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PREFACE TO THE 1st EDITION

The object of this book is to familiarize the reader with the ba-
sic language of and some fundamental theorems in Riemannian Ge-
ometry. To avoid referring to previous knowledge of differentiable
manifolds, we include Chapter 0, which contains those concepts and
results on differentiable manifolds which are used in an essential way
in the rest of the book.

The first four chapters of the book present the basic concepts of
Riemannian Geometry (Riemannian metrics, Riemannian connec-
tions, geodesics and curvature). A good part of the study of Rie-
mannian Geometry consists of understanding the relationship be-
tween geodesics and curvature. Jacobi fields, an essential tool for
this understanding, are introduced in Chapter 5. In Chapter 6 we
introduce the second fundamental form associated with an isomet-
ric immersion, and prove a generalization of the Theorem Egregium
of Gauss. This allows us to relate the notion of curvature in Rie-
mannian manifolds to the classical concept of Gaussian curvature
for surfaces.

Starting in Chapter 7, we begin the study of global questions. We
emphasize techniques of the Calculus of Variations which we present
without assuming a previous knowledge of the subject. Among
other things, we prove the Theorems of Hadamard (Chap. 7), Myers
(Chap. 9) and Synge (Chap. 9), the Rauch Comparison Theorem
(Chap. 10), and the Morse Index Theorem (Chap. 11). One of the
most remarkable applications of these techniques of the Calculus
of Variations, the Sphere Theorem, is presented in Chapter 13. In
addition, we include a “uniformization” theorem for manifolds of
constant curvature (Chap. 8) and a study of the fundamental group
of compact manifolds of negative curvature (Chap. 12).

Many important topics are absent. Because of limitations of time
and space, a choice was necessary; we hope that the references men-



tioned in each chapter stimulate the reader to complete his knowl-
edge in the direction of his own taste.

Our debt to existing sources (written and oral) is enormous and
impossible to catalog. We mention only Chern [Ch 1], Klingenberg-
Gromoll-Meygr [KGM] and Milnor [Mi] as main influences.

This book had its origin in notes of a course given in Berke-
ley in 1968. Later, with the help of students at IMPA (Instituto
de Matemitica Pura e Aplicada), the notes were translated into
Portuguese and published in the Monograph collection of IMPA in
1971. Finally, in a form very close to the present, it was given as
a course in the School of Differential Geometry at Fortaleza in July
1978. Throughout all these years, various colleagues and students
contributed criticisms and suggestions to improve the text. I want
to express, in a most special way, my gratitude to Professor Lucio
Rodriguez who, in my absence assumed the unpleasant task of cor-
recting the proofs and organizing the alphabetical index. To all, my
sincerest thanks.

Manfredo Perdigdo do Carmo

Rio de Janeiro, June 1979



PREFACE TO THE 2nd EDITION

Besides the numerous corrections and modifications throughout the
text, the second edition differs from the first in the following aspects:

Chapter 13 has been entirely rewritten. For the benefit of readers
less familiar with Morse Theory, the proof of the sphere theorem in
even dimension (which does not depend on Morse Theory) can be
dealt with in an independent manner.

In Chapter 4 a concise exposition of tensors on a Riemannian
manifold was added. The goal is to show that, on a Riemannian
manifold, tensors can be differentiated covariantly. Among other
applications, this allows us to introduce, in Chapter 6, the funda-
mental equations of an isometric immersion.

In Chapter 8 a section on the isometries of hyperbolic space and
their relationship with conformal transformations of Euclidean space
was added.

The number of exercises has grown considerably. Some topics
which are not encountered in the text appear in the form of exer-
cises: Riemannian submersions, the complex projective space, Ein-
stein manifolds, the 2nd Bianchi identity, etc.

In spite of the initial plan, it was not possible to include a chapter
on Partial Differential Equations and Geometry; this will have to
wait for another occasion.

It remains for us to thank an enormous list of persons who,
through corrections, criticisms and suggestions, contributed to the
improvement of this book; special thanks are due Jonas Gomes, J.
Gilvan de Oliveira and Gudlaugur Thorbergsson. Thanks are also
due to Professor Lucio Rodriguez, who with dedication looked after
the system of TEX used here, and to Wilson Goes who was in charge
of the final presentation of the text.

Manfredo Perdigdo do Carmo

Rio de Janeiro, 4 July 1988



PREFACE TO THE ENGLISH EDITION

This is a translation of the second edition of a book published
originally in Portuguese. Except for minor corrections and the sub-
stitution of some references, no changes were made.

I am indebted to several persons whose cooperation was essential
to bring the present edition into existence. First, to my friends at
the University of Pennsylvania who used the Portuguese edition for
a number of years and convinced me that a translation was worth-
while. Second, to Frank Flaherty, of Oregon State University, who
volunteered to, and worked hard at, the arduous task of the transla-
tion. Third, to the staff of Birkh&auser, for their patience and interest.
Finally, to Bill Firey, Jerry Kazdan, Juha Pohjanpelto, Walcy Santos
and Beth Stahelin, for a critical reading of the English manuscript.

I would like to use this opportunity to express my deep appreci-
ation to my colleagues and students at IMPA, who made this book
possible.

Manfredo Perdigdo do Carmo

Rio de Janeiro, February 1991



HOW TO USE THIS BOOK

The prerequisites for the reader of this book are:

1) A good knowledge of Calculus, including the geometric formu-
lation of the notion of the differential and the inverse function
theorem.

2) A certain familiarity with the elements of the Differential Geom-
etry of surfaces. For example, Chapter 2 (2.1 to 2.4), 3 (3.2 and
3.3) and 4 (4.1 to 4.6) of M. do Carmo [dC 2] are sufficient.

If the reader is familiar with the basic definitions of differentiable
manifolds, he can omit Chapter 0 entirely. Otherwise, this chapter
should be considered as part of the course.

Starting with Chapter 6, properties of covering spaces and of the
fundamental group are used. For the elements of covering spaces, we
use §5.6 of Chapter 5 of M. do Carmo [dC 2], and for the fundamental
group and its relationship to covering spaces, we use Chapters 2 and
5 of Massey [Ma).

A few exercises (never, however, in the text) assume some knowl-
edge of differential forms. Chapters 1, 2 and 3 of M. do Carmo [dC
3] are sufficient. Those exercises are indicated by 1.

Chapters 1 to 7 are indispensable to the rest of the book. From
there, a course which aims at the sphere theorem could omit Chap-
ters 8 and 12. As an alternative, Chapters 8 and 11 could be omit-
ted and the course could finish with Chapter 12. A minimal course
would contain Chapters 0 to 7 of this book, Section 5.6 of M. do
Carmo [dC 2], Sections 1, 2 and 3 of Chapter 8 and Chapter 9 up
to (including) the Theorem of Bonnet-Myers.



TRANSLATOR’S NOTE

It is intended that this translation follow the original Portuguese
closely.

Frank Flaherty

Corvallis, Oregon, 30 June 1990



To S. S. Chern






CHAPTER 0

DIFFERENTIABLE MANIFOLDS

1. Introduction

The notion of a differentiable manifold is necessary for extending
the methods of differential calculus to spaces more general than R™.
The first example of a manifold, accessible to our experience, is a
regular surface in R3. Recall that a subset S C R? is a regular
surface if, for every point p € S, there exist a neighborhood V of p
in R3 and a mapping x:U € R2 — V N S of an open set U C R?
onto V' N S, such that:

(a) x is a differentiable homeomorphism;

(b) The differential (dx),:R? — R? is injective for all ¢ € U

(See M. do Carmo, [dC 2], Chap. 2).

The mapping x is called a parametrization of S at p. The most
important consequence of the definition of regular surface is the
fact that the transition from one parametrization to another is a
diffeomorphism (M. do Carmo, [dC 2], §2.3. Cf. also Example 4.2
below). More precisely, if x4:U, — S and xg:Ug — S are two
parametrizations such that xo(Ua) Nxg(Ug) = W # ¢, then the
mappings xgl 0Xq: x5 (W) — R? and x3! OXg:XEl(W) — R? are
differentiable.

Thus, a regular surface is intuitively a union of open sets of
R2, organized in such a way that when two such open sets intersect
the change from one to the other can be made in a differentiable
manner. As a consequence, it makes sense to speak of differentiable
functions on a regular surface and, in that situation, apply the meth-
ods of differential calculus.

The major defect of the definition of regular surface is its
dependence on R3. Indeed, the natural idea of a surface is of a
set which is two-dimensional (in a certain sense) and to which the
differential calculus of R? can be applied; the unnecessary presence
of R3 is simply an imposition of our physical nature.
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Although the necessity of an abstract idea of surface (that
is, without involving the ambient space) is clear since Gauss ([Gal,
p. 21), it was nearly a century before such an idea attained the
definitive form that we present here. One of the reasons for this
delay is that the fundamental role of the change of parameters was
not well understood, even for surfaces in R3 (cf. Rem. 2.2 of the
next section).

The explicit definition of a differentiable manifold will be pre-
sented in the next section. Since there is no advantage in restricting
ourselves to two dimensions, the definition will be given for an arbi-
trary dimension n. Differentiable always signifies of class C*.

2. Differentiable manifolds; tangent space

2.1 DEFINITION. A differentiable manifold of dimension n is a set
M and a family of injective mappings Xqo:Us C R™ — M of open
sets U, of R™ into M such that:
(1) Ua xa(Ua) = M'
(2) for any pair o, 8, with xo(Ua) Nx5(Up) = W # ¢, the sets
x;1(W) and xEl(W) are open sets in R™ and the mappings
xEl o X, are differentiable (Fig. 1).
(3) The family {(Uq,Xaq)} is maximal relative to the conditions
(1) and (2).

The pair (Uy,Xa) (or the mapping xo) with p € Xa(Ua)
is called a parametrization (or system of coordinates) of M at p;
Xo(Uy) is then called a coordinate neighborhood at p. A family
{(Ua, xa)} satisfying (1) and (2) is called a differentiable structure
on M.

The condition (3) is included for purely technical reasons. In-
deed, given a differentiable structure on M, we can easily complete
it to a maximal one, by taking the union of all the parametriza-
tions that, together with any of the parametrizations of the given
structure, satisfy condition (2). Therefore, with a certain abuse of
language, we can say that a differentiable manifold is a set provided
with a differentiable structure. In general, the extension to the max-
imal structure will be done without further comment.
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Figure 1

2.2 REMARK. A comparison between the definition 2.1 and the
definition of a regular surface in R3 shows that the essential point
(except for the change of dimension from 2 to n) was to distinguish
the fundamental property of the change of parameters (which is a
theorem for surfaces in R®) and incorporate it as an axiom. This is
precisely condition 2 of Definition 2.1. As we shall soon see, this is
the condition that allows us to carry over all of the ideas of differ-
ential calculus in R™ to differentiable manifolds.

2.3 REMARK. A differentiable structure on a set M induces a
natural topology on M. It suffices to define A C M to be an open
set in M if and only if x;1(A Nx,(U,)) is an open set in R™ for
all a. It is easy to verify that M and the empty set are open sets,
that a union of open sets is again an open set and that the finite
intersection of open sets remains an open set. Observe that the
topology is defined in such a way that the sets x,(U,) are open and
that the mappings x, are continuous.

The Euclidean space R", with the differentiable structure
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given by the identity, is a trivial example of a differentiable manifold.
Now we shall see a non-trivial example.

2.4 EXaAMPLE. The real projective space P*(R). Let us denote
by P*(R) the set of straight lines of R™*! which pass through
the origin 0 = (0,...,0) € R™!; that is, P*(R) is the set of
“directions ” of R™*1.

Let us introduce a differentiable structure on P"(R). For
this, let (z1,...,%Za+1) € R™! and observe, to begin with, that
P"(R) is the quotient space of R"+1 — {0} by the equivalence rela-
tion:

(:Bl,. .. ,Z,H.l) ~ ()\1‘1, v ,A$n+1), AER, A 7é 0.

The points of P*(R) will be denoted by [21,...,Za+1]. Observe
tha.t, if T; 75 0,

I Ti—1 Titl Tn+l
[zl,...,xn+1]= — ., — 1, yerey =1 -
Zi x; z; Z;

Define subsets Vi, ..., Vay1, of P*(R), by:
Vi ={lz1,.. ., Znp1};Zi #0}, i=1,...,n+1

Geometrically, V; is the set of straight lines R**! which pass through
the origin and do not belong to the hyperplane z; = 0. We are now
going to show that we can take the V;’s as coordinate neighborhoods,
where the coordinates on V; are

y z y Ti-1 Tit+1 Tn+l
1= Tyees i—1 = — | = ey Yn = .
xi, y J1 xi ) 1 :!:,' 7 b IB,‘

For this, we will define mappings x;: R" — V; by
xi(yh oo :yn) = [yl’ cey Yi—1, lvyia v 1?]11}7 (yI, LR ayn) € Rn,

and will show that the family {(R™,x;)} is a differentiable structure
on P*(R).

Indeed, any mapping X; is clearly bijective while Ux:(R™)
= P"(R). It remains to show that x; 1(V; NnVj;) is an open set in
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R™ and that xj‘l ox;, j=1,...,n+1, is differentiable there. Now,
if 4 > j, the points in x;*(V; N'V;) are of the form:

{@1,---,9a) ER™  y; #0}.

Therefore x;*(V; N V;) is an open set in R", and supposing that
i > j (the case ¢ < j is similar),

xj—loxi(yh [ERR) yﬂ) = x;l[ylv <oy Yi-1, 11 Yiy--- 1yn]

R [& Yim1 g Vi Vi-r 1w yﬂ]

-— 3 gy TR

Yi Yj Yj Yi Y ¥ Y
_(yl Yi-1 Yj+1 Yi-1 1 Y y'n)
=\, ’ IR P D L R I
Yj Y Yi Yi Yi Y5 Y

which is clearly differentiable.

In summary, the space of directions of R®*! (real projective
space P*(R)) can be covered by n+ 1 coordinate neighborhoods V;,
where the V; are made up of those directions of R™*! that are not in
the hyperplane z; = 0; in addition, in each V; we have coordinates

(_13_1_ Ti-1 Zi41 $n+1)
. 3

xi’ R} xi ) xl 3 xi
where (z1,..., Zn+1) are the coordinates of R*+1. It is customary, in
the classical terminology, to call the coordinates of V; “inhomogen-
eous coordinates” corresponding to the “homogeneous coordinates”
(1'1, v ’zn-i-l) € R'n.+1'

Before presenting further examples of differentiable manifolds
we should present a few more consequences of Definition 2.1. From
now on, when we denote a differentiable manifold by M™, the upper
index n indicates the dimension of M.

First, let us extend the idea of differentiability to mappings
between manifolds.

2.5 DEFINITION. Let M} and MJ* be differentiable manifolds. A
mapping ¢: My — My is differentiable at p € M, if given a paramet-
rization y:V € R™ — M; at p(p) there exists a parametrization
x:U C R™ — M; at p such that p(x(U)) C y(V) and the mapping

(1) y lopox:UCR" - R™
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Yx())

x () ¢ (p)

y{»

A
ylovox 5
—————eeeeeee -
V o
-

Figure 2

is differentiable at x~'(p) (Fig. 2). ¢ is differentiable on an open
set of M, if it is differentiable at all of the points of this open set.

It follows from condition (2) of Definition 2.1 that the given
definition is independent of the choice of the parametrizations. The
mapping (1) is called the ezpression of ¢ in the parametrizations x
and y.

Next, we would like to extend the idea of tangent vector to
differentiable manifolds. It is convenient, as usual, to use our ex-
perience with regular surfaces in R®. For surfaces in R3, a tangent
vector at a point p of the surface is defined as the “velocity”in R3
of a curve in the surface passing through p. Since we do not have
at our disposal the support of the ambient space, we have to find
a characteristic property of the tangent vector which will substitute
for the idea of velocity.

The next considerations will motivate the definition that we
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are going to present below. Let a: (—¢,e) — R™ be a differentiable
curve in R", with a(0) = p. Write
a(t) = (z1(t),...,za(t), t € (=€,€), (z1,...,Zn) € R™.

Then o'(0) = (4(0),...,z,(0)) = v € R™. Now let f be a differ-
entiable function defined in a neighborhood of p. We can restrict f
to the curve a and express the directional derivative with respect to
the vector v € R™ as

d(foa) e of
dt t=0 - i1 81:,-

d:Bi

1= 4t

7]
= z;(0)=—)f.
. (Z,-: (051
Therefore, the directional derivative with respect to v is an operator
on differentiable functions that depends uniquely on v. This is the
characteristic property that we are going to use to define tangent
vectors on a manifold.
2.6 DEFINITION. Let M be a differentiable manifold. A differen-
tiable function a:(—¢,e) — M is called a (differentiable) curve in
M. Suppose that a(0) = p € M, and let D be the set of functions
on M that are differentiable at p. The tangent vector to the curve
a at t =0 is a function o/(0): D — R given by

d
o(0)f = dfoa) ., fenD.
dt t=0
A tangent vector at p is the tangent vector at ¢ = 0 of some curve
a: (—¢e,e) = M with a(0) = p. The set of all tangent vectors to M

at p will be indicated by T, M.

If we choose a parametrization x: U — M™ at p = x(0), we
can express the function f and the curve a in this parametrization
by

fox(q)=f(x1,...,x,.), q=(x1,...,:1:n)€U,
and
x loa(t) = (z1(t),...,za(t)),

respectively. Therefore, restricting f to a, we obtain

dOf = L(foa) - =S CTONMRPND) _

=320 (2) = (o0 (), ) #

i=1 i
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In other words, the vector o’(0) can be expressed in the parametriza-
tion x by
),

@ @@ = ¥ ai0) (
Observe that (32—'_)0 is the tangent vector at p of the “coordinate

7]
6:::,-

curve” (Fig. 3):
Ty — x(O,...,O,:u,-,O,...,O).

Figure 3

The expression (2) shows that the tangent vector to the curve
a at p depends only the derivative of a in a coordinate system. It
follows also from (2) that the set T, M, with the usual operations
of functions, forms a vector space of dimension n, and that the
choice of a parametrization x:U — M determines an associated

basis {(8%)0 (53—")0} in T,M (Fig. 3). It is immediate that
the linear structure in T, M defined above does not depend on the
parametrization x. The vector space T, M is called the tangent space

of M at p.
With the idea of tangent space we can extend to differentiable

manifolds the notion of the differential of a differentiable mapping.
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2.7 PROPOSITION. Let M[* and MJ* be differentiable manifolds
and let p: M1 — M, be a differentiable mapping. For every p € M,
and for each v € T,M,, choose a differentiable curve a:(—¢,&) —
M, with a(0) = p, a’(0) = v. Take f = p o a. The mapping
dpp: ToMy — T, )M, given by dp,(v) = §'(0) is a linear mapping
that does not depend on the choice of o (Fig. 4).

Proof. Let x:U — M; and y: V — M, be parametrizations at p and
(p), respectively. Expressing ¢ in these parametrizations, we can
write

y lopox(q) = Wi(x1,---1Zn)y--, Ym(T1,- - -, Tn))
q=(x11-"7xn)€Uv (ylr"wym)eu
On the other hand, expressing « in the parametrization x, we obtain

“1oa(t) = (z1t),. .., za(t)).

Therefore,

y_l ° ﬁ(t) = (yl(xl(t)a SRR xﬂ(t))1 cee 1ym(x1(t), v 1xn(t)))'

It follows that the expression for §’(0) with respect to the basis
{(39;7) 0} of T, () M2, associated to the parametrization y, is given
by

3) B(0) = (E 2(0), . "’y"‘ 2(0)).

The relation (3) shows immediately that 4’(0) does not depend on
the choice of a. In addition, (3) can be written as

B(0) = dpy(v) = (ay') (z(0)),

i=1,...,m; i=1,...,n,

where (Lg-f:-) denotes an m x n matrix and z’(0) denotes a column
matrix with n elements. Therefore, dy, is a linear mapping of T, M,
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dyp ()
€
/s g
(44 )
-€ \ ¢
Figure 4

into Ty(p) M2 whose matrix in the associated bases obtained from the
parametrizations x and y is precisely the matrix (g%). O

2.8 DEFINITION. The linear mapping dy, defined by Proposi-
tion 2.7 is called the differential of ¢ at p.

2.9 DEFINITION. Let M; and M, be differentiable manifolds. A
mapping ¢: M; — M, is a diffeomorphism if it is differentiable,
bijective, and its inverse ¢! is differentiable. ¢ is said to be a local
diffeomorphism at p € M if there exist neighborhoods U of p and V
of (p) such that p: U — V is a diffeomorphism.

The notion of diffeomorphism is the natural idea of equiv-
alence between differentiable manifolds. It is an immediate conse-
quence of the chain rule that if p: M; — M, is a diffeomorphism,
then dp,: Ty My — T,(;) M2 is an isomorphism for all p € Mj; in par-
ticular, the dimensions of M; and M, are equal. A local converse to
this fact is the following theorem.

2.10 Theorem. Let p: M} — MJ be a differentiable mapping and
let p € My be such that dypp: TyM, — Typ)M2 is an isomorphism.
Then ¢ is a local diffeomorphism at p.

The proof follows from an immediate application of the in-
verse function theorem in R™.
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3. Immersions and embeddings; examples

3.1 DEFINITION. Let M™ and N™ be differentiable manifolds.
A differentiable mapping ¢: M — N is said to be an immersion if
dpp: TyM — T, N is injective for all p € M. If, in addition, ¢ is
a homeomorphism onto (M) C N, where (M) has the subspace
topology induced from N, we say that ¢ is an embedding. f M C N
and the inclusion #: M C N is an embedding, we say that M is a
submanifold of N.

It can be seen that if p: M™ — N™ is an immersion, then
m < n; the difference n — m is called the codimension of the immer-
sion .
3.2 ExaAMPLE. The curve oz R — R2 given by a(t) = (t, |t|) is not
differentiable at ¢t = 0 (Fig. 5).

Figure 5

3.3 EXAMPLE. The curve : R — R? given by a(t) = (t3,t?)
is a differentiable mapping but is not an immersion. Indeed, the
condition for the map to be an immersion in this case is equivalent
to the fact that o'(t) # 0, which does not occur for ¢t = 0 (Fig. 6).

3.4 EXAMPLE. The curve a(t) = (t3 — 4¢,¢> — 4) (Fig. 7) is an
immersion oz R — R? which has a self-intersection for ¢ = 2, = —2.
Therefore, a is not an embedding.

3.5 EXAMPLE. The curve (Fig. 8)

= (0,-(t +2)), te (=3,-1),
a(t){ =regular curve (see Fig. 8), te(-1,-2)
= (—t,—sin 1), te(~L,0)

m
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0

Figure 6

is an immersion o: (—3,0) — R? without self-intersections. Never-
theless, a is not an embedding. Indeed, a neighborhood of a point
p, in the vertical part of the curve (Fig. 8) consists of an infinite
number of connected components in the topology induced from R2.
On the other hand, a neighborhood of such a point in the topol-
ogy “induced” from a (that is the topology of the line) is an open
interval, hence a connected set.

y A

Figure 7

3.6 EXAMPLE. It is clear that a regular surface S C R3 has a differ-
entiable structure given by its parametrizations Xq:Ua — S. With
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y4
‘ q = (1/m 0)
0 x
p = (0, -1)
Figure 8

such a structure, the mappings x, are differentiable and, indeed,
are embeddings of U, into S; that is an immediate consequence of
conditions (a) and (b) of the definition of regular surface given in
the introduction. We are going to show that the inclusion i: § ¢ R3
is an embedding, that is, S is a submanifold of R3.

In fact, ¢ is differentiable, because for all p € S there exists
a parametrization x: U C R?2 — S of S at p and a parametrization
j:V cR3 - V of R3 at i(p) (V is a neighborhood of p in R? and j
is the identity mapping), such that j~!oiox = x is differentiable. In
addition, from condition (b), % is an immersion and, from condition
(a), ¢ is a homeomorphism onto its image, which proves the claim.

For most local questions of geometry, it is the same to work
with either immersions or embeddings. This comes from the follow-
ing proposition which shows that every immersion is locally (in a
certain sense) an embedding.

3.7 PROPOSITION. Let p: M — MJ*, n < m, be an immersion
of the differentiable manifold M; into the differentiable manifold
M;. For every point p € M,, there exists a neighborhood V C M;
of p such that the restriction ¢ | V. — M, is an embedding.

Proof. This fact is a consequence of the inverse function theorem.
Let x;:U; € R® — M; and x2:U2 C R™ — M, be a system
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of coordinates at p and at ¢(p), respectively, and let us denote by
(z1,...,Zn) the coordinates of R™ and by (yi,...,ym) the coordin-
ates of R™. In these coordinates, the expression for ¢, that is, the
mapping @ = X; ' 0 p 0 x;, can be written

¢ =mE,...,Tn)s- -, Ym(Z1,. .., Tn)).

Let ¢ = x7'(p). Since ¢ is an immersion, we can suppose, renum-
bering the coordinates for both R™ and R™, if necessary, that

a(yl) . "yn)
6(1:1, e ’zn) (q) 7& 0

To apply the inverse function theorem, we introduce the mapping
¢ =U; x R™ "=k » R™ given by

¢($1,...,In,t1,...,tk) =

= W1(Z1,-- 1 Tn)se .y Yn(T1, . s Zn), Ynt+1(ZT1y - - o, Tn) + L1, -,

) --ayn+k($11--wxn) +tk);

where (t1,...,tx) € R™ "=k It is easy to verify that ¢ restricted
to Uy coincides with ¢ and that

a(yb . ,y‘n)():’éo

det(dpg) = B(z:

It follows from the inverse function theorem, that there exist neigh-
borhoods W; C Uy x R* of ¢ and W, € R™ of ¢(q) such that the
restriction ¢ | Wi is a diffeomorphism onto Wa. Let V = Wy NUj.
Since ¢ | V = @ | V and x; is a diffeomorphism, for i = 1,2,
we conclude that the restriction to V = x;(V) of the mapping
¢ =Xp0po0 xl_le — (V) ¢ M, is a diffeomorphism, hence
an embedding. O
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4. Other examples of manifolds. Orientation

4.1 EXAMPLE. (The tangent bundle). Let M™ be a differentiable
manifold and let TM = {(p,v);p € M,v € T,M}. We are going to
provide the set TM with a differentiable structure (of dimension
2n); with such a structure TM will be called the tangent bundle of
M. This is the natural space to work with when treating questions
that involve positions and velocities, as in the case of mechanics.

Let {(Ua,x,)} be a maximal differentiable structure on M.
Denote by (z¢,...,z3) the coordinates of U, and by {61‘” -
1,,} the associated bases to the tangent spaces of x,(U,). For

every a, define
Ya:Ua x R®" - TM,

by
(¢ ] o —
YolZ$y . o 28Uy, .y U,) =

o (53 - a n
=(xa(:c1,...,xn),2uiﬁ), (u1,...,u,) € R™.
i=1 t

Geometrically, this means that we are taking as coordinates of a
point (p,v) € TM the coordinates z¢,...,z2 of p together with the
coordinates of v in the basis {%, ceey % .

We are going to show that {(Uy x R™,y,)} is a differen-
tiable structure on TM. Since |J, Xo(Ua) = M and (dx,),(R™) =
Ty, (qyM, q € U,, we have that

Uya(Ua x R™) =T,

which verifies condition (1) of Definition 2.1. Now let

(P, v) € ya(Uqa x R")Nys(Us x R™).
Then
(p,v) = (Xa(¢a), dXa(va)) = (x5(gp), dx5(vp)),
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where g, € Uy, qg € Ug, va,v8 € R™. Therefore,
YEI °©Ya(ga;va) = yEl(xa(qa), dxXa(va)) =

= ((x5" ©Xa)(ga), d(x5" 0 Xa)(va)).

Since xEl o X, is differentiable, d(xg1 0 Xq) is as well. It follows
that yEl o yo is differentiable, which verifies condition (2) of the
definition 2.1 and completes the example.

4.2 EXAMPLE. (Regular surfaces in R™). The natural generaliza-
tion of the notion of a regular surface in R3 is the idea of a surface of
dimension k in R®, k < n. A subset M* C R™ is a regular surface
of dimension k if for every p € M* there exists a neighborhood V of
p in R™ and a mapping x: U C R¥* = M NV of an open set U c R*
onto M NV such that:
(a) x is a differentiable homeomorphism.
(b) (dx),: R*¥ — R™ is injective for all g € U.
Except for the dimensions involved, the definition is exactly the
same as was given in the Introduction for a regular surface in R3.
In a similar way as was done for surfaces in R® (M. do Carmo
[dC 2], p. 71), it can be proved that if x: U C R* - M* and y: V C
RF — M* are two parametrizations with x(U Ny (V) =W # ¢, then
the mapping h = x~ o y: y"Y(W) — x~Y(W) is a diffeomorphism.
For completeness, we give a sketch of this proof in what follows.
First, we observe that h is a homeomorphism, being a com-
position of homeomorphisms. Let r € y~}(W) and put ¢ = h(r).
Let (u1,...,ux) € U and (vy,...,v,) € R®, and write x in these
coordinates as

xX(ur, .. uk) = (V1(ug, ... U), - .oy Un (U, .. ., Uug)).

From condition (b), we can suppose that

A(vi,. - -, k)
Bur, . un) D 70
Extend x to a mapping F:U x R*~% — R given by
F(uh o Uk bkg1y e ey t‘n)
= (vl(ul, e ,uk), ‘e ,vk(ul, . e ,uk),

Vk41 (U5 - k) + bkt 1y ooy Un(un, ..o uk) + En),
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where (tki1y...y...1,) € R K. It is clear that F is differentiable
and the restriction of F to U x {(0,...,0)} coincides with x. By a
simple calculation, we obtain that

det(dFy) = 7 g) 20,

We are then able to apply the inverse function theorem, which guar-
antees the existence of a neighborhood Q of x(q) where F~! exists
and is differentiable. By the continuity of y, there exists a neigh-
borhood R C V of r such that y(R) C Q. Note that the restriction
of hto R,h| R=F~loy | R is a composition of differentiable
mappings. Thus h is differentiable at r, hence in y~1(W). A similar
argument would show that A~! is differentiable as well, proving the
assertion. [J

From what we have just proved, it follows by an entirely sim-
ilar argument as in Example 3.6 that M* is a differentiable manifold
of dimension k and that the inclusion i: M* C R™ is an embedding,
that is, M* is a submanifold of R™.

4.3 EXAMPLE. (Inverse image of a regular value). Before dis-
cussing the next example, we need some definitions.

Let F:U C R™ — R™ be a differentiable mapping of an open
set U of R™. A point p € U is defined to be a critical point of F if
the differential dFy,: R® — R™ is not surjective. The image F (p) of
a critical point is called a critical value of F. A point a € R™ that
is not a critical value is said to be a regular value of F. Note that
any point a ¢ F(U) is trivially a regular value of F and that if there
exists a regular value of F in R™, then n > m.

Now let a € F(U) be a regular value of F. We are going to
show that the inverse image F~1(a) C R" is a reqular surface of
dimension n —m = k. From what was seen in Example 4.2, F~1(a)
is then a submanifold of R™.

To prove the assertion we use, again, the inverse function
theorem. Let p € F~!(a). Denote by ¢ = (Y1 Ymy T1y.. . Tk)
an arbitrary point of R"="** and by F(q) = (fi(g),..., fm(q)) its
image by the mapping F. Since a is a regular value of F, dF, is
surjective. Therefore, we can suppose that

A(f1y- -y fm)
Y1, 1 Ym) ®) #0.
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Define a mapping ¢:U C R® — R»=m+k by
oY1, Ymy T2y - - - 1 Tk) = (1(@,-- -, fm(@), 21, .. » Th)-
Then

det(dp)y = gao=2lnd ) 2

By the inverse function theorem, ¢ is a diffeomorphism of a neigh-
borhood @ of p onto a neighborhood W of ¢(p). Let K™tk c W
R™** be a cube of center ¢(p) and put V = ¢~ 1(K™+%)NQ. Then ¢
maps the neighborhood V diffeomorphically onto K™tk = K™ x K%,
Define a mapping x: K* — V by

x(z1,...,2k) = ¢ a1,...,8m, 1, ..., Tk),

where (ay, . ..,am) = a. It is easy to check that ¢ satisfies conditions
(a) and (b) of the definition of regular surface given in Example 4.2.
Since p is arbitrary, F~!(a) is a regular surface in R", as asserted.

Before going on to other examples of differentiable manifolds,
we should introduce the important global notion of orientation.

4.4 DEFINITION. Let M be a differentiable manifold. We say that
M is orientable if M admits a differentiable structure {(Ua,x4)}
such that: '
(i) for every pair a,f, with xo(Us) N xg(Ug) = W # ¢, the
differential of the change of coordinates xEl oXq has positive
determinant.
In the opposite case, we say that M is non-orientable. If M is ori-
entable, a choice of a differentiable structure satisfying (i) is called
an orientation of M. M is then said to be oriented. Two differen-
tiable structures that satisfy (i) determine the same orientation if
their union again satisfies (i).

It is not difficult to verify that if M is orientable and con-
nected there exist exactly two distinct orientations on M.

Now let M; and M, be differentiable manifolds and let
¢: My — M, be a diffeomorphism. It is easy to verify that M;
is orientable if and only if M, is orientable. If, additionally, M; and
M are connected and are oriented, ¢ induces an orientation on M
which may or may not coincide with the initial orientation of M,.
In the first case, we say that ¢ preserves the orientation and in the
second case, that ¢ reverses the orientation.
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4.5 EXAMPLE. If M can be covered by two coordinate neighbor-
hoods V; and V2 in such a way that the intersection Vi N Vo is
connected, then M is orientable. Indeed, since the determinant of
the differential of the coordinate change is # 0, it does not change
sign in V] NVs; if it is negative at a single point, it suffices to change
the sign of one of the coordinates to make it positive at that point,
hence on V1 N V5.

4.6 EXAMPLE. The simple criterion of the previous example can
be used to show that the sphere

n+l1
St = {(1:1,... ,Tnt1) € R Zz? = 1} c Rt

i=1
is orientable. Indeed, let N = (0,...,0,1) be the north pole
and S = (0,...,0,—1) the south pole of S®. Define a mapping
71: 8™ — {N} — R™ (stereographic projection from the north pole)
that takes p = (z1,...Zn+1) in S™ — {N} into the intersection of the
hyperplane z,+1 = 0 with the line that passes through p and N. It
is easy to verify that (Fig. 9)
Ty Tn

7r1((L'1,...,.'L'n+1)=(l_xn+1,...,l_xn+1 .

The mapping 7, is differentiable, injective and maps S™ — {N}
onto the hyperplane z,4+1 = 0. The stereographic projection
m: 8™ — {S} — R™ from the south pole onto the hyperplane
ZTn+1 = 0 has the same properties.

Therefore, the parametrizations (R™,77'), (R™, ;) cover
S™. In addition, the change of coordinates:
Zj r_ Ty

—_— —_— S —
l_xn.+l yJ 1+$n+1,

(yl,...,yn)eR", j=1:"'7na

Ys

is given by
Y = Yi
- n
D DHEE

(her(: we 1use the faff that Z::ll zZ = 1). Therefore, the family
{R™, 77, (R™, 73 ')} is a differentiable structure on S™. Ob-
serve that the intersection 77 }(R™) N7y }(R") = S™ — {NuUS}is
connected, thus S™ is orientable and the family given determines an
orientation of S™.
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Xn+e1 ?
=(0,.., 0, xj, 0, ..., Xpns1)
m®)=,.., 0 oo 0,..,0)
> O————> Xj
0 S m@) =, 0, T‘%,T, 0,..,0
Figure 9

Now let A: S® — S™ be the antipodal map given by A(p) =
—p, p € R**1. Ais differentiable and A? = ident. Therefore, A is a
diffeomorphism of S™. Observe that when n is even, A reverses the
orientation of S™ and when n is odd, A preserves the orientation of
Sm.

We are now in a position to exhibit some other examples of

differentiable manifolds.
4.7 EXAMPLE. (Another description of projective space). The set
P™(R) of lines of R™*! that pass through the origin can be thought
of as the quotient space of the unit sphere 5™ = { pe R |p| = 1}
by the equivalence relation that identifies p € S™ with its antipodal
point, A(p) = —p. Indeed, each line that passes through the origin
determines two antipodal points and the correspondence so obtained
is evidently bijective.

Taking into account this fact, we are going to introduce an-
other differentiable structure on P*(R) (Cf. Example 2.4). For
this, we initially introduce on S™ C R™*! the structure of a regular
surface, defining parametrizations

xh:U; - S*, x;:Ui— S, i=1,...,n+1,
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in the following way:
Ui = {(xl,""xrﬂ-l) € Rn+1;xi = 07
i+ izl F2hy <1,

+
X (%1, Tic1y Tig 1y oo oy Tnt1)
= (171, . .,xi_l,Di,xi.,.l, - ,SL'-,.,+1),
xi—(xl,'-"xi—lizi-}-l;---)xn-i-l)
= (xlv"’zi—ly_Diaxi+1a"'7mn+l):

where D; = \/1 —@3+... 42l 4ol ... +22,) Ttis easy
to verify that conditions (a) and (b) of the definition in Example 4.2
are satisfied. Therefore, the family

{U:,xh), (Ui, x7)}, i=1,...,n+1

is a differentiable structure on S™. Geometrically, this is equivalent
to covering the sphere S™ with coordinate neighborhoods that are
hemi-spheres perpendicular to the axes z; and taking as coordinates
on, for example, x;} (U;), the coordinates of the orthogonal projection
of x} (U;) on the hyperplane z; = 0 (Fig. 10).

@S S

Figure 10
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Let m:S™ — P™(R) be the canonical projection, that is,
n(p) = {p, —p}; observe that n(x} (U;)) = 7(x; (U;)). We are going
to define a mapping y;: U; — P™(R) by

yi=7rox?'.

Since 7 restricted to x (U;) is one-to-one, we have that

yiloyj=(mox}) lo(r ox}]) = (x)to x7,
which yields the differentiability of y; loy;, foralli,j =1,...,n+1.
Thus the family {(U;,y;} is a differentiable structure for P"(R).
In fact, this differentiable structure and that of Example 2.4
give rise to the same maximal structure. Indeed, the coordinate
neighborhoods are the same and the change of coordinates are given
by:

1 Ti—1 Tit1 Tn41
_7”'7——’11——"'-)—) Ad
T Z; Z; Z;

> (:L‘l, e ,$i—1,Di,$i+1, . .,:l:n+1)

which, since z; # 0 and D; # 0, is differentiable.
As we shall see in Exercise 9, P™(R) is orientable if and only
if n is odd.

4.8 EXAMPLE. (Discontinuous action of a group). There is a way
of constructing differentiable manifolds that generalizes the process
above, which is given by the following considerations.
We say that a group G acts on a differentiable manifold M
if there exists a mapping ¢: G x M — M such that:
(i) For each g € G, the mapping p,: M — M given by pg(p) =
©(g,p), p € M, is a diffeomorphism, and p. = identity.
(i) If g1,92 € G, Pgig2 = Pg1 © Pga-
Frequently, when dealing with a single action, we set ¢(g, p) = gp;
in this notation, condition (ii) can be interpreted as a form of asso-
ciativity: (g192)p = o (92p)-
We say that the the action is properly discontinuous if every
p € M has a neighborhood U C M such that U N g(U) = ¢ for all

g#e

When G acts on M, the action determines an equivalence
relation ~ on M, in which p; ~ p2 if and only if p2 = gp;, for some
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g € G. Denote the quotient space of M by this equivalence relation
by M/G. The mapping m: M — M/G, given by

m(p) = equiv. class of p = Gp

will be called the projection of M onto M/G.

Now let M be a differentiable manifold and let G x M - M
be a properly discontinuous action of a group G on M. We are
going to show that M/G has a differentiable structure with respect
to which the projection m: M — M/G is a local diffeomorphism.

For each p € M choose a parametrization x:V — M at p
so that x(V) C U, where U C M is a neighborhood of p such that
Ung(U) = ¢, g # e. Clearly m | U is injective, hencey = mox:V —
M/G is injective. The family {(V,y)} clearly covers M/G; for such
a family to be a differentiable structure, it suffices to show that given
two mappings y; = 7ox;: Vi - M/G and y; =mox2: Vo —» M/G
with y1(V1) Ny2(V2) # ¢, then y7! oy is differentiable.

For this, let m; be the restriction of = to z;(V;), i = 1,2.
Let ¢ € y1(V1) Ny2(V2) and let r = x;l ow{l(q). Let W C V5
be a neighborhood of r such that (w2 o x2)(W) C y1(V3) N y2(V2)
(Fig. 11). Then, the restriction to W is given by

yiloys |W=x7'on! om ox,.

‘Therefore, it is enough to show that m ! o 7y is differentiable
at ps = 15 1(q). Let py = n] Yomy(ps). Then p; and p, are equivalent
in M, hence there is a g € G such that gp, = p;. It follows easily that
the restriction 77! o w2 | x2(W) coincides with the diffeomorphism
¢g | x2(W), which proves that my* o my is differentiable at ps, as
stated.

From the very way in which this differentiable structure is
constructed, 7: M — M/G is a local diffeomorphism. A criterion
for the orientability of M/G is given in Exercise 9. Observe that
the situation in the previous example reduces to the present one, by
taking M = S™ and G the group of diffeomorphisms of S™ formed
by the antipodal mapping A and the identity I = A2 of S™. —~

4.9 EXAMPLE. (special cases of Example 4.8).

4.9 (a). Consider the group G of “integral” translations of R* where
the action of G on RF¥ is given by



24 Differentiable manifolds [Chap. 0

°Yz‘W'"x1 omy!omyoX,.

M
x1(V1) m
V
|

Figure 11

G(:z:l,...,xk)=(z1 +n1,..., Tk +Nk)y, Ni1,...,Nk € Z,

($1,...,$k) € RE.

It is easy to check that the mapping above defines an action of G
on R, which is properly discontinuous. The quotient space R*/G,
with the differentiable structure described in Example 4.8, is called
the k-torus T*. When k = 2, the 2-torus T2 is diffeomorphic to the
torus of revolution in R3 obtained as the inverse image of zero of
the function f:R® = R

f(zay,z) = Z2 + (1/x2 + y2 - a)2 _ 7‘2.
(Cf. M. do Carmo [dC 2], p. 62).
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4.9 (b). Let S C R? be a regular surface in R3, symmetric relative
to the origin 0 € R?, that is, if p € S then —p = A(p) € S. The
group of diffeomorphisms of S formed by {A,Id.} acts on S in a
properly discontinuous manner. Introduce on S/G the differentiable
structure given by Example 4.8. When S is the torus of revolution
T2, S/G = K is called the Klein bottle; when S is the right circular
cylinder given by C = {(z,,2) € R%z2+3y2=1, -1<z<1},
S/G is called the Mébius band. As we shall see in Exercise 9, the
Klein bottle and the Mébius band are non-orientable. In Exercise 6,
we shall indicate how the Klein bottle can be embedded in R?.

5. Vector fields; brackets. Topology of manifolds

5.1 DEFINITION. A vector field X on a differentiable manifold M
is a correspondence that associates to each point p € M a vector
X(p) € T,M. In terms of mappings, X is a mapping of M into the
tangent bundle TM (see Example 4.1). The field is differentiable if
the mapping X: M — TM is differentiable.

Considering a parametrization x: U C R™ — M we can write

@ X0)= Y slp) e

where each a;: U — R is a function on U and {3%} is the basis as-

sociatedtox, ¢=1,...,n. It is clear that X is differentiable if and
only if the functions a; are differentiable for some (and, therefore,
for any) parametrization.

Occasionally, it is convenient to use the idea suggested by (4)
and think of a vector field as a mapping X: D — F from the set
D of differentiable functions on M to the set F of functions on M ,
defined in the following way

) XNE) = X 6 2L (),

where f denotes, by abuse of notation, the expression of f in the
parametrization x. Indeed, this idea of a vector as a directional
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derivative was precisely what was used to define the notion of tangent
vector. It is easy to check that the function X f obtained in (5) does
not depend on the choice of parametrization x. In this context, it is
immediate that X is differentiable if and only if X:D — D, that is,

XfeDforall feD.
Observe that if ¢: M — M is a diffeomorphism, v € T, M -
and f is a differentiable function in a neighborhood of ¢(p), we have

- (de(v) fe(p) = v(f o p)(p).

Indeed, let a: (~¢,€) — M be a differentiable curve with o/(0) = v,
a(0) = p. Then

@) Nel) = FU owon)| =0/ o)p)

The interpretation of X as an operator on D permits us to
consider the iterates of X. For example, if X and Y are differen-
tiable fields on M and f: M — R is a differentiable function, we can
consider the functions X (Y f) and Y(Xf). In general, such opera-
tions do not lead to vector fields, because they involve derivatives of
order higher than one. Nevertheless, we can affirm the following.
5.2 LEMMA. Let X and Y be differentiable vector fields on a
differentiable manifold M. Then there exists a unique vector field
Z such that, forall f € D, Zf=(XY -YX)f.

Proof. First, we prove that if Z exists, then it is unique. Assume,
therefore, the existence of such a Z. Let p € M and let x:U — M
be a parametrization at p, and let

a
X=2i:ai51;, Y= bj—a—:?j-

be the expressions for X and Y in these parametrizations. Then for
all feD,

of ab; f
XYf:X(;b"?ﬁ}) ZJ O s By T 2 ibs a 8:1:1

da: 8f
YXr= Y(Z“' Z b B s Z 5e ax,
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Therefore, Z is given, in the parametrization x, by

0b; Oa;, 0
Zf=XY[-YX[= Y (aig? ~tig) oL
i, i i OTj

which proves the uniqueness of Z.

To show existence, define Z, in each coordinate neighborhood
Xa(Ua) of a differentiable structure {(Us,,x4)} on M by the previous
expression. By uniqueness, Z, = Zg on z,(Uy)Nzg(Us) # ¢, which
allows us to define Z over the entire manifold M. O

The vector field Z given by Lemma 5.2 is called the bracket

[X,Y]=XY -YX of X and Y; Z is obviously differentiable.
The bracket operation has the following properties:

5.3 PROPOSITION. IfX,Y and Z are differentiable vector fields on
M, a,b are real numbers, and f, g are differentiable functions, then:
(a) [X,Y]=-[Y,X] (anticommutativity),
(b) [aX +bY,Z] =a[X, Z] +b[Y, Z] (linearity),
(c) [X,Y],Z]+[[Y, 2], X] +[[Z,X],Y] =0 (Jacobi identity),
(d) [fX,gY]= fg[X,Y]+ fX(9)Y - gY(f)X.
Proof. (a) and (b) are immediate. In order to prove (c), it suffices
to observe that, on the one hand,

[X,Y),Z)=[XY -YX,Z|=XYZ-YXZ-ZXY +2YX
while, on the other hand,
(X, [, 2] + [, (2, X]]
=XYZ-XZY -YZX+ZYX+YZX -YXZ - ZXY + XZY.

Because the second members of the expressions above are equal, (c)
follows using (a). v
Finally, to prove (d), calculate

[fX,9Y] = fX(gY) - gY (fX) = fgXY + fX(g)Y
—9fYX —gY ()X = fglX,Y]+ fX(9)X — gY(f)X.0
The bracket [X,Y] can also be interpretated as a derivation

of Y along the “trajectories” of X. To describe this interpretation,
we need some preliminary ideas on differential equations.
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Since a differentiable manifold is locally diffeomorphic to R™,
the fundamental theorem on existence, uniqueness, and dependence
on initial conditions of ordinary differential equations (which is a
local theorem) extends naturally to differentiable manifolds. For
later use, it is convenient to state it explicitly here. The reader not
familiar with differential equations can assume the statement below,
which is all that we need.

Let X be a differentiable vector field on a differentiable
manifold M, and let p € M. Then there exist a neighborhood
U C M of p, an interval (—6,6), &> 0, and a differentiable map-
ping ¢:(—6,6) x U — M such that the curve t — e(t,q), te
(-6,6), gq €U, is the unique curve which satisfies %% = X(p(t,9))
and ¢(0,9) = ¢

A curve a: (—6,8) — M which satisfies the conditions a(t) =
X (a(t)) and a(0) = q is called a trajectory of the field X that passes
through ¢ for ¢t = 0. The theorem above guarantees that for each
point of a certain neighborhood there passes a unique trajectory of
X and that the mapping so obtained depends differentiably on ¢
and on the “initial condition” q. It is common to use the notation
oi(q) = o(t,q) and call ;: U — M the local flow of X.

The interpretation of the bracket [X, Y], mentioned above, is
contained in the following proposition.

5.4 PROPOSITION. Let X,Y be differentiable vector fields on a
differentiable manifold M, let p € M, and let ¢, be the local flow of
X in a neighborhood U of p. Then

[X,¥)(p) = Jimg 1Y - oY) o))

For the proof, we need the following lemma from calculus.
5.5 LEMMA. Let h:(—6,6) x U — R be a differentiable mapping
with h(0,q) = O for all ¢ € U. Then there exists a differentiable
mapping g: (—6,8) x U — R with h(2, q) = tg(t, q); in particular,

_ Oh(t,q)
9(01 Q) - at =0 .
Proof of lemma. It suffices to define, for fixed t,

_ ! Bh(ts,q)
9(t,q) = A st
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and, after changing variables, observe that

tatt.o) = [ Tellds) = hit ).

Proof of the Proposition. Let f be a differentiable function in a
neighborhood of p. Putting

h(t, q) = f(v:(q)) — f(a),

and applying the lemma we obtain a differentiable function g(t, q)
such that

fowu(q) = f(g) +tg(t,q) and g(0,9) = X f(q).

Accordingly
((docY) f)(pe(p)) = (Y (f o)) (p) = Y £(p) + t(Y (¢, p))-

Therefore

tim 1Y = de¥f(pup) = Jimg TR =TIO) _ (340 p))

= (XY N))p) - Y (XN)(p)
= (XY -YX)/)(p) = (X,Y]f)(p). O

Up till now we have put no restrictions on the topology of a
differentiable manifold. In fact, the natural topology of a manifold
can be quite strange. In particular, it can happen that one (or both)
of the following axioms not be satisfied:

A) Hausdorff Aziom: Given two distinct points of M there
exist neighborhoods of these two points that do not intersect.

B) Countable Basis Aziom: M can be covered by a countable
number of coordinate neighborhoods (we say then that M has a
countable basis).

Axiom A is essential for the uniqueness of limits of convergent
sequences and Axiom B is essential for existence of a differentiable
partition of unity, an almost indispensable tool for the study of cer-
tain questions on manifolds. (Indeed, if M is connected, Axioms
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A and B are equivalent to the existence of a partition of unity; see
Theorem 5.6 below.)

For example, a natural question in the theory of differentiable
manifolds is to know whether a given manifold can be immersed or
embedded into some euclidean space. A fundamental result in this
direction is the famous theorem of Whitney which states the follow-
ing: Any differentiable manifold (which is Hausdorff and has a count-
able basis!) of dimension n can be immersed in R?" and embedded
in R2"*+! (in fact, the theorem can be refined to R**~%, n > 1,
and R2", respectively). A proof of this theorem is not compati-
ble with the intent of this introduction and can be found in M. W.
Hirsch {Hi].

For the sake of information, we mention without proof the
existence theorem for partitions of unity. This requires some defini-
tions.

Let M be a differentiable manifold. A family of open sets
V. C M with |J, Vo = M is said to be locally finite if every point
p € M has a neighborhood W such that W NV, # ¢ for only a
finite number of indices. The support of a function f: M — R.is the
closure of the set of points where f is different from zero.

We say that a family {f,} of differentiable functions fa: M-
R is a differentiable partition of unity if:

(1) For all @, fo > 0 and the support of fy is contained in a co-
ordinate neighborhood Vi = Xq(Ua) of a differentiable struc-
ture {(Ug,xp)} of M.

(2) The family {V4} is locally finite.

(3) ¥, fa(p) = 1, for all p € M (this condition makes sense,
because for each p, fa(p) # 0 only for a finite number of
indices).

It is customary to say that the partition of unity {fa} is
subordinate to the covering {Va}.

5.6 THEOREM. A differentiable manifold M has a differentiable
partition of unity if and only if every connected component of M is
Hausdorff and has a countable basis.

For a proof see F. Brickell and R.S. Clark, Differentiable Man-

ifolds, Van Nostrand Reinhold Co., London 1970, Chap. 3.

5.7 REMARK. Recall that given p € R™ and an open ball B,(p) C
R™ centered at p with radius r, there exists a neighborhood U of p
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with U C B,(p) and a differentiable function f:R™ — R such that
0< f(g) <1forall ge R" and

1, if q€ 17,
0, if q¢B.(p)

Indeed, if we take, for simplicity, r = 2, we can choose U = B (p)
and define f by f(q) = B(-|p—4q|), ¢ € R", where 5:R — R is

given by
[t a(s)ds
f__; a(s)ds’

and oz R — R is the smooth function equaling exp(—(—t+—2)(1—_T_—t7) on
[—2, —1] and zero off this interval. It is easy to check that f satisfies
the required conditions.

