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PREFACE TO THE ENLARGED EDITION

Originally, in the first edition of this work, it was the author’s purpose
to provide a self-contained treatment of Curvature and Homology. Sub-
sequently, it became apparent that the more important applications are
to Kaehler manifolds, particularly the Kodaira vanishing theorems,
which appear in Chapter VI. To make this chapter comprehensible,
Appendices F and I have been added to this new edition. In these Appen-
dices, the Chern classes are defined and the Euler characteristic is given
by the Gauss-Bonnet formula—the latter being applied in Appendix G.
Several important recent developments are presented in Appendices E
and H. In Appendix E, the differential geometric technique due to
Bochner gives rise to an important result that was established by Siu and
Yau in 1980. The same method is applied in Appendix H to F-structures
over negatively curved spaces.

S. I. GOLDBERG
Urbana, Illinois
February, 1998






PREFACE

The purpose of this book is to give a systematic and “self-contained”
account along modern lines of the subject with which the title deals,
as well as to discuss problems of current interest in the field. With this
statement the author wishes to recall another book, ‘“Curvature and
Betti Numbers,” by K. Yano and S. Bochner; this tract is aimed at
those already familiar with differential geometry, and has served
admirably as a useful reference during the nine years since its appearance.
In the present volume, a coordinate-free treatment is presented wherever
it is considered feasible and desirable. On the other hand, the index
notation for tensors is employed whenever it seems to be more adequate.

The book is intended for the reader who has taken the standard courses
in linear algebra, real and complex variables, differential equations, and
point-set topology. Should he lack an elementary knowledge of algebraic
topology, he may accept the results of Chapter II and proceed from
there. In Appendix C he will find that some knowledge of Hilbert space
methods is required. This book is also intended for the more seasoned
mathematician, who seeks familiarity with the developments in this
branch of differential geometry in the large. For him to feel at home
a knowledge of the elements of Riemannian geometry, Lie groups, and
algebraic topology is desirable.

The exercises are intended, for the most part, to supplement and to
clarify the material wherever necessary. This has the advantage of
maintaining emphasis on the subject under consideration. Several might
well have been explained in the main body of the text, but were omitted
in order to focus attention on the main ideas. The exercises are also
devoted to miscellaneous results on the homology properties of rather
special spaces, in particular, 8-pinched manifolds, locally convex hyper-
surfaces, and minimal varieties. The inexperienced reader should not be
discouraged if the exercises appear difficult. Rather, should he be
interested, he is referred to the literature for clarification.

References are enclosed in square brackets. Proper credit is almost
always given except where a reference to a later article is either more
informative or otherwise appropriate. Cross references appear as (6.8.2)
referring to Chapter VI, Section 8, Formula 2 and also as (VI.A.3)
referring to Chapter VI, Exercise A, Problem 3.

The author owes thanks to several colleagues who read various parts
of the manuscript. He is particularly indebted to Professor M. Obata,
whose advice and diligent care has led to many improvements. Professor
R. Bishop suggested some exercises and further additions. Gratitude is

vii
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also extended to Professors R. G. Bartle and A. Heller for their critical
reading of Appendices A and C as well as to Dr. L. McCulloh and
Mr. R. Vogt for assisting with the proofs. For the privilege of attending
his lectures on Harmonic Integrals at Harvard University, which led
to the inclusion of Appendix A, thanks are extended to Professor
L. Ahlfors. Finally, the author expresses his appreciation to Harvard
University for the opportunity of conducting a seminar on this subject.
It is a pleasure to acknowledge the invaluable assistance received in
the form of partial financial support from the Air Force Office of
Scientific Research.
S. I. GOLDBERG
Urbana, Illinots
February, 1962
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NOTATION INDEX

The symbols used have gained general acceptance with some ex-
ceptions. In particular, R and C are the fields of real and complex
numbers, respectively. (In § 7.1, the same letter C is employed as an
operator and should cause no confusion.) The commonly used symbols
€, U, N, =, sup, inf, are not listed. The exterior or Grassman algebra
of a vector space V (over R or C) is written as A(V). By AP(V) is
meant the vector space of its elements of degree p and A denotes
multiplication in A(V). The elements of A(V) are designated by
Greek letters. The symbol A is reserved for a topological manifold,
Tp its tangent space at a point P € M (in case M is a differentiable
manifold) and T} the dual space (of covectors). The space of tangent
vector fields is denoted by T and its dual by T*. The Lie bracket of
tangent vectors X and Y i1s written as [X, Y]. Tensors are generally
denoted by Latin letters. For example, the metric tensor of a Riemann-
ian manifold will usually be denoted by g. The covariant form of X
(with respect to g) is designated by the corresponding Greek symbol ¢.
The notation for composition of functions (maps) employed is flexible.
It is sometimes written as g-f and at other times the dot is not present.
The dot is also used to denote the (local) scalar product of vectors
(relative to g). However, no confusion should arise.

Symbol Page
E»; n-dimensional Euclidean space . . . . 2
A n-dimensional affine space . . . . . . 25
R A" with a distinguished point . . . . . 2
C,: complex n-dimensional vector space . . 47
N n-sphere . . . . N 1
T,: n-dimensional complex torus . . . . . 186
P,: n-dimensional complex projective space 149
Z: ring of integers . . . . . . . . . . . 57
O: empty set . . . . . 10
T;: tensor space.of tensors of type (r s) 8
8{:;:;{3: : Kronecker symbol . . . . . .. 16
<ot inner product, local scalar product .. 6,86
(,): global scalar product . . . . . . . . 70
Il Il =(,): Hilbert space norm . . . . ., . . . . 257,297
@ : directsum . . . . ., . . . . . . . . 44
®: tensor product . . . . . . . . . . . 41,57
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Cp» Zy, B, Hy
S S”' S” SH
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d:
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O(n) = O(n,

Un) = {ae
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INTRODUCTION

The most important aspect of differential geometry is perhaps that
which deals with the relationship between the curvature properties of a
Riemannian manifold and its topological structure. One of the beautiful
results in this connection is the generalized Gauss-Bonnet theorem
which for orientable surfaces has long been known. In recent years there
has been a considerable increase in activity in global differential geometry
thanks to the celebrated work of W. V. D. Hodge and the applications
of it made by S. Bochner, A. Lichnerowicz, and K. Yano. In the decade
since the appearance of Bochner’s first papers in this field many fruitful
investigations on the subject matter of ‘‘curvature and betti numbers”
have been inaugurated. The applications are, to some extent, based on a
theorem in differential equations due to E. Hopf. The Laplace-Beltrami
operator 4 is elliptic and when applied to a function f of class 2 defined
on a compact Riemannian manifold M yields the Bochner lemma: “If
A4f = 0 everywhere on M, then f is a constant and A4f vanishes identi-
cally.” Many diverse applications to the relationship betweenthe curvature
properties of a Riemannian manifold and its homology structure have
been made as a consequence of this “observation.” Of equal importance,
however, a “‘dual” set of results on groups of motions is realized.

The existence of harmonic tensor fields over compact orientable
Riemannian manifolds depends largely on the signature of a certain
quadratic form. The operator 4 introduces curvature, and these properties
of the manifold determine to some extent the global structure via
Hodge’s theorem relating harmonic forms with betti numbers. In
Chapter II, therefore, the theory of harmonic integrals is developed to
the extent necessary for our purposes. A proof of the existence theorem
of Hodge is given (modulo the fundamental differentiability lemma C.1
of Appendix C), and the essential material and information necessary
for the treatment and presentation of the subject of curvature and
homology is presented. The idea of the proof of the existence theorem
is to show that 4-1—the inverse of the closure of 4-is a completely
continuous operator. The reader is referred to de Rham’s book ‘‘Variétés
Différentiables” for an excellent exposition of this result.

The spaces studied in this book are important in various branches
of mathematics. Locally they are those of classical Riemannian geometry,
and from a global standpoint they are compact orientable manifolds.
Chapter I is concerned with the local structure, that is, the geometry of
the space over which the harmonic forms are defined. The properties
necessary for an understanding of later chapters are those relating to the

XV



XVl INTRODUCTION

differential geometry of the space, and those which are topological
properties. The topology of a differentiable manifold is therefore dis-
cussed in Chapter II. Since these subjects have been given essentially
complete and detailed treatments elsewhere, and since a thorough
discussion given here would reduce the emphasis intended, only a
brief survey of the bare essentials is outlined. Families of Riemannian
manifolds are described in Chapter III, each including the n-sphere and
retaining its betti numbers. In particular, a 4-dimensional 8-pinched
manifold is a homology sphere provided § > 1. More generally, the
second betti number of a §-pinched even-dimensional manifold is zero
if 8§ > 1.

The theory of harmonic integrals has its origin in an attempt to
generalize the well-known existence theorem of Riemann to every-
where finite integrals over a Riemann surface. As it turns out in the
generalization a 2n-dimensional Riemannian manifold plays the part of
the Riemann surface in the classical 2-dimensional case although a
Riemannian manifold of 2 dimensions is not the same as a Riemann
surface. The essential difference lies in the geometry which in the latter
case is conformal. In higher dimensions, the concept of a complex analytic
manifold is the natural generalization of that of a Riemann surface in the
abstract sense. In this generaljzation concepts such as holomorphic
function have an invariant meaning with respect to the given complex
structure. Algebraic varieties in a complex projective space P, have a
natural complex structure and are therefore complex manifolds provided
there are no “singularities.” There exist, on the other hand, examples
of complex manifolds which cannot be imbedded in a P,. A complex
manifold is therefore more general than a projective variety. This
approach is in keeping with the modern developments due principally
to A. Weil.

It is well-known that all orientable surfaces admit complex structures.
However, for higher even-dimensional orientable manifolds this is not
the case. It is not possible, for example, to define a complex structure
on the 4-dimensional sphere. (In fact, it was recently shown that not
every topological manifold possesses a differentiable structure.) For a
given complex manifold M not much is known about the complex
structure itself; all consequences are derived from assumptions which
are weaker—the “‘almost-complex” structure, or stronger—the existence
of a “Kaehler metric.” The former is an assumption concerning the
tangent bundle of M and therefore suitable for fibre space methods,
whereas the latter is an assumption on the Riemannian geometry of M,
which can be investigated by the theory of harmonic forms. The material
of Chapter V is partially concerned with a development of hermitian
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geometry, in particular, Kaehler geometry along the lines proposed by
S. Chern. Its influence on the homology structure of the manifold is
discussed in Chapters V and VI. Whereas the homology properties
described in Chapter III aré similar to those of the ordinary sphere
(insofar as betti numbers are concerned), the corresponding properties
in Chapter VI are possessed by P, itself. Families of hermitian manifolds
are described, each including P, and retaining its betti numbers. One
of the most important applications of the effect of curvature on homology
is to be found in the vanishing theorems due to K. Kodaira. They are
essential in the applications of sheaf theory to complex manifolds.

A conformal transformation of a compact Riemann surface is a holo-
morphic homeomorphism. For compact Kaehler manifolds of higher
dimension, an element of the connected component of the identity of
the group of conformal transformations is an isometry, and consequently
a holomorphic homeomorphism. More generally, an infinitesimal con-
formal map of a compact Riemannian manifold admitting a harmonic
form of constant length is an infinitesimal isometry. Thus, if a compact
homogeneous Riemannian manifold admits an infinitesimal non-iso-
metric conformal transformation, it is a homology sphere. Indeed, it is
then isometric with a sphere. The conformal transformation group is
studied in Chapter III, and in Chapter VII groups of holomorphic as
well as conformal homeomorphisms of Kaehler manifolds are in-
vestigated.

In Appendix A, a proof of de Rham’s theorems based on the concept
of a sheaf is given although this notion is not defined. Indeed, the proof
is but an adaptation from the general theory of sheaves and a knowledge
of the subject is not required.







CHAPTER |

RIEMANNIAN MANIFOLDS

In seeking to generalize the well-known theorem of Riemann on the
existence of holomorphic integrals over a Riemann surface, W. V. D.
Hodge [39] considers an z-dimensional Riemannian manifold as the
space over which a certain class of integrals is defined. Now, a Riemannian
manifold of two dimensions is not a Riemann surface, for the geometry
of the former is Riemannian geometry whereas that of a Riemann surface
is conformal geometry. However, in a certain sense a 2-dimensional
Riemannian manifold may be thought of as a Riemann surface. More-
over, conformally homeomorphic Riemannian manifolds of two dimen-
sions define equivalent Riemann surfaces. Conversely, a Riemann
surface determines an infinite set of conformally homeomorphic 2-dimen-
sional Riemannian manifolds. Since the underlying structure of a
Riemannian manifold is a differentiable structure, we discuss in this
chapter the concept of a differentiable manifold, and then construct
over the manifold the integrals, tensor fields and differential forms
which are basically the objects of study in the remainder of this book.

1.1. Differentiable manifolds

The differential calculus is the main tool used in the study of the
geometrical properties of curves and surfaces in ordinary Euclidean
space E3. The concept of a curve or surface is not a simple one, so that
in many treatises on differential geometry a rigorous definition is lacking.
The discussions on surfaces are further complicated since one is interested
in those properties which remain invariant under the group of motions
in E3. This group is itself a 6-dimensional manifold. The purpose of
this section is to develop the fundamental concepts of differentiable
manifolds necessary for a rigorous treatment of differential geometry.

Given a topological space, one can decide whether a given function

1




2 I. RIEMANNIAN MANIFOLDS

defined over it is continuous or not. A discussion of the properties of
the classical surfaces in differential geometry requires more than
continuity, however, for the functions considered. By a regular closed
surface S in E® is meant an ordered pair {S,, X} consisting of a topological
space S, and a differentiable map X of S, into E®. As a topological space,
Sy is to be a separable, Hausdorff space with the further properties:

(i) S, is compact (that is X(Sy) is closed and bounded);

(ii) S, is connected (a topological space is said to be connected if it
cannot be expressed as the union of two non-empty disjoint open
subsets);

(iii) Each point of S, has an open neighborhood homeomorphic
with E% The map X : P — (x (P), y(P), 2(P)), P € S, where x(P), y(P)
and 2(P) are differentiable functions is to have rank 2 at each point
P e S,, that is the matrix

2

of partial derivatives must be of rank 2 where u, v are local parameters
at P. Let U and V' be any two open neighborhoods of P homeomorphic
with E? and with non-empty intersection. Then, their local parameters
or coordinates (cf. definition given below of a differentiable structure)
must be related by differentiable functions with non-vanishing Jacobian.
It follows that the rank of X is invariant with respect to a change of
coordinates,

That a certain amount of differentiability is necessary is clear from
several points of view. In the first place, the condition on the rank of X
implies the existence of a tangent plane at each point of the surface.
Moreover, only those local parameters are “allowed” which are related
by differentiable functions.

A regular closed surface is but a special case of a more general concept
which we proceed to define.

Roughly speaking, a differentiable manifold is a topological space in
which the concept of derivative has a meaning. Locally, the space is to
behave like Euclidean space. But first, a topological space M is said to be
separable if it contains a countable basis for its topology. It is called a
Hausdorff space if to any two points of M there are disjoint open sets each
containing éxactly one of the points.

A separable Hausdorff space M of dimension n is said to have a
differentiable structure of class & > O if it has the following properties:

(1) Each point of M has an open neighborhood homeomorphic with
an open subset in R™ the (number) space of n real variables, that is,



1.1. DIFFERENTIABLE MANIFOLDS 3

there is a finite or countable open covering {U,} and, for each « a homeo-
morphism u, : U, - R" of U, onto an open subset in R";

(ii) For any two open sets U, and U, with non-empty intersection
the map uzu;': u (U, N Ug) — R* is of class k (that is, it possesses
continuous derivatives of order k) with non-vanishing Jacobian.

The functions defining u, are called local coordinates in U,. Clearly,
one may also speak of structures of class oo (that is, structures of class &
for every positive integer k) and analytic structures (that is, every map
ugu;' is expressible as a convergent power series in the n variables). The
local coordinates constitute an essential tool in the study of M. However,
the geometrical properties should be independent of the choice of local
coordinates.

The space M with the property (i) will be called a topological mani-
fold. We shall generally assume that the spaces considered are connected
although many of the results are independent of this hypothesis.

Examples: 1. The Euclidean space E™ is perhaps the simplest example
of a topological manifold with a differentiable structure. The identity
map / in E” together with the unit covering (R", I) is its natural differen-
tiable structure: (U, u,) = (R", I).

2. The (n — 1)-dimensional sphere in E™ defined by the equation

i@&:h (1.1.1)

i=1

It can be covered by 2n coordinate neighborhoods defined by x* > 0
and ¥t <0 (i =1, ..., n).

3. The general linear group: Let V be a vector space over R (the real
numbers) of dimension 7 and let {e,, ..., ¢,} be a basis of V. The group
of all linear automorphisms a of V' may be expressed as the group of all
non-singular matrices (a});
c=de, ij=1.,n (1.1.2)
called the general linear group and denoted by GL(n, R). We shall also
denote it by GL(V) when dealing with more than one vector space.
(The Einstein summation convention where repeated indices implies
addition has been employed in formula (1.1.2) and, in the sequel we
shall adhere to this notation.) The multiplication law is

(ab);f = a;; b? .

GL(n, R) may be considered as an open set [and hence as an open
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submanifold (cf. §1.5)] of E»*. With this structure (as an analytic
manifold), GL(n, R) is a Lie group (cf. §3.6).

Let f be a real-valued continuous function defined in an open subset
S of M. Let P be a point of S and U, a coordinate neighborhood
containing P. Then, in S n U,, f can be expressed as a function of the
local coordinates u!, ..., u* in U,. (If x}, ..., x™ are the n coordinate func-
tions on R%, then w¥(P) = x{(u,(P)), ¢ = 1,...,n and we may write
u? = x%.u,). The function f is said to be differentiable at P if f(u!, ..., u?)
possesses all first partial derivatives at P. The partial derivative of f
with respect to u® at P is defined as

of afuz?)
() = (T,

This property is evidently independent of the choice of U,. The function f
is called differentiable in S, if it is differentiable at every point of S.
Moreover, f is of the form g - u, if the domain is restricted to Sn U,
where g is a continuous function in #,(S ~ U,) C R*. Two differentiable
structures are said to be equivalent if they give rise to the same family
of differentiable functions over open subsets of M. This is an equivalence
relation. The family of functions of class k& determines the differentiable
structures in the equivalence class.

A topological manifold M together with an equivalence class of
differentiable structures on M is called a differentiable manifold. 1t has
recently been shown that not every topological manifold can be given
a differentiable structure [44]. On the other hand, a topological manifold
may carry differentiable structures belonging to distinct equivalence
classes. Indeed, the 7-dimensional sphere possesses several inequivalent
differentiable structures [60].

A differentiable mapping f of an open subset .S of R™ into R” is called
sense-preserving if the Jacobian of the map is positive in S. If, for any
pair of coordinate neighborhoods with non-empty intersection, the
mapping usu;! is sense-preserving, the differentiable structure is said to
be oriented and, in this case, the differentiable manifold is called orientable.
Thus, if fz(x) denotes the Jacobian of the map wuu;! at x*(u,(P)),
i=1, .., n then f,ﬁ(x)fﬁa(x) fra®), P U, " Uy N

The 2 -sphere in E® is an orientable manifold whereas the real
projective plane (the set of lines through the origin in E%) is not
(cf. I.B. 2).

Let M be a differentiable manifold of class £ and .S an open subset of
M. By restricting the functions (of class k) on M to S, the differentiable
structure so obtained on S is called an induced structure of class k
In particular, on every open subset of E! there is an induced structure
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1.2. Tensors

To every point P of a regular surface S there is associated the tangent
plane at P consistihg of the tangent vectors to the curves on S through P.
A tangent vector ¢ may be expressed as a linear combination of the
tangent vectors X, and X, “defining” the tangent plane:

t = &X, + X, ¢ e R, i=1,2. (1.2.1)

At this point, we make a slight change in our notation: We put u! = y,
u? =9, X, = X, and X, = X, so that (1.2.1) becomes

t = X, (1.2.2)

Now, in the coordinates #!, 22 where the #® are related to the #7 by means
of differentiable functions with non-vanishing Jacobian

oW 4
mgérj (1.2.3)
where X = X(u! (@', @?), u? (@, 4%)). If we put
s ow .
=258 (1.2.4)
equation (1.2.3) becomes
t=8X, (1.2.5)

In classical differential geometry the vector ¢ is called a contravariant
vector, the equations of transformation (1.2.4) determining its character.

Guided by this example we proceed to define the notion of contravariant
vector for a differentiable manifold M of dimension n. Consider the
triple (P, U,, £°) consisting of a point P € M, a coordinate neighborhood
U, containing P and a set of n real numbers ¢!. An equivalence relation
is defined if we agree that the triples (P, U, &) and (P, U,, &) are
equivalent if P = P and

where the u are the coordinates of u,(P) and %’ those of uy(P), P € U, U.
An equivalence class of such triples is called a contravariant vector at P.
When there is no danger of confusion we simply speak of the
contravariant vector by choosing a particular set of representatives £
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(f = 1, ..., n). That the contravariant vectors form a linear space over R
is clear. In analogy with surface theory this linear space is called the
tangent space at P and will be denoted by T'p. (For a rather sophisticated
definition of tangent vector the reader is referred to §3.4.)

Let f be a differentiable function defined in a neighborhood of
Pe U, n U, Then,

(fuz") L A(fush) Py
(T)ual}ﬂi ( (’)x}ﬂ )u ) ( out )ua(P). (12.7)
Now, applying (1.2.6) we obtain
o(fuz') L afus) ’
(% ) » (Far). 8 (1.2.8)

The equivalence class of “functions’ of which the left hand member
of (1.2.8) is a representative is commonly called the directional derivative
of f along the contravariant vector §. In particular, if the components
£l = 1, ..., n) all vanish except the ™ which is I, the directional
derivative is the partial derivative with respect to #* and the corres-
ponding contravariant vector is denoted by 8/du*. Evidently, these vectors
for all k = 1, ..., n form a base of T, called the natural base. On the
other hand, the partial derivatives of f in (1.2.8) are representatives of
a vector (which we denote by df) in the dual space 7% of Tp. The
elements of T} are called covariant vectors or, simply, covectors. In the
sequel, when we speak of a covariant vector at P, we will occasionally
employ a set of representatives. Hence, if 7; is a covariant vector and &
a contravariant vector the expression »;&! is a scalar invariant or, simply
scalar, that is

760 = ', (1.2.9)
and so,

_ ou’

T = (1.2.10)

are the equations of transformation defining a covariant vector. We
define the inner product of a contravariant vector v = ¢* and a covariant
vector w* = n; by the formula

(v, w*) = ;€ (1.2.11)
That the inner product is bilinear is clear. Now, from (1.2.10) we obtain
7, ditt = 7, dut (1.2.12)

where the du! (i = 1, ..., n) are the differentials of the functions !, ..., u™.
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The invariant expression 7,du’ is called a linear (differential) form or
I-form. Conversely, when a linear (differential) form is given, its coefhi-
cients define an element of T'%. If we agree to identify T} with the space
of 1-forms at P, the du® at P form a base of T} dual to the base 3/ou’
(f =1, ..., n) of tangent vectors at P:

a . . j . . —
<W,du7> =8, =1, .n (1.2.13)

where & is the ‘Kronecker delta’, thatis, 8/ = 1 if/ = jand & = 0 if 7 3.

We proceed to generalize the notions of contravariant and covariant
vectors at a point P € M. To this end we proceed in analogy with the
definitions of contravariant and covariant vector. Consider the triples
(P, U, & ) and (P, Uy, &v-r i) They are said to be equivalent
if P="P and 1f the nr+s constants f‘l i ;.;. are related to the n7+s
constants &1 j,..i, by the formulae

ity = (81211) (ﬁ) (g‘l_‘) (a“ ') gkl...k, )
Jpeedy 8u’f1 g (P) Oukr BT ouh uﬂ(P) @uJ /3 lyely

(1.2.14)

1o

An equivalence class of triples (P, U,, &%, ) is called a tensor of type
(r, s) over Tp contravariant of order r and covariant of order s. A tensor
of type (7, 0) is called a contravariant tensor and one of type (0, s) a
covariant tensor. Clearly, the tensors of type (r, s) form a linear space—
the tensor space of tensors of type (7, s). By convention a scalar is a tensor
of type (0, 0). .

If the components £+, of a tensor are all zero in one local coor-
dinate system they are zero in any other local coordinate system. This
tensor is then called a zero tensor. Again, if gt 7,..J, 18 symmetric or skew-
symmetric in 7, 7, (or in j,, j,), & ~tr; ., has the same property. These
propertles are therefore characteristic of tensors. The tensor £++r (or
§;,..;,) is said to be symmetric (skew-symmetric) if it is symmetric (skew-
symmetric) in every pair of indices.

The product of two tensors (P, U,, &', ) and (P, U, 9+ "Jl )
one of type (r, s) the other of type (7, s') is the tensor (P, U,, &~
ira1rey of type (r + ', s + s'). In fact,

Jyds
Jatredets )

g‘r iy ‘r} fpageetr s . =

Feerredorg

7, / ! 7iT+l lses
_aliz\L) ( 8u,’ ) ( au'r ) (—@ﬁ—i'—) f"'x---l"rl . ﬂkrﬂ-“kﬁr“ L
k 7 st colyy
oukr uy(P) Ots ug(P) 3u uy(P) ot ug(P) 1l PSRRI
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It is also possible to form new tensors from a given tensor. In fact,
let (P, U, L .;,) be a tensor of type (7,s). The triple (P, U,,
£ty ""'Il i) where the indices 7, and ]q are equal (recall that repeated
indices 11.d1cate summation from l to n) is a r.presentative of a tensor
of type (r — [, s — I). For,

) ot outr ( Ot
gil...tﬁ...i,j i p :( T ) ( ) ( a )
100 dgaaipigin-edy duk u (P) outs '™ (P) u Ug(P)
1 I3 . l
( ouh ) ( ouls ) ( ouls ) ghuee gk,
— — Lenilgylplyggessd
o up Py \ Oty ug(P) ows ug(P) et
( ouh ) ( outer-1 ) ( 612i»+1) ( Ot )
= (= - %
7 (P) Qukv-1 ug(P) Ourha uy(P) oukr Uy (P)
1 g  oul L
( ouh ) ( oule 1) ( ou a+1) ( outs ) Erreckigeniky
s —— = = leenlggk W,
oun ug(P) Otas ug(P) Gidtar up(P) o upP) bl
since
Oty Ouls _ sip
ouks duit» T k»’

This operation is known as contraction and the tensor so obtained is
called the contracted tensor.

These operations may obviously be combined to yield other tensors.
A particularly important case occurs when the tensor £;; is a symmetric
covariant tensor of order 2. If » is a contravariant vector, the quadratic
form £; o* m/ is a scalar. The property that this quadratic form be
positive definite is a property of the tensor £,; and, in this case, we call
the tensor positive definite.

Our definition of a tensor of type (7, s) is rather artificial and is
actually the one given in classical differential geometry, An intrinsic
definition is given in the next section. But first, let ¥ be a vector
space of dimension n over- R and let V* be the dual space of V. A
tensor of type (r,s) over V, contravariant of order r and covariant
of order s, is defined to be a multilinear map of the direct product
VXX VXV*x ... X V* (Vs times, V*ir times) into R. All tensors of
type (7, s) form a linear space over R with respect to the usual addition
and scalar multiplication for multilinear maps. This space will be
denoted by T4%. In particular, tensors of type (1,0) may be identified with
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elements of V' and those of type (0,1) with elements of V'* by taking
into account the duality between V and V*. Hence Ty =~ V and 7Y =~ V'*.

The tensor space TF may be considered as the vector space of all
multilinear maps of VX ...x V (r times) into V. In fact, given f e T}
a multilinear map &V X..xXV — V is uniquely determined by the
relation

(Vg ooy Up)y 00 = f(04, 0y ¥, 0*) €R (1.2.15)

for all vy, ..., v, € V and v* € V*, where, as before, {, > denotes the
value which v* takes on #(vy, ..., 7,). Clearly, this establishes a canonical-
isomorphism of T, with the linear space of all multilinear maps of
VX..xV into V. In particular, T} may be identified with the space
of all linear endomorphisms of V.

Let {¢;} and {e**} be dual bases in ¥ and V*, respectively:

Cey e¥hy = 8. (1.2.16)

These bases give rise to a base in 7] whose elements we write as
e =0 ®.. Re e @ ... ®e*kr (cf. I A for a defini-
tion of the tensor product) A tensor t € T} may then be represented in
the form

{ — fil.-.irkl...k,eil...z‘,kl‘“k“ (1.2.17)

that is, as a linear combination of the basis elements of T77. The coefficients
§hwiry .k, then define ¢ in relation to the bases {e;} and {e**}.

1.3. Tensor bundles

In differential geometry one is not interested in tensors but rather
in tensor fields which we now proceed to define. The definition given
is but one consequence of a general theory (cf. I.J) having other
applications to differential geometry which will be considered in § 1.4
and §1.7. Let T;(P) denote the tensor space of tensors of type (r,s)
over Tp and put

r_ nr
I __PgM Ti(P).

We wish to show that 77} actually defines a differentiable manifold and
that a ‘tensor field’ of type (7, 5) is a certain map from M into 7}, that
is a rule which assigns to every P € M a tensor of type (r, s) on the
tangent space T'p. Let I be a vector space of dimension 7 over R and 7%
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the corresponding space of tensors of type (7, s). If we fix a base in v,
a base of T7 is determined. Let U be a coordinate neighborhood and
the corresponding homeomorphism from U to E™. The local coordinates
of a point P e U will be denoted by (#i(P)); they determine a base
{dui(P)} in T} and a dual base {¢,(P)} in Tp. These bases give rise to a
well-defined base in T5(P). Consider the map

q)U:UX T:——)g-:

where @y(P, t), P € U, t € T} belongs to Tj(P) and has the same com-

ponents £h-ir; ; relative to the (natural) base of Tj(P) as ¢ has in 17

That ¢y is 1-1 is clear. Now, let V' be a second coordinate neighborhood
such that U n ¥V 5= [] (the empty set), and consider the map

PU.P: T;— T(P)
defined by
pu.p(t) = pu(Pt),  teTl]. (1.3.1)
Then,
guv(P) =¢0.p- ov.p (1.3.2)
is a 1-1 map of 77 onto itself. Let (v{(P)) denote the local coordinates of P

in V. They determine a base {dv{(P)} in T} and a dual base {f,(P)}
in Tp. If we set

t = guv(P), (1.3.3)
it follows that
pu(P\l) = ep(P,t). (1.3.4)
Since
(PU(P’Z) = 6"1“',:’]'1...1', eil...i,jl.“j‘ (P) (1'3.5)
and
pr(Byt) = &hetry o fo v (P) (1.3.6)

where {e;  #-3(P)} and {f; ;7J(P)} are the induced bases in
TPp), '

i _ (o oot P
El Jreedy T ( vk )v(P)( duls )u(P) ¢h Tty (1.3.7)

These are the equations defining gy, (P). Hence gy, (P) is a linear
automorphism of 77. If we give to 77 the topology and differentiable
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structure derived from the Euclidean space of the components of its
elements it becomes a differentiable manifold. Now, a topology is
defined in 77 by the requirement that for each U, ¢, maps open sets
of U x T7 into open sets of J 7. In this way, it can be shown that 77,
is a separable Hausdorff space. In fact, 77} is a differentiable manifold
of class & — | as one sees from the equations (1.3.7).

The map gyp:U NV — GL(T?) is continuous since M is of class
k= 1. Let P bea point inthe overlap of the three coordinate neighbor-

hoods, U,V,W: U nV n W s [J. Then,

guv(P)gyw(P) = guw(P) (1.3.8)
and since

gvu(P) = gv(P), (1.3.9)

these maps form a topological subgroup of GL(T7). The family of
maps gy for U n V 3 [] where U, V, ... is a covering of M is called
the set of tranmsition functions corresponding to the given covering.
Now, let
7. Ir>M

be the projection map defined by =(Ti(P)) = P. For /| <k, a map
fiM — T of class [ satisfying = - f = identity is called a tensor field of
type (7, s) and class /. In particular, a tensor field of type (1,0) is called
a vector field or an infinitesimal transformation. The manifold 77 is called
the tensor bundle over the base space M with structural group GL (n™+%, R)
and fibre Tj. In the general theory of fibre bundles, the map f is called
a cross-section. Hence, a tensor field of type (7,s) and class / < %k is a
cross-section of class / in the tensor bundle I over M.

The bundle J7} is usually called the tangent bundle.

Since a tensor field is an assignment of a tensor over T, for each
point P € M, the components  of/dut (i = |, ...,n) in (1.2.8) define a
covariant vector field (that is, there is a local cross-section) called
the gradient of f. We may ask whether differentiation of vector fields
gives rise to tensor fields, that is given a covariant vector field £, for
example (the £, are the components of a tensor field of type (0,1)), do
the n% functions 9¢;/ow’ define a tensor field (of type (0,2)) over U? We
see from (1.2.12) that the presence of the term (&%//da*oa*)¢; in

ek i | ow
ik = Gak T Bt dak 't T pa* ot

£ (13.10)

yields a negative reply. However, because of the symmetry of 7 and %
in the second term on the right the components 7,, — 7, define a skew-



12 I. RIEMANNIAN MANIFOLDS

symmetric tensor field called the curl of the vector £;. If the ¢, define
a gradient vector field, that is, if there exists a real-valued function f
defined on an open subset of M such that £, = (9f/du?), the curl must
vanish. Conversely, if the curl of a (covariant) vector field vanishes, the
vector field is necessarily a (local) gradient field.

1.4. Differential forms

Let M be a differentiable manifold of dimension 7. Associated to each
point P € M, there is the dual space T} of the tangent space Tp at P.
We have seen that T can be identified with the space of linear differential
forms at P. Hence, to a 1-dimensional subspace of the tangent space
there corresponds a linear differential form. We proceed to show that
to a p-dimensional subspace of T, corresponds a skew-symmetric
covariant tensor of type (0, p), in fact, a ‘differential form of degree p’.
To this end, we construct an algebra over T} called the Grassman or
exterior algebra:

An associative algebra A (V) (with addition denoted by + and
multiplication by A) over R containing the vector space V over R
is called a Grassman or exterior algebra if

(i) A (V) contains the unit element 1 of R,

(if) A (V) is generated by 1 and the elements of V,

(i) fxeV,x A x=0,

(iv) The dimension of A (V) (as a vector space) is 2, n =dim V.

Property (ii) means that any element of A (V) can be written as a
linear combination of 1 € R and of products of elements of V, that is
A (V) is generated from V and 1 by the three operations of the algebra.
Property (iii) implies that ¥ Ay = —y A x for any two elements
x, y € V. Select any basis {e,;, ..., ¢,} of V. Then, A (V) contains all
products of the ¢; (i = 1, ..., #). By using the rules

e; N\ e; =0, e; Ne; = —e; Ne, ,j=1,.,n (1.4.1)
we can arrange any product of the e; so that it is of the form

e, N Neg, 1 <. <1,

or else, zero. The latter case arises when the original product contains
a repeated factor. It follows that we can compute any product of two
or more vectors a,e; + ... + a,e, of V as a linear combination of the
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decomposable p-vectors e; A ... A e; . Since, by assumptlon, A (V)
is spanned by 1 and such products it follows that A (V) is spanned by
the elements e, . N\ e, where (i}, ..., 4,) is a subset of the set
(L, ..., n) arranged in 1ncreasmg order. But there are exactly 2" subsets
of (1 ., n), while by assumption dim A (V) = 27. These elements
must therefore be linearly independent. Hence, any element of A (V)
can be uniquely represented as a linear combination

n

2 @iy €N N, A € R, (1.4.2)
P=0 (iy..4,)
where now and in the sequel (7, ... 4,) implies 7, < ... <%,. An element
of the first sum is called komogeneous of degree p.
It may be shown that any two Grassman algebras over the same
vector space are isomorphic. For a realization of A (V) in terms of the
‘tensor algebra’ over V the reader is referred to (1.C.2).

The elements xy, ..., x, in V are linearly independent, if and only if,
their product x; A ... A x, in A (V) is not zero. The proof is an easy
exercise in linear algebra. In particular, for the basis elements ey, ..., e,

of V, e; A ... Ae, #0. However, any product of n 4+ 1 elements of
V' must vanish.
All the elements

e, N e Ny, 6 <. <i,

for a fixed p span a linear subspace of A (V) which we denote by
AP(V). This subspace is evidently independent of the choice of base.
An element of AP(V) is called an exterior p-vector or, simply a p-vector.
Clearly, AYV) = V. We define A%V) = R. As a vector space, A (V)
is then the direct sum of the subspaces AP(V), 0 < p < n.

Let W be the subspace of I/ spanned by y,, ..., 3, € V. This gives
rise to a p-vector = y; A ... A ¥, which is unique up to a constant
factor as one sees from the theory of linear equations. Moreover, any
vector y € W has the property that y A 5 vanishes. The subspace W
also determines its orthogonal complement (relative to an inner product)
in V, and this subspace in turn defines a ‘unique’ (n — p)-vector. Note
that for each p, the spaces AP(V) and A P(V) have the same dimensions.
Any p-vector ¢ and any (n — p)-vector n determine an n-vector ¢ A 9
which in terms of the basis e = ¢; A ... A ¢, of A™ V) may be expressed
as

ENn=(&Em)e (1.4.3)

where (£,7) € R. It can be shown that this ‘pairing’ defines an iso-
morphism ot AP(V) with (A P(V))* (cf. 1.5.1 and ILA).
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Let V* denote the dual space of ¥V and consider the Grassman
algebra A (V*) over V'*. It can be shown that the spaces AP(V*) are
canonically isomorphic with the spaces (AP(V))* dual to AP(V). The
linear space AP(V*) is called the space of exterior p-forms over V;
its elements are called p-forms. The isomorphism between AP(V*) and
A" P(V*) will be considered in Chapter II, §2.7 as well as in ILA.

We return to the vector space T¥ of covariant vectors at a point P
of the differentiable manifold M of class 2 and let U be a coordinate
neighborhood containing P with the local coordinates u, ..., #* and
natural base du!, ..., du™ for the space T}. An element o«(P) e AP(T})
then has the following representation in U:

«(P) = ag,...ipy (P) duwis(P) A ... \ duis(P). (1.4.4)

If to each point Pe U we assign an element o(P) € AP(TF ) in such a way
that the coefficients a; ...; are of class [ = 1(/ < k) then a is said to be a
differential form of degree p and class . More precisely, an exterior
differential polynomial of class | < k — 1 is a cross-section a of class /
of the bundle
A¥M)= N(T") = U A(TP),
PE

that is, if 7 is the projection map:
m: AN*¥M)—> M

defined by w( A(T})) = P, then o: M — A*(M) must satisfy ma(P) = P
for all Pe M (cf. § 1.3 and L.]). If, for every P e M, «(P) € NP(T})
for some (fixed) p, the exterior polynomial is called an exterior differential
form of degree p, or simply a p-form. In this case, we shall simply write
a € AP(T*). (When reference to a given point is unnecessary we shall
usually write 7" and T* for Tp and T} respectively).

Let M be a differentiable manifold of class # = 2. Then, there is a map

d: A\ (T*— A (T¥)
sending exterior polynomials of class / into exterior polynomials of class
I — 1 with the properties: .

(i) For p = 0 (differentiable functions f), df is a covector (the
differential of f),

(ii) d is a linear map such that d(AP(T*)) C AP+Y(T*),
(iil) For a e AP(T*), B e AYT™*),

daANB)=da AB+(—1)Pa A db
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(iv) d(df) = 0.

To see this, we need only define

da = da(,l.__,,, dus A oo A duts
(1.4.5)

da
= — G A duh A . A duts
out

o= Ay, A A A duts,

where

In fact, the operator d is uniquely determined by these properties:
Let d* be another operator with the properties (i)-(iv). Since it is linear,
we need only consider its effect upon B = fdur A ... A du>, By
property (iil), d*8 = d*f N\ dutr A\ ... N\ dute + fd*(duhr A ... A\ du's).
Applying (iii) inductively, then (i) followed by (iv) we obtain the desired
conclusion.

It follows easily from property (iv) and (1.4.5) that d(dx) = 0 for
any exterior polynomial o of class = 2.

The operator d is a local operator, that is if « and B are forms which
coincide on an open subset S of M, then dau = dB on S.

The elements AP(T*) of the kernel of d: AP(T*) — APHYT*) are
called closed p-forms and the images AP(T*) of AP~} T*) under d are
called exact p-forms. They are clearly linear spaces (over R). The
quotient space of the closed forms of degree p by the subspace of exact
p-forms will be denoted by DP(M) and called the p-dimensional coho-
mology group of M obtained using differential forms. Since the exterior
product defines a multiplication of elements (cohomology classes) in
D»(M) and De(M) with values in DP+¢(M) for all p and ¢, the direct sum

D(M) = f‘, D?(M) (1.4.6)

becomes a ring (over R) called the cohomology ring of M obtained using
differential forms. In fact, from property (iii) we may write

closed form A closed form = closed form,
closed form A exact form = exact form, (1.4.7)
exact form A closed form = exact form.

Examples: Let M be a 3-dimensional manifold and consider the
coordinate neighborhood with the local coordinates #, y, 2. The linear
differential form

a=pdx+qdy + rdz (1.4.8)
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where p, ¢, and r are functions of class 2 (atleast) of x, ¥, and 2 has for
its differential the 2-form

2do = (g, — py)dx N dy + (1, — ;) dy N\ dz + (p, —72) dz A dx.
Moreover, the 2-form
B=pdy Ndz 4 qdz N\dx +rdx \dy (1.4.9)
has the differential
dB = (p + q, + 1) dx N\ dy N dz.

In more familiar language, duo is the curl of o and dB its divergence.
That dda = 0 is expressed by the identity

div curla = 0.

We now show that the coefficients g, .4, of a differential form «
can be considered as the components of a skew- symmetrlc tensor field
of type (0, p). Indeed, the a; ; are defined for iy < ... <17, They
may be defined for all values of the indices by taking account of the
anti-commutativity of the covectors du?, that is we may write

1

o= —4a;

21 % dp QU A L N duts,

That the a;  ; are the components of a tensor field is easy to show.
In the sequel, "we will absorb the factor 1/p! in the expression of a
p-form except when its presence is important.

In order to express the exterior product of two forms and the
differential of a form (cf. (1.4.5)) in a canonical fashion the Kronecker
symbol ‘
81 81

7, —
site

8iz 8%
will be useful. The important properties of this symbol are:
(i) 8"::11;; is skew-symmetric in the 7, and j,
(i) SGnE = 8it - 8l
This condition is equivalent to

(i) For every system of (3) numbers ay ),

J
Aiy,iiip) = iy z,,aul Jg)
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and (i)’ is equivalent to

()" .., = p, S as.
where a; __; is a p-vector.
The condltlon (i1)"" shows that the Kronecker symbol is actually a

tensor of type (p, p).

Now, let . .
a = Ay AU N\l N duts
and
B =by,..ipdutt \ .o N dute,
Then,
a AB=c¢,. vipea duir A ... N\ duis+e (1.4.10)
where .
P+ iy = i, ey, g Dy
and N
(p+ 1) doo— S5, ) gy A LA dibees, (LAD)

From (1.4.10) we deduce
a AB=(—1)"B Aa (1.4.12)

1.5. Submanifolds

The set of differentiable functions F (of class k) in a differentiable
manifold M (of class k) forms an algebra over R with the usual rules
of addition, multiplication and scalar multiplication by elements of R.
Given two differentiable manifolds M and M’, a map ¢ of M into M’
is called differentiable, if f'. ¢ is a differentiable function in M for
every such function f’ in M’. This may be expressed in terms of local
coordinates in the following manner: Let 2, ..., u™ be local coordinates
at Pe M and %', ..., v™ local coordinates at ¢(P) e M'. Then ¢ is a
differentiable map, if and only if, the v¥(¢(s, ..., u?)) = vi(4, ..., u") are
differentiable functions of #!,...,u" The map ¢ induces a (linear)
differentiable map ¢, of the tangent space 7'» at P € M into the tangent
space Typ at P' = ¢(P) e M'. Let X e Tp and consider a differentiable
function f’ in the algebra F’ of differentiable functions in M’. The
directional derivative of f’ - ¢ along X is given by

o of'

e = b j=1um
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where the & are the (contravariant) components of X in the local
coordinates %!, ..., 4*. This, in turn is equal to the directional derivative
of f’ along the contravariant vector

o' 9
X = i o
at ¢(P). By mapping X in Tp into X’ in Tp, we get a linear map of
Tpinto Ty p). This is the induced map ¢,.. The map ¢ is said to be regular
(at P) if the induced map ¢, is 1-1.

A subset M’ of M is called a submanifold of M if it is itself a differenti-
able manifold, and if the injection ¢’ of M’ into M is a regular
differentiable map. When necessary we shall denote M’ by (¢', M’).
Obviously, we have dim M’ < dim M. The topology of M’ need not
coincide with that induced by M on M’. If M’ is an open subset of M,
then it possesses a naturally induced differentiable structure. In this case,
M’ is called an open submanifold of M.

Recalling the definition of regular surface we see that the above
univalence condition is equivalent to the condition that the Jacobian
of ¢ is of rank n.

By a closed submanifold of dimension r is meant a submanifold M’ with
the properties: (i) ¢'(M’) is closed in M and (ii) every point P e¢’'(M’)
belongs to a coordinate neighborhood U with the local coordinates
u', ..., u™ such that the set ¢'(M’) n U is defined by the equations
ut =0, ...,u” = 0. The definition of a regular closed surface given
in § 1.1 may be included in the definition of closed sulmanifold.

We shall require the following notion: A parametrized curve in M
is a differentiable map of class & of a connected open interval of R into M.

The differentiable map ¢ : M — M’ induces a map ¢* called the dual
of ¢, defined as follows:

¢*:T3p — Tp
and
(0, 6*(@*)) = (by(0)w*y, ve Tpw*eThy.
The map ¢* may be extended to a map which we again denote by ¢*
¢* A (Typ) = N (TP)
as follows: Consider the pairing {v; A ... A vp, W A ... A w)) defined by

o A e Ao, wF Ao A w)) = pldet (Ko, w))) (1.5.1)
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and put
oy A e N oy, ¥ A o A wd)) = det (Coy, $¥(w])).

Clearly, ¢* is a ring homomorphism. Moreover,
$*(do) = d(¢*a),

that is, the exterior differential operator d commutes with the induced
dual map of a differentiable map from one differentiable manifold into
another.

1.6. Integration of differential forms

It is our intention in this section to sketch a proof of the formula of
Stokes not merely because of its fundamental importance in the theory
of harmonic integrals but because of the applications we make of it
in later chapters. However, a satisfactory integration theory of differential
forms over a differentiable manifold must first be developed.

The classical definition of a p-fold integral

I fdut..aw

of a continuous function f = f(#!, ..., uP) of p variables defined over
a domain D of the space of the variables #!, ..., uP as given, for example,
by Goursat does not take explicit account of the orientation of D. The
definition of an orientable differentiable manifold M given in §1.1
together with the isomorphism which exists between AP(T}) and
A™P(TE) at each point P of M (cf. §2.7) results in the following
equivalent definition:

A differentiable manifold M of dimension 7 is said to be orientable
if there exists over M a continuous differential form of degree » which
is nowhere zero (cf. I.B).

Let « and B define orientations of M. These orientations are the same
if B = fa where the function f is always positive. An orientable manifold
therefore has exactly two orientations. The manifold is called oriented
if such a form « 7 0 is given. The form o induces an orientation in the
tangent space at each point P € M. Any other form of degree # can then
be written as f(P)« and is be -said to be > 0, << 0 or = 0 at P provided
that f(P) > 0, < 0 or = 0. This depends only on the orientation of M
and not on the choice of the differential form defining the orientation.

The carrier, carr («) of a differential form « is the closure of the set
of points outside of which « is equal to zero. The following theorem

due to J. Dieudonné is of crucial importance. (Its proof is given in Appen-
dix D.)
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To a locally finite open covering {U,} of a differentiable manifold of
class k = 1 there is associated a set of functions {g;} with the properties

(i) Each g, is of class k and satisfies the inequalities
0= 8gi <1

everywhere. Moreover, its carrier is compact and is contained in one
of the open sets U,,

(ii) =1

(iii) Every point of M has a neighborhood met by only a finite number
of the carriers of g,.

The g; are said to form a partition of unity subordinated to {U,} that is,
a partition of the function | into non-negative functions with small
carriers. Property (iii) states that the partition of unity is locally finite,
that is, each point Pe M has a neighborhood met by only a finite number
of the carriers of g;. If M is compact, there can be a finite number of g;;
in any case, the g; form a countable set. With these preparations we can
now prove the following theorem:

Let M be an oriented differentiable manifold of dimension n. Then,
there is a unique functional which associates to a continuous differential
form « of degree n with compact carrier a real number denoted by [«
and called the integral of «. This functional has the properties:

() J,(+B = [0+ [,B

(ii) If the carrier of « is contained in a coordinate neighborhood U
with the local coordinates %!, ..., u™ such that du! A ... A du® > 0 (in U)
and @ = a; _, du' A ... A\ du” where a, , is a function of !, ..., 4", then

jMa = fualmndul e dun (1.6.1)

where the n-fold integral on the right is a Riemann integral.
Since carr (o) C U we can extend the definition of the function 4, _, to
the whole of E”, so that (1.6.1) becomes the the n-fold integral

fMa = Jt: ft: a, ., dul..du. (1.6.2)

In order to define the integral of an n-form « with compact carrier S
we take a locally finite open covering {U,} of M by coordinate neighbor-
hoods and a partition of unity {g;} subordinated to {U,}. Since every
point P € S has a neighborhood met by only a finite number of the
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carriers of the g;, these neighborhoods for all P € S form a covering of .S.
Since .S is compact, it has a finite sub-covering, and so there is at most
a finite number of g; different from zero. Since [g;« is defined, we put

fMa = 12‘/ fgia. (1.6.3)

That the integral of « over M so defined is independent of the choice
of the neighborhood containing the carrier of g; as well as the covering
{U;} and its corresponding partition of unity is not difficult to show.
Moreover, it is convergent and satisfies the properties (i) and (ii).
The uniqueness is obvious.

Suppose now that M is a compact orientable manifold and let 8 be
an (n — 1)-form defined over M. Then,

[ a8=o. (1.6.4)
M

To prove this, we take a partition of unity {g,} and replace 8 by Zg;B.
This result is also immediate from the theorem of Stokes which we
now proceed to establish.

Stokes’ theorem expresses a relation between an integral over a
domain and one over its boundary. Its applications in mathematical
physics are many but by no means outstrip its usefulness in the theory
of harmonic integrals.

Let M be a differentiable manifold of dimension #. A domain D
with regular boundary is a point set of M whose points may be classified
as either interior or boundary points. A point P of D is an tnterior point
if it has a neighborhood in D. P is a boundary point if there is a coordinate
neighborhood U of P such that U n D consists of those points Q e U
satisfying u™(Q) = u™(P), that is, D lies on only one side of its boundary.
That these point sets are mutually exclusive is clear. (Consider, as an
example, the upper hemisphere including the rim. On the other hand,
a closed triangle has singularities). The boundary @D of D is the set of
all its boundary points. The following theorem is stated without proof:

The boundary of a domain with regular boundary is a closed sub-
manifold of M. Moreover, if M is orientable, so is 2D whose orientation
is canonically induced by that of D.

Now, let D be a compact domain with regular boundary and let &
be a real-valued function on M with the property that A(P) = I' if
P € D and is otherwise zero. Then, the integral of an n-form « may be
defined over D by the formula

J‘Da = jM ha. (1.6.5)
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Although the form ha is not continuous the right side is meaningful
as one sees by taking a partition of unity.

Let « be a differential form of degree # — | and class 2 = 1 in M.
Then

fabi*a = fbda (1.6.6)

where the map 1 sending 8D into M is the identity and 8D has the
orientation canonically induced by that of D. This is the theorem of
Stokes. In order to prove it, we select a countable open covering of M
by coordinate neighborhoods {U;} in such a way that either U, does
not meet 8D, or it has the property of the neighborhood U in the
definition of boundary point. Let {g;} be a partition of unity subordinated
to this covering. Since D and its boundary are both compact, each of
them meets only a finite number of the carriers of g;. Hence,

fau o= 2,: faog’a
and

fDda =2fbd@p).

These sums being finite, it is only necessary to establish that

[opter =], dteed

for each 7, the integrals being evaluated by formula (1.6.1). To complete
the proof then, choose a local coordinate system ul, ..., u" for the
coordinate neighborhood U; in such a way that du! A ... A du™ >0
and put

o=, (= Dt adut A o A duF1 A dut A LA dun

k=1

where the functions @, are of class = 1. Then,

do _2 D0 g A o A dun,

k=1

Compare with (1.4.9). The remainder of the proof is left as an exercise.
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1.7. Affine connections

We have seen that the partial derivatives of afunction with respect to a
given system of local coordinates are the components of a covariant
vector field or, stated in an invariant manner, the differential of a function
is a covector. That this case is unique has already been shown (cf.
equation 1.3.10). A similar computation for the contravariant vector
field X = £i(8/04’) results in

of  owowt o d ou

2= o T e o b (17.1)
where
. out
E=To (1.7.2)

in U n U. Again, the presence of the second term on the right indicates
that the derivative of a contravariant vector field does not have tensor
character. Differentiation may be given an invariant meaning on a
manifold by introducing a set of n? linear differential forms w} = I}, du*
in each coordinate neighborhood, so that in the overlap U n U of
two coordinate neighborhoods

ot o027t

aﬁk i k 13 7
ka=ww!——au—la?du. (1. .3)

A direct computation shows that in the intersection of three coordinate
neighborhoods one of the relations (1.7.3) is a consequence of the
others. In terms of the n® coefficients I, equations (1.7.3) may be
written in the form
} 0%t out  our out out

L= pwow o0~ 7w o 2 e (1.7.4)
These equations are the classical equations of transformation of an
affine connection. With these preliminaries we arrive at the notion
we are seeking. We shall see that the w} permit us to define an invariant
type of differentiation over a differentiable manifold.

An affine connection on a differentiable manifold M is defined by
prescribing a set of n? linear differential forms w} in each coordinate
neighborhood of M in such a way that in the overlap of two coordinate
neighborhoods

ot

dpl+ PEGL = pf ¥y P =g (1.7.5)
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A manifold with an affine connection is called an affinely connected
manifold.

The existence of an affine connection on a differentiable manifold
will be shown in §1.9. In the sequel, we shall assume that M is an
affinely connected manifold. Now, from the equations of transformation
of a contravariant vector field X = £(9/0u?) we obtain by virtue of the
equations (1.7.5)

d& = dpi ¢ + pfd¢

= (wf pi — &} pf) & + p} dE'. (1.7.6)

By rewriting these equations in the symmetrical form

dE + oL E = pdEi + wl¢Y) (1.7.7)
we see that the quantity in brackets transforms like a contravariant
vector field. We call this quantity the covariant differential of X and

denote it by DX: Its j* component dé7 + wj ¢* will be denoted by
(DX). In terms of the natural base for covectors, (1.7.7) becomes

6_‘ = i . i a m -
(357 +e ka) i = Pi..( 3iz + & Fkl) du'. (1.7.8)
We set
] agj k I
D ¢ =5+ ¢, (1.7.9)

and call it the rcovariant derivative of X with respect to u!. That the
components D; ¢ transform like a tensor field of type (1,1) is clear.
In fact, it follows from (1.7.8) that

P ot oul

D, & = D, ¢m (1.7.10)

oum o
where the L.h.s. denotes the covariant derivative of X with respect to #’.
A similar discussion in the case of the covariant vector field ¢; permits
us to define the covariant derivative of £; as the tensor field D,¢; of
type (0,2) where
_ 9%

D;¢=25— &Iy (1.7.11)

The extension of the above argument to tensor fields of type (7, 5) is
straightforward—the covariant derivative of the tensor field £u%;
with respect to #* being

: ) i ; ; "
a1 fhz""’;‘l...:‘, Ty + .+ gttt T
(1.7.12)

o o .. .
Dk 611...1,]_‘”'7" — _51‘_% gil...‘lrj

1

g, |2 Lo
3 laz...i,rhk =€ T R g P
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The covariant derivative of a tensor field being itself a tensor field, we
may speak of second covariant derivatives, etc., the result again being
a tensor field.

Since Euclidean space E™, considered as a differentiable manifold,
is covered by one coordinate neighborhood, it is not essential from
our point of view to introduce the concept of covariant derivative.
In fact, the affine connection is defined by setting the I'j equal to
zero. The underlying affine space A" is the ordinary n-dimensional
vector space—the tangent space at each point P of E™ coinciding
with 4" Indeed, the linear map sending the tangent vector 9/du’ to
the vector (0, ..., 0, 1, 0, ..., 0) (1 in the #*® place) identifies the tangent
space Tp with A" itself. Let P and Q be two points of A" A tangent
vector at P and one at Q are said to be parallel if they may be identified
with the same vector of A" Clearly, the concept of parallelism (of
tangent vectors) in A" is independent of the curve joining them.
However, in general, this is not the case as one readily sees from the
differential geometry of surfaces in E3. We therefore make the following
definition:

Let C = C(t) be a piecewise differentiable curve in M. The tangent
vectors

0

X(t) = () s

(1.7.13)

are said to be parallel along C if the covariant derivative DX(¢) of X(¢)
vanishes in the direction of C, that is, if

d¢t , du
ar T g

£ =0, (1.7.14)
A piecewise differentiable curve is called an auto-parallel curve, if its
tangent vectors are parallel along the curve itself.

The equations (1.7.14) are a system of » first order differential
equations, and so corresponding to the initial value X = X(t,) at t = ¢,
there is a unique solution. Geometrically, we say that the vector X(¢,)
has been given a parallel displacement along C. Algebraically, the parallel
displacement along C is a linear isomorphism of the tangent spaces at
the points of C. By definition, the auto-parallel curves are the integral
curves of the system

| dwdub

dt? +T

e =0 (1.7.15)

Hence, corresponding to given initial values, there is a unique auto-
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parallel curve through a given point tangent to a given vector. Note
that the auto-parallel curves in A" are straight lines.

Affine space has the further property that functions defined in it
have symmetric second covariant derivatives. This is, however, not the
case in an arbitrary differentiable manifold. For, let f be a function
expressed in the local coordinates (u*). Then

2
DS =g
& o .
D,D, f = DD, ) =”azs—j;7f‘a—£rff’ (1.7.16)

from which
8
D,D.f — D.D,f = Tiﬁ (I, — T%). (1.7.17)

If we put
T, =rI;—T%, (1.7.18)

7

it follows that the T},! are the components of a tensor field of type (1,2)
called the torsion tensor of the affine connection I'};,. We remark at this
point, that if @} = I'}, du* are a set of n? linear differential forms in
each coordinate neighborhood defining another affine connection on M,
then it follows from the equations (1.7.4) that I'j, — I'}, is a tensor field.
In particular, if we put I'}, = I'i;, that is, if @t = I'l;du*, T, — Tk
is a tensor field. When we come to discuss the geometry of a Riemannian
manifold we shall see that there is an affine connection whose torsion
tensor vanishes. However, even in this case, it is not true that covariant
differentiation is symmetric although for (scalar) functions this is certainly
the case. In fact, a computation shows that

DD; ¢ — D;D, ¢ = ¢ Ry, — D, £ Ty (1.7.19)
where
. _eri, oIt L s e
= aTij - au;l +Iu e — Iy Ty (1.7.20)

(In the case under consideration the components 77, are zero). Clearly,
R¥;., is a tensor field of type (1,3) which is skew-symmetric in its last
two indices. It is called the curvature tensor and depends only on the
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affine connection, that is, the functions R, are functions of the I},
only. More generally, for a tensor of type (7, s)

— DD, ¢

1oy

DD, £h--ir,

Leeeds

=2 f""'i"““‘"’1"'";‘,...1‘, R“’m
(1.7.21)
- 2 it N SRS 7 R gkt

— D, £reeie T,

Jpeendy
Now, if both the torsion and curvature tensors vanish, covariant
differentiation is symmetric. It does not follow, however, that the
T}, vanish, that is, the space is not necessarily affine space.

An afﬁnely connected manifold is said to be locally affine or locally flat
if a coordinate system exists relative to which the coefficients of con-
nection vanish. Under the circumstances, both the torsion and curvature
tensors vanish. Conversely, if the torsion and curvature are zero it can be
shown that the manifold is locally flat (cf. I.LE).

1.8. Bundle of frames

The necessity of the concept of an affine connection on a differentiable
manifold has been clearly established from an analytical point of view.
A geometrical interpretaticn of this notion is desirable. Hence, in this
section a realization of this very important concept will be given in
terms of the bundle of frames over M.

By a frame x at the point P € M is meant a set {X|, ..., X} of linearly
independent tangent vectorsat P. Let B be theset of all frames x at all
points P of M. Every element a € GL(n, R) acts on B to the right, that
is, if a denotes the matrix (a}) and x = {X,, ..., X,}, then x.a =
{a]X,, ..., alX;} € B is another frame at P. The map n: B— M of
B onto M deﬁned by m(x) = P assigns to each frame x its point of origin.
In terms of a system of local coordinates u!, ..., u™ in M the local
coordinates in B are given by (w/, £F,)—the n2 functlons £k, being
defined by the n vectors X, of the frame:

0
Xy =& Bur

i=1,..,n (1.8.1)
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Clearly, the £f,, i, k=1, ..., n are the elements of a non-singular
matrix (£5)). Conversely, every non-singular matrix defines a frame
expressed in the above form. The set of all frames at all points of M
can be given a topology, and in fact, a differentiable structure by taking
u!, ..., u™ and (&))) as local coordinates in #~}(U). The differentiable
manifold B is called the bundle of frames or bases over M with structural
group GL(n, R).

Let (£') denote the inverse matrix of (£5,). In the overlap of two
coordinate neighborhoods, (u, ££)) and (i, £f)) are related by

ok .
B = o b (1.8.2)
It follows that
ou
i = o &)
from which

O di* = £49 dw. (1.8.3)

Hence, for each {, the function ¢} assigns to every point x of 7~1(U)
a l-form of = £1du! at m(x) in U. Defining 6 = n*of, i=1,..,n
we obtain n linearly independent 1-forms & on the whole of B. Now,
we take the covariant differential of each of the vectors X;. From (1.7.7)
and (1.7.8) we obtain

(DX ) = p1(DX )" (1.8.4)
where
(DX )" = d&y + wf Ela, (1.8.5)
and so from (1.8.3)
£ (DX () = €2 (DX(y)™ (1.8.6)

Denoting the common expression in (1.8.6) by of we see that the of

define n? linear differential forms 6% = n*a* on the whole of the
bundle B.

The n? 4+ n forms 6§, 0} in B are vector-valued differential forms in B.
To see this, identify B with the collection of vector space isomorphisms
x: R*— Tp; namely, if x is the frame {Xj, ..., X,} at P, then x(a, ..., a")
= a'X,;. Now, for each t € T,, define 8 to be an R”-valued ]1-form by

8(t) = x7H(mx(2))-
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As an exercise we leave to the reader the verification of the formulae
for the exterior derivatives of the 6 and 6%

d6i — 0 A 6 = 6, (1.8.7)
e} — 0} A 6] = 6, (1.8.8)
where
8 =3P, 6 A 07, 6! =35, 6" A 6™, (1.8.9)
and
Pyl = — & &y €y Tpq - m, (1.8.10)
Sam = — &0 €8y €y Eim Ripar - 7 (1.8.11)

—the P,,7 and S7;;,, being functions on B whereas the torsion and
curvature tensors are defined in M. Equations (1.8.7) - (1.8.9) are called
the equations of structure. They are independent of the particular choice
of frames, so that if we consider only those frames for which

k ) __ sk
w =& =73,

du* A w} = §T, " du’ A du™,
and

do’ — b A wl = — -%Rj,-lm dut A du™. (1.8.12)

Differentiating equations (1.8.7) and (1.8.8) we obtain the Bianchi
identities:

A&’ = 6* N\ O, — &* A 6, (1.8.13)
d&’ = 08 N\ 6, — 6F A 6., (1.8.14)

We have seen that an affine connection on M gives rise to a complete
parallelisability of the bundle of frames B over M, that is the affine
connection determines 7% + 7 linearly independent linear differential
forms in B. Conversely, if n? linear differential forms 8/ are given in B
which together with the n-forms 67 satisfy the equations of structute,
they define an affine connection. The proof of this important fact is
omitted.

Let a be an element of the structural group GL(n, R) of the bundle
of frames B over M. It induces a linear isomorphism of the tangent
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space T, at x € B onto the tangent space T, ,. This, in turn gives rise
to an isomorphism of T% , onto T¥. On the other hand, the projection
map = induces a map #* of T} (the space of covectors at P € M). An
affine connection on M may then be described as follows:

(i) TF is the direct sum of W} and #*(T}) where W} is a linear
subspace at x € B and m(x) = P;

(i) For every a € GL(n, R) and x € B, W} is the image of W7 , by
the induced map on the space of covectors.

In other words, an affine connection on M is a choice of a subspace W¥
in T¥ at each point x of B subject to the conditions (i) and (if). Note that
the dimension of W} is n2. Hence, it can be defined by prescribing n?
linearly independent differential forms which together with the &
span T,

1.9. Riemannian geometry

Unless otherwise indicated, we shall assume in the sequel that we are
given a differentiable manifold M of dimension 7 and class .

A Riemannian metric on M is a tensor field g of type (0,2) on M subject
to the conditions:

(i) g is a symmetric tensor field, and

(ii) g is positive definite.
This tensor field is called the fundamental tensor field. When a Riemannian
metric is given on M the manifold is called a Riemannian manifold.
Geometry based upon a Riemannian metric is called Riemannian
geometry. A Riemannian metric gives rise to an inner (scalar) product
on each tangent space Tp at P € M: the scalar product of the contra-
variant vector fields X = ¢%(d/ou’) and Y = n%(9/ou’) at the point P
is defined to be the scalar

j o 0
X Y=g 87" gn =3(W, 87) . (1.9.1)

The positive square root of X - X is called the length of the vector X.
Since the Riemannian metric is a tensor field, the quadratic differential
form

ds® = g, du’ du* (1.9.2)

(where we have written du/ du* in place of du/ ® du* for convenience)
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is independent of the choice of local coordinates #*. In this way, if we
are given a parametrized curve C(f), the integral

s = f " X)X de (1.9.3)

where X(?) is the tangent vector to C(t) defines the length s of the arc
joining the points (u#(2,)) and (u(t,)).

Now, every differentiable manifold M (of class k) possesses a Rieman-
nian metric. Indeed, we take an open covering {U,} of M by coordinate
neighborhoods and a partition of unity {g,} subordinated to U,. Let
dsi(= X}, du' du') be a positive definite quadratic differential form
defined in each U, and let the carrier of g, be contained in U,. Then,
2 £.ds% defines a Riemannian metric on M.

Since the du* du’ have coefficients of class 2 — 1 in any other coor-
dinate system and the g, can be taken to be of class & the manifold M
possesses a Riemannian metric of class & — 1.

It is now shown that there exists an affine connection on a differentiable
manifold. In fact, we prove that there is a unique connection with the
properties: (a) the torsion tensor is zero and (b) the scalar product (relative
to some metric) is preserved during parallel displacement. To show this,
assume that we have a connection I, satisfying conditions (a) and (b).
We will obtain a formula for the coefficients I'}, in terms of the metric
tensor g of (b). Let X(t) = £¥(t)(9/0u?) and Y(t) = n¥(t)(8/ou’) be
tangent vectors at the point (u4(?)) on the parametrized curve C(t). The
condition that these vectors be parallel along C(z) are

ag

v +P/k7t"§ =0 (1.9.4)
and » s
an ¢ au
T I} —- 7 7 =0. (1.9.5)
By condition (b), J
-5 & & 7) =0, (1.9.6)
that is
dg, - duF
(i’ gy Tie g —8a T dt) éy =0 (1.9.7)

Since (1.9.6) holds for any pair of vectors X and Y and any parametrized
curve C(t),

8
g‘ =gy T + g0 Tiee (1.9.8)
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By permuting the indices 7, j, and &, two further equations are obtained:

17

agui!k = &k PJ'lf +g1l Fklrh (1-9.9)
Ogki

aé;’; =gu Ty + g Ths. (1.9.10)

We define the contravariant tensor field g/ by means of the equations
gi 8% = 8. (19.11)

Adding (1.9.8) to (1.9.9) and subtracting (1.9.10), one obtains after
multiplying the result by % g/ and contracting

= {+3(Tu™ — T™— T3, (1.9.12)
where
m mi (98y | 08 O
— l,mi ij ik
{it =3¢ ( 2wk T od —au,) (1.9.13)
and
T =g"" gis Thi (1.9.14)

(Although the torsion tensor vanishes, it will be convenient in §5.3
to have the formula (1.9.12)). Hence, since the torsion tensor vanishes
(condition (a)), the connection I}, is given explicitly in terms of the
metric by formula (1.9.13). That the {%,} transform as they should is an
easy exercise. This is the connection of Levi Civita. We remark that
condition (b) says that parallel displacement is an isometry. This follows
since parallel displacement is an isomorphic linear map between tangent
spaces.

A Riemannian metric gives rise to a submanifold B of the bundle of
frames over M. This is the bundle of all orthonormal frames over M.
An orthonormal frame at a point P of M is a set of » mutually per-
pendicular unit vectors in the tangent space at P. In this case, the
structural group of the bundle is the orthogonal group. A connection
defined by a parallelization of B gives a parallel displacement which is an
isometry—the Levi Civita connection being the only one which is torsion free.
If we denote by 6,, 8,;, @, S;;, the restrictions of ¢, 6], &, S, to
the orthonormal frames (cf. § 1.8), then by ‘developing’ the frames along
a parametrized curve C into affine space 4" (see the following paragraph),
it can be shown that

b+ 0 =0, 6,486, =0 (1.9.15)
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(cf. I.G.95),
b, =3, 8, A by, (1.9.16)
i
d,; — E O N Opy = Oy, (1.9.17)
k
do;; = 2 O A\ 015 — Ou A by (1.9.18)
%

where the forms §; and 6,; (1< j) are linearly independent; moreover,
the functions S, (cf. (1.8.9)) have the symmetry properties

S = — S = — Sius (1.9.19)
St = Skreis (1.9.20)
Sk + Sy + Sape = 0. (1.9.21)

Equations (1.9.16) and (1.9.17) are the restrictions to B of the cor-
responding equations (1.8.7) and (1.8.8).

Consider the bundle of frames over C(¢) and denote once again the
restrictions of 6,, 8,; to the submanifold over C(¢) by the same symbols.
To describe this bundle we choose a family of orthonormal frames
{44(), ..., A,(t)} along C(t)—one for each value of ¢. Then, for a given
value of ¢ the vectors X,(2), ..., X,,(f) of a general frame are given by

X(1) = ¥ A1), (¥) < O(nR).

The frames {X,(?), ..., X,(#)} can be mapped into frames in the bundle
A" of frames over A" so that their relative positions remain unchanged.
In particular, frames with the same origin along C(f) are mapped into
frames with the same origin in 4. This follows from the fact that
under the mapping the 6, and 6;; are the dual images of corresponding
differential forms in 4" (cf. L.F.1).

Let C(t;) and C(t,) be any two points of C(¢). A vector of T, is
given by x°A4,(t). Consider the map which associates with a vector
xAt,) € Teq, the vector #A4,(t,) € Ty, defined by

C'(ty) + #Aty) = C'(ty) + #A(t;) € A (19.22)
where the prime denotes the image in A" of the corresponding vector

with origin on C(f) and C’(¢) is the image of C(#). In this way, the
various tangent spaces along C(t) can be ‘compared’. This situation may
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be geometrically described by saying that the tangent spaces along C(¢)
are developed into A" and compared by means of the development.

An element of B over P € M is a set of » mutually perpendicular unit
vectors X}, ..., X,, in the tangent space at P. The frames along C are
developed into affine space A" and, as before, the images are denoted
by a prime, so that P— P’ and X; —» X ( = 1, 2, ..., #). In this way,
a scalar product may be defined in A" by identifying 4™ with one of its
tangent spaces and putting

X -YV=XY.

Since the Levi Civita parallelism is an isometric linear map f, between
tangent spaces, the scalar product defined in 4™ has an invariant meaning;
for, f, X f,Y=X-Y.

Since the vectors of a frame are contravariant vectors, they determine
a set of n linearly independent vectors in the space of covectors at the
same point P, and since this latter space may be identified with AYT¥)
a frame at P defines a set of independent 1-forms 6, at that point. We
make a change in our notation at this stage: Since we deal with a
development of the tangent spaces along C into the vector space A"
we shall denote by P,{e,, ..., ¢,} a typical frame in B over P so that the
image frame P’,{e,, ..., €,}(P — P’) in 4" is a ‘fixed’ basis for the frames
in A", Now, consider the vectorial 1-form X7, 8,¢; in A" (cf.1.A.6) which
we denote by the ‘displacement vector’ dP’. Since 4™ may be covered by
one coordinate neighborhood R™ with local coordinates ul, ..., u",
we may look upon dP’ as the vector whose components are the
differentials dul, ..., du®. Moreover, the e; are the natural basis vectors
d/out (i = 1, ..., n). Now, in affine space it is not necessary to introduce
the concept of covariant differential, and so the differential de; is a
vectorial 1-form for each 7, and we may write

de, =, e, (1.9.23)

i=1

Differentiating the equations

€; - e = Sy

and applying (1.9.23) we obtain the first of equations (1.9.15) (cf. I.G).
The remaining formulae follow from those in § 1.8 as well as (1.9.15).
We remark that the tensor R, = g;,R™;, satisfies the relations
(1.9.19) - (1.9.21).
The forms 6; and 6,; are determined by the Riemannian metric
of the manifold. If we are given two such metrics ds? and d5? in the local
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coordinates (4*) and (&'), respectively, then it can be shown that if f
is a local differentiable homeomorphism f: U — U such that f*(ds?) =
ds?, then f*§, =6, and f*0;; =86,, and conversely, if we write
0} =10,®0, i=1,.., n where ® denotes the tensor product of
covectors (cf. I.A)

O+ ) =0+ + 6

where f* is the induced dual map. (The forms 6, i=1,..,n are
vectors determined by duality from the vectors e; by means of the
metric). Therefore, f induces a homeomorphism of the bundles By
and By of orthonormal frames over U and U, respectively.

It follows that the forms 6; and 6,; are intrinsically associated with the
Riemannian metric in the sense that the dual of the homeomorphism
B, — By maps the §; into the 6, and the §,; into the 6,;, and for this
reason they account for the important properties of Riemannian
geometry.

1.10. Sectional curvature

In a 2-dimensional Riemannian manifold the only non-vanishing
functions S;;,; are Sip, = — Sy = — Syuz = Spa- We remark
that the S;;,; are not the components of a tensor but are, in any case,
functions defined on the bundle B of orthonormal frames. Moreover,
the quantity — S,,, is the Gaussian curvature of the manifold. We
proceed to show that the value of the function — S),,, at a point P
in an n-dimensional Riemannian manifold M is the Gaussian curvature
at P of some surface (2-dimensional submanifold) through P. To this end,
consider the family # of orthonormal frames {e,, ..., ¢,} at a point P
of M with the property that the ‘first’ two vectors of each of these frames
lie in the same plane 7 through P. Let S be a 2-dimensional submanifold
through P whose tangent plane at P is 7. The surface S is said to be
geodesic at P if the geodesics (cf. §1.11) through P tangent to = all
lie on S. We seek the condition that .S be geodesic at P. Let C be a
parametrized curve on S through P tangent to the vector >%_; x.e, at P
and develop the frames along C into E™ If we denote the image of a

frame {e,, ..., e,} by {e} , ..., €}, we have
2 2 n 2
d(z xae;) = E Exz 8,, e + 2 x.0,p€5-
a=1 o=1r=3 a,f=1

In order that C be a geodesic, X2_; x, §,, must vanish, and since this

a @« Car

holds for arbitrary initial values of the x,, the forms §,, (1 < o < 2,
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3 < r < n) are equal to zero at P. Conversely, if the 8, vanish at P,
then from (1.9.16) and (1.9.17)

df; = 0, N 0y +2 6, N\ Bry = 02 A\ Oy,

8y = 8y A By + 2,0, A O,y = 0, A b, (1.10.1)
T

dby, = 2 b1 N\ Orp + Sizz 0y A 0y = Syppp 6, A .

These are the equations which hold on S. Hence, the quantity — S},,,
at a point P of a Riemannian manifold is equal to the Gaussian curvature
at P of the surface tangent to the plane spanned by the first two vectors
and which is geodesic at P.

The Gaussian curvature at a point P of the surface geodesic at P
and tangent to a plane = in the tangent space at P is called the sectional
curvaturg at (P, 7) and is denoted by R(P, m). If £, * are two ortho-
normal vectors which span m, it follows from (1.8.11) that

R(P;m) = — Ry & 7' £ 7', (1.10.2)

since Ry = ginR™ 1 '
Let ¢*%, »** be any two vectors spanning «. Then,

g = af¥ 4 by*i, gt = g% 4 dnt
where ad — bc # 0. In terms of the vectors £*¢, n*%,
R(Pym) = — (ad — be)?® Ryjpy §%F 9™ £%% 0™,
where 1/ad — bc is the oriented area of the parallelogram with ¢*%, n*
as adjacent sides:

1

m = (g8 — Lir &) EFF ¥ £XF XL,

If we drop the asterisks, we obtain the following formula for the sectional
curvature at (P, m):

Ru & 9 £ gt
R(Pm) = —= ikl - . 1.10.3
(Bim) (8ix g — &ngn) &7 & 7t ( )

Now, assume that R(P, 7) is independent of =, that is, suppose that
the sectional curvature at (P, 7) does not depend on the two-dimensional
section passing through this point. Then, from (1.10.3), we obtain

Rip = Klgin 80— 8118n) (1.10.4)
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where K denotes the common value of R(P, ) for all planes =. By

(1.8.11)
Si:’kl = Kf(pi) f;li) f(rk) f(sl) (gurg'oa _gaagvr) (1'10'5)
= K(ajk 5.-: - 8;’: aik)

since the frames are orthonormal. Equation (1.10.5) may be rewritten
by virtue of the second of equations (1.8.9) as

0, = — Kb, A 6, (1.10.6)

If we assume that at every point P € M, R(P, ) is independent of
the plane section =, then, by substituting (1.10.6) into (1.9.18) and
applying (1.9.16) we get

dK A 6; A 8, = 0.

Hence, dK must be a linear combination of §; and 8, from which dK = 0
if n = 3. This result i1s due to F. Schur: If the sectional curvature at
every point of a Riemannian manifold does not depend on the two-dimensional
section passing through the point, then it is constant over the manifold.
Such a Riemannian manifold is said to be of constant curvature.

Assume that the constant sectional curvature K vanishes. We may
conclude then that the tensor Rij, vanishes, and so the manifold is
locally flat. This means that there is a coordinate system with the
property that relative to it the components {%} of the Levi Civita
connection vaun'sh. For, the equations

o ., od
wwo U

obtained from (1.7.4) by putting I}, = 0 are completely integrable.
Hence, there is a coordinate system in which the I}, vanish. It follows
that the components g;; of the fundamental tensor are constants. Thus,
we have a local isometry from the manifold to E™. Conversely, if such
a map exists, then clearly R%;,; vanishes.

Let X, = &,(8/ou*) (i = 1, ..., n) denote n mutually orthogonal unit
vectors at a point in a Riemannian manifold with the local coordinates
u!, ..., u. Then from (1.9.1)

8ij é(ir) g(is) = 873' (1.107)

It follows from the equations (1.9.11) that

g =2, &, &, (1.10.8)

=1
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The sectional curvature K,, determined by the vectors X, and X,
is given by

K,y = — Riju f(ir) {s) ffr) ‘f(lsl- (1.10.9)
Taking the sum of both sides of this equation from s =1 to s ==n

we obtain

n

>, K,y = Ry £ &6, (1.10.10)
s=1

where we have put R, = — g/'R;;,, that is
Ry = g" Ry, (1.10.11)

The tensor Ry, is called the Ricci curvature tensor or simply the Ricci
tensor. Again,

n

D0 K, =R (1.10.12)
r=1 s=1
where we have put
R = g* R,,. (1.10.13)

The scalar Ry, &, £%, is called the Ricci curvature with respect to the
unit tangent vector X,. The scalar R determined by equation (1.10.12)
is independent of the choice of orthonormal frame used to define it.
It is called the Ricci scalar curvature or simply the scalar curvature.
The Ricei curvature « in the direction of the tangent vector £ is
defined by

x=%:§,.;§:. (1.10.14)
2
It follows that

(Rje — xgn) & € =0. (1.10.15)

The directions which give the extrema of « are given by
(Rjx — xgy) € = 0. (1.10.16)

In general, there are 7 solutions &, ..., &, of this equation which are
mutually orthogonal. These directions are called Ricci directions. A
manifold for which the Ricci directions are indeterminate is called
an Einstein manifold. In this case, the Ricci curvature is given by

Rjx = kg (1.10.17)
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If we multiply both sides of this equation by g/*, we obtain
R = n«. (1.10.18)

(In the sequel, the operation of multiplying the components of a tensor
by the components of the metric tensor and contracting will be called
transvection.) It follows that

R
Ry = AL (1.10.19)

Now, the Bianchi identity (1.8.14), or rather (1.9.18) can be expressed as
Dy Rijr + Dy Rijin + Dy Ryjni =0 (1.10.20)

where D; denotes covariant differentiation in terms of the Levi Civita
connection. Transvecting this identity with g™ we obtain

D, R = D, Ry — Dy Ry, (1.10.21)
which upon transvection with g#* results in
2D,R’, = D, R. (1.10.22)
Substituting (1.10.19) into (1.10.22) and noting that
Dy =0, (1.10.23)

we see that for n > 2, the scalar curvature is a constant. Hence, in an
Einstein manifold the scalar curvature is constant (n > 2).
It should be remarked that the tensor R;; is symmetric. In fact, from
equations (1.8.11) and (1.9.21) we obtain
Rifkl + Riku + Rin‘k =0. (1.10.24)
Contracting (1.10.24) with respect to ¢ and / gives
Rjx — Ry =0

by virtue of the symmetry relations (1.9.19) and the definition (1.10.11).
Hence, the Ricci curvature tensor is symmetric.



40 1. RIEMANNIAN MANIFOLDS
1.11. Geodesic coordinates

In this section we digress to define a rather special system of local
coordinates at an arbitrary point Py of a Riemannian manifold M of
dimension 7 and metric g. But first, we have seen that the differential
equations of the auto-parallel curves u? = ui(t), i = 1, ..., n of an affine
connection w! = I}, du* are given by

d*ut . duw  du*
a T o

=0, i=1,.,n (1.11.1)

and that any integral curve of (1.11.1) is determined by a point P,
and a direction at P,. If the affine connection is the Levi Civita connection,
a geodesic curve (or, simply, geodesic) is defined as a solution of (1.11.1)
where the parameter ¢ denotes arc length.

We define a local coordinate system (i) at P, as follows: At the pole P,
the partial derivatives of the components Z;; of the metric tensor vanish,
that is

(357“) =0, ij k=1 (1.11.2)

il
ou P,

Hence, the coefficients I, of the canonical connection also vanish at Py;

(F%)p, = (1.11.3)

Such a system of local coordinates is called a geodesic coordinate system.
Thus, at the pole of a geodesic coordinate system, covariant differentiation
is identical with ordinary differentiation. On the other hand, from
(1.11.1)
a4t
(@), =0

—a property enjoyed by the geodesics of E™ relative to a system of
cartesian coordinates. These are the reasons for exhibiting such coor-
dinates at a point of a Riemannian manifold. Indeed, in a given com-
putation substantial simplifications may result.

The existence of geodesic coordinates is easily established. For, if we
write the equations of transformation (1.7.4) of an affine connection
in the form

. o ot ot ;o
-r

" oW uk T owl ouk 7 Gu (1.11.4)
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and define the n functions @, ..., #* by
@' = ay(u* — ui(Po)) + §ay Dj(w’ — w(Po)) (u* — u(Py))

where the al are n? constants with non-vanishing determinant, then

(-%z:—)a, =% (55%) = a (T} ©)p,:

It follows that the right side of (1.11.4) vanishes at P,. Consequently,
by (1.9.8) the equations (1.11.2) are satisfied.

Incidentally, there exists a geodesic coordinate system in terms of
which (g;;)p, = 8!. For, we can find real linear transformations of the
@), i=1,..,n w1th constant coefficients so that the fundamental
quadratic form may be expressed as a sum of squares.

