.

–2

–1

0

1

2

a0

–2

–1

0

1

2

a1

–2

–1

0

1

2

We see that C is a submanifold as follows. Consider the chart x : R
n+1 → R

n+1 given by

x(a0, . . . , an−1, t) = (a0 − (tn + an−1t
n−1 + · · ·+ a1t), a1, . . . , an−1, t)

This is a smooth chart on R
n+1 since x is a diffeomorphism with inverse

x−1(b0, . . . , bn−1, t) = (tn + bn−1t
n−1 + · · ·+ b1t + b0, b1, . . . , bn−1, t)

and we see that C = x(0×R
n). Permuting the coordinates (which also is a smooth chart)

we have shown that C is an n-dimensional submanifold.

Exercise 3.5.6 The subset K = {(p, |p|) | p ∈ R} ⊆ R
2 is not a differentiable submani-

fold.
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Note 3.5.7 If dim(M) = dim(N) then N ⊂ M is an open subset (called an open sub-
manifold. Otherwise dim(M) > dim(N).

Example 3.5.8 Let MnR be the set of n × n matrices. This is a smooth manifold since
it is homeomorphic to R

n2
. The subset GLn(R) ⊆ MnR of invertible matrices is an open

submanifold. (since the determinant function is continuous, so the inverse image of the
open set R \ {0} is open)

Example 3.5.9 Let Mm×nR be the set of m × n matrices. This is a smooth manifold
since it is homeomorphic to R

mn. Then the subset M r
m×n(R) ⊆ MnR of rank r matrices

is a submanifold of codimension (n− r)(m− r).
That a matrix has rank r means that it has an r × r invertible submatrix, but no larger
invertible submatrices. For the sake of simplicity, we cover the case where our matrices
have an invertible r × r submatrices in the upper left-hand corner. The other cases are
covered in a similar manner, taking care of indices.

So, consider the open set U of matrices

X =

[
A B
C D

]

with A ∈ Mr(R), B ∈ Mr×(n−r)(R), C ∈ M(m−r)×r(R) and D ∈ M(m−r)×(n−r)(R) such
that det(A) 6= 0. The matrix X has rank exactly r if and only if the last n − r columns
are in the span of the first r. Writing this out, this means that X is of rank r if and only
if there is an r × (n− r)-matrix T such that

[
B
D

]
=

[
A
C

]
T

which is equivalent to T = A−1B and D = CA−1B. Hence

U ∩M r
m×n(R) =

{[
A B
C D

]
∈ U

∣∣∣∣D − CA−1B = 0

}
.

The map

U →R
mn ∼= R

rr ×R
r(n−r) ×R

(m−r)r ×R
(m−r)(n−r)

[
A B
C D

]
7→(A,B,C,D − CA−1B)

is a local diffeomorphism, and therefore a chart having the desired property that U ∩
M r

m×n(R) is the set of points such that the last (m− r)(n− r) coordinates vanish.
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Definition 3.5.10 A smooth map f : N →M is an imbedding if

the image f(N) ⊆M is a submanifold, and

the induced map
N → f(N)

is a diffeomorphism.

Exercise 3.5.11 The map

f : RPn →RPn+1

[p] = [p0, . . . , pn] 7→[p, 0] = [p0, . . . , pn, 0]

is an imbedding.

Note 3.5.12 Later we will give a very efficient way of creating smooth submanifolds,
getting rid of all the troubles of finding actual charts that make the subset look like R

n in
R
n+k. We shall see that if f : M → N is a smooth map and q ∈ N then more often than

not the inverse image

f−1(q) = {p ∈M | f(p) = q}
is a submanifold of M . Examples of such submanifolds are the sphere and the space of
orthogonal matrices (the inverse image of the identity matrix under the map sending a
matrix A to AtA).

Example 3.5.13 An example where we have the opportunity to use a bit of topology.
Let f : M → N be an imbedding, where M is a (non-empty) compact n-dimensional
smooth manifold and N is a connected n-dimensional smooth manifold. Then f is a
diffeomorphism. This is so because f(M) is compact, and hence closed, and open since it
is a codimension zero submanifold. Hence f(M) = N since N is connected. But since f is
an imbedding, the map M → f(M) = N is – by definition – a diffeomorphism.

Exercise 3.5.14 (important exercise. Do it: you will need the result several times).
Let i1 : N1 → M1 and i2 : N2 → M2 be smooth imbeddings and let f : N1 → N2 and
g : M1 →M2 be continuous maps such that i2f = gi1 (i.e., the diagram

N1
f−−−→ N2

i1

y i2

y
M1

g−−−→ M2

commutes). Show that if g is smooth, then f is smooth.
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3.6 Products and sums

Definition 3.6.1 Let (M,U) and (N,V) be smooth manifolds. The (smooth) product is
the smooth manifold you get by giving the product M ×N the smooth structure given by
the charts

x× y : U × V →U ′ × V ′

(p, q) 7→(x(p), y(q))

where (x, U) ∈ U and (y, V ) ∈ V.

Exercise 3.6.2 Check that this definition makes sense.

Note 3.6.3 The atlas we give the product is not maximal.

Example 3.6.4 We know a product manifold already: the torus S1 × S1.

The torus is a product. The bolder curves in the illustration try to indicate the

submanifolds {1} × S1 and S1 × {1}.

Exercise 3.6.5 Show that the projection

pr1 : M ×N →M
(p, q) 7→p

is a smooth map. Choose a point p ∈M . Show that the map

ip : N →M ×N
q 7→(p, q)

is an imbedding.

Exercise 3.6.6 Show that giving a smooth map Z →M ×N is the same as giving a pair
of smooth maps Z →M and Z → N . Hence we have a bijection

C∞(Z,M ×N) ∼= C∞(Z,M)× C∞(Z,N).
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Exercise 3.6.7 Show that the infinite cylinder R
1 × S1 is diffeomorphic to R

2 \ {0}.

Looking down into the infinite cylinder.

More generally: R
1 × Sn is diffeomorphic to R

n+1 \ {0}.

Exercise 3.6.8 Let f : M →M ′ and g : N → N ′ be imbeddings. Then

f × g : M ×N →M ′ ×N ′

is an imbedding.

Exercise 3.6.9 Let M = Sn1 × · · ·×Snk . Show that there exists an imbedding M → R
N

where N = 1 +
∑k

i=1 ni

Exercise 3.6.10 Why is the multiplication of matrices

GLn(R)×GLn(R)→ GLn(R), (A,B) 7→ A ·B
a smooth map? This, together with the existence of inverses, makes GLn(R) a “Lie group”.

Exercise 3.6.11 Why is the multiplication

S1 × S1 → S1, (eiθ, eiτ ) 7→ eiθ · eiτ = ei(θ+τ)

a smooth map? This is our second example of a Lie Group.

Definition 3.6.12 Let (M,U) and (N,V) be smooth manifolds. The (smooth) disjoint
union (or sum) is the smooth manifold you get by giving the disjoint union M

∐
N the

smooth structure given by U ∪ V.
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The disjoint union of two tori (imbedded in R
3).

Exercise 3.6.13 Check that this definition makes sense.

Note 3.6.14 The atlas we give the sum is not maximal.

Example 3.6.15 The Borromean rings
gives an interesting example showing that
the imbedding in Euclidean space is ir-
relevant to the manifold: the borromean
rings is the disjoint union of three circles
S1
∐
S1
∐
S1. Don’t get confused: it is the

imbedding in R
3 that makes your mind spin:

the manifold itself is just three copies of the
circle! Morale: an imbedded manifold is
something more than just a manifold that
can be imbedded.

Exercise 3.6.16 Prove that the inclusion

inc1 : M ⊂ M
∐

N

is an imbedding.

Exercise 3.6.17 Show that giving a smooth map M
∐
N → Z is the same as giving a

pair of smooth maps M → Z and N → Z. Hence we have a bijection

C∞(M
∐

N,Z) ∼= C∞(M,Z)× C∞(N,Z).
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Chapter 4

The tangent space

Given a submanifold M of R
n, it is fairly obvious what we should mean by the “tangent

space” of M at a point p ∈M .

In purely physical terms, the tangent space should be the following subspace of R
n: If a

particle moves on some curve in M and at p suddenly “looses the grip on M ” it will continue
out in the ambient space along a straight line (its “tangent”). Its path is determined by its
velocity vector at the point where it flies out into space. The tangent space should be the
linear subspace of R

n containing all these vectors.

A particle looses its grip on M
and flies out on a tangent A part of the space of all tangents

When talking about manifolds it is important to remember that there is no ambient space
to fly out into, but we still may talk about a tangent space.

4.0.1 Predefinition of the tangent space

Let M be a differentiable manifold, and let p ∈M . Consider the set of all curves

γ : (−ε, ε)→M

43
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with γ(0) = p. On this set we define the following equivalence relation: given two curves
γ : (−ε, ε) → M and γ1 : (−ε1, ε1) → M with γ(0) = γ1(0) = p we say that γ and γ1 are
equivalent if for all charts x : U → U ′ with p ∈ U

(xγ)′(0) = (xγ1)
′(0)

Then the tangent space of M at p is the set of all equivalence classes.

There is nothing wrong with this definition, in the sense that it is naturally isomorphic to
the one we are going to give in a short while. But in order to work efficiently with our
tangent space, it is fruitful to introduce some language.

4.1 Germs

Whatever one’s point of
view on tangent vectors
are, it is a local concept.
The tangent of a curve
passing through a given
point p is only dependent
upon the behavior of the
curve close to the point.
Hence it makes sense to di-
vide out by the equivalence
relation which says that all
curves that are equal on
some neighborhood of the
point are equivalent. This
is the concept of germs.
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If two curves are equal in a neighborhood of a point,
then their tangents are equal.

Definition 4.1.1 Let M and N be differentiable manifolds, and let p ∈M . On the set

X = {f |f : Uf → N is smooth, and Uf an open neighborhood of p}

we define an equivalence relation where f is equivalent to g, written f ∼ g, if there is a an
open neighborhood Vfg ⊆ Uf ∩ Ug of p such that

f(q) = g(q), for all q ∈ Vfg

Such an equivalence class is called a germ, and we write

f̄ : (M, p)→ (N, f(p))

for the germ associated to f : Uf → N . We also say that f represents f̄ .
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Note 4.1.2 Germs are quite natural things. Most of the properties we need about germs
are obvious if you do not think too hard about it, so it is a good idea to skip the rest of
the section which spell out these details before you know what they are good for. Come
back later if you need anything precise.

Note 4.1.3 The only thing that is slightly ticklish with the definition of germs is the
transitivity of the equivalence relation: assume

f : Uf → N, g : Ug → N, and h : Uh → N

and f ∼ g and g ∼ h. Writing out the definitions, we see that f = g = h on the open set
Vfg ∩ Vgh, which contains p.

Lemma 4.1.4 There is a well defined composition of germs which has all the properties
you might expect.

Proof: Let

f̄ : (M, p)→ (N, f(p)), and ḡ : (N, f(p))→ (L, g(f(p)))

be two germs.

Let them be represented by

f : Uf → N , and g : Ug → L

Then we define the com-
posite

ḡ f̄

as the germ associated to
the composite

f−1(Ug)
f |

f−1(Ug)−−−−−→ Ug
g−−−→ L

(which is well defined since
f−1(Ug) is an open set con-
taining p).
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f  (U )
-1

g

L
g

f

The composite of two germs: just remember to re-
strict the domain of the representatives.

The “properties you might expect” are associativity and the fact that the germ associated
to the identity map acts as an identity. This follows as before by restricting to sufficiently
small open sets.

We occasionally write gf instead of ḡf̄ for the composite, even thought the pedants will
point out that we have to adjust the domains before composing.
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Definition 4.1.5 Let M be a smooth manifold and p a point in M . A function germ at
p is a germ

φ̄ : (M, p)→ (R, φ(p))

Let
ξ(M, p) = ξ(p)

be the set of function germs at p.

Example 4.1.6 In ξ(Rn, 0) there are some very special function germs, namely those
associated to the standard coordinate functions pri sending p = (p1, . . . , pn) to pri(p) = pi
for i = 1, . . . , n.

Note 4.1.7 The set ξ(M, p) = ξ(p) of function germs forms a vector space by pointwise
addition and multiplication by real numbers:

φ̄+ ψ̄ = φ+ ψ where (φ+ ψ)(q) = φ(q) + ψ(q) for q ∈ Uφ ∩ Uψ
k · φ̄ = k · φ where (k · φ)(q) = k · φ(q) for q ∈ Uφ

0̄ where 0(q) = 0 for q ∈M

It furthermore has the pointwise multiplication, making it what is called a “commutative
R-algebra”:

φ̄ · ψ̄ = φ · ψ where (φ · ψ)(q) = φ(q) · ψ(q) for q ∈ Uφ ∩ Uψ
1̄ where 1(q) = 1 for q ∈ M

That these structures obey the usual rules follows by the same rules on R.

Definition 4.1.8 A germ f̄ : (M, p)→ (N, f(p)) defines a function

f ∗ : ξ(f(p))→ ξ(p)

by sending a function germ φ̄ : (N, f(p))→ (R, φf(p)) to

φf : (M, p)→ (R, φf(p))

(“precomposition”).

Lemma 4.1.9 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) then

f ∗g∗ = (gf)∗ : ξ(L, g(f(p)))→ ξ(M, p)

Proof: Both sides send ψ̄ : (L, g(f(p)))→ (R, ψ(g(f(p)))) to the composite

(M, p)
f̄−−−→ (N, f(p))

ḡ−−−→ (L, g(f(p)))

ψ̄

y
(R, ψ(g(f(p))))
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i.e. f ∗g∗(ψ̄) = f ∗(ψg) = ψgf = (gf)∗(ψ̄).

The superscript ∗ may help you remember that it is like this, since it may remind you of
transposition in matrices.

Since manifolds are locally Euclidean spaces, it is hardly surprising that on the level of
function germs, there is no difference between (Rn, 0) and (M, p).

Lemma 4.1.10 There are isomorphisms ξ(M, p) ∼= ξ(Rn, 0) preserving all algebraic struc-
ture.

Proof: Pick a chart x : U → U ′ with p ∈ U and x(p) = 0 (if x(p) 6= 0, just translate the
chart). Then

x∗ : ξ(Rn, 0)→ ξ(M, p)

is invertible with inverse (x−1)∗ (note that idU = idM since they agree on an open subset
(namely U) containing p).

Note 4.1.11 So is this the end of the subject? Could we just as well study R
n? No!

these isomorphisms depend on a choice of charts. This is OK if you just look at one
point at a time, but as soon as things get a bit messier, this is every bit as bad as choosing
particular coordinates in vector spaces.

4.2 The tangent space

Definition 4.2.1 Let M be a differentiable n-dimensional manifold. Let p ∈M and let

Wp = {germs γ̄ : (R, 0)→ (M, p)}

Two germs γ̄, ν̄ ∈ Wp are said to be equivalent, written γ̄ ≈ ν̄, if for all function germs
φ̄ : (M, p)→ (R, φ(p))

(φ ◦ γ)′(0) = (φ ◦ ν)′(0)

We define the (geometric) tangent space of M at p to be

TpM = Wp/ ≈

We write [γ̄] (or simply [γ]) for the ≈-equivalence class of γ̄.

We see that for the definition of the tangent space, it was not necessary to involve the
definition of germs, but it is convenient since we are freed from specifying domains of
definition all the time.
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Note 4.2.2 This definition needs some
spelling out. In physical language it says
that the tangent space at p is the set of
all curves through p with equal derivatives.
In particular if M = R

n, then two curves
γ1, γ2 : (R, 0)→ (Rn, p) define the same tan-
gent vector if and only if all the derivatives
are equal:

γ′1(0) = γ′2(0)

(to say this I really have used the chain rule:

(φγ1)
′(0) = Dφ(p) · γ′1(0),

so if (φγ1)
′(0) = (φγ2)

′(0) for all function
germs φ̄, then we must have γ′1(0) = γ′2(0),
and conversely).

-1

0

1

2

3

-1 0 1 2 3 4
x

Many curves give rise to the same
tangent.

In conclusion we have:

Lemma 4.2.3 Let M = R
n. Then a germ γ̄ : (R, 0)→ (M, p) is ≈-equivalent to the germ

represented by

t 7→ p + γ′(0)t

That is, all elements in TpR
n are represented by linear curves, giving an isomorphism

TpR
n ∼=R

n

[γ] 7→γ′(0)

Note 4.2.4 The tangent space is a vector space, and like always we fetch the structure
locally by means of charts.

Visually it goes like this:
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Two curves on
M is sent by a
chart x to

R
n, where they

are added, and
the sum

is sent back to
M with x−1.

This is all well and fine, but would have been quite worthless if the vector space structure
depended on a choice of chart. Of course, it does not. But before we prove that, it is
handy to have some more machinery in place to compare the different tangent spaces.

Definition 4.2.5 Let f̄ : (M, p)→ (N, f(p)) be a germ. Then we define

Tpf : TpM → Tf(p)N

by
Tpf([γ]) = [fγ]

Exercise 4.2.6 This is well defined.

Anybody recognize the next lemma? It is the chain rule!

Lemma 4.2.7 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) are germs, then

Tf(p)g Tpf = Tp(gf)

Proof: Let γ̄ : (R, 0)→ (M, p), then

Tf(p)g(Tpf([γ])) = Tf(p)g([fγ]) = [gfγ] = Tpgf([γ])

That’s the ultimate proof of the chain rule! The ultimate way to remember it is: the two
ways around the triangle

TpM
Tpf //

Tp(gf) $$I
II

III
II

I
Tf(p)N

Tf(p)g

��
Tgf(p)L
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are the same (“the diagram commutes”).

The “flat chain rule” will be used to show that the tangent spaces are vector spaces and
that Tpf is a linear map, but if we were content with working with sets only, this proof of
the chain rule would be all we’d ever need.

Note 4.2.8 For the categorists: the tangent space is an assignment from pointed manifolds
to vector spaces, and the chain rule states that it is a “functor”.

Lemma 4.2.9 If f̄ : (Rm, p)→ (Rn, f(p)), then

Tpf : TpR
m → Tf(p)R

n

is a linear transformation, and

TpR
m Tpf−−−→ Tf(p)R

n

∼=

y ∼=

y

R
m D(f)(p)−−−−→ R

n

commutes, where the vertical isomorphisms are given by [γ] 7→ γ ′(0) and D(f)(p) is the
Jacobian of f at p (cf. analysis appendix).

Proof: The claim that Tpf is linear follows if we show that the diagram commutes (since
the bottom arrow is clearly linear, and the vertical maps are isomorphisms). Starting with
a tangent vector [γ] ∈ TpR

m, we trace it around both ways to R
n. Going down we get

γ′(0), and going across the bottom horizontal map we end up with D(f)(p) · γ ′(0). Going
the other way we first send [γ] to Tpf [γ] = [fγ], and then down to (fγ)′(0). But the chain
rule in the flat case says that these two results are equal:

(fγ)′(0) = D(f)(γ(0)) · γ ′(0) = D(f)(p) · (γ)′(0).

Lemma 4.2.10 Let M be a differentiable n-dimensional manifold and let p ∈ M . Let
x̄ : (M, p)→ (Rn, x(p)) be a germ associated to a chart around p. Then

Tpx : TpM → Tx(p)R
n

is an isomorphism of sets and hence defines a vector space structure on TpM . This structure
is independent of x̄, and if

f̄ : (M, p)→ (N, f(p))

is a germ, then
Tpf : TpM → Tf(p)N

is a linear transformation.
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Proof: To be explicit, let γ̄, ν̄ : (R, 0) → (M, p), be germs and a, b ∈ R. The vector space
structure given says that

a · [γ] + b · [ν] = (Tpx)
−1(a · Tpx[γ] + b · Tpx[ν]) = [x̄−1(a · x̄γ + b · x̄ν̄)]

If ȳ : (M, p)→ (Rn, y(p)) is any other chart, then the diagram

TpM
Tpx

zzuuuuuuuuu
Tpy

$$I
IIIIIIII

Tx(p)R
n

Tx(p)(yx
−1)

// Ty(p)R
n

commutes by the chain rule, and T0(yx
−1) is a linear isomorphism, giving that

(Tpy)
−1(a · Tpy[γ] + b · Tpy[ν]) =(Tpy)

−1(a · Tx(p)(yx−1)Tpx[γ] + b · Tx(p)(yx−1)Tpx[ν])

=(Tpy)
−1Tx(p)(yx

−1)(a · Tpx[γ] + b · Tpx[ν])
=(Tpx)

−1(a · Tpx[γ] + b · Tpx[ν])

and so the vector space structure does not depend on the choice of charts.

To see that Tpf is linear, choose a chart germ z̄ : (N, f(p)) → (Rn, zf(p)). Then the
diagram diagram below commutes

TpM
Tpf−−−→ Tf(p)N

∼=

yTpx ∼=

yTf(p)z

T0R
m

Tx(p)(zfx
−1)−−−−−−−→ Tzf(p)R

n

and we get that Tpf is linear since Tx(p)(zfx
−1) is.

“so I repeat myself, at the risk of being crude”:

Corollary 4.2.11 Let M be a smooth manifold and p ∈ M . Then TpM is isomorphic
as a vector space to R

n. Given a chart germ x̄ : (M, p) → (Rm, x(p)) an isomorphism
TpM ∼= R

n is given by [γ] 7→ (xγ)′(0).

If f̄ : (M, p) → (N, f(p)) is a smooth germ, and ȳ : (N, f(p)) → (Rn, yf(p)) is another
chart germ the diagram below commutes

TpM
Tpf−−−→ Tf(p)N

∼=

y ∼=

y

R
m D(yfx−1)(x(p))−−−−−−−−−→ R

n

where the vertical isomorphisms are the ones given by x and y, and D(yfx−1) is the Jaco-
bian matrix.
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4.3 Derivations 1

Although the definition of the tangent space by means of curves is very intuitive and
geometric, the alternative point of view of the tangent space as the space of “derivations”
can be very convenient. A derivation is a linear transformation satisfying the Leibnitz rule:

Definition 4.3.1 Let M be a smooth manifold and p ∈ M . A derivation (on M at p) is
a linear transformation

X : ξ(M, p)→ R

satisfying the Leibnitz rule

X(φ̄ · ψ̄) = X(φ̄) · ψ(p) + φ(p) ·X(ψ̄)

for all function germs φ̄, ψ̄ ∈ ξ(M, p).

We let D|pM be the set of all derivations.

Example 4.3.2 Let M = R. Then φ 7→ φ′(p) is a derivation. More generally, if M = R
n

then all the partial derivatives φ 7→ Dj(φ)(p) are derivations.

Note 4.3.3 Note that the setD|pM of derivations is a vector space: adding two derivations
or multiplying one by a real number gives a new derivation. We shall later see that the
partial derivatives form a basis for the vector space D|pRn.

Definition 4.3.4 Let f̄ : (M, p) → (N, f(p)) be a germ. Then we have a linear transfor-
mation

D|pf : D|pM → D|f(p)N

given by

D|pf(X) = Xf ∗

(i.e. D|pf(X)(φ̄) = X(φf).).

Lemma 4.3.5 If f̄ : (M, p)→ (N, f(p)) and ḡ : (N, f(p))→ (L, g(f(p))) are germs, then

D|pM
D|pf //

D|p(gf) %%J
JJJJJJJJ
D|f(p)N

D|f(p)g

��
D|gf(p)L

commutes.

1This material is not used in an essential way in the rest of the book. It is included for completeness,

and for comparison with other sources.
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Proof: Let X : ξ(M, p)→ R be a derivation, then

D|f(p)g(D|pf(X)) = D|f(p)g(Xf
∗) = (Xf ∗)g∗ = X(gf)∗ = D|pgf(X).

Hence as before, everything may be calculated in R
n instead by means of charts.

Proposition 4.3.6 The partial derivatives {Di|0}i = 1, . . . , n form a basis for D|0Rn.

Proof: Assume

X =

n∑

j=1

vj Dj|0 = 0

Then

0 = X(pri) =

n∑

j=1

vjDj(pri)(0) =

{
0 if i 6= j

vi if i = j

Hence vi = 0 for all i and we have linear independence.

The proof that the partial derivations span all derivations relies on a lemma from real
analysis: Let φ : U → R be a smooth map where U is an open subset of R

n containing the
origin. Then

φ(p) = φ(0) +
n∑

i=1

pi · φi(p)

(or in function notation: φ = φ(0) +
∑n

i=1 pri · φi) where

φi(p) =

∫ 1

0

Diφ(t · p) dt

which is a combination of the fundamental theorem and the chain rule. Note that φi(0) =
Diφ(0).

If X ∈ D|0Rn is any derivation, let vi = X(pri). If φ̄ is any function germ, we have that

φ̄ = φ(0) +

n∑

i=1

pri · φi
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and so

X(φ̄) =X(φ(0)) +

n∑

i=1

X(pri · φi)

=0 +
n∑

i=1

(
X(pri) · φi(0) + pri(0) ·X(φi)

)

=

n∑

i=1

(
vi · φi(0) + 0 ·X(φi))

)

=
n∑

i=1

viDiφ(0)

Thus, given a chart x̄ : (M, p)→ (Rn, 0) we have a basis for D|pM , and we give this basis
the old-fashioned notation to please everybody:

Definition 4.3.7 Consider a chart x̄ : (M, p)→ (Rn, x(p)). Define the derivation in TpM

∂

∂xi

∣∣∣∣
p

= (D|px)−1
(
Di|x(p)

)

or in more concrete language: if φ̄ : (M, p)→ (R, φ(p)) is a function germ, then

∂

∂xi

∣∣∣∣
p

(φ̄) = Di(φx
−1)(x(p))

Definition 4.3.8 Let f̄ : (M, p) → (N, f(p)) be a germ, and let x̄ : (M, p) → (Rm, x(p))
and ȳ : (N, f(p)) → (Rn, yf(p)) be germs associated to charts. The matrix associated
to the linear transformation D|pf : D|pM → D|f(p)N in the basis given by the partial
derivatives of x and y is called the Jacobi matrix, and is written [D|pf ]. Its ij-entry is

[D|pf ]ij =
∂(yif)

∂xj

∣∣∣∣
p

= Dj(yifx
−1)(x(p))

(where yi = priy as usual). This generalizes the notation in the flat case with the identity
charts.

Definition 4.3.9 Let M be a smooth manifold and p ∈ M . To every germ γ̄ : (R, 0) →
(M, p) we may associate a derivation Xγ : ξ(M, p)→ R by setting

Xγ(φ̄) = (φγ)′(0)

for every function germ φ̄ : (M, p)→ (R, φ(p)).



4.3. DERIVATIONS 55

Note that Xγ(φ̄) is the derivative at zero of the composite

(R, 0)
γ̄−−−→ (M, p)

φ̄−−−→ (R, φ(p))

Exercise 4.3.10 Check that the map TpM → D|pM sending [γ] to Xγ is well defined.

Using the definitions we get the following lemma, which says that the map T0R
n → D|0Rn

is surjective.

Lemma 4.3.11 If v ∈ R
n and γ̄ the germ associated to the curve γ(t) = v · t, then [γ]

sent to

Xγ(φ̄) = D(φ)(0) · v =

n∑

i=0

viDi(φ)(0)

and so if v = ej is the jth unit vector, then Xγ is the jth partial derivative at zero.

