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1. Basic Definitions and Constructions

Vector bundles are special sorts of fiber bundles with additional algebraic struc-

ture. Here is the basic definition. An n dimensional vector bundle is a map p :E→B
together with a real vector space structure on p−1(b) for each b ∈ B , such that the

following local triviality condition is satisfied: There is a cover of B by open sets

Uα for each of which there exists a homeomorphism hα :p−1(Uα)→Uα×Rn taking

p−1(b) to {b}×Rn by a vector space isomorphism for each b ∈ Uα . Such an hα is

called a local trivialization of the vector bundle. The space B is called the base space,

E is the total space, and the vector spaces p−1(b) are the fibers. Often one abbrevi-

ates terminology by just calling the vector bundle E , letting the rest of the data be

implicit. We could equally well take C in place of R as the scalar field here, obtaining

the notion of a complex vector bundle.

If we modify the definition by dropping all references to vector spaces and replace

Rn by an arbitrary space F , then we have the definition of a fiber bundle: a map

p :E→B such that there is a cover of B by open sets Uα for each of which there

exists a homeomorphism hα :p−1(Uα)→Uα×F taking p−1(b) to {b}×F for each

b ∈ Uα .

Here are some examples of vector bundles:

(1) The product or trivial bundle E = B×Rn with p the projection onto the first

factor.

(2) If we let E be the quotient space of I×R under the identifications (0, t) ∼ (1,−t) ,
then the projection I×R→I induces a map p :E→S1 which is a 1 dimensional vector

bundle, or line bundle. Since E is homeomorphic to a Möbius band with its boundary

circle deleted, we call this bundle the Möbius bundle.

(3) The tangent bundle of the unit sphere Sn in Rn+1 , a vector bundle p :E→Sn

where E = { (x,v) ∈ Sn×Rn+1 | x ⊥ v } and we think of v as a tangent vector to

Sn by translating it so that its tail is at the head of x , on Sn . The map p :E→Sn
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sends (x,v) to x . To construct local trivializations, choose any point b ∈ Sn and

let Ub ⊂ Sn be the open hemisphere containing b and bounded by the hyperplane

through the origin orthogonal to b . Define hb :p−1(Ub)→Ub×p−1(b) ≈ Ub×Rn by

hb(x,v) = (x,πb(v)) where πb is orthogonal projection onto the tangent plane

p−1(b) . Then hb is a local trivialization since πb restricts to an isomorphism of

p−1(x) onto p−1(b) for each x ∈ Ub .

(4) The normal bundle to Sn in Rn+1 , a line bundle p :E→Sn with E consisting of

pairs (x,v) ∈ Sn×Rn+1 such that v is perpendicular to the tangent plane to Sn at

x , i.e., v = tx for some t ∈ R . The map p :E→Sn is again given by p(x,v) = x . As

in the previous example, local trivializations hb :p−1(Ub)→Ub×R can be obtained

by orthogonal projection of the fibers p−1(x) onto p−1(b) for x ∈ Ub .

(5) The canonical line bundle p :E→RPn . Thinking of RPn as the space of lines in

Rn+1 through the origin, E is the subspace of RPn×Rn+1 consisting of pairs (`, v)
with v ∈ ` , and p(`,v) = ` . Again local trivializations can be defined by orthogonal

projection. We could also take n = ∞ and get the canonical line bundle E→RP∞ .

(6) The orthogonal complement E⊥ = { (`, v) ∈ RPn×Rn+1 | v ⊥ ` } of the canonical

line bundle. The projection p :E⊥→RPn , p(`,v) = ` , is a vector bundle with fibers

the orthogonal subspaces `⊥ , of dimension n . Local trivializations can be obtained

once more by orthogonal projection.

An isomorphism between vector bundles p1 :E1→B and p2 :E2→B over the same

base space B is a homeomorphism h :E1→E2 taking each fiber p−1
1 (b) to the cor-

responding fiber p−1
2 (b) by a linear isomorphism. Thus an isomorphism preserves

all the structure of a vector bundle, so isomorphic bundles are often regarded as the

same. We use the notation E1 ≈ E2 to indicate that E1 and E2 are isomorphic.

For example, the normal bundle of Sn in Rn+1 is isomorphic to the product bun-

dle Sn×R by the map (x, tx), (x, t) . The tangent bundle to S1 is also isomorphic

to the trivial bundle S1×R , via (eiθ, iteiθ), (eiθ, t) , for eiθ ∈ S1 and t ∈ R .

As a further example, the Möbius bundle in (2) above is isomorphic to the canon-

ical line bundle over RP1 ≈ S1 . Namely, RP1 is swept out by a line rotating through

an angle of π , so the vectors in these lines sweep out a rectangle [0, π]×R with the

two ends {0}×R and {π}×R identified. The identification is (0, x) ∼ (π,−x) since

rotating a vector through an angle of π produces its negative.

The zero section of a vector bundle p :E→B is the union of the zero vectors in

all the fibers. This is a subspace of E which projects homeomorphically onto B by

p . Moreover, E deformation retracts onto its zero section via the homotopy ft(v) =
(1− t)v given by scalar multiplication of vectors v ∈ E . Thus all vector bundles over

B have the same homotopy type.

One can sometimes distinguish nonisomorphic bundles by looking at the comple-

ment of the zero section since any vector bundle isomorphism h :E1→E2 must take
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the zero section of E1 onto the zero section of E2 , hence the complements of the zero

sections in E1 and E2 must be homeomorphic. For example, the Möbius bundle is not

isomorphic to the product bundle S1×R since the complement of the zero section

in the Möbius bundle is connected while for the product bundle the complement of

the zero section is not connected. This method for distinguishing vector bundles can

also be used with more refined topological invariants such as Hn in place of H0 .

We shall denote the set of isomorphism classes of n dimensional real vector

bundles over B by Vectn(B) , and its complex analogue by VectnC(B) . For those who

worry about set theory, we are using the term ‘set’ here in a naive sense. It follows

from Theorem 1.8 later in the chapter that Vectn(B) and VectnC(B) are indeed sets in

the strict sense when B is paracompact.

For example, Vect1(S1) contains exactly two elements, the Möbius bundle and the

product bundle. This will be a rather trivial application of later theory, but it might

be an interesting exercise to prove it now directly from the definitions.

Sections

A section of a bundle p :E→B is a map s :B→E such that ps = 11, or equivalently,

s(b) ∈ p−1(b) for all b ∈ B . We have already mentioned the zero section, which

is the section whose values are all zero. At the other extreme would be a section

whose values are all nonzero. Not all vector bundles have such a nonvanishing section.

Consider for example the tangent bundle to Sn . Here a section is just a tangent vector

field to Sn . One of the standard first applications of homology theory is the theorem

that Sn has a nonvanishing vector field iff n is odd. From this it follows that the

tangent bundle of Sn is not isomorphic to the trivial bundle if n is even and nonzero,

since the trivial bundle obviously has a nonvanishing section, and an isomorphism

between vector bundles takes nonvanishing sections to nonvanishing sections.

In fact, an n dimensional bundle p :E→B is isomorphic to the trivial bundle iff

it has n sections s1, ··· , sn such that s1(b), ··· , sn(b) are linearly independent in

each fiber p−1(b) . For if one has such sections si , the map h :B×Rn→E given by

h(b, t1, ··· , tn) =
∑
i tisi(b) is a linear isomorphism in each fiber, and is continuous,

as can be verified by composing with a local trivialization p−1(U)→U×Rn . Hence h
is an isomorphism by the following useful technical result:

Lemma 1.1. A continuous map h :E1→E2 between vector bundles over the same

base space B is an isomorphism if it takes each fiber p−1
1 (b) to the corresponding

fiber p−1
2 (b) by a linear isomorphism.

Proof: The hypothesis implies that h is one-to-one and onto. What must be checked

is that h−1 is continuous. This is a local question, so we may restrict to an open set

U ⊂ B over which E1 and E2 are trivial. Composing with local trivializations reduces

to the case of an isomorphism h :U×Rn→U×Rn of the form h(x,v) = (x, gx(v)) .
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Here gx is an element of the group GLn(R) of invertible linear transformations of

Rn which depends continuously on x . This means that if gx is regarded as an n×n
matrix, its n2 entries depend continuously on x . The inverse matrix g−1

x also depends

continuously on x since its entries can be expressed algebraically in terms of the

entries of gx , namely, g−1
x is 1/(detgx) times the classical adjoint matrix of gx .

Therefore h−1(x,v) = (x, g−1
x (v)) is continuous. tu

As an example, the tangent bundle to S1 is trivial because it has the section

(x1, x2), (−x2, x1) for (x1, x2) ∈ S1 . In terms of complex numbers, if we set

z = x1 + ix2 then this section is z, iz since iz = −x2 + ix1 .

There is an analogous construction using quaternions instead of complex num-

bers. Quaternions have the form z = x1+ix2+jx3+kx4 , and form a division algebra

H via the multiplication rules i2 = j2 = k2 = −1, ij = k , jk = i , ki = j , ji = −k ,

kj = −i , and ik = −j . If we identify H with R4 via the coordinates (x1, x2, x3, x4) ,
then the unit sphere is S3 and we can define three sections of its tangent bundle by

the formulas

z, iz or (x1, x2, x3, x4), (−x2, x1,−x4, x3)

z, jz or (x1, x2, x3, x4), (−x3, x4, x1,−x2)

z, kz or (x1, x2, x3, x4), (−x4,−x3, x2, x1)

It is easy to check that the three vectors in the last column are orthogonal to each other

and to (x1, x2, x3, x4) , so we have three linearly independent nonvanishing tangent

vector fields on S3 , and hence the tangent bundle to S3 is trivial.

The underlying reason why this works is that quaternion multiplication satisfies

|zw| = |z||w| , where |·| is the usual norm of vectors in R4 . Thus multiplication by a

quaternion in the unit sphere S3 is an isometry of H . The quaternions 1, i, j, k form

the standard orthonormal basis for R4 , so when we multiply them by an arbitrary unit

quaternion z ∈ S3 we get a new orthonormal basis z, iz, jz, kz .

The same constructions work for the Cayley octonions, a division algebra struc-

ture on R8 . Thinking of R8 as H×H , multiplication of octonions is defined by

(z1, z2)(w1,w2) = (z1w1−w2z2, z2w1+w2z1) and satisfies the key property |zw| =
|z||w| . This leads to the construction of seven orthogonal tangent vector fields on

the unit sphere S7 , so the tangent bundle to S7 is also trivial. As we shall show in

§2.3, the only spheres with trivial tangent bundle are S1 , S3 , and S7 .

One final general remark before continuing with our next topic: Another way of

characterizing the trivial bundle E ≈ B×Rn is to say that there is a continuous projec-

tion map E→Rn which is a linear isomorphism on each fiber, since such a projection

together with the bundle projection E→B gives an isomorphism E ≈ B×Rn .
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Direct Sums

As a preliminary to defining a direct sum operation on vector bundles, we make

two simple observations:

(a) Given a vector bundle p :E→B and a subspace A ⊂ B , then p :p−1(A)→A is

clearly a vector bundle. We call this the restriction of E over A .

(b) Given vector bundles p1 :E1→B1 and p2 :E2→B2 , then p1×p2 :E1×E2→B1×B2

is also a vector bundle, with fibers the products p−1
1 (b1)×p−1

2 (b2) . For if we have

local trivializations hα :p−1
1 (Uα)→Uα×Rn and hβ :p−1

2 (Uβ)→Uβ×Rm for E1 and

E2 , then hα×hβ is a local trivialization for E1×E2 .

Now suppose we are given two vector bundles p1 :E1→B and p2 :E2→B over

the same base space B . The restriction of the product E1×E2 over the diagonal B =
{(b, b) ∈ B×B} is then a vector bundle, called the direct sum E1⊕E2→B . Thus

E1⊕E2 = { (v1, v2) ∈ E1×E2 | p1(v1) = p2(v2) }

The fiber of E1⊕E2 over a point b ∈ B is the product, or direct sum, of the vector

spaces p−1
1 (b) and p−1

2 (b) .
The direct sum of two trivial bundles is again a trivial bundle, clearly, but the

direct sum of nontrivial bundles can also be trivial. For example, the direct sum of

the tangent and normal bundles to Sn in Rn+1 is the trivial bundle Sn×Rn+1 since

elements of the direct sum are triples (x,v, tx) ∈ Sn×Rn+1×Rn+1 with x ⊥ v , and

the map (x,v, tx),(x,v+tx) gives an isomorphism of the direct sum bundle with

Sn×Rn+1 . So the tangent bundle to Sn is stably trivial : it becomes trivial after taking

the direct sum with a trivial bundle.

As another example, the direct sum E⊕E⊥ of the canonical line bundle E→RPn

with its orthogonal complement, defined in example (6) above, is isomorphic to the

trivial bundle RPn×Rn+1 via the map (`, v,w), (`, v +w) for v ∈ ` and w ⊥ ` .

Specializing to the case n = 1, both E and E⊥ are isomorphic to the Möbius bundle

over RP1 = S1 , so the direct sum of the Möbius bundle with itself is the trivial bundle.

This is just saying that if one takes a slab I×R2 and glues the two faces {0}×R2 and

{1}×R2 to each other via a 180 degree rotation of R2 , the resulting vector bundle

over S1 is the same as if the gluing were by the identity map. In effect, one can

gradually decrease the angle of rotation of the gluing map from 180 degrees to 0

without changing the vector bundle.

Pullback Bundles

Next we describe a procedure for using a map f :A→B to transform vector

bundles over B into vector bundles over A . Given a vector bundle p :E→B , let
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f∗(E) = { (a,v) ∈ A×E | f(a) = p(v) } . This subspace of A×E fits into the commu-

tative diagram at the right where π(a,v) = a and f̃ (a, v) = v . It is

−−→ −−→−−−−−→Ef E

−−−−−→A Bf

f

pπ

∗
∼

( )not hard to see that π :f∗(E)→A is also a vector bundle with fibers

of the same dimension as in E . For example, we could say that

f∗(E) is the restriction of the vector bundle 11×p :A×E→A×B
over the graph of f , {(a, f (a)) ∈ A×B} , which we identify with A via the projection

(a, f (a)), a . The vector bundle f∗(E) is called the pullback or induced bundle.

As a trivial example, if f is the inclusion of a subspace A ⊂ B , then f∗(E) is

isomorphic to the restriction p−1(A) via the map (a,v), v , since the condition

f(a) = p(v) just says that v ∈ p−1(a) . So restriction over subspaces is a special

case of pullback.

An interesting example which is small enough to be visualized completely is the

pullback of the Möbius bundle E→S1 by the two-to-one covering map f :S1→S1 ,

f(z) = z2 . In this case the pullback f∗(E) is a two-sheeted covering space of E
which can be thought of as a coat of paint applied to ‘both sides’ of the Möbius bundle.

Since E has one half-twist, f∗(E) has two half-twists, hence is the trivial bundle. More

generally, if En is the pullback of the Möbius bundle by the map z, zn , then En is

the trivial bundle for n even and the Möbius bundle for n odd.

Some elementary properties of pullbacks, whose proofs are one-minute exercises

in definition-chasing, are:

(i) (fg)∗(E) ≈ g∗(f∗(E)) .
(ii) If E1 ≈ E2 then f∗(E1) ≈ f∗(E2) .

(iii) f∗(E1⊕E2) ≈ f∗(E1)⊕f∗(E2) .

Now we come to our first important result:

Theorem 1.2. Given a vector bundle p :E→B and homotopic maps f0, f1 :A→B ,

then the induced bundles f∗0 (E) and f∗1 (E) are isomorphic if A is paracompact.

All the spaces one ordinarily encounters in algebraic and geometric topology are

paracompact, for example compact Hausdorff spaces and CW complexes; see the Ap-

pendix to this chapter for more information about this.

Proof: Let F :A×I→B be a homotopy from f0 to f1 . The restrictions of F∗(E) over

A×{0} and A×{1} are then f∗0 (E) and f∗1 (E) . So the theorem will follow from: tu

Proposition 1.3. The restrictions of a vector bundle E→X×I over X×{0} and

X×{1} are isomorphic if X is paracompact.

Proof: We need two preliminary facts:

(1) A vector bundle p :E→X×[a, b] is trivial if its restrictions over X×[a, c] and

X×[c, b] are both trivial for some c ∈ (a, b) . To see this, let these restrictions

be E1 = p−1(X×[a, c]) and E2 = p−1(X×[c, b]) , and let h1 :E1→X×[a, c]×Rn



Basic Definitions and Constructions Section 1.1 7

and h2 :E2→X×[c, b]×Rn be isomorphisms. These isomorphisms may not agree on

p−1(X×{c}) , but they can be made to agree by replacing h2 by its composition with

the isomorphism X×[c, b]×Rn→X×[c, b]×Rn which on each slice X×{x}×Rn is

given by h1h
−1
2 :X×{c}×Rn→X×{c}×Rn . Once h1 and h2 agree on E1 ∩ E2 , they

define a trivialization of E .

(2) For a vector bundle p :E→X×I , there exists an open cover {Uα} of X so that each

restriction p−1(Uα×I)→Uα×I is trivial. This is because for each x ∈ X we can find

open neighborhoods Ux,1, ··· , Ux,k in X and a partition 0 = t0 < t1 < ··· < tk = 1 of

[0,1] such that the bundle is trivial over Ux,i×[ti−1, ti] , using compactness of [0,1] .
Then by (1) the bundle is trivial over Uα×I where Uα = Ux,1 ∩ ··· ∩Ux,k .

Now we prove the proposition. By (2), we can choose an open cover {Uα} of X so

that E is trivial over each Uα×I . Lemma 1.19 in the Appendix to this chapter asserts

that there is a countable cover {Vk}k≥1 of X and a partition of unity {ϕk} with ϕk

supported in Vk , such that each Vk is a disjoint union of open sets each contained in

some Uα . This means that E is trivial over each Vk×I .
For k ≥ 0, let ψk = ϕ1 + ··· +ϕk , with ψ0 = 0. Let Xk be the graph of ψk ,

so Xk = { (x,ψk(x)) ∈ X×I } , and let pk :Ek→Xk be the restriction of the bun-

dle E over Xk . Choosing a trivialization of E over Vk×I , the natural projection

homeomorphism Xk→Xk−1 lifts to an isomorphism hk :Ek→Ek−1 which is the iden-

tity outside p−1
k (Vk) . The infinite composition h = h1h2 ··· is then a well-defined

isomorphism from the restriction of E over X×{0} to the restriction over X×{1}
since near each point x ∈ X only finitely many ϕi ’s are nonzero, which implies that

for large enough k , hk = 11 over a neighborhood of x . tu

Corollary 1.4. A homotopy equivalence f :A→B of paracompact spaces induces a

bijection f∗ : Vectn(B)→Vectn(A) . In particular, every vector bundle over a con-

tractible paracompact base is trivial.

Proof: If g is a homotopy inverse of f then we have f∗g∗ = 11∗ = 11 and g∗f∗ =
11∗ = 11. tu

Theorem 1.2 holds for fiber bundles as well as vector bundles, with the same

proof.

Inner Products

An inner product on a vector bundle p :E→B is a map 〈 , 〉 :E⊕E→R which

restricts in each fiber to an inner product, i.e., a positive definite symmetric bilinear

form.

Proposition 1.5. An inner product exists for a vector bundle p :E→B if B is para-

compact.
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Proof: An inner product for p :E→B can be constructed by first using local trivial-

izations hα :p−1(Uα)→Uα×Rn , to pull back the standard inner product in Rn to an

inner product 〈·, ·〉α on p−1(Uα) , then setting 〈v,w〉 =∑β ϕβp(v)〈v,w〉α(β) where

{ϕβ} is a partition of unity with the support of ϕβ contained in Uα(β) . tu

In the case of complex vector bundles one can construct Hermitian inner products

in the same way.

Having an inner product on a vector bundle E , lengths of vectors are defined,

and so we can speak of the associated unit sphere bundle S(E)→B , a fiber bundle

with fibers the spheres consisting of all vectors of length 1 in fibers of E . Similarly

there is a disk bundle D(E)→B with fibers the disks of vectors of length less than

or equal to 1. It is possible to describe S(E) without reference to an inner product,

as the quotient of the complement of the zero section in E obtained by identifying

each nonzero vector with all positive scalar multiples of itself. It follows that D(E)
can also be defined without invoking a metric, namely as the mapping cylinder of the

projection S(E)→B .

The canonical line bundle E→RPn has as its unit sphere bundle S(E) the space

of unit vectors in lines through the origin in Rn+1 . Since each unit vector uniquely

determines the line containing it, S(E) is the same as the space of unit vectors in

Rn+1 , i.e., Sn . It follows that canonical line bundle is nontrivial if n > 0 since for the

trivial bundle RPn×R the unit sphere bundle is RPn×S0 , which is not homeomorphic

to Sn .

Similarly, in the complex case the canonical line bundle E→CPn has S(E) equal

to the unit sphere S2n+1 in Cn+1 . Again if n > 0 this is not homeomorphic to the unit

sphere bundle of the trivial bundle, which is CPn×S1 , so the canonical line bundle is

nontrivial.

Subbundles

A vector subbundle of a vector bundle p :E→B has the natural definition: a sub-

space E0 ⊂ E intersecting each fiber of E in a vector subspace, such that the restriction

p :E0→B is a vector bundle.

Proposition 1.6. If E→B is a vector bundle over a paracompact base B and E0 ⊂ E
is a vector subbundle, then there is a vector subbundle E⊥0 ⊂ E such that E0⊕E⊥0 ≈ E .

Proof: With respect to a chosen inner product on E , let E⊥0 be the subspace of E
which in each fiber consists of all vectors orthogonal to vectors in E0 . We claim

that the natural projection E⊥0→B is a vector bundle. If this is so, then E0⊕E⊥0 is

isomorphic to E via the map (v,w), v +w , using Lemma 1.1.

To see that E⊥0 satisfies the local triviality condition for a vector bundle, note

first that we may assume E is the product B×Rn since the question is local in B .
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Since E0 is a vector bundle, of dimension m say, it has m independent local sections

b, (b, si(b)) near each point b0 ∈ B . We may enlarge this set of m independent

local sections of E0 to a set of n independent local sections b, (b, si(b)) of E by

choosing sm+1, ··· , sn first in the fiber p−1(b0) , then taking the same vectors for all

nearby fibers, since if s1, ··· , sm, sm+1, ··· , sn are independent at b0 , they will remain

independent for nearby b by continuity of the determinant function. Apply the Gram-

Schmidt orthogonalization process to s1, ··· , sm, sm+1, ··· , sn in each fiber, using the

given inner product, to obtain new sections s′i . The explicit formulas for the Gram-

Schmidt process show the s′i ’s are continuous. The sections s′i allow us to define

a local trivialization h :p−1(U)→U×Rn with h(b, s′i(b)) equal to the ith standard

basis vector of Rn . This h carries E0 to U×Rm and E⊥0 to U×Rn−m , so h||E⊥0 is a

local trivialization of E⊥0 . tu

Tensor Products

In addition to direct sum, a number of other algebraic constructions with vec-

tor spaces can be extended to vector bundles. One which is particularly important

for K–theory is tensor product. For vector bundles p1 :E1→B and p2 :E2→B , let

E1⊗E2 , as a set, be the disjoint union of the vector spaces p−1
1 (x)⊗p−1

2 (x) for

x ∈ B . The topology on this set is defined in the following way. Choose isomorphisms

hi :p−1
i (U)→U×Rni for each open set U ⊂ B over which E1 and E2 are trivial. Then

a topology TU on the set p−1
1 (U)⊗p−1

2 (U) is defined by letting the fiberwise tensor

product map h1 ⊗h2 :p−1
1 (U)⊗p−1

2 (U)→U×(Rn1⊗Rn2) be a homeomorphism. The

topology TU is independent of the choice of the hi ’s since any other choices are ob-

tained by composing with isomorphisms of U×Rni of the form (x,v),(x, gi(x)(v))
for continuous maps gi :U→GLni(R) , hence h1 ⊗h2 changes by composing with

analogous isomorphisms of U×(Rn1⊗Rn2) whose second coordinates g1 ⊗g2 are

continuous maps U→GLn1n2
(R) , since the entries of the matrices g1(x)⊗g2(x) are

the products of the entries of g1(x) and g2(x) . When we replace U by an open sub-

set V , the topology on p−1
1 (V)⊗p−1

2 (V) induced by TU is the same as the topology

TV since local trivializations over U restrict to local trivializations over V . Hence we

get a well-defined topology on E1⊗E2 making it a vector bundle over B .

There is another way to look at this construction that takes as its point of depar-

ture a general method for constructing vector bundles we have not mentioned previ-

ously. If we are given a vector bundle p :E→B and an open cover {Uα} of B with lo-

cal trivializations hα :p−1(Uα)→Uα×Rn , then we can reconstruct E as the quotient

space of the disjoint union
∐
α(Uα×Rn) obtained by identifying (x,v) ∈ Uα×Rn

with hβh
−1
α (x,v) ∈ Uβ×Rn whenever x ∈ Uα ∩ Uβ . The functions hβh

−1
α can

be viewed as maps gβα :Uα ∩ Uβ→GLn(R) . These satisfy the ‘cocycle condition’

gγβgβα = gγα on Uα ∩ Uβ ∩ Uγ . Any collection of ‘gluing functions’ gβα satisfying

this condition can be used to construct a vector bundle E→B .
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In the case of tensor products, suppose we have two vector bundles E1→B and

E2→B . We can choose an open cover {Uα} with both E1 and E2 trivial over each Uα ,

and so obtain gluing functions giβα :Uα ∩Uβ→GLni(R) for each Ei . Then the gluing

functions for the bundle E1⊗E2 are the tensor product functions g1
βα ⊗g2

βα assigning

to each x ∈ Uα ∩Uβ the tensor product of the two matrices g1
βα(x) and g2

βα(x) .
It is routine to verify that the tensor product operation for vector bundles over a

fixed base space is commutative, associative, and has an identity element, the trivial

line bundle. It is also distributive with respect to direct sum.

If we restrict attention to line bundles, then Vect1(B) is an abelian group with

respect to the tensor product operation. The inverse of a line bundle E→B is obtained

by replacing its gluing matrices gβα(x) ∈ GL1(R) with their inverses. The cocycle

condition is preserved since 1×1 matrices commute. If we give E an inner product,

we may rescale local trivializations hα to be isometries, taking vectors in fibers of E
to vectors in R1 of the same length. Then all the values of the gluing functions gβα
are ±1, being isometries of R . The gluing functions for E⊗E are the squares of these

gβα ’s, hence are identically 1, so E⊗E is the trivial line bundle. Thus each element of

Vect1(B) is its own inverse. As we shall see in §3.1, the group Vect1(B) is isomorphic

to H1(B;Z2) when B is homotopy equivalent to a CW complex.

These tensor product constructions work equally well for complex vector bundles.

Tensor product again makes Vect1
C(B) into an abelian group, but after rescaling the

gluing functions gβα for a complex line bundle E , the values are complex numbers

of norm 1, not necessarily ±1, so we cannot expect E⊗E to be trivial. In §3.1 we

will show that the group Vect1
C(B) is isomorphic to H2(B;Z) when B is homotopy

equivalent to a CW complex.

We may as well mention here another general construction for complex vector

bundles E→B , the notion of the conjugate bundle E→B . As a topological space, E
is the same as E , but the vector space structure in the fibers is modified by redefining

scalar multiplication by the rule λ(v) = λv where the right side of this equation

means scalar multiplication in E and the left side means scalar multiplication in E .

This implies that local trivializations for E are obtained from local trivializations for

E by composing with the coordinatewise conjugation map Cn→Cn in each fiber. The

effect on the gluing maps gβα is to replace them by their complex conjugates as

well. Specializing to line bundles, we then have E⊗E isomorphic to the trivial line

bundle since its gluing maps have values zz = 1 for z a unit complex number. Thus

conjugate bundles provide inverses in Vect1
C(B) .

Besides tensor product of vector bundles, another construction useful in K–theory

is the exterior power λk(E) of a vector bundle E . Recall from linear algebra that

the exterior power λk(V) of a vector space V is the quotient of the k fold tensor

product V⊗ ··· ⊗V by the subspace generated by vectors of the form v1 ⊗ ··· ⊗vk−
sgn(σ)vσ(1) ⊗ ··· ⊗vσ(k) where σ is a permutation of the subscripts and sgn(σ) =
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±1 is its sign, +1 for an even permutation and −1 for an odd permutation. If V has

dimension n then λk(V) has dimension
(
n
k

)
. Now to define λk(E) for a vector bundle

p :E→B the procedure follows closely what we did for tensor product. We first form

the disjoint union of the exterior powers λk(p−1(x)) of all the fibers p−1(x) , then we

define a topology on this set via local trivializations. The key fact about tensor product

which we needed before was that the tensor product ϕ⊗ψ of linear transformations

ϕ and ψ depends continuously on ϕ and ψ . For exterior powers the analogous fact

is that a linear map ϕ :Rn→Rn induces a linear map λk(ϕ) :λk(Rn)→λk(Rn) which

depends continuously on ϕ . This holds since λk(ϕ) is a quotient map of the k fold

tensor product of ϕ with itself.

Associated Bundles

There are a number of geometric operations on vector spaces which can also

be performed on vector bundles. As an example we have already seen, consider the

operation of taking the unit sphere or unit disk in a vector space with an inner product.

Given a vector bundle E→B with an inner product, we can then perform the operation

in each fiber, producing the sphere bundle S(E)→B and the disk bundle D(E)→B .

Here are some more examples:

(1) Associated to a vector bundle E→B is the projective bundle P(E)→B , where P(E)
is the space of all lines through the origin in all the fibers of E . We topologize P(E)
as the quotient of the sphere bundle S(E) obtained by factor out scalar multiplication

in each fiber. Over a neighborhood U in B where E is a product U×Rn , this quotient

is U×RPn−1 , so P(E) is a fiber bundle over B with fiber RPn−1 , with respect to the

projection P(E)→B which sends each line in the fiber of E over a point b ∈ B to

b . We could just as well start with an n dimensional vector bundle over C , and then

P(E) would have fibers CPn−1 .

(2) For an n dimensional vector bundle E→B , the associated flag bundle F(E)→B
has total space F(E) the subspace of the n fold product of P(E) with itself consisting

of n tuples of orthogonal lines in fibers of E . The fiber of F(E) is thus the flag

manifold F(Rn) consisting of n tuples of orthogonal lines through the origin in Rn .

Local triviality follows as in the preceding example. More generally, for any k ≤ n one

could take k tuples of orthogonal lines in fibers of E and get a bundle Fk(E)→B .

(3) As a refinement of the last example, one could form the Stiefel bundle Vk(E)→B ,

where points of Vk(E) are k tuples of orthogonal unit vectors in fibers of E , so Vk(E)
is a subspace of the product of k copies of S(E) . The fiber of Vk(E) is the Stiefel

manifold Vk(R
n) of orthonormal k frames in Rn .

(4) Generalizing P(E) , there is the Grassmann bundle Gk(E)→B of k dimensional

linear subspaces of fibers of E . This is the quotient space of Vk(E) obtained by

identifying two k frames if they span the same subspace of a fiber. The fiber of

Gk(E) is the Grassmann manifold Gk(R
n) of k planes through the origin in Rn .
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Some of these associated fiber bundles have natural vector bundles lying over

them. For example, there is a canonical line bundle L→P(E) where L = { (`, v) ∈
P(E)×E | v ∈ ` } . Similarly, over the flag bundle F(E) there are n line bundles Li
consisting of all vectors in the ith line of an n tuple of orthogonal lines in fibers of E .

The direct sum L1⊕···⊕Ln is then equal to the pullback of E
over F(E) since a point in the pullback consists of an n tuple

−−→ −−→−−−−−→E

−−−−−→E BF ( )

⊕⊕ LnL1 . . .

of lines `1 ⊥ ··· ⊥ `n in a fiber of E together with a vector v
in this fiber, and v can be expressed uniquely as a sum v = v1+···+vn with vi ∈ `i .
Thus we see an interesting fact: For every vector bundle there is a pullback which splits

as a direct sum of line bundles. This observation plays a role in the so-called ‘splitting

principle,’ as we shall see in Corollary 2.23 and Proposition 3.3.

2. Classifying Vector Bundles
In this section we give two homotopy-theoretic descriptions of Vectn(X) . The first

works for arbitrary paracompact spaces X , and is therefore of considerable theoretical

importance. The second is restricted to the case that X is a suspension, but is more

amenable to the explicit calculation of a number of simple examples, such as X = Sn
for small values of n .

The Universal Bundle

We will show that there is a special n dimensional vector bundle En→Gn with the

property that all n dimensional bundles over paracompact base spaces are obtainable

as pullbacks of this single bundle. When n = 1 this bundle will be just the canonical

line bundle over RP∞ , defined earlier. The generalization to n > 1 will consist in

replacing RP∞ , the space of 1 dimensional vector subspaces of R∞ , by the space of

n dimensional vector subspaces of R∞ .

First we define the Grassmann manifold Gn(R
k) for nonnegative integers n ≤ k .

As a set this is the collection of all n dimensional vector subspaces of Rk , that is,

n dimensional planes in Rk passing through the origin. To define a topology on

Gn(R
k) we first define the Stiefel manifold Vn(R

k) to be the space of orthonormal

n frames in Rk , in other words, n tuples of orthonormal vectors in Rk . This is a

subspace of the product of n copies of the unit sphere Sk−1 , namely, the subspace

of orthogonal n tuples. It is a closed subspace since orthogonality of two vectors can

be expressed by an algebraic equation. Hence Vn(R
k) is compact since the product

of spheres is compact. There is a natural surjection Vn(R
k)→Gn(R

k) sending an

n frame to the subspace it spans, and Gn(R
k) is topologized by giving it the quotient

topology with respect to this surjection. So Gn(R
k) is compact as well. Later in this
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section we will construct a finite CW complex structure on Gn(R
k) and in the process

show that it is Hausdorff and a manifold of dimension n(k−n) .
Define En(R

k) = { (`, v) ∈ Gn(Rk)×Rk | v ∈ ` } . The inclusions Rk ⊂ Rk+1 ⊂ ···
give inclusions Gn(R

k) ⊂ Gn(R
k+1) ⊂ ··· and En(R

k) ⊂ En(R
k+1) ⊂ ··· . We set

Gn = Gn(R∞) =
⋃
k Gn(R

k) and En = En(R∞) =
⋃
k En(R

k) with the weak, or direct

limit, topologies. Thus a set in Gn(R
∞) is open iff it intersects each Gn(R

k) in an

open set, and similarly for En(R
∞) .