EXERCISES

A. The tensor product

Let ¥ and W be vector spaces of dimension n over the field F and denote
by V* and W* the dual spaces of V' and W, respectively. Let L(V*, W*; F)
denote the space of bilinear maps of V* X W* into F. This vector space is
defined to be the tensor product of ¥ and W and is denoted by V ® W.

1. Define the map u: V X W— V ) W as follows:

u(v, w) (v*, w*) = (v, v*) {(w, w*). Then, u is bilinear and u(V x W)
generates V' ) W. Denote u(v, w) by v ® w and call » the natural map. u is
onto but not 1-1.

Hint: To prove that u is onto choose a basis ¢, ..., ¢, for V and a basis f;, ..., f,,
for W.

2. Let Z be a vector space over F and 6: V' X W — Z a bilinear map. Then,
there is a unique linear map §: V' & W — Z such that § - u = 6.

VAW — sV QW

N,

This property characterizes the tensor product as is shown in the following
exercise.
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3. If P is a vector space over 7, #: V' X W — P is a bilinear map onto P, and
if for any vector space Z, 6: V X W — Z (8, bilinear), there is a unique linear
map9:P—>Z with § -2 =9,

VxW——> P

N,

then P and V ® W are canonically isomorphic.

We are now able to give an important alternate construction of the tensor
product. The importance of this construction rests in the fact that it is a typical
example of a more general process, viz., dividing free algebras by relations.

4. Let F},,  be the free vector space generated by V' X W and consider V' X W
as a subset of F,, ,, with the obvious imbedding. Let K be the subspace of
Fy, . w generated by elements of the form

(ax + By,2) — a(x,2) — B(3,2),
(w02 + Bw) — ofx,2) — B(x,w).

Then, (Fy,, w)/K together with the projection map u: V X W — (F, w)/K
satisfies the characteristic property for the tensor product of ¥ and W. In
particular, # is bilinear. It follows that (F, ,)/K is canonically isomorphic
with V@ W.

In the following exercise we discuss the concept of a tensorial form.

5. By a tensorial p-form of type (r, s) at a point P of a differentiable manifold
M we shall mean an element of the tensor product of the vector space T7(P)
of tensors of type (r,s) at P with the vector space A?(Tp) of p-forms at P.
A tensorial p-form of type (r,s) is a map M — T7 ® AP(T) assigning to each
P e M an element of the tensor space T(P) ® AP?(Tp). A tensorial p-form of
type (0, 0) is simply a p-form and a tensorial 1-form of type (1, 0) or vectorial
1-form may be considered as a l-form with values in T

Show that a tensorial p-form of type (r,5) may be expressed as a p-form
whose coefficients are tensors of type (7, s) or as a tensor field of type (r,s)
with p-forms as coefficients.

6. The notation of the latter part of § 1.9 is employed in this exercise. We shall
use the symbol P’ to denote the position vector OP’ relative to some fixed
point O e A" Then, the vectors e; may be expressed as

e =—+—, t=1.,n (%)
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If P’ moves along the curve C'(f), we have

dP’  oP" du , dut

a  ow a4t S Tdr

that is,
dP' = eidu' = (du') e;.

Thus, dP’ is a vectorial 1-form. Show that 4P’ may be considered as that vectorial
1-form giving the identity map of A" into itself.
Differentiating the relations (*) with respect to #/ we obtain

2, a®p’

0w owou '
Again, since ¢, is a function of the parameter ¢ along C’(?),

de; 2P dw de;  du

dt — owow dt T ow dt

that is,

de; .
de, = ——du,
1 ou’

The de; (i = 1,...,n) are vectorial 1-forms. Hence, in terms of the basis
{e{-@du"},

ae; ’

u — Lt

where the I'f; are the components of de; relative to this basis. Put

0 = I"’;.j dw, i, k=1, .,n
Then,
de; = 0% e).

Show that the matrix (65) defines a map of the tangent space at P’ + dP’ onto
the tangent space at P’. Consequently, the functions I'}; are the coefficients of
connection relative to the natural basis.

B. Orientation

1. Show the equivalence of the two definitions of an orientation for a differenti-
able manifold. Assume that the form o of § 1.6 is differentiable.
Hint: Use a partition of unity.
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2. If 6, ¢ denote polar coordinates on a sphere in E? the manifold can be covered
by the neighborhoods

Um§o<%+a

Uu%—a<ogﬂ

with coordinates

6 0 .
ul = tan cosp, ut= —tanismzﬁ.

and

] 0 .
u'l = cot = ¢os ¢é, u't =cot 5 sin ®,

respectively. Show that the sphere is orientable.

On the other hand, the real projective plane P? is not an orientable manifold.
For, denoting by «,y, z rectangular cartesian coordinates in E3, P? can be
covered by the neighborhoods:

v <2 |5 <2
X

U:Eﬁ<z§+<z
o ) <a ) <2

with the corresponding coordinates

and

nle wla u|w

X
uu] = W' =
Z

Incidentally, the compact surfaces can be classified as spheres or projective
planes with various numbers of handles attached.

C. Grassman algebra

1. Let E be an associative algebra over the reals R with the properties:

1) E is a graded algebra (cf. §3.3), that s E=E,®E P ..PE, D ..,
where the operation @ denotes the direct sum; each E; is a subspace of E and
for e; € E;, ¢; € E;, e; N\ ¢; € E;;; where A denotes multiplication in E;

2) E; = V where V is a real n-dimensional vector space and E;, = R;

3) E, together with the identity 1 € R generates E;

4 x Nx=0, xe€kE;

5y pey N vee N2y =0, 20 A\ ... A, #0, xy,..., %, € E| implies p = 0.
Then E is isomorphic to A (V).
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2. The algebra E can be realized as T(V)/1,, where T(V) is the tensor algebra
over V and I, is the ideal generated by the elements of the form x ® x, x € V.

D. Frobenius’ theorem [23]

The ensuing discussion is purely local. To begin with, we operate in a
neighborhood of the origin O in R". Let 8 be a 1-form which is not zero at O.
The problem considered is to find conditions for the existence of functions f
and g such that

b = fdg,
that is, an integrating factor for the differential equation
=0
is required. If § = fdg, then f(O) 5 0. Thus, df = df A dg = df A\ 0/f or

df = w N\ 8 where w=g-

Hence,
8 N db =0.

Observe that if § = fdg, the equation # = O implies dg = 0 and conversely.
Consequently, the solutions or integral surfaces of § = 0 are the hypersurfaces
£ = const.

As an example, let » = 3 and consider the 1-form

0 =yzdx + xzdy + dz

where (%, y, ) are rectangular coordinates of a point in R3. Then, df =y dz N\ dx
+x dz A dy. It follows that df = dz/z N\ 8. However, w = dz/z is singular
along the z-axis. To avoid this, we may take w = — y dx — x dy. The function
£ may be determined. by employing the fact that the integral surfaces g = const.
are cut by the plane x = at, y = bt in the solution 2z of g(0, 0, z) = const.
On this plane, the equation 6 = 0 becomes

dz + 2abat dt = 0.
The solution of this ordinary differential equation with the initial condition

2(0) =cis

2 = ce~b#,
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Since abt® = xy, these curves span a surface
¥ = ce™™,

If we think of a, b, ¢ as variables and make the transformation x = a, y = b,
z = ce~%, it is seen that the integral surfaces are

2e™ = const.
Apply the above procedure to the form
0 =dz —ydx —dy

and show that on the planes x = at, y = bt the surfaces z = éxy +y+ec
are obtained whereas on the parabolic cylinders x = at, y = b#?, the surfaces
obtained are 2 = }xy + y + ¢. (This is not the case in the first example.)
Show that the reason integral surfaces are not obtained is given by 6 A 46 # 0.

1. Let P be a point of the n-dimensional differentiable manifold M of class
kand V, an r-dimensional subspace of the tangent space Tpat P.Putg =n —r.
Let x(r, P) be a frame at P whose last r vectors ey (4, B, ... =q + 1, ..., n)
are in V,. Then, V, may be defined in terms of the vectors 6%, ..., 6" of the dual
space T, that is by the system of equations

The vectors of any other frame #(r, P) satisfying these conditions may be
expressed in terms of the vectors of x(r, P) as follows:

- B = a
éq=ageg, é =ap, opf..=1 .,n

It follows that a%y =0 for i =1, ...,q and 4 = ¢ + 1, ..., n. Hence, the cor-
responding coframes (cf. D. 2) are given by

0 =a} &, 91 =aF

where the matrix (a}) € GL(g, R).

2. Conversely, let 61, ..., 87 be ¢ linearly independent (over R) pfaffian forms at P.
Let (64), A=¢q + 1, ..., n be r pfaffian forms given in such a way that the
(6%), @« =1, ...,n define a coframe (that is, the dual vectors form a frame).
The system of equations 6! =0,...,, 69 = 0 then determines uniquely an
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r-dimensional subspace V', of Tp. In order that the systems (6%), (f%) give rise
to the same r-dimensional subspace it is necessary and sufficient that there
exist a matrix (a}) € GL(g, R) satisfying

6t = aj &

3. Let D be a domain of M. A pfaffian system of rank gand classI(2 < I < k — 1)
is defined, if, for every covering of D by coordinate neighborhoods {U} and
every point P of U a system of ¢ linearly independent pfaffian forms is given
such that for Pe U n U

6 = a} &

where the matrix (a}) € GL(g, R) is of class /.

A pfaffian system of rank g(= n — r) on D defines an r-dimensional subspace
of the tangent space T'p at each point P € D, that is, a field of r-planes of class L.
A manifold may not possess pfaffian systems of a given rank. For example,
the existence of a pfaffian system of rank » — 1 is equivalent to the existence
of a field of directions. This is not possible on an even-dimensional sphere.

4. Suppose a pfaffian system of rank ¢ and class / is defined on the coordinate
neighborhood U by the l-forms 6%, i =1, ..., q. This system is said to be
completely integrable if there are ¢ functions f* of class [ 4+ 1 such that

0' = a}df', (a}) e GL(g,R).

The pfaffian system may then be defined by the ¢ differentials dff. Under the
circumstances the functions f* form a first integral of the system.

The following result is due to Frobenius:

In order that a pfaffian system (6*) be completely integrable it is necessary and
sufficient that d¢* N\ 6* N\ ... N\ 09 =0 for every i = 1, ..., q.

The necessity is clear. The sufficiency may be proved by employing a result
on the existence of a ‘canonical pfaffian system’ in R" and then proceeding by
induction on r [23]. Since a pfaffian system of rank ¢ on U defines and can be
defined by a non-zero decomposable form @ of degree g determined up to a
non-zero factor this result may be stated as follows:

If a pfaffian system of rank q has the property that at every point P € M there
is a local coordinate system such that the form @ can be chosen to involve only g
of these coordinates, the system is completely integrable.

5.If ® =6 A ... A 89, the condition

dO N 6 =0
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is equivalent to the condition

dO =w N ©
for some 1-form w.

6. The linear subspaces of dimension r of Tp are in 1-1 correspondence
with the classes of non-zero decomposable r-vectors—each class consisting
of r-vectors differing from one another by a scalar factor. The set of r-vectors
can be given a topology by means of the components relative to some basis.
This defines a topology and, in fact, a differentiable structure in the set of
subspaces denoted by G"(Tp) of dimension r of Tp. The manifold so obtained
is called the Grassman manifold over Tp. The Grassman manifold G*(T%) over
the dual space may be similarly defined. There is a 1-1 correspondence

G'(Tp) — GY(T3).

This map is independent of the choice of a basis in A®(T}). Evidently then,
it is a homeomorphism.
Define the fibre bundle

oWy = U G'(Tp)

over M and show that it can be given a topology and a differentiable structure
of class £ — 1.

7. A cross section
F: M- G'(M)

of this bundle is a pfaffian system of rank ¢ sometimes called a differential system
of dimension r or r-distribution. A differential system of dimension 7 therefore
associates with every point P of M a linear subspace of dimension 7 of Tp.
By means of the correspondence G'(Tp) — GYT}), F defines (up to a non-
zero factor) a decomposable form of degree g.

8. A submanifold (@, M’) is called an integral manifold of F if, for every P' € M’,
s : Tp = F(@(P")).

The dimension of an integral manifold is therefore < r. Show that F is com-
pletely integrable if every P € M has a coordinate neighborhood with the local
coordinates #, ..., " such that the ‘coordinate slices’

u! = const., ..., u? = const.

are integral manifolds of F.
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Consider a completely integrable pfaffian system. The manifold (¢, M’)
is an integral manifold, if on every neighborhood U of M such that U n M’ [}
the pfaffian forms 61, ..., 8¢ vanish. If Pe M’, the tangent space to M’ at P
is the r-plane defined by the pfaffian system.

9. The Frobenius theorem is a generalization of well-known theorems on total
differential equations. Consider, for example, the case n = 3, r = 2 with the
form @ considered above given in the local coordinates x, y, 2 by

© = P(x,y, 2)dx + Q(x, y, 2)dy + R(x, y, 2)dz.

By Frobenius’ theorem, a necessary and sufficient condition for complete
integrability is given by
d® N 8 =0,

that is
P(Rv _Qz) +Q(Pz ‘_Rz) + R(Qr — Py) =0.

E. Local flatness {23]

1. If the curvature and torsion of an affinely connected manifold M are both
zero, show that the manifold is locally flat.

Hint: By means of the equations (1.7.5) it suffices to show the existence of a
local coordinate system (#*) such that

di* = p}du’
and

dp; = pi o}
Use Frobenius' theorem.

This may also be seen as follows: From the structural equations it is seen that
zero curvature implies that the distribution of horizontal planes in B given
by 8% = 0 is completely integrable. An integral manifold is thus a covering of M.
Since the torsion is also zero the other structural equation gives df* =0,
t =1, ..., n on the integral marifold. Consequently, §' = du’, where (!, ..., ©")
is a flat coordinate system.

F. Development of frames along a parametrized curve into A" [23]

1. In the notation of § 1.9 show that the frames {Xl(t), <1y Xu(t)} can be mapped
into 4" in such a way that the pfaffian forms 6;, 8,; are dual images of cor-
responding forms in A4":

Let X,(t), ..., X,(t) denote the images of the frame vectors under the mapping.
In the notation of §1.9 a typical frame along C is denoted by P,{el, voes €n}
and its image vectors in A" by P’,{e{, ey e,',}. If the 6, and 8, are the dual images
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of corresponding forms in A" the position vector P’ together with the vectors
e; satisfy the pfaffian system

P =30,

=1

n
’ ’
de’._ E B‘je,

j=1

™

(cf. equations (1.9.23)). The variables of this system are ¢, x} and the components
of the vectors P’, e/, ..., e,. Since the curvature forms 8,; are quadratic in the
differentials of the local coordinates, they vanish along a parametrized curve.
It follows that there exists a local differentiable homeomorphism f from the
bundle of frames over the submanifold C(#) to the bundle of frames over
C’(t)—the submanifold defined by the image of C(f) in A", such that

f*gi =6, f*gij = 0:’;‘

where 8, 8,; denote the forms in. A corresponding to 8;, 6,;. Show that the
conditions in Frobenius’ theorem are satisfied by this system and hence that
it is completely integrable. As a consequence of this, show that there is exactly
one set of vectors P’, ey, ..., e, satisfying (*) and taking arbitrary initial values
for t =ty and x} = 8}, If e, ..., ¢, are linearly independent for ¢ = ¢, show that
they are independent for all values of 7, that is, for all t,{e{, ey e,"} is a frame
on C'(t).

G. Holonomy [23]
1. Denote the affine transformation defined by equation (1.9.22) by T,

T:,z,-’ TP(tl) - TPu,) .
Show that T, , is not, in general, a linear map. Define the linear map
T Teey — Thy
sending the vector x'A,(t;) € Tp,, into the vector A4 (t;) € Tp(,, by means
of the equation
xtA(ty) = FAL,).

Show that T, , is independent of (a) the choice of initial frame x) = 8l fort =t
and (b) the choice of the family {Al(t), eey Ay()} of frames along C(2).



EXERCISES 51

2. Let O be an arbitrary point of M and {‘y} the family of closed parametrized
curves on M with O as origin. The map
Yy —> Ty
associates with eachy € {y} an affine transformation T, of the tangent space at O.
These transformations form a group denoted by H,-called the holonomy group
at O. The restricted holonomy group H, consisting of the affine linear maps T,
is similarly defined. Show that the group H, when considered as an abstract
group is independent of the choice of O.
Hint: M is arcwise connected.

3. An affine connection is called a metrical connection if its restricted holonomy
group leaves invariant a positive definite quadratic form. Let M be an affinely
connected manifold with a metrical connection and assume that the scalar
product of two vectors is defined at some point O of M. Show that the scalar
product may be defined everywhere on M.

Hint: Let P be an arbitrary point of M, C a parametrized curve joining O
and P and T the affine linear map from T, to T'p along C. Define the scalar
product at P by

Xp Yp=Tc'Xp T 'Yp

and show that this definition is independent of the choice of C.
4. Show that the Levi Civita connection is a metrical connection.

5. Establish the equations (1.9.15).

One may proceed as follows: Develop the frames along C into affine space A4*.
Let X(¢,) and Y(¢,) be two vectors at C(¢,) and X'(t,), Y'(t,) the corresponding
vectors at C’(t,). Define a scalar product at C’(¢,) by

X'(to) - Y'(to) = X(t) * ¥(2o)-

By identifying A" with one of its tangent spaces, a scalar product is defined in A",
From G.3, this scalar product is independent of the choice of #,. In this way,
it follows that the orthonormal frames along C can be developed into A" in
such a way that

n

AP’ = 0¢, de] =_§n:l 0 €]
P

i=1
where

’

ef e = 8.

The equations (1.9.15) follow by differentiating the last relation and
applying I.F.



52 I. RIEMANNIAN MANIFOLDS

The idea of translating, wherever possible, problems of Riemannian geometry
to problems of Euclidean geometry is due to E. Cartan [Legons sur la géométrie
des espaces de Riemann, Gauthier-Villars (1928; 2nd edition, 1946)].

H. Geodesic coordinates

1. Show that at the pole of geodesic coordinates (¥*) the Riemannian curvature
tensor has the components

R — i( g gy O%gu P%gn )
19kl — oul out ou! our out oul out oux/’

Hence, the curvature tensor has the symmetry property (1.9.20).

I. The curvature tensor

1. The curvature tensor (which we now denote by L) of a Riemannian manifold
with metric tensor g is completely determined by the sectional curvatures.
To see this, consider L as a transformation

L:TXxTxXxT—->T
(cf. 1.2.15); then, the symmetry relations (1.9.19)-(1.9.21) become
(a) L(X,Y,Z) = — L(Y,X,Z),
(b) 8(L(X,Y,Z), W) = — g(L(X,Y, W),Z),
(c) 8L(X,Y,Z), W) = g(L(Z,W,X),Y),
d) g(L(X,Y,Z2),W) + g(L(X,Z,W),Y) + g(L(X,W,Y),Z) = 0.

The relation (a) says that as a function of the first two variables L depends only
on X A Y. Thus, we may write

L(X ANY,Z) = L(X,Y,Z).
The metric tensor g may be extended to an inner product on A%(T) as follows:
£ X1 A Xyg, Xy A Xyy) = det g( X, Xinj0)

for any vectors X;;, Xjp, Xy, Xﬂ € T where 1,j = 1,2; 1* = 2, 2* = 1. Then,
(b) says that g(L(X A Y,Z),W) is a function of Z A W only. Hence, there is a
unique L(X A Y) e A¥T) such that

(X A Y,Z)W)=gL(X A Y),Z A W).

The relation (c) says that [ is a symmetric transformation of AXT).
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By the usual ‘polarization trick’:
(2X)Y) =X + Y, X +Y) — gXX) — g(¥,Y)), a symmetric linear
transformation is determined by the quadratic form corresponding to it. Hence
L is determined by
g(L(¢), &

where the bivector ¢ runs through AZT). It is sufficient to consider only
decomposable ¢. Consequently, L is determined by the sectional curvatures

gdLX AY),XAY)
g XAY,XAY)

K(X)Y) = —

of the planes spanned by X and Y for all X,Y e T.
2, Put
RX,Y)Z =L(X NY,Z)

and show that R(X,Y) is a tensor of type (1,1). The sectional curvature deter-
mined by the vectors X and Y may then be written as

g(RX,Y)X,Y)

K&.Y) = T XAYXAY)S

For any set {X,., X, X X 1} of orthonormal vectors, show that
Rija = g(R(X, X)X\, X)).

3. Show that the curve C in the orthogonal group of T'p given by the matrix
(C(@t))) defining the paralle] translation of T around the coordinate square
with corners (a) u; = u(P), u; = uy(P), (b) u; = u(P) + V't, u; = uy(P),
(© 4 =u(P)+ V1, uy = u(P) + V1, (d) u; = u(P), u; = u(P) + V1, all

other u’s constant has derivative
(Cw = Ry

J. Principal fibre bundles

1. Given a differentiable manifold M and Lie group G we define a new
differentiable manifold B = B(M,G) called a principal fibre bundle with base
space M and structural group G as follows:

(i) The group G acts differentiably on B without fixed points, that is the
map (x,g) — xg, x € B, g € G from B X G — B is differentiable;

(ii) The manifold M is the quotient space of B by the equivalence relation
defined by G;

(iii) The canonical projection = : B — M is differentiable;
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(iv) Each point P € M has a neighborhood U such that #-1(U) is isomorphic
with U X G, thatis, if x e 77}(U) the map x — (m(x), $(x)) from =Y (U) - U x G
is a differentiable isomorphism with ¢(xg) = ¢(x)g, g € G.

Show that M X G is a principal fibre bundle by allowing G to acton M X G
as follows: (P,g)h = (P,gh), Pe M, g, h e G.

2. The submanifold #—1(P) associated with each P € M is a closed submanifold
of B(M,G) differentiably isomorphic with G. It is called the fibre over P. If
M’ is an open submanifold of M, show that #—1(31’) is a principal fibre bundle
with base space M’ and structural group G.

3. Let {Ua} be an open covering of M. Show that the map YU, N Up) — G
defined by

bo(xg) ($a(38))! = by(x) ($ulx) ™, x em™ Uy Up)

is constant on each fibre. Denote the induced maps of U, N Uy~ G by fg,.
For U, n Uy #[ the f4, are called the transition functions corresponding to
the covering {Uu}. They have the property

f'/ot(P) :fyﬂ(P)fﬂz(P)i Pe Uam Uﬂm Uv'

4. Let {U,} be an open covering of M and fy,: U,n Uy — G, U, n Uy O
a family of differentiable maps satisfying the above relation. Construct a principal
fibre bundle B(M,G) whose transition functions are the f,,.

Hint: Define N, = U, x G for each open set U, of the covering {Ua} and
put N = U N,. If we take as open sets in IV the open sets of the N, N becomes

a differentiable manifold. Define an equivalence relation ~ in N in the following
way: (P,g) ~ (P,h), if and only if # = f,(P)g. Finally, define B as the quotient
space of N by this equivalence relation. Let #~}(U,) be an open submanifold of B
differentiably homeomorphic with U, X G. In this way, B becomes a differenti-
able manifold and one may now check conditions (i) - (iv) above.

5. Show that the homogeneous space G/H of the Lie group G by the closed
subgroup H defines a principal fibre bundle G(G/H,H) with base space G/H
and structural group H (cf. VI. E. 1).

6. Show that the bundle of frames with group G = GL(n,R) is a principal
fibre bundle.

7. Consider the principal fibre bundle B(M,G) and let F be a differentiable
manifold on which G acts differentiably, that is the map (g,v) —g v from
G x F—F is differentiable. The group G can be made to act differentiably
on B x F in the following manner: (x,0) — (x,0)g = (xg,g7'v). Denote by E
the quotient space (B x F)/G; the points of E are the classes [(x,7)], x € B,
v € F. Denote by mz the canonical projection of B onto M. A projection =g
of E onto M is defined by mg[(x,0)] = mg(x). For each Pe M, the fibre
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ngl(P) C E of E is the set of points represented by the class [(x,0)] where x
is an arbitrary point of B satisfying mz(x) = P and v is an arbitrary point of F.
Show that E is a differentiable manifold by considering #z'(U) as an open
submanifold of £ which may be identified with U X F. In terms of the
differentiable structure given to E the map =y is differentiable. The manifold E
is known as the associated fibre bundle of B with base space M, standard fibre
F and structural group G. Note that E and B have the same base spaces and
structural groups.

8. Let F be an n-dimensional vector space with the fixed basis (vy,..., v,).
The group G = GL(n,R) acts on F by g v, = gl v;. The tangent bundle is the
associated fibre bundle of B with F as standard fibre. Show that the tangent
bundle is the bundle of contravariant vectors of § 1.3.

It is surprising indeed that a manifold structure can be defined on the set
of all tangent vectors, for there is no a priori relation between tangent spaces
defined abstractly. Moreover, the idea of a vector varying continuously in a
vector space which itself varies is @ priori remarkable.

9. Let M be a (connected) differentiable manifold and B its universal covering
space. By considering the action of the fundamental group m;(#) on B, show
that B is a principal fibre bundle with base space M and structural group
m,(M). Show also that any covering space is an associated fibre bundle of B
with discrete standard fibre.

K. Riemannian metrics

1. It has been shown that a (connected) differentiable manifold M admits
a Riemannian metric (cf. § 1.9). With respect to a Riemannian metric, a natural
metric d may be defined as follows: d(P, Q) is the greatest lower bound of the
lengths of all piecewise differentiable curves joining P and Q. A Riemannian
manifold is therefore a metric space. It is a complete metric space if the metric d
is complete (cf. § 7.7). In this case the Riemannian metric is said to be complete.
Every differentiable manifold carries a complete Riemannian metric. If every
Riemannian metric carried by M is complete, M is compact [86]. A Riemannian
manifold is said to be complete if its metric is complete,



CHAPTER I

TOPOLOGY OF DIFFERENTIABLE MANIFOLDS

In Chapter I we studied the local geometry of a Riemannian manifold
M. In the sequel, we will be interested in how the local properties of M
affect its global behaviour. The Grassman algebra of exterior forms is a
structure defined at each point of a differentiable manifold. In the theory
of multiple integrals we consider rather the Grassman bundle which,
as we have seen, is the union of these algebras taken over the manifold.
It is the purpose of this chapter to describe a class of differential forms
(the harmonic forms) which have important topological implications.
To this end, we describe the topology of M insofar as it is necessary
to define certain algebraic characters, namely the cohomology groups
of M. These groups are, in fact, topological invariants of the
manifold. The procedure followed is similar to that of Chapter I where
the Grassman algebra was first defined over an ‘arbitrary’ vector space
and then associated with a differentiable manifold via the tangent space
at each point of the manifold. We begin then by defining an abstract
complex K over which an algebraic structure will be defined. We will
then associate K with a related construction K’ on M. The cor-
responding algebra over K’ will yield the topological invariants we seek.
The chapter is concluded with a theorem relating the class of forms
referred to above with these invariants.

2.1. Complexes

A closure finite abstract corﬁplex K is a countable collection of objects
{S¥}, i = 1, 2, -+ called simplexes satisfying the following properties.
(i) To each simplex S? there is associated an integer p = 0 called its
dimension ;
(ii) To the simplexes S? and S?-! is associated an integer denoted
by [S? : SP-1], called their incidence number
56
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(iii) There are only a finite number of simplexes S?~! such that
[SP: 8P #£0;
(iv) For every pair of simplexes SP+!, S?~! whose dimensions differ
by two
>, (827 SEI[SE: SP = 0.

k

We associate with K an integer dim K (which may be infinite) called
its dimension which is defined as the maximum dimension of the
simplexes of K.

An algebraic structure is imposed on K as follows: The p-simplexes
are taken as free generators of an abelian group. A (formal) finite sum

Cp=zgi5.-’, & €G

where G is an abelian group is called a p-dimensional chain or, simply
a p-chain. Two p-chains may be added, their sum being defined in the
obvious manner:

Co+Cp =2, (& +£)S, £08/G.

In this way, the p-chains form an abelian group which is denoted by
C,(K, G). This group can be shown to be isomorphic with C,(K, Z) ® G
where Z denotes the ring of integers, that is, the tensor product (see
below) of the free abelian group generated by X with the abelian group G.

Let A be a ring with unity 1. A A-module is an (additive) abelian
group A together with a map (A, a) - Aa of 4 X A — A satisfying

(1) May + ay) = Aa; + Aay,
(if) (A + Ap)a = Aja + Aza,
(iil) (AAy)a = Ay(Aqa),

(iv) le = a.

Since the ring /1 operates on the group 4 on the left such a module is
called a left A-module. A right A-module is defined similarly; indeed,
one need only replace Az by aA and (iii) becomes

(i) a(Ady) = (aM),.

For commutative rings no distinction is made between left and right
A-modules.
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Note that a Z-module is simply an abelian group and that for every
integer n

na =a + - + a (n times).

Let A be a right A-module and B a left A-module. Denote by
F 4.5 the free abelian group having as basis the set 4 X B of pairs
(a, b), ae A, be B and by I' the subgroup of F 4, generated by the
elements of the form

(al + azyb) - (al’b) - (az,b),
(a6, + by) — (a,by) — (a,by),
(a\b) — (a, Ab).

The quotient group F4,p/I" is known as the tensor product of A and B
and is evidently an abelian group (cf. I.A.4).

There is an operation which may be applied to a p-chain to obtain
a (p — 1)-chain called the boundary operation. It is denoted by & and
is defined by the formula

8C, =, g 0S?= D g[SP: SP1 8P,
i i

where C, = X, g, S? and g,[S? : S?71] is defined by considering G as a
Z-module. Moreover, it is linear in C,(K, G) and hence defines a
homomorphism

8 : C)(K,G) — C,_y(K,G).

The kernel of & is denoted by Z,(K, G), the elements of which are
called p-cycles. As a consequence of (iv) in the definition of a complex,
8(28Cy) = 0 for any C,. The image of C,_,(K, G) under & denoted by
B,(K, G) is called the group of bounding p-cycles of K over G and its
elements are called bounding p-cycles or simply boundaries. The quotient
group

H,(K,G) = Z,(K.G)/B,(K.0)

is called the p™ homology group of K with coefficient group G. The
elements of H,(K, G) are called homology classes. Clearly, a p-cycle
determines a well-defined homology class. Two cycles I'? and I'? in
the same homology class are said to be homologous and we write
I'? ~ T?. Obviously, I'? ~ I'?, if and only if, I'? — I'? isaboundary.

Assume now that G is the group of integers Z and write C,(K) =
Co(K, Z), etc. The elements of C,(K) are called (finite) integral p-chains



2.1. COMPLEXES 59

of K. A linear function f? defined on C,(K) with values in a com-
mutative topological group G:

f7CK) =G

is called a p-dimensional cochain or simply a p-cochain. We define groups
dual to the homology groups: The sum of two p-cochains f? and g? is
defined by the formula

(f* + &7 (Cy) =fCy) + £7(C))

for any p-chain C, e C,(K). With this definition of addition the
p-cochains form a group C?(K, G). The inverse of the cochain f? is
the cochain — f7 defined by

—fUC,) == C,)

where — C, is the p-chain (— 1)C,,. (This group is actually a topological
group with the following topology: For a p-simplex S? and an open set
U of G a neighborhood (S?, U) in CP(K, G) is defined as the set of
cochains f? such that fP(S?) e U). Since the S? are free generators of
the group C,(K), a p-cochain f? defines a unique homomorphism of
C,(K) into G.

An operator 0* dual to 0 and called the coboundary operator is defined
on the p-cochains as follows:

(0*f%) (Cpi1) = F7(9C;.1)-

The image of fP urder 8* is a (p + 1)-cochain called the coboundary
of f?. The operator 0* has the properties:

(i) o¥(f” + g») = o*f” + &%¢”,
(ii) 8*(8%f*) = 0.

This latter property follows from the corresponding property on chains.
That &* defines a homomorphism

8% : C*(K,G) — C**{(K,G)

is clear. The kernel of ¢* is denoted by ZP(K, G) and its elements are
called p-cocycles. The image of CP-Y(K, G) under o* denoted by
B?(K, G)is called the group of cobounding p-cycles or, simply, coboundaries.
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The quotient group
H?(K,G) = Z*(K,G)/B*(K,G)

is called the p™ cohomology group of K with coefficient group G. (It
carries a topology induced by that of C?(K, G)). The elements of
H?(K, G) are called cohomology classes. Evidently, a p-cocycle determines
a well-defined cohomology class. Two cocycles f? and gP in the same
cohomology class are said to be cohomologous and we write the
‘cohomology’ f? ~ gP. Obviously, fP ~gP, if and only if, f» — g?
is a coboundary.

2.2, Singular homology

By a geometric realization Ky of an abstract complex K we mean a
complex whose simplexes are points, open line segments, open triangles,
... in an Euclidean space E of sufficiently high dimension corresponding,
respectively, to the 0, 1, 2, ----dimensional objects in K in such a way
that distinct simplexes of K correspond to disjoint simplexes of Kj.
The point-set union of all the simplexes of the complex Ky written
| Kg | is called a polyhedron and the complex K is said to be a covering
of | Kz |. Two complexes K and K’ are said to be isomorphic if there is
a 1-1 correspondence between their simplexes S? «— S;* preserving
the incidences (cf. definition of an abstract complex). When K and K’
are isomorphic it can be shown that there is an induced homeomorphism
¢4 | Kg | — | Kg | where K and K, are geometric realizations of the
complexes K and K’, respectively such that ¢SP = S;? where S;? is
the simplex corresponding to S? under the isomorphism ¢. It is indeed
remarkable that the corresponding homology groups of any two covering
complexes of a polyhedron are isomorphic. Hence, they are topological
invariants of the polyhedron.

If the coefficients G in the definition of the homology groups form a
ring F, these groups become modules over F. The rank of H, (K, F)
as a module over F is called the p™ betti number b,(K) (= b,(K, F))
of the complex K. If F is a field of characteristic zero, these modules are
vector spaces over F. Thus, b,(K, F) is the dimension of the vector space
H,(K, F), that is the maximum number of p-cycles over F linearly
independent of the bounding p-cycles. The expression Z2m X (— 1)? ,(K)
is called the Euler-Poincaré characteristic of K.

Since the homology groups of a covering complex of a polyhedron
are topological invariants of the polyhedron so are the betti numbers
and hence also the Euler-Poincaré characteristic. This, in turn implies
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that if | Kz | and | Kg | are homeomorphic, the corresponding homology
groups of K and K’ are isomorphic and thetr betti numbers coincide.

By a p-simplex [¢p : S?], p = 0, 1, 2, --* on a differentiable manifold M
is understood an Euclidean p-simplex SP (point, closed line segment,
closed triangle, ---) together with a differentiable map ¢ of S? into M.
More precisely, let R* denote the vector space whose points are infinite
sequences of real numbers (x!, -+, ™, ---) with only a finite number
of coordinates x* % 0. The finite-dimensional vector spaces RP are
canonically imbedded in R®. Consider the ordered sequence of points
(Py, -, P,) (necessarily linearly independent) in R® and denote by
A(Py,-, P,) the smallest convex set containing them, thatisd(P,, -, P,) =
{roPo + =+ 1Py | 7, 20,70+ - +1,=1}. Let w(Py, -+, P)) =
{roPy+ - +r, P, | 7o + -+ 4 r, =1}, that is, the plane determined
by the P, i =0, -, p. The numbers ry, -, r,, are called barycentric
coordinates of a vector in m(Py, -, P,). By a singular p-simplex on M
we mean a map ¢ of class | of 4(P,, -+, P,)into M. A singular p-chain
is a map of the set of all singular p-simplexes into R usually written as
a formal sum Xg;s? (g, € Z) with the singular simplexes s? indexed in
some fixed manner.

We denote by |s?| the support of s?, that is the set of pointsg(4( Py, +, Pp)).
A chain is called locally finite if each compact set meets only a finite
number of supports with g, = 0. We consider only locally finite chains.
A singular chain is said to be finite if there are only a finite number of
non-vanishing g;. The support of a p-chain is the union of all |s? | with
&: # 0. Singular chains may be added and multiplied by scalars (elements
of R) in the obvious manner. Infinite sums are permissible if the result
is a locally finite chain.

The faces of a p-simplex sP 5 [@: Py, -+, P,] (p > 0) are the simplexes
s¥7t = [g: Py, -+ P;_y, Py, -+ Pp]. A boundary operator & is defined
by putting

D,
as” =2 (— I)is?
1=0
For p = 0 we put 95 = 0. The extension to arbitrary singular chains is
by linearity. It is easily checked that the condition of local finiteness
is fulfilled. Moreover, 8@ = Q. Note that [s?: sP-1] = (— 1)%.

Cycles and boundaries are defined in the usual manner. Let S, denote
the vector space of all finite p-chains, S5 the subspace of p-cycles and
Sp the space of boundaries of finite (p + 1)-chains. The quotient
S5/S; is called the p™ singular homology space or group of M and is
denoted by SH,,

In this way, it is possible to associate with M a covering complex K,
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that is a complex such that every point of M lies on exactly one simplex
of K and every simplex of K lies on M. This important theorem was
proved by Cairns [/7]. The complex K is, of course, not unique. It
follows that M is a polyhedron, that is, M is homeomorphic with | K |.
Hence, the invariants described above are topological invariants of the
manifold. In the sequel, we shall therefore writte HP(M, R) for
HP(K, R), etc.

2.3. Stokes’ theorem

Let ¢ be a singular p-simplex and « a p-form on the differentiable
manifold M. Since ¢ is continuous, the intersection of the carrier of o
and the support of ¢ is compact. Define the integral of « over
P =[p: Py, -+, Pp)

by

For C, = X, g, s?, define the integral of o over C,
[ @
CP

by linear extension, that is
o = { o
fC, ,zg' fs,?

Now, let « be a (p — 1)-form over the differentiable manifold M of
dimension # and C, a p-chain of a covering complex K of M. Then,
it can be shown in much the same way as the Stokes’ formula was
established in § 1.6 that

f o= dy 1<p<m (2.3.1)
ac, c,

Consider the functional L, defined as follows:

%@Ffm (2.3.2)

P

Clearly, L.: C,(K) — R is a linear functional, that is L, is a p-cochain
with real coefficients. In this way, to a p-form « there corresponds a
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p-cochain L. It follows from (2.3.1) that if « is a closed form, L, is a
cocycle. Moreover, to an exact form there corresponds a coboundary.
This correspondence between differential forms and cochains may be
extended by defining a satisfactory product theory for complexes
(cf. Appendix B).

24. De Rham cohomology

Since any two covering complexes of a differentiable manifold M
determine isomorphic homology and cohomology groups we shall call
them the homology and cohomology groups, respectively, of M. Now,
for a fixed closed differential form « of degree p on M the integral
.fr’a is a linear functional on SH),. To see this, put I') = I', 4 9C,,;;

Jor=l otlg 2=l =r]

then,
by Stokes’ theorem. Hence, there is a unique cohomology class
{f*} e H?(M) (= HP(M, R)) such that

da=fra

Co+1

[ «=pr

for all {I',} € SH, where f? is a cocycle belonging to the cohomology
class {f7}. A theorem due to de Rham (cf. Appendix A and [65]) implies
that the correspondence o« — {fP} establishes an isomorphism (provided
M is compact), that is

D*(M) =~ H(M)

(cf. § 2.6). Moreover, the cohomology class associated with the exterior
product of two closed differential forms is the cup product of their
cohomology classes (cf. Appendix B). Hence, the isomorphism is a
ring isomorphism. Since the p betti number b,(M) of M is the
dimension of the group HP(M), it follows that b,(M) is equal to 'the
number of linearly independent closed differential forms of degree p modulo
the exact forms of degree p. In the remaining sections of this chapter
we shall see how this result was extended by Hodge to a more restricted
class of forms.
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2.5. Periods

General line integrals of the form

fcp dx + g dy (2.5.1)

are often studied as functionals of the arc (or chain) C under the
conditions that the functions p = p(x, y) and ¢ = ¢(x, y) are of class
k=1 in a plane region D and that C is allowed to vary in D. A
particularly important type of line integral has the characteristic property
that the integral depends only on its end points, that is if C and C’
have the same initial and terminal points

j pdx+qdy=f pdx +q dy. (2.5.2)
c c
This is equivalent to the statement that
f pdx +qdy =0 (2.5.3)
r

over any closed curve (or cycle) I. Now, a necessary and sufficient
condition that the line integral (2.5.1) be a function of the end-points
of C is that the differential p dx 4+ ¢ dy be an exact differential, or,
in the language of Chapter I that the linear differential form « = p dx +
g dy be an exact differential form. The most important consequence is
Cauchy’s theorem for simply connected regions. If « is a holomorphic
differential and D a simply connected region, then

f «=0. (2.5.4)
D
If we put

£(C) = f (2.5.5)

(o2
c
then f is a linear functional (or cochain) and, in general
A(C) =f(C) + £(T) (2.5.6)

where I' is the cycle C’ — C. The integral f(I') is called a period of the
form «. Hence (2.5.6) may be stated as follows: The values of the
line integral (2.5.1) along various chains with the same initial and
terminal points are equal to a given value of the integral plus a period.
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Conversely, every such sum represents a value of the integral. The study
of the cochain f becomes a topological problem by virtue of this result,
that is, the problem is to investigate the cycles. As a matter of fact,
homology theory has its origin in this fundamental problem. Another
important property of the cochain f is the following: If a cycle I" may be
continuously deformed to a point, then f(I') = 0. This is certainly
the case if D is simply connected.

Now, if I' ~ I'", f(I') = f(I'") or, more generally, we may consider
the homology

I'~n I+ +nT, neZ (2.5.7)

and it implies that

r

() = 2 n f(T)

2.5.8)

N

=2 o
=1

where the w; are the periods of the form « over the cycles I',. The
values of the line integral are then all of the form f(C) + X% n, w,
where b,(D) is the first betti number of D. This is a well-known expres-
sion in analysis. The Cauchy theorem for multiply connected regions
may now be stated: If o is a holomorphic differential and D is a multiply
connected region, then

f «=0 (2.5.9)

for every cycle I' ~ 0 in D.

2.6. Decomposition theorem for compact Riemann surfaces

The following generalizations can be made here. In the first place,
it is possible to consider in place of D a surface with suitably related
integrals. The classical example is the study of abelian integrals

Fz) = | " R(zw) dz 2.6.1)

0

where R(z, w) is a rational function and w = w(z) is an algebraic
function, the integral being evaluated along various paths in the z-plane.
A branch of the function w(z) is chosen at 2, and a path from z, to 2.
The value of w(z) is then determined by analytic continuation along
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the path of integration. Instead of considering the z-plane we may
consider a surface S on which the function @(2) is defined and single-
valued. The surface S is called the Riemann surface of the algebraic
function w(z). It can be shown that the Riemann surface of any algebraic
function is homeomorphic to a sphere with g handles. On the other
hand, we may consider such a surface and ask for those functions on the
surface which correspond to single-valued analytic functions in the
z-plane. In this way, we obtain a classification of analytic functions
according to their Riemann surfaces. Moreover, the behavior of the
integrals of the algebraic functions may be determined from a knowledge
of the functions themselves, as well as the topology of the surface. This
is Riemann’s approach to the study of algebraic functions and their
integrals. Since the first betti number of a compact Riemann surface
S is 2g, it can be shown that the periods of an everywhere analytic
(henceforth, called holomorphic) integral on S are linear combinations
of 2g periods. By constructing integrals with prescribed periods on 2g
independent 1-cycles of a compact Riemann surface S, it can be shown
that the de Rham cohomology group DY(S) is isomorphic to the group
HY(S). This is de Rham’s isomorphism theorem for compact Riemann
surfaces.
Consider now the linear differential form

a=pdx+qdy (2.6.2)
over a Riemann surface S and define the operator * by
o = — g dx + p dy. (2.6.3)

That *a has an invariant meaning over S is easily seen by choosing a
conformally related coordinate system (x', y'):

x=x(x",y), y =y,
that is
ox oy ox oy

ox oy’ @y ox’

and checking the transformation law. The operator % has the following
properties: '

() Ho £+ B) = *a + B, *(fa) = f(*q),

(if) **xo = *(ka) = — o,

(i) o A %8 =B A *a

(iv) a A *a =0, if and only if, « = 0.
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Since df = (9f/éx) dx + (of/dy) dy, we can define the operator *d for
functions by

0 o)
(xd)f = *(df) = — %dx + 53—: dy. (2.6.4)
Define
(*d)a = — d(*a) (2.6.5)
for 1-forms.
If we put
4 = dxd, (2.6.6)
then
0? o2
o = (—3TJ; 4 a—yfz‘) dx A dy. (2.6.7)

A function f of class 2 is called harmonic on S if Af vanishes on S.
Locally, then

of | &
5t =0 (2.6.8)

A linear differential form « of class 1 on S is called a harmonic form if,
for each point P of S there is a coordinate neighborhood U of P such
that « is the total differential of a harmonic function f in U. This implies
that *o is closed. In fact, « = df and d*df = 0 in U, that is dxa = 0.
Conversely, dx = 0 implies that « = df, locally (cf. § A. 6). Moreover,
d+xa = 0 implies that d(xdf) = 0. Hence, f is harmonic. We have shown
that a linear differential form « of class 1 is harmonic, if and only if,
do = 0 and dxa = 0.

A harmonic differential form « = p dx 4+ ¢ dy on S, that is a form
which satisfies do = 0 and dxa = 0 defines a holomorphic function
p — iq (locally) of 2 = x + iy ( = v/ — 1). Indeed,

—du— (2 _ 2
0 =du= ( L ay) dx A dy, (2.6.9)
T i/ S |
0 = dxa = (W + W) dx A dy, (2.6.10)
and so we have locally (2p/ay) = (2g/ox) and (op/ox) = — (2q/2y),

which are the Cauchy-Riemann equations for the functions p and — g¢.
(A function f of class 1 is holomorphic on S if locally f(x, y) = u(x, y) +
io(x, ) and the functions u and v satisfy the Cauchy-Riemann
equations). It is an easy matter to show that f is holomorphic on S,
if and only if xdf = — idf, that is, if and only if, the differential




68 11, TOPOLOGY OF DIFFERENTIABLE MANIFOLDS

df is pure (of bidegree (1,0) cf. § 5.2). A linear differential form « on S'is
said to be a holomorphic differential if, in each coordinate neighborhood U
it is the differential of a holomorphic function in U. A linear differential
form « is locally exact, if and only if, dx = 0. Locally, then « = df and in
order that f be holomorphic *df = — idf or *a = — ia. A differential
form satisfying this latter condition is said to be pure. Hence, a linear
differential form of class 1 is holomorphic on S, if and only if it is closed
and pure (cf. § 5.4). We remark that if « is holomorphic, it is a harmonic
form. This is clear from the previous statement.

The formal change of variables 2 = x + ¢y, 2 = x — ¢y and the
resulting equations *dz = — idz, *d%Z = idZ clarify the nature of
pureness: o is pure, if and only if, it is expressible in terms of dz only.

A differential form of class 1 will be called a regular differential form.
Now, the regular harmonic forms on a compact Riemann surface S
form a group H(S) under addition. It can be shown that if « is a closed
linear differential form on S, then there is a unique harmonic 1-form
homologous to «, that is H(.S) is isomorphic to the de Rham cohomology
group DY(S). This is Hodge's theorem for a compact Riemann surface.
The proof is based on a decomposition of o into a sum of two forms,
one of which is exact and the other harmonic. (More generally, a 1-form
on a Riemannian manifold may be decomposed into a sum of an exact
form, a form which may be expressed as *df for some f and a harmonic
form (cf. §2.7). This is the decomposition theorem applied to 1-forms).
The de Rham isomorphism theorem together with the Hodge theorem
for compact Riemann surfaces implies that the first betti number of a
compact Riemann surface is equal to the number of linearly independent
harmonic 1-forms on the surface.

27. The star isomorphism

The geometry of a Riemann surface is conformal geometry. As a
possible generalization of the results of the previous section, one might
consider more general surfaces, for example, the closed surfaces of
§ 1.1, the geometry being Riemannian geometry. One might even go
further and consider as a replacement for the Riemann surface an
n-dimensional Riemannian manifold. To begin with, consider the
Euclidean space E™ and let (u!, -+, u") be rectangular cartesian coor-
dinates of a point. Let f be a function defined in E™ which is a potential
function in some region of the space. In the language of vector analysis,

div grad f = 0, 2.1.1)
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where grad f is the vector field with the components df/ou’ relative
to the given coordinate system and — div grad f is the scalar

2. 2.
Ho

' o

Now, in a Riemannian manifold M, the equation

af

L+ L af (2.7.2)

may hold in a given coordinate neighborhood but it does not have an
invariant meaning over M, that is, the left hand side is not a tensor field.
A generalization of the concept of a harmonic function is immediately
suggested, namely, instead of ordinary (partial) differentiation employ
covariant differentiation. Hence, grad f is the covariant vector field D,f
and the divergence of this vector field is the scalar — Af defined by

— Af = g™ D, D,f (2.7.3)

where g;; is the metric tensor field of M and covariant derivatives are
taken with respect to the connection canonically defined by the metric.
It follows that

—Af = (\/‘ 2" D,f) (2.7.4)

\f ou'
or, alternatively ,
— Af =g (e éu, fk {*))- 2.7.5)

Hence, Laplace’s equation Af = 0 is a tensor equation and reduces to
(2.7.2) in a Euclidean space in which the «* (i = 1, ..., n) are rectangular
cartesian coordinates.
Equation (2.7.4), namely, the condition that the function f be a
harmonic function is the condition that the (n — 1)-form
g” l)ifei(l'l...i ot A A din (2.7.6)
be closed where ¢, ; is the skew-symmetric tensor 8iyt i/ G
and G = det (g;;). The discussion of § 2.6 together with the ‘inter-
pretation’ of a harmonic function as a certain closed (n — 1)-form
suggests the introduction of an operator (defined in terms of the metric)
which associates to a p-form « an (n — p)-form xo defined as follows:

Let
«=ay dur A ... A dubs. (2.7.7)
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Then : .

o= aX A A dunes (2.7.8)
where . o

A ity E(il...z‘,)jl...;‘,‘_pa“l”.lp)' (2.7.9)
In the last sum, only the terms corresponding to the values of 7, -+, ¢
which are different from j,, -, j,_, can be non-zero. The form xa is

called the adjoint of the form «. That the form (2.7.6) is the adjoint of
the form df = (&f/ u’) du’ is an easy exercise. The adjoint of the (constant)
function 1 (considered as a form of degree 0) is the volume element

*l =€, duil A .. Adut =VGdul A ... A dur, (2.7.10)

The adjoint of any function, considered as a O-form, is its product with
the volume element,

If A and B are vectors in E® with the natural orientation, and the
% operation is defined in terms of the natural Riemannian structure of ES,
then * (4 A B) is usually called the vector product of 4 and B. In EZ,
the * operator applied to vectors is essentially the operation of a rotation
through =/2 radians.

As in § 2.6 the operator x has the-properties:

() *(a + B) = *a + B, *(fo) = f(xa),

(11) *xa = *(*ka) = (— 1)Pn+Pq,

(i) « A %8 =B A xqa,

(iv) o A %o =0, if and only if, « = 0 where o and B are forms of
degree p and f is a O-form (function).

Let
«=ay dutr A ... A dubs,
and
B = blil...i,) du's N\ o N du's,
then

o A *B = ali-ip) b (2.7.11)

(™ 1o
The proof of property (ii) and (2.7.11) follows by choosing an ortho-
normal coordinate system at a point. Hence, the relation between «
and o is symmetrical, save perhaps for sign.

We define the (global) scalar product («, B) of « and B as the (real)

number

(x, B) = fM & A *B, (2.7.12)
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whenever the integral converges as will always be the case in the sequel.
(It is assumed that M is orientable and that an orientation of M has been
chosen). The scalar product evidently has the properties:

(1) (o, @) = 0 and is equal to zero, if and only if « = 0,
(i) (o B) = (B, ),
(i) (o By + Ba) = (o B1) + (o Ba), (1 + g, B) = (o, B) + (e B),
(iv) (xa, %) = (x B)
where «, a;, a,, B, B, and B, have the same degree.
If (o, B) = 0, a and B are said to be orthogonal.

It should be remarked that the % operation is an isomorphism between
the spaces AP (T}) and A»P?(T¥) at each point P of M.

2.8. Harmonic forms. The operators & and A

There are several well-known examples from classical physics
(potential theory) where relations analogous to Laplace’s equation hold.
The electrical potential due to a system of charges or the vector potential
due to a system of currents is not uniquely determined. To the former
an arbitrary constant may be added and to the latter an arbitrary vector
with vanishing curl. In defining electrical potential we begin with a
vector field E representing the electrical intensity which satisfies the
equation curl E = 0. This is the condition that the electric field be
conservative. A function f is then defined as follows:

P
f(P) = fP E-dr (2.8.1)

where r denotes the position vector of a point in E® and the - denotes
the inner product of vectors in E3. It follows that E = grad fand f
is determined to within an additive constant,.

In defining the vector potential, on the other hand, we begin with
the magnetic induction B which satisfies the equation div B = 0. As it
turns out, this is a sufficient condition for the existence of a vector
field 4 (unique up to a vector field whose curl vanishes) satisfying
B = curl 4.

We now re-write the above equations as tensor equations in E3 We
may distinguish between covariant and contravariant tensor fields
provided the coordinate system is not Euclidean. Let E; denote the
components of the covariant vector field E and B? the components of
the contravariant vector field B. Then,

D,E;, — D,E; =0 (2.8.2)
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and
E; = D.f, 2.8.3)
locally.
Moreover,
D,B =0 (2.8.4)
and
B, =D, A, — D, 4, (2.8.5)

where the skew-symmetric tensor field
By; = €, BX (2.8.6)

In the language of differential forms, if we denote by % and o the
1-forms defined by E and 4 and by B the 2-form defined by the

bivector By, then the equations (2.8.2) - (2.8.5) become
dn =0,
7 = df (locally),
dg =0,

— B = da (locally).

We note that f = xf where f is the I-form corresponding to the
covariant vector field g;;B7 where g;; is the metric tensor of E3.

Now, the theorems of classical potential theory, namely, (a) if 7 is
closed, then 7 is exact and (b) if 8 is closed, then B is exact are not
necessarily true in an arbitrary 3-dimensional differentiable manifold
since the first and second betti numbers may not vanish (cf. §2.4).

We digress for a moment and consider a Riemannian manifold of
dimension 7. To a p-form o« on M we associate a (p — 1)-form 8«
defined in terms of the operators d and x*:

8o = (— 1)+7+1 xd xa, (2.8.7)

The form 8« is called the co-differential of « and has the properties:
(i) 8(a + B) = 8o + 88,
(i) 88a =0, ‘
(iil) *8a = (— 1)P dxa, *do = (— 1)P+1 § *a.
The form « is said to be co-closed if its co-differential is zero. This is
equivalent to the statement that its adjoint is closed. If « = 38 we say

that « cobounds B and that « is co-exact.
It should be remarked that in contrast with the differential operator d,
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the co-differential operator 8 involves the metric structure of M in an
essential way.

A form « is said to be harmonic (or a harmonic field) if it is closed and
co-closed. This is the definition given by Hodge. K. Kodaira [46], on
the other hand calls a form o harmonic if da = 0 where 4 is the
(Laplace-Beltrami) operator dé + 8d. It is evident that the harmonic
forms of a given degree form a linear space. However, since the operator
4 is not, in general, a derivation, they do not form an algebra.

If « is the form of degree 1 in E?® associated with the vector V, then
the forms d8« and 8da are associated with the vectors grad div I/ and
curl curl ¥ and hence the form A« is associated with the vector field
V2V =grad div V' — curl curl V. Now, in the above example, at any
point of E® where there is no current, the vector potential A satisfies
the equation curl curl 4 = 0. Regarding the vector field E, the 1-form
associated with it is harmonic, and so from the equation (2.8.1) we
conclude that the potential difference between two points in an electrical
field is given by the integral of the harmonic form 7 along ‘any’ path
connecting the points. Moreover, the integral frA - dr of the vector
potential in the magnetic field round a bounding cycle I' is equal to
the integral of the 2-form B over ‘any’ 2-chain C with I" = &C, that is,

J#azhh:—kﬂ (2.8.8)

In§2.10 we shall sketch a proof of the statement that there are harmonic
p-forms (0 < p << n) on an n-dimensional Riemannian manifold M with
the property that the integral

[

has arbitrarily prescribed periods on b,(M) independent p-cycles of M.
This generalizes the above results for the forms % and 8.

2.9. Orthogonality relations
We shall assume in the remaining sections of this chapter that the

Riemannian manifold M is compact and orientable. Let « and B be
forms of degree p and p + |, respectively. Then, by Stokes’ theorem

fmA%=Q (2.9.1)
M
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from which
[ dansp=(—1p"[ andn, (29.2)
M M

By (2.8.7), this may also be written as

(do, B) = (o, 8B). (2.9.3)

Two linear operators 4 and A4’ are said to be dual if (4a, 8) = («, A'B)
for every pair of forms « and 8 for which both sides of the relation are
defined. Thus, the operators d and & are dual.

In the same way, we see that, if B is of degree p — 1, then

(o, dB) = (8, B). (29.9)

Hence, in order that « be closed, it is necessary and sufficient that it be
orthogonal to all co-exact forms of degree p.

The condition is indeed necessary; for, if do = 0, then (a, 88) =0
for any (p + 1)-form B. Suppose that « is orthogonal to all co-exact
forms of degree p. Then, (o, 8doe) = 0, and so (do, do) = 0. Hence,
from property (i), p. 71, it follows that do = 0.

In order that a form be co-closed, it is necessary and sufficient that it be
orthogonal to all exact forms. It follows that if « and 8 are two p-forms,
o being exact and B co-exact, then (o, 8) = 0.

We now show that in a compact Riemannian manifold the definitions
of a harmonic form given by Hodge and Kodaira are equivalent. Assume
that « is a harmonic form in the sense of Kodaira. Then,

0 = (4o, o) = (d8a, o) + (8dar, ) = (dov, do) + (8ax, Sax).

Hence, since (da, do) = 0 and (8o, 8a) = 0, it follows that dou = 0 and
8a = 0. The converse is trivial.

In particular, a harmonic function in a compact Riemannian manifold is
necessarily a constant.

We have seen that a harmonic form on a compact manifold is closed.
This statement is false if the manifold is not compact. For, a closed form
of degree O is a constant while in E™ there certainly exist non-constant
harmonic functions.

The differential forms of degree p form a linear space AP(T*) over R.
Denote by AL(T*), AJT*) and AR(T*) the subspaces of AP(T*)
consisting of those forms which are exact, co-exact and harmonic,
respectively. Evidently, these subspaces are orthogonal in pairs, that is
forms belonging to distinct subspaces are orthogonal. A p-form
orthogonal to the three subspaces is necessarily zero (cf. § 2.10). In other
words, the subspaces AL(T*), AXT*) and AZ(T*) form a complete
system in A?(T*). (We have previously written AZ(T*) for AXT*)).
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2.10. Decomposition theorem for compact Riemannian manifolds

Let B be a p-form on a compact, orientable Riemannian manifold M.
If there is a p-form o such that 4o = g, then, for a harmonic form y,

(Bv 7) = (Aav 7) = (0‘; A’)’) = 0.

Therefore, in order that there exist a form o (of class 2) with the
property that 4o = 8, it is necessary that 8 be orthogonal to the sub-
space AP(T*). This condition is also sufficient, the proof being given
in Appendix C. The original proof given by Hodge in [39] depends
largely on the Fredholm theory of integral equations.

The dimension of AR(T*) being finite (cf. Appendix C) we can find
an orthonormal basis {@,, ..., ¢,} for the harmonic forms of degree p:

(ps ;) = 8.

Any other harmonic p-form may then be expressed as a linear com-
bination of these basis forms. Let « be any p-form. The form

h
og = 2 (o, @)
i=1

is harmonic and « — ay is orthogonal to AR(T*). In fact,

(@ — ap, ;) = («, ¢;) — (om, ¢5)

h

=@ 9) — (2 (@ p)en )

i=1

h

= (o, 9;) — 2 (@ @) (Pss @) = O.

i=1

It follows that there exists a form y such that dy = a — ay. If we set
ag = ddy and ay = 8dy, we obtain oy + a5 = o — oy, that is

a =0y + a5 + ag

where oy € AB(T*), a5e AJ(T*) and oy € A%(T*). That this decom-
position is unique may be seen as follows: Let o = oy + o5 + ay
where ay € AB(T*), a; ¢ AJ(T*) and oy € AE(T*) be another decom-
position of «.
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Then,
(ag — ag) + (xg — og) + (e — o) =0

and therefore, by the completeness of the system of subspaces A(T™*),
AB(T*)and AB(T*) in AP(T*), ag = ag, oy = g, ayy = oy We have
proved:

A regular form o of degree p may be uniquely decomposed into the sum

a=og + g + ay

where ay € NJ(T*), oy € ANY(T*) and oy € NB(TH).
This is the Hodge-de Rham decomposition theorem [39].

2.11. Fundamental theorem

At this stage it is appropriate to state the existence theorems of de
Rham [65]—the proofs of which appear in Appendix A.

(R)) Let {I}} (i =1, -, b(M)) be a base for the (rational) p-cycles
of a compact differentiable manifold M and wj, (i = 1, -+, b(M)) be b,
arbitrary real constants. Then, there exists a regular, closed p-form o on
M having the w}, as periods, that is

f a=wl (=1,.,b,)
5

(Ry) A closed form having zero periods is an exact form.

We now establish the existence theorem due to Hodge which is at
the very foundation of the subject matter of curvature and homology.

There exists a unique harmonic form o of degree p having arbitrarily
assigned periods on b, independent p-cycles of a compact and orientable
Riemannian manifold.

Indeed, let o be a closed p-form having the given periods. The
existence of o is assured by the first of de Rham’s theorems. By the
decomposition theorem o = a4 + ay. (Since « is closed, «, is zero and
consequently « is orthogonal to A§(T*)). Since «; € AJ(T*) its periods
are zero. Hence the periods of ay are those of «. The uniqueness
follows from (R,) since a harmonic form whose periods vanish is the
zero form.

Let M be a compact and orientable Riemannian manifold. Then, the
number of linearly independent real harmonic forms of degrec p is equal to the
P betti number of M.

For, let ¢, denote the harmonic p-form whose periods are zero except
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for the 7** which is equal to 1, that is, if {Ip} (i = 1, -+, b,(M)) is a base
for the rational p-cycles of M, then

J.rl Pi = 81! (11] = 1’ b bﬂ)'

The existence of the ¢, is assured by the above theorem. The ¢, (i =
1, ..., b,) clearly form a basis for the harmonic forms of degree p and the
fundamental theorem is proved.
Although not explicitly mentioned it should be emphasized that the
existence theorems of de Rham are valid only for orientable manifolds.
The theorem (R,) may be deduced from (R,) and the decomposition
theorem of §2.10.

212. Explicit expressions for d, 5, and A

In the sequel, unless written otherwise, a p-form o will have the
following equivalent representations:

1 a
Pl Tgeenty
in the local coordinates #, ---, u*. We proceed to obtain formulae for

the operators d, 8, and 4 in a Riemannian manifold—the details of the
computations being left as an exercise. In the first place,

duir A\ ... N\ duts = a dusr A\ ... A\ du's

«= (heniy)

D
D, L au‘ “pzl By ipy Fppreend {¢p B (2.12.1)
If we write (cf. (1.4.11))

do = (da), 4,1)d""l ARERAY s

then
J(dyndg)
da), .y, =82 Diag, (2.12.2)
— §ilrendp) 0ay,...5,)
T Yyenigy aui
and

Sa = (Sa)“l.__‘,_x) dulr A ... A\ dutr
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where
(Sa)‘l“_‘p =(— 1)"‘”""f‘(=u=d:|=a)‘l___"’_1 (2.12.3)
(¥}
= _g” 8“: ’a(;',...J,)'
Then, the Laplace-Beltrami operator
4 =4d8+ &
is given by
i 2 j
(da), . =—8"D,Da +,,.21 at,...‘p_mpﬂ...a,Rtp (2.12.4)
2 D
7
+ %E pz_\(]a'x Sp—1Fippyee g1 tigg ety R tptg
where
kl = gl R mkl
In an Euclidean space, the curvature tensor vanishes, and so if the
ul, -+, u™ are rectangzlar coordinates, g = 8] and

2
7 Aigenng

(Aa)il...i, == 2 o ol

=1

On the other hand, in a Riemannian manifold M, if we apply 4 to a
function f defined over M, we obtain Beltrami’s differential operator
of the second kind:

4f = — g% D, Df

(cf. formula (2.7.3)). The operator 4 is therefore the usual Laplacian.

EXERCISES

A. The star operator

The following seven exercises give rise to an alternate definition of the Hodge
star operator.

1. Let V be an n-dimensional vector space over R with an inner product ¢:
VXV—->RIfa=v, A...A v,and 8 =w, A ... A w, are two decomposable
p-vectors, let {«, 8> = det (p(v;, w;)). Prove that this pairing defines an inner
product on A?(V).
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2. Let M be an n-dimensional Riemannian manifold with metric tensor g.
In terms of a system of local coordinates (vf), let a« = a;; i, dur A ... A\ dut»
and B =b ;,dut A .. A du'»betwo (anti-symmetrized) p-forms in A (V]),
P being in the given coordinate neighborhood. Show that

(o, B> = Ai).ip) b(j,...!,)E“"(P) - 875(P)

where the inner product ¢ is defined by g.
3. Let VP =V ® .. ® V (p times) and define 4?: V? — V? by

A0, ® .. @) = ﬁz 581 () Yoy ® o ® Tt

the summation being taken over all permutations of the set (1, -+, p). Define
the map

n: AV)—> 4%(V?)
2oL A e A7) = APty @ . @ B,
7 is an isomorphism. Furthermore, if we extend ¢ to an inner product on ¥? by
R e @y wy @ o0 @ wyp = (VWD o (¥, Wy,
then pl<a,B) = (n(a), 7(B))-

We have used the notation ¢(v,w) = {v,w), v,w € V. (The correspondence
between we V and w* € V* given by the condition

{(ow*) =pvw) VoveV
defines an isomorphism between V and V*.)
4, Show that (A?(V))* == A?(V*) under the pairing
oy A A gy, wk Ao A w}> = det Kz, w;")).

by

5. If the manifold M is oriented, there is a unique n-form e* in /\"(Vﬁ),
P e M such that (e*,e*> =1 where e* is positive with respect to the
orientation. (Note that the metric tensor g defines an inner product on V3).

6. Define X: A?(Vp)— A" »(V}) by
KOy A e A Oy Ny A oo Awp)) =<y Ao Awy Aoy A ve A Uy )
and let a=a(’1--)(9/ou"1) A ... N (8/0u's) be an element of AP(Vj), where
the coefficients are anti-symmetrized. Then,
MNe) = by, gy @ A o A B0,

where

b :\/é‘afl...i,)sx...n

Jeesdn—yp 1.ty 51..-’”_,1

and G = det(g;).
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7. Define the map p: A?(V*) = A"?(V*) by p=A-y, wherey: A?(V*)
— A? (V) is the natural identification map determined by the inner product
in A?(V*). Then, u is the star operation of Hodge.
8. Let V be a vector space (over R) with the properties:

(i) V is the direct sum of subspaces V'? where p runs through non-negative
integers and

(ii) V has a coboundary operator that is an endomorphism d of V such that
d,V® C V»+! with d,,,d, =0 where d, denotes the restriction of d to V7.
The vector space
kernel d,

HV) = image d,,_,

is called the p* cohomology vector space (or group) of V. A theory based on V
together with the operator d is usually called a cohomology theory or d-cohomology
theory when emphasis on the coboundary operator is required. We have seen
that the Grassman algebra A(T*) with the exterior differential operator d gives
rise to the de Rham cohomology theory. On the other hand, a cohomology
theory is defined by the pair (A(T*),8) on a Riemannian manifold by setting
AP = A? p=0,1,2, . Prove that the x operator induces an isomorphism
between the two cohomology theories.

B. The operators H and G on a compact manifold

1. Show that for any « € AP(T*) there exists a unique p-form H[«] in AR(T*)
with the property («,8) = (H[«],8) for all B e AR(T*).

2, Prove that H[H[«]] = H[a} for any p-form a.

3. For a given p-form « there exists a p-form B satisfying the differential
equation 48 = « — H[a]. Show that any two solutions differ by a harmonic
p-form and thereby establish the existence of a unique solution orthogonal to

AR(T*). Denote this solution by Ga and show that it is characterized by the

conditions
a =A4Go + H[a] and (Ge,B) =0

for any B e AB(T*).
The operator G is called the Green’s operator.
4, Prove that H[Ga] vanishes for any p-form «.
5. Prove:
(a) The operators H and G commute with d, 8, 4 and *;
(b) G is self-dual, that is
(Ga,ﬁ) = (arGﬁ)
for any «, B of degree p;
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(c) G is hermitian positive, that is
(Goya) = 0,

equality holding, if and only if, « is harmonic.

C. The second existence theorem of de Rham

f. Establish the theorem (R;) of §2.11 from the decomposition theorem of
§2.10.



CHAPTER 1li

CURVATURE AND HOMOLOGY
OF RIEMANNIAN MANIFOLDS

The explicit expression in terms of local coordinates of the Laplace-
Beltrami operator 4 (cf. §2.12) involves the Riemannian curvature
tensor in an essential way. It is natural to expect then that the curvature
properties of a Riemannian manifold M will affect its homology structure
provided we assume that M is compact and orientable. It will be seen
that the existence or rather non-existence of harmonic forms of degree p
depends largely on the signature of a certain quadratic form defined
in terms of the curvature tensor. Hence, by Hodge’s theorem (cf. § 2.11),
if there are no harmonic p-forms, the p™ betti number of the manifold
vanishes.

3.1. Some contributions of S. Bochner

If M is a covering manifold of M which is also compact
b(M)y< b, (M), O<p<n (3.1.1)

where n = dim M.

This may be seen as follows: If o is a p-form defined on M, then it
has a periodic extension & onto 7, that is &(y P) = «(P) for each element
y in the fundamental group of M and each point P € M where P e M
lies over P. More simply, if =: M — M is the projection map, then,
& = n*(«). Moreover, non-homologous p-forms on M have non-
homologous periodic extensions.

Suppose that M is a manifold of positive constant curvature. Then,
it can be shown that its universal covering space M is the ordinary
sphere. Hence b,(M) vanishes for all p (0 < p < n) and consequently
from (3.1.1), b,(M) =0 (0 < p < n). These spaces are of interest

82
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since they provide a source of examples of topological manifolds. They
are perhaps the simplest and geometrically the most important
Riemannian manifolds. However, constancy of curvature is a very
specialized requirement. If, on the contrary, the sectional curvatures
are not equal but rather vary within certain definite limits, that is, if the
manifold is §-pinched, the betti numbers of the sphere are retained [/].
On the other hand, one of the many applications of the theory of harmonic
integrals to global differential geometry made by S. Bochner is to
describe families of Riemannian manifolds which from a topological
standpoint are homology spheres. For example, a Riemannian manifold
of constant curvature is conformally flat (cf. § 3.9). However, the converse
is not true. In any case, the betti numbers b, (0 < p < n) of a con-
formally flat, compact, orientable Riemannian manifold vanish provided
the Ricci curvature is positive definite, that is, the manifold is a homology
sphere [6, 51]. In fact, the same conclusion holds even for deviations
from conformal flatness provided the deviation is but a fraction of the
Ricei (scalar) curvature [6, 74].

In the sequel, by a homology sphere we shall mean a homology sphere
over the real numbers.

We recall that on a Riemann surface the harmonic differentials are
invariant under conformal changes of coordinates. Consider the Riemann
surface S of the algebraic function defined by the algebraic equation

R(z, w) = 0.

The surface is closed and orientable and the (local) geometry is con-
formal geometry. In fact, in the neighborhood of a ‘place’ P on S for
which 2z = a let (, v) be the local coordinates. Then,

2z —a=(u-+io"

if the place is the origin of a branch of order m. If z is infinite at the
place, 2 — a is replaced by 27! Any other local coordinate system
(4, 9) at P must have the property that # -+ 7 is a holomorphic function
of the complex variable u# 4+ iv which is simple in the neighborhood
of the place. The local coordinates (u, v) and (%, 7) at P are therefore
related by analytic functions

% = i(u,0), 0 = 9(u,v),

that is as functions of # and v, % and ¢ satisfy the Cauchy-Riemann
equations. We conclude that

A + d7* = pXdu? + do?)

for some (real) analytic function p. In this way, a geometry is defined



84 III. RIEMANNIAN MANIFOLDS: CURVATURE, HOMOLOGY

on S in which distance plays no role but angle may be defined, that is
angle is invariant under a conformal change of coordinates. After
performing a birational transformation of the equation R(2, w) =0 a
new algebraic equation is obtained. The Riemann surface S’ of the
algebraic function thus obtained is homeomorphic to S. Let f: S — S’
denote the homeomorphism and (%, v), (¥’,v’) the local coordinates
at P e S and P’ = f(P) € §’, respectively. The functions

uw =u(uo), v =0 (uv)

are then analytic, that is f is a holomorphic homeomorphism. It follows
that i

du'? + dv'? = o*(du? + do?)
where o is an analytic function of # and v, that is the homeomorphism
is a conformal map of S onto S".

Conversely, functions whose Riemann surfaces are conformally
homeomorphic are birationally equivalent. Their Riemann surfaces
are then said to be equivalent.

A 2-dimensional Riemannian manifold and a Riemann surface are
both topological 2-manifolds. As differentiable manifolds however,
they differ in their differentiable structures—the former allowing
systems of local parameters related by functions with non-vanishing
Jacobian whereas in the latter case only those systems of local para-
meters which are conformally related are permissible. Clearly then,
they differ in their local geometries—the former being Riemannian
geometry whereas the latter is conformal geometry. To construct a
Riemann surface from a given 2-dimensional Riemannian manifold M
we need only restrict the systems of local coordinates so that in the
overlap of two coordinate neighborhoods the coordinates are related
by analytic functions defining a conformal transformation. That such a
covering of M exists follows from the possibility of introducing isothermal
parameters on M. The manifold is then said to possess a complex
(analytic) structure. We conclude that conformally homeomorphic
2-dimensional Riemannian manifolds define equivalent Riemann surfaces.
The concept of a complex structure on an n(= 2m)-dimensional
topological manifold will be discussed in Chapter V.

Two n-dimensional Riemannian manifolds M and M’ of class k are
said to be Zsometric if there is a differentiable homeomorphism f (of
class k) from M onto M’ which maps one element of arc into the other.
It can be shown that a simply connected, complete Riemannian manifold
of constant curvature K is isometric with either Euclidean space (K = 0),
hyperbolic space (K << 0), or spherical space (K > 0). Hence, the
universal covering manifold of a complete Riemannian manifold of
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constant curvature K is Euclidean space (K = 0), hyperbolic space
(K < 0), or spherical space (K > 0).

Suppose M and M’ are not isometric but rather that the map f defines
a homecmorphism which reproduces the metric except for a scalar
factor. We then say that M and M’ are conformally homeomorphic.

A Riemannian manifold of constant curvature is called a space form.
The problem of determining the space forms becomes by virtue of the
above remarks a problem in the determination of (discontinuous) groups
of motions. A space form may then be regarded as a homogeneous space
G/H where G is the group of motions and H the isotropy subgroup
leaving a point fixed. It is therefore not surprising that the curvature
properties of a compact Riemannian manifold determine to some extent the
Structure of its group of motions. In fact, it is shown that the existence or
rather non-existence of l-parameter groups of motions as well as
1-parameter groups of conformal transformations is dependent upon
the Ricci curvature of the manifold [4]. On the other hand, the existence
of a globally defined 1-parameter group of non-isometric conformal
transformations of a compact homogeneous Riemannian manifold is a
sufficient condition for it to be a homology sphere. Indeed, it is then
isometric with a sphere {79].

3.2. Curvature and betti nhumbers

At this point, it is convenient to employ the symbol denoting a form
in the coefficients of the form as well.

Let « be a harmonic 1-form of class 2 defined on a compact, orientable
Riemannian manifold M and consider the integral

(o, o) = f do A *a (3.2.1)
M
over M. Since « is a harmonic form, 4« vanishes, and so
[ 4anxa=o0. (3.2.2)
M
The expression of the integrand in local coordinates is given by
doa A\ *a = (— g* Dy Dy oy + Rlog) €50, o dul A\ dun A ... N din
= (— o' g% Dy Djo; + R;; o o) %1 (3.2.3)
by virtue of the formulae (2.7.8), (2.7.9), and (2.12.4).

Lemma 3.21. For a regular 1-form o on a compact and orientable
Riemannian manifold M

fM Sa 1 EIM S A *1 = 0. (3.2.4)
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For,
j o A *1 = (8a, 1)
M
= (o, d1)
= (2, 0) = 0.
In the sequel, we employ the notation {t, > to mean the (local)

scalar product of the tensors t and ¢’ of type (0, s) in case ¢t and ¢’ are
simultaneously symmetric or skew-symmetric, that is

St =y gy VY

If ¢ and ¢’ are skew-symmetric tensors, (¢, t'> = (&, a’) where « and
o’ denote the corresponding s-forms (cf. II.A.2). From (2.7.11)

(a, o) = fM Coy o *1.

Now, consider the integral
| g™ Dy Dyfat o %1
M
whose value is zero by (3.2.4). Indeed, if we put B = d(a’;),

| %D, Dyaia)x1 = [ g*Dypx1 = — [ spx1 =0.
M M M
Then,
0= J g% Dy Dy a;) ¥1 = j 8% Difo; Dy ot + of D o) *1
M M
= f &%(a; Dy Djo* + D; of Dy ay + Dy of D; oy + of Dy Dy o) *1
M
= Zf (off g% Dy, D; oy + D; oy D7 o) *1
M
where we have put
Di = g* D,.
Hence, .
—f of g% Dy Dy oy *1 =j D; a; D? o x1,
M M

and so if « is a harmonic 1-form (3.2.2) becomes

[ (Ryaio +Dya, Do) 1 =0, (3.2.5)
M
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Denote by O the operator on 1-forms defined by
Q) = R
and assume that the quadratic form
(Qae) (3.2.6)

is positive definite. Since the second term in the integrand of (3.2.5) is
non-negative we conclude that

<Qava> =0

from which a = 0. Since a is an arbitrary harmonic 1-form we
have proved

Theorem 3.2.1. The first betti number of a compact and orientable
Riemannian manifold of positive definite Ricci curvature is zero [4, 62].

If we assume only that {Q«, o) is non-negative, then from (3.2.5)
{Qa, a) as well as Dia*D,x; must vanish. It follows that Dia? vanishes,
that is the tangent vectors

0
A(t) = (1) o
are parallel along any parametrized curve ' = ui(t), i =1, -, n.

A vector field with this property is called a parallel vector field.

Theorem 3.2.2. In a compact and orientable Riemannian manifold a
harmonic vector field for which the quadratic form (3.2.6) is positive semi-
definite is necessarily a parallel vector field [4].

Theorem 3.2.3. In a coordinate neighborhood of a compact and orientable
Riemannian manifold with the local coordinates u', -+, u™, a necessary and
sufficient condition that the I-form o = o,du’ be a harmonic form is given by

R, —g*D, Do, =0 (3.2.7)
[73]. '
Clearly, if o is harmonic, (3.2.7) holds. Conversely, if the 1-form «
is a solution of equation (3.2.7) then, by (3.2.3), 4o A *a = 0. Hence,
0 = (da, o) = (do, do) + (3e, 8cx),

from which do = 0 and 8o = 0.
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We now seck a result analogous to theorem 3.2.1 for b, (0 < p < n).

To this end, let « = (1/p!)e;,  ;, dus A -+ /A du'» be a harmonic form of
degree p. Then again

0:(Aa,a):J. da N *a,
M
and so from (2.12.4) and (2.7.11) we obtain the integral formula

f (~gj"DkDa - ofredy 4+ pR ety o,
M

7 Ty igeaniy
(3.2.8)
+ P(Pz— 1) Ryjpy adiist “klfa,..i,) «1 = 0.
Now,
0= [ g*DeD;(ho,.,) 0l
= [ 8" DDy vty s D) ¥
= [ &"DuDjat e, + Dyatts Dy,
+ D, D i %, iy + Dy ooty Dy %, )*]
=2[ (DD, i@hets + Dy i, D) «1.
It follows that
f (PR”atig...i,aJ + P(P l) R a”'s akli,...f,
M (3.2.9)
+ D,-cx,»lu_,-’D"a"'l""‘v) *] = 0.
Setting
F(a) = Ryttt o, + L Ryainminadt, 0 (32,10)
we obtain

Theorem 3.2.4. If on a compact and orientable Riemannian manifold
M the quadratic form F(a) is positive definite,

by(M) =0, O<p<nm
[6, 51, 74].
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Corollary. The betti numbers b, (0 < p < n) of a compact and orientable
Riemannian manifold M of positive constant curvature vanish, that is M
s a homology sphere.

Indeed, since the sectional curvatures R(P, w) are constant for all
two-dimensional sections 7 at all points P of M the Riemannian curva-
ture tensor is given by

R = K(gixga — £i1&ix) (3.2.11)

where K = const. is the common sectional curvature. Substituting
(3.2.11) into (3.2.10) we obtain

e —1 L
F(o) = (n — 1)Kg,; a¥'vto oy + p—2“ K(gpgin — gngae) ot akly o

:ﬂO%—UK@ﬂ>+£%lKW%“Wa
=pl(n — 1) Ko, &) —pl(p — 1) K&, ) = pl (n — p) K<a, .
Since K > 0 the result follows.
If K = 0 it follows from (3.2.9) that

Jitge.. iy ut,...l,)

Djay . .4 =0. (3.2.12)
Since the manifold is locally flat there is a local coordinate system
u!, -, u" relative to which the coefficients of affine connection {;i}
vanish. In these local coordinates (3.2.12) becomes

0 eeny,

ou’

= 0.
Thus, there are at most (}) independent harmonic p-forms over M.

Theorem 3.2.5. The p'* betti number of a compact, orientable, locally
flat Riemannian manifold i: at most the binomial coefficient (7).

Corollary. The p'* betti number of an n-dimensional torus is (7).

An n-dimensional manifold M is said to be completely parallelisable
if there exist n linearly independent differentiable vector fields at each
point of M.

Corollary. The torus is completely parallelisable.
This follows from the fact that M is locally flat with respect to the
metric canonically induced by E*. For, the torus is the quotient space
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of E™ by a subgroup of translations and is therefore locally equivalent
to ordinary affine space where there is no distinction made between
vectors and covectors.

Consider the sectional curvature determined by the plane 7 defined
by the orthonormal tangent vectors X = £¥(0/ouf) and Y = »¥(3/out)
at P. Then,

R(P, m) = — Ry, (P)E(P)7/(P)EX(P)7'(P). (3.2.13)

Assume that for all planes = at all points P of M there are constants
K, and K, such that

0 < K, < R(P,n) < K,. (3.2.14)

Let {X,, -, X,} be an orthonormal frame at P where X; = £},(8/ou’)
(=1, -+, n). Then, since

'y i I l
- Rijlcl f(r) f(r) f(n f(r) =0
and
FET N S
Ki= — Ry bin €io) €in €00 = Ky, 7 #5,

r,s = 1,2, -, n, it follows that

(n — 1)Ky < Ry bin £ S (n — 1) Ky,

the inequalities holding for arbitrary unit tangent vectors X,. Hence,
for any tangent vector X = £(9/ou)

m—DNK &SR EES— DK E ¢, (3.2.15)
It follows from § 1.2 (by taking tensor products) that
R, £ty ‘fkiz..,i,,g (n — 1) K, &1 fi:---"p (3.2.16)

for any tensor whose components £; . ; are expressed in the given local
coordinates. In terms of the bivector

fij — fi n]' — fj 7]1',

where X and Y are orthonormal tangent vectors, the inequalities (3.2.14)
become by virtue of (3.2.13)

0 <2K; < — Ry, €7 € < 2K,

(The curvature tensor defines a symmetric linear transformation of the
space of bivectors (cf. I.I.1). These inequalities say that it is positive
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definite with eigenvalues between 2K, and 2K,). Unfortunately, however,
we cannot conclude that for any two independent tangent vectors X and Y

Rij £ €4
£ &

Assuming that these inequalities are valid for any skew-symmetric
tensor field or bivector £;; we may conclude that

0<2K, < — < 2K,

Ry Eitaip gL
0<2K, < — ’“f ity < 2K, (3.2.17)
b €y,

where ¢; ; are the components of a tensor, skew-symmetric in its
first two indices.