Clearly, the same thing happens in a neighborhood contained
in a coordinate neighborhood on a differentiable manifold M. In
other words, if p € M and V C M is a neighborhood of p contained
in a coordinate neighborhood of p which is diffeomorphic to an open
ball, then there exists a neighborhood U of p with U C V and a dif-
ferentiable function f: M - R with0< f(q) < 1ifqe M, f(g) =1
if g€ U, and f(q) = 0if ¢ ¢ V. This fact allows us to show that
certain globally defined objects on M are, in reality, local, that is,
their behavior at p only depends on how M behaves in a neighbor-
hood of p (cf. the definition of the bracket of two vector fields in this
chapter and the definition of an affine connection in Chapter 2).

ﬂ®={

B®) =

EXERCISES

1. (Product manifold). Let M and N be differentiable manifolds

and let {(Ua,Xa)}, {V3,ys} differentiable structures on M and

N, respectively. Consider the cartesian product M x N and
the mappings z.4(p, 9) = (Xa(p),¥5(q)), p € Ua, g € V.

(a) Prove that {(Us x V3,24p)} is a differentiable structure

on M x N in which the projections 7;: M x N — M and
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7g: M x N — N are differentiable. With this differentiable
structure M x N is called the product manifold of M with
N.
(b) Show that the product manifold S x ... x S of n circles
S, where S* C R? has the usual differentiable structure,
is diffeomorphic to the n-torus 7™ of example 4.9 (a).
Prove that the tangent bundle of a differentiable manifold M
is orientable (even though M may not be).
Prove that:
(a) a regular surface S C R? is an orientable manifold if and
only if there exists a differentiable mapping of N: S — R3
with N(p)LT,(S) and |[N(p)| =1, forallp € S.
(b) the Mébius band (Example 4.9 (b)) is non-orientable.
Show that the projective plane P?(R) is non-orientable.
Hint: Prove that if the manifold M is orientable, then any open
subset of M is an orientable submanifold. Observe that P?(R)
contains an open subset diffeomorphic to a M6bius band, which
is non-orientable.

(Embedding of P2(R) in R?). Let F:R3 — R* be given by
F(z,y,2) = (2 - 4%, 29,72,92), (%,9,2) =p€ER’.

Let S2 ¢ R3 be the unit sphere with the origin 0 € R3. Ob-
serve that the restriction ¢ = F | §2 is such that ¢(p) = ¢(-p),
and consider the mapping @: P2(R) — R* given by

@([p]) = ¢(p), [p] = equiv. class of p = {p,—p}.

Prove that:
(a) ¢ is an immersion.
(b) @ is injective; together with (a) and the compactness of
P2(R), this implies that @ is an embedding.
(Embedding of the Klein bottle in R*). Show that the mapping
G:R? — R4 given by

G(z,y) = ((rcosy + a) cos z, (r cosy + a) sin z,

rsinycos;,rsinysin %), (z,y) € R?
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induces an embedding of the Klein bottle (Example 4.9 (b))
into R%.
(Infinite Mébius band).
Let C = {(z,¥, z) € R3; 22 + y = 1} be aright circular cylin-
der, and let A:C — C be the symmetry with respect to
the origin 0 € R3, that is, A(z,y,2) = (-z,-y,—2). Let
M be the quotient space of C with respect to the equiva-
lence relation p ~ A(p), and let m: C — M be the projection
m(p) = {p, A(p)}.

(a) Show that it is possible to give M a differentiable struc-

ture such that = is a local diffeomorphism.
(b) Prove that M is non-orientable.

Let M; and M, be differentiable manifolds. Let ¢: M; — M,
be a local diffeomorphism. Prove that if M> is orientable, then
M, is orientable.

Let G x M — M be a properly discontinuous action of a group
G on a differentiable manifold M.

(a) Prove that the manifold M/G (E xample 4.8) is orientable
if and only if there exists an orientation of M that is
preserved by all the diffeomorphisms of G.

(b) Use (a) to show that the projective plane P?(R), the
Klein bottle and the M6bius band are non-orientable.

(c) Prove that P™(R) is orientable if and only if n is odd.

Show that the topology of the differentiable manifold M/G of
Example 4.8 is Hausdorff if and only if the following condition
holds: given two non-equivalent points p,,ps € M, there exist
neighborhoods Us, Us of p; and po, respectively, such that U;N
gUz = ¢ for all g € G.

Let us consider the two following differentiable structures on
the real line R: (R, x;), where x;: R — R is given by x;(z) =
z,z € R; (R,x2), where x2: R — R is given by x2(z) =
z3, £ € R. Show that:

(a) the identity mapping i: (R,x;) — (R,x2) is not a diffeo-
morphism; therefore, the maximal structures determined
by (R, x1) and (R, x2) are distinct.

(b) the mapping f: (R,x;) — (R,x2) given by f(z) = z3 is
a diffeomorphism; that is, even though the differentiable
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structure (R, x;) and (R, x,) are distinct, they determine

diffeomorphic differentiable manifolds.
(The orientable double covering). Let M™ be a non-orientable
differentiable manifold. For each p € M, consider the set B
of bases of T,M and say that two bases are equivalent if they
are related by a matrix with positive determinant. This is an
equivalence relation and separates B into two disjoint sets. Let
O, be the quotient space of B with respect to this equivalence
relation. O, € O, will be called an orientation of T,M. Let

M be the set
M= {(p,0p);p € M,0p € Op}.

Let {(Ua,Xa)} be a maximal differentiable structure on M,
and define X,: U, — M by

- 0 8
Xo(ug,. .., ud) = (Xa(uf,...,un), [‘—9?1;, . .,a—ug]),
where (u§,...,us) € Uy and [53—,1,,...,5%] denotes the ele-

ment of O, determined by the basis {;93—?, ceey 5:2—“} Prove

that:

(a) {Ua,Xaq)} is a differentiable structure on M and that the
manifold M so obtained is orientable.

(b) The mapping m: M — M given by n(p,0p) = p is differ-
entiable and surjective. In addition, each p € M has a
neighborhood U C M such that #=1(U) = V1 UV, where
Vi and V;, are disjoint open sets in M and = restricted
to each Vi, i = 1,2, is a diffeomorphism onto U. For this
reason, M is called the orientable double cover of M.

(c) The sphere S? is the orientable double cover of P2%(R) and
the torus T2 is the orientable double cover of the Klein
bottle K.



CHAPTER 1

RIEMANNIAN METRICS

1. Introduction

Historically, Riemannian geometry was a natural development of the
differential geometry of surfaces in R3. Given a surface S C R3, we
have a natural way of measuring the lengths of vectors tangent to
S, namely: the inner product (v, w) of two vectors tangent to S at a
point p of S is simply the inner product of these vectors in R3. The
way to compute the length of a curve is, by definition, to integrate
the length of its velocity vector. The definition of ( , ) permits us
to measure not only the lengths of curves in S but also the area of
domains in S, as well as the angle between two curves, and all the
other “metric” ideas used in geometry. More generally, these notions
lead us to define on S certain special curves, called geodesics, which
possess the following property: given any two points p and ¢ on
a geodesic, sufficiently close (in a sense to be made precise later,
Cf. Chap. 3), the length of such a curve is less than or equal to
the length of any other curve joining p to ¢. Such curves behave,
in many situations, as if they were “the straight lines” of S, and,
as we shall see later, play an important role in the development of
geometry.

Observe that the definition of the inner product at each point
p € S, yields, equivalently, a quadratic form I, called the first
fundamental form of S at p, defined in the tangent plane TS by
L(v) = (v,v), v € T,S.

The crucial point of this development was an observation
made by Gauss in his famous work (see Gauss [Ga]) published in
1827. In this work, Gauss defined a notion of curvature for surfaces,
which measures the amount that S deviates, at a point p € S, from
its tangent plane at p. In modern notation, Gauss’ definition can be
expressed in the following terms. Define a mapping g: $ — S?2 c R3
of S into the unit sphere $2? of R3, associating to every p € S a unit
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vector N(p) € 5% normal to T,,S; if S were orientable then g would
be well-defined and differentiable on S. During Gauss’ time, the no-
tion of orientation of surfaces was not well-understood (in truth, it
wasn’t until 1865 that Mobius presented his famous example, well-
known today as the Mdbius band), and so g was defined on “pieces”
of S. In any case, g is differentiable and it is possible then to speak
of its differential dgy: TpS — Ty()S?. Since N(p) is normal to T,S,
we can identify the two vector spaces TpS and Tg(p)S2, and thus
it makes sense to speak of the determinant of the linear map dgp.
Gauss defined his curvature as K(p) = det(dg,) and showed that it
agreed with the product of the principal curvatures introduced in
1760 by Euler.

Perhaps it is worthwhile mentioning that Euler defined the
principal curvatures k; and k2 of a surface S by considering the
curvature k,, of curves obtained by intersecting S with planes normal
to S at p and taking k1 = maxk, and k2 = mink,. At the time of
Gauss it was not at all clear that one function or the other of k; and
k;, would be an adequate definition of curvature. Gauss considered
that the facts which he had obtained about K justified the choice of
K = kjk» as the curvature of S.

The facts that Gauss alluded to were the following. In the
first place, the curvature, as defined above, depends only on the
manner of measuring in S, that is, only on the first fundamental
form I. Secondly, the sum of the interior angles of a triangle formed
by geodesics differs from 180° by an expression that depends only on
the curvature and the area of the triangle.

Everything indicates that Gauss perceived very clearly the
profound implications of his discovery. In fact, one of the funda-
mental problems during Gauss’ time was to decide if the fifth pos-
tulate of Euclid (“Given a straight line and a point not on the line
then there is a straight line through the point which does not meet
the given line”) was independent of the other postulates of geom-
etry. Although without immediate applications, the question leads
to philosophical implications of primary importance. Earlier, it had
been established that Euclid’s fifth postulate is equivalent to the
fact that the sum of the interior angles of a triangle equals 180°.
The discovery of Gauss implied, among other things, that it would
be possible to imagine a geometry (at least in dimension two) that
depended on a fundamental quadratic form given in an arbitrary
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manner (without regard to the ambient space). In such a geometry,
defining straight lines as geodesics, the sum of the interior angles
of a triangle would depend on the curvature and, as Gauss actually
verified, its difference from 180° would be equal to the integral of
the curvature over the triangle. Gauss, however, did not have the
necessary mathematical tools available to develop his ideas (what he
lacked was essentially the idea of a differentiable manifold) and he
preferred not to discuss this topic openly. The actual appearance of
a non-euclidean geometry was due, independently, to Lobatchevski
(1829) and Bolyai(1831).

The ideas of Gauss were taken up again by Riemann in 1854
(see Riemann [Ri]), even though he was still without an adequate
definition of a manifold. Using intuitive language and without proof,
Riemann introduced what we call today a differentiable manifold of
dimension n. He further associated to every point of the mani-
fold a fundamental quadratic form and then generalized the idea of
Gaussian curvature to this situation (cf. Chap. 4). Furthermore, he
stated many relations between the first fundamental quadratic form
and the curvature that were only proved decades later. The read-
ing of his work makes it clear that Riemann was motivated by the
fundamental question implicit in the development of non-euclidean
geometries, namely, the relationship between physics and geometry.

It is curious to observe that the concept of differentiable man-
ifold, necessary for the formalization of the work of Riemann, only
appeared explicitly in 1913 in the work of H. Weyl which made
precise another of Riemann’s audacious concepts, namely, Riemann
surfaces. But that is another story.

Due to the lack of adequate tools, Riemannian geometry as
such developed very slowly. An important outside source of stimula-
tion was the application of these ideas to the theory of relativity in
1916. Another fundamental step was the introduction of the paral-
lelism of Levi-Civita. We shall return to this topic in the next chap-
ter. Our object here is not to write a complete history of Riemannian
geometry but simply to trace its origin and supply motivation for
what is to follow.

Our point of departure will be a differentiable manifold on
which we introduce at each point a way of measuring the length
of tangent vectors. This measurement should change differentiably
from point to point. The explicit definition will be given in the next
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section.

For the remainder of this book, the differentiable manifolds
considered will be assumed to be Hausdorff spaces with countable
bases. “Differentiable” will signify “of class C*°”, and when M™ =
M denotes a differentiable manifold, n denotes the dimension of M.

2. Riemannian Metrics

2.1 DEFINITION. A Riemannian metric (or Riemannian structure)
on a differentiable manifold M is a correspondence which associates
to each point p of M an inner product ( , ), (that is, a symmetric,
bilinear, positive-definite form) on the tangent space T, M, which
varies differentiably in the following sense: If x:U C R* —» M

is a system of coordinates around p, with x(z1,z2, ... \In) =¢q €
x(U) and z22(q) = dxq(0;...,1,...,0), then (5Z(2); 3%;(@))e =
gij(z1,...,%n) is a differentiable function on U.

It is clear this definition does not depend on the choice of
coordinate system.

Another way to express the differentiability of the Rieman-
nian metric is to say that for any pair of vector fields X and Y, which
are differentiable in a neighborhood V of M, the function (X,Y) is
differentiable on V. It is immediate that this definition is equivalent
to the other.

It is usual to delete the index p in the function ( , ), when-
ever there is no possibility of confusion. The function gi; (= g;:) is
called the local representation of the Riemannian metric (or “the g;;
of the metric”) in the coordinate system x:U C R™ — M. A differ-
entiable manifold with a given Riemannian metric will be called a
Riemannian manifold.

After introducing any type of mathematical structure, we
must introduce a notion of when two objects are the same.

9.2 DEFINITION. Let M and N be Riemannian manifolds. A
diffeomorphism f: M — N (that is, f is a differentiable bijection
with a differentiable inverse) is called an isometry if:

(1) (u,v)p = (dfp(u),dfp(V)} s(p), for all p € M, u,v € T, M.
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2.3 DEFINITION. Let M and N be Riemannian manifolds. A
differentiable mapping f: M — N is a local isometry at p € M if
there is a neighborhood U C M of p such that f:U — f(U) is a
diffeomorphism satisfying (1).

It is common to say that a Riemannian manifold M is locally
isometric to a Riemannian manifold N if for every p in M there exists
a neighborhood U of p in M and a local isometry f:U — f(U) C N.

What follows are some non-trivial examples of the notion of
Riemannian manifold.

2.4 EXAMPLE. The almost trivial example. M = R™ with zZ-
identified with e; = (0,...,1,...,0). The metric is given by
(ei, ;) = 6;j. R™ is called Euclidean space of dimension n and the
Riemannian geometry of this space is metric Euclidean geometry.

2.5 EXAMPLE. Immersed manifolds. Let f: M® — N™tk be an im-
mersion, that is, f is differentiable and dfp: T,M — Ty, N is injec-
tive for all pin M. If N has a Riemannian structure, f induces a Rie-
mannian structure on M by defining (u,v), = (dfp(w), dfp(v)) £(n)>
u,v € TpM. Since dfpis injective, (, ), is positive definite. The
other conditions of Definition 2.1 are easily verified. This metric on
M is then called the metric induced by f, and f is an isometric
immersion.

A particularly important case occurs when we have a differ-
entiable function h: M*+t¥ — N* and q € N is a regular value of
h (that is, dhy: TpM — Tiy(,) N is surjective for all p € h=1(g)). It
is known then that h~1(q) C M is a submanifold of M of dimen-
sion n; hence, we can put a Riemannian metric on it induced by the
inclusion.

For example, let h: R® — R be given by h(zi,...,zn) =
Yr,22 — 1. Then 0 is a regular value of h and h~1(0) = {z €
R™:z2 +...+ 22 = 1} = S"~! is the unit sphereof R™. The metric
induced from R™ on S™~! is called the canonical metric of S™1.

2.6 EXAMPLE. Lie groups. A Lie group is a group G with a dif-
ferentiable structure such that the mapping G x G — G given by
(z,y) = zy~, z,y € G, is differentiable. It follows then that trans-
lations from the left L, and translations from the right R, given
by: L,:G — G, L;(y) = zy; R::G — G, R.(y) = yz are diffeomor-
phisms.
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We say that a Riemannian metric on G is left invariant if
(u,v)y = (d(Lz)yu, d(Lz)yV)L,(y) for all z,y € G, u,v € TyG, that
is, if L, is an isometry. Analogously, we can define a right invariant
Riemannian metric. A Riemannian metric on G which is both right
and left invariant is said to be bi-invariant.

We say that a differentiable vector field X on a Lie group G'is
left invariant if dL. X = X for all z € G. The left invariant vector
fields are completely determined by their values at a single point
of G. This allows us to introduce an additional structure on the
tangent space to the neutral element e € G in the following manner.
To each vectorX. € T.G we associate the left invariant X defined
by X, = dLoX., a € G. Let X,Y be left invariant vector fields on
G. Since for each € G and for any differentiable function f on G,

dL.[X,Y]f = [X,Y](f o L) = X(dL.Y)f - Y(dL.X) f =

we conclude that the bracket of any two left invariant vector fields is
again a left invariant vector field. If X, Ye € T.G, we put [X,, Ye] =
[X,Y].. With this operation, TG is called the Lie algebra of G,
denoted by G. From now on, the elements in the Lie algebra G will
be thought of either as vectors in T.G or as left invariant vector
fields on G.

To introduce a left invariant metric on G, take any arbitrary
inner product { , ). on G and define

(2) (u’ ’U): = ((dL::"l)::(u)a (sz—l)z(’U))e, z€G,u,v€E T:G.

Since L, depends differentiably on z, this construction actually pro-
duces a Riemannian metric, which is clearly left invariant.

In an analogous manner we can construct a right invariant
metric on G. If G is compact, we will see in Exercise 7 that G
possesses a bi-invariant metric.

If G has a bi-invariant metric, the inner product that the
metric determines on G satisfies the following relation: For any
UV,Xegq,

@) (U, X1, V) = —(U, [V, X]).
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Before proving the relation above, we need some preliminary facts
about Lie groups.

For any a € G, let R;-1L,: G — G be the inner automor-
phism of G determined by a. Such a mapping is a diffeomorphism
that keeps e fixed. Thus, the differential d(R,-1L,) = Ad(a):G — G
is a linear map (in fact, it is a homomorphism of the Lie algebra,
but we do not need this fact). Explicitly,

Ad(a)Y = dR,-1dL.Y =dR,-Y, forallY €.
Let z; be the flow of X € G. Then, from Proposition 5.4 of Chap-

ter 0, .

On the other hand, since X is left invariant, Ly oz, = z, 0 Ly, giving
z:(y) = z:(Ly(e)) = Ly(z1(€)) = yz:(e) = Rzy(e) (v)-

Therefore, dr: = dR;,(c), and
im 1 — tim L (Ad(z ey
¥, X] = im 2 (dRy, (o (¥) - ¥) = im 2(Ad(=7 @)Y = Y).

Let us now return to the proof of (3). Let (, ) be a bi-invariant
metric on a Lie group G. Then for any X,U,V € G,

(U, V) = <dRz,_(e) o szt-‘(e)U’ dth(e) o JLI:l(e)V) =

= (dRz,(e)U, dRz,(e)V)-

Differentiating the expression above with respect to ¢, recalling that
(,) is bilinear, and setting ¢ = 0 in the expression obtained, we
conclude that

0= ([U, X1, V) + (U, [V, X)),

which is the equation (3).

The important point about the relation above is that it char-
acterizes the bi-invariant metrics of G, in the following sense. If a
positive bilinear form (, ). defined on G satisfies the relation (3),
then the Riemannian metric defined on G by (2) is bi-invariant. It
is not difficult to prove this fact but we will not go into the proof
here.
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2.7 EXAMPLE. The product metric. Let M; and M; be Rieman-
nian manifolds and consider the cartesian product M; x My with the
product structure. Let my: My x Mz — M, and ma: M1 X Mz — M,
be the natural projections. Introduce on M; x M; a Riemannian
metric as follows:

(4, V) (p,q) = (dm1 - U, dmy - v)p + (dm2 - u,dma - v)g,

for all (p, q) € My x My, u,v € T(p,q)(Ml X Mz).

It is easy to verify that this is really a Riemannian metric on the
product. For example, the torus S*x: - -xS! = T™ has a Riemannian
structure obtained by choosing the induced Riemannian metric from
R2 on the circle S ¢ R? and then taking the product metric. The
torus T™ with this metric is called the flat torus.

We are now going to show how a Riemannian metric can be
used to calculate the lengths of curves.
2.8 DEFINITION. A differentiable mapping ¢: I — M of an open
interval I C R into a differentiable manifold M is called a (para-
metrized) curve.

Observe that a parametrized curve can admit self-intersec-
tions as well as “corners” (Fig. 1).

Figure 1



sec. 2] Riemannian Metrics 43

2.9 DEFINITION. A vector field V along a curve I — M is a
differentiable mapping that associates to every ¢ € I a tangent vec-
tor V(t) € T,yM. To say that V is differentiable means that for
any differentiable function f on M, the function t — V(t)f is a
differentiable function on I.

The vector field dc(£), denoted by %, is called the velocity
field (or tangent vector field) ofc. Observe that a vector field along
c cannot necessarily be extended to a vector field on an open set of
M.

The restriction of a curve c to a closed interval [a,b] C I is
called a segment. If M is a Riemannian manifold, we define the
length of a segment by

b 1/2
dc dc
Zg (C) = / <_dt ’ ——dt> dt.

Let us now prove a theorem on the existence of Riemannian
metrics.

2.10 PROPOSITION. A differentiable manifold M (Hausdorff with
countable basis) has a Riemannian metric.

Proof. Let {fa} be a differentiable partition of unity on M subor-
dinate to a covering {V,} of M by coordinate neighborhoods. This
means (See Chap. 0, Sec. 5) that {V,} is a locally finite covering (i.e.,
any point of M has a neighborhood U such thatU NV, # ¢ at most
for a finite number of indices) and {f,} is a family of differentiable
functions on M satisfying:

1) fa 20, fo =0 on the complement of the closed set V.

2) 3, fa(p) =1 for all p on M.
It is clear that we can define a Riemannian metric (,)* on each
Va: the metric induced by the system of local coordinates. Let us
then set (u,v), = Y, fa(p)(y, v)g forallp € M, u,v € T,M. Tt is
easy to verify that this construction defines a Riemannian metric on
M. O

To conclude this chapter, we are going to show how a Rie-
mannian metric permits us to define a notion of volume on a given
oriented manifold M™.

As usual we need some preliminary facts. Let p € M and let
x:U C R™ — M be a parametrization about p which belongs to a
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family of parametrizations consistent with the orientation of M (we
say that such parametrizations are positive). Consider a positive
orthonormal basis {e1, ...,en} of ToM and write X;(p) = z2-(p) in
the basis {e;}: Xi(p) = 3_,; aije;. Then

9ik(p) = (Xi, Xi) (p) = Y _ asjaue (ej,€0) = D aijk;.
it J

Since the volume vol(X(p), ..., Xrn(p)) of the parallelepiped formed
by the vectors X1(p), ..., Xn(p) in T,M is equal to vol(ey, ..., e,) =
1 multiplied by the determinant of the matrix (ai;), we obtain

Vol(X1(p), .. Xn(p)) = det(as;) = /det(g:) (0)-

If y:V ¢ R® —» M is another positive parametrization about p,
with Yi(p) = a—z;(p) and hi;(p) = (Y;,Y;) (p),we obtain

(4) det(g:;)(p) = vol(X1(p), ..., Xn(p))
= Jvol(Y1(p), ..., Ya(p)) = Jy/det(hi;)(p),

where J = det(gi?) = det(dy~! o dx)(p) > 0 is the determinant of
the derivative of the change of coordinates.

Now let R C M be a region (an open connected subset),
whose closure is compact. We suppose that R is contained in
a coordinate neighborhood x(U) with a positive parametrization
x:U — M, and that the boundary of x"!(R) C U has measure
zero in R™ (observe that the notion of measure zero in R" is invari-
ant by diffeomorphism). Let us define the volume vol(R) of R by
the integral in R

(5) VOI(R) = /_I(R) \/det(g,-j) dxl e d:l!n.

The expression above is well-defined. Indeed, if R is con-
tained in another coordinate neighborhood y(V) with a positive
parametrization y:V C R® — M, we obtain from the change of
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variable theorem for multiple integrals, (using the same notation as
in (4),

/ V det(gij)dxl . dzn
x~1(R)
= / V4 det h,-jdyl e dy,, = VOI(R),
y~Y(R)

which proves that the definition given by (5) does not depend on
the choice of the coordinate system (here the hypothesis of the ori-
entability of M enters by guaranteeing that vol(R) does not change
sign).

2.11 REMARK. The reader familiar with differential forms will note
that equation (4) implies that the integrand in the formula for the
volume in expression (5) is a positive differential form of degree n,
which is usually called a volume form (or volume element) v on M.
In order to define the volume of a compact region R, which is not
contained in a coordinate neighborhood it is necessary to consider
a partition of unity {¢;} subordinate to a (finite) covering of R
consisting of coordinate neighborhoods x(U;) and to take

vol(R) = Z/_I(R) ;.

It follows immediately that the expression above does not depend
on the choice of the partition of unity.

2.12 REMARK. It is clear that the existence of a globally defined
positive differential form of degree n (volume element) leads to a
notion of volume on a differentiable manifold. A Riemannian metric
is only one of the ways through which a volume element can be
obtained.

EXERCISES

1. Prove that the antipodal mapping A:S™ — gSn given by
A(p) = —p is an isometry of S™. Use this fact to introduce
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a Riemannian metric on the real projective space P*(R) such
that the natural projection m: S® — P™(R) is a local isometry.

Introduce a Riemannian metric on the torus T™ in such a way
that the natural natural projection 7: R™® — T™ given by

n(z1,...,Ta) = (€7,...,€), (z1,...,Za) € R",

is a local isometry. Show that with this metric T™ is isometric
to the flat torus.

Obtain an isometric immersion of the flat torus 7™ into R2".
A function g: R — R given by g(¢) = yt+z, t,z,y€R, y>
0, is called a proper affine function. The subset of all such
functions with respect to the usual composition law forms a
Lie group G. As a differentiable manifold G is simply the
upper half-plane {(z,y) € R?;y > 0} with the differentiable
structure induced fromR2. Prove that:

(a) The left-invariant Riemannian metric of G which at the
neutral element e = (0,1) coincides with the Euclidean
metric (911 = go2 = 1, g12 = 0) is given by g1 = g2z =
;%, g12 = 0, (this is the metric of the non-euclidean ge-
ometry of Lobatchevski).

(b) Putting (z,y) = z = z+1y, i = v/—1, the transformation
z-—»z’—%‘_&, a,b,c,d € R, ad — bc = 1 is an isometry
of G.

Hint: Observe that the first fundamental form can be written
as:
dz? + dy? _ 4dzdz

2 (-3

Prove that the isometries of S* ¢ R™t1, with the induced
metric, are the restrictions to S™ of the linear orthogonal maps
of R™+1,

Show that the relation “M is locally isometric to N” is not a
symimetric relation.

Let G be a compact connected Lie group (dimG = n) The
object of this exercise is to prove that G has a bi-invariant
Riemannian metric. To do this, take the following approach:

ds? =




Exercises 47

(a) Let w be a differential n-form on G invariant on the left,
that is, L*w = w, for all z € G. Prove that w is right
invariant.

Hint: For any a € G, Rlw is left invariant. It follows
that Rtw = f(a)w. Verify thatf(ab) = f(a)f(b), that is,
f:G — R— {0} is a (continuous) homomorphism of G into the
multiplicative group of real numbers. Since f(G) is a compact
connected subgroup, the conclusion f(G) = 1 holds. Therefore
Rlw=w.

(b) Show that there exists a left invariant differential n-form
won G.

(c) Let (, ) be aleft invariant metric on G. Let w be a positive
differential n-form on G which is invariant on the left, and
define a new Riemannian metric ((, )) on G by

(s = [ (R0 @Re)yoh,
r,y € G, u,ve€T(G).

Prove that this new Riemannian metric ((,)) is bi-
invariant.



CHAPTER 2

AFFINE CONNECTIONS;
RIEMANNIAN CONNECTIONS

1. Introduction

A fundamental event in the development of differential geometry
was the introduction, in 1917, of the Levi-Civita parallelism (see
Levi-Civita [LC]). For the case of surfaces in R?, an equivalent idea
can be described in the following manner. Let S C R3 be a surface
and let ¢:I — S be a parametrized curve in S, with V:I — R3 a
vector field along ¢ tangent to S. The vector ﬁ‘d—‘tﬁ(t), t € I, does not
in general belong to the tangent plane of S, T)S. The concept of
differentiating a vector field is not therefore an “intrinsic” geometric
notion on S. To remedy this state of affairs we consider, instead
of the usual derivative %(t), the orthogonal projection of -‘fi—‘t’-(t)
on Te(;)S. This orthogonally projected vector we call the covariant
derivative and denote it by %t‘i(t). The covariant derivative of V is
the derivative of V as seen from the “viewpoint of S”.

A basic point is that the covariant derivative depends only
on the first fundamental form of S and is therefore a concept which
can be considered within Riemannian geometry. In particular, the
notion of covariant derivative permits us to take the derivative of
the velocity vector of ¢, which gives the acceleration of the curve ¢
in §. It is possible to show that curves with zero acceleration are
precisely the geodesics of S and that the Gaussian curvature of S
can be expressed in terms of the notion of the covariant derivative.

We say that a vector field V' along c is parallel if %’- =
Conversely, starting from the notion of parallelism it is possible to
recover the notion of covariant derivative (Cf. Exercise 1 of this
chapter). These notions are then equivalent to each other.

Although nowadays it is preferable to start from the notion
of covariant derivative, historically the idea of parallelism came first.
For surfaces in R3, parallelism can be introduced in the following
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manner. Consider a family of planes tangent to S along the curve
c. This family determines a surface E, enveloping these tangent
planes, which possesses the property that it will be tangent to S
along the curve ¢ and whose Gaussian curvature K = 0. (Cf. M.
do Carmo [dC 2] pp. 195-197). It is not difficult to show that the
parallelism along c, defined through the vanishing of the covariant
derivative is the same whether considered relative to S or relative
to E. On the other hand, surfaces of zero curvature can be shown
to be locally isometric to a plane. Since parallelism is invariant by
isometry, we can perform it “euclideanly” in the isometric image
of E and then bring it back to S. This was the construction used
classically to define parallelism. (M. do Carmo [dC 2] p. 244). It will
turn out that it is preferable, technically, to work with the covariant
derivative.

The notion of covariant derivative has many important con-
sequences. It makes it clear that the two basic ideas of geodesic
and curvature can be defined in more general situations than that
of Riemannian manifolds. To this end it suffices that one be able to
define a notion of derivation of vector fields with certain properties
(which nowadays we call an affine connection, Cf. Definition 2.1 of
this chapter). This has stimulated the creation of many different
“geometric structures” (on differentiable manifolds) more general
than Riemannian geometry. In the same way as metric Euclidean
geometry is a particular case of affine geometry and more generally
of projective geometry, Riemannian geometry is a particular case of
more general geometric structures.

We are not going to enter into the details of these devel-
opments. Our interest in affine connections rests in the fact (Cf.
Theorem 3.6 of this chapter) that a choice of a Riemannian metric
on a manifold M uniquely determines a certain affine connection on
M. We are then able, in this fashion, to differentiate vector fields
on M.

2. Affine Connections

Let us indicate by X (M) the set of all vector fields of class O™
on M and by D(M) the ring of real-valued functions of class C'°°
defined on M.
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2.1 DEFINITION. An affine connection V on a differentiable man-
ifold M is a mapping

V: X (M) x X(M) — X (M)

which is denoted by (X,Y) v xY and which satisfies the follow-
ing properties :
i) VixsgvZ = fVxZ+gVyZ.
ii) Vx(Y+2)=VxY +VxZ.
iii) Vx(fY)=fVxY + X(f)Y,
in which X,Y,Z € ¥(M) and f,g € D(M).
This definition is not as transparent as that of Riemannian
structure. The following proposition, nevertheless, should clarify the
situation a little.

2.2 PROPOSITION. Let M be a differentiable manifold with an
affine connection V. There exists a unique correspondence which
associates to a vector ﬁe]d V along the differentiable curve c: I — M
another vector ﬁeld a]ong ¢, called the covariant derivative of V
along c, such that:
a) 2+ W) oY + DW.
b) a D(fV) = V + f , where W is a vector field along ¢ and
fisa dIEerentJabIe function on I.

c) IfV is mduced by a vector field Y € X(M), ie., V(t) =
Y (c(t)), then 2 "dT = Vic/atY -
2.3 REMARK. The last line of (¢) makes sense, since VxY (p)
depends on the value of X (p) and the value Y along a curve, tangent
to X at p. In effect, part (iii) of Definition 2.1 allows us to show that
the notion of affine connection is actually a local notion (cf. Rem. 5.7
of Chap. 0). Choosing a system of coordinates (z1,...,Z,) about p

and writing
X=Y =X, Y= yXj,
i J
-where X; = y‘;‘:;, we have

VxY = Zzivxi (Z ¥iX;) = inij)ﬁxj + inXi(yj)X,-.
i J ij ij
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Setting Vx,X; = 3, I'f; X, we conclude that the T, are differen-
tiable functions and that

VxY = O za;T% + X (yk)) Xx,
k ij

which proves that VxY (p) depends on z;(p), yx(p) and the deriva-
tives X (yx)(p) of yx by X.

2.4 REMARK. The proposition above shows that the choice of an
affine connection on M leads to a bona fide (i.e. satisfying (a) and
(b)) derivative of vector fields along curves. The notion of connection
furnishes, therefore, a manner of differentiating vectors along curves;
in particular, it will then be possible to speak of the acceleration of
a curve in M.

Proof of Proposition 2.2. Let us suppose initially that there ex-
ists a correspondence satisfying (a), (b) and (c). Let x:U C
R"™ — M be a system of coordinates with ¢(I) N x(U) # ¢ and
let(wl(t),:cz(t), .,Zn(t)) be the local expression of c(t),t € I.
Let X; = y Then we can express the field V locally as V =
;v iXj,j=1,...,n, where v/ = v¥(t) and X; = X; i(e(?)).

By a) and b), we have

DX

By c) and (i) of Definition 2.1,

DX;
% = Vacja X; = V(E%ﬂX.)XJ-
dz; ..
—Z i ——Vx.X;, 4,j=1,...,n
Therefore,
Dv dz,
J

The expression (1) shows us that if there is a correspondence
satisfying the conditions of Proposition 2. 2, then such a correspon-
dence is unique.
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To show existence, define 2¥ in x(U) by (1). It is easy to
verify that (1) possesses the d&su‘ed properties. If y(W) is another
coordinate neighborhood, with y(W)nx(U ) # ¢ and we deﬁne—d-t— in
y(W) by (1), the definitions agree in y(W)Nx(U), by the uniqueness

of Z¥ in x(U). It follows that the definition can be extended over
all of M, and this concludes the proof. O

The concept of parallelism now follows in a natural manner.

2.5 DEFINITION. Let M be a differentiable manifold with an affine
connection V. A vector field V along a curve ¢:I — M is called
parallel when =0,forallteI.

2.6 PROPOSITION. Let M be a differentiable manifold with an
affine connection V. Let ¢: I — M be a differentiable curve in M and
let V, be a vector tangent to M at c(t,), t, € I (i.e. V, € T, )M).
Then there exists a unique parallel vector field V along c, such that
V(to) = Vo, ((V(2) is called the parallel transport of V (t,) along c).

Proof. Suppose that the theorem was proved for the case in which
c(I) is contained in a local coordinate neighborhood. By compact-
ness, for any ¢; € I, the segment c([t,,¢1]) C M can be covered by a
finite number of coordinate neighborhoods, in each of which V can
be defined, by hypothesis. From uniqueness, the definitions coincide
when the intersections are not empty, thus allowing the definition of
V along all of [¢,,;].

We have only, therefore, to prove the theorem when ¢(J) is
contained in a coordinate neighborhood x(U) of a system of coordi-
nates x: U C R™ — M. Let x~(c(t)) = (z1(2), ..., zn(t)) be the lo-
cal expression for c(t) and let V, = 37, v3 X, where X; = r(c(to))

Suppose that there exists a vector field V in x(U) which is
parallel along ¢ with V(t,) = V,,. Then V = }" 17 X; satisfies

DV d’vJi dxi .
0= —(—i-t— = ;—dTXJ +'Zj:—c§_vJVX‘XJ

Putting Vx, X; = Y, Fijk, and replacing j with k in the first
sum, we obtain

T - z{ D }xk=o.
k
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The system of n differential equations in v*(t),

dv* k74T
(2) =-—E+§F"j’l}‘7ﬁ‘, k=1)“'7n’

possesses a unique solution satisfying the initial conditions v*(t,) =
vk. It then follows that, if V exists, it is unique. Moreover, since
the system is linear, any solution is defined for all ¢ € I, which
then proves the existence (and uniqueness ) of V with the desired
properties. [

3. Riemannian Connections

3.1 DEFINITION. Let M be a differentiable manifold with an affine
connection V and a Riemannian metric (, ). A connection is said
to be compatible with the metric (, ), when for any smooth curve
c and any pair of parallel vector fields P and P’ along ¢, we have
(P, P') = constant.

Definition 3.1 is justified by the following proposition which
shows that if V is compatible with (, ), then we are able to differ-
entiate the inner product by the usual “product rule”.

3.2 PROPOSITION. Let M be a Riemannian manifold. A connec-

tion V on M is compatible with a metric if and only if for any vector

fields V and W along the differentiable curve ¢: I — M we have
DV DW

®  gmm=Elmw 2, er

Proof. 1t is obvious that equation (3) implies that V is compatible
with (, ). Therefore, let us prove the converse. Choose an orthonor-
mal basis {Pi(t,),..., Pa(to)} of Tyt,)(M), t, € I. Using Propo-
sition 2.6, we can extend the vectors Pi(t,),i = 1,...,n, along c
by parallel translation. Because V is compatible with the metric,

{Pi(t),..., Pa(t)} is an orthonormal basis of Tery(M), for any ¢ € I.
Therefore, we can write

V=> P, W=>w'P, i=1,..,n
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where v* and w' are differentiable functions on I. It follows that
DV dvt DwW dw?
-~ xah el

Therefore,

DV DW vt dwt
W+ V=) = z:{att vt g }

=3 {lZv"wi} = %(V, w). O

3.3 COROLLARY. A connection V on a Riemannian manifold M is
compatible with the metric if and only if

(4) X(Y,2)=(VxY,2)+(Y,VxZ), X,Y,ZeX(M).

Proof. Suppose that V is compatible with the metric. Let p € M
and let c:I — M be a differentiable curve with c(t,) = p, t, € I,

and with %[,_, = X(p). Then

X(p)Y,2Z) = (Y Z) ., =(Vx@)Y, 2)p + (Y, Vx(5)Z)p.

0

Since p is arbitrary, (4) follows. The converse is obvious. [

3.4 DEFINITION. An affine connection V on a smooth manifold M
is said to be symmetric when

(5) VxY -VyX =[X,Y] forall X,Y € A(M).

3.5 REMARK. In a coordinate system (U,x), the fact that V is
symmetric implies that for all 4,5 =1,...,n,

)
(5) Vx. X~ Vx,Xi = [Xi, X;] =0, Xi‘-‘-"a—;i',

which justifies the terminology (observe that (5°) is equivalent to the
fact that 'Y, = T'%).

We are now able to state the fundamental theorem of this
chapter.
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3.6 Theorem. (Levi-Civita). Given a Riemannian manifold M,
there exists a unique affine connection V on M satisfying the con-
ditions:

a) V is symmetric.

b) V is compatible with the Riemannian metric.

Proof. Suppose initially the existence of such a V. Then

(6) X(Y,Z) =(VxY,2) + (Y, VxZ),
(7) Y(Zv X) = (VYZ’ X) + (Z1 VYX>’
(8) Z(X,Y)=(VzX,Y)+ (X,VzY).

Adding (6) and (7) and subtracting (8), we have, using the
symmetry of V, that

X(Y,2) +Y(Z,X) - Z(X,Y)

Therefore

®)  (Z,YvX) =3 {X(¥,2) + Y(Z,X) - Z(X,Y)
_<[Xa Z]7Y> - <[Y’ Z]7X) - ([X,Y],Z)} .

The expression (9) shows that V is uniquely determined from
the metric (, ). Hence, if it exists, it will be unique.

To prove existence, define V by (9). It is easy to verify that
V is well-defined land that it satisfies the desired conditions. O

3.7 REMARK. The connection given by the theorem will be referred

to, from now on, as the Levi-Civita (or Riemannian) connection on
M.

Let us conclude this chapter by writing part of what was
shown above in a coordinate system (U, x). It is customary to call
the functions Ffj defined on U by Vx, X; = Dk I“ijk, the coeffi-
cients of the connection V on U or the Christoffel symbols of the
connection. From (9) it follows that

e, 1f{0 .6 8
%:F,Jgek =3 azig]k + oz, Gki — Egij} )
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where gij = (Xi,XJ').
Since the matrix (gkm) admits an inverse (¢*™), we obtain
that

m 1 a . 0 o a A km
(10) Pij = 2 ;{Bzigjk + amj ki azkgu}g .

The equation (10) is a classical expression for the Christoffel sym-
bols of the Riemannian connection in terms of the g;; (given by the
metric).
Observe that for the Euclidean space R™, we have I‘" =0.
In terms of the Christoffel symbols, the covariant denvatlve
has the classical expression

Z-r{&oretin

which follows from (1). Observe that 3 differs from the usual
derivative in Euclidean space by terms whlch involve the Christoffel
symbols. Therefore, in Euclidean spaces the covariant derivative
coincides with the usual derivative.

EXERCISES

1. Let M be a Riemannian manifold. Consider the mapping
P = Pc,t.,,t:Tc(to)M and Tc(t)M

defined by: P, :(v), v € Ty, )M, is the vector obtained by
parallel transporting the vector v along the curve ¢. Show that
P is an isometry and that, if M is oriented, P preserves the
orientation.

2. Let X and Y be differentiable vector fields on a Riemannian
manifold M. Let p € M and let c:I — M be an integral curve
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of X through p, i.e. c(to) = p and §& = X(c(t)). Prove that
the Riemannian connection of M is

(VxN) = FERFEO)|

to

where P, i: Tee,) M — Ti() M is the parallel transport along
¢, from ¢, to ¢ (this shows how the connection can be reobtained
from the concept of parallelism).

Let f: M™ — M"** be an immersion of a differentiable mani-
fold M into a Riemannian manifold M. Assume that M has the
Riemannian metric induced by f (cf. Example 2.5 of Chap. 1).
Let p € M and let U C M be a neighborhood of p such that
f(U) € M is a submanifold of M. Further, suppose that X,Y
are differentiable vector fields on f(U) which extend to dif-
ferentiable vector fields X,Y on an open set of M. _Define
(VxY)(p) = tangential component of VY (p), where V is the
Riemannian connection of M. Prove that V is the Riemannian
connection of M.

Let M2 C R3 be a surface in R? with the induced Riemannian
metric. Let ¢: I — M be a differentiable curve on M and let V
be vector field tangent to M along c; V can be thought of as a
smooth function V:I — R3, with V() € Ty M.
a) Show that V is parallel if and only if % is perpendicular
to Ty M C R® where 9¥ is the usual derivative of V: I —
3

b) If S? C R3 is the unit sphere of R3, show that the velocity
field along great circles, parametrized by arc length, is a
parallel field. A similar argument holds for S* ¢ R™*1.

In Euclidean space, the parallel transport of a vector between
two points does not depend on the curve joining the two points.
Show, by example, that this fact may not be true on an arbi-
trary Riemannian manifold.

Let M be a Riemannian manifold and let p be a point of M.
Consider a constant curve f:I — M given by f (t) = p, for
all t € I. Let V be a vector field along f (that is, V is a

differentiable mapping of I into T,M). Show that 2¥% — a,
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that is to say, the covariant derivative coincides with the usual
derivative of V:I — T, M.

Let 2 C R?® be the unit sphere, ¢ an arbitrary parallel of
latitude on $? and V, a tangent vector to S? at a point of c.
Describe geometrically the parallel transport of V, along c.
Hint: Consider the cone C tangent to S? along ¢ and show
that the parallel transport of V, along c is the same, whether
taken relative to S or to C.

Consider the upper half-plane
= {(z,y) € R%;y > 0}

with the metric given by g1; = goo = ;1;, g12 = 0 (metric of
Lobatchevski’s non-euclidean geometry ).
a) Show that the Christoffel symbols of the Riemannian con-
nection are: T}, =T%, =T}, =0, TI% = 3 T =
I3, = ""y‘
b) Let v, = (0, 1) be a tangent vector at point (0,1) of R*+
(vo is a unit vector on the y-axis with origin at (0, 1)).
Let v(t) be the parallel transport of v, along the curve
z = ¢,y = 1. Show that v(t) makes an angle ¢ with the
direction of the y-axis, measured in the clockwise sense.
Hint: The field v(t) = (a(t), b(t)) satisfies the system (2) which
defines a parallel field and which, in this case, simplifies to

{ﬂ+w¢=m
di’ +T%a=0

Taking @ = cosf(t), b = sinf(t) and noting that along the
given curve we have y = 1, we obtain from the equations above
that -‘% = —1. Since v(0) = v,, this implies that 8(¢) = /2 —t.
(Pseudo-Riemannian Metrics). A pseudo-Riemannian metric
on a smooth manifold M is a choice, at every point p € M, of
a non-degenerate symmetric bilinear form (, ) (not necessarily
positive definite) on T, M which varies differentiably with p.
Except for the fact that (, ) need not be positive definite, all
of the definitions that have been presented up to now make
sense for a pseudo-Riemannian metric. For example, an affine
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connection on M compatible with a pseudo-Riemannian metric
on M satisfies equation (4) ; if, in addition, (5) holds, the affine
connection is said to be symmetric.

a) Show that the theorem of Levi-Civita extends to pseudo-
Riemannian metrics. The connection so obtained is called
the pseudo-Riemannian connection.

b) Introduce a pseudo-Riemannian metric on R™*! by using
the quadratic form:

Q(zoy...,Zn) = —(5["0)2 + (-771)2 +...+ (mn)z,
(To,...,Tn) € R,

Show that the parallel transport corresponding to the
Levi-Civita connection of this metric coincides with the
usual parallel transport of R™*! (this pseudo-Riemannian
metric is called the Lorentz metric; for n = 3, it appears
naturally in relativity).



CHAPTER 3

GEODESICS;
CONVEX NEIGHBORHOODS

1. Introduction

After fixing the basic terminology, we pass to the study of two fun-
damental concepts of Riemannian geometry, namely, geodesics and
curvature. This chapter introduces the notion of a geodesic as a
curve with zero acceleration. In the next chapter, we initiate the
study of curvature.

One of the objectives of the present chapter is to show that
a geodesic minimizes arc length for points “sufficiently close” (in
a sense to be made precise); in addition, if a curve minimizes arc
length between any two of its points, it is a geodesic. To prove these
facts we need various concepts and theorems which will be useful
later.

In Section 2 we introduce the tangent bundle TM of a dif-
ferentiable manifold M which allows us to reduce the local study of
geodesics on M to the study of the trajectories of a vector field (the
geodesic field) on TM. In Section 3, we introduce the exponential
map of an open set in T'M to M which is simply a way of “collecting”
all of the geodesics of M into a unique differentiable mapping. This
notation is extremely useful, and, permits us, for example, to apply
the inverse function theorem to show that any point of M posseses
a neighborhood W such that any two points of W can be joined by
a unique geodesic which minimizes arc length (see Theorem 3.7).

The concept of a geodesic, as a curve that minimizes the
distance between two nearby points, is rather old. For surfaces in R3,
the geodesics can be characterized as those curves ¢(s) (where s is
arc length) for which the acceleration ¢"(s) in R? is perpendicular to
the surface (therefore, the acceleration of ¢ “from the viewpoint” of
the surface is zero). Such a characterization was apparently known,
at least for convex surfaces, in 1697 by Johann Bernoulli, and the
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equations of geodesics for surfaces of the form f(z,y,z) = 0 was
considered by Euler in 1732. Nevertheless, it was only with the work
of Gauss [Ga] in 1827 that the relationship between the geodesics
and the curvature of a surface was established (Cf. Introduction
to Chap. 1). This relationship is fundamental and will appear in
various forms throughout this book.

2. The geodesic flow

In what follows, M will be a Riemannian manifold, together with
its Riemannian connection.
2.1 DEFINITION. A parametrized curve v:I — M is a geodesic at
to € Iif %(%’}) = 0 at the point t,; if 7y is a geodesic at ¢, for all
t € I, we say that v is a geodesic. If [a,b) C I and v:] — M is
a geodesic, the restriction of v to [a, b] is called a geodesic segment
joining y(a) to y(b).

At times, by abuse of language, we refer to the image (1),
of a geodesic 7, as a geodesic.

If v:I — M is a geodesic, then

ddy dv,_, Dy dv, _
dt‘dt’dt’ ~ “‘dtdt’dt’

that is, the length of the tangent vector %—} is constant. We assume,

from now on, that l%} = ¢ # 0, that is, we exclude the geodesics

which reduce to points. The arc length s of v, starting from a fixed
origin, say t = t,, is then given by

o=

Therefore, the parameter of a geodesic is proportional to arc length.
When the parameter is actually arc length, that is, ¢ = 1, we say
that the geodesic v is normalized.

Now we are going to determine the local equations satisfied
by a geodesic v in a system of coordinates (U, x) about 7(t,). In U,
a curve vy

dy
% dt = c(t — t,).

(@) = (z1(8), ..., zn(2)).
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will be a geodesic if and only if

_ D  dvy _ d?zy kdmg de; @
0= @ =2 t LTy e

Hence the second order system

dz; dz;
Fk_i._].=0 k:l -
@ dt2 +Z TP T reeeath

yields the desired equations.

To study the system (1), it is convenient to consider the tan-
gent bundle TM, which will also be useful in future situations.

TM is the set of pairs (q,v), g € M,v € T,M. If (U,x) is a
system of coordinates on M, then any vector in TgM, q € x(U), can
be written as ) _;._; yiz az Taking (z1,...,Zn,¥1,--.,Yn) as coordin-
ates of (¢, v) in TU, it is easy to show that we obtain a differentiable
structure for TM (Cf. Example 4.1 of Chap. 0).

Observe that TU = U x R™, that is, the tangent bundle is
locally a product. In addition, the canonical projection m: TM — M
given by 7(g,v) = q is differentiable.

Any differentiable curve ¢ — «(¢) in M determines a curve
t— (v(t), 5 S5(t)) in TM. If v is a geodesic then, on TU, the curve

t = @1(),. .., nll), d“”(t),..., d”"(t))

satisfies the system

(1) { it

d
%:-Zidf‘ijiyj k=1,...,n

in terms of coordinates (Z1,...,Zn,¥1,.--,¥n) on TU. Therefore the
second order system (1) on U is equivalent to the first order system °
(1) on TU.

Let us recall the following result from differential equations.
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2.2 Theorem. If X is a C* vector field on the open set V in the
manifold M and p € V then there exist anopenset V, CV,p€e V,, a
number § > 0, and a C*® mapping p: (—8,8) x V, = V such that the
curvet — ¢(t,q), t € (—6,6), is the unique trajectory of X which at
the instant t = 0 passes through the point q, for every q € V,.

The mapping ¢,: V, — V given by ¢:(q) = ¢(t,q) is called
the flow of X on V.

2.3 LEMMA. There exists a unique vector field G on TM whose
trajectories are of the form t — (v(t),~'(t)), where v is a geodesic
on M.

Proof. We shall first prove the uniqueness of G, supposing its ex-
istence. Consider a system of coordinates (U,x) on M. From the
hypothesis, the trajectories of G on TU are given by t — (y(¢),7'(t))
where 7 is a geodesic. It follows that ¢ — (y(t),7/(¢)) is a solution
of the system of differential equations (1’). From the uniqueness of
the trajectories of such a system, we conclude that if G exists, then
it is unique.

To prove the existence of G, define it locally by the system
(1"). Using the uniqueness, we conclude that G is well-defined on
T™. O

2.4 DEFINITION. The vector field G defined above is called the
geodesic field on TM and its flow is called the geodesic flow on TM.

Applying Theorem 2.2 to the geodesic field G at the point
(p,0) € TM, we obtain the following fact:

-For each p € M ‘there exist an open set U in TU, where
(U,x) is a system of coordinates at p and (p,0) € U, a number § > 0
and a C* mapping, p: (—6,6) x U — TU, such that t — (t,q,v)
is the unique trajectory of G which satisfies the initial condition
¢(0,4,v) = (g,v), for each (q,v) € U.

