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PREFACE

At the present time, the average undergraduate mathematics major finds mathe-
matics heavily compartmentalized. After the calculus, he takes a course in analysis
and a course in algebra. Depending upon his interests (or those of his department),
he takes courses in special topics. If he is exposed to topology, it isusually straight-
forward point set topology; if he is exposed to geometry, it is usually classical dif-
ferential geometry. The exciting revelations that there is some unity in mathemat-
ics, that fields overlap, that techniques of one field have applications in another, are
denied the undergraduate. He must wait until he is well into graduate work to see
interconnections, presumably because earlier he doesn’t know enough.

These notes are an attempt to break up this compartmentalization, at least in
topology-geometry. What the student has learned in algebra and advanced cal-
culus are used to prove some fairly deep results relating geometry, topology, and
group theory. (De Rham’s theorem, the Gauss-Bonnet theorem for surfaces, the
functorial relation of fundamental group to covering space, and surfaces of constant
curvature as homogeneous spaces are the most noteworthy examples.)

In the first two chapters the bare essentials of elementary point set topology are
set forth with some hint of the subject’s application to functional analysis. Chapters
3 and 4 treat fundamental groups, covering spaces, and simplicial complexes. For
this approach the authors are indebted to E. Spanier. After some preliminaries in
Chapter 5 concerning the theory of manifolds, the De Rham theorem (Chapter 6) is
proven as in H. Whitney’s Geometric Integration Theory. In the two final chapters
on Riemannian geometry, the authors follow E. Cartan and S. S. Chern. (In order to
avoid Lie group theory in the last two chapters, only oriented 2-dimensional mani-
folds are treated.)

These notes have been used at M.LT. for a one-year course in topology and
geometry, with prerequisites of at least one semester of modern algebra and one
semester of advanced calculus ‘“done right.’” The class consisted of about seventy
students, mostly seniors. The ideas for such a course originated in one of the
author’s tour of duty for the Committee on the Undergraduate Program in Mathe-
matics of the Mathematical Association of America. A program along these lines,
but more ambitious, can be found in the CUPM pamphlet ‘““Pregraduate Preparation
of Research Mathematicians’’(1963). (See Outline III on surface theory, pp. 68—70.)
The authors believe, however, that in lecturing to a large class without a textbook,
the material in these notes was about as much as could be covered in a year.
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CHAPTER ONE
SOME POINT SET TOPOLOGY

1.1 NAIVE SET THEORY

We shall accept as primitive (undefined) the concepts of a set (collection, family)
of objects and the concept of an object belonging to a set.

We merely remark that, given a set S and an object x, one can determine if the
object belongs to (is an element of) the set, writtenx € S, or if it does not belong to
the set, writtenx ¢ S.

Definition. Let A and B be sets. A is a subsef of B, written A C B, if x € A
implies x € B, A is equal to B, written A =B, if ACB and B CA,

Notation. The empty set, that is, the set with no objects in it, is denoted by ¢.

Remark. (1) @ C A for all sets A,

(2) The empty set ¢ is unique; that is, any two empty sets are equal.
For if ¢, and ¢,are two empty sets, ¢, C ¢, and ¢, C ¢,.
(3) A C A for all sets A.

Definition. Let A and B be sets. The union A UB of A and B is the set of all x

such that x € A or x € B, written

AUB=|x;x e Aor x € B].
The intersection A N B of A and B is defined by
ANB=[x;x eA and x € BJ.

Similarly, if § is a set (collection) of sets, the union and intersection of all the sets
in § are defined respectively by

SEJSS=[x; x € S for some S €8],

Ns= [x; x € S for every S € §].

If A C B, the complement of A in B, denoted A’ or B — A, is defined by
A" =[x e B x ¢ Al

THEOREM 1. Let A, B, C, and S be sets. Then
(1) AUB= BUA,
(2) ANB=BnNA.
(3 (AUuB)UC=AU(BUCQC).
4 AnB)nNnC=ANBNC).
(5 AUBNC)=(4 U B) N(AUC).
(6) ANBUC)=ANB)UMA NC).
(7)) f ACSand BC S then, (A UB) =A’ N B,
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(8) fAcSand BC S, then{A N B) = A" UB’',
(9) ¥ 8, and 8, are two sets (collections) of sets, then

(sys.,sl U (S!J&S] - s;sl.]us, §

(sps,s) n (SP&S) =s:2u3., S.

(10) For 8, and §, as in (9),

(U,S) N (US) = U (S, NSy,
8ye8;

Proof. The proof of this theorem is left to the student.
Definition. Let A and B be sets. The Cartesian product A X B of A and B is the
set of ordered pairs

AxB=|(a b);aec A, beB)

A relation between A and B is a subset R of A X B. a and b are saidtobe R-related
if (a, b) € R.

Example. Let A = B = the set of real numbers. Then A X B is the plane. The
order relation x <y is a relation between A and B, This relation is the shaded set
of points in Fig. 1.1.

r=y
w@_%ﬁ
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s R R e
il rl%r[:jﬂi_ﬁnr_ﬂ B : i %ﬁﬁl&.’_’_ﬁ_ﬁ-—# EEE—#_.E?'EL"F
B e e -%EF'_ oy ﬂwﬁ-'%aiﬂliﬂ
i R it .__[
T
Fig. 1.1

Definition. A relation R C A x A is a partial ovdering if
(1) (s1, S2) € R and (sz, S3) € R = (s,,53) € R and
(2) (s1, s2) € R and (sz,8,) € R = s, =s,.
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A relation R is a simple orvdering if it is a partial ordering, and, in addition:

(3) either (s, s,) € R or (s, s,) € R for every pair s, s, € S.

The order relation for S = real numbers is an example of a simple ordering. In
general, we say that S is partially ordered (simply ordered) by R,

Definition. Let A and B be sets. A function f mapping A to B, denoted f:A — B,
is a relation (f CA X B) between A and B satisfying the following properties.

(1) If a € A, then there exists b € B such that (a, b) € f.

(2) If (@, b) € f and (@, b)) € f, then b = b.
Property (1) says that the function f is defined everywhere on A, Property (2) says
that f is a ‘“‘single-valued’’ function.

Notation. Let f:A —B. By f(a) = b we mean (a, b) € f.

Definition. Let f: A —~B. fis surjective (onto) if for each b € B there exists
a € A such that f(@) = b. If f is surjective, we write f(A) = B. f is injective (one-to-
one) if f(@) = f@)) =>a =a.. I f is both surjective and injective, we say f is a one-
to-one correspondence between A and B.

Definition. A set A is countable if there exists a one-to-one correspondence be-
tween the set of all integers and A. A set A is finite if for some positive integer n

there exists a one-to-one correspondence between the set { ..., n}' and A, in which
case we say A has n elements.
THEOREM 2. f A ={a,, ..., a,} is a finite set of n elements, then the set of all

subsets of A has 2" elements.

Proof. Consider the set F of all functions mapping A to the set {YES, NO} con-
sisting of the two elements YES and NO, F has 2" elements. The set § of all sub-
sets of A is in one-to-one correspondence with F. For let f: S — F be defined as
follows.

For B € §, that is, for B CA, f(B) is that element of F (that is,

f(B):A —[YES, NOJ)
given by

o -{ES sz en

f is injective because if f(B) = f(C), then fIB)(x) = f(C)(x) for all x ¢ A. Thus
f(B)x) = YES if and only if f(C)(x) = YES; that is, x € B if and only if x € C. Thus
B = C. f is surjective because every function g: A —[YES, NO] determines a BC 4
by
B = [x; g(x) = YES]

and f(B) =g. 0O

Notation. Motivated by this proposition, we denote by 24 the set of all subsets of
A. Given two sets A and B, B4 denotes the set of all functions A — B.

Definition. Let f € BA, The inverse f-tof f is the function 28 — 24 defined by

fYB) =[a € A; fla) e B] (B, c B).

F~U(B)) is called the inverse image of B,. Note that

Fre (24"

Notation. Let W bea set, and let § be a collection of sets. We say S is indexed by
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W if there is given a surjective function ¢: W —8. For w € W, we denote ¢(w) by
Sy and denote the indexing of § by W as {S,},, ¢

Definition. Let{S,},, ¢ w be indexed by W. The product of the sets {S,,},, c w is
the set

s = [f: W—USy; f(w) € S, for all w € W],
we we

If the set W is not finite, this product is called an infim’te product. Note that this

llUI-lUll of u1€' rod‘ Gl sets CKI.UIIU.b UIU notion of l-llt! pIUUU.LI- of two sets Dl X 02

For let W = {1 2, let§ = {s, S,}, andletrp W—~8bye¢(j) =S, i =1,2. Then
$: %S, = (s, &), S eS] and 1L S, =[r:{1, 2} =5, USz,f(])eS] which can be

identified with [(f(l) F20; £( ]) €S; ], which can be identified with S, x S,.

Remark. l'Iw Sy isa set of functlons One might ask whether there ex1st any such
we

functions; that is, is l'IW Sp # ®? In other words, given infinitely many non-empty

sets, is it possible to make a choice of one element from each set? It can be shown
in axiomatic set theory that this question cannot be answered by appealing to the
usual axioms of set theory. We accept the affirmative answer here as an axiom.

AXIOM OF CHOICE, Let {S,}, «w be sets indexed by W. Assume S,, ¥ ¢ for all
weW, Then

I S, # &
wew

The axiom of choice is equivalent to several other axioms, one of which is the
following.

MAXIMUM PRINCIPLE; I S is partially ordered by R, and T is a simply or-

dered subset, then there exists a set M such that the followmg statements are valid.
(1) Tc McCS.

(2) Mis simply ordered by R.
(3) If M C N C S, and N is mmply ordered by R, then M = N; thatis, M is a
) ) c

1.2 TOPOLOGICAL SPACES,

Definition. A metric space is a set S together with a function p: § X S — the non-
negative real numbers, such that for each s, sz, S, € S:

(1) p(sy, s;,) = 0 if and only if s, = s,.

(2) plsy, 83) = plsy, s)).

(3) p(sb 83) p(sh 32) + p(sz, 33)
The function p is called a mefric on S.

Given a point s; in a metric space S and a real number ¢, the ball of radius a
about s, is defined to be the set

Bso(a) =[s €S; p(s, sp) <al.

Example. Let S be the plane, that is, the product of the set of the real numbers
with itself. We define three metrics on S as follows.

For P, = (x,, ¥,) and P, = (x,, y,), two points in S,
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pl(Pv Pz) = ‘/(xz_x1)2 + (yz_ yl)zy
PPy, P = max {|x,— x,|, |y, ~ ¥},
ps(Pv Pz) |x2_—x1|+|y2—y1

The ball of radius @ about the point 0 = (0, 0) relative to each of these metrics is
indicated by the shaded areas in Fig. 1.2. Note that a ball does not necessarily have
a circular, or even a smooth, boundary.

pi(s0) < a p2(5,0) < a p3(s,0) < a

Fig. 1.2

Remark. The three metrics defined above provide the plane with three distinct
structures as a metric space. Yet for studying certain properties of these spaces,
these metrics are equivalent. Thus, if we want to know, for example, whether 0 is
a limit point of a set T CS, we ask whether there is a sequence of points in 7 which
converges to 0; that is, whether a sequence {sn} of points in T exists such that
given any € > 0, there exists an N such that

p(s,, 0) <€

for allzn > N. It is not difficult to see that the answer to this question is independent
of whichever of the above metrics we use for p; thatis, given £ > 0, there exists
such an N using p, if and only if there exists such an N using p,, etc. The answer
does not depend on the shape of the ball of radius £, but only on its ‘‘fatness’’ or
“openness.’”’ For this reason among others, it is convenient to gather together those

[ B R, md mern mmemidial oy AAmwad Lonrm £f{mememzsnoy a?? a4

properties of a metric space that are essential for describing ‘‘openness’’ and to
use such properties to define a more abstract structure, a topological structure, in
which we can still talk about limit points and in which the three metric structures

on the plane described above will give the same ‘‘open sets.”’
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Definition. A topological space is a set S together with a collection U of subsets
of S (that is, u is a subset of 25) satisfying the following conditions:

(1a) deu, S e,

(2a) XU, ..., U, € U then _ﬂ U; € U

(3a) Arbitrary unions of elements in U lie in U; that is, if ac U, then U_U € .
Ueu

The elements of U are called open sets in S. The collection U is called a topology
on S,

Remark, We shall often suppress the U and simply refer to S as a topological
space.

Definition. Let (S, U) be a topological space. A set A CS is closed if it is the
complement of an open set, that is, if A’ € .

Remark. By takmgcomplements in conditions (1a), (2a), and (3a) above, one sees
that the collection ‘@ of closed sets satisfies the following conditions,

(1b) @ € e, S € e.

(2b) f A,...,A,¢€ e, thenUAee

i=1

PR SRR PRy 12 .~
(3b) Arbhitra ry intersections of elements in C lie in &,

Remark. A topology can be described by specifying the collection of closed sets
equally as well as specifying the collection of open sets.

Definition. Let (S, ) be a topological space. Let A CS. A points € S is a lLimit
point of A if for each U € U such thats € U,

U-{sh)n A #g.
Definition. The closure of a set A CS, denoted by A, is the set
A= AU[s €S; s is a limit point of A].

THEOREM 1. The closure E of a set A is closed.

Proof. We must show that A’ is open. For this it suffices to show that for each
s € A’ there exists an open set Ug withs e Ug C A', Then's ¢ U, for each s implies
A'c U Ug, and Ug C A’ for each s implies U UsC A'. ThusA’' = U Ug is a un-

sed’ sed’
ion of open sets and hence is open.

Now lets € A’, Thens is not a limit point of A, so there exists an open setUg
such thats e Ug and (U, —{s)) N A = @. Furthermore s £ A becauses £ A and
hence, in fact, U A = @. Since each element of U is contained in an open set,
namely Uy 1tse1f whose intersection with A is_g, it follows that U contains no
limit points of A ‘and Us N A=g@; thatis, Us C A’. O

THEOREM 2. A setA is closed if and only if A=A,

Proof. Assume A is closed. Then A’ isopen. s ¢ A, then A’ is an open set
containing s such that (A’ —{s}) N A = @. Thuss isnota limit point of A. Hence
all limit points of A lie in A; thatis, A = A. O

Conversely, if A = A then Ais closed by the previous theorem.

Definition. A set ®C 25 is a basis for a topology on S if the following conditions
are satisfied:

(1c) D€ ®,

L S 4

(2¢) HU(B B =8,
€
(3¢c) ¥ B, and B, € ®, then B, N B, = U_B for some subset ® C ®.

Be® .

THEOREM 3. Let S be a set and ® be a basis for a topology on S. Let
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Ug = [U € 25; U is a union of elements of @|.

Then Ug is a topology on S, the topology generated by ®.

Proof. We must verifythat Ug satisfies the three open-set axioms for a topology
on S,

By (1c) and (2c) in the definition of a basis, both ¢ and S € Ug so that condition
(1a) in the definition of a topological space is satisfied.

Suppose U Cug. Then qu V= U{(UB)=UB where 8, C® for each V € ¥

Ve Be®,, Be®

and & = U ®, C ®. Hence condition (3a) holds.

Ve
We prove condition (2a) by induction, We assume that the intersection of % sets
in ug lies in Ug. (For k=1, the statement is automatically true.) Suppose then
Uy, ..., Ups, € Ug. By the inductive hypothesis, U/, N ... N Uy € ug; that is, there
exists a subset 8, C ® such that U, N ... N Up=_U B, Since Ug,, € Ug, there

exists a subset ®, C ® such that U, , = U B, Hence

UM NUka = (U B) N (U B)= U (BN BE,).

Be®,

But by condition (3c) in the definition of a basis, B, N B, € Ug.
Hence U, N ... N Ug., € Uug. O
THEOREM 4. Let (S, p) be a metric space. Let

= [Bg(a); s € S and a is a non-negative real number].

Then ® is a basis for a topology on S.
Proof. (1) B,(0) =@ for anys € S, so @ € ®.
(2) Foranya >0, S = U Bg(a), so S = U B.

(3) Let s, s, €8, let al, a, > 0, and let T Bg (a,) N Bg(a,). We may as-

sume T # Q.
To showthat T is a union of elements of ®, it suffices to show that for eachs ¢ T
there exists ag > 0 such that B;(ag) C 7. For then T C U Bg(ag) € 7. The first in—

clusion follows because s € BJa,) for each s € T, and the second, because Bga) C T
for eachs. Thus T = U B.(ag) is a union of elements of ®.

Now for s € T, let b] =p(s, sj) for j =1, 2. Then b; < a; since s € st(a]-). Let
ag = min {a1 —-b,a, —b,}. Then ag >0, and we claim that B;(ag) C 7. For suppose
t € Bglag). Then

p(t, Sj)'< pl¢, ) + p(s,s]-) < as+bj <aj—bj +b]- = a5

sot e B, (a) j=1,2, O

COROLLARY. A metric space has the structure of a topological space in which
the open sets are unions of balls.

Definition. Let S be a set, and let &, and ®, be bases for topologies on S. ®, and
®, are equivalent if they generate the same topology; that is, if Ug, = Us,

THEOREM 5, Iet Shea set, and lat ®, and @ behases fnr i-nmlnain on S. The

et N o Sl T TwRawe W@ W Svaste Ao } i - i [

®, and ®, are equivalent if and only if

(1) for each s ¢S and B, € B, with s € B,, there exists B, € &, such that
s€ B,C B, and

]
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(2) foreach s €S and B, € B, with s € B,, there exists B, € ®, such that
s € B,C B,.

Pvnnf Suppose ®, and ®, are equivalent, andlets € B, € ®,. Then B, € U®, = U®B,,
~ o~
so B, = U_B, for some subset 8, C®,. Hence s € B, CB, for some B, ¢ 8, C ®,.

B E(B
Thus (1) is proved and (2) is proved similarly.
Coaversely, suppose (1) and (2) are satisfied. We first show that Ug, < U@, Let
B € ®,, By (1) for each s € B there exists B; € 8, such that s € B, CB. Now
B C U B.C B, so B-= SEJB Bg € U@,. Thus ‘u(gl cm@z Similarly, using (2),

U®B, CU®B,, and so U®, = UR,. O

COROLLARY. The three metrics p,, p,, p; on the plane S described earlier all
determine the same topology on S.

Proof. Conditions (1) and (2) of Theorem 5 are clearly satisfied. O

Remark. It is not true, however, that all metrics on a given space give the same
topology. For example, consider the space R of real numbers with the following
two metrics.

lrl _'rzi

0 (r,=7)
by ) =3 LT

pl(rli 72)

The open sets in the topology defined by p, are the usual open sets (generated b Ig
open intervals) in R, whereas the collection of open sets defined by p, is the set 2
of all subsets of R. For, in fact, relative to p,, B,(1/2) = {#} for each r ¢ R, so each
“point’’ is an open set; and, hence, so is each union of ‘‘points,’’ that is, each sub-
set of R.

Definition. X (S, U) is a topological space and U = 25, then S is said to have the
discrele topology.

THEOREM 8. Let (S, U) be a topological space and let A C S. Let

=[ANU; Ueal.

Then U, is a topology on A, called the relative topology on A.
Proof. This is a consequence of the following facts.

(1) @NA=¢@, SNA=A,

2) ,-61 w;n4) =(h vyna.

(UTHhna, 0o

Ueu

(3) U (U naA)
el

Remark. When dealing with subspaces, one must be careful to specify which
topology is being used at any given time. Thus, for example, if U is the open inter-
val (1, 3) C R and A is the closed interval [2, 4] C R, then U N A is open in A, but
not open in R. However, if A is either open or closed, we do have the following
theorem.

THEOREM 7. Let S be a topological space and let A C S. K A is open in S, then
every open setin A isopeninS. K A is closed in S, then every closed set inA is
closed in S.

Proof. If A isopen in § and B is open in A, then B = U N A for some open set U
in §; so B is open in S since both U and A are open in S.
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If A is closed in S, and B is closed in A, then A — B is open in A; so
A—-B=A NU for some open set U in S. Thus

B=A-(A-B)=A-ANU=ANU,

Since A and U’ are both closed in S, soisA NU'=B. O
THEOREM 8, Let S be a topological space and let @ C S have the relative topol-
ogy. Let P be a subset of Q. Then the relative topology U, on P regarded as a sub-
set of @ is the same as the relative topology U, on P regarded as a subset of S.
Proof. Let A C P. Then

Aelu,<>A = P NU for some open set U C @
PN (Qn T for some open set vcs
PN T for some open set Uvcs (since PC Q)

<A

A

<> A €U, (]

1.3 CONNECTED AND COMPACT SPACES.

Definition. A topological space S is comnected if the only sets which are both
open and closed are ¢ and S.

THEOREM 1. A topological space S is connected if and only if it is not the union
of two disjoint non-empty open sets,

Pyroof. Assume S is connected. Suppose S = V, U V, for open sets V, and V, with
V,NV,=¢. Then V, = Vi soV, is closed as well as open. Since S is connected,
either V.= @g or V,=8. If V, =S, then V,= @J; so in both cases either V, or V,
must be empty.

Conversely, suppose S is not the union of two disjoint non-empty sets. Let V CS
be both open and closed. Then V'is also both open and closed, and S is the union of
the disjoint open sets V and V’. Thus either V= @or V' = ¢; that is, either V= ¢
or V=35, so S is connected. a

Examples. It is shown in real analysis that the

(1) The space R of real numbers,

(2) Any interval in R,

(3) Real n-space R™, and
(4) Any ball or cube in R™.

Remark. A subset of a topological space is said tobe connected if it is connected

in the relative topology.

THEOREM 2. Let S be a topological space, and let 7, and { 7,,},, ¢w be connected
subsets of S. Assume T, N T, # ¢ for eachw € W. Then T, U ( U, Tw) is connec-
ted, v

Remark. This theorem can be used to prove that R” is connected, given the fact
that lines in R” are connected, For, in fact, let 7, ={0} and {7,}, ¢w denote the
set of all lines through 0. (The indexing set W can be taken to be the unit sphere in
R"™.) Then R™ = T, U (wlelw Ty)-

Proof. Let T= T, U( U T,). Suppose T =V, UV, for some disjoint sets ¥, and

V,openin T. Then for eachw, V, N T,, and V, N T,, are disjoint opensets in 7,
and their union is T,. Since T,, is connected, either V, N T, = @ or V, N T, = @.
Similarly, either V, N Ty = @ or V, N1 T, = @; say V, N T, = ¢. Then V, N T, = Ty;

Qr
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that is, T, C V,. Therefore, since T, N T, # @, V, N Ty # @ for each w e W,
Thus, from above, V, N T, = ¢ for all w € W and ViN T, = T,; thatis, T, C V,

- n — A —
for all w € W. Therefore, V, = 7, U (wl‘élw T,), and V, = @, 0

Example. R™ — {0} is connected for n > 1. Prove that it is,

Definitions. Let S be a set. A collection ¥ C 25 is a covering of S if U ve=s
If § is a topological space and each V € U is an open set, U is called an open cover-
ing of S.

A topological space S is compact if every opencovering has a finite s
that is, if for every open covering U, there exist a finite number o

k
Vi...s Vi € U for some &, such that S = _Ul 42
j=

b=ty

sets, say

Example. It is shown in real analysis that

(1) the compact subsets of R "™ are the closed bounded subsets of R " (Heine-Borel
theorem),

(2) R™ is not compact, and

(3) an open interval in R! is not compact.

Definition. A topological space is said to have the Jinile intersection
(abbreviated f. i. p.) if every collection ¥ of closed sets with property (a) also has
property (8):

(@) F, N...N Fp # @ for each finite subcollection{Fl, ..., Fy} C 5.

8 N F+g.

THEOREM 3. Let S be a topological space. Then S is compact if and only if S
has the f.i.p.

Proof. There is a one-to-one correspondence between collections F of closed
sets in S and collections U of open sets in § given by complementation; that is,
V-5 if and only if ¥ = [F'; Fe 5] or, equivalently, § = [V Ve v]. Now if 0
corresponds to ¥, then

N F=geU V=5

Feg

That is, U is an open covering if and only if ¥ does not satisfy property (8); and U
has a finite subcovering if and only if § does not satisfy property (). 0O
THEOREM 4. Every closed subset of a compact space is compact in its relative
topology.
Proof. Let A be a closed subset of a compact space S. We show that A has
the f.i.p. Let § be any collection of closed subsets of A satisfying property (a).
Since A is closed and each F € ¥ is closed in A, each F ¢ ¥ is closed in S. Thus &

is a collection of closed sets in S satisfying (). Since S is compact, Fﬂ5 F# .
A
But Fpﬁ FCA, so A has the {. i. p. 0

THEOREM 5. Let S be a compact topological space. Then every infinite subset
of S has a limit point, '

Proof. We show that if A CS has no limit point, then A is finite, The proof is in
three steps.

Step (1). A is discrete; that is, its relative topology is the discrete topology.
For suppose a € A, Since a is not a limit point of A, there exists an open set U, C S
containing @ such that (U, —{a}) N A = @; thatis, U, NA ={a}. Thus each{a} is
an open set in the relative topology of A and hence A is discrete.
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Step (2). A is compact. For in fact, since A has no limit points, 4 = A, and
hence A is closed. But, by Theorem 4, this implies A is compact.

Step (3). A is finite. For let U, = {a} for eacha € A. Then, by Step 1, {U,}z ca
is an open covering of A. By Step (2), A is compact, so there exists a f1n1te sub-
covering{U, , ..., Ug,}.

k
Thus A = U Ug, = {a,, ..., ap} is finite. O
r=

1.4 CONTINUOUS FUNCTIONS

Definition. Let S and T be topological spaces. A function f: S — T is continuous
if the inverse images of open sets are open; that is, for each open set U < T, f'(U)
is open in S.

THEOREM 1, Let S and T be topological spaces. Let B85 and ®7 be bases for the
topologies on S and 7 respectively. Then f: S — T i8 continuous if and only if for
each s € S and each V € &7 with f(s) € V, there exists a U € B such thats € U and
f{oycv,

Remark. For metric spaces, Theorem 1 shows that our
is equivalent to the usual €, 6 definition of continuity.

Pyroof. Assume f is continuous. Ifs €S and f(s) € Ve ®r, then f71(V) is open
in S and so is a union of elements of Bg. Since s € f V), s must belong to one of
these basis elements. Call it U. Then U C f~Y(V), so f(U) C V.

Conversely, suppose for each such s and V there exists such a U. Let V be open
in 7. We must show that f-YV) is open in S. Lets € f- 7). Then f(s) € V, so f(s)
lies in some basis element Vi € B with V C V. _Therefore, there exists a basis
element U € ®¢ such that s € U and f(U)C VsC V that is, Ug C f- V).

Then f-YV) = U(% Ug; so f~ (V)isopeninS. O
sef!

THEOREM 2. Let R, S, T be topological spaces. If g: R —S and f: S — T are
both continuous, then f - g: R — T is continuous,

Proof. Let V be open in 7. Since f is continuous, f (V) is open in S. Hence,
since g is contmuous g U/ (y)) is open inR. But (f o g@'=gte f1 so

£ o -1/ D PO
\J ° &) \v ) is open in n, ana _] ° g is Luuuuuuua U

THEOREM 3. Let S and T be topological spaces. Let /: S — T be continuous and
surjective. I S is connected, then so is T.

Proof. Suppose V, and V, are disjoint open sets in 7T with V, U V, = T. Then
S 1(v,) and f-1(V,) are disjoint open sets in S with - *(v,)) U f1(V,) = S. Since S is
connected, either f~*(V,) or f-1(V,) must be empty. But since f is surjective,
f1(v;) = @ for some j implies Vj = ¢. Thus T is connected. O

COROLLARY. If f: S — T is continuous, and if S is connected, then f(S) is con-
nected.

Example 1. Let f: [a, b] —R* be a continuous real-valued functiondefined on the
closed interval froma to b, If f(x,} > 0 for some x, € [a, b], and f(x,) < 0 for some
%z € [a, b], then f(xo) = O for some x, € [a, b].

Proof. Let T = f([a,b]). Then T is connected by the corollary since [a,b] is con-
nected. But if 0 ¢ 7, then 7 = (R- N T) U (R, N T) is the union of non-empty disjoint

open sets. Here R, is the set of positive real numbers, and R. the set of negative

1S 1 na 128 Mhaa ar
real numbers. Thus 0§ ¢ T; that i is, 0 = f(wo} 10T some X, O

Example 2. Let S™ be the unit sphere in R”*?; that is,
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n+l
S = [(x.l, cvey Xy, ) € RPL ST sz= I:I

i=1

Then S” is connected for »n > 0.
Proof. From Sec. 1.3 we know that R”*! {0} is connected. Let

fi R+t —{0} — 8"

be defined by

- (X X2 Xnay
XiyeaoyXpey) = , y s ey .
f( 1 Xn 1) (\/ijz \/Esz r—-—zsz)
Then f is continuous and surjective; so S" is connected. J

Example 3. Let GL(n,R) and GL(n,C) denote respectively the sets of non-
singular » X n matrices with real and complex entries. Then by stringing out the
rows of each matrix in a line, GL(n, R) may be regarded as a subset of R"% and
hence is a topological space as a subset of R"? with the relative topology. Similarly

2 3] -~ 7 oo -
GL(n, C) C C"° is a topological space, (Note that complex n2-space C"? has the

topology of the product of R? with itself n® times.) Now GL(n, R) is not connected.
For let

A: R*® — r'-{0}

be the determinant function. A is continuous and surjective. Since R!-{0} is not
connected, GL(n, R) is not connected.

Note that this argument fails for GL(r, C) since A: GL(n, C) — C — {0}, and
C ~{0} = R2 —{0} is connected. In fact, as we shall see later, GL(z, C) is connec-
ted.

THEOREM 4. Let S and T be topological spaces, and let f: S — 7 be continuous
and surjective. If S is compact, then so is 7.

Proof. Let U be an open covering of 7. Then [f-1(V); V € v} is an open cover-
ing of S. Since S is compact, there exists a finite subcovering

{2V, ..., UV},

k
Since f is surjective, f(f"'(V})) = V; for j = 1,..., %, and le V; = T because
k =
.Ulf'l(Vj) = §, Thus T is compact, d
J:

COROLLARY 1. ¥ f: S — T is continuous and S is compact, then f(S) is com-
pact.

COROLLARY 2. Let f: § — R! be continuous. H S is compact, then f assumes
its maximum and its minimum.

Proof. By Theorem 4, f(S) is compact, and therefore a closed bounded set in R
The maximum of f is the l.u.b. of f(S). It is a limit point of f(S), hence is in f(S)
because f(S) is closed, Similarly the minimum of f is in f(S). a

Definition. Let S and T be topological spacesand f: S —~ 7. fisa homeomorph-
ism if f is a one-to-one correspondence and both f and f~! are continuous. i

Remark 1. Note that although f-! has been defined as a map 2T —'23, it may, in
the case where f is a one-to-one correspondence, be regarded as a map T — S by
identifying the one-point set {¢} with ¢ and f~'({¢}) with s, where f(s) = ¢.
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Remark 2. The fact that, for a homeomorphism f, both f and f~! are continuous
means that f not only maps points of S to points of 7' in a one-to-one manner, but
f also maps open sets of S to open sets of T in a one-to-one manner. This means
that S and T are topologically the same; that is, any topological property enjoyed
by S is also enjoyed by T and conversely. Thus if f:S — T is a homeomorphism,
then S is connected if and only if 7 is connected; and S is compact if and only if
T is compact,

1.5 PRODUCT SPACES

Definition. Let T be a set and let U and U be two topologies on 7. The topology
q( is said to be weaker than the topology U if U C V. Or equivalently, if the identity
map

I: (T,0) — (T, W)

is continuous,

THEOREM 1. Let S be a set, and let W C 25, Then there exists a weakest topol-
ogy U on S such that W Cu,

Proof. Let

@ = [v; wcvc2S, v a topology on S].

a;é¢becausezsea. Letwu= N 0.

Veaq
Then ‘W Ca, Moreover, U is a topology on S; that is, U satisfies the open set ax-
ioms. For, in fact,
(1) @, S € U because ¢, S € U for each V € Q.

b
(2) ¥U,, ...,Upeu, thenU,, ..., U € 0V for each U € G so ﬂl U; € U for each
b j=

0 € @ and hence M Uj € U,

j=1
(3) If U, €U for each w ¢ W, W some indexing set, then U,, € U for eachwe W
and each v e @ so U Uy, €7 for each U € @ and hence U U, €U
Thus U is a topology on S. U is the weakest topology containing W because if AU
is any other such topology, then U € @ and hence U = N 0V CU. O

Ve
Remark. A basis for the weakest topology on S containing W is

® = [U,N...NUpg; Uj; e w for j=1, ..., k, where k is any positive integer].

(Throw in ¢ and S.)

Exercise. Prove this remark.

Remark. We can regard U in two distinct ways: as the intersection of all topol-
ogies on S containing ‘W and as the topology ‘‘generated’’ by W. This is analogous
to the situation in linear algebra where, given a subset W of a vector space V, the
smallest subspace of V containing W may be regarded either as the intersection of
all subspaces containing W or as the linear space sPanned by W.

THEOREM 2. Let W be an indexing set and let 17,,} wew be topological spaces.
Let S be a set, and let {f,,}»ew be a collection of functions, fy: S — Ty, for each
weW. Then there exists a weakest topology on S such that f,: S — T, is continu-
ous for eachwe W,
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Proof. Letw = [£,;"(Vy); Vi, openin T, we W]. Let U be the weakest topology

such that W C 1. Clearly, any topology on S such that each f,, is continuous must
contain W, U is the weakest such topology. 0
Remark. The set

® = [ N fw'(Vy); W, is a finite subset of W, V,, open in T, for each w e W]
weW,

is a basis for the topology U of Theorem 2.

Dofins s T.at

ha .
-~y v'auovoﬂ. dC L

1Swfwew be a collection of topological spaces. Let P= II Sw
(Cartesian product of sets). Let n,: P — S, be defined for each w ¢ W by

1w(f) = fw), (feP).
(Recall that a point f ¢ II S, is a function
weW

J: w— U 8§,

s TXF
we w

such that f(w) € S,, for each w € W.) The product topology on P is the weakest
topology in which each 7, is continuous. This topology exists by Theorem 2.

Remark. The function 7, (w € W) is projection onto the factor Sw- A basis for
the product topology is

® = [ N 7,2 (U,); W, afinite subset of W and U,
an open set in S,, for each w ¢ W1].

Let us take a closer look at these basic open sets. First, for each w, ¢ W and each
open set Uy C Sy, 1, " (U,,) is the “cylinder” 1 T,, where
weW

Tw = {?}U (tw % u)O)\
U LUwO \w = wO}'

For, in fact, f € My ' (Uyp,) <> Ty (f) € Uy, < f(wo) € Uw, <> f(w) € T, for each
we W< fe I Ty,. Taking finite intersections, it follows easily that

wel

N ﬂ'w_l(Uw) = II @y

weW, weW

where

_ S (w ¢ W)
Qw - {Ut::, (w € W]_)

Thus the basis ® for the topology on P consists of products of open sets, one in
each factor S,,, with all but finitely many of these being the whole space S,,.

Example 1. Let I denote the open interval (0,1). Then I X I 0 nit

i is the open uni
square in R?%, The projection maps are mjs I X I—=1I(j=1,2), defined by

(e, b) =a, w,(a,b) =b."
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For Ui, an open interval in I, the cylinder #7'(U:) is the shaded vertical strip in
Fig. 1.3.

™
\[/ Fig. 1.3

For U,, an open interval in I, n,"'(U,) is the shaded horizontal strip in Fig. 1.4.

Y é‘ﬂ'z

Fig. 1.4

Thus #3'(U:) N #3'(Uz) is the open square in Fig. 1.5. Since the open intervals
form a basis for the topology on I, it follows that the open squares form a basis for
the product topology on I xJI. That is, the product topology on I X[ is the same as
the topology induced on I x [ by the metric space topology on R2

Example 2. The circle S! is a subset of R? so it is a topological space in the
induced topology. The product S! X S! of the circle with itself is a forus (the sur-
face of a tire or doughnut). In the product topology on the torus, a basis for the
open sets is given by ‘‘rectangular patches,’” as in Fig. 1.6, The student should find
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[
.

"
et
n

Fig. 1.6

it instructive to convince himself that the product topology on S! X S!is the same
as the induced topology on the torus considered as a subset of RS.

Example 3. Let R, denote the positive real numbers, and let S” denote the unit
sphere in R®*!, Then there exists a one-to-one correspondence

@: R*1—-{0} — R, x S"

given by
_ X1 _.’f.f.r.:r_;))
‘P(xl""’x"*l) ("x"’ (nxn""’ 12 1i

n+l

where lix Il = (_Zl) xj"")”"’. ¢ is in fact a homeomorphism between R”*! — {0} in the
=

induced topology and R, X S” in the product topology. Here R, and S" are topolo-
gized as subsets of R! and R”*! respectively.
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Example 4. Let J* = [n; n is a positive integer] and let I, = [0, 1/n]. Then
P= 11 I, is a topological space in the product topology. We introduce a metric on

ned*
the point set of P as follows. If ¥ = (1, ..., Xy, ...) @and y = (¥1, ..., ¥y, -..) are in
P, then

p(x, ) (E (Xp— yn)z)"z

n=1

Exercise. Show that the series converges so that p is well-defined. Show that p
is a metric on .P and the metric topology on P is the same as the product topology.

1.6 THE TYCHONOFF THEOREM

One of the most important properties of product spaces is given by the following
theorem. In fact, this theorem is one strong reason why the product topology we
have described in Sec. 1.5 is a good topology for infinite products (better, for ex-
ample, than one where products of infinitely many proper open subsets of the fac-
tors are allowed as basic open sets).

THEOREM 1. (Tychonoff). The product of compact spaces is compact.

Proof. The proof is deferred to the end of Sec. 1.6.

Remark. Let us first consider an application of Theorem 1. Recall from analy-
sis that there are many nice properties enjoyed by continuous real-valued functions
on compact spaces which do not hold when the domain is not compact. For example,
everycontinuous real-valued function ona compact set assumes its maximum. Thus
it is reasonable to inquire when a continuous function, defined on some non-compact
set S, can be extended to a continuous function defined on some compact set C 5 S.

Definition, If f: S ©% Tandif SC C,then a continuous extension g of f is a con-

tinuous map g: C — T, such that g(s) = f(s), s € S; that is, glg = f.

Example 1. Let S = (0,1)], the half-open interval. Let S: S — R! be defined by
f(x) = sin x for x € (0, 1]. Although S is not compact, it is clear that f can be ex-
tended to a continuous function on the compact set [0, 1], the closed interval, by
setting f(0) = 0.

Example 2. Let S = (0, 1] as before. Now let f: S — R! be defined by
f(x) =sin1/x for x €8,

Once again, f is a continuous function on the non-compact set S, but now it is clear
that f cannot be extended to a continuous function on the compact set [0, 1]; that is,
we cannot, by adding one point, obtain a compact space on which f can be contin-
uously extended. But it turns out that if we ‘‘add’’ sufficiently many points, we can
obtain a compact space P; a continuous function ¢: S —P (¢ will in fact turn out to
be a homeomorphism onto ¢(S) C P); and a continuous function f: P —R! such that

(1) @(S) is dense in P; that is, ¢(S) = P
(2) foo=1

Thus we replace S by a homeomorphic copy ¢(S), carry f over to (S} through the
homeomorphism ¢!, and then we can extend to a continuous function on a co pact
space P D ¢(S).

We construct P as follows. Let I=[-1,1], and let P, = [0, 1] X I, the closed
square.
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Let ¢: S — P, be defined by
@(x) = (x, sin 1/x)  (x € (0, 1]).
(Note that if f: [0, 1] x I — R* is defined by
flx, 9 =9,
then fo ¢ = f.) Now P, is compact, but ?’T(S‘T # P,. However, if we gset
P = ¢(S) = the closure of ¢(S) in P,,
then ¢: S — P. Now P, ¢, and the restriction of fto P have the required properties.
In summary, we have replaced (0, 1] by the graph ¢(S) of sin 1/x (a homeomor-

phic copy of (0, 1]. See Fig. 1.7. We have carried the function f over to ¢(S)

through the homeomorphism ¢™. Then we have extended our function to the compact
set

o} x [~1, 1)) U ([(x, sin 1/x); x € (0, 1]).

Fig. 1.7

B L LR L

I
ot

(1%
L
—

Another way to look at the result of this construction is the following. Let us

take the set ¢(S) and identify it with S through the homeomorphism ¢. Then the set
P is identified with the set (Fig. 1.8) :

B = (o} x[~1,1]) u((o, 1] x {o}).

~
Ty Frvenndzoane £

The function f is now a continuous function on P that agrees with f on (0, 1] x {0}.
However, note that the topology on P is not the induced topology from R?; it is the
topology of P carried over through the identification S —@(S). Thus, for example,

each point of {0} x [-1, 1] is a limit point of the set (0, 1] x {o}.
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Fig. 1.8

Example 2 illustrates the main points in the statement and proof of the following
theorem, which is a consequence of the Tychonoff theorem.

THEOREM 2, Let W be a collection of continuous real-valued (or complex-
valued) functions on a topological Space S with the property that each w ¢ W is a
bounded function; that is, w(S) C I,,, where I, is, for each w ¢ W, some closed
bounded interval (or ball). Then there exists a compact space P; a continuous func-
tion ¢: S~ P; and a family ¥ of continuous real-valued (complex-valued) functions

on P such that
(1) ¢(S) = P
(2) [fog; fes] = w.
If, in addition, W separates points of S (that is, if, for each s, £ s, € S, there exists

a w ¢ W such that w(s,) # w(s,)), then ¢ i8 injective.
Proof. Let P, = 1l I,. Since each I, is compact, P, is compact by the Tychonoff

nweW
theorem. Let ¢: S — P, be defined by
pls)w) = wis).

Then ¢ is continuous. To prove this it suffices to show that inverse images of basic
open sets are open, because each open set is a union of such sets, Suppose U is a
basic open set in P,. Then

U= N m, (V)

weW,
for some finite subset W, C W, where V,, is open in I, for each w ¢ W,. Thus
¢rU) = [s €5; ols) e N myt (V)]

= [s €S; @ls)w) € V,, for eachwe W,]
= [s € S; w(s) e V, for each w € W]
= N w(V,).

weWw,
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Thus, since each w € W is continuous, ¢-!(U/) is a finite intersection of open sets.
Hence ¢™'(U) is open, and ¢ is continuous.

Now let P = 5% P is compact, for it is a closed subset of a compact .
Then ¢: S — P is continuous, where P has the relative pology in P,, because
¢: S — P, is continuous., Moreover, from the definition of @, it is clear that

Ty ° @(s) = w(s)
for each s € S and each w € W, Thus, if we define
F=[n,lp; we W],

then
[f°cp;feff]=W.

It remains only to prove that if W Separates points, then ¢ is injective. But if,
for each s, # s,€S, there exists w ¢ W such that w(s,) # w(s,), then

p(s)w) = w(s) # wis,) = @(s,)(w)

for that w, so ¢(s)) # ¢(s;). 0O
Remark. In Example 2 above, W ={f,, f,} where f,(x) = sin 1/x and Sx) = x.
The function f, was added to obtain separation of points.

Proof of Theorem 1. Let § bea collection of closed sets in P =" II Sw, Where S,
e W
is compact for each w ¢ W. Suppose § has the following property:
(o) Intersections of finitely many elements of § are always non- empty.
To prove that P is compact it suffices, by Theorem 3, Sec. 1.3, to show that

I_ﬂ ¥ # @ for each such §.
€ F

Now even though each collection

Fo = 1,(F); Fe ]

is a collection of closed sets in the compact space S, with property (a) (and hence
each I_ﬂ Tw(F) # ¢)—one cannot hope to find a point in N F merely by selecting
e F . Fe &
a point x such that 7,,(x) € Fﬂ Tw(F) for each we W. For example, if P is a closed
€F

square in R?, let ¥ be the following collection of pairs of closed balls about two
given points P, = (x,, v,) and P, = (x,, y,) € P:

F = [(Bpl(r) U Bp, (7)) N P; r € RY,
Then the point P; = (x,, ¥,) has the property that
m,(Py) € ng m,(F)
and

T2 (Py) € FGEF m,(F)

but yet P, ¢ Fﬂﬁ F,
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To remedy this situation we shall enlarge ¥ by adding enough sets to eliminate
¢“poor choices.”” Let A = [G; G is a collection of subsets of P with property (o) and
F C G]. Note that § € A. Furthermore, A is partially ordered by inclusion; that is,
a partial ordering relation R in A X A is given by

(G, §.) € R<=> G, C G.,.

Now {EF} C A is a simply ordered subset of A consisting of one point, since § C §. By
the max1mum pr1nc1p1e (see Sec.1.1), there exists a maximal s1mp1y ordered A, CA

such that {F} C A,. Leti= gU §. Then F CX. We claim 3€ A,. Note urst that
€ 1

¥ € A; that is, 3 has property (a). For, if H,..., Hp € X, then H; € QJ for some
G; € A (7 = 1, k) Since A, is 51mply ordered there ex1sts a j, such that
g] C g] for all ] = 1 , . Therefore, all H € 9]0 and, since 9]0 has property

(a), ﬂ H; # @. Thus 3¢ € A.

But in fact, 3 € A,. For if I £ A, consider the set A, = A, U{3sc}. Then Ayisa
simply ordered subset of A containing {5} and A < A, ThlS contrad1cts the max1—
mality of A,.

Note that 3¢ has the following property:

(B) f KC Pand K | H# ¢ for all H € X, then K € 3C.

For otherwise X = 3¢ U{K} satisfies property (a); hence X € A. Thus A, U{x}is a
simply ordered subset of A (X D G for each § € A,) containing A |, which contradlcts
the maximality of A .

Now, for each w € W, let

3, = [7,(H); Hex],

Theni,, is, for each w € W, a collection of closed sets in S,,, satisfying property
(a) because € satisfies property (a). By compactness of S,,,

Ty = ng Tw(H) # @

ists f € Psuchthat f(w)e N m,(H) for eachw € W.
He X
It remains only to show that f ¢ N F, To prove this it suffices to show that if

FeG
V is an open set in P containing f, then V € 3. For if VN H # ¢ for all H € X, then
in particular V N F 3 @ for all F € §. That this is true for each open V containing
f implies that f € F; that is, f ¢ F since F is closed for each F € §. Thus f € FI']=F F,
€

proving the theorem.

So suppose Vis an open set containing f, Since V is a union of basis elements,
fe V C v for some basis element V. Since V is a basis element,

V=0 7,V

weW,

for some finite subset W, C W, where V), is, for each w € W,, an open set in Sp-
Since f € V Flw) = Ww\f) € V, for each w € W,. Furthermore, Fiw) enwuﬂ for
each w ¢ W and each H € X, by our choice of f; that is, for each w € W, and H € X,
either f(w) € m,,(H) or f(w) is a limit point of 7, (H). In either case it follows that
Vi N 7,H) # ¢ for each w e W,, where H € 3¢. Therefore, m,, '(V,) N H # ¢ for
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allw ¢ W,, H € k. By property (8), 7,,”(V,,) € % for each w € W,.
Now by property {a) for any H ¢ %,

VNHD ( N u,,',-"(vw)) NH=g.

ey

Hence, again by property (8), Ve3. 0O
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In Chap. I we dealt with topological concepts where it was not particularly im-
portant whether open sets were plentiful or scarce, However, the topological spaces
usually encountered in application have plenty of open sets, almost always enough
to ‘‘separate’’ points, and often encugh to ‘“separate’’ closed sets.

Definitions. Let S be a topological space.

S is a T, space if, given any pair of distinct points, s, s, € S, there exists an
open set U in S containing one of these but not the other.

S is T, space if, whenever s, :é s, there exists an open set U, such that S, € U

1s a halP Bt st SR ESRe T S T gy TTEYE e memmm e A §
buts, £ U,, and there exists an open set U, such thats, ¢ U, but s, pf U,
S is a T, space, or Hausdorff space, 1f whenever s , # S, there exist open sets

U; with s € U; (j=1,2) such that U, N U, = @; that 1s U, and U, are disjoint.

Remark Note that every T, space is a T, space and every T, space is a T,
space. An example of a T, space which is not a T, space is given by

S = {s,, s,} = a set consisting of two points,

The topology on SisU = {¢, S, {s,}.
Exercise. Find a T, space which is not T,
Remark. Any metric space is a Hausdorff space. For if s, # s,, let

a=pls, s, >0,

and take U_ B, (a/?\ (a_l 2).

THEOREM 1. S isa T, Space if and only if each point of S is closed as a subset
of S,

Proof. Suppose S is T,. Let F = {s,} and consider F’. Since § is T),, there ex-
ists about each point s € F’ anopen set Ug such that s, ¢ Ug, thatis, such that
Ug C F’. Thus F' = UF' U is open in S, and hence F is closed.

Conversely, suppose points of S are closed. Let U, = {s,}’ andlet U, = {s,}’ .
Then if s, # 5, s; € U; and U; are open, 0

THEOREM 2. Every compact subset of a Hausdorff space is closed.

Proof. Let C be a compact subset of S. To show that C' is open, and hence C is
closed, it suffices to show that for each s £ C there exists an open set Ug contain-
ing s with Ug N C = @. Since S is Hausdorff, there exists for each c € C disjoint
open sets U, and Vesuchthat s eUg, c € Vc. The collection {V, N C}.¢c is then
an open covering of C. (These are open sets in the relative topology) By com-
pactness of C there exists a finite subcovering; that is, there exists a finite subset
C,cCsuchthat § (Vo NC)=C. ThusCC U V.. Let Ug= [ U;. Then Ugis

ceC, ceC,

open, s €U, and U, N Cc U, N (U V,.)=@. This last equality holds because if
’ s s s cec, | €

23
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telUg N (“UCx Ve), then t €U, for all c € C, and t¢€ Ve, for some ¢, € C; hence

teUg, N Ve =@, which is impossible. O

Remark. We have actually shown, in the course of proving Theorem 2, that if C
is a compact subset of a Hausdorff space S and if s £ C, then there exist disjoint
open sets U, and U, such that s € U, and C C U,. We can, in fact, prove more.

THEOREM 3. Let C, and C, be disjoint compact subsets of a Hausdorff space S.
Then there exist disjoint open sets U; such that C; cU; (7=1,2).

Proof. For each s € C, there exist, according to the remark above, disjoint open
sets Ug and V, such that s € Ug and C,C V. The collection {Ug N C,}sec. is an
open covering of C,. Since C, is compact, there exists a finite subset D, C dl such
that {Ug N C,}sep, actually cover C; that is, C, C U Us. Let U= U Ug and

seb

Up= N Vg. ThenC,C U, and U, N U, = @ since each U, N Ve = . N

sel),

THEOREM 4. Let S be a compact space, and let 7 be Hausdorff. Then any con-
tinuous one-to-one correspondence f: S~ T is a homeomorphism.

Proof. We must show that f~': T — S is continuous; that is, if U is open in S,
then f(U) = (f™')"*(U) must be open in T. By considering complements, this is the
same as proving that if F is closed in S, then f(F) is closed in 7. But by Theorem
4, Sec. 1.3, Fis compact. Thus, by Theorem 4, Sec. 1.4, f(F) is compact. Hence
J(F) is closed by Theorem 2 above. g

Examples. That both assumptions are necessary in Theorem 4 is illustrated by
the following two examples.

(1) S = R' with the discrete topology (S is not compact), 7T = R! with the usual

topology.

(2) S = {s,, s,} with the discrete topology (S is compact). T = {s,, s,} with
topology U = { @, S, {s,}} (T is not Hausdorff).
J: S — T = the identity map in both examples.

Remark. Theorem 3 above shows that in a Hausdorff space there are enough
open sets to separate compact sets. Sometimes we need to be able to separate
closed sets. This requires a stronger axiom.

Definitions. A topological space S is regular (or T,) if

(1) S is T, and

(2) for every closed set F in S an
and U, such that s ¢ U, and FC U,

A topological space S is normal (or T,) if

(1) Sis T, and

(2) for every pair of disjoint closed sets F; in S, there exist disjoint open sets

U; such that F; C U; (j =1, 2).

Remark. Notice that every T} space (¢ = 0, 1,..., 4) is a T; space for each
j<k.

Example. We shall construct a space which is Hausdorff, but not regular. Let
S =[x=(x,x,) € R% x,= 0]; that is, S is the ‘“‘closed’’ upper half-plane. We de-
fine a topology on S by giving it a basis ® as follows. Let R! denote the x, axis
in R®, Let S, = S— R!, so S, is the ‘‘open’’ upper half-plane. Let

d each

s ¢

®, = [By(r); x € S, and 7 < x,, where x = (x, x,)]
and

Bz = [(By(r) N S.) U {x}; x € R'],

where the balls B,(r) are defined relative to the usual metric on R2. Now let
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® = ®, U®,. Verification that ® is a basis for a topology on S is left to the student.
The basis elements in ® are illustrated in Fig. 2.1.