Lemma 1.7. The projection p :En(R
k)→Gn(R

k) , p(`,v) = ` , is a vector bundle.,

both for finite and infinite k .

Proof: First suppose k is finite. For ` ∈ Gn(Rk) , let π` :Rk→` be orthogonal projec-

tion and let U` = {`′ ∈ Gn(Rk) ||π`(`′) has dimension n } . In particular, ` ∈ U` . We

will show that U` is open in Gn(R
k) and that the map h :p−1(U`)→U`×` ≈ U`×Rn

defined by h(`′, v) = (`′, π`(v)) is a local trivialization of En(R
k) .

For U` to be open is equivalent to its preimage in Vn(R
k) being open. This

preimage consists of orthonormal frames v1, ··· , vn such that π`(v1), ··· , π`(vn)
are independent. Let A be the matrix of π` with respect to the standard basis in

the domain Rk and any fixed basis in the range ` . The condition on v1, ··· , vn is

then that the n×n matrix with columns Av1, ··· , Avn have nonzero determinant.

Since the value of this determinant is obviously a continuous function of v1, ··· , vn ,

it follows that the frames v1, ··· , vn yielding a nonzero determinant form an open

set in Vn(R
k) .

It is clear that h is a bijection which is a linear isomorphism on each fiber. We

need to check that h and h−1 are continuous. For `′ ∈ U` there is a unique invertible

linear map L`′ :R
k→Rk restricting to π` on `′ and the identity on `⊥ = Kerπ` . We

claim that L`′ , regarded as a k×k matrix, depends continuously on `′ . Namely, we

can write L`′ as a product AB−1 where:

— B sends the standard basis to v1, ··· , vn, vn+1, ··· , vk with v1, ··· , vn an or-

thonormal basis for `′ and vn+1, ··· , vk a fixed basis for `⊥ .

— A sends the standard basis to π`(v1), ··· , π`(vn), vn+1, ··· , vk .

Both A and B depend continuously on v1, ··· , vn . Since matrix multiplication and

matrix inversion are continuous operations (think of the ‘classical adjoint’ formula for

the inverse of a matrix), it follows that the product L`′ = AB−1 depends continuously

on v1, ··· , vn . But since L`′ depends only on `′ , not on the basis v1, ··· , vn for `′ , it

follows that L`′ depends continuously on `′ since Gn(R
k) has the quotient topology

from Vn(R
k) . Since we have h(`′, v) = (`′, π`(v)) = (`′, L`′(v)) , we see that h is

continuous. Similarly, h−1(`′,w) = (`′, L−1
`′ (w)) and L−1

`′ depends continuously on

`′ , matrix inversion being continuous, so h−1 is continuous.

This finishes the proof for finite k . When k = ∞ one takes U` to be the union of

the U` ’s for increasing k . The local trivializations h constructed above for finite k
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then fit together to give a local trivialization over this U` , continuity being automatic

since we use the weak topology. tu

Let [X, Y] denote the set of homotopy classes of maps f :X→Y .

Theorem 1.8. For paracompact X , the map [X,Gn]→Vectn(X) , [f ],f∗(En) , is

a bijection.

Thus, vector bundles over a fixed base space are classified by homotopy classes

of maps into Gn . Because of this, Gn is called the classifying space for n dimensional

vector bundles and En→Gn is called the universal bundle.

As an example of how a vector bundle could be isomorphic to a pullback f∗(En) ,
consider the tangent bundle to Sn . This is the vector bundle p :E→Sn where E =
{ (x,v) ∈ Sn×Rn+1 | x ⊥ v } . Each fiber p−1(x) is a point in Gn(R

n+1) , so we have

a map Sn→Gn(R
n+1) , x, p−1(x) . Via the inclusion Rn+1↩R∞ we can view this

as a map f :Sn→Gn(R
∞) = Gn , and E is exactly the pullback f∗(En) .

Proof of 1.8: The key observation is the following: For an n dimensional vector

bundle p :E→X , an isomorphism E ≈ f∗(En) is equivalent to a map g :E→R∞ that

is a linear injection on each fiber. To see this, suppose first that we have a map

f :X→Gn and an isomorphism E ≈ f∗(En) . Then we have a commutative diagram

−−→ −−→−−−−−→ −−−−−→EE f E

−−−−−→
−−−−−→

X Gf

f

p

π∗
∼

( )

n

nn R≈ ∞

where π(`,v) = v . The composition across the top row is a map g :E→R∞ that is

a linear injection on each fiber, since both f̃ and π have this property. Conversely,

given a map g :E→R∞ that is a linear injection on each fiber, define f :X→Gn by

letting f(x) be the n plane g(p−1(x)) . This clearly yields a commutative diagram

as above.

To show surjectivity of the map [X,Gn] -→ Vectn(X) , suppose p :E→X is an

n dimensional vector bundle. Let {Uα} be an open cover of X such that E is trivial

over each Uα . By Lemma 1.19 in the Appendix to this chapter there is a countable

open cover {Ui} of X such that E is trivial over each Ui , and there is a partition

of unity {ϕi} with ϕi supported in Ui . Let gi :p−1(Ui)→Rn be the composition

of a trivialization p−1(Ui)→Ui×Rn with projection onto Rn . The map (ϕip)gi ,
v,ϕi(p(v))gi(v) , extends to a map E→Rn that is zero outside p−1(Ui) . Near

each point of X only finitely many ϕi ’s are nonzero, and at least one ϕi is nonzero,

so these extended (ϕip)gi ’s are the coordinates of a map g :E→(Rn)∞ = R∞ that is

a linear injection on each fiber.

For injectivity, if we have isomorphisms E ≈ f∗0 (En) and E ≈ f∗1 (En) for two

maps f0, f1 :X→Gn , then these give maps g0, g1 :E→R∞ that are linear injections
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on fibers, as in the first paragraph of the proof. We claim g0 and g1 are homotopic

through maps gt that are linear injections on fibers. If this is so, then f0 and f1 will

be homotopic via ft(x) = gt(p−1(x)) .

The first step in constructing a homotopy gt is to compose g0 with the homotopy

Lt :R∞→R∞ defined by Lt(x1, x2, ···) = (1− t)(x1, x2, ···)+ t(x1,0, x2,0, ···) . For

each t this is a linear map whose kernel is easily computed to be 0, so Lt is injective.

Composing the homotopy Lt with g0 moves the image of g0 into the odd-numbered

coordinates. Similarly we can homotope g1 into the even-numbered coordinates. Still

calling the new g ’s g0 and g1 , let gt = (1 − t)g0 + tg1 . This is linear and injective

on fibers for each t since g0 and g1 are linear and injective on fibers. tu

Usually [X,Gn] is too difficult to compute explicitly, so this theorem is of limited

use as a tool for explicitly classifying vector bundles over a given base space. Its

importance is due more to its theoretical implications. Among other things, it can

reduce the proof of a general statement to the special case of the universal bundle.

For example, it is easy to deduce that vector bundles over a paracompact base have

inner products, since the bundle En→Gn has an obvious inner product obtained by

restricting the standard inner product in R∞ to each n plane, and this inner product

on En induces an inner product on every pullback f∗(En) .

The proof of the following result provides another illustration of this principle of

the ‘universal example:’

Proposition 1.9. For each vector bundle E→X with X compact Hausdorff there

exists a vector bundle E′→X such that E⊕E′ is the trivial bundle.

This can fail when X is noncompact. An example is the canonical line bundle

over RP∞ , as we shall see in Example 3.6. There are some noncompact spaces for

which the proposition remains valid, however. Among these are all infinite but finite-

dimensional CW complexes, according to an exercise at the end of the chapter.

Proof: First we show this holds for En(R
k) . In this case the bundle with the desired

property will be E⊥n(R
k) = { (`, v) ∈ Gn(Rk)×Rk | v ⊥ ` } . This is because En(R

k) is

by its definition a subbundle of the product bundle Gn(R
k)×Rk , and the construction

of a complementary orthogonal subbundle given in the proof of Proposition 1.6 yields

exactly E⊥n(R
k) .

Now for the general case. Let f :X→Gn pull the universal bundle En back to the

given bundle E→X . The space Gn is the union of the subspaces Gn(R
k) for k ≥ 1,

with the weak topology, so the following lemma implies that the compact set f(X)
must lie in Gn(R

k) for some k . Then f pulls the trivial bundle En(R
k)⊕E⊥n(Rk) back

to E⊕f∗(E⊥n(Rk)) , which is therefore also trivial. tu
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Lemma 1.10. If X is the union of a sequence of subspaces X1 ⊂ X2 ⊂ ··· with the

weak topology, and points are closed subspaces in each Xi , then for each compact

set C ⊂ X there is an Xi that contains C .

Proof: If the conclusion is false, then for each i there is a point xi ∈ C not in Xi . Let

S = {x1, x2, ···} , an infinite set. However, S ∩Xi is finite for each i , hence closed in

Xi . Since X has the weak topology, S is closed in X . By the same reasoning, every

subset of S is closed, so S has the discrete topology. Since S is a closed subspace of

the compact space C , it is compact. Hence S must be finite, a contradiction. tu

The constructions and results in this subsection hold equally well for vector bun-

dles over C , with Gn(C
k) the space of n dimensional C linear subspaces of Ck , etc.

In particular, the proof of Theorem 1.8 translates directly to complex vector bundles,

showing that VectnC(X) ≈ [X,Gn(C∞)] .

Vector Bundles over Spheres

Vector bundles with base space a sphere can be described more explicitly, and

this will allow us to compute Vectn(Sk) for small values of k .

First let us describe a way to construct vector bundles E→Sk . Write Sk as the

union of its upper and lower hemispheres Dk+ and Dk− , with Dk+ ∩Dk− = Sk−1 . Given a

map f :Sk−1→GLn(R) , let Ef be the quotient of the disjoint union Dk+×RnqDk−×Rn
obtained by identifying (x,v) ∈ ∂Dk+×Rn with (x, f (x)(v)) ∈ ∂Dk−×Rn . There is

then a natural projection Ef→Sk and we will leave to the reader the easy verification

that this is an n dimensional vector bundle. The map f is called its clutching function.

(Presumably the terminology comes from the clutch which engages and disengages

gears in machinery.) The same construction works equally well with C in place of R ,

so from a map f :Sk−1→GLn(C) one obtains a complex vector bundle Ef→Sk .

Example 1.11. Let us see how the tangent bundle TS2 to S2 can be described in these

terms. Define two orthogonal vector fields v+ and w+ on the northern hemisphere

D2
+ of S2 in the following way. Start with a standard pair of orthogonal vectors at

each point of a flat disk D2 as in the left-hand figure below, then stretch the disk over

the northern hemisphere of S2 , carrying the vectors along as tangent vectors to the

resulting curved disk. As we travel around the equator of S2 the vectors v+ and w+
then rotate through an angle of 2π relative to the equatorial direction, as in the right

half of the figure.
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Reflecting everything across the equatorial plane, we obtain orthogonal vector fields

v− and w− on the southern hemisphere D2
− . The restrictions of v− and w− to the

equator also rotate through an angle of 2π , but in the opposite direction from v+
and w+ since we have reflected across the equator. The pair (v±,w±) defines a

trivialization of TS2 over D2
± taking (v±,w±) to the standard basis for R2 . Over the

equator S1 we then have two trivializations, and the function f :S1→GL2(R) which

rotates (v+,w+) to (v−,w−) sends θ ∈ S1 , regarded as an angle, to rotation through

the angle 2θ . For this map f we then have Ef = TS2 .

Example 1.12. Let us find a clutching function for the canonical complex line bundle

over CP1 = S2 . (This example will play a crucial role in the next chapter.) The space

CP1 is the quotient of C2 − {0} under the equivalence relation (z0, z1) ∼ λ(z0, z1) .
Denote the equivalence class of (z0, z1) by [z0, z1] . We can also write points of CP1

as ratios z = z1/z0 ∈ C ∪ {∞} = S2 . Points in the disk D2
− inside the unit circle

S1 ⊂ C can be expressed uniquely in the form [1, z1/z0] = [1, z] with |z| ≤ 1, and

points in the disk D2
+ outside S1 can be written uniquely in the form [z0/z1,1] =

[z−1,1] with |z−1| ≤ 1. Over D2
− a section of the canonical line bundle is then given

by [1, z1/z0], (1, z1/z0) and over D2
+ a section is [z0/z1,1], (z0/z1,1) . These

sections determine trivializations of the canonical line bundle over these two disks,

and over their common boundary S1 we pass from the D2
+ trivialization to the D2

−
trivialization by multiplying by z = z1/z0 . Thus the canonical line bundle is Ef for

the clutching function f :S1→GL1(C) defined by f(z) = (z) .

A basic property of the construction of bundles Ef→Sk via clutching functions is

that Ef ≈ Eg if f ' g . For if F :Sk−1×I→GLn(R) is a homotopy from f to g , then we

can construct by the same method a vector bundle EF→Sk×I restricting to Ef over

Sk×{0} and Eg over Sk×{1} . Hence Ef and Eg are isomorphic by Proposition 1.3.

Thus the association f,Ef gives a well-defined map Φ :πk−1GLn(R) -→Vectn(Sk) . If

we change coordinates in Rn via a fixed α ∈ GLn(R) we obtain an isomorphic bundle

Eα−1fα . Hence Φ induces a well-defined map on the set of orbits in πk−1GLn(R) under

the conjugation action of GLn(R) , or what amounts to the same thing, the conjugation

action of π0GLn(R) . Since π0GLn(R) ≈ Z2 as we shall see below, we may write this

set of orbits as πk−1GLn(R)/Z2 .

Proposition 1.13. The map Φ :πk−1GLn(R)/Z2→Vectn(Sk) is a bijection.

Proof: An inverse mapping Ψ can be constructed as follows. Given an n dimensional

vector bundle p :E→Sk , its restrictions E+ and E− over Dk+ and Dk− are trivial since

Dk+ and Dk− are contractible. Choose trivializations h± :E±→Dk±×Rn . Selecting a

basepoint s0 ∈ Sk−1 and fixing an isomorphism p−1(s0) ≈ Rn , we may assume h+
and h− are normalized to agree with this isomorphism on p−1(s0) . Then h−h

−1
+ de-

fines a map (Sk−1, s0)→(GLn(R),11) , whose homotopy class is by definition Ψ(E) ∈
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πk−1GLn(R) . To see that Ψ(E) is well-defined in the orbit set πk−1GLn(R)/Z2 , note

first that any two choices of normalized h± differ by a map (Dk±, s0)→(GLn(R),11) .
Since Dk± is contractible, such a map is homotopic to the constant map, so the two

choices of h± are homotopic, staying fixed over s0 . Rechoosing the identification

p−1(s0) ≈ Rn has the effect of conjugating Ψ(E) by an element of GLn(R) , soΨ : Vectn(Sk)→πk−1GLn(R)/Z2 is well-defined.

It is clear that Ψ and Φ are inverses of each other. tu

The case of complex vector bundles is similar but simpler since π0GLn(C) = 0,

and so we obtain bijections VectnC(S
k) ≈ πk−1GLn(C) .

The same proof shows more generally that for a suspension SX with X para-

compact, Vectn(SX) ≈ 〈X,GLn(R)〉/Z2 , where 〈X,GLn(R)〉 denotes the basepoint-

preserving homotopy classes of maps X→GLn(R) . In the complex case we have

VectnC(SX) ≈ 〈X,GLn(C)〉 .
It is possible to compute a few homotopy groups of GLn(R) and GLn(C) by

elementary means. The first observation is that GLn(R) deformation retracts onto the

subgroup O(n) consisting of orthogonal matrices, the matrices whose columns form

an orthonormal basis for Rn , or equivalently the matrices of isometries of Rn which

fix the origin. The Gram-Schmidt process for converting a basis into an orthonormal

basis provides a retraction of GLn(R) onto O(n) , continuity being evident from the

explicit formulas for the Gram-Schmidt process. Each step of the process is in fact

realizable by a homotopy, by inserting appropriate scalar factors into the formulas,

and this yields a deformation retraction of GLn(R) onto O(n) . (Alternatively, one

can use the so-called polar decomposition of matrices to show that GLn(R) is in fact

homeomorphic to the product of O(n) with a Euclidean space.) The same reasoning

shows that GLn(C) deformation retracts onto the unitary subgroup U(n) , consisting

of matrices whose columns form an orthonormal basis for Cn with respect to the

standard hermitian inner product. These are the isometries in GLn(C) .
Next, there are fiber bundles

O(n− 1) -→O(n) p-----→Sn−1 U(n− 1) -→U(n) p-----→S2n−1

where p is the map obtained by evaluating an isometry at a chosen unit vector, for

example (1,0, ··· ,0) . Local triviality for the first bundle can be shown as follows.

We can view O(n) as the Stiefel manifold Vn(R
n) by regarding the columns of an

orthogonal matrix as an orthonormal n frame. In these terms, the map p projects

an n frame onto its first vector. Given a vector v1 ∈ Sn−1 , extend this to an or-

thonormal n frame v1, ··· , vn . For unit vectors v near v1 , applying Gram-Schmidt

to v,v2, ··· , vn produces a continuous family of orthonormal n frames with first vec-

tor v . The last n−1 vectors of these frames form orthonormal bases for v⊥ varying

continuously with v . Each such basis gives an identification of v⊥ with Rn−1 , hence
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p−1(v) is identified with Vn−1(R
n−1) = O(n − 1) , and this gives the desired local

trivialization. The same argument works in the unitary case.

From the long exact sequences of homotopy groups for these bundles we deduce

immediately:

Proposition 1.14. The map πiO(n)→πiO(n+1) induced by the inclusion of O(n)
into O(n + 1) is an isomorphism for i < n − 1 and a surjection for i = n − 1 .

Similarly, the inclusion U(n)↩U(n+ 1) induces an isomorphism on πi for i < 2n
and a surjection for i = 2n . tu

Here are tables of some low-dimensional calculations:
πiO(n)
n -→
1 2 3 4

i 0 Z2 Z2 Z2 Z2 ···
↓ 1 0 Z Z2 Z2 ···

2 0 0 0 0 ···
3 0 0 Z Z⊕Z

πiU(n)
n -→
1 2 3 4

i 0 0 0 0 0 ···
↓ 1 Z Z Z Z ···

2 0 0 0 0 ···
3 0 Z Z Z ···

Proposition 1.14 says that along each row in the first table the groups stabilize once

we pass the diagonal term πnO(n+1) , and in the second table the rows stabilize even

sooner. The stable groups are given by the famous Bott Periodicity Theorem which

we prove in Chapter 2 in the complex case and Chapter 4 in the real case:

i mod 8 0 1 2 3 4 5 6 7

πiO(n) Z2 Z2 0 Z 0 0 0 Z
πiU(n) 0 Z 0 Z 0 Z 0 Z

The calculations in the first two tables can be obtained from the following home-

omorphisms, together with the fact that the universal cover of RP3 is S3 :

O(n) ≈ S0×SO(n)
SO(1) = {1}
SO(2) ≈ S1

SO(3) ≈ RP3

SO(4) ≈ RP3×S3

U(n) ≈ S1×SU(n)
SU(1) = {1}
SU(2) ≈ S3

Here SO(n) and SU(n) are the subgroups consisting of matrices of determinant 1.

A homeomorphism O(n)→S0×SO(n) can be defined by α, (det(α),α′) where α′

is obtained from α by multiplying its last column by the scalar 1/det(α) . The inverse

homeomorphism sends (λ,α) ∈ S0×SO(n) to the matrix obtained by multiplying the

last column of α by λ . The same formulas in the complex case give a homeomorphism

U(n) ≈ S1×SU(n) .
It is obvious that SO(1) and SU(1) are trivial. For the homeomorphisms SO(2) ≈

S1 and SU(2) ≈ S3 , note that 2×2 orthogonal or unitary matrices of determinant 1

are determined by their first column, which can be any unit vector in R2 or C2 .
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A homeomorphism SO(3) ≈ RP3 can be obtained in the following way. Let

ϕ :D3→SO(3) send a nonzero vector x ∈ D3 to the rotation through angle |x|π
about the line determined by x . An orientation convention, such as the ‘right-hand

rule,’ is needed to make this unambiguous. By continuity, ϕ must send 0 to the

identity. Antipodal points of S2 = ∂D3 are sent to the same rotation through angle

π , so ϕ induces a map ϕ :RP3→SO(3) , where RP3 is viewed as D3 with antipodal

boundary points identified. The map ϕ is clearly injective since the axis of a nontriv-

ial rotation is uniquely determined as its fixed point set, and ϕ is surjective since by

easy linear algebra each nonidentity element of SO(3) is a rotation about a unique

axis. It follows that ϕ is a homeomorphism RP3 ≈ SO(3) .
It remains to show that SO(4) is homeomorphic to S3×SO(3) . Identifying R4

with the quaternions H and S3 with the group of unit quaternions, the quaternion

multiplication w,vw for fixed v ∈ S3 defines an isometry ρv ∈ O(4) since quater-

nionic multiplication satisfies |vw| = |v||w| and we are taking v to be a unit vec-

tor. Points of O(4) can be viewed as 4 tuples (v1, ··· , v4) of orthonormal vectors

vi ∈ H = R4 , and O(3) can be viewed as the subspace with v1 = 1. Define a map

S3×O(3)→O(4) by sending (v, (1, v2, v3, v4)) to (v, vv2, vv3, vv4) , the result of

applying ρv to the orthonormal frame (1, v2, v3, v4) . This map is a homeomorphism

since it has an inverse defined by (v, v2, v3, v4), (v, (1, v−1v2, v
−1v3, v

−1v4)) , the

second coordinate being the orthonormal frame obtained by applying ρv−1 to the

frame (v, v2, v3, v4) . Since the path-components of S3×O(3) and O(4) are homeo-

morphic to S3×SO(3) and SO(4) respectively, it follows that these path-components

are homeomorphic.

The conjugation action of π0O(n) ≈ Z2 on πiO(n) which appears in the bi-

jection Vectn(Si+1) ≈ πiO(n)/Z2 is trivial in the stable range i < n − 1 since we

can realize each element of πiO(n) by a map Si→O(i + 1) and then act on this by

conjugating by a reflection across a hyperplane containing Ri+1 . Note that the map

Vectn(Si+1)→Vectn+1(Si+1) corresponding to the map πiO(n)→πiO(n+1) induced

by the inclusion O(n)↩O(n+1) is just direct sum with the trivial line bundle. Thus

the stable isomorphism classes of vector bundles over spheres form groups, the same

groups appearing in Bott Periodicity. This is the beginning of K–theory, as we shall

see in the next chapter.

Outside the stable range the conjugation action is not always trivial. For example,

in π1O(2) ≈ Z the action is given by the nontrivial automorphism of Z , multiplica-

tion by −1, since conjugating a rotation of R2 by a reflection produces a rotation in

the opposite direction. Thus 2 dimensional vector bundles over S2 are classified by

non-negative integers. When we stabilize by taking direct sum with a line bundle, then

we are in the stable range where π1O(n) ≈ Z2 , so the 2 dimensional bundles corre-

sponding to even integers are the ones which are stably trivial. The tangent bundle
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T(S2) is stably trivial, hence corresponds to an even integer, in fact to 2 as we saw in

Example 2.11.

Another case in which the conjugation action on πiO(n) is trivial is when n is

odd since in this case we can choose the conjugating element to be the orientation-

reversing isometry x,−x , which commutes with every linear map.

The two identifications of Vectn(Sk) with [Sk,Gn(R
∞)] and πk−1O(n)/Z2 are

related in the following way. First, there is a fiber bundle O(n)→Vn(R
∞)→Gn(R

∞)
where the map Vn→Gn projects an n frame onto the n plane it spans. Local triviality

follows from local triviality of the universal bundle En→Gn since Vn can be viewed

as the bundle of n frames in fibers of En . The space Vn(R
∞) is contractible. This can

be seen by using the embeddings Lt :R∞→R∞ defined in the proof of Theorem 1.8 to

deform an arbitrary n frame into the odd-numbered coordinates of R∞ , then taking

the standard linear deformation to a fixed n frame in the even coordinates; these

deformations may produce nonorthonormal n frames, but orthonormality can always

be restored by the Gram-Schmidt process. Since the homotopy groups of the total

space of the fiber bundle O(n)→Vn(R
∞)→Gn(R

∞) are trivial, we get isomorphisms

πkGn(R
∞) ≈ πk−1O(n) . By Proposition 4A.1 of [AT], [Sk,Gn(R

∞)] is πkGn(R
∞)

modulo the action of π1Gn(R
∞) . Thus Vectn(Sk) is equal to both πkGn(R

∞) modulo

the action of π1Gn(R
∞) and πk−1O(n) modulo the action of π0O(n) . One can check

that under the isomorphisms πkGn(R
∞) ≈ πk−1O(n) and π0O(n) ≈ π1Gn(R

∞) the

actions correspond, so the two descriptions of Vectn(Sk) are equivalent.

Orientable Vector Bundles

An orientation of Rn is an equivalence class of ordered bases, two ordered bases

being equivalent if the linear isomorphism taking one to the other has positive deter-

minant. An orientation of an n dimensional vector bundle is a choice of orientation

in each fiber which is locally constant, in the sense that it is defined in a neighborhood

of any fiber by n independent local sections.

Let Vectn+(B) be the set of orientation-preserving isomorphism classes of oriented

n dimensional vector bundles over B . The proof of Theorem 1.8 extends without

difficulty to show that Vectn+(B) ≈ [B, G̃n] where G̃n is the space of oriented n planes

in R∞ . This is the orbit space of Vn(R
∞ under the action of SO(n) , just as Gn is

the orbit space under the action of O(n) . The universal oriented bundle Ẽn over G̃n
consists of pairs (`, v) ∈ G̃n×R∞ with v ∈ ` . In other words, Ẽn→G̃n is the pullback

of En→Gn via the natural projection G̃n→Gn . It is easy to see that this projection is a

2 sheeted covering space, and an n dimensional vector bundle E→B is orientable iff

its classifying map f :B→Gn with f∗(En) ≈ E lifts to a map f̃ :B→G̃n . In fact, each

lift f̃ corresponds to an orientation of E . The space G̃n is path-connected, since Gn is

connected and two points of G̃n having the same image in Gn are oppositely oriented

n planes which can be joined by a path in G̃n rotating the n plane 180 degrees in an
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ambient (n + 1) plane, reversing its orientation. Since π1(Gn) ≈ π0O(n) ≈ Z2 , this

implies that G̃n is the universal cover of Gn .

The oriented version of Proposition 1.13 is a bijection πk−1SO(n) ≈ Vectn+(S
k) ,

proved in the same way. Since π0SO(n) = 0, there is no action to factor out.

Complex vector bundles are always orientable, when regarded as real vector bun-

dles by restricting the scalar multiplication to R . For if v1, ··· , vn is a basis for Cn

then the basis v1, iv1, ··· , vn, ivn for Cn as an R vector space determines an orien-

tation of Cn which is independent of the choice of C basis v1, ··· , vn since any other

C basis can be joined to this one by a continuous path of C bases, the group GLn(C)
being path-connected.

A Cell Structure on Grassmann Manifolds

Since Grassmann manifolds play such a fundamental role in vector bundle theory,

it would be good to have a better grasp on their topology. Here we show that Gn(R
∞)

has the structure of a CW complex with each Gn(R
k) a finite subcomplex. We will

also see that Gn(R
k) is a closed manifold of dimension n(k−n) . Similar statements

hold in the complex case as well.

For a start let us show that Gn(R
k) is Hausdorff, since we will need this fact later

when we construct the CW structure. Given two n planes ` and `′ in Gn(R
k) , it

suffices to find a continuous f :Gn(R
k)→R taking different values on ` and `′ . For

a vector v ∈ Rk let fv(`) be the length of the orthogonal projection of v onto ` .

This is a continuous function of ` since if we choose an orthonormal basis v1, ··· , vn
for ` then fv(`) =

(
(v · v1)

2 + ··· + (v · vn)2
)1/2 , which is certainly continuous in

v1, ··· , vn hence in ` since Gn(R
k) has the quotient topology from Vn(R

k) . Now for

an n plane `′ ≠ ` choose v ∈ ` − `′ , and then fv(`) = |v| > fv(`′) .
In order to construct the CW structure we need some notation and terminology.

In R∞ we have the standard subspaces R1 ⊂ R2 ⊂ ··· . For an n plane ` ∈ Gn there

is then the increasing chain of subspaces `j = ` ∩ Rj , with `j = ` for large j . Each

`j either equals `j−1 or has dimension one greater than `j−1 since `j is spanned by

`j−1 together with any vector in `j − `j−1 . Let σi(`) be the minimum j such that

`j has dimension i . The increasing sequence σ(`) = (σ1(`), ··· , σn(`)) is called the

Schubert symbol of ` . For example, if ` is the standard Rn ⊂ R∞ then `j = Rj for

j ≤ n and σ(Rn) = (1,2, ··· , n) . Clearly, Rn is the only n plane with this Schubert

symbol.

For a Schubert symbol σ = (σ1, ··· , σn) let e(σ) = {` ∈ Gn | σ(`) = σ } .

Proposition 1.15. e(σ) is an open cell of dimension (σ1−1)+(σ2−2)+···+(σn−n) ,
and these cells e(σ) are the cells of a CW structure on Gn . The subspace Gn(R

k) is

the finite subcomplex consisting of cells with σn ≤ k .
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For example G2(R
4) has six cells corresponding to the Schubert symbols (1,2) ,

(1,3) , (1,4) , (2,3) , (2,4) , (3,4) , and these cells have dimensions 0, 1, 2, 2, 3, 4

respectively.

Proof: Our main task will be to find a characteristic map for e(σ) . Note first that

e(σ) ⊂ Gn(Rk) for k ≥ σn . Let Hi be the hemisphere in Sσi−1 ⊂ Rσi ⊂ Rk consisting

of unit vectors with non-negative σi th coordinate. In the Stiefel manifold Vn(R
k)

let E(σ) be the subspace of orthonormal frames (v1, ··· , vn) ∈ (Sk−1)n such that

vi ∈ Hi for each i . We claim that the projection π :E(σ)→H1 , π(v1, ··· , vn) = v1 ,

is a trivial fiber bundle. This is equivalent to finding a projection p :E(σ)→π−1(v0)
which is a homeomorphism on fibers of π , where v0 = (0, ··· ,0,1) ∈ Rσ1 ⊂ Rk , since

the map π×p :E(σ)→H1×π−1(v0) is then a continuous bijection of compact Haus-

dorff spaces, hence a homeomorphism. The map p :π−1(v)→π−1(v0) is obtained by

applying the rotation ρv of Rk that takes v to v0 and fixes the (k− 2) dimensional

subspace orthogonal to v and v0 . This rotation takes Hi to itself for i > 1 since it

affects only the first σ1 coordinates of vectors in Rk . Hence p takes π−1(v) onto

π−1(v0) .

The fiber π−1(v0) can be identified with E(σ ′) for σ ′ = (σ2− 1, ··· , σn− 1) . By

induction on n this is homeomorphic to a closed ball of dimension (σ2 − 2)+ ··· +
(σn −n) , so E(σ) is a closed ball of dimension (σ1 − 1)+ ··· + (σn −n) .

The natural map E(σ)→Gn sending an orthonormal n tuple to the n plane it

spans takes the interior of the ball E(σ) to e(σ) bijectively since each ` ∈ e(σ)
has a unique basis (v1, ··· , vn) ∈ intE(σ) . Namely, consider the sequence of sub-

spaces `σ1
⊂ ··· ⊂ `σn , and choose vi ∈ `σi to be the unit vector with positive

σi th coordinate orthogonal to `σi−1
. Since Gn has the quotient topology from Vn ,

the map intE(σ)→e(σ) is a homeomorphism, so e(σ) is an open cell of dimension

(σ1−1)+···+(σn−n) . The boundary of E(σ) maps to cells e(σ ′) of Gn where σ ′ is

obtained from σ by decreasing some σi ’s, so these cells e(σ ′) have lower dimension

than e(σ) .

It is clear from the definitions that Gn(R
k) is the union of the cells e(σ) with

σn ≤ k . To see that the maps E(σ)→Gn(R
k) for these cells are the characteristic

maps for a CW structure on Gn(R
k) we can argue as follows. For fixed k , let Xi

be the union of the cells e(σ) in Gn(R
k) having dimension at most i . Suppose by

induction on i that Xi is a CW complex with these cells. Attaching the (i + 1) cells

e(σ) of Xi+1 to Xi via the maps ∂E(σ)→Xi produces a CW complex Y and a natural

continuous bijection Y→Xi+1 . Since Y is a finite CW complex it is compact, and Xi+1

is Hausdorff as a subspace of Gn(R
k) , so the map Y→Xi+1 is a homeomorphism

and Xi+1 is a CW complex, finishing the induction. Thus we have a CW structure on

Gn(R
k) .

Since the inclusions Gn(R
k) ⊂ Gn(Rk+1) for varying k are inclusions of subcom-
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plexes, and Gn(R
∞) has the weak topology with respect to these subspaces, it follows

that we have a CW structure on Gn(R
∞) . tu

Similar constructions work to give CW structures on complex Grassmann mani-

folds, but here e(σ) will be a cell of dimension (2σ1−2)+(2σ2−4)+···+(2σn−2n) .
The ‘hemisphere’ Hi is defined to be the subspace of the unit sphere S2σi−1 in Cσi

consisting of vectors whose σi th coordinate is non-negative real, so Hi is a ball of

dimension 2σi − 2. The transformation ρv ∈ SU(k) is uniquely determined by spec-

ifying that it takes v to v0 and fixes the orthogonal (k − 2) dimensional complex

subspace, since an element of U(2) of determinant 1 is determined by where it sends

one unit vector.

The highest-dimensional cell of Gn(R
k) is e(σ) for σ = (k−n+1, k−n+2, ··· , k) ,

of dimension n(k−n) , so this is the dimension of Gn(R
k) . Near points in these top-

dimensional cells Gn(R
k) is a manifold. But Gn(R

k) is homogeneous in the sense that

given any two points in Gn(R
k) there is a homeomorphism Gn(R

k)→Gn(R
k) taking

one point to the other, namely, the homeomorphism induced by an invertible linear

map Rk→Rk taking one n plane to the other. From this homogeneity it follows that

Gn(R
k) is a manifold near all points. Since it is compact, it is a closed manifold.