It is possible to choose U in the form

U={(g,v) €TU;q€V and v € T,M with |v| < &},

where V' C U is a neighborhood of p € M. Putting v = 7 o P,
where m: TM — M is the canonical projection, we can describe the
previous result in the following way.
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2.5 PROPOSITION. Given p € M, there exist an open set V C
M, p €V, numbers § > 0 and €; > 0 and a C*™ mapping

1 (=68 xU—-M, U= {(Qav);qewveTqulvl < e},

such that the curve t — «(t,q,v), t € (—6,4), is the unique geodesic
of M which, at the instant t = 0, passes through ¢ with velocity v,
for each g € V' and for each v € TyM with |v| < ;.

Proposition 2.5 asserts that if |v| < &1, the geodesic y(¢, q,v)
exists in an interval (—6,6) and is unique. Actually, it is possible
to increase the velocity of a geodesic by decreasing its interval of
definition, or vice-versa. This follows from the following lemma of
homogeneity.

2.6 LEMMA. (Homogeneity of a geodesic). If the geodesic (t, q,v)
is defined on the interval (-6,6), then the geodesic
v(t,q,av), a € R, a > 0, is defined on the interval (—g, %) and

7(t, ¢, av) = 7(at, g, v).
Proof. Let h:(—£,2) — M be a curve given by h(t) = v(at, q,v).

Then h(0) = q and 9%(0) = av. In addition, since h'(t) =
a’y, (at’ q’ v)’

D dh

a_t'(gi' = Vh’(t)h‘,(t) = azv‘y'(at,q,v)'Yl(at’ q; 'U) =0,

where, for the first equality, we extend A'(t) to a neighborhood of
h(t) in M. Therefore, h is a geodesic passing through g with velocity
av at the instant ¢ = 0. By uniqueness,

h(t) = v(at,q,v) = v(t,q,av). O

Proposition 2.5, together with the lemma of homogeneity,

permits us to make the interval of definition of a geodesic uniformly
large in a neighborhood of p. More precisely, we have the following
fact.
2.7 PROPOSITION. Given p € M, there exist a neighborhood V
of p in M, a number € > 0 and a C* mapping 7v: (—~2,2) x U —
M, U = {(qw) € TM;qe V,w € T;M,|w| <&} such that t —
(¢, q,w), t € (—2,2), is the unique geodesic of M which, at the
instant ¢t = 0, passes through q with velocity w, for every q € V and
for every w € T,M, with |w| < €.
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Proof. The geodesic ¥(t, q,v) of Proposition 2.5 is defined for |t| < §
and for |v| < &;. From the lemma of homogeneity, v(t,q, %—,’i) is
defined for |t| < 2. Taking ¢ < &, we obtain that the geodesic
7(t,q,w) is defined for |t| < 2 and |w|<e. O

2.8 REMARK. By an analogous argument, we can make the velocity
of a geodesic uniformly large in a neighborhood of p.

Proposition 2.7 permits us to introduce the concept of the ex-
ponential map in the following manner. Let p€ M and let Y C TM
be an open set given by Proposition 2.7. Then the map exp:U/ — M
given by

v
exp(‘]a 'U) = 7(11 q, ’U) = 7(!”' » 4 m)’ (Qa 'U) € u;

is called the exponential map on Y.

It is clear that exp is differentiable. In most of the applica-
tions, we shall utilize the restriction of exp to an open subset of the
tangent space Ty M, that is, we define

expy: Be(0) CTyM - M

by exp,(v) = exp(q,v). Here, and in what follows, we denote by
B.(0) an open ball with center at the origin 0 of Ty M and of radius
e. It is easy to verify that exp, is differentiable and that exp,(0) = q.
Geometrically, exp,(v) is a point of M obtained by going out
the length equal to |v|, starting from g, along a geodesic which passes
through ¢ with velocity equal to Tz)ﬂ
2.9 PROPOSITION. Given q € M, there exists an € > 0 such that
exp,: B;(0) C T,M — M is a diffeomorphism of B.(0) onto an open
subset of M.

Proof. Let us calculate d(exp,)o:

dlexpp)o(v) = e ()| = 2 (3(1,q,)

t=0 t=0

=v.
t=0

Hence d(exp,), is the identity of T, M, and it follows from the in-
verse function theorem that exp, is a local diffeomorphism on a
neighborhood of 0. O

= £01(t0,v)
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2.10 ExaMPLE. Let M = R"™. Since the covariant derivative
coincides with the usual derivative, the geodesics are straight lines
parametrized proportionally to arc length. The exponential is clearly
the identity (with the usual identification of the tangent space of R®
at p with R™).

2.11 EXAMPLE. Let M = S™ C R™*! be the unit sphere of dimen-
sion n. As we saw in Exercise 4(b) of Chapter 2, the great circles
of §™, parametrized by arc length, are geodesics. We are going to
show that all of the geodesics of S™ are great circles parametrized
proportionally to arc length. Indeed, given p € S™ and a unit vector
v € T,S™, the intersection with S™ of the plane that contains the
origin of R**1, the point p, and the vector v, is a great circle that
can be parametrized as the geodesic through p with velocity v. From
the uniqueness of Proposition 2.5, the statement follows.

Given a point (p,v) € TM, the point exp,v € M is obtained
by running along the geodesic v(t, p, Tz—[) a length equal to |v], start-
ing from p. In the case at hand, it is clear that exp, is defined
over the entire tangent space, and can be described in the following
way: exp, transforms B,(0) injectively into S™ — {q}, where ¢ is
the antipodal point to p; the boundary of B,(0) is transformed to
g; the open annulus By, (0) — B, (0) is transformed injectively onto
S™ — {p, q}; the boundary of B3,(0) collapses to p, etc. (Fig. 1).

Figure 1

Observe that if we consider the Riemannian manifold S - {¢}, exp,



sec. 3] Minimizing properties of geodesics 67

will be defined only on B,(0) C T,(S™ — {q}).

3. Minimizing properties of geodesics

We now want to study certain minimizing properties of geodesics.
For this it is necessary to consider some preliminary definitions and
lemmas.

3.1 DEFINITION. A piecewise differentiable curve is a continu-
ous mapping c:[a,b] — M of a closed interval [a,b] C R into
M satisfying the following condition: there exists a partition a =
to <t <...<tg-1 < tx = b of [a,b] such that the restrictions
[T i=0,...,k — 1, are differentiable. We say that c joins
the points c(a) and c¢(b). c(t:) is called a vertez of c, and the angle
formed by lim,_,,+ c(t) with lim,_,,- c'(t) is called the vertez angle
at c(t;); here lim,_,+ (limt_,ti-) signifies that t approaches t; through
values above (belowj that of t;.

The idea of parallel transport can easily be extended to piece-
wise differentiable curves: given V, € Tc(y)M, t € [t;, ti1], extend
V, obtaining a parallel field V'(¢), t € [ti,ti+1]; taking V(¢;) and
V(ti1+1) as new initial values, we are able to extend V' (t) in a similar
way over the interval [¢;_;,¢;42], and so on.

3.2 DEFINITION. A segment of the geodesic v: [a,b] — M is called
minimizing if £(y) < £(c), where £( ) denotes the length of a curve
and c is an arbitrary piecewise differentiable curve joining v(a) to
7(b).

In the proof of Gauss’ lemma, appearing in a moment, we use
the following terminology.

3.3 DEFINITION. Let A be a connected set in RZUC AcU, U
open, such that the boundary 94 of A is a piecewise differentiable
curve with vertex angles different from n. A parametrized surface
in M is a differentiable mapping s: 4 C R? — M. (Observe that to
say that s is differentiable on A means that there exists an open set
U > A to which s can be extended differentiably. The condition on
the vertex angles of A is necessary to ensure that the differential of
8 does not depend on the given extension.)
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A vector field V along s is a mapping which associates to
each ¢ € A a vector V(q) € Tyq)M, and which is differentiable in
the following sense: if f is a differentiable function on M ,then the
mapping ¢ — V(q)f is differentiable.

Let (u,v) be cartesian coordinates on R2. For v, fixed, the
mapping u — 8(u,v,), where u belongs to a connected component
of AN {v=1,}, is a curve in M, and ds(a—), which we mdlcate
by gz, is a vector field along this curve. This deﬁnes 2 for all
(u,v) € A and 8;: is a vector field along s. The vector ﬁeld 8’ is
defined analogously.

IfVisa vector field along s: A — M, let us define the covari-
ant derivative 3 T and D})’ in the following way. D 14 S (u,v,) is the
covariant derivative along the curve u — s(u,v,) of the restriction
of V to this curve. This defines Z¥ (u,v) for all (u,v) € A. BY is
defined analogously.

3.4 LEMMA. (symmetry). If M is a differentiable manifold with a
symmetric connection and s: A — M is a parametrized surface then:

B_Qi_Das

Svdu Oudv’

Proof. Let x: V C R™ — M be a system of coordinates in a neigh-
borhood of a point of s(A). We can write

x" 1o s(u,v) = (z'(y,v),...,z"(u,v)).

Therefore
D 63
ED) Bu = v (Z ou Bx‘
Juvdu 6:1:‘ du VE: (827 /8v)9/0x) 73
&z 8 oz’ 0’ 9w o 8
Bvdu az= < Bu v /0% gL

From the symmetry of the connection, Va/a:j‘ga;; = Va/az-‘sg;
Hence calculating %(—g%) we obtain the same expression as above, '
which proves the lemma. 0O

In what follows we identify the tangent space to T,M at v € :
Tp,M with T, M itself, and write T,M ~ T, (T, M).
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3.5 LEMMA. (Gauss). Let p € M and let v € T,M such that
expy, v is defined. Let w € TyM =~ T,(T,M). Then

2 ((dexp,)v(v), (dexpy)y(w)) = (v, w).

Proof. Let w = wr+wn, where wr is parallel to v and wy is normal
to v. Since dexp, is linear and, by the definition of exp,,

((dexp,)v(v), (dexpy)o(wr)) = (v, wr),

it suffices to prove (2) for w = wy. It is clear that we can assume

WN 7é 0.
Since exp, v is defined, there exists € > 0 such that exp, u is

defined for
u = tv(s), 0<t<1l, -e<s<eg,

where v(s) is a curve in T,M with v(0) = v, v'(0) = wy and
|v(s)| =const. We can, therefore, consider the parametrized surface

fiA—- M, A={(t,8);0<t<1, —e<s<e}

given by
f(¢, 3) = exp, tu(s).
Observe that the curves t — f(t, s,) are geodesics (see Fig. 2).

=

v(s)

Figure 2
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To prove (2) for w = wy, observe first that

@ &L 0,0= (@ew,)n), @exp,)))

In addition, for all (¢, s), we have

a ,0f of _ D af of af D6f
335 50 = Zias o T 55 Biat)

The last term of the expression above is zero, since %E is the tangent
vector of a geodesic. From the symmetry of the connection, the first
term of the sum is transformed into

7] ?j_ of,

Dof 9f, ,DOf 8f, 18
(8t3s B = (636t Bt)*283<3t’6t =0

It follows that ( 55 at) is independent of ¢. Since
lim g—f:(t 0) = lim(dexp, Ytwn =0
0 as ’ t—0 P tv N b}

we conclude that ( 551 8t 2£)(1,0) = 0, which together with (3) proves
the lemma. O

It is convenient to use the following terminology. If exp, is a
diffeomorphism of a neighborhood V of the origin in T,M, exp,V =

U is called a normal neighborhood of p. If B,(0) is such that B.(0) C
V, we call exp,, B (0) = B¢(p) the normal ball (or geodesic ball) with
center p and radius &. From the Gauss lemma, the boundary of a
normal ball is a hypersurface (submanifold of codimension 1) in M
orthogonal to the geodesics that start from p; it is denoted by S, (p)
and called the normal sphere (or geodesic sphere) at p. The geodesics
in B(p) that begin at p are referred to as radial geodesics.

We now show that geodesics locally minimize the arc length.
More precisely, we have the following fact.
3.6 PROPOSITION. Let p € M, U a normal neighborhood of p,
and B C U a normal ball of center p. Let ~: [0,1] — B be a geodesic
segment with ¥(0) = p. If ¢:{0,1] — M is any piecewise differen-
tiable curve joining v(0) to (1) then €(vy) < €(c) and if equality
holds then ([0, 1]) = ([0, 1]).
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Proof. Suppose initially that c([0,1]) C B. Since exp, is a diffeo-
morphism on U, the curve c(t), for ¢ # 0, can be written uniquely
as exp,(r(t) - v(t)) = f(r(t),t) where t — v(t) is a curve in T,M
with |v(t)] = 1 and r:(0,1] — R is a positive piecewise differen-
tiable function (we can suppose that if ¢; € (0,1] then c(¢;) # p;
otherwise, ignore the interval [0,¢,)). It follows that, except for a
finite number of points,

dc _df , of
Et"—- ar’l"(t)'l" Bt
From the Gauss lemma, (%f,%t[) = 0. Since lg{-l =1,
dc 2 ' 2 af 2 ’ 2
= = =~ >
0 | -ror+|5] zro
and so

1 1 1
) /e % dt > /5 ()] dt > /e P (t)dt = r(1)  r(e).

Taking € — 0 we obtain £(c) > £(v), because r(1) = £(7).
It is clear that if the inequality (1), or the second inequality

(2), is strict then £(c) > £(v). If £(c) = £(v), then l%‘tl = 0, that is,
v(t) = const., and |r’(¢)| = '(t) > 0. It follows that c is a monotonic
reparametrization of v, hence ¢([0, 1]) = ([0, 1]).

If ¢([0, 1]) is not contained in B, consider the first point ¢; €
(0, 1) for which ¢(¢,) belongs to the boundary of B. If p is the radius
of the geodesic ball B, we have:

) > boe(9) 2 p> £(7). O

It should be noted that the proposition above is not global.
If we consider a sufficiently large arc of a geodesic it can cease min-
imizing the arc length after awhile. For example the geodesics on
the sphere which start at a point p are no longer minimizing after
they pass through the antipode of p.

On the other hand, if a piecewise differentiable curve ¢ is
minimizing, we shall prove that c is a geodesic. For this, we need
a refinement of Proposition 2.9, where we proved the existence of
normal neighborhoods. We show below that for any p € M there
exists a neighborhood W of p which is a normal neighborhood of
each g e W.
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3.7 Theorem. For any p € M there exist a neighborhood W of p
and a number § > 0, such that, for every q € W, exp, is a diffeo-
morphism on Bs(0) C T,M and exp,(B;(0)) D W, that is, W is a
normal neighborhood of each of its points.

Proof. Let € > 0, V and U as in Proposition 2.7. Define F:lf —
M x M by F(q,v) = (g,exp,v). Recall that # C TU, where U
is the domain of a system of coordinates x at p, with V' C x(U).
Consider, around F(p,0) = (p,p) € M x M the system of coordinates
(U x U;(x,x)). Thus, the matrix of dF, ) is

I I

0 )’
because (dexp,), = I. It follows that F is a local diffeomorphism in
a neighborhood of (p,0). This means that there exists a neighbor-
hood U’ C U of (p,0) in TM such that F maps U’ diffeomorphically

onto a neighborhood W’ of (p,p) in M x M. It is possible to choose
U’ of the form

U' ={(g,v);q € V',v € T, M, v| < 6},

where V’ C V is a neighborhood of p in M. Now choose a neighbor-
hood W C M of p such that W x W Cc W’. We claim that W and
6, so obtained, satisfy the assertion of the Proposition.

Indeed, if ¢ € W and Bs(0) C T,M then, since F is a diffeo-
morphism on U’, we get

F({q} x Bs(0)) > {q} x W.

From the definition of F, exp,(Bs(0)) > W. O

3.8 REMARK. From the proposition above and the minimizing
property of geodesics, it follows that given two points q1,q0 € W
there exists a unique minimizing geodesic « of length < é joining ¢;
to g. The proof shows, moreover, that v depends differentiably on
(¢1, q2) in the following sense: given (qi, g2) there exists a unique v €
T,, M (given by F~(g1, ¢2) = (q1,v)) that depends differentiably on
(91, ¢2) and is such that v'(0) = v. ‘
It is customary to call W a totally normal neighborhood of

PE M.
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3.9 COROLLARY. If a piecewise differentiable curve v: [a,b] — M,
with parameter proportional to arc length, has length less or equal
to the length of any other piecewise differentiable curve joining ~(a)
to v(b) then v is a geodesic. In particular, v is regular.

Proof. Let t € [a,b] and let W be a totally normal neighborhood
of y(t). There exists a closed interval I C [a,b], with non-empty
interior, ¢ € I, such that y(I) C W; the restriction vy: I — W is
then a piecewise differentiable curve joining two points of a normal
ball. From the hypothesis and from Proposition 3.6, £(vr) is equal
to the length of a radial geodesic joining these two points. Again,
from Proposition 3.6, and from the fact that <, is parametrized
proportionally to arc length, v is a geodesic on I, and therefore at
t. O

Using the corollary above, we can determine the geodesics in
the Lobatchevski plane. It should be observed, and it is easy to
verify, that the isometries of a Riemannian manifold take geodesics
into geodesics.

3.10 EXAMPLE. Let G be the upper half-plane, that is, G =
{(z,y) € R%y > 0} with the Riemannian metric g;; = go2 =
;1!, g12=g21=0

We are going to show that the segment 4:[a,b] = G, a > 0,
of the y axis, given by (t) = (0,t) is the image of a geodesic. In fact,
for any arc c: [a,b] — G given by c(t) = (z(t), y(t)) with c(a) = (0, a)
and ¢(b) = (0,b), we have that

b b
(0= [ |F|a=[ G+ @rs

b b

dy| dt dy
> | —_> LA .
_/a dt y_/a y )

It follows that v minimizes arc length for piecewise differentiable

curves, and from Corollary 3.9, that the image of ~ is a geodesic.

It is easy to see that the isometries of G (cf. Exercise 4 of
Chap. 1)

de
di

az+b
cz+d’

transform the Oy axis into (upper) semi-circles or rays z = To, y > 0.
These curves are, therefore, geodesics of G. Indeed, they are all of

Z -

z=z+1y, ad—-bc=1,
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the geodesics of G, since for each p € G and any direction in T,G
there passes such a circle with center on the Oz axis (Fig. 3; in the
special case that a direction is normal to Oz, the circle degenerates
to a ray normal to 0z).

Ay

2

Figure 3. Geodesics of the Lobatchevski plane.

4. Convex neighborhoods

We saw in Theorem 3.7 (Cf. Remark 3.8) that any point p € M
possesses a totally normal neighborhood, that is, a neighborhood
W and a number § > 0 such that any two points q1,92 € W can
be joined by a minimizing geodesic of length < §. However, such a
geodesic may not lie completely in W. We say that a subset S C M
is strongly convez if for any two points g1, gz in the closure Sof S
there exists unique minimizing geodesic v joining q1 with g2 whose
interior is contained in S. Now we are going to prove that the radius
of a totally normal ball can be chosen in such a way that the ball is
strongly convex.

4.1 LEMMA. For any p € M there exists a number ¢ > 0 such that
any geodesic in M that is tangent at ¢ € M to the geodesic sphere
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Sr(p) of radius r < c stays out of the geodesic ball B,(p) for some
neighborhood of q.

Proof. Let W be a totally normal neighborhood of p. Using the
lemma of homogeneity, we can suppose, by conveniently restricting
the interval of definition, that all of the geodesics of W have velocity
one. We can, therefore, restrict ourselves to the unit tangent bundle
T\W given by

TiW = {(q,v);q € W,v € T,M, |v| = 1}.

Let v:I x YW — M, I = (-¢,¢), be the differentiable
mapping such that ¢ — ~4(¢,q,v) is the geodesic that at the in-
stant ¢ = 0 passes through ¢ with velocity v, |[vy| = 1. Define

u(t’ q, v) = exf’;l(’Y(t’ q, 'U)) and
F:IxT\W >R, F(t,qv)=|u(t,qv)f.
F measures the square of the “distance” from p to a point that is

moving along the geodesic v (Fig. 4). It is clear that u and F are
differentiable, and that

oF ou

73? = 2(57“)’

°F 8%y ou|?
Wﬂ‘w’“)“la -

Now let » > 0 be chosen so that
exp, B-(0) = B,(p) C W.

If a geodesic ~ is tangent to the geodesic sphere S,.(p) at the point
q = (0, q,v), then, from the Gauss lemma,

('gtﬁ(oa q, ’U), 'U,(O, q, ‘U)) =0,

that is, %%(0, g,v) = 0. If we show that, for r sufficiently small, the
critical point (0, g, v) of F is a strict minimum point, we have proven
the lemma.
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Figure 4
For this it suffices to observe that for ¢ = p, we have
u(t, p,v) = tv and, therefore
o*F
5 Opv) =20 =2,

It follows that there exists a neighborhood V C W of p such that
%’tg(o,q,v) >0,forallge Vandallve T,M, jv| =1 Let c>0
be such that

exp, B:(0) C V.

From what was previously proved, any geodesic in B(p) that is
tangent to the geodesic sphere of radius r < c at the point ~(0, q,v)
produces a strict local minimum for F at (0, ¢, v). It follows that, in a
neighborhood of g, the points of v stay outside of the ball B, (p). O

4.2 PROPOSITION. (Convex neighborhoods). For any p € M there
exists a number 8 > 0 such that the geodesic ball Bg(p) is strongly
convex.
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Proof. Let c be the number given in Lemma 4.1. Choose § > 0 and
W in Theorem 3.7 in such a way that § < £. Take § < 6 such
that Bg(p) C W. We shall prove that Bg(p) is strongly convex. Let

1,92 € Bg(p) and let v be the (unique) geodesic of length < 26 < ¢
joining ¢ to g2. It is clear that v is contained in B.(p) (Fig. 5).

'

Figure 5

If the interior of -y is not contained in Bg(p), then there exists
a point m in the interior of v where the maximum distance r from p
to v is attained. The points of 4 in a neighborhood of m remain in
the closure of B,(p). Since m € B.(p) this contradicts Lemma, 4.1
and proves the proposition. [

EXERCISES

1. (Geodesics of a surface of revolution). Denote by (u,v) the
cartesian coordinates of R2. Show that the function ¢:U C
R? — R? given by ¢(u,v) = (f(v) cosu, f(v) sinu, g(v)),

U = {(u,v) € R u, < u < u1;v, <v<w},

where f and g are differentiable functions, with flv)? +
g'(v)? # 0 and f(v) # 0, is an immersion. The image e(U) is
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the surface generated by the rotation of the curve (f(v), g(v))
around the axis 0z and is called a surface of revolution S. The
image by ¢ of the curves u = constant and v = constant are
called meridians and parallels, respectively, of S.
a) Show that the induced metric in the coordinates (u,v) is
given by

gu=1r>% g12=0, ga=(f")?+(")%
b) Show that local equations of a geodesic v are

d*u 2ff' dudv
f2 datdt

dz'v ffl f!fll + glgll(
R e et -

c¢) Obtain the following geometric meaning of the equations
above: the second equation is, except for meridians and
parallels, equivalent to the fact that the “energy” |7/ (t)|
of a geodesic is constant along 7; the first equation signi-
fies that if G(t) is the oriented angle, A(t) < =, of vy with
a parallel P intersecting vy at y(t), then

r cos 8 = const.,

where r is the radius of the parallel P (the equation above
is called Clairaut’s relation).

d) Use Clairaut’s relation to show that a geodesic of the pa-
raboloid

(f(v)=v,g(v)='v2,0<v<oo,—e<u< 27 + €),

which is not a meridian, intersects itself an infinite num-
ber of times(Fig. 6).
It is possible to introduce a Riemannian metric in the tangent
bundle TM of a Riemannian manifold M in the following man-
ner. Let (p,v) € TM and V,W be tangent vectors in TM at
(p,v). Choose curves in TM

a:t — (p(t),‘U(t))’ ﬂ:‘g - (q(s)’w(s))’
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Figure 6. Geodesics of a paraboloid.

with p(0) = ¢(0) = p, v(0) = w(0) = v, and V = a’(0), W =
B'(0). Define an inner product on TM by

(VW )y = {dn(V), de (W) + (22(0), Z2(0))

where dr is the differential of m: TM — M.
a) Prove that this inner product is well-defined and intro-
duces a Riemannian metric on TM.
b) A vector at (p,v) € TM that is orthogonal (for the metric
above) to the fiber 7=1(p) ~ T,M is called a horizontal

vector. A curve
t — (p(t),v(?))

in TM is horizontal if its tangent vector is horizontal for
all . Prove that the curve

t — (p(t),v(?))

is horizontal if and only if the vector field v(t) is parallel
along p(t) in M.
c) Prove that the geodesic field is a horizontal vector field
(i.e., it is horizontal at every point).
d) Prove that the trajectories of the geodesic field are geo-
desics on TM in the metric above.
Hint: Let a(t) = (a(t),v(t)) be a curve in TM. Show that
¢(a) > £(a) and that the inequality is verified if v is parallel
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along a. Consider a trajectory of the geodesic flow passing
through (p,v) which is locally of the form 4(¢) = (v(¢), (%)),
where ¥(t) is a geodesic on M. Choose convex neighborhoods
W C TM of (p,v) and V C M of p such that n(W) = V.
Take two points @1 = (q1,v1), @2 = (g2,v2) n yNW. If §
is not a geodesic, there exists a curve @ in W passing through
@1 and Q2 such that £(a) < €(7) = €(7). Let a = n(@); since
{(a) < £(a), this contradicts the fact that + is a geodesic.

€) A vector at (p,v) € TM is called vertical if it is tangent

to the fiber 7~!(p) ~ T, M. Show that:

(W, W) (p,0) = (dn(W),dn(W))p, if W is horizontal,
(W, W)y = (W, W), if W is vertical,

where we are identifying the tangent space to the fiber
with T, M.

Let G be a Lie group, G its Lie algebra and let X € G (see
Example 2.6, Chap. 1). The trajectories of X determine a
mapping ¢: (—¢,€) — G with (0) = e, ¢'(t) = X (p(t)).

a) Prove that ¢(t) is defined for all ¢ € R and that
et +8) = o(t) - p(s), (p:R — G is then called a I-
parameter subgroup of G).

Hint: Let o(t,) = y, t, € (—¢,€). Show that, from the left
invariance, t — y~1p(t), t € (~¢,¢), is also an integral curve of
X passing through e for ¢t =t,. By uniqueness, ¢(t,) " 1p(t) =
¢(t — ), hence ¢ can be extended out from ¢, in an interval
of radius e. This shows that ¢(t) is defined for all £ € R. In
addition ¢(t,)~! = p(~t,) and, since t, is arbitrary, we obtain
@(t + 5) = p(t) - p(s).

b) Prove that if G has a bi-invariant metric ( , ) then the
geodesics of G that start from e are l-parameter sub-
groups of G.

Hint: Use the relation (see Eq. (9) of Chap. 2)

2AX,VzY) = Z(X,Y)+ Y (X, Z) - X(Y, Z)
+(Z,{X,Y]) + (Y, [X, Z]) - (X, Y, Z])

and the fact that the metric is left invariant to prove that
(X,VyY) = (Y,[X,Y]), where X,Y and Z are left invariant



Exercises 81

fields. Use also the fact that the bi-invariance of (, ) implies
that
([U,X],V) = —(U, [V’XD’ X, U,V eg.

It follows that VyY =0, for all Y € G. Thus 1-parameter sub-
groups are geodesics. By uniqueness, geodesics are 1-parameter
subgroups.

A subset A of a differentiable manifold M is contractible to
a point @ € A when the mapping id4 (identity on A) and
ka:x € A — a € A are homotopic (with base point a). A is
contractible if it is contractible to one of its points.

a) Show that a convex neighborhood in a Riemannian mani-
fold M is a contractible subset (with respect to any of its
points).

b) Let M be a differentiable manifold. Show that there exists
a covering {U,} of M with the following properties:

i) U, is open and contractible, for each a.
ii) If Ua,,...,Us,, are elements of the covering, then
N Ua, is contractible

Let M be a Riemannian manifold and X € X(M). Let pe M
and let U C M be a neighborhood of p. Let ¢: (—¢,e)xU - M
be a differentiable mapping such that for any q € U the curve
t — ¢(t,q) is a trajectory of X passing through q at ¢t = 0
(U and ¢ are given by the fundamental theorem for ordinary
differential equations, Cf. Theorem 2.2). X is called a Killing
field (or an infinitesimal isometry) if, for each t, € (—¢,¢€), the
mapping ¢(t,, ): U C M — M is an isometry.

Prove that:

a) A vector vield v on R™ may be seen as a map v : R" &
R™; we say that the field is linear if v is a linear map. A
linear field on R", defined by a matrix A4, is a Killing field
if and only if A is anti-symmetric.

b) Let X be a Killing field on M, p € M, and let U be
a normal neighborhood of p on M. Assume that pisa
unique point of U that satisfies X (p) = 0. Then, in U, X
is tangent to the geodesic spheres centered at p.

¢) Let X be a differentiable vector field on M and let f: M —
N be an isometry. Let Y be a vector field on N defined
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by Y (f(p)) = dfp(X(p)), p € M. Then Y is a Killing field
if and only if X is also a Killing vector field.
d) X is Killing & (VyX,Z)+ (VzX,Y)=0forallY,Z €
X (M) (the equation above is called the Killing equation).
Hint for =: By continuity, it suffices to prove the equation
above for points ¢ € U where X(q) # 0. If this is the
case, let § C U be a submanifold of U, passing through g,
normal to X(q) # O at ¢, with dimS = dimM - 1. Let
(z1,...,Tn-1) be coordinates in a neighborhood V' C S of ¢
such that (z1,...,%n-1,t) are coordinates in a neighborhood
V x (—¢,6) C U and X = £. Putting X; = 32-, obtain

(Y, %, X3+ (V. X, X5) = X(Xe, X;) = (X, Xi], ;)
— (X, X}, X0 = (X X) =0,

where in the last equality the fact was used that X is a Killing
field.
e) Let X be a Killing field on M with X(q) # 0, ¢ € M.
Then there exists a system of coordinates (1,...,%Z5) in
a neighborhood of ¢, so that the coefficients g;; of the
metric in this system coordinates do not depend on z,.

Let X be a Killing field (Cf. Exercise 5) on a connected Rie-
mannian manifold M. Assume that there exists a point ¢ € M
such that X(q) = 0 and VyX(g) = 0, for all Y(q) € TyM.
Prove that X = 0.

Hint: Show that, for all ¢, the local isometry ¢(¢, U C M —
M generated by the field X (Cf. Exercise 5) leaves the point ¢
fixed and its differential at q , as a linear map of T, M, is the
identity. For this, observe that dp,: TyM — T,M for all t. In
addition, [X,Y](q) = (VxY — VyX)(g) = 0, by hypothesis.
Since

0= ¥, X)(@) = Jimy Hdou ~ 10)¥) = G;(dp0)|

and dp,y: = dps - dyy, conclude that dyp, does not depend on
t, and it is equal to Id. Now use the exponential map to show
that such an isometry is the identity on M.
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7. (Geodesic frame). Let M be a Riemannian manifold of dimen-
sion n and let p € M. Show that there exists a neighborhood
U C M of p and n vector fields E,,...,E, € X(U), orthonor-
mal at each point of U, such that, at p, VEe.Ej(p) =0.
Such a family E;, i = 1,...,n, of vector fields is called a (local)
geodesic frame at p.

8. Let M be a Riemannian manifold. Let X € X(M) and f €
D(M). Define the divergence of X as a function divX: M —
R given by divX(p) = trace of the linear mapping Y(p) —
VyX(p), p € M, and the gradient of f as a vector field grad f
on M defined by

(grad f(p),v) = dfp(v), pEM, veT,M.
a) Let E;, i =1,...,n = dim M, be a geodesic frame at
p € M (See Exercise 7). Show that:

grad f(p) = ) _(E:(f))E:(p),

i=1

divX(p) = ZEi(fi)(p)a where X = ZfiEi-
i=1 i

b) Suppose that M = R™, with coordinates (z1,.-.,z,) and
a%,- =(0,...,1,...,0) = ¢;. Show that:

. ofi
divX = Z%—z, where X = Zi:f,-ei.
9. Let M be a Riemannian manifold. Define an operator
A:D(M) — D(M) (the Laplacian of M) by
Af = divgrad f, f € D(M).

a) Let E; be a geodesic frame at p € M, i=1,...,n=
dim M (see Exercise 7). Prove that

Af(p) = ZE,-(E.-(f))(p).
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Conclude that if M = R™, A2 coincides with the usual
Laplacian, namely, Af =3, %r{.
b) Show that

A(f - g) = fAg+ gAf + 2(grad f, grad g).

Let f:[0,1] x [0,a] — M be a parametrized surface such that
for all t, € [0,a], the curve s — f(s,t,), s € [0,1], is a geodesic
parametrized by arc length, which is orthogonal to the curve
t — f(0,t), t € [0,a], at the point f(0,¢,). Prove that, for all
(80,t0) € [0,1] x [0, a], the curves s — f(s,t,), t = f(s,,t) are
orthogonal.

Hint: Differentiate (35, 3c) With respect to s, obtaining

4.9f ofy_ DOf ofy Of Dof
s o) = wasar) T e aas)
_1d <6f Bf)
~ 2dt'0s’ Bs ’
where we used the symmetry of the connection and the fact
that 22 — .

Let M be an oriented Riemannian manifold. Let v be a dif-
ferential form of degree n = dim M defined in the following
way:

V(”Ia ,vn)(p) i\/ det((v,, 'UJ))

= orient. vol. {vy,...,v,}, pPE M,

where v1,...,v, € Tp(M) are linearly independent, and the
oriented volume is affected by the sign + or - depending on
whether or not the basis {v,...,v,} belongs to the orientation
of M; v is called the volume element of M. For a vector field
X € X(M) define the interior product i(X)v of X with v as
the (n — 1)-form:

i(X)u(Yz,...,Yn) =v(X,Y2,...,Yn), Ys,...,Y, € X(M).

Prove that
d(i(X)v) = divXw.
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Hint: Let p € M and let E; be a geodesic frame at p. Write
X as asum, X = Y fiE; and let w; be differential forms of
degree one defined on a neighborhood of p by w;i(E;) = 6;;.
Show that w; A... Awy, is a volume form » on M. Next put
0; =wi A...ANw; A... \wy,, where w; signifies that the factor
@; is not present. Prove that i(X)v = Y ,(-1)**! f;6;. It then
follows that

di(X)) =D (=D dfi A+ D (1)1 f; A df;
= QB (f)v+ D (-1)™! fi A db.

But df; = 0 at p, since

dwi(E;, Ej) = Eywk(Ej) — Ejwe(E;) — wk([Ei, Ej))
= wk(VE‘.Ej - VEJ.E,').

Therefore

d(i(X)v)(p) = (Z E(f)(P)v = divX (p)v

and since p is arbitrary, this completes the proof.

Remark. The result obtained implies that the notion of the
divergence of X makes sense on an oriented differentiable man-
ifold on which a “volume element” has been chosen, that is, an
n-form v which takes positive values on positive bases.

(Theorem of E. Hopf). Let M be a compact orientable Rie-
mannian manifold which is also connected. Let f be a dif-
ferentiable function on M with Af > 0. Then f = const.
In particular, the harmonic functions on M, that is, those for
which A f = 0, are constant.

Hint: Take grad f = X. Using Stokes theorem and the result
of exercise 11, obtain

./MAfu=/;ldivXu=/Md(i(X)t/)=/8Mi(X)u=0.
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Since Af > 0, we have Af = 0. Using again Stokes theorem
on f2/2, and the result of exercise 9(b), we obtain

= [ A= | fAfe+ | lgrad Sy
M M M

=/ |grad f|? v,
M

which together with the connectedness of M, implies that f =
const..

Let M be a Riemannian manifold and X € X(M). Let pe M
such that X (p) # 0. Choose a coordinate system (¢, z2,...,Zn)
in a neighborhood U of p such that 3% = X. Show that if
v=g dtAdzy A...A\dz, is a volume element of M, then

iX)y=gdzoA... Ndzy,.
Conclude from this, using the result of Exercise 11, that

18g

divX = g6t

This proves that divX intuitively measures the degree of vari-
ation of the volume element of M along the trajectories of X.

(Liouville’s Theorem). Prove that if G is the geodesic field on
TM then divG = 0. Conclude from this that the geodesic flow
preserves the volume of TM.
Hint: Let p € M and consider a system (uy,...,u,) of nor-
mal coordinates at p. Such coordinates are defined in a nor-
mal neighborhood U of p by considering an orthonormal ba-
sis {e;} of T,M and taking (u1,...,un) , ¢ = expy(}_; uiei),
i = 1,...,n, as coordinates of ¢. In such a coordinate sys-
tem, T (p) = 0, since the geodesics that pass through p are
given by linear equations. Therefore if X = Ea:,-a%‘, then
div X (p) = 3 8¢ vl

Now let (u;) be normal coordinates in a neighborhood
U C M around p € M and let (u;,v;), v = Ejng’?;, i,j =
1,...,n, be coordinates on TM. Calculate the volume element
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of the natural metric of TM at (¢,v), q€ U, v € T,M, and
show that it is the volume element of the product metric on U x
U at the point (g, q) (See Exercise 2(e)). Since the divergence
of G only depends on the volume element (see Exercise 11), and
G is horizontal, we can calculate divG in the product metric.
Observe that in the coordinates (ui,v;) we have

G(u;) =v;, Gv;)=- ZF{kvwk, k=1,...,n.
ik

Since the Christoffel symbols of the product metric on U x U
vanish at (p,p), we obtain finally, at p,

divG = Z gu—” - ; a%(%: Y, vivy) = 0.



CHAPTER 4

CURVATURE

1. Introduction

The notion of curvature in a Riemannian manifold was introduced by
Riemann (See Riemann [Ri}]) in a rather geometric manner, which
we are now going to describe. Let p be a point of a Riemannian
manifold M and let 0 C T, M be a two dimensional subspace of the
tangent space T,M of M at p. Consider the set of geodesics that
start at p and are tangent to 0. The segments of such geodesics
in a normal neighborhood U C M of p determine a submanifold of
dimension two S C M (with our present notation, S is the image of
exp, restricted to o Nexp,(U)). S has a metric induced from the
inclusion. Since Gauss had proved that the curvature of a surface
can be expressed in terms of its metric, so Riemann could speak
of the curvature of S at p, and indicate it by K(p,0o), (nowadays,
K(p,o) is called the sectional curvature of M at p with respect to
o). This was the curvature considered by Riemann in [Ri]. 1t is a
natural generalization of the Gaussian curvature of surfaces and it
is clear that if M = R™®, K(p,o) =0 for all p and all o.

Riemann did not indicate a way to calculate the sectional cur-
vature starting with the metric of M; that was done a few years later
by Christoffel (see Christoffel [Cf]; Cf. also Eq. (2) of this chapter).
Indeed, all the work of Riemann contains just one formula, namely,
an expression for the metric for which K(p,o) is constant, for all
p and o, and even this formula was presented without proof. (The
formula of Riemann will be presented in Exercise 1(c) of Chap. 8.)

As frequently happens in mathematics, a “workable” formu-
lation of the concept of curvature required a long time for its de-
velopment. When such a formulation finally appeared it had the
advantage of being easy to use to prove theorems but it had the dis-
advantage of being so far removed from the initial intuitive concept
that it looked as if it were some kind of arbitrary creation.
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This chapter presents a definition of curvature that, intu-
itively, measures the amount that a Riemannian manifold deviates
from being Euclidean (Cf. Def. 2.1). In Chapter 6, we are going to
show that the notion of sectional curvature (Cf. Def. 3.2) obtained
by starting with this definition of curvature generalizes the notion
of Gaussian curvature for surfaces, and coincides with the concept
introduced by Riemann.

2. Curvature

2.1 DEFINITION. The curvature R of a Riemannian manifold M
is a correspondence that associates to every pair X,Y € A (M) a
mapping R(X,Y): ¥ (M) — X(M) given by

R(X,Y)Z=VyVxZ-VxVyZ+Vixy|Z, Z€X(M),

where V is the Riemannian connection of M.
Observe that if M = R®, then R(X,Y)Z =0forall X,Y, Z €
X (R™). In fact, if the vector field Z is given by Z = (21,...,2n),
with the components of Z coming from the natural coordinates of
R™, we obtain
VxZ = (lea""in)a

hence
VyVxZ=(YXz,...,YXz,),

which implies that
R(X,Y)Z=VyVxZ -VxVyZ+ V[x,y]Z =0,

as was stated. We are able, therefore, to think of R as a way of
measuring how much M deviates from being Euclidean.
Another way of viewing definition 2.1 is to consider a system

of coordinates {z;} around p € M. Since [3%‘, %] = 0, we obtain

9 48,90
R(a—z.’ 3_2;])6—3:" = (Va/a=,Va/az.- - Va/am‘va/az:‘)a_“’
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that is, the curvature measures the non-commutativity of the covari-
ant derivative.

These interpretations, are, however, more or less formal. In
this chapter we advise the reader to get used to the formal prop-
erties of curvature, postponing until Chapter 6 the proof of a more
geometric interpretation of curvature. Let us remark also that a fre-
quently encountered definition of curvature in the literature differs
from definition 2.1 by a sign.

2.2 PROPOSITION. The curvature R of a Riemannian manifold has

the following properties:
(i) R is bilinear in X(M) x X(M), that is,

R(f X1+ 9X2,Y1) = fR(X1,11) + gR(X2, 11),
R(Xy, f1h + gY2) = fR(X1, Y1) + gR(X,,Ya2),
f,.ge DM), X,X,Y1,Y; € X(M).
(ii) For any X,Y € X (M), the curvature operator R(X,Y):
X (M) — X (M) is linear, that is,
R(X,Y)(Z+W)=R(X,Y)Z + R(X, Y)W,
R(X,Y)fZ = fR(X,Y)Z,

feDM), Z,WeXM).
Proof. Let us verify (ii) only, leaving (i) as an exercise for the reader.
The first part of (ii) is obvious. As for the second, we have

VyVx(fZ) =Vy(fVxZ+(Xf)Z) = fVyVxZ + (Y [)(VxZ)
+(XNH(Vy2)+(Y(Xf))Z.
Therefore,
VyVx(fZ)~VxVy(fZ)
= f(VyVx — VxVy)Z +((¥YX ~ XY)f)Z,
hence
R(X,Y)fZ = fVyVxZ - fVxVyZ+ (Y, X]))Z + fVixnZ
+([X,Y))Z=fR(X,Y)Z. O

2.3 REMARK. An analysis of the proof above shows that the ne-
cessity of the appearance of the term V|x y}Z in the definition of

the curvature is connected to the fact that we want the mapping
R(X,Y): X(M) — X(M) to be linear (see the next Rem. 2.6).
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2.4 PROPOSITION. (Bianchi Identity).
R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y =0.
Proof. From the symmetry of the Riemannian connection, we have,
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =VyVxZ-VxVyZ+Vx,y)Z
+VzVy X = VyVzX + Vy, 21X+ VxVzY - VzVXxY + V|z x1Y
= Vy[X,Z]+Vz[Y, X]+ Vx[Z,Y] - Vix,21Y = Viy,x1Z -V [z} X
=YX, 2] +[2,[v,X]] + [X,[2,Y]] =0,

where the last equality follows from the Jacobi identity for vector
fields. O
From now on, we shall write (R(X,Y)Z,T) = (X,Y, Z,T).

2.5 PROPOSITION. (a) (X,Y,Z,T)+(Y,Z,X,T)+(Z,X,Y,T) =0

(b) (X,},’Z’T) = _(KX, Z’T)

(C) (Xv),’Z’T) = —(X’KT; Z)

(d (X,Y,2,T)=(Z,T,X,Y).
Proof.

(a) is just the Bianchi identity again;

(b) follows directly from Definition 2.1;

(c) is equivalent to (X,Y, Z, Z) = 0, whose proof follows:

(X,Y,2,2) = (VyVxZ - VxVyZ +Vx,v|Z,Z).

But
(VYVxZ,2)=Y(VxZ,Z) - (VxZ,VyZ),
and
(Vixn122) = 51X, ¥1(Z, 2).
Hence

(X.Y,2,2) = Y(Vx2,2) - X(VyZ,2) + 5[X,Y}(Z, 2)

= %Y(X(Z, zZ)) - %X (Y(z,Z2))

1

+3X,Y)(Z,2) = -1[X,Y)(Z, 2)

+31X,Y)(Z,2) =0,
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which proves (c).
In order to prove (d), we use (a), and write:

(X,Y,2,T7)+ (Y,2,X,T) + (Z,X,Y,T) =0,
,2,T,X)+(Z,T,Y,X) + (T,Y, Z,X) =0,
Z,7,X,Y)+ (T, X,2,Y)+(X,2,T,Y) =0,
(T, X,Y,Z)+ (X,Y,T,2)+ (Y,T,X,Z) =0.
Summing the equations above, we obtain
2(Z,X,Y,T)+2(T,Y,Z2,X) =0
and, therefore,
(Zz,X,Y,T)=(,T,Z,X). O
It is convenient to express what was seen above in a coordin-

ate system (U,x) based at the point p € M. Let us indicate, as
usual, 5% = X;. We put

R(X:, X)Xk = Y _ REuXe.
£

1]

Thus Rfj x are the components of the curvature R in U,x). If
X=Y uX,Y=) vX;2=7) X
i F] k

we obtain, from the linearity of R,
(2) R(X,Y)Z= Y Riu'v/uw*X,.
i,d,k,¢

To express Rfjk in terms of the coefficients T'¥; of the Rie-
mannian connection, we write,

R(X:, Xj) X = Vx, Vx. Xk — Vx,Vx; X
= Vx,(O_ThXe) - Vx,(O_ TieXe)s
L L
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which by a direct calculation yields

1) 0
s __ ¢ s ¢ s r] ]
(2) ik = ; Fiel5e — zt:rjkril + 'é"x';rik - ’a—x_t_rjk'

Putting

(R(X:, X;) Xk, Xa) = > REjkges = Rijns,
4

we can write the idedtities of Proposition 2.5 as:
Rijks + Rjkis + Riijs =0

Rijks = — Rjiks
Rijks = —Rijsk
Rijks = Resij.

2.6 REMARK. The equation (1), which depends on the linearity
of the operator R, shows that the value of R(X,Y)Z at the point p
depends uniquely on the values of X, Y, Z at p and the values of the
functions Rfjk at p. Observe that this contrasts with the behavior
of the covariant derivative (See Rem. 2.3, Chap. 2), the reason being
that the covariant derivative is not linear in all of its arguments. In
general, entities, such as the curvature, that are linear, are called
tensors on M (more details will be given in Section 5).

3. Sectional curvature

Closely related to the curvature operator is the sectional (or Rie-
mannian) curvature that we are now going to define.

In what follows it is convenient to use the following notation.
Given a vector space V, we denote by |z A y| the expression

Vel [ul? = (z,3)2,

which represents the area of a two-dimensional parallelogram deter-
mined by the pair of vectors z,y € V.
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3.1 PROPOSITION. Let o C T,M be a two-dimensional subspace of
the tangent space T,M and let z,y € o be two linearly independent
vectors. Then

(z,9,2,)

K(z,y) = Iz A y|2

does not depend on the choice of the vectors z,y € o.

Proof. To avoid calculating, we observe that we can pass from the
basis {z, y} of o to any other basis {z’,y’} by iterating the following -
elementary transformations:

(@ {zy}—{y,z},

() {z,y} - {X=z,y},

) {z9}-{z+y,y}

It is easy to see that K (z,y) is invariant by such transforma-

tions and that completes the proof. O

3.2 DEFINITION. Given a point p € M and a two-dimensional
subspace o C T, M, the real number K(z,y) = K (o), where {z,y}
is any basis of o, is called the sectional curvature of o at p.

Besides the fact that the sectional curvature has interesting
geometrical interpretations, its importance comes from the fact that
knowledge of K (o), for all o, determines the curvature R completely.
This is a purely algebraic fact:

3.3 LEMMA. Let V be a vector space of dimension > 2, provided
with an inner product ( , ). Let RV xV xV — V and R:V x
V xV — V be tri-linear mappings such that conditions (a), (b), (c)
and (d) of Proposition 2.5 are satisfied by

(2,9, 2,t) = (R(z,9)zt), (z,4,21) = (R(z,y)z1).
If z,y are two linearly independent vectors, we may write,

Z,Y, T, (= y,z,y)
K(U)=(—y——22)-, K,(0)=——2——,

lz Ayl lzAyl®
where o is the bi-dimensional subspace generated by = and y. If for
allocV, K(o0) = K'(o), then R=R’.
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Proof. It suffices to prove that (z,y,2,t) = (z,y,2,t) for any
z,y,2,t € V. Observe first that, by hypothesis, we have (z,y, z,y) =
(z,y,z,y), for all z,y € V. Then

(z+z,y,x+z,y) = (z+z7y1x+z,y)”
hence

(z,9,2,9) + 2(z,9,2,9) + (2,9,2,9)
= (z,y,2,9) + 2(z,9,2,9) + (2,9, 2,y)’

[4

and, therefore
(=,9,2,9) = (z,¥,2),
for all z,y,z € V.
Using what we have just proved, we obtain
(z,y+t,z,y+t)=(z,y+tzy+t),

hence

(z,4,2,1) + (7,8, 2,9) = (z,9,2,t) + (2,1, 2,9),
which can be written further as

(z,9,2,t) — (z,y,2,t) = (y,2,x,t) — (y, 2,2,1)".

It follows that, the expression (z,y, z,t) —(z,v, 2,t)’ is invar-
iant by cyclic permutations of the first three elements. Therefore,
by (a) of Proposition 2.5, we have

3[($, y’ z, t) - (x7 y’ z’ t),] = 01

hence
(IE, Y, 2, t) = (xi Y, 2, t)’
forall z,y,2,t € V. O

The Riemannian manifolds that have constant sectional cur-
vature played a fundamental role in the development of Riemannian
Geometry. We shall treat these manifolds in more detail in Chapter 8
of this book. At the moment, we wish only to show how the lemma
above allows us to obtain a characterization of such manifolds by
means of the components Rijk¢ of the curvature in an orthonormal
basis. This follows from the lemma below.
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3.4 LEMMA. Let M be a Riemannian manifold and p a point of
M. Define a tri-linear mapping R': ToM x ToM x T,M — T,M by

for all X,Y,W,Z € T,M. Then M has constant sectional curvature

equal to K, if and only if R = K,R', where R is the curvature of
M.

Proof. Assume that K(p,0) = K, for all ¢ C T,M, and set
(R'(X,Y,W),Z) = (X,Y,W, Z)'. Observe that R’ satisfies the prop-
erties (a), (b), (¢) and (d) of Proposition 2.5. Since
(X,,X,Y) = (X, X)(Y,Y) — (X,Y)?,
we have that, for all pairs of vectors X,Y € T, M,
R(X,Y,X,Y) = K,(X*|[Y]* - (X,Y)?) = K,LR'(X,Y, X,Y).
Lemma 3.3 implies that, for all X,Y, W, Z,

R(X,Y,W,Z) = K,R'(X,Y,W, Z),

hence R = K,R’. The converse is inmediate.

3.5 COROLLARY. Let M be a Riemannian manifold, p a point of M
and {e;,...,e,}, n=dimM, an orthonormal basis of T,M. Define

t]kl (R(ene])ekael)1 1 y J» k {= L...,n Then K(p1 0) = K, for
all o C T,M, if and only if

Rijke = Ko(6irbje — 6itbjx),

{ 1, ifi=j

6i; = .,

0, 2#7.

In other words, K(p,o) = K, for all o C T,M if and only if R;j;; =
—~Rijji = K, for all i # j, and Rijie = 0 in the other cases.

where
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4. Ricci curvature and scalar curvature

Certain combinations of sectional curvature appear with such fre-
quency that they deserve special names.

Let z = z, be a unit vector in T, M; we take an orthonormal
basis {z1,22,...,2n—1} of the hyperplane in T, M orthogonal to z
and consider the following averages:

Ricy(z) = ;z—}—l- Z(R(z, z)z,z;), 1=12,...,n-1,

K(p) = ZR’ICP(ZJ) = 1) Z R(2i, 2j)zi, 2j)

ji=1,.

We are going to prove that the expressions above do not depend
on the choice of the corresponding orthonormal basis; these expres-
sions are called the Ricci curvature in the direction = and the scalar
curvature at p, respectively.

To prove these facts, we give an intrinsic characterization
of the expressions above. First, define a bilinear form on T, M as
follows: let z,y € T,M and put

Q(z,y) = trace of the mapping 2z — R(z, 2)y.

Q is obviously bilinear. Choosing z a unit vector and then com-
pleting it to an orthonormal basis {z1,...,2n—1, 2, =z} of To,M we
have

Q(x7 y) = Z(R(IB, zi)ya zi)
= E(R(y’ Z,;)IU, zi) = Q(y’ z)a

that is, Q is symmetric and Q(z,z) = (n — 1) Ric,(z); this proves
that Ric,(z) is intrinsically defined.