Now, let o= ay . ;,dus A .. A du» be a harmonic form of
degree p. Then, by the inequalities (3.2.16) and (3.2.17)

Flo) =2 (n — 1) K, a'ss % i, (p — 1) Kyahveis o

1..Jp

=p!{n — D) K — (p — 1) Kp] <o, ).
The quadratic form F(a) is positive definite if we assume that
(n — K, > (p — 1)K, that is

K, _
K n—

b—

>

—

Since L
p— n
n—1<—2_’ 0<P§[_2_]’
F(«) is a positive definite quadratic form for 0 < p < [3] provided
K, = 2K,.

Theorem 3.2.6. If the curvature tensor of a compact and orientable
Riemannian manifold M satisfies the inequalities

Rt']'kl fﬁ gkl

by = 2K
for any bivector £, then b, (M) = 0,0 <p < n — 1 [14].

The conclusion on the betti numbers b,(M) for p > [3] follows by
Poincaré duality.

An application of this theorem is given in (IIL.A.2).

A sharper result in terms of the sectional curvatures is now derived
although only partial information on the betti numbers is obtained [/].

0<K, < —
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A Riemannian manifold with metric g is said to be &-pinched if for
any 2-dimensional section 7

0 < 8K, < R(P,n) < K,.

For a suitable normalization of g, the above inequalities may be expressed

as
0<8<RP <L

We shall assume this normalization in the sequel.

Theorem 3.2.7. The second betti number of a 8-pinched, n-dimensional
compact and orientable Riemannian manifold vanishes if, either n = 2m
and § > %, or n=2m + 1 and § > 2(m — 1)/(8m — 5).

The proof is based on theorem 3.2.4 (with p = 2) by obtaining
suitable estimates for the various terms in (3.2.10).

Let {X, -, X,,} be an orthonormal frame in Tp and put

K(X,, X,) = R(P, m)

where 7 is the plane spanned by the vectors X; and X; (¢ 5 ). Then,
by § 1.10
KXy, X;) = — Ry, 5]
or
Ky = — Ry, 1]
From the inequalities

8 = K(X;,aX; +bX,) =1
where a, b are any two real numbers, we may derive the inequalities

a¥(K,;; — 8) — 2abRyy; + b¥ Ky — 8) =0

and
a1 — Ky) + 2abRyy + b¥(1 — Ky) =2 0.
Hence,
| Rijar | = [(Kyy — 8) (Ki — 8)M2
and

PRy | = [(1 — Kyy) (1 — Ky)]*2
from which we deduce

1
| Rijx | = 5 (Kyy + Ky — 29) (3.2.18)
2
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and
| Rijue | = ;— 2 — Ky — Ky)- (3.2.19)
Thus,
| Ro| S 5 (1= 8) i),k

In order to obtain estimates for the Ry, ((£,7) # (B, D), i <j, k <)
we consider the inequalities

8 < K(aX, + bX,, cX, + dX,)

for any orthonormal set of vectors {X,-, X;, X, X,} and a, b, ¢, d € R. Put
Flag; bk; cl; d,j) = K(aX; + bX,, cX, + dX,) — 8.

The function F may be considered as a polynomial in a, b, ¢ and d.
As such it is of degree 4 but only of degree 2 in the 4, b, ¢, d taken
by themselves. The polynomial

G(a)i; b)k; c,l; dv,’) = 'L' [F(a)1) brk! C,l; d’]) + F(a,l, - b'kl C,l;— d’.’)]
contains only terms in a%c?, a2d?, b%c?, b%d* and abed. Now, put
Ha,; bk; ¢l; d,j) = G(a,i; bk, ¢,l; d,j) + G(— a,i; bl; ¢,f; d,k).

By employing the identities (1.10.24) and (1.9.20) in the term involving
abced then, by virtue of (3.2.18) and (3.2.19), the polynomial H may be

expressed as
H = Aa?c? + Ba%d? 4 Cb%?* + Db%*d% + 2Eabcd = 0 (3.2.20)
where
A=K, +K,—25 B=K,+Ky— 28,

C=K,+K,;—28 D=K,;+ K — 28,
E =3R,;,,.
By a suitable choice for  and b the inequality (3.2.20) gives rise to
ACA + (AD + BC — E*)*d? + BDd* = 0.
Since this inequality holds for any ¢ and d

| E| < (AD)Y? + (BC)'/2,
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that is,
| Rijna | == 3[(ADYV2 + (BCYY?). (3.2.21)

Another estimate is obtained from the inequalities
K(aX; + bXy, cX, + dX) < 1
by following a similar procedure. In fact,

| Rijy | < 3{(A'D"Y? 4 (B'C')? (3.2.22)
where
A =2—K;—-K;, B=2—K;— Ky,
C'=2—-K;—K,;, DD=2—K;;— Ky,

From (3.2.21) and (3.2.22) we deduce
| Rip | S 32Ky + 2K + Ky + Ky + Ky + Ky — 88)

and
l Rt’fkl ' g %(8 - 2KI'J' - 2Kkl - Kik - Kl'l - Kik - Kll)‘
Thus,
| Ry | S 31 —8), Gj)#GD, i<jk<l (3.2.23)

This estimate for the components of the curvature tensor is now
applied to (3.2.10). Indeed, for p = 2

F(a) = Ryafod, + §R i’

The right hand side may be evaluated more readily by choosing an
orthonormal basis {X,, X,.}, s=1, -, m such that only those components
of « of the form ay,. are different from zero. (The existence of such a
basis is 2 - :andard fact in linear algebra.) Hence,

2F(a) = 2 (Ko + Kgoi) (@7 + 42 Rygoppuc®*Tat?”,

i#£8,8* s<t

Consequently, since K ; = 8, K,., = 8 for all s and 7 we obtain by
virtue of (3.2.23)

F(a) Z 2(m—1)8, (ayee)? — 13(1 —8) Y, Hmay
s s<t
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for n = 2m and

F@) 2 @m—1)83) (@)t — o1 — 3) 3wt

for n = 2m + 1. Finally, from

3 (e = e 3, [ o ),
8 s<t
we obtain

F) 2 3, [28 (0,0 = 3 (1= 8) o + 25 ()7

s<t

for n = 2m and

Fo) 2 3 [22 s (ot — 30— ) appae + 22 L5 (a, ]

s<t

for n = 2m -+ 1 from which for n = 2m and 8 > %} or n = 2m + 1
and & > 2(m — 1)/(8m — 95)

2F(0) > Y, (tgee — 4} 2 0.

<t

This completes the proof.
The following statement is immediately clear from theorem 3.2.1
and Poincaré duality:

Corollary. A 5-dimensional 8-pinched compact and orientable Riemannian
manifold is a homology sphere for & > 2/11.

The even dimensional case of the theorem should be compared with
theorem 6.4.1.

3.3. Derivations in a graded algebra

The tensor algebra of contravariant (covariant) tensors and the
Grassman algebra of differential forms are examples of a type of algebraic
structure known as a graded algebra. A graded algebra A over a field K
is defined by prescribing a set of vector spaces 4?7 (p = 0, 1, -*) over K
such that the vector space 4 is the direct sum of the spaces 4?; further-
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more, the product of an element of 4P and one of 47 is an element
of 47+, and this product is required to be associative.

The tensor product 4 ® B of the underlying spaces of the graded
algebras 4 and B can be made into a graded algebra by defining a suitable
multiplication and graduation in 4 ® B.

The exterior differential operator d is an anti-derivation in the ring
of exterior differential polynomials, that is for a p-form « and g-form 8 :

da AB)=dx AB+aA dB (3.3.1)

where & = (— l)Pa. For an element a of A4? the involutive auto-
morphism: @ — 4 = (— 1)Pa is called the bar operation. An endomor-
phism @ of the additive structure of A is said to be of degree r if for
each p, 6(AP) C AP+, As an endomorphism the operator d is of
degree + 1. An endomorphism 6 of 4 of even degree is called a
derivation if for any a and b of 4

8(ab) = (6a)b -+ a(6h). (3.32)
It is called an anti-derivation if it is of odd degree and
6(ab) = (8a)b + a(6b). (3.3.3)

Evidently, if 6 is an anti-derivation, 66 is a derivation. If 8, and 6, are anti-
derivations 6,8, + 6,6, is a derivation. The bracket [6,, 6,] = 6,0, — 8,0,
of two derivations is again a derivation. Moreover, for a derivation 6,
and an anti-derivation 8,, [0,, 0,] is an anti-derivation.

If the algebra A4 is generated by its elements of degrees 0 and I, a
derivation or anti-derivation is completely determined if it is given in
A°® and A%

Let X be an infinitesimal transformation on an n-dimensional
Riemannian manifold M. Interms of the natural bases {8/2u!, -, 8/ 8u™}
and {du!, -, du"} relative to the local coordinates !, -, u® write
X = ¢Y(0/ou?) and ¢ = ¢,duf, ¢ being the covariant form of X. Now,
for any p-form o, we define the exterior product operator €(¢):

e(fla=¢(Na p<n (3.3.4)

Clearly, ¢(€) is an endomorphism of A(T*). For any (p + 1)-form
B on M,

(Ea N *B = (— 1)P a A\ (§)*B
=(— 1P o A *x71 e(£)xB
=(—1)""a A *x*e(£)*B
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where *~1 denotes the inverse of the star operator:
R
for p-forms. We define the operator {(X) on p-forms as follows:
i(X) = (— 1y (€)% (3.3.5)
That #(X) i1s an endomorphism of A(T*) is clear. Since
(e(§)aBd = (o, #(X)B> (3.3.6)

we conclude that #(X) is the dual of the exterior product by ¢ operator.
Evidently, {(X) lowers the degree by one. The operator #(X) is called
the interior product by X. From (3.3.5) we obtain

€(f) —_ (_ 1)n9+ﬂ+1 *l’(X)*

on forms of degree p.

Lemma 3.3.4. For every I-form o and infinitesimal transformation X

(X))o = (X, o).
From (3.3.5)

(X))o = * e(€) *a = *(§ A *a) = * (X, a) *] = (X, o).

Lemma 3.3.2. {(X), X € T is an anti-derivation of the algebra N(T¥*).
For, let {X,, -, X,,} and {«?, -, 0"} be dual bases. Then, by (1.5.1)
and (IL.A.1)

Xy A e AXp o A v A a?d =<t A e A w?y ol A A o)
where o, ..., o are any covectors in T*. Moreover, from (1.5.1)
A e AX; A e AXp 6 Al AoD A o A a? = det{(X,, o).

Hence, for any decomposable element X, A ... A X, € A(T), if we
apply (3.3.6) and then develop the determinant by the row i = 1

g AN e ANX N o AN X (X)) (@A vl Aod A e A o?))
=W A e At A e A @ (X)) (A e A A A 0P
= {e(lw)w? N\ . Awt Ao AP ol Al Add A e A o®
=LA AX AN AXp A Al Al A o Ao

P,
=D (— 11Xy, &) (X A e A Xy A e A& A e A 0®,

F=1
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the circumflex over of indicating omission of that symbol. We conclude
by linearity that
14
(XN A e A a?) =3, (— IR X)) o A e A& A e A o?

3=1

for any X e T, and the lemma now follows easily.

We have shown that a tangent vector field X on M defines an
endomorphism #(X) of the exterior algebra A(T*) of degree — 1. It is
the unique anti-derivation with the properties:

(1) #(X)f = O for every function f on M, and

(i) #(X)a = (X, «) for every X ¢ T and o € T*.

We remark that #(X) is an anti-derivation whose square vanishes.
This is seen as foliows: #(X){(X) is a derivation annihilating AP(T*)
for p = 1,2. Hence, since A(T*) is a graded algebra, it is annihilated
by #{(X)i(X).

3.4. Infinitesimal transformations

Relative to the system of local coordinates «!, -+, u® at a point P of the
differentiable manifold M, the contravariant vectors (8/0ut)p, -, (8/u™)p
form a basis for the tangent space Tp at P. If F denotes the algebra of
differentiable functions on M and f € F, the scalar (&f]du?)p £&(P) is the
directional derivative of f at P along the tangent vector Xp at P whose
components in the local coordinates (u!(P)) are given by Y P), -, é*(P).
We define a linear map which is again denoted by X, from F into R:

Xof = Xuf) = () @) (3.4.1)

Evidently, it has the property

Xp(fg) = Xpf - g(P) + f(P) - Xpg. (3.4.2)

In this way, a tangent vector at P may be considered as a linear map of F
into R satisfying equation (3.4.2).

Now, an infinitesimal transformation or vector field X is a map
assigning to each P € M a tangent vector Xp € Tp(cf. § 1.3). If we define
the function Xf by (Xf) (P) = Xpf for all Pe M, the infinitesimal
transformation X may be considered as a linear map of F into the algebra
of all real-valued functions on M with the property

X(fe)=Xf g+ [ Xg
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The infinitesimal transformation X is said to be differentiable of class
k — 1 if Xf is differentiable of class & — 1 for every f of class k& = 1.

We give a geometrical interpretation of vector fields on M in terms
of groups of transformations of M which will prove particularly useful
when discussing the conformal geometry of a Riemannian manifold
as well as the local geometry of a compact semi-simple Lie group (cf.
Chapter IV). For a more detailed treatment of the results of this section
the reader is referred to [27, 63]. To this end, we define a (global)
1-parameter group of differentiable transformations of M denoted by
@ (— o <t <) as follows:

(i) @, 1s a differentiable transformation (cf. § 1.5) of M (— o < t << );

(if) The map (¢, P)— ¢,(P) is a differentiable map from R x M
into M;

(1”) Psat = PsPp — © <8 1 <L oo,
The 1-parameter group ¢, induces a (contravariant) vector field X on M
defined by the equation

(f: an arbitrary differentiable function) the limit being assured by
condition (ii). Under the circumstances, the vector field X is said to be
complete. On the other hand, a vector field X on M is not necessarily
induced by a global 1-parameter group ¢, of M. However, associated
with a point P of M there is a neighborhood U of P and a constant
€ > 0 such that for |t | < e there is a (local) 1-parameter group of
transformations ¢, satisfying the conditions:

(1) @, is a differentiable transformation of U onto ¢,(U), |¢| < ¢;

(i1)" The map (¢, P) — ¢ (P) is a differentiable map from (— ¢, €) x U
into U;

(i) @ (P) = @ (pP)), P e U provided |s|, |#| and |s+ ¢]|
are each less than e.
Moreover, ¢, induces the vector field X, that is equation (3.4.3) is
satisfied for each P e U and differentiable function f. The vector field X
is then said to generate @,. The proof is omitted. (We shall occasionally
write g x(P, t) for ¢,(P) (cf. III.C)). The uniqueness of the local group ¢,
is immediate. Hence the existence of a ‘low’ in a neighborhood of P
is equivalent to that of a ‘field of directions’ at P.

If M is compact it may be shown that every vector field is complete
and in our applications this will usually be the case.
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Lemma 3.4.1. Let y be a differentiable map sending M into M' and X
a vector field on M. Then, the vector field i, (X) on M’ generates the
I-parameter group o, ! where ¢, is the I-parameter group generated
by X.

The proof is entirely straightforward.

A vector field X on M is said to be invariant by : M — M if
(X)) = X. Therefore, by the lemma, X is invariant by ¢, if and only
if ¥y commutes with ¢, for every .

Lemma 3.4.2. Let f be a differentiable function (of class 2) defined in a
neighborhood of 0 € R. Assume f(0) = 0. Then, there is a differentiable
function g defined in the same neighborhood such that f(t) = tg(t) and
£(0) = f'(0) where f' = df/dt.

We remark that the lemma is trivial if f is analytic. The proof is
given by setting

&) = | : £(ts)ds.

The function g is of class one less than that of f in general. It is
important that f be of class 2 at least. For, otherwise g may not be
differentiable. To see this, let

0 = 32£2:2é()g'0.
Then, g(t) = | t |. B

Corollary. Let f be a differentiable function on U x M where U is
a neighborhood of 0 € R and M is a differentiable manifold. If f(0, P)
= 0 for every P e M, then there is a differentiable function g on
U X M with the property that f(t, P) = tg(t, P) and (3f/ét)qp, = £(0, P)
for every P e M.

This is an immediate consequence of lemma 3.4.2.

For any two infinitesimal transformations X and Y of M, YX is
not in general an infinitesimal transformation. In fact, if M = E” and
Xf = ofjeut, Yf = 0Of/ ou?, we have Y.Xf == 0%*f/éu?oul. Clearly, the map
f— (&*f/ourout)p, (P € E™) is not a tangent vector on E™. However,
one may easily check that the map XY — Y X is a vector field on M.
We shall denote this vector field by [X, Y]. The bracket [X, Y] evidently
satisfies the Jacobi identity

[(X,Y], Z] + [[V,Z], X] + [[Z.X], Y] =0,
and so the (differentiable) vector fields on M form a Lie algebra over R.
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Lemma 3.4.3. For any two infinitesimal transformations X and Y on M,
[X,¥]pf = lim X = #e 10
t=0

for any f € F where ¢, is the 1-parameter group generated by X.
Associated with any f € F, there is a differentiable family of functions

g, on M such that fo, = f 4 tg, where g, = Xf. This follows from

lemma 3.4.2 by putting f(¢, P) = f(p(P)) — f(P). Hence, if we set

@ = (py)+ and @Y = 9,(Y)
(@0 Y)ef = (Y(f9)) (97 (P))

= (Y1) (@7'(P)) + t(Ygy) (¢:'(P)),

from which

¥ =0V _ o (W = (V) @ (P)) _
t t

-0

lti:r; lff; (Yg,) (971(P))
= Xp(Yf) — Ypgo

= Xp(Yf) — Yo(X]).

Corollary. If ¢, and s, are the 1-parameter groups generated by X and Y,
respectively, then [X, Y] =0, if an only if ¢, and s, commute for every
s and t.

3.5. The derivation 6(X)

We have seen that to each tangent vector field X € T on a Riemannian
manifold M there is associated an anti-derivation #(X) of degree — 1
(called the interior product by X) of the exterior algebra A(T*) of
differential forms on M. A derivation 6(X) of degree 0 of the Grassman
algebra A(T) as well as A(7T*) may be defined, and in fact, completely
characterized for each X e T as follows (cf. II1.B.3):

(1) 6(X)d = db(X),

(i) 8(X)f = ¥(X)df, f e N(T*), and

(i) 6(X)Y = [X, Y.

Indeed, O(X)f = i(X)df = (X, df) = (&(o/ou?), (of ow’) du?y =
£ (of|ou’) = Xf and O(X)df = dO(X)f = dXf; since A(T*) is gener-
ated (locally) by its homogeneous elements of degrees 0 and 1 the
derivation 8(X) may be extended to differential forms of any degree.
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On the other hand, by conditions (ii) and (iii), 6(.X) may be extended to
all of A(T). In fact, §(X) may be extended to the tensor algebras of
contravariant and covariant tensors by insisting that (for each X) it be a
derivation of these algebras. For example, by lemma 3.4.3

8(X)Y = lim

Y —op.Y
t+0 t

where ¢, is the l-parameter group generated by X. Hence, for any
tensor t of type (p, 0)

.
8(X)t = lim L= Pt
80 $

where ¢, = @,e ® -+ @ @,. (p times) is the induced map in 7T3. (For
any Xy, -, X, €T, ¢fu(X; ® - ® Xp) = (X)) ® ® ‘Pa‘(Xp))‘

Since [8(X), 8(Y)] = 6(X) 8(Y) — 8(Y) 6(X) is a derivation, it follows
from the Jacobi identity that the map X — 6(X) is a representation
of the Lie algebra of tangent vector fields.

Lemma 3.5.1. The derivations d, i(X), and 6(X) are +elated by the

formula
8(X) = {(X)d + di(X). (3.5.1)

Since both sides are derivations, and since the Grassman algebra of
differential forms is generated by its homogeneous elements of degrees
0 and 1, the relation need only be established for differential forms of
degrees 0 and I:

({(X)d + di(X)) f = i(X)df = 6(X)f;
(X)d + di(X)) df = di(X)df = d6(X)f = 6(X)df.

Lemma 3.5.2. For a I-form « on M and any tangent vector fields X
and Y on M :

(X A Y, dad> = Xe(Y) — Yo(X) — of[X,Y]). (3.5.2)

The right hand side is meaningful since at each point P of M, Tp
and T# are dual vector spaces. Thus, « is a linear map from T into F.
By linearity, it is sufficient to prove the relation for X = 9/ow’,

= 0/ow and « = gdf where f and g are functions expressed in the
coordinates («!). In fact, if the relation holds for a, B € AY(T*), it holds
for o + B and fo where f is a differentiable function. We may therefore
assume o == du* and in this case, both sides vanish.
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Equation (3.5.2) indicates a (local) relationship between the derivations
6(X) and d. Indeed, if we write

1
2

dw* =

e Aw¥, i +ci;=0 (3.5.3)

and
0(X;) X = — bj Xis b} +bi; =0, (3.5.4)

where {X,} and {w*} are dual bases, then
(X; N\ Xy do*y = X; (X)) — Xy (X)) — o¥([X;,X4]),
from which by (1.5.1), (3.5.3) and (3.5.4)

G =b G5, k=1,..,n

The reader is referred to Chapter IV where this relationship is exploited
more fully. We remark that equation (3.5.2) has important implications
in the theory of connections as well [63].

3.6. Lie transformation groups [27, 63]

A Lie group G is a group which is simultaneously a differentiable
manifold (the points of the manifold coinciding with the elements of the
group) in which the group operation (a, d) — ab™! (a,b€G) is a
differentiable map of G X G into G. It is well-known that as a manifold
G admits an analytic structure in such a way that the group operations
in G are analytic. It follows that the map x — ax is analytic. We denote
this map by L, and call it the left translation in G by a. Hence, every
left translation L, is an analytic homeomorphism of G (as an analytic
manifold) with itself. It follows that if x and y are any two elements
of G, there exists an element 4 = yx~! such that the induced map
L.+ = (L,). maps T, isomorphically onto T,

An infinitesimal transformation X on G is said to be left invariant
if for every ae G, L,.X,=X,. Hence, associated with an element Ae T,
where e € G is the identity, there is a unique left invariant infini-
tesimal transformation X which takes the value 4 at e. It can be shown
that every left invariant infinitesimal transformation is analytic. Let L
denote the set of left invariant infinitesimal transformations of G;
L is a vector space over R of dimension equal to that of G. In fact, if
to a tangent vector X, € T, we associate the infinitesimal transformation
X e L defined by X, = L,.X, (a € G) it is seen that as vector spaces
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T, and L are isomorphic. Moreover, the conditions X eL, YelL
imply [X, Y] € L. In fact,

La'[X,Y]e = [LMX,LM Y]e = [X»Y]a-

It follows that the left invariant infinitesimal transformations of the
Lie group G form a Lie algebra L called the Lie algebra of G. That the
right invariant infinitesimal transformations also form a Lie algebra is
clear. However, this Lie algebra is isomorphic with L (cf. Chapter IV).

To an element A of L we associate the local 1-parameter group of
transformations ¢, generated by A4 in a neighborhood of e € G. We show
that @, is a global 1-parameter group of transformations on G and that
it defines a l-parameter subgroup of G. Since A is invariant by L,.
(x € G), it follows from lemma 3.4.1 that ¢, commutes with L, for
every x € G. Hence, 4 generates a global 1-parameter group of trans-
formations ¢, on G. The subgroup «, of G defined by a, = ¢ (e) satisfies
a,., = a; a,; moreover, ¢ (x) = R, (= x a,) for every x € G. We call
a, the I-parameter subgroup of G generated by A.

More generally, we define a Lie subgroup G’ of G to be a subgroup
of G which is simultaneously a submanifold of G. G’ is itself a Lie
group with respect to the differentiable structure induced by G. Evidently,
the subspace L’ of left invariant infinitesimal transformations cor-
responding to the tangent vectors at e € G’ is a subalgebra of L, namely,
the Lie algebra of G’.

Let f be an element of the group of automorphisms of a Lie group G.
Then, f, is an automorphism of L: Since f(e) = e, if we identify the
vector space L with T, we see that f, induces an endomorphism of T,.
Since f! f = identity automorphism of G, it follows that f, is an
automorphism. In particular, if f is an inner automorphism: x — axa=
defined by a € G, the induced automorphism of L is called the adjoint
representation of G and is denoted by ad(a). For an element B eL,
ad(a)B = R,-1.B, since axa™! = R,-1L,x. If a, is the l-parameter
subgroup of G generated by 4 e L we conclude from lemma 3.4.3 that

-1
(8,41 = lim ad(a; )tB —B
for every B e L.

Consider a differentiable manifold A/ on which a connected Lie group
G acts differentiably. G is said to be a Lie transformation group on M
if the following conditions hold:

(i) To each a € G there corresponds a homeomorphism R, of M
onto itself such that R,R, = R, ;
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(ii) The point P-a = R, P, P e M depends differentiably on aeG
and P where R, P = R, (P).

Clearly, R, is the identity transformation of M. Hence, R,(R,-1(P))
= P for every a € G and P € M. The group G is said to act effectively
if R, P = P for every P € M implies a = e.

Let A be an element of the Lie algebra L of G and a, the 1-parameter
subgroup of G generated by 4. A is a left invariant infinitesimal trans-
formation of G. The corresponding l-parameter group of trans-
formations R, on M induces a differentiable vector field 4* on M.
Let o denote the map sending 4 €L to A* e L* (the Lie algebra of
differentiable vector fields on M).

Lemma 3.6.1. The map o : L — L* is a homomorphism.

Indeed, for any P € M denote by op the map from G to M defined
by op(x) = P.x. Then

(GP')s Ae = (0' A)P

where (op.), is the induced map in 7, (the tangent space at e € G).
Clearly, o is linear. For any two elements A and B of L, set 4* = o(A)
and B* = o(B). Then, from lemma 3.4.3

. B*— R, B*
[4%, B¥] = lim ————
10

and so, since R, *(op,;1.).B, = (0ps)ead(a;’) B, (note that R, opgpi(x)
= P-(a;’ xay)),

op.B, — ap.ad(a;’)B,

[4* B*p = lim
t=0 t

= Ops lim
t=0

Bl — ad(at_l) Bc
t

= op.[A, B], = (c[4,B))p.

If G acts effectively on M, o is an isomorphism. Indeed, if o(4) = 0
for some 4 €L, the associated l-parameter subgroup R, is trivial.
Since G is effective we have @, = e, from which 4 = 0.

We remark that the derivations 6(A4*) correspond to the action of
G on M.
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3.7. Conformal transformations

Let M be an n-dimensional Riemannian manifold and g the tensor field
of type (0,2) defining the Riemannian metric on M. Locally, the metric
is given by

ds® = gy; dut dw

where the g;; are the components of g with respect to the natural frames
of a local coordinate system («#¥). A metric g* on M is said to be con-
formally related to g if it is proportional to g, that is, if there is a function
p >0 on M such that g* = p?g. By a conformal transformation of M
is meant a differentiable homeomorphism f of M onto itself with the
property that

FH(ds?) = p? ds? (3.7.1)

where f* is the induced map in the bundle of frames and p is a positive
function on M. Clearly, the set of conformal transformations of M forms
a group. In fact, it can be shown that it is a Lie transformation group.
Let G denote a connected Lie group of conformal transformations of M
and L its Lie algebra. To each element 4 € L is associated the 1-para-
meter subgroup g, of G generated by 4. The corresponding 1-parameter
group of transformations R, on M induces a (right invariant) differenti-
able vector field A* on M. A* in turn defines an infinitesimal trans-
formation 6(A*) of the tensor algebra over M corresponding to the action
on M of a,. From the action on the metric tensor g, it follows from (3.7.1)
that

8(A*) g = Ag (3.72)

where A is a function depending on 4*. On the other hand, a vector field
X on M which satisfies (3.7.2) is not necessarily complete (cf. § 3.4).
However, X does generate a 1-parameter local group, and for this reason
X is called an infinitesimal conformal transformation of M. In our applica-
tions the manifold M will be compact and therefore the infinitesimal
conformal transformations will be complete. In any case, they form a
Lie algebra L with the usual bracket [X, V] = 6(X)Y.

If the scalar X vanishes, that is, if §(X)g = 0, the metric tensor g is
invariant under the action of §(X). The vector field X is then said to
define an infinitesimal motion. The infinitesimal motions define a sub-
algebra of the Lie algebra L. For, §([X, Y])g = §(X)8(Y)g — 0(Y)0(X)g
= 0. Moreover, it can be shown that the group of all the isometries of
M onto itself is a Lie group (with respect to the natural topology).

If ¢ is the 1-form on M dual to X we shall occasionally write 8(¢)
for 9(X).
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Proposition 3.7.1. For any vector field X
(0(6)8)is = Ds &: + Dy &,

where ¢ is the I-form on M dual to X.

Let U be a coordinate neighborhood with the local coordinates
ul, -+ u™. The vector fields 8/ou?, -+, &/ou™ form a basis of the F-module
of vector fields in U where F is the algebra of differentiable functions
on U. Denoting the components of the metric tensor g by g;; we have
g = g du* ® dul. Applying the derivation §(X) to g we obtain

0(X)g = (Xgy) dr @ dw + g, (X du’) & dw + g;; du' Q(Xdu)

= gk %‘;—‘;du" ® dw + gi; d(Xu') @ du? + g,; du' @ d(Xu?)

gy . . & ‘ N
= §"ﬁdu' ® du’ +giiEde“l R dw + gy a—idu‘ ® dut
084 o0&k ok .
— (% g o + 8 ) ' @
It follows that
o¢k o¢k

%
(6(6)g)is. = ¢* 2k T 8K e T 85
and, since the right hand side is equal to D;¢; + D;£; we may write

(6(£)g)is = D; € + Dy €. (3.7.3)

Corollary. An infinitesimal conformal transformation X on an
n-dimensional Riemannian manifold satisfies the equation

2
8(£)g + - (86)g = 0. (3.7.4)
Indeed,
Agi; = (H£)g)iy = Dj &; + D, §;.
Transvecting this equation with g%

2. 2
A=2D g = — 2 5¢

Corollary. A necessary and sufficient condition that an infinitesimal
conformal transformation X be a motion is given by 8¢ = 0.

If the vector field X has constant divergence, that is, if 8¢ = const.,
the transformation is said to be homothetic.
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Assume that the vector field X defines an infinitesimal motion on M.
Then, 6(X)g vanishes, that is

D¢+ D¢ =0. (3.7.5)
It follows that

DyD; ¢+ D; D, é;+ Dy D; é, + Dy D; ¢, + D; Dy £, + D; D; &, = 0.

Hence, applying the Bianchi identity (1.10.24) and the interchange
formula (1.7.19) for covariant derivatives

0=DkD; §i+Dka §I+DID|‘ fk
=D D; &+ D; Dy & + Dy Dy & — €, R,

We conclude that

Dy D; ¢ + ¢ Ry =0. (3.1.6)

(This means that the Lie derivative of the affine connection vanishes
or, what is the same, §(X) commutes with the operator of covariant
differentiation (cf. §3.10)). On the other hand, if X is a solution
of these equations it need not be an infinitesimal motion (cf. § 3.10).

In the case where M is E™, if we choose a cartesian coordinate system
(x% ..., ™) equations (3.7.5) and (3.7.6) reduce to

3ff af:‘ _ o f‘ —
T T -0 0 Zre =0
Integrating, we obtain
é=2Zay %+ a;, a;=—ay.

The vector whose components are the a; is the translation part of the
motion whereas the tensor with components a;; defines a rotation about
the origin.

The infinitesimal motion X is usually called a Killing vector field.

Let L be a subalgebra of- the Lie algebra T of tangent vector fields
on M. A p-form on M is said to be L-invariant if it is a zero of all the
derivations 6(X) for X e L. Clearly, the L-invariant differential forms
constitute a subalgebra of the Grassman algebra of differential forms
on M. Moreover, this subalgebra is stable under the operator d. This
follows from property (i) of § 3.5.

Let o and B be any two p-forms on the compact and orientable
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Riemannian manifold M. Then, by Stokes’ theorem and formula
(3.5.1), if X is an infinitesimal transformation

[ 80 @nB = [ dix) (A +B) =0.
M M

Since 6(X) is a derivation,
(68X, B) = ~ | AU,

If, therefore, we put

«B(X) = — 6(X)«, (3.7.7)
that is
B(X) = (— Lym+o+ x6(X)s, (3.7.8)
we have
(6(X)e, ) = (e 8(X) B). (3.7.9)
It follows that the operator 6(X) is the dual of §(X). One thus obtains
0(X) = 8e(¢) + €(£)8 (3.7.10)

where ¢ is the covariant form for X. Since the operators 6(X) and d
commute, so do their duals as one may easily see from (3.7.10):

86(X) = 6(X)8.
Moreover, if g denotes the metric tensor of M

(0(X) + 6(X)) & (3.7.11)

= 86 o+ MO, LA e N\ dus

r—1Ttptyeeeip
r=1

where the o, _; are the coeficients of « in the local coordinates ().
The proof of (3 7.11) is a lengthy but entirely straightforward com-
putation and is therefore left as an exercise for the reader.

Theorem 3.71. The harmonic forms on a compact and orientable
Riemannian manifold M are K-invariant differential forms where K fis
the Lie algebra of infinitesimal motions on M[73, 35).

The proof depends on the fact that §(X) + 6(X), X e K annihilates
differential forms. Indeed, since X is an infinitesimal motion, §(X)g = 0
and, therefore, 86 = 0. Let « be a harmonic form. Then, d§(X)ax =
8(X)dx = 0 and $(X)ax = — 80(X)x = — B(X)8x = 0. Hence, 6(X)x
is a harmonic form; but 6(X)x = di(X)«, from which by the Hodge-
de Rham decomposition of a differential form (cf. §2.10), §(X)x = O.



110 III. RIEMANNIAN MANIFOLDS: CURVATURE, HOMOLOGY

Corollary. In a compact and orientable Riemannian manifold the inner
product of a harmonic vector field and a Killing vector field is a constant.
In fact, if « is a harmonic I-form and X an element of K, 0 = 6(X)a =
di(X)a.
The corollary may be generalized as follows:

Theorem 3.7.2. The inner product of a K-invariant closed I-form and
an element X of K is a constant equal to << X, H[o] >.

For, 0 = #(X)a = di(X)a. By the Hodge-de Rham decomposition
of a I-form, o = df + H[«] for some function f, from which 0 = 6(X)«
= §(X)df = di(X)df. Hence, <X, df) = k = const. We conclude that
(¢, df) = [xk = 0 since (¢, df) = (8¢, f) = 0.

Let X be an element of the Lie algebra L of infinitesimal conformal
transformations of M. Then, equation (3.7.11) reduces to

(00%) + 6 @ = (1 — 2) 8¢ . (3.2.12)
in view of formula (3.7.4), and we have the following generalization of
theorem 3.7.1:

Theorem 3.7.3. Let M be a compact and orientable Riemannian manifold
of dimension n. Then, a harmonic k-form « is L-invariant, if and only if,
n = 2k or, 8¢« a is co-closed {35].

Corollary. On a compact and orientable 2-dimensional Riemannian
manifold the inner product of a harmonic vector field and an infinitesimal
transformation defining a I-parameter group of conformal transformations
15 a constant.

This is clearly the case if M is a Riemann surface (cf. Chap. V).

Since formula (3.7.12) is required in the proof of theorem 3.7.5
and again in Chapter VII a proof of it is given below:

Applying 6(X) to (o, B> = ghir ghis a4 By .5, We obtain

8(X) <, B> = <B(X) &, B> + <o, 6(X) B> + %f’sg Lo, BD. (3.7.13)

We also have
8(X)x1 = — 8¢ 1. (3.7.14)

From (3.7.13) and (3.7.14), we obtain

0X) (¢t B) #1) = CB(X) o, B) #1 + o B(X) B>+1 + (22 — 1) 8¢ <o, B> #1.
(3.7.15)
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The integral of the left side of (3.7.15) over M vanishes by Stokes’
theorem. Hence, integrating (3.7.15) gives

0= (X)) + (o 8X)B) + (2 — 1) 8¢ - ).
Thus,
EX)a + 8% a0 8) = (1 — 2Z) 5¢ . o 6),

and so, since « and B are arbitrary

- _ Zp
8(X) o + 8(X) o« = ~— ) st
Let M be a Riemannian manifold, Cy(M) the largest connected group
of conformal transformations of M and I (M) the largest connected
group of isometries of M. (Note that L and K are the Lie algebras of
Co(M) and I(M), respectively.) We shall prove the following:

Theorem 3.7.4. Let M be a compact Riemannian manifold. If Co(M) =
I(M), then, there is no harmonic form of degree p, 0 <<p <n (n= dim M)
whose length is a non-zero constant [78].

Since a harmonic form on a compact Riemannian manifold is invariant
by I,(M), a harmonic form on a compact homogeneous Riemannian
manifold (cf. VI. E) is of constant length. (A Riemannian homogeneous
manifold is a Riemannian manifold whose group of isometries is transi-
tive.) Hence, as an immediate consequence of theorem 3.7.4 we have

Theorem 3.7.5. Let M be a compact homogeneous Riemannian manifold.
If Cy(M) # I(M), then M is a homology sphere [78].

Since we are interested in connected groups, the hypothesis of
theorem 3.7.4 may be replaced by the following: Let M be a compact
Riemannian manifold admitting an infinitesimal non-isometric conformal
transformation. We may also assume that M is orientable; for, if M is
not orientable, we need only take an orientable two-fold covering space
of M.

Proof of Theorem 3.74. Let « be a harmonic form of degree p. We

shall first prove
(B(X) o, 8(X) o) = O. (3.7.16)

Since « is closed, §(X)a = di(X) . On the other hand, since a is
co-closed, 86(X)a = 6(X) 8« = 0. Thus,

(B(X) o 8(X) @) = (80(X) o, #(X) o) = 0.
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Applying (3.7.12) and (3.7.16) we obtain
(B(X) «, 6(X) &) = (8(X) « + B(X) o, 6(X) )
= —2%’) (8¢ - o, 0(X) a) (3.7.17)

= ( _Z:Z) stg oy B(X) o> 1.

From now on, we assume that « is not only harmonic but is also of
constant length, that is, (&, ) is constant. Hence, 6(X) <{x, «) = 0,
and so, from (3.7.13)

BX) ey o) = — ’;’ 8¢ (a, a). (3.7.18)

Substituting (3.7.18) into (3.7.17) we obtain
— 2p\ 2 .
B« 8X) ) = — (1 -F)E ] LB el (3719)

If 2p < n, the right hand side of (3.7.19) is non-positive; but the left
hand side is non-negative. Consequently, 6(X) « = 0 and by (3.7.18)
either 8¢ = 0 or « = 0. If X is not an infinitesimal isometry, 8¢ # 0.
We have therefore proved that if M admits an infinitesimal non-isometric
conformal transformation, then there is no harmonic form of constant
length and degree p, 0 < p < n/2. If « is a harmonic form of constant
length and degree p > /2, then its adjoint *« is a harmonic form of
constant length and of degree # — p < n/2. This completes the proof.

By employing theorem 3.7.5, it can be shown that M is, in fact,
isometric with a sphere (cf. III. F).

3.8. Conformal transformations (continued)

In this section we characterize the infinitesimal conformal trans-
formations and motions of a compact and orientable Riemannian
manifold M as solutions of a system of differential equations on M.
Moreover, we investigate the existence of (global) 1-parameter groups
of conformal transformations of M and find that when the Ricci curvature
tensor is positive definite no such groups except {¢} exist.

For a 1-form « on M we define the symmetric tensor field

t(o) = O(a)g + ni(aa) g (3.8.1)



3.8. CONFORMAL TRANSFORMATIONS 113

of type (0,2) where we have written 6(«) for 6(A)—the vector field 4
being defined by duality. Clearly, the elements 4 of L satisfy the equation
t(«) = 0. In a coordinate neighborhood U with local coordinates
#}, -, u the tensor #(«) has the components

2
(1(«))is = Dj oy + Dy oy + ‘”—(80‘) &iir

the divergence of which is given by

(8'()); = g DuD; o + Dy o) + — (dbo)

= 2D, D; o' — (8d); + —’zl(dSa),
since
(8dw); = g* Di(D; oy — D; o).

The operator 8 is used in place of — & since #(«) is symmetric. From
the Ricci identity (1.7.19) we obtain

D; D; o = (Qa); — (ddc);,
and so

8't(a) = 2Qu — 8du — (2 — %) dda

(38.2)
=200 — do — (1 - %) dsa.

Now, since the tensor #(«) is symmetric and is annihilated by g, that is,
since {g,#(a)> = 0,
Ct(a), ta)) = (#(@))i; D7 of = g% (t(c)) iy Dy o
= g% D[of(#())is] — (8't(e), 2>
= — 3(e(2()); dw’) — {(&'t(x), o).

Integrating both sides of this relation and applying Stokes’ formula we
obtain the integral formula

(8't(c), @) + (2(cr), () = O (3.8.3)
where we have put

(1), 1)) = [ <t(e), o)) #1.

An application of (3.8.2) together with (3.8.3) yields:
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Theorem 3.8.1. There are no non-trivial (global) I-parameter groups
of conformal transformations on a compact and orientable Riemannian
manifold M of dimension n = 2 with negative definite Ricci curvature
[4, 73].

For, let X be the infinitesimal conformal transformation induced
by a given 1-parameter group of conformal transformations of M and ¢
the 1-form defined by X by duality. Then #(¢) vanishes, and so by
(3.8.2) and (3.8.3)

(¢ + (1 — 2)asg —20¢, ) =o.

A computation gives
(a6, d8) +2 (1 — ) (3¢ 36) =2 (06, ),

and consequently, if <Q¢, ¢€> < 0 then, for n = 2, we must have
Q¢ ¢ =0,8=0, DX =0.

Moreover, if the Ricci curvature is negative definite we conclude that
¢ = 0, that is X vanishes.

We have proved in addition that if the Ricci quadratic form is negative
semi-definite, then a vector field X on M which generates a 1-parameter
group of conformal transformations of M is necessarily a parallel field.

Corollary. There are no (global) I-parameter groups of motions on a
compact and orientable Riemannian manifold of negative definite Ricci
curvature.

We have seen that an infinitesimal conformal transformation on a
Riemannian manifold M must satisfy the differential equation

o+ (1 - %\)d&x ~ 20 (3.8.4)

Conversely, if M is compact and orientable, and ¢ is a 1-form on M
which is a solution of equation (3.8.4), then by (3.8.2) and (3.8.3)
(t(€), ¢)) = 0 from which #(¢) = 0, that is 8(¢)g + (2/n)(8é)g = 0. It
follows that the vector field X dual to ¢ is an infinitesimal conformal
transformation. We have proved [73]

Theorem 3.8.2. On a compact and orientable Riemannian manifold a
necessary and sufficient condition that the vector field X be an infinitesimal
conformal transformation is given by

a¢+ (1 - %)d&f =20¢.
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Corollary. On a compact and orientable Riemannian manifold, a necessary
and sufficient condition that the infinitesimal transformation X generate a
1-parameter group of motions is given by the equations

A¢ =20¢( and 86 =0.

3.9. Conformally flat manifolds

Let M be a Riemannian manifold with metric tensor g. Consider the
Riemannian manifold M* constructed from M as follows: (i) M* = M
as a differentiable manifold, that is, as differentiable manifolds M and
M* have equivalent differentiable structures which we identify; (ii) the
metric tensor g* of M* is conformally related to g, that is, g* = p%
(p > 0). Since the quadratic form ds? for n = 2 is reducible to the
form A[(du')? + (du?)?] (in infinitely many ways) the metric tensors of
any two 2-dimensional Riemannian manifolds are conformally related.
In the sequel, we shall therefore assume n > 2.

For convenience we write p = ¢°. It follows that the components g;;
and g*;; of the tensors g and g* are related by the equations

¥y = €% g (39.1)

The components of the Levi-Civita connections associated with the
metric tensors g and g* are then related as follows:

r*, =T} + 8D + 8 Do — g;. 8" Dyo.
A computation gives

-2 _
€% R¥juy = Rijey — 80 0 — €5k 0 + Lix iy + &1 O

— &k & — &n &) <do, do)
where we have put

(39.2)

0, =D; Do — D; 0 Dyo.

Transvecting (3.9.2) with g% we see that the components of the cor-
responding Ricci tensors are related by

R*) = Ry — (n — 2) oy + [do — (n — 2) {do, do}] gjx. (39.3)

Again, transvecting (3.9.3) with gi* we obtain the following relation
between the scalar curvatures R and R*:

R* = [R+2n—1)do — (n — 1) (n — 2) (do, dod].  (3.9.4)



116 III. RIEMANNIAN MANIFOLDS: CURVATURE, HOMOLOGY

Eliminating 4o from (3.9.3) and (3.9.4) we obtain

1 . S S -
oy = — (R*; — Ry,) + W — 1) (5 = 2) (e*4 R g R) (39.5)
— -;— {da, do) g

Transvecting (3.9.2) with g*** and substituting (3.9.5) in the resulting
equation we obtain C*?j,, = C%,, where

: 1 : :
C‘ﬂcl =Ry — —] (Rﬂ;. 8, — Ry 8 + gie RY, —&n Rik)

. (3.9.6)
+ m(gﬂc 8 — &i 8).

Evidently, the Ci,; are the components of a tensor called the Weyl con-
formal curvature tensor. Moreover, this tensor remains invariant under
a conformal change of metric. The case » = 3 is interesting. Indeed,
by choosing an orthogonal coordinate system (g;; = 0, ¢ 5 j) at a point
(cf. §1.11), it is readily shown that the Weyl conformal curvature
tensor vanishes.

Consider a Riemannian manifold M with metric g and let g* be a
conformally related locally flat metric. Under the circumstances M
is said to be (locally) conformally flat. Clearly then, the Weyl conformal
curvature tensor of M vanishes. Conversely, if the tensor Ciy,; is a zero
tensor on M, there exists a function o such that g* = ¢*¢ is a locally
flat metric on M. For, from (3.9.6)

N 1 , p
Dy C‘lkl =D;R'y, Tn—2 (DyRyx ~— Dy Ry, + g Dy RYy — g1 D; RY)

1 (3.9.7)
+ Ty =) & DR —8n D R).
Applying (1.10.21) and (1.10.22) we deduce
D.- Ci = (n — 3 C
where we have put i Ik ( )Cox
1
Cin =m (D, R;x, — Dy Ry)
1

T m = =2 Er DR —2a D R). (39.8)

Hence, for n > 3, Cyy = 0.
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If g* = €%g is a locally flat metric, both R*; and R* vanish, and so
from (3.9.5)

1 1
DD, = DyoDyo — — (5788 3 (7 fﬁ’ i — Ry) — 8 do, do>. (399)

The integrability conditions of the system (3.9.9) are evidently given by
D.D;,D;e —D;D,D;0 = — Ry D, 0. (3.9.10)

It follows after substitution from (3.9.9) into (3.9.10) that C,; = 0.
Thus, the equations (3.9.9) are integrable.

Proposition 3.9.1. A necessary and sufficient condition that a Riemannian
manifold of dimension n > 3 be conformally flat is that its Weyl conformal
curvature tensor vanish. For n = 3, it is necessary and sufficient that the
tensor Cyy. = 0.

The conformal curvature tensor of a Riemannian manifold of constant
curvature is readily seen to vanish. Thus,

Corollary. A Riemannian manifold of constant curvature is conformally
Sflat provided n > 3.

We now show that a compact and orientable conformally flat
Riemannian manifold M whose Ricci curvature is positive definite is a
homology sphere. This is certainly the case if M is a manifold of positive
constant curvature.

Indeed, since M is conformally flat, its Weyl conformal curvature
tensor vanishes. Hence, from formula (3.2.10), for a harmonic p-form «

R, ad.  (3.9.11)

F) = 5= Ryatiortoad, 49l
Since the operator Q is positive definite let A, denote the greatest lower
bound of the smallest eigenvalues of O on M. Then, for any 1-form B,
(OB, B> = A, {B, B> and the scalar curvature R = g R;; = n A, > 0.
This latter statement follows from the fact that at the pole of a geodesic
coordinate system the scalar curvature R is the trace of the matrix (R;)),
(844(P) = 8)). i

Again, at a point Pe M if a geodesic coordinate system is chosen
it follows from (3. 9 ll) that

2p n(p —1)
F()ZP' Ao <o, ol>+1’[(;;m)‘o<°‘ a)

= 2B (o o)

(3.9.12)




118 III. RIEMANNIAN MANIFOLDS: CURVATURE, HOMOLOGY

at P from which we conclude that F(«) is a positive definite quadratic
form. We thus obtain the following generalization of cor., theorem 3.2.4:

Theorem 3.9.1. The betti numbers b,(0 < p < n) of a compact and
ortentable conformally flat Riemannian manifold of positive definite Ricci
curvature vanish [6, 51].

For n = 2,3 this is, of course, evident from theorem 3.2.1 and
Poincaré duality.

If M is a Riemannian manifold which is not conformally flat, that is,
if for n > 3 its conformal curvature tensor does not vanish, we may
introduce a quantity which measures its deviation from conformal
flatness and ask under what conditions M remains a homology sphere.
To this end, let

| ot €9 €4 |
C = 9.
o T G219

for all skew-symmetric tensors of type (2,0) at all points P of M. C is a
measure of the deviation of M from conformal flatness. Substituting for
the Riemannian curvature tensor from (3.9.6) into equation (3.2.10)
we find

Fle) = ZP Ry oty aji,...i,

(»—DR p—1
!G—_—W_—z)@,@%——

where a is a harmonic p-form. Applying (3.9.12) and (3.9.13) we have
at the pole P of a geodesic coordinate system

gty ol
vty

+2

Cijkl o«

P A <OL, 0‘> + 1 ukl otfiae iy okl :

ig..ip

;p!::?ko@z,a) —p!pT_lCQx,a)

= p! ("‘P - ’l%—lc) (o, ob.

= n—1"°

Hence, F(«) isa positivedefinite quadratic form provided ((n — p)/(n — 1))A,
> ((p — 1)/2)C and, in this case, if M is compact and orientable,
b,(M) = 0.
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Theorem 3.9.2. Let M be a compact and orientable Riemannian manifold
of positive Ricci curvature. 1f

it YN Bl 45} (3.9.14)

n—1

then, b,(M) vanishes [6, 74].

Corollary., M is a homology sphere if (3.9.14) holds for all p, 0 < p < n.
This generalizes theorem 3.9.1.

3.10. Affine collineations

Let M be a Riemannian manifold with metric tensor g and C = C(¢)
a geodesic on M defined by the parametric equations u? = u¥(?),
i =1, -, n. Denoting the arc length by s, that is ds? = g,;duidu, the
equations of C are given by

d*ut ; du? du*
ar Tl = () dt @.10.1)

where A(t) = (d%/dt?)/(ds/dt) and the I'%; are the coefficients of the
Levi Civita connection (associated with the metric). By an affine
collineation of M we mean a differentiable homeomorphism f of M onto
itself which maps geodesics into geodesics, the arc length receiving
an affine transformation:

s—as+b

for some constants @ % 0 and b. Clearly, if fis a motion it is an affine
collineation. The converse, however, is not true in general, but, if we
assume that M is compact and orientable, an affine collineation is neces-
sarily a motion (theorem 3.10.1).

It can be shown that the affine collineations of M form a Lie group.
Let G denote a connected Lie group of affine collineations of M and L
its Lie algebra. To each element 4 of L we associate the 1-parameter
subgroup @, of G generated by 4. The corresponding 1-parameter
group of transformatxons R, on M induces a (right invariant) vector
field A* on M. The vector field A* in turn defines an infinitesimal
transformation §(A4*) of M corresponding to the action on M of a..
Since the elements of G map geodesics into geodesics the Lie derivative
of the left hand side of (3.10.1) with s as parameter must vanish.
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We evaluate the Lie derivative of the Levi Civita connection forms
w§ with respect to a vector field X defining an infinitesimal affine collinea-

tion:
O(X)wk = di(X)wk + i(X)de*
=mmm+ﬂm4Aq—@%@m@ﬂ
=d{¢ — a o T du'y + (X))o} of — w! i(X)wk
R*, [{(X)du' du™ — du' i(X)du™) (3.10.2)
= d(& I}y) + €105 T — Tj T du™ + £ Ry du™
o¢r Iy, - k m
= aum jr+§ +§(Fir ijrzr+Rimr)]du'
Consequently,
0(X)w;= di % §(X)du
0‘“” ds ds ' ds  ds
_ (¢ o, x 08\ dutdur | Y(X)wy dwt
- (auz oum™ ouw Pi + T 6u) ds ds ds  ds
(3.10.3)
_ (& o x 08\ dul dum
= (Guroam ~ o7 Ton + T 5or) 7 a8
dul dum

[ﬁ{_pk + ¢ 3F;r+§,(rl,rrk I, Fk +R,¢‘”")]TT'

Hence, by (3.10.3) for an infinitesimal affine collineation X = £%(8/ou?)

D, D; & + ¢ Ry, =0. (3.104)

Transvecting (3.10.4) with g we see that
gjk Dk Dj gi + Rir ff =0

or
4¢ =20¢.
Again, if we transvect (3.10.4) with 8} we obtain D,D,¢f = 0, that is

ds¢ = 0.
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Hence, if M is compact and orientable
0 = (d8¢, §) = (8¢, 8¢)
from which 8¢ = 0. We conclude (by theorem 3.8.2, cor.)

Theorem 3.10.1. In a compact and orientable Riemannian manifold an
infinitesimal affine collineation is a motion [73].

Corollary. There exist no (non-trivial) I-parameter groups of affine
collineations on a compact and orientable Riemannian manifold of negative
definite Ricci curvature.

This follows from theorem 3.8.1.

More generally, it can be shown that an infinitesimal affine collineation
defined by a vector field of bounded length on a complete but not
compact Riemannian manifold is an infinitesimal motion. We remark
that compactness implies completeness (cf. § 7.7).

3.11. Projective transformations

We have defined an affine collineation of a Riemannian manifold M
as a differentiable homeomorphism f of M onto M preserving the
geodesics and the affine character of the parameter s denoting arc length
along a geodesic. If, more generally, f leaves the geodesics invariant,
the affine character of the parameter s not necessarily being preserved,
f is called a projective transformation.

A transformation f of M is affine, if and only if

ffo =w

where w is the matrix of forms defining the affine connection of M, or,
equivalently in terms of a system of local coordinates

P*::k = F;kr
where the I'*}, are given by f*w! = I'*}, duk, f* denoting the induced

dual map on forms. A transformation f of M is projective, if and only if
there exists a covector p(f) depending on f such that

P*;k = F;k +Pi(f)8; + Pk(f)sj' (3.1L.1)

where the p,(f) are the components of p(f) with respect to the given
local coordinates. Under the circumstances, w and f*w are called
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projectively related affine connections. On the other hand, two affine
connections w and w* are said to be projectively related if there exists
a covariant. vector field p, such that in the given local coordinates

F*;Ic = ;k +Pj8:c +Pk8;-

Let M be a Riemannian manifold with metric g. If there exists a
metric g* on M such that the connections w and w* canonically defined
by g and g* are projectively related, then, by means of a straightforward
computation, the tensor w whose components are

Wiy = R — o (Ry 8 — Ry 8, m > 1 (3.11.2)
is an invariant of the projectively related affine connections, that is,
the tensor w* corresponding to the connection w* projectively related
to w coincides with w. This tensor is known as the Weyl projective
curvature tensor. Its vanishing is of particular interest. Indeed, if w = 0,
the curvature of M (relative to g or g*) has the representation

; 1 i i
Rt;’lcz = n—1 (R;‘k 8 — R;; &y).

Hence, |
Rijui = -—7 Rix g — Rirgu) (3.11.3)

from which, by the symmetry properties of the Riemannian curvature

tensor
Rigi — R g + R gy — Riygin = 0.

Transvecting with p*' we deduce that

Ry = ggﬂ-- (3.11.4)

Substituting the expression (3.11.4) for the Ricci curvature in {(3.11.3)
gives R

R = m (&in &1 — &1 8ux)- (3.11.5)

Thus, M is a manifold of constant curvature,

Conversely, assume that M (with metric g or g*) has constant curva-
ture. Then, its curvature has the representation (3.11.5) and its Ricci
curvature is given by (3.11.4). Substituitng from (3.11.4) and (3.11.5)
into (3.11.2), we conclude that the tensor w vanishes.
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Let M be a Riemannian manifold with metric g. If M may be given
a locally flat metric g* such that the Levi Civita connections w and w*
defined by g and g*, respectively, are projectively related, then M is
said to be locally projectively flat. Under the circumstances, the geodesics
of the manifold M with metric g correspond to ‘straight lines’ of the
manifold M with metric g*. For n > 3, it can be shown that a necessary
and sufficient condition for M to be locally projectively flat is that its
Weyl projective curvature tensor vanishes. Thus, a necessary and sufficient
condition for a Riemannian manifold to be locally projectively flat is that
it have constant curvature.

We have shown that a compact and orientable Riemannian manifold M
of positive constant curvature is a homology sphere. Moreover, (from
a local standpoint) M is locally projectively flat, that is its Weyl projective
curvature tensor vanishes. It is natural, therefore, to inquire into the
effect on homology in the case where this tensor does not vanish. With
this purpose in mind, a measure W of the deviation from projective
flatness is introduced. Indeed, we define

_ (Wi £9 €|
W= 3 (6

the least upper bound being taken over all skew-symmetric tensors of
order 2.

Theorem 3.11.1. In a compact and orientable Riemannian manifold of
dimension n with positive Ricci curvature, if

n—p p—1
n—l)\°>T (3.11.6)
(where A, has the meaning previously given) for all p=1, -+, n—1,

then M is a homology sphere (6, 74].
Indeed, substituting for the Riemannian curvature tenso: from
(3.11.2) into equation (3.2.10) we obtain

n —

1
1/\0-P—W) (o o

Fla) = p! ( .

n—
by virtue of the fact that at the pole of a geodesic coordinate system

R afiziy aji,‘..l,, = pl A (o, 0

and
Wijrg oita s o lis;..t‘, = — pl W<a, o).
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Hence, F(«) is non-negative provided

e Sy Ak § 2

n—1

If strict inequality holds, M is a homology sphere.
Corollary. Under the conditions of the theorem, if

2)
V<o-hm—3’

M is a homology sphere.

We have proved that the betti numbers of the sphere are retained
even for deviations from projective flatness, that is from constant
curvature. This, however, is not surprising as we need only compare
with theorem 3.2.6. In a certain sense, however, theorem 3.11.1 is a
stronger result. Indeed, the function W need only be bounded above
but need not be uniformly bounded below.

Theorem 3.11.1 implies that the homology structure of a compact
and orientable Riemannian manifold with metric of positive constant
curvature is preserved under a variation of the metric preserving the
signature of the Ricci curvature as well as the inequality (3.11.6), that
is, a manifold carrying the varied metric is a homology sphere.

EXERCISES

A. Locally convex hypersurfaces [58, 14]. Minimal varieties [4]

1. Let M be a Riemannian manifold of dimension 7 locally isometrically
imbedded (without singularities) in E»** with the canonical (Euclidean) metric.
The manifold M is then said to be a local hypersurface of E*t1. Let a;; denote
the coefficients of the second fundamental form of M in terms of the cartesian
coordinates of E"+1, Then, the curvature of M is given by the (Gauss) equations

Ry = ap ay — a5 a,.

M is said to be locally convex if the second fundamental form is definite, that is,
if the principal curvatures «,, are of the same sign everywhere. Under the
circumstances, every point of M admits a neighborhood in which the vectors
tangent to the lines of curvature are the vectors of an orthonormal frame.
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Consequently,
@y = K 8y, (¢: not summed)

from which we derive

Ry = ki ki (85 8y — 851 85)
Hence,

—Ry, = ["?,r‘ (il "(r))"u)] 81

o

By employing theorem 3.2.4 show that if M is compact and orientable, then
by(M) = by(M) =0.
2. If at each point of M, the ratio of the largest to the smallest principal curvature
is at most 4/2, M is a homology sphere.

Hint: Apply theorem 3.2.6.

3. If M is locally isometrically imbedded in an (n + 1)-dimensional space of
positive constant curvature K, the Gauss equations are given by

Ry = (e ay — ay ay) + Klgg g — 851 8i2)-

Show that the assertions in A.l1 and A.2 are also valid in this case.

4. If the mean curvature of the hypersurface vanishes, that is, if, in terms of the
metric g of M,
gia;=0

then, from the representation of the curvature tensor given in A.l

Ry ¢ & = —g* M M
where
7 = ay &

In this case, M is called a minimal hypersurface or a minimal variety of E™+1.
Show that the only groups of motions of a compact and orientable minimal
variety are groups of translations.

5. Show that the only groups of motions of a compact and orientable minimal
variety (hypersurface of zero mean curvature) imbedded in a manifold of
constant negative curvature are translation groups.

6. If all the geodesics of a hypersurface M are also geodesics of the space in
which it is imbedded, M is called a totally geodesic hypersurface. It is
known that a totally geodesic hypersurface is a minimal variety. Hence, if it is
compact and orientable and, if the imbedding space is a manifold of constant
non-positive curvature its only groups of motions are translation groups.
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B. 1-parameter local groups of local transformations

1. Let P be a point on the differentiable manifold M and U a coordinate
neighborhood of P on which a vector field X # 0 is given. Denote the com-
ponents of X at P with respect to the natural basis in U by ¢, There exists at P
a local coordinate system 2!,---, o® such that the corresponding parametrized
curves with ! as parameter have at each point Q the vector X; as tangent vector.
If we put ¢! = ¢, the equations

wh=ui(e? o t), i=1,,n

defining the coordinate transformations at P are the equations of the ‘integral
curves’ (cf. I. D.8) when the ¢%,7{ = 2, ---, n are regarded as constants and ¢ as
the parameter, that is, the coordinate functions %é, 7 = 1, --*, n are solutions of
the system of differential equations

dut . N
L *)

with £/(0) = ¢, the point P corresponding to t = 0. More precisely, it is
possible to find a neighborhood U(Q) of O and a positive number ¢(Q) for every
Q e U such that the system (*) has a solution for |z | <C €(Q). Denoting this

solution by )
ui(v?, -, o™, t) = exp (tX)ui(e?, -, v, 0)

show that
exp(sX) exp(tX) ui(v?, -+, o™, 0) = exp((s + t) X) #i(¢?, -, o™, 0)

provided both sides are defined. In this way, we see that the ‘exp’ map defines
a local 1-parameter group exp(tX) of (local) transformations.

2. Conversely, every |-parameter local group of local transformations ¢, may be
so defined. Indeed, for every P € M put

B(t) = o(P)

and consider the vector field X defined by the initial conditions

#=G)...

(or, Xp = (dP(t)/dt),_o). It follows that
@y = exp(tX).

3. The map exp(tX) is defined on a neighborhood U(Q) for |t | < ¢(Q) and
induces a map exp(tX), which is an isomorphism of T'p onto T'p,,—the tangent



EXERCISES 127

space at P(t) = exp(tX)P. The induced dual map exp(tX)* sends A(T§,)
into A (T}). For an element apy € A?(TE(,)

exp(tX)* apyy —ap
t

is an element of A?(T3). Show that

* —
[o(X)a]P = lim exp(tX) %P(¢) ap

120 t

and that consequently
UX) (@ AB) =08X)a AB+aA&X)B

for any elements «, 8 € AX(T).
Hint: Show that

exp(tX)* (« A B)pcn = exp(tX)* apiy N exp(tX)* Bpey-

C. Frobenius’ theorem and infinitesimal transformations

1. Show that the conditions in Frobenius theorem (I. D.4) may be expressed
in the following form: If the basis of the tangent space Tp at P € M is chosen
so that the subspace F(P) of Tp of dimension r is spanned by the vectors
X (4A=gq+1, ,n) then, if we take & = 6' A ... A 07 the conditions of
complete integrability are given by

cap=0,4,B=¢g+1, ,ni=1-,q

This is equivalent to the condition that [X 4, X] is a linear combination of
X415 -y X, only. In other words, F is completely integrable, if and only if,
for any two infinitesimal transformations X,Y such that Xp, Y e F(P) for all
P e U the bracket [X,Y]p € F(P).

2, Associated with the vector fields X and Y are the local one parameter groups
ex(P,t) and @y(P,t). Then, [X,Y]p is the tangent at ¢ = O to the curve

ox. (P t) =@y (‘Px (?Y (<Px (P, \/LZ)’ ﬁ), - -\;_t)’ - #)

This formula shows, geometrically, the necessity of the integrability conditions
for F. For, if Xpand Yp are contained in F(P) for all P € U and F is integrable,
the integral curves of X and Y must be contained in the integral manifold.
Hence, the formula shows that the above curves must also be contained in the
integral manifold from which it follows that [X,Y], € F(P).
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D. The third fundamentai theorem of Lie

By differentiating the equations (3.5.3), the relations
C;kd'a + C:rcjsk + c;acllcr =0 (3D'l)

are obtained. Conversely, assuming 73 constants c;,, are given with the property
that

‘ )
¢ +c; =0,

show that the conditions (3.D.1) are sufficient for the existence of # linear
differential forms, linearly independent at each point of a region in R", and
which satisfy the relations (3.5.3).

This may be shown in the following way:

Consider the system

ok, ; . .
a—t’ =8 + akc, b} (4,5 =1, n) (3.D.2)
of n? linear partial differential equations in #2 variables A} in the space R*+ of
independent variables ¢, @!, .-, a"—the a?, -+, a® being treated as parameters.
Given the initial conditions

RO, at, -+, a") =0,

the equations (3.D.2) have unique (analytic) solutions ki(z, al, -, a") valid
throughout Rn+1,

Observe that
oh} ‘
—_— = 8 .
( ot ) (£,0,...,0) !
Hence,
k2, 0, -+, 0) = 8jt.
In particular,

k1,0, -, 0) = 8.
Now, define 7 linear differential forms w* by
w' = hida'.

In terms of the w¥, 2-forms A* and 1-forms of (both sets independent of dt) are
defined by the equations

dot = M + dt A o, (3.D.3)
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Indeed,
A’ . 0K, .
o =1 (——at—') dw’ = ——aTk da" = da’ + ak‘.’ki‘wr'

Differentiating the equations (3.D.3) we obtain

dX = dt N\ dot.
On the other hand,

dot = ¢tod N\ w” — ¥l chw® N\ o + abch N+ aFeh, dt N o

It follows that
(—a—) dod = a*c) or

ot
and
1( 5t )d)\f = ¢l a* A\ " + aFc] AT — akcl ¢t wt N\ '
Put
6 = X — }cht A o,
Thus,

) (%) df? = akc] 6.

On the other hand, by setting

¢ = }fida! N\ da*,

K
T - g, (3.D.4)

sk

Since A0, @', -+, a*) = 0, it follows that f},(0, a!, -+, a”) = 0. Cornsequently,
by (3.D.4) the f}, vanish for all ¢, and so the 8 vanish identically, Hence,

A‘ = &c}kwf /\ w".
Now, consider the map
¢ : R — Rnt!
defined by
B, ooy x7) = (1, &1, -y )
and set
ot = d*w'.
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Then, the o' are 1-forms in R" and
dot = }chol N ok

The linear independence of the o is shown by making use of the fact that
whena* =0,i =1, n,

ot = h¥(1, 0, -, 0) du.

E. The homogeneous space SU(3)/SO(3)

1. Show that a compact symmetric space admitting a vector field generating
globally a l-parameter group of non-isometric conformal transformations is
isometric with a sphere.

Hint: Apply the following theorem: If a compact simply connected symmetric
space is a rational homology sphere, it is isometric with a sphere except for
SU(3)/SO(3) [82]. The exceptional case may be disposed of as follows: Let G
be a compact simple Lie group, o 7 identity an involutary automorphism of G
(cf. VI.E.1) and H the subgroup of G consisting of all elements fixed by ¢. Then,
there exists a unique (up to a constant factor) Riemannian metric on G/H
invariant under G. With respect to this metric, G/H is an irreducible symmetric
space (that is, the linear isotropy group is irreducible). Hence, G/H is an Einstein
space. But a compact Einstein space admitting a non-isometric conformal transforma-
tion is isometric with a sphere [77].

Let G be the Lie algebra of SU(3) consisting of all skew-hermitian matrices
of trace 0 and H the Lie algebra of SO(3) consisting of all real skew-hermitian
matrices of trace 0. Let ¢ denote the map sending an element of SU(3) into
its complex conjugate. Since SU(3)/SO(3) is symmetric and simply connected,
its homogeneous holonomy group is identical with G/H. It follows that the
action of SO(3) on G/H is irreducible. Hence SU(3)/SO(3) is irreducible.

That SU(3)/SO(3) does not admit a non-isometric conformal transformation
is a consequence of the fact that it is not isometric with a sphere in the given
metric,

F. The conformal transformation group [79]

1. Show that a compact homogeneous Riemannian manifold M of dimension
n > 3 which admits a non-isometric conformal transformation, that is, for
which Cy(M) # I (M) (cf. §3.7) is isometric with a sphere.

To see this, let G = I(M) and M = G/K. The subgroup K need not be
connected. Since G is compact, it can be shown that the fundamental group
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of M is finite. Indeed, the first betti number of M is zero by theorem 3.7.5.
Secondly, M is conformally flat provided » > 3. For, if X is an infinitesimal
conformal transformation

6X) <C, C> = CB(X) C, C) + =+ 3 (C, C
4

where C is the conformal curvature tensor. This formula is an immediate
consequence of (3.7.4) and the fact that 8(X) C = 0. The manifold M being
homogeneous, and the tensor C being invariant by I(M), <C, C) is a constant,
Therefore, if X is not an infinitesimal isometry, 8¢ £ 0, from which (C, C> =0,
that is, C must vanish. Hence, if » > 3, M is conformally flat.

Let M be the universal covering space of M. Since, the fundamental group
of M is finite, M is compact. Since M is conformally flat, so is M. Thus, M
is isometric with a sphere. We have invoked the theorem that a compact, simply
connected, conformally flat Riemannian manifold is conformal with a sphere [83].
The manifold M is consequently an Einstein space. It is therefore isometric
with a sphere (cf. ITILE.1).



CHAPTER IV

COMPACT LIE GROUPS

The results of the previous chapter are now applied to the problem
of determining the betti numbers of a compact semi-simple Lie group G.
On the one hand, we employ the facts on curvature and betti numbers
already established, and on the other hand, the theory of invariant
differential forms. It turns out that the harmonic forms on G are precisely
those differential forms invariant under both the left and right trans-
lations of G. The conditions of invariance when expressed analytically
reduce the problem of the determination of betti numbers to a purely
algebraic one. No effort is made to compute the betti numbers of the
four main classes of simple Lie groups since this discussion is beyond
the scope of this book. However, for the sake of completeness, we give
the Poincaré polynomials in these cases omitting those for the five
exceptional simple Lie groups.

Locally, G has the structure of an Einstein space of positive curvature
and this fact is used to prove that the first and second betti numbers
vanish. These results are also obtained from the theory of invariant
differential forms. The existence of a harmonic 3-form is established
from differenttal geometric considerations and this fact allows us to
conclude that the third betti number is greater than or equal to one.
It is also shown that the Euler-Poincaré characteristic is zero.

4.1. The Grassman algebra of a Lie group

Consider a compact (connected) Lie group G. Its Lie algebra L
has as underlying vector space the tangent space T, at the identity e € G.
We have seen (§ 3.6) that an element A € T, determines a unique left
invariant infinitesimal transformation which takes the value A at e;
moreover, these infinitesimal transformations are the elements of L.
Let X (« = 1, -, n) be a base of the Lie algebra L and w*(a = 1, -+, 1)

132
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the dual base for the forms of Maurer-Cartan, that is the base such that
w*(X;) = 85(x, B =1, -+, n). (In the sequel, Greek indices refer to vectors,
tensors, and forms on T, and its dual.) A differential form o is said
to be left invariant if it is invariant by every L (a € G), that is, if L}a = «
for every a € G where LY is the induced map in A(T*). The forms of
Maurer-Cartan are left invariant pfaffian forms. For an element X € L
and an element « in the dual space, «(X) is constant on G. Hence, by
lemma 3.5.2

(X AY,da) = — o[X,Y]) (4.1.1)

where X, Y are any elements of L and « any element of the dual space.
If we write

[Xp X,] = Cp X

ar

@4.12)
then, from (4.1.1)

do* = — 2Cpfel Ao, @.13)

The constants Cp,* are called the constants of structure of L with respect
to the base {X, -, X,.}. These constants are not arbitrary since they
must satisfy the relations

[Xo Xp] + [ X5 X, ) =0 (4.1.4)
and

[Xo (X5 X,]] + [Xp, (X, X,)] + [X,, [X0 Xp]] =0, (4.1.5)
o, By =1, n, that is
Cp*+Cp5* =0 (4.1.6)
and
C,’ Cw‘ + G’ C,’ + C,k Gy, =0. (4.1.7)

The equations (4.1.3) are called the equations of Maurer-Cartan.
Since the induced dual maps L} (@ € G) commute with d, we have

LY do=dL}x = do

for any Maurer-Cartan form o, that is, if « is a left invariant 1-form,
do is a left invariant 2-form. This also follows from (4.1.3). More
generally, if A, are any constants, the p-form 4,  , @™ A .. A w%
is a left invariant differential form on G. That any left ‘invariant diffe-
rential form of degree p > 0 may be expressed in this manner is clear.
A left invariant form may be considered as an alternating multilinear
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form on the Lie algebra L of G. We may therefore identify the left
invariant forms with the homogeneous elements of the Grassman algebra
associated with L. The number of linearly independent left invariant
p-forms is therefore equal to (3).

Lemma 4.4.4. The underlying manifold of the Lie group G is orientable.

Indeed, the n-form w! A ... A @" on G is continuous and different
from zero everywhere. G may then be oriented by the requirement
that this form is positive everywhere (cf. § 1.6).

The Lie group G is thus a compact, connected, orientable analytic
manifold.

4.2, Invariant differential forms

For any X €L, let ad(X) be the map Y — [X, Y] of L into itself.
It is clear that X — ad(X) is a linear map, and so, since

ad([X,X,))Y = [[X,X,],Y] = — [X,Y],.X] — [[V,X,],X,]

= (ad(X))ad(Xy) — ad(Xy)ad(X,))Y
we conclude that X — ad(X) is a representation. It is called the adjoint
representation of L (cf. § 3.6).

Let §(X) be the (unique) derivation of A(7,) which coincides with
ad(X) on T, = NY(T,) defined by

X)Xy A ANX,) = f} XA AN[XXIA o A X,

a1
Define the endomorphism 8(X) (X e L) of A(T}) by
Xy A AN Xy, — O(X) (o AL A aP)y
= B(X)(X; A o AX), ob Al A oPy
where al, -+, aP are any elements of AYTY) (cf. I1.A.4).

Lemma 4.2.1. 6(X) s a derivation.

If 4% denotes the minor obtained by deleting the row « and column
B of the matrix ((X,, o®),

Xy A e A Xy, — B(X) (@2 A e A o®))
=BX) Xy A e A X))y or A e A 0P

P,
=2 XA ALK A e A Xy ad A Aa?y

y=1
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= (ad(X) X,, o®) 4°,
= (Xp, — 0(X) o) 47
P
=2 XN e AXpy & A v A — (X)) o? A e A P,

y=1
It follows that

P
B(X) (@ A e Ao®) =D ad A e A BX) o A eee A o2,

y=1
that is, 6(X) is a derivation.

Lemma 4.2.2. §(Xpw* = C g’

Indeed,
(X, — 0 Xpw=y = O(X;) X,, 0>

= <[Xﬂva]v wa>
= Cﬂyp <Xp, w°‘>
= Cp™
Lemma 423, #X) = di(X) + #X)d.
It suffices to verify this formula for forms of degree 0 and 1 in A(T¥)
—the Grassman algebra associated with L. The identity is trivial for

forms of degree 0 since they are constant functions. In degree 1 we
need only consider the forms w® Then, §(Xz)w* = C, *w”. But,

(di(Xp) + i(Xp)d) w* = {(X}) dw®

— ) Oy A
= — }C,* (i(Xp) w? N 0P — w”i(X;) wP)
= — H(Ca & — Cpp w?)
= nga w?,

Corollary 4.2.3. 0(X)d = d6(X).

Lemma 4.24. d = }e(w®)8(X,).

It is only necessary to verify this formula for the forms of degrees

0 and 1 in A(TY). Again, since the forms of degree 0 are the constant
functions on G both sides vanish. For a form of Maurer-Cartan o’

$e(w)0(X,) wf =}e(w®) C,.f w?

= — %Ca?ﬂ w® A w?
= do?.
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Let 8 be an element of AP(T*) Then, B is a left invariant p-form on G,
and so may be expressed in the form B=B,. .0\ ..\
where the coefficients are constants. Applying lemma ’4.2.2 we obtain
the formula

2
0(X)B = 2 Biy.ayipupge-ap Cara” @8 A o N\ @,

rml
It follows from lemma 4.2.4 that

P
dB = _;_,21 Barnar-wanl-"ﬂp Carap W N @ A N @

An element B of the Grassman algebra of G is said to be L-invariant
or, simply, invariant if it is a zero of every derivation 6(X), Xe L, thatis,
if 8(X)8 = 0 for every left invariant vector field X. Hence, an invariant
differential form is bi-invariant.

Proposition 4.2.1. An invariant form is a closed form.

This is an immediate consequence of lemma 4.2.4.

Remark: Note that the operator 8(X) of § 3.5 coincides with the
operator 6(X) defined here on forms only.

4.3. Local geometry of a compact semi-simple Lie group

From (4.1.2) it is seen that the structure constants are the components
of a tensor on T, of type (1,2). A new tensor on T, is defined by the

components
gap = Cuop Cppa (4.3.1)

relative to the base X (« = 1, -, n). It follows from (4.1.6) and (4.1.7)
that this tensor is symmetric. It can be shown that a necessary and
sufficient condition for G to be semi-simple is that the rank of the matrix
(g,5) is n. (A Lie group is said to be semi-simple if the fundamental
bilinear symmetric form—trace ad X ad Y is non-degenerate). Moreover,
since G is compact it can be shown that (g,,) is positive definite.

The tensor defined by the equations (4.3.1) may now be used to raise
and lower indices and for this purpose we consider the inverse matrix
(¢*#). The structure constants have yet another symmetry property.
Indeed, if we multiply the identities (4.1.7) by C,,* and contract we
find that the tensor

Capy = 8ya Cus® (4.3.2)

is skew-symmetric.



4.3. LOCAL GEOMETRY 137

In terms of a system of local coordinates u!, -, u™ the vector fields
X (e =1,--,n) may be expressed as X, = ¢i(8/ou’). Since G is
completely parallelisable, the n X # matrix (%) has rank #, and so, if
we put

gﬁ = f; fég"‘ﬁ (433)

the matrix (g¥) is positive definite and symmetric. We may therefore
define a metric g on G by means of the quadratic form

ds® = g, du’ du* (4.3.4)

where the g, are elements of the matrix inverse to (g/¥). Again, the metric
tensor g may be used to raise and lower indices in the usual manner.
It should be remarked that the metric is completely determined by
the group G.

We now define n covariant vector fields v*(a = 1, ---, n) on G with
components £3(i = 1, -, n) (relative to the given system of local
coordinates) by the formulae

& =¢" & (4.3.5)

It follows easily that
LE=28 and £¢ =28 (4.3.6)
However, it does not follow that, in the metric g the X ,(« = 1, -+, n) are

orthonormal vectors at each point of G.
A set of »® linear differential forms wj = I'j,du* is introduced in
each coordinate neighborhood by putting

ri, =25 (4.3.7)

uk

By virtue of the equations (4.3.6) the I'}, may be written as

a¢!

i

Ty = — au—: &.

It is easily verified that equations (1.7.3) are satisfied in the overlap
of two coordinate neighborhoods. The #? forms w} in each coordinate
neighborhood define therefore an affine connection on G. The torsion
tensor Ty, of this connection may be written as

o108 ok,
T, = 7 (34 (5‘7 - 5‘—,) (4.3.8)

(The factor % is introduced for reasons of convenience (cf. 1.7.18)).
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Since the equations (4.1.2) may be expressed in terms of the local
coordinates (#?) in the form

66,, 6§ﬂ

ot — & 50 =Col &, (4.3.9)
it is easy to check that
Ty = 3Cp,)" & & & (4.3.10)

from which we conclude that the covariant torsion tensor
Tjer = ga T’ (4.3.11)
is skew-symmetric. It follows from (1.9.12) that
Iye={’} + T

where the {;%} are the coefficients of the Levi Civita connection. Hence,
from (4.3.7)

{5 k}— (ag, + af") . (4.3.12)

ouk - ow
_Lergma 4.3.1. The elements of the Lie algebra L of G define translations
! In;ieed, from (4.3.12) and (4.3.8)
D& =Ty & (4.3.13)

where D, is the operator of covariant differentiation with respect to the
Levi Civita connection. Multiplying these equations by ¢! and con-
tracting we obtain

- f}z D, fal; = Tjkl'
Again, if we multiply by £} and contract, the result is

Dy &) = Ty &, (4.3.14)
These equations may be rewritten in the form

D, ‘ff = Tzkj ff

from which we conclude that 6(Xz)g = 0.
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4.4. Harmonic forms on a compact semi-simple Lie group

In terms of the metric (4.3.4) on G the star operator may be defined
and we are then able to prove the following

Proposition 4.4.1. Let o be an invariant p-form on G. Then,
(i) do is invariant;
(ii) *o is invariant, and
(iii) ¢f « = dB, B is invariant.

Let X be an element of the Lie algebra L of G. Then, §(X)da =
d0(X)ax = 0; (X)*a = *6(X)a = 0 by formulae (3.7.7) and (3.7.11).
Hence, (1) and (ii) are established. By the decomposition theorem of § 2.9
we may write « = d8G« where G is the Green’s operator (cf. I1.B.4).
Since § = (— 1)"+"+1xdx on p-forms we may put o = d*dy where y
is some (n — p)-form. Then, 0 = §(X)a = O(X)dxdy = dO(X)xdy
= dx0(X)dy = d+d8#(X)y, from which 8d0(X)y = (— 1)"?+txdxdf(X)y
— 0. Since (30(X)y, 8(X)y) = (d8(X)y, dO(X)y) and 6(X)dy = d8(X)y,
dy is invariant. Thus, from (ii), *dy is invariant. This completes
the proof of (iii).

Proposition 4.4.2. The harmonic forms on G are invariant.
This follows from lemma 4.3.1 and theorem 3.7.1.

Proposition 4.4.3. The invariant forms on G are harmonic.
Indeed, if B is an invariant p-form it is co-closed. For, by lemma 4.2.4,

88 = (— 1)yt +1xdxB = § (— 1)"P+n+lxe(w®) B(X,)*B
= F(— 1w 0(X, )48
— —13ViX,) 6(X,) 8 = O. (4.4.1)

a=1

Hence, by prop. 4.2.1, 8 is harmonic.
Note that prop. 4.4.1 is a trivial consequence of prop. 4.4.3.
Therefore, in order to find the harmonic forms B on a compact Lie
group G we need only solve the equations
P
2 Bar--fh_war.l---a, Ca,ap =0 (4'4'2)

7=l

where 8 =B, .., ™ A .. A o™ The problem of determining the
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betti numbers of G has as a result been reduced to purely algebraic
considerations.
Remarks : In proving prop. 4.4.3 we obtained the formula

b= — 3 3, (XA,
24
thereby showing that 8 is an antl-derlvation in A(T}). (The proposition
could have been obtained by an application of the Hodge-de Rham
decomposition of a form). It follows that the exterior product of harmonic
forms on a compact semi-simple Lie group is also harmonic.

Theorem 4.44. The first and second betti numbers of a compact semi-
simple Lie group G vanish.

Let B = B,w* be a harmonic 1-form. Then, from (4.4.2), B, C, ,* = 0.
Multlplymg these equatlons by C,* = g* C,,* and contractlng ‘results
inB, =0,y =1,

If o — A.p0* A w" is a harmonic 2-form, then by (4.4.2)

ApChf +4,Cpf =0, y=1,,n (4.4.3)

Permuting «, 8 and y cyclically and adding the three equations obtained
gives
Apﬂ Cavp + APG C}'ﬁp + APV Cﬁap =0,

and so from (4.4.3)
Ay Co =0, y=1,,n

Multiplying these equations by C,* results in 4,, =0 (y, 8 = 1, -+, n).