There is a natural inclusion i :Gn↩Gn+1 , i(`) = R×j(`) where j :R∞→R∞ is

the embedding j(x1, x2, ···) = (0, x1, x2, ···) . If σ(`) = (σ1, ··· , σn) then σ(i(`)) =
(1, σ1+1, ··· , σn+1) , so i takes cells of Gn to cells of Gn+1 of the same dimension,

making i(Gn) a subcomplex of Gn+1 . Identifying Gn with the subcomplex i(Gn) ,
we obtain an increasing sequence of CW complexes G1 ⊂ G2 ⊂ ··· whose union

G∞ =
⋃
n Gn is therefore also a CW complex. Similar remarks apply as well in the

complex case.

Appendix: Paracompactness

A Hausdorff space X is paracompact if for each open cover {Uα} of X there

is a partition of unity {ϕβ} subordinate to the cover. This means that the ϕβ ’s are

maps X→I such that each ϕβ has support (the closure of the set where ϕβ ≠ 0)

contained in some Uα , each x ∈ X has a neighborhood in which only finitely many

ϕβ ’s are nonzero, and
∑
β ϕβ = 1. An equivalent definition which is often given is

that X is Hausdorff and every open cover of X has a locally finite open refinement.

The first definition clearly implies the second by taking the cover {ϕ−1
β (0,1]} . For the

converse, see [Dugundji] or [Lundell-Weingram]. It is the former definition which is

most useful in algebraic topology, and the fact that the two definitions are equivalent

is rarely if ever needed. So we shall use the first definition.

A paracompact space X is normal, for let A1 and A2 be disjoint closed sets in X ,

and let {ϕβ} be a partition of unity subordinate to the cover {X−A1, X−A2} . Let ϕi

be the sum of the ϕβ ’s which are nonzero at some point of Ai . Then ϕi(Ai) = 1, and
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ϕ1 +ϕ2 ≤ 1 since no ϕβ can be a summand of both ϕ1 and ϕ2 . Hence ϕ−1
1 (1/2,1]

and ϕ−1
2 (1/2,1] are disjoint open sets containing A1 and A2 , respectively.

Most of the spaces one meets in algebraic topology are paracompact, including:

(1) compact Hausdorff spaces

(2) unions of increasing sequences X1 ⊂ X2 ⊂ ··· of compact Hausdorff spaces Xi ,
with the weak or direct limit topology (a set is open iff it intersects each Xi in an

open set)

(3) CW complexes

(4) metric spaces

Note that (2) includes (3) for CW complexes with countably many cells, since such

a CW complex can be expressed as an increasing union of finite subcomplexes. Using

(1) and (2), it can be shown that many manifolds are paracompact, for example Rn .

The next three propositions verify that the spaces in (1), (2), and (3) are paracom-

pact.

Proposition 1.16. A compact Hausdorff space X is paracompact.

Proof: Let {Uα} be an open cover of X . Since X is normal, each x ∈ X has an open

neighborhood Vx with closure contained in some Uα . By Urysohn’s lemma there is a

map ϕx :X→I with ϕx(x) = 1 and ϕx(X−Vx) = 0. The open cover {ϕ−1
x (0,1]} of

X contains a finite subcover, and we relabel the corresponding ϕx ’s as ϕβ ’s. Then∑
β ϕβ(x) > 0 for all x , and we obtain the desired partition of unity subordinate to

{Uα} by normalizing each ϕβ by dividing it by
∑
β ϕβ . tu

Proposition 1.17. If X is the direct limit of an increasing sequence X1 ⊂ X2 ⊂ ···
of compact Hausdorff spaces Xi , then X is paracompact.

Proof: A preliminary observation is that X is normal. To show this, it suffices to find

a map f :X→I with f(A) = 0 and f(B) = 1 for any two disjoint closed sets A and B .

Such an f can be constructed inductively over the Xi ’s, using normality of the Xi ’s.

For the induction step one has f defined on the closed set Xi∪(A∩Xi+1)∪(B∩Xi+1)
and one extends over Xi+1 by Tietze’s theorem.

To prove that X is paracompact, let an open cover {Uα} be given. Since Xi is

compact Hausdorff, there is a finite partition of unity {ϕij} on Xi subordinate to

{Uα ∩Xi} . Using normality of X , extend each ϕij to a map ϕij :X→I with support

in the same Uα . Let σi =
∑
j ϕij . This sum is 1 on Xi , so if we normalize each ϕij

by dividing it by max{1/2, σi}, we get new maps ϕij with σi = 1 in a neighborhood

Vi of Xi . Let ψij =max{0,ϕij −
∑
k<i σk} . Since 0 ≤ ψij ≤ϕij , the collection {ψij}

is subordinate to {Uα} . In Vi all ψkj ’s with k > i are zero, so each point of X has a

neighborhood in which only finitely many ψij ’s are nonzero. For each x ∈ X there

is a ψij with ψij(x) > 0, since if ϕij(x) > 0 and i is minimal with respect to this
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condition, then ψij(x) = ϕij(x) . Thus when we normalize the collection {ψij} by

dividing by
∑
i,j ψij we obtain a partition of unity on X subordinate to {Uα} . tu

Proposition 1.18. Every CW complex is paracompact.

Proof: Given an open cover {Uα} of a CW complex X , suppose inductively that we

have a partition of unity {ϕβ} on Xn subordinate to the cover {Uα ∩ Xn} . For a

cell en+1
γ with characteristic map Φγ :Dn+1→X , {ϕβΦγ} is a partition of unity on

Sn = ∂Dn+1 . Since Sn is compact, only finitely many of these compositions ϕβΦγ can

be nonzero, for fixed γ . We extend these functions ϕβΦγ over Dn+1 by the formula

ρε(r)ϕβΦγ(x) using ‘spherical coordinates’ (r , x) ∈ I×Sn on Dn+1 , where ρε : I→I
is 0 on [0,1−ε] and 1 on [1−ε/2,1]. If ε = εγ is chosen small enough, these extended

functions ρεϕβΦγ will be subordinate to the cover {Φ−1
γ (Uα)} . Let {ψγj} be a finite

partition of unity on Dn+1 subordinate to {Φ−1
γ (Uα)} . Then {ρεϕβΦγ, (1−ρε)ψγj} is

a partition of unity on Dn+1 subordinate to {Φ−1
γ (Uα)} . This partition of unity extends

the partition of unity {ϕβΦγ} on Sn and induces an extension of {ϕβ} to a partition

of unity defined on Xn∪en+1
γ and subordinate to {Uα} . Doing this for all (n+1) cells

en+1
γ gives a partition of unity on Xn+1 . The local finiteness condition continues to

hold since near a point in Xn only the extensions of the ϕβ ’s in the original partition

of unity on Xn are nonzero, while in a cell en+1
γ the only other functions that can be

nonzero are the ones coming from ψγj ’s. After we make such extensions for all n ,

we obtain a partition of unity defined on all of X and subordinate to {Uα} . tu

Here is a technical fact about paracompact spaces that is occasionally useful:

Lemma 1.19. Given an open cover {Uα} of the paracompact space X , there is a

countable open cover {Vk} such that each Vk is a disjoint union of open sets each

contained in some Uα , and there is a partition of unity {ϕk} with ϕk supported in

Vk .

Proof: Let {ϕβ} be a partition of unity subordinate to {Uα} . For each finite set S of

functions ϕβ let VS be the subset of X where all the ϕβ ’s in S are strictly greater

than all the ϕβ ’s not in S . Since only finitely many ϕβ ’s are nonzero near any x ∈ X ,

VS is defined by finitely many inequalities among ϕβ ’s near x , so VS is open. Also,

VS is contained in some Uα , namely, any Uα containing the support of any ϕβ ∈ S ,

since ϕβ ∈ S implies ϕβ > 0 on VS . Let Vk be the union of all the open sets VS such

that S has k elements. This is clearly a disjoint union. The collection {Vk} is a cover

of X since if x ∈ X then x ∈ VS where S = {ϕβ |ϕβ(x) > 0 } .

For the second statement, let {ϕγ} be a partition of unity subordinate to the

cover {Vk} , and let ϕk be the sum of those ϕγ ’s supported in Vk but not in Vj for

j < k . tu
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Exercises

1. Show that a vector bundle E→X has k independent sections iff it has a trivial

k dimensional subbundle.

2. For a vector bundle E→X with a subbundle E′ ⊂ E , construct a quotient vector

bundle E/E′→X .

3. Show that the orthogonal complement of a subbundle is independent of the choice

of inner product, up to isomorphism.

4. A vector bundle map is a commutative diagram

−−→ −−→−−−−−→E E

−−−−−→B Bf

f
∼

′

′

where the two vertical maps are vector bundle projections and f̃ is an isomorphism

on each fiber. Given such a bundle map, show that E′ is isomorphic to the pullback

bundle f∗(E) .

5. Show that the projection Vn(R
k)→Gn(R

k) is a fiber bundle with fiber O(n) by

showing that it is the orthonormal n frame bundle associated to the vector bundle

En(R
k)→Gn(R

k) .

6. Show that the pair
(
Gn(R

∞),Gn(R
k)
)

is (k−n) connected, and deduce that Propo-

sition 1.9 holds for finite-dimensional CW complexes. [The lowest-dimensional cell of

Gn(R
k+1) − Gn(Rk) is the e(σ) with σ = (1,2, ··· , n − 1, k + 1) , and this cell has

dimension k+ 1−n .]



The idea of K–theory is to make the direct sum operation on real or complex vector

bundles over a fixed base space X into the addition operation in a group. There are

two slightly different ways of doing this, producing, in the case of complex vector

bundles, groups K(X) and K̃(X) with K(X) ≈ K̃(X)⊕Z , and for real vector bundles,

groups KO(X) and K̃O(X) with KO(X) ≈ K̃O(X)⊕Z . Complex K–theory turns out

to be somewhat simpler than real K–theory, so we concentrate on this case in the

present chapter.

Computing K̃(X) even for simple spaces X requires some work. The case X = Sn
involves the Bott Periodicity Theorem, proved in §2.2. This is a deep theorem, so

it is not surprising that it has applications of real substance, and we give some of

these in §2.3, notably Adams’ theorem on the Hopf invariant with its corollary on the

nonexistence of division algebras over R in dimensions other than 1, 2, 4, and 8,

the dimensions of the real and complex numbers, quaternions, and Cayley octonions.

A further application to the J–homomorphism is delayed until the next chapter when

we combine K–theory with ordinary cohomology.

1. The Functor K(X)

Since we shall be dealing almost exclusively with complex vector bundles in this

chapter, let us take ‘vector bundle’ to mean generally ‘complex vector bundle’ unless

otherwise specified. Base spaces will always be assumed paracompact, in particular

Hausdorff, so that the results of Chapter 1 which presume paracompactness will be

available to us.

For the purposes of K–theory it is convenient to take a slightly broader defini-

tion of ‘vector bundle’ which allows the fibers of a vector bundle p :E→X to be vec-

tor spaces of different dimensions. We still assume local trivializations of the form

h :p−1(U)→U×Cn , so the dimensions of fibers must be locally constant over X , but

if X is disconnected the dimensions of fibers need not be globally constant.
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Consider vector bundles over a fixed base space X . The trivial n dimensional

vector bundle we write as εn→X . Define two vector bundles E1 and E2 over X to be

stably isomorphic, written E1 ≈s E2 , if E1⊕εn ≈ E2⊕εn for some n . In a similar vein

we set E1 ∼ E2 if E1⊕εm ≈ E2⊕εn for some m and n . It is easy to see that both ≈s
and ∼ are equivalence relations. On equivalence classes of either sort the operation

of direct sum is well-defined, commutative, and associative. A zero element is the

class of ε0 .

Proposition 2.1. If X is compact Hausdorff, then the set of ∼ equivalence classes of

vector bundles over X forms an abelian group with respect to ⊕ .

This group is called K̃(X) .

Proof: Only the existence of inverses needs to be shown, which we do by showing

that for each vector bundle π :E→X there is a bundle E′→X such that E⊕E′ ≈ εm
for some m . If all the fibers of E have the same dimension, this is Proposition 1.9.

In the general case let Xi = {x ∈ X || dimπ−1(x) = i } . These Xi ’s are disjoint open

sets in X , hence are finite in number by compactness. By adding to E a bundle which

over each Xi is a trivial bundle of suitable dimension we can produce a bundle whose

fibers all have the same dimension. tu

For the direct sum operation on ≈s equivalence classes, only the zero element, the

class of ε0 , can have an inverse since E⊕E′ ≈s ε0 implies E⊕E′⊕εn ≈ εn for some

n , which can only happen if E and E′ are 0 dimensional. However, even though

inverses do not exist, we do have the cancellation property that E1⊕E2 ≈s E1⊕E3

implies E2 ≈s E3 over a compact base space X , since we can add to both sides of

E1⊕E2 ≈s E1⊕E3 a bundle E′1 such that E1⊕E′1 ≈ εn for some n .

Just as the positive rational numbers are constructed from the positive integers

by forming quotients a/b with the equivalence relation a/b = c/d iff ad = bc , so we

can form for compact X an abelian group K(X) consisting of formal differences E−E′
of vector bundles E and E′ over X , with the equivalence relation E1 − E′1 = E2 − E′2
iff E1⊕E′2 ≈s E2⊕E′1 . Verifying transitivity of this relation involves the cancellation

property, which is why compactness of X is needed. With the obvious addition rule

(E1−E′1)+(E2−E′2) = (E1⊕E2)−(E′1⊕E′2) , K(X) is then a group. The zero element is

the equivalence class of E−E for any E , and the inverse of E−E′ is E′ −E . Note that

every element of K(X) can be represented as a difference E−εn since if we start with

E − E′ we can add to both E and E′ a bundle E′′ such that E′⊕E′′ ≈ εn for some n .

There is a natural homomorphism K(X)→K̃(X) sending E − εn to the ∼ class

of E . This is well-defined since if E − εn = E′ − εm in K(X) , then E⊕εm ≈s E′⊕εn ,

hence E ∼ E′ . The map K(X)→K̃(X) is obviously surjective, and its kernel consists of

elements E−εn with E ∼ ε0 , hence E ≈s εm for some m , so the kernel consists of the

elements of the form εm− εn . This subgroup {εm− εn} of K(X) is isomorphic to Z .
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In fact, restriction of vector bundles to a basepoint x0 ∈ X defines a homomorphism

K(X)→K(x0) ≈ Z which restricts to an isomorphism on the subgroup {εm − εn} .

Thus we have a splitting K(X) ≈ K̃(X)⊕Z , depending on the choice of x0 . The group

K̃(X) is sometimes called reduced , to distinguish it from K(X) .
Let us compute a few examples. The complex version of Proposition 1.10 gives a

bijection between the set VectkC(S
n) of isomorphism classes of k dimensional vector

bundles over Sn and πn−1U(k) . Under this bijection, adding a trivial line bundle

corresponds to including U(k) in U(k+1) by adjoining an (n+1)st row and column

consisting of zeros except for a single 1 on the diagonal. Let U = ⋃k U(k) with the

weak topology: a subset of U is open iff it intersects each U(k) in an open set in

U(k) . This implies that each compact subset of U is contained in some U(k) , and it

follows that the bijections VectkC(S
n) ≈ πn−1U(k) induce a bijection K̃(Sn) ≈ πn−1U .

Proposition 2.2. This bijection K̃(Sn) ≈ πn−1U is a group isomorphism.

Proof: We need to see that the two group operations correspond. Represent two

elements of πn−1U by maps f , g :Sn−1→U(k) taking the basepoint of Sn−1 to the

identity matrix. The sum in K̃(Sn) then corresponds to the map f ⊕g :Sn−1→U(2k)
having the matrices f(x) in the upper left k×k block and the matrices g(x) in the

lower right k×k block, the other two blocks being zero. Since π0U(2k) = 0, there

is a path αt ∈ U(2k) from the identity to the matrix of the transformation which

interchanges the two factors of Ck×Ck . Then the matrix product (f ⊕11)αt(11⊕g)αt
gives a homotopy from f ⊕ g to fg ⊕ 11.

It remains to see that the matrix product fg represents the sum [f ] + [g] in

πn−1U(k) . This is a general fact about H–spaces which can be seen in the following

way. The standard definition of the sum in πn−1U(k) is [f ] + [g] = [f + g] where

the map f + g consists of a compressed version of f on one hemisphere of Sn−1

and a compressed version of g on the other. We can realize this map f + g as a

product f1g1 of maps Sn−1→U(k) each mapping one hemisphere to the identity.

There are homotopies ft from f = f0 to f1 and gt from g = g0 to g1 . Then ftgt is

a homotopy from fg to f1g1 = f + g . tu

This proposition generalizes easily to suspensions: For all compact X , K̃(SX) is

isomorphic to 〈X,U〉 , the group of basepoint-preserving homotopy classes of maps

X→U .

From the calculations of πiU in §1.2 we deduce that K̃(Sn) is 0, Z , 0, Z for

n = 1, 2, 3, 4. This alternation of 0’s and Z ’s continues for all higher dimensional

spheres:

Bott Periodicity Theorem. There are isomorphisms K̃(Sn) ≈ K̃(Sn+2) for all n ≥
0 . More generally, there are isomorphisms K̃(X) ≈ K̃(S2X) for all compact X , where

S2X is the double suspension of X .
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The theorem actually says that a certain natural map β : K̃(X)→K̃(S2X) defined

later in this section is an isomorphism. There is an equivalent form of Bott periodicity

involving K(X) rather than K̃(X) , an isomorphism µ :K(X)⊗K(S2) ≈-----→ K(X×S2) .
The map µ is easier to define than β , so this is what we will do next. Then we will

set up some formal machinery which in particular shows that the two versions of Bott

Periodicity are equivalent. The second version is the one which will be proved in §2.2.

Ring Structure

Besides the additive structure in K(X) there is also a natural multiplication com-

ing from tensor product of vector bundles. For elements of K(X) represented by

vector bundles E1 and E2 their product in K(X) will be represented by the bundle

E1⊗E2 , so for arbitrary elements of K(X) represented by differences of vector bun-

dles, their product in K(X) is defined by the formula

(E1 − E′1)(E2 − E′2) = E1⊗E2 − E1⊗E′2 − E′1⊗E2 + E′1⊗E′2
It is routine to verify that this is well-defined and makes K(X) into a commutative ring

with identity ε1 , the trivial line bundle, using the basic properties of tensor product

of vector bundles described in §1.1. We can simplify notation by writing the element

εn ∈ K(X) just as n . This is consistent with familiar arithmetic rules. For example,

the product nE is the sum of n copies of E .

If we choose a basepoint x0 ∈ X , then the map K(X)→K(x0) obtained by re-

stricting vector bundles over x0 is a ring homomorphism. Its kernel, which can be

identified with K̃(X) , is an ideal, hence also a ring in its own right, though not neces-

sarily a ring with identity.

Example 2.3. Let us compute the ring structure in K(S2) . As an abelian group,

K(S2) is isomorphic to K̃(S2)⊕Z ≈ Z⊕Z , with additive basis {1,H} where H is the

canonical line bundle over CP1 = S2 , by Proposition 2.2 and the calculations in §1.2.

We use the notation ‘H ’ for the canonical line bundle over CP1 since its unit sphere

bundle is the Hopf bundle S3→S2 . To determine the ring structure in K(S2) we have

only to express the element H2 , represented by the tensor product H⊗H , as a linear

combination of 1 and H . The claim is that the bundle (H⊗H)⊕1 is isomorphic to

H⊕H . This can be seen by looking at the clutching functions for these two bundles,

which are the maps S1→U(2) given by

z,
(
z2 0
0 1

)
and z,

(
z 0
0 z

)
With the notation used in the proof of Proposition 2.2, these are the clutching func-

tions fg⊕11 and f ⊕g where both f and g are the function z, (z) . As we showed

there, the clutching functions fg⊕11 and f⊕g are always homotopic, so this gives the

desired isomorphism (H⊗H)⊕1 ≈ H⊕H . In K(S2) this is the formula H2+1 = 2H ,
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so H2 = 2H − 1. We can also write this as (H − 1)2 = 0, and then K(S2) can be

described as the quotient Z[H]/(H − 1)2 of the polynomial ring Z[H] by the ideal

generated by (H − 1)2 .

Note that if we regard K̃(S2) as the kernel of K(S2)→K(x0) , then it is generated

as an abelian group by H−1. Since we have the relation (H−1)2 = 0, this means that

the multiplication in K̃(S2) is completely trivial: The product of any two elements

is zero. Readers familiar with cup product in ordinary cohomology will recognize

that the situation is exactly the same as in H∗(S2;Z) and H̃∗(S2;Z) , with H − 1

behaving exactly like the generator of H2(S2;Z) . In the case of ordinary cohomology

the cup product of a generator of H2(S2;Z) with itself is automatically zero since

H4(S2;Z) = 0, whereas with K–theory a calculation is required.

The rings K(X) and K̃(X) can be regarded as functors of X . A map f :X→Y in-

duces a map f∗ :K(Y)→K(X) , sending E−E′ to f∗(E)−f∗(E′) . This is a ring homo-

morphism since f∗(E1⊕E2) ≈ f∗(E1)⊕f∗(E2) and f∗(E1⊗E2) ≈ f∗(E1)⊗f∗(E2) .
The functor properties (fg)∗ = g∗f∗ and 11∗ = 11 as well as the fact that f ' g
implies f∗ = g∗ all follow from the corresponding properties for pullbacks of vector

bundles. Similarly, we have induced maps f∗ : K̃(Y)→K̃(X) with the same properties,

except that for f∗ to be a ring homomorphism we must be in the category of base-

pointed spaces and basepoint-preserving maps since our definition of multiplication

for K̃ required basepoints.

An external product µ :K(X)⊗K(Y)→K(X×Y) can be defined by µ(a⊗b) =
p∗1 (a)p

∗
2 (b) where p1 and p2 are the projections of X×Y onto X and Y . The tensor

product of rings is a ring, with multiplication defined by (a⊗b)(c ⊗d) = ac ⊗bd , and

µ is a ring homomorphism since µ((a⊗b)(c ⊗d)) = µ(ac ⊗bd) = p∗1 (ac)p∗2 (bd) =
p∗1 (a)p

∗
1 (c)p

∗
2 (b)p

∗
2 (d) = p∗1 (a)p∗2 (b)p∗1 (c)p∗2 (d) = µ(a⊗b)µ(c ⊗d) .

Taking Y to be S2 we have an external product

µ :K(X)⊗K(S2)→K(X×S2)

The form of Bott Periodicity which we prove in §2.2 asserts that this map is an iso-

morphism.

The external product in ordinary cohomology is called ‘cross product’ and written

a×b , but to use this symbol for the K–theory external product might lead to confusion

with Cartesian product of vector bundles, which is quite different from tensor product.

Instead we will sometimes use the notation a∗ b as shorthand for µ(a⊗b) .

Cohomological Properties

The reduced groups K̃ satisfy a key exactness property:

Proposition 2.4. If X is compact Hausdorff and A ⊂ X is a closed subspace, then the

inclusion and quotient maps A i-----→X q-----→X/A induce an exact sequence K̃(X/A) q∗-----→
K̃(X) i∗-----→K̃(A) .
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Since A is a closed subspace of a compact Hausdorff space, it is also compact

Hausdorff. The quotient space X/A is compact Hausdorff as well, with the Hausdorff

property following from the fact that compact Hausdorff spaces are normal, hence a

point x ∈ X −A and A have disjoint neighborhoods in X .

Proof: Recall that exactness means that the image of q∗ equals the kernel of i∗ .

The inclusion Imq∗ ⊂ Ker i∗ is equivalent to i∗q∗ = 0. Since qi is equal to the

composition A→A/A↩X/A and K̃(A/A) = 0, it follows that i∗q∗ = 0.

For the opposite inclusion Ker i∗ ⊂ Imq∗ , suppose the restriction over A of a

vector bundle p :E→X is stably trivial. Adding a trivial bundle to E , we may assume

that E itself is trivial over A . Choosing a trivialization h :p−1(A)→A×Cn , let E/h be

the quotient space of E under the identifications h−1(x,v) ∼ h−1(y,v) for x,y ∈ A .

There is then an induced projection E/h→X/A . To see that this is a vector bundle

we need to find a local trivialization over a neighborhood of the point A/A .

We claim that since E is trivial over A , it is trivial over some neighborhood of A .

In many cases this holds because there is a neighborhood which deformation retracts

onto A , so the restriction of E over this neighborhood is trivial since it is isomorphic

to the pullback of p−1(A) via the retraction. In the absence of such a deformation

retraction one can make the following more complicated argument. A trivialization

of E over A determines sections si :A→E which form a basis in each fiber over A .

Choose a cover of A by open sets Uj in X over each of which E is trivial. Via a local

trivialization, each section si can be regarded as a map from A∩Uj to a single fiber,

so by the Tietze extension theorem we obtain a section sij :Uj→E extending si . If

{ϕj,ϕ} is a partition of unity subordinate to the cover {Uj,X − A} of X , the sum∑
j ϕjsij gives an extension of si to a section defined on all of X . Since these sections

form a basis in each fiber over A , they must form a basis in all nearby fibers. Namely,

over Uj the extended si ’s can be viewed as a square-matrix-valued function having

nonzero determinant at each point of A , hence at nearby points as well.

Thus we have a trivialization h of E over a neighborhood U of A . This induces

a trivialization of E/h over U/A , so E/h is a vector bundle. It remains only to verify

that E ≈ q∗(E/h) . In the commutative diagram at the right the −−→ −−→−−−−−→E

−−−−−→X Aq
p

X/

hE/
quotient map E→E/h is an isomorphism on fibers, so this map

and p give an isomorphism E ≈ q∗(E/h) . tu

There is an easy way to extend the exact sequence K̃(X/A)→K̃(X)→K̃(A) to the

left, using the following diagram, where C and S denote cone and suspension:

A CAX X↩

SA SXA

↩ ↩ ↩∪ CA CXX ∪ ∪( ) CA CX CX ∪ ∪∪(( ) CAX ∪( ))

X/

−−→ −−→ −−→

' ' '

In the first row, each space is obtained from its predecessor by attaching a cone on the

subspace two steps back in the sequence. The vertical maps are the quotient maps



34 Chapter 2 Complex K–Theory

obtained by collapsing the most recently attached cone to a point. In many cases the

quotient map collapsing a contractible subspace to a point is a homotopy equivalence,

hence induces an isomorphism on K̃ . This conclusion holds generally, in fact:

Lemma 2.5. If A is contractible, the quotient map q :X→X/A induces a bijection

q∗ : Vectn(X/A)→Vectn(X) for all n .

Proof: A vector bundle E→X must be trivial over A since A is contractible. A

trivialization h gives a vector bundle E/h→X/A as in the proof of the previous

proposition. We assert that the isomorphism class of E/h does not depend on h .

This can be seen as follows. Given two trivializations h0 and h1 , by writing h1 =
(h1h

−1
0 )h0 we see that h0 and h1 differ by an element of gx ∈ GLn(C) over each

point x ∈ A . The resulting map g :A→GLn(C) is homotopic to a constant map

x, α ∈ GLn(C) since A is contractible. Writing now h1 = (h1h
−1
0 α−1)(αh0) , we

see that by composing h0 with α in each fiber, which does not change E/h0 , we may

assume that α is the identity. Then the homotopy from g to the identity gives a

homotopy H from h0 to h1 . In the same way that we constructed E/h we construct

a vector bundle (E×I)/H→(X/A)×I restricting to E/h0 over one end and to E/h1

over the other end, hence E/h0 ≈ E/h1 .

Thus we have a well-defined map Vectn(X)→Vectn(X/A) , E, E/h . This is an

inverse to q∗ since q∗(E/h) ≈ E as we noted in the preceding proposition, and for a

bundle E→X/A we have q∗(E)/h ≈ E for the evident trivialization h of q∗(E) over

A tu

From this lemma and the preceding proposition it follows that we have a long

exact sequence of K̃ groups

···→K̃(SX)→K̃(SA)→K̃(X/A)→K̃(X)→K̃(A)

For example, if X = A ∨ B then X/A = B and the sequence breaks up into split

short exact sequences, which implies that the map K̃(X)→K̃(A)⊕K̃(B) obtained by

restriction to A and B is an isomorphism.

We can use this exact sequence to obtain a reduced version of the external prod-

uct, a ring homomorphism K̃(X)⊗K̃(Y)→K̃(X ∧Y) where X ∧Y = X×Y/X ∨Y and

X ∨ Y = X×{y0} ∪ {x0}×Y ⊂ X×Y for chosen basepoints x0 ∈ X and y0 ∈ Y . The

space X ∧Y is called the smash product of X and Y . To define the reduced product,

consider the long exact sequence for the pair (X×Y ,X ∨ Y) :

−−→YXSK ( ( ))∼

≈ ≈

⊕

∨ ∨× −−→YXSK ( ( ))∼

XSK ( )∼ YSK ( )∼ ⊕XK ( )∼ YK ( )∼
−−→YXK ( )∼ −−→YXK ( )∼ × YXK ( )∼∧

The second of the two vertical isomorphisms here was noted earlier, and the first

vertical isomorphism arises in similar fashion using Lemma 2.5 since SX ∨ SY is



The Functor K(X) Section 2.1 35

obtained from S(X ∨ Y) by collapsing a line segment to a point. The last horizon-

tal map in the sequence is a split surjection, with splitting K̃(X)⊕K̃(Y)→K̃(X×Y) ,
(a, b),p∗1 (a)+p∗2 (b) where p1 and p2 are the projections of X×Y onto X and Y .

Similarly, the first map splits via (Sp1)
∗ + (Sp2)

∗ . So we get a splitting K̃(X×Y) ≈
K̃(X ∧ Y)⊕K̃(X)⊕K̃(Y) .

For a ∈ K̃(X) = Ker(K(X)→K(x0)) and b ∈ K̃(Y) = Ker(K(Y)→K(y0)) the

external product a ∗ b = p∗1 (a)p∗2 (b) ∈ K(X×Y) has p∗1 (a) restricting to zero in

K(Y) and p∗2 (b) restricting to zero in K(X) , so p∗1 (a)p
∗
2 (b) restricts to zero in both

K(X) and K(Y) , hence in K(X ∨ Y) . In particular, a ∗ b lies in K̃(X×Y) , and from

the short exact sequence above, a ∗ b pulls back to a unique element of K̃(X ∧ Y) .
This defines the reduced external product K̃(X)⊗K̃(Y)→K̃(X∧Y) . It is essentially a

restriction of the unreduced external product, as shown in the diagram below, so the

reduced external product is also a ring homomorphism, and we shall use the same

notation a∗ b for both reduced and unreduced external product, leaving the reader

to determine from context which is meant.

≈ ⊕ ⊕ ⊕YXK (( ) K ( ) )YXK ( )∼ K ( )∼ YXK ( )∼ K ( )∼−−→ −−→ == == ==

⊗ ⊗ Z

≈ ⊕ ⊕ ⊕YXK ( ) YXK (∼ ) YXK ( )∼ K ( )∼
Z∧×

Since Sn∧X is the n fold iterated reduced suspension ΣnX , which is a quotient

of the ordinary n fold suspension SnX obtained by collapsing an n disk in SnX to a

point, the quotient map SnX→Sn ∧X induces an isomorphism on K̃ by Lemma 2.5.

Then the reduced external product gives rise to a homomorphism

β : K̃(X)→K̃(S2X), β(a) = (H − 1)∗ a

where H is the canonical line bundle over S2 = CP1 . The version of Bott Periodicity

for reduced K–theory states that this is an isomorphism. This is equivalent to the

unreduced version by the preceding diagram.

As we saw earlier, a pair (X,A) of compact Hausdorff spaces gives rise to an exact

sequence of K̃ groups, the first row in the following diagram:

≈

XSK (( ) )K ( )∼∼ AXK ( )∼ K ( )∼

============== ==

−→−→−→−→−→ −→ −→X/

-

2 A AS SK ( )∼ 2 XSK ( ) K( )∼∼

−−→ ≈−−→

X/A ASK ( )∼

XK ( ) K ( )∼∼ AXK ( )∼ K ( )∼−→−→−→−→−→ −→ −→X2 -K (∼ 2 - 1 (- 1A A) XK )∼ (- 1K∼ A), K ( )∼ X0 00

AXK ( )∼ K ( )∼−→ 00

A,
ββ

If we set K̃−n(X) = K̃(SnX) and K̃−n(X,A) = K̃(Sn(X/A)) , this sequence can be

written as in the second row. Negative indices are chosen here so that the ‘coboundary’

maps in this sequence increase dimension, as in ordinary cohomology. The lower

left corner of the diagram containing the Bott periodicity isomorphisms β commutes

since external tensor product with H−1 commutes with maps between spaces. So the



36 Chapter 2 Complex K–Theory

long exact sequence in the second row can be rolled up into a six-term periodic exact

sequence. It is reasonable to extend the definition of K̃n to positive n via periodicity,

and then the six-term exact sequence can be written:

AXK ( )∼ K ( )∼K ( )∼ X0 00A,

A XK ( )∼K ( )∼ K ( )∼ X11 1 A,

−−−−→

−−→
−−→

−−−−→ −−−−→
−−−−→

A product K̃i(X)⊗K̃j(Y)→K̃i+j(X ∧ Y) is obtained from the external product

K̃(X)⊗K̃(Y)→K̃(X∧Y) by replacing X and Y by SiX and SjY . If we define K̃∗(X) =
K̃0(X)⊕K̃1(X) , then this gives a product K̃∗(X)⊗K̃∗(Y)→K̃∗(X ∧ Y) . The relative

form of this is a product K̃∗(X,A)⊗K̃∗(Y , B)→K̃∗(X×Y ,X×B∪A×Y) , coming from

the products K̃(Σi(X/A))⊗K̃(Σj(Y/B)) -→ K̃(Σi+j(X/A ∧ Y/B)) using the natural

identification (X×Y)/(X×B ∪A×Y) = X/A∧ Y/B .

If we compose the external product K̃∗(X)⊗K̃∗(X)→K̃∗(X ∧ X) with the map

K̃∗(X ∧ X)→K̃∗(X) induced by the diagonal map X→X ∧ X , x, (x,x) , then we

obtain a multiplication on K̃∗(X) making it into a ring, and it is not hard to check that

this extends the previously defined ring structure on K̃0(X) . The general relative form

of this product on K̃∗(X) is a product K̃∗(X,A)⊗K̃∗(X, B)→K̃∗(X,A∪ B) which is

induced by the relativized diagonal map X/(A∪ B)→X/A∧ Y/B .