7))
N

>

Fig. 2.1

Note that the topology on S is not the topology induced from the usual topology on
R?, Now it is easy to check that S is 7,. Hence points are closed. Furthermore,
the set R! —{0} is closed in S since its complement S, U {0} is clearly open. How-
ever, the closed set R! — {0} and the point 0 cannot be separated by open sets: if
U, is open and 0 € U,, then some basis element (B,(*) N S,) U {0} is contained in U,
(for some real number 7). Thus any open set containing (»/2, 0) must intersect U,.
Hence S is not regular. (We shall later give an example of a regular space which
is not normal.)

Remark. Every compact Hausdorff space is normal. This is a consequence of
Theorem 3 by the fact that closed s@absets of a compact space are compact.

Remark. The open sets U, and U, whose existence is asserted in the definition
of a regular space (or of a normal space) might conceivably have the property that
their boundaries intersect; that is, U, N U, might be non-empty. According to the
following two theorems (Theorems 5 and 6), it is possible to choose our sets Uj
more judiciously.

THEOREM 5. Let S be a regular topological space, Suppose F is closed in S and
s £ F, Then there exist open sets U, and U, in S such that s e U,, F C U,, and
U,nNu, = 9.

Proof. By the definition of regularity, there exist disjoint open sets V, and V,
with s € V, and F C V,. Consider the set V,. It is closed in S, and s ¢ V;. There-
fore, since S is regular, there exist disjoint open sets W, and W, such that s € W,
and V; C W, Let U, = W, and U, = V,, Then s € U,, and FC U,. Moreover,

Nnr - A | R L Taray
1 1 Ug = ) UcLaupc

ST
1

U, = W,C W] =W Cv,
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Ez = ‘_/2 C T/:;1 = V’l
so that

U,nNu,cv,Nv! =¢. 0O

THEOREM 6. Let S be a normal topological space. Suppose F, and F, are closed
subsets of S. Then there exist open sets U, and U, in S such that F, c U, F, C U,,
and U, N U, = @.

Proof. Similar to the proof of "‘heorem 5.

THEOREM 7. Let (S, p) be a metric space. Then S, with the associated metric
topology, is normal.

Proof. We have already seen that S is Hausdorff, hence T,. For C any subset of
S, we consider the function dp: S — R! defined by

dcls) = g.Lb. {pls, o)},

where g.1.b. denotes greatest lower bound. Now, for F, and F, disjoint closed sets
inS. letd = di%and 4. = d= _ and let
ass g AW wl e 1 :‘—ll W2 “rz’ A W

U, = [s € S d,(s) — d,s) < 0],

U, [s € S; d(s) — dy(s) > 0].

Then U, N U, = . We shall show that F, C U,, F,C U, and that U, and U, are
open, thereby proving that S is normal.

First, suppose s € F,. Then d,(s) = 0. So to prove that s € U, we must show
that dz(s) > 0. But if dz(s) = 0, then for every € > 0 there exists f, €‘F, such that
f. € Bg(c). Hence s € F, = F,, contradicting the fact that F, N F, = .

Thus F,C U,. Similarly, F2C U,. It now remains only to show that U, and U,
are open. a

To show that U, is open, it suffices to show that each s, € U, is conta.med ina
ball which is contained in U,. (The proof for U, is identical.) Leta = d{s,) — d,(s,).
Then a > 0. We prove that le (@/3) € U,. In fact, let s € By %a/3) Then
pls, s,) < a/3, and we must show that d (s) — d,(s) < 0. But

dl(S) - dz(s)

H

[d]_(s) - dl(sl).] + [d]_(s 1) - dz(sl)] + [dz(s 1) - dz(s)]
[d,(s) — dy(s )] —a + [dy(s) — dy(s)].

Now, for each f, € F,,

P(S,f1)<P(S,S)+p(S1;f1)< +p(81, 1.

Taking the g.1.b. over all f, € F,,

dyfs) = § +dys))
or

d(s) —d,s,) =

Wi

Similarly, for each f, € F,,

p(sy, f2) = pls,, 8) + pls, f,) < S+ (s, f,)
3
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)
dyfs,) = 5 + dy(s)
or
dy(s)) — dy(s) = ‘—;-_
Thus
d,(s) — dys) = %—a+%<0,

so s € U; thatis, Bg (a/3) C U,, and U, is open, as claimed. [

2.2 SEPARATION BY CONTINUOUS FUNCTIONS

If S is a topological space in which the only open sets are @ and S, then one sees
easily that the only continuous real-valued functions on S are the constant functions.
On the other hand, if the space is such that, for every pair s,, s, of distinct points
in S, there exists a continuous real-valued function on S with f(s,) # f(s,), then S
is Hausdorff. (Take U, and U, disjoint open sets in R! with f(s,) € U, and f(s,) € Uy
then s; € f1(U;) (=1, 2), and f7*(U,) N (U, = @.) Thus the existence of con-
tinuous real-valued functions on a space is related to the separation axiom satisfied
by the space. Theorem 1 and the following remark characterize normality in these
terms.

THEOREM 1. (Urysohn’s Lemma) Let A, and A4, be disjoint closed subsets of a
normal space S. Then there exists a continuous function f: $ — [0, 1] such that
flA) = 0 (that is, f(s) =0 for all s € A;) and f(4)) = 1,

Remark. Conversely, if a P, space S has the property that for each pair Ao, A,
of disjoint closed sets there exists such a function, then S is normal. For let
Uy=f(0, 1/2)) and U, = f-((1/2, 1]). Then A,C U, A, C U, and U, N U, = @.

Proof. Given A, and A,, we construct f by first constructing approximations
U, to the sets f~1([0, »)) forallr = k/2" (B =1,...,2"%: n=1,2,...).

First, by normality, there exist disjoint open sets U,, and V,, such that
A, CU,pand A, CV,,. Then we have

A, CU,,CV/,CAL
Second, consider the disjoint closed sets A, and U] ,. By normality, there exist
disjoint open sets U,, and V,, such that A, C U, , and U], CV,,,. The sets V|,
and A, are disjoint closed sets, so, by normality again, there exist disjoint open
sets U, and V,, such that V,,, C Uy, and A, C V,,. Now we have

Ao - U1/4 c Vl.’/‘l - Ul/z c Vl’/z - U3/4 - V3’/4 c Ai-

Continuing by induction, we obtain open sets U, and V,., defined for each dyadic
¥ = k/2", with this property: for each =,

Ao - U1/2"l - V;/zn = Uz/zn - Vz'/an .. C U(zn— 1y/2n = Wzrn— 1y/2n - A;.'
In particular, for each pair », and 7, of dyadics with », < 7,

’ ’
Uy CVy CU, CVi.
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Now we define f: S — [0, 1] by

(g.1.b.[r; s e U] if s eUU,
f(s)zt if s €U U,.
s

Since A,C U, for all », f(4y) = 0. Similarly, since U, C A] for all 7, U, nNAa-=¢
for all » and f(A4 ) = 1. Thus to complete the proof we need only verify that f is
continuous. To-do so, it suffices to show that for some basis ® of the open sets in
[0, 1], f~*(U) is open for each U € ®. Let us take as basis:

® = [[0, a), (c, d), (b,1]; a,b,c,d are irrational].

Now, since (¢, d) = [0, d) N (c, 1], and hence f'c, d) = f'[0, @) N f'((c, 1],

it suffices to show that f~'([0, d)) and f (¢, 1]) are open for all irrationals ¢ and 4.

But f Y[0, d)) is open because f ([0, d)) = U[ Uy. For, if s € U, for some
Y<c

ro < d, then f(s) = 7o < d, s0 s € f ([0, d)). Conversely, if s e f7Y([0, @), then
f(s) < d, so there exists a dyadic 7¢ < d such that s € Uy, © u u,.

red
Similarly, f *((c, 1]) is open because f '((c, 1= U V,. For if s € Vy, for some

vo>c, then s £ Vy, 50 s £ Uy, and f(s) = 7, >c. Conversely, if s € (e, 1)),
then s ¢ U, for some 7, >c. Since the dyadics are dense in [0, 1], there exists a
dyadic 7, with ¢ < », < r,, Now s ¢ U, implies s £ Vy < U,; that is,
seV, © UV, O

COROLLARY. Let A4, and A, be disjoint closed subsets of a normal space S.
Then there exists a continuous function g: S —[a, b] with g(4)) = a and g(4)) = b.

Proof. Let f: S — {0, 1] be the function given by Theorem 1. Define g = hoef
where k: [0, 1] — [a, b] is defined by

x)=a+®-a)x (xelo1]). O

Remark. Theorem 1 may be rephrased in terms of continuous extensions as fol-
lows.

Let S be a normal space and let A, and A, be closed subsets of 5. Let
S, = A, UA, and let f: S, — [0, 1] be defined by f(4y) = 0, f(4)) = 1. Then there
exists a continuous extension g of f to all of S.

Note that A, and A, are each both open and closed in S,: they are open because
S is normal. Hence the function f: S, — [0, 1] is continuous.

Remark. Theorem 2 of Sec. 1.6 was also an extension theorem. Essentially it
says that any family of continuous bounded real-valued or complex-valued functions
on a topological space S canbe extended to a family of continuous functions on a
compact space containing S.

Example. One should not expect that, givenany S, C S and f: S, — T, there ex-
ists a continuous extension of f to S. For example, let S be the disc

%]
]

[(x,y) € R% x%+ y2=1],

7]
iy
1}

[(x, ) € R% x%+ y2=1].
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Let T = §,, and let f: S, — T be the identity map. Then there exists no extension
gof ftoall of S. (This fact will later be proved rigorously when we have more
machinery at our disposal.)

Intuitively, we can see why no extension exists: If ¢ were a continuous extension,
consider the behaviour of g on the concentric circles S, of radius » (0 <7 =< 1).
Since g is continuous, nearby points are mapped into nearby points, Thus, any point
s of S,, forr close to 1, must be mapped close to the point s/» on S,. Letting s
move around S,, we see that g(s) must move around S,, and g must map S, onto
S,. Now, as » gets smaller, the same argument still shows that g must map S, onto
S, for all » > 0, But, for small enough 7, the center 0 is close to every point on S,..
Hence g(0) must be close to every point in the image of S,; that is, g(0) must be
close to every point of S,. Of course, this is impossible.

Remavrk. The question When does a function defined on a subset of topological
space admii an extension to the whole space? is one of the fundamental questions of
topology. It is this question which motivates much of the machinery developed in
algebraic topology. However, for real-valued functions on normal spaces, we can
already prove the following.

THEOREM 2. (Tietze Extension Theorem) Let S, be a closed subset of a normal
space S, and let f: S, —[—1, 1] be continuous. Then f has a continuous extension
g to all of S,

Proof. Let A, = f~*([1/3,1]) and A_, = f7*([-1,-1/3]). Then A, and A_, are dis-
joint closed subsets of S,. Since S, is closed, A, and A_, are closed in S. By
Urysohn’s lemma, there exists a continuous function f;: S — [ 1/3, 1/3] such that
filA ;) = £1/3. (We are actually using here the corollary to Theorem 1 above.)
Then, for all s € §,,

2
|f(s)— fils)] = 3
Next, consider the function f — f,: S, —([-2/3,2/3]. Let A, = (f— f)*([2/9, 2/3)})
and A, = (f— f)*([-2/3,-2/9]). Then A, and A_, are disjoint closed subsets of S.

By Urysohn’s lemma, there exists a continuous function f,: S — [-2/9, 2/9] such
that f,(4,) = 2/9 and f,(4_,) = ~2/9. Now, for alls € S,

£

P Y 4
|f(s) — fils) — fuls)| = g

Continuing by induction, we construct functions f, for all positive integers =,

such that
__zn— 1 2?’!— 1
Jpt S — [ 37 3nj|

and furthermore, for all s € §,,

76 = L6 = (2

We may regard the f, as functions f,: S —[-1, 1] such that |f,(s)| = 27-1/3",

By the Weierstrass M-test, the series 2, f, converges uniformly to a continuous
n=1

function g: S —[-1, 1]. (We leave to the student the verification that these conver-
gence properties, familiar from analysis on R!, are also valid in the more general
setting considered here.) Since
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H=o

/)~ g6)] = lim| £(6) = 5 fe)| = lim (2)" 0
N+ le

for all s € S, we see that g(s) = f(s) on S,. O

2.3 MORE SEPARABILITY

Definition. A topological space S is locally compact if, for each s € S, there ex-
ists an open set Uy with s € Uy such that U is compact.
Remark. A finite product of locally compact spaces is locally compact. For, in
fact, if
s =(s,, ...,Sk)€§1>< XSkj
Y
(2-fold product)

then there exist open sets U; C S; (j=1, ..., k) with s; ¢ U; and U; compact. Thus

selUix..xUpand U X ... X Uy, = Up X ... X Up is compact. Note that this
argument fails in the case of infinite products since sets of the form N U,, (U,

wew

open in S,,) are in general not open in IIW Sw.
we
Definition. Let S be a T, space, Let » denote a point not in S. The 1-point com-
pactification of S is the topological space S obtained as follows. As a point set,
§=50U{o}. Let Ug denote the topology on S. Let

v = [VvC8; V' isa compact closed subset of S]

= [§'— F; F is compact and closed in S].
A basis for the topology on S is then
(Bg’ = ‘u.s U,

Exercise. We leave to the student the verification that &g is in fact a basis for a
topology on S. Note that the relative topology on S as a subset of S is the same as
the original topology on S,

Example 1. Let S = R*. Then §= R! U{ =}, where an open set about © is a com-
plement of a compact subset of R!. In particular, given an open set U containing <,
there exists a real number My > 0 such that |x| > My implies x € U. S is homeo-
morphic to the circle S%,

Exercise. Why is the last statement true?

Example 2. Let S = R®, Then §= R? U {«}, where the open sets about = are
complements of compact sets in R%, In particular, each open set containing « must
contain all points in the exterior of some sufficiently large ball. § is homeomorphic
to the 2-sphere S, In fact, a homeomorphism ¢: $2 — § is given by stereographic
projection (Fig. 2.2), We regard the sphere as sitting on the xy plane with its south
pole at the origin. Given a point s € S? ¢(s) is the intersection with the xy plane
(R?) of the line through the north pole of S% and s, It is clear that ¢ is a one-to-one
correspondence mapping S°— {north pole} onto R* and mapping the north pole to «.
That ¢ is, in fact, a homeomorphism is easily checked.

Example 3. Let S = R", Then Sis homeomorphic to the n-sphere S”, A homeo-
morphism is given, as in Example 2, by stereographic projection.

Remark. I S is compact, then {=} is open in S, Thus the 1-point compactifica-
tion is, in this case, uninteresting.



MORE SEPARABILITY 31

N
> w

Fig. 2.2 / *(s)

THEOREM 1., Let S be a T, space. Then the 1-point compactification S of S is
compact and 7,. Furthermore, S is Hausdorff if and only if S is Hausdorff and lo-
cally compact.

Proof. § is T\, Forif s,and s, € S, then appropriate separating open sets U,
and U, exist in S (since S 1s T,), and U and U, are also open in S s, eS8 and
S;=%, let U, = S and U, = {s, F . Then U, is open in § since it is open in S, and
U, is open in 'S since it is the complement of the compact closed set {s,}. ({s o is

closed because Sis T).) Clearly s, € U, s, £ U,, s, € U,,and s, ¢ U,, Thus S is
T.

= 1*
S is compact. For let {Uw}w€W be an open covering of S. Then« ¢ Uy, for
some w, € W. Claim: U, is compactin S. For U, wo = U V, where ®, is some

subset of the basis &% for the topology on S. Since = ¢ Uw o at least one element in
®, is of the form F’, where F is a closed compact subset of S. Thus

? - 4 .
Uwo B VP(B, Ve R

that is, U;v is a closed subset of the compact set F, hence U, , 1S compact in S, as
clalmed

Since {Uw}weW covers S {Uw n Uwo}weW-{w } must be a covering of U, by
open sets in U, 0. Since U w, is compact, there exists a finite subcollectmn

{le n U;,,o, . ﬂ Uy } which covers U, . Hence the finite collection Uy ,

Uwys« vy Uy, must cover S. Thus S is compact.

Now assume S is Hausdorff. We must verify that S is Hausdorff and locally
compact. S is certainly Hausdorff, because every subset of a Hausdorff space is
Hausdorff in the relative topology. S is locally compact because, for each s € S,

there exist disjoint open sets U, and U, in § such that s € U, and © € U, (S is
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Hausdorff), Now U, is compact (by the above argument that shows U, compact),
and U, C U, = U,, so U, is compact by Theorem 4, Sec. 1.3. o

Conversely, suppose S is Hausdorff and locally compact. Let s,, s, € S. If both
s,and s, € S, then there exist disjoint open sets U, and U, in S such that s, € U,
and s, € U,. But U, and U, are also open in S, so s, and s, can be separated in §.
If s, € Sand s, ==, then, since S is locally compact, there exists an open set U in
S such that s, € U and U is compact (and closed). Then V= U’ is open in S; and
s,€U, s, e V,and U N V=¢. Thus S is Hausdorff. [J

Definition. A topological space S is completely regular if

(1) it is T,, and

(2) given any s € S and any closed set C with s ¢ C, there exists a continuous

function f: S — [0, 1] such that f(s) = 0 and £(C) = 1.

Remark. Every normal space is completely regular (by Urysohn’s lemma) and
every completely regular space is regular. The latter is true because if C is closed
in a completely regular space S and s ¢ C, then

v, - 5|0, z) o U,- (3. 1)

separate s and C, where f is a function such that f(s) = 0 and f(C) = 1.

THEOREM 2. Every subset of a completely regular space i8 completely regular
(in the relative topology).

Proof. Trivially, every subset of a T, space is 7,. Suppose T C S. Let C be
closed in T, and t € T, t£ C. Then C = T N F for some closed set F in S. Fur-
thermore, { ¢ F, for otherwise € T N F = C, Since S is completely regular, there
exists a continuous function f: S ~ [0, 1] such that f(f) = 0 and f(F) = 1, The re-
striction of f to T is continuous and has the required properties. a

THEOREM 3. Every locally compact Hausdorff space is completely regular,

Proof. Let S be locally compact Hausdorff. Then the 1-point compactification
§ of S is compact and Hausdorff by Theorem 1, hence normal. In particular, S is
compiletely regular; hence so is S by Theorem 2. O

Remark. We have seen that certain separation properties of a topological space
imply certain others. These implications are gathered together in the following dia-
gram:

compact Hausdorff => locally compact Hausdorff
normal => completely regular => regular => Hausdorff = T, = T,.

metric

By Theorem 2, every subset of a completely regular space is completely regular.
Since an arbitrary product of compact spaces is compact (Tychonoff theorem) and
an arbitrary product of Hausdorff spaces is Hausdorff, we see that an arbitrary
product of closed intervals is compact Hausdorff, hence completely regular. Thus
every subset of an arbitrary product of closed intervals is completely regular.
Theorem 4 below shows that all completely regular spaces may be regarded as such
Subsets.

THEOREM 4. Every completely regular space is homeomorphic to a subset of a
product of closed intervals,

Proof. We proceed as in the proof of Theorem 2, Sec. 1.6. Let S be completely
regular. Let W be the set of all continuous functions mapping S into the closed in-
terval [0, 1]. For each w € W, let I, = [0, 1], so that {I,},,¢w is a collection of
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closed intervals. Let P= II I,, and let ¢: S — P be defined by

weW

els)w) = wls) (wew),

We shall show that ¢ is a homeomorphism onto ¢(S).

It has already been shown in the proof of Theorem 2, Sec. 1.6, that ¢ is contin-
uous and injective. (Note that since S is completely regular, W separates points and
closed sets. In particular, since points are closed, W separates points.) Thus we
need only verify that ¢! is continuous; that is, that ¢ maps open sets of S onto open
sets of ¢(S).

Let U be open in S. It suffices to show that for each s € U, there exists an open
set Vin ¢(S) with ¢(s) € V C ¢(U). For then ¢(U) is the union of these open sets.
So suppose s € U, By complete regularity of S, there exists a w ¢ W such that
w(s) = 0and w(U’) = 1. Then m, ([0, 1)) is open in P, where m,,: P — I, is projec-
tion. Let V = m,72([0, 1)) N ¢(S). Then V is open in ¢(S). ¢(s) € V because
To(@(8)) = @(s){w) = w(s) = 0. Moreover, VC ¢(U) because if f € V, then f = ¢(i)
for some £ € S, and m,,(f) € [0, 1); that is, 1 > m, () = 7, (@(#) = @(&)(w) = w(2); that
is, ¢t e w{[0, 1)) C U, and f = ¢(Z) € ¢(U). d

Remark. Recall that when we first defined a topological space, we were motiva-
ted by properties of more familiar spaces, namely metric spaces. Theorem 4 shows
that under the assumption of complete regularity, we are back on familiar ground,
We understand closed intervals quite thoroughly, and we have a pretty good feeling
for the operation of taking products of spaces. Now we find that all topological
spaces satisfying the axiom of complete regularity are subsetsof products of closed
intervals. However, we are not yet back into the realm of metric spaces, as
Theorem 5 will show.

Definition. A topological space S is first countable if, for each point s € S, there
exists a countable collection {Ug(n)},e{positive integers} Of open sets containing s
such that if U is any open set containing s, then there exists an »# such that
Ugln) c U.

Remark. Let (S, p) be a metric space. Then S is first countable because the
balls { B;(1/n)} have the required property. o

THEOREM 5. For each real number 7, let I, = [0, 1}. Let P= 1 I,. Then P

is not first countable. In particular, P is not metrizable; that is, there exists no
metric p on P such that the metric topology is the product topology on P,

Proof. Let p € P be such that p(») = 0 for all » € R, Suppose there exists a
countable collection {V,,} of open sets containing p such that for each open set U
containing p, V,, C U for some n. We shall show that this assumption leads to a
contradiction, thereby proving that P is not first countable. N N

Now each V, is open in P and hence contains a basis element V,, with p € Vy. In
particular, for each open set U containing p, there exists an = such that vV, cU.
But, for each =, there exists a finite subset F, of R* such that

T _ - I'r (r ﬁl Fn)
V, = 11 T,, where Ty,r = {Un,'r (r € Fy)
and U, , is, for each » € F,, an open set in /,, Let C = f_:]l F,. Then C isacount-

able union of finite sets, and hence is countable. In particular, C # R!, so there
exists an v, € R* — C, and T, , = I, for each =; that is, the 7, -coordinate is
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unrestricted in each V,. Thus, if Uoi I,, then U = I S, where

reR!

S _{Ir (r # vy

v - Uy, (r = r,)

is open in P, and U contains no V. a

2,4 COMPLETE METRIC SPACES

Definitions. Let (S, p) be a metric space, Recall that a sequence {Sn} of points
in S converges if there exists an s € S such that lim p(s,, s) = 0. {s,} is a Cauchy

sequence if lim p(s,, s,,) = 0. S is called a complete metric space if every Cauchy
m, n—o

sequence converges.

Let (S,, p,) and (S,, p,) be two metric spaces. An isometric embedding of S, into
S,isamap f: S, — S, such that p,(f(s), f(£)) = p,(s, ) for all s, € S,. In par-
ticular, if f: S, — S, is an isometric embedding, then f maps S, homeomorphically
onto f(S,), where S, and S, are provided with the metric topology. For any metric
space (S, p), there exists an isometric embedding f of (S, p) into a complete metric
space, which is called a completion of (S, p) if f(S) is dense.

Remark. Unlike most other concepts we have thus far considered, the notion of
completeness is not a topological concept; that is, it is not invariant under homeo-
morphisms. For example, if S, = (—7/2, 1/2) and S, = R}, then S, and S, are both
metric spaces in the usual way. S, is complete, but S, is not., However, there is a
homeomorphism f: S, — S, given by f(s) = tan s,

We have discussed compactness for topological spaces in general. When we re-
strict our attention to metric spaces, there are several equivalent ways of saying
that a space is compact.

THEOREM 1. Let S be a metric space. The following four conditions on S are
equivalent.

(1) S is compact. (Heine-Borel property)

(2) S is countably compact; that is, every infinite subset of S has a limit point.

(Bolzano-Weierstrass property)

(3) S is sequentially compact; that is, every sequence in S has a convergent

subsequence,

(4) S is complete and totally bounded; that is, S is complete, and for every

real number £ > 0, there exists a finite number of balls of radius g, say

Bg (€),..., Bg, (c), which cover S; thatis, S = ,-91 BS]. (e).
Proof.
(1) = (2) by Theorem 5, Sec. 1.3.

(2) = (3). Let {s,} be a sequence in S. I an infinite number of the s, are
equal, then they form a convergent subsequence. On the other hand, suppose there

exist infinitely many distinct elements in {s, }. By (2), this infinite set has a limit
point s, € S. Consider the ball B, (1). Since s, is a limit point of {s, }, s,, € By (1)
for some n,. Next consider B (1/2). Then since s, is a limit point of {s, },
Sp, € B (1/2) for some n, > n,. Continuing by induction, we obtain a subsequence
Sny» Snys + -+ Such that Sp; € Bg(1/27°1), (j = 1,2,...). This subsequence converges
to s, because
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11m p(snj, o = lim l__ 0.

jewo 2.7_1

(3) = (4). S is complete because if {s } is a Cauchy sequence, then by (3),
there exists a subsequence {s, } converging to some point s,. In fact, s, conver-
ges to s, because

ISy = Sol = I8y = Syl + 1S4, = Sgl =0 as mand np — o,

Moreover, S is totally bounded. For otherwise there exists € > 0 such that no finite
collection of balls of radius € cover S. Lets, € S. Then By 1(t:) # S so there exists

s; £ Bg (e); that is, pls, s;) = . Now Bg (g) U Bg,(e) # S so there exists
Sy € Bg (€) U Bg (€). Thus p(s,,, s,) = form # n, {m,n} <{1,2,3}. Continuing
by induction, we obtainasequence {s, } such that p(s,,, s,) = € for all m, n (m # n).
By (3), there exists a convergent subsequence {s 1. Let Sy = 11m $,.. Then there
ex1sts a j, such that, for j > j, s e Bg (e/2). For j,, j, > jq and 71 ;é 7., this im-

) <

S, + plsg, S,

oM
+
oM

P(Snjly Snjz) = p(snjla 2
j, implies p(s, ny Sn .2) = £. This contradiction establishes (4).
(4) = (1). We shall prove this remaining implication in two steps:

(a) (4 = (3),.
B (4 + (3) = (1).

(a) Let {sn} be a sequence. By (4), there exists a finite number of balls
B,y ..., By g, of radius 1 that cover S. Thus for some j,, there exists an infinite
set J, of positive integers such that » € J, implies s,, ¢ B Let n, be the first
integer such that s, € B, ;

Now by (4) again, there exists a finite number of balls Byy..., By By of radius
1/2 which cover S. Hence for some j,, there exists an infinite subset J of J, such
that n € J; implies s, € B,, ; . Let 7, be the first such integer with 7, > n,.

Continuing by induction, we obtain a sequence {s k} such that for all £ = &,
Sng € Br, jp (a ball of radius 1/k). Thus, for £, m > k

l.’jl'

p(snﬂ, snm) < 2/k,

and {s,,} is a Cauchy sequence. Since S is complete, {s,,} converges.

(b)  Let be an open covering of S, To prove compactness, it suffices to show
that for some positive integer #n, each ball of radius 1/z lies in some V € U, If so,
then by total boundedness, there exists a finite number of balls, say B,,..., Bp, of
radms 1/n wh1ch cover S But for each j there exists a Ve w1th B C V;, so

S = U B; ¢ U1 Vi, and V), ..., V¢ is a finite subcovering of S.

Suppose for each n, there exists a ball BS (1/n) of radius 1/n which is not con-
tained inany ¥V € U. We shall show that this assum tion leads to a contradiction,
thereby establishing the theorem. The sequence {s of centers of these balls has
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a convergent subsequence {snk} by (3). Let s, = lim s,,. Then s, € V, for some
B

Vo € V. Since ¥, is open, there exists » > 0 such that Bg_ (r) C V,. Since Sng " So

there exists a %, such that s,, € Bg (»/2) for all k = k. Let £ = k, be such that

1/ng < v/2. Then Bsnl (1/mg) < Bg (r) © V,. But this is a contradiction. 0O

Remark. Condition (4) of Theorem 1 shows that in a complete metric space,
compactness is equivalent to the existence, given any £ > 0, of a finite set of points
in S such that each point of S is within € of one of these,

THEOREM 2. Let (S, p) be a complete metric space. Suppose {U, } is a count-
able collection of open sets each of which is dense in S, that is,

u,=2S5 for n=12....

)

Then N U, £ @,

Pyroof. We shall construct a sequence which will converge to a point in ﬁ v,.

n=1
Choose s, € U,. Since U, is open, there exists a ball By A (r,) € U, forsome 7,. Since
s, €S = U, Bglr) NU, # @. Choose s, € Bg (r) N U, Let 7, be such that
Bg,(r2) C Bg (1) N Uz and 7, < min{ry/2, 7, — p(s, 32)} B, (r2) © Bg (r1) because
S € Bsa(rg) implies

pls, s,) =pl(s,s,) + plsy, ) =7, +pls,, s,) < 7,

We continue by induction to obtain a sequence {sn} of points in S, and about each
Sy,, aball Bsn(rn) such that

v -
¥y < 2n1—1 and Bsnﬂ('rn+ )< Bsn(rn) C U,.

{s”} is a Cauchy sequence. For, given € > 0, we can choose n, such that Yy, < £/2.
Since s, € By (r,) < B (’rno) for all n = n,,

PBm,Sn) = pm,Sny) + pSng Sp) < ¥y + Ty, < E

for all m, n = n,. Since S is complete, {sn} converges to some point s
We must verify that s, € U, for all #», But, for any »n, s, € B (7. 1) for all

. . Sp+y
k= 1. Since s, = 1}{1}2 Su+ ks

(rp. ) © Bg, (1) C Uy,

S, €
0 Sn+1

as was to be shown, a

Theorem 2, stated somewhat differently, has many applications in analysis. We
now proceed to recast this theorem into its more standard form:.

Definition. Let S be a topological space. A subset T of S is nowhere dense if'T
contains no non-empty open set.

Remark. T C S is nowhere dense if and only if (7)’ is dense in S.

Definition. A subset T of a topological space S is of the first category if it is a

countable union of nowhere dense sets. Otherwise, T is said to be of the second
category.
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COROLLARY TO THEOREM 2. (Baire Category Theorem) A complete metric
space is of the second category; that is, it is not the union of a countable number of
nowhere dense sets,

]

Proof. Let (S, p) be a complete metric space. Suppose S = nL_ll T,, where each
T, is nowhere dense. Then S = n[l T,, so, taking complements, @ = "f:ll (T,) . But
each (7,,)’ is open and dense by the above remark. This contradicts Theorem2.  [J

Exercise. Theorem 2 and its corollary are also true if the term ‘‘complete
metric’’ is replaced by ‘‘compact Hausdorff.”” Can you prove it?

2.5 APPLICATIONS

Definition. A normed linear space is a linear space (vector space) L, over the
reals or complexes, together with a real-valued function (denoted by i 1} on L
satisfying the following conditions for all vectors a and & and all scalars A:

(1) gl =0andllall =0 <e>a=0

(2) xaii = A Haii
B va+bu=nal+ubdl
Remark. Let (L, I 1} be a normed linear space. Define a metric on L by

pla, &) = la— b1,

Then (L, p) is a metric space because

(1) pla,b) =0 lla-bil=0<>a—-b=0<>a=b;
(2) pla,b) =lla—bu=|=-1lla=bi=1b—al =plb, a); and
(3) pla,c) =lla—cli=lla—b+b—cll<la—->bl+1d—-cl =pla, b) + pla, c).

Definition. A normed linear space L is a Banach space if (L, p) is a complete
metric space.
Remark. A sequence a, in L is Cauchy if

lim pla,, a,,) = 0, thatis, if lim ua, —a,,I = 0.

n, o0 n, n—sa

Example. Let L = C([0, 1]) be the space of all continuous real-valued functions
on [0,1]. For f € L, define lifIi = max | f(x)|]. Then L is a Banach space. That
€lo, 1

X

Il U is a norm is easily verified. That (L, p) is a complete metric space follows
from the theorem thata uniformly convergent sequence of continuous functions con-
verges to a continuous function.

Remark. More generally, if S is any compact Hausdorff space, the set of all con-
tinuous real-valued functions on S is a Banach space, where Il fIl = mqsx | f(s)].

THEOREM 1. There exists a continuous real-valued function f ¢ C([0, 1]) such
that f has a derivative at no point of [0, 1].
Proof. For n any positive integer, let

C, = [f e C([0, 1)); A, }2 A < n for some ¢ and all & with ¢ + £ € [0, 1]]

We shall show that C, is nowhere dense for each n. Since C([O, 1]) is a complete
metric space and hence is of the second category, it will then follow that

§ ¢, # c(o, 1D;
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that is, there exists a function f € C([0, 1]) such that f £ C,, for any . This f is the
required function because f ¢ C, means that

S+ hi)z—f(t) . n

for all ¢ € [0, 1] and some % (depending on ¢ and n). Note that for each fixed t, h—0

as n = because given € > 0 the difference quotient |(f(¢ + %) ~ f(#))/h| is bounded
as a function of % for |h| =&. Thus

lim sup

’
h—0

flErhy = F@]
h

and the derivative of f at ¢ fails to exist for each ¢ ¢ [o, 1].

To prove that C,, is nowhere dense, we must show that C,, contains no non-empty
open set. First we show that C, is closed; that is, that C, = C,. Note that since
C([o, 1)) is a metric space, C([0, 1]) is first countable, and hence any limit point ofa
set T C C([0, 1]) is in fact a limit of a countable subset of T. Thus to show C, is
closed, it suffices to show that if {fz} C C, is a sequence which converges in
C([0, 1)), then the limit f € Cy. But f € C,, implies that there exists #; € [0, 1] such
that

Ieltp + h) ~ fplty) | _ "
. <

for all k. Since [0, 1] is compact, the sequence {£,} has a convergent subsequence,
which we also denote by {f,}. Let ly = lim ¢;. Then

b—eco

|f(to + h) — f(to)
| h

_ o h) — fUp+B)  flp+h) = folty + B) | foltp + B = falz)
= ) * 7 * 2

, Tele) = f(tg) . LR = f5)
h h

- lf(to +h) — flty +h>| +.f(tk +h) — fplty +h)| . 'fk(tk +h) = fplty)
[/ h h

@ @ ®
COEFHPHIESIC
h h

-+

@ ®

Now fix . For any € > 0, if # is large enough, (D and (&) are smaller than € be-
cause fis continuous and # — f; while @ and @ are smaller than £ because Sr
converges uniformly to f. Because of the previous paragraph, @ = n. Hence
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Jto + 1) — f(2)
h

=n+4c (anye > 0);

IA

n and feC,.

f(to + h)"f(to)
h

Thus each C, is closed. Now we show that C,, is nowhere dense; that is, given
any g € C, = C, and any € > 0, there exists f e Cl0, 1] such that lif — g1 < € and
f£ C,. Now a typical example of a function in C[0, 1] which is not in C, is the
‘““sawtooth’’ function (Fig. 2.3). For any n we can find such a function, whose norm

is less than or equal to any prescribed € > 0, and where the slope of each line seg-
ment is greater than » in absolute value. To find a function f £ C, within ¢ of g, we
need only construct a sawtooth function close to g, as in Fig. 2.4,

Fig. 2.4

We leave this construction to the reader, but include the following hint, Using the
uniform cgntmultv of the function g, We can find a continupus function g. so that

A mailv waANsAa SoSiAs mana AVLIIMLI UL LuMLLduis £y FU uias

g —g,Il <&/2 and g, is piecewise 11near, that is, g, looks like the line segments in
Fig. 2.5. It suffices to find the appropriate sawtooth function for each linear piece
of g, and then to patch. O



40 MORE POINT SET TOPOLOGY

Fig. 2.5

Remark. Theorem 1 above is of considerable interest, but more important than
the statement is the method of proof. This method is used frequently inanalysis and
topology to prove the existence of functions with specified properties.

We exhibit a regular topological space which isnot normal as another application
of the Baire category theorem.

Example. Let S be the upper half-plane in R? together with the x axis R Let
®, be the usual open sets in the upper half-plane. Let

= [B(y,e)(e) U{r}; 7 € RY, € > 0],

so that an element of ®, is an open disc tangent to R! together with » the point of
tangency, as in Fig. 2.6. Take ®, U®, as basis for the topology on S.

Fig. 2.6

Note that in the relative topology, R' is discrete. In fact, for each p ¢ R}
R — {p} is closed in S because its complement is clearly a union of open sets.
Since F = , n. (R* — {p}) for any subset FC R! it follows that every subset of

€

R-
R is closed in S.

S is regular. Suppose F is closedin S and p¢ F. If p £ R', there exists a ball
By(€) contained in the open set F’; and the open sets B, (e/2) and (By (e/2)" separate
b and F. Hpe R, there exists a basm open set V contalmng p and contamed in the
open set F’; thatis, V1 F=@. Let V,be a basic open set contalmng p such that
Vv,V (Fig. 2.7). Clearly each point in F (in fact, each point in V') is contained in

a basic open set disjoint from V. Let U be the union of these. Then V, and U sepa-
rate p and F,
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VTN

D),

P

Fig. 2.7

S is not normal. Let F, C R! be the rationals and F, C R! be the irrationals.
Then F, and F, are closed sets in S. Moreover, it is not possible to find disjoint
open sets U, and U, in S such that F, C U, and F, C U,. For suppose such sets U,
and U, did exist. Then for each p € F; (j = 1,2), there exists a basic open set

Dy C U; with p € Dy (D is the union of {p} with a disc tangent at p). U D, C U,

P“ 1

and ,,U Dy C U, are also disjoint open sets containing F, and F, respectively. Let
eF,

f: R'—R!be defined by f (p) = radius of D,. (f is not necessarily continuous.) For
each positive integer n, let

|peFsp= 1.

Then (1 T, = F, because p ¢ F, implies f(p) = 1/n for some n. Moreover,

R* = (n[:jl T”) U (qu {Q})’

so we have expressed the set R! as a countable union of sets 7, and {¢}. Now con-
sider the usual topology on R!, Then R! is a complete metric space, and hence is of
the second category. Since we have expressed R' as a union of countably many sets,
not all of these sets can be nowhere dense in R! (in the usual topology). Each {¢}
is nowhere dense, so T, must contain an open set in R! for some n. In particular,
T, must contain some interval I, Let g € I be rational. Since g € 7, there exists

a sequence {pp} C T, which converges to gq. But (El DPk) ND,cU,NU,=¢.

This is impossilMe since each Dy, has radius = 1/n; that is, f(p) does not tend to
zero a8 k —« and pp — ¢. This contradiction completes the proof. O

THEOREM 2, (Uniform Boundedness Principle) Let S be a complete metric
space. Let & be a family of continuous real-valued functions on S with the property
that for each s € S, there exists a constant Mg such that |f(s)| = M, for all f ¢ €F
Then. there exists a non-empty open set Uc S and a constant M such that If (s) =
for all f € Fandall s € U.

Proof. For each f € F and each positive integer n, let

T, f = [s € S; |f(s) = n].
T,,r is closed because T, s = f“([—n,n]). Let
Ty = N T, 5=[s €8; |f(s)| = n forall f e F].

fe¥
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T, is closed because it is the intersection of closed sets. U1 T, = S because if
H=

§ € S, then s ¢ T, for all n > Mg, By the Baire category theorem, not all 7, are
nowhere dense; that is, some T, = T, must contain a non-empty open set U, Then,
forall s e Uand fe &, |[f(s)| = n. Take M = n. O



CHAPTER THREE

FUNDAMENTAL GROUP AND
COVERING SPACES

3.1 HOMOTOPY

Notation. The letter I will henceforth denote the closed interval [0, 1].

Definition. Let X and Y be topological spaces, and let f, and f, be continuous
maps X —Y. f, is homotopic to f, (written f, = f,) if there exists a continuous map
F: X x I —Y suchthat F(x,0) = f,(x) and F(x,1) = f,(x) for all x € X. The map
F is called a homotopy from f, to f,.

Remark. For (x, t) € X X I, we may regard { as measuring time. Then
fi(x) = F(x,%) is a 1-parameter family of maps X — Y. At time 0 we have the map
fo. At time 1 we have the map f,. As time increases from 0 to 1, the map f, is de-
formed continuously into the map f,.

Example. Let i: R® — R" be the identity map. Let c: R" — R" be defined by
¢(v) = 0 for all v € R*, Then ¢ = ¢. For let F: R® x I —R" be defined by F(v, t)=tv.
Then F is continuous, and F{v,0) = 0=c(v) and F(v,1) =v = i{v) for all v € R*,
Geometrically, the map F shrinks the image R” of i to the point {0} as ¢t varies
from 1 to 0. _

THEOREM 1, Homotopy is an equivalence relation; that is, for f, g, 4 continu-
ous maps X —Y,

(1) f=f,
(2) f= gimplies g =~ f, and
(3) f= gand g~ h implies f = hA.

Proof.

(1) Let F: X x I —Y be defined by F(x, ) = f(x). F is continuous because it is
the composition of the continuous maps f and projection onto the first factor.

(2) Given a homotopy F: X X I —Y such that F(x, 0) = f(x} and F(x, 1) = g(x), let
G: X x I — Y be defined by G(x,?t) = F(x,1— £). Gis continuous because {—~1—1¢
is continuous. G is a homotopy from g to f.

(3) Given homotopies F, G: X x I —Y, with F(x,0) = f(x), F(x,1) = g(x) = G(x, 0),
and G(x, 1) = A(x), let H: X x I —Y be defined by

F(x, 2t) (0=t=1/2)
H(x, t) = {G(x, 2t-1) (1/2=t=1).

Then H(x, 0) = f(x), and H(x, 1) = #(x). H is continuous by the following lemma. 0O

GLUEING (OR PASTING) LEMMA. Let X and Y be topological spaces. Assume
X = A U B, where A and B are closed (open) sets in X. Suppose f;: A — Y and
fs: B — Y are continuous functions such that f,(x) = f,(x) for all x € A N B. Let
g: X — Y be defined by

) o [[®) (e
g T fo(x) (x € B).

Then g is continuous.

43
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Remark. The function g of the lemma is thus obtained by ¢‘glueing’’ f, and f,
together along their common domain.

Proof of the Glueing Lemma. Assume A and B are both closed. We show that.
inverse images of closed sets are closed., Let F be a closed subset of Y. Then

I

gWF) = g{F) N (AU B)
(g"(F) N A) U(g™(F) n B)

= £ UF) U fYF),

Since f, is continuous, f,"(F) is closed in A, and hence in X because 4 is closed
in X. Similarly, f,”Y(F) is closed in X. Moreover, the union of two closed sets is
closed.

If both A and B are open, the same argument shows that inverse images of open
Sets are open, a

THEOREM 2. Let X, Y, Z be topological spaces. Suppose that fo and f, are
homotopic maps X — Y and that g, and g, are homotopic maps Y —Z. Then &o ° fo
and g, ° f, are homotopic maps X —Z,

Proof. We break the proof into two steps:

(a) g, °fo= g,° f,

(b).go °f1E & °f1-
Then g, © f, =~ g, ° f, by (3) of Theorem 1.

(a) Let F: X x I — ¥ be a homotopy from f, tof, LetG=g,oF: X X1 —2Z,
Then G is 2 homotopy from g, °f, to g, ° f,. -

(b) Let H: Y x I — Z be a homotopy from g,to g,. Let f;: X x I =Y x I be
defined by f,(x, #) = (f,(x), #). f, is easily seen to be continuous. Let

K=H>F: XX I~ Z.

Then K is a homotopy from g, © f, to g, © f,. a

Definition. Two spaces X and Y are of the same homotopy type if there exist
continuous maps f: X —Y and g: Y — X such that g o f ~ iy and f o g~ iy, where
ix and 7y are the identity maps on X and Y respectively.

Remark. It is easy to verify that ‘‘same homotopy type’’ isan equivalence rela-
tion. Thus, the collection of all topological spaces is partitioned into equivalence
classes. Two spaces are in the same class if and only if they are of the same
homotopy type. Clearly homeomorphic spaces are of the same homotopy type. Much
of algebraic topology is concerned with the study of those properties of topological
spaces which are invariants of homotopy type, that is, those properties which, when
possessed by one topological space X, are possessed by every topological space of
the same homotopy type as X,

Definition. A topological space X is contractible if the identity map ix: X —X
is homotopic to a constant map; that is, if ix =~ ¢, where ¢: X —~{x,} for some
x,€ X,

THEOREM 3. A space X is contractible if and only if X is of the same homotopy
type as a single point,

Proof. Suppose X is contractible, Then iy =~ ¢ for some c: X — {xo} (x, € X).
Let f=c: X —{x,} andlet g: {x,} — X be defined by g(x¥)) = x,, Then clearly
i,r °f =c¢=ix, and f °g=i{y} = i{y}, so X and {x,} have the same homotopy
ype.

Conversely, suppose Y = {y} consists of a single point, and X has the same
homotopy type as Y. Then there exist continuous maps f: X —Yandg: Y — X such
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that g of =~ iy and f o g =~ iy, Let x, = g(y), and let c: X-»{xo}. Then
¢ = gof= ix, so X is contractible. O
on show

N -\Jno (=Lt g

Y ectio
that R" has the same homotopy type as a single point. Thus from the viewpoint of
homotopy theory, R” is a trivial space.

Remark Both Theorem 3 and the example at the beginning of this s

AfS LAL L AL A CAly U Chaila i ua.a. | e

3.2 FUNDAMENTAL GROUP

Definition. Let X be a topological space. A path in X from x, to x, (with origin
x, and end x,) is a continuous map a: I — X such that a(0) = x, and «(1) = x,.

Remark. Note that a path is a function and nof a set of points. A path is a ‘‘para-
meterized curve,’”’

Definition. A space X is arcwise connected if, given any two points x, and x, in
X, there exists a path with origin x, and end x,.

THEOREM 1, I a topological space is arcwise connected, then it is connected.

Proof. Let X be arcwise connected. Suppose U, and U, are non-empty disjoint
open sets with U, UU, = X. Let x,€ U and x, ¢ U,. Since X is arcwise connect-
ed, there exists a path a@ from x, to x,. Clearly o '(U,) and o U,)} are disjoint
open sets in I with o*(U,) Ua'(U,) = I. Moreover, 0 € a’}(U,) and 1 € a2 (U)), so
these sets are non-empty. But I is connected, so this is impossible. O

Remark, The converse of Theorem 1 is false, as is shown by the following ex-
ample.

Example. Let X = A U B C R? with the relative topology, where

A
B

[(0, ») € R% |y = 1],
[(x, sin 1/x) € R?, 0 < x = 1].

X is connected, For let U, and U, be disjoint open sets in X with U, U U, = X,
The point (0, 1) is in one of these two sets, say (0,1) € U,. We shall show that
U, = @, and hence X is connected.

First, (0,1) € U, N A, so U, N A # 4. Since A is connected, and

A= (U, NA) U@, N A),

it follows that U, N A = ¢§. Next, consider U, N B. Since any ball in R? about (0, 1)
must contain points of the form (x, sin 1/x), U, N B # ¢. But B is connected—it is
the continuous image of the connected set (0, 1/]—and B = (U, N B) U(U, N B). Thus
U,N B=¢. Hence U, =(U, N A) U(U, N B) = .

X is not arcwise connected. For let o be a path in X with origin (0, 1). We shall
show that a(7) C A, and hence no point in B can be joined to (0, 1) by a path in X.
Consider a~}(A4). Since A is closed in X, ar(A4) is closed in I. a™Y4) # @ because
0 € o Y(A). Hence it suffices to show that a"*(4) is open in I, for then o 4) = I be-
cause I is connected. Suppose ¢, € a™%(A4). Then a(é)) € A. Let U =X N Ba(to)(l/z).

Then U is open in X. Since « is continuous, there exists an € > 0 such that al e U
whenever |¢— f)| <€, Claim: a((¢,— €, ¢, +€)) CTA. For suppose |¢ — ] <€ and
aft)) € B. Now U N B is a union of disjoint arcs (homeomorphic images of open in-
tervals), and the arc containing a(#,) is both open and closed in U. This contradicts
the connectedness of a{(f,— €, ¢, +€)). Thus ({,— ¢, £, +€) CaY{4) and a}(4) is
open in I. (See Fig. 3.1.)
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Definition. Let a be a path from x,to x, and let 8 be a path from x,to x,. The
product of @ and 8 is the path a8 from X, to x, defined by

_ [a(20) (0= t= 1/2)
aply) = {B(Zt-— 1) (1/2=<t=1).

The inverse of « is the path o from x, to x, defined by o (#) = a(1 — #).
Remark. That the product of two paths is continuous is a consequence of the
“Glueing Lemma’’ (Sec. 3.1).

Definition. Two paths o and 8 from x, to x, are homotopic (written a = B) if
there exists a continuous map F: I X I — X such that

F(0,2) =x, and F(l,4)=x, foralll, e I;
F(£,0) = a(t) and F(t,1)= B(t,) forallt cI.

Remark. Thus a homotopy of paths is a homotopy in the usual sense together
with the additional requirement that the end points remain fixed throughout the
homotopy. Note that without this additional requirement every path is homotopic to
a constant path.

Remark. The relation £ is an equivalence relation. The proof is similar to the
corresponding proof for ~. (See Theorem 1.)

THEOREM 2. Suppose a, = «, and 8, & @, are paths such that @, B, is defined.
Then ¢, 8, is defined and ¢, 8, = @, B,

Proof. «,B, is defined because

end of ¢, = end of o, = origin of B, = origin of B,.

Let F and G be homotopies from a; to o, and from B, to B, respectively. Then a
homotopy H from a,8, to ¢, 8, is given by
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24
Fig. 3.2
F@t, t) (0=t =1/2)
H(t, L) = L2 1
(¢, &) {G(Ztl‘ 1, ¢,) (1/2 < t; =< 1)
H is continuous by the ‘‘glueing lemma.’’ O

THEOREM 3. Suppose @, and a, are homotopic paths, Then a,* & a,™
Proof. Let F be a homotopy from a,to @, A homotopy H from a,*'to a,lis
given by

H(t“ tg) = F(l - tl! tz). .D

Notation. Let {a) denote the = equivalence class of «; thatis, (a) is the set
of all paths homotopic to a@. Since homotopic paths have the same end points, the
origin and end of (@) are defined,

Definition. The product and inverse of = equivalence classes are defined by

(@)(B) = {aB)  (if aB is defined),
(@)t = {a™).

These are well defined by Theorems 2 and 3 above.
THEOREM 4. For each x ¢ X, lete,: I — X be the path defined by e,(#) = x for
all ¢ € I. Then:
(1) If (@) has origin x,, then (e, ){(a) = ().
(2) If (o) has end x,, then (a)(exl) ={a).
(3) If (@) has origin x, and end x,, then

@)(a™) = (ey) and (@ })(a) = (ey,).
(4) ((@){B)) (» = (@)(BY{(¥)) (if (aB)y is defined).

COROLLARY. Let X bea topological space and let x, € X. The set of = equiva-
lence classes of paths with origin = end = x, forms a group under the operations of
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multiplication and inverse as defined above. This group is denoted by 7,(X, x,) and

is called the fundamental group, or first homotopy group, of the pair (X, x,).
Proof of Theorem 4.

(1) We must show that e, o = a. Thus we want to construct a continuous map-
ping F: I X I — X such that

Flrx{o} = ex,,

F'Ix{l} =a,
Fi{o}x 1= %o
Fi{1}x1 = %, = a(1).

Fig. 3.3

We do this by defining F on the triangle in the above figure to be the constant map
into x,, and by requiring that F, restricted to each horizontal line segment in the

trapezoid of the figure, be equal to a (after suitably parameterizing the line seg-
ment). Explicitly,

Pt 1) ={ %o, Ph=1-1)
a(—l—t—l (1-¢, = 2¢).
1+1¢,
(2) We must show that aey = @, The proof is similar to the proof of (1) (see
Fig. 3.4).
(3) It suffices to prove that (a){(a™) = (exo) , for then we may interchange the
roles of a and @', Thus we must show that aa ! = ex, We do this by ‘‘pulling




FUNDAMENTAL GROUP

] €x

1 Flg 3.4

Fig. 3.5

(1)

the end point x, in to x, along the path a.”” See Fig. 3.5 above,
Exercise. Find the analytic expression for this homotopy.

Proof of Theorem 4 cont.
(4) We must show that (¢8)y = a(By). Now

a(dt) (0=t¢=<1/4),

((aB)N(D = {3(4;‘— 1) (1/4=t=<1/2),
2f — 1) (1/2 < t =< 1);

(al Bv)X B(4t—2) (1/2 =t = 3/4),

a(2t) (0=t=1/2),
{y(tlt— (3/4 = t = 1).

49
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The homotopy is

4
a(?—f_’—l) (42, — 1 = £,
2

F(t, t,) =< pl4t, —t,—1) (4, —2 = ¢, < 4, — 1),

4, — 1, — 2
\.'y (—J‘E‘:_th—) (tz = 4f, - 2). O

Remark. Given two base points x, and x, in X, we cannot in general expect any
relationship between 7,(X, x,) and 7,(X, x,). For example, if x, and x, do not lie in
a common connected subset of X, there can be no relationship. Consider the disjoint
union X of a circle and a point x, (Fig. 3.7).

To
® zl

Fig. 3.7

For x, in the circle, 7,(X, x,) has non-trivial elements, whereas #,(X, x,) is clearly
trivial.