Lemma 4.3.12 Let f̄ : (M, p)→ (N, f(p)) be a germ. Then

TpM
Tpf−−−→ Tf(p)Ny

y

D|pM
D|pf−−−→ D|f(p)N

commutes.

Proof: This is clear since [γ] is sent to Xγf
∗ one way, and Xfγ the other, and if we apply

this to a function germ φ̄ we get

Xγf
∗(φ̄) = Xγ(φ̄f̄) = (φfγ)′(0) = Xfγ(φ̄)

If you find such arguments hard: remember φfγ is the only possible composition of

these functions, and so either side better relate to this!

Proposition 4.3.13 The assignment [γ] 7→ Xγ defines a canonical isomorphism

TpM ∼= D|pM

between the tangent space TpM and the vector space of derivations ξ(M, p)→ R.

Proof: The term “canonical” in the proposition refers to the statement in lemma 4.3.12. In
fact, we can use this to prove the rest of the proposition.
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Choose a germ chart x̄ : (M, p)→ (Rn, 0). Then lemma 4.3.12 proves that

TpM
Tpx−−−→
∼=

T0R
n

y
y

D|pM
D|px−−−→
∼=

D|0Rn

commutes, and the proposition follows if we know that the right hand map is a linear
isomorphism.

But we have seen in 4.3.6 that D|0Rn has a basis consisting of partial derivatives, and
we noted in 4.3.11 that the map T0R

n → D|0Rn hits all the basis elements, and now
the proposition follows since the dimension of T0R

n is n (a surjective linear map between
vector spaces of the same (finite) dimension is an isomorphism).

Note 4.3.14 In the end, this all sums up to say that TpM and D|pM are one and the
same thing (the categorists would say that “the functors are naturally isomorphic”), and so
we will let the notation D slip quietly into oblivion, except if we need to emphasize that
we think of the tangent space as a collection of derivations.



Chapter 5

Vector bundles

In this chapter we are going to collect all the tangent spaces of a manifold into one single
object, the so-called tangent bundle. We defined the tangent space at a point by considering
curves passing through the point. In physical terms, the tangent vectors are the velocity
vectors of particles passing through our given point. But the particle will have velocities
and positions at other times than the one in which it passes through our given point, and
the position and velocity may depend continuously upon the time. Such a broader view
demands that we are able to keep track of the points on the manifold and their tangent
space, and understand how they change from point to point.

A particle moving on S1: some of the velocity vectors are drawn. The collection
of all possible combinations of position and velocity ought to assemble into a
“tangent bundle”. In this case we see that S1 × R

1 would do, but in most
instances it won’t be as easy as this.

The tangent bundle is an example of an important class of objects called vector bundles.

57
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5.1 Topological vector bundles

Loosely speaking, a vector bundle is a collection of vector spaces parameterized in a locally
controllable fashion by some space.

vector spaces

topological
space

A vector bundle is a topological space to which a vector space is stuck at each point,

and everything fitted continuously together.

The easiest example is simply the product X × Rn, and we will have this as our local
model.

The product of a space and an euclidean space is the local model for vector bundles.

The cylinder S1 ×R is an example.
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Definition 5.1.1 An n-dimensional (real topological) vector bundle is a surjective contin-
uous map

E

π

y
X

such that for every p ∈ X

— the fiber
π−1(p)

has the structure of a real n-dimensional vector space

— there is an open set U ⊆ X containing p

— a homeomorphism
h : π−1(U)→ U ×R

n

such that

π−1(U)
h //

π|
π−1(U) ##G

GG
GG

GG
GG

U ×R
n

prU
{{ww

ww
ww

ww
ww

U

commutes, and such that for every q ∈ U the composite

hq : π
−1(q)

h|
π−1(q)−−−−−→ {q} ×R

n (q,t)7→t−−−−→ R
n

is a vector space isomorphism.

Example 5.1.2 The “unbounded Möbius band” given by

E = (R× [0, 1])/((p, 0) ∼ (−p, 1))

defines a 1-dimensional vector bundle by projecting onto the central circle E → [0, 1]/(0 ∼
1) ∼= S1.
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Restricting to an interval on the circle, we clearly see that it is homeomorphic to the
product:

This bundle is often referred to as the canonical line bundle over S1, and is written η1 → S1.

Definition 5.1.3 Given an n-dimensional topological vector bundle π : E → X, we call

Eq = π−1(q) the fiber over q ∈ X,

E the total space and

X the base space of the vector bundle.

The existence of the (h, U)s is referred to as the local trivialization of the bundle (“the
bundle is locally trivial ”), and the (h, U)s are called bundle charts. A bundle atlas is a
collection B of bundle charts such that

X =
⋃

(h,U)∈B

U

(B “covers” X).

Note 5.1.4 Note the correspondence the definition spells out between h and hq: for r ∈
π−1(U) we have

h(r) = (π(r), hπ(r)(r))

It is (bad taste, but) not uncommon to write just E when referring to the vector bundle
E → X.

Example 5.1.5 Given a topological space X, the projection onto the first factor

X ×R
n

prX

y
X

is an n-dimensional topological vector bundle.
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This example is so totally uninteresting that we call it the trivial bundle over X (or more
descriptively, the product bundle). More generally, any vector bundle π : E → X with a
bundle chart (h,X) is called trivial.

We have to specify the maps connecting the vector bundles. They come in two types,
according to whether we allow the base space to change. The more general is:

Definition 5.1.6 A bundle morphism from one bundle π : E → X to another π ′ : E ′ → X ′

is a pair of maps

f : X → X ′ and f̃ : E → E ′

such that

E
f̃−−−→ E ′

π

y π′

y

X
f−−−→ X ′

commutes, and such that

f̃ |π−1(p) : π
−1(p)→ (π′)−1(f(p))

is a linear map.

Definition 5.1.7 Let π : E → X be a vector bundle. A section to π is a continuous map
σ : X → E such that πσ(p) = p for all p ∈ X.

zero section

X

E

image of a section

image of the

Example 5.1.8 Every vector bundle π : E → X has a section, namely the zero section,
which is the map σ0 : X → E that sends p ∈ X to zero in the vector space π−1(p). As
for any section, the map onto its image X → σ0(X) is a homeomorphism, and we will
occasionally not distinguish between X and σ0(X) (we already did this when we talked
informally about the unbounded Möbius band).
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Example 5.1.9 The trivial bundle X ×R
n → X has

nonvanishing sections (i.e. a section whose image does
not intersect the zero section), for instance p 7→ (p, 1)
will do. The canonical line bundle η1 → S1 (the un-
bounded Möbius band of example 5.1.2), however, does
not. This follows by the intermediate value theorem:
a function f : [0, 1]→ R with f(0) = −f(1) must have
a zero.

1

0

The trivial bundle has
nonvanishing sections.

5.2 Transition functions

We will need to endow our bundles with
smooth structures, and in order to do this
we will use the same trick as we used to de-
fine manifolds: transport it down to an issue
in Euclidean space. Given two overlapping
bundle charts (h, U) and (g, V ), restricting to
π−1(U ∩ V ) both define homeomorphisms

π−1(U ∩ V )→ (U ∩ V )×R
n

which we may compose to give homeomor-
phisms of (U ∩ V ) × R

n with itself. If the
base space is a smooth manifold, we may ask
whether this map is smooth.

Two bundle charts. Restricting to
their intersection, how do the two
homeomorphisms to (U ∩V )×R

n

compare?

We need some names to talk about this construction.

Definition 5.2.1 Let π : E → X be an n-dimensional topological vector bundle, and let
B be a bundle atlas. If (h, U), (g, V ) ∈ B then

gh−1|(U∩V )×Rn : (U ∩ V )×R
n → (U ∩ V )×R

n

are called the bundle chart transformations. The restrictions to each fiber

gqh
−1
q : R

n → R
n

are are linear isomorphisms (i.e. elements in GLn(R)) and the associated function

U ∩ V →GLn(R)

q 7→gqh−1
q

are called transition functions.
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Again, visually bundle chart transformations are given by going up and down in

π−1(U ∩ V )
h|

π−1(U∩V )

vvmmmmmmmmmmmm g|
π−1(U∩V )

((QQQQQQQQQQQQ

(U ∩ V )×R
n (U ∩ V )×R

n

Lemma 5.2.2 Let W be a topological space, and f : W → Mm×n(R) a continuous func-
tion. Then the associated function

f∗ : W ×R
n →R

m

(w, v) 7→f(w) · v

is continuous iff f is. If W is a smooth manifold, then f∗ is smooth iff f is.

Proof: Note that f∗ is the composite

W ×R
n f×id−−−→ Mm×n(R)×R

n e−−−→ R
m

where e(A, v) = A · v. Since e is smooth, it follows that if f is continuous or smooth, then
so is f∗.

Conversely, considered as a matrix, we have that

[f(w)] = [f∗(w, e1), . . . , f∗(w, en)]

If f∗ is continuous (or smooth), then we see that each column of [f(w)] depends continuously
(or smoothly) on w, and so f is continuous (or smooth).

So, requiring the bundle chart transformations to be smooth is the same as to require the
transition functions to be smooth, and we will often take the opportunity to confuse this.

Exercise 5.2.3 Show that any vector bundle E → [0, 1] is trivial.

Exercise 5.2.4 Show that any 1-dimensional vector bundle (also called line bundle) E →
S1 is either trivial, or E ∼= η1. Show the analogous statement for n-dimensional vector
bundles.

5.3 Smooth vector bundles

Definition 5.3.1 Let M be a smooth manifold, and let π : E → M be a vector bundle.
A bundle atlas is said to be smooth if all the transition functions are smooth.
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Note 5.3.2 Spelling the differentiability out in full detail we get the following: Let (M,A)
be a smooth n-dimensional manifold, π : E → M a k-dimensional vector bundle, and B a
bundle atlas. Then B is smooth if for all bundle charts (h1, U1), (h2, U2) ∈ B and all charts
(x1, V1), (x2, V2) ∈ A, the composites going up over and across

π−1(U)
h1|π−1(U)

xxppppppppppp h2|π−1(U)

&&NNNNNNNNNNN

U ×R
k

x1|U×id
��

U ×R
k

x2|U×id
��

x1(U)×R
k x2(U)×R

k

is a smooth function in R
n+k, where U = U1 ∩ U2 ∩ V1 ∩ V2.

Example 5.3.3 If M is a smooth manifold, then the trivial bundle is a smooth vector
bundle in an obvious manner.

Example 5.3.4 The canonical line bundle (unbounded Möbius strip) η1 → S1 is a smooth
vector bundle. As a matter of fact, the trivial bundle and the canonical line bundle are
the only one-dimensional smooth vector bundles over the circle (see example 5.2.4 for the
topological case. The smooth case needs partitions of unity, which we will cover at a later
stage, see exercise 7.2.6).

Note 5.3.5 Just as for atlases of manifolds, we have a notion of a maximal (smooth)
bundle atlas, and to each smooth atlas we may associate a unique maximal one in exactly
the same way as before.

Definition 5.3.6 A smooth vector bundle is a vector bundle equipped with a maximal
smooth bundle atlas.

We will often suppress the bundle atlas from the notation, so a smooth vector bundle
(π : E → M,B) will occasionally be written simply π : E → M (or even worse E), if the
maximal atlas B is clear from the context.

Definition 5.3.7 A smooth vector bundle (π : E →M,B) is trivial if its (maximal smooth)
atlas B contains a chart (h,M) with domain all of M .

Lemma 5.3.8 The total space E of a smooth vector bundle (π : E →M,B) has a natural
smooth structure, and π is a smooth map.

Proof: LetM be n-dimensional with atlasA, and let π be k-dimensional. Then the diagram
in 5.3.2 shows that E is a smooth (n + k)-dimensional manifold. That π is smooth is the
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same as claiming that all the up over and across composites

π−1(U)
h|

π−1(U)

xxppppppppppp π|
π−1(U)

$$J
JJJJJJJJJ

U ×R
k

x1|U×id
��

U

x2|U
��

x1(U)×R
k x2(U)

are smooth where (x1, V1), (x2, V2) ∈ A, (h,W ) ∈ B and U = V1 ∩ V2 ∩W . But

π−1(U)
h|

π−1(U)

yyssssssssss π|
π−1(U)

""F
FF

FF
FF

FF

U ×R
k

prU
// U

commutes, so the composite is simply

x1(U)×R
k

prx1(U)−−−−→ x1(U)
x1|U←−−− U

x2|U−−−→ x2(U)

which is smooth since A is smooth.

Note 5.3.9 As expected, the proof shows that π : E →M locally looks like the projection

R
n ×R

k → R
n

(followed by a diffeomorphism).

Definition 5.3.10 A smooth bundle morphism is a bundle morphism

E
f̃−−−→ E ′

π

y π′

y

M
f−−−→ M ′

from a smooth vector bundle to another such that f̃ and f are smooth.

Definition 5.3.11 An isomorphism of two smooth vector bundles

π : E →M and π′ : E ′ →M

over the same base space M is an invertible smooth bundle morphism over the identity
on M :

E
f̃−−−→ E ′

π

y π′

y
M M



66 CHAPTER 5. VECTOR BUNDLES

Checking whether a bundle morphism is an isomorphism reduces to checking that it is a
bijection:

Lemma 5.3.12 Let

E
f̃−−−→ E ′

π

y π′

y
M M

be a smooth (or continuous) bundle morphism. If f̃ is bijective, then it is a smooth (or
continuous) isomorphism.

Proof: That f̃ is bijective means that it is a bijective linear map on every fiber, or in
other words: a vector space isomorphism on every fiber. Choose charts (h, U) in E and
(h′, U) in E ′ around p ∈ U ⊆ M (may choose the U ’s to be the same). Then

h′f̃h−1 : U ×R
n → U ×R

n

is of the form (u, v) 7→ (u, αuv) where αu ∈ GLn(R) depends smoothly (or continuously)
on u ∈ U . But by Cramer’s rule (αu)

−1 depends smoothly on αu, and so the inverse

(
h′f̃h−1

)−1

: U ×R
n → U ×R

n, (u, v) 7→ (u, (αu)
−1v)

is smooth (or continuous) proving that the inverse of f̃ is smooth (or continuous).

5.4 Pre-vector bundles

A smooth or topological vector bundle is a very structured object, and much of its structure
is intertwined very closely. There is a sneaky way out of having to check topological
properties all the time. As a matter of fact, the topology is determined by some of the
other structure as soon as the claim that it is a vector bundle is made: specifying the
topology on the total space is redundant!.
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Definition 5.4.1 A pre-vector bundle is

a set E (total space)

a topological space X (base space)

a surjective function π : E → X

a vector space structure on the fiber π−1(q) for each q ∈ X

a pre-bundle atlas B, i.e. a set of bijective functions

h : π−1(U)→ U ×R
n

with U ⊆ X open, such that

B covers X (i.e. X =
⋃

(h,U)∈B U)

for every q ∈ X
hq : π

−1(q)→ R
n

is a linear isomorphism, and

the transition functions are continuous.

Definition 5.4.2 A smooth pre-vector bundle is a pre-vector bundle where the base space
is a smooth manifold and the transition functions are smooth.

Lemma 5.4.3 Given a pre-vector bundle, there is a unique vector bundle with underlying
pre-vector bundle the given one. The same statement holds for the smooth case.
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Proof: Let (π : E → X,B) be a pre-vector
bundle. We must equip E with a topology
such that π is continuous and the bijections in
the bundle atlas are homeomorphisms. The
smooth case follows then immediately from
the continuous case.
We must have that if (h, U) ∈ B, then π−1(U)
is an open set in E (for π to be continuous).
The family of open sets {π−1(U)}U⊆X open

covers E, so we only need to know what the
open subsets of π−1(U) are, but this follows
by the requirement that the bijection h should
be a homeomorphism, That is V ⊆ π−1(U)
is open if V = h−1(V ′) for some open V ′ ⊆
U ×R

k. Ultimately, we get that

{
h−1(V1 × V2)

∣∣∣∣ (h, U) ∈ B, V1 open in U,
V2 open in R

k

}

is a basis for the topology on E.

A typical open set in π−1(U) got-
ten as h−1 of the product of an
open set in U and an open set in
R
k

Exercise 5.4.4 Let

ηn =
{
([p], λp) ∈ RPn ×R

n+1 |p ∈ Sn, λ ∈ R
}

Show that the projection

ηn → RPn

([p], λp) 7→ [p]

defines a non-trivial smooth vector bundle.

Exercise 5.4.5 Let p ∈ RPn and X = RPn \ {p}. Show that X is diffeomorphic to the
total space ηn−1 of exercise 5.4.4.

5.5 The tangent bundle

We define the tangent bundle as follows:
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Definition 5.5.1 Let (M,A) be a smooth n-dimensional manifold. The tangent bundle
of M is defined by the following smooth pre-vector bundle

TM =
∐

p∈M TpM (total space)

M (base space)

π : TM →M sends TpM to p

the pre-vector bundle atlas

BA = {(hx, U)|(x, U) ∈ A}

where hx is given by

hx : π−1(U)→U ×R
n

[γ] 7→(γ(0), (xγ)′(0))

Note 5.5.2 Since the tangent bundle is a smooth vector bundle, the total space TM is a
smooth 2n-dimensional manifolds. To be explicit, its atlas is gotten from the smooth atlas
on M as follows.

If (x, U) is a chart on M ,

π−1(U)
hx−−−→ U ×R

n x×id−−−→ x(U)×R
n

[γ]7→(xγ(0), (xγ)′(0))

is a homeomorphism to an open subset of R
n ×R

n. It is convenient to have an explicit
formula for the inverse. Let (p, v) ∈ x(U)×R

n. Define the germ

γ(p, v) : (R, 0)→ (Rn, p)

by sending t (in a sufficiently small open interval containing zero) to p + tv. Then the
inverse is given by sending (p, v) to

[x−1γ(p, v)] ∈ Tx−1(p)M

Lemma 5.5.3 Let f : (M,AM)→ (N,AN) be a smooth map. Then

[γ] 7→ Tf [γ] = [fγ]

defines a smooth bundle morphism

TM
Tf−−−→ TN

πM

y πN

y

M
f−−−→ N
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Proof: Since Tf |π−1(p) = Tpf we have linearity on the fibers, and we are left with showing
that Tf is a smooth map. Let (x, U) ∈ AM and (y, V ) ∈ AN . We have to show that up,
across and down in

π−1
M (W )

Tf |−−−→ π−1
N (V )

hx|W

y hy

y
W ×R

m V ×R
n

x|W×id

y y×id

y
x(W )×R

m y(V )×R
n

is smooth, where W = U ∩ f−1(V ) and Tf | is Tf restricted to π−1
M (W ). This composite

sends (p, v) ∈ x(W )×R
m to [x−1γ(p, v)] ∈ π−1

M (W ) to [fx−1γ(p, v)] ∈ π−1
N (V ) and finally

to (yfx−1γ(p, v)(0), (yfx−1γ(p, v))′(0) ∈ y(V )×R
n which is equal to

(yfx−1(p), D(yfx−1)(p) · v)

by the chain rule. Since yfx−1 is a smooth function, this is a smooth function too.

Lemma 5.5.4 If f : M → N and g : N → L are smooth, then

TgTf = T (gf)

Proof: It is the chain rule (made pleasant since the notation does not have to tell you
where you are at all the time).

Note 5.5.5 The tangent space of R
n is trivial, since the identity chart induces a bundle

chart

hid : TR
n →R

n ×R
n

[γ] 7→(γ(0), γ′(0))

Definition 5.5.6 A manifold is often said to be parallelizable if its tangent bundle is
trivial.

Example 5.5.7 The circle is parallelizable. This is so since the map

S1 × T1S
1 → TS1

(eiθ, [γ]) 7→ [eiθ · γ]

is a diffeomorphism (here (eiθ · γ)(t) = eiθ · γ(t)).

Exercise 5.5.8 The tree-sphere S3 is parallelizable
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Exercise 5.5.9 All Lie groups are parallelizable. (A Lie group is a manifold with a smooth
associative multiplication, with a unit and all inverses: skip this exercise if this sounds too
alien to you).

Example 5.5.10 Let

E = {(p, v) ∈ R
n+1 ×R

n+1 | |p| = 1, p · v = 0}

Then

TSn →E
[γ] 7→(γ(0), γ′(0))

is a homeomorphism. The inverse sends (p, v) ∈ E to the equivalence class of the germ
associated to

t 7→ p+ tv

|p+ tv|

. p
v

|p|=1

p v=0

A point in the tangent space of S2

may be represented by a unit vec-
tor p together with an arbitrary
vector v perpendicular to p.

–1

0

1

x

–1 –0.5 0 0.5
1y

–1

–0.5

0

0.5

1

z

We can’t draw all the tangent
planes simultaneously to illus-
trate the tangent space of S2. The
description we give is in R

6.

More generally we have the following fact:

Lemma 5.5.11 Let f : M → N be an imbedding. Then Tf : TM → TN is an imbedding.

Proof: We may assume that f is the inclusion of a submanifold (the diffeomorphism part
is taken care of by the chain rule which implies that Tf is a diffeomorphism if f is). Let
y : V → V ′ be a chart on N such that y(V ∩ M) = V ′ ∩ (Rm × {0}). Since curves in
R
m × {0} have derivatives in R

m × {0} we see that

(y × id)hy(Tf(π−1
M (W ∩M)) = (V ′ ∩ (Rm × {0}))×R

m × {0}
⊆ R

m ×R
k ×R

m ×R
k
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and by permuting the coordinates we have that Tf is the inclusion of a submanifold.

Corollary 5.5.12 If M ⊆ R
N is the inclusion of a smooth submanifold of an Euclidean

space, then

TM ∼=
{

(p, v) ∈M×R
N

∣∣∣∣
v = γ′(0)

for some germ γ̄ : (R, 0)→ (M, p)

}

(the derivation of γ happens in R
N)

Exercise 5.5.13 There is an even groovier description of TSn: prove that

E =

{
(z0, . . . , zn) ∈ C

n+1|
n∑

i=0

z2 = 1

}

is the total space in a bundle isomorphic to TSn.

Definition 5.5.14 Let M be a smooth manifold. A vector field on M is a section in the
tangent bundle.

Example 5.5.15 The circle has nonvanishing vector fields. Let [γ] 6= 0 ∈ T1S
1, then

S1 → TS1, eiθ 7→ [eiθ · γ]

is a vector field (since eiθ · γ(0) = eiθ · 1) and does not intersect the zero section since
(viewed as a vector in C)

|(eiθ · γ)′(0)| = |eiθ · γ′(0)| = |γ′(0)| 6= 0

The vector field spins around the circle with constant speed.

This is the same construction we used to show that S1 was parallelizable. This is a general
argument: an n dimensional manifold with n linearly independent vector fields has a trivial
tangent bundle, and conversely.
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Exercise 5.5.16 Construct three vector fields on S3 that are linearly independent in all
tangent spaces.

Exercise 5.5.17 Prove that T (M ×N) ∼= TM × TN .

Example 5.5.18 We have just seen that S1 and S3 (if you did the exercise) both have
nonvanishing vector fields. It is a hard fact that S2 does not: “you can’t comb the hair on
a sphere”.

This has the practical consequence that when you want to confine the plasma in a fusion
reactor by means of magnetic fields, you can’t choose to let the plasma be in the interior of
a sphere (or anything homeomorphic to it). At each point on the surface, the component
of the magnetic field parallel to the surface must be nonzero, or the plasma will leak out
(if you remember your physics, there once was a formula saying something like F = qv×B
where q is the charge of the particle, v its velocity and B the magnetic field: hence any
particle moving nonparallel to the magnetic field will be deflected).

This problem is solved by letting the plasma stay inside a torus S1 × S1 which does have
nonvanishing vector fields (since S1 has and T (S1×S1) ∼= TS1×TS1 by the above exercise).

Although there are no nonvanishing vector fields on S2, there are certainly interesting ones
that have a few zeros. For instance “rotation around an axis” will give you a vector field
with only two zeros. The “magnetic dipole” defines a vector field on S2 with just one zero.

–1

–0.5

0.5

1

y

–1 –0.5 0.5 1
x

A magnetic dipole on S2, seen by stereographic projection in a neighbourhood
of the only zero.
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Chapter 6

Submanifolds

In this chapter we will give several important results regarding submanifolds. This will
serve a twofold purpose. First of all we will acquire a powerful tool for constructing new
manifolds as inverse images of smooth functions. Secondly we will clear up the somewhat
mysterious definition of submanifolds. These results are consequences of the rank theorem,
which says roughly that smooth maps are – locally around “most” points – like linear
projections or inclusions of Euclidean spaces.

6.1 The rank

Definition 6.1.1 Let f̄ : (M, p)→ (N, f(p)) be a smooth germ. The rank rkpf of f at p
is the rank of the linear map Tpf . We say that a germ f̄ has constant rank r if it has a
representative f : Uf → N whose rank rkTqf = r for all q ∈ Uf . We say that a germ f̄ has
rank ≥ r if it has a representative f : Uf → N whose rank rkTqf ≥ r for all q ∈ Uf .

Lemma 6.1.2 Let f̄ : (M, p)→ (N, f(p)) be a smooth germ. If rkpf = r then there exists
a neighborhood of p such that rkqf ≥ r for all q ∈ U .

Proof: Strategy: choose charts x and y, and use that the rank of the Jacobi matrix

[Dj(priyfx
−1)(x(q))]

does not decrease locally. This is true since the Jacobi matrix at x(p) must contain an r×r
submatrix which has determinant different from zero. But since the determinant function
is continuous, there must be a neighborhood around x(p) for which the determinant of the
r×r submatrix stays nonzero, and hence the rank of the Jacobi matrix is at least r.

Note 6.1.3 As a matter of fact, we have shown that the subspace M r
n(R) ⊆ Mn(R) of

rank r n×n matrices is a submanifold of codimension (n−r)2. Perturbing a rank r matrix
may kick you out of this manifold and into one of higher rank.

75
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Example 6.1.4 The map f : R→ R given by f(p) = p2 has Df(p) = 2p, and so

rkpf =

{
0 p = 0

1 p 6= 0

Example 6.1.5 Consider the determinant det : M2(R)→ R with

det = a11a22 − a12a21, for A =

[
a11 a12

a21 a22

]

Using the chart x : M2(R)→ R
4 with

x(A) =




a11

a12

a21

a22




(and the identity chart on R) we have that

[D(det x−1)(x(A))] = [a22,−a21,−a12, a11]

(check this!) Thus we see that

rkAdet =

{
0 A = 0

1 A 6= 0

By a bit of work we may prove this result also for det : Mn(R)→ R for all n.

Definition 6.1.6 Let f : M → N be a smooth map where N is n-dimensional. A point
p ∈ M is regular if Tpf is surjective (i.e. if rkpf = n). A point q ∈ N is a regular value if
all p ∈ f−1(q) are regular points. Synonyms for “non-regular” are critical or singular.

Note that a point q which is not in the image of f is a regular value since f−1(q) = ∅.

Note 6.1.7 We shall later see that these names are well chosen: the regular values are the
most common ones (Sard’s theorem states this precisely, see theorem 6.6.1), whereas the
critical values are critical in the sense that they exhibit bad behavior. The inverse image
f−1(q) ⊆ M of a regular value q will turn out to be a submanifold, whereas inverse images
of critical points usually are not.