Example 2.6. Suppose that X = A ∪ B with both A and B contractible, as happens

for example if X is a suspension and A and B are its two cones. Then the product

K̃∗(X)⊗K̃∗(X)→K̃∗(X) is identically zero since it is equivalent to the composition

K̃∗(X,A)⊗K̃∗(X, B)→K̃∗(X,A∪B)→K̃∗(X) and K̃∗(X,A∪B) = 0 since X = A∪B .

As a particular case we see that the product in K̃∗(Sn) ≈ Z is trivial for n > 0. (For

n = 0 the multiplication in K̃∗(S0) ≈ Z is just the usual multiplication of integers

since Rm⊗Rn ≈ Rmn .)

Whereas multiplication in K̃(X) is commutative, in K̃∗(X) this is only true up to

sign:

Proposition 2.7. αβ = (−1)ijβα for α ∈ K̃i(X) and β ∈ K̃j(X) .
Proof: The product is the composition

K̃(Si ∧X)⊗K̃(Sj ∧X) -→K̃(Si ∧ Sj ∧X ∧X) -→K̃(Si ∧ Sj ∧X)
where the first map is external product and the second is induced by the diagonal

map on the X factors. Replacing the product αβ by the product βα amounts to

switching the two factors in the first term K̃(Si∧X)⊗K̃(Sj∧X) , and this corresponds

to switching the Si and Sj factors in the third term K̃(Si ∧ Sj ∧X) . Viewing Si ∧ Sj
as the smash product of i + j copies of S1 , then switching Si and Sj in Si ∧ Sj is

a product of ij transpositions of adjacent factors. Transposing the two factors of

S1∧S1 is equivalent to reflection of S2 across an equator. Thus it suffices to see that
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switching the two ends of a suspension SY induces multiplication by −1 in K̃(SY) . If

we view K̃(SY) as 〈Y ,U〉 , then switching ends of SY corresponds to the map U→U
sending a matrix to its inverse. We noted in the proof of Proposition 2.2 that the group

operation in K(SY) is the same as the operation induced by the product in U , so the

result follows. tu

Proposition 2.8. The exact sequence at the right is an

exact sequence of K̃∗(X) modules, with the maps homo-

morphisms of K̃∗(X) modules. A

XK ( )∼

K ( )∼
K ( )∼ X A, −−−−→−−→ −−→∗ ∗

∗

The K̃∗(X) module structure on K̃∗(A) is defined by ξ·α = i∗(ξ)α where i is the

inclusion A↩ X and the product on the right side of the equation is multiplication

in the ring K̃∗(A) . To define the module structure on K̃∗(X,A) , observe that the

diagonal map X→X ∧ X induces a well-defined quotient map X/A→X ∧ X/A , and

this leads to a product K̃∗(X)⊗K̃∗(X,A)→K̃∗(X,A) .

Proof: To see that the maps in the exact sequence are module homomorphisms we

look at the diagram

AS SK (( ) )K ( )∼∼ X/j j XSK ( )∼ j ASK ( )∼ jAS−−−−−→ −−−−−→ −−−−−→
AS SK (( ) )K ( )∼∼ X/jS Xi j XSK ( )∼ j ASK ( )∼ jAS−−−→ −−−→ −−−→

AS SK (( ) )K ( )∼∼ X/ji XSK ( )∼ j ASK ( )∼ jAS−−−−−→ −−−−−→ −−−−−→+ji+ i+ i+

∧ S Xi ∧ S Xi ∧ S Xi ∧

−−→ −−→ −−→ −−→

−−→ −−→ −−→ −−→

where the vertical maps between the first two rows are external product with a fixed

element of K̃(SiX) and the vertical maps between the second and third rows are

induced by diagonal maps. What we must show is that the diagram commutes. For the

upper two rows this follows from naturality of external product since the horizontal

maps are induced by maps between spaces. The lower two rows are induced from

suspensions of maps between spaces,

ASX∧ X∧X/A X∧X X∧A−−−→ −−−→ −−−→
AS X/A X A−−−−→ −−−−→ −−−−→−−→ −−→ −−→ −−→

so it suffices to show this diagram commutes up to homotopy. This is obvious for the

middle and right squares. The left square can be rewritten

ASX∧ X∧ X−−−→
AS X CA−−−−→−−→ −−→

∪

CA∪( )

where the horizontal maps collapse the copy of X in X∪CA to a point, the left vertical

map sends (a, s) ∈ SA to (a,a, s) ∈ X ∧ SA , and the right vertical map sends x ∈ X
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to (x,x) ∈ X ∪ CA and (a, s) ∈ CA to (a,a, s) ∈ X ∧ CA . Commutativity is then

obvious. tu

It is often convenient to have an unreduced version of the groups K̃n(X) , and this

can easily be done by the simple device of defining Kn(X) to be K̃n(X+) where X+ is

X with a disjoint basepoint labeled ‘+’ adjoined. For n = 0 this is consistent with the

relation between K and K̃ since K0(X) = K̃0(X+) = K̃(X+) = Ker(K(X+)→K(+)) =
K(X) . For n = 1 this definition yields K1(X) = K̃1(X) since S(X+) ' SX ∨ S1 and

K̃(SX∨S1) ≈ K̃(SX)⊕K̃(S1) ≈ K̃(SX) since K̃(S1) = 0. For a pair (X,A) with A ≠∅
one defines Kn(X,A) = K̃n(X,A) , and then the six-term long exact sequence is valid

also for unreduced groups. When A = ∅ this remains valid if we interpret X/∅ as

X+ .

Since X+∧Y+ = (X×Y)+ , the external product K̃∗(X)⊗K̃∗(Y)→K̃∗(X∧Y) gives

a product K∗(X)⊗K∗(Y)→K∗(X×Y) . Taking X = Y and composing with the map

K∗(X×X)→K∗(X) induced by the diagonal map X→X×X , x, (x,x) , we get a

product K∗(X)⊗K∗(X)→K∗(X) which makes K∗(X) into a ring.

There is a relative product Ki(X,A)⊗Kj(Y , B)→Ki+j(X×Y ,X×B ∪ A×Y) de-

fined as the external product K̃(Σi(X/A))⊗K̃(Σj(Y/B)) -→ K̃(Σi+j(X/A∧ Y/B)) , us-

ing the natural identification (X×Y)/(X×B ∪A×Y) = X/A∧ Y/B . This works when

A = ∅ since we interpret X/∅ as X+ , and similarly if Y = ∅ . Via the diagonal map

we obtain also a product Ki(X,A)⊗Kj(X, B)→Ki+j(X,A∪ B) .
With these definitions the preceding two propositions are valid also for unreduced

K–groups.

2. Bott Periodicity

The form of the Bott periodicity theorem we shall prove is the assertion that the

external product map µ :K(X)⊗K(S2)→K(X×S2) is an isomorphism for all compact

Hausdorff spaces X . The present section will be devoted entirely to the proof of this

theorem. Nothing in the proof will be used elsewhere in the book except in the proof

of Bott periodicity for real K–theory in Chapter 4, so the reader who wishes to defer a

careful reading of the proof may skip ahead to §2.3 without any loss of continuity.

The main work in proving the theorem will be to prove the surjectivity of µ .

Injectivity will then be proved by a closer examination of the surjectivity argument.

Clutching Functions

From the classification of vector bundles over spheres in §1.2 we know that vector

bundles over S2 correspond exactly to homotopy classes of maps S1→GLn(C) , which
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we called clutching functions. To prove the Bott periodicity theorem we will generalize

this construction, creating vector bundles over X×S2 by gluing together two vector

bundles over X×D2 by means of a generalized clutching function.

We begin by describing this more general clutching construction. Given a vector

bundle p :E→X , let f :E×S1→E×S1 be an automorphism of the product vector

bundle p×11 :E×S1→X×S1 . Thus for each x ∈ X and z ∈ S1 , f specifies an

isomorphism f(x, z) :p−1(x)→p−1(x) . From E and f we construct a vector bundle

over X×S2 by taking two copies of E×D2 and identifying the subspaces E×S1 via

f . We write this bundle as [E, f ] , and call f a clutching function for [E, f ] . If

ft :E×S1→E×S1 is a homotopy of clutching functions, then [E, f0] ≈ [E, f1] since

from the homotopy ft we can construct a vector bundle over X×S2×I restricting

to [E, f0] and [E, f1] over X×S2×{0} and X×S2×{1} . From the definitions it is

evident that [E1, f1]⊕[E2, f2] ≈ [E1⊕E2, f1 ⊕ f2] .
Here are some examples of bundles built using clutching functions:

1. [E,11] is the external product E∗1 = µ(E,1) , or equivalently the pullback of E via

the projection X×S2→X .

2. Taking X to be a point, then we showed in Example 1.12 that [1, z] ≈ H where ‘1’

is the trivial line bundle over X , ‘z ’ means scalar multiplication by z ∈ S1 ⊂ C , and

H is the canonical line bundle over S2 = CP1 . More generally we have [1, zn] ≈ Hn ,

the n fold tensor product of H with itself. The formula [1, zn] ≈ Hn holds also for

negative n if we define H−1 = [1, z−1] , which is justified by the fact that H⊗H−1 ≈ 1.

3. [E, zn] ≈ E ∗Hn = µ(E,Hn) for n ∈ Z .

4. Generalizing this, [E, znf] ≈ [E, f ]⊗Ĥn where Ĥn denotes the pullback of Hn

via the projection X×S2→S2 .

Every vector bundle E′→X×S2 is isomorphic to [E, f ] for some E and f . To

see this, let the unit circle S1 ⊂ C ∪ {∞} = S2 decompose S2 into the two disks D0

and D∞ , and let Eα for α = 0,∞ be the restriction of E′ over X×Dα , with E the

restriction of E′ over X×{1} . The projection X×Dα→X×{1} is homotopic to the

identity map of X×Dα , so the bundle Eα is isomorphic to the pullback of E by the

projection, and this pullback is E×Dα , so we have an isomorphism hα :Eα→E×Dα .

Then f = h0h
−1
∞ is a clutching function for E′ .

We may assume a clutching function f is normalized to be the identity over

X×{1} since we may normalize any isomorphism hα :Eα→E×Dα by composing it

over each X×{z} with the inverse of its restriction over X×{1} . Any two choices of

normalized hα are homotopic through normalized hα ’s since they differ by a map gα
from Dα to the automorphisms of E , with gα(1) = 11, and such a gα is homotopic

to the constant map 11 by composing it with a deformation retraction of Dα to 1.

Thus any two choices f0 and f1 of normalized clutching functions are joined by a

homotopy of normalized clutching functions ft .
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The strategy of the proof will be to reduce from arbitrary clutching functions

to successively simpler clutching functions. The first step is to reduce to Laurent

polynomial clutching functions, which have the form `(x, z) = ∑|i|≤n ai(x)zi where

ai :E→E restricts to a linear transformation ai(x) in each fiber p−1(x) . We call

such an ai an endomorphism of E since the linear transformations ai(x) need not

be invertible, though their linear combination
∑
i ai(x)z

i is since clutching functions

are automorphisms.

Proposition 2.9. Every vector bundle [E, f ] is isomorphic to [E, `] for some Laurent

polynomial clutching function ` . Laurent polynomial clutching functions `0 and

`1 which are homotopic through clutching functions are homotopic by a Laurent

polynomial clutching function homotopy `t(x, z) =
∑
i ai(x, t)z

i .

Before beginning the proof we need a lemma. For a compact space X we wish

to approximate a continuous function f :X×S1→C by Laurent polynomial functions∑
|n|≤N an(x)z

n =∑|n|≤N an(x)einθ , where each an is a continuous function X→C .

Motivated by Fourier series, we set

an(x) =
1

2π

∫
S1
f(x, θ)e−inθ dθ

For positive real r let u(x, r , θ) = ∑
n∈Z an(x)r

|n|einθ . For fixed r < 1, this series

converges absolutely and uniformly as (x, θ) ranges over X×S1 , by comparison with

the geometric series
∑
n r

n , since compactness of X×S1 implies that |f(x, θ)| is

bounded and hence also |an(x)| . If we can show that u(x, r , θ) approaches f(x, θ)
uniformly in x and θ as r goes to 1, then sums of finitely many terms in the series

for u(x, r , θ) with r near 1 will give the desired approximations to f by Laurent

polynomial functions.

Lemma 2.10. As r→1 , u(x, r , θ)→f(x, θ) uniformly in x and θ .

Proof: For r < 1 we have

u(x, r , θ) =
∞∑

n=−∞

1
2π

∫
S1
r |n|ein(θ−t)f (x, t)dt

=
∫
S1

1
2π

∞∑
n=−∞

r |n|ein(θ−t)f (x, t)dt

where the order of summation and integration can be interchanged since the series

in the latter formula converges uniformly, by comparison with the geometric series∑
n r

n . Define the Poisson kernel

P(r ,ϕ) = 1
2π

∞∑
n=−∞

r |n|einϕ for 0 ≤ r < 1 and ϕ ∈ R
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Then u(x, r , θ) =
�
S1
P(r , θ − t)f (x, t)dt . By summing the two geometric series for

positive and negative n in the formula for P(r ,ϕ) , one computes that

P(r ,ϕ) = 1
2π
· 1− r 2

1− 2r cosϕ + r 2

Three basic facts about P(r ,ϕ) which we shall need are:

(a) As a function of ϕ , P(r ,ϕ) is even, of period 2π , and monotone decreasing

on [0, π] , since the same is true of cosϕ which appears in the denominator of

P(r ,ϕ) with a minus sign. In particular we have P(r ,ϕ) ≥ P(r ,π) > 0 for all

r < 1.

(b)
�
S1
P(r ,ϕ)dϕ = 1 for each r < 1, as one sees by integrating the series for

P(r ,ϕ) term by term.

(c) For fixed ϕ ∈ (0, π) , P(r ,ϕ)→0 as r→1 since the numerator of P(r ,ϕ) ap-

proaches 0 and the denominator approaches 2− 2 cosϕ ≠ 0.

Now to show uniform convergence of u(x, r , θ) to f(x, θ) we first observe that, using

(b), we have∣∣u(x, r , θ)− f(x, θ)∣∣ = ∣∣∣∫
S1
P(r , θ − t)f (x, t)dt −

∫
S1
P(r , θ − t)f (x, θ)dt

∣∣∣
≤
∫
S1
P(r , θ − t)∣∣f(x, t)− f(x, θ)∣∣dt

Given ε > 0, there exists a δ > 0 such that |f(x, t)−f(x, θ)| < ε for |t−θ| < δ and

all x , since f is uniformly continuous on the compact space X×S1 . Let Iδ denote

the integral
�
P(r , θ− t) |f(x, t)− f(x, θ)|dt over the interval |t −θ| ≤ δ and let I′δ

denote this integral over the rest of S1 . Then we have

Iδ ≤
∫
|t−θ|≤δ

P(r , θ − t) ε dt ≤ ε
∫
S1
P(r , θ − t)dt = ε

By (a) the maximum value of P(r , θ − t) on |t − θ| ≥ δ is P(r , δ) . So

I′δ ≤ P(r , δ)
∫
S1
|f(x, t)− f(x, θ)|dt

The integral here has a uniform bound for all x and θ since f is bounded. Thus by (c)

we can make I′δ ≤ ε by taking r close enough to 1. Therefore |u(x, r , θ)−f(x, θ)| ≤
Iδ + I′δ ≤ 2ε . tu

Proof of Proposition 2.9: Choosing a Hermitian inner product on E , the endomor-

phisms of E×S1 form a vector space End(E×S1) with a norm ‖α‖ = sup|v|=1 |α(v)| .
The triangle inequality holds for this norm, so balls in End(E×S1) are convex. The

subspace Aut(E×S1) of automorphisms is open in the topology defined by this norm

since it is the preimage of (0,∞) under the continuous map End(E×S1)→[0,∞) ,
α, inf(x,z)∈X×S1|det(α(x, z))| . Thus to prove the first statement of the lemma it

will suffice to show that Laurent polynomials are dense in End(E×S1) , since a suf-

ficiently close Laurent polynomial approximation ` to f will then be homotopic to
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f via the linear homotopy t` + (1 − t)f through clutching functions. The second

statement follows similarly by approximating a homotopy from `0 to `1 , viewed as

an automorphism of E×S1×I , by a Laurent polynomial homotopy `′t , then combin-

ing this with linear homotopies from `0 to `′0 and `1 to `′1 to obtain a homotopy `t
from `0 to `1 .

To show that every f ∈ End(E×S1) can be approximated by Laurent polynomial

endomorphisms, first choose open sets Ui covering X together with isomorphisms

hi :p−1(Ui)→Ui×Cni . We may assume hi takes the chosen inner product in p−1(Ui)
to the standard inner product in Cni , by applying the Gram-Schmidt process to h−1

i

of the standard basis vectors. Let {ϕi} be a partition of unity subordinate to {Ui}
and let Xi be the support of ϕi , a compact set in Ui . Via hi , the linear maps f(x, z)
for x ∈ Xi can be viewed as matrices. The entries of these matrices define functions

Xi×S1→C . By the lemma we can find Laurent polynomial matrices `i(x, z) whose

entries uniformly approximate those of f(x, z) for x ∈ Xi . It follows easily that `i
approximates f in the ‖ · ‖ norm. From the Laurent polynomial approximations `i
over Xi we form the convex linear combination ` = ∑

i ϕi`i , a Laurent polynomial

approximating f over all of X×S1 . tu

A Laurent polynomial clutching function can be written ` = z−mq for a polyno-

mial clutching function q , and then we have [E, `] ≈ [E, q]⊗Ĥ−m . The next step is

to reduce polynomial clutching functions to linear clutching functions.

Proposition 2.11. If q is a polynomial clutching function of degree at most n , then

[E, q]⊕[nE,11] ≈ [(n+ 1)E, Lnq] for a linear clutching function Lnq .

Proof: Let q(x, z) = an(x)zn + ··· + a0(x) . Consider the matrices

1 −z 0 ··· 0 0
0 1 −z ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

0 0 0 ··· 1 −z
an an−1 an−2 ··· a1 a0


and



1 0 0 ··· 0 0
0 1 0 ··· 0 0
0 0 1 ··· 0 0
...

...
...

...
...

0 0 0 ··· 1 0
0 0 0 ··· 0 q


which define endomorphisms of (n + 1)E . We can pass from the first matrix to the

second by a sequence of elementary row and column operations in the following way.

In the first matrix, add z times the first column to the second column, then z times

the second column to the third, and so on. This produces all 0’s above the diagonal,

and the polynomial q in the lower right corner. Then for each i ≤ n , subtract the

appropriate multiple of the ith row from the last row.

The second matrix is a clutching function for [nE,11]⊕[E, q] . The first matrix

has the same determinant as the second, hence is also invertible and is therefore an

automorphism of (n+1)E for each z ∈ S1 , determining a clutching function which we

denote by Lnq . Since Lnq has the form A(x)z+B(x) , it is a linear clutching function.
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The two displayed matrices define homotopic clutching functions since the elementary

row and column operations can be achieved by continuous one-parameter families of

such operations. For example the first operation can be achieved by adding tz times

the first column to the second, with t ranging from 0 to 1. Since homotopic clutching

functions produce isomorphic bundles, we obtain an isomorphism [E, q]⊕[nE,11] ≈
[(n+ 1)E, Lnq] . tu

Linear Clutching Functions

For linear clutching functions a(x)z + b(x) we have the following key fact:

Proposition 2.12. Given a bundle [E,a(x)z+b(x)] , there is a splitting E ≈ E+⊕E−
with [E,a(x)z + b(x)] ≈ [E+,11]⊕[E−, z] .

Proof: The first step is to reduce to the case that a(x) is the identity for all x .

Consider the expression:

(∗) (1+ tz)[a(x) z + t
1+ tz + b(x)

] = [a(x)+ tb(x)]z + ta(x)+ b(x)
When t = 0 this equals a(x)z + b(x) . For 0 ≤ t < 1, (∗) defines an invertible

linear transformation since the left-hand side is obtained from a(x)z+ b(x) by first

applying the substitution z, (z + t)/(1 + tz) which takes S1 to itself (because if

|z| = 1 then |(z+t)/(1+tz)| = |z(z+t)/(1+tz)| = |(1+tz)/(1+tz)| = |w/w| = 1),

and then multiplying by the nonzero scalar 1+tz . Therefore (∗) defines a homotopy

of clutching functions as t goes from 0 to t0 < 1. In the right-hand side of (∗) the

term a(x) + tb(x) is invertible for t = 1 since it is the restriction of a(x)z + b(x)
to z = 1. Therefore a(x) + tb(x) is invertible for t = t0 near 1, as the continuous

function t, infx∈X
∣∣det[a(x)+ tb(x)]∣∣ is nonzero for t = 1, hence also for t near

1. Now we use the simple fact that [E, fg] ≈ [E, f ] for any isomorphism g :E→E .

This allows us to replace the clutching function on the right-hand side of (∗) by the

clutching function z + [t0a(x) + b(x)][a(x) + t0b(x)]−1 , reducing to the case of

clutching functions of the form z + b(x) .
Since z + b(x) is invertible for all x , b(x) has no eigenvalues on the unit circle

S1 .

Lemma 2.13. Let b :E→E be an endomorphism having no eigenvalues on the unit

circle S1 . Then there are unique subbundles E+ and E− of E such that :

(a) E = E+⊕E− .

(b) b(E±) ⊂ E± .

(c) The eigenvalues of b ||E+ all lie outside S1 and the eigenvalues of b ||E− all lie

inside S1 .

Proof: Consider first the algebraic situation of a linear transformation T :V→V with

characteristic polynomial q(t) . Assuming q(t) has no roots on S1 , we may factor q(t)
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in C[t] as q+(t)q−(t) where q+(t) has all its roots outside S1 and q−(t) has all its

roots inside S1 . Let V± be the kernel of q±(T) :V→V . Since q+ and q− are relatively

prime in C[t] , there are polynomials r and s with rq++sq− = 1. From q+(T)q−(T) =
q(T) = 0, we have Imq−(T) ⊂ Kerq+(T) , and the opposite inclusion follows from

r(T)q+(T)+ q−(T)s(T) = 11. Thus Kerq+(T) = Imq−(T) , and similarly Kerq−(T) =
Imq+(T) . From q+(T)r(T) + q−(T)s(T) = 11 we see that Imq+(T) + Imq−(T) = V ,

and from r(T)q+(T) + s(T)q−(T) = 11 we deduce that Kerq+(T) ∩ Kerq−(T) = 0.

Hence V = V+⊕V− . We have T(V±) ⊂ V± since q±(T)(v) = 0 implies q±(T)(T(v)) =
T(q±(T)(v)) = 0. All eigenvalues of T ||V± are roots of q± since q±(T) = 0 on V± .

Thus conditions (a)–(c) hold for V+ and V− .

To see the uniqueness of V+ and V− satisfying (a)–(c), let q′± be the characteristic

polynomial of T ||V± , so q = q′+q′− . All the linear factors of q′± must be factors of

q± by condition (c), so the factorizations q = q′+q′− and q = q+q− must coincide up

to scalar factors. Since q′±(T) is identically zero on V± , so must be q±(T) , hence

V± ⊂ Kerq±(T) . Since V = V+⊕V− and V = Kerq+(T)⊕ Kerq−(T) , we must have

V± = Kerq±(T) . This establishes the uniqueness of V± .

As T varies continuously through linear transformations without eigenvalues on

S1 , its characteristic polynomial q(t) varies continuously through polynomials with-

out roots in S1 . In this situation we assert that the factors q± of q vary continuously

with q , assuming that q , q+ , and q− are normalized to be monic polynomials. To

see this we shall use the fact that for any circle C in C disjoint from the roots of q ,

the number of roots of q inside C , counted with multiplicity, equals the degree of

the map γ :C→S1 , γ(z) = q(z)/|q(z)| . To prove this fact it suffices to consider the

case of a small circle C about a root z = a of multiplicity m , so q(t) = p(t)(t−a)m
with p(a) ≠ 0. The homotopy

γs(z) =
p(sa+ (1− s)z)(z − a)m
|p(sa+ (1− s)z)(z − a)m |

gives a reduction to the case (t − a)m , where it is clear that the degree is m .

Thus for a small circle C about a root z = a of q of multiplicity m , small per-

turbations of q produce polynomials q′ which also have m roots a1, ··· , am inside

C , so the factor (z − a)m of q becomes a factor (z − a1) ··· (z − am) of the nearby

q′ . Since the ai ’s are near a , these factors of q and q′ are close, and so q′± is close

to q± .

Next we observe that as T varies continuously through transformations without

eigenvalues in S1 , the splitting V = V+⊕V− also varies continuously. To see this,

recall that V+ = Imq−(T) and V− = Imq+(T) . Choose a basis v1, ··· , vn for V such

that q−(T)(v1), ··· , q−(T)(vk) is a basis for V+ and q+(T)(vk+1), ··· , q+(T)(vn) is

a basis for V− . For nearby T these vectors vary continuously, hence remain indepen-

dent. Thus the splitting V = Imq−(T)⊕ Imq+(T) continues to hold for nearby T ,

and so the splitting V = V+⊕V− varies continuously with T .
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It follows that the union E± of the subspaces V± in all the fibers V of E is a

subbundle, and so the proof of the lemma is complete. tu

To finish the proof of Proposition 2.12, note that the lemma gives a splitting

[E, z+b(x)] ≈ [E+, z+b+(x)]⊕[E−, z+b−(x)] where b+ and b− are the restrictions

of b . Since b+(x) has all its eigenvalues outside S1 , the formula tz + b+(x) for

0 ≤ t ≤ 1 defines a homotopy of clutching functions from z+b+(x) to b+(x) . Hence

[E+, z+b+(x)] ≈ [E+, b+(x)] ≈ [E+,11] . Similarly, z+ tb−(x) defines a homotopy of

clutching functions from z + b−(x) to z , so [E−, z + b−(x)] ≈ [E−, z] . tu

For future reference we note that the splitting [E,az + b] ≈ [E+,11]⊕[E−, z]
constructed in the proof of Proposition 2.12 preserves direct sums, in the sense that

the splitting for a sum [E1⊕E2, (a1z+b1)⊕(a2z+b2)] has (E1⊕E2)± = (E1)±⊕(E2)± .

This is because the first step of reducing to the case a = 11 clearly respects sums, and

the uniqueness of the ± splitting in Lemma 2.13 guarantees that it preserves sums.

Conclusion of the Proof

The preceding propositions imply that in K(X×S2) we have

[E, f ] = [E, z−mq]
= [E, q]⊗Ĥ−m

= [(n+ 1)E, Lnq]⊗Ĥ−m − [nE,11]⊗Ĥ−m

= [((n+ 1)E)+,11]⊗Ĥ−m + [((n+ 1)E)−, z]⊗Ĥ−m − [nE,11]⊗Ĥ−m

= ((n+ 1)E)+⊗H−m + ((n+ 1)E)−⊗H1−m −nE⊗H−m

This last expression is in the image of µ :K(X)⊗K(S2)→K(X×S2) . Since every vector

bundle over X×S2 has the form [E, f ] , it follows that µ is surjective.

To show µ is injective we shall construct ν :K(X×S2)→K(X)⊗K(S2) such that

νµ = 11. The idea will be to define ν([E, f ]) as some linear combination of terms

E⊗Hk and ((n+ 1)E)±⊗Hk which is independent of all choices.

To investigate the dependence of the terms in the formula for [E, f ] displayed

above on m and n we first derive the following two formulas, where degq ≤ n :

(1) [(n+ 2)E, Ln+1q] ≈ [(n+ 1)E, Lnq]⊕[E,11]
(2) [(n+ 2)E, Ln+1(zq)] ≈ [(n+ 1)E, Lnq]⊕[E, z]

The matrix representations of Ln+1q and Ln+1(zq) are:
1 −z 0 ··· 0
0 1 −z ··· 0
...

...
...

...
0 0 0 1 −z
0 an an−1 ··· a0

 and


1 −z 0 ··· 0 0
0 1 −z ··· 0 0
...

...
...

...
...

0 0 0 ··· 1 −z
an an−1 an−2 ··· a0 0


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In the first matrix we can add z times the first column to the second column to

eliminate the −z in the first row, and then the first row and column give the summand

[E,11] while the rest of the matrix gives [(n + 1)E, Lnq] . This proves (1). Similarly,

in the second matrix we add z−1 times the last column to the next-to-last column to

make the −z in the last column have all zeros in its row and column, which gives the

splitting in (2) since [E,−z] ≈ [E, z] , the clutching function −z being the composition

of the clutching function z with the automorphism −1 of E .

In view of the appearance of the correction terms [E,11] and [E, z] in (1) and (2),

it will be useful to know the ‘± ’ splittings for these two bundles:

(3) For [E,11] the summand E− is 0 and E+ = E .

(4) For [E, z] the summand E+ is 0 and E− = E .

Statement (4) is obvious from the definitions since the clutching function z is already

in the form z + b(x) with b(x) = 0, so 0 is the only eigenvalue of b(x) and hence

E+ = 0. To obtain (3) we first apply the procedure at the beginning of the proof of

Proposition 2.12 which replaces a clutching function a(x)z + b(x) by the clutching

function z + [t0a(x) + b(x)][a(x) + t0b(x)]−1 with 0 < t0 < 1. Specializing to the

case a(x)z + b(x) = 11 this yields z + t−1
0 11. Since t−1

0 11 has only the one eigenvalue

t−1
0 > 1, we have E− = 0.

Formulas (1) and (3) give ((n + 2)E)− ≈ ((n + 1)E)− , using the fact that the

± splitting preserves direct sums. So the ‘minus’ summand is independent of n .

Suppose we define

ν([E, z−mq]) = ((n+ 1)E)−⊗(H − 1)+ E⊗H−m ∈ K(X)⊗K(S2)

for n ≥ degq . We claim that this is well-defined. We have just noted that ‘minus’

summands are independent of n , so ν([E, z−mq]) does not depend on n . To see

that it is independent of m we must see that it is unchanged when z−mq is replaced

by z−m−1(zq) . By (2) and (4) we have the first of the following equalities:

ν([E, z−m−1(zq)]) = ((n+ 1)E)−⊗(H − 1)+ E⊗(H − 1)+ E⊗H−m−1

= ((n+ 1)E)−⊗(H − 1)+ E⊗(H−m −H−m−1)+ E⊗H−m−1

= ((n+ 1)E)−⊗(H − 1)+ E⊗H−m

= ν([E, z−mq])

To obtain the second equality we use the calculation of the ring K(S2) in Example 2.3,

where we derived the relation (H − 1)2 = 0 which implies H(H − 1) = H − 1 and

hence H − 1 = H−m −H−m−1 for all m . The third and fourth equalities are evident.

Another choice which might perhaps affect the value of ν([E, z−mq]) is the con-

stant t0 < 1 in the proof of Proposition 2.12. This could be any number sufficiently

close to 1, so varying t0 gives a homotopy of the endomorphism b in Lemma 2.13.
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This has no effect on the ± splitting since we can apply Lemma 2.13 to the endo-

morphism of E×I given by the homotopy. Hence the choice of t0 does not affect

ν([E, z−mq]) .
It remains see that ν([E, z−mq]) depends only on the bundle [E, z−mq] , not on

the clutching function z−mq for this bundle. We showed that every bundle over X×S2

has the form [E, f ] for a normalized clutching function f which was unique up to ho-

motopy, and in Proposition 2.10 we showed that Laurent polynomial approximations

to homotopic f ’s are Laurent-polynomial-homotopic. If we apply Propositions 2.11

and 2.12 over X×I with a Laurent polynomial homotopy as clutching function, we

conclude that the two bundles ((n+ 1)E)− over X×{0} and X×{1} are isomorphic.

This finishes the verification that ν([E, z−mq]) is well-defined.

It is easy to check through the definitions to see that ν takes sums to sums since

Ln(q1 ⊕ q2) = Lnq1 ⊕ Lnq2 and, as previously noted, the ± splitting in Proposition

2.12 preserves sums. So ν extends to a homomorphism K(X×S2)→K(X)⊗K(S2) .
The last thing to verify is that νµ = 11. The group K(S2) is generated by 1 and H ,

so in view of the relation H +H−1 = 2, which follows from (H − 1)2 = 0, we see that

K(S2) is also generated by 1 and H−1 . Thus it suffices to show νµ = 11 on elements

E⊗H−m for m ≥ 0. We have νµ(E⊗H−m) = ν([E, z−m]) = E−⊗(H−1)+E⊗H−m =
E⊗H−m since E− = 0, the polynomial q being 11 so that (3) applies.

This completes the proof of Bott Periodicity. tu

Elementary Applications

With the calculation K̃∗(Sn) ≈ Z completed, it would be possible to derive many

of the same applications that follow from the corresponding calculation for ordinary

homology or cohomology, as in [AT]. For example:

— There is no retraction of Dn onto its boundary Sn−1 , since this would mean that

the identity map of K̃∗(Sn−1) factored as K̃∗(Sn−1)→K̃∗(Dn)→K̃∗(Sn−1) , but

the middle group is trivial.

— The Brouwer fixed point theorem, that for every map f :Dn→Dn there is a point

x ∈ Dn with f(x) = x . For if not then it is easy to construct a retraction of Dn

onto Sn−1 .

— The notion of degree for maps f :Sn→Sn , namely the integer d(f) such that the

induced homomorphism f∗ : K̃∗(Sn)→K̃∗(Sn) is multiplication by d(f) . Rea-

soning as in Proposition 2.2, one sees that d is a homomorphism πn(S
n)→Z .

In particular a reflection has degree −1 and hence the antipodal map of Sn ,

which is the composition of n+1 reflections, has degree (−1)n+1 since d(fg) =
d(f)d(g) . Consequences of this include the fact that an even-dimensional sphere

has no nonvanishing vector fields.

However there are some things homology can do that K–theory cannot do in such an

elementary way, since K̃∗(Sn) can distinguish even-dimensional spheres from odd-
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dimensional spheres but it cannot distinguish between different even dimensions or

different odd dimensions. This, together with the fact that we have so far only defined

K–theory for compact spaces, prevents us from obtaining some of the other classical

applications of homology such as Brouwer’s theorems on invariance of dimension

and invariance of domain, or the Jordan curve theorem and its higher-dimensional

analogs.

3. Adams’ Hopf Invariant One Theorem
With the hard work of proving Bott Periodicity now behind us, the goal of this

section is to prove Adams’ theorem on the Hopf invariant, with its famous applications

including the nonexistence of division algebras beyond the Cayley octonions:

Theorem 2.14. The following statements are true only for n = 1 , 2 , 4 , and 8 :

(a) Rn is a division algebra.

(b) Sn−1 is parallelizable, i.e., there exist n− 1 tangent vector fields to Sn−1 which

are linearly independent at each point, or in other words, the tangent bundle to

Sn−1 is trivial.