Suppose G is a compact but not necessarily semi-simple Lie group.
We have seén that the number of linearly independent left invariant
differential forms of degree p on G is (3). If we assume that b,(G) = (}),
then the Euler characteristic x(G) of G is zero. For,

XG) = 3 (= 1)° (%) = 0.

=0

(This is not, however, a spec1a1 implication of b,(G) = () (cf. theorem
4.4.3)).

A compact (connected) abelian Lie group G has these properties.
For, since G is abelian so is its Lie algebra L. Therefore, by (4.1.2)
its structure constants vanish. A metric g is defined on G as follows:

g =i & &

toraml
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Now, by lemma 4.2.2, §(Xz)w® =0, o, B = 1, "+, n, that is the w* are
invariant. Hence, by the proof of prop. 4.4.3 they are harmonic with
respect to g. Since 6(X), X €L is a derivation, 8(X)& = O for any left
invariant p-form «. We conclude therefore that 4,(G) = (3).

Theorem 4.4.2. A compact connected abelian Lie group G is a multi-torus.

To prove this we need only show that the vector fields X,(« = 1, -+, n)
are parallel in the constructed metric. (This is left as an exercise for the
reader.) For, by applying the interchange formulae (1.7.19) to the
X, (a=1, -, n) and using the fact that the X, are linearly independent
vector fields we conclude that G is locally flat. However, a compact
connected group which is locally isomorphic with E” (as a topological
group) is isomorphic with the n-dimensional torus.

We have seen that the Euler characteristic of a torus vanishes. It is
now shown that for a compact connected semi-simple Lie group G,
x(G) = 0. Indeed, the.proof given is valid for any compact Lie group.
Let v, denote the number of linearly independent left invariant p-forms
no linear combination of which is closed; v _, is then the number
of linearly independent exact p-forms. Since the dimension of AP(T})
is () we have by the decomposition of a p-form

o) = b,(G p—1-
Hence, (p) (G) + vy + vy

X(G) =3 (— 17 5,(G)

=0

=2 PO+ B D+ 3 - P
= (_ l)n+1 Vo — Vo

and so, since vy =v, =0, ¥(G) = 0.

Theorem 4.4.3. The Euler characteristic of a compact connected Lie
group vanishes.

4.5. Curvature and betti numbers of a compact semi-simple Lie
group G

In this section we make use of the curvature properties of G in order
to prove theorem 4.4.1. We begin by forming the curvature tensor
defined by the connection (4.3.7). Denoting the components of this
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tensor by E%,, with respect to a given system of local coordinates
ul, -, 4™ we obtain

Eigy =Ry + D, Ty — D Tyt + Ty" T, — Ty T

where the RY;,, are the components of the Riemannian curvature tensor.
Since the E%;; all vanish and since D,T;* =0, it follows from the
Jacobi identity that

Riikl =Ty Trii' (4.5.1)
By virtue of the equations (4.3.1) and (4.3.10)
T Ty = %gﬂc'

Hence, forming the Ricci tensor by contracting on ¢ and [/ in (4.5.1)

we conclude that
Ry = %8 (4.5.2)

It follows that G is locally an Einstein space with positive scalar curvature,
and so by theorem 3.2.1, the first betti number of G is zero.
In order to prove that by(G) is also zero we establish the following

Lemma 4.5.1. In a coordinate neighborhood U of G with the local
coordinates (u*) (i = 1, -, n), we have the inequalities

0= Ry €768 2 —§ <6, 6

where the & = — & are functions in U defining a skew-symmetric
tensor field ¢ of type (0,2) and§ = ¢y, dut N\ du! [74].

In general, the curvature tensor defines a symmetric linear trans-
formation of the space of bivectors (cf. I.1.). The above inequality says
it is negative definite with eigenvalues between 0 and — 4.

Since the various sides of the inequalities are scalar functions on G
the lemma may be proved by choosing a special system of local
coordinates. In fact, we fix a point O of G and choose (geodesic)
coordinates so that at O, g;; = 8,;. Then, since

n

2 T}ru Tkra = }]i 8jlc,

T, 8=1

D, V2 T,) VI Thy) = 84

r<s

and so the 2Vv/2 Tj.e (r <s,j =1, -, n) represent n orthonormal vector
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fields in Enn-1/2, We denote by Ty, (r < s, A =n+ 1, -, n(n — 1)/2),
(n(n — 1){2) — n orthonormal vectors in E™n"~1/2 orthogonal to the
vectors T, Hence,

n n(n=1)/2
E (2\/5 Ti55) (2\/5 Tyis) + 2 Tya Tra = 8ui a
s=1 A=n+1

for i <j, k <1 (8upwn =1 if { =k, j =1 and vanishes otherwise),

and so
83 (3 7w ) + :im (3 Tua &) =3 (6

s=1 t<j =n+l t<j R

We may therefore conclude that

f}E S Ty Taag € 6 S 3 <6 6

s=1 14,5 k,l

This completes the proof.
A straightforward application of theorem 3.2.4 shows that 6,(G) = 0
by virtue of the lemma and formula (4.5.2).

Theorem 4.5.1. b,(G) = 1.

For, the torsion tensor (4.3.11) defines a harmonic 3-form on G.
For more precise information on by(G) the reader is referred to
(IV.B).

4.6. Determination of the betti numbers of the simple Lie groups

We have seen that a p-form on a compact semi-simple Lie group G
is harmonic, if and only if, it is invariant and therefore, in order to
find the harmonic forms 8 on G, it is sufficient to solve the equations
(4.4.2) for the coefficients B, ..., of B.

A semi-simple group is the direct product of a finite number of simple
non-commutative groups. (A Lie group is said to be simple if there are
no non-trivial normal subgroups). Hence, in order to give a complete
classification of compact semi-simple Lie groups it is sufficient to
classify the compact simple Lie groups. There are four main classes
of simple Lie groups:

1) The group A, of unitary transformations in (! 4 1)-space of
determinant -+ 1;
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2) The group B;: this is the orthogonal group in (2/ + 1)-space the
elements of which have determinant + 1;

3) The group C;: this is the symplectic group in 2Il-space, that is C,
is the group of unitary transformations leaving invariant the skew-
symmetric bilinear form Z2,_; a,;x,y, where the coefficients are given by
Qgp_19r = — g, 5,y = | with all other a; = 0;

4) The group D, of orthogonal transformations in 2I-space (I = 3,
4, --'), the elements of which have determinant + 1.

There are also five exceptional compact simple Lie groups whose
dimensions are 14, 52, 78, 133, and 248 commonly denoted by G,,
F,, E,, E,, and Eg, respectively.

The polynomial pg(t) = by + ;¢ + < + b,t* where the b, (I =
0, -+, n) are the betti numbers of G is known as the Poincaré polynomial
of G. Let G =G, X '+ X G where the G, ({ = 1, -, k) are simple.
Then, it can be shown that

p6(t) = po,(t) - pi(t) (4.6.1)

where pg (¢) is the Poincaré polynomial of G;. Therefore, in order to
find the betti numbers of a compact semi-simple Lie group we first
express it as the direct product of simple Lie groups, and then compute
the Poincaré polynomials of these groups, after which we employ the
formula (4.6.1).

Regarding the topology of a compact simple Lie group we already
know that (a) it is orientable; (b) 4, = b, = 0, 4; = | and, therefore,
since the star operator is an isomorphism (or, by Poincaré duality)
by =050, ,=0,b,3=1; (c) the Euler characteristic vanishes.

We conclude this chapter by giving (without proof) the Poincaré
polynomials of the four main classes of simple Lie groups:

pa(t) = (1 + ) (1 4 19) ... (1 + 224Y),
Pet) = (1 + £ (1 +27) . (1 + 247,
pei(t) = (1 + ) (1 4 27) ... (1 4- 2441,
o () =1+ ) (1 + 7). (1 + (1 +1475), 1> 2.

Remark: A, = B, = C,, B, = C, and 4; = D,.
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EXERCISES

A. The second betti number of a compact semi-simple Lie group

1. Prove that b,(G) = 0 by showing that if « is an harmonic 2-form, then #(X)x
vanishes for any X e L. Make use of the fact that b,(G) = 0.

B. The third betti number of a compact simple Lie group [48]

1. Let Q(L) denote the vector space of invariant bilinear symmetric forms on L,
that is, the space of those forms ¢ such that

9(X,Y) =¢(Y,X) and ¢(8(Z)X,Y) = ¢(X,6(Z)Y)
for any X,Y,Z € L. To each ¢ € Q(L) we associate a 3-form «(g) by the condition

(X ANY AZ og)) =q(8(X)Y,Z).
Evidently, the map
g — o(q)
is linear.
2. For each ¢ € Q(L) show that «(g) is invariant, and hence harmonic.

3. Since the derived algebra [L,L] = {[X,Y] | XY EL} coincides with L,
the map ¢ — a(g) of
OL) — N g (T™)

is an isomorphism into. Show that it is an isomorphism onto. Hence, 8,(G) =
dim Q(L).

Hint: For any element o« € A 3(T*) and X € L, {(X)a is closed. Since by(G) = 0,
there is a 1-form 8 = B such that i(X)a = dfy. Now, show that

dO(Y)Bx = dBry,x)
that is
8(Y)Bx = By, x1-

Finally, show that the bilinear function
eXY) = — (X, By)

is invariant,

4. Prove that if G is a simple Lie group, then b,(G) = 1.



CHAPTER V

COMPLEX MANIFOLDS

In a well-known manner one can associate with an irreducible curve ¥,
a real analytic manifold M? of two dimensions called the Riemann
surface of V/;. Since the geometry of a Riemann surface is conformal
geometry, M? is not a Riemannian manifold. However, it is possible to
define a Riemannian metric on M? in such a way that the harmonic
forms constructed with this metric serve to establish topological in-
variants of M2 In his book on harmonic integrals [39], Hodge does
precisely this, and in fact, in seeking to associate with any irreducible
algebraic variety ¥, a Riemannian manifold M?" of 2n dimensions he is
able to obtain the sought after generalization of a Riemann surface
referred to in the introduction to Chapter I. The metric of an M?" has
certain special properties that play an important part in the sequel
insofar as the Harmonic forms constructed with it lead to topological
invariants of the manifold. The approach we take is more general and
in keeping with the modern developments due principally to A. Weil
[70, 72]. We introduce first the concept of a complex structure on a
separable Hausdorff space M in analogy with §1.1. In terms of a
given compléx structure a Riemannian metric may be defined on M.
If this metric is torsion free, that is, if a certain 2-form associated with
the metric and complex structure is closed, the manifold is called a
Kaehler manifold. As examples, we have complex projective n-space P,
and, in fact, any projective variety, that is irreducible algebraic variety
holomorphically imbedded without singularities in P,.

Thelocal geometry of a Kaehler manifold is studied, and in Chapter VI,
from these properties, its global structure is determined to some extent.
In Chapter VII we further the discussions of Chapter III by considering
groups of transformations of Kaehler manifolds—in particular, Kaehler-
Einstein manifolds. It may be said that of the diverse applications of the
theory of harmonic integrals, those made to Kaehler manifolds are
amongst the most interesting.

146
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5.1. Complex manifolds

A complex analytic or, simply,a complex manifold of complex dimension
n is a 2n-dimensional topological manifold endowed with a complex
analytic structure. This concept may be defined in the same way as the
concept of a differentiable structure (cf. § 1.1)—the notion of a holo-
morphic function replacing that of a differentiable function. Indeed,
a separable Hausdorff space M is said to have a complex analytic structure,
or, simply, a complex structure if it possesses the properties:

(i) Each point of M has an open neighborhood homeomorphic
with an open subset in C,, the (number) space of n complex variables;
that is, there is a finite or countable open covering {U,}, and for each
«, a homeomorphism u, : U, — C, ;

(if) For any two open sets U, and U, with non-empty intersection
the map ugu;? : u (U, n Ug) — C, is defined by holomorphic functions
of the complex coordinates with non-vanishing Jacobian.

The n complex functions defining u, are called local complex coordinates
in U,. The concept of a holomorphic function on M or on an open subset
of M is defined in the obvious way (cf. V.A.). Every open subset of M
has a complex structure, namely, the complex structure induced by
that of M (cf. §5.8).

A complex manifold possesses an underlying real analytic structure.
Indeed, corresponding to local complex coordinates 2%, -, 2® we have
real coordinates x%, -, x®, yl, -+, y* where

= xk + vV — 1%

moreover, in the overlap of two coordinate neighborhoods the real
coordinates are related by analytic functions with non-vanishing
Jacobian (cf. V.A)).

Any real analytic function may be expressed as a formal power
series in 2%, -+, 2", £%, -+, &% by putting

xk = %(Zk + Z_k), yk — 3 \/I__l (Zk _— fk),

where 2% denotes the complex -conjugate of 2*. Consequently, whenever
real analytic coordinates are required we may employ the coordinates
z,l, SN zn, 51, T 2",

For reasons of motivation we sacrifice details in the remainder of
this section, clarifying any misconceptions beginning with § 5.2.

We consider differential forms of class « with complex values on a
complex manifold. Let U be a coordinate neighborhood with (complex)
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coordinates 2!, ---, 2™ Then, the differentials dz!, ---, d2™ constitute a
(complex) base for the differential forms of degree 1. It follows that a
differential form of degree p may be expressed in U as a linear
combination (with complex-valued coefficients of class ) of exterior
products of p-forms belonging to the sets {dz'} and {d#'}. A term
consisting of ¢ of the {dz'} andr of the {dz'} with ¢ + r = p is said
to be of bidegree (g, r). A differential form of bidegree (g, 7) is a sum
of terms of bidegree (g, r). The notion of a form of bidegree (g, r) is
independent of the choice of local coordinates since in the overlap of
two coordinate neighborhoods the coordinates are related by holo-
morphic functions. A differential form on M issaid to be of bidegree
(g, ) if it is of bidegree (g, 7) in a neighborhood of each point.

It is now shown that a complex manifold is orientable. For, let 2%, -+, 2"
be a system of local complex coordinates and set 2% = x% + v — Iyk,
Then, the x* and j7 together form a real system of local coordinates.
Since dzF N dZ*¥ = — 2V — ldxk N dy*,

V=1

del Ao Adx® Ndy! Ao AN dyr = 7

dz' A\ ... Adz® NdFA .. A dEN

It follows that the form

n

V=i

O(z) = >

dz* N\ ... Ndz" Nd3t A\ ... \ dz"

is real. That M is orientable is a consequence of the fact that @ is defined
globally up to a positive factor. For, let w!, -, w™ be another system
of local complex coordinates. Then,

duw' A ... A\ dw" = Jdz' A ... A\ d3"
where
o o(w?t, ..., w™)
J=det

Hence, da' A ... A\ d@™ ='jd§1 A . A dz* from which
O(w) = JJO(z).

To define @ globally we choose a locally finite covering and a partition
of unity subordinated to the covering.

We have seen that a complex manifold is by definition even dimensional
and have proved that it is orientable. These topological properties
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however, are not sufficient to ensure that a separable Hausdorff space
has a complex structure as may be shown by the example of the 4-sphere
due to Hopf and Ehresmann [30]. It is beyond the scope of this book
to display this example as it involves some familiarity with the theory
of characteristic classes.

Examples of complex manifolds

1) The space of n complex variables C,.: It has one coordinate neigh-
borhood, namely, the space of the variables 2%, -+, 2™

2) An oriented surface S admits a complex structure. For, consider a
Riemannian metric ds? on S. Locally, the metric is ‘conformal’, that is,
there exist isothermal parameters u, v such that ds? = X(du? 4 dv?) with
A > 0. We define complex (isothermal) coordinates 2, # by putting
2z = u + v where the orientation of S is determined by the order (¥, v).
In these local coordinates ds*? = A dz d%. In terms of another system
of isothermal coordinates (w, @), ds* = pu dw dw. Since dw = a dz + b dz
it follows that ab = ab = 0, from which, by the given orientation b =0
and dw = a dz. We conclude that w is a holomorphic function of z.
Hence, condition (ii) for a complex structure is satisfied.

3) The Riemann sphere S% Consider S? as C U o, that is as the one
point compactification of the complex plane. A complex structure is
defined on S? by means of the atlas:

(Uy, uy) = (C, ¢) where ¢ is the identity map of C,
(Ug, ug) = (C — 0 U, {) where

a) = = 7 #

{(=)=0.

In the overlap U, n U, = C — 0, uuy! is given by the holomorphic
function { = 1/z.

4) Complex projective space P,: P, may be considered as the space
of complex lines through the origin of C, ., (cf. § 5.9 for details). It is
the proper generalization to # dimensions of the Riemann sphere P,

5) Let I' be a discrete subgroup of maximal rank of the group of
translations of C, and consider the manifold which is the quotient of
C, by I'; this is a complex multi-torus—the coordinates of a point of C,
serving as local coordinates of C,/I" (cf. §5.9).

6) S~ x S: Let G denote the group generated by the trans-
formation of C, — 0 given by (2%, -+, 2*) — (22!, -+, 22"). Evidently,
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(C, — 0)/G is homeomorphic with S§2*-1 x S! and has a complex
structure induced by that of C, — 0. The group G is properly dis-
continuous and acts without fixed points (cf. §5.8). The quotient
manifold (Cp,— 0)/G is called a Hopf manifold (see p. 167 and VII D).

7) Every covering of a complex manifold has a naturally induced
complex structure (cf. § 5.8).

5.2. Almost complex manifolds

The concept of a complex structure is but an instance of a more
general type of structure which we now consider. This concept may be
defined from several points of view—the choice made here being
geometrical, that is, in terms of fields of subspaces of the complexified
tangent space. Indeed, a ‘choice’ of subspace of the ‘complexification’
of the tangent space at each point is made so that the union of the sub-
space and its ‘conjugate’ is the whole space. The given subspace is then
said to define a complex structure in the tangent space at the given
point. More precisely, if at each point P of a differentiable manifold,
a complex structure is given in the tangent space at that point, which
varies differentiably with P, the manifold is said to have an almost
complex structure and is itself called an almost complex manifold.

With a vector space V' over R of dimension n we associate a vector
space V¢ over C of complex dimension n called its complexification as
follows: Let V¢ be the space of all linear maps of V'* into C where, as
usual, V* denotes the dual space of V. Then, V¢ is a vector space over
C, and since (V*)* can be identified with ¥, V> V. An element
v € V¢ belongs to V, if and only if, for all « € V*, a(v) € R. Briefly,
Ve is obtained from V by extending the field R to the field C.

Let ¢ be an isomorphism of C, onto V¢. The vector 7 = ¢(¢~1(v)),
v e V¢ is called the conjugate of v. The vector v is said to be real if
@ = v. Clearly, the real vectors of V¢ form a vector space of dimension
n over R. To a linear form « on V¢ we associate a form @ on V¢ defined by

&(v) = of@), wve Ve

The map o — & is evidently an involutory automorphism of (V¢)*.

On the space V¢, tensors may be defined in the obvious way. The
involutory automorphism v — 9, v € V¢ defines an involutory auto-
morphism ¢t — £, ¢ (V)] (the linear space of tensors of type (r,0) on
Ve). Every tensor on V (relative to GL(n, R)) defines a tensor on V¢,
namely, the tensor coinciding with its conjugate, with which it may be
identified. Such a tensor on V¢ is said to be real.
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Now, let I be a real vector space of even dimension 27. A subspace W*
of the complexification V¢ of V of complex dimension 7 is said to
define a complex structure on V if

Ve = We @ We
where W¢ is the space consisting of all conjugates of vectors in W,
In this case, an element v € V¢ has the unique representation
v =w, + @W,, wy,w,€E We.
Since

0 = W; + w,,

the (real) vectors v of V are those elements of ¢ which may be written

in the form
v=w-+w weWe (5.2.1)

We proceed to show that a complex structure on V' may be defined
equivalently by means of a certain tensor on V. Indeed, to every vector
v € V there corresponds a real vector Jv € V' defined by

]v=\/:—1w+\/?1w

where v = w 4+ @, w e We.
The operator | has the properties:

(1) J is linear
and

(i) Jov=J(Jo) = — v.

Moreover, | may be extended to V* by linearity. The operator J is a
‘quadrantal versor’, that is, it has the effect of multiplying w by v —1
and @ by —v/ — 1. Thus_I* is the eigenspace of ] for the eigenvalue
v —1 and We that for the eigenvalue —+/ — 1. Hence, a complex
structure on V' defines a linear endomorphism J of V, that is, by § 1.2,
a tensor on V, with the property

JrP=—1, (5.2.2)

where I is the identity operdtor on V.

Conversely, let V' be a real vector space of dimension m and ] a
linear endomorphism of V satisfying (5.2.2). Since a tensor on V defines
a real tensor on the complexification V¢ of V, | may be extended to V°.
We seek the eigenvectors and eigenvalues in V¢ of the operator J.
For this purpose put

Jv=2v, wvele
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Applying ] to both sides of this relation gives
— v = 2%,

Hence, the eigenvalues are v —1 and — 4 — 1, and so since Jisa
real operator, that is Jo = Jo, the eigenvectors of — 4/ — ] are the
conjugates of those of v/ — 1. The vector space V must therefore be
even dimensional, that is m = 2n. The eigenvectors of v/ — 1 form a
vector space of complex dimension z» which we denote by V*° and those
corresponding to — 4/ — 1 form the vector space V%! = P%.0; moreover,

Vo A ver = {0},

that is V¢ = V10 @ V%! (direct sum). Thus, the tensor | defines a
complex structure on V.
An element of the eigenspace V'1° will be called a vector of bidegree
(or type) (1,0) and an element of V%! a vector of bidegree (or type) (0,1).
A complex structure may be defined on the dual space of V in the
obvious manner. The tensor product

V@.ore)re. ®@)r

§ t

may then be decomposed into a direct sum of tensor products of vector
spaces each identical with one of the spaces V1,0, P01, [*1,0 and P*0.1,
A term in this decomposition is said to be a pure tensor space and an
element of such a space is called a tensor of type (3i71) if V1 occurs
¢, times, Vo' — 7, times, V*L0 — g, times and P*%!1 — r, times.
A skew-symmetric tensor or, equivalently, an element of the Grassman
algebra over V¢ (or (V°)*) is a sum of pure forms each of which is said
to be of bidegree (g;, 7,) (or (g, 7,)). For example,

Ve ® Ve = P10 ® yLo @ VLo ® Vo1 @ po.1 ® 1o @ yo.1 ® VD,I,
(2,0) (L1) (LI) (0,2)

that is, an element of the tensor space V¢ ® V¢ is a sum of tensors
of types (39), (5¢) and (3 3). We denote by A¢r the space of forms of
bidegree (g, 7).

In the sequel, we shall employ the following systems of indices unless
otherwise indicated: upper case Latin letters 4, B, - run from 1, -, 2n
and lower case Latin letters 7, f, - run from 1, ---, #; moreover, i* =i 4z
and ( + n)* = 4

Let {e), -, e,} be a basis of V%, Denote the conjugate vectors ¢;
by e;., £ = 1, -, n. Apparently, they form a basis of V%!, and since
Ve = V10 @ VO, the 2n vectors {e;, ¢;.} form a basis of V°. Such a
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basis will be called a J-basis where ] is the linear endomorphism defining
the complex structure of V. Any two J-bases {e;, e;.}, {e;, €;+} are
related by equations of the form

. .
€, =dle;, € =dnen (5.2.3)

where (@) is a non-singular # X n matrix with complex coefficients,
that is (@%) is an element of the general linear group GL(n, C) satisfying
a}}:1 = ai. With respect to a J-basis the tensor | has components Fy4
where

Fi=+—18, FY=—+—18), Fi=F"=0. (524)

Hence, an element v € V' (as a subset of V¢) has the components (27, v")
where ¢** = &' and its image by J the components (Jo)) = v/ — 1¢%,
(Joy* = — v — 1o,

Consider the real basis {f;, f;.} defined in terms of the J-basis
{e;, e;s} of Ve

VI

—1' (e + en)y fo=]Jfi= V2 (e; — e). (5.2.5)

V2

fa‘=

Since

1 1
e; ‘\/i(f' V—1fa), en= V3 (fi +vV—1f.), (5.2.6)
the vectors {f;, f;«}, i = 1, -, n define a basis of V' as well as V. Con-
versely, from a basis of V of the type {f;, f;.}, where f;. = Jf; we obtain
from (5.2.6) a basis of V¢, since €, = ¢;..
If the matrix (a!) in (5.2.3) is written as (a}) = (b%) + v — 1(¢)
where (b%), (¢}) are n X n matrices, any two real bases of the type defined
by (5.2.5) are related by a matrix of the form

b; c

( ( f) ( ’)) e GL(2n, R)

— () (B)

called the real representation of the matrix (a}). We remark that the
determinant of the real representation of (af) is | det(a}) |2 > 0.

With respect to the real basis {f;, f;.} the tensor Jis given by the matrix

hn=(_15)
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It is easy to see that an element of GL(2n, R) belongs to the real repre-
sentation of GL(n, C), if and only if, it commutes with J,.

A metric may be defined on V' by prescribing a positive definite
symmetric tensor g on V (cf. § 1.9). In terms of a given basis of V' we
denote the components of g by g,5. Suppose V is given the complex
structure J. Then, an hermitian structure is given to V by insisting
that J be an isometry, that is, for any v ¢ V

&(Jv, Jv) = g(v, v). (5.2.7)

An equivalent way of expressing this in terms of the prescribed base is
given by
F4°FpPgcp =gap or Fplgca = — gapFct. (5.2.8)

The tensors g and J are then said to commute. The space V' endowed
with the hermitian structure defined by J and the hermitian metric g
is called an hermitian vector space. It is immediate from (5.2.7) and
J? = — I that for any vector v, the vectors v and Jv are orthogonal.
Let F,p = F,C ggc and consider the 2-form 2 on V defined in terms

of a given basis of V' by
Q=}Fpw? A wP (5.2.9)

where the w?(4 = 1, -, 2n) are elements of the dual base. We define
an operator which is again denoted by ] on the space of real tensors ¢

of type (0,2) b
vee (0.2 by (J1)ap = tac FB°. (5.2.10)

Denoting by ] once again the induced map on 2-forms and taking
account of (5.2.8) we may write JQ = g.

The metric of any Euclidean vector space with a complex structure
can be modified in such a way that the space is given an hermitian
structure. To see this, let I be an Euclidean vector space with a complex
structure defined by the linear transformation J. Define the tensor &
in terms of ] and the metric %2 of V' as follows:

k(vy, vg) = h(Joy, Jv,).

Since the metric of V is positive definite, so is the quadratic form k
defined by 4, and therefore, the metric defined by

g =14k +5
is also positive definite. A computation yields

&(Jvy, Jvs) = g(vy, ).
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The 2-form £2 defined by | and g has rank 2n. Indeed, the coefficients
of 2 are given by F,p = gpc F,°.

Relative to a J-basis the metric tensor g has g;. = g;+; as its only
non-vanishing components as one may easily see from (5.2.8) and (5.2.4).
Moreover, since g is a real tensor

Bije = Birse

The tensor g on V° is then said to be self adjoint.

More generally, let ¢ be a tensor and denote by J* the operation o
starring the indices of its components (with respect to a J-basis). Then,
if J*t =1t the tensor t is said to be self adjoint. Evidently, this is
equivalent to saying that ¢ is a real tensor.

From (5.2.4) one deduces that the only non-vanishing components
of the covariant form of the tensor ] with respect to a J-basis are

tj' \Z gun j'c = -V — lg,-q- (52.11)

The form £ then has the following representation
Q=vV—1gi o Ao, (5.2.12)

We also consider the tensor F4p = g4 F.p. From (5.2.4) and
(5.2.11) its only non-vanishing components (with respect to a J-basis)
are

— V=18, Fj,=+v—18,
Evidently,
FAg = — Fg4

and
FALFCy = — §4.

Thus, the tensor F4; defines a complex structure ] on ¥ called the
conjugate of J.

Let v, and v, be any orthogonal vectors on the hermitian vector
space V. If we insist that v, be orthogonal to Jv, as well, then, from
(5.2.7), vy, vy, Jv, and Ju, are mutually orthogonal.

Let {f;, fis}, i =1, -, n where f;. = Jf; be a real orthonormal basis
of V. Such a basis is assured by the hermitian structure defined by
J and g. Then, in terms of the J-basis {¢;, ¢;.} defined by (5.2.6)

gle, e52) = 8y, (5.2.13)
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that is g;;. = g(e,, €;.) = 8;;. The form 2 may then be written as

Q=v=12 o' Aw'. (5.2.14)
V=1
A differentiable manifold M is said to possess an almost complex
structure if it carries a real differentiable tensor field J of type (1, 1)
(and class k) satisfying
P=—1

(By § 1.2, the tensor field J may be considered as a linear endomorphism
of the space of tangent vector fields on M). It follows that an almost
complex structure is equivalently defined by a field of subspaces W*
(of class & and dimension n) of T° (the complexification of the space
of tangent vector fields) such that

= We @ We (5.2.15)

A manifold with an almost complex structure is said to be an almost
complex manifold.

Evidently, an almost complex manifold is even dimensional.

We now show that a complex manifold M is almost complex. Indeed,
let U be a coordinate neighborhood of M with the local complex
coordinates 2!, ', 3®. We have seen that M possesses an underlying
real analytic structure and that relative to it 2!, -, 2™, 21, ---, 3* may be
used as local coordinates. Following the notation of § 5.1, we define

0 1/, 0 2 7
s =1l VT %) =gl + VT 50)
Let P be a point of U. Then, the differentials dzt, ‘-, d2®, d3!, *--, d&"
at P define a frame in the complexification (T3)* of the dual space T}
of the tangent space Tp at P and by duality a frame {9/02%, 8/2%%} in T%.
If P belongs to the intersection U n U’ of the coordinate neighbor-
hoods U and U’ the differentials (dz?) and (dz’?) are related by

ds' = a} dz" (5.2.16)
and their duals (9/9z%), (9/02'%) by
2 ., 0

(5.2.17)

EZ 2P
where (af) € GL(n, C) is the matrix of coefficients

i 03t
a; = _—az'j .
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It follows that the # vectors (8/2s%)p define a subspace W of T§ and that

Tp=Wp® Wp,

that is, these vectors determine a complex structure on Tp. Hence, at
each point P e M a complex structure is defined in the tangent space
at that point. Moreover, at a given point any two frames are related
by equations of the form (5.2.3), that is, only those frames {X, -, X,
X4, v, X4} are allowed which are obtained from the frame

0 @8 & 2
220 " 2™ 08 " 07"
by
t 0 Lad 4 Lad i
X,' = b, ﬁ’ X"g == bj. ‘a—g;', bp - 5’4 .

Hence, the complex structure on M defines a real analytic tensor field
J of type (1, 1) on M.

One may easily check that if a differentiable manifold possesses two
complex structures, giving rise to the same almost complex structure,
they must coincide.

We have seen that a complex manifold is orientable. An almost
complex manifold also enjoys this property, this being a consequence
of the fact that for every neighborhood U of a point P of the manifold
and at every point Q of U there exists a set of real vectors Xy, -, X,
such that X, -, X,,, JX,, -, JX, are independent vectors; moreover,
from (5.2.3) and (5.2.5) any two real bases of this type are related by a
matrix of positive determinant. In other words, the existence of a J-basis
(cf. 5.2.6) at each point ensures that the almost complex manifold is
orientable (cf. § 5.1 for the dual argument).

Let M be an almost complex manifold with the almost complex
structure J. The almost complex structure is said to be integrable if M
can be made into a complex manifold so that in a coordinate neighbor-
hood with the complex coordinates (2?) operating with [ is equivalent to
transforming /92 and 8/0%% into v/ — 1 9/d2' and — v — | 9/0%,
respectively. It is not difficult to see that if the almost complex
structure which is equivalently defined by the tensor field F4g of type
(1, 1) in the (real) local coordinates (u4) = (2%, %) is integrable, then

oF4g  oF4.\ g5 (0F4g  aF4,
(G — 7 ) = (" — ) Fer 5219
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One merely considers a J-basis with respect to which the functions
F45 are given by (5.2.4).

Conversely, if the almost complex structure given by J is of class
1 + «(0 < a < 1), that is, the derivatives are Hélder continuous with
exponent «, and if the structure tensor satisfies the (integrability)
conditions (5.2.18), it is integrable [85]. The proof of this important fact
is patterned after that of Newlander and Nirenberg [84] who assumed
that the structure is of class 2n 4 «. Hence, in order that an almost
complex structure define a complex structure it is not necessary that it
be analytic or even of class w. For real analytic manifolds with real
analytic F“45 the above result follows from a theorem of Frobenius
(cf. 1.D.4). For n =1 the problem is equivalent to that of introducing
isothermal parameters with respect to the metric

ds? = | dz + pd3 |2,

and Chern showed that this is possible even if the structure is of class «.

5.3. Local hermitian geometry

If at each point P of the complex manifold M of complex dimension 7
the tangent space T is endowed with an hermitian metric so that (as
functions of local coordinates) the metric tensor g is of class o, M is
said to be an hermitian manifold. Evidently, such a manifold is also
Riemannian. On the other hand, since the complex structure is defined
by a tensor field ] of type (1, 1), if the complex manifold M is given an
‘arbitrary’ Riemannian metric, a new metric g can be found which com-
mutes with J. The metric g together with the tensor field J is said to
define an hermitian structure on M (cf. 5.2.8). In this way, it is seen
that every complex manifold possesses an hermitian metric. The (local)
geometry of an hermitian manifold is called hermitian geometry.

In the same way as the bundle of frames with the orthogonal group
as structural group is natural for the study of Riemannian geometry,
the bundle of unitary frames, that is, the bundle of frames with the
unitary group U(n) as structural group, is natural for hermitian geometry.
Indeed, by a unitary frame at the point P € M we shall mean a J-basis
{Xy, -, X Xyo, o, X} at P of the type satisfying (5.2.13), that is

X X = 8y, 4j=1,nm,
where X, - X,. = g(X,, X,.).
The collection of all such frames at all points P € M forms a fibre

bundle B over M with U(n) as structural group. A frame at P, that is an
element of the fibre over P may be determined by means of a system of
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local complex coordinates (2*) at P by the natural basis {o/0z%},
i =1, -, n of T® and the group U(n). In the notation of § 1.8, we put

0 = 0 .
XI‘ = f(?) W: Xi' = g(l:) ﬁ) =1, sy M
Since the vector X;. e 72! is the conjugate of X, e T}°, &k = ¢k7
where we have written £& for fm By putting &5 = £ K, = 0 these
equations may be written in the abbreviated form
0

XA = 5(2) _8_27' A, B S l, e, n, 1*, seey ﬂ*.

The coefficients ¢ 5, are the elements of a matrix in GL(r, C). However,
they are not independent. For, they must satisfy the relation

f(lf) 5(}) & = iy, (5.3.1)

where g,,. = g(0/0z%, 9/0%").

Let (¢4) denote the inverse matrix of (¢5,). Asin § 1.8 it defines 2n
linearly independent differential forms 64 in B: In the overlap of the
coordinate neighborhoods with the local coordinates (24, £¢35)) and
(='4, £2), we have by (1.8.3)

o028 A)
51(.4) g(
02’

Hence, by (5.2.17)

0% & g(n
oo €9 E9 =5

The 2n covariant vector fields &4 therefore define 2z independent
1-forms 64 = (¢, ¢") in B with 6" = §¢ (i =1, -, n). In terms of the
local coordinates (z%), they may be expressed by

of = E0 4y, & = ED 45 mead =64, (5.3.2)

where 7: B — M is the projection map.
By analogy they form a ‘frame’ in T} and for this reason this frame is
called a coframe.

There are several ways of defining a metrical connection in M. We
propose to do this in a manner compatible with the complex and
hermitian structures since this approach seems to be natural for
hermitian manifolds. Indeed, as in §1.7 we prescribe (27)? linear
differential forms wf = I'§cdz in each coordinate neighborhood of a
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covering in such a way that in the overlap of two coordinate neighbor-
hoods related by holomorphic functions the equations (1.7.5) are satisfied
by the #* forms w} given below. We then insist that the 27* forms
w}, w}. be given by

wl = TG dz*, wii=a} (= )
from which it follows that I}, = I'}.,.; the remaining 2#® forms are

set equal to zero.

In terms of this connection we take the covariant differential of each

of the vectors £5, thereby obtaining as in § 1.8 the forms o% . Their

images in B will be denoted by 62,. By (1.8.6) and (1.8.5)
o) = (dE + wl ) € (5:3.3)
from which, by (5.3.2)
gt = §* A 6%, + &° (5.3.4)
—the torsion forms being given by
O = — €760 b Tod 0 N O, Ty =T — Iy, (5.3.5)

This is the first of the equations of structure. The forms 64, are not
independent, but rather, are related by

6 +8 =0 g§=¢.
For, from (5.3.3)
O + 0 = (dél + wr ) €9 + @€ + af &) EY (5.3.6)
and, from (5.3.1)

df(’f) E(al') Lrre + f(f) df_ul) &ex + f(z"‘) g(il) dgis = 0. (5.3.7)
Since, ‘
g = 2, EPED (5.3.8)
r=1

(5.3.7) becomes

dely £ + gl EY + €45 &) gy = 0. (5.3.9)
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Evaluating the differential of the metric tensor g as in § 1.9 we obtain

gy = o gy + B Luter (5.3.10)

This is precisely the condition that the w?; must satisfy in order to
define a metrical connection. Hence, for a metrical connection

5;1; dzm + it g”‘ d5™ = gy TX dz™+ gy TE,s d5™

from which

F:"m — J"‘l agu‘ P<l‘ __gﬂ‘ agii‘ . (5‘3.11)

Substituting from (5.3.9) into (5.3.6), applying (5.3.11) and observing
that

=D e & (5.3.12)
r=1

we obtain the desired relation.
The second of the equations of structure (1.8.8)

d6B, — 65 N 68, = 68,
splits into

i __ gk -t
¢’y — 0, A ¢ = @7, (5.3.13)

', — 05 N0 =0, E&,=6"

by virtue of the decomposition 7¢ = T+° @ T2,

Denote the curvature forms in the local coordinates (2%, #%) by 7,
that is, the £7; are the forms ©J; pulled down to M by means of the
cross-section M — {(9/02%)p, (89/0%%)p}. Consequently, in much the
same way as above, it may be shown that if they are locally given by

.Qj, = dwji — o A w’, (5.3.14)

then, in the bundle of unitary frames, the curvature forms are the ©7,.
Since w/; = I'l, dz*, the equations (5.3.14) become

Qi =

(9T3m

)
2t~ Lnlt )dz A dz™ — %Iz:-;'"—’dz’ A dz™ (5.3.15)
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Thus, if we put

— =R, dzt A d2™ + Ry d2t A dE™

where
Rjn‘lm + Rjt'ml =0
we have
ory, olhm .

2R,am=—az—,:—-5;r+rnpzm“rimriz (5.3.16)

and
: ar
Rl = _5271 . (5.3.17)

Its only non-vanishing components are
j E M i*
Ri’lm‘» R im*l Rji" *my Rji'ml"

For, substituting (5.3.11) into (5.3.16) and (5.3.17) and applying the
relation d(g’ g;.,) = 0, we derive

Ry, =0.
Moreover, okl & \
i _ 08" Ogi T L
Ry = 2 ogl +g 32l 557 (5.3.18)

Since I}, = Ij.,. the curvature tensor is self adjoint.
Transvecting (5.3.18) with g;,.. we obtain

08" Ogae Pgir
ozm™ 02t oz! oz™

(5.3.19)

Rioiime = gire

Hence, the only non-vanishing ‘covariant’ components of the curvature
tensor are
Rij*kl‘) Ri:f‘k‘l’ Ri"]'kl‘r R{‘ik‘l'

Again, by virtue of the given splitting the Bianchi identities have the
form

do’ = ¢* N 0%, — OF A ¢,
(5.3.20)
A&, = 0%, A @, — &%, A &,

together with the conjugate relations.
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In a complex coordinate system the first of (5.3.20) are given by
R e — R = DTy, (5.3.21)
and their conjugates together with the Jacobi identities
D\ Ty'+D; T+ D T\ — TW'Ty — T, T — T, T’ =0 (5.3.22)

and their conjugates where as usual D; denotes covariant differentiation
with respect to the connection (5.3.11). From the second Bianchi
identity we derive the relations

Dy R'jpge — Dy Ry = Riye T (5.3.23)

together with their conjugates.
Since the connection is a metrical connection
Dy gije = Dys gi5» = 0. (5.3.24)
Hence, from (5.3.23)
Dy Ry jir — Dy Rysjmps = Rinjre Tl (5.3.25)
together with the conjugate relations.

In terms of the hermitian metric, the torsion tensor has the com-
ponents

; i1% ag ' ag )
T il wio_ i
Ty'=¢ ( oz* oz ) ' (5.3.26)
o v [ Oy 08 e -
Dont =g (2~ ).

Thus, a necessary and sufficient condition that the torsion forms vanish
may be given in terms of the hermitian metric tensor g by the system
of differential equations

ag;"j _ 33(% 351';' _ agik‘ . (5.3.27)

o0z o0z’ ozk 0%

In this case, g is said to define a Kaehler metric. A complex manifold
endowed with this particular metric is called a Kaehler manifold.
If the metric of an hermitian manifold is given by

o

8iis = 5o o5

(locally) for some real-valued function f, then, clearly, from (5.3.27)
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it is a Kaehler metric. Conversely, the metric of a Kaehler manifold is
locally expressible in this form. For, since the equations (5.3.27) must
be satisfied, the equations

Op;
i Bij*

are completely integrable. If @, is a solution, the general solution is
given by
P = @2, 2) + ¢i(2)

where the i, are arbitrary functions of the variables (2). Consider the
system of first order equations

5 2) +d2)

The integrability conditions of this system are given by

ozt 0z ozt Oz

( CPx 3@) + ( oy 8‘/’:‘) —o.

Differentiating these equations with respect to %’ we find, after applying
the conditions (5.3.27), that functions ; can be chosen satisfying the
integrability conditions. That f may be taken to be real is a consequence
of the fact that fis also a solution of the system.

We remark that an even-dimensional analytic Riemannian manifold M
with a locally Kaehlerian metric, that is, whose metric in local complex
coordinates satisfies the equations (5.3.27) 1s not necessarily a Kaehler
manifold. For, consider the cartesian product of a circle with a compact
3-dimensional Euclidean space form whose first betti number is zero [24].
It can be shown that such a space form exists; in fact, there is only one.
This manifold is compact, orientable, and has a locally flat metric. The
last property implies that its metric is locally Kaehlerian. (We have
invoked the theorem that an even-dimensional locally flat analytic
Riemannian manifold is locally Kaehlerian). Since its first betti number
is one it cannot be a Kaehler manifold (cf. theorem 5.6.2).

An hermitian metric g is expressible in the local coordinates (27, £%)
by means of the positive definite quadratic form

ds* = g4p dzd d2B

= 2g,;. dzt 4,

(5.3.28)



5.3. LOCAL HERMITIAN GEOMETRY 165
If g is a Kaehler metric, the real 2-form

Q= V — lg‘-p dzt A dz"’, (5-3-29)

canonically defined by this metric, is closed. Conversely, if £ is closed,
g is a Kaehler metric.

In an hermitian manifold, the 2-form 2 is called the fundamental form.
We remark that the tensor field g as well as the fundamental form can be
given a particularly simple representation in terms of the 2z forms
(o, &) on M. For, from (5.3.2) and (5.3.8)

§=2, " R& (5.3.30)

=]

and

Q=vV=12, ¢ A& (5.3.31)

r=1

From the equations (5.3.4) and (5.3.13) we deduce the equations of
structure of a Kaehler manifold M:

de* = 6F A 6%, (5.3.32)
and
0%, = df'; — 6 A 6%, (5.3.33)

where the 2-forms ©%; define the curvature of the manifold. They are
locally expressible in terms of local complex coordinates by

Q) = — R¥y dz* A di (5.3.34)
The Ricci tensor of M is given locally by
Ry = — Ry, (5.3.35)

and so from (5.3.17) it may be expressed explicitly in terms of the
metric g by '
92 log det G
Ry = — —5z§—8§l——-, G = (gisr)- (5.3.36)

Now, from (5.3.34)
Q' = Ry d2* A df'
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and from (5.3.33)
@', — db',.

It follows that vV — 1 dff, is a (real) closed 2-form in the bundle of
frames over M. Moreover,
@Ry _ ORypr ORe; _ Ry (5337)

oz* ozt oz* ozt

Since the operator d is real (that is, it sends real forms into real forms),
vV — 1 6, defines a real 1-form (which we denote by 2mx) on the bundle

B of unitary frames. Let #: B — M denote the projection map and put

l/] = RHn dz" A dst. (5-3-38)

1
2rv/— 1
Then, n*§ = — dx. The 2-form  defines the 1** Chern class of M
(cf. § 6.12).

In contrast with Kaehler geometry there are three distinct contractions
of the curvature tensor in an hermitian manifold with non-vanishing
torsion. They are called the Ricci tensors and are defined as follows:

Ry = A’“ Ry, Sy = g“ Ry, Tip = g“ Ryprije.
If the contracted torsion tensor vanishes, that is if T} =0, T;;, = Ry;,.
This is one of two rather natural conditions that can be imposed on
the torsion, the other being that the torsion forms be holomorphic.
From (5.3.21) we see that the latter condition implies the symmetry
relation

R e = Ry (5.3.39)

Since the curvature tensor is skew-symmetric in its last two indices the
symmetry relation (5.3.39) shows that S;;» = Ry~
Now, from (5.3.21) we obtain

Rivjirs — Rygryrs = Dyl — DT paioy (5.3.40)

where T = g;o Ty'. Hence, the conditions 27,9z = 0 imply
the symmetry relations
Rij‘kl' = Rkl‘z‘j‘ (5.3.41)

as in a Riemannian manifold. We conclude that S;;. = T;., that is
the Ricci curvature tensors coincide as in a Kaehler manifold. That
they need not be the same may be seen by the following example [15].
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Consider the cartesian product of a l-sphere and a 3-sphere:
M = S* x 83 In example 6 of §5.1 it was shown that M is a complex
manifold. A natural metric is given by

ds? = %(dzl df' + dat dz?), A =3 4 23,

so that

Lijr = % i &7 = A8Y.

A computation yields

1 _
Rijupr = U (A8y5 8xy — 8 8F 2Y)
from which we obtain
1 "y 1 2 15
Ry = _A_z(Aaid — &%), Sy = D) 8 Tije = Y (A3 — 2'%).

Summarizing, we see that the curvature tensor defined by a con-
nection with holomorphic torsion has the same symmetry properties
as the curvature tensor defined by a Kaehler metric.

The condition that the torsion be holomorphic is a rigidity restriction
on the manifold. Indeed, if the manifold is compact, it is actually
Kaehlerian [32].

One may also consider a connection which carries holomorphic
tensor fields into holomorphic tensor fields (cf. § 6.5). Such a connection
must satisfy

ory, .~ ol

=0 g =0

and, for this reason, the connection is said to be holomorphic. From
(5.3.17) it follows that the curvature temsor of a holomorphic comnection
must vanish.

In an hermitian manifold M with non-vanishing torsion, if the Ricci
tensor R~ defines a positive definite quadratic form, then it defines an
hermetian metric g on M. From the second of equations (5.3.20) it
follows that the form @7 is closed, and hence g is a Kaehler metric.

A complex manifold M of complex dimension 7 is said to be complex
parallelisable if there are n linearly independent holomorphic vector fields
defined everywhere over M (cf. p. 247). In an hermitian manifold, it is not
difficult to prove that the vanishing of the curvature tensor is a necessary
condition for the manifold to be complex parallelisable. (Hence, the
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connection of a complex parallelisable manifold is holomorphic.) In
Chapter VI it is shown, if the manifold is simply connected, that this
condition is also sufficient. Hence, for a complex manifold the existence
of a metric with zero curvature is a somewhat weaker property than
parallelisability.

5.4. The operators L and A

Let M be a complex manifold of complex dimension » and denote
by A *¢(M) the bundle of exterior differential polynomials with complex
values. From § 5.1, a p-form « € A\ *9(M) may be represented as a sum

a=opg+ opy, + e gy

where o, . is of degree ¢ in the dz® and of degree r in the conjugate
variables. The coefficients of « when expressed in terms of real coor-
dinates are complex-valued functions of class «. Thus, there is a
canonically defined map

d: N(M)— N*(M)

obtained from d by extending the latter to A (M) by linearity, that is,
if « =X+ v — lpu where A and p are real forms, then

doe=dXx +v —1du.

Clearly, da = %, that is d is a real operator. In the sequel, we shall
write d in place of d with no resulting confusion.

The exterior differential operator d maps a form « of bidegree (g, r)
into the sum of a form of bidegree (¢ + 1,7) and one of bidegree
(¢, 7 + 1). For, if

&= G5y ik, BN A dR N\ dERN N dEE
045 iy kp . ) ) e o
da=sz‘ N dziv N oo A\ da N\ dERN LN dERr

0y, joky.. .k,

531 dzt A dziv A .. A dPe A\ dER N L N dEE,

The term of bidegree (¢ + 1, ) will be denoted by d’a and that of
bidegree (¢, r + 1) by d’’«. Symbolically we write

d=d’+d”
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and say that d’ is of type (1, 0) and 4’ of type (0,1). By linearity, we
extend d’ and d'’ to all forms. (An operator on A*¢(M) is said to be
of type (a, b) if it maps a form of bidegree (g, r) into a form of bidegree
(¢ + a, r + b)). Both d' and d’’ are complex operators, that is if o is
real, d'a and d’’a are complex.

Since
0 =dd=d1df +(d/d/l +dﬂd¢) +d”d1/

it follows, by comparing types, that

dd =0, d'd" =0
and
d'd” + d'd =0.

We remark that the operators d' and d’’ define cohomology theories in
the same manner as d gives rise to the de Rham cohomology (cf.§ 6.10).

If f is a holomorphic function on M, d’'f vanishes. A holomorphic form
a of degree p is a form of bidegree (p, 0) whose coeflicients relative to
local complex coordinates are holomorphic functions. This may be
expressed simply, by the condition, d"’a = 0. It follows that a closed
form of bidegree (p, Q) is a holomorphic form.

At this point it is convenient to make a slight change in notation
writing 6, in place of .

Let {8, -, 0} be a base for the forms of bidegree (1, 0) on M. Then,
the conjugate forms 8,, -+, §, comprise a base for the forms of bidegree
(0, 1). Suppose M has a metric g (locally) expressible in the form

g:2§";9,.®9,..

The operator * may then be defined in terms of the given metric.
Our procedure is actually the following: As originally defined x was
applied to real forms and played an essential role in the definition of the
global scalar product on a compact manifold or, on an arbitrary
Riemannian manifold when one of the forms has a compact carrier.
In order that the properties of the global scalar product be maintained
we extend * to complex differential forms by linearity, that is

A+ V—=Tp) =+ V=1

Hence, if M is compact (or, one of «, B has a compact carrier) we define
the global scalar product

(0 B) = [ o«n+p,
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so that, in general, (a, B) is complex-valued. However, (x, «) = 0,
equality holding, if and only if, « = 0. Two p-forms « and B are
said to be orthogonal if (o, B) = 0. Evidently, if « and B are pure forms
of different bidegrees they must be orthogonal.

The dual of a linear operator is defined as in"§ 2.9.

The operator * maps a form of bidegree (g, 7) into a form of bidegree
(n — r, n — ¢). The dual of the exterior differential operator d is the
operator § which maps p-forms into (p — 1)-forms. We define operators
8’ and &'’ as follows:

8 = —xd"x and 8 = —xd'x
(cf. formula 2.8.7).
Clearly, then, &' is of type (— 1, 0) and 8"’ of type (0, — 1). Moreover,

s =& _+_ 8”

For, 8 = —xd*x = —*d'* —xd *x.
If M is compact or, one of «, 8 has a compact carrier,

(d'o, ) = (x 8B) and (d"x B) = (w, 8"B)
where « is a p-form and 8 a (p + 1)-form. For,

(d'a, B) + (d"x B) = (da, B) = (@, 38) = (x 5'B) + (=, 8"B).

If o is of bidegree (g, ), B is of bidegree (¢ + 1, r); for, otherwise d’'«
and 8 are orthogonal. In this way, it is evident that the desired relations
hold. Hence, 8’ and 8" are the duals of d’ and d", respectively.

Evidently,
8§ 8 = 0, 8" 8" = 0’ 8§ + 8" 8 = 0.

In terms of the basis forms {6} and {f;} (: = 1, -, n), the fundamental
form £ is given by

Q=+= 1i N (5.4.1)

i=1
We define the operator L on p-forms o of bidegree (g, 7) as follows:

La=a AR p=s2n—2

Hence, L is of bidegree (g + 1, 7 + 1), that is, L is of type (1, 1). For
a p’-form B

La A*B=a AL¥B =a A s+ 1 LB = (— 1) o A %% Lxf.
We define an operator A of type (— 1, — 1) in terms of L as follows:

A = (— 1y? xL*
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on p-forms. The operator /1 is therefore dual to L and lowers the degree

of a form by 2 whereas the operator L raises the degree by 2.
Moreover, if « is of bidegree (g, ), A« is of bidegree (¢ — 1, r — 1).

Evidently, Aa = 0 for p-forms « of degree less than 2. From (5.4.1)

A=v—-1 2 (0:) 1(6x) (5.4.2)

where i(€) is the interior product operator, that is, the dual of the
operator ¢(¢). Following (3.3.4), we define

(fla=ENa, p<2n
where « is a p-form, and, by (3.3.5)
1(£) = {(X) = *e(€)*

where X is the tangent vector dual to the 1-form ¢.

Since #(f,) is an anti-derivation, /A£2 = n. The operator A is not
a derivation. For, since a form « of bidegree (¢, r) may be expressed as a
linear combination of the forms 6; A A 6; A 6, A A 5,“ and
A4 is linear, one need only examine the eﬁect “of A on such forms.
Indeed, since #(f)) is an anti-derivation

i0) (05, A e Ay, NGy Ao NG
(5.4.3)

{0 T FE o
THO AN NG A A A, =]
a similar statement holds for #(f,). Hence,
(0)50)(65, A oo A O, A By A AG)
= (=10, A A Oy A by A oo A By,
for I =j, = k, and is zero for I #j,, " j,, ky, -, k.. Thus,
A@B; A N NG A A B

-1 Eﬂ i(0i(8) (05, A oo A O3, A By A oo A Br)

l=1

= (=10 V=T (= D0, Ave A by AOj A e AO A B A e

l=1

AN AO Ao A,
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In particular,

AW A e AN O A Oy A A G, A Q)

=(=1rv—1 2 A A e NG NG A O A A G A B
i=1

=(=1y V=1 SE [\/——1 2 (— 1)r+an

,=1 l=1

Oy A o NO; AN AN e N O AONO Ao A Gy A B, (A oo A B NG

T
+ AV =1(— )2+ =3n — p) (6;, A .. A ;, \ gkl Ao A gk,)}
=4O, N e NG NG AN NO) A2
+ =)0, Ao NG NG A A By
Thus, for any p-form o, A(a A 2) = Aa A 2 + (n — p)a. This result
will prove useful in the sequel.

Consider the space C,, of n complex variables with complex coordinates
21, -+, 2™ and metric

dst =2, dz* ds'. (5.4.4)
=1
Let o =a; ;.. d2" A A dzle A dgFr N\ - A dE* and denote

by o; the operator ‘which replaces each coefﬁment ;... k.., DYy the
coefﬁc1ent of dz'inda; ;. i . In asimilar way we deﬁne the operator
9;. The forms o, and aa are each of bidegree (g, 7). Moreover, the
operators 9; and — &; are duals, that is, (8,0, B) = — (o, 9;8). If we
put 6, = dz’, then
d'=72, (008, d' =Y, «8)3 (5.4.5)
i

and, since 8" and &'’ are dual to d’ and d'’, respectively,
—,8,i(8), 8 =—3, 8if)). (5.4.6)
7 i
Consider, for example, the linear differential form o = a,d2* + b,dz".
Then, since {dz’} and {8/8z'} are dual bases

.
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Lemma 544. In C,
Ad —dd = —+/—18"
Ad" —d"d =v—1¥.

and (5.4.7)

In the first place, it is easily checked that

{(6x)d + di(6;) = 0y
and
i(gk)d + di(gk) = ék'

Pre-multiplying the first of these equations by i(f,) and post-multiplying
the second by i(6,) one obtains after subtracting and summing with
respect to k

Ad —dA = /= 1(8' — §")

since i(6,) commutes with ;. The desired formulae are obtained by
separating the components of different types.

5.5. Kaehler manifolds

Let M be a complex manifold with an hermitian metric g. Then,
in general, there does not exist at each point P of M a local complex
coordinate system which is geodesic, that is a local coordinate system
(2%) with the property that g is equal to 2, d2! ® d% modulo terms
of higher order. (Two tensors coincide up to the order k at Pe M
if their coefficients, as well as their partial derivatives up to the order %,
coincide at P. A complex geodesic coordinate system at P should have
the property that g coincide with 2%, d2* ® dz* up to the order 1 at P.)

We seek a condition to ensure that such local coordinates exist.

Let{6,, -, 6,} be a base for the forms of bidegree (1, 0) on M with
the property that g may be expressed in the form

£=22,0,®8, (5.5.1)
3

(cf. 5.3.30).
Our problem is to find n 1-forms w; of bidegree (1, 0) such that

(1) wi(P) = 0(P), i =1, -, m;
(i) g =2 X, w; ® &; modulo terms of higher order; and
(iii) dw(P)=0,i=1, -, n.
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This latter condition is the requirement that in the sought after coor-
dinates, the coefficients of connection vanish at P, that is, in terms of
the metric tensor g, dg,;«(P) = 0 (cf. 5.3.3, 5.3.32 and 5.3.10).

Let (2*) be a system of local complex coordinates at P such that
2(P)=0,¢{=1, -, nand ,(P) = dz{(P). We put

w; =8; — E Qi & 6 — E by £ 0, (5.5.2)
ik

ik

and look for the relations satisfied by the coefficients a,;; and b in
order that (i), (ii), and (iii) hold. For condition (ii) to hold it is necessary
and sufficient that

@i + bije = 0. (5.5.3)

Now, put
df; = %2 Cisi 05 N\ B + E s 05 A B,
ik ik

i + €y = 0.
Then, (iii) is satisfied, if and only if

%(awc — @yj)=cpe and by =i (5.54)

Substituting in (5.5.3), we derive
Ciie = i — Eagie

These are the necessary conditions that a complex geodesic local
coordinate system exists at P.

Conversely, assume that there exist ¢, ¢’y satisfying ¢;;, = &5y —
&'yyie If we put @y, = — &'y and by, = ¢’y the relations (5.5.3) and
(5.5.4) are satisfied. If we define the forms 6, by (5.5.2), the conditions (i),
(i1), and (iii) for a complex geodesic local coordinate system are satisfied.

We recall that an hermitian metric is a Kaehler metric if the associated
2-form Q = V= 1X,8; A ;s closed and, in this case, M is a Kaehler
manifold. Hence, at each point of a Kaehler manifold there exists a system
of local complex coordinates which is geodesic. This property of the Kaehler
metric leads to many significant topological properties of compact
Kaehler manifolds which we now pursue.
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5.6. Topology of a Kaehler manifold

The formulae (5.4.7) hold in a Kaehler manifold as one easily sees
by choosing a complex geodesic coordinate system (2) at a point P,
Indeed, for C, we may take g = 2 X, dz' ® d%‘. Since the metric of a
Kaehler manifold has this form modulo terms of higher order, and
since only first order terms enter into the derivation of the formulae
(5.4.7) they must also hold in a Kaehler manifold.

Lemma 5.6.1. In a Kaehler manifold

Ad —d'd=—+—18"
and (5.6.1)

Ad" —d"Ad=+~—18.

These formulae are of fundamental importance in determining the
basic topological properties of compact Kaehler manifolds.

Lemma 5.6.2. In a Kaehler manifold the operators A and 8§ commute.
Hence, by comparing types A commutes with &' and 8''.
Clearly, the operators L and d commute. Hence,

. *dxx 1 Lk = «L*x"1 dx*,
that is
84 = A8.

Several interesting consequences may be derived from lemmas 5.6.1
and 5.6.2 for a complex manifold with a Kaehler metric. To begin with
we have

Lemma 5.6.3. In a Kaehler manifold
a8 +8'd=0 and d"8 +8d' =0. (5.6.2)

The proof is immediate from lemma 5.6.1.

Lemma 5.6.4. In a Kaehler manifold
dl 8/ + 8, dl — dl' 8[’ + 81’ dll.

For, _from lemma 5.6.1 the expression
—V— (d'Ad""—d""Ad’'+ d"’d’'A — Ad'd"") is equal to d'* &' + 8" d”’
from the first relation and to d’ 8’ + 8’ d’ from the second.
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Lemma 5.65. In a Kaehler manifold the Laplace-Beltrami operator
4 = d 38 + 8d has the expressions

4=2d 8 +8&d)=2d"8" + 8"d"). (5.6.3)

For,
4 =4dé+ 8d
— (d’ + d’l) (8/ + 8'/) + (8/ + 8”) (dl + d'l)
— (dl 8' + 8’ d') + (dll 8'/ + 8'/ dll)

by lemma 5.6.3. Applying lemma 5.6.4, the result follows.

A complex p-form « is called harmonic if 4« vanishes.

Since a p-form may be written as a sum of forms of bidegree (g, r)
with ¢ + r = p we have:

Lemma 5.6.6. A p-form is harmonic, if and only if its various terms of
bidegree (q, r) with ¢ + r = p are harmonic.

This follows from the fact that 4 is an operator of type (0, 0). Indeed,
d’ is of type (1, 0)and &’ of type (— 1, 0). Moreover, a p-form is zero, if
and only if its various terms of bidegree (g, r) vanish.

Lemma 5.6.7. In a Kaehler manifold A commutes with L and A. Hence,
if « is a harmonic form so are Lo and Aa.

This follows easily from lemmas 5.6.1 and 5.6.2 since 8’ 8" 4 &'’ &’
= 0 and *4 = 4*.

Lemma 5.6.8. In a Kaehler manifold the forms Q° =Q A - A Q2
(p times) for every integer p < n are harmonic of degree 2p.

The proof is by induction. In the first place, 482 = 0 since the manifold
is Kaehlerian. For, by lemma 5.6.1, 8'Q2 = 8"'Q2 = Osinced'Q2 = d''Q2 =
0 and AQ2 = n. Now,

A(27) = ALQPY) = LAY = 0.

Lemma 5.6.9. The cohomology groups H*®(M, C) of a compact Kaehler
manifold M with complex coefficients C are different from zero for
p=01,,n .

Indeed, by the results of Chapter II, HYM, C) is isomorphic with
the space of the (complex) harmonic forms of degree ¢ on M. Since
the constant functions are harmonic of degree 0, the lemma is proved
for p = 0. The proof is completed by applying the previous lemma
and showing that 27 3£ 0 for p < n. In fact, we need only show that
n =0, and this is so, since 2™ defines an orientation of M (cf. § 5.1).
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Theorem 5.6.1. A holomorphic form on a Kaehler manifold is harmonic.

For, if « is a holomorphic form, it is of bidegree (p, 0); moreover
d’’« vanishes. Now, since 8"’ is an operator of type (0, — 1), 8"’a is a
form of bidegree (p, — 1), that is 6"’a = 0. It follows that

da =2(d" 8" 4 8" d")a = 0.

Corollary. A holomorphic form on a compact Kaehler manifold is closed.
Conversely, a harmonic form of bidegree (p, 0) on a compact hermitian
manifold is holomorphic. For, a harmonic form is closed and a closed
form of bidegree (p, 0) is holomorphic.
The term of bidegree (p, 0) of a harmonic p-form « is holomorphic.
Similarly, the conjugate of the term of bidegree (0, p) is holomorphic.
For, let

»
&= 2 xp—k,k »

k=0

the subscripts indicating the bidegree. Then, since o is harmonic and
the manifold is compact

D
2 d"ay 1 =0.
k=0

Since the terms on the left side of this equation are of different bidegrees
they must vanish individually. In particular,

d"a,q = 0.

Similarly, d'ay, = 0 implies d'a,, = d'’%,, = 0.

Let A% be the linear space of complex harmonic forms of degree p.
Then, by lemma 5.6.6, A% is the direct sum of the subspaces A¥" of
the harmonic forms of bidegree (g, 7) with ¢ + r = p. The p™ betti
number b,(M) of the Kaehler manifold M is equal to the sum

"~ by, (5.6.4)

atr=p

where b, , is the complex dimension of A%". Now, if ae AY", its
conjugate & € ALY, and conversely. For,

Z:=dl51a+81dla=d/81a+Sldla:d118//&+Sud/l&:_%A&'

Do
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Hence,
ber = b, (5.6.5)

and, since « - & is real, (5.6.4) is also the (real) dimension of the space
of real harmonic forms of degree p.
Since

bv = bﬂ.O + o+ bo.p:
we have shown that

2b, o < b,forp #0.

Hence, the number of holomorphic p-forms is majorized by half the p*
betti number.

Moreover, from (5.6.5) we may also conclude that b,(M) is even if pis
odd. Summarizing, we have:

Theorem 5.6.2. The p™ betti number of a compact Kaehler manifold
is even if p is odd. The first betti number is twice the dimension of the space
of holomorphic 1-forms sometimes called abelian differentials of the first
kind. The even-dimensional betti numbers b, (p =< 2n) are different from
zero.

The last part follows from lemma 5.6.9.

The number £7_, (— 1)%, 4 is an important invariant of the complex
structure called the arithmetic genus.

In the next section it is shown that for p = n — 1, b, < b,.,.

Since the first betti number of the Riemann sphere S?is zero there are
no holomorphic 1-forms on S2

Consider the torus (cf. § 5.8) with the complex structure induced by C.
Since b, = 2, the differential dz is (apart from a constant factor) the
only holomorphic differential on the torus.

Let M be a compact (connected) Riemann surface. Put b, = 2g; the
integer g is called the genus of M. It is equal to the number of in-
dependent abelian differentials of the first kind on M. Since there are
2g independent l-cycles and g independent abelian differentials the
periods of an abelian differential may not be arbitrarily prescribed on a
basis of 1-cycles. However, it may be shown that a unique abelian
differential exists with prescribed real parts of the periods.

Let o be a p-form. Then, by (I1.B.4) and lemma 5.6.5

a = ddGua + 8dGa + H[o]
=2(d' 8 Ga + &' d’' Ga) + Hlc]
=2(d" 8" Ga + & d"’ Ga) + H[«]
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where the operators H and G are the complex extensions of the cor-
responding real operators. Moreover, since the Green’s operator G
commutes with d and & it commutes with d’, 4", &’, 8"’ as one sees by
comparing types.

Since 4 commutes with d, it also commutes with d’ and d’’ as one
sees by comparing types. This result is very important since it relates
harmonic forms with the cohomology theories arising from 4’ and 4’’.

5.7. Effective forms on an hermitian manifold

There is a special class of forms defined as the zeros of the operator 4
on the (linear)space of harmonic forms. They are called effective harmonic
forms and the dimension of the space determined by them is a topological
invariant. More precisely, the number e, of linearly independent effective
harmonic forms of degree p on a compact Kaehler manifold M is
equal to the difference b, — b,_, for p =< n + | where dim M = 2n. This
important result hinges on a relation measuring the defect of the operator
LkA from AL* where L*« = o A £%. The fact that these operators
do not commute is crucial for the determination of the invariants e,.

Lemma 5.7.1. For any p-form o on an hermitian manifold M
(AL* — L¥A)a = k(n — p — k + D)L¥ 1 a,
It was shown in § 5.4 that

ALe=LAa+ (n — p) o

Hence, proceeding by induction on the integer %

AL¥q = ALKLea) = L¥A(La) + k(n — p — 2 — k + 1)L*a
= L¥LAa + (n — p)a] + k(n — p — k — 1)L*a
=La+(k+1)(n —p — kR)LF .

This completes the proof.

In the remainder of this section a subscript on a given form will
indicate its degree; thus deg o, = p.

A form « is said to be effective if it is a zero of the operator 4, that is,
if Ao = 0. Since A annihilates AP(T¢") for p = 0,1 the elements of
these spaces are effective.
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Lemma 5.7.2. If «, is an effective form, then, for any s 2 0
(= DAL ey = (s + Iy +R) (s —n+p) (s —n+p+k— 1L,

This follows inductively from the preceding lemma.

Corollary. There are no effective p-forms for p = n + 1.
This is an immediate consequence, if we take # = n 4+ 1 and
s2n—p+ 1.

Theorem 5.7.1. Every p-form o, (p =< n -+ 1) on an hermitian manifold of
complex dimension n has a unique representation as a sum

a =2 L* ¢y g (5.7.1)
k=0
where the @,_g, 0 < k < r are effective forms and r = [5].

The theorem is trivial for p = 0,1. Proceeding inductively, assume
its validity for p < n — 1. Then, to any p-form B, is associated a unique
p-form o, such that

ALoy=8, p=n—1. (57.2)
For,
By =2, L* Yy

k=0

where the forms y,,_,; are effective. Now, by (5.7.1) and lemma 5.7.1

r
ALa, = EA L @y ok

k=0

=2 (k+1)(n—p — k)L g, 4.

k=0

Since p = n — 1, n — p 4+ k # 0. Consequently, in order that (5.7.2)
hold, it is sufficient to take

. ‘/"p—zk —
q’?—zk—(k+l)(’l_P+k)y k—ovl’ s 7y

and by uniqueness, this is also necessary. Now, let 8,,, be an arbitrary
(p + 2)-form and put 4 8,,, = B, in (5.7.2).
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Then, the form y,., = B,+s — Lo, is effective, and
Bore = Xps2 + Lot,

.
= Xp+s T ELk+1 Po—2k
k=0
is the representation sought for 8,., thereby completing the induction.
The uniqueness is evident from that of «;,. For, let

Boiz = X'ps2 + Loy,

be another decomposition for B,.,. Then, (x'p1s — Xp+2) + L{ay, — o)

= 0. Applying the operator A to this relation we obtain A La,, = A La,,

since xp.5 — Xp+2 is effective. Applying (5.7.2), we conclude that

a, = o, from which x, .2 = xp 42

Corollary 5.74. AL is an automorphism of NP(T¢") for p < n — l.
For, if o, € AP(T¢"), ALx, € AP(T¢"). Conversely, by (5.7.2) for

any B, there is an «, such that AL«, = B,. Moreover, ALa, = 0 implies

o, = 0.

Corollary 5.7.2. L is an isomorphism of NP(Te") into NAP+3(Te*) for
p=n—1.

Indeed, Lo, = O implies 4 Lo, = 0 from which by the preceding
corollary «,, must vanish.

Assume now that M is a Kaehler manifold. Then, since 4 commutes
with the operator L (cf. lemma 5.6.7) we may conclude

Corollary 5.7.3. Every harmonic p-form «,(p < n + 1) on a Kaehler
manifold may be uniquely represented as a sum

T
_ k
oy = 2 L¥* @, o
x=0

where the @,_(0 = k < 1) are effective harmonic forms and r = [p/2].
Let M be a compact Kaehler manifold. Then, from lemma 5.6.7
and corollary 5.7.2,it follows that

by(M) < byuo(M), p<n— L. (5.7.3)

Corollary 5.74. The betti numbers b, for p <n — 1 of a compact
Kaehler manifold satisfy the monotonicity condition (5.7.3). Moreover,
by # 0 for s < n.
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The difference b, — b,_, may be measured in terms of the number ¢,

of effective harmonic forms of degree p,p =<n+ 1 and is given by
the following

Theorem 5.7.2. On a compact Kaehler manifold

ep=0b, — by,

for p = n+ 1.
To see this, denote by A% the linear subspace of A% of effective
harmonic p-forms. Then, by corollary 5.7.3

ANy =A@ LAY?@ .. DL Ay (5.7.4)
where r = [p/2], and
AR = ARt QLAY @ ... @ LAy (5.7.5)

where r = [p/2] + L.
Applying the operator L to the relation (5.7.4) we obtain

LAY, =LA%@ .. DLAYY, 7= [‘g] . (5.7.6)

Combining (5.7.5) and (5.7.6)
/\;?2 — /"\Iz;+2 @L/\’;{.

Since L is an isomorphism from A?(7¢") into A?+2(7*") (p < n — 1) and
since 4 commutes with L, dim L A} = dim A%. Hence,

dim A%2 =dim A%? 4 dim A%

that is b,,, = €,y + b, p =n—1lorb, —b, , =¢,forp=n+ 1

5.8. Holomorphic maps. Induced structures

Let M and M’ be complex manifolds. A differentiable map f: M — M’
is said to be a holomorphic map if the induced dual map f*: A*(M') —
A (M) sends forms of bidegree (1,0) into forms of bidegree (1, 0).
Under the circumstances, f* preserves types, that is, it maps forms of
bidegree (g, ) on M’ into forms of bidegree (¢, 7) on M. For, since f*
is a ring homomorphism we need only examine its effect on the decom-
posable forms (cf. § 1.5).
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If f: M— M’ and g: M’ — M'' are holomorphic maps, so is the
composed map g - f: M — M"’. By a holomorphic isomorphism f: M — M’
is meant a 1-1 holomorphic map f together with a differentiable
map g : M’ — M such that both f.g and g - f are the identity maps on
M’ and M, respectively. If f is a holomorphic isomorphism, it follows
that the inverse map g is also a holomorphic isomorphism.

Lemma 5.8.1. Let M be a complex manifold and [ a complex-valued
differentiable function on M. In order that f be a holomorphic map of M
into C (considered as a complex manifold), it is necessary and sufficient that
f be a holomorphic function.

Since dz is a base for the forms of bidegree (1, 0) on C, in order that f
be a holomorphic map, it is necessary and sufficient that f*(dz) = df
be of bidegree (1, 0). Hence, since df = d'f + d'’f, it is necessary and
sufficient that 4'’f vanish.

Lemma 5.8.2. The induced dual map of a holomorphic map sends holo-
morphic forms into holomorphic forms.

Let f: M —~ M’ be a holomorphic map and « a form of bidegree
(p,0) on M’'. Then, since f* preserves bidegrees, f*(«) is a form of
bidegree (p, 0) on M. Hence, since f* and d commute, so do f* and d'’.
Thus, if « is holomorphic, so is f*(«).

Proposition 5.8.3. Let M be a covering space of the complex manifold M
and  the canonical projection of M onto M. (We denote this covering space
by (M, ).) Then, there exists a unique complex structure on M with respect
to which w is a holomorphic map.

For, let {V,} be an open covering of M such that for every « the
restriction 7, of = to V, is a homeomorphism of V, onto #»(V,). Such
a covering of M always exists. To each « is associated a complex structure
operator [, on V, in terms of which =, : V,— M is holomorphic. To
see this, we need only define 7,.. J, = J. m,..Onthe intersection V, NV,
the complex structure operators J, and J; coincide since m;~ « m, is the
identity map on ¥V, n V, and as such is holomorphic. Thus, the
operator on M having the ], as its restrictions defines a complex
structure on M. With respect to this complex structure on M the
projection = is evidently a holomorphic map. The uniqueness is clear.

Corollary. Let (M, n) be a covering space of the Kaehler manifold M.
Then, (M, m) has a canonically defined Kaehler structure.

For, let £ be the Kaehler 2-form of M canonically defined by the
Kaehler metric ds? of M. Let =* denote the induced dual map of =.
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Then, since 7*(ds?) is positive and hermitian and

d(r*Q) = n*(dQ) =0,
the result follows. 7*(ds?) is positive since the Jacobian of the map is
different from zero.

Conversely, suppose that the covering space (M, =) of the manifold M
has a complex structure. Moreover, assume that every point of M has
an open connected neighborhood U such that each component of
#=Y(U) is open in M, that is, the union of disjoint open sets ¥, on each
of which 7 induces a homeomorphism =, of ¥ onto U in such a way
that for any « and B8, ms;*.n, is a holomorphic isomorphism of V,
onto V, with respect to the complex structures induced on ¥V, and ¥,
by that of M. Then, U has a complex structure induced by the maps
m,—the complex structure being independent of the choice of «. We
conclude that A has a complex structure called the quotient complex
structure of that on M by the relation of equivalence w(P) = =(P’),
P and P’ being points of M.

If (M, ) has a Kaehlerian structure, then by exactly the same argument
as given above M has a canonically defined Kaehlerian structure.

Consider the important case where the manifold M is the quotient
space M/G of the complex manifold M by the relation of equivalence
determined by a properly discontinuous group G of homeomorphisms
of M onto M without fixed points. In other words, by the relation for
which the equivalence class of the point P e M is the set of transforms
£(P) of P by the elements g of G such that every point of M has a neigh-
borhood V' with the property (4): V n gV is empty for all g € G other
than the identity. Then, M is a covering space of M = M/G. Indeed,
any point P € M has a neighborhood U such that »~!(U) is the union
of disjoint open sets ¥, on each of which 7 induces a homeomorphism
m, of V, onto U. To see this, take a point Q e M such that P = =(Q);
then, take U = =(V) where V is a neighborhood of § with the property
(A4). Moreover, for the neighborhoods ¥V, take the transforms gV of V'
for all g € G.

In order that M = M/G have a complex structure it is necessary and
sufficient that G be a group of holomorphic isomorphisms.

If M has a Kaehlerian structure the above condition is also necessary
and sufficient for M to have a Kaehlerian structure.

5.9. Examples of Kaehler manifolds

1. A complex manifold of complex dimension | is usually called a
Riemann surface. Let S be a Riemann surface with an hermitian metric
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ds? = pdz dz where p is a real, positive function (of class «) of the
local coordinates x, y(2 = x + #y), { = v/ — 1. The fundamental 2-form
2 = (¢/2) p*dz N dz is the element of area of S. Clearly, df2 = 0 since
dim S = 2. The real unit tangent vectors which are given by

e(p) = % (6"" éa; + e 5%)

determine a sub-bundle B of the tangent bundle called the circle bundle.
We define a differential form w of bidegree (1,0) by the formula

w = e%p dz.

Evidently, <(e(p), w> = 1. Conversely, w is uniquely determined by
the conditions: (i) it is of bidegree (1,0) and (ii) its inner product with
the vectors of B is 1. Consider the 1-form 6 on B defined as follows:

8 = — do + i(d' — d")log p.
One may easily check that § is real and satisfies the differential equation
dw =10 N\ w.

In fact, 8 is the only real-valued linear differential form satisfying this
differential equation with the property that § = — dp (mod (dz, d%)).
Hence, 6 is globally defined in B, independent of the choice of local
coordinates. Moreover,

2
b= — 2% °§_P dz A dz.

1
0z 0%
Now, the Gaussian curvature K of S is given by

4 0o%logp
K“? 0z 07 '

from which
d8 = KQ.

It is known that a compact Riemann surface can be given an hermitian
metric of constant curvature and that such surfaces may be classified
according to whether K is positive, negative or zero.

Incidentally, besides the Riemann sphere (K > 0) and the torus
(K = 0) any other compact Riemann surface can be considered as the
quotient space of the unit disc by some Fuchsian group.
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2. Consider C, with the metric

ds? = 22" dzt d7,

1=1

The fundamental 2-form in this case i1s given by

Q =vV=1), dt A dst.
i=1
Clearly, this form is closed, and so the metric defines a Kaehler structure
on C,.

3. Let I" be a discrete subgroup of maximal rank of the additive group
of C, and denote by T, the quotient space C;,/I"; I' is actually the discrete
additive group (over R) generated by 2n independent vectors. It is
clear that I' is a properly discontinuous group without fixed points.
As a topological space, C,/I" is homeomorphic with the product of a
torus of dimension 27 and a vector space over R. However, C,/I" is
compact since I" has rank 27, and so it is isomorphic as a topological
group with the torus. Since the complex structure on C, is invariant
under I' (cf. §5.8) one is able to define a complex structure (and one
only) on the quotient space 7,. With this complex structure the
manifold T, = C,/I" is called a complex multi-torus.

Let = denote the natural projection of C, onto T,. Then, = isa
holomorphic map. The metric of C, defined in example 2 is invariant by
the translations of I". We are therefore able to define a metric on T, in
such a way that = is locally an isometry. Since the property of a
complex manifold which ensures that it be Kaehlerian is a local
property, T, is a Kaehler manifold.

We describe the homology properties of the multi-torus 7,: The
projection z induces a canonical isomorphism =* of the space of
differential forms on T, onto the space of differential forms on C,
invariant by the translations of I'. Since the isomorphism #* commutes
with the operators d and 8, #* defines an isomorphism of the space
AH(T,) of the harmonic forms on T, onto A;¢(C,)—the vector sub-
space of A"¢(C,) generated by {dz“} and their exterior products. For,
the elements of A[¢(C,) are-harmonic and invariant by the translations
of I'. Conversely, every form « on C, may be expressed as

a = da;

toia oy A2 N A de N dERA e A die

where the coefficients are complex-valued functions. If « is the image
by 7* of a harmonic form on 7, it is harmonic and invariant by I, that
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is, its coefficients a; _; ; ..; are harmonic functions which are invariant
by I'. Consequently, these functions are the images by =* of harmonic
functions on T,. But a harmonic function on a compact manifold is a
constant function, and so « € A[(C),).

4. On a bounded open set M contained in C, there exists a well-
defined 2-form invariant by the group of complex automorphisms of M.
This is a consequence of the theory of Bergman. One can construct
canonically from this form a 2-form £ having the Kaehler property,
namely, df2 =0 [72].

5. Complex projective n-space P,: By identifying pairs of antipodal
points of the sphere

E 3 =1
i=0

contained in C,,, we obtain P,. For every index j, let U, be the open
subspace of P, defined by #/ % 0 where ¢°, ¢!,---, t* denote the homo-
geneous coordinates of the points of P,. The map

i
0,1 n 0 1 ... Ai ... .n it
(t,t,---,t)—»(z,-,z,-,- y &5y 25, zi_t_,

is a holomorphic isomorphism of U; onto C,. It is easily checked that
these maps for j = 0, 1, -, n define a complex structure on P,.

n
Consider the functions ¢; = Eoz;é; defined in each open set U,
£

of the covering. On U;n U, we have
2} = z}/z} (k not summed)
and

n

n
Pe = D Ak = X (235)2% = 9,25 (j, k not summed)
i=0 i=0

where zj is a holomorphic function in U,, and hence in U; n U,. The
@; define a real closed form £ of bidegree (1,1) on P,. Indeed, in Uy n U,
d'd"(tog ¢; — log p) = O.
Hence, £ is given by
=+ —1d'd" log p;

in each open set U,. In particular in U,

Q=+""1d'd" log gs (5.9.1)
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Clearly, Q2 is a closed 2-form, and since

b0 =3, 3485 = 1 + 2, 56k

im0 fml

_ Zdzy A\ diy + X | 24 [P 2 day A\ dEy — Z Eydzy A D 2ydE,
g=v-i (ESAFAL:

The associated metric tensor g (sometimes called the Fubini metric) is
given by

d32=22|dz;]2+2[23122|dz3|2——|2§Zdzf,|2
(1+22 %2

or, more explicitly by

_ 8y _ a
8is* ®o 7’(2)
We remark that the fundamental form 2 of any Kaehler manifold may
be written in the form (5.9.1). For, by § 5.3, since the metric tensor g is
(locally) expressible as
__%
& = Gatom

for some real-valued function f,

2
Q=+v—-1 -‘,%Edz‘ A ds =+/—1d'd"f.

6. Let M be a Kaehler manifold and M’ a complex manifold holo-
morphically imbedded (that is, without singularities) in M. The metric g
on M induces an hermitian metric on M’. The associated 2-form £’
on M’ coincides with the form induced by 2 and is therefore closed.
In this way, the induced complex structure on M’ is Kaehlerian

(cf. §5.8).

7. Let G(n, k) denote the Grassman manifold of k-dimensional projective
subspaces of P, [26]. It can be shown that it is a non-singular irreducible
rational variety in a Py for sufficiently large N. Moreover, its odd-
dimensional betti numbers vanish whereas b,, is the number of partitions
of p = ay, + a; + - + a; (a;: integers) such that 0 < q; £ a; < -~
g, <n—k
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Example 6 in § 5.1 cannot be given a Kaehler structure except for
S1 x S?since in all other cases b, is zero. It may be shown by employing
the algebra of Cayley numbers (cf. V.B.7) that the 6-sphere S¢ possesses
an almost complex structure. However, since 5,(S%) = 0, S® does not

have a Kaehlerian structure.

Besides S?, the only sphere which may carry a complex structure is S¢.
However, it can be shown that the almost complex structure defined
by the Cayley numbers is not integrable.