Example 6.1.8 The names correspond to the normal usage in multi-variable calculus.
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For instance, if you consider the function

f : R
2 → R

whose graph is depicted to the right, the crit-
ical points – i.e. the points p ∈ R

2 such that

D1f(p) = D2f(p) = 0

– will correspond to the two local maxima and
the saddle point. We note that the contour
lines at all other values are nice 1-dimensional
submanifolds of R

2 (circles, or disjoint unions
of circles).

In the picture to the right, we have consid-
ered a standing torus, and looked at its height
function. The contour lines are then inverse
images of various height values. If we had
written out the formulas we could have calcu-
lated the rank of the height function at every
point of the torus, and we would have found
four critical points: one on the top, one on
“the top of the hole”, one on “the bottom of
the hole” (the point on the figure where you
see two contour lines cross) and one on the
bottom. The contours at these heights look
like points or figure eights, whereas contour
lines at other values are one or two circles.

The robot example REF, was also an example of this type of phenomenon.

6.2 The inverse function theorem

Theorem 6.2.1 (The inverse function theorem) A smooth germ

f̄ : (M, p)→ (N, f(p))

is invertible if and only if
Tpf : TpM → Tf(p)N

is invertible, in which case Tf(p)(f
−1) = (Tpf)−1.
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Proof: Choose charts (x, U) and (y, V ) with p ∈ U and f(p) ∈ V . In the bases

∂

∂xi

∣∣∣∣
p

, and
∂

∂yj

∣∣∣∣
f(p)

Tpf is given by the Jacobi matrix

[D(yfx−1)(x(p))] = [Dj(priyfx
−1(x(p))]

so Tpf is invertible iff [D(yfx−1)(x(p))] is invertible. By the inverse function theorem 11.2.1
in the flat case, this is the case iff yfx−1 is invertible in a neighborhood of x(p). As x and
y are diffeomorphisms, this is the same as saying that f is invertible in a neighborhood
around p.

Corollary 6.2.2 Let f : M → N be a smooth map between smooth n-manifolds. Then f
is a diffeomorphism iff it is bijective and Tpf is of rank n for all p ∈M .

Proof: Since f is bijective it has an inverse function. A function has at most one inverse
function (!) so the smooth inverse functions existing locally by the inverse function theorem,
must be equal to the globally defined inverse function which hence is smooth.

Exercise 6.2.3 Let G be a Lie group (a manifold with a smooth associative multiplication,
with a unit and all inverses).

Show that

G→G
g 7→g−1

is smooth (some authors have this as a part of the definition, which is totally redundant).

6.3 The rank theorem

The rank theorem says that if the rank of a smooth map f : M → N is constant in a
neighborhood of a point, then there are charts so that f looks like a a composite R

m →
R
r ⊆ R

n, where the first map is the projection onto the first r < m coordinate directions,
and the last one is the inclusion of the first r < n coordinates. So for instance, a map of
rank 1 between 2-manifolds looks locally like

R
2 → R

2, (q1, q2) 7→ (q1, 0)
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Lemma 6.3.1 (The rank theorem) Let f̄ : (M, p) → (N, f(p)) be a germ of rank ≥ r.
Then there exist a chart germs

x̄ : (M, p)→ (Rm, x(p)) and ȳ : (N, f(p))→ (Rn, yf(p))

such that
prjyfx

−1(q) = qj for j = 1, . . . r

for all q = (q1, . . . , qm) sufficiently close to x(p). Furthermore, given any chart ȳ we can
achieve this by a choice of x̄, and permuting the coordinates in ȳ.
If f̄ has constant rank r, then there exist chart germs

x̄ : (M, p)→ (Rm, x(p)) and ȳ : (N, f(p))→ (Rn, yf(p))

such that
yfx−1(q) = (q1, . . . , qr, 0, . . . , 0)

for all q = (q1, . . . , qm) sufficiently close to x(p).

Proof: If we start with arbitrary charts, we will fix them up so that we have the theorem.
Hence we may just as well assume that (M, p) = (Rm, 0) and (N, f(p)) = (Rn, 0), that
f : (Rm, 0) → (Rn, 0) is a representative of the germ (if the representative you first chose
was not defined everywhere, restrict to a small ball close to zero, and use a chart to define
it on all of R

m), and that the Jacobian Df(0) has the form

Df(0) =

[
A B
C D

]

where A is an invertible r × r matrix (here we have used that we could permute the
coordinates).

Let fi = prif , and define x : (Rm, 0)→ (Rm, 0) by

x(t) = (f1(t), . . . , fr(t), tr+1, . . . , tm)

(where tj = prj(t)). Then

Dx(0) =

[
A B
0 I

]

and so detDx(0) = det(A) 6= 0. By the inverse function theorem, x̄ is an invertible germ
with inverse x̄−1. Choose a representative for x̄−1 which we by a slight abuse of notation
will call x−1. Since for sufficiently small t ∈M = R

m we have

(f1(t), . . . , fn(t)) = f(t) = fx−1x(t) = fx−1(f1(t), . . . , fr(t), tr+1, . . . , tm)

we see that
fx−1(q) = (q1, . . . , qr, fr+1x

−1(q), . . . , fnx
−1(q))
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and we have proven the first part of the rank theorem.

For the second half, assume rkDf(q) = r for all q. Since x̄ is invertible

D(fx−1)(q) = Df(x−1(q))D(x−1)(q)

also has rank r for all q in the domain of definition. Note that

D(fx−1)(q) =




I 0
. . . . . . . . . . . . . . . . . . . . . .
[Dj(fix

−1)(q)] i=r+1,...,n
j=1,...m




so since the rank is exactly r we must have that the lower right hand (n−r)×(m−r)-matrix

[
Dj(fix

−1)(q)
]
r+1 ≤ i ≤ n
r+1 ≤ j ≤ m

is the zero matrix (which says that “fix
−1 does not depend on the last m− r coordinates

for i > r”). Define ȳ : (Rn, 0)→ (Rn, 0) by setting

y(q) =
(
q1, . . . , qr, qr+1 − fr+1x

−1(q̄), . . . , qn − fnx−1(q̄)
)

where q̄ = (q1, . . . , qr, 0, . . . , 0). Then

Dy(q) =

[
I 0
? I

]

so ȳ is invertible and yfx−1 is represented by

q = (q1, . . . , qm) 7→
(
q1, . . . , qr, fr+1x

−1(q)− fr+1x
−1(q̄), . . . , fnx

−1(q)− fnx−1(q̄)
)

=(q1, . . . , qr, 0, . . . , 0)

where the last equation holds since Dj(fix
−1)(q) = 0 for r < i ≤ n and r < j ≤ m so

. . . , fnx
−1(q)− fnx−1(q̄) = 0 for r < i ≤ n for q close to the origin.

The proof of the rank theorem has the following corollary. It treats the case when the rank
is maximal (and hence constant). Note that the permutations have been removed from the
first part. Also note that if f : M → N has rank dim(N), then dim(N) ≤ dim(M) and if
f has rank dim(M) then dim(M) ≤ dim(N).

Corollary 6.3.2 Let M and N be smooth manifolds of dimension dim(M) = m and
dim(N) = n.

Let f̄ : (M, p)→ (N, f(p)) be a germ of rank n. Then there exist a chart germ

x̄ : (M, p)→ (Rm, x(p))



6.4. REGULAR VALUES 81

such that for any chart germ

ȳ : (N, f(p))→ (Rn, yf(p))

yfx−1(q) = (q1, . . . , qn)

for all q = (q1, . . . , qm) sufficiently close to x(p).

If f̄ has rank m, then there exist chart germs

x̄ : (M, p)→ (Rm, x(p)) and ȳ : (N, f(p))→ (Rn, yf(p))

such that

yfx−1(q) = (q1, . . . , qm, 0, . . . , 0)

for all q = (q1, . . . , q(dim(M)) sufficiently close to x(p).

Exercise 6.3.3 Let f : M →M be smooth such that f ◦ f = f and M connected. Prove
that f(M) ⊆ M is a submanifold. If you like point-set topology, prove that f(M) ⊆M is
closed.

6.4 Regular values

Since the rank can only increase locally, there are certain situations where constant rank
is guaranteed, namely when the rank is maximal.

Definition 6.4.1 A smooth map f : M → N is

a submersion if rkTpf = dimN (that is Tpf is surjective)

an immersion if rkTpf = dimM (Tpf is injective)

for all p ∈M .

Note 6.4.2 To say that a map f : M → N is a submersion is equivalent to claiming that
all points p ∈ M are regular (Tpf is surjective), which again is equivalent to claiming that
all q ∈ N are regular values (values that are not hit are regular by definition).
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Theorem 6.4.3 Let
f : M → N

be a smooth map where M is n+ k-dimensional and N is n-dimensional. If q = f(p) is a
regular value, then

f−1(q) ⊆ M

is a k-dimensional smooth submanifold.

Proof: We must display a chart (x,W ) such that x(W ∩ f−1(q)) = x(W ) ∩ (Rk × {0}).
Since p is regular, the rank of f must be n in a neighborhood of p, so by the rank theorem
6.3.1, there are charts (x, U) and (y, V ) around p and q such that x(p) = 0, y(q) = 0 and

yfx−1(t1, . . . , tn+k) = (t1, . . . , tn), for t ∈ x(U ∩ f−1(V ))

Let W = U ∩ f−1(V ), and note that f−1(q) = (yf)−1(0). Then

x(W ∩ f−1(q)) =x(W ) ∩
(
yfx−1

)−1
(0)

={(0, . . . , 0, tn+1, . . . , tn+k) ∈ x(W )}
=({0} ×R

k) ∩ x(W )

and so (permuting the coordinates) f−1(q) ⊆M is a k-dimensional submanifold as claimed.

Exercise 6.4.4 Give a new proof which shows that Sn ⊂ R
n+1 is a smooth submanifold.

Note 6.4.5 Not all submanifolds can be realized as the inverse image of a regular value of
some map (e.g. the zero section in the canonical line bundle η1 → S1 can not, see 6.4.24),
but the theorem still gives a rich source of important examples of submanifolds.

Example 6.4.6 The example 6.1.8 gives two examples illustrating the theorem. The robot
example is another example. In that example we considered a function

f : S1 × S1 → R
1

and found three critical values.

To be more precise:
f(eiθ, eiφ) = |3− eiθ − eiφ|

and so (using charts corresponding to the angles: conveniently all charts give the same
formulas in this example) the Jacobi matrix at (eiθ, eiφ) equals

1

f(eiθ, eiφ)
[3 sin θ − cos φ sin θ + sinφ cos θ, 3 sinφ− cos θ sinφ+ sin θ cosφ]
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(exercise: do this). The rank is one, unless both coordinates are zero, in which case we get
that we must have sin θ = sin φ = 0, which leaves the points

(1, 1), (−1,−1), (1,−1), and (−1, 1)

giving the critical values 1, 5 and (twice) 3.

Exercise 6.4.7 Fill out the details in the robot example. Then do it in three dimensions.

Example 6.4.8 Consider the special linear group

SLn(R) = {A ∈ GLn(R) | det(A) = 1}

We show that SL2(R) is a 3-dimensional manifold. The determinant function is given by

det : M2(R)→ R

A =

[
a11 a12

a21 a22

]
7→ det(A) = a11a22 − a12a21

and so with the obvious coordinates M2(R) ∼= R
4 (sending A to [a11 a12 a21 a22]

t) we have
that

D(det)(A) =
[
a22 −a21 −a12 a11

]

Hence the determinant function has rank 1 at all matrices, except the zero matrix, and in
particular 1 is a regular value.

Exercise 6.4.9 Show that SL2(R) is diffeomorphic to S1 ×R
2.

Exercise 6.4.10 If you have the energy, you may prove that SLn(R) is an (n2 − 1)-
dimensional manifold.

Example 6.4.11 The subgroup O(n) ⊆ GLn(R) of orthogonal matrices is a submanifold

of dimension n(n−1)
2

.

To see this, recall that A ∈ GLn(R) is orthogonal iff AtA = I. Note that AtA is always
symmetric. The space Sym(n) of all symmetric matrices is diffeomorphic to R

n(n+1)/2 (the
entries on and above the diagonal are arbitrary). We define a map

f : GLn(R)→Sym(n)

A 7→AtA

which is smooth (since matrix multiplication and transposition is smooth), and such that

O(n) = f−1(I)

We must show that I is a regular value, and we offer two proofs, one computional using
the Jacobi matrix, and one showing more directly that TAf is surjective for all A ∈ O(n).
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We present both proofs, the first one since it is very concrete, and the second one since it
is short and easy to follow.

First the Jacobian argument. We use the usual chart on GLn(R) ⊆ Mn(R) ∼= R
n2

by
listing the entries in lexicographical order, and the chart pr : Sym(n) ∼= R

n(n+1)/2 with
prkl[aij] = akl (also in lexicographical order) only defined for 1 ≤ i ≤ j ≤ n. Then
prk<lf([aij]) =

∑n
k+1 aikajk, and a straight forward calculation yields that if A = [aij] then

Dklpri<jf(A) =





ajl k = i < j

ail i < j = k

2ail i = j = k

0 otherwise

In particular

Dklpri<jf(I) =





1 k = i < j = l

1 l = i < j = k

2 i = j = k = l

0 otherwise

and rkDf(I) = n(n + 1)/2 since Df(I) is on echelon form, with no vanishing rows (ex.
for n = 2 and n = 3 the Jacobi matrices are




2
1 1

2


 , and




2
1 1

1 1
2

1 1
2




(in the first matrix the colums are the partial derivatives in the 11, 12, 21 and 22-variable,
and the rows are the projection on the 11 12 and 22-factor. Likewise in the second one)).

For any A ∈ GLn(R) we define the diffeomorphism

LA : GLn(R)→ GLn(R)

by LA(B) = A ·B. Note that if A ∈ O(n) then

f(LA(B)) = f(AB) = (AB)tAB = BtAtAB = BtB = f(B)

and so by the chain rule and the fact that D(LA)(B) = A we get that

Df(I) = D(fLA)(I) = D(f)(LAI)D(LA)(I) = D(f)(A)A

implying that rkD(f)(A) = n(n + 1)/2 for all A ∈ O(n). This means that A is a regular
point for all A ∈ O(n) = f−1(I), and so I is a regular value, and O(n) is an

n2 − n(n + 1)/2 = n(n− 1)/2
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dimensional submanifold.

For the other proof of the fact that I is a regular value, notice that all tangent vectors in
TAGLn(R) = TAMn(R) are in the equivalence class of a linear curve

νB(s) = A+ sB, B ∈Mn(R), s ∈ R

We have that

fνB(s) = (A+ sB)t(A + sB) = AtA+ s(AtB +BtA) + s2BtB

and so

TAf [νB] = [fνB] = [γB]

where γB(s) = AtA+ s(AtB +BtA). Similarly, all tangent vectors in TISym(n) are in the
equivalence class of a linear curve

αC(s) = I + sC

for C a symmetric matrix. If A is orthogonal, we see that γ 1
2
AC = αC , and so TAf [ν 1

2
AC ] =

[αC ], and TAf is surjective. Since this is true for all A ∈ O(n) we get that I is a regular
value.

Exercise 6.4.12 Consider the inclusion O(n) ⊆ Mn(R), giving a description of the tan-
gent bundle og O(n) along the lines of corollary 5.5.12. Show that under the isomorphism

TMn(R) ∼= Mn(R)×Mn(R), [γ] � (γ(0), γ′(0))

the tangent bundle of O(n) corresponds to the projection on the first factor

E = {(g, A) ∈ O(n)×Mn(R)|At = −gtAgt} → O(n).

This also shows that O(n) is parallelizable, since we get an obvious bundle isomorphism
induced by

E → O(n)× {B ∈ Mn(R)|Bt = −Bt}, (g, A) 7→ (g, g−1A)

(a matrix B satisfying Bt = −Bt is called a skew matrix).

Note 6.4.13 The multiplication

O(n)×O(n)→ O(n)

is smooth (since multiplication of matrices is smooth in Mn(R) ∼= R
n2

, and 3.5.14), and
so O(n) is a Lie group. The same of course applies to SLn(R).
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Exercise 6.4.14 Prove that

C→M2(R)

x+ iy 7→
[
x −y
y x

]

defines an imbedding. More generally it defines an imbedding

Mn(C)→Mn(M2(R)) ∼= M2n(R)

Show also that this imbedding sends “conjugate transpose” to “transpose” and “multiplica-
tion” to “multiplication”.

Exercise 6.4.15 Prove that the unitary group

U(n) = {A ∈ GLn(C)|ĀtA = I}
is a Lie group of dimension n2.

Exercise 6.4.16 Prove that O(n) is compact and has two connected components. The
component consisting of matrices of determinant 1 is called SO(n), the special orthogonal
group.

Note 6.4.17 SO(2) is diffeomorphic to S1 (prove this), and SO(3) is diffeomorphic to the
real projective 3-space (don’t prove that).

Note 6.4.18 It is a beautiful fact that if G is a Lie group (e.g. GLn(R)) and H ⊆ G
is a closed subset containing the identity, and which is closed under multiplication, then
H ⊆ G is a “Lie subgroup”. We will not prove this fact, (see e.g. Spivak’s book I, theorem
10.15), but note that it implies that all matrix groups such as O(n) are Lie groups since
GLn(R) is.

Exercise 6.4.19 A k-frame in R
n is a k-tuple of orthonormal vectors in R

n. Define a
Stiefeld manifold V k

n as the subset

V k
n = {k-frames in R

n}

of R
nk. Show that V k

n is a compact smooth nk − k(k+1)
2

-dimensional manifold.

Note 6.4.20 In the literature you will often find a different definition, where a k-frame
is just a k-tuple of linearly independent vectors. Then the Stiefeld manifold is an open
subset of the Mn×k(R), and so is clearly a smooth manifold – but this time of dimension
nk.

A k-frame defines a k-dimensional linear subspace of R
n. The Grassmann manifold Gk

n

have as underlying set the set of k-dimensional linear subspaces of R
n, and is topologized

as the quotient space of the Stiefeld manifold. The Grassmann manifolds are important
since they classify vector bundles.
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Exercise 6.4.21 Let Pn be the space of degree n polynomials. Show that the space of
solutions to the equation

(y′′)2 − y′ + y(0) + xy′(0) = 0

is a 1-dimensional submanifold of P3.

Exercise 6.4.22 Make a more interesting exercise along the lines of the previous, and
solve it.

Exercise 6.4.23 Let A ∈Mn(R) be a symmetric matrix. For what values of a ∈ R is the
quadric

MA
a = {p ∈ R

n | ptAp = a}
an n− 1-dimensional smooth manifold?

Exercise 6.4.24 Consider the canonical line bundle

η1 → S1

Prove that there is no smooth map f : η1 → R such that the zero section is the inverse
image of a regular value of f .

More generally, show that there is no map f : η1 → N for any manifold N such that the
zero section is the inverse image of a regular value of f .

Exercise 6.4.25 In a chemistry book I found van der Waal’s equation, which gives a rela-
tionship between the temperature T , the pressure p and the volume V , which supposedly
is somewhat more accurate than the ideal gas law pV = nRT (n is the number of moles of
gas, R is a constant). Given the relevant positive constants a and b, prove that the set of
points (p, V, T ) ∈ (0,∞)× (nb,∞)× (0,∞) satisfying the equation

(
p− n2a

V 2

)
(V − nb) = nRT

is a smooth submainfold of R
3.

Exercise 6.4.26 Consider the set LFn,k of labelled flexible n-gons in R
k. A labelled flexible

n-gon is what you get if you join n > 2 straight lines of unit length to a closed curve and
label the vertices from 1 to n.

A labelled flexible 8-gon in R
2.

Let n be odd and k = 2. Show that LFn,2 is a smooth submanifold of R
2 × (S1)n−1 of

dimension n.

Exercise 6.4.27 Prove that the set of non-self-intersecting flexible n-gons in R
2 is a

manifold.
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6.5 Immersions and imbeddings

We are finally closing in on the promised “real” definition of submanifolds, or rather, of
imbeddings. The condition of being an immersion is a readily checked property, since we
only have to check the derivatives in every point. The rank theorem states that in some
sense “locally” immersions are imbeddings. But how much more do we need? Obviously,
an imbedding is injective.

Something more is needed, as we see from the following example

Example 6.5.1 Consider the injective smooth map

f : (0, 3π/4)→ R
2

given by

f(t) = sin(2t)(cos t, sin t)

Then

Df(t) = [(1− 3 sin2 t) cos t, (3 cos2 t− 1) sin t]

is never zero and f is an immersion.

However,
(0, 3π/4)→ im{f}

is not a homeomorphism where

im{f} = f((0, 3π/4)) ⊆ R
2

has the subspace topology. For, if it were a homeo-
morphism, then

f((π/4, 3π/4)) ⊆ im{f}

would be open (for the inverse to be continuous). But
any open ball around (0, 0) = f(π/2) in R

2 must con-
tain a piece of f((0, π/4)), so f((π/4, 3π/4)) ⊆ im{f}
is not open.
Hence f is not an imbedding.

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.2 0.4 0.6

The image of f is a sub-
space of R

2.

Exercise 6.5.2 Let

R

∐
R→ R

2

be defined by sending x in the first summand to (x, 0) and y in the second summand to
(0, ey). This is an injective immersion, but not an imbedding.
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Exercise 6.5.3 Let

R

∐
S1 → C

be defined by sending x in the first summand
to (1+ ex)eix and being the inclusion S1 ⊆ C

on the second summand. This is an injective
immersion, but not an imbedding.

–1

–0.5

0.5

1

–1 –0.5 0.5 1 1.5 2

The image is not a submanifold of
C.

But, strangely enough these examples exhibit the only thing that can go wrong: if an
injective immersion is to be an imbedding, the map to the image has got to be a homeo-
morphism.

Theorem 6.5.4 Let f : M → N be an immersion such that the induced map

M → im{f}

is a homeomorphism where im{f} = f(M) ⊆ N has the subspace topology, then f is an
imbedding.

Proof: Let p ∈M . The rank theorem says that there are charts

x1 : U1 → U ′
1 ⊆ R

n

and

y1 : V1 → V ′
1 ⊆ R

n+k

with x1(p) = 0 and y1(f(p)) = 0 such that

y1fx
−1
1 (t) = (t, 0) ∈ R

n ×R
k = R

n+k

for all t ∈ x1(U1 ∩ f−1(V1)).

Since V ′
1 is open, it contains open rectangles around the origin. Choose one such rectangle

(see the picture below)

V ′
2 = U ′ × B ⊆ ((U ′

1 ∩ x1f
−1(V1))×R

k) ∩ V ′
1 ⊆ R

n ×R
k
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Let U = x−1
1 (U ′), x = x1|U and V2 = y−1

1 (V ′
2).

Since M → f(M) is a homeomorphism, f(U) is an open subset of f(M), and since f(M)
has the subspace topology, f(U) = W ∩ f(M) where W is an open subset of N (here is
the crucial point where complications as in example 6.5.1 are excluded: there are no other
“branches” of f(M) showing up in W ).

Let V = V2 ∩W , V ′ = V ′
2 ∩ y1(W ) and y = y1|V .

Then we see that f(M) ⊆ N is a submanifold (y(f(M)∩ V ) = yf(U) = (Rn×{0})∩ V ′),
and M → f(M) is a bijective local diffeomorphism (the constructed charts show that both
f and its inverse are smooth around every point), and hence a diffeomorphism.

We note the following useful corollary:

Corollary 6.5.5 Let f : M → N be an injective immersion from a compact manifold M .
Then f is an imbedding.

Proof: We only need to show that the continuous map M → f(M) is a homeomorphism.
It is injective since f is, and clearly surjective. But from point set topology (theorem 10.7.8)
we know that it must be a homeomorphism since M is compact and f(M) is Hausdorff
(f(M) is Hausdorff since it is a subspace of the Hausdorff space N).

Exercise 6.5.6 Let a, b ∈ R, and consider the map

fa,b : R→ S1 × S1

t 7→ (eiat, eibt)

Show that fa,b is an immersion if either a or b is different from zero. Show that fa,b factors
through an imbedding S1 → S1 × S1 iff either b = 0 or a/b is rational.
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–3

–2

–1

0

1

2

3

–3

–2

–1

0

1

2

3

–1

0

1

Part of the picture if a/b = π (this goes on forever)

Exercise 6.5.7 Consider smooth maps

M
i−−−→ N

j−−−→ L

Show that if the composite ji is an imbedding, then i is an imbedding.

6.6 Sard’s theorem

For reference we cite Sard’s theorem, which says that regular values are the common state
of affairs (in technical language: critical values have “measure zero” while regular values
are “dense”). Proofs can be found in many references, for instance in Milnor’s book [M].
There are many verisons, but we list only the following simple form:

Theorem 6.6.1 Let f : M → N be a smooth map and U ⊆ N an open subset. Then U
contains a regular value for f .
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Chapter 7

Partition of unity

7.1 Definitions

In this chapter we define partitions of unity. They are smooth devices making it possible to
patch together some types of local information into global information. They come in the
form of “bump functions” such that around any given point there are only finitely many of
them that are nonzero, and such that the sum of their values is 1.

This can be applied for instance to patch together the nice local structure of a manifold to
an imbedding into an Euclidean space, construct sensible metrics on the tangent spaces (so-
called Riemannian metrics), and in general to construct smooth functions with desirable
properties.

Definition 7.1.1 Let U be an open covering of a space X. We say that U is locally finite
if each p ∈ X has a neighborhood which intersects only finitely many sets in U .

Definition 7.1.2 Let X be a space. The support of a function f : X → R is the closure
of the subset of X with nonzero values, i.e.

supp(f) = {x ∈ X|f(x) 6= 0}

93
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Definition 7.1.3 A family of continuous function

φα : X → [0, 1]

is called a partition of unity if

the collection of subsets { {p ∈ X|φα(p) 6= 0} } is a locally finite open covering of X,

for all p ∈ X the (finite) sum
∑

α φα(p) = 1.

The partition of unity is said to be subordinate to a covering U of X if in addition

for every φα there is a member U of U such that supp(φα) ⊆ U .

Partitions of unity are used to patch together local structures to global ones.

Given a space that is not too big and complicated (for instance if it is a compact manifold)
it may not be surprising that we can build a partition of unity on it. What is more
surprising is that on smooth manifolds we can build smooth partitions of unity (that is,
all the φα’s are smooth).

In order to this we need smooth bump functions.

7.2 Smooth bump functions

Let λ : R→ R be defined by

λ(t) =

{
0 for t ≤ 0

e−1/t2 for t > 0

This is a smooth function (note that
all derivatives in zero are zero: it is
definitely not analytic) with values
between zero and one.

0

0.2

0.4

0.6

0.8

1

–1 1 2 3
t

Exercise 7.2.1 Prove that λ is smooth.
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For 0 < ε, let βε : R → R be given
by

βε(t) = λ(t) · λ(ε− t)
For ε = 1 it looks like

0

2e–05

4e–05

6e–05

8e–05

0.0001

0.00012

0.00014

0.00016

0.00018

0.0002

0.00022

0.00024

0.00026

0.00028

0.0003

0.00032

0.00034

–1 1 2 3
t

It is a small bump, but it is nonzero
between 0 and ε, and so we may de-
fine the function αε : R → R which
ascends from zero to one smoothly
between zero and ε by means of

αε(t) =

∫ x
0
βε(x) dx∫ ε

0
βε(x) dx 0

0.2

0.4

0.6

0.8

1

–0.4 –0.2 0.2 0.4 0.6 0.8 1 1.2 1.4
x

and finally the ultimate bump func-
tion γ(r,ε) : R

n → R where 0 < r
given by

γ(r,ε)(x) = 1− αε(|x| − r)

which is zero |x| ≥ r+ ε and one for
|x| ≤ r.