On the other hand, the bilinear form Q on Tp,M corresponds
to a linear self-adjoint mapping K, given by

(K(Ji), y) = Q(zv y)'
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Taking an orthonormal basis {z;,...,2,}, we have
Trace of K = Z(K(Zj),Zj) = ZQ(zj, ;)
J J

= (n—~1))_Ricy(2) = n(n — )K(p),
J

which proves the statement.
The bilinear form ——Q is, at times, called the Ricci tensor.

As usual we should express what was done above in a coordin-
ate system (z;). Let X; = 81: , 9ij = (Xi, X;), and g¥ the inverse
matrix of g;; (1 €., . 9ikg* = 6f). Then the coefficients of the
bilinear form 1Q in the basis {X;} are gwen by

1 1
R, = mo1 - lec 1 ZRukag

n-—1

We observe now that if A:T,M — T,M is a linear self-adjoint
mapping and B:T,M x T,M — R is the associated bilinear
form, i.e.,, B(X,Y) = (A(X),Y), then the trace of A is equal to
i B(Xi, Xk)gt*. Thus, the scalar curvature in the coordinate sys-
tem (z;) is given by

1 ik
= n(n—l)%:R'kg :

To conclude this section, we are going to establish a relation
that will be useful in the future.

Let f: AC R? — M be a parametrized surface (Cf. Def. 3.3,
Chap. 3) and let (s,t) be the usual coordinates of R2. Let V =
V(s,t) be a vector field along f. For each (s,t), it is possible to
define R(2L 5 5t 2L)V in an obvious manner.

4.1 LEMMA.

DD DD af af
3 53’ " asa’ - Mas e
Proof. The proof is a long calculation. Choose a system of cpordin—
ates (U,x) based at p€ M. Let V = ), v'X;, where v* = v'(s,t) e
X = 5%. Then

D _ D pixy - oL, 52
ES-V= -a—s-(z':v Xi)—gv BSX:‘I"EI: ) Xi

=)V
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and

D, D vt D
55V =2 X+Z:
+Zav Dy, +Z

Therefore, interchanging the roles of s and ¢ in the expression above,
and subtracting, we obtain
DD

D D i
5t9s’ s atV D ( i g o)
Let us now calculate EEESX"' Put

f(s,8) = (z1(8,2),. .., Zn(s,1)).

Then ¥ = > %?-X and & = ¥, %2 X;.. Thus, we have

D oz;
95 Xi = V(025100 %; (Xi) = Z Tk, X;
and
DD, oz;
ET T (Z 3o VX, Xi)
321’ j oz;
=2 Bias VX Xi ¥ Z 5o VEs(0za/00 %, (V X, X:)
J
&z; 0z; Ozi
= ; 3t38vijl + Z ds Ot kavx X,
or
DD D D ax, axk
(Bt ds  Bs 6t) ds = (Vx,Vx; Xi = Vx,Vx, Xi).
Joining everything tOgether, we finally get
DD DD 6:1:, Oz,
(at ds 0Os 6t)V Z R( i X)X
3f af

= R(Go5p)V. O
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5. Tensors on Riemannian manifolds

The notion of curvature is a particular case of the idea of a tensor,
which is a useful object in differential geometry. We present here a
rapid introduction to the study of tensors on a Riemannian manifold.
The idea of a tensor is a natural generalization of the idea of a vector
field, an important point being that, analogously to vector fields,
tensors can be differentiated covariantly.

For what follows it is useful to observe that X (M) is a module
over D(M), that is, X(M) has a linear structure when we take as
“scalars” the elements of D(M).

5.1 DEFINITION. A tensor T of order r on a Riemannian manifold
is a multilinear mapping

T:X(M) x---x X(M) = D(M).
r  factors

This means that given Y3,...,Y; € X(M), T(13,...,Y;),isa
differentiable function on M, and that T is linear in each argument,
that is,

T, fX +gY,....Y) = f[T(%,..., X, ..., ;)
+gT(Y1,...,Y,...,YT),

for all X,Y € X(M), f,g € D(M).

A tensor T is a pointwise object in a sense that we now ex-
plain. Fix a point p € M and let U be a neighborhood of p in M on
which it is possible to define vector fields E;....,E, € X(M "), in
such a fashion that at each g € U, the vectors {Ei(q)},i=1,...,n,
form a basis of TgM; we say, in this case, that {E;} is a moving
frame on U. Let

Yl = ZyilEin"'v)/‘r = Zyi.-Ei,-’ il)" '7i‘r‘ = 1)"'ana
i i
be the restrictions to U of the vector fields Y;,...,Y:, expressed in
the moving frame {E;}. By linearity,

T(Y1,....,Y) = Y v ...4%, T(Ei,...,E).

£1500n8p
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The functions T(E;,,..., E;.) = T;,. ;, on U are called the compo-
nents of T in the frame {E;}.

The expression above implies that the value of T'(Y3,...,Y;)
at a point p € M depends only on the values at p of the components
of T, and the values of Y;,...,Y, at p. It is in this sense that we
say that T is a pointwise object.

5.2 EXAMPLE. The curvature tensor

RAM)x X(M)x (M) x X(M) - D(M)
is defined by
R(X,Y,Z,W) =(R(X,Y)Z,W), X,Y,Z,W € ¥(M).

It is edsy to verify that R is a tensor of order 4, whose components
in the frame {X,- = '52_.-} associated with the system of coordinates

(z:) is
R(X;, X, Xk, X¢) = Rijke-

5.3 EXAMPLE. The “metric tensor” G: X(M) x X(M) — D(M)
is defined by G(X,Y) = (X,Y), X,Y € X(M). G is a tensor of
order 2 and its components in the frame {X;} are the coefficients
gij of the Riemannian metric in the given system of coordinates.

5.4 EXAMPLE. The Riemannian connection V defined by:
V: X (M) x X(M) x X(M) - D(M)
V(X,},,Z)=(VxY,Z>, X,}’,ZGX(M),

is not a tensor, because V is not linear with respect to the argument
Y.

5.5 REMARK. It is possible to define the notion of a tensor on a
differentiable manifold which does not have a Riemannian metric. In
this case, it is necessary to distinguish the covariant tensors (which
we have already defined) from the contravariant tensors (which can
be defined in an analogous manner, using in place of X (M) its dual
&*(M)). On a Riemannian manifold this is unnecessary, because the
Riemannian metric associates to each X € (M) a unique element
w € X*(M) given by

w(Y)=(X,Y), forall Y € X(M).
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Such a correspondence allows us to identify the contravariant ten-
sors with the covariant tensors. For reasons of economy, we restrict
ourselves to covariant tensors.

5.6 REMARK. For various reasons, it is convenient to identify
the field X € X(M) with the tensor X: X(M) — D(M) given by
X(Y)=(X,Y), foral Y € X(M).

It is possible to covariantly differentiate tensors. We will show
in a moment that the following definition is fairly natural.

5.7 DEFINITION. Let T be a tensor of order r. The covariant
differential VT of T is a tensor of order (r + 1) given by

VTY,..., Y, Z) = Z(T(Y, ..., Yy) = T(V2Yi, ..., Y.)
-'"""T(),ly“"},r—lyvz}lr)-

For each Z € X (M), the covariant derivative VzT of T relative to
Z is a tensor of order r given by

VzT(Ys,...,Y,) =VT(Y,...,Y,, 2Z).

We are going to show that, in a convenient frame, the defini-
tion of the covariant derivative of a tensor T relative to Z € (M)
becomes quite natural. For this, let p € M and let a: (~¢,6) = M
be a differentiable curve with a(0) = p, o'(t) = Z(a(t)). Let
{e1,...,en} be a basis of T,M and let e;(t) be the parallel transport
of e; along a = aft), for i = 1,...,n. Let T}, ; (¢) be the com-
ponents, in the basis {e;(t)}, of the restriction T(a(t)) of T' to the
curve . Then, by the definition of V2T,

(V2T)en @) €0 (8) = 2 Totc ) =~ T(V 6, (O - 5, ()

e = T(es 8), -, Vzei, (B):
Since V ze;(t) = 0, we have, by linearity,
(VzT)i,..i, = (V2T)(e;, (1), - -, € (1)
d T. .

T a@

In other words, in this frame, the components of the covariant de-
rivative of T" are the usual derivatives of the components of T'.
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5.8 EXAMPLE. The covariant differential of the metric tensor is
the zero tensor. Indeed, for all X,Y,Z € X(M),

VG(X,Y,2) = Z(X,Y) - (VzX,Y) - (X,VzY) =0,

because V is the Riemannian connection.

5.9 EXAMPLE. Let X € A(M). Identify X with the tensor that
associates to the vector field Y € X (M) the function (X,Y) (See
Rem. 5.6). The covariant derivative of the tensor X relative to the
vector field Z € X(M) is such that, for all Y € X (M),

VzX(Y)=VX(Y,Z)=Z(X(Y)) - X(VzY)
=Z(X,Y) - (X,VzY) = (VzX,Y).

We conclude thus that the tensor VzX can be identified with the
vector field VzX. This justifies the notation adopted, and shows
that the covariant derivative of tensors is a generalization of the
covariant derivative of vector fields.

EXERCISES

1. Let G be a Lie group with a bi-invariant metric {( , ). Let
X,Y,Z € X(G) be unit left invariant vector fields on G.
a) Show that VxY = 1[X,Y].
Hint: Use the symmetry of the connection and the fact that
VxX =0 (Cf. Exercise 3 of Chap. 3).
b) Conclude from (a) that R(X,Y)Z = }[[X,Y], Z].
c¢) Prove that, if X and Y are orthonormal, the sectional
curvature K(o) of G with respect to the plane o generated
by X and Y is given by

K(o) = 7 X, Y]|.

Therefore, the sectional curvature K(o) of a Lie group with
bi-invariant metric is non-negative and is zero if and only if o
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is generated by vectors X,Y which commute, that is, such that
[X,Y]=0.

2. Let X be a Killing field (See Exercise 5 of Chap. 3) on a Rie-
mannian manifold M. Define a mapping Ax: X (M) — X (M)
by Ax(Z) = VzX, Z € X(M). Consider the function
fiM — Rgiven by f(q) = (X, X)g, g € M. Letpe M
be a critical point of f (that is, df, = 0). Prove that for any
Z € X(M), at p,

a) (Ax(Z),X)(p) =0.

b) (Ax(2), Ax(2))(p) = 5Zp(Z(X, X)) + (R(X, 2)X, Z).
Hint for (b): Put S = %ZZ(X, X)-(R(X,2)X,Z).
Using the Killing equation (VzX,X) + (VxX,Z) = 0 (cf.
Exercise 5 of Chap. 3), we obtain

§={(Vix,z1X,2) - (VxX,V3zZ) - (VxVz,Z).
Using the Killing equation again, we obtain

§=—(VzX,VxZ)+ (VzX,VzX)
+(V2X,VxZ) - (VxX,V32)
=(VzX,VzX) - (VxX,Vz2).

Because of the Killing equation at p, VxX(p) = 0, and we
conclude the assertion.

3. Let M be a compact Riemannian manifold of even dimension

whose sectional curvature is positive. Prove that every Killing
field X on M has a singularity (i.e., there exists p € M such
that X(p) = 0).
Hint: Let f: M — R be the function f(q) = (X, X)(q), g € M,
and let p € M be a minimum point of of f (Cf. the previous
Exercise). Suppose that X(p) # 0. Define a linear mapping
AT,M — T,M by A(y) = AxY = VyX, where Y is an
extension of y € T,M. Let E C T,M be orthogonal to X(p).
Use the previous exercise to show that A: E — FE is an anti-
symmetric isomorphism. This implies that dimE = dim M —1
is even, which is a contradiction; thus X(p) = 0.

4. Let M be a Riemannian manifold with the following property:
given any two points p, g € M, the parallel transport from p to
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g does not depend on the curve that joins p to q. Prove that
the curvature of M is identically zero, that is, for all X,Y, Z €
X(M), R(X,Y)Z =0.

Hint: Consider a parametrized surface f: U C R? — M, where

U={(s,t) e R} —e<t<l+e,-e<s<l+eg,e>0}

and f(s,0) = f(0,0), for all s. Let V, € T(o,0)(M) and define
a field V along f by: V(s,0) =V, and, if ¢t # 0, V(s,t) is the
parallel transport of V,, along the curve ¢ — f(s,t). Then, from
Lemma 4.1,

DD DD of 8
557 =0= 35" T BGr5s)V-

Since parallel transport does not depend on the curve chosen,
V(s,1) is the parallel transport of V(0, 1) along the curve s —
f(s,1), hence £V (s,1) = 0. Thus,

Ry (o, 1)( (0 1), (0 HV(O,1) =

Use the arbitrariness of f and V, to conclude what is required.

Let 4:[0,€] — M be a geodesic and let X € X(M) be such
that X (v(0)) = 0. Show that

V. (RWY, X))(0) = (R, X)) (0),

where X' = d—f
Hint Let R be the curvature tensor of Example 5.2. Observe
that, for all Z € (M), and t =

0= (V’Y'R)('Y,’ Xv 7,7 Z)
= Z{RU, X0, 2) ~ (RUS X0, 2) - (RO, X0, 2)
= (V’r’ (R(7” X)'Y’)s Z) - (R(’Y,v X’)7,1 Z).

(Locally symmetric spaces). Let M be a Riemannian mani-
fold. M is a locally symmetric space if VR = 0, where R is
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the curvature tensor of M. (The geometric significance of this
condition will be given in Exercise 14 of Chap. 8).

a) Let M be a locally symmetric space and let 7: [0,£) - M
be a geodesic of M. Let X,Y, Z be parallel vector fields
along 4. Prove that R(X,Y)Z is a parallel field along ~.

b) Prove that if M is locally symmetric, connected, and has
dimension two, then M has constant sectional curvature.

c) Prove that if M has constant (sectional) curvature, then
M is a locally symmetric space

7. Prove the 2nd Bianchi Identity:

VR(X,Y,Z,W,THVR(X,Y,W,T, Z+VR(X,Y, T, Z,W)=0

forall XY, Z,W,T € X(M).

Hint: Since the objects involved are all tensors, it suffices to
prove the equality at a point p € M. Choose a geodesic frame
{e:} based at p (See Exercise 7 of Chap. 3). In this frame
Ve.ej(p) =0, hence

VR(e:, e;j, e, ee,en) = en(R(ei, e5)ex, er) = en(R(ex, er)ei, €5)
=(Ver Ve, Ve i = Ve, Ve, Ve, € + Ve, Vi, e1€i) €5)-

Therefore, using the Jacobi identity for the bracket, we find

VR(Ci, €5,€k, €g, eh) + VR(C,', €j,€¢,€Eh, elc)
+ VR(ei, €j, en, ek, er) = R(ee, €h, Ve, €i, €;)
=+ R(efu €k, Veteia eJ) + R(ek’ €¢, vﬂhe‘h ej) = 0’

since each one of the summands vanishes at p. The general
case follows by linearity.

8. (Schur’s Theorem). Let M™ be a connected Riemannian man-
ifold with n > 3. Suppose that M is isotropic, that is, for
each p € M, the sectional curvature K(p, o) does not depend
on o C T,M. Prove that M has constant sectional curvature,
that is, K(p, o) also does not depend on p.

Hint: Define a tensor R’ of order 4 by

R'W,2,X,Y) = (W, X)}(2,Y) - (Z,X)(W,Y).
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If K(p,0) = K does not depend on o, by Lemma 3.4, R = KR'.
Therefore, for all U € X(M), VyR = (UK)R'. Using the 2nd
Bianchi identity (see Exercise 7):
VR(W, Z,X,Y,U) + VR(W, Z,Y,U, X)
+VR(W, Z,U, X,Y) =0,

we obtain, for all X,Y, W, Z,U € X (M),

0=(UK)((W,X)Z2,Y) - (Z, X){(W,Y))
+(XK)(W,YNZ,U) - (2,Y)(W,U))
+(YK)(W,U)Z, X) — (2, UNW, X)).

Fix p € M. Because n > 3, it is possible, fixing X at p, to
choose'Y and Z at p such that (X,Y) =(Y,2) = (Z,X) =0,
(Z,Z) = 1. Put U = Z at p. The relation above yields, for all

w,
(XK)Y - (YK)X,W) =0.

Since X and Y are linearly independent at p, we conclude that
XK =0 for all X € T,M. Thus K = const.
Prove that the scalar curvature K(p) at p € M is given by
1
K(p) =

Wnp—1 Jgn-1

Ricy(z)dS™1,

where wy,_; is the area of the sphere S™~! in T, M and dS™~!
is the area elements on S™~1.

Hint: Use the following general argument on quadratic forms.
Consider an orthonormal basis ey, ...,e, in T,M such that if

T = Z?:l Zi€i,
Ricy(z) = Z)\ix?, A; real.

Because |z| = 1, the vector (z1,...,Z,) = v is a unit normal
vector on S"~!. Denoting V = (Aiz1,...,A\nZy), and using
Stokes Theorem, we obtain

1 1
M\z?)ds™! = / n-1
o [ (Eaad [ s

Wn—1
1

Wn—1 Bn

divVdB",
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10.

where B™ is the unit ball whose boundary is S*~! = §B™.
Noting that vol B" /w,, = 1/n, we conclude that

1
Wnp—1 Jgn-1

Ricy(z)dS™ ! = ;ll-div V= -Z%

= ER‘i:P(ei) = K(p).

(Einstein manifolds). A Riemannian manifold M™" is called
an Einstein manifold if, for all X,Y € X(M), Ric(X,Y) =
A(X,Y), where :: M — R is a real valued function. Prove
that:
a) If M™ is connected and Einstein, with n > 3, then ) is
constant on M.
b) If M3 is a connected Einstein manifold then M3 has con-
stant sectional curvature.
Hint for (a): Consider a geodesic orthonormal frame {e;},
t=1,...,n >3, at a point p € M (see Exercise 7 of Chap. 3).
The 2nd Bianchi identity (see Exercise 7) at p can be written

(*) es(Rhijk) + €j(Rhiks) + ex(Rnisn) = 0,

where Ry;jx are the components of the curvature tensor in this
frame and we take into account that V..e;(p) = 0. Observe
that (ei,ek) = gik = bik = &k, Multiplying (*) by 5ik6hj and
summing on ¢, k, h, j, we obtain: for the first part,

Z Onjbikes(Rhijk) = es(z On;j6ik Rhiji)
ikjh ikjh
= e,() i Rrj) = s(D_ 8nj(A0h;)) = ne,(N);
hj hji

for the second part,
> bnbike;(Ruixs) = = ) _ bnje; (D bk Rhisk)
ikjh ih *

= Zz?hje_,-(/\&h,) = -es(A);

jh
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and for the third part,

Z Onjbiker (Rhiks) = —es(A).
ikjh

Therefore, (*) implies that, for all s, (n — 2)e,(A\) = 0. From
the arbitrariness of p, A is constant on M.



CHAPTER 5

JACOBI FIELDS

1. Introduction

In this chapter we shall derive a first relation between the two basic
concepts introduced previously, namely, geodesics and curvature.
As we shall see (Cf. Rem. 2.11), the curvature K(p,0), ¢ C T,M,
determines how fast the geodesics, that start from p and are tangent
to o, spread apart. In order to formalize precisely this velocity of
the deviation of the geodesics, it is necessary to introduce the so-
called Jacobi fields. Jacobi fields are vector fields along geodesics,
defined by means of a differential equation that arise naturally in the
study of the exponential mapping (Cf. Sec. 2). Besides furnishing
the relation mentioned above, the Jacobi fields allow us to obtain a
simple characterization of the singularities of the exponential map
(Cf. Prop. 3.5).

L4

2. The Jacobi equation
Let M be a Riemannian manifold and let p € M. In the proof of

the Gauss Lemma we saw that if exp, is defined at v € T, M, and if
w € T,(T,M), then

(dexp,)yw = g—i—(l, 0),

where f is a parametrized surface given by
f(t,S) =exDptv(s), OStS 1, -553551

and v(s) is a curve in T, M with v(0) =v, v/(0) = w.
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We would like to obtain information on |(dexp,),(w)|. One
of the reasons for this is that |(d expp),,(w)| denotes, intuitively, the
rate of spreading of the geodesics ¢ — exp,, tv(s) which start from p.
As we shall see below, such spreading is associated with the value of
the sectional curvature at p with respect to the plane generated by
v and w. Another reason is that if we have |(dexp,),(w)| = 0 with
w # 0, then v will be a critical point of exp,,.

It is convenient to extend our objective slightly and study the
field

(dexp, (i) = 2L (2,0)

along the geodesic v(t) = exp,(tv), 0 <t < 1.
The basic remark is that —L satisfies a differential equation.

In fact, since 7 is a geodesic, we have for all (t,s), 5 -51 0. Thus,
from Lemma 4.1 of Chap. 4,

(Daf _DDoaj_p0f 9f0f
s 0t Ot Ot 0s Ot 0s’ o0t’ ot
_DDdJ  pof af of

Ot ot 0s at’ 9s’ at”

Putting %f(t, 0) = J(t), we obtain the fact that J satisfies the equa-
tion

(1 B+ R @), 701 @) =0.

The equation above is called the Jacobi equation. Since it
appears in a variety of situations, it is useful to make a separate
study of it. We start with a definition.

2.1 DEFINITION. Let 4:[0,a] — M be a geodesic in M. A vector
field J along 7 is said to be a Jacobi field if it satisfies the Jacobi
equation (1), for all ¢ € [0, a].

A Jacobi field is determined by its initial conditions J(0),

(0) Indeed, let e;(2),...,en(t) be parallel, orthonormal fields
along ~. We shall write:

J(t) = Zf.-(t)ei(t), ai; = (R(Y'(1), &:(1))7' (t), € (1)),



112 Jacobi fields [Chap. 5
i,j=1,...,n=dimM.

Then D2J
7 = 2 Wet),

and

R(Y, I =Y _(R(Y, I}, e5)es

i
=Y fR(Y, &)Y e5)es = ) fiaize;.
ij ij
Therefore, the equation (1) is equivalent to the system
f;;’(t) + Zaij(t)fi(t) =0, j=1,...,n,
i

which is a linear system of the second order. Hence, given the initial
conditions J(0), 3—;’(0), there exists a C™ solution of the system,
defined on {0,a]. There exist, therefore, 2n linearly independent
Jacobi fields along 7.

2.2 REMARK. It is worth noting that +'(t) and £4'(t) are Ja-
cobi fields along 7. The first field has derivative zero and vanishes
nowhere; the second field is zero if and only if ¢ = 0. Due to these
facts, we shall consider Jacobi fields along v that are normal to v'.

2.3 EXAMPLE. (Jacobi fields on manifolds of constant curvature).
Let M be a Riemannian manifold of constant sectional curvature K,
and let v:[0,£] = M be a normalized geodesic on M. Further let J
be a Jacobi field along v, normal to 4. We claim that from the fact
that |¥'| = 1 and from Lemma 3.4 of Chapter 4, it follows that

R('yli '])'71 =KJ.
Indeed, for all vector fields T along «y we have

(R("f,) J)‘Y’) T)= K{('Y'a 7,) (Ja T) - <7,a T)(‘I) 7,)}
= K{J,T), :

which was asserted.
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As a result, the Jacobi equation can be written as

D%*J
(2) a5 + KJ=0.
Let w(t) be a parallel field along v with (y(t), w(t)) = 0 and |w(t)| =
1. 1t is easy to verify that

@OBw(t), K >0,

J@) =4 tw(), if K =0,

sinGy Ru(t), if K <0,
is a solution of (2) with initial conditions J(0) =0, J’(0) = w(0).

As we saw previously, given p € M, v € T,M, and w €
T,(T,M), we can construct a Jacobi field along the geodesic
7:[0,1] — M, given by ¥(t) = exp,tv. For that, we consider the
parametrized surface given by f(t,s) = exp,tv(s), where v(s) is a
curve in T,M with v(0) = v, v'(0) = w, and take J(t) = —L(t 0).
Notice that J(0) = 0.

We are going to show that this is essentially the only way of

constructing Jacobi fields along «(t) with J(0) = 0. More precisely,
we have the following proposition.
2.4 PROPOSITION. Let +:[0,a] = M be a geodesic and let J be a
Jacobi field along v with J(0) = 0. Put £(0) = w and v'(0) = v.
Consider w as an element of T, (T.,(0)M) and construct a curve v(s)
in Ty)M with v(0) = av, v'(0) = w. Put f(t,s) = exp,(tv(s)),
p = (0), and define a Jacobi field J by J(t) = —i(t 0). Then J = J
on [0, a).

Proof. For s =0, we have

0
- Q«dexpp)w(tw» — 5 (Udexp,)uu(w)

= (dexpp)e (w) + t&((dexpp)tv(w))-
Therefore, for t = 0,

D6f

(0) 55 (0:0) = (dexp,)o(w) = w
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%Z(O) = w, we conclude, from
. O
2.5 COROLLARY. Let v:[0,a] = M be a geodesic. Then a Jacobi
field J along v with J(0) = 0 is given by

J(t) = (dexp )iy @)t/ (0),  t€0a]

Since J(0) = J(0) = 0 and Z£(0)
the uniqueness theorem, that J =

il

2.6 REMARK. It is possible to obtain a construction analogous to
Proposition 2.4 for Jacobi fields that do not satisfy the condition
J(0) = 0. Since we shall not use this fact, we leave its proof as an
exercise (Exercise 2).

Now we are going to relate the rate of spreading of the

geodesics that start from p € M with the curvature at p. From

now on, for simplicity of notation, we shall put %‘l =J, -3—:,4 =J",

etc.

2.7 PROPOSITION. Let p € M and +:[0,a] — M be a geodesic
with 4(0) = p, ¥ (0) = v. Let w € T,(T,M) with |w| =1 and let J
be a Jacobi field along v given by

J(t) = (dexp,)tw(tw), 0<t<a.
Then the Taylor expansion of |J (t)|2 about t = 0 is given by

® JOF = - 3(R@,w)o,w)t! + RQ),

where lim;_,¢ %&Q =0.

Proof. Since J(0) = 0 and J'(0) = w, we have, for the first three
coefficients:

(J,IN0) =0,
(7, 7Y (0) = 2(J, J')(0) = 0,
(J, )"(0) = 2(J", J')(0) + 2(J", J)(0) = 2.

On the other hand, since J”(0) = —R(v/, J)7'(0) = 0, we have

(4, 7)"(0) = 6{J", J")(0) + 2(J", J)(0) = 0.
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Now we need the following fact:
(4) Vy(R(Y,I))(0) = R(Y, J')7(0).
To prove (4), note that for any W, we have at ¢t = 0,

(S(RO,IW), W) = S (RO, W)Y, J) = (REY, Ty, W)

= (2 (R, W), ) + (RO, W)Y, T)
= (R(Y", '\, W)

which implies (4).
It follows from (4) and from the Jacobi equation that
J"(0) = -R(v', J')¥'(0). Therefore,

(J, J)””(O) — S(JI’ JI/I)(O) + 6<JII, Jﬁ>(0) + 2<JIIII’ J)(O)
= _8(‘]” R(7,a J,)’Y,) (0) = —S(R('U, 'LU)’U, 'LU)

Putting together the calculation above, we obtain (3). O

2.8 REMARK. The expression (4) can also be obtained using the
(covariant) derivation of tensors described in Section 5 of Chap. 4
(see exercise 5 of Chap. 4).

2.9 COROLLARY. If~:[0,€] — M is parametrized by arc length,
(i.e,, [v] = 1) and (w,v) = 0, the expression (R(v, w)v,w) is the
sectional curvature at p with respect to the plane o generated by v
and w. Therefore, in this situation,

© I@F = - $K@,0)¢" + R,

2.10 CorOLLARY. With the same conditions as in the previous
corollary,

©®  VOI=t- Km0 + RO), m% N

2.11 REMARK. The expression (6) essentially contains the relation
between geodesics and curvature, mentioned in the beginning of this
chapter. Indeed, considering the parametrized surface

f(t,s) =exp,tv(s), te€[0,8], se€(—¢¢),
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where 6 is chosen so small that exp,tv(s) is defined, and v(s) is a
curve in T,M with |v(s)| = 1, v(0) = v, v'(0) = w, we see that
the rays t — tv(s), t € [0,4], that start from the origin 0 of T, M,
deviate from the ray ¢ — tv(0) with the velocity

I(%tv(s))(o)l = Jtw| = t.

On the other hand, (6) tells us that the geodesics ¢ — exp,(tv(s))
deviate from the geodesic v(t) = exp, tv(0) with a velocity that
differs from ¢ by a term of the third order in ¢, given by — 3K (p, o)t3.
This tells us that, locally, the geodesics spread apart less than the
rays in T,M, if Ky(o) > 0, and that they spread apart more than
the rays in T,M, if K,(0) < 0. Actually, for ¢ small, the value
K (p,o)t® furnishes an approximation for the extent of this spread
with an error of order 3.

3. Conjugate points

Now we are going to turn to the relationship between the singulari-
ties of the exponential map and Jacobi fields. Before doing this, we
require some definitions.

3.1 DEFINITION. Let ~:[0,a] — M be a geodesic. The point v(t,)
is said to be conjugate to v(0) along 7, t, € (0,a), if there exists a
Jacobi field J along 7, not identically zero, with J(0) = 0 = J(2,).
The maximum number of such linearly independent fields is called
the multiplicity of the conjugate point y(2,).

Observe that if y(t,) is conjugate to v(0), then v(0) is conju-
gate to (o).
3.2 REMARK. If the dimension of M is n, there exist exactly n
linearly independent Jacobi fields along the geodesic v: [0,a] — M,
which are zero at (0). This follows from the fact, easily checked,
that the Jacobi fields Ji,...,Jkx with J;(0) = O are linearly inde-
pendent if and only if J{(0),...,J¢(0) are linearly independent. In
addition, the Jacobi field J(t) = t¥'(t) never vanishes for ¢ # 0 (see
Rem. 2.2). From this we deduce that the multiplicity of a conjugate
point never exceeds n — 1.
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3.3 EXAMPLE. Let S™ = {z € R**};|z| =1}. In this example,
we assume a fact which will be proved in the next chapter, namely,
the sectional curvatures of S™ are all equal to one. The Jacobi field
on S™ given in example 2.3, that is, J(t) = (sint)w(t), satisfies the
condition J(0) = J(n) = 0. Therefore, along any geodesic v of S™,
the antipodal point v(7) to «(0) is conjugate to v(0). It is trivial to
verify that there exists n—1 such fields that are linearly independent,
that is, the multiplicity of 4(=) as a conjugate point of v(0) is n— 1.

3.4 DEFINITION. The set of (first) conjugate points to the point
p € M, for all the geodesics that start at p, is called the conjugate
locus of p and is denoted by C(p).

On S™, C(p) = {-p}, for all p. The case of S™, however, is
not typical. A more typical example is given by the ellipsoid, where
C(p) is, in general, a curve with four singular points (see Fig. 4 of
Chap. 13); Cf. Braunmiihl, A., “Geodétische Linien auf dreiachsigen
Flichen 2-Grades”, Math. Ann., 20 (1882), 557-586.

The following proposition relates conjugate points with the
singularities of the exponential map.

3.5 PROPOSITION. Let v: [0,a] = M be a geodesic and put ¥(0) =
p. The point ¢ = «(t,), to € (0,a], is conjugate to p along v if
and only if v, = t,7'(0) is a critical point of exp,. In addition, the
multiplicity of q as a conjugate point of p is equal to the dimension
of the kernel of the linear map (dexp,)y, -

Proof. The point ¢ = v(t,) is a conjugate point of p along ~ if and
only if there exists a non-zero Jacobi field J along v with J(0) =
J(t,) = 0. Let v = /(0) and w = J'(0). From Corollary 2.5,
J(t) = (dexp,)w(tw), t € [0,a]. Observe that J is non-zero if and
only if w # 0. Therefore, ¢ = v(t,) is conjugate to p if and only if

0=J(to) = (dexp,)i,v(tow), w#0,

that is, if and only if, ¢,v is a critical point of exp,. The first assertion
is therefore proved.

The multiplicity of ¢ is equal to the number of linearly inde-
pendent Jacobi fields Ji, ..., Jx which are zero at 0 and at t,. As
is easy to verify, the fields Ji, ..., Ji are linearly independent if and
only if J{(0),...,J;(0) are linearly independent in T,M. From the
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construction above, the multiplicity of ¢ is equal to the dimension
of the kernel of (dexp,);,,. O

We conclude this chapter by presenting some properties of
Jacobi fields that will be useful later on.

3.6 PROPOSITION. Let J be a Jacobi field along the geodesic
v:[0,a] = M. Then

(@&, Y @) = (J'(0),7' ()t + (J(0),7'(0)), ¢€[0,ad].

Proof. Omitting the ¢ for the sake of notation, we have from the
Jacobi equation,

(') =" 7)) = ~(R(Y, ))7, %) = 0.
Therefore, (J/,v') = (J'(0),4(0)). In addition,
(1,7 = (J",7) = {J'(0),7(0)).
Integrating this last equation in ¢, we obtain finally

(1Y) = (J'(0),Y' ()t + (J(0),7'(0). T

3.7 COROLLARY. If (‘]7 7,>(t1) = (J’ '7,)(t2): ti,t2 € [07 a]: h 7é ta,
then (J,v') does not depend on t; in particular, if J(0) = J(a) = 0,
then (J,4')(t) = 0.

3.8 COROLLARY. Suppose that J(0) = 0. Then (J'(0),7'(0)) =0
if and only if (J,v')(t) = 0; in particular, the space of Jacobi fields
J with J(0) = 0 and (J,4'}(t) = 0 has dimension equal ton — 1.
3.9 PROPOSITION. Let v:[0,a] — M be a geodesic. Let V; €
Tyo)M and V3 € T,yM. If y(a) is not conjugate to v(0) there
exists a unique Jacobi field J along ~, with J(0) = V; and J(a) = Va.

Proof. Let J be the space of Jacobi fields J with J(0) = 0. Define
a mapping 6: J — T, ()M by
8(J) = J(a), JeJ.

Since 7(a) is not conjugate to v(0), © is injective. Indeed,
if Jy # J2 with Jj(a) = Ja(a), we should have J; — J,, a non-zero
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Jacobi field, with (J; — J;)(0) = 0, which contradicts the fact that
v(a) is not conjugate to v(0).

Since © is linear, it follows from injectivity and the fact that
dimJ = dimT,(4)M that © is an isomorphism. Hence there exists
J1 € J with J;(0) = 0 and J;(a) =

By an analogous argument, there exists a Jacobi field J, along
4 with Jo(a) = 0, J2(0) = V;. The desired field is now given by
J=J1 + .72. Uniqueness is clear. [

3.10 COROLLARY. Let 74:{0,a] — M be a geodesic in M,
dim M = n, and let J+ be the space of Jacobi fields with J(0) = 0,
J'(0)L+'(0). Let {Ji,...,Jn-1} be a basis of J*. Ify(t), t € (0,al,
is not conjugate to v(0), then {Ji(t),...,JJn-1(t)} is a basis for the
orthogonal complement {v' (t)}‘L C TyeyM of o/ (t).

EXERCISES

1. Let M be a Riemannian manifold with sectional curvature
identically zero. Show that, for every p € M, the mapping
exp,: Be(0) C T,M — B¢(p) is an isometry, where B,(p) is a
normal ball at p.

2. Let M be a Riemannian manifold, v: [0, 1] — M a geodesic, and
J a Jacobi field along v. Prove that there exists a parametrized
surface f(t,s), where f(t,0) = v(t) and the curves t — f(¢, s)
are geodesics, such that J(t) = —-g(t 0).

Hint: Choose a curve A(s), s € (—¢,¢€) in M such that A\(0) =
7(0), X'(0) = J(0). Along A choose a vector field W(s) with

W(0) = v'(0), Z¥(0) = (0) Define f(s,t) = expy(,) tW (s)
and verify that 51(0 0) = 42(0) = J(0) and
Dof, . _Da f

W DJ

3. Let M be a Riemannian manifold with non-positive sectional
curvature. Prove that, for all p, the conjugate locus C(p) is
empty.
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Hint: Assume the existence of a non-trivial Jacobi field along
the geodesic 7v:[0,a] — M, with '7(0) =p, J(0) = J(a) = 0.
Use the Jacobi equation to show that <% (D L J) > 0. Conclude
that (dt ,J) = 0. Since £(J,J) = 2( 22,J) = 0, we have
|l7}|? = const. =0, a contradiction.

4. Let b < 0 and let M be a manifold with constant negative
sectional curvature equal to b. Let 7:[0,¢] — M be a normal-
ized geodesic, and let v € T.yy)M such that (v,7'(€)) = 0 and
|v| = 1. Since M has negative curvature, y(£) is not conjugate
to v(0) (see Exercise 3). Show that the Jacobi field J along ~
determined by J(0) =0, J(¢) = v is given by

smh(t\/_—)
0 = S e v

where w(t) is the parallel transport along v of the vector
Uo -
’W(O) = _Iu_ol’ Uo = (d expp)e-yl'(o) (’U)

and where u, is considered as a vector T (0)M by the identifi-
cation Ty M = Ty (0)(Ty(0) M).

Hint: From example 2.3, the Jacobi field J; along 7 satisfying
J1(0) =0, J{(0) = I—::—l, is given by

sinh ¢v/=b
———\/:—E—W(t)

In addition, from Corollary 2.5,

J1(€) = (dexp,)ey (o) (fw(0)).

Ji(t) =

It follows that
Uo
T =v = (dexp, ey () = ()2l

Therefore,

J(t)=J1(t)l—ufl- sm\h/t;/_— (t)on'
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In addition, since

sinh €v/—b |u,|

1=|v|=|J(O)| = V—b 7’

we have

luo| (sinh 29 —b) -

¢\ V=b

which implies what was asserted.

Jacobi fields and conjugate points on locally symmetric spaces
(Cf. Exercise 6 of Chap. 4).

Let :[0,00) — M be a geodesic in a locally symmetric space
M and let v = 4(0) be its velocity at p = v(0). Define a linear
transformation K,: T,M — T,M by

K,(z) = R(v, z)v, z € T,M.

a) Prove that K, is self-adjoint.
b) Choose an orthonormal basis {e,...,en,} of T,M that
diagonalizes K, that is,

K,,(ei) = z\,-e,-, 1= 1, ceey M

Extend the e; to fields along v by parallel transport. Show
that, for all ¢,

Ky (ei(t)) = Miei(t),

where A; does not depend on t.
Hint: Use Exercise 6(a), of Chap. 4.
c) Let J(t) = 3_; zi(t)e;(t) be a Jacobi field along . Show
that the Jacobi equation is equivalent to the system

d2xi .
F+)\,~x.~=0, 1=1,...,n.

d) Show that the conjugate points of p along v are given
by v(wk/v/X;), where k is a positive integer and ); is a
positive eigenvalue of K.
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6. Let M be a Riemannian manifold of dimension two (in this
case we say that M is a surface). Let Bs(p) be a normal ball
around the point p € M and consider the parametrized surface

f(p,6) =exp,pv(8), 0<p<é -w<O<m,

where v(6) is a circle of radius § in T, M parametrized by the
central angle 6.

a) Show that (p,8) are coordinates in an open set U C M
formed by the open ball Bs(p) minus the ray
exp,(—pv(0)) 0 < p < 6. Such coordinates are called
polar coordinates at p.

b) Show that the coefficients g;; of the Riemannian metric
in these coordinates are:

2

912=0, gn=

2
o
=@ =1, gn= l-(:?%

¢) Show that, along the geodesic f(p,0), we have

R _

(V922)00 = —K(p)p + R(p), where ’l,i_ir(l’ ;

and K (p) is the sectional curvature of M at p.

d) Prove that
V922

lim ————( )pp = ~-K(p).

0 /922
This last expression is the value of the Gaussian curvature of
M at p given in polar coordinates (Cf., for example, M. do
Carmo [dC 2] p. 288). This fact from the theory of surfaces,
and (d) shows that, in dimension two, the sectional curvature
coincides with the Gaussian curvature. In the next chapter, we
shall give a more direct proof of this fact.

7. Let M be a Riemannian manifold of dimension two. Let p € M
and let V C T,M be a neighborhood of the origin where exp,,
is a dlﬁeomorphlsm Let S.(0) C V be a circle of radius r
centered at the origin, and let L, be the length of the curve
exp,(S;) in M. Prove that the sectional curvature at p € M is
given by

_ 32rr— L,
K(p) }—»o s r3
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Hint: Use Exercise 6.
8. Let 7:[0,a] = M be a geodesic and let X be a Killing field on
M

a) Show that the restriction X (y(s)) of X to v(s) is a Jacobi
field along ~.

b) Use item (a) to show that (Cf. Exercise 6 of Chap. 3) if
M is connected and there exists p € M with X(p) =0
and VyX(p) = 0, for all Y(p) € T,M, then X = 0 on
M.



CHAPTER 6

ISOMETRIC IMMERSIONS

1. Introduction

In this chapter we shall consider the following situation. Let f: M —
M be a differentiable immersion of a manifold M of dimension n into
a Riemannian manifold M of dimension equal to k = n + m. The
Riemannian metric of M induces, in a natural manner, a Riemannian
metric on M: if v,v2 € TpM, define (vy,va) = (dfp(v1), dfp(v2)).
In this situation, f becomes an isometric immersion of M into M.
We should like to study the relationship between the geometry of M
and that of M.

As always, the motivation for this study comes from the clas-
sical case of surfaces S in R3. For the purpose of motivation, we
can restrict ourselves to the case that the surface S is the graph
{(z,y,2) € R3,z = f(z,y)} of a differentiable function f with
f(0,0) = 0 and f;(0,0) = f,(0,0) = O (this last condition means
that S is tangent to the z,y plane). In this case, we know from Cal-
culus, that the behavior of S in a neighborhood of the origin 0 € R3
is strongly influenced by the quadratic form

I(z,y) = fzz (0)32 + 2fzy(0)xy + fyy(o)y2

defined in the z,y plane. I is called the second fundamental form
of S at the point 0 and, for instance, the Gaussian curvature of S
at 0 is given by

(1) K = fxzfyy - f::zy

Our first objective is to generalize the notion of the second
fundamental form to the case f: M — M. Since the codimension m
can be larger than 1, the quadratic form so defined must take values
in a vector space of dimension m > 1.
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As we shall see, the relations between the Riemannian metrics
of M and M can be expressed by means of the second fundamental
form. Among these relations, the most important is probably the
Gauss formula (see Theorem 2.5) which generalizes (1) and yields
the difference between the curvatures of M and M with the help
of expressions involving the second fundamental form. Since the
curvatures are defined intrinsically, the Gauss formula generalizes
the fundamental theorem of Gauss, mentioned in the Introduction
to Chapter 1, which was the point of departure for Riemannian
Geometry.

Using the Gauss formula, we shall give a geometric interpre-
tation of the sectional curvature that is essentially the definition of
curvature used by Riemann (Cf. Chap. 4, Introduction).

In the last section, we introduce the equations of Codazzi and
Ricci, which, together with Gauss’ equation, form the fundamental
equations of the local theory of isometric immersions.

2. The second fundamental form

Let f: M™ — M™™=* be an immersion. Then, for each p € M,
there exists a neighborhood U C M of p such that f(U) C M is
a submanifold of M. This means that there exists a neighborhood
U C M of f(p) and a diffeomorphism p: U — V C RF to an open
set V of R¥, such that ¢ maps f(U)NT diffeomorphically onto an
open set of a subspace of R® C R* (See Fig. 1). To simplify the
notation, we shall identify U with f(U) and each vector v € T, M,
q € U, with df,(v) € Tf(q)JVI . We shall use such identifications to
extend, for example, a local vector field (that is, defined on U) on M
to a local vector field (that is, defined on U) on M ; if U is sufficiently
small, such an extension is always possible, as is easily seen using
the diffeomorphism ¢.

For each p € M, the inner product on T,,]VI splits T,,]VI into
the direct sum

Tpﬂ =T,M & (T,M)*,

where (T, M)* is the orthogonal complement of T, M in T,M.
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Figure 1

vaeTpH,peM,wecanwrite
v=ovT +oV, T eT,M, Ve (T,M)"*.

We call vT the tangential component of v and vV the normal com-
ponent of v. Such a splitting is clearly differentiable, in the sense
that the mappings

(p,v) = (p,97) and (p,v) = (p,")

of TM into TM are differentiable. _ _

The Riemannian connection on M will be denoted by V. If
X and Y are local vector fields on M, and X, Y are local extensions
to M, define _

VxY = (VzY)T.

It is easy to verify that this is the Riemannian connection relative
to the metric induced on M (Cf. Exercise 3 of Chap. 2).

We want to define the second fundamental form of the immer-
sion f: M — M. To do this, it is convenient to introduce beforehand
the following definition. If X, Y are local vector fields on M,

B(X,Y)=VzY - VxY

is a local vector field on M normal to M. B(X,Y) does not depend
on the extensions X, Y. Indeed, if X; is another extension of X, we

have o o _ _
(VxY — VxY) - (V')—(IY -VxY) = 7(-5.(1},’
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which vanishes on M, because X-X,=0on M ; using what was
proved, it follows that if Y; is another extension of Y,

(VzY = VxY) = (VY1 - VxY) =Vx(Y -Y,) =0,

because Y —Y; = 0 on M.

Therefore B(X,Y) is well-defined. In what follows, let us de-
note by X(U)~ the differentiable vector fields on U that are normal
to f(U)=U.

2.1 ProrosITION. If X,Y € X (U), the mapping B: X(U) x
X{U) —» X(U)* given by

B(X,Y)=V3zY - VxY

is bilinear and symmetric.

Proof. From the properties of linearity of a connection, it is imme-
diate that B is additive in X and Y and that

B(fX,Y) = fB(X,Y), f € D(U).
It remains to show that
B(X, fY) = fB(X,Y), f € D(U).
Denoting the extension of f to U by f, we have
B(X, fY) = V3(fY) - Vx(fY)
= fV3Y - fVxY + X())Y - X()Y.

Since f = [, X(f) = X(f), and Y =Y on M, we conclude that
the last two cancel, leaving,

B(X,fY) = fB(X,Y)

as we claimed.

To show that B is symmetric, we use the symmetry of the
Riemannian connection, obtaining

B(X,Y)=V3Y - VxY =VpX + [X,Y] - Vy X - [X,Y].
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Since, [X,Y] = [X,Y] on M, we conclude that B(X, Y)
B(Y,X). O

Because B is bilinear, we see by writing B in a system of
coordinates, that the value B(X,Y)(p) depends only on the values

X(p) and Y (p).

Now we are in a position to define the second fundamental
form. Let p € M and n € (TpM)~. The mapping Hy: T,M xT,M —
R given by

Hfi(xr y) = (B(:z:,y), 7)), T,y € TpM)

is, by Proposition 2.1, a symmetric bilinear form.
2.2 DEFINITION.  The quadratic form II,, defined on T,M by

I(x) = Hy(z,x)

is called the second fundamental form of f at p along the normal
vector 7.

Sometimes the expression second fundamental form is also
used to designate the mapping B which at every point p € M is a
symmetric bilinear mapping, taking values in (T, M)~.

Observe that the bilinear mapping H, is associated to a linear
self-adjoint operator Sp: T,M — T,M by

(Sn(z),y) = Hy(z,y) = (B(z,y),n).

The following proposition expresses the linear operator as-
sociated to the second fundamental form in terms of the covariant
derivative.

2.3 PROPOSITION. Letp€ M, z € T,M and n € (T,M)*. Let N
be a local extension of n normal to M. Then

Sp(z) = ~(VN)T.

Proof. Let y € T, M and let X,Y be local extensions of z, y, respec-
tively, which are ta.ngent to M Then (N,Y) =0, and therefore

(Sn(2),¥) = (B(X,Y)(p), N) = (VxY — VxY, N)(p)
= (va,N)(P) = -<Y)VXN)(p) = (-va,y),
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foralye T,M. O

2.4 ExaMPLE. Consider the particular case in which the codi-
mension of the immersion is 1, i.e., f: M® — M™!; f(M) Cc M is
then called a hypersurface. (Observe that a hypersurface can have
self-intersections).

Let p € M and n € (Tp,M)4, |n] = 1. Since Syp: T,M —
T,M is symmetric, there exists an orthonormal basis of eigenvectors
{e1,...,en} of T,M with real eigenvalues Ay,..., A, i.e., Sy(e;) =
Xiei, 1 <i<n. If M and M are both orientable and oriented (i.e.,
orientations are chosen on M and M) then the vector 7 is uniquely
determined if we require that both {e;,...,e,} is a basis in the
orientation of M, and {ej,...,en,n} is a basis in the orientation
of M. In this case, we say that the e; are principal directions and
that the \; = k; are principal curvatures of f. The symmetric
functions of A1, ..., A, are invariants of the immersion. For example:
det(Sy) = A1...Aq is called the Gauss-Kronecker curvature of f and
L(A\1 +:--+Xy) is called the mean curvature of f.

An important case occurs when M = R"*!, Here, we can
give an interesting geometric interpretation of S,. To begin with,
let N be a local extension of n, which is a unit vector field normal to
M. Let S} = {z € R*!;|z| = 1} be the unit sphere in R**! and
define the Gauss spherical mapping, g: M™ — ST, by translating the
origin of the field N to the origin of R™*! and taking

g(q) = endpoint of the translation of N(q).

Since TyM and Ty, ST are parallel, we can identify them, and see
that dg,: Ty;M — T, M is given by

dga(@) = 5 (N 0 e(©))emo = Vol = (VaN)T = =S,(2),

where c: (—¢,€) — M is a curve with ¢(0) = ¢, ¢(0) = z, and we have
used the fact that (N, N) = 1 to guarantee that V,N = (V,N)T.
It follows that —S, is the derivative of the Gauss spherical mapping.

The Gauss mapping has important topological implications.
As an example, we shall prove the following fact: Let M™ n >
2, be a connected, compact, orientable manifold. If there exists
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an immersion f: M™ — R™*! with non-vanishing Gauss-Kronecker
curvature at every point of M, then M is diffeomorphic to ST'. The
proof depends on the properties of covering spaces (see for example,
M. do Carmo [dC 2] §5.6). The fact that det(dg,) # O, for the
Gauss mapping, tells us that g: M — SP is a local diffeomorphism.
Since M is compact, g is a covering map, and because ST is simply
connected, ¢ is a diffeomorphism.

We now relate the curvature of M with the curvature of M
and the second fundamental forms. If z,y € T,M C T,M, are
linearly independent, denote by K(z,y) and K(z,y) the sectional

curvatures of M and M, respectively, in the plane generated by z
and y. Another proof of the next theorem will come up in Section 3
of this chapter.

2.5 THEOREM. (Gauss). Let p € M and let z,y be orthonormal
vectors in T,M. Then

() K(zy) - K(z,y) = (Bz,2), B, y)) ~ |B(z,9)|*.
Proof. Let X,Y be local orthogonal extensions of z, y, respectively,

which are tangent to M; we denote the local extensions to M of X,
Y by X, Y. Then

K(z,y) - K(z,y)
= (VyVxX - VxVyX — (V5V3X - V5 V3 X),Y)(p)
+{(VixyX - Viz 7%, V) ().

Observe, first of all, that the last term is zero, because
(VixynX — —V-[)—(,}—’])—(—a Y)(p) = —((_‘7[2,?JE)N,Y>(P) =0.

On the other hand, if we denote by Ej, ..., By, m = dim M ~dim M,
local orthonormal fields which are normal to M, we have

B(X,Y)=> H{X,Y)E:, H;=Hg, i=1,...,m.



sec. 2] The second fundamental form 131

Therefore, at p,

V,—, 5'()? = V,—,(ZH.-(X, X)E; + Vx X)

= Z {Hi(X, X)V,—,E,- + ?H;(X, X)E.} + v)—,VxX.

Hence, at p,

@ (VgVzX,Y)=-> Hi(X, X)H(Y,Y) +(VyVxX,Y).

Similarly,

3) (VxVpX,Y)=-) Hi(X,Y)H:i(X,Y)+(VxVyX,Y).

Using (2) and (3), we obtain (1). O

2.6 REMARK. In the case of a hypersurface f: M® — M™*!, the
Gauss formula (1) has a very simple expression. Let p € M and
n € (Ty,M)*. Let {e1,...,en} be an orthonormal basis of T,M
in which S, = S is diagonal, that is, S(e;) = A\ie;, ¢ = 1,...,n,
where Aj,..., A\, are the eigenvalues of S. Then H(e;,e;) = \; and
H(ei,e;) =0, if i # j. Therefore (1) can be written

(4) K(ei’ ej) - ‘[_{(ei)e_’i) = AzAJ

2.7 REMARK. In the case in which M = M? ¢ M = R3, the
product A;A2 of the principal curvatures coincides with Gaussian
curvature of the surface. In this case, the previous Remark shows
that the Gaussian curvature coincides with the sectional curvature
of the surface, and implies the famous Theorem Egregium of Gauss,
which asserts that the Gaussian curvature of M2 c R3 is an invari-
ant under isometries.

