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�� Introduction�

This is a quick set of notes on basic di
erential topology� It gets sketchier as it
goes on� The last few sections are only to introduce the terminology and some of
the concepts� These notes were written faster than I can read and may make no
sense in spots� Were I to do them again� the �rst few topics would be rearranged
into a di
erent order� I am told that there are many misprints�
The notes were designed to give a quick and dirty� half semester introduction

to di
erential topology to students that had �nished going through almost all of
Topology� A �rst course by James R� Munkres� There are references to this book
as �Munkres
 in these notes� The notes were written so that all of the material
could be presented by the students in class� This explains various exhortations to
�presenters
 that occur periodically throughout the notes�
I cribbed from three main sources�

��� Serge Lang� Di�erential manifolds� Addison Wesley� �����
��� Morris W� Hirsch� Di�erential topology� Springer�Verlag� ����� and
��� Michael Spivak� Calculus on manifolds� Benjamin� �����

The last is a particularly pretty book that unfortunately seems to be out of print�
I also stole from a few pages in

�	� James R� Munkres� Elementary di�erential topology� Princeton� ����

whose title does not mean what it seems to mean� I do not identify the sources
for the various pieces that show up in the notes� Other sources that might be
interesting are

��� Th� Br�ocker � K� J�anich� Introduction to di�erential topology� Cambridge�
�����

��� John W� Milnor� Topology from the di�erentiable viewpoint� Virginia� �����
and

��� Andrew Wallace� Di�erential topology� �rst steps� Benjamin� �����

Milnor�s book covers an amazing amount of ground in remarkably few pages� Wal�
lace�s takes an independent path and sets some of the machinery needed for discus�
sion of surgery on manifolds�

�� Basics�

Let U be an open subset of Rm � Let f � U � Rn be a map� Note that for
each x � U we have that f�x� is an element of Rn so that f�x� is an n�tuple or
f�x� � �f��x�� � � � � fn�x��� The functions fi�x� are the coordinate functions of f �
Note that each x � U is an m�tuple and can be written x � �x�� � � � � xm��
We can now write down the partial derivatives of f if they exist� They are the

derivatives
�fi
�xj

�
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We say that f is di�erentiable of class C� �short for continuous �rst derivatives�
or just that f is C� if all of the �rst partial derivatives exist and are continuous
at all points of U � We say that f is smooth or di
erentiable of class C� or just
C� if all partial derivatives of all orders exist and are continuous at all points
of U � �We de�ne Cr by requiring that partial derivatives up to order r exist
and be continuous� We can even de�ne class C� by just requiring that the func�
tion f be continuous and make no mention of derivatives�� Later� we will replace
the de�nition of C� by another one that is not tied to the calculation of partial
derivatives�
We can now try to apply these de�nitions to spaces that are modeled on Euclidean

spaces � namely manifolds�
Recall the de�nition of an n�manifold� We say that M is an n�manifold if M

is a separable� metric space so that every point x � M has a neighborhood U
in M with a homeomorphism �U � U � Rn � Note that the homeomorphism �U
gives each point y � U a set of coordinate values �by reading o
 the coordinates
of �U �y� in Rn �� Thus the functions �U are called coordinate functions� The
open set U is called a coordinate patch� Note that the coordinate patches form
an open cover of M � �We will sometimes refer to the pair �U� �U � as a coordinate

chart�� An alternative wording for the de�nition of an n�manifold is that it is a
separable� metric space with an open cover of sets homeomorphic to Rn � Note that
the topology of M is determined by the open cover in that a set A � M is open
in M if and only if A � U is open in U �i�e�� �U �A � U� is open in Rn � for every
U in the open cover� We will use this later in a certain situation to determine a
topology from a cover of coordinate patches�
Coordinate functions can be used to transfer activities taking place in one or more

manifolds to activities taking place in one or more Euclidean spaces� Consider the
following�
Let M be an m�manifold� let x �M and let N be an n�manifold� Let f � M �

N be a map taking x to y � N � Let U be a coordinate patch about x and V be a
coordinate patch about y � Then f���V � is open in M and intersects U in an open
set� Thus there are open sets W � Rm and W � � Rn so that �V �f ����U is de�ned
from W to W � after making suitable restrictions� Thus the function f between M
and N has been turned into a function between open subsets of Euclidean spaces�
Various phrases are attached to this process� The function �V � f � ���U is said to
be an expression of f in local coordinates or f expressed in local coordinates�
It is tempting to say that f is C� �or smooth or Cr � at x if �V � f � ���U is

C� �or smooth or Cr � and that the partial derivatives of f are just the partial
derivatives of �V � f � ���U � However there are problems with this that we will go
into� The problem of consistently determining when a function f is di
erentiable
requires a certain amount of work� The problem of determining exactly what the
derivative of f should be turns out to need even more work�
What are the problems� Consider the following homeomorphisms from R to
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itself� Let
��x� � x� and

��x� �

�
x� x � �

�x� x � ��

The space R is a ��manifold because each x � R has a neighborhood �namely R

itself� that is homeomorphic to R � The functions � and � are possible choices for
such a homeomorphism� Now let M and N be the ��manifolds whose underlying
space is R � where R is the only coordinate patch for each of M and N � and where
M uses � as its coordinate function and N uses � for its coordinate function�
Consider the identity map f from R to itself� This can be viewed as a map from
M to M � from M to N � from N to M and from N to N � Now we note that the
maps � � f ���� and � � f ���� are di
erentiable but � � f ���� and � � f ����
are not� Thus f is di
erentiable as a map from M to M and from N to N � but
not from M to N and not from N to M �
The problem arises now if we use both � and � as choices for coordinate func�

tions for a single ��manifold� �Such choices are almost never avoidable since an
n�manifold will usually have to be covered by overlapping open sets with homeo�
morphisms to Rn � Consider a collection of open sets that demonstrates that the
circle is a ��manifold�� Multiple choices of coordinate functions mean that there
are multiple ways to express a function in local coordinates� For example� if both �
and � are available as coordinate functions� then the answer to the question as to
whether the identity from R to itself is di
erentiable will depend on the coordinate
functions used� We need a way to insure that a choice of coordinate functions does
not make the question of di
erentiability ambiguous�
We can now give a de�nition of a di
erentiable n�manifold� The de�nition of an

n�manifold is imitated but with a couple of changes� One is for convenience� and the
other is to make the notion of di
erentiability unambiguous� A separable� metric
space M is a di
erentiable n�manifold of class Cr �or just a Cr n�manifold�� � �
r � � � if there is an open cover O of M so that each U � O has a homeomorphism
�U � U � U � where U � is an open subset of Rn and so that for each U and V in
O with U � V �� 	 �

�
�V j�U�V �

� � ��U j�U�V �

���
� �U �U � V �� �V �U � V �

is Cr � The function
�
�V j�U�V �

� � ��U j�U�V �

���
is known as an overlap map� The

de�nition requires that all overlap maps be Cr � We will add one more condition
later when it becomes convenient to have it and when the reasons for it become
more apparent� The new condition will not change the de�nition and what we have
so far will do�
If we regard R as a ��manifold and use � above as its only coordinate map� then

R is a C� manifold� It is also a C� manifold if we use � as its only coordinate

	



function� However� if we use both � and � as coordinate functions� then we only
get a C� manifold�
We can now attack the idea of di
erentiable function between Cr manifolds�

Almost as before� let M be a Cr m�manifold� let x � M � let N be a Cr n�
manifold� let f � M � N be a map taking x to y � N � let U be a coordinate
patch about x � and let V be a coordinate patch about y � We say that f is
di
erentiable of class Cs � s � r � at x if �V � f � ���U �with suitable restrictions� is
a Cs map from an open set in Rm containing �U �x� to an open set in Rn � We
say that f is di
erentiable of class Cs if f is di
erentiable of class Cs at every
x �M �
We accept as a temporary black box� A composition of Cr maps between open

sets in Euclidean spaces is Cr � We use this to verify� Whether the function f of
the previous paragraph is discovered to be Cs at x is independent of the coordinate
patches and functions used� �Presenters� Check it out�� Thus a function is Cs if
every expression of f in local coordinates is Cs �
The actual derivative of a di
erentiable function is another matter� Consider

R as a ��manifold with ���x� � x and ���x� � �x as the available coordinate
functions� It is easily checked that the �only two� overlap maps are C� � Thus R
with these coordinate functions is a C� ��manifold� Now consider the identity
function f from R to itself� We might consider �� � f � ���� � or �� � f � ���� � or

�� � f � ���� � or �� � f � ���� to try to discuss the derivative of f at a given point�
However� the four expressions above give three possbible candidates for the value
of f � at any given point�
An attempt can be made to get around this in the same way that we got around

ambiguities in the notion of di
erentiability� We could try to restrict the overlap
maps even further� The requirement could be that the overlap maps introduce no
stretching� This can be done but it turns out to be incredibly restrictive� Some
manifolds� such as S� and products of S� with itself� can be given such structures�
but in�nitely many others can not� Another approach is used�
The calculation of derivative for functions from Rm to Rn make use of the fact

that Euclidean spaces are vector spaces and that a �calculus of displacement
 is
available� Displacement is done with vectors� Vectors have the properties of length
and direction which can be exploited� In a manifold� the notions of length and
direction are handled by tools that can be adapted to the manifold and that don�t
depend on a notion of straightness� Speci�cally� we will use curves � di
erentiable
functions from R to the manifold� If we knew what the derivative of a curve
was� then we would say that the derivative at a point was giving us a direction
and speed �the norm of the derivative� was giving a length� It turns out that a
workable system can be invented even if the derivative of a curve is not known� All
you need to know is when two curves �deserve the same derivative
 and how to
form equivalence classes�
As preparation� we review derivatives of curves into Rn � Let f � R � Rn
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have coordinate functions �f�� � � � � fn�� Then f � � �f ��� � � � � f
�
n� and� for a given x �

f ��x� � �f ���x�� � � � � f
�

n�x�� which is regarded as a vector that is tangent to the curve
f at f�x�� For example� the straight line tangent to f at f�x� can be formed as
T �t� � f�x� � t�f ��x��� The point of tangency is at T ��� � f�x��

We are now ready for some de�nitions� Let M be a Cr n�manifold� r � ��
let x � M and let U be a coordinate patch containing x � Let C�x� be the set
of all f � V � U so that V � R is open� � � V � f is C� and f��� � x �
�Why is C�x� not empty�� We de�ne a relation on C�x� by saying that f 
 g
if ��U � f����� � ��U � g������ �Presenters� show that this does not depend on the
coordinate patch U � and show that this is an equivalence relation� This assumes a
chain rule for maps between open subsets of Euclidean space� Such a chain rule is
written out in the next section��

We de�ne Tx to be the set of equivalence classes and call it the the tangent space
to M at x � Elements of Tx are called tangent vectors at x � Of course� the word
�vector
 is not yet justi�ed�

We note that ��U � Tx � Rn de�ned by �f � �� ��U �f����� is well de�ned and one
to one because of the way the classes of Tx are de�ned� We claim that it is also a
surjection� Let d be a vector in Rn � We can form the straight line l � R� Rn by
l�t� � �U �x� � td � There is an open set V in R containing � so that f � ���U � l
is de�ned on V � Also� f��� � x and f is C� since �U � f � l is C� � �In the last
claim� we used the identity coordinate function from R to itself in regarding R as

a ��manifold�� Now ��U �f � � l���� � d � so ��U is onto�

We now have a bijection ��U between Tx and the vector space Rn � We can use

this to de�ne a vector space structure on Tx by saying that �f �� �g� � ����U ���U �f ��
��U �g�� and r�f � � ����U �r��U �f �� � Not only does this give us a vector space structure

on Tx but it makes ��U an isomorphism� We will make use of this isomorphism
later� so it is worth summarizing in a lemma�

Lemma ���� Let �U � U � Rn be a coordinate function and x � U � Then
��U � Tx � Rn de�ned by �f � �� ��U � f����� is an isomorphism�

Let M be a Cr m�manifold and let N be a Cs n�manifold� r and s at least
�� We are now ready to talk derivatives� Let f � M � N be a C� map� Let x be
in M with y � f�x�� We will de�ne a function from Tx to Ty � Let g be a curve
representing a tangent vector at x � Then we de�ne Dfx��g�� � �f � g� � �Presenters�
this is well de�ned and is a linear function from the vector space Tx to the vector
space Ty ��

Proposition ��� �The chain rule�� Let M � N and P be di�erentiable man�

ifolds of class at least C� � Let f � M � N and h � N � P be di�erentiable of

class at least C� � Let x �M and let y � f�x� � Then D�h � f�x � �Dhy� � �Dfx� �
Proof� �Presenters� � � � ��
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The chain rule is actually one step in a construction designed to make the deriva�
tive a functor� It is not very interesting when applied only to the tangent space
at one point� but it is a start� The other half of this start is the following trivial
lemma�

Lemma ���� Let M be a Cr m�manifold� r � � � and let i � M � M be the

identity map� Then for any x �M � Dix � Tx � Tx is the identity�

Corollary ������ Let M and N be Cr m�manifolds� r � � � and let h be a

C� homeomorphism between them whose inverse is C� � Then for any x � M �

Dhx � Tx � Th�x� is an isomorphism�

The approach taken here is not the only approach to tangent vectors and tangent
spaces� There are at least three approaches �and possibly more� that appear quite
di
erent� but which give structures with identical behavior�
The next topic will �ll in the black box mentioned above� compositions of Cr

maps between open sets in Euclidean spaces are Cr maps� Even further� we will
derive a chain rule for maps between Euclidean spaces� This will then be used to
put a structure on the collection of all Tx � x �M �

�� Derivative and Chain rule in Euclidean spaces�

If f � R� R is a function� then its derivative at x is de�ned by

f ��x� � lim
h��

f�x� h�� f�x�

h
�

If we try to generalize to functions f � Rm � Rn � then we run into the problem of
dividing by a vector�
If we return to the case of f � R � R � then the de�nition of derivative can be

reinterpreted to say that f is di
erentiable at x and that its derivative at x has
the value f ��x� if

lim
h��

f�x� h�� f�x�� f ��x�h

h
� ��

The function h �� f ��x�h is a linear function from R to R � If we call this linear
function � � then we have that f is di
erentiable at x if there is a linear function
� � R� R so that

lim
h��

f�x� h�� f�x� � ��h�

h
� ��

The number f ��x� is just the slope of the linear function � � Instead of de�ning
the derivative of f at x to be the slope of the linear function � we can de�ne the
derivative of f at x to be the linear function � itself� This gives a setting that can
be imitated in higher dimensions� Note that since the de�nition involves a limit
at a speci�c point� we only need to have f de�ned on an open set containing the
point� This will be re�ected in the setting of the de�ntion�
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Let f � U � Rn be a function where U is an open subset of Rm � We say that
f is di
erentiable at x � U if there is a linear function � � Rm � Rn so that

lim
h��

kf�x� h�� f�x� � ��h�k
khk � ��

We could also say

lim
h��

f�x� h�� f�x�� ��h�

khk � �

since a vector goes to zero if and only if its length goes to zero� We say that
the derivative of f at x is � and denote it Dfx � The quotients make sense
since the denominators are real numbers� Note that the �domain
 of the limit is
U �x � fu�xju � Ug which is the translation of the open set U that carries x to
� and is thus an open set in Rm containing �� In ��� �� form� the limit statement
reads� for any � 	 �� there is a � 	 � so that for any h �� � in the � �ball about �
in Rm � we have that

kf�x� h�� f�x�� ��h�k
khk 
 ��

Or� in other words�

kf�x� h�� f�x�� ��h�k 
 �khk�
Proposition ���� Let f � U � Rn be di�erentiable at x where U is an open set

in Rm � Then Dfx is unique�

Proof� Suppose that linear �i � R
m � Rn � i � �� � both satisfy

lim
h��

kf�x� h�� f�x�� �i�h�k
khk � ��

Thus for � 	 � and restriction of h to a suitable � �ball we can make

kf�x� h�� f�x�� �i�h�k 
 �

�
khk�

Now�

k���h�� ���h�k � k���h�� f�x� h� � f�x� � f�x� h�� f�x�� ���h�k
� k���h�� f�x� h� � f�x�k� kf�x� h�� f�x�� ���h�k