0.2

0.4

0.6

0.8

1

–2 –1 1 2
t

Example 7.2.2 Smooth bump functions are very handy, for instance if you want to join
curves in a smooth fashion (for instance if you want to design smooth highways!) They
also allow you to drive smoothly on a road with corners: the curve γ : R → R

2 given by
γ(t) = (te−1/t2 , |te−1/t2 |) is smooth, although its image is not.
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Exercise 7.2.3 Show that any function germ φ̄ : (M, p)→ (R, φ(p)) has a smooth repre-
sentative φ : M → R.

Exercise 7.2.4 Let M and N be smooth manifolds and f : M → N a continuous map.
Show that f is smooth if for all smooth φ : N → R the composite φf : M → R is smooth.

Exercise 7.2.5 Show that any smooth vector bundle E → [0, 1] is trivial (smooth on the
boundary means what you think it does: don’t worry).

Exercise 7.2.6 Show that any 1-dimensional smooth vector bundle (also called line bun-
dle) E → S1 is either trivial, or E ∼= η1. Show the analogous statement for n-dimensional
vector bundles.

7.3 Refinements of coverings

If 0 < r let En(r) = {x ∈ R
n||x| < r} be the open n-dimensional ball of radius r centered

at the origin.

Lemma 7.3.1 Let M be an n-dimensional manifold. Then there is a countable atlas A
such that x(U) = En(3) for all (x, U) ∈ A and such that

⋃

(x,U)∈A

x−1(En(1)) = M

If M is smooth all charts may be chosen to be smooth.

Proof: Let B be a countable basis for the topology on M . For every p ∈M there is a chart
(x, U) with x(p) = 0 and x(U) = En(3). The fact that that B is a basis for the topology
gives that there is a V ∈ B with

p ∈ V ⊆ x−1(En(1))

For each such V ∈ B choose just one such chart (x, U) with x(U) = En(3) and

x−1(0) ∈ V ⊆ x−1(En(1))

The set of these charts is the desired countable A.

If M were smooth we just append “smooth” in front of every “chart” in the proof above.

Lemma 7.3.2 Let M be a manifold. Then there is a sequence A1 ⊆ A2 ⊆ A3 ⊆ . . . of
compact subsets of M such that for every i ≥ 1 the compact subset Ai is contained in the
interior of Ai+1 and such that

⋃
iAi = M
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Proof: Let {(xi, Ui)}i=1,... be the countable atlas of the lemma above, and let

Ak =
k⋃

i=1

x−1
i (En(2− 1/k))

Definition 7.3.3 Let U be an open covering of a space X. We say that another cover V
is a refinement of U if every member of V is contained in a member of U .

Definition 7.3.4 Let M be a manifold and let U be an open cover of M . A good atlas
subordinate to U is a countable atlas A on M such that

1) the cover {V }(x,V )∈A is a locally finite refinement of U ,

2) x(V ) = En(3) for each (x, V ) ∈ A and

3)
⋃

(x,V )∈A x
−1(En(1)) = M .

Theorem 7.3.5 Let M be a manifold and let U be an open cover of M . Then there exists
a good atlas A subordinate to U . If M is smooth, then A may be chosen smooth too.

Proof: The remark about
the smooth situation will
follow by the same proof.
Choose a a sequence

A1 ⊆ A2 ⊆ A3 ⊆ . . .

of compact subsets of M
such that for every i ≥ 1
the compact subset Ai is
contained in the interior of
Ai+1 and such that

⋃
iAi =

M .
For every point

p ∈ Ai+1 − int(Ai)

choose a Up ∈ U with
p ∈ Up and choose a chart
(yp,Wp) such that p ∈ Wp

and yp(p) = 0.

The positioning of the charts

Since int(Ai+2)− Ai−1, yp(Wp) and Up are open there is an εp > 0 such that

En(εp) ⊆ yp(Wp), y−1
p (En(εp)) ⊆ (int(Ai+2)− Ai−1) ∩ Up
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Let Vp = y−1
p (En(εp)) and

xp =
3

εp
yp|Vp

: Vp → En(3)

Then {x−1
p (En(1))}p cover the compact set Ai+1 − int(Ai), and we may choose a finite set

of points p1, . . . , pk such that

{x−1
pj

(En(1))}j=1,...,k

still cover Ai+1 − int(Ai).

Letting A consist of the (xpj
, Vpj

) as i and j vary we have proven the theorem. �

7.4 Existence of smooth partitions of unity on smooth

manifolds.

Theorem 7.4.1 Let M be a differentiable manifold, and let U be a covering of M . Then
there is a smooth partition of unity of M subordinate to U .

Proof: To the good atlas A = {(xi, Vi)} subordinate to U constructed in theorem 7.3.5 we
may assign functions {ψi} as follows

ψi(q) =

{
γ(1,1)(xi(q)) for q ∈ Vi = x−1

i (En(3))

0 otherwise

The function ψi has support x−1
i (En(2)) and is obviously smooth. Since {Vi} is locally

finite, around any point p ∈M there is an open set such there are only finitely many ψi’s
with nonzero values, and hence the expression

σ(p) =
∑

i

ψi(p)

defines a smooth function M → R with everywhere positive values. The partition of unity
is then defined by

φi(p) = ψi(p)/σ(p)

�
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7.5 Application: every compact smooth manifold may

be imbedded in an Euclidean space

As an application, we will prove the easy version of Whitney’s imbedding theorem. The
hard version states that any manifold may be imbedded in the Euclidean space of the
double dimension. We will only prove:

Theorem 7.5.1 Let M be a compact smooth manifold. Then there is an imbedding M →
R
N for some N .

Proof: Assume M has dimension m. Choose a finite good atlas

A = {xi, Vi}i=1,...,r

Define ψi : M → R and ki : M → R
m by

ψi(p) =

{
γ(1,1)(xi(p)) for p ∈ Vi
0 otherwise

ki(p) =

{
ψi(p) · xi(p) for p ∈ Vi
0 otherwise

Consider the map

f : M →
r∏

i=1

R
m ×

r∏

i=1

R

p 7→ ((k1(p), . . . , kr(p)), (ψ1(p), . . . , ψr(p)))

We shall prove that this is an imbedding by showing that it is an immersion inducing a
homeomorphism onto its image.

Firstly, f is an immersion, because for every p ∈ M there is a j such that Tpkj has rank
m.

Secondly, assume f(p) = f(q) for two points p, q ∈ M . Assume p ∈ x−1
j (Em(1)). Then

we must have that q is also in x−1
j (Em(1)) (since ψj(p) = ψj(q)). But then we have that

kj(p) = xj(p) is equal to kj(q) = xj(q), and hence p = q since xj is a bijection.

Since M is compact, f is injective (and so M → f(M) is bijective) and R
N Hausdorff,

M → f(M) is a homeomorphism by theorem .

Techniques like this are used to construct imbeddings. However, occasionally it is important
to know when imbeddings are not possible, and then these techniques are of no use. For
instance, why can’t we imbed RP2 in R

3? Proving this directly is probably very hard. For
such problems algebraic topology is needed.
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Chapter 8

Constructions on vector bundles

8.1 Subbundles and restrictions

There are a variety of important constructions we need to address. The first of these have
been lying underneath the surface for some time:

Definition 8.1.1 Let

π : E → X

be an n-dimensional vector bundle. A k-
dimensional subbundle of this vector bundle is
a subset E ′ ⊆ E such that around any point
there is a bundle chart (h, U) such that

h(π−1(U) ∩ E ′) = U × (Rk × {0}) ⊆ U ×R
n

Note 8.1.2 It makes sense to call such a sub-
set E ′ ⊆ E a subbundle, since we see that the
bundle charts, restricted to E ′, define a vec-
tor bundle structure on π|E′ : E ′ → X which
is smooth if we start out with a smooth atlas.

A one-dimensional subbundle in a

two-dimensional vector bundle: pick

out a one-dimensional linear sub-

space of every fiber in a continuous

(or smooth) manner.

Example 8.1.3 Consider the trivial bundle S1 × C → S1. The canonical line bundle
η1 → RP1 ∼= S1 can be thought of as the subbundle given by

{(eiθ, teiθ/2) ∈ S1 ×C|t ∈ R} ⊆ S1 ×C.

Exercise 8.1.4 Spell out the details of the previous example. Also show that

ηn =
{
([p], λp) ∈ RPn ×R

n+1 |p ∈ Sn, λ ∈ R
}
⊆ RPn ×R

n+1

101
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is a subbundle of the trivial bundle RPn ×R
n+1 → RPn.

Definition 8.1.5 Given a bundle π : E → X
and a subspace A ⊆ X, the restriction to A
is the bundle

πA : EA → A

where EA = π−1(A) and πA = π|π−1(A).

In the special case where A is a single point
p ∈ X, we write Ep = π−1(p) (instead of
E{p}). Occasionally it is typographically con-
venient to write E|A instead of EA (especially
when the notation is already a bit cluttered).

Note 8.1.6 We see that the restriction is a
new vector bundle, and the inclusion

EA
⊆−−−→ E

πA

y π

y

A
⊆−−−→ X

is a bundle morphism inducing an isomor-
phism on every fiber.

The restriction of a bundle E → X

to a subset A ⊆ X.

Example 8.1.7 Let N ⊆M be a smooth submanifold. Then we can restrict the tangent
bundle on M to N and get

(TM)|N → N

We see that TN ⊆ TM |N is a smooth subbundle.

In a submanifold N ⊆ M the tangent bundle of N is naturally a subbundle of the

tangent bundle of M restricted to N
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Definition 8.1.8 A bundle morphism

E1
f−−−→ E2

π1

y π2

y
X1 −−−→ X2

is said to be of constant rank r if restricted to each fiber f is a linear map of rank r.

Note that this is a generalization of our concept of constant rank of smooth maps.

Theorem 8.1.9 (Rank theorem for bundles) Consider a bundle morphism

E1
f //

π1   A
AA

AA
AA

A
E2

π2~~}}
}}

}}
}}

X

over a space X with constant rank r. Then around any point p ∈ X there are bundle charts
(h, U) and (g, U) such that

E1|U
f |U−−−→ E2|U

h

y g

y

U ×R
m (u,(t1 ,...,tm))7→(u,(t1 ,...,tr ,0,...,0))−−−−−−−−−−−−−−−−−−−→ U ×R

n

commutes.

Furthermore if we are in a smooth situation, these bundle charts may be chosen to be
smooth.

Proof: This is a local question, so translating via arbitrary bundle charts we may assume
that we are in the trivial situation

U ′ ×R
m

f //

prU′

$$I
II

II
II

II
I

U ′ ×R
n

prU′

zzuuuuuuuuu

U ′

with f(u, v) = (u, (f 1
u(v), . . . , f

n
u (v))), and rkfu = r. By a choice of basis on R

m and R
n

we may assume that fu is represented by a matrix

[
A(u) B(u)
C(u) D(u)

]
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with A(p) ∈ GLr(R) and D(p) = C(p)A(p)−1B(p) (the last equation follows as the rank
rkfp is r). We change the basis so that this is actually true in the standard basis.

Let p ∈ U ⊆ U ′ be the open set U = {u ∈ U ′|det(A(u)) 6= 0}. Then again D(u) =
C(u)A(u)−1B(u) on U .

Let
h : U ×R

m → U ×R
m, h(u, v) = (u, hu(v))

be the homeomorphism where hu is given by the matrix
[
A(u) B(u)

0 I

]

Let
g : U ×R

n → U ×R
n, g(u, w) = (u, gu(w))

be the homeomorphism where gu is given by the matrix
[

I 0
−C(u)A(u)−1 I

]

Then gfh−1(u, v) = (u, (gfh−1)u(v)) where (gfh−1)u is given by the matrix

[
I 0

−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u) B(u)

0 I

]−1

=

[
I 0

−C(u)A(u)−1 I

] [
A(u) B(u)
C(u) D(u)

] [
A(u)−1 −A(u)−1B(u)

0 I

]

=

[
I 0

−C(u)A(u)−1 I

] [
I 0

C(u)A(u)−1 0

]

=

[
I 0
0 0

]

as claimed (the right hand lower zero in the answer is really a 0 = −C(u)A(u)−1B(u) +
D(u)).

Recall that if f : V → W is a linear map of vector spaces, then the kernel (or null space)
is the subspace

ker{f} = {v ∈ V |f(v) = 0} ⊆ V

and the image (or range) is the subspace

im{f} = {w ∈ W |there is a v ∈ V such that w = f(v)}
Corollary 8.1.10 If

E1
f //

π1   A
AA

AA
AA

A
E2

π2~~}}
}}

}}
}}

X
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is a bundle morphism of constant rank, then the kernel

⋃

p∈X

ker{fp} ⊆ E1

and image ⋃

p∈X

im{fp} ⊆ E2

are subbundles.

Exercise 8.1.11 Let π : E → X be a vector bundle over a connected space X. Assume
given a bundle morphism

E
f //

π
  @

@@
@@

@@
@ E

π
~~~~

~~
~~

~~

X

with f ◦ f = f . Prove that f has constant rank.

Exercise 8.1.12 Let π : E → X be a vector bundle over a connected space X. Assume
given a bundle morphism

E
f //

π
  @

@@
@@

@@
@ E

π
~~~~

~~
~~

~~

X

with f ◦ f = idE. Prove that the space of fixed points

E{f} = {e ∈ E|f(e) = e}

is a subbundle of E.

8.2 The induced bundles

Definition 8.2.1 Assume given a bundle π : E → Y and a continuous map f : X → Y .
Let the fiber product of f and π be the space

f ∗E = X ×Y E = {(x, e) ∈ X × E|f(x) = π(e)}

(topologized as a subspace of X × E), and let the induced bundle be the projection

f ∗π : f ∗E → X, (x, e) 7→ x

Note that the fiber over x ∈ X may be identified with the fiber over f(x) ∈ Y .
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Lemma 8.2.2 If π : E → Y is a vector bundle and f : X → Y a continuous map, then

f ∗π : f ∗E → X

is a vector bundle and the projection f ∗E → E defines a bundle morphism

f ∗E −−−→ E

f∗π

y π

y

X
f−−−→ Y

inducing an isomorphism on fibers. If the input is smooth the output is smooth too.

Proof: Let p ∈ X and let (h, V ) be a bundle chart

h : π−1(V )→ V ×R
k

such that f(p) ∈ V . Then U = f−1(V ) is an open neighborhood of p. Note that

(f ∗π)−1(U) = {(u, e) ∈ X × E|f(u) = π(e) ∈ V }
= {(u, e) ∈ U × π−1(V )|f(u) = π(e)}
= U ×V π−1(V )

and
U ×V (V ×R

k) ∼= U ×R
k

and we define

f ∗h : (f ∗π)−1(U) = U ×V π−1(V )→ U ×V (V ×R
k) ∼= U ×R

k

(u, e) 7→ (u, h(e))↔ (u, hπ(e)e)

Since h is a homeomorphism f ∗h is a homeomorphism (smooth if h is), and since hπ(e)e is
an isomorphism (f ∗h) is an isomorphism on each fiber. The rest of the lemma now follows
automatically.

Theorem 8.2.3 Let

E ′ f̃−−−→ E

π′

y π

y

X ′ f−−−→ X
be a bundle morphism.

Then there is a factorization

E ′ −−−→ f ∗E −−−→ E

π′

y f∗π

y π

y

X ′ X ′ f−−−→ X
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Proof: Let

E ′ → X ′ ×X E = f ∗E

e 7→ (π′(e), f̃(e))

This is well defined since f(π′(e)) = π(f̃(e)). It is linear on the fibers since the composition

(π′)−1(p)→ (f ∗π)−1(p) ∼= π−1(f(p))

is nothing but f̃p.

Exercise 8.2.4 Let i : A ⊆ X be an injective map and π : E → X a vector bundle. Prove
that the induced and the restricted bundles are isomorphic.

Exercise 8.2.5 Show the following statement: if

E ′ h−−−→ Ẽ
g−−−→ E

π′

y π̃

y π

y

X ′ X ′ f−−−→ X

is a factorization of (f, f̃), then there is a unique bundle map

Ẽ //

��?
??

??
??

?
f ∗E

}}{{
{{

{{
{{

X

such that

E ′ //

!!C
CC

CC
CC

C Ẽ

�� !!B
BB

BB
BB

BB

f ∗E // E

commutes.

As a matter of fact, you could characterize the induced bundle by this property.

Exercise 8.2.6 Show that if E → X is a trivial vector bundle and f : Y → X a map,
then f ∗E → Y is trivial.

Exercise 8.2.7 Let E → Z be a vector bundle and let

X
f−−−→ Y

g−−−→ Z

be maps. Show that ((gf)∗E → X) ∼= (f ∗(g∗E)→ X).

Exercise 8.2.8 Let π : E → X be a vector bundle, σ0 : X → E the zero section, and
π0 : E \σ0(X)→ X be the restriction of π. Construct a nonvanishing section on π∗

0E → X.
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8.3 Whitney sum of bundles

Natural constructions you can perform on vector spaces, pass to to constructions on vector
bundles by applying the constructions on each fiber. As an example we here consider the
sum. You should check that you believe the constructions, since we plan to be sketchier
on future examples.

If V1 and V2 are vector spaces, then V1 ⊕ V2 = V1 × V2 is the vector space of pairs (v1, v2)
with vj ∈ Vj. If fj : Vj →Wj is a linear map j = 1, 2, then

f1 ⊕ f2 : V1 ⊕ V2 →W1 ⊕W2

is the linear map which sends (v1, v2) to (f1(v1), f2(v2)).

Definition 8.3.1 Let (π1 : E1 → X,A1) and (π2 : E2 → X,A2) be vector bundles over a
common space X. Let

E1 ⊕ E2 =
∐

x∈X

π−1
1 (x)⊕ π−1

2 (x)

and let π1⊕π2 : E1⊕E2 → X send all points in the x’th summand to x ∈ X. If (h1, U1) ∈ A1

and (h2, U2) ∈ A2 then

h1 ⊕ h2 : (π1 ⊕ π2)
−1(U1 ∩ U2)→ (U1 ∩ U2)× (Rn1 ⊕R

n2)

is h1 ⊕ h2 on each fiber (i.e. over the point p ∈ X it is (h1)p ⊕ (h2)p : π
−1
1 (p)⊕ π−1

2 (p) →
R
n1 ⊕R

n2).

This defines a pre-vector bundle, and the associated vector bundle is called the Whitney
sum of the two vector bundles.

If

Ej
fj //

πj
��@

@@
@@

@@
@

E ′
j

π′

j��~~
~~

~~
~

X

are bundle morphisms over X, then

E1 ⊕ E2
f1⊕f2 //

π1⊕π2 $$H
HH

HH
HH

HH
H

E ′
1 ⊕ E ′

2

π′

1⊕π
′

2zzvvvvvvvvv

X

is a bundle morphism defined as f1 ⊕ f2 on each fiber.

Exercise 8.3.2 Check that if all bundles and morphisms are smooth, then the Whitney
sum is a smooth bundle too, and that f1 ⊕ f2 is a smooth bundle morphism over X.
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Note 8.3.3 Although ⊕ = × for vector spaces, we must not mix them for vector bundles,
since × is reserved for another construction: the product of two bundles E1×E2 → X1×X2.

Exercise 8.3.4 Let

ε = {(p, λp) ∈ R
n+1 ×R

n+1| |p| = 1, λ ∈ R}
Show that the projection down to Sn defines a trivial bundle.

Definition 8.3.5 A bundle E → X is called stably trivial if there is a trivial bundle ε→ X
such that E ⊕ ε→ X is trivial.

Exercise 8.3.6 Show that the tangent bundle of the sphere TSn → Sn is stably trivial.

Exercise 8.3.7 Show that the sum of two trivial bundles is trivial. Also that the sum of
two stably trivial bundles is stably trivial.

Exercise 8.3.8 Given three bundles πi : Ei → X, i = 1, 2, 3. Show that the set of pairs
(f1, f2) of bundle morphisms

Ei
fi //

πi   A
AA

AA
AA

E3

π3~~}}
}}

}}
}}

X

(i = 1, 2) is in one-to-one correspondence with the set of bundle morphisms

E1 ⊕ E2
//

π1⊕π2 $$I
IIIIIIII

E3

π3~~}}
}}

}}
}}

X

8.4 More general linear algebra on bundles

There are many constructions on vector spaces that pass on to bundles. We list a few.
The examples 1-4 and 8-9 will be used in the text, and the others are listed for reference,
and for use in exercises.

8.4.1 Constructions on vector spaces

1. The (Whitney) sum. If V1 and V2 are vector spaces, then V1 ⊕ V2 is the vector space
of pairs (v1, v2) with vj ∈ Vj. If fj : Vj →Wj is a linear map j = 1, 2, then

f1 ⊕ f2 : V1 ⊕ V2 → W1 ⊕W2

is the linear map which sends (v1, v2) to (f1(v1), f2(v2)).
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2. The quotient. If W ⊆ V is a linear subspace we may define the quotient V/W as the
set of equivalence classes V/ ∼ under the equivalence relation that v ∼ v ′ if there is
a w ∈ W such that v = v′ + w. The equivalence class containing v ∈ V is written v̄.
We note that V/W is a vector space with

av̄ + bv̄′ = av + bv′

If f : V → V ′ is a linear map with f(W ) ⊆ W ′ then f defines a linear map

f̄ : V/W → V ′/W ′

via the formula f̄(v̄) = f(v) (check that this makes sense).

3. The hom-space. Let V and W be vector spaces, and let

Hom(V,W )

be the set of linear maps f : V → W . This is a vector space via the formula (af +
bg)(v) = af(v) + bg(v). Note that

Hom(Rm,Rn) ∼= Mn×m(R)

Also, if R : V → V ′ and S : W →W ′ are linear maps, then we get a linear map

Hom(V ′,W )
Hom(R,S)−−−−−−→ Hom(V,W ′)

by sending f : V ′ →W to

V
R−−−→ V ′ f−−−→ W

S−−−→ W ′

(note that the direction of R is turned around!).

4. The dual space This is a special case of the example above: if V is a vector space,
then the dual space is the vector space

V ∗ = Hom(V,R)

5. The tensor product. Let V and W be vector spaces. Consider the set of bilinear
maps from V ×W to some other vector space V ′. The tensor product

V ⊗W

is the vector space codifying this situation in the sense that giving a bilinear map
V ×W → V ′ is the same as giving a linear map V ⊗W → V ′. With this motivation
it is possible to write down explicitly what V ⊗ W is: as a set it is the set of all
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finite linear combinations of symbols v ⊗ w where v ∈ V and w ∈ W subject to the
relations

a(v ⊗ w) =(av)⊗ w = v ⊗ (aw)

(v1 + v2)⊗ w =v1 ⊗ w + v2 ⊗ w
v ⊗ (w1 + w2) =v ⊗ w1 + v ⊗ w2

where a ∈ R, v, v1, v2 ∈ V and w,w1, w2 ∈ W . This is a vector space in the obvious
manner, and given linear maps f : V → V ′ and g : W →W ′ we get a linear map

f ⊗ g : V ⊗W → V ′ ⊗W ′

by sending
∑k

i=1 vi ⊗ wi to
∑k

i=1 f(vi)⊗ g(wi) (check that this makes sense!).

Note that
R
m ⊗R

n ∼= R
mn

and that there are isomorphisms

Hom(V ⊗W,V ′){bilinear maps V ×W → V ′}
The bilinear map associated to a linear map f : V ⊗W → V ′ sends (v, w) ∈ V ×W
to f(v ⊗ w). The linear map associated to a bilinear map g : V × W → V ′ sends∑
vi ⊗ wi ∈ V ⊗W to

∑
g(vi, wi).

6. The exterior power. Let V be a vector space. The kth exterior power ΛkV is defined
as the quotient of the k-fold tensor product V ⊗ · · · ⊗ V by the subspace generated
by the elements v1 ⊗ v2 ⊗ · · · ⊗ vk where vi = vj for some i 6= j. The image of
v1 ⊗ v2 ⊗ · · · ⊗ vk in ΛkV is written v1 ∧ v2 ∧ · · · ∧ vk. Note that it follows that
v1 ∧ v2 = −v2 ∧ v1 since

0 = (v1 + v2) ∧ (v1 + v2) = v1 ∧ v1 + v1 ∧ v2 + v2 ∧ v1 + v2 ∧ v2 = v1 ∧ v2 + v2 ∧ v1

and similarly for more ∧-factors: swapping two entries changes sign.

Note that the dimension of Λk
R
n is

(
n
k

)
. There is a particularly nice isomorphism

Λn
R
n → R given by the determinant function.

7. The symmetric power. Let V be a vector space. The kth symmetric power SkV is
defined as the quotient of the k-fold tensor product V ⊗ · · · ⊗ V by the subspace
generated by the elements v1 ⊗ v2 ⊗ · · · ⊗ vi ⊗ · · · ⊗ vj ⊗ · · · ⊗ vk − v1 ⊗ v2 ⊗ · · · ⊗
vj ⊗ · · · ⊗ vi ⊗ · · · ⊗ vk.

8. Alternating forms. The space of alternating forms Altk(V ) on a vector space V is
defined to be

(
ΛkV

)∗
. That is Altk(V ) consists of the multilinear maps

V × · · · × V → R

in k V -variables which are zero on inputs with repeated coordinates.

The alternating forms on the tangent space is the natural home of the symbols like
dxdydz you’ll find in elementary multivariable analysis.
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9. Symmetric bilinear forms. Let V be a vector space. The space of SB(V ) symmetric
bilinear forms is the space of bilinear maps f : V ×V → R such that f(v, w) = f(w, v).
In other words, the space of symmetric bilinear forms is SB(V ) = (S2V )

∗
.

8.4.2 Constructions on vector bundles

When translating these constructions to vector bundles, it is important not only to bear in
mind what they do on each individual vector space but also what they do on linear maps.
Note that some of the examples “turn the arrows around”. The Hom-space in 8.4.13 is a
particular example of this: it “turns the arrows around” in the first variable, but not in the
second.

Instead of giving the general procedure for translating such constructions to bundles in
general, we do it on the Hom-space which exhibit all the potential difficult points.

Example 8.4.3 Let (π : E → X,B) and (π′ : E ′ → X,B′) be vector bundles of dimension
m and n. We define a pre-vector bundle

Hom(E,E ′) =
∐

p∈X

Hom(Ep, E
′
p)→ X

of dimension mn as follows. The projection sends the pth summand to p, and given bundle
charts (h, U) ∈ B and (h′, U ′) ∈ B′ we define a bundle chart (Hom(h−1, h′), U ∩ U ′). On
the fiber above p ∈ X,

Hom(h−1, h′)p : Hom(Ep, E
′
p)→ Hom(Rm,Rn) ∼= R

mn

is given by sending f : Ep → E ′
p to

R
m h−1

p−−−→ Ep
f−−−→ E ′

p

h′p−−−→ R
n

Exercise 8.4.4 Let E → X and E ′ → X be vector bundles. Show that there is a one-to-
one correspondence between bundle morphisms

E
f //

  @
@@

@@
@@

@ E ′

~~}}
}}

}}
}}

X

and sections of Hom(E,E ′)→ X.