2.8 EXAMPLE. (curvature of S®). We are going to show that the
sectional curvature of the unit sphere S® C R™*! is a constant equal
to 1.

For this, orient S™ by the inward pointing unit normal
N(z) = -z € R™!, |z] = 1. The Gauss mapping is then equal
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to (—4), where i is the identity of S™. It follows then that the self-
adjoint operator associated to Hy has all of its eigenvalues equal to
1. This means that for all p € S™, every v € T,S™ is an eigenvector.
Using the expression (4), we conclude that all sectional curvatures
of S™ are equal to 1, as we have claimed.

An immersion f: M — M is said to be geodesic at p € M if
for every n € (T,M)* the second fundamental form H,, is identically
zero at p. An immersion f is called totally geodesic if it is geodesic
for all p € M. The reason for this terminology is given by the next
proposition.

2.9 PROPOSITION. An immersion f: M — M is geodesic at PEM
if and only if every geodesic v of M starting from p is a geodesic of
M at p.

Proof. Let ¥(0) = p and 4’(0) = z. Let N be a local extension,
normal to M, of a vector n normal to M at p, and let X be a local
extension of 7'(t) to a tangent field on M. Since (X,N) = 0, we
obtain, at p,

Hy(z,z) = (Sp(z),2) = ~(Vx N, X)
=~X(N,X)+ (N,VxX) = (N,VxX).

It follows that f is geodesic at p if and only if, for all z € T,M,
the geodesic y of M that is tangent to z at p satisfies the condltlon
VxX (p) does not have a normal component. Therefore f is geodesic
at p if and only if every geodesic y of M starting from p is a geodesic
of Matp. O

Proposition 2.9 allows us to get what is probably the best
geometric interpretation of sectional curvature. Let M be a Rie-
mannian manifold and let p be a point of M. Let B ¢ T, M be
an open ball in T,M on which exp, is a diffeomorphism, and let
o C Tp M be a subspace of dimension two. Then exp,(0 N B) =
a submanifold of dimension two of M passing through p. Intuitively,
S is the surface formed by “small” geodesics that start from p and
are tangent to o at p. By Proposition 2.9, S is geodesic at p, hence
the second fundamental forms of the inclusion i: $ C M vanish at p.
As a submanifold of M, § has an induced Riemannian metric whose
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Gaussian curvature at p will be denoted by Kg. It follows from the
Gauss formula that

KS(P) = K(p, ‘7)'

In other words, the sectional curvature K(p,o) is the Gaussian cur-
vature, at p, of a small surface formed by geodesics of M that start
from p and are tangent to o. This was exactly the way in which
Riemann defined sectional curvature in [Ril.

Examples of totally geodesic submanifolds are rare. In the
case that M = R™, the linear subspaces and their translates are
evidently totally geodesic submanifolds. In the case that M=38"cC
R"+!, the intersections 3 of linear subspaces of R™*! with S™ are
totally geodesic submanifolds. This comes from the fact that for
every p € ), the geodesics of S™ that start from p and are tangent
to 3 are geodesics of ).

It was proven by E. Cartan that if a Riemannian manifold M
has the property that, for every p € M and every two dimensional
subspace of o C T, M, there exists a totally geodesic submanifold of
M tangent to o, then M has constant sectional curvature.

A much weaker condition than that of being totally geodesic
is the condition of being minimal.

2.10 DEFINITION. An immersion f: M — M is called minimal if
for every p € M and every n € (T,M)* the trace of S, =0.

Choosing an orthonormal frame Ei,...,E,, of vectors in
X (U)*, where U is a neighborhood of p in which f is an embed-
ding, we can write, at p,

B(zi y) = ZHi(xy y)Ei, $,y € TPM’ i = 1, e ,m,

where H; = Hg,. It is not hard to verify that the normal vector
given by

1
H= " Z (trace S;)E;,
L]

where S; = Sg,, does not depend on the chosen frame E;. The
vector H is called the mean curvature vector of f. It is clear that f
is minimal if and only if H(p) =0, for all p € M.
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The reason for the use of the word minimal in this context is
that such immersions minimize the volume, in the induced metric,
in the same way that geodesics minimize arc length. More precisely,
if M C M is a minimal submanifold and D C M is a sufficiently
small domain of M with regular boundary 8D, then the volume of
D in the induced metric is less than or equal to the volume of any
other submanifold of M with the same boundary.

We are not going to enter into details here. There exists a
vast literature on the subject and the reader may consult Chern
[Ch2], Lawson [La], or Osserman [Os] for further study. Even in
dimension n = 2, the topic is quite active, particularly with regard
to questions related to the Plateau problem (Cf. Chap. 2 of Law-
son [La]). For counsideration of some current problems, the reader
may consult W. Meeks [Me] and M. do Carmo, Minimal Surfaces:
stability and finiteness, International Congress of Mathematicians,
Helsinki, 1978.

The theory of isometric immersions is, by itself, a vast do-
minion of Riemannian geometry, of which we have only presented
the most elementary parts. The reader may find more information
on the subject in M. Dajczer [Da] and in the references therein men-
tioned.

3. The fundamental equations

Given an isometric immersion f: M® — M™™ we have at each
P € M the decomposition

T,M = T,M & (T,M)*,

which varies differentiably with p. This means that, locally, the
portion of the tangent bundle TM which sits over M can be decom-
posed into the direct sum of the tangent bundle TM and the normal
bundle TM+. In what follows, we shall systematically use Latin let-
ters X,Y, Z, etc., to denote differentiable vector fields tangent to M
and Greek letters &, 7, (, etc., to indicate differentiable vector fields
normal to M. _
Given X and 7, we saw that the tangent component of Vxn
is given by (Vxn)T = —8,(X). We plan now to study the normal
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component of Vxn, which will be called the normal connection V"
of the immersion. Explicitly,

(5)  Vxn=(Vxn)" = Vxn— (Txn)T = Vxn+ Sy(X).

It is easy to verify that the normal connection V' has all
of the usual properties of a connection, that-is, it is linear in X ,
additive in 7, and

V() = fVxn+X(fn, feDM).

In a similar way as in the case of the tangent bundle, we can in-

troduce for the normal connection VL, a notion of curvature in the
normal bundle which is called the normal curvature Rt of the im-
mersion and is defined by

L 4 4 L L
RY(X,Y)n=VyVxn—VxVyn+ Vix,ym-

Everything about immersions occurs as if the geometry de-
composes into two geometries: the geometry of the tangent bundle
and the geometry of the normal bundle. These geometries are re-
lated by the second fundamental form of the immersion by means
of expressions that generalize the classical equations of Gauss and
Codazzi in the theory of surfaces. The objective of this section is to
establish these relations.

3.1 PROPOSITION. The following equations are valid:
(a) Gauss equation

(R(X,Y)Z,T) = (R(X,Y)Z,T)

(b) Ricci equation

(R(X,Y)n,¢) = (RH(X,Y)n,€) = ([Sy, SIX, V),

where [S,, S¢] denotes the operator S, o S¢— S¢o Sy,
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Proof. Observe that VxY = VxY + B(X,Y). Since
RX,Y)Z=VyVxZ-VxVyZ+VxvZ
=Vy(VxZ + B(X,2)) - Vx(VyZ + B(Y, Z))
+VixnZ + B(X,Y),2),
we have
R(X,Y)Z = R(X,Y)Z + B(Y,VxZ) + VyB(X, Z)
(6) - Spx,2)Y — B(X,VyZ) - VyB(Y, Z)
+ Spy,zyX + B([X, Y], 2).

Taking the inner product of (6) with T, since the normal terms
vanish, we obtain finally

(R(X,Y)Z,T) = (R(X,Y)Z,T) - (Spx,2)Ys T) + (SB(v,2)X, T)
+ (B(X,T), B(Y, Z))

which is the Gauss equation.
To get the Ricci equation, we calculate

R(X,Y)n=VyVxn—VxVyn+ Vixym
=Ty (Vxn = 5,X) = Vx(Vyn = S,Y)
+ Vix vy — SylX, Y]
= RH(X,Y)n - Syz ¥ = Vy(5,X) - B(S,X,Y)
+ Sy, X + Vx(SyY) + B(X, 5,Y) - 5[X,Y].
Multiplying the expression by ¢ and observing that (B(X,Y),n) =
(SpX,Y), we obtain
(R(X,Y)n,0) = (RT(X,Y)n,{) — (B(S53X,Y),¢) + (B(X, S,Y), )
= (RH(X,Y)n,¢) + {(SnS¢ — S¢S) X, Y)
= (RH(X,Y)n,¢) + ([Sn, )X, Y),

which is Ricci’s equation. 0O

3.2 REMARK. Theorem 2.5 of this chapter is a special case of
Gauss’ equation.
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3.3 REMARK. We say that the normal bundle of an immersion is
flat if Rt = 0. Assume that the ambient space M has constant
sectional curvature. Then the Ricci equation can be written as

(R.L(Xv Y)na C) = _<[S"h S(]X, Y)

It follows that R+ = 0 if and only if [Sn, S¢] = 0 for all n,¢, that
is, if and only if for all p € M there exists a basis of T,M which
diagonalizes all of the S, simultaneously.

The Gauss and Ricci equations are algebraic expressions that
relate the curvatures of the tangent and normal bundles, respec-
tively, with the second fundamental form of the immersion. A non-
algebraic relation is given by the Codazzi equation, for which we
need to “differentiate” the second fundamental form considered as
a tensor. ‘

Given an isometric immersion, let us denote the space of dif-
ferentiable vector fields normal to M by X(M)+. The second fun-
damental form of the immersion can then be considered as a tensor

B:X(M) x X(M) x X(M)* - R

defined by
B(X,Y,n) = (B(X,Y),n).

The definition of covariant derivative extends to tensors of this type
in a natural way:

(VxB)(Y,2,1) = X(B(Y, Z,n)) - B(VxY, Z,n)
~ B(Y,VxZ,1) - B(Y,Z,Vx7).
3.4 PROPOSITION. (Codazzi’s equation). With the notation above,
(R(X,Y)Z,1) = (VyB)(X, Z,1) - (VxB)(Y, Z,1).
Proof. Observe, to begin with, that
(VxB)(Y, Z,1) = X(B(Y, Z),n) — (B(VxY, Z),n)
— (B(Y,Vx2),1) = (B(Y, 2), Vin)

= (Vx(B(Y, 2)),n) - (B(VxY, Z), n)
— (B(Y, Vx 2),7).
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Consider now expression (6) in the proof of Proposition 3.1,
and multiply both sides of (6) by . We obtain, taking into account
the remark above,

(R(X,Y)Z,n) = (B(Y,Vx2),n) + (VyB(X, Z),n)
— (B(X, Vv Z),n) — (VxB(Y, 2),n)
+(B(VxY, Z),n) — (B(Vy X, Z)n)
= —(VxB)(Y, Z,n) + (V¥ B)(X, Z,n)

which is Codazzi’s equation. 0O

3.5 REMARK. If the ambient space M has constant sectional cur-
vature, the Codazzi equation reduces to

If, in addition, the codimension of the immersion is 1, V;n = 0,
hence

VxB(Y,Z,1) = X(5,(Y), Z) ~ (S,(VxY), Z) ~ (Sp(Y), VX Z)
= (VX(SYI(Y))aZ) - (SW(VXY)7Z)

Therefore, in this case, the Codazzi equation can be written
Vx(Sn(Y)) = Vy (8n(X)) = Sy([X, Y1)

The importance of the equations of Gauss, Codazzi, and Ricci
is that, in the case in which the ambient space has constant sectional
curvature, they play an analogous role to that of the compatibility
equations in the local theory of surfaces (Cf. M. do Carmo [dC 2],
pp. 235-236). Indeed, the compatibility equations in surface theory
are only special cases of the Gauss and Codazzi equations obtained in
this section. In the present case, it is possible to state an analogous
theorem to the fundamental theorem of local surface theory (cf. loc.
cit. p. 236). We refer the reader to the article of K. Tenenblat,
“On isometric immersions of Riemannian manifolds”, Boletim da
Soc. Bras. de Mat. vol. 2 (1971), 23-36. A very nice discussion
on the subject can be found in the article of H. Jacobowitz, “The :
Gauss-Codazzi equations”, Tensor N.S., 39 (1982), 15-22.
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EXERCISES

1. Let M; and M> be Riemannian manifolds, and consider the
product M; x My, with the product metric. Let V! be the
Riemannian connection of M; and let V2 be the Riemannian
connection of Ma.

a) Show that the Riemannian connection V of M; x M,
is given by Vy,4v,(X1 + X2) = Vy, X1 + Vi, X,
X1, e X(Ml), X2, € X(Mg)

b) For every p € M, the set (Mz2), = {(p,q) € M; x
M;;q € Mz} is a submanifold of M; x M,, naturally
diffeomorphic to M. Prove that (M), is a totally
geodesic submanifold of M; x M,.

c) Let o(z,y) C Tip g (M1 x M3) be a plane such that
z € T, M, and y € T,M,. Show that K(o) = 0.

2. Show that x: R? — R? given by
x(0,p) = %(cos 8,sin 6, cos p,sinp), (6,¢) € R?

is an immersion of R? into the unit sphere $°(1) ¢ R4, whose
image x(R?) is a torus T2 with sectional curvature zero in
the induced metric.

3. Let M be a Riemannian manifold and let N ¢ K C M be
submanifolds of M. Suppose that N is totally geodesic in K
and that K is totally geodesic in M. Prove that N is totally
geodesic in M.

4. Let Ny C M;, N, C M, be totally geodesic submanifolds of
the Riemannian manifolds M; and M3y, respectively. Prove
that N; x N; is a totally geodesic submanifold of the product
M; x M, with the product metric.

9. Prove that the sectional curvature of the Riemannian mani-
fold $? x S with the product metric, where S? is the unit
sphere in R3, is non-negative. Find a totally geodesic, flat
torus, 72, embedded in S2 x S2.
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Let G be a Lie group with a bi-invariant metric. Let H be
a Lie group and let h: H — G be an immersion that is also
a homomorphism of groups (that is, H is a Lie subgroup of
G). Show that h is a totally geodesic immersion.

Show that if M is a totally geodesic submanifold of M, then,
for any tangent fields to M, V and V coincide.
(The Clifford torus). Consider the immersion x: R? — R*

given in Exercise 2.
a) Show that the vectors

e1 = (~sinb,cos8,0,0), e2 = (0,0, —siny,cosyp)

form an orthonormal basis of the tangent space, and
that the vectors n; = —}g(cos 6,sin 8, cos , sin @),
ng = —%(— cos 0, — sin 8, cos , sin ) form an orthonor-
mal basis of the normal space.

b) Use the fact that

<Snk(ei)1ej> = —(v-einki ej) = (6&'8]"'"4:),

where V is the covariant derivative (that is, the usual
derivative) of R*, and 4,4,k = 1,2, to establish that
the matrices of S, and S,, with respect to the basis

{e1,e2} are
-1 0
e (7 9)

1 0
Sna = (0 —1)

¢) From Exercise 2, x is an immersion of the torus T2 into
S3(1) (the Clifford torus). Show that x is a minimal
immersion.
Let f: M™ — R™*" be an immersion. Let 7 € (Tp,M)*,
p€Mand V=T,M®Rn C R™™", where Rp = {\n |
X € R}. Let m: R™*" — R™*™ be the orthogonal projection
onto T,M @ R7n. Since 7 is transversal to M at p, n | U
is an embedding, where U is a sufficiently small neighbor-
hood of p in M. Let M’ = n(U) C T,M © Ry and let
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Sp: ToM' = T,M — T, M’ be the operator associated to the
second fundamental form of M’ at p in the direction of 7.
Show that S; = Sy, where S,: T,M — T,M is the operator
associated to the second fundamental form of M’ at p in the
direction of .

Hint: Let N and N’ be normal fields along U and #(U),
respectively, such that N(p) = N'(p) = 7. Then if X € T, M,
Sy(X) = =(VxN)T and S (X)) = —(VxN")T. Show that
it is possible to choose N in such a way that N’ = dn(N)
and observe that the restriction dr | T, M = id. Hence, at p,
Si(X) = =(Vx(drN))T = —dn(VxN)T = §p(X).

Let f: M™ — M"™** be an isometric immersion and let S:
TM — TM be the operator associated to the second fun-
damental form of f along the normal field . Consider S,
as a tensor of order 2 given by S,(X,Y) = (S,(X),Y),
X,Y € A(M). Observe that saying the operator 3, is self-
adjoint is equivalent to saying that the tensor S, is symmetric,
that is, $;(X,Y) = S,(Y, X). Prove that for all V € ¥(M),
the tensor Vy S, is symmetric.

Hint: Differentiating (S;X,Y) = (X, S,Y) with respect to
V, we obtain

(Vv (5 X), Y) (S, X, Vv Y) =(Vy X, S, Y)+(X, Vy(S,Y)).
Using the fact that

((Vv5:)X),Y) = (Vv (5, X),Y) = (Sp(Vv X),Y)
and the previous expression, we obtain easily that

(VvS)X,Y) =(X,(VvS,)Y).

Let f:M™! - R be a differentiable function. Define the
Hessian, Hess f of f at p € M as the linear operator
Hess f:T,M — T,M, (Hessf)Y =Vygradf, Y € T, M,

where V is the Riemannian connection of M. Let a be a
regular value of f and let M™ ¢ M™*! be the hypersuperface
in M defined by M = {peM;f@p) = a}. Prove that:
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a) The Laplacian Af is given by
Af =trace Hess f.
b) If X,Y € X(M), then
((Hess f)Y, X) = (Y, (Hess ) X).

Conclude that Hess f is self-adjoint, hence determines
a symmetric bilinear form on T,M, p € M, given by
(Hess f)(X,Y) = ((Hess /)X, Y), X,Y € T,M.

¢) The mean curvature H of M C M is given by

nH = —div (‘g”a:;l)

Hint: Take an orthonormal frame Ey,...,En, Epy1 = Tg%ﬁ

= 7 in a neighborhood of p € M in M and use the definition
of divergence in Exercise 8, Chapter 3, to obtain

nH = trace S, = Z(Sq(Ei),Ei)
i=1
n+1

==Y "(Ven E) - (Vym,n) =Y _(VEm, Ei)
i=1 i=1
. . ,grad f
= —div—=n = - div(———==).
7= W ga )

d) Observe that every embedded hypersurface M™ c
M™*! is locally the inverse image of a regular value.
Conclude from (c) that the mean curvature H of such
a hypersuperface is given by

H = -ldivN,
n

where N is an appropriate local extension of the unit
normal vector field on M™ ¢ M™H1,
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(Singularities of a Killing field). Let X be a Killing vector
field on a Riemannian manifold M. Let N = {p € M; X(p) =
0}. Prove that:

a) If pe N, and V C M is a normal neighborhood of
p, with ¢ € NNV, then the radial geodesic segment
7 joining p to q is contained in N. Conclude that
YNV CN.

b) If p € N, there exists a neighborhood V C M of p such
that V N N is a submanifold of M (this implies that
every connected component of N is a submanifold of
M).

Hint: Proceed by induction, using (a). If p is isolated, noth-
ing has to be done. In the contrary case, let V C M be a nor-
mal neighborhood of p such that there exists ¢; € VNN and
consider the radial geodesic v; joining pto ¢1. f VAN =,
by (a), the proof is complete. Otherwise, let g2 € VNN —{}
and let 2 be the radial geodesic joining p to go. Let Q C T, M
be the subspace generated by the vectors exp, 1(g;) and
exp; '(g2) and let Ny = exp,(Q Nexp;!(V)). Show that
for all ¢ € R, the restriction of the differential (dX,), of the
flow X;: M — M | to Q, is the identity; conclude now that
N2 CVNN. Proceed in this way until the dimension of T, M
is exhausted.

c¢) The codimension, as a submanifold of M, of a con-
nected component Ny of N is even. Assume the fol-
lowing fact: if a sphere has a non-vanishing differen-
tiable vector field on it then its dimension must be odd
(for a proof, see Armstrong, [Ar], p. 198).

Hint: Let Ep, = (T,Ni)* and let V C M be a normal neigh-
borhood of p. Set N+ = exp,(Ep Nexp, 1(V)). Since, for all
t, (dX¢)p: Ep — E,, we have that X is tangent to N. On
the other hand, X # 0 is tangent to the geodesic spheres of
N with center p. From the theorem mentioned above, the

dimension of such a sphere is odd. Hence dim N} =dimE,
is even.



CHAPTER 7

COMPLETE MANIFOLDS; HOPF-RINOW
AND HADAMARD THEOREMS

1. Introduction

So far, we have essentially studied local properties of Riemannian
manifolds. However, one of the most interesting aspects of differen-
tial geometry is the interplay that exists between the local proper-
ties and the global properties of a Riemannian manifold. By a local
property, we mean a property that depends on the behavior of the
manifold in the neighborhood of a point, and by a global property,
we mean one which depends on the behavior of the manifold taken
as a whole.

In this chapter, we begin the study of the relations between
local and global properties. First, we define the natural “habitat”
of global properties, namely, a complete Riemannian manifold M,
as a manifold in which the geodesics are defined for all values of
their parameter (Cf. Def. 2.2). Formally, this means that for any
P € M, exp, is defined on all of T, M; intuitively, this means that
the manifold does not have any holes or boundaries.

What turns out to be very useful on complete manifolds is
the fact that (Theorem of Hopf and Rinow) given any two points
of such a manifold there exists a minimizing geodesic joining these
two points. We are going to prove this statement in Theorem 2.8, -
together with other facts which imply, for instance, that a compact
manifold is complete and that a closed submanifold of a complete
manifold is a complete manifold.

As an application of the Theorem of Hopf and Rinow, we
prove the theorem of Hadamard which states that there is a homeo-
morphism of a complete simply connected manifold of dimension n,
whose sectional curvature satisfies K < 0, onto R™. This is an ex-
ample of the relation between local and global properties, in which
a local condition (K < 0) together with weak global restrictions



sec. 2] Complete manifolds; Hopf-Rinow Theorem 145

(complete and simply connected) imply a strong global restriction
(homeomorphic to R™).

From now on, except when explicitly mentioned otherwise,
all manifolds will be supposed connected.

2. Complete manifolds; Hopf-Rinow Theorem

When we want to study global properties of a differentiable manifold
M, we need to make sure that M is not a proper open submanifold
of a manifold M’. The usual condition for guaranteeing this non-
extendibility is compactness. In certain cases, however, we would
like to use a weaker condition; a natural definition would be the
following.

2.1 DEFINITION. A Riemannian manifold M is said to be eztendible
if there exists a Riemannian manifold M’ such that M is isometric
to a proper open subset of M’. In the opposite case, M is called
non-extendible.

It happens that the class of non-extendible Riemannian man-
ifolds is too large. A convenient subfamily of this class is given in
the next definition.

2.2 DEFINITION. A Riemannian manifold M is (geodesically) com-
plete if for all p € M, the exponential map, exp,, is defined for all
v € T, M, ie., if any geodesic (t) starting from p is defined for all
values of the parameter ¢ € R.

2.3 PROPOSITION. If M is complete then M is non-extendible.

Proof. Suppose that M C M’ is isometric to a proper open subset of
a Riemannian manifold M’. Because M' is connected, the boundary
OM of M in M’ is non-empty. Let p € M and let U’ C M’ be a
normal neighborhood of p in M’. Let ¢ € U’ N M and let 5(¢) be
a geodesic in M’ with 5(0) = p, 7(1) = ¢. Then () = 3(1 - t),
|t| < 6, is a geodesic in M with y(0) = q. This geodesic is not defined
for some ¢ < 1, which contradicts the fact that M is complete. 0O

It is possible to show, by an example, that the converse is
not true (cf. Exercise 4) and consequently that the class of non-
extendible manifolds is actually larger than the the class of complete
manifolds.
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At this stage it is convenient to introduce a distance function
on a Riemannian manifold (not necessarily complete) M as follows.
Given two points p,q € M, consider all the piecewise differentiable
curves joining p to ¢. Since M is connected, such curves exist (cover
a continuous curve joining p to ¢ by a finite number of coordinate
neighborhoods and replace each “piece” contained in a coordinate
neighborhood by a differentiable curve).

2.4 DEFINITION. The distance d(p,q) is defined by d(p,q) = in-
fimum of the lengths of all curves f, 4, where f, 4 is a piecewise
differentiable curve joining p to g.
2.5 PROPOSITION. With the distance d, M is a metric space, that
is:

1) d(p,r) < d(p,q) +d(g,7),

2) d(p,q) = d(g,p),

3) d(p,q) 20, and d(p,q) =0 & p=gq.

Proof. (1), (2) and two of the assertions of (3) are immediate conse-
quences of the definition of the infimum. It remains to show that if
d(p,q) = 0 then p = q. Suppose to the contrary, and take a normal
ball B,(p) that does not contain g. Since d(p,q) = 0, there exists a
curve c joining p to ¢ of length less than r. But the segment of ¢
contained in B,(p) certainly has length greater than or equal to r,
by Proposition 3.6 of Chapter 3, and that is a contradiction. O

Observe that if there exists a minimizing geodesic v joining
p to g (which is not always true) then d(p, g¢) = length of 4.
2.6 PROPOSITION. The topology induced by d on M coincides with
the original topology on M.

Proof. From the remark above, it follows that if r is sufficiently
small, the normal ball B,.(p) coincides with the metric ball of radius
r, centered at p. Hence, metric balls contain normal balls, and
conversely. D

2.7 COROLLARY. If p, € M, the function f: M — R given by
f(p) = d(p, po) is continuous.

The fact which makes the concept of completeness relevant is
the following theorem.

2.8 THEOREM. (Hopf and Rinow [HR)). Let M be a Riemannian
manifold and let p € M. The following assertions are equivalent:
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a) exp,, is defined on all of T,(M).
b) The closed and bounded sets of M are compact.
c) M is complete as a metric space.
d) M is geodesically complete.
e) There exists a sequence of compact subsets K, C M, K, C
Knt1 and |, Ko = M, such that if g, ¢ K, then d(p,q,) —
0.
In addition, any of the statements above implies that
f) For any q € M there exists a geodesic v joining p to q with
{(y) = d(p, q).
Proof. a) = f). Let d(p,q) = r, and let Bs(p) be a normal ball at
p, with S5(p) = S the boundary of Bs(p). Let z, be a point where
the continuous function d(g,z), ¢ € S, attains a minimum. Then
To = exp, 6v, where v € T, M and |v| = 1. Let v be a geodesic given
by 7(s) = exp, sv (See Fig. 1). We are going to show that (r) = q.

Figure 1

To prove this fact, consider the equation
(1) d(y(s),q) =r—s

and let A = {s € [0,7]; (1) is valid}. A is not empty, since (1) is
true for s = 0. In addition, A is closed in [0,7]. Let s, € A. We
are going to show that if s, < r, then (1) is valid for s, + &’ , where
6’ > 0 is sufficiently small. This implies that sup A = r; since A is
closed then r € A, which shows that v(r) =q.
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In order to prove that (1) is true for s, + &', let Bys(7(s0))
be a normal ball at y(s,), with §' = 8Bs(7(s,)) its boundary and
let z, be a point where d(z, ¢), x € S’ has a minimum. It suffices to
show that =, = ¥(s, + §’). Indeed, if 2}, = y(s, + §'), since

d(7(80),9) = &' + mind(z,q) = §' + d(z5, 9)

and
d(¥(0),q) =T ~ S0,
we have
(2) r—s, =060+ d(a:f,, q) = 6+ d(v(so + 6’)7 )R
or that

d(y(80+ &'),q) =7 — (80, + &),

which is (1) for s, + &'.
To prove finally that v(s, + §') = i, observe that, by the
triangle inequality and by the first equality of (2),

d(p,xf,) 2 d(p,Q) - d(q,:v:,) =T = (’I‘— So — 6’) =8+ &

On the other hand, the broken curve joining p to z,, that goes from
P to y(s,) by the geodesic v, and from 7(s,) to x, by the geodesic
ray, has length equal to s, + §'. Hence d(p,z)) = s, + ¢', and such
a curve, by Corollary 3.9 of Chapter 3, is a geodesic. In particular,
the curve is not broken, hence ¥(s, + §') = z,,. This concludes the
proof that a) = f).

a) = b). Let A C M be closed and bounded. Since A is bounded,
A C B, where B is a ball with center p in the metric d. By (f), there
exists a ball B,(0) C T,M, such that B C exp, B.(0). Being the
continuous image of a compact set, exp, Br (0) is compact. Hence, A
is a closed set contained in a compact set, and is therefore compact.
b) = c). It suffices to observe that a subset {pn} formed by a -
Cauchy sequence is bounded, therefore, has compact closure by (b).
Thus {p.} contains a convergent subsequence and, being Cauchy,
converges.

c¢) = d). Suppose that M is not geodesically complete. Then some
normalized geodesic v of M is defined for s < s, and is not defined
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for s,. Let {s,} be a convergent sequence, converging to s, with
8n < 8o. Given ¢ > 0, there exists an index n, such that if n,m > n,
then |s, — 8| < e. It follows that

d(7(8n),7(8m)) < [8n — 8m| < ¢,

and hence the sequence {y(sn)} is a Cauchy sequence in M. Since
M is complete in the metric d, {y(s,)} — p, € M.

Let (W, 6) be a totally normal neighborhood of p,. Choose n;
such that if n,m > n,, then [sp, — sn| < 6 and (s,,), 7(8m) belong
to W. Then, there exists a unique geodesic g whose length is less
than 6 joining ¥(s,) to ¥(sm). It is clear that g coincides with ~,
wherever +y is defined. Since exp,,,) is a diffeomorphism on B;(0)
and exp,(, ) (Bs(0)) D W, g extends -y beyond so.

d) = a). Obvious.
b) ¢ €). General topology. O

2.9 COROLLARY. If M is compact then M is complete.

2.10 COROLLARY. A closed submanifold of a complete Riemannian
manifold is complete in the induced metric; in particular, the closed
submanifolds of Euclidean space are complete.

3. The Theorem of Hadamard

As an application of the theorem of Hopf-Rinow, we are going to
prove the following global fact.

3.1 THEOREM. (Hadamard). Let M be a complete Riemannian
manifold, simply connected, with sectional curvature K (p,0) <0,
forallp € M and for allo C T,(M). Then M is diffeomorphic to R,
n = dim M; more precisely exp,: TpM — M is a diffeomorphism.

Before starting the proof, we need a few lemmas. The fol-
lowing lemma shows that the exponential map of a manifold with
non-positive curvature is a local diffeomorphism.

3.2 LEMMA. Let M be a complete Riemannian manifold with
K(p,0) <0, forallp € M and for all o C T,M. Then forallp e M,
the conjugate locus C(p) = ¢; in particular the exponential map
exp,: Tp,M — M is a local diffeomorphism.
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Proof. Let J be a non-trivial (that is, not identically zero) Jacobi
field along a geodesic 7: [0,00) — M, where 4(0) = p and J(0) = 0.
Then from the hypothesis on the curvature and from the Jacobi
equation

(J, )" =207, J") +2(J", J)
=2(J,J) - 2(R(, I}, J)
=20 - 2K(, D) |y AJ* 2 0.

Therefore {J, J)' (t2) > (J, J)' (t1) whenever t5 > t;. Since J’(0) # 0
and (J,J)' (0) = 0, it follows, in addition, that for ¢ a sufficiently
small positive number

(1, J) (£) > (4, 7) (0).

It follows that for all ¢ > 0, (J,J) (¢) > 0, and «(¢) is not conjugate
to v(0) alongv. O

The crucial point in the proof of the Hadamard theorem is
given in the lemma below which is of independent interest.

3.3 LEMMA. Let M be a complete Riemannian manifold and let
f: M — N be alocal diffeomorphism onto a Riemannian manifold N
which has the following property: for allp € M and for allv € T, M,
we have |df,(v)| 2 |v|. Then f is a covering map.

Proof. By a general property of covering spaces (Cf. M. do Carmo,
[dC 2], p. 383), it suffices to show that f has the path lifting property
for curves in N, that is, given a differentiable curve c: [0,1] — N and
a point ¢ € M with f(q) = c(0), there exists a curve c:[0,1] - M
with ¢(0) =g and foCc=c.

To prove what is required, observe that, since f is a local
diffeomorphism at g, there exists an € > 0 such that it is possible
to define ¢:[0,6] = M with ¢(0) = ¢ and foc = ¢; that is, c can
be lifted to a small interval starting from q. Because f is a local
diffeomorphism over all of M, the set of values A C [0, 1}, such that
¢ can be lifted on A starting from g, is an open interval on the right;
that is, A = [0,¢,). If we can show that ¢, € A, we shall have A
open and closed in [0, 1], therefore A = [0,1] and c can be lifted on
the entire interval.
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To show that ¢, € A, let {t,}, n =1,..., be an increasing se-
quence in A with lim¢, = ¢,. Then the sequence {c(¢,)} is contained
in a compact set K C M. Indeed, if this were not the case, since
M is complete, the distance from &(t,) to ¢(0) would be arbitrarily
large. However, by hypothesis,

tn
% gt = /
0

botn () = /0 ' dat
9\ &t > d(&(tn), 50)),

tn
> =
> [ %

implying that the length of ¢ between 0 and ¢, is arbitrarily large,
which is absurd, and proves the assertion.

Since {c(tn)} C K, n =1,..., there exists an accumulation
point r € M of {¢(t,)}. Let V be a neighborhood of r such that
f | V is a diffeomorphism. Then ¢(t,) € f(V) and, by continuity,
there exists an interval I C [0,1], t, € I, such that ¢(I) C f(V).
Choose an index n such that ¢(¢,) € V and counsider the lifting g of
c on I passing through r. The liftings g and ¢ coincide on [0,¢,) N1,
because f | V is bijective. Therefore, g is an extension of ¢ to I,
hence c is defined at ¢, and ¢, € A.

de

de
dfa(t)(a)l dt

Proof of the Hadamard theorem. Since M is complete, exp,: T, M —
M is defined for all p € M and is surjective. By Lemma 3.2, exp,, is
a local diffeomorphism. This allows us to introduce a Riemannian
metric on T, M in such a way that exp,, is a local isometry. Such a
metric is complete, because the geodesics of T, M passing through
the origin are straight lines (Cf. Theorem 2.8, (a) = (d)). From
Lemma 3.3, exp,, is a covering map. Since M is simply connected,
exp, is a diffeomorphism. O

3.4 REMARK. The above proof gives a little more than what is
stated. Call a point p of a complete Riemannian manifold M a pole
if it has the property that it has no conjugate points. Any point of a
complete manifold M with non-positive sectional curvature is a pole
of M. However, poles can exist in non-compact manifolds which have
positive sectional curvature (See Exercise 13). What we have just
proved is the following general fact. If a complete simply connected
Riemannian manifold M has a pole, then M is diffeomorphic to R™,
n=dmM.



152 Hopf-Rinow, and Hadamard Theorems [Chap. 7

EXERCISES

1. If M,N are Riemannian manifolds such that the inclusion
i: M C N is an isometric imersion, show by an example that
the strict inequality das > dy can occur.

2. Let M be a covering space of a Riemannian manifold M.
Show that it is possible to give M a Riemannian structure
such that the covering map =: M — M is a local isometry
(this metric is called the covering metric). Show that M is
complete in the covering metric if and only if M is complete.

3. Let f: My — M; be a local diffeomorphism of a manifold
M; onto a Riemannian manifold M. Introduce on M; a
Riemannian metric such that f is a local isometry. Show by
an example that if M5 is complete, M; need not be complete.

4. Consider the universal covering
m M — R? - {(0,0)}

of the Euclidean plane minus the origin. Introduce the cov-
ering metric on M (Cf. Exercise 2). Show that M is not
complete and not extendible, and that the Hopf-Rinow the-
orem is not true for M (this shows that the definition of
non-extendibility, though natural, is not a satisfactory one).
Hint: The single difficult point is to prove that M is non-
extendible. Suppose to the contrary, that is, M C M/, is
an isometry and M # M'. Let p’ € M’ be a point in the
boundary of M and let W’ C M’ be a convex neighborhood
of p’.

If we prove that W' — {p'} C M, we obtain a contradiction,
since then w(W’ — {p'}) = U is a neighborhood of (0, 0) € R?
and considering the closed circle in U with center at (0,0) we
can lift the closed circle into M, which is impossible.

To prove that W’ — {p’} C M, observe first that through any
point p € M passes a unique geodesic in M that cannot be
extended for all valuesof t € R. Let z € W'NM and join z to
P’ by a geodesic 4 of M’. ¥ coincides initially with a geodesic
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of M and therefore is the unique geodesic passing through z
which cannot be extended for all values of ¢t. From uniqueness
and from the fact that p’ is a point of the boundary it follows
that all the points of ¥ "W, except p’, belong to M, because
4 approaches the boundary of M arbitrarily close. Finally, if
z € W’ and z ¢ 4, the geodesic joining z to z is, from the
uniqueness above, entirely in M, hence z € M.

A divergent curve in a Riemannian manifold M is a differen-
tiable mapping a: [0,00) — M such that for any compact set
K C M there exists t, € (0,00) with a(t) ¢ K for allt > ¢,
(that is, a “escapes” every compact set in M). Define the
length of a divergent curve by

i
lim / I/ (2)] dt.
t—o0 0

Prove that M is complete if and only if the length of any
divergent curve is unbounded.

A geodesic v:[0,00) — M in a Riemannian manifold M is
called a ray starting from ~+(0) if it minimizes the distance
between (0) and ~(s), for any s € (0,00). Assume that M
is complete, non- compact, and let p € M. Show that M
contains a ray starting from p.

Let M and M be Riemannian manifolds and let f: M — M

be a diffeomorphism. Assume that M is complete and that
there exists a constant ¢ > 0 such that

lvl 2 eldfp(v)],

for all p € M and all v € T,(M). Prove that M is complete.

Let M be a complete Riemannian manifold, M a connected
Riemannian manifold, and f: M — M a differentiable map-
ping that is locally an isometry. Assume that any two points
of M can be joined by a unique geodesic of M. Prove that f
is in_)jective and surjective (and, therefore, f is a global isom-
etry).

Consider the upper half-plane
R: = {(z,y) e R%y > 0}
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10.

11.

12.

13.

with the Riemannian metric given by

m=1 g12=0, gop=-.

Qe

Show that the length of the vertical segment
z=0, e<y<1, withe >0,

tends to 2 as € — 0. Conclude from this that such a metric is
not complete. (Observe, nevertheless, that when y — 0 the
length of vectors, in this metric, becomes arbitrarily large.)
Prove that the upper half-plane R2 with the Lobatchevski
metric:

1
gi1 = g22 = e 912 =0,

is complete.

Let M be a complete Riemannian manifold, and let X be a
differentiable vector field on M. Suppose that there exists a
constant ¢ > 0 such that | X (p)] > ¢, for all p € M. Prove
that the trajectories of X, that is, the curves ¢(t) in M with
¢'(t) = X (p(t)), are defined for all values of t.

A Riemannian manifold is said to be homogeneous if given
p,q € M there exists an isometry of M which takes p into g.
Prove that any homogeneous manifold is complete.

Show that the point p = (0,0, 0) of the paraboloid
S = {(z,y,2) € R% 2z =z*+ 4}

is a pole of S and, nevertheless, the curvature of S is positive.



CHAPTER 8

SPACES OF CONSTANT CURVATURE

1. Introduction

Among the Riemannian manifolds, those with constant sectional
curvature are the most simple. They are related to classical non-
Euclidean geometry, which is historically the first example of a geo-
metric structure different from the euclidean.

An important property of the spaces with constant curvature
is that they have a sufficiently large number of local isometries (Cf.
Corollary 2.2). This means that in these spaces it is always possible
to “displace” isometrically two small triangles situated in different
positions and verify whether they can be superimposed (in which
case we say they are equal or congruent). This property of “free
mobility of small triangles” is fundamental in the constructions of
elementary geometry and was considered as a postulate to be satis-
fied by the non-Euclidean geometries.

It is not difficult to verify that when we multiply a Riemann-
ian metric by a positive constant c, then its sectional curvature is
multiplied by 1/c. Therefore, up to a similarity, we can suppose that
the value of the constant sectional curvature of a Riemannian man-
ifold is 1,0, or —1. In what follows, this hypothesis will be assumed
without further comment.

So far, we have encountered two examples of Riemannian
manifolds with constant sectional curvature K, namely, the Eu-
clidean space R™ with K = 0 and the unit sphere $* ¢ R"+!
with K = 1. In this chapter, we shall introduce a Riemannian man-
ifold, the hyperbolic space H™ of dimension n, which has sectional
curvature K = —1. The manifolds R", S™ and H™ are complete and
simply connected (Cf. Section 3). The main theorem of this chapter
is that these are essentially the only complete, simply connected Rie-
mannian manifolds, with constant sectional curvature. This allows
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us to reduce the problem of finding all the complete manifolds of
constant curvature to the problem of determining certain subgroups
of the group of isometries of R®, S™ and H™ (Cf. Section 4).

To prove the fact mentioned above, we introduce in Section 2
a slightly more general theorem on the determination of the metric
by means of the curvature. Strictly speaking, this theorem does not
refer to spaces of constant curvature, but this is a natural place to
present it.

We frequently use the classical expression spaces of constant
curvature to designate the Riemannian manifolds of constant sec-
tional curvature.

In the last section of this chapter, we describe the isometries
of the hyperbolic space H™ and identify certain important hyper-
surfaces of H™, namely, the horospheres and the hyperspheres. In
Exercise 6, we indicate how to calculate the mean and sectional cur-
vature of such hypersuperfaces.

2. Theorem of Cartan on the determination of
the metric by means of the curvature

Let M and M be two Riemannian manifolds of dimension n and let
p € M and $ € M. Choose a linear isometry i: Tp(M) — T5(M).
Let V C M be a normal neighborhood of p such that exp; is defined
at i o exp, (V). Define a mapping f:V — M by

f(g) =expzoioexp;'(q), g€V

For all ¢ € V there exists a unique normalized geodesic ~: [0, ] — M
with 7(0) = p, 7(¢) = q. Denote by P; the parallel transport along

7 from (0) to y(t). Define ¢;: To(M) — Ty (M) by
¢e(v) = Proio P (v), v € T(M),
where P, is the parallel transport along the normalized geodesic

4:[0,t] — M given by 7(0) =5, 7' 0) = i(4'(0)). Finally, denote by
R and R the curvatures of M and M, respectively.
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2.1 THEOREM. (E. Cartan [Cal, p. 238). With the notation above,
if for all q € V and all z,y,u,v € Tg(M) we have

(Rz,1)u,0) = (R(#:(2), 1) $uw), $:(0))

then f:V — f(V) C M is a local isometry and df, = .

Proof. Let ¢ € V and let 4:[0,€] — M be a normalized geodesic
with 7(0) = p, ¥(f) = q. Let v € Ty(M) and let J be a Jacobi field
along v given by J(0) = 0 and J(£) = v. Let ey,...,e, = 7'(0) be
an orthonormal basis of T,(M) and let e;(t), 2 = 1,...,n, be the
parallel transport of e; along vy. Writing

J(@) =D wi(t)ei(®),
and using the Jacobi equation, we conclude that

¥+ (Rlemeden e}y =0, j=1,...,n.
i

Now, let 4:[0,4 — M be a normalized geodesic given by
7(0) = B, 4'(0) = i(7(0)). Let J(¢) be the field along 4 given by

J(t) = (J(t), telo,4.
Let €;(t) = ¢:(e;(t)). Then, from the linearity of ¢,
J(t) = E vi(t)&:(2).
Since, by hypothesis,
(Rlen,ei)en, &5) = ( R(En, &)n, &5 ),
we have that

y_;"'i'z:(iz(énaéi)én:éj)yi =0, ji=1...,n.
i
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It follows that J is a Jacobi field along ¥ with J(0) = 0. Since
parallel transport is an isometry, |J(£)| = |J(€)|. If we show that

J(€) = dfy(v) = dfy(J (£)),

we have completed the proof.

Since J(2) = ¢:(J(t)), we have that J'(0) = i(J’(0)). On the
other hand, since J(t) and J(t) are Jacobi fields which vanish at
t = 0, we have from Corollary 2.5 of Chapter 5

'](t) = (d expp)t‘y’ (0) (t'}’ (O)))

J(t) = (dexp}-,)t,-,,(o)(tj'(O)).

Therefore,

J(8) = (dexpj)es7(0)ti(J'(0))
= (dexps)ez(0) © % © ((dexD,) ey (0)) ™ (J(€)) = dfy(J(8)),

which proves what was asserted. O

Observe that the same proof shows that if exp, and exp; are
diffeomorphisms, then, under the conditions of Theorem 2.1, f is
defined on all of M and is an isometry.

The theorem implies that the metric is, in a certain sense,
determined locally by the curvature. An equivalent assertion was
made by Riemann ([Ri], p.289). As far as we know, the first proof
of the local theorem was presented by E. Cartan ([Ca)], p. 238). A
global version of the theorem above, which will not be presented
here, was given by W. Ambrose in 1956, [Am 1). A simple proof of
the theorem of Ambrose can be found in Cheeger and Ebin [CE].

For our purposes, we are only interested in the two corollaries
below. In particular, Corollary 2.3 implies that a space of constant
curvature is rich in isometries.

2.2 COROLLARY. Let M and M be spaces with the same constant
curvature and the same dimensionn. Let p € M andp € M. Choose
arbitrary orthonormal bases {e;} € T,(M) and {€;} € T3(M),
j = 1,...,n. Then there exist a neighborhood V C M of p, a
neighborhood V. C M of p, and an isometry f:V — V such that

dfp(e;) = &;.
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Proof. Choose the isometry ¢ of the theorem in such a way that
i(ej) = €;. The condition on the curvature is immediately verified,
and the conclusion follows from the theorem.

2.3 COROLLARY. Let M be a space of constant curvature and let
p and q be any two points of M. Let {e;} and {f;} be arbitrary
orthonormal bases of T,(M) and T,(M), respectively. Then there
exist neighborhoods U of p and V of q, and an isometry g:U — V
such that dgy(e;) = f;.

Related to the problem above, is the problem of deciding if
a diffeomorphism f: M — M which preserves the curvature in the
sense that

(R(X,)2,T), = (Rp(X), dip(V)dfp(2), dio(D)) ,

for all p € M and all X,Y,Z,T € T,(M), is an isometry. In di-
mension two this is a kind of converse to the Theorem Egregium
of Gauss, and is false, even in the compact case, as shown in the
example of Fig. 1. (A non-trivial example for the non-compact case
can be found in M. do Carmo [dC 2], p. 237.) For n = dim M = dim
M > 4, the problem surprisingly admits an affirmative solution (see
Kulkarni, (Ku 1] and {Ku 2]). For n = 3, the problem was treated
by Yau [Ya].

C D

dilation

T D

isometric isometric

Figure 1. A diffeomorphism which preserves curvature
but is not an isometry.



160 Spaces of constant curvature [Chap. 8

3. Hyperbolic space

We give now an example of a space of constant curvature —1.
Consider the half-space of R™ given by

H" = {(z1,...,Za) € R";z, > 0}

and introduce on H™ the metric

(1) 9ij (%1, .., Zn) = %

n
It is clear that H™ is simply connected. We are going to show that
H™ with the metric (1) has constant sectional curvature equal to
—1, and that H™ is complete. H™ is called the hyperbolic space of
dimension n.

We start with the calculation of the curvature of H™®. A
good part of the calculation can be carried out in the following more
general situation: two metrics (, ) and ((,)) on a differentiable
M are conformal if there exists a positive differentiable function
f: M — R, such that for all p € M and all u,v € T(M)

(u, v)p = f(p) {{u, ‘U))p .

For example, the metric (1) of H™ is conformal to the usual metric
of Euclidean space R™.
Consider on H™ the metric

6,,

where F is a positive differentiable function on H™; such a metric is
conformal to the usual metric of R". Write g*/ = F 8ij to denote
the inverse matrix of g;;, and put log F = f. Under these conditions,

denoting ng; = f;, we have

89ix 6, 6i

an kFaF -

k
2fJ"
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To calculate the Christoffel symbols, observe that
0 7/ m
= 3 Z { A 9im + 6 A 9mi — 9z gij}.q k

1( 8 ) 8 ,
=3 {6_x,-gj'° + Bz, 9~ B_azkg”} F
= —bjifi — 6kif; + bij fi;

therefore we can conclude that if all three indices are distinct, I‘" =
0, while if two indices are equal, we have

P::j ==fj P{i = fi F{j = -fi, P::i = —f;.

To calculate the coefficients of the curvature, observe that

. |
Rijij = ZqugtJ mgu Rfjiﬁ'

a
— £ ¢ g\
_Fz{zl I‘"I‘ EI‘I‘ axI‘}
Since 82 = f;; and 3z~ 31 = — f;i, we obtain

FRij== Y fehe+FF=Fi-fi+f+fij+fa
l#i,lt#
==Y FE+ 2+ fut fij.
/4

In addition, R;jke = 0 if all four indices are distinct, and if any three
indices are distinct, we have:

() Rie=-fefj—fri» Rl =fife+ fei, RE.=0.

Fma,lly, the sectional curvature w1th respect to the plane gen-
erated by -2 B 8:: is (observing that y, r are orthogonal)
R‘l]l.]

Ky= T _p . e
hd 9iigj; i

=(=Y_f2+ fE+ 12+ fu + fi5)F2
/4
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Now we are going to specialize to the case F? = z2, which
implies that f = logz,. In this case, if ¢ # n and j # n, we have

1
Kij = (—z—g)xi =-1
n
if i =n, j # n, we have

Koy = (~f24 f2+ fun) F? = — 2% = =13
n

finally, if i # j, j = n, we have again K;, = —1. Using the expres-
sions in (2) and Corollary 3.5 of Chapter 4, we conclude that the
sectional curvature of H™ is a constant equal to —1.

In order to prove that H™ is complete, we use the following
fact.
3.1 PROPOSITION. The straight lines perpendicular to the hyper-
plane z, = 0, and the circles of H™ whose planes are perpendicular
to the hyperplane z, = 0 and whose centers are in this hyperplane
are the geodesics of H™.

Proof. Observe that an isometry of R™ which involves solely the vari-
ables z1,...,Zn-1 does not change the metric g;;, and is, therefore,
an isometry of H™. Therefore it suffices to consider lines and circles
in the z;z,-plane. The theorem follows now from Example 3.10 of
Chapter 3. O

It is easy to verify, from the existence and uniqueness theorem
for geodesics, that all the geodesics of H™ are of the type described
in Proposition 3.1. This implies that all the geodesics of H™ are
contained in planes perpendicular to the hyperplane x, = 0. Since
such planes are clearly isometric to the hyperbolic plane, the fact
that H™ is complete is a consequence of the completeness of the
hyperbolic plane (Cf. Exercise 10, in Chap. 7).

Another model of the hyperbolic space is given in Exercise 3
of this chapter.

4. Space forms

Now we are able to prove the main theorem of this chapter. As
always, M™ denotes a manifold of dimension n.
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4.1 THEOREM. Let M™ be a complete Riemannian manifold with
constant sectional curvature K. Then the universal covering M of
M, with the covering metric, is isometric to:

a) H*, if K = -1,

b) R* if K =0,

c) S*ifK=1.

In the proof, we make use of the following lemma which is

interesting in itself.
4.2 LEMMA. Let fi: M — N, ¢ = 1,2, be two local isometries of the
(connected) Riemannian manifold M to the Riemannian manifold
N. Suppose that there exists a point p € M such that df; (p) = fo(p)
and (dfi), = (df2)p. Then f1 = fa.

Proof of the lemma. Let V be a normal neighborhood of p such
that the restrictions fi1|V and f»|V are diffeomorphisms. Let ¢ =
filo f2:V — V. Then ¢(p) = p and dy, is the identity. If ¢ € V,
there exists a unique v € T,M with exp,(v) = ¢q. It follows that
¢(g) = g, hence f1 = f2 on V. Since M is connected, any point
r € M can be joined to p by a path a:[0,1] - M, a(0) = p,
a(l) =r. Let

A= {t€0,1]; fi(a(?)) = fa(a(t)) and (dfi)a(y = (df2)a()}-

From the preceding, sup A is positive. If sup A = ¢, # 1, we repeat
the argument above for the point a(t,), obtaining a contradiction.
Therefore sup A = 1, hence fi(r) = fo(r), forallre M. O

Proof of Theorem 4.1. M is a simply connected, complete Riemann-
ian manifold, with constant sectional curvature K. Let us consider,
in the first place, the cases (a) and (b) and denote, for convenience,
H™ as well as R™ by A. Fix points p € A, p € M and a linear
isometry i: Tp(A) — T5(M). Consider the map:

f=exp1-,oz'oexp;1:A—»1\7!.