(c) Sn−1 is an H–space.

To say that Sn−1 is an H–space means there is a continuous multiplication map

Sn−1×Sn−1→Sn−1 having a two-sided identity element e ∈ Sn−1 . This is weaker than

being a topological group since associativity and inverses are not assumed. For exam-

ple, S1 , S3 , and S7 are H–spaces by restricting the multiplication of complex numbers,

quaternions, and Cayley octonions to the respective unit spheres, but only S1 and S3

are topological groups since the multiplication of octonions is nonassociative.

A division algebra structure on Rn is a multiplication map Rn×Rn→Rn such

that the maps x,ax and x,xa are linear for each a ∈ Rn and invertible if a ≠ 0.

Since we are dealing with linear maps Rn→Rn , invertibility is equivalent to having

trivial kernel, which translates into the statement that the multiplication has no zero

divisors. An identity element is not assumed, but the multiplication can be modified

to produce an identity in the following way. Choose a unit vector e ∈ Rn . After

composing the multiplication with an invertible linear map Rn→Rn taking e2 to e
we may assume that e2 = e . Let α be the map x,xe and β the map x,ex . The new

product (x,y),α−1(x)β−1(y) then sends (x, e) to α−1(x)β−1(e) = α−1(x)e = x ,

and similarly it sends (e,y) to y . Since the maps x,ax and x,xa are surjective

for each a ≠ 0, the equations ax = e and xa = e are solvable, so nonzero elements

of the division algebra have multiplicative inverses on the left and right.

The first step in the proof of the theorem is to reduce (a) and (b) to (c):



Adams’ Hopf Invariant One Theorem Section 2.3 49

Lemma 2.15. If Rn is a division algebra, or if Sn−1 is parallelizable, then Sn−1 is

an H–space.

Proof: Having a division algebra structure on Rn with two-sided identity, an H–space

structure on Sn−1 is given by (x,y),xy/|xy| , which is well-defined since a division

algebra has no zero divisors.

Now suppose that Sn−1 is parallelizable, with tangent vector fields v1, ··· , vn−1

which are linearly independent at each point of Sn−1 . By the Gram-Schmidt process we

may make the vectors x,v1(x), ··· , vn−1(x) orthonormal for all x ∈ Sn−1 . We may

assume also that at the first standard basis vector e1 , the vectors v1(e1), ··· , vn−1(e1)
are the standard basis vectors e2, ··· , en , by changing the sign of vn−1 if necessary to

get orientations right, then deforming the vector fields near e1 . Let αx ∈ SO(n) send

the standard basis to x,v1(x), ··· , vn−1(x) . Then the map (x,y),αx(y) defines

an H–space structure on Sn−1 with identity element the vector e1 since αe1
is the

identity map and αx(e1) = x for all x . tu

Before proceeding further let us list a few easy consequences of Bott periodicity

which will be needed.

(1) We have already seen that K̃(Sn) is Z for n even and 0 for n odd. This comes

from repeated application of the periodicity isomorphism K̃(X) ≈ K̃(S2X) , α,
α∗ (H −1) , the external product with the generator H −1 of K̃(S2) , where H is

the canonical line bundle over S2 = CP1 . In particular we see that a generator of

K̃(S2k) is the k fold external product (H − 1)∗ ··· ∗ (H − 1) . We note also that

the multiplication in K̃(S2k) is trivial since this ring is the k fold tensor product

of the ring K̃(S2) , which has trivial multiplication by Example 2.3. Alternatively,

we can appeal to Example 2.6.

(2) The external product K̃(S2k)⊗K̃(X)→K̃(S2k ∧ X) is an isomorphism since it is

an iterate of the periodicity isomorphism.

(3) The external product K(S2k)⊗K(X)→K(S2k×X) is an isomorphism. This fol-

lows from (2) by the same reasoning which showed the equivalence of the reduced

and unreduced forms of Bott periodicity. Since external product is a ring homo-

morphism, the isomorphism K̃(S2k ∧X) ≈ K̃(S2k)⊗K̃(X) is a ring isomorphism.

For example, since K(S2k) can be described as the quotient ring Z[α]/(α2) , we

can deduce that K(S2k×S2`) is Z[α,β]/(α2, β2) where α and β are the pullbacks

of generators of K̃(S2k) and K̃(S2`) under the projections of S2k×S2` onto its

two factors. An additive basis for K(S2k×S2`) is thus {1, α, β,αβ} .

We can apply the last calculation to show that S2k is not an H–space if k > 0.

Suppose µ :S2k×S2k→S2k is an H–space multiplication. The induced homomor-

phism of K–rings then has the form µ∗ :Z[γ]/(γ2)→Z[α,β]/(α2, β2) . We claim that

µ∗(γ) = α+β+mαβ for some integer m . The composition S2k i-----→S2k×S2k µ-----→S2k

is the identity, where i is the inclusion onto either of the subspaces S2k×{e} or
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{e}×S2k , with e the identity element of the H–space structure. The map i∗ for i the

inclusion onto the first factor sends α to γ and β to 0, so the coefficient of α in µ∗(γ)
must be 1. Similarly the coefficient of β must be 1, proving the claim. However, this

leads to a contradiction since it implies that µ∗(γ2) = (α + β +mαβ)2 = 2αβ ≠ 0,

which is impossible since γ2 = 0.

There remains the much more difficult problem of showing that Sn−1 is not an

H–space when n is even and different from 2, 4, and 8. The first step is a simple

construction which associates to a map g :Sn−1×Sn−1→Sn−1 a map ĝ :S2n−1→Sn .

To define this, we regard S2n−1 as ∂(Dn×Dn) = ∂Dn×Dn ∪ Dn×∂Dn , and Sn we

take as the union of two disks Dn+ and Dn− with their boundaries identified. Then

ĝ is defined on ∂Dn×Dn by ĝ(x,y) = |y|g(x,y/|y|) ∈ Dn+ and on Dn×∂Dn by

ĝ(x,y) = |x|g(x/|x|, y) ∈ Dn− . Note that ĝ is well-defined and continuous, even

when |x| or |y| is zero, and ĝ agrees with g on Sn−1×Sn−1 .

Now we specialize to the case that n is even, or in other words, we replace n
by 2n . For a map f :S4n−1→S2n , let Cf be S2n with a cell e4n attached by f . The

quotient Cf/S
2n is then S4n , and since K̃1(S4n) = K̃1(S2n) = 0, the exact sequence

of the pair (Cf , S
2n) becomes a short exact sequence

0 -→K̃(S4n) -→K̃(Cf ) -→K̃(S2n) -→0

Let α ∈ K̃(Cf ) be the image of the generator (H − 1)∗ ··· ∗ (H − 1) of K̃(S4n) and

let β ∈ K̃(Cf ) map to the generator (H − 1)∗ ··· ∗ (H − 1) of K̃(S2n) . The element

β2 maps to 0 in K̃(S2n) since the square of any element of K̃(S2n) is zero. So by

exactness we have β2 = hα for some integer h . The mod 2 value of h depends only

on f , not on the choice of β , since β is unique up to adding an integer multiple of

α , and (β +mα)2 = β2 + 2mαβ since α2 = 0. The value of h mod 2 is called the

mod 2 Hopf invariant of f . In fact αβ = 0 so h is well-defined in Z not just Z2 , as

we will see in §3.2, but for our present purposes the mod 2 value of h suffices.

Lemma 2.16. If g :S2n−1×S2n−1→S2n−1 is an H–space multiplication, then the as-

sociated map ĝ :S4n−1→S2n has Hopf invariant ±1 .

Proof: Let e ∈ S2n−1 be the identity element for the H–space multiplication, and let

f = ĝ . In view of the definition of f it is natural to view the characteristic map Φ of

the 4n cell of Cf as a map (D2n×D2n, ∂(D2n×D2n))→(Cf , S
2n) . In the following

commutative diagram the horizontal maps are the product maps. The diagonal map is

external product, equivalent to the external product K̃(S2n)⊗K̃(S2n)→K̃(S4n) , which

is an isomorphism since it is an iterate of the Bott periodicity isomorphism.
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D eK 2n( { )} },
∼ × D e2n {×∂ eK D2n({ )} },

∼ De 2n{× ×∂

DK 2n D2n D2n( ),
∼ × D2n×∂ DK 2n D2n D2n( ),

∼ × D2n× ∂ ∂DK 2n D2n D2n( ( )),
∼ × D2n×−−−−−→

K DC 2n( ),
∼ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
f - K DC 2n( ),

∼
f K SC 2n( ),

∼
f+

K C( )
∼ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→f K C( )

∼
f K C( )

∼
f

−−→

−−→
−−→

≈

≈ ≈

−−→

−−→ ≈

⊗

⊗

⊗
⊗

⊗

Φ∗Φ∗Φ∗

By the definition of an H–space and the definition of f , the map Φ restricts to a

homeomorphism from D2n×{e} onto D2n
+ and from {e}×D2n onto D2n

− . It follows

that the element β⊗β in the upper left group maps to a generator of the group in the

bottom row of the diagram, since β restricts to a generator of K̃(S2n) by definition.

Therefore by commutativity of the diagram, the product map in the top row sends

β⊗β to ±α since α was defined to be the image of a generator of K̃(Cf , S
2n) . Thus

we have β2 = ±α , which says that the Hopf invariant of f is ±1. tu

In view of this lemma, Theorem 2.14 becomes a consequence of the following

theorem of Adams:

Theorem 2.17. If f :S4n−1→S2n is a map whose mod 2 Hopf invariant is 1 , then

n = 1 , 2 , or 4 .

The proof of this will occupy the rest of this section.

Adams Operations

The Hopf invariant is defined in terms of the ring structure in K–theory, but in

order to prove Adams’ theorem, more structure is needed, namely certain ring homo-

morphisms ψk :K(X)→K(X) . Here are their basic properties:

Theorem 2.18. There exist ring homomorphisms ψk :K(X)→K(X) , defined for all

compact Hausdorff spaces X and all integers k ≥ 0 , and satisfying:

(1) ψkf∗ = f∗ψk for all maps f :X→Y . (Naturality)

(2) ψk(L) = Lk if L is a line bundle.

(3) ψk ◦ψ` = ψk` .

(4) ψp(α) ≡ αp mod p for p prime.

This last statement means that ψp(α)−αp = pβ for some β ∈ K(X) .
In the special case of a vector bundle E which is a sum of line bundles Li , prop-

erties (2) and (3) give the formula ψk(L1⊕ ··· ⊕Ln) = Lk1 + ··· + Lkn . We would like

a general definition of ψk(E) which specializes to this formula when E is a sum of

line bundles. The idea is to use the exterior powers λk(E) . From the corresponding

properties for vector spaces we have:
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(i) λk(E1⊕E2) ≈
⊕
i
(
λi(E1)⊗λk−i(E2)

)
.

(ii) λ0(E) = 1, the trivial line bundle.

(iii) λ1(E) = E .

(iv) λk(E) = 0 for k greater than the maximum dimension of the fibers of E .

Recall that we want ψk(E) to be Lk1+···+Lkn when E = L1⊕ ··· ⊕Ln for line bundles

Li . We will show in this case that there is a polynomial sk with integer coefficients

such that Lk1 + ··· + Lkn = sk(λ1(E), ··· , λk(E)) . This will lead us to define ψk(E) =
sk(λ

1(E), ··· , λk(E)) for an arbitrary vector bundle E .

To see what the polynomial sk should be, we first use the exterior powers λi(E)
to define a polynomial λt(E) =

∑
i λ

i(E)ti ∈ K(X)[t] . This is a finite sum by property

(iv), and property (i) says that λt(E1⊕E2) = λt(E1)λt(E2) . When E = L1⊕ ··· ⊕Ln
this implies that λt(E) =

∏
iλt(Li) , which equals

∏
i(1 + Lit) by (ii), (iii), and (iv).

The coefficient λj(E) of tj in λt(E) =
∏
i(1 + Lit) is the jth elementary symmetric

function σj of the Li ’s, the sum of all products of j distinct Li ’s. Thus we have

(∗) λj(E) = σj(L1, ··· , Ln) if E = L1⊕ ··· ⊕Ln
To make the discussion completely algebraic, let us introduce the variable ti for

Li . Thus (1+ t1) ··· (1+ tn) = 1+σ1+···+σn , where σj is the jth elementary sym-

metric polynomial in the ti ’s. The fundamental theorem on symmetric polynomials,

proved for example in [Lang, p. 134] or [van der Waerden, §26], asserts that every

degree k symmetric polynomial in t1, ··· , tn can be expressed as a unique polyno-

mial in σ1, ··· , σk . In particular, tk1 +···+ tkn is a polynomial sk(σ1, ··· , σk) , called a

Newton polynomial . This polynomial sk is independent of n since we can pass from

n to n− 1 by setting tn = 0. A recursive formula for sk is

sk = σ1sk−1 − σ2sk−2 + ··· + (−1)k−2σk−1s1 + (−1)k−1kσk

To derive this we may take n = k , and then if we substitute x = −ti in the identity

(x + t1) ··· (x + tk) = xk + σ1x
k−1 + ··· + σk we get tki = σ1t

k−1
i − ··· + (−1)k−1σk .

Summing over i then gives the recursion relation. The recursion relation easily yields

for example

s1 = σ1 s2 = σ 2
1 − 2σ2 s3 = σ 3

1 − 3σ1σ2 + 3σ3

s4 = σ 4
1 − 4σ 2

1σ2 + 4σ1σ3 + 2σ 2
2 − 4σ4

Summarizing, if we define ψk(E) = sk(λ1(E), ··· , λk(E)) , then in the case that E
is a sum of line bundles L1⊕ ··· ⊕Ln we have

ψk(E) = sk(λ1(E), ··· , λk(E))
= sk(σ1(L1, ··· , Ln), ··· , σk(L1, ··· , Ln)) by (∗)
= Lk1 + ··· + Lkn

Verifying that the definition ψk(E) = sk(λ
1(E), ··· , λk(E)) gives operations on

K(X) satisfying the properties listed in the theorem will be rather easy if we make

use of the following general result:
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The Splitting Principle. Given a vector bundle E→X with X compact Hausdorff,

there is a compact Hausdorff space F(E) and a map p :F(E)→X such that the in-

duced map p∗ :K∗(X)→K∗(F(E)) is injective and p∗(E) splits as a sum of line

bundles.

This will be proved later in this section, but for the moment let us assume it and

proceed with the proof of Theorem 2.18 and Adams’ theorem.

Proof of Theorem 2.18: Property (1) for vector bundles, f∗(ψk(E)) = ψk(f∗(E)) ,
follows immediately from the relation f∗(λi(E)) = λi(f∗(E)) . Additivity of ψk for

vector bundles, ψk(E1⊕E2) = ψk(E1) +ψk(E2) , follows from the splitting principle

since we can first pull back to split E1 then do a further pullback to split E2 , and the

formula ψk(L1⊕ ··· ⊕Ln) = Lk1 + ··· + Lkn preserves sums. Since ψk is additive on

vector bundles, it induces an additive operation on K(X) defined by ψk(E1 − E2) =
ψk(E1)−ψk(E2) .

For this extended ψk the properties (1) and (2) are clear. Multiplicativity is also

easy from the splitting principle: If E is the sum of line bundles Li and E′ is the sum

of line bundles L′j , then E⊗E′ is the sum of the line bundles Li⊗L′j , so ψk(E⊗E′) =∑
i,j ψ

k(Li⊗L′j) =
∑
i,j(Li⊗L′j)k =

∑
i,j L

k
i ⊗L′jk =

∑
i L

k
i
∑
j L
′
j
k = ψk(E)ψk(E′) . Thus

ψk is multiplicative for vector bundles, and it follows formally that it is multiplicative

on elements of K(X) . For property (3) the splitting principle and additivity reduce

us to the case of line bundles, where ψk(ψ`(L)) = Lk` = ψk`(L) . Likewise for (4), if

E = L1 + ··· + Ln , then ψp(E) = Lp1 + ··· + Lpn ≡ (L1 + ··· + Ln)p = Ep mod p . tu

By the naturality property (1), ψk restricts to an operation ψk : K̃(X)→K̃(X) since

K̃(X) is the kernel of the homomorphism K(X)→K(x0) for x0 ∈ X . For the external

product K̃(X)⊗K̃(Y)→K̃(X ∧ Y) , we have the formula ψk(α∗ β) = ψk(α)∗ψk(β)
since if one looks back at the definition of α ∗ β , one sees this was defined as

p∗1 (α)p
∗
2 (β) , hence

ψk(α∗ β) = ψk(p∗1 (α)p∗2 (β))
= ψk(p∗1 (α))ψk(p∗2 (β))
= p∗1 (ψk(α))p∗2 (ψk(β))
= ψk(α)∗ψk(β).

This will allow us to compute ψk on K̃(S2n) ≈ Z . In this case ψk must be

multiplication by some integer since it is an additive homomorphism of Z .

Proposition 2.19. ψk : K̃(S2n)→K̃(S2n) is multiplication by kn .

Proof: Consider first the case n = 1. Since ψk is additive, it will suffice to show

ψk(α) = kα for α a generator of K̃(S2) . We can take α = H − 1 for H the canonical
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line bundle over S2 = CP1 . Then

ψk(α) = ψk(H − 1) = Hk − 1 by property (2)

= (1+α)k − 1

= 1+ kα− 1 since αi = (H − 1)i = 0 for i ≥ 2

= kα

When n > 1 we use the external product K̃(S2)⊗K̃(S2n−2)→K̃(S2n) , which is

an isomorphism, and argue by induction. Assuming the desired formula holds in

K̃(S2n−2) , we have ψk(α ∗ β) = ψk(α) ∗ψk(β) = kα ∗ kn−1β = kn(α ∗ β) , and we

are done. tu

Now we can use the operations ψ2 and ψ3 and the relation ψ2ψ3 = ψ6 = ψ3ψ2

to prove Adams’ theorem.

Proof of Theorem 2.17: The definition of the Hopf invariant of a map f :S4n−1→S2n

involved elements α,β ∈ K̃(Cf ) . By Proposition 2.19, ψk(α) = k2nα since α is the

image of a generator of K̃(S4n) . Similarly, ψk(β) = knβ + µkα for some µk ∈ Z .

Therefore

ψkψ`(β) = ψk(`nβ+ µ`α) = kn`nβ+ (k2nµ` + `nµk)α

Since ψkψ` = ψk` = ψ`ψk , the coefficient k2nµ` + `nµk of α is unchanged when k
and ` are switched. This gives the relation

k2nµ` + `nµk = `2nµk + knµ`, or (k2n − kn)µ` = (`2n − `n)µk
By property (6) of ψ2 , we have ψ2(β) ≡ β2 mod 2. Since β2 = hα with h the Hopf

invariant of f , the formula ψ2(β) = 2nβ+ µ2α implies that µ2 ≡ h mod 2, so µ2 is

odd if we assume h = ±1. By the preceding displayed formula we have (22n−2n)µ3 =
(32n − 3n)µ2 , or 2n(2n − 1)µ3 = 3n(3n − 1)µ2 , so 2n divides 3n(3n − 1)µ2 . Since 3n

and µ2 are odd, 2n must then divide 3n−1. The proof is completed by the following

elementary number theory fact. tu

Lemma 2.20. If 2n divides 3n − 1 then n = 1,2 , or 4 .

Proof: Write n = 2`m with m odd. We will show that the highest power of 2 dividing

3n − 1 is 2 for ` = 0 and 2`+2 for ` > 0. This implies the lemma since if 2n divides

3n−1, then by this fact, n ≤ `+2, hence 2` ≤ 2`m = n ≤ `+2, which implies ` ≤ 2

and n ≤ 4. The cases n = 1,2,3,4 can then be checked individually.

We find the highest power of 2 dividing 3n − 1 by induction on ` . For ` = 0

we have 3n − 1 = 3m − 1 ≡ 2 mod 4 since 3 ≡ −1 mod 4 and m is odd. In the next

case ` = 1 we have 3n − 1 = 32m − 1 = (3m − 1)(3m + 1) . The highest power of 2

dividing the first factor is 2 as we just showed, and the highest power of 2 dividing

the second factor is 4 since 3m + 1 ≡ 4 mod 8 because 32 ≡ 1 mod 8 and m is
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odd. So the highest power of 2 dividing the product (3m − 1)(3m + 1) is 8. For the

inductive step of passing from ` to ` + 1 with ` ≥ 1, or in other words from n to

2n with n even, write 32n − 1 = (3n − 1)(3n + 1) . Then 3n + 1 ≡ 2 mod 4 since n
is even, so the highest power of 2 dividing 3n + 1 is 2. Thus the highest power of 2

dividing 32n − 1 is twice the highest power of 2 dividing 3n − 1. tu

The Splitting Principle

The splitting principal will be a fairly easy consequence of a general result about

the K–theory of fiber bundles called the Leray-Hirsch theorem, together with a calcu-

lation of the ring structure of K∗(CPn) . The following proposition will allow us to

compute at least the additive structure of K∗(CPn) .

Proposition 2.21. If X is a finite cell complex with n cells, then K∗(X) is a finitely

generated group with at most n generators. If all the cells of X have even dimension

then K1(X) = 0 and K0(X) is free abelian with one basis element for each cell.

The phrase ‘finite cell complex’ would normally mean ‘finite CW complex’ but we

can take it to be something slightly more general: a space built from a finite discrete set

by attaching a finite number of cells in succession, with no conditions on the dimen-

sions of these cells, so cells are not required to attach only to cells of lower dimension.

Finite cell complexes are always homotopy equivalent to finite CW complexes (by de-

forming each succesive attaching map to be cellular) so the only advantages of finite

cell complexes are technical. In particular, it is easy to see that a space is a finite cell

complex if it is a fiber bundle over a finite cell complex with fibers that are also finite

cell complexes. This is shown in Proposition 2.26 in a brief appendix to this section.

It implies that the splitting principal can be applied staying within the realm of finite

cell complexes.

Proof: We show this by induction on the number of cells. The complex X is obtained

from a subcomplex A by attaching a k cell, for some k . For the pair (X,A) we

have an exact sequence K̃∗(X/A) -→ K̃∗(X) -→ K̃∗(A) . Since X/A = Sk , we have

K̃∗(X/A) ≈ Z , and exactness implies that K̃∗(X) requires at most one more generator

than K̃∗(A) .
The first term of the exact sequence K1(X/A)→K1(X)→K1(A) is zero if all

cells of X are of even dimension, so induction on the number of cells implies that

K1(X) = 0. Then there is a short exact sequence 0→K̃0(X/A)→K̃0(X)→K̃0(A)→0

with K̃0(X/A) ≈ Z . By induction K̃(A) is free, so this sequence splits, hence K0(X) ≈
Z⊕K0(A) and the final statement of the proposition follows. tu

This proposition applies in particular to CPn , which has a cell structure with one

cell in each dimenion 0,2,4, ··· ,2n , so K1(CPn) = 0 and K0(CPn) ≈ Zn+1 . The ring

structure is as simple as one could hope for:
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Proposition 2.22. K(CPn) is the quotient ring Z[L]/(L−1)n+1 where L is the canon-

ical line bundle over CPn .

Thus by the change of variable x = L−1 we see that K(CPn) is the truncated poly-

nomial ring Z[x]/(xn+1) , with additive basis 1, x, ··· , xn . It follows that 1, L, ··· , Ln
is also an additive basis.

Proof: The exact sequence for the pair (CPn,CPn−1) gives a short exact sequence

0 -→K(CPn,CPn−1) -→K(CPn) ρ-----→K(CPn−1) -→0

We shall prove:

(an) (L− 1)n generates the kernel of the restriction map ρ .

Hence if we assume inductively that K(CPn−1) = Z[L]/(L − 1)n , then (an) and the

preceding exact sequence imply that {1, L − 1, ··· , (L − 1)n} is an additive basis for

K(CPn) . Since (L − 1)n+1 = 0 in K(CPn) by (an+1) , it follows that K(CPn) is the

quotient ring Z[L]/(L− 1)n+1 , completing the induction.

A reason one might expect (an) to be true is that the kernel of ρ can be identi-

fied with K(CPn,CPn−1) = K̃(S2n) by the short exact sequence, and Bott periodicity

implies that the n fold reduced external product of the generator L − 1 of K̃(S2)
with itself generates K̃(S2n) . To make this rough argument into a proof we will have

to relate the external product K̃(S2)⊗ ··· ⊗K̃(S2)→K̃(S2n) to the ‘internal’ product

K(CPn)⊗ ··· ⊗K(CPn)→K(CPn) .

The space CPn is the quotient of the unit sphere S2n+1 in Cn+1 under multipli-

cation by scalars in S1 ⊂ C . Instead of S2n+1 we could equally well take the boundary

of the product D2
0× ··· ×D2

n where D2
i is the unit disk in the ith coordinate of Cn+1 ,

and we start the count with i = 0 for convenience. Then we have

∂(D2
0× ··· ×D2

n) =
⋃
i(D

2
0× ··· ×∂D2

i × ··· ×D2
n)

The action of S1 by scalar multiplication respects this decomposition. The orbit space

of D2
0× ··· ×∂D2

i × ··· ×D2
n under the action is a subspace Ci ⊂ CPn homeomorphic

to the product D2
0× ··· ×D2

n with the factor D2
i deleted. Thus we have a decomposi-

tion CPn = ⋃i Ci with each Ci homeomorphic to D2n and with Ci ∩ Cj = ∂Ci ∩ ∂Cj
for i ≠ j .

Consider now C0 = D2
1× ··· ×D2

n . Its boundary is decomposed into the pieces

∂iC0 = D2
1× ··· ×∂D2

i × ··· ×D2
n . The inclusions (D2

i , ∂D
2
i ) ⊂ (C0, ∂iC0) ⊂ (CPn,Ci)

give rise to a commutative diagram
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DK 2
1 D 2

1( ), ∂ DK 2
n D 2

n( ), ∂

−−−−−−−−−−→
−−−−−→ −−−−−→

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−−−−→

−−−−−−−−−−−−−−−−−→−−→ −−→

−−→
−−→

−−→≈ ≈

. . .

CK 0 0 01C 0( ), ∂ CK nC( ),∂ 0 0CK C( ),∂. . .

K 1CP( ), n
n . . . . . .

≈ ≈
≈

C K CP( ) K 1CP( , n
nC C ) ),nC

K P( )n . . .C K P( )nC K P( )nC

∪ ∪ K P( ,nC PC -n 1

⊗ ⊗

⊗ ⊗

⊗ ⊗

⊗ ⊗

where the maps from the first column to the second are the n fold products. The

upper map in the middle column is an isomorphism because the inclusion C0↩CPn

induces a homeomorphism C0/∂C0 ≈ CPn/(C1∪···∪Cn) . The CPn−1 at the right side

of the diagram sits in CPn in the last n coordinates of Cn+1 , so is disjoint from C0 ,

hence the quotient map CPn/CPn−1→CPn/(C1∪···∪Cn) is a homotopy equivalence.

The element xi ∈ K(CPn,Ci) mapping downward to L−1 ∈ K(CPn) maps upward

to a generator of K(C0, ∂iC0) ≈ K(D2
i , ∂D

2
i ) . By commutativity of the diagram, the

product x1 ···xn then generates K(CPn,C1 ∪ ··· ∪ Cn) . This means that (L − 1)n

generates the image of the map K(CPn,CPn−1)→K(CPn) , which equals the kernel of

ρ , proving (an) . tu

Here is a version of the Leray-Hirsch theorem for K–theory:

Theorem 2.23. Let p :E→B be a fiber bundle with E and B compact Hausdorff and

with fiber F such that K∗(F) is free. Suppose that there exist classes c1, ··· , ck ∈
K∗(E) that restrict to a basis for K∗(F) in each fiber F . If either

(a) B is a finite cell complex, or

(b) F is a finite cell complex having all cells of even dimension,

then K∗(E) , as a module over K∗(B) , is free with basis {c1, ··· , ck} .

Here the K∗(B) module structure on K∗(E) is defined by β · γ = p∗(β)γ for

β ∈ K∗(B) and γ ∈ K∗(E) . Another way to state the conclusion of the theorem is

to say that the map Φ :K∗(B)⊗K∗(F)→K∗(E) , Φ(∑i bi ⊗ i∗(ci)) =
∑
i p
∗(bi)ci for i

the inclusion F↩ E , is an isomorphism.

In the case of the product bundle E = F×B the classes ci can be chosen to be the

pullbacks under the projection E→F of a basis for K∗(F) . The theorem then asserts

that the external product K∗(F)⊗K∗(B)→K∗(F×B) is an isomorphism.

For most of our applications of the theorem either case (a) or case (b) will suffice.

The proof of (a) is somewhat simpler than (b), and we include (b) mainly to obtain the

splitting principle for vector bundles over arbitrary compact Hausdorff base spaces.

Proof: For a subspace B′ ⊂ B let E′ = p−1(B′) . Then we have a diagram
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−−→ −−→−−→ −−−−−→−−−−−→ ′∗

∗
⊗Φ Φ ΦBBK ( )

( )

, ∗ FK ( ) −−−−−→∗ ⊗BK ( ) ∗ FK ( ) −−−−−→′∗ ⊗BK ( ) ∗ FK ( )

−−−−−−−−−−−−−−−→−−−−−−−−−−−−→ ′∗ EEK ( ), −−−−−−−−−−−−−−−−−→∗ EK ( ) −−−−−−−−−−−→′∗ EK ( )

where the left-hand Φ is defined by the same formula Φ(∑i bi ⊗ i∗(ci)) =
∑
i p
∗(bi)ci ,

but with p∗(bi)ci referring now to the relative product K∗(E, E′)×K∗(E)→K∗(E, E′) .
The right-hand Φ is defined using the restrictions of the ci ’s to the subspace E′ . To

see that the diagram (∗) commutes, we can interpolate between its two rows the row

-→K∗(E, E′)⊗K∗(F) -→K∗(E)⊗K∗(F) -→K∗(E′)⊗K∗(F) -→
by factoring Φ as the composition

∑
i bi ⊗ i∗(ci),

∑
i p
∗(bi)⊗ i∗(ci),

∑
i p
∗(bi)ci .

The upper squares of the enlarged diagram then commute trivially, and the lower

squares commute by Proposition 2.8. The lower row of the diagram is of course exact.

The upper row is also exact since we assume K∗(F) is free, and tensoring an exact

sequence with a free abelian group preserves exactness, the result of the tensoring

operation being simply to replace the given exact sequence by the direct sum of a

number of copies of itself.

The proof in case (a) will be by a double induction, first on the dimension of B ,

then within a given dimension, on the number of cells. The induction starts with the

trivial case that B is zero-dimensional, hence a finite discrete set. For the induction

step, suppose B is obtained from a subcomplex B′ by attaching a cell en , and let

E′ = p−1(B′) as above. By induction on the number of cells of B we may assume the

right-hand Φ in (∗) is an isomorphism. If the left-hand Φ is also an isomorphism,

then the five-lemma will imply that the middle Φ is an isomorphism, finishing the

induction step.

Let ϕ : (Dn, Sn−1)→(B, B′) be a characteristic map for the attached n cell. Since

Dn is contractible, the pullback bundle ϕ∗(E) is a product, and so we have a com-

mutative diagram

−−→−−→ −−−−−→′∗ ⊗
Φ Φ ΦBBK ( ), ,∗ FK ( ) ⊗ ∗ FK ( )∗ D SK ( )

−−−−−−−−−−−−→′ ′∗ EEK ( ), ,∗ ∗ EK (( )

−−−−−−−−−−−−−→
∗K (

≈

≈ ≈ϕ ∗ E( ))ϕ × ×

n -n 1

, FFD S )n -n 1

The two horizontal maps are isomorphisms since ϕ restricts to a homeomorphism

on the interior of Dn , hence induces homeomorphisms B/B′ ≈ Dn/Sn−1 and E/E′ ≈
ϕ∗(E)/ϕ∗(E′) . Thus the diagram reduces the proof to showing that the right-handΦ , involving the product bundle Dn×F→Dn , is an isomorphism.

Consider the diagram (∗) with (B, B′) replaced by (Dn, Sn−1) . We may assume

the right-hand Φ in (∗) is an isomorphism since Sn−1 has smaller dimension than

the original cell complex B . The middle Φ is an isomorphism by the case of zero-

dimensional B since Dn deformation retracts to a point. Therefore by the five-lemma
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the left-hand Φ in (∗) is an isomorphism for (B, B′) = (Dn, Sn−1) . This finishes the

proof in case (a).

In case (b) let us first prove the result for a product bundle E = F×B . In this caseΨ is just the external product, so we are free to interchange the roles of F and B .

Thus we may use the diagram (∗) with F an arbitrary compact Hausdorff space and

B a finite cell complex having all cells of even dimension, obtained by attaching a cell

en to a subcomplex B′ . The upper row of (∗) is then an exact sequence since it is

obtained from the split short exact sequence 0→K∗(B, B′)→K∗(B)→K∗(B′)→0 by

tensoring with the fixed group K∗(F) . If we can show that the left-hand Φ in (∗) is

an isomorphism, then by induction on the number of cells of B we may assume the

right-hand Φ is an isomorphism, so the five-lemma will imply that the middle Φ is

also an isomorphism.

To show the left-hand Φ is an isomorphism, note first that B/B′ = Sn so we may

as well take the pair (B, B′) to be (Dn, Sn−1) . Then the middle Φ in (∗) is obviously

an isomorphism, so the left-hand Φ will be an isomorphism iff the right-hand Φ is

an isomorphism. When the sphere Sn−1 is even-dimensional we have already shown

that Φ is an isomorphism in the remarks following the proof of Lemma 2.15, and

the same argument applies also when the sphere is odd-dimensional, since K1 of an

odd-dimensional sphere is K0 of an even-dimensional sphere.

Now we turn to case (b) for nonproducts. The proof will once again be inductive,

but this time we need a more subtle inductive statement since B is just a compact

Hausdorff space, not a cell complex. Consider the following condition on a compact

subspace U ⊂ B :

For all compact V ⊂ U the map Φ :K∗(V)⊗K∗(F)→K∗(p−1(V)) is an isomor-

phism.

If this is satisfied, let us call U good. By the special case already proved, each point of

B has a compact neighborhood U that is good. Since B is compact, a finite number

of these neighborhoods cover B , so by induction it will be enough to show that if U1

and U2 are good, then so is U1 ∪U2 .