Exercise 8.4.5 Convince yourself that the construction of Hom(E,E ′) → X outlined
above really gives a vector bundle, and that if

E
f //

��@
@@

@@
@@

@
E1

~~}}
}}

}}
}}

X

, and E ′
f ′ //

  @
@@

@@
@@

@
E ′

1

~~}}
}}

}}
}

X
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are bundle morphisms, we get another

Hom(E1, E
′)

Hom(f,f ′) //

&&LLLLLLLLLLL
Hom(E,E ′

1)

yyrrrrrrrrrrr

X

Exercise 8.4.6 Write out the definition of the quotient bundle, and show that if

E
f //

  @
@@

@@
@@

@ E ′

~~}}
}}

}}
}}

X

is a bundle map, F ⊆ E and F ′ ⊆ E ′ are subbundles such that im{f |F} ⊆ F ′, then we get
a bundle morphism

E/F
f̄ //

""D
DD

DD
DD

D
E ′/F ′

||xx
xxxxx

x

X

Exercise 8.4.7 Write out the definition of the bundle of alternating k-forms, and if you
are still not bored stiff, do some more examples. If you are really industrious, find out on
what level of generality these ideas really work, and prove it there.

Exercise 8.4.8 Let L→M be a line bundle (one-dimensional vector bundle). Show that
L⊗ L→M is trivial.

8.5 Riemannian structures

In differential geometry one works with more highly structured manifolds than in differ-
ential topology. In particular, all manifolds should come equipped with metrics on the
tangent spaces which vary smoothly from point to point. This is what is called a Rie-
mannian manifold, and is crucial to many applications (for instance general relativity is
all about Riemannian manifolds). In this section we will show that all smooth manifolds
have a structure of a Riemannian manifold. However, the reader should notice that there
is a huge difference between merely saying that a given manifold has some Riemannian
structure, and actually working with manifolds with a chosen Riemannian structure.

Definition 8.5.1 Let π : E → X be a vector bundle, and let SB(π) : SB(E)→ X be the
bundle whose fiber above p ∈ X is given by the symmetric bilinear forms Ep × Ep → R

8.4.19 (that is, SB(E) = (S2E)∗ → X in the language of 8.4.14 and 8.4.17). A Riemannian
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metric is a section g : X → SB(E), such that for every p ∈ X gp : Ep × Ep → R is
(symmetric, bilinear and) positive definite. The Riemannian metric is smooth if E → X
and the section g are smooth.

Definition 8.5.2 A Riemannian manifold is a smooth manifold with a smooth Rieman-
nian metric on the tangent bundle.

Theorem 8.5.3 Let M be a differentiable manifold and let E → M be an n-dimensional
smooth bundle with bundle atlas B. Then there is a Riemannian structure on E →M

Proof: Choose a good atlas A = {(xi, Vi)}i∈N subordinate to {U |(h, U) ∈ B} and a smooth
partition of unity {φi : M → R} with supp(φi) ⊂ Vi as given by in the proof of theorem
7.4.1.

Since for any of the Vi’s, there is a bundle chart (h, U) in B such that Vi ⊆ U , the bundle
restricted to any Vi is trivial. Hence we may choose a Riemannian structure, i.e. a section

σi : Vi → SB(E)|Vi

such that σi is (bilinear, symmetric and) positive definite on every fiber. For instance we
may let σi(p) ∈ SB(Ep) be the positive definite symmetric bilinear map

Ep × Ep
hp×hp−−−−→ R

n ×R
n (v,w)7→v·w=vTw−−−−−−−−−→ R

Let gi : M → SB(E) be defined by

gi(p) =

{
φi(p)σi(p) if p ∈ Vi
0 otherwise

and let g : M → SB(E) be given as the sum g(p) =∑
i gi(p). The property “positive definite” is convex,

i.e. if σ1 and σ2 are two positive definite forms on a
vector space and t ∈ [0, 1], then tσ1 + (1− t)σ2 is also
positive definite (since tσ1(v, v) + (1− t)σ2(v, v) must
obviously be nonennegative, and can be zero only if
σ1(v, v) = σ2(v, v) = 0). By induction we get that g(p)
is positive definite since all the σi(p)’s were positive
definite.

In the space of symmet-

ric bilinear forms, all the

points on the straight line

between two positive defi-

nite forms are positive def-

inite.

Corollary 8.5.4 All smooth manifolds possess Riemannian metrics.
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8.6 Normal bundles

Definition 8.6.1 Given a bundle π : E → X with a chosen Riemannian metric g and a
subbundle F ⊆ E, then we define the normal bundle with respect to g of F ⊆ E to be the
subset

F⊥ =
∐

p∈X

F⊥
p

given by taking the orthogonal complement of Fp ∈ Ep (relative to the metric g(p)).

Lemma 8.6.2 Given a bundle π : E → X with a Riemannian metric g and a subbundle
F ⊂ E, then

1. the normal bundle F⊥ ⊆ E is a subbundle

2. the composite
F⊥ ⊆ E → E/F

is an isomorphism of bundles over X.

Proof: Choose a bundle chart (h, U) such that

h(F |U) = U × (Rk × {0}) ⊆ U ×R
n

Let vj(p) = h−1(p, ej) ∈ Ep for p ∈ U . Then (v1(p), . . . , vn(p)) is a basis for Ep whereas
(v1(p), . . . , vk(p)) is a basis for Fp. We can then perform the Gram-Schmidt process with
respect to the metric g(p) to transform these bases to orthogonal bases (v ′1(p), . . . , v

′
n(p))

for Ep, (v′1(p), . . . , v
′
k(p)) for Fp and (v′k+1(p), . . . , v

′
n(p)) for F⊥

p .

We can hence define a new bundle chart (h′, U) given by

h′ : E|U → U ×R
n

n∑

i=1

aiv
′
i(p) 7→ (p, (a1, . . . , an))

(it is a bundle chart since the metric varies continuously with p, and so the basis change
from {vi} to {v′i} is not only an isomorphism on each fiber, but a homeomorphism) which
gives F⊥|U as U × ({0} ×R

n−k).

For the second claim, observe that the dimension of F⊥ equal to the dimension of E/F ,
and so the claim follows if the map F⊥ ⊆ E → E/F is injective on every fiber, but this is
true since Fp ∩ F⊥

p = {0}.

Note 8.6.3 Note that the bundle chart h′ produced in the lemma above is orthogonal
on every fiber (i.e. g(x)(e, e′) = (h′(e)) · (h′(e′))). This means that all the transition
functions between maps produced in this fashion would be orthogonal, i.e. members of the
orthogonal subgroup O(n) ⊆ GLn(R). In conclusion:
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Proposition 8.6.4 Every (smooth) manifold posesses an atlas whose transition functions
are orthogonal.

Exercise 8.6.5 Consider a bundle E → X with a Riemannian metric and a subbundle
F ⊆ E. Show that the morphism

F ⊕ F⊥ //

$$H
HHHHHHHH

E

����
��

��
��

X

induced by the inclusions is an isomorphism.

Definition 8.6.6 Let N ⊆M be a smooth submanifold. The normal bundle ⊥N → N is
defined as the quotient bundle (TM |N)/TN → N (see exercise 8.4.6).

In a submanifold N ⊆ M the tangent bundle of N is naturally a subbundle of the

tangent bundle of M restricted to N , and the normal bundle is the quotient on each

fiber, or isomorphically in each fiber: the normal space

More generally, if f : N →M is an imbedding, we define the normal bundle ⊥fN → N to
be the bundle (f ∗TM)/TN → N .

Note 8.6.7 With respect to some Riemannian structure on M , we note that the normal
bundle ⊥N → N of N ⊆M is isomorphic to (TN)⊥ → N .

Exercise 8.6.8 Let M ⊆ R
n be a smooth submanifold. Prove that ⊥M ⊕ TM → M is

trivial.

Exercise 8.6.9 Consider Sn as a smooth submanifold of R
n+1 in the usual way. Prove

that the normal bundle is trivial.

Exercise 8.6.10 Let M be a smooth manifold, and consider M as a submanifold by
imbedding it as the diagonal in M ×M (i.e. as the set {(p, p) ∈ M ×M}: show that
it is a smooth submanifold). Prove that the normal bundle ⊥M → M is isomorphic to
TM →M .
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8.7 Transversality

In theorem 6.4.3 we learned about regular values, and inverse images of these. Often
interesting submanifolds naturally occur not as inverse images of points, but as inverse
images of submanifolds. How is one to guarantee that the inverse image of a submanifold
is a submanifold? The relevant term is transversality.

Definition 8.7.1 let f : N → M be a smooth map and L ⊂ M a smooth submanifold.
We say that f is transverse to L ⊂M if for all p ∈ f−1(L) the induced map

TpN
Tpf−−−→ Tf(p)M −−−→ Tf(p)M/Tf(p)L

is surjective.

Note 8.7.2 If L = {q} in the definition above, we recover the definition of a regular point.

Another common way of expressing transversality is to say that for all p ∈ f−1(L) the
image of Tpf and Tf(p)L together span Tf(p)M : this is easier to picture

The picture to the left is a typical transverse situation, whereas the situation to

the right definitely can’t be transverse since im{Tpf} and Tf(p)L only spans a one-

dimensional space. Beware that pictures like this can be misleading, since the sit-

uation to the left fails to be transverse if f slows down at the intersection so that

im{Tpf} = 0.

Note that the definition only talks about points in f−1(L), and so if f(N) ∩ L = ∅ the
condition is vacuous and f and L are transverse.
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A map is always transverse to a submanifold its image does not intersect.

Furthermore if f is a submersion (i.e. Tpf is always surjective), then f is transverse to all
submanifolds.

Theorem 8.7.3 Assume f : N →M is transverse to a k-codimensional submanifold L ⊆
M and that f(N) ∩ L 6= ∅. Then f−1(L) ⊆ N is a k-codimensional manifold and there is
an isomorphism

⊥f−1(L)
∼= //

%%LLLLLLLLLL
f ∗(⊥L)

yyssss
sss

sss

f−1(L)

Proof: Let q ∈ L and p ∈ f−1(q), and choose a chart (y, V ) around q such that y(q) = 0
and

y(L ∩ V ) = y(V ) ∩ (Rn−k × {0})
Let π : R

n → R
k be the projection π(t1, . . . , tn) = (tn−k+1, . . . , tn). Consider the diagram

TpN
Tpf−−−→ TqM −−−→ TqM/TpL

Tqy

y∼=

y∼=

T0R
n −−−→ T0R

n/T0R
n−k

∼=−−−→ T0R
k

The top horizontal composition is surjective by the transversality hypothesis, and the
lower horizontal composite is defined as T0π. Then we get that p is a regular point to the
composite

U = f−1(V )
f |U−−−→ V

y−−−→ y(V )
π|y(V )−−−→ R

k

and varying p in f−1(q) we get that 0 ∈ R
k is a regular value. Hence

(πyf |U)−1(0) = f−1y−1π−1(0) ∩ U = f−1(L) ∩ U
is a submanifold of codimension k in U , and therefore f−1(L) ⊆ N is a k-codimensional
submanifold.

Consider the diagram

T (f−1(L)) −−−→ TLy
y

TN |f−1(L) −−−→ TM |Ly
y

(TN |f−1(L))/T (f−1(L)) = ⊥f−1(L) −−−→ (TM |L)/TL = ⊥L
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Transversality gives that the map from TN |f−1(L) to (TM |L)/TL is surjective on every
fiber, and so – for dimensional reasons – ⊥f−1(L)→ ⊥L is an isomorphism on every fiber.
This then implies that ⊥f−1(L)→ f ∗(⊥L) must be an isomorphism by lemma 5.3.12.

Corollary 8.7.4 Consider a smooth map f : N → M and a regular value q ∈ M . Then
the normal bundle ⊥f−1(q)→ f−1(q) is trivial.

Note 8.7.5 In particular, this gives yet another proof of the fact that the normal bundle
of Sn ⊆ R

n+1 is trivial. Also it shows that the normal bundle of O(n) ⊆Mn(R) is trivial,
and all the other manifolds we constructed in chapter 5 as the inverse image of regular
values. A side effect of this is that the tangent bundles over the manifolds that are inverse
images of regular values of maps between euclidean spaces are stably trivial.

Exercise 8.7.6 Consider two smooth maps

M
f−−−→ N

g←−−− L

Define the fiber product

M ×N L = {(p, q) ∈ M × L|f(p) = g(q)}

(topologized as a subspace of the product M × L). Assume that for all (p, q) ∈ M ×N L
the subspaces spanned by the images of TpM and TqL equals all of Tf(p)N . Show that the
fiber product M ×N L may be given a smooth structure.

8.8 Orientations

The space of alternating forms Altk(V ) on a vector space V is defined to be
(
ΛkV

)∗
=

Hom(ΛkV,R), or alternatively, Altk(V ) consists of the multilinear maps

V × · · · × V → R

in k V -variables which are zero on inputs with repeated coordinates.

In particular, if V = R
k we have the determinant function

det ∈ Altk(Rk)

given by sending v1 ∧ · · · ∧ vk to the determinant of the k× k-matrix [v1 . . . vk] you get by
considering vi as the ith column.

In fact, det :
∧k

R
k → R is an isomorphism.

Exercise 8.8.1 Check that the determinant actually is an alternating form and an iso-
morphism.
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Definition 8.8.2 An orientation on a k-dimensional vector space V is an equivalence class
of bases on V , where (v1, . . . vk) and (w1, . . . wk) are equivalent if v1∧· · ·∧vk and w1∧· · ·∧wk
differ by a positive scalar. The equivalence class, or orientation class, represented by a
basis (v1, . . . vk) is written [v1, . . . vk].

Note 8.8.3 That two bases v1∧· · ·∧vk and w1∧· · ·∧wk in R
k define the same orientation

class can be formulated by means of the determinant:

det(v1 . . . vk)/det(w1 . . . wk) > 0

as a matter of fact, this formula is valid for any k-dimensional vector space if you choose
an isomorphism V → R

k (the choice turns out not to matter).

Note 8.8.4 On a vector space V there are exactly two orientations. For instance, on R
k

the two orientations are [e1, . . . , ek] and [−e1, e2, . . . , ek] = [e2, e1, e3 . . . , ek].

Note 8.8.5 An isomorphism of vector spaces f : V → W sends an orientation O =
[v1, . . . , vk] to the orientation fO = [f(v1), . . . , f(vk)].

Definition 8.8.6 An oriented vector space is a vector space together with a chosen orien-
tation. An isomorphism of oriented vector spaces either preserve or reverse the orientation.

Definition 8.8.7 Let E → X be a vector bundle. An orientation on E → X is a family
O = {Op}p∈X such that Op is an orientation on the fiber Ep, and such that around any
point p ∈ X there is a bundle chart (h, U) such that for all q ∈ U the isomorphism

hq : Eq → R
k

sends Oq to hpOp.

Definition 8.8.8 A vector bundle is orientable if it can be equipped with an orientation.

Example 8.8.9 A trivial bundle is orientable.

Example 8.8.10 Not all bundles are orientable, for instance, the canonical line bundle
η1 → S1 is not orientable: start choosing orientations, run around the circle, and have a
problem.

Definition 8.8.11 A manifold M is orientable if the tangent bundle is orientable.

8.9 An aside on Grassmann manifolds

This section is not used anywhere else and may safely be skipped. It focuses on a partic-
ularly interesting set of manifolds, namely the Grassmann manifolds. Their importance
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to bundle theory stem from the fact that in certain precise sense the bundles over a given
manifold M is classified by a set of equivalence classes from M into Grassmann manifolds.
This is really cool, but unfortunately beyond the scope of our current investigations.

Exercise 8.9.1 The following exercises are rather hard, so it is fully legal just to use them
as vague orientation into interesting stuff we can’t pursue to the depths it deserves.

The Grassmann manifold Gk
n is defined as a set to be the set of all k-dimensional linear

subspaces of R
n. This may be given the structure of a smooth manifold (note that the

case k = 1 is the real projective space).

First we identify Gk
n with the quotient space of V k

n , where two k-frames F, F ′ ∈ Mnk(R)
are said to be equivalent if there is an A ∈ O(k) such that F = F ′A. This gives a topology
on Gk

n (check that it is Hausdorff by using the distance from a k-plane to a point).

We have to make charts. Let g ∈ O(n), and let

yg : Mk×(n−k)(R) ∼= R
n(n−k) → Gk

n

A = [aij] 7→ span

{
gei +

k∑

j=1

aijgej+k

}

and let Ug be the image of yg. These will be the inverses of our charts.

As a masochistic exercise in linear algebra you may prove that this defines a smooth
manifold structure on Gk

n.

Exercise 8.9.2 Define the canonical k-plane bundle over the Grassmann manifold

γkn → Gk
n

by setting

γkn = {(E, v)|E ∈ Gk
n, v ∈ E}

(note that γ1
n = ηn → RPn = G1

n). (hint: use the charts in the previous exercise, and let

hg : π
−1(Ug)→ Ug × Eg

send (E, v) to (E, prEg
v)).

Note 8.9.3 The Grassmann manifolds are important because there is a neat way to de-
scribe vector bundles as maps from manifolds into Grassmann manifolds, which makes
their global study much more transparent. We won’t have the occasion to study this
phenomenon, but we include the following example.



122 CHAPTER 8. CONSTRUCTIONS ON VECTOR BUNDLES

Exercise 8.9.4 Let M ⊆ R
n be a smooth k-dimensional manifold. Then we define the

generalized Gauss map
TM −−−→ γkny

y
M −−−→ Gk

n

by sending p ∈M to TpM ∈ Gk
n, and [γ] ∈ TM to (Tγ(0)M, [γ]). Check that it is a bundle

morphism.



Chapter 9

Differential equations and flows

Many applications lead to situations where you end up with a differential equation on some
manifold. Solving these are no easier than it is in the flat case. However, the language of
tangent bundles can occasionally make it clearer what is going on, and where the messy
formulas actually live.

Furthermore, the existence of solutions to differential equations are essential to show
that the deformations we naturally accept performed on manifolds actually make sense
smoothly. This is reflected in that the flows we construct are smooth.

Example 9.0.5 In the flat case, we are used to draw “flow charts”. E.g., given a first order
differential equation

[
x′(t)
y′(t)

]
= f(x(t), y(t))

we associate to each point (x, y) the vector f(x, y). In this fashion a first order ordinary
differential equation may be identified with a vector field. Each vector would be the velocity
vector of a solution to the equation passing through the point (x, y). If f is smooth, the
vectors will depend smoothly on the point (it is a smooth vector field), and the picture
would resemble a flow of a liquid, where each vector would represent the velocity of the
particle at the given point. The paths of each particle would be solutions of the differential
equation, and assembling all these solutions, we could talk about the flow of the liquid.

123
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The vector field resulting from a sys-

tem of ordinary differential equa-

tions (here: a predator-prey system

with a stable equilibrium).

A solution to the differential equa-

tion is a curve whose derivative

equals the corresponding vector

field.

9.1 Flows and velocity fields

If we are to talk about differential equations on manifolds, the confusion of where the
velocity fields live (as opposed to the solutions) has to be sorted out. The place of velocity
vectors is the tangent bundle, and a differential equation can be represented by a vector
field, that is a section in the tangent bundle TM →M , and its solutions by a “flow”:

Definition 9.1.1 Let M be a smooth manifold. A (global) flow is a smooth map

Φ: R×M →M

such that for all p ∈M and s, t ∈ R

• Φ(0, p) = p

• Φ(s,Φ(t, p)) = Φ(s + t, p)

We are going to show that on a compact manifold there is a one-to-one correspondence
between vector fields and global flows. In other words, first order ordinary differential
equations have unique solutions on compact manifolds. This statement is true also for
non-compact manifolds, but then we can’t expect the flows to be defined on all of R×M
anymore, and we have to talk about local flows. We will return to this later, but first we
will familiarize ourselves with global flows.
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Definition 9.1.2 Let M = R, let

L : R×R→ R

be the flow given by L(s, t) = s+ t.

Example 9.1.3 Consider the map

Φ: R×R
2 → R

2

given by (
t,

[
p
q

])
7→ e−t/2

[
cos t sin t
− sin t cos t

] [
p
q

]

Exercise 9.1.4 Check that this actually is a global flow!

For fixed p and q this is the solution to the initial value problem

[
x′

y′

]
=

[
−1/2 1
−1 −1/2

] [
x
y

]
,

[
x(0)
y(0)

]
=

[
p
q

]

whose corresponding vector field was used in the figures in example 9.0.5.

A flow is a very structured representation of a vector field:

Definition 9.1.5 Let Φ be a flow on the smooth manifold M . The velocity field of Φ is
defined to be the vector field

→

Φ: M → TM

where
→

Φ(p) = [t 7→ Φ(t, p)].

The surprise is that every vector field is the velocity field of a flow (see the integrability
theorems 9.2.2 and 9.4.2)

Example 9.1.6 Consider the global flow of 9.1.2. Its velocity field

→

L : R→ TR

is given by s 7→ [Ls] where Ls is the curve t 7→ Ls(t) = L(s, t) = s + t. Under the
diffeomorphism

TR→ R×R, [ω] 7→ (ω(0), ω′(0))

we see that
→

L is the non-vanishing vector field corresponding to picking out 1 in every
fiber.
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Example 9.1.7 Consider the flow Φ in 9.1.3. Under the diffeomorphism

TR
2 → R

2 ×R
2, [ω] 7→ (ω(0), ω′(0))

the velocity field
→

Φ: R
2 → TR

2 corresponds to

R
2 → R

2 ×R
2,

[
p
q

]
7→
([
p
q

]
,

[
−1/2 1
−1 −1/2

] [
p
q

])

Definition 9.1.8 Let Φ be a global flow on a smooth manifold M , and p ∈M . The curve

R→M, t 7→ Φ(t, p)

is called the flow line of Φ through p. The image Φ(R, p) of this curve is called the orbit
of p.

–0.5

0.5

1

1.5

2

2.5

–4 –3 –2 –1 1

The orbit of the point [ 1
0 ] of the flow of example 9.1.3.

The orbits split the manifold into disjoint sets:

Proposition 9.1.9 Let
Φ: R×M →M

be a flow on a smooth manifold M . Then

p ∼ q ⇔ there is a t such that Φ(t, p) = q

defines an equivalence relation on M .

Proof: Symmetry (Φ(0, p) = p) and reflexivity (Φ(−t,Φ(t, p)) = p) are obvious, and
transitivity follows since if

pi+1 = Φ(ti, pi), i = 0, 1

then
p2 = Φ(t1, p1) = Φ(t1,Φ(t0, p0)) = Φ(t1 + t0, p0)
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Example 9.1.10 The flow line through 0 of the flow L of definition 9.1.2 is the identity
on R. The only orbit is R.

More interesting: the flow lines of the flow of example 9.1.3 are of two types: the constant
flow line at the origin, and the spiralling flow lines filling out the rest of the space.

Note 9.1.11 (Contains important notation, and a reinterpretation of the term “global
flow”). Writing Φt(p) = Φ(t, p) we get another way of expressing a flow. To begin with we
have

• Φ0 = identity

• Φs+t = Φs ◦ Φt

We see that for each t the map Φt is a diffeomorphism (with inverse Φ−t) from M to M .
The assignment t 7→ Φt sends sum to composition of diffeomorphisms and so defines a
“group homomorphism”

R→ Diff(M)

from the additive group of real numbers to the group of diffeomorphism (under composi-
tion) on M .

We have already used this notation in connection with the flow L of defintion 9.1.2: Ls(t) =
L(s, t) = s+ t.

Lemma 9.1.12 Let Φ be a global flow on M and s ∈ R. Then the diagram

TM
TΦs−−−→
∼=

TM

→

Φ

x →

Φ

x

M
Φs−−−→
∼=

M

commutes.

Proof: One of the composites sends q ∈ M to [t 7→ Φ(s,Φ(t, q))] and the other sends
q ∈ M to [t 7→ Φ(t,Φ(s, q))].

Definition 9.1.13 Let
γ : R→M

be a smooth curve on the manifold M . The velocity vector γ̇(s) ∈ Tγ(s)M of γ at s ∈ R is
defined as the tangent vector

γ̇(s) = Tγ
→

L(s) = [γLs] = [t 7→ γ(s+ t)]
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The velocity vector γ̇(s) of the curve γ at s lives in Tγ(s)M .

Note 9.1.14 The curve γLs is given by t 7→ γ(s + t). The term velocity vector becomes
easier to understand when we interpret it as a derivation: if φ̄ : (M, γ(s))→ (R, φγ(s)) is
a function germ, then the derivation corresponding to the velocity vector sends φ̄ to

XγLs
(φ̄) = (φγLs)

′(0) = (φγ)′(s)

The following diagram can serve as a reminder for the construction and will be used later:

TR
Tγ // TM

��
R

→

L

OO
γ̇

;;xxxxxxxxx γ //M

The velocity field and the flow are intimately connected, and the relation can be expressed
in many ways. Here are some:

Lemma 9.1.15 Let Φ be a flow on the smooth manifold M , p ∈ M . Let φp be the flow
line through p given by φp(s) = Φ(s, p). Then the diagrams

R
φp−−−→ M

Ls

y∼= Φs

y∼=

R
φp−−−→ M

and

TR
Tφp // TM

R

→

L

OO
φ̇p

;;xxxxxxxxx

φp

//M

→

Φ

OO

commutes. For future reference, we have for all s ∈ R that

φ̇p(s) =
→

Φ(φp(s))

= TΦs[φp]
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Proof: All these claims are variations of the fact that

Φ(s + t, q) = Φ(s,Φ(t, q)) = Φ(t,Φ(s, q))

Proposition 9.1.16 Let Φ be a flow on a smooth manifold M , and p ∈M . If

γ : R→M

is the flow line of Φ through p (i.e., γ(t) = Φ(t, p)) then either

• γ is an injective immersion

• γ is a periodic immersion (i.e., there is a T > 0 such that γ(s) = γ(t) if and only if
there is an integer k such that s = t+ kT ), or

• γ is constant.

Proof: Note that since TΦsγ̇(0) = TΦs[γ] = γ̇(s) and Φs is a diffeomorphism γ̇(s) is either
zero for all s or never zero at all.

If γ̇(s) = 0 for all s, this means that γ is constant since for all function germs φ : (M, γ(s))→
(R, φγ(s)) we get (φγ)′ = 0.

If γ̇(s) = Tγ[Ls] is never zero we get that Tγ is injective (since [Ls] 6= 0 ∈ TsR ∼= R),
and so γ is an immersion. Either it is injective, or there are two numbers s > s′ such that
γ(s) = γ(s′). This means that

p = γ(0) = Φ(0, p) = Φ(s− s, p) = Φ(s,Φ(−s, p))
= Φ(s, γ(−s)) = Φ(s, γ(−s′)) = Φ(s− s′, p)
= γ(s− s′)

Since γ is continuous γ−1(p) ⊆ R is closed and not empty (it contains 0 and s − s′ > 0
among others). As γ is an immersion it is a local imbedding, so there is an ε > 0 such that

(−ε, ε) ∩ γ−1(0) = {0}

Hence
S = {t > 0|p = γ(t)} = {t ≥ ε|p = γ(t)}

is closed and bounded below. This means that there is a smallest positive number T such
that γ(0) = γ(T ). Clearly γ(t) = γ(t + kT ) for all t ∈ R and any integer k.