Similarly, if X is not arcwise connected, we can expect no relationship between
these groups. Consider the space X = X, UX, UX;C R? where X, is the graph of

T
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sin1/x (0<x <1), X, ={0} X I, and X, is a circle tangent to the y axis at (0,1)
with center to the left of the y axis (Fig. 3.8). For x, € X,, m,(X, x,) is trivial. But
for x, = (0, 1), 7,(X, x,) has non-trivial elements,

For arcwise connected spaces, the situation is better,

7N\
W

C

Fig. 3.8

THEOREM 5. Let X be an arcwise connected topological space. Let x,, x, € X,
Then there exists a group isomorphism of 7,(X, x,) onto 7,(X, x ).
Proof. Let y be a path from x4 to x,. Let y4: m,(X, xg) —n,(X, x,) be defined by

vell@)) = (O Ma) () = (ytay) for (@) € 7(X, x,).

Y4 18 @ homomorphism because
ra((@) v ((B)) = () Ha){(¥) (¥ KB
= (v) Ka) ey 2 (B (V)
= (¥) Ka){B){7)
= val{a@)(B)).
y# is an isomorphism because it has an inverse, namely, v = (y Y4. 0

Remark. Recall that for a group G and a € G, the inner automorphism of G due
to a is the isomorphism i, of G onto itself given by i,(b) = aba ! for b € G. Now,
given two paths in X from x, to x,, we obtain two isomorphisms 7,(X,x,) —7,(X,x)).
The above proof actually shows that these isomorphisms differ by an inner auto-
morphism of 7,(X, x).

COROLLARY, Let v, and y, be two paths in X from x,to x,. Then

(72)# = ('Yj_)# °ig,

where i, is the inner automorphism of 7,(X, x,) due to @ = (yp,"h € m,(X, x.),
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Proof. For {(a) € ﬂ1(X, xo)a

(e o adall@)) = (v ) (rva) Ma) (v ){y )™

= {7 Y2 P e Xy, v !

= ig(a);

that is, (71)#-1 ° (72)# = ig, OT (72)# = (7’1)# o 1g. 1

Remark. Theorem 5 shows that all fundamental groups of an arcwise connected
space X are isomorphic; that is, associated with the space X is a certain abstract
group, the fundamental group of X, However, the above corollary shows that unless
this group is commutative, no natural way exists of identifying the groups arising
from different base points. (The isomorphism depends on the homotopy class of the
path joining the base points.) Hence we shall regard the fundamemal group as being
a concrete group, computed with respect to a given base point. The importance of
the base point will become clearer as we study the behavior of the fundamental
group relative to continuous maps.

Definition. Let X and Y be arcwise connected spaces. Let f: X — Y be contin-
uous., For x,€ X, let f,: n(X, x,) — n,(Y, f(x,) be defined by

filla)) = (f o)

for (@) € m(X, x,). Note that this definition makes sense because if a and 3 are
two paths in X—both beginning and ending at x, with @ < B—then f o a £f ¢ 8.
(A homotopy from f ¢ @ to f o 8 is given by f °© F where F is a homotopy from « to
B.)

Remark. f,: n(X, xj) = n,(Y, f(x,) is a homomorphism, because for (a) and
(B € m(X, x),

La X)) = fillaB)) = (f ° (aB)

(fea)feop)=(f°aXf°pB
SllaNf (KB)).

Jx i8 called the homomorphism induced by f.
THEOREM 6. Let X, Y, Z be arcwise connected, and let x, € X. Then:
(1) ¥ f: X —Y and g: Y —Z are continuous, then (g o N, =8 °f,-
(2) ¥ f, and f;: X — Y are homotopic maps and F;: X X I —VY isa homotopy
from f, to f,, then (f,), = ay o (fo)x, Where o isthe pathin ¥ from f,(x,) to f,(x,)
given by

G(t) = F(xm t)-

Remark. Part(2) of Theorem 6 says that homotopic maps induce the same homo-
morphism on fundamental groups, up to an inner automorphism that compensates
for the fact that the two maps may send the base point in X into different points in Y.

Proof of Theorem 6.

(1) Let (@) € m(X, x,). Then

(goflulla) = (geofea)y=g,(f°a) =g,-f ().

(2) Let (@) e m,(X, x,). We want to show that
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(fl)* (Ct> = G#((fo)*<a>); that iS, (.fl ° CY) = G#((fo e C!)) = (G_l(fo ° a)0>~

Thus we must show that
foea= o i{f, ca).
For this, consider the map G: I X I — Y defined by
G(t, t) = F(alt), t,) (¢, t, € I).

G is continuous because F and « are. Moreover,

G(t,, 0) = F(af(t), 0) = flalt)) = f, ° alt),

G(t,, 1) = F(alt), 1) = filalt)) = f, ° alty,
G(0, £;) = F(al0), t) = F(x,, t;) = o(ty),
G(1, ¢,) = F(a(l), t;) = F(x,, t,) = olt,).

Thus the boundary of I X I is mapped by G as indicated in Fig. 3.9.

fl°0! floa
N

N2
N

e\ G Ng AN g G No

0\/

o'l

< Fig. 3.9

The required homotopy H from f, ° a to ¢ f, ¢ a)o is then obtained by deform-
ing G as indicated in Fig. 3.10.
Analytically, H is given by

7~

o 742¢,) (tl 1 ; ta),

H(t,, t,) =< G(W’ 2
b 2 \ 3, +1

\
o4, - 3) (t1 Ll 3). 0
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fiea

Fig. 3.10

ol foca o

COROLLARY 1. If X and Y are arcwise connected spaces of the same homotopy
type, then their fundamental groups are isomorphic.

Proof. Since X and Y are of the same homotopy type, there exist maps f: X —Y
and g: ¥ — X suchthat g of~iy and f ° g =~ iy. Choose a base point x, € X in
the image of g, say x, = g(v,). We shall show that

Far (X, xg) = m, (Y, f(xy)

is an isomorphism. Now,

gt MY, f(x9) = 7,(X, g of(x))

and, by Parts (1) and (2) of Theorem 6

]

o

o f =
(-3 Jx T

-

o]

f) o, o (3

& *
where oy 7,(X, x)) — 7,(X, g f(x,) is an isomorphism. Thus f, is injective.

On the other hand, we may consider the homomorphism, also denoted by -
mapping 7,(Y, y,) — 7 ,(X, x,). Then

f* &y = (f ° g)* = (01)# e (iY)* = (01)#

where (0,)4: 7,(Y, v —7,(Y, f o g(y,)) is an isomorphism. Thus /i 1s surjective
also, hence an isomorphism, D

COROLLARY 2. If X is contractible, then 7,(X, x,) = (¢); that is, the fundamen-
tal group of X consists of the identity element only.

Proof. By definition, X contractible means that X is of the same homotopy type
as a one-point space. Thus Corollary 1 implies the result. I

COROLLARY 3. 7,(R", 0) = (e).

3.3 COVERING SPACES

All spaces throughout this section are Hausdorff topological spaces.
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Definition. A space X is locally connected if for each point x € X and each open
set V containing x, there exists a connected open set U such that x e UC V., A
space X is locally arcwise connected if for each point x € X and each open set V
containing x, there exists an open set U, with x € U C V¥, such that whenever
%, %X, € U, there exists a path @ from x, to x, with a(I) C V.

Remark. Not every arcwise connected space is locally arcwise connected. For
let X be the union of the graph of sin 1/x, x € (0, 1], with an arc connecting (1, 0)
and (0, 1) (Fig. 3.11).

Fig. 3.11

Then X is arcwise connected, but if B is any ball in R® about (0, 1) of radius <1,
then V = B N X is open in X, yet ¥V contains no open set U with the property re-
quired for local arcwise connectedness.
Definition. Let X and X be arcwise connected, locally arcwise connected spaces,
and let p: X — X be continuous. The pair (X p) is called a covering space of X if
(1) p is surjective, and
(2) for each x € X, there exists an open setU in X containing x such that p~Y(U)
is a disjoint union of open sets, each of which is mapped homeomorphically onto
U by p. Such an open set U will be called admissible.
Example 1. Let

X = S! = [z; z a complex number with |z | = 1],

Let X = R!, and let p: X — X be given by p(r) = €27%”, Then (X, p) is a covering
space of X, For x € X, let U be a small open arc containing x. Then p~'(U) isa
disjoint union of open intervals, each a translate of every other by some integer
(Fig. 3.12). X may be looked at as an infinite spiral over S!, with p being ordinary

P Y N o 10\
PIrojeCLiuLl \I‘lg 2.19).

Example 2. Let

X = P2 = the set of all lines through the origin in RS,
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Fig. 3.13

The topology on P? is generated by ‘‘open cones’’ of lines through the origJin (Fig.
3.14). P? is called the real projective plane. Let X = S2C RS, and let p: X —X be
defined by

p(;) = the line through the origin which passes through % (; € f).

Then (55, p) is covering space of X, in fact, a ‘‘double covering’’ of X; that is,
p~Y(x) consists of two points for each x € X, N

Example 3. Let X = X = 8' = [z; iz| = 1]. Let p: X — X be given by p(2) = 22
Then (X, p) is a double covering of X. N _

Example 4. Let X = S' X S' = the torus. Let X = R? and p: X — X bedefined by

p(yv 1,2) - (e 21ri'rl’ eZTrz"rz)_
Then ()?, p) is a covering space of X. For a ‘‘patch’’ U on X, p~YU) is a union of

‘“‘patches’” in R?, each a translate of every other by a vector with integer coordi-
nates.
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)

Fig. 3.14

Fig. 3.15

(Note that unit square gets mapped onto S' x S! by p, and, in fact, S! X S' may be
regarded as a closed unit square with one pair of opposite edges identified to form
a cylinder and the other pair of opposite edges (now circles) identified to form a
tire.)

Emmple 5. (A ‘‘non-example”’.) Let X = S', and let X be a finite open spiral
over S' with projection p: X — X (F1g 3.16). (X, p) is not a covering space of X
because if x lies under an ‘‘end’’ of X then there exists no open set U about x
S&tLSf:y'ﬁ"lg (2) of the definition,

Example 6. {Another ‘‘non-example’’.) Let X = S% and X = an infinite cylinder
circumscribed about S%; and let p be radial projection (Fig. 3.17). Then (X, p) is

not a covering space because p is not surjective,
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THEOREM 1, Let (X, p) be a covering space of X, Then p: X — X is an open
mapping; that is, p(7) is open in X for each open set UcX.

Proof. Let U be open in X. For x € p(@), let V be an admissible open set con-
taining x, so that p~}(V) is a disjoint union of open sets, each mapped homeomorph-
ically onto V by p. Let xe€ U be such that (%) = x. Then ¥ lies in one of these
open sets mapped homeomorphically onto V. Call it W, Then W N U is open in W,
S0 p(W n o is open in V since piwy is a homeomorphism. But V¥ is open in X, so
p(W N U) is an open set in X with x € p(W N T) < p(ff). Since x ¢ p(U) was arbi-
trary, p(¥) is a union of open sets, and hence is open, [J

Remark. Given two spaces Y and X, a continuous map f: Y — X, and a covering
space (X, p) of X, we find it often of interest to know whether we can “‘lift”’ the
map f to a mapf Y —X: that is, whether we can construct a map f Y — X such
that p of = f. The map ? is also said to cover f. The next theorem (Theorem 2)
shows that under certain mild conditions, any two such maps (if they exist) either
agree everywhere or agree nowhere. The following theorem (Theorem 3) and its
corollaries tell us that L certain maps can, in fact, be ‘‘lifted.”’

THEOREM 2. Let (X P) bea covering space of a space X, and let Y bea connect-
ed and locally connected space. Suppose a, B8: ¥ — X are continuous maps such that
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(1) pea=po- 8, and

(2) a(yy) = B(y,) for some y,€ Y,
Then a = 8.

Proof. Let

Z=[ye?; aly) = g(y).

We must show that Z = Y. Since Y is connected, and Z # @ (y, € Z), it suffices
to show that Z is both open and closed.
Z is closed: For consider the mapa X 8; Y — X x X defined by

(a x By) = (afy), B(¥)).

Then @ X B is continuous, Let D be the diagonal in X x X that is,
D= [(x, x); ¥ € X].

D is closed because X is Hausdorff. Hence Z = (a x B)"YD) is closed in ¥. (Note
that this argument shows that for any two continuous maps from any topological
space S into any Hausdorff space T, the set of points where the two maps agree will
be closed in S.)

Z is open: Suppose z € Z. Let x = p o afz) = p o B(2). Let U be an admissible
open set about x. Then p~YU) is a umon of disjoint open sets one of which, call it
W, contains a(z) = g(z)., Now W is both open and closed in p~%U). Hence any con-
nected subset of p~(U) which has points in W must lie entirely in W. Now
z € (p o a)Y(U), an open set in Y, Since Y is locally connected, there existsa con-
nected open set V, in ¥ with 2 € ¥, C (p ¢ a)"Y(U). Since a is continuous, a{V)) is
connected in p- (U) with a(z) € W; so a(V)) CW. Similarly, there exists a connected
open set V, in Y containing z, such that B(V,).C W. Since p|w is injective, and since
poa=p o B, itfollows that @ = BonV, NV, Thus V, N V,is contained in £ and
is an open set containing z. Thus Z is open, a -

THEOREM 3. (Covering Homotopy Theorem) Let (X, p) be a covering space of a
space X, and let Y be a compact, connected, and locally connected space. Let
JiY—X, and let F: Y x I — X be a homotopy with F(y, 0) = p o f(y)for y € Y.
Then there exists a homotopy G: Y X I — X such that

(1) Gy, 0) = f(y), and

(2) poG=F.

Moreover, G may be chosen to be stationary; that is, whenever y € Y is such that
F(y, t) is ' constant for ¢ in some interval, then G{y, t) is also constant for ¢ in that
interval,

Remark. Before provmg Theorem 3, we derive several consequences. _

COROLLARYI Let' (X, p) be a covering space of X, and let x € X. Then
P (X x) — m,(X, (%)) is 5_injective.

Proof Suppose (a) €T (X %) is in the kernel of p,. Then

(p o)y =p, @) = e= (ey); thatis, peoaq = e,,

where x = p(¥). We want to show that (@) is the identity element in 7,(X, %), that
ig that ¥ & 2~
1‘-", AALLL L2 T le

Let F: I X be a homotopy from p ° @ to e,. By the covering homotopy

x I —
theorem, with Y = I, there exists a homotopy G: I X I — X with p - G=F such
that G(¢,, 0) = a(?,) for all ¢, € I. Furthermore, since F(0, {,) = x and F(1, t,) = x



60 FUNDAMENTAL GROUP AND COVERING SPACES
are constant for £, € I, G may be chosen so that
G0, t,) =0y =% and G(1, &) = &(1) = ¥

for all £, € I, Since p  G= F and since F(t,, 1) = e,(t,), the paths £, — G{t, 1) and
t, —egx(t,) are both mapped by p into e,. Moreover, G(0,1) = ¥ = ez(0), so these
paths agree at a point. Thus, by Theorem 2, G(t,, 1) = ez(t,) for all ¢, € I, and G is
a homotopy from @ to ez. [

COROLLARY 2. Let (X, p) be a covering space of X. Let o be a path in X. Let

Xo = a(0), and choose %, € X with p(¥) = x,. Then there exists a unique path @ in

X with origin ¥, covering «, that is, with p - @ = a. :

Proof. The uniqueness is a consequence of Theorem 2 abave. To prove exist-
ence, we apply the covering homotopy theorem to the case where ¥ = {y,} is a
1- pomt space and f: Y — X is defined by f(y,) = ¥,. Since projection on I is a
homeomorphism of ¥ X [ onto I, we may identify these two Spaces through this
homeomorphism and regard o as mapping Y X I-—-X. Then a(y,,0) = x,= p o f(v,),

so by the covering homotopy theorem, there exists a homotopy G: Y >< I — X such
that p « G = @ and

G(yo, 0) = f(vy) = %,

Let @ I — X be defined by a(t) = G(y,,t). Then & has the required properties, [

COROLLARY 3. Let (X p) be a covering space of X. Let x ¢ X, and ¥ ¢ X with

P(X) = x. Then there exists a ‘‘natural’”’ one-to-one correSpondence between
p7*{x}) and the coset space 7,(X, x)/p,7 (X, %).

Proof. We define c: (X, x) — p~*{x}) as follows. Let g € 7,(X, x). Suppose «
and B are two representations of g; that is, g = (a) = {B). By Corollary 2, o and
B have unique lifts oz and B to X with origin ¥. Now a = B, so by the covering
homotOpy theorem, o B In partlcular @ and B have the same end point; that is,

a(1) = B(1). Thus we can define

c(g) = a(1),

where «a is any representative of g.

Since X is arcwise connected, ¥ can be joined to each element of 77%{x}) by a
path in X which is in turn the 11ft of a closed path (its projection) in X. Thus
c: m, (X, x) — p{{x}) is surjective.

We now show that ¢ is constant on cosets of p,7, (X ¥) in m,(X, x). Suppose (@)
and (B) lie in the same coset. Then (B) = (¥){a) = (¥ @) for some (y) € p,7, (X x).
Thus

c((B) = el{va)) = ya(l).
But ya = ¥ @ by Corollary 2, so that

c(B) =7a() = &1) = c{a)),

c(H(a)) = ca)), (a)e m(X, x),
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where H{a) is the coset of H = p,7 1{X, ¥) containing (@). ¢ is surjective because
c is. T is injective because if c(H(a)) C(H{B)), then c({a)) = ¢((B)); that is,
@(1) = B(1), so that (@f %) € 7 (X %). Letting & = p, ({(@B~Y), we have

W(B) = (p o (@B (B) = (aB™)(B) =(a),

so that (@) and (B8) are in the same coset of H; that is, H(a) = H(B). 0

Example 1. Consider the line R' as a covering space for the circle S!, with

p(r) = e2™7  Take as base pomt in S! the pomt z =1. Then p 1({1}) is the set of
1megers Since ul\Rl, U[ is L.I.I.Vl.d.l’ y*ul\nl, U} = \U[, S0 7 l\o , 1; is in one-to-one
correspondence with the integers. (We shall see later that this correspondence is,
in fact, a group isomorphism.)

Example 2. Consider the plane R? as a covering space for the torus S! x S! with
plr,, r,) = (€2m¥1 g2mi¥2)  Then 7 ,(R?, 0} is trivial so #,(S! x S% (1, 1)) is in one-to-
one correSpondence with p1{( 1, 1)} the Cartesian product of the set of integers
with itself. (This correspondence also turns out to be a group isomorphism, of
m,(S* x 8§t (1, 1)) with the direct product of the integers with itself.)

Example 3. The sphere S? is a covering space of the projective plane P? (see

2
Example 2 at the beginning of this section). Let # € P? be the z axis (n

through the origin in R? and hence is a point in P?), Then

ia n ino
g Lﬂﬂr.l..l-l\a

O

p"({n}) = {north pole, south pole} C 52,

Later we shall prove that 7,(S?, north pole) = {e}. Assuming this fact for the mo-
ment, we get from Corollary 3 that 7,(P? x) has two elements; that is, 7,(P?,#) = Z,,
the cyclic group of order 2. In particular, there is a path « in P? which is not homo-
topic to a constant, but its square a? is homotopic to a constant. The curve in P?
defined by a thus has the property that the path obtained by traveling around once
cannot be shrunk to a point, and yet the path obtained by traveling around twice can
be shrunk toa point. Geometrically, given a great circle on S? through the north and
south poles, let x(#) € S? move along this great circle from the north to the south
pole as ¢ varies from 0 to 1. Let «(f) be the line through the origin which passes
through x(f}). Then « is a path in P? with the above property. Note that the lift
t —x(f) of o to S? is not a closed path in S?, whereas the lift of o? to S? is closed.
This amounts to traveling all the way a.round the great circle.

Proof of Theorem 3. Since Y and I are compact, ¥ X I is compact, hence so is
F(Y X I). Thus F(Y x I) can be covered by finitely many admissible open sets
v,.. U,, (cover F(Y x I} by admissible open sets and take a finite subcovering).
Since {F Ui)} covers Y X I, and since a basis of open sets in ¥ x I is given

by (open sets of Y) x (open intervals in I), we can find a finite covering {VO,} of Y
of connected, open sets anda decomposition of the unit interval 0=¢,<¢,<...<fp =1
such that each F(Vy X [#;, #;,1 ]) C some Uy . -

We construct G by constructing G;: Y x [#;_4, ;] —X (i = 1, ..., k) with the

properties that (1) p - G; :F'Yx[t‘ iRt (2) G; is continuous; and (3) G; = G4 on
the closed set i-1:%

Y x [t;, 1 0 Y x {4, t;,,] = [y, £); v € Y].

Bythe glueing lemma for closed sets, G will be continuous, and, of course, p e G=F,
By induction, assume the G; have been defined for 7 = j so that they satisfy (1),
(2) (fori =1, ...,5), and (3) (for i =1, ..., j—1). We construct Gj,,. Inorder for
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(3) to be satisfied, G;.,(y, #) must equal Gj(y, ;). Let G]+1' Va % 14, 4] — — X be
defined as follows; F(V X [ ]ﬂ]) - Uﬂ, an admlss1b1e open set in X, Since V,,
is connected, the set G;(Vy X {tJ }) is connected. But

p e G](Va X {tj}) = F(Va X {tj})CUﬂ.

Hence, G;(V, X {tj}) lies inone of the open sets W Cp‘l(UE) on which p: W—U, is

a homeomorphism. Define Gjoil = (plw)te F\V l¢,t5+1]. Note that Gﬁl = G; on

Y X [t]’ i:'i+1] ’
we paste the maps Gf}, defined on the open sets V, X [ tj +1] of the spéée
Y x [ ]ﬂ] By the gluemg lemma for open sets, we need only verify that G 1 and
j+1 agree on Vg, N Vg X [], tj+1], which we can assume is not empty: , -
Suppose Gj(V, X {t-}) lies in the open set Wy, (v = a, B), with p: Wy = Uy and

S0 T o IT oo e d g o Qin. Y Fa) w T J'4 2T A ST W
p: wB Um uuu:euuxuxpxuaxua wliiice Uj+1—- U] on Viy X U1 \¥ = &, p}, theén

Gﬁl = ﬁl on Vg N Vg x {t t;}. Since any point of Vo, N V5 x x 14, tj.1] can be connected

to Voo N Vg X {t} by an arc in V I V,'3 X [L:,,, tjﬂ], we must have

G]+1 (V n Vﬁ [ _7+1]) C W N WB ('Y = a, B).
But p - E}“ = F|V7 % [tjs ‘. +1] for v = a, B, and ply, = plwﬁ on W, N Ws. Hence
Gj?il = Gj, 00 Vo N VB [ ].

Note that this induction argument also works to start the induction, that is, for
the construction of G,, because we are given G, on Y x {¢,} equal to f.

We leave to the reader the verification that the above construction automatically
makes G stationary. O

Definitions. Let X be an arcwise cohnected, locally arcwise connected space.
X is simply connected if its fundametital group is trivial, or equivalently, if every
closed path in X is homotopic to a cdnstant

A covering space (X p) ofa space X is called a universal covering space if X is
simply connected.

Remark. The line, the plane, and the sphere are universal covering spaces,
respectively, of the circle, the torus, and the projective plane, That the sphere S2
is simply connected, however, rétitains to be shown:

Definition. A space X is localfy Simply connected if for each x € X, there exists
an open set ¥V containing x such that : 4ny path o in V, with «(0) = a(1) = x, is homo-
topic in X to the constant path e,

THEOREM 4. Let X be arcwise connected, locally arcwise connected, and locally
simply connected. Let H be a subgroup of 7 (X x). Then there exists a covering

space (X #) such that p*wl(X %) = H, where ¥ ¢ X with p(%) = x. In particular, if
H = (e), then X is simply connected, 8o each such X hasa universal covering space.

Proof. From the covering homotopy theorem and its corollaries, we know that
each & in X is the unique lift starting at a‘(o) of the path p o @ in X; moreover, &
is a closed path if and only if (p o T) € p,7 (X, x) (Corollary 3). Hence the point

a(l) inX _is determined by (p ° @). So it makes sense to try and construct the
points of X from paths in X,

Let ©_ denote the set of all paths in X beginning at x, We define an equivalence
relation = on Q by « _E_ 8 if and only if a(1) = g(1) and {@3™!) € H. This is an equiv-
alence relation:
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because {(aa™) = (e, ) € H.

(4]
(2) ¥ a B g, then (Ba) = (ap )€ H, so B
@) 1 o2 gand 82 4, then a(1) = B(1) = y(1), and

(@™ = (@B 1By = (@BNBYY € B,

S0 o;vg Y.

Let X be the set of all £ equivalence classes, For a € Q, let [a] denote the =
equivalence class of a. Define p: X — X by plla]) = a(1). p is surjective because
X is arcwise connected. ~ ~

We define a topology on X as follows. For [a] € X, let U be an open set in X

containing a(1). Let

llas

([al, U) = [[aB); B a path in U beginning at a(1)].

The collection of all such ([a], U), together with ¢, forms a basis for the topology
on X. It is a basis because :

(1) X = ([e,], X) and

(2) for ([@,], U,) and ([a,], U,) two such sets, if [y] € ([a,], U) N ((a,], U,), then

(), U, N0y S ((e), ) 0 (el U, N

The topology on X is Hausdorff. For suppose [a,] and [a,] € X with [a,] # [a,].
K «,(1) # a,(1), then there exist disjoint open sets U, and U, in X with a,(1) ¢ U,
and a,(1) € U, (X is Hausdorff), and clearly ([a,], U)) N ([a,], U,) = @. So suppose
a,(1) = a,(1). Since X is locally simply connected, there exists an open set U con-
taining o (1) = a,(1) such that any closed path in U is homotopic in X to the constant
path. Then ([e,], U) N ([a,], ¥) = @&, for otherwise there would exist paths 8 and
y in U starting at @,(1) = a,(1) with [@,8] = [a,y]; that is, with ,8 2 @,y. Thus
(@, By 'a, ") € H, But By!is a clgsed path in U, so 8y™' = €a (1 and

(a,a,™) = (aleaflfl) a, ') = (@, By e, € H;

that is, @, 2 a, and [a,] = [@,], which is a contradiction.
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p: X —X is continuous, For if U is open in X, then for each [a} € p=2(U), ([a], 1)
in X and is contained in p~!(U).

cwice conhected For 1ot [l and
(VR PivLvRR NIV ILv V) R U 0 FARY 5 AN § v 4 Luj allvi

.~

G
s VY MA Anrncatriend + Y L raan
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X

e
ig
fiw)
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P ar B
[@] to [B], we shrink o in X by pulling its end in to its origin, and then snake out
along g toward its end, and then take equivalence classes. Explicitly, an
f: 1 —X, with £(0) = [a] and £(1) = [ 8], is defined as follows:

Hln'-"h

R [ IR
where

ap(t) = al(1-2t,)t) (¢ = 1/2)
and

Bi,(t) = Bl2t,=1)t) (b= 1/2).

f is continuous, because if ([v], U} is a basic open set in 5?, then

f—l([')’], U):[tzE I?f(tz)e ([’J’], U)] =AUB

where
A = [ty el0,1/2]; [oy,] € ([v], D]
and
B = [t, e[1/2,1]; [8,] € ([v], D)].
We show first that A is open. Suppose #, € A. Then o7,(1) € U, Since t, — ay,(1) is

U for all
(1)

oL
[ -

continuous, there exists an open interval J about #, such that o (1) €
L, €, Moreover for £, € J, (o 3 = (nu n), where 7 is the path q]nncr o from

ay,

Fig. 3.19
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to ay (1), Furthermore, since ¢, € A, [at } = [y£] for some path & in U from y (1) to
az, (1) that is, (at §'yH € H. But

(g r&n)™) = (ag,n &™) = (af, £y € H.
Thus
a, B y(gn),
where £7 is a path in U from y (1) to a4, (1); that is,
(e} = En] e (I¥], U)

for all £, € J. Hence J is an open set about Z,, contained in A; and A is open, Sim-
ilarly B is open, and hence so is f “¥[y], U). This proves that f is continuous, thus
completing the proof that X is arcwise connected.

(f P) is a covering space. For given x, € X, let U be an arcwise connected open
set containing x,, with the property that each path in U is homotoplc in X to a con-
stant. As in the proof above that X is Hausdorff, we see that if [ i # [azj is such
that p([a,]) = pla,)), thatis, a (1) = a,1), then ([ad, 0) N ([« j U)= @. Also,
since U is arcwise connected, p|([a1 0): ([a] U) —U is surjective for any [a] with

pllal) = x,. Moreover, b|(lal, v) 18 injective. For suppose p{[aB)) = p([ay]) for

some paths 8 and v in U starting at x,. Then g(1) = ¥(1), so 8y !is a closed path
in U and hence is homotopic to the constant path e, ; thatis,

((ap)ay)™) = (a(Bya™) = (ae, o) =({e,) € H

and [ag] = [ay].
Now p7(U) = Y ([a), U) where the union is over all @ with p([a]) = x,. For ify

is a path, with p([y]) = (1) € U, let B8 be a path in U from »(1) to x,. Then
plyBD) = x,, and [y] € ([y 8], U)._

To complete the proof that (X, p) is a covering space, it remains only to show
that p 1s an open map, that is, that it maps open sets onto open sets. For this, sup-
pose V is an open set in X, Since V is a union of basic open sets U= {(al, v), it
suffices to_show that p(T7) is open for such . So let ¥, € p(I); say x, = p([B]) = B(1)
for [B] € U. Let U, be the set of all points in U whlch can be Jomed to x, by paths
in U. Since X is locally arcwise connected, it is easy to verify that U, 1s an open
set. Clearly x, € U,. We claim that U, C p(T), implying that p(D) is 0pen In fact,
U, = p([8],U ) Moreover [8] = [ey], Where v is a path contained in U. Thus any
element[ ] € ([B] U, is of the form

[n] = [86) = [ayd] € ((al, U) = T,

where 6 is a path in U, from 8(1) to (1), and ([8], U) < T.

Finally, to complete the proof of the theorem, we must show that p*(vr (X %)) =
where ¥ = [ex] For this, let « be any path in X starting at x. Let a be the path 1n
X starting at ¥ defined by alt,) = [at ], where atz(t ) = alt,t,). @ is continuous: see

the argument used above for f in the proof that X is arcwise connected. @ covers
a because p(a(t,)) = ([atz]) = a4,(1) = aft,). Now suppose « is closed; that is, sup-
pose (@) € 7 (X, x). Then
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(a) € p*(nl(f, %)) <> @ is a closed path in b
< (1) = [e,]

<= [a] = [e,]

[[f=+

= a Ze,

<> (@) € H.

Thus p,(m,(X, %)) = H, as required. 0O
Remark. Recall that, for a group G, two subgroups H, and H, are said to be
conjugate if

H,= gH g" = [gh,g™; h, € H,] for some g € G,

THEOREM 5, Let (X p) be a covering space of a space X, let x € X, and let
X, %, € p-i{x }). Then p,m ) and p,,(X, ¥,) are con;ugate in 7.(X, x)
Proof. Let ¥ be a path k from %, to ¥,. Then, by Theorem 5, Sec. 3.2,

(X, %) = (M@ ;@) € (X, %)].
Projecting,
P (X, F) = [(p o VWP o T N; ke pymX, %),

and (p V) € 7 (X, x). a
THEOREM 6, Let X be locally simply connected and let (X p) be a covering

space of X. Suppose (X , p) is a covering space of X. Then (X, p- p) is a covering
space of X.

Proof. We leave the proof as an exercise.

THEOREM 7. Let X be locally simply connected and let (Xl, p,) and (Xz, b,) be
covering spaces of X. Suppose ¥; ¢ X] (§ =1,2), with p,(¥) = pz(x,_,) and

(pl)*”;()?;; x)C (pz)*nl(fga %)

Then there exists a unique map 5: X, — X, with B(¥,) = ¥, such that (X, 3) is a
covering space of X,. Furthermore, p, °p = p,.

Proof. For y € )?1, we define p(y) as follows. Let ¥, be a path in X from x, to
y. Then p,e y, is a path in X w1th or1g1n Pi(X)) = pa(Xy). Let v, be the lift of
pi1- v to a path in X, starting at X2. Set p(y) = v2(1). Then p is well-defined be-
cause if B, is another path in X, from %, to v, then (y:8,"") € (X, %)) so that

(P ) (y,B ™) € (pl)*ﬂl(fl’ $1) = (Pz)*m(}?z’ %s),

and hence p, ° y131'1 lifts to a closed path in Xz, that is, yo{1) = B,(1).

The proofs that 7 is continuous and unique and (X " p) is in fact a covering space
of X involve no new techniques and are left as exercises for the student. a

Defmztzon Two covering spaces (Xl, p,) and (5?2, p,) ofa space X areisomorphic
if there exists a homeomorphism #: X — Xz such that p, c 2 = p,.

Remark. According to Theorem 4, glven a subgroup H of the fundamental group
of a space, there exists a covering space whose fundamental group is mapped iso-
morphically onto H by the projection map. The following result asserts that this
covering space is unique up to isomorphism.
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THEOREM 8. Let X be locally simply connected and let (Xl, p,) and (Xa, b,) be
covering spaces of X. Suppose ¥; € X (7 =1,2), with p (%) = pz(xa) and

(pl)* Wl(Xl, ;1) = (pz)*ﬂl(gm ’fa)’

Then (X, 5,) and (X,, B,) are isomorphic.

Proof. By Theorem 7, there_ exist maps p X X and ¢: X —-X such that
(Xl, P) is a covering space of Xz, (Xz, g)is a covermg space of Xl, pl p.° P,
Pa= Dy e q P(x ) = xz’ and q(xz) = x Thus

pr=pPaeB=p o(ge°p

and (X, - p) isa covering space of X, by Theorem 6. From the uniqueness part
of Theorem 7, it follows that § » P = =¥ Similarly, 3¢ g =i%,. Therefore qg=7"
and p is a homeomorphism with pz P = p,; that is, (Xl, p1) and (Xz, p2) are iso-
morphic. O

Definition. Let (X p)bea epvering space of a space X, A covering transforma-
tion, or deck trgnsformation, of (X p) is a homeomorphism h: X — X such that
peoh=p.

Remark. The set of covering transformations is a group under composition. It
is called the group of deck transformations and is denoted by § (X p). Note that a
deck transigrmatlon k permutes the ‘‘decks’” of X that is, if U is an admissible
open set in X, then % permutes the copies of U in p~ 1(U)

Definition. A covering space (X p) is called a 'regular covering space of X if
Dy 1(X %)} is a normal subgroup of 7 (X, p(¥X)) for some ¥ € X. Note that since a
normal subgroup equals all its conjugate subgroups the condition of regularity of a
covering space is 1ndependent of the base point x.

THEOREM 9, Let (X p) bea regular covering space ofa locally simply connect-
ed space X. Then the group Q(X p) of deck transformations is isomorphic to the
quotient group 7 (X, p(X))/p,7, (X x).

COROLLARY 1. If (X, p) is a universal covering space, then 7,(X, x) = g(X, p);
that is, m,(X, x) is isomorphic to g(X ).

COROLLARY 2. 7,(S%, 1) = 9, where ¢ is the group of integers.

Proof of Corollary 2. The umversal covering space of S! is (R!, p) where
p(r) = e2™7 A deck transformation of (R, p) is a homeomorphism #: R! — R! such
that p o k = p, that is, such that e2mh("} = @277 Thysg p(r) —# is an integer for all
¥ € R, But v — h(r) — ¥ is a continuous map R! — 4. Since R! is connected, so is its
image under this map, Hence #(7) — ¥ = & for some fixed k; that is, k(») = » + k for
some k, and & is translation by the integer &, 0

COROLLARY 3 7,(S'x S, (1,1) = RCER N

Proof of Theorem 9. Let H Dy, (X, %). By Theorem 8, we may replace (X, p)
by any covering space whose fundamental group projects onto H. In particular, we
may assume that (X p) is the covering space constructed in the proof of Theorem 4
and that X = [ex] x € X. We shall construct a homomorphism ¢: 7,(X, x) — g(X b)
which is surjective and has kernel H. The theorem then follows from group theory.

For (a) ¢ m(X, x), let ¢({a)) be the deck transformation defined by

eadN[B]) = [aB] for [Ble X.
H

This map ¢ is well-defined because if ¢ & o, and B
(BB1™") € H so that

(03(0!1,81)_1) = <a><861-1><a1>—1 = (a><361—1><a>—1 € H

B1 then (o) = (a,) and



68 FUNDAMENTAL GROUP AND COVERING SPACES

since H is normal; thus af I a,p, and [eg] = [0,8,].
Note that ¢({e)) is injective and surjective because its inverse is @({a™b).
¢{{a)) is continuous because clearly ¢((a)) ([ 8], U)) = @{a (8], 1)) = (o8], U)

for any ([ 8], U). Similarly ¢({a))™! is continuous so (p((oz ) is a homeomorphlsm
Since

pllp<a) ([B]) = aB(1) = BQ1) = p([8D),

¢ ((a)) is a deck transformation for each (a).
@ is a homomorphism because

eaXa))([B]) = ¢{a1a2))([B])

= [o,@,8]
= ea) (@8]
= o) ° e 8))
for all [B] € X; that is, p{{aay)) = olay) » 9{{a,) for all (o), (o) e m(X, x).

The kernel of ¢ is H because

paX[8]) = [Bl <> [ap =[8]

<> (a) = (app™) € H.

@ is surjective. For suppose k: X —X isa deck transformation. Let [a] = A([e X))
Then a(1) = p([a)) = x, so a is a closed path in X; _that is, (@) € 7,(X, x). Now
¢({a)) = h. For, in fact ¢{({a)) and & are both maps X X, W1th

polpa)) = poh=p

and with p((a))([e,]) = [ae,] = [a] = ([e,]),

(Note that X is loc 1ly connecte eca.use it is locally arcwise connected: f
yeXand Vv open in X containing vy, the set of all points in V which can be joined to
x by a path is a connected open set in V.)

0, by Theorem 2, ¢((a)) = k. 0

D.

cte or

h(
b
th

2;3 I



CHAPTER FOUR
SIMPLICIAL COMPLEXES

The goal of this chapter is to develop some machinery which will enable us to
compute the fundamental group of a large class of spaces. These spaces are the
ones which can be obtained by piecing together ina nice way basic topological build-
ing blocks called simplices. A 0-dimensional simplex is a point, a 1-dimensional
simplex a line segment, a 2-dimensional simplex a triangle, a 3-dimensional sim-
plex a tetrahedron, and so on. All the spaces which will occupy our attention in the
coming chapters will be homeomorphic to spaces built up from simplices,

Given a decomposition (triangulation) of two spaces intoc small enough simplices,
we shall show that any continucus map from one space to the other can be approxi-
mated bya map which is linear on each simplex. Moreover, this approximating map
will be in the same homotopy class as the original one. Thus we will have reduced
difficult topological problems of mappings to more accessible algebraic problems
of ‘‘piecewise linear’’ maps and spaces.

Fig. 4.1 illustrates these ideas. It shows two triangulations of the unit interval
I and a piecewise linear approximation to the function f: I — I defined by

fx) = 4x — 4x2,

Fig. 4.1

4.1 GEOMETRY OF SIMPLICIAL COMPLEXES,

Definition. Let V be a vector space over R! and let C be a subset of V.C is convex if
€, €, €C =>tc, +(1-cy,eC

forall te .

69
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Definition. A set {v,, v, ..., vp} of vectors ina vector space V is convex-inde-
pendent, or c-independent, if the set{v T Vg Uy~ Vg vu., Up — 0, iS linearly inde-
pendent. Note that this definition does not depend on wh1ch vector is called v,

Example. In R?, {v,, v,, v,} is c-independent if and only if Vo, Uy, and v, are not
collinear,

THEOREM 1. Suppose {ve vy, ..., vz} i8 a c-independent set. Let C be the

convex set generated by {v,, Uy ..., Ups; that is, C is the smallest convex set con-
k

taining {v,, v,, ..., vz }. Then C consists of all vectors of the form & a;v;, where

I3 i=0
a; = 0 for all 7 and 2_:0 @; = 1. Furthermore, each v € C is uniquely expressible in

this form.

Proof. First note that the intersection of convex sets is a convex set, so C ex-
ists; C is the jntersection of all convex sets containing {v,.. Ugy ooy k}

Now let

k k
Clz[v;vzzaivi, az-zo,z:ai:l].
i=0

i=0

C, is convex because if v =

ISR

k
a;v; and w = EO b;v;, then

H

k

tw+(Q-Hw =2 [ta; + (1 - 1)b;]v,

=0

and

k
2 lta; + (1 = 0),] = t2a1+(1—t Z by =t +(1—¢ =1,
‘=0 7=0

Thus C, is a convex set containing {v,, Vi vpt; hence C, > C.

Conversely, C, CC. For certainly E a;v; € C whenever all but one a; are zero.
=0

We proceed by induction, Assume Z: a;v; € C whenever, at most, n of the a; are
non-zero (n < k+1). Let 2 a;v; have n + 1 non-zero a;, which we may assume (by

relabelling if necessary) are ao, ay, ..., a, # 1 for otherwise all other a; = 0. Thus

k n-1

a.:
L aiv; = (1= ag) D 72— v; + a,v,.
=0 n

=0
Since

n—1 Qs 1 n-1 1
E i _ Eaz= a"(l_a")zl’
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n—1 Cli
z 1=
i=0 ay

v; € C by the induction assumption. Hence

n-1

a
tZ)l_

i=0

vi+(1—t)vn € C

Qn
k

for £ € I since C is convex. Let { = 1 — a,. It follows that = a;v; € C; that is,
i=0

C,CC,and C, = C,
We proceed to show uniqueness. Suppose

k k
where T a; = Z b, =1, Then

i=0 i=0

()
Il

1]
04~
—
=
-,
|
o
~,
~—
——
<
~
I
<
L.

Since {vl ~ Vo Uy~ Vg, ...,V — Uy} is linearly independent, a; — &; = 0 for all 7 > Q.
Then clearly a, = b, also. C
Definition. Let V be a vector space over R, A convex set generated by c-inde-
endent vectors {v,, v,, ..., vp} is called a (closed) k-simplex and is denoted by
Fvo, vy ..., Ug]. kis called the dimension of the simplex. If v ¢ [vo, Vi v en, UB),
then the coefficients a;, with a; = 0 and ;io a; = 1 such that v = ﬁo a;v;, are called
the barycentric coordinates of v. ) i
Examples. For {vo, v,} vectors in R!, the simplex lv,, v,] is the closed interval
[ve, v,]. For {v,, v,, v,} CR? [v, v, v,] is the triangle with vertices Vo, Uy, aNd v,
The centroid of this triangle is the point with barycentric coordinates (1/3, 1/3, 1/3).

For V = R”, the simplex ['uo, vy, ...,Vt] is a compact metric space (it is closed and
bounded) in the relative topology. In fact, using barycentric coordinates, it 1s not
difficult to see that [vo, vy, ...,0p] is homeomorphic to a product of £ unit intervals.
However, this homeomorphism is nof an isometry.
Definitions. Let {v,, v,, ..., vp} be a c-independent set, The set
[velvg vy, ...,o6); a;)>0,i=01,...,F]

is called an open simplex andis denoted by (v,, v,,..., vz). We shall also denote an

open simplex by (s) and the corresponding closed simplex by [s].
Let [s] = {v,, v,, ..., vz] be a closed simplex. The vertices of [s] are the points

Vgy Uy, -+., Vp. The closed faces of [s] are the closed simplices [Ujo’ Vjp +=vs ”jh]
where {j, 7, ..., jn} is a non-empty subset of 10, 1, ..., ky. The open faces of
the simplex [.1s] are the open simplices (v;, v;, ..., Vi)
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Remarks.
1. A vertex is a O-dimensional closed face. It is also an open face.
[2] An open simplex (s) is an open set in the closed simplex [s] . Its closure is
s].
3. The closed simplex [s] is the union of its open faces.
4, Distinct open faces of a simplex are disjoint.
5. The open simplex (s) is the inferior of the closed simplex [s]; that is, it is
the closed simplex minus its proper open faces (faces # (s)).
Definition. A simplicial complex K (Euclidean) is a finite set of open simplices
in some R" such that
(1) if (s) € K, then all open faces of [s] € K;
(2) if (s,), (s,) € K and (s) N (s,) # @&, then (s,) = (s,).
The dimension of K is the maximum dimension of the simplices of K,
Remarks. H K is a simplicial complex, let [K] denote the point set union of the
open simplices of K, Then [K] is compact, and [K] = ”U (s) = ()UK [s].
s)eK s)e
I [s] is a closed simplex, the collection of its open faces is a simplicial com-
plex which we denote by s,

Examples. The following (Fig, 4.2) are examples of simplicial complexes.

Fig. 4.2

The following (Fig, 4.3) are not simplicial complexes.

[
4
)

[ ]
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By adding simplices, however, the point sets in Fig. 4.3 can be made into complexes
(Fig. 4.4).

Fig. 4.4
Note that a complex is more than just a point set, It is a set with additional struc-
ture. It is possible to have two different complexes with the same point set, as in
Fig. 4.5

Fig. 4.5

Definition. A subcomplex of a simplicial complex K is a simplicial complex L
such that (s) € L implies (s) € K.

Rewmark. For each (s) € K, the simplicial complex s is a subcomplex of K,

Definition. Let K be a complex. Let » be an integer less than or equal to dim K.
The »-skeleton K7 of K is the collection K¥ = [(s) € K; dim s = 7],

Remark. The r-skeleton K¥ is a subcomplex of K.

4,2 BARYCENTRIC SUBDIVISIONS

Definition. Let v € R" and let A C R". The pair (v, A) is in general position if
v ¢ A and, for each a,, a, € A with a, £ a,, [v, a,] Nlv, a,] = {v}.

Examples. The following points and sets in the plane (Fig. 4.6) are in general
position,
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Fig. 4.6

The following points and sets (Fig. 4.7) are nof in general position,

° Fig. 4.7

Note that if A is a tri
is in general position.

Definition. Let (v, A) be in general position. The cone with vertex v and base A
(or the join of v with A), denoted by v x A, (Fig. 4.8) is the set

v* A= Ulbal]

THEOREM 1. Let [s] = [v,, v, ..., v3] be a k-simplex. Let v € (s). Then

(v, [s¥Y)) is in general pomtion, and v * [S k1] = [s].

Proof. Let a,, a, € |s*7']. Suppose there exists w € [v, e,] N [v, a,] with w # o.
We must then show that @, = a,. Consider the expressions for a,, a2, and v in terms
of barycentric coordinates in [s]:

kB B k
a, = 2 a, ; V4, ay = E OV, v = En Bivi'
i=0 i=0 =0

Since a. ¢ (s) and a; ¢ (s), @y, = Oand a,;, =0 for some ¢, and i; =k. Moreover,
since v € (s), B; # 0 for all i. Since w € [v, al] w=1tw +(1—t)a, for some t, ¢ I.
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k
Thus w = T [£,8; + (1 - t)a,;]v;.

=0

Similarly, since w € [v, a,], we have w = ZO [£,8; + (1 — t)a, ;]v; for some ¢, € I.
By the uniqueness of barycentric coordmates

8B + (M —t)ay; = t,8; + (1 —t)a,; (E=0,1,..., k).

Hence t,—t» = (1/8)[(1 — t2)e,; — (1 ~ t)a,,].
Taking i =7, yields

1
tl_tz =-B'i_'(1_t2)a2i120.
1
Taking ¢ = 7, yields
1
tl_tzz—:@(l_tl)alizs 0.
2

Hence ¢, —¢,=0,1, = £, and
(1-t)a,; = (1—t)a,;

for all i, Now £, # 1 since w # v, so th1s implies that @,; = a,; for all ¢; hence
a, = a,, completmg the proof that (v [s -1]) is in general position,

Now v * [s%1] c [s] because [s] is convex. Conversely,-[s]C v * [s*-!]. For if
w € [s*-1], then certainly w € v * [s*-1]. So suppose w € (s). We may assume w # v,
In barycentric coordinates,

k

k
w= ), o;v;, v =2 Biv; (all &y, Bi > 0).
i=0

=0

Since

k k
Z/(ai—ﬁi) =Z a;— 2 B;=1—-1=0,
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and since o; — f3; # 0 for some ¢, a; — B; < 0 for some j. For each such j, let
f (t) = i+ t(a B; ). Since J; (1) > 0 "and f () < 0 for large ¢, there exists al > 1

such that B. + t.(a - B ) = 0. Choose i, from among the numbers 4 so that t t],

for all such 7. Then BZO + ¢ (a; — B;) =0, and B; + 4; (o; — B;) = 0 for all i, Hence
v+ & (w-v)=xc¢ [Sk'f]. (See Fig. 4.9.) Also,

L, —1
W=—1-x+z° v =8t +(1 - M
tio tig
with ¢ = l/t,-0 < 1. Hence w € v * [s*1], O
x
/
v
Fig. 4.9
Exervcise. Let [s] [v,, v ., Ug]. Prove that (v, [s]) is in general position if
and only if {v,, v,, ..., vp, v]} is c- independent, in which case
v *x[s] = [v, vy, ..., v, v].

Definitions. Let s be a k-simplex. The barycenter of s, denoted b(s), is the point
in (s) with barycentric coordinates (1/(k + 1), ..., 1/(k + 1)), that is, 1f

(s) = (v, vy, ..., vp),

then

1 k
b(s)=k 1205.

+1 i

Let K be a simplicial complex. A subdivision of K is a simplicial complex b4l
such that

(1) [7] = [&]

(2) if s € KT, then (s) C some open simplex of K.

Examples. Each of the complexes in Fig, 4,10, second column, is a subdivision

of the corresponding complex in the first column. Note that although the second and
third complexes in the second column have the same paint set, neither is a subdivi-

1l A L= O g W ~AAARRllliY a4 222N SRLIT peadl 2

sion of the other.
THEOREM 2, Let s be a k-simplex. Let KT be a subdivision of sk1, Let v € (s).

Then (v, [KT]) is in general position, Furthermore, v x [K'] is the point set of a
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Fig. 4.10

complex K defined by K = kKT U( U (s, »)) U(v). (Seg Fig. 4.11.) Here, for

stekt

(T ooy o = ceranlas
(s', v) =, vy ..., vy, v). The complex

. \ Fig. 4.11

Proof. By Theorem 1, (v, [s*¥™1]) is in general position and v * [s¥7] = [s]. But
[KT] = [s*], so @, [kT]) is in general position, and v * [KT] = [s].
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We must show that K is a simplicial complex. It is a set of open simplices.
Moreover, each simplex # (v) in K is either in KT or is of the form (sT, v). If it is
in K', then all its open faces are in K', hence in K. H it is of the form (sT, v), then

its open faces are sT, (v), and [(SI, v); slr an open face of s']. Thus, in each case,
all open faces are in K, and Condition (1) fora complex is satisfied. To verify Con-
dition (2) for a complex, we must show that distinct open simplices have void inter-

section. Since K isa complex, this is certainly satisfied by pairs of simplices each

in KT, T e kT then (s} N {s,, v} = @ for all S-!'EKTbe-
cause, in fact, (37:, v) C (s). Clearly, (v) meets no other open simplices of K. So now
suppose slr, s] € kT have (slr, v) N (s!, v) # @. Letw ¢ (slr, v) N (s;r, v). Since
these are open simplices, w # v. Now there exists a unique x € [sk’l] = [KT] such
that w € [v, x]. (See Theorem 1,) Since [s], v] =0 * [sT], it follows that x € (ler).
Similarly x € (sI), S0 (SI) N (s;f) # @. Therefore s

and (s7, v) = (s}, v), Thus K is a complex.
The point set of K is

A eran 16 o
}V{ULUUVUL, 11 o

= sZ since KT is a complex,

-

K] = U [3)= U vx[sT] = v+ [&] = [s].

;ER sTeK“TL

Since each open simplex of K is contained in an open simplex of s —those in Kl are,
because KT is a subdivision of sk'.‘; the rest are contained in {s)—K is a subdivision
of s. 0

Definition. Let K be a simplicial complex. A partial ordering is defined on K by
§, =8, ifand only if s, is a face of s,. The notation s, < s, shall means, = s, and
S, #S,.

THEOREM 3. Let K be a simplicial complex. Let

K(l) = [(b(so), b(sl)’ AL b(Sk)); so < Sl .. < Sk; SO’ SD R | Sk € K]‘

Then K'Y is a subdivision of XK. Furthermore, for each s, s,, ..., s, € K with
So < §1 < ... < Sy, (B(So), ..., B(s,)) C (s,).

Remark. The subdivision K" is called the first barycentric subdivision of K.
Iterating, K(#} = ((KV)'") ...)" is the nth barycentric subdivision of K.

n times

Proof of Theovem 3. (By induction on dim K.) For dim K = 0, K'Y = K so there
is nothing to prove. Assume the theorem is true for all simplicial complexes of
dimension =n — 1. Letdim K = n. Then the (n — 1)-skeleton K" ! is a complex of
dimension = # — 1; hence the theorem is true for K*°!, In particular, if

803 Sl, ...,SVGK,

So < S;<...<Sy, and dim s, = n — 1, then {b(s,), b(s,), ..., b(s,)} is c-independent
and gives an open simplex (b(sy), b(s)), ..., b(s,)) in (K"") Furthermore,

(B(sy), b(sy, ..., b(s,)) C(s,).