A compact V ⊂ U1 ∪ U2 is the union of V1 = V ∩ U1 and V2 = V ∩ U2 . Consider

the diagram like (∗) for the pair (V , V2) . Since K∗(F) is free, the upper row of this

diagram is exact. Assuming U2 is good, the map Φ is an isomorphism for V2 , so Φ
will be an isomorphism for V if it is an isomorphism for (V , V2) . The quotient V/V2

is homeomorphic to V1/(V1 ∩ V2) so Φ will be an isomorphism for (V , V2) if it is an

isomorphism for (V1, V1 ∩ V2) . Now look at the diagram like (∗) for (V1, V1 ∩ V2) .
Assuming U1 is good, the maps Φ are isomorphisms for V1 and V1 ∩V2 . Hence Φ is

an isomorphism for (V1, V1 ∩ V2) , and the induction step is finished. tu

Example 2.24. Let E→X be a vector bundle with fibers Cn and compact base X .

Then we have an associated projective bundle p :P(E)→X with fibers CPn−1 , where
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P(E) is the space of lines in E , that is, one-dimensional linear subspaces of fibers of

E . Over P(E) there is the canonical line bundle L→P(E) consisting of the vectors in

the lines of P(E) . In each fiber CPn−1 of P(E) the classes 1, L, ··· , Ln−1 in K∗(P(E))
restrict to a basis for K∗(CPn−1) by Proposition 2.22. From the Leray-Hirsch theorem

we deduce that K∗(P(E)) is a free K∗(X) module with basis 1, L, ··· , Ln−1 .

Proof of the Splitting Principle: In the preceding example, the fact that 1 is among the

basis elements implies that p∗ :K∗(X)→K∗(P(E)) is injective. The pullback bundle

p∗(E)→P(E) contains the line bundle L as a subbundle, hence splits as L⊕E′ for

E′→P(E) the subbundle of p∗(E) orthogonal to L with respect to some choice of

inner product. Now repeat the process by forming P(E′) , splitting off another line

bundle from the pullback of E′ over P(E′) . Note that P(E′) is the space of pairs

of orthogonal lines in fibers of E . After a finite number of repetitions we obtain

the flag bundle F(E)→X described at the end of §1.1, whose points are n tuples of

orthogonal lines in fibers of E , where n is the dimension of E . (If the fibers of E
have different dimensions over different components of X , we do the construction

for each component separately.) The pullback of E over F(E) splits as a sum of line

bundles, and the map F(E)→X induces an injection on K∗ since it is a composition

of maps with this property. tu

In the preceding Example 2.24 we saw that K∗(P(E)) is free as a K∗(X) module,

with basis 1, L, ··· , Ln−1 . In order to describe the multiplication in K∗(P(E)) one

therefore needs only a relation expressing Ln in terms of lower powers of L . Such

a relation can be found as follows. The pullback of E over P(E) splits as L⊕E′ for

some bundle E′ of dimension n− 1, and the desired relation will be λn(E′) = 0. To

compute λn(E′) = 0 we use the formula λt(E) = λt(L)λt(E′) in K∗(P(E))[t] , where

to simplify notation we let ‘E ’ also denote the pullback of E over P(E) . The equation

λt(E) = λt(L)λt(E
′) can be rewritten as λt(E

′) = λt(E)λt(L)
−1 where λt(L)

−1 =∑
i(−1)iLiti since λt(L) = 1 + Lt . Equating coefficients of tn in the two sides of

λt(E
′) = λt(E)λt(L)−1 , we get λn(E′) =∑i(−1)n−iλi(E)Ln−i . The relation λn(E′) = 0

can be written as
∑
i(−1)iλi(E)Ln−i = 0, with the coefficient of Ln equal to 1, as

desired. The result can be stated in the following form:

Proposition 2.25. For an n dimensional vector bundle E→X the ring K(P(E)) is

isomorphic to the quotient ring K∗(X)[L]/
(∑

i(−1)iλi(E)Ln−i
)
. tu

For example when X is a point we have P(E) = CPn−1 and λi(E) = Ck for k =
(
n
i

)
,

so the polynomial
∑
i(−1)iλi(E)Ln−i becomes (L−1)n and we see that the proposition

generalizes the isomorphism K∗(CPn−1) ≈ Z[L]/(L− 1)n) .

Appendix: Finite Cell Complexes

As we mentioned in the remarks following Proposition 2.21 it is convenient for

purposes of the splitting principal to work with spaces slightly more general than finite
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CW complexes. By a finite cell complex we mean a space which has a finite filtration

X0 ⊂ X1 ⊂ ··· ⊂ Xk = X where X0 is a finite discrete set and Xi+1 is obtained from

Xi by attaching a cell eni via a map ϕi :Sni−1→Xi . Thus Xi+1 is the quotient space

of the disjoint union of Xi and a disk Dni under the identifications x ∼ ϕi(x) for

x ∈ ∂Dni = Sni−1 .

Proposition 2.26. If p :E→B is a fiber bundle whose fiber F and base B are both

finite cell complexes, then E is also a finite cell complex, whose cells are products of

cells in B with cells in F .

Proof: Suppose B is obtained from a subcomplex B′ by attaching a cell en . By induc-

tion on the number of cells of B we may assume that p−1(B′) is a finite cell complex.

If Φ :Dn→B is a characteristic map for en then the pullback bundle Φ∗(E)→Dn is

a product since Dn is contractible. Since F is a finite cell complex, this means that

we may obtain Φ∗(E) from its restriction over Sn−1 by attaching cells. Hence we may

obtain E from p−1(B′) by attaching cells. tu

4. Further Calculations

In this section we give computations of the K–theory of some other interesting

spaces.

The Thom Isomorphism

The relative form of the Leray-Hirsch theorem for disk bundles is a useful tech-

nical result known as the Thom isomorphism:

Proposition 2.27. Let p :E→B be a fiber bundle with fibers Dn and with base B a

finite cell complex, and let E′→B be the sphere subbundle with fibers the boundary

spheres of the fibers of E . If there is a class c ∈ K∗(E, E′) which restricts to a

generator of K∗(Dn, Sn) ≈ Z in each fiber, then the map Φ :K∗(B)→K∗(E, E′) ,Φ(b) = p∗(b) · c , is an isomorphism.

The class c is called a Thom class for the bundle. As we will show below, the unit

disk bundle in every complex vector bundle has a Thom class.

Proof: Let Ê→B be the bundle with fiber Sn obtained as a quotient of E by collapsing

each fiber of the subbundle E′ to a point. The union of these points is a copy of B
in Ê forming a section of Ê . The long exact sequence for the pair (Ê, B) then splits,

giving an isomorphism K∗(Ê) ≈ K∗(Ê, B)⊕K∗(B) . Under this isomorphism the class

c ∈ K∗(E, E′) = K∗(Ê, B) corresponds to a class ĉ ∈ K∗(Ê) , which, together with the
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element 1 ∈ K∗(Ê) , allows us to define the left-hand Φ in the following commutative

diagram, where ∗ is a point.

−−→ −−−−−→∗ ⊗Φ −−→ Φ ΦBK ( ) ,∗ SK ( ) ∗ ∗⊗BK ( ) ∗K (

−−−−−−−−−−−−−−−→∗ EK ( ) ∗ BK ( )

n S )n ∗ ∗⊗BK ( ) ∗K ( )⊕

⊕
⊕̂ ∗ BEK ( ),̂

≈

≈

The Leray-Hirsch theorem implies that the left-hand Φ is an isomorphism, hence bothΦ ’s on the right-hand side of the diagram are isomorphisms as well. tu

Example 2.28. For a complex vector bundle E→X with X compact Hausdorff we will

now show how to find a Thom class U ∈ K̃(D(E), S(E)) , where D(E) and S(E) are the

unit disk and sphere bundles in E . We can also regard U as an element of K̃(T(E))
where the Thom space T(E) is the quotient D(E)/S(E) . Since X is compact, T(E) can

also be described as the one-point compactification of E . We may view T(E) as the

quotient P(E⊕1)/P(E) since in each fiber Cn of E we obtain P(Cn⊕C) = CPn from

P(Cn) = CPn−1 by attaching the 2n cell Cn×{1} , so the quotient P(Cn⊕C)/P(Cn)
is S2n , which is the part of T(E) coming from this fiber Cn . From Example 2.24 we

know that K∗(P(E⊕1)) is the free K∗(X) module with basis 1, L, ··· , Ln , where L is

the canonical line bundle over P(E⊕1) . Restricting to P(E) ⊂ P(E⊕1),K∗(P(E)) is

the free K∗(X) module with basis the restrictions of 1, L, ··· , Ln−1 to P(E) . So we

have a short exact sequence

0 -→K̃∗(T(E)) -→K∗(P(E⊕1)) ρ-----→K∗(P(E)) -→0

and Kerρ must be generated as a K∗(X) module by some polynomial of the form

Ln + an−1L
n−1 + ··· + a01 with coefficients ai ∈ K∗(X) , namely the polynomial∑

i(−1)iλi(E)Ln−i in Proposition 2.25, regarded now as an element of K(P(E⊕1)) .
The class U ∈ K̃(T(E)) mapping to

∑
i(−1)iλi(E)Ln−i is the desired Thom class

since when we restrict over a point of X the preceding considerations still apply, so

the kernel of K(CPn)→K(CPn−1) is generated by the restriction of
∑
i(−1)iλi(E)Ln−i

to a fiber.

[More applications will be added later: the Gysin Sequence, the Künneth formula,

and calculations of the K–theory of various spaces including Grassmann manifolds,

flag manifolds, the group U(n) , real projective space, and lens spaces.]



Characteristic classes are cohomology classes in H∗(B;R) associated to vector

bundles E→B by some general rule which applies to all base spaces B . The four

classical types of characteristic classes are:

1. Stiefel-Whitney classes wi(E) ∈ Hi(B;Z2) for a real vector bundle E .

2. Chern classes ci(E) ∈ H2i(B;Z) for a complex vector bundle E .

3. Pontryagin classes pi(E) ∈ H4i(B;Z) for a real vector bundle E .

4. The Euler class e(E) ∈ Hn(B;Z) when E is an oriented n dimensional real vector

bundle.

The Stiefel-Whitney and Chern classes are formally quite similar. Pontryagin classes

can be regarded as a refinement of Stiefel-Whitney classes when one takes Z rather

than Z2 coefficients, and the Euler class is a further refinement in the orientable case.

Stiefel-Whitney and Chern classes lend themselves well to axiomatization since

in most applications it is the formal properties encoded in the axioms which one uses

rather than any particular construction of these classes. The construction we give,

using the Leray-Hirsch theorem (proved in §4.D of [AT]), has the virtues of simplicity

and elegance, though perhaps at the expense of geometric intuition into what prop-

erties of vector bundles these characteristic classes are measuring. There is another

definition via obstruction theory which does provide some geometric insights, and

this will be described in the Appendix to this chapter.

1. Stiefel-Whitney and Chern Classes

Stiefel-Whitney classes are defined for real vector bundles, Chern classes for com-

plex vector bundles. The two cases are quite similar, but for concreteness we shall em-

phasize the real case, with occasional comments on the minor modifications needed

to treat the complex case.

A technical point before we begin: We shall assume without further mention that

all base spaces of vector bundles are paracompact, so that the fundamental results

of Chapter 1 apply. For the study of characteristic classes this is not an essential
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restriction since one can always pass to pullbacks over a CW approximation to a given

base space, and CW complexes are paracompact.

Axioms and Construction

Here is the main result giving axioms for Stiefel-Whitney classes:

Theorem 3.1. There is a unique sequence of functions w1,w2, ··· assigning to each

real vector bundle E→B a class wi(E) ∈ Hi(B;Z2) , depending only on the isomor-

phism type of E , such that

(a) wi(f
∗(E)) = f∗(wi(E)) for a pullback f∗(E) .

(b) w(E1⊕E2) = w(E1)`w(E2) for w = 1+w1 +w2 + ··· ∈ H∗(B;Z2) .
(c) wi(E) = 0 if i > dimE .

(d) For the canonical line bundle E→RP∞ , w1(E) is a generator of H1(RP∞;Z2) .

The sum w(E) = 1+w1(E)+w2(E)+··· is the total Stiefel-Whitney class. Note that

(c) implies that the sum 1+w1(E)+w2(E)+··· has only finitely many nonzero terms,

so this sum does indeed lie in H∗(B;Z2) , the direct sum of the groups Hi(B;Z2) . From

the formal identity

(1+w1 +w2 + ···)(1+w′1 +w′2 + ···) = 1+ (w1 +w′1)+ (w2 +w1w
′
1 +w′2)+ ···

it follows that the formula w(E1⊕E2) = w(E1) ` w(E2) is just a compact way of

writing the relations wn(E1⊕E2) =
∑
i+j=nwi(E1) ` wj(E2) , where w0 = 1. This

relation is sometimes called the Whitney sum formula.

For complex vector bundles there are analogous Chern classes:

Theorem 3.2. There is a unique sequence of functions c1, c2, ··· assigning to each

complex vector bundle E→B a class ci(E) ∈ H2i(B;Z) , depending only on the iso-

morphism type of E , such that

(a) ci(f
∗(E)) = f∗(ci(E)) for a pullback f∗(E) .

(b) c(E1⊕E2) = c(E1)` c(E2) for c = 1+ c1 + c2 + ··· ∈ H∗(B;Z) .
(c) ci(E) = 0 if i > dimE .

(d) For the canonical line bundle E→CP∞ , c1(E) is a generator of H2(CP∞;Z) spec-

ified in advance.

As in the real case, the formula in (b) for the total Chern classes can be rewritten

in the form cn(E1⊕E2) =
∑
i+j=n ci(E1)` cj(E2) , where c0 = 1.

Proof of 3.1 and 3.2: Associated to a vector bundle π :E→B with fiber Rn is the

projective bundle P(π) :P(E)→B , where P(E) is the space of all lines through the

origin in all the fibers of E , and P(π) is the natural projection sending each line in

π−1(b) to b ∈ B . We topologize P(E) as a quotient of the complement of the zero

section of E , the quotient obtained by factoring out scalar multiplication in each fiber.
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Over a neighborhood U in B where E is a product U×Rn , this quotient is U×RPn−1 ,

so P(E) is a fiber bundle over B with fiber RPn−1 .

We would like to apply the Leray-Hirsch theorem for cohomology with Z2 co-

efficients to this bundle P(E)→B . To do this we need classes xi ∈ Hi(P(E);Z2)
restricting to generators of Hi(RPn−1;Z2) in each fiber RPn−1 for i = 0, ··· , n − 1.

Recall from the proof of Theorem 1.8 that there is a map g :E→R∞ that is a linear

injection on each fiber. Projectivizing the map g by deleting zero vectors and then

factoring out scalar multiplication produces a map P(g) :P(E)→RP∞ . Let α be a gen-

erator of H1(RP∞;Z2) and let x = P(g)∗(α) ∈ H1(P(E);Z2) . Then the powers xi for

i = 0, ··· , n − 1 are the desired classes xi since a linear injection Rn→R∞ induces

an embedding RPn−1↩RP∞ for which α pulls back to a generator of H1(RPn−1;Z2) ,
hence αi pulls back to a generator of Hi(RPn−1;Z2) . Note that any two linear injec-

tions Rn→R∞ are homotopic through linear injections, so the induced embeddings

RPn−1↩RP∞ of different fibers of P(E) are all homotopic. We showed in the proof

of Theorem 1.8 that any two choices of g are homotopic through maps that are linear

injections on fibers, so the classes xi are independent of the choice of g .

The Leray-Hirsch theorem then says that H∗(P(E);Z2) is a free H∗(B;Z2) module

with basis 1, x, ··· , xn−1 . Consequently, xn can be expressed uniquely as a linear

combination of these basis elements with coefficients in H∗(B;Z2) . Thus there is a

unique relation of the form

xn +w1(E)x
n−1 + ··· +wn(E) · 1 = 0

for certain classes wi(E) ∈ Hi(B;Z2) . Here wi(E)x
i means P(π)∗(wi(E)) ` xi , by

the definition of the H∗(B;Z2) module structure on H∗(P(E);Z2) . For completeness

we define wi(E) = 0 for i > n and w0(E) = 1.

To prove property (a), consider a pullback f∗(E) = E′ , fitting

into the diagram at the right. If g :E→R∞ is a linear injection on −−→ −−→−−−−−→′
′

E E

−−−−−→′B Bf

f
∼

ππ
fibers then so is gf̃ , and it follows that P(f̃ )∗ takes the canonical

class x = x(E) for P(E) to the canonical class x(E′) for P(E′) . Then

P(f̃ )∗
(∑
i
P(π)∗

(
wi(E)

)
` x(E)n−i

)
=
∑
i
P(f̃ )∗P(π)∗

(
wi(E)

)
` P(f̃ )∗

(
x(E)n−i

)
=
∑
i
P(π ′)∗f∗

(
wi(E)

)
` x(E′)n−i

so the relation x(E)n + w1(E)x(E)
n−1 + ··· + wn(E) · 1 = 0 defining wi(E) pulls

back to the relation x(E′)n + f∗(w1(E))x(E
′)n−1 + ··· + f∗(wn(E)) · 1 = 0 defining

wi(E
′) . By the uniqueness of this relation, wi(E

′) = f∗(wi(E)) .
Proceeding to property (b), the inclusions of E1 and E2 into E1⊕E2 give in-

clusions of P(E1) and P(E2) into P(E1⊕E2) with P(E1) ∩ P(E2) = ∅ . Let U1 =
P(E1⊕E2) − P(E1) and U2 = P(E1⊕E2) − P(E2) . These are open sets in P(E1⊕E2)
that deformation retract onto P(E2) and P(E1) , respectively. A map g :E1⊕E2→R∞
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which is a linear injection on fibers restricts to such a map on E1 and E2 , so the

canonical class x ∈ H1(P(E1⊕E2);Z2) for E1⊕E2 restricts to the canonical classes

for E1 and E2 . If E1 and E2 have dimensions m and n , consider the classes ω1 =∑
j wj(E1)x

m−j and ω2 =
∑
j wj(E2)x

n−j in H∗(P(E1⊕E2);Z2) , with cup product

ω1ω2 =
∑
j
[∑

r+s=j wr (E1)ws(E2)
]
xm+n−j . By the definition of the classes wj(E1) ,

the class ω1 restricts to zero in Hm(P(E1);Z2) , hence ω1 pulls back to a class in

the relative group Hm(P(E1⊕E2), P(E1);Z2) ≈ Hm(P(E1⊕E2),U2;Z2) , and similarly

for ω2 . The following commutative diagram, with Z2 coefficients understood, then

shows that ω1ω2 = 0:

−−−−−→ −−−−−→−−−−−→UEPHn
1 E2 1( ( )),⊕ UEPHm n

1 E2 1 U 02( ( )),⊕UEPHm
1 E2 2( ( )),⊕ × =+ ∪

−−−−−−−−−−−−−−−→EPHn
1 E2( ( ))⊕ EPHm n

1 E2( ( ))⊕EPHm
1 E2( ( ))⊕ × +

Thus ω1ω2 =
∑
j
[∑

r+s=j wr (E1)ws(E2)
]
xm+n−j = 0 is the defining relation for the

Stiefel-Whitney classes of E1⊕E2 , and so wj(E1⊕E2) =
∑
r+s=j wr (E1)ws(E2) .

Property (c) holds by definition. For (d), recall that the canonical line bundle is

E = { (`, v) ∈ RP∞×R∞ | v ∈ ` } . The map P(π) in this case is the identity. The

map g :E→R∞ which is a linear injection on fibers can be taken to be g(`,v) = v .

So P(g) is also the identity, hence x(E) is a generator of H1(RP∞;Z2) . The defining

relation x(E)+w1(E) · 1 = 0 then says that w1(E) is a generator of H1(RP∞;Z2) .
The proof of uniqueness of the classes wi will use a general property of vector

bundles called the splitting principle:

Proposition 3.3. For each vector bundle π :E→B there is a space F(E) and a map

p :F(E)→B such that the pullback p∗(E)→F(E) splits as a direct sum of line bun-

dles, and p∗ :H∗(B;Z2)→H∗(F(E);Z2) is injective.

Proof: Consider the pullback P(π)∗(E) of E via the map P(π) :P(E)→B . This pull-

back contains a natural one-dimensional subbundle L = { (`, v) ∈ P(E)×E | v ∈ ` } .

An inner product on E pulls back to an inner product on the pullback bundle, so we

have a splitting of the pullback as a sum L⊕L⊥ with the orthogonal bundle L⊥ hav-

ing dimension one less than E . As we have seen, the Leray-Hirsch theorem applies

to P(E)→B , so H∗(P(E);Z2) is the free H∗(B;Z2) module with basis 1, x, ··· , xn−1

and in particular the induced map H∗(B;Z2)→H∗(P(E);Z2) is injective since one of

the basis elements is 1.

This construction can be repeated with L⊥→P(E) in place of E→B . After finitely

many repetitions we obtain the desired result. tu

Looking at this construction a little more closely, L⊥ consists of pairs (`, v) ∈
P(E)×E with v ⊥ ` . At the next stage we form P(L⊥) , whose points are pairs (`, `′)
where ` and `′ are orthogonal lines in E . Continuing in this way, we see that the
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final base space F(E) is the space of all orthogonal splittings `1 ⊕ ··· ⊕ `n of fibers

of E as sums of lines, and the vector bundle over F(E) consists of all n tuples of

vectors in these lines. Alternatively, F(E) can be described as the space of all chains

V1 ⊂ ··· ⊂ Vn of linear subspaces of fibers of E with dimVi = i . Such chains are

called flags, and F(E)→B is the flag bundle associated to E . Note that the description

of points of F(E) as flags does not depend on a choice of inner product in E .

Now we can finish the proof of Theorem 3.1. Property (d) determines w1(E)
for the canonical line bundle E→RP∞ . Property (c) then determines all the wi ’s for

this bundle. Since the canonical line bundle is the universal line bundle, property (a)

therefore determines the classes wi for all line bundles. Property (b) extends this

to sums of line bundles, and finally the splitting principal implies that the wi ’s are

determined for all bundles.

For complex vector bundles we can use the same proof, but with Z coefficients

since H∗(CP∞;Z) ≈ Z[α] , with α now two-dimensional. The defining relation for the

ci(E) ’s is modified to be

xn − c1(E)x
n−1 + ··· + (−1)ncn(E) · 1 = 0

with alternating signs. This is equivalent to changing the sign of α , so it does not

affect the proofs of properties (a)–(c), but it has the advantage that the canonical line

bundle E→CP∞ has c1(E) = α rather than −α , since the defining relation in this

case is x(E)− c1(E) · 1 = 0 and x(E) = α . tu

Note that in property (d) for Stiefel-Whitney classes we could just as well use the

canonical line bundle over RP1 instead of RP∞ since the inclusion RP1↩RP∞ induces

an isomorphism H1(RP∞;Z2) ≈ H1(RP1;Z2) . The analogous remark for Chern classes

is valid as well.

Example 3.4. Property (a), the naturality of Stiefel-Whitney classes, implies that a

product bundle E = B×Rn has wi(E) = 0 for i > 0 since a product is the pullback

of a bundle over a point, which must have wi = 0 for i > 0 since a point has trivial

cohomology in positive dimensions.

Example 3.5: Stability. Property (b) implies that taking the direct sum of a bundle

with a product bundle does not change its Stiefel-Whitney classes. In this sense Stiefel-

Whitney classes are stable. For example, the tangent bundle TSn to Sn is stably

trivial since its direct sum with the normal bundle to Sn in Rn+1 , which is a trivial

line bundle, produces a trivial bundle. Hence the Stiefel-Whitney classes wi(TS
n) are

zero for i > 0.

From the identity

(1+w1 +w2 + ···)(1+w′1 +w′2 + ···) = 1+ (w1 +w′1)+ (w2 +w1w
′
1 +w′2)+ ···
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we see that w(E1) and w(E1⊕E2) determine w(E2) since the equations

w1 +w′1 = a1

w2 +w1w
′
1 +w′2 = a2

···∑
iwn−iw

′
i = an

can be solved successively for the w′i ’s in terms of the wi ’s and ai ’s. In particular, if

E1⊕E2 is the trivial bundle, then we have the case that ai = 0 for i > 0 and so w(E1)
determines w(E2) uniquely by explicit formulas that can be worked out. For example,

w′1 = −w1 and w′2 = −w1w
′
1−w2 = w2

1 −w2 . Of course for Z2 coefficients the signs

do not matter, but the same reasoning applies to Chern classes, with Z coefficients.

Example 3.6. Let us illustrate this principle by showing that there is no bundle

E→RP∞ whose sum with the canonical line bundle E1(R
∞) is trivial. For we have

w(E1(R
∞)) = 1 +ω where ω is a generator of H1(RP∞;Z2) , and hence w(E) must

be (1+ω)−1 = 1+ω+ω2+··· since we are using Z2 coefficients. Thus wi(E) =ωi ,

which is nonzero in H∗(RP∞;Z2) for all i . However, this contradicts the fact that

wi(E) = 0 for i > dimE .

This shows the necessity of the compactness assumption in Proposition 1.9. To

further delineate the question, note that Proposition 1.9 says that the restriction

E1(R
n+1) of the canonical line bundle to the subspace RPn ⊂ RP∞ does have an

‘inverse’ bundle. In fact, the bundle E⊥1 (R
n+1) consisting of pairs (`, v) where `

is a line through the origin in Rn+1 and v is a vector orthogonal to ` is such an

inverse. But for any bundle E→RPn whose sum with E1(R
n+1) is trivial we must

have w(E) = 1 + ω + ··· + ωn , and since wn(E) = ωn ≠ 0, E must be at least

n dimensional. So we see there is no chance of choosing such bundles E for varying

n so that they fit together to form a single bundle over RP∞ .

Example 3.7. Let us describe an n dimensional vector bundle E→B with wi(E)
nonzero for each i ≤ n . This will be the n fold Cartesian product (E1)

n→(G1)
n of

the canonical line bundle over G1 = RP∞ with itself. This vector bundle is the direct

sum π∗1 (E1)⊕ ··· ⊕π∗n (E1) where πi : (G1)
n→G1 is projection onto the ith factor, so

w((E1)
n) = ∏i(1+ αi) ∈ Z2[α1, ··· , αn] ≈ H∗((RP∞)n;Z2) . Hence wi((E1)

n) is the

ith elementary symmetric polynomial σi in the αj ’s, the sum of all the products of i
different αj ’s. For example, if n = 3 then σ1 = α1+α2+α3 , σ2 = α1α2+α1α3+α2α3 ,

and σ3 = α1α2α3 . Since each σi with i ≤ n is nonzero in Z2[α1, ··· , αn] , we have

an n dimensional bundle whose first n Stiefel-Whitney classes are all nonzero.

The same reasoning applies in the complex case to show that the n fold Cartesian

product of the canonical line bundle over CP∞ has its first n Chern classes nonzero.

In this example we see that the wi ’s and ci ’s can be identified with elementary

symmetric functions, and in fact this can be done in general using the splitting princi-

ple. Given an n dimensional vector bundle E→B we know that the pullback to F(E)
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splits as a sum L1⊕ ··· ⊕Ln→F(E) . Letting αi = w1(Li) , we see that w(E) pulls

back to w(L1⊕ ··· ⊕Ln) = (1+α1) ··· (1+αn) = 1+ σ1 + ··· + σn , so wi(E) pulls

back to σi . Thus we have embedded H∗(B;Z2) in a larger ring H∗(F(E);Z2) such that

wi(E) becomes the ith elementary symmetric polynomial in the elements α1, ··· , αn
of H∗(F(E);Z2) .

Besides the evident formal similarity between Stiefel-Whitney and Chern classes

there is also a direct relation:

Proposition 3.8. Regarding an n dimensional complex vector bundle E→B as a

2n dimensional real vector bundle, then w2i+1(E) = 0 and w2i(E) is the image of

ci(E) under the coefficient homomorphism H2i(B;Z)→H2i(B;Z2) .

For example, since the canonical complex line bundle over CP∞ has c1 a generator

of H2(CP∞;Z) , the same is true for its restriction over S2 = CP1 , so by the proposition

this 2 dimensional real vector bundle E→S2 has w2(E) ≠ 0.

Proof: The bundle E has two projectivizations RP(E) and CP(E) , consisting of all the

real and all the complex lines in fibers of E , respectively. There is a natural projection

p :RP(E)→CP(E) sending each real line to the complex line containing it, since a real

line is all the real scalar multiples of any nonzero vector in it and a complex line is all

the complex scalar multiples. This projection p fits into a commutative diagram
−−−−−→ −−−−−→ −−−−−→−−−−−−−−−−→−−−−−−−−−→ EPP2 ( )R R

g

p

P ( )R PR-n 1 ∞

−−−−−−−−−−→−−−−−−−−−→ EPP ( )C C
gP ( )C PC-n 1 ∞

where the left column is the restriction of p to a fiber of E and the maps RP(g)
and CP(g) are obtained by projectivizing, over R and C , a map g :E→C∞ which

is a C linear injection on fibers. It is easy to see that all three vertical maps in

this diagram are fiber bundles with fiber RP1 , the real lines in a complex line. The

Leray-Hirsch theorem applies to the bundle RP∞→CP∞ , with Z2 coefficients, so if

β is the standard generator of H2(CP∞;Z) , the Z2 reduction β ∈ H2(CP∞;Z2) pulls

back to a generator of H2(RP∞;Z2) , namely the square α2 of the generator α ∈
H1(RP∞;Z2) . Hence the Z2 reduction xC(E) = CP(g)∗(β) ∈ H2(CP(E);Z2) of the

basic class xC(E) = CP(g)∗(β) pulls back to the square of the basic class xR(E) =
RP(g)∗(α) ∈ H1(RP(E);Z2) . Consequently the Z2 reduction of the defining relation

for the Chern classes of E , which is xC(E)
n + c1(E)xC(E)

n−1 + ··· + cn(E) · 1 = 0,

pulls back to the relation xR(E)
2n+c1(E)xR(E)

2n−2+···+cn(E) ·1 = 0, which is the

defining relation for the Stiefel-Whitney classes of E . This means that w2i+1(E) = 0

and w2i(E) = ci(E) . tu
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Cohomology of Grassmannians

From Example 3.7 and naturality it follows that the universal bundle En→Gn
must also have all its Stiefel-Whitney classes w1(En), ··· ,wn(En) nonzero. In fact a

much stronger statement is true. Let f : (RP∞)n→Gn be the classifying map for the

n fold Cartesion product (E1)
n of the canonical line bundle E1 , and for notational

simplicity let wi = wi(En) . Then the composition

Z2[w1, ··· ,wn] -→H∗(Gn;Z2)
f∗-----→H∗

(
(RP∞)n;Z2

) ≈ Z2[α1, ··· , αn]
sends wi to σi , the ith elementric symmetric polynomial. It is a classical algebraic re-

sult that the polynomials σi are algebraically independent in Z2[α1, ··· , αn] . Proofs

of this can be found in [van der Waerden, §26] or [Lang, p. 134] for example. Thus

the composition Z2[w1, ··· ,wn]→Z2[α1, ··· , αn] is injective, hence also the map

Z2[w1, ··· ,wn]→H∗(Gn;Z2) . In other words, the classes wi(En) generate a poly-

nomial subalgebra Z2[w1, ··· ,wn] ⊂ H∗(Gn;Z2) . This subalgebra is in fact equal to

H∗(Gn;Z2) , and the corresponding statement for Chern classes holds as well:

Theorem 3.9. H∗(Gn;Z2) is the polynomial ring Z2[w1, ··· ,wn] on the Stiefel-

Whitney classes wi = wi(En) of the universal bundle En→Gn . Similarly, in the

complex case H∗(Gn(C
∞);Z) ≈ Z[c1, ··· , cn] where ci = ci(En(C∞)) for the univer-

sal bundle En(C
∞)→Gn(C

∞) .

The proof we give here for this basic result will be a fairly quick application of the

CW structure on Gn constructed at the end of §1.2. A different proof will be given

in §3.3 where we also compute the cohomology of Gn with Z coefficients, which is

somewhat more subtle.

Proof: Consider a map f : (RP∞)n→Gn which pulls En back to the bundle (E1)
n

considered above. We have noted that the image of f∗ contains the symmetric poly-

nomials in Z2[α1, ··· , αn] ≈ H∗((RP∞)n;Z2) . The opposite inclusion holds as well,

since if π : (RP∞)n→(RP∞)n is an arbitrary permutation of the factors, then π pulls

(E1)
n back to itself, so fπ ' f , which means that f∗ = π∗f∗ , so the image of f∗ is

invariant under π∗ :H∗((RP∞)n;Z2)→H∗((RP∞)n;Z2) , but the latter map is just the

same permutation of the variables αi .
To finish the proof in the real case it remains to see that f∗ is injective. It suffices

to find a CW structure on Gn in which the r cells are in one-to-one correspondence

with monomials wr1
1 ···wrn

n of dimension r = r1+2r2+···+nrn , since the number

of r cells in a CW complex X is an upper bound on the dimension of Hr(X;Z2) as a

Z2 vector space, and a surjective linear map between finite-dimensional vector spaces

is injective if the dimension of the domain is not greater than the dimension of the

range.

Monomials wr1
1 ···wrn

n of dimension r correspond to n tuples (r1, ··· , rn) with

r = r1 + 2r2 + ··· +nrn . Such n tuples in turn correspond to partitions of r into at
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most n integers, via the correspondence

(r1, ··· , rn) ←→ rn ≤ rn + rn−1 ≤ ··· ≤ rn + rn−1 + ··· + r1.

Such a partition becomes the sequence σ1−1 ≤ σ2−2 ≤ ··· ≤ σn−n , corresponding

to the strictly increasing sequence 0 < σ1 < σ2 < ··· < σn . For example, when n = 3

we have:

(r1, r2, r3) (σ1 − 1, σ2 − 2, σ3 − 3) (σ1, σ2, σ3) dimension

1 0 0 0 0 0 0 1 2 3 0
w1 1 0 0 0 0 1 1 2 4 1
w2 0 1 0 0 1 1 1 3 4 2
w2

1 2 0 0 0 0 2 1 2 5 2
w3 0 0 1 1 1 1 2 3 4 3
w1w2 1 1 0 0 1 2 1 3 5 3
w3

1 3 0 0 0 0 3 1 2 6 3

The cell structure on Gn constructed in §1.2 has one cell of dimension (σ1 − 1) +
(σ2 − 2) + ··· + (σn − n) for each increasing sequence 0 < σ1 < σ2 < ··· < σn . So

we are done in the real case.