EXERCISES

A. Holomorphic functions [50]

1. Let S be an open subset of C,.. In order that f € F (the algebra of differentiable
functions on .S) be a holomorphic function it is necessary and sufficient that

(VT gm0, 1=t

where 2 = ¥ + V= 1y%. Put f = u + V/— lo. Then,

ou ov v ou
6_x'=W and a—x';=—5‘—, t=],"',ﬂ.
These are the Cauchy-Riemann equations. Prove that the holomorphic functions
on S are those functions which may be expanded in a convergent power series
in the neighborhood of every point of S.
If f is a holomorphic function and a = (a!, -+, a®) € .S, then, for every
b= (¥, -, b") € C,, the function

g(2) = f(a + b2)

is a holomorphic function in a neighborhood of 2 =0 € C.
2. (a) Let fbe a holomorphic function on the complex manifold M. If, for every
point P with local coordinates (2!, **+, 2") in a neighborhood of P, with the local
coordinates (al, -, a"), | f(2, -+, 2") | < | f(a!, ++, a®) |, then f(3!, -, 2") =
f(a, -+, a”) for all P in a neighborhood of P, Hence, if M is compact (and
connected), a holomorphic function is necessarily a constant.

(b) A compact connected submanifold of C, is a point.
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3. Show that a holomorphic function on a (connected) complex manifold M
which vanishes on some non-empty open subset must vanish everywhere on M.

4. Let « be a holomorphic 1-form on the Riemann sphere S2 Then, in C;—the
complex plane, « = f(2)dz where f(2) is an entire function. By employing the
map given by 1/z at « show that f(1/2)1/2%* has a pole at the origin unless
f(2) = 0. In this way, we obtain a direct proof of the fact that 52 is of genus 0.

B. Almost complex manifolds [50]

1. Let X and Y be any two vector fields of type (0,1) on the almost complex
manifold M. Then, in order that M be complex it is necessary that [X,Y] be of
type (0,1). Denote by T71'® and T%*! the spaces of tangent vector fields of types
(1,0) and (0,1), respectively, on M.
2. On an almost complex manifold M the following conditions are equivalent:

(a) [T®, 11 C To3;

(b) dACT C AT @ A@TH for every ¢ and r;

(c) M(X,Y)=[X,Y] + JIJX,Y) + J[X,]JY] — [JX,]Y] = O for any vector
fields X and Y where [ is the almost complex structure operator of M.

Hence, in order that M be complex it is necessary that h(X,Y) =0, for
any X and Y. Show that the condition (c) is equivalent to (5.2.18).
3. h(X,Y) is a tensor of type (1,2) with the properties:

(i) (X + Y,2) = W(X,Z) + KY,Z),

(il) A(X,Y) = — (Y, X),

(i) H(X,fY)=fhX,Y)
for any X,Y,Z e Tand f e F.
4. If dim M = 2, M is complex.

Hint: A(X,JX) =0 for all X.
5. Let G be a 2n-dimensional Lie group, L the Lie algebra of left invariant
vector fields on G and ] an almost complex structure on G. If the tensor field
J of type (1,1) on G is left invariant, that is, if is a left invariant almost complex
structure, then JL = L. The integrability condition may consequently be
expressed as #(X,Y)=0 for any X,Y € L. Since every bi-invariant (that is, both
left and right invariant) tensor field on a Lie group is analytic it follows that
every left invariant almost complex structure on an abelian Lie group defines a

complex structure on the underlying manifold. (It is known that a bi-invariant
almost complex structure on any Lie group is integrable.)

6. Show that any two complex structures on a differentiable manifold which
define the same almost complex structure coincide.
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7. Let C denote the algebra of Cayley numbers: It has a basis {I,eq,e,, ---,ee}
where I is the unit element and the multiplication table is

2 « 3 .o
ei=—1, e-e,=—e;-e(i#j), ,j=01,-6,
Co € <€y €y ey = €, €€ = — &g

€18y == €5 €13 =20 €363 =208, €€ = — &,

the other ¢, - ¢; being given by permuting the indices cyclically. The algebra C
is non-associative.
Any element of C may be written as

xI +X, xeR

where

8
X =Y x%, xeR, i=01,,6.

=0

If x = 0, the element is called a purely imaginary Cayley number. These numbers
form a 7-dimensional subspace E? C C. The product X - Y of X = X¢_, a'e; € E7
and ¥ = X¢_; y'e; € E” may be expressed in the form

X Y=-AXYDI+XxY

where
8

XYy =2 =iy
=0
is the scalar product in E7?, and
XxY =2 xiyle; - e;
i#]

is the vector product of X and Y. The vector product has the properties:

(i) (aX; + bXy) X Y =a(X; X V) + b(X, X ),

1)y X X (Y, +dY,) =¢(X X Y;) +d(X x Y,)
for any 4, b, ¢, d € R;

(if) <X, X X Y>=(KY,X x Y> =0and

(i) X x Y =—Y X X.
Consider the unit 6-sphere S¢ in E7:

St ={XeE |<X,X)=1}.

Let g denote the (canonically) induced metric on S8 The tangent space Ty
at X € S§® may be identified with a subspace of E7.
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Define the endomorphism
x: Tx—>Tx
by
JxY=X XY, YeTy.

It has the properties:

(i) J% = — identity;
(i) g(JxY, JxZ) =¢(¥,2)
for Y, ZeTx.

Property (i) implies that S¢ has an almost complex structure whereas (ii) says
that the metric on S® is hermitian. Under the circumstances, S* is said to possess
an almost hermitian structure.

8. Consider the 3-dimensional subspace E® C E7 spanned by the vectors
en,e1,85 € E7. S8 N E3 is a 2-sphere S%. Show that S? is an invariant submanifold
of S8, that is, for any X e .52 the tangent space Ty to S? at X is invariant under

Jx:

C. Hermitian manifolds [50]

1. Let M be a Riemannian manifold with metric tensor g. Show that there
exists a mapping
X DX

of T into the space of endomorphisms of T with the properties:
(a) Z8(X,Y) — g(DzX,Y) — g(X,D;¥) = 0

(parallel translation is an isometry);
(b) DyY — DX = (X,Y]

(torsion is zero)

for any X,Y,Z e T.

Hint: Assume the existence of this map and show that
2¢(X,DzY) = Zg(XY) — Xg(Y,Z) + Yg(Z,X)
+ &(Y,[X,Z]) — g(X,[V,Z]) — g(Z,[Y.X])
for any X,Y and Z e T. Conversely, this relation defines for every Y, Z e T

an element D,Y € T. The map Z — D is thus unique. For every Ze T, D,
is called the operation of covariant differentiation with respect to Z.
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2, Establish the identities:
(i) Dx+y = Dx + Dy,
(ii) DyxY = f(DxY),
(i) Dx(Y + Z) = DxY + DxZ,
(iv) Dx(fY) = (Xf)Y + f(DxY),
(v) DxY = D3zY (if M is almost complex)
for all X,Y,Z e T and f € F—the algebra of differentiable functions on M;

. o 2 .
N £ (Do r) = 8me T

where the I'}; are the coeflicients of the Levi Civita connection.

From (ii) it follows that for any point P, D xY(P) depends only on X(P)and Y,
that is, if X,(P) = X,(P), then Dy Y(P) = Dy Y(P).
3. A p-form « on M may be considered as an alternating multilinear form on
the F-module T with values in F, that is «( X, ---, X)) € Fforany X,, -, X, e T.
Toa p-form a on M we may associate a p-form Dya on M called the covariant
derivative of « with respect to X by putting

b4

(Dxa) (Yy, -+, Yy) = Xa(¥y, oo, Yy) — 3, ¥y, o, DxYiy o, V).

1=1
Show that the map
Dy : AP(M)— AP(M)

so defined is a derivation.

The map Dy may be extended in the obvious way to tensors on M of type
(0,p) which are not necessarily skew-symmetric. Hence, the covariant derivative
of the metric tensor g with respect to the vector field X vanishes, that is

Dxg =0
forall X eT.

4. Establish the equivalence of the following statements for an hermitian
manifold with metric g whose complex structure is defined by J:

(a) Dx(JY) = J(DxY),
(b) Dx2 = 0 where Q(X,Y) = g(JX,Y),
(c) d2=0

for any X,Y e T.
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Hint: In a Riemannian parallelisable manifold, the map

o—da = i €(09)Dx

i=1

where {X,} and {6} are dual bases is an anti-derivation. Show that d and d agree
on AYM) and AYM), and hence on A(M).

If any of these conditions is satisfied, the manifold is Kaehlerian and £2 is the
fundamental form defining the Kaehlerian structure. Note that

gX,JY) +g(JX,Y) =0.
Incidentally, from the formula

n

de =, (6D,

iw]

we may derive the formula

+1

(do‘) (Ylv " Yp+l) = 2:] (_ 1)"*—l Y,a(Yl, Yy i}:‘: ) Yp+1)

+ 3 (— D (Y, V), Yy oy By oy By oy Vi)

Hence, (da) (X,Y) = Xa(Y) — Y(X) — o([X,Y]) (cf. formula (3.5.2)).

5. If M is Kaehlerian, show that Dy A ©7(M)C A ¢"(M) for every pair of inte-
gers (¢,7) and any X e T.

6. Let M be a complex manifold, J the linear endomorphism of T defining the
complex structure of M and 2 a real form of bidegree (1,1) on M. Then,

QJX)Y) + X, JY) =0
QAX,Y) = QJX,]JY)
for any X,Y e T. Show that the ‘metric’ g defined by
8(X,Y) = X, JY)

is symmetric, hermitian and real; hence if 2 is closed and g is positive definite,
the metric is Kaehlerian.

from which

D. The 2-form @
1. The form
Q=+ —1dd'f

where f is a real-valued function of class « on the complex manifold M is real,
closed and of bidegree (1,1). Let {U,-} be an open covering of M. For each ¢
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let f; be a real-valued function of class « with no zeros in U,. If, for each
pair of integers (i,;) there exists a holomorphic function 4;; on U; N U, such that

fi=fihii by,
then, there exists a real closed form 2 of bidegree (1,1) on M such that

Q=+—1dd"logf;
on each open set U,.
2, Let {U,v} be an open covering of M by coordinate neighborhoods with complex
coordinates (2%) and ¥ a real 2n-form of maximal rank 2z on M. Then, the
restriction ¥, of ¥ to each Uj is given by

W, = f,dzt A o Adan A dELN o A dEY

where f; is either a real or purely imaginary function with no zeros in Uj;
moreover, on U; N U;
fi=Fihy }TJ

where A;; is a holomorphic function on U; n U,. Show that ¥ determines a
real, closed 2-form of bidegree (1,1) and maximal rank on M.

Bergman has shown that on every bounded open subset .S of C,, there exists
a well-defined real form of degree 2z invariant under the complex automor-
phisms of S and independent of the imbedding. With respect to this form we
may construct a 2-form £ on S whose associated metric is Kaehlerian.

E. The fundamental commutativity formulae. Topology of Kaehler
manifolds [50, 72]

1. Let M be an hermitian manifold with metric g. Assume that 770 is a free
F-module; this is certainly the case if M is holomorphically isomorphic
with an open subset of C,,. Let {X,, -, X,} be abasis of T7:°; then, {Xl, - Xn}
is a basis of 7!, By employing the Schmidt orthonormalization process the
Xt =1, -, n may be chosen so that

g(Xi,Xj) =3

(cf. equations (5.2.13) and (5.3.1)). Consider this basis of 7°¢ = T @ T?
and denote by {9f,9f}, i =1, -+, n the dual basis. Then,

g ="E(of®9f + 0 ® 69
i=1
and

Q=vV=13 6 A d.
i=1
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Establish the formulae

n n

d' =Y, «(6)Dx, d" =2, 8Dz,

[ ]
and

5= —3i#)Dz, 8" = — 3 i@)Dx,

a1 jm1
Hint: Employ C.4.
2, Using the above formulae for d’,d”,8’, and 8" as well as formula (5.4.2)
derive the fundamental lemma 5.6.1.

3. Establish the formulae

8L —Lé =+—14d".
8"L — L8 = —v/—14d".

These relations are the duals of those in lemma 5.6.1.

and

4. For a complex manifold M, A*¢(M) is a direct sum of the subspaces A ?7,
that is any « € A*¢(M) may be uniquely expressed as a sum of pure forms «, ,
of bidegrees (g,r), respectively. Consider the map

Poyi A(M)—> A%

sending a into «,,. If M is Kaehlerian denote by A the algebra of operators
generated by %, d, L, and P, ,. Show that 4 belongs to the centerof 4. If M is
compact prove that the operators H and G associated with the underlying
Riemannian structure also belong to the center. In particular, 4, H and G
commute with d’, d"’, 8', 8"’ and A.

5. Prove that the harmonic part H[«] of a pure form o of bidegree (¢,7) on a
compact hermitian manifold is itself of bidegree (¢,r) (cf. I1.B.3).

6. Let D*7(M) denote the quotient space of the space of d-closed forms of
bidegree (g,r) on the compact Kaehler manifold M by the space of exact forms
of bidegree (g,r). Prove that D?(M) is the direct sum of the spaces D* (M)
with ¢ + r = p. (Note that this decomposition is independent of the Kaehler
metric.)

The map o« — & induces an isomorphism of D#7(M) onto D™ % M). Hence,
b, , = b, , where b,, = dim D¥7(M).

In terms of the complex structure on D%(M) (the p™* cohomology space
constructed from the subspace of real forms) induced by that of M, it may be
shown once again that 4, is even for p odd.

Hint: Extend the complex structure J of M to p-forms on M and prove that
jz = (— 1)?I where j denotes the induced map on A?; then, prove that
J and 4 commute.



CHAPTER VI

CURVATURE AND HOMOLOGY
OF KAEHLER MANIFOLDS

It is a classical theorem that compact Riemann surfaces belong to
one of three classes (cf. example 1, § 5.9). However, for several complex
variables the situation is not quite so simple. In any case, there is the
following generalization, namely, if M is a compact Kaehler manifold
of constant holomorphic curvature & (cf. § 6.1), its universal covering
space is either complex projective space P,(k > 0), the interior of a
unit sphere B, (k < 0), or the space C, of n complex variables (£ = 0).
These spaces are of interest in algebraic geometry; indeed, they provide
a source of examples of algebraic varieties. In analogy with the real case
(cf. §3.1) a (compact) Kaehler manifold of constant holomorphic
curvature is called elliptic, if £ > 0, hyperbolic, if £ < 0 and parabolic
if k=0. By an application of the results of Chapter V it is shown that an
elliptic space is homologically equivalent to complex projective space.
It is, in fact known, in this case, that M is actually P, itself. If the
manifold M is parabolic it can be represented as the quotient space
C,/D where D is a discrete group of motions in C,, namely, the
fundamental group. The group I' in example 5, § 5.1 is a normal sub-
group of D of finite index with 2n independent generators. The complex
torus T, = C,/I" is then a covering space of M.

On the I-dimensional (complex) torus T there is essentially only one
holomorphic differential, namely, dz in contrast with the Riemann
sphere on which none exist (cf. § 5.6). In higher dimensions there is the
analogous situation, that is, on T, there are n independent holomorphic
pfafian forms whereas in the elliptic case there are no holomorphic
I-forms. More generally, on a compact Kaehler manifold of positive
definite Ricci curvature, there do not exist holomorphic p-forms
(0 < p = n) [58].

The reader is referred to §5.9, example 3 for a description of the
complex torus. Now, the torus has ‘zero curvature’ and this fact is decisive

197
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from a geometrical standpoint in describing its homology. More
generally, a compact hermitian manifold M of zero curvature has as its
universal covering space M a complex Lie group. If D (the fundamental
group) is a discrete group of covering transformations of M whose
elements are isometries acting without fixed points, then M is homeo-
morphic with M/D. If M is simply connected, a necessary condition
for zero curvature is complex parallelisability by means of a parallel
field of orthonormal frames, that is, the existence of n globally defined
linearly independent holomorphic vector fields which are parallel with
respect to the connection defined in § 5.3. On the other hand, a complex
parallelisable manifold has a natural hermitian metric of zero curvature.
The existence of a metric with zero curvature is consequently a weaker
property than parallelisability. The problem of determining those
manifolds with a locally flat hermitian metric is considered. It is shown
that a compact hermitian manifold of zero curvature is homeomorphic
with a quotient space of a complex Lie group modulo a discrete
subgroup. It is Kachlerian, if and only if, it is a multi-torus [69].

The hyperbolic spaces will be considered from the point of view of
the problem of imbedding into a locally flat space. Our interest lies in
the local properties of a manifold for which a holomorphic imbedding
which induces the metric is possible. If the Ricci curvature is positive,
it is not possible to define such an imbedding. On the other hand, negative
Ricci curvature is not sufficient to guarantee this. For, one need only
consider the classical hyperbolic space defined by the metric g(z, 2) =
(I — 22)"% in the unit circle |z |< 1. Such imbeddings consequently
appear rather remote and can only occur if the Ricci curvature is not
positive [5].

Whereas positive Ricci curvature yields information on homology,
negative curvature is of interest in the study of groups of transformations
(cf. Chap. III). Chapter VII is concerned essentially with the study of
groups of holomorphic and conformal homeomorphisms of Kaehler
manifolds, and so some of the results for negative curvature are post-
poned until then. In any case, the elliptic and parabolic spaces are
particularly interesting from our point of view in that their homology
properties may be described by the methods of Chapters III and V.

For negative curvature no holomorphic contravariant tensor fields of
bidegree (p, 0) can exist. Hence, in particular (as already observed),
the manifold is not complex parallelisable. A generalization may be
obtained by assuming that the 1 Chern class is negative definite
(cf. VI1.A.4).

The Gauss-Bonnet formula is also particularly interesting from our
point of view. In fact, if M is a compact Kaehler manifold on which there
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are ‘sufficiently many’ holomorphic pfaffian forms, then (— 1)* (M) =0
where y(M) is the Euler characteristic. An example is provided by T,
for which it is clear that x(7},) = 0 [8].

Denote by the pair (M, g) a Kaehler manifold with metric g and under-
lying complex manifold M. Consider the Kaehler manifolds (M, g)
and (M, g’). If the connections w and w’ canonically defined by g and g,
respectively, are projectively related, a certain tensor w (the complex
analogue of the Weyl projective curvature tensor) is an invariant of
these connections. Its vanishing is of interest. For, if w = 0, the manifold
(M, g) (or (M, g’)) has constant holomorphic curvature. Conversely, for a
manifold of constant holomorphic curvature, w = 0. In this way, constant
holomorphic curvature is seen to be the complex analogue of constant
curvature in a Riemannian manifold [33]. (A Kaehler manifold of
constant curvature is of zero curvature). The homological structure of
elliptic space is, as previously mentioned, identical with that of P,.
However, the betti numbers of P, are retained even for deviations from
projective flatness [7].

An important application of the results of Chapter III is sketched
in § 6.14 where the so-called vanishing theorems of Kodaira are obtained.
These theorems are of interest in the applications of sheaf theory
to complex manifolds since it is Iimportant to know when certain
cohomology groups vanish.

6.1. Holomorphic curvature

Let M be a Kaehler manifold of constant curvature K whose complex
dimension is 7. Then, from (1.10.4) the curvature tensor is given by
R4pcp = K(gpcgap — 84cgBD)-

('The same systems of indices as in Chapter V are maintained throughout.)

In terms of local complex coordinates these equations take the form

Rierir = Kgjnr 81
from which
— R",-“. = KS;c L

Substitution of this last set of equations into (5.3.39) gives

KS;g”. = Kaﬁgkz*,

that is
Kgre = nKgye.
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Hence,

Theorem 6.1.1. A Kaehler manifold of constant curvature is locally flat
provided n > 1.

If, instead of insisting that all sectional curvaturés at a given point
are equal, we require that only those determined by any two orthogonal
vectors in the tangent space at each point are equal, the same conclusion
prevails, since the bundle of orthogonal frames suffices to determine the
Riemannian geometry. For complex manifolds, however, it is natural
to consider only those 2-dimensional subspaces of the tangent space
defined by a vector and its image by the linear endomorphism [ giving
the complex structure. Indeed, to each tangent vector Xp at a point P
of the hermitian manifold M, one may associate the tangent vector (JX)p
at P orthogonal to Xp,. The section determined by these vectors will be
called a holomorphic section since it is defined by the complex structure.
We shall denote the sectional curvature defined by the holomorphic
section determined by the vector X, by R(P, X) and call it the
holomorphic sectional curvature defined by Xp.

We seek a formula in local complex coordinates for R(P, X). To
begin with, if

7 7

.0
— A i i
X=¢ 0=z4 £ ozt +¢ ozv

then, from (5.2.4)
S Y s I PR sy UL
JX =l ga=V— 185z L a5
Hence, from (1.10.4)

R ¢4 7B £C pD
R(P,X) = ABCD n
(F:X) (g8c 84D — 8D gac) §4 B £C 9P

where ' = v/ — 1§ and 7** = — v/— 1 £¥". Now, it is easy to see that
Rapcp €4 ¥ & 7P = — 4R ju 1 f‘fj‘ fk fp
and
(¢8c 84D — 8D gac) £ P €€ P = —dg g, £1¢7 € €.

Consequently, . R g g g
R(PX) = Skt & 6
(BX) Gijr Bae &1 77 £F 6V

which, by reasons of symmetry, may be expressed in the form

2R jups E1 6" EF EV
R(P,X) = 11kl , .
( ) (8ij+ Brir + Girs Brye) £ &7 EF EV
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Suppose that R(P, X) is independent of the tangent vector X chosen
to define it. Then, the curvature tensor at P has the representation

k
Rijere = 3 (815 rae + &its 8iiv) (6.1.1)

where k = k(P) denotes the common value of R(P, X) for all tangent
vectors X at P. For, by assumption, the equation

k Y T -
[Rii‘kl‘ -7 (G Grrs + Lars gkj-)] §EEE =0

is satisfied by the 2z independent variables (¢&%, £¢"). Hence, since
both sides of (6.1.1) are symmetric in the pairs (z, k) and (j, /) we have
the desired conclusion.

Theorem 6.1.2. If the holomorphic sectional curvatures at each point of a
Kaehler manifold are independent of the holomorphic sections passing
through the point, they are constant over the manifold.

We wish to show that the function k appearing in (6.1.1) is a constant.
By assumption, the curvature tensor has this form at each point of M.
Transvecting (6.1.1) with g¥* we derive

1
R = z _; kg, (6.1.2)

that is M is a ‘(Kaehler-) Einstein’ space (cf. §6.4). Hence, from
(5.3.29) and (5.3.38) the 1** Chern class of M is given by

n+1
4m

dk N\ Q =0,

g=— kQ.

Since ¢ is closed,

from which by corollary 5.7.2, dk must vanish for n = 2.

If at each point of a Kaehler manifold the holomorphlc sectional.
curvature is independent of the tangent vector defining it, the manifold
is said to have constant holomorphic curvature.

Theorem 6.1.3. P, may be given a metric g in terms of which it is a
manifold of constant holomorphic curvature.

Indeed, we give to P, the Fubini metric g of example 5, § 5.9:

8y 2 ‘
8ijr = 2 ‘:0’ E zo (6.1.3)

Po =0

in the coordinate neighborhood U,,.
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At the origin of this system of local complex coordinates g;;. = §,;.
Hence, from (5.3.19), a straightforward computation yields

Rije = 85 S + 8 8y s
and so from the covering of P, given in § 5.9, since
d' d"log ¢, = d’ d’’" log ;

for every index j = 1, -, n, the curvature tensor has this form every-
where. In other words, since there exists a transitive Lie group of
holomorphic homeomorphisms preserving the metric, the curvature
tensor has the prescribed form everywhere.

Corollary. The holomorphic sectional curvature with respect to g of
complex projective space is positive.

An application of theorem 3.2.4 in conjunction with theorem 5.7.2
yields the betti numbers of a compact Kaehler manifold with the
Fubini metric (6.1.3) and, in particular, those of P,.

Theorem 6.1.4.  The betti numbers b, of a compact Kaehler manifold M
of positive constant holomorphic curvature vanish if p is odd and are equal
to lif piseven:

byy =1, byyy =0, 0Z7r=nm.

To see this, let B be an effective harmonic p-form on M. Then,
B is a harmonic p-form, and since

AB=(—1p*Lx B
=/AB=0

(cf. § 5.4 for the definition of * for complex differential forms), it is
also effective. It follows that

a=B+f

is a real effective harmonic p-form. Now, puta = a4,...4, dz - A dzs

and compute F(a) (cf. fermula (3.2.10)). In the first placc, from
(6.1.2)

Rypadfs--AaB, 4 = 2ARy.a*As--dpat® y A,
+ Ryja'* *As--- 450 k‘A A ) (6.1.4)

— (ﬂ 4 1) k(aikA""A’aikA,...A, + a'* A""A’aiktA,...Ap)
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and from (6.1.1)

RABCDaABAa'"A"aCDAs...A,, = 4Ri1‘ k"aia‘xAs...A,aklaA’mAﬂ
= k(2. @it s Akt
(gu Sxix 3... 4y (615)

(5% Ay...A
— a5 Aoy 4 )

Next, we derive an explicit formula for A« in local complex
coordinates (2%). From (5.4.2) and (5.3.12)

A =V —1 2 £y €5 ’.(@ k) (8z’)

re=l

= VT i(o0e) () s A e A die NN A d

Hence, since the interior product operator is an anti-derivation

Ao = 2 V=T (- D505 o kern by
or=r (6.1.6)
cd2 A o A dRle—r A\ dER A N dER—1

Returning to equation (6.1.5), we conclude that
RABCDaABA’“'A”aCDA,_..A,, —_ 2ka‘j‘A3"‘A’aej~A,,,,A,
Combining (6.1.4) and (6.1.5), the quadratic form
Fl@) =(n+1) ka”As-"ApaﬁA’mAp +(n—p—+2) kaij'As"'Avai,-.ArﬁA
>0, 0<p=mn,

that is, there are no non-trivial real effective harmonic p-forms for
p < n. Hence, by theorem 5.7.2

byy=b, p<n+l.

Now, by theorem 3.2.1, since the Ricci curvature is positive definite
(by virtue of the fact that % is positive), b, vanishes. Thus

by,n =0, 2r<mn.

On the other hand, since M is connected, b, = 1, and so
by =1, 2r<n-+ 1.

The desired conclusion then follows by Poincaré duality.
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Corollary 1. The betti numbers of P, are
by =1, by =0, 07 =

Since P, is connected, it is only necessary to show that P, is compact.
The following proof is instructive: In C,,, with the canonical metric g
define the sphere

Sl = {eo € Coial 8leoy €00) = 1}-
Consider the equivalence relation

ey ~ e,
defined by

s Lip
ey = €7 &

where ¢ is a real-valued function. P, is thus the quotient space of S+
by this equivalence relation. In fact, P, may be identified with the
quotient space U(n + 1)/U(n) x U(1). To see this, consider the unitary
frame (ey4, €4:), 4 =0, 1, -, n obtained by adjoining to e,, 7 vectors
e; in such a way that the frames obtained from (eg4, e4.) by a trans-
formation of U(n + 1) are unitary. Since the frames obtained from
(e; €;+), 1 =1, ", n by means of the group U(n) are unitary, P, has
the given representation. That P, is compact now follows immediately
from the fact that the unitary group is compact [27].

Incidentally, this gives another proof that P, is a Kaehler manifold.
For, by the compactness of U(n + 1) we may construct an invariant
hermitian metric by ‘averaging’ over U(n -+ 1). The fundamental form
{2 is thus invariant. Hence, since U(n + 1)/U(n) x U(l) is a symmetric
space, that is, the curvature tensor associated with this metric has
vanishing covariant derivative, 2 is closed (cf. VI.E for the definition
of a symmetric space). We have invoked the theorem that an invariant
form in a symmetric space is closed. (That P, is a symmetric space
follows directly from the fact that with the Fubini metric it is 2 manifold
of constant holomorphic curvature). The reader is referred to VLE
for further details.

Corollary 2. There are no holomorphic p-forms, 0 <p <n on P,.
In degree O the holomorphic forms are constant functions.

Indeed, by (5.6.4) the p™ betti number

by, = E be,r-

a+r=p



6.2. THE EFFECT OF POSITIVE RICCI CURVATURE 205

Since the even-dimensional betti numbers are each one and b,, = b, ,
we conclude that

boo=byy =" =0b,,=1
with all remaining b,,, zero. In particular,
b,o=0forp #0.

By employing the methods of theorem 3.2.7, it can be shown that a
4-dimensional 8-pinched compact Kaehler manifold is homologically P,
provided & is strictly greater than zero (strictly positive curvature).
The reader is referred to VI.D for details. Hence, S? x S2 considered
as a Kaehler manifold cannot be provided with a metric of strictly
positive curvature. In fact, it is still an open question as to whether
S2% x S? can be given a Riemannian structure of strictly positive
curvature. For more recent results the reader is referred to [90] and [94].

The n-sphere, complex projective n-space, quaternionic projective
n-space and the Cayley plane are the only known examples of compact,
simply connected manifolds which may be endowed with a Riemannian
structure of strictly positive curvature [/].

6.2. The effect of positive Ricci curvature

Since the Ricci curvature associated with the Fubini metric of P, is
positive it is natural to ask if corollary 2 of the previous section can be
extended to any compact Kaehler-Einstein manifold with positive Ricci
curvature. An examination of the proof of theorem 6.1.4 reveals more,
however. For, if B is a holomorphic form of degree p,

«=B+F

is a real p-form; in fact, « is harmonic since B and B are harmonic. Hence,
since « is the sum of a form of bidegree (p, 0) and one of bidegree (0, p)
it follows from the symmetry properties of the curvature tensor that

F(a) = RABaAA""A”aBAz...Ap

= 2RaveHaly,

Let M be a compact Kaehler manifold of positive definite Ricci
curvature. Then, by theorem 3.2.4, since « is harmonic, and F(a) is
positive definite, « must vanish.
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We have proved

Theorem 6.21. On a compact Kaehler manifold of positive definite
Ricci curvature, a holomorphic form of degree p, 0 < p < n is necessarily
zero [4, 58].

6.3. Deviation from constant holomorphic curvature

In this section a class of compact spaces having the same homology
structure as P, and of which P, is itself a member is considered. They
have one common local property, namely, their Riccl curvatures are
positive. Aside from this their local structures can be quite different—
their classification being made complete, however, by means of a
condition on the projective curvature tensors associated with these
spaces. They need not have constant holomorphic curvature. If instead,
a measure W of their deviation from this property is given, and if the
function W associated with a space M satisfies a certain inequality
depending on the Ricci curvature of the space, M is a member of the
class.

Consider the Kaehler manifolds (M, g) and (M, g’) of complex
dimension 7. If the matrices of connection forms w and w’ canonically
defined by g and g’, respectively are projectively related their coefficients
of connection are related by

I =T +p; 8 + 11 8 (63.1)
(cf. §3.11). Since
w ar’;
R ikix = —32'”

= Tk + 11 8+ 1 B,
R" e = Ry + 8, Dpp; + 8 Dpupye 6.3.2)
It follows easily that the tensor w with components
Wi = Rbe + "—:_——I(R,-L. % -+ Ris 3)) (6.3.3)
is an invariant of the connections w and w’. For this reason we shall call

it the projective curvature tensor of (M, g) (or (M, g')). It is to be noted
that w vanishes for » = 1. Its vanishing for the dimensions # > 1 is
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of some interest. For, if w = 0, the curvature of M (relative to g or g’)
has the representation

i 1 i i
R'Ilcl‘ = - ﬁ_l (Rm 8% + Ry 81)
from which :
R,'jakp = ”—‘H (R”- Lk + Rqu g,;;-)- (6.3.4)

Applying the symmetry relation (5.3.41) we obtain
Ry grin + Ryaw gije = Ryje gt + Rijo gran
which after transvection with g¢" may be written as

R
Ry = 5y Bkt

Substituting for the Ricci curvature in (6.3.4) results in

R B
Rijesan = FICESY (8are Grse T &rar Zie)- (6.3.5)

Thus (M, g) (or (M, g)) is a manifold of constant holomorphic curvature.

Conversely, assume that (}, g) is a manifold of constant holomorphic
curvature. Then, its curvature has the representation (6.3.5). Sub-
stituting for the curvature from (6.3.5) into (6.3.3) we conclude that
the tensor w vanishes.

Hence, a necessary and sufficient condition that a Kaehler manifold be of
constant holomorphic curvature is given by the vanishing of the projective
curvature tensor w.

It is known (cf. theorem 6.1.4) that a compact Kaehler manifold of
positive constant holomorphic curvature (w = 0) is homologically
equivalent with complex projective space. It is of some interest to inquire
into the effect on homology in the case where w does not vanish. Under
suitable restrictions we shall see that the betti numbers of P, are retained.
Indeed, the homology structure of a compact manifold of positive
constant holomorphic curvature is preserved under a variation of the
metric preserving the signature of the Ricci curvature and the inequality
(6.3.7) given below. To this end, we introduce a function

I W‘j‘kli t‘j‘ tkl‘ l
)

where Wiue = — g,;4W 7., the least upper bound being taken over
all skew-symmetric tensors of type (§ 3).

2W = sup (6.3.6)
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Theorem 6.3.1. In a compact Kaehler manifold M of complex dimension n
with positive definite Ricci curvature, if

(T

for all p = 1, -, n where
£ &GO

the greatest lower bound being taken over all (non-trivial) forms of degree 1,
M is homologically equivalent with P, [7].

The idea of the proof, as in theorem 6.1.4, is to show that under the
circumstances there can be no non-trivial effective harmonic p-forms
on M for p = n. Once this is accomplished the result follows by Poincaré
duality.

Let a =a, . A’dz“’l A -+ A dz% be a real effective harmonic
p-form on M. Then, from (3.2.10), (6.3.3), and (6.3.6),

$F(0) = Ry @*4a4507" 4, 4, + (0 — DRijorge @74 - 45 ah¥y g

. ) p—1 . X
= Ry ak4s... Ay a;'kA’.__A’ + (1 — n—+ I)R“' a’k*A4s... 4, a;.k‘Aa A,
+ (0 — DWijenae @45 4 g8y )

i . » p—1
2 Ryo a*s Ay g’y 4 [(1 — m) X —(p — l)W] .
s Ay g
Since A, > 0 the desired conclusion follows.

Corollary. Under the conditions of the theorem, if

22,
=—D@n+1)’

M is homologically equivalent with complex projective n-space.

W< (6.3.7)

6.4. Kaehler-Einstein spaces

In a manifold of constant holomorphic curvature &, the general section-
al curvature K is dependent, in a certain sense, upon the value of the
constant k. In fact, if £ > 0 (<< 0), so is K; moreover, the ratio of the
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smallest (largest) to the largest (smallest) value of K is § provided & > 0
(< 0). To see this, let K = K(X, Y) denote the sectional curvature
determined by the vector fields X = £98/9z® and Y = 59¢/8z9.
Then,

_ Ruscp ¢4 ’7B £ ”’]D
(g8c 84D — £8D £ac) €4 P €€ 7P
= Rijern (8977 — &7 1)) (8 0P — &7 )
(gise " A Loy P ETV — dgyye E 8 g T
_ k(gis re + Bu L) (E 07" — £ 7%) (§¥ n'" — €7 H)
[(X,)Y) + (Y, XD — X, X) (YY)

XY+ KXY VXD + (VX0 - XX YY)

where (X,Y) = g;;.¢/" denotes the (local) scalar product of the
vector fields £'6/02' and %*"¢/23' in that order.

If we put
<X!Y> . i0 - ";_
XX v rypE e =V L
then
14 —2rcos 20 3 1 —7r2
K=k o ces 20 k(l T4 - r%co@?)'

Hence, since 0 < r =< 1,

1 — 2
o 1=7
0= [ —r2cos?28 = 7’
from which we conclude that
O<tr<K=Zk (6.4.1)

if k is positive, and if k is negative

k<K< k<0, (6.4.2)

Theorem 6.4.1. The general sectional curvature K in a manifold of
constant holomorphic curvature k satisfies the inequalities (6.4.1) for k > 0
and (6.4.2) for k << 0 where the upper limit in (6.4.1) and the lower limit
in (6.4.2) are attained when the section is holomorphic [5].

Thus, for 2 > 0 the manifold is +-pinched. This result should be
compared with theorem 3.2.7.
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From 1.10.4 it is seen that the Ricci curvature « in the direction of
the tangent vector X is given by

_ 9X, X)

K =

<X, X5

Therefore, in analogy with § 1.10 a Kaehler manifold for which the
Ricci directions are indeterminate is called a Kaehler-Einstein manifold
and the Ricci curvature is given by

Rij = kgips

or, in terms of the fundamental form 2 and the 2-form ¢ determining
the 1°* Chern class, ¢ is proportional to £, that is

K
b=— 0

Since ¢ is closed, dx A 2 = 0. Thus, if » > 1, « is a constant.

6.5. Holomorphic tensor flelds

We have seen that there exist no (non-trivial) holomorphic p-forms
on a compact Kaehler manifold with positive Ricci curvature. In this
section this result is generalized to tensor fields of type (¢ J) as follows:
Denote by Amax and Amin the algebraically largest and smallest eigen-
values of the Ricci operator Q (cf. § 3.2), respectively. Then, for a
holomorphic tensor field ¢ of type (¥ §), if

q’\mln - P/\ma.x 2 0

everywhere and is strictly positive at least at one point, ¢ must vanish,
that is no such tensor fields exist.

The idea of the proof is based on a part of the ‘Bochner lemma’
(cf. VLF) which for our purposes is easily established. (The non-
orientable case is more difficult to prove. The applications of this lemma
made by Bochner and others have led to many important results on the
homology properties of Riemannian manifolds). We shall state it as

Proposition 6.5.1. Let f be a function of class 2 on a compact and orientable
Riemannian manifold M. Then, if Af =0 (£ 0) on M, Af vanishes
identically.
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Corollary. IfAf =0 (£ 0) on M, then f is a constant.
The proof is an easy application of lemma 3.2.1. For,

| afx1=] sdf«1=0.
M M

In order to establish the above result, we put f equal to the ‘square
length’ of the tensor field ¢. But first, a tensor field of type (B 9) is said to be
holomorphic if its components (with respect to a given system of local
complex coordinates) are holomorphic functions. This notion is evidently an
invariant of the complex structure. Since the I'}, and I, are the only
non-vanishing coeflicients of connection, the tensor field

o 7 0 X .
t=thets e @ @ e @ @ @ deh
of type (¢ 3) is holomorphic, if and only if, the covariant derivatives of ¢

with respect to 2t for all i = 1, '+, n are zero.
Consider the tensor field ¢ + £. If ¢ is holomorphic,

Dkt til""'ﬂjl.“j == 0.

Q

Applying the interchange formula (1.7.21) it follows that

Dl‘Dktil.“lDil...J'q — 2 ti"”"“_lnl”‘l"""’jl,,,qu‘l‘rkI‘

pu=1
(6.5.1)
2 . .
- z Ev g sty iR ks
y=1
Transvecting (6.5.1) with g!" we obtain
. . i . .
g Du Dyt eio; = 2 Baretog . 3 R,
v=1
(6.5.2)

Now, put

—_ ¥ PR SRR 3 Tt .
[ =Gy o gttty 1Ty
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then, since ¢ + 7 is self adjoint, f is a real-valued function, and since the
operator 4 is real, Af is real-valued. Moreover,

_ A =1 ABDBDA == ”‘Dj:Dz-
28 g

= GigpBiyra 8 G Dty Dt T+ G(t) (6.5.3)

where

— T Tokl* iyt
G(l) —g,-l,:...gip,;gfl’l...gjaswg i Dl.Dkt’l ‘a]-l”_iqt"l ’wslmsq.

Expanding G(t) by (6.5.2) gives

p)

g .
Gty = [ 15ty ssiyinnic R — 2 tfl---m-,rfy+l-~-t,,,1___,qR*u,]- (6.5.4)

y=1 pu=1 X .

Cliya e
Since the first term on the right in 6.5.3 is non-negative we may conclude
that Af < 0, provided we assume that the function G is non-negative.
Hence, as a consequence of proposition 6.5.1

Theorem 6.5.1. Let t be a holomorphic tensor field of type (2 3). Then, a
necessary and sufficient condition that the (self adjoint) tensorfield t + §
on a compact Kaehler manifold be parallel is given by the inequality

G(t)=0.

On the other hand, if G(t) is positive somewhere, t must vanish, that is
there exists no holomorphic tensor field of the prescribed type [11].

An analysis of the expression (6.5.4) for the function G yields without
difficulty

Corollary 1. Let t be a holomorphic tensor field of type (2 0) on the
compact Kaehler manifold M. Then, if

9Amin = PAmax,
tis a parallel tensor field. If strict inequality holds at least at one point of M,
t must vanish.

If M is an Einstein space,

Amin = Aumx-
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Denoting the common value by A we obtain

Corollary 2. There exist no holomorphic tensor fields t of type (¥ 3) on a
compact Kaehler-Einstein manifold in each of the cases :

(i) ¢g> p and A >0,
(ii) ¢ < p and A < 0.

In either case, for XA = 0, t is a parallel tensor field.

6.6. Complex parallelisable manifolds

Let S be a compact Riemann surface (cf. example 1, § 5.8). The genus g
of S is defined as half the first betti number of S, that is 5,(.S) = 2g.
By theorem 5.6.2, g is the number of independent abelian differentials
of the first kind on S.

We have seen (cf. § 5.6) that there are no holomorphic differentials on
the Riemann sphere. On the other hand, there is essentially only one
holomorphic differential on the (complex) torus. On the multi-torus T,
there exist » abelian differentials of the first kind, there being, of course,
no analogue for the n-sphere, n > 2. The Riemann sphere has positive
curvature and this accounts (from a local point of view) for the distinction
made in terms of holomorphic differentials between it and the torus
whose curvature is zero.

Since the torus is locally flat (its metric being induced by the flat
metric of C,)) the above facts make it clear that it is complex parallelisable.
Indeed, there is no distinction between vectors and covectors in a
manifold whose metric is locally flat. On the other hand, a complex
parallelisable manifold can be given an hermitian metric in terms of
which it may be locally isometrically imbedded in a flat space provided
the holomorphic vector fields generate an abelian Lie algebra and, in
this case, the manifold is Kaehlerian.

Theorem 6.6.1. Let M be a.complex parallelisable manifold of complex
dimension n. Then, by definition, there exists n (globally defined) linearly
independent holomorphic vector fields X,, -, X,, on M. If the Lie algebra
they generate is abelian, M is Kaehlerian and the metric canonically defined
by the X;, i =1, -, n, is locally flat [10].

Let 67, r = 1, -, n denote the 1-forms dual to X, -, X,,. Thus,
they form a basis of the space of covectors of bidegree (1,0). In
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terms of these pfaffian forms, the fundamental form £2 has the expression

Q:\/—li(?*/\[;f.

r=1

If we put (cf. V.B.l)
(X5, X:] = ¢ X,

then, by (3.5.3) and (3.5.4)

e = — %c;ﬁk N
Hence, since the Lie algebra of holomorphic vector fields is abelian,
the 6¢ are d’-closed for all i = 1, -, n. (Referring to the proof of theorem
6.7.3, we see that they are also d’’-closed.) This being the case for the
conjugate forms as well

dR =1, (0 NG — 6" A dfr) =0,
r=1

that is, M with the metric 2 207 ® 7 is a Kaehler manifold. Moreover,
the fact that the 6% are closed allows us to conclude that M is locally
flat. To see this, consider the second of the equations of structure
(5.3.33):

O, = do', — 6% A 6",

Taking the exterior product of these equations by 6/ (actually =*67,
cf. §5.3) and summing with respect to the index j, we obtain

NG, =0, i=1,,n

Indeed, from the first of the equations of structure (5.3.32), 67 A 6%,
vanishes since the 8° are closed. Moreover,

o A d65 = — d(F A 8%) =0.

If we pull the forms @%; down to M and apply the equations (5.3.34),
we obtain

R dzk A d3' A do/ =0,

and so, since the curvature tensor is symmetric in j and &, it must vanish.
In §6.9, it is shown that if M is compact, it is a complex torus.
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6.7. Zero curvature

In this section we examine the effect of zero curvature on the properties
of hermitian manifolds—the curvature being defined as in § 5.3.

Theorem 6.7.1. The curvature of an hermitian manifold vanishes, if and
only if, it is possible to choose a parallel field of orthonormal holomorphic
frames in a neighborhood of each point of the manifold.

By a field of frames on the manifold M or an open subset S of M
is meant a cross section in the (principal) bundle of frames over M or S,
respectively. The field is said to be parallel if each of the vector fields
is parallel.

We first prove the sufficiency. If the curvature is zero, the system of
equations w’; = 0 is completely integrable. Therefore, in a suitably
chosen coordinate neighborhood U of each point P it is possible to
introduce a field of orthonormal frames P, {e;, -, e,, €, ", &,} which
are parallel and are uniquely determined by the initially chosen frame
at P. For, by § 1.9 the vector fields ¢; satisfy the differential system

dez‘ = (U],‘ ej.

(The metric being locally flat, the e; may be thought of as covectors.)
Of course, we also have the conjugate relations. Since the e, are of
bidegree (1,0), the condition de; = O implies d’’e; = 0, that is the ¢;
are holomorphic vector fields. Hence, the condition that the curvature
is zero implies the existence of a field of parallel orthonormal holo-
morphic frames in U.

Conversely, with respect to any parallel field of orthonormal frames
the equations

o A o’ — dwj,- = R’ dz" A d&

imply R7;;. = 0. The curvature tensor must therefore vanish for all
frames.

Let us call the neighborhoods U of the theorem admissible neighbor-
hoods. Parallel displacement of a frame at P along any path in such a
neighborhood U of P is independent of the path since the system
w?; = 0 has a unique solution through U coinciding with the given
frame at P e U. (In the remainder of this section we shall write U(P)
in place of U).

Now, given any two points Py and P, of the manifold and a path C
joining them, there is a neighborhood U(C) = U U(Q) of C such

QeC
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that the displacement of a frame from P, to P, is the same along any
path from P, to P, in U(C). We call U(C) an admissible neighborhood.
Let Cy and C, be any two homotopic paths joining P, to P; and denote
by {C}} (0 =t =< 1) the class of curves defining the homotopy. Let S
be the subset of the unit interval I corresponding to those paths C,
for which parallel displacement of a frame from P, to P, is identical
with that along C,. Hence, 0 € S. That .S is an open subset of / is clear.
We show that S is closed. If S s I, it has a least upper bound s’'.
Consequently, since U(C,) is of finite width we have a contradiction.
For, S is both open and closed, and so S = I. We have proved

Theorem 6.7.2. In an hermitian manifold of zero curvature, parallel
displacement along a path depends only on the homotopy class of the
path [16].

Corollary. A simply connected hermitian manifold of zero curvature is
(complex) parallelisable by means of parallel orthonormal frames.

It is shown next that a complex parallelisable manifold has a canonically
defined hermitian metric g with respect to which the curvature vanishes.
Indeed, in the notation of theorem 6.6.1 let

0

X, = g("r) o5

with respect to the system (2%) of local complex coordinates. In terms
of the inverse matrix (¢7) of (¢,,) the n 1-forms

6 = &7 dy

define a basis of the space of covectors of bidegree (1,0). We define the
metric g by means of the matrix of coefficients

n —
g = D, £ €.
r=1

Since £;, £ = 6] and

o) L
a—z-,j - 0; - 1, y 1y
: af(f)
£ —az.% =0.
Hence, since (X,, §*) = 3;,
%7 o,

oz*
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In terms of the metric g, the connection defined in§5.3 is given by the
coeflicients

ax O
02k

n X 85(1_’)
=2 &b
r=1

!

Th=¢
(6.7.1)

Differentiating with respect to %' we conclude that R?j,. = 0.

Theorem 6.7.3. A complex parallelisable manifold has a natural hermitian
metric of zero curvature.

Since

_ %

D, &5 = 227 + &6 T

(D; denoting covariant differentiation with respect to the given con-
nection), it follows that
f(zr) D; ffﬂ =0.

Multiplying these equations by ¢/, and taking account of the relations

1 ¢gln
g(s)f; = 8;

we conclude that
fo(:)=01 f=1,"‘,7l.

Thus, we have

Corollary. A complex parallelisable manifold has a natural hermitian
metric with respect to which the given field of frames is parallel.

The results of this section are interpreted in VI.G.

6.8. Compact complex parallelisable manifolds

ILet M be a compact complex parallelisable manifold. Since the
curvature of M (defined by the connection (6.7.1)) vanishes, the con-
nection is holomorphic; hence, so is the torsion, that is, in the notation
of §5.3

d" 2 =0, i=1n
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where the £2¢ are the forms @ pulled down to M by means of the cross
section M — {(8/927)p, (8/8%2")p}. Denoting the components of the
torsion tensor by T;* as in § 5.3, put

it* L oprgx

f= Tjkt’ Tjkil Tjke ___gjr‘gks‘g T *.
then, f is a real-valued function.

Lemma 6.8.1. The T,,* are the constants of structure of a local Lie group.
For,
- %Sdf = g”‘Da'Drf

=g (T DD, T;' + D, Ty, "D T%%).

Hence, since the curvature is zero, an application of the interchange
formula (1.7.21) gives

— }3df =g D, T DT,
Therefore, by proposition 6.5.1,
Af = 8df = 0,

from which we conclude that the D,T;,* vanish. Consequently, from
(5.3.22) they satisfy the Jacobi identities

T Ty + T T+ T, Tl = 0. (6.8.1)

Since M is complex parallelisable, it follows from the proof of
theorem 6.7.3 that there exists n linearly independent holomorphic
pfaffian forms 6, -, 6" defined everywhere on M. Therefore, their
exterior products & A 67 (i <<j) are also holomorphic and linearly
independent everywhere (cf. lemma (6.10.1)). Moreover, since there are
n(n — 1)/2 such products they form a basis of the space of pure forms
of bidegree (2,0).

It is now shown that d#? is a holomorphic 2-form, i = 1, -, n. Indeed,
6% is of bidegree (1,0), and so since df* == d'6% (by virtue of the fact that
the 6% are holomorphic), df is a pure form of bidegree (2,0). On the
other hand, d''d6" = d''d’'0' = Q since d'd"’ + d''d’ = 0.

We conclude that the df° may be expressed linearly (with complex
coefficients) in terms of the products 7 A 6%, and since M is compact
these coefficients (as holomorphic functions) are necessarily constants.
That the coefficients are proportional to the T),' is easily seen from
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equations (5.3.3) - (5.3.5) by restricting to parallel orthonormal frames
(cf. proof of theorem 6.7.1). Consequently,

do* = — 1 T,'0° A 6% T,'+ T, '=0. (6.8.2)

Equations (6.8.1) and (6.8.2) imply that the §* (i =1, -, n) define a
local Lie group. This group cannot, in general, be extended to the
whole of M. For this reason we consider the universal covering space
M of M. For, M is simply connected and has a naturally induced
hermitian metric of zero curvature (cf. theorem 6.7.2, cor., and prop.
5.8.3). We prove

Theorem 6.8.1. The universal covering space M of a compact complex
parallelisable manifold M is a complex Lie group [69)].

In the first place, since the projection 7: M — M is a holomorphic
map, M has a naturally induced complex structure (cf. prop. 5.8.3).
On the other hand, = is a local homeomorphism; hence, itis (1-1).
Consequently, the n forms

i = m*(67)

are linearly independent and holomorphic, the latter property being
due to the fact that 7 is holomorphic (cf. lemma 5.8.2). Moreover,
i = d(n*8) = n*(d6})
=rX—§ T ¢ N6
= — L Ty w8 A0
=—3T, 0" NG

Hence, the i define a local Lie group. The # being independent we
define the (hermitian) metric

g=226i®@

on M. That this metric is not, in general Kaehlerian follows from the
fact that the 6" are not necessarily d’-closed.

With respect to this metric, /7 may be shown to be complete (cf. § 7.7).
To see this, since M is compact it is complete with respect to the metric

gzziaf@)ﬁ

=1

The completeness of M now follows from that of M.
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For,
g=n%g

Hence, (1\71, £) is a ‘hermitian covering space’ of (M, g), that is, the
holomorphic projection map = induces the metric of M.

The universal covering space M of a compact complex parallelisable
manifold therefore has the properties:

(i) there are n independent abelian differentials of the first kind on M;
(ii) they satisfy the equations of Maurer-Cartan;

(iii) M is simply connected, and

(iv) M is complete (with respect to §).

Under the circumstances, M can be given a group structure in such
a way that multiplication in the group is holomorphic. Moreover, the
abelian differentials are left invariant pfafhan forms. We conclude
therefore that /7 is a complex Lie group.

That compactness is essential to the argument may be seen from the
following example:

Let M = C, — 0. Define the holomorphic pfaffian forms 6 and 6%
on M as follows:

" =2t 22det, 6% = 3! a?de

Denote by X, and X, their duals in 7% The components of the torsion
tensor with respect to this basis are given by (6.8.2), namely,

1 __ 1 T2 l
= S

Although X, and X, form parallel frames, these components are not
constant.

6.9. A topological characterization of compact complex parallelisable
manifolds

In this section, a compact complex parallelisable manifold M is
characterized as the quotient space of a complex Lie group. In fact, it is
shown that M is holomorphically isomorphic with A7/D where D is the
fundamental group of M. As a consequence of this, it follows that M
is Kaehlerian, if and only if, it is a multi-torus.

Let D be the fundamental group of the universal covering space
(M, =) of the compact complex parallelisable manifold M, that is, the
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group of those homeomorphisms ¢ of M with itself such that = - 0 = =
for every element o € D. Then,

o* ¥ = ¥

where o* is the induced dual map on A+¢(M). Hence,
gi = .n.*(ef) — a*ﬂ,*(gf) — 0*(91‘),

that is the # are invariant under D. It follows that o is a left translation
of M, and so D may be considered as a discrete subgroup of the complex
Lie group M. With this identification of D, M is holomorphically
isomorphic with M/D. Thus,

Theorem 6.9.1. A compact complex parallelisable manifold is holo-
morphically isomorphic with a complex quotient space of a complex Lie
group modulo a discrete subgroup [69].

Corollary. A compact complex parallelisable manifold is Kaehlerian, if
and only if, it is a complex multi-torus.

A complex torus is compact, Kaehlerian, and complex parallelisable
(cf. example 3, §5.9). Conversely, if M = G/D is Kaehlerian, the left
invariant pfaffian forms on the complex Lie group G must be closed.
It follows that G is abelian. Therefore, M is a complex torus.

Theorem 6.9.1 may be strengthened by virtue of theorem 6.7.1. For,
zero curvature alone implies that the T,* satisfy the equations of
Maurer-Cartan. It follows that the 8 are the left invariant pfaffian forms
of a local Lie group.

Theorem 6.9.2. A compact hermitian manifold of zero curvature is
holomorphically isomorphic with a complex quotient space of a complex Lie
group modulo a discrete subgroup.

Corollary. A compact hermitian manifold M of zero curvature cannot be
simply connected.

For, otherwise the left invariant pfaffian forms on M are closed.
Thus, M is an abelian Lie group, and hence is a complex torus. This,
of course is impossible.

6.10. d"’-cohomology
We have seen that d’’ is a differential operator on the graded module

A*(M) (cf. §5.4) where M is a complex manifold. In this way, since
d'’? =0, it is possible to define a cohomology theory analogous to the



222 VI. CURVATURE AND HOMOLOGY: KAEHLER MANIFOLDS

de Rham cohomology (d-cohomology) of a differentiable manifold.
The reason for considering cohomology with the differential operator d"’
is clear. Indeed, it yields information regarding holomorphic forms.
We remark that in this section to every statement regarding the
operator d'’ there is a corresponding statement for the operator d’.
Thus, there is a corresponding cohomology theory defined by 4’

Lemma 6.101. For every form o of bidegree (q,7) and any B
A" AB)=d"a AR+ (— 1) o A dB.

To see this, it is only necessary to apply the operator d to o A B
and compare the bidegrees in the resulting expansion.

Let A2” denote the linear space of forms of bidegree (¢, r) on M.
Consider the sequence of maps

& re
q.r-1 a,71 ar L34 q,r+1
- A LAY AT

where for the moment we write d',, = d’’ | A%".. Now, put

kernel 4"
HAor(M) = ——— 27
D = frage @

then,

Proposition 6.10.1.
H}"(M) = kernel d°), ,.

For, if o eimage d'',,., it must come from a form of bidegree
(¢pr — 1). Let o be a form of bidegree (p,0). Then, its image by
d’, .., must be 0.

Corollary. HP'O(M) is the linear space of holomorphic p-forms.

Now, by lemma 6.10.1 if « and 8 are holomorphic forms, so is « A B.
Define
Hy(M) =3, HE°(M);

p=0

then, by the remark just made, H;(M) has a ring structure.

It is now shown that the d’’-cohomology ring of a compact complex
parallelisable manifold M depends only upon the local structure of its
universal covering space.
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Indeed, every holomorphic p-form « on M has a unique representation

o= ail...i,o“l AN

where the coefficients are holomorphic functions. Since M is compact,
the coefficients must be constants. Hence, m*(x) is a left invariant
holomorphic p-form on (M, m)—the universal covering space of M.
On the other hand, a left invariant p-form on M has constant coefficients.
Thus, 7* defines a ring isomorphism from the exterior algebra of holo-
morphic forms on M onto the exterior algebra of left invariant differential
forms on M. Moreover, since

m¥d" = d''n*,

7* induces an isomorphism between their cohomology rings. Now,
since the cohomology ring of a compact (connected) Lie group is
isomorphic with the cohomology ring of its Lie algebra L [48], we
conclude that the d’’-cohomology ring of M is isomorphic with the
cohomology ring of L. We have proved

Theorem 6.10.1. The d'’-cohomology ring of a compact complex parallelis-
able manifold is isomorphic with the cohomology ring of the (complex) Lie
algebra of its universal covering space[69).

6.11. Complex imbedding

In this section, the problem of imbedding a Kaehler manifold M
holomorphically into a locally flat space is considered. More precisely,
we are interested in establishing necessary conditions for such im-
beddings to be possible. Moreover, only locally isometric imbeddings are
considered. If the Ricci curvature of M is positive, M cannot be so
imbedded. On the other hand, negative Ricci curvature is not sufficient
as we shall see by considering the classical hyperbolic space defined
by means of the metric

dzdz

d52=(1__—z§)2 (6.11.1)

in the unit circle | 2 | < 1. The possiblity of such imbeddings thus
appears to be rather remote.
Let U be a coordinate neighborhood on the complex manifold M




224 VI. CURVATURE AND HOMOLOGY: KAEHLER MANIFOLDS

with local complex coordinates (2, -, 2®) and assume the existence
on U of N Z n holomorphic 1-forms

o =aPdy, r=1,-N (6.11.2)
independent at each point, satisfying the further conditions
dor =0, r=1,-,N. (6.11.3)

Since d = d’ + d’’ we have assumed the existence on U of N closed
forms «”. Thus, the real 2-form

N —
Q=V—1) ¢ A (6.11.4)

re=1

on U is closed and, since it is of maximal rank, the differential forms «”
define a (locally) Kaehlerian metric on U. This metric is not globally
defined, that is, we do not assume the existence of IV (globally defined)
holomorphic 1-forms on M but rather on the coordinate neighborhood U,
The conditions (6.11.3) are the integrability conditions of the system
of differential equations
(r) __ _aﬂ y —
a; = az.'l 1= 11
where the f7 are holomorphic functions.
Consider the map f: U — Cy defined in terms of local coordinates by

w' = fr(2}, -, 2"), r=1,,N. (6.11.6)

wuny r=1,- N (6.11.5)

Since £ is of maximal rank, this map is (1-1). Hence, the metric g of U:
N —_—
gir = 2,a0a], fj=1,n (6.11.7)
r=1
is induced by the flat Kaehler metric
N —
do* = dw" dw’ (6.11.8)

r=1

of Cy. For,

N S N orr 2fr
2 dw’ dw" = of - —af— dzt dF
r=1 re=1 0%* 02

N —
—_ E a‘:’ a(;-r doi d5

=]

= L+ dz‘ dfj.
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Computing the Ricci curvature with respect to the metric (6.11.7),
we obtain

N
Ry = — g Y, D, a)) D;a]. (6.11.9)
r=1

For, from (5.3.19) the Ricci curvature is given by

azg"t » ag. agt
— = pkl* a* a1 ir s ).
Ree (8z" ozt ' ozx 93 )

Substituting for g,;. from (6.11.7) and applying (5.3.11), the desired
formula for R;;. follows.

Clearly, then, the Ricci curvature defines a negative semi-definite
quadratic form since

N
Ry £ 8" = — g 3, (£°D,a'}) (¢ Dy ) 0.

=1

We have proved

Theorem 6.11.1. Let M be a Kaehler manifold locally holomorphically
isometrically imbedded in C with the flat metric (6.11.8). Then, its Ricci
curvature is non-positive [5].

If M is compact we may draw the following conclusion from cor. 1,
theorem 6.5.1.

Theorem 6.11.2. If the Ricci curvature is strictly negative there are no
holomorphic contravariant tensor fields of bidegree (p,0); otherwise, a
tensor field of this type must be a parallel tensor field. In particular, for
negative Ricci curvature there are no holomorphic vector fields on M.

Since a complex torus T, is locally flat (with respect to the metric
of (6.7.1)), we may draw the obvious conclusion:

Corollary. If a compact Kaehler manifold can be locally holomorphically
(I-1) imbedded in some T,, and if its metric g can be obtained directly from
the imbedding, a holomorphic contravariant tensor field of bidegree (p, 0) (if
it exists) must be parallel with respect to the connection (6.7.1) of the metricg.

If the Ricci curvature is negative, local imbeddings of the type
considered in theorem 6.11.1 are not always possible. The hyperbolic
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space defined by the metric (6.11.1) in the unit circle shows that this is
the case. This is a consequence of the following

Proposition 6.11.2. Let U be a coordinate neighborhood of complex
dimension | endowed with the metric

ds® = g(z,%) dz dz
where the function g has the special form
g(2,8) =, a, 2° 2. (6.11.10)
1

p=

If U can be holomorphically, isometrically mapped into Cy(N = 1) with
the flat metric (6.11.8 ), then, the power series (6.11.10) is a polynomial.

For, since U is holomorphically, isometrically imbedded in Cy, the
imbedding is given by the functions

=i b2, r=1,N

with the property

dff(z) _ .
2| [ Ea 2P 3. (6.11.11)
Hence,
N —
po D, b by = 8py ap_y. (6.11.12)
=1

Now, for each p the sequence of numbers

={}, r=1,-N

is a vector in Cy. But, by (6.11.12) any two are orthogonal; hence, at
most N of them can be different from zero. We conclude that at most
N2 of the b7, are different from zero, that is the mapping functions f7(2)
are polynomlals Comparing (6.11.10) with (6.11.11), (=, 2) must be
a (finite) polynomial.

Consider the metric
1
g2,2) = ==y (6.11.13)

in the unit circle | z | < . Hence, from the proposition just proved,
the interior of the disc | z | <1 cannot be isometrically imbedded in
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some C, with the flat metric. It is not difficult to see that the Riceci
curvature of g is given by

R(z,2) = 2

TS

From (6.11.13) and (6.11.14) we obtain immediately that the scalar
curvature 1s — 2. Thus, g has constant negative curvature, that is g is
a hyperbolic metric.

Another example is afforded by the higher dimensional analogue,
namely, the interior of the unit ball Z7.; | 2¢ |2 < | with the hyperbolic
metric

0. (6.11.14)

_Zdr P -2 2 IZZ’]dz"12+|Zz"'dz’|2.

2
ds (I — l 2t |2)2

6.12. Euler characteristic

In the previous section we considered manifolds M on which N = n
holomorphic functions f7(r = 1, .-+, N) are ‘locally’ defined. Mare
precisely, in a coordinate neighborhood U of M we assumed the
existence of N independent holomorphic 1-forms o7 satisfying d’a” = 0.
Now, in this section, we assume that on the complex manifold M there
exists N = n ‘globally’ defined holomorphic differentials

o =a'] ds', r=1,,N, rank(a'D)=n everywhere,

which are simultaneously d’-closed. The fundamental form
N —_—
Q=vV=12a N
r=1

of M is then closed and of maximal rank. The distinction made here is
that we now have a globally defined Kaehler metric

N,
d? =2 o @,
r=1
In terms of the curvature of this metric, and by means of the generalized
Gauss-Bonnet theorem, if M-is compact

(=1y'x(M) =0

where y(M) denotes the Euler characteristic of M. Moreover, x(M)
vanishes, if and only if the n'™" Chern class vanishes. Incidentally, the
vanishing of x(M) is a necessary and sufficient condition fcr the existence
of a continuous vector field with no zeros (on M).
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A representative ¢, of the (n — r + 1)* Chern class of an hermitian
manifold is given in terms of the curvature forms ® by means of the
formula [27]

1 Fyevdp gy b T
= TG T e O A A BT (6121

The theorem invoked above may be stated as follows:
The Euler characteristic of a compact hermitian manifold M is given
by the Gauss-Bonnet formula

(M) = f L (6.12.2)

As in §6.11, in each coordinate neighborhood U there exists N
holomorphic functions f7 such that

a‘:’zgf;, i=1,n r=1-N (6.12.3)

by means of which M is mapped locally, (1-1) into Cy. Moreover, the
metric g of M defined by the matrix of coefficients

N [E—
G = 2 ) @ (6.12.4)
r=1
is induced by the flat Kaehler metric
N RO
do? =) dw dw
r=1

of Cp where
w'(2) :f a7 dat

is the 7® abelian integral of the first kind on M.

To compute the curvature tensor of the metric ¢ we proceed as
follows: In the first place, from (5.3.19) the only non-vanishing com-
ponents are given by

0% g 0Zire Ofje
R": .= — 7 r*s r s, . .
vk o TE (6.12.5)
From (6.12.4), since the functions a'?, r =1, N; i=1, -, n are

holomorphic,

08 = ﬁ a_a'g atn
o=k = ok 7
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and

02 guin _ﬁ 2a'? 2a'p
azk ozt ~ oz o2t

Substituting in (6.12.5) and making use of the fact that

r*g ag:“s — 1-!_1'

8 o5t — 45
we obtain
N (r)
aa(r) aa(r) r
Rioie = — E —— 2 { a‘;.’ he (6.12.6)
oz ¥
r=l =]
Now, since
(r)
D, a'" = oa’; —anpm
13 [ azk m ik
and
—_— aa(") —_
n j (r 7o
D,a§ =—azl —a, 1y,

(r) (r) (r) — ——
() (r) da; Oa] da; L0 30 ; 20 a0 g0 m ,
D D - Pﬂ + a., Fik sz

T oz 9t oz 7 @m
0a{"0a}  8a] Ty 7
= g_Wa‘,,’ ? _a"rm D] . (6.12.7)

But

N N S
(r “n (n ( D, 2"
Dy gojn = 2 D,.(a,, a(;) E a} Dnan+ an Dy a'}),
r=1 r=1
from which we conclude that

(r) (r) ) (r)
EarDl ;:—Ea”Dp ’ =0.

r=1 r=1

Summing (6.12.7) with respect to r and comparing the result with
(6.12.6) we obtain

N _
(r)
Ry = = 3, 0,ap DT

r=1
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Thus,

N
Qur = Ryjopinda® A d5t = — Y, Da'P Da® da* A dst.

r=1

where the Q%; are the forms &%, pulled down to M. (The £,;. are defined
by the above relations.)
From 6.12.1 we deduce that
1

— 7'...1" i ‘:"
6 = QrvV/=1)n n!&-‘l...f,, O} N ... A O}

=D der @y

Qrv— 1)
1 3 ~—
= ————— det D a7 D,a'm dz* A d3).

Qn ’-—l)" (E ECd U \)
where, for simplicity, we have writen £2,;. for its image in B (cf. § 5.3).
Now, put

q,(:J = Dka(:) dz*.

Then,

1 X e
o= vy (e o)

r=1

1 _
=————det(!®d N P
eV — 1) et )

where @ is the matrix (¢”) and ‘@ denotes its transpose.
The result follows after expressing @ in terms of real analytic coordi-

nates (x%, y') with 2 = x4 vV — 1 y%,sincedz? A d5i = — 2V —1dx‘ A dy'.

Theorem 6.12.1. The Euler characteristic of a compact complex manifold
of complex dimension n on which there exists N = n closed holomorphic
differentials o'’ dz such that rank(a‘})=n satisfies the inequality

(— 1) x(M) Z 0.
Moreover, x(M) vanishes, if and only if, the n'™ Chern class vanishes [8].

6.13. The effect of sufficiently many holomorphic differentials

It was shown in §6.11 that the existence of sufficiently many inde-
pendent holomorphic differentials which are, at the same time, d’'-closed
precludes the existence of holomorphic contravariant tensor fields of
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any order provided the Ricci curvature defined by the given differentials
is negative. In fact, the condition that the differentials be d’-closed
ensured the evistence of a Kaehler metric relative to which the Ricci
curvature was non-positive. By restricting the independence assumption
on the holomorphic differentials we may drop the restriction on the
curvature entirely, thereby obtaining interesting consequences from an
algebraic point of view.

We consider a compact complex manifold M of complex dimension 7.
No assumption regarding a metric will be made, that is, in particular,
M need not be a Kaehler manifold. Let « be a holomorphic form of
bidegree (1,0) and X a holomorphic (contravariant) vector field on M.
Then, since M is compact

#(X)x = const.,

for, {(X)a is a holomorphic function on M. If we assume that there are
N > n holomorphic 1-forms a!, -, " defined on M, then

Xy =c, r=1N (6.13.1)

where the ¢",r = 1, -1, N are constants. If, for any system of constants
¢” (not all zero) the linear equations (6.13.1) are independent, that is,
if the rank of the matrix

(al:)’ CT), o = a(:j) dzt

is n 4 1 at some point, the holomorphic vector field X must vanish.

Now, let ¢ be a holomorphic contravariant tensor field of order p on M.
Then, under the conditions, the same conclusion prevails, that is, # must
vanish. Indeed, it is known for p = 1. Applying induction, assume the
validity of the statement for holomorphic contravariant tensor fields of
order p — | and consider the holomorphic tensor field

.. 0 0
= &ty ——— ves v
! £ dzh @@ 17243
Then, the functions
@y ghois, 7 =1, N

are the components of N holomorphic contravariant tensor fields of
order p — 1. By the inductive assumption they must vanish. But, we
have assumed that at least » of the differentials «” are independent. Thus,
the coefficients of the a'?) in the system of linear equations

(r) giy..i, —
a',nf) » =0

must vanish.
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Theorem 6.131. Let o",r =1, -, N be N > n holomorphic differentials
on the compact complex manifold M with the property : For any system
of constants ¢”,r =1, -+, N (not all zero) the rank of the matrix (a'}, c7), r =
1, -, N;i=1, -, n has its maximum value n + 1 at some point. Then,
there do not exist (non-trivial) holomorphic contravariant tensor fields of
any order on M. In particular, there are no holomorphic vector fields
on M [9].

This result is generalized in Chapter VII. In particular, it is shown
that if b, (M) = 2, M cannot admit a transitive Lie group of holo-
morphic homeomorphisms.

6.14. The vanishing theorems of Kodaira

A complex line bundle B over a Kaehler manifold M (of complex
dimension #) is an analytic fibre bundle over M with fibre C—the complex
numbers and structural group the multiplicative group of complex
numbers acting on C. Let A%B) be the ‘sheaf’ (cf. § A2 with I' =
AYB)) over M of germs of holomorphic g-forms with coefficients in B
(see below). Denote by HP(M, A%(B)) the p™ cohomology group of M
with coefficients in A%(B) (in the sense of § A.2). It is known that these
groups are finite dimensional [47]. It is important in the applications of
sheaf theory to complex manifolds to determine when the cohomology
groups vanish. By employing the methods of § 3.2, Kodaira [47] was
able to obtain sufficient conditions for the vanishing of the groups
HP(M, N%(B)). It is the purpose of this section to state these conditions
in a form which indicates the connection with the results of § 3.2. The
details have been omitted for technical reasons—the reader being
referred to the appropriate references, principally [97].

In terms of a sufficiently fine locally finite covering # = {U,} of M
(cf. Appendix A), the bundle B is determined by the system {f,,}
of holomorphic functions f,, (the transition functions) defined in U, n U,
for each «, B. In U, n Uz U,, they satisfy f,;fs, f,, = 1. Setting
a,s == | f45 |% it is seen that the functions {a,,;} define a principal fibre
bundle over M (cf. I.]) with structural group the multiplicative group
of positive real numbers. This bundle is topologically a product. Hence,
we can find a system of positive real functions {a,} of class « defined in
{U,} such that, for each pair «, 8

[,
tfaﬁlzza—;‘ in U, N Ug.
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Since the functions f,; are holomorphic in U, n Uy, it follows that

2loga,  9*logag

wow ~ awew "U"Us
Thus, the 2-form .
yie dzt N dF = az+§;f& dzi A d¥

is defined over the whole manifold M (cf. V.D).
A form ¢ (form of bidegree (p, q)) with coefficients in B is a system
{#,} of differential forms (forms of bidegree (p, ¢)) defined in {U,} such

that .
by =fupbp in U, 0 U

Following § 5.4 we define complex analogs d’, d”, 8’ and 3" of the
operators d and 8 for a form ¢ = {¢,} with coefficients in B:

d¢ = {(d'¢)}, d'¢ = {(d").}

and
56 = {(¥'d)}, 8¢ = {9
where
@) = &b 680 = — rad” (5 +b.)

(«: not summed)—the star operator x being defined as usual by the
Kaehler metric of M. In terms of these operators it can be shown that

4 =2ds +8'd)

is the correct operator for the analogous Hodge theory — ¢ being called
harmonic if it is a solution of 4¢ = 0.

If M is compact it is known that H?(M, A4(B))x~ H%?(B)—the vector
space of all harmonic forms of bidegree (g, p) with coeflicients in B [47]. Tt
follows that dim H?P(M, A4(B)) is finite for all p and q.

Since fo5 fo, fru = 110 U, n Uy n U,

log f,5 + log f5, + log f,, = 2= Vv =1 Capy

is a constant in U, n Uy N U, where ¢,5, € Z. The system {c,;,} CZ
defines a 2-cocycle on the nerve N( %) of the covering % (cf. Appendix A
and (72]). It therefore determines a cohomology class ¢y € HAN( %), Z);
indeed, by taking the direct limit

HXM,Z) = lim H¥{N(%),Z)
4

we obtain an element ¢ = ¢(B) € H¥M, Z) called the characteristic class
of the principal bundle associated with B.
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Lemma 6.14.1 [47]. The real closed 2-form

V=1 ?loga, , »
Y= s 0 NE

on M is a representative of the characteristic class ¢(B). Conversely, if v
is a real closed form of bidegree (1,1) on M belonging to the characteristic
class c(B), there exists a system of positive functions a, of class « such
that for each pair o, B

a,=|fplfag in U, nU
and
V=1 &loga, , . .
—_— o @ 1 >}
4 o aam N

The 2-form y is said to be positive (y > 0) if the corresponding
hermitian quadratic form is positive definite at each point of M. Let

1 i - .
¢ = ;!’q—!%il.,.f,j;,,_,; dziv A .o A dets A\ dEN LA dER s

be a differential form of bidegree (p, ¢) with coefficients in B and denote
by F?'9(y, v) the quadratic form (corresponding to F(a) in § 3.2—the
operator 4 being given by 4 = 2(d’8’ + §&'d’)),

Fra(y, v) = [8,(y"5n + R"s) — pg- "R gipe].

. Fokg. . yi* i3..008
Urky.. kyjivity.. g U800 T2eete

where ;. = g¥" y..
We now state the vanishing theorems:

Theorem 6.14.1. If the characteristic class c¢(B) contains a real closed form

Y= — yir dx0 N\ dF
2m

with the property that the quadratic form FP4(y, v) is positive definite
at each point of M, then

HYM, A%B) = {0}, ¢=1,",n
Theorem 6.14.2. If the form y > 0,
H(M, A"B)) ={0}, ¢=1,n
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For, then

Fn.,q(,y, ‘Z)) = n"'yi'i' vl?""ni‘?z 1; .vl‘l e’ 22 1 .

The proof of theorem 6.14.1 is an immediate consequence of the fact
that He(M, AP(B)) =~ H?»B). For, by lemma 6.14.1, we may choose
the system of functions {a,} satisfying a, = | f,5 |2a5 in such a way that
(v —1)2m) (2% log a,/0z'02) dzt A d3 =y (cf. VI. H.2). Then, by
the argument given below F»9(y,4,) =0,¢ =1, n holds for any
form ¢ = {$,} ¢ H»9(B). The result now follows since FP(y, ¢,) >0
unless ¢, vanishes.

Let — B denote the complex line bundle defined by the system
{f;3}. Then, the map ¢ — ¢’ defined by

, 1
¢a - —a_a *‘;a
maps HP¢(B) isomorphically onto H*?"~¢— B). Hence,
HYM, AY(B)) = H(M, An—2(— B)).
Corollary 6.14.1. Under the hypothesis of theorem 6.14.1
H™9(M, A=?(— B)) = {0}, q=1,n
Corollary 6.14.2. If the form y > 0,
H (M, AN(—B)) = {0}, g¢=1"n

By the canonical bundle. K over M is meant the complex Iine bundle
defined by the system of Jacobian matrices ks = 0(2}, -+, 25)/8(2}, -+,2%),
where the (2!) are complex coordinates in U,. It can be shown that the
characteristic class ¢(— K) of — K is equal to the first Chern class of M.

The characteristic class ¢(B) is said to be positive definite if it can be
represented by a positive real closed form of bidegree (1,1). We are now
in a position to state the following generalization of theorem 6.2.1.

Theorem 6.14.3. There are no (non-trival) holomorphic p-forms (0 < p
=< n) on a compact Kaehler manifold with positive definite first Chern class.
This is almost an immediate consequence of theorem 6.14.2 (cf. [47]).
It is an open question whether there exists a compact Kaehler manifold
with positive definite first Chern class whose Ricci curvature is not
positive definite.

Proof of Theorem 6.14.1. Since M is compact, the requirement that
¢ ¢ H?4(B) is given by the equations d"¢, = §''¢, = 0 for each a.
In the local complex coordinates (zt), ¢, has the expression

1 ok .
¢ = ﬁql’akl kpifeid dzft A o A defP A dER A - A dER
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Hence,

7
¢ —
2(_ 1) Di:"Sakl..,k,i‘;..,i;_lifﬂ...i; =0

t=0

and if / is the identity operator on forms
. dloga
me (Dl >+‘ Pal * I)d)ak‘...kpm'i.'z'...i; = Ov Pal — — 'Tgl‘a’ .

Thus, for a harmonic form of bidegree (p, g) with coeflicients in B

lm"( + Par * I) D ‘f’ah Kyt

Q
= 2 (Ym‘i; + R™) ‘Ismk,..k,z‘;...i,‘_,m'i:+1...t;
t=1 (6.14.1)

,
E R (ﬁ“’l Kjoarkysre . kpif o dggm™ifi..igt

Consider the 1-form

§ = £pedzm
of bidegree (0,1) where

1 ) P
§m‘ — a_(ﬁa}q-..kp 1007 Dm'¢akl...k»f;...i'q (6.14.2)
and :

Ky kpito gy ke kyry osyif Sefe 4
&a PR = gTUL e gt g g qq‘#an...r,sf...s&'

It is easily checked that it is a globally defined form on M. We compute
its divergence:

— 8¢ = g Dyt = G(B) + A (6.14.3)
where

G(¢) = —glm*[(D + P 1) Dby ke iz iz Pat it (6.14.4)

and

Lo, -
A= __glm Dm ‘ﬁalcl epit .. DI ¢akl ! e,

Formula (6.14.3) should be compared with (6.5.3).
Note that equations (6.14.1)-(6.14.4) are vacuous unless ¢ = 1.
Now, by the Hodge-de Rham decomposition of a 1-form

¢ = df + on + H[¢]
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where f is a real-valued function on M. Then,
8¢ — sdf,
and so, from (6.14.3)
—8df = G($) + A

Assume G(¢) = 0. Then, since A = 0, 8df < 0. Applying VI.F.3, we
see that 8df vanishes identically. Thus G(¢) = — A =< 0. Consequently,
G(¢) = 0 and A = 0. Finally, if FP9(y, v) is positive definite at each
point of M, ¢ must vanish, For, by substituting (6.14.1) into (6.14.4),
we derive
gF?%(y,v) = G(v).

Remark: If the bundle B is the product of M and C, B = M x C,

the usual formulas are obtained.

EXERCISES

A. S-pinched Kaehler manrifolds [2]

1. Establish the following identities for the curvature tensor of a Kaehler
manifold M with metric g (cf. I. I):
(a) R(X,Y)= R(JX,]Y),
(b) K(X,Y) = K(JX,]Y),
() K(X,JY) = K(JX,Y),
and when X, Y, JX, JY are orthonormal
(d) g(R(X,JX)Y,]JY) = — K(X,Y) — K(JX,Y).
To prove (a), apply the interchange formula (1.7.21) to the tensor ] defining

the complex structure of M (see proof of lemma 7.3.2); to prove (b), (c), and (d)
employ the symmetry properties (I.I. (a) - (d)) of the curvature tensor.

2. If the real dimension of M is 2n(n > 1), and M is 8-pinched, then § < 4.
To see this, let {X XY, ] Y} be an orthonormal set of vectors in the tangent
space T'p at P € M. Then, from (3.2.23)

| SRXJY.JY) | S % (1 - 3)
Applying (1.(d)) we obtain
S KX)Y)= % 2—158

from which we conclude that § < 1.
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3. The manifold M is said to be A-holomorphically pinched if, for any holo-
morphic section 7y there exists a positive real number K, (depending on g)

such that
AK, < R(P, my) < K.

The metric g may be normalized so that K; = 1, in which case,
AS R(P,my) < 1.

A é-pinched Kaehler manifold is (88 + 1)/(1 — 8) -holomorphically
pinched.
To see this, apply the inequality

[ Ry | < 3[(PS}2 + (QR)V] M
valid for any orthonormal set of vectors {X,-,X,-,X 10X z}» 1,5kl =1, -, 2n where

P =2K;—25 Q=K;+ K; —28,
R =K, + K; — 28, §=2K,, —28.

This inequality is proved in a manner analogous to that of (3.2.21); indeed, set

L(a,i;b,k;c,5;d,0) = G(a,i;b,k;e,5;d,l) + Gla,i;b,l;e,5; — d,k)
and show that
L = Pa%c* + Qa%d* 4 Rb%* + Sb*d* + 6Ryy,, abcd.

Put X;, = JX({ =1, -, n) (cf. (5.2.6)) and apply (1) with j = ¢* and | = k*,
Hence, from 1.(b) - (d)

K+ Koo < 32K — OV (Kir — 8M2 + Ky + Ko — 28]

from which
(Ko — 8) (Kyir — 8)]V2 2 Ky + Kypo + 8.

Since K;; = 8, K. = 8 and K. < 1, we conclude that
388 +1)
1—-38
(Note that a manifold of constant holomorphic curvature is 4 - pinched.)
4. Prove that if M is A-holomorphically pinched, then M is 3(7A—5)/8(4—A)-
pinched.
In the first place, for any orthonormal vectors X and Y, g(aX + 0Y, aX + bY)
= a? + b2 Applying 1.(b) and (c) as well as (L.I. 1(d)),
(@ + BPEK(aX + bY, JaX + bY)) = alK(X, JX) + bK(Y, JY)
+2a?0[K(X, Y) — 3g(R(Y, JX)Y, JX)]
+ 4ab%(R(Y, JY)X, JY) -+ 4a®bg(R(X, JX)X, JY).

Ko Z
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Put g(Y,JX) = sin §; then,
R(Y,JX)Y,JX) = — K(Y,]X) cos?f.

Hence, since

A< K@@X +bY,J(aX +bY) <1,
Ma® + b%)? < af K(X,]X) + 2a%% [K(X,Y) + 3K(Y,]X) cos?6]
+ ¥ K(Y,JY) < (a® + b%)*
for any a, b € R, and so
2 — 1 S K(X,Y) + 3K(Y,JX) cos?0 <2 — A, (2)
Similarly, from
ASK@X +b]Y,JaX +b]Y) <1,
we deduce
22 + 2sin?0 — 1 < 3K(X,Y) + K(JX,Y) cos?0 < 1 + 2sin%. (3)

Consequently,
3X + 3sin20 — 1
4

3sin20 +2 — A

< K(X,Y) < j

from which
KX,Y)= $(3x—2)

for any X and Y. In particular, K(JX,Y) = 4(3X — 2), and so from (3)
16X ~2) S KX, Y)< 1 — $Acos?d < 1.
5. Show that for every orthonormal set of vectors {X, Y, JX,] Y}
KX, Y)+ K(JX,Y) = 32x —1).