On the other hand we get that γ(t) = γ(t′) only if t− t′ = kT for some integer k. For if
(k−1)T < t−t′ < kT , then γ(0) = γ(kT −(t−t′)) with 0 < kT −(t−t′) < T contradicting
the minimality of T .
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Note 9.1.17 In the case the flow line is a periodic immersion we note that γ must factor
through an imbedding f : S1 →M with f(eit) = γ(tT/2π). That it is an imbedding follows
since it is an injective immersion from a compact space.

In the case of an injective immersion there is no reason to believe that it is an imbedding.

Example 9.1.18 The flow lines in example 9.1.3 are either constant (the one at the origin)
or injective immersions (all the others). The flow

Φ: R×R
2 → R

2,

(
t,

[
x
y

])
7→
[
cos t − sin t
sin t cos t

] [
x
y

]

has periodic flow lines (except at the origin).

Exercise 9.1.19 Display an injective immersion f : R→ R
2 which is not the flow line of

a flow.

9.2 Integrability: compact case

A difference between vector fields and flows is that vector fields can obviously be added,
which makes it easy to custom build vector fields for a particular purpose. That this is true
also for flows is far from obvious, but is one of the nice consequences of the integrability
theorem 9.2.2 below. The importance of the theorem is that we may custom-build flows
for particular purposes simply by specifying their velocity fields.

Going from flows to vector fields is simple: just take the velocity field. The other way is
harder, and relies on the fact that first order ordinary differential equations have unique
solutions.

Definition 9.2.1 Let X : M → TM be a vector field. A solution curve is a curve γ : J →
M (where J is an open interval) such that γ̇(t) = X(γ(t)) for all t ∈ J .

We note that the equation

φ̇p(s) =
→

Φ(φp(s))

of lemma 9.1.15 says that “the flow lines are solution curves to the velocity field”. This is
the key to proof of the integrability theorem:

Theorem 9.2.2 Let M be a smooth compact manifold. Then the velocity field gives a
natural bijection between the sets

{global flows on M}� {vector fields on M}
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Proof: Given a vector field X on M we will produce a unique flow Φ whose vector field is
→

Φ = X.

We problem hinges on a local question which we refer away to analysis (although the proof
contains nice topological stuff). Given a point p ∈ M choose a chart x = xp : U → U ′ with
p ∈ U . Define f : U ′ → R

n as the composite given by the diagram

TU
Tx−−−→
∼=

TU ′ −−−→
∼=

U ′ ×R
n prRn−−−→ R

n

X|U

x
U

x−−−→
∼=

U ′

(here the topmost composite sends [ω] to (xω)′(0), and in particular γ̇(t) = [γLt] to
(xγ)′(t)). Then we get that claiming that a curve γ : J → U is a solution curve to X,
i.e. satisfies the equation

γ̇(t) = X(γ(t)),

is equivalent to claiming that
(xγ)′(t) = f(xγ(t)).

By the existence and uniqueness theorem for first order differential equations cited in the
analysis appendix 11.3.1 there is a neighborhood Jp × V ′

p around (0, x(p)) ∈ R × U ′ for
which there exists a smooth map

Ψ: Jp × V ′
p → U ′

p

such that

• Ψ(0, q) = q for all q ∈ V ′
p and

• ∂
∂t

Ψ(t, q) = f(Ψ(t, q)) for all (t, q) ∈ Jp × V ′
p .

and furthermore for each q ∈ V ′
p the curve Ψ(−, q) : Jp → U ′

p is unique with respect to this
property.

The set of open sets of the form x−1
p V ′

p is an open cover of M , and hence we may choose
a finite subcover. Let J be the intersection of the Jp’s corresponding to this finite cover.
Since it is a finite intersection J contains an open interval (−ε, ε) around 0.

This defines a smooth map
Φ̃ : J ×M →M

by Φ̃(t, q) = x−1Ψ(t, xq) (this is well defined and smooth by the uniqueness of solutions).

Note that the uniqueness of solution also gives that

Φ̃(t, Φ̃(s, q)) = Φ̃(s+ t, q)
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for |s|, |t| and |s+ t| less than ε.

But this also means that we may extend the domain of definition to get a map

Φ: R×M →M

since for any t ∈ R there is a natural number k such that |t/k| < ε, and we simply define
Φ(t, q) as Φ̃t/k applied k times to q.

The condition that M was compact was crucial to this proof. A similar statement is true
for noncompact manifolds, and we will return to that statement later.

Exercise 9.2.3 Given two flows Φ and Ψ on the sphere S2. Why does there exist a flow
which is Φ close to the North pole, and Ψ close to the South pole?

Exercise 9.2.4 Construct vector fields on the torus such that the solution curves are all
either

• imbedded circles, or

• dense immersions.

Exercise 9.2.5 Let O(n) be the orthogonal group, and recall from exercise 6.4.12 the
isomorphism between the tangent bundle of O(n) and the projection on the first factor

E = {(g, A) ∈ O(n)×Mn(R)|At = −gtAgt} → O(n).

Choose a skew matrix A ∈Mn(R) (i.e. such that At = −A), and consider the vector field
X : O(n)→ TO(n) induced by

O(n)→E
g 7→(g, gA)

Show that the flow associated to X is given by Φ(s, g) = gesA where the exponential is
defined as usual by eB =

∑∞
j=0

Bn

n!
.

9.3 Local flows

We now make the necessary modifications for the non-compact case.

On manifolds that are not compact, the concept of a flow is not the correct one. This
can be seen by considering a global field Φ on some manifold M and restricting it to some
open submanifold U . Then some of the flow lines may leave U after finite time. To get a
“flow” ΦU on U we must then accept that ΦU is only defined on some open subset of R×U
containing {0} × U .
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Also, if we jump ahead a bit, and believe that
flows should correspond to general solutions
to first order ordinary differential equations
(that is vector fields), you may consider the
differential equation

y′ = y2, y(0) = y0

on M = R (the corresponding vector field is
R→ TR given by s 7→ [t 7→ s+ s2t]).
Here the solution is of the type

y(t) =

{
1

1/y0−t
if y0 6= 0

0 if y0 = 0

and the domain of the “flow”

Φ(t, p) =

{
1

1/p−t
if p 6= 0

0 if p = 0

is
A = {(t, p) ∈ R×R|pt < 1}

The domain A of the “flow”. It con-

tains an open neighborhood around

{0} ×M

Definition 9.3.1 Let M be a smooth mani-
fold. A local flow is a smooth map

Φ: A→M

where A ⊆ R×M is open and contains {0}×
M , such that for each each p ∈M

Jp × {p} = A ∩ (R× {p})

is connected and such that

• Φ(0, p) = p

• Φ(s,Φ(t, p)) = Φ(s + t, p)

for all p ∈ M such that (t, p), (s + t, p) and
(s,Φ(t, p)) are in A.
For each p ∈ M we define −∞ ≤ ap < 0 <
bp ≤ ∞ by Jp = (ap, bp).

The domain A of a local flow con-

tains {0}×M . For every p ∈M the

intersection Jp = A ∩ (R × {p}) is

connected.
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Note 9.3.2 The definitions of the velocity field

→

Φ: M → TM

(the tangent vector
→

Φ(p) = [t 7→ Φ(t, p)] only depends on the values of the curve in a small
neighborhood of 0), the flow lines

Φ(−, p) : Jp →M, t 7→ Φ(t, p)

and the orbits
Φ(Jp, p) ⊆M

and makes just as much sense for a local flow Φ.

However, we can’t talk about “the diffeomorphism Φt” since there may be p ∈M such that
(t, p) 6= A, and so Φt is not defined on all of M .

Example 9.3.3 Check that the proposed flow

Φ(t, p) =

{
1

1/p−t
if p 6= 0

0 if p = 0

is a local flow with velocity field
→

Φ: R→ TR given by s 7→ [t 7→ Φ(t, s)] (which under the
standard trivialization

TR
[ω]7→(ω(0),ω′(0))−−−−−−−−−→ R×R

correspond to s 7→ (s, s2) – and so
→

Φ(s) = [t 7→ Φ(t, s)] = [t 7→ s+ s2t]) with domain

A = {(t, p) ∈ R×R|pt < 1}

and so ap = 1/p for p < 0 and ap = −∞ for p ≥ 0. Note that Φt only makes sense for
t = 0.

9.4 Integrability

Definition 9.4.1 A local flow Φ: A→M is maximal if there is no local flow Ψ: B →M
such that A ( B and Ψ|A = Φ.

Theorem 9.4.2 Let M be a smooth manifold. Then the velocity field gives a natural
bijection between the sets

{maximal local flows on M}� {vector fields on M}
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Proof: The essential idea is the same as in the compact case, but we have to worry a
bit more about the domain of definition of our flow. The local solution to the ordinary
differential equation means that we have unique maximal solution curves

φp : Jp →M

for all p, and two solution curves agree on their intersection since the set of points where
they agree is closed by continuity, but also open by the local uniqueness of solutions. This
also means that the curves t 7→ φp(s+ t) and t 7→ φφp(s)(t) agree, and we define

Φ: A→M

by setting

A =
⋃

p∈M

Jp × {p}, and Φ(t, p) = φp(t)

The only questions are whether A is open and Φ is smooth. But this again follow from
the local existence theorems: around any point in A there is a neighborhood on which Φ
correspond to the unique local solution (see [BJ] page 82 and 83 for more details).

Corollary 9.4.3 Let K ⊂M be a compact subset of a smooth manifold M , and let Φ be a
maximal local flow on M such that bp <∞. Then there is an ε > 0 such that Φ(t, p) /∈ K
for t > bp − ε.

Proof: Since K is compact there is an ε > 0 such that

[−ε, ε] ×K ⊆ A ∩ (R×K)

If Φ(t, p) ∈ K for t < T where T > bp − ε then we would have that Φ could be extended
to T + ε > bp by setting

Φ(t, p) = Φ(ε,Φ(t− ε, p))

for all T ≤ t < T + ε.

Note 9.4.4 Some readers may worry about the fact that we do not consider “time depen-
dent” differential equations, but by a simple trick as in [S] page 226, these are covered by
our present considerations.

Exercise 9.4.5 Find a nonvanishing vector field on R whose solution curves are only
defined on finite intervals.
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9.5 Ehresmann’s fibration theorem

We have studied quite intensely what consequences it has that a map f : M → N is
an immersion. In fact, adding the point set topological property that M → f(M) is a
homeomorphism we got that f was an imbedding.

We are now ready to discuss submersions (which by definition said that all points were
regular). It turns out that adding a point set property we get that submersions are also
rather special: they look like vector bundles, except that the fibers are not vector spaces,
but manifolds!

Definition 9.5.1 Let f : E → M be a smooth map. We say that f is a locally trivial
fibration if for each p ∈M there is an open neighborhood U and a diffeomorphism

h : f−1(U)→ U × f−1(p)

such that

f−1(U)
h //

f |
f−1(U)

##G
GG

GG
GG

GG
U × f−1(p)

prU
yyssssssssss

U

commutes.

Over a small U ∈M a locally trivial fibration looks like the projection U×f−1(p)→ U

(the picture is kind of misleading, since the projection S1 × S1 → S1 is globally of

this kind).
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Example 9.5.2 The projection of the torus
down to a circle which is illustrated above is
kind of misleading since the torus is globally a
product. However, due to the scarcity of com-
pact two-dimensional manifolds, the torus is
the only example which can be imbedded in
R

3. However, there are nontrivial examples
we can envision: for instance, the projection
of the Klein bottle onto its “central circle” (see
illustration to the right) is a nontrivial exam-
ple.

a a

b

b

central circle

The projection from the Klein bottle

onto its “central circle” is a locally

trivial fibration

Definition 9.5.3 A continuous map f : X → Y is proper if the inverse image of compact
subsets are compact.

Theorem 9.5.4 (Ehresmann’s fibration theorem) Let f : E →M be a proper submersion.
Then f is a locally trivial fibration.

Proof: Since the question is local in M , we may start out by assuming that M = R
n.

The theorem then follows from lemma 12 below.

Note 9.5.5 Before we start with the proof, it is interesting to see what the ideas are.

By the rank theorem a submersion looks locally (in E and M) as a projection

R
n+k → R

n × {0} ∼= R
n

and so locally all submersions are trivial fibrations. We will use flows to glue all these
pieces together using partitions of unity.



138 CHAPTER 9. DIFFERENTIAL EQUATIONS AND FLOWS

R

�
�
�
�
�
�
�
�
�
�
�
�

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������
�������������������������������������R

n

k

Locally a submersion looks like the

projection from R
n+k down onto

R
n.

The "fiber direction"

q

The idea of the proof: make a “flow”

that flows transverse to the fibers:

locally ok, but can we glue these pic-

tures together?

The clue is then that a point (t, q) ∈ R
n × f−1(p) should correspond to what you get if

you flow away from q, first a time t1 in the first coordinate direction, then a time t2 in the
second and so on.

Lemma 9.5.6 Let f : E → R
n be a proper submersion. Then there is a diffeomorphism

h : E → R
n × f−1(0) such that

E
h //

f

  A
AA

AA
AA

A
R
n × f−1(0)

prRn

xxrrrrrrrrrr

R
n

commutes.

Proof: If E is empty, the lemma holds vacuously since then f−1(0) = ∅, and ∅ = R
n × ∅.

Disregarding this rather uninteresting case, let p0 ∈ E and r0 = f(p0) ∈ R
n. The first half

of the rank theorem guarantees that for all p ∈ f−1(r0) there are charts xp : Up → U ′
p such

that

Up
f |Up−−−→ R

n

xp

y
∥∥∥

U ′
p ⊆ R

n+k pr−−−→ R
n
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commutes (the map pr : R
n+k → R

n is the projection onto the first n coordinates. The
permutations of coordinates that were allowed in the rank theorem are unnecessary since
n+ k ≥ n).

Choose a partition of unity (see theorem 7.4.1) {φj} subordinate to {Up}. For every j
choose p such that supp(φj) ⊆ Up, and let xj = xp (so that we now are left with only
countably many charts).

Define the vector fields (the ith partial derivative in the jth chart)

Xi,j : Uj → TUj, i = 1, . . . , n

by Xi,j(q) = [ωi,j(q)] where

ωi,j(q)(t) = x−1
j (xj(q) + eit)

and where ei ∈ R
n is the ith unit vector. Let

Xi =
∑

j

φjXi,j : E → TE, i = 1, . . . , n

(a “global version” of the i-th partial derivative).

Notice that since f(u) = prxj(u) for u ∈ Uj we get that

fωi,j(q)(t) = fx−1
j (xj(q) + eit) = pr xjx

−1
j (xj(q) + eit) = pr (xj(q) + eit)

= f(q) + eit

(the last equality uses that i ≤ n). Since
∑

j φj(q) = 1 for all q this gives that

TfXi(q) =
∑

j

φj(q)[fωi,j(q)] =
∑

j

φj(q)[t 7→ f(q) + eit]

= [t 7→ f(q) + eit]

for all i = 1, . . . , n.

Let the Φi : Ai → E be the local flow corresponding to Xi. Notice that

fΦi(t, q) = f(q) + eit

since both give flows with velocity field TfXi.

We want to show that Ai = R×E. Let Jq = Ai∩(R×{q}). Since fΦi(t, q) = f(q)+eit we
see that the image of a finite open interval under fΦi(−, q) must be contained in a compact,
say K. Hence the image of the finite open interval under Φi(−, q) must be contained in
f−1(K) which is compact since f is proper. But if Jq 6= R, then corollary 9.4.3 tells us
that Φi(−, q) will leave any given compact in finite time leading to a contradiciton.
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Hence all the Φi defined above are global and we define the diffeomorphism

φ : M × f−1(r0)→ E

by

φ(t, q) = Φ1(t1,Φ2(t2, . . . ,Φn(tn, q) . . . )), t = (t1, . . . , tn) ∈ R
n = M, q ∈ f−1(r0)

The inverse is given by

E →M × f−1(r0)

q 7→ (f(q),Φn(−fn(q), . . . ,Φ1(−f1(q), q) . . . )).

Finally, we note that we have also proven that f is surjective, and so we are free in our
choice of r0 ∈ R

n. Choosing r0 = 0 gives the formulation stated in the lemma.

Corollary 9.5.7 (Ehresmann’s fibration theorem, compact case) Let f : E →M be a sub-
mersion of compact smooth manifolds. Then f is a locally trivial fibration.

Proof: We only need to notice that E being compact forces f to be proper: if K ⊂ M
is compact, it is closed (since M is Hausdorff), and f−1(K) ⊆ E is closed (since f is
continuous). But a closed subset of a compact space is compact.

Exercise 9.5.8 Consider the projection

f : S3 → CP1

Show that f is a locally trivial fibration. Consider the map

` : S1 → CP1

given by sending z ∈ S1 ⊆ C to [1, z]. Show that ` is an imbedding. Use Ehresmann’s
fibration theorem to show that the inverse image

f−1(`S1)

is diffeomorphic to the torus S1 × S1. (note: there is a diffeomorphism S2 → CP1 given
by (a, z) 7→ [1+ a, z], and the composite S3 → S2 induced by f is called the Hopf fibration
and has many important properties. Among other things it has the truly counterintuitive
property of detecting a “three-dimensional hole” in S2–which disappears if you give it a
second glance!)

Exercise 9.5.9 Let γ : R→ M be a smooth curve and f : E → M a proper submersion.
Let p ∈ f−1(γ(0)). Show that there is a smooth curve σ : R→ E such that

E

��
R

σ
>>}}}}}}}} γ //M

commutes and σ(0) = p. Show that if the dimensions of E and M agree, then σ is unique.
In particular, study the cases and Sn → RPn and S2n+1 → CPn.
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9.6 Second order differential equations

For a smooth manifold M let πM : TM →M be the tangent bundle (just need a decoration
on π to show its dependence on M).

Definition 9.6.1 A second order differential equation on a smooth manifoldM is a smooth
map

ξ : TM → TTM

such that

TTM
TπM

zzuuuuuuu
uu

πTM

$$I
IIII

IIII

TM TM
=oo = //

ξ

OO

TM

commutes.

Note 9.6.2 The πTMξ = idTM just says that ξ is a vector field on TM , it is the other
relation (TπM)ξ = idTM which is crucial.

Exercise 9.6.3 The flat case: reference sheet. Make sense of the following remarks, write
down your interpretation and keep it for reference.

A curve in TM is an equivalence class of “surfaces” in M , for if β : J → TM then to each
t ∈ J we have that β(t) must be an equivalence class of curves, β(t) = [ω(t)] and we may
think of t 7→ {s 7→ ω(t)(s)} as a surface if we let s and t move simultaneously. If U ⊆ R

n

is open, then we have the trivializations

TU
[ω]7→(ω(0),ω′(0))−−−−−−−−−→

∼=
U ×R

n

with inverse (p, v) 7→ [t 7→ p+ tv] (the directional derivative at p in the vth direction) and

T (TU)
[β]7→(β(0),β′(0))−−−−−−−−−→

∼=
T (U)× (Rn ×R

n)

(β(0),β′(0)) 7→((ω(0,0),D2ω(0,0)),(D1ω(0,0),D2D1ω(0,0)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
∼=

(U ×R
n)× (Rn ×R

n)

with inverse (p, v1, v2, v3) 7→ [t 7→ [s 7→ ω(t)(s)]] with

ω(t)(s) = p+ sv1 + tv2 + stv3

Hence if γ : J → U is a curve, then γ̇ correspond to the curve

J
t7→(γ(t),γ′(t))−−−−−−−−→ U ×R

n
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and if β : J → TU corresponds to t 7→ (x(t), v(t)) then β̇ corresponds to

J
t7→(x(t),v(t),x′(t),v′(t))−−−−−−−−−−−−−→ U ×R

n ×R
n ×R

n

This means that γ̈ = ˙̇γ corresponds to

J
t7→(γ(t),γ′(t),γ′(t),γ′′(t))−−−−−−−−−−−−−−→ U ×R

n ×R
n ×R

n

Exercise 9.6.4 Show that our definition of a second order differential equation correspond
to the usual notion of a second order differential equation in the case M = R

n.

Definition 9.6.5 Given a second order differential equation

ξ : TM → TTM

A curve γ : J → M is called a solution curve for ξ on M if γ̇ is a solution curve to ξ “on
TM ”.

Note 9.6.6 Spelling this out we have that

γ̈(t) = ξ(γ̇(t))

for all t ∈ J . Note the bijection

{solution curves β : J → TM}� {solution curves γ : J →M}, γ̇ ← γ
β 7→ πMβ

9.6.7 Aside on the exponential map

This section gives a quick definition of the exponential map from the tangent space to the
manifold.

Exercise 9.6.8 (Hard: the existence of “geodesics”) The differential equation TR
n →

TTR
n corresponding to the map

R
n ×R

n → R
n ×R

n ×R
n ×R

n, (x, v) 7→ (x, v, v, 0)

has solution curves given by the straight line t 7→ x+ tv (a straight curve has zero second
derivative). Prove that you may glue together these straight lines by means of charts and
partitions of unity to get a second order differential equation

ξ : TM → TTM

with the property that

TTM
Ts−−−→ TTM

sξ

x ξ

x
TM

s−−−→ TM
for all s ∈ R where s : TM → TM is multiplication by s in each fiber.
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The significance of the diagram in the previous exercise on geodesics is that “you may speed
up (by a factor s) along a geodesic, but the orbit won’t change”.

Exercise 9.6.9 (Definition of the exponential map). Given a second order differential
equation ξ : TM → TTM as in exercise 9.6.8, consider the corresponding local flow Φ: A→
TM , define the open neighborhood of the zero section

T = {[ω] ∈ TM |1 ∈ A ∩ (R× {[ω]})}

and you may define the exponential map

exp : T →M

by sending [ω] ∈ TM to πMΦ(1, [ω]).

Essentially exp says: for a tangent vector [ω] ∈ TM start out in ω(0) ∈M in the direction
on ω′(0) and travel a unit in time along the corresponding geodesic.

The exponential map depends on on ξ. Alternatively we could have given a definition of
exp using a choice of a Riemannian metric, which would be more in line with the usual
treatment in differential geometry.
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Chapter 10

Appendix: Point set topology

I have collected a few facts from point set topology. The main focus of this note is to be
short and present exactly what we need in the manifold course. Point set topology may
be your first encounter of real mathematical abstraction, and can cause severe distress to
the novice, but it is kind of macho when you get to know it a bit better. However: keep in
mind that the course is about manifold theory, and point set topology is only a means of
expressing some (obvious?) properties these manifolds should possess. Point set topology
is a powerful tool when used correctly, but it is not our object of study.

If you need more details, consult any of the excellent books listed in the references. The
real classics are [B] and [K], but the most widely used these days is [M]. There are also
many online textbooks, some of which you may find by following links from the course’
home page.

Most of the exercises are not deep and are just rewritings of definitions (which may be
hard enough if you are new to the subject) and the solutions short.

If I list a fact without proof, the result may be deep and its proof (much too) hard.

10.1 Topologies: open and closed sets

Definition 10.1.1 A topology is a family of sets U closed under finite intersection and
arbitrary unions, that is if

if U, U ′ ∈ U , then U ∩ U ′ ∈ U

if I ⊆ U , then
⋃
U∈I U ∈ U .

145
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Note 10.1.2 Note that the set X =
⋃
U∈U U and ∅ =

⋃
U∈∅ U are members of U .

Definition 10.1.3 We say that U is a topology on X, that (X,U) is a topological space.
Frequently we will even refer to X as a topological space when U is evident from the
context.

Definition 10.1.4 The members of U are called the open sets of X with respect to the
topology U .

A subset C of X is closed if the complement X \ C = {x ∈ X|x /∈ C} is open.

Example 10.1.5 An open set on the real line R is a (possibly empty) union of open
intervals. Check that this defines a topology on R. Check that the closed sets do not form
a topology on R.

Definition 10.1.6 A subset of X is called a neighborhood of x ∈ X if it contains an open
set containing x.

Lemma 10.1.7 Let (X, T ) be a topological space. Prove that a subset U ⊆ X is open if
and only if for all p ∈ U there is an open set V such that p ∈ V ⊆ U .

Proof: Exercise!

Definition 10.1.8 Let (X,U) be a space and A ⊆ X a subset. Then the interior intA of
A in X is the union of all open subsets of X contained in A. The closure Ā of A in X is
the intersection of all closed subsets of X containing A.

Exercise 10.1.9 Prove that intA is the biggest open set U ∈ U such that U ⊆ A, and
that Ā is the smallest closed set C in X such that A ⊆ C.

Example 10.1.10 If (X, d) is a metric space (i.e. a set X and a symmetric positive
definite function

d : X ×X → R

satisfying the triangle inequality), then X may be endowed with the metric topology by
letting the open sets be arbitrary unions of open balls (note: given an x ∈ X and a positive
real number ε > 0, the open ε-ball centered in x is the set B(x, ε) = {y ∈ X|d(x, y) < ε}).
Exercise: show that this actually defines a topology.

Exercise 10.1.11 The metric topology coincides with the topology we have already de-
fined on R.



10.2. CONTINUOUS MAPS 147

10.2 Continuous maps

Definition 10.2.1 A continuous map (or simply a map)

f : (X,U)→ (Y,V)

is a function f : X → Y such that for every V ∈ V the inverse image

f−1(V ) = {x ∈ X|f(x) ∈ V }

is in U

In

other words: f is continuous if the inverse images of open sets are open.

Exercise 10.2.2 Prove that a continuous map on the real line is just what you expect.
More generally, if X and Y are metric spaces, considered as topological spaces by giving
them the metric topology: show that a map f : X → Y is continuous iff the corresponding
ε− δ-horror is satisfied.

Exercise 10.2.3 Let f : X → Y and g : Y → Z be continuous maps. Prove that the
composite gf : X → Z is continuous.

Example 10.2.4 Let f : R
1 → S1 be the map which sends p ∈ R

1 to eip = (cos p, sin p) ∈
S1. Since S1 ⊆ R

2, it is a metric space, and hence may be endowed with the metric
topology. Show that f is continuous, and also that the image of open sets are open.

Definition 10.2.5 A homeomorphism is a continuous map f : (X,U) → (Y,V) with a
continuous inverse, that is a continuous map g : (Y,V) → (X,U) with f(g(y)) = y and
g(f(x)) = x for all x ∈ X and y ∈ Y .

Exercise 10.2.6 Prove that tan: (−π/2, π/2)→ R is a homeomorphism.

Note 10.2.7 Note that being a homeomorphism is more than being bijective and con-
tinuous. As an example let X be the set of real numbers endowed with the metric topology,
and let Y be the set of real numbers, but with the “indiscrete topology”: only ∅ and Y are
open. Then the identity map X → Y (sending the real number x to x) is continuous and
bijective, but it is not a homeomorphism: the identity map Y → X is not continuous.

Definition 10.2.8 We say that two spaces are homeomorphic if there exists a homeomor-
phism from one to the other.
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10.3 Bases for topologies

Definition 10.3.1 If (X,U) is a topological space, a
subfamily B ⊆ U is a basis for the topology U if for
each x ∈ X and each V ∈ U with x ∈ V there is a
U ∈ B such that

x ∈ U ⊆ V
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xU

V

Note 10.3.2 This is equivalent to the condition that each member of U is a union of
members of B.