Now suppose So, Sy, ..., S, € K (S0 < ... < s,), and dim s, =n. Since s,_, < s,,
dim s,_, = n — 1, so that (b(so), b(sy), ..., b(s,_|)) is a simplex C (s,_,), which is a
face of s,. Since b(s,) € (s,), Theorem 1 implies that (b(s,), (&(so), ..., b(s,_ ) is
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in general position. Hence (b(s), b(s,), ..., b(s,)) is an open simplex, the interior
of the closed simplex

[6G,), b(s)), ..., b(s,)] = bls,) * [b(sy), ..., b6, )] C[s,].

Thus (b(s,), ..., b(s,)) C(s,).

Thus far we know that K'¥ is a collection of open simplices. It is in fact a sim-
plicial complex. Condition (1) is clearly satisfied: any face of (b(s,),b(s,), ..., b(s,))
is of the form (b(s; ), 6(s;), ..., b(s; )) and is hence in K, We now verify Condi-

i (2

tion (2). Suppose s, <...<S;, §,<...<Sg, and

(o), ..., b)) N (B, ..., 5E,) # @

Let w belong to the intersection. Then w € {s,) N (§,). Since K is a complex, s, =5,
and b(s,) = b(s4). Moreover,

(b(S o), “ ey b(sr-l)) C (sqr..l). and (b(S_'o), ey b(§q_1)) C (S_‘q_l)
where (s,_,) and (5,_,) are both faces of (s,); hence (b(s), ..., b(s,_)) and

b(E,), ..., 6(E,4,)) e s,V
Since
we (blsy), ..., b(s,.1), b(s)) N(BGEY), ..., b(5,4.1), b(s,))
Cbhls,) * (blsy), ..., bls, ) Nbls,) * (b(sy), ..., 6(E,)),

we conclude by Theorem 2 and the induction assumption that

(b5, ..., blsy)) =BGy, ..., bE D).

This shows that K'Y isa simplicial complex. To complete the proof of the induc-
tion step and of the theorem, we must show that [K‘¥'] = [K]. Clearly, [kV] < [K].

Ala~ 22D — Frrm-1n{DY _ [rn-1
AlLSG, 44 ] [t J 7] = 1A

show that

fz e o

1 > P T T, T S ¥ L 3 U §
j, U.Dlll.g Lie 1nuauciLionl dDDulI]pLIUIl. elce we l1iiupl

[&'V] = [&] ~ [K"].

So suppose w € [K] — [K”"!]. Then w must lie in some open simplex (s) of dimension
n. Thus

w e (s) Cs] = bs) » [s?1].
Now [s"-1] C[K7"*] = [(K"")'"] so w € b(s) * (s,) for some
(s) = (b(sy), ..., blsp) € (K1),
If w= b(s), then w is a vertex in K'V, If w #£ &(s), then
w e (b(sy), ..., blsp), b(s)) c [KV]. 0

Definitions. Let (S, p) be a metric space, and let T be a compact subset of S.
The diametey of T is
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diam T = sup p(¢,, &,).

[ i,eT

Let K bea simplicial complex in R*, where R” is provided with the usual metric.
The mesh of K is the maximum diameter of simplices of K:
mesh K = max diam [s]

sek

LEMMA. If s is a simplex in R", then diam [s] = p(v,, v,) for some pair v, v, of
vertices of s. If K is a simplicial complex, then mesh K = p(v,, v,), where v, and v,
are vertices of some simplex of K.

Proof. Let s be a simplex and let vy, v» € [s] be such that diam [s] = p (v, v2).
Suppose, say, that ¢, is not a vertex. Then v, is in some open simplex of dimension
= 1. In particular, there exist u, w, € [s] with w: # w», such that

v, = tw, + (1 - w,
for some ¢ with 0 </ < 1. But the convex function f defined on I by
f() = plv, tw, + (1 - Hw,),

has no maximum for 0 < ¢ < 1, contradicting the maximality of p at (v,, v,).

The second statement of the lemma follows immediately from the definition of
mesh K, 0

THEOREM 4. Let K be a simplicial complex of dimension . Then mesh KV
= (m/(m+1)) mesh K. In particular, lim mesh k() - o,

N

Proof. By the lemma, there exists a simplex (6(s,), b(s)), ..., b(s,)) € KV such
that mesh KW = p(b (sk) b(sh)) with sp < sh By renumbermg vertlces if necessary,
sp = (vg, ...,Up), sp = (v, cees Upy Upyyy s q), and

mesh K = ||b(sp) - b(Sh)”

”p 1sz o E”J”

q+1.5

g+1 ”q+1 vi _.E"fH

p+1 7
B (B o)

] _I_LI
p"‘l Q"']- i=0 =0
11 ¢
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But |jv; — v;|| = diam [s;] = mesh K. Moreover, whenever i = j, the (i, j)-th term in
this summation is zero. There are p +1 such terms. The number of non-zero
terms is therefore

(p+1g+1)—(p+1)=(p +1)q.

Since each term in the summation is = mesh K, and since ¢ = m,

mesh K < —4- mesh K < ™ mesh K. i
g+1 m+1

4,3 SIMPLICIAL APPROXIMATION THEOREM
Definition. Let K and L be simplicial complexes. A map ¢:
plicial map-if
(1) for each vertex v of K, ¢(v) is a vertex of L,
(2) for each simplex (v, v,, ..., vz) € K, the vertices ¢(v,), @), ..., @(vp)
all lie in some closed simplex of L, and

B
(3) for each (s) = (vy, vy ..., vg) € K and p = 27 a;v;€ (s), the image of p is
given by =0

<
—
by
=
[

R
—
y

k
e(p) = é} a; ;).

Remark. Condition (1) says that ¢ must map the 0-skeleton of K into the 0-skele-
ton of L. Condition (2) says that for each simplex (v, v,, ..., vp) € K, the set
oy, ¢lvy), ..., ¢lvg), with redundancies removed, is the set of vertices of some
simplex in L. Condition (3) says that the mapping ¢ is linear on each simpleX.

Since a simplicial map depends on K and L, not just [K] and [L], we will denote
it by ¢: K—L,

Examples. In Fig. 4.12, projection is a simplicial map.

Fig. 4.12
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However, in Fig. 4.13, projection is not a simplicial map, even though conditions
(1) and (3) are satisfied.

~

Fig. 4.13

Remarks. With the glueing lemma, it is easy to check that a simplicial map is
continuous,

A simplicial map is, by Condition (3), determined by its effect on vertices. Con-
versely, a vertex map K°® — L° from the vertices of K into the vertices of L can be
extended to a simplicial map K — L if and only if Condition (2) above is satisfied.

Definition. Let K be a simplicial complex and let » be a vertex of K. The star of
v is the point set

St(z) = U (s)
ve [s]
(s)e K

THEOREM 1. Let K be a simplicial complex, For v a vertex of K, St(v) is an
open set in [K] containing v, and v is the only vertex of K which lies in St(v). The
collection { St(v)}, cx° is an open covering of [K].

Proof. We shall show that the complement of St{v) in [

Stx) = U (s).
vE s}

Since v £ [s] implies v £ face of s, we have (s) S St(v)’ implies [s] € St(»)’. Since

[s] is compact, [s] is closed. Hence St(v)’ = ()U . [s] is closed.
' sycsil)’

Next, v is the only vertex in St(v) because the only open simplex containing a
vertex is the 0-simplex consisting of that vertex alone.

Finally, U St(v) = [K] because if p € [K], then p € (s) for some (s} € K, and hence

ve K°

p € St(») for any vertex v of (s). 0

Definition. Let K and L be simplicial complexes, Let f: K] —-[L] be continuous.
A simplicial map ¢: K — L is a simplicial approximation to f if f(St(v)) C St(e(v))
for each vertex v of K,

THEOREM 2. Suppose ¢: K — L is a simplicial approximation to f: [K] —[L].
Then, for any p € [K], f(p) and ¢(p) lie in a common closed simplex of [L].

Proof. Let p € [K]. Then p € (s) for some simplex (s) = (v,, v,, ..., vy) € K, and

s

F(B) € F(s)) € F (SH;))  Stlp(;))
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for all j € {0, 1,...,7}. Now f(p) € (f) for some simplex (¢} € L, so for (¢),
& n St(e¢ (v;)) £ @ for all j. But, since L is a complex and St(¢(v;)) is a union of
open 31mp11ces () c St((p(v )) for all j; that is, ¢(v;) is a vertex of (#) for all j. In

terms of barycentric coordinates ins, p = z a;v;, and
Jj=0

#(p) = Z aj0()) ele].
is comple he p ]
COROLLARY. Suppose ¢: K —L is a simplicial approximation to f: [K] —[L].

d(f, ¢) = mesh L,

where d(f, @) = Slllli pf (p), ¢(P)).

THEOREM 3. Let ¢ be a simplicial approximation to f: [K] —[L]. Let K, bea
subcomplex of K; and suppose that the restriction of f to [K,] is a 51mpl1c1a1 map.
Then there exists a homotopy between f and ¢ which is stationary on [K ].

Proof. Define F: [K] x I —[L] by

F(p, t) = to(p) + (1= 8F(p).

F does map into [L] because, by Theorem 2, f(p) and ¢(p) lie in a common sim-
plex that, being convex, also contains the line joining them. It is easily verified that
F is continuous, and clearly F(p,0) = f(p) and F(p,1) = ¢(p) for all p € [K].

F is stat1onary on [K,] because ¢l[k,) is a simplicial approximation to f|[g )
(since f(StK (v)) C f(Stg(v)) C St(p(v)) for each vertex v € K), and hence f = ¢ on
[K,] by the followmg lemma. [

LEMMA, Suppose f: K — L is a simplicial map and that ¢ is a simplicial ap-
proximation to f. Then ¢ = f.

Proof. For each vertex v € K,

But, since f is a simplicial map, f(v) is a vertex and, by Theorem 1, f(v) = ¢ ().
Thus f and ¢ agree on vertices; hence they agree everywhere since both are sim-
plicial maps. 0

THEOREM 4. Let f: [K] —[L] be continuous and ¢: K° —L° be a vertex map.
¢ can be extended to a simplicial approximation to f if and only if f(St(v)) C St(p (v))
for all v € K°,

Pyoof. The implication in one direction is obvious. For the other direction we
need only verify that ¢ can be extended to a simplicial map K —L; that is, we need
only show that if (s) = (v, v}, ..., v,) is a simplex in K, then ¢(v,), o)), ..., ¢(v,)
are vertices of a common 51mplex of L. But, in fact, f((s) Lf(St(v J) C St((P(U )

for all j €10, 1,...,7} so ﬂ St(qo(v )) # ¢. This implies there exists an open sim-
plex () C St(qa(vj)) for all ] (p(v :) must then be a vertex of (¢) for all j. O

THEOREM 5. Let f: [K] |_Lj be continuous. Let U(n } be a sequence of sub-
divisions of K such that lim mesh K,, = 0. Then, for n sufficiently large, there exists

>

a simplicial map ¢: K, — L such that ¢ is a simplicial approximation to f.
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Proof. By Theorem 1, {St(w)}, ez is an open covering of [L]. Since f is con-
tinuous, { f "Y(St(w))},, ¢z.0 is an open covering of [K]. Since [K] is a compact metric
space, there exists a 6 > 0 such that any ball of radius 6 lies in some open set of
this covering. Choose n large enough so that mesh K,, < 6/2. Then diam [s] = 6/2
for each s € K,,. Hence, for each vertex v in K,,, St(v) C B,,(8). But B, () C fY(St(w))
for some w € L° so for each v € (K,)% St(v) C f~X(St(w)) for some w € L°, For each
v € (K,)° define ¢(v) to be any such vertex w € L° (There are only finitely many
such w; pick any one.) Then ¢: (K,)° —L° has the property that St(v) C f~}(St(¢ (v)));
that is, 7 (St(v)) C St(¢ (v)) for each v € (K,)°. By Theorem 4, ¢ can be extended to a
simplicial approximation to f, O

COROLLARY. Let f: [K] —[L] be continuous. Then, for any ¢ > 0, there exist
subdivisions K, of K and L,, of L, and a simplicial approximation ¢: K, —L,, to
f such that d(y, ¢) < c.

Proof. By Theorem 4 of Sec. 4.2, there exist subdivisions with arbitrarily small
mesh. Given &€ >0, let L,, be a subdivision of L such that mesh L,, <¢. Then
f: K] — [Lm] . By Theorem 5, there exists a subdivision K, of K and a simplicial
approximation ¢: K, — L, to f. By the corollary to Theorem 2,

d(f, ¢) = mesh L, <c¢, O

4.4 FUNDAMENTAL GROUP OF A SIMPLICIAL COMPLEX

Definition. Let K and L be simplicial complexes. Let ¢, and ¢,: K —L be sim-
plicial maps, ¢, and ¢, are contiguous if, for each simplex (v,, vy, ..., Up) € K,
there exists a simplex ¢ € L such that

‘pl(vo), (91(01), e (Pl(vk) and (Pz(vo)’ 992(01): ceey @o0E)
are vertices of £,

Example. lLet K be the complex of a 3-dimensional simplex, with vertices
{vg v, 05 v}, Let L be a one dimensional complex with three vertices {wo, w,, Wyt

and two 1-simplices (w,, w,) and (w,, w,), as in Fig. 4.14.

Fig. 4.14

Define simplicial maps ¢,, ¢,, ¢,; K — L by prescribing them on vertices as fol-
lows:

@,y = 9,(v) = w,, ¢,(vy) = ¢,(vy) =w,;
(pz(vo) = (pz(vl) = (Pz(vz) = ?2(03) =Wy,
P3(ve) = wy  @50) = @,,) = @4vy) = w,.
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It is easily checked that ¢, and ¢, are contiguous and that ¢, and ¢, are contiguous.
Note, however, that ¢, and ¢, are not contiguous. Hence the property of being con-
tiguous is notf an equivalence relation.

Definition. Two simplicial maps ¢, ¢y : K —L are contiguous equivalent, denoted
¢, if there exists a finite sequence ¢, ¢, ..., ¢ of simplicial maps K — L such
that ¢ , = ¢, @ = ¢, and ¢; is contiguous with ¢;_, for each € {1,2,..., 4.

Remark. It is easily checked that £ is an equivalence relation.

THEOREM 1. Let K and L be simplicial complexes and let f: [K] —[L]. Suppose
¢,, ¢,; K — L are both simplicial approximations to /. Then ¢, and ¢, are con-
tiguous,

Proof. Let (s) = (v,, ..., vp) be a simplex of K. Then

FUs)) © £(St2,) € Stlp4(v))

for all je{0,...,k and i e {1,2}. Thus
k
FUSNC N Ste,o) N N Ste,)).
=0 i=0
Let (£) be an open simplex in L such that f({(s)) N ({) # @. Then
(O N Stloyo) N N Ste,le)),
j=0 7=0

and hence ¢ ,(vy), ..., @,(vg) and @,(vy), ..., @,(v}) are vertices of (). O
THEOREM 2. SuppoSe ¢, and ¢, K — L are contiguous simplicial maps. Then
¢, and ¢, are homotopic.
Proof. Note first that for each p € [K], ¢,(p) and @,(p) lie in a common simplex

k
of L. For p € (s) with (s) = (v,,...,vs) € K. In barycentric coordinates, p = Z a;v;.
Since ¢, and ¢ are contiguous, @i(vo), ..., @(vg) and @a(vo), ..., @2(vp) are ver-

b
tices of some simplex () € L. Then @i(p) = T a;p;v) € () for je {1, 2}.

7

Now define F: [K] x I — [L] by

L) 1 ~J)

F(p, ) = (1-0op)+te(p), (pelkl;tel).

F makes sense: since ¢ ,(p) and ¢,(p) lie in a common simplex for each p € K, so
does the line segment joining them. F is a homotopy from ¢, to ¢,. O

COROLLARY. Contiguous equivalent simplicial maps are homotopic.

THEOREM 3. Let K be a simplicial complex. Let a, and a,: I — [K] be paths in
[K). Suppose @, = a,. Then there exists a subdivision I’ of I and simplicial maps
@, and ¢ : I' — K such that

(1) @; is a simplicial approximation to o (j € {0, 1}) and

(2) 9o £ @,

Moreover, given any simplicial subdivision of I, a finer subdivision /' can be
chosen.

Remark. More generally, if K and L are two simplicial complexes and

fo it 1K1 = [L]
are homotopic maps, then there exists a subdivision K’ of K and simplicial maps

¢, ¢, K' —L satisfying Conditions (1) and (2) above. The proof of this is a gener-
alization of the following proof,
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Proof of Theorem 3. Let F: I x I —[K] be a homotopy from a, to a,. Since
{Stw)} weko is an open covering of [K], {F-(Stw))} ,»ex© is an open covering of
I X I, Since I X I is a compact metric space, there exists a 6 > 0 such that each
ball of radius 6 is contained in F~¥(St{w)) for some w ¢ K°,

Choose a subdivision I of I, with vertices v, = 0, v,, ..., vs = 1, and another
subdivision I” of I with vertices £/2% (£ = 0,...,2%). Then I’ X I" can be made
into a simplicial complex M with vertices vy = (v,, £/2%) and 2-simplices of the
form (vf,, vf,u, vi+l) or (L, v%“, v%ﬁi). (See Fig. 4.15.)

i+1
g

T Uri1

l
vi / N

Fig. 4.15

The subdivisions can be chosen fine enough so that St(v,) X [(£-1)/2k, (2 + 1)/2k] is
contained ina ball of radius 6 and therefore contained in F~Y(St(w)) for some w € K°,
Since St(vf,) CSt(v,) x [(« —1)/2k, (£+1)/2%] CF-Y(St(w)), there exists, by Theorem 4
of Sec. 4.3, a simplicial map &: M — K, which is a simplicial approximation to F
and for which

St(v,) X [(€-1)/2%, (£ +1)/2%] ¢ F-Y(Sta (L))

Let ¢; = ®1x{;}, (i = 0,1), so that ¢; is a simplicial approximation to Flix{i} = a;.
We now show that ¢ £ ¢, Letyy = Dlrxg ok SO that = ¢, and Yop = @, Itsuf-
fices to show that y, and ¢y,, are contiguous for £ = o, ..., 2k—1; that is, for each

simplex (v,, v,,,) € I', the vertices

bay) = ¥w}), 9y (v, = BL,), 9y.,(0,) = Bwh*Y), and TPRCIMIER (758)

lie on a simplex of K, But

ﬁo St(@s ) 2 F(Stw,) x 5 5 n o <[5 55 ))

l!j=

£ 441
- F((vr, v’ru) X [ﬁ’ _2%]) ,

which is not empty and hence contains a simplex (¢) of K. Hence the four vertices in
question are vertices of (), [

Definitions. Let K be a simplicial complex. An edge in K is an ordered pair
€ = |v,0,| of vertices of K, such that v, and v, lie in some simplex of K. v, is the

origin of e, and v, is the end of e. I e = |v,v,|, the edge lv,v,| is denoted by e~2,
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A route in K is a finite sequence w = e e, ... ep of edges in K such that, for each
i€ {1, ..., k—1}, the end of e; equals the origin of e;,,. The origin of w is the
origin of e,, and the end of w is the end of ep. Given two routes w=e, ... ez and
T =e]...e;, with end of w equal to origin of 7, their product wT is defined by

WT =e,...€epe]...€e.
The inverse of a route w= e, ... ep is the route
wl=zei... el

An equivalence relation on the set of all routes in K is defined as follows. If
e = |v,v,| and f = |v,v,| are such thatv,, v,, v, are vertices of a simplex, then the
product ef is edge equivalent to the edge |v,v,|. Two routes w and 7 are edge
equivalent, denoted w E 7, if 7 can be obtained from w by a sequence of such ele-
mentary edge equivalences,

Example. Suppose K is the complex in Fig. 4.16.

Fig. 4.16

Then |v,2,||v,0,| E [v,0,]|v50,] because
E E
Vv |lv,v,] = |vav,] = Wov,l|v,v,l.

Remark. Edge equivalence is an equivalence relation. Moreover, if w is a route
with origin v, then ww™ = |vv|. Also, if v,, v,, ..., vp are vertices of a simplex,
then |v,v,||v, 0] + -+ [V VRl = |U,0p].

THEOREM 4. Let K be a simplicial complex, and let v, be a vertex of K. Let
E(K, v,) be the set of edge equivalence classes of routes in K with origin v, and end
v,. Then E(K, v,) is a group, with identity lvgv,|, under the operations of multipli-
cation and inverse defined above for routes, E(K, v,) is called the edge path group
of (K, v,).

Proof. Routine.

Definition. The edge path group of a complex K is a purely ‘‘combinatorial’’ ob-
ject; that is, it depends on only the vertices of K and those subsets which are ver-
Eic]es of a simplex. Its definition does not use the topological properties of the space
K]|.

First, we define an ‘‘abstract’’ simplicial complex more precisely. Let V be a
finite set, elements of which we shall call vertices. Let A be a collection of subsets
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of V, called (abstract) simplices, such that

(1) if v € V, then {v} € A;

(2) if S € A, then each non-empty subset of S is also in 4. Such a collection 4 is
called an abstract simplicial complex.

(Note that every simplicial complex determines an abstract simplicial complex.
Conversely, it can be shown that every abstract simplicial complex 4 has a ‘‘reali-
zation as a simplicial complex; that is, there exists a simplicial complex whose
abstract complex is A. Note, however, that each abstract complex corresponds to
many (non-isometric) simplicial complexes.)

The edge path group can now be defined for abstract complex A. It is the same
as the edge path group of any realization of A. It is in this sense that we mean
E(K, v,) is a purely combinatorial object. In contrast, the mesh of a complex is not
a combinatorial concept.

THEOREM 5. Let K be a simplicial complex, and let v, be a vertex of K. Then
E(K, v,) is isomorphic with 7,([K], v,).

Proof. We construct an isomorphism h: E(K, v,) — ﬂl([K], v, as follows. Let
w be a route in K beginning and ending at v,. Then w = [vw,|[v Y, « -+ |vp_ V| for
some set {vl, Vg ..., Upt of vertices in K, with vp = v,. Now regard the interval
I as the space of a simplicial complex with vertices {0, 1/&, 2/k, ..., (k—1)/k, 1}.
Consider the vertex map ¢: I°—~K° defined by ¢u(j/k) = v;, (j €{0,1,...,k}).

Since [vyv,| - -+ |vp_, V| is a route, ¢ extends to a simplicial map ¢, I — K, Set
h(w) = (o). E

Note that if w = 7, then w & 7, so k(w) = k(7). Thus % is well defined. % is a
homomorphism because if w = e,... €; and 7 = e ... e;, are routes with origin

and end v, then a homotopy between ¢,r and ¢ @, is obtained from Fig. 4.17.

1/2k 1/2 1/2m 1/2m

VAN
VA

1/k+ Vk+m
[bm Fig. 4.17

h is surjective. For suppose (a) € nl([K], vo). Then, by the simplicial approxi-
mation theorem, there exists a subdivision I’ of I and a simplicial approximation
@: I’ ~ K to a. Moreover ¢ = a, so (¢) = (a). Let ¢, <?, <...< lp be the vertices
of 77, Let w be the route |@(¢) o(t)||o(t) @(t)] - .. |o(t |

hlw) = (@) = (a).
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h is injective. For this we must show that if w is a route such that ¢, = ¢, ,
then w & |voUel. But, by Theorem 3, there exists a subdivision I’ of I and simpli-
cial maps Co Pyl I' — K such that @o auu @, are simplicial approximations to Cw

and e, respectively, and such that ¢, £ ¢,. (This subdivision I’ can be chosen
finer than the subdivision of / used to define ¢,.) Now, since e, is a simplicial
map and ¢, is a simplicial approximation to it, ¢, = e, Then to show that

E
w = (v,

it suffices to prove the following. E
(1) I ¢ and ¥ are contiguous equivalent simplicial maps I’ —K, then wy, =~ wy,
where Wy and w,, are the routes associated to ¢ and .
(2) If : I — K is a simplicial map and ¢: I' —K is a simplicial approximation
to ¥ on a finer subdivision of I, then wy E Wep-
For, by (2), w = wgy, E wgp,, and, by (1),
We, E Wy, = We, = U0 l-
Proof of (1). Since E is an equivalence relation, it suffices to prove that contig-

uwous simplicial maps have this property. So suppose ¢, ®: I’ —K are contiguous.
Now

Ity @) 1e(t) @(E)] - -« lotp-) o(t)],
[t 9l )11t ) 92| - - (9lEp_y) 9(Le)] .

Wy
“

and

Hence
wewy™ = (@)t -+ l@ltp_) @R (R P D - - - |9(£) P D]

But since ¢ and y are contiguous, ¢({x_,), @(tg), ¥(¢g_,), and P(fg) are vertices of a
common simplex, Moreover ¢{(#) = P(¢z) = v, Hence

o) 0 (R || 9ltR) (e )| B 1o(te-)) wlte))
and

Wepw 2 el el)l ... |0 (tk-2) @ (tp- )|kt p- )P (p )| P(Ep_ )P (Lr_,)|
Y

Similarly, since ¢ and y are contiguous,

lo(tp.2) o(tp D@ e ) vlte_ )| E lo(tp0) vlte )]

and
10(te) Wla Dtk W(te) | E loltan) vlte)l,
so that
wpwy™ E 19ty olty)]
(tp_g) ee_ Do te ) pltp) | 9ltpr) Ylte_5)|
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Continuing in this way we find, by induction, that
wg)wgpﬂ E Iﬁo(to) w(te)l = !vovc! .

Proof of (2). Since the restriction of ¥ to the subcomplex of I’ consisting of the
vertices {4y, £, ..., fx} is a simplicial map, @(t;) = p(¢;) for i € {0, 1, ..., k}.
Moreover, since y: I — K is a simplicial map, (y(¢;, ¢;,,)) is a simplex (s) in K of
dimension O or 1.

Claim: For each vertexu of I’ with £; < u < ¢;,,, ¢(u) is a vertex of (s). For, in
fact, since ¢ is a simplicial approximation to i,

p(u) € p(Sty(u)) C Strlp(u)).

Since y(u) € (s), (s) N St p(u) # @, so (s) C St ¢(u), and ¢(u) must be a vertex of
(s); that is, @(«) is equal either to y(¢) or to y(#;,,) as claimed.

Thus, if u,=1¢; <u, <...<wuy =4, are the vertices of I’ between £; and ¢;, ,, then
{o(uy), olu), ..., ¢(u,)} are vertices of a common simplex of K. Note that ¢(u )
is a vertex of (s) because eluy) = olt;) = p(¢;); similarly ¢(u,) is a vertex of (s).

Now consider the parts of wy and w arising from the restrictions of  and ¢ to
[¢;, t;,)] . This part of wy is just Iy (£;)9(¢;,1)]. The corresponding part of wg, is

o o) @(u ) [l@(oe,) @(us)] - o |luy,_,) o(uy)l.

Since {(p(uo), .+v, ©(uy)} are vertices of a common simplex of K, this is edge
equivalent to |¢(u,) @(uy)| = lo(t)e (t:,2)] = 19(£))9(4;,,)|. Thus these parts of wyand
wy are edge equivalent. Since this is true for each i, wy £ w,,. O

COROLLARY. Let K be a simplicial complex, let v, € K° and let i: K2 —K be
the injection of the 2-skeleton of K into K. Then ¢ induces an isomorphism

iy: E(K% v) — E(K, v,).

Consequently, the induced map
in: (K7, v)) — 7,(K], v,)
is an isomorphism.

Proof. The definition of edge equivalence depends only on K2, O

THEOREM 6. The n-sphere S” is simply connected for » > 1; that is, 7,(S”, p)
= (e) for each p € S”,

Proof. First note that S” is homeomorphic to the n-skeleton of an (n+1)-sim-
plex. Infact, if s is an (v+1)-simplex in R%?*! the following map ¢: [s?] — R?*
maps [s”] homeomorphically onto S® C R"*!, Let b = (B, ..., by,) € R"1Dbe the
barycenter of s. For x = (x,, ..., x,,,) € [s"], define ¢(x) € R"*! by

1
(p(X) = Tl (xl - bl’ >x2 - b2’ L xml - bn+1)'
[Z (xi-bi)g} /2
i=0

Geometrically, [s] may be regarded as inscribed in S”, and ¢ is projection outward
irom the barycenter of {s].

It suffices then to show that m,([s”], v) = (¢). By Theorem 5, every element of
T 1([s”] , Uy) has a representative o which isa route, and, inparticular, its image lies
in [s!]. I » > 1, then there exists a point p € [s”] with p ¢ [s!]. But [s?] - {p} is

homeomorphic with R”  which is contractible. Hence a = €y, O
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Definitions. A graph is a simplicial complex of dimension less than 2. A {ree T
is an arcwise connected graph such that, for each 1-simplex s ¢ T, [T] - (s) is not
connected. (See Fig. 4.18.)

This graph is a free.

This graph is not a tree,

Fig. 4.18

An end of a graph is a vertex which is the vertex of at most one 1-simplex.

Remark. Every tree has an end. For otherwise we could build up a route by
starting at one vertex, moving to another vertex along a 1-simplex, moving to a
third vertex along a different 1-simplex, etc. The route never touches a vertex
twice because otherwise the 1-simplex which brings the route back to that vertex
could be removed without disconnecting the tree. If the route never reaches an end,
we will touch infinitely many vertices in this way (induction). But a complex has
only finitely many vertices.

THEOREM 7. Every tree is contractible,

Proof. By induction on the number of vertices. If T has 1 vertex, the theorem
is trivial. Assume the theorem for trees with »n vertices. Let T have n + 1 ver-
tices, and let v, be an end of 7. Then there exists a unique 1-simplex s € T with
vertex v,.

Let L = T—{(s), v,}. Then L is a simplicial complex, and [L] = [7] - (s) U{v,}.
L is a tree because if { is a 1-simplex in L such that f_L] — (¢) is connected, then
[7] - (1) would also be connected. Now L has only » vertices, so L is contractible.
Moreover, [L] and [T] are of the same homotopy type. (Let f: [7] —[L] map
(s) U {vo} into the other vertex of § and map L onto itself. Let g: [L] — [7] be
inclusion. Then f o g~ i[z] and g °f =~ i[7].) Hence [ T] is contractible. a
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COROLLARY, Let T be a tree and let v, be a vertex of T. Then
m,({T], vy) = E(T, vy) = (e).

Definition. Let K be a graph. Let @, be the number of vertices of K, and let a,
be the number of 1-simplices. Let x(K) = ay— «,. The integer y(K) is called the
Euler characteristic of K,

Remark. Note that the integer x{K) is invariant under subdivisions, because in-
serting an extra vertex into K splits some 1-simplex into two 1-simplices, so that
@, and «, both increase by one.

THEOREM 8. Let T be a tree. Then x(7T) = 1.

Proof. By induction on the number 7 of vertices of 7. For n = 1, the theorem is
clear. Assume the theorem for trees with » vertices, and let T have n + 1 verti-
ces. Let L be the tree obtained in the proof of Theorem 7. Then L has # vertices
so x (L) = 1. But ao(T) = q,(L) + 1, and o,(T) = a(L) +1,s0 x(T)=xL) =1. O

THEOREM 9. Let K be an arcwise connected graph. Let » be the maximum
number of open 1-simplices which canbe removed from K without disconnecting the
space, (n is the number of “basic’’ circuits in K,) Then # = 1 — y (K).

'Proof. Iif K is a tree, then n = 0, and Theorem 8 applies. If K is not a tree, let
(s,) be an open 1-simplex such that [K] —(s ) is connected. I K ~ (s,) isa tree, stop.
Otherwise, let (s,) be an open 1-simplex such that [K] —(s,) U(s,) is connected.
Continue. Since there are only finitely many 1-simplices in K, the process must
stop; that is, for some n, K —{(s)), (s,), ..., (s,)} is a tree T. Then

XK= x(T)—n=1-n
that is,

n = 1- x(K).

(Note that the above formula implies that although the particular 1-simplices
which we delete are byno means unique, the number which must be deleted to obtain
a tree is independent of the particular method of deletion employed.)

Remark. Recall the definition of the free group F, on n genevators. Consider

¥ P F e L% | L1 P | PR, R,

€rs a,, @,, ..., ay. Consiaer the symbols

b .
an alphabet consisting of » lett

-1 -1 -1
a’,a; ", ...,a, " and e,

Let S be the set of all ‘“words’’ obtained by arranging these symbols in any order
in a row of finite length—repetitions are allowed. The “‘product’” af of two words
a and B is defined by juxtaposition: 8 is attached to the end of @. The ‘‘inverse’’ of
a word is obtained by reversing the order of the arrangement and at the same time
replacing a; by aj'l, aj‘1 by aj, and e by e. An equivalence relation ~ is defined on
S as follows. We decree that ‘ee ~ e and that for each 7,

R 1o g, o~ .

a;a; e, a;"la; ~e;
. ~ . .1 ~ .‘11
aJ € aJ, aj e aj ;
. . -1 ~ -1
ea_] aj, eaj aj .

Furthermore, any two words are ~ equivalent if one maybe obtained from the other
through a sequence of such ‘‘elementary’’ equivalences. The set of equivalence
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classes forms a group with multiplication and inverse as above, and with identity
the equivalence class of e. This group is F,,.
Example. The free group on one generator is isomorphic with the integers.
Remark. For n > 1, F, is not commutative. For, in fact, a,a,a,'a,™ # e.
Remark. If F, is a free group with generators a,, a,, ..., a,, and G is any
group, then any map h: {al, A2y «ors an} — G can be extended to a homomorphism
h: F, — G. The homomorphism # is defined by

Rla; et . a;, ) = hla; )*'h(a;,)t - - Waj )™,

Moreover, this property characterizes the group F,; that is, if H is a group gen-
erated by n elements such that any map from these generators into an arbitrary
group extends to a group homomorphism, then H is isomorphic with F,

THEOREM 10 Let K be an arcwise connected graph, and let v, be a vertex of K.
Then =,([K], v,) is isomorphic with the free group on n = 1 — y(K) generators.

Example. Let p, and p, be distinct points in R2 Then for p € R?® —{p,, p,},
m(R®—{p,, Po}, P) is the free group on two generators. For consider a graph K as
in Fig. 4.19. (Note that p, and p, are not part of the graph.)

L]
LI

® pl
L5

o

Fig. 4.19

Then R? — {p,, p.} and [K] are of the same homotopy type. In fact, the map
R? - {pl, P, — [K] defined by projection, as in Fig. 4.20, together W1th the in-
clusion map [K] — R? — {p,, p,} give a homotopy equ1valence Hence

m(R? — {pl’ pz}, p) = Tfl([K], Vo)

But x(K) = 5—6 =—1, son = 1—(-1) = 2 and, by Theorem 10, nl([K], vy =F,.
Proof of Theorem 10. We shall construct homomorphisms

h: EK, v)) —F,
hy: F, — EK, v,)

H

such that %, 2 and h ° h, are identity maps. This will show that E(K, v,) is iso-

morphic “rlth F,. The fheorem s then a consequence of Theorem 5.
Construction ofh Let (s ), (sy), . Sy) (n = x (K)) be open 1-simplices of
K such that 7 = K — {(s ), (sz) (s,,)} s a tree (cf. Theorem 9). Let F, be the

i
free group with generators (s,), (sz), ., (84). Foreachje {12, ..., n}, let s}f
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1 - - - -

i

Fig. 4.20

be the edge lv; vj'\ in K, where v; and v} are the vertices of s;. (We are here im-

plicitly choosing some ordering for the vertices of each s]-.) Let st be the edge
|Uj" v;|. Then each route w in K is of the form

w = p1sj1tp23j21 ces Pksjktpk+1,
where each p; is a route (possibly the trivial route |vji sz‘l) in the tree T. Now set
— ML P ¥ 5 R 41
hw) = (s; )" (s;) (SJk) :
We must check that A is well defined; that is, that A(w) depends only on the edge

equivalence class of w. For this, it suffices to show that if w, and w, are routes in
K which differ by an elementary edge equivalence, then A(w,) = h(w,). So suppose

W, Olv,v,| |V, 047,

W, O'lUI'Ule,

where o and T are routes in K, and v,, v,, v, are vertices of a common simplex in
K. Since K is a graph, and hence has no 2-simplices, either v, = v, = v, v, = v,,
Uy, = Uy, Or ¥, = v, Ineach of the first three cases, at least one of the simplices
(vy, v;) and (v,, v,) is a 0-simplex, hence is not an (s;), and the other is equal to
(v, v5). Thus in each of the first three cases, #(w,) = h(w,). In the fourth case,

W, = OV, v,||[v,0,|T

w, a|v,v,|T.

If (v, v,) is not an (s;), then clearly hlw,) = Alw,). E'(v,, vy,) = (s;) for some j, then

= 0S;tg,F
w, = 0854577,

mw,) = ko)(s;)™ (s;)7 h(r) = Hlo)eh() = Ko)(T) = hlw,).



FUNDAMENTAL GROUP OF A SIMPLICIAL COMPLEX 95

Thus in all cases, k(w,) = #(w,) as required, and % is well defined. Clearly, 4 is a.
homomorphism,

Construction of h,. Since F, is a free group, it suffices to define %, on the gen-
erators (s D) = (v, ’) For this, let o; be a route in the tree T from v to vy, and
7; be a route in T from v, to vj. Defme hl(\s])) to be the edge equivalence class of

the route o; j*‘rjl This definition is independent of o; because any other route in T

from v, to v; is edge equivalent to 0;. (T is simply connected by Theorem 7.) (Pro-
ceed similarly for 7;.) Now k, extends uniquely to a homomorphiSm F, — EK, v,).

e ﬂl is IQEH[ILY pecause, IUI' Ud.LIl geuex ator \b]] U.l. .['n,
2 — L] -+ » = .
h o hl((sj)) h(a] Sj T]) = (sj).
h, ° h is identity because if
W = plsjlipzsjzi “ e kajkipk+1

is a route in K, then

hy © h(w) = hl((S- ):1(3, ):;1 (s- )n)

— +1 -1 +1 +r=13%1
= (05,85,"7 ) (Jz j2 J) -+ (0j,, JkTJk)
—--—~---......1.
B 7]]1 J1 7]_7177_72 J2 77]2 njksjk n]k7
where
. i . .+
0 (if Sj, appears as s;, )
;. =
i (if s s as s;.7)
T if s;, appears as s;,
and
-1 . . . -
0t o Tjz (if §j, appears as sj; )
Ji -
' o; 7! (if §j, appears as $45;7)-

But p, and 7; are both routes in T from v, to the origin of S; * , hence they are edge
P 71 g

equivalent. (7T is simply connected.) Similarly, p, and 'nJ7 n] are both routes from
the end of sjlt to the origin of sj;, hence they are edge equ1valent Continuing by
induction, we conclude that %, ¢ i(w) E w; that is, k, ° & is identity. O3
COROLLARY, Let K be a simplicial complex. Then the fundamental group
ﬂl([K], vy (v, 2 vertex of K) is in a ‘‘natural’”’ way a quotient group of a free group.
Proof. We may assume that K (and hence K! also) is arcwise connected. Let

i: K' — K be injection. Then
i,: BE(KY, v) — EK, v,)
is surjective from the definition of the edge path group. Hence, by Theorem 5,
i 1KY, vy) = 7,(K], v,)

is surjective. Let #n = 1 — x(KY). Then n([KY], v,) = F,, the free group on n gener-
ators, so

iy Fp— (K], v,
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is surjective. Let H be the kernal of ¢,. Then
Tr]_([K]y UU) ™~ FH/H- D

Remark. Regarding E(K', v)) as F,, the subgroup H is the subgroup generated
by routes of the form p,|v, v,llv, v4llv, v,lps"Y, where p, and p, are routes in the
tree T from v, tov,, and (v,, v,, v,) is a 2-simplex in K,

COROLLARY. Let D? ={(x, y) € R% x2 + y2 <1} be the unit disc in R%. There
exists no continuous map f: D? —S! such that f 5! is the identity.

Proof. Suppose such an f exists. Let g: S' — D? be inclusion. Then f ¢ g = ig1,
so that (f © g),: 7 (S%, 1) — 7,(S?, 1) is the identity map. But (f ° g), = f, ° &,, and
m,(D?, 1) = (¢) since D? is homotopic to a point. Then

Im(f e g)* = Im(f* © g*) - Imf* = (e)-

Since (f ° g), is surjective, we conclude 7,(S?, e) = (e), which contradicts Theorem
10, O

COROLLARY. (Special case of Brouwer fixed point theorem) Let D2 be the unit
disc in R?, Suppose f: D* — D? is continuous. Then f has a fixed point; that is,
there exists an x € D? such that f(x) = x.

Proof. Suppose there exists no fixed point. Then, for each x € D?, f(x) # x, so
that x — f(x) # 0 (vector addition in R?). Let g: D? — S! be defined as follows. For
each x € D? g(x) is the projection of f(x) onto S! along the vector x — f(x). (See
Fig. 4.21.) Then g is continuous, and g|q? is the identity. This contradicts the pre-
vious corollary. O

Fig. 4.21

Remark. These two corollaries admit the following generalizations to higher di-
mensions. (1) There exists no continuous map from the n-disc D" (closed ball in
R™) onto its boundary (an (n-1)-sphere §%°!) whose restriction to $”! is the identity.
(2) Every continuous map from the closed n-disc D" into itself has a fixed point.
However, S”! is simply connected for n > 2, so the above proof breaks down. The
fundamental group in the proof must be replaced by another topological invariant,
the (r-1)-th homology group. In the case n = 1, the analogues of these corollaries
are consequences of the connectedness of D! = I,




CHAPTER FIVE
MANIFOLDS

5.1 DIFFERENTIABLE MANIFOLDS

Definition. A locally Euclidean space X of dimension n is a Hausdorff topologi-
cal space such that, for each x € X, there exists a homeomorphism ¢, mapping
some open set containing x onto an open set in R”,

Remark. We may, if we wish, choose each ¢, so that ¢,(x) = 0 and so that the
image of ¢, is a ball By(¢). Given any ¢, homeomorphically mapping an open set
U about x onto an open set in R”, let &€ > 0 be such that B, (,)(e) C ¢,(U). Let

p: By (x)(€) — Byle)

be translation by —@(x). Then

Py =Y © Goxlcpx'l(g(p(x)(g))

maps ¢,* (B(p(x)(e)) homeomorphically onto B(€).

Example 1. R" is locally Euclidean. For each x € R”, take ¢, to be the identity
map.

Example 2, S" is locally Euclidean. Given x € §* let vy € S*, y # x. Then
¢, = stereographic projection from y maps S” — {y} homeomorphically onto R".

Example 3. Projective space P”, that is, the space of all lines through 0 in R"*?,
is locally Euclidean. For since P” is covered by $”, each x € P" is contained in an
open set homeomorphic to an open set in S” that itself contains, about each of its
points, an open set homeomorphic to an open set in R”,

Example 4. Each open subset U of a locally Euclidean space X is locally
Euclidean. For if x € U, let ¢, be a homeomorphism mapping an open set about
% in X onto an open set in R”, Take ¢, = ¥x| U N domain Dy »

Example 5. The set of all non-singular £ X & matrices forms a locally Euclidean
space of dimension k%, Each k X k matrix may be identified with a k2-tuple by
strmgmg out the rows in a line, The non- smgular matrices then form an open set

of R® , namely A"*(R*—{0}) where A: R¥ — Rt is the determinant function,
Definition. A Ck-differentiable manifold of dimension » is a pair (X, & where
X i8 a Hausdorff topological space, and & is a collection of maps such that the fol-
lowmg conditions hold. (See Fig. 5.1.)
(1) {domain (p} ¢& 18 an open covering of X,
(2) each ¢ € & maps its domain homeomorph1ca11y pnto an open set in R?,
32 for each ¢, ¢ €  with (domain ¢) N (domain y) # @, the mapy o ¢ tisa
C®-map from @(domain ¢ Nl domain §) € R” into R”,
(4) & is maximal relative to (2) and (3); that is, 1£ Y is any homeomorphism
mappmg an open set in X onto an open set in R” such that, for each ¢ € & with
domain ¢ l domainy # @, o ¢ *and ¢ » pare C”-maps from

¢ (domain ¢ N domain ¥) and y(domain ¢ N domain y)
into R” —then y € &,

97
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domain ¢

domain ¥

Fig. 5.1

Here # may be 0,1,2,...,«, w. C° means continuous. C% for % finite means all
partial derivatives of order less than or equal to k2 exist and are continuous., C*
means all partial derivatives of all orders exist and are continuous, C¥ means real
analytic; that is, the function may be expressed as a convergent Taylor series in a
neighborhood of each point,

Note that a C*-manifold is a locally Euclidean space and a locally Euclidean
space gives rise to a C%°-manifold.

If » = 2 and, in Condition (3), ¢<C®’’ \s replaced by ‘‘complex analytic’’ (where
R? is identified with the complex numbers C1Y), (X, ®) is called a complex analytic
manifold of complex dimension 1 or a Riemann surface. ® is then called a complex
structure or conformal structure on X,

The maps ¢ € & are called coordinate systems. More precisely, the map ¢ € &
is called a coordinate system on the open set (domain ¢) C X, For x € X, a coor-
dinate system about x is a coordinate system ¢ € ® such that x € domain ¢.

Remark. Each of the above Examples 1, 2, 3, and 5 of locally Euclidean spaces
form the underlying space of a C*-manifold. You need only check that the maps
@, satisfy Condition (3) for a manifold, and then take ¢ to be a maximal set contain-
ing {qox} yvex. Example 4 above also carries over to manifolds. Namely, if (X, ®) is
a Ck -mamfold and U is an open set in X, then (U, &|y) is a C*-manifold, where
By = {olut ge

Defzmtzons Let (X, ) be a C*-manifold. A real-valued function f X —Rl'isa
CS-function (s < k), denoted f € C5(X, RY), if, for each ¢ € ®, f » ¢~!is a CS-func-
tion mapping the 1ma€ e of ¢ C R" into R?,

Let (X, ® bea C -manifold, and let x € X, A real-valued function f is said to
be of class C® (s < k) ina nezghborhood of x, denoted f € CS(X, x, RY), if

= (domain f)

‘s an open set in X containing x, and f € CS(U, RY, where U has the C¥-manifold
tructure as an open set in X.

Remarks. Note that we are able to define CS-functions on X because (1) X looks
locally (via the coordinate systems ¢ € ®) like R”, and we know what it means for a

function on R”" to be CS; and (2) if U = domain ¢ and V = domain y for ¢, y € &, with

Cn
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U NV # ¢, the concept of a C5-function in a neighborhood of x in U N V is the

same relative to the coordinate system ¢ as to the coordinate system i, because
P o g)'l is a Ck-hnmnnmn‘r'nh1nm and k= g,

Sasa o aaasa AALiFadr KRia

Note also that if f and g are C® -functmns in a neighborhood of x, then f + & and
f& (product) are CS-functions in a neighborhood of x, where

domain (f + g) = domain (fg) = (domain f) N (domain g).

Definition. Let (X, ®)

be a C*-man nifold, and let ¢ € ® be a coordinate syst

U = domain ¢. Let 7y R"™ — R*® be the j-th coordmate function on R"; that is,
7@y, @y ..., ay) = a; for @, a,) € R” The j-th coordinate function of the co-
ordmate system @ is the functmn xj U — R! defined by Xj=7%5°¢.

Remark. x5 U — — R! is a C*-function. The n- tuple of functlons (x4, ..., Xp) is
sometimes also referred to as a coordinate system

Definition. Let (X,, &) and (X,, ®,) be C¥-manifolds (not necessarily of the same
dimension). A mapping ¥: X, — X, is of class CS (s < k), denoted ¥ € C5(X,, X,),
if, whenever f € C5(X,, RY), thenf ¥ € C5(X,, RY.

Exercise 1. Show that, if ¥: X, — X, is of class CS (s = n\ then ¥ ig

continuot
182 that, nen 18 coniinuo
in

Remavrks. We shall confine our attentlon to C” -manifolds. This will include, in
particular, C¥-manifolds and complex analytic manifolds of dimension 1. We shall
use the word ‘‘smooth’’ to denote C™.

We now proceed to define the concept of tangent vector on a manifold. Recall
that, in Euclidean space, a vector at a point defines a map which sends each smooth
function into a real number, namely, the directional derivative with respect to the
given vector, Moreover, the vector is determined by its values on all smooth func-
tions. We shall use this property to define tangent vectors on a manifold.

Definition. Let (X, ®) be a smooth manifold and let x € X. A tangent vector at
x is amap v: C¥(X, x, RY) — R?® such that, if ¢ is a (fixed) coordinate system with
x € U = domain ¢, then there exists an n-tuple (@,, a,, ..., a,) of real numbers with
the following property. For each f € C*(X, x, RY),

tem on

U(f) = é a; BT (f °c @ 1)L:p(x)

(Note that if W = domain f, then ¢ and f areboth defined onthe open set U N W con-
taining x, so that f ° ¢! isa smooth function with domain ¢ (U N W) C R” containing
@(x).)

Remark. If v: C*(X, x, RY) — R! has the property required above of a tangent
vector with respect to one coordinate system ¢ about x, then it also has this prop-
erty with respect to any other coordinate system about x. For, if y is another such
coordinate system, then, using the chain rule,

.M:
=
Q;Im

v(f) = (2 2 p(x)

..
[}
-
W
-

=

=2a;5 - (f oy top oo y(x)

W

—
Q@
~

-

=

s
&
ke

a—;j 9y (x) J5i@ ° @ ()

~
1l
-~
)
1
-

where J;(¥ o ¢7) is the Jacobian matrix of the function 3 ° ¢, Hence
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v(f) = 20 (El a; @ o w‘l)fq:(x)) % (f ° ¥y ()

Setting
bj = § 275 © @) (),
we obtain
o) = 3 by (F o 4 iy

Thus, to check if v is a tangent vector at X, it suffices to check the required prop-
erty in any one coordinate system at x.

Notation. Given a coordinate system ¢ about x, let Xj =7; o ¢ denote the j-th

coordinate function of ¢. By a/axj (j =1, ..., n) is meant the tangent vector at x
defined by
9 0
= (f) = == (f > ™| (s
UJ:]‘ Urj YA J

for f € C*(X, x, RY, Thus a/axj corresponds, relative to the coordinate system ¢,

to the n-tuple (0,0,...,1,...,0), where the 1 is in the j-th spot.

Remark 1. I x,, ..., x, are the coordinate functions of a coordinate system ¢
about x, and y,, ..., ¥, are those of a coordinate system ¥ about x, then the above
computation shows that

—
9 L8 3
axj B i1 BXj (yz) By,;'

Remark 2. A tangent vector v at x € X has the following properties. For any
f, & € C*(X, x, RY) and for X € R?,

(1) o(f + &) = v(f) + v(g)

(2) oA f) = xv(f)

(3) v(fg) = v(f)glx) + f(x)o(g).
These three properties say that the map v: C*(X, x, R!) —R! is a derivation. More-
over, these properties characterize tangent vectors; that is, we could have defined
a tangent vector to be a map v: C*(X, x, RY) — R! satisfying (1)-(3) above, and then

proved that, relative to any coordinate system ¢ about x, v = z a;(8/8x;) for some

n-tuple (a,, ..., a,) of real numbers, where x; is the i-th coordinate function of ¢.
Remark 3. The set X, of tangent vectors at x form a vector space under the fol-
lowing rules of addition and scalar multiplication:

W, +v)(f) = 0,(f) +u,(f) (v, v, € X),
Qv )(f) = A, (f)) (v, € X,, A € RY).
To see that v, + v, and Av, are tangent vectors at x, let ¢ be a coordinate system
about x, with coordinate functions (x,, ..., x,). Then

v, =2, a;(8/8x;) and v, = . b;(8/ax;)
i=1 i=1
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for some (@,, ..., a,) and (b, ..., b,). It is then easy to check that
vl+vz=§(az Bx’
Av, = é (Aa) 0
i1 0x;"
The map (@, ..., a,) — Z a;(8/9x;) gives a vector space isomorphism R” —~X,,
so X, has dimension n. Moreover, it is clear that {8/0x; }; e{l,... n} i abasis

for X,. The space X, is called the fangent space to X at x. It is also denoted by
T(X)x or by T(X, x).

For ¢ and ¢ two coordinate systems at x, with coordinate functions (x,, ..., x,)
and (y,, ..., ¥,) respectively, the formula
) o )
5%, = & By, Vi) 5y
7 i=1 j Vi
merelv exnresses the vector 8/8x; in terms of the basi; {3 /owv.} f4 1. Thns
LR \.f‘ A o l!ld. Nt Bt B U B AR, IUUI—UJ. I e ddd Add LA A AAdWS WSA P LA S A L / e J 1 nI - e AR LA B

S _}' ' [
the change of basis matrix from the basis {a/ay,} of X, tot h asis {a/ax }is
precisely the Jacobian matrix ((3/8x;)(y;)).
Remark 4. The tangent space T(R”, a) to R” at a point ¢ € R” is naturally iso-
morphic with R” itself. The isomorphism R” — T'(R", a) is given by

Ay oiiyAy) — E Ai oo 81’

Notaiion. We shall henceforth omit the ¢ from our notation for a differentiable
manifold (X, §). To be sure, a locally Euclidean space X may have two or more
distinct differentiable structures on it {(or it may have none), but we shall denote a
manifold (X, ¥ merely by X and shall assume that a definite differentiable struc-
ture is given on it.