B. Reduction of a real 2-form of bidegree (1,1)
1. At each point P € M, show that there exists a basis of Tp of the form
{Xan* Xitn X(s‘+1)*} v {kaXk‘}

(t=13,2p—1; k=2p + 1, -, n) such that only those components of a
real 2-form « of bidegree (1,1) of the form ay., ;41 (i41)0 %iiy1 = ie vy »
a;. may be different from zero.

To see this, observe that T, may be expressed as the direct sum of the
2-dimensional orthogonal eigenspaces of «. Since a is real and of bidegree (1,1),
A X,Y) = o JX,]Y) for any two vectors X and Y (cf. V. C.6). Let V be such a
subspace. Put ¥ =V + JV.In general, JV # V; however, JV = V. Tpisa
direct sum of subspaces of the type given by 7. Only two cases are possible for :

|
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(a) V is generated by X and JX. Then, «(X,Z) = o(JX,Z) = O for any
Ze {X,]X} “—the orthogonal complement of the space generated by X and JX.

(b) V is generated by X,JX,Y,]J¥ where X and Y have the property that
o X,Z) =«Y,Z) =0 for any Ze{X,Y}*. Put Y =aJX + bW where W is
a vector defined by the condition that {X, JX.W,] W} is an orthonormal set.
The only non-vanishing components of « on ¥ are given by «(X, JX), «(W,JW),
oA X,W) = «(JX,]JW). Therefore, when Z € P, «(X,Z) = «(JX,Z) = «(W,Z) =
o(JW,Z) = 0.

C. The Ricci curvature of a A\-holomorphically pinched Kaehler manifold

1. The Ricci curvature of a 8-pinched manifold is clearly positive. Show that
the Ricci curvature of a A-holomorphically pinched Kaehler manifold is positive
for A = 4.

In the notation of (1.10.10)

2n
Iy
Ry E(r) f(r) = 2 K,,.
8=1

Choose an orthonormal basis of the form {X, JX} U {X,, JX;} (i =2, n)
and apply (A. 5).

D. The second betti number of a compact 3-pinched Kaehler manifold [2]

1. Prove that for a 4-dimensional compact Kaehler manifold M of strictly
positive curvature, by(M) = 1.

In the first place, by theorem 6.2.1 a harmonic 2-form « is of bidegree (1,1).
By cor. 5.7.3, « =12 + ¢, r € R where 2 is the fundamental 2-form of M
and ¢ is an effective form (of bidegree (1,1)). Since a basis may be chosen so
that the only non-vanishing components of ¢ are of the form ¢,,., then, by
(3.2.10),

Fo) =2, 3 (Kiy+ Ki) (pi) + 4

i J#L

2 Riieije Piis Py

1<j
Applying (A. 1(d)) we obtain
F(g) =3, (K + Kip) (pise — pie)?-
i<i
Finally, since K;; + K;;. > 0 and ¢ is effective, it must vanish.

2, If M is A-holomorphically pinched with A > 3, then b,(M) = 1.

Hint: Apply A.5.
3. Show that (D.2) gives the best possible result. (It has recently been shown
that a 4-dimensional compact Kaehler manifold of strictly positive curvature



EXERCISES 241

is homeomorphic with P,—the methods employed being essentially algebraic
geometric, that is, a knowledge of the classification of surfaces being necessary.)

D.1 has been extended to all dimensions by R. L. Bishop and S. I. Goldberg
[901.

E. Symmetric homogeneous spaces [26]

1. Let G be a Lie group and H a closed subgroup of G. The elements a, b ¢ G
are said to be congruent modulo H if aHf = bH. This is an equivalence relation
—the equivalence classes being left cosets modulo H. The quotient space G/H
by this equivalence relation is called a homogeneous space.

Denote by 7: G-> G/H the natural map of G onto G/H ( assigns to a € G
its coset modulo H). Since G and H are Lie groups G/H is a (real) analytic
manifold and # is an analytic map. H acts on G by right translations: (x,a) — xa,
x € G, ae H. On the other hand, G acts on G/H canonically, since the left
translations by G of G commute with the action of  on G. The group G is a
Lie transformation group on G/H which is transitive and analytic, that is, for
any two points on G/H, there is an element of G sending one into the other.

Let o be a non-trivial involutary automorphism of G : 0% = I, o 5 I. Denote
by G, the subgroup consisting of all elements of G which are invariant under o
and let G denote the component of the identity in G,. If H is aclosed subgroup
of G with G asits component of the identity, G/H iscalled a symmetric homogeneous
space.

Let G/H be a symmetric homogeneous space of the compact and connected
Lie group G. Then, with respect to an invariant Riemannian metric on G/H
an invariant form (by G) is harmonic, and conversely.

In the first place, since G is connected it can be shown by averaging over G
that a differential form « on G/H invariant by G is closed. (Since G is transitive,
an invariant differential form is uniquely determined by its value at any point
of M). Let & be a Riemannian metric on G/H and denote by a* the transform
of 2 by a € G. Put

g=fG(a*h)*l.

Then, g is a metric on G/H invariant by G. In terms of g, *« is also invariant
and therefore closed. Thus, « is a harmonic form on G/H.

2. Show that .
P, =Un+ 1)/ U= x U(1)

is a symmetric homogeneous space.
To see this, we define an involutory automorphism ¢ of U(n + 1) by

U(A B):(_A — B

- D e D), AeUl), DeUn).
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Then,

Ga:(A (¢}

P D) — U(1) x U(n).

3. Prove that the curvature tensor (defined by the invariant metric g) of a
symmetric space has vanishing covariant derivative.

Hint: Make essential use of the fact that an invariant form on a symmetric
space is a closed form.

F. Bochner’s lemma [4]

1. Let M be a differentiable manifold and U a coordinate neighborhood of M
with the local coordinates (u!, :--, u™). Consider the elliptic operator

7

i

— gtk
L=g¢ oul ouk + out

on F(U)—the algebra of differentiable functions of class 2 on U, where the
coefficients g7*, h* are merely assumed to be continuous functions on U. (The
condition that L is elliptic is equivalent to the condition that the matrix (g7)
is positive definite). If for an element f € F: (a) Lf = 0 and (b) f(u!, -, u") <
f(a', -+, a™) for some point P, € U with coordinates (a?, '+, a®), then f(u!,+, u™)
= f(a!, -, a*) everywhere in U.

This maximum principle is due to E. Hopf [40]. The corresponding minimum
principle is given by reversing the inequalities. This result should be compared
with (V. A. 2).

2. If M is compact and fe F(M) is a differentiable function (of class 2) for
which Lf = 0, then f is a constant function on M.

3. If M is a compact Riemannian manifold, then a function f € F(M) for which
4f = 0 is a constant function on M.

This is the Bochner lemma [4].

Note that M need not be orientable. By applying the Hopf minimum principle
the statements 2 and 3 are seen to be valid with the inequalities reversed.

G. Zero curvature

1. The results of § 6.7 may be described in the following manner:

Zero curvature is the integrability condition for the pfaffian system given
by the connection forms on the bundle B of unitary frames over M. Hence,
there exist integral manifolds; a maximal integral submanifold through a point
will be a covering space of the manifold M. These manifolds are locally isometric
since the mapping from the horizontal part of the tangent space of B to the
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tangent space of M is always an isometry (cf. the last paragraph of § 1.8 where
in the description of an affine connection W, is the horizontal part of T,
by definition, and (#*(Tg))* is the vertical part). Since B is parallelisable
into horizontal and vertical fields, the horizontal parallelization yields a local
parallelization on M which is covariant constant by the properties of the
horizontal parallelization.

An integral manifold is called a maximal integral manifold if any integral
manifold containing it coincides with it [27].

H. The vanishing theorems

1. Theorem 3.2.1 is a special case of Myers’ theorem [62]: The fundamental
group of a compact Riemannian manifold M of positive definite Ricci curvature is
finite. The proof depends on his theorem on conjugate points which was estab-
lished by means of the second variation of the length integral. It has recently
been shown that if M is Kaehlerian, it is simply connected [81]. The proof depends
on theorem 6.14.1 and the theorem of Riemann-Roch [80].

2. Given a real closed form y of bidegree (1, 1) belonging to ¢(B) there exists
a system {a,} of positive functions of class e satisfying @, = | f,s|?a5in U, N U,
such that v/ — 1 d'd” log a, = 2my.

To see this, let {a,} be a system of positive functions satisfying a, = | f,, |%a;
and set 2my, =2my — V' — 1 d'd" log a,. Then, since Hlyo] =0, y, = 2d"'8"' Gy,
Applying (5.6.1), show that y, = 2v—1 d'd"” AGy,. Finally, put
a, = a, exp (— 4w AGy,).

3. Show that the first betti number of a compact Kaehler manifold with
positive definite first Chern class is zero.

1. Cohomology

1. For a compact Kaehler manifold, show that the cohomology groups defined
by the differential operators d, d’, and d”’ are canonically isomorphic.

In the case of an arbitrary complex manifold, it can be shown that the de Rham
isomorphism theorem is valid for d’’-cohomology.



CHAPTER VII

GROUPS OF TRANSFORMATIONS OF KAEHLER
AND ALMOST KAEHLER MANIFOLDS

In Chapter III the study of conformal transformations of Riemannian
manifolds was initiated. Briefly, by a conformal map of a Riemannian
manifold M is meant a differentiable homeomorphism preserving the
metric up to a scalar factor. If the metric is preserved, the trans-
formation is an isometry. The group of all the isometries of M onto itself
is a Lie group (with respect to the natural topology). It was shown that
the curvature properties of M affect the structure of its group of
motions. More precisely, if M is compact, the existence or, rather, non-
existence of 1-parameter groups of conformal maps is dependent upon
the Ricci curvature of the manifold.

In § 3.8, an infinitesimal conformal transformation of a compact and
orientable Riemannian manifold was characterized as a solution of a
system of differential equations. This characterization is dependent
upon the Ricci curvature, so that, if the curvature is suitably restricted
there can be no non-trivial solutions of the system. In an analogous way,
an infinitesimal holomorphic transformation X of a compact Kaehler
manifold may be characterized as a solution of a differential system.
Again, since this system of equations involves the Ricci curvature
explicitly, conditions may be given in terms of this tensor under which
X becomes an isometry. For example, if the 1* Chern class determined
by the 2-form i (cf. (5.3.38)) is preserved (6(X)y¥ = 0), X defines an
isometry [58]. :

On the other hand, if the scalar curvature is a (positive) constant, the
holomorphic vector field X may be expressed as a sum Y + JZ where
both Y and Z are Killing vector fields and J is the almost complex
structure defining the complex structure of the manifold. If K denotes
the subalgebra of Killing vector fields of the Lie algebra L, of
infinitesimal holomorphic transformations, then, under the conditions,

244
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L, = K + JK. In this way, it is seen that the Lie algebra of the group
of holomorphic homeomorphisms of a compact Kaehler manifold with
constant scalar curvature is reductive [58].

Moreover, for a compact Kaehler manifold M, with metric A, let
Ay(M) denote the largest connected group of holomorphic homeomor-
phisms of M and G a maximal compact subgroup. Suppose that the
Lie algebra L, of Ay(M) is semi-simple. For every a € G, let a*h denote
the transform of 4 by a. Then, since a 1s a holomorphic homeomorphism
a*h is again a Kaehlerian metric of M and g = [g(a*h)da is a Kaehlerian
metric invariant by G. Since G is a maximal compact subgroup of Ay (M),
the subalgebra K of L, corresponding to the subgroup G of Ay (M)
coincides with the Lie algebra generated by the Killing vector fields of
the Kaehler manifold defined by M and g. Since L, is a complex and
semi-simple Lie algebra, and G is a maximal compact subgroup of Ay(M),
the complex subspace of L, generated by K coincides with L, that is

« = K+ JK.

Let M be a compact complex manifold whose group of holomorphic
homeomorphisms A(M) is transitive. If the fundamental group of M
is finite and its Euler characteristic is different from zero, A(M) is
semi-simple [59].

By an application of theorem 6.13.1, it is shown that a compact
complex manifold for which 4, , = 2 does not admit a complex Lie
group of holomorphic homeomorphisms which is transitive [9].

Now, a conformal transformation of a Riemann surface is a holo-
morphic homeomorphism. For complex manifolds of higher dimension
this is not necessarily the case. However, if M is a compact Kaehler
manifold of complex dimension # > 1, an infinitesimal conformal
transformation is holomorphic, if and only if, it is an infinitesimal
isometry.

By an automorphism of a Kaehler manifold is meant a holorhorphic
homeomorphism preserving the symplectic structure. Hence, by
theorem 3.7.1, the largest connected Lie group of conformal trans-
formations of a compact Kaehler manifold coincides with the largest
connected group of automorphisms of the Kaehlerian structure provided
n> 1. For n =1, it coincides with the largest connected group of
holomorphic homeomorphisms [58, 36].

The problem of determining the most general class of spaces for which
an infinitesimal conformal transformation is an infinitesimal isometry
is considered. To begin with, a (real analytic) manifold M of 2z real
dimensions which admits a closed 2-form £ of maximal rank everywhere
is said to be symplectic. Let g be a Riemannian metric of M which
commutes with £ (cf. (5.2.8)). Such an inner product exists at each
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point of M. Assume that the operator J: & — (i(X)Q2)* acting in the
tangent space at each point defines an almost complex structure on M
and, together with g, an almost hermitian structure. If the manifold is
symplectic with respect to £2, the almost hermitian structure is called
almost Kaehlerian. In this case, M is said to be an almost Kaehler
manifold. Regarding conformal maps of such spaces, it is shown that
the largest connected Lie group of conformal transformations coincides
with the largest connected group of isometries of the manifold provided
the space is compact and # > 1 [36]. More generally, if M is a compact
Riemannian manifold admitting a harmonic form of constant length,
then Co(M) = I (M) (cf. § 3.7 and [78]).

By considering infinitesimal transformations whose covariant forms
are closed the above results may be partially extended to non-compact
manifolds. Indeed, let X be a vector field on a Kaehler manifold whose
image by J is an infinitesimal conformal map preserving the structure.
The vector field X is then ‘closed’, that is its covariant form (by the
duality defined by the metric) is closed. In general, a ‘closed conformal
map’ is a homothetic transformation. In fact, a closed conformal map X
of a complete Kaehler manifold (of complex dimension n > 1) which
is not locally flat is an isometry [45]. In the locally flat case, if X is of
bounded length, the same conclusion prevails [42].

7.1. Infinitesimal holomorphic transformations

In §5.8, the concept of a holomorphic map is given. Indeed, a
differentiable map f: M — M’ of a complex manifold M into a complex
mainfold M’ is said to be holomorphic if the induced dual map f*:
A"¢(M'") — A(M) sends forms of bidegree (1,0) into forms of the same
bidegree. It follows from this definition that f* maps holomorphic
forms into holomorphic forms. The connection with ordinary holo-
morphic functions was given in lemma 5.8.1: If M’ = C, f is a holo-
morphic map, if and only if, it is a holomorphic function.

Let f be a holomorphic map of M (that is, a holomorphic map of M
into itself) and denote by J the almost complex structure defining its
complex structure. The structure defined by J is integrable, that is, in a
coordinate neighborhood with the complex coordinates (2¢) operating
with [ is equivalent to sending 8/dz2* and &/é% into vV — | 8/82% and
— /=1 /07", respectively. Hence, J is a map sending vector fields
of bidegree (1,0) into vector fields of bidegree (1,0), so that at each
point P e M

JeeJp = Juer fep (7.L.1)
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where f, denotes the induced map in the tangent space Tp at P and Jp
is the linear endomorphism defined by J in Tp. Since two complex
structures which induce the same almost complex structure coincide,
the map f is holomorphic, if and only if, the relation (7.1.1) is satisfied.
If the manifold is compact, it is known that the largest group of holo-
morphic transformations is a complex Lie group, itself admitting a
natural complex structure [/3].

Let G denote a connected Lie group of holomorphic transformations
of the complex manifold M. To each element A of the Lie algebra of G
is associated the l-parameter subgroup a, of G generated by A. The
corresponding 1-parameter group of transformations R, on M(R, P =
P.qa, Pe M) induces a (right invariant) vector field X on M. From the
action on the almost complex structure ], it follows that 6(X) ] vanishes
where 6(X) is the operator denoting Lie derivation with respect to the
vector field X and ] denotes the tensor field of type (1,1) defined by the
linear endomorphism J. On the other hand, a vector field on M

satisfying the equation*
ying d 6(X)] =0 (7.1.2)

generates a local 1-parameter group of local holomorphic transformations
of M.

An infinitesimal holomorphic transformation or holomorphic vector field X
is an infinitesimal transformation defined by a vector field X satisfying
(7.1.2).

In order that a connected Lie group G of transformations of M be a
group of holomorphic transformations, it is necessary and sufficient that
the vector fields on M induced by the l-parameter subgroups of G
define infinitesimal holomorphic transformations. If M is complete, an
example due to E. Cartan [/9] shows that not every infinitesimal holo-
morphic transformation generates a |-parameter global group of
holomorphic transformations of M.

Let L, denote the set of all holomorphic vector fields on M. It is a
subalgebra of the Lie algebra of all vector fields on M. If M is compact,
L, is finite dimensional and may be identified with the algebra of the
group A(M) of holomorphic transformations of M.

Lemma 7.4.14. Let X be an infinitesimal holomorphic transformation of a
Kaehler manifold. Then, the vector field X satisfies the system of differential

equations
FADp €€ — FCpDe €4 =0 (7.1.3)

where, in terms of a system of local coordinates (u%), A = 1, -, 2n,
X = ¢4 0jou?, the Fy denote the components of the tensor field defined
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by J, and D , indicates covariant differentiation with respect to the connection
canonically defined by the Kaehler metric.

We denote by the same symbol ] the tensor field of type (1,1) defined
by the linear endomorphism J:

2
J=Flp o7 @du’

(Note that we have written [ in place of the tensor [ of § 5.2.) Then,

2 2 )

6(X)] = (X FAp) 57 ® duP + F4p [X, “é?ﬁ] ® duP + FAp -0 @ dXuP
oFAy @ o 0 268 9

— ¢£C B _I ‘A C B ‘A C

=¢ ou€  oul ® du TFB[& auC’auA]®d” +FBauC 8u‘4®du

oFAy a¢A 2¢C\ @
— CcC - 8B __pCc__~> ‘A R B
—(f ou® FBc?uC TFcauB)8u‘4®du

/ 0
= (fCDcFAB + FAcDg ¢€ — FCpDc ¢4 ) P ® duB.

Since the connection is canonically defined by the Kaehler metric, and
Fi» =V — 1 g4« in terms of a J-basis (cf. (5.2.11)), D, F%; = 0. Finally,
since X is a holomorphic vector field, 8(X) ] vanishes.

Corollary 1. An infinitesimal holomorphic transformation X of a Kaehler
manifold satisfies the relation

oX)JY = JO(X)Y
for any vector field Y.
Indeed, for any vector fields X and ¥

o4 244

X)) =[X,V]4 =¢c ST 095

(XY = [X,Y]4 = ¢ =7 e
= €€ Den — 7€ Dc €4,

Taking account of the fact that the covariant derivative of | vanishes
the relation follows by a straightforward computation.

Corollary 2. In terms of a system of local complex coordinates a holo-
morphic vector field satisfies the system of differential equations

o0&t
55 =0



7.1. INFINITESIMAL HOLOMORPHIC TRANSFORMATIONS 249

This follows from the fact that the coefficients of connection Tﬁ,j.
vanish.
It is easily checked that
6(JX)] = J6(X)].

Therefore, if X is an infinitesimal holomorphic transformation, so is
JX, and dim L, is even.
In the sequel, we denote the covariant form of 8(X)] by #(X), that is

H(X) 48 = g4c(8(X)]) 5.

Lemma 7.1.2. For any vector field X on a Kaehler manifold with metric
g and fundamental 2-form Q2

H(X) = Jo(X)g + 8(X)$2,

where by 6(X)2 we mean here the covariant tensor field defined by the
2-form 6(X)S2.
For,
— H(X)ap =FCp(Dc €4 — Dy éc + Dabc) +FC4 Dpéc
= FCp(0(X)g)ac + Dp(i(X)2) 4 — Da(i(X)2)p
= — (J0(X)g)ap — (di(X))4p
(cf. formula (5.2.10)).

Lemma 7.14.3. A wvector field X defines an infinitesimal holomorphic
transformation of a Kaehler manifold, if and only if,

JO(X)R = 6(X)g,

that is, when applied to the fundamental form the operators 8(X) and |
commute or, when applied to the metric tensor, they commute.

This follows from the previous lemma, since JQ = g.

Let X be an infinitesimal holomorphic transformation of the Kaehler
manifold M. Then, by the second corollary to lemma 7.1.1, 8¢i/037 = 0.
But these equations have the equivalent formulation

" Djp =0

since the coefficients of connection I'j;. vanish. Hence, a necessary
and sufficient condition that the vector field X be an infinitesimal
holomorphic transformation is that it be a solution of the system of

differential equations
D; ¢, =0. (7.1.4)
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With this formulation (in local complex coordinates) of an infinitesimal
holomorphic transformation we proceed to characterize these vector
fields as the solutions of a system of second order differential equations.

To every real 1-form «, we associate a tensor field a(«) whose vanishing
characterizes an infinitesimal holomorphic transformation (by means of
the duality defined by the metric). Indeed, if x = a,dz?, we define

a(«) by

a(@);; = Doy, a(@)g;e = a(a)je; = 0,  a(&)wje = Dywoyje.

Now, from
(do)4 = — gBDcDpay + R4pe?

we obtain
(da); = — g**D,Djucy — g** Dy Djoy + Ryjecd™. (1.1.5)

Transvecting the Ricci identity

DyD;voy — DyeDyoty = oyR e
with g%/ we obtain

27Dy Dywo; — g¢" Dy Dy = Rijecd”. (7.1.6)

Hence, from (7.1.5) and (7.1.6)

(da — 2Qa); = — 287" Dy Dy,

From the definition of a(«), it follows that
(da — 2Q0), = — 26" Dyeala),;.

Hence, if a(a) = 0, da = 2Qa. If M is compact, the converse is also true.
To see this, define the auxiliary vector field b(a) by

b(@); = o'a(a);s.
Then, by means of a computation analogous to that of §3.8
28b(a) = (Ao — 20ma)> — 4 (a(s), aa)>.

if we assume that M is compact, then, by integrating both sides of
this relation and applying Stokes’ formula, we obtain the integral formula

(Ao — 2Qm,0) = 4(a(w), a(e)). (1.1.7)
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Theorem 7.4.1. On a compact Kaehler manifold, a necessary and sufficient
condition that a [-form define an infinitesimal holomorphic transformation
(by means of the duality defined by the metric) is that it be a solution of the
equation

4¢ = 20¢. (7.1.8)
(76].

The fact that this equation involves the Ricci curvature (of the Kaehler
metric) explicitly will be particularly useful in the study of the structure
of “the group of holomorphic transformations of Kaehler manifolds
with specific curvature properties.

If a vector field X generates a l-parameter group of motions of a
compact Kaehler manifold, then, by theorem 3.8.2, cor.

4¢ =20¢ and 8¢ =0. (7.1.9)
Hence,

Corollary. An infinitesimal isometry of a compact Kaehler manifold is a
holomorphic transformation.

In terms of the 2-form ¢ defining the 1** Chern class of the compact
Kaehler manifold M

Q¢ = — 2m i(JX)W

for any vector field X on M. The equation (7.1.8) may then be written

in the form
A4¢ = — 4mi(JX ). (7.1.10)

Taking the exterior derivative of both sides of this relation we obtain,
by virtue of the fact that ¢ is a closed form,

Ad¢é = — 4nb(JX ). (7.1.11)

Let Y = JX be an infinitesimal holomorphic transformation pre-
serving . Then, since X = — JY, equation (7.1.11) yields

A6(Y)Q = 4n (YY) = 0.
Hence, 6(Y)Q2 is a harmonic 2-form. But §(Y)2 = 4i(Y)Q2. Thus, since

a harmonic form which is exact must vanish, i{(Y)Q2 is a closed 1-form.
Applying the Hodge-de Rham decomposition theorem

i(Y)Q = df + H[i(Y)Q] (7.1.12)

for some real function f of class c.
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Define the map C: AY(M) — AYM) associated with J as follows

Ct = (&),
Since F Fi), = — 8§},
C2=CC = —1

The relation (7.1.12) may now be re-written as
Cn = df + H[Cn], (7.1.13)

where 7 is the covariant form for Y. Applying the operator C to (7.1.13)

we obtain
n = — Cdf + CH[Cn].

Since df is a gradient field and H[Cn] is a harmonic 1-form, &7 vanishes
(cf. lemma 7.3.2). We have proved

Theorem 7.1.2. If an infinitesimal holomorphic transformation of a
compact Kaehler manifold preserves the 15* Chern class it is an infinitesimal

isometry [58].

7.2. Groups of holomorphic transformations

The set L, of all holomorphic vector fields on a compact complex
manifold is a finite dimensional Lie algebra. As a vector space it may be
given a complex structure in the following way: If X, Y eL, so do
JX and JY, and by lemma 7.1.1 (see remark in VII. A. 1),

JX.Y]) = [X,JY] = [JX,Y];

the complex structure is defined by putting V' — 1X = JX for every
X eL,. Clearly, then, J2X = — X for all X, thatis J* = — [ on L,.

Let K denote the Lie algebra of Killing vector fields on the compact
Kaehler manifold M. Since M is compact it follows from the corollary
to theorem 7.1.1 that K is a subalgebra of L,. We seek conditions on the
Kaehlerian structure of M in order that the complex subspace of L,
generated by K coincides with L,.

Let K be an arbitrary subalgebra of a Lie algebra L. The derivations
6(X), X € K define a linear representation of K with representation
space A(L)—the Grassman algebra over L. If this representation is
completely reducible, K is said to be a reductive subalgebra of L or to
be reductive in L. A Lie algebra L is said to be reductive if, considered
as a subalgebra of itself, it is reductive in L [48].
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Let K be a reductive subalgebra of L and H a subalgebra of L
containing K. For every X e K, the extension ¢ : A(H) — A(L) of
the identity map of H into L satisfies

$0(X) = 0(X)4.

Since ¢ is an isomorphism, it follows that the inverse image by ¢ of
an irreducible subspace of A(L) invariant by K is an irreducible sub-
space of A(H) invariant by K. We conclude that K is reductive in H. In
particular, a reductive subalgebra of L is reductive.

It can be shown, if L is the Lie algebra of a compact Lie group, that
every subalgebra of L is a reductive subalgebra. In particular, L is then

also reductive.
Now, let M be a compact Kaehler manifold and assume that its Lie

algebra of holomorphic vector fields L, is generated by the subalgebra K
of Killing fields. More precisely, assume that

L, =K + JK.

Then, the complex subspace of L, generated by K coincides with L,.
Since M is compact, the largest group of isometries is compact. Hence,
the Lie algebra K is reductive; in addition, its complexification K¢ is
also reductive. Since L, = K + JK, there is a natural homomorphism
of K¢ on L, and, therefore, L, is a reductive Lie algebra. The last
statement follows from the fact that the homomorphic image of a
reductive Lie algebra is a reductive Lie algebra.

Lemma 7.24. If the Lie algebra L, of holomorphic vector fields on a
compact Kaehler manifold can be represented in the form

L,=K+ JK

where K is the Lie algebra of Killing vector fields, then L, is a reductive Lie
algebra.

As a consequence, if the manifold is a Kaehler-Einstein manifold,
we may prove

Theorem 7.21. The Lie algebra of the group of holomorphic trans-
Jformations of a compact Kaehler-Einstein manifold is reductive [59)].
For an element X €L, 4¢ = 20¢ = £ for some constant ¢ since the
manifold is an Einstein space. By the Hodge decomposition of a 1-form
¢ =df + da + H[¢] for some function f of class © and 2-form a.
Applying 4 to both sides of this relation, we obtain 4¢ = dAf +- 84«
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and, since 4¢ = £, dAf + 8da = dcf + Sca - cH[€]. Thus, d(df — ¢f)
+ 8(do — ca) — H[cf] = 0; again, by the decomposition theorem,
ddf — ¢f) =0 and §(da — ca) = 0, that is Adf = cdf, 48x = cBa.
Consequently, the (contravariant) vector fields defined by df and éa
(due to the duality defined by the metric) are holomorphic. But §8a = 0,
and so by the corollary to theorem 3.8.2, 7 = 8« defines a Killing vector
field. Since df is a gradient field, the l-form — { = Cdf has zero
divergence. Thus,

£ =n+ ClL+ H[¢]

where n and { define Killing fields.

If ¢ > 0, H[£] vanishes by theorem 3.2.1. If ¢ = 0, the Ricci curvature
vanishes, and therefore 4¢ = 2Q¢ = 0. ¢ is thus harmonic, and so
8¢ = 0, that is, ¢ defines a Killing field. If ¢ < 0, n = { = 0 by theorem
3.8.1, that is ¢ is harmonic, and consequently defines a Killing field.
In all cases, ¢ is of the form » + C{.

Conversely, if n and { define Killing fields, ¢ = » 4 C{ defines a
holomorphic vector field.

Lemma 7.2.2. A necessary and sufficient condition that a Lie algebra L
over R be reductive is that it be the direct sum of a semi-simple Lie algebra
and an abelian Lie algebra [48].

If L is reductive, the endomorphisms ad(X) which are the restrictions
of (X) to AY(L) define a completely reducible linear representation of L.
The L-invariant subspaces of A!YL) are therefore the ideals of L.
Moreover, L is the direct sum of the derived algebra L’ of L and an
ideal C (supplementary to L) belonging to the center of L. Let K be
the radical of L’. Since K is an ideal of L, there exists an ideal of L
supplementary to K. Therefore, the derived algebra K’ of K is the
intersection of K with L’. Hence, K’ = K and thus K = {0}. We
conclude that L’ is semi-simple and C the center of L.

Conversely, let L be the direct sum of a semi-simple Lie algebra and
an abelian Lie algebra. Then, the endomorphisms 6(X) define a linear
representation of the semi-simple part since §(X) vanishes on the
abelian summand. Since this representation is completely reducible,
L is reductive.

We have seen that the Lie algebra of the group of holomorphic trans-
formations of a compact Kaehler-Einstein manifold is reductive. It is
now shown that the group A(M) of holomorphic transformations of a
compact complex manifold M, with no restriction on the metric, but
with the topology of the manifold suitably restricted, is a semi-simple
Lie group, and hence the Lie algebra of A(M) is reductive.
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Theorem 7.2.2. If the group of holomorphic transformations A(M) of a
compact complex manifold M with finite fundamental group and non-
vanishing Euier characteristic is transitive, it is a semi-simple Lie group [59].

Since M is a connected manifold and A(M) is transitive, the com-
ponent of the identity Ay(M) of A(M) is transitive on M. Let G be a
maximal compact subgroup of Ay(M). Then, since M is compact and
has a finite fundamental group, G is also transitive on M [6]]. Let B
be the isotropy subgroup of G at a point P of M. Since the Euler
characteristic of M is different from zero, B is a subgroup of G of
maximal rank [4/]. Since G is effective on M it must be semi-simple;
for, otherwise B contains the center of G. Applying a theorem due to
Koszul [49], M admits, as a result, a Kaehler-Einstein metric invariant
by G. It follows from the proof of theorem 7.2.1 that L, = K + JK
where L, is the Lie algebra of Ay(M) and K the Lie algebra of G.
Finally, since K is semi-simple, L, is also semi-simple.

7.3. Kaehler manifolds with constant Ricci scalar curvature

The main results of the previous section are now extended to manifolds
with metric not necessarily a Kaehler-Einstein metric.

To begin with let 7(X) denote the 2-form corresponding to the skew-
symmetric part of #(X) (cf. § 7.1). Then, by a straightforward application
of lemma 7.1.2 and equation (3.7.11) we obtain

Lemma 7.31. For any vector field X on a Kaehler manifold
B(X)2 — 6(X)Q =8¢+ 2 — 27(X).
We shall require the following
Lemma 7.3.2. On a Kaehler manifold
AC =C4 and QC = CQ.

The first relation follows from the fact that the covariant derivative
of ] vanishes, and the second is a consequence of the relation

R FOLFh, = Ry,
which may be established as follows. In the first place,

DpDcF4g — DeDpFAg = FNgRAN e, — FANRNgep.
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Hence,

FNgRANcp = FANRNgep,
that is,

FNgRyacp = FN 4Rnpep
or,

Rapep = FX 4FLgRg; cp-
Thus, in terms of a J-basis
b‘
Rupeije = FFY Ry i

The desired result is obtained by transvecting with gi*,

This may also be seen as follows: Since the affine connection preserves
the almost complex structure J, and the curvature tensor (which, as we
have seen is an endomorphism of the tangent space) is an element of the
holonomy algebra [63], it becomes clear that | and R(X, Y) commute
(cf. VL.AL).

As an immediate consequence, we obtain a previous result:

Corollary 1. If X is a holomorphic vector field so s JX.

Corollary 2. On a compact Kaehler manifold the operators C and H
commute.

This follows from the fact that { = AG¢ + H[£] for any p-form €.
For, then, C¢ = ACG¢ + CHI[£]. But C¢ = AGC¢ + H[C¢]. Hence,
AMGCE — CGE) = CH[E] — H[C¥], and so, by §2.10, the right-hand
side is orthogonal to A%(7°*) and therefore must vanish.

Let X e L,—the Lie algebra of holomorphic vector fields on the
compact Kaehler manifold M. Then, as in the proof of theorem 7.2.1,
decompose the 1-form ¢:

E=n+¢ (1.3.1)

where 7 is co-closed and { exact, that is 7 = 8a + H[£] and { = df.
We show that §()$2 vanishes. Indeed, by lemma 7.3.1

AX)Q — H(X)Q = 5¢-9.
Applying 8 to both sides of this relation, we derive

86(X)R = Cdd¢
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(see proof of theorem 7.5.1). Hence, from (7.3.1), 86(n)2 + 86({)$2
= (Cd8{. Taking the global scalar product of this relation with Cy,

1802 [12 + (6542, 8(n)2) =0

where we have employed the notation ||« |2 = [, « A *a. But

(B(0)2, 6(7)2) — (3dCY, Cy) = (8dCdf, Cn) = (ACdf, Cn) = (CAdf, Cn)

= (4df, ) = (4df, 8o + H[£]) = (4df, o) = (dAdf, o) = (dddf, o) = 0.
Bince 6(n)§2 = dCn, it follows that

Djim; + Dmp = 0.

Consequently, since

oR

2607 = — 2D4(R*Pnp) = — 1P 5

— RB(Dgn 4 + D 47mp),

we deduce from the previous statement that

2609 = — (9, dR>.
Hence, assuming R = const.,

5Qm = 0.
Thus, since 47 is co-closed, so is
A7 =200 = — (dy — 207).
Applying formula (7.1.7) to the I-form [, we obtain
0 = (48 — 20L,0) = 4(a(?), a(8))

since { is exact. Hence, { defines a holomorphic vector field, and
consequently so does 7. In fact, » defines a Killing vector field.

We show that H[{] has vanishing covariant derivative. In the first
place, since dCyp =0 and Cy = Cba + H[C€], Céux is closed. Thus,
Céa = (' + H[CS8«] where (' is exact. It follows, as above, that
H[C¢ + Cda] defines a holomorphic vector field. Hence, H[¢ + 8«]
defines a holomorphic vector field. But H[¢ + 6«] = H[£]. Applying
(7.1.4), the result follows.



258 VII. GROUPS OF TRANSFORMATIONS
Summarizing, we have the following generalization of theorem 7.2.1:

Theorem 7.3.1. The Lie algebra of the group of holomorphic transforma-
tions of a compact Kaehler manifold with (positive) constant scalar curvature
is reductive. Moreover, the harmonic part of a 1-form defining an infini-
tesimal holomorphic transformation has zero covariant differential [58].

Corollary. If M is a homogeneous Kaehlerian space of a compact Lie
group G of holomorphic transformations of M, the Lie algebra of G is
reductive.

This follows from the fact that the manifold M with the invariant
Kaehlerian metric (by G) constructed from the (original) metric of M
has constant scalar curvature (cf. VI.E.1 and proof of theorem 3.7.5).

In particular, if the group of holomorphic transformations A(M)
is transitive and the fundamental group of M is finite, M is a homo-
geneous Kaehlerian space of a compact Lie group G [58]. For, then,
a maximal compact subgroup G of the component of the identity of the
group A(M) operates transitively on M.

7.4. A theorem on transitive groups of holomorphic transformations

In this section, it is shown if the dimension of the vector space of
holomorphic n-forms of a compact complex manifold M of complex
dimension 7 is suitably restricted, M cannot admit a transitive group
of holomorphic transformations.

To begin with, we state the special case of theorem 6.13.1:

Let af = a'Pdz?, r =1, -, N be N > n holomorphic differentials
on the compact complex manifold M with the property: ‘For any
system of constants ¢’ (not all zero), the rank of the matrix
(a9, €¢)pe1..o.N1i=1,...n has its maximum value n + | at some point.’
Then, there are no (non-trivial) holomorphic vector fields on M.

We generalize this statement in the following manner:

Let ¢t and ¢’ be holomorphic tensor fields of type (s, 7) and (7, s),
respectively. They each have n"+3 components which we denote by §,
and %, respectively, « = 1, =, #7*9, in a fixed ordering, that is, by £, we
mean the component . ,»*""V*"+9 and by %* the component
NN airesye NOW, since ¢t and ¢° are holomorphic, the product
£,n* is a constant. Thus,

Theorem 7.44. Let t™, m =1, -, N be N > n™+¢ holomorphic tensor
fields of type (r, s) on the compact complex manifold M with the property :
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‘For any system of constants ¢™ (not all zero) the rank of the matrix
(7, ™) cr. . Nig=1,....ur+e 18 0775 | at some point.” Then, there are no
(non-trivial) holomorphic tensor fields of type (s, r) on M [9].

If the tensor fields have symmetries, the integer IV can be reduced.
In particular, if $™, m = 1,2 are two holomorphic n-forms, the number of
components of the coeflicients of each is essentially one, and we
have

Corollary 1. A compact complex manifold for which b, ((M) = 2 cannot
carry a (non-trivial) skew-symmetric holomorphic contravariant tensor field
of order n.

Corollary 2. A4 compact complex manifold for which b, (M) = 2 does
not admit a transitive Lie group of holomorphic transformations.

For, by the previous corollary, M does not admit n independent
holomorphic vector fields (locally).

7.5. Infinitesimal conformal transformations. Automorphisms

Conformal transformations of Riemannian manifolds were studied
in Chapter ITI. The problem of determining when an infinitesimal
conformal transformation is an infinitesimal isometry was omitted. In
this, as well as the following section, this problem is studied for compact
manifolds. Indeed, it is shown that for a rather large class of Riemannian
manifolds, an infinitesimal conformal transformation is an infinitesimal
isometry. This class includes the so-called almost Kaehler manifolds
which, as the name signifies, are more general than Kaehler manifolds.

Consider a 2n-dimensional real analytic manifold M admitting a
2-form Q of rank 2n everywhere. If Q is closed, the manifold is said to be
symplectic. Assume that M admits a metric g such that

g(JX,]Y) = g(X,Y),

that is, assume g defines an -hermitian structure on M admitting 2 as
fundamental 2-form—the ‘almost complex structure’ ] being determined
by g and 2: g(X,Y) = Q(X,]Y) (cf. VILB). The manifold M with
metric g and almost complex structure ] is called an almost hermitian
manifold ({2 need not be closed). If the manifold is symplectic with
respect to {2, the almost hermitian structure is said to be almost
Kaehlerian. In this case, M is called an almost Kaehler manifold.
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Lemma 7.54. In an almost Kaehler manifold with metric g the
Sfundamental form 82 is both closed and co-closed.

In the first place, the Riemannian connection of g is defined by the
(self adjoint) forms 64y

0% =0, 0 =6,
6+ 6, =0

in the bundle of unitary frames (cf. §5.3). Since this connection is
torsion free

dﬂA = GC /\ gAc,
consequently, in terms of the complex coframes (8, %), i =1, -, n

67 = 6% N\ G + 65 A\ 6

and
do" = 8% A 0% + 6 A 6.
We put
945 = I'fc6°.
Then, since
Fi. = \/—-_lg,-j.

(where the g;;. are the components of g with respect to the coframes
(6%, 6°%)), and the connection is a metrical connection

DiFie =V —1Digi =0

where D, denotes covariant differentiation with respect to the Rieman-
nian connection Moreover it can be shown that D, Fi,, = 2+ — 1T,
and D,.Fi., = 24— 1 TI'}.;.. Hence, since 2 is closed, it follows from
(2.12.2) that

DyFipe + DFye 4 DyuFyy = 0.

Thus, since D, Fy;. =0,
DyFy; = 0.
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In conclusion, then,
- (S‘Q)t = gjk‘Dk‘Fii + gjtkaF:ini - 0.

If ] defines a completely integrable almost complex structure, M is
Kaehlerian (cf. § 5.2). A Kaehler manifold is therefore an hermitian
manifold which is symplectic for the fundamental 2-form of the hermitian
structure.

We have seen that on a compact and orientable Riemannian manifold
M the Lie derivative of a harmonic form with respect to a Killing
vector field X vanishes. If M is Kaehlerian, the 1-parameter group of
isometries ¢, generated by X preserves the fundamental 2-form £,
that is

Pl = . (1.5.1)

Moreover, from theorem, 7.1.1, cor., ¢, is a holomorphic transformation
for each t, and so from (7.1.1) ¢f JQ = Jo}R. This may also be seen
in the following way

Pl JR =opig =g = J2 = J9iQ

by (7.5.1).

A holomorphic transformation f preserving the symplectic structure
(that is, for which f*Q = Q) will be called an automorphism of the
Kaehlerian structure. A holomorphic vector field satisfying the equation
8(X)$2 = 0 will be called an infinitesimal automorphism of the Kaehlerian
structure.

Now, an infinitesimal isometry is an infinitesimal conformal trans-
formation. The converse, however, is not necessarily true. For, a
conformal map X of a Riemann surface .S with the conformally invariant
metric (see p. 158) need not be an infinitesimal isometry. In any case, the
vector field X defines an infinitesimal holomorphic transformation of S.
For higher dimensional compact manifolds however, we prove

Theorem 1.5.1. An infinitesimal conformal transformation of a compact
Kaehler manifold of complex dimension n > I is an infinitesimal isometry
[57, 35].
This statement is also an immediate consequence of theorem 3.7.4.
From equation (3.7.12)

2
B2 + IR = (1 — 7) 8¢9,
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Applying the operator 8 to both sides of this relation we derive since
6(X) and 8 commute and 2 is co-closed

- 2

s8(X)2 = (1 — 7) 8(8¢ - Q)
= — (1 — %)Dﬁ(ag - FB ) duA
- - (1 —%) Cdse.

Taking the global scalar product with C¢, we have

(36(X)8, C¢) = (6(X)82, dC¢) = || 6(X)RQ |?
and

(Cdd¢, C) = (dd¢, &) = || 3¢ |I*
Hence,
’ 2 \
1002 1P = — (1 — ) ] 8¢ |I*

Thus, for n > 1, since one side is non-positive and the other non-negative,
we conclude that 6(X)$2 vanishes. For n > 2, it is immediate that
8¢ == 0, that is, X is an infinitesimal isometry, whereas for n = 2, a
previous argument gives the same result.

Corollary. The largest connected Lie group of conformal transformations
of a compact Kaehler manifold of complex dimension n > 1 coincides with
the largest connected group of automorphisms of the Kaehlerian structure.
For n =1, it coincides with the largest connected group of holomorphic
transformations. Moreover, in this case, in terms of the norm || || defined
by the Kaehler metric,

I 6(X)2 [ =[] 8¢ II.

This is an immediate consequence of lemma 7.1.3; for, an infinitesimal
automorphism of a Kaehler manifold is an infinitesimal isometry.

We give a proof of theorem 7.5.1 which, although valid only for the
dimensions 4k is instructive since it involves the hermitian structure
in an essential way [35]. In the first place, by lemma 5.6.8, £% is a
harmonic 2k-form. Applying theorem 3.7.3, it follows that (X)Q* = 0.
Now, since §(X) is a derivation, §(X)Q*F = kI(X)2 A %', and so by
corollary 5.7.2, L¥—20(X)$2 vanishes. It follows by induction that 6(X)2
vanishes, that is X defines an infinitesimal isometry of the manifold.
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The operators L and 4 do not commute, in general, for almost
Kaehlerian manifolds. However, it can be shown that £* is harmonic
in this case as well.

Theorem 7.5.1 may be extended to the almost Kaehler manifolds
without restriction. For, the proof of this theorem does not involve the
complex structure of the manifold, but rather, its almost complex
structure. In fact, insofar as the fundamental form is concerned only
the facts that it is closed and co-closed are utilized. That the covariant
differential of §2 vanishes has no bearing on the result. Hence,

Theorem 7.5.2. An infinitesimal conformal transformation of a compact
almost Kaehler manifold of dimension 2n, n > 1 is an infinitesimal
isometry [36, 68].

Note that theorem 7.5.2 follows directly from theorem 3.7.4. For,
£ is harmonic and {2, 2) is a constant.

Corollary. The largest connected Lie group of conformal transformations
of a compact almost Kaehler manifold of dimension 2n, n > 1 coincides
with the largest connected group of isometries of the manifold.

Remarks: For almost Kaehlerian manifolds, the conditions 8(X)2 = 0
and 6(X)] = 0 (X is an infinitesimal automorphism) are sufficient
in order to conclude that 8(X)g = 0. Conversely, if X is an infinitesimal
isometry, it does not follow that 8(X)J = 0. For, the first term on the
right in

KX)] = (€°DcF4y + FAcDy & — FepDc %) —0 @ du?

does not vanish. Moreover, one cannot conclude that §(X)$2 vanishes.
In fact, the best that can be said is that (8(X)Q, 2) vanishes.

7.6. Conformal maps of manifolds with constant scalar curvature

With respect to the left invariant metric g, we have seen that the
Ricci scalar curvature of a compact semi-simple Lie group is a positive
constant. Moreover, with respect to g, an infinitesimal conformal trans-
formation is an infinitesimal isometry.' The same statements are valid
for complex projective space.P,(n > 1) with the Fubini metric. How-
ever, the n-sphere may be given a metric of positive (constant) scalar
curvature relative to which there exist infinitesimal non-isometric
conformal transformations. On the other hand, for compact manifolds
of constant non-positive scalar curvature we show, with no further
restriction, that the only infinitesimal conformal maps are infinitesimal
isometries [58].
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To begin with, an infinitesimal conformal transformation must
satisfy equation (3.8.4):

' 2

Ao+ (1 - ;) dda = 2Qx.

Hence, since déx + 8do = d«,
2 pA
(2—2) da — (1 = 2)8da = 20
Taking the divergence of both sides of this relation, we obtain

(2- —’2;) A8a = 25Qu.
Therefore, since
— 8Qa = D(Ri )
= D.Rijw/ + Ri,D o
17oR .

= —2—['57 al 4 Rﬁ(Diai' + D1<!j)]

= % [(dR,a> + R¥#(6(a)g),]

. =—%—<dR,cx> —miR-Ba,
it follows that

1 1 1
(l - ;)ASa:;R- 8 — — (dR).

But R = const., and so

(1 —%)ASaz%R-Sa.

Hence, since this constant is non-positive, by taking the global scalar
product of the last relation with 8, we obtain the desired conclusion.

Theorem 7.61. If M is_a compact Riemannian manifold of constant
non-positive scalar curvature, then Co(M) = I(M).

Let M be a compact Riemannian manifold of positive constant
scalar curvature. If M admits a non-isometric infinitesimal conformal
transformation it is not known whether M is isometric with a sphere.
In fact, it is not even known whether M is a rational homology sphere

(cf. theorem 3.7.5).
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7.7. Infinitesimal transformations of non-compact manifolds

Let X be a vector field on a Kaehler manifold whose image by the
almost complex structure operator J (inducing the complex structure
of the manifold) is an infinitesimal transformation preserving the
Kaehlerian structure. The vector field X is then ‘closed’, that is
its covariant form (by the duality defined by the metric) is closed.
We show that a closed conformal map X (that is, an infinitesimal con-
formal transformation whose covariant form ¢ is closed) is a homothetic
transformation.

Indeed, since ¢ is closed

— 1(X)4p =FCp(Dc é4 — Dy éc + Dy éc) + FC4Dg éc
=FCpD, éc + FC4Dp éc

= (0(C£)g) s,
that is #(X) is a symmetric tensor field. On the other hand, since
0(X)g = — l/n 8¢ - g, it follows from lemma 7.1.2 that

H(X) = %sg LQ + X0,

Hence, #(X) is also skew-symmetric and must therefore vanish. There-
fore,

- % ds¢ A Q = dO(X)Q = 6(X)dQ = 0.

Thus, for n > 1, we may conclude that d6¢ vanishes, that is, the vector
field X defines a homothetic transformation.

Moreover, we have proved that a closed conformal map is an
infinitesimal holomorphic transformation. However, it need not be an
infinitesimal isometry, as in the compact case. For, by lemma 7.3.1

B(X)Q — H(X)Q = 8¢ - .
Applying & to both sides of this relation, we obtain
80(X)Q2 = Cdd¢ = 0.

Consequently, 8(X)Q2 is both closed and co-closed, that is harmonic. But,
although it is exact, it need not vanish; for, the decomposition theorem
is valid for compact manifolds and, in the case of open manifolds
further restrictions are necessary [3/]. Conversely, an infinitesimal
isometry need not be a holomorphic transformation. Thus, an infini-
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tesimal isometry of a Kaehler manifold need not be an automorphism
of the Kaehlerian structure. The best that can be said in this context
is given by

Theorem 7.74. A closed conformal map of a Kaehler manifold is a
holomorphic homothetic transformation [36].

Conditions may be given in order to ensure that a closed conformal
map X be an infinitesimal isometry. Indeed, if the manifold is complete
but not locally flat this situation prevails [45]. In the locally flat case,
if X is of bounded length, the same conclusion may be drawn [42].

A Riemannian manifold M can be shown to be complete if every
geodesic may be extended for infinitely large values of the arc length
parameter. By a well-known theorem in topology this assertion can be
shown to be equivalent to the statement: “Every infinite bounded set
(with respect to d, cf. I.LK.1) of M has a limit point.” For the
relationship with complete vector fields, the reader is referred to [63].

EXERCISES

A. Groups of holomorphic transformations
1. For any vector fields X, Y and Z on a Kaehler manifold M show

(a) (6(X)Q) (Y,Z) = 6(X) (¢(JY,Z)) — g(J[X,Y],Z) — g(JY,[X,Z])
and

(b) (6(X)g) (JY,2) = 6(X) (s(JY,Z)) — &([X,]Y].Z) — g(JY,[X,Z]).
Hence, if M is compact, prove that a Killing vector field is holomorphic.

Hint: Express J[X, Y] and [X, JY] in local complex coordinates. Inciden-
tally, one may then show that cor. 1, lemma 7.1.1 and its converse hold for
complex manifolds, in general.

2. If b,(M) =0 prove that L, = K 4 JK, if and only if,
L;=L; n& AN¥T¢")+ Ly nd NY(T°™)
where L, is the dual space of L,.
3. If M has constant scalar curvature show that
dimL, =2 dim K — dim K,

where K, C K is the ideal determined by the elements of K* which are
closed [58]. Indeed,

K;={ae AYT") | Dxa=0,XeT}.
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It can be shown that

(i) dim K =< n? -+ 2n,2n = dim M; hence, the maximum dimension attained
by L, is 2(n? + 2n).

(i) The largest connected group of isometries of P, is SU(z + 1); hence,
for P, (since dim SU(n + 1) = n* + 2n)

dim L, = 2(n? + 2n).

4. Prove that there are no holomorphic vector fields on a compact Kaehler
manifold with negative definite Ricci curvature.

S. Nakano has shown that the hypothesis of negative definite Ricci curvature
can be replaced by negative definite 18t Chern class [cf. § 6.14 and K. Kodaira-
D. C. Spencer, On deformations of complex analytic structures I, Ann.
Math. 67, 328-401 (1958)]. Moreover, the group of holomorphic transformations
of a compact Kaehler manifold with negative definite 1°* Chern class is finite [S.
Kobayashi, On the automorphism group of a certain class of algebraic manifolds,
Téhoku Math. . 11, 184-190 (1959)].

B. Almost hermitian metric

1. Let 2 be an element of A¥T}) of maximal rank 27 (dim T = 2#n) and &
an inner product in Tp. Construct an inner product g which is hermitian relative

to 2, that is
&JX,JY) = g(X,Y)

for any XY e Tp where ] is the tensor of type (1,1) defined by £ and 4 [56].
(As usual ] denotes the linear transformation defined by the tensor ] with
components F4p = h4Fp relative to a given base of Tp—the Fg being the
coefficients of Q).
Proceed as follows: Define the inner product % in terms of 4 by

k(X,Y) = h(JX,]Y).
Next, compute the eigenvalues and eigenvectors of the matrix k = (k p).
Let X be an eigenvector corresponding to the eigenvalue A2(A > 0):

RX = XX,
that is
kAg XB =N X4  (k4y = hACR;p).

Then, J.X is also an eigenvector of A% and
X = — 22X,

The linear operator (1/A)] therefore defines a complex structure on the eigen-
space of A%. Denote by A%, S, (p = 1, -, 7) the eigenvalues and corresponding
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eigenspaces of k of the kind prescribed. The vector space Tp then has the
decomposition

TP':Er S,

p=1
—the .S, being invariant by [ and orthogonal in pairs. Hence, for p # o
F4p, =0, hg,p,=0
in terms of a basis of Tp defined by this decomposition. Moreover,

kApBa =0
and

ka, B, = A Rap By p =1,
The required inner product g is given by
gApBu=0(p;ﬁa), gApo =AphApo1 Ap>0,P=l,'“,f.

C. Automorphisms

1. For any infinitesimal automorphisms X and Y of an almost Kaehler manifold,
[X,Y] is also an infinitesimal automorphism.

2, Denote the covariant forms of X,¥Y and Z = [X,Y] by ¢, n and {, respectively.
Hence, show if the Lie algebra of infinitesimal automorphisms is abelian

(¢ N\ ) = const.

Hint:
Cl = di(¢ N\ ).

3. Show that an infinitesimal automorphism of an almost Kaehler manifold
is not, in general, an infinitesimal isometry.

D. A non-Kaehlerian hermitian manifold
1. Consider the shell between the spheres (cf. example6,§5.1).
ZladP=1 Z|zpp=2

in C, and denote by M the manifold obtained by identifying points on the
spheres lying on the same radial lines. Let G denote the properly discontinuous
group of automorphisms of C,, — 0 consisting of the homothetic transformations

(31, -, 2") — (2%, -, 2kz")
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for each integer k. The compact manifold M is a fundamental domain for this
group. Since the quotient space (C, — 0)/G has a complex structure, M can
be endowed with a natural real analytic structure. By showing that 6,(M) = 0,
(n > 1) prove that M is not Kaehlerian for » > 1. In fact,

b0=b1=11
b,=0, 2<p<2n—1,
b2n—1=b2n=1‘

Note that b, is odd whereas in a Kaehler manifold all odd dimensional betti

numbers are even (cf. theorem 5.6.2).
For a differential geometric characterization of a Hopf manifold see [98].



APPENDIX A

DE RHAM’S THEOREMS

The 1dea of the proof of the existence theorems of de Rham given
below is due to A. Weil [7/]. The method employed is due to Leray,
namely, his theory of sheaves Without developing the general theory,
a proof adapted to the object under consideration, namely, the de Rham
sheaf, is given.

A.1. The 1-dimensional case

The existence theorems of de Rham are concerned with the periods
of a closed differential form over the singular cycles of a compact
differentiable manifold M. The periods are definite integrals. Let a be
a closed 1-form and I" a singular 1-cycle. We proceed to show how the

period
J

is related to an indefinite integral.

To this end, let % = {U;} be a (countable open) covering of M by
coordinate neighborhoods such that each U, corresponds to an open
ball in R". (We make a slight change in notation at this point so as to
avoid confusion. In Chapters I and V Greek letters were generally
employed as subscripts). Now, subdivide I'" until each 1-simplex is
contained in some U;. We may then represent I" as a sum

r=3r,

where each I is a chain contained in some U;. Moreover, each boundary
oI; is a 0-chain which may also be subdivided into parts each of which
belongs to a Uy. It is important that each O-simplex is assigned to a U,

270
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independently of the boundaries @I'; containing it. For example, let I" be
a closed curve and consider the diagram

Then, it is easily seen that « has an integral in each U,. By the Poincaré
lemma (cf. § A.6) o = df; in each U; for some function f; depending
on « and Uy, and so

[« =2 UdPu) = PN = Z(fia = £) (P

since the first sum is cyclic. More precisely, since there may be more
than one P; in a given U;

[ & =3 UelPid) = fu(P)
=2 (fre = 1) (P)

where k; is the index chosen such that U, is the neighborhood for P;.
Since dfy,, = dfy in Uy, 0 Uy , fy, — [y, is constant on the inter-
section. In this way, the integration has been reduced to the trivial case
of integrating closed 0-forms (constants) over 0-chains (points).

The same general idea prevails in higher dimensions, although the
situation there is more involved.

A.2. Cohomology
The above considerations motivate the theory to be developed below.

Indeed, we shall consider (local) forms and chains defined only in U,
or U; n U; where again % = {U,} is any countable open covering of M.
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The nerve of %, dencted by N(%) is the simplicial complex whose
vertices (O-simplexes) are the elements of % and where any finite number
of vertices span a simplex of N( %), if and only if, they have a non-empty
intersection. By a p-simplex o = A(3,, - 1,) we mean an ordered finite set
(i, =+ 3p) of indices such that U, n - n U, #[. If Uy, U, are
the vertices of a p-simplex o, their intersection Uy - n U, will
occasionally be denoted by ne. By hypothesis no # [J.

For any opensets U and V, U2 V, let pyp denote the restriction map
on differential forms

PUV /\q(U)_) /\q(V)’ q= 0) l, N

defined by
puvla) =a |V, ae AYU).

These maps have the following property: if UDV 2> W, then
Puw = PywPuv-

A p-cochain of N(%) is a function f which assigns to each p-simplex o
an elemert of an abelian group or vector space I'(no). In the sequel
I'(U) will be one of the following:

(i) R: the real numbers,
(it) A? = A(U): the space of g-forms over U,
(iif) A? = AYU): the space of closed g-forms over U.

It is important that I'" is allowed to depend on the simplex. This
generalizes the usual definition in which to each simplex an element
of a fixed module or abelian group is assigned (cf. § 2.1). More precisely,
(a) for every open set U there is a vector space I'(U) and (b) if U2V,
then pyy: I'(U)— I'(V). (The map I'(U) — I'(V) need not be a mono-
morphism, that is an isomorphism into I(V)). The value f(z), -, ;) =
f(4(iy, -+, 1)) of a p-cochain is an element of I(U; N - n U, ).

If o = 4(iy, -, ,,), let the faces of o be the simplexes o/ = A(%y, ", £;),
v, " 1), J = 0, -, p. Then, Nna? 3 No and there is a homomorphism

P.,i,q:[‘(n o) —I'(N o)

defined by the restriction map, that is p,i, f(¢/) = f(¢?) | no is an
element of the vector space I'(no). (In case f(o/) is a real number
consider f(o?) as a constant function).

If f and g are p-cochains of N(%) with values in the same abelian
group I'(no), then cochains f + g and 7 - f, r € R are defined by

(f +8) (o) =f(0) +8(0), (r-f)(0) =7f(0),

for each simplex o € N(%). In this way, the p-cochains form a vector
space over the reals (cf. § 2.1) which we denote by CP(N(%), I'). (No
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confusion should arise between the I' employed here and the one in
§ 2.1 denoting a cycle.) The coboundary operator §, (not to be confused
with the operator 8 employed previously) assigning a cochain §f to
each p-cochain f is defined by

(8f)(0) = i (= 1Y pot,o (o), &= A(ig, = 1p1y).

Thus 8: CP(N(%), I') — C*+*Y(N(%), I'); in fact, 6f can be different
from zero only on the (p -+ 1)-simplexes of N(%). It is easily checked
that 88f = 0. In the usual manner one may therefore define the
p-dimensional cohomology group HP(N(%), I') as the quotient of
ZP(N(%), I')—the p-cocycles by BP(N(%), I''—the p-coboundaries:
HY(N(%),I") = ZX(N(%),[")|B"(N(%),I").
In particular, if M is connected
HYN(%),I") = I'(M)
For, a 0-cochain f assigns to each U € % an element «; of I'(U). The
condition 8f = 0 requires that if f(V)= o, eI'(V), Ve %, and
UnV %[, then
PY.U N VY = PUU N VXU-

Conversely, for any globally defined « (e A%(M)), a 0-cochain satisfying
8f = 0 is given by defining f(U) = pppe, U € % (and f(o) = O for all
other o € N(%)). That the map I'(M)— HYN(%), I') is a mono-
morphism is left as an exercise.

A 1-cochain is defined by (U, V) = ayp e I'(U n V). It is a cocycle

if puavivnvow oy —Pwavuavawdwy + Pwovunvaw dwy =0,
ays s oy ENU NV AW). If U=V = W, we conclude that

ayy = 0 from which it follows that «;;, = — apy. The cocycle ayy, is a
coboundary, if it can be expressed as o) — «y.
In the sequel, we shall write (8f) (o) = Z(—1) f(o?) for simplicity.
A covering ¥ = {V} of M is called a refinement of % if there is a map
bV — U
defined by associating with each V e ¥ aset U € % such that V' C U.
If ¢ = (Vo -, V) e N(¥7), let do = ($Vy, -, ¢V,). Then, ngs d No
# [J and ¢o is an element of N(%). Hence, there is (simplicial) map
¢ N(¥)— N(Z).
This map in turn induces a map s sending each cochain f e CP(N(%), I')
to a cochain §f € CP(N(¥"), I') where for each o € N(¥")

$f(0’) = péa.af('ﬁa)'
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The map ¢ is not unique. However, all such maps are contiguous and
therefore induce the same homomorphisms (see below)

#* : HY(N(%),T") — H(N(¥"),T").
Moreover, if # = {W} is a refinement of ¥”, the combined homo-

morphism

H(N(%),I")— H(N(¥"),I") — HY(N(%"),I")
is equal to the direct homomorphism
HAN(%),I) — HN(W'),T")

since a map N(#") — N(¥") — N(%) is contiguous to any direct map
NW) —> N(%).

To show that ¢* depends only on the pair %, ¥~ we proceed as
follows: Let ¢’ be another choice for ¢. For p = 0, the assertion is clear.
For p = 1 let Af be the (p — 1)-cochain on ¥~ defined by

-1

A Ve, -, Vo) = E (— D'V, ¢ Viy ¢V, o, V1)

=0

Then,

AS) (Vo =, V) = 2, (= 1) (3 N$ Vey 1, Vi $ Vi = $V,)

=0

= 2 (= D f(§ Vo, Vs 8 Vi, 6V, SV o, $V)
SISiSp
+ 2 ') YRS Vo, o 'V Voo 6V gy $Viar, 2 bV )

and
() (Vo =+, V) =2(— DEA) (Vo = Vieyy Vi 5 V)

= 3 (=DM Vo Vs Vo Vi, dViin, =, $V,)

0<j<iZp

D (= DAV Vi, $ Vin o $V, V5, V).

0Si<jsp
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It follows that

(ASf + 8Af) (V y Vﬂ) = ‘ [f(‘ﬁ/VO’ ) ¢’Vi—17 d)Vi) B ¢VD)

0sj=p
ﬁf(‘#,Vo’ N d”Vf’ ¢Vf+1v T ¢VIJ)]
:f(¢VO’ " ‘#’Vp) —"f(d),VO) Y ¢IVp)'

Hence, if f is a cocycle, §f — §'f is a coboundary, that is ¢* = ¢'*.

In the sequel we denote the homomorphism ¢* by ¢4 -

The set of all coverings of M is partially ordered by inclusion where
¥ is contained in %, if and only if, ¥ is a refinement of . If ¥  is a
refinement of % we shall write ¥~ < %. It is not difficult to show
that any two coverings have a common refinement.

If# < ¥ < %, it is readily shown that

by = byw bay;
The direct limits
HA(M,T) = ligs HY(N(),I)

of the groups H?(N(%), I'), p = 0,1, are defined in the following way:
Two elements h; € HP(N(%,), I'), i = 1,2 are said to be equivalent if
there exists an element sy € HP(N(%,), I') with %y << %, i = 1,2 such
that i, = ¢y, 4, byt = 1,2; the direct limit is the set of these equivalence
classes.

The sum of two cohomology classes of H?(M, I') is defined as follows:
If h; e HY(N(%;), I'),i = 1,2 are the elements to be added, we first find
a common refinement %; of %, and %, and then form the element
bu, @, b1 + ba, w by Multiplication by elements of R is clear. An
element & € HP(N(%), I') represents the zero cohomology class, if and
only if, there is a ¥~ < % such that ¢4y 2 = 0. We may therefore
conclude that HP(M, I') is a vector space for each p = 0,1, - .

Finally, a cochain f will be called a finite cochain if there exists a com-
pact set .S such that f(3,, -, 4,) = 0 whenever U; n--nU; n S =[]
One may construct a cohomology theory in terms of ﬁmte cochains.

A.3. Homology
In this section we develop a theory dual to that of § A.2. Indeed, we

associate as in the previous section with every open set U € % a vector
space which is again denoted by I'(U) (see (i)-(iii) below). Our first
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distinction now arises, namely, if V' C U, then puy: I'(V)— I'(U),
that is I'(V) is identified with a subspace of I'(U). (As before, the
map I'(V)— I'(U) need not be a monomorphism).

By a p-chain g is meant a formal sum

g = 2,80, i) Alio, 1 i), glig, 1) € T(Uyy 0 0 UL)
(1)

where A(z,, -, 7,) is a p-simplex on N( %) and () implies summation on
(0 ***, 1,). Whereas the values of a p-cochain are in I'(U; n - n Uy),
the coefficients of a p-chain lie in I'(U; » -+ n U, ). In the applications
I' will be either

(i) R : the real numbers,

(i) S (U): the space of finite singular chains (cf. § 2.2) with support in
U, or

(iii) SY(U): the subspace of finite singular cycles.

A boundary operator 0 mapping p-chains into (p — 1)-chains is
defined on p-simplexes as follows:

o[A(ig, ) 1)) :2”: (— 1% Aoy =+, teeys Trrr 5 1)

k=0

and on p-chains by linear extension, that is
og = Zig(iy, "+, ip) 0[A(ig, +*, 1))

(In order to simplify notation we have written g(3, -, 4,) for the
corresponding images p.. g(#, ', ,)). Denoting the coefficients of
9% by (98)(jo» *» jp-1) We obtain

D
(ag) (j0> '"’jp—l) =E E (_ l)kg(jm '"’jk—l’ i1jka "'vjp-—l)
k=0 ¢

where ¢ runs over all indices for which the corresponding intersection
is not empty. In order that this sum be finite it is assumed that the
covering % of M is locally finite, that is every point of M has a neighbor-
hood meeting~only a finite number of U, € % (cf. §§ A.10-11).

It is easily checked that 29g = 0. One may then define the p-dimensional
homology group H,(N(%), I') as the quotient of Z,(N(%), I')—the
p-cycles by B (N(#), I''—the p-boundaries:

Hy(N(%),I") = Z,(N(%),]")[Bo(N(¥)T).
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Let #" = {V} be a refinement of %. Then, as in the previous section
there is a map ¢: ¥~ — % defined by associating with each ¥ € ¥~ a set
U e % such that ¥V C U. To a p-chain g on ¥~ one may then assign
a chain dg on % as follows:

‘5: Eri! g(io: " ip)A(ios ) ip) - Eg(io’ T ip)A(qS(io), ""¢(ip))’ d’(ir) = ¢(Vr)

Evidently, cycles are mapped into cycles and boundaries into boundaries.
Hence, ¢ induces a homomorphism

bu t Hy(N(),I) = Hy(N(%),T).

As before, this homomorphism does not depend on ¢ but rather on the
pair ¥°, % and so, we denote ¢, by ¢,4. Moreover, if #" < ¥ < %,
it is easily checked that ¢y 4 = ¢y4 *y-y. The inverse limits

H,(M,T") = lim H,(N(%),T")
v

of the groups H,(N(#), I'), p = 0,1, are defined as follows: Two
elements h; € H(N(%,), I'), i = 1,2 are equivalent if there exists an
element hy € H,(N(%;), I') with %; < %,;, i = 1,2 such that h; =
ba, @, ks, t = 1,2; the inverse limit is the set of these equivalence classes.
With the obvious definitions of addition and scalar multiplicatior:
H, (M, I') is a vector space for each p = 0,1, -~

A.4. The groups HP(M, A\9)

It is now shown that in the cases I'= A%, ¢=0,1, -, the
cohomology groups HP(M, A%) vanish for all p >0 provided M is
compact (see remarks at end of § A.10 as well as at the end of this
appendix). By the definition of the direct limit, it is sufficient to show that
every covering % has a refinement ¥~ such that HP(N(¥"), A?) = {0}
for all ¢, and p > 0.

A refinement ¥" of % is called a strong refinement if each V (the
closure of V) is compact and contained in some U. In this case, we write
¥ L U, and for a pair V, U(p: V — U) we write V € U.

Lemma Ad4A. For a compact differentiable manifold M,
Ho(M, A9) = {0}

for all p >0 and ¢ = 0,1, .
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Let ¥~ be a locally finite strong refinement of the open covering %
of M and {e;} a partition of unity subordinated to ¥” (cf. Appendix D).
For an element f e CP(N(¥"), A?) let f; = ¢;f. Then, 8&f; = (&f),,
and so if f is a cocycle, so is e;f.

Let f be a p-cocycle, p > 0. By definition, f = Zf; is a locally finite
sum. We shall prove that each cocycle f; is a coboundary, that is f; = 8g;
where gi(Vy, =+, Vy—y) = 0if Vo 0 - 0 V),_; does not intersect V. This
being the case, g = X g; is well-defined and f = £ f;, = X 8g; = &.

To this end, consider a fixed j and put

8V s Vo) = fi(Vs, Vo, 2, Vi)
if VinVyn -0V, #[]and g; =0, otherwise. In the first case,
(3:)(Vo, =, Vi) = Z(— 1) fi(Vs, Vo, =, Views Vi, 1 V)
Since f; is a cocycle,

0 = (8f)(Vss Voo s Vi) = iV =, V) — B(— 1Y fi(V5, Vo, 0, Vi,
Vien = V)
Hence, f; = 6g;.

In the second case, since V; N Vo n - 0V, = 0O, f{(V,, =, V) = 0.
But 8g; also vanishes; for, in

(Sgi)(VO’ ) VP) = Z(— l)igj(VOr ) Vi—l’ Vi+1: N VTJ)

each term on the right is either zero, by the definition of g;, or else it is
the restriction of f(V;, Vi, -, Vi1, Viyq, =, V) totheset Vo0 0 V),
and, since e; vanishes outside of V;, the value is again zero.

We conclude that f; = 8g; in all cases, and so by the above remark,
the proof is complete.

A.5. The groups H,(M,S,)

Since the groups H,(M, S,) are in a certain sense dual to the groups
H?(M, A9, it is to be expected by the result of the previous section
that they also vanish for p > 0. It is the purpose of this section to show
that this is actually the case. To this end, it is obviously sufficient to
show that for any open covering % of M and ge Z, (%, S,), g is a
boundary.
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Lemma A.5.1. For a differentiable manifold M,
H,(M,S,) = {0}

for all p >0 and ¢ = 0,1, .... Moreover, in order that a O-chain be a
boundary, it is necessary and sufficient that the sum of its coefficients be zero.
Consider all singular g-simplexes. Divide these simplexes into classes
so that all those simplexes in the j* class are contained in U,. (This can,
of course, be done in many ways). For each cycle g construct a singular
chain g; by deleting those singular simplexes not in the 7" class. That
g; 1s a cycle follows from the fact that d(g;) = (9g); (the cancellations
occurring in 9g(= 0) occur amongst those simplexes in the same class).
Since g = X g, it suffices to show that each g; is a boundary. For
simplicity, we take j = 0. Define a (p + 1)-chain % as follows:

. . 1, ¢ ifi, =0
hlio s o) = %ogfl 1 aﬁp{)l) °
that is,

h= 2 &oli, "y 1540) 4(0, 4y, =+ 1544).
(1)

Now, since

0h =, golt, s ipsr) Allyy s ipsy)
()

P+1 . - . . . .
=20 (= V¥ golin, =y puy) A, iy, gy Frgr s Epan)

(i) k=1

and

p+1
0=0gy=2,2, (— ¥ gty s i) Ally, ) sy frsns " fps)

(€) k=1

where g, = Z;) go(t1, ) tp+1) 4(1, ) 1541), o = 0h, For by comparing
the expression for dg, with the last sum in 8k, we see that (except for
notation) they are identical.- We conclude that each g; is a boundary,
and so g is a boundary.
For p =0,
h = Zgo(i) 4(0, ),
and thus

oh = Sgy(i) () — Zguli) 4(0).
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The condition g, = 0 gives no information in this case. Hence, in
order that g, be a boundary, it is necessary that X g,(j) vanish. On the
other hand, if X g(7) vanishes so does X go(7). Therefore, a O-chain is a
boundary, if and only if, the sum of its coefficients is zero.

The above argument is based on the so-called cone construction.

A.6. Poincaré’s lemma

It is not true, in general, that a closed form is exact. However, an
exact form is closed. A partial converse is true. For a p-form, p > 0
this is the

Poincaré lemma. On a starshaped region (open ball) 4 in R™ every
closed p-form (p > Q) is exact.
To establish this result we define a homotopy operator

I: AP(4)— A?7Y(4), p>0
with the property that
dlo + Idoe = o
for any p-form o defined in a neighborhood of 4. Hence, if o is closed
in 4, then Ida = 0 and « = dB, where B = Ia.
Let #', -, u® be a coordinate system at P € 4 (where P is assumed

to be at the origin). Denote by tu the vector with components
(tu!, -, "), 0 < t < 1. Then, for « = ay . 4 (w)duir A -+ A dubs, put

I —2 (— 1)et f 17-lay,  , (tu)dt-

k=1

Wrdutr N o N dutr— A dufrtr A L N\ duts.

Thus, )
dloe = p f t7lag (w)dt-dui A A duts
[}
D n
+ 22 (— l)k‘lf t" “’ (tu)dt wiedu! N\ dutr N\ 0 A du' e A\ duts .
k=17=1

On the other hand,

Ido = 2 f pp —untel “‘ 2 (tuydt-widui A e A duts

jel

n

—2 i (— l)hlf t’ (tu)dt wirdw! N\ dutt N\ 0 N du‘k A N dubs

j=1 k=1
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Hence,
1
dlo + Ido = [pJU g (tu)dt
RECoa 3”(:,...:’ ) : ;
> f 17— (tu)dt)duis A - N duts
“ ou

1

= f a—é: [t”a(,»lm,»p,(tu)]dt-dufl A e N duts
0

= ag,..ip(W)du's N\ - N duts

= a

provided that p > 0.

A.7. Singular homology of a starshaped region in R"

In analogy with the previous section it is shown next that the singular
homology groups H,(4), p > 0 of a starshaped region in R" are trivial.
Let us recall that by a singular p-simplex s? = [f: P,, -, P,] we mean
an Euclidean simplex (P, -+, P,) together with a map f of class 1 defined
ond(P,, -+, P,)—the convex hull of (P, -*, P,). Now, f can be extended

to the Euclidean (p + I)-simplex (O, P,, -, P,) by setting

JCoPo 4 1Py) = 1y + ) SR o)

and

floy=o.
Analogous to the map I of § A.6 we define the map P by

P
P =D (— 1) [f:0,,0,P,~, P,
i=0

i1
Then, )
b i
oPs? =2 2(— D [f: 0, 0,P, -, P

,
=0 j=0

14 P
+ 3,2 (= £ 0,4, 0, Py, -, Py, Pryy, 4, Py).

i=0 j=t i+1
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On the other hand, from

D
os? = 2 (— 1 [f: Py, oy Py, Piy, oy B
j=0

we obtain

p izl
Pose =D, 2 (—1)* [f: O, =, O, P,y -, Piy, Piyy, o, Py

j=1 i1=0 i+l

+ i i (— i+ [f: O, ) 0, P, +, P,].

j=0 i=j+1 i
Hence,

D D
Pos? | oPs? = 2 [f- 0,,0,P; -, P;;] - 2 [f' o, 0, Pt‘+ll oy Pyl
] =0

———
i=0 t

i+l

:[f:PO,-“,P,,]—[f:O,--',O]

P+l

=5 —[f: 0, O]

P+l
Now, put
Py? =[f: 0, O].
P+2
Then, 0
AP = &,[f: O%%O], = l:ﬁ o
and

Pyos? = ¢, [f: O, -, Ol
s
Hence, since €, 4 €,,; = 1

3POS” + PoaS” = [f o, -, O]»
eyt
from which
oPs? 4 Pos? = s?

where we have put P = P + P,
That any cycle is a boundary now follows by linearity.
Again, the above argument is based on the cone construction.
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A.8. Inner products

The results of §§ A.2 and A.3 are now combined by defining an inner
product of a cochain fe CP(N(%),A\?) and a chain g e C,(N(%),S,)

as the integral of f over g. More precisely, the values f (3, -, 7,) are
g-forms over Uy n - n U, whereas the values of g are singular g-chains
in Uy~ - U,. We define
(f(i()v ) ip)) g(iov ] ip)) = f f (A'8~1)
g
and
(:8) = 2, ([l ), £l = ) (A8.2)

(0
where the sum is extended over all p-simplexes on N( %).

The notation [,f is an abbreviation. To be more precise the form
S -, 2,) and chain g(4, =, 4,) should be written rather than the
variables f and g.

Either f or g is assumed to be finite, In this case, the sum is finite.
The elements f e CP(N(%), N\?) and g e C,(N(%), S,) are said to be
of type (p, q).

Lemma A.8.1. For elements f e CP(N(), N9) and g € C,,.,(N(%), S,)
(8),8) = (/. %)

To begin with, since the bracket is linear in each variable we may
assume that g = g(0, -+, p + 1)4(0, -, p + 1). Then,

) =2 (=1 [ O i =it 1+ 1)

b e D+1)

since ()0, -+, i — 1, i+ 1, p+ 1) = (= 1)'g0, -, p + 1).

We denote once more by d the operator on the cochain groups
CP(N( %), N?) defined as follows:

d: C*(N(%), A% — C(N(%), \*H)

where to an element f e CP(IN(%), \?) we associate the element df
whose values are obtained by applying the differential operator d to the
forms f(ig, -, i,) € AYU; N -~ Uy ). Evidently, dd = 0.

An operator

D Cy(N(#),Sg) ~ Co(N(#),S,-1)
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is defined in analogy as follows: D is the operator replacing each
coefficient of an element g e C (N(%), S,) by its boundary. Clearly,
DD = 0.

Lemma A.8.2. For elements f € CP(N(%), \%) and g € C,(N(%), Sg41)
(f,.Dg) = (df.g).

This is essentially another form of Stokes’ theorem.
The following commutativity relations are clear:

Lemma AB8.3. 8d = dé and oD = Do.

In § A.1 the problem of computing the period of a closed !-form
over a singular 1-cycle was considered—the resulting computation being
reduced to the ‘trivial’ problem of integrating a closed O-form over a
0-chain. The problem of computing the period of a closed g-form «
(with compact carrier) over a singular g-cycle I' is now considered.

In the first place, as in § A.1, by passing to a barycentric subdivision
we may write I' = X I'; with I'; contained in U, If «; denotes the
restriction of a to U, and f, the 0-cochain whose values are o, that is,
fo(U;) = ay, then, if we denote by g, the chain whose coefficients are I7,

fr“ = (f0.80)

—the independence of the subdivision being left as an exercise. (Since
more than one I'; may be contained in a single U; choose one U; to
contain each Ij. Then, gy(Uy) = Z; ., Iy).

A.9. De Rham’s isomorphism theorem for simple coverings

Before establishing this result in its most general form we first prove
it for a rather restricted type of covering. Indeed, a covering % of M
is said to be simple if, (a) it is strongly locally finite (cf. § A.4) and
(b) every non-empty intersection Uy n -~ n U, of open sets of the
covering is homeomorphic with a starshaped region in R". It can be
shown that such coverings exist. For, every point of M has a convex
Riemannian normal coordinate neighborhood U, that is, for every P,
O e U there is a unique geodesic segment in U connecting P and
O [23]). Clearly, the intersection of such neighborhoods is starlike with
respect to the Riemannian normal coordinate system at any point
of the intersection. The neighborhoods U may also be taken with
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compact closure. Now, for every V' € % we can take a finite covering
of 7 by such convex U, say Uy, -, Uy,p,- Then, the collection of all
{Uy;1Ved i=1, -, py} is a simple covering of M provided
(a) % is a strong refinement of a strong locally finite covering 4 such
that the U, ; refine w strongly, that is, for 7 C Ve, the neighbor-
hoods Uy, -, Uy p are all contained in ¥ and (b) only finitely many
Ved are contamed in a given Ve %. From the above conditions
it follows that {U} ;} is a locally finite covering.

Now, let f, e ZAN(%), ), g € Co(N(%), S;) and consider the
systems of equations

fo=4df Dgy = 0g,

8 = df, Dg, = og,

o, = dfy Dg, = o, (A9.1)
8fq—l = dfa Dga—l = dgq'

Clearly, f;, 1 =1, 2, - is of type ({ — 1, ¢ — ©) and g; is of type (¢, ¢ —i).
In the event there exist cochains f; and chains g, satisfying these relations
it follows that

(for80) = (df1.80) = (f1.Dgo) = (f1,9%81)
= (sflrgl) = (devgl) = (fz»Dgl) = (fz»agz)
= (sfa—l’ga—l) = (dfq»ga—l) = (fa»Dga—l) = (for 989)
= (¥0.80)-

Whereas f, and g, are of type (0, g), 8f, and g, are of type (g, 0). Since
déf, = 8df, = 88f,_, = 0, the coefficients of 8f, are constants. It follows
that 8f, may be identified with a cocycle 22 with constant coefficients.

For a chain of type (p, 0) let D, be the operator denoting addition of
the coefficients in each singular 0-chain. Evidently, 8D, = D,é and
DyD = 0. Thus, since dg, = Dg,_,, 9D,g, vanishes, that is Dyg, is a
cycle {,. We conclude that

_(sfmga) = (2% L)

(cf. formula A.8.2), that is

[ =60
(cf. § A.1). The problem of computing the period of a closed g-form

over a g-cycle has once again been reduced to that of integrating a
closed 0-form over a Q-chain.
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That the f; exist follows from Poincarés lemma and the fact that from
the equations (A.9.1), déf; = 8df, = 88f; , = 0,i =1, -+, q. For, since
fo is closed, there exists a (¢ — 1)-form f; such that f, = df,; since §f,
is closed, there exists a (¢ — 2)-form f, such that 8f, = df,, etc. To be
precise, suppose that f, -, f; exist satisfying ddf, =0, k=1, -, i.
Then, since ddf; = 8df, = 0, the equation &f; = df,,; has a solution
satisfying 8df;,, = 0.

The dual argument shows that chains g, e C(N(%),S,-;) exist
satisfying the system (A.9.1). That this argument works follows from
property (b) of a simple covering and the fact that the homology of a
ball (starshaped region in R") is trivial, as well as the equations 6Dg; = 0.

Now, suppose that a cocycle 2¢ (of type (¢, 0) with constant coefficients)
and a cycle {, (of type (¢, 0)) are given. Since % is strongly locally
finite, it is known from § A.4 that HY(N(%), N vanishes. This being
the case, there is an f, such that 22 = §f,. Hence, since 27 has constant
coefficients d8f, must vanish. Since the operators 4 and & commute
(cf. lemma A.8.3) and the cohomology groups are trivial, the existence
of an f,;, with df, = 8f,_, is assured. In this manner, f,_, -, f;
are defined—the condition déf, = 0 implying that f; = df; is a co-
cycle. Hence, f, determines a closed g-form. In a similar manner a
8o € Co(N(), S;) can be constructed from {,.

We have shown that cochains f; of type (i — 1, ¢ — 7) exist satisfying
the system of equations (A.9.1). Now, set

Ac={f; 148, =0},
X = {f: | dfi = 0}1

and
Y:‘ = {f: | Sf:' = 0}-

The values of f; on the nerve of % are (¢ — #)-forms. The set X; consists
of all such closed (¢ — ¢)-forms.