The complex case is entirely similar, keeping in mind that ci has dimension 2i
rather than i . The CW structure on Gn(C

∞) described in §1.2 also has these extra fac-

tors of 2 in the dimensions of its cells. In particular, the cells are all even-dimensional,

so the cellular boundary maps for Gn(C
∞) are all trivial and the cohomology with Z

coefficients consists of a Z summand for each cell. Injectivity of f∗ then follows

from the algebraic fact that a surjective homomorphism between free abelian groups

of finite rank is injective if the rank of the domain is not greater than the rank of the

range. tu

One might guess that the monomial wr1
1 ···wrn

n corresponding to a given cell of

Gn in the way described above was the cohomology class dual to this cell, represented

by the cellular cochain assigning the value 1 to the cell and 0 to all the other cells.

This is true for the classes wi themselves, but unfortunately it is not true in general.

For example the monomial wi
1 corresponds to the cell whose associated partition is

the trivial partition i = i , but the cohomology class dual to this cell is w′i where

1+w′1+w′2+··· is the multiplicative inverse of 1+w1+w2+··· . If one replaces the

basis of monomials by the more geometric basis of cohomology classes dual to cells,

the formulas for multiplying these dual classes become rather complicated. In the

parallel situation of Chern classes this question has very classical roots in algebraic

geometry, and the rules for multiplying cohomology classes dual to cells are part of

the so-called Schubert calculus. Accessible expositions of this subject from a modern

viewpoint can be found in [Fulton] and [Hiller].
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Applications of w1 and c1

We saw in §1.1 that the set Vect1(X) of isomorphism classes of line bundles

over X forms a group with respect to tensor product. We know also that Vect1(X) =
[X,G1(R

∞)] , and G1(R
∞) is just RP∞ , an Eilenberg-MacLane space K(Z2,1) . It is a

basic fact in algebraic topology that [X,K(G,n)] ≈ Hn(X;G) when X has the homo-

topy type of a CW complex; see Theorem 4.56 of [AT], for example. Thus one might

ask whether the groups Vect1(X) and H1(X;Z2) are isomorphic. For complex line

bundles we have G1(C
∞) = CP∞ , and this is a K(Z,2) , so the corresponding question

is whether Vect1
C(X) is isomorphic to H2(X;Z) .

Proposition 3.10. The function w1 : Vect1(X)→H1(X;Z2) is a homomorphism, and

is an isomorphism if X has the homotopy type of a CW complex. The same is also

true for c1 : Vect1
C(X)→H2(X;Z) .

Proof: The argument is the same in both the real and complex cases, so for def-

initeness let us describe the complex case. To show that c1 : Vect1
C(X)→H2(X) is

a homomorphism, we first prove that c1(L1⊗L2) = c1(L1) + c1(L2) for the bundle

L1⊗L2→G1×G1 where L1 and L2 are the pullbacks of the canonical line bundle

L→G1 = CP∞ under the projections p1, p2 :G1×G1→G1 onto the two factors. Since

c1(L) is the generator α of H2(CP∞) , we know that H∗(G1×G1) ≈ Z[α1, α2] where

αi = p∗i (α) = c1(Li) . The inclusion G1∨G1 ⊂ G1×G1 induces an isomorphism on H2 ,

so to compute c1(L1⊗L2) it suffices to restrict to G1∨G1 . Over the first G1 the bundle

L2 is the trivial line bundle, so the restriction of L1⊗L2 over this G1 is L1⊗1 ≈ L1 .

Similarly, L1⊗L2 restricts to L2 over the second G1 . So c1(L1⊗L2) restricted to

G1∨G1 is α1+α2 restricted to G1∨G1 . Hence c1(L1⊗L2) = α1+α2 = c1(L1)+c1(L2) .
The general case of the formula c1(E1⊗E2) = c1(E1)+ c1(E2) for line bundles E1

and E2 now follows by naturality: We have E1 ≈ f∗1 (L) and E2 ≈ f∗2 (L) for maps

f1, f2 :X→G1 . For the map F = (f1, f2) :X→G1×G1 we have F∗(Li) = f∗i (L) ≈ Ei ,
so

c1(E1⊗E2) = c1(F
∗(L1)⊗F∗(L2)) = c1(F

∗(L1⊗L2)) = F∗(c1(L1⊗L2))

= F∗(c1(L1)+ c1(L2)) = F∗(c1(L1))+ F∗(c1(L2))

= c1(F
∗(L1))+ c1(F

∗(L2)) = c1(E1)+ c1(E2).

As noted above, if X is a CW complex, there is a bijection [X,CP∞] ≈ H2(X;Z) ,
and the more precise statement is that this bijection is given by the map [f ],f∗(u)
for some class u ∈ H2(CP∞;Z) . The class u must be a generator, otherwise the map

would not always be surjective. Which of the two generators we choose for u is

not important, so we may take it to be the class α . The map [f ], f∗(α) factors

as the composition [X,CP∞]→Vect1
C(X)→H2(X;Z) , [f ], f∗(L), c1(f

∗(L)) =
f∗(c1(L)) = f∗(α) . The first map in this composition is a bijection, so since the

composition is a bijection, the second map c1 must be a bijection also. tu
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The first Stiefel-Whitney class w1 is closely related to orientability:

Proposition 3.11. A vector bundle E→X is orientable iff w1(E) = 0 , assuming that

X is homotopy equivalent to a CW complex.

Thus w1 can be viewed as the obstruction to orientability of vector bundles. An

interpretation of the other classes wi as obstructions will be given in the Appendix

to this chapter.

Proof: Without loss we may assume X is a CW complex. By restricting to path-

components we may further assume X is connected. There are natural isomorphisms

(∗) H1(X;Z2)
≈------------→Hom(H1(X),Z2)

≈------------→Hom(π1(X),Z2)

from the universal coefficient theorem and the fact that H1(X) is the abelianization of

π1(X) . When X = Gn we have π1(Gn) ≈ Z2 , and w1(En) ∈ H1(Gn;Z2) corresponds

via (∗) to this isomorphism π1(Gn) ≈ Z2 since w1(En) is the unique nontrivial el-

ement of H1(Gn;Z2) . By naturality of (∗) it follows that for any map f :X→Gn ,

f∗(w1(En)) corresponds under (∗) to the homomorphism f∗ :π1(X)→π1(Gn) ≈
Z2 . Thus if we choose f so that f∗(En) is a given vector bundle E , we have w1(E)
corresponding under (∗) to the induced map f∗ :π1(X)→π1(Gn) ≈ Z2 . Hence

w1(E) = 0 iff this f∗ is trivial, which is exactly the condition for lifting f to the

universal cover G̃n , i.e., orientability of E . tu

2. The Chern Character
In this section we apply the most basic facts about Chern classes to obtain a direct

connection between K–theory and ordinary cohomology. This is then used to study

the J–homomorphism, which maps the homotopy groups of orthogonal and unitary

groups to the homotopy groups of spheres.

The total Chern class c = 1 + c1 + c2 + ··· takes direct sums to cup products,

and the idea of the Chern character is to form an algebraic combination of Chern

classes which takes direct sums to sums and tensor products to cup products, thus

giving a natural ring homomorphism from K–theory to cohomology. In order to make

this work one must use cohomology with rational coefficients, however. The situation

might have been simpler if it had been possible to use integer coefficients instead, but

on the other hand, the fact that one has rational coefficients instead of integers make

it possible to define a homomorphism e :π2m−1(S
2n)→Q/Z which gives some very

interesting information about the difficult subject of homotopy groups of spheres.

In order to define the Chern character it suffices, via the splitting principle, to do

the case of line bundles. The idea is to define the Chern character ch(L) for a line



74 Chapter 3 Characteristic Classes

bundle L→X to be ch(L) = ec1(L) = 1+ c1(L)+ c1(L)
2/2!+ ··· ∈ H∗(X;Q) , so that

ch(L1⊗L2) = ec1(L1⊗L2) = ec1(L1)+c1(L2) = ec1(L1)ec1(L2) = ch(L1)ch(L2) . If the sum

1+c1(L)+c1(L)
2/2!+··· has infinitely many nonzero terms, it will lie not in the direct

sum H∗(X;Q) of the groups Hn(X;Q) but rather in the direct product. However, in

the examples we shall be considering, Hn(X;Q) will be zero for sufficiently large n ,

so this distinction will not matter.

For a direct sum of line bundles E ≈ L1⊕ ··· ⊕Ln we would then want to have

ch(E) =
∑
i
ch(Li) =

∑
i
eti = n+ (t1 + ··· + tn)+ ··· + (tk1 + ··· + tkn)/k!+ ···

where ti = c1(Li) . The total Chern class c(E) is then (1+ t1) ··· (1+ tn) = 1+ σ1 +
···+σn , where σj = cj(E) is the jth elementary symmetric polynomial in the ti ’s, the

sum of all products of j distinct ti ’s. As we saw in §2.3, the Newton polynomials sk
satisfy tk1 +···+ tkn = sk(σ1, ··· , σk) . Since σj = cj(E) , this means that the preceding

displayed formula can be rewritten

ch(E) = dimE +
∑
k>0

sk(c1(E), ··· , ck(E))/k!

The right side of this equation is defined for arbitrary vector bundles E , so we take

this as our general definition of ch(E) .

Proposition 3.12. ch(E1⊕E2) = ch(E1)+ch(E2) and ch(E1⊗E2) = ch(E1)ch(E2) .

Proof: The proof of the splitting principle for ordinary cohomology in Proposition

2.3 works with any coefficients in the case of complex vector bundles, in particular

for Q coefficients. By this splitting principle we can pull E1 back to a sum of line

bundles over a space F(E1) . By another application of the splitting principle to the

pullback of E2 over F(E1) , we have a map F(E1, E2)→X pulling both E1 and E2 back

to sums of line bundles, with the induced map H∗(X;Q)→H∗(F(E1, E2);Q) injec-

tive. So to prove the proposition it suffices to verify the two formulas when E1 and E2

are sums of line bundles, say Ei = ⊕jLij for i = 1,2. The sum formula holds since

ch(E1⊕E2) = ch(⊕ i,jLij) =
∑
i,j e

c1(Lij) = ch(E1)+ch(E2) , by the discussion preced-

ing the definition of ch . For the product formula, ch(E1⊗E2) = ch
(⊕j,k(L1j⊗L2k)

) =∑
j,k ch(L1j⊗L2k) =

∑
j,k ch(L1j)ch(L2k) = ch(E1)ch(E2) . tu

In view of this proposition, the Chern character automatically extends to a ring

homomorphism ch :K(X)→H∗(X;Q) . By naturality there is also a reduced form

ch : K̃(X)→H̃∗(X;Q) since these reduced rings are the kernels of restriction to a

point.

As a first calculation of the Chern character, we have:

Proposition 3.13. ch : K̃(S2n)→H2n(S2n;Q) is injective with image equal to the

subgroup H2n(S2n;Z) ⊂ H2n(S2n;Q) .
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Proof: Since ch(x ⊗ (H − 1)) = ch(x) ` ch(H − 1) we have the commutative dia-

gram shown at the right, where the upper map is external −−−−−→ −−−−−→
−−→

XK( )

XH ( );

˜
˜ ≈

≈

Q∗
ch

−−−−−→S XK 2

S X2

( )

H ( );

˜
˜ Q∗

ch
tensor product with H − 1, which is an isomorphism by

Bott periodicity, and the lower map is cross product with

ch(H − 1) = ch(H) − ch(1) = 1 + c1(H) − 1 = c1(H) , a

generator of H2(S2;Z) . From Theorem 3.16 of [AT] the lower map is an isomorphism

and restricts to an isomorphism of the Z coefficient subgroups. Taking X = S2n , the

result now follows by induction on n , starting with the trivial case n = 0. tu

An interesting by-product of this is:

Corollary 3.14. A class in H2n(S2n;Z) occurs as a Chern class cn(E) iff it is divisible

by (n− 1)! .

Proof: For vector bundles E→S2n we have c1(E) = ··· = cn−1(E) = 0, so ch(E) =
dimE+sn(c1, ··· , cn)/n! = dimE±ncn(E)/n! by the recursion relation for sn derived

in §2.3, namely, sn = σ1sn−1 − σ2sn−2 + ··· + (−1)n−2σn−1s1 + (−1)n−1nσn . tu

Even when H∗(X;Z) is torsionfree, so that H∗(X;Z) is a subring of H∗(X;Q) ,
it is not always true that the image of ch is contained in H∗(X;Z) . For example, if

L ∈ K(CPn) is the canonical line bundle, then ch(L) = 1+c+c2/2+···+cn/n! where

c = c1(L) generates H2(CPn;Z) , hence ck generates H2k(CPn;Z) for k ≤ n .

The Chern character can be used to show that for finite cell complexes X , the

only possible differences between the groups K∗(X) and H∗(X;Z) lie in their torsion

subgroups. Since these are finitely generated abelian groups, this will follow if we can

show that K∗(X)⊗Q and H∗(X;Q) are isomorphic.

Proposition 3.15. The map K∗(X)⊗Q→H∗(X;Q) induced by the Chern character

is an isomorphism for all finite cell complexes X .

Proof: We proceed by induction on the number of cells of X . The result is triv-

ially true when there is a single cell, a 0 cell, and it is also true when there are

two cells, so that X is a sphere, by the preceding proposition. For the induction

step, let X be obtained from a subcomplex A by attaching a cell. Consider the five-

term sequence X/A→SA→SX→SX/SA→S2A . Applying the rationalized Chern

character K∗(−)⊗Q→H∗(−;Q) then gives a commutative diagram of five-term ex-

act sequences since tensoring with Q preserves exactness. The space X/A is a

sphere, and SX/SA is homotopy equivalent to a sphere. Both SA and S2A are ho-

motopy equivalent to cell complexes with the same number of cells as A , by collaps-

ing the suspension or double suspension of a 0 cell. Thus by induction four of the

five maps between the two exact sequences are isomorphisms, all except the map

K∗(SX)⊗Q→H∗(SX;Q) , so by the five-lemma this map is an isomorphism as well.
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Finally, to obtain the result for X itself we may replace X by S2X since the Chern char-

acter commutes with double suspension, as we have seen, and a double suspension

is in particular a single suspension, with the same number of cells, up to homotopy

equivalence. tu

The J–Homomorphism

Homotopy groups of spheres are notoriously difficult to compute, but some par-

tial information can be gleaned from certain naturally defined homomorphisms

J :πi(O(n))→πn+i(S
n)

One of the goals of this book is to determine these J homomorphisms in the stable

dimension range n >> i where both domain and range are independent of n , accord-

ing to Proposition 1.14 for O(n) and the Freudenthal suspension theorem [AT] for

Sn . The real form of Bott periodicity proved in Chapter 4 implies that the domain of

the stable J homomorphism πi(O)→πsi is nonzero only for i = 4n−1 when πi(O)
is Z and for i = 8n and 8n + 1 when πi(O) is Z2 . In the latter two cases we will

show in Chapter 4 that J is injective. When i = 4n−1 the image of J is a finite cyclic

group of some order an since πsi is a finite group for i > 0 by a theorem of Serre

proved in [SSAT].

The values of an have been computed in terms of Bernouilli numbers. Here is a

table for small values of n :

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−
−−−−−−

24 240 264 65520 24 1320016320 28728480504 552

1 2 3 4 5 6 7 8 9 10 11n

an

In spite of appearances, there is great regularity in this sequence, but this becomes

clear only when one looks at the prime factorization of an . Here are the rules for

computing an :

1. The highest power of 2 dividing an is 2`+3 where 2` is the highest power of 2

dividing n .

2. An odd prime p divides an iff n is a multiple of (p − 1)/2, and in this case

the highest power of p dividing an is p`+1 where p` is the highest power of p
dividing n .

The first three cases p = 2,3,5 are shown in the following diagram, where a vertical

chain of k connected dots above the number 4n−1 means that the highest power of

p dividing an is pk .
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−−−−−
3  7  11  15  19  23  27  31  35  39  43  47  51  55  59  63  67  71  75  79  83  87  91  95  9991 107103

3  7  11  15  19  23  27  31  35  39  43  47  51  55  59  63  67  71  75  79  83  87  91  95  9991 107103

p 2 :=−−−−−

p 3 :=

−−−−−p 5 :=

39 79 119 159 199 239 279 319 359 399 439 479 519 559 599 639 679 719 759 799 839 879 919 959 999

In the present section we will use the Chern character to show that an/2 is a lower

bound on the order of the image of J in dimension 4n− 1. Improving this bound to

an will be done in Chapter 4 using real K–theory. In Chapter ?? we will show that an
is also an upper bound for the order.

The simplest definition of the J homomorphism goes as follows. An element

[f ] ∈ πi(O(n)) is represented by a family of isometries fx ∈ O(n) , x ∈ Si , with fx
the identity when x is the basepoint of Si . Writing Sn+i as ∂(Di+1×Dn) = Si×Dn ∪
Di+1×Sn−1 and Sn as Dn/∂Dn , let Jf(x,y) = fx(y) for (x,y) ∈ Si×Dn and let

Jf(Di+1×Sn−1) = ∂Dn , the basepoint of Dn/∂Dn . Clearly f ' g implies Jf ' Jg ,

so we have a map J :πi(O(n))→πn+i(S
n) . We will tacitly exclude the trivial case

i = 0.

Proposition 3.16. J is a homomorphism.

Proof: We can view Jf as a map In+i→Sn = Dn/∂Dn which on Si×Dn ⊂ In+1 is

given by (x,v),fx(v) and which sends the complement of Si×Dn to the basepoint

∂Dn . Taking a similar view of Jg , the sum Jf + Jg is obtained by juxtaposing these

two maps on either side of a hyperplane. We may assume fx is the identity for x in

the right half of Si and gx is the identity for x in the left half of Si . Then we obtain

a homotopy from Jf + Jg to J(f + g) by moving the two Si×Dn ’s together until

they coincide, as shown in the figure below. tu

−−→ −−→
We know that πi(O(n)) and πn+i(S

n) are independent of n for n > i + 1, so

we would expect the J–homomorphism defined above

to induce a stable J–homomorphism J :πi(O)→πsi , via

−−−−−→ −−−−→
−−→

O n( ))

S S( )

J

−−−−−→

n

J
πi

π

( O( ))πi (n 1+
γ

n i+
n 1+S( )πn i 1+ +

commutativity of the diagram at the right. We leave it as

an exercise for the reader to verify that this is the case.
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Composing the stable J–homomorphism with the map πi(U)→πi(O) induced by

the natural inclusions U(n) ⊂ O(2n) which give an inclusion U ⊂ O , we get the stable

complex J–homomorphism JC :πi(U)→πsi . Our goal is to define via K–theory a homo-

morphism e :πsi→Q/Z for i odd and compute the composition eJC :πi(U)→Q/Z .

This will give a lower bound for the order of the image of the real J–homomorphism

πi(O)→πsi when i = 4n− 1.

Now let us define the main object we will be studying in this section, the homo-

morphism e :π2m−1(S
2n)→Q/Z . For a map f :S2m−1→S2n we have the mapping

cone Cf obtained by attaching a cell e2m to S2n by f . The quotient Cf/S
2n is S2m

so we have a commutative diagram of short exact sequences

−−−−−→ −−−−−→ −−−−−→−−−−−→ −−−−−→
−−→ −−→−−→ −−→

CK( )

CH 00 ( );

˜
˜ Q∗

ch
f

2n

2n
f

−−−−−→SK 00

S

( )

H ( );

˜
˜ Q∗

ch

2m

2m

−−−−−→SK
S

( )

H ( );

˜
˜ Q∗

ch

There are elements α,β ∈ K̃(Cf ) mapping from and to the standard generators

(H − 1)∗ ··· ∗ (H − 1) of K̃(S2m) and K̃(S2n) , respectively. In a similar way there

are elements a,b ∈ H̃∗(Cf ;Q) mapping from and to generators of H2m(S2m;Z) and

H2n(S2n;Z) . After perhaps replacing a and b by their negatives we may assume that

ch(α) = a and ch(β) = b + ra for some r ∈ Q , using Proposition 3.13. The ele-

ments β and b are not uniquely determined but can be varied by adding any integer

multiples of α and a . The effect of such a variation on the formula ch(β) = b + ra
is to change r by an integer, so r is well-defined in the additive group Q/Z , and we

define e(f) to be this element r ∈ Q/Z . Since f ' g implies Cf ' Cg , we have a

well-defined map e :π2n−1(S
2m)→Q/Z .

Proposition 3.17. e is a homomorphism.

Proof: Let Cf,g be obtained from S2n by attaching two 2m cells by f and g , so

Cf,g contains both Cf and Cg . There is a quotient map q :Cf+g→Cf,g collapsing

a sphere S2m−1 that separates the 2m cell of Cf,g into a pair of 2m cells. In the

upper row of the commutative diagram at the right we −−−−−→ −−−−−→
−−→

CK( )

CH ( );

˜
˜ Q∗

∗

ch

q

∗q

f, f gg

f,

−−−−−→CK
C

( )

H ( );

˜
˜ Q∗

ch
+

f gg +

have generators αf and αg mapping to αf+g and βf,g
mapping to βf+g , and similarly in the second row with

generators af , ag , af+g , bf,g , and bf+g . By restriction

to the subspaces Cf and Cg of Cf,g we obtain ch(βf,g) = bf,g + rfaf + rgbg , so

ch(βf+g) = bf+g + (rf + rg)af+g . tu

There is a commutative diagram involving the double suspension:

−−→S S

ee

( )mπ +S( )π2
2

2
m2 2

Q

-n 1 2n 1+

/

−−−−−→ −−−−−→Z
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Commutativity follows from the fact that CS2f = S2Cf and ch commutes with the

double suspension, as we saw in the proof of Proposition 3.9. From the commutativity

of the diagram there is induced a stable e invariant e :πs2k−1→Q/Z for each k .

Theorem 3.18. If the map f :S2k−1→U(n) represents a generator of π2k−1(U) ,
then e(JCf) = ±βk/k where βk is defined via the power series

x/(ex − 1) =
∑
i
βix

i/i!

Hence the image of J in πs2k−1 has order divisible by the denominator of βk/k .

The numbers βk are known in number theory as Bernoulli numbers. After proving

the theorem we will show how to compute the denominator of βk/k .

Recall from the beginning of §2.4 that the Thom space T(E) of a vector bundle

E→X is defined to be the quotient D(E)/S(E) of the unit disk bundle of E by the unit

sphere bundle. Just as in K–theory, the Thom isomorphism for ordinary cohomology

can be viewed as an isomorphism Φ :H∗(X) ≈ H̃∗(T(E)) since the latter group is

isomorphic to H∗(D(E), S(E)) . Thom spaces arise in the present context through the

following:

Lemma 3.19. CJf is the Thom space of the bundle Ef→S2k determined by the

clutching function f :S2k−1→U(n) .

Proof: By definition, Ef is the union of two copies of D2k×Cn with the subspaces

∂D2k×Cn identified via (x,v) ∼ (x, fx(v)) . Collapsing the second copy of D2k×Cn
to Cn via projection produces the same vector bundle Ef , so Ef can also be obtained

from D2k×CnqCn by the identification (x,v) ∼ fx(v) for x ∈ ∂D2k . Restricting to

the unit disk bundle D(Ef ) , we have D(Ef ) expressed as a quotient of D2k×D2n q
D2n

0 by the same identification relation, where the subscript 0 labels this particular

disk fiber of D(Ef ) . In the quotient T(Ef ) = D(Ef )/S(Ef ) we then have the sphere

S2n = D2n
0 /∂D2n

0 , and T(Ef ) is obtained from this S2n by attaching a cell e2k+2n

with characteristic map the quotient map D2k×D2n→D(Ef )→T(Ef ) . The attaching

map of this cell is precisely Jf , since on ∂D2k×D2n it is given by (x,v), fx(v) ∈
D2n/∂D2n and all of D2k×∂D2n maps to the point ∂D2n/∂D2n . tu

To compute eJC(f ) we need to compute ch(β) where β ∈ K̃(CJf ) = K̃(T(Ef ))
restricts to a generator of K̃(S2n) . Such a β is a K theory Thom class since the S2n

here is D2n
0 /∂D2n

0 for a fiber D2n
0 of D(Ef ) . Recall from Example 2.28 how we con-

structed a Thom class U ∈ K̃∗(T(E)) for a complex vector bundle E→X via the short

exact sequence

0 -→K̃∗(T(E)) -→K∗(P(E⊕1)) ρ-----→K∗(P(E)) -→0

with U mapping to
∑
i(−1)iλi(E)Ln−i . A similar construction can also be made with

ordinary cohomology. The defining relation for H∗(P(E)) as H∗(X) module has
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the form
∑
i(−1)ici(E)x

n−i = 0 where x = x(E) ∈ H2(P(E)) restricts to a gener-

ator of H2(CPn−1) in each fiber. Viewed as an element of H∗(P(E⊕1)) , the ele-

ment
∑
i(−1)ici(E)x

n−i , with x = x(E⊕1) now, generates the kernel of the map to

H∗(P(E)) since the coefficient of xn is 1. So
∑
i(−1)ici(E)x

n−i ∈ H∗(P(E⊕1)) is

the image of a Thom class u ∈ H2n(T(E)) . For future reference we note two facts:

(1) x = c1(L) ∈ H∗(P(E⊕1)) , since the defining relation for c1(L) is x(L)−c1(L) = 0

and P(L) = P(E⊕1) , the bundle L→E⊕1 being a line bundle, so x(E⊕1) =
x(L) .

(2) If we identify u with
∑
i(−1)ici(E)x

n−i ∈ H∗(P(E⊕1)) , then xu = 0 since the

defining relation for H∗(P(E⊕1)) is
∑
i(−1)ici(E⊕1)xn+1−i = 0 and ci(E⊕1) =

ci(E) .

For convenience we shall also identify U with
∑
i(−1)iλi(E)Ln−i ∈ K(P(E⊕1)) .

We are omitting notation for pullbacks, so in particular we are viewing E as already

pulled back over P(E⊕1) . By the splitting principle we can pull this bundle E back

further to a sum
⊕
i Li of line bundles over a space F(E) and work in the cohomology

and K–theory of F(E) . The Thom class u = ∑
i(−1)ici(E)x

n−i then factors as a

product
∏
i(x − xi) where xi = c1(Li) , since ci(E) is the ith elementary symmetric

function σi of x1, ··· , xn . Similarly, for the the K–theory Thom class U we have

U = ∑
i(−1)iλi(E)Ln−i = Lnλt(E) = Ln

∏
iλt(Li) = Ln

∏
i(1 + Lit) for t = −L−1 , so

U =∏i(L− Li) . Therefore we have

ch(U) =∏ich(L− Li) =
∏
i(e

x − exi) = u∏i[(e
xi − ex)/(xi − x)]

This last expression can be simplified to u
∏
i[(e

xi − 1)/xi] since after writing it as

u
∏
ie
xi
∏
i[(1−ex−xi)/(xi−x)] and expanding the last product out as a multivariable

power series in x and the xi ’s we see that because of the factor u in front and the

relation xu = 0 noted earlier in (2) all the terms containing x can be deleted, or what

amounts to the same thing, we can set x = 0.

Since the Thom isomorphism Φ for cohomology is given by cup product with the

Thom class u , the result of the preceding calculation can be written as Φ−1ch(U) =∏
i[(e

xi − 1)/xi] . When dealing with products such as this it is often convenient to

take logarithms. There is a power series for log[(ey − 1)/y] of the form
∑
j αjy

j/j!
since the function (ey − 1)/y has a nonzero value at y = 0. Then we have

logΦ−1ch(U) = log
∏
i[(e

xi − 1)/xi] =
∑
i
log[(exi − 1)/xi] =

∑
i,j
αjx

j
i /j!

=
∑
j
αjch

j(E)

where chj(E) is the component of ch(E) in dimension 2j . Thus we have the general

formula logΦ−1ch(U) = ∑
j αjch

j(E) which no longer involves the splitting of the

bundle E→X into the line bundles Li , so by the splitting principle this formula is

valid back in the cohomology of X .
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Proof of 3.18: Let us specialize the preceding to a bundle Ef→S2k with clutching

function f :S2k−1→U(n) where the earlier dimension m is replaced now by k . As

described earlier, the class β ∈ K̃(CJf ) = K̃(T(Ef )) is the Thom class U , up to a sign

which we can make +1 by rechoosing β if necessary. Since ch(U) = ch(β) = b+ ra ,

we have Φ−1ch(U) = 1 + rh where h is a generator of H2k(S2k) . It follows that

logΦ−1ch(U) = rh since log(1+ z) = z− z2/2+ ··· and h2 = 0. On the other hand,

the general formula logΦ−1ch(U) = ∑
j αjch

j(E) specializes to logΦ−1ch(U) =
αkch

k(Ef ) in the present case since H̃2j(S2k;Q) = 0 for j ≠ k . If f represents a

suitable choice of generator of π2k−1(U(n)) then chk(Ef ) = h by Proposition 3.13.

Comparing the two calculations of logΦ−1ch(U) , we obtain r = αk . Since e(JCf)
was defined to be r , we conclude that e(JCf) = αk for f representing a generator of

π2k−1(U(n)) .
To relate αk to Bernoulli numbers βk we differentiate both sides of the equation∑

k αkx
k/k! = log[(ex − 1)/x] = log(ex − 1)− logx , obtaining∑

k≥1
αkx

k−1/(k− 1)! = ex/(ex − 1)− x−1 = 1+ (ex − 1)−1 − x−1

= 1− x−1 +
∑
k≥0

βkx
k−1/k!

= 1+
∑
k≥1

βkx
k−1/k!

where the last equality uses the fact that β0 = 1, which comes from the formula

x/(ex − 1) = ∑i βix
i/i! . Thus we obtain αk = βk/k for k > 1 and 1+ β1 = α1 . It is

not hard to compute that β1 = −1/2, so α1 = 1/2 and αk = −βk/k when k = 1. tu

The numbers βk are zero for odd k > 1 since the function x/(ex−1)−1+x/2 =∑
i≥2 βix

i/i! is even, as a routine calculation shows. Determining the denominator of

βk/k for even k is our next goal since this tells us the order of the image of eJC in

these cases.

Theorem 3.20. For even k > 0 the denominator of βk/k is the product of the prime

powers p`+1 such that p−1 divides k and p` is the highest power of p dividing k .

More precisely :

(1) The denominator of βk is the product of all the distinct primes p such that p−1

divides k .

(2) A prime divides the denominator of βk/k iff it divides the denominator of βk .

The first step in proving the theorem is to relate Bernoulli numbers to the numbers

Sk(n) = 1k + 2k + ··· + (n− 1)k .

Proposition 3.22. Sk(n) =
∑k
i=0

(
k
i

)
βk−in

i+1/(i+ 1) .

Proof: The function f(t) = 1+et +e2t +···+ e(n−1)t has the power series expansion∑n−1

`=0

∑∞
k=0

`ktk/k! =
∑∞
k=0

Sk(n)t
k/k!
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On the other hand, f(t) can be expressed as the product of (ent−1)/t and t/(et−1) ,
with power series∑∞

i=1
niti−1/i!

∑∞
j=0

βjt
j/j! =

∑∞
i=0
ni+1ti/(i+ 1)!

∑∞
j=0

βjt
j/j!

Equating the coefficients of tk we get

Sk(n)/k! =
∑k

i=0
ni+1βk−i/(i+ 1)!(k− i)!

Multiplying both sides of this equation by k! gives the result. tu

Proof of 3.20: We will be interested in the formula for Sk(n) when n is a prime p :

(∗) Sk(p) = βkp +
(
k
1

)
βk−1p

2/2+ ··· + β0p
k+1/(k+ 1)

Let Z(p) ⊂ Q be the ring of p integers, that is, rational numbers whose denominators

are relatively prime to p . We will first apply (∗) to prove that pβk is a p integer

for all primes p . This is equivalent to saying that the denominator of βk contains no

square factors. By induction on k , we may assume pβk−i is a p integer for i > 0.

Also, pi/(i + 1) is a p integer since pi ≥ i + 1 by induction on i . So the product

βk−ip
i+1/(i + 1) is a p integer for i > 0. Thus every term except βkp in (∗) is a

p integer, and hence βkp is a p integer as well.

Next we show that for even k , pβk ≡ Sk(p) mod p in Z(p) , that is, the difference

pβk − Sk(p) is p times a p integer. This will also follow from (∗) once we see that

each term after βkp is p times a p integer. For i > 1, pi−1/(i+ 1) is a p integer by

induction on i as in the preceding paragraph. Since we know βk−ip is a p integer, it

follows that each term in (∗) containing a βk−i with i > 1 is p times a p integer. As

for the term containing βk−1 , this is zero if k is even and greater than 2. For k = 2,

this term is 2(−1/2)p2/2 = −p2/2, which is p times a p integer.

Now we assert that Sk(p) ≡ −1 mod p if p−1 divides k , while Sk(p) ≡ 0 mod p
in the opposite case. In the first case we have

Sk(p) = 1k + ··· + (p − 1)k ≡ 1+ ··· + 1 = p − 1 ≡ −1 mod p

since the multiplicative group Z∗p = Zp−{0} has order p−1 and p−1 divides k . For

the second case we use the elementary fact that Z∗p is a cyclic group. (If it were not

cyclic, there would exist an exponent n < p− 1 such that the equation xn − 1 would

have p−1 roots in Zp , but a polynomial with coefficients in a field cannot have more

roots than its degree.) Let g be a generator of Z∗p , so {1, g1, g2, ··· , gp−2} = Z∗p . Then

Sk(p) = 1k + ··· + (p − 1)k = 1k + gk + g2k + ··· + g(p−2)k

and hence (gk − 1)Sk(p) = g(p−1)k − 1 = 0 since gp−1 = 1. If p − 1 does not divide

k then gk ≠ 1, so we must have Sk(p) ≡ 0 mod p .

Statement (1) of the theorem now follows since if p − 1 does not divide k then

pβk ≡ Sk(p) ≡ 0 mod p so βk is p integral, while if p− 1 does divide k then pβk ≡
Sk(p) ≡ −1 mod p so βk is not p integral and p divides the denominator of βk .

To prove statement (2) of the theorem we will use the following fact:
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Lemma 3.23. For all n ∈ Z , nk(nk − 1)βk/k is an integer.

Proof: Recall the function f(t) = (ent − 1)/(et − 1) considered earlier. This has

logarithmic derivative

f ′(t)/f (t) = (log f(t))′ = [log(ent − 1)− log(et − 1)]′ = nent/(ent − 1)− et/(et − 1)

We have

ex/(ex − 1) = 1/(1− e−x) = x−1[−x/(e−x − 1)] =
∑∞
k=0
(−1)kβkx

k−1/k!