 �khk�

This gives the not surprising statement that the �i do not di
er by much on small
vectors� But the �i are linear and we can use this and the inequality above to show

�



that they do not di
er by much on any vector� Let v � Rm be arbitrary and let
t 	 � be small enough so that tv is in the � �ball� Then

t�kvk � �ktvk
	 k���tv�� ���tv�k
� kt���v�� t���v�k
� tk���v�� ���v�k�

So
k���v�� ���v�k 
 �kvk�

But this can be done for this v and any � 	 �� So k���v� � ���v�k � � and
�� � �� �

The next result� the chain rule� �lls in the �black box
 from the previous section�
In its proof� we will need the continuity of certain linear functions� This is straight�
forward but not trivial in the �nite dimensional setting that we are in if we use the
usual topology on the Euclidean spaces� It is false in in�nite dimensions for most
topologies that are put on the vector spaces�
We will need the notion of the norm of a linear map� Let � � Rm � Rn be a

linear map� Let B be the closed unit ball in Rm and let k�k be the maximum
distance from � to a point in f�B�� This exists and is �nite since B is compact�
It may be zero if f is the zero linear map� Let v � Rm � We have the following
inequality�

k��v�k � kvk 
 k�
�

v

kvk
�
k � kvk 
 k�k�

The �niteness of k�k depends on the continuity of � � As mentioned above� linear
maps with �nite dimensional domains are continuous� In an in�nite dimensional
setting� the �niteness of k�k is equivalent to the continuity of � �

Theorem ��� �Chain Rule on Euclidean spaces�� If U � Rm and V � Rn

are open sets and f � U � Rn and g � V � Rp are di�erentiable at a � U and

b � f�a� � V respectively� then g � f � U � Rp is di�erentiable at a and

D�g � f�a � Dgb �Dfa�

Proof� Another way to interpret the de�nition of the derivative of f at x is to
say that if we de�ne

E�h� � f�x� h�� f�x��Dfx�h��

then for any � 	 �� there is a � 	 � so that khk 
 � implies kE�h�j 
 �khk � Note
that E��� � � so that we do not have to say � 
 khk 
 � �

�



Let � � Dfa and � � Dgb � We have

kg�f�x� h��� g�f�x��� ����h��k
� kg�f�x� � ��h� �E�h�

�� g�f�x�� � ����h� �E�h��k
� k����h� �E�h��� ����h��k

� kg�f�x� � ��h� �E�h�
�� g�f�x�� � ����h� �E�h��k

� k��E�h��k
where the equality follows from the linearity of � � We will be done if for a given
� 	 � we can �nd a � 	 � so that khk 
 � makes

��� kg�f�x� � ��h� �E�h�
�� g�f�x��� ����h� �E�h��k 
 �

�
khk

and

��� k��E�h��k 
 �

�
khk�

We have

kg�f�x� � ��h� �E�h�
�� g�f�x�� � ����h� �E�h��k 
 ��k��h� �E�h�k

if

��� k��h� �E�h�k 
 ���

Now

�	�

k��h� �E�h�k � k��h�k� kE�h�k

 k�k 
 khk� k��khk
�
�k�k� ��

�khk
for

��� khk 
 ��

so
��k��h� � E�h�k 
 ���k�k� ����

�khk



�

�
khk

if all of

��� �� 

�

	
� �� 


�

	k�k � �� 
 �

��



hold� Thus we get ��� if we can satisfy all of ���� Now

k��E�h��k � k�k 
 kE�h�k

 ��k�k 
 khk



�

�
khk

if

��� �� 

�

�k�k �

Thus we get ��� if we can satisfy ����
So given � � we determine �� and �� from ��� and ���� This determines �� and

�� which puts our �rst restriction � � �� on � because of ���� We must deal with
���� But we can get this from �	� by putting the resriction

� 

��

k�k� ��

on � � This �nishes the proof�

We give two easily computed derivatives�

Lemma ���� Let f � Rm � Rn be a linear mapping� Then for all x � Rm �

Dfx � f �

Proof� With f linear� f�x� h� � f�x� � f�h� so

lim
h��

f�x� h�� f�x�� f�h�

khk � ��

Since we need a linear function of h that gives the above limit and the linear f
does the trick� f must be the derivative�

Lemma ���� If f is a constant� then all Dfx are the zero tranformation�

Proof� The linear map � works in

lim
h��

f�x� h�� f�x�� ��h�

khk � ��

We end with a lemma that we will use to relate two of the notions of derivative
that we have used so far� We assume the usual notation that if � � A � C and
� � B � D are functions� then the notation ��� refers to the function from A�B
to C �D de�ned by �� � ���a� b� � ���a�� ��b��� We also invent a notation that
if � � A � B and � � A � C are given� then ��� �� refers to the function from A
to B � C de�ned by ��� ���a� � ���a�� ��a���

��



Lemma ���� If U � Rm and V � Rs are open sets and f � U � Rn and

g � V � Rt are di�erentiable at a � U and b � V respectively� then f � g �
U �V � Rn�Rt is di�erentiable at �a� b� and the derivative there is Dfa�Dgb �
If� in addition� h � U � Rq is di�erentiable at a � then �f� h� is di�erentiable at a
and the derivative there is �Dfa� Dha� �

Proof� Consider

k�f � g��a� h�� b� h��� �f � g��a� b�� �Dfa �Dgb��h�� h��k
�k�f�a� h��� g�b� h��

�� �f�a�� g�b��� �Dfa�h��� Dgb�h���k
�k�f�a� h��� f�a��Dfa�h�� � g�b� h��� g�b��Dgb�h��

�k����

The i�th coordinate� i � �� �� in ��� can be kept less than �khik by con�ning hi
to some �i �ball� So if

k�h�� h��k � maxfkh�k� kh�kg 
 minf��� ��g�

then both coordinates in ��� are less than

�maxfkh�k� kh�kg � �k�h�� h��k�

This proves the �rst part�
Now consider the diagonal map d � U � Rm�Rm de�ned by d�u� � �u� u�� This

is linear so Dd � d � Note that �f� h� � �f�h��d � Now D�f� h� � D�f�h��Dd �
�Df �Dh� � d � �Df�Dh��

We can use this to relate the standard notion of the derivative of a curve� to the
notion of a derivative as developed in this section� Recall that if f is a function
from R to R � then f ��x� gives the slope of Dfx � Thus for f and g from R to R �
we have f ��x� � g��x� if and only if Dfx � Dgx � Even more� we can recover f ��x�
from Dfx � Since f ��x� is the slope of the linear map Dfx � R� R � we must have
f ��x� � Dfx����
Now if we have f � R� Rn � we have f � �f�� � � � � fn�� By Lemma ���� we have

Df � �Df�� � � � � Dfn�� If g � R� Rn is given� then we also have f ��x� � g��x� if
and only if Dfx � Dgx � And further�

f ��x� �
�
f ���x�� � � � � f

�

n�x�
�

�
�
D�f��x���� � � � � D�fn�x���

�
� Dfx����

Going back to the setting of Section �� we can now say that two curves f and g
represent the same tangent vector if D��U � f�� � D��U � g�� �
We leave as easy exercises the fact that the derivative is a linear operator on

functions� Speci�cally� D�f � g�x � Dfx �Dgx and D�rf�x � rDfx �

��



�� Three derivatives�

We have been exposed to three kinds of derivatives� One is the usual Calculus
I�III derivative and has shown up in

f ��x� � lim
h��

f�x� h�� f�x�

h

for a function from R to R � and in

�f�� � � � � fn�
� � �f ��� � � � � f

�

n�

for a function from R to Rn � The second kind is the �advanced calculus
 derivative
de�ned in the previous section as the best linear approximation to a function from
Rm to Rn � The third kind was de�ned in the �rst section as a linear function on a
tangent space� We would like to combine these three notions as much as possible�
expecially as we have used the same notation Dfx for the last two of them� Because
of this� we will agree for this section only to use D for the �advanced calculus

derivative �best linear approximation��

The use of f � has only been used in these notes to de�ne classes of curves to build
tangent spaces and for the isomorphism of Lemma ���� In the previous section� we
showed that the use of f � can be eliminated from de�nition of classes in tangent
spaces� That still leaves the use of f � in the isomorphism of Lemma ���� We will
try to eliminate as many references to f � as possible by �ltering all such references
through an application of Lemma ����

We now concentrate on D and D � We cannot eliminate D since it is essential in
de�ning the notion of di
erentiable for functions between Euclidean spaces� How�
ever� what we can aim for is to show such a strong equivalence between D and D
that distinctions between them become unimportant�

Here is the �rst lemma to try to blur some distinctions�

Lemma ���� Let U � Rm be an open set with u � U � Let f � U � Rn be C�

and let v � f�u� � Let i � U � Rm be inclusion and let j � Rn � Rn be the

identity� In the following diagram� �i and �j are the isomorphisms of Lemma ����

Tu w
�i Rm

Tv

u
Dfu

w
�j

Rn
u
h � �j �Dfu ��i��

If h is de�ned as shown in the diagram� then h � Dfu �

��



Proof� We consider ��j �Dfu ��i����d� for some d in Rm � We start with �i���d��

For l � R� Rn de�ned by l�t� � i�u��td � u�td � we have �i���d� � �i���l� � �l� �
So

��j �Dfu ��i����d� � ��j �Dfu��l�
� �j��f � l��
� �f � l�����
� D�f � l�����
�
�
Dfl��� �Dl�

�
���

� Dfu�Dl�����

� Dfu�l
�����

� Dfu�d��

This says that the two notions of derivative behave the same for functions between
Euclidean spaces� Now we bring in manifolds� In the statement we simplify the
notation for the coordinate function on a patch U by dropping the subscript U
and write � instead of �U � This is to keep the notation from exploding�

Lemma ���� Let U be a coordinate patch in a Cr m�manifold M with coordinate

function � and let u � U � Let V � ��U� regarded as an m�manifold with one

coordinate patch V whose coordinate function is the inclusion map i � V � Rm �

Then the following is a commutative diagram of isomorphisms�

Tu w
��

�
�
�
��

D�u

Rm

T��u�

h
h
h
hj�i

Proof� We know from Lemma ��� that �� and �i are isomorphisms� If the diagram
commutes� then D�u will be an isomorphism� To see that the diagram commutes�

let �f � be in Tu � We have ���f � � �� � f������ Now D�u�f � � �� � f � and �i�� � f � �
�i � � � f����� � �� � f������
The next lemma looks at maps between man�olds� Again we leave subscripts o


the coordinate functions�

Lemma ���� Let M be an m�manifold and N be an n�manifold� each of class at

least �� Let f � M � N be a C� map and let u �M with v � f�u� � Let U be a

coordinate patch around u with coordinate function � and let V be a coordinate

patch around v with coordinate function 
 � To avoid restrictions� assume that

f�U� � V and use this to de�ne h � 
 � f � ��� � Let i and j be the inclusions

�	



of ��U� and 
�V � respectively into Rm and Rn � Then the following diagram

commutes and the non�vertical arrows are isomorphisms�

Tu�
�
�
��

D�u

u

Dfu

w
�� Rm

u

Dh��u�

T��u�

h
h
h
hj�i

u
Dh��u�

T��v�A
A
A
AC

�j

Tv

h
h
hhjD
v

w
�


Rn

Proof� The isomorphisms and the commutativity of all but the left hand trapezoid
follow from the previous two lemmas� The commutativity of the left hand trapezoid
follows from the chain rule�

There are three main quadrilaterals in the diagram of Lemma ��� � the outer
square and the two trapezoids� Each can be interpreted in words� The outer square
says that when h is an expression of f in local coordinates� then the isomorphisms
induced by the coordinate functions used in the expression conjugate the action of
Df on the tangent spaces to the action of Dh as a linear map between Euclidean
spaces� The two trapezoids say almost identical things in slightly di
erent settings�
At this point the notation D ends� Even though there are two di
erent notions

of derivative that will have the same notation� the ambiguity will not be important�

�� Higher derivatives�

We give one more section that concentrates on maps between Euclidean spaces�
I�m trying as hard as I can to avoid partial derivatives� Before partial derivatives

make an appearance� we have that if f � Rm � Rn is di
erentiable at x � then the
derivative Dfx at x is a linear map from Rm to Rn � Further if f is di
erentiable
on all points in Rm � then we have a function Df from Rm to the set of linear
transformations from Rm to Rn � We can call this function the derivative of f � If
we stop here� then partial derivatives have not been brought in� They are brought
in if we try to make the set of linear transformations from Rm to Rn look more
familiar�
In order to make the set of linear transformations from Rm to Rn look more

familiar� we need to choose a prefered basis for both Rm and Rn � If we choose the
standard bases �unit vectors in the coordinate directions�� then a linear transforma�
tion from Rm to Rm is represented by an n�m matrix� At this point the partial

��



derivatives have appeared� This is because the particular matrix that represents
Dfx using the standard bases is the matrix whose entries are

�Dfx�i�j �
�fi
�xj

if we regard the matrix as acting on the left and we regard elements of Rm and
Rn as column vectors� We drop the partial derivatives for several paragraphs to
inspect the structure that we have built so far�
We have that Df is a function from Rm to the set of linear transformation

from Rm to Rn � With our choice of bases� we have a particular one to one
correspondence between the set of linear transformations from Rm to Rn and the
set of n � m matrices� Thus our choice of basis allows us to look at Df as a
function from Rm to the set of n�m matrices�
We can add extra structure to the set of n�m matrices and make a topological

space and a vector space out of it� This can be done by letting basis vectors for the
set of n�m matrices be those n�m matrices with a one in a single position and
zeros everywhere else� This �second� choice now makes Df a function from Rm to
Rnm �
Now that Df is a function between Euclidean spaces� we can discuss two things

� the continuity of Df and the di
erentiability of Df � If Df is continuous� then
f is of class C� � If Df is di
erentiable� then its derivative D�f is a function from

Rm to Rnm�

� We see that we can now discuss higher derivatives and higher classes
of di
erentiability� In particular� we can point out that f is of class Cr if and only
if Df is of class Cr�� �
Note that linear functions are in�nitely di
erentiable� In fact� if f is linear� then

Dfx � f for all x so that Df is a constant �even though each Dfx is not the
constant linear transformation�� Now all higer derivatives of f are zero�
The fact that linear functions are in�nitely di
erentiable is relevant because

choices were made in setting up Df as a function from Rm to Rnm � The corre�
spondence depended on two choices of bases� Di
erent choices of bases give di
erent
correspondences that can be obtained from the original by multiplying by �change
of basis
 matrices at appropriate places� Multiplying by matrices is linear and thus
in�nitley di
erentiable� From this it follows that if f is Cr as measured with one
choice of bases� then it is as measured with another�
We now return to the partial derivatives� Our choice of bases made Df a func�

tion from Rm to Rnm � The coordinates in Rnm are the entries in the matrices
that represent the linear transformations Dfx � These entries are just the partial
derivatives of f at x � Thus the coordinate functions of Df are the partial deriva�
tives� This means that a C� function f has continuous partial derivatives and a
Cr function f has partial derivatives of class Cr�� �
There are converses to this �continuous partial derivatives imply continuously

di
erentiable� but we will not go into this� This might leave a hole a couple of

��



sections down the way� There are proofs of this converse in various books on
advanced calculus�

�� The full de�nition of di�erentiable manifold�

It is now as good a time as any to �nish the de�nition of a di
erentiable manifold�
In discussions that will come up sooner or later� it will be convenient to introduce
more �exibility into our choice of coordinate charts� The addition to the de�nition
will give us this �exibility� We have already seen the need for the �exibility in the
statement of Lemma ��� where we assumed that one coordinate patch mapped into
another in order to avoid having to mess up the notation with restrictions�

Our current de�nition of a Cr m�manifold is that it is a separable� metric space
with an open cover of coordinate patches that have Cr overlap maps� We now
shift our focus from coordinate patches �the domains of the coordinate functions�
to coordinate charts �the domains of the coordinate functions together with the
coordinate functions�� �Our distinction between coordinate patches and coordinate
charts is not exactly standard�� We now de�ne a Cr m�manifold to be a separable�
metric space with a collection of coordinate charts f�U� ��g where � is a homeo�
morphism from U to an open subset of Rm � We drop the subscript from � since
we no longer regard � as determined by U � In fact� there may be many coordinate
functions with the same domain� We put three conditions on the collection of coor�
dinate charts� The �rst two are already familiar� �� The domains of the coordinate
functions shall form an open cover of M � �� The overlap maps shall be Cr � ��
The collection of coordinate charts shall be maximal with respect to conditions �
and �� The collection of coordinate charts is called the di�erential structure for the
manifold�

Condition � seems as though it might introduce some ambiguity as to what the
collection of charts should be� This is not the case� Let A be a collection of
coordinate charts on M that satis�es � and � but not �� Let B be a collection of
coordinate charts on M that satisfy nothing in particular� It turns out that in order
to tell if A � B is a collection that satis�es � and �� it is only necessary to check�
for each chart �U� �� in B � that all overlap maps involving �U� �� and a chart in A
are Cr � �Presenters� � � � �� Thus the �admissibility
 of B as a possible addition to
A depends only on the individual charts in B and not on any properties of B as a
collection� Thus a maximal collection based on A is obtained by throwing in any
chart whose overlap maps with the charts of A are Cr �

This has several consequences� The �rst consequence discusses how little infor�
mation is needed to determine the structure on a manifold� Let C be a collection
of coordinate charts satisfying � and �� Let A and B be subcollections of C that
also satisfy � and �� All the charts in C are compatible with A and also with B �
Thus if we start with only A and maximize to obtain �� we will add all the charts
originally in C � Similarly� if we start with only B and maximize to obtain �� we
will add all the charts originally in C � Thus� the di
erential structure on a manifold
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is determined by the class of di
erentiability desired and by any subcollection of
charts of the di
erentiable structure whose domains cover the manifold�
The second consequence discusses the richness of charts available� Let M be a

Cr m�manifold and let x be a point in an open set E of M and let �U� �� be a
coordinate chart with x � U � But now �U �E� �jU�E� is a valid coordinate chart�
If it were not in the collection of charts� then its overlap maps with all existing
charts would just be restrictions of existing overlap maps and would be Cr � By
maximality� it must be in the collection of charts� This is the last time we will
repeat this argument�
Now� instead of working with �jU�E � we will just assume that �jU�E has replaced

� and that U � E � We will do further replacements introduced by the code words
�we now assume
 to improve things even more� Now ��x� � ��U� and ��U� is an
open set in Rm � There is an open ��box

D � f�x�� � � � � xm�jai 
 xi 
 bi� bi � ai � �� � � i � mg

in ��U� with ��x� � ��b� � a����� � � � � �bm � am���� at its center� By restricting
� to ����D�� we now assume that ��U� � D � There is a C� homeomorphism
taking D to Rm � This can be done in several steps� First take D to the open
��box centered at the origin by translating ��x� to the origin� Then dilate by ���
to get to ������ ����m � Now take ������ ����m to Rm by taking �x�� � � � � xm� to
�tan�x��� � � � � tan�xm��� The tangent function is C� and has C� inverse� Thus we
can now assume that the coordinate function takes U to all of Rm � What we have
shown is that every point has arbitrarily small neighborhoods that are domains of
charts whose image is all of Rm �
We can combine our two consequences and say that every di
erentiable structure

has charts whose images are all Rm and whose domains contain a neighborhood
base for every point in the manifold�

	� The tangent space of a manifold�

Let M be a Cr m�manifold and let TM be the union of all the Tx � for x �M �
We want to de�ne a structure on TM � This means two things� We want to de�ne
a topology on TM � But the current subject is di
erentiable manifolds� So we also
want to de�ne a set of di
erentiable coordinate patches that cover TM � When we
have done so� we will have de�ned the tangent space of the manifold M �
It is possible to spend an in�nite amount of time on the tangent space� I want

to avoid that� We will see to what extent I succeed�
Since each Tx in TM is a vector space isomorphic to Rm � it is tempting to

associate TM with M�Rm � However� this turns out not to be the right structure
in general� For a subset U �M � we can de�ne TU to be the union of all the Tx �
for x � S � When U is a coordinate patch� then U �Rm does turn out to be the
right structure for TU � From this� the right structure for TM will follow�
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There are two possible approaches toward proving that the structure for TU is
U�Rm when U is a coordinate patch of M � One is to come up with a mathematical
reason as to why this is so� The other is to simply make this a de�nition� The second
approach is not at all unreasonable since we will show that the coordinate function
induces a natural one to one correspondence between TU and U �Rm � This is
reminiscent of our de�nition of the vector space structure on Tx �
The second approach above �the �just make it a de�nition
 approach� has many

advantages� The �rst is that it gives reasonable answers and that it is easier than
the �rst approach� Another advantage is that many structures get de�ned on
di
erentiable manifolds and they are usually de�ned patch by patch� The de�nition
usually starts by declaring that the structure restricted to any single coordinate
patch is a product� Often this is justi�ed by the fact that the coordinate function
induces a natural one to one correspondence between the structure over the patch
and the appropriate product� It might be considered a precedent that if it is proven
laboriously that the tangent space over a coordinate patch should be a product�
then it should be proven that all other structures are products over coordinate
patches� We will take the point of view that once it is shown that tangent spaces
should be products over coordinate patches� then it will be reasonable to accept as
given that other structures de�ned in the future should be products over coordinate
patches�
We will divide our discussion of the tangent space into two parts� In this sec�

tion we will assume that the tangent space over a coordinate patch is a product�
�Actually� we will make it look rather reasonable because of the one to one corre�
spondence�� In later sections we will justify this�
Now let M be a Cr m�manifold� and let �U� �� be a coordinate chart for M �

We de�ne

TM �
�
x�M

Tx

and

TU �
�
x�U

Tx�

Note that these are disjoint unions since each Tx consists of classes of curves that
are required �among other things� to carry � to x � Thus Tx and Ty have nothing
in common unless x � y �
We have a function � � TM � M which takes each vector v in TM to the

unique x �M for which v � Tx � Note that this can be thought of as evaluation at
�� Again� this because Tx consists of classes of curves into M which carry � to x �
We now consider the coordinate chart �U� ��� Let U � � ��U� � Rm �

Recall the isomorphism �� � Tu � Rm for each u � U de�ned by ���f � � ���f������
This is imperfect notation since it is a di
erent isomorphism for each u � U � We

recycle this notation to give a function �� � TU � Rm de�ned by exactly the same
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formula ���f � � �� �f������ It is an isomorphism when restricted to a single Tu � u �
U � We also invent a function  � � TU � Rm de�ned by  ��f � � ����f �� � �� � f�����
The last is well de�ned since all f in a class are required to take � to the same
point�
De�ne a function !� � TU � U � �Rm by

!��v� �
�
 ��v�� ���v�

�
�

The function !� is a one to one correspondence� To show one to one� we note that
if v and w come from di
erent Tx and Ty � then  ��v� ��  ��w� since � is one to

one� If v and w come from one Tx but v �� w � then ���v� �� ���w� because �� is
an isomorphism when restricted to Tx � The fuction is onto because � � U � U � is

onto and each Tx � x � U is carried onto f��x�g �Rm by �� �
We now declare the one to one correspondence !� between TU and U � �Rm to

be a homeomorphism by setting the open sets in TU to be the images under !���

of the open sets in U � �Rm � Since U � �Rm is an open subset of R�m � we have
ourselves a coordinate chart for TM � Since the domains of the coordinate charts
of M cover M � the coordinate charts that we have just de�ned cover TM � As
mentioned in Section �� this determines the topology on TM � We must check that
the overlap maps are well behaved�
Note that TU �TV �� 	 if and only if U �V �� 	 � In fact� TU �TV � T �U �V ��

Assume that �U� �� and �V� 
� are coordinate charts with U �V �� 	 � Consider the
homeomorphisms

!� � TU � ��U��Rm�

!
 � TV � 
�V ��Rm

and the restrictions to which we give the same names

!� � T �U � V �� ��U � V ��Rm�

!
 � T �U � V �� 
�U � V ��Rm�

We now must consider

�!
 � !���� � ��U � V ��Rm � 
�U � V ��Rm

as an overlap map� We �rst identify what is going on in each coordinate�
On the �rst coordinate� we are looking at a map that takes  ��v� to  
�v�� But

 ��v� is just ����v�� or ��x� where v � Tx � This is carried to

 
�v� � 
���v��

� 
�x�

� �
 � �������x��
� �
 � ����� ��v���
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Thus the action on the �rst coordinate is just that of �
 � ���� or the overlap map
between the charts �U� �� and �V� 
��

On the second coordinate� there is no subtlety� The map takes ���v� to

�
�v� � ��
 � ���������v��

and the action on the second coordinate is that of ��
 � ������
The action on the second coordinate can be reinterpreted with the aid of Lemma

���� In the setting of that lemma� let the map f be the identity� With this
assumption� the lemma is discussing the identity map expressed in local coordinates
under two di
erent coordinate functions� This expression in local coordinates is
just the overlap map� The conclusion of the lemma �the outer square� is that

the derivative of the overlap map is the composition ��
 � ������ Of course this
notation suppresses the fact that these derivatives are taken at speci�c points�
More accurately� the map from f��x�g �Rm to f
�x�g �Rm is the derivative of
the overlap map �
 � ���� at ��x��
We now prepare ourselves to forget that we are looking at maps developed from

an overlap map of M and use h to denote �
 � ����� Let U � � ��U � V � and let
V � � 
�U � V �� Our analysis above says that we are looking at a map

!h � U � �Rm � V � �Rm

that takes �u� v� to �h�u�� Dhu�v��� We will analyze the di
erentiability of this
map by representing it as a composition of several maps�

Our discussion in Section 	 gives us a map A � U � � Rm�

that takes u to the
matrix representation of Dhu � By de�nition of class� this map is of class Cr�� if
h is of class Cr � If i represents the identity on U � � then we get the map

�i� A� � U � � U � �Rm�

which is of class Cr�� by Lemma ���� If j represents the identity on Rm � then we
have the map

��i� A�� j� � U � �Rm � U � �Rm� �Rm

which is also of class Cr�� by Lemma ���� We have a map B � Rm� �Rm � Rm

which takes �Q� v� to Qv where Q is regarded as an m�m matrix and v � Rm is
regarded as a column vector� The formulas for matrix multiplication are in�nitely
di
erentiable� so B is C� � Now we have that

�h�B� � U � �Rm� �Rm � V � �Rm

is Cr by Lemma ���� Now we have

!h � ��i� A�� j� � �h�B�

which is Cr�� � �This argument was shown to me by Erik Pedersen who said that
the right approach to exercises of this type is to represent the map being analyzed
as the longest possible combination of simpler maps��
We have shown
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Theorem 	��� If M is a Cr manifold� then TM is a Cr�� manifold�

We �nish this section with a few statments about the tangent space of M �
The space TM is an example of a vector bundle� Thus it is often called the

tangent bundle over M to distinguish it from the individual spaces Tx which are
the tangent spaces over the individual x � M � A vector bundle over a space is a
structure over the space that includes a cover of the space and a collection of charts
of the vector bundle that are made of products of the elements of the cover with a
�xed vector space� A careful discussion then has to take place about overlap maps�
We will not go into this�
We have the map � � TM �M which takes each v to the x for which v � Tx �

A section for � or a section of the tangent bundle is a map � � M � TM which
satis�es �� � ���x� � x for all x �M � In words� each x is carried to vector in Tx �
Recall that maps are continuous� so that we have a continuous choice of a vector
at x that is tangent to M at x � Another name for a section of the tangent bundle
is a vector �eld on M �
Note that each Tx has a zero vector� If � � M � TM is a vector �eld� then it is

a non�zero vector �eld if no ��x� is the zero vector� We have shown previously

Theorem 	��� There is no non�zero vector �eld on S� �

Note that if TM has the structure M � Rm � then there is a non�zero vector
�eld� Take your favorite non�zero vector v in Rm and let ��x� � v for all x �M �
We thus have

Corollary 	����� The structure of TS� is not that of S� �R� �


� The Inverse Function Theorem�

In this section we present the �rst of several theorems that derive information
from the derivative of a function� The idea behind such theorems is that if the
derivative is such a good approximation to a function� then properties of the deriva�
tive should be inherited to some extent by the function� The reason that this is
useful is that the linearity of the derivative makes certain properties easy to detect
on level of the derivative�
The main theorem of this section� the Inverse Function Theorem� is that if a C�

function f between manifolds has Dfx a vector space isomorphism for some x �
then f is locally a homeomorphism on some neighborhood of x � The continuity of
the derivative is vital in reaching a conclusion about a neighborhood of x �
There are other features of this section� The �rst theorem that one learns in

calculus that extracts information from the derivative is the Mean Value Theorem�
The importance of this theorem cannot be overemphasized� One of the steps of the
proof of the Inverse Function Theorem is to develop a version of the Mean Value
Theorem in higher dimensions�
Another feature of this section is to introduce the phrase �by local change of

coordinates� we can assume � � � 
 to the reader� This will occur several times�
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once as a consequence of the Inverse Function Theorem that we give as a corollary�
Instead of trying to make a general lemma that states when this phrase can be
invoked� we just give the examples to show how and when it is done�

A third feature of this section is that we avoid partial derivatives to a degree
verging on paranoia� Our arguments lie somewhere between the speci�city of direct
coordinate calculations and the generality of proving these theorems on Banach
spaces� �This last can be done� and is done in several texts��

Lastly� this section unrolls the proof of the main theorem very slowly� Various
intermediate results �such as the Mean Value Theorem� are stated and proven in
the middle of the proof of the main theorem� To prove a homeomorphism� one
must prove that a function is both one to one and onto� The proofs of these two
parts are quite separate and are done in with a large interruption in between to
introduce needed lemmas�

We start by stating the main theorem and giving a corollary� The theorem
guarantees the existence of a homeomorphism and has something to say about the
derivative of the inverse�

Theorem 
�� �Inverse Function Theorem�� Let f � M � N be a Cr func�

tion� r � � � between manifolds� and assume that Dfx is an isomorphism for some

x � M � Then there is an open set U about x so that V � f�U� is open in

N � so that f jU is a homeomorphism onto V and so that �f jU ��� is Cr and if

�f jU ����z� � x � then D
�
�f jU ���

�
z
� �Dfx�

�� �

Corollary 
����� Let f � M � N and x be as in the theorem above with M and

N of class Cr � Then there is an expression h of f in local coordinates so that h
is the identity function from a Euclidean space to itself�

Proof of corollary� Assume that M is an m�manifold� Since Dfx is an
isomorphism� the dimension of Tf�x� is m and N is an m�manifold� Assume the
conclusion of the Inverse Function Theorem with the notation as in the statement�
By the discussion in Section �� we can �nd a coordinate chart �U�� �� with U� � U
in which � is a homeomorphism onto Rm and so that f�U�� is contained in the
domain of a chart �V�� 
� for N � Thus� the expression h� of f in these coordinates
takes Rm to an open subset W of Rm � We know that h� and �h��

�� are Cr �
Let W � f�U�� and let � � �h��

�� � �
jW �� Now �W� �� is is a valid coordinate
chart for N and the expression of f using coordinates �U�� �� and �W� �� is the
identity from Rm to itself�

In the presence of the hypotheses of the Inverse Function Theorem� the corollary
above is usually invoked with the words �by the Inverse Function Theorem we can
assume that the function is just the identity on Rm in local coordinates�


We will start the proof of the Inverse Function Theorem be �rst showing that
there is a neighborhood of x on which f is one to one� The main tool will be a
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technique that controls how much points move under various maps� The main tool
for the control will be a Mean Value Theorem� We will start with that�

Theorem 
�� �Mean Value Theorem�� Let f � Rm � Rn be C� and let

a� b � Rm � Assume that kDfxk � K for some real K � � and for all x on the

straight line from a to b � Then kf�b�� f�a�k � Kkb� ak �
Proof� Let x be on the line L from a to b and let � be greater than �� Consider
h small enough to make the following true�

kf�x� h�� f�x�k � kDfx�h�k � kf�x� h�� f�x��Dfx�h�k 
 �khk�

For such an h �
kf�x� h�� f�x�k 
 kDfx�h�k� �khk

� kDfxk 
 khk� �khk
� �K � ��khk�

Now each x � L has a �x 	 � so that the above holds whenever h is within �x
of x and we get an open cover of L � Pick a Lebesgue number � for this cover and
divide L into intervals of length less than � � Let the endpoints of the intervals be
a � x� 
 x�� 
 