The operator d maps the spaces 4,, Y, and X; homomorphically
onto ZYN(%), N&~H+Y), B=YN(), Ni**') and {0}, respectively,
2<i7=<gq. For A, this follows from the Poincaré lemma since
g — ¢+ 1>0. Now, for an element f; € Y,, 8f, = 0. Hence, since the
cohomology is trivial for 7 > 1, there exists an f’ such that f, = §f’
from which df, = d&f' = 3df', that is df, e B*=YN(%), N-*+). To
show that d is onto, let f’ be an element of B*-Y(N(%), A?-i+1). Then,
f = of; for some f; € C*-"Y(N(%), /&) from which, sinceq — 7+ 1 >0,
by the Poincaré lemma, f; = df’’. It follows that f’ = 8df’’ == d&f’', and
so since 8f"’ € Y}, d is onto.
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The following isomorphisms are a consequence of the previous
paragraph:
A X = ZEN(), AT,

(Xi + Y,)/X, =~ ,‘/X,; n Y;' == Bi_l(N(@), /\:_H'l).

We therefore conclude that

AX, + Y, = H(N(U), A=), (A9.2)

A similar discussion shows that the operator § maps 4;, X;, and Y,
onto ZYN(%), N&7%), BYN(#), Ni') and {0}, respectively for
1 £7< g — 1 from which, as before, we conclude that

AY Xy + Yy H(N(¥), N7

Consider now the following diagram:

AYX, + Y, =2 A/ Xy + Yy o A )/ Xy + Y2 4/X, + Y,

A/

Dt = AYN; HN(%), NI HeY(N(#), Ny HYN(Z)R)

We show thatd: 4,/X,+Y, — D%and & 4,/X,+Y,— H(N(%), R)
are isomorphisms onto. Indeed, d sends f, € 4, into df, € ZAN( ), N),
and so may be identified with a closed g-form «. Since the elements
of X, are mapped into 0 we need only consider the effect of d on Y.
Let y be an element of Y,. Then, since 8y = 0, dy represents an exact
form. On the other hand, a closed ¢g-form may be represented as df,
and an exact form as dy with 8y = 0. This establishes the first iso-
morphism. To prove the second isomorphism, let f, be an element of 4,
Then, since déf, = 0, 8f, has constant coefficients and must therefore
belong to Z9N(%), R). Since Y, is annihilated by 8 we need only
consider the effect of & on X,. But an element x € X, has constant
coefficients, and so dx € BYN(%), R).

From the complete sequence of isomorphisms, it follows that

D% =~ HY(N(%),R).
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It is now shown by means of the dual argument that the singular
homology groups are dual to the groups HY(N(%), R).

We have shown that chains g; of type (f, ¢ — 7) exist satisfying the
system of equations (A.9.1). Now, set

A, = {gi | Dog, = 0},

X;= {gi | Dg; = 0}
and

Y= {gf | Og; = 0}-

The values of g; on N( %) are (¢ — 7)-singular chains. The set X; consists
of all such (¢ — 7)-singular cycles.

The operator D maps the spaces 4;, X; and Y; homomorphically
onto Z(N( ), S;_;-1), {0} and B(N(%), S;-;_;), respectively whereas
9 is a homomorphism onto Z, ,(N(%), S5-;), B;—1(N(%), S;-;) and
{0}, respectively provided that the indices never vanish. This leads to
the diagram

AYX; + V] = AYXy + Yy m s A X + Yoy = A )Xo + Yo

NAAN A

Hy(N(%),S;-2) Hy_o(N(%),S7).
Let 9, be the operator denoting addition of the coefficients of each
chain in Co(N(%), S,); denote by Z,, the space annihilated by 9, and

put Hyy = Zy/B,. Then, the diagram can be completed on the left
in the following way

Ay X + Yo Aj/X] + Y]
%/ D P /

S¢St Hoo(N(%),S¢_,)

For, &, maps the spaces 4;, X, and Y, homomorphically onto S,
S? and {0}, respectively.
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On the right, we have the diagram

Ay Xqq + Yo > Aa,/Xal + Y

\
D\ / D,
H, (N(%),S5) H(N(%),R)

Recall that D, is the operator denoting addition of the coefficients in
each singular chain. It maps the spaces 4,, ¥, and X, homomorphically
onto ZUN(%), R), BA(N(%), R) and {0}, respectively.

From the complete sequence of isomorphisms we are therefore able
to conclude that

Sg/Sq =2 Hy(N(%),R).

A.10. De Rham’s isomorphism theorem

The results of the previous section hold for simple coverings. That
they hold for any covering is a consequence of the following

Lemma A10.1.  For any covering % = {U,} of a differentiable manifold
M there exists a covering W = {W,} by means of coordinate neighborhoods
with the properties (a) W < U and (b) there exists a map ¢: W; — U,
such that Wy o - W, £ implies W, v -0 W, CU; nn Uy

To begin w1th there exist locally ﬁmte covermgs ¥ and 02/ such
that ¥ <€ %' < %. Hence, for any point P € M, there is a ball W(P)
around P such that

(i) Pe U’ implies W(P) C U’,

(iily Pe V implies W(P) C V,

(iii) P ¢ V implies W(P)n V =[.

For, since P belongs to only a finite number of U’ and V, (i) and
(i1) are satisfied. That (iii) is satisfied is seen as follows: Let P e V; € ¥".
Then, either VN Vy=[J or ¥ ~n V, % []. In the first case, (iii) is
obviously fulfilled. As for the latter case, since ¥~ is locally finite there
are only a finite number of sets ¥ meeting P, and so by choosing
W(P) sufficiently small (iii) may be satisfied.

Let W, = W(P;) be a covering of M by coordinate neighborhoods.
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Then, there is an open set V; with P; e V; and, by (ii) W; C V, € U;
C U;. Hence, property (a) is satisfied. That property (b) is fulfilled is
seen as follows: Suppose that W; n W, % [J; then, W; n Vj #* [
Hence, by (iii) P, e V, C Uj, and so by (i) W, C U; C U,. By sym-
metry we conclude that W;u W; C U; »n U; and (b) follows.

We are now in a position to complete the proof of de Rham’s
isomorphism theorem. To this end, let 4; be the direct limit of the
A; = A(%) and X, ¥, the corresponding direct limits. The proof is
completed by showing that

Ay, + P = HON@), N

for any open covering % of M thereby proving that the isomorphisms
(A.9.2) are independent of the given covering. The above isomorphism
follows directly from two lemmas which we now establish.

Lemma A.10.2. The maps d and & induce homomorphisms
d: A, — H-YN(), NT*),
§: A, — HY(N(%), \TY).

Moreover, these maps are epimorphisms (homomorphisms onto).

Indeed, for any f; € A( %), df, and §f; are defined as the cohomology
classes of df; and 8f;, respectively. That they are well-defined is clear
from the notion of direct limit. We must show that both d and § are
onto. For d, let = be an element of Zi=Y(N(%), A?*+!) and #  be a
refinement of % as in lemma A.10.1: ¢: W, — Uj; then, the values of
#*z are defined on Wy n - n W,_, C U, and may be extended to W,
By the Poincaré lemma, ¢*z is exact, that is there is a y € C*-Y(N(#"), AT™)
for which ¢*2 = dy on W, and consequently in Wy n - n W,_,.
That § is onto is clear. For, since the cohomology is trivial, any
3 e Z{N(%), N\F?) is of the form 8y, y e C-YN(#), AT). The
element y represents an element of 4;.

Lemma A.10.3, -
kerneld = kernel § = X, + Y.

The images of x,(U) + y,(U) under d and § are the cohomology
classes of dy,(U) and 8x,(U), respectively (cf. § A.9). The lemma is
therefore trivial for 4. Now, as in the proof of the previous lemma,
there is a refinement ¥ of % such that fx;( %) == dz(¥"). Hence 8x,(U)
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is equivalent to &8dz(#") = ddx(¥"), that is to an element which is
cohomologous to zero.

We show finally that the kernels are precisely X; + ¥,. To this end,
let d%(%) represent {0}. Then, for a suitable refinement ¢, JJdz = Su where
du = 0. For a further refinement ¢, du = dv by the Poincaré lemma.
Hence, d(¢fz — 80) = Ffdz — ddv = §éu — ddv = 8fu — 8dv =0,
and so, since §Jz = ($fz — 8v) + v, = is an element of X; + ¥,.

Analogous reasoning applies to the map $.

Remarks: 1. De Rham’s isomorphism theorem has been established for
compact spaces. That it holds for paracompact manifolds, that is, a
manifold for which every open covering has a locally finite open refine-
ment, is left as an exercise. Indeed, it can be shown that every covering
of a paracompact space has a locally finite strong refinement.

2. The isomorphism theorem extends to the cohomology rings
(cf. Appendix B).

A.11. De Rham’s existence theorems

We recall these statements referred to as (R;) and (R,) in §2.11.

(Ry) Let {3} (i =1, -, b(M)) be a basis for the singular g-cycles
of a compact differentiable manifold M and wi(i = 1, -, b(M)), b,
arbitrary real constants. Then there exists a closed g-form « on M
having the w} as periods.

(R,) A closed form with zero periods is exact.

Proof of (R;). Due to the isomorphism theorem, (R;) need only be
established for the cycles and cocycles (with real coefficients) on the
nerve of a given covering %.

Let L be a linear functional on Z(N(%), R) (the singular g-cycles)
which vanishes on B,(N(%), R) (the singular boundaries). L may be
extended to C(N(%), R) in the following way: Let £, be a basis of the
vector space C,(N(%), R)/Z,(N(%),R). Then, every ¢ € C,(N(%), R) has
a unique representation in the form

E=2r &+ (eZ(N(%),R),r;eR;

We extend L to C(N(%), R) by putting L(§) = L({).

Now, there is a (unique) cochain x € C4N(%), R) such that (x, £) =
L(£), namely, the cochain whose values are L(4(7y, -, 4,)). It remains
to be shown that x is a cocycle. Indeed,

(8x, &) = (v, 8) = L(2) =0
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since L vanishes on the boundaries. Thus, since ¢ is an arbitrary chain
dx vanishes.

Proof of (R,). Suppose that (x, 8¢) =0 for all ¢ € C,, ,(N(%), R).
We wish to show that x is a coboundary. To this end, let L be the linear
functional on B,_,(N(%), R) defined by

L(om) = (%, 9). (A.11.1)

Since oy = oy’ implies (x, ) = (x,7’), L is well defined. Now, extend
L to C,_,(N(%), R) and determine y by the condition

(9, &) = L(§). (A.11.2)
Then,

(= - &y, m) = (%, 1) — (8, 7)
= () — (3, 9m) = O

by (A.11.1) and (A.11.2). Since this holds for all %, x — 8y vanishes
and x is a coboundary.

Remarks: 1. The cohomology theory defined in §A.2 is a straightforward
generalization of the classical Cech definition of cohomology. The idea
of cohomology with ‘coefficients’ in a sheaf I' is due to Leray and is a
generalization of Steenrod’s cohomology with ‘local coefficients’.

2. It can be shown that a topological manifold is paracompact. In fact,
there exists a locally finite strong refinement of every covering (cf.
Appendix D). Hence, by the remark at the end of § A.10, de Rham’s
isomorphism theorem is valid for differentiable manifolds. The existence
theorems, however, require compactness.

3. There are at least two distinct cohomology theories on a manifold.
The de Rham cohomology is defined on the graded algebra A[M] of all
differential forms of class 1 on M. On the other hand, cohomology
theories may be defined on 4,[M]—the graded algebra consisting of
those forms of class & (> 1), and on A [M]—the graded algebra of
forms with compact carriers. If M = R", Poincaré’s lemma for forms
with compact carriers asserts that a closed p-form (with compact carrier)
is the differential of a (p — 1)-form with compact carrier if p < n — 1,
and an n-form o is the differential of an (n — 1)-form with compact
carrier if, and only if, («, 1) = 0. Hence, b,(4[R*]) =0, p =< n — 1,
and b,(4.[R"]) # 0. But, by(A[R"]) = | and, from §A.6, for p > 0,
by(A[R") = 0.

De Rham’s theorem states that there are precisely two cohomology
theories, namely, those on A[M] and A4 [M]. Moreover, if M is compact,
there is only one.



APPENDIX B

THE CUP PRODUCT

For a compact manifold M, we have seen that each element of the
singular homology group SH,, acts as a linear functional on the de
Rham cohomology group D"(M) and that each element of DP(M)
may be considered as a linear functional on SH,,. In fact, the cor-
respondences

SH, — (D*(M))*
and
DYM)— (SH,)* = H*(M)

(where ( )* denotes the dual space of ( )) are isomorphisms. In this
appendix we should like to show how the second map may be extended
to the cohomology ring structures. To this end, a product is defined
in (SH,)*.

B.1. The cup product

Let « and B be closed p- and ¢g-forms, corresponding to the cohomology
classes z, and 2z, respectively. Let f, and f; be representative p- and
g-cocycles. We shall show that « A B corresponds to the cohomology
class z,,, defined by the (p + g)-cocycle f, ,, where

fa/\ﬁ (UO’ N Up+a)_ =fa(U0' s Up)f{i(Uw " Up+a)' (Bll)

The product so defined will henceforth be denoted by f, U f5 and called
the cup product of f, and f,.

Lemma B.A. The operator 8 is an anti-derivation :

S VIp) = u Vg + (= 1), VU 8y
293
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Indeed, for a given covering % = {U,}

(Sfal\ﬁ) (Up, *** Uprgn) = 2 (— l)rfa/\ﬁ (Ugs s Upey Upiay s Uporn)

T
2+ 1

=2 (= VfuUs = Uryy Uppa, +, Upid)fo(Upars s Uprana)
=0

2+q¢+1

+ Z (— l)rfa(Uor " Up)fﬂ(Uw N Ur—lr Ur+lr ) U17+a+l)

= (Sfa)(UO’ " Up+1)f/3(Up+1’ y Upign)
+ (= 1P Us, =, Up)(8fp)(Us, ) Uprona)
= (8fy Y Jp) (U, s Upyona) + (— 12(fx V &) (Up, ***, Upyan)-

Corollary.

cocycle U cocycle = cocycle,
cocycle v coboundary = coboundary,
coboundary u cocycle = coboundary.

The cup product is thus defined for cohomology classes and gives

a pairing of the cohomology groups HP(N(%), R) and HYN(%), R)
to the cohomology group HP+4(N(%), R).

Lemma B.1.2. The cup product has the anti-commutativity property
fug=(=1%gvf, feHYN(%)R),gecH(N(%)R).

This is clear from the formula (B.1.1).

B.2. The ring isomorphism

As in § A9, let fy € ZAN(%), \P), fo € Z(N(%), A% and consider
the relations

fo=df1 fo’=df1’

oh = dfy o = df;

o1 = df, e = df
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Assume that f,, f; have the values « and B, respectively, and put
fo' (U, Upig) = « A B. Moreover, let

(U Uig) = fillUp H Uin) ANB, 1 sisp (B.2.1)
and

fz’;’H(UOx = Uprin) = fu(Uo, = Upfi(Uy, -+, Un+f—1)) l=j=q
(B.2.2)
For i # p, 8f;’ = df{,. Now, for i = p we have from (B.2.1)
(81) (Ug, =, Up) = (8f,)(Uo, -+, Up) N\ B

and, from (B.2.2)

(dfz:i-l)(Uo’ " Up) =fa(U0) ) Up) A\ (dfl')(Uw)

Hence, since 8f, = f, and (df,)}(U,) = B, 8f, = df,’,. In this way, we
see that

(82 (Uos *+ Upsa)

= (87)(Uos =, Upsd)felUpar, s Upsa) + falUoy 5 Up)(8f)(Uys 5 Upya)
= fulUo s Up)fe(Up, *, Upia)

= (fxV7p) (U, s Upd)

since 8f, = 0 and &f, = f,. We conclude that « A B8 determines f,U fj.

Summarizing, we have shown that the direct sum D(M) of the vector
spaces (cohomology groups) D?(M) has a ring structure, and that the
de Rham isomorphism between the cohomology groups extends to a
ring isomorphism.

Remark: Many of the methods of sheaf theory have apparently
resulted from the developments of Appendix A. In fact, perhaps the
most important applications of the theory are in proving isomorphism
theorems as, for example, those in § 6.14.



APPENDIX C

THE HODGE EXISTENCE THEOREM

Let M be a compact and orientable Riemannian manifold with metric
tensor g of class & = 5. We have tacitly assumed that M is of class & + 1.
Denote by AP the Hilbert space of all measurable p-forms « on M such
that («, «) is finite. (The notation follows closely that of Chapter II).
The norm in A? is defined by the global scalar product. We assume
some familiarity with Hilbert space methods. The properties of the
Laplace-Beltrami operator 4 are to be developed from this point of
view. The idea of the proof of the existence theorem is to show that
4-1—the inverse of the closure of 4 is a completely continuous operator
with domain (AR)*—the orthogonal complement of A% [3]. The
Green’s operator G (cf. 11.B) defined by

G = 4-'on (AB)*
T {0 onAj

is therefore completely continuous.
Since R(4)—the range of 4 is all of (A%)*, we obtain the

Decomposition theorem

A regular form o of degree p(0 << p << dim M) has the unique decomposi-
tion

o =ddy + 8dy + Hla]

where y s of class 2 and H(o] is of class k — 4 (¢f. § 2.10). (If k = 5,
HJo] is of class 2).

For, since o — H[a] € (AR)*, it belongs to R(4). Hence, there is a
p-form y such that dy = « — H[«]. However, « — H[q] is of class 1.
Consequently, by lemma C. | below, v is of class 2 from which we con-
clude that it belongs to the domain of 4.

296
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The complete continuity of the operator (4 4 I)~! is used, on the
other hand, for the proof that dim A% (where A% is the null space of 4)
is finite.

The following lemma given without proof is of fundamental im-
portance [46]:

Lemma C1. Let o € AP and B =1y -+ ro where y is a p-form of class
(1<l =k—5)andr e R. (Whenk = 3, take | = 1). If (46, «) = (6, B)
for every p-form 0 of class k — 2, then « is a form of class | + I (almost
everywhere) and do = B.

For forms « of class 2, this is clear. In this case (46, a) = (0, 4«).
Consequently, (8, do — B) vanishes for all p-forms 6 of class 2. Hence,
Ao — B = 0 almost everywhere on M.

We begin by showing that 4 is self-adjoint, (or, self-dual) that is
4 is its maximal adjoint operator. (The closure of an operator on Ap
is the closure of its graph in A? X AP). Let 4, =4 -+ I (I= identity).
Sinced + I = 4 + I, 4 is self-adjoint, if and only if, 4, is self-adjoint.
We show that 4, is self-adjoint. In the first place, 4, is (1-1). For,
snee (4, @) = (do, dox) + (8ax, o) + (@, @) = (e, <),
the condition 4, = 0 implies « = 0. Again, since

el = || 4yl
(cf. § 7.3 for notation), the inverse mapping (4;)~! is bounded. Thus
R(4,) is closed in AP. That R(4,) is all of AP may be seen in the following
way: Let o % 0 be a p-form with the property (4,8, «) = 0 for all B.
Applying lemma C. 1 with »r = — 1 this implies that « is of class 2
and 4,a = 0. Hence, since 4; is (1-1), « =0, and so R(d;) = A».

We have shown that (4,)~! is a bounded, symmetric operator on AP.
It is therefore self-adjoint, and hence its inverse is self-adjoint. Thus,

Lemma C.2. The closure of 4 is a self-adjoint operator on NP.

We require the following lemma in order to establish the complete
continuity of the operator (4,)™:

Lemma C.3. There exists a coordinate neighborhood U of every point
P e M such that for all forms o of class 2 vanishing outside U

D(a) = C(4yo, o) = C[(da, @) + (o, )]
where C is a constant depending on U and

D@ = [ 3 ()

is the Dirichlet integral.
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Remark: If, in E™ we integrate the right hand side of

0Py eei )
= — Z ) gy
(doya) fM zk; By alh *|

by parts, we obtain by virtue of the computation following (3.2.8)
D(a) = (daya).

(The lemma is therefore clear in E™.)

Let g;; denote the components of the metric tensor g relative to a
geodesic coordinate system at P: g;(P) = §;. Denote by U’ the
neighborhood of P in which this coordinate system is valid. Define a new
metric g’ in U’ by gi; = 8. (The existence of such a metric in U’ is
clear). Then, by the above remark

D(x) = (A'oe) = |[do [|2 + || 8 ||

where the prime indicates that the corresponding quantity has been
computed with respect to the metric g’, and « is a form vanishing outside
U’. Since

B =CilIBIR

for some constant C; and any form 8,
D(o) = Cy(fl dax ||* + || &' |[?)
= Cy(I[ da [[> + || 8o ||2 + || &' |2 — || 8x][?)
S 2G(1 da [[* + ] 8o [[* + || 8'a — 8 [[7)
= 2C,[(doya) + || 8'a — 8 |{?)

—the second inequality following from the parallelogram law. The
following estimate is left as an exercise:

[| 8 — Sa || = Cy || « [2 + «(U)D(a)

where €(U)— 0 as U shrinks to P. The proof is straightforward. We
conclude that

D(«) < 20[(dac) + Cy | & | + ((U)D(@)]
< 20,{(da) + | o« 1] + 3D()

by taking U small enough so that 2C,e(U) < L and C, =< 1.
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Lemma C.4. The operator (4,)" is completely continuous, that is, it
sends bounded sets into relatively compact sets.

We employ the following well-known fact regarding operators on a
Hilbert space. Let {x;} be a sequence of forms and assume that the
sequence {4, «;} is defined and bounded. If from the former sequence,
a norm convergent subsequence can be selected, (4,)"! is completely
continuous. We need only consider those forms in the domain of 4,.
In the first place, since

| dyo |2 = |[ Ao []* + 2 || dox ||* + 2 [] Sox |2 + [] « |[,

the sequences {o;}, {dx;} and {8a;} are also bounded (in norm). If we take
a partition of unity {gs} (cf. § 1.6), the corresponding sequences {g, «,},
{dgs «;} and {6g; o;} are also bounded. Since the terms of the sequence
{gso;} are bounded (in norm), the same is true of the first partial
derivatives of their coefficients by virtue of lemma C.3, provided we
choose a sufficiently fine partition of unity. Lemma C.4 is now an
immediate consequence of the Rellich selection theorem, namely, “if a
sequence of functions together with their first derivatives is bounded in
norm, then a convergent subsequence can be selected”.

Proposition (Hodge-de Rham). The number of linearly independent
harmonic forms on a compact and orientable Riemannian manifold is finite.
Since the operator (4,)" is (1-1), self-adjoint and completely
continuous, its spectrum has infinitely many eigenvalues (each of finite
multiplicity) which are bounded and with zero as their only limit.
However, 0 is not an eigenvalue. The eigenvalues of 4, are the reciprocals
of those of (4,)'—the multiplicities being preserved; moreover, the
spectrum of 4 has no limit points. Since 4, = 4 + I, the spectrum of 4 is
obtained from that of 4, by means of a translation. Thus, the spectrum
of 4 has no (finite) limit points; in addition, the eigenvalues of 4 have
finite multiplicities. In particular, if zero is an eigenvalue, the number of
linearly independent harmonic forms is finite since each eigenspace has
finite dimension. (In the original proof due to Hodge, this was a
consequence of the Fredholm theory of integral equations).

Finally, we show that 4-! is a completely continuous operator on
(AB)*. In the first place, 4 is (1-1) on (A%):. Thus, if we restrict
4 to (A%)*, it has an inverse. (It is this inverse which we denote by
4-1). By lemma C.2, 4~V is self-adjoint. Consequently, its domain is dense
in (AR)*; for, an element orthogonal to the range of a self-adjoint
operator is in its null space. Moreover, 4~ has a bounded spectrum
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with zero as the only limit point. This follows from the fact that the
eigenvalues of 4 on (A%)* have no limit points.

Summarizing, 4! has the properties:

(a) 1t is self-adjoint with domain (AR)*,

(b) its spectrum is bounded with the zero element as its only limit
point, and

(c) each of its eigenspaces is finite dimensional.

This allows us to conclude that 4-! is completely continuous. That
its domain is (A%)* follows from the fact that a completely continuous
operator is bounded. The remaining portions of the proof of the
existence theorem appear in § 2.11.

Remark: Lemma C.2 is not essential to the argument. For, the com-
plete continuity of 41 can be shown directly from that of (4,)~*, which is
defined on the whole space AP, since A} is an invariant subspace of
this operator.
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PARTITION OF UNITY

To show that to a locally finite open covering % ={U;} of a
differentiable manifold M there is associated a partition of unity (cf. §1.6)
we shall make use of the following facts: (a) M is normal (since a
topological manifold is regular), that is, to every pair of disjoint
closed sets, there exist disjoint open sets containing them. (b) Since M
is normal, there exist locally finite open coverings ¥ = {V;},#° = {W}},
W = {W,} and #? = {W}} such that

Wrcw,c W, CW)c WlCV, CV, CU,

for each 1.

In the construction given below, it will be assumed (with no loss in
generality) that each U, is contained in a coordinate neighborhood and
has compact closure.

In constructing a partition of unity, it is convenient to employ a
smoothing function in E™ that is a function g, =2 0 of class & cor-
responding to an arbitrary € > 0 such that

(i) carr(g» C {r =< ¢} where r denotes the distance from the origin;
(ii) g. > 0 for r < ¢;
(iid) j‘E,,gE(ul, oy ut)dut e dut = 1.

An example of a smoothing function is given by

0, r=e
gc(u): ¢ —é
ETt:xpez__rz, r < e

where ¢ is chosen so that

fEﬂg((u)du = cj exp (1—__1’—2—) du = 1.
r

<1

301
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For each Uj, let f; be the continuous function

1, PeW!
f(P) = 0, P € the complement of W,
O<f(P)S1, PeW,— Wk

Let (2!, ..., u") be a local coordinate system in U; and define “distance”
between points of U, to be the ordinary Euclidean distance between the
corresponding points of B; where B, is the ball in E® homeomorphic
with U,. Let ¢; be chosen so small that a sphere of radius ¢; with center P
is contained in U, for all P € V; and does not meet W, for P e V; — W%
Consider the function

h{(P) = hu) = J.f,-(v)g,‘ (u —v)dv, PeV,

It has the following properties.

(i) h; is of class k;

(ii) ; =0, h(P) >0, PeW}; h(P)=0,P eV, — WS
Thus, if we define h; to be 0 in the complement of V,, it is a function
of class k on M.

(iii) W} Ccarr(h,) C W? C U,

(1v) h(P) = Z,; hy(P) is defined for each P € M (since % is a locally
finite covering); A(P) is of class k& and is never 0 since %™ is a covering
of M.

We may therefore conclude that the functions

&P =5

form a partition of unity subordinated to the covering %.

Remarks: 1. The above theorem shows that there are many non-trivial
differential forms of class & on M.

2. A topological space is-said to be regular if to each closed set S and
point P ¢ S, there exist disjoint open sets containing S and P. Since M
is a topological manifold, it is locally homeomorphic with R™. Hence,
it is locally compact. That M is regular is a consequence of the fact
that it is locally compact and Hausdorff. That it is normal follows
from regularity and the existence of a countable basis. Finally, from
these properties, it can be shown that M is paracompact.



APPENDIX E
HOLOMORPHIC BISECTIONAL CURVATURE

Let M be a Kaehler manifold of complex dimension n and R its Riemannian curvature
tensor. At each point z of M, R is a quadrilinear mapping T:(M) x T:(M) x To(M) x
T.(M) — R with well-known properties.

Let o be a plane in T;(M), i.e., a real two dimensional subspace of T>:(M). Choosing

an orthonormal basis X,Y for o, we define the sectional curvature K(o) of o by

(E.0.1) K(o) = R(X,Y,X,Y).

We shall occasionally write K(X,Y) for K(0). The right hand side depends only on o,
not on the choice of an orthonormal basis X,Y. The sectional curvature K is a function
defined on the Grassman bundle of (two-) planes in the tangent spaces of M. A plane o is
said to be holomorphic if it is invariant by the (almost) complex structure tensor J. The
set of J-invariant planes ¢ is a holomorphic bundle over M with fibre P,_; = P,_,(C)
(complex projective space of dimension n — 1). The restriction of the sectional curvature
K to this complex projective bundle is called the holomorphic sectional curvature and will
be denoted by H. In other words, H(o) is defined only when o is invariant by J, and
H(o) = K(o). If X is a vector in o we shall also write H(X) for H(c).

Given two J-invariant planes ¢ and ¢’ in T:(M), we define the holomorphic bisectional

curvature H(o,0') by

(E.0.2) H(o,0') = R(X,JX,Y,JY),

where X is a unit vector in ¢ and Y a unit vector in ¢’. It is a simple matter to verify that
R(X,JX,Y,JY) depends only on ¢ and ¢’. Although the definition itself makes sense even
for hermitian holomorphic vector bundles (cf. Nakano [c]) as well as hermitian manifolds

we shall confine our considerations to the Kaehler case.

303
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Since
(E.0.3) H(o,0) = H(0),

the holomorphic bisectional curvature carries more information than the holomorphic sec-

tional curvature. By Bianchi’s identity we have
(E.0.4) R(X,JX,Y,JY) = R(X,Y,X,Y) + R(X,JY, X, JY).

The right hand side of (E.0.4) is a sum of two sectional curvatures (up to constant factors).
Hence the holomorphic bisectional curvature carries less information than the sectional
curvature.

Although the concept of holomorphic bisectional curvature is new, one finds it implicitly
in Berger [2] and Bishop-Goldberg [89]. The purpose of this Appendix is to give basic
properties of the holomorphic bisectional curvature and to generalize geometric results on
Kaehler manifolds with positive sectional curvature to Kaehler manifolds with positive

holomorphic bisectional curvature. (See Goldberg-Kobayashi [94]).
E.1. Spaces of constant holomorphic sectional curvature

If g is a Kaehler metric of constant holomorphic sectional curvature ¢, then
¢
R(Xv Yy Za W) = Z[g(X$ Z)g(Y, W) - g(X'r W)g(Y’ Z)
(E.1.1) +9(X,JZ)g(Y,IW) — g(X, IW)g(Y, I Z)

+2¢(X,JY)g(Z,JW)).

Hence,
(E.1.2) R(X,JX,Y,JY) = zj[_q(x, X)g(Y,Y) +g(X,Y)? + g(X,JY)?).

It follows that, for a Kaehler manifold of constant holomorphic sectional curvature c, the

holomorphic bisectional curvatures H(o,¢’) lie between ¢/2 and c,

¢/2< H(o,0')<c¢ or c¢< H(o,0')<¢/2,
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where the value ¢/2 is attained when o is perpendicular to o’ whereas the value ¢ is attained

when o = o'.
E.2. Ricci tensor

For a Kaehler manifold M, the Ricci tensor S may be given by
n
(E.2.1) S(X,Y) =) R(Xi,JX,X,JY),
i=1
where (Xi,...,X,,,JX1,...,JX4,) is an orthonormal basis for To(M). It is clear from
(E.2.1) that if the holomorphic bisectional curvature is positive (negative) so is the Ricci

tensor.
E.3. Complex submanifolds

Let M be a submanifold of a Riemannian manifold N with metric tensor g. Denote
by Rp and Ry the Riemannian curvature tensors of M and N and by a the second

fundamental form of M in N. Then, the Gauss-Codazzi equation says that
Ry(X,Y,Z,W) = g(a(X, Z),a(Y,W))
(E.3.1)
- g(a(X,W),a(Y,Z)) + Rn(X,Y, Z,W).
(Among several possible definitions of the second fundamental form «, we have chosen the
one which defines o as a symmetric bilinear mapping from 75 (M) x T (M) into the normal
space at z.)
If N is a Kaehler manifold and M a complex submanifold, then
Ry(X,JX,Y,JY) = g(a(X,Y),a(JX,JY))
—g(ax(X,JY),a(JX,Y)) + Rn(X,JX,Y,JY).
Hence,

Ru(X,JX,Y,JY) =— | (X, Y) ||
(E.3.2)
— |l a(X,JY) || +Rn(X,JX,Y,JY).

From (E.3.2) we may conclude that the holomorphic bisectional curvature of M does not

exceed that of N. In particular, if M is a complex submanifold of a complex Euclidean
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space, then the holomorphic bisectional curvature of M is nonpositive and hence the Ricci
tensor of M is also nonpositive. (See O'Neill [¢] for similar results on the holomorphic

sectional curvature.)

E.4. Complex submanifolds of a space of positive

holomorphic bisectional curvature
‘We prove

Theorem E.4.1. Let M be a compact connected Kaehler manifold with positive holo-
morphic bisectional curvature, and let V and W be compact complez submanifolds. If

dimV +dim W > dim M, then V and W have a non-empty intersection.

Theorem E.4.1 is a slight generalization of Thearem 2 in Frankel’s paper [b] in which
he assumes that M is a compact Kaehler manifold with positive sectional curvature. The

proof given below is a slight modification of that of Frankel.

Proof. Assume that V N W is empty. Let 7(¢), 0 <t <, be a shortest geodesic from V
to W. Let p = 7(0) and ¢ = 7(l). Let X be a parallel vector field defined along T which
is tangent to both V and W at p and g, respectively. The assumption dimV + dim W >
dim M guarantees the existence of such a vector field X. Then JX is also such a vector
field. Denote by T the vector field tangent to r defined along . We compute the second
variations of the arc-length with respect to infinitesimal variations X and JX. Then

(Frankel [b]), we have

t
(E4.1) %(0) = g(VxX,T), — 9(VxX,T), — /; R(T,X,T, X)dt,

i
(E.4.2) "% (0) = g(VuxJX,T), - g(Vix JX,T), — / R(T,JX,T,JX)dt.
(4]

Since g(VxX,T),4+9(VixJX,T)p = 0and g(VxX,T)q+9(VixJX,T), = 0 (cf. Frankel
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{b]), by adding (E.4.1) and (E.4.2) and making use of (E.0.4) we obtain

i
% (0) + '}X(O)=—/(R(T,X,T,X)+R(T,JX,T,JX))dt
0
'
=—/ R(T,JT,X,JX)dt < 0.
(]

Hence at least one of L’ (0) and L’ (0) is negative. This contradicts the assumption that

T is a shortest geodesic from V to W.

Theorem E.4.2. A compact Kaehler surface M, with positive holomorphic bisectional

curvature is complez and analytically homeomorphic to Po(C).

The result of Andreotti-Frankel (Theorem 3 in [b]) states that a compact Kaehler surface
M, with positive sectional curvature is complex analytically homeomorphic with P;(C).
The proof of Theorem E.4.2 is the same as the proof of Theorem 3 in Frankel's paper [b).
(The only change we have to make is to use Theorem E.4.1 instead of Theorem 2 of {b}.)

The following theorem is also a slight generalization of a result of Frankel [b].

Theorem E.4.3. Every holomorphic correspondence of a connected compact Kaehler

manifold N with positive holomorphic bisectional curvature has a fized point.

The statement means that every closed complex submanifold V of N x N with dimV =

dim N meets the diagonal of N x N.

Proof. Setting M = N x N and W = diagonal (N x N), we apply the proof of Theorem
E.4.1. Then it suffices to show that R(T,JT,X,JX) is positive at some point of the
geodesic 7. Since T and X are tangent vector fields of N x N, they can be decomposed as

follows:

T=T]+Tz, X=X1+X'27

where T) and X, are tangent to the first factor N, and T} and X, to the second factor N.

Then,

R(T,JT,X,JX) = Rn(Ty,JTy, X1,J X)) + RN (T, JTs, X2, J X2).
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Since T is perpendicular to the diagonal of N x N at p and g, neither T} nor T; vanishes at
p and q. Since X; and X3 cannot both vanish at any point, either Ry (Ty, JTh, X1, JX,)
or Rn(Ta, JT2, X4, J X2) is strictly positive at p (and ¢). Hence R(T,JT, X, JX) is strictly

positive at p.

E.5. The second cohomology group

A slight generalization of Theorem 1 in Bishop-Goldberg’s paper [90] is given.

Theorem E.5.1. The second Betti number of a compact connected Kaehler manifold M

with positive holomorphic bisectional curvature is one.

Corollary. If holomorphic curvature is positive, i.e., H(X) > 0 for all X and the mazi-
mum holomorphic curvature is less than twice the minimum holomorphic curvature (i.e.,

M is A-holomorphically pinched with A\ > 1/2, then the second Betti number 1s 1.

This is an immediate consequence of the inequality

22 -1
2

K(X,Y)+ K(X,JY) >

(see (2)).

The following lemma is basic. It will be used also for the proof of Theorem E.6.1.

Lemma E.5.1. Let £ be a real form of bidegree (1,1) on a Kaehler manifold M. Then

there ezists a local field of orthonormal frames X1,... X,,JX,,...,J X, such that

E(Xi, JX;)=0 for i#]j.

Proof. Let T(X,Y) = &(X,JY). The fact that £ has bidegree (1,1) is equivalent to
§X,Y) = £(JX,JY) for all X and Y. Thus, T(X,Y) = T(Y,X) and T(JX,JY) =
T(X,Y), that is, T is a symmetric bilinear form invariant under J. Consequently, if X,
is a characteristic vector of T, so is JX;. We can therefore choose an orthonormal basis

Xi1,...,Xn,JX1,...,J X, inductively so that the only nonzero components of T are given
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by T(X:,X;) = T(JXi,JX;), which translates into the desired statement for ¢. (If we
use the complex representation for T, then T is a hermitian form and the process above is

equivalent to the diagonalization of T'.)

The remainder of the proof of Theorem E.5.1 will be given as in Berger [2], and is a
standard application of a well known technique due to Bochner and Lichnerowicz. For a
2-form £ on a compact Riemannian manifold M, we define F(£) by the following tensor

equation:

F(¢) = 2Rap¢*°¢®? ¢ — Rapcpt*B¢CP.

It is known (cf. for instance, Bochner [6], Lichnerowicz [58, p. 6] or Yano-Bochner [75, p.
64]) that if ¢ is harmonic and F(£) > 0, then F(€) = 0 and ¢ is parallel.

Let £ be as in Lemma E.5.1 and set &;;, = €(Xi,JX;). By a simple calculation we

obtain

(E.5.1) F(§) =2 Riinjja(&iis — &i0)%
i

where

Riivjje = R(Xi, J X3, X5, J X).

Since Rii.jja > 0 by our assumption, we conclude that F(§) > 0. Assume that £ is
harmonic. Then F(£) = 0 and ¢ is parallel. The equality F(§) = 0 implies &iix = &jj.
at each point for 1,7 = 1,...,n. Hence { = f2, where f is a function on M and £
is the Kaehler form of M. Since £ is parallel, f must be a constant function. Thus,
dim HM(M;C) = 1.

Since the Ricci tensor of M is positive definite (cf. §E.2), there are no nonzero holo-
morphic 2-forms on M (cf. Bochner (11}, Lichnerowicz (58, p. 9] or Yano-Bochner (75, p.

141}). Thus H2%(M;C) = H®?(M;C) = 0. This completes the proof of Theorem E.5.1.
E.6. Einstein-Kaehler manifolds with positive holomorphic bisectional curvature

The following is a slight generalization of a result of Berger [a].
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Theorem E.6.1. An n-dimensional compact connected Kaehler manifold with an Einstein

metric of positive holomorphic bisectional curvature is globally isometric to P,(C) with the

Fubini-Study metric.

Only the essential steps in the proof will be given because of its length, technical com-
plexity and similarity in approach to the proof of Berger’s theorem. Details, however, will
be provided where necessary.

Let M be an Einstein-Kaehler manifold of complex dimension n and let X;,..., X,,
JX1,...,J X, be a local field of orthonormal frames. We write also Xj.,...,Xpne for
JXi,...,J X, and set

Ruﬂ76 = R(-meﬂax'nx6)'

We use the convention that the indices a, 3,7,d run through 1,...,n,1*,...,n* while the
indices 1, j, k,! run from 1 to n. Being the curvature tensor of a Kaehler manifold, Ragys
satisfies in addition to the usual algebraic relations satisfied by a Riemannian curvature

tensor the following relations:
(E.6.1) Rijap = Ricjoag, Ritjap = —Rijoap.

Lemma E.6.1. Let M be an Einstein-Kaehler manifold such that (Ricci tensor) = k-

(metric tensor). Then
1
3 ZDaDaRll'll' = Z(Rfapg ~ Rl — Ric1pRicarep) + k- Rirenne,
a a,B

where D denotes the operator of covariant differentiation.

Lemma E.6.1 is a special case of & formula of Berger in the Riemannian case (cf. Lemma
(6.2) in Berger [a}); the Riemannian curvature tensor in Berger’s paper differs from ours
in sign.

We denote by H; the maximum value of the holomorphic sectional ctirvature of M. Since

M is compact, H, exists and is attained by a unit vector, say X, at a point z of M. Thus,
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H, = H(X). We choose & local field of orthonormal frames Xi,...,Xa,JX1,...,JX¢

with the following properties:

X=X at =z,
(E.6.2)
Rijeia =0 for a#i*.

To find such a frame we apply Lemma E.5.1 to the 2-form ax defined by
ax(Y,2)=R(X,JX,Y, Z).

We denote by @ the value of %Ea DyDyRyye1e at z. A straightforward calculation
using Lemma E.6.1, and E.6.1 yields

=—H} +kH, -2) R},

i>2
+ z [(R1irj = Riierje)? + Ryjorj + Riinje )%
i,j22
> -H} +kH,-2) Ri.;..
i>2

Since k& = Z:.' Riyeiie = Ryjenre + 2.22 Ryysiie = H+ Eizz Rjyjy+iie, it follows that

(E.6.3) > Z Ryyeiie (Hy = 2Ry10ii0 ).
i>2

To prove the inequality Hy — 2Ryj+;» 2 0, we first establish the following lemma.

Lemma E.6.2. Let X,JX,Y,JY be orthonormal vectors at a point of a Kachler manifold

M. Let a,b be real numbers such that a*> + b2 = 1. Then
H(aX +bY) + H(aX — bY) + H(aX +bJY) + H(aX — bJY)

=4[a*H(X) + b*H(Y) + 4a*6’R(X, JX, Y, JY)).

Proof. By a straightforward calculation we obtain

H(aX+bY)+H(aX —bY) = 2{a* H(X)+b* H(Y)+6a2b2R(X, JX,Y, JY)—4a?b* K(X,Y)).

Replacing Y by JY we obtain

H(aX+bJY)+H(aX—bJY) = 2[a* H(X)+b* H(Y)+6a2b? R(X, JX,Y, JY)—4a?b2 K (X, JY)).
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Lemma E.6.2 now follows from these two identities and
R(X,JX,Y,JY)= K(X,Y)+ K(X,JY).

We apply Lemma E.6.2 to the case X = X; and Y = X;,t # 1. Since H; = H(X,) is

the maximum holomorphic sectional curvature on M, we obtain
Hy > a*Hy + B H(X;) + 4a®0® Ryyeiie.

Hence

(1 -a®)(1 + a®)Hy 2 8*H(X;) + 4a®b* Ryyeiiv
Since 1 — a? = b?, dividing the inequality above by b? we obtain
(14 a*)H; > B H(X;) + 4a®Ryyeiie .
Setting a = 1 and b = 0, we obtain
Hy 2 2Ryyeii- .
Since, by our assumption, Ryj«ii» > 0, we obtain from E.6.3

Q2 ) Ruviie(Hy = 2Ripeiie) 2 0.
i>2

On the other hand, since Ry;+1;+ attains a (local) maximum at z, it follows that
1
e= 3 ZDnDoRll'll‘ <0.

Hence,

H] =2R11-"’- for i=2,...,n.

Since k = 3, Ri11+ii-, we have

(E.6.4) k= (n+1)H.

L] R

The following lemma is also due to Berger (cf. Lemma (7.4) of [a]).
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Lemma E.8.3. Let M be a Kaehler manifold of complez dimension n. Then at any point

y of M the scalar curvature R(y) is given by

n(n+1)

RY) = gozm)

/ H(X)dX, y € M,

where Vol(§2"1) is the volume of the unit sphere of dimension 2n — 1 and dX is the

canonical measure in the unit sphere Sy in the tangent space Ty(M).

Using E.6.4 and Lemma E.6.3 we shall show that M is a space of constant holomorphic

sectional curvature. Since M is Einsteinian, we have R(y) = 2nk. By E.6.4 we have
(E.6.5) R(y) = n(n + 1)H;.
From Lemma E.6.3 and E.6.5 we obtain

/ (Hy — H(X))dX = 0.
S,

Since H, > H(X) for every unit vector X, we must have H, = H(X). A compact
Kaehler manifold of constant positive holomorphic sectional curvature is necessarily simply
connected and so is holomorphically isometric to P,{C).

As in Bishop-Goldberg [92], from Theorems E.5.1 and E.6.1 we obtain

Theorem E.6.2. A compact connected Kaehler manifold with positive holomorphic bisec-

tional curvature and constant scalar curvature is holomorphically isometric to P,(C).

In fact, the Ricci 2-form of a Kaehler manifold is harmonic if and only if the scalar
curvature is constant. By Theorem E.5.1, the Ricci 2-form is proportional to the Kaehler

2-form. Hence the manifold is Einsteinian, and Theorem E.6.2 follows from Theorem E.6.1.

Corollary. A compact, connected homogeneous Kaehler manifold with positive holomor-

phic bisectional curvature is holomorphically isometric to Po(C).
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APPENDIX F

THE GAUSS-BONNET THEOREM

The Gauss-Bonnet theorem for a compact orientable 2-dimensional Riemannian mani-
fold M states that
= /M K dA = x(M),
where K is the Gaussian curvature of the surface M, dA denotes the area element of M,
and x(M) is the Euler characteristic of M. This is usually derived from the Gauss-Bonnet
formula for a piece of a surface. Let D be a simply connected region on M bounded by
a piecewise differentiable curve C consisting of m differentiable curves. Then the Gauss-

Bonnet formula for D states

/kgds+2(7r—ai)+/ K dA = 2m,
C D

i=1
where kg is the geodesic curvature of C and aj,...,am denote the inner angles at the
points where C is not differentiable. Triangulating M and applying the Gauss-Bonnet
formula to each triangle we obtain the Gauss-Bonnet theorem for M.

In 1943, Allendoerfer and Weil [a] obtained the Gauss-Bonnet theorem for arbitrary
Riemannian manifolds by proving a generalized Gauss-Bonnet formula for a piece of a
Riemannian manifold isometrically imbedded in a Euclidean space. An intrinsic proof was
obtained by Chern [b] in 1944. The reader is referred to the book of Kobayashi and Nomizu
[e] for details.

F.1. Weil homomorphism

Let G be a Lie group with Lie algebra g. Let I¥(G) be the set of symmetric multilinear
mappings f : g X --+ X g = R such-that f((ad a)ty,...,(ad a)tx) = f(t1,...,tx) fora € G
and ¢j,...,tx € g. A multilinear mapping f satisfying the condition above is said to be

invariant (by G). Obviously, I*¥(G) is a vector space over R. We set

I(G) = il*(G).
k=0

314
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For f € I*¥(G) and g € I'(G), we define fg € I*¥}(G) by

1
falty, . teyr) = )] D f oy to®)g otk tatksn),
o

where the summation is taken over all permutations o of (1,...,k +{). Extending this
multiplication to I(G) in a natural manner, we make I(G) into a commutative algebra
over R.

Let P be a principal fibre bundle over a manifold M with group G and projection p.
Our immediate objective is to define a certain homomorphism of the algebra I(G) into the
cohomology algebra H*(M, R). We choose a connection in the bundle P. Let w be its
connection form and €} its curvature form. For each f € I*(G), let f(f2) be the 2k-form

on P defined by

1
FO)( Xy, Xox) = et Zfaf(g(xu(l)»xu(Q))v~-~vQ(Xa(2k—l)yXa(2k)))y

X1,..., X2k € Ty(P), where the summation is taken over all permutations ¢ of (1,2,...,2k)

and €, denotes the sign of the permutation o.

Theorem F.1.1. Let P be a principal fibre bundle over M with group G and projection
w. Choosing a connection in P, let Q be its curvature form on P. Then,

(1) For each f € I*(G), the 2k-form f(Q) on P projects to a (unique) closed 2k-form,
say f(Q), on M, i.e., f(Q) = (F(Q));

(2) If we denote by w(f) the element of the de Rham cohomology group H?*(M,R)
defined by the closed 2k-form f(Q), then w(f) is independent of the choice of a connection
and w : I(G) -+ H*(M, R) is an algebra homomorphism.

Theorem F.1.1 is due to A. Weil, and w : I(G) - H*(M, R) is called the Weil homo-
morphism.

F.2. Invariant polynomials
Let V be a vector space over R and S¥(V) the space of symmetric multilinear mappings

fof V x+ . x V(ktimes) into R. In the same way as we made I(G) into a commutative
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algebra in § F.1, we define a multiplication in S(V) = 350, S*(V) to make it into a
commutative algebra over R.

Let £',...,£" be a basis for the dual space of V. A mapping p: V — R is called a
polynomial function if it can be expressed as a polynomial of ¢!,...,¢". The concept is
evidently independent of the choice of ¢!,...,£". Let P¥(V) denote the space of homoge-
neous polynomial functions of degree k on V. Then P(V) = 3 7/ P*(V) is the algebra

of polynomial functions on V.

Proposition F.2.1. The mapping ¢ : S(V) = P(V) defined by (¢ f)(t) = f(¢,....t) for

f € S¥(V) and t €V is an 1somorphism of S(V) onto P(V).

Proposition F.2.2. Given a group G of linear transformations of V, let Sg(V) and
Pg(V) be the subalgebras of S(V) and P(V), respectively, consisting of G-invariant ele-
ments. Then, the isomorphism ¢ : S(V) — P(V) defined in Proposition F.2.1 induces an

isomorphism of Sg(V) onto Pg(V).
Applying Proposition F.2.2 to the algebra I(G) defined in § F.1, we obtain

Corollary. Let G be a Lie group. Then the algebra I(G) of (ad G)-invariant symmetric
maultilinear mappings of its Lie algebra g into R may be identified with the algebra of

(ad G)-invariant polynomial functions on g.

The following theorem is useful in the actual determination of the algebra /(G) defined

n§ F.1.

Theorem F.2.1. Let G be a Lie group and g its Lie algebra. Let G’ be a Lie subgroup
of G and ¢' its Lie algebra. Let I(G)(resp. I(G')) be the algebra of invariant symmetric

maultilinear mappings of g(resp. g') into R. Set

N ={a € G;(ad a)g' C g'}.

Considering N as a group of linear transformations acting on g', let In(G') be the subal-
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gebra of I(G') consisting of elements invariant by N. If
g={(ad a)t'la € G and t' €g'},

then the restriction map I(G) = I(G') maps I(G) isomorphically into In(G').
As an application of Theorem F.2.1 we obtain I(U(n)), I(O(n)) and I(S(O(n)).

Theorem F.2.2. Define polynomial functions fy,..., fn on the Lie algebra u(n) of U(n)

by
det(AMn +V=1X) = A" — fi(X)A" 4 (XN — o 4 (1) fu(X)  for X € u(n).

Then fy,-.., fn are algebraically independent and generate the algebra of polynomial func-
tions on u(n) invariant by ad(U(n)).
Theorem F.2.3. Define polynomial functions fy,..., fm on the Lie algebra o(n) of O(n)

(where n. =2m orn =2m + 1) by

det(Aln — X) = A" + fi(X)A""2 + fH(X)A" ™ + ..., X € o(n).

Then f1,... fm are algebraically independent and generate the algebra of polynomial func-

tions on o(n) invariant by ad{O(n)).

Theorem F.2.4. Define polynomial functions fi,..., fm on the Lie algebra o(n) of SO(n)
as in Theorem F.2.8.

(1) Ifn = 2m + 1, then fi,...,fm are algebraically independent and generate the
algebra of polynomial functions on o(n) invariant by ad(SO(n));

(2) Ifn =2m, then there ezists a polynomial function h (unique up to sign) such that
fm = h? and the functions fi,..., fm—1, h are algebraically independent and generate the

algebra of polynomial functions on o(n) invariant by ad(SO(n)).

Let

X = (xi;) € o(2m) with Tij = —Tij.



318 APPENDIX F.  GAUSS-BONNET THEOREM

Set
1
WX) = gmmt D Cirizizmosiam Tiria - Tizmosiams
where the summation is taken over all permutations of (1,...,2m) and €;,..i,,, is 1 or
—1 according as (i1,...,12m) is an even or odd permutation of (1,...,2m). From the

usual definition of the determinant it follows that h is invariant by ad(SO(n)). Moreover,

fm = h? on o(n).

F.3. Chern classes

We recall the axiomatic definition of Chern classes (Hirzebruch [c¢] and Husemoller
[d]). We consider the category of differentiable complex vector bundles over differentiable
manifolds.

Aziom 1. For each complex vector bundle E over M and for each integer i > 0, the i**
Chern class ¢;(E) € H*(M, R) is given, and co(E) = 1.

We set ¢(E) = Y 1o, ci(E) and call ¢(E) the total Chern class of E.

Aziom 2 (Naturality). Let E be a complex vector bundle over M and f : M’ - M a

differentiable map. Then

o(f'E) = f*(c(E)) € H*(M"; R),

where f~!E denotes the complex vector bundle over M’ induced by f from E.

Aziom 3 (Whitney sum formula). Let E,,...,E,; be complex line bundles over M,
i.e., complex vector bundles with fibre C. Let E, & --- ® E,; be their Whitney sum, i.e.,
E\®-- - @®@E;=d " (E, x---x E,), whered: M — M x --- x M maps each point z € M

into the diagonal element (z,...,z) € M x --- x M. Then

c(E1® - @ E;) =c(Ey)...c(E,).

To state Axiom 4, we need to define a certain natural complex line bundle over the

n-dimensional complex projective space P,. A point z of P, is a 1-dimensional complex
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subspace, denoted by Fz, of C**!. To each z € P, we assign the corresponding F; as
the fibre over z, thus obtaining a complex line bundle over P, which will be denoted by
E,.. Instead of describing the complex structure of E, in detail, we exhibit its associated
principal bundle. Let C* be the multiplicative group of non-zero complex numbers. Then
C* acts on the space C"*! — {0} of non-zero vectors in C"*! by

(%21, 2™, w) € (C™* = {0}) x C*
- (2w, 2'w,...,2"w) € C™*' — {0}.
Under this action of C*, the space C™*! — {0} is the principal fibre bundle over P, with
group C* associated with the natural line bundle E,. If we denote by p the projection of

this principal bundle, and by U; the open subset of P, defined by z* # 0, then
PUU) = {(2%, .., 2™) € C™H1]F £ 0},

If we denote by ¢; the mapping p~!(U;) — C* defined by ¢;(2°,...,2z") = z', then the

transition function %j; is given by
¥;i(p(°,...,2") =2/ /2* on UinUj.

For the normalization axiom we need to consider only F;.

Aziom 4 (Normalization). —c;(E,) is the generator of H2( Py, Z); in other words, ¢, (E))
evaluated (or integrated) on the fundamental 2-cycle P; is equal to —1.

Let E be a complex vector bundle over M with fibre C” and group GL(r;C). Let P
be its associated principal fibre bundle. We shall now give a formula which expresses the
k** Chern class c;(E) by a closed differential form ~x of degree 2k on M. We define first

polynomial functions fy, f1,..., fr on the Lie algebra gi(r;C) by

1 - r
det [ M, — X) = X)A\™F X € gl(r; ).
e( 1 ) > ) € gl(r;C)

27/~
Then they are invariant by ad(GL(r;C)). Let w be a connection form on P and § its

curvature form. by Theorem F.1.1 there exists a unique closed 2k-form v on M such that

P () = fi(Q),
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where p: P = M is the projection. The cohomology class determined by + is independent

of the choice of connection. From the definition of the 4i’s we may write

1
I - ——=Q) =p*(1 ety
det( Py ,__1) pPP(l+m+-+)

Theorem F.3.1. The k** Chern class ci(E) of a complez vector bundle E over M is

represented by the closed 2k-form i defined above.

We shall show that the real cohomology classes represented by the ~,'s satisfy the four
axioms.

(1) Evidently ~o represents 1 € HO(M; R).

(2) Let P be the principal bundle associated with a complex vector bundle E over M.
Given amap f : M’ = M, it is clear that the induced bundle f~! P is the principal bundle
associated with the induced vector bundle f~'E. Denoting also by f the natural bundle

map f~'P — P and by w a connection form on P, we set

w' = f*(w).
Then w' is a connection form on f~! P and its curvature form €' is related to the curvature
form © of w by Q' = f*(2). If we define a closed 2k-form «; on M using £’ in the same
way as we define v using £, then it is clear that f*(yx) = v;.

(3) Let E,,...,E; be complex line bundles over M and P,,..., P, their associated
principal bundles. For each 1, let w; be a connection form on P; and §2; its curvature form.
Since Py x - x P, is a principal fibre bundle over M x -+« x M with group C* x --- x C*,
where C* = GL(1;C), the diagonal map d: M — M x --- x M induces a principal fibre
bundle P = d=}(P; x- -+ x Py) on M with group C* x---xC*. The group C* x---x C* may
be considered as the subgroup of GL(q, C') consisting of diagonal matrices. The Whitney
sum E = E; @ - - @ E, is a vector bundle with fibre C9. Its associated principal fibre bundle
Q with group GL(q,C) contains P as a subbundle. Let p; : P — P; be the restriction of

the projection Py x -+ X P; = P; to P and set

wmwi b, Wl = pl()
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Then w is a connection form on P and its curvature form  is given by
Q=07 +---+Q; where Qf = pi(Q).

Let & be the connection form on Q which extends to w. Let § be its curvature form on

Q. Then the restriction of
det { I ! Q
¢ oyl
to P is equal to

(1—511—\/__19;%-.-/\(1—5#—1—\/__19;).

This establishes the Whitney sum formula.
(4) Let P = C*—{0}. P is the principal bundle over P;(C') with group C* associated

with the natural line bundle ;. We define a 1-form w on P by
w = (7,dz)/(z,2),

where (Z,dz) = 7°dz° + z'dz! and (%,z) = 2°2° + 7!2!. Then w is connection form and its

curvature form ( is given by
Q = dw = {(7,2)(d7,dz) — (2,d%) A (2,d2)}/ (%, 2)%,
where
(d7,dz) = dz2° A d2° + dz* A d2'.

Let U be the open subset of P,(C) defined by 2° # 0. If we set w = z'/2°, then w may be
used as a local coordinate system in U. Substituting 2! = 2% in the formula above for &,
we obtairf

Q = (d A dw)/(1 + wo)?.

Then vy, = 71(E1) can be written as follows:

-1 = (dW A dw)/27vV=1(1 + wT)? on U.
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If we set

21y — t

w=re

then

-m = (2rdrAdt)/(1+7%)? on U.

Since P(C) — U is just a point, the integral — fP.(C) 71 is equal to the integral — f;; v1.

We wish to show that the latter is equal to 1. From the formula above for 4, in terms of

- fm= /(/om(lzlf:)Z)‘””

If we express the curvature form Q by a matrix-valued 2-form (§}), then the 2k-form

r and t, we obtain

vk representing the k** Chern class cx(E) can be written as follows:

» (—l)k 1] iy i
) = G =Ty 2 S A AR

where the summation is taken over all ordered subsets (ij,...2x) of k elements from
(1,...,r) and all permutations (j1,...,jk) of (¢1,...,ix) and the symbol 6‘“ "' denotes
the sign of the permutation (z1,...,2k) = (J1,..-,7k)-

Let P be the principal bundle with group GL(r,C) associated with a complex vector
bundle E over M. We shall show that the algebra of characteristic classes of P defined in §
F.1is generated by the Chern classes of E. Reducing the structure group GL(r,C) to U(r)
we consider a subbundle P’ of P and choose a connection form w’ on P’ with curvature
form . Let w be the connection form on P which extends w’ and Q its curvature form.
Let f be an ad(GL(r,C))-invariant polynomial function on gi(r,C) and f’ its restriction
to u(r). Then f’ is invariant by U(r). Since the restriction of f(2) to P’ is equal to
f'(§), the characteristic class of P defined by f coincides with the characteristic class of
P’ defined by f’. In § F.2 we determined all ad(U(r))-invariant polynomial functions on

u(r) and our assertion now follows from the definition of the v's.
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F.4. Euler classes

We define the Euler classes axiomatically. But first, let E be a real vector bundle over
a manifold M with fibre R?. Let P be its associated principal fibre bundle with group
GL(g, R). Let GL*(q, R) be the subgroup of GL(g, R) consisting of matrices with positive
determinants; it is a subgroup of index 2. A vector bundle E is said to be orientable if
the structure group of P can be reduced to GL*(q; R). i E is orientable and if such a
reduction is chosen, E is said to be oriented.

Let f be a mapping of another manifold M’ into M and f~! E the induced vector bundle
over M'. If E is orientable, sois f~!E. If E is oriented, so is f ™' E in a natural manner.

Let E and E’ be two real vector bundles over M with fibres R and R? , respectively.

Since

GL(q,R) x GL(¢',R) C GL(g + ¢, R)

and

GL*(q,R) x GL*(¢',r) C GL*(q+ ¢, R)

in a natural manner, it follows that if E and E’ are orientable so is their Whitney sum
E @ E' and that if E and E’ are oriented so is E & E’ in a natural manner.

Let E be a complex vector bundle over M with fibre C". It may be considered as a
real vector bundle with fibre R?". Since the associated principal fibre bundle of E as a
complex vector bundle has as structure group GL(r,C) C GL*(2r,R), E is oriented in a
natural manner as a real vector bundle.

We shall now give an axiomatic definition of the Euler classes. We consider the category
of differentiable oriented real vector bundles over differentiable manifolds.

Aziom 1. For each oriented real vector bundle E over M with fibre R?, the Euler class
x(E) € H'(M, R) is given and x(E) = 0 for ¢ odd.

Aziom 2 (Naturality). If E is an oriented real vector bundle over M and if f is a
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mapping of another manifold M’ into M, then
x(f'E)= f'(x(E)) € H*(M', R),

where f~1E is the vector bundle over M’ induced by f from E.
Aziom 3 (Whitney sum formula). let E;,..., E, be oriented real vector bundles over

M with fibre R?. Then
X(Ex® - @ Er) = x(E1)... x(Er).

Aziom 4 (Normalization). Let E; be the natural complex line bundle over the
1-dimensional complex projective space P,(C) (cf. § F.3). Then its Euler class x(E))
coincides with the first Chern class ¢, (E1).

By a Riemannian vector bundle we shall mean a pair (E, g) of a real vector bundle E
and a fibre metric g in E. By definition, g defines an inner product g, in the fibre at
z € M and the family of inner products g, depends differentiably on z.

Given a Riemannian vector bundle (E,g) over M and a mapping f : M’ —» M, we
denote by f~!(E,g) the Riemannian vector bundle over M’ consisting of the induced
vector bundle f~!E over M’ and the fibre metric naturally induced by f from g. Given
two Riemannian vector bundles (E,g) and (E’,¢’) on M, we denote by (E,g) & (E',g")
the Riemannian vector bundle over M consisting of E@® E’ and the naturally defined fibre
metric g + g’. We call it the Whitney sum of (E, g) and (E’,g').

Let E, be the natural complex line bundle over P,(C) defined in § F.3. A point of
P,(C) is a 1-dimensional complex subspace of C**! and the fibre of E, at that point is
precisely the corresponding subspace of C"*!. Hence the natural inner product in C™+!
induces an inner product in each fibre of E, and defines what we call the natural fibre
metric in Ey.

We now consider the cohomology class x(FE, g) defined axiomatically:

Aziom 1'. For each oriented Riemannian vector bundle (E, g) over M with fibre RY,

the class x(E,g) € HY(M, R) is given and x(E, g) = 0 for q odd.
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Aziom 2’ (Naturality). If (E,g) is an oriented Riemannian vector bundle over M and

if f is a mapping of M’ into M, then

x(f7'(E,9) = f*(x(E,g)) € H"(M',R).

Aziom 3’ (Whitney sum formula). Let (Ei,¢1),...,(Er,gr) be oriented Riemannian

vector bundles over M with fibre R?. Then

X((B1,91) & ® (Er,9r)) = x(E1,01) .. X(Er, gr)-

Aziom 4’ (Normalization). Let E; be the natural complex line bundle over P,(C) and g,
the natural fibre metric in E,. Then x(E1,g:1) coincides with the first Chern class ¢, (Ey).

In contrast to the Chern class, the Euler class is usually defined in a constructive
manner and not axiomatically (see, for example, Husemoller [d]). This is due to the fact
that in algebraic topology the Euler class is defined to be an element of H*(M, Z), not
of H*(M,R). But we are interested in the Euler class as an element of H*(M, R). Since
the Euler class defined in the usual manner in algebraic topology satisfies Axioms 1, 2, 3,
and 4, the existence of x(E) satisfying Axioms 1, 2, 3, and 4 is assured. It is clear that
Xx(E) satisfying Axioms 1, 2, 3, and 4 satisfies Axioms 1’, 2, 3, and 4’. The uniqueness
of x(E, g) satisfying Axioms 1/, 2, 3’, and 4’, then gives rise to the uniqueness of x(E)
satisfying Axioms 1, 2, 3, and 4. Assuming certain facts from algebraic topology x(E,g)
can be shown to be unique.

We shall now express the Euler class x(E) of an oriented real vector bundle E over M
with fibre R? by a closed 2p-form on M. We choose a fibre metric g in E and let Q be the
principal fibre bundle with group SO(2p) associated with the Riemannian vector bundle
(E,g). Let w = (w!) be a connection form on Q and Q = (92}) its curvature form. From
Theorems F.1.1 and F.2.4 (cf. the expression of the polynomial function h in the proof of

Theorem F.2.4) it follows that there exists a unique closed 2p-form v on M such that

» ( l)p i i2p—
(¥) zzwp,ze., w QLA AR
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Theorem F.4.1. The Euler class of an oriented real vector bundle E over M with fibre

R?P is represented by the closed 2p-form v on M defined above.

If M is an oriented compact Riemannian manifold of dimension 2p and if E is the
tangent bundle of M, then the closed 2p-form -y integrated over M gives the Euler number

or Euler characteristic of M. This is the so-called generalized Gauss-Bonnet theorem.
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APPENDIX G
SOME APPLICATIONS OF THE GENERALIZED

GAUSS-BONNET THEOREM

Perhaps the most significant aspect of differential geometry is that which deals with the
relationship between the curvature properties of a Riemannian manifold M and its topolog-
ical structure. One of the beautiful results in this connection is the (generalized) Gauss-
Bonnet theorem which relates the curvature of compact and oriented even-dimensional
manifolds with an important topological invariant, namely, the Euler-Poincaré character-
istic x(M) of M. In the 2-dimensional case, the sign of the Gaussian curvature determines
the sign of x(M). Moreover, if the Gaussian curvature vanishes identically, so does x(M).
In higher dimensions, the Gauss-Bonnet formula (cf. § G.2) is not so simple, and one is
led to the following important

Question. Does a compact and oriented Riemannian manifold of even dimension
n = 2m whose sectional curvatures are all non-negative have non-negative Euler-Poincaré
characteristic, and if the sectional curvatures are nonpositive is (—1)™x(M) > 07

H. Samelson [d] has verified this for homogeneous spaces of compact Lie groups with the
bi-invariant metric. Unfortunately, however, a proof employing the Gauss-Bonnet formula
is lacking. An examination of the Gauss-Bonnet integrand at one point of M leads one to

an algebraic problem which has been resolved in dimension 4 by J. Milnor:

Theorem G.1. A compact and oriented Riemannian manifold of dimension 4 whose sec-
tional curvatures are non-negative or nonpositive has non-negative Euler-Poincaré char-
acteristic. If the sectional curvatures are always positive or always negative, the Euler-

Poincaré characteristic is positive.

A subsequent proof was provided by Chern [b). A new and perhaps clearer version
indicating some promise for the higher dimensional cases is given in § G3. An application

of our method yields

327



328 APPENDIX G. GENERALIZED GAUSS-BONNET THEOREM

Theorem G.2. In order that a 4-dimensional compact and orientable manifold M carry

an Einstein metric, it s necessary that its Euler-Poincaré characteristic be non-negative.

Corollary. If V is the volume of M and R is % of the Ricct scalar curvature,

VR?
x(M) 2 on?’

equality holding if and only if M has constant curvature.

Theorem G.2 may be improved by relaxing the restriction on the Ricci curvature (cf. §
G4).

As a first step to the general case, it is natural to consider manifolds with specific
curvature properties. A large class of such spaces is afforded by those complex manifolds
having the Kaehler property. For this reason, the curvature properties of Kaehler manifolds
are examined. We are especially interested in the relationship between the holomorphic
and non holomorphic sectional curvatures. Milnor’s result is also improved by restricting
the hypothesis to the holomorphic sectional curvatures. Indeed, the following theorem is

proved:

Theorem G.3. A compact Kaehler manifold of dimension 4 whose holomorphic sectional
curvatures are non-negative or nonpositive has nonnegative Euler-Poincaré characteristic.
If the holomorphic sectional curvatures are always positive or always negative, the Euler-

Poincaré characteristic is positive.

An upper bound for x(M) is obtained in terms of the volume and the maximum absolute
value of holomorphic curvature of M. More important, an upper bound may be obtained
in terms of curvature alone when holomorphic curvature is strictly positive (see Theorem
G.9.2). The technique employed to yield this bound also gives a known bound for the
diameter of M [2].

Let M be a Kaehler manifold with almost complex structure tensor J. Let G2 p denote

the Grassman manifold of 2-dimensional subspaces of Tp (the tangent space at P € M)
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and consider the subset
Hlp={o€ G:plJo=0 or Jolo}.

The plane section o is called holomorphic if Jo = o, and anti-holomorphic if Jo L o, i.e.,
if it has a basis X,Y where X is perpendicular to both Y and JY. Let R(c) denote the
curvature transformation (cf. § G1) associated with an orthonormal basis of ¢, and K (o)
the sectional curvature at o € G2 p.

A Kaehler manifold 13 said to have the property (P) if at each point of M there ezists

an orthonormal holomorphic basis {Xo} of the tangent space with respect to which
(Ro(0))? = —(K(0))*1

for all sections o = 0(X 4, Xg) where R,(0) denotes the restriction of R(c) to the section o,
and I is the identity transformation. (In other words, in the case where K (o) # 0, R,(o)
defines a complex structure on o.)

We shall prove

Theorem G.4. Let M be a 6-dimensional compact Kaehler manifold having the property
(P). If for all 0 = 0(Xq,Xg), K(c) > 0, then x(M) > 0, and if K(o) < 0, x(M) <
0. If the sectional curvatures are always positive (resp., negative), the Euler-Poincaré

characteristic is positive (resp., negative).

A similar statement is valid for manifolds of dimension 4k (see Theorem G.9.1). A
Kaehler manifold possessing the property (P) for all 0 € H 3 p has constant holomorphic
curvature.

The above results appear in [89).

G.1. Preliminary notions
Let M be an n = 2m dimensional Riemannian manifold with metric {,) and norm

Il lI= (,)/2. Let 0 € G2 p be a plane section at P € M, and X,Y € Tp two vectors
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spanning 0. The Riemannian or sectional curvature K (o) at o is defined by

(R(X,Y)X,Y)
I XAy |?

K(o) =
where R(X,Y) is the tensor of type (1,1) (associated with X and Y'), called the curvature
transformation (cf. § G.4; R(X,Y) is the negative of the classical curvature transfor-
mation), and || X AY |?=|| X *| Y ||> —=(X,Y)?. The curvature transformation is a

skew-symmetric linear endomorphism of Tp. Note that K is not a function on M but

rather on (Jpeps G% p. 1t is continuous, and so if M is compact, it is bounded.

Lemma G.1.1. For any X,Y,Z, W € Tp, the curvature transformation has the proper-
ties:

(i) R(X,Y)=—-R(Y,X),

(i) (R(X,Y)Z,W)=—(R(X,Y)W,2Z),

(i) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y =0,

(iv) (R(X,Y)Z,W)=(R(Z,W)X,Y).

G.2. Normalization of curvature
One of the major obstacles in the way of resolving the Question is the presence of terms
in G.2.1 below involving curvature components of the type (R(X,Y)X,Z),Z # Y. By
choosing a basis of the tangent space Tp which bears a special relation to the curvatures
of sections in Tp one is able to simplify the components of the curvature tensor. These

simplifications are based on the following lemma.
Lemma G.2.1. Let X;, X;, Xk be part of an orthonormal basis of Tp. If the section
(Xi,X;) 13 a critical point of the sectional curvature function K restricted to the subman-

tfold of sections {(X;, X;cos8+ Xisinb)}, then the curvature component R;jix vanishes.

Proof. Set f(8) = K(X;,X;cosf + Xisin6). Then,
f(0) = (R(X;, X cos 8 + X sin0)X;, X; cosf + Xy sin¥)
= 0052 HK.']' + Sil')2 9Kk + sin 29R.‘j.'k
where K;; = K(X;, X;). Since the derivative at 8§ = 0 of f(8) is 2R;jik, the result follows.
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Corollary. If M is a 4-dimensional Riemannian manifold, there ezists an orthonormal

basis {X1, X2, X3, X4} of Tp such that the curvature components Ry213, Ri214, R1223, Ri224, R1314

and Ry323 all vanish.

Proof, Choose the plane (X1, X2) so that K(X,,X3) is the maximum curvature at P.
Then choose X; € o(X;,X2) and X3 in the orthogonal complement of (X, X2) so that
K(X1,X3) is a maximum of K restricted to {(X; cos8 + X2 sin8, X3 cos¢d + X, sin¢)}.
Applications of Lemma G.2.1 with various choices for 7, j and k yield the result.

Proof of Theorem G.1. The idea of the proof is to show that the integrand in the Gauss-

Bonnet formula is & non-negative multiple of the volume element. For any basis, the
integrand is a positive multiple of the volume element and the sum
(G.2.1) EivizigiaEirjagoia Riviagija Risiajaja
(cf. § F.4). The terms for which (i1,i2) = (j1,J2) are products of two curvatures. These
terms are therefore non-negative. The terms for which (7;,42,71,j2) is a permutation of
(1,2,3,4) are squares, hence non-negative. If we choose the basis to satisfy the condi-
tions of the Corollary, to Lemma G.2.1, then all other terms vanish. Indeed, they are
of the form +R;jixRikij. H one of i or { is 1 or 2 and the other is not, then one of
Ri213, Ri1214, R2123, R2124 must occur. If 1 and [ are 1 and 2 in some order, then Rj314
occurs. If neither ¢ nor [ are 1 or 2, then R3;32 occurs.

For later references it is important to know explicitly what the integrand reduces to

after this choice of basis. A counting procedure yields

1
(G2.2) Z-F[K”Ku + K13K2a + K14Ka3 + (Ri234)% + (Ri324)? + (Ru423)?w,
where w is the Riemannian volume element.

G.3. Mean curvature and Euler-Poincaré characteristic

The same conclusion is also valid for 4-dimensional Einstein spaces. An independent

proof is given below.
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Proof of Theorem G.2. Since the Ricci tensor R;j is a multiple of the identity transforma-
tion 5.‘,‘, ie., R,’j = Rts,'j,
Ky + K3 + K14 = K21 + Koz + Koy
= Kj1 + K32 + K3y = Kqy + K2 + Kgs.

(The symbol R employed here is % of the Ricci scalar curvature.) It follows that
K12 = Kyg, K13 = Kog, K14 = Ka3.

Thus the terms in (G.2.1) which are products of two curvatures are squares. As before, so
are the terms having four distinct indices in each factor. The remaining terms are all of
the form

Eijik€ikij Rijik Rikty = — Rijix Rinij,

but since Rjx = Rijik + Rixi; =0, j # k, these terms are also squares.

Proof of Corollary to Theorem G.2. If we set z = K12 = K34, y = Kj3 = Ko4, and
z = K14 = K3, the minimum of 2 + y? + z? subject to the restriction z + y + z = R is
found to be R?/3. We note that 2 + y? + 2?2 = R?/3 only if z = y = 2. The integral can
attain the lower bound of ¥V R?/127? only if the other terms all vanish, which implies that

the sectional curvature is constant.

Theorem G.2 generalizes a result due to H. Guggenheimer |c].

Since an irreducible symmetric space is an Einstein space, its Euler-Poincaré character-
istic, in the compact case, is non-negative in dimension 4. This is, of course, true for all
even dimensions [e].

The cases where curvature or mean curvature is strictly positive in Theorems G.1 and
G.2, respectively, are consequences of Myers’ theorem which says that the fundamental
group is finite. Indeed, the hypothesis of compactness may be weakened to completeness
in these cases, since compactness is what is first established.

In both Theorems G.1 and G.2, it is clear from the proof that (M) # 0 unless M is

locally flat.
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Example. Let M = 5% x 52 be the product of two 2-dimensional unit spheres with
metric tensor the sum of those for the 2-spheres: ds? = ds? + ds?. The Riemannian
manifold M is then an Einstein space with {constant) Ricci curvature 1. The sectional
curvatures vary from 0 to 1 inclusive, and hence they are not bounded away from 0.
However, both Theorems G.1 and G.2 imply that x(M) > 0. This follows from Theorem
G.1 since M is not locally flat, and from Theorem G.2 since R # 0. Since M does not
have constant curvature, x{(M) > V/1272 > 1. The corollary to Theorem G.2 therefore
yields information beyond Theorem G.1 if the manifold carries an Einstein metric.

Theorem G.2 may be improved by relaxing the restriction on mean curvature. Let M
be any 4-dimensional compact or orientable Riemannian manifold, Ry the maximum mean
curvature, that is, the maximum of R;; = Kj2 + K3 + K4 as a function of a point of
M and an orthonormal basis at that point, and r the minimum mean curvature. The
generalization of Theorem G.2 will then take the form of finding a lower bound for x(M)
which is given in terms of Rg, r and V. In particular, we shall give conditions on Rg and
r in order that x(M) be non-negative.

The problem reduces to that of minimizing the expression
K12K34 + K13K24 + K14Ko3

subject to the restrictions

7 < Ki2 + K13 + Kis < Ro, r < K21 + Kaa + Kz < Ro,

r < K31+ Kz + Kss < Ro, < K+ Kyp + Kiz < Ro.
As an outline of the technique used, a substitution Kj2 = 2 —u, Kj3 =y —v, Kj4 =
z—w, Kgg =z4+u, Koy =y +v, Koz = 2+ w will reduce K12 Kas + K13K24 + K14Koa3
to normal form z2 + y? + 22 — u? — v? — w?, The inequalities all involve z + y + z, so we
may replace z, y and z by their mean s = (z + y + z)/3 without altering the validity of

the inequalities but decreasing the quadratic expression. This reduces the quadratic form

to four variables s,u, v, w and the inequalities describe a cube in this 4-space. The form is
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indefinite or negative definite on this cube and all its faces, so the minimum y must occur
on a corner. We summarize the results:

1. Ry <2r, u=r?/3

2. If0<2r <R, p= Ro(3r — Ro)/6.

3. fr<0< Ry, p=—(R}—4Ror +r?)/6.

4, Ifr <2R; <0, u=r(3Ro —r)/6.

5. If2Ro <r, u=R3/3.

The conclusions derived are

Theorem G.3.1. If M is a 4-dimensional compact and orientable Riemannian manifold,
Ry the mazimum mean curvature, r the minimum mean curvature, V the volume of M,
and pu = p(Ro,r) as specified above, then uV/4n? is a lower bound for the Euler-Poincaré

characteristic of M.
Corollary. If Ry < 3r or 3Ry <r, the Euler-Poincaré characteristic is non-negative.
The case 0 < Ry < 3r follows from Myers’ theorem.

Corollary. If k is an absolute bound for mean curvature (—k < r, Ro < k), then

—k?V/4n? is a lower bound for the Euler-Poincaré characteristic.

We note that this method fails to yield an upper.bound for x(M) in terms of mean

curvature. Moreover, it is not a simple matter to extend these results to higher dimensions.

G.4. Curvature and holomorphic curvature
It is well-known that results on Riemannian curvature are sometimes valid for Kaehler
manifolds when the hypothesis is restricted to holomorphic curvature alone. For example,
J. L. Synge’s theorem that a complete orientable even-dimensional Riemannian manifold
of strictly positive curvature is simply connected [e] corresponds to Y. Tsukamoto’s result
that a complete Kaehler manifold of strictly positive holomorphic curvature is simply

connected (cf. § G8).
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It suits our purposes well here to avoid complex vector spaces. Indeed, a Kaehler
manifold is considered as a Riemannian manifold admitting a self-parallel skew-symmetric
linear transformation field J such that J2 = —I. The field J is usually called the almost
complex structure tensor.

We shall require the following

Lemma G.4.1. The relationship between the curvature transformation R(X,Y) and the
metric (,) is given by
R(X,Y) = Dix,y) - [Dx, Dy]
where Dx denotes the operation of covariant differentiation in the direction of X, and
2X,DzY)=Z(X,Y)-X(Y,Z)+Y(Z,X)
+ (%X, 2)) — (X, [¥, 2)) - (2, 1Y, X)).

Lemma G.4.2. Let M be a Kaehler manifold with almost complez structure tensor J.
Then, for any X,Y € Tp

(i) R(JX,JY)=R(X,Y),

(#) K(JX,JY)=K(X)Y),

and when X,Y,JX,JY are orthonormal,

(i) (R(X,JX)Y,JY)=K(X,Y)+K(JX,Y).

Formula (i) is a consequence of the fact that J is parallel. Indeed, J being parallel is
equivalent to Dx(JY) = JDxY for all X,Y. Applying Lemma G.4.1, R(X,Y)(JZ) =
J(R(X,Y)Z). Since J is an isometry, (R(X,Y)JZ,JW) = (JR(X,Y)Z,JW) = (R(X,Y)Z,W),
so that R(JZ,JW) = R(Z,W) now follows from (iv) of Lemma G.1.1.

Replacing Y by JY and using the skew-symmetry of R(X,Y) we get R(X,JY) =
R(Y, JX). For sectional curvature we have the corresponding relation K (X,JY) = K(Y, JX).

A plane section is holomorphic if it has a basis {X,JX} for some X. A plane section
is anti-holomorphic if it has a basis {X, Y} where X is perpendicular to both Y and JY.

More generally, with each section we associate an acute angle 8 which measures by how
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much the section fails to be holomorphic. If {X,Y} is an orthonormal basis of the section
then cos@ = [(X,JY)|. It is readily verified that this is independent of the choice of X

and Y. The following lemma is trivial.

Lemma G.4.3. If X and Y are orthonormal vectors which do not span a holomorphic

section, then X and JY span an anti-holomorphic section.

The holomorphic curvature H(X) of a nonzero vector X is the curvature of the holo-
morphic section ¢(X, JX), i.e., H(X) = K(X,JX).
In a Riemannian manifold it is well-known that the curvature tensor is determined

algebraically by the biquadratic curvature form B:
B(X,Y) = (R(X,Y)X,Y).
In fact,
52
6(R(X,Y)Z,W) = @(B(X +38Z,Y +tW) — B(X + sW,y 4+ tZ))|s=1=0.

Since sectional curvature K(X,Y) is the quotient of B(X,Y) and || X AY ||?, it follows
that the curvature tensor is determined algebraically by the functions K and (,).

If the manifold is Kaehlerian, we define the quartic holomorphic curvature form Q:
Q(X) =(R(X,JX)X,JX).
That the holomorphic sectional curvatures are of fundamental importance for Kaehler
manifolds is given by
Theorem G.4.1. B is determined algebraically by Q.

Perhaps more interesting is the formula which reduces the proof to a verification:

B(X,Y) = =[3Q(X + JY) +3Q(X — JY) - Q(X +Y)
(G.4.1) 32

- QX -Y) —4Q(X) — 4Q(Y)].

As an immediate consequence of this formula we derive
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Corollary. Let X and Y be orthonormal vectors, and (X,JY) = cos® > 0. Then,

K(X,Y)= l[3(1 +cosO)2H(X + JY) +3(1 —cos8)*H(X — JY)
(G.4.2) 8

-H(X+Y)-H(X-Y)-H(X)-H(Y)].
Moreover, if (X,JY) =0, then

K(X,Y)+ K(X,JY) = S[H(X + JY) + H(X - JY) + H(X +Y)
(G.4.3) 4
+HX-Y)-H(X)-H(Y)],

and, more generally,
K(X,Y)+ K(X,JY)sin?0 = %[(1 +cos 0P H(X + JY)
(G4.4) +(1=cosO)?H(X —JY)+ H(X +Y)
+H(X -Y) - H(X) - H(Y)).