Definition. Let X and Y be smooth manifolds. Let ¥: X — Y be a smooth map.

The differential of ¥ at x € X is the map d¥: X, — Y\Ir(x) defined as follows. For
veX,and ge C°(Y, ¥(x), RY), (d¥())(g) = v(g o ¥).

Remark. It is easily checked that d¥(v) is indeed a tangent vector at ¥(x). For,
if ¢ is a coordinate system about x with coordinate functions (x,, ..., x,), and 7 is

a coordinate system about ¥{x) with coordinate functions (y,, ..., v,,), then

v = f; a; (8/9x;) for some real numbers a;; and if g € C*(Y, ¥(x), R?), then
i=1

v(go‘l'): iai—i-(go‘lf)

[a¥()(g)

il

Eaz (g°7-1°7°‘1’°‘r01)|¢(x

2 D> —~(g TN W) G sy o T ¥ < 9Dl ()

j=1 1

[(sy, ..., Sy) coordinates on R"]
n m a a
- 0= (@) 2 (y,; o ¥
2z i5y; @505 W
- 0
= v o W) —
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Since this holds for all g € C(Y, ¥(x), RY),

m

W) = D ol w)ﬁ;

and, in particular, d¥(v) is a tangent vector, Furthermore, it is clear that d¥ is a
linear transformation X, — Y\I:(x)- Since

d\I'(ax) xS Fyl 672 ¥) -

90Xy 8y;’
this linear transformation d¥ has matrix
(d¥),; = (_3_( o 11:))
i = \ax, Vi
Vg /
relative to the bases {8/8x;} , ef1,... n} 2nd {B/ay]}]e{l m}-

Remark. Let X, Y, and Z be smooth manifolds. Let ¥: X —*Y and & Y — Z be
smooth maps. Then d(<1> V) = dP © d¥.
Proof. Suppose v € X, and ke C”(Z,& o ¥(x), RY). Then

[d(® > ¥)@)](R) = vk o (@) = v((ho@ °¥)
ad¥(v)(h o &)
[d®(d¥ ()] (R)

[@® - a¥)@)](h). O

1]

rr

Remark. Let X be a smooth manifold, and let U be open in X. Then U is itself
a smooth manifold. Moreover, the inclusion map i: U — X is a smooth map. Indeed,
f e C*(X, RY) implies f |y € C°° (U, RY). Furthermore, the differential

di: TWU,ue) = T(X, u,) (uy € U)

is an isomorphism; we shall identify these two linear spaces.

Exercise 2. Xf u, € U an open set in X, construct a function % € C*(X, RY) such
that

h(x) = 1 (x € W an open set containing ),
10 (x £ U).

(Hint: Make use of the smooth function g: R! — R! defined by

J’ -1/t (¢ > 0)
(0 (¢=0).)

ol —
SH\&J

I f, e C°(U, u, RY, use Exercise 1 to show that there exists a smaller open set
Wand f € C°(X, R ) such that fly = f,lw.
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Remark. Let X be a smooth manifold, and let f € C*(X, R?). Let us compute
df. For v € T(X, x), df (v) € T(R!, f(x)). Since T(R!, f(x)) is 1-dimensional,
df(v) = x(d/dr) for some X € R', To determine A, it suffices to evaluate df(v) on the
coordinate function »; R! — R*! as follows.

A = [)\d%](r) - [df@)]@) = vl = f) = v(f).

Thus df{v) = v(f)(d/dv). Now T(RY f(x)) is naturally isomorphic with R® via the
isomorphism A(d/dr) — x. Let us identify these two spaces through this isomorph-
ism. Then df: T(X, x) — R! is a linear functional on T(X, x); that is, df is a
member of the dual space T*(X, x) and is, as such, given by

aflv) = v(f) (v e T(X,x)).

T*(X, x) is called the colangent space at x.

Definition. Let X be a smooth manifold. A smooth curve in X is a smooth map
@ from some (open or closed) interval € R! into X. If the domain of a is a closed
interval [a, b], smoothness of @ means that a admits a smooth extension

a: @ —¢, b+e)—X,

(Note that open intervals are open sets in R! and hence are smooth manifolds.)

A broken C*°-curve in X is a continuous map a: [a, b] — X together with a sub-
division of [a, b] on whose closed subintervals « is a C* curve.

Example.

(¢, ¢ sin1/) (¢t € (0,1])
od) ={(o, 0) (t=0)

is not a smooth curve in R? because it admits no smooth extension past 0.
Definition. Let a: I — X (I an interval C R') be a smooth curve in X. The langent
pector to @ at time ¢ (¢ € I), denoted by &(¢), is defined by

alt) = dd ((d%)t)

Note that &(#) is well defined, even at the endpoints of 7.

Remark. Given a tangent vector v € X,, let a: I — X be a smooth curve whose
tangent vector at time ¢ = 0 is v. (Such a curve may be obtained by taking a coor-
dinate system ¢ about x, finding a curve (for example, the straight line) in R”
whose tangent vector at time 0 is de(v), and pulling this curve back to X by @ L.)
Then, for f e C¥(X, x, RY),

o) = &) = a3 () ) = 50 - Dle

Thus v(f) is the derivative of the ‘‘restriction’ of f to the curve a. Moreover, two
curves a, and @, have the same tangent vector v at time 0 if and only if a,(0) = a,(0)
and

~ d e

ar ) a‘)|o S dr o!2”0
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for all / € C(X, x, R). (See Fig. 5.2.) We may use this equation to define an
equivalence relation on the set of all curves a with @(0) = x. Then we get a one-to-
one correspondence between equivalence classes of curves through x and tangent

vectors at x. Thus, we could have defined a tangent vector at x to be such an
equivalence class of curves through x.

/———\
\ |

5.2 DIFFERENTIAL FORMS
Definitions. Let X be a smooth manifold. Define

T(X) = U T(X,x) and T*(X) = U T*(X, x).

xeX xeX

T(X) is called the tangent bundle of X. T*(X) is called the cotangent bundle of X.

T(X,xl) T(X):c?)

Fig. 5.3

A projection map n: T(X) —X isdefined as follows. If v € T(X),thenv € T(X, x)
for some (unique) x € X; set 7(v) = x, Similarly, there is a projection may from
T*(X) onto X that we shall also denote by 7.
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A vector field on X is amap V: X — T(X) such that 7 o V = {x. A vector field
V is smooth if for each f € C*(X, RY), Vf € C*(X, RY). Here Vf is defined by

(VA(x) = V(x)f.

A differential 1-formon X is a map w: X — T*(X) such that 7 o w =iy. A dif-
ferential 1-form w is smooth if for each smooth vector field ¥ on X,

w(V) € C°(X, RY).

Here (V) is defined by (w(V))(x) = w(x)(V(x)). We shall denote the set of all
smooth vector fields on X by C¥(X, T(X)) and the set of all smooth 1-forms by
C™(X, T*X)).

Exercise. Define a manifold structure on 7'(X) so that 7 is a smooth map and so
that a vector field V is smooth if and only if it is a smooth map from X - 7(X).

(Hint: for ¢: U —*R" a local coordinate system on X, with coordinate functions
(X4 ..., X,), define @: 77(U) — R2" by

Pw)y=(penlw),b, ..., b,

where b, ..., b, € R! are such that v = Zn)l by 8/8x;.)

Remark 1. Let f € C*(X, RY), Then df € C*(X, T*(X)). For if V € C*(X, T(X)),
then df(V) = Vf € C*(X, RY).

Remark 2. C*(X, T(X)) and C*(X, T*(X)) are both vector spaces over the reals
under the operations of pointwise addition and scalar multiplication. For example,
if Vyand V, € C*(X, T(X)), then V, + V, is defined by (V, + V,)(x) = V (x) + V,(x);
and if A € R?, then AV, is defined by (AV )(x) = A(V (x)).

Remark 3. Let ¢ be a coordinate system on X with domain U and coordinate
functions (x ,, x,, ..., x,). Then the following hold.

(1) (8/8x;) e C™(U, TW)) forie{l, ..., n}. 8/8x; is smooth because if

feC”U, RY), then f < ¢ te C%e(U), RY,

and, for each x e U,
[axz (f)}( ) = [a—,"ff(f ° qo-*ﬂ (¢ ()

(o] oo

) = [ (207 =0 e 0, RY.

that is,

2) ¥ V € C®(U, T(U)), then there exist functions a; € C*(U,RY) for i €{1,...,n}

such that V = _Z a; (8/8x;). These functions a; exist because

{(a/8x)(x)} iefl, ..., n}

is a basis for T(X, x). They are smooth because (a/ax,,;)(xj) = 044, SO that
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Z a;0; = 121) asz x;) = V(x;) € C™(U, RY).
(3) I Ve CX, T(X)), then V|y € C°(U, T(U)) by a previous exercise, and
Vig = f a; (8/8x;) as in (2) with a; € C*(U, RY).

(4)  dxje C°°(U T*(U)) for j € {1, ..., n} because x; € C*(U, RY). Furthermore,
{dx } is at each point the dual basis to {6/ax } because

(5) I we C(U, T*(U)), then there exist a; € C*(U, RY) such that w = 5 a; dx;.

i=1
These functions a; exist because {dxi} is at each point a basis for the co-
tangent space. They are smooth because

- 3 a;dx ( V- o2 ) e cmw, RY
\GX;/ \GA g/
(6) I fe C™U,RY, then
if = 35 (/) dx
j=1 Bx] J

because df = Z a; dx for some a;, and
=1

Z)ajdx( ) df( ) sz(f)

We have just seen that if f € C¥(X, RY), then df is a smooth differential 1-form.
We now introduce differential 2-forms.
REVIEW OF EXTERIOR ALGEBRAS. Let V be an n-dimensional vector space

nvar {‘l’\o ch](‘.‘ ’r‘han fho fr\]]r\uhr\ﬂ' hn]r‘

(1) The vector space Ak(V*) 1s the space of all skew-symmetric k-linear func-
tions on V; thatis, each 7 € A (V*) is a map T: V @@ VJ—'I‘Z1 such that for all

vl,...,vk,vjeV,AeRl, k}xrr:es
(1) Ty oy Uiy Vf + V§, Vjeyy o ooy VR)
=7, ..., Vi v]f,vjﬂ, ceUp) +T(0y, ... Vit vjf,ujﬂ, e, UR);
(2) T@Wr(1)s -+« Vn(R)) = 1T 7(v,,...,ve); and
(3) Ty v ey Uity MVjy Vjygy e oo Up) = AT, 000 05,000, vp),

where 7 is any element of the permutation group Sp on & letters, and (—1)" is +1 if
# is an even permutation or —1 if 7 is an odd permutation This second condition is

equlvalent o requiring that if two vectors in the a'rgumem. of 7 are uuex Ludug,l—:u
then the value of 7 on these vectors changes sign. The dimension of A k(v*) is equal

to the binomial coefficient (k) for k = n; it is zero for k& > n,
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(2) If we set g(V*) = g) @ Ak(V*) where A%V *) = R a product is defined on

G(V*) as follows. If 7 € Ak(V*) and ;€ AL(V*), their product 7 A  is the element
of A#+L(V *) defined by

T A p,, .o, 0p)

= (E—j—ﬁ (- l)WT(vﬂ(l), cen, v,,(k)) H(Uﬂ(ku), ooy Un(keg)).

T€S k.

Since §(V*) is generated by such y and 7, this multiplication extends to g(V*)
by linearity, that is, by requiring that exterior multiplication A be distributive with
respect to vector addmon This multiplication is associative and g(V*) 1s an alge-
bra, with unit 1. However, multiplication is not commutative: if y € A k(v *) and
T € Aﬂ(V*), then

paT = (CDH T A,
(3) If ¢,,..., ¢, is a basis for V*, then

[g;iln__./\cpik; 1=i,<i,<...<fp= n ]

is a basis for A*(V *). Hence the union of these sets over 2 € {1,... ,n}, together
with 1 € A°(V*), is a basis for g(V *). It follows that the dimension of g(V*) is 2%,
Ifv,...,0p € V, the value of ¢; A...%¢;, on these vectors is given by

(902'1 A, A (pik)(t_),, cea,Up) = —. 2. = 1)"%1( (1) - ‘Pik(ufr(k))'

n€Sy

(4) g(V*) has the following properties:

(1) 1 € g(V™), V*C g(V*);

(2) g(V*) is generated by 1 and V *;
(3) @ A @ = 0 whenever ¢ € V*; and
(4) dimension g(V *) = 27,

These properties in fact characterize g(V*); that is, if G(V*) is any algebra over
the reals satisfying properties (1)-(4), then g(V*) and g(V*) are isomorphic (as
algebras).

(Note that Condition (3) is equivalent to the condition that ¢, A ¢, = —¢@, A ¢, for
all ¢,, ¢, € V*)

() If L: V* = V* is a linear transformation, then L induces a unique algebra
homomorph1sm L: g(V*) — g(V*) which extends the map L. L preserves degrees;
that is, £: A¥(v*) — A*¥(V*). In particular, L: A(V*) — A"(V*). Hence, since
dim An(V*) = 1, there exists a scalar A such thatL|An(V*) A - 1. This scalar A s

precisely A(L), the determinant of L,
(8 Tho o]rrahv-g D{V*\ ig rallad the (Cor assmann nIrrnbnfn

AV F ¥ Lw) Tl =L\ F ELAALC WA LILIL NFF WO DI RILIL (B C

or , of
V*, Elements of g(V*) are called forms on V. Forms in A¥(V*) are said to be of
degree k.

Review of Exterior Algebras ends heve.
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Now let X be a smooth manifold. Let

AR(X) = U AR(TH(X, x)),

xeX

and let
g(X)

U g(T*(X, ).

As usual, we shall denote the projection maps from these spaces onto X by 1. These
spaces can each be given the structure of a smooth manifold such that 7 is a smooth
map.

Definition. A k-form on X is a mapping p: X — A*(X) such that 7 o g = ix. A

k-form p on X is smooth if whenever V,, ..., Vip are smooth vector fields on X,
then
M(V,, e, Vi) e Cw(X, RY),
where
BV, e, VM) = p)(Vy(x), ..., Ve(x).

A differential form on X is a mapping w: X — g(X) such that 7 o w = ix; it is
smooth if its component in Ak(X) is smooth for each k. The set of smooth E-forms
on X is denoted by C™(X, Ak(X)). The set of all smooth differential forms is de-
noted by C*(X, g(X)). Note that C*(X, Ak(X)) is a vector space under pointwise
addition and scalar multiplication, and that C*(X, g(X)) is an algebra under the ad-
ditional operation of pointwise exterior multiplication.

Remark 1. A 0-form on X is just a real-valued function on X; it is a smooth
0-form if and only if it is a smooth function.

Remark 2. Let ¢ be a local coordinate system on X, with domain U and coor-
dinate functions (x,, ..., *¥,). Then {dx,, ..., dx,} is a basis for T*(X, x) for
each x € U, Hence

[dx;, A...n dxi,; 6, <. .. <ig]

is a basis for A*(7*(X, x)) for each x € U. Thus, the restriction to U of each
k-form u on X can be expressed as

g = Z: ail,__,-kdxz-l'\...’\dx,-k,

i<, .. <ip

where each a; ...;, is a real-valued function on U. Furthermore, p is smooth if
and only if, for each (¢, U), a,,... ip € C*(U, RY). This is because

a = k! 0 0
zl...zk_ -p' axilj""axik'

THEOREM 1. Let X be a smooth manifold. There exists a unique linear map
d: C¥(X, §(X)) — C™(X, g(X)), called the exterior differential, such that the fol-
lowing properties hold. ‘

(1) d: C*(X, AR(X)) — C™(X, AR*1(X)); —

(2) d(f) = df (ordinary differential) for f ¢ C*(X, A°(X));
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(3) if e C(X, A*(X)) and T € C(X, g(X)), then
Al A~ 1) = dp)» 7+ (—1)k g A dT; and

4)d2=0

Remark. For the proof we need the following lemma, which asserts that for any
exterior differentiation operator d, (dw)(x) depends only on the behavior of w ina
small neighborhood of x.

LEMMA, Let d: C™(X, g(X )) —-C°°(X g(X )) be linear and satisfy the conditions
of the theorem, Duppo.be weC \A, b\A H is such that w|W = 0 for some open set
W C X. Then (dw)|y = 0. Hence, if w, 7 € C*(X, G(X)) are such that w|y = 7|y for
some open set W, then dw)|w = (dT)Iw.

Proof. Suppose w|y =0. Let x, € W. Let f € C™(X, R?) be such that f (x,) = 1
and f(x) = 0 for all x ¢ W, Then fw is identically zero on X, so that

0 =d(fw) = @) » w +fdw.

Evaluating at x,, (do.:)(xo) = 0. Since this holds for all x, € W, dw|y =0. If
wlw = Tlw, then ( = 7)lw =0, so that

=[dlw -7y = [dw —d7]lw and dwly =d7ly. O

Proof of Theovem 1.

Uniqueness. Suppose d: C*(X, g(X)) — C*(X, g(X)) satisfies the conditions of
the theorem. Let x € X, and let ¢ be a local coordinate system about x with domain
U and coordinate funct1ons (x,, ...,%,). Let w € C°(X, A (X)) Then the restric-
tion of w to U can be expressed as

w|y =Zai1...ikdxi1'\"'l\ dxik

for some a; ... € C°(U, RY). Now the right-hand side of this equation is not a

differential form on X so we cannot apply d to it. However, let U, be an open ball

containing x with U, compact and CU, and let g € C°°£ R‘) be such that g(x) = 1
(x) =0for x £ I ’T"hon e C°X A (Y“ where

frw o £ I and
i LY § >~ . 4 iar WO W (L, LN ¥

LUL A4 L U 1 all
@ =2 (8a;,...4,) d(gxz) A...° d(gxz-k).
Here, by gh, for h € C™(U, RY), is meant the smooth function on X defined by

(gh)(x) = ) (2 e D)

Furthermore, 5|U1 = wlyl. By the lemma, (d’w)IU1 = (dEJ)lUl. Now
do =2 dlga; ...;,d(gx;) *..." dlgxy,)]  (by linearity)
= Z d(gazl, R 'ik) A d(gxil) AL, A d(gxzk)
) 8. .. dd(gx;) ... A d(gx;,)) (by Property (3))
= E d(gail' . 'ik) A d(gxil) A .o A d(gxik)1

since each term of the second sum is zero by Properties (3) and (4). In particular,
since g is identically 1 on U,, and since (dw)|y, = (da)lUI,
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n

a

= _ . . . A . A A .
(dw)lUI z'1<.E..<ik JZ=]? 9x; (azl' o Zk) dxj dx,’l e dxzk.

J

Thus if d exists, its value at x on k-forms must be given by this formula. Since
x was arbitrary in X, and since every differential form is a sum of k-forms,
ke{0,1,...,n}, uniqueness is established.

Existence. We first define d locally. Let ¢ be a local coordinate system on X
with domain U and coordinate functions (x,, ..., x,). (Note that U/ is itself a smooth

17 7

manifold.) Define dy: C*(U, g(U)) — C™(U, g(U)) as follows. For

w=28; .. .p dx; M. .M dx;, € c=(U, ARy,

define

n a
_ 2 (. , : . A .
dyw —EEE 5%; (a“...zk)dx]/\dxh’\... dx;,.

Extend dy to C”(U, G(U)) by linearity. Then Properties (1) and (2) are clearly
satisfied. To verify (3) and (4), note first that each form in C*(7, g(U/)) is a sum of
forms of the type Qi g dxg Ao A dx,-k. By linearity of d, together with distri-
butivity of exterior multiplication with respect to addition, it suffices to check (3)
and (4) on forms of this type.

Property (3). Suppose
B=a; . . .dx;, M. Ndxy;
Then

dlu A7)

]
8
===
Q
o
ST
R
o~
>
&
®
-~
o
>
8
®
Sae
s
>
>
Q,
R
.
e

£
n a R R
- el ax,,(ah zk)dx'r dx; dx,k
(95,0 gy d%j, M. A dxyy)
k
+(-1) (ail"'ik dxz-lf\._./\dxik)
9
" (2 ax'r(bjl"°jﬂ)dxyAdleA'--Adij)

H

du) A7+ (-1)% p Adr,

Property (4), For p =@y g @XM N dXy,

d*u :dré“q—(a' vog,) Xy Mdx; l\.__l\dx.-l
SR 2 zk_l
n a 8
- & E[m(ai,...ik)] dxg ndxy Ndx A...6dx,.
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But certainly the terms in this expression with 7 = s are zero, since dx, A dx, = 0.
Moreover, for » # s, the equality of mixed partial derivatives on R” implies that

i) = e @iy
8xg 8%, ~t1tcctk 80X, 8xg  tattclRY

so that

a 0 a 8
—_ . . A o ——
8xg 8%, (all‘ "t ’k) dxg N diy X, 0%

(@ )dx, rdxg;

il"'ik

thus the remaining terms match up in pairs which cancel each other.

Thus the operator dyy has Properties (1)-(4). By uniqueness, every linear opera-
tor on C™(U, g(U)) having these properties must be given by the above boxed
formula, In particular, if U, is any open subset of U, then ¢ |y, is a coordinate sys-
tem, and dy : C°(U,, gU,) — C*(U,, g(U,)) is given in the coordinate system ¢[y,
by the same Tormula. Thus, if w € C*(X, §(X)), then

dy (wiy) = dylelv)iy,
This relation enables us to define d globally by (dw)|y = dy(w|y) for all
w € C7(X, g(X))

and any coordinate neighborhood U. This d is well defined because if U and V are
overlapping coordinate neighborhoods, then

dy@lplvnv = duvnviwlpny) = @yleiy)lvnv.

Clearly, d has the required properties, since dyy has them for each U. O

DIGRESSION ON VECTOR ANALYSIS. The multilinear algebra developed above
is particularly simple in the case » = 3. We want to show how the classical ap-
proach of vector analysis fits into the scheme of differential forms.

In order to develop the connection, we consider first the general situation in an
n-dimensional vector space T.

Definition. A volume element of T is a choice of basis in A"(T*); since A"(T*)
is 1-dimensional, a volume element is a choice of a non-zero element in A"(7T%*),

Example. If T is the tangent space to a manifold and {dx,, ..., dxn} is a basis
for T*, thendx, A...A dx, is a volume element of 7. (Note that a volume element
@ determines an isomorphism A*(T*) =R}, where 7w corresponds to . Conversely,
such an isomorphism defines a volume element w corresponding to 1.)

Rewmark. Given a volume element w of 7, there exists a natural isomorphism
m: A"} T'*) — T defined as follows., Recall that T is naturally isomorphic to its
double dual T**, Identifying T** with 7 through this isomorphism, m will have
values in T**. For ¢ € A" YT*), m(p) is then defined by [m(¢)](y) = A, where
% € T*, X is the real number such that ¢ 4 = Aw. To show that m is an isomorph-
ism, let {¢,, ..., cpn} be a basis for T* such that w = ¢, A...4 @,. Then the set
{@ A h @i ® @ a...p ¢n} is a basis for A”-T*), The value of m on these
basis vectors is then given by

m(, r...A @i D ‘Pju"---A @) = (—1)"*jej,
where {e,, ..., e,} is the basis for T dual to{¢,,..., ¢n}.



112 MANIFOLDS

Remark. Given an inner product {,) on a finite dimensional vector space T,
there exists a natural isomorphism g: 7 — T7* defined by

le@)]w) = @, w)y (@, we T).

If {e,, ..., e,} is a basis for 7, let gij = (ej, e, (i, j € {1, ..., n}). Then in
terms of the dual basis {¢,, ..., ¢, } for T*,

n

gle;) = 25

. U Y
T
=1

.. . 7 | -
&ij¥j \‘tlly'--”‘f}-

S

In particular, if{e,, ..., e,} is orthonormal, then & = 6;;, and

ijs
g(ez-) = @y

Applications. Take T = R", Then T has an inner product and a natural volume
element w = ¢,*...» ¢,, where{¢;} is the dual basis to the natural basis {e;} for
R™, Thus the isomorphisms m and g are defined. Also, we have natural identifica-
tions T(R", x) «~— R" for each x ¢ R",

1. Let f € C*(R", R'), Then the gradient of f is the vector field on R” given by

grad f = g=1 o (df).

Relative to the usual coordinates (¥, ..., x,) = (»,, ..., 7,) on R",

gradf=g"°(df)=g“(zn) —aidxj>= Z": of o <aaf N _a.L).

j=1 axj j=1 axj axj xl’- ,axn

2. Let V be a vector field on R®. Then g o V is a 1-form and d(g ° V) is a
2-form. Now for dimension T =3, A%(T*) = A" }(T*), so the isomorphism m maps
A*(T*) — T. Thus m(d(g  V)) is a vector field on R® It is called the curl of V,

curl V = (mo d o g)(V).

Exercise. Compute the coordinate expression for curl V.

3. Let v, and v, be vectors in R®. Then g(v,) and g(v,) are 1-forms. Their ex-
terior product is a 2-form; its image under m is a vector, called the cross product
of v, and v,.

v, X v, = m(gv,) » glv,)).

4. Let V be a vector field on R?. Then m V) is an (n-1)-form on R”, Its dif-
ferential is an n-form, that is, a multiple of the volume element w. This multiple
is (up to sign) the divergence of V:

(—1)"d o mY(V) = (div V) w.

Remark. Using these formulas, certain important formulas of vector analysis
become trivial consequences of d? = Q.
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A. curl grad f = 0 because
curl grad f = m od o g(g~* o d(f))

mld?f)
= 0.

B. div curl ¥ = 0 because
domi(curl VY=d o m(m o d o g(V))
= d*(g(V))
= 0.
Digression on vector analysis ends here.
Definition. LetX and Y be smooth manifolds, and let ¥: X —Y be a smooth map.

Then an induced map ¥*: C7(Y, g(¥)) — C™(X, g(X)) is defined as follows. For
f € CY, AXYY), ¥*(f) = f o ¥; for w e CY, AR(Y))[% > 0],

(\Il*w)(x)(vl, -°-’Uk) = w(\If(x))(d\It(vl), .o .,d\l’(lik))[vl, sna,Up € T(X, x), X € X];

¥* is extended to C*(Y, G(Y)) by linearity,

Remarks. It is easy to check that, if w is a smooth differential form, then so is
¥*w, It is clear that ¥* maps R-forms into k-forms. In fact, it is easily checked
that ¥* is an algebra homomorphism; i.e., ¥* is linear and

T¥w A T) = (F*w) A (F*7)

for all w, 7.
THEOREM 2. Let X and Y be smooth and let ¥: X —Y be a smooth map. Then

doW¥* = ¥* og,

Pyoof.
(1) If f e C*(Y, AXY)), then for v € T(X, x),

[d o ¥*(H(v) = [d(f ° ¥)](v)
=[df - d¥](v) (since d on functions is ordinary differential)
= [¥*@nl)
= [(@* ° A)(N]).

(2) For w a 1-form on Y of the type w = df,

@ © ¥*)(w)

d(¥*(df))
d(¥* ° d(f))
dld « ¥*(f)) (by (1))

=0

]

’

and

(F* °d)(w) = ¥*dw) = ¥*ddf) = ¥*(0) = 0.
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(3) Using (1) and (2), together with the fact that ¥ * is an algebra homomorphism,
the result is established in general by checking it locally on k-forms w restricted
to local coordinate neighborhoods:

w|ly = Eail--oik dx;, "..."dxz-k.

(Details are left to the reader.) a

Definitions. Let X be a smooth manifold. A smooth differential form w on X is
closed if dw = 0. A form w is exact if it is the differential of another form on X;
that is, w is exact if w = d7 for some smooth form 7. (Note that every exact form
is closed, since d? = 0. The converse question is fundamental to our subject.)

Let Zk(X, d) denote the vector space of closed k-forms on X. Let B*(X, d) de-
note the space of exact k-forms on X, Then B*¥(X, d) C Z*(X, d) because d? = 0.
Let H*(X, d) = Z*(X, d)/B*(X, d). H*(X, d) is called the k-th De Rham cohomology
group of X. Its dimension, which we shall see is finite for compact X, is called
the k-th Betti number of X,

Remark. Although these cohomology groups are defined in terms of the manifold
structure of X, they are topological invariants; that is, if two manifolds are homeo-
morphic (by a not necessarily smooth homeomorphism), then they have isomorphic
cohomology groups. In fact, these groups can be defined directly using only the
topological structure of X.

Example 1. HY(X,d) = R* if X is connected. For since there are no forms of
degree less than 0, B% X, d) = 0. Thus

HY(X,d) = Z%X,d) = [f e C*(X, RY; df = 0].

If U is any coordinate neighborhood of X, with coordinate functions (x,, ..., x,),
then df = 0 on U means

0-df = 3 sy dxs

i=1

that is, (8/8x;)(f) = 0 for all ¢, But this implies that f is constant on U. Since X is
connected, and since f is constant on each coordinate neighborhood in X, then f
must be constant on X; that is, Z%(X, d) = [constant functions on X] = R,

Example 2. HYS', d) = R! where S! is the circle. For since there are no non-
zero k-forms on S!for k> 1, ZXS?, d) = C*(S?, A¥S?)). Moreover,

BYS!, d) = [df; f e C*(S, RY)].

Now, if 8 denotes the polar coordinate on S! then 8/86 is a non-zero vector field
on S? and its dual 1-form df is a non-zero l-form on S, (See Fig. 5.4.) Further-
more, df is not exact (in spite of the notation!)—but, given any 1-form w = g{(9) df
onS!, w — (c df) is exact for some ¢ € R, Thus

ZYS!, d)/BYSY, d) = [c d8; c € R] =R

20
o (0 A8
&\

wv .

vo facte MTalao o =
ve 1acts. l1a

1
T T 2m

p*: ZR(Y, d) — zZ¥(x,d) and y*: BR(Y, d) — B*(X, d).
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For if w is a closed k-form on Y, then d(@*w) = p*(dw) = $*(0) = 0. If w =d7 is an
exact £-form on Y, then yp*(w) = $*(d7) = d(y*(7)). Thus y* induces a linear map Pl
on cohomology, such that

V: zZ*(, d)/BH(Y, d) — Z*(X, d)/B*(X, d);

3. HE(Y, d) — HF(X, d).

If S: W—X and T: X — Y are smooth, it is easy to check that (T o S)* = S* o T*
and hence (77 o S) =S o T:
wSex Loy
BRW, d) < H*(X, d) =1 HA(Y, d).

Thus we have attached to each smooth manifold X new algebraic invariants
Hk(X d) such that given smooth maps between manifolds, there are induced alge-
braic maps between these algebraic objects. As in the case of the fundamental
group, we are thus able to solve certain difficult topological problems by studying
their algebraic counterparts

Now let us show that H®(R", d) = 0 for all %k > 0. Since R” is diffeomorphic (iso-
morphic as a smooth mamfold) with the unit ball B,(1) about 0 in R"”, we may as
well show that H*¥(B o(1), d) = 0 for all 2 > 0. For this we need the followmg technical
lemma.

LEMMA. Let X be a smooth manifold. Then, for each k, consider the maps

c(x, AR Lo o7(x, AR, e 07X, ARUX)).

-~

hk_]_ hk
Suppose there exist linear maps
hy: C(X, M*Y(X)) —CH(X, A(X)) (j=k—1ork)

such that ki, o d +d © hp_, is the identity map on C™(X, A¥(X)). Then H*(X, d) = 0

4l .~ 4 oy ey ~ O
that is, every closed k-form is exact,

Proof. Suppose w € C” Ak( X)) is closed. Then

w=(hyod+d o hp_)w) = hpldw) +d(hp_w) = dlhp_w). O
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Remark. If a sequence of such linear maps h; is defined for all j = 0, the se-
quence #; is called a homotopy operator.

THEdREM 3. (Poincaré’s lemma) Let U = B(1) C R”, Then H*(U, d) = 0 for all
R >0,

Proof. We shall construct maps kj_,, h; satisfying the conditions of the lemma.
This is done through an integration process. Since these maps are to be linear, it
suffices to define #;_, on forms w = gdx; AR dx,-k; similarly for 4. For such
w, set

i N . ; f‘l ) - : . .
hp-\0)(x) = (] 7 g(tx) diie,
where
Bo=xg dxg, AL Adxy, - X, dxg, Adx; Mo Mdx

tk
cor (D dxg AL adx

ip
ip tp-y

(Note that du = kdx; rdxg,.)
The map #;, is defmed s1m1lar1y by replacmg k everywhere by & + 1,

of s _

Now, for w = gdx; f\. ax,k C, A"(U)) and x € U,

@ g )()(x) = dlf f ' Fig(ex) b))
] U th-1 g(tx) dt) dx; A p +([ tR-1 g(tx) dt) du.

a_—
( g(tx))di) dxj A L +U th~1g(tx) dt) du

tk—g- (¢x) dt)dx; o b+ B |1 1% g(ex) dt) dx; ... 0 dx
) 1y

p-a

j=

)

M

J=

= A

}

Z i
and
(kg ° d)(Ww)(x) = hp (121) a—g—dxj adxg AL Mdx; k)
=JZ1>([ tk—g]—(tx)dt)[ jdx; Ao.hdxg, —dxy A,
Thus,

(d o hp_y+hy od)w)x) = [k(j;l tR-1 o (tx) dt)

21 (L’ t* aiff (tx)x; dt)] dxi Moo hdxg,
=<U [tk Ya(tx) +tk g{tx)]dt}‘ dxz Aoohdxg
- U:% [tkg(tx)]dt} dx; A...rdx;,

= thg(tx) P dx; AL .. A dx;,

k

= g(x) dxg Ao hdxg,
= w(x) (for all x € U).
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Since d ° hg_, + hp © d acts as identity on such w, it acts by linearity as identity on
all 2-forms. O
Remayrk 1. The maps hp_, and ki used in this proof were not just picked out of

U P — — o d — Eral

the air. They were constructed as follows. Given a vector space 7T andv € T, v de~

fines a map i(v): AR(T*) —A*-YT*) by
[ie) )]y, ..., vp_) = @, vy, ..., vp_y).

Note that 7 is a bilinear map T &X) AR(T*) — A*-}(T*). This
ans s T AN TS e bl s My taens Lo was obtained by avolyving ¢ Y
MULLiPLiearion. 1€ map np_y wad 0oldlnea oy appaying iix
the line through the origin in the direction x.

Remark 2. Theorem 3 is a special case of a more general result. Let U be a
smooth manifold, Suppose there exists a smooth map ¥: U X I, — U, where

is map ¢ is called interior
\ ﬂ“f‘ “ﬂl‘l““l" I\Ivt\“
7 1

4 oy ae v
w W AVCL aglilyg Uyl

p

I =[r € Ry —¢ <7 < 1+¢], such that
V(u, 1) =u (for all u € U),

¥(u, 0) =u, (forallu e U; some uye U).

Then H*(U/, d) = 0 for all £ > 0.

Fig. 5.5

The map ¥ is a smooth homotopy. This theorem says that if U is smoothly homo-
topic to a point, then the cohomology of U is that of a point,
In the case covered by Theorem 3, a smooth homotopy is given by

¥(x, ) = tx (L e Iy; x € By(l)).
Note that the above proof of Poincaré’s lemma works equally well for a stav-shaped
region, that is, an open set U such that for some x, € U, the line segment joining
x, to any other point in U lies completely in U.
5.3 MISCELLANEQUS FACTS
THEOREM 1. Let X and Y be smooth manifolds, with X connected, and let

¥: X —Y be smooth, Assume dij = 0. Then ¥ is a constant map; that is, P(x) = y,
for some y,¢ Y and for all x € X.



118 MANIFOLDS

Proof. Let y, € $(X). Then (v, is a closed set in X. We shall show this set
is also open, hence ¥ Yy, = X since X is connected.

Suppose X, € $ (yy). It is sufficient to find an open set ¥ in X such that xo€ U
and U C y7X(y,). Let V be a coordinate neighborhood of y,, with coordinate func-
tions (y,, ..., ¥,»). Take U to be any coordinate neighborhood of X, such that
UcyV). Let (x,,..., x,) denote the coordinate functions in U. Then, for each
x € U, the matrix for dy(x) relative to the bases {8/9x;} for T(X, %) and {o/0y,}

/ 5

for T(Y P(x)) is
3 \
("”‘j ")

Now, dy = 0 implies (8/ax Ny;° ¥) = 0on U for alli, j. But this implies that
y; ° ¢ is constant on U for all 7. Hence y; ° ¥(x) = y; © P(x,) for all ¢ and all
x € U; that is, ¥(x) = y(xy) = y, forall x € U, and U C y Yy, as required. O

Defzmtzon Let X be a smooth manifold, and let ¥V and W be smooth vector fields
on X. The bracket [V W] of ¥ and W is the smooth vector field on X defined by

v, WI(f) = V(W) - w(vf) (feCX

R
v £37)]

*y

Remavk. [V, W] is a vector field, because if ¢ js a local coordinate system with
domain U and coordinate functions (x,, ..., x,), then

7 ) 9
V|U = E ai(axi) and WlU = Z} b,; (ax)
for some a;, b; € C*(U, RY). Since [V, W] is clearly bilinear, it suffices to check
that [V, W] is a vector field when V = a(8/8x;) and W = b(a/ax Then, since
mixed partials are equal,

[V, WI(f) = a g (& —(f)) - b“'—j (@ —'*'(f))
= ax. (b) —(f) + abax ax, (N
_b—(a)a_x,_(f) - abg;; g;*(f)

a \ _
I:aax,- (b’3Xj baxJ (a)axz](f)

Since a(8/6x;)(6) and b(a/ax])(a) e C*(X, RY), [V, W] is indeed a smooth vector
field.

Remark. The bracket of vector fields has the following properties, each of which
is easily verified.

(1) v, w] = -[w, V]

2) (v, +V,, W] = [V, W] + [v,, W]

(3) [cv, W] = cl[V, W] for c € R?

@) [lv, wl, z] + [Iw, 2], v] + ll2, V], W] = 0.
Property (4) is called the Jacobi identity. These four properties say that C*(X, 7(X))

is a Lie algebra under bracket multiplication. Note that such an algebra is non-
associative. '
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THEOREM 2. Let w be a smooth l1-form, and let V and W be smooth vector
fields on X. Then

S

dw(V, W) = = {V(e(W)) — W(w(V) — oV, W]}.

[

Remark. In some texts, the fraction 1/2 is missing from this formula. This is
due to a slightly different definition of exterior multiplication,

Proof of Theorem 2. It suffices to verify this formula ina local coordinate neigh-
forms of the type w = fdg (since every l-form is locally a sum X a; dx;). For
w = fdg,

do(V, W) = (df ~dg)(V, W)

- %{d f(V)dg(W) — df (W)dg(V)}

- HwHWe - v},

On the other hand, we also have

% {V(w(W)) = W(w(V) — w(lV, W}

-;—{V(fdg(W)) — W(fdg(V)) — fdg([v, w])}

% {v(f(wg) — w(f(vg) — fllV, Wlg)}

SN We) + f V(Wg) — (WN(Ve) - f W(Vg)
—f V(Wg) + f W(vg)}
Hunwg - e}l o

I

THEOREM 3. (Inverse function theorem) Let X and Y be smooth manifolds of
dimension n, Let §: X — Y be a smooth map. Suppose x, ¢ X is such that

ay(xy): T(X,x,) — T(Y, p(x,)

is an isomorphism. Then there exists a neighborhood U, of x, such that

(1) ¥|y_ is injective,

(2) (U, is open in Y, and

(3) ¢ (U, — U, is smooth.

Proof. Let ¢, be a coordinate system about ¥(x,) with domain V and coordinate
functions (y,, ..., ¥,). Let ¢, be a coordinate system about x, such that

U = domain ¢, C p (V).

Let (x,, ..., x,) denote the coordinate functiohs of ¢,. Then, relative to the bases
{a/axii for T(X, x,) and {8/0y;} for T(Y, y(x,)), dy(x,) has the matrix
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o
(gx_(yz ° #’)Ixo)a

which is non-singular since dy(x,) is an 1somorphxsm N
Now transfer everything to R” via ¢, and ¢,. Let =09, 7V-= @,(V), and
Y U~V be defined by § = ¢, 0 ¢ o ¢, %

y
CLD ClD

1

|
&
e
[=r}

Then ¥(x) = (P,(x), ..., Pp(x)) forx € U, where §; = #; o J. The Jacobian of ¥ at

= @,(x,) is
i) o

which is non- singular, Hence, by the classical inverse function theorem, there ex-
ists an open set U, C g contammg x0 such that V ?P(Uo) is open, and such that the
equation

$ilry ) =8y Gell, ..., n)

has a unique solution in ﬁo for each (s, ..., s,) € '170. Moreover, this solution de-
pends smoothly on (s, ..., s,). In other words, there exist smooth functions
hj: Vo—R'  (jefl,...,n}

such that for eachs = (s, ..., s,) € ?0,

Yilhy(s), ..., hyls)) = s,.

Setting h(s) = (,(s), ..., hy(s)) for s € V,, this says that k = E". Transferring back
to X and Y, we find the conditions of the theorem are satisfied, with

UO = (pl-l(ﬁo)- D

THEOREM 4, (Implicit function theorem) Let X and Y be smooth manifolds, with
dim X > dim Y. Let §: X —Y be a smooth map. Let y, ¢ Y(X) and let

Xo = 4y = [x € X; 9(x) = y,].
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Assume that for each x € X,, dy(x): T(X, x) — T'(Y, y(x)) is surjective. Then X,
has a manifold structure, whose underlying topology is the relative topology of X,
in X, and in which the inclusjon map X, — X is smooth. Furthermore, dim X,
= dim X - dim Y. “

We give some applications before proving Theorem 4,

Applications.
(1) The n-sphere S" is a smooth manifold whose topology is the induced topology
in R”*!, For let y: R"*! — R’ be defined by

+1

=

dJ(yl’ . ey 'rn.'.]_) = 'y‘

SN

—

i=

Then S” = §~X(1). Since dim R = 1, we need only check that dy # 0 at each point of
1+l
y(1). Butdy =2 Z r;dr;. Since {dv,, ..., dv,.,} is linearly independent, dy # 0

unless #; = 0 for all . In particular, dy # 0 on P*(1).

Note that dim " = dim R"+! —dim R! = n, as expected.
(2) Let X = R"", viewed as the space of all real » X n matrices. Let ¥ = R and
let ¥: X —Y be the determinant function. Then $~Y(1) is the group of all # X n ma-
trices of determinant 1. It is called the unimodular group. To verify that this group
has a manifold structure, we need only show that dy # 0 ateach point of $~}(1). Now,

for (r,—j) € R"z,

4’(7’1"7') = Z (—1)7 Yiwey -+« Yun(n)-

TES,

Hence

H

dy = 25 D Gl ) LR P Vi (-1)Vjarm(fer) « -« Vour(n) 87 jn ()

j=1 7eSy

For each (i, j), the coefficient of d7;; in this sum is, up to sign, the determinant of
the cofactor of 7 in (v;;). These cannot all be zero at any point of Y X(1) since
det (r;;) # 0 at such points. Since {dr;} is a linearly independent set, we are done.

Note that this unimodular group has dimension n% — 1.
(3) Let X = R”® as in (2). Let Y be the set of all symmetric n X n real matrices.
Y is a manifold, for it can be naturally identified with R7m+1/2. merely string out
in a row the entries on and below the main diagonal. Let §: X —Y be defined by
#(x) = xx! where, for each x € X, xt denotes the transpose of x. Note that y is
smooth, since each entry of (x) is a polynomial in the entries of x, Let X, = §7(1).
Thus X, is the group of orthogonal » X n matrices; that is, X, is the orthogonal
group.

To verify that X, is a manifold, we must show that dy(x) is surjective for each
x € X, For this, it suffices to show that dyle) is surjective, where e = (8;5) is the
identity matrix. For assuming that di(e) is surjective, let x € X, Then the map
R,: X — X, defined by R,(y) = yx (matrix multiplication), is a smooth map with a
smooth inverse, namely R,_,, and hence dR, is everywhere an isomorphism. More-
over, Y o R, = ¢ for all x € X,. For if y € X, then

B o Ry(y) = (yx) = (9x)(yx)f = yxxly? = yeyl = yyt = Y(v).
Hence,

dWx = d(lp ° Rx—1)|x = dy|g (x)° de_ |x = dPle °© de_ Ix,
x4 1 1

so d(x) is a composition of surjective maps, hence is surjective.
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We still must check that dy(e) is surjective. But

ij o Y)x) = é vip(x)rp(x) (=i =jsn)

~

hence the entries in the matrix for dj(x), where 1 <k, £ <%, and 1 < ¢ =< j =mn, are

ija(x) (if &= 7 # 7),
Y (x) (if & = j# i):
2ryx)  (fk=1i=j),
L0 (otherwise).

:
g it ° ¥)x= <

In particular, the entries in the matrix for dy(e), where 1 sk, L <n, l<i<j=n
are

H

(1 (B, £) = G, ); i # J)

if k ﬂ_ = . ; . .

(Tz']'o'p)le:{ 1 ( (’ ) (-7’ 2) 2#])
2 (f (&, ) = (4, 1)

0 (otherwise).

9
3')’k£

-

Thus the square submatrix, consisting of those entries with & < £, isa diagonal ma-
trix with diagonal entries 1 and 2, and so dy(e) has rank n(n + 1)/2; that is, dy(e) is
surjective.

(Note that dim X, = dim X — dim ¥ = n(n — 1)/2.)

(4) Let X = the set of all complex # X »n matrices = R?% Let Y = [x € X; %t = x].
Let y: X —Y be defined by y(x) = 2%, Then, as in (3), the set $*(e) is a manifold.
y~Ye) is the unitary group. Its dimension is 2n2 — n? = n2,

Remark. Examples (2), (3), and (4) are examples of Lie groups; namely, they
are groups whose underlying spaces are C¥-manifolds and are such that the group
operations are analytic.

Proof of Theorem 4. Let V be a coordinate neighborhood of Yo in Y, with coor-
dinate functions (¥,, ..., y,,). For x,€ X,, let U be a coordinate neighborhood of
Xo in X such that U C $"X(V). Let (x,, ..., x,) denote the coordinate functions on U,
We may assume that this coordinate system is chosen so that 2i(x) = 0(1 =4 = n),
Now dy surjective at x, means that the m x n matrix ((8/8xj)(yz- o §)|x,) has rank
m. By renumbering the coordinate functions on U if necessary, we may assume that
the last m columns of this matrix are independent, that is, that this matrix has the

form
(* : J) ’

where J is a non-singular m X m matrix. Let E: U —R"™ X V be defined by

Yx) = (2,(x), ..., Xy (x), ¥(2)  (x € D).

(19

Then d;(xo) has matrix
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where I is the identity (# — m) X (n — m) matrix. Hence dE(xo) is an isomorphism.
By the inverse function theorem, there existsa neighborhood U, of x, such that wIUO
is injective, $(U,) is open in R”"™ x V, and ¥ (U, — U, is smooth. We may as-

~ TIY e |

oA~

o~ ermn  TET s - A ~ Ir i e s .
allu yVa e VO, SLHIUE URPCL e

. Bt TITT N e o dlan £ e 174 R TR
DUIIE Lildl W\U 0} 1 Ul LwUle LU Wo -~ Vo, Wwilele U ¢t

Wo
of this type form a basis for the topology on R""™ X V¥,

Rn—-m

U "o (0,y0) WoX Vo
Xg

Fig. 5.7

Now note that E'I(W0 X {yo}) = X, N U, Since EIUO is a homeomorphism, E|X° nu,
maps X, N U, homeomorphically onto W, x {y,} = W,C R"™, Thus ¥ix, nu,is
a coordinate system about x, in X,

To see that such coordinate systems actually define a smooth manifold structure
on X, we must check that they behave properly on overlaps. So suppose

Y: Uy—Wyx V, and &: U, —W, x V¥,
are such that (X, NU) N (X, N U, # ¢. (See Fig. 5.8.) Since 'i“ is smooth, so is
¢ PG, nUY-

Restricting to §(X, N U, N U ) = WU, N U) N (R"™ x {y,}), it follows that
5 © E_IW(XOFIUOFIU;): ’J(Xo NU,NU)— 5(-’(0 NU,NUY

is smooth. Hence X is a smooth manifold, of dimension n — m, O

Definition. A submanifold of a smooth manifold Y is a pair (X, ¥), where X is a
smooth manifold and ¢: X —Y is an injective smooth map such that dy is injective
at each point of X.

Examples. The manifold X, of the previous theorem, together with the inclusion
map X, — X, is a submanifold of X, In particular, S” is a submanifold of R"*! and
each of the Lie groups discussed above are submanifolds of the space of all n» X =
real {(complex in the case of the unitary group) matrices.
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(U N UY)
R A—m J -_7 Rn—m

V4 / |
m% Xo C///J 4

Fig. 5.8

v

U!) (Oryﬂ)

Remark. Note that §: X —~Y being injective does not imply that dy is injective
at each point. For example, the smooth map %: R! — R* defined by ¥(x) = x3 is in-
jective, and yet dy(0) = 0. Note also that (X, @) being a submanifold of ¥ does not
imply that % is a homeomorphism of X onto ¥(X) with the relative topology.

Example. Consider the torus

S§t X 8% = [(zy, 2,); 2y, 2, complex, with |z,| = |2,| = 1].

Define y: R* — S X S! by p(f) = (e?"# e2"i®!) where a is an irrational number.
Then (R, 3) is a submanifold of S! x S!. However, P(R?) is dense in S! x St so p is
not a homeomorphism. This submanifold is called the skew line on the torus.

Representing the torus as a square with opposite sides identified, ¥ maps R! as in
Fig. 5.9.

o}

Fig. 5.9

THEOREM 5. Let (X, ¥) be a submanifold of ¥, with X compact, Suppose X has
dimension 7 and Y has dimension n, where m = n. Then, for each x, € X, there
exists a coordinate system ¢y: V — R"™ about y(x,) with coordinate functions
(¥4 ..., ¥,), such that
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WX)NV=[yeV; ypaly)=--=9,(y) =0].
Furthermore, a coordinate system ¢x: U — R™ can be chosen about x, with coor-
Ainata finntiang [+~ \ rh that+ 7 - sh= lfT/\ and anh thn ar o th Faw all
\.nll.llﬂ.l.c ALV LIVILID \J\; 1y = ey J\«m,, nuuu LIiAL W/ V ik nuuu I.I.lﬂ-l. J‘l - _yj v AL il

j=m. Thus, onU,
xj  (j=m)
yj o ¢| -
0 (7 > m).
Proof. The proof of Theorem 5 is left as an exercise.
Remark. When a coordinate system ¢y is chosen as in Theorem 5, ¥(X) N V is
said to be a slice in ¢y. Note that the coordinate systems obtained in the proof of

Theorem 4 are of this type.
COROLLARY, If (X, y) is a submanifold of Y, and X is compact, then

¥ X — Y(X)

is 2 homeomorphism. Moreover, for each submanifold obtained by applying the im-
plicit function theorem, the inclusion map ¢s a homeomorphism.

Proof. Since Y(X) is Hausdorff in the relative topology, the first statement is
proved, O

Definition. Let X be a smooth manifold, and let V be a smooth vector field on X.
An integral curve of V is a smooth curve a: (a, ) — X (Fig. 5.10), such that the
tangent vector to o at each point is equal to the value of V at that point; that is,

a(t) = V(a(t)) (for all te (a, b)).

/——'—‘_)

/—/—-—"—’-"\"\;X

/ /’; —_— —~
-
/)/’/’) —>
Fig. 5.10

Remark. Let ¢: U — R"™ be a local coordinate system on X, with coordinate
functions (x4 ..., x,). Let a: (@, b) — U be a smooth curve in U. Then, by defini-
tion, & = da(d/d#). Hence, the i-th component of & relative to the basis {a/axj} is

dx,(c'v) = dxz(da(d/dt)) = d(xz © O!)(d/dt) = d/dt(xz o O!),

Z")c?— a)"‘a—'.
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Thus o is an integral curve of a vector field V = Z q;(8/8x;) if and only if

e\ d ( ) (1 {1 )
(T) Ezkxioa)zai (1611, --o,n})'

Thus, to find integral curves of a given vector field V on a coordinate neighbo rhood
U, we need solve the system (*) of differential equations. Solutions are guaranteed
by the following classical theorem.