 
 
 xp � b � Now

kf�b�� f�a�k �
X

kf�xi�� f�xi���k

 �K � ��

X
kxi � xi��k

� �K � ��kb� ak�

This can be done for any � 	 � so the statement of the theorem holds�

Proof of the Inverse Function Theorem� injectivity� Since Dfx is a
linear isomorphism� the dimension of the domain and range are the same� Let this
common dimension be m �
We now argue a reduction� We wish to replace the hypothesis of the Inverse

Function Theorem by one which assumes more about f than is given in the state�
ment� This will be another argument about simpli�cations that can be made with
local change of coordinates�
Consider an expression of f in local coordinates� We can call it h now� but we

will make improvements on it and still call it h � This is a function from an open
set in Rm to Rm and it carries the image of x under one coordinate map to the
image of f�x� under another� By composing the �rst coordinate function with a
translation we can assume that the image of x under the �rst coordinate function
is the origin� By composing the other coordinate function with a translation� we
can assume that the image of f�x� under the second coordinate function is also
the origin� Now we have that the expression h takes the origin to the origin� and
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that Dh� is a linear isomorphism from Rm to Rm � We can compose the second
coordinate function with the inverse of this linear isomorphism and we have a new
expression h of f so that it carries the origin to the origin and so that Dh� is the
identity� If the Inverse Function Theorem is proven for h � then it will be true for
the f given in the statment�
We thus invoke the magic words �by a local change of coordinates � � � 
 and we

assume that f is a function from an open set U� in Rm to Rm that takes � to �
and which has Df� as the identity from Rm to Rm �
We now wish to show that there is a neighborhood of � on which f is one to

one� This will follow immediately if we show that for all x� y in some neighborhood
of �� we have

��� kf�x�� f�y�k � �

�
kx� yk�

To get this kind of inequality that says that f does not contract much� we apply
a tranformation that reduces our task to showing that another function does not
expand much� Consider the function g�x� � x � f�x�� Assume we can show that
in some neighborhood of � every x and y in this neighborhood satis�es

���� kg�x�� g�y�k 

�

�
kx� yk�

So
�

�
kx� yk 	 kg�x�� g�y�k

� k�x� y�� �f�x�� f�y��k
� kx� yk � kf�x�� f�y�k�

Thus we get ����
Our task is now to show ����� This is now in a form that can be handled by the

Mean Value Theorem� We will be done by the Mean Value Theorem if we can show
that kDgxk 
 ��� for all x in some neighborhood of the origin� Since f is Cr � so
is g � We know Df� is the identity� so Dg� � D�x � f�x��� � �� We now need a
continuity argument�
Because Dg is continuous� we have a continuous map �which we can call Dg �

from U� � the domain of g � to Rm�

which we identify with the space of linear maps
from Rm to itself� It takes u � U� to Dgu � We have

U� �Rm
w

Dg � �
Rm� �Rm

w
�

Rm

where � represents matrix multiplication� The composition is continuous� The
composition takes �x� v� to Dgx�v��
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We now use this to estimate kDgxk for values of x near �� We know Dg� is
the zero map and kDg�k � �� That is� the image of the unit ball B in Rm is
the point � in Rm under Dg� � By the continuity of � � �Dg � �� each �x� v� in
�f�g�B� � U��Rm has a ��x�v� so that �y� w� within ��x�v� of �x� v� implies that
Dgy�w� is withing ��� of �� This gives an open cover of �f�g�B� with Lebesgue
number � � Now for x within � of �� we have Dgx�B� within ��� of �� Thus for
x within � of �� we have kDgxk 
 ����

Combining this with our observations above� we have that f is one to one on the
open ball E of radius � around ��

Before we start work on the proof that f is surjective onto some open set in Rm

that contains �� we need some preliminaries� As a start� it becomes important at
this point to mention that we are using the Euclidean metric on Rm � That is� the
square root of the sum of the squares of the di
erences of the coordinates� We use
� to denote this metric� The property that we need from this metric is that straight
lines give the shortest distances betweeen points� We only need this in the form of
a strict triangle inequality for non�degenerate triangles which can be deduced from
the law of cosines� It is used in the next chain of lemmas�

Lemma 
��� Let ABC be an isosceles triangle in Rm with ��A�B� � ��A�C� and

B �� C � Let D be a point in the interior of ��A�B� � Then ��D�C� 	 ��D�B� �

Proof� If false� then the non�degenerate triangle ADC violates the strict triangle
inequality by having ��A�D� � ��D�C� no greater than ��A�C��

Lemma 
��� Let B be a closed� round ball in Rm and let y be a point in the

interior of B that is not the center� Let z be the point on the boundary of B that

is the intersection of a ray from the center of B through y � Then� for any point x
in Rm minus the interior of B � ��x� y� 	 ��y� z� �

Proof� If x is on the boundary of B � then x � z and the center of B form an
isosceles triangle with y in the interior of one of the equal legs� The result follows
from the previous lemma� If x is not on the boundary of B � then the straight line
segment from y to x must hit the boundary of B in a point w interior to the
segment and w will be closer to y than x � But now w is farther from y than z
unless w � z �

Lemma 
��� Let B be a closed round ball in Rm and let z be a point on the

boundary of B � Let U be an open subset of Rn and let f � Rn � Rm be C�

taking a point x to z � Assume that the image of f misses the interior of B � Then

Dfx is not a surjection�

Proof� By applying a translation� we may assume that z is the origin� Let v
be the center of B � We will show that the image of Dfx does not contain v �
Since Dfx is linear� this is equivalent to showing that Dfx hits no multiple of
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v � Assume that v is in the image� Then for some h � Rn we have Dfx�h� is a
positive multiple of v � For real t 	 �� consider

���� kf�x� th�� f�x��Dfx�th�k�

For small values of t � the vector Dfx�th� is parallel to v but shorter� Thus it
represents a point y in the interior of B that is not the center and� by the previous
lemma� z is the point not in the interior of B that is closest to y � Now f�x� � z
which is the origin� so ���� reduces to kf�x� th� � yk � Since the hypothesis says
that f�x� th� is not in the interior of B � we know� from the previous lemma� that
kyk 
 kf�x� th�� yk which restates as

kDfx�th�k 
 kf�x� th�� f�x��Dfx�th�k�

But for any � 	 �� suitably small values of t 	 � make the right side is less than
�kthk � Linearity of Dfx gives tkDfx�h�k 
 t�khk or kDfx�h�k 
 �khk � Since
this is true for any � 	 �� we must have Dfx�h� � �� But now no multiple of
Dfx�h� equals v �

Proof of the Inverse Function Theorem� surjectivity� We assume that
we work in the open ball E about � on which f is one to one� Let B be the closed
ball about � of radius half that of E � We know that f takes � to � and is one
to one on B � Thus no point of S � the boundary of B � is taken to �� Since S is
compact� there is a minimum distance � from � to f�S�� Let B� be the ball about
� of radius ���� We claim that B� is in the image of B � Let y be a point in B� �
If y is not in the image of B � then there is a minimum distance � from y to f�B�
and there is a point x in B for which ��y� f�x�� � � � Now ��y� �� � ��� and � is
in the image of B � so � � ���� Since � is the minimum distance from � to f�S��
the triangle inequality says that the distance from y to any point in f�S� is at
least ����� Thus x is not in S and is in the interior of B �
We now have the situation of the previous lemma since f is a Cr map from

the interior of B to Rm which hits the boundary of the � ball about y but not
the interior of that ball� Thus by the previous lemma� Dfx is not surjective�
In particular� it is not an isomorphism� This occured inside a given ball B � so
if f is not surjective onto some open neighborhood� then it happens arbitrarily
close to �� Now if Dfx is not an isomorphism� then its matrix representation
has determinant �� Thus if f is not surjective onto some open set� then there
are points xi converging to � whose derivatives have determinant �� But Df� is
an isomorphism and has non�zero determinant� The determinant is a continuous
function of the entries of a matrix� Since f is C� � we have a contradiction�

We are not quite done� The statment of the theorem has something to say about
the di
erentiability of the inverse function and we do not yet even know if the
inverse is continuous� The next arguments �nish the proof�
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Proof of the Inverse Function Theorem� conclusion� We have that f is
a continuous one to one correspondence from some open set U containing � to an
open set W containing �� By the argument just above using the continuity of Df �
we can also assume that the neighborhood U has been picked so that Dfx is an
isomorphism for all x � U �
Let z� w be in W and let x� y in U be such that f�x� � z and f�y� � w �

Denote the inverse of f by F � From ��� we have

kz � wk � �

�
kF �z�� F �w�k

or
kF �z�� F �w�k � �kz � wk

which shows the continuity of F �
To validate the claim in the statement of the Inverse Function Theorem about

the derivative of DF � we must look at

���� kF �w� � F �z�� �Dfx�
���w � z�k � ky � x� �Dfx�

���f�y�� f�x�k�

The expression inside the norm in ���� is obtained from the expression inside the
norm of the next expression by applying �Dfx�

�� � Thus if K � k�Dfx���k � then
���� is no greater than

���� KkDfx�y � x�� f�y� � f�x�k � Kkf�y�� f�x��Dfx�y � x�k�

Now ���� can be kept less than �����ky� xk for a given � 	 � by keeping ky� xk
suitably small� We want our original ���� �which is no greater than ����� smaller
than �kw � zk � But another application of ��� gives us

�����ky � xk � �kf�y�� f�x�k � �kw � zk�

We obtain this by controling ky � xk � kF �w� � F �z�k � We want to do it by
controlling kw � zk� But by ��� again� kF �w� � F �z�k � �kw � zk so keeping
kw � zk half the size required for ky � xk � kF �w� � F �z�k will do the job� This
shows that F is di
erentiable and that its derivative is as claimed in the statement
of the theorem�
We now show that F is Cr � We have DFz � �DfF �z��

�� � We can regard

z �� DFz as a composition of three functions i � Df � F where i � Rm� � Rm�

is the operation of matrix inverse� Cramer�s rule �a formula for matrix inversion
involving determinants� shows that i is C� � Since f is C� � the function x �� Dfx
is continuous� Thus

��	� DF � i �Df � F
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is continuous and F is C� � But now if f is C� � then all the functions on the right
side of ��	� have continuous derivatives and F is C� � Further� the derivative of
both sides of ��	� and the chain rule give D�F as a composition involving DF �
Di and D�f � But ��	� can be used again to replace DF in the composition with
the right side of ��	� in which only F and not DF appears� Since i is in�nitely
di
erentiable� the only thing to stop this process is the limit on the di
erentiability
of f � Inductively� we get that if f is Cr � then so is F �

�The proof of surjectivity above can be short circuited signi�cantly by replacing
the geometric argument about the derivative at the point of closest approach to a
point in the range by a more algebraic one� The right way to measure to detect the
closest approach is to use the square of the distance� This has the double advantage
that the square of the distance has a simple formula that is di
erentiable and that
it can be represented by a dot product� It turns out that formulas involving the
dot product are easy to di
erentiate� In fact� the dot product is an example of a
bilinear map and these are easy to di
erentiate� Let f � A� B � C be a bilinear
map between vector spaces� That means that f�a� b� � b�� � f�a� b�� � f�a� b���
f�a��a�� b� � f�a�� b��f�a�� b�� and rf�a� b� � f�ra� b� � f�a� rb�� Unfortunately�
it also means that f is not linear unless one of A or B is trivial so we cannot say
that Df � f � Consider the inclusions iv � A � A � B de�ned by iv�u� � �u� v�
and ju � B � A � B de�ned by ju�v� � �u� v�� Each is a constant plus a linear
map� For example iv�u� � ��� v� � i��u� and i� is linear� Thus D�iv�u � i� for
all u and v � and D�ju�v � j� for all u and v � Now the compositions �f � iv� and
�f � ju� are basically the restrictions of f to A�fvg and to fug�B respectively
and are also linear �since f is bilinear� and are their own derivatives�
This observation and the chain rule give

�f � iv� � D�f � iv�u
� �Dfiv�u�� � i�
� �Df�u�v� � i���

and
�f � ju� � D�f � ju�v

� �Dfju�v�� � j�
� �Df�u�v� � j���

These can be applied to a � A and b � B as appropriate to give

�f � iv��a� � �Df�u�v� � i���a�� or

f�a� v� � Df�u�v��a� ���

and
�f � ju��b� � �Df�u�v� � j���b�� or

f�u� b� � Df�u�v���� b��

��



Since Df�u�v� is a linear map� we have

Df�u�v��a� b� � f�a� v� � f�u� b��

We can now apply this to dot products� Consider d � Rm � Rm � R where
d�u� v� is the dot product of u and v � This is bilinear so the above applies� Consider
f � X � Rm and g � Y � Rm � We have �f 
 g� � d � �f � g�� Now D�f 
 g� �
Dd � �Df �Dg�� More speci�cally

D�f 
 g��x�y��a� b� � Dd�f�x��g�y�� � �Dfx �Dgy��a� b�

� Dd�f�x��g�y���Dfx�a�� Dgy�b��

� f�x� 
Dgy�b� � g�y� 
Dfx�a��
This is often referred to as a product formula�
Going back to the proof of surjectivity� it is now possible to use this to show

that if x has f�x� the closest point to y � then all vectors in the image of Dfx are
perpendicular to the vector from f�x� to y ��

�� The Cr category and di�eomorphisms�

There is a category whose objects are Cr manifolds and whose morphisms are
Cr functions� The categorical isomorphisms are called Cr di�eomorphisms� They
are the morphisms in the category that have inverses in the category� This is a
stronger requirement than just requiring that the morphism have an inverse as a
function�
Consider the function f�x� � x� from R to R � The function f is C� and is a

homeomorphism� However it is not even a C� di
eomorphism since its inverse has
no derivative at �� However it is a consequence of the Inverse Function Theorem
that if f is a Cr homeomorphism �that is� a homeomorphism that happens to be
Cr � and Dfx is non�singular for each x � then f is a Cr di
eomorphism� Note
how this does not apply to f�x� � x� �
Two di
eomorphic manifolds �behave the same
 with respect questions about

di
erential maps� Every di
eomorphism is a homeomorphism so di
eomorphic
manifolds are homeomorphic� The converse is not true� There are eight manifolds
that are not C� di
eomorphic� but they are all homeomorphic to S� � There is an
uncountable collection of manifolds� no two of which are C� di
eomorphic� but
which are all homeomorphic to R� � The class of di
erentiability is uninteresting
in these questions once C� is reached� The following is one version of this�

Theorem ����

��� Let � � r 
� � Every Cr manifold is Cr di�eomorphic to a C� manifold�

��� Let � � r 
 s � � � If two Cs manifolds are Cr di�eomorphic� then they

are Cs di�eomorphic�
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The above theorem can be found in Di�erential topology by Morris W� Hirsch�
Page ���

Consider f � M � N a Crmap between Cr manifolds� Let the dimensions of
M and N be m and n respectively� We have that Dfx � Tx � Tf�x� is a linear
map� This allows us to de�ne Tf � TM � TN by Tf�v� � Df��v��v� � Tf�x� �
This gives a nice well de�ned function� but it tells us little about how it cooperates
with the structures on TM and TN as Cr�� manifolds� If �U� �� is a chart
with x � U and �V� 
� is a chart with f�x� � V � then we can express f in
local coordinates as h � 
 � f � ��� � We also get coordinate charts �TU� !�� and
�TV� !
� for TM and TN that contain the relevant points� The images of these
coordinate functions are ��U��Rm and 
�V ��Rn respectively� The expression
of Tf in these local coordinates from ��U� � Rm to 
�V � � Rn takes ���x�� v�

to �
�x�� ��
 � Dfx � ������v�� which by Lemma ��� means that �p� v� is taken to
�h�p�� Dhp�v��� As discussed in Section �� this is a Cr�� map� Since Tf behaves
functorially on each Tx and it carries each Tx into Tf�x� � it is easy to show that
Tf behaves functorially in general� Speci�cally� T �f � g� � Tf �Tg and if f is the
identity on M � then Tf is the identity on TM � We thus have