As a consequence, we obtain a well-known result.

Corollary. If holomorphic curvature 1s a constant H, then curvature is given by
H 2
(G.4.5) K(X,Y)= Z(l + 3cos*8).

In particular, if curvature is constant, the manifold is locally flat for m > 2.

Formulas (G.4.2)-(G.4.4) will be used in § G.6 to derive inequalities between curvature

and holomorphic curvature.

G.5. Curvature as an average
When holomorphic curvature is constant, the anti-holomorphic curvature is also a con-

stant A = H/4, and we may rewrite (G.4.5) as
K(X,Y)=H ~3Asin? 0.

For any two orthonormal vectors X and Y such that (X,JY) > 0, we say that the
holomorphic sections generated by X cosa + Y sina are the holomorphic sections asso-

ciated with the section spanned by the pair (X,Y), and the sections spanned by the
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vectors X cosa + Y sina, ~JX sina + JY cosa the anti-holomorphic sections associated
with (X,Y). These ‘circles’ of sections depend only on the plane of X and Y, and not
on the choice of the vectors X,Y. If the manifold has constant holomorphic curvature,
then H may clearly be interpreted as the average associated holomorphic curvature, and
A as the average associated anti-holomorphic curvature. Thus, the following result may

be viewed as a generalization of formula (G.4.5).

Theorem G.5.1. Let H(X,Y') be the average associated holomorphic curvature and A(X,Y)
the average associated anti-holomorphic curvature to the plane of the vectors X and Y,
1.e., when X and Y are orthonormal,
1T
H(X,Y)= - /(; H(X cosa + YVsina)da,
AX,Y = 11_r /0" K(X cosa + Ysina,—-JX sina + JY cosa)da.
Then,
(G.5.1) K(X,Y) = H(X,Y)—3A(X,Y)sin*4.

Since H(X cosa+ Y sina) and K(X cosa + Y sina, —JX sina + JY cosa) are quartic
polynomials in cos a, sina, indeed, quadratic polynomials in cos 2a, sin2a, their average
may be obtained by averaging any four equally spaced values:

HX,Y) = %[H(X) FH(X 4Y)+ HY)+ HX - Y)),
AX)Y) = %[K(X, JY)+ K(X+Y,-JX+JY)+ K(Y,JX)+ K(X -Y,JX + JY)}
= -;-[K(X,JY) +K(X +Y,-JX +JY)).
G.6. Inequalities between holomorphic curvature and curvature

Throughout this section assume that the metric has been normalized so that every cur-
vature H(X) satisfies A\ < H(X) < 1. The Kaehler manifold is then said to be
A-holomorphically pinched (2]. We shall derive inequalities between the curvatures of holo-
morphic and nonholomorphic sections.

To begin with, we consider anti-holomorphic curvature. By formula (G.4.2) with cos§ =

0, we obtain
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Lemma G.6.1. If X|Y span an anti-holomorphic section, then

3 —-2 . 3 -2
< < .
S KXY <2

Similarly, by (G.4.3), we derive

Lemma G.6.2. If X,Y and X,JY span anti-holomorphic sections, then

_1+H(X)

2—A
1 —_

A SKX,Y)+K(X,JY) <

Using these bounds one can obtain bounds on mean curvature. Let X; be any unit
vector. Choose an orthonormal basis {X;, JX;}, ¢ =1,...,m. Then, the mean curvature
in the ‘direction’ of X} is

m
K(Xy,JX1)+ > [K(X). Xi) + K(X1.JX,)].
i=2
The first term is holomorphic and the remaining ones are anti-holomorphic in pairs. Thus,

we obtain

Theorem G.6.1. Let M be a A-holomorphically pinched Kaehler manifold of complez

dimension m. Then,

(i) fm<s,
r:(3m+1)/\4—(m—1)' R0=3m+1—4(m—1)/\
and
(ii) ifm>5,
m—3 m—3

r=(m—1)/\-_T, 120=m—1——2—~——/\

where v, Ry are lower and upper bounds, respectively, for mean curvature. In particular,
for m = 2, mean curvature is non-negative if A > 1/7. In every dimension mean curvature
18 positive if A > 1/2. Finally, for m = 2 and A > 0 (resp., A < 0), the Riccs scalar

curvature 13 non-negative (resp., nonpositive).
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To get an upper bound for an arbitrary sectional curvature, we eliminate the function
H(X,Y) which occurs in both formulas (G.4.2) and (G.5.1), thereby obtaining

1
K(X,Y)=~[(1+cos6)’H(X +JY) + (1 — cos )2 H(X — JY)]
4
(G.6.1)
—sin? A(X,Y).
Using the lower bound for A(X,Y) obtained from Lemma G.6.1 results in the inequality

+ 2
(G.6.2) K(X,Y)<1- 3’\“’;“ .

This proves

Theorem G.6.2. If the holomorphic sectional curvatures are non-negative, then a mazs-

mum curvature is holomorphic.
To obtain a lower bound we apply formula (G.4.2) directly. Thus,
K(X,Y)> %[6(1 + cos? )X — 4].

Hence,

K(X,Y)> 3"4'2, A>0.

To obtain a better upper bound than (G.6.2) when A < 0, we assume that K(X,Y) is
a maximum for all curvatures. Then, since (X,JY) = cos#, the derivative at o = 0 of
K(Xcosa+ JY sina,Y) is —2((R(X,Y)Y,JY) + cos 0K(X,Y)) = 0, and similarly with

X and Y interchanged. Thus,
(R(X,Y)Y,JY) =(R(X,Y)X,JX) = —K(X,Y)cos#.

We use this to expand H(X + JY)(1 + cos8)? and H(X — JY)(1 — cos8)?. The result is

(1+cos8)?H(X +JY)— (1 —cos)?H(X — JY))
4cosf

K(X,Y)=

Eliminating H(X — JY) between this and (G.6.1) yields
K(X,Y) = %(1 +oos)H(X + JY) ~ (1 — cos ) A(X, Y)
30— 2

(G.6.3) < %(1 + cos ) — (1 — cos 8)

=1- Z-(l — cos @)\,
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From (G.4.1) by inserting X, JY in place of X,Y we get

K(X,JY)sin?6 = %[3}1(){ —Y)+3H(X4+Y)—(14cos)’H(X +JY)

(G.6.4) — (1= cosO)2H(X = JY) — H(X) — H(Y)]

> é[sy(x ~Y)+3H(X +Y) - H(X) - H(Y)] - }ij’if,
Averaging this as we did to get (G.5.1) we find
(G.6.5) A(X,Y)sin? 6 > %H(X,Y) - %(1 +cos? §) > g - %(1 + cos? §).

Combining this with (G.6.3) gives

- 2
K(X,Y) < %(1 +cos ) — 22 ‘:2°;0 (% S 9)
sin
.6.
(G.6.6) __3+4cos€+3cos29—2/\
- 4(1 4 cos 8)

As a function of cos# this bound is either increasing as cos# increases from 0 to 1,
or it has a minimum with larger values on the ends of the interval. The other bound,
1-3(1—cosf)A/4, is a decreasing function of cos 8. It follows that K(X,Y) is bounded by
either the common value when the two bounds coincide, which occurs for cos 8 = 1v/3, or
the bound from (G.6.6) with cos8 = 0. The two numbers in question are 1 — (3 — v3))\/4

and (3 — 2))/4, respectively. They coincide for A = —(1 + v/3)/2. Hence,

1_3_-43@,\’ _%@g_)\so‘
KX, Y) < 3—42,\’ A< _11213.

It is not necessary to duplicate the above analysis to obtain lower bounds. Indeed, we
can change all signs and directions of inequalities (making the minimum H = —1), then
rescale the result so that the minimum H is again A when A < 0. We summarize the results

as follows:

Theorem G.6.3. Let M be a A-holomorphically pinched Kaehler manifold. Then,

(i) P okxyvy<i, azo
(i) Kxy)<1-CoVA - 18y o
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(iii) K(Xy)<3=® o 148
3 P

. 3\ —

(iv) K(X,Y)2 ——, -V3+1<A<0,

) K(x,Y)zA_3‘4‘/§, A< —VE+1

Finally, if —1 < H(X) < =\ for all X, then

(vi) S1<K(X,Y)< _”4—2

It is suspected that the bounds in cases (ii) and (v) can be improved, with corresponding

alterations on the bounds on A in (jii) and (iv):

Conjecture.
(i) K(X,Y) <1, —5<A<0,
(v") KX, Y)>), A<-=2

Further improvement by the methods employed here (consideration of the curvature at
one point) is precluded by the examples A and B below where the curvature components

R;jki are taken with respect to an orthonormal holomorphic basis X;, X2, X5 = J X, X4 =
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JX3. In each of these examples A < H(X) < 1.

A B
Riz12 '2;—/\ 2/\—4—1
Riz1s 0 0
Ri214 0 0
Ri224 0 0
Rizis 1 A
Ria1g 0 0
Riq2q 0 0
Ra424 1 A

The other curvature components are determined by Lemmas G.1.1 and G.4.2.

For example A we have (3X —2)/4 < K(X,Y) < 1if -2 < A < 1;if A € -2, then
A< K(X,Y)<(2-))/4. Forexample B, (2 - 1)/4 < K(X,Y)<1if -1/2< A< L;if
A< —1/2,then A < K(X,Y) < (3-2))/4.

It is noteworthy that in each of these examples the mean curvature is constant, namely,

1+ A/2 for A and A + 1/2 for B.

G.7. Holomorphic curvature and Euler-Poincaré characteristic
The Gauss-Bonnet integral can also be simplified by a normalization of the basis de-
pending on holomorphic curvature (cf. § G.4). Our considerations, as before, are restricted
to the 4-dimensional case. Since only orthonormal holomorphic bases are considered we
should expect fewer terms of the form Rijix,k # j, to vanish. Fortunately, however, this
is compensated for by virtue of the additional relations provided by Lemma G.4.2. It is

for this reason that the proof of Theorem G.3 presents no essential difficulties. In fact, if
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H(X,) is taken to be the maximal holomorphic curvature, then, by evaluating the deriva-
tive of H(X, cosa + Xy sina) at a =0, it follows that Ry314 = 0(Xs = JX,, Xy = JX>).

By taking the second derivative, the inequality

(G.7.1) K12 +3K14 < Kia

is obtained. By using X4 in place of X3, we get Rj2;3 = 0 and
(G.7.2) 3K2 + K14 < K.

(If K13 = H(X,) is a minimum rather than a maximum, the inequalities are reversed.)

There is still some choice possible after making H (X ) critical, since this only determines
the plane of X; and X3. For, X; and X can be chosen in such a way that K, will
be a maximum (or minimum) among sections having a basis of the form {X;cosa +
Xssina, Xz cosfB+ XysinfB}. Then, by differentiating K (X, cos a + X3sina, X;) we find
Ry214 =0.

The above technique clearly extends to higher dimensions. However, the Gauss-Bonnet
integrand (cf. § F.4) has so many terms, that this normalization does not clarify the relation
between curvature and the Euler-Poincaré characteristic. This is not so for dimension 4,

because the integrand with respect to this normalized basis is simply
1 .
(G.7.3) 4—”2—[2(1(32 + K + (K2 + Kua)? + KiaKaglw

where w is the volume element. This proves Theorem G.3.

Example. Let M be a 4-dimensional compact complex manifold on which there exist
at least two closed (globally defined) holomorphic differentials o™ = a{”dz‘, r =1,..., N,
such that rank (afr)) = 2. We do not assume that M is parallelisable. Indeed, some or all
of the " may have zeros on M. Topologically, M may be the Cartesian product of the
Riemann sphere with a 2-sphere having N handles. The fundamental form v/=1%,a” A&"

of M is closed and of maximal rank. Hence, we have a globally defined Kaehler metric
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g =2%.a” @& . That this metric has nonpositive holomorphic curvature may be seen as
follows. At the pole of a system of geodesic complex coordinates (2!, 22), the components

of the curvature tensor are

r(2, 2)20 2\__ %
82871 ) 8% 671/ T T 92487

where
gise = Y a7a".
Thus,
(r) 2
(255 2m) 2 ) = ot =~ Xlfr| <o

r

and so by Theorem G.3, x(M) is non-negative.

Note that since the first betti number b; > 4, the second b, > 6.

As a matter of fact, S. Bochner (8] has shown that the Euler-Poincaré characteristic of
a compact complex manifold M of complex dimension m, on which there exists at least
m closed holomorphic differentials o™ = aE") dz* such that rank (aE')) is maximal at each
point of M, is non-negative for m even and nonpositive for m odd. Since the holomorphic
sectional curvatures are nonpositive we ask the following question:

Is the sign of the Euler-Poincaré characteristic of a compact Kaehler manifold of nega-
tive holomorphic sectional curvature given by (—1)™¢

The expression (G.7.3) is now used to obtain an upper bound for x(M) in terms of
volume and the bounds on holomorphic curvature. Suppose that M is A-holomorphically
pinched. Choose H(X;) to be minimum, so we may assume it is A. Let z = H(X, + X4)+

H(Xl - .X4), y= H(X] + Xz) + H(X] - Xz), z= H(.Xz) = K24. Then, by (G42)
1 1
Ky, = §(3z—y—z—/\), Ky = —8-(3y—z—z—/\),
and so by the inequalities (G.7.1) and (G.7.2), since Ky > Kiq,

(G.7.4)
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The integrand, except for the factor w/4n?, is
1
flz,y,2) = 5[3(3:2 +y?) + 22 — 22y — 222 — 2yz — 2hz — 2)y + 107z 4+ A2},
The maximum value of f on the region determined by the inequalities (G.7.4) is

(G.7.5) %(3,\1 —ar+4), A> -1,

(C.7.6) %w —4r43), A<-L

That there are no inequalities superior to {G.7.4), in terms of which better bounds for f
can be obtained, is a consequence of examples A and B, § G.6. For, example A yields
(G.7.5) and B yields (G.7.6) as respective integrand factors.

Making use of the symmetry of (G.7.5) and (G.7.6), they may be combined to give

Theorem G.7.1. Let M be a compact 4-dimensional Kaehler manifold, L the mazimum
absolute value of holomorphic curvature, (1 — A\)L the vartation (mazimum minus mini-

mum) of holomorphic curvature, and V the volume of M. Then,
1
(G.7.7) x(M) < 8?(3,\2 —4x+4)L*V.

Since A > —1, we always have

11L%V
< ==,
X(M) < ——

Note that the bound (G.7.7) is achieved for the complex projective space P; but for
M = S$? x S? the bound is 11x(M)/8. (For P, : L = 1, A = 1, V = 8r?, whereas

for S2x S?2:L=1, A=1/2, V =.16n2)

G.8. Curvature and volume
In this section, we shall assume that M is a complete A-holomorphically pinched Kaehler
manifold with A > 0. Our goal is to obtain an upper bound for the volume of M in terms

of A and the dimension of M. The ensuing technique also yields a well-known bound for
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the diameter, namely, 7/v/A. The approach will be to obtain a bound B on the Jacobian
of the exponential map. The bound on volume is then obtained by integrating B on the
interior of a sphere of radius 7/ VX in the tangent space.

The following facts about the exponential map, Jacobi fields, and second variation of arc
length are required. Let v be a geodesic starting at P € M, v parametrized with respect
to arc length, ¢ a distance along ¥ such that there are no conjugate points of P between
P and «(t). Let X, be the tangent field to v and Xy = J X, X3, Xy = JX3,..., Xom =
JX2m-1 parallel flelds along 4 which together with X| form an orthonormal basis at every
point of 4. Covariant differentiation with respect to X, will be denoted by a prime, so if
V = 2giX;, then Dx,V = V' = Eg!X,. A vector field V along v is called a Jacobi field if
V" + R(X,,V)X; = 0. The second variation of arc length along v of a vector field X is
the second derivative of the arc lengths of a one-parameter family of curves having X as
the associated transverse vector field. (For example, v5(@) = exp.y(q) X (), 0 < a < t)

(a) If X is perpendicular to X, then the first variation (defined similarly) is zero, so
the second variation determines whether the neighboring curves are longer or shorter than
7.

(b) If V is a Jacobi field such that V(0) = 0, then V(a) = dexpp aT, where T is a
constant vector in the tangent space Tp. If Tp is identified with its tangent spaces, then
T =V'(0).

(¢) The second variation of a Jacobi field V' (as in (b)) is (V,V)'(t)/2.

(d) If W is a vector field along v such that W(0) = 0, and W is perpendicular to X,

then the second variation of W is
) .
J 1w wy - o x, wlde.
)

() If V and W are as in (b) and (d), then the second variation of W is an upper
bound for that of V, equality occurring if and only if V = W. In other words, second

variation is minimized by Jacobi fields up to the first conjugate point.
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(f) The conjugate points of P are the points at which expp is singular.

(g) Gauss’ Lemma. If T is perpendicular to X;(0) in Tp, then dexpp T is perpendic-
ular to X; in M.

Let Wi,..., Wi be vectors at a point of M. We denote by W = {Wi,..., W]} the
column of these vectors and by det W the volume of the parallelepiped they span, so
(det W)? = det((W;,W;)). Denote the Jacobian of expp at expz' ¥(t) by J(t). Choose
a basis Ty = X,(0), Tb,...,Ty of Tp with T; perpendicular to T),7 > 1, and let V; be
the Jacobi field with V;(0) = 0,V/(0) = Ti, ¢ > 1, so that Vi(a) = dexppaT,. Put
T ={Ts,...,Tu} and V = {V,...,Vs}. Then, by (g) and because expp preserves radial

lengths
(G.8.1) det V(a) =a" 'J(a)det T.

Letting X = {X2,...,X,}, we may write V = FX where F' is a nonsingular matrix
function of a of order n — 1. Hence det V = det F since det X = 1.

Let g and h be real-valued functions of @ such that g(0) = ~(0) =0, g(t) = h(t) = 1, but
otherwise unspecified as yet. They determine a column W = {gX,,hX;,hXy,...,hXs}
which coincides at ¢t with the column of Jacobi fields U = (F(t))~!V = {U,,...,Us}.

Thus, we have

_ -1 _a"J(a)
det U(a) = det(F(t))™" det V(a) = ()
By the rule for the derivative of a determinant and the fact that U(t) = X(t) is an

orthonormal column, we have
((det U)?)'(t) = (Ua, U2)' () + -+ + (Un, Un)'(t)

=2 (" %)

But by (c) and (e), this is majorized by twice the sum of second variations of the W;, that

is, by (d),

ete S [+ -2 - o)

(G8.2) n
- (Z K(Xl,X;)) h"’] dar.

=3
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However, by Lemma G.6.2, we have for i odd,
1
K(X1,X:) + K(X1,Xi41) 2 A= Z(l + H(X1)).

Letting f = H(X,), the problem of obtaining an upper bound for J'(t)/J(¢) has been

reduced to the variational problem of minimizing

[ {6 @7+ (- 2@y - 61 - i - 2)h(a)?
(G.8.3) 0 .

- 1@l = 5~ D)) o,

where f is an arbitrary function subject to the restrictions A < f < 1, and g, h are functions

subject to the restrictions g(0) = h(0) =0, g(t) = h(t) = 1.

The Euler equations for this problem are

(G.8.4) 9"+ fg=0,

(G.8.5) 8h" 4+ (4A—1— f)h = 0.

Let G and H be the solutions of G.8.4 and G.8.5, respectively, such that G(0) = H(0) =
0,G’(0) = H'(0) = 1. Then, since f is an analytic function, so are G and H. Their power
series therefore have the form G(a) =a+--- ,H(a) = a+--. Setting g = G/G(t), h =

H/H(t) and integrating (g'(a))?de, (h'(a))?da by parts, the integral (G.8.3) reduces to
(G.8.3) g'(t)g(t) + (n — 2)R(t)h(t) — '(0)g(0) — (n — 2)R'(0)A(0)

plus an integral which is zero due to the fact that g and h satisfy (G.8.4) and (G.8.5).
Since g(t) = h(t) = 1, g(0) = A(0) = 0 and ¢'(t) = G()/G(t), W(t) = H'(t)/H(t), we

finally have

J'(t) G () _n-1
(G.8.6) T S —m+ _2)Ht) ;

Integrating both sides of this inequality from o to t, then taking the limit as a — 0 by
using the facts that G(e)(H(a))"2/a™ ! =1+ ... and J(0) = 1, we derive

G(t)(H()"?

tn—1 ?

log J(t) <log
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that is,

GU)H®)?

tn-1

(G.8.7) J() <

Since it follows from the Sturm comparison theorem that the solution G of (G.8.4) must
have another zero in the interval [0,7/v/}], the inequality (G.8.7) shows that J(t) must
also have a zero in (0, 7/v/}]. Hence, there is a conjugate point to P along + at a distance

not greater than m/v/X.

Theorem G.8.1. If M is a Kachler manifold which is complete and A-holomorphically

pinched, A > 0, then the diameter of M does not ezceed m//X.

Corollary. A complete Kaehler manifold of strictly positive holomorphic curvature is

compact.

The integral of the bound on J(t), given by (G.8.7), over the interior of the sphere of
radius 7/+/X about 0 in Tp is thus a bound on the volume v(M) of M. This integration
is accomplished by multiplying by the volume of an (n — 1)-sphere of radius ¢, namely,

2t"~1x™ /(m — 1)!, where m = n/2, and integrating from 0 to 7. Thus

Theorem G.8.2. Let M be a complete A-holomorphically pinched Kaehler manifold with

A>0. Then
2™ r n—
(G8.8) o) < 2 [ o)

where 13 the first zero of G beyond 0.

To realize an upper bound, consider the integral (G.8.3), where we note that f = A
may be substituted for the coefficient of g2 and f = 1 for the coefficient of k2. The

corresponding solutions of the Euler equations of G and H are

G(t) = %sinat, a=V},
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1. 22-1 1

Bsmbt, b—v‘——4 if /\>§,

H)={ ¢, i A=t
2

I 1-2) 1

Esmhbt, b= ) if A< 3

When ) = 1, formula (G.8.8) reduces to an equation for the volume of complex projec-
tive space Pp,.

Even better bounds can be obtained from (G.8.3) by a judicious choice of g and h,
and by replacing f by A or 1 depending on whether its coefficient is negative or positive,
respectively. For example, if we take g(a) = sinata/sina,a = VA and h(a) = a/t, we

find that for n < 10 the coefficient of f(«) is always nonpositive. The result is

v(M) < (m—zwlw,/ z" ?sinzexp [— (ll:——zi—ézr——l—)-zz]dx, n < 10.
—_ 1) o

Applying Theorem G.7.1, we find an upper bound for the Euler-Poincaré characteristic

of a complete 4-dimensional A-holomorphically pinched Kaehler manifold with A > 0,

B2 —ar+4 [T, -1,
8. g —AATR - .
(G.8.9) x(M) < 2 /‘; z* sinz exp T dz

For M = §? x §?, this bound is approximately 3.4x(M). Good bounds are obtained
when A > 0.6.

Remarks. (a) A complete Kaehler manifold M of strictly positive holomorphic curvature
is simply connected [f]. For, if M is not simply connected, then in every nontrivial free
homotopy class of closed curves of M there would be a closed geodesic which is the shortest
closed curve in the class. That this is impossible is seen by applying (a) and (d) above to
the vector W = J X, along the geodesic . Indeed, its first variation is zero, and its second
variation is negative.

(b) A 4-dimensional complete Kaehler manifold of strictly positive holomorphic curva-
ture is compact, simply connected and has positive Euler-Poincaré characteristic bounded

above by (G.8.9).
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G.9. The curvature transformation

We have seen that one of the difficulties which arises when attempting to resolve the
Question preceding Theorem G.1 by considerations of the Gauss-Bonnet integrand at one
point is the presence of terms involving factors of the type (R(X,Y)X,Z),Z # Y. How-
ever, this is only part of the problem; for, one must still account for terms which are
products of those of the form (R(X,Y)Z,W). Even in dimension 6 where there are 105
independent components of the curvature tensor, and indeed (6!)? terms to be summed
(see § F.4) the problem is formidable! For these reasons one is led to consider Kaehler man-
ifolds where one may make essential use of the additional curvature properties provided

by Lemma G.4.2. The following lemma leads to the property (P) of Theorem G.4.

Lemma G.9.1. Let {Xy,...,X,} be a basis of Tp. Then, a necessary and sufficient
condition that (R(Xi, X;)Xi, X¢) =0, k # j, is that the curvature transformation satisfy

the relation
(G.9.1) (R(Xi, X;))? = —(K(Xi, X;))*
on U(X,',Xj).

Proof. Set K;; = K(X;,X;) and let a,b be any real numbers. Then, for any Z = aX; +
bX; € o(Xi, X;),

R(Xi,X;)Z2 =a))_ RijieXx = b Rije; X

k=1 k=1
and
(R(Xi, X;))*2 = — K},Z — aKi; ) Rije; Xx — bKi; ) Rijie X
ki k)
+a Z Ri;ix R(Xi, X)Xk — bz Riji; R(Xi, X)Xk,

k#j ki

Applying the condition (G.9.1), it follows that

(G.9.2) 3" RijikR(Xi, X)Xk = Ki; Y Riji; X5,
k#j k#i
(G.9.2") ZRijij(Xi.Xj)Xk =-K;; ZRijika~

k#i k#y
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Taking the inner product of (G.9.2) with X; and of (G.9.2") with X;, we obtain

Z(Rvjik)2 =0, Z(Ri]kj)z =0
k#j ki
Hence, Rijit =0, k # j.

Conversely, if Rijik =0, k # j, R(Xi, X;)X; = Ki;X,. Thus, (R(Xi, X;))?Xi =
Ki;R(X;, X;)X; = —K?jX.-, and so by linear extension (R(X;, X;))?Z = —K?jZ for any
VAS O‘(X,',Xj).

Corollary. Let {X,,...,Xn} be an orthonormal basis of Tp. Then if K(Xi,X;) # 0
1$ @ minimum or mazimum among all sectional curvatures on planes spanned by X; and

Xjcos® + Xisin6, k # 1,3, the curvature transformation R(X;, X,) defines a complez

structure on o(Xi, Xj).

Corollary. The curvature transformation R(c) of a manifold of constant nonzero curva-

ture defines a complezx structure on o.

Remarks. (a) A proof of the following relevant result may be found on p. 267. Let
A be a nonsingular linear transformation of the 2n-dimensional vector space R?" with a
positive definite inner product. By means of the inner product, A may be identified with
a bilinear form on R2". If this form is skew-symmetric, there is a unique decomposition of
R?™ into subspaces Si,...,Sy such that:

(i) each S; is invariant by the transformation A, and for 7 # j, Si L Sj;

(ii) restricted to S;, A’ = —a?l, a; > 0, and for i # j, a; # a;.

(b) A Kaehler manifold of constant mean curvature and of dimension > 4 does not
in general have the property (P) although it does satisfy Zix;R;jix = 0 relative to an

orthonormal basis.
Proof of Theorem G.4. Let {X,,...,Xe}, Xa4i = JX;, ¢ = 1,2,3, be an orthonormal
holomorphic basis of Tp with respect to which the curvature transformation satisfies the

property (P). By Lemma G.9.1, we need only consider those summands in the Gauss-

Bonnet integrand whose factors are of the form (R(X,Y)Z,W) where X,Y,Z, W are a
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part of the basis. Put X;, = JX;, ¢ = 1,2,3, i** = 1. By applying the identities (iii) of
Lemma G.1.1 and (i) of Lemma G.4.2, Ragys = 0, a,0,7,6 = 1,...,6, if either v = o*
and é§ # 3* or # = a® and § # v*. Hence the only nonvanishing terms are of the following
types:

K, KK, (RllJl)zKIﬂ RI)I,'RI'.\I;RIsI;y
Riyigjogs Rizig Risigjaigs i # Jrs
where Iy, Iz, I3 are index pairs: [ = ij, 1*j or ij*, and I* = 1*j*, 1% or i*j, resp. By

Lemma G.4.2 (i), we see that Ry 1; Rr,;3Ri;;; = K1 K, K. On the other hand, by
Lemma G.4.2 (iii),
Ri iz gt Rigigagg Risigissy = (Kivjy + Kiyg )(Kigjy + Kigjs W Kigjie + KigKigj)-

Consequently, since

EivjininisssEiriringaiags = +1,

Eijikilyizg2 kg jrigia = +1,

Einnnianiyipisii = —1
and

Eivitinigisis vt nizsers = ExvininetizizEidaiadt 1353
the various terms in the Gauss-Bonnet integrand are either all non-negative or all non-
positive depending on whether the sectional curvatures have the same property. Thus, if
the holomorphic and anti-holomorphic sectional curvatures K (o) are non-negative (resp.,
nonpositive), x(M) > 0 (resp., x(M) < 0).
We now obtain a result valid forthe dimensions 4k, k > 1. We shall first require the

following lemma.

Lemma G.9.2. Let {X;, X;-}, i = 1,...,m, be an orthonormal holomorphic basis of Tp.
Then, a necessary and sufficient condition that Rijr» = 0, (i,5) # (k, 1), 1 < j, k <1, is

that the curvature transformation has the property
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Q) | R(Xi, X)X |2= D _(R(X:i, X;) Xk, X0)2.
1

This is an immediate consequence of the fact that
R(X:, X;)Xe = ZR:‘jlel + Z Rijkie Xye.
[ 1

For,

| R(X:, X)Xk 2= E(Rijkl)z + E(R.‘jkl' )2
7 1

Remark. Property (Q) is implied by

Q) (R(Xi, X;))* Xk = = 3 _(Rijer)* X
i

For, since the curvature transformation is a skew-symmetric transformation

(R(Xi, X)Xk, R(Xi, X;)Xk) = =((R(X,, X;))* Xe, Xi) = D (Riu)*.
i

Theorem G.9.1. Let M4 k > 1, be a compact Kaehler manifold whose curvature trans-
formation has the properties (P) and (Q), with respect to the orthonormal holomorphic
basis {Xa}. If for all 0 = 0(Xa,Xg), K(o) > 0, then x(M**) > 0, and if K(o) <
0, x(M*) > 0. If the sectional curvatures are always positive or always negative, the

Euler-Poincaré characteristic is positive.

Proof. As before, let {X;,X;.}, 1 =1,...,2k, be an orthonormal holomorphic basis of Tp.

Again, one need only consider those summands

E£i1~<»i2m gj) wd2m Ril‘:]li? R

12m—112m J2m—1J2m

(cf. § F.4) whose factors are of the form (R(X,Y)Z, W), where the vectors X,Y, Z and W
are independent. Moreover, Rogys = 0, a,3,7,6 = 1,...,4k, if either v = o* and § # §°
or § = a* and é§ # ~*. Furthermore, by Lemma G.9.2, Rijxi» vanishes for all ¢, j,k,l. The

nonvanishing terms may then be classified as before, namely,

Kr...Knw, (Rnu)’. (R,u)Knyy - Ko, Ron .. Roug

2k’
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Riviginiy - Rinwigy ion g
and so, since
EivivesanganCiviyciznian = 1
Eiyrkylyoisgokalyize41i20 412002k k111 i1 1ok lty Goige g1 d20 41 oiznize = T1
EivirvizeganEive it izne iy, = 1,
= +1,

E:

e e e e
E:.l,,.,uul,kf?“,l-_ 2k """2"'1"'::.8’1 iawil e dak

the result follows.
The above proof breaks down in dimensions 4k + 2. For example, if k& = 2, the term
Rye-34 R3e 425 1235+ R352:4+ Rs5+411+ need not vanish on account of properties (P) and

Q.

Remarks. (a) The curvature tensor of a manifold M of constant holomorphic curvature

1 has the components
(R, X)Xk, X0) = (B8 ~ 83860) + (X, XX, TXi)
— (X5, JXe) (X, XY + 2( X, JX ;0 Xk, JX0))

relative to an orthonormal holomorphic basis. Hence, M has the properties (P) and (Q).
Conversely, if a Kaehler manifold possesses the properties (P) (and (Q)) for all o € HZ p,
the space is of constant holomorphic curvature. For, let X,Y,JX,JY be part of an or-
thonormal basis of Tp. Then, H(X)-H(Y) = (R(X+Y,JX+JY)(X+Y),JX-JY) =0.

That a manifold with the properties (P) and (Q) (at one point) need not have constant
holomorphic curvature is a consequence of either example A or B. (That such Kaehlerian
manifolds actually exist is another matter.) It is not difficult to construct such examples
in higher dimensions.

(b) The Kaehlerian product of m copies of S, with the canonical metric, satisfies the

property (P) relative to the natural holomorphic basis.
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G.10. Holomorphic pinching and Euler-Poincaré characteristic

A procedure is now outlined by which a meaningful formula for the Gauss-Bonnet
integrand G can be found when M is a 6-dimensional compact Kaehler manifold possessing
the property (P). The formula obtained will then be used in two ways:

(1) To show that if M is A-holomorphically pinched, A > 2 — 22/3 ~ 0.42, then
x(M) > 0.

(2) To show that non-negative holomorphic curvature is not sufficient to make G non-

negative. This will be accomplished by means of an example satisfying the condition (P).

In the following, a pair of indices (a,a*) will be denoted by H or H’, and a pair (a, 8)
where 3 # o* by A. Then, condition (P) is equivalent to: The only nonzero curvature

components are of the form Ryp/ Raa, Raas.

The nonzero terms of the integrand are now classified into three groups depending on

the number of pairs of type H occurring in Iy, I, I3.

(a) All I are of the type A. Then, if we require a < 8 in every pair (a, 8), there are
12 possibilities for I;, and once I, is chosen, 4 possibilities for I2. This gives 48 possible
choices for I I13. For each choice of I, I,I3 we may choose J;J2J3 in only 2 ways, equal
to Iy Io 13 of I{I;1I5. The resulting product of curvature components is the same in either
case, namely, K;, K,Kj,. Due to Lemma G.4.2, there are only 4 essentially different
terms, K12K16K23, K12 K13 K26, K13K15K23 and K5 K16K26. Thus each will occur in the
integrand with the factor 24 - 26. (The 2° accounts for the transpositions of each of the 6
pairs.)

(b) One I isof type H, two of type A. Hence, if I; = H,J; = H also, so for each choice
of I I I3 there are again only two choices for J,J2J3, each leading to a term KyKaKa.
The I; which is of the type H may be chosen in any of the 3 positions and there are 3 type H
pairs. Once it is chosen there are 4 possibilities for the other I’s. This gives 72 terms divided

among the 6 distinct possibilities K4 K%, K14 K2, Kos K}y, Kos K%, K36 K7y, K36 K2y, 50
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the sum of these is multiplied by 12 - 26,

(c) All I; are of type H. Then, the J’s may be any permutation of the I’s, and the 3
distinct H's may be distributed among the I's arbitrarily, giving 6 terms for each permu-
tation of the J’s. The identity permutation gives the term K,4K25K36. The other even
permutations give the term (K1, + K15)(K1s + K16)(K23 + Ka6). The 3 odd permutations
give the 3 distinct terms Ki4(Kas + Ka26)?, Kas (K13 + K16)?, Kas(K12 + K1s)%.

Finally, from the above classification, we see that G may be expressed in the form

G= 81?[4(K12K16K23 + K12K13K26 + K13K15 K23 + K1s K16 K26)
+ K1a(3K3 + 2K23Ko6 + 3K%) + K25(3K}, + 2K 13K 16 + 3KY)
+ K36(8K7, + 2K12K15 + 3K%) + K14 K25 Kse
+ 2(K12 + K15) (K13 + Ki6)(K2a + Kas))-

The first and last terms in this expression do not involve holomorphic curvatures, only

anti-holomorphic ones, and these may be rewritten as
(zK12 + yKi1s)(z K13 + yKi6) (2 K26 + yKas)
+(zK12 + yR1s)(z K16 + yK13) (2 K23 + yK26)
+(2K15 + yK12)(z K13 + yKie)(z K23 + yKae)
+(zK1s + yK12)(z K16 + yK13)(2K26 + yKas).
Expanding, one finds that equality requires (z + ¥)* = 8 and (z — y)® = 4, so that
z=142"1/3 4y =1-2"1/3 The terms in question are products of the type K (X,Y )+

yK(X,JY). Expressing the latter in terms of holomorphic curvatures, we obtain, by virtue

of (G.4.2),
zK(X,Y) +yK(X,JY) = %[(éz —-y)(HX +JY) + H(X - JY))
— (-3 HX +Y)+H(X -Y)) -2H(X) - 2H(Y)).

Thus, if A > 2 — 2273 = 2y,

zK(X,Y) +yK(X,JY) > —2'/%,
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and so

873G > 4(—2'%y)® + K14Ky5Kag > 0.
This proves

Theorem G.10.1. A A-holomorphically pinched 6-dimensional complete Kaehler mani-
fold, ) > 2 — 2%/3(~ 0.42), having the property (P), has positive Euler-Poincaré character-
tstic.

Note that the Ricci curvature is positive definite for this value of A (cf. Theorem G.6.1).

An obvious modification gives negative characteristic when holomorphic curvatures lie
between —1 and —2 + 2%/3,

If besides property (P), K14 = Kos = K36 = 0, K12 = Ky = Kj3 = -1, Ky5 =
K,3 = Ky ¢ = 3, then a computation shows that holomorphic curvature is non-negative
and G = —12/7°, Thus:

If M 1is a compact Kaehler manifold of dimension > 6, it is not possible to prove by
using only the algebra of the curvature tensor at a point that non-negative holomorphic
curvature yields a non-negative Gauss-Bonnet integrand.

In fact, we are of the opinion that the Question cannot be resolved in this manner.

Remarks. (a) Conditions (P) and (Q) are preserved under Kaehlerian products. In
particular, products of complex projective spaces satisfy these conditions.

(b) The technique employed in § G.8 for estimating volume may be applied to the
Riemannian case thereby generalizing a result of Berger [a]. The improvement comes from
generalizing Rauch’s theorem so as to estimate directly lengths of Grassman (n — 1)-vectors
mapped by ezp rather than from using Rauch’s estimate of lengths of vectors to estimate

lengths of (n — 1)-vectors as Berger does.



360 APPENDIX G. GENERALIZED GAUSS-BONNET THEOREM

2]
[b]

[c]
[d]

[e)
il
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APPENDIX H

AN APPLICATION OF BOCHNER’S LEMMA

The notion of a pure F-structure generalizes that of torus action. The main result
asserts that a compact manifold of negative Ricci curvature does not admit any nontrivial
invariant pure F-structure. This can be viewed as an extension of a theorem of Bochner.
Among other applications, if a compact n-manifold of sectional curvature |K| < 1 has
Ricci curvature Ric < —A < 0, then the injectivity radius has a lower bound depending on

n, A and the diameter. The main result of this Appendix is due to X. Rong [z):

H.1. A pure F-structure

A pure F-structure F is a flat torus bundle over a manifold M with holonomy in SL(s, Z)
and its local action on M. The action is a homomorphism from the associated bundle of Lie
algebras to the sheaf of local smooth vector fields over M. A subset of M is called snvariant
if it is preserved by the infinitesimals of the local fields which are the homomorphic images
of the associated bundle of Lie algebras. An orbit is a smallest invariant subset. The rank
of F is the dimension of an orbit of smallest dimension. A metric is called invariant if the
homomorphic images are local Killing fields. A pure F-structure always has an invariant
metric.

A global torus action defines a pure F-structure. However, a pure F-structure with a
nontrivial holonomy group is not defined by a global torus action. Moreover, manifolds
which admit only the trivial torus action may admit nontrivial pure F-structures (e.g.

3-dimensional solvable manifolds which do not admit a circle action).

Theorem H.1.1. A compact manifold of negative Ricci curvature does not admit a non-

trivial invariant pure F-structure.

Since a nontrivial Killing field (on a compact manifold) implies a nontrivial invariant
torus action (i.e. the closure of the one-parameter subgroup of the Killing field), Theorem

H.1.1 implies the following classical Bochner theorem (see § 3.8).
361
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Corollary. A compact manifold of negative Ricci curvature does not admit a nontrivial

Killing field.

It turns out that Theorem H.1.1 provides local geometric information of negative Ricci
curvature since a nontrivial invariant pure F-structure is a kind of local symmetric struc-
ture of the metric. The local information will be made precise through its interesting
applications.

The parameterized and equivalent fibration theorem in [c] asserts that a sufficiently
collapsed manifold with bounded curvature and diameter admits a positive rank pure F-
structure which is compatible with some nearby metric. Using the technique of smoothing
metrics by the Ricci flow (see [a], [b], [i], [r]), the invariant metric in the fibration theorem
can be chosen so that max Ric and min Ric are close to that of the original metric {see
vD)-

In view of the above, Theorem H.1.1 has the following consequence.

Theorem H.1.2. There ezists a constant, i(n,d,\) > 0 depending on n, d and ) such

that a closed n-manifold M satisfying

K| <1, Ric<-A<0, diam <d,

has injectivity radius > i(n,d, \).

Note that using a result in [i] (also [w]), Theorem H.1.2 (also Theorems H.1.3-H.1.6
below) holds with a weaker condition; see Remark 4.

Theorem H.1.2 has a few interesting consequences.

Gromov’s diameter-volume isoperimetric inequality asserts that a compact n-manifold
with —1 < K < 0 and n > 4 satisfies vol(M) > an(1 + diam(M))*»), where a,, and b, are
constants depending on n [p]. This implies that for all v > 0, there are only finitely many
diffeomorphism types for n-manifolds with —1 < K < 0 and vol < v.

Theorem H.1.2 is equivalent to the following theorem.
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Theorem H.1.3. Let M be a compact n-mantfold with |K| < 1 and Ric < —A < 0. Then,

vol(M) > ¢(n,diam(M), \), where c is a constant depending on n, diam(M) and A.

This result can be treated as an analogue of Gromov’s diameter-volume isoperimetric
inequality for manifolds of negative Ricci curvature.

By Cheeger’s finiteness theorem, Theorem H.1.2 implies

Theorem H.1.4. There are only finitely many diffeomorphism types depending on n, A

and d for the class of compact n-manifolds satisfying

K| <1, Ric<-A<0, diam<d.

The classical Bochner theorem implies that a compact manifold of negative Ricci cur-
vature has a finite isometry group. By a quantitative version of Bochner’s theorem in [h],

Theorem H.1.2 implies

Theorem H.1.5. There ezists a constant, N(n, A, d), depending on n, A and d such that

the order of the isometry group of an n-manifold satisfying

|[K| <1, Ric<-A<0, diam <d,

18 less than N(n, A, d).

Remark 1. Note that Gromov’s diameter-volume isoperimetric inequality also implies
that a compact n-manifold with —1 < K < 0 has volume greater than a constant depending
only on n. Thus, it seems natural to ask if the same is true under a weaker condition,
—1 < Ric < 0 (cf. Remark 4). This problem is of special interest for the class of Einstein
manifolds of negative Ricci curvature [u], {v].

Remark 2. Theorem H.1.2 is false if one removes either of the bounds on the diameter
and on the sectional curvature without adding other restrictions (counterexamples can be
easily constructed). However, it seems possible that Theorem H.1.2 could be valid if the

condition Ric < —A < 0 is replaced by Ric < 0.
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Remark 3. According to [t], any compact manifold carries a metric of negative Ricci
curvature (the case n = 3 is due to [n]). Thus, negative Ricci curvature puts no constraint
on the topology of a manifold. On the other hand, for all n > 3 and d > 0, there are
infinitely many topologically distinct n-manifolds with |K| < 1 and diam < d (e.g. the
infra-nilmanifolds, see [0]). In view of this, Theorem H.1.4 reveals, by means of controlled
topology by geometry (cf. [q]), a topological constraint of the negative Ricci curvature.

Remark 4. According to [i], [w] a metric satisfying |Ric| < 1, diam < d, and a lower
bound on the conjugate radius can be approximated by a metric with bounded sectional
curvature and max Ric, min Ric close to that of the original metric. The bounds on
sectional curvature depend on the previous bounds. This result implies that Theorem
H.1.2 (also Theorems H.1.3-H.1.4) is valid under weaker conditions, —1 < Ric < —-X <
0, conj > c and diam < d. (Of course, the lower bound on the injectivity radius will

depend on n, A, ¢ and d.)

Remark 5. The sufficiently collapsed manifolds with bounded curvature and diameter
have been intensively studied during the past decade (see [c], [d], [e], [f], {g], [i], [k], [1], [m],
[o], [x]). A fundamental problem in this study is to find obstructions for such a collapsed
metric. So far, the only general topological obstruction known has been the vanishing
of the minimal volume [g]. Theorem H.1.3 provides a general geometric obstruction for a
manifold to collapse, namely., negative Ricci curvature for a metric with bounded sectional

curvature and diameter.

H.2. Proof of the main result

We argue by contradiction. In’spirit, the proof is closely related to the proof of the
classical Bochner theorem (see [s]). Recall that in the classical case the main fact is that if
X is a Killing field, then the norm function, f = 1/2¢(X, X), has nonnegative Laplacian
Af > 0, provided the Ricci curvature is negative. Thus, one gets a contradiction at a

point where f reaches its maximum.
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The idea of the proof is to seek a function on M which will play a similar role as the
norm function of the Killing field in the classical case. Instead of a global Killing field, the
construction of the function will make use of the existence of an invariant pure F-structure
F.

Fix zo € M and any s-tuple, (X?,...,X9?), where each X? is an invariant vector in
the fiber over zo of the associated bundle of Lie algebras £+. For any z € M and any
path v in M from zo to z, the parallel transport of (X?,...,X?) along v gives rise to an
s-tuple, (X1,...,X,)~ over z. Let [X?,..., X?]; denote the collection of (X1,...,X,)y for
all possible 4. Let p : £ — £ denote the homomorphism which defines a local action of
the pure F-structure on M, where € is the sheaf of local vector fields on M.

We now define a function, f : M — R¥, as follows. For z € M, take any (X1,...,X,), €

[X?,...,X?); and define

guin g1z ... Gis
1 921 922 ... G2s
(H.2.1) f(z) = 5det v gii = 9(p(Xi), p(X )z
o g e G
Note that f(z) is well-defined (i.e., independent of <) since the holonomy group is in
SL(s,Z). Moreover, since each point z has a neighborhood U on which the flat torus
bundle has no holonomy we can think of (H.2.1) as a local expression for f (i.e., parallel
extend X; to a (unique) section over U). In particular, f is a smooth function. Note that
in the case when an invariant pure F-structure is defined by a global Killing field X, our
function coincides with the normal function. Moreover, if X?,...,X? is a basis for the
torus fiber over zo, then f(z) can be viewed as the volume density function of orbits (with
an orbit of dimension < s having zero volume density).
It turns out that f has the desired property namely, Af > 0 on M, provided the Ricci

curvature is negative. Moreover, A f(z) > 0 if z is not a common zero of (X,,...,X,)y €

[X?,...,X?). Since Af(y) < 0 at a maximal point y at which necessarily f(y) > 0 we
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then get a contradiction. The proof that Af > 0 is by computation. Unlike the classical
case, a formula for Af with an arbitrary local expression could be so messy that one is
not able to see the desired property.

Roughly, we overcome the above difficulty by finding a good local expression for f
and by choosing a suitable system of coordinates. We first observe that f(z) is a zero
function if and only if X?,...,X? are linearly dependent. Thus, we can assume that
X?,...,X? are linearly independent. Then, by definition f(z) > 0 if and only if the orbit

at = has dimension s. Observe that if h(z) is the function associated to another (linearly

independent) s-tuple, (Y?,...,Y?), then
F(z) = (detA)?h(z), =€ M,

where A is the transition coefficient matrix from (X?,...,X?) to (Y?,...,Y?). Thus,
Af > 0 if and only if Ah > 0. A good local expression for f at z is one for which h
satisfies gi;(z) = g(p(Yi), p(Y;))z = &ij for some (Y7,...,Y,) € [Y?,...,Y?].. This need
not hold at other points. It turns out that if f(z) > 0, then f will have a good local
expression at z. Using a good local expression and a local coordinate system, we are able
to show that Ah(z) > 0. Since points at which f(2) > 0 are dense in M we conclude that
Af>0on M.

We now prove Theorem H.1.1 modulo a technical result namely, Proposition H.2.1.

Let M be a compact Riemannian manifold. Assume that M admits an invariant pure
F-structure, F, defined by a flat T°-bundle over M with holonomy in SL(s,Z) and its
local action on M. Let £ denote the associated bundle of Lie algebras, let p: £ — €
denote the homomorphism, where € is the sheaf of local smooth fields on M.

Recall that a fixed point zo € M and an s-tuple (X?,...,X?) determine a smooth
function on M with a local expression as in (H.2.1). We shall call f a function associated
to (X?,...,X?). Since holonomy transport preserves linear relations, f is identically zero

if and only if X9,...,X? are linearly dependent.
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From now on we only consider a function associated to a linearly independent s-tuple,
(X9,...,X2). For any ¢ € M, since p(X1),...,p(X,) forms a set of generators for the
subspace tangent to the orbit at z, (Xy,....X,)y € [X},..., X?],, we see that f(z) > 0
if and only if the orbit at z has dimension s. Recall that points at which the orbits have
dimension s are dense in M.

For convenience, we shall henceforth identify X, with p(X;).

Proposition H.2.1. Let f be the function associated to an s-tuple (X2,...,X?). Suppose
(le~-~ yXa)v € [X?an?].t such thatg(-)(hX])r = 6:‘]- Let X, ... quVIv”-vVn—a be

an orthonormal basis for T, M. Then,

9

- 2
Z{Zg vv,x.,X)] + Y A(Vx X, X))zt

= i,5.k=1

i (Vv X0, V1)s ZchX,,X)
k=1

i=1 =1

where Af(z) = 31_, Xi(X + S itVif)(x).
It is easy to check that Proposition H.2.1 coincides with the classical formula when f is

the normal function of a global Killing field:

Proposition H.2.2. Let X be a Killing field on M, let f(z) = %g(X,X), Let Vi,...,Vy

denote an orthonormal basis in T, M. Then,

Af(z) =Y || Vv.X |* —Ric(X, X).
=1

The following lemma implies that at any point where f(z) > 0, one can assume that f

satisfles the assumptions of Proposition H.2.1.

Lemma H.2.1. Let f be the function associated to a linearly independent s-tuple, (X?,...,X0).
Let x € M such that f(z) > 0. Then, there is a function h associated to some s-tuple such

that f = const - h on M and h satisfies the assumptions of Proposition H.2.1 at z.

Proof. Note that the orbit at z has dimensior s since f(z) > 0. Thus, we can choose an

s-tuple, (Y1,...,Y}), such that 9(Yi,Y;): = &;;, where Y, is an invariant vector field in
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the fiber over z of the associated bundle of the Lie algebra. Take any (X),...,X,), €
[(X?,..., X%, end put (Xi,...,X,)y = (Y1,...,Ys)A, where A is the coefficient ma-
trix. Let Y2,...,Y? denote the parallel transports of Y,...,Y, along the inverse of ~.
Clearly, (X?,...,X%) = (Y?,...,Y?)A. Let h denote the function associated to the s-
tuple (Y?,...,Y?). From the construction for h we see that f = (det4)?h and h has the

desired property.

Proof of Theorem H.1.1. We argue by contradiction. Assume that M admits a nontrivial
invariant pure F-structure F. Choose a function f associated to an s-tuple (X?,...,X?),
where X?,...,X? are linearly independent. Let y € M be a maximal point for f. Then,
Af(y) < 0. On the other hand, since f(y) > 0 by Lemma H.2.1, Proposition H.2.1 and

the assumption that Ric < 0 we conclude that A f(y) > 0-a contradiction.
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APPENDIX I
THE KODAIRA VANISHING THEOREMS

A complez line bundle B over a Kaehler manifold M is an analytic fibre bundle over
M with fibre C and structural group the multiplicative group C* of C. Denote by
H?(M, A%(B)) the p** cohomology group of M with coefficients in A?(B)-the sheaf over M
of germs of holomorphic g-forms with coefficients in B. These groups are finite dimensional
when M is compact. It is important in the applications of sheaf theory to complex mani-
folds to determine when the cohomology groups vanish. By employing the methods of §3.2,
Kodaira [47] obtained sufficient conditions for the vanishing of the groups H?(M, A?(B)).
In this Appendix the details omitted in §6.14 are provided. The reader is referred to the

book of Morrow and Kodaira [97] for additional information.
1.1. Complex line bundles

Let B be a complex line bundle over a Kaehler manifold M of complex dimension n.
In terms of a sufficiently fine locally finite covering U = {U,} of M, the bundle B is
determined by a system {fag} of holomorphic functions (the transition functions) defined
in UqaNUp for each a, 8. In U,NUgNU,, they satisfy fusfayfra = 1. Setting aap = }fasl?,
it is seen that the functions {aag} define a principal fibre bundle over M with structural
group the multiplicative group of positive real numbers (cf. Chapter I, § J).

Let AP9(B) be the sheaf over M of germs of differential forms of bidegree (p, q) with
coefficients in B. A form ¢ € AP¥(B) is given locally by a family of forms {¢a} of bidegree
(p,q) on {Us}, where {Ua} is a covering of M with coordinate neighborhoods over which

B is trivial and

(Ill) ¢a=faﬂ¢ﬂ on UanUﬂ.

Let Q = /=Tgijedz' A d7’ be the fundamental form of M and let a be an hermitian
370
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form on the fibres defined by

(¢, ¢) = aallal® = aagij CuCJ

where (, is a fibre coordinate of ¢ and a.(z) is a real positive function of class co on Us,.

Then, aq]¢s]? = as|(s]* implies
a
(1.1.2) |fasl? = 2.
(o]
If M is compact, the global scalar product (¢, ) of the forms ¢,% € AP9(B) is defined by
(113) (6.9)= [ aata 4T,
M
For, by (1.1.1) and (1.1.2)

aada A*o = agdg A*g on Us NUs.

In the sequel, we assume that M is a compact Kaehler manifold unless stated otherwise.

We define the adjoint 6 of d" with respect to the metric a by
(1.1.4) (d"¢,%) = (8,8,%).
Let ¢ € AP9(B), 3 € AP7+1(B), Then,
T = dapa A ¥,

is a differential form of bidegree (n,n — 1), so dr is a 2n-form. It follows that
0= / dr = / d'r = / aad"do A ¥,
M M M
-+ (—1)”’1/ Yo Ad'(aa * Pa).
M
But,
/ ¢'cxaa A *37.'11)0 = / aad"¢a A *Ea'
M M

Therefore,

Ao * 8P = —(=1)"11d (ag * ta).
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Proposition I.1.1.
(L1.5) Sava = — % a3 d'(aq * Pa)-

Set

D=d”6”+6”d” _ %A

and
O, =d"8; + 6, d".
Then,
s =0+ terms of order <1.
Consequently,

Theorem I.1.1. O, is a strongly elliptic second order operator.

Proposition 1.1.2. O, is self-dual, that is,

(Oag, ) = (¢, 0a%).

For, by (1.1.4)
(Da¢1 11’) = ((d”‘s:zl + alnld”)¢7 ¢)

= (6,6, 85%) + (d"¢,d"¢)
= (¢,(d"8; +85d"))¢

= (¢a Da¢)'
Proposition 1.1.3. O,¢ = 0, if and only if, d"¢ = 0 and §%¢ = 0.

Let

N (B) = {¢ € A"(B)|0a¢ = 0}.

Proposition 1.1.4.

APY(B) = NG (B) @ d" AP971 (B) @ 87 APt (B),
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where @ denotes the orthogonal direct sum.

Proof. Let n € A%I(B),d"¢ € d" AP~ (B) and 6% € 6! APA+1 (B). Then,
(Ylvd”¢) = (J:T], ¢) =0,

(n,859) = (d"n,9) =0 and

(d"¢,8,) = (d"d"$,¢) = 0.

Therefore, A};?, d"AP4~1 and §AP7*! are mutually orthogonal and
AP(B) = AZS(B) @ d" APS1 (B) @ 5/ AT (B)

(see § 2.10).

Theorem I.1.2. dim A}?(B) < o0. (cf. Appendiz C).

I.2. The spaces A}(B)
Theorem 1.2.1. Let B be a complez line bundle on a compact Kaehler manifold M and
AP(B) the sheaf of germs of holomorphic p-forms with coefficients in B. Then

HY(M,A?(B)) = N} (B)

(cf. [97, p. 81)).

Proof.

_ {#eA9(B)ld"s = 0)
d AP (B)

HY(M,A?(B))

Let £9 = AP9(B) and Zau(L9) = {¢ € L|d"$ = 0}. Then,

HI(M,A?(B)) = i;',‘;:(f_ql).
We show
(12.1) Zan(L9) = AR (B) @ d" LY.
Clearly,

AI(B)® d" LI C Zgn(LI).
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Let ¢ € Z4n(£9). Then, d”"¢ = 0, so since ¢ = n + d"9 + §./o, where n € A}¥(B),d"y €
d"L£97! and §/o € /L% by Hodge decomposition, d”§%¢ = 0. Thus, (d"8/0,0) = 0

from which (8]0, 82c) =0, that is 80 = 0 and ¢ € AR (B) @ d"L771.
Corollary. dim HI(M,A?(B)) < oco.
This is an immediate consequence of Theorem 1.1.2.

Theorem 1.2.2. On a compact Kaehler manifold M

(1.2.2) HY(M,A?(B)) = H?(M,A%(B)),

(1.2.3) H"(M,C) = Gppqer HP (M, N(B)).
Proof. If ¢ is harmonic, so is ¢ since 0o = Oa. Therefore, A}?(B) = ALP(B), so by
Theorem 1.2.1, we obtain (1.2.2).

(1.2.3) is a consequence of Proposition 1.1.4, For, by de Rham’s theorem,
H™(M,C) = AL/A]
(see p. 15). But
H'(M,C) = Ny (B) = {6 € A"(B)|Daé = 0}.

This is Hodge’s theorem. Its proof is similar to that of Theorem I.2.1 using de Rham’s
theorem and the decomposition theorem, viz., Proposition I.1.4. As in Lemma 5.6.6 we

have the following decomposition

Nu(B) = @psq=r N’ (B).

1.3. Explicit expression for O,

We derive a formula for O, acting on A”9(B) where B is a complex line bundle over

a Kaehler manifold similar to the expression for A acting on AP(M) in §2.12. A form
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¢ € APY(B) is given locally by a family of forms {¢.} of bidegree (p,q) on {Us}, where
{Us} is a covering of M with coordinate neighborhoods over which B is trivial.
Expanding formula (I.1.5), we obtain
(65)s = 8"dg — x(ag'd'ag A *¢a)

= 6”¢g - *aElajagdzj A x¢g.

Since
§"¢g = —xd xdpg = —x Didz' A x¢pg
and
(8"88)ir..ipit iy, = =97 Didgseis gt onyy»
we have

Proposition 1.3.1.

(83 8)iv.ripig iz, = —(=1)P"" (Di + 8i10g @a)bony...ipjesi. iz, -
Proof. We need only show that

*(aﬂ_lajagdzj AxBg)iy it is, = —gij.a;‘6;a5¢ﬂj-..“.i,j;4..j;_l.

The details are left to the reader (see also [97]).

We define the covariant derivative D;¢ of a form ¢ = {¢o} € AP9(B) by Di¢ = {Dis}.
For a function f of class co

Di(f¢) = (6if)¢ + fDi¢.

Let Ay, =1;...i, and By =j7...j;. Then, since
Pan,B; = fapdsa,B;,

Didan,b; = fapDiban,n;,

for, d” f,5 = 0. We define the covariant derivative D;¢ by

Di¢ = {Dita}.
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Since
a _
-2 = lfaﬂrl = fapfas,
Qo
1
aabaa,By = ﬂaﬂ‘bm,la;,
o,
80
1
Di(aabas,B;) = EDi(aﬂtﬁﬁA,,B;)-
Therefore,
1 1
—Di(aa¢an,B;) = fas(—Di(asdpa,s;))-
Qo ag
We define

D4 = {--Di(aasa)

= {(D; + 0;log ag)Pal-
Theorem 1.3.1.
Oadas,B; =— g Dfﬂ)ﬁi‘ﬁa,a,,a;

q
k* k°
+ Y (XE 4 R ) Banpisip_ ke isynss

=1

§ :E : t* ms*® . L. R e .
- g9 9 Ripl'mj;¢a|l...|,_,llp.H.4.1,1;4,.];_13'];_“;.

p o
where Xf.. = —D;¢¥ and €5 = ¢'*" §;log aq.

Proof. By Proposition 1.3.1

(628)a,B;_, = ("), B;_, — (—1)’fj'¢A,j-a;_l.

Set
(fd’)ApB;_, = (“1)p+1ﬁj.¢A,j' B;_,-
Then,
(Qad)a,B; = ((d"57 + 67d")¢) 4, B:
= (D¢)A,B; + ((d"f + Ed”)(b),q,g;.
Since - .
(d"(€4))a, B3 = (—1)? Z(“l)p—lﬁjp(fdﬂA,J‘;...j;_l,‘;“...,;
p=1
L] :u
== 2 (=D D5 (€ by sy )
p=1

=3 D5, (€ baystiyiitgsip)

p=1

B
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and
q

(€d"$)a,B; = =& Dj, = 3 & D, )a,51. 5515 isga i

(Oad)a,B; = (Od)a,B; — & Djida,n;
(13.1)

Observing that
—gij. D.'ﬁ,‘ - {j.ﬁj = —gij. (D;i + 6 log aa)ﬁj
(13.2) )
=-¢""D{D;,
then by (1.3.1) and (2.12.4) this completes the proof.
The tensor field X = g.-k-X,’-‘.' = —g,»,,.ﬁ,-g"“a, log ag = —8:0;log a, is called the

curvature of the metric a.

1.4. The vanishing theorems
We employ the differential-geometric method due to Bochner to obtain the so-called
vanishing theorems of Kodaira [47]. We ask under suitable conditions on the curvature of
a compact Kaehler manifold M when the cohomology groups H9(M, AP(B) vanish, where
AP(B) is the sheaf over M of germs of holomorphic p-forms with coefficients in the complex

line bundle B.

Theorem 1.4.1. If the hermitian matriz X;j» + R;j- is positive definite everywhere on

the compact Kaehler manifold M, then
HY(M,AN°(B) ={0}, q=1,...,n,

where A°(B) = O is the sheaf over M _of holomorphic functions.

Proof. From Theorem 1.2.1 and the fact that A%;?(B) = AY7(B), H1(M, A°(B)) = AL(B)
{¢ € A>9(B)|0,¢ = 0}. We show that any ¢ € A>9(B) satisfying O.¢ = 0 vanishes. To
this end, let

® = aaﬁj¢aB;¢g; dz’.
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& is a form of bidegree (0, 1), so by Stokes’ theorem

0=/ 5¢*1=/(5'+5{;)m1=/ %1
M M M

since §' is of type (—1,0). Therefore,
_ B
0= [ ¢ Di(aaDsdun;dat) +1
M
= ii* pla) . Bg
= Qa9 Di D1¢aB;¢a *1
M
i D, 6Ba
+ Cag D]¢QB;D,¢O, * 1.
M
The last term is nonnegative, so the second integral is nonpositive. Applying Theorem

1.3.1 to a form of bidegree (0, q), we get

q
Os¢apy = —g" DSG)DJ%B; + Z(Xf;, + Rf; Vbajscin K Gppn s

p=1
Therefore, since Oy, = 0

02 /M Gaq D D (Xie + Rigt)issi - Gig_js_, 826" Pimr x L.

Ag—1,Bq-y o1

By hypothesis, X¢,o + Ry, is positive definite. Hence, ¢! -ta-1 = 0. This completes the

proof.

The theorem is vacuous for ¢ = 0.

We study the curvature X;j+ of the metric a. For any germ of a holomorphic function
f,exp 2m/—1f € O*, where O* is the sheaf over M of nonvanishing holomorphic functions.
We have the exact sequence

09Z-50-50"-50
where Z is the sheaf of germs of locally constant integer-valued functions on M. This
sequence induces the following sequence of cohomology groups
oo HY (M, 0). o H\(M,0) S HX (M, Z2) > ... .

Definition. ¢(B) = §*(B) is the 1°* chern class of B. (Note that an equivalence class
of bundles defines an element of H!(M, O*)).
Since Z C C we map H*(M,Z) — H*(M,C) and send ¢(B) = ¢(B)c. The first half

of Lemma 6.14.1 is given by
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Theorem 1.4.2. The de Rham cohomology class of c(B)c¢ is represented by
(V=1/27)X;jo dz" A dZ7.

Proof. In terms of a sufficiently fine locally finite covering i = {U,} of M the bundle B is
determined by a system {fas} of holomorphic functions defined in U, N Uy for each a, 8
(see § 1.1). In Us N Ug N U,, they satisfy fogfgyfya = 1. Therefore, ¢(B) = {(cap+)}
where

log fap +1og foy +108 fra =21V ~1cap,
is a constant in U, NUgNU,, and the system {cqag+} defines a 2-cocycle on the nerve N(U)
of the covering U (cf. Appendix A). The {cagy} C Z, therefore, determine a cohomology

class ey € H*(N(U), Z). By taking the direct limit
H*(M, 2) = lim HYX(NWU),Z)
we obtain the characteristic class ¢ = ¢(B) € H?*(M, Z) of the principal bundle (defined
by the functions {|fap|?}) associated with B.
We seek a closed 2-form « representing ¢(B)c. To this end, we show that there are
1-forms o4 of class co on U, such that
! dlog fag=0g—0
2"_\/_—1 g Jap =08 a-
Then, v = do, = dog.
From § I.1, |fag|? = ag/aqa. Therefore,
log fap +log fop = log ag ~log aa,

8o since d = d’' +d”,

d log fop = d'log ag — d'log a,.

1
7= 2ny/—1

d'log ag.
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Then,
v =dog = 2”\1/:Id"d' log ag
- _#_aﬁj log agdz' A dz'
- \/__x,, vdi* A d
(see § 1.3).

The converse of Lemma 6.14.1 is given by

Theorem 1.4.3. If v is a real closed form of bidegree (1,1) on M belonging to the char-
acteristic class c(B), there exists a system of positive functions ao of class oo such that
for each pair o, 3

ag = Ifaﬂ!zaa in UsNUp

and

5= —Vz;la.-éj log andz' A dZ’
(cf. VLH.2).

Proof. Choose any metric @ = (&q) on B, that is &4 is of class 0o on Uy and éq|fag|? = as.

Let
X = 7 \/._X._, dz' AdZ,
where
d%log dq
Xijo = =22
J 02'0z1
that is
X = -—"Q;Id'd" log @q.

Then, as in Theorem 1.4.2, the coi’xomology class determined by X is given by ¢(B)c.
Thus, X = v + d¢ for some 1-form ¢ such that d¢ is of bidegree (1,1). By the Hodge

decomposition theorem,

dp=n+0yp =9+ (d6+6d);/;
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where n and ¢ are forms of bidegree (1,1) and An = 0, the latter implying dp = 0 and
én = 0. It follows that dddy = 0 from which
(6dy, 6dyp) = (dyp, dédy) = 0,
and this implies that §dy = 0. Hence,
1
d¢ =n+ Ed&tj),

from which
0= (6777 d’)

= (n,d9)
=(nn)+ %(n,d&b)
=(nn)+ %(577,511))

= (mn)
so = 0. Moreover, d = 0 since

0 = (8dy,y) = (dv, d¥).

Consequently, d'y) = 0 and d""y = 0, so
X—v=ds

1
= 50¢
= d"(s”’/) + 6"(1”'1)
— d"&"‘l)

=VZ1d"(Ad' = d'A)yp by (5.4.7)

= —v-1d"d'A¢
V-1 gt
= o 44,
where the function f = 2rA4 is positive. For, A is a real operator and ¢ is a real form.
Since
¥ o= V=l
X~-53= o d'd'f
- Vv _ld'd"f
2r

=X-7
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X — ~ is a real form. Finally,

\/::TIII
v=X - mddl

= —”2_1d'd"(10g da - f).
™

Set aq = a@q exp(—f). Then,

5 = —'z_ld'd” log aq

m
and
a
ﬁ = ]fo:ﬂ|2<
This completes the proof.

A complex line bundle B over a complex manifold M is said to be positive if there is a
real closed 2-form v = (1/27/—1)X;; dz* A d27 of bidegree (1,1) such that {y} = ¢(B)¢
and X;;- is positive definite everywhere on M.

Note that if B is positive, then w = /=1X,-dz' A dz? is a Kaehler form, that is, M is
a Kaehler manifold with fundamental form w.

We restate Theorem 6.14.1 as follows:

Theorem 1.4.4. If the complez line bundle B is ‘sufficiently’ positive, then
HY(M,AP(B)) ={0}, g=1,...,n.

Proof. This is a consequence of Theorem 1.2.1, namely, H7(M, AP(B)) = AYP(B) and the

expression for FP9(~,v) on p. 234 (see also §3.2 and Theorem 1.3.1).

Let —B denote the complex line bundle defined by the system {f;!}. Then, the map
$ = ¢' defined by ¢, = (1/as) * o maps A4?(B) isomorphically onto A} »" " Y(—B).

Hence, by Theorem 1.2.1
HY(M,AP(B)) = H"9(M,A""P(=B)).

This gives rise to Corollaries 6.14.1 and 6.14.2.
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A

Abelian differential of the first kind, 178
Abstract complex, 56-57
dimension of, 57
geometric realization of, 60
Affine collineation (of a Riemannian mani-
fold), 119
Affine connections, 23-24
on a Lie group, 137
projectively related, 121-122
Affine transformation (of a Riemannian
manifold), 121
Algebra of Cayley numbers, 191
Almost complex manifold, 156
Almost hermitian manifold, 259
Almost hermitian metric, 267-268
Almost Kaehler manifold, 259
Anti-derivation, 9¢€
Arithmetic genus, 178
Associated fibre bundle, 55
Atlas, 149
Automorphism, 261
infinitesimal, 261

Bar operation, 96

Barycentric coordinates, 61

Base space, 1l. see also Principal fibre
bundle .

Beltrami’s differential operator of the
second kind, 7§

Betti numbers, 6
of a compact semi-simple Lie group, 144
of a Kaehler manifold, 177
of simple Lie groups, 143-144

Bianchi identities, 29 162

Bidegree
of a homogeneous exterior differential
form, 148
Bilinear symmetric form
fundamental, 136
invariant, 145
Bochner’s lemma, 242
Boundaries, 58, 61
p-boundaries, 276
Boundary operation, see Boundary operator
Boundary operator, 58 61 27€
Bounding p-cycles, 58
Bundle of bases, see Bundle of frames
Bundle of exterior differential polynomials,
168
Bundle of frames, 27-2§&
Bundle of unitary frames, 158

C

Canonical bundle, 23
Carrier (of a differential form), 19-20
Cauchy-Riemann equations, 67 189
Cauchy's theorem
for multiply connected regions, 65
for simply connected regions, 64
Chain
locally finite, 61
p-chain, 57, 27¢
p-dimensional, 57
support of (a p-chain), 61
of type (p, g), 283
Characteristic class, 233
positive definite, 23
Chern class
18t 166, 235
representative of, 22§
Circle bundle, 185
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Class
of a differentiable structure on a mani-
fold, 2-3
of a differential form, |4
of an induced structure, 4
of a map, 3
of a pfaffian system, 47
Cobound, 72
Coboundaries, 59
Coboundary operator, 59, 273
Cobounding p-cycles, 59
Cochain, 59
finite, 275
p-cochain, 59
p-cochain of the nerve, 272
p-dimensional, 59
of type (p, q), 283
Co-closed p-form, 72
Co-exact p-form, 72
Coframe, 46, 159
Cohomologous cocycles, 50
Cohomology class, 60
Cohomology group, |5
p-th cohomology group (of a complex),
59-60
Cohomology ring, |5
Cohomology theory, 80
Compact semi-simple Lie group
geometry of, 136-138
Complete parallelisability, 29
Complete system, 74
Complete vector field, 99
Completely continuous (linear) operator,
299
Complex analytic manifold, 147
Complex dimension, 147
Complex line bundle over a Kaehler
manifold, 232
Complex manifold, see Complex analytic
manifold
Complex multi-torus, 149, 186
Complex operators, 169
Complex parallelisable manifold, -167
Complex projective space, 149
Conformal geometry, 84
Conformal metric, 149
Conformal transformations, 106
group of, 106
infinitesimal, 106
homothetic, 107
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Conformally homeomorphic Riemapnian
manifolds, 35
Conformally related metric, 106
Connected togological space, 2
Contracted tensor, see Tensors
Contravariant vector (at a point), 5, see also
Vector fields
Coordinate slices, 48
Covariant differentiation, (92
Covariant vector, §
Covector, see Covariant vector
Covering (of a complex), 60
Covering complex, 50
of a differentiable manifold, 51-62
Cross-section, 11, 14
Cup product, 293
Curvature
constant, 37
constant holomorphic, 201
Gaussian, 35, 185
mean, |25
Ricci, 38
Ricci scalar (scalar curvature), 38
sectional, 35-39
Curvature forms, 29, 161
Curvature tensor, 26-27, 52-53
conformal, 116, 131
projective, 206
Curve
auto-parallel, 25
geodesic, 40
parametrized, 18

D

d-cohomology, see Cohomology theory
Decomposition theorem
for compact Riemann surfaces, 55-58
Hodge-de Rham, 76, 296
Degree
of a differential form, |4
of an endomorphism, 96
of a p-vector, 13
de Rham cohomology, 63-54
de Rham cohomology group, 53-54, 56
de Rham’s existence theorems, 76, 270-292
de Rham’s isomorphism theorem, 289-291,
292
for compact Riemann surfaces, 65-66
for simple coverings 284-289
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Derivation, 96
Derived algebra, 145
Differentiable structure, 2
of class &, 2-3
equivalence of, 4
oriented, 4
Differential form of bidegree (g, r), 148
Differential form of degree p and class /, |4
integral of, 20
Differential system of dimension 7, see
r-distribution
Differentiable transformations, see Map.
(global) I-parameter group of, 29
generated by a vector field, 99
Direct limit of groups, 275
Directional derivative, §
Displacement vector, 34
Domain (with regular boundary), 21
boundary point of, 21
interior point of, 21
regular boundary of, 21
Dual (linear) operators, 74

E

Effective form, 179-182

Einstein manifold, 38

Einstein summation convention, 3

Endomorphism of degree r, 96

Euclidean p-simplex, 51

Euler-Poincaré characteristic (of an abstract
complex), 650

Exterior algebra, 12-14, 44-45

Exterior differential polynomial, 14

F

Fibre, |1, 54
standard, 55
Field of frames, 215
parallel, 215
Field of r-planes, 47
Field of subspaces, 156
Frame (at a point), 27
Frobenius’ theorem, 45-49, (27
Fubini mertric, (88
Function, see also Mapping
differentiable, 4
differential of, 14
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directional derivative of, 98

holomorphic, 57, 147, 189-190

partial derivative of, 4
Fundamental form, 165
Fundamental tensor field, 30

G

Gauss-Bonnet formula, 228
General linear group, 3
Genus

arithmetic, see Arithmetic genus

of a compact Riemann surface, 178
Geodesic, see Curve
Geodesic coordinate system,

coordinates

Global scalar product, 70-71
Graded algebra (over a field), 95-36
Grassman algebra, see Exterior algebra
Grassman manifold, 48
Green’s operator, 30, 296

complex extension of, 179

see Local

H

Harmonic field, see Harmonic form
Harmonic form, 57, 73
on a compact semi-simple Lie group,
139-141
Harmonic function, 57
Hausdorff topological space, 2
Hermitian geometry, 158
Hermitian (linear) operator, 81
Hermitian manifold, (58
hermitian structure on, |58
Hermitian metric, 154, |58
Hermitian vector space, 154
Hodge existence theorem, 76-77
Hodge (star) operator, see Star operator
Hodge’s theorem, 76
for a compact Riemann surface, 58
Holomorphic connection, 167
Holomorphic differential, 58
Holomorphic form (of degree p), [69
Holomorphic function, see Function, holo-
morphic
Holomorphic isomorphism, [83
Holomorphic section, 200
Holomorphic sectional curvature, 200
Holomorphic vector field, see Infinitesimal
holomorphic transformation
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Holonomy, see Holonomy group
Holonemy group, 50-51
restricted, 51
Homogeneous space, 241
symmetric, 241
Homologous cycles, 58
Homology class, 58
p-th Homology group
of a complex, 58
singular, of a differentiable manifold,
61 276
Homology sphere, 83
Hyperbolic space, 84

I

Incidence number, 56
Induced map, see also Map.
dual of, 18
Infinitesimal holomorphic transformation,
247
Infinitesimal isometry or motion, 106
Infinitesimal transformation, 11 98-101
differentiable of class k-1, 99
left invariant, 103
right invariant, 104
Inner automorphism, 104
Inner product, 6
of a cochain and a chain, 283
Integral p-chains, $8-19
Interior product, 97
Interior product operator, 97, 171
Invariant element, see L-invariant element
Invariant vector field, 100
Inverse limit of groups, 277
Isometric n-dimensional Riemannian mani-
folds, 84
Isometry, 84, 244
Isomorphic complexes, 60
Isothermal parameters, 149

J-basis, 152-153
Jacobi identities, 163, 218
Jacobi identity, 100, 133 (4.1.5)

K

Kaehler manifold, 163
elliptic, 197
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A-holomorphically pinched, 238

hyperbolic, 197

parabolic, 197
Kaehler-Einstein manifold, 210
Kaehler-Einstein metric, 255
Kaehler metric, 163
Killing vector field, 108
Kodaira,

vanishing theorems of, 232-237
Kronecker symbol, 16

L

L-invariant element, 136
Laplace-Beltrami operator, 78, 176
Laplace’s equation, €69
Left invariant differential form, 133
Left translation, 103
Levi Civita connection, 2
Lie
third fundamental theorem of, 128.130C
Lie algebra (of a Lie group), 104
adjoint representation of, 134
reductive, 252
structure constants of, 133, 136
Lie bracket, 96, 106
Lie derivative, 101-103, 108, 261
Lie group, 103
adjoint representation of, 104, 134
Grassman algebra of, 132-134
| -parameter subgroup of, 104
semi-simple, 136
simple, 143
Lie subalgebra, 104
reductive, 252
Lie subgroup, 104
Lie transformation groups, 103- /05
effective, 105
transitive, 241
Linear (differential) form, 7
Local coordinates,
geodesic, #0-41
complex geodesic, 173-174
Local coordinate system
conformally related, 66
Local complex coordinates, 147
Local hypersurface (of E"*!), 124
Locally flat (affinely connected) manifold,
see Manifold
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M

Manifold
affinely connected, 24
analytic, 3
of class oo, 3
completely parallelisable n-dimensional,
§9
differentiable, 4
integral, 48-¢9
lacally affine, 27
maximal integral, 243
orientable (differentiable), of dimension
n, 4, 19
symplectic, 259
topological, 3
Map, see also Mapping
of class &, 1
closed conformal, 265
differentiable, 17
holomorphic, 182
induced, 18, 102
natural, 241
regular, 18
Mapping, see also Map
gradient of, 11
sense-preserving, ¢
Maurer-Cartan
equations of, 133
forms of, 133
Metrical connection, 51
in a complex manifold, 159- 61
Minimal hypersurface (of E"+!), 125
Module, 57
left A-module, 57
right A-module, 57
Myers' theorem, 243

N

Natural base, 6
Nerve (of a covering), 272
Non-singular matrix

real representation of, 153
Normal topological space, 301

o)

Open covering (countable)
locally finite, 276
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refinement of, 273

simple, 284

strong refinement of, 277
Operator

co-differential, 72-73

elliptic, 242

exterior product, 56

local, 15

of type (a, &), 169
Orthogonal p-forms, 71, 170
Orthogonality relations, 73-74
Orthonormal frames, 32

p-cocycles, %9
p-cycles, 58, 61, 276
p-form, 14
adjoint of, 70
closed, 15
co-differential of, 72
with coefficients in a complex line
bundle, 233
of constant length, 112
covariant derivative of, 193
exact, 15
exterior, 14
{-form, see Linear (differential) form
harmonic complex, 176
integral of, over a domain, 19
integral of, over a manifold, 220
integral of, over a singular p-chain, 62
integral of, over a singular p-simplex, 62
L-invariant, 108
period of, 64
vectorial 1-form, 42
p-vector
decomposable, 13
exterior, 13
Paracompact manifold, 291
Parallel displacement along a curve, 25
Parallel vector field, §7
Partition of unity subordinated to a
covering, 20, }01-302
locally finite, 20
Pfaffian form, 46-47
Pfaffian system, 47
completely integrable, 47
first integral of, 47
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Poincaré lemma, 280
Poincaré.polynomials, 144
Pole of a geodesic coordinate system, 4C
Polyhedron, 60
Potential function, 68
Principal fibre bundle, 53-55

base space of, 53-55

fibre of, 54

structural group of, 53-55
Projective transformation (of a Riemannian

manifold), 121

Projective variety, 146
Properly discontinuous group, 184
Pure differential (form), 67-68
Pure forms, 152

Q

Quotient complex structure, 184

R

r-distribution, 4§
Real analytic coordinates, 147
Real finite-dimensional vector space
complex structure on, 151
complexification of, 150
Real operator, 152, 166
Real projective plane, «
Real tensor, 150
Real vector, 150
Regular differential form, 6§
Regular topological space, 302
Ricci curvature, see Curvature
Ricct curvature tensor, 38, 165
Ricci directions, 3§
Ricci identity, 113
(Ricci) scalar curvature, see Curvature
Ricci tensors, 166-167, see also Ricci
curvature tensor
Riemann sphere, 149
Riemann surface, 184
of an algebraic function, 6€
Riemann surfaces, equivalence of, 84
Riemannian geometry, 30- 34
Riemannian homogeneous manifold, 111
Riemannian manifold, 3C
conformally flat, 116
locally convex, 125
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locally projectively flat, 123
8-pinched, 92

Riemannian metric, 30
complete, 55

S

Scalar, see Scalar invariant

Scalar invariant, €

Scalar product, see also Vector fields,

Tensors global, 169-170

F. Schur, 37

Self-dual (linear) operator, 8

Separable topological space, 2

Simplex, 56-57
dimension of, 5€
faces of, 272
p-simplex, 56-57 272

Singular homology, 60-62

Singular p-chain, 61
finite, 61

Singular p-simplex, 61
faces of, 61
support of, 61

Space form, 85

Spherical space, 84

Star isomorphism, 68-71

operator

Star operator, 66 70 78-80, 169-170
inverse of, 97

Stokes’ theorem, 21-22, 62-63 284

Structural group, 11, 53

Structure
almost complex, 15€
almost hermitian, 192, 25¢
almost Kaehlerian, 25¢
complex (analytic), 147
conjugate complex, 155
differentiable of class &, 2.
equations of, 29, 160, 161, 165
hermitian, 154
induced, of class &, ¢
induced complex, 147
integrable almost complex, 157
left invariant almost complex, 190
real analytic, 147

Submanifold, 1§
closed, 18§
invariant, 192
open, 18

see also Star
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Surface
geodesic (at a point), 35
regular closed, 2
Symplectic group, 144
Symplectic manifold, see Manifold

T

Tangent bundle, 9-11, 55
Tangent space (at a point), §
Tensor algebra (over a vector space), 45
Tensor bundles, 9-12
Tensor field, 11
holomorphic of type (3 J), 211
Tensorial p-form (at a point) of type (, s),
42
Tensor product
of modules (over non-commutative ring
with unit), 58
of vector spaces, 41-42
Tensors, 5-9
commuting, |54
components of, 7
conjugate of, 150
contraction of, 8
contravariant, 7
covariant, 7
(local) scalar product of, 36
positive definite, 8
product of, 7-§
self adjoint, 155
skew-symmetric, 7
symmetric, 7
transvection of, 39
of type (7, 5), 7, 8
of type (3! 1), 152

a3 Ty
Tensor space, 7
pure, 152

Torsion forms, 160
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Torsion tensor (of an affine connection)
26, 163

Torus, 39-90

Totally geodesic hypersurface, 125

Transition functions, 11, 54

U

Unit covering, 3
Unitary frame (at a point), |58

\Y%

Variety in E"*!, see Minimal hypersurface
Vector of bidegree (or type) (1, 0), 152
Vector of bidegree (or type) (0, 1), 152
Vector fields, |1

covariant derivative of, 24

covariant differential of, 24

induced by a l-parameter group, 99

scalar product of, 30
Vectorial 1-form, 42
Vectors

curl of, [1-12

homogeneous of degree p, |3

length of, 30

parallel tangent, 25

parallel tangent, along a curve, 25

%

Weyl conformal curvature tensor, |16
Weyl projective curvature tensor, 122

Zero tensor, 7
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