Conversely, given a family of sets B with the property
that if B1, B2 ∈ B and x ∈ B1 ∩ B2 then there is a
B3 ∈ B such that x ∈ B3 ⊆ B1 ∩B2, then B is a basis
for the topology on X =

⋃
U∈B U given by declaring

the open sets to be arbitrary unions from B. We say
that the basis B generates the topology on X.

B1 B2

B 3

x

Exercise 10.3.3 The real line has a countable basis for its topology.

Exercise 10.3.4 The balls with rational radius and whose center have coordinates that
all are rational form a countable basis for R

n.

Just to be absolutely clear: a topological space (X,U) has a countable basis for its topology
iff there exist a countable subset B ⊆ U which is a basis.

Exercise 10.3.5 Let (X, d) be a metric space. Then the open balls form a basis for the
metric topology.

Exercise 10.3.6 Let X and Y be topological spaces, and B a basis for the topology on
Y . Show that a function f : X → Y is continuous if f−1(V ) ⊆ X is open for all V ∈ B.

10.4 Separation

There are zillions of separation conditions, but we will only be concerned with the most
intuitive of all: Hausdorff spaces.
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Definition 10.4.1 A topological space
(X,U) is Hausdorff if for any two distinct
x, y ∈ X there exist disjoint neighborhoods
of x and y.

Example 10.4.2 The real line is Hausdorff.

Example 10.4.3 More generally, the metric
topology is always Hausdorff.

x
y

The two points x and y are con-
tained in disjoint open sets.

10.5 Subspaces

Definition 10.5.1 Let (X,U) be a topolog-
ical space. A subspace of (X,U) is a subset
A ⊂ X with the topology given letting the
open sets be {A ∩ U |U ∈ U}.

Exercise 10.5.2 Show that the subspace
topology is a topology.

Exercise 10.5.3 Prove that a map to a sub-
space Z → A is continuous iff the composite

Z → A ⊆ X

is continuous.

X

U A
U

A   U

Exercise 10.5.4 Prove that if X has a countable basis for its topology, then so has A.

Exercise 10.5.5 Prove that if X is Hausdorff, then so is A.

Corollary 10.5.6 All subspaces of R
n are Hausdorff, and have countable bases for their

topologies.

Definition 10.5.7 If A ⊆ X is a subspace, and f : X → Y is a map, then the composite

A ⊆ X → Y

is called the restriction of f to A, and is written f |A.
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10.6 Quotient spaces

Definition 10.6.1 Let (X,U) be a topological space, and consider an equivalence relation
∼ on X. The quotient space space with respect to the equivalence relation is the set X/ ∼
with the quotient topology. The quotient topology is defined as follows: Let

p : X → X/ ∼

be the projection sending an element to its equivalence class. A subset V ⊆ X/ ∼ is open
iff p−1(V ) ⊆ X is open.

Exercise 10.6.2 Show that the subspace topology is a topology on X/ ∼.

V
-1p  (V)

X X/~

p

Exercise 10.6.3 Prove that a map from a quotient space (X/ ∼) → Y is continuous iff
the composite

X → (X/ ∼)→ Y

is continuous.

Exercise 10.6.4 The projection R
1 → S1 given by p 7→ eip shows that we may view S1

as the set of equivalence classes of real number under the equivalence p ∼ q if there is an
integer n such that p = q+2πn. Show that the quotient topology on S1 is the same as the
subspace topology you get by viewing S1 as a subspace of R

2.

10.7 Compact spaces

Definition 10.7.1 A compact space is a space (X,U) with the following property: in any
set V of open sets covering X (i.e. V ⊆ U and

⋃
V ∈V V = X) there is a finite subset that

also covers X.
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Exercise 10.7.2 If f : X → Y is a continuous map and X is compact, then f(X) is
compact.

We list without proof the results

Theorem 10.7.3 (Heine–Borel) A subset of R
n is compact iff it is closed and of finite

size.

Example 10.7.4 Hence the unit sphere Sn = {p ∈ R
n+1| |p| = 1} (with the subspace

topology) is a compact space.

Exercise 10.7.5 The real projective space RPn is the quotient space Sn/ ∼ under the
equivalence relation p ∼ −p on the unit sphere Sn. Prove that RPn is a compact Hausdorff
space with a countable basis for its topology.

Theorem 10.7.6 If X is a compact space, then a subset C ⊆ X is closed if and only if
C ⊆ X is a compact subspace.

Theorem 10.7.7 If X is a Hausdorff space and C ⊆ X is a compact subspace, then
C ⊆ X is closed.

A very important corollary of the above results is the following:

Theorem 10.7.8 If f : C → X is a continuous map where C is compact and X is Haus-
dorff, then f is a homeomorphism if and only if it bijective.

Exercise 10.7.9 Prove 10.7.8 using the results preceding it

Exercise 10.7.10 Prove in three or fewer lines the standard fact that a continuous func-
tion f : [a, b]→ R has a maximum value.

A last theorem sums up the some properties that are preserved under formation of quotient
spaces (under favorable circumstances). It is not optimal, but will serve our needs. You
can extract a proof from the more general statement given in [K, p. 148].

Theorem 10.7.11 Let X be a compact space, and let ∼ be an equivalence relation on X.
Let p : X → X/ ∼ be the projection and assume that if K ⊆ X is closed, then p−1p(K) ⊆ X
is closed too.

If X is Hausdorff, then so is X/ ∼.

If X has a countable basis for its topology, then so has X/ ∼.
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10.8 Product spaces

Definition 10.8.1 If (X,U) and (Y,V) are two topological spaces, then their product
(X × Y,U × V) is the set X × Y = {(x, y)|x ∈ X, y ∈ Y } with a basis for the topology
given by products of open sets U × V with U ∈ U and V ∈ V.

There are two projections prX : X × Y → X and prY : X × Y → Y . They are clearly
continuous.

Exercise 10.8.2 A map Z → X × Y is continuous iff both the composites with the
projections

Z → X × Y →X, and

Z → X × Y →Y

are continuous.

Exercise 10.8.3 Show that the metric topology on R
2 is the same as the product topology

on R
1×R

1, and more generally, that the metric topology on R
n is the same as the product

topology on R
1 × · · · ×R

1.

Exercise 10.8.4 If X and Y have countable bases for their topologies, then so has X×Y .

Exercise 10.8.5 If X and Y are Hausdorff, then so is X × Y .

10.9 Connected spaces

Definition 10.9.1 A space X is connected if the only subsets that are both open and
closed are the empty set and the set X itself.

Exercise 10.9.2 The natural generalization of the intermediate value theorem is “If f :
X → Y is continuous and X connected, then f(X) is connected”. Prove this.

Definition 10.9.3 Let (X,U) and (Y,V) be topological spaces. The disjoint unionX
∐
Y

is the union of disjoint copies of X and Y , where an open set is a union of open sets in X
and Y .

Exercise 10.9.4 Show that the disjoint union of two nonempty spaces X and Y is not
connected.
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Exercise 10.9.5 A map X
∐
Y → Z is continuous iff both the composites with the

injections

X ⊆ X
∐

Y →Z
Y ⊆ X

∐
Y →Z

are continuous.
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10.10 Appendix 1: Equivalence relations

This appendix is used in 10.6 Quotient spaces.

Definition 10.10.1 Let X be a set. An equivalence relation on X is a subset E of of the
set X ×X = {(x1, x2)|x1, x2 ∈ X} satisfying the following three conditions

(reflexivity) (x, x) ∈ E for all x ∈ X
(symmetry) If (x1, x2) ∈ E then (x2, x1) ∈ E

(transitivity) If (x1, x2) ∈ E (x2, x3) ∈ E then (x1, x3) ∈ E

We often write x1 ∼ x2 instead of (x1, x2) ∈ E.

Definition 10.10.2 Given an equivalence relation E on a set X we may for each x ∈ X
define the equivalence class of x to be the subset [x] = {y ∈ X|x ∼ y}.

This divides X into a collection of nonempty, mutually disjoint subsets.

The set of equivalence classes is written X/ ∼, and we have a surjective function

X → X/ ∼

sending x ∈ X to its equivalence class [x].

10.11 Appendix 2: Set theoretical stuff

Definition 10.11.1 Let A ⊆ X be a subset. The complement of A in X is the subset

X \ A = {x ∈ X|x /∈ A}

10.11.2 De Morgan’s formulae

Let X be a set and {Ai}i∈I be a family of subsets. Then

X \
⋃

i∈I

Ai =
⋂

i∈I

(X \ A)

X \
⋂

i∈I

Ai =
⋃

i∈I

(X \ A)

Apology: the use of the term family is just phony: to us a family is nothing but a set (so
a “family of sets” is nothing but a set of sets).
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Definition 10.11.3 Let f : X → Y be a function. We say that f is injective (or one-to-
one) if f(x1) = f(x2) implies that x1 = x2. We say that f is surjective (or onto) if for
every y ∈ Y there is an x ∈ X such that y = f(x). We say that f is bijective if it is both
surjective and injective.

Definition 10.11.4 Let A ⊆ X be a subset and f : X → Y a function. The image of A
under f is the set

f(A) = {y ∈ Y |∃a ∈ A s.t. y = f(a)}
The subset f(X) ⊆ Y is simply called the image of f .

If B ⊆ Y is a subset, then the inverse image (or preimage) of B under f is the set

f−1(B) = {x ∈ X|f(x) ∈ B}

The subset f−1(Y ) ⊆ X is simply called the preimage of f .

Exercise 10.11.5 Prove that f(f−1(B)) ⊆ B and A ⊆ f−1(f(A)).

Exercise 10.11.6 Prove that f : X → Y is surjective iff f(X) = Y and injective iff for all
y ∈ Y f−1({y}) consists of a single element.

Exercise 10.11.7 Let B1, B2 ⊆ Y and f : X → Y be a function. Prove that

f−1(B1 ∩ B2) =f−1(B1) ∩ f−1(B2) (10.1)

f−1(B1 ∪ B2) =f−1(B1) ∪ f−1(B2) (10.2)

f−1(Y \ B1) =X \ f−1(B1) (10.3)

If in addition A1, A2 ⊆ X then

f(A1 ∪ A2) =f(A1) ∪ f(A2) (10.4)

f(A1 ∩ A2) ⊆f(A1) ∩ f(A2) (10.5)

Y \ f(A1) ⊆f(X \ A1) (10.6)

B1 ∩ f(A1) =f(f−1(B1) ∩ A1) (10.7)
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Chapter 11

Appendix: Facts from analysis

11.1 The chain rule

Definition 11.1.1 Let f : U → R be a function where U is an open subset of R
n con-

taining p = (p1, . . . pn). The ith partial derivative of f at p is the number (if it exists)

Dif(p) = Di|p (f) = lim
h→0

1

h
(f(p+ hei)− f(p))

where ei is the ith unit vector ei = (0, . . . , 0, 1, 0, . . . , 0) (with a 1 in the ith coordinate).
We also write

D(f)(p) = D|p(f) = (D1(f)(p), . . . , Dn(f)(p))

Note 11.1.2 Several problems appear when the partial derivatives are not continuous
functions. We will only be interested in smooth functions (C∞: all higher order partial
derivatives exist and are continuous), so we will ignore such difficulties.

Definition 11.1.3 If f = (f1, . . . , fm) : U → R
m is a function where U is an open subset

of R
n containing p = (p1, . . . pn), then the Jacobian matrix is the m× n-matrix

D(f)(p) = D|p(f) =



D(f1)(p)

...
D(fm)(p)




In particular, if g = (g1, . . . gn) : (a, b)→ R
m we write

g′(c) = D(g)(c) =



g′1(c)

...
g′n(c)




159
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Lemma 11.1.4 (The chain rule) Let g : (a, b) → U and f : U → R be smooth functions
where U is an open subset of R

n and c ∈ (a, b). Then

(fg)′(c) =D(f)(g(c)) · g′(c)

=
n∑

j=1

Djf(g(c)) · g′j(c)

Proof: For a proof, see e.g. [SC], or any decent book on multi-variable calculus.

11.2 The inverse function theorem

Theorem 11.2.1 If f : U1 → U2 is a differentiable
function where U1, U2 ⊆ R

n. Let p ∈ U1 and assume
the the Jacobi matrix [Df(p)] is invertible in the point
p. Then there exists a neighborhood around p on which
f is smoothly invertible, i.e. there exists an open subset
U0 ⊆ U1 containing p such that

f |U0 : U0 → f(U0)

is a diffeomorphism. The inverse has Jacobi matrix

[D(f−1)(f(x))] = [Df(x)]−1 UU

p

0

Proof: For a proof, see e.g. [SC] Theorem 2.11, or any decent book on multi-variable
calculus.

11.3 Ordinary differential equations

We will have occasion to use the following theorem about the existence and uniqueness of
solutions of first order ordinary differential equations.

Theorem 11.3.1 Let f : U → R
n be a smooth map where U ⊆ R

n is an open subset and
p ∈ U .

• (Existence of solution) There is a neighborhood p ∈ V ⊆ U of p, a neighborhood J of
0 ∈ R and a smooth map

Φ: J × V → U

such that
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– Φ(0, q) = q for all q ∈ V and

– ∂
∂t

Φ(t, q) = f(Φ(t, q)) for all (t, q) ∈ J × V .

• (Uniqueness of solution) If γi are smooth curves in U satisfying γ1(0) = γ2(0) = p
and

γ′i(t) = f(γ(t)), i = 1, 2

then γ1 = γ2 where they both are defined.

Proof: The difficulty in proving these statements is taking care of the smoothness. For a
nice proof giving just continuity see Spivak’s book [S] chapter 5. For a real proof, see e.g.
one of the analysis books of Lang.
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Chapter 12

Hints or solutions to the exercises

Below you will find hints for all the exercises. Some are very short, and some are almost
complete solutions. Ignore them if you can, but if you are stuck, take a peek and see if you
can get some inspiration.

Chapter 2

Exercise 2.2.5

Draw a hexagon with identifications so that it
represents a handle attached to a Möbius band.
Try your luck at cutting and pasting this figure
into the a (funny looking) hexagon with iden-
tifications so that it represents three Möbius
bands glued together (remember that the cuts
may cross your identified edges).

Exercise 2.2.6

See the first chapter of Spivak’s book [S].

Exercise 2.2.7

Do an internet search to find the definition of the
Euler number. To calculate the Euler number
of surfaces you can simply use our flat repre-
sentations as polygons, just remembering what
points and edges really are identified.

Chapter 3

Exercise 3.2.7

Draw the lines in the picture in example 3.2.6
and use high school mathematics to show that
the formulae are correct. Then invert these, and
check the chart transformation formulae.

Exercise 3.2.10

Repeat the discussion for the real projective
space, exchanging R with C everywhere.

Exercise 3.2.11

Transport the structure radially out from the
unit circle (i.e. use the homeomorphism from
the unit circle to the square gotten by blowing
up a balloon in a square box in flatland). All
charts can then be taken to be the charts on the
circle composed with this homeomorphism.
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Exercise 3.3.7

It is enough to show that all the “mixed chart
transformations” (like x0,0(x+)−1) are smooth.
Why?

Exercise 3.3.8

Because saying that “x is a diffeomorphism” is
just a rephrasing of “x = x(id)−1 and x−1 =
(id)x−1 are smooth”. The charts in this struc-
ture are all diffeomorphisms U → U ′ where both
U and U ′ are open subsets of R

n.

Exercise 3.4.2

Use the identity chart on R. The standard at-
las on S1 ⊆ C using projections is given simply
by real and imaginary part. Hence the formu-
lae you have to check are smooth are sin and
cos. This we know! One comment on domains
of definition: let f : R → S1 be the map in
question; if we use the chart (x0,0, U0,0, then
f−1(U0,0) is the union of all the intervals on the
form (−π/2+2πk, π/2+2πk) when k varies over
the integers. Hence the function to check in this
case is the function from this union to (−1, 1)
sending θ to sin θ.

Exercise 3.4.3

First check that g̃ is well defined. Check that it
is smooth using the standard charts. To show
that g̃ is injective, show that g(p) = g(q) implies
that p = ±q.

Exercise 3.4.4

Smoothness is a local question, and the projec-
tion g : Sn → RPn is a local diffeomorphism.
More precisely, if f : RPn → M is a map, we
have to show that for all charts (y, V ) on M , the

composites yf(xk)−1 (defined on Uk ∩ f−1(V ))
are smooth. But xkg(xk,0)−1 : Dn → R

n is
a diffeomorphism (given by sending p ∈ Dn

to 1√
1−|p|2

p ∈ R
n), and so claiming that

yf(xk)−1 is smooth is the same as claiming
that y(fg)(xk,0)−1 = yf(xk)−1xkg(xk,0)−1 is
smooth.

Exercise 3.4.11

Consider the map S1 → RP1 sending eiθ to
[eiθ/2].

Exercise 3.4.13

Given a chart (x,U) on M , define a chart
(xf−1, f(U)) on N .

Exercise 3.4.18

To see this, note that given any p, there are
open sets U1 and V1 with p ∈ U1 and i(p) ∈ V1

and U1 ∩ V1 = ∅ (since M is Hausdorff). Let
U = U1 ∩ i(V1). Then U and i(U) = i(U1) ∩ V1

do not intersect. As a matter of fact M has a
basis for its topology consisting of these kinds
of open sets.

By shrinking even further, we may assume that
U is a chart domain for a chart x : U → U ′ on
M .

We see that f |U is open (it sends open sets to
open sets, since the inverse image is the union
of two open sets).

On U we see that f is injective, and so it in-
duces a homeomorphism f |U : U → f(U). We
define the smooth structure on M/i by letting
x(f |U )−1 be the charts for varying U . This is
obviously a smooth structure, and f is a local
diffeomorphism.
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Exercise 3.4.19

Choose any chart y : V → V ′ with p ∈ V in U ,
choose a small open ball B ⊆ V ′ around y(p).
There exists a diffeomorphism h of this ball with
all of R

n. Let U = y−1(B) and define x by set-
ting x(q) = hy(q)− hy(p).

Exercise 3.5.4

Use “polar coordinates”.

Exercise 3.5.6

Assume there is a chart x : U → U ′ with (0, 0) ∈
U , x(0, 0) = (0, 0) and x(K∩U) = (R×0)∩U ′.

Then the composite (V is a sufficiently small
neighborhood of 0)

V
q 7→(q,0)−−−−−→ U ′ x−1

−−−−→ U

is smooth, and of the form q 7→ T (q) =
(t(q), |t(q)|). But

T ′(0) =

(
lim
h→0

t(h)

h
, lim
h→0

|t(h)|
h

)
,

and for this to exist, we must have t′(0) = 0.

On the other hand x(p, |p|) = (s(p), 0), and we
see that s and t are inverse functions. The direc-
tional derivative of pr1x at (0, 0) in the direction
(1, 1) is equal

lim
h→0+

s(h)

h

but this limit does not exist since t′(0) = 0, and
so x can’t be smooth, contradiction.

Exercise 3.5.11

The subset f(RPn) = {[p, 0] ∈ RPn+1} is a
submanifold by using all but the last of the stan-
dard charts on RPn+1}. Checking that RPn →
f(RPn) is a diffeomorphism is now straight-
forward (the “ups, over and acrosses” correspond
to the chart transformations in RPn).

Exercise 3.5.14

Assume ij : Nj →Mj are inclusions of submani-
folds — the diffeomorphism part of “imbedding”
being the trivial case — and let xj : Uj → U ′

j be
charts such that

xj(Uj ∩Nj) = U ′
j ∩ (Rnj × {0}) ⊆ R

mj

for j = 1, 2. To check whether f is smooth
at p ∈ N1 it is enough to assert that
x2fx−1

1 |x1(V ) = x2gx−1
1 |x1(V ) is smooth at p

where V = U1 ∩ N1 ∩ g−1(U2) which is done
by checking the higher order partial derivatives
in the relevant coordinates.

Exercise 3.6.2

Check that all chart transformations are
smooth.

Exercise 3.6.5

Up over and across using appropriate charts on
the product, reduces this to saying that the
identity is smooth and that the inclusion of R

m

in R
m ×R

n is an imbedding.

Exercise 3.6.6

The heart of the matter is that R
k → R

m×R
n

is smooth if and only if both the composites
R
k → R

m and R
k → R

n are smooth.
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Exercise 3.6.7

Consider the map (t, z) 7→ etz.

Exercise 3.6.8

Reduce to the case where f and g are inclusions
of submanifolds. Then rearrange some coordi-
nates to show that case.

Exercise 3.6.9

Use the preceding exercises.

Exercise 3.6.10

Remember that GLn(R) is an open subset of
Mn(R) and so this is in flatland 3.5.8). Multi-
plication of matrices is smooth since it is made
out of addition and multiplication of real num-
bers.

Exercise 3.6.11

Use the fact that multiplication of complex
numbers is smooth, plus 3.5.14).

Exercise 3.6.13

Check chart transformations.

Exercise 3.6.16

Using the “same” charts on both sides, this re-
duces to saying that the identity is smooth.

Exercise 3.6.17

A map from a disjoint union is smooth if and
only if it is smooth on both summands since

smoothness is measured locally.

Chapter 4

Exercise 4.2.6

It depends neither on the representation of the
tangent vector nor on the representation of the
germ, because if [γ] = [ν] and f̄ = ḡ, then
(φfγ)′(0) = (φfν)′(0) = (φgν)′(0) (partially by
definition).

Exercise 4.3.10

If [γ] = [ν], then (φfγ)′(0) = (φfν)′(0).

Chapter 5

Exercise 5.2.3

See the next exercise. This refers the problem
away, but the same reference helps you out on
this one too!

Exercise 5.2.4

This exercise is solved in the smooth case in ex-
ercise 7.2.6. The only difference in the contin-
uous case is that you delete every occurence of
“smooth” in the solution. In particular, the solu-
tion refers to a “smooth bump function φ : U2 →
R such that φ is one on (a, c) and zero on
U2 \ (a, d)”. This can in our case be chosen to
be the (non smooth) map φ : U2 → R given by

φ(t) =





1 if t ≤ c
d−t
d−c if c ≤ t ≤ d

0 if t ≥ d
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Exercise 5.4.4

Use the chart domains on RPn from the mani-
fold section:

Uk = {[p] ∈ RPn|pk 6= 0}
and construct bundle charts π−1(Uk)→ Uk×R

sending ([p], λp) to ([p], λpk). The chart trans-
formations then should look something like

([p], λ) 7→ ([p], λ
pl
pk

)

If the bundle were trivial, then ηn \ σ0(RPn)
would be disconnected. In particular ([e1], e1)
and ([e1],−e1) would be in different compo-
nents. But γ : [0, π]→ ηn \ σ0(RPn) given by

γ(t) = ([cos(t)e1 + sin(t)e2], cos(t)e1 + sin(t)e2)

is a path connecting them.

Exercise 5.4.5

You may assume that p = [0, . . . , 0, 1]. Then

any point [x0, . . . , xn−1, xn] ∈ X equals
[
x
|x| ,

xn

|x|

]

since x = (x0, . . . , xn−1) must be different from
0. Consider the map

X → ηn−1

[x, xn] 7→
([

x

|x|

]
,
xnx

|x|2
)

with inverse ([x], λx) 7→ [x, λ].

Exercise 5.5.8

View S3 as the unit quaternions, and copy the
argument for S1.

Exercise 5.5.9

Lie group is a smooth manifold equipped with a
smooth associative multiplication, having a unit
and possessing all inverses, so the proof for S1

will work.

Exercise 5.5.13

If we set zj = xj + iyj, x = (x0, . . . , xn) and
y = (y0, . . . , yn), then

∑n
i=0 z2 = 1 is equiv-

alent to x · y = 0 and |x|2 − |y|2 = 1. Use
this to make an isomorphism to the bundle
in example 5.5.10 sending the point (x, y) to
(p, v) = ( x

|x| , y) (with inverse sending (p, v) to

(x, y) = (
√

1 + |v|2p, v)).

Exercise 5.5.16

Use the trivialization to pass the obvious solu-
tion on the product bundle to the tangent bun-
dle.

Exercise 5.5.17

Any curve to a product is given uniquely by its
projections to the factors.

Chapter 6

Exercise 6.2.3

Consider the smooth map

f : G×G→G×G

(g, h) 7→(gh, h)

with inverse (g, h) 7→ (gh−1, h). Use that, for
a given g ∈ G, the map G → G sending h to
gh is a diffeomorphism to conclude that f has
maximal rank, and is a diffeomorphism. Then
consider a composite

G
g 7→(1,g)−−−−−→ G×G

f−1

−−−−→ G×G
(g,h) 7→g−−−−−→ G
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Exercise 6.3.3

Use the rank theorem. To prove that the rank
is constant, first prove it for all points in f(M)
using the chain rule. See [BJ], Theorem 5.13.
That f(M) = {p ∈ M |f(p) = p} is closed
in M follows since the complement is open: if
p 6= f(p) choose disjoint open sets U and V
around p and f(p). Then U ∩f−1(V ) is an open
set disjoint from f(M) (since U ∩ f−1(V ) ⊆ U
and f(U ∩ f−1(V )) ⊆ V ) containing p.

Exercise 6.4.4

Prove that 1 is a regular value for the function
R
n+1 → R sending p to |p|2.

Exercise 6.4.7

Observe that the function in question is

f(eiθ, eiφ) =
√

(3− cos θ − cosφ)2 + (sin θ + sinφ)2,

giving the claimed Jacobi matrix. Then solve
the system of equations

3 sin θ − cos φ sin θ + sinφ cos θ =0

3 sinφ− cos θ sinφ + sin θ cos φ =0

Adding the two equations we get that sin θ =
sinφ, but then the upper equation claims that
sinφ = 0 or 3− cos φ + cos θ = 0. The latter is
clearly impossible.

Exercise 6.4.9

Show that the map

SL2(R)→ (C− {0}) ×R
[
a b
c d

]
7→ (a + ic, ab + cd)

is a diffeomorphism, and that S1 ×R is diffeo-
morphic to C− {0}.

Exercise 6.4.10

Calculate the Jacobi matrix of the determi-
nant function. With some choice of indices you
should get

Dij(det)(A) = (−1)i+jdet(Aij)

where Aij is the matrix you get by deleting the
ith row and the jth column. If the determinant
is to be one, some of the entries in the Jacobi
matrix then has got to be nonzero.

Exercise 6.4.12

By corollary 5.5.12 we identify TO(n) with

E =




(g,A) ∈ O(n)×Mn(R)

∣∣∣∣∣∣∣∣

g = γ(0)
A = γ′(0)

for some curve
γ : (−ε, ε)→ O(n)





That γ(s) ∈ O(n) is equivalent to saying that
I = γ(s)tγ(s). This holds for all s ∈ (−ε, ε), so
we may derive this equation and get

0 =
d

ds

∣∣∣∣
s=0

(
γ(s)tγ(s)

)

= γ′(0)tγ(0) + γ(0)tγ′(0)

= Atg + gtA

Exercise 6.4.14

Consider the chart x : M2(R)→ R
4 given by

x

([
a b
c d

])
= (a, b, a− d, b + c).
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Exercise 6.4.15

Copy one of the proofs for the orthogonal group,
replacing the symmetric matrices with Hermi-
tian matrices.