Theorem ���� The operator T is a functor from the category of Cr manifolds

and Cr maps� r � � � to the category of Cr�� manifolds and Cr�� maps�

�� Vector �elds and 
ows�

This section is about di
erential equations and their solutions� Rather than start
this section with a di
ential equation and look for a solution� we look at a function
and see what di
erential equation it solves� Then we can discuss general di
erential
equations and their solutions�

Let f � R � M be a C� function into a Cr manifold� We regard R as a
C� manifold and we assume a C� di
erential structure on it that contains the
coordinate chart �R� i� where i is the identity map from R to itself�

Since i � R � R is the identity map� �i� represents an element of T� � TR �
Note that � �the additive identity� in the vector space T� is ��� � the class of the

constant map taking all of R to �� This is because the isomorphism �i � T� � R of
Lemma ��� has �i��� � �i � ������ � �� We also have �i�i� � �i � i����� � � so �i� �� �

in T� � �Because �i�i� � �i � i����� � �� we could try to identify �i� with � in T� � but
this is dependent on our choice of coordinate function and we will content ourselves
with the fact that �i� is not � in T� ��

From the de�nition of tangent spaces� �f � is an element of Tf��� � We have
Df��i� � �f�i� � �f � � We thus have an interpretation of the vector that f represents
at f����

It should also be possible for f to represent vectors at other points of its image�
Note that �f � is the set of curves that take � to f��� and that have derivatives
at � the same as f ���� �as measured in any coordinate chart�� It is reasonable to
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de�ne� for any t � R � that f represents a vector at f�t� which is the class of curves
that take � to f�t� and that have the same derivatives at � as f ��t� �as measured
in any coordinate chart� so we make this a de�nition� Note that one curve in this
class is the curve de�ned by ft�x� � f�x� t� � �f � �t��x� �where �t�x� � x� t is
the translation of R that takes � to t� since ft��� � f�t� and f �t��� � f ��t�� Also
note that Dft�i� � �Df �D�t��i� � Df�D�t�i�� where D�t�i� is an element of Tt in
TR� Thus we are using the translations to give preferred isomorphisms from T� to
the various Tt in TR � We can use �ft� as the tangent to the curve f at f�t� and�
tempting danger� we recycle the prime notation for derivative and let f ��t� denote
this tangent �ft� � �Note also that ��t� � Tt � TR since �t��� � t � Thus Dft��t�
makes sense and Dft��t� � �f � �t� � �ft� � f ��t� in our new notation� so we have
another view of f ��t���
From the above discussion� a curve f � R�M de�nes a set of vectors f ��t� � �ft�

that are tangent to the curve at the various points of its image� These tangents give
derivative information about the curve at each of its points� A di
erential equation
will go the other way� We will start with vectors and try to �nd curves that the
vectors are tangent to�
One way to start with vectors is to start with a vector �eld� In deference to

customary notation� we will usually use capital letters from the end of the Roman
alphabet to denote vector �elds� Thus� let X � M � TM be a vector �eld�
Speci�cally� X is a section of the tangent bundle� A curve f � R � M is an
integral curve for X � if for each t � R we have f ��t� � X�f�t��� If x � M � then
we say that the integral curve starts at x if x � f���� An initial value problem

is a vector �eld X on M and a point x � M � A solution of the initial value
problem is an integral curve for X starting at x � We will relate the solutions
of initial value problems with the standard existence and uniqueness theorems for
di
erential equations of functions of a real variable�
The following was proven in class in the Fall semester�

Theorem ���� Let f�t� x� be a function of two real variables de�ned on some open

set U of R� � Assume that f is continuous� and that �t�� x�� is given in U � Then

there is an open interval J in R containing t� and a C� function 
 � J � R so

that 
�t�� � x� and so that for all t � J � �t� 
�t�� is in U and 
��t� � f�t� 
�t�� �
Further� if f satis�es a Lipschitz condition with respect to the second variable� and

� � K � R for an open interval K � J satis�es all the same requirements as 
 �
then � � 
jK �

This is the standard theorem that guarantees for each initial value problem

���� x� � f�t� x�� x�t�� � x��

there exists locally a unique solution� We must make a comment about the solu�
tions� Consider x�t� � tan�t�� This cannot be de�ned continuously on any open
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interval containing ����� Thus the maximal open interval continaing � that this
function can be de�ned on is ������ ����� Note that x��t� � sec��t� � ��tan��t� �
� � x��t� so that x satis�es the initial value problem

x� � � � x�� x��� � ��

Thus it may be impossible for the solutions guaranteed in Theorem ��� to be de�ned
on all of R � This will have some e
ect later in this section� We will mention later
how this is sometimes prevented�
We would like to apply a theorem like Theorem ��� to a manifold setting� We

will comment on some aspects of this theorem that need modi�cation before we
make the application�
Theorem ��� has the derivative conditions given by f varying with both time and

position� This is re�ected in the notation f�t� x�� The setting to which we would
like to apply the theorem has a �xed vector �eld which gives derivative �tangent�
conditions at each point� but which does not depend on time �does not depend
on the time of arrival of the curve�� Extracting less information from Theorem
��� is no problem� We can restrict ourselves to time independent systems �the
adjective is autonomous� which we disguise as time dependent ones by taking an
autonomous f�x� and rewriting it as an apparently time dependent F �t� x� de�ned
by F �t� x� � f�x�� At this point we can apply standard existence and uniqueness
theorems as if time were a factor� Note that autonomous systems are ones where
the function giving the derivative information does not depend on time� however
the parameter for any solution is still time� Thus x� � f�x� still has x as a function
of t and x� still means dx�dt �
�If the entire theory were developed for autonomous systems� then the theory

for time dependent systems could actually be recovered� Given a time dependent
system� we can regard it as an autonomous system on a domain that has one more
dimension than the original� The derivative information in the new system will
have vector components the same as they were in the original dimensions and vector
component � in the new dimension �which may as well be regarded as the time
dimension�� This will force solution curves to move along in the extra dimension
at unit speed and thus pass through points in the other dimensions with the right
derivative information for each time t ��
The result of the previous two paragraphs� discussion is that vector �elds and

di
erential equations will be assumed autonomous�
The next modi�cation is to introduce extra space dimensions into the theorem�

We can use the same notation �taking into account the removal of the dependence
on time� and write problems as x� � f�x�� However� we now regard x as an
element of Rm instead of R and the derivative x� will be also be an element of
Rm � Thus f�x� has to be an element of Rm and f is a function from Rm to
Rm � This change turns out to be very minor� The proof of Theorem ��� from last
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semester goes through almost without change to prove a version of Theorem ��� in
dimensions above ��

At this point we can sketch how a modi�ed version of Theorem ��� can be applied
to vector �elds on a manifold� Let X � M � TM be a vector �eld on a Cr m�
manifold M � If we wish some uniqueness in our discussion �and we do�� we will
need a Lipschitz condition at the appropriate place� One easy way to get a Lipschitz
condition for a function is to assume that it is di
erentiable� This follows from the
Mean Value Theorem �exercise�� The Lipshitz condition is to be applied to the
function giving the derivative information as a function of the spatial coordinates�
In our setting this is the vector �eld X � Thus� we want to assume that X is C� �
This means that TM must have at least a C� structure� From Section �� we know
that M must have at least a C� structure� We thus assume that r � ��
Let �U� �� be a coordinate chart for M � We have available the homeomorphism

!� � TU � ��U� �Rm where !��v� � � ��v�� ���v��� We can set up an autonomous

di
erential equation x� � ���X�����x��� on ��U�� Let 
 be a solution satisfying
an initial condition 
��� � x� � ��U�� Consider f � ����
� as a curve in M � We
have f ��t� � �ft� � �f � �t� where �t is translation by t � But �f � �t� is understood
by looking at its image under �� � Namely� at the derivative of � � f � �t at �� This
is

�
 � �t����� � 
��t�

� ���X�����
�t����

� ���X�f�t����

But this just says that the image under �� of f ��t� is just the image of X�f�t�� under
�� � Thus f ��t� � X�f�t�� and f is an integral curve for X � It starts at ����
���� �
����x��� It is an exercise to show that another coordinate chart containing ����x��
gives an integral curve starting there that must agree on overlapping parts of the
domains� The exercise would use the overlap maps to relate one solution to the
other and then quote uniqueness to show that they must agree as maps into M �
The above sketch gives support to the following�

Theorem ���� Let M be a Cr manifold with r � � � Let X be a Cs vector �eld

on M with s � � � Then for any x � M � there is a unique integral curve for X
that starts at x and that is de�ned on some open interval in R containing � �

We want more� This will require another modi�cation to the existence and
uniqueness theorems above� Because of the techniques that allow results on Eu�
clidean spaces to be applied to manifolds and vice versa� we will not distinguish
much from now on between Theorems ��� and ����
The last modi�cation is far from minor� We introduce a new concept to discuss

it� Let 
 � J � M � be a curve where J is an open interval in R � Assume for the
moment that 
 is one to one� We can talk about a �ow that is de�ned along the

�	



image of the curve� The �ow will involve a motion of the points on the image of the
curve� If x � 
�t�� then we can de�ne "t�x� � 
�t� � t�� Note that "��x� � x �
We can think of "t as a function that pushes points t units along the curve with
t measured in the domain of 
 � We have to be careful if J is not all of R � If this
is the case� then "t is only de�ned on those x with a t� � J for which 
�t�� � x
and t� � t � J � The domain of a given "t can easily turn out to be empty� We
have actually de�ned a family of functions and we will refer to the entire family as
a �ow� One relation that the maps "t satisfy� for any x in the image of 
 � is

�"t �"s��x� � "t�
�s � t���

� 
�t� s� t��

� "s�t�x�

using the fact that x in the image of 
 has a unique t� satisfying x � 
�t��� The
above relation must be treated with care in those situations where the domain of

 is not all of R �
If 
 is not one to one� then we get into potential problems of well de�nedness�

These problems go away if the curve is an integral for an autonomous system for
which uniqueness holds�
Now assume that 
 is an integral curve for a vector �eld X in that 
��t� �

X�
�t��� �It will be very important for what we want to say that we are in the
autonomous case�� Assume that 
 is not one to one and assume that the di
eren�
tial equation sati�es hypotheses that make solutions to the initial value problems
unique� Let x� � 
�t�� � 
�t�� with t� �� t� � Now 
�t� is a solution to the initial
value problem

x� � X�x�� x�t�� � x��

Consider

��t� � 
�t� �t� � t���

� �
 � �t��t���t�
where �t��t� is translation in R by t� � t� � We have


���t� � 
���t��t��t��

� 
��t� �t� � t���

� X�
�t� �t� � t����

� X�
��t��

and

��t�� � 
�t�� � x�

so 
� is also a solution to the same initial value problem� Thus by uniqueness

� � 
 and for all t � 
�t� � 
�t��t� � t���� This makes 
 periodic� It also makes

��



the �ow well de�ned� If 
�t�� � 
�t�� � x then "t�x� written as 
�t � t�� or

�t� t�� � 
�t� t� � �t� � t��� speci�es only one point�
We claim that there are two possibilities in the above situation �non�injective

integral curve for autonomous system� � either 
 is a constant map or there is a
� 	 � so that

���� 
�t� �� � 
�t�

for all t and � is the minimum positive real for which ���� holds� If ���� holds for a
given � � then 
�t�n�� � 
�t� for all n � Z � If there are arbitrarily small� positive
� for which ���� holds� then the set of points in R which map to 
�t� is dense in
R � But this is the set 
���t� which must be closed and therefor all of R � Note
that a �ow using a constant curve makes sense� It is just the constant �ow�
Now we note that the existence and uniqeness theorem guarantees solution curves

through all points in M � Thus we can de�ne a �ow at every point in M � Specif�
ically� "t�x� � 
�t � t�� where 
 is a solution curve that passes through x � and
t� is a real number for which 
�t�� � x � The collection of the "t will be called a
�ow on M determined by X � Since "t � "s � "t�s holds at each point� it holds
in general �whenver the composition makes sense�� We can prove more�
Suppose "t�x� � "t�y� � z � This means that the integral curve passing through

x and the integral curve passing through y meet at z � Say 
��t�� � x � 
��t�� � y
and 
��t�� � 
��t�� � z � Now 
��t� � 
��t � �t� � t��� solves the same initial
value problem as 
� �repeat the analysis several paragrpahs above�� so 
� � 
�
and 
��t� � 
��t � �t� � t���� So x � 
��t�� � 
��t� � �t� � t���� Now z �
"t�x� � 
��t� t� ��t� � t��� and z � "t�y� � 
��t� t��� Thus 
� is periodic and

��t� � 
��t��t��t����t��t��� for all t � But y � 
��t�� � 
��t���t��t��� � x �
We have shown that each "t is one to one�
Showing that "t is onto requires an assumption� We now assume that the do�

mains of each integral curve is all of R � Let x be in the domain of the system�
Then "�t is de�ned as well as "t � We have "t �"�t � "� which is the identity�
Thus x � "t�"�t�x�� and "t is onto� Note that consideration of "�t also shows
that "t is one to one� but the paragraph above shows that "t is one to one without
the assumption that integral curves are de�ned on all of R �
From now on� we assume that integral curves are de�ned on all of R � This gives

us one to one correspondences "t � Because of the fact that "� is the identity
one to one correspondence and "t � "s � "s�t � we have a group of one to one
correspondences and the function t �� "t is a homomorphism� This situation is
almost never referred to as a one parameter family of one to one correspondences�
There is such a thing as a one parameter family of homeomorphisms� but we don�t
know yet that the functions "t are homeomorphisms� It remains to discuss what
kind of one to one correspondences the "t are�
The following can be proven� but will not be proven here� To simplify the stat�

ment� we use " to represent the �ow "t on M and regard the domain of " to be
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R�M � Here "�t� x� � "t�x��

Theorem ���� Let M be a Cr�� manifold with r � � � Let X be a Cr vector

�eld on M � Then the �ow " on M determined by X is Cr on its domain� In

particular� each "t is a Cr homeomorphism from M to itself�

Of course the above statment is limited by the fact that the integral curves for
X may have limited domains of de�nition� The following gives a condition that
avoids this problem� We will not prove it here�

Theorem ���� Let M in Theorem ��� be compact� Then the domain of the

�ow " determined by the vector �eld X is all of R �M and each "t is a Cr

di�eomorphism�

��� Consequences of the Inverse Function Theorem�

In this section we present more theorems that obtain information from the deriva�
tive of a function� They are all based on the Inverse Function Theorem�
To make the statements simpler we invent some notation� Let f � M � N be

a Cr map� r � �� from an m�manifold to an n�manifold and let x � M � If
�U� �� and �V� 
� are coordinate charts of M and N respectively with x � U and
f�x� � V so that ��x� � � and 
�f�x�� � �� then we say that h � 
 � f � ��� is
an expression of f in local coordinates centered about x �

Theorem �
�� �Immersion Theorem�� Let f � M � N be a Cr map� r � � �
from an m�manifold to an n�manifold� Let Dfx be a monomorphism for some

x � M � Then there is an expression h � Rm � Rn of f in local coordinates

centered about x for which h�x�� � � � � xm� � �x�� � � � � xm� �� � � � � �� �

Proof� As in the beginning of the proof of the Inverse Function Theorem� a local
change of coordinates allows us to assume that f is a function from an open set U�

in Rm into Rn that takes � to � and which has Df� � Rm � Rn act by taking
�x�� � � � � xm� to �x�� � � � � xm� �� � � � � ���
Let j � Rn�m � Rn act by taking �x�� � � � � xn�m� to ��� � � � � �� x�� � � � � xn�m� �

We de�ne !f � U� �Rn�m � Rn by !f�u� v� � f�u� � j�v�� The domains of !f � f
and j do not agree� but we can �x this up by introducing �� and �� which project
U� �Rn�m onto its �rst and second factors respectively� Now we have

!f�u� v� � �f � ����u� v� � �j � ����u� v��

Each of j � �� and �� is linear and its own derivative� We have

D !f������a� b� � D�f � ���������a� b� �D�j � ���������a� b�
� Df��a� � j�b�

� �a� b�
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by our assumptions about Df� �
By the the Inverse Function Theorem� there is an open set U� in U� � Rn�m

containing ��� �� on which !f is a Cr di
eomorphism onto an open set in Rn � By
the discussion in Section �� there is a coordinate chart �U�� �� in U� taking U� to
Rn in a way that takes U� � U� to Rm � f��� � � � � ��g � �The functions discussed
in Section � �respect
 the coordinates�� Now the last few lines in the proof of the
corollary to the Inverse Function Theorem can be duplicated�

Theorem �
�� �Submersion Theorem�� Let f � M � N be a Cr map� r � � �
from an m�manifold to an n�manifold� Let Dfx be an epimorphism for some

x � M � Then there is an expression h � Rm � Rn of f in local coordinates

centered about x for which h�x�� � � � � xn� xn��� � � � � xm� � �x�� � � � � xn� �

Proof� Again� a local change of coordinates allows us to assume that f is a
function from an open set U� in Rm into Rn that takes � to � and which has
Df� � R

m � Rn act by taking �x�� � � � � xn� xn��� � � � � xm� to �x�� � � � � xn��
Let � � Rm � Rm�n take �x�� � � � � xn� xn��� � � � � xm� to �xn��� � � � � xm�� De�ne

!f � U� � Rn �Rm�n by setting !f�u� � �f�u�� ��u��� Since � is linear� we have

D !f��a� � �Df��a�� ��a�� � a

by our assumption on Df� � The rest of the argument proceeds as in the proof of
the Immersion Theorem�

A function is called an immersion �submersion� at an x in its domain� if the
Immersion �Submersion� Theorem applies to the function at x � A function is
called an immersion �submersion� if it is an immersion �submersion� at each point
in its domain�
This leads to more terminology� A point in the domain of a function is a regular

point of the function if the function is a submersion there� A point in the domain
of a function is a critical point of the function if it is not a regular point of the
function� A point in the range of a function is a critical value of the function if it
is the image of a dritical point of the function� A point in the range of a function
is a regular value of the function if it is not a critical value of the function� This
chain of positive and negative de�nitions leads to conclusions that are worth getting
used to� A point that is in the range but not the image of a function must be a
regular value of the function since it cannot be a critical value� If f � M � N is
a function from an m�manifold to an n�manifold with m 
 n � then all points in
M are critical points and all points in the image of f are critical values since it is
impossible for f to be a submersion anywhere� If a function is a submersion� then
all points in the domain are regular points and all points in the range �whether in
the image or not� are regular values� Lastly� the image of a regular point might
still be a critical value if it is also the image of a critical point� That is� a regular
value has the property that no point in its preimage is a critical point�
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The �subimmersion theorem
 fails� The function x �� x� from R to R has
derivative at � that is neither one to one nor onto� There is also no expression of
the function in local coordinates centered at � that is linear� It is interesting to
see how far a combined proof of the Immersion and Submersion Theorems can be
pushed before it fails�
If k is a constant and x is a vector of several components� then under some condi�

tions a formula such as f�x� � k can de�ne some of the coordinates as functions of
some of the others� The Implicit Function Theorem says when and to what extent�
The standard example of x� � y� � � shows that the hypotheses and conclusions
are reasonable�
To help with the statement of the theorem� we need a reasonable way to refer to

a partial derivative with respect to one variable� Let f � U �V �W be given and
let ju � V � U � V be de�ned by ju�v� � �u� v�� As in the remarks at the end of
Section �� ju is not linear but a constant plus a linear� It derivative is the linear
part and we have D�ju�v � j� for any v � �We have to keep careful track of the
meaning of the subscripts�� We de�ne D�f�u�v� to be D�f � ju�v � �Df�u�v� � j���
Theorem �
�� �Implicit Function Theorem�� Let f � U � V � N be a Cr

function� r � � � between manifolds� Assume that D�f�u�v� is an isomorphism for

some �u� v� and let k � f�u� v� � Then there is an open set U� about u in U �

an open set V� about v in V and a Cr function g � U� � V� so that for every

�x� y� � U� � V � we have f�x� y� � k if and only if y � g�x� � Further� if U� � U�

is open and connected about u � then any continuous g� � U� � V with g��u� � v
and satisfying f�x� g��x�� � k for every x � U� must agree with g on U� �

Remark� The function g is the function that is being �implicitly
 de�ned by the
equation f�u� v� � k �

Proof� By local change of coordinates� we can assume that U and V are open
subsets of Rm and Rn respectively� that �u� v� � ��� ��� that N is Rn �the
dimension is �xed by the isomorphism D�f����� �� that f��� �� � �� and that

D�f������b� � D�f � j����b� � �Df����� � j���b� � Df�������� b� � b�

We now use u and v as arbitrary elements of U and V and not as reference to
items in the statement�
Let !f � U � V � Rm �Rn be de�ned by

!f�u� v� � �u� f�u� v�� � ���u� v�� f�u� v��

where � � U � V � U is projection� Now

D !f������a� b� � ���a� b�� Df������a� b�� � �a� b��
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So !f is a Cr di
eomorphism from some open set about ��� �� to an open set about
�� Thus on some open set of the form U� � V� � we have a Cr inverse h of !f from
an open set W about ��� �� � Rm �Rn onto U� � V� � Every �x� y� � W has

h�x� y� � �h��x� y�� h��x� y��

where� by Lemma ���� both h� and h� are Cr � Now

�x� y� � !f�h�x� y��

� !f�h��x� y�� h��x� y��

� �h��x� y�� f�h��x� y�� h��x� y����

so h��x� y� � x for all �x� y� in W � So h�x� y� � �x� h��x� y�� and

�x� y� � !f�h�x� y��

� !f�x� h��x� y��

� �x� f�x� h��x� y����

This gives that f�x� h��x� y�� � � if and only if y � �� Let g�x� � h��x� ��� Now
f�x� z� � � if and only if z � h��x� �� � g�x�� This holds for all �x� z� � U� � V�
since every such �x� z� is of the form �x� h��x� y�� for an �x� y� � W �
Now assume U� is a connected� open subset of U� about � and assume there is

a continuous function g� � U� � V for which has g���� � � and f�x� g��x�� � �
for every x � U� � Consider the subset A of U� on which g� � g � We know � � A �
Let x� be in A � By the continuity of g� � there is an open U� � U� about x� so
that g��U�� � V� � But for x � U� � we have �x� g��x�� � U� � V� � U� � V� and
here f�x� g��x�� � � if and only if g��x� � g�x�� Thus A is open in U� � Now A is
the inverse image of � under the continuous g � g� � Thus A is also closed in U� �
Since U� is connected� A is all of U� �

��� Submanifolds�

Let A be a subset of a Cr m�manifold M � We say that A is a Cr submanifold

of M of dimension k if each point a of A lies in the domain of a chart �U� �� of

M so that if Rk � Rm is the set of points in Rm whose last m � k coordinates
are �� then

U � A � ����Rk��

The chart �U� �� is called a submanifold chart for A in M � Note that all the
charts �U �A� �jU�A� where �U� �� is a submanifold chart for A in M de�ne a Cr

di
erentiable structure for A �
The inclusion of the submanifold A into M is an immersion� That is because a

non�zero tangent vector in A cannot become zero in M since a coordinate function
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to test the tangent vector in A is the restriction of a coordinate function that tests
it in M � The inclusion is also more than that� A basic open set in A �say the
domain of a coordinate chart� is also open in A in the subspace topology that A
gets from M � Thus the inclusion map is open and is a homeomorphism onto A �
That this obvious fact is worth pointing out is seen from the next two examples
example� We give the more complicated one �rst�
Let S��S� be covered by R� in the usual way so that two points in R� project

to the same point in S��S� if and only if their coordinates di
er by integers� Let
L be a straight line in R� of irrational slope� It is impossible for two points on
L to have coordinates that di
er by integers� so the covering projection restricted
to L is one to one� It is also an immersion� �Covering projections are immersions
under the reasonable assumption that the charts of the base space and the charts
of the covering space are chosen compatibly�� However it is not a homeomorphism
onto its image in S��S� and its image is not a submanifold of S��S� � To argue
that these statements are true� we argue that the image is dense in S� � S� � First
we need a lemma�

Lemma ����� Let r be a positive irrational number� let x and � 	 � be real� and

let k be a positive integer� Then there are integers m and n with jmj � k so that

mr � n is within � of x �

Proof� Consider the half open interval ��� �� as representative of the real numbers
modulo �� Then the function from kZ to ��� �� taking km to kmr mod � is one
to one since km�r� km�r � Z implies that r is rational� Thus there are in�nitely
many di
erent numbers in ��� �� of the form kmr � kn for integers km and kn �
There must be two �km�r � kn�� 
 �km�r � kn�� in ��� �� that di
er by less than
� � Let � � k�m��m��r�k�n��n��� Now � 
 � and � is smaller than both � and
� � If m� � m� � then � is an integer and cannot be greater than � and less than
�� Now the integral multiples of � divide the real line into intervals of length � so
x is within � �which is less than �� of at least two consecutive integral multiples
of � � We can thus choose one integral multiple of � that is not � and is within �
of x � We now have that x is within � of a number of the form kpr � kq where p
and q are integers and p is not �� This completes the lemma�

Now back to the line L in R� of irrational slope r � Let its equation be y � rx�c �
The distance from a point �a� b� in R� to L is no more than b��ra�c� since this is
the vertical distance from L to �a� b�� If m and n are integers� then �a�m� b�n�
projects to the same point in S� � S� as �a� b� does� The distance from such a
point to L is less than b � n � �ra � rm � c� � �b � ra � c� � �rm � n�� From
the lemma above� we know that we can make �rm � n� as close to �b � ra � c�
as we like and we can do it with arbitrarily large values of jmj � It is now easy
to create a sequence of points in L that is discrete in L but whose images under
projection to S� � S� converge to the image of �a� b�� This allows us to make two
conclusions� The �rst is that the image of L is dense in S� � S� � The second is
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that the projection restricted to L does not carry L homeomorphically onto its
image� For let x be a point of L and let xi be a sequence of discrete points in L
whose image converges in S� � S� to the image of x � The inverse map from the
image of L to L cannot be continuous since it will not preserve the limit of the
convergent sequence� The problem with the projection restricted to L is that while
it is a one to one continuous map� it is not open�
To argue that the image of L is not a submanifold of S� � S� we note that any

open set around a point in the image has its intersection with the image dense in
the open set� But the de�nition of submanifold would demand a coordinate chart
�U� �� in which the intersection of the image of L with U would de�nitely not be
dense in U �
We have constructed an example of an injective immersion that is not a home�

omorphism onto its image and whose image is not a submanifold� A much easier
example is an injective immersion of the open unit interval into the open unit disk
in R� so that its image is homeomorphic to the numeral ���
 These examples lead
to a de�nition and a lemma� We say that an immersion that is a homeomorphism
onto its image is an embedding�

Lemma ����� Let N be a Cr manifold� r � � � A subset A of N is a Cr

submanifold if and only if A is the image of a Cr embedding�

Proof� The forward direction has been argued above� We consider the reverse
direction� Let A be the image of the Cr embedding f � M � N � A point x in A
has an open neighborhood U which is the image of an open V in M � The set U
is of the form U ��A where U � is open in N � From the Immersion Theorem� there
is an expression of f in local coordinates based on charts contained in U � and V
that gives exactly the structure needed for a submanifold chart around x �

In the above� we exploited the fact that the expression in local coordinates guar�
anteed by the Immersion Theorem gives a structure that �ts the de�nition of a
submanifold chart� We can also look at the expression in local coordinates that is
guaranteed by the Submersion Theorem� Here we are looking at the projection of
Rn onto the subspace spanned by a subset of its coordiante axes� The preimage of
� under this projection �the kernel� lies in Rn exactly as required by the de�nition
of a submanifold chart� That makes the next lemma an easy exercise�

Lemma ����� Let f � M � N be a Cr map� r � � � If y � f�M� is a regular

value� then f���y� is a Cr submanifold of M �

There is no �only if
 in the above� There are submanifolds that are not the
inverse images of regular values under any map� The center line L of the M�obius
band M does not separate any neighborhood of itself in M � �We have not dealt
with manifolds with boundary� so we consider M to be the open M�obius band��
For L to be the inverse image of a regular value� there has to be a submersion to
a manifold of dimension �� But every point in a manifold of dimension � separates
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some neighborhood of itself� �Exercise� the centerline L of the M�obius band M is
the inverse image of a critical value of a function f � M � R ��
It should be noted that there is nothing in the de�nition of a submanifold that

requires it be a closed subset of the manifold that contains it� Some like to include
a requirement that submanifolds be closed subsets� Exercise� �nd an example of a
submanifold of R� that is not a closed subset�
We end this section with some notation� We have been using Tx to denote the

tangent space to a manifold at x � Until now this has o
ered no opprotunity for
ambiguity since the manifold in question was always the unique manifold containing
x � Now that one manifold can be a submanifold of another� the notation is not
speci�c enough� We will continue to use it when there is no problem� There are
two notations that are standard to resolve the ambiguity� One is to use Mx to
denote the tangent space to M at x and the other is to use TxM to denote the
same thing� We will use the �rst when needed because it is one less character to
type�
It is important to note that if M is a Cr submanifold of N and x �M � then Mx

is a vector subspace of Nx and that if i � M � N is the inclusion map� then Dix
is the linear inclusion of Mx into Nx � This is straightforward from the de�nitions
of �submanifold
� Mx � Nx � and Dix �

��� Bump functions and partitions of unity�

This section introduces two very powerful tools available when working with
di
erentiable functions� One typical way that they are used is to deduce global
information from local information� Before we give sample applications� we have
to develop the techniques�
Consider the function

f�x� �

�
e�

�
t � t 	 �

�� t � ��

Before we look at properties of f � we show

���� lim
t���

e�
�
t

tn
� ��

Replacing t�� by x lets us rewrite ���� as

lim
x��

e�x

x�n
� lim

x��

xn

ex

which is shown to be � by L�H�opital�s rule� The �rst consequence of ���� is that f
is continuous�
We note that f ��t� � � for negative t � We now discuss f ��x� for positive t and

assume that t 	 � for the rest of the paragraph� The function f has the form eg
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where g is the function g�t� � t�� � It is the case that higher derivatives f �n��t�
have the form �eg��P �g�� where P �g� is a polynomial combination of derivatives
of g � This is easily shown by induction and the chain rule� It is also proven by
induction that derivatives of g are polynomial combinations of negative powers of
t � Thus f �n��t� is of the form �eg��Q�t�� where Q�t� is a polynomial in negative
powers of t � By ���� we now have

lim
t���

f �n��t� � ��

Thus if we show that f �n���� � � for all n � then f is C� � But to show that
f �n���� � � inductively from the de�nition of the �rst derivative� we are reduced
to showing that

lim
t���

f �n����t�

t
� �

which follows from �����
Note that while f is C� � it is not analytic at �� No power series can give the

constant function � to the left of � and simultaneously the non�constant function
e���t to the right of �� There is a notion of an analytic manifold based on coor�
dinate charts with analytic overlap maps� They are harder to work with since the
techniques of this section are not available with these spaces�
We can build various interesting functions from f �
Let

g��t� �
f�t�

f�t� � f��� t�
�

The denominator is never � since t and � � t are never simultaneously negative�
Thus g� is C� � Now g��t� � � for t � �� � 
 g��t� � � for t 	 � and g��t� � �
for t � �� Setting g��t� � g��t � �� and g��t� � g���t� give C� functions where
g� is � on ���� �� and � on ����� and g� is � on ������� and � on �������
Thus if h�t� � �� �g��t� � g��t��� then � � h�t� � � for all t � and h�t� is � when
jtj � � and � when jtj � �� The function h is typically called a bump function�
Higher dimensional versions can be constructed� Consider the function 
 � Rm �

R de�ned by

�x�� � � � � xm� � h�x��h�x�� 
 
 
h�xm��

The function 
 is C� � has its values in ��� ��� takes on the value � on ���� ��m
and takes on the value � o
 ���� ��m � Clearly 
 can be adjusted so that given
an � 	 �� the boxes ���� ��m and ����� ���m replace ���� ��m and ���� ��m � Also�
these boxes can be centered at points other than the origin� This is worth noting
as a lemma� We introduce some notation to make this lemma and later lemmas
easier to state�
Let C � U be a closed set in an open set in a Cr manifold M � We say that a

Cr function 
 � M � R is a bump function for the pair �U�C� if f�M� � ��� ���
f�C� � f�g � and f�M � U� � f�g � So far we have shown�

		