So

f ′(t)/f (t) =
∑∞
k=1
(−1)k(nk − 1)βkt

k−1/k!

where the summation starts with k = 1 since the k = 0 term is zero. The (k − 1)st

derivative of this power series at 0 is ±(nk−1)βk/k . On the other hand, the (k−1)st

derivative of f ′(t)(f (t))−1 is (f (t))−k times a polynomial in f(t) and its derivatives,

with integer coefficients, as one can readily see by induction on k . From the formula

f(t) = ∑
k≥0 Sk(n)t

k/k! derived earlier, we have f (i)(0) = Si(n) , an integer. So the

(k − 1)st derivative of f ′(t)/f (t) at 0 has the form m/f(0)k = m/nk for some

m ∈ Z . Thus (nk − 1)βk/k = ±m/nk and so nk(nk − 1)βk/k is an integer. tu

Statement (2) of the theorem can now be proved. If p divides the denominator

of βk then obviously p divides the denominator of βk/k . Conversely, if p does not

divide the denominator of βk , then by statement (1), p − 1 does not divide k . Let g
be a generator of Z∗p as before, so gk is not congruent to 1 mod p . Then p does not

divide gk(gk − 1) , hence βk/k is the integer gk(gk − 1)βk/k divided by the number

gk(gk − 1) which is relatively prime to p , so p does not divide the denominator of

βk/k .

The first statement of the theorem follows immediately from (1) and (2). tu

There is an alternative definition of e purely in terms of K–theory and the opera-

tions ψk . by the argument in the proof of Theorem 2.17 there are formulas ψk(α) =
kmα and ψk(β) = knβ+µkα for some µk ∈ Z satisfying µk/(k

m−kn) = µ`/(`m−`n) .
The rational number µk/(k

m − kn) is therefore independent of k . It is easy to check

that replacing β by β + pα for p ∈ Z adds p to µk/(k
m − kn) , so µk/(k

m − kn) is

well-defined in Q/Z .

Proposition 3.24. e(f) = µk/(km − kn) in Q/Z .

Proof: This follows by computing chψk(β) in two ways. First, from the formula

for ψk(β) we have chψk(β) = knch(β) + µkch(α) = knb + (knr + µk)a . On the

other hand, there is a general formula chq ψk(ξ) = kqchq(ξ) where chq denotes the

component of ch in H2q . To prove this formula it suffices by the splitting principle

and additivity to take ξ to be a line bundle, so ψk(ξ) = ξk , hence

chqψk(ξ) = chq(ξk) = [c1(ξ
k)]q/q! = [kc1(ξ)]

q/q! = kqc1(ξ)
q/q! = kqchq(ξ)
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In the case at hand this says chmψk(β) = kmchm(β) = kmra . Comparing this with

the coefficient of a in the first formula for chψk(β) gives µk = r(km − kn) . tu

3. Euler and Pontryagin Classes
A characteristic class can be defined to be a function associating to each vector

bundle E→B of dimension n a class x(E) ∈ Hk(B;G) , for some fixed n and k , such

that the naturality property x(f∗(E)) = f∗(x(E)) is satisfied. In particular, for the

universal bundle En→Gn there is the class x = x(En) ∈ Hk(Gn;G) . Conversely, any

element x ∈ Hk(Gn;G) defines a characteristic class by the rule x(E) = f∗(x) where

E ≈ f∗(En) for f :B→Gn . Since f is unique up to homotopy, x(E) is well-defined,

and it is clear that the naturality property is satisfied. Thus characteristic classes

correspond bijectively with cohomology classes of Gn .

With Z2 coefficients all characteristic classes are simply polynomials in the Stiefel-

Whitney classes since we showed in Theorem 3.9 that H∗(Gn;Z2) is the polyno-

mial ring Z2[w1, ··· ,wn] . Similarly for complex vector bundles all characteristic

classes with Z coefficients are polynomials in the Chern classes since H∗(Gn(C);Z) ≈
Z[c1, ··· , cn] . Our goal in this section is to describe the more refined characteristic

classes for real vector bundles that arise when we take cohomology with integer coef-

ficients rather than Z2 coefficients.

The main tool we will use will be the Gysin exact sequence associated to an

n dimensional real vector bundle p :E→B . This is an easy consequence of the Thom

isomorphism Φ :Hi(B)→Hi+n(D(E), S(E)) defined by Φ(b) = p∗(b)` c for a Thom

class c ∈ Hn(D(E), S(E)) having the property that its restriction to each fiber is a

generator of Hn(Dn, Sn−1) . The map Φ is an isomorphism whenever a Thom class

exists, as shown in Corollary 4D.9 of [AT]. In §3.2 we described an easy construction of

a Thom class which works for cohomology with Z2 coefficients or for complex vector

bundles with Z coefficients. We will eventually need the somewhat harder fact that

Thom classes with Z coefficients exist for all orientable real vector bundles. This is

shown in Theorem 4D.10 of [AT].

Once one has the Thom isomorphism, this gives the Gysin sequence as the lower

row of the following commutative diagram, whose upper row is the exact sequence

for the pair (D(E), S(E)) :

D SEH ( ( )) E( )E( ) S E( )−−→ , D SE( ) E( ),H ( )−−−−−−→ −−−−−→ −−−−→. . . . . .

−−→ −−→ Φ−−→ Φ
i i H ( )−−−−−→i

S E( )H ( )i

H ( )i 1D
j +

+BH ( )−−−→ H ( )−−−−−−−→ −−−−−→ −−−−→. . . . . .i n i −−−−−→B
pe- BH ( )i n 1-
∗

∗

p∗

==≈ ≈≈
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The vertical map p∗ is an isomorphism since p is a homotopy equivalence from

D(E) to B . The Euler class e ∈ Hn(B) is defined to be (p∗)−1j∗(c) , or in other words

the restriction of the Thom class to the zero section of E . The square containing

the map `e commutes since for b ∈ Hi−n(B) we have j∗Φ(b) = j∗(p∗(b) ` c) =
p∗(b) ` j∗(c) , which equals p∗(b ` e) = p∗(b) ` p∗(e) since p∗(e) = j∗(c) . The

Euler class can also be defined as the class corresponding to c ` c under the Thom

isomorphism, since Φ(e) = p∗(e)` c = j∗(c)` c = c ` c .

As a warm-up application of the Gysin sequence let us use it to give a different

proof of Theorem 3.9 computing H∗(Gn;Z2) and H∗(Gn(C);Z) . Consider first the

real case. The proof will be by induction on n using the Gysin sequence for the univer-

sal bundle En
π-----→Gn . The sphere bundle S(En) is the space of pairs (v, `) where `

is an n dimensional linear subspace of R∞ and v is a unit vector in ` . There is a nat-

ural map p :S(En)→Gn−1 sending (v, `) to the (n−1) dimensional linear subspace

v⊥ ⊂ ` orthogonal to v . It is an exercise to check that p is a fiber bundle. Its fiber is

S∞ , all the unit vectors in R∞ orthogonal to a given (n − 1) dimensional subspace.

Since S∞ is contractible, p induces an isomorphism on all homotopy groups, hence

also on all cohomology groups. Using this isomorphism p∗ the Gysin sequence, with

Z2 coefficients, has the form

··· -→Hi(Gn)
`e------------→Hi+n(Gn)

η-----→Hi+n(Gn−1) -→Hi+1(Gn) -→···
where e ∈ Hn(Gn;Z2) is the Z2 Euler class.

We show first that η(wj(En)) = wj(En−1) . By definition the map η is the com-

position H∗(Gn)→H∗(S(En))
≈←------ H∗(Gn−1) induced from Gn−1

p←------ S(En) π-----→Gn .

The pullback π∗(En) consists of triples (v,w, `) where ` ∈ Gn and v,w ∈ ` with

v a unit vector. This pullback splits naturally as a sum L⊕p∗(En−1) where L is the

subbundle of triples (v, tv, `) , t ∈ R , and p∗(En−1) consists of the triples (v,w, `)
with w ∈ v⊥ . The line bundle L is trivial, having the section (v, v, `) . Thus the coho-

mology homomorphism π∗ takes wj(En)) to wj(L⊕p∗(En−1)) = wj(p∗(En−1)) =
p∗(wj(En−1)) , so η(wj(En)) = wj(En−1) .

By induction on n , H∗(Gn−1) is the polynomial ring on the classes wj(En−1) ,
j < n . The induction can start with the case n = 1, where G1 = RP∞ and H∗(RP∞) ≈
Z2[w1] since w1(E1) is a generator of H1(RP∞;Z2) . Or we could start with the trivial

case n = 0. Since η(wj(En)) = wj(En−1) , the maps η are surjective and the Gysin

sequence splits into short exact sequences

0 -→Hi(Gn)
`e------------→Hi+n(Gn)

η-----→Hi+n(Gn−1) -→0

The image of `e :H0(Gn)→Hn(Gn) is a Z2 generated by e . By exactness, this Z2

is the kernel of η :Hn(Gn)→Hn(Gn−1) . The class wn(En) lies in this kernel since

wn(En−1) = 0. Moreover, wn(En) ≠ 0, since if wn(En) = 0 then wn is zero for all

n dimensional vector bundles, but the bundle E→RP∞ which is the direct sum of n
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copies of the canonical line bundle has total Stiefel-Whitney class w(E) = (1 + α)n ,

where α generates H1(RP∞) , hence wn(E) = αn ≠ 0. Thus e and wn(En) generate

the same Z2 , so e = wn(En) .
Now we argue that each element ξ ∈ Hk(Gn) can be expressed as a unique poly-

nomial in the classes wi = wi(En) , by induction on k . First, η(ξ) is a unique polyno-

mial f in the wi(En−1) ’s by the basic induction on n . Then ξ−f(w1, ··· ,wn−1) is in

Kerη = Im(`wn) , hence has the form ζ`wn for ζ ∈ Hk−n(Gn) which is unique since

`wn is injective. By induction on k , ζ is a unique polynomial g in the wi ’s. Thus

we have ξ expressed uniquely as a polynomial f(w1, ··· ,wn−1)+wng(w1, ··· ,wn) .
Since every polynomial in w1, ··· ,wn has a unique expression in this form, the theo-

rem follows in the real case.

Virtually the same argument works in the complex case. We noted earlier that

complex vector bundles always have a Gysin sequence with Z coefficients. The only

elaboration needed to extend the preceding proof to the complex case is at the step

where we showed the Z2 Euler class is wn . The argument from the real case shows

that cn is a multiple me for some m ∈ Z , e being now the Z Euler class. Then

for the bundle E→CP∞ which is the direct sum of n copies of the canonical line

bundle, classified by f :CP∞→Gn(C
∞) , we have αn = cn(E) = f∗(cn) =mf∗(e) in

H2n(CP∞;Z) ≈ Z , with αn a generator, hence m = ±1 and e = ±cn . The rest of the

proof goes through without change.

We can also compute H∗(G̃n;Z2) where G̃n is the oriented Grassmannian. To

state the result, let π : G̃n→Gn be the covering projection, so Ẽn = π∗(En) , and let

w̃i = wi(Ẽn) = π∗(wi) ∈ Hi(G̃n;Z2) , where wi = wi(En) .

Proposition 3.25. π∗ :H∗(Gn;Z2)→H∗(G̃n;Z2) is surjective with kernel the ideal

generated by w1 , hence H∗(G̃n;Z2) ≈ Z2[w̃2, ··· , w̃n] .

This is just the answer one would hope for. Since G̃n is simply-connected, w̃1 has

to be zero, so the isomorphism H∗(G̃n;Z2) ≈ Z2[w̃2, ··· , w̃n] is the simplest thing

that could happen.

Proof: The 2 sheeted covering π : G̃n→Gn can be regarded as the unit sphere bundle

of a 1 dimensional vector bundle, so we have a Gysin sequence beginning

0 -→H0(Gn;Z2) -→H0(G̃n;Z2) -→H0(Gn;Z2)
`x------------→H1(Gn;Z2)

where x ∈ H1(Gn;Z2) is the Z2 Euler class. Since G̃n is connected, H0(G̃n;Z2) ≈
Z2 and so the map `x is injective, hence x = w1 , the only nonzero element of

H1(Gn;Z2) . Since H∗(Gn;Z2) ≈ Z2[w1, ··· ,wn] , the map `w1 is injective in all

dimensions, so the Gysin sequence breaks up into short exact sequences

0 -→Hi(Gn;Z2)
`w1------------------→Hi(Gn;Z2)

π∗------------→Hi(G̃n;Z2) -→0
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from which the conclusion is immediate. tu

The goal for the rest of this section is to determine H∗(Gn;Z) and H∗(G̃n;Z) ,
or in other words, to find all characteristic classes for real vector bundles with Z

coefficients, rather than the Z2 coefficients used for Stiefel-Whitney classes. It turns

out that H∗(Gn;Z) , modulo elements of order 2 which are just certain polynomials

in Stiefel-Whitney classes, is a polynomial ring Z[p1, p2, ···] on certain classes pi of

dimension 4i , called Pontryagin classes. There is a similar statement for H∗(G̃n;Z) ,
but with one of the Pontryagin classes replaced by an Euler class when n is even.

The Euler Class

Recall that the Euler class e(E) ∈ Hn(B;Z) of an orientable n dimensional vector

bundle E→B is the restriction of a Thom class c ∈ Hn(D(E), S(E);Z) to the zero

section, that is, the image of c under the composition

Hn(D(E), S(E);Z)→Hn(D(E);Z)→Hn(B;Z)

where the first map is the usual passage from relative to absolute cohomology and the

second map is induced by the inclusion B↩D(E) as the zero section. By its definition,

e(E) depends on the choice of c . However, the assertion (*) in the construction of a

Thom class in Theorem 4D.10 of [AT] implies that c is determined by its restriction to

each fiber, and the restriction of c to each fiber is in turn determined by an orientation

of the bundle, so in fact e(E) depends only on the choice of an orientation of E .

Choosing the opposite orientation changes the sign of c . There are exactly two choices

of orientation for each path-component of B .

Here are the basic properties of Euler classes e(E) ∈ Hn(B;Z) associated to ori-

ented n dimensional vector bundles E→B :

Proposition 3.26.

(a) An orientation of a vector bundle E→B induces an orientation of a pullback

bundle f∗(E) such that e(f∗(E)) = f∗(e(E)) .
(b) Orientations of vector bundles E1→B and E2→B determine an orientation of

the sum E1⊕E2 such that e(E1⊕E2) = e(E1)` e(E2) .
(c) For an orientable n dimensional real vector bundle E , the coefficient homomor-

phism Hn(B;Z)→Hn(B;Z2) carries e(E) to wn(E) . For an n dimensional com-

plex vector bundle E there is the relation e(E) = cn(E) ∈ H2n(B;Z) , for a suitable

choice of orientation of E .

(d) e(E) = −e(E) if the fibers of E have odd dimension.

(e) e(E) = 0 if E has a nowhere-zero section.

Proof: (a) For an n dimensional vector bundle E , let E′ ⊂ E be the complement of

the zero section. A Thom class for E can be viewed as an element of Hn(E, E′;Z)
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which restricts to a generator of Hn(Rn,Rn−{0};Z) in each fiber Rn . For a pullback

f∗(E) , we have a map f̃ :f∗(E)→E which is a linear isomorphism in each fiber, so

f̃∗(c(E)) restricts to a generator of Hn(Rn,Rn − {0};Z) in each fiber Rn of f∗(E) .
Thus f̃∗(c(E)) = c(f∗(E)) . Passing from relative to absolute cohomology classes

and then restricting to zero sections, we get e(f∗(E)) = f∗(e(E)) .
(b) There is a natural projection p1 :E1⊕E2→E1 which is linear in each fiber, and

likewise we have p2 :E1⊕E2→E2 . If E1 is m dimensional we can view a Thom class

c(E1) as lying in Hm(E1, E
′
1) where E′1 is the complement of the zero section in E1 .

Similarly we have a Thom class c(E2) ∈ Hn(E2, E
′
2) if E2 has dimension n . Then

the product p∗1 (c(E1)) ` p∗2 (c(E2)) is a Thom class for E1⊕E2 since in each fiber

Rm×Rn = Rm+n we have the cup product

Hm(Rm+n,Rm+n −Rn)×Hn(Rm+n,Rm+n −Rm)z→Hm+n(Rm+n,Rm+n − {0})
which takes generator cross generator to generator by the calculations in Example 3.11

of [AT]. Passing from relative to absolute cohomology and restricting to the zero sec-

tion, we get the relation e(E1⊕E2) = e(E1)` e(E2) .
(c) We showed this for the universal bundle in the calculation of the cohomology of

Grassmannians a couple pages back, so by the naturality property in (a) it holds for

all bundles.

(d) When we defined the Euler class we observed that it could also be described as the

element of Hn(B;Z) corresponding to c ` c ∈ H2n(D(E), S(E),Z) under the Thom

isomorphism. If n is odd, the basic commutativity relation for cup products gives

c ` c = −c ` c , so e(E) = −e(E) .
(e) A nowhere-zero section of E gives rise to a section s :B→S(E) by normalizing

vectors to have unit length. Then in the exact sequence

Hn(D(E), S(E);Z) j∗-----→Hn(D(E);Z) i∗-----→Hn(S(E);Z)

the map i∗ is injective since the composition D(E) -→B s-----→S(E) i-----→D(E) is homo-

topic to the identity. Since i∗ is injective, the map j∗ is zero by exactness, and hence

e(E) = 0 from the definition of the Euler class. tu

Consider the tangent bundle TSn to Sn . This bundle is orientable since its base

Sn is simply-connected if n > 1, while if n = 1, TS1 is just the product S1×R .

When n is odd, e(TSn) = 0 either by part (d) of the proposition since H∗(Sn;Z) has

no elements of order two, or by part (e) since there is a nonzero tangent vector field

to Sn when n is odd, namely s(x1, ··· , xn+1) = (−x2, x1, ··· ,−xn+1, xn) . However,

when n is even e(TSn) is nonzero:

Proposition 3.27. For even n , e(TSn) is twice a generator of Hn(Sn;Z) .

Proof: Let E′ ⊂ E = TSn be the complement of the zero section. Under the Thom

isomorphism the Euler class e(TSn) corresponds to the square of a Thom class
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c ∈ Hn(E, E′) , so it suffices to show that c2 is twice a generator of H2n(E, E′) . Let

A ⊂ Sn×Sn consist of the antipodal pairs (x,−x) . De-

fine a homeomorphism f :Sn×Sn − A→E sending a pair

(x,y) ∈ Sn×Sn − A to the vector from x to the point of

intersection of the line through −x and y with the tangent

plane at x . The diagonal D = {(x,x)} corresponds under

x

y
x-

f to the zero section of E . Excision then gives the first of

the following isomorphisms:

H∗(E, E′) ≈ H∗(Sn×Sn, Sn×Sn −D) ≈ H∗(Sn×Sn,A) ≈ H∗(Sn×Sn,D),

The second isomorphism holds since Sn×Sn − D deformation retracts onto A by

sliding a point y ≠ ±x along the great circle through x and y to −x , and the third

comes from the homeomorphism (x,y), (x,−y) of Sn×Sn interchanging D and

A . From the long exact sequence of the pair (Sn×Sn,D) we extract a short exact

sequence

0→Hn(Sn×Sn,D)→Hn(Sn×Sn)→Hn(D)→0

The middle group Hn(Sn×Sn) has generators α , β which are pullbacks of a gener-

ator of Hn(Sn) under the two projections Sn×Sn→Sn . Both α and β restrict to

the same generator of Hn(D) since the two projections Sn×Sn→Sn restrict to the

same homeomorphism D ≈ Sn , so α−β generates Hn(Sn×Sn,D) , the kernel of the

restriction map Hn(Sn×Sn)→Hn(D) . Thus α − β corresponds to the Thom class

and (α−β)2 = −αβ−βα , which equals −2αβ if n is even. This is twice a generator

of H2n(Sn×Sn,D) ≈ H2n(Sn×Sn) . tu

It is a fairly elementary theorem in differential topology that the Euler class of

the unit tangent bundle of a closed, connected, orientable smooth manifold Mn is

|χ(M)| times a generator of Hn(M) , where χ(M) is the Euler characteristic of M ;

see for example [Milnor-Stasheff]. This agrees with what we have just seen in the case

M = Sn , and is the reason for the name ‘Euler class.’

One might ask which elements of Hn(Sn) can occur as Euler classes of vector

bundles E→Sn in the nontrivial case that n is even. If we form the pullback of the

tangent bundle TSn by a map Sn→Sn of degree d , we realize 2d times a generator,

by part (a) of the preceding proposition, so all even multiples of a generator of Hn(Sn)
are realizable. To investigate odd multiples, consider the Thom space T(E) . This

has integral cohomology consisting of Z ’s in dimensions 0, n , and 2n by the Thom

isomorphism, which also says that the Thom class c is a generator of Hn(T(E)) . We

know that the Euler class corresponds under the Thom isomorphism to c`c , so e(E)
is k times a generator of Hn(Sn) iff c` c is k times a generator of H2n(T(E)) . This

is precisely the context of the Hopf invariant, and the solution of the Hopf invariant

one problem in Chapter 2 shows that c ` c can be an odd multiple of a generator
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only if n = 2, 4, or 8. In these three cases there is a bundle E→Sn for which c ` c
is a generator of H2n(T(E)) , namely the vector bundle whose unit sphere bundle is

the complex, quaternionic, or octonionic Hopf bundle, and whose Thom space, the

mapping cone of the sphere bundle, is the associated projective plane CP2 , HP2 , or

OP2 . Since we can realize a generator of Hn(Sn) as an Euler class in these three cases,

we can realize any multiple of a generator by taking pullbacks as before.

Pontryagin Classes

The easiest definition of the Pontryagin classes pi(E) ∈ H4i(B;Z) associated to

a real vector bundle E→B is in terms of Chern classes. For a real vector bundle

E→B , its complexification is the complex vector bundle EC→B obtained from the

real vector bundle E⊕E by defining scalar multiplication by the complex number i
in each fiber Rn⊕Rn via the familiar rule i(x,y) = (−y,x) . Thus each fiber Rn

of E becomes a fiber Cn of EC . The Pontryagin class pi(E) is then defined to be

(−1)ic2i(E
C) ∈ H4i(B;Z) . The sign (−1)i is introduced in order to avoid a sign in the

formula in (b) of the next proposition. The reason for restricting attention to the even

Chern classes c2i(E
C) is that the odd classes c2i+1(E

C) turn out to be expressible in

terms of Stiefel-Whitney classes, and hence give nothing new. The exercises at the

end of the section give an explicit formula.

Here is how Pontryagin classes are related to Stiefel-Whitney and Euler classes:

Proposition 3.28.

(a) For a real vector bundle E→B , pi(E) maps to w2i(E)
2 under the coefficient

homomorphism H4i(B;Z)→H4i(B;Z2) .
(b) For an orientable real 2n dimensional vector bundle with Euler class e(E) ∈

H2n(B;Z) , pn(E) = e(E)2 .

Note that statement (b) is independent of the choice of orientation of E since the

Euler class is squared.

Proof: (a) By Proposition 3.4, c2i(E
C) reduces mod 2 to w4i(E⊕E) , which equals

w2i(E)
2 since w(E⊕E) = w(E)2 and squaring is an additive homomorphism mod 2.

(b) First we need to determine the relationship between the two orientations of EC ≈
E⊕E , one coming from the canonical orientation of the complex bundle EC , the

other coming from the orientation of E⊕E determined by an orientation of E . If

v1, ··· , v2n is a basis for a fiber of E agreeing with the given orientation, then EC

is oriented by the ordered basis v1, iv1, ··· , v2n, iv2n , while E⊕E is oriented by

v1, ··· , v2n, iv1, ··· , iv2n . To make these two orderings agree requires (2n − 1) +
(2n − 2) + ··· + 1 = 2n(2n − 1)/2 = n(2n − 1) transpositions, so the two orienta-

tions differ by a sign (−1)n(2n−1) = (−1)n . Thus we have pn(E) = (−1)nc2n(E
C) =

(−1)ne(EC) = e(E⊕E) = e(E)2 . tu
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Pontryagin classes can be used to describe the cohomology of Gn and G̃n with Z

coefficients. First let us remark that since Gn has a CW structure with finitely many

cells in each dimension, so does G̃n , hence the homology and cohomology groups of

Gn and G̃n are finitely generated. For the universal bundles En→Gn and Ẽn→G̃n
let pi = pi(En) , p̃i = pi(Ẽn) , and e = e(Ẽn) , the Euler class being defined via the

canonical orientation of Ẽn .

Theorem 3.29.

(a) All torsion in H∗(Gn;Z) consists of elements of order 2 , and H∗(Gn;Z)/torsion

is the polynomial ring Z[p1, ··· , pk] for n = 2k or 2k+ 1 .

(b) All torsion in H∗(G̃n;Z) consists of elements of order 2 , and H∗(G̃n;Z)/torsion

is Z[p̃1, ··· , p̃k] for n = 2k+1 and Z[p̃1, ··· , p̃k−1, e] for n = 2k , with e2 = p̃k
in the latter case.

The torsion subgroup of H∗(Gn;Z) therefore maps injectively to H∗(Gn;Z2) ,
with image the image of the Bockstein β :H∗(Gn;Z2)→H∗(Gn;Z2) , which we shall

compute in the course of proving the theorem; for the definition and basic properties

of Bockstein homomorphisms see §3.E of [AT]. The same remarks apply to H∗(G̃n;Z) .
The theorem implies that Stiefel-Whitney and Pontryagin classes determine all char-

acteristic classes for unoriented real vector bundles, while for oriented bundles the

only additional class needed is the Euler class.

Proof: We shall work on (b) first since for orientable bundles there is a Gysin sequence

with Z coefficients. As a first step we compute H∗(G̃n;R) where R = Z[1/2] ⊂ Q, the

rational numbers with denominator a power of 2. Since we are dealing with finitely

generated integer homology groups, changing from Z coefficients to R coefficients

eliminates any 2 torsion in the homology, that is, elements of order a power of 2, and

Z summands of homology become R summands. The assertion to be proved is that

H∗(G̃n;R) is R[p̃1, ··· , p̃k] for n = 2k + 1 and R[p̃1, ··· , p̃k−1, e] for n = 2k . This

implies that H∗(G̃n;Z) has no odd-order torsion and that H∗(G̃n;Z)/torsion is as

stated in the theorem. Then it will remain only to show that all 2 torsion in H∗(G̃n;Z)
consists of elements of order 2.

As in the calculation of H∗(Gn;Z2) via the Gysin sequence, consider the sphere

bundle Sn−1 -→ S(Ẽn)
π-----→ G̃n , where S(Ẽn) is the space of pairs (v, `) where ` is

an oriented n dimensional linear subspace of R∞ and v is a unit vector in ` . The

orthogonal complement v⊥ ⊂ ` of v is then naturally oriented, so we get a projection

p :S(Ẽn)→G̃n−1 . The Gysin sequence with coefficients in R has the form

··· -→Hi(G̃n)
`e------------→Hi+n(G̃n)

η-----→Hi+n(G̃n−1) -→Hi+1(G̃n) -→···
where η takes p̃i(Ẽn) to p̃i(Ẽn−1) .
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If n = 2k , then by induction H∗(G̃n−1) ≈ R[p̃1, ··· , p̃k−1] , so η is surjective and

the sequence splits into short exact sequences. The proof in this case then follows

the H∗(Gn;Z2) model.

If n = 2k+ 1, then e is zero in Hn(G̃n;R) since with Z coefficients it has order

2. The Gysin sequence now splits into short exact sequences

0 -→Hi+n(G̃n)
η-----→Hi+n(G̃n−1) -→Hi+1(G̃n) -→0

Thus η injects H∗(G̃n) as a subring of H∗(G̃n−1) ≈ R[p̃1, ··· , p̃k−1, e] , where e now

means e(Ẽn−1) . The subring Imη contains R[p̃1, ··· , p̃k] and is torsionfree, so we

can show it equals R[p̃1, ··· , p̃k] by comparing ranks of these R modules in each

dimension. Let rj be the rank of R[p̃1, ··· , p̃k] in dimension j and r ′j the rank

of Hj(G̃n) . Since R[p̃1, ··· , p̃k−1, e] is a free module over R[p̃1, ··· , p̃k] with basis

{1, e} , the rank of H∗(G̃n−1) ≈ R[p̃1, ··· , p̃k−1, e] in dimension j is rj + rj−2k , the

class e = e(Ẽn−1) having dimension 2k . On the other hand, the exact sequence above

says this rank also equals r ′j + r ′j−2k . Since r ′m ≥ rm for each m , we get r ′j = rj , and

so H∗(G̃n) = R[p̃1, ··· , p̃k] , completing the induction step. The induction can start

with the case n = 1, with G̃1 ≈ S∞ .

Before studying the remaining 2 torsion question let us extend what we have just

done to H∗(Gn;Z) , to show that for R = Z[1/2], H
∗(Gn;R) is R[p1, ··· , pk] , where

n = 2k or 2k + 1. For the 2 sheeted covering π : G̃n→Gn consider the transfer ho-

momorphism π∗ :H∗(G̃n;R)→H∗(Gn;R) defined in §3.G of [AT]. The main feature

of π∗ is that the composition π∗π
∗ :H∗(Gn;R)→H∗(G̃n;R)→H∗(Gn;R) is multi-

plication by 2, the number of sheets in the covering space. This is an isomorphism

for R = Z[1/2], so π∗ is injective. The image of π∗ contains R[p̃1, ··· , p̃k] since

π∗(pi) = p̃i . So when n is odd, π∗ is an isomorphism and we are done. When n
is even, observe that the image of π∗ is invariant under the map τ∗ induced by the

deck transformation τ : G̃n→G̃n interchanging sheets of the covering, since πτ = π
implies τ∗π∗ = π∗ . The map τ reverses orientation in each fiber of Ẽn→G̃n , so τ∗

takes e to −e . The subring of H∗(G̃n;R) ≈ R[p̃1, ··· , p̃k−1, e] invariant under τ∗ is

then exactly R[p̃1, ··· , p̃[n/2]] , finishing the proof that H∗(Gn;R) = R[p1, ··· , pk] .
To show that all 2 torsion in H∗(Gn;Z) and H∗(G̃n;Z) has order 2 we use the

Bockstein homomorphism β associated to the short exact sequence of coefficient

groups 0→Z2→Z4→Z2→0. The goal is to show that Kerβ/ Imβ consists exactly

of the mod 2 reductions of nontorsion classes in H∗(Gn;Z) and H∗(G̃n;Z) , that is,

polynomials in the classes w2
2i in the case of Gn and G̃2k+1 , and for G̃2k , polynomials

in the w2
2i ’s for i < k together with w2k , the mod 2 reduction of the Euler class. By

general properties of Bockstein homomorphisms proved in §3.E of [AT] this will finish

the proof.

Lemma 3.30. βw2i+1 = w1w2i+1 and βw2i = w2i+1 +w1w2i .
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Proof: By naturality it suffices to prove this for the universal bundle En→Gn with

wi = wi(En) . As observed in §3.1, we can view wk as the kth elementary symmetric

polynomial σk in the polynomial algebra Z2[α1, ··· , αn] ≈ H∗((RP∞)n;Z2) . Thus

to compute βwk we can compute βσk . Using the derivation property β(x ` y) =
βx ` y + x ` βy and the fact that βαi = α2

i , we see that βσk is the sum of all

products αi1 ···α2
ij ···αik for i1 < ··· < ik and j = 1, ··· , k . On the other hand,

multiplying σ1σk out, one obtains βσk + (k+ 1)σk+1 . tu

Now for the calculation of Kerβ/ Imβ . First consider the case of G2k+1 . The ring

Z2[w1, ··· ,w2k+1] is also the polynomial ring Z2[w1,w2, βw2, ··· ,w2k, βw2k] since

the substitution w1 ,w1,w2i,w2i,w2i+1 ,w2i+1 +w1w2i = βw2i for i > 0 is

invertible, being its own inverse in fact. Thus Z2[w1, ··· ,w2k+1] splits as the tensor

product of the polynomial rings Z2[w1] and Z2[w2i, βw2i] , each of which is invariant

under β . Moreover, viewing Z2[w1, ··· ,w2k+1] as a chain complex with boundary

map β , this tensor product is a tensor product of chain complexes. According to

the algebraic Künneth theorem, the homology of Z2[w1, ··· ,w2k+1] with respect to

the boundary map β is therefore the tensor product of the homologies of the chain

complexes Z2[w1] and Z2[w2i, βw2i] .
For Z2[w1] we have β(w`

1) = `w`+1
1 , so Kerβ is generated by the even powers

of w1 , all of which are also in Imβ , and hence the β homology of Z2[w1] is trivial in

positive dimensions; we might remark that this had to be true since the calculation is

the same as for RP∞ . For Z2[w2i, βw2i] we have β(w`
2i(βw2i)

m) = `w`−1
2i (βw2i)

m+1 ,

so Kerβ is generated by the monomials w`
2i(βw2i)

m with ` even, and such monomials

with m > 0 are in Imβ . Hence Kerβ/ Imβ = Z2[w
2
2i] .

For n = 2k , Z2[w1, ··· ,w2k] is the tensor product of the Z2[w2i, βw2i] ’s for

i < k and Z2[w1,w2k] , with β(w2k) = w1w2k . We then have the formula β(w`
1w

m
2k) =

`w`+1
1 wm

2k+mw`+1
1 wm

2k = (`+m)w`+1
1 wm

2k . For w`
1w

m
2k to be in Kerβ we must have

` +m even, and to be in Imβ we must have in addition ` > 0. So Kerβ/ Imβ =
Z2[w

2
2k] .

Thus the homology of Z2[w1, ··· ,wn] with respect to β is the polynomial ring in

the classes w2
2i , the mod 2 reductions of the Pontryagin classes. By general properties

of Bocksteins this finishes the proof of part (a) of the theorem.

The case of G̃n is simpler since w1 = 0, hence βw2i = w2i+1 and βw2i+1 = 0.

Then we can break Z2[w2, ··· ,wn] up as the tensor product of the chain complexes

Z2[w2i,w2i+1] , plus Z2[w2k] when n = 2k . The calculations are quite similar to those

we have just done, so further details will be left as an exercise. tu

Exercises

1. Show that every class in H2k(CP∞) can be realized as the Euler class of some vector

bundle over CP∞ that is a sum of complex line bundles.
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2. Show that c2i+1(E
C) = β(w2i(E)w2i+1(E)) .

3. For an oriented (2k+ 1) dimensional vector bundle E show that e(E) = βw2k(E) .
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