THEOREM 6. Let W be an open set in R", let w, e W, and let a; ¢ C*(W, RY),
(1 =7 <n). Then there exists an open set W, C W about w,, an interval (¢, ¢) C R?,
and a smooth map ¥: (~¢, ¢) x W,—W such that, for each w ¢ W,, ¥l—g, ) x {w)
is a solution of the equations

‘gg =a;(f), ..., f(®)) (A=i=n)

subject to the initial conditions f;(0) = w;; that is, if ay: (—¢, €) — W is defined by

aw(t) = w(t! ZU),
then for 1 <i < n,

B) Ly 0 0,)0) = alr, o ), 7, 0 @D, .., 7y o (@)

for allt € (~¢, ¢), and
(B) (r; o ay)0) = r;w) (1 =i=<n),

Furthermore, o, is the unique function a,: (—¢, €) — W satisfying (A) and (B).
Reinterpreting Theorem 6 in terms of vector fields, we obtain Theorem 7.
THEOREM 7. Let X be a smooth manifold and let V be a smooth vector field on

X. Let x, ¢ X. Then there exist an open set U about x,, an interval (—¢, £) C R?,

and a smooth map ¥: (—¢, ¢) X U — X, such that for each u ¢ U, the curve
a,: (~¢g,e)—X

defined by a,(¢) = (¢, #) is the unique integral curve: (~¢, &) — X of V, with
a,(0) = u.
uFurthermore, the smooth maps y;: U — X, defined for each ¢ ¢ (¢, €) by
Yi(u) = y(t, u), have the properties
(1) $1 41, = ¥z, © Y1, 0n Y "Y(U) whenever ¢, t, and ¢, + £, ¢ (—e, £)
(2) ¥-4 = 95 on 9,(U) N U for each ¢ € (—¢, ¢).
Proof. Let W be a coordinate system about x, with coordinate functions

n
(¥, ..., X,). Then, on W, V = El a;(8/8x;) for some smooth functions
a; € Cm(W, RI).

By Theorem 6, there exist U € W, (—¢, €) C R}, and ¢: (-, ¢) X U —~ W C X with
the required properties. The last statement is a consequence of the uniqueness of
the solution; namely, it is easy to check that £, — y(¢, + #,, u) and ¢, — y(¢,, e, (u))
are both integral curves of ¥V which send 0 into zptz(u), and hence they are equal;
that is, ¥z +¢, = ¥, © ¥, Similarly, p—; = y;2. O
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Remark. Properties (1) and (2) of Theorem 7 express the fact that y; is a local
one-parametey group of transformations.

o2mnarb Tha nravinne thanram onaranta tha avia
Rolu«ur K, agd l.u.cv}.uu.a LICO LTI guai aniees he exis

curves for vector fields. However, it is not always posmble o obtam integral
curves globally; that is, it is not pOSSIble in general to find a curve a: R'—X
through x, such that a is an integral curve of a given vector field V. For example,
let X = R*-{0} and let V = 8/3r,. Then the integral curve of ¥ through (-1, 0) can-
not be extended to values of ¢ = 1. (See Fig. 5.11.) However, if X is compact, then

every vector field admits through each point inteeral curves defined.on all of R:,

"'b P Laiv auiw e MR VIGRF  we L il o A Cxaa

—_—> —_—
E— —_—)
> —> —_—
> 4 > ?
> < -
> > > >
— > >
— ] —_—
> —_—
Fig. 5.11

Remark. In studying the motion of a particle in R3 under the influence of a force
field F, Newton’s law tells us that the path of motion is a curve (x;(¢)} such that

2, .
md x ;(8) - F.

i ; (1=i=<23),

where m is the mass of the particle, Setting p; = m(dx;/dt), we have

=2 2o p (=i=3).

But (x,, x,, x4, P, P2 Ps) may be regarded as coordinate functions on the cotangent
bundle of R®. Hence the orbit of the particle is just the projection onto RS of the in-
tegral curve of a vector field on the cotangent bundle. In fact, the cotangent bundle
is the natural domain for the study of mechanics on a manifold,

Remark._ The use of integral curves provides a geometric interpretation of the
bracket of two vector fields, Let V and W be smooth vector fields on X, and let
x, € X. Suppose we move along the integral curve of V through x, until the parame-
ter has moved from 0 to Vs; then move along an integral curve of W from 0 to Vs;
then move back along an integral curve of V, the parameter now varying from 0 to
~vVs; and finally move back along an 1ntegral curve of W from 0 to —Vs, as in Fig.
5.12. We will not in general return to our starting point. As s —0, our end point
will trace out a curve through x,. The bracket (v, w (x,) is precisely the tangent
vector to this curve.
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T3 = oz, (—1/s) =8

(o = integral curve of V through x;

B: = integral curve of W through z)

Definition. Let V be an n-dimensional real vector space. Then A”(V*) has di-
mension 1, so it is isomorphic to R!. Thus A”(V*) — {0} is disconnected; it is the

union of two connected components. An orientation of V'is a choice of one of these
components. An oriented vector space is a pair (V, @) where @ is an orientation
of V.

Remarks. Thus each vector space V has two possible orientations. An ordered
basis {¢,, ..., @5} of V* determines an orientation of V; namely, the component
of A"(V*) in which ¢, A...A @, lies. Given two ordered bases {¢,, ..., ¢, } and
{9l -, @n} of V¥, with @} =T cj;0;, then @] A...4 @} = det (c;) @, A...A @y
Hence two ordered bases determine the same orientation if and on{y if the deter-
minant of the change of basis matrix is positive. In particular, if {¢,, ..., ¢,} is
an ordered basis for VV* then the orientation determined by the basis

{9025 (pu 9031 LR Qﬂn}

is different from the one determined by {goi, Doy vones Pui-

In R?, an orientation amounts to a sense of rotation. The orientation determined
by {drl, drz} gives the usual sense of positive rotation on R% namely, so that the
rotation sending 9/8», into 8/87, is one of +7/2. The orientation determined by
{drz, dr,} defines the opposite sense of rotation, so that 8/8r, —8/87, is a rotation
of +m/2. (See Fig. 5.13.) Similarly, an orientation of R® amounts to choosing either
the right-handed rule or the left-handed rule for cross products.

Definition. A smooth manifold (X, ®) is orientable if there exists a subset @ C &
such that

(1) {domain ¢}, .4’ is a covering of X, and
(2) ¥ ¢, and ¢, are coordinate systems in &, with domains U and V and coor-
dinate functions (x,, ..., x,) and (v,, ..., ¥,)} respectively, then the function

A: U NV —R!determined by

dx, M. Ndxy, = Mdy M. .. A dy,

is everywhere positive.

An orientation of an orientable manifold (X, &) is a choice of subset & C & satis-
fying (1) and (2) and maximal with respect to (2). An oriented manifold is a triple
(X, & &), where (X, &) is an orientable manifold and & is an orientation of (X, @),
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i /N i /N
6’."2 \ 81'2 \'
> >
9 9
a?'] 6?'1
Orientation of dr, A drs Orientation of dr: A dr,
Fig. 5.13

Remark. The function A such that
dx, A...ndx, = ddy, r...Ady,
is just the Jacobian determinant of ¢, © ¢, !; that is,

A = det (a—a-(xi)> = det d(p, ° ¢,7Y).
Vi

In view of this, it is easy to check that a connected orientable manifold (X, ) has
exactly two orientations &’ and &”, and that & is the disjoint union & U &".

Remark. A more sophisticated approach to orientation of mianifolds is to con-
sider the set A®(X). This set can be given the structure of an (n+1)}-dimensional
manifold as follows. Let ¢: U — R" be a local coordinate system on X, with coor-
dinate functions (x,, ..., x,,). Then a coordinate system ¢: 7~U) —R"*! is defined
on 7-YU) by

¢(w) = (pm(w)), Mw)) (w e T7YUY),
where A: 7~XU) — R! is the function such that
Mwldx, A, . Adxy, = 0w (we 7Y U)).

In terms of A”(X), we have the following characterization of orientability.
THEOREM 8. Let X be a connected smooth manifold. (See Fig. 5.14.) Let

o= U {0 element in A®(T*(X, x))} € A"(X).

Then either A?(X) — O is connected, in which case X is not orientable, or A"(X) — O
breaks up into exactly two connected components, in which case X is orientable. An
orientation of an orientable manifold X amounts to a choice of one of these two
components,

Pyroof. We omit the proof.
THEOREM 9. Let (X, & be a smooth manifold of dimension n. Suppose there
exists a smooth n-form w on X which is nowhere zero. Then X is orientable.
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Fig. 5.14

Proof. Let ¢ € & be a local coordinate system on X, with connected domain U
and coordinate functions (x,, ..., x,). Then, on U,

W = fpdx; AL Ahdxy,

for sobme smooth function ch U — R!, Since w is never zero, neither is fo. Thus
eithér f(p > 0 everywhere, or fy < 0 everywhere. Let

& =[pe & f,>0].

Then &' is an orientation of X, & covers X because if x € X and ¢ is a coordinate
system about x with f, < 0, then the new coordinate system ¢ about x (obtained by
changing the sign of one of the coordinate functions of ¢} has f~ > 0. Furthermore,
if ¢, € ' have domains U and V and coordinate functions

(%4 cvey %) and (v, ..., ¥,)
respectively, thenon U N V

ay, ... M dy, —fp—w = ;w“’ dx,A...Adx,
and f,/fy > 0. Maximality is clear.
IffEOREM 10. Let (X, ) be an n-dimensional submanifold of R”?*!, Suppose
(X, y) admits a non-zero ‘‘normal vector field’’; that is, suppose there exists a
smooth map V: X — T'(R"*!) such that for each x ¢ X, V(x) is a non-zero vector in
T(R™*Y, y(x)) perpendicular to @y(T(X, x)). (See Fig. 5.15.) Then X is orientable,
Remavrk. Perpendicularity in 7(R**!, y(x)) means with respect to the inner prod-
uct {,) given by

Proof of Theorem 10. Given a normal vector field V, consider the n-form u de-
fined at points of ¢(X) by
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V(x)

dY(T(X,x))

¥(x) Yv(X)

po=i(Vdr, A, A dr,,,.

Let w = ¢*u. Then w is a smooth n-form on X. By Theorem 9, it suffices to show

w is never zero on X, Suppose it were; that is, suppose w(x) = 0 for some x € X,
Then

0= w(x)(vl, ey Un)
= p*u(x)vy, ..., vy)
= plyleNay(y), ..., dylvy))
for all vy, ..., v, € T(X,x). Now each vector w € T(R™, §(x)) is of the form

w = dy(v) + cV(x) for some v € T(X, x), (c € RY). Thus, for arbitrary vectors
w; = dplv;) + c;V(x) e T(R™!, y(x)) (1 =i =n),

we have

plgleNwy, ..., w,)

(o Ndyplv) + e Vix), ..., dyplv,) + ¢, V(x))
u () dylwy), ..., dpl,))

+ 25 cjulpla)dpluy, ..., dplv;_y), V(x),
i=1
dll)(vj+1), “eay dlp(vn))-
All other terms are zero since V(x) appears twice as an argument, and u is skew

symmetric. Moreover, the first term vanishes by the above discussion, and each
term of the sum is zero because

BN, Vo0 =iy A A drg (L, VL)
= d?l A A d’;’n+1“”, ’ ”5 )
= Ol

Since w,, ..., w, € T(R"' y(x)) were arbitrary, this shows that u{(y(x)) = 0..But
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"

i(V)d'rl AL A d'rnﬂ_

2 CVINVy)dr AL Adry Adrg AL A dy
j=1

i T+l ¢ = TR+ L

Since V(x)rj # 0 for some j, (y(x)) # 0. This contradiction proves the theorem. [

COROLLARY. The unit sphere $” is orientable.

Pyoof. S™ admits a non-zero normal vector field, namely, the restriction to S"
of the unit vector field on R"*!— {0} pointing radially outward. a

Remark. It can be shown that every compact connected n-dimensional submani-
fold of R"*! separates R"*! into two connected pieces, one bounded and one unbound-
ed. Thus every such submanifold admits a unit normal vector field (for example,
the one pointing into the unbounded component), hence is orientable.

Remavrk. A non-orientable 2-dimensional manifold is called a one-sided surface.

Example 1. The Mobius strip S, obtained from an open rectangular strip by giv-
ing the strip a half twist and gluing the ends, is non-orientable. Note that a non-
zero normal vector field cannot exist on S, for if such a field varies continuously

along the center line, it would have to point in the opposite direction after a full
circuit.

L 4

Fig. 5.16

v

Example 2. The Klein bottle K, obtained from I X I by identifying opposite sides
(to geta cylinder) and then identifying the other pair of sides witha twist (Fig. 5.16),
is non-orientable. This surface cannotbe represented as a submanifold of R3. How-
ever, there does exist a map ¥: K —R® with dy injective at each point, and such
that § is one-to-one except along a circle in R3. (See Fig. 5.17.)

Definition. Let X be a topological space, and let U be an open covering of X.
The covering U is locally finite if, for each x € X, there exists an open set W, con-
taining x such that

U ew; Unw, #g]

is a finite set.

Definition. A topological space X is paracompact if every open covering of X
has a locally finite refinement; that is, if for every open covering U, there exists a
locally finite open covering U such that V € 0 implies U € U exists, with V C U/,

Remark. It can be shown that all metric spaces are paracompact. Also, every
regular topological space whose topology has a countable basis is paracompact,

Definition. Let X be a smooth manifold. A smooth partition of unity on X is a
pair (U, ¥), where U is a locally finite coveringof X and ¥ = {fV} vey is a collec-
tion of smooth real-valued functions on X such that
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Fig. 5.17

(1} each fy =0,
(2) for each V € U, the support of f = the closure of the set

[x € X; fy(x) # 0]
is contained in V, and
3) z fr=1

(Note that this sum makes sense since for each x € X, fy(x) = 0 for all but finitely
many V € U,

THEOREM 11. Let X be a paracompact manifold, Then, given any open cover-
ing u of X, there exists a smooth partition of unity (v, ) on X such that U is a
refinement of U.

Proof. Since X is a manifold, there is a refinement W of U such that each open
set W € W is a coordinate neighborhood, and W is compact. Since X is paracom-
pact there is a locally finite refinement U of the open covermg W, Note that Vis a

~F

o~ ¢ ai AnwA 3f Im N~ an PP .—
LCLLIICIIIC 1t Ul u-’ all\ul 1l V € U, Lllell V 15 bUlupd.bL, d.ll.u. V ID a COOof

hood.

Suppose we can ‘‘shrink the covering U slightly’’ and still get a covering. That
is, suppose for each V € U, we can choose an open set a(V) such that a(V)yC V and
{a(V)} veu 1S a covering, We then proceed as follows. Since V € U is a coordinate
neighborhood, and (V) is a compact set in V, we can find a smooth non-negative
function gy: X — R! such that gy(x) = 1 for x € a(V) and gy(x) = 0for x ¢ V. Let
g= ZJ gv. Then g is well defined and in C (X R1') because U is locally finite.

Furthermore £ never vanishes on X hecause {a(V)} vev 18 a covering; hence
fv = 8v/g € C°°(X RY. Let 5 ={fy} vew So that (U, §) is a smooth partition of
unity.

To ¢‘shrink the covering U slightly,’’ proceed as follows. Consider the family g
of all functions 8 such that

(1) domain of 8 is a subset Dg of V;

(2) if V € Dg, then (V) is an open set in V such that 3(V) C V; and

(3) the collection of open sets [B(V); V ¢ SDBJ U v V£ 5)81 is an opén covering

of X.

The family g is partially ordered: 8 <y if Dg CDy and Ve Dg =p(V) = y(V). We
leave the following point set argument to the reader: since U is locally finite, the
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maximum principle implies that § has a maximal element @ and D, = U, so that «
is the required shrinkage.

THEOREM 12. Let X be a paracompact manifold that is orientable, Then there
exists a smooth n-form w on X such that w never vanishes,

Proof. Let & be an orientation of X. Let U = {domain @} ped’- Then U is an open
covering of X. Let (U, ) be a smooth partition of unity such that ¥ is a refinement
of U. For each V € U, let ¢y € ¢ be such that V Cdomain ¢y. Then the restriction
of ¢y to V is also an element of &. Let {xY ..., xY) denote the coordinate func-
tions on V. Then the n-form wV = dx}’ AL LA dx,f{' e C™(V, A"(V)) is nowhere zero

onV, Letw= X waV, where fy wV is by definition zero outside V. Then
Vel

w € Co(X, A*(X)).

We must show that w is nowhere zero. For x € X, let ¢ € & be a coordinate
system about x, with domain U and coordinate functions (y,, ..., ¥,). Then, for
each VeV with U NV # @,

WV =dxl A .4 dx) = gydy, A...A dy, on UNYV,

wy = 2 (fyo)y = (VE fvevidy, ~...n dy,.

Ve

Since 2 fy = 1, there exists V, € U such that fy (x) > 0. Since gy (x) # 0 and each
fvey =0, (V.‘E:,U fvev)x) # 0and w(x) #0. [

Remark. Theorems 9 and 12 completely characterize orientability of paracom-
pact manifolds by the existence or non-existence of a non-zero n-form. This char-
acterization can be applied to show that the projective space P" is orientable if and
only if n is odd. This is done by considering the sphere $” as a covering space of
P" with covering map p. Let w be the non-zero n-form on $” constructed in the
proof of Theorem 10 and its corollary. Then one can show that for »n odd, w defines
an n-form & on P” such that w = p*&. K P" were orientable for # even, then there
would exist a non-zero n-form & on P" and then p*@¥ = gw for some £ # 0. On the
other hand, one can check that if x, # x, € S* are such that p(x,) = p(x,), then
g(x ) > 0<=> g(x,) < 0, contradicting the fact that g is never zero,

Remark. A non-zero smooth n-form on a smooth n-manifold is called a volume
element. Thus every orientable paracompact manifold admits a volume element.
The form é(V)dr, ~...A dr,,, on S” discussed in Theorem 10 and its corollary is
the usual volume element on the n-sphere.

Definition. A Riemannian manifold is a smooth manifold X, together with a map

() X— xyx{inner products on 7(X, x)}

such that for eachx € X, (,)(x) (usuallydenoted (,),) is an inner product on T(X, x),
and such that (,) is smooth; that is, for each pair V,, V, of smooth vector fields
on X (V, V,) is a smooth function, where

(Vn Vz)(x) = (V],(x), Vz(x»x.
The map (,) is called a Riemannian stvucture on X,

THEOREM 13. Let X be a paracompact smooth manifold, Then there exists a
Riemannian structure on X,
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Proof. Let (U, §) be a smooth partition of unity on X such that each Ve V'isa
coordinate neighborhood. Define a Riemannian structure ¢, )y on each V € U by

8 8\ _,
Bxi’axjv_ ]

where (x,, ..., x,) are the coordinate functions on V. Then define (,) on X by

<,>=EfV<7>V' U

Vev

Remark. The converse of Theorem 13 also holds; namely, every Riemannian
manifold is paracompact.
Example 1. R"™ is a Riemannian manifold: take {a/ari} as an orthonormal basis
for the tangent space at each point.
Example 2. Let X be a Riemannian manifold, and let (Y, ) be a submanifold of
X. Then a Riemannian structure is given on Y by
(v

= (A3l )
Ve 7

a N = (v 2. e TV
v Y2/y Vs Wy, Vo € 400

ve

» Y.

Example 3. In view of Example 2, every submanifold of R* has a Riemannian
structure.

Example 4. Let X and Y be Riemannian manifolds. Then the manifold X X Y has
a Riemannian structure given as follows. For (x, ¥) € X X Y, the tangent space
T(X xY, (x, ¥)) is naturally isomorphic to the direct sum of the vector spaces
T(X, x) and T(Y, y). An inner producton T(X x Y, (x, y)) is then given by re-
quiring that this isomorphism be an isometry with the orthogonal direct sum
T(X, x) ® T(Y, y).

Definition. Let X and Y be Riemannian manifolds. A map ¢: X —Y is an iso-
meltyy if it is smooth, injective, surjective, has a smooth inverse, and is such that
de is an isometry at each point; that is,

(do(vy), dp))e(x) = (Vy, Va)x

forallv, v, € T(X,x)and x € X,

b
e

0

o
—
o0
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Remark. Thus an isometry preserves all the structure of a Riemannian mani-
fold. Two manifolds are equivalent from the viewpoint of Riemannian geometry if
there exists an isometry between them. Such manifolds are said to be isometvic.
Note that two Riemannian manifolds as smooth manifolds can be the same; yet as
Riemannian manifolds, be distinct,

Example 5. Consider the torus S' x S It has a Riemannian structure as a sub-
manifold of R® (See Fig.5.18.) On the other hand, it has a Riemannian structure as
a product S' X S, where S! is given a Riemannian structure by way of its usual im-
bedding into R% These two structures are distinct. In fact, the product structure
on S*' x S' cannot be obtained by representing S' X §! as a submanifold of R3, (See
Chap. 8.) However, it can be obtained as a submanifold of R?* since

S' x St CR® x R* = R*,



CHAPTER SIX

HOMOLOGY THEORY AND THE
DE RHAM THEORY

We have defined the De Rham cohomology groups H!(X, d) for a smooth mani-
fold X. These groups came from a sequence of maps

Co(X, ALY X))~ C=(X, AL (X)) ~Zm (X, ALY(X))

and H (X, d) = Ker d/Im d. We saw that the dimension of H%X, d) measured the
number of connected components of X, and we saw, at least for the circle X = S?,
that the dimension of HYX, d) measured the number of ‘‘holes’’ in X, We shall now
developsimilar groups for simplicial complexes. We shall study a sequence of maps

) )
Cpoy=——Cp=—Cp,y,

where each Cp, is an abelian group and where 8% = 0. Then homology groups H; will
be defined by Hy = Zy /By, where Zy = Ker 8: Cy —Cy_,, and By = Im 3: Cy,, —~Cy.
An element of Z; will geometrically be a ‘‘chain’’ of £-simplices without boundary.
An element of B; will geometrically be a boundary of a chain of (£+1)-simplices.
The boundary of a 1-simplex (v,, v,) will be the sum of the 0-simplices v, and v,
with appropriate signs attached. Similarly, the boundary of a 2-simplex (vo, vy, Ug)
will be an appropriate linear combination of its edges (v, v,), (v, v,), and (v,, v,)

Definition. Let s be an £-simplex, with vertices v, v, ..., vy. Two orderings
Wiy Vi + o) vjﬂ) and (vp, Vg, ..., Vk,) of the vertices of s are equivalent if
(), ..., By) is an even permutation of (4,, ..., jp). This is clearly an equivalence
relation, and for £ > 1, it partitions theorderings of v, ..., v, into two equivalence
classes. An oriented simplex is a simplex s together with a choice of one of these
equivalence classes. K v, v,, ..., v; are the vertices of s, the oriented simplex
determined by the ordering (v,, ..., vy) will be denoted by {(v,, v, ..., v3 ).

Remark. Note that an oriented 1-simplex has a sense of direction attached to it,
an oriented 2-simplex has a sense of rotation attached to it, and so on. (See Fig.
6.1.) In fact, each £-simplex s lies in an £-dimensional plane in some R™. Orient-
ing s by (v,, v, ..., vy is the same as orienting the £-plane containing s by means
of the ordered basis {v, — vy, v, —vg, ..., v; —¥,}.

Definition. Let K be a simplicial complex, and let d denote the groupof integers.
Let Cy (K, d) denote the factor group of the free abelian group generated by all ori-
ented simplices of K, modulo the subgroup generated by all elements of the form
(Vgy Vyy Vgy e ooy Ug) + ¥y, Vg, Vs, ..., Up). Thus Cy(K, §) is an abelian group called
the group of L-chains of K with integer coefficients. A typical element of this group

ia ~f thoe fAaorm
15 O wie 1oTrrin

Z ng(s) (ng e d),

s an £-simplex
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Fig. 6.1

where, for each £-simplex s, (s) is some fixed orientation of s, and where s with
the opposite orientation is identified with —(8).

Remark. Given an arbitrary abelian group G, the group C;(K, ¢) of £-chains of
K with coefficients in g can be defined as the set of all formal linear combinations

Zgs(s) (g€

Subject to the identifications —gs(v,, v,, ..., vy) = Es{Vy Vo «.., vg). (We are
writing the group operation in ¢ additively.) In particular, C;(K, ¥) is defined for
any field ¥, in which case Cy(K, %) is a vector space over § whose dimension
equals the number of £-simplices of K, We shall only be interested in the cases
where G constitutes the integers J, the reals R, the complexes C, or the inte
modulo 2, that is, the group of order 2.

Definition. Let (s) = (v, v,, ..., vg,,) be an oriented (£+1)-simplex. The boun-
dary 98(s) of (s) is the £-chain defined by

£+1 . -
3(8) = j§) (_-1)] (on Vyy ovey Uj) R v£+.l.>!

where ~ over a symbol means that symbol is deleted,

Remark. Note that 3(s) is well defined and that [v,, v,, ..., 1'3]- eev, Ug,,) the
union of the faces occurring in 3(s) is the topological boundary of [sj

Examples.
(1) vy, v,) = (v,) = (vy).
(2) 8Cw,, vy, v3) = vy, V) — (Vg ;) + (v, v, = (Vg U + {0y, U5) + (v, v,). (See
Fig. 6.2.)

Definition. Let K be a simplicial complex, and let G be an abelian group. The
boundary map

Cﬂ (K, 9)__3_C£ +1(K: g)

is the group homomorphism defined by
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3(Z gs(s)) = T g4 8(s).
LEMMA, The maps
CpaK, §) == Cy(K, §) <= Cy.\(K, 9)

satisfy 82 =9 ¢ 8 = 0,

14

g
/_ -7

A 4
<

L) [ 25

Fig. 6.2

Proof. Since 8 o 8 is linear, it suffices to check this on generators

(UO’ Uy oo 0y v!+1>
as follows.
£

+1 .
o % (1o, ..., B, ...,vm)]

J

3(3(1}0, ey 'Uﬂ_'_l))
£+ . -
= z (—1)]8(1)0, N TIEEE vﬂ...])
j=0 J
241 [ i1 . . .
= Z (_I)J Z ("'1)1'(?)0, s s sy vi, .o ny ?)j, ""v1+1>
j=0 =0

41 ; ~ -~
+ '21 (D0 ey Dy v, Vg oney v)z“):l

I=j+

= E; (_1)z+'7<vo: cey ﬁi’ sey 5_]’ ceey vﬁ+1>

+ 3 0T v, oo, Djy ey Dy, e, gL

i>j

= 2 [(_1)i+j + (—1)i+j-1]<vo; ey ai: I 13], ey vﬂ+1>
i<j

0. 3

Definition. Given K and g, let

Zy(K, ) = [c e (K, g); ac = 0],
B[(K’ 9) = [BC; C € CEH.(K’ 9)],
Hy(K, g) = Zy(K, g)/By(K, g).

139

Elements of Z; (K, G) are called cycles, and of By(K, §) are called boundaries. The

group Hy (K, §) is called the £-th homology group of K with coefficients in g,
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Remark. It turns out that the groups H; (K, g) depend only on the topology of [X].
¥ f: [K] —[L] is a homeomorphism, then there is induced an isomorphism

Foi Hy(K, Q) — Hy(L, g).

In particular, if K, and K, are simplicial complexes with [K,] = [K,], then they have
the same homology groups.

Exercise. Show that the vector space H (K, R) has dimension equal to the num-
ber of connected components in [K].

Example 1. Let K be the 1-skeleton of a 2-simplex; so K consists of three ver-
tices v, v,, v, and three 1-simplices (v,, v,), (v,, v,), and (v,, v,).

L3

L AN

Vg th

Fig. 6.3

Then both Cy(K, d) and C (K, 9) are isomorphic to d @9 @ 4. Cy(K, d) =0fort >1,
A typical element c, of C/(K, J) is of the form

€y = My(Vg, Uy} + My{0,, V) + my(v,, Uy (m,, my, my € d).
Its boundary éc, is given by

ac,

m((vy) = (vy) + mf{vy) —(v,) + my{vy —(vy))

(mg— m) vy +(m, — m) vy + (my, — m)(v,).

Thus ¢, € Z (K, J) if and only if
mg—m, =0, m,—m, =0, my, — mg = 0,
that is, if and only if m, = m, = m,, so
Z (K, 9) = [n({vg, vy +{(v,, vy + (v, vy); nedl=4d.

Furthermore, B (K, J) = 0 because C,(K, J) = 0. Hence

H(K, 9) = Z (K, 9)/B(K, 9) = 4.

To compute Hy(K, J), note that a typical cycle ¢, € Z (K, J) is of the form

Co = R (Vg + N{Vy) + ny(vy) (14, 7y, 1y € J).
Then ¢, = 8c, for some

Cl = ml(vo’ ’U]) + m2<v17 vz) + ma(”z, Uo> € C1(K: ‘g)
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if and only if there exist (integer) solutions to the equations

mg — m, = N,

my, — My = Ny,

m, — Mg = N,
It is easy to check that such a solution exists if and only if #n, + n, + ny = 0. Thus
B(K, 8) = [n,(vy +ny{v) +ng(vy); ny+ 0, +ny5=0].
Let ¢: Z (K, ) —§ be the homomorphism defined by
@ vy +n{vyY +nz(Vy) = By + 0y + 0y,

Then the kernel of ¢ is just By(K, §); thus

Example 2. Let K be the complex consisting of all the faces of a 2-simplex
(vo, ¥4, ;). Then, as in Example 1,

Hy(K, ) = 4.

Moreover, as before,
zZ,K,§) = [n(<vo, vy + (0, Uy +(Vy vy); nE g].

Now, however,
CZ(K’ a) = [n<U0’ Uy 112); n e ‘g] y

so that
B(K, 8) = [a(n{v,, v\, vy); n € §]
= [n(v,, v) = (Vg vy) + v, v)); 1 €8]
= [n{{vg, vy + (vy, vy + (v, vy); n €8]
= Z (K, 3).
Hence

H(K, §) = Z,(K, 9)/B,(K, §) = 0.

Finally, since 8(n{v,, v,, v,) = 0 if and only if #n = 0, Z,(K, J) = 0, and hence

Hy(K, 8) = 0.

Definitions. Let K bea simplicial complex. The £-th Betti number By of K is the
integer

By = dim HI(K, R).
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The Euler characteristic x(K) of K is the integer

im K

XK = 3" (-1)ig.

3

THEOREM. Let K be a simplicial complex. For each £ with0 < ¢ = dim K, let
ay denote the number of £-simplices in K. Then

dim K

xK) = Z (D oy
that is, x(K) is equal to the number of vertices—the number of edges + the number

of 2-faces—. ...
Proof. For each £, 0 = £ =< dim K, consider the linear map

[?]
Cy (K, R) =—C,(K, R),

where C_, is by definition the zero space. Then, by the rank and nullity theorem of
linear algebra,

ay = dim Cy(K, R)

dim Ker 8 + dim Im 5

= dim Zy(K, R) +dim By_(K,R) (£ =0,1, ..., dim K).
Moreover,
By = dim Hy(K, R) = dim [Z,(K, R)/B,(K, R)]
= dim Z, (K, R) — dim B, (K, R).
Thus
dim K
XK} = 2 (-1ig,
£=0
dim K
= 2 dim z,(K, R) - dim By (K, R)]
L=0
dim K dim K
= (—D%im Z, (K, R) + 23 (~1)L** dim By (K, R)
E=0 =0
dim K dim K
= (—1&dim Z,(K, R) + Y, (-1} dim By_/(K, R)
£2=0 2=1
(since dim B; = 0 for £ = dim K)
dim K

= 2 (-Di[dim z, (K, R} + dim By_,(K, R)]

(since dim B_, = 0)
dim K

Z: ("‘ 1)ﬂ aﬂ . [}
L=0

Remark. 1 [K] is homeomorphic to a connected compact orientable 2-dimen-
sional manifold, then it turns out that 8, = 1 and 8, = 1, so that

X(K) = 30“31"”62:2"51
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or
31 =2 - X(K)-

Furthermore, 3, is always even for such K, It can be shown that any such surface
is homeomorphic to a sphere with a certain number of ‘‘handles’’ attached; 13, is
just the number of handles. (See Fig. 6.4.)

Thus the homology groups completely determine the homeomorphism class of
connected compact orientable surfaces. However, for higher dimensional manifolds,
the homology groups contain comparatively little information.

Remark. We have been discussing a homology theory for simplicial complexes,
that is, a theory arising from a sequence of groups and homomorphisms

9 9 5
't ===Cp_ (K, R) =—Cy(K, R) =—Cy, (K, R) =——""

’

where the map 8 lowers the dimension of chains. On the other hand, in studying
De Rham cohomology, we used a sequence

. oi—c“’(x, Af-l(X))LC”(X,Af(X))-‘g-— Co(X, A X)) —= -

b

where the map d raised dimension (degree). In order to compare these two theor-
ies, it is convenient to define a simplicial cohomology theory. This is done by pass-
ing to dual spaces,

Definition. Let K be a simplicial complex. For 0 = £ = dim K, let

CL(K) = [C,(K, R)]*.

Let 8*: CI(K) — C!*}K) be the adjoint of the map 3: Cy, (K, R) — C; (K, R). Thus a*
is defined by

[o*(@)](c) = (8c) (¢ € CL(K); c € Cy, (K, R)).

Then we get a sequence
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* *
"———-CE"‘(K)LCE(K)“LCEH(K)—‘-" .

ZHEK) = [¢p e CH(K); a*¢ = 0],
BL(K) = [a%¢p; ¢ € Ct-Y(K)],
HY(K) = z!(K)/BL(K).

Elements of C{(K) are called cochains; elements of Z!(K) are cocycles; elements
of BL(K) are coboundaries. The map d* is the coboundary operator. H.(K) is the
L-th cohomology group of K.

Exercise. Verify that H!(K) is isomorphic to [H, (K, R)]*.

We shall need an explicit formula exhibiting the effect of the coboundary operator
8*, For each oriented £-simplex {s) of K, let ¢ (s) € CL(K) be defined by

(1 (if (¢) = (s))
sy & =<1 (if (¢) = —(s))
0 (if ¢ £ s).
Thus, if {(s), ..., (s,,)} is a basis for C;(K, R) (so that {84 ..., 8,,} is the set

of all £-simplices of K), then {p(s , ..., P(s,,)} i8 the dual basis for C!(K). Since
98* is linear, we need only compute the effect of 8* on these generators @) .

LEMMA,

a*ﬁo(vo,...,vﬂ) = ;@(v,vo, ceesVg),

where g:’denotes the sum over all vertices v € K such that (v, v, v, ..., v,y) is an

(£+1)-simplex of K.

ien Farmnsala e 2 - [/ PR | WP IS e
Proof. We need only check this formula on oriented (£+1)-simplices
(£) =(we, wy, +.., Wy,y)

of K. If we set (s) =(v,, vy, ..., vy), the left side yields

(%@ ) (K8)) = @s)(8(2))

2+1 .
qo(s)(Z_; (_1)2<w07 s ey wz’ LECE ) wﬂ+l>)
L+1

Zg (- l)i(p(s)((wo, vy Wiy oua, Wy D).

-~

But each term of this sum is zero unless, for some j, (w,, ..., w;, ..., wy,,) = (s),
that is, unless (s) is a face of (£). X (s) is a face of (#), then (& = (o, Voy v ou, Vg)
for some vertex v € K, in which case either

(1) (£) = (0, 09, ..., 00) and (%)) =1 or
(2) (t)

(0, Vg o.v, vp)  and  (8%Q))((#)) = 1.
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Thus
(1 (if () = (v, vg, ..., vy ) for some v)
Tl (if {¢) =—(v, vg, ..., vg) fOr some v)

0 (in all other cases)

(3*@ sy ((2))

EQw, vy «- - vﬂ))((t)).

6.2 DE RHAM’S THEOREM

Definition. A smoothly triangulated manifold is a triple (X, K, h), where X is a
C” manifold, K is a simplicial complex, and A: [K] - X is a homeomorphism such
that for each simplex s of K, the map &|js): [s] — X has an extension 7, to a neigh-
borhood U of [s] in the plane of [s] sucL that hg: U — X is a smooth submanifold,

Remark. ¥ dim X = n, we need only require that this last condition be satisfied
for each n-simplex of K, since every simplex of K is a face of an n-simplex and
since restrictions of smooth maps to submanifolds are smooth.

Example. Let X = 8", Let K be the n-skeleton of an (n+1)-simplex circum-
scribed about S”. Let i: [K] —S" be radial projection. Then (X, K, ) is a smoothly
triangulated manifold (Fig. 6.5).

e
(_

e O\

h:[K] - 8t
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Remavrk. It can be shown that every compact smooth manifold can be smoothly
triangulated. The proof is difficult and will not be presented here. Note that
smoothly triangulated manifolds are compact because [K] is compact for each
(finite) simplicial complex K.

The goal of this section is to show that for smoothly triangulated manifolds
(X, K, h), the De Rham cohomology of X is isomorphic to the simplicial cohomology
of K, For this, we shall need the following facts about barycentric coordinates.
Recall that we have previously discussed the barycentric coordinates of a point
relative to the vertices of a simplex containing it. We now extend this concept.

Definition, Let K be a simplicial complex and let v, ..., v,, denote the vertices
of K. Suppose x € [K]. For je{1,..., m}, the j-th barycentric coordinate b;(x)
of x is defined as follows. K x ¢ St(vj), then bj(x) =0; if x € St(vj), then x ¢ (s) for
some simplex s having v; as a vertex, and bj(x) is equal to the barycentric coor-
dinate of x in s relative to the vertex v;.

Remark. The following facts are easily verified.

(1) b;: [K] —R is a continuous function.
(2) b]-(x) = 0 and 'En! bj(x) = 1 for each x € [K].

(3) x = ,El bj(x)vj.

(4) bjo(x)aéo, bf;(x) #0,..., b;, (x)#0 for some x e [K] if and only if Vjgr ++ s Vi

are the vertices of an £-simplex of K.

Definition. Let K be a simplicial complex, and let s be a simplex of K, The star
of s is the union of all the open simplices (#) of K such that (s) is a face of (9.

Remarks.

(1) For s = v a 0-simplex (i.e., a vertex) of K, St(s) = St(v), as defined above,

(2) St(s) is an open set in [K]. (This is an ‘elementary consequence of (3).

(3) ¥ (s) = (vj Y eens v]-ﬂ) and x € [K], then x € St(s) if and only if b; (x) # 0 for

. 0 Ji
alli e {0, ..., 2}.
(4) If (s) = (v-o, ceey Ujﬂ): then

[K] - st(s) = [x € [K]; bjz_(x) = 0 for some i € {0, ..., £}].

(5) If s, and s are £-simplices of K with s, # s, then [s,] < [K] - st(s).

Given a smoothly triangulated manifold (X, K, k), we want to define, for each L,
an isomorphism from HY{(X, d) onto H(K). To do this, note that homomorphisms
ﬂ: HY(X, d) — H! (K) are defined whenever there is given a sequence of linear maps
for C(X, AL(X)) — CL(K) such that 8% o f; = Sfp4y od forall g,

. '——C°°(X, Al (X)) LC”(X, AE *I(X))—"-' ..
fy Joa
c—= LK) ik CHYK) - . .
For then f;(Z!(X, d)} C ZY(K), because dw = 0 (w € C! (X, d)) implies that
o*{(fy (W)} = fy,,(dw) = fy,,(0) = 0.

Also f,(BY(X, d)) c B{(K), because w = d7 (7 ¢ ct-Y(x, d)) implies that

folw) = f{d7) = 8%(fy _,7) € Im o*,
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Thus f, induces
fo: HY(X, d) = Z4X, d)/BL(X, d) — ZL(K)/B' (K) = H!(K).
We now proceed to define such a sequence of linear maps
fp_: C™(X, AL(X)) — CL(K).

For w € C*(X, AL(X)), j;(w) will be a linear functional on C,(K). Thus it suffices

to specify the values of f (w) onbasis elements of C,(K), that is, on oriented £-sim-

plices ¢s). To do this, con51der the smooth map %,: U — X. Then h¥(w) is a smooth
£-form on U, an open set in the plane of [s], that is, in an £-dimensional Euclidean
space. We define fﬂ(w)((s)) to be the integral of this £-form over ).

J @) = fy B¥(w).

In other words, let (r,, .. rﬁ_) denote coordinates in the plane of [s] consistent with
the or1entat10n of (s); so if {(s) = (vy, ..., vy), let (r, ..., 7y) be coordinates
relative to the ordered basis {v, —v,, ..., v, —v,}. Then

i(w) = gdr a...Aadry
for some continuous function g on U, and

fﬁ(w)((s)) = f[s] gdr,...drg. (Riemann integral)

Note that this integral is independent of the homeomorphism #; that is, it depends
only on the point set #([s]) and its orientation by the change of variables theorem
for integrals.

Claim: | o*e [ = [ ~°d

This is just Stokes’s theorem. For given any smooth £-form w and oriented
(£+1)-simplex (s),

[fpor = DD = Ly the)*aw)
= Jisyd(n(w))
= fo¢sy M5(@)  (by Stokes’s theorem)
= [ @)t
=[x o J@]s

Thus ‘]; induces a homomorphism fﬂ: Hi (X, d) — HL(K).

THEOREM. (De Rham’s Theorem) Let (X, K, k) be a smoothly triangulated
manifold. Then
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fﬂ; H (X, d) — B (K)

is an isomorphism for each £ (0 = £ = dim X).
This theorem is a consequence of the following two lemmas.

m
LEMMA 1. There exists a sequence of linear maps
ay: CHK) —C(X, A (X)) (0 =2 = dimX)

with the followi
(1) doay =0y,
(2) f!a ° a; = identity
(3) If ¢® denotes the 0-cochain such that ¢°(») = 1 for each vertex v in K, then
a,(c% = 1; that is, a(c? is the O-form equal to the constant function 1.
(4) If (s) is an oriented £-simplex of K, then the £-form ay (qa<s>) is identically
zero in a neighborhood of X — St(s).
LEMMA 2, Let w be a closed {-form on X. Suppose ff(w) = @*c for some

¢ € CL-Y(K). Then there exists an (£-1)-form 7 on X such that f:‘z (1) =c and d7 = w,
~ -1
Remark. Lemma 1 shows that f is surjective. For given 2z € ZL(K), let
w = ay(z). Then w € Z4(X, d) because

o
o
(84

dw =d o ay(2) = ayp,, ° 9%(2) = a;,,(0) = 0.

Furthermore, f!l(w) = fp_ ° ay(z) = z. Thus fﬂ:Zﬂ(X, d) —Z%(K) is surjective; hence
so is fﬂ (Note that Property (1) says that the map oy induces a homomorphism
a,: H(K) — H (X, d). froperty (2) says that this map is a right inverse to f;z')

Lemma 2 shows that sz is injective. For if w € Z4(X, d) and fﬂ(w) € BY(K), then

w € BY(X, d) by Lemma 2.
Thus Lemma 1 and 2 together do, as claimed, imply De Rham’s theorem.

Proof of Lemma 1. For notational convenience, we shall identify [K] and X
through the homeomorphism #; that is, we shall assume that [K} = X and that
h = identity.

Step 1. We first construct a special partition of unity, subordinate to the open
covering

{St(v); v is a vertex of K}

of X. Letv,, ..., v,, denote the vertices of K, For each j ¢ {1, ..., m}, let b; de-
note the j-th barycentric coordinate function on [K] = X and let

F; = [x € X; bj(x)zn+ l:l (n = dim X),
G-:[xeX'b-(x)< 1]
J * 7 “n+2/)

Then F}- and q; are closed sets in X with the following properties. (See Fig. 6.6.)
(1) F] C St(’l)j).
(2) X - St(vj) C Gj.
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Fig. 6.6

(4) There exists a smooth function f; =0 such that f >0on Fy, and f] =0 on
G;. (F; is a closed set in the compact space X, hence 1s compact thus an f] =0
can be found which is greater than 0 on F § and equal to 0 outside the open set
G; D F;.)
! (5) The closed sets F; cover X. (Given x € X, then x € (s) for some simplex
(s) = (vj, ..., v;,) of dimension £ =n. Now bj(x) = 0 for j £ {jgs -+ +» jﬂ} and

£
z: b-z(x) =1, Since{ +1=mn+ 1, b-(x) > 1/(n+1) for some j € {jy, ..., jﬂ}. Thus

x € Fjfor this j.) In particular, for each x € X, fj(x) # 0 for some j. Further-
more, Gj is an open covering of X.

(6) From (5), ZI fj > 0, so that g; = fj/’Z) fp is defined and smooth on X. Fur-
thermore, {g;} 1s a smooth partition of unity on X subordinate to {Gj}; that is,
2 gj = 1, and g; vanishes outside G' Since Gj C St(v ]) the partition of unity {g]}
lS also subordinate to the open covering {St(v;)}.

Step 2. We shall now define @, in terms of the smooth functions {gj} defined

above. Since a; is to be linear, it suffices to specify the values of oy on the gener-
ators ¢y of C{(K). For ¢s) = (v, ..., vj,) an oriented -simplex, we define
ay (@ (s)) to be the £-form

£ . /\
aﬂ(qz)(S)) = {1 Z(} (—1) gji dgjo AL ..Adgji A, .."dgjﬂ.

Verification of properties (1)-(4).
Property (1). Clearly,

d ° aylp(s)) = (£+1)! dgj Ao A dgjﬂ.

On the other hand,

Qg.q° a*(ﬁo(s>) aﬂ+1(§l ‘P(vk, 'Ujo, e ey v]ﬂ>)

(L+1)1 Zk)' l-gkdgjo ALLLA dgjg

£

-2 (—l)igjz_dgk Adgy A A@A R dgjﬂ].

i=0
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Claim. K the vertices vy,

£, Vj, are distinct and yet are not the vertices
of an (£+1)-simplex of K, then

Vi -
gk dgjo A...Adgjﬂ = 0,

For, if x £ St(vp), then gp(x) = 0. If x ¢ St(vy), then bi(x) # 0. But now b; (x)=0
1
for some i € {0, ..., £}, for otherwise bp(x) #£ 0, bjo x 0, ...
("Uk; 'Ujo, cees l)jﬂ) is an (,Q-g-l)—simn]nv But t di
U=y ex; b (< L.
1

Then U is an open set in X containing x, and 84, is identically zero on U because

U C Gj,. Hence dg; =0 on U, and, in particular, dg;,(x) = 0. This completes the
proof of the claim.
Applying this result to the terms of the above expression for ay,, o 9*(p (s)),

vialda
yieias

(A) Zk)’gkdgjom--:\dgjﬂ= L grdg,h...rdg,

ké{do, ... 7}

since those terms on the right hand side which do not appear on the left are iden-
tically zero; and

L - N
(B) ? ZO) (—1)’gji dge " dgj, ~..."dg; M. " dg;
£ R /\ o
= Zg (—1)1Zk;'gji dgp " dgj, ~...Ndg M. . A dgy

0 _ P
=§ (—1)* 2 gjidgkAdgjoA---"dgjiA---Adgjﬂ

ke .o, iy}
£ , /\
= -1} . A . A N .
Z:O: (=1) kzﬁ;i 8j; dgy dgjo ca dgh. AL..ndgy ’

; ZTN
= E (—l)zgji(z dgk)AdgjoA...Adgj, A..."‘dgjﬂ

ks ¢

- ; AN
=L C1)'gy, (dg;,) rdgy r. .. Kdgy n.. . ndg;

j; 98j A - e dgy (since :Z) gr=1= § dgk:o)'
=1 =

Hence, subtracting (B) from (A),

(L+1)! (ZZ gk\dgrin Aooondgg
\ k=1 VA Tk

(£+1)! dgj A...A dgj,

g, © %@ ()

d ° ay (@),
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Property (3). Since @) = &

m

. [ \ 2
ay(c”) = ao(E q’(vj)) = 2 & =1.

j=1
Property (4). Suppose () = <”Jo’ cen, vjﬂ) . Then

£ . P
ay (o)) = L1 E (—l)zgji dgj N...hdgj Ao Adg; .
jei : : -
Note that if x € X is such that b5 (%) < 1/(n+2) for some k € {0, ..., £}, then
x € Gj,, sothat g;, and dg;,, and hence o, (cp(s)), are zero at ¥. Thus ay (¢ ())
is identically zero on

[x € X; bjk(x) < ’%2— for some 2 €10, ..., £}],

which is an open set containing X — St(s). i
Property (2). Proof by induction. For £ =0, | ° ao(go<v,>) (je{1,..., m} is
the 0-cochain given by ° J

[, » aoop)] @) = [ [(ep] @ = giton.

0

But note that gj(vk) = 0 for & # j since vy £ St(vj) and g; = 0 outside St(vj). Fur-

thermore,
1= i gjlvg) = grlvg)  (for each k).
j=1
Hence
1 (if k= j)
[fo ’ “0(‘”(”1))]((”’*’)) - {0 (if £ # )
= @y 5 ((OR)).
;)

Since this holds for all j and &, fo ° a, = identity as required.
Now assume Property (2) for dimension £ — 1. For (s) and {¢) oriented £-sim-
plices of K,

[fﬂ °ay (¢(s))] ) = @ ayp ("P(s))-

We must show that this equals 1 if (s) = (¢), and 0 if s # £ That this is zero for
s # ¢ is a consequence of Property (4) since a, (¢(s)) is identically zero in a neigh-
borhood of X = St(s) O [£]. So we need only check that [, _ay (@ (s)) = 1. For this,
let (r) = i ey ”jﬂ> and s = (v , Vjs oees vj,). Then (s)

f<s> o (0% () = J o dlas 1o )]
=Jo 02-1(9‘7(7))-

But 8(s) = (#) plus an alternating sum of other oriented (£-1)-simplices, so

Jysy2a-lo o)) = Joy2t-loge = 1
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by induction. Hence

et
|
T
R
o=
®
*
<
o~
<
e’
"’
1

_ A = [, ay (@) + terms of type @y (¢ # s))
'\S) - A L S/ o~ A ri AN

f(s)(}!g (psy). O

In order to prove Lemma 2, we shall need the following lemma.
LEMMA 3. Let s be a k-simplex in R”,

o a 2 ~ N nanAd

. -~ PR S A R § PO
(ar) Supyu-:c ¥ =0 and 2 = 1. Let w be a smooth cl

osed v-form defined
“near’’ [s¥-1], that is, defined in a neighborhood of [s*!]. If £ = » + 1, assume fur-
ther that a<s>w = 0. Then there exists a smooth closed »-form 7 defined near [s]
such that T = w near [s%1].

(bp) Suppose » =1 and 2 = 1. Let w be a smooth closed »-form defined near
[s]. Suppose T is a smooth (-1)-form defined near [sk‘l] such that d7 = w near

[s - I k= 7, assume further that 8(s>T = f< )w. Then there exists a smooth
s
e

(r-1)-form 7’ defined near [s] such that 7’
Rowmayrk. That the integrnl conditions ar

Awrrviwg Ve - salav waavT 2 Rd WwsILvAALAV L

quence of Stokes’s theorem. For in (ap), if
Jasy = Jaey™ = Joyir = S0 = 0
and in (by), if 7’ exists, then
@ I = o™ = o)™

Proof of Lemma 3. Proof by induction. We shall first verify (a,) and then estab-
lish that

(@) = (b,) = (@,) =(b,) = ....

(a,) w is a smooth 0-form, that is, a smooth function defined near Lsk‘i]; and
dw = 0. Hence w is constant on the components of its domain. If 2 > 1, [s*"1] is con-
nected, so w is a constant function ¢ in a neighborhood of [sk‘l]. Set T = ¢ in a
neighborhood of [s]. If & = 1, then {(s) = vy, ¥y for some pair of vertices v,, v,, and

0= 8(s)¥ = w(v,) — wlw,).

Thus the constant value of w near v, equals the constant value of w near v,; that is,
w is constant near [sk'l] as before. Once again, set 7 equal to this constant function
on a neighborhood of [s].

(ap.;) = (by) w is a closed r-form (» = 1) defined on an open set containing
[s]. By Poincaré’s lemma (Sec. 5.2), w is exact near [s]; that is, there exists a
smooth (#-1)-form 7, defined near [s] such that d7, = w near [sI (To see that
Poincaré’s lemma applies here, we need only note that any open set containing [s]
must contain another open set about [s] which is diffeomorphic (smoothly homeo-
morphic with a smooth inverse) to an open ball. In fact, we can choose a star-
shaped region containing [s].) Now in general, 7, will not be equal to 7 near [s*-1].
Consider the difference 7, — 7 near [s*-1]. It is closed since, near [sk'l] ,

d{t,—-T) = w— w=0.
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Furthermore, if 2 = (r — 1) + 1 = », then

Jogo 7177 = Jagy ™ Jagsy”

= i@ Sy
= Iy = Jogey™

=0  (by hypothesis).

Thus we can apply (ap_,) tothe form 7,—7. There exists a smooth closed (»-1)-form
i defined near [s] such thatu =7, — 7 near [s#1]. Let 7' =7,— . Then 7’ isa
smooth (#-1)-form defined near [s] such that 7’ = 7, — 4 = T near [s*-1], and
dr’ =dr,—du = w— 0 = w near [s].