Exercise 6.4.16

The space of orthogonal matrices is compact
since it is a closed subset of [−1, 1]n

2
. It has at

least two components since the sets of matrices
with determinant 1 is closed, as is the comple-
ment: the set with determinant −1.

Each of these are connected since you can get
from any rotation to the identity through a path
of rotations. One way to see this is to use the
fact from linear algebra which says that any el-
ement A ∈ SO(n) can be written in the form
A = BTB−1 where B and T are orthogonal,
and furthermore T is a block diagonal matrix
where the block matrices are either a single 1
on the diagonal, or of the form

T (θk) =

[
cos θk − sin θk
sin θk cos θk

]
.

So we see that replacing all the θk’s by sθk and
letting s vary from 1 to 0 we get a path from A
to the identity matrix.

Exercise 6.4.19

Consider a k-frame as a matrix A with the prop-
erty that AtA = I, and proceed as for the or-
thogonal group.

Exercise 6.4.21

Either just solve the equation or consider the
map

f : P3 → P2

sending y ∈ P3 to f(y) = (y′′)2 − y′ + y(0) +
xy′(0) ∈ P2. If you calculate the Jacobian in

obvious coordinates you get that

Df(a0 + a1x + a2x
2 + a3x

3) =



1 −1 8a2 0
0 1 24a3 − 2 24a2

0 0 0 72a3 − 3




The only way this matrix can be singular is if
a3 = 1/24, but the top coefficient in f(a0+a1x+
a2x

2 + a3x
3) is 36a2

3 − 3a3 which won’t be zero
if a3 = 1/24. By the way, if I did not calculate
something wrong, the solution is the disjoint
union of two manifolds M1 = {2t(1−2t)+2tx+
tx2|t ∈ R} and M2 = {−24t2 + tx2 + x3/12|t ∈
R}, both diffeomorphic to R.

Exercise 6.4.22

Yeah.

Exercise 6.4.23

Consider the function

f : R
n → R

given by

f(p) = ptAp.

The Jacobi matrix is easily calculated, and using
that A is symmetric we get that Df(p) = 2ptA.
But given that f(p) = b we get that Df(p) ·p =
ptAp = b, and so Df(p) 6= 0 if b 6= 0. Hence all
values but b = 0 are regular. The value b = 0 is
critical since 0 ∈ f−1(0) and Df(0) = 0.

Exercise 6.4.24

For the first case, you may assume that the reg-
ular value in question is 0. Since zero is a regular
value, the derivative in the “fiber direction” has
got to be nonzero, and so the values of f are pos-
itive on one side of the zero section... but there
IS no “one side” of the zero section! This takes
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care of all one-dimensional cases, and higher di-
mensional examples are excluded since the map
won’t be regular if the dimension increases.

Exercise 6.4.25

You don’t actually need theorem 6.4.3 to prove
this since you can isolate T in this equation, and
show directly that you get a submanifold dif-
feomorphic to R

2, but still, as an exercise you
should do it by using theorem 6.4.3.

Exercise 6.4.26

Code a flexible n-gon by means of a vector
x0 ∈ R

2 giving the coordinates of the first point,
and vectors xi ∈ S1 going from point i to point
i+1 for i = 1, . . . , n−1 (the vector from point n
to point 1 is not needed, since it will be given by
the requirement that the curve is closed). The
set R

2 × (S1)n−1 will give a flexible n-gon, ex-
cept, that the last line may not be of length 1.
To ensure this, look at the map

f : R
k × (Sk−1)n−1 → R

(x0, (x1, . . . , xn−1)) 7→
∣∣∣∣∣
n−1∑

i=1

xi

∣∣∣∣∣

2

and show that 1 is a regular value. If you let
xj = eiφj and x = (x0, (x1, . . . , xn−1)), you get
that

Djf(x) = Dj

(
(

n−1∑

k=1

eiφk)(

n−1∑

k=1

e−iφk)

)

= ieiφj (

n−1∑

k=1

e−iφk) + (

n−1∑

k=1

eiφk)(−ie−iφj )

= −2Im

(
eiφj (

n−1∑

k=1

e−iφk)

)

That the rank is not 1 is equivalent to Djf(x) =
0 for all j. Analyzing this, we get that
x1, . . . , xn−1 must then all be paralell. But this

is impossible if n is odd and
∣∣∣
∑n−1

i=1 xi
∣∣∣
2

= 1.

(Note that this argument fails for n even. If
n = 4 LF4,2 is not a manifold: given x1 and
x2 there are two choices for x3 and x4: (either
x3 = −x2 and x4 = −x1 or x3 = −x1 and
x4 = −x2), but when x1 = x2 we get a crossing
of these two choices).

Exercise 6.4.27

The non-self-intersecting flexible n-gons form an
open subset.

Exercise 6.5.2

It is clearly injective, and an immersion since it
has rank 1 everywhere. It is not an imbedding
since R

∐
R is disconnected, whereas the image

is connected.

Exercise 6.5.3

It is clearly injective, and immersion since it has
rank 1 everywhere. It is not an imbedding since
an open set containing a point z with |z| = 1 in
the image must contain elements in the image
of the first summand.

Exercise 6.5.6

If a/b is irrational then the image of fa,b is dense:
that is any open set on S1 × S1 intersects the
image of fa,b.

Exercise 6.5.7

Show that it is an injective immersion homeo-
morphic to its image. The last property follows
since both the maps in

M −−−−→ i(M) −−−−→ ji(M)
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are continuous and bijective and the composite
is a homeomorphism.

Chapter 7

Exercise 7.2.1

The only problem is in the origin. If you calcu-
late

lim
t→0+

1

t
(λ(t)− λ(0)) = lim

t→0+

e−1/t2

t

= lim
s→∞

se−s
2

= 0

you see that λ is once differentiable, and it con-
tinues this way proving that λ is smooth.

Exercise 7.2.3

Let φ : Uφ → R be a representative for φ̄, and let
(x,U) be any chart around p such that x(p) = 0.
Choose an ε > 0 such that x(U ∩ Uφ) contains
the open ball of radius ε. Then the germ repre-
sented by φ is equal to the germ represented by
the map defined on all of M given by

q 7→
{

γ(ε/3,ε/3)(x(q))φ(q) for q ∈ U ∩ Uφ

0 otherwise.

Exercise 7.2.4

You can extend any chart to a function defined
on the entire manifold.

Exercise 7.2.5

Smoothen up the proof you gave for the same
question in the vector bundle chapter, or use
parts of the solution of exercise 7.2.6.

Exercise 7.2.6

Let π : E → S1 be a one-dimensional smooth
vector bundle (one-dimensional smooth vec-
tor bundles are frequently called line bundles).
Since S1 is compact we may choose a finite bun-
dle atlas, and we may remove superfluous bun-
dle charts, so that no domain is included in an-
other. We may also assume that all chart do-
mains are connected. If there is just one bundle
chart, we are finished, otherwise we proceed as
follows. If we start at some point, we may order
the charts, so that they intersect in a nonempty
interval (or a disjoint union of two intervals if
there are exactly two charts). Consider two
consecutive charts (h1, U1) and (h2, U2) and let
(a, b) be (one of the components of) their inter-
section. The transition function

h12 : (a, b)→ R \ {0} ∼= GL1(R)

must take either just negative or just positive
values. Multiplying h2 by the sign of h12 we get
a situation where we may assume that h12 al-
ways is positive. Let a < c < d < b, and choose
a smooth bump function φ : U2 → R such that
φ is one on (a, c) and zero on U2 \ (a, d). Define
a new chart (h′

2, U2) by letting

h′
2(t) =

(
φ(t)

h12(t)
+ 1− φ(t)

)
h2(t)

(since h12(t) > 0, the factor by which we multi-
ply h2(t) is never zero). On (a, c) the transition
function is now constantly equal to one, so if
there were more than two charts we could merge
our two charts into a chart with chart domain
U1 ∪ U2.

So we may assume that there are just two charts.
Then we may proceed as above on one of the
components of the intersection between the two
charts, and get the transition function to be the
identity. But then we would not be left with the
option of multiplying with the sign of the transi-
tion function on the other component. However,
by the same method, we could only make it plus
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or minus one, which exactly correspond to the
trivial bundle and the canonical line bundle.

Just the same argument shows that there are ex-
actly two isomorphism types of n-dimensional
smooth vector bundles over S1 (using that
GLn(R) has exactly two components). The
same argument also gives the corresponding
topological fact.

Chapter 8

Exercise 8.1.4

As an example, consider the open subset U 0,0 =
{eiθ ∈ S1| cos θ > 0}. The bundle chart
h : U0,0×C→ U0,0×C given by sending (eiθ, z)
to (eiθ, e−iθ/2z). Then h((U 0,0 × C) ∩ η1) =
U0,0 ×R. Continue this way all around the cir-
cle. The idea is the same for higher dimensions:
locally you can pick the first coordinate to be
on the line [p].

Exercise 8.1.11

Let Xk = {p ∈ X|rkpf = k}. We want to show
that Xk is both open and closed, and hence ei-
ther empty or all of X since X is connected.

Let P = {A ∈ Mm(A)|A = A2}, then Pk =
{A ∈ P |rk(A) = k} ⊆ P is open. To see this,
write Pk as the intersection of P with the two
open sets

{A ∈Mn(R)|rkA ≥ k}
and 




A ∈Mn(R)

∣∣∣∣∣∣∣∣∣∣

A has less than
or equal to k

linearly independent
eigenvectors with

eigenvalue 1





.

But, given a bundle chart (h,U), then the map

U
p7→hpfph

−1
p−−−−−−−→ P

is continuous, and hence U ∩ Xk is open in U .
Varying (h,U) we get that Xk is open, and
hence also closed since Xk = X \⋃i6=k Xi.

Exercise 8.1.12

Use exercise 8.1.11 to show that the bundle map
1
2(idE − f) has constant rank (here we use that
the set of bundle morphisms is in an obvious
way a vector space).

Exercise 8.2.4

A×X E = π−1(A).

Exercise 8.2.5

This is not as complex as it seems. For instance,
the map Ẽ → f∗E = X ′ ×X E must send e to
(π̃(e), g(e)) for the diagrams to commute.

Exercise 8.2.6

If h : E → X ×R
n is a trivialization, then the

map f∗E = Y ×X E → Y ×X (X×R
n) induced

by h is a trivialization, since Y ×X (X ×R
n)→

Y ×R
n sending (y, (x, v)) to (y, v) is a homeo-

morphism.

Exercise 8.2.7

X ×Y (Y ×Z E) ∼= X ×Z E.

Exercise 8.3.2

The transition functions will be of the type
U 7→ GLn1+n2(R), which sends p ∈ U to the
block matrix

[
(h1)p(g1)

−1
p 0

0 (h2)p(g2)
−1
p

]
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which is smooth if each of the blocks are smooth.
Similarly for the morphisms.

Exercise 8.3.4

Use the map ε → Sn × R sending (p, λp) to
(p, λ).

Exercise 8.3.6

Consider TSn ⊕ ε, where ε is gotten from exer-
cise 8.3.4. Construct a trivialization TSn⊕ ε→
Sn ×R

n+1.

Exercise 8.3.7

ε1 ⊕ ε2
h1⊕h2−−−−→

∼=
X × (Rn1 ⊕R

n2)

(E1 ⊕E2)⊕ (ε1 ⊕ ε2) ∼= (E1 ⊕ ε1)⊕ (E2 ⊕ ε2)

Exercise 8.3.8

Given f1 and f2, let f : E1 ⊕ E2 → E3 be
given by sending (v, w) ∈ π−1

1 (p) ⊕ π−1
2 (p) to

f1(v) + f2(w) ∈ π−1
3 (p). Given f let f1(v) =

f(v, 0) and f2(w) = f(0, w).

Exercise 8.4.4

Send the bundle morphism f to the section
which to any p ∈ X assigns the linear map
fp : Ep → E′

p.

Exercise 8.4.6

Let F ⊆ E be a k-dimensional subbundle of the
n-dimensional vector bundle π : E → X. Define
as a set

E/F =
∐

p∈X

Ep/Fp

with the obvious projection π̄ : E/F → X. The
bundle atlas is given as follows. For p ∈ X
choose bundle chart h : π−1(U)→ U ×R

n such
that h(π−1(U) ∩ F ) = U ×R

k × {0}. On each
fiber this gives a linear map on the quotient
h̄p : Ep/Fp → R

n/Rk × {0} via the formula

h̄p(v̄) = hp(v) as in 2. This gives a function

h̄ : (π̄)−1(U) =
∐

p∈U

Ep/Fp

→
∐

p∈U

R
n/Rk × {0}

∼= U ×R
n/Rk × {0}

∼=U ×R
n−k.

You then have to check that the transition func-
tions p 7→ ḡph̄

−1
p = gph

−1
p are continuous (or

smooth).

As for the map of quotient bundles, this follows
similarly: define it on each fiber and check con-
tinuity of “up, over and down”.

Exercise 8.4.7

Altk(E) =
∐
p∈X AltkEp and so on.

Exercise 8.4.8

The transition functions on L → M are maps
into nonzero real numbers, and on the tensor
product this number is squared, and so all tran-
sition functions on L ⊗ L → M map into pos-
itive real numbers. Use partition of unity to
glue these together and scale them to be the
constantly 1.

Exercise 8.6.5

Note that the map in question induces a linear
map on every fiber which is an isomorphism,
and hence by lemma 5.3.12 the map is an iso-
morphism of bundles.
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Exercise 8.6.8

Use lemma 8.6.2 and exercise 8.6.5 to show
that the bundle in question is isomorphic to
(TR

n)|M →M .

Exercise 8.6.9

You have done this exercise before!

Exercise 8.6.10

Prove that the diagonal M → M × M is an
imbedding by proving that it is an immersion
inducing a homeomorphism onto its image. The
tangent space of the diagonal at (p, p) is exactly
the diagonal of T(p,p)(M ×M) ∼= TpM × TpM .
For any vector space V , the quotient space
V × V/diagonal is canonically isomorphic to V
via the map given by sending (v1, v2) ∈ V × V
to v1 − v2 ∈ V .

Exercise 8.7.6

Show that the map

f × g : M × L→ N ×N

is transverse to the diagonal (which is discussed
in exercise 8.6.10), and that the inverse image
of the diagonal is exactly M ×N L.

Exercise 8.8.1

The conditions you need are exactly the ones
fulfilled by the elementary definition of the de-
terminant: check your freshman introduction.

Exercise 8.9.1

Check out e.g. [MS] page 57.

Exercise 8.9.2

Check out e.g. [MS] page 59.

Exercise 8.9.4

Check out e.g. [MS] page 60.

Chapter 9

Exercise 9.1.4

Check the two defining properties of a flow. As
an aside: this flow could be thought of as the
flow R×C→ C sending (t, z) to e−z−t/2, which
obviously satisfies the two conditions.

Exercise 9.1.19

Consider one of the “bad” injective immersions
that fail to be imbeddings, and force a disconti-
nuity on the velocity field.

Exercise 9.2.3

Consider a bump function phi on the sphere
which is 1 near the North pole and 0 near the
South pole. Consider the vector field Z =

φ
→
Φ + (1 − φ)

→
Ψ. Near the North pole Z =

→
Φ

and near the South pole Z =
→
Ψ, and so the flow

associated with Z has the desired properties.

Exercise 9.2.4

The vector field associated with the flow

Φ: R× (S1 × S1)→ (S1 × S1)

given by Φ(t, (z1, z2)) = (eiatz1, e
ibtz2) exhibits

the desired phenomena when varying the real
numbers a and b.
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Exercise 9.2.5

All we have to show is that X is the velocity
field of Φ. Under the diffeomorphism

TO(n)→E

[γ]→(γ(0), γ ′(0))

this corresponds to the observation that

∂

∂s

∣∣∣∣
s=0

Φ(s, g) = gA.

Exercise 9.5.8

Concerning the map ` : S1 → CP1: note that it
maps into a chart domain on which lemma tells
us that the projection is trivial.

Exercise 9.4.5

Do a variation of example 9.3.3.

Exercise 9.5.9

Write R as a union of intervals Jj so that for
each j, γ(Uj) is contained within one of the open
subsets of M so that the fibration trivializes. On
each of these intervals the curve lifts, and you
may glue the liftings using bump functions.

Exercise 9.6.3

There is no hint beyond: use the definitions!

Exercise 9.6.4

Use the preceding exercise: notice that TπMξ =
πTMξ is necessary for things to make sense since
γ̈ had two repeated coordinates.

Exercise 9.6.8

The conditions the sections have to satisfy are
convex, just as in the proof of existence of Rie-
mannian structures.

Exercise 9.6.9

The thing to check is that T is an open neigh-
borhood of the zero section.

Chapter 10

Exercise 10.1.5

Consider the union of the closed intervals
[1/n, 1] for n ≥ 1)

Exercise 10.1.7

Consider the set of all open subsets of X con-
tained in U . Its union is open.

Exercise 10.1.9

By the union axiom for open sets, int A is open
and contains all open subsets of A.

Exercise 10.1.10

The intersection of two open balls is the union
of all open balls contained in the intersection.

Exercise 10.1.11

All open intervals are open balls!
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Exercise 10.2.2

Hint one way: the “existence of the δ” assures
you that every point in the inverse image has a
small interval around it inside the inverse image
of the ε ball.

a

U

f  (U)
−1

Exercise 10.2.3

f−1(g−1(U)) = (gf)−1(U).

Exercise 10.2.6

Use first year calculus.

Exercise 10.3.3

Can you prove that the set containing only the
intervals (a, b) when a and b varies over the ra-
tional numbers is a basis for the usual topology
on the real numbers?

Exercise 10.3.4

Show that given a point and an openball con-
taining the point there is a “rational” ball in
between.

Exercise 10.3.5

Use note 10.3.2.

Exercise 10.3.6

f−1(
⋃
α Vα) =

⋃
α f−1(Vα).

Exercise 10.5.2

Use that (
⋃
α Uα) ∩ A =

⋃
α (Uα ∩A) and

(
⋂
α Uα) ∩A =

⋂
α (Uα ∩A).

Exercise 10.5.3

Use 10.2.3 one way, and that if f−1(U ∩ A) =
f−1(U) the other.

Exercise 10.5.4

The intersections of A with the basis elements
of the topology on X will form a basis for the
subspace topology on A.

Exercise 10.5.5

Separate points in A by means of disjoint neigh-
borhoods in X, and intersect with A.

Exercise 10.6.2

Inverse image commutes with union and inter-
section.

Exercise 10.6.3

Use 10.2.3 one way, and the characterization of
open sets in X/ ∼ for the other.
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Exercise 10.6.4

Show that open sets in one topology are open
in the other.

Exercise 10.7.2

Cover f(X) ⊆ Y by open sets i.e. by sets of the
form V ∩ f(X) where V is open in Y . Since
f−1(V ∩ f(X)) = f−1(V ) is open in X, this
gives a covering of X. Choose a finite subcover,
and select the associated V ’s to cover f(X).

Exercise 10.7.5

The real projective space is compact by 10.7.2.
The rest of the claims follows by 10.7.11, but
you can give a direct proof by following the out-
line below.

For p ∈ Sn let [p] be the equivalence class of p
considered as an element of RPn. Let [p] and [q]
be two different points. Choose an ε such that
ε is less than both |p− q|/2 and |p+ q|/2. Then
the ε balls around p and −p do not intersect the
ε balls around q and −q, and their image define
disjoint open sets separating [p] and [q].

Notice that the projection p : Sn → RPn sends
open sets to open sets, and that if V ⊆ RPn,
then V = pp−1(V ). This implies that the count-
able basis on Sn inherited as a subspace of Rn+1

maps to a countable basis for the topology on
RPn.

Exercise 10.7.9

You must show that if K ⊆ C is closed, then(
f−1

)−1
(K) = f(K) is closed.

Exercise 10.7.10

Use Heine-Borel 10.7.3 and exercise 10.7.2.

Exercise 10.8.2

One way follows by 10.2.3. For the other, ob-
serve that by exercise 10.3.6 it is enough to show
that if U ⊆ X and V ⊆ Y are open sets, then
the inverse image of U × V is open in Z.

Exercise 10.8.3

Show that a square around any point contains
a circle around the point and vice versa.

Exercise 10.8.4

If B is a basis for the topology on X and C is a
basis for the topology on Y , then

{U × V |U ∈ B, V ∈ C}

is a basis for X × Y .

Exercise 10.8.5

If (p1, q1) 6= (p2, q2) ∈ X × Y , then either
p1 6= p2 or q1 6= q2. Assume the former, and
let U1 and U2 be two open sets in X separating
p1 and p2. Then U1 × Y and U2 × Y are. . .

Exercise 10.9.2

The inverse image of a set that is both open and
closed is both open and closed.

Exercise 10.9.4

Both X and Y are open sets.
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Exercise 10.9.5

One way follows by 10.2.3. The other follows
since an open subset of X

∐
Y is the (disjoint)

union of an open subset of X with an open sub-
set of Y .

Exercise 10.11.5

If p ∈ f(f−1(B)) then p = f(q) for a q ∈
f−1(B). But that q ∈ f−1(B) means simply
that f(q) ∈ B!

Exercise 10.11.6

These are just rewritings.

Exercise 10.11.7

We have that p ∈ f−1(B1∩B2) iff f(p) ∈ B1∩B2

iff f(p) is in both B1 and B2 iff p is in both

f−1(B1) and f−1(B2) iff p ∈ f−1(B1)∩f−1(B2).
The others are equally fun.
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C∞(M), 33
C∞(M,N), 33
D,_pM52
En: the open n-disk, 22
Gk
n, 86

L : R×R→ R, 125
MnR, 37
Mm×nR, 37
M r

m×nR, 37
O(n), 83
SLn(R), 83
SO(n), 86
Sn: the n-sphere, 22
TpM , 47
TpM ∼= D,_pM55
Tpf , 49
U(n), 86
V k
n , 86

[γ] = [γ̄], 47
≈, 47
f̄ , germ represented by f , 44
C∞=smooth, 30
D, 28
GLn(R), 37
ξ(M, p), 46
f ∗ : ξ(f(p))→ ξ(p), 46
k-frame, 86
pri, 46
rkpf , 75
supp(f), 93

alternating forms, 111
atlas, 21

bundle, 60
good, 97
maximal, 29

smooth bundle, 63

bad taste, 60
base space, 60
basis for the topology, 148
bijective, 155
Borromean rings, 41
bump function, 95
bundle

atlas, 60
smooth, 63

chart, 60
chart transformation, 62
morphism, 61

smooth, 65

canonical n-plane bundle, 121
canonical line bundle, 60
chain rule, 49
chain rule, the, 160
chart, 21

domain, 21
transformation, 24

closed set, 146
closure, 146
compact space, 150
complement, 146, 154
complex projective space, CPn, 28
composition of germs, 45
connected space, 152
connected sum, 16
constant rank, 103
continuous

map, 147
coordinate functions

standard, 46
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countable basis, 148
critical, 76

De Morgan’s formulae, 154
derivation, 52
determinant function, 119
diffeomorphic, 32
diffeomorphism, 25, 32
differentiable manifold, 30
differentiable map, 31
differential=smooth, 30
disjoint union, 40, 152
dual space, 110

Ehresmann’s fibration theorem, 140
Ehresmann’s fibration theorem, 137
embedding=imbedding, 38
equivalence

class, 154
relation, 154

existence of maxima, 151
exponential map, 143
exterior power, 111

family, 154
fiber, 60
fiber product, 105, 119
fixed point free involution, 34
flow

global, 124
local, 133
maximal local, 134

flow line, 126, 134
function germ, 46
fusion reactor, 73

generalized Gauss map, 122
generate (a topology), 148
genus, 16
geodesic, 142
germ, 44
good atlas, 97
Grassmann manifold, 86, 121

handle, 16

Hausdorff space, 149
Heine–Borel’s theorem, 151
hom-space, 110
homeomorphic, 147
homeomorphism, 147
Hopf fibration, 140

image, 155
of bundle morphism, 105
of map of vector spaces, 104

imbedding, 38
immersion, 81
induced bundle, 105
injective, 155
Integrability theorem, 130, 134
interior, 146
intermediate value theorem, 152
inverse function theorem, 77, 160
inverse image, 155
isomorphism of smooth vector bundles, 65

Jacobi matrix, 54
Jacobian matrix, 159

kernel
of bundle morphism, 105
of map of vector spaces, 104

labelled flexible n-gons, 87
Leibnitz rule, 52
Lie Group

S1 is one, 40
Lie group

O(n), 85
SLn(R), 85
U(n), 86
GLn(R) is one, 40

line bundle, 173
line bundle, 63, 96
local diffeomorphism, 34
local flow, 133
local trivialization, 60
locally trivial fibration, 136
locally finite, 93
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locally homeomorphic, 21
locally trivial, 60

magnetic dipole, 73
manifold

smooth, 30
topological, 21

maximal local flow, 134
maximal (smooth) bundle atlas, 64
maximal atlas, 29
metric topology, 146
morphism

of bundles, 61

neighborhood, 146
nonvanishing section, 62
normal bundle

of a submanifold, 116
of an imbedding, 116
w.r.t. a Riemannian metric, 115

one-to-one, 155
onto, 155
open ball, 146
open set, 146
open submanifold, 37
orbit, 126, 134
orientable, 15
orientable bundle, 120
orientable manifold, 120
orientation

of a vector bundle, 120
on a vector space, 120

orientation preserving isomorphism, 120
orientation reversing isomorphism, 120
orientation class, 120
oriented vector space, 120
orthogonal matrices, 83

parallelizable, 70
partial derivative, 159
partition of unity, 94
periodic immersion, 129
pre-bundle atlas, 67

pre-vector bundle, 67
precomposition, 46
preimage, see inverse image
product

smooth, 39
space, 152
topology, 152

product bundle, 61
projections (from the product), 152
proper, 137

quadric, 87
quotient

space, 150
topology, 150

quotient bundle, 113
quotient space, 110

rank, 75
constant, 75

rank theorem, 79
real projective space, RPn, 23, 28
refinement, 97
reflexivity, 154
regular

point, 76
value, 76

represent, 44
restriction, 149
restriction of bundle, 102
Riemannian manifold, 114
Riemannian metric, 114

Sard’s theorem, 76
second order differential equation, 141
section, 61
singular, 76
skew matrix, 85
smooth

bundle morphism, 65
bundle atlas, 63
manifold, 30
map, 31
map, at a point, 31
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pre-vector bundle, 67
structure, 30
vector bundle, 64

solution curve
for first order differential equation, 130
for second order differential equation,

142
special linear group, 83
special orthogonal group, 86
sphere, (standard smooth), 30
stably trivial, 109
stereographic projection, 26
Stiefeld manifold, 86
subbundle, 101
submanifold, 35

open, 37
submersion, 81
subordinate, 94
subspace, 149
sum, of smooth manifolds, 40
support, 93
surjective, 155
symmetric power, 111
symmetric bilinear form, 112
symmetry, 154

tangent space
geometric definition, 47

tensor product, 110
topological space, 146
topology, 145

on a space, 146
torus, 39
total space, 60
transition function, 62
transitivity, 154
transverse, 117
trivial

smooth vector bundle, 64
trivial bundle, 61

unitary group, 86

van der Waal’s equation, 87

vector bundle
n-dimensional (real topological), 59
smooth, 64

vector field, 72
velocity vector, 127
velocity field, 125, 134

Whitney sum, 108

zero section, 61