Since A and M are complete with non-positive sectional cur-
vature, f is well-defined. From the Theorem of Cartan, f is a local
isometry. From Lemma 3.3 of Chap. 7, f is a diffeomorphism and
this proves (a) and (b).
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For the case (c), fix, once more, points p € S™, p € M and
a linear isometry i: T,(S™) — T3(M). Let ¢ € S™ be the antipodal
point of p and define

f=expzoioexp,':S™ - {q} — M.
From the Theorem of Cartan, f is a local isometry. Now choose a
point p’ € S”; p’ # p, p’ # q. Set §' = f(p'), ¢’ = dfyr and define
[ =expg oi' oexp,l: " ~ {¢'} » M,

where ¢’ is the antipodal point of p'.
Observe that S™ — ({q} U {¢'}) = W is connected, p’ € W,

f@)=¢=r10), dfy=i=df.

It follows from Lemma 4.2, that f = f' on W. As a consequence,
we can define a map g: S™ —- M by

f(r), ifreS”-{q}
g (T) = 7 : 7 !

fi(r), fres”-{d}.
It is clear that g is a local isometry, therefore a local diffeomorphism.
By the compactness of S™, g is a covering map, and since M is

simply connected, g is a diffeomorphism (see M. do Carmo [dC 2]
§5.6). Therefore g is an isometry. O

and

The complete manifolds with constant sectional curvature are
called space forms. The last theorem reduces the determination of
all the space forms to a problem in group theory, as we show in what
follows. We require some facts on covering spaces and group actions.

We say that a group G acts (on the left) on a set M if there
exists a map of G x M onto M, denoted by

GxM>(g,z) >gz€M
such that
ex=z, (9:192)T = 91(g92%)

where e = the identity of G, £ € M and g;,92 € G. We say that G
acts freely (i.e., without fixed points) on M if gz = = implies g = e.
The orbit of a point £ € M is the set

Gz = {gz;g9 € G}.
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The action of G is said to be transitive if Gz = M. The set of all
orbits is denoted by M /G there exists a natural projection 7: M —
M/G given by n(z) = Gz. When M has some additional structure
(topological, differentiable, etc.), it is convenient to consider G as a
group of isomorphisms (homeomorphisms, diffeomorphisms, etc.) of
the structure under consideration.

If M is a topological space, we say that the group G (of
homeomorphisms of M) acts in a totally discontinuous manner if
every £ € M has a neighborhood U such that g(U)NU = ¢, for
all g € G, g # e. In this case, the projection m: M — M/G (where
M /G has the quotient topology) is a regular covering map and G is
the group of covering transformations (See Massey [Ma), Prop. 8.2,
p. 165).

Suppose now that M is a Riemannian manifold and let T be
a subgroup of the group of isometries of M which acts in a totally
discontinuous manner. We know that M/TI" has a differentiable struc-
ture in which 7: M — M/T is a local diffeomorphism (See Chap. 0,
Example 4.8). In addition, we can put a Riemannian metric on M/T"
in such a way that = is a local isometry. Indeed, given p € M/T,
choose p € n~1(p); for every pair u,v € T,(M/T'), define

(u,v) = (dn~(u),dn™ 1(v))

Since the covering = is regular, I is transitive on 77! (p) (See Massey
[Ma), Lemma 8.1, p. 164). Therefore, given any § € m~1(p), there
exists y € I with y(5) = §, and the definition above does not depend
on the choice of § € 7~1(p). It is easy to verify that with such a
metric m: M — M/T is a local isometry; such a metric is called the
metric on M/T induced by the covering m. Observe that M/T is
complete if and only if M is complete and that M/T has constant
curvature if and only if M has constant curvature. Taking M =
S™ or R™ or H™, we conclude that M/T is a complete manifold
of constant curvature 1 (if M = S™), 0 (if M = R") or —1 (if
M = H™). We are going to show that in this manner we obtain all
such manifolds.

4.3 PROPOSITION. Let M be a complete Riemannian manifold
with constant sectional curvature K (1,0,—1). Then M is isometric
to M/T, where M is S™ (if K = 1), R® (if K = 0) or H™® (if
K = —1), I is a subgroup of the group of isometries of M which



166 Spaces of constant curvature [Chap. 8

acts in a totally discontinuous manner on fl , and the metric on
M /T is induced from the covering m: M — M /T.

Proof. Consider the universal covering p: M — M, and provide M
with the covering metric, that is, the metric such that p is a local
isometry. Let I' be the group of covering transformations of the
covering p. Then T is a subgroup of the group of isometries of M
and acts on M in a totally discontinuous manner. Therefore it is
possible to introduce on M/T the Riemannian metric induced by
=M - M /T. Since the covering p is regular, given %4 € M
then p(Z) = p(§) if and only if I'Z = I'y which is equivalent to
n(Z) = (7). The equivalence classes given by p and = on M are,
therefore, the same, and this induces a bijection £&: M — M /T such
that m = {op. Since m and p are local isometries, £ is a local isometry
as well, and being a bijection, is an isometry of M onto M/T. 0O

The last proposition reduces the problem of finding all of the
space forms to the problem of determining all the subgroups of the
group of isometries that act in a totally discontinuous manner on
each of the simply connected models (S™, H™ and R™).

The determination of such subgroups is a difficult problem.
The spherical problem (M = S™) was solved during the sixties, and
the interested reader will find an exposition in Wolf, J., “Spaces
of Constant Curvature”, McGraw-Hill, 1967 (Chapters 4—-7). This
book also contains a comprehensive study of what is known about
related problems (Cf. the 2nd edition, published by Publish or Per-
ish).. Here we mention only two interesting facts.

4.4 PROPOSITION. Let M™ be a complete Riemannian manifold of
even dimension n = 2m, with constant sectional curvature K = 1.
Then M™ is isometric to the sphere S™ or the real projective space
P™ of the same dimension.

Proof. The orthogonal group 0(2m + 1) is the (transitive) group
of isometries of S*. Let I' be a subgroup that acts in a totally
discontinuous manner on S™. If 4 € I" has determinant +1, there
exists an eigenvalue of ¥ equal to 1. Then « has a fixed point, which
implies that v = e. If ¥ € I'" has determinant —1, then 4% has
determinant 1, therefore 42 = e. As a consequence, the eigenvalues
of 4 are 1 or —1. If 1 is an eigenvalue of ¥, then 4 = e, which
contradicts the fact that det¥ = —1. As a result ¥ = —e, hence,
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I’ = {e, —e}. Using now Proposition 4.3 we obtain that M™ is either
S™,if'={e}, or P if ' = {e,—e}. O

4.5 PROPOSITION. Every compact orientable surface of genusp > 1
can be provided with a metric of constant negative curvature.

Proof. In the hyperbolic plane H? take a closed geodesic polygon P
with 4p sides of equal lengths. By a well known process of identifying
the sides, P can be identified with a topological surface M? (See
Massey [Ma], Chap. 1). Let " be the subgroup of isometries of
H? generated by the isometries that identify the sides of P. It is
possible to show that the transforms of P by " “tile H? without any
gaps” if and only if the sum a of the interior angles at the vertices
of P is equal to 27 (for a simple proof see Roger Fenn, “What is
the geometry of a surface?”, American Math. Monthly, Feb. 1983);
in this case, M2 = H?/T" has a metric of constant curvature equal
to —1. We assert that it is possible to find a polygon P which
satisfies the condition @ = 27, which will conclude the proof of the
proposition.

To prove what is required, observe that by the Gauss-Bonnet
Theorem (see M. do Carmo [dC 2], p. 274), we obtain that

a=-A+2r(2p-1),

where A is the area of P in the hyperbolic metric. Therefore, on the
one hand, if the polygon P is arbitrarily small, a is arbitrarily close
to 27 (2p — 1). On the other hand, we can enlarge the area A of
polygon P in such a way that « is arbitrarily small. It follows that,
by continuously deforming P, there exists a geodesic polygon such
that a=2x. O

The spaces of constant curvature have had an important role
in the historical development of Riemannian Geometry, due to their
relationship with non-euclidean Geometry. A non-euclidean geome-
try is a complete Riemannian manifold M together with a transitive
group of isometries G' (the non-euclidean motions) which satisfy the
Aziom of free mobility: Let p,p € M, 71,72 be geodesics of M which
start at p and form an angle a at p, and let 4,7, be geodesics of
M with origin at p forming an angle o at p. Then there erists
9 € G, with g(p) = B, 9(m1) = %, 9(72) = F2. This corresponds
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to the condition “side-angle-side” for congruence of triangles in Eu-
clidean geometry and clearly implies that M has constant sectional
curvature. It follows that the spaces of non-euclidean Geometry are
included among the space forms, hence the importance given to de-
termination of the space forms. The cases of S™, P" and H™ are
called spherical, elliptic and hyperbolic geometry, respectively.

5. Isometries of the hyperbolic space; Theorem
of Liouville

The isometries of hyperbolic space are closely related to the confor-
mal transformations of R®. A map f:U C R® — R" of an open
set U C R" is called conformal if the (non-oriented) angles of in-
tersecting curves are preserved, that is, if the (non-oriented) angle
of any two vectors v; and vy at p € U is equal to the angle formed
by dfy(v1) with dfp(ve). The principal objective of this section is
to show that the isometries of the upper half-space H™® C R™ with
the metric g}}- (cf. Section 2) are the restrictions to H™ of confor-
mal transformations of R™ that map H” onto H™. To prove this
theorem, we have to describe the conformal transformations of R™.

For the case of R?, which we identify with the complex plane
C, it is well-known that the conformal transformations are holomor-
phic or anti-holomorphic functions (anti-holomorphic means that the
complex conjugate function is holomorphic) with non-zero deriva-
tives. In this regard, the Riemann mapping theorem guarantees
that given two simply connected proper open sets in the plane, there
exists a conformal mapping taking one into the other.

For the case of R™, n > 2, the situation is radically different,
and the fact that f is a conformal transformation imposes strong
restrictions on f. This is contained in the Theorem of Liouville
below, for which we require some considerations.

First, observe that a necessary and sufficient condition so that
f:U c R® — R™ is conformal is that for all p € U and for all pairs
of vectors vy, v2 at p it is true that:

(3 (dfp(v1), dfp(v2)) = A2(p) (v1,v2), A*#O.
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Indeed, if (3) is satisfied, |df,,(v)|2 = A2 |v|?, for every vector v at P,
hence

O cos X(dfp(v1), dfp(v2)) = cos ¥(v1,v2),

that is, the (non-oriented) angles are preserved. Conversely, (4) im-
plies that df,, takes a triangle with vertex at p into a similar triangle
with vertex at f(p). Therefore |df,(v)|* = X2 |v|?, for every v at p;
applying this last relation to the sum of vectors u + v we obtain (3).

The positive function A:U — R defined in (3) will be called
the coefficient of conformality of f.

5.1 Ezample.. It is clear that an isometry of R™ (orthogonal lin-
ear transformation followed by a translation) is a conformal trans-
formation of R™ with coefficient of conformality A = 1. The linear
transformation f(p) = M (p), p € R™, where [ is the identity matrix
and A = const. > 0, is evidently a conformal transformation with
coefficient of conformality \; f is called a dilatation. As a last ex-
ample, we are going to show that the inversion with respect to the
unit sphere centered at p, € R™, defined by

(5) f(p)=lp—F+p°’ peER" - {p,},

is a conformal transformation.

Geometrically, f takes p € R™ — {p,} into a point f(p) which
is on the line through p and p,, at a distance |f(p) — po| = ]p—_lp;;[
from p,. Therefore f keeps fixed the sphere of radius 1 around po,
and permutes the interior region with the exterior of such a sphere;
in particular, f2 = identity.

To see that f is conformal, observe that, if v is a vector at p,

2
v — Yo —2 'U, = Po — Po
df, (v) = PPl |p(_ppldp)(p Po)

?
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therefore
)P = 20, A =p) — 4w p)")lp - pol”
? lp — po|* Ip = po/®
(v,v)

= -_——z,
Ip - pol
that is, the inversion (5) is a conformal transformation with coeffi-

cient of conformality A = TF-_IJTI"

The Theorem of Liouville asserts the surprising fact that ev-
ery conformal transformation f of an open set U C R™, n > 3,
extends to a composition of isometries, dilatations and inversions.
The theorem is, in reality, a little more precise and states that f is
at most, composed of one isometry, one dilatation and one inversion.

The proof that we present below is contained, aside from no-
tation and details, in the book of Dubrovin, Novikov and Fomenko,
Modern Geometry, Methods and Applications, Part I, Springer-
Verlag, New York, Berlin, 1984, pp. 138-141; no part of this proof
will be used in the remainder of the book, and the reader eager for
applications could omit it in a first reading.
5.2 THEOREM. (Liouville). Let f:U — R™, n > 3, be a conformal
transformation of an open set U C R™. Then f is the restriction to
U of a composition of isometries, dilatations or inversions, at most
one of each.
Proof. Let a; = (1,0,...,0),...,an = (0,0,...,0,1) be the canon-
ical basis of R™ and (zi,...,%,) the cartesian coordinates of R"™
relative to this basis. Let e;,...,e, be parallel differentiable vector
fields on U, such that at each point of U, (e;,e;) = §;;. If A is the
coefficient of conformality of f, we can write

(6) (df (e:), df (ex)) = A6k, i,k =1,...,n.

Let d?f be the second differential of f; that is, df? = R™ x
R™ — R" is a symmetric bilinear map with values in R™ and such

that, in the canonical basis, d2 f(a;, a;) = 5%. Taking the indices
i, j, k distinct and differentiating (6), we obtain:

<d2f(ei1 ej)’ df(ek)> + <df(ei)v d2f(ek) ej)) =0,
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(dzf(e.i’ ek)’ df(ei)) + (df(ej)’dzf(eiv ek)) =0,

(d*f(ex, €:), df (e5)) + (df (ex), d* f(ej, €:)) = 0.
Summing the first two equations above and subtracting the third,
we have

(d*f(ex,€;j),df (e:)) =0, if i,j,k are distinct.

Fixing k,j and letting i vary in the remaining (n — 2) indices, we
conclude that d2f(ex,e;) belongs to the plane generated by df (e5)
and df(ex). Therefore,

dz.f(ek’ ej) = ou‘df(ek) + Vdf(ej)’
in which, since (df(ex), df (ex)) = (df(e;), df (e;)) = X%,
Y= (P f(er,€), df (ex)) _ AdA(e;) _ d(e;)

A2 A2 A7
_ d/\(ek)
- Do)
that is,
(M @ fewses) = 3@ (ex)dNe) + df(e)dA(ew).

It will be convenient, in what follows, to put p = -i- We are
going to calculate the second differential d?(pf). Because d(pf) =
dpf + pdf, we obtain, using (7),

(8)
d*(of)(ex, €5) = d*p(e, €;) f + pd® f (ex, ;) + dp(ex)df (e;)

+ doles)df (ex) = dplen, ) f + 5 f(ens )

= 3 (ANe)df(es) + dA(es)df (e4)} = dplens )],

We claim that d?p(ex,e;) = 0, for k # j. To see this, cal-
culate the third differential d3(pf), that is, the symmetric trilinear
mapping, d3(pf): R™ x R™ x R® — R™ with values in R™ and such
that, in the canonical basis, d*(pf)(ai,a;,ax) = Using
(8), we obtain

d(pf)(ex, €j, &) = d®p(ex, ej, &) f + d?p(ex, e;)df (e;).

o)
9x;0x;0xy °



172 Spaces of constant curvature [Chap. 8

In the expression above, the first member and the first part of the
second member are symmetric in the three indices 2, j, k. Therefore,
the same thing happens with the second part of the second member.
We conclude that

@ plex, e;)df (e:) = d*plex, €:)df (e;)-
Since df (e;) and df(e;) are linearly independent and i, 7, k are dis-
tinct but arbitrary indices, we obtain that d’p(ex,e;) = 0, for all
j # k, as we have asserted.

Now observe that, fixing p € U, we can choose the vector
fields e, ..., en in such a way that they form an orthonormal basis
previously given at p. Therefore the relation d?p(ey, e;) =0 is valid
at p for every orthonormal basis at p and, because p is arbitrary, the
same thing happens on U. Since d?p is a symmetric bilinear form
and
e;+ex e — e

V2 V2
we conclude that d%p(e;, e;) = d%p(ex, ex), for all j # k.

In summary, for every p € U and for any orthonormal basis
e1,...,en at p, we have that d2p(e;, ex) = 0b;x. Taking, in particu-
lar, the canonical basis, we have

8%p
(9) Bxiazj

Calculating the derivative of both of the members of (9), we conclude
that (i # j)

0= d2p( ) = ';' {dzp(ejaej) - de(ek) ek)} ’

=05ij.

bo __ O __ %o _
axi - 6z,~6x,-6x,~ - axjaxiaxj -
that is, o = const.

First we are going to consider the case 0 = const. # 0 and
show that Eq. (9) implies that

(10) p= % Z 4o Z biz; + ¢, b; and c constants.

0,

Indeed, from g—;{} = ¢ we conclude that
dp

5;; =0T + dbi,
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where b; is a function that does not depend on z;; since aTazéL 0,
b; also does not depend on z;, j # i. Therefore b; is a consta.nt and

1
p= Eaz? + ob;iz; + @i,
where ¢; does not depend on z;. Because 58% = %fji, j# i, we
conclude that 1
P = Eaz? + objz; + @i ,

where ¢;; does not depend on z; and on z;. Proceeding inductively,
we obtain (10), as claimed.
Therefore, if o # 0, we can write (10) in the form

o
=p=a1lp-p.) + k1, a1= and k; = const., p, € R™.

2

>| =

The proof will be complete, for the case o # 0, if we show that
k1 = 0. Because, considering the inversion g: U — R™:

9(p) = ——= + po,
Ip o|2

and taking the composition h = gof~1, we have that h is a conformal
transformation whose coeflicient of conformality is

1
a1 1p = pol* —— =a1.
|p_po'

Therefore, h is an isometry followed by a dilatation, hence f = h~log
is an inversion followed by a dilatation, followed by an isometry.

Now we are going to prove that k; = 0. Observe that applying
to f~! the above argument, we obtain

A=as|f(P) - ¢o|* + k2, a3 and k; const.,
hence

(11) (a1lp — pol® + k1) (a2 | f (D) — gol® + k2) = 1.
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Equation (11) shows that (the intersection with U of) a sphere of
center p, is mapped by f into a sphere of center ¢,. Since f preserves
angles, the radii of the first sphere are mapped into radii of the
second. Let p(s), 0 < s < s,, be a segment of a radius of the first
sphere contained in U, where s is the arc length, and let f o p(s) be

its image. The length of the image segment is given by
S0 ds
as= [ = [/p(s0)) - F@(O)I.

8o
/0 a1 [p(s) — pol* + k1

If &y # 0, |f(p(s5)) — f(p(0))| is a transcendental function of
|p(85) = Po|- On the other hand, Eq. (11) implies that such a func-
tion is algebraic. This contradiction shows that k; = 0.

It remains to consider the case 0 = 0. In this situation,

#(2

1
p_—_-X =Zaixi+cl =A1($)+Cl, ¢ = const.,

where we write, for convenience, ) a;z; = A(z), z =
(z1,...,Zn). In a similar manner as before, applying the initial
argument to f~1, we obtain

(1) (A1(z) + a1)(A2(f(2)) + c2) = 1.

Equation (11’) shows that (the intersection with U of) a hyperplane
parallel to A; = 0 is taken by f into a hyperplane parallel to A = 0.
Because f preserves angles, a line perpendicular to the hyperplane
A; = 0 is taken by f into a line (perpendicular to the hyperplane
Az = 0). Considering a segment p(s), 0 < s < s,, of such a line,
parametrized by arc length s, we obtain, in an analogous manner as
before, that

F®(50)) ~ F@O)] = /0 " z—(ﬁra'

The expression above contradicts (11°), except if the linear expres-

sion A; (p(s)) were zero.

We conclude that if o = 0, A = const. In this case, the lengths
of tangent vectors are multiplied by a constant A and, as is easy to
verify, f is an isometry, followed by a dilatation. This concludes the
case ¢ = 0 and the proof of Liouville’s Theorem. O
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Now we can describe the isometries of hyperbolic space using
the model of the upper half-space H" = {(z1,...,%Zs); Zn > 0} with
the metric g;; = g%.

5.3 THEOREM. The isometries of H™ are the restrictions to H™ C
R™ of the conformal transformations of R™ that take H™ onto itself.

Proof. Suppose first that n > 3. Let f: H* — H™ be an isometry
in the metric g;;. Then, by Liouville’s Theorem, f extends to a
conformal map of R™ with the metric §;;. Since H™ is complete in
the metric g;;, f maps H™ onto H™.

Conversely, let f: H* ¢ R®™ — H™ be a conformal transfor-
mation of H" onto H™ and let ey,...,en be an orthonormal basis,
in the metric g;;, at a point p € H™. Since g;; = %‘3’- and f is con-
formal, there exists a A> > 0 such that (dfy(e:), dfp(e;)) = A26;;,
where (, ) is the inner product in the metric g;;. Therefore, the

basis {i‘—fl)(‘e—‘l} is orthonormal at f(p), and by Corollary 2.3 of Car-

tan’s Theorem, there exists an isometry g of H™ taking p to f(p),
with dg(e;) = é&:—"l. From what was proven in the first part, g is
conformal. Hence h = g~! o f is the restriction to H™ of a confor-
mal mapping of R™ which takes H™ onto H™, leaving p fixed and
satisfying dh, = Al

The proof will be concluded if we show that h = identity. In
other words, we must show that if a conformal map h of R™ takes
H™ onto H™ , leaving a point p € H™ fixed and satisfying dh, =
multiple of the identity, then & is the identity.

To see this, let P be a hyperplane passing through p. From
Liouville’s theorem, h(P) is a hyperplane or a sphere passing through
p. Because dh, is a multiple of the identity, P and h(P) are tangent
at P. Because h takes the boundary H™ of H™ into itself, and h
is conformal, the angle of P with H™ is the same as the angle of
h(P) with 8H™.

We claim that h(P) = P. To see this, consider a straight
line ; passing through p and perpendicular to OH™, and let ¢ =
r1NOH™. Since the image h(r;) of r; is a circle or a line, and makes
the same angle with 8H™ that r, does, it is clear that h(ry) = r.
Hence h(q1) = ¢1. This shows that if P is perpendicular to OH™,
then h(P) = P. If P is not perpendicular to dH™, let r be a line
contained in P. Again, h(r) is a circle or a line. In order that h(r)
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be a circle, making the same angle a with AH™ that r makes with
OH™, it is necessary that g1 € h(r) (See Fig. 2), which contradicts
the fact that h(q1) = q1. Hence h(r) is a line, h(r) = r, and because
r is an arbitrary line in P, h(P) = P, as we have claimed.

Figure 2

It follows that h cannot be an inversion (since the image of
some plane will be a sphere) or an isometry distinct from the identity.
From Liouville’s Theorem, h is a dilatation. Because h takes H™
onto H™, h is the identity.

For n = 2, the argument above does not apply. However,
a simple calculation (cf. Exercise 4 of Chap. 1) shows that the
conformal transformations of the form:

az+b
(12) je)=2E,

2z€e H*c C, a,byc,deR, ad-bc#0

(observe that f maps H? onto H?) are isometries of H? with the
metric g;;. Moreover it is not difficult to show that for a fixed point
Po € H? and unit vector v, at po, there exists a transformation f
of the form (12) which takes an arbitrary point p € H 2 and a unit
vector v at p into p, and v,, respectively (it suffices to observe that
p and v are determined by three parameters which is the number of
parameters of f). Since there exists a unique isometry of H? which
takes (p,v) into (Po,vo), We conclude that all isometries of H? are
of the form (12). This completes the proof of the case n = 2 and of
Theorem 5.3. O



sec.5] Isometries of the hyperbolic space 177

To conclude this Section, we are going to identify some im-
portant hypersurfaces of the hyperbolic space H™. It is not difficult
to verify that the intersection with H™ of hyperplanes of R™, or-
thogonal to OH™ and the intersection with H™ of spheres of R™,
with center on OH™, are totally geodesic submanifolds of H™ (see
Exercise 2). Now we are going to determine the intersection with
H™ of planes and spheres of R™ in any position.

For this, and for many other purposes, it is convenient to
consider another model of the hyperbolic space, the so-called ball
model. Let B™ C R™ be the open ball of radius 2 and center at the
origin,

B"={peR%p| <2}, p=(z1,...,7n),

and introduce on B™ the metric
bij
(1-4% | 2y

We are going to show that B™ is isometric to H™. Indeed, we
shall show that the map f: B — H™ given by

hij(p) =

13) f)=4L=F _(0,...,1), wherep,=(0,...,~2),
lp pol

is an isometry. In fact, if v is a vector at p and {,) denotes the
inner product in the Euclidean metric,

(dfy(0), df, () = S22
lp - pol

On the other hand, letting f(p) = (fi(p), ..., fa(p)), we obtain

4z, +2) 4 - |p?
)= =222 = ZTRL
Ip — pol? Ip — po)?

Therefore,

(dfp(v), dfp(®)) _ 16lp—pol'(v,v) _  (v,0)
(f2(p))? @—-1p’2lp-pol*  (1-11pP)?
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Because f is injective, we conclude that f is an isometry of B™ into
H™. Observe that f takes 9B™ — {p,} into OH™.

Notice that, by Liouville’s Theorem, a mapping ¢g: B* — B™
is an isometry of B™ in the metric h;; if and only if g is the restriction
to B™ of a conformal transformation of R™ that takes B™ onto B".

Now let S C H™ be an (n — 1)-sphere of Euclidean space
completely contained in the upper-half space H". We claim that S
is a geodesic sphere of H™ in the metric g;;. To see this, let f~(S)
be the image of S by the isometry f~1: H® — B™ given in (13). It is
easy to verify that f~1(S) is a Euclidean sphere contained in B™. It
is possible to map the (Euclidean) center of S onto the origin of B®
by an isometry of B™. Since the metric h;; of B™ is symmetric with
respect to the origin, the sphere so obtained is a geodesic sphere in
B™, and the same thing happens with its isometric image S C H™.

Consider next an (n~ 1)-dimensional Euclidean sphere S tan-
gent to OH™ at p and such that § — {p} C H™. By an inversion of
R™ at p (which is an isometry of H™), S is mapped in a hyperplane
P parallel to 9H™. Because the induced metric on P from H™ is a
multiple of the Euclidean metric, P is a manifold of constant cur-
vature zero and the same thing happens with its isometric image
S — {p}. Such submanifolds are called horospheres of H™.

Consider finally a Euclidean sphere S which cuts 8H™ at an
angle o, and denote its intersection SNH™ with H™, by ). Through
an inversion of R™ at a point of SNGH™, Y is mapped isometrically
into the intersection, with H™, of a hyperplane P which cuts H™
at the same angle a. Consider the hyperplane @ which is orthogonal
to H™ and contains P NAH™. We are going to prove that P is a
hypersurface equidistant from the totally geodesic hypersurface Q.
For this, let 4, be a geodesic, represented in H™ by a semi-circle of
radius r, with center 0 in PNAH™ and in the plane perpendicular to
PN 8H™. Since there exists a homothety with center 0 (hyperbolic
isometry) taking the circle of radius r into a circle of any radius,
the length of v, between the points of intersection of v, with P and
Q@ does not depend on r. We conclude that P, or its isometric im-
age >, is obtained by taking geodesics perpendicular to the totally
geodesic hypersurface Q and marking on it a fixed distance. Such
hypersurfaces are called equidistant surfaces (or hyperspheres).

In Exercise 6, we shall show that the hypersurfaces described
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above are characterized by the fact that they have, at each point,
all of their principal curvatures equal, that is, they are umbilic, and
we shall calculate their mean and sectional curvature.

EXERCISES

1. Consider, on a neighborhood in R™, n > 2 the metric

where F' # 0 is a function of (z3,...,z,) € R™ Denote by
2
F;= 85:1 Fij = f‘.ij,etc-

a) Show that a necessary and sufficient condition for the met-
ric to have constant curvature K is

*) F(Fjj + Fy) =K+ Yo (F)2

b) Use (*) to prove that the metric 9i; has constant curvature
K if and only if

F = G1($1) + G2(22) +--+ Gn(xn),

where
Gi(z;) = a:z:? +biz; + ¢

and n
D (cia—?) = K.
i=1
¢) Put a = K/4, b; =0, ¢; = 1/n and obtain the formula of
Riemann (See [Ri])

8
*k o= Y
) YA Er e
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for a metric g;; of constant curvature K. If K < 0 the

metric g;; is defined in a ball of radius /3.

d) If K > 0, the metric (**) is defined on all of R®. Show
that such a metric on R™ is not complete.

2. Show that if M* is a closed, totally geodesic submanifold of
H™, k < n, then M* is isometric to H*. Determine all the
totally geodesic submanifolds of H™.

3. (Another model of the hyperbolic space). Consider on R™+! the
quadratic form

Q(zmxly seey xn) = '-(1150)2 + Z(:L’i)z,
i=1
(Zoy-..,zn) € R,

With the pseudo-Riemannian metric ( , ) induced by @ (Cf.
Exercise 9, Chap. 2), R™*! will be denoted by L™t! (The
Lorentzian space). Denote by HZ, k = —2%, the connected
component corresponding to z, > 0 of the regular surface of
R"*! given by Q(z) = —r2, r > 0. (Geometrically Q(z) = —r?
is a hyperboloid of two sheets and H} is the sheet contained
in the half-space z, > 0.)

a) Show that for all z € H}, the vector 7 = £ is normal to
the tangent space T (H).

b) Prove that (1,m7) = —1, and that it is possible to choose
a basis b,,...,b, of L"t! with b, = 7, (bi,bj) = byj,
(biybo) =0, 4,7 = 1,...,n. (Use the fact that the index
of a quadratic form does not depend on the basis chosen
to represent it.) Conclude that the metric induced by
L™t on HP is Riemannian.

¢) Use the pseudo-Riemannian connection ¥ of L**+! (Cf.
Exercise 9, Chap. 2) to show that S, = (—1)I, where I
is the identity map. Conclude that B(X,Y) = 1(X,Y),
and use the Gauss formula to show that the sectional
curvature of HJ is constant and equal k = —7.

d) Let 0(1,n 4+ 1) be the subgroup of linear transformations
of R™"*! which preserve the metric (, ). Show that the
elements of 0(1,n 4+ 1) with det > 0 are isometries of
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Hg and that given X,Y € H} and orthonormal bases
{v:} € Tx(HP) and {w;} € Ty(Hp), i = 1,...,n, the
restriction to HY of the “linear” transformation which
takes X v

—_— — and v — w;
r r

is an isometry of Hp. Conclude then that H} has con-
stant curvature (which we already know from (c)) and
that H is complete.
€) Show that H™, is isometric to the hyperbolic space H™.
f) Show that the symmetries of HJ with respect to the plane
P which passes through the origin of R**! and contains
the z,-axis are isometries of HF. Conclude that all of
the geodesics of HY which pass through (r,0,... ,0) are
obtained as intersections Hp N P.
Identify R* with C? by letting (z1, %2, Z3,24) correspond to
(z1 + tz2,z3 + iz4). Let

S§3 = {(21,22) € C? Izll2 + |z2|2 = 1} ,
and let h: S3 — S3 be given by
h(z1,22) = (e%zl,em%zz), (21,22) € S8,

where ¢ and r are relatively prime integers, ¢ > 2.

a) Show that G = {id, h,...,h?"'} is a group of isometries
of the sphere S3, with the usual metric, which operates
in a totally discontinuous manner. The manifold S%/G is
called a lens space.

b) Consider 53/G with the metric induced by the projection
p:S® — S3/G. Show that all the geodesics of S3/G are
closed but can have different lengths.

(Connections of conformal metrics) Let M be a differentiable
manifold. Two Riemannian metrics g and § on M are con-
formal if there exists a positive function p: M — R such that
9(X,Y) = pg(X,Y), for all X,Y € X(M). Let V and V be
the Riemannian connections of g and g, respectively. Prove
that

VxY =VxY + S(X,Y),
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where S(X,Y) = 5 {(Xp)Y + (Yp)X ~ 9(X,Y) grad p} and
grad u is calculated in the metric g, that is,

X (u) = g(X, grad p).

Hint: Since ¥ is obviously symmetric, it suffices to show that
V is compatible with g, that is, that

X@3(Y,2) =§(VxY, 2) + §(Y,Vx 2).
But the first member of the equality above is
X(pg(Y, 2)) = X(w)g(Y, Z) + ug(VxY, Z2) + pg(Y, Vx 2),

and the second is

ug(VxY,2) + pug(Y,Vx 2)

+u{9(8(X,Y), 2) + 9(Y,5(X, 2))} .
Therefore, it is enough to prove that
X (w9, Z) = u{g(8(X,Y), 2) + g(¥,5(X, 2))},

which follows from a direct calculation.

6. (Umbilic hypersurfaces of the hyperbolic space). Let
(M™*1,g) be a manifold with a Riemannian metric g and
let V be its Riemannian connection. We say an immersion
z: N™ — M™*! is (totally) umbilic if for all p € N, the second
fundamental form B of z at p satisfies

(B(X,Y),n) (p) = Ap) (X,Y), Ap)€R,

for all X,Y € A(N) and for a given unit field # normal to
z(N); here we are using ( , ) to denote the metric g on M and

the metric induced by z on N. ;
a) Show that if M™*! has constant sectional curvature, A

does not depend on p.
Hint: Let T, X,Y € X#(N). The given condition implies that

—(VxMY)=X{X,Y) and ~—(Vr0Y)=A(T,Y).
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Differentiate the first equation with respect to T and the second
with respect to X, obtaining, for all Y,

(VrVxM - VxVrNY)

=—(TMNX - X(NT + Vixy,Y).

Use the fact that M has constant sectional curvature to con-
clude that T(\)X — X(A\)T = 0. Because T and X can be
chosen linearly independently, this implies that X(\) = 0, for
all X € X(N); therefore A = const.
b) Use Exercise 5 to show that if we change the metric g to
a metric g = pug, conformal to g, the immersion z: N* —
(M™+1,g) continues being umbilic, that is, if (using the
notation of Exercise 5) (Vx",Y), = -A(X, Y),, then

.1 _ =22 p+n(w) _
<Vx(\/ﬁ),Y>§————2#\/ﬁ (X,Y);.

¢) Take M™*t! = R"t! with the euclidean metric. Show
that if z: N* — R™*1 is umbilic, then z(N) is contained
in an n-plane or an n-sphere in R"*+!,
Hint: For (a), A = constant. If A = 0, (Vx",Y) = 0 for all
X,Y € X(N) and all n € X(N)*. It follows that z(N) is
contained in an affine n-plane in R™*1, If X # 0, consider the
map y: N — R™*! given by

o =20 - "2, pen.
Let T,Y € A(N). Observe that
(V2¥,Y) = (T,Y) - % (V21,Y) = 0.

It follows that y(NN) reduces to a point, call it z,, and that z

satisfies
|z(p) — zo|® = 1/X2,

that is, (V) is contained in a sphere of center z, and radius
1/
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d) Use (b) and (c) to establish that the umbilic hypersurfaces
of the hyperbolic space, in the upper half-space model
H™1 are the intersections with H™*! of n-planes or n-
spheres of R™*!. Therefore, the umbilic hypersurfaces of
the hyperbolic space are the geodesic spheres, the horo-
spheres and the hyperspheres. Conclude that such hyper-
surfaces have constant sectional curvature.

e) Calculate the mean curvature and the sectional curvature
of the umbilic hypersurfaces of the hyperbolic space.
Hint: Consider the model of H™ as the upper half-space. Let
2 = SNH™ be the intersection of H™ with a Euclidean (n—1)-
sphere $ C R" of radius 1 and center in H". Since Y is
umbilic, all of the directions are principal, and it is enough
to calculate the curvature of the curves of intersection of Y
with the z,z,-plane. Use the expression obtained in part (b)
of this exercise to establish that the mean curvature of 3 (in
the metric of H™) is equal to 1 if S is tangent to OH™, is
equal to cosa if S makes an angle o with dH™, and is equal
to the “height” of the Euclidean center of S relative to H™,
if § € H™. To calculate the sectional curvature, use the Gauss

formula.

7. Define a “stereographic projection” f: H™, — D™ from the
model of the hyperbolic space H™, of curvature ~1 given in
Exercise 3 onto the open ball

D" = {(;co,...,:z:,,);:z:o=0,z:z:¢2, <1}

a=1

in the following way: If p € H®;, c L™}, join p to p, =

(~1,0,...,0) by a line r; f(p) is the intersection of r with D™

(See Fig. 3). Let p = (zo,-...,%n) and f(p) = (0,u1,...,us).
a) Prove that:

2u,

o
To = 77 a=1,...,n
o l_zaug7 ’ » 0
2

=——= -1
eEioT w2



Exercises 185

(-10,...,0

Figure 3
b) Show that:

— (dz,)? + (dz)? + -+ + (dz,)?
_4{(du1)? + - + (dua)?}
a (1=22,ud)? '

Conclude that f~!: D™ — H™, induces on D the metric
gij = ?1_—%{7{5" Therefore, D™ with the metric g;; has
constant curvature —1 (cf. Exercise 1(c)).

c¢) Show that the images by f of the non-empty intersections
of affine hyperplanes P of L™*! with H™, are intersections
with D™ of spheres (or planes, when P passes through p,)
contained in the hyperplane z, = 0. Conclude that the
umbilic hypersurfaces of H™; (Cf. Exercise 6) are of the

form PN H?,.
(Riemalmian submersions). A differentiable mapping
—n+

M —_M™ is called submersion if f is surjective, and
for all p € M, dfl—): TI_’M — Typ)M has rank n. In this case,
for all p € M, the fiber f~}(p) = F, is a submanifold of M
and a tangent vector of M, tangent to some F,,pe M, is
called a vertical vector of the submersion. If, in addition, M
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and M have Riemannian metrics, the submersion f is said to
be Riemannian if, for all p € M, dfy: T,M — Ty(,) M preserves
lengths of vectors orthogonal to F),. Show that:

a) If My x M, is the Riemannian product, then the natural
projections m;: My x My — M;, i = 1,2, are Riemannian
submersions.

b) If the tangent bundle TM is given the Riemannian metric
as in Exercise 2 of Chap. 3, then the projection m: TM —
M is a Riemannian submersion.

9. (Connection of a Riemannian submersion). Let f: M — M be
a Riemannian submersion. A vector T € Tﬁﬁ is horizontal if it

is orthogonal to the fiber. The tangent space T—J\? then admits
a decomposition T— (T—M)" ) (T =M)?, where (TpM M)»
and (T M)V denote the subspaces of horlzontal and vertlcal

vectors, respectively. If X € X(M), the horizontal lift X of X
is the horizontal field defined by dff’ (X(®) = X(f(p).

a) Show that )_(—; is differentiable.
b) Let V and V be the Riemannian connections of M and
M respectively. Show that

— T+ %[)?, Y, XY ex(M),

where Z* is the vertical component of Z.
c) [X,Y]*(p) depends only on X(p) and Y (p).
Hint for (b): Let X,Y,Z € X(M). Let T € X(M) be a vertical
field. Observe that:

(X,7) = (v.1)=(Z,T)=0, X(V.Z)=x(v,2),
df[X,T] =0, [X,Y}'=[dfX,dfY]=df[X,Y] and
T <X’ ?) =0.
Conclude that <[5E, Y), Z) = ([X, Y], 2), ([)?, T],l7> =0 and

use the formula for the Riemannian connection as a function
of the metric to obtain

(V;(?, 2) =(VxY,2), 2 <'€7’,—‘17, T> = <T, (X, ?]),
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which implies (b).
Hint for (c): Use the fact that

([)?, ?],T) - (V,—(? - VX, T> .
(Curvature of a Riemannian submersion). Let f: M —Mbea
Riemannian submersion. Let X,Y,Z,W € X(M), X,Y,Z,W

be their horizontal lifts, and let R and R be the curvature
tensors of M and M respectively. Prove that:

@ (R(X,1IZ, W) = (RX,Y)2,W) - § (X, 2, 7, W)
+3 (.29, 1X, W) - 2 (IZ, WP, X, 7).
b) K(o) = K@) +3|[X. 71| > K@),
where o is the plane generated by the orthonormal vectors

X,Y € X(M) and 7 is the plane generated by X, Y.
Hint for (a): We shall use the notation of Exerc1se 9. Observe

that X <§,—,Z , W_> = X (VyZ,W). Therefore
(VxV5Z,W) =X (V32,W) - (V32,93 W)
= (VX VyZ,W) - % (7,2, (X, W)").

On the other hand, if T € &(M) is vertical,

<v7‘)?, ?> = <V,—(T, }_’> + <[T, )?],?> = - <T, ﬁ;?> .
Therefore,

<V_7[,—(,,—,]Z, V_V> = <V[,—(,,—,],.Z, W> + <V[,—(’,—,]"Z, VV‘)

= (Vxmzw) - 3 (IX.71, 12, W)").

Putting the above together, we obtain (a).
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11.

12.

(The complex projective space). Let
Cn+1-{0} ={(2o).-.,22) = Z # 0, zj =zj+iy;, 3 =0,... yn}

be the set of all non-zero (n + 1)-tuples of complex num-
bers z;. Define an equivalence relation on C**! - {0}:Z =
(20 ---y2n) ~ W = (w,,...,w,) if z; = Awj, A € C, A # 0.
The equivalence class of Z will be denoted by [Z] (= the com-
plex line passing through the origin and through Z). The set of
such classes is called, by analogy with the real case, the complex
projective space P™(C) of complex dimension n.

a) Show that P*(C) has a differentiable structure of a mani-
fold of real dimension 2n and that P!(C) is diffeomorphic
to S2.

b) Let (Z,W) = 2,w, + -+ - + z,W, be the hermitian prod-
uct on C™*! where the bar denotes complex conjuga-
tion. Identify C"t! ~ RZ"*2 by putting z; = z; + 1y; =
(zj,y;). Show that

S2n+1 = {N € Cn+l ~ R2n+2; (N, N) = 1}

is the unit sphere in R2"+2,

c¢) Show that the equivalence relation ~ induces on S2"+!
the following equivalence relation: Z ~ W if e¥Z = W.
Establish that there exists a differentable map (the Hopf
fibering) f:S?"+! — P™(C) such that

({2
= {N € §2"* N € [Z|n ST+ 0 < 0 < 27}
= [Z]n S*"FL

d) Show that f is a submersion.
(Curvature of the complex projective space). Define a Rie-
mannian metric on C*t! — {0} in the following way: If
Z € C**1 —~ {0} and V, W € Tz(C"*! — {0}),

o, = TG,
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Observe that the metric ( , ) restricted to $2"*! c C"*! — {0}
coincides with the metric induced from R2"+2,
a) Show that, for all 0 < @ < 2, €i: §2n+l _, G2n+1 g
an isometry, and that, therefore, it is possible to define
a Riemannian metric on P*(C) in such a way that the
submersion f is Riemannian.
b) Show that, in this metric, the sectional curvature of
P™(C) is given by

K(0) =1+ 3cos?p,

where o is generated by the orthonormal pair X,Y,

cosp = <5{— , z'}_’), and X, Y are the horizontal lifts of

X and Y, respectively. In particular, 1 < K(0) < 4.
Hint for (b): Let Z be the position vector describing S2n+!.
Since (&€ 2)g_0 = iZ, iZ € Tz(S?"*1) and is vertical. Let
V be the Riemannian connection of R2"*2 ~ C™*! and X,Y €
X (P"(C)). Take a:(-¢,e) — S?"t! with a(0) = Z, o/(0) =
X. Then

(VxiZ)z = ditiz o a(t))

t=0

d . N ; =T
Therefore,

(X, 7),i2) = (F5¥ - ¥, X, i)

=-(i%, ?) + <ﬂ?, )?) =2cos .

Now use Exercise 10 (b).

Let p € M and let 0:M — M be an isometry such that
o(p) = p and doy(v) = —v, for all v € T,M. Let X be a
parallel field along a geodesic v in M with 7(0) = p. Show
that do.,,) X (7()) = =X (v(-t)).

Hint: 1t is clear that o(y(t)) = v(—t). Prove that

doy1)X (7(?)) is a parallel field along ~(t). Note that for ¢ = 0,
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14.

da,y X (7(t)) = =X (v(~t)), and use the uniqueness of parallel
fields, with given initial conditions.

(Geometric characterization of locally symmetric spaces). Let
M be a Riemannian manifold. A local symmetry at p € M
is a map o: B.(p) — B.(p) of a normal geodesic ball centered
at p such that o(y(t)) = v(—t), where v is a radial geodesic
(7(0) = p) of Be(p). Prove that: M is locally symmetric &
every local symmetry is an isometry.

Hint =: Consider a geodesic frame e;,. .., e, in the ball B.(p)
(Cf. Exercise 7 of Chap. 3) and put Rijze = R(e, €;, ek, €z).
Since VR = 0, Rijke is constant along the geodesics which
start from p. Let ::T,M — T,M be a linear isometry given
by i(v) = —v, v € T, M, and observe that o = exp,, oi o exp;*.
Use Cartan’s Theorem to establish that o is an isometry.
Hint <: Let p € M and Z € T,(M). Consider a geodesic
v:(—¢€,e) » M with 4(0) = p, ¥'(0) = Z. Take an or-
thonormal basis e,...,e, in T,M, and obtain, by parallel
transport, a frame e;(t),...,e,(t) along v. Put Rijre(t) =
R(ei(t), ej(t), ex(t), ee(t)). Then

d
VzR)(p) = —R;;
(V2R)P) = grRiw|

— lim Rijke(t) — Rijie(—t) _

t—0 2t 0

where, in the last equality, we use that o is an isometry and we
also use the last exercise. Since p and Z are arbitrary, VR = 0.



CHAPTER 9

VARIATIONS OF ENERGY

1. Introduction

In Chapter 3, we defined geodesics as curves with zero acceleration
and we saw that they are characterized by the fact that they locally
minimize the arc length. In this chapter, we present a further char-
acterization of a geodesic as a “solution of a variational problem”.
For this, we have to introduce certain ideas that are adaptations to
Differential Geometry of concepts and techniques from the Calcu-
lus of Variations. No knowledge of Calculus of Variations will be
assumed.

The fundamental point of the chapter is the calculation of
the formula for the second variation of the energy of a geodesic,
which will be presented in Section 2. In Section 3, we shall make
two geometric applications of this formula. The first (Theorem of
Bonnet-Myers), states that a complete manifold whose curvature is
positive and does not approach zero is compact, and its diameter can
be estimated in terms of the bounds of the curvature. The second
is an extension, due to A. Weinstein, of a theorem of Synge which
asserts the simple connectivity of a compact, orientable, manifold of
even dimension whose curvature is positive.

Together with the theorem of Hadamard, the applications
included in this chapter concern investigations which attempt to
determine the influence of curvature on the topology of Riemannian
manifolds. These results culminate with the Sphere Theorem (see
Chap. 13) and have ramifications which extend to current research.

2. Formulas for the first and second variations of
energy

We start by making precise the idea of “neighboring curves” to a
given curve.
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2.1 DEFINITION. Let ¢ [0,a] — M be a piecewise differentiable
curve in a manifold M. A wvariation of c is a continuous mapping
f:(—¢€,€) x [0,a] = M such that:

a) f(0,) =c(t), te 0,a],

b) there exists a subdivision of [0,a] by points 0 = ¢, < 1 <

.+« < tg41 = a, such that the restriction of f to each (—¢,¢) x

[ti ti+a], 1 = 0,1,...,k, is differentiable.

A variation is said to be proper if

f(s,0)=c(0) and  f(s,a) =c(a),
for all s € (—¢,¢). If f is differentiable, the variation is said to be
differentiable.

For each s € (—¢,¢), the parametrized curve fs:[0,a] - M
given by f,(t) = f(s,t) is called a curve in the variation. In this
way, a variation determines a family f,(t) of neighboring curves of
fo(t) = c(t), and a variation is proper if and only if the curves of
this family have the same initial point ¢(0) and the same endpoint
c(a).

It is customary to call the parametrized differentiable curve
given by fi(s) = f(s,t), t fixed, a transversal curve of the variation.
The velocity vector of a transversal curve at s = 0, defined by V'(t) =
%{(0, t), is a (piecewise differentiable) vector field along c(¢) and is
called the variational field of f (Fig. 1).

-€

Figure 1
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2.2 PROPOSITION. Given a piecewise differentiable field V (t), along
the piecewise differentiable curve c: [0,a] — M, there exists a vari-
ation f:(—¢,€) x [0,a] = M, of c, such that V (t) is the variational
field of f; in addition, if V(0) = V(a) = 0, it is possible to choose f
as a proper variation.

Proof. Since ¢([0,a]) C M is compact it is possible to find a § > 0
such that exp), t € [0,a], is well-defined for all v € Te(yy) M, with
|v] < 6. Indeed, for each c(¢) consider a totally normal neighborhood
W, of c(t) and the number §; > 0 associated to this neighborhood
(Theor. 3.7, Chap. 3). The union |J, W; covers the compact set
¢([0, a]) and, therefore, a finite number of the W;’s, say W1,..., Wy,
still cover ¢([0,a]). Taking § = min(é,,...,0,), where 6; > 0 is the
number corresponding to the neighborhoods W;, i = 1,...,n, we see
that this § satisfies the conditions of the assertion that was made.

Consider N = maxejo,q] [V (¢)], € < & and define f(s,t) =
expe(y) SV (), s € (—¢,¢), t € [0,al.

By the choice of ¢, the map f:(—¢,e) x [0,a] — M is well-
defined. In addition, since

expe( sV (2) = 7(1, ¢(t), sV (1))

and the geodesic (1, ¢(t), sV (t)) depends differentiably on the initial
conditions, the map f is piecewise differentiable. It is easy to verify
that f(0,t) = c(¢).

Finally, the variational field of f is given by:

T 0 = Llexn V)| = [exp)oV () = VO,

and it is clear that, from the definition of f, if V(0) = V(a) = 0
then f is proper. O

To compare the arc length of ¢ with the arc length of neigh-
boring curves in a variation f: (—¢,€) x [0,a] — M of ¢, we define a
function L:(—¢,e) — R by

L(s) =/:

%(s, t)‘ dt, s € (—¢,¢),
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that is, L(s) is the length of the curve f,(¢). It will be more conve-
nient, however, to work with the energy function E(s) given by

a 2
E(s) = / ﬂ(s,t) dt, s € (—¢,¢€).
o |0t
For that, we need some general facts about the energy function.
Let c:[0,a] = M be a curve and let
dc dc

L{c) = /0 g and B(o) = /0 =
Putting f=1and g= I{:—‘;I in the Schwarz inequality:

(/oafgdt)zs/:f"’dt-/oag‘*’dt,

L(c)* < aE(c),

and equality occurs if and only if g is constant, that is, if and only
if t is proportional to arc length.

The lemma below shows that the curves which minimize en-
ergy are automatically parametrized by a parameter proportional to
arc length. This is one of the advantages of working with the energy
function rather than the arc length function.

2.3 LEMMA. Let p,q € M and let v:[0,a] = M be a minimizing
geodesic joining p to q. Then, for all curves c:[0,a] — M joining p
to q, '

E(y) < E(o)

with equality holding if and only if c is a minimizing geodesic.

2
dt.

we obtain

Proof. From the considerations above, it follows that
aB(7) = (L())? < (L(0))* < aE(c),

which proves the first assertion. If the equality holds, we have
(L(c))? = aE(c), which implies that the parameter of ¢ is propor-
tional to arc length, and L(7y) = L(c), which implies that c is clearly
a minimizing geodesic (see Corollary 3.9 of Chapter 3). The converse
is obvious. O

Now, we return to the energy function E(s) defined by a
variation. An initial piece of information on the behavior of E is
given by the value of its first derivative.
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2.4 PROPOSITION. (Formula for the first variation of the energy of
a curve). Let c:[0,a] — M be a piecewise differentiable curve and
let f:(—¢€,€) x [0,a] = M be a variation of c. If E:(—¢,e) = R is
the energy of f then

B0 =- [ (vo. 55 )¢
o) - i (v S - )

- <V(0), %(0)> + <V(a), Z—:(a)>,

where V' (t) is the variational field of f, and

dc, , de dc, _ de
) =lm @)= lim 2.
t>t. t<t;

Proof. By definition,

E(s)_/0 <g{ g{>dt Z/:'“<3f 6f>dt

Differentiating under the integral sign and using the symmetry of
the Riemannian connection, we obtain

Ler 19f Of “w1_/DOf 8f
ds \ <8t 6t>dt /t 2<d Bt 6t>dt
til
2/ ' <sz g>dt
t;
_ ., [ d /8f of “1 /9f Daf
‘% dt<a a2 (Gr )

t|+1 t,’,+1
o [ (D3
t; t; 83 dt ot

1dE <~ /8f Of ‘ af Daf
@ %-2(Ew)| [ (am)e
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Putting s = 0 in (2), this yields (1). O

An immediate application of the formula for the first variation
is the following characterization of geodesics.
2.5 PROPOSITION. A piecewise differentiable curve c:[0,a] — M is
a geodesic if and only if, for every proper variation f of ¢, we have

4E(0) = 0.
D de

Proof. If ¢ is a geodesic, 4% = 0 and c is regular. Therefore if
f is proper, V(0) = V(a) = 0, and all the terms of (1) are zero.
Conversely, suppose that 42(0) = 0, for all proper variations of c.
Let V(t) = g(t) g z‘{, where g:[0,a] — R is a piecewise differentiable
function with g(t) > 0if ¢t #¢; and g(t;) = 0,i=0,1,...,k+ 1.