(by) = (ar) (s) = (wp, ..., Vg for some choice of vertices v, ..., vp; let
& =@y ..., Vg . LetF = s*-1] - (#). Since w is closed, Poincaré’s lemma asserts
the existence of a smooth (#-1)-form p defined near F such that du = w near F.
(F is star-shaped; hence any open set containing F' contains a star-shaped neigh-
borhood U of F). (See Fig. 6.7.) In particular, du = w near [£%-2],

Fig. 6.7
<8> = <vgh,v2>, <t> = <v,ve>

If # > 1, we would like to apply (by) to the forms w and u and the (%Z-1)-simplex

t. In order to do this we must check if 2-1 = 7, then f(t >w - fa(t)'u = 0. But, letting
¢ = 9(s) — ({) sothat oc = —a(p),
w— = w +
Jo® = ha® = S+ o

= f<t>w+ fcdu

= fm“’ + fcw (since each simplex of ¢ is contained
i ) in F and di = w near F)

IRION
=0 (by hypothesis).
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Applying (by), there exists a form u’ defined near [¢] such that pu’ = u near [£%-2]
and du’ = w near [¢]. Let K, be the form defined near [sk“l] by glueing together
L and u’ along their common domain, an open set where they agree. Then du, = w
near [s¥!], since both p and 4’ have this property in their domains of definition.

doraain 4 %58
N

domain u’

Fig. 6.8

If £ = 1, then [s*-2] consists of two vertices Vg, v;. Since w is closed, Poincaré’s
lemma guarantees the existence of smooth (v-1)-forms ; near v; (i = 0, 1), with
di; = w. By shrinking domains, we can assume (domain p,) and (domain p,) are
disjoint. This defines u, near [s*-!], with du, = w near [s*-1] as before.

domain u,

domain u,

"
Fig. 6.9

Finally, let f be a smooth function which is identically 1 in a small neighborhood
of fsk‘l], and identically zero outside the domain of Kk,. Then fu, is a smooth
(r-1)-form defined near [s]. Let 7 = d(fi,). Then 7T is a closed r-form defined
nedr [s], and we have near [s*-?

3

T=d(fuy) = df Ay + fdu, = du, = w,

since f = 1 and df = 0 near [sk‘1]. O -
vProof of Lemma 2. We shall construct inductively a sequence

2

Toy Tas 00y, Tp =T (1 =dim X)

of (£-1)-forms such that .
(1) T4 is defined in a neighborhood of the %-skeleton [K*] of K,
(2) dTp = w near [Kkg, R
(3) T = Tp_, near [K*-1], and

(4) L_I(Tﬂ_l) =C.



DE RHAM’S THEOREM 155

Note that this will prove the lemma because (4) implies that for each oriented
(2-1)-simplex (s) of [K] and each k= £-1,

J, TR = f<s>7k = J<s>

To construct 7, cover K° by a collection of mutually disjoint balls. Since w is
closed, w is exact in each of these balls by Poincaré’s lemma. Hence there exists
a smooth (£-1)-form 75, defined on the union of these balls, such that d7 = w there,

0
r
I 0-1#0, take 7,=75. K £-1=0, we want Jo(ro) = ¢. But for v; a vertex of (K],

Lhmww)=ﬁ%ga=ﬂwn

T = [, (T2 = e(s)).

Let a; = c(vy) — 7o(v;), and define 7, on the ball about v; by 7, = 7 + @;. Then
dty = d1) = w near [K°], and [(7,) = ¢ as required.

Now assume that 75_, has been constructed with Properties (1)-(4). To construct
Tk, note that if we can find, for each k-simplex s, asmooth (£-1)-form T4(s) defined
in a neighborhood of [s] such that d(74(s)) = w near [s], and 74(s) = 75_, near [s#-1],
then glueing will yield a smooth (£-1)-form 7} satisfying (1)-(3).

To construct 7x(s), we shall apply (b;) of Lemma 3. Note that w is a smooth
closed £-form defined near [s] and that Tp., is a smooth (£-1)-form defined near
[s#-1] such that dTp., = w near [sk‘I]. Furthermore, if & = £, then

(s) w = j;z(w)((s)) ((s) = s together with either orientation)

d*c((s))  (by hypothesis)
c(ads))
fk_l(Tk-l)(a<s>) (by (4) since k = £)

= Joe) Ther

= w near [s]. This constructs 7} satisfying
7. If k= £ —1, we have 7}_, satisfying (1)-(3), and
) =c. Letc, =c - fﬂ_l(T}z_l), and define 74_, ina

c n y
Tr(s) = Tp_, near [s¥%1] and d(7p(s)
1)~(3). Tk#L—-1, setTy =

we want 7;_, such that fﬂ (7
neighborhood of [K£-] by -

=

-1

TRy = Thoy + aﬂ-l(cl)’

where ay_, is the linear map C!-(K) —C™(X, AL-Y(X)) defined in Lemma 1.
For each r and each oriented r=simplex (s), note that a,,(cp'(s)) is identically zero

on a neighborhood of X — St(s). In particular, a,,(cp<s>) is identically zero near

[K7-1]. Since each ¢ € C”(K) is a linear combination of such P ls) We have a,(c)
identically zero near [K”-!] for each »-cochain c.
Applying this first with » = £, then with » = £ — 1, we find

_— - R & e {~\ pu—y 4 . - wf 0\ Py | .
ATy_,=drg_1+d o ag_j\¢c,) =dT)_, +ap o 8¥(c) =d7j_,= w

near [K*-?] and

T = Thog + aﬂ—.l(cl) =Tg_y = Tloz
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near [K!-2]. Thus 7,_, satisfies (1)—(3) with 2 = £ — 1, Property (4) is also satisfied
by the following:

J;_I(Tﬁq) = J;_I(T!ilq) + J;_l o ay_(c,)

i

(c —c,) +¢c,

= C. [

Remark 1. De Rham’s theorem shows that the sim och
(with coefficients in R) of a smoothly triangulated manifold (X, K, h) are isomorphic
to the De Rham cohomology groups of X. In particular, these groups are indepen-
dent of the triangulation (K, 4) of X. Since the cohomology groups are dual to the
homology groups, the groups H;(K, R), for [K] a smooth manifold, also depend on

[K] only, not on the particular simplicial subdivision K.

e
-t
2]
st
iv]
—
[¢]
.
>
@]
2

dim X
Remark 2. The direct sum = @ HY(X, d) can be given the structure of an as-
=0 dim X
sociative algebra as follows. Recall that Z ® C®(X, A%(X)) is an associative
'a under exterior multiplication A, ¥ @ Z4(X, d) is a subalgebra, for if dw = 0
and d7 =0, then d(w A 7) = dw) A7 = w A (d7) = 0. =@ BYX, d) is an ideal in
@ z4(X, d), for if w = du and dr = 0, then w » 7 = d(u ~ 7), Hence

2@ HAX, d) -3 @ (2 (X, d)/B'(X, d)) = T @ (2" (X, d)/3 @ BY(X, d))

is also an associative algebra. In particular, T @ HE(X, d) is a ring, called the
De Rham cohomology ving of X. ‘

It is also possible to define a product, called the cup product, of simplicial co-
chains in such a way that 3 @ H YK) becomes an algebra. It can be shown that the

isomorphism f: 2NC) HYX, d) — T @ HE(K) is then an algebra isomorphism,

Remark 3. Lemma 3 contains in disguise a proof that

Hﬂrsn d\:J’O (if0<f.<ﬂ),
CoRTAR O (i L =0, n).

For if w is a closed £-form (0 < £ <n) defined on a neighborhood of the n-skeleton
[s”] of an (n+1)-simplex s, then it was shown that w extends to a closed (and hence
exact) £-form on [s]. This implies that H4(S®, d) = 0 for 0 < £ <. It was shown for
£ =n that any closed n-form w, defined near fs”] such that fa<s>w = 0, isalso exact,

The map Z"(S", d) — R defined by w — w is then a homomorphism with kernel
y a(s)

B"(S", d). Hence H"(S", d) = R. Also H%S" d) = R because S” is connected.

We have tacitly assumed here that any closed £-form w on S” can be extended to
a closed £-form defined in a neighborhood of $”. ¥*w is such an extension, where
¥: R"1—{0} — S" is radial projection.



CHAPTER SEVEN

INTRINSIC RIEMANNIAN
GEOMETRY OF SURFACES

7.1 PARALLEL TRANSLATION AND CONNECTIONS

e T ~4 )II 1~
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denote the tangent bundle
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S(M) = [(m, v) € T(M); (v, v) = 1].

S(M) is called the sphere bundle, or circle bundle, of M,
The notation (m, v) for a point of T(M) {or S(M)} is redundant since v e T (M, m).
Nevertheless we use it to emphasize that v is a tangent vector at m.

Remavrks.
f1\ Sl A1) is a smo

&) O\iM )
by f(m, v) = (v, v
theorem applies.

(2) Note that the circle S! = [z € C; |z] = 1] is a group under (complex) multi-
plication, Since eif1. eifz = ¢i(01+62) the group S! is just the group of rotations of
the oriented plane R2%. This group acts on S(M): there exists a smooth map

A: S8t x S(M) — S(M)

\/

given by
Alg, (m, v)) = (m, gv}) (g € S% (m, v) € S(M)),

where gv is the image of the vector v under rotation by g in the oriented plane
T(M, m). So, if g = ¢*% and {v,, v,} is any oriented orthonormal basis for T (M, m),
then v = ¢, + ¢, for some c,, ¢, € R, and

gv = (c, cos 6 —c, sin 8)v, + (¢, sin 6 + ¢, cos O)v,.

We shall often denote A(g, (m, v)) by g(m, v). Then g: S(M)— S(M) is a smooth
map for each g € S,

Fig. 7.1

(3) If w: S(M) — M denotes projection, then 7-%m) is just the unit circle in
T(M, m). Moreover, if (m, v,) and (m, v,) are any two elements of 7#~(m), then
there exists a unique g € S! such that (m, v,) = g{m, v,). (Take g = ¢*% where 0 is
the positive angle of rotation from v, to v..)

= 3 % 4 Lo LY << 222 2ss

(4) S(M) is locally a product space For let U be a coordinate neighborhood in
M, with coordinate functions (x, x,). Let e, be the vector field (8/8x,)/118/8x I,

157
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where 18/3x,1i = ((8/3x,), (8/8x ))*/2. Then e, is a smooth vector field on U, which
is everywhere of length 1. Thus e, defines a smooth map

c: U— 1 U) by c(m) = (m, e (m)).
Clearly 7 o ¢ = iy. Now define B: U x S'— 7~YU) by

B(m, g) = gc(m) = (m, ge (m)) = A(g, (m, e (m)).

Then it is easy to verify that B is smooth, injective, and surjective; and that dB is
everywhere non-singular so that B! is also smooth,

(5) It is not true that S(M) is globally a product of S! with M. If there exists a
smooth non-zero vector field on M, then the above argument shows that S(M) is dif-
feomorphic with M X S!, However, there do not exist such non-zero vector fields in
general. (For example, M = §2))

For M = R? the notion of translating a tangent vector parallel to itself is clear.,
We now propose to generalize it and introduce the concept of parallel translation of
tangent vectors on arbitrary 2-dimensional oriented Riemannian manifolds., It will
turn out that we will be able to parallel translate vectors along curves from one
point to another, but that the result will depend on the curve. In particular, if we
parallel translate around a closed curve, we may not get back to our original vector.
The new vector will differfrom the original vector bya rotation, i.e., by an element
of S'. For M = R? a “flat”’ space, this rotation is zero. For arbitrary M, this rota-
tion (or, more precisely, the limit of it as the curve shrinks to a point m) will
measure the ‘“‘curvature’’ of M at m,

We develop this notion of parallel translation in order to obtain an intrinsic
meaning for curvature of the Riemannian manifold M, that is, a meaning indepen-
dent of any ambient space in which M may lie. In Chap. 8 we will interpret this
curvature differently when M is a submanifold of R3,

We shall require that parallel translation be an isometry. Thus, parallel trans-
lation of a unit vector alonga curve a: [a, b] — M will determine a unit tangent vec-
tor a(t) € T(M, a(d) for each £ € [a, b]. ¥ v € 7Y a(a)), then parallel translation of
v will determine a curve @: [a, b] — S(M) such that 7 < & = a. Moreover, if

v, € 1 Hal@) and v, = gv (g €8Y,

then the curve @,: [a, b] —S(M), determined by parallel translating v 1, will be given
by

a,(?) = ga(d) (¢ e la, b)).

Conversely, if, corresponding to each curve o: [, 5] — M and each unit tangent
vector v at afa), there existed a unique <1ift”’ @: [a, b] — S(M), with the above
properties, then a notion of parallel translation is defined. (See Fig. 7.2.)

Recall that in the theory of covering spaces, each curve had a unique lift because
the fibers p~'(x) were discrete. However, here the fibers 7~!(m) are not discrete;
they are circles. Hence lifts are not unique. In fact, we don’t even know in which
direction to start moving. (There is a whole line of vectors 7 € T(S(M), (m, v))
such that da(?) = ala); each of these is a candidate for G(a).) So given m € M and
v e T(M, m), _we need a way of determining, for each curve a through m, an initial
direction for @; that is, we need a way of choosing, for each ala) € T(M, m) a vec-
tor &) e T(S(M) (m v)) such that dm(¥(a)) = &(a). Choosing the vector &) is

e e o e s e b i )
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¢————— 7 YImage o]

_/

Fig. 7.2

more primitive than finding the Iift @&, but it will turn out that when the choice is
made at every point of 7Y (a([a, 5])), the lift—hence the parallel translate—is deter-
mined.

A natural wayof uniquely determining sucha vector d(a) would be to require that
it lie in a given two dimensional subspace of T(S(M), (m, v)) that is mapped iso-
morphically onto T(M, m) by dr. Such a subspace will be complementary to the
vertical space

dr*(0) = [t € T(S(M), (m, v)); du(t) = 0].

Definition. A comnection on S(M) is a choice of a two dimensional subspace
ac(m, v) of T(S(M), (m, v)) at each point (m, v) € S(M) such that the following hold.

(1) TS(M), (m, v)) = 5(m, v) @ dr-*(0); that is, the subspace 3(m, v) is com-
plementary to the vertical space at (m, v).

(2) dg@e(m, v)) =3(m, gv) for each g € S,

(3) The choice of 3 is smooth; that is, for each point (m, v) € S(M), there exists
an open set U about (m, v) and smooth vector fields X and Y defined on U such that
{X, Y} spans % at each point of U,

Remark. There exists a smooth vector field V on S(M) such that V spans the
vertical space dn~}0) at each point of S(M), It is constructed as follows. Let 9/06
denote the usual unit tangent vector field on S, Then 8/88 is invariant under the ac-
tion of g € S'on S% that is,

O\ -2 1
dg(ae)‘h = ag‘gh (for each i € SY).

For (m, v) € S(M), consider the smooth map A!: §! — S(M) defined by

AYg) = glm, v) = (m, gv).
Define

In terms of a local coordinate neighborhood U of m in M and of the correspond-
ing direct sum representation
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T(S(M), (m, v)) = T(M, m) @ TSY, g) ((m, v) € TYV)),

where g is such that v = ge,, the vector field V is given by

g)'

In particular, note that Vis smooth and never zero, that dn(V) = 0, and that dn(V) = V
for each € S,

8

Vim, v) = (0, 36

—1{am) ]

\[ n \“l"
/ v

>

Fig. 7.3

Definition. Let X be a connection on S(M). The I-form of X, or the connection
1-form, is the 1-form ¢ on S(M) defined as follows. Let

q: T(S(M), (m, v)) =3(m, v) @ dr-(0) — dn~Y(0)

be the projection map. For ¢ € T(S(M), (m, v)), set @() = A, where X is the real
number such that g(f) = AV.

Local description of ¢. Let X and Y be smooth vector fields defined in an open
set U of S(M) such that {X(m, v), Y(m, v)} spans %(m, v) for each (m, v) € U. Then
{V(m, v), X(m, v), Y(m, v)} is a basis for T(S(M), (m, v)) at each (m, v) € U. Let
{9 (m, v), @,(m, v), @ (m, v)} be the dual basis for T*(S(M), (m,v)), Then @,, ¢,, @,
are smooth 1-forms on U, and ¢ = ¢,. In particular,

(1) ¢ is smooth, since ¢, is smooth,

(2) o(V) = 1.

(3) g*¢ = ¢ for each g € S*. For if t € T(S(M), (m, 7)), then

T rr

t=AV+t, (eR; ¢t €10,
and
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(g*0)(8) = ¢ - dgl(t)
= @(rdg(V) + dgl(t,)
=@p@AV) (since dg(3) C 3¢)
=X
= @(2).

LEMMA. Suppose ¢ is any smooth 1-formon S(M) such that (V)= 1 and g*y = §.
Then 3¢ = §~1(0) is a connection on S(M) with the property that its connection 1-form
is .

Pyoof. For each (m, v) € S(M), y(m, v): T(S(M), (m, v)) — R is a linear func-
tional. Since dim T(S(M), (m, v)) = 3, ¥~(0) has dimension 2. V £ y~%(0), so ¢~4(0)
is a complement to the vertical space, dg(y~1(0)) = y~%0) because g*y = y. O

Remark. Let U be a coordinate neighborhood in M, We now exhibit a connection
on 77YU) = S(U) = U x S, Recall that, given coordinates (x,, x,) in U, a smooth map
¢: U — n"YU) is defined by c(m) = (m, (8/0x)/18/8x ). For m € M, let

x,(c(m)) = de(T(U, m)).
Then 3,(c(m)) is complementary to the vertical, For
dn(3¢,(c(m))) =dm o de(T(U, m)) =d(m ° )T (U, m)) = TU, m)
so that X,(c(m)) is two dimensional and dn 3¢ (c(m)) is an isomorphism. Further-

more, V ¢ 3¢, since dn(V) = 0,
Now set 3¢,( gc(m)) = dg(3c,(c(m)).

T ) = UXS
7/

IC1(m,v) /

VAR

Fig. 7.4

In terms of the product representation 7~Y(U) = U x S! given by ¢, ®,(m, v) is
just the tangent space at (m, v) to the submanifold U x {v}. More precisely, letting
B: U X S'— g-YU) be the isomorphism defined by B(m, g) = gc(m) = (m, ge,(m)),
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ae,(m, v) = dB(T(U x {g}, (m, &),
where g € S'is such that ge,(m) = v. The 1-form ¢, of this connection is
@, = (BY*(d6),
where p: U x §' —S§! is projection, d6 is the 1-form on S* dual to 3/36, and
dé = p*(ds).
Note that d¢, = 0 for this special connection, for

do, = d[(B-H* ° p*(d6)] = d[(p o B-Y*(d6)]
= (p ° B)*(d(d6)) = 0

Warning. d(d8) = 0, not because d8 is the differential of a 0-form (it isn’t), but
because there are no non-zero 2-forms on S,

ey 2 ol T
QOur dEf"ﬂtlﬂ"} of a connection was motivaiea o

parallel translation. We now prove that given
lation is indeed defined.

THEOREM. Let % be a connection on S(M) with 1-form ¢. Let a: [a, 5] —M be
a broken C* curve in M, Let v € T(M, ala)) with vl = 1. Then there existsa unique

broken C* curve &: [a, b] — S(M), called the horizontal lift of @, through (a(a), v),
such that

(1) 70 @ = a.
(2) Q(t) € 3e(q(f); thatis, @(&()) =0 (forall fe [a, b]).

(3} ala) = (ala), v).

The vector d(b) € T(M, a(b)) is the parallel translate of v along a to a).

The proof of this Theorem requires two preliminary lemmas.

LEMMA 1. Let X, and X, be two connections on S(M) with connection 1-forms
¢, and ¢,. Then

(1) (e, —@)(V) = 0.

(2) g*(@z — @) =@~ @, (for all ge SY).

(3) ¢,—¢,=w*(r) (for some smooth 1-form 7 on M),

Proof. (1) and (2) are clear. We shall show that (1) and (2) imply (3). If y is any
smooth 1-form on S(M) with y(V) = 0 and g*p = y for all g € S*, then y = 7*(7) for
some 7. To define 7 onv € T(M,m), let (m,v,) € 77(m), and let w e T(S(M), (m,v)))
be such that du(w) = v. Set 7(v) = y(w). 7(v) is mdependent of the w chosen in d:r'l(v)
since dn(w)) = v implies that dn(w, —w) = 0, so that w, —w = AV for some A. Thus

7 a desire

y t
onnection on S(M), parallel trans-

Plw) = plw + AV) = Plw) + Ap(V) = (w).
Also, 7(v) is independent of the point (m, v,) chosen in 7~'(m) because if
(m, v;) € 1Y (m),

then v, = gv, for some g € S'. Moreover, if w € T(S(M), (m, v,)) satisfies dn(w) = v,
then dg(w) € T(S(M), (m, v,)) satisfies d:r(dg(w)) = v, and

d)‘(myvz)(dg(w)) Zplg(m,vl)(dg(w))

g% (m, v ) @) = ¥|(m, » ).
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7 is smooth because in a coordinate neighborhood U, 7(v) = ¢ o dc(v), where
c: U—nYU)

is defined by ¢(m) = (m, e,(m)). O
. LEMMA 2, Let a: [a, b] —M be a smooth curve in M. Let &: [a, b] — 5(M) and
B: la, 8] — S(M) be smooth curves such that 7 - & = @ and 7 8 = @. Suppose @is
horizontal relative to some connection 3¢ on S(M) with connection 1-form ¢; that is,
suppose qa( (t))a7+0 Then there exists a smooth function 6: la, b] = R such that
(1) ﬁ(t} = et ’C!(t) (t € [a DJ) and
(2) ¢(B(2) = (@6/di)t) (¢ € [a, b)).
Furthermore, if &(a) = Bla), then 8 can be chosen such that 6(a) = 0.

F "

%\/ S(M)

/

G

Fig. 7.5

R

Pyoof. Let g: [a, b] — S! be defined by

B = gya@® (¢t € [a, b).

It is easy to verify that g is a smooth curve. Since R is a covering space of S and
[a, 6] is simply connected, there existsa lift 8: [a, b] =R of 2. (See Fig. 7.6.) Fur-
thermore, if &@) = Ba), then Z(@) = 1, and there exists a unique such lift with

fl@) = 0

Since p is smooth and has a smooth inverse locally, ¢ is smooth. Furthermore,

Bty = 303D = p o 0(YA() = 29D5(p

so (1) is satisfied.
To verify (2), first note that the tangent vector to the curve

g la, bl =81 [3(1) = 200
is given by

b0+ 0000 ofF) el ) -l ) - ()53
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)R

p(r) = e”

~

W
ne
-

[a,b]

Fig. 7.6

Restricting attention to a coordinate neighborhood U € M and the corresponding
product representation 1°XU) =U x §' G&(#) = h(f)c(al®)) = (a(t), k()) for some

h(t) = eid(t) ¢ S' and B(f) = (c(8), gBOn(t)) = (ald), ei(e(t)J'w(t))). The tangent vector

~ . .

then (&(#), (dyp/d){(a/36)), whereas the tangent vec

(&(5, [(de/dt): dy/dt)] (8/86)); that is,

—_—

By = @)@ + (0, % 2) - a(aonn) + 2 v,

where d(g(#) is the differential of the map §(£): S(M) — S(M). Since &(#) is hori-
zontal, and d(2(#))(3¢) C 3¢,

< do dé
e(B) = o =T O

Proof of the Theorem. Note that it suffices to prove the theorem for a smooth
curve a. For then we can uniquely lift each smooth portion of any broken curve.

Local existence. Let U be a coordinate neighborhood in M, We shall show the
existence of unique horizontal lifts in 77YU) = S(U). Let ¢: U — S(U) be as usual;
c{m) = (m, e (m)) for m € U. We shall first show that if & is the special connection
%, on 174(U), constructed via the product structure, then @ has a unique horizontal
lift & such that @,a) = c(ale)). Indeed, let @ [a, b] — 7Y (U) be defined by
G =coa Thenmed =nmccoa=aq and @, = de(a(d) € 5,(c(#), so @, isa
horizontal lift. Moreover, &, is the unique 3¢ ,~horizontal lift such that

@,(a) = clala)).
For if &, were another such lift, then, by Lemma 2,
3,00 = 109z (1)

for some smooth function 8 with 8(a) = 0; and ¢,(d@,(¢)) = d6/dt, where ¢, is the con-
nection 1-form of &,. Now &, is 8,~horizontal if and only if ¢,(&,(¢)) = 0; that is,
df/dt = 0. Hence 9(¢) must be constant. Since 8(a) = 0, 8(f) = 0; that is, &,() = &,(#
for all ¢; that is, @, = @,.

Thus a admits a unique X,~horizontal lift @, with & (a) = c(a(a)). Now consider
our original connection with connection 1-form ¢. Then, by Lemma 1,

¢, @ = atT
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for some smooth 1- form T on Let a be any curve in n‘l(U) such that 7 o« & = a.
Then, by Lemma?2, a(¢) = ’9 0y ) and ¢ ,(a(8) = d9/dt. Thus & is an ¥X-horizontal
lift nf o if and rm]v if m(&( ) = () hg_t is, if and only if

d9

(0, — @)&®) = o (&) = 5
But on the other hand,
(0, — @)(@(B) = (*7)(@(D) = ldn&®) = 7(a(D).

t .
Thus « is X-horizontal if and only if d6/dt = 7(&(¢f)); that is, 6 = fo T(als))dt + 9, for
some constant 8,. Hence each ¥X~horizontal lift @ of « is of the form

alt) = gd)(c ° ald)
where
t .
20 = etfo eij;f(a(t))dt.

For each unit vector v in T({U, afa)), there is precisely one 6, with 0 = 6, < 2r and
(ala), v) = etP(ala), e,). The above formula, with this value of 8,, then gives the
unique 3¢-horizontal lift & with @(a) = (ala), v).

Global existence. To establish global existence, let a: [a, ] —M and let

t, = suplt € [a, b]; al [a, 5] has a (unique) lift al.

We shall show that ¢, = b. Suppose ¢, # b. Then consider the restriction of a to the
interval [t —€, Ly + a] By local ex1stence this has a unique 1ift & for Some suffi-
ciently small ¢ > 0 say with &(¢y) = (als,), w) € S(M) Then G@(f, - €) = ga(t —¢) for
some g € §', and ga is a hor1zonta1 hft with galt, — g) = a(t, — €). By uniqueness,
ga = a on the interval [t €, t,). Hence ga extends o beyond ¢;,, contradicting the
definition of ¢, Ol

Remark. Note that, relative to the special connection 3¢, on 7"(U), parallel trans-
lation is independent of the curve. In fact, the vector field e, = (8/0x,)/18/8x Il is
parallel along every curve in U,

7.2 STRUCTURAL EQUATIONS AND CURVATURE

Definition. Consider the circle bundle S(M) of a smooth oriented Riemannian
2-manifold M. Two smooth 1-forms w, and w, are defined on S(M) as follows. For
te T(S(M), (m, v)),

w,(8) = dn(d, v),

wz(t) = (dﬂ(t), Z"U),
where iv = ¢i7/2y is the image of v under rotation through an angle of 7/2 in
T (M, m). (We shall show below that these 1-forms are indeed smooth.)

Remark 1. Thus w,(f) and w,(#) are the components of dn(f) relative to the ortho-
normal basis {v, iv} for T(M, m); that is,

dn(f) = w, (v + w,(Hiv).
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Remark 2. Suppose 3 is a connection on S(M) with connection 1-form ¢. Then
{¢, @y, w,} is a basis for T*S(M), (m, v)) for each (m, v) € S(M).

Proof. Since dim T*(S(M), (m, v)) = 3, it suffices to show that there exists no
non-zero t € T(S(M), (m, v)) that is simultaneously annihilated by these three
forms—for then these forms are linearly independent. But if w,(f) = w,(f) = 0, then
dn(t) = 0, so ¢t is vertical; that is, ¢ = AV for some A. Furthermore, if ¢(#) = 0, then
A=@@AV)= @) =0,s0t=0. 0O

Remark 3. Let g = et? € S'. Then

g*w, = (cos Bw, + (sin 6)w,,

&*w, = —(sin 6)w, + (cos 9)w,.
Proof. gv = (cos 8)v + (sin 8)(iv). Hence, for t € T(S(M), (m, v)),

£*@1|(m, 0)(O) = @i|(m, gv)(dg(®)

(dn - dg(t), gv)

(an(d), g

(dn(#), (cos 9)v + (sin 0)iv)
= (cos 9)w,(#) + (sin 8)w,(8).

Similarly,
g*w,(8) = —(sin A)w (¢) + (cos 8)w,(D). O
Remark 4. g*(w, » wy) = w, A w, for all g = 2% ¢ S, For,
g¥w, A wy) = g*w, A g*w, = (cos? + sin®0)w, A w, = w, A w,.
Furthermore, w, A wy(?, t,) = 0 if either ¢, or ¢, is vertical. Hence, as in the proof
that ¢ — ¢, = 7*7 for some 7 (Sec. 7.1), the 2-form w, A w, is the image under 7* of
a (unique) form on M,
Definition. The wvolume element of a smooth oriented Riemannian 2-manifold M
is the smooth 2-form, vol, on M such that
7*(vol) = w, A w,,
that is, for v, v, € T(M, m), vol(v,,v,) = w, A We|(m, »)(v1, v;) for any
(m, v) e 77 (m) C S(M) and v, v} e T(S(M), (m, v))
such that du(v}) = v; (i = 1, 2).

Remark 5. Suppose U is a coordinate neighborhood in M with coordinate func-
tions (x,, x;). Let e, =8/8x,/118/8x Il and let w!, w’ be the smooth 1-forms on U
that at each m € U form the basis for T*(M, m) dual to {e,(m), ie (m)}. Let

c:. U—ngY(U)c S(M)
be given by c(m) = (m, e ,(m)). Then, for v € T(M, m),

(c*w )(v) = wy(dc(®)) = (dn o dc(), e)) = (v, e) = wi(v),
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SO w; = ¢*w,. Similarly, w; = ¢c*w,. In particular,
wi A wy = c*w, A c*w, = c*(w, A wy) = ¢* o 1*(vol) = (1 o ¢)*(vol);

1
i

S0, since m o € =i,

voliy = w] A w;.

AT e 4 o v

Now let @; = 7*wj (i = 1, 2). Then &, and @, are smooth i-forms on 7
and

) CS(M)

W, AW, = T*w] A THw, = ¥ (w) A wy) = 1*(vol) = w, A w,.
Moreover, at each point (m, e,(m)) of c(U), w; = ‘%i- For, if t € T(S(M), (m, e))),
then
du(t)
dr(d))e, + wildr(t)(ie,)

(De | + T tt)e).

w,(Be, + wy(t)(ie)

1l

W
W

Note further that, for g = % e S,
g*w; = g* o r*w/ = (1 ° g)*w] = T*w; = FEJ,-.
Thus, from Remark 3 above,

(g*w ) (m, e = (cos O)w, + (8in B)w,| (s, e,)
= (cos 0)w, + (sin 9)$2|(m, es)
= (cos 8) g*w, + (sin 0) g*Wy| (4, e)*
Applying (g~ 1)*, the forms w, and 85,- at (m, ge)) are related by

w, = (cos 8)w, + (sin 8)@,.
Similarly,

w, = —(sin 8)@, + (cos 6)@,.

In particular, the above formulae show that w, and w, are smooth,

Remark 6. For higher dimensional Riemannian manifolds, the volume element is
obtained similarly, X U is a coordinate neighborhood in the oriented Riemannian
manifold M, with coordinate functions (x,, ..., x,) such that dx 6 A.,..A dx, gives
the orientation of U, consider the vector fields 8/8x, ..., 8/9x,. Using the Gram-
Schmidt orthogonalization process, we obtain smooth vector fields e, ..., e, on
U which form an orthonormal basis for the tangent space at each point. Let
@}, - .., Wy be the dual 1-forms. Then the n-form vol|y = w) ...+ w,, is indepen-
dent of the (oriented) coordinate system on U and thus defines a global non-zero
n-form vnl

Given an oriented Riemannian 2-manifold M and a connection on S(M) with con-
nection 1-form ¢, the 1-forms ¢, w,, w, form a basis for the cotangent space at
each point of S(M). Hence the 2-forms w, A w,, w, A ¢, w, A ¢ form a basis for the
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2-forms at each point of S(M). Hence d¢, dw,, dw, can be expressed in terms of
this basis. The resulting formulae are called the Cartan Structural Equations, We
now derive them, beginning with the Second Structural Equation,

Second Stvuctural Equation. On n~}U), for a coordinate neighborhood U , let g,
denote the connection 1-form of the special connection 3,. Then d¢ : = 0 so that

de =do —dy,=d(p —¢) =d(m*T) = n*{d7)

=ty

for some smooth 1-form 7 on U, Now d7 is a 2-form on U, hence is a multiple o
the volume element; that is, d7 = —K vol for some smooth function K on /. Thus

dy = 1(—K vol) = n*(—K)r*(vol)

or

do = —(K ° mw, » w,.

The smooth function K is independent of the coordinates used, since it is determined
by this last formula. Thus K is a smooth function on M, called the curvature of the
connection @.

First Structuval Equation. On n~(U), for a coordinate neighborhood U, we have
seen that at e?Pc(m),

w, = (cos 8)w@, + (sin 0)w,

Wz

—(sin 6)&, + (cos 8)w,.
Now

dw; = d(r*w}) = m*(dw}) = 1*(a; vol) = (a; ° Mw, * w,

for some smooth function a; on U. Thus setting @; = a; ° 7,

dw, = —(sin 6) d6 A @, + (cos §)d,w, A w, + cos § di A @,
+ (sin G)Ezwl A w,

=d0 A w, + (d, cos 6 + a, sin O)w, » w,.

If X is the special connection 3¢, on 7~XU), then ¢, = d9, thus for this special con-
nection,

(*) dw, = @, A w, + bw, A w,
for some smooth function b, on 7~YU). Similarly,
dwy =~@, A w, + bw, » w,.

For an arbitrary connection form ¢, ¢, — ¢ = 7*7 for some smooth 1-form
T = C,w] + Cpwy on U, Hence

THC W) + Cwy)

@, ¢

(¢, o M@, + (c; o WD,

= fiw, + fow,
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for some smooth functions f,, f, on 77XU), since @,, @, span the same space at each
point as w,, w,. Thus

and, by substituting into (*),

dw,= @ A wy, + fLw, »wy + bw, »w,

=@ Aw, +(f, +b)w, rw,.

This, together with the corresponding equation for dw,, gives the First Structural
Equations as follows.

dw, = @ A Wy + lw, A Wy,

dw, = —¢@ A w, + lw, A Wy,

where h,, h, are smooth functions on S(M). Note that although these equations were
derived over a coordinate neighborhood, they are independent of coordinates. Thus
they are valid globally.

Although one might expect that by choosing an appropriate connection ¢ on S(M),
the coefficients of dw; relative to the basis {@ A W,, @ AWy w, A w,} could be pre-
scribed fairly arbitrarily, this is not the case. Infact, dw, never has a component
in the ¢ A w, direction, and dw, never has a component in the ¢ A w, direction.
Moreover, the components of dw, and dw, in the ¢ A w, and ¢ A w, directions re-
spectively must always be +1 and —1.

It is natural to ask whether the First Structural Equations can be made simpler
by an appropriate choice of connection on S(M). In particular, can ¢ be chosen
such that &, = 0 and h, = 0? The answer is yes, and the choice is unique.

THEOREM. Let M be an oriented Riemannian 2-manifold, Then there exists a
unique connection ¥ on S(M) such that

dwl ZID A w27

—P A w,.

dw,

This connection is called the Riemannian connection.
Proof. Let ¢ be any connection on S(M). If ¥ is any other connection on S(M),
then, as above,

@ =P = X,w, + X,

for some x, and x,. Solving for ¢ and substituting in the First Structural Equations
for ¢, we obtain

dw, = P A wy + (h, + X )w, A Wy,
dwy, = = Aw, + (B, + X)w, A w,.
Thus dw, = P A w,,
dw, = = A w,

if and only if x, = —h,, ¥, = —h,. This gives both existence and uniqueness. O
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The Cartan Structural Equations have a dual formulation in terms of vector

fields. Let V, E,, E, be the smooth vector fields on S(M } that form the dual basis
Then

§ ntal ot annh mfed ata ST ) A Ty
to ¢, Wy W, H El and Ez are horizontal at each int since q)\Elj = (,U\Ez} = 0.
Moreover,

dn(E,(m,v)) = w(E v + wy(E)(v) = v,

so E,(m,v) is the unique horizontal vector at (m,v) whose image under dr is v.
Similarly, da(Ey(m, v)) = iv. The Structural Equations then become

[V) El] = E2,
[V, EZ] = _El,
[E, E,] = (Kon)V ~-nE, - hE,,

If ¢ =y, the 1-form of the Riemannian connection, the last boxed equation re-
duces to

[Eb Ez] = (K < m)V,

To verify these equations, apply the formula
1
dT(Vh Vz) = E {Vl T(Vz) - Vz T(Vl) - T([Vl, Vz])}

nine times, as 7 runs through the set {¢, w,;, w,}, and V,, V, runs through the set
{Vs El; E2 .

Remark. If K is constant, these formulae show that {V, E, E,} spans a finite-
dimensional Lie algebra.

From now on, for an oriented Riemannian 2-manifold M, let the connection cho-
sen be the Riemannian connection, and let K be the curvature function for that con-
nection.

7.3 INTERPRETATION OF CURVATURE

We now show that the curvature K of M measures the amount of rotation obtained
in parallel translating vectors around small closed curves in M. The intuitive rea-
son is this, On S(M) we have the vector fields E, E,, and V, and we know that for
the Riemannian connection,

[E, E,] = (K > m)V.

But [E,, E,)(m,v) is just the tangent vector to the curve through (m, v) obtained by
following the integral curves of E, and E, forward and then backward through pa-
rameter distances of Vs (Fig. 7.7). (See Sec. 5.3.)

Projecting this figure down to M, we obtain a rectangular—shaped figure which
is ‘“‘nearly” closed; that is, the curve obtained through m has zero tangent vector
at m because it is the projection of [E,, E,|(m,v), which is vertical. (See Fig. 7.8.)

Now the integral curves in S(M) are the horizontal lifts of the curves in M ; that

is, these curves are obtained by parallel translating v around the curves in M. The
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S(M)

@ |

(m,v) Fig. 7.7

Fig. 7.8

endpoints of the curve through (m,v)—dotted in Fig. 7.9—essentially differ by an
element of S, namely the rotation g = ¢*¢, which sends v into its parallel translate
around the rectangle in M,

Since the area of the rectangle in M is approximately Vs - Vs = s, the limit as
s —0 of the angle of rotation 6 divided by the area of the rectangle is equal to the
coefficient of V, namely K(m).

Stated precisely and in somewhat greater generality, the result we have been
discussing is as follows.

THEOREM 1. Let M bean oriented Riemannian 2-manifold. Let (s) be an orien-
ted 2-simplex in R2, and let k: [s] =M be a map which has a smooth extension
mapping a neighborhood of [s] into M. Let o be the closed broken C* curve in M ob-
tained by restricting & to 8(s). Then the rotation obtained by parallel translation
around the closed curve « is

ez‘f(s>h*(K-vol)

so that the angle of rotation is f<s) r*(K vol).

Remark. Note that this result contains the result discussed above. To obtain
K(m), take the limit of f<s) r*(K vol)/f<s) k*(vol) as (s) shrinks to zero and &(({s))
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/

T1(m) _ Fig. 7.9

shrinks to m. However, the theorem says more. For example, it is possible to have
K >0 on k([s]) and still get a trivial rotation upon parallel translating around a,
namely when the total angle of rotation f (s) h*(K vol) is an integer multiple of 27.

Proof of Theovem 1. Let (s) = (v,, v,, v,) for some vertices Uy, U,, U, and let
wy € T(M, h(vg)) be a unit vector. The lines in [s] through v, cover [s]; their im-
ages under k are curves in M which cover A([s]). Let %: [s] — S(M) be obtained by
mapping each of these curves into its horizontal lift in S(M) through

(h (vl)le)
(B (o), 00) % ) (v2),w5)
horizontal
T
h(,) lift

N
N PZARNN

[+ " Fig.7a0 OV A ) )




INTERPRETATION OF CURVATURE 173
(h(v)), w,) € S(M),

where w, is the parallel translate of w, alr_mgthp curve al/.. v to h(v, ) (Fig. 7.10).

By construct1 n, 7 © k = h. Moreover, % has a smooth extensxon mapping a neigh-

borhood of [s] 1nto S(M). This may be checked via local coordinates; we omit the
computation,

Now
f<s>h*(K vol) = f<s> (7 o ;..;)*(K vol)

- f(s>'ﬁ*[n*(K vol)]

= f(s) R¥[(K o Mw, A w,]

=—f (s) Z*dg)  (Second Structural Equation)
= ~J(5ya*o)

= _Jra (s) Z*p  {Stokes’s theorem)

- fa ) go(d'ﬁ(%))dt

“hy oy elPag))ee

where 6 = h‘a( Yo Let o denote the horizontal 1ift of @ through h(vo) = (a(v,), w,).
Since B| Vo, vl> k| (vy, v,y and Bl (vy, vg) h|(v vy) are horizontal by construction

of h’ we have ﬁl(”o’vl) - al(”o,v1> and B|<v1’ UZ) = al(vv 02)'

(h (vl) ,'U)1)

(h(v0),wo) A (v2)

Rt

Fig. 7.11
v

By Lemma 2, Sec. 7.1, there existsa function f: {v,, v,) — R with f(v,) = 0 such that
B = eWag).
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But @ is the horizontal lift of @, so that a(v,) is the parallel translate of w, around

a@. On the other hand, E(vo) = w, Hence eiflvo) ig just the rotation mapping the
- L. 200\

parallel translate of w, around @ into w,; that is, e¥/\¥0} rotates w, into its parallel

translate around @, By the second statement of Lemma 2, Sec. 7.1,

ofab() - &

t € (v, vy). Moreover, ¢(dBld/dt)) = 0 on (v, v,) and (v, v, since B is hori-
zontal there. Thus since 3(s) = (v,, v,) + {v,, v,) + (v, vy,

_f(vz, vo) ¢(d§(§}))dt

£ e
LUl

f<s> h*(K vol)

- - daf

= ~Jivg 00 di %

= —f(vy)

= the angle of rotation from w, to its parallel
translate around o. O

Definitions. Let a: [a, b] —M be a smooth curve. The length L(a) of @ is the
real number

b .
2a) = [ naldudt,
a
The arc length along o is the function s: [a, b] — R given by
s(d) = ftnéz(f)u dr.
a

Remark. £ and s are defined because t —lia() is continuous. Note that the
function s is of class C', but it is not necessarily smoot
necessarily differentiable where a(f) = 0. If, however, |
smooth and monotonically increasing.

Definition. A curve o: [a, b] —M is said to be parameterized by arc length if
ha(Hi = 1forall te [a, b]. In this case, s(f) =t—a for all ¢ € [a, b].

Remark. Given any curve a: [a, b] —M with 1&6(8)1 # 0 for all ¢ € [a, b], a new
curve a,: [0, £ (@)] =M, parameterized by arc length, is obtained by setting

a()Il # 0 for all t, then s is

@,=a oS

Then Im @, = Im @, and £(a,) = £(a).

Remark. The concept of arc length extends to broken C* curves @ since ta(n
is defined at all but a finite number of points.

Definition. Given a smooth curve a: [a, b] —M parameterized by arc length, a
smooth curve a: [a, b] — S(M) is defined by

a'(?) = (a(t), a®) (¢ ela, b)).

@ is said to be a geodesic in M if o' is horizontal, thatis, if @’ is the horizontal
lift of @ through (af(e), ala)) € S(M). Note that if @ is a geodesic, the parallel
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translate of @(0) along o to a(?) is just a(?); that is, the tangent to @ translates into
itself, and o is a ‘‘straight line’’ of the surface,

To measure how far a curve o is from being ‘‘straight,”” we measure how far o’
is from being horizontal. Suppose, then, o is parameterized by arc length so that
a': [a, b] — S(M) is a curve in S(M).

Definition. The geodesic curvature k,(f) of @ at t € [a, b] is P(da’(d/dt)), where
# is the 1-form of the Riemannian connection.

Notation. (If)a: [, b] =M is a broken C™ curve with &(#) # 0 for all ¢ € [a, b],
h ] a 2 a s 3
let 7{a) = f ky (f)dt, where «, is the new curve obtained from a by parameter-

izing by arc length.

If M isa smoothly triangulated manifold, then 7 canbe considered as a 1-cochain
(relative to the triangulation).

LEMMA. (The Gauss-Bonnet Theorem for 2-simplices) Let M be an oriented
Riemannian 2-manifold. Let {s) be an oriented 2-simplex in RZ, and let &: [s]—Mm
be a map which has a smooth non-singular extension mapping a neighborhood of [s]
into M. Let @ be the closed broken C® curve in M obtained by restricting . to 8¢s).
Then

f<s) h*K(vol) = ~7(a) + Z interior angles of Hs]—n.

Proof. From Theorem 1 ahove, eif<s)h*(K vol) g the rotationobtained by paral-
lel translation around the closed curve o. Suppose @ is broken up into its three

smooth curves a,, @, and o, so that (@) = T 7(a;) and @;: la;, ajs, ] =M witha,=a

andag = b. By Lemma 2, Sec. 7.1, ¢i7(23) ig the rotation from the parallel translate
of a;la;) to @;(a;.,). Hence, from the picture in M (Fig. 7.12), we get that parallel

translation around the closed curve a is given by e~ T(®)—Z exterior angles) gence,
by taking logarithms, we get

f(s> W*(K vol) = —7(a) —Z exterior angles + 27¢,

where £ is an integer.

Q, ?)

Fig. 7.12

We use a continuity argument to show £ = 1. Suppose p, is a flat Riemannian
metric in a neighborhood of k[s] (say transferred from R® via k). Then K = 0,
7(a) = 0, and T exterior angles is 27. Hence for the flat Riemannian metric, £ = 1.
Suppose p is our given Riemannian metric, and let p; = £p, + (1 —Hp be a family of

=
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metrics, ¢ € [0, 1]. Let K;, 74(e), exterior angles, be the usual entities for pi.
These are continuous functions of £, Hence { is a continuous function of {. Since it
is an integer for all #and equal to 1 for # = 0, we obtain £ = 1. (You can also obtain
this result by checking that £ = 1 for small triangles and taking barycentric sub-
divisions.)

Since interior angle + exterior angle = 7, the lemma is proved. O

Definition. Let M be an oriented, connected, smoothly triangulated 2-manifold.
For each 2-simplex s in M, let (s) denote this simplex oriented consistently with
M. That is, if h: K —~M is the triangulation and w is a 2-form on M giving its ori-
entation, let the orientation of s be given by the 2-form hfw, Let

c =§)(s).

Then ¢ is a cycle called the fundamental cycle of M. Given any 2-form u on M, the
integral of i over M is defined by

Syt = [ .

Exercise. Prove that ¢ is a cycle,

Remark. The integral can be defined without use of a triangulation. Let M be a
compact oriented n-manifold, and let £ be an #n-form on M. Let {Uj,fj} be a smooth
partition of unity on M, where {U;} is a finite covering of M by coordinate neigh-
borhoods. Then integration of n-forms is defined on each U; by pulling the forms
back to R” through the coordinate systems. The integral of u over M is then given
by

fMJU- = ; ijfj#.

This is independent of the partition of unity used, for if {Vk, gk} is ancther such
partition, then

; ijfj“ = le) ijnd fjgk# =§ ka SkH.

THEOREM 2. (Gauss-Bonnet theorem) Let M be anoriented, connected, smoothly
triangulated, Riemannian 2-manifold. Then

or Sy K VoL = X(M) = By— B, + By,

(x(M) is the Euler characteristic of M.)

Proof. Note that each 1-simplex ¢ of M is an edge of precisely two 2-simplices
of M, For given any point m € (#), there exists, by the implicit function theorem, a
coordinate ball U about m such that (£) N U is mapped into a straight line in R2, By
choosing U small enough, ¢ must divide I/ into precisely two pieces. These pieces
must lie in distinct 2-simplices, and, since open simplices are disjoint, there can
be no other 2-simplex with ¢ as an edge.

Thus, since each 2-simplex has three 1-simplices as edges, the total number n,
of 1-simplices of M is given by n, = 3n,/2, where n, is the number of 2-simplices
of M. Letting n, denote the number of vertices in M, the Euler characteristic (Sec.
6.1) is given by
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X = By — R, + 7,
n, — (3n,/2) + n,
= (n,/2).

1l

Now we apply the previous lemma, and
f K vol = —f r* (K vol)
1 x
o Zs) f<s> r*(K vol)
= %Z} (—7(3(s)) +2, interior angles of his] — )

% (—=7(3c) +§) (27 interior angles of kls]) —n,r)

I:L'J

t &8¢ ertices v in

D
':s
o,
@ [\ﬂ
':
-
(o)
~
o]
(o]
~
R
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Q
D
n
Q
=5
b
[o—
7]
=
D
;-Q
e
1
j
e s}
H-
=
o]
wn
c
=
o
<
D
L]
2.
[

M of the sum of the interior angles at v of all 2-simplices with v as a vertex. Tak-
ing a coordinate neighborhood of V contained in St(v), we see that for each », the
sum of these interior angles at v is exactly 27 (Fig. 7.13). Hence

1 1
- fMK(vol) = 5 (2an, — n,m)

=x(M). O

= — "
=R, )

Fig. 7.13

Remark. Note that this theorem holds for any connection on S{(M), since only the
Second Structural Equation was used in the proof.

COROLLARY 1. Let M be any Riemannian 2-manifold homeomorphic with the
sphere S%, Then

K vol = 4n
M
COROLLARY 2, Let M be any Riemannian manifold homeomorphic with the torus
St x S Then
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COROLLARY 3. Let M be as in the theorem. Suppose there exists on M a
smooth vector field which is never zero. Then x(M) = 0. In particular, there exists
no non-zero vector field on S2,

Proof. Let X be such a vector field and let ¥ = X/11XI. Then Y is smooth, and
WY (m)il = 1 for all m € M, 0 Y is a smooth map M — S(M). On S(M),

dy = —(K ° mw, » w, = —7*(K vol).
Hence
d(Y*y) = Y*(dy) = —YV* o o*(K vol)
= —(m o Y)*(K vol)
= —K vol,

since 7 o Y = {p;. Thus K vol is exact and

x:LKvol:—fcd(Y*qo)z*fac Y*p = 0. 0

7.4 GEODESIC COORDINATE SYSTEMS

Let M be an oriented Riemannian 2-manifold, and consider the vector field E, on
S(M). Let U; denote the local 1-parameter group of transformations on S(M) as-
sociated to the vector field E,. Then, for each m, € M and z € 7 Ym ), there exists
an € > 0 and an open set W, about z in S(M) such that the map [—¢, ET x W, — S(M)
given by (¢, w) — U(w) is smooth. Since 7-Ym,) = S! is compact, 7-Ym, can be
covered by a finite number of such sets W,. Taking € to be the minimum of the
corresponding numbers €, the map u: [0, €] X ' — S(M), given by

kL, 8) = Uplmg, gv)) (v, fixed € T(M, m,); vyl = 1),

is well defined and is smooth. Since for each g € S, the curve ¢ —u(¢, g) in S(M)
is horizontal with tangent vector E p the curve { —7 o u(¢, g) is a geodesic starting
at m, with tangent vector dn(E (m,, gv,)) = gv, at m,. (See Fig. 7.14.)

Let Dy denote the open disc of radius & about the origin in R?* and let
P: [0, €] x S — D (P for polar map) be given by

P(t, g) = tg.
Then P is a smooth map. Moreover, the restriction of P to (0, £) x S! is injective

and maps (0, €) x S* onto Dy — {0}. Since, however, 7 o (0, g) = m, for all g € St
amap G: Dg —M is defined by G= 7o 4 o P-L

fo, ) x st —& S(M)
P i)

G !

Dy M

Exervcise. Verify that this map G is smooth. (Note that G(0) = m, and that G
maps radial straight lines in Dg into geodesics through m,.)
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7 1(mo)

-

/&

(mo,00)

Y

Yo

>
|

Fig. 7.14

Fig. 7.15

Definition. The map G: Dy — M is called a polar, or geodesic, coordinate sys-
tem about m,,.

Remavrk. Let a/87 and 8/86 denote the natural vector fields on (0, €) x SL. Then
dP(5/5r) and dP(8/58) are the tangent vectors to the polar coordinate curves in
D —{0}. Note that dP(8/30) canbe smoothly extended to Dg by setting dpP(s/88)|, = 0.
The following lemma asserts that these orthogonal vector fields dP(d/9r) and
dP(5/80) are mapped by geodesic coordinate systems into orthogonal vector fields,
that is, that the orthogonal curves » = constant and 6 = constant are mapped into
orthogonal curves in M by geodesic coordinate systems.

GAUSS’S LEMMA. (dG - dP(8/8v), dG ° dP(8/88)) = 0,

Proof. dG o dP =d(G ¢ P) =d(m o W) = dr ° dit. Moreover, di1(8/0r) = E,, hence

for (m, v) € Image K,
dfrl:du(ga;)( :\ = dn(E (m,v)) = v.

m, v)
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Thus

It
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g
o
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To see that this is zero, consider

dp*w,) = u*dw,) = u*@ » w,) (by First Structural Equation).
= LY A UFa,,
Then

o) (37 53) = {00 () e () - e ()wre ()
o o) ) )

But du(s/8r) = E,, so that P(du(8/9r)) = 0 since E, is horizontal and w,(di(58/87)) = 0.
Hence

] a
0= dlu*w) (57, 55)

o] - 2l 2] s (2. 2)

o)) = (D) = wE) =1,

But

S0 the second term is zero, Moreover, the bracket [(a/a7), (8/86)] = O by equality
of mixed partial derivatives, so the third term is zero also. Thus

o) o

and (*w,)(8/86) is independent of #; that is,

<dG 0 dP(g%), dG e dP(E%)>

is independent of ». But as » —0, dP(3/80) — 0, so that this inner product — 0.
Since it is independent of 7, it must therefore be identically zero. O

Remark. By Gauss’s lemma, dG@P(3/96)) is always orthogonal to the radial
geodesics of our geodesic coordinate system.