Lemma ����� Let � 	 � be real� Let x � �x�� � � � � xm� � Rm � Let

C � f�y�� � � � � ym� � Rmjxi � � � yi � xi � �� � � i � ng

and let

U � f�y�� � � � � ym� � Rmjxi � �� 
 yi 
 xi � ��� � � i � ng�

Then there is a C� bump fucntion for �U�C� �

Now let K � U be a compact set in an open set in a Cr m�manifold M � Let x lie
in the domain of a coordinate function � � Then in the domain of � we can arrange
x � Cx � Ux where Ux lies in the domain of � � where ��Cx� is a box of diameter
�x centered at ��x�� and where ��Ux� is a box of diameter ��x centered at ��x��
Note that this forces x to be in the interior of Cx � By composing � with a C�

bump function for the pair ���Ux�� ��Cx�� we get a Cr bump function for �Ux� Cx�
that is de�ned on the domain of the coordinate function� We extend the bump
function to a function 
x de�ned on all of M be letting 
x be � o
 the domain of
the coordinate function� This extends all the relevant derivatives continuously since
they all vanish o
 Ux � The interiors of the Cx form an open cover of K from which
a �nite subcover can be extracted� Let the corresponding �centers
 be fx�� � � � � xsg
and let the corresponding �U�C� pairs be denoted �Ui� Ci�� � � i � s � For each i �
let 
i be the bump function above for �Ui� Ci�� Now if we de�ne " � M � R by

"�x� �
X


i�x��

then " is non�negative and Cr and "�x� has strictly positive values on K and is
� o
 U � This is not exactly a bump function because we have no control on the
exact values of " on K � We can improve on this if desired� We will need what we
have just proven in order to get to the improvements so we state it as a lemma�

Lemma ����� Let K � U � M where K is compact and U is open and M is a

Cr manifold� Then there is a Cr function from M to R taking values in ����� �
taking the value � o� U and strictly positive values on K �

In order to get more� we need the notions of paracompact and partition of unity�
A topological space is paracompact if every open cover of the space has a locally
�nite open re�nement� A re�nement of a cover is another cover so that every
element of the re�nement is contained in some element of the original� A cover
is locally �nite if every point of the space has a neighborhood that intersects only
�nitely many elements of the cover� The following are proven in Section ��	 of
Munkres�

Theorem ���� �Stone�s theorem�� Every metric space is paracompact�
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Theorem ����� Every paracompact space is normal�

The �rst result applies here because we are only looking at metric spaces� The
second result applies as well� but a direct proof that metric spaces are normal is
much easier than going through Stone�s theorem�
Let f � X � ����� be a map� The support of f is the closure of the pre�image

of ������ If O is an open cover and f
�g is a collection of functions from X to
������ then the collection of functions is a partition of unity subordinate to the
cover O if the collection of supports of the 
� is a re�nement of O � if for all x

X

��x� � �

and if the sum involves only �nitely many non�zero terms for each x � Since the
values of the functions are never negative� they can never exceed �� Note that
even if O is locally �nite� there might be in�nitely many non�zero terms in the sum
without the extra assumption that this does not happen� The following modi�cation
of the de�nition of partition of unity is used to make the �niteness automatic if
O is locally �nite� If O � fU�g��J is the open cover� then the partition of unity
f
�g��J is dominated by O if the support of 
� lies in U� for each � � J �
We will not prove Stone�s Theorem� There is a perfectly good proof in Munkres�

It takes about three pages there� We will look at some consequences� We will show�

Theorem ����� Every open cover of a Cr manifold dominates a Cr partition of

unity�

This will take several steps� We will need various technical lemmas along the
way� as well as partial results�

Lemma ���	� A locally �nite open cover of a separable space has countably many

non�empty sets�

Proof� The wording of the statment is to allow a given indexing set to be used
for a cover even if some �or most� of the index values refer to empty sets�
Pick a countable dense subset S � Locally �nite implies the weaker point �nite�

that every point in Rm lies in a �nite number of elements of the cover� Since every
non�empty open set contains a point in S � a list of the elements of the cover that
contain each point in S will list all the non�empty elements of the cover� But each
point in S lies in �nitely many elements of the cover� so the list is countable�

Lemma ���
� A point �nite� countable open cover fUig of a normal space X has

a re�nement fCig of closed sets whose interiors cover X and with each Ci � Ui �

Proof� Assume that fC�� � � � � Cng have been found so that each Ci is closed and
in Ui and so that the interiors of the Ci and the Uj for j 	 n cover X � Let C �n��

be X minus the interiors of all the Ci � i � n � and minus all the Uj � j 	 �n� ���
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This is a closed set� Since the only set not removed is Un�� and removing Un��

would yield the empty set� we have C �n�� � Un�� � Now because X is normal�
there is a closed set Cn�� in Un�� whose interior contains C �n�� � We now have
our assumption with n replaced by n��� In this way we inductively end up with a
collection fCig � To argue that the interiors cover� we note that every x � X lies in
�nitely many Ui � After a �nite number of steps� these Ui will have been replaced
by Ci � By our assumption� x must lie in one or more of the interiors of the Ci �

Lemma ����� Every open cover fU�g��J of a paracompact X has a locally �nite

open re�nement fW�g��J where each W� � U� �

Proof� Note that various W� may be empty� Let fV�g��K be a locally �nite
open re�nement� Chose a function f � K � J so that each V� � Uf��� � Now form
fW�g��J by setting W� to be the union of those V� for which f��� � � � This is
an open re�nement since each W� is a union of open subsets of U� and since each
V� is used in some W� � Since each V� is used in only one W� any neighborhood
hitting only �nitely many V� hits only �nitely many W� � Thus fW�g��J is locally
�nite�

Lemma ����� Every open cover of a Cr manifold M by sets with compact closure

dominates a Cr partition of unity�

Proof� We can replace the given cover by a locally �nite open re�nement using the
same indexing set as the original� A partition of unity dominated by the new cover
will be dominated by the original� The new cover has countably many non�empty
sets� Since it is a re�nement of the original the elements have compact closure�
Let the non�empty sets in the cover that we are working with be fVig � We can
extract a closed re�nement fCig whose interiors cover� Since each Ci is closed
in a compact set� it is compact� By Lemma ����� we now have Cr non�negative
functions 
i from M to R with each 
i strictily positive on Ci and zero o
 Vi �
Thus the supports of the 
i are locally �nite and the sum

P

i�x� is de�ned for

each x � Since the interiors of the Ci cover M � the sum
P


i�x� is never �� Now
we let

"i�x� �

i�x�P

j�x�

�

The collection of the "i is now a partition of unity dominated by the fVig � To get
a partition of unity for the original indexing set� let the function for those indexes
of empty sets be the constant function to ��

The next lemma gives the promised improvement to Lemma ����� It also leads
to a proof of Theorem �����

Lemma ����
� Let C � V �M where C is closed and V is open and M is a Cr

manifold� Then there is a Cr bump function for �V�C� �
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Proof� By using coordinate charts� we can cover C by open subsets of V with
compact closure� Let U � M � C � We can also cover U by open subsets of U
which also have compact closure� These two covers together will cover M � Let "�

be a Cr partition of unity dominated by the cover� The sum of all the elements
of the partition that satisfy the restriction that they correspond to open sets that
intersect C gives us a Cr function� It is the function we want since all the supports
are in V and since all the functions omitted by the restriction have their supports
in U and are not contributors to the fact that the sum is � on C �

Proof of Theorem ����� The proof is exactly the same as the proof of Lemma
���� except that Lemma ����� is used instead of Lemma �����

We now give two applications� The �rst is an example of the use of bump
functions� and the second is an example of the use of partitions of unity� They both
deduce global information from local information�
The de�nition of a Cr manifold states that locally the manifold has Cr embed�

dings into a Euclidean space� If the manifold is compact� then we can use partitions
of unity to guarantee the existence of a Cr embedding of the entire manifold into
a Euclidean space�

Lemma ������ Let M be a compact Cr m�manifold� r � � � Then there is an

integer n and an embedding f � M � Rn �

Proof� Since M is compact� there is a �nite cover of M by coordinate charts
�Ui� �i�� � � i � k � We can extract a closed cover fCig with each Ci � Ui and
with the interiors of the Ci covering M � For each i � let 
i � M � R be a bump
function for the pair �Ui� Ci�� Each �i � Ui � Rm is an embedding� De�ne

gi � M � Rm �R � Rm�� by gi�x� � �
i�x��i�x�� 
i�x���

Now let

g � �g�� � � � � gk� � M � Rm�� � 
 
 
 �Rm�� � Rk�m����

Now g is Cr � If x � Ci � then gi is an immersion at x since the �rst coordinate of
gi on Ci is �i � Thus no tangent vector at x is taken to zero by Dgi and thus not

by Dg since the Dgi go into independent subspaces of TRk�m��� � To see that g
is an injection� consider x �� y � If x and y lie in one Ci � then g�x� �� g�y� again
since the �rst coordinate of gi is �i which is injective on Ci � If x � Ci and y �� Ci
then the second coordinate of gi disagrees on x and y and g�x� �� g�y�� So g is
an injective immersion and thus an embedding�

Remark� The result above gives no where close to the best estimate on the dimen�
sion of the Euclidean space needed to receive the embedding� There is an argument
that shows that the embedding can take place in R�m�� � A much more di#cult
argument shows that the embedding can take place in R�m �
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Now for the second example� Let M and N be Cr manifolds and let C be a
closed set in M � Let f � C � N be a function� We say that f is Cr if for every
x in C � there is an open set U in M about x and a Cr function fU � U � N so
that f jU�C � fU jU�C �

Lemma ������ A function f � C � Rn where C is a closed subset of a Cr

manifold M is Cr if and only if there is an open set U in M about C and a Cr

function fU � U � Rn so that f � fU jC �

Proof� For the �if
 direction� use U for every x �
Now if f is Cr � then there is a cover fUxgx�C of C by open sets of M and Cr

functions fx that extend the various f jC�Ux � Let V �M � C and let a partition
of unity dominated by the open cover fUxgx�C � fV g of M consist of functions
denoted 
x and 
V � Now X

x�C


xfx

is Cr � is de�ned on all of M � and equals f on C �

��� The C� metric�

The tangent vectors to a manifold M are de�ned as equivalence classes of curves�
Curves are maps from subsets of R to M � The set of curves can be formed into a
topological space �function space� in many ways� We are familiar with some� Once
the set of curves is formed into a function space� we can use a quotient topology
on the set of tangent vectors� It turns out that the function space topologies that
we are familiar with �e�g�� uniform topology� uniform convergence on compact sets�
etc�� will give bad topologies on the set of tangent vectors� In particular the
quotient topologies are not Hausdor
� This is not hard to see� so we will go into
some detail�
The function space topologies that we know give some control on the values of a

function� An open set of functions can be de�ned that will force any function in this
open set to have its values on some restricted part of the domain to be near a given
value in the range� For example� the compact open topology can be used to build
an open set O of functions where the values on a compact subset in the domain
are constrained to lie in a neighborhood of a given value in the range� But this
will not control the derivative� One can build functions in O that race around the
range neighborhood like mad giving arbitrarily large values for the derivatives at
given points� and there will be functions in O that will stall at various points �see�
for example� the bump functions of Section ��� giving low values of the derivative
�even �� at those points�
A curve identi�es a particular tangent vector in TM by seeing what the value of

the curve is at � �this identi�es which Tx we are in� and what its derivative is at
� �which identi�es which v in Tx we are looking at�� The topologies that we know
build open sets of curves in which the values of the curves at � are near a certain

	�



point� For such an open set O of curves� the set of tangent vectors de�ned will lie in
a set of tangent spaces Tx where the points x are con�ned to some neighborhood
W in M � However� the derivatives of the curves in O will take on all possible
values at �� The set of tangent vectors de�ned by the curves will thus be the union
of all the Tx for x � W � Taking unions and intersections of these sets of curves
will still give sets that represent entire copies of the tangent spaces Tx � Thus the
topologies that we know on the set of curves will allow us to separate points in M
by open sets but not vectors in any one Tx �

We now discuss how to control the derivative� The problem that we are working
on is the structure of TU where �U� �� is a chart of a Cr m�manifold M � We will
use the coordinate function as a tool� This is reasonable since it is the coordinate
function that sets up the one to one correspondence between TU and ��U��Rm

in the �rst place� Also� a curve f � J � U � where J is an open interval about � in
R � can be composed with � so that both its values and its derivatives are elements
of Rm �

We will use the metric on Rm to imitate the construction of the uniform metric�
The easiest way to make use of the metric is to take supremums� If we have a
compact domain� then our formulas are a little simpler since we don�t have to bound
distances by � all the time� Thus we restrict ourselves to the �unit disk
 ���� ��
in R and use this for our domain for all curves� Since the relevant information
about a curve is its value and derivative at �� this will su#ce� For the rest of this
section� let I deonte the interval ���� �� in R � When we discuss the derivative of
a function de�ned on I � we will use the right hand derivative at �� and the left
hand derivative at ���

Let d be the metric on Rm � Let C��I� U� be the set of C� functions from I to
U � Let f be an element of C��I� U�� To simplify notation� we let !f denote � � f �
This is a curve into Rm � For f and g in C��I� U� de�ne

��f� g� � max� supfd� !f�x�� !g�x��jx � Ig�
supfd� !f ��x�� !g��x��jx � Ig��

This can be compared with the uniform metric de�ned near the top of page ��� of
Munkres�

Certain calculations go through exactly as they do for the uniform metric�

Lemma ����� The function � is a metric�

Call this the C� metric on C��I�M��

Lemma ����� A sequence fn � I � U of C� functions converges to the C� function

f in the C� metric if and only if the sequences fn and f �n converge uniformly to

f and f � respectively�
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In the next section� we will discuss the quotient topology that the C� metric
induces on TU � and show that with this topology� the one to one correspondence
!� � TU � ��U��Rm of Section � is a homeomorphism�
Before we end this section� we want to show that the C� metric has reasonable

properties� The lemma above tells only what happens if convergence in the C�

metric takes place� It says nothing about how often it happens� It may be rare
for a sequence of functions with limit f to have the corresponding sequence of
derivatives converge to f � � In fact� it is not rare� If U is complete� then C��I� U�
is complete� For simplicity� we will show this in the case that U is Rm �
Much of the argument is familiar� If fn is a Cauchy sequence in C��I�Rm�� then

for each x in I � fn�x� is Cauchy and f �n�x� is Cauchy� Since Rm is complete�
there is a limit for each fn�x� which we can call f�x� and there is a limit for each
f �n�x� which we can call g�x�� It would be a little premature to call g the derivative
of f � Since the de�nition of C� demands continuous derivative� the fn and the f �n
are all continuous� A uniform limit of continuous functions is continuous� so f and
g are continuous� Since the convergence f �n � g is uniform� there is a tail of the
sequence that is within � of g � So every member in this tail satis�es

�g�x�� �� 
 f �n�x� 
 �g�x� � ��

for each x in I � If K is the maximum of g on I � then on this tail jf �n�x�j 
 K � �
for all x in I � Thus the tail satis�es the hypotheses of the dominated convergence
theorem for integrals� �Our functions are integrable since they are continuous�� We
get Z x

��

g � lim

Z x

��

f �n � lim
�
fn�x� � fn����

�
� f�x�� f����

for all x in I which demonstrates that f � � g � This �nishes the argument�
�There is another argument that shows that f � � g based on the Mean Value

Theorem and direct computation of the derivative� We give it here for those un�
compfortable with the use of the dominated convergence theorem� It is nice in that
it can be applied when the de�ntion of the C� metric is generalized to functions
from Rm to Rn instead of just functions de�ned on I �
Given � 	 �� we wish to �nd a � 	 � so that khk 
 � implies

kf�x� h�� f�x�� g�x�hk 
 �khk�

Now
kf�x� h�� f�x�� g�x�hk � kf�x� h�� fn�x� h�k

� kfn�x� h�� fn�x�� f �n�x�hk
� kfn�x� � f�x�k

� kf �n�x�h� g�x�hk�
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The fourth term on the right is the di
erence of two linear functions to Rm evalu�
ated at the same point� �Actually in our setting it is the di
erence of two function
values multiplied by the same displacement�� Thus for a �xed value of h � we can
make the �rst� third and fourth terms on the right as small as we like� say less than
���� by using the uniform convergence of fn to f and f �n to g by keeping n large
enough� Thus if the second term is shown to be less than �khk � then we will have

kf�x� h�� f�x�� g�x�hk � �khk� �

which can be made to hold for any � by chosing n large enough� Thus we will have
shown

kf�x� h�� f�x�� g�x�hk � �khk�
We now concentrate on how to show

���� kfn�x� h�� fn�x� � f �n�x�hk 
 �khk�

Note that ���� can be made true for each n by restricting h di
erently for each
n � However� we need to show once h has been chosen su#ciently small� that ����
is true for all su#ciently large n �
We note that as a function of h � the expression fn�x � h� � fn�x� � f �n�x�h is

equal to � when h � �� Thus we are asking how much fn�x� h�� fn�x�� f �n�x�h
varies from its value at h � � for a given value of h � This is where we apply the
Mean Value Theorem�
Let