Construct a variation of ¢ having V(t) as variational ﬁeld Then,

since 1dE @ /Dde Dd
c c
PR TR / 9() <dt dt’ dt dt>dt 9
we have f,)t Zf = 0 on each interval (¢;,;4+1), that is, ¢ is a geodesic
on each (t;,ti+1),2=0,1,...,k.

To see what happens at the points &, consider another vari-
ational field V(t) such that V() = V(a) = 0 and if t # 0,a,
V(t:) = 9(tf) — %(¢7). Then, using the fact that c is a geodesic
on (t;,t;4+1), we obtain

0=2220)

—Z(dtu*) dt( D Sown - Zen)

-3

=1

It

thH -

or that c is of class C! at each ¢;. Since ﬁ ‘;t = 0 at ¢;, ¢ satisfies the
equation for geodesics on (0,a). By the uniqueness of the solutions
to ordinary differential equations, ¢ € C* and, therefore, c is a
geodesic. O

2.6 REMARK. Proposition 2.5 furnishes a characterization of
geodesics as critical points of the energy for all proper variations.
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It is in this sense that geodesics can be thought of as solutions to
a variational problem. Observe that, in contrast to previous char-
acterizations, such a characterization is not local but involves the
behavior of the geodesic as a whole.

2.7 REMARK. There is a certain analogy between the first variation
of a proper variation and the usual derivative of a function defined
on a differentiable manifold. It is natural to think of the set Q, ; of
piecewise differentiable curves ¢, joining two points p and q of M, as
a manifold, a tangent vector at the point ¢ being a piecewise differ-
entiable vector field V along ¢ which vanishes at the extremities of c.
The energy E is then a differentiable function on such a manifold,
and %(0) is the derivative of E in the direction of V; geodesics
joining p to q are critical points of the function E.

The difficulty with this point of view is that the tangent space
of such a manifold at a point ¢ (that is, the set of piecewise differ-
entiable vector fields along c) does not have finite dimension. Thus
the impossibility of finding local parametrizations of this manifold
by means of open subsets of R™. This tangent space, nevertheless, is
a vector space (infinite dimensional) and this suggests the possibility
of having manifolds with infinitely many dimensions. Such manifolds
can indeed be constructed but will not be treated further here. The
interested reader can consult Palais, R., “Morse theory on Hilbert
manifolds”, Topology 2 (1963), 299-340, for more information.

Because ‘%(0) is zero for every proper variation of a geodesic,
our next information on the energy of neighboring curves is given
by -‘;—1-?—(0), which we are going to calculate.

2.8 PROPOSITION.  (Formula for the second variation). Let

7:[0,a] = M be a geodesic and let f:(—¢, €) x [0,a] - M be a

%)per variation of y. Let E be the energy function of the variation.
en

@) %E’”(O) - /0 : <V(t), ’3—2’ + R(‘;—'Z, V)%%> dt

k
-3 (e Fen-Zw),

i=1
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where V is the variational field of f, R is the curvature of M and

DV DV DV
+)
(t )=lm = g 5 &) = lim 2.

t—’t‘
t>t; t<ty

Proof. Taking the derivative of (2), we obtain
1d°E Daf af\| af Daf
2ds® Z:<d$6.s > +Z<63 dsat>
_/“ Dof Dof dt—/ of D Daf it
ds 0s’ dt Bt 0 s’ dsdt ot
Putting s = 0 in the expression above, we obtain that the first and

the third terms are zero, since f is proper and 7 is a geodesic. In
addition, because

DDoj_DDas . of 08
dsdtat_dtdsc’?t at’ds’ ot’
we have, at s =0,
DDaf _D?
dsdiot  di2 +R( V)

Further use of the fact that the variation is proper yields
af DO of
) Z <63 "ds 0t >

Putting all these facts together, we obtain 3. O

k

== <V(t,-), %:i(t:‘) - Dd—:/(t,-‘ )> :

=1

9.9 REMARK. If the variation is not proper, the first term at the
beginning of Proposition 2.8 need not be zero. Taking this with the
corresponding terms at i =0 and i =k +1 of the second member
of (4), we obtain the following expression:

2
® iro=-[(vo.Br+rG i)
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k
VDbV . DV _ D 8f d’r>
-3 (Ve e - ) (750 @) 00

(228 0,0~ (voL 2V ) + (Vo B @)

2.10 REMARK. It is often convenient to write the expression (5)
in the following manner. Since, on each interval where V is differ-
entiable, we have

d DV D?*V DV DV

@ <V’7{> - <VE'7> ¥ <7’7>’
we can write, taking a geodesic : [0,a] — M, and a partition
0=t <t1 <+ <t <igy41 = aq,

/Oa <V(t), %23‘5 + R(v/, V)'y’> dt
[ E (w )

- /t:-+1(<%,_?g_> —(R(¥, V)7, V)) dt}.

Therefore

k

FO=3 { / vy - B, V))dt}

(2% g)on (22.8) e
- / LV, V") = (R(Y, V), V) dt
) e (2h) e

For reasons which will be clear later, it is convenient to write

/0 "LV — (RO V)Y, V) e = L(V, V).
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Observe that, if the variation is proper, I,(V,V) = %E”(O) depends
only on V. In the general case, we have

(6) %E"(O) =L(V,V)- <£—-?,—f,v'> 0,0)+ <§;%ﬂ’> ©0,a).

2.11 REMARK. It is possible to establish formulas for the first and
second variations for the function L(s) which represent the arc length
of the curves in the variation. The expressions are entirely analogous
to those obtained for the energy and, since we are not going to make
use of them, they will not be treated here (See, however, [dC 2]
paragraph 5.4).

2.12 REMARK. The analogy mentioned in Remark 2.7 can be car-
ried further, considering 21,(V, V) as the hessian d2E(V,V) of the
energy function E:),, — R at the critical point v € 9, , with
respect to the “vector” V.

3. The theorems of Bonnet-Myers and of Synge-
Weinstein

We now go into some applications of the formula for the second
variation of the energy.
3.1 THEOREM. (Bonnet [Bo], Myers [My]). Let M™ be a complete
Riemannian manifold. Suppose that the Ricci curvature of M sat-
isfies )

Ricy(v) 2 ) >0,

for all p € M and for all v € T,(M). Then M is compact and the
diameter diam(M) < =r.

Proof. Let p and q be any two points in M. Since M is com-
plete, there exists a minimizing geodesic v:[0,1] — M joining p
to q. It is enough to show that the length ¢(vy) < nr, because then
M is bounded and complete, therefore compact; in addition, since
d(p,q) < nr, for any p,q € M, it follows that diam(M) < =r, as
asserted.

Suppose, to the contrary, that () = € > nr. Let us consider
parallel fields e;(¢),...,en—1(t) along v which are orthonormal, for



sec.3] Bonnet-Myers, Synge-Weinstein Theorems 201

each t € [0, 1], and belong to the orthogonal complement of +/(t).
Let e,(t) = 28 and let V; be a vector field along 7 given by

VJ(t) = (sinnt)e;(t), j=1,...,n-1,

It is clear that V;(0) = V;(1) = 0, therefore V; generates a proper
variation of v, whose energy we denote by Ej;.

Using the formula for the second variation of energy and the
fact that e; is parallel, we obtain

1
E”(O) / (Vi, Vi' + R(Y, Vj)v') dt
= / sin? wt(n? — 2K (en(t), e;(2)))dt,
0

where K (en(t), e;(t)) is the sectional curvature at () with respect
to the plane generated by e, (t), e;(t). Summing on j and using the
definition of the Ricci curvature, we get

19,
52 E O
j=1

1
= /0 {sin® mt((n — 1)n? = (n — 1)€2 Ric,s)(en(t)))} dt.

Since Ric,(s)(en(t)) > 7 and £ > mr, we have
(n—1)¢2 Ricy(s)(en(t)) > (n - 1)n2,

hence
1 n—1 1
3 Z E}(0) < / sin? 7t((n — )7 — (n — 1)x%)dt =0
=1 0

As a result there exists an index j such that E7(0) < 0, which,
by Lemma 2.3, contradicts the fact that v is mmlmlzmg Therefore
(<=r. O

In the corollaries that follow, we use some facts on the fun-
damental group and on covering spaces (see Massey [Ma], Chapters
2 and 5).
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3.2 COROLLARY. Let M be a complete Riemannian manifold with
Ricp(v) > 6 > 0, for all p € M and all v € T,(M). Then, the
universal cover of M is compact. In particular, the fundamental
group m1(M) is finite.

Because, introducing on the universal cover m: M — M the
covering metric (that is, the metric such that = is a local isometry),
we conclude that M is complete and that its Ricci curvature satisfies
Ric, > 6 > 0. From the theorem, M is compact. Hence the number
of sheets of the covering is finite; since that is the number of elements
in the fundamental group m (M) of M, we conclude that m (M) is
finite.

3.3 COROLLARY. Let M be a complete Riemannian manifold with
sectional curvature K > % > 0. Then M is compact, diam(M) <
nr and my(M) is finite.

3.4 REMARK. The hypothesis K > § > 0 cannot be relaxed to
K > 0. Indeed, the paraboloid

{(:I:,y,z) eR3z=122 +y2}

has curvature K > 0, but is complete and non-compact.

3.5 REMARK. In fact it is not necessary that K be bounded away
from zero but only that K not approach zero too fast. In this respect,
see E. Calabi, “On Ricci curvatures and geodesics”, Duke Math. J.
34 (1967), 667-676 and R. Schneider, “Konvexe Flichen mit langsam
abnehmender Kriimmung”, Archiv der Math. 23 (1972), 650-654.

3.6 REMARK. The estimate for the diameter given by Theorem 3.1
cannot be improved. Indeed, the unit sphere S™ ¢ R™*! has con-
stant sectional curvature equal to 1 (therefore its Ricci curvature
also is a constant equal to 1) and diam(S™) = w. A surprising the-
orem is that this example is unique in the following sense: Let M™
be complete with Ricy(v) > 1/r?, for allp € M and all v € TyM;
if diam(M) = nr, then M™ is isometric to the sphere S™ of curva-
ture 1/r2 (see S.Y. Cheng, “Eigenvalues comparison theorems and
its geometric applications”, Math. Z. 143 (1975), 289-297 and, for
another proof, K. Shichama, “A sphere theorem for manifolds of
positive Ricci curvature”, Trans. A.M.S. 275 (1983), 811-819).

Another application of the formula for the second variation is
the theorem below, due essentially to A. Weinstein. A special case
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of the theorem (which appears as Corollary 3.10) had been proved
earlier by Synge.
3.7 THEOREM. (Weinstein [We 2] and Synge [Sy]). Let f be an
isometry of a compact oriented Riemannian manifold M™. Suppose
that M has positive sectional curvature and that f preserves the
orientation of M if n is even, and reverses it if n is odd. Then f has
a fixed point, i.e., there exists p € M with f(p) = p.

In the proof of Theorem 3.7 we need the following fact from
linear algebra.
3.8 LEMMA. Let A be an orthogonal linear transformation of R*~1
and suppose that det A = (—1)". Then A leaves invariant some non-
zero vector of R™ 1,

Proof of the Lemma. If n is even, det(A — AI) is a real polynomial
in A of odd degree (= n — 1). Therefore, A has a real eigenvalue.
Since A is orthogonal, such eigenvalues are of the form +1. Since
the product of the complex eigenvalues of A is non-negative, and
det A = 1, at least one of the eigenvalues of A equals 1. This proves
the lemma in this case.

If n is odd, det A = —1. Because the product of the com-
plex eigenvalues is non-negative, there is at least one pair of real
eigenvalues, one of which is positive, hence equal to 1. O

Proof of Theorem 3.7. . Suppose, to the contrary, that f(q) # gq
for all g € M. Let p € M such that d(p, f(p)) attains a minimum.
Since M is complete, there exists a normalized minimizing geodesic
7:[0,€] — M, joining p to f(p), that is, v(0) = p, v(£) = f(p)-

Let A = Podfy:T,(M) — T,(M), where P is the parallel
transport along v from f(p) = v(€) to p. Then A is an isometry. We
are going to show that

(f07)'(0) =~'(9).
In fact, consider the geodesic f o v which joins f(p) to f2(p). Let
P=1t)t#0,t #¢ and f(p') = for(t)).

Since f is an isometry, d(p,p’) = d( f(p), f(")) and, from the
triangle inequality (see Fig. 2),
ap’, £(p')) < @', f(0)) + d(f(p), f(¥"))
= d(p’, f(p)) + d(P,pl)
= d(p, f(p))-
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Figure 2

Because d(p, f(p)) is a minimum,

(@', f()) = @, f(p)) + d(f(p), F (7).

Therefore, the curve formed by v and f o is a geodesic, hence
(fo7)'(0) =~'(9),

as we have asserted.
It follows that A leaves ¥'(0) fixed, since

A(Y(0)) = Podfy,(v(0)) = P((f 27)'(0)) = P(+'(€)) = ¥/(0)-

Let A be the restriction of A to the orthogonal complement
of 4/(0). Then A is orthogonal on R™~1 and, since P is an isometry
which preserves orientation,

det A = det A = det(P o df,) = (=1)",

where in the last equality we use the hypothesis on f and the fact
that P preserves orientation. From the lemma, A leaves a vector
invariant. Let e;(¢) be a unit parallel field along +y such that, for
each t, e;(t) belongs to the orthogonal complement of 7'(t) and
€1(0) is invariant by A.

Let 3(s), s € (—¢,€), be a geodesic such that 3(0) = p and
B'(0) = e1(0). Because P o dfp(e1(0)) = e1(0), we have

dfp(e1(0)) = ea(9),
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that is, the geodesic fof is such that fo3(0) = f(p) and (foB)'(0) =

€1 (f)
Let h be a variation of v given by

h(s,t) = exp,(,(se1(t)), s€(-¢,€), teo,4
Observe that, since h(s,0) = ((s), then (see Fig. 3)

h(s,€) = expy()(se1(€)) = (f o B)(s)-

Figure 3

Therefore,

=€ (t)’

s=0

V(O) = 2 ey (ser(®)

hence DT:,‘i = 0. Using the formula for the second variation (see

Remark 2.9) and the fact that 2 8k(0,t) = e1(t), we obtain

1d’E ¢ dy _.dvy
1570 = [ (vo.r@ ) a
dy D oh _/d Doh
+ <dt '8 as> ©.9) <}E’ dsa_s> (0,0)

£ d’)‘
- /o K(ea(s), Tyt
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Because the sectional curvature is positive,

1d°E
d2(0)<0

and therefore 4E d is strictly decreasing on a neighborhood of zero.
This shows that there exists a curve ¢ in the variation, such that
(€(c))? < LE(c) < LE(7) = £(7)%. Since the curves in the variation
join g to f(g), we obtain a contradiction to the fact that d(p, f(p))
is a minimum. 0O

3.9 REMARK. The theorem remains true under the weaker hypoth-
esis that f is a conformal diffeomorphism. It is not known whether
the theorem is still true if f is merely a diffeomorphism. This would
imply that $2 x $? does not carry a metric of positive curvature,
since the map f which is the antipodal map on each factor preserves
the orientation (each factor reverses the orientation) and does not
have a fixed point. For more details, see A. Weinstein [We 2].

3.10 COROLLARY. (Synge). Let M™ be a compact manifold with
positive sectional curvature.
a) If M™ is orientable and n is even, then M is simply connected.
b) Ifn is odd, then M™ is orientable.

Proof a) Let m: M — M be the universal covering of M. Introduce
on M the covering metric, and orient M in such a way that =«
preserves the orientation. Because M is compact and has positive
curvature, we must have K > § > 0. From the fact that m is a
local isometry, the same curvature condition holds on M Since M
is complete, by Corollary 3. 3, M is compact. Let k: M— Mbea
covering transformation of M, that is, m o k = mw (see Massey [Ma),
p- 159). Then k is an isometry of M which, from the way that we
oriented M , preserves the orientation. Because n is even, we can
use the theorem to conclude that k has a fixed point. But a covering
transformation which has a fixed point is the identity. It follows that
the group of covering transformations of M (which is isomorphic to
the fundamental group of M; see Massey [Ma), p. 163) reduces to

the identity. Therefore M is simply connected.
b) Suppose that M is not orientable, and consider the ori-

entable double cover M of M (see Exercise 12 of Chap.0). We in-
troduce on M the covering metric. Since M is the double cover of
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a compact_manifold, M is compact. Let k be a covering transfor-
mation of M, k # id. Because M is not orientable, k is an isometry
which reverses the orientation of M. Since n is odd, we can apply
Theorem 3.7 which guarantees that k has a fixed point. Therefore
k =id., which is a contradiction. O

3.11 REMARK. The real projective space P2(R) of dimension two,
which is compact, non-orientable and not simply connected is an
example which shows the necessity of orientability in a) and odd
dimension in b). On the other hand, P3(R) which is compact, ori-
entable and not simply connected is an example which shows the
necessity of even dimension in (a).

EXERCISES

1. Let M be a complete Riemannian manifold, and let N ¢ M
be a closed submanifold of M. Let p, € M, p, ¢ N, and
let d(po, N) be the distance from p, to N. Show that there
exists a point g, € N such that d(po,¢,) = d(p,, N) and that
a minimizing geodesic which joins p, to g, is orthogonal to N
at q,.

2. Introduce a complete Riemannian metric on R2. Prove that

lim( inf K(z,y))<0,

r— 00 12 +y’2r’

where (z,y) € R? and K(z,y) is the Gaussian curvature of the
given metric at (z,y).

3. Prove the following generalization of the Theorem of Bonnet-
Myers: Let M™ be a complete Riemannian manifold. Suppose
that there exist constants a > 0 and ¢ > 0 such that for all
pairs of points in M™ and for all minimizing geodesics 7(s),
parametrized by arc length s, joining these points, we have

Ric(v/(s)) > a+ &L

5’ along v,
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where f is a function of s, satisfying | f(s)| < c along 4. Then
M™ is compact.

Calculate an estimate for the diameter of M™, and observe that
if f =0 and ¢ = 0, we obtain the Theorem of Bonnet-Myers.
The theorem above has application to Relativity, see G.J. Gal-
loway, “A generalization of Myers’ Theorem and an application
to relativistic cosmology”, J. Diff. Geometry, 14 (1979), 105~
116.

4. Let M™ be an orientable Riemannian manifold with positive

curvature and even dimension. Let v be a closed geodesic in
M, that is, v is an immersion of the circle S! in M that is
geodesic at all of its points. Prove that < is homotopic to a
closed curve whose length is strictly less than that of 7.
Hint: The parallel transport along the closed curve v leaves
a vector orthogonal to < invariant (this comes from the ori-
entability of M and the fact that the dimension is even). There-
fore there exists a vector field V(¢) parallel along the closed
curve 7. Calculate Ey;(0) and show that it is strictly nega-
tive. Therefore, close to v, there exists a closed curve of length
smaller than that of «.

5. Let N; and N be two closed disjoint submanifolds of a compact
Riemannian manifold.
a) Show that the distance between N; and N; is assumed
by a geodesic v perpendicular to both N; and Na.
b) Show that, for any orthogonal variation h(t, s) of v, with
h(0,s) € Ny and h(f,s) € N, we have the following ex-
pression for the formula for the second variation ‘

SE"(0) = L,(V, V)
+(v(®,58,v©®) - (V(©0), 505,V 0)

.7

where V is the variational vector and Sg';) is the linear
map associated to the second fundamental form of N; in
the direction of v/, 1 =1, 2.
6. Let M bea complete simply connected Riemannian manifold,
with curvature K < 0. Let v: (—o00,00) — M be a normalized
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geodesic and let p € Mbea point which does not belong to .
Let d(s) = d(p,v(s))- -

a) Consider the minimizing geodesic o,: [0,d(s)] = M join-
ing pto 7(s), that is, 05(0) = p, 0,(d(s)) = v(s). Consider
the variation h(t, s) = o0,(t), and show that:

(i) 3E'(s) = (+'(s),04(d(s))),
(ii) 3E"(s) > 0.

b) Conclude from (i) that s, is a critical point of d if and
only if {(v'(s,),04(d(3,))) = 0. Conclude from (ii) that d
has a unique critical point, wlgch is a minimum.

c¢) From (b), it follows that if M is complete, simply con-
nected and has curvature K < 0, then a point off the
geodesic vy of M can be connected by a unique perpen-
dicular to . Show by examples that the condition on the
curvature and the condition of simple connectivity are es-
sential to the theorem.



CHAPTER 10

THE RAUCH COMPARISON THEOREM

1. Introduction

Let M be a Riemannian manifold. As we saw in Chapter 5, if
v:{0,€] = M is a normalized geodesic and J is a Jacobi field along
~ with J(0) =0, |J’(0)| = 1 and (J'(0),~'(0)) = 0, then

K 4 . R
|J(t)l—t——6—t + R, %%{5—0,
where K is the sectional curvature at «y(0) with respect to the plane
generated by v'(0) and J'(0). Therefore, if ¢ is small, the smaller
K is, the larger |J(¢)| will be. Consider now another Riemannian
manifold M, a geodesic ¥: [0,4 — M and a Jacobi field J along ¥

satisfying: J(0) = 0, |J/(0)] = 1, <J’(0), (0)> = 0. Suppose that

K(#(0),J'(0)) > K(v'(0), J'(0)).

It follows from the expression above that, for small t, |J(t)] < [J(¢)].

The Theorem of Rauch, which we intend to prove in this
chapter, furnishes conditions so that the inequality above is valid
without the restriction that ¢ be small. More precisely, the theorem
asserts (see the statement in Section 2) that if 4:[0,4] — M does
not have conjugate points and

KGF @), (@) = K@ (t),J®), te(0,9),

then |J(t)]| < |J ()]
Rauch’s Theorem is one of the basic facts in Riemannian
Geometry. Intuitively, it expresses the plausible fact that as the

curvature grows, lengths shorten.
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In dimension two, such a theorem is an easy consequence of
the classical theorem of Sturm on ordinary differential equations. In
fact, in this case, the Jacobi equations for J = fea, J = fé&; (e2(t)
and é3(t) are unit parallel vector fields along and normal to the
geodesics (t) and 4(t), respectively) can be written:

ffO+K@f@#)=0, f(0)=0, telo,4,
Fro+kmfe)y =0, f0)=0, telo,g.
Sturm’s Theorem asserts that if f'(0) = f/(0) > 0, f (t) #00n (0,4,

and K(t) > K(t), then f(t) < f (t) (see Fig. 1 and Exercise 5 of this
chapter).

Figure 1

In dimension higher than two, the proof is much less simple,
and a presentation of the theorem was made for the first time in 1951
by Rauch [R 1] (for another exposition, see Rauch [R 3]). The proof
that we present in Section 2 is an elaboration due to various math-
ematicians in the fifties, among whom we should mention Ambrose
and Singer.

In Section 3 we make an application of the ideas in the Rauch
Theorem to the theory of isometric immersions. In Section 4, we in-
troduce the notion of focal point, which generalizes the idea of con-
jugate point, and we extend the Theorem of Rauch to this situation.
The last two sections are not used in the rest of the book and can
be omitted on a first reading. .
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2. The Theorem of Rauch

In the proof of Rauch’s Theorem, we need a certain number of facts
that we now establish in the form of lemmas. The Index Lemma
(Lemma 2.2) is a basic fact that has application to many other sit-
uations.

The following lemma is a particular case of Lemma 5.5 of
Chapter 0.

2.1 LEMMA. Let h:[0,1] = R be a differentiable function with
h(0) = 0. Then there exists a differentiable function ¢: [0,1] — R,
with $(0) = $:(0), h(t) = t4(t), t € [0, 1].

Let M be a Riemannian manifold and let v:[0,a] — M be a
geodesic of M. Let V be a piecewise differentiable vector field along
~. For all t, € [0, a], we write

to

A {(V",V') = (R(Y, V)Y, V)} dt = L.,(V, V).

Assume that y(¢) is not conjugate to ¥(0) for any ¢, 0 < t < {,.
The Index Lemma below asserts that for all piecewise differentiable
vector fields along v that vanish at ¢ = 0 and coincide at ¢t = t,,
the minimum of the expression above is assumed by the Jacobi field
that vanishes at ¢ = 0 and takes on the same value at t = t,. More
precisely, we have the following fundamental lemma.

2.2 LEMMA. (The Index Lemma). Let : [0,a] — M be a geodesic
without conjugate points to v(0) in the interval (0,a]. Let J be
a Jacobi field along v, with {(J,7') = 0, and let V be a piecewise
differentiable vector field along v, with (V,+') = 0. Suppose that
J(0) = V(0) = 0 and that J(t,) = V(i,), t, € (0,a]. Then

L, (J,J) < I, (V,V)

and equality occurs if and only if V = J on [0,,).

Proof. The vector space J of Jacobi fields J along v with J(0) =0
and (J,7) = O has dimension n — 1, where n = dimM. Let
{N1,--.yJn—1} be a basis for this space. Then J = ) oiJ;,
i =1,...,n — 1, where the a; are constants. Since there are no
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conjugate points in the interval (0,a], for all ¢ # 0, the vectors
J1(8), - -, Jn—1(t) form a basis of the orthogonal complement of /(t)
in T, (4)(M). Therefore, for ¢ # 0, we can write

V() = Zfi(t)Ji(t),

where f; are piecewise differentiable functions on (0, a]. We are going
to show that f; can be extended continuously and differentiably to
t = 0, that is, f; is piecewise differentiable on [0, a].

For this, use Lemma 2.1 to write J;(t) = tA;(t). Then
A;(0) = J{(0), hence the A;(0) are linearly independent. There-
fore, the A;(t) are linearly independent for all ¢ € [0, a], and we can
write V(t) = Y, 9i(t) Ai(t) where the g; are piecewise differentiable
functions on [0,a] and ¢;(0) = 0. Applying Lemma 2.1 again, we
have that g;(t) = th;(t), where the h;(t) are piecewise differentiable
on [0, a]. Since we have f;(t) = h;(t), for t # 0, the claim is proved.

We are going to show that, on the interior of each subinterval
where f; is differentiable,

Q) (V,V')=(R(,V},V) = (Z fJ,,Z FiJ;)
+d—t(ZfiJi,ijJ§>-

Indeed, since
R(Y\ V)Y = RO, D_ il =Y HiRO, J)Y ==Y R,

we have
<V’,VI> - <R(7I, V)'YI’ V)

= (Z fidi+ Z:f,-./,f, Z fJi+ Z 571y = (R(Y, V)Y, V)
= (Zf,Jz,Zf Ji)+ <Zf J,,Zf,J'

+(Zf, ZfJ)+(Ef. 25393

+ (éfiJ,-",Xj:fij). J
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On the other hand,
ONEDWEAROWEED WD WA
J + (Z f,J,,Z A+ Z F 209
= (Zf’J,,ZfJ i)+ <Ef, ij J;
+ (Zf'J"ZfJJ"> + <Z f'JanJ'
Therefore, to prove (1), it suffices to show that

&) QU Sdh 32 0375) = (30 fikis 32 1375)-

To prove (2), we write
h(t) = (i, Jj) = (i I5);
since h(0) = 0 and

@) = (F's J3) + (i I5) = {Jix Ij) = (i, )
= —<R(’)", Ji)')", J]> + (J,',R('y', Jj)")") =0
we conclude that A(t) = 0. By distributivity, we then obtain (2),

which concludes the proof of (1).
Applying (1) to V and J, we obtain sucessively:

L V.V) = ( fda T 590 + [ £, T 13533
i j T J

I,(J,J) = (Z o i, Eajg)(to).

Because J(t,) = V (t,), we have that a; = f;(t,), hence

to 2
(3 L, (V\V)=1,(J,J) +/0 lz FiJi
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It follows from (3) that I;,(V, V) > I, _(J, J), which proves the
first part of the lemma. If I, (V,V) = I,,(J,J), then ¥, flJ; = 0.
Because the J; are linearly independent for ¢ # 0, we conclude, by
continuity, that f; = 0, for all 7 and for all ¢ € [0,%,). Therefore,
fi = const., and since fi(t,) = a;, we have that f;(t) = a;, that is,
V =J, as claimed. O

We are now in a position to prove Rauch’s Theorem. In what
follows M™ will denote a manifold of dimension n.

2.3 THEOREM. (Rauch). Let v:[0,a] — M™ and 7: [0,a) —» M **,
k 2> 0, be geodesics with the same velocity (i.e., |v'(t)| = |¥(¢)| ),
and let J and J be Jacobi fields along v and 7, respectively, such

that ; 3
J(0)=J(0) =0, (J'(0),7'(0)) =(J'(0),%(0)),
17(0)| = |J*(0)].

Assume that 4 does not have conjugate points on (0, a] and that, for
allt and all z € Ty ;)(M), Z € T5(,)( M), we have

K(z,% (1) 2 K(z,7' (1)),

where K(x,y) denotes the sectional curvature with respect to the
plane generated by z and y. Then

[J] < \JI.

In addition, if for some t, € (0,a], we have |J(to)| = |J(to)|, then
K(J(#),% ) = K(J(t),7'(t)), for all t € [0, t,).

Proof. Observe that, from Proposmon 3.6 of Chapter 5, the condi-
tion (J'(0),7'(0)) = (J'(0),4'(0)) is equivalent (with J (0) J(0) =
0) to the condition (J,7') = (.7 ,4'). In addition, since

(L)Y = (J'(0),7(0))tr' + (J(0),7'(0)),

the tangential components of J and J have, by hypothesis, the same
length. Therefore, we can suppose that

(L,7) =0={(],%).
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If |J'(0)| = |J'"(0)| =0, then |J| = |J| = 0. In the contrary
case, we put |J(¢)|* = v(¢) and |J(£)|2 = #(t). Since 5 does not
have any conjugate points on (0, a}, %2% is well-defined for ¢ € (0, a].
From L’Hospital’s rule,

i 2O e V(@) @ _
£550 5(2) = jim () | J0))2

Therefore, to prove that |J| < |J|, it is enough to prove that
4 (;(%) 2> 0. This is equivalent to proving that v’y > v#'.

To prove what we want, fix ¢, € (0,a]. If v(t,) = 0 we have
that
V' (to) = 2(J'(to), J (o)) = 0,
and the inequality is satisfied trivially. Suppose, therefore, that
v(t,) # 0. Put

—J@), U) = ———J(t),

v = (to) ()

and observe that

V(o) _ 2(J'(t), (o))
v(to) (J(to)’ J(t°)>

- / vy =2 / (UL - (U RGO de
0 0 _

= ZIQO(U, U)

=2(U’(t,), U(to)) = (U,U) (to)

Similarly,
' (to) -
——— = 2L, (U,U).
ﬁ(to) 2 to( ’ )
By the arbitrariness of i,, it suffices, therefore, to prove that
I, ,(U,U) £ I,(U,U) to complete the proof of the inequality.
For this, let {ej,...,en} and {&;,...,&énsx} be parallel or-
thonormal bases along v and %, respectively, such that:

et =7/ V@Ol exto) = Ulo),
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a@®) =7/ 7@, &lt,)=U(to).

To each vector field V(t) = ), gi(t)e:(t) along -y associate the field
@V along 4 given by

@V)() =) _ gi(t)é(2).
i=1

The map ¢ defined above satisfies the following properties:
(4) (oW1, 8V2) = (V1,V2)

(5) (@V) = o(V").

It follows, from the hypothesis on the curvature and the fact that
the geodesics have the same velocity, that

Ito (¢(U)’ ¢(U)) < Itn (U1 U)

Observe now that U and ¢(U) are vector fields along 4 which
satisfy the hypothesis of Lemma 2.2, and that U is a Jacobi field.
From Lemma 2.2,

I,(0,0) < I, (6(U), ¢(U)) < I, (U, V),

which proves the inequality in the Theorem.

Suppose now that |J(t,)| = |J(t,)|, for some t, € (0,a]. For
all t # 0, we have It(U U) < I(U, U), and, therefore, v'#(t) >
v¥'(t). Since |J(to)| = |J(t,)]|, it follows that

v'i(t) = vi'(t), te€(0,t,],
hence the inequalities above are equalities for t € (0,1,), i.e.,
I(¢(U),6(U)) = I.(U,U), te€(0,t,).

Since ¢ satisfies (4) and (5), we conclude from the equality above
and from the hypothesis on the curvature that K(J(¢),7'(t)) =
K(J(t),¥(t)), for t € (0,t,], hence, by continuity, for ¢ € [0, ),
as has been asserted. [

An immediate application of Rauch’s Theorem allows us to
obtain information on the location of conjugate points from bounds
on the curvature.
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2.4 PROPOSITION. Suppose that the sectional curvature K of a
Riemannian manifold M satisfies the inequality

0<LLK<ZH,

where H and L are constants. Let vy be geodesic in M. Then the
distance d along «y between two consecutive conjugate points of

satisfies
—<d<

\/— \/_

Proof. To get the inequality d > x/v/H, it suffices to compare the
manifold M™ with the sphere S™(H) of curvature H. Let v: [0,¢] —
M be a normalized geodesic in M with 4(0) = p, and let J be
a Jacobi field along v witk J(0) = 0 and (J,’y) 0. Choose a
point p € S™(H) and a normalized geodesic 7: [0, ] — S™(H) with
%(0) = 5. Let J be a Jacobi field along 5 with J(0) = 0, (j, ¥') =0,
|J'(0)] = ]J'(0)]. Since 7 does not have conjugate points in the
interval (0,7/vH), by Rauch’s Theorem, |J(¢)| > |J(#)| > 0, ¢ €
(0,7/vH). Therefore, the distance d from p to its first conjugate
point satisfies d > n/VH.

To obtain the inequality d < /v, we make an analogous
comparison with the sphere S™(L) of dimension n and constant cur-
vature L. If d > w/vL, Rauch’s Theorem applies, hence S™(L)
has all its conjugate points after /v/L, which is absurd. Therefore
d<n/vL. O

One of the typical applications of Rauch’s Theorem consists
in estimating the lengths of curves in a Riemannian manifold in
which we can estimate the curvature. The proposition below is an
example of this situation.

2.5 PROPOSITION. Let M™ and A?Z be Riemannian manifolds
and suppose that foralp e M, p € M, 0 CTyM, 6 C T; M, we
have that K5(&) > Kp(o). Let p € M, € M and fix a linear
isometry i:T,M — T;M. Let v > 0 be such that the restriction
exp, | B-(0) is a diffeomorphism and exp; |B(0) is non-singular. Let

c:[0,a] — expp(Br(O)) C M be a differentiable curve and define a

curve & [0,a] — expp(B ) c M by

&(s) = expj oi o exp; ' (c(s)), s € [0,a].
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Then £(c) > £(c).

Proof. Consider the curve ¢(s) = exp,?¢(s) in T,M. For s fixed
consider the radial geodesic 7,(t) = exp, t¢(s). The mapping

?

f(t,8)=’73(t), OSSSG, OStSI,

is a parametrized surface (see Fig. 2). Therefore, for all s, 31(t 8) =

Js(t) is a Jacobi field along v,, with J,(0) = 0, J,(1) = —i(l s) =
c(s). In addition,

DJ;

20 = 7 {tew)an@ @) =76,

@)

exp'p(B,(O))

Figure 2
Consider now a parametrized surface f(¢, s) in M given by
f(t,8) = expj ti(e(s)) = 7 (2),

and observe that 7, is a geodesic. Then the Jacobi field J,(t) =
-5[(t s) satisfies

Js(0) =0, J,(1)=2(s),

=ic (s).

S
dt
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Because i is an isometry,
[:(0)] = |T,(0)] = 0, | }(0)} = |J;(0)|
and
(1500, 7,(0)) = (i€ (s),47,(0))
= (Z(9),7:(0)) = (J5(0),7,(0)).
We can, therefore, apply Rauch’s Theorem and conclude that
IZ(8)] = 1Js (V)] < |T,(1)[ = [ (3)],

hence, by integration, ¢(c) > ¢(¢). O

2.6 REMARK. The methods used in Rauch’s Theorem can be em-
ployed to obtain an upper bound for the volume of a normal ball
in a Riemannian manifold whose Ricci curvature is bounded below.
More precisely, let M be a complete Riemannian manifold such that
Ricyr > H, and let B.(p) C M, B.(p) C M(H) be normal balls of
radius r, where M (H) is the complete, simply connected manifold,
of constant sectional curvature H. Then

vol(B(p)) < vol B,(p),

and, if the equality is satisfied, Ricp(y/(t)) = H, for all ¢t < r
and all normalized radial geodesics ¥(t) in B,(p) (see Bishop and
Crittenden, Geometry of Manifolds, Academic Press, 1964, p. 256
and K. Tenenblat, On the Rauch comparison theorem for volumes,
Bol. Soc. Bras. Mat. 4 (1973), 31-39).

It is curious to observe that, in contrast to Rauch’s Theorem,
the theorem above does not extend to the case Ricayr < L; a coun-
terexample is described in the article cited above, by K. Tenenblat.

2.7 REMARK. The relation between the Ricci curvature and the
volume can be extended to the following global theorem: With the
same notation as in Remark 2.6, suppose that Ricys > H and denote
the corresponding volumes by V; = vol B,(p) and V; = vol B.(p),
where r is now an arbitrary positive real number. Then for all

R > r > 0, we have _ _
Vi/V: 2 Vo /Vkg.
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In addition, the equality occurs for R < diam(M) if and only
if Br(p) C M is isometric to the ball Br(p) ¢ M(H). For a
proof, see J. Eschenburg “Comparison theorems and hypersurfaces”,
Manuscripta Math. 59 (1987), 295-323. This reference contains an
exposition of comparison theorems from a point of view different
than that presented here; in particular, the theorem above is used
to establish the uniqueness theorem mentioned in Remark 3.6 of
Chapter 9.

3. Applications of the Index Lemma to immer-
sions

In this Section, we shall present an application of the Index Lemma
to the theory of isometric immersions. We prove the following theo-
rem, which generalizes previous theorems of Tompkins, O’Neill, and
Chern-Kuiper (see Corollaries 3.4, 3.5 and Remarks 3.6 and 3.7).

3.1 THEOREM. (J.D. Moore, [Mo]). Let M be a complete simply
connected, Riemannian manifold, whose sectional curvature satisfies

K<b<o.

Let M be a compact Riemannian manifold whose sectional curvature
satisfies K — K < —b. If dim M < 2dim M, there does not exist an
isometric immersion f: M — M.

Proof. We suppose that such an immersion exists, and obtain a con-
tradiction. Choose a point 5 € M, 5 ¢ f (M), and let ¢ € M be such
that

d(f(9),p) 2 d(f(p),p), forall pe M.

Let U C M be a neighborhood of ¢ in which f is an embed-
ding, and identify U with f(U). Let v: [0,4 — M be the normalized
minimizing geodesic in M, with 4(0) = 5, 7(¢) = q. Using the for-
mula for the first variation, we see that +y is perpendicular to U at
q.

For all v € TyM, |v| = 1, consider a curve c¢(s) in U with
c(0) = q, <(0) = v, s € (—¢,€). Let &s) = expz_;l(c(s)). Then, the
parametrized surface

ft,9) =expp38(s), € [0,8,5€ (—e,e),
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generates a Jacobi field V(¢) = %f(t, 0) with V(0) =0, V(€) = v
(Fig. 3). Observe that the radial geodesics 7,:t — f(t,8) in this
variation are shorter than +.

Figure 3

We need the following lemma.
3.2 LEMMA. Let E(s) be the energy of the curvet — f(t,s). Then

%E”(O) =L(V,V)+ (SyV(0),V(9),

where S.:(g) is the linear operator associated to the second funda-
mental form of the immersion f at the point q with respect to the
normal +'(£).

Proof of the Lemma. We know that (see Remark 2.10, Chap. 9)

1., Dof of
3E"(0) = L(V,V) + (===, =-)(4,0)

=L(V,V) +{(TvV)(q), N(g)),

where V is the covariant derivative of M , and V, N are local ex-
tensions, in a neighborhood of ¢, of the vectors V' (¢) and v'(¢), re-
spectively, in such a way that V(c(s)) = %f(t’, s). It is possible to
choose such extensions in such a way that they satisfy the condition
(V,N) = 0. Therefore,

<VVV’ N>(q) = —<€Vﬁ1 V}(Q) = (V(e)r S-y’(!) V(e)>s
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hence the assertion. O

Consider now a complete Riemannian manifold M (b), with
constant curvature b, whose dimension equals gim-ﬁ =n. letpe
M (b) be an arbitrary point and let 4: [0,£] — M (b) be a normalized
geodesic with 4(0) = 3. As_usua.l, choose parallel orthonormal bases
{e1(#), .-, en(t)} of Ty (M) and {&1(t), ..., &n(t)} of T,y (M (b)),
such that e;(0) = +/(0) and &(0) = 5'(0), and define a map ¢
which takes a vector field W = Y 7 a;e; along v into the vector
field (W) = 3., aié; along 7. It is clear that (§(W;), p(Ws)) =
(W1, W) and (¢(W))' = ¢(W'). Put (V) = V. Since K < K = b,
we conclude that

L(V,V) > I(V, V).
Observe that V(0) = 0 and put V(£) = 4.

We are going to estimate I(V, V) in order to obtain an esti-
mate for I;(V, V).

To estimate I,(V, V), we have to obtain an expression for the
Jacobi field J along 4, with J(0) = 0, j(l) = 9. It is a simple
exercise (Cf. Exercise 4, Chap. 5) to verify that J is given by

®) = sinh(Z\/—_b)w

j(t)=%u”)(t) (if b=0),

where w(t) is the parallel transport along ¥ of

. Uo ~ ety
B(0) = 271 o = ((dexpp)ez(0) ™ (8).

It follows that, from the expression for Ip(J, j) given in the proof of
the Index Lemma, that

s gz a1 dis 2 1d sinh®(ty/=B)
I(J, J) = (J,J')(0) = 3% |J(t)l i@ m L
_ sinh(tv/—b) cosh(tv/-b) ,—
- sinh?(¢+/=b) ~b t=2

= (coth &v/=b)v'=b > V/—b.
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In addition, if b = 0, I,(J,J) > 0. Therefore, from the Index
Lemma, we obtain the following estimate for I,(V,V):

I(V, V) > I(V, V) > I,(J,J) > V=b.

Because the geodesics 7, in the variation f are shorter than
7, we have

LE(Y) = (L(1))* 2 (L(%))* = LE(7),

hence
02 E"(0) = IV, V) + Sy 9V (0), V(D)

> V=b+ (Sy)V(0),V(0).
Since V(€) = v, we have

(B(v,2),7 (€)) = (Syyv,v) < —V=b.
Therefore, for all v € TyM, |v] = 1, we have that
(6) IB(v, )|l > v=b.

On the other hand, from the Gauss formula, if v and w are
orthonormal vectors in Ty M, we have, by the hypothesis of the The-
orem,

(M (B(v,v), Bw,w)) - | B, )| = K(v,w) — K(v,w) < —b.

The fact that the conditions (6) and (7) are incompatible
with the condition dim M < 2dim M follows from the next alge-
braic lemma, essentially due to Otsuki. The proof of the lemma will
complete, therefore, the proof of the theorem.

3.3 LEMMA. (Otsuki). Let B:R™ x R® — R* be a symmetric
bilinear form such that, for some b < 0,

<B(‘U, ‘U), B (w1 w)) - ||B(V,w)"2 < -b,
I B(v, v)ll > V=3,

for all orthonormal pairs v,w € R™. Then k > n.
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Proof of the Lemma. We suppose that k¥ < n and obtain a con-
tradiction. Let S C R™ be the unit sphere and consider the map
f:8 — R, given by

f(v) = (B(v,v), B(v, v))-

Let v € S be a point where f assumes a minimum. Then taking the
curve v(t) = vcost + wsint in S, t € (—¢,€), we have

®  0=duw)=2FBO@.0) B
t=0

= 2(2B(v'(0), v), B(v,v)) = 4(B(w,v), B(v,v)),
and, since v"(0) = —v,
(9) 0<d?f,(w,w) = 4(B(v'(0),v),2B(v'(0),v))

+ 4(B(v"(0),v), B(v,v)) + 4(B(w,'(0)), B(v,v))

= 8/|B(w,)|* - 4(B(v, ), B(v,v))

+ 4(B(w,w), B(v,v)).

Consider now the map L: T,S — RF, given by
L(w) = B(v,w).

The equation (8) above yields that (L(w),B(v, v)) = 0, hence
dim L(T,S) < k — 1. Because k < n, the kernel of L has di-
mension at least 1, hence there exists w, # 0, w, 1 v, with
L(w,) =0 = B(v,w,).

Introducing w, in equation (9), we obtain

0< <B(w0) wo)’ B(’U, ’U)) - (B('U, v)» B(‘U, ‘U))
By the hypothesis of the Lemma, we conclude that
0 < <B(w0’w0)’B(v’ ‘U)) - HB(U) 'U)”2

< (B(wo,w,), B(v,v)) — (V=b)* < —b— (V=b)? =0,

which produces the contradiction. O
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3.4 CoRrOLLARY. (C. Tompkins, “Isometric embeddings of flat
manifolds in euclidean space”, Duke Math. J. 5 (1939), 58-61). Sup-
pose that M is compact with zero curvature. If k < n, there does
not exist an isometric immersion f: M™ — R™t*; in particular, the
flat torus T™ (see Example 2.7, Chap. 1) cannot be immersed iso-
metrically in R*~1,

3.5 COROLLARY. (B. O’Neill, “Immersions of manifolds of non-
positive curvature”, Proc. Amer. Math. Soc., 11 (1960),132-134).
Suppose that M is complete, simply connected and K i < 0. Let

M be compact, dimM < 2dimM and Kpy < Kyz. Then there
does not exist an isometric immersion f: M — M.

3.6 REMARK. The hypothesis that M be compact is essential in
Theorem 3.1, as is shown by the example of complete surfaces with
K < 0in R3 On the other hand, it is known that the hyperbolic
plane H? (a complete surface with K = —~1) cannot be isometri-
cally immersed in R? (Theorem of Hilbert, see M. do Carmo [dC 2],
p. 446). It is an open problem to know if the hyperbolic space H™
can be immersed isometrically in R?*~!, This would be a natural
generalization of the Theorem of Hilbert mentioned above.

3.7 REMARK. Essentially the same proof that we used in Theo-
rem 3.1 can serve as a proof of the following theorem of S.S. Chern
and N. Kuiper, “Some theorems on the isometric embedding of com-
pact Riemannian manifolds in euclidean spaces”, Ann. of Math. 56
(1952), 422-430: Suppose that M™ is compact and that, for each
point p € M there erists a subspace of dimension m, V™ C T, M,
such that the sectional curvature with respect to the planes contained
in V are non-positive. If k < m, there does not ezist an isometric
immersion f: M™ — R™*, The historical importance of the article
of Chern-Kuiper is that they stressed the fundamental fact that the
existence of an isometric immersion f: M™ — M™* implies a rela-
tion between the nullity of the second fundamental form of f and
the nullity of an intrinsic operator on M defined from the curvature
of M. For more details see M. Dajczer, [Da).

3.8 REMARK. The torus T"*! with the flat metric (Cf. Exam-
ple 2.7, Chap. 1) contains the torus T™ as a totally geodesic subman-
ifold. This shows that the hypothesis that M be simply connected
in Theorem 3.1 is necessary.
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4. Focal points and an extension of Rauch’s The-
orem

The notion of a conjugate point to a given point p € M extends to
the idea of a focal point to a submanifold N C M of a Riemannian
manifold M. The idea is to consider variations

f: (—8,8) X [an] - M
of a geodesic 7:[0,] — M with ¥(0) =p € N and ' (0) € (TpN)4,
satisfying the following conditions:

1) The curve t — f4(t), t € [0, is a geodesic.
2) For all s € (—¢,¢), f5(0) = a(s) € N and

A = L 0,0 € @y

It is clear that J(t) = %_E(O, t) is a Jacobi field along 7.

A0) = Y'(0)

Figure 4

4.1 LEMMA. The Jacobi field J constructed above satisfies the
following properties:

i) J(0) € T,N,

i) J'(0) + Sy (o) (J(0)) € (T,N),
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where S, (o) is the linear operator on T, N given by the second fun-
damental form of N C M.

Conversely, if J is a Jacobi field along the geodesic vy with
7(0) = p € N, v'(0) € (T,N)*, satisfying (i) and (ii), then there
exists a variation f of v satisfying (1) and (2), whose variational
field is J.

Proof. 1t is clear that

10=2L0,0= 2| €N,

8=0

which verifies (i). To prove (ii), let v € T, N be an arbitrary vector.
We shall show that

(10) <J'(O) + 84(0) (J(O)),v) =0.
Indeed,

(27 0,) = (22L0,0,0)

= 2% 0,00 = (2200,

Since A(s) is a vector field along a(s) with a’(0) = J(0), we have
DA =
T O = VoA,

where V is the covariant derivative of M. Therefore,

(BA0),) = (Voo AG) )|,
= (=Sa0)(J(0)),v) = {=Sy(0)(J(0)), ),

which implies (10) and verifies (ii).

To prove the converse, let s — a(s) be a curve in N with
a(0) = p, o’(0) = J(0). Wecan choose a vector field W along a such
that W(0) = 7'(0) and Z¥(0) = Z£(0). Write W(s) = V(s)+U(s),
where

V(S) € (Ta(s) (N))-L’ U(s) € Ta(s)(N)v
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and define f(s,t) = exp,(5)(tV(s)). We show that f is the variation

of 4 which satisfies (1) and (2) and whose variational field is J.
In fact, for all s, the curve

t = f5(t) = expy(s) tV(s)
is a geodesic. In addition,
fs(0) =a(s) € N,
and

A(s) = 2L6,0) = (@expa()o(V () = V(6) € (Tugey ()™

It remains to show that 31 (0,t) = J(t). It is enough to verify
that $£(0,0) = J(0) and 28L(0,0) = BZ(0). Because

of )
55 00) =2'(0)=J(0)

and

Daof
dt s

DBf

300 g0 20 =220 - 220

it suffices to show that ZZ(0) = 0. But J(t) and %f(O, t) satisfy:

220+ Sy 0((0) € TGN,

Daf(o 0)+S.,(o)(a (o, 0)) € (T,N)*,

where the second assertion comes from the first part of the Lemma.
Since J(0) = -51(0 0), we can conclude that

Zo=20-2%0,0e@mm.
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On the other hand, U(0) = 0 and U(s) € Ty(;)(N). Therefore, given
v € (TpN)* and a vector field v(s) along a(s) with v(0) = v and
v(8) € (Ta(s)(N))*, we have

0= WG| = (Fr 0. + (U0, ZO)
= (220),0).

From the arbitrariness of v, this implies that 8%(0) = 0, which
proves the assertion, and concludes the proof. O

4.2 DEFINITION. Let N C M be a submanifold of a Riemannian
manifold M. The point ¢ € M is called a focal point of N if there
exists a geodesic 7: [0,£] — M, with 7(0) =p € N, ¥/(0) € (T,N)+,
v(€) = q, and a non-zero Jacobi field J along v, satisfying (i), (ii)
and with J(¢) = 0.

4.3 EXAMPLE. If $”~1 C 8" is the equator of S™, that is, S*~! =
{x € 8"z = (x1,...,%na,0)}, then the north pole (0,0,...,0,1) and
the south pole (0,...,0,~1) are focal points of $*~! in S™.

To obtain a characterization of the focal points in terms of the
exponential map, we introduce the following notation. Let T(M) be
the tangent bundle of M, 7 : T(M) — M its projection onto M. De-
note this statement by T(M) — M. Similarly, T(N) — N denotes
the tangent bundle T(N) and its projection onto N, T(N)+ — N
denotes the normal bundle of the immersion N C M and its pro-
jection onto N (a point of T(N)* is a pair (p,n), where p € N,
n € (T,N)1). Remember that the exponential mapping can be
thought of as a map exp: T(M) — M, defined by

exp(p, v) = expy(v)-

Since T(N)* — N is contained in the restriction of T(M) —
M to N C M, the exponential map can be restricted to T'(N)+; this
restriction will be denoted by

expt: T(N)* — M.

Observe that dim T'(N)+ = dim M.
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4.4 PROPOSITION. The point ¢ € M is a focal point of N C M if
and only if it is a critical value of exp*.