Next we study the behavior of the length of dG(@P(3/98)) as we move along a
radial geodesic. Since wl(du(-é%)) and wz(du(%)) are the components of dw(d.u(g%))

relative to an orthonormal basis, and since w, (@ (8/86)) = (L*w )(8/86) = 0 from the
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proof of Gauss’s lemma, (U*w,)(8/88) = wy(du(8/80)) is, at least up to sign, equal to
the length of dr ° du(8/860) = dG ° dP(5/36).
Now from the First Structural Equation,

d(.“'*wz) = “'*(dwz) = _!-‘-*(lp A w]_) = —“*d) A P‘*wl-

awropes, ) =5 (o) &) - oo F]

But (u*w,)(8/88) = 0 by Gauss’s lemma, and

(u*w)) (53;) = wlép, (£)>= wl(E) =1,

a2, =) = 2w (2).

Thus

s0 that

On the other hand,

ap*w,) (ar’ a%)

since

and [(5/87), (8/88)] = 0. Thus

o e g - 65

Now applying the Second Structural Equation,

d(p*y) = p*ady) = w(—(K ° mw, r w,) =—(K o 7 ° pp*w, s wrw,
Thus,

2
- _L\K o G o P){p*w )/i\
2 2\04)’

as before. Finally,
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(s, 2

L . 8 ah\
sl 9l6 s ern ] e . )
13

since
W (z)- zp(:m('-?-f) - E) -0 and [, 2]-0.
a7, 97 L oy’ 08
Thus

gya_l:(“*w) C)%):, = —(KoGo P)(U-*wz)(%) .

Differentiating the first boxed equation above and substituting into the second, we

obtain
= Eu*wz)(a%)] (K < G P) ()] - o.

9
* —
e () .
and, from the first boxed equation above,

d%lgu*wz) (a%)] y=0 (v "‘Zl’)(a%) reo =¥ ém (a%))

In particular, (u*w,)(8/868) = 0 (at least for small values of 7), and so (u*w,)(8/80)

is indeed equal to the ! f dG - dP(3/38),

Moreover,

= wy(V) = 0,

r=0

|
£
[+

IR

T
—

|

T

= (V) = 1,

=0

ine ;ength O1 \G/CUj
Thus we have shown the following theorem.
THEOREM 1. Let G: Dy —M be a geodesic coordinate system about m,. For
& € S, consider the geodesic » — G ° P(», g) through mg. Let f(r) denote the length
of the vector field dG ° dP(8/80) along this geodesic. Then f satisfies the differen-
tial equation

j—; +(K°sG°P)f=0 (Jacobi’s Equation)

as well as the initial conditions f(0) = 0 and f/(0) = 1.

Remark. Note that if K is constant, this differential equation can be solved ex-
plicitly. Namely, if K > 0 then f() = (1/vK) sin (VK»), If K = 0, then f(») = »; and if
K < 0, then f(») = (1/VK) sinh (V=K7).

THEOREM 2. Geodesics minimize arc length locally; that is, if « is a geodesic
in M starting at m,, then there exists an ¢ > 0 such that £(a|;, .,) = £(B) for all
broken C* curves § in M from m, to a(c). S

Proof. Let G: Dg —M be a geodesic coordinate system about m, Then since «
is a geodesic,

alf) = G » Pl¢, g,) = Glig,) (0 < t<€)
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for some g, € S'. Let p’: Dg —{0} —U¢g be the map which rotates each point of Dg
onto the radial line through g; that is, p’ is defined by p'(vg) = vg,.

O
L
)

Fig. 7.16

an open set, and let p: U — {m ‘r-*U be the corresponding map in
I

Let U = G(Dg) an
=Geo p' o G-l, Thendp: T({U, m) — T(U, p(m)) decreases lengths;

U; that is, p
that is,

wdp ()i < v (forallve T(WU, m), me U -{mo}).

For by Gauss’s lemma, dG ° dP(8/8r) and dG ° dP(3/86) are orthogonal vectors in

Jeof - ar()] - oo -ar )]

o o)
b -arf2) - [scer - ar3)] -] -o

It follows that the magnitude of dp(v) equals the magnitude of the orthogonal projec-
tion of v onto dG ° dP(8/67), which is less than or equal to v,

i]

1}

Fig. 7.17

Now let B: [a, 8] =M be any broken C” curve from m, to a(e). Let

c = inf{t e [a, b]; B(r) £ UJ.
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Then B(c) £ U, but B(f) € U for all f < ¢. Let B1= Blia,c]- Then £(8,)) = £(B). Now
consider the curve p o 8,: [a, ¢] — M. Then

1p & B = ndp(Bn =< 1 (D)

since dp decreases lengths, hence

£(p = ) = £(B,) = ().

But Image p - 8, = Image @, so, since « is one-to-one we have P e Bt)=a - f(2)
for t € [a, ¢) and f: [a, ¢) — 10, ¢) with f = @™ ¢ p o B,. Thus
c

hp o g(Hudt

a
[

2B =4(p o B)= [
S

e o f(ndt

J

a

“lalf ()£ (2)|de
[naGo)ir@at = [Erarar

- a
=
a
=Lalfg g)- O
Remark. The proof above also shows that if G: Dg — M is geodesic coordinate
system about m, and 8 is any broken C® curve starting at m, and ending at some

point outside the geodesic neighborhood G(Dg), then L(B) =¢,
THEOREM 3. Let p: M x M —R be defined by

p(m,, m,) = inf{[¢(a); « a broken C* curve in M starting at
m, and ending at m,].
Then p is a metric on M, and the metric topology on M is the same as the manifold
topology on M,
Proof. Clearly p(m,, m,) = p(m,, m,). Also,

p(mh ms) = p(mls mz) + p(mzr ms)

because, given any ¢ > 0, let o and 8 be curves from m, to m, and from m, to m,
respectively such that

a) < plm, m,) +

2(B) < plmy, my) +

N N ;M

Then

plm, my) < La) + £(B) < plm, my) + p(my, my) + ¢,

The remaining requirement p(m,, m,) = 0 < m; = m, for a metric is also satis-
fied because if m, # m,, let G: Dg —M be a geodesic coordinate system about m,
not containing m, Then every curve from m, to m, has a length at least &, so
plm,, m,) =¢.
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The two topologies on M agree because for each mg, € M, there exists g,(m) > 0
and a geodesic coordinate system G: Dg (s ) — M about m, Then G(Dg) = Bmo(z)
or all € = g,{m,). ]

THEOREM 4. Let M, and M, be oriented Riemannian 2-manifolds. Let m, ¢ M,
and m, € M,. Suppose G,: Dg —~M, and G,: Dg — M, are geodesic coordinate sys-
tems about m, and m, respectively. If K, ° G, < G}! = K|, where K; is the curvature
of M; (i = 1, 2), then G, ° G;'i8 an isometry.

G, o Gyt

/
. /\
Gz\
Fig. 7.18

Proof. We must show that d(G, ° G;*) = dG, ° dG[* is an isometry at each point.
Since G, ° G;' maps radial geodesics into radial geodesics, dG, ° dG;* preserves
lengths in the radial direction, By Gauss’s lemma, dG, ¢ dG;* preserves ortho-
gonality. Thus we need only verify th

that is, we need only show that

HdGz o dP(a%)” - “dGl o dP(a—ae)H.

But, if we fix g € S' and let
(T,g))

+ (K ° Gj ° P)f; =0,

lengths in the 6-direction are preserved,

£ = |lag; ° dP(a% (j=1,2),

then Jacobi’s equation says that
47
ar®

where fj(O) = 0 and fj'-(O) =1 (j = 1,2). By uniqueness of solutions, f,(7) = f,(r) for
all »; that is,
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”dG o dP(—a) ” - ”dG o dp(—"?- )”
: %6/(r, g) ' 91(r, g)
forall(r, g2 e (0,e) xS, O
COROLLARY. If M has constant curvature K, then given any pair m 1» M, of points
in M and v,, v, of unit tangent vectors (v; € T(M, m;)), there exists an isometry &
mapping a neighborhood of 72, onto a neighborhood of m, such that ®(m,) = m, and
dd()) = v,.
Proof. Let G;: Dg — M; be a geodesic coordinate system about m,; (i = 1,2). Let
& € S be the rotation of Dy which maps dG;*(v,) onto dG;%v,). Then G,°& Dg—~M
is another geodesic coordinate system about m,, Set® =G, ° g ° G, O
Remark. Thus, if K =0, M is locally isometric with R? (with its usual Rieman-
nian structure). However, it is not true that M is globally isometric with R? (for
example, the torus S' x S' with its product structure). However, it can be shown
that if M is simply connected and K = 0, then M is isometrically the same as RZ,
Remark. Jacobi’s equation also gives some information in the case of non-con-
stant curvature, For example, suppose K = C for some constant C. Then if f is the
solution of Jacobi’s equation f” + Kf = 0, and f, is the solution of fi+Cf, =0, then
the theory of ordinary differential equations (Sturm-Liouville systems) tells us that
f = f; thatis, the geodesics in M spread more slowly than do geodesics in a space
of constant curvature C; that is, geodesics emanating from m, will come back to-
gether faster in M than in a space of constant curvature C.

7.5 ISOMETRIES AND SPACES OF CONSTANT CURVATURE

Let M,, M, be smooth oriented Riemannian 2-manifolds. Suppose f: M, — M, is
an isometry that preserves the orientation. Thus f is smooth, injective, surjective,
and it has a smooth inverse. Moreover df preserves the inner product on tangent
spaces

(dflv), dfw.)) = (v, vy) (@, v, € T(M,m); m, € M),

and if 7 is any 2-form giving the orientation of M,, then f*7 gives the orientation of

M,. Note that since f preserves the Riemannian structure and the orientation, f

preserves everything defined in terms of these; for example, the curvature, the

Riemannian connection, and the parallel translation. Five explicit statements follow.
(1) f induces a map f: S(M,) — S(M,), defined by

Fm,,0) = (fimy), dfw))  ((m,, ) € S(M,)).

This map is smooth and has a smooth inverse, namely ?‘1 = f~*. Note that
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Moreover, since df is an orientation preserving isometry at each point,

Fglm,0) = gf (m,,v)
for all (m, v) € S(M)) and g € $; that is, f g=g°¢° f for each g € S,

(2) f preserves the forms w,, w, and ¥ (¢ the 1-form of the Riemannian connec-
tion). For, if ¢ € T(S(M)), (m, v)), then

(f *w M2)(2)

w Mz(d7(8)
(df(v), dn(d (D))
(dfv), df @n (1))
(v, dm (t))

Myp);

1l

that is,
}'*wle

L}
£

Similarly,
?* "-’zM

To check that the connection is preserved, we use the uniqueness of the Rieman-
nian connection. Note that f*qu 2 is a connection form on S(M,) since

!
£

(FruMe)(v) = yMa@f(v)) = y™2(v) = 1,
and
g*(Frytl) = g* o Pry) = (F © 9)* @) = (g o Pryl
- Flgnyt - Joyit
for each g € S!. Moreover,

doMe = yMe A @ M

dw e = —yMe A wMe,
so that
My = a(fro M) = FrdwMe) = (Frydl) o (FrwMe)
= (f*szz) A “’2
M1 = a(Fr0M) = Frdw,M) = - (FryMe) a G*wle)

= —(f*wMZ A wIMl.

Thus the connection form ?*z/;M"’ satisfies the simplified form of the structural equa-
tions. By uniqueness,

Frtte =y,
(3) f preserves curvature; that is, f*KM2 = KMi For

dyMi = —(KMi o 1) Min wMi (i =1,2),
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so that
(KM < 1 )w M w M= gyl

= d(f*yMe)
= fHay™)
= F*((—KMz o T)w Me A w,Mz)
= (&M o 7, o P(F*w M) & (Fro,Me)
= —(KMz . f o nl)wlMl A szl,

hence

K"V"Jlowl:K"VI2 o fomy;
that is,

KMl = KM2 o f = f*KM2.

(4) f preserves parallel translation; that is, if @: [a, ] — M,, then the hori-
zontal lift f o @ of f o a through (f - ale), df(v)) is given by
P ~

fea=f- E,
where o is the horizontal lift of @ through (ala), v). The reason is that
f*szz = yM1 and d?(GCMl) = ez,

(5) f maps geodesics into geodesics, for o is a geodesic if and only if @ is
parallel along «.

Remark. Note that, given M, the set of all orientation-preserving isometries
h: M —M forms a group % under composition. We call this group 3¢ the group of
isomelries of M.

Definition. 3 is transitive if for each m,, m, € M, there exists h € & such that
h(m)) = m,.

THEOREM 1. Let M be a smooth oriented Riemannian 2-manifold, Suppose the
group of isometries of M is transitive. Then M has constant curvature.

Proof. Let m, € M. Then for any m € M, there exists % € 3 such that h(m) = m.
Thus K(m,) = (h*K)(m,) = K(h(m,)) = K(m). O

Definition. Let 3 denote the group of isometries of M. For my € M, letX ,, de-
note the subgroup of ¥ leaving m, fixed; that is,

Ko, = [k €3¢ hmg) = m,].

X 1, 18 called the isotropy group of M at m,,.

Remark. Note that for 2 € X, , dk: T(M, my) — T(M, m,) is an orientation pre-
serving isometry; that is, d% is a rotation of T(M, m,). Thus for each % € Koy
there exists g € S' such that dk(v) = gv for all v € T(M, m,). Moreover, since
d(k, ° k,) =dk, - dk,, the map &: X o — 5! definedby 2 —dk(m,} is a homomorphism.

LEMMA, If M is connected, the homomorphism &: K, —S* is injective.

Proof. Let G: Dg — M be a geodesic coordinate system about m,. Note that for
k€ Xy, k G(Dg) = G(D¢) since & is an isometry. Moreover, G™! - k o G is an ori-
entation preserving isometry of Dy leaving 0 fixed; that is, G'' ¢ k ° G = g for some
rotation g € S'. Since dg(0) is also rotation by g,
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dk(mg) = d(G o g o G D)(mg) = dG o g o AGHm,).
Thus
k € kernal & < dk(m,) = identity
<> g = identity
<> Rlgpg)=6CG°&° G! = identity,

Thus if % € kernal @, the set
N=[meM; B(m) =m and dk: T(M, m) — T(M, m) = identity]

is an open set in M, On the other hand, since 2 and dk are continuous, N is closed
in M, Since M is connected, N = M; that is, & = identity on M. Thus

kernal & = (identity)

and & is injective. 0

THEOREM 2, Let M be a connected oriented Riemannian 2-manifold. Suppose
3¢t is a subgroup of the group € of isometries of M such that

(1) 3¢t is transitive, and

(2) for some m, € M, the homomorphism

d; K 1—-31

is surjective, where X, = X,,, N &' Then 3¢ = 3.
Proof. Suppose h € ¥, By transitivity of &!, there exists h! € 3 such that

h(h(mg)) =

Then Ak € K g Since B/ K ml is surjective, there exists k! ¢ K ol such that

®(kY) = ®(hth).

Since @ is injective (by the lemma), k! = h'h, that is, h = BX(hY) ! € 3¢t. Thus 3¢ C &%
that is, L = 3¢, ] )
Definition. For each m € M, the set

(km = k(m); ke -’Rmo]

is called the orbit of :Icmothrough m in M,

THEOREM 3. Let M be an oriented Riemannian 2-manifold. Suppose, for some
mg € M, & X — St is surjective, Then, in a geodesic coordinate neighborhood of

m, the geodesics through m, are the orthogonal trajectories (reparameterized by
arc length) of the orbits of X,, . (See Fig. 7.19.)
Proof. If G: Dg —M is a geodesm coordinate neighborhood of m,, then the or-

hite nf 1 are the images under G of the concentric circles ahout the origin in Do

AL Wi Uw Rad U LEIT AL QRRU R WAL L 3T WAS LA L AAVA AW WA WAUR QRS AL VAR WL Apyiaas aas e

(See the proof of the lemma above.) These orbits are orthogonal to the radial geo-
desics by Gauss’s lemma. By the uniqueness of orthogonal trajectories, these tra-
jectories are the radial geodesics. O
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TN

Fig. 7.19

Example 1. Consider the plane R? with the usual Riemannian structure. Since
18/87,ll = 1, the map c: R* —S(R?) given by c(m) = (m, e,) = (m, (8/87))) is globally
defined, so the specw.l connection i¢, is defined on all of S(R?), Moreover e,=8/or,
and ie, = 8/37,, 50 w] = dr, and w; = dr,, Thus

W,

(cos 0)w, + (sin 0)@,

(cos 8)n*dr, + sin 8(m*dr,).
Similarly,

wy; = —(sin 8)a*dr, + (cos 8)n*dr,.

Since ¢, = do, the first structural equations become

dw, = —(Bin 0) d8 A (7*dr,) + (cos 8) d8 A (7*dr,)

=@, AWy
and, similarly,

dwz = _'901 A 0)1.

Thus the structural equations are in the simplified form, and, by uniqueness, the
special connection on S(R®?) is the Riemannian connectmn Moreover as we have
seen for the special connection, dy, = 0, so the curvature K of R? is 1dent1cally zero.

Clearly, each translation and each rotation of R? is an isometry. Let 3¢! be the
group generated by rotations and translations of R®. Then Jc! is transitive (in fact,
the group of translations is transitive), and &: X} —S* is surjective (X} the group of
rotations about 0 in R?); so, by Theorem 2, 3! is the full group of isometries of R2.

For m, € R? X, is the group of rotations of R? about m,. Since the orbits of
X, arecircles about m,, the geodesics through m, are straight lines by Theorem 3.

Example 2. Let S? denote the sphere of radius » about the origin in R3, with the
induced Riemannian structure. Note that the group i of rotations about the origin in
R?® isa group of isometries of S2 It is the full group of isometries of $2 by Theorem
2. Since 3¢ is transitive on S% the curvature K of S? is constant by Theorem 1. By
the Gauss-Bonnet theorem,

1 - v(S?) = 9.
5 észol-x(S)_z,

that is,
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4n 47 1
2.

vol{S?) T 4pr2 " ¥

K vol(§?) = 47, K =

The geodesics through m in S? are the orthogonal trajectories of the orbits of the
group of rotations of R* that leave m fixed. These orbits are circles about m, so
the geodesics through m are the great circles through m.

Fig. 7.20

Example 3. Let D c}pnote the open disc of radius 1 in R, Regarding D as a sub-
set of the complex plane, considef “the Riemannian structure (called the Poincaré,
or hyperbolic, metric) on D defined by

<vly vz) = (_;_)-E.-p_%z)s (vb Uz € T(Da p); p € D)’

where v, - v, denotes the usual inner product (dot product) en 7(D, p} and p is the
complex conjugate of p, so that pp = »?, where » is the Euclidean distance from p to

the origin. Thus,
el = e
ar LA v
Rl 4 | I | Rl

and ((8/8r,), (8/37,)) = 0. Note that the radial lines in D through the origin have in-
finite length, For, if a: [0, 1] — D is given by a(?) = te%? for''somhe™, then

cn e

L{a) = Enéz(t)ndt: f:l—i—tzdtz 0,

Let

e =[f: D — D; f(z) = eielz__zﬁ for some p € D, 0 < 6 <2n].

From elementary complex variable theory, € is a group (the conformal group) of
transformations of D onto itself. € is, in fact, a group of isometries of D, For let
f € €, I we identify T(D, 2z} with T(D, f(z)) by identifying both with R? in the usual
way, then, since conformal maps preserve angles, df(z) = A(z)g(z) for some real
number A(z) > 0 and some rotation g(z) € S*. The magnificatjon factor r(z) is given
by A(z) = |(df/dz)(z)|. But an elementary computation shows that

122y | (1 - 22) = 1~ FFT.
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Since vectors at z which are unit vectors in the Poincaré metric have Euclidean
length 1 —zz, this implies that df(z) is a rotation which maps unit vectors (in the
Poincaré metric) into unit vectors; that is, df(z) is an isometry for each z, so
J: D—Dis an isometry.

Thus € is a group of isometries of D. € is transitive because, for p € D,

L 2= p)
Tpt 2T =)

maps p onto the origin, hence for each pair p,, p, € D, f;,lz ° fP1 maps p, onto p,.
Moreover, the isotropy subgroup X, of € at the origin is given by

%X, =[f: D—D; f(2) = et%];

that is, X, is the group of rotations in R2. Hence & %, — S! is surjective, so, by
Theorem 2, € is the full group of isometries of D. In particular, since € is transi-
tive, the curvature K of D is constant by Theorem 1.

Fig. 7.21

Since the isotropy group X, at 0 is the rotation group, whose orbits are circles
about 0, Theorem 3 tells us that the geodesics through 0 are the radial lines (suit-
ably parameterized). Since isometries map geodesics into geodesics, and since the
image of a radial straight line under a conformal transformation of D is either a
radial straight line or a circle which meets the boundary of D at right angles, we
see (Fig. 7.21) that such lines and circles are the geodesics in D, In particular, the
sum of the interior angles of a geodesic triangle in D is less than 7, so that, by the
Gauss-Bonnet theorem, the constant value of K is negative. (See Fig. 7.22.)

Exercise. Find the constant value of K. [Hint: K can be found either by comput-
ing the area of a geodesic triangle and applying the Gauss-Bonnet theorem orby use
of Jacobi’s equation. ]

Remark. Although we have exhibited the hyperbolic space D as a submanifold of
R?, note that the inclusion map is not an isometry. In fact, it can be shown that the
space D cannot even be imbedded as a Riemannian submanifold of R3.

Remark. We have exhibited three Riemannian manifolds R2, S2, and D of constant
curvature K = 0, K > 0, and K < 0 respectively. It turnsout that any two simply con-
nected complete Riemannian 2-manifolds of the same constant curvature K are iso-
metric, so these three examples are essentially the only examples of simply con-
nected complete 2-manifolds of constant curvature. These three examples are im=-
portant in several different mathematical disciplines, asillustrated in the table fol-
lowing Fig. 7.22.
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Fig. 7.22
SPACE RIEMANNIAN GROUP THEORY COMPLEX ELEMENTARY
GEOMETRY (group of isometries) VARIABLES GEOMETRY
R? K=0 Euclidean motions Complex plane Euclidean
in R? (rotations geometry
translations)
52 K=0 Rotation group in Riemann sphere Spherical
R3 geometry
(elliptic
geometry
on P?)
D K<0 Conformal group Disc (hyperbolic Hyperbolic
plane, or upper geometry
half-plane)

Relative to the last column in particular, these three examples are the only ‘‘ele-
mentary’’ geometries. Under the replacements points — points, straight lines — geo-
desics, length —arc length, angles —angles, and congruence — isomeiry, most of
the axioms for Euclidean geometry are satisfied by these examples. The most note-
worthy exception is that Euclid’s fifth postulate, the parallel postulate, fails to hold
on D: given a ‘‘straight line’’ £ and a point p not on £, there are infinitely many
“‘straight lines’’ through p which never meet £. (See Fig. 7.23.)

In the case of elliptic geometry, it is customary to use P? 35 model rather than
$2, so that any pair of ‘‘straight lines’’ will meet in at most one point. In this ellip-
tic geometry a ¢‘stroight line”’ fails to divide the remaining points into two discon-
nected parts,

In the case of complex variable theory, R? 5% and D are the only simply connec-
ted complex 1-manifolds, a strong form of Riemann’s mapping theorem.

Fig. 7.23



| CHAPTER EIGHT
IMBEDDED MANIFOLDS IN R3

In the previous chapter we studied the intrinsic geometry of a surface. Now we
1z o

n g ¥ it 13 p3
?rop%rtles U‘F a surface as it lies in R .

Let (M, f) be a submanifold of R®, where M is an oriented 2-manifold. Let M be
given the Riemannian structure induced from f: for v,, v, € T (M, m),

(vp vz)m = <df(vl)s df(vz»f(m)'

Definition. Given (M, f), the spherical map on M is the map s: M — S$? defined
as follows. For m € M, let s(m) € T(R3 f(m)) be the unit vector perpendicular to

df(T(M, m)) that is consistent with the orientations of 7(M, m) and T(R3, f(m));
that IS if v is a unit vector in T(M m\ then Q{m‘ ig the {n'rhﬂnn\ unit vector in

411 Ll =322 LaiTal asd Ladl MLV MAL J O MAdiw Y L wLUA ddl

T(R3, f(m)) such that {df(v), df(zv) s(m} is an oriented orthonormal basis for
T(R3, f(m)). Identifying T(R% f(m)) with R® in the usual way, we may regard s(m)
as a point in S%,

s(m) s(m)
T(8%s(m))
/\
T(M.m)
M ~N/ N———

Fig. 8.1

We shall find it convenient to identify 7T(M, m) with df(7 (M, m)). Furthermore,
since df(T(M, m)) and T(S? s(m)) are the same subspace of R® under the usual
identification of the tangent spaces to R*® with R3, we shall identify T(M, m) and

T(S?, s(m)). Then

ds(m): T(M, m) — T($? s(m)) = T(M, m),

so ds(m) is a linear transformation from T(M, m) into itself, The main result of

this chapter is the theorem of Gauss: The curvature K(m) of M at m is equal to the

determinant of ds(m). In fact, Gauss originally defined K (for imbedded manifblds)
to be this determinant, and he was surprised to discover that K was in fact intrinsic;

194
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that is, K depends only on the Riemannian structure on M and not on the particular
imbedding f.

Let us first note what manifolds in R?® look like i

t ma i
the spherical map. For f: M —R3 let f;
fm) = (f(m), fo(m), fy(m))

for all m € M. Here 7; are the coordinate functions on R3, Let p: U— M be a
smooth injective map from an open set U C R? onto an open set in M such that T
is smooth, and such that if 7 is a 2-form on M which gives the orientation of M,
then p*7 is a positive multiple of dr, » dr,. Thus ™! is an oriented coordinate sys-
tem on p(U). Let x; = ; © k7 (i = 1,2) denote the coordinate functions on ¢ (U). Then
8/6x; = du(9/87;) and

df (%): a(f - u)(a—ij)s 23) O © 1) afk (¢ =1,2),

i E=1 a"'i

so that the matrix for df, relative to the bases {8/8x;} for T(M, m) and {8/87;} for
T(R3, f(m)), is

a(fy o 1) 8(f, o u)

ar, 87y
df ~ a(f2 e M) a(fZ © “‘)
o7, 87, ’
8(fy o 1) a(f, © )
a7, 87,

The Riemannian structure on u(U) is then given by

<“a" BN ke k) et ) ey, 2).

9x;’ 8x; it r; o7

e df(8/8x ) x df(s/8x,)—cross product

teachpoint m € U and is consistent with the orientationsof 7'(M, m) and T(R3, f(m)),
the spherical map on (U) is given by

fla/

B

R3—ig ner
ber

df(8/8x,) x df(8/8x,)
stm) = udf(a/éxi) X df(a/ax:)n

_ 1(80‘1 o n) afy o m) B(fy o k)

Tag\ o8r, ' o&r, ' or,

x(aul o p) (o) 8lf, u))

ar, ' or, ' or, )’
where a is the magnitude of this cross product. In particular, we see that s is a
smooth map.

Now consider a fixed point m, € M. Altering f by a translation and rotation if
necessary (this will leave the induced Riemannian structure on M unchanged), we
may assume that f(m,)} = 0 and that df(T (M, my)) is tangent to the (v, 7;)-plane R?
and is oriented consistently with the natural orientation of R?; that is, f*(dr, » dry)
gives the orientation of T'(M, m,). Let p: R® — R? be projection; that is,

p(uv Uy, us) = (ub “2)-
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T3
N
f(mo) N
réi
p
f(M)
Fig. 8.2

Then p o f: M — R?% p o f(m,) = 0; and
d(P of)(mo) = dj) ° df(mo) = df(mo)

maps T'(M, m,) isomorphically onto T(R? 0). Bythe inverse function theorem, there
exists a neighborhood U of 0 in R? such that (p ° )" is defined and is smooth on U,

Let p=(p of)™ U — M. Then u* is a local coordinate system about m, More-
over, since p o f o U = i,

fe #(!41, z‘-’z) = (341

{{ Y - 1)
’u27 g(un uz)) \\%1, %21 € Ll X

where g =7, of o u: U — R Thus, if x,, x, are the coordinate functions on u(l’),
then the matrix for df relative to this coordinate system is

1 0
df ~| 0 11,

b S8

ar, 97,

and the spherical map on WU) is given by

_ 1 og og

S(’“"’(uv uz)) = a(ul, uz) (1, 0, o7, (uh uz)) X (O, ]_, ar, (ul’ uz))
1 [ og _8g \.
- a(ul, uz) ( ar, (ul’ uz)’ 87’2 (ul’ uz), 1)5

that is,
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).

where a = V(og/o7,)? + (ag/8r;)2 + 1. Note that at m, = (0), s(m,) L df(T(M, my)) =R?
implies that (8g/97 ){0) = (8g/87,)(0) = 0 and a(0) = 1.

Now under our identification of T'(M, m,) with df( T(M, m,)), (8/8x;}(m,) beecomes
identified with (8/07,)(0) (¢ = 1, 2), so that the entries b;; for the matrix for

197

1
T a

o

. (__8& _%

ar,’ ory’

ds: T(M

v, mg) — T(M, mg)

relative to the basis {9/8x,} are given by

9 0 9 ]
o b2 ), - ol )
J axi ’ Bx] my 87‘1 ’ a'rj o
= dr d( )i _d(fr.oso )__a__
= arj\as o H o7; I K o7;
0 0
0
zg’;(ﬁrj @S o Mg
Thus
o _ 8 (_1log\ _1ca og| 1% _ %
M7 oar,\ aory)|  a?or, ory| aorjl N
and, similarly,
a2g,-.
bz = "Gy oy, T Vv
1 2lo
82
by = ~ o7t 0§
that is,
/ \
__%%g _ %%
87,087, 87,07,
ds(mg,) ~
__ %" __%g
87,07, 97,07,

0

In particular, assuming Gauss’s theorem (which still remains to be proved) that
K is the determinant of ds, we obtain a qualitative description of the behavior of
F(M) near the point f(m,} under various assumptions on the curvature K(mg). For
from the critical point theoryof functions of two variables, we know that the function
g will have a maximum at the critical point 0, provided that the eigenvalues of the
matrix

2% %
a3 87,87,
2 2
g o8
87,97, or;

0
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are both negative and that g will have a minimum if the eigenvalues are both posi-
tive. Thus if K(my) > 0, then near 0, f(M) lies either completely above or completely
below the Rz—nlane On the other hand, if K(m,) < 0, then ds(m,) has one positive
and one negative eigenvalue, and g has a saddle pomt at 0. I K(m ) = 0, the behavior
of f(M) near 0 is undetermined.

A4

N
J/

K(mo) > 0 K(mo) >0

{

Fig. 8.3

In order to prove Gauss’s theorem, we need an explicit description of the local
geometry of imbedded manifolds.

THEOREM 1. Let (M, f) be an oriented 2-manifold in R3. Let e,, e,: S(M) —R3
be defined by
df(v),
daf(iv).

e,(m, v)

e,(m, v)

Let § be the 1-form on S(M) defined by
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p = (de,, ey);
that is, for (m, v) € S(M) and ¢t € T(S(M), (m, v)), de,(t) € T(R? e,m, v)) = R® and
() = (de,(1), e,(m, v)).

Then p is the 1-form of the Riemannian connection on M.
Proof. .
Invariance. For g = et% ¢ S,

gty =yodg=(de,odg,e,°g) =(dle,>g),e;,°8.
But, for (m, v) € S(M),

e, o glm, v) =e,(m, cos 8 v + sin 8 (iv))
= cos 6 df(v) + sin 8 df (iv),
e, © glm, v) = e,(m, cos & v + sin 0 (iv))
= —sin 8 df{v) + cos 6 df (iv),
S0
e,og=cosbfe, +sinb e,
e, °g=—sinf e, + cos 0 e,.
Thus
dle, ° g) = cos 6 de, + sin 0 de,.

Now since {(e,, e,) =1, (e, e,) =1, and (e,, e,) =0,

0 = d<el: €1> =2(del,e1),
0 = d{e,, e,) = 2(de,, e,),
0 = dle,, e,) = (de,y, e;) + (e,, de;y);

1!

1

so that (de,, e,) = (de,, e,) = 0, and (e,, de,) = —(de,, e,). Hence
g* = (dle, ° 8), e, ° & = (cos? 8 + sin® 6)(de,, e,) = ¥.
Normalization. For (m, v) € S(M), V(m,v) = #(0), where y: R —S(M) is given by

y(8) = (m, cos 8 v + sin 8 (iv)).

Hence
(Vim, v)) = p((0)) = (de ,(+(0)), e,(»(O}))
= ((e, ¢ Y)0), df (iv}).
But
e, °©v(9) = cos 8 df (v) + sin 8 df (iv),
so that

(e, s yN0) = —sin 0 df (v) + cos 0 df (iv)[0 = df (iv),
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and
P(V(m, v)) =

Thus ¢ isa connection form on M, To verify that it is the form of the Riemannian
connection, it suffices to check that the simplified forms of the first structural equa-
tions are satisfied. To do this, note that when (m,v) € S(M) and ¢ € T(S(M), (m, v)),

w,(8) = {dn(t), v) = (df < dn(t), df)) = {d(f ° m)(D), e (m, v)),

80

W, = (d(f © 77), el>-

Similarly,
= (d(f © ﬂ-); ez)-

Also note that the component of d(f © 7) in each 7j-direction is the exterior differ-
ential of a function, namely,

<d(f ° 1), 587>=de cd(fem)=d(rjefem),

so that d(d(f ° 7)) = 0, where the exterior derivative of a 3-tuple of forms is com-
puted componentwise. Hence

dwi = d(d(f © Tl'), ei>
= (dd(f ° ), e;)—(d(f ° ), de;).
(%) dw; = —{d(f > ), de;).

But
d(f o m) = (d(f o 1)

) e\e +{dlf o m)
N Y LI Y 7’

2
since e,(m, v) and e,(m, v) form an orthonormal basis for af(T(M, m)) for each
(m, v) € S(M). Thus

dif ° 1) = we, + we,,

hence, from (%),

dwy=—(we, + we, de,) =—w, A(eyde ) =—w, A= P Aw

dw, = —(w,e, + Wye,, de,) =~w, A e, de,)=w, A=~y Aw,. [

Intevpretation of parallel translation for imbedded manifolds.

Let o be a curve in M, and @ some lift to S(M). Then e, » @ is a curve in R3
lying on the unit sphere, so that dle, ° a)(d/dt)t (d/dt)(e, - oz)t is always perpen-
dicular to e, o @(f,). Now & is horizontal if and only if y(a) = °0. By Theorem 1,
this is the case if and only if d(e, - cu)(al/dt)t0 is perpendicular to e, ° a(to) Smce
e, and e, span the tangent space, @ is horizontal if andonly if (d/dt)(e, ° a)t is per-
pendlcular to df(T(M, a(ty)) for all t,
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Thus if X is a unit vector field defined along « and &(#) = (a(?), X(a(?))), then X
is parallel along o <> & is horizontal <= (d/dt)(e, - @) = (d/dd(X ° a) is always
perpendicular to the manifold; that is, X is parallel along a if and only if X ° @ is
<sconstant along the manifold’’: the tangential component of the derivative of X < «
in R3 is identically zero. For imbedded manifolds, this characterization can be used
in place of the abstract notion of connection.

THEOREM 2. (Gauss) Let (M, f) be an oriented 2-manifold in R®. Lets: M —S?
be the spherical map. Then for each m € M, det ds(m) = K(m).

Proof. Let T: S(M) — S(S?) be defined by

¥(m, v) = (s(m), df(v)).

Let w,, w, and ¢ be the structural 1-forms on S(M), and let @,, w,, and ¥ be the
corresponding forms on S(S%). Then

0] Y = .

For

$¥p = o dS={(de,~df, e, °3) = (dle, °T), e, °T).
But

e, © 3(m, v) = é,(s(m), dfw)) = dfw) = e,(m, v),

2, < F(m, v) = &,4s (m), df(v)) = idf (v) = s(m) x df(v)

= df(iv) = ey(m, v);
so that &; ° S = e;, and ¥y = (de,, e;) = ¥.

TG,
(1) {

YA
STWy = Gpy + GpW,,

AWy + ApW,,

where the a;; are the smooth functions on S(M) such that
@y a1z

a a
21 22 (m’ ‘U)
is the matrix for ds(m) relative to the basis {v, v} for T(M, m).
For if (m, v) € S(M) and t e T(S(M), (m, v)), then

(3*0)() = &, < d5(¥)

(dT(dS (D), dfw))  (since S(m, v) = (s(m), df(v)))
= (d(i © $)(1), df(v))

= (d(s ° w8, df(v))

= (ds(dn(?)), df(v))

= (ds(w,(v + wy(B)iv)}, df(v))

= {ds(v), v)w, () + {(ds(iv), v) w,(?),

il
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since df(v) is identified with v, Similarly,
($*@)(8) = (ds(v), w)w (D + (ds(iv), iv) wy (D),
completing the proof of (II).
(1) For each m € M, det ds(m) = K(m).

For
~Kw, & w, = dy = d(3%)) = THdj)

S¥-@, A By) (since S% has constant curvature 1)
= —§*0, A S*a,
=—(a,w, + a,w,) A (a2w, ¥ @yw,)
= =@, — @0,5)w, A Wy,

so that

G,, Qg
K = det = detds(m). O
Qs as,

Remark. The linear transformation ds(m) is called the second fundamental form
of M at m. Note that it is a self-adjoint linear transformation, since its matrix
relative to the special coordinates discussed above is the symmetric matrix

_ 2% _ g
ar2 87,97,
_ %% _ &
97,97, o2

THEOREM 3. Let (M, f) be a compact oriented 2-manifold in R®. Then there ex-
ists m, € M such that K(m,) > 0.

Proof. Consider intuitively any sphere with M inside. Shrink this sphere until it
just touches M at some point m,;. Then the curvature of M at m, is greater than the
curvature of this sphere.

Consider more precisely the function 72 o f on M, where 7 is the distance from
the origin in R®, Let m, € M be a point where #2 o f assumes its maximum. By ro-
tating about the origin in R® if necessary, we may assume that flmgy) is on the #3
axis; that is, that f(m,) = (0, 0, ¢) for some ¢. Then ¥4 o f also has a maximum at
m, since ¥, o f(my) = v o f(my) =2 ¥ o f(m) = v, ° f(m) for all m € M. Hence for
v e T(M, my),

<lf(v), ??,->= dry(df(v)) = d(r, o )(v) = 0;

that is, df(T(M, m,)) is perpendicular to the 7, axis. We may assume that the ori-
entation of df{T(M, m,)) agrees with the orientation on the 7, 72 plane. (Otherwise,
a rotation through an angle of 7w about the 7, axis will accomplish- this,) We may
further assume, by rotating about the 7, axis if necessary, that 8/dr, and 8/87, are
eigenvectors of ds(m,). Then since f(m,) = (0,0, c), the special coordinates are
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valid on the translate of f(M) by (0,0,—c); that is, there exists u: U —M, U C R?
such that

f °© p'(up ug) = (up Uy, C + g(uly uz))

for some g: U — R with g(0, 0) = 0 and

"

o 074y o

bg
a7,

Then, since 9/9r, and 8/d7, are eigenvectors of ds(my), ds(mg) has matrix

o 0
ar?
0 o
07
0

But #2 ¢ f o i has a maximum at (0,0). Hence since

2o fop(uyuy) = u2+u+[c+ glu, u)l

Then
92 ag\? 32
0=+, (r? of o) = [2 +2(a_rg-) +2(c+g) ‘a;géi]
j i’ i de
2
- 2+2c 2%
3')’]'
0

for j = 1,2, Thus

gl _ 1 ogl __1
a2l T and aryl — ¢’
0 0
so that
i, | g ol 1
K(mg) = det ds(m,) = ory? ord|. =35>0, O

COROLLARY. The torus S* x S! with its Riemannian product structure cannot
be imbedded as a submanifold of R3.

Proof. Since the covering map R? — S' x S! is a local isometry, §* x §' has
curvature identically zero.

THEOREM 4. Let (M, f) be a compact connected oriented 2-manifold in R®. Sup-
pose the curvature K of M is never zero. Then in fact K > 0 everywhere. I, fur-
thermore, M is simply connected, then the spherical map s: M — S? is injective,
surjective, and has a smooth inverse (that is, then M and S* are isomorphic as
manifolds).

Proof. The first statement is a consequence of the previous theorem. For the
second statement, consider the map 7 ¢ s mapping M into the projective plane P2,
where m: S® — P? is projection. We show that # ¢ s is a covering map. First, since
detds = K >0, ds is everywhere non-singular, hence so is dr o ds = d( s}, By
the inverse function theorem, # o s is locally one-to-one and is an openmap. More-
over, 7 o § is onto. For if p € PP—say p = w(P), P € S*—consider the plane in R®
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perpendicular to . Moving this plane out in the direction of B toward infinity and
then back until it just touches M at m,, wefind that s(mg) = +p, sothat 7 o s(m,) = p.
More precisely, let m, € M be such that the function —{f(m), ) assumes its
maximum at m,. Then § L df(T (M, m,)) because, for v € T(M, m,),

(df(v), B) = d({f, )W) = 0.

Hence s(m,) = 2P, and 7 o s(my) = p. Finally, since M is compact, (7 - s)"X(p) is
finite for each p € P2?, (It is closed in M, hence compact; on the other hand, each
point in 77} p) is open in the relative topology, since 7 is locally one-to-one). Hence
for U a sufficiently small open set about p, (7 o s)"{U) is a union of disjoint open
sets each mapped homeomorphically onto U bynm cs. Thus 7w o s is a covering map,
and M is a covering space of P2, But the only covering spaces of P? are S% and P?
itself. Since P? is not orientable, M must be homeomorphic to S and s must be a
smooth homeomorphism with a smooth inverse. ]

THEOREM 5. Let (M,, f,) and (M,, f,) be oriented 2-manifolds in R, Suppose
M, and M, are tangent along a curve o in R3; that is, suppose there exist curves
o;: la, 8] = M; (i = 1, 2) such that

frea,=faoa;= a,
and
adf (T(M,, a,(1))) = df,(T(M,, a,(8))

for all ¢ ¢ [a, b]. Then parallel translation along « is the same in both manifolds:
if v, e TM,, a,(@)) and v, € T(M,, a,(a)) with df,(v)) = df,(v,), then

df, (parallel translate of v, along a))
= df, (parallel translate of v, along a,).

Proof. Let s;: M; —S* denote the sphericalmap (i = 1, 2), and let §; S(M;) —5(s2?)
denote the corresponding map on the circle bundles. Since

df]_(T(Ml, al(t))) = de(T(M2, a2(t)))

for all ¢ € [a, b], we have §,° @=%8;, c a. We may assume that s, c a = +5, ° @,
for otherwise we may reverse the orientation on M, so that this is the case. (Note
that orientation reversal on M, has the effect of changing the sign of the connection
form on S(M,) and hence does not affect parallelism.)

From the proof of Theorem 2,

3% = ¥

where y; is the connection form on S(M;). Let &;: [a, b] — S(M,) denote the hori-
zontal lift of @; through («;(@), v;). Then

Pl <3 () - 9(@i(a () - eon(a()

wlenfg) o

since @; is horizontal. Hence §; o &;: [a, b] — S(S?) (i = 1, 2) is the horizontal lift
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of s, o @, = S, o a, through

§, ° a)a)

(S 1(al(a))’ dfl(vl))
(s,(ay@)), df(va))

S, © aya).

i

In particular, 5, ¢ &, = §, ¢ &,. Hence, if v;(f) denotes the parallel translate of v;
along a; to a,(#), then a,(#) = (a (8), v;(9)) (¢ = 1,2), and
(s (a,(), df (v, (1)) =5 ,(@,t)
=5, o a,d
= §, o Qy(t)

(sa(ay(8), dfa(v2(8));

that is, df,(v,(£)) = df (v, (D). O

Remark. Theorem 5 gives us a way of seeing geometrically how parallel trans-
lation behaves for submanifolds in R3. Let a: [a, b] —M be a curve. Consider the
family of tangent planes to f(M) along the curve f ° a in R, For f, t € [a, 0], the
intersection of the tangent plane at f o a(f;) and the tangent plane at f a(t) will
generally be a line. The limit of this line, as ¢ — £, will be a line through f ° a(t,)
in the plane df(T(M, a(t,)). The collection of all these lines, for f, € la, b}, forms a
surface D, called a developable surface. It turns out that such a surface D is flat
(K = 0) and is tangent to f(M) along f ° a. Hence parallel translation in M along a
is the same as parallel translation along f ° a in D, But since D is flat, it is locally
isometric toa piece of the plane; that is, ina neighborhood of @, D can be rolled out
on the plane where parallel translation is ordinary translation. In particular, paral-
lel translation along a circle on a sphere in R® is the same as parallel translation
along that circle in the cone tangent to the sphere along that circle. But the cone
can be rolled out on the plane where parallel translation is ordinary translation;

va Fasidainvaisiag

then the cone can be rolled back around the sphere to find the parallel translate on
the sphere.

Fig. 8.4
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THEOREM 6. Let M be an oriented connected 2-manifold, and let f, g: M — R3
, S

be two isometric imbeddings. Suppose that the second fundamental forms of ( )
and (M, g) are the same. Then there exists a rigid motion (isometry) & of R® such

that f = & o g.

Sketch of proof: Choose a point (m,, v,) € S(M) and a rigid motion & carrying
g(mg) into f(m,), dg(v,y) into df(v,), and dg(T(M, m,)) onto df(T(M, m,)). Let fi=f
and f, = ¢ ¢ g; then fl(mo) = fz(mo)s dfl(vo) = dfz(vo): and

Hence §,(my, v,) = S,(m,, v;). Furthermore, because & is an isometry, the second
fundamental forms of (M, f,) and (M, f,) are equal,

Note that as a result of formulas (I) and (II) in the proof of Theorem 2, the fact
that the second fundamental forms for (M, fi), i = 1,2, are equal implies

30 S(M) — S(57)

has the following property: 5 ,*@) = 5,*@) and S, ¥ w;) = SMw,), i=1 2,

Note also that S(S%) can be identified with the space of 3 x 3 orthogonal matrices
of determinant one, for a point of S(S?) consists of a pair (#, v), where % is a unit
vector in R3 and v is a unit vector perpendicular to #. The matrix corresponding
to (u, v) is the one whose columns are u, v, and u X v, _

LEMMA. Let a,, @, be two curves [0,1] — S(S? such that o, *@§) = a,*(@) and
o,"@;) = a,(@;), (1 =1,2). Let 8 be the curve B(t) = a,(t)™* - a,(t), where inverse
is matrix inverse and the dot indicates matrix multiplication. Then g*(§) = 8*(@;) = 0.

Proof. We leave the proof of this lemma to the student. It involves computing
dp in terms of da, and da,,.

COROLLARY TO THE LEMMA. I in addition, @,(0) = 0,(0), then @, = a,.

Proof. Since w,, w,, ¥ span the catangent space at each point of S$(S?), the lemma
implies that dg is identically 0, so that 8 is a constant map, Since a,(0) = a,(0), B(0)
is the identity matrix, and, therefore, so is B(¢#) for all £ ¢ [0, 1]. Hence a,(t) = a,l)
for all t € [0, 1].

We are now in a position to show that fi=75s Lety beacurve in S(M) starting
at (m, v5), and let @; = §; °y. Then the curves @; satisfy the hypothesis of the
lemma, and @ ,(0) = @,(0), so we conclude from the corollary that o, = &,. In par-
ticular, ,((8) = 3,(4(), (¢ € [0, 1]). Since any point of S(M) is reachable by a
smooth curve starting at (m,, v), we have 5, = 5,; that is, for every (m, v) ¢ S(M),
s (m) = s,(m) and af (v) = df,(v).

Consider the map f, — f;; M — R3, where (f, — f,)(m) = fi{m) — f(m). Since
df (v) — df,(v) = 0 for any unit vector, we conclude d(f, - f;) = 0; thatis, f,= f,
+ constant. Since f,(mg) = f,(m,), we have f, = f,. O
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Barycenter, 76
Barycentric coordinates, 71, 146
Barycentric subdivision, 78
Basis for a topology, 6
Betti number, 114, 141
Boundary, 138, 139
Boundary map, 138
Bracket, 118

Broken C” curve, 103

Cartan structural equations, 168-170

Cartesian product, 2, 4

Cauchy sequence, 34

Chain, 137

Circle bundle, 157

Class C%, 98, 99

Closed differential form, 114

Closed set, 6

Closure, 6

Coboundary, 144

Coboundary operator, 144

Cochain, 144

Cocycle, 144

Cohomology, De Rham, 114
simplicial, 144

Compact, 10

Complement, 1

Complete, 34

Completely regular, 32

Complex structure, 38

Cone, 74

Conformal structure, 98

Connected, 9
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Connection, 159
Riemannian, 169

Contiguous, 84

Contiguous equivalent, 85

Continuous, 11

Continuous extension, 17

Contractible, 44

Converge, 34

Convex, 69

Convex independent, 70

Coordinate function, 99

Coordinate system, 98

Cotangent bundle, 104

Cotangent space, 103

Countable, 3

Covering, 10

Covering homotopy theorem, 59

Covering space, 55

Covering transformation, 67

Cross product, 112

Curl, 112

Cycle, 139

Deck transformation, 67
Degree, 107
De Rham cohomology group, 114
De Rham cohomology ring, 156
Derivation, 100
Diameter, 79-80
Differential, 101

exterior, 108-109
Differential form, 105, 108
Dimension of a simplex, 71

of a simplicial complex, 72
Divergence, 112

Edge, 86

Edge equivalent, 87

Edge path group, 87

Euler characteristic, 92, 142
Exact form, 114

Exterior algebra, 106~107
Exterior multiplication, 107

Face, 71

Finite, 3

Finite intersection property, 10
Fivat natam~wer 90
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First countable, 33

First structural equation, 168-169
Form, 107, 108

Free group, 92
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Fundamental cycle, 176
Fundamental group, 48

Gauss-Bonnet Theorem, 176
for 2-simplices, 175

Gauss’s lemma, 179

General position, 73

Geodesic, 174

Geodesic coordinate system, 179

Geodesic curvature, 175

Glueing lemma, 43-44

Gradient, 112

Graph, 91

Grassmann algebra, 107

Group of isometrics, 188

Hausdorff space, 23
Homeomorphism, 12
Homology group, 139
Homotopic maps, 43
Homotopic paths, 46
Homotopy, 43
Homotopy type, 44
Horizontal lift, 162
Hyperbolic metric, 191

Implicit function theorem, 120

Indexing set, 3-4

Induced map on De Rham cohomology, 115
on differential forms, 113
on fundamental groups, 52

Infinite product, 4

Injective, 3

Inner automorphism, 51

Integral curve, 125

Integral of a 2-form, 176

Interior multiplication, 117

Intersection, 1

Inverse function theorem, 119

Inverse image, 3

Inverse of a function, 3

Isometry, 135

Isomorphic covering spaces, 66

Isotropy group, 188

Jacobi’s equation, 182
Join, 74

Length of a curve, 174
Lie group, 122
Limit point, 6
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differentiable, 97
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smooth, 99
smoothly triangulated, 145
Maximum principle, 4
Mesh, 80
Metric, 4
Metric space, 4
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iC, o

Normal topological space, 24
Normed linear space, 37
Nowhere dense, 36

1-form of a connection, 160
1-point compactification, 30
One-to-one correspondence, 3
Open covering, 10
Open set, 6
Orbit, 189
Ordering, partial, 2

simple, 3
Orientable, 128
Orientation, 128
Oriented, 128, 137
Orthogonal group, 121

Paracompact, 132

Parallel translate, 162
Parameterized by arc length, 174
Partial ordering, 2

Partition of unity, 132

Pasting lemma. See Glueing lemma.
Path, 45

Poincare metric, 191

Poincaré’s lemma, 116

Product topology, 14

Regular covering space, 67
Regular topological space, 24
Relation, 2

Relative topology, 8

Riemann surface, 98 °
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Riemannian structure, 134
Route, 87

Second category, 36

Second fundamental form, 202

Second structural equation, 168

Simplex, 71

Simplicial approximation, 82

Simplicial complex, Euclidean, 72
abstract, 88

Simplicial map, 81

Simply connected, 62
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Smooth curve, 103

Smooth differential form, 105, 108

Smooth function, 99

Smooth homotopy, 117

Smoothly triangulated manifold, 145

Smooth manifold, 99

Smooth mapping, 99

Smooth vector field, 105

Sphere bundle, 157

Spherical map, 194

Star, 82, 146

Star-shaped region, 117

Subcomplex, 73

Subdivision, 76

Submanifold, 123

Subset, 1

Surjective, 3

Tangent bundle, 104
Tangent space, 101
Tangent vector, 99

to a curve, 103
Tietze extension theorem, 29
T, space, 23-24
Topological space, 6
Topology, 6

discrete, 8

relative, 8
Transitive, 188
Tree, 91
Triangulated manifold, 145

Unimodular group, 121

Union, 1

Unitary group, 122
Universal covering space, 62
Urysohn’s lemma, 27
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