�t� � fn�x � th�� fn�x� � f �n�x��ht��

We have

���� kfn�x� h�� fn�x�� f �n�x�hk � k
���� 
���k�

We can estimate this by using the Mean Value Theorem�
We will have to take some derivatives� We are already mixing them up pretty

well �f ��x� versus Dfx �� so we will stick to the �prime
 notation and regard the
expression f �n�x��ht� as the constant f �n�x� �it does not depend on t� multiplied
by ht � Now we have


��t� � f �n�x� th��h�� f �n�x��h� � �f �n�x� th�� f �n�x���h�

by the chain rule� Now

kf �n�x� th�� f �n�x�k � kf �n�x� th�� g�x� th�k
� kg�x� th�� g�x�k

� kg�x�� f �n�x�k�
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The �rst and third terms can be kept less than ��� by unifom convergence and
keeping n su#ciently large� The middle term is where we get our � � We chose �
to keep the middle term less than ��� whenever khk 
 � which can be done by
the continuity of g and the fact that t is restricted to lie in ��� ��� Now we have
k
��t�k � �khk for t in ��� ��� By the Mean Value Theorem� the right side of ����
is less than �khk��� �� and we have shown that ���� holds��

��� The tangent space over a coordinate patch�

We continue the discussion of the previous section� We have a Cr m�manifold M
with a coordinate chart �U� ��� We have the one to one correspondence !� � TU �
��U� �Rm as de�ned in Section �� We have that TU is a quotient of C��I� U�
and we have the C� metric � on C��I� U�� This gives the quotient topology on
TU � We wish to show that !� is a homeomorphism under this topology�
First we show that !� is continuous� Let � 	 � be real� We want a � 	 � so

that if f� g � C��I� U� have ��f� g� 
 � � then d�!��f �� !��g�� 
 � � Here we need to
decide on the metric on ��U� � Rm � We decide on the metric d��a� b�� �c� d�� �
maxfd��a� c�� d��b� d�g where d� is the metric on ��U� � Rm and on Rm � We
make this choice because it makes the next argument a triviality�
Now ��f� g� 
 � implies that �� � f���� and �� � g���� di
er by less than � and

�� � f����� and �� � g����� di
er by less than � � So d�!��f �� !��g�� 
 � � We now let
� � � and are done�
Now we show that !� is open� Suppose that S � TU is open� We want to show

that ��S� is open in ��U� �Rm � Let �f � � S � We want a � 	 � so that if �x� y�
is within � of ��f � � then there is a �g� in S go that !��g� � �x� y�� Since S is open
in TU � it is the image of an open set in C��I� U�� Thus there is an � so that if
��f� h� 
 � � then �h� is in S � We argue that letting � � ��� will work�
Let �x� y� be within � of !��f � � The notation is easier with displacements� so let

u � x� �� � f���� and let v � y � �� � f������ Consider

g��t� � u� �� � f��t� � tv

de�ned on I � We ignore for a minute that the range of g� might not be in ��U��
We have g���� � u��� � f���� � x and g����� � �� � f������ v � y � So if the range
of g� is in ��U� we are done by letting g�t� � ��� � g� so that !��g� � �x� y�� It is
easy to show that ��f� g� 
 � so that �g� is in S � We now modify g� to get a g�
with similar properties but whose range is in ��U��
We �rst take � smaller if necessary so that the � ball B around �� � f���� lies

in ��U�� There is a straight line homotopy from �� � f� to g� de�ned by

F �t� s� � su� �� � f��t� � stv

where s � ��� ��� The homotopy goes into Rm but not necessarily into ��U�� Now
F ��� �� � �� � f���� which is in the center of the ball B � Also F ��� �� � g���� � x
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which is within � of �� � f���� and so is also in B � Since the homotopy is the
straight line homotopy� the straight line fF ��� s�js � ��� ��g is also in B � By the
continuity of F and the compactness of ��� ��� there is an � so that F �t� s� lies in
B for s � ��� �� and t � ���� �� � Let 
 � I � ��� �� be a bump function which is �
on ������ ���� and � o
 ���� �� � Now let

g��t� � 
�t�u� �� � f��t� � 
�t�v�

On ������ ���� we have g� � g� � This guarantees that g���� � g���� and g����� �
g����� so that g�t� � ��� � g� also has !��g� � �x� y�� It is again easy to show that
��f� g� 
 � so that �g� is in S � O
 ���� �� we have g� � �� � f�� This guarantees
that the image of g� o
 ���� �� lies in ��U�� On ���� �� we have that the image
of g� lies in the image of F on ���� ��� ��� �� which lies in B � This completes the
argument�

��� Approximations�

None of the statements in this section will be proven�
Just as one can de�ne the C� metric� one can de�ne the Cr metric for any r 	 �

and also a C� metric� These are for functions with range in some Euclidean space�
For maps to an arbitrary manifold� it is harder to make well de�ned measurements�
so one de�nes Cr topologies and C� topologies instead of metrics� Once a topology
is established� then questions about open� closed� compact and dense sets can be
discussed� A statment that a set of functions is an open set in a topology says that
if a function has the de�ning property of the set� then all nearby functions have the
property� A statement that a set of functions is dense says that any function can
be approximated by a function in the set�
There is more than one Cr topology to chose from� There is the �weak
 topology

and the �strong
 topology and there are perhaps others� The weak and strong
coincide for a compact domain� We do not provide de�nitions� The results below
leave out which of the Cr topologies are being used on the function spaces�
Many of the approximation results are proven locally �rst and then extended to

global results using bump functions or partitions of unity� As an exercise� one can
show that C� functions are dense in the continuous functions using the uniform
metric by approximating a continuous function by constant functions on small sets
and then using partitions of unity to smooth things out�
Consider the next two results�

Lemma ����� Let M be a Cr m�manifold� � � r � � � Then� in the space of

Cr functions from M to Rn with the Cr topology� the embeddings are dense if

n 	 �m and the immersions are dense if n � �m �

Theorem ����� Let M and N be Cr manifolds of dimension m and n repsec�

tively with � � r � � � If n � �m � then the immersions of M into N are dense

in the Cr maps from M to N with the Cr topology�
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The proof of the second result will use the �rst to get approximations on charts�
Then bump functions will be used to piece together an apparently incompatible
collection of pieces of aproximations�
An openness result is�

Lemma ����� In the space of Cr maps with the Cr topology� r � � � between
manifolds� the immersions� the submersions and the embeddings each form an open

set�

A main approximation theorem is�

Theorem ����� Let M and N be Cs manifolds� � � s � � � Then the Cs

functions from M to N are dense in the Cr topology on the Cr functions from

M to N for � � r 
 s �

Approximations are also used to increase the di
erentiability of a di
erentiable
structure on a manifold� A typical result in this direction is quoted above as
Theorem ����

�	� Sard�s theorem�

Regular values of Cr maps are nicer than critical values� Recall Lemma ����
which says that the inverse image of a regular value is a submanifold� It turns out
that regular values are dense in the range� The idea behind this is that critical
points are places where the map is squashing the domain more than required to
�t into the range� The image of such squashing cannot occupy much of the range�
This is the content of Sard�s theorem� It turns out to have many applications� It
also turns out to be rather delicate to prove� We will prove a very special case to
illustrate some of the ideas� We will mention an application of the full theorem in
the next section�
The fact that it is delicate to prove is supported by the fact that it is false without

the proper restrictions� There is a C� map from R� to R whose set of critical
values includes an interval� Thus the regular values cannot be dense in the range�
In fact the map is quite strange� A critical point in a map from R� to R� can
only be one at which the derivative is the zero linear map� That means that the
tangent plane to the graph is horizontal� The map has the property that there is
an arc of critical points in R� whose image in R� is an interval� Thus there is a
path in the graph which rises in spite of the fact that there is a horizontal tangent
to the graph at every point along the path�
To properly state Sard�s theorem� we need some de�ntions� A cube of side a in

Rn is a translate of ��� a�n � f�x�� � � � � xn�j� � xi � ag � The volume of a cube of
side a in Rn is de�ned to be an � We denote the volume of the cube C by ��C��
One can similarly de�ne the volume of a rectangular solid� A set A in Rn is said
to have measure � if� for every � 	 �� it can be covered by a countable collection
of cubes whose volumes sum to less than � � Countable unions of sets of measure
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� have measure �� Thus checking that a set has measure � can be done on small
open sets� It is provable that an open set cannot have measure �� Thus a set of
measure � can contain no open set and thus has dense complement� It turns out
that the regular values are more than just dense� A set is called residual if it is
the intersection of a countable collection of dense open sets� The Baire category
theorem �which applies to Rn since it is a complete metric space� says that a
residual set is dense� However� there are dense sets �e�g�� the rationals in R� that
are not residual�
We have only de�ned sets of measure � in Rn � We de�ne a set to have measure

� in a manifold M if the intersection of the set with the domain of each coordinate
map has its image under the coordinate map a set of measure �� That this de�ntion
makes some sense is supported by the next lemma�

Lemma �	��� Let U be an open set in Rn and let f � U � Rn be a C� map� If

X � U has measure � � then so does f�X� �

Proof� Because f is C� � kDfxk is bounded on compact sets� Thus on a ball B �
we have a bound K for kDfxk and

kf�x�� f�y�k � Kkx� yk
for any x and y in B � In a cube C of side a � the distances are bounded by a

p
n �

Thus the distances in f�C� are bounded by aK
p
n � Let L � K

p
n � We have that

f�C� is contained in a cube of side no more than aL with volume no more than
anLn � Ln��C��
Since X can be covered by countably many balls and contable unions of sets of

measure � have measure �� we need only prove the lemma for X � B � Now given
� 	 �� we can cover X � B by cubes whose volumes add up to less than � � Thus
f�X � B� can be covered by cubes whose volumes add up to less than Ln� � But
Ln is �xed for this B and we can make the image sum as small as we like� This
completes the proof�

The full statement if Sard�s theorem is�

Theorem �	�� �Sard�s theorem�� Let M and N be manifolds of dimensions

m and n repsectively and let f � M � N be a Cr map� If

r 	 maxf��m� ng�
then the critical values have measure � in N and the regular values are residual in

N �

Note that the example claimed above has m � �� n � � and r � � which just
misses the hypotheses of the theorem� There is no such example of a C� map from
R� to R � The case where r � � is easier than the full theorem and the proof
in this case is found in many textbooks� It is also su#cient for most applications
because approximation theorems �see Section ��� usually allow the assumption that
all maps are C� � We will prove even less than the full C� case� We will prove�
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Theorem �	�� �Very baby Sard�s theorem�� Let f � M � N be a C� map

between m�manifolds� Then the set of critical points has measure � in N �

Proof� A countable union of sets of measure � has measure � and both domain
and range can be covered by countable collections of coordinate charts� Thus we
assume that we are looking at a piece from a coordinate chart to a coordinate chart�
From the lemma and the de�ntion� we can assume that we are looking at the map
expressed in local coordinates� Thus we will assume that f is a C� map from an
open set U of Rm into Rm �
Let C be a cube of side a in U � Again by countable unions� it su#ces to consider

only the image of the critical points that lie in C �
We can divide C up into nm cubes of side a�n � The idea of the proof is this�

With a�n very small� a constant plus Df will be a very good approximation of f �
But at a critical point� the image of Df will be a linear subspace of dimension no
more than m��� Thus a small cube of side a�n will have extent in the direction of
this linear subspace that will be approximated by a�n and extent in the direction
perpendicular to the subspace that will be approximated by �a�n for very small � �
This will give that the image of the cube has a very small volume�
Let S be one of the small cubes of side a�n � We have ky � xk � p

m�a�n� for
x� y in S � For n large enough� we can get

kf�y�� f�x��Dfx�y � x�k 
 �ky � xk � �
p
m�a�n��

If S contains a critical point we can choose x to be a critical point� This makes
the set of points fDfx�y � x�jy � Sg lie in a linear subspace V of dimension no
more than m� � in Rm � Thus the set ff�y�� f�x�jy � Sg lies within �

p
m�a�n�

of V so that ff�y�jy � Sg lies within �
p
m�a�n� of the translate W � f�x� � V �

Now kDfk is bounded by some K on the cube C � Thus

kf�y�� f�x�k � Kky � xk � K
p
m�a�n�

and we have that f�y� lies within K
p
m�a�n� of f�x� and withing �

p
m�a�n�

of W � Thus f�S� lies in a rectangular solid where m � � of its dimensions
are �K

p
m�a�n� and one of its dimensions is ��

p
m�a�n�� The volume of S is

��S� � �a�n�m and the volume of f�S� is no more than �Km����
p
m�m�a�n�m or

�K ���S�� Here K � depends on C and not on S � The sum of all ��S� for the nm

small cubes in C is ��C�� The sum of the volumes of the f�S� for those S that
contain a critical point is thus no more than �K ���C�� We can make � as small as
we like by increasing n � Thus the image of the critical points in C has measure ��

�
� Transversality�

None of the statements in this section will be proven�
Let f � M � N be a C� map and let A � N be a submanifold� We say that f

is transverse to A if for every x with y � f�x� � A � the tangent space Ny of N
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at y is spanned by Ay and Dfx�Mx�� In other words� Ny � Ay �Dfx�Mx�� This
is written f t A � We de�ne the codimension of A in N to be the dimension of N
minus the dimension of A �
Transversality generalizes the notion of submersion� In a submersion at a point�

the tangent space in the domain must map to cover the tangent space in the range�
In a transverse map� the tangent space from the domain may not cover that in the
range� but it does so with the help of the submanifold that it is transverse to� Note
that transversality cannot take place if the dimensions of domain and submanifold
are too small to add up to the dimension of the range� If they are big enough to
add up� then transversality fails if the image is too �tangent
 to the submanifold�
Transversality says that this degree of tangency does not take place� The map
x �� x� is not transverse to the x�axis but it is transverse to the y �axis�
That transversality is a nice condition is seen by the following�

Theorem �
��� Let f � M � N be a Cr map� r � � � and A � N a Cr

submanifold� If f is transverse to A � then f���A� is a Cr submanifold of M and

the codimension of f���A� in M is that of A in N �

This is not hard to show by reducing the theorem locally to a question about
regular values�
Niceness is nice and availability is better� The following is a version of the main

result about transversality� As in previous sections we are not careful about exactly
which Cr topology is being used on the space of functions�

Theorem �
��� Let M and N be Cr manifolds and A a Cr submanifold of

N � r � � � Let Cr�M�N� be the space of Cr maps from M to N with the Cr

topology�

��� The maps that are transverse to A are residual in Cr�M�N� �
��� If M is compact and A is a closed subset of N � then the maps that are

transverse to A are also open in Cr�M�N� �

The theorem is proven with the help of Sard�s theorem and various of the tech�
niques discussed in the other sections�

��� Manifolds with boundary�

This section is even sketchier� We prove nothing and de�ne nothing�
The manifolds that we have considered have been modeled on Euclidean spaces�

The manifolds have had no boundary since each point has to have a neighborhood
homeomorphic to an open subset of some Rm � To achieve boundary we have to
allow homeomorphisms to open subsets of Rm

� the upper half space

f�x�� � � � � xm�jxm � �g�
Various notions have to be redi�ned to take the new structures into account� Sub�
manifolds with boundary of a given manifold will intersect �if their boundaries are
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transverse� in subspaces that are not even modeled on Rm
� � They will have corners�

A technique for rounding corners can be developed so as to avoid building up even
more variety into the structures�
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