Proof. Suppose that ¢ is a focal point of N. From Lemma 4.1,
there exists a geodesic v:[0,4] — M, with v(0) =p € N, v(f) = q,
4'(0) € (T,N)+ and a variation f: (—¢,€) x[0,£] = M of ~ satisfying
(1) and (2) and with Z£(0,£) = 0. It follows that

w(s) = (a(s), LA()), A(s) = I (5,0), als) = £.(0),

is a curve in T(N)+ such that:

epr_ (’lU(S)) = €XPq(s) ZA(S) = f(S) e)?
exp™(w(0)) = ¢

and
(dexp™) (o) (w'(0) = %ﬁ-(ﬂ, ) =0.

Then w(0) is a critical point of exp*, with expt(w(0)) = gq.

Conversely, suppose that q is a critical value of expt. Then
there exist w,, w), such that exp! (w,) = g and (dexp™ ), () = 0.
Let w(s) = (0(s),fV(s)) be a curve in T(N)+, with w(0) = w,
and w'(0) = w;,. Since ¢ = exp,(g)(¢£V(0)), there exists a geodesic
7v:[0,€] — M such that v(0) = o(0), v(¢) = q, ¥'(0) = V(0). Con-
sider the variation of 4 given by

f(S, t) = e‘xpa(s) tV(S)
f satisfies the conditions (1) and (2). In fact,
f(370) = €XPg(s) (0) = 0(3) €N,

&L (5,0) = (dexpo()olV(8)) = V(s) € Tuay V)

From the lemma, J(t) = %(0, t) is a Jacobi field satisfying (i) and
(ii), with
0

70 =2L0,0= 2L exp, iy tv(5)

8=0

= (dexp*)wo(w",) =0,

=0

d L
= 7, &P w(s)
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and therefore, ¢ is a focal point of N. O

4.5 DEFINITION. Let N C M be a submanifold of a Riemannian
manifold M. The set of focal points of N will be called the focal set
F(N)C M of N.
4.6 EXAMPLE. Let N2 C R3 be a regular surface in R3. The con-
nected components of the focal set F(N) C R3 are called the “focal
surfaces” (or surfaces of centers) in classical differential geometry.
In general such subsets are not regular surfaces and can degenerate
to points or curves. For example, if N2 is a sphere S, then F(S?)
is the center of §2; if N2 is the right circular cyhnder C, F(C) is
the axis of C. A way of constructing, geometrically, the focal points
of N2 ¢ R3 is the following.

Let x:U C R? - N C R3 be a parametrization of N at
p € N. If we denote by (u;,uz) the coordinates of U and by n =
n(ul, u2) a unit normal field on x(U) C N, we can write the map
expt: T(U)L — R3 as

exp-L((uli 'U,2), t) = X(ul, u2) +in, te R.

The basis of the tangent space T(, ) (T(N)*) ~ R? associated to

this parametrization is
ox dx

Buy’ Buy’ "
In this basis, the linear map dexp? is given by the matrix
EET"‘ 3@"&“> (51'.?+tau,’3-7?> <u’9u‘1)
dexpt = | (B2 +t82, 8) (F=+ifmdm) (nd)
(%‘l—+ta':‘l,n) (g‘%-{-ta:z,n) {(n,n)
—,m;n) l 0
B I 1

where the matrix B is not important in what follows. By Proposi-
tion 4.4, x + tn is a focal point of N if and only if the matrix above
is singular. Because the coefficients of the second fundamental form

H, in the basis Ea-‘";, ﬁ"; are given by

() 0 (35 2) = 6T
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we conclude that the matrix above is singular if and only if the
matrix

(9i; — thij)

is singular. It is possible to choose the parametrization x in such a
way that at p, (g;;) is the identity matrix. Therefore, x + ¢n is a
focal point if and only if } is an eigenvalue of (hi;), that is,  is one
of the principal curvatures of N2 at p.

In summary, to construct a connected component of F(N),
fix a principal curvature k; and mark on the normal at each p € N,
in the direction given by n(p), a length equal to 1/k;(p) (this point
is the center of the osculating circle in the normal section of NV in the
principal direction e;, which justifies the name “surface of centers”).

We now pass to an extension of Rauch’s Theorem in which
the notion of focal point replaces that of conjugate point. We need
a definition.

4.7 DEFINITION. Let v:[0,a] — M be a geodesic in M. Let
B:(0) C ¥'(0)* be a ball of radius € and center at the origin 0,
contained in the orthogonal complement of 4/(0). We say that ~
is focal point free at (0,a] if there exists some € > 0 such that v
has no focal points relative to the submanifold }, = €xp.(0) (Be(0))
(Fig. 5).

Y04
7'(0)

7(0)

Figure 5
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Observe that since Y. is geodesic at p, any Jacobi field J
along 7, with J(0) # 0 and J'(0) = 0, automatically satisfies the

condition
S,0)(J(0)) = 0.

The Index Lemma. for focal points is as follows.

4.8 LEMMA. Let v:[0,a] — M™ be a geodesic which is focal point
free on (0,a]. Let J be a Jacobi field along v, with (J,v') =0, and
let V be a piecewise differentiable vector field along . Suppose that
J'(0) = 0 and J(t,) = V(2,), to € (0,a]. Then

1,,(J,J) < I, (V, V)

and the equality occurs if and only if V = J on [0, 1,

Proof. Let {Ji,...,Jn-1} be a basis of the vector space of Ja-
cobi fields J such that J'(0) = 0, (J,7') = 0. The fact that v
is focal point free on (0,a} implies that, for each each ¢t € (0,a],

{Zi(t), ..., Jn=1(t)} is a basis for (y'(¢))*.
Starting from there, the proof follows in a manner entirely
analogous to the Index Lemma. 0O

4.9 THEOREM. Let 7:[0,a] — M™ and 5:[0,a] — M™% be
geodesics, with the same velocity and let J and J be Jacobi fields
along «y and 4, such that

0 =J'(0) = J'(0), (J(0),7'(0)) = (J(0),¥(0)),

|7(0)] = |J(0)).
Assume that ¥ is focal point free on (0, a] and that, for all t and all
T € T.,,(t)(M), ze T’y(t)(M); we have
K(z,7(t)) > K(z,7'(t))-
Then |J| < |J]. In addition, if for some t, € (0, a], we have |J(te)| =
|J(20)l, then K(J(¢), ¥ (t)) = K(J(t), 7'(¢)) for all t € [0, ¢o].

Proof. The proof is anal(ggous to that of Theorem 2.3 with the fol-
lowing modifications: Jl-j—.Jl—; is well-defined, since ¥ is focal point free

and I, (¢(U), p(U)) > L (TU,U) by Lemma 4.8. O
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Other useful extensions of the Rauch comparison theorem
can be found in F. Warner, Eztensions of the Rauch comparison
theorem to submanifolds, Trans. A.M.S. 122 (1966), 341-356 and
in E. Heintze and H. Karcher, A general comparison theorem with
applications to volume estimates for submanifolds, Ann. Sci. Ecole
Norm. Sup., 11 (1978), 451-470.

Rauch’s theorem admits an extremely important global gen-
eralization, which is called the Theorem of Toponogov. One of its
versions can be stated in the following manner.

Theorem. (Toponogov). Let M be a Riemannian manifold which
is complete with sectional curvature K > H. Let v, and v, be
normalized geodesic segments in M with v1(0) = +2(0). Denote
by M?(H) a manifold of dimension two with constant curvature
H. Assume that the geodesic v, is minimizing and that, if H > 0,
£(v2) £ . Consider on M*(H) two normalized geodesics 31, 72,

such that 7 (0) = %2(0), £(v;) = €(%:) = &,i= 1,2, and
¥(71(0), 72(0)) =%(71(0), 7%(0)). Then

d(11(41),12(£2)) < d(F1(61), 72(£2))-

A proof of this theorem can be found in Cheeger and Ebin
[CE].

The Theorem of Toponogov is an essential tool for the study
of the relation between topology and curvature mentioned in the
Introdution to Chapter 9. One of the culmination points of this
study, the sphere theorem, will be presented in Chapter 13 of this
book. The proof presented does not use the Theorem of Toponogov.
A proof using Toponogov’s Theorem, along with various applications
of this theorem to the study of the relationship between topology and
curvature, can be found in Cheeger and Ebin [CE].

EXERCISES

1. (Klingenberg’s Lemma). Let M be a complete Riemannian
manifold with sectional curvature K < K,, where K, is a pos-
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itive constant. Let p,q € M and let v, and 74; be two distinct
geodesics joining p to g with £(7,) < £(71). Assume that ~,
is homotopic to 71, that is, there exists a continuous family of
curves ay, t € [0,1] such that a, = 7, and a; = ;. Prove that
there exists ¢, € [0, 1] such that

2
£(7o) + e(ato) .>_. ‘/K-—o-

(Thus, the given homotopy has to pass through a “long” curve.
Fig. 6).

Yo

Figure 6

Hint: Assume £(v,) < ﬁ (otherwise, we have nothing to
prove). From Rauch’s Theorem, exp,: T,M — M has no criti-
cal point in the open ball B of radius 7/+/K, centered at p. For
t small, it is possible to lift the curve o; to the tangent space
T,M, i.e., there exists a curve & in T, M, joining exp,1(0) =0
to exp, 1(g) = §, such that exp,od; = a¢. It is clear that it is
not possible to do the same for every t € [0, 1], since a; cannot
be lifted keeping the endpoints fixed.
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We conclude that for all € > 0 there exists a ¢(¢) such that o,
can be lifted to &) and &) contains points with distance
< € from the boundary @B of B. In the contrary case, for some
€ > 0, all lifts &, are at the distance > ¢ from 9B; the set of t’s
for which it is possible to lift a; will then be open and closed
and a; could be lifted, which is a contradiction. Therefore, for
all € > 0, we have
2r

e(%) + l(at(e)) > \/I?o- — 2e.

Now choose a sequence {e,} — 0, and consider a convergent
subsequence of {t(¢n)} — to. Then there exists a curve ay,
with 9

™

VK,

Use Klingenberg’s Lemma from the last exercise for the proof
of Hadamard’s Theorem (see Theorem 3.1 of Chap. 7).

Hint: Take K, = 1/n, n an integer, in Klingenberg’s lemma
and show that if M is simply connected, there exists a unique
geodesic joining the two points p,q € M. Because were there
to exist two such geodesics, they would be homotopic and, by
Klingenberg’s lemma, there would exist a sequence of curves of
lengths > 7/n in this homotopy.

Let M be a complete Riemannian manifold with non-positive
sectional curvature. Prove that

|(dexp,)o(w)] 2 |l
forallp€ M, all v € T,M and all w € T, (T, M).

(Focal sets of plane curves).

a) Let C C R? be a regular curve. Show that the focal set
F(C) c R? of C is obtained by taking, on the positive
normal n at p € C a length equal to 1/k, where k is the
curvature of C at p.

Hint: Use the same argument as in Example 4.6.

b) Show that the focal set of the ellipse ;’:—;— + %;- =1 is given

by

{@v) € R% (@) + )° = (@ - )3}

£(7o) + e(atp) 2
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Figure 7

c) Show that the focal set of the curve
t — (cost +tsint, —sint + tcost)

is the circle ¢t — (cost, —sint) (Fig. 8).

5. (The Sturm Comparison Theorem). In this exercise we present
a direct proof of Rauch’s Theorem in dimension two, without
using material from the present chapter. We will indicate a
proof of the Theorem of Sturm mentioned in the Introduction

to the chapter.
Let

f”(t) + K(t)f(t) =0, f(O) =0, te [0: e]7

.f”(t) + k(t)f(t) =0, f(O) =0, te [0, e]’

be two ordinary differential equations. Suppose that K@) >
K(t) for t € [0,£)], and that f'(0) = f/(0) = 1.
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Al

Figure 8

a) Show that for all t € [0, €],
t
= rr i K _ ri/j R'v" d
@ o= [{fur+ kD - 1"+ ED}
t ~ -~
=71 - 7%+ [ (& - R)sfas
0

Conclude from this that the first zero of f does not occur
before the first zero of f (that is, if f(£) > 0 on (0, t,) and
f(to) =0, then f(t) > 0 on (0, ,)).
Hint: From the initial condition, f(t) is positive in a neighbor-
hood of zero. Assume that f(t;) =0, ¢; < ¢,. Then f’ (t1) <0,
f(¢1) > 0, and this contradicts (1).

b) Suppose that f(¢) > 0 on (0,€]. Use (1) and the fact that
f(t) > 0 on (0,4 to show that f(t) > f@), t e 0,4, and
that the equality is verified for ¢ = ¢, € (0, €] if and only
if K(t) = K(t), t € [0, 4,].

Verify that this is the Theorem of Rauch in dimension
two.
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Hint: From (1) conclude that f'/f > f'/f, that is, (log f) >
(log f)!. Let 0 < ¢, < t < £. Integrating the last inequality
from £, to ¢, we obtain

log f(¢) - log f(to) > log f(t) — log f(t,),

that is,

f(t)/f(t) 2> f(to)/f(to)’ forall ¢, € (0,4.

Now observe that
Jim (7(0)/ F(to)) = Jim (') F(t) =1,

hence the desired inequality. For equality, go back to (1).

6. (The Oscillation Theorem of Sturm). What follows is a slight

generalization of Sturm’s Comparison Theorem. We present
the theorem in geometric form.
Let M? be a complete Riemannian manifold of dimension 2,
and let 7:[0,00) — M? be a geodesic. Let J(t) be a Jacobi
field along v with J(0) = J(¢,) = 0, ¢, € (0,00), and J(¢) # 0,
t € (0,2,). Then J is a field normal to  and can be written
J(t) = f(t)ez(t), where ey(t) is the parallel transport of a unit
vector ez € T,(g)(M) with ez L 4/(0). Because J is a Jacobi
field,

')+ K@) f(t) =0,
where K is the Gaussian curvature of M2. Assume that
K(t) < L(t),

where L is a differentiable function on [0, 00). Prove that any
solution of the equation

Fr)+ L) f(t) =0

has a zero on [0, ,), that is, there exists ¢, € [0,t,] with f(¢;) =
0.
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Hint: Suppose that f(t) #0forallt € [0,2,). Using expression
(1) of the last exercise, we obtain

@ 0‘" (K - L) fFdt + F(t)f (t2) - FO)f'(0) = 0.

Suppose, for example, that f(¢) > 0 and J(t) < 0in (0,¢,).
Then f(0) < 0 and f'(t,) > 0. This contradicts (2). The
other cases are treated in the same way.

(Kneser’s criterion for points conjugate in surfaces). Let M?2
be a complete Riemannian manifold of dimension two and let
7: [0,00) — M? be a geodesic with 7(0) = p. Let K(s) be the
Gaussian curvature of M2 along . Assume that:

—_— >
(3) /t K(s)ds < O for all ¢t >0,

in the sense that the integral converges and has the bound
indicated.

a) Define -
w(t) = /t K(s)ds + Z(tl_+‘17’
and show that w'(t) + (w(t))? < —K(t).
b) Fort > 0, put w’(t)+(w(t))? = —L(t) (hence L(t) > K(t))
and define

t

F(t) = exp( / w(s)ds), 3 0.

0
Show that

FO+LWf® =0, fO)=1.
c) Observe that f(t) > 0 and use the oscillation theorem of
Sturm (Exercise 6) to show that there does not exist a
Jacobi field J(s) on v(s) with J(0) = 0 and J(s,) = 0,

for some s, € (0,00). Therefore the condition (3) implies
that there do not erist conjugate points to p along ~.



CHAPTER 11

THE MORSE INDEX THEOREM

1. Introduction

In this chapter we wish to prove the Morse Index Theorem. This
theorem relates the number of conjugate points on a geodesic seg-
ment, counted with their multiplicities, to the index of a certain
quadratic form defined in terms of the formula for the second vari-
ation (essentially, the expression I,(V,V)).

The Morse Index Theorem is a generalization of a classical
theorem of Jacobi (see Cor. 2.9) which states that a geodesic segment
minimizes the arc length relative to “neighboring” curves with the
same endpoints if and only if such a segment has no conjugate points.
"The proof of the Index Theorem which we present here uses the Index
Lemma of Chapter 10.

2. The Index Theorem

Let 7:[0,a] — M™ be a geodesic. Denote by V(0,a) = V the
vector space formed by vector fields V along «y, which are piecewise
differentiable and vanish at the endpoints of v, that is, V(0) =
V(a) =0.

2.1 DEFINITION. The indezx form of v is the quadratic form asso-
ciated to the symmetric bilinear form I, defined on V by

o Lvw-[ UV W~ (RO, V)Y, W)Y,

where VW € V. (cf. Rem. 2.10 of Chap. 9).
Observe that the symmetry of I, follows from part (d) of

Proposition 2.5 of Chapter 4.
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In general, given a symmetric bilinear form B over a vector
space V, we define the index of B as the the maximal dimension
of all subspaces of V on which the quadratic form associated to B
is negative definite. The nullity of B is defined to be the dimen-
sion of the subspace of V formed by the elements V € V such that
B(V,W) =0, for all W € V; such a subspace is called the null space
of B. We say that B is degenerate if its nullity is strictly positive.

We can now state the main theorem of this chapter.

2.2 Index Theorem. (Morse). The index of the form I, is finite
and equals the number of points 4(t), 0 < t < a, conjugate to 7(0),
each counted with its multiplicity.

Before we start the proof of the theorem, we need a few pre-
liminary propositions.
2.3 PROPOSITION. An element V € V belongs to the null space of
I, if and only if V is a Jacobi field along 7.

Proof. First observe that we have the following expression for I,
(Compare Rem. 2.10 of Chap. 9):

@ LEw--[ V" RO VY, W dt
k-1
X (T - T ww).

If V is a Jacobi field, then by (2), V is in the null space of I,.

Conversely, suppose that I,(V,W) = 0 for all W € V. Let
0=1, <t} <+ <itr_1; < tx = a be a subdivision of [0, a] such
that the restriction V' | [t;_,,¢;] is differentiable, j = 1,..., k. Let
f:[0,a] — R be a differentiable function with f(¢) > 0, for ¢ # tj
and f(t;) =0,5=0,...,k. Define W by

W) = f&)(V" + R(,V)Y).
Then

0= L(V,W)=— /0 " FO IV + RO, VYY) .
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It follows that the integrand is zero, and therefore the restriction
V|(¢j-1,%;) is a Jacobi field. To see what happens at each t;, choose
T €V in such a way that

T(t)—DV(t"’) V(t;), =1, k-1
Since -
_ N[ PY gty _ DV -
0="L(V,T) ==~} |l—=~(t)

Jj=1

we conclude that V is of class C? at each ¢;. By the uniqueness of
the solution to an ordinary differential equation, V is C*. Therefore
V is a Jacobi field. 0O

2.4 COROLLARY. I, is degenerate if and only if the points v(0) and
v(a) are conjugate along ~. In this case, the nullity of I, is equal to
the multiplicity of y(a) as a conjugate point.

For the next proposition, as well as for the proof of the Index
Theorem, we need some preliminary considerations.

Since each point of M is contained in a totally normal neigh-
borhood and ([0, a]) is compact, we can choose a subdivision

0=to<t1<---<tk_1<tk=a

of {0,a] such that each v|[t;-1,¢], 5 = 1,...,k, is contained in a
totally normal neighborhood. Thus each v | [tj_1,¢;] is a mini-
mizing geodesic and doesn’t contain any conjugate points. In what
follows, such a subdivision will be called normal and will be fixed
until mention to the contrary.

Let V~(0,a) = V™ be the vector subspace of V formed from
the fields V such that V|(¢i—1,¢), ¢ = 1,...,k, is a Jacobi field;
V™~ has finite dimension. Let V* be the subspace of V consisting of
vector fields W such that W (t,) = W(t3) = -+ = W(tg-1) = 0.

2.5 PROPOSITION. V is a direct sum V = V* & V™, and the
subspaces V* and V™~ are orthogonal with respect to I,. In addition,
I, restricted to V' is positive definite.

Proof. Given V € V, let W be a vector field in V~ given by W(t;) =
V(t;); because v | [tj—1,t;] does not have any conjugate points,
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such a W exists and is unique. Hence V — W € V* and, therefore
V =V* @ V~. In addition, if X € V- and Y € V*, we have

k-1
Ly =- ¥ (0.5 @) - %(t;)) =0,

=1

that is, Y+ and V- are orthogonal, relative to I,. This proves the
first part of Proposition 2.5.

Since 7|[tj-1,%], 5 = 1,..., k, are minimizing geodesics, they
have less energy than any other paths between their endpoints.
Therefore, if V € V*, then I,(V,V) > 0.

It remains to show that I,(V,V) > 0 if V € V* — {0}. Sup-
pose, to the contrary, that I,(V,V) = 0 with V € V¥, V #£ 0. We
are going to show that this implies that V' belongs to the null space
of I;. Indeed, if W € V=, then I,(V, W) = 0, from the orthogonality
above. If W € V*, consider the inequality

0< L(V+ W,V +cW) = 2cI,(V,W) + EL.(W,W),

valid for all real c¢. This says that there exist real numbers 4 > 0
and B such that A2 + 2Bc > 0 for all ¢ € R, which is only possible
when B = 0, that is, I,(V,W) = 0. Therefore V belongs to the
null space of I,. Since the null space consists of Jacobi fields and V'
vanishes at t;, we conclude that V = 0, which is a contradiction and
ends the proof. O

2.6 COROLLARY. The index of I, is equal to the index of I, re-
stricted to V™~ ; in particular, the index of I, is finite. The same is
true for the nullity of I,.

Proof of the Index Theorem. 1t is convenient to introduce the fol-
lowing notation. If ¢t € [0,a], denote by ~; the restriction of v to
the interval [0,]; the corresponding index form will be denoted by
I, and the index of I; will be denoted by i(t). In this manner, we
define a function : [0,a] — N, whose behavior we wish to study.
Recalling that the subdivision (which is supposed fixed) of
[0,a] by the points t;, j = 0,...,k, was chosen in a way that
7|[tj-1,;] is a minimizing geodesic, we conclude that i(t) is zero
in a neighborhood of 0. In addition, i(t) is non-decreasing, that is,
if T > ¢, then i() > i(t). In fact, by the definition of i(t), there
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exists a subspace U C V(0,t) such that I; is negative definite on
U and dimU = i(t). Every element V € U can be extended to an
element V € V(0,7) by defining V = 0 on [t,7]. It is clear that
L(V,v) = I;:-(V, V). From the definition of the index-, i(%) > i(¢),
as has been claimed.

To obtain other properties of i(f) we proceed in the follow-
ing manner. First, observe that, from the definition, i(¢) does not
depend on the choice of normal subdivision of [0, a}; we can, there-
fore, choose such subdivisions in a way that ¢ € (¢;-1,%;). Next, we
observe that the index of I, is the index of the restriction of I, to
the subspace V~(0,t); such a restriction will be again denoted by
I;. Then, as each element of V™ (0,%) is determined by its value at
the points ¥(¢1),...,7(tj—1), we have that V~(0,¢) is isomorphic to
a direct sum

V=(0,t) = T’Y(t1)M ®---0 T‘Y(tj—l)M = 5;.

It follows, by letting ¢ vary on (¢;_1,1;), that the spaces V~(0,t) are
isomorphic to each other and isomorphic to S;. We can, therefore,
consider the quadratic forms I; as a family of quadratic forms on a
fixed space S;. In addition, since the elements of V~(0,t) are “bro-
ken” Jacobi fields, it follows from (2) that I; depends continuously
ont € (tj_1,1t;).

We can now obtain more information about #(¢) which will
be gathered together in the lemmas below.

2.7 LEMMA. Ife > 0 is sufficiently small, i(t ~ €) = i(t).

Proof of Lemma 2.7. Since i(t) is non-decreasing, i(t) > i(t —¢), for
all £. On the other hand, if I, is negative definite on a subspace § C
S;, with dim(S) = i(t), then, by continuity of I;, there exists € > 0
such that I,_. is still negative definite on S, hence i(t — &) > i(t).
Therefore i(t) =i(t —¢). O

Now let d be the nullity of I;; observe that d = 0 if y(2) is
not conjugate to v(0).
2.8 LEMMA. Ife > 0 is sufficiently small, i(t + €) = i(t) + d.

Proof of Lemma 2.8. We show first that i(t + ¢) < i(¢) + d. Indeed,
because dim(S;) = n(j ~ 1), I is positive definite on a subspace of
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dimension n(j — 1) — i(t) — d. By continuity, I, is still positive
definite on this subspace, for € > 0 sufficiently small. Therefore

i(t+e) <n(G—1) - {n(G - 1) —i(t) — d} = i(t) +d.

To prove the inequality in the other direction, it is necessary
to use the Index Lemma (Lemma 2.2 of Chap. 10). Let V € S;,
with V'(¢;-1 # 0, and denote by V;, the “broken” Jacobi field whlch
coincides with V(¢;) at t;, i = 1,...,7 — 1, and which vanishes at
the point £, € (t;_1,t;). We claim that

Ito (‘/ta ) V'to) > Ito+€(‘/to+€) ‘/t°+€)'

In fact, if we denote by W;, (see Fig. 1) the vector field defined along
v([0, ¢, + €]) by:

Wi, () =Vi, (1),  te€(0,2,,
Wto (t) = 0’ te [to, to + 6]1
we have, from the Index Lemma,
I, (Veo,s Vi) = Tty (Wi We,) > Lpie (Vi hes Viote)s

where the last inequality is strict, since W;, is not a Jacobi field.
This proves the assertion made.

v

fhte

() Y(4 +e)

QALY 7))

Figure 1
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Therefore, if V € S; and I,(V,V) < 0, then I;4.(V,V) < 0.
Hence, if I; is negative definite on a subsga,ce S C Sj, Itye will still
be negative definite on the direct sum of S with the null space of I;.

Therefore
i(t+€) > i(t) + d,

which, together with the previous inequality implies that (¢ + €) =
i(t)+d. O

The information which we obtained about i(¢) allows us to
describe i(t) as a function which is zero in a neighborhood of the
origin, is continuous on the left and has “step” type discontinuities
at the conjugate points to v(0), the step being exactly equal to the
multiplicity of the conjugate point (see Fig. 2). But this is precisely
the statement of the Index Theorem. [J

Figure 2. The function i(t)

2.9 COROLLARY. (Jacobi). Let v:[0,a] — M be a geodesic seg-
ment on M such that v(a) is not conjugate to v(0). Then -y has no
conjugate points on (0,a) if and only if for all proper variations of
~ there exists a § > 0 such that E(s) < E(§) for0 < |s| < 6. In
particular, if vy is minimizing, v has no conjugate points on (0,a).
2.10 COoROLLARY. The set of conjugate points along a geodesic is
a discrete set.

92.11 REMARK. The index theorem can be generalized to the case
in which the points v(0) and ~(a) are replaced by submanifolds. For
this see W. Ambrose [Am 2]. For an extremely general version of
the index theorem, see S. Smale [Sm].
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2.12 REMARK. The fact that the index and the nullity of I are fi-
nite reflect the fundamental fact that the “infinite dimensional man-
ifold” €y, = Q mentioned in Remark 2.7 of Chapter 9 can be re-
placed, under certain conditions, by a finite dimensional manifold.
This was the original point of view of Morse to prove his theorem.
For some applications (cf. the Sphere Theorem, Prop. 3.1), it is con-
venient to have this construction in mind which can be summarized
in the following way. (For more details, see Milnor [Mi], pp. 88-92).

Let Q¢ (resp. Qc) be the subset of Q2 formed by curves in
Q of energy < c (resp. < ¢). It is clear that the curves in Q¢
are contained in a compact subset S C M. Let § > 0 be such
that given two points of S at a distance less than 8, there exists a
unique minimizing geodesic joining these two points. Suppose that
the curves in Q¢ are defined on [0,1] and subdivide [0,1] by the
points ¢;, ¢ = 0,...,k, in such a way that |t; —¢;_;| < 5?2. Let

[+ o

B C Q€ (resp. B C Q°) be the set of geodesics broken at ¢;, that is,
w € B if w(0) = p, w(1) = ¢, and the restriction w | (ti—1,%;) = w;
is a geodesic joining w(t;—1) to w(¢;). Such a geodesic is entirely
determined by the points w(t;) since

Lz(w,-) = (ti - ti_l)E(wg) < 62.
The correspondence

[
w = (wt1),...,w(tk-1)) EM x---x M, wéE B,

[
is bijective and takes B into an open subset of M x --- x M. This
allows us to introduce a differentiable structure (of finite dimension)

o o
on B. Observe that the tangent space T,,(B) to a broken geodesic
w corresponds to the set of Jacobi fields along w, broken at ;. It is

possible to show that there musts a homotopy h Q° - Qc s€[0,1]
with h, = 1dent and h;: Q" — B that is, B is a “deformation

retract” of Q". .
Restricting the energy E to a function E on B, one verifies

that the geodesics v of Q“' are in the manifold B and are precisely
the critical points of E. In addition, the index and the nullity of I at
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v coincide with the index and the nullity, respectively, of the hessian
of E at v, since from Corollary 2.6 they coincide with the index and
the nullity, respectively, of I restricted to the broken Jacobi fields
along 7.

o
In this way, for many purposes, we can substitute the set Q¢
©

by its finite dimensional approximation B.

EXERCISES

1. Prove the following version of the Theorem of Bonnet-Myers:
If M 1is complete and the sectional curvature K satisfies K >
§ > 0, then M is compact and diam M < =/\/§, using the
Comparison Theorem of Rauch and the Jacobi theorem.
Hint: Comparing M with a sphere of curvature 8, conclude,
from Rauch’s Theorem, that the first conjugate point to v(0)
along a normalized geodesic v: [0, 00) — M does not occur after
(/). Therefore a geodesic of length larger than 7/ con-
tains conjugate points. By Jacobi’s theorem, such a geodesic
does not minimize.

2. Prove the following inequality on real functions (Wirtinger’s
inequality). Let f:[0,7] — R be a real function of class C?
such that f(0) = f(7) = 0. Then

/0 " fat < /0 (e,

and equality occurs if and only if f(t) = csint, where c is a
constant. (In the next exercise, we use this fact to prove an
interesting geometric fact).

Hint: A geometric solution is the following. Consider a normal-
ized geodesic « joining the antipodal points p and —p of a unit
sphere S2. Let v(t) be a parallel field along v, with (v,v’) =0,
[v| = 1. Set V = fv and calculate the second variation for the
variational vector V, obtaining

rvv) = [pa- [ ra
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By the Morse index theorem, I, (V,V) > 0, which establishes
the inequality. For the equality, use the fact that I,(V,V) =0
implies that V' is a Jacobi field. (For another proof, using
Fourier series, see W. Blaschke, Kreis and Kugel, Chelsea, New
York, 1949, p. 105).

Let M™ be a complete simply connected Riemannian manifold.
Suppose that for each point p € M, the locus C(p) of (first)
conjugate points of p reduces to a unique point q # p and that
d(p, C(p)) = m. Prove that, if the sectional curvature K of M
satisfies K < 1, then M is isometric to the sphere S™ with
constant curvature 1.

Hint: Let J be a Jacobi field along a normalized geodesic
7: [0, 7] — M joining p to g with J(0) = J(r) = 0, (J,7') = 0.
Choosing fields e;,eg,...,€n—1,7 which are parallel and or-
thonormal along v, we can write J = 2?2—11 a;e;. Then, letting
K(t) = K(v', J), using integration by parts and Exercise 2, we
have

0= In(']7 J) == /‘” (J” + R(7’1J)7’a J) dt
0
= - " a’-’a,- -— " a?
- /0 (Cataa /0 KO ab)i
3 T Vs — 0 2
- [} Sara- [ xS
> Z/” a2(1 — K(£))dt > 0.
—~ Jo

It follows that K(t) = 1.

Let a:R — R be a differentiable function with a(t) > 0, ¢ €
R, and a(0) > 0. Prove that the solution to the differential
equation

with initial conditions ¢(0) = 1, ¢’(0) = 0, has at least one
positive zero and one negative zero.

Suppose that M™ is a complete Riemannian manifold with sec-
tional curvature strictly positive and let «: (~00,00) — M be
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a normalized geodesic in M. Show that there exists t, € R
such that the segment v([-¢,,t,]) has index greater or equal

ton-—1.
Hint: Let Y be a parallel field along y with (v/,Y) =0, |Y| = 1.

Set
Py = (R('Yla Y)'Y,a Y) ’
K(t) = I?,f ey (8)
and let a: R — R be a differentiable function such that
0<a(t)<K(®), 0<a(0)<K(@©0), teR.
Let i be the solution of 9" + ap = 0 with ¢'(0) = 0, p(0) =1,

and let —#;,¢2 be the two zeros given by Exercise 4. Show that
for the field X = Y, the index form satisfies

t2
I["tl,tzl(Xv X) <~ (90" + ap)pdt = 0.

-t
6. A line in a complete Riemannian manifold is a geodesic
v: (—00,00) = M

which minimizes the arc length between any two of its points.
Show that if the sectional curvature K of M is strictly positive,
M does not have any lines. By an example show that the
theorem is false if K > 0.



CHAPTER 12

THE FUNDAMENTAL GROUP OF
MANIFOLDS OF NEGATIVE CURVATURE

1. Introduction

Let M™ be a complete Riemannian manifold with sectional curvature
K < 0. A fundamental fact about the topology of M is that the
~ universal covering of M is diffeomorphic to R™ (Cf. Hadamard’s
Theorem, Chap. 7). In this chapter, we obtain information about
the fundamental group m; (M) of M.

The importance of studying m1 (M), when M has negative
curvature, comes from the fact that, in a certain sense, all of the
topology of M is contained in 1 (M). More precisely, in Algebraic
‘Topology one studies certain topological invariants, called the homo-
topy groups of dimension k > 1, which generalize the fundamental
group (= homotopy group of dimension one). Such groups can be de-
fined, roughly, as homotopy classes of maps, f: S¥ — M, of spheres
S* of dimension k into M. It is possible to prove (see M. Greenberg
[Gb], p. 32) that if M is covered by R", then every such f is homo-
topic to a constant if k > 2. This means that the homotopy groups
of higher dimension are trivial and that, therefore, at the level of
homotopy, the information about the topology of M is contained in
™ (M )

The object of this chapter is to prove the Theorem of Preiss-
man which states the following: If M is compact and K < 0 then
every non-trivial abelian subgroup of 71 (M) is infinite cyclic. This
shows, for example, that the torus S! x $! x S! whose fundamen-
tal group is Z ® Z & Z cannot support a metric of strictly negative
curvature.

In Section 2 we introduce some important notions and prove
a theorem of E. Cartan on the existence of closed geodesics which
does not use any hypothesis on the curvature. In Section 3 we prove
the Theorem of Preissman. We prove also that if M is compact
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and K < 0, then m(M) is not abelian. Finally, we show that,
in the statement of Preissman’s Theorem, it is possible to replace
the condition “abelian subgroup” by the weaker condition “solvable
subgroup”.

2. Existence of closed geodesics

We denote by m: M — M the universal covering of a complete
Riemannian manifold M with the covering metric and denote by
A(M) the group of covering transformations of A1 (covering auto-
morphisms). Observe that the elements in A(M), different from the
identity, are isometries of M, which have no fixed points, and that
A(M) is isomorphic to 7r1(M ;P), p € M (cf. Massey [Ma]). We
should say that this isomorphism depends on the choice of the point
P € M, with n(P) = p, and associates to each g € 7 (M; p) an isom-
etry a; € A(M) defined in the following way: If § € M, join § to
P by a path &, put 7(§) = o and 8 = ggo~!, where, by abuse of
notation, we also denote by g a path in the class g. In what follows,
if B:[0,1] — M is a path in M, B;(1) will denote the endpoint of
the lifting to M of 8 starting from §. Taking 3 = 0go~1, we define

ap(§) = B4().

2.1 DEFINITION. A set L of closed paths in M is called a free
homotopy class if given f € £ and ¢g: I — M such that there exists
a homotopy

F:IxI— M,F(0,t) = f(t),F(1,t) = g(t), F(s,0) = F(s, 1),

then g € £. The set of such classes will be denoted by C; (M).

The difference between the definition above and the definition
of the fundamental group is that in the free class we allow the origins
of the paths to vary in M.

The theorem below shows that in a compact Riemannian
manifold M with n;(M) # {e} there always exists a closed geo-
desic, that is, a closed curve that is geodesic at all of its points. We
should distinguish a closed geodesic from a geodesic lasso which is
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Figure 1

a closed curve that is geodesic at all except one of its points, where
it fails to be regular (see Fig 1).

2.2 THEOREM. (Cartan). If M is compact and £ € Cy(M) is not
the constant class, then there exists a closed geodesic of M in the
class L.

Proof. Let d be the infimum of the lengths of piecewise differentiable
curves belonging to £. Since £ is not trivial, d > 0. Let v; be a
sequence of piecewise differentiable curves belonging to £ such that
£(v;) — d. We can suppose that +; is a broken geodesic defined
on the interval [0, 1] parametrized proportionally to arc length. Let
L = sup{(vy;). Then

d(v;(t1), v;(t2)) < / ") dt < Lita — 1),

for all ¢, < t; € [0,1]. Therefore the set {v;} is equicontinuous.
Since M is compact, there exists a subsequence of vj, which we
denote again by v;, which converges uniformly to a continuous closed
curve 7,: [0,1] — M.

Nowlet 0 =%, < t; < --- < ¢, = 1 be a partition of the inter-
val [0, 1] such that ~, I[ti—l,ti]’ t=1,...,k, is contained in a totally
normal neighborhood. Let 4: [0, 1] — M be a piecewise differentiable
curve such that 4* = 7l[ta_1,tal is the unique geodesic segment which
joins the points v,(¢;—1) and vo(t:). It is clear that v € £, hence
£(v) > d. We are going to show that £(y) = d.
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Suppose that £(7) > d and let € = %%)fli. There exists an
integer j such that

£(v;) —d<e and d(7j(t),7(t) <&, forall ¢e[0,1).

Denoting by 7} = Viljt,_, a0 We have

k
> () + 2e) = £(7;) + 2ke < d+ (2k + 1)e

i=1

k
=) =)&)

t=1
Therefore, there exists an integer i, 1 < 7 < k, such that
£(7;) + 28 < £(v),

which contradicts the fact that 4* is minimizing and proves that
£(y) =d.

We parametrize 4 by arc length. Then +:{0,d] - M is a
broken geodesic which has minimum length in the class £. We are
going to show that ~ is regular at the point p; = v(¢;), for all { =
0,...,k.

Suppose to the contrary and let B be a convex ball centered
at p;. Choose points ¢ and g2 in 4 N B in a way that the geodesic
triangle p;q;¢2 is homotopic to a point (see Fig. 2). Then the closed
curve constituted by the minimizing geodesic ¢;¢> and by the arc of
« between ¢; and ¢ that does not contain p; is in the class £ and
has length smaller than -, which is a contradiction. O

Figure 2
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2.3 REMARK. If M is not compact, the theorem is false, as shown
by the example of Fig 3. The surface in Fig. 3 represents a surface
of revolution generated by a curve which is asymptotic to the axis
of revolution. Since there exist curves of arbitrarily small length in
the free homotopy classes which are non-trivial, such classes do not
contain curves of minimum length.

2.4 REMARK. If M is simply connected (and compact), the exis-
tence of a closed geodesic in M, although true, is a more difficult
problem. Indeed, the problem of determining the number and the
nature of the closed geodesics on a Riemannian manifold is one of
the most celebrated chapters in Geometry. A good reference on this
topic is Klingenberg [K¢ 4].

_ For our purposes, it is important to know when an isometry
of M without fixed points leaves invariant a geodesic.

.
A
(2
~

Figure 3. A surface which has no closed geodesics

2.5 DEFINITION. An isometry f: M — M without fixed points is
said to be a translation of M if it leaves invariant some geodesic ¥
of M, that is, if f(c) = ¢, where ¢ = 4((—00,0)). In this case, we
say that f is a translation along 7.

2.6 PROPOSITION. Let M be a compact Riemannian manifold
and o a covering transformation of {fl , considered with the covering
metric. Then o is a translation of M.

Proof. Let p € M and let g € m1(M;p), p = n(f), the element corres-
ponding to a under the isomorphism mentioned in the introduction
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of this Section. We can assume a # ident. By Cartan’s Theorem,
there exists a closed geodesic v of M in the free homotopy class
determined by g. Choose a point ¢ € 4. Then « is homotopic to the
closed path ogo~!, where o is a path joining p to ¢. Let § = 65(1),
that is, § is the endpoint of the lifting of o starting from p. Let ¥
be the lift of v starting from §; we are going to show that a leaves
% invariant.

For this, let az € A(M) be the isometry corresponding to the
class [y] € m1(M;q) and the point G, in the isomorphism indicated
above. We claim that aj = a. In fact, since v is homotopic to
ogo ™!, its lift starting from § has the same endpoint, that is,

a(q) = ag(q)-

-1

i and the claim made follows

Therefore, § is a fixed point of aoc
easily.
It follows that if 4(s) is a point of the lift of 4 starting from

4, we have, by uniqueness of lifting,

a(5(s)) = a(3(s)) € 7,

which shows that 7 is invariant by @, and proves the Proposition. 0O

3. Preissman’s Theorem

A geodesic triangle T in a Riemannian manifold M is a set formed
by three segments of minimizing normalized geodesics (called sides
of the triangle)

M [0’ el] - M’ Y2 [0, e2] - Ma 73: [0, e3] - Ma

in such a way that v(&) = 7+1(0), i = 1,2 and ~v3(€3) = 71(0).
The endpoints of the geodesic segments are called vertices of T.

The angle
é: (-’Y:(el)’ ’Y:+1(0))71' = 1’ 2’

or

9: (—71,3(83)1 71 (0)),

is called the (interior) angle of the corresponding vertex.
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3.1 LEMMA. Let M be a complete simply connected Riemannian
manifold, with curvature K < 0. Let a, b and ¢ be three points of
M. Such points determine a unique geodesic triangle T in M with
vertices a, b, c. Let o, B and v be the angles of the vertices a, b,
¢, respectively, and let A, B, C' be the lengths of the sides opposite
the vertices a, b, c, respectively. Then

(i) A2+ B2 -2ABcosy<C? (<C%ifK <0)

(i) a+B+y<n (<mifK <0).

Proof. Let va, 7B, 7c be the geodesics of lengths €(y4) = A,
£(vyB) = B, {(y¢) = C which form the sides of T. Let 'y =
exp; '(74), T's = exp;'(yp) and Tc = exp;(7yc) be curves in
T.(M ). Since 74 and yp are radial geodesics issuing from the origin
¢, we have

A=0(ya)=0Cs), B=~£rp)=ETp).

In addition, denoting by I', the segment of the straight line in T,,(M)
that joins the endpoints of I'c, we have that £(T,) < £(T¢) (see
Fig 4) and

£T,)* = A2+ B?> — 2AB cos 7.

Since K < 0 and T.(M) has zero curvature, we can apply Proposi-
tion 2.5 of Chapter 10 (application of Rauch’s Theorem) and obtain
that

{Tc) <llve) (<if K<0)

Figure 4
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It follows that
A%+ B2 - 2ABcosy < lTc)® < t(vc)* =C?* (<,if K <0),

which proves (i).
To prove (ii), let us observe that

C=d(a,b), B=d(a,c), A=db,c)

and, therefore, each length A, B or C is bounded by the sum of the
other two. We can then consider in the Euclidean space T,(M), a
triangle whose sides have lengths A, B and C. Denoting the opposite
angles of this triangle by o/, 8’ and v/, respectively, we obtain from
®,

a<ld, B<LA, y<o (<, iIfK<0).
Since o/ + 8’ +4' = =, (ii) follows. O

From now on, M will denote a complete Riemannian manifold
with sectional curvature K < 0. As always, m: M — M denotes the
universal covering of M with the covering metric. Our goal is to
prove the following theorem.

3.2 THEOREM. (Preissman [Pr]) If M is a compact Riemannian
manifold with negative curvature, then any abelian subgroup of the
fundamental group m (M), different from the identity, is infinite
cyclic.

The proof depends on a sequence of lemmas.

3.3 LEMMA. If K <0 and f: M — M is a translation along the
geodesic 4, f # id., then ¥ is the unique geodesic left invariant by

f.

Proof. Suppose that f leaves invariant two geodesics 41 and 2.
Since f does not have fixed points, 71 N2 = ¢; otherwise, 71 N2
has at least two points, which contradicts the simple connectivity
of M. Let P1 € 71, P2 € J2, and let 43 be the minimizing geodesic
joining $; to P2. Consider the “geodesic quadrilateral” p1, f (B1),
P2,f(2) in M (Fig. 5) and denote its (interior) angles by a, m — o
(adjacent to the side 1), 8, ® — §’ (adjacent to the side ¥;). Since
f is an isometry, « = o’ and 8 = B’. Therefore, the sum of the
interior angles of such a quadrilateral is equal to 2r. Now divide
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this quadrilateral into two triangles T; and T, and denote by )
the sum of the interior angles of the triangle T}, i = 1,2. It is clear
that, at each vertex, the sum of the angles of the triangles which
meet there is greater than or equal to the angle of the quadrilateral
at this vertex. Therefore ), + Y, > 2x. It follows that one of the
two triangles has its sum of interior angles > m, which contradicts
Lemma 3.1 (ii). O

Figure 5

34LEMMA. IfK <0andg:M — M isan isometry without fixed
points which commutes with a translation f along 7, f # id., then
g is a translation along 7.

Proof. 1t suffices to observe that
fog(q) =g0 f(3) = 9(3),

hence, by uniqueness of the previous lemma g(7) =4. O

3.5 LEMMA. If all the elements of a non-trivial subgroup H C
m1(M), considered as isometries of M, leave invariant a fixed geo-
desic 4, then H is infinite cyclic.

Proof. Fix a point p € 4 as origin and consider the map 6: H - R
given by 6(h) = £d(p, h(p)), where the sign — or + is used acordingly
as h(p) is “before” or “after” p, respectively, in the orientation of 5.
Since the elements of H are isometries which leave 7 invariant, 9 is a
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homomorphism of H into the additive group of the reals R. @ is an
injective homomorphism; otherwise, h1(p) = ha(p), with hy # ha,
hence 7 would be a fixed point of hyh;!. Therefore, H is a additive
subgroup of R. But any additive subgroup of R is either dense in
R or infinite cyclic. Since the isometries of H operate in a totally
discontinuous way, H is not dense. Hence H is infinite cyclic. O

Proof of Preissman’s Theorem. Let H C 7;(M) be an abelian sub-
group with H # {e}. By Proposition 2.9 and by Lemmas 3.3 and
3.4, there exists a unique geodesic 4 which is invariant under all the
elements of H. By Lemma 3.5, H is cyclic infinite. O

3.6 ExXAMPLE. Let N be a surface of genus two and let M = N x S1
be the product manifold of N with a circle S!. Then M does not
carry a metric of negative curvature. Indeed, if C C m(N) is a
cyclic subgroup, then C ® Z C (M) is an abelian subgroup which
is not cyclic.

3.7 EXAMPLE. The m-torus S x -+ x §1 = T™, m > 2, does not
carry a metric of negative curvature, since its fundamental group is
ZO---DZ (m times).

The same technique used in Preissman’s Theorem allows us
to obtain a slightly more general theorem. To that end, we need
another theorem on the fundamental group, also due to Preissman.

3.8 THEOREM. If M is compact and K < 0, then m;(M) is not
abelian.

Proof. To prove what is needed, we establish the lemma below which
is a little more general.

3.9 LEMMA. If M is complete, K < 0, and there exists a geodesic
invariant under the elements of A(M), then M is not compact.

Proof of the Lemma. Let 4 be the geodesic invariant under the ele-
ments of A(M). Fix a point 5 € , a real number ¢ > 0, and consider
the normalized geodesic B: [0,t] — M, 3(0) = , perpendicular to ¥
at . Let B=n0B,y=mo%4, p=n(p), and a; be a minimizing
geodesic in M joining [(t) to p. We are going to show that the
length Z(a,) =1{.

Let &; be the lift of a, starting from 3(t). Since 4 is invariant,
the endpoint of &; belongs to 4. (see Fig. 6). Since X < 0, by
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Lemma 3.1 (i), £(6;) > £(8). On the other hand,

£(&) = b(ar) < €(B) = £(B) = ¢,
hence £(a;) = t, as was claimed.

Since t is arbitrary, M is not bounded, which concludes the
proof of Lemma 3.9. O

Figure 6

The theorem follows now from the fact that if M is compact,
K < 0 and m; (M) is abelian, there exists a geodesic invariant under
all the elements of A(M). 0O

We can now refine Preissman’s Theorem and prove the fol-
lowing fact.

3.10 THEOREM. (Byers, [By]). If M is compact, K < 0, and H is
a solvable subgroup of m1(M), H # {e}, then H is infinite cyclic. In
addition, 7y (M) does not have a cyclic subgroup of finite index.

Proof. Since H is solvable, there exists a finite sequence of subgroups
H=HODH13-'-DH1¢-1:)H1¢={€}

such that H;y, is normal in H; and H;/H;,, is abelian. Then Hy_,
is abelian, hence, by Preissman’s Theorem, infinite cyclic.
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Let g € m (M) be a generator of He_; and let ¥ be the
geodesic in M invariant under g. Let a € Hy_; and b € Hy_,. Since
a~1b~lab € Hy_,, we have, for some integer n,

a7 1ab = g".

It follows that

0187 ab() = g"(5) = -
Since b € Hi_1, b(}) = 5. Therefore b~'a(7) = a(7), that is,
b1 leaves invariant the geodesic a(3). By uniqueness, a(§) = 7.
Therefore, all the elements of Hy_, leave 4 invariant. By Lemma 3.5,
H._o is infinite cyclic.

Repeating the argument above a finite number of times, we
conclude that H is infinite cyclic, which proves the first statement
of the theorem.

To prove the final assertion, suppose that there exists a sub-
group H C = (M), cyclic and of finite index. Let g be a gener-
ator of H and let 5 be the geodesic of M invariant under g. Let
a € (M) — H. Since H has finite index, there exist integers m and
n such that a™ = g™. Therefore

a"(¥) = g™ (%) = 4.

By uniqueness, a(¥) = 7, for all a € 71(m)— H. It follows that every
element of w1 (M) leaves invariant the geodesic 4. By Lemma 3.5,
m1(M) is infinite cyclic, which contradicts Theorem 3.8. [

3.11 REMARK. Riemannian manifolds of non-positive curvature
form a substantial topic in Riemannian Geometry, which we have
barely touched. To the reader, interested in some of the recent
developments, we recommend the excellent survey by P. Eberlein,
“Structure of manifolds of nonpositive curvature”, in Global Geom-
etry and Global Analysis 1984, Proceedings, Berlin, edited by D.
Ferus, R. Gardner, S. Helgason and U. Simon, Lecture Notes in
Math. 1156, Springer Verlag, 1985, pp. 86-153. Other relationships
between the geometry of a manifold M of non-positive curvature
and ) (M) are described in Section 7 of this survey.



CHAPTER 13

THE SPHERE THEOREM

1. Introduction

One of the most beautiful theorems of Global Differential Geometry
is the Sphere Theorem which states the following:

1.1 THEOREM. Let M™ be a compact simply connected, Riemann-
* jan manifold, whose sectional curvature K satisfies

(1) 0 < hKpax < K < Kppax-

Then if h = 1/4, M is homeomorphic to a sphere.

The number h is called the “pinching” of M. Multiplying the
metric by a constant, we can suppose that Kyax = 1, and (1) can
be written, without loss of generality, as

(1) ‘ O0<h<K<1.

The Sphere Theorem was proved for the first time by Rauch
[R 1] for h ~ 3/4. A fundamental contribution was made by Klin-
genberg [K¢ 1] who introduced into the problem the consideration of
the “cut locus” (see the definition in Section 2). In the case for which
the dimension of M is even, Klingenberg obtained in [K¢ 1] an esti-
mate for the distance from a point to its “cut locus” and he proved
the theorem for h ~ 0.55. Using the theorem of Toponogov and the
estimate mentioned above, Berger [Br 1] obtained the theorem, still
in even dimension, with h = 1/4. The use of Toponogov’s theorem is
unnecessary, as was shown by Tsukamoto [Ts ]. Finally, Klingenberg
[K€ 2] extended his estimate from even dimension to odd dimension,
which together with the work of Berger [Br 1] yielded the theorem
as stated above.
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In the case of even dimension, the theorem is false if we re-
place (1’) by

2) 0<1/4<K <1

It is possible to show (see Exercise 12, Chap. 8) that the
complex projective space P"*(C), n > 1, is simply connected, has a
metric whose sectional curvature satisfies (2) and is not homeomor-
phic to a sphere. As a matter of fact, in [Br 1] Berger proved that if
(2) is satisfied then: either diam(M) > =, and M is homeomorphic
to a sphere, or diam(M) = 7, and M is isometric to a symmetric